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1. Introduction

With the development of Earth observation techniques, vast amounts of remote sens-
ing data with a high spectral–spatial–temporal resolution are captured all the time, and
remote sensing data processing and analysis have been successfully used in numerous
fields, including geography, environmental monitoring, land survey, disaster management,
mineral exploration and more. For the processing, analysis and application of remote
sensing data, there are many challenges, such as the vast amount of data, complex data
structures, small labeled samples and nonconvex optimization. In recent years, the con-
vergence of computational intelligence (CI) and remote sensing has ushered in a new era
of possibilities for understanding and harnessing the wealth of information that Earth
observation satellites provide. Computational intelligence methods, such as deep neural
networks, evolutionary optimization and swarm intelligence, have demonstrated remark-
able capabilities in unveiling intricate patterns within satellite images, time series data and
multispectral/hyperspectral information. In the future, CI will produce effective solutions
to the challenges in remote sensing.

2. Recent Research and Progress

This Topic series aims to highlight the latest research and advances in the application
of computational intelligence in the field of remote sensing. In total, this Topic series
contains 12 papers written by research experts on topics of interest. Based on the synthesis
of these latest achievements, they can be categorized into four sections: computational
intelligence methods in hyperspectral remote sensing images; object detection techniques
in remote sensing images; deep learning approaches in remote sensing image classification
and intelligent optimization and control in satellite image applications.

2.1. Computational Intelligence Methods in Hyperspectral Remote Sensing Images

This section consists of three papers. The first paper is written by A.C.P. Silva,
K.T.Z. Coimbra, L.W.R. Filho, G. Pessin and R.E. Correa-Pabón. They mainly explore
the possibility of applying machine learning models to monitor the quality of iron ore [1].
The second paper, written by W. Shuai, F. Jiang, H. Zheng and J. Li, mainly proposes a
new method with high processing efficiency for change detection in remote sensing im-
ages, called MSGATN [2]. The last work studies SAR image segmentation based on fuzzy
c-means and is by J. Zhu, F. Wang and H. You. Experiments show that the framework can
achieve more than 97% segmentation accuracy [3].

2.2. Object Detection Techniques in Remote Sensing Images

The following three papers mainly utilize deep learning techniques to solve prac-
tical problems in the field of remote sensing image object detection. The first paper,

Remote Sens. 2023, 15, 5325. https://doi.org/10.3390/rs15225325 https://www.mdpi.com/journal/remotesensing
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by R. Chen and S. Liu et al., proposes an effective infrared object detection method
based on source model guidance [4]. They show two explicit examples based on Cen-
terNet and YOLOv3, respectively, and experimentally demonstrate that the method can
achieve powerful performance with limited samples. The second paper, by L. Yu and
X. Zhou et al., proposes a method for boundary-aware salient object detection in optical
remote sensing images [5]. The method uses a graph convolutional network-based feature
extraction module and a boundary-aware attention-based module to improve the accuracy
and robustness of boundary-aware salient object detection. The third paper, by F. Zhou
and H. Deng et al., studies deep learning-based aircraft detection [6]. The paper proposes
an enhanced YOLOv5 model in which a ConvNext-based feature extraction module and a
Transformer-based feature fusion module are used to improve the detection performance.

2.3. Deep Learning Approaches in Remote Sensing Image Classification

This section includes three papers. The first paper is authored by H. Toriya and
A. Dewan et al., who primarily explore the key point matching problem in image features.
They propose using a deep neural network (DNN) to construct an image translator and
introduce a new edge enhancement filter methodology within the conditional generative
adversarial network (cGAN) structure to tackle this issue [7]. The second paper, written by
Z. Wei and Z. Zhang, describes a network built on multi-level strip pooling and a feature
enhancement module (MSPFE-Net). Here, deep learning is effectively applied to address
the challenge of road extraction [8]. In the third paper, L. Zeng and Y. Huo et al. develop the
high-quality seed instance mining (HSIM) module, alongside the dynamic pseudo-instance
label assignment (DPILA), to address the issue of weakly supervised detection in remote
sensing images [9].

2.4. Intelligent Optimization and Control in Satellite Image Applications

This section includes three state-of-the-art papers for reference focusing on different
research directions in satellite images. The first paper is authored by T. Zheng, Y. Dai,
C. Xue and L. Zhou. They propose a method for solving near-lossless hyperspectral data
compression using recursive least squares. They use the linear combination of previous
pixels to predict the target pixel values while using a recursive least squares filter to
iteratively update the weight matrix for prediction, which effectively removes spatial
and spectral redundancy information [10]. The second paper is written by N. Andrijević,
V. Urošević, B. Arsić, D. Herceg and B. Savić. This paper designs a time prediction model
for bee influx and outflow in a bee colony ecosystem with a large number of sensors by
simulating the correlation between the environment and bee colony activity to simulate the
bee colony ecosystem [11]. L. Li, D. Yin, Q. Li, Q. Zhang and Z. Mao propose a verification
method for ultraviolet imagers using the seeker optimization algorithm. This method can
effectively use ultraviolet imagers to conduct authenticity check studies on ocean surface
radiation data [12].

3. Discussion

The papers provide an exchange platform for researchers in the field of remote sensing
images, covering topics such as hyperspectral remote sensing image processing, remote
sensing image classification, segmentation, object detection and intelligent optimization
and control in satellite image applications. These themes represent a series of key issues in
the field of remote sensing images. The research papers in this journal not only delve into
these issues, but also propose new methods and ideas, providing strong support for future
research directions.

In this issue of the journal, we have seen a series of important developments in the
field of hyperspectral remote sensing image processing. Researchers have utilized the rich
information of hyperspectral data to not only improve the performance of segmentation,
but also provide new tools for application fields such as resource management and envi-
ronmental monitoring. In addition, remote sensing image classification, segmentation and
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object detection have always been research hotspots. Research in this journal shows that
deep learning technology has made significant progress in the application of these tasks.

The papers in this research Topic showcase the innovative and influential contribu-
tions of researchers in this field. Researchers have not only delved into various issues,
but also proposed many new methods and technologies, demonstrating the potential of
computational intelligence in advancing our understanding of remote sensing images and
providing strong support for future research directions. In the future, we can look forward
to more interdisciplinary cooperation, combining remote sensing image research with
application fields such as environmental science, agriculture and urban planning to solve
complex real-world problems. We encourage readers to further explore the cutting-edge
research and novel applications presented in these papers to provide new impetus for
scientific and technological innovation.
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High-Quality Instance Mining and Dynamic Label Assignment
for Weakly Supervised Object Detection in Remote
Sensing Images

Li Zeng , Yu Huo *, Xiaoliang Qian and Zhiwu Chen *

College of Electrical and Information Engineering, Zhengzhou University of Light Industry,
Zhengzhou 450002, China; zengli_qxl@163.com (L.Z.); qxl_sunshine@163.com (X.Q.)
* Correspondence: yuhuo_henry2022@163.com (Y.H.); chenyyj@163.com (Z.C.)

Abstract: Weakly supervised object detection (WSOD) in remote sensing images (RSIs) has attracted
more and more attention because its training merely relies on image-level category labels, which
significantly reduces the cost of manual annotation. With the exploration of WSOD, it has obtained
many promising results. However, most of the WSOD methods still have two challenges. The first
challenge is that the detection results of WSOD tend to locate the significant regions of the object but
not the overall object. The second challenge is that the traditional pseudo-instance label assignment
strategy cannot adapt to the quality distribution change of proposals during training, which is not
conducive to training a high-performance detector. To tackle the first challenge, a novel high-quality
seed instance mining (HSIM) module is designed to mine high-quality seed instances. Specifically,
the proposal comprehensive score (PCS) that consists of the traditional proposal score (PS) and
the proposal space contribution score (PSCS) is designed as a novel metric to mine seed instances,
where the PS indicates the probability that a proposal pertains to a certain category and the PSCS is
calculated by the spatial correlation between top-scoring proposals, which is utilized to evaluate the
wholeness with which a proposal locates an object. Consequently, the high PCS will encourage the
WSOD model to mine the high-quality seed instances. To tackle the second challenge, a dynamic
pseudo-instance label assignment (DPILA) strategy is developed by dynamically setting the label
assignment threshold to train high-quality instances. Consequently, the DPILA can better adapt the
distribution change of proposals according to the dynamic threshold during training and further
promote model performance. The ablation studies verify the validity of the proposed PCS and DPILA.
The comparison experiments verify that our method obtains better performance than other advanced
WSOD methods on two popular RSIs datasets.

Keywords: weakly supervised object detection; remote sensing images; proposal comprehensive
score; dynamic label assignment

1. Introduction

Object detection in RSIs is a pivotal task of imagery interpretation, its purpose is
to identify and locate high-value geographical objects in RSIs. Object detection in RSIs
has wide applications in various fields, such as environmental monitoring [1,2], urban
planning [3], agriculture [4,5], anomaly detection [6,7], and so on. With the progression of
machine learning [8–14], object detection acquires satisfactory performance. The advanced
performance is obtained by the fully supervised object detection (FSOD) [15–19] methods.
However, the FSOD method needs category and location labels for instances to drive model
training. Obviously, manually annotating the location labels for each instance of each RSI is
laborious. In order to alleviate the burdensome annotated costs, weakly supervised object
detection (WSOD) methods [20,21] have gradually entered the view of researchers because
WSOD methods only require image-level category labels to drive model training.

Electronics 2023, 12, 2758. https://doi.org/10.3390/electronics12132758 https://www.mdpi.com/journal/electronics
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At present, most of the WSOD models are trained based on the paradigm of multiple
instance learning (MIL) [22–25]. Specifically, the training image is treated as a bag of latent
instances, and then the latent instances are utilized to train the instance detector under the
MIL constraints. Among these, a pioneering weakly supervised deep detection network
(WSDDN) [26] has been developed, which first introduces MIL into the WSOD model. On
the basis of WSDDN, an online instance classifier refinement (OICR) model [27] is devel-
oped by adding K instance classifier refinement (ICR) branches, which further improves
the performance of the WSOD model. Subsequently, some works have been developed
to further enhance the performance of WSOD through employing spatial correlation [28],
initialization models [29], collaborative learning [30], etc.

Although the performance of classical WSOD has made significant progress, there
are still two main challenges to be solved. The first challenge is that most of the WSOD
methods [27,31] merely employ the proposal score (PS) to mine seed instances, however,
high PS usually locates the remarkable region of an object but not the overall object. Un-
fortunately, these methods will obtain worse performance in RSIs with noisy background.
The second challenge is that the traditional pseudo-instance labels assignment (PILA)
strategy [27,31] cannot adapt to the quality distribution change of proposals during train-
ing. Specifically, the traditional PILA strategy sets a fixed label assignment threshold to
determine the attribute (i.e., belonging to a positive or negative instance) of each instance.
However, along with the training, the fixed threshold setting and dynamic model training
are not matched, which is not conducive to training high-quality instances.

In order to tackle the first challenge, a novel high-quality seed instances mining (HSIM)
module is designed to mine high-quality seed instances, as shown in Figure 1. Specifically,
the proposal comprehensive score (PCS) is first designed and is composed of traditional
proposal score (PS) and proposal space contribution score (PSCS). The PS indicates the
probability that a proposal pertains to one category; the PSCS is calculated by considering
the spatial relationships between top-scoring proposals and is utilized to measure the extent
to which the proposal locates an object. Consequently, seed instances mined by PCS can
better locate an object than traditional mined strategy, which merely utilize the PS.

In order to tackle the second challenge, an innovative dynamic pseudo instance label
assignment (DPILA) strategy is developed to better adapt to the quality distribution change
of proposals during training and, meanwhile, raise the number of positive instances in the
initial training stage. Specifically, a label assignment threshold is dynamically calculated via
elaborately designing a function that increases with the number of iterations. Consequently,
the DPILA strategy can dynamically assign pseudo instance label for each instance, and
further improves the performance of WSOD.

Our contributions can be summed up as follows. The first contribution is that a
novel HSIM module is designed to mine high-quality seed instances. Specifically, a PCS is
first designed, which is composed of traditional PS and proposed PSCS, where the PSCS
is calculated by considering the spatial relationships between top-scoring proposals to
estimate the wholeness with which the proposal locates an object. The seed instances
mined by PCS can more completely locate an object than traditional mined strategies,
which merely utilizes the PS; The second contribution is that a DPILA strategy is proposed
to better adapt to the quality distribution change of proposals during training. Specifically,
a dynamic label assignment threshold is defined by elaborately designing a function that
increases with the number of iterations. The proposed DPILA strategy can dynamically
assign a pseudo-instance label for each instance, which is conducive to model training;
The third contribution is that the ablation studies verify the validity of PCS and DPILA.
The comparison experiments display that our method obtains higher performance than
other advanced WSOD methods on two popular RSIs datasets. Specifically, our method
surpasses separately the state-of-the-art WSDDN, OICR, PCL, and MELM methods by
12.2% (8.3%), 12.8% (5.1%), 7.9% (3.4%) and 5.0% (2.9%) in terms of mAP on the NWPU
VHR-10.v2 (DIOR) dataset, and surpasses them by 23.2% (11.9%), 18.4% (9.5%), 13.3%
(2.8%) and 8.5% (1.0%) in terms of CorLoc on the NWPU VHR-10.v2 (DIOR) dataset.
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Figure 1. The overall framework of our method, which is established on the OICR network [27] by
introducing two proposed modules including high-quality seed instance mining (HSIM) module
and dynamic pseudo instance labels assignment (DPILA) strategy. Here, the HSIM is designed to
mine high-quality seed instances. The DPILA strategy is proposed to better adapt to the quality
distribution change of proposals during training.

2. Related Work

2.1. State-of-the-Art Weakly Supervised Object Detection Methods

Fully supervised object detection (FSOD) methods have achieved satisfactory perfor-
mance. However, it needs category and location labels to drive model training, which is
time-consuming to annotate with these precise labels. WSOD methods, which only require
image-level labels to drive model training, have gradually entered the view of researchers.
For example, Feng et al. [32] proposed a progressive contextual instance refinement strategy
that can highlight more object parts and relieve the part domination problem. Yao et al. [33]
proposed a dynamic curriculum learning strategy to robustly improve the performance.
Feng et al. [34] proposed a triple context-aware network that can learn complementary and
discriminative features and improve the performance of WSOD. Chen et al. [30] introduced
the collaborative learning strategy into the WSOD model to improve its performance of
WSOD. Feng et al. [35] proposed a self-supervised adversarial and equivariant network,
that could learn complementary and consistent instance features, and promote the perfor-
mance of WSOD. Chen et al. [36] proposed a full-coverage collaborative network, which
could enhance the ability of multiscale feature extraction for WSOD detector.

2.2. Pseudo Instance Labels Mining

There are no instance-level labels to drive the model training in the WSOD. Therefore,
it is a challenge to mine pseudo-instance labels for each instance. The current mainstream
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pseudo-instance labels mining strategy can be divided into two steps, namely, seed in-
stances mining and pseudo-instance label assignment. The details of the two steps are
as follows.

2.2.1. Seed Instances Mining

Most of the seed instance mining strategies [27,37,38] select the proposal with the
highest score in category c as seed instance. However, the strategy ignores the plain fact
that RSIs usually contain multiple instances in the same category, and it is unreasonable to
only select the proposal with the highest score as the seed instance in category c. Therefore,
some improvements have been proposed. For instance, Tang et al. [39] use the k-means
method to split the proposals into several clusters according to proposal score, select the
proposal with the highest score in each cluster, and then utilize graph-based method to
choose multiple seed instances with same category. Lin et al. [40] consider that the same
category instance should have a similar appearance feature. Specifically, by selecting the
highest-score proposal as a seed instance in category c, then calculating the similarity
between the seed instance and other instances, if the similarity of a certain proposal is
greater than the pre-set threshold, the proposal is selected as another seed instance. Cheng
et al. [41] proposed a self-guided proposal generation strategy to generate directly high-
quality seed instances. Qian et al. [42] proposed a novel seed instance mining strategy
by employing the supplemental segmentation information. Ren et al. [31] sort all of the
proposals from high to low according to the PS of existing categories in an image and
then select proposals with the top p% score as the candidate seed instances. Finally, a
similar non-maximum suppression (NMS) [43] operation is utilized to choose ultimate
seed instances.

2.2.2. Pseudo-Instance Labels Assignment

Most of the WSOD methods [27,31,39,44] assign a pseudo-instance labels according
to the fixed labels assignment threshold. Concretely, suppose an image contains cate-
gory label c, the seed instance Rsi belonging to category c can be mined according to the
abovementioned methods. Furthermore, the Rsi is labeled category c, i.e., yk

cRsi
= 1 and

yk
c′Rsi

= 0, c �= c′, where k indicates the k-th ICR branch. Inspired by the reality that the
proposals that have high spatial coverage with the seed instance should be assigned the
same label. Specifically, if the maximum intersection over union (IoU) between a certain
proposal and seed instances is greater than the fixed label assignment threshold of 0.5, then
the proposals as neighbor positive instances are also labelled to category c and denote it
to Rnpi, namely, yk

cRnpi
= 1 and yk

c′Rnpi
= 0, c �= c′, otherwise the proposals are labelled to

background instance and denote it to Rbi, namely, yk
(C+1)Rbi

= 1 and yk
cRbi

= 0, c �= C + 1.
However, aforementioned methods merely employ the PS to mine seed instances,

which leads to the mined instances inclining to locate discriminative regions of objects
rather than overall objects. In addition, the fixed label assignment strategy cannot adapt to
the quality distribution change of proposals, which is not conducive to training high-quality
instances. These are also the problems to be solved in this paper.

3. Materials and Methods

As shown in Figure 1, the OICR framework [27] is employed as the baseline framework
of the proposed method. On the basis of OICR, a novel high-quality seed instance mining
(HSIM) module is designed to mine high-quality seed instances. Specifically, the PCS is first
designed, which is composed of traditional PS and PSCS. The PS indicates the probability
that a proposal pertains to a certain category; the PSCS is calculated by considering the
spatial relationships between top-scoring proposals, which is utilized to measure the extent
to which the proposal locates an object. In addition, a novel dynamic pseudo instance labels
assignment (DPILA) strategy is proposed to better adapt to the quality distribution change
of proposals during training and, meanwhile, raise the number of positive instances in the
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initial training stage. Specifically, a label assignment threshold is dynamically calculated by
elaborately designing a function that increases with the number of iterations.

3.1. Basic Weakly Supervised Object Detection Network

Bilen et al. [26] put forward a path-breaking weakly supervised deep detection
network (WSDDN), which is the footstone of WSOD. The details of the WSDDN are as
follows. Firstly, preset an image I and image-level category labels Y = [y1, . . . yc, . . . , yC],
where yc ∈ {1, 0} denotes present or absent object category c in an image, and C expresses
the quantity of object category. For each image, a range of proposals R = {r1, r2, . . . , r|R|}
are produced via employing edge boxes (EB) [45] or selective search (SS) [46] algorithms,
where |R| expresses the quantity of proposals. Secondly, the feature maps F ∈ RW×H×C are
obtained by sending the image I into the convolutional network (ConvNet), where C, H,
and W indicate the channels, height, and width of the feature maps F. Thirdly, the feature
maps F and the proposals R are sent into the region of interest (RoI) pooling layer to obtain
the proposal feature maps FR with a fixed size. Fourthly, the proposal feature vectors are
obtained via two fully connected (FC) layers. These proposal feature vectors are then sent
into two side-by-side branches, i.e., classification branch and detection branch, to produce
two matrices xc, xd ∈ RC×|R| through respective FC layers. The classification score and
detection score of each proposal are obtained by performing a softmax operation on the
two matrices xc , xd along different directions; the details are as follows:

[σ(xc)]cr =
exc

cr

∑C
c′=1 exc

c′r
, [σ(xd)]cr =

exd
cr

∑
|R|
r′=1 exd

cr′
(1)

where [σ(xc)]cr indicates the probability that the proposal r pertains to category c, [σ(xd)]cr
represents the dedication of the proposal r to category c. The ‘dedication’ indicates the
contribution of a proposal r to the image being classified in category c. Therefore, the
[σ(xd)]cr also belongs to the probability to a certain extent; namely, the higher the [σ(xd)]cr
value, the greater the probability of belonging to a positive instance. The proposal score is
calculated via element-wise product between σ(xc) and σ(xd), which is denoted as follows:

x = σ(xc)� σ(xd) (2)

where x ∈ RC×|R| represents the proposal score. Furthermore, image-level prediction score
ϕc of category c can be acquired by the sum of all proposals as follows:

ϕc =
|R|
∑
r=1

xcr (3)

Finally, the loss function LWSDDN of WSDDN is defined as follows:

LWSDDN = −
C

∑
c=1

(yc log ϕc + (1 − yc) log(1 − ϕc)) (4)

where yc ∈ {1, 0} expresses the image-level category label, which indicates present or
absent object category c in an image.

To further promote the performance of the WSOD model, Tang et al. [27] introduced
multi-stage instance classifier refinement (ICR) branches to improve the WSOD network.
Specifically, we added K parallel ICR branches on the WSDDN, and each ICR branch
consists of a FC layer and a softmax layer, and the output (C + 1) dimension score matrix
xk ∈ R(C+1)×|R|, where k ∈ 1, 2, . . . , K, and the (C + 1)-th dimension denotes background.
The k-th ICR branch is supervised through the previous (k − 1)-th branch, excluding the
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1-st ICR branch from WSDDN (i.e., x). Finally, K ICR branches are trained by utilizing the
cross-entropy loss, which is formulated as follows:

Lk
ICR = − 1

|R|
|R|
∑
r=1

C+1

∑
c=1

wk
r yk

cr log xk
cr (5)

where the wk
r denotes the loss weight, the yk

cr ∈ {1, 0} indicates the pseudo instance label.
For more details, please refer to [27].

However, most of the existing methods [27,31,39] merely employ the proposal score
(PS) of proposal to mine seed instances, where the PS indicates the probability that a
proposal pertains to one category. Specifically, the proposal with the highest PS in a certain
category is selected as the seed instance. However, the proposal (seed instance) with
the highest PS usually locates the remarkable region of object but not the overall object.
Therefore, existing methods are not able to mine high-quality seed instances.

3.2. High-Quality Seed Instance Mining Guided by Proposal Comprehensive Score

To overcome the above challenge, the proposal comprehensive score (PCS) is designed,
which comprehensively considers the traditional proposal score (PS) and the proposed
proposal space contribution score (PSCS). The PSCS is calculated by considering the spatial
relationships between top-scoring proposals and is utilized to measure the extent to which
the proposal locates an object. Consequently, seed instances mined by PCS can more
completely locate an object than the traditional mined strategies, which merely utilize the
PS. The details of PCS are as follows.

Firstly, the proposals are sorted from high to low based on their corresponding PS in
the existing category. Secondly, the proposals with the top p% PS in category c are selected
as top-scoring proposals and defined them as an assembly R′

c = {r′1, . . . , r′n, . . . , r′N}, where
the N expresses the quantity of top-scoring proposals in class c. Thirdly, the PSCS of
each top-scoring proposal is calculated pursuant to the spatial relationship between the
top-scoring proposals. Fourthly, the PCS is calculated by combining the PS and PSCS,
which are defined as follows:

PCScn = αPScn + (1 − α)PSCScn (6)

where PScn indicates proposal score of the n-th proposal r′n in category c, PSCScn denotes
the proposal space contribution score of r′n in category c, α is the hyper-parameter to balance
the contribution of PS and PSCS. The details of PSCS are as follows.

The undirected weighted graph Gs
c = (Vs

c , Es
c) is first constructed according to the

spatial correlation of R′
c, where the vertexes Vs

c denotes top-scoring proposals, each edge
Es

c = {σnn′
c } denotes the spatial correlation between vertexes. As shown in Figure 2, the

weight of each edge is obtained via calculating the IoU between vertexes, which is defined
as follows:

σ
r′nr′n′
c =

{
IoU(r′n, r′n′), if IoU(r′n, r′n′) ≥ T
0, otherwise

(7)

where the T indicates hyper-parameter, the IoU(r′n, r′n′) indicates the IoU value between r′n
and r′n′ , n �= n′. Based on this, the PSCScn can be calculated as follows:

PSCScn = N(∑
r′

n′ ∈R′
c

σ
r′nr′n′
c ), n �= n′ (8)

where N(·) indicates the normalization operator. Finally, following the mining strategy [31],
the PCS is utilized to mine high-quality seed instances, and denotes them as a assemble
Rs

c = {rs
1, . . . , rs

m, . . . , rs
M}, where the M denotes the number of Rs

c in category c.
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Figure 2. The details of weighted graph. Here, the graph is not undirected but has weighted.
Specifically, the vertexes of graph denote top-scoring proposals, each edge denotes the spatial
correlation (i.e., IoU) between vertexes.

3.3. Dynamic Pseudo Instance Label Assignment for Each Instance

Most of the WSOD methods usually set a fixed instance label assignment threshold
(i.e., IoU value) to determine whether a certain proposal belongs to the positive or negative
instance. If the IoU value between the proposal r and its nearest seed instance rs

m greater
than or equal to the default threshold TIoU , the proposal is labeled as a positive instance;
otherwise, the proposal is assigned a negative instance. Specifically, the label is defined
as follows:

label =

{
1, if IoU(r, rs

m) ≥ TIoU

0, otherwise
(9)

where r /∈ Rs
c indicates a certain proposal, TIoU is a fixed value and usually set to 0.5, which

cannot adapt to the quality distribution change of proposals. In addition, setting a high
TIoU may lead to the loss of some potential positive instances at the early stage of model
training.

To overcome this issue, a dynamic pseudo instance label assignment (DPILA) strategy
is proposed. The dynamic means that the label assignment threshold changes as the training
progresses. Specifically, a growth function is designed to gradually adjust the IoU threshold
as training goes on. The dynamic IoU threshold Td

IoU is defined as follows, and its variation
curve is also demonstrated in Figure 3.

Td
IoU =

1
1 + e−l×t−m − 0.5 (10)

where l and m denote hyper-parameters, t indicates the number of current iterations.
Therefore, the label is redefined as follows:

label =

{
1, if IoU(r, rs

m) ≥ Td
IoU

0, otherwise
(11)
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Figure 3. The variation curve of dynamic IoU threshold. The horizontal axis represents the number
of iterations, the vertical axis represents the IoU threshold.

During testing, the DPILA strategy is discarded (i.e., all experiment results are from
the mean output of 3 ICR branches), and the threshold is a fixed value (i.e., 0.5) following
the WSOD criterion [27,31,39].

4. Experiment

4.1. Experiment Setup
4.1.1. Datasets

Extensive experiments are implemented to measure the validity of the proposed
methods on the NWPU VHR-10.v2 dataset [47,48] and DIOR dataset [49]. The NWPU
VHR-10.v2 dataset comprises 1172 images, each with dimensions of 400 × 400 pixels, which
has 879 trainval images and 293 test images and includes 10 object categories and 2775 in-
stances. The DIOR dataset has a greater level of difficulty and includes 23,463 images, each
with dimensions of 800 × 800 pixels. The DIOR dataset is partitioned into a trainval set,
consisting of 11,725 images, and a testing set, comprising 11,738 images, which includes
20 object categories and 192,472 instances.

4.1.2. Evaluation Metric

We employed two standard metrics to evaluate the performance of our method,
which are widely used and accepted evaluation metrics in WSOD, namely, mean average
precision (mAP) and correct localization (CorLoc) [50], where mAP evaluates the accuracy
of detection on the testing set and CorLoc assesses the accuracy of localization on the
trainval set. The two evaluation metrics comply with the PASCAL protocol.

4.1.3. Implementation Details

The OICR network serves as the baseline framework for the proposed method. Similar
to refs. [27,39,51], the VGG-16 [52] is utilized as the backbone network, which has under-
gone pre-training on the large-scale ImageNet dataset [8], in accordance with standard
practice. The quantity of ICR branches is configured as 3. Following the standard of WSOD,
merely image-level category labels of the trainval set are employed to train our model.
We utilized the stochastic gradient descent (SGD) strategy to optimize our WSOD model,
configuring values of 0.9 and 0.0001 for the momentum and weight decay hyperparameters,
respectively. The initial learning rate and batch size is separately set at 0.01 and 8. We
conducted a total of 20K and 60K training iterations on the NWPU VHR-10.v2 and DIOR
datasets, respectively. The decay weight of the learning rate is set to 0.1, and the step size are
separately set at 18K and 50K iterations on the NWPU VHR-10.v2 and DIOR datasets. The
hyper-parameters l, m and p are separately set to 0.0002, 1 and 15. For data augmentation,
all training images are augmented via rotating 90◦, 180◦ and horizontal flipping [32,33].
In addition, following the mainstream methods [27,39], the images are resized into five
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distinct scales {480, 576, 688, 864, and 1200} for training and testing. Inferential results are
post-processed via implementing NMS operation, whose threshold is set at 0.3 [32,39,53,54].
The training details can also be seen in Table 1. The region proposals are generated via using
the image segmentation algorithm (i.e., the selective search algorithm [46]). Specifically,
the algorithm consists of the following three steps: (1) Initial segmentation: the image is
segmented into small regions based on pixel intensity and texture similarity. (2) Similarity
measure: all adjacent region pairs are combined and assigned a similarity score based
on color, texture, size, and shape differences. (3) Proposals generation: the most similar
regions are merged repeatedly until the desired number of proposals is obtained. Following
the paradigm of WSOD, about 2000 region proposals are generated via a selective search
algorithm. The scale of image segmentation is not fixed, which is determined according to
the merger of similar regions in step (3).

All experiments are implemented on 8 TITAN RTX GPUs with the PyTorch framework.

Table 1. The training details of our method, which includes training setting and parameter setting.

Learning Rate Batch Size Momentum Weight Decay
Iteration
Numbers

Training Setting 0.01 8 0.9 0.0001 20 K/60 K

Parameter setting K l m p (%) NMS threshold
3 0.0002 1 15 0.3

4.2. Parameter Analyses
4.2.1. Parameter Analysis of α

As previously discussed, the parameter α plays a critical role in determining the
relative contributions of PS and PSCS. To objectively assess this relationship, we conducted
a quantitative analysis of the DIOR dataset. As demonstrated in Figure 4, our approach
achieved the highest mAP when α is 0.5. Based on these results, we adopted α = 0.5 as the
optimal value for this paper.
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Figure 4. Parameter analysis of α on the DIOR dataset. The horizontal axis represents different α

values, the vertical axis represents the mAP values.
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4.2.2. Parameter Analysis of T

As mentioned before, T is the threshold to determine the value of σ
r′nr′n′
c , which is

analyzed quantitatively on the DIOR dataset. As demonstrated in Figure 5, our approach
achieved the highest mAP when T is 0.7. Based on these results, we adopted T = 0.7 as the
optimal value for this paper.
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Figure 5. Parameter analysis of T on the DIOR dataset. The horizontal axis represents different T
values, the vertical axis represents the mAP values.

4.3. Ablation Studies

Ablation studies are constructed to verify the validity of the proposed PCS and DPILA.
Specifically, as shown in Table 2, the baseline, baseline+PCS, baseline+DPILA, and base-
line+PCS+DPILA experiments are implemented on the DIOR dataset.

Table 2. Ablation studies of our method on the DIOR dataset.

Baseline (OICR) PCS DPILA
DIOR

mAP CorLoc

�
16.5 34.8

� 20.3 42.2
� 18.9 41.0

� � 21.6 44.3

Bold entities denote best results.

4.3.1. Influence of PCS

The baseline+PCS experiment is constructed to validate the influence of the proposed
PCS. As shown in Table 2, the baseline+PCS method obtains 20.3% mAP and 42.2% CorLoc
on the DIOR dataset, which surpasses the baseline method 3.8% mAP and 7.4% CorLoc.
Therefore, the validity of PCS is verified obviously. The major reason for performance
enhancement is that the proposed PCS can effectively guide the WSOD model to mine
high-quality seed instances, which further encourage model to locate more complete object.

4.3.2. Influence of DPILA

The baseline+DPILA experiment is constructed to validate the influence of the pro-
posed DPILA. As shown in Table 2, the baseline+DPILA method obtains 18.9% mAP and
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41.0% CorLoc, which outperforms the baseline method 2.4% mAP and 6.2% CorLoc on the
DIOR dataset. Therefore, the validity of DPILA is verified obviously. The major reason for
performance enhancement is that the proposed DPILA strategy can adapt to the quality
distribution change of proposals during training and mine some potential positive instances
at the early stage of model training. Consequently, the DPILA strategy can dynamically
assign a pseudo-instance label for each instance, which further improves the performance
of WSOD.

The baseline+PCS+DPILA experiment is constructed to verify the influence of the
combination of PCS and DPILA. As shown in Table 2, the baseline+PCS+DPILA method
obtains 21.6% mAP and 44.3% CorLoc on the DIOR dataset, which outperforms the other
three methods. Therefore, the validity of the combination of PCS and DPILA is verified
effectively.

4.4. Comparison with Other Advanced WSOD Methods

To further validate the integrated performance of our method, we reported the com-
prehensive results and provided comparisons with seven WSOD methods and four fully
supervised object detection (FSOD) methods on two popular RSIs datasets. Specifically,
the 4 WSOD methods, including WSDDN [26], OICR [27], min-entropy latent model
(MELM) [53], and proposal cluster learning (PCL) [39], were compared with our method
on two RSIs datasets. The other 3 WSOD methods, including dynamic curriculum learning
(DCL) [33], full-coverage collaborative Network (FCC-Net) [36], and collaborative learning-
based network (CLN) [30], were compared with our method on the DIOR dataset. The
4 FSOD methods include region-based convolutional neural networks (R-CNN) [55], Fast
R-CNN [56], Faster R-CNN [57], and rotation-invariant convolutional neural networks
(RICNN) [47].

4.4.1. Comparison in Terms of mAP

Tables 3 and 4 demonstrate the comparison in terms of mAP between our approach
and other advanced WSOD methods. Specifically, as shown in Table 3, our approach obtains
47.3% mAP on the NWPU VHR-10.v2 dataset. Compared with other advanced WSOD
methods, our method significantly exceeds the WSDDN, OICR, PCL, and MELM by 12.2%,
12.8%, 7.9%, and 5.0% in terms of mAP, respectively, on the NWPU VHR-10.v2 dataset.
As shown in Table 4, our method obtains 21.6% mAP on the DIOR dataset. Compared
with the other advanced WSOD methods, our method significantly exceeds the WSDDN,
OICR, PCL, MELM, DCL, FCC-Net and CLN-RSOD methods on the DIOR dataset, with an
increase in mAP of 8.3%, 5.1%, 3.4%, 2.9%, 1.4%, 3.3% and 3.3%, respectively. Compared
with the FSOD methods, our approach further decreases the performance gap between
FSOD method and WSOD method.

Table 3. Comparisons with other advanced methods in terms of AP (%) and mAP (%) on the NWPU
VHR-10.v2 dataset.

Method Airplane Ship
Storage

Tank
Baseball
Diamond

Tennis
Court

Basketball
Court

Ground
Track Field

Harbor Bridge Vehicle mAP

R-CNN [55] 85.4 88.9 62.8 19.7 90.7 58.2 68.0 79.9 54.2 49.9 65.8
RICNN [47] 88.7 78.3 86.3 89.1 42.3 56.9 87.7 67.5 62.3 72.0 73.1

Fast R-CNN [56] 90.9 90.6 89.3 47.3 100.0 85.9 84.9 88.2 80.3 69.8 82.7
Faster R-CNN [57] 90.9 86.3 90.5 98.2 89.7 69.6 100.0 80.1 61.5 78.1 84.5

WSDDN [26] 30.1 41.7 35.0 88.9 12.9 23.9 99.4 13.9 1.9 3.6 35.1
OICR [27] 13.7 67.4 57.2 55.2 13.6 39.7 92.8 0.2 1.8 3.7 34.5
PCL [39] 26.0 63.8 2.5 89.8 64.5 76.1 77.9 0.0 1.3 15.7 39.4

MELM [53] 80.9 69.3 10.5 90.2 12.8 20.1 99.2 17.1 14.2 8.7 42.3
Ours 77.9 32.0 48.1 90.9 28.5 62.4 88.6 40.2 1.2 3.6 47.3

Bold entities denote best results.
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Table 4. Comparisons with other advanced methods in terms of AP (%) and mAP (%) on the DIOR
dataset.

Method Airplane Airport
Baseball

Field
Basketball

Court
Bridge Chimney Dam

Expressway
Service Area

Expressway
Toll Station

Golf Field

R-CNN [55] 35.6 43.0 53.8 62.3 15.6 53.7 33.7 50.2 33.5 50.1
RICNN [47] 39.1 61.0 60.1 66.3 25.3 63.3 41.1 51.7 36.6 55.9

Fast R-CNN [56] 44.2 66.8 67.0 60.5 15.6 72.3 52.0 65.9 44.8 72.1
Faster R-CNN [57] 50.3 62.6 66.0 80.9 28.8 68.2 47.3 58.5 48.1 60.4

WSDDN [26] 9.1 39.7 37.8 20.2 0.3 12.2 0.6 0.7 11.9 4.9
OICR [27] 8.7 28.3 44.1 18.2 1.3 20.2 0.1 0.7 29.9 13.8
PCL [39] 21.5 35.2 59.8 23.5 3.0 43.7 0.1 0.9 1.5 2.9

MELM [53] 28.1 3.2 62.5 28.7 0.1 62.5 0.2 28.4 13.1 15.2
DCL [33] 20.9 22.7 54.2 11.5 6.0 61.0 0.1 1.1 31.0 30.9

FCC-Net [36] 20.1 38.8 52.0 23.4 1.8 22.3 0.2 0.6 28.7 14.1
CLN [30] 10.1 33.2 43.9 23.4 0.8 38.8 0.7 1.1 19.3 11.6

Ours 10.5 32.4 64.2 28.0 1.1 13.3 0.3 0.3 29.9 50.9

Method
Ground

Track Field
Harbor Overpass Ship Stadium

Storage
Tank

Tennis
Court

Train
Station

Vehicle Windmill mAP

R-CNN [55] 49.3 39.5 30.9 9.1 60.8 18.0 54.0 36.1 9.1 16.4 37.7
RICNN [47] 58.9 43.5 39.0 9.1 61.1 19.1 63.5 46.1 11.4 31.5 44.2

Fast R-CNN [56] 62.9 46.2 38.0 32.1 71.0 35.0 58.3 37.9 19.2 38.1 50.0
Faster R-CNN [57] 67.0 43.9 46.9 58.5 52.4 42.4 79.5 48.0 34.8 65.4 55.5

WSDDN [26] 42.4 4.7 1.1 0.7 63.0 4.0 6.1 0.5 4.6 1.1 13.3
OICR [27] 57.4 10.7 11.1 9.1 59.3 7.1 0.7 0.1 9.1 0.4 16.5
PCL [39] 56.4 16.8 11.1 9.1 57.6 9.1 2.5 0.1 4.6 4.6 18.2

MELM [53] 41.1 26.1 0.4 9.1 8.6 15.0 20.6 9.8 0.0 0.5 18.7
DCL [33] 56.5 5.1 2.7 9.1 63.7 9.1 10.4 0.0 7.3 0.8 20.2

FCC-Net [36] 56.0 11.1 10.9 10.0 57.5 9.1 3.6 0.1 5.9 0.7 18.3
CLN [30] 48.9 19.6 9.5 13.0 54.5 10.8 10.3 0.5 9.2 6.7 18.3

Ours 55.4 12.4 15.0 34.0 33.9 30.0 1.3 4.1 14.8 0.8 21.6

Bold entities denote best results.

4.4.2. Comparison in Terms of CorLoc

Tables 5 and 6 demonstrate the comparison in terms of CorLoc between our approach
and other advanced WSOD methods. Specifically, as shown in Table 5, our approach ac-
quires 58.4% CorLoc on the NWPU VHR-10.v2 dataset. Compared with the other advanced
WSOD methods, our method significantly exceeds the WSDDN, OICR, PCL, and MELM
methods on the NWPU VHR-10.v2 dataset, with an increase in CorLoc of 23.2%, 18.4%,
13.3%, and 8.5%, respectively. As shown in Table 6, our method obtains 44.3% CorLoc
on the DIOR dataset. In comparison to other advanced WSOD methods, our approach
significantly exceeds the WSDDN, OICR, PCL, MELM, DCL and FCC-Net methods by
11.9%, 9.5%, 2.8%, 1.0%, 2.1%, and 2.6% CorLoc, respectively, on the DIOR dataset.

Table 5. Comparisons with other advanced methods in terms of CorLoc (%) on the NWPU
VHR-10.v2 dataset.

Method WSDDN [26] OICR [27] PCL [39] MELM [53] Ours

NWPU VHR-10.v2 35.2 40.0 45.1 49.9 58.4

Bold entities denote best results.

Table 6. Comparisons with other advanced methods in terms of CorLoc (%) on the DIOR dataset.
’-’ denotes the CorLoc value has not been reported in their study.

Method WSDDN [26] OICR [27] PCL [39] MELM [53] DCL [33] FCC-Net [36] CLN [30] Ours

DIOR 32.4 34.8 41.5 43.3 42.2 41.7 - 44.3

Bold entities denote best results.

4.4.3. Subjective Comparison

In addition, to further evaluate our method, Four advanced WSOD methods that
provide source codes are subjectively compared with our method on two RSI datasets in
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Figures 6 and 7, respectively. Figure 6 shows the visual comparison results on the NWPU
VHR-10.v2 dataset, and the objects with different categories are enclosed by utilizing the
bounding boxes with different colors. Figure 7 displays the visual comparison results on
the DIOR dataset, and the objects are enclosed by utilizing green bounding boxes. What is
more, the category of object is attached to the bounding box. As shown in Figures 6 and 7,
the detection results of our approach can completely locate and correctly identify objects.

WSDDN

OICR

PCL

MELM

Ours

Ground Truth

Figure 6. Four advanced WSOD methods that provide source codes are subjectively compared with
our method on the NWPU VHR-10.v2 dataset.
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WSDDN

OICR

PCL

MELM

Ours

Ground Truth

Figure 7. Four advanced WSOD methods that provide source codes are subjectively compared with
our method on the DIOR dataset.
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4.5. Runtime Analysis

In order to assess the practicality of the proposed approach in real-world scenarios, we
further reported the runtime of the proposed method in terms of training and inference. As
shown in Table 7, during training, compared with the baseline method, the computational
time increases from 24.8 to 30.4 h by incorporating the HSIM into the baseline method. The
additional complexity is mainly introduced because HSIM is added. Furthermore, when
we incorporate the DPILA into the baseline method, the computational time increased from
24.8 to 25.0 h, which is caused by the calculation of DPILA. During inference, the HSIM
module and calculation of DPILA are discarded; namely, all experiment results are from
the mean output of 3 ICR branches (as shown in the lower right of Figure 1). Therefore,
all methods have the same complexity, which costs the same inference time (i.e., 2.2 h)
during inference. Although the training time of the baseline method is less than ours
(24.8 versus 30.7 h), its performance is reduced by 5.1% compared with ours.

Table 7. The Complexity analysis of our method on the DIOR Dataset. All experiments are imple-
mented on ubuntu16.04 and NVIDIA TITAN RTX GPU.

Method
Training Time

(Hours)
Inference Time

(Hours)
mAP (%)

Baseline (OICR) 24.8 2.2 16.5
+HSIM (PCS) 30.4 2.2 20.3

+DPILA 25.0 2.2 18.9
+HSIM+DPILA 30.7 2.2 21.6

5. Discussion

To tackle the first challenge, the detection results of WSOD tend to locate the significant
regions of the object but not the overall object. The PCS, which consists of traditional PS and
PSCS, is designed as a novel metric to mine high-quality seed instances. To tackle the second
challenge, traditional pseudo-instance label assignment strategies cannot adapt to the
quality distribution changes of proposals during training, which is not conducive to training
a high-performance detector. A DPILA strategy is developed via dynamically setting the
label assignment threshold to train high-quality instances. Consequently, collaborating on
the proposed PCS with DPILA achieves better performance than other advanced WSOD
methods on two popular RSIs datasets. Specifically, our method surpasses separately
WSDDN, OICR, PCL, and MELM methods by 12.2% (8.3%), 12.8% (5.1%), 7.9% (3.4%),
and 5.0% (2.9%) in terms of mAP on the NWPU VHR-10.v2 (DIOR) dataset, and surpasses
separately WSDDN, OICR, PCL, and MELM methods by 23.2% (11.9%), 18.4% (9.5%),
13.3% (2.8%) , and 8.5% (1.0%) in terms of CorLoc on the NWPU VHR-10.v2 (DIOR) dataset.

6. Conclusions

In this paper, a novel HSIM module is designed to tackle the challenge that the
detection results of WSOD detector tend to locate the significant regions of an object but
not the overall object. Specifically, the PCS is first designed and is composed of traditional
PS and proposed PSCS. The PSCS is utilized to evaluate the wholeness with which a
proposal locates an object. Consequently, high PCS will encourage the WSOD model to
mine high-quality seed instances. A DPILA strategy is developed to tackle the challenge
that traditional pseudo-instance label assignment strategies cannot adapt to the quality
distribution change of proposals during training. Specifically, a dynamic label assignment
threshold is defined by elaborately designing a function that increases with the number of
iterations. Consequently, the DPILA strategy can dynamically assign a pseudo instance
label for each instance, which further improves the performance of WSOD. The ablation
studies verify the validity of the proposed PCS and DPILA. The comparison experiments
verify that our approach obtains better performance than other advanced WSOD detectors
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on two popular RSIs datasets. The subjective comparison straightforwardly demonstrates
that our method can completely locate and correctly identify objects.

The shortcomings of the proposed model are that it achieves poor performance in
individual classes such as Dam, Windmill, etc. The possible reason is that our model is
susceptible to interference from complex backgrounds. For instance, the Dam is disturbed
by the large reservoir, so the reservoir is often mistakenly identified as Dam. The Windmill
is disturbed by the shadow of Windmill, so the shadow of Windmill is often mistakenly
identified as Windmill. To improve the anti-interference ability of our model, we plan
to design a novel feature enhancement module to enhance the feature extraction ability
of WSOD. The high-quality feature is conducive to correctly identifying the object and
enhances the robustness of the WSOD model.
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Abstract: The application of deep learning in remote sensing image classification has been paid
more and more attention by industry and academia. However, manually designed remote sensing
image classification models based on convolutional neural networks usually require sophisticated
expert knowledge. Moreover, it is notoriously difficult to design a model with both high classification
accuracy and few parameters. Recently, neural architecture search (NAS) has emerged as an effective
method that can greatly reduce the heavy burden of manually designing models. However, it remains
a challenge to search for a classification model with high classification accuracy and few parameters
in the huge search space. To tackle this challenge, we propose TPENAS, a two-phase evolutionary
neural architecture search framework, which optimizes the model using computational intelligence
techniques in two search phases. In the first search phase, TPENAS searches for the optimal depth
of the model. In the second search phase, TPENAS searches for the structure of the model from the
perspective of the whole model. Experiments on three open benchmark datasets demonstrate that
our proposed TPENAS outperforms the state-of-the-art baselines in both classification accuracy and
reducing parameters.

Keywords: computational intelligence; neural architecture search (NAS); remote sensing image
classification; multi-objective optimization; convolutional neural network (CNN)

1. Introduction

With the advancement of remote sensing technology, more and more abundant ground
information can be obtained from remote sensing images, which facilitates many research
directions and applications, such as change detection [1–6], land use classification [7,8],
remote sensing image classification [9,10], etc. As a basic task of remote sensing image pro-
cessing [11], remote sensing image classification is the classification of remote sensing scene
images into a group of semantic categories, which has been widely used in environmental
monitoring [12], geospatial object detection [13], and urban planning [14].

In recent decades, with the advancement of deep learning [15–18], many
algorithms [9,10,19] have been proposed to solve the remote sensing image classifica-
tion problem. These algorithms can roughly be categorized into traditional and deep
learning-based algorithms, which mainly differ in the way of feature extraction. The former
extracts the features of remote sensing images by manually designing feature extraction
operators, such as improved fisher kernel (IFK) [20], spatial pyramid matching (SPM) [21],
and bag-of-visual-words (BoVW) [22] algorithms. The latter automatically extracts re-
mote sensing image features through deep learning methods such as the autoencoder
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(AE) [23–25], CNN [26], and generative adversarial network (GAN) [27–29]. The traditional
methods need to specially design a feature extraction operator for the remote sensing image.
The extracted features are low-level features, such as texture, color, shape, and gradient,
resulting in low classification accuracy on remote sensing image classification tasks. In
contrast, deep learning-based methods can automatically learn high-level semantic features
of remote sensing images without the need for special feature extractors and achieve high
overall accuracy on the remote sensing image classification task. Otávio et al. [30] compared
the overall accuracy of deep learning methods with traditional methods on the UC Merced
Land-use (UCM21) dataset [22] and demonstrated that deep learning methods outperform
traditional methods.

In the past ten years, convolutional neural networks (CNNs) have made a signifi-
cant breakthrough in image classification. A large number of excellent CNN models have
emerged, such as AlexNet [31], VGGNet [32], ResNet [33], GoogleNet [34], and Den-
sNet [35]. However, when applied to remote sensing image classification, these classical
CNN models do not perform as well due to the unique characteristics of remote sensing
images, such as big intra-class diversity, high inter-class similarity, and coexistence of
multiple ground objects. Therefore, many deep learning models [36–39] are tailored for
remote sensing image classification. Yu et al. [37] proposed the HABFNet framework
to alleviate the problems of high intra-class diversity and high inter-class similarity in
remote sensing images. HABFNet uses ResNet50 to extract image features, then enhances
features at different levels through a channel attention scheme, and fuses features through
bilinear pooling. The fused features have a stronger discriminative ability, which im-
proves the classification accuracy of the algorithm in remote sensing image classification.
Wei et al. [38] proposed a novel CAD network that uses an attention mechanism to extract
more discriminative features, which alleviates the difficulty of classification caused by large
changes in object scale. Gong et al. [39] proposed D-CNN to alleviate the problems of
high intra-class diversity and high inter-class similarity in remote sensing images, thereby
further improving remote sensing image classification accuracy. Wang et al. [40] proposed
a semi-supervised classification framework by designing the inner-class dense neighbors
(IDN) algorithm to reduce the reliance on the labels of the samples and simultaneously
improve the classification accuracy of the model. CNN-based algorithms perform very
well on remote sensing image classification tasks.

Although deep learning methods have achieved high classification accuracy in re-
mote sensing image classification, it is extremely difficult for those without professional
knowledge about deep learning to design a model with high classification accuracy. In
recent years, NAS has emerged as a promising alternative method, which can automatically
design a CNN model with high classification accuracy without prior knowledge. The
existing NAS methods can be divided into three categories: NAS based on reinforcement
learning (NAS-RL) [41–43], evolutionary neural architecture search (ENAS) [44–46], and
NAS based on gradient (NAS-G) [47–49]. The evolutionary algorithm (EA) [50,51] is a
heuristic global optimization algorithm. Due to its powerful optimization ability and easy
parallel computation, the evolutionary algorithm has attracted more and more scholars’
attention in the automatic design of deep neural network structure. Real et al. [44] first
proposed using evolutionary computation to optimize the structure of a CNN. This method
does not require any human operations after the algorithm is executed and finally outputs
a fully trained CNN model. The algorithm achieves competitive classification accuracy
on the CIFAR-10 and CIFAR-100 datasets, but at a prohibitively high computational cost.
Since then, many researchers have proposed many schemes to reduce computational costs.
Elsken et al. [52] proposed a simple and efficient NASH algorithm, which uses network
morphisms [53] to generate weight-inherited sub-networks and efficiently optimizes an
excellent CNN architecture through a simple hill-climbing algorithm. Hui et al. [54] pro-
posed the EENA algorithm, which uses prior knowledge to guide the evolutionary process,
thereby accelerating the search process. Wang et al. [55] evaluated individuals with some
batch data randomly selected on the validation set, and the evaluation results of each batch
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data were averaged as the fitness value of the individual, which significantly improves
the evaluation speed of the individual. A population-based optimization algorithm, such
as a genetic algorithm, is one of the most commonly used evolutionary algorithms. The
evaluation of each individual in the algorithm is independent, so the population-based opti-
mization algorithm easily performs parallel computing. Based on this feature, Xie et al. [56]
built the BenchENAS platform. When evaluating individual fitness, individuals in the
population can be evaluated parallelly in a common lab environment, which significantly
speeds up population evaluation and promotes the development of ENAS. These methods
have achieved excellent performance on natural image classification tasks.

Many methods [57–59] have been proposed to utilize NAS to solve object recognition
in satellite imagery tasks. In remote sensing image classification, gradient-based NAS
methods are the most commonly used methods. The general idea is to first search for an
optimal cell and then form a CNN model by stacking multiple cells. The main difference
between these algorithms is the optimal cell search scheme. Zhang et al. [57] proposed a
more efficient search algorithm for remote sensing image classification, named RS-DARTS,
which improves the model classification accuracy and speeds up the search for optimal
cells by adding noise and sampling the neural network. Peng et al. [58] proposed the
GPAS algorithm, which uses greedy and aggressive strategies to search for the optimal cell.
Chen et al. [59] proposed the CIPAL framework for remote sensing image classification,
which utilizes channel compression to reduce the time of structure search. Ma et al. [60]
proposed the SceneNet algorithm, which yields a competitive set of remote sensing image
classification models by optimizing the architecture of the model. Wan et al. [61] pro-
posed an efficient neural network architecture search method for remote sensing image
classification. By designing a two-step evolutionary search method, cells were constructed
from the eight kinds of lightweight operators, and the remote sensing image classification
model was constructed by stacking cells. Povilas et al. [62] proposed the NAS-MACU
algorithm for object recognition in satellite imagery. NAS-MACU automatically searches
for high-performance cell topologies using the NAS algorithm and then constructs an object
recognition model by stacking multiple candidate cells. These methods, with the exception
of SceneNet, first search for an optimal cell and then construct the final model by stacking
multiple identical cells, which will bring two problems. The classification accuracy of a
model would deteriorate if there were too few stacked cells, but if there were too many, the
model would become redundant and have more parameters and floating point operations
(FLOPs). On the other hand, all stacked cells are the same, and the network structure is not
considered globally. The impact of the number of blocks on the performance of a model is
not taken into account by SceneNet, despite the fact that it globally searches the structure
of a model. In addition, in the practical application of remote sensing image classification,
the CNN model is also limited by classification accuracy, computing power, memory ca-
pacity, and so on. Therefore, designing a CNN model must strike a balance between these
limiting conditions.

To this end, we propose TPENAS, which can automatically build a model with optimal
depth and output multiple alternative models for remote sensing image classification.
Specifically, users with limited deep learning knowledge can obtain a model with excellent
performance for remote sensing image classification. The algorithm is run once to generate
a set of models from which the most suitable one can be selected based on the limiting
conditions. The difficulty of remote sensing image classification tasks varies with different
scenarios. As a result, the depth of the CNN model should also be different. Therefore, we
design the first search phase to solve this problem. The depth and classification accuracy of
the CNN model are used to formulate a multi-objective optimization problem, and then a
population-based multi-objective optimization algorithm is used to solve this problem, in
which individuals representing CNN models with different depths are initialized in the
population and the diversity of the depth of the model is maintained during the population
update process. the depth of the CNN model is then determined according to the optimal
solution in the optimized population. In order to let the model output a set of models
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and search for the structure of the model globally, we design the second search phase. A
multi-objective optimization problem is formulated according to the complexity and overall
accuracy of the model, and we design a population-based multi-objective optimization
algorithm to solve the problem, in which individuals in the population are encoded into the
entire CNN model. By solving this multi-objective optimization problem, a set of models
with superior performance can be obtained.

The experimental results on three open benchmark datasets show the superiority of
our algorithm over other classic deep learning classification models and NAS algorithms.
The main contributions of this paper are as follows:

(1) We propose a two-phase evolutionary multi-objective neural architecture search (TPE-
NAS) framework for remote sensing image classification. The first search phase
explores the optimal the depth of the model, and the second search phase finds the
most suitable structure for the model. Our algorithm can automatically design a CNN
model suitable for remote sensing image classification, which eases the heavy burden
posed by manually designing a CNN model.

(2) We propose the first search phase that determines the depth of the CNN model. A
multi-objective optimization problem is established with the depth and classification
accuracy of the model as optimization goals. This problem is solved by a heuristic
multi-objective optimization algorithm to find the optimal the depth of model.

(3) We propose the second search phase that globally searches the structure of the CNN
model. We encode the entire CNN model as a binary string, allowing population
evolution to optimize the CNN structure globally. Furthermore, we simultaneously
optimize the classification error and complexity of the model so that the final result can
provide a set of Pareto solutions, giving users more options in practical applications.

(4) The effectiveness of the proposed TPENAS is verified on three public benchmark
datasets. Extensive experiments show that the model searched by the TPENAS out-
performs the classic classification CNN model. Compared with other NAS methods,
TPENAS not only has higher classification accuracy but also has advantages in the
GFLOPs and parameters of the model.

The remainder of this paper is organized as follows. Section 2 describes the proposed
TPENAS algorithm in detail. Section 3 describes the experimental settings and experimental
results. Section 4 analyses the number of models that the TPENAS should evaluate as well
as the implication of model depth on test performance. The conclusion of this paper is
given in Section 5.

2. Materials and Methods

In Section 2.1, we establish the optimization model of two search phases and give the
optimization algorithm framework. In Section 2.2, we introduce the algorithm of the first
search phase in detail, including encoding scheme, initialization, population evolution, and
solution selection. In Section 2.3, we discuss how to use the first search phase algorithm to
optimize the optimization problem in the second search phase and give a summary of the
overall algorithm.

2.1. The Overall Framework

The existing remote sensing image classification models can be summarized in two parts.
The first part is the image feature extractor, and the second part is the feature classifier. The
result of image feature extraction seriously affects the classification accuracy of the model. As
we all know, CNNs are one of the most commonly used image feature extractors, and feature
extractors with different structures will have a significant impact on classification accuracy.
Therefore, TPENAS focuses on developing efficient feature extractors.

The purpose of our algorithm is to solve two problems, the first is to reduce the difficulty
of manually designing a classification model, and the second is to automatically design an
appropriate classification model in different scenarios. Our algorithm is divided into two
phases, the purpose of the first search phase is to find the appropriate depth of the model,
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and the second search phase is to find the appropriate structure of the model. Therefore, we
formulate the multi-objective optimization problem in two phases, respectively.

min{F1, F2},

{
F1 = n_incorrected_sample

n_all_sample
F2 = n_block

(1)

min{F1, F3},

{
F1 = n_incorrected_sample

n_all_sample
F3 = GFLPOs

(2)

In the first search phase, we regard F1 and F2 of the model as two optimization objectives,
as shown in Equation (1). F1 represents the overall accuracy of the model, which is the
misclassified samples divided by all samples in the test dataset. F2 represents the depth of the
model, which is the number of blocks of the model. By optimizing Equation (1), we are able
to select the appropriate number of blocks and consequently find the appropriate depth of the
model. Similarly, in the second search phase, we regard the F1 and F3 of the model as two
optimization objectives. F3 represents the GFLOPs of the model, as shown in Equation (2). By
optimizing Equation (2), we are able to obtain a set of optimal solutions, that is, there does not
exist a solution that is better than the optimal solution on both OA and GFLOPs.

We cannot confirm whether this is a convex optimization problem or a non-convex
optimization problem. Therefore, we use a genetic algorithm to design optimization
algorithms to solve these two optimization problems. A genetic algorithm is a heuristic
optimization algorithm that can solve both convex and non-convex optimization problems.
Therefore, we design the TPENAS algorithm, as shown in Algorithm 1, to optimize these
two optimization problems.

Algorithm 1 shows the pseudocode of TPENAS, which consists of two parts: the first
search phase and the second search phase. On the remote sensing classification problem
D, the first search phase (see lines 1–10) explores the depth of the model and the second
search phase (see lines 11–22) explores the structure of the model. In the first search phase,
N individuals are randomly initialized as the initial population, and each individual in the
population is evaluated on the problem D to obtain the encoding length and classification
error rate (see line 2) for each individual. Population P0 is optimized for T1 iterations
through population evolution (see lines 3–7). The optimal solution front�α is chosen from
population PT1 , and the optimal solution is then chosen based on �α (see lines 8–9). By
calculating the length of the optimal solution, we determine that the individual code length
of the second search phase is l (see line 10). In the second search phase, similar to the
first search phase, R individuals are first randomly initialized as the initial population,
where each individual has an encoding length of l (see line 11). E is an external population,
and its role is to collect the population’s individuals in each generation. The population
evolution updates the population T2 times, and the external population obtains R × T2
individuals (see lines 12–19). The optimal Pareto front is computed from E, and the most
suitable individual is selected to decode it to the corresponding CNN model for the remote
sensing classification (see lines 20–22).
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Algorithm 1 The Pseudocode of TPENAS
Input:

T1: the maximum population iterations during the first search phase;
T2: the maximum population iterations during the second search phase;
N: the population size in the first search phase.
R: the population size in the second search phase.
D: remote sensing image classification problem.

Output:
The best model.

1: First Search Phase:
2: P0 ← Initialize and evaluate the population with the size of N;
3: i ← 1;
4: while i ≤ T1 do
5: Pi ← population evolution (Pi−1, D);
6: i ← i + 1;
7: end while
8: �α ← Calculate the best solution front from PT1 ;
9: p∗ ← Select the best individual from�α;

10: l ← Calculate the length of the code in individual p∗;
11: Second Search Phase:
12: Q0 ← Initialize and evaluate the population with the size of R, where the length of the

code in each population member is l;
13: E ← ∅;
14: t ← 1;
15: while t ≤ T2 do
16: Qt ← population evolution (Qt−1, D);
17: E ← E

⋃
Qt;

18: t ← t + 1;
19: end while
20: �β ← Calculate the Pareto front from E;
21: q∗ ← Choose the best individual from �β;
22: Decoding individual q∗ to the corresponding remote sensing image classification

model.

2.2. The First Search Phase

The number of layers and structure of CNN greatly affect the ability to extract features.
Therefore, we designed the first search phase with the aim of exploring the effect of the
depth of the CNN model on classification accuracy in remote sensing image classification.
Below, we detail the design of the first search phase.

2.2.1. Encoding Schedule

In order to optimize the depth and structure of the model using the genetic algorithms,
we need to represent the remote sensing image classification model as a binary string in order
to optimize Equation (1). The topology of a block can be regarded as a directed acyclic graph,
and its encoding rules corresponding to binary strings must meet the following three rules.

(1) A block with n nodes is represented by n groups of binary strings.
(2) The i-th group of codes is represented by i + 1 bit binary. The j-th bit of the i-th group

indicates whether the (i + 1)-th node is connected to the j-th node (i > j and i = n − 1),
1 means connection, 0 means disconnection.

(3) The last group has only one bit, which indicates whether there is a direct connection
from the input to the output.

For the convenience of identification, each group of binary strings is connected with
the symbol “-”. The formula for calculating the coding length of the feature extraction block
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is L = n(n−1)
2 + 1 , where L represents the coding length of the block and n represents the

number of nodes contained in the block.
Figure 1 shows the coding diagram of a block with 5 nodes. IFM and OFM represent

the input feature map and the output feature map, respectively. Each node represents a 3 × 3
convolution operation followed by batch normalization (BN) and a rectified linear unit (ReLU).
The dashed arrows point out the correspondence between the binary bit “1” in the binary
string and the edge of the directed acyclic graph. Population evolution in Section 2.2.3 can be
used to conveniently optimize the network structure using binary strings.

Figure 1. The encoding diagram of a feature extraction block.

2.2.2. Initialization

It is clear from the coding scheme described in Section 2.2.1 that a block with n nodes
needs to be represented by n(n−1)

2 + 1 binary bits. Therefore, an individual with m blocks is

represented by m · ( n(n−1)
2 + 1) binary bits.

The search space of individuals in the first search phase can be obtained as shown
in Equation (3).

Ω = ∑m
i=1 2

in(n−1)
2 +i (3)

where Ω represents the search space and m represents the number of individuals with
different numbers of blocks. An individual with n nodes and m blocks in each block is
represented by lm = m(n2−n+2)

2 binary bits. The starting point of the optimization algorithm
is the initialization population. The population represents a collection of individuals,
each of which represents a remote sensing image classification model. We represent an
individual using a vector. Therefore, we randomly initialize K vectors that have length
li (i = 1, 2, . . . , m), each of which has a value of 0 or 1 as the initial population. Each
vector represents an individual in the population, thus the population size is mK. The
initial population serves as the starting point for population evolution in Section 2.2.3. We
decode each individual in the population and test the individual’s classification error on
the testing dataset after training on the training dataset. At the same time, we also calculate
the number of blocks in the individual.

2.2.3. Population Evolution

Figure 2 depicts a schematic diagram of population evolution. Consistent with the
paradigm of a genetic algorithm, the population evolution is primarily made up of crossover
and mutation, evaluation, as well as selection. First, individuals in the initial population are
randomly selected for crossover. Then, crossover and mutation operations are performed
on the selected individuals to obtain offspring individuals. Finally, all new individuals are
evaluated and a new generation population is selected. This process is looped until the
stop condition is met. We describe crossover, mutation, evaluation, and environmental
selection in detail below.
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Figure 2. The diagram of population evolution in TPENAS. Stem represents a convolution operation;
Block represents a feature extraction block; Pooling represents a pooling operation; GPA represents a
global average pooling operation; Linear represents a fully connected layer.

(1) Crossover and Mutation
Crossover and mutation operations are used to generate better-quality individuals,
which are common operations in genetic algorithms. We randomly pick two individ-
uals from the population and perform a crossover on them with probability pc. The
crossover operation involves selecting a continuous binary string of the same length
from two individuals and generating two new individuals by exchanging the binary
string segments. The two new individuals perform mutation operations respectively
to generate new individuals. The mutation operation is practiced by inverting each
binary bit with probability pm in turn. In the experiment, the crossover probability and
mutation probability are set to pc = 0.5 and pm = 1

l , respectively, where l represents
the code length of the individual.

(2) Evaluation
In the first search phase, we need to evaluate the overall classification accuracy and
the length of the individual. To meet the minimum optimization problem, we use
the overall classification error rate of the model on the testing dataset to evaluate the
individual’s overall classification accuracy. We use the number of blocks to evaluate
an individual’s length. Before evaluating an individual, we need to decode the
binary string representing the individual into the corresponding CNN model. The
model is trained on the training dataset and then tested on the testing dataset to
obtain the overall classification error rate of the model. It is worth noting that in the
whole optimization process, we save the binary code of the individual, the overall
classification error rate, and the number of blocks of the model into the external
population E, and, before evaluating each individual, we first query the individual
in the set E. If it exists, the overall classification error rate of the individual and the
number of blocks of the model are directly copied without retraining the model, which
saves time in the first search phase.
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(3) Environmental Selection
We select the offspring population by binary tournament selection. Specifically, two
individuals are selected firstly from the parent population, and then the most suitable
one from the two individuals is chosen and added to the offspring population. Repeat
N times to select N individuals as the offspring population.

2.2.4. Solution Selection

To determine the optimal depth in the remote sensing image classification model, we
first select the highest classification accuracy from individuals outputted by population
evolution in Section 2.2.3. This will form the optimal solution front. Then, the knee point
method [63] is used to select the optimal solution from the optimal solution front. Finally,
we determine the optimal depth of the model by calculating the number of blocks in the
optimal solution.

2.3. The Second Search Phase

During the second search phase, we explore the impact of the network’s structure
on the classification accuracy of remote sensing images. We consider both classification
accuracy and the complexity of the model. In the second search phase, we use the GFLOPs
of the model to represent the complexity of the model. Similar to the first search phase, we
build a multi-objective optimization problem using the classification error rate and GFLOPs
of the model. Because the number of blocks and evaluation metrics of the individual in the
second search phase differ from those in the first search phase, we can use the heuristic-
based multi-objective optimization algorithm designed in the first search phase to solve
the multi-objective optimization problem in the second search phase. Therefore, we can
modify some parts of the first search phase to implement the second search phase process.
There are three differences from the first search phase, as follows:

(1) In the first search phase, we determine the optimal number of blocks of individuals.
In the second search phase, we optimize the classification error rate and GFLOPs of
the model and no longer optimize the block number of the model. Therefore, when
initializing the population as in Section 2.2.2, M individuals with the same number of
blocks are randomly initialized.

(2) In the second search phase, the two optimization objectives are the classification
error rate and GFLOPs of the model. Therefore, when evaluating individuals as in
Section 2.2.3, we evaluate the individual’s classification error rate and calculate the
individual’s GFLOPs.

(3) We do not select the optimal individual from the final population as in Section 2.2.4.
This is because we use the binary tournament selection method when choosing the
offspring population, which may overlook some Pareto solutions. As a result, we
aggregate all of the individuals from each generation into an external population Ω
and then select the Pareto front from Ω.

As mentioned above in Section 2.1, we specifically set these two problems as multi-
objective optimization problems and designed the TPENAS algorithm to solve these prob-
lems employing a genetic algorithm paradigm. TPENAS solves for the depth of the model
in the first search phase and produces a set of solutions that balance overall accuracy
and GFLOPs in the second search phase. The result of TPENAS in two phases is a set of
solutions, and we can choose the appropriate one according to our practical needs.

3. Results

In this section, we discuss experimental details to validate TPENAS. Section 3.1 intro-
duces the datasets used in the experiments. Section 3.2 describes the experimental settings.
Section 3.3 shows the experimental results.
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3.1. Datasets

The proposed method is verified on three datasets, namely UCM21 [22], PatternNet [64],
and NWPU45 [65] datasets. The characteristics of the three datasets are summarized in Table 1.
Table 1 shows the three obvious characteristics of the three datasets. First, the large variation in
the scene classes between the UCM21 dataset and NWPU45 dataset. The number of scenes in
the NWPU45 dataset is more than double that of the UCM21 dataset. Second, the large variation
in the size of the three datasets. NWPU45 datasets are 15 times larger than UCM21 datasets.
PatternNet dataset has eight times the number of images per class as the UCM21 dataset. Third,
the large variation in the spatial resolution of the three datasets.

Table 1. Characteristics of the three datasets in our experiments.

Dataset
Scene

Classes
Total

Image
Image

per Class
Spatial

Resolution (m)
Image
Size

UCM21 21 2100 100 0.3 256 × 256
PatternNet 38 30,400 800 0.06∼4.69 256 × 256
NWPU45 45 31,500 700 0.2∼30 256 × 256

The spatial resolution of the UCM21 dataset is fixed at 0.3 m. The spatial resolution of the
PatternNet dataset has a small range of 4.63 m, while the NWPU45 dataset has a large range of
28.8 m. Some samples are shown from the three datasets in Figures 3–5, respectively.

Figure 3. Some samples from the UCM21 dataset.
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Figure 4. Some samples from the PatternNet dataset.

Figure 5. Some samples from the NWPU45 dataset.

3.2. Experimental Settings
3.2.1. Parameter Setting

The experiment is divided into two parts. The first part is the search phase, including
the first search phase and the second search phase. The second part is the retraining phase.
The hyperparameters of the two parts are shown in Table 2. In total, 80%, 40%, and 20% of
samples of the UCM21, PatternNet, and NWPU45 datasets are split into training datasets,
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and the rest are used as testing datasets. The hardware configuration and software version
of the experimental environment are shown in Table 3.

Table 2. Hardware configuration and software version of the experimental environment.

Versions

CPU Inter(R) Core(TM) i7-10700
GPU NVIDIA GeForce 3090

Pytorch 1.11.0
Python 3.10.4

Table 3. Hyperparameters of the proposed algorithm.

Phase Hyperparameter Name Hyperparameter Value

Population size 64
Number of blocks from 1 to 8
Number of nodes 6

Crossover probability 0.5
Mutation probability 1

Encoding_length
Batch size 16
Optimizer SGD

First search phase Momentum 0.9
Weight decay 5e−4

Learning strategy Cosine
Learning rate 0.03

Epoch_UCM21 50
Epoch_PatternNet 20
Epoch_NWPU45 50

Population size 40
Number of nodes 6

Crossover probability 0.5
Mutation probability 1

Encoding_length
Batch size 16
Optimizer SGD

Second search phase Momentum 0.9
Weight decay 5e−4

Learning strategy Cosine
Learning rate 0.03

Epoch_UCM21 50
Epoch_PatternNet 15
Epoch_NWPU45 20

Eopch 1000
Batch size 16
Optimizer SGD

Retraining phase Momentum 0.9
Weight decay 5e−4

Learning strategy Cosine
Learning rate 0.03
Loss function Cross Entropy Loss

3.2.2. Evaluation Metrics

In order to evaluate the effectiveness of the proposed algorithm, we use the overall
accuracy (OA) and confusion matrix (CM) as the evaluation metrics for the classification
accuracy of the model and use the FLOPs and parameters (Params) as evaluation metrics
to assess the computational cost and parameters of the remote sensing image classifica-
tion model.

OA indicates the overall classification accuracy of the model, which represents the
ratio of correctly classified samples to all samples in the testing dataset. OA and CM are
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calculated using Equations (4) and (5), respectively, where S and Sc denote all samples
and samples of category c in the testing dataset, respectively; K indicates the number of
categories in the testing dataset; I() is the indicator function; f () denotes the remote sensing
image classification model; x denotes the input sample; yc denotes the label of the category
c sample. CM is a matrix with K rows and K columns. CMi,j denotes the proportion of
samples of category i misclassified as samples of category j among all samples of category i
in the testing dataset.

OA = 1
S ∑K

c=1 ∑Sc
t=1 I( f (xc,t) = yc) (4)

CMi,j = ∑K
c=1 ∑Nc

t=1
1
Sc

I( f (xc,t) = yj) (5)

We calculate FLOPs and Params by using Equations (6) and (7), where Hin and Win
denote the height and width of the input feature map, respectively; Cin and Cout denote the
number of input channels and output channels of the convolution kernel, respectively; I and
O denote the number of input and output nodes in the fully connected layer, respectively;
k denotes the size of the convolution kernel.

FLOPs =

{
FLOPsconv. = 2HinWin(Cink2 + 1)Cout

FLOPsFC. = (2I − 1)O
(6)

Params =

{
Paramsconv. = Cout(k2Cin + 1)
ParamsFC. = (I + 1)O

(7)

3.3. Comparison of the Proposed TPENAS with Other Methods
3.3.1. Results on UCM21 Dataset

We conducted experiments on the UCM21 dataset, the first publicly available remote
sensing image classification dataset.

In the first search phase, 80% of data in the UCM21 dataset are randomly divided as
the training dataset, and the rest as the testing dataset by a stratified sampling algorithm.
The search results of the first search phase are shown in Figure 6. The red dotted line shows
a downward trend as the number of blocks increases and stabilizes when the number of
blocks equals five. We can see that as the number of blocks increases, the classificatin
error rate of the model decreases. However, after the number of blocks is equal to five, the
classificatin error rate of the model does not decrease significantly, but increases slightly.
As a result, in the first search phase, the optimal solution is chosen when the number of
blocks equals five.

According to the optimal solution obtained in the first search phase, using the same
training dataset and testing dataset as the first search phase, we further search for the
structure of the network in the second search phase. Through the second search phase,
we obtain the Pareto front, as shown in Figure 7. It can be seen from the Pareto front that
the GFLOPs of the solution vary from 0.5∼4.5, which provides a variety of solutions. In
order to select the model with the lowest classification error rate, we train each network in
the Pareto solution set from scratch for 1000 epochs using the same dataset as the second
search phase and select the individual with the lowest classification error as our chosen
solution. Because the solutions in the Pareto solution set are only trained for 50 epochs,
they are not fully trained. After full training, in the Pareto solution set, individuals with a
high classification error rate may obtain a lower classification error rate than those with a
low classification error rate. We will discuss this in Section 4.

In the retraining phase, we use five-fold cross-validation, with four folds as the training
dataset and one fold as the testing dataset, to evaluate selected individuals. A total of
5 independent models are trained for 1000 epochs and tested, respectively. The average
of the test accuracy of the five models is compared to other algorithms, including classic
classification models such as AlexNet, VGG16, ResNet50, and others, as well as NAS-based
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methods such as NASNet, SGAS, DARTS, and so on. Additionally, we also compared their
GFLOPs and Params, as shown in Table 4. Compared with classic classification models,
TPENAS achieves the highest OA, and the GFLOPs are only higher than AlexNet, while the
parameters are significantly lower than other models. Compared with NAS-based methods,
the OA of TPENAS is 9.91% higher than NASNet and 2.03% higher than RSNet, and the
parameters of TPENAS are at least half lower than those of NASNet, SGAS, and DARTS.

Figure 6. Search results of the first search phase for the UCM21 dataset. The red dots represent the
optimal solution in a particular block, while the blue circles represent nonoptimal solutions. The
pentagram represents the chosen solution. The red dotted line represents the front of the best solution.

Figure 7. Pareto front of the second search phase for the UCM21 dataset. The red dots represent
the optimal solution, while the blue circles indicate the nonoptimal solutions. The Pareto front is
represented by the red dotted line. The pentagram indicates the chosen solution.
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Table 4. The OA, GFLOPs, and Params of TPENAS are compared with the other methods on the
UCM21 dataset (the ratio of training samples to test samples is 8:2). The upward arrow (↑) indicates
that the larger the number, the better the result. The downward arrow (↓) indicates that the smaller
the number, the better the result.

Method OA (%) ↑ GFLOPs ↓ Params (M) ↓ Search Strategy

AlexNet [66] 81.19 0.92 57.09 manual
VGG16 [32] 78.57 20.18 134.35 manual
ResNet50 [33] 85.24 5.37 23.56 manual
ConvNeXt [67] 84.29 20.07 88.57 manual
DenseNet161 [35] 86.19 10.17 26.52 manual
Fine-tuned AlexNet [66] 92.14 0.92 57.09 manual
Fine-tuned VGG16 [32] 95.48 20.18 134.35 manual
Fine-tuned ResNet50 [33] 98.57 5.37 23.56 manual
Fine-tuned ConvNeXt [67] 97.86 20.07 88.57 manual
Fine-tuned DenseNet161 [35] 98.33 10.17 26.52 manual

NASNet [43] 89.62 0.77 4.26 NAS
SGAS [68] 92.05 0.81 4.69 NAS
MNASNet [69] 94.52 0.43 3.13 NAS
RTRMM [70] 96.76 0.38 0.82 NAS
DARTS [47] 95.19 0.71 3.97 NAS
PDARTS [71] 91.52 0.73 4.19 NAS
RSNet [72] 96.78 1.19 1.22 NAS
CIPAL [59] 96.58 - 1.58 NAS
ALP [73] 93.43 - 2.63 NAS
TPENAS (ours) 98.81 2.76 1.80 NAS

The classification confusion matrix are shown in Figure 8. C01∼C21 represent the
categories agricultural, airplane, baseball diamond, beach, buildings, chaparral, dense
residential, forest, freeway, golf course, harbor, intersection, medium residential, mobile
home park, overpass, parking lot, river, runway, sparse residential, storage tanks and tennis
court, respectively. The classification accuracy of TPENAS in the scenes “buildings” and
“storage tanks” is 90%, the classification accuracy of “tennis court” is 95%, and the other
scenes are 100%, which proves the excellent performance of our proposed algorithm.

Figure 8. The classification confusion matrix on UCM21 dataset.

3.3.2. Result on PatternNet Dataset

To further verify the performance of TPENAS, we validate experiments on the PatternNet
dataset, which contains more scenes and more samples than the UCM21 dataset. During
the first search phase, 40% of the data is selected at random as the training dataset and the
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remainder as the testing dataset. Figure 9 shows the search results in the first search phase.
We can see that as the number of blocks increases, the red dotted line gradually decreases and
flattens out after block equals 3. This demonstrates that as the number of blocks increases,
the classification error rate of the model gradually decreases. However, when the number of
blocks exceeds 3, the classification error rate of the model does not decrease significantly. As a
result, the individual’s block in the second search phase is set to 3. On the UCM21 dataset,
the optimal number of blocks in the first search phase is 5. It demonstrates that the optimal
number of blocks for the model varies depending on the dataset.

Figure 9. Search results of the first search phase for the PatternNet dataset. The red dots indicate
the optimal solution in a particular block, while the blue circles indicate nonoptimal solutions. The
pentagram represents the chosen solution. The red dotted line represents the front of the best solution.

We searched the architecture of the model in the second search phase using the same
dataset as the first search phase, and the result is shown in Figure 10. Each solution in
the Pareto solution set has a unique network structure, and each solution in the Pareto
solution set dominates at least one nonoptimal solution. Therefore, the second search
phase is able to provide multiple models for remote sensing images classification. Each
solution in the Pareto solution set is trained from scratch for 1000 epochs. The solution
with the highest classification accuracy in the testing dataset is chosen for comparison with
other algorithms.

During the retraining phase, 40% of the data in the PatternNet dataset is randomly
selected to train the selected solutions from scratch and tested on the remaining 60% of
the data. The experiment was repeated 5 times and the average overall accuracy was
calculated, and the result is shown in Table 5. The OA of TPENAS is higher than classic
classification models. Compared with NAS-based methods, the OA of TPENAS is higher
than other algorithms, except that it is slightly lower than PDARTS. TPENAS has lower
GFLOPs than classic classification models and roughly twice the GFLOPs of NAS-based
methods. It is worth noting that parameters of TPENAS is at least one-twentieth of the
classic classification models and NAS-based methods.
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Figure 10. Pareto front of the second search phase for the PatternNet dataset. The red dots represent
the optimal solution, while the blue circles represent the nonoptimal solution. The Pareto front is
represented by the red dotted line. The pentagram indicates the chosen solution.

Table 5. The OA, GFLOPs, and Params of TPENAS are compared with the other methods on the
PatternNet dataset (the ratio of training samples to test samples is 4:6). The upward arrow (↑)
indicates that the larger the number, the better the result. The downward arrow (↓) indicates that the
smaller the number, the better the result.

Method OA (%) ↑ GFLOPs ↓ Params (M) ↓ Search Strategy

VGG16 [32] 97.31 20.18 134.42 manual
GoogLeNet [34] 96.12 1.96 56.64 manual
ResNet50 [33] 96.71 5.37 235.96 manual
Fine-tuned VGG16 [32] 98.31 20.18 134.42 manual
Fine-tuned GoogLeNet [34] 97.56 1.96 56.64 manual
Fine-tuned ResNet50 [33] 98.23 5.37 23.59 manual

DARTS [47] 95.58 0.71 3.98 NAS
PDARTS [71] 99.10 0.73 4.21 NAS
Fair DARTS [74] 98.88 0.53 3.32 NAS
GPAS [58] 99.01 - 3.72 NAS

TPENAS (ours) 99.05 1.30 0.15 NAS

The confusion matrix is shown in Figure 11. C01∼C38 represent airplane, baseball
field, basketball court, beach, bridge, cemetery, chaparral, christmas tree farm, closed road,
coastal mansion, crosswalk, dense residential, ferry terminal, football field, forest, freeway,
golf course, harbor, intersection, mobile home park, nursing home, oil gas field, oil well,
overpass, parking lot, parking space, railway, river, runway, runway marking, shipping
yard, solar panel, sparse residential, storage tank, swimming pool, tennis court, transformer
station and wastewater treatment plant, respectively. Each scene has a classification accu-
racy greater than 97%, and more than half of the scenes have a classification accuracy of
100%. The experimental results on the PatternNet dataset show that the proposed TPENAS
method can find acceptable depth and structure of the CNN model.
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Figure 11. The classification confusion matrix on PatternNet dataset.

3.3.3. Result on NWPU45 Dataset

Following experiments on the UCM21 and PatternNet datasets, we tested the TP-
MEANS method on the NWPU45 dataset, which is currently the largest remote sensing
image classification dataset. In the first search phase, 20% of the data are randomly selected
as a training dataset, and the remaining 80% are used as a testing dataset. The results of the
first search phase are shown in Figure 12.

Figure 12. Search results of the first search phase for the NWPU45 dataset. The red dots indicate
the optimal solution in a particular block, while the blue circles indicate nonoptimal solutions. The
pentagram represents the chosen solution. The red dotted line represents the front of the best solution.

Consistent with the experiments on the UCM21 dataset, the overall accuracy of the
model decreases as the number of blocks increases until it reaches five. When the number
of blocks exceeds five, the overall accuracy of the model becomes stable. As a result, we
chose five blocks as the optimal individual length for the second search phase.
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The second search phase is performed using the same dataset as the first search phase,
and the obtained Pareto front is shown in Figure 13. The solutions in the Pareto solution
set have different structures and are not superior to other solutions in the Pareto solution
set in terms of GFLOPs and test error. This demonstrates that by running the algorithm
once, we can generate multiple competing models for remote sensing image classification.
Similar to the UCM21 dataset, we train all solutions from scratch for 1000 epochs and select
the solution with the lowest test error to compare with other algorithms.

Figure 13. Pareto front of the second search phase for the NWPU45 dataset. The red dots represent
the optimal solution, while the blue circles represent the nonoptimal solutions. The Pareto front is
represented by the red dotted line. The pentagram indicates the chosen solution.

In the retraining phase, we use five-fold cross-validation to evaluate the selected
solutions. Different from the UCM21 dataset, we chose one fold as a training dataset and
the remaining four folds as a testing dataset. A total of 5 independent models were trained
from scratch for 1000 epochs, and their test results were averaged. We also compare classic
classification models and NAS-based methods, as shown in Table 6. TPENAS_large denotes
that the solution with the highest classification accuracy is selected from the Pareto solution
set, and TPENAS_small denotes that the solution selected from the Pareto solution has
higher classification accuracy and fewer parameters than other NAS-based models. The
OA of TPENAS_large is 90.38%, which is better than both classic classification models and
NAS-based methods. The GFLOPs of TPENAS_large are lower than VGG16, GoogleNet,
and ResNet50, and slightly higher than AlexNet. With the exception of the RTRMM method,
the parameters of TPENAS_large are significantly lower than those of classic classification
models such as AlexNet and VGG16 and are at least half that of other NAS-based methods.
Table 6 shows that the parameters of TPENAS_small are half that of RTRMM and the OA is
higher than that of NAS-based methods.
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Table 6. The OA, GFLOPs, and Params of TPENAS are compared with the other methods on the
NWPU45 dataset (the ratio of training samples to test samples is 2:8). The upward arrow (↑) indicates
that the larger the number, the better the result. The downward arrow (↓) indicates that the smaller
the number, the better the result.

Method OA (%) ↑ GFLOPs ↓ Params (M) ↓ Search Strategy

AlexNet [66] 79.85 0.92 57.19 manual
VGGNet16 [32] 79.79 20.18 134.44 manual
GoogleNet [34] 78.48 1.97 5.65 manual
ResNet50 [33] 83.00 5.37 23.60 manual
Fine-tuned AlexNet [66] 85.16 0.92 57.19 manual
Fine-tuned VGG16 [32] 90.36 20.18 134.44 manual
Fine-tuned GoogLeNet [34] 86.02 1.96 5.65 manual

NASNet [43] 67.48 0.77 4.28 NAS
SGAS [68] 75.87 0.81 4.70 NAS
DARTS [47] 67.48 0.77 3.41 NAS
MNASNet [69] 81.92 0.43 3.16 NAS
PDARTS [71] 82.14 0.73 4.21 NAS
RTRMM [70] 86.32 0.39 0.83 NAS

TPENAS_large (ours) 90.38 1.65 1.67 NAS
TPENAS_small (ours) 87.79 1.27 0.41 NAS

Figure 14 depicts the classification confusion matrix. C01∼C45 represent airplane,
airport, baseball diamond, basketball court, beach, bridge, chaparral, church, circular
farmland, cloud, commercial area, dense residential, desert, forest, freeway, golf course,
ground track field, harbor, industrial area, intersection, island, lake, meadow, medium
residential, mobile home park, mountain, overpass, place, parking lot, railway, railway
station, rectangular farmland, river, roundabout, runway, sea ice, ship, snow berg, sparse
residential, stadium, storage tank, tennis court, terrace, thermal power station and wetland,
respectively. As shown in Figure 14, 20% of the place images are misclassified as church
images and 9% of the church images are misclassified as place images. As shown in
Figure 15, the category church is very similar to the category place, making it extremely
difficult for the model to extract discriminative features from these images. TPENAS
achieves high classification accuracy in other categories.

Figure 14. The classification confusion matrix on the NWPU45 dataset. We removed categories with
classification accuracy higher than 95% in the confusion matrix and did not display numbers less
than 0.01.
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Figure 15. Some samples in the categories church and place. The four images in the first row are in the
category church, and the four images in the second row are in the category place.

3.3.4. Compared to Other CNN-Based Methods

Our proposed method is compared with other CNN-based remote sensing image
classification methods, as shown in Table 7. The OA of TPENAS is higher than other
CNN-based methods, which shows that the OA of our algorithm on remote sensing image
classification tasks is satisfactory.

Table 7. The OA of TPENAS is compared with the other CNN-based methods on the UCM21 dataset
and NWPU45 dataset (the ratio of training samples to test samples is 8:2).

Method UCM21 NWPU45

MARTA GANs [75] 94.86 75.03
Attention GANs [76] 97.69 77.99
VGG-16-CapsNet [77] 98.81 89.18
GBN [78] 98.57 -
MSCP [79] 98.36 88.93
TPENAS (ours) 98.81 90.38

3.3.5. Compared to Other ENAS Methods

TPENAS was compared with other ENAS methods, as shown in Table 8. On the
NWPU45 dataset, SceneNet, E2SCNet, and TPENAS were all trained using 80% of the
dataset and then tested on the remaining 20% of the dataset. Experimental results show
that our algorithm has a higher OA than SceneNet and E2SCNet, and that Params and
GFLOPs are not the worst among the three algorithms.

Table 8. The OA, Params, and GFLOPs of TPENAS are compared with the ENAS methods on the
NWPU45 dataset (the ratio of training samples to test samples is 8:2). The upward arrow (↑) indicates
that the larger the number, the better the result. The downward arrow (↓) indicates that the smaller
the number, the better the result.

Method OA ↑ Params (M) ↓ GFLOPs ↓
SceneNet [60] 95.22 1.02 9.47
E2SCNet [61] 95.23 3.88 0.60
TPENAS_large (ours) 95.70 1.65 1.67

4. Discussion

4.1. Analysis of the Number of Evaluated Models

We compare the number of evaluated models for the proposed TPENAS and traversal
search. In this paper, traversal search means that models with different numbers of blocks
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perform the second search phase respectively, and then the best model is selected from all
the search results. In our experimental setup, the models have 8 different block numbers,
so the traversal search needs to evaluate 32,000 models. TPENAS only needs to evaluate
4640 models. According to the current experimental settings, the number of models to
be evaluated by TPENAS is ϑ1 = 8 × 10 × ϑ + 40 × 100, and the number of models to be
evaluated by traversal search is ϑ2 = 40 × 100 × ϑ, therefore, TPENAS evaluates ϑd fewer
models than traversal search, where ϑd = ϑ2 − ϑ1 = 3920 × ϑ − 4000, and ϑ is the number
of blocks that can be selected. It can be seen that as ϑ increases, ϑd increases linearly. This
demonstrates that our algorithm is more time-efficient.

4.2. Analysis of the Depth of the Model in the Second Search Phase

The aim of the first search phase is to find the optimal depth of the model, which is the
number of blocks of the model. We use the overall accuracy of the model and the number of
blocks of the model as two optimization objectives to build a multi-objective optimization
problem, as shown in Equation (1). The optimal solution to this optimization problem is the
appropriate number of blocks. We designed the first search phase algorithm to optimize
this optimization problem. On the UCM21 dataset, the number of blocks output by the
first search phase algorithm is five, but this does not indicate an optimal solution to this
optimization problem.

We selected five different block numbers to conduct ablation experiments on the
UCM21 dataset to validate the effectiveness of the first search phase. Figure 16 shows the
Pareto front of the experimental results. As we can see, it is not true that the greater the
number of blocks, the better the Pareto front of the individual. For example, the Pareto
front with seven blocks is worse than the Pareto front with six blocks, indicating that the
former is superior. We discover that the Pareto front is optimal when the block equals five,
which matches the results in our first search phase.

Figure 16. The Pareto fronts obtained by experiments with five different block numbers during the
second search phase.
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4.3. Analysis of Fully Trained Models and Non-Fully Trained Models

In the Pareto front obtained from the second search phase, we fully train each solution
from scratch and then select the solution with the lowest classification error to compare
with other methods. The reason is that after fully training from scratch, the solution with
the lowest classification error may not be the solution with the lowest classification error
in the Pareto solution set. Therefore, we conducted four sets of comparative experiments,
as shown in Figure 17. In the upper left figure, after the solutions in the Pareto solution
set with blocks equal to three are fully trained, the solution with the lowest classification
error is the optimal solution in the Pareto set. However, the other three subplots show that
after training completely from scratch, the solution with the lowest classification error is
not the solution with the lowest classification error in the Pareto solution set. This further
illustrates the rationality of our choice of the final solution.

Figure 17. The horizontal axis represents the GFLOPs of the individual, and the vertical axis repre-
sents the test error of the individual on the UCM21 dataset. The blue curve represents the Pareto
front on the second phase. The red curve represents the result obtained by fully training the solution
on the Pareto front from scratch.

4.4. Analysis of TPENAS Algorithm with Fewer Training Samples

Fewer training samples have two effects on the TPENAS algorithm. Firstly, it decreases
the runtime of the TPENAS algorithm. Since the runtime of TPENAS is spent primarily on
evaluating the model, reducing the training samples will linearly reduce the evaluation
time of the model. Specifically, a Γ-fold reduction in training samples will reduce the time
to evaluate a single model by approximately a factor of Γ. Furthermore, it also enables the
algorithm to reduce its reliance on sample labels. Secondly, it is not conducive to TPENAS
outputting well-structured models. This is because too few training samples will make
the model easily overfitted during training. In the second search phase, the overfitted
model will not evaluate the model accurately, resulting in low OA for well-structured
individuals in the population. Therefore, a reasonable selection of the number of training
samples is able to both reduce the running time of the TPENAS algorithm and search for
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structurally appropriate models. Such individuals can easily be eliminated in selecting the
next-generation population, which leads to difficulties for the TPENAS algorithm to output
a well-structured model.

5. Conclusions

In this paper, we propose TPENAS, a two-phase evolutionary neural architecture
search for remote sensing image classification, which overcomes the shortcomings of
manually designed CNN and NAS algorithms. In the first search phase, we optimize
the classification accuracy and depth of the model to determine the maximum depth
of the model on the benchmark dataset. In the second search phase, we optimize the
classification accuracy and GFLOPs of the model to obtain a set of models for remote
sensing image classification. The experimental results on the NWPU45 dataset show that
TPENAS improves overall classification accuracy by 4.02% when compared to other NAS
algorithms. Furthermore, it reduces the parameters by at least 13 times when compared
to classic classification methods. In future work, we will explore how to design a more
discriminative deep learning method to greatly promote the classification of similar images.
In addition, in practical application scenarios, enough training samples can sometimes be
difficult to obtain, and how to design high-accuracy remote sensing image classification
models with small samples remains an open research question.
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Abstract: Road extraction is a hot task in the field of remote sensing, and it has been widely concerned
and applied by researchers, especially using deep learning methods. However, many models using
convolutional neural networks ignore the attributes of roads, and the shape of the road is banded and
discrete. In addition, the continuity and accuracy of road extraction are also affected by narrow roads
and roads blocked by trees. This paper designs a network (MSPFE-Net) based on multi-level strip
pooling and feature enhancement. The overall architecture of MSPFE-Net is encoder-decoder, and
this network has two main modules. One is a multi-level strip pooling module, which aggregates
long-range dependencies of different levels to ensure the connectivity of the road. The other module
is the feature enhancement module, which is used to enhance the clarity and local details of the road.
We perform a series of experiments on the dataset, Massachusetts Roads Dataset, a public dataset.
The experimental data showed that the model in this paper was better than the comparison models.

Keywords: road extraction; convolutional neural network; remote sensing images; strip pooling

1. Introduction

The continuous progress of remote sensing and artificial intelligence has laid a solid
theoretical and technical foundation for road extraction. As an important ground object,
roads play a crucial role in intelligent transportation [1,2], urban planning [3,4], and emer-
gency tasks [5,6]. Traditional remote sensing road extraction uses manual interpretation,
which consumes a lot of workforce and time. The automatic extraction of roads is helpful
to reduce the manual workload, and it also accelerates the speed of road extraction, so road
extraction has excellent research value. Due to the different shapes of roads, the influence
of background factors, and being blocked by trees or shadows, the road extraction task is
difficult and challenging [7–9].

Deep learning promotes the progress of computer vision, especially in object detection,
semantic segmentation, image classification, and other aspects, and it has a good effect.
Scholars also began to use deep learning technology to complete remote sensing image
road extraction [10–13]. Although the model based on deep learning has achieved good
results in extracting road tasks, and many road extraction algorithms have problems, such
as road breaking caused by occlusion, difficult extraction of the narrow road, and incorrect
identification of roads and background. In order to solve these problems, road extraction
models need strong long-distance dependencies or global context information, and the road
extraction algorithm usually uses attention mechanism or atrous convolution technology to
obtain long-distance dependencies or global context information. The attention mechanism
is a method to improve the ability of global context modeling. However, it consumes a lot
of memory. Other methods include atrous convolution and spatial pyramid pooling, which
can expand the receptive field of convolutional neural network, but the strip target features
extracted by the square window may be mixed with irrelevant target information.

Electronics 2023, 12, 1713. https://doi.org/10.3390/electronics12071713 https://www.mdpi.com/journal/electronics
49



Electronics 2023, 12, 1713

Inspired by the idea of strip pooling proposed by Hou, Feng et al. [14], this paper
introduces and improves upon it. The strip pooling has several distinct characteristics.
Firstly, the strip pooling has a long and banded shape at a dimension, so it can capture long-
range relationships of isolated regions. Then, strip pooling maintains a narrow shape along
a spatial dimension, which helps to capture the local feature of targets and can reduce the
interference of irrelevant target information. The network combined with strip pooling has
the ability to obtain multiple types of contexts. It is fundamentally different from traditional
spatial pooling. The idea of strip pooling is well applied in remote sensing image road
extraction scenes. Therefore, a multi-level strip pooling and feature enhancement network
(MSPFE-Net) called MSPFE-Net is designed in this paper. In MSPFE-Net, the multi-level
strip pooling module is responsible for fully extracting long-range context information. The
feature enhancement module is used to enhance the clarity and local details of the road.

The main content of this article consists of the following:

1. A multi-level strip pooling module (MSPM) was designed to extract global context
information to ensure the connectivity and integrity of road extraction.

2. A feature enhancement module (FEM) was proposed, which mainly enhanced the
clarity and local details of the road

3. MSPFE-Net is designed and implemented for road extraction tasks. The effectiveness
of MSPFE-Net was verified on the Massachusetts Roads Dataset.

The chapter structure of this article is arranged as follows: Section 2 introduces the
related work. Section 3 shows the structure of MSPFE-Net and explains the rationale for
each module. Section 4 shows experimental contents, containing experimental datasets,
evaluation methods, experimental settings, and experimental results. Sections 5 and 6
introduce this paper’s discussion and conclusion, respectively.

2. Related Works

In recent years, a series of algorithms for road extraction have been proposed. Accord-
ing to the characteristics of various algorithms, there are mainly two types: traditional type
and type of deep learning.

2.1. Traditional Type

Traditional types have the following methods: template matching method, knowledge-
driven method, and object-oriented method [15]. Template matching is a method that
applies geometric, topological, and radial features of road images. According to the tem-
plate type, it can be divided into rule templates and variable templates. The advantages
of the rule template are less computation, good stability, and simplicity, while the disad-
vantages are affected by the transformation of radiation characteristics. The advantage
of a variable template is that it can be applied to images with irregular road edges and
irregular road radiation information. The disadvantage is that it requires a large amount of
computation. The primary process is to design the template according to the rules, obtain
the regional extreme value through the template using the measure function and update the
road location. Haverkamp [16] used the comparative analysis of multiple rectangular tem-
plates to rotate at certain angular intervals to form a group of discrete rectangular templates.
In the knowledge-driven method, knowledge can be divided into geometric knowledge,
contextual knowledge, and auxiliary knowledge. Wenfeng Wang et al. [17] put forward a
straight-line detection algorithm using the property of parallel edges of roads, recognized
parallel features using principal component analysis, and direction consistency criteria.
The object-oriented method is to obtain the output results by segmentation, classification,
and post-processing of the input image. The segmentation methods include threshold
segmentation, graph segmentation, and edge segmentation. Classification methods in-
clude geometric feature classification and SVM; post-processing includes tensor voting
and mathematical morphology. Maboudi et al. [18] used guided filtering to eliminate the
inconsistency of pavement image texture and then used a method including color and
shape data for road extraction.
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2.2. Type of Deep Learning

Using a convolutional neural network (CNN) to obtain road features from many image
sample data. Mnih and Hinton [19] combined deep learning with road extraction for the first
time, using a restricted Boltzmann machine to detect road areas from images. P. Li et al. [20]
designed a network combining CNN and linear integral convolution to extract roads.
Wei et al. [21] applied an improved cross entropy loss function to the CNN, which can
help improve the topological information of the road. The fully convolutional network
(FCN) was proposed in 2014 [22]. The deconvolution of FCN can make the final feature
map have the same size as the input image after up-sampling and predict the category of
each pixel. Although FCN plays a pioneering role in semantic segmentation, its accuracy
is low. Since the U-Net model was applied in the task of medical image segmentation, it
achieved good results. The U-Net network is an improved fully convolutional network [23].
It includes the skip connection. In the process of up-sampling, the feature map in the
process of down-sampling is fused in concatenate. Many subsequent image segmentation
models have adopted this idea and improved on it. In the field of road extraction, there is
no exception. Singh et al. [24] proposed their improved U-Net model to realize the function
of road extraction. He et al. [25] designed the deep residual network to make the number
of network layers deeper. Zhang et al. [26] realized road extraction by introducing ResNet
into U-Net and combining the advantages of both. In order to accomplish road extraction at
different scales, Gao et al. [27] introduced a feature pyramid and proposed a multi-feature
pyramid network (MFPN). Cheng et al. [28] proposed a cascading end-to-end network
(CasNet), which completes the road detection task and the road centerline extraction
task simultaneously through two cascading networks. However, these methods have an
insufficient receptive field to capture effective and rich long-distance context information,
which is crucial for road extraction. The lack of long-distance context information will
directly lead to the discontinuity of road extraction results or even the phenomenon that
roads cannot be extracted completely. In order to connect discontinuous broken roads, many
researchers have considered various schemes to capture long-distance context information
to model the topological relationship between broken roads [29]. The main method is
to use atrous convolution [30]. Atrous convolution can effectively expand the receptive
field without increasing the amount of computation. Taking into account the natural
connectivity and large span of the road, Zhou et al. [31] added the concatenation mode
and parallel mode of different atrous convolution to form D-LinkNet for road extraction.
In order to extract road features at different scales, He et al. [32] introduced the atrous
spatial pyramid pooling (ASPP) module. According to the above analysis, compared with
the traditional method, the deep learning method can greatly improve the accuracy and
automation of road extraction, but there are still problems of road breaking caused by
occlusion in the road extraction results [33]. Although many researchers have offered some
solutions, there is still a lack of high-performance, end-to-end road extraction networks
that can solve this problem. Tao et al. [34] proposed to integrate a well designed spatial
information inference structure into the deeplabv3+ network to maintain the continuity of
road extraction by realizing multi-direction transmission of information between pixels.
Zhou et al. [35] proposed a boundary and topologically-aware road extraction network
(BT-RoadNet) in order to improve the quality of road boundaries and solve the problem
of road discontinuity. The network is divided into thick and thin prediction modules
to obtain detailed boundary information, and the spatial context module is designed to
solve the problem of discontinuous road results. Lu et al. [36] proposed GAMSNet, which
uses multi-scale residual learning to extract multi-scale features, and then it uses global
perception operations to capture long-distance relationships. Tan et al. [37] proposed a new
end-to-end encoder-decoder architecture network to solve the problem of road location
information loss due to reduced spatial resolution. This network obtains different levels of
features by encoders, and the decoder is composed of a scale fusion module and a scale
sensitive module, respectively, achieving the task of fusing features and assigning weights.
Zhu et al. [38] designed a global context-aware batch processing independent network
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(GCB-Net), which effectively integrates global context features by using the improved
non-local module as a global context-aware module. Wang et al. [39] designed a model
combining global attention, and it can enhance the performance of road segmentation.

In conclusion, Although the method based on deep learning effectively extracts roads,
it is still difficult to extract roads especially in complex scenes. Therefore, it is necessary
to fully consider the structural characteristics of roads and improve the accuracy of road
extraction in complex scenes.

3. Methods

The details of the proposed network model are introduced in this section. Section 3.1
shows the architecture of the MSPFE-Net; Section 3.2 shows the multi-level strip pooling
module. Section 3.3 introduces the feature enhancement module in detail. Section 3.4
introduces the loss function.

3.1. MSPFE-Net Model

The MSPFE-Net is shown in Figure 1, it is mainly composed of the encoder, multi-level
strip pooling module (MSPM), feature enhancement module (FEM), and decoder. The
encoder uses the Resnet50 network. The output results of the encoder in the first four layers
are used as inputs to MSPM, which is used to strengthen the long-range dependencies of
the model. The output results of the encoder in the fifth layer are used as inputs to the
feature enhancement module, and it focuses on collecting various types of contexts through
different pooling operations to make the road feature representation more discriminating.
The output feature of MSPM will be added with the up-sampled feature map in the decoder.

3.2. Multi-Level Strip Pooling Module

Figure 2 explains the theory of the strip pooling. The strip pooling window performs
pooling at horizontal or vertical dimensions, and the input feature is a two-dimensional
tensor x ∈ RH×W . Different from two-dimensional average pooling, the method of strip
pooling is to sum the value of a row or column and divide it by the number of rows or
columns, respectively. Therefore, the horizontal strip pooling output yh ∈ RH can be
expressed as:

yh
i =

1
W

W−1

∑
j=0

xi,j (1)

Similarly, the vertical strip pooling outputs yv ∈ RW can be expressed as:

yv
i =

1
H

H−1

∑
i=0

xi,j (2)

The strip pooling in Figure 2 is similar to the traditional pooling method, and the pixel
values are averaged over the locations on the feature maps corresponding to the pooling
kernels. A feature map is an input, here actually C × H × W. For ease of description, only
one channel is drawn. The feature map input processing principle of C channels is the same
as that of one channel operation shown here. After horizontal and vertical strip pooling,
the input feature map becomes H × 1 and 1 × W. The element values within the pooling
window are averaged, and the value is used as the pooling output value. Subsequently,
one-dimensional convolution is conducted on the output values, and the two output feature
maps are expanded along the horizontal and vertical directions. Then, the two feature maps
had the same size, and the expanded feature maps corresponding to the same position
were summed to obtain the H × W feature map.
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One of the difficulties of road extraction is maintaining the road’s continuity. In order
to reduce the impact of this problem, MSPM is proposed in this paper to fully obtain
long-range dependencies to keep the connectivity and integrity of road topology. The core
idea of MSPM is to extract different features by strip pooling at different levels and fuse
these features. MSPM is added to the skip connection section of MSPFE-Net to extract
long-range context information at different levels.

The framework of MSPM is shown in Figure 3, which contains three strip pooling
sub-blocks of different sizes, L1, L2, and L3, respectively. Input feature x is processed by the
L1, L2, and L3 sub-blocks, respectively, then the model obtains three output features yL1,
yL2, and yL3 and add the corresponding position of yL1, yL2, and yL3. The last operation is
to multiply the summed result with the input x. Finally, there is the output result of MSPM,
yout can be expressed as:

yout = x ⊗
(

yL1 + yL2 + yL3
)

(3)

Figure 1. The architecture of MSPFE-Net.

53



Electronics 2023, 12, 1713

Figure 2. Illustration of strip pooling.

3.3. Feature Enhancement Module

The FEM, shown in Figure 4, focuses on collecting various types of contexts through
different pooling operations to make feature representation more discriminating. The
advantage is that it can be used continuously to extend long-range dependencies and
reinforce local details.

The feature enhancement module is composed of four sub-modules, namely,
3 × 3 convolution, 3 × 3 maximum pooling, horizontal strip pooling, and vertical strip
pooling. These four sub-modules are represented as f1, f2, f3, and f4. The input of FEM
is represented as x, and the output of FEM is represented as y. Firstly, 3 × 3 convolution
and 3 × 3 maximum pooling were carried out to add the above result features to obtain the
feature map, namely, y1. Similarly, horizontal strip pooling and vertical strip pooling were
carried out, and the results were added to obtain the feature map, namely, y2, which was
splicing y1 and y2. After 1 × 1 conv, the final result feature y was obtained. They capture
both long-range and local dependencies information, and it is essential for remote sensing
image road extraction scene resolution networks. FEM can be expressed as:

y1 = f1(x) + f2(x) (4)

y2 = f3(x) + f4(x) (5)

y = C1×1(CONCAT(y1, y2)) (6)

where C1×1 is 1 × 1 convolution, and CONCAT is a concatenate operation.
For long-range dependencies, unlike previous work using a global averaging pooling

layer, we capture context information by using both horizontal and vertical strip pooling
operations. At the same time, strip pooling makes it possible to connect discrete areas and
code areas with strip structures throughout the road scene. However, in the case of tight
distribution of semantic regions, capturing road local context information also requires
spatial pooling. Considering this, convolution operation and pooling layer are used to
obtain short-range dependencies.
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Figure 3. The structure of MSPM.
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Figure 4. Illustration of feature enhancement module.

3.4. Loss Function

The binary cross entropy loss function is applied to most pixel-level segmentation
tasks. However, when the number of pixels on the target is much smaller than the number
of pixels in the background, that is, the samples are highly unbalanced, and the loss function
has the disadvantage of misleading the model to seriously bias the background. In this
paper, it is necessary to judge whether the pixels predicted by the model are roads or
backgrounds. The road area is small, and the background area is too large. If the binary
cross entropy loss function is used, this will make the model deviate from the optimal
direction during the training process. To reduce the impact of this problem, the dice
coefficient loss function and the focal loss function are used together as the loss function.

The dice coefficient loss function is calculated as follows:

Ld = 1 − 2|X ∩ Y|
|X|+ |Y| (7)

In the formula, X is the generated prediction map, Y is the label, |X ∩ Y| is the intersec-
tion of label and prediction, |X| is the number of elements of the label, and |Y| represents
the number of predicted elements.

The focal loss function is based on the binary cross entropy loss. It is a dynamically
scaled cross entropy loss. Through a dynamic scaling factor, the weight of easily distin-
guishable samples can be dynamically reduced in the training process to focus on those
indistinguishable samples quickly. The focal loss function is as follows:

L f = FL(pt) = −αt(1 − pt)
γ log(pt) (8)

Among them, − log(pt) is the initial cross entropy loss function, α is the weight
parameter between categories, (1 − pt)

γ is the easy/hard sample adjustment factor, and γ

is the focusing parameter.
The final loss function is the sum of the dice coefficient loss function and the focal loss

function, namely:
Lloss = L f + Ld (9)
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4. Results

4.1. Dataset

Massachusetts Roads Dataset [40] is used in the experimental dataset as shown in
Figure 5. The pixel size of the Massachusetts Roads Dataset is 1500 × 1500, and there are
1171 pairs of images and labels. In this experiment, the number of training images, test
images, and validation images is 1108, 49, and 14, respectively.

(a) (b)

Figure 5. Massachusetts Road Dataset. (a) Image; (b) Label.

4.2. Evaluation Metrics

Selecting appropriate evaluation metrics is of great reference significance for eval-
uating the model’s performance. This paper adopts Recall, Precision, F1-Score (F1), and
intersection over union (IoU), and these evaluation metrics commonly used in semantic
segmentation. F1-Score is calculated by two indicators. Intersection over union (IoU) refers
to the ratio between the intersection of predicted road pixels and real labeled road pixels
and their union. The specific calculation method is:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 − Score = 2 × Precision × Recall
Precision + Recall

(12)

IoU =
TP

TP + FP + FN
(13)

In the formula, TP is the number of pixels correctly classified as roads, TN is the
number of pixels correctly classified as non-roads, FP represents the number of pixels
wrongly classified as roads, and FN represents the number of pixels wrongly classified as
non-roads. The values of these evaluation metrics are in the range of [0,1]. The best effect is
that the evaluation metrics value is equal to 1

4.3. Experimental Settings

In the process of model training, the batch size of each training input network sample
is 4. The initial learning rate is 0.001, and the decay of the learning rate is adjusted by the
cosine annealing algorithm. The maximum training epoch is 100. The optimizer uses the
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Adam algorithm with momentum set to 0.9. The loss function combines the dice coefficient
loss function and focal loss function.

4.4. Experimental Results and Analysis

In order to test and prove the feasibility and rationality of MSPFE-Net, the mainstream
semantic segmentation network is applied to the task of road segmentation, and the MSPFE-
Net is compared. Table 1 shows the comparison of each model in the road segmentation
task. Analysis showed that: (1) the F1-Score of the proposed model was 12.03%, 6.58%,
3.35%, 2.17%, and 1.40% higher than that of Deeplabv3+, U-Net, HRNetV2, D-LinkNet, and
RefineNet, respectively. (2) The IoU of the proposed model was 13.89%, 7.91%, 4.13%, 2.70%,
and 1.74% higher than that of Deeplabv3+, U-Net, HRNetV2, D-LinkNet, and RefineNet,
respectively. (3) From F1-Score and IoU, the MSPFE-Net is better than Deeplabv3+, U-Net,
HRNetV2, D-LinkNet, and RefineNet.

Table 1. Numerical results of different networks.

Networks Precision (%) Recall (%) F1 (%) IoU (%)

Deeplabv3+ 54.13% 73.25% 62.26% 45.20%
U-Net 77.41% 60.17% 67.71% 51.18%

HRNetV2 65.48% 77.38% 70.94% 54.96%
D-LinkNet 71.72% 72.51% 72.12% 56.39%
RefineNet 69.57% 76.54% 72.89% 57.35%

MSPFE-Net(ours) 73.11% 75.50% 74.29% 59.09%

Figure 6 shows the effect of each model. According to the road extraction result map
based on Deeplabv3+, the connectivity and geometric topological relationship of the road
remain relatively complete, but the details of the road edge are rough, and more areas
are misjudged as roads in the background map. This phenomenon is mainly due to the
fact that the Deeplabv3+ model focuses on extracting deep semantic information, while
the overall shape of the road is thin, and road details will be lost through the Deeplabv3+
backbone network. The road extraction effect based on the U-Net model is relatively
clear in the details of road edges, and adjacent roads can be accurately displayed and
separated. However, because of the limitation of the traditional convolution receptive field,
the long-range features cannot be captured effectively. Therefore, the overall connectivity
of roads extracted by U-Net is poor, and roads have more fracture zones, especially thin
and narrow roads that have long fracture zones. The road extraction effect based on
the D-LinkNet model is generally good, but D-LinkNet does not obtain enough long-
range context information, so some roads appear discontinuous, and edge details are
not clear. The overall structure of the road extracted by HRNetV2 is relatively complete,
but the edge of the road is rough, and adjacent roads cannot be distinguished. The road
extracted by RefineNet has good continuity, but there are some misjudgments. By means
of incorporating the MSPM and FEM, the presented model in this paper has proficiently
conserved intricate details whilst capturing the long-range feature relationships pertaining
to the road network. Evidently, based on the visual analysis of Figure 6, the extracted
road has exhibited substantial preservation of overall framework and connectivity whilst
manifesting enhanced clarity of edge details. Consequently, this breakthrough endeavor
promotes the depiction of intricate details and effective feature recognition, thus paving
the way for an improved comprehension of road and their networks.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6. Results of MSPFE-Net and other methods. (a) Image; (b) Label; (c) DeepLabv3+; (d) U-Net;
(e) HRNetV2; (f) D-LinkNet; (g) RefineNet (h) MSPFE-Net.( Red squares represent key areas.).

In Figure 7, it can be found that the road is blocked by trees, the MSFPE-Net accurately
restored the road, while the road extracted by other comparison models is discontinuous or
even not extracted.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Results of road extraction in occlusion scene. (a) Image; (b) Label; (c) DeepLabv3+;
(d) U-Net; (e) HRNetV2; (f) D-LinkNet; (g) RefineNet; and (h) MSPFE-Net.( Red squares represent
key areas.).

In Figure 8, it can be found that the background of some areas is similar to the road,
and the MSFPE-Net basically accurately extracts the road, while other comparison models
mistakenly regard the road as the background.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Results of road extraction (the road is similar to the background). (a) Image; (b) Label;
(c) DeepLabv3+; (d) U-Net; (e) HRNetV2; (f) D-LinkNet; (g) RefineNet; and (h) MSPFE-Net.( Red
squares represent key areas.).

This method uses multi-level strip pooling combined with a feature enhancement
module to ensure road connectivity and road edge details. The goal of the multi-level strip
pooling module is to obtain the global context information and long-range dependencies
and connect the discretely distributed paths in the image. The feature enhancement
module is used to obtain the road’s local context information and improve the road edge’s
segmentation effect.

5. Discussion

5.1. Ablation Experiments
5.1.1. Influence of MSPM and FEM

We conducted a series of ablation experiments on MSPFE-NET using the Massachusetts
Road Dataset. In order to prove the effectiveness of each module, the baseline is U-Net
with ResNet50 as the backbone, and then each module is added separately. Table 2 shows
the experimental data of all main modules.

Table 2. Ablation experiments of MSPM and FEM.

Networks Precision (%) Recall (%) F1 (%) IoU (%)

Baseline 75.92% 63.28% 69.02% 52.70%
Baseline + MSPM (L1) 72.54% 70.23% 71.37% 55.48%

Baseline + MSPM (L1 + L2) 68.87% 77.95% 73.13% 57.64%
Baseline + MSPM (L1 + L2 + L3) 69.87% 77.65% 73.55% 58.17%

Baseline + FEM 68.71% 71.76% 70.20% 54.08%

After adding MSPM (L1) to the baseline, Recall, F1, and IoU were enhanced by 6.95%,
2.35%, and 2.78%, respectively. After adding L2 to Baseline + MSPM (L1), the Recall of F1
and IoU of Baseline + MSPM (L1 + L2) increased by 7.72%, 1.76%, and 2.16% compared
with Baseline + MSPM (L1), respectively. After adding L3 to Baseline + MSPM (L1 + L2),
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the Precision, F1, and IoU of Baseline + MSPM (L1 + L2) increased by 1.00%, 0.42%, and
0.53% over Baseline + MSPM (L1 + L2), respectively. According to all the results, as shown
in Figure 9, with the addition of strip pooling of different levels (L1, L2, L3) into the model,
the overall connection of the road is better, and the form of the slender road is higher, which
fully verifies the effectiveness of MSPM. After adding FEM to the baseline, Recall, F1, and
IoU enhanced by 8.48%, 1.18%, and 1.38%, respectively. This proves that FEM plays a
certain role in improving road extraction capability.

(a) (b) (c) (d) (e) (f)

Figure 9. Comparison of adding MSPM and FEM. (a) Image; (b) Label; (c) Baseline; (d) Baseline + MSPM
(L1); (e) Baseline + MSPM (L1 + L2); and (f) Baseline + MSPM (L1 + L2 + L3).( Red squares represent
key areas.).

5.1.2. Comparison of Loss Function

In order to prove the effectiveness of the dice coefficient loss function and focal loss
function, the baseline is MSPFE-Net. Table 3 shows the experimental results.

Table 3. Ablation experiments of MSPM and FEM.

Networks Precision (%) Recall (%) F1 (%) IoU (%)

Baseline + cross entropy loss function 79.62% 65.84% 72.08% 56.34%
Baseline + focal loss function 77.12% 68.04% 72.30% 56.61%

Baseline + dice coefficient loss function 73.33% 74.37% 73.84% 58.53%
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According to Table 3, after the addition of the focal loss function, the evaluation metrics
have not changed much. When the dice coefficient loss function was used as a loss function
alone, the evaluation metrics increased significantly, with IoU increasing by 2.19%.

6. Conclusions

MSPFE-Net is designed and implemented to extract roads, which can extract narrow
roads and also restore roads that are covered by trees or shadows. When the road is similar
to the background, the MSPFE-Net basically accurately extracts the road. MSPFE-Net
ensures the connectedness and accuracy of the road. MSPFE-Net utilizes a multi-level strip
pooling module to collect context information for road extraction. This module incorpo-
rates both horizontal and vertical strip pooling operations to gather context information of
different levels and long-range dependencies. Due to the full acquisition of context infor-
mation, the continuity of the road is improved. In areas with dense roads, the MSPFE-Net
uses a feature enhancement module to collect local context information and enhance the
segmentation effect of the road edge. Experimental results show that MSPFE-Net is better
than other comparative models in experiments on evaluation metrics and results from
images. Although MSPFE-Net has basically completed the task of road segmentation, roads
are similar to the background in some areas, and there are also a few discontinuous roads.
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Abstract: Different from the traditional natural scene images, optical remote-sensing images (RSIs)
suffer from diverse imaging orientations, cluttered backgrounds, and various scene types. Therefore,
the object-detection methods salient to optical RSIs require effective localization and segmentation
to deal with complex scenarios, especially small targets, serious occlusion, and multiple targets.
However, the existing models’ experimental results are incapable of distinguishing salient objects and
backgrounds using clear boundaries. To tackle this problem, we introduce boundary information to
perform salient object detection in optical RSIs. Specifically, we first combine the encoder’s low-level
and high-level features (i.e., abundant local spatial and semantic information) via a feature-interaction
operation, yielding boundary information. Then, the boundary cues are introduced into each decoder
block, where the decoder features are directed to focus more on the boundary details and objects
simultaneously. In this way, we can generate high-quality saliency maps which can highlight salient
objects from optical RSIs completely and accurately. Extensive experiments are performed on a public
dataset (i.e., ORSSD dataset), and the experimental results demonstrate the effectiveness of our model
when compared with the cutting-edge saliency models.

Keywords: remote-sensing images; salient objects; boundary details; edge

1. Introduction

Human vision systems tend to focus more on prominent areas in images, which is
the visual attention mechanism, with many efforts made to design various methods to
highlight salient objects in images or videos [1,2].

Formally, salient object detection is employed to automatically highlight the most
visually distinctive regions in a scene [2], and has been applied to many research fields,
such as object detection [3], image segmentation [4], image quality assessment [5], visual
categorization [6], and medical image processing [7], to name a few.

Over the last twenty years, many saliency models have been designed [1,8]. The early
efforts mainly focus on hand-crafted features, including the prior heuristic-based efforts
[9–11] and the traditional machine-learning-based methods [12–14]. With the rapid devel-
opment of deep-learning technologies, many deep-learning-based saliency models [15–21]
have significantly improved the performance of saliency detection. Among the existing
deep-learning-based models, some models [16–19] attempt to introduce edge information
into their networks to provide precise boundary details for inference results. The current
saliency models are obviously applicable to traditional RGB images (natural scenes) [22],
RGB-T images [23], RGB-D images [24], light-field images [25], and optical remote-sensing
images [26,27]. Among these, the saliency detection of optical remote-sensing images has
gained increasing attention, because it has been widely employed in a variety of domains,
including military, agriculture, and disaster relief.

However, there is a significant difference between the traditional natural-scene images
and optical remote-sensing images. Salient objects in traditional natural-scene images
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are usually with high-contrast, a single object, and a prior center. In contrast, the objects
in optical RSIs are usually of diverse types, various scales, and different orientations.
Meanwhile, the optical RSIs have low contrast between salient objects and background.
In addition, optical RSIs are usually photographed by high-altitude aircrafts or satellites.
Recently, there have been many efforts devoted to this research field [26,28–31]. However,
their performance degrades to some degree when dealing with some complex scenes.

Motivated by the aforementioned descriptions, we propose an innovative boundary-
aware saliency model to detect salient objects in optical RSIs, as shown in Figure 1. Our
model is built using an encoder–decoder architecture, and we focus on the extraction and
usage of salient boundaries. Concretely, our model contains three modules, including the
feature-extraction module (i.e., encoder), the edge module, and the feature-integration
module (i.e., decoder). Particularly, our model first extracts salient boundaries via an edge
module. Similarly to [16], the edge module simultaneously incorporates low-level and
high-level deep features to generate boundary cues, where the low-level features convey
spatial details and high-level deep features provide rich semantic information. In contrast
to [16], our edge module also investigates the interaction effect [19] of salient boundaries
and salient objects, which further elevates the boundary features and object features. Here,
different from [19], we do not adopt stack modules to iteratively refine deep features.
Instead, the salient boundaries are endowed with position information about salient objects,
which promotes the completeness of saliency inference. Then, we pass on the boundary
information to each decoding process, in which the salient boundary progressively refines
the salient reasoning. In this way, we can obtain high-quality saliency maps to highlight
salient regions in optical RSIs.

Edge  module

Encoder

Decoder

Figure 1. Illustration of the proposed saliency model.

Overall, the main contributions of the proposed network can be presented as follows:

1. We propose a novel boundary-aware saliency model for salient object detection, in
which our model tries to introduce the salient boundaries to precisely segment the
salient objects from optical RSIs.

2. We propose an effective edge module to provide boundary information for saliency
detection, where boundary cues and object features are enhanced by the interaction
between low-level spatial features and high-level semantic features.

3. Extensive experiments are performed on the public dataset ORSSD, and the results
show that our model performs better than the state-of-the-art saliency models, which
demonstrates the effectiveness of the proposed model.
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The remaining of this paper is organized as follows. The related works are reviewed
in Section 2. Section 3 gives a detailed introduction to the proposed saliency model.
The experimental results and the analyses are detailed in Section 4. Finally, we draw a
conclusion for this paper in Section 5.

2. Related Works

In recent years, we have seen significant advances in the research on salient object
detection. Particularly, from the heuristic prior-based models [2,9,13] to the deep-learning-
based models [17–19], significant efforts for salient object detection have been made. Mean-
while, due to the imaging method and image complexity, there is considerable difference
between salient object detection in optical RSIs and salient object detection targeting natural-
scene images. Therefore, this section mainly gives a brief review of the two different tasks.

2.1. Saliency Detection of Nature-Scene Images

Early efforts were usually constructed based on heuristic priors such as center prior,
contrast prior, morphology prior, background prior, and so on. The pioneering work was
proposed by Itti et al. [2], where the center-surround difference is designed to compute
saliency scores using color, orientation, and intensity features. Subsequently, Cheng et al. [9]
proposed a global contrast-based saliency model which gives a good segmentation for
the prominent objects in natural images. In [32], Wei et al. paid more attention to the
background rather than salient objects, and proposed a geodesic saliency model by ex-
ploiting boundary and connectivity priors of natural images. After that, machine-learning
algorithms have been devoted to saliency models. For example, Liu et al. [33] attempted
to aggregate multiple feature-based saliency maps using the conditional random forest.
In [34], Huang et al. exploited multiple-instances learning algorithms to compute the
saliency values of different regions. In [3], the Adaboost algorithm was adopted to fuse
various hand-crafted feature-based saliency maps. Abdusalomov et al. [35] presented a
unique saliency cutting method, which exploits local adaptive thresholding to generate
four regions from a given saliency map.

Recently, deep-learning technologies have achieved remarkable progress, and they
have also been applied to the saliency detection task. For example, Hou et al. [15] inserted
short connections into the skip-layer structures of holistically nested edge detectors which
effectively improve the quality of saliency inference results. In [22], Deng et al. proposed a
recurrent residual refinement network to perform saliency detection, in which the residual
refinement blocks learn the complementary saliency information by using low-level and
high-level features. Qin et al. [36] designed a two-level nested U structure to capture more
context information from different sizes of receptive fields, for which the rise in the network
depth does not increase the memory and computation cost. In [37], Wang et al. exploited
the recurrent fully convolutional networks to integrate saliency prior cues for more precise
saliency prediction. In [38], Liu et al. designed a pooling-based structure to reduce the
aliasing effect, where the global guidance module and the feature-aggregation module
are deployed to progressively refine the high-level semantic information. Meanwhile,
the authors also employed edge cues to sharpen the boundary details of salient objects.
Similarly, in [16,17], the edge information was implicity and explicitly used to give a good
depiction of the salient edges, respectively.

2.2. Saliency Detection of Optical Remote-Scene Images

Remarkable progress has been made in the saliency models aiming at natural-scene
images, and lots of methods are proposed to enhance the effect of optical RSIs. In [28],
Zhao et al. proposed a sparsity-guided saliency model which used bayesian theory to
combine global and background features. In [29], the structure tensor and background
contrast are employed to generate superpixel feature maps which are fused into the final
pixel-level saliency map. In [39], Li et al. proposed a two-step building extraction method
from remote-sensing images by fusing saliency information, of which the rooftops are more

67



Electronics 2022, 11, 4200

likely to attract visual attention than surrounding objects. In [40], the fully convolutional
network is utilized to address the issue of inshore ship detection, where the deep layer of the
network conducts detection and the shallow layer supplements with precise localization. In
[30], Zhang et al. constructed a saliency-oriented active contour model, where the contour
information is adopted to assist object detection. In [41], a self-adaptive multiple-feature
fusion method is employed to explore the internal connection in optical RSIs, where the
dual-tree complex wavelet transform is used to obtain the texture features. In [42], Liu
et al. tried to adopt an unsupervised method to solve the oil-tank detection problem using
the color Markov chain. In [43], a multi-level ship-detection method is proposed to detect
various types of offshore ships using all possible imaging variations. Recently, in [26,27], the
authors articulated further concerns regarding the integration of multi-level deep features,
which can effectively highlight salient objects in optical RSIs.

Though the existing saliency models targeting natural-scene images have achieved
satisfactory performance, it is inappropriate to extend the existing models to optical RSIs
directly. The reason behind this lies in the differences between the two kinds of images.
In addition, the existing saliency models targeting optical RSIs suffer from low-quality
boundary details due to the neglecting of edge information. Therefore, in this paper, we
attempt to integrate the edge cues into the entire network.

3. The Proposed Method

This part first gives an overview of the proposed saliency model in Section 3.1. Then,
the detailed description of the proposed saliency model is presented in the following
sections. Section 3.2 details the feature extraction (i.e., encoder). Section 3.3 presents the
edge module. Section 3.4 provides the details of feature integration (i.e., decoder). Lastly,
the training and implementation details will be outlined in Section 3.5.

3.1. Overall Architecture

The overall architecture of our model is shown in Figure 1. The main part of our model
is constructed based on a U-shape structure. Given an optical remote-sensing image I, we
first feed it into the encoder part to extract multi-level features {Fi}6

i=1. Then, the feature F6
will feed into a bridge module “Conv-bridge" to further capture effective global semantic
information FB

6 . After that, we use the decoder to aggregate the multi-level deep features
{{Fi}5

i=1, FB
6 }, yielding the final saliency map S. During the decoding process, to give a

precise saliency inference, we introduce the edge information into the decoding process,
where the edge feature FE generated by the edge module combines with the multi-level
deep features {F2, F5}.

3.2. Feature Extraction

Salient objects in optical RSIs vary different sizes. This phenomenon will degrade
the performance of saliency models. Meanwhile, we find that many efforts [17,36] have
sufficiently extracted and fused multi-level deep features including low-level information
and high-level information. Inspired by SegNet [36] and BASNet [17], our saliency model,
shown in Figure 1, is designed as an encoder–decoder structure with multi-level feature
extraction. Meanwhile, following the deeply supervised efforts [16,44], the side outputs of
our decoder are also supervised by the ground truth. The encoder of our model consists
of six convolution blocks, where the first four blocks are the same as ResNet-34 [45]. The
fifth block and the sixth block are all composed of three basic residual blocks [45] with
512 filters after a non-overlapping max pooling layer (size = 2). Based on the encoder,
we can obtain six deep features {Fi}6

i=1. In addition, referring to BASNet [17], we also
add a bridge module after the sixth convolutional block, which endows our model with
more representative semantic features. The bridge module consists of three convolution
layers with 512 dilated (dilation=2) 3×3 convolutional layers, and each convolution layer
is followed by a batch-normalization (BN) layer and a ReLU activation function. Based on
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the bridge module, we can generate a more effective semantic feature FB
6 . Following this

encoder architecture, we can obtain the six levels of deep features {{Fi}5
i=1, FB

6 }.

3.3. Edge Module

Edge information is useful for optimizing segmentation [16]. Many saliency mod-
els [16,17,38] have introduced edge information to conduct salient object detection, which
gives accurate boundary details for saliency maps. Although the existing methods use
edge information to guide the inference network, the extraction of edge features is not
efficient. Furthermore, the existing models do not give sufficient usage of edge information.
Therefore, we propose a novel edge module, which has two streams, as shown in Figure 1.

Specifically, the feature F2 from the second convolutional block and the feature F5
from the fifth convolutional block are first processed by convolutional layers, which can be
written as {

FC
2 = Conv(F2)

FC
5 = Conv(F5)

, (1)

where Conv means convolutional block.
Then, the convolutional block results FC

2 and FC
5 are used to generate the saliency

and edge maps. Firstly, the feature FC
2 first concatenates with the feature FC

5 , and then
the concatenated feature is processed by a convolutional layer. In addition, the output
of the convolutional layer and FC

5 are further combined via an element-wise summation.
Lastly, we predict a saliency map S∗ on the combined feature via convolutional layers. This
process can be defined as follows

S∗ = δ(Conv(Conv([FC
2 , FC

5 ]) + FC
5 )), (2)

where δ denotes the sigmoid activation function.
In addition, the features FC

2 and FC
5 are first combined in an element-wise multiplication

fashion, and then the multiplication result is processed by a convolutional layer. The fused
feature further combines the feature FC

2 . Finally, we predict the edge E from the fused
feature via convolutional layers, which are further supervised by the salient edge maps.
The entire process can be defined as

E = δ(Conv(Conv([FC
2 � FC

5 ]) + FC
5 )). (3)

Therefore, in our edge module, the edge information not only contains spatial details
but is also endowed with semantic information about salient objects. This is beneficial for
the following decoding process (i.e., feature integration).

3.4. Feature Integration

Many saliency inference networks [17,46] adopt the encoder–decoder architecture
to conduct salient object detection, which progressively recovers the spatial details of
saliency maps and achieves promising results. Inspired by this, we also adopt the encoder–
decoder architecture while introducing the edge information. Here, our decoder contains
six decoder blocks, namely, Decoderi (i = 1, · · · , 6). Each decoder block consists of three
convolutional blocks, where each convolutional block contains a convolutional layer, a
batch-normalization (BN) layer, and a ReLU layer. During the decoding process, the input
of each decoder block is the decoder feature {FD

i }6
i=2 from the previous decoder block and

the encoder feature {Fi}5
i=1 from the current-level encoder block. Meanwhile, to endow

our model with accurate spatial details, we combine the edge information FE with each
encoder feature, and the enhanced encoder feature will take part in the decoding process.
Therefore, we define each decoding process as follows

FD
i = Conv([FD

i+1, Fi, FE]). (4)
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In this way, we can obtain six levels of decoder features, namely, {FD
i }6

i=1. After that,
we combine all decoder features and the edge cues, which can be written as

FD = [FD
1 , FD

2 , FD
3 , FD

4 , FD
5 , FD

6 , FE], (5)

where FD is the fused feature. Based on FD, we deploy a 3×3 convolutional layer and
sigmoid activation function to generate the final saliency map S. The entire process can be
defined as

S = δ(Conv(FD)). (6)

3.5. Model Learning and Implementation

Deep supervision has been successfully adopted by many vision tasks [36,47], where
the deep supervision can promote the training process and improve the performance of
saliency models [44,48]. Inspired by the existing saliency object-detection models [17,38,44],
we give deep supervision for six decoder blocks using the hybrid loss [17]. The total loss l
of our model can be denoted as:

l = ∑
i
(li

bce + li
IoU + li

ssim + le,i
bce). (7)

where li
bce, li

IoU and li
ssim denote the BCE loss, IoU loss and SSIM loss of the ith sample. le,i

bce
is used to compute the edge loss.

To train our model, we adopt the same training set as LV-Net [26], where 600 images
selected from the ORSSD dataset [26] are used for the training set and the remaining 200 im-
ages are treated as the testing set. Furthermore, to train the proposed model, the training
set is augmented by performing rotation with angles 90, 180, and 270 and conducting
flipping on the rotated images. Following this, the training set contains 4800 samples.

We implemented our model with Pytorch on a PC with an Intel i7-6700 CPU, 32GB
RAM, and a NVIDIA GeForce RTX2080Ti (with 11GB memory). We set our epoch number
and batch size to 200 and 4, respectively. The input images were resized to 256 × 256. Our
optimizer is Adam, where the initial learning rate lr = 10−3, betas = (0.9, 0.999), eps = 10−8,
and weight decay = 0.

4. Experimental Results

This section first presents the ORSSD datasets and evaluation metrics in Section 4.1.
Then, in Section 4.2, we compare our model with the state-of-the-art optical RSIs saliency
models from the perspective of quantitative and qualitative views. Lastly, the detailed
ablation studies are shown in Section 4.3.

4.1. Datasets and Evaluation Metrics

To comprehensively validate our model, we adopt the public challenging optical RSIs
dataset, namely, ORSSD [26]. Concretely, the ORSSD dataset contains 600 images with
pixel-wise annotations. The images have diverse resolutions such as 256 × 256, 300 × 300,
and 800 × 600. They contain lots of scenes, such as house, airplane, car, ship, bridge, sea,
river, and bay, etc.

To quantitatively compare all the models, we employed four evaluation metrics, S-
measure (S) [49], max F-measure (maxF), max E-measure (maxE) [50] and mean absolute
error (MAE), to evaluate the performance of all models.

To perform a subjective comparison of all models, we employed a method of subjective
comparison. Concretely, we first randomly selected some images and their corresponding
ground truths. Then, we visually presented the saliency maps of our model and other
state-of-the-art models.
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4.2. Comparison with the State of the Art

To validate the performance of our model, we drew a comparison between our model and
19 state-of-the-art saliency models containing five optical RSIs saliency models (PDFNet [27],
LVNet [26], SSD [28], SPS [29], ASD [30]); four unsupervised saliency models majoring in
natural-scene images (RBD [11], RCRR [14], DSG [51], MILPS [34]); and 10 deep-learning-
based saliency models targeting natural-scene images (R3Net [22], DSS [15], RADF [52],
RFCN [37], PoolNet [38], BASNet [17], EGNet [16], CPD [18], SCRN [19], U2Net [36]) on the
ORSSD dataset. Meanwhile, for a fair comparison, we retrained the existing deep-learning-
based models by running the source codes or obtaining the results provided by the authors.
Next, we show the quantitative and qualitative comparisons, successively.

Table 1 reports the quantitative results of our model and the 19 latest methods on
the benchmark dataset. According to the evaluation results, it can be seen that our model
performs best. Specifically, the performance of our model is better than the top-two models
including SCRN, PDFNet in terms of S-measure and MAE, and our model performs slightly
lower than SCRN in terms of F-measure and E-measure. In addition, we also present the
PR curves and F-measure curves of different models in Figure 2. It can be clearly seen that
our model outperforms other models.

Table 1. Quantitative comparison results of S-measure, max F-measure, max E-measure, and MAE on
the ORSSD dataset. Here, “↑” (“↓”) means that the larger (smaller) the better. The best three results in
each row are marked in red, green, and blue, respectively.

ORSSD Dataset

S ↑ Fβ ↑ Eβ ↑ MAE ↓

PDFNet [27] 0.9112 0.8726 0.9608 0.0149

LVNet [26] 0.8815 0.8263 0.9456 0.0207

SSD [28] 0.5838 0.4460 0.7052 0.1126

SPS [29] 0.5758 0.3820 0.6472 0.1233

ASD [30] 0.5477 0.4701 0.7448 0.2119

RBD [11] 0.7662 0.6579 0.8501 0.0626

RCRR [14] 0.6849 0.5591 0.7651 0.1277

DSG [51] 0.7195 0.6238 0.7912 0.1041

MILPS [34] 0.7361 0.6519 0.8265 0.0913

R3Net [22] 0.8141 0.7456 0.8913 0.0399

DSS [15] 0.8262 0.7467 0.8860 0.0363

RADF [52] 0.8259 0.7619 0.9130 0.0382

RFCN [37] 0.8437 0.7742 0.9157 0.0293

PoolNet [38] 0.8551 0.8229 0.9368 0.0293

BASNet [17] 0.8963 0.8282 0.9346 0.0204

EGNet [16] 0.8774 0.8187 0.9165 0.0308

CPD [18] 0.8627 0.8033 0.9115 0.0297

SCRN [19] 0.9061 0.8846 0.9647 0.0157

U2Net [36] 0.9162 0.8738 0.9539 0.0166

Ours 0.9233 0.8786 0.9581 0.0120
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Figure 2. (Better viewed in color) quantitative evaluation of different saliency models: (a) P-R curves
of different methods of the ORSSD dataset, and (b) F-measure curves of different methods of the
ORSSD dataset.

In addition, Figure 3 shows the qualitative analysis of different models. It can be seen
that our model can more completely highlight irregular objects and multiple objects. For
example, in Figure 3f,g, the large object is not completely detected, whereas the saliency
map is incomplete. In stark contrast, our model can give an accurate saliency prediction,
and the object is completely highlighted. In Figure 3m,q,r, the saliency maps cannot
completely highlight salient objects. Similarly, in Figure 3, the existing models cannot
highlight the fifth row of objects, whereas the saliency maps only detect parts of salient
objects. Meanwhile, we can find that our model, Figure 3c, can completely and accurately
highlight salient objects. This is mainly a benefit of the edge module of our model, which
provides accurate edge information for salient objects.

Figure 3. Visualization comparison of different optical RSI saliency models on several challenging
scenes. (a): RGB, (b): GT, (c): Ours, (d): PDFNet, (e): LVNet, (f): RBD, (g): RCRR, (h): DSG, (i): MILPS,
(j): SSD, (k): SPS, (l): ASD, (m): R3Net, (n): DSS, (o): RADF, (p): RFCN, (q): PoolNet (r): BASNet
(s): EGNet (t): CPD, (u): U2Net.

4.3. Ablation Studies

This section profoundly analyzes some important components of our model through
quantitative and qualitative comparisons. Specifically, the crucial components of our model
include the edge module and the fusion module. Our model without edge information is
denoted as “w/o Edge”. Our model does not fuse the side outputs of the decoder, and
performs saliency inference on the first decoder block, which is denoted as “w/o Fusion”.
In addition, we also explore the BCE loss in the supervision of saliency maps, and, thus, we
remove the BCE loss in the hybrid loss, which is marked as “w/o bceloss”.

According to the quantitative comparison results shown in Table 2 and Figure 4, we
can find that our model outperforms the three variations including w/o Edge, w/o Fusion,
and w/o bceloss in terms of S-measure, max F-measure, max E-measure, and MAE. From
the qualitative comparison results shown in Figure 5, we can find that the Edge module,
Fusion module, and BCE loss can effectively improve the performance of our model to
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a certain extent. This clearly demonstrates the effectiveness of the three components in
our model.

Table 2. Ablation analysis on ORSSD dataset. The best result is marked in boldface. ↑ and ↓ represent
smaller and larger is better.

Model S − measure ↑ MAE ↓ maxE ↑ maxF ↑
w/o bceloss 0.8980 0.0182 0.9482 0.8612
w/o Edge 0.9054 0.0160 0.9501 0.8523
w/o Fusion 0.9142 0.0149 0.9514 0.8690
Ours 0.9233 0.0120 0.9581 0.8786
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Figure 4. (better viewed in color) Quantitative evaluation of our network and ablation network:
(a) P-R curves, and (b) F-measure curves.

Figure 5. Qualitative Visual results of ablation analysis. (a): RGB, (b): GT, (c): Ours, (d): w/o Edge,
(e): w/o Fusion, (f): w/o bceloss.

4.4. Failure Cases and Analysis

According to the aforementioned descriptions, the proposed model can accurately
highlight salient objects in optical RSIs. However, our model is still incapable of generating
satisfactory results when dealing with the different scales of salient objects shown in
Figure 6. For instance, the two examples in the first and second rows of Figure 6 present
two salient objects, i.e., bridges and tiny vehicles. As presented in Figure 6c, our model
falsely highlights the background regions around the salient objects. It can be seen that
the predicted saliency maps cannot completely highlight salient objects when dealing with
the tiny white vehicles. For the bottom two examples in Figure 6a, a roof with patterned
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lines and a stadium with shadows are where the contrast between salient objects and
background is low. As presented in Figure 6c, our model is incapable of highlighting salient
objects. Therefore, we can conclude that the scene with different-sized salient objects are
still challenging for our model. To address this issue, we should pay more attention to the
design of the effective integration methods for multi-level deep features, providing more
discriminative representations for salient objects.

Figure 6. Some failure examples. (a) Optical RSIs. (b) Ground truth. (c) Saliency maps generated by
our model.

5. Conclusions

This paper introduces the boundary information into our model for salient object
detection in optical RSIs. Concretely, the edge module is first designed to acquire the edge
cues. Here, we combine the low-level feature and the high-level feature to interactively
obtain the edge features. Then, we endow the generated multi-level deep features with
the edge cues, using the edge information to enhance the decoding process. This can
direct the features and give more options for salient regions in optical RSIs. Following
this, we can obtain high-quality saliency maps which can highlight salient objects from
optical RSIs entirely and accurately. Experiments are conducted on the public dataset,
and the comprehensive comparison results show that our model performs better than the
state-of-the-art models. In our future work, we will address more concerns on design-
ing more effective saliency models targeting optical RSIs, which will be endowed with
powerful characterization ability for salient objects and equipped with an effective feature
fusion module.
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Abstract: Object detection in remote sensing is becoming a conspicuous challenge with the rapidly
increasing quantity and quality of remote sensing images. Although the application of Deep Learning
has obtained remarkable performance in Computer Vision, detecting multi-scale targets in remote
sensing images is still an unsolved problem, especially for small instances which possess limited
features and intricate backgrounds. In this work, we managed to cope with this problem by designing
a neck attention block (NAB), a simple and flexible module which combines the convolutional
bottleneck structure and the attention mechanism, different from traditional attention mechanisms
that focus on designing complicated attention branches. In addition, Vehicle in High-Resolution
Aerial Imagery (VHRAI), a diverse, dense, and challenging dataset, was proposed for studying small
object detection. To validate the effectiveness and generalization of NAB, we conducted experiments
on a variety of datasets with the improved YOLOv3, YOLOv4-Tiny, and SSD. On VHRAI, the
improved YOLOv3 and YOLOv4-Tiny surpassed the original models by 1.98% and 1.89% mAP,
respectively. Similarly, they exceeded the original models by 1.12% and 3.72% mAP on TGRS-HRRSD,
a large multi-scale dataset. Including SSD, these three models also showed excellent generalizability
on PASCAL VOC.

Keywords: remote sensing; multi-scale object detection; small object detection; attention mechanism;
YOLOv3; YOLOv4-Tiny; SSD

1. Introduction

In remote sensing, multiple satellites and aircraft are used to capture images that
contain significant information, such as the characteristics and changes of landscape,
man-made targets, and traces. Object detection is a critical approach to extracting useful
information from remote sensing images. It plays a vital role in environmental monitoring,
geological hazard detection, land-use/land-cover mapping, geographic information system
update, military reconnaissance and location, and land planning [1].

Traditional object detectors, which are usually composed of region proposal, feature
extraction, feature fusion, and classifier training, require elaborately hand-made features
and must be trained step by step. Therefore, these methods have inferior efficiency, accuracy,
and generalizability. Especially with the rapid advancement of the quantity and quality of
optical remote sensing images, these methods can not meet the requirement of practical
applications by degrees.

In the last decades, convolutional neural networks (CNNs) have made tremendous
breakthroughs in various computer vision tasks, including image classification, object
detection, and semantic segmentation. The application of CNNs in object detection for
remote sensing images achieves better accuracy, higher efficiency, and more powerful
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generalizability than traditional methods. A common CNN detector is composed of
a backbone, which is pretrained with large datasets and used to extract feature maps;
a neck, which can enhance feature representation and make feature transition smooth
from feature maps to output; and a head, which is used to generate regression and
classification predictions.

The backbone, the most significant part of a CNN model, determines the fundamental
performance of a CNN model. Since the advent of AlexNet [2], a variety of backbones
have been designed for improving the capability of feature extraction, such as VGG16 [3],
Inception [4], ResNet [5], ResNeXt [6], and Darknet53 [7]. In these backbones, an important
research direction is to increase the depth and width of the network. AlexNet only has
five convolutional layers, and VGG16 has sixteen convolutional layers. After the creation
of a residual block, ResNet-152 contains 152 convolutional layers. Meanwhile, the set of
Inception structures. which concentrates on increasing the width of a model, also obtains
excellent performance.

The purpose of the neck is to refine feature maps from the backbone and transmit them
to the head. In order to aggregate bottom and top features, a Feature Pyramid Network
(FPN) [8] is designed to combine low-resolution features and high-resolution features by
adding a top-down path. To address the shortcoming that top feature maps lack location
information in FPN, a Path Aggregation Network (PAN) [9] further adds a down-top path
on the basis of the FPN. Although the neck has a significant function in enhancing feature
representation and making feature transition from feature maps to output smooth, the
research for the neck is still inadequate. Most CNN models neglect its essentiality; for
example, SSD [10] directly transmits feature maps from the backbone to the head, while
YOLOv3 and RetinaNet [11] simply append several convolutional layers after FPN.

The head is a simple structure that only contains several convolutional layers. It can
generate regression and classification predictions, including the coordinates of bounding
boxes and the class probabilities.

Most well-known object detectors, which are composed of the above modules, could be
split into two-stage detectors and one-stage detectors. The central idea of two-stage detec-
tors is to generate region proposals by the region proposal network, then predict sparse out-
put by detecting each proposal, such as R-CNN [12], Fast R-CNN [13], Faster R-CNN [14],
and Mask R-CNN [15]. Compared with two-stage detectors, one-stage ones predict dense
output straight from CNNs with the goal of improving detection speed while maintaining
comparative performance. YOLOv1 [16], YOLOv2 [17], YOLOv3, YOLOv4 [18], SSD, and
RetinaNet are examples of one-stage detectors.

Although these detectors are designed for nature images, their applications in remote
sensing have made unprecedented progress. For instance, Yuanxin Ye et al. developed a
model with the adaptive feature fusion mechanism based on EfficientDet [19]; the authors
of [20] improved YOLOv3 by combining DenseNet with YOLOv3 for multi-scale detection;
Ke Li et al. proposed DetectIon in Optical Remote sensing images (DIOR), a large-scale
dataset, and compared various detectors in DIOR [21]; Zhenfang Qu et al. designed an aux-
iliary network with CBAM to improve YOLOv3 [22]; the authors of [23] modified YOLOv4
with MobileNet v2 and depth-wise separable convolution to achieve the tradeoff between
detection accuracy and speed; and Yafei Jing et al. introduced the vision transformer and
Bi-Directional FPN into YOLOv5s [24]. In remote sensing, multi-scale object detection has
made obvious advances by transferring and improving existing detectors. However, it still
cannot meet the requirements of practical applications, especially in small object detection.

To address the aforementioned problem, we concentrate on the neck of detectors
and carefully design neck attention block (NAB), a simple and flexible module which
combines the attention mechanism and the convolutional bottleneck structure to enhance
the feature representation capability and promote feature transition from feature maps to
dense output. It can extract global information and calibrate the channels of feature maps.
It can be inserted straightforwardly after the feature maps generated by the backbone or
the path aggregation structure. In addition, we propose a publicly dataset, Vehicle in High
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Resolution Aerial Imagery (VHRAI) for small object detection. YOLOv3, YOLOv4-Tiny, and
SSD were modified simply with NAB, and the improved models were validated on various
datasets. By conducting experiments compared with the original models, we demonstrate
that NAB is beneficial to small object detection and multi-scale object detection in remote
sensing. In addition, it had excellent generalizability on various datasets and models.

The rest of this paper is organized as follows. In Section 2, we introduce some papers
about one-stage detectors, attention mechanisms, and small object detection. Section 3
describes NAB, the improved one-stage detectors with NAB, and VHRAI created for small
object detection in detail. Section 4 shows the experiments of the improved models on
various datasets. Section 5 discusses NAB and the improved models. Lastly, the conclusion
is shown in Section 6.

2. Related Work

2.1. One-Stage Detector

In remote sensing, most applications, such as target tracking, military reconnais-
sance, and disaster relief, have an increased demand for real-time detection. To bal-
ance the accuracy and speed of object detection, we concentrate on the research of one-
stage detectors.

One-stage detectors can be divided into anchor-based ones and anchor-free ones. For
improving recall rate, anchor-based detectors set pre-defined boxes with different scales
and ratios for predictions, such as YOLOv2-v4, SSD, and RetinaNet. SSD appends several
layers after VGG16 to produce muti-scale output. Based on YOLOv2, YOLOv3 selects
the more powerful Darknet-53 as the backbone and uses the FPN to generate multi-scale
predictions. YOLOv4 chooses many measures, including CSPNet [25], CIOU [26], and
Mosaic, to modify YOLOv3. For real-time detection, YOLOv4-Tiny obtains an extremely
higher speed by decreasing the parameters of YOLOv4. Anchor-free detectors directly
predict the boxes without the limitation of anchor boxes, such as CornerNet [27], FCOS [28],
and YOLOX [29]. FCOS, based on RetinaNet, takes the location, which falls into any ground-
truth box, as a positive sample and adds the center-ness branch to depress low-quality
predictions. YOLOX proposes more powerful SimOTA as label assignment. Although
anchor-free detectors do not need to search for the hyperparameters of anchor boxes and
have less complexity, they have lower precision in detecting remote sensing images whose
scale of instances changes enormously. By comparing many detectors, we decide to select
YOLOv3 and SSD as our baselines to analyze NAB. In addition, we improved YOLOv4-Tiny
with NAB for real-time detection.

2.2. Attention Mechanism

Inspired by human vision, attention mechanisms, which enhance meaningful features
and depress noise, have shown remarkable improvement in deep learning. In this paper, we
focus on the attention mechanisms about CNNs rather than Scaled Dot-Product Attention
in Transformer [30]. This method can be well combined with the convolution operation
and has lower computational complexity and a faster convergence rate. It can be divided
into channel attention and spatial attention. Channel attention focuses on the importance
of different channels, and spatial attention focuses on the importance of different locations.
In the past few years, many representative blocks have emerged in attention mechanisms,
such as SE [31], ECA [32], CA [33], and CBAM [34]. SE is the paradigm of channel
attention which adaptively rescales the channels by utilizing the information of feature
maps. Figure 1 shows the structure of the SE block in detail. It obtains global information
by GAP (global average pooling) and then utilizes two fully connected layers to produce
the response of each channel. Finally, channel-wise multiplication is implemented between
the response and the original feature map. ECA thinks the two fully connected layers
of SE are unnecessary and adopts one-dimensional convolution to achieve local cross-
channel interaction. CBAM combines channel attention and spatial attention to acquire
the importance of every channel and location. It concatenates the results of GAP and
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GMP (global maximum pooling) to extract more robust information, as shown in Figure 2.
CA proposes coordinate attention to calculate the width attention and height attention,
respectively. Then, CA implements channel-wise multiplication between them. In remote
sensing, AAFM based on CBAM is proposed to create the basic block of EfficientNet.
MCA-YOLOv5-Light adopts the MCA attention mechanism to extract more productive
information [35].

 

GAP FC FC × w×h×c w×h×c

Figure 1. The structure of the SE block. w, h, and c denote the width, height, and channel of a feature
map, respectively. ’GAP’ is the average-pooling operation along the weight and height axes. ‘FC’
represents a fully connected layer with an activation function.

 

CAM × SAM × 

GAP

GMP

MLP + Sigmoid 1×1×c

w×h×cw×h×c w×h×c

w×h×c

CAM

CAP

CMP

ConvCat Sigmoid

w×h×1

w×h×c

SAM

Figure 2. The structure of CBAM. ‘CAM’ and ‘SAM’ denote the channel and spatial attention
modules, respectively. Similar to ’GAP’, ‘GMP’ is the max-pooling operation along the spatial
dimension. Similarly, ‘CAP’ and ‘CMP’ are the operations along the channel axis, respectively.
The results of ‘GAP’ and ‘GMP’ use the identical ‘MLP’, which is composed of sequential fully
connected layers.

Although current studies about attention mechanisms design various architectures
in the attention branch, they have a common characteristic that they obtain attention by
performing some operations on the feature map and then utilizing the attention to rescale
the original feature map. However, NAB, proposed by us, introduces an extra branch to
adaptively enhance the information of feature maps, as illustrated in Section 3.1.

2.3. Small Object Detection

In multi-scale detection, detecting small targets which have limited features, diverse
distributions, and arbitrary orientations is a big problem. First, there is no uniform defi-
nition of small objects. The most universal definition is from MS COCO, which regards
objects less than 32 × 32 pixels as small objects [36]. In DOTA [37], an object whose height
of the horizontal bounding box ranges from 10 to 50 pixels is defined as a small object.
TinyPerson takes an object that ranges from 20 to 32 pixels as a small object [38]. Chen et al.
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established a small object dataset whose ratio of the bounding box over the image of all
instances was between 0.08% and 0.58% [39]. With the consideration of limited receptive
field and down-sampling rate, we selected the above definition of MS COCO for small
objects in this paper.

For small object detection in remote sensing, the datasets and related research are
inadequate. The significant targets of remote sensing images usually contain almost
20 categories, such as soccer ball fields, vehicles, planes. In these categories, vehicles, ships,
and planes, which generally have a large number of small instances. TAS [40], VEDAI [41],
and COWC [42] only focus on vehicles; HRSC2016 only contains ships [43]; and UCAS-
AOD is concerned with vehicles and planes [44]. These datasets have many instances that
do not meet our definition of small objects. DOTA and DIOR contain enormous multi-scale
instances, but they do not specialize in annotating small objects.

With respect to object detectors, YOLO-fine, which is based on YOLOv3, increases
the resolution of feature maps for detecting small targets [45]. Deconv R-CNN introduces
a deconvolution layer to recover more details [46], and SOON constructs a receptive
field enhancement module to extract spatial information [47]. Most research ignores the
importance of the neck. Our proposed NAB is a flexible module which is used to extract
global information and propel the transition of features in the neck.

3. Materials and Methods

3.1. NAB

In the early stages of CNNs, the neck of an object detector, which is usually used to
transmit feature maps generated by the backbone to the head, is generally composed of
several convolutional layers. With the advent of FPN and PAN, the neck plays another im-
portant role in producing multi-scale feature maps that possess strong sematic information
by appending top-down and down-top paths. Then, these feature maps are sent into the
head via the identical layers. The way of stacking layers in the neck has a large burden
for the models with multi-scale output. For example, every output of FPN is connected
with 5 convolutional layers in the neck of YOLOv3. This way increases the parameters
of YOLOv3 and causes overfitting in the training process, especially for remote sensing
datasets that contain inadequate images.

In order to enhance representation capability in the neck, we carefully designed NAB,
which combines the channel attention and the convolutional bottleneck structure. It consists
of an attention branch, which adopts attention mechanisms to learn where and what to
focus on, and a bottleneck branch, which utilizes the convolutional bottleneck structure to
refine features and obtain robust feature representation adaptively.

Whereas attention mechanisms contain channel attention and spatial attention, we
only utilized channel attention in the attention branch. There is an empirical explanation
why we excluded spatial attention: for the dense output of one-stage detectors: Each grid
cell predicts the result of the corresponding region in an input image. Every region should
be weighted equally. Because the neck is close to the final output, spatial attention would
breach this equality and result in bad performance. However, the channels of a grid cell
denote different properties, such as the coordinates of a bounding box and the categories.
Using channel attention can propel feature representation and convergence.

Inspired by SE, the attention branch adopts GAP to aggregate global information,
as illustrated in Equation (1). The input is assumed as X, and Xi, j denotes the value of
a specific spatial location. Then, the information is forwarded to successive multi-layer
perceptrons (MLPs) composed of two fully connected layers. It is notable that the last layer
in the branch follows a Sigmoid function to generate factors which are restricted to the
range of 0–1.

FGAP(X) =
1

h × w

w

∑
i=1

h

∑
j=1

Xi, j (1)
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The purpose of appending a bottleneck branch is to enhance the adaptive ability of the
attention mechanism and to produce a more robust feature map via convolutional layers.
We opted to utilize the factors generated by the attention branch to recalibrate the output
of the bottleneck branch, which is the most distinctive point compared with traditional
attention mechanisms that remodify the original feature maps with the factors. The reasons
why this novel method feasible are as follows: The outputs of both branches originate from
the identical feature map. This can increase the flexibility of the attention mechanism and
make the block refine features adaptively. Our proposed NAB can acquire more robust
features and decrease the extra complexity introduced by traditional attention mechanisms.

The structure of NAB is shown in Figure 3. In NAB, the first and second lines denote
the attention branch and the bottleneck branch, respectively. The bottleneck branch is
composed of ‘BB’, which contains 3 × 3 and 1 × 1 convolution layers. It is notable that
each convolutional layer is connected with BN (Batch Normalization) [48] and ReLU. The
attention branch is composed of ‘GAP’ and several ‘MLP’. We set ‘BB’ and ‘MLP’ to have
an identical number, denoted by m. The output feature map has the same size and channel
as the input one. Our proposed NAB is an innovation for traditional attention mechanisms
which rescale the original feature map. It can decrease the parameters of neck and enhance
feature representation ability. If m is 1, then the attention branch and the bottleneck branch
can be represented as Equations (2) and (3), respectively. ‘F f c’ denotes one FC layer with
an activation function. ‘F1c’ and ‘F3c’ represent 1 × 1 and 3 × 3 convolutional layers with
Batch Normalization and a ReLU function, respectively. By implementing channel-wise
multiplication, the output of NAB can be obtained, as shown in Equation (4). In Section 4,
we show the excellent performance of NAB for small object detection and multi-scale object
detection on various datasets.

Fattention(X) = F f c(F f c(F GAP(X))) (2)

Fbottleneck(X) = F1c(F 3c(X)) (3)

FNAB(X) = Fattention(X)⊗ Fbottleneck(X) (4)
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Figure 3. The structure of NAB. ‘BB’ is the abbreviation of bottleneck block. The number of ‘MLP’
and ‘BB’ denoted by m is equal. The second ‘FC’ in the last MLP uses a Sigmoid activation function
to scale the factors into the range of 0–1.
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3.2. Improved Models

In remote sensing, the instances, which usually have complicated backgrounds, un-
even distributions, and diverse scales, bring enormous computational complexity for object
detectors. To balance the accuracy and speed of object detection, we concentrated on the
research of one-stage detectors. In addition, NAB, which assigns different attributes to
the channels of a feature map, is consistent with the output of one-stage detectors whose
every channel denotes a kind of attribute, such as the coordinates of bounding boxes and
the probabilities of classes. We selected YOLOv3, YOLOv4-Tiny, and SSD as the improved
models from various one-stage detectors.

YOLOv3 is the baseline of many detectors, including YOLOv4, YOLOv5, and YOLOX.
It has important values for researching one-stage detectors; therefore, we selected YOLOv3
to verify the effectiveness of NAB. On the basis of YOLOv2, YOLOv3 adopts more powerful
Darknet53 as the backbone to enhance the capability of feature extraction and FPN to
generate multi-scale output. Due to the way that YOLOv3 transmits semantic information
to finer-grained feature maps by the top-down path, it obtains salient performance on small
object detection. In the neck, it is notable that YOLOv3 has five sequential ‘CBL’ blocks
before each head. It has an inferior ability in fusing feature maps generated by FPN and
Darknet53 and introduces redundant parameters to increase the risk of overfitting. Aiming
at achieving higher performance while decreasing computational complexity, the original
five ‘CBL’ were replaced with our proposed NAB and 1 × 1 ‘CBL’ which was used to reduce
the channels of the feature map. Figure 4 depicts the modification in the neck of YOLOv3.
In Section 4, we contrast different models and show the highlighted performance of NAB
on a variety of datasets.

 

CBL RES1 RES2 RES8 RES8 RES4 NAB CBL Conv

NAB

NAB

CBL Conv

CBL Conv

CBL US

Cat

CBL US

Cat

RESn CBL RU×n

RU CBL CBL Add

=

=

Backbone HeadNeck

CBL

CBL

CBL

CBL Conv BN LR= + +
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Figure 4. The network of the improved YOLOv3. It can be divided into the backbone, called
Darknet53; the neck, which contains FPN and NAB; and the head, which is composed of two
convolutional layers. ‘Cat’ and ‘US’ denote the operations of concat and up-sampling, respectively.
‘LR’ is the abbreviation of Leaky ReLU.

SSD is another paradigm of one-stage detectors. The backbone is composed of the
truncated VGG16 and several auxiliary convolutional layers. It selects six multi-scale
feature maps that are generated by different convolutional blocks of the backbone. Then,
these feature maps are transmitted to the corresponding detection layers in the head. Each
layer has two convolutional layers, one for predicting the probabilities of classes and the
other for predicting the information of bounding boxes. If the input size is 300 × 300,
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then SSD will generate 8732 outputs. Because of the large size of optical remote sensing
images, the application of SSD in remote sensing has extremely tremendous computation
complexity and low detection efficiency. As a result, we improved SSD for validating the
generality of NAB in nature images rather than remote sensing images. In the original
SSD, the author introduced ‘L2_norm’ to scale the feature map of ‘Conv_4′, which is
different from others. Because NAB also has the same function, we concisely removed
the ‘L2_norm’. We inserted NAB and ‘CBL’ between the backbone and the head of SSD
to enhance the capability of feature representation and facilitate the feature transition, as
depicted in Figure 5. Section 4.3 shows the excellent generalizability of NAB in detecting
nature images.

 

Conv_5 Conv_6 Conv_7 Conv_8 Conv_9 Conv_10 Conv_11

Conv_4 Conv_5 Conv_6 Conv_7 Conv_8 Conv_9 Conv_10 Conv_11Conv_1~3
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NAB
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NAB

CBL

NAB

CBL

NAB

CBL

NAB

CBL

NAB

300 300 3
Neck

Figure 5. The network of the improved SSD. ‘Conv_1~3′ is the first three blocks of VGG16.

For real-time detection, YOLOv4-Tiny, which has an excellent balance between accu-
racy and speed, was modified with NAB. It is a simple version of YOLOv4 and has only
about one-tenth of YOLOv4′s parameters. YOLOv4-Tiny introduces the idea of CSPnet,
which is the largest difference between it and YOLOv3. It only has two outputs for reducing
the parameters. We improved it by inserting NAB into the neck, as shown in Figure 6.
Because YOLOv4-Tiny has fewer channels than YOLOv3 and SSD, we did not append
‘CBL’ before NAB. By conducting experiments on various datasets, we found that the
improved YOLOv4-Tiny has a more powerful capability in multi-scale object detection
than the original one, though it increases computational complexity slightly.

3.3. Datasets

Deep learning is a science driven by data. Thanks to substantial datasets that are
available in remote sensing, multi-scale object detection with CNNs has made remarkable
progress. However, small object detection remains a challenge. Besides the characteristics of
small targets, another reason is the lack of appropriate datasets that specialize in detecting
small instances. In order to boost the performance of small object detection, we created
Vehicle in High-Resolution Aerial Imagery (VHRAI), a dataset that contains 900 aerial
images with 960 × 540 pixels captured at a height of 1000 m for vehicle detection. We
utilized LabelImg, an open-source image annotation tool, to annotate instances [49]. Each
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object instance was manually labeled by a horizontal bounding box which was composed
of the coordinates of the central point, the size of the box, and the category.
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Figure 6. The network of the improved YOLOv4-Tiny. ‘Split’ is the operation that divides the feature
map into two portions along the channel axis. ‘Pool’ denotes 2 × 2 max-pooling.

Because VHRAI is created for small object detection, we compared it with some well-
known datasets which mainly concentrate on researching vehicles and ships, including
TAS, UCAS-AOD, HRSC2016, DLR-MVDA [50], COWC, and VEDAI, as listed in Table 1.
The average area per instance of DLR-MVDA and VHRAI is far smaller than other datasets.
DLR-MVDA and VHRAI are annotated with oriented bounding boxes (OBB) and hori-
zontal bounding boxes (HBB), respectively. Both have important value in object detection.
Compared with VEDAI (512), VHRAI has more instances and smaller bounding boxes.
However, VHRAI has fewer instances than some large datasets, including UCAS-AOD and
COWC. In the future, we will further capture more images to enlarge VHRAI.

Table 1. Comparisons between the proposed VHRAI and several publicly available datasets in
remote sensing. VEDAI (512) denotes the version of VEDAI, whose image width is 512. Because the
annotations of the testing set in DLR-MVDA are unavailable, we only display the properties of the
training set. ‘#’ represents the meaning of ‘the number of’.

Datasets # Categories # Images # Instances Image Width
Average Area per

Instance

TAS 1 30 1319 792 805
UCAS-AOD 2 1510 14,597 1280 4888
HRSC2016 1 1070 2976 ~1000 56,575

DLR-MVDA 2 10 3505 5616 239
COWC 1 53 32,716 2000~19,000 1024

VEDAI (512) 9 1250 3757 512 3108

VHRAI (ours) 1 900 5589 960 369

Figure 7 shows the characteristics of VHRAI. It has diverse backgrounds, uneven
distributions, and tiny scales. In the Earth observation community, VHRAI is a challenging
dataset for small object detection.
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Figure 7. Examples in VHRAI.

To validate the effect of NAB for multi-scale object detection in remote sensing, we
selected TGRS-HRRSD, a public dataset which has 21,761 images and 13 categories [51].
This elaborate dataset achieves an excellent balance between all categories. The average
scale per category of TGRS-HRRSD ranges from 41.96 to 276.50 pixels. In addition, aiming
at indicating the generalizability of NAB, we conducted experiments on PASCAL VOC [52],
a commonly used natural scene dataset. The entire results are displayed in the next section.

4. Results

4.1. Evaluation Criteria

The output of an object detector can be divided into four categories: True Positive
(TP), False Positive (FP), True Negative (TN), and False Negative (FN). TP and FP denote
a positive sample that is classified correctly and incorrectly, respectively. TN and FN
represent a negative sample that is classified correctly and incorrectly, respectively. Through
analyzing these categories, we can obtain Precision, which illustrates the proportion of
TP in all positive samples, and Recall, which indicates the proportion of TP in all positive
ground-truth samples, depicted in Equations (5) and (6). These two indicators have some
limitations as evaluation criteria. Confidence is the threshold that estimates a sample is
positive or negative. Different Confidence can generate different Precision and Recall.
Precision increases and Recall decreases in general as Confidence gradually increases.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

We can acquire the Precision/Recall Curve by setting a different Confidence. Average
Precision (AP) denotes the area under Precision/Recall Curve for a class. The mean

87



Remote Sens. 2022, 14, 5805

Average Precision (mAP) is the mean value of every class’s AP. The mAP is a significant
evaluation criterion in object detection. In this paper, we considered Precision and Recall
for a comprehensive comparison. AP_s proposed in MS COCO was also adopted to show
the performance of detecting small objects. In addition, the number of parameters was
used to evaluate computational complexity and detection speed.

4.2. VHRAI

VHRAI, whose average size of instances is 19.22 × 19.19 pixels, is a valuable dataset for
small object detection. On this dataset, we validated the effectiveness of NAB by comparing
the improved YOLOv3 and YOLOv4-Tiny with the original ones. We also compared
traditional methods that contained SE and CBAM with NAB to reveal the importance of the
bottleneck branch in NAB, as shown in Figure 8. Furthermore, we analyzed the influence
of ‘m’, a hyperparameter in NAB. It is notable that these improvements were adopted in all
multi-scale paths.

 
NABCBL

CBL CBL CBL CBL CBL

CBL CBL CBL CBL CBL

AM AM AM AM

AM
SE

CBAM

 (c) 

 (b) 

 (a) 

Figure 8. (a) The original ‘CBL5’in the neck. (b) The improved ‘CBL5’with the attention mechanism
in the neck. (c) NAB in the neck. The structure of ‘CBL’ is shown in Figure 4. ‘AM’, which is the
abbreviation of attention mechanism, could be SE or CBAM.

All experiment results on VHRAI are listed in Table 2. YOLOv3-NAB (m = 1) ob-
tained the best AP 90.29% among all models, surpassing YOLOv3 by 1.94%. The accuracy
and recall of YOLOv3-NAB were also better than the original model. At the same time,
YOLOv3-NAB (m = 1) reduced parameters by almost 11% compared with YOLOv3. We
also compared the loss and mAP curves of YOLOv3-NAB (m = 1) and YOLOv3 to acquire
a more robust conclusion, as shown in Figure 9. With respect to traditional attention
mechanisms, YOLOv3-SE had a slightly poorer performance than YOLOv3, and YOLOv3-
CBAM exceeded YOLOv3 by 0.74%. However, YOLOv3-NAB (m = 1), which improved
the attention mechanism by appending a bottleneck branch, achieved more salient per-
formance and had fewer parameters compared with YOLOv3-CBAM and YOLOv3-SE.
The reason why YOLOv3-NAB (m = 1) had fewer parameters is that traditional attention
mechanisms only can rescale the feature map generated by the layer and cannot serve as
an independent module. With this limitation, YOLOv3-SE had more convolutional layers
than YOLOv3-NAB (m = 1). These results clearly show the effectiveness of NAB, which
is a better way to utilize the attention mechanism in the neck. In addition, when we set
‘m’ = 2, YOLOv3-NAB (m = 2) obtained worse AP and had more parameters than YOLOv3-
NAB (m = 1). This may be attributed to the fact that more parameters increase the risk of
overfitting with the limitation of inadequate images. In the next experiments, the default
value of ‘m’ in NAB was 1.
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Table 2. Detection results on VHRAI. For a fair comparison, the models based on YOLOv3 had the
same configuration. The models based on YOLOv4-Tiny also had the same configuration. YOLOv3-SE
and YOLOv3-CBAM adopted the improved ‘CBL5’ with attention mechanisms in Figure 8b.

Model # Parameters Precision (%) Recall (%) AP (%) AP_s (%)

YOLOv3 61.52 M 83.73 83.87 88.35 41.9
YOLOv3-SE 63.24 M 84.44 83.5 88.15 39.5

YOLOv3-CBAM 63.24 M 85.88 83.76 89.09 41.4
YOLOv3-NAB (m = 1) 54.81 M 86.62 84.36 90.29 42.9
YOLOv3-NAB (m = 2) 61.87 M 81.01 87.45 89.16 41.9

YOLOv4-Tiny 5.87 M 71.35 58.77 63.99 20.6
YOLOv4-Tiny-NAB 7.05 M 72.05 60.39 65.82 21.6

 

Figure 9. The loss and mAP curves of YOLOv3 and YOLOv3-NAB (m = 1). ‘Org’ and ‘Imp’ denote
YOLOv3 and YOLOv3-NAB (m = 1), respectively.

For real-time detection, we conducted experiments on YOLOv4-Tiny. YOLOv4-Tiny-
NAB achieved better precision, recall, and AP, exceeding the original model by 0.7%, 1.62%
and 1.83%, respectively, despite having slightly more parameters. Furthermore, due to
YOLOv4-Tiny, which cut an important path for small object detection, we found that
YOLOv4-Tiny-NAB had a large gap in performance compared with YOLOv3-NAB (m = 1).
It is notable that YOLOv4-Tiny-NAB had an extremely fast speed in detection.

In addition, we compared the AP_s of the above models, which is used to evaluate the
performance for small object detection precisely in MS COCO. Undoubtedly, YOLOv3-NAB
(m = 1) obtained the best AP_s, outperforming YOLOv3-SE and YOLOv3-CBAM by 3.4%
and 1.5%, respectively. In addition, YOLOv4-Tiny-NAB was better than YOLOv4-Tiny.
These experiments on VHRAI apparently demonstrate the effectiveness of NAB in small
object detection. Different from traditional attention mechanisms, we introduced an extra
branch to enhance the ability of adaptively extracting features rather than focusing on
designing a more complicated attention branch. Furthermore, NAB can be inserted into a
model flexibly as an independent structure, similar to the above models.

4.3. TGRS-HRRSD

Although we proved the effectiveness of NAB in small object detection, which is a
crucial part of multi-scale detection, it is necessary to conduct experiments on a multi-
scale dataset to acquire a reliable conclusion. TGRS-HRRSD is a large dataset for multi-
scale object detection. It has 13 categories, and the average scale per category ranges
from 41.96 pixels to 276.50 pixels. We selected TGRS-HRRSD as the dataset and com-
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pared YOLOv3-NAB, YOLOv3-SE, YOLOv3-CBAM, and YOLOv4-Tiny-NAB with the
original models.

Table 3 shows the detection results. YOLOv3-NAB, which had fewer parameters than
YOLOv3, scored 92.16% mAP, surpassing YOLOv3 by 1.06%. With respect to traditional
attention mechanisms, YOLOv3-SE had an inferior performance than YOLOv3-NAB, and
YOLOv3-CBAM was comparable with YOLOv3-NAB, but its parameters increased by 13%.
Compared with YOLOv4-Tiny, YOLOv4-Tiny-NAB, which was improved with NAB in the
neck, obtained a remarkable performance that exceeded the original model by 3.72% mAP.
It also outperformed in all categories. Its mAP was even close to YOLOv3, though it only
had about one-tenth of YOLOv3’s parameters. These experiments clearly illustrate that
NAB can obtain robust feature representation and is helpful for multi-scale object detection
as a flexible module.

Table 3. Detection results on TGRS-HRRSD.

Model Ship Bridge
Ground

Track
Field

Storage
Tank

Basketball
Court

Tennis
Court

Airplane
Baseball
Diamond

Harbor Vehicle Crossroad
T

Junction
Parking

Lot
mAP (%)

YOLOv3 92.65 92.04 98.40 93.99 83.17 96.06 99.57 93.05 95.02 92.69 93.92 83.62 70.09 91.10
YOLOv3-SE 94.37 92.72 98.31 94.47 84.05 95.81 98.73 93.62 92.79 96.91 92.31 82.86 70.67 91.35

YOLOv3-CBAM 94.63 92.78 98.71 96.89 82.35 95.12 99.54 93.63 97.27 97.02 92.51 84.72 72.03 92.09
YOLOv3-NAB 94.59 93.33 98.33 96.12 82.84 95.83 99.02 93.34 96.79 97.05 94.08 85.03 71.79 92.16

YOLOv4-Tiny 86.34 73.18 92.31 97.20 69.60 93.53 98.88 89.90 84.36 90.27 87.13 68.85 53.36 83.44
YOLOv4-Tiny-NAB 89.72 85.31 95.89 97.28 71.30 93.61 98.94 91.61 92.11 93.43 89.98 73.15 60.79 87.16

4.4. PASCAL VOC

NAB had excellent performance in multi-scale remote sensing images, and we spec-
ulate that it is not limited in remote sensing. The experiments on PASCAL VOC, a well-
known dataset that contains 21504 nature images, were conducted to validate the general-
izability of NAB. All models were trained on the union of VOC2007 and VOC2012 trainval,
and they were evaluated with the VOC2007 test. The detection results are shown in Table 4.
The improved models, including YOLOv3-NAB, YOLOv4-Tiny-NAB, and SSD-NAB, ac-
quired a better performance than the original models, surpassing them by 0.88%, 1.98%,
and 0.82% mAP, respectively. Compared with traditional mechanisms, YOLOv3-NAB
outperformed YOLOv3-SE and YOLOv3-CBAM by 0.86% and 0.57%, respectively, while
decreasing 13% parameters. Consequently, we confirm that NAB can be generalized to
natural scenes and applied to various one-stage detectors.

Table 4. Detection results on PASCAL VOC. We chose 10 categories at random to show the compar-
isons of their AP (%). We retrained YOLOv3, YOLOv4-Tiny, and SSD for a fair comparison using the
same configuration of the improved models.

Model Aero Bike Bird Bottle Car Cow Dog Horse Sofa Train mAP (%)

YOLOv3 88.84 85.88 80.11 63.78 90.90 84.40 86.62 86.99 73.91 88.86 80.47
YOLOv3-SE 89.28 86.81 81.81 63.21 90.89 83.38 86.82 86.46 78.58 89.80 80.49

YOLOv3-CBAM 89.18 87.26 82.68 62.37 91.32 84.31 85.54 89.97 80.94 89.86 80.78
YOLOv3-NAB 89.65 87.78 81.74 65.97 91.02 86.89 86.38 87.18 71.55 88.70 81.35

YOLOv4-Tiny 84.06 85.29 74.35 62.55 90.54 81.41 77.86 86.55 73.10 84.39 77.08
YOLOv4-Tiny-NAB 87.21 87.09 76.97 66.72 91.77 80.75 79.52 87.67 73.18 86.75 79.06

SSD 77.81 84.93 75.35 42.32 86.50 77.35 86.99 88.60 73.52 84.93 75.8
SSD-NAB 79.75 85.06 77.55 45.79 85.61 77.15 85.67 87.80 74.46 86.66 76.62

5. Discussion

In this paper, we presented NAB, an architectural module designed to enhance the
capability of feature representation and promote feature transition in the neck by combining
the attention mechanism and the convolutional bottleneck structure. Since the output of
NAB has the same dimensions as the input, it is simple and flexible to utilize in the neck of
one-stage detectors. In addition, VHRAI, whose instances have an extremely small size,
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was created to address the challenge of small object detection, which is a crucial part of
multi-scale object detection in remote sensing.

We improved several classic one-stage detectors with NAB and conducted many
experiments on various datasets. YOLOv3-NAB, YOLOv4-Tiny-NAB, and SSD-NAB
achieved a better performance than the original models. Figure 10 shows some detection
examples of YOLOv3-NAB on different datasets. VHRAI is a diverse and challenging
dataset whose average area per instance is 369 pixels. It perfectly meets our definition of
small objects and is smaller than other famous datasets, such as VEDAI (512), HRSC2016,
UCAS-AOD, and TAS. The results of YOLOv3-NAB and YOLOv4-Tiny-NAB on VHRAI
clearly illustrate the effectiveness of NAB for small object detection. Furthermore, we
compared NAB with SE and CBAM in the neck. NAB, which appends a convolutional
bottleneck branch, showed better flexibility and performance while decreasing the model’s
parameters. The experiments on TGRS-HRRSD demonstrate the capability of NAB for
multi-scale detection in remote sensing. YOLOv4-Tiny had poor feature representation
with the limitation of parameters. However, the result that YOLOv4-Tiny-NAB exceeded
the original model by 3.72% mAP clearly verifies NAB can enhance the capability of feature
representation and propel feature transition. These improved models also obtained better
detection precision on PASCAL VOC. This fact indicates that NAB is not limited in remote
sensing and can be generalized to detect nature images.

Whereas NAB brings promising results in remote sensing and natural scenes, some
issues still remain and call for further research. NAB is restricted in the neck of a model.
Whether it can replace traditional attention mechanisms in the backbone or not remains
unknown. In addition, there are some similarities in the neck of one-stage and two-stage
detectors. In the future, we will further focus on the backbone and improve two-stage
detectors with NAB for object detection.

   

   

Figure 10. Cont.
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Figure 10. Detection examples of YOLOv3-NAB on various datasets.

6. Conclusions

In this paper, we designed a simple and flexible module for the neck of a model,
called NAB. Unlike traditional attention mechanisms which focus on designing a more
complicated attention branch, NAB appends a convolutional bottleneck branch with the
attention branch for enhancing feature representation capability and promoting feature
transition. In addition, VHRAI, a challenging dataset whose instances have an extremely
small size, was proposed for small object detection. The improved models, including
YOLOv3-NAB, YOLOv4-Tiny-NAB, and SSD-NAB, achieved excellent performance on
various datasets, which clearly proves the effectiveness and generalizability of NAB in
small object detection and multi-scale object detection. In the future, we will focus on
improving the backbone of a model and two-stage detectors on the basis of NAB.
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Abstract: Obtaining high-spatial–high-temporal (HTHS) resolution remote sensing images from a
single sensor remains a great challenge due to the cost and technical limitations. Spatiotemporal
fusion (STF) technology breaks through the technical limitations of existing sensors and provides a
convenient and economical solution for obtaining HTHS resolution images. At present, most STF
methods use stacked convolutional layers to extract image features and then obtain fusion images by
using a summation strategy. However, these convolution operations may lead to the loss of feature
information, and the summation strategy results in poorly fused images due to a lack of consideration
of global spatial feature information. To address these issues, this article proposes a STF network
architecture based on multiscale and attention mechanisms (MANet). The multiscale mechanism
module composed of dilated convolutions is used to extract the detailed features of low-spatial
resolution remote sensing images at multiple scales. The channel attention mechanism adaptively
adjusts the weights of the feature map channels to retain more temporal and spatial information in
the upsampling process, while the non-local attention mechanism adjusts the initial fusion images
to obtain more accurate predicted images by calculating the correlation between pixels. We use
two datasets with different characteristics to conduct the experiments, and the results prove that
the proposed MANet method with fewer parameters obtains better fusion results than the existing
machine learning-based and deep learning-based fusion methods.

Keywords: multiscale mechanism; STF; non-local attention; dilated convolution

1. Introduction

HTHS resolution remote sensing images are significant for remote sensing applica-
tion fields such as urban land cover mapping [1], disaster warning [2], surface change
detection [3], assessment of the area affected by an earthquake [4], and urban heat island
monitoring [5]. The temporal and spatial resolutions of remote sensing images acquired
by different sensors are mutually limited, and these sensors are broadly divided into two
main types. One type is equipped on the Landsat series, Gaofen series, Sentinel, and other
satellites, and the other is the Moderate-resolution Imaging Spectroradiometer (MODIS).
The Landsat series contains a diverse range of advanced thermal infrared sensors and
mappers for mapping, which have different sensitivities to different bands. Remote sensing
images required by the American Landsat series have a high-spatial resolution of 15–30 m
and a revisit cycle of approximately 16 days. In contrast, remote sensing images obtained
by MODIS on Terra/Aqua have a low-spatial resolution of 250 m–1 km and a revisit cycle
of one day. However, it is difficult to obtain cloud-free image data for some months in
many areas because of the interference of cloudy weather, which reduces the temporal
resolution of the images to some extent. As sensor technology and deep learning improve
by leaps and bounds, the research that uses STF methods to obtain HTHS resolution images
has also attracted increasing attention [6]. STF is an effective method that can combine
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high-temporal–low-spatial (HTLS) remote sensing images with low-temporal–high-spatial
(LTHS) remote sensing images to generate HTHS remote sensing images [7]. Although un-
manned aerial vehicles (UAVs) can easily obtain HTHS resolution images, they do not
apply to practical remote sensing applications for monitoring large surface areas because
the image size they obtain is relatively small. In addition, it is difficult for UAVs to obtain
images of depopulated zones, and most of the images obtained by UAVs are not publicly
available, while remote sensing images obtained by satellites not only cover a wide area,
but also most of them are free. Therefore, the major way to obtain HTHS images is through
STF methods.

2. Related Work

In recent years, a large number of studies have been performed on STF methods for
remote sensing images. According to different optimization strategies, STF methods can be
roughly classified into four categories: transform-based STF methods, image reconstruction-
based STF methods, hybrid pixel decomposition-based STF methods, and learning-based
STF methods [8].

Transform-based STF methods involve wavelet transform and principal component
analysis methods. STF methods based on wavelet transforms use wavelet transform
technology to perform wavelet decomposition on remote sensing images and then fuse
each decomposed layer, and the fusion results are ultimately acquired by the inverse
wavelet transform [9–11]. In addition, methods based on principal component analysis first
use a principal component method to separate the first principal component of high-spatial
resolution remote sensing images and then extract the brightness component, and finally
merge the extracted brightness image with the resampled low-spatial resolution remote
sensing images to obtain fusion images [12].

The principle of the STF method based on image reconstruction is to calculate the
weights of the similar adjacent pixels in input images and then obtain the target fusion
images through interpolation according to the synthesis weights, including time and space.
For example, Gao et al. [13] proposed a STF method STARFM, which is a new model that
estimates adjacent pixels’ contribution to the reflectance of central pixels by calculating
the weights of spectral difference, temporal difference, and pixel location distance. It is a
relatively effective method for a study area where the reflectance of adjacent pixels varies
little. To boost the pixel reconstruction of STARFM for nonuniform areas, Zhu et al. [14]
proposed a STF method ESTARFM, which is an enhanced version of STARFM, that also
searches for similar pixels first and calculates the weights of candidate pixels. The difference
is that the ESTARFM calculates the weights of similar image pixels and transformation
coefficients fully considering the internal relationship of the hybrid image pixels, which
makes the experimental results of the algorithm in the region with high heterogeneity
perform well compared with the STARFM method. A new STF model based on image
reflectance changes (STAARCH) [15] proposed by Hilker et al., which is also inspired
by STARFM, detects reflectance changes and denotes disturbances using Tasseled Cap
transformations [16,17] of both Landsat images and MODIS image reflectance data.

The essence of the STF method based on unmixing is to unmix the spectral details
of high-spatial resolution images at the prior time, and then predict the corresponding
HTHS resolution remote sensing images [18]. For example, Zhukov et al. [19] proposed
UMMF in 1999, which is a new STF model that first decomposes the spectrum of low-spatial
resolution images and then fuses them with high-spatial resolution images to generate
HTHS resolution remote sensing images. Based on UMMF, Wu et al. [20] proposed a new
STF method STDFA, which considers the spatial and temporal variations in the calculation
of the model and finally achieves good fusion results. These two methods require multiple
high-spatial resolution images to guarantee fusion accuracy. However, the number of
high-spatial resolution images obtained by sensors is limited due to cloud pollution in
practical remote sensing applications. To solve this problem, Zhu et al. [21] proposed a
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flexible STF method FSDAF in 2016, which performs well in heterogeneous regions with a
high speed by inputting a cloud-free and high-spatial resolution image.

Learning-based fusion methods can be roughly divided into dictionary-pair learning-
based methods [8,22–24] and deep learning-based fusion methods. The algorithms based
on dictionary-pair learning predict images by establishing the correspondence mainly
according to the structural similarity between low- and high-spatial resolution images.
For example, Huang et al. [22] proposed a STF network, SPSTFM, in 2012, a new model
based on sparse representation, which is the first time to train dictionary pairs between high-
spatial resolution residual images and low-spatial resolution residual images. However,
this method is not practical in remote sensing applications because this STF method predicts
HTHS images by using multiple high-spatial resolution images. Therefore, Wei et al. [23]
proposed an optimization STF model in 2016, which predicts images based on semi-coupled
dictionary-pair learning and structural sparsity. In 2021, Peng et al. [25] proposed a STF
method, SCDNTSR, based on dictionary learning, which first considers the spectral correla-
tion of image bands and further improves the accuracy of fusion results.

In recent years, deep learning has demonstrated its particular strengths in various
fields. Inspired by the super-resolution structure of SRCNN [26] proposed by Dong et al.,
Tan et al. [27] proposed a STF model, DCSTFN, to predict images by using two branches
dealing with spatial and temporal variation information separately. As the convolutional
operation in feature extraction leads to the loss of details, EDCSTFN [28] was proposed
based on DCSTFN, which added residual coding blocks and designed a compound loss
function to improve the ability of extracted features. Considering the nonlinear mapping
and super-resolution mapping between the input images, Song et al. [29] proposed the
STFDCNN network, which designs two convolutional network branches to learn these two
mappings separately and finally obtains the fused images through a weighting strategy.
In addition, Liu et al. [30] proposed a fusion approach, StfNet, in 2019, which establishes
the temporal dependence between low-spatial resolution images and predicts high-spatial
resolution images according to the temporal consistency and the super-resolution technol-
ogy. Tan et al. [31] proposed a STF model, GAN-STFM, based on unsupervised learning
and obtained HTHS resolution images through only two images.

At present, there are still some problems with deep learning-based STF methods.
First, the temporal change information and spatial features extracted from low-spatial
resolution images by stacked convolutional layers are insufficient [18,27], and some details
are lost during the upsampling process [32,33]. Second, a summation fusion strategy
may result in poorly fused images due to a lack of consideration of global spatial feature
information. To address the above issues, we propose a STF network architecture MANet
based on multiscale and attention mechanisms. In MANet, we adopt three images for
fusion. First, we obtained a residual image by performing a subtraction operation on
two low-spatial resolution images, and then we input it into the whole network with
a high-spatial resolution image. Our main contributions in this article are summarized
as follows:

1. A multiscale mechanism is used to extract temporal and spatial change information
from low-spatial resolution images at multiple scales, which is to provide more
detailed information for the subsequent fusion process.

2. A residual channel attention upsampling (RCAU) module is designed to upsample
the low-spatial resolution image. Inspired by DenseNet [34] and FPN [35] structures,
the rich spatial details of high-spatial resolution images are used to complement the
spatial loss of low-spatial resolution images during the upsampling process. This
collaborative network structure makes the spatial and spectral information of the
reconstructed images more accurate.

3. A non-local attention mechanism is proposed to reconstruct the fused image by
learning the global contextual information, which can improve the accuracy of the
temporal and spatial information of the fused image.
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The rest of the manuscript is organized as follows. Section 3 introduces the overall
structure and internal modules of the MANet method. Section 4 describes the experimental
part of the model, including the introduction of the datasets, the display of experimental
results, and comparisons with other classical STF methods. Section 5 is our discussion,
and Section 6 is the conclusion.

3. Materials and Methods

3.1. MANet Architecture

Figure 1 shows the overall architecture of MANet, in which cubes with different colors
represent different convolution operations, ReLU activation functions and other specific
operations. The MODIS image at time ti (i = 1, 2) is represented by Mi, and the Landsat
image at time ti is represented by Li. The MANet architecture contains three main parts:

• A sub-network is used to process residual low-spatial resolution images, extracting
the temporal and spatial variation information.

• A sub-network is used to process high-spatial resolution images, extracting spatial
and spectral information.

• To obtain more accurate fused images, a new fusion strategy is introduced to further
learn the global temporal and spatial change information of the fused image.

Figure 1. The overall architecture of MANet.

We first obtain residual image M12 by subtracting M1 from M2, which contains tem-
poral and spatial variation information from time t1 to time t2. We then send this residual
image to a multiscale mechanism to extract temporal and spatial change information at
multiple scales. Since the size of the MODIS images we input is one-sixteenth that of
Landsat images, we need to upsample them to the same size as the Landsat images for sub-
sequent feature fusion. In addition, MODIS images contain fewer spatial details and may
lose temporal and spatial information during upsampling. We design a new upsampling
module named RCAU, which maintains more temporal and spatial detail information in
useful channels during upsampling. Since MODIS images contain less spatial information
than Landsat images, we use the rich spatial information of Landsat images to compensate
for the loss of spatial feature information during the upsampling operation of MODIS
images. We downsample Landsat images and then add the feature maps after downsam-
pling with those of the upsampled MODIS images, and this operation helps to extract the
spatial information of MODIS images in the upsampling process. We obtain high-spatial
resolution images upsampled by 16 times with four RCAU modules. Meanwhile, we input
the Landsat image at a prior time into three 5 × 5 convolution kernel sequences to extract
spatial details. Then, we fuse the upsampled feature maps containing temporal and spatial
variation information with the feature map extracted from the Landsat image and obtain
preliminary feature maps containing temporal and spatial information. In the process of
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feature fusion, the local temporal and spatial information of the feature map may be wrong.
Therefore, we use an asymmetrical pyramid non-local block (APNB) [36] module to learn
the global temporal and spatial information from the preliminary feature map and obtain
the enhanced feature map. Finally, the feature maps obtained by the APNB module are
sent to the two fully connected layers to obtain the final fusion image L2, which integrates
all the temporal and spatial information.

3.2. Multiscale Mechanism

The spatial structures of remote sensing images are very complex. In addition, convo-
lution layers with a single receptive field are directly used to extract information, which
may result in the loss of detailed information due to the limitation of the receptive field of
convolutional layers. To address this issue, we use a multiscale mechanism [37] composed
of convolutional kernels with different receptive fields to simultaneously extract temporal
and spatial change features, which can improve the fusion accuracy. We input the resid-
ual feature maps obtained by subtracting MODIS images into this multiscale mechanism
and then concatenate the obtained feature maps at different scales to acquire a feature
map containing temporal and spatial variation information, as shown in Figure 2. This
multiscale mechanism is composed of three 3 × 3 convolution kernels, and their dilation
rates are 1, 2, and 3, respectively. The larger the dilation rate is, the larger the receptive
field of convolution layers, and the spatial and temporal change information may be more
comprehensive. We extract features using three convolution layers with different dilation
rates in parallel and then obtain the detailed feature information at different scales. In this
article, the feature maps obtained by these three convolutional layers contain 12 channels,
respectively, and then these feature maps are concatenated to acquire a feature map with
36 channels.

Figure 2. Network architecture of the multiscale mechanism.

3.3. Attentional Mechanism
3.3.1. RCAU Module

Some spatial and temporal variation information in remote sensing images may be
lost during the upsampling process. To retain more feature information in the upsampling
process, we design an RCAU module to upsample remote sensing images and input the
upsampled feature maps to a channel attention mechanism to adaptively assign weight to
each channel according to the importance of channel details. This RCAU module is similar
to the RCAB module [38], except that RCAU changes this first convolution layer to a decon-
volution layer, which is to achieve the upsampling operation of MODIS images. The RCAB
module integrates the channel attention mechanism and a residual block. The channel
attention mechanism (CA) can adaptively assign weight to each channel according to the
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importance of channel details [39]. The residual block is used to combine deep features
with shallow features in the network structure to reduce feature loss. The RCAB module
has been proven to have a good effect on the application of single RGB image super-
resolution [38]. Since the upsampling operation of remote sensing images is different from
the super-resolution of natural images, the resolution difference of remote sensing images is
approximately 16 times. In the RCAU module, a deconvolution layer is first used to double
the spatial resolution, and the resulting feature maps are then sent to the ReLU activation
and a convolution layer to further extract features. To reduce the spatial feature loss during
upsampling, we use the channel attention mechanism to extract details more efficiently by
acquiring dependencies between channels and restraining unnecessary information [40],
as shown in Figure 3. Finally, we use a residual structure to add the feature map after the
deconvolution operation to the feature map after the channel attention mechanism to fuse
the information from shallow and deep network layers. To achieve the 16-times resolution
scale fusion of remote sensing images, we need to use four RCAU modules in the MANet
structure. For the layer nth (n = 1, 2, 3, 4) RCAU module, we have:

Fn,b = Dn,b(Fn,b−1) + Cn,b(Xn,b)× Xn,b (1)

where Cn,b denotes the channel attention function, Fn,b and Fn,b−1 are the input and output
of the RCAU module, respectively, Dn,b is the function that acts on the input feature map
in the RCAU module, which contains the deconvolution and ReLU operations, and the
RCAU learns the residual component Xn,b from the input feature map. Xn,b is composed of
a Conv layer, which can be defined as:

Xn,b = W1
n,b × Dn,b (2)

where W1
n,b represents the weight of the the Conv layer. Dn,b is multiplied by the weight to

obtain the residual component Xn,b. Therefore, the RCAU module not only increases the
size of low-spatial resolution images by two times, but also the detailed texture information
of low-spatial resolution images can be restored by using the rich spatial details of Landsat
images, which is achieved by adding the feature maps of Landsat images that have been
downsampled to the low-spatial resolution images. We then input the feature maps
obtained after the four RCAU modules into the next convolutional layer to further extract
detailed features.

Figure 3. The architecture of RCAU module.

3.3.2. APNB Architecture

The initial fused image was obtained by a simple addition operation, containing
unitary information of spatial details and temporal changes, and the pixels of the image are
independent of each other, which may produce jagged edges and noise. If we directly send
it to a fully connected layer, the fusion image will contain more noise, and the fusion effect
will be worse. Therefore, we used the non-local autocorrelation of the image to restore
the non-local information of fusion image and improve the fusion result. This refers to
an asymmetrical pyramid non-local block (APNB) module used in the MANet structure,
which is an improved non-local model [41]. It realizes remote dependence by calculating
the relationship between each query pixel and all the other pixels and aggregating the
features of all pixels in the image. Thus, the relationship between pixels in the initial fusion

100



Remote Sens. 2022, 14, 4600

image can be considered from the perspective of global details, making the fusion result
close to the real image. It has been proven that APNB can be used to improve segmentation
performance in semantic segmentation [42]. Figure 4 shows the network architecture of
APNB module, where X is the input initial fusion image. The channels of this image are
halved by three 1 × 1 convolution layers, and the feature vectors Key, Value and Query
are separately generated by flattening. Key and Query are used to calculate the similarity
of pixels. Value represents the feature vector directly input to the network. To exploit
multiscale correlations, the pyramid pooling layer structure was used for Key and Value
to handle correlations at different scales. The adaptive average pooling layer was used to
generate 1 × 1, 3 × 3, 6 × 6, and 8 × 8 matrices, which were flattened and connected into a
vector. This vector was multiplied by the transposed Query to obtain a matrix containing
correlations between different pixels. Afterward, the similarity weight was obtained by the
softmax operation of this matrix, and then we multiplied the similarity weight by Value to
obtain the feature map with global attention. Finally, to add the relationship between global
pixels to the fused image, we sent the feature map to a reshape layer and a convolution
layer, and then, the feature map was added to the initial fused image X. The latest fused
image Y with a global relationship was obtained through two fully connected layers.

Figure 4. The architecture of APNB module.

3.4. Loss Function

The MSE loss function is often used to evaluate the error between a predicted image
and a real image in a STF model, which ignores the global quality of an image during the
training process, we designed a compound loss function, which includes content loss and
vision loss. The formula is:

LMANet = Lcontent + α × Lvision (3)

where α represents the weighting coefficient of vision loss. After many experiments, setting
α to 0.8 worked best. The content loss is often used to ensure the pixel-level supervision
of an image in a STF model, we use a Charbonnier loss [43] to calculate the content loss
by calculating the pixel error between two images in this experiment. In content loss,
the similarity between the real image and the predicted image is enforced by enhancing
pixel-wise reconstruction, which can better process the outliers in the predicted image that
are very different from the pixels in the real image. It can be defined as:

Lcontent =
√
(y − x)2 + ε2 (4)

where x and y are the predicted value and the real observed value, respectively. The ε is
used to prevent the error backpropagation, which is empirically set to 1 × 10−3. In the
compound loss function, the content loss is to improve the similarity of the texture details
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between the predicted image and the real image, while the vision loss is to measure the
visual similarity between images [44]. In the STF model, the multiscale structural similarity
(MS-SSIM) [28,45] is used to calculate the vision loss, which is the multiscale version of
SSIM. The SSIM index is used to comprehensively evaluate the similarity of images based
on three parts: structure, contrast, and luminance, and it can also evaluate the structural
similarity of images by calculating the mean, variance, and covariance between the real
image and the predicted image. MS-SSIM is used to calculate the structural similarity of
multiple levels after reducing the image to different scales, which reduces noise and blur
around edges to obtain more accurate predicted images. Vision loss can be obtained by
MS-SSIM, which can be defined as:

Lvision = 1 −
M

∏
m=1

(
2μxμy + c1

μ2
x + μ2

y + c1

)βm( 2σxy + c2

σ2
x + σ2

y + c2

)γm

(5)

where M represents the highest scale, βm and γm represent the proportion of the two
fractions, μx and μy represent the mean of the predicted image x and the real image y,
respectively. σ2

x and σ2
y represent the variance of the predicted image x and the real image

y, respectively. σxy represents the covariance of the predicted image x and the real image y.
c1 and c2 are two constants to ensure the stability of the formula.

The experimental results show that MS-SSIM can effectively restore the high-frequency
characteristics of the predicted image [32]. Therefore, adding a vision loss function to the
compound loss function can obtain more accurate prediction results.

4. Experiments

4.1. Datasets

To verify the effect of the proposed fusion model, we use two datasets to conduct the
experiment. Figure 5a shows the Lower Gwydir Catchment (LGC) [46], which is located in
northern New South Wales, Australia (NSW, 149.2815◦E, 29.0855◦S). This dataset contains
14 pairs of cloud-free MODIS-Landsat images from 16 April 2004 to 3 April 2005. MODIS
images were obtained from MODIS Terra MOD09GA Collection 5 Data, and Landsat
images were obtained from Landsat-5 TM and were atmospherically corrected using the
algorithm [47] proposed by Li et al. The LGC dataset mainly takes the land cover area as
the experimental area, including arid farmland, irrigated paddy fields, and forest land,
and the spectral information in the area is more variable; thus, we mainly observe spectral
changes [18]. The original LGC dataset image size is 3200 × 2720 and consists of six bands.

Figure 5b shows the Coleambally Irrigation Area (CIA) study cite [46], which is lo-
cated in southern New South Wales, Australia (NSW, 34.0034◦E, 145.0675◦S). This dataset
contains 17 pairs of cloud-free MODIS-Landsat images from 7 October 2001 to 17 May 2002.
The MODIS images were obtained by MODIS Terra MOD09GA Collection 5 data, and the
Landsat images were obtained by Landsat-7 ETM+ and were atmospherically corrected
using MODTRAN4 [48] as outlined inVan Niel and McVicar [49]. On the CIA dataset,
farmlands are mainly selected as the experimental area, and the phenological changes on
different dates were obvious; thus, we take it as the dataset with high-spatial heterogene-
ity [18]. The original CIA dataset size is 1720 × 2040 and contains a total of six bands.

Before training the network, we first cropped all these images from the center to a
size of 1200 × 1200. The resolution difference between the original Landsat and MODIS
images is 16 times, and we scale all the MODIS images to a size of 75 × 75 for reducing
training parameters. From Figures 6 and 7, we can see the changes in the MODIS-Landsat
image pairs of the CIA and LGC datasets on different dates, and the two datasets were
input into the MANet structure for training. In these two datasets, we arranged the MODIS-
Landsat image pairs in chronological order, and the temporally closest two image pairs
were grouped in a data group according to the temporal distance. The time of the reference
image is always before, and the time of the predicted image is always after. Finally, there are
16 data groups available in the CIA dataset and 13 data groups available in the LGC dataset.
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The grouped data is then randomly assigned to 60% of the dataset as the training dataset,
20% as the validation dataset, and the remaining 20% as the test dataset. In the whole
experiment, the three parts of the datasets were selected assuming there was no intersection.

Figure 5. Location of the Coleambally Irrigation Area (CIA) and the Lower Gwydir Catchment (LGC).

Figure 6. Comparison of CIA image pairs on 7 October 2001, 24 November 2001, and 9 March 2002.
(a,d) are the MODIS and Landsat images on 7 October 2001, respectively. (b,e) are the MODIS and
Landsat images on 24 November 2001, respectively. (c,f) are the MODIS and Landsat images on
9 March 2002, respectively.
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Figure 7. Comparison of LGC image pairs on 22 August 2004, 28 December 2004 and 13 January
2005. (a,d) are the MODIS and Landsat images on 22 August 2004, respectively. (b,e) are the MODIS
and Landsat images on 28 December 2004, respectively. (c,f) are the MODIS and Landsat images on
13 January 2005, respectively.

4.2. Evaluation Indicators

To make quantitative evaluations of our proposed STF model, we compared MANet
with STARFM [13], FSDAF [21], DCSTFN [27], and DMNet [18] under the same conditions.
We performed the same experiment on both datasets for all methods because these methods
all use two low-spatial resolution images and one high-spatial resolution image for STF.

Firstly, we used the structural similarity (SSIM) index [50] to evaluate the similarity of
two images from multiple perspectives. It can be defined as:

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
(6)

where μx and μy represent the mean of the predicted image x and the real image y, re-
spectively. σ2

x and σ2
y represent the variance of the predicted image x and the real image

y, respectively. σxy represents the covariance of the predicted image x and the true image
y. c1 and c2 are two constants to avoid system errors. The range of SSIM value is [−1, 1].
The larger the value of SSIM is, the smaller the difference between the predicted image and
the real image; that is, the predicted image quality is better.

The second indicator is the peak signal-to-noise ratio (PSNR) [51], which is used to
assess the loss of signal recovery. It can be indirectly defined by the mean square error
(MSE), which refers to the mean of the sum of the squared differences between the predicted
and the real image pixel values. MSE can be defined as:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

||y(i, j)− x(i, j)||2 (7)

where m and n represent the height and width of the image, respectively. y and x are the
real observed image and the predicted image. PSNR can be defined as:

PSNR = 20 × log10

(
MAXy√

MSE

)
(8)
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where MAXy represents the maximum possible pixel value of the real image y. The higher
the value of PSNR is, the less distortion between the predicted image and the real image;
that is, the predicted image quality is better.

The third index we used is the spatial correlation coefficient (CC) [52], which measures
the spatial information similarity between the predicted image x and the real observed
image y. It can be defined as:

CC =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(9)

The range of CC value is [−1, 1]. The closer the CC is to 1, the larger the positive
correlation between the real observed image and the predicted image.

Finally, we used the root mean square error (RMSE) [27] index to measure the deviation
between the predicted value x and the real observed value y. Specifically, it is the square
root of MSE. It can be defined as:

RMSE =

√√√√ 1
mn

m

∑
i=1

n

∑
j=1

(y(i, j)− x(i, j))2 (10)

where m and n represent the height and width of the image, respectively. y and x are the
real observed value and the predicted value. The closer the RMSE is to 0, the closer the
predicted image is to the real image.

4.3. Parameter Setting

STARFM [13] and FSDAF [21] are machine learning-based models that use 20% of the
datasets to test directly in experiments without training. DCSTFN [27], DMNet [18] and
MANet are all deep learning-based frameworks. MANet is a PyTorch-based framework that
uses the Adam optimizer to optimize network training parameters. The weight attenuation
is set to 1 × 10−6, the initial learning rate is set to 0.0008, and the training epoch is set to 30.
We trained MANet for 6 h in a Windows 10 professional environment, equipped with 16 GB
RAM, an Intel Core I5-10400 CPU @2.90 GHz, and a NVIDIA GeForce RTX 3060 GPU.

4.4. Experiment Results
4.4.1. Subjective Evaluation

Figure 8 shows the prediction results of various fusion methods on the CIA dataset
on 26 April 2002. “GT” represents the real image, and “Proposed” is our MANet method.
As Figure 8 shows, the field of the CIA dataset is relatively small, and it has strong spatial
heterogeneity. For better visual comparison, we extracted and enlarged the sharp contrast
part. The figure shows that all the fusion methods can improve the spatial resolution of the
predicted images to a certain extent, indicating that these fusion methods can roughly re-
cover the temporal changes, spatial variations, and spectral change of the predicted images.
However, in some heterogeneous regions, the fusion results of different fusion methods
are different. As shown in the figure, the fusion results of the STARFM fusion method and
FSDAF fusion method have been seriously distorted in spectral details. The “GT” image
shows a white area, while the STARFM predicted image shows obvious purple patches
and loses texture details. This may be because the STF method is heavily affected by the
search window during the process of image pixel prediction and performs poorly when
the image has high-spatial heterogeneity. In the FSDAF predicted image, there are also
some purple patches, and the edge of the farmland is fuzzy. This may be because the fusion
method uses a TPS algorithm to predict high-spatial resolution images from low-spatial
resolution images. As the figure shows, the spectral information of the white area of
the DCSTFN predicted result experienced an error, and the fuzzy effect also appeared
at the edge of farmland, which may be caused by the loss of spatial information after
using multiple convolution layers. Although the results predicted by the DMNet fusion
method show good texture details and the spatial information was retained relatively
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completely, the spectral distortion was relatively serious, which might be related to the
use of a simple addition method for fusion. For our proposed method, the farmland edge
information is well processed. Although the spectral information is not accurately reflected,
the color difference is relatively small, and the white area is partially restored, making it
relatively similar to that of the real image. This shows that our proposed method has a
better effect on the high-spatial heterogeneity dataset than the other fusion methods. This
is because we paid more attention to extracting spatial and temporal details by introducing
a multiscale mechanism.

Figure 8. Predicted results of the high-spatial resolution image (26 April 2002) on the CIA [46]
dataset. Additionally, the comparison methods include STARFM [13], FSDAF [21], DCSTFN [27] and
DMNet [18], which were represented by (b–e) in the figure, respectively. Moreover, the GT is the
ground truth represented by (a), and (f) is our proposed STF method.

Figure 9 shows the prediction results of various fusion methods on the LGC dataset on
2 March 2005. “GT” represents the real image, and “Proposed” is our MANet method. Since
the variation of spectral information on the LGC dataset is large, we mainly compared the
spectral changes and boundary information of the fusion results. For visual comparison, we
also extracted and enlarged the sharp-contrast part. As the figure shows, all fusion methods
can achieve good prediction of spatial details in most areas. However, in some regions
where the spectral information changes greatly, the prediction results of each fusion method
are different. As shown in the figure, the predicted images of the STARFM fusion method
and FSDAF fusion method exhibit spectral distortion. A red line is shown in the “GT”
image, but there are red patches in the STARFM predicted image, which is a serious spectral
distortion. This is because STARFM uses surrounding pixels to reconstruct the central pixel,
which results in spectral distortion because it is not conducive to the restoration of boundary
details. Some black patches in the red area of the “GT” image disappeared in the STARFM
predicted image, indicating that spectral changes and boundary information of the STARFM
fusion method were lost, which may be caused by the settings of the search window.
As shown by the FSDAF prediction results, although the red patches are reduced, there is
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still spectral distortion, which may also be due to partial information lost in the prediction
process and the TPS interpolation operation. The methods based on machine learning
performed poorly in processing boundary details in the region where spectral information
varies greatly. The DCSTFN and DMNet STF approaches still have some fuzzy phenomena
in processing boundary information. In the DCSTFN prediction results, the red line is not
smooth enough, and the texture details are not well processed. This may be caused by the
loss of detailed information during the process of using multiple convolutional layers in
this method. DCSTFN and DMNet can recover the spectral information of the image to
some extent. The predicted result of our method is smoother than that of others methods in
processing the red line, and the spectral information and boundary information can be well
predicted. In general, compared with other fusion methods, our proposed method not only
achieves accurate prediction of texture details, but also processes the spectral details well.

Figure 9. Predicted results of the high-spatial resolution image (2 March 2005) on the LGC [46]
dataset. Additionally, comparison methods include STARFM [13], FSDAF [21], DCSTFN [27] and
DMNet [18], which were represented by (b–e) in the figure, respectively. Moreover, the GT is the
ground truth represented by (a), and (f) is our proposed STF method.

4.4.2. Objective Evaluation

Table 1 shows the quantitative evaluation results of various fusion methods on the
CIA dataset with high-spatial heterogeneity. The best values of the index are marked in
bold. As the table shows, the prediction results of our proposed MANet fusion method are
improved in terms of most indicators compared with those of other algorithms. For exam-
ple, in terms of the SSIM index related to spatial information, the result of our proposed
method is approximately 2.9% higher than that of the FSDAF fusion method based on
machine learning. Compared with the DMNet method based on deep learning, the SSIM
values of our method are improved by about 1% on multiple bands. These show that our
proposed method can handle spatial variation information of the dataset with high-spatial
heterogeneity well. The quantitative evaluation results obtained by the STARFM fusion
method are the worst, which may be because the surrounding pixels are used for pixel
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reconstruction, which is not applicable in a region where spatial information changes
greatly. The poor quantitative evaluation result of the FSDAF fusion method may be due
to the limitation of the TPS interpolation algorithm. The spectral information is related to
RMSE and CC values, and the value of RMSE represents the pixel-level error between the
predicted image and the real image in particular. In the quantitative evaluation results of
the DCSTFN STF method, the indices of some bands are the best, which shows that DC-
STFN can predict the spectral information of these bands well. The SSIM value of DMNet
method is better than that of DCSTFN method, which indicates that DMNet can better
handle spatial variation information. The values of CC and RMSE of DMNet method are
both worse than those of the DCSTFN method, which indicates that DCSTFN method can
predict spectral information well. This may be because the DMNet method uses a simple
addition strategy for fusion and ignores some useful information. The MANet method
acquired the best results on other indexes, such as RMSE and CC values, which indicates
that our proposed method can better predict spectral change information. The experimental
results indicate that the spatial details and spectral change information of remote sensing
images can be better captured by adding multiscale and attentional mechanisms to the
network structure.

Table 1. Quantitative assessment of different STF methods on the CIA [46] dataset.

Evaluation Band
Method

STARFM FSDAF DCSTFN DMNet Proposed

SSIM

Band1 0.8731 0.9037 0.9355 0.9368 0.9455
Band2 0.8527 0.9172 0.9304 0.9304 0.9351
Band3 0.7938 0.8578 0.8915 0.8905 0.8989
Band4 0.7329 0.8210 0.8231 0.8271 0.8319
Band5 0.7197 0.8109 0.8165 0.8187 0.8274
Band6 0.7260 0.8194 0.8383 0.8379 0.8432

Average 0.7830 0.8550 0.8726 0.8736 0.8803

PSNR

Band1 27.4332 37.2104 38.3779 38.3696 39.2152
Band2 24.3359 36.0368 36.4337 36.3136 36.8910
Band3 24.5396 31.3339 33.2257 32.8116 33.2862
Band4 19.6533 26.9470 28.7492 28.5944 28.8370
Band5 20.8408 28.0493 28.4029 28.1894 28.5474
Band6 22.1580 25.0635 29.8863 29.7228 29.9921

Average 23.1601 30.7735 32.5126 32.3336 32.7948

CC

Band1 0.3898 0.8014 0.8374 0.8382 0.8547
Badn2 0.3965 0.7988 0.8603 0.8581 0.8658
Band3 0.5883 0.8302 0.8912 0.8854 0.8882
Band4 0.5039 0.8161 0.8265 0.8195 0.8272
Band5 0.6855 0.8977 0.9015 0.8989 0.9060
Band6 0.6927 0.9060 0.9153 0.9126 0.9162

Average 0.5428 0.8417 0.8720 0.8688 0.8764

RMSE

Band1 0.0124 0.0124 0.0123 0.0122 0.0112
Band2 0.0156 0.0162 0.0156 0.0158 0.0149
Band3 0.0227 0.0234 0.0226 0.0239 0.0229
Band4 0.0387 0.0408 0.0387 0.0395 0.0385
Band5 0.0386 0.0399 0.0386 0.0394 0.0382
Band6 0.0330 0.0329 0.0324 0.0330 0.0324

Average 0.0268 0.0276 0.0267 0.0273 0.0264

Table 2 shows the quantitative evaluation results of various fusion methods on the LGC
dataset with large spectral changes. The best values of the index are marked in bold. As the
table shows, the prediction results of our proposed MANet fusion method are improved in
terms of most indicators compared with those of other algorithms. For example, the result
of our proposed method is approximately 1% higher than those of other methods in
terms of the SSIM index, which indicates that our proposed method can handle spatial
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variation information. Spectral variation is related to RMSE and CC indexes, the result
of our proposed method is improved to a certain degree compared with other methods,
which indicates that our proposed method can better predict spectral change information.
The quantitative evaluation results of the STARFM fusion method are the worst and with
serious spectral distortion, because the method uses the surrounding pixels to predict
center pixels with the limits of the search window, so it cannot be applied to the area
with great spectral changes. The quantitative evaluation results of the FSDAF fusion
method are poor compared with those of the STF methods, which may be because this
method uses the TPS interpolation algorithm to predict high-resolution images and finally
uses the information of adjacent regions to obtain the predicted images, which leads
to spectral distortion due to information loss. In the quantitative evaluation results of
the DCSTFN fusion method, the RMSE index values of some bands are optimal, which
indicates that DCSTFN method can predict the spectral change information to some extent.
The quantitative evaluation results of the DMNet fusion method are inferior to those of
DCSTFN because it loses information through an additive fusion strategy. Table 2 shows
that our method achieves the best quantitative evaluation results on the SSIM, RMSE,
PSNR, and CC indexes. This is because we use high-spatial resolution image features to
help restore the spectral information and spatial details of the predicted image. Finally,
a non-local attention mechanism is used to pay more attention to the spatial and spectral
relations between pixels. This shows that our method can be better applied to regions with
large spectral changes.

Table 2. Quantitative assessment of different STF methods on the LGC [46] dataset.

Evaluation Band
Method

STARFM FSDAF DCSTFN DMNet Proposed

SSIM

Band1 0.8846 0.9264 0.9361 0.9368 0.9384
Band2 0.8837 0.9300 0.9489 0.9304 0.9488
Band3 0.8401 0.9241 0.9262 0.8905 0.9303
Band4 0.8071 0.8803 0.8901 0.8971 0.8975
Band5 0.7860 0.8693 0.8706 0.8687 0.8842
Band6 0.7908 0.8615 0.8714 0.8779 0.8804

Average 0.8321 0.8986 0.9072 0.9002 0.9133

PSNR

Band1 30.4687 38.5891 39.0567 39.5980 39.6168
Band2 23.3251 37.1057 38.0523 38.1447 38.2195
Band3 23.6144 35.0483 35.9674 35.7742 36.0948
Band4 17.4570 31.2650 31.5236 31.4327 31.8561
Band5 20.3062 30.2034 30.9916 30.8822 31.2151
Band6 21.9842 31.0435 32.1594 31.9054 32.2980

Average 22.8593 33.8758 34.6252 34.6229 34.8834

CC

Band1 0.7697 0.8802 0.8973 0.9012 0.9090
Band2 0.8775 0.8901 0.8943 0.8939 0.9003
Band3 0.8272 0.8969 0.9052 0.9067 0.9079
Band4 0.8993 0.9090 0.9198 0.9183 0.9209
Band5 0.7816 0.9216 0.9263 0.9242 0.9298
Band6 0.7270 0.9203 0.9228 0.9252 0.9264

Average 0.8137 0.9030 0.9110 0.9116 0.9157

RMSE

Band1 0.0122 0.0139 0.0122 0.0119 0.0117
Band2 0.0134 0.0132 0.0130 0.0130 0.0131
Band3 0.0164 0.0167 0.0162 0.0166 0.0163
Band4 0.0268 0.0276 0.0268 0.0271 0.0259
Band5 0.0291 0.0297 0.0291 0.0298 0.0286
Band6 0.0277 0.0271 0.0257 0.0266 0.0254

Average 0.0209 0.0214 0.0205 0.0208 0.0202
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5. Discussion

The experimental results obtained on the CIA dataset show that our method acquired
the best result by introducing multiscale and attention mechanisms and a compound loss
function in heterogeneous regions. The subjective evaluation shows that the prediction
results of the STARFM fusion method and FSDAF fusion method both exhibit serious
spectral distortion, while the image predicted by our proposed STF method is relatively
closer to the real image. This shows that our method can predict the spectral variation,
temporal variation, and spatial features of images in heterogeneous regions. Second,
the experimental results obtained on the LGC dataset show that our method can better
predict the spectral changes in regions with great spectral changes because our method
pays more attention to extracting details and incorporates a new fusion method to retain
more detailed features. The following was achieved with the MANet method: (1) feature
extraction of low-spatial resolution remote sensing images is realized by using a multiscale
mechanism; (2) the upsampling of low-spatial resolution images is performed by using
the RCAU module; and (3) a new fusion strategy is introduced to further learn the global
temporal and spatial change information of the fused image, which can obtain a more
accurate fused image. We use the RCAU module to upsample low-spatial resolution
images, in which the channel attention mechanism captures the spatial and spectral details
during the upsampling process. Similarly, after the initial fusion image is generated, we
send it to the APNB module so that we can capture global information of the predicted
image according to the indexes of time and space. Thus, we can obtain more accurate
prediction results.

5.1. Ablation Experiments

Three experiments were designed to further describe the importance of the multiscale
mechanism, the RCAU module, and the APNB module. In the first experiment, we replaced
the multiscale mechanism with an ordinary convolution and retained the RCAU module
and the APNB module. In the second experiment, we removed the RCAU module and
retained the multiscale mechanism and the APNB module. In the third experiment, we
removed the APNB module and retained the multiscale mechanism and the RCAU module.
Table 3 shows the results of Experiment 1, Experiment 2, and Experiment 3, in which
“ANet” refers to the network structure with the multiscale mechanism removed, “MAPNet”
refers to the network structure with the RCAU module removed, and “MRNet” refers to
the network structure with the APNB module removed. The best values of the index are
marked in bold.

Table 3. The results of comparative experiments.

Dataset Index ANet MAPNet MRNet MANet

CIA SSIM 0.8794 0.8791 0.8788 0.8803
RMSE 0.0266 0.0267 0.0267 0.0264

LGC SSIM 0.9132 0.9131 0.9133 0.9133
RMSE 0.0203 0.0204 0.0203 0.0202

As the above table shows, on the CIA dataset, the SSIM value of ANet is greater than
that of MRNet and that of MAPNet, which indicates that ANet is better than MRNet and
MAPNet in predicting spatial change information. The RMSE value of ANet is less than that
of MRNet and that of MAPNet, which indicates that the predicted result of ANet is more
accurate than that of MRNet and that of MAPNet in predicting spectral change information.
These show that adding attention mechanisms is beneficial to feature extraction of the
spectral and spatial variation information. On the LGC dataset, the SSIM value of MRNet
is larger than that of MAPNet and that of ANet, which indicates that the predicted result of
MRNet is better than that of MAPNet and that of ANet in predicting the spatial change
information. The RMSE values of MRNet and ANet are smaller than that of MAPNet, which
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indicates that MRNet and ANet are better than MAPNet in predicting spectral change
information. These show that adding multiscale and attention mechanisms is beneficial to
feature extraction of the spectral and spatial variation information. The SSIM and RMSE
values of MANet on the CIA dataset and LGC dataset are optimal, which indicates the
MANet method can better extract spatial and spectral information compared with other
STF methods. Figure 10 shows the results on the CIA dataset of these three comparative
experimental methods and our proposed method with band 4 on 26 April 2002. Figure 11
shows the results on the LGC dataset of these three comparative experimental methods
and our proposed method with band 4 on 28 December 2004.

Figure 10. The results on the CIA dataset of these comparative experimental methods.

Figure 11. The results on the LGC dataset of these comparative experimental methods.

In Figures 10 and 11, (a) represents the real image, (b) represents the ANet predicted
image, (c) represents the MAPNet predicted image, (d) represents the MRNet predicted
image, and (e) represents the MANet predicted image. Figure 10 shows that the ANet
predicted image has obvious spectral distortion. The predicted images of MAPNet, MRNet,
and MANet are more similar to the real observed images, which indicates that adding a
multiscale mechanism can effectively extract the temporal changes and spectral details of
images. The ANet method performs well in terms of the quantitative evaluation results,
possibly because texture details are lost in the MAPNet and MRNet fusion methods.
MANet performs best in terms of quantitative evaluation results, which shows that adding
a multiscale mechanism can effectively extract the temporal changes and spectral details
and adding attention modules can effectively extract spatial details. As Figure 11 shows,
the predicted images of MAPNet and MRNet exhibit spatial and spectrum detail loss,
which shows that using the attention mechanisms to extract temporal and spatial details
for subsequent image recovery is important in regions with large spectrum variation.
Comparatively, the MANet predicted image is more similar to the real image, which
indicates that our method can deal well with spectral and spatial details. Although we
improved the method of extracting spatial information and spectral details, our study
still has deficiencies, such as the prediction accuracy of our method for areas with large
topographic variations. Once we have collected enough qualified datasets, we can design a
more suitable network structure for more advanced analysis.
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5.2. Loss Curves and the Number of Training Parameters

Table 4 shows the number of training parameters for various fusion methods. STARFM
and FSDAF are fusion methods based on machine learning, so they have no training process.
As the table shows, our fusion method has fewer training parameters than other deep
learning-based fusion methods. In training the network, the whole dataset is trained in
each epoch. As the number of training epochs increases, the accuracy of model training
increases. We input the dataset into the MANet structure according to the number of bands
to optimize the weights of the network. Figure 12 shows the evolution of the loss curves at
the training stage and validation stage for 30 epochs, where each color represents a different
band and the solid line and dotted line represent the loss curves at the training stage and
validation stage, respectively. Since the loss function is composed of content loss and vision
loss, the closer it is to zero, the better the training effect. We can see from Figure 12 that the
training loss value decreases rapidly at first and then stabilizes and no longer decreases
after 20 epochs, while the validation loss is not stable and fluctuates greatly in the early
stage. After more than 25 epochs, all the loss function curves show a relatively stable trend.
Therefore, the network tends to converge when the number of epochs is greater than or
equal to 30.

Table 4. The number of training parameters for various fusion methods.

Method STARFM FSDAF DCSTFN DMNet MANet

Training parameters - - 298,177 327,061 77,171

Figure 12. The loss curves of MANet for multiple bands on the training and test datasets.

6. Conclusions

We evaluated the effectiveness of our proposed STF method MANet by using two
datasets with different characteristics and acquired the best final experimental results.
The main contributions of our research are introducing a new STF architecture, which
includes the following:

1. The multiscale mechanism is used to extract the temporal and spatial variation of
a low-spatial resolution image. The final experimental results indicated that the
extraction of detail features at different scales can make the network retain more
useful temporal and spatial details, and the prediction result is closer to the real result.
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2. By designing the RCAU module, we not only realize the upsampling of feature maps
with low-spatial resolution, but also reduce the loss of detail information by the
weighting operation, which is more conducive to the reconstruction of low-spatial
resolution image pixels.

3. In the fusion process, we have designed a new fusion strategy. The APNB module
was added after the initial fusion image, which can effectively extract global spatial
and temporal information. Experimental results show that our method can better
capture the spatial details and spectral information of the predicted image.

The experimental results show that our method achieves the best prediction results on
both the CIA dataset with complex spatial information and the LGC dataset with variable
spectral information. From the perspective of the whole fusion framework, the feature
information of low-spatial resolution images and the rich spatial information of high-spatial
resolution images are both important for predicting HTHS resolution images. The low-
spatial resolution image easily loses details in the upsampling process, so we introduce
attention mechanisms to restore its spatial resolution and spectral information with the help
of channel weights, which is significant in solving temporal and spatial problems. In the
STF problems, due to the limitation of fewer available datasets, the predicted accuracy is
difficult to greatly improve. Therefore, future research must map low-spatial resolution
images to high-spatial resolution images without reference in the prediction stage. These
problems can be further discussed.
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Abstract: For emergency rescue and damage assessment after an earthquake, quick detection of
seismic landslides in the affected areas is crucial. The purpose of this study is to quickly determine
the extent and size of post-earthquake seismic landslides using a small amount of post-earthquake
seismic landslide imagery data. This information will serve as a foundation for emergency rescue
efforts, disaster estimation, and other actions. In this study, Wenchuan County, Sichuan Province,
China’s 2008 post-quake Unmanned Air Vehicle (UAV) remote sensing images are used as the data
source. ResNet-50, ResNet-101, and Swin Transformer are used as the backbone networks of Mask
R-CNN to train and identify seismic landslides in post-quake UAV images. The training samples
are then augmented by data augmentation methods, and transfer learning methods are used to
reduce the training time required and enhance the generalization of the model. Finally, transfer
learning was used to apply the model to seismic landslide imagery from Haiti after the earthquake
that was not calibrated. With Precision and F1 scores of 0.9328 and 0.9025, respectively, the results
demonstrate that Swin Transformer performs better as a backbone network than the original Mask R-
CNN, YOLOv5, and Faster R-CNN. In Haiti’s post-earthquake images, the improved model performs
significantly better than the original model in terms of accuracy and recognition. The model for
identifying post-earthquake seismic landslides developed in this paper has good generalizability and
transferability as well as good application potential in emergency responses to earthquake disasters,
which can offer strong support for post-earthquake emergency rescue and disaster assessment.

Keywords: mask R-CNN; Swin Transformer; landslide detection; UAV image; transfer learning

1. Introduction

Landslides are one of the most common natural disasters in mountainous areas,
frequently resulting in significant property damage and casualties, particularly the thou-
sands of landslide disasters caused by major earthquakes, which are more severe [1,2]. In
Wenchuan County, Sichuan Province, China, on 12 May 2008, a powerful 8.0 magnitude
earthquake devastated Yingxiu town. The epicenter of this strong earthquake was situated
in the middle and high mountains of the western Sichuan basin, where the geological envi-
ronment is quite fragile, resulting in the occurrence of numerous geological hazards, such
as seismic landslides, mudslides, and hillside collapses [1]. A large number of landslides
were caused by the Wenchuan earthquake, and these landslides directly caused the deaths
of nearly 20,000 people [3]. Because of the serious threat posed by seismic landslides to
people’s lives and properties, as well as public safety, the rapid and automatic extraction
of sudden landslides has become a hot topic in landslide research around the world [4–6].
The area, scale, and distribution of seismic landslides are determined by analyzing the
morphology and characteristics of seismic landslide areas. It is crucial for disaster relief,
mitigation, planning, and construction in the affected areas to quickly and accurately
identify the location information of seismic landslides and implement targeted relevant
measures in order to effectively reduce the damage caused by seismic landslides.
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In early research, the majority of landslide detection and boundary extraction relied
on the manual interpretation method [7–9], which has high accuracy. However, when the
treated area is large or the disaster is urgent, the manual interpretation of landslides has
issues such as a large workload, a long time to complete, and low efficiency, which is not
conducive to the rapid extraction of large-scale landslide hazards after the disaster [10].
Additionally, because test results are subject to individual subjectivity, they will not be of
the same standard if different persons interpret different areas [11].

Numerous automatic picture recognition approaches have been used to automati-
cally detect landslides in the context of the quick development of information extraction
technology. Many researchers have begun to use machine learning and deep learning
algorithms for landslide detection due to the rapid development of these techniques. These
algorithms include support vector machines (SVM), random forests (RF), artificial neural
networks (ANN), decision trees (DT), convolutional neural networks (CNN), region-CNN
(R-CNN), faster R-CNN, and others [12–15]. Gaelle Danneels et al. [16] used maximum
likelihood classification and ANN classification methods to detect landslides from ASTER
imagery automatically. Omid Ghorbanzadeh et al. [17] combined the ResU-Net model and
the Object-Based Image Analysis (OBIA) method for landslide detection and compared
the classification results with ResU-Net alone, and the proposed method improved the
average intersection-bonding of maps obtained by ResU-Net by more than 22%. Faster
R-CNN and the U-Net algorithm were employed by HuajinLi et al. [18] to locate land-
slides in large-scale satellite pictures, and they demonstrated that the suggested framework
provided more precise segmentation of loess landslides than frameworks like Fully Convo-
lutional Networks (FCN) and U-Net. ANN, SVM, RF, and CNN were utilized by Omid
Ghorbanzadeh et al. [19] to perform landslide detection using optical data from the Rapid
Eye satellite, and the results of these algorithms were assessed.

Deep learning applied to landslide detection has the advantages of fast detection, high
automation, and low cost [20,21]. However, this kind of technology needs a lot of image
data, and obtaining high-resolution data for natural hazard studies is costly and incon-
venient, which makes it difficult to detect earthquakes quickly after their occurrence [15].
Transfer learning can help the learning process in new domains by using the “knowledge”
gained from earlier tasks, such as data features and model parameters, which lowers the
cost of gathering training data and boosts the effectiveness of model applications [22].

In conclusion, this study employs an improved Mask R-CNN algorithm, transfer
learning for model training, and approaches for data augmentation to increase the sample
size and automatically detect landslides from a small sample of post-earthquake UAV
footage. Then, using transfer learning, the trained model is used to identify the landslide
caused by the Haiti earthquake.

The main objectives of this paper are as follows:

1. Develop an earthquake landslide remote sensing recognition model with
some generalizability;

2. To test the generalizability of the model, the trained model is used to extract data on
seismic landslide hazards in untrained areas.

The following are this paper’s significant innovations and contributions:

1. The Mask R-CNN technique is improved to increase model generalization on post-
earthquake photos as well as the precision of landslide recognition;

2. The training model finished on Wenchuan UAV images is applied to seismic landslide
recognition on post-earthquake satellite imagery of Haiti using transfer learning.

The remaining portions of the paper are structured as follows: Section 2 provides
details on the experimental process, the improved Mask R-CNN model’s framework,
the experimental parameter settings, and the accuracy metrics. Section 3 describes the
experimental results, comparing and analyzing the recognition results, performance and
transferability of the different models. Section 4 compares the paper’s major works and
innovations to other researchers’ discoveries. Finally, Section 5 summarizes the work and
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main results of the study, analyses the shortcomings of the study, and provides an outlook
for future work.

2. Methods

2.1. Data
2.1.1. Study Area

Because the Wenchuan earthquake caused a huge number of landslides, and we now
have the results of the manual interpretation of the seismic landslides. The data sample
is also rich and simple to collect. We chose UAV images of Wenchuan County taken after
the 12 May 2008 Wenchuan earthquake to evaluate the efficacy of the proposed approach.
These images include a large number of seismic landslides with a data resolution of 0.25 m.
The location of the study area is shown in Figure 1.

Figure 1. (A) the location of Aba Tibetan and Qiang Autonomous Prefecture in Sichuan, (B) the
location of Wenchuan in Aba Tibetan and Qiang Autonomous Prefecture, and (C) the distribution of
landslides in Wenchuan.

The study area has a total area of 4084 km2 and is situated in Wenchuan County,
Aba Tibetan and Qiang Autonomous Prefecture, Sichuan Province. It is located within
102◦51′ E~103◦44′ E and 30◦45′ N~31◦43′ N. This study area is situated in a valley between
high and low mountains, with an overall undulating topography and an elevation trend
that is high in the north and low in the south, as well as high in the west and low in the
east, in which the highest elevation in the study area is 6100 m while the lowest elevation
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is only 786 m. The study area’s stratigraphic lithology is primarily composed of granite,
syenite, and amphibolite. The environment and seismic hazards have an impact on the
surface rocks, causing the structure to break down and a large number of collapses and
landslides to occur one after another. This results in the formation of a lot of loose solid
material in the study area, which creates an ideal environment for the development of
geological hazards such as landslides. With an average annual rainfall of 826 mm to
1049 mm, the study area’s temperate monsoon climate and abundant rainfall during the
rainy season create ideal conditions for the emergence of landslides and other geological
hazards. Meanwhile, this region is situated in the Beichuan to Yingxiu fault zone, which
has been proven to be the seismogenic fault of the Wenchuan earthquake, which is part of
the Longmenshan active fault zone. The Wenchuan earthquake was caused by the sudden
release of the accumulated energy in the Beichuan to Yingxiu zone of the Longmenshan
thrust tectonic zone, which was brought on by the continuous Northeast compression of
the Indian plate, the long-term accumulation of tectonic stresses on the eastern edge of
the Tibetan Plateau, the East compression along the Longmenshan tectonic zone, and the
blockage of the Sichuan Basin [23].

2.1.2. Dataset Production

This study used data from an SF-300 UAV equipped with a Canon EOS 5D Mark II
camera that was flown over Wenchuan County in Sichuan Province, China, on 15 August
2010 at an average altitude of 2000 m, three RGB channels, a spatial resolution of 0.25 m,
and an image size of 5616 × 3744 pixels.

This study pre-processed the training data and developed a dataset of UAV seismic
landslide photos in COCO format. First, to ensure that the training dataset is roughly
balanced, images are filtered based on image sharpness and the number of landslides on
the graph. Since there were not many images, they were chosen by hand. We made an effort
to choose images that had a good balance of pixels from landslides and non-landslides
(foreground and background), with an average pixel ratio of roughly 55:45. There were
two more pre-processing stages carried out after the selection of the photographs:

(1) Resizing the image to reduce complexity: the resized image is 512 × 512 pixels;
(2) Data annotation: this paper uses the Labelme annotator (from the Python library)

to define the seismic landslides in the image and add textual descriptions to these
seismic landslides, as shown in Figure 2.

 

Figure 2. Image annotation.

2.1.3. Dataset Augmentation

Due to the short number of image samples used in this experiment, image data
augmentation was necessary to increase the number of training photos, avoid overfitting
by changing the tiny dataset to include features from large data, and optimize the deep
learning algorithm’s training adaption [24]. For image data augmentation in this study,

119



Remote Sens. 2022, 14, 3928

image rotation and image flip are used (as shown in Figure 3). The three basic rotational
processing techniques for images are 90, 180, and 270 degrees, whereas image flip involves
flipping the images horizontally and up and down.

Figure 3. Image data augmentation.

After data augmentation, 852 landslide-containing images were obtained and split
into three sets: a training set, a validation set, and a test set, with the ratio being 7:2:1. The
training set is used to train the model, the validation set is used to validate the model
during training, and the test set is used to assess the model. The specific values of the
dataset division are shown in Table 1.

Table 1. Dataset division situation.

Number of Images Number of Landslides Included in the Image

training set 596 3560
validation set 170 898

testing set 86 476

2.2. Methodology Flow

In this study, we employ transfer learning to enhance the generalization and robustness
of the Mask R-CNN model, which is the principal model for landslide identification based
on seismic landslide photos captured by UAVs.

The following steps are primarily involved in the seismic landslide detection process:
data gathering and processing, dataset production and augmentation, landslide detection,
and accuracy evaluation. In Figure 4, the methodology flow is displayed.

2.3. Transfer Learning

Both landslide identification and landslide prediction have been successful when using
deep learning. However, gathering the necessary training data is frequently challenging in
real-world situations, and insufficient datasets frequently cause experimental results to be
overfitting. The amount of training data required in such circumstances can be decreased
by using transfer learning.
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Figure 4. Methodology Flow.

When there is a lack of training data for the target task, transfer learning approaches
can transfer information from some prior tasks to the target task [25]. As illustrated in
Figure 5, the primary goal of employing transfer learning in this research is to increase
experiment accuracy by transferring information from the Microsoft Common Objects in
Context (MS COCO) dataset [26], which has a vast quantity of data, to a smaller landslide
dataset. The model files for this experiment were pre-trained with the MSCOCO dataset
and can be downloaded at this URL https://github.com/facebookresearch/detectron2
/blob/main/MODEL_ZOO.md (accessed on 4 July 2022) to further reduce training time.

 

Figure 5. Model-based transfer learning.
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2.4. ResNet

Kaiming He et al. [27] from Microsoft Research introduced ResNet (Residual Neural
Network), successfully training a 152-layer neural network by using the ResNet Unit and
taking first place in the ILSVRC 2015 competition despite using fewer parameters than
VGGNet [28].

ResNet is made up of a residual structure, the basic concept of which is to expand the
network by adding directly connected channels, or the Highway Network concept [29]. The
performance input was transformed nonlinearly in the prior network structure, whereas
the Highway Network permitted some of the output from the earlier network layers to
be kept.

ResNet can be built using a variety of layer counts; the most popular ones are 50,
101, and 152 layers. All of these layer counts are achieved by stacking the aforemen-
tioned residual modules together. For this experiment, ResNet50 and ResNet101 were
employed. Convolutional neural networks in ResNet50 and ResNet101 feature 50 and
101 layers, respectively.

2.5. Swin Transformer

Han Hu et al. from Microsoft Research made the Swin Transformer network proposal
in 2021 [30], and their research got the best paper award at the 2021 ICCV. The Swin
Transformer network has supplanted the traditional CNN architecture as the standard
backbone in computer vision, outperforming backbone networks such as DeiT [31], ViT [32],
and EfficientNet [33]. Based on the concept of the ViT model, the Swin Transformer
ingeniously offers a sliding window technique that enables the model to learn data across
windows. The model can handle super-resolution images thanks to the down-sampling
layer, which also reduces computing work and frees it up to concentrate on global and local
information. A hierarchical feature structure and linear computational complexity to image
size are two characteristics of the Swin Transformer. Due to these characteristics, the model
can be applied to a wide range of vision tasks. In vision tasks including target detection and
picture segmentation, the Swin Transformer has achieved SOTA (state-of-the-art) results.

2.6. Mask R-CNN

The Mask R-CNN [34] framework consists of two stages: the first stage scans the
image and produces proposals (regions that are likely to contain a target), and the second
stage categorizes the proposals and produces bounding boxes and masks. The Mask R-
CNN is expanded by the Faster R-CNN. The target detection framework Faster R-CNN is
widely used [35], and Mask R-CNN expands it to include instance segmentation. The Mask
R-CNN network structure is shown in Figure 6.

The Mask R-CNN extends the Faster R-CNN by adding a parallel branch to the
existing boundary box recognition to predict the target’s mask. Using the FCN to combine
segmentation and classification undermines the effectiveness of instance segmentation,
according to the original Mask R-CNN paper. Therefore, Mask R-CNN uses the FCN to
predict a Concrete Boundary for each category independently and relies on a different
branch of the network to obtain the category and Boundary Box, as opposed to deriving
the Boundary Box from the Concrete Boundary.

2.7. The Landslide Detection Method Used in This Paper

In this experiment, ResNet50, ResNet101, and Swin Transformer were employed as the
backbone networks to extract image features, while Mask R-CNN was used as the primary
landslide recognition model. Faster R-CNN with the semantic segmentation algorithm
FCN [36] makes up the Mask R-CNN algorithm. The main network structure is shown in
Figure 7.
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Figure 6. Mask R-CNN network structure.

 

Figure 7. Network organization in this research.

Following the input of the seismic landslide picture into the network, the backbone
first extracts the associated feature map, and then an ROI is set at each place in this feature
map, yielding numerous candidate ROIs. After that, these candidate ROIs are sent into the
Region Proposal Network (RPN) for regression and binary classification (slippery slope
or non-slippery slope), with some of the non-slippery slope ROIs being passed off. For
each anchor, RPN produces two outputs: a border accuracy to better fit the target and an
anchor category to differentiate between landslides and background. The anchor that best
contains the target can be chosen using RPN’s predictions, and its size and position can be
adjusted. If numerous anchors overlap each other, the anchor with the greatest score is kept
by non-maximal suppression. The ROI Align procedure is then applied to these remaining
ROIs, which first maps the original picture to the pixel of the feature map before mapping
the feature map to the fixed feature. Finally, classification, Bounding box regression, and
mask generation (FCN operation in each ROI) are applied to these ROIs. The network’s
primary modules are made up of and operate as follows.

(1) RPN

Mask R-CNN does away with the conventional sliding window in favor of directly
using RPN to create detection frames. Figure 8 depicts the precise organization of the RPN.
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Figure 8. RPN architecture.

The original image is downsampled to produce feature maps. The final layer of
the feature map is directly used by the general network because it has strong semantics.
However, the last layer’s feature map’s positioning and resolution are quite poor, making
it simple to miss relatively small objects. The backbone used in this paper uses multiple
feature maps from the bottom to the top level for fusion, fully utilizing the extracted features
at each stage in order to achieve better feature integration. Simply put, the higher-level
features are transmitted to the lower-level semantics to complement them, resulting in
high-resolution, strongly semantic features that make it easier to detect small targets.

With the use of sliding windows, the RPN, a lightweight neural network, scans the
image and locates areas with targets. The anchors are the rectangular areas that the RPN
scans, and they overlap one another to cover as much of the image as they can. The sliding
window is implemented by the convolution process of RPN, which allows all regions to be
scanned in parallel using the graphics processing unit (GPU). Furthermore, RPN does not
scan the image directly; instead, it uses the backbone feature map, which enables RPN to
utilize the extracted features effectively and prevent double counting. RPN generates two
outputs for each anchor: an anchor class to distinguish foreground from background and a
border to better fit the target. By using RPN’s predictions, the anchor that best contains
the target can be selected and its position and size fine-tuned, and if multiple anchors are
overlapping each other, the anchor with the highest foreground score is retained through
non-maximal suppression.

The 1 × 1 convolutional layer is used to output a specified number of channels
of feature maps. Proposals are areas where the algorithm finds possible objects after
scanning the image through a sliding window. The top 1000 proposal boxes are kept
after the Proposals Layer sorts the resulting proposal boxes in descending order of score.
Four coordinates are contained in each box, resulting in the final matrix, which has the
dimensions 1 × 1000 × 4. The 1 × 1000 × 4 dimension represents the 1000 areas of the
image where the target is likely to be located. Here in the Proposals Layer, the network
completes its equivalent of targeting.

(2) ROI Align

Mask R-CNN proposes the ROI Align approach in place of ROI Pooling to address
the issue of region mismatch (misalignment) brought on by two quantization processes
in Faster R-CNN. The ROI Align operation is shown in Figure 9, with the dashed part
representing the feature map and the solid line representing the ROI, where the ROI is
sliced into 2 × 2 cells. If there are four points to be sampled, first, each cell is divided
into four small squares (represented by red lines), with the center of each serving as the
sampling point. The values of these sampled pixel points are then determined because
the coordinates of these sample points are typically floating-point numbers, necessitating
a bilinear interpolation of the sampled pixel (as indicated by the four arrows). The last
step is to max pool the four sampled points inside each cell, which results in the ROI Align
result. The purpose of ROI Align is to pool the corresponding areas in the feature map to a
fixed size based on the position coordinates of the proposed boxes obtained from RPN for
subsequent classification and boundary box regression operations.
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Figure 9. ROI Align sampling and pooling implementation process.

(3) Fully Convolution Nets

The FCN convolves and pools the image, decreasing its feature map, then performs a
deconvolution operation, which means an interpolation operation to increase its feature
map, and finally classifies each pixel value. To generate the mask of the identified target in
the input image, that is, the boundary of the identified target, the FCN operation is applied
to each ROI of the image.

2.8. Experimental Setup

For our trials in this study, we employed an RTX3090 graphics processor, an Intel
i9-10900k processor, and 64 GB of RAM. For the model software environment, both the
original and improved Mask R-CNN models are implemented in PyTorch, the python
version of Torch, a neural network framework open-sourced by Facebook, specifically for
GPU-accelerated neural network programming. Torch is a traditional tensor library that is
popular in machine learning and other applications that need a lot of arithmetic. It is used
to manipulate multidimensional matrix data.

The AdamW algorithm [37] was selected as the gradient decent optimizer algorithm
for setting model parameters because it uses less memory, trains more quickly, converges
more quickly, and reduces computational costs. The remaining hyperparameters are all
those that perform better on the validation set after multiple iterations. The batch size
was set to 8, the number of threads was set to 4, and the learning rate was set to 10−3

as the model parameter settings. After that, 50 epochs of training were performed on all
three models.

The network structure code used in the article can be downloaded at these
two URLs: https://github.com/open-mmlab/mmdetection (accessed on 4 July 2022) and
https://github.com/SwinTransformer/Swin-Transformer-Object-Detection (accessed on
4 July 2022).

2.9. Indicators for Accuracy Evaluation

In this experiment, the performance of the three seismic landslide detection models
was quantitatively assessed using Precision, Recall, F1 score, Accuracy, and intersection
over union (IoU) metrics [38]. Precision numbers primarily show how accurately landslides
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were detected on the image. The number of landslides in the image that have been
successfully recognized is represented by the Recall metric. The F1 score is used to calculate
the equilibrium between accuracy and recall. The F1 score is a combined indicator of the
model’s accuracy and is the harmonic mean of precision and recall. The accuracy rate
represents the proportion of accurately predicted data among all data. The confusion
matrix in Table 2 includes True-Positive (TP), False-Positive (FP), and False-Negative (FN),
where TP is the number of samples that were correctly identified as landslides, FP is the
number of samples that were incorrectly identified as non-landslides, and FN is the number
of samples that were not identified as landslides. If the IoU is more than or equal to 0.5,
a prediction for a landslide is deemed to be true, and if it is less than 0.5, it is deemed to
be false.

Table 2. Confusion matrix of predicted result and ground truth.

Ground Truth
Predicted Result

Landslide Non-Landslide

Landslide TP (True-Positive) FN (False-Negative)
Non-landslide FP (False-Positive) TN (True-Negative)

False negatives play a crucial role in managing the risk of landslides. The small
number of FNs guarantees that the model misses fewer landslides and identifies all affected
structures and settlements, allowing for an accurate assessment of the extent and severity of
damage to the landslide hazard area and prompt action to be taken to prevent and mitigate
the disaster in the affected area.

IoU is a metric used to assess how accurately corresponding object boundaries are
found in a set of data. IoU is a straightforward calculation criterion that may be applied to
any task that produces an output with a predicted range (bounding boxes). The correlation
between the true and predicted values is calculated by using this criterion, and the stronger
the correlation, the higher the value. The IoU value measures how closely the system’s
anticipated box and the image’s ground truth box overlap. The accuracy of a single
detection is represented by the intersection of the detection result and the ground truth
over their concatenation.

For this experiment, the test set was also labeled. After the test set’s images were
recognized, the program counted and filtered the IoU for each identified landslide. A TP is
defined as an IoU value greater than 0.5, and the total number of TP is calculated in this
way. The number of FPs is equal to the number of detected landslides less the number of
TP, whereas the number of FN is equal to the number of true landslides in the tag minus
the number of TP.

3. Results

The three models in this experiment were trained using the same landslide dataset, and
since all three models were fitted before the 30th epoch, only the first 30 epochs were chosen
for illustration. Figure 10 displays, following 30 training epochs, the overall validation
loss curves generated by the various models. The three models’ loss curves generally
follow a similar trend, with faster learning and a notable decline in loss values during the
initial phases of training. The model gradually converges in the middle and later phases of
training, with smaller changes in loss values and a sluggish rate of decrease. The accuracy
of the model’s landslide detection keeps improving as the total loss value drops, and in this
study, the epoch with the lowest total loss value is chosen for identification on the test set.
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Figure 10. Validation Loss Curve.

The same landslide dataset was also used to train the YOLOv5, Faster R-CNN. Follow-
ing training, the three models’ recognition accuracies were compared to those of the classic
YOLOv5 and Faster R-CNN models on the test set. The primary architect of the original
YOLOv5 project methodology was Glenn Jocher of Ultralytics. YOLOv5 is a one-stage
detection model that, after a single inspection, generates the class probability and position
coordinate values of the object directly, without the aid of a region proposals stage. While
being slower but typically more accurate, Mask R-CNN is a two-stage detection model.
The results are given in Table 3.

Table 3. Comparison of network accuracy.

Model Precision (%) Recall (%) F1 Score (%) Accuracy (%)

Mask R-CNN+Swin Transformer 93.28 87.41 90.25 82.2
Mask R-CNN+ResNet101 89.55 83.92 86.64 76.43
Mask R-CNN+ResNet50 86.15 80.32 83.13 73.91

YOLOv5 88.64 83.78 86.16 75.94
Faster R-CNN 84.47 78.36 81.30 69.13

Table 3 shows that the model with the Swin Transformer performs well on the test
set, with Precision values of 0.9328, Recall values of 0.8741, F1 scores of 0.9025, and
Accuracy values of 0.822. The improved algorithm outperformed the previous algorithms
in all indexes when compared to the original Mask R-CNN, YOLOv5, and Faster R-CNN.
According to a study of the test results, the method described in this work for detecting
seismic landslides has a greater detection accuracy than the original Mask R-CNN algorithm.
Figure 11 displays the outcomes of the UAV image recognition in the test set. In the diagram,
the blue box represents the landslide boundary box determined by the model, and the red
area represents the landslide boundary determined by model identification.
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Figure 11. Results of UAV image recognition in the test set ((a,e,i,m,q) are ground truth images;
(b,f,j,n,r) are recognition images of Resnet 50 for the backbone; (c,g,k,o,s) are recognition images
of Resnet 101 for the backbone and (d,h,l,p,t) are recognition images of Swin Trasnformer for
the backbone).

As seen in Figure 11a–h, the improved model is capable of correctly identifying
individual landslides when there is a significant area of individual landslides on the image.
The resulting landslide boundaries are also more precise than those produced by ResNet50
and ResNet101.
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While the recognition results of ResNet50 and ResNet101 suffer from serious under-
detection when the natural environment is complex, as shown in Figure 11i–p, the improved
model can accurately detect them even if there are two or more landslides on the image
at the same time. Although the landslide area below the image is only partially visible
in the UAV image, the model correctly identifies it, demonstrating the improved model’s
increased robustness. In this way, the model can maintain high recognition accuracy even in
landslide regions on the image that is partially or completely hidden by surface structures,
such as buildings or forests.

As seen in Figure 11q–t, there is a river on the right side of the landslide area, and the
visual characteristics of the river are very similar to those of the landslide. ResNet50 exhibits
the phenomenon of mistaking the river for a landslide, but the improved model correctly
ignores these occurrences and detects the landslide area on the left side, demonstrating its
anti-interference ability.

The recognition results, however, demonstrate that the improved model continues
to miss and misidentify locations on the map. The exposed rock above is mistakenly
identified by the improved model in Figure 11p as a landslide area due to the visual
similarities between the two. Figure 11t demonstrates how the improved model overlooked
a minor landslide below. This suggests that there is still room for improvement in the
improved model’s capacity to identify landslides in challenging environments, especially
when it comes to distinguishing them from exposed rock and exposed soil. In the future,
steps could be taken to lessen the influence of bare rock and bare soil on the model, such
as increasing the number of landslide samples and adding satellite and drone imagery of
various resolutions to the dataset.

This study put the seismic landslide photos from Haiti into three trained models for
identification to examine the generalizability and transferability of the models. After image
correction, fusion, and other pre-processing, the Haiti seismic landslide image, which is
segmented into 512 × 512 pixels size for identification in this paper, is created with a 1 m
resolution true-color image of the Haiti post-earthquake GF-2 satellite image from 2021.
Figure 12 depicts the outcomes of the identification of the Haiti satellite imagery, with the
Ground Truth being the landslide boundary determined by the geohazard interpreters
based on the outcomes of surface changes between the Haiti satellite images taken prior to
the earthquake and those taken following it. In the diagram, the blue box represents the
landslide boundary box determined by the model, and the red area represents the landslide
boundary determined by model identification.

Figure 12a–d,q–t demonstrate the improved model’s superior feature extraction capa-
bilities for seismic landslides. ResNet50 and ResNet101 exhibit missed and false detections
when identifying landslides, while the improved model can still recognize landslides that
are untrained and have different colors. The improved model performs well in identifying
small landslides, even when they are small, as shown in Figure 12e–h.

ResNet50 and ResNet101 could only identify the larger, more noticeable landslides
among them, and the detection results are shown in Figure 12i–p. Despite the large number
of landslides present on the image at the same time, the improved model was still able to
identify the vast majority of them.

In conclusion, both ResNet-50 and ResNet-101 performed poorly in their recognition
of the Haiti images, but the improved model’s detection results on those same images
still maintained high accuracy, demonstrating the improved model’s superior robustness
and transferability.
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Figure 12. Comparison of Haiti’s satellite image identification outcomes ((a,e,i,m,q) are ground truth
images; (b,f,j,n,r) are recognition images of Resnet 50 for the backbone; (c,g,k,o,s) are recognition
images of Resnet 101 for the backbone and (d,h,l,p,t) are recognition images of Swin Trasnformer for
the backbone).

130



Remote Sens. 2022, 14, 3928

4. Discussion

In recent years, deep learning has been employed by many academics to identify
landslides. A DLWC model for landslide detection in Hue–Saturation–Intensity (HSI) data
was proposed by C. Ye et al. [39] DLWC combines the extracted features and susceptibility
factors for landslide detection after using deep confidence networks to extract spatial
features and spectral characteristics of landslides at high levels on hyperspectral images.
To determine if it was a landslide, a logistic regression classifier with constraints was
finally employed. The experimental outcomes demonstrate that the detection accuracy of
landslides on remote sensing images reaches 97.91 percent, which is more accurate than
the conventional hyperspectral image classification method. Utilizing contour data and
the vegetation index, Bo Yu et al. [40] developed an end-to-end deep learning framework
for landslide detection. The framework is divided into two sections: one for identifying
areas at risk of landslides using vegetation indices and DEM and the other for accurately
identifying those areas through the use of a semantic segmentation deep learning model.
With a recall of 65% and an accuracy of 55.35%, the proposed methodology performed 44
percent more accurately than comparable published works when used to identify landslides
in Nepal on images from Landsat 2015. In order to detect and map earthquake-induced
landslides in single RapidEye satellite images, Yi Y et al. [41] proposed a new end-to-end
deep learning network, LandsNet, to learn various features of landslides. To address
the lack of training samples, specific training samples were first generated and a data
augmentation strategy was put into place. A cascaded end-to-end deep learning network
called LandsNet was subsequently built. By using morphological processing, the identified
landslide maps have finally been further optimized. In two spatially distinct earthquake-
affected areas, LandsNet achieved the best F1 value of about 86.89 percent, which is almost
7 and 8 percentage points higher than those of ResUNet and DeepUNet, respectively.
An improved U-Net model for seismically generated landslide extraction was developed
by Liu, P. et al. [42] using post-earthquake aerial remote sensing imagery to annotate a
landslide dataset. The article increases the amount of feature parameters for the training
samples by first adding three new bands with spatial information to the three RGB bands:
DSM, slope, and aspect. In order to rebuild the U-Net model structure, a residual learning
unit was then added to the conventional U-Net model. Finally, the new technique was used
to identify seismic landslides in Jiuzhaigou County, Sichuan Province, China. According to
the findings, the new method’s accuracy is 91.3 percent, which is 13.8 percent greater than
that of the conventional U-Net model.

All of the aforementioned studies have produced positive results, but there are clear
drawbacks in the quick identification of post-earthquake seismic landslides, such as the
challenge of quickly obtaining hyperspectral image data after an earthquake, the low iden-
tification accuracy, and the poor transferability. Automatic seismic landslide extraction’s
main goal is to take all necessary measures to meet seismic emergency needs and to offer
technical assistance for disaster mitigation and relief efforts such as opening up lifelines
and life rescue. The issue of applying a trained model to landslides in untrained areas
has received less attention in recent research on landslide identification. The algorithm
used in this paper can extract corresponding patterns using multi-layer learning in a neural
network using spatial and spectral features of seismic landslides from remote sensing
imagery. In the early stages of the study, numerous sets of labelled data are used as sam-
ples to train landslide identification models, which can be used to quickly extract data
about disasters such as seismic landslides in the post-disaster period. In this study, data
from the 2008 Wenchuan earthquake were used to train a recognition model with some
generalizability to seismic landslides, and seismic landslide data from Haiti were used to
validate the model. The method used in this study produced comparable F1 values and
accuracy to the studies by Yi Y et al. [41] and Liu, P et al. [42], but the model can be used
for identification immediately after an earthquake without collecting data, improving time
efficiency, indicating that the model has better potential for use in emergency response to
earthquake disasters.
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With good results and an accuracy of 0.9328 and an F1 score of 0.9025, Resnet-50,
Resnet-101, and Swin Transformer were utilized in this study as the backbone networks
of Mask R-CNN for the extraction of seismic landslides in Wenchuan. On untrained
post-earthquake satellite photos of Haiti, the improved model continues to produce good
recognition results, and its accuracy and transferability have both increased. Compared to
earlier examined methods, the one used in this study is more automated and necessitates
fewer data.

This study employs some techniques to improve model accuracy and avoid overfitting
while working with tiny samples of data. To obtain a larger dataset, data augmentation is
first applied to the photos, rotating and flipping each image. Second, transfer learning is
utilized to shorten the training time, improve the generalizability of the model, and reduce
the amount of data gathering needed. Ultimately, the Swin Transformer was employed as
the model’s backbone network to improve its adaptability and accuracy.

The findings of this study demonstrate that seismic landslides can be successfully
identified in UAV imagery by using deep learning techniques. It is anticipated that satellite
and UAV imagery data of various resolutions will be added to the dataset for the study’s
next phase to increase data diversity and boost the precision of landslide identification.
Other data, such as Digital Elevation Model (DEM) data, can also be incorporated into the
model, in addition to remotely sensed imagery.

5. Conclusions

In this study, we created a seismic landslide sample dataset by labeling the landslides
that appeared on post-quake UAV images from Wenchuan County, Sichuan Province, in
2008. To identify landslides in post-earthquake drone images of Wenchuan, this study
used ResNet-50, ResNet-101, and Swin Transformer as the backbone networks. Data
augmentation and transfer learning methods were also used, and the generalizability and
transferability of the models were compared using seismic landslide images of Haiti. The
results demonstrate that the Swin Transformer outperforms ResNet-101 and ResNet-50,
obtaining a Precision value of 0.9328 and an F1 score of 0.9025 on the dataset and having
greater robustness and generalization for landslide detection. In this study, a remote
sensing model for identifying seismic landslides with some degree of universality was
developed and successfully used to identify seismic landslides in Haiti. This indicates
the accuracy of using the improved Mask R-CNN algorithm to detect landslides in post-
earthquake UAV imagery. The landslide identification model developed in this paper has
made some advances in terms of generalizability and transferability, and it can deliver
accurate landslide data for post-earthquake emergency rescue and disaster assessment.
This study still has a few flaws in it. The next step will be to streamline the model in order
to reduce training time because the model parameters used in this study are numerous
and demand high computer performance. In order to improve the model’s accuracy and
dependability, the dataset will be expanded in the future to include satellite imagery and
drone imagery at various resolutions.
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Abbreviations

UAV unmanned air vehicle
COCO common objects in context
SVM support vector machines
RF random forests
ANN artificial neural networks
DT decision trees
CNN convolutional neural networks
R-CNN region-CNN
OBIA object-based image analysis
MS COCO Microsoft common objects in context
ROI region of interest
FCN fully convolutional networks
RPN region proposal network
GPU graphics processing unit
IoU intersection over union
TP true-positive
FP false-positive
FN false-negative
DEM digital elevation model
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Abstract: In multi-sensor systems (MSSs), sensor selection is a critical technique for obtaining high-
quality sensing data. However, when the number of sensors to be selected is unknown in advance,
sensor selection is essentially non-deterministic polynomial-hard (NP-hard), and finding the optimal
solution is computationally unacceptable. To alleviate these issues, we propose a novel sensor
selection approach based on evolutionary computational intelligence for tracking multiple targets
in the MSSs. The sensor selection problem is formulated in a partially observed Markov decision
process framework by modeling multi-target states as labeled multi-Bernoulli random finite sets.
Two conflicting task-driven objectives are considered: minimization of the uncertainty in posterior
cardinality estimates and minimization of the number of selected sensors. By modeling sensor
selection as a multi-objective optimization problem, we develop a binary constrained evolutionary
multi-objective algorithm based on non-dominating sorting and dynamically select a subset of
sensors at each time step. Numerical studies are used to evaluate the performance of the proposed
approach, where the MSS tracks multiple moving targets with nonlinear/linear dynamic models
and nonlinear measurements. The results show that our method not only significantly reduces the
number of selected sensors but also provides superior tracking accuracy compared to generic sensor
selection methods.

Keywords: computational intelligence; intelligent sensing technique; multi-sensor systems; multi-
target tracking; random finite set; sensor selection

1. Introduction

With the rapid development of sensing techniques, sensing systems with multi-sensor
configurations have attracted lots of attention in numerous fields, such as scene analysis,
military defense, habitat monitoring, and other surveillance scenarios [1–4]. As one of the
most important techniques, multi-target tracking (MTT) in multi-sensor systems (MSSs) is
challenging for two reasons. On the one hand, MTT itself is difficult due to target birth,
target death, false alarm, miss detection, and data association uncertainty. On the other
hand, due to communication and real-time constraints, intelligent sensor management is
required to balance the constraints and the tracking accuracy. Under the complex, dynamic
and variable circumstances, sensor control can be regarded as an optimal nonlinear control
issue, and standard optimal control schemes are not directly applicable [5].

Conventional MTT approaches used in the literature can be regarded as combina-
tions of single-target trackers. Examples of such approaches include multiple hypothesis
tracking [6,7] and joint probabilistic data association [8]. However, they cannot be used
in principled sensor management since it is difficult to formulate a management criterion
that accommodates the multi-target in a mathematical description. A solution to solve
the sensor management problem is to use finite set statistics (FISST) [9,10] in the Bayesian
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paradigm. Under the framework of FISST, the multi-target probability density is used to
describe the uncertainty of the multi-target system and can be systematically handled by
random finite sets (RFSs). The probability hypothesis density (PHD) [11], cardinalized
PHD [12], and multi-Bernoulli (MB) [13] filters are popular FISST-based approaches. The
MB filter uses multiple independent Bernoulli RFSs to model the set of independent targets
and propagates MB parameters over time. Different from the MB filter, the PHD and
cardinalized PHD filters propagate moments of the multi-target posterior density. These
filters were developed as crude approximations of the Bayes filter and cannot output the
trajectory for each target. In [14,15], the labeled RFS was used to solve the problem of
trajectory estimation. Following these studies, Vo et al. developed a multi-target tracker
named generalized labeled MB (GLMB) [16]. The labeled MB (LMB) filter [17] proposed by
Reuter et al. provides an efficient approximation of the GLMB filter. In terms of accuracy,
the LMB filter outperforms the PHD, cardinalized PHD, and MB filters. What is more, it
outputs target trajectories.

Several solutions have been proposed under the FISST framework to solve the sensor
management problem. An objective function is generally required as a criterion for sensor
management. The Rényi divergence [18–20], or alpha divergence, is widely used as the
objective function for sensor management. The Kullback–Leibler divergence or Hellinger
affinity are special cases of the Rényi divergence. Recently, a closed-form expression of the
Cauchy–Schwartz divergence has been developed for Poisson densities [21], the GLMB
filter [22], and the LMB filter [23], providing an alternative objective function for sensor
management [22,24,25]. Although the information divergence is derived in a principled
manner, it is unclear how to translate it directly into practical performance criterions such
as state or cardinality estimation errors. To meet the task of sensor management in a
direct way, the task-driven objective functions have been developed [23,26–29]. In [26], the
cardinality variance was used to enable efficient sensor management. In [23], Gostar et al.
proposed minimizing the posterior dispersion. To deal with multiple tasks simultaneously,
ad hoc methods have been developed in [27–29] by estimating the relative importance
of each task and assigning weights to the objective functions. It is necessary to estimate
the relative importance of each task. In [30], Nguyen et al. studied the multi-objective
path-planning problem and proposed competing objectives for searching for undiscovered
moving targets while keeping track of discovered targets.

In this work, we consider the problem of selecting a subset of sensors acquiring
high-quality measurements to alleviate the energy and bandwidth issues. For the sensor
selection problem, it is usually assumed that the number of sensors to be selected is known
in advance [31], as illustrated in Figure 1.

selected

selected

selecteded

selected

selected

selectedssseselec

Figure 1. Illustration of dynamic selection of a fixed number of sensors for MTT: (a) At time k; (b) At
time k + 1. It is assumed that three sensors are selected at each time step, and the blue circles show
the coverage areas of the selected sensors.
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However, in most practical applications, such as multi-sensor MTT, it is impossible for
the system’s designer to know the exact number of selected sensors before the selection
operation begins. Apparently, it is necessary to study a feasible sensor selection scheme
that adaptively determines the optimal number of selected sensors according to the dy-
namics of a multi-sensor multi-target system. In this case, sensor selection is, in fact, a
global combinatorial optimization problem. When the scale of the MSS is large, sensor
selection can be extremely challenging. To alleviate this issue, a spatial non-maximum
suppression algorithm has been proposed in [32], but its performance is affected by a tun-
ing parameter. The work in [33] developed an approach that decoupled the multi-sensor
coordinated management into distributed management of each sensor by maximizing the
local Rényi divergence. This method can be used for distributed MTT but not for sen-
sor selection. Wang et al. [34] proposed a guided search algorithm for multi-dimensional
optimization-based sensor management. It is not applicable to sensor selection applications
and may become stuck at a nonstationary point because of the use of coordinate descent.
Cao et al. [35] proposed a sensor selection scheme with low computational complexity
based on the upper bound of the mutual information. The method is only applicable for
tracking a single target.

The aim of this study is to develop a methodology that allows selection of fewer sensors
while ensuring the performance of MTT. The LMB filter is used for MTT by modeling the
multi-target states as LMB RFSs. In the sensor selection procedure, we develop the number
of selected sensors as an objective function. The variance of the cardinality distribution is
also designed as an objective function to improve the accuracy of the cardinality estimate. In
addition, a constraint of the number of selected sensors is necessary to meet communication
constraints while guaranteeing the performance of the filter. However, minimizing the
number of selected sensors and minimizing the cardinality variance is conflicting. The
problem is further compounded by the number constraint. To solve this problem, we model
it as a multi-objective optimization (MOO) problem and develop a binary constrained
evolutionary multi-objective algorithm to dynamically select a subset of sensors. For each
selection command, the generalized covariance intersection (GCI) scheme [36] is used for
implementing multi-sensor data fusion. The main contributions are summarized as follows.

First, to the best of our knowledge, it is the first study in which an evolutionary
algorithm is used in the multi-objective POMDP for MTT. In general, the ideal solution of
the MOO does not exist since the objective functions are conflicting. We find the Pareto
solutions using an evolutionary multi-objective algorithm via non-dominated sorting and
dynamically select a subset of sensors at each time step.

Second, we develop a novel binary constrained crossover and binary constrained
mutation operators within the evolutionary algorithm to handle the constraint for the
number of selected sensors and obtain feasible solutions.

Third, we compare the proposed evolutionary MOO (EMOO)-based sensor selection
approach with several other sensor selection solutions. Simulation results prove that the
proposed approach has satisfactory state estimation performances and effectively reduces
the number of selected sensors.

The paper is organized as follows. Section 2 presents the existing literature on the RFS
and the LMB recursion. The motivation and implementation of the EMOO-based sensor
selection approach are presented in Section 3. Section 4 presents numerical simulations and
results. Conclusions are given in Section 5.

2. Background

2.1. Labeled RFS

In the stochastic multi-target system, the target state is modeled as an RFS. The single-
target state and the multi-target state are denoted by x and X, respectively. It is difficult
to output the trajectories of multiple targets only by using the representation of RFS, and
we can only estimate the set of states at different time steps, i.e., {X1, . . . , Xk}. To address
this issue, the labeled RFS is introduced. In the labeled RFS, the target state is augmented
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with a label �. To distinguish between labeled and unlabeled entities, labeled entities
are bold, e.g., x and X. At time k, the multi-target state Xk consists of N(k) single-target
states xk,1, . . . , xk,N(k) and the multi-target measurement Zk consists of M(k) measurements
zk,1, . . . , zk,M(k). Then, Xk an Zk are given as

Xk = {xk,1, . . . , xk,N(k)} ∈ F (X×L), (1)

Zk = {zk,1, . . . , zk,M(k)} ∈ F (Z), (2)

where F (Z) denotes the space of finite subsets of Z, and X, L, and Z denote the spaces for
X, �, and Z, respectively.

The multi-target posterior density πk(Xk|Z1:k) is estimated by the Bayesian prediction
and update [9,10]

πk|k−1(Xk|Z1:k−1) =
∫

fk|k−1(Xk|X)πk−1(X|Z1:k−1)δX, (3)

πk(Xk|Z1:k) =
gk(Zk|Xk)πk|k−1(Xk|Z1:k−1)∫
gk(Zk|X)πk|k−1(X|Z1:k−1)δX

, (4)

where Z1:k = (Z1, . . . , Zk) represents the set of measurements accumulated to the current
time; πk|k−1(Xk|Z1:k−1) is the predicted density; fk|k−1(·|·) is the multi-target transition
density, encapsulating multi-target motion, such as target birth/death and single-target
motion; gk(·|·) is the multi-target likelihood, encapsulating system uncertainty, such as ob-
servation noise, data association uncertainty, and detection uncertainty. The integrals given
in (3) and (4) are not ordinary integrals but set integrals. For a function f : F (X×L) → R,
the set integral is denoted as [9,10]

∫
f(X)δX =

∞

∑
i=0

1
i!

∫
f({x1, . . . , xi})d(x1, . . . , xi). (5)

In the following, the standard inner product notation of f and g is expressed as

〈 f , g〉 �
∫

f (x)g(x)dx, (6)

and the multi-target exponential notation is given as

hX � ∏
x∈X

h(x). (7)

The inclusion function 1S(X) and the Kronecker delta function δS(X) are denoted as

1S(X) �
{

1, if X ⊆ S
0, otherwise

, δS(X) �
{

1, if X = S
0, otherwise

. (8)

2.2. Labeled Multi-Bernoulli Filter

In the LMB filter, a target x ∈ X with label � ∈ L is completely characterized by the
probability of existence r(�) and the probability density p(�)(x). The LMB distribution
is, therefore, represented by π = {(r(�), p(�)(·))}�∈L. Let �(X) = δ|X|(|L(x)|) denote a
distinct label indicator and L : X× L → L be the projection L(X) = {L(x) : (x ∈ X)}.
The LMB RFS density is parameterized as

π(X) = Δ(X)w(L(X))[p]X , (9)

where

w(L) = ∏
i∈L

(1 − r(i))∏
i∈L

1Lr(�)

(1 − r(�))
, (10)
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[p]X = ∏
(x,�)∈X

p(�)(x), (11)

and L indicates a set of labels.
If the posterior density follows the LMB distribution and is parameterized as

π = {(r(�), p(�)(·))}�∈L and the birth model also follows the LMB distribution with the
parameter set πB = {(r(�)B , p(�)B (·))}�∈B, then the predicted density is given as

π+ = {(r(�)+,S, p(�)+,s(·))}�∈L ∪ {(r(�)B , p(�)B (·))}�∈B, (12)

where
r(�)+,S = ηS(�)r(�), (13)

p(�)+,s(·) =
〈pS(·, �) f (x|·, �), p(·, �)〉

ηS(�)
, (14)

ηS(�) = 〈pS(·, �), p(·, �)〉, (15)

pS(·, �) is the state-dependent survival probability and f (x|x′, �) denotes the transition
density of the target with track �. For simplicity, we denote the predicted LMB RFS by

π+ = {(r(�)+ , p(�)+ (·))}�∈L+
, (16)

where the label space L+ = L∪B (with L∩B = �).
The family of the LMB RFS is closed under the Bayesian prediction but not closed

under the Bayesian update. To solve this problem, the predicted LMB distribution is
converted to a δ-GLMB distribution. Then, the update of the δ-GLMB is implemented,
and the result is approximated by an LMB. The LMB approximation of the multi-target
posterior density is denoted as

π(·|Z) = {(r(�), p(�)(·))}�∈L+
, (17)

where
r(�) = ∑

(I+ ,θ)∈F (L+)×ΘI+

w(I+ ,θ)(Z)1I+(�), (18)

p(�)(x) =
1

r(�) ∑
(I+ ,θ)∈F (L+)×ΘI+

w(I+ ,θ)(Z)× 1I+(�)p(θ)(x, �), (19)

w(I+ ,θ)(Z) ∝ w+(I+)[η
(θ)
Z (�)]I+ , (20)

p(θ)(x, �|Z) = p+(x, �)ψZ(x, �; θ)

η
(θ)
Z (�)

, (21)

η
(θ)
Z (�) = 〈p+(·, �), ψZ(·, �; θ)〉, (22)

ψZ(x, �; θ) =

⎧⎨⎩
pD(x,�)g(zθ(�) |x;�)

κ(zθ(�))
, if θ(�) > 0,

1 − pD(x, �), if θ(�) = 0,
(23)

and ΘI+ is the space of mappings θ : I+ → {0, 1, . . . , |Z|}, such that θ(i) = θ(i′) > 0
implies i = i′; κ(·) is the intensity of the clutter measurements; g(z|x; �) is the likelihood of
measurement z given (x, �).

In the sequential Monte Carlo (SMC) implementation, the density for each target with
label (�) is approximated by a weighted sum of particles, as follows

p(�)(x) �
J(�)

∑
j=1

ω
(�)
j δ

x(�)j
(x), (24)
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where ω
(�)
j is the weight of particle j, and J(�) denotes the number of particles. For more

details on the SMC implementation, please refer to [17].

3. Method

3.1. Objective Functions Proposal

Using sensor networks with communication constraints, sensor selection for MTT appli-
cations is usually employed to acquire the best set of measurements. As sensor management
solutions, the Markov decision process and partially observable Markov decision process
(POMDP) have received great attention over the last few decades [24]. The POMDP frame-
work enables direct generalization to multiple targets by using the RFS model [9,10,24]. We
model the sensor selection problem as the following discrete-time POMDP:

Ψ = {Xk,S, fk|k−1(Xk|Xk−1, ), gk(Zk|Xk), ϑ(sk)}, (25)

where S denotes a finite set of candidate sensors and ϑ(sk) is the objective (reward or cost)
function. In stochastic filtering, the aim is to find a selection command that optimizes ϑ(sk).

In our work, two objective functions are considered: the number of selected sen-
sors and the variance of the cardinality distribution. Both of the objective functions are
dependent on binary decision variables. Let

sk = [s1,k, s2,k, . . . , sNs ,k], (26)

be the selection command at time k, and Ns is the number of all candidate sensors in the
MSS. The elements of sk are binary variables, i.e., si,k = 1, if sensor si is selected and si,k = 0
otherwise. For example, if there are ten sensors in the system, sk = [0, 1, 0, 1, 0, 0, 0, 0, 1, 0]
indicates the command that the sensors s2, s4 and s9 are selected at time k.

In many practical applications, the number of sensors to be selected is unknown to
the system designer. To control the number of selected sensors at time k, the following
objective function is considered

f1(sk) =
Ns

∑
i=1

si,k. (27)

The other objective function is the variance of the cardinality distribution, aiming
at minimizing the error for the estimated number of targets. At time k, the cardinality
variance corresponding to the selection command sk is given by

f2(sk) = ∑
�∈L+

r(�)(sk)[1 − r(�)(sk)]. (28)

The objective function defined in (28) is computed using parameters of the updated
LMB distribution. However, sensors have not been selected and it is impossible to update
the LMB RFS density using measurements collected by the selected sensors. The predicted
ideal measurement set (PIMS) strategy [37] is utilized to address this issue, which is
dependent on the predicted LMB distribution and ideal assumption of perfect detection,
no clutter, and no measurement noise. First, the predicted LMB distribution is used to
estimate the number of targets and the target states. The maximum a posteriori estimate of
the target number is computed as follows,

n̂ = arg max
n

ρ(n) = arg max
n

ρ(0) ∑
L⊆L,|L|=n

(
∏
�∈L

r(�)+

1 − r(�)+

)
, (29)

where ρ(0) = ∏�∈L(1 − r(�)+ ). Then, we obtain n̂ labels with the highest existence probabili-
ties from the predicted LMB distribution. The a posteriori estimate of the target state with
label � is given as
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x̂(�) =
J(�)+

∑
j=1

ω
(�)
j+ x(�)j+ . (30)

A predicted ideal measurement is estimated for each x̂(�) under the assumed ideal
conditions, and the pseudo-update of the LMB distribution is implemented with the PIMS.
Then, the objective function (28) is computed using the generated pseudo LMB distribution.

3.2. Evolutionary Multi-Objective Optimization

Although the number of sensors to be selected is kept unknown, the number of
selected sensors should be limited to a range Nmin and Nmax. This limit not only guarantees
the performance of the filter but also meets the communication requirement. At time k, the
constrained MOO is mathematically described as follows

Minimize F(sk) = [ f1(sk), f2(sk)]
T (31)

Subject to Nmin ≤ f1(sk) ≤ Nmax (32)

where F(sk) is the objective vector.
For the MOO problem, the solutions satisfying the constraint of (32) form the feasible

set. The ideal solution is the one that is optimal for all the objective functions. In general, the
ideal solution does not exist since the objective functions are conflicting. Several methods
have been proposed to handle the problem [38–41]. Among them, the scalarization and
Pareto methods do not need complicated numerical derivations and are widely used. The
scalarization method is easy to implement, but it needs to assign relative weight to each
objective based on prior information. Worse, unless the search space is convex, the solution
may not be found [42]. In the Pareto method, the goodness of a solution is determined by
the dominance, and a compromise solution can be found along the Pareto optimal front.
We solve the above MOO problem and find optimal Pareto solutions using an evolutionary
multi-objective algorithm via non-dominated sorting. First, the initial population of size
Npop is generated in which each solution is a feasible solution, represented by a vector
of Ns binary elements. Then, the offspring solutions are obtained by binary tournament
selection, crossover and mutation operators.

In our problem with binary decision variables, a simple crossover operator called
one-point crossover is used. Two parent chromosomes and a random/given point are
selected. After the given/selected point, genes of parent chromosomes are interchanged.
An example is given in Figure 2, in which point four is selected, and the genes of two-parent
chromosomes P1 and P2 are interchanged. Assuming that the number of selected sensors is
limited to the range Nmin = 1 and Nmax = 3, we can observe that the offspring solutions in
Figure 2 meet the constraints of the number of selected sensors. However, there are some
cases where the offspring solutions need to be modified. An example is given in Figure 3,
where the parent chromosomes P1 and P2 are different from those in Figure 2. In Figure 3,
we also select point four and interchange the genes of P1 and P2. The sum of all the bits
in solutions C1 and C2 are N = 0 and N = 4, respectively. Apparently, these solutions
cannot meet the constraints of Nmin = 1 and Nmax = 3 and, hence, are infeasible for sensor
selection. To solve this problem, we develop a binary constrained crossover procedure, as
shown in Algorithm 1.

141



Remote Sens. 2022, 14, 3624

Figure 2. Example of the effective one-point crossover.

Figure 3. Example of the ineffective one-point crossover.

Algorithm 1 Binary constrained crossover.

1. Select one crossover point.
2. Copy the binary string from the beginning to the crossover point of the first parent

and the rest from the other parent.
3. Compute the sum N of all the bits of the child solution.
4. If Nmin ≤ N ≤ Nmax, the child solution is reserved; otherwise, go to line 5.
5. Select and flip a point of the child solution, and go back to line 3.

Along with the binary constrained crossover, the mutation is also performed. For the
binary issue, the bit flip mutation is one of the most commonly used mutation operators.
In the bit flip mutation, one or more random bits are selected and then flipped. Figure 4
illustrates an example in which point four is selected from the parent chromosome P and
flipped. We assume that the number of selected sensors is limited to the range Nmin = 1
and Nmax = 3. Then, the offspring solution in Figure 4 meets the constraints. There are
some cases where the offspring solutions of the mutation need to be modified. Figure 5
shows an example, where we also select point four and flip it. The sum of all the bits in
solution C is N = 4, which cannot meet the constraint of Nmax = 3. To solve this problem,
we develop the binary constrained mutation, as shown in Algorithm 2.

Figure 4. Example of the effective bit flip mutation.
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Figure 5. Example of the ineffective bit flip mutation.

Algorithm 2 Binary constrained mutation.

1. Randomly select one mutation point.
2. Flip the selected mutation point.
3. Compute the sum N of all the bits of the child solution.
4. If Nmin ≤ N ≤ Nmax, the child solution is reserved; otherwise, go back to line 1.

After the variants (crossover and mutation), the offspring for the next generation are
generated. The new population formed by the parents and offspring is sorted according
to the non-dominant relationships. The size of the population is decreased to Npop by
eliminating the solutions with lower ranks. For the next generation, the new population
is generated using binary tournament selection, binary constrained crossover, and binary
constrained mutation. After several generations G, the Pareto-front is obtained.

The Pareto front is formed from non-dominated solutions, and it is necessary to
choose one compromise solution from them. We use the gray relational analysis (GRA)
strategy [43] to find the compromise solution. GRA does not require the weight of each
objective function or other prior information. The gray relational coefficient (GRC) approach
is used to estimate the similarity between the candidate network (formed by values of the
objective functions for the Pareto solutions) and the optimal reference network (formed by
the optimal value of each objective). Assuming that there are m Pareto solutions obtained
by the evolutionary algorithm, fij is the ith value of the jth objective in the objective matrix,
f ij is the value of fij after normalization. The main steps involved in GRA are summarized
as follows.

i: Normalizethe objective function values of Pareto solutions, as follows

f ij =
maxi∈m fij − fij

maxi∈m fij − mini∈m fij
. (33)

ii: Find the reference network points

f ∗j = maxi∈m f ij. (34)

iii: Estimate the difference between f ∗j and f ij

�Iij =
∣∣∣ f ∗j − f ij

∣∣∣. (35)

iv: Find the value of GRC for each optimal solution:

GRCi =
1
m

n

∑
j=1

�min +�max
�Iij +�max

, (36)

where �max = maxi∈m,j∈n(�Iij) and �min = mini∈m,j∈n(�Iij). v: Find the largest GRCi,
and the corresponding solution is recommended.

3.3. Multi-Sensor Fusion

For each selection command candidate s ⊆ S, the posteriors are LMB RFSs with
parameters π(·|Z(s)) = {{(r(�)i,si

, p(�)i,si
(·))}�∈L+

}|s|i=1. The posterior density of each selected
sensor is approximated by
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p(�)i,si
(x) =

J(�)+

∑
j=1

ω
(�)
i,si ,j

δ
x(�)j+

(x). (37)

During the update step of the LMB filter, the weights of particles are updated but the
particles themselves are not changed. Therefore, the particles in (37) are the same particles
used in the prediction.

We use the GCI scheme [36] to fuse those posterior LMB densities, which returns the
following existence probabilities and densities,

r(�)s =

∫
∏

|s|
i=1(r

(�)
i,si

p(�)i,si
(x))�i dx

∏
|s|
i=1(1 − r(�)i,si

)�i +
∫

∏
|s|
i=1(r

(�)
i,si

p(�)i,si
(x))�i dx

, (38)

p(�)s (x) =
∏

|s|
i=1(p(�)i,si

(x))�i∫
∏

|s|
i=1(p(�)i,si

(x))�i dx
, (39)

where �i is a weight indicating the importance of sensor si in the fusion process. The
sum of all the weights is equal to 1, i.e., ∑

|s|
i=1 �i = 1. We assume that all the sensors

have equal importance in the simulation studies, i.e., �i = 1/|s|. When using the particle
approximation (37) to represent each LMB density, the integrals in (38) and (39) turn to
weighted sums over the particles.

3.4. Step-by-Step Implementation

We introduce a sensor selection solution for MTT in this paper. The framework consists
of four main steps: prediction, estimation of PIMS, EMOO-based sensor selection, and
fusion of local posteriors. The schematic diagram is shown in Figure 6.

Algorithm 3 shows a complete step-by-step pseudocode for a single run of the pro-
posed algorithm that outputs a fused LMB posterior. Assume that the following parameters
are always available:

• Sensor model parameters: the number of candidate sensors Ns and their positions

s(j) = [sx, sy]T, detection probabilities p(j)
D (·), and clutter intensities κ(j)(·) with

j = 1, 2, . . . , Ns;

• Birth model parameters: {r(�)B , {ω
(�)
j,B , x(�)j,B}

J(�)B
j=1}�∈B;

• Likelihood g(z|x, �) and transition density f (x|·, �);
• Survival probability function: pS(x, �);
• Constraints on the number of selected sensors: Nmin and Nmax.

Similar to the standard particle filter, particle degeneracy is inevitable [44]. To alleviate
the particle degradation problem, the particles for each hypothesized track are resampled in
line 12. In a typical particle filtering implementation, Markov chain Monte Carlo steps are
performed after resampling to improve the diversity of particles [44]. In line 13, multi-target
states are extracted from the posterior LMB distribution and are used for error performance
evaluation. The pseudocode of the algorithm for the EMOO-based sensor selection in line 6
is given in Algorithm 4.
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Figure 6. Schematic diagram of sensor selection with LMB filtering.

Algorithm 3 Step-by-step pseudocode for the proposed approach with LMB filtering, sensor
selection, and fusion.
INPUTS:

→ LMB distribution π = {r(�), {ω
(�)
j , x(�)j }J(�)

j=1}�∈L from previous time step
OUTPUTS:

→ The posterior parameters π = {r(�), {ω
(�)
j , x(�)j }J(�)

j=1}�∈L to be propagated to the next
time step
→ Estimated multi-target states at the current time

1. Predict the LMB distribution π+ = {(r(�)+ , p(�)+ (·))}�∈L+
using (12)–(14)

2. Estimate the target states X̂ using π+ = {(r(�)+ , p(�)+ (·))}�∈L+
based on (29) and (30)

3. for every sensor si ∈ Ns do

4. Compute the PIMS Z(i) of sensor si
5. end for
6. EMOO-based sensor selection
7. Collect Z(s∗) from the selected sensors s∗
8. for every sensor si ∈ s∗ do

9. Update the local LMB distribution π(·|Z(si)) = {(r(�)i,si
, p(�)i,si

(·))}�∈L+
using (17)–(23)

10. end for

11. Obtain the posterior distribution π̂(·|Z(s)) = {r(�), {ω
(�)
j , x(�)j }J(�)

j=1}�∈L based on the
GCI method using (37) and (38)

12. Pruning and resampling to obtain the posterior LMB distribution
13. Extract multi-target states using (38) and (39)
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Algorithm 4 Step-by-step pseudocode for the EMOO-based sensor selection.
INPUTS:
→ The predicted LMB distribution π+ = {(r(�)+ , p(�)+ (·))}�∈L+→ PIMS from each sensor si ∈ Ns
→ The population size Npop

→ The maximum number G of generations
OUTPUTS:
→ The sensors s∗ selected at current time
1. Initialize population of size Npop, which meet the constraint in (32)
2. Set the generation t = 0
3. while t < G
4. Evaluate individual fitness using (27) and (28)
5. Create a new population of offspring with the implementation of the tournament

selection operator, the proposed binary constrained crossover (Algorithm 1) and
binary constrained mutation (Algorithm 2)

6. Combine the parents and offspring to create the next population
7. Set t = t + 1
8. end
9. A set of non-dominated solutions is obtained
10. Select the compromise solution using the GRA strategy (33)–(36)

4. Experiments

The performance of the proposed sensor selection approach is demonstrated within a
multistatic sensor system. Compared with the traditional monostatic sensor, the multistatic
sensor has many advantages [45]; for example, the information on target signatures is
enhanced because of the multi-perspective and differences in the clutter properties. What is
more, the receive-only multistatic sensor is passive, which provides obvious advantages in
military applications. However, measurements collected by the multistatic sensor system
are generally affected by noise corruption, missed detections, and false alarms, since its
transmit and receive antennas are located in different places.

We use a multistatic sensor system whose structure is borrowed from [46]. As shown
in Figure 7a, there is one transmitter and ten receivers within the surveillance system. The
receivers are selected adaptively during the tracking of targets. The probability of detection
for each receiver j = 1, 2, . . . , 10 is modeled as follows [46]

p(j)
D (xk) = 1 − φ(

∥∥∥pk − r(j)
∥∥∥; α, β), (40)

where pk and r(j) denote the target position and the position of receiver j, respectively;
φ(d; α, β) =

∫ d
−∞ N (v; α, β)dv is the Gaussian cumulative distribution function with

α = 12 km and β = (3 km)2;
∥∥∥pk − r(j)

∥∥∥ is the distance between the receiver and the
target. Figure 7b plots the contour lines of the detection probability for each sensor in the
x − y plane. It can be observed from Figure 7b that the probability of detection for the
multistatic sensor system decreases with the increase in the distance [47].

The sampling interval of the system is fixed as T = 10 s, and all the receivers have
identical measurement noise. The measurement vector consists of a bearing and bistatic
range, as follows

zj
k =

[
ϕ
ρ

]
=

⎡⎢⎢⎢⎣ arctan

⎛⎝ py,k − r(j)
y

px,k − r(j)
x

⎞⎠∥∥∥pk − r(j)
∥∥∥+ ‖pk − t‖

⎤⎥⎥⎥⎦+ ε
j
k, (41)
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where ε
j
k ∼ N(·; 0, Rk), with Rk = diag([σ2

ϕ, σ2
ρ ]) and σϕ = (π/180) rad, r(j) = [r(j)

x , r(j)
y ]T,

and σρ = 5 m. The clutter measurements are uniformly distributed in [−π, π] rad ×
[0, 15, 000] m with κ = 2 × 10−5(radm)−1.

Figure 7. Simulation setup: (a) The locations of the transmitter (star) and receivers (squares); (b) con-
tour plot of the probability of detection.

We use two MTT scenarios to study the performance of the EMOO approach. The first
scenario has a time-varying number of targets moving with nearly constant turn (NCT)
motion. The second scenario consists of three targets moving with nearly constant velocity
(NCV) motion. To evaluate the performance of the EMOO approach, we compare it with
three sensor selection solutions: (i) the heuristic random selection method, in which each
sensor has an equal probability of being chosen; (ii) the variance-based approach using
the cardinality variance defined in (28) as the cost function; (iii) the Cauchy–Schwarz
divergence-based approach, which uses the Cauchy–Schwarz divergence between the
predicted and updated LMB densities as the reward function. The traditional exhaustive
search scheme is used to find the selection command in methods (ii) and (iii), in which
the objective function is computed for all possible combinations of a fixed number of
sensors in the MSS. In the following, a fixed number N = 3 of sensors are selected in these
comparative algorithms.

The average tracking performances are obtained using 100 Monte Carlo (MC) runs.
The optimal sub-pattern assignment (OSPA) [48] and OSPA(2) [49,50] distances are used
to evaluate the tracking errors. By measuring the distance between two sets of states, the
OSPA metric [48] can estimate errors in both cardinality and localization. As an adaptation
of the OSPA metric, the OSPA(2) metric [49,50] considers sets of tracks and carries the
interpretation of a per-track per-time error. All experiments are tested in Matlab R2010a
and implemented on a computer with a 3.40 GHz processor.

4.1. Scenario 1

In this scenario, the tracking of two targets with NCT motion is studied. The target
state vector is xk := [px,k, ṗx,k, py,k, ṗy,k, ωk]

T, in which ωk is the turn rate. The transition
model is

xk = f (xk−1) + Gwk−1, (42)

where
f (xk−1) = F(ωk−1)xk−1, (43)
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F(ωk−1) =

⎡⎢⎢⎢⎢⎢⎣
1 sin ωk−1T

ωk−1
0 − 1−cos ωk−1T

ωk−1
0

0 cos ωk−1T 0 − sin ωk−1T 0
0 1−cos ωk−1T

ωk−1
1 sin ωk−1T

ωk−1
0

0 sin ωk−1T 0 cos ωk−1T 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦, (44)

G =

⎡⎢⎢⎢⎢⎢⎣
T2

2 0 0
T 0 0
0 T2

2 0
0 T 0
0 0 T

⎤⎥⎥⎥⎥⎥⎦, (45)

wk−1 := [wx,k−1, wy,k−1, wω,k−1]
T, (46)

and wk−1 ∼ N (wk−1; 0, Qk−1) is white Gaussian process noise with covariance
Qk−1 = diag(σ2

x , σ2
y , σ2

ω), where σx = σy = 1.0 × 10−4 m/s2 and σω = 1.0 × 10−9 rad/s2.
The covariance of the additive process noise Gwk−1 is GQk−1GT.

The birth process follows the LMB distribution {(rB, p(i)B )}2
i=1, where rB = 0.02 and

p(i)B = N (x; m(i)
B , PB)with the mean m(1)

B = [2500, 0,−1000, 0, 0]T, m(1)
B = [1750, 0, 1000, 0, 0]T,

and the covariance PB = diag([50, 50, 50, 50, 6(π/180)]T)2. The units are meters for x and
y and meters per second for ẋ and ẏ . The maximum and minimum numbers of particles
for each hypothesized track are Lmax = 1000 and Lmin = 300, respectively. For each hy-
pothesized track, the number of particles is proportional to its probability of existence. The
probability of survival is fixed as pS = 0.99. The number of components for each forward
propagation is set to 100. The ground truth and estimated tracks for a single MC run with
Nmin = 1 and Nmax = 3 is illustrated in Figure 8, showing the true and estimated tracks
in x and y coordinates versus time. The plots indicate that the EMOO approach is able to
identify target births and successfully accommodate nonlinearities.

Figure 8. True and estimated tracks versus time in Scenario 1.

The average OSPA error (with parameters p = 1 and c = 300 m) and OSPA(2) error
(with the same c, p, and window length w = 10) are given in Figure 9a,b, respectively. The
average number of selected sensors is shown in Figure 9c. We observe that both the variance-
based approach and the proposed EMOO approach outperform the Cauchy–Schwartz
divergence-based approach in terms of OSPA and OSPA(2) errors. This is mainly because
the objective functions of the variance-based approach and the EMOO approach are derived
from the cardinality distribution, which is strongly related to the error terms computed in
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OSPA and OSPA(2) metrics. In addition, the detection probability is unsatisfactory in the
considered scenario. This underlines the importance of cardinality estimation, which is the
focus of the objective function developed for the variance-based approach and the EMOO
approach. Compared with the variance-based approach, the EMOO approach uses fewer
sensors at each time step (as shown in Figure 9c) but provides better tracking accuracy
(as shown in Figure 9a,b). For the variance-based approach, a fixed number of N = 3
sensors are selected at each time step. However, using more sensors does not indicate a
better tracking performance. When the uncertainty of the multi-sensor tracking system is
high, such as the scenario we consider, using more sensors for tracking may reduce the
tracking performance.

Figure 9. Average performance comparison in Scenario 1: (a) OSPA error; (b) OSPA(2) error; (c) the
number of selected sensors.

The average computing times for the random selection approach, the CS divergence-
based approach, the cardinality variance-based approach, and the EMOO approach to
execute a complete MC simulation are 2.14, 153.28, 194.76, and 87.02 s, respectively. Com-
pared with other methods, the random selection method requires less computing time
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because it does not use any technical method. The EMOO approach runs faster than the CS
divergence-based approach and the cardinality variance-based approach.

4.2. Scenario 2

In this scenario, three targets with NCV motion move into the surveillance area. The
state of the moving target at time k is denoted as xk = [px,k, ṗx,k, py,k, ṗy,k]

T. The NCV
motion of each target is modeled as

xk = Fk−1xk−1 + wk−1, (47)

where

Fk−1 =

⎡⎢⎢⎣
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤⎥⎥⎦, (48)

and wk−1 is white Gaussian process noise with covariance Qk−1 denoted as

Qk−1 = σ2
w

⎡⎢⎢⎢⎣
T4

4
T3

2 0 0
T3

2 T2 0 0
0 0 T4

4
T3

2
0 0 T3

2 T2

⎤⎥⎥⎥⎦, (49)

and σw = 0.01 m/s2 is the standard deviation of the acceleration noise.
The birth process is an LMB RFS with parameters {(rB, p(i)B )}3

i=1, where rB = 0.02

and p(i)B = N (x; m(i)
B , PB) with m(1)

B = [3000, 0, 0, 0]T, m(2)
B = [2250, 0, 2000, 0]T,

m(3)
B = [3000, 0, 2500, 0]T, and PB = diag([50, 50, 50, 50]T)2. The units of these elements

are the same as those in Scenario 1. The position estimates for a single run of the EMOO
approach, assuming Nmin = 1 and Nmax = 3, are illustrated in Figure 10. It can be observed
that the trajectory estimates of the EMOO approach are close to the true trajectories.

Figure 10. True and estimated tracks versus time in Scenario 2.

The average OSPA and OSPA(2) errors (with the same parameters as used in Scenario 1)
are given in Figure 11a,b, respectively. The average number of selected sensors is shown
in Figure 11c. It can be observed that the tracking errors of the EMOO approach are less
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than those of other methods in terms of OSPA and OSPA(2). Although the variance-based
approach and the proposed EMOO method converge to similar error values, the error of
the latter arrives there much earlier. Figure 11c shows that the number of selected sensors
for the EMOO method is always less than that of other methods. The average computing
times for the random selection approach, the CS divergence-based approach, the cardinality
variance-based approach, and the EMOO approach to execute a complete MC simulation
are 3.29, 279.85, 343.79, and 157.66 s, respectively. Referring to the tracking accuracy,
computing time, and the number of selected sensors, the EMOO approach provides an
alternative solution for sensor selection.

Figure 11. Average performance comparison in Scenario 2: (a) OSPA error; (b) OSPA(2) error; (c) the
number of selected sensors.

5. Discussion

In the above experiments, we use two different MTT scenarios with the NCV and NCT
target motions to demonstrate the performances of the proposed EMOO approach. The
OSPA and OSPA(2) errors are used to measure the tracking accuracy, which is widely used
in the RFS-based tracking field. The average tracking results obtained over 100 MC runs
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show that the EMOO approach performs better than the existing methods in terms of the
OSPA and OSPA(2) errors. What is more, the EMOO approach can significantly reduce
the number of selected sensors at each time step. Therefore, the energy and bandwidth
problems can be effectively alleviated. The experimental results are well consistent with
previous theoretical analysis.

6. Conclusions

A novel sensor selection approach based on evolutionary computational intelligence
has been proposed under the FISST framework. The multi-target state is modeled by the
LMB RFS, and the posterior density is propagated using the LMB filtering. We model the
sensor selection problem as an EMOO problem with two conflicting objective functions,
i.e., the number of selected sensors and the cardinality variance. The selection command is
determined by optimizing the MOO problem using a novel binary constrained evolutionary
algorithm. The performance of the proposed EMOO approach was verified using two
scenarios in which a multistatic sensor system with poor detection ability is used for MTT.
Simulation results demonstrate that the EMOO approach performs better than existing
methods in terms of OSPA and OSPA(2) errors and significantly reduces the number of
selected sensors. Our future work will consider integrating data from multiple scans to
improve the tracking performance. Furthermore, the proposed EMOO methodology also
applies to other advanced RFS filters such as GLMB, and this is another direction for
future work.

Author Contributions: Conceptualization, S.L. and Y.Z.; methodology, S.L. and Y.Z.; software, Y.Z.
and S.L.; validation, Y.Z., S.L., H.L. and J.Y.; formal analysis, H.L.; investigation, Y.Z. and S.L.;
resources, Y.Z. and S.L.; data curation, Y.Z. and S.L.; writing—original draft preparation, Y.Z., S.L.
and H.L.; writing—review and editing, H.L. and J.Y.; visualization, Y.Z.; supervision, Y.Z. and S.L.;
project administration, Y.Z. and S.L.; funding acquisition, Y.Z., S.L. and H.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under grant numbers 62007022 and 61906146, the Natural Science Foundation of Shaanxi Province
under grant number 2021JQ-209, and the Fundamental Research Funds for the Central Universities
under grant number GK202103082 and JB210210.

Data Availability Statement: In this work, we have used the free RFS MATLAB code provided by
Prof. Ba-Ngu Vo and Prof. Ba-Tuong Vo at http://ba-tuong.vo-au.com/codes.html (accessed on
5 July 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gao, J.; Zhang, Q.; Sun, H.; Wang, W. A Multi-Sensor Interacted Vehicle-Tracking Algorithm with Time-Varying Observation
Error. Remote Sens. 2022, 14, 2176. [CrossRef]

2. Memon, S.A.; Ullah, I.; Khan, U.; Song, T.L. Smoothing Linear Multi-Target Tracking Using Integrated Track Splitting Filter.
Remote Sens. 2022, 14, 1289. [CrossRef]

3. Mallick, M.; Krishnamurthy, V.; Vo, B.N. Integrated Tracking, Classification, and Sensor Management: Theory and Applications; Wiley
Press: Hoboken, NJ, USA, 2012.

4. Bar-Shalom, Y.; Willett, P.; Tian, X. Tracking and Data Fusion: A Handbook of Algorithms; YBS Publishing: Storrs, CT, USA, 2011.
5. Mahler, R. Global Posterior Densities for Sensor Management. In Acquisition, Tracking, and Pointing XII; SPIE: Bellingham, WA,

USA, 1998; pp. 252–263.
6. Reid, D. An Algorithm for Tracking Multiple Targets. IEEE Trans. Autom. Control 1979, 24, 843–854. [CrossRef]
7. Kurien, T. Issues in The Design of Practical Multitarget Tracking Algorithms. In Multitarget-Multisensor Tracking: Advanced

Applications; Bar-Shalom, Y., Ed.; Artech House: Norwood, MA, USA, 1990; pp. 43–83.
8. Fortmann, T.; Bar-Shalom, Y.; Scheffe, M. Sonar Tracking of Multiple Targets Using Joint Probabilistic Data Association. IEEE J.

Ocean. Eng. 2003, 8, 173–184. [CrossRef]
9. Mahler, R. Statistical Multisource-Multitarget Information Fusion; Artech House: Norwood, MA, USA, 2007.
10. Mahler, R. Advances in Statistical Multisource-Multitarget Information Fusion; Artech House: Norwood, MA, USA, 2014.

152



Remote Sens. 2022, 14, 3624

11. Mahler, R. Multitarget Bayes Filtering via First-order Multitarget Moments. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 1152–1178.
[CrossRef]

12. Mahler, R. PHD Filters of Higher Order in Target Number. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1523–1543. [CrossRef]
13. Vo, B.T.; Vo, B.N.; Cantoni, A. The Cardinality Balanced Multi-Target Multi-Bernoulli Filter and Its Implementations. IEEE Trans.

Signal Process. 2009, 57, 409–423.
14. Vo, B.T.; Vo, B.N. Labeled Random Finite Sets and Multi-Object Conjugate Priors. IEEE Trans. Signal Process. 2013, 61, 3460–3475.

[CrossRef]
15. Vo, B.T.; Vo, B.N. A Random Finite Set Conjugate Prior and Application to Multi-target Tracking. In Proceedings of the 2011

7th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Adelaide, SA, Australia,
6–9 December 2011; pp. 431–436.

16. Vo, B.N.; Vo, B.T.; Phung, D. Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter. IEEE Trans. Signal Process.
2014, 62, 6554–6567. [CrossRef]

17. Reuter, S.; Vo, B.T.; Vo, B.N.; Dietmayer, K. The Labeled Multi-Bernoulli Filter. IEEE Trans. Signal Process. 2014, 62, 3246–3260.
18. Hero, A.O.; Kreucher, C.M.; Blatt, D. Information Theoretic Approaches to Sensor Management. In Foundations and Applications

of Sensor Management; Hero, A.O., Castanon, D., Cochran, D., Kastella, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2008;
Chapter 3, pp. 33–57.

19. Ristic, B.; Vo, B. Sensor Control for Multi-object State-space Estimation Using Random Finite Sets. Automatica 2010, 46, 1812–1818.
[CrossRef]

20. Cai, H.; Gehly, S.; Yang, Y.; Hoseinnezhad, R.; Norman, R.; Zhang, K. Multisensor Tasking Using Analytical Renyi Divergence in
Labeled Multi-Bernoulli Filtering. J. Guid. Control Dyn. 2019, 42, 2078–2085. [CrossRef]

21. Hoang, H.G.; Vo, B.N.; Vo, B.T.; Mahler, R. The Cauchy-Schwarz Divergence for Poisson Point Processes. IEEE Trans. Inf. Theory
2015, 61, 4475–4485. [CrossRef]

22. Beard, M.; Vo, B.T.; Vo, B.N.; Arulampalam, S. Void Probabilities and Cauchy-Schwarz Divergence for Generalized Labeled
Multi-Bernoulli Models. IEEE Trans. Signal Process. 2017, 65, 5047–5061. [CrossRef]

23. Gostar, A.K.; Hoseinnezhad, R.; Bab-Hadiashar, A.; Liu, W. Sensor-Management for Multitarget Filters via Minimization of
Posterior Dispersion. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 2877–2884. [CrossRef]

24. Nguyen, H.V.; Rezatofighi, H.; Vo, B.N.; Ranasinghe, D.C. Online UAV Path Planning for Joint Detection and Tracking of Multiple
Radio-Tagged Objects. IEEE Trans. Signal Process. 2019, 67, 5365–5379. [CrossRef]

25. Jiang, M.; Yi, W.; Kong, L. Multi-sensor Control for Multi-target Tracking Using Cauchy-Schwarz Divergence. In Proceedings of
the 2016 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 5–8 July 2016; pp. 2059–2066.

26. Hoang, H.G.; Vo, B.T. Sensor Management for Multi-target Tracking via Multi-Bernoulli Filtering. Automatica 2014, 50, 1135–1142.
[CrossRef]

27. Gostar, A.K.; Hoseinnezhad, R.; Bab-Hadiashar, A. Multi-Bernoulli Sensor Control via Minimization of Expected Estimation
Errors. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1762–1773. [CrossRef]

28. Panicker, S.; Gostar, A.K.; Bab-Haidashar, A.; Hoseinnezhad, R. Sensor Control for Selective Object Tracking Using Labeled
Multi-Bernoulli Filter. In Proceedings of the 2018 21st International Conference on Information Fusion (FUSION), Cambridge, UK,
10–13 July 2018; pp. 2218–2224.

29. Panicker, S.; Gostar, A.K.; Bab-Hadiashar, A.; Hoseinnezhad, R. Tracking of Targets of Interest Using Labeled Multi-Bernoulli
Filter with Multi-Sensor Control. Signal Process. 2020, 171, 107451. [CrossRef]

30. Nguyen, H.V.; Rezatofighi, H.; Vo, B.N.; Ranasinghe, D. Multi-Objective Multi-Agent Planning for Jointly Discovering and Track-
ing Mobile Object. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020;
pp. 7227–7235.

31. Zhu, Y.; Wang, J.; Liang, S. Multi-Objective Optimization Based Multi-Bernoulli Sensor Selection for Multi-Target Tracking.
Sensors 2019, 19, 980. [CrossRef]

32. Ma, L.; Xue, K.; Wang, P. Multitarget Tracking with Spatial Nonmaximum Suppressed Sensor Selection. Math. Probl. Eng. 2015,
2015, 148081. [CrossRef]

33. Ma, L.; Xue, K.; Wang, P. Distributed Multiagent Control Approach for Multitarget Tracking. Math. Probl. Eng. 2015, 2015, 903682.
[CrossRef]

34. Wang, X.; Hoseinnezhad, R.; Gostar, A.K.; Rathnayake, T.; Xu, B.; Bab-Hadiashar, A. Multi-sensor Control for Multi-object Bayes
Filters. Signal Process. 2018, 142, 260–270. [CrossRef]

35. Cao, N.; Choi, S.; Masazade, E.; Varshney, P.K. Sensor Selection for Target Tracking in Wireless Sensor Networks with Uncertainty.
IEEE Trans. Signal Process. 2016, 64, 5191–5204. [CrossRef]

36. Fantacci, C.; Vo, B.N.; Vo, B.T.; Battistelli, G.; Chisci, L. Consensus Labeled Random Finite Set Filtering for Distributed Multi-Object
Tracking. arXiv 2015, arXiv:1501.01579.

37. Mahler, R. Multitarget Sensor Management of Dispersed Mobile Sensors. In Theory and Algorithms for Cooperative Systems;
Grundel, D., Murphey, R., Pardalos, P.M., Eds.; World Scientific: Singapore, 2004; pp. 239–310.

38. Li, H.; Gong, M.; Wang, C.; Miao, Q. Pareto Self-Paced Learning Based on Differential Evolution. IEEE Trans. Cybern. 2021,
51, 4187–4200. [CrossRef]

153



Remote Sens. 2022, 14, 3624

39. Gong, M.; Li, H.; Luo, E.; Liu, J.; Liu, J. A Multiobjective Cooperative Coevolutionary Algorithm for Hyperspectral Sparse
Unmixing. IEEE Trans. Evol. Comput. 2017, 21, 234–248. [CrossRef]

40. Gong, M.; Li, H.; Meng, D.; Miao, Q.; Liu, J. Decomposition-Based Evolutionary Multiobjective Optimization to Self-Paced
Learning. IEEE Trans. Evol. Comput. 2019, 23, 288–302. [CrossRef]

41. Ma, L.; Gong, M.; Yan, J.; Yuan, F. A Decomposition-based Multiobjective Evolutionary Algorithm for Analyzing Network
Structural Balance. Inf. Sci. 2017, 378, 144–160. [CrossRef]

42. Ngatchou, P.; Zarei, A.; El-Sharkawi, A. Pareto Multi-Objective Optimization. In Proceedings of the 2005 13th International
Conference on, Intelligent Systems Application to Power Systems, Arlington, VA, USA, 6–10 November 2005; pp. 84–91.

43. Deng, J.L. Control Problems of Grey Systems. Syst. Control Lett. 1982, 1, 288–294.
44. Ristic, B.; Arulampalam, S.; Gordon, N. Beyond the Kalman Filter-Particle Filters for Tracking Applications; Artech House: Norwood,

MA, USA, 2004.
45. Willis, N.J.; Griffiths, H.D. Advances in Bistatic Radar; SciTech Publishing Inc.: Raleigh, NC, USA, 2007.
46. Ristic, B.; Farina, A. Target Tracking via Multi-static Doppler Shifts. IET Radar Sonar Navig. 2013, 7, 508–516.
47. Mahafza, B. Radar Systems Analysis and Design Using MATLAB, 3rd ed.; Chapman and Hall/CRC Press: Boca Raton, FL, USA,

2013.
48. Schuhmacher, D.; Vo, B.T.; Vo, B.N. A Consistent Metric for Performance Evaluation of Multi-Object Filters. IEEE Trans. Signal

Process. 2008, 56, 3447–3457. [CrossRef]
49. Beard, M.; Vo, B.T.; Vo, B.N. A Solution for Large-Scale Multi-Object Tracking. IEEE Trans. Signal Process. 2020, 68, 2754–2769.

[CrossRef]
50. Beard, M.; Vo, B.T.; Vo, B.N. Performance Evaluation for Large-Scale Multi-Target Tracking Algorithms. In Proceedings of the

2018 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018; pp. 1–5.

154



Citation: Silva, A.C.P.; Coimbra,

K.T.Z.; Filho, L.W.R.; Pessin, G.;

Correa-Pabón, R.E. Monitoring of

Iron Ore Quality through

Ultra-Spectral Data and Machine

Learning Methods. AI 2022, 3,

554–570. https://doi.org/10.3390/

ai3020032

Academic Editors: Yue Wu, Kai Qin,

Maoguo Gong and Qiguang Miao

Received: 24 March 2022

Accepted: 29 April 2022

Published: 15 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Monitoring of Iron Ore Quality through Ultra-Spectral Data
and Machine Learning Methods

Ana Cristina Pinto Silva, Keyla Thayrinne Zoppi Coimbra, Levi Wellington Rezende Filho, Gustavo Pessin

and Rosa Elvira Correa-Pabón *

Vale S.A., Programa de Pós-Graduação em Instrumentação, Controle e Automação de Processos de Mineração,
Universidade Federal de Ouro Preto e Instituto Tecnológico Vale, Ouro Preto 35400-000, MG, Brazil;
ana.cristina.silva@vale.com (A.C.P.S.); keyla.thayrinne@pq.itv.org (K.T.Z.C.); levi_wrf@yahoo.com.br (L.W.R.F.);
gustavo.pessin@itv.org (G.P.)
* Correspondence: rosa.correa@itv.org

Abstract: Currently, most mining companies conduct chemical analyses by X-ray fluorescence per-
formed in the laboratory to evaluate the quality of Fe ore, where the focus is mainly on the Fe
content and the presence of impurities. However, this type of analysis requires the investment of
time and money, and the results are often available only after the ore has already been sent by the
processing plant. Reflectance spectroscopy is an alternative method that can significantly contribute
to this type of application as it consists of a nondestructive analysis technique that does not require
sample preparation, in addition to making the analyses available in more active ways. Among the
challenges of working with reflectance spectroscopy is the large volume of data produced. However,
one way to optimize this type of approach is to use machine learning techniques. Thus, the main
objective of this study was the calibration and evaluation of models to analyze the quality of Fe from
Sinter Feed collected from deposits in the Carajás Mineral Province, Brazil. To achieve this goal,
machine learning models were tested using spectral libraries and X-ray fluorescence data from Sinter
Feed samples. The most efficient models for estimating Fe were the Adaboost and support vector
machine and our results highlight the possibility of application in the samples without the need for
preparation and optimization of the analysis time, providing results in a timely manner to contribute
to decision-making in the production chain.

Keywords: iron content; machine learning; reflectance spectroscopy

1. Introduction

Given the growing demand for minerals due to the increase in world population,
the decline in iron ore (Fe) deposit quality is a topic of global concern. Several factors
can interfere with the quality of this ore, including the reduction in Fe content in the
deposits and the presence of impurities, such as phosphorus (P), alumina (Al2O3) and silica
(SiO2) [1].

The lower the ore quality is, the greater the pressure on the deposits is due to the
increase in the amount of material to be removed from the mines, acceleration of the
production of tailings and waste, and the demand for a greater volume of water, energy
and other inputs used in the mine processing stage. Thus, a reduction in ore quality leads
to increased production costs, in addition to the significant impacts on the environment.

Brazil is privileged to have geological provinces of extreme relevance for the mineral
sector in its territory, including the Carajás Mineral Province (CMP), which represents a well-
preserved Archean terrain located in the Amazon Craton (Figure 1). The CMP is known for
being the first world producer of high iron content (>62% Fe) and the second most important
for areas of copper and gold deposits of the IOCG type (iron oxide, copper sulfides and gold),
with significant production of metals, such as manganese and nickel [2–4].
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Figure 1. Geological map showing the Carajás Mineral Province in the context of the Amazonian
Craton [5].

Currently, one of the main ways to evaluate the quality of iron ore produced at
any stage of the production chain of mining companies is through chemical analysis
methodologies of samples, which are analyzed by X-ray fluorescence (XRF) in the laboratory.
However, these analyses are time-consuming and often used only for quality control of
already-dispatched ore, considering that the results are not available in time to contribute
to decision-making related to the production process.

Thus, methods, such as reflectance spectroscopy, are faster alternatives that can provide
physicochemical and mineralogical information about Fe ore. In addition to optimizing the
response time of the analyses, one of the great advantages of using spectroscopy is that it is
a nondestructive method that does not require sample preparation.

One of the great challenges of working with reflectance spectroscopy is that in addition
to the need for specialized labor, this type of analysis generates a large volume of data,
which can be a hindrance for calibrating and validating the models. However, with
the advancement of technology in the last decade, the use of machine learning methods
has become more widespread for these purposes [6–8]. These methods contribute to
optimization of the data processing time and have increased the reliability of the results,
considering the possibility of developing more robust models [9].

Currently, studies using reflectance spectroscopy, together with hyperspectral imaging
and machine learning, are mostly focused on soil physicochemical and mineralogical
classification and environmental quality [10–19].

For the mineral sector, methodologies involving machine learning and reflectance spec-
troscopy are relatively recent developments and are not widespread approaches. Ref. [6]
used neural networks to classify Fe ore using spectroscopy in hematite, magnetite, chlorite,
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phyllite and granites. The authors suggest the implementation of algorithms for the primary
selection of Fe ore. In turn, ref. [7] achieved satisfactory results with hyperspectral imaging
data and machine learning for the study of tin-tungsten mines in northwestern Spain.
Furthermore, ref. [8] analyzed the performance of models to estimate concentrations of tin
and cassiterite ores using machine learning in deposits in Germany and southern Romania.

In this context, the research presented here is directed at the mineral industry. The
main objective is to analyze the feasibility of applying reflectance spectroscopy in the
VSWIR range (Visible, Near Infrared and Shortwave Infrared; 400–2500 nm) in association
with machine learning methods for monitoring the quality of the Sinter Feed produced in
inserted mines in the CMP, focusing mainly on estimation of Fe content.

2. Materials and Methods

In this study, two groups of samples were used, which included the Sinter Feed
Product (SFP) and Sinter Feed prepared in the laboratory (SFL), as well as their respective
chemical analyses performed by XRF. The methodology used follows the flowchart in
Figure 2 and is detailed in the following section.

 

Figure 2. Flowchart showing the methodology used: * SFP—Sinter Feed Product; SFL—Sinter Feed
Prepared in Laboratory; XRF-X-ray Fluorescence; R2—coefficient of determination; MSE—mean
square error; MAE—mean absolute error.
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Table 1 shows the XRF analyses of the studied samples. The data were organized
according to the nomenclature of the samples and the arrangement of the respective major
and minor elements. In turn, in the lower rows of the table, there is the mean and the
demonstration of the minimum and maximum values of each element analyzed.

Table 1. X-ray fluorescence (XRF) data of the 42 samples used for model validation training. Column
1 shows the nomenclature of the samples, the first row is the analyzed elements, and the lower
portion of the table shows the basic statistical analyses.

Sample Fe SiO2 P Al2O3 Mn TiO2 CaO MgO K2O

CN_10551 61.12 0.39 0.43 2.82 0.018 0.402 0.006 0.030 0.006
CN_10552 61.76 0.40 0.46 2.49 0.018 0.407 0.006 0.027 0.007
CN_10554 61.99 0.43 0.41 2.44 0.019 0.253 0.006 0.027 0.006
CN_10556 60.45 0.35 0.52 2.90 0.018 0.482 0.006 0.026 0.005
CN_10558 60.46 0.32 0.54 2.93 0.018 0.497 0.006 0.025 0.005
CN_10560 61.13 0.34 0.46 2.42 0.018 0.404 0.006 0.026 0.007
CN_10561 62.56 0.45 0.32 1.94 0.020 0.190 0.006 0.028 0.007
CN_10563 63.26 0.48 0.26 1.69 0.020 0.245 0.006 0.034 0.008
CN_10564 64.00 0.67 0.21 1.47 0.022 0.176 0.006 0.035 0.010
CN_10566 63.56 0.59 0.25 1.58 0.020 0.167 0.006 0.027 0.011
CN_10568 61.93 0.41 0.41 2.15 0.018 0.424 0.006 0.025 0.007
CN_10569 62.45 0.40 0.32 1.77 0.018 0.197 0.006 0.025 0.007
CN_10573 63.94 0.89 0.21 1.52 0.011 0.200 0.006 0.025 0.004
CN_10574 63.89 0.63 0.22 1.44 0.015 0.192 0.006 0.030 0.004
CN_10576 61.61 0.58 0.37 1.88 0.008 0.239 0.006 0.025 0.004
CN_10577 62.77 0.93 0.27 1.45 0.012 0.215 0.006 0.025 0.004
CN_10578 63.18 0.46 0.26 1.43 0.008 0.219 0.006 0.025 0.004
CN_10579 62.18 0.58 0.23 2.68 0.010 0.279 0.008 0.025 0.004
CN_10580 63.54 0.66 0.21 1.45 0.015 0.204 0.006 0.025 0.004
CN_10581 62.43 0.63 0.18 2.45 0.010 0.231 0.006 0.025 0.004
CN_10582 61.98 9.65 0.01 0.41 0.112 0.042 0.006 0.100 0.004
CN_10583 58.21 14.91 0.01 0.60 0.134 0.048 0.006 0.105 0.004
CN_10584 41.41 39.45 0.01 0.37 0.023 0.067 0.006 0.096 0.004
CN_10585 68.24 1.21 0.01 0.22 0.038 0.040 0.006 0.124 0.004
CN_10759 62.92 0.58 0.35 2.27 0.010 0.190 0.007 0.050 0.009
CN_10760 64.37 0.63 0.36 1.33 0.015 0.084 0.007 0.057 0.012
CN_10762 65.66 0.72 0.14 0.97 0.013 0.082 0.008 0.062 0.016
CN_10764 64.80 0.56 0.17 1.18 0.011 0.131 0.008 0.046 0.009
CN_10765 66.11 0.71 0.06 0.60 0.016 0.068 0.008 0.064 0.010
CN_10553 61.97 0.39 0.38 2.25 0.018 0.257 0.006 0.027 0.007
CN_10557 62.15 0.57 0.36 2.29 0.018 0.160 0.006 0.031 0.007
CN_10559 61.12 0.36 0.46 2.44 0.018 0.410 0.006 0.025 0.006
CN_10562 63.34 0.47 0.29 1.61 0.019 0.190 0.006 0.028 0.007
CN_10565 64.44 0.49 0.23 1.29 0.020 0.139 0.006 0.034 0.007
CN_10567 62.06 0.51 0.35 2.41 0.019 0.418 0.006 0.027 0.008
CN_10575 62.62 0.82 0.22 1.97 0.015 0.224 0.006 0.025 0.004
CN_10757 62.78 0.56 0.45 1.90 0.010 0.126 0.006 0.043 0.009
CN_10761 64.85 0.60 0.26 1.27 0.009 0.099 0.007 0.045 0.013
CN_10763 65.35 0.62 0.13 0.98 0.010 0.094 0.007 0.046 0.010
CN_10766 65.38 0.61 0.13 1.11 0.014 0.131 0.007 0.056 0.008
CN_10550 60.55 0.38 0.47 3.03 0.017 0.436 0.006 0.028 0.004
CN_10555 63.26 0.48 0.26 1.69 0.020 0.245 0.006 0.034 0.008

Min 41.41 0.32 0.01 0.22 0.008 0.040 0.006 0.025 0.004
Max 68.24 39.45 0.54 3.03 0.134 0.497 0.008 0.124 0.016

Average 62.42 2.04 0.28 1.74 0.021 0.222 0.006 0.040 0.007

2.1. Sinter Feed Samples

In this study, the database containing Sinter Feed samples and their respective XRF
analyses was extracted from [20]. The samples were divided into two groups (Figure 3).
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The first group comprises 42 samples of SFP, which corresponds to the material of the
crushed mining front and has a particle size ranging from 6.3 to 0.150 mm. The second
group includes the same 42 samples of SFL that underwent spraying and drying processes,
resulting in a more homogeneous particle size.

 

Figure 3. Photographs of the Sinter Feed product samples and their corresponding samples prepared
in the laboratory.

2.2. Acquisition and Processing of Reflectance Spectra

The instrument used to acquire the reflectance data in the VSWIR interval was the
FieldSpec 4 High-Resolution Next Generation high-resolution spectroradiometer coupled
with the Turntable reading device, both of which are from the Analytical Spectral Devices
manufacturer [21]. FieldSpec 4 Hi-Res NG detects electromagnetic radiation in the spectral
range between 350 nm and 2500 nm, with spectral resolutions of 3 nm (@700 nm) and 6 nm
(@1400 nm/2100 nm). The sampling intervals are 1.4 nm between 350–1000 nm and 1.1 nm
in the range of 1000–2500 nm, with 2151 channels. The reflectance data were generated
from measurements of energy reflected by the target in relation to a reference material
(Spectralon) in the entire VSWIR range.

The reading of the spectra was performed using RS3 software in conjunction with
Turntable and FieldSpec 4 equipment. The samples were placed in Petri dishes with
dimensions of 150 mm × 15 mm to obtain readings through the spectroradiometer. Each
sample was measured 100 times with 50 scans. Thus, each spectrum used in the spectral
characterization corresponds to an average of 5000 readings.

In the preprocessing step of the spectra, gap correction was performed, considering
that the FieldSpec 4 Hi-Res NG has three different sensors, and in the sequence, the average
of the 100 spectral readings collected was calculated. This procedure allows the reduction
in noise and artifacts that may hinder the interpretation of the absorption features.

The corrected spectra were processed using open-source software ViewSpecPro version
6.2.0 [21]. In this step, the continuum was removed, the main purpose of which was to
eliminate or reduce the effects unrelated to the properties of interest for the analyzed targets
and to highlight the absorption features of the spectra [22–24]. The continuum removal
technique generates normalized data, in which all information is represented on the same
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order of magnitude, on a scale of zero to one, and it is compared with the same level
of relevance.

Finally, after processing the spectra, wavelength versus reflectance factor plots were
prepared to compose the spectral libraries with the SFP and SFL data.

2.3. Datasets

To calibrate and validate the models, two datasets were organized for SFP and
two were organized for SFL, with the first considering the broadest spectrum in the range
of 400 to 2500 nm (Calibration 1, or C-I) and the second considering the range of 400 to
1310 nm (Calibration 2, or C-II). The C-II data focused on the characteristic features of
iron oxides and hydroxides, which are generally observed in the visible and near-infrared
(VNIR) region at 670, 860 and 900 nm.

2.3.1. Modeling Procedures

The spectral measurements were acquired in the SFP (n = 42) and SFL (n = 42) sam-
ples. For each sample, 100 spectral readings were performed, considering an average of
25 readings, resulting in four spectra per sample and a database of 169 spectra for SFP and
169 for SFL.

The models were trained to estimate the iron contents of the sample sets from the
regression relationship found by the machine learning methods, the spectral bands and the
iron contents analyzed by XRF. In the composition of the database, 70% of the data were
used for training (118 spectra) and 30% were used for model validation (51 spectra). The
selection of samples for training and validation of the methods was performed randomly.
In the case of training, the C-I and C-II datasets organized for both SFP and SFL were used.

Models that have shown satisfactory results in studies developed by different authors
involving reflectance spectroscopy were tested [14,15]. Among these models, four that
showed the best performance for the dataset analyzed were selected in this study: the
Random Forest (RF); Adaboost (ADB); K-Nearest Neighbor (k-NN); and support vector
machine (SVM).

The software used in this step was Orange Canvas, which is open source and has data
visualization through streams. The choice of Orange Canvas was based on its characteristic
of qualitative analysis, where the graphical interface allows a greater focus on exploratory
analysis of the data instead of programming codes. It already has several open-source
Python libraries, such as numpy, scipy and scikit-learn, and thus, several machine learning
algorithms are available for testing and evaluating models [25].

2.3.2. Random Forest (RF)

An RF comprises a set of decision trees that vote together for a classification. Each
tree is constructed by chance and randomly selects a subset of resources from a subset of
data points. The tree is trained in these data points (only in the selected characteristics),
and the rest “out of the basket” are used to evaluate the tree. RF is known to be effective in
preventing overfitting [26]. After reaching a certain number of trees, the overfitting remains
constant, and no superior performance is achieved.

This method works efficiently on large volumes of data as it works with the training
data and thus the algorithm seeks the best conditions and where to insert each one into the
flow [27].

For this study, 30 trees were used, with several attributes considered in each division
of five. In the tests, it was observed that values greater than 30 did not bring performance
gains in the result and thus would result only in computational overload.

2.3.3. Adaboosting (ADB)

The ADB is a machine learning method that uses multiple classifiers based on a
combination of classifiers with lower accuracy, where the result produces a classifier
with higher accuracy. Thus, for data training, the method induces the interaction of
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these various classifier models, and at each interaction, the boosting method generates
a hypothesis. Each new hypothesis generated has the objective of correcting the errors
resulting from the previously tested hypotheses. The process is repeated until the training
stage is completed [28].

A total of 100 tree-type estimators were adopted, with a maximum learning rate of one.
The criterion adopted was empirical, and the increase in the number of estimators above
that adopted did not result in a significant improvement in performance for the model.

2.3.4. K-Nearest Neighbor (kNN)

The kNN algorithm is a simple model used in both classification and regression
problems that predict future values based on past recorded values. In this method, the
variable “K” will direct the number of neighbors; thus, the algorithm searches for the
desired values closest to that point based on the distances of its “K” closest neighbors [29].

According to [30], the calculation to determine the closest neighbors can be performed
using various mathematical methods to calculate the distance between two points, accord-
ing to the following equations:

Euclidean distance : d(p, q) =
√

∑n
i=1(σ− qi)

2 (1)

Distance from Manhatten : d(p, q) = ∑n
i=1 |σ− qi| (2)

Mahalanobis distance : d(p, q) =

√√√√∑n
i=1

(σ− qi)
2

π2
i

(3)

Chebyshev distance : d(p, q) = maxk|σk − qik| (4)

In determining the values to be assigned to “K”, if they are very low, they will be
affected by noise in the data to influence the final result obtained, which makes it more
sensitive to very close regions, which may result in overfitting. However, very high values,
with the generation of several neighbors, can generate more robust models [31].

The metric adopted for the method was the Euclidean distance, with uniform weights,
which showed the best performance based on empirical tests. The number of neighborhoods
used was 10, specified by calculating the approximate square root of the total number of
data applied to train the model.

2.3.5. Support Vector Machine (SVM)

The SVM was initially developed with a focus on the solution to binary classification
problems. Subsequently, the technique was improved and used for multiclass classification
and regression problems [32].

The concept of SVM is the separation of data into classes; for this purpose, the algo-
rithm creates hyperplanes, where each data point belongs to the training base and is plotted
as a point in n-dimensional space and with reference to a coordinate. Thus, classification is
performed with the objective of finding the hyperplane that will differentiate classes [11].

The parameters adopted for the SVM method were the standard configurations of the
estimator present in the Orange Canvas software, with a limit interaction number of 50.

2.4. Validation of Predication Models

Different statistical metrics were used to evaluate the prediction accuracy of the
models, including the coefficient of determination (R2), mean absolute error (MAE), and
mean square error (MSE) [33,34]. These metrics made it possible to evaluate the accuracy
of the machine learning models, comparing the estimated Fe values for each method with
the respective levels analyzed by XRF.
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3. Results

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Physical and Spectral Characterization of the Sinter Feed

Figure 4 shows the spectral library used for the calibration and validation datasets of
the Fe content estimation models. Figure 4A shows the SFP spectra used for C-I and C-II.
Following the same logic, Figure 4B shows the corresponding SFL samples. The graphs
show the reflectance values normalized by removal of the continuum on the Y axis and the
wavelength on the X axis.

. 

Figure 4. Reflectance spectra normalized by removal of the continuum from the samples used in
model training: (A) Spectra obtained in the SFP samples, showing the database used for C-I and C-II;
(B) Mean of the SFL spectra used for C-I and C-II. The absorption bands relevant to the study are
highlighted in the spectra. SFP—Sinter Feed Product; SFL—Sinter Feed prepared in the laboratory;
C-I—Calibration 1; C-II—Calibration 2.

The spectra of the SFP and SFL samples show some similarities; for example, both
have absorption features in the VNIR region at approximately 860 and 900 nm. However,
when dealing with the sprayed samples, some features were well attenuated, both for VNIR
and SWIR. In the case of VNIR, this attenuation was observed at 670 nm, and in SWIR, it
was observed at 1400, 1950 and between 2135 and 2500 nm.

The reflectance spectra, as well as photographs of the representative samples of the
Sinter Feed, with higher and lower Fe contents, are shown in Figures 5 and 6. In analyzing
the spectra, the VNIR region for both SFP and for SFL at 860 nm, has a deep absorption fea-
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ture for sample CN_10585 and is relatively more discrete for sample CN_10584. Conversely,
at 900 nm, marked features are observed for samples CN_10564, CN_10563, CN_10556 and
CN_10550 (Figure 5A,B). In the region of 670 nm, for SFP, all samples showed absorption
features, which were less pronounced for CN_10585 and CN_10584. For samples prepared
in the laboratory, the region’s feature was attenuated (Figure 5B).

 

Figure 5. (A,B) Reflectance spectra normalized by removing the continuum of sinter feed product
(SFP) samples and their equivalent prepared in the laboratory (SFL). The diagnostic features of
hematite (Ht) samples, which can be observed at 860 nm (CN_10585, CN_10584, and CN_10564), and
goethiteitic (Gt) samples, which occur close to 900 nm, stand out in both the SFP and SFL spectra
(samples CN_10563, CN_10556 and CN_10550). The absorption features that occur at 670 nm, which
indicates F3+, and at 1380 and 1950 nm, which indicate the presence of H2O, occur only in the SFP
spectra and are attenuated in the SFL spectra. (C) Comparison of the SFP and SFL samples showing
the physical characteristics of representative samples of higher and lower Fe contents.
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Figure 6. Reflectance spectra normalized by removing the continuum of sinter feed product (SFP) sam-
ples and their equivalent prepared in the laboratory (SFL). The figure shows in detail the absorption
features in the SWIR region that occur mainly for SFP.

Regarding the physical characteristics, the Sinter Feed samples can be divided into
two groups: (i) Sinter Feed with particle size ranging from fine to medium, with dark red
to black tones. This group is represented by samples CN_10585, CN_10584 and CN_10564,
and when subjected to the process of spraying and drying in the laboratory, the black
samples tend to result in reddish tones (Figure 5C); (ii) Sinter Feed with coarse particle size,
light red tones and cohesive texture. The CN_10563 sample represents this group, and after
spraying, it maintained its reddish color (Figure 5C).

In the SWIR region, for SFP at 1380 and 1950 nm, there are features related to H2O
and OH (Figure 5A). Conversely, between 2200 and 2500 nm, the features are commonly
linked to contaminants, such as Al-OH, Mg-OH, CO3 and OH (Figure 6). These features
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are observed for nearly all samples in Figure 6, with the exception of CN_10585. For the
SFL spectra, these features were masked in all spectra shown in Figure 6.

3.2. Iron Estimation Models

The models tested here, RF, ADB, kNN, and SVM, provided different forecasting
precision for the Fe concentrations of the Sinter Feed samples (Table 2). The table with the
evaluation statistics of the models was divided into two parts, one with the evaluation of
the models calibrated with the SFP samples (A) and another for the SFL samples (B). In
both cases, the R2, MSE and MAE statistics are presented for the models calibrated with
the spectra of the C-I and C-II libraries.

Table 2. Results of the model statistics for the estimation of Fe contents using the reference spectra
(C-I and C-II) and the XRF analyses.

(A) SFP

* C-I: 400 to 2500 nn

Model R2 MSE MAE
RF 0.768 0.559 0.638

ADB 0.801 0.479 0.554
kNN 0.680 0.771 0.717
SVM 0.865 0.325 0.450

* C-II: 400 to 1310 nm

RF 0.670 0.795 0.728
ADB 0.725 0.662 0.685
kNN 0.627 0.898 0.760
SVM 0.758 0.584 0.676

(B) SFL

* C-I: 400 to 2500 nm

Model R2 MSE MAE
RF 0.777 0.536 0.567

ADB 0.837 0.392 0.507
kNN 0.724 0.664 0.677
SVM 0.878 0.295 0.451

* C-II: 400 to 1310 nm

RF 0.884 0.280 0.452
ADB 0.872 0.308 0.935
kNN 0.732 0.647 0.650
SVM 0.795 0.493 0.569

The models tested with the spectra of the C-I dataset for SFP with the best perfor-
mances were ADB and SVM (Table 2). In the case of ADB, R2 = 0.801, MSE = 0.479, and
MAE = 0.554. For SVM, R2 = 0.865, MSE = 0.325, and MAE = 0.450. On the other hand,
the RF and kNN showed lower performances, with R2 < 0.768, MSE and MAE > 0.559. All
models trained with the C-II dataset showed lower performance compared to C-I (Table 2),
with R2 ranging from 0.627 to 0.758, MSE between 0.584 and 0.898 and MAE between 0.676
and 0.760.

The results of the SFP Fe estimates performed by the tested model dataset C-I can
be seen in Figure 7A and with dataset C-II in Figure 7B. In the graphs, the levels of Fe
analyzed by XRF are on the X axis, and the levels estimated by the models calibrated in
this study are on the Y axis.
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Figure 7. (A) Results of the models for estimating Fe tested with the SFP samples with the C-I spectra,
showing better ADB and SVM performances. (B) Results of the models for estimating Fe tested with
the SFP samples with the C-II spectra, showing that the models were not efficient in estimating the Fe
content when reducing the spectrum to 400–1310 nm.

Corroborating the results presented in the statistical table, the graphs show that the
predictions made with ADB and SVM were more efficient in estimating the Fe content
in SFP and C-I (Figure 7A). In this case, the samples are better fitted with the trend lines
plotted in the graph. On the other hand, for both RF and kNN, the samples are more
scattered and more distant from the line. Furthermore, the graphs of the Fe contents
estimated with the C-II dataset also show a large dispersion between samples for the four
models tested (Figure 7B).

The models calibrated with the C-I and C-II datasets of the samples of SFL showed
very similar performances (Table 2). The best performances are observed in the RF, ADB
and SVM models, with R2 ranging from 0.777 to 0.884, MSE between 0.280 and 0.536, and
MAE between 0.452 and 0.935. The kNN model had the worst performance, with R2 values
between 0.724 and 0.732, MSE values between 0.647 and 0.664, and MAE values between
0.650 and 0.677.

The results of the SFL Fe estimates performed by the models tested with the C-I and
C-II datasets were plotted together with the Fe contents analyzed by XRF in the graphs of
Figure 8A,B, respectively. In general, the arrangement of the samples in the graphs shows
good alignment with the trend line for the RF, ADB and SVM models for both C-I and C-II.
In contrast, the samples in the kNN plot are more dispersed for the entire analyzed dataset,
thus corroborating the evaluation of the statistical data in Table 2.
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Figure 8. (A,B) Results of the models for the estimation of Fe tested with the Sinter Feed samples
prepared in the laboratory with the C-I and C-II spectra, respectively. The graphs show good
alignment of the samples for RF, ADB and SVM. For kNN, the samples are more dispersed.

4. Discussion

The CMP, together with the Iron Quadrangle (in southeastern Brazil) and Hamers-
ley Province (in western Australia), hosts the largest deposits of high-content Fe in the
world [35]. Pioneer studies conducted in the Carajás Province showed that the high-
grade ore in the region is commonly associated with paragenesis containing hematite
as an essential mineral. However, lower mineralization levels are also associated with
intermediate-grade magnetite-carbonate or hematite-carbonate paragenesis, in addition to
the formation of banded and goethite formations [36]. In general, high-grade ore occurs
in the form of tabular bodies of friable to soft hematite containing smaller lenses of hard
hematite [35].

The average percentage of Fe observed in the set of samples studied here is 62%,
with the lowest value occurring for sample CN_10584 (41%) and the highest for sample
CN_10585 (68%). Regarding the other elements, the means are 2.0% for SiO2, 0.28% for P,
1.74% for Al2O3, 0.021% for Mn, 0.022% for TiO2, 0.040% for MgO, 0.006% for CaO and
0.007% K2O (Table 1).

Samples with lower Fe contents have higher SiO2 contents, for example, as samples
CN_10583 (Fe = 58%) and CN_10584 (Fe = 41%), with silica contents of 14 and 39%,
respectively, which may represent the reflection of lithological variation and possible
associations with the Cangas [20]. In addition to SiO2, it was not possible to observe a very
clear relationship between Fe and the other elements analyzed.

Regarding contaminants, especially SiO2, most of the samples are within the expected
limit (SiO2 < 0.6%) to maintain the quality of the ore for steel production, using [37] as
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a reference, except for samples CN_10582, CN_10583 and CN_10584, which have SiO2
contents varying from 9–39%.

Regarding phosphorus (P), the mean content observed in the sample set was ap-
proximately 0.2% (Table 1). According to [1], this element is commonly associated with
secondary iron oxides, such as limonite, goethite, secondary hematite, and minerals rich in
alumina, including clay and gibbsite, and apatite/hydroxyapatite in magnetite ores. Such
minerals will influence different regions of the spectrum.

The evaluation of the XRF chemical analyses contributed to interpretation of the
spectral curves of the dataset as the physicochemical and mineralogical characteristics of a
given material directly influence its reflectance spectra. Such information can be obtained
by analyzing the depth and location of the absorption features of each material [38].

In the spectra evaluated here, the most developed absorption features are in the VNIR,
which is the region with the best response for the characterization of iron oxides and
hydroxides [38]. The features observed at 485 nm (SFL) and 488 nm (SFP) can be explained
by the transfer of charges, which are common phenomena in oxides [39].

Pioneering reflectance spectroscopy studies revealed that the position of the absorption
feature between 850–1000 nm is a function of the composition of Fe oxides and hydroxides,
in which pure hematite is characterized in the range of ~860 nm and pure goethite in
~920 nm [40]. Thus, the comparison of the spectra of the samples illustrated in Figure 5
suggests that samples CN_10585, CN_10584 and CN_10564 are more hematinic, while
the others have spectral characteristics of goethite. Nevertheless, in the VNIR region, it
is possible to observe that the hematite samples have more subtle absorption features at
670 nm compared to the goethite samples. These features are commonly associated with
F3+ [40].

Even if hematite samples are commonly associated with high Fe content [35], it is
important to evaluate the presence and influence of contaminants (Figure 6). For example,
sample CN_10585 shows a very characteristic spectral curve of hematite, low values of
contaminants, such as silica, alumina and P (SiO2 = 1.21; P = 0.01; Al2 O3 = 0.22), and high
iron content (Fe = 68%). In turn, between 2200 and 2500 nm, it was not possible to observe
significant absorption features for the spectrum of this sample (Figure 6).

In contrast, the CN_10584 sample, which also has a diagnostic spectral curve of
hematite (Figure 5), showed an absorption feature close to 2200 nm (Figure 6), which may
reflect the presence of the silica observed in Table 1, where SiO2 = 39%. Thus, even if the
spectrum suggests the presence of hematite, this sample has the lowest iron content of the
studied set (Fe = 41%).

Comparing the spectra of the three goethite samples, it is possible to observe absorp-
tion features between 2100 and 2500 nm (Figure 6). These features may be related to the
presence of contaminants or even FeOH. The CN_10563 sample exhibits a very subtle
feature at approximately 2300 nm, and the XRF result shows a relatively high iron content
(Fe = 63%) and no significant contaminant content (SiO2 = 0.62; P = 0.13; Al2O3 = 0.98).
Conversely, samples CN_10556 and CN_10550, which have relatively lower iron contents,
at approximately 60%, exhibit slightly deeper absorption features in the 2310 nm range,
which can be explained by the high phosphorus contents (P = 0.47 a 0.52%) and alumina
(Al2 O3 = 2.9 to 3.0%).

The SFP spectra have absorption features at 1380 and 1950 (Figure 5A). These features
do not occur for SFL (Figure 5B), and according to Clark (1999), they are commonly
associated with the presence of H2O or OH. Regarding the spraying and drying process,
within the scope of spectral characterization, the results discussed here showed that there
were no significant gains in making the samples homogeneous and without moisture,
considering that several absorption features were attenuated for SFL, which made it a factor
that hinders qualitative analysis.

Identification of the typical absorption features of hematite and goethite corroborates
the information about the Sinter Feed mineralogy extracted from the physical descriptions
of the samples. In this case, CN_10585, CN_10584 and CN_10564, which showed features
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in the 860 nm region (characteristic of hematite), were physically described as friable
hematites with fine to medium particle size and dark red to black color when produced,
which changed to dark red tones when prepared in the laboratory (Figure 5C). Conversely,
the CN_10563 sample selected to represent the group of goethite samples, which showed
an absorption feature at approximately 900 nm, has a coarse particle size with a cohesive
texture, characteristic of cangas, typical of the Carajás Formation [20]. The sample is
also light red when used as a product and darker red when prepared in the laboratory
(Figure 5C). Despite its relatively high Fe content, due to its physical characteristics and
the presence of impurities, processing the canga is more laborious than processing friable
hematite [20].

Comparing the performance of the tested algorithms with the C-I and C-II spectra
used to estimate the SF content of Fe, it is not possible to notice very significant differences
between them. In both cases, the best estimates were made using the RF, ADB, and SVM
models, in which the statistical metrics showed lower MSE and MAE values and the highest
R2 values. In contrast, the kNN method showed lower efficiency for estimating Fe contents
and was thus less suitable for this purpose.

Regarding the algorithms trained with the SFP spectral library, the best results were
achieved using the C-I spectra, with the ADB and SVM being more efficient in estimating
the Fe contents. Already restricting the spectrum region, in the case of C-II, none of the
algorithms showed satisfactory results, with low R2 values and relatively high MSE and
MAE values.

Comparing the best results of the calibrated SFP models with the SFL results, it was
found that there is no significant difference between the performance of the models. In
the case of the Sinter Feed product (C-I), the ADB and SVM algorithms showed R2 values
between 0.801 and 0.865, MSE values between 0.325 and 0.479 and MAE values between
0.450 and 0.554. For SFL (C-I and C-II), the RF, ADB and SVM showed R2 values between
0.777 and 0.884, MSE values between 0.295 and 0.493, and MAE values between 0.451
and 0.935.

5. Conclusions

The main contributions of this study are listed as follows:

- Spectrally, there were no gains with the preparation of the Sinter Feed samples in the
laboratory as with the drying and spraying procedures, the particle size of these sam-
ples became more homogeneous, thus attenuating the VSWIR absorption features used
for qualitative and quantitative analyses of the physicochemical and mineralogical
properties of the Sinter Feed.

- The absorption features located in the VNIR region (~860 nm) enabled the identifica-
tion of more hematitic (CN_10585, CN_10584 and CN_10564) and goethite samples,
starting at 900 nm (CN_10563, CN_10556 and CN_10550). This information corrobo-
rated the physical characterization of the Sinter Feed, in which the hematitic samples
were described as the most friable material with fine to medium particle sizes and
colors between red to black (when product) and dark red (when sprayed). On the
other hand, the goethite samples had coarser particle sizes and colors varying in
shades of red, both for the Sinter Feed product samples and for the samples prepared
in the laboratory.

- The best Fe estimates for SFP were made with the ADB and SVM models, using only
the C-I dataset, which is in the spectral range of 400 to 2500 nm.

- For SFL, the RF, ADB and SVM models were more efficient for estimating Fe us-
ing both the C-I and C-II libraries. Conversely, kNN is the least recommended for
this application.

- The possibility of calibrating models, such as SVM and ADB, using only the Sinter
Feed spectra without sample preparation opens space to discuss the operationalization
of these methods in the processing plant routine.
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- Finally, we suggest calibration and evaluation of models using reflectance spectroscopy
and XRF to estimate contaminants, such as phosphorus, silica, manganese and alumina.
We also suggest that other algorithms could be tested to improve the results presented
here, such as decision trees and artificial neural networks.
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Abstract: Due to the vast geometric and radiometric differences between SAR and optical images,
SAR-optical image matching remains an intractable challenge. Despite the fact that the deep learning-
based matching model has achieved great success, SAR feature embedding ability is not fully explored
yet because of the lack of well-designed pre-training techniques. In this paper, we propose to employ
the self-supervised learning method in the SAR-optical matching framework, in order to serve as a
pre-training strategy for improving the representation learning ability of SAR images as well as optical
images. We first use a state-of-the-art self-supervised learning method, Momentum Contrast (MoCo),
to pre-train an optical feature encoder and an SAR feature encoder separately. Then, the pre-trained
encoders are transferred to an advanced common representation learning model, Bridge Neural
Network (BNN), to project the SAR and optical images into a more distinguishable common feature
representation subspace, which leads to a high multi-modal image matching result. Experimental
results on three SAR-optical matching benchmark datasets show that our proposed MoCo pre-training
method achieves a high matching accuracy up to 0.873 even for the complex QXS-SAROPT SAR-
optical matching dataset. BNN pre-trained with MoCo outperforms BNN with the most commonly
used ImageNet pre-training , and achieves at most 4.4% gains in matching accuracy.

Keywords: SAR-optical fusion; image matching; self-supervised learning; representation learning

1. Introduction

Synthetic Aperture Radar (SAR) and optical imagery are two of the most commonly
used modalities in remote sensing since they provide highly complementary content to each
other. While optical imagery with good interpretability is easily affected by atmospheric
conditions, SAR data can collect information all the time but suffered from serious intrinsic
speckle noise. Therefore, fusion information of SAR and optical images can give rise to a
better interpretation of the imaged area. For accurate SAR-optical data fusion, identifying
corresponding image patches plays a crucial role as a pre-procedure. It remains a widely
unsolved challenge to match SAR-optical remote sensing data due to the vast geometric
and radiometric differences as shown in Figure 1.

Over the past few decades, the traditional SAR-optical image matching methods can
be generally divided into area-based and feature-based approaches. Area-based methods
utilize the intensity of pixel values in some regions of the image and the corresponding
regional similarity evaluation is calculated, such as cross correlation (CC) [1], structural
similarity (SSIM), mutual information (MI) [2,3], and so on. However, owing to the low
flexibility and lack of local structure information, the area-based methods fail to avoid
information loss in the measure of multimodal image similarity. Therefore, more attempts
at SAR and optical image matching have been placed on the feature-based methods. Since
feature-based methods rely on the invariant feature points and handcrafted descriptors can
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handle the geometric changes well, the feature-based methods generally outperform the
area-based methods, for example, scale-invariant feature transform (SIFT) [4], SAR-SIFT [5],
HOPC [6,7], etc. However, the handcrafted descriptors based on low-level semantic features
are not capable of dealing with highly divergent changes between SAR and optical images.
More recently, deep learning-based SAR-optical image matching approaches have achieved
great success. Two-tower architecture is the most commonly exploited in multimodal image
matching, such as a Siamese or pseudo-Siamese network [8–11], which consists of two
convolutional neural networks (CNN) to extract the deep characteristic features—not only
with the Siamese network but a novel method called Bridge Neural Network (BNN) [12] to
project the multimodal data into a common representation subspace where features can be
measured with Euclidean distance.

Figure 1. Comparison between SAR (bottom) and optical (top) imagery of the same scene.

Meanwhile, the ImageNet [13,14] supervised pre-training technique that contains
prior knowledge is the most widely adopted in the SAR-related field for the scarcity of
labeled SAR images in the past. However, there remain some limitations to using ImageNet
pre-trained models for SAR-optical fusion tasks. Images in ImageNet are all optical images,
which do not contain SAR information and characteristics; as a result, taking ImageNet
supervised pre-training directly can hardly improve the learning ability of SAR images and
benefit the SAR-optical fusion task.

As ImageNet pre-training can hardly improve the learning ability for SAR images, the
representation learning ability to match models plays a vital role in SAR-optical matching
tasks. Recent advances in self-supervised learning for computer vision present competitive
results with supervised learning. Without manual annotations, useful representations
can be obtained only with the help of some pretext tasks, which is probably achieved by
maximizing the mutual information of learned representations. Representations pre-trained
by contrastive learning that transferred to downstream tasks: classification, segmentation,
and detection tasks lead to a competitive performance with supervised learning [15–21]. A
contrastive learning method called Momentum Contrast (MoCo) [19] uses a momentum-
update encoder to generate a dynamic dictionary query to save more negative samples
with less memory. The MoCo pre-training method has achieved promising results in a
variety of downstream tasks.

As discussed above, self-supervised learning can pre-train representations that can be
transferred to downstream tasks by fine-tuning. In an attempt to improve multimodal SAR-
optical image matching performance, we exploit the self-supervised learning technique to
improve the feature learning ability of SAR and optical imagery, respectively. Then, the
model is transferred to the SAR-optical matching task. The overall process is illustrated in
Figure 2. More specifically, we take MoCo [19] as a pre-training strategy and BNN [12] for
matching. By this method, self-supervised pre-training enhances the embedding of SAR
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and optical images and benefits SAR-optical matching tasks. Experimental results on three
datasets show that self-supervised pre-training leads to a better matching performance.
Our main contributions are summarized as follows:

• We propose a framework applying self-supervised learning to SAR-optical image
matching, improving the feature learning ability of SAR and optical images.

• We take MoCo and BNN as one of the most representative works in self-supervised
learning and multi-modal image matching to make the framework truly implemented.

• For the proposed framework, we conduct lots of experiments to confirm the feasibility
and the effectiveness of the self-supervised learning transferred to optical-SAR image
matching task, which would encourage further research in this field.

momentum
encoder

optical
encoder

momentum
encoder

SAR
encoder

optical
encoder

SAR 
encoder

positive

negative

comparison comparison

Figure 2. The overall process of models via MoCo pre-training transferred to BNN is described. The
first box shows the process of applying MoCo to improve the representation learning ability of SAR
and optical images separately. Then, the model is transferred to BNN to deal with the SAR-optical
matching task in the second box.

The rest of the paper is organized as follows: Section 2 introduces MoCo, BNN, and
the way we combine them in detail. The settings and results of the experiments are shown
in Section 3. The discussion and conclusions are drawn in Section 4.

2. Method

The method in this paper consists of two steps: MoCo [19] pre-training and transferring
to BNN [12] for matching tasks. In this section, we will introduce the MoCo, BNN, and the
way we combine them in detail.

2.1. Momentum Contrast

In [19], they regard contrastive learning as training an encoder for a dictionary look-up
task. Momentum Contrast (MoCo) is for building a dynamic large and consistent dictionary
on-the-fly. The core of MoCo is maintaining the dictionary as a queue of data samples;
therefore, the dictionary size can be decoupled from the mini-batch size for the utilization
of the queue to be larger and contain more negative samples.

Given a dataset X = {xi}N
i=1. , where xi can be considered as a query sample. Then,

we can randomly select the other k samples from the dataset X to form a dictionary
{d1, d2, . . . , dk}. There is a single sample di in the dictionary that matches xi. Therefore, the
sample xi with the dictionary can be combined into one positive pair {xi, di} and k negative
pairs

{
xi, dj

}
(j �= i) . To extract the representations, two feature encoders f (·; θx), f (·; θd)
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are employed with parameters θx, θd respectively to project the images into the query
representations zi = f (xi; θx) and the keys of the dictionary yi = f (di; θd). Regarding
InfoNCE [16] as the contrastive loss:

Lcontrast = −E
X

⎡⎣log
s(x, d+)

∑x∈X ∑k+1
j=1 s

(
x, dj

)
⎤⎦, (1)

where s(·, ·) is the metric function and d+ is the unique positive sample. Here, dot product
is applied to measure the similarity between latent representations with a temperature
hyper-parameter τ:

s(x, d) = exp
(

f (x; θx) · f (d; θd)

‖ f (x; θx)‖ · ‖ f (d; θd)‖ · 1
τ

)
, (2)

which achieves high values for positives and low scores for negatives.
Momentum update. The parameters θx of query encoder are updated by back-

propagation while the parameters θd of key encoder are updated by:

θd ← mθd + (1 − m)θx, (3)

where m ∈ [0, 1) is the momentum coefficient. The momentum update makes θd evolve
more smoothly than θx. Consequently, the keys in dictionary are encoded by slightly
different encoders.

Compared with memory bank. The memory bank proposed in [15] is composed of
the representations of samples. For every mini-batch, the keys are randomly sampled
from the memory bank with no back-propagation. It can support a large mini-batch size,
but the representations in the memory bank can not be consistent since it is only updated
when it has been chosen. In contrast, the momentum update is more memory-efficient and
guarantees the consistency of dictionary keys. Comparison is shown in Figure 3.

x

encoder

z y

similarity

gradient

contrastive loss

memory bank

sampling

(a) memory bank

x

encoder momentum
encoder

z y

similarity

gradient

contrastive loss

d
(b) MoCo

Figure 3. Comparison between memory bank [15] and MoCo [19]. (a) Forming a memory bank and
sample from it as the key representations; (b) MoCo encodes the dictionary on-the-fly by momentum
updating an encoder slowly.

Pretext Task. Pretext tasks act as an important strategy to learn representations of data.
The pretext tasks in this paper follows [15,19]: random grayscale, random color jittering,
and random horizontal flip. In addition, as depicted in [19,22], Batch Normalization
(BN) [23] prevents the model from learning good representations. Thus, shuffling BN [19]
is employed to solve this problem.
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2.2. Bridge Neural Network

Despite the different modalities of SAR and optical images, BNN [12] works like
a bridge and is capable of projecting the multimodal images into a common represen-
tation subspace. As depicted in Figure 4, given a SAR-optical image dataset {Xs, Xo}.
Xs = {xi

s}N
i=1, Xo = {xi

o}N
i=1 are sets of SAR and optical image patches. We construct the

positive sample set Sp = {xi
s, xi

o}, where corresponding image pairs are from the same

region. Image pairs from Sn = {xi
s, xj

o}(i �= j) are from different areas, which we call
negative samples. The dual networks respectively extract features from SAR and optical
images: f (·) is for features of SAR images while g(·) for optical images. The separate
networks reduce the images into the n-dimension latent vectors: zs = f (xs), zo = g(xo).
Then, Euclidean distance is designed to bring the latent representations of positive samples
together while pushing negative samples apart in the common representation subspace.
The Euclidean distance between zs and zo is defined as:

h(xs, xo) =
1√
n
‖( f (xs)− g(xo))‖2, (4)

which indicates whether the input data pairs {xs, xo} have a potential relationship. The
distance of positive samples is regressed to 0 while the distance between negative samples
converges to 1. Therefore, the regression loss on positive samples and negative samples are
as follows:

lp
(
Sp
)
=

1∣∣Sp
∣∣ ∑
(xs ,xo)∈Sp

(h(xs, xo)− 0)2, (5)

ln(Sn) =
1

|Sn| ∑
(xs ,xo)∈Sn

(h(xs, xo)− 1)2. (6)

SAR CNNSAR CNNSAR CNNSAR CNNSAR CNN

Positive sample: matched pairsPositive sample: matched pairs

Negative sample: unmatched pairsNegative sample: unmatched pairsOptical CNNOptical CNNOptical CNNOptical CNNOptical CNN

Figure 4. Schematic illustration of the BNN architecture for the SAR-optical image matching task.
Optical network and SAR network are used in BNN to project the images from different modalities
into a common subspace. The Euclidean distance of the representations of SAR and optical images is
pulled close for positive samples and pulled apart for negative samples.

Hence, we add the loss on positive samples and negative samples up as the BNN loss:

lBNN
(
Sp, Sn

)
=

lp
(
Sp
)
+ α · ln(Sn)

1 + α
, (7)

where α balances the weights of positive loss and negative loss. Thus, optimizing the loss
of BNN can lead to the best networks ( f ∗, g∗):

( f ∗, g∗) = argmin f ,g lBNN
(
Sp, Sn

)
(8)

2.3. Transfer MoCo Pre-Trained Model to BNN

As depicted in Figure 2, at the pre-training stage, we first pre-train MoCo to obtain
an optical encoder and an SAR encoder to separately learn feature representations and
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measure the similarity in the latent space. At the matching stage, the pre-trained encoders
transferred to BNN serve as the initialization of the optical network and SAR network
for fine-tuning in the SAR-optical matching task. The encoders project the SAR and
optical images into a common feature representation subspace, where it is easy to measure
similarity, to determine whether they match or not.

3. Experiments

3.1. Dataset

We conduct experiments on three SAR-optical image datasets: SARptical [24], QXS-
SAROPT [25], SEN1-2 [26]. SARptical is a dataset of over 10,000 pairs of corresponding
SAR and optical image pairs, which are from TerraSAR-X and aerial UltraCAM optical
images. The images are of 112 × 112 pixels with 100 m × 100 m ground coverage. We
use 7577 image pairs for training and 1263 patch pairs for testing. QXS-SAROPT contains
20,000 pairs of SAR-optical image patches from GaoFen-3 satellite and Google Earth,
covering a variety of land types. The images have a size of 256 × 256 pixels at a pixel
spacing of 1 m × 1 m. The dataset is randomly divided into training and testing at a ratio
of 7:3. We select the spring subset from four sub-groups in SEN1-2 dataset, which consists
of registered patch-pairs from Sentinel-2 and Sentinel-1—a total of 75,724 patch pairs of
size 256 × 256 pixels with spatial distance of 10 m × 10 m, of which 52,799 are for training
and 22,925 for testing.

3.2. Implementation

Considering the complexity and difficulty of the matching task, we only take Vgg11 [27]
as the feature extraction network for SARptical while Vgg11 [27], ResNet50 [28], and Dark-
net53 [29] as the backbone for QXS-SAROPT and SEN1-2. More specifically, we encode the
SAR and optical images into a 50-dimensional feature representation subspace. It is noted
that every mini-batch input contains the same number of positive and negative samples to
prevent the model from mode collapse for the unbalanced data distribution. All images are
normalized w.r.t. mean and variance in preparation.

MoCo. We take N − 1 negative samples (N is the number of training datasets) and
set temperature parameter τ = 0.07 and momentum coefficient for updating encoder is
set as m = 0.999. We use SGD as an optimizer and a mini-batch size of 20. The weight
decay is 0.001 and the SGD momentum is 0.9. For SARptical, the learning rate is set as
0.05 for 300 epochs. While training on QXS-SAROPT, the learning rate is 0.001 for the first
250 epochs and 0.0005 for the last 250 epochs. As for SEN1-2, the models are trained with a
learning rate of 0.05 for 70 epochs.

BNN. The ratio of positive and negative samples is 1:1 and adjusting factor α = 1. For
SARptical, the learning rate is set as 0.1 to fine-tune the model for 100 epochs. Meanwhile,
BNN with MoCo pre-training on QXS-SAROPT and SEN1-2 are fine-tuned with a learning
rate of 0.05 for 10 epochs.

3.3. Results Analysis

We fine-tune BNN to SAR-optical image matching task with MoCo pre-training (MoCo-
BNN) on three datasets: SARptical, QXS-SAROPT, and SEN1-2. To demonstrate the
superiority of our method, we compare our method with two other initialization methods:
no pre-training (NP) and ImageNet pre-training (IP).. Accuracy, precision, and recall score
are employed as evaluation metrics. The matching results on three datasets can be seen in
Tables 1–3. It is noted that the pair matching results of IP-BNN benchmark can be directly
obtained from article [25,30].
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Table 1. Results for BNN patch-matching on SARptical with different pre-training methods.

Methods Accuracy Precision Recall

NP-BNN 0.887 0.825 0.993
IP-BNN 0.913 0.855 0.999

MoCo-BNN(ours) 0.913 0.859 0.991

Table 2. Results for BNN patch-matching on QXS-SAROPT with different pre-training methods.

Backbone Methods Accuracy Precision Recall

Vgg11
NP-BNN 0.844 0.781 0.982
IP-BNN 0.817 0.744 0.999

MoCo-BNN(ours) 0.858 0.795 0.990

ResNet50
NP-BNN 0.831 0.750 0.990

IP-BNN [25,30] 0.829 0.748 0.993
MoCo-BNN(ours) 0.873 0.808 0.995

Darknet53
NP-BNN 0.826 0.761 0.980

IP-BNN [25,30] 0.828 0.746 0.995
MoCo-BNN(ours) 0.871 0.809 0.997

Table 3. Results for BNN patch-matching on SEN1-2 with different pre-training methods.

Backbone Methods Accuracy Precision Recall

Vgg11
NP-BNN 0.832 0.800 0.916
IP-BNN 0.828 0.760 0.993

MoCo-BNN(ours) 0.841 0.787 0.960

ResNet50
NP-BNN 0.775 0.721 0.931
IP-BNN 0.783 0.722 0.954

MoCo-BNN(ours) 0.800 0.753 0.968

Darknet53
NP-BNN 0.834 0.775 0.970
IP-BNN 0.853 0.788 0.993

MoCo-BNN(ours) 0.862 0.796 0.998

Accuracy performance. Tables 2 and 3 suggest that our MoCo pre-trained models
lead to a better matching performance on QXS-SAROPT and SEN1-2.(The bolded number
represents the highest score on the backbone.) Especially on QXS-SAROPT, the accuracy
of BNN taking MoCo as a pre-training strategy achieves 87.3% and 87.1% and makes
a 4.4% improvement, which surpasses the other two methods by large margins. MoCo
pre-training also makes an obvious improvement on SEN1-2, indicating that MoCo has a
powerful representation learning ability for both SAR and optical images. Furthermore,
the results of NP and IP with ResNet50 and Darknet53 as backbone are almost the same,
which illustrates that the ImageNet supervised pre-trained models have no capacity for
SAR information and characteristics and it hardly makes sense in the SAR-optical image
matching problem. It is worth noting that IP-BNN is even worse than NP-BNN with Vgg11
as a backbone on QXS-SAROPT and SEN1-2, which is in line with the claims made in [14],
i.e., shallow models can be trained from scratch as long as a proper initialization is used,
whereas only when the network is large enough can the ImageNet pre-training model
which contains prior knowledge provide a good initialization to fine-tune. Besides, in
Table 1, MoCo does not make any progress on SARptical. The reason may stem from the
single building scenario in this dataset; the IP method learns better optical features and
makes a great performance. When confronted with more complex SAR-optical datasets,
optical feature embedding ability is weakened and SAR feature learning ability plays a
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major role. We visualize the accuracy results in Figure 5 to better show the comparison of
the different pre-training strategies.

(a) SARptical (b) QXS-SAROPT (c) SEN1-2

Figure 5. Visualization of the accuracy results of BNN with NP, IP, and MoCo pre-training on
three datasets.

We show matching results of some images pairs in Figure 6. In particular, image pairs
in red box are classified correctly by our MoCo-BNN and classified incorrectly by IP-BNN.
As shown in the figure, MoCo-BNN not only can distinguish the similar negative image
pairs, but also can correctly discriminate among the non-obvious positive sample pairs.

(a) True Positive (b) True Negative (c) False Positive (d) False Negative

SARptical

QXS-SAROPT

SEN1-2

Figure 6. Exhibition of images pairs in different matching results. The red boxes frame the image
pairs that MoCo-BNN classifies correctly and IP-BNN classifies incorrectly.

Embedding learning performance. To intuitively compare the feature representa-
tions learn by BNN with NP, IP, and MoCo pre-training, we visualize the embedding
learning results of the test set of QXS-SAROPT. We use t-distributed Stochastic Neighbor
Embedding(t-SNE) to visualize the features extracted by BNN with NP, IP, and MoCo
pre-training. We first concatenate the SAR and optical 50-dimensional features to the
100-dimensional features. T-SNE projects the features to two dimensions so that the high-
dimensional features are convenient to visualize. As shown in Figure 7, the features of
positive samples and negative samples learned by BNN with NP and IP are mixed together
while the positive features (class 1) and negative features (class 0) learned by BNN with
MoCo pre-training are more gathered in each class and more separate between different
classes. Therefore, the MoCo pre-trained BNN can generate a more distinguishable em-
bedding space, leading to a better multi-modal image matching result. The reason may
stem from MoCo pre-training leading to a better representation learning ability for SAR
and optical images.
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(a) NP (b) IP (c) MoCo

Figure 7. Visualization of positive and negative features extracted by BNN with NP, IP, and MoCo
pre-training using t-SNE. The red dots represent the positive features, and the blue dots represent the
negative features.

4. Discussion and Conclusions

Aiming at improving SAR-optical image matching performance, considering di-
rectly fine-tuning on an ImageNet supervised pre-training model as commonly used
can hardly benefit for improving the learning ability for SAR images; this paper exploits
a self-supervised pre-training to improve the feature learning ability of SAR and opti-
cal images respectively. Then, the pre-trained model is transferred to the SAR-optical
matching tasks. The experiments demonstrate that self-supervised pre-training leads to a
significant improvement.

Furthermore, we exploit a self-supervised pre-training paradigm to improve the
feature learning ability of multi-modal images. However, this paper only did experiments
on SAR-optical images and only for matching tasks. It is believed that our method not
only can be adaptive to different kinds of remote sensing images, such as multi-spectral
images, hyperspectral images and so on, but also can be transferred to different tasks, such
as objective detection.

However, the experiments were only conducted on one self-supervised method MoCo,
and one matching network BNN is a major deficiency. Furthermore, it has been verified
in [15–21] that a large mini-batch size is necessary for self-supervised learning to learn
a good representation. Nonetheless, it still works well when we train the MoCo with
mini-batch size 20, which is much smaller than the commonly used mini-batch size in
self-supervised learning. In the future, more experiments on a Siamese network and
other self-supervised learning methods will be carried out to confirm the effectiveness of
self-supervised pre-training in SAR-optical image matching.
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Abstract: With the rapid development of Earth observation technology, how to effectively and
efficiently detect changes in multi-temporal images has become an important but challenging problem.
Relying on the advantages of high performance and robustness, object-based change detection (CD)
has become increasingly popular. By analyzing the similarity of local pixels, object-based CD
aggregates similar pixels into one object and takes it as the basic processing unit. However, object-
based approaches often have difficulty capturing discriminative features, as irregular objects make
processing difficult. To address this problem, in this paper, we propose a novel superpixel-based multi-
scale Siamese graph attention network (MSGATN) which can process unstructured data natively and
extract valuable features. First, a difference image (DI) is generated by Euclidean distance between
bitemporal images. Second, superpixel segmentation is employed based on DI to divide each image
into many homogeneous regions. Then, these superpixels are used to model the problem by graph
theory to construct a series of nodes with the adjacency between them. Subsequently, the multi-scale
neighborhood features of the nodes are extracted through applying a graph convolutional network
and concatenated by an attention mechanism. Finally, the binary change map can be obtained
by classifying each node by some fully connected layers. The novel features of MSGATN can be
summarized as follows: (1) Training in multi-scale constructed graphs improves the recognition over
changed land cover of varied sizes and shapes. (2) Spectral and spatial self-attention mechanisms
are exploited for a better change detection performance. The experimental results on several real
datasets show the effectiveness and superiority of the proposed method. In addition, compared to
other recent methods, the proposed can demonstrate very high processing efficiency and greatly
reduce the dependence on labeled training samples in a semisupervised training fashion.

Keywords: change detection; superpixel segmentation; graph attention network; remote sensing images

1. Introduction

With the continuous collection of massive multi-temporal remote sensing images, such
as multi-spectral [1,2], synthetic aperture radar (SAR) [3], hyperspectral [4], and unmanned
aerial vehicle (UAV) images [5], these multi-temporal remote sensing images have been
promoted in practical applications. In this data context, change detection (CD) is one of
the most meaningful technologies, which aims to quantitatively and qualitatively obtain
the change information of ground objects by analyzing bitemporal remote sensing images.
In many practical situations, these changes have potential significance, such as urban
development planning, natural disaster assessment, dynamic monitoring of ecological
environment, and natural resource management [6–8].

In the early stages, in order to obtain land cover change information, the traditional
CD technology usually includes the following steps. First, the bitemporal image needs to
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be preprocessed, including radiation correction, ensemble correction, and spatial registra-
tion [9,10]. Second, a difference image (DI) between bitemporal images can be acquired
by image ratio [11], image difference [12], change vector analysis [13,14], etc. Finally, a
threshold or a clustering algorithm is applied to segment DI into binary change map (BCM),
such as Otsu [15,16], double-window flexible pace search [17,18], K-means [19], fuzzy
c-means [20,21], and so on. Since bitemporal images are usually collected under different
imaging conditions, such as illumination, season, etc., the different images may contain a
large number of spurious differences [22]. Moreover, these methods usually use pixels as
processing units, and either thresholding or clustering can cause a lot of noise in the results
of these methods.

To address the limitations of pixel-level methods, many scholars have made great
efforts in CD and proposed various object-based CD methods [23,24]. In general, object-
based methods first need to segment the image to obtain multi-scale objects. Universal
image segmentation techniques include fractal net evolution segmentation approach [25],
simple linear iterative clustering (SLIC) superpixel segmentation [26], etc. These approaches
frequently generate multi-scale objects or superpixels through region growing, i.e., objects
or superpixels are obtained by gradual pixel binning with similar spectral values. Therefore,
each superpixel or object is composed of a homogeneous set of pixels. The CD can then be
achieved by the object for the image analysis and processing unit. For example, in the early
stages, Jungho et al. proposed an object-based CD based on correlation image analysis
and image segmentation [27]. An object-based approach is based on multiple classifiers
and multi-scale uncertainty analysis for CD with high-resolution (HR) remote sensing
images [28]. Recently, some novel object-based approaches have made some efforts. For
instance, Lv et al. promoted an object-oriented key point vector distance to obtain binary
CD [29]. This method can significantly improve the performance of the difference image,
as it measures the difference between the key-points vectors of two objects in bitemporal
images. Similar methods are available in [30–32].

Although the aforementioned approaches have made remarkable progress, some limi-
tations are still unavoidable. These limitations mainly include the following three aspects:

• Traditional methods are difficult to deal with and analyze irregular objects effectively
as the multi-scale objects or the superpixels represent unstructured data. Therefore,
there is still a lack of effective representative feature extraction approach for unstruc-
tured data.

• Image segmentation itself is a challenging task, and usually some parameters need to
be adjusted to obtain better segmentation results. Moreover, the error of image segmen-
tation may accumulate in the change detection task to some extent. Therefore, object-
based change detection is severely limited by the performance of image segmentation.

• Object-based CD approaches generally require more complex frameworks. This re-
sults in a lower degree of automation of the entire CD framework due to the need to
individually perform image segmentation algorithms and select appropriate segmen-
tation parameters.

With the popularization of deep learning technology, the methods based on deep
neural networks have been widely used in change detection. In particular, the graph neural
networks (GNNs) have been noticed due to their excellent performance in unstructured data
classification. Recently, GNNs have been successfully applied to image classification [33,34]
and change detection [35,36]. Specifically, in [37], graph convolutional networks (GCNs)
are utilized to extract the features of different types for hyperspectral image classification.
Saha et al. proposed a semisupervised CD approach based on GCNs [38], which adopts
multi-scale parcel segmentation to encode multi-temporal images as a graph. However,
there are still few studies on GCN-based CD at present. Therefore, GCNs-based CD still
needs continuous and further research.

Considering the excellent performance of GCNs in solving image classification, we are
able to model the change detection task as a graph node classification task for improving the
performance of CD. With this motivation, the paper proposes a novel multi-scale superpixel
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graph attention network (MSGATN), which can process unstructured data natively and
extract valuable features. In the proposed method, a difference image (DI) is firstly obtained
by Euclidean distance between bitemporal images. Then, an SLIC algorithm is employed
to divide the DI into many homogeneous superpixels. Subsequently, these superpixels
are exploited to model the problem by graph theory to build a series of nodes with Based
on this, the multi-scale features of each node are captured by a graph attention network
(GATN). Finally, the binary change map (BCM) is generated by classifying each node using
some fully connected layers.

The contributions of the proposed MSGATN approach are summarized as follows:

(1) We propose a network model based on graph theory, which can process the unstruc-
tured data of objects with irregular boundaries in OBCD and consider the adjacency
relationship between objects.

(2) The proposed method is inductive, which can simultaneously adapt to graphs of
different scales. Therefore, our proposed MSGATN can exploit the constructed graphs
of various scales, thus improving the abilities of representation and generalization.

(3) Experiments on several real datasets obtained from different sensors demonstrate
that the proposed MSGATN has high efficiency and performance, as well as certain
generalization.

The rest of this paper is organized as follows. Section 2 briefly introduces some related
works. In Section 3, our method is described in detail. Section 4 provides the experimental
settings and results. Finally, the conclusions and future works are given in Section 5.

2. Related Work

2.1. Deep-Learning-Based CD Methods

In recent years, deep learning technology has become a new favorite in the field of
CD [39,40], especially convolutional neural networks (CNNs). These deep-learning-based
methods can be roughly summarized into two categories, i.e., image-level methods and
patch-level methods.

(1) Image-level methods: This category of method is to acquire semantic change
information by analyzing a complete bitemporal image at a time [41]. Hence, that usually
requires a large number of pairs of manually labeled training image pairs. For example,
Ji et al. proposed a Siamese U-Net with shared weights to acquire a building change map in
an end-to-end manner [42]. Liu et al. devised a local-global pyramid network for building
CD in [43]. In [44], a spatial–temporal attention-based network based on self-attention
mechanism was applied to mine deep robust features for large image-to-image CD datasets.
Although these approaches can achieve competitive performance, they often not only
require a large number of manually labeled paired images to train the network, but also
cost more storage space and computational resources.

(2) Patch-level methods: Different from image-level methods, this type of method
indicates using local pixel patches or superpixels as analysis units, and capturing feature
representations through convolution or fully connection to achieve CD. In the early stages,
Gong et al. proposed a novel CD method based on deep learning [45], which can avoid the
effect of the DI to provide a better change detection performance. In [46], a Gabor-based
PCANet (GaborPCANet) was promoted for CD in SAR images, which utilizes PCA filters
as convolutional filters to capture the image features. A convolutional-wavelet neural
network (CWNN) was devised to detect sea ice change detection from SAR images in [47].
Jiang et al. developed a semisupervised multiple CD approach, which can detect multiple
changes using only a very limited samples by training a generative adversarial network [48].
This approach introduces dual-tree complex wavelet transform into CNNs to reduce the
effect of the speckle noise, thus improving detection performance. However, these methods
based on local pixel patches are still limited by the selection of regular windows. To
alleviate this limitation, superpixels-based CD methods have received attention, which
aim to use superpixels as analysis units to capture more representative features through
CNNs. To achieve this, recent methods have made further efforts. For instance, Gong et al.
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presented a superpixel-based difference representation learning to extract semantic change
information between bitemporal images [49]. In [50], an end-to-end superpixel-enhanced
CD network was designed, which combines an adaptive superpixel merging module to
mine difference information for CD. Other methods refer to [51–53].

2.2. Graph Neural Networks

In the early stage, among the works concerning CD approach, graph theory-based
approaches have been extensively used for CD [54,55]. For instance, in [56], a weighted
graph was built to measure changes for CD with SAR images. Sun et al. proposed
an iterative robust graph for unsupervised heterogenous images CD [57]. This method
constructs a robust K-nearest neighbor graph of bitemporal images, and calculates the
difference image by comparing the graphs.

With the development of deep learning, a variant of CNNs, graph neural networks
(GNNs), has received sustained attention in many applications [58–60]. In particular,
graph convolutional networks (GCNs) have been successfully applied in the fields of
remote sensing, such as remote sensing image retrieval [61], remote sensing image semantic
segmentation [62], and hyperspectral image classification [63]. Specifically, GCNs are able
to efficiently process graph-structured data by modeling the relationships between samples
(or vertices). Therefore, GCNs can be naturally used to model remote spatial relationships
in remote sensing images, which is not considered in CNNs. Recently, considering the
previous GCNs-based research in the field of remote sensing, these methods have been
developed and applied to CD tasks. For example, Wu et al. promoted a multi-scale GCN
to detect land cover changes for CD in homogeneous and heterogeneous remote sensing
images [64]. This approach constructs graph representations through object-wise high-
level features generated by a pretrained U-Net. In [65], a multi-scale dynamic GCN was
employed to mine the short-range and long-range contextual information. These GNNs-
based methods have been initially applied to solve remote sensing image CD. However,
there are still few CD methods for GNNs, and a large number of systematic theoretical
studies and applications are still lacking. Therefore, further development of GNN-based
CD methods has potential value.

3. Proposed Superpixel-Based MSGATN

3.1. Overview of the Proposed MSGATN

In this subsection, an overview of the proposed MSGATN is given briefly in Figure 1.
Firstly, the difference intensity of bitemporal remote sensed images is obtained by Euclidean
distance. Based on the pixel-wise similarity, the difference intensity map can be segmented
to massive unstructured multi-scale superpixels of varied shapes and boundaries by simple
linear iterative clustering (SLIC). With the segmented DI acquired, a region adjacency graph
(RAG) can be constructed based on the mutual consistency of neighbor superpixels. The
spatial–temporal relationships between these superpixels can be well modeled by the edges
of constructed DI RAG. Then, the bitemporal remote sensing images are also segmented into
superpixels with the guidance of the segmentation information extracted in DI superpixel
segmentation. Several significant statistical characteristics, i.e., minimum, maximum, mean,
standard deviation, skewness, and kurtosiscan further represent the features of multi-scale
bitemporal superpixels. As a result, the input graph of graph attention network (GATN) can
be constructed by the nodes obtained from features of bitemporal superpixels and the edges
acquired in the RAG of DI superpixels. Finally, superpixel-level prediction is obtained by
GATN and remapped to form the pixel-level change map. The detailed inference process
of MSGATN can be illustrated in Algorithm 1.
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Figure 1. The framework and procedure of MSGATN.

Algorithm 1 Inference process of MSGATN

Input: T1, T2: the bitemporal images.

1: Begin

2: DI ← Euclidean_Distance(T1, T2); // obtain the difference intensity

3: SDI ← SLIC(DI); // conduct superpixel segmentation over DI

4: Gsp
(V , Esp

) ← RAG
(
SDI); // acquire the region adjacency graph of SDI

5: ST1 ← superpixel_segmentation(T1); // segment T1 according to SDI

6: ST2 ← superpixel_segmentation(T2); // segment T2 according to SDI

7: F1 ← f eature_analyse
(
ST1); // represent the significant features of ST1

8: F2 ← f eature_analyse
(
ST2); // represent the significant features of ST2

9: V f ← concatenate
(

F1, F2); // collect the superpixel-level bitemporal features

10: Ginput ←
(
V f , Esp

)
; // construct the input graph for GATN

11: Foutput ← GATN
(Ginput

)
; // obtain superpixel-wise change map

12: CM ← remap
(Foutput

)
; // remap the superpixel prediction to acquire final CM

Output: CM: binary change map.
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As shown in the procedure above, the proposed MSGATN firstly obtains the multi-
scale unstructured features of bitemporal remote sensed images through superpixel seg-
mentation, which further promotes the fine-grained CD prediction. Then, the mutual
relationships inside these bitemporal superpixels are well represented and modeled by
GATN. Given the overall framework and inference process of the proposed MSGATN, the
detailed information of the proposed graph construction mechanism can be given in the
following section.

3.2. Graph Construction

To acquire credible prior information for GATN, a preliminary but representative
graph construction is indispensable. In the proposed graph construction method, difference
intensity and bitemporal remote sensing images are integrated to obtain comprehensive
non-local change information, which advances the changed region detection in GATN. The
overall graph construction can be further illustrated by the following steps. Initially, the
pixel-wise difference intensity DI ∈ RH×W can be represented as

distance = 2
√
(T1 − T2)2 (1)

DI =
distance − min(distance)

max(distance)− min(distance)
(2)

After the difference intensity is acquired, the multi-scale superpixel segmentation over DI
can be given as

SDI =
{

p1, p2, · · · , pN_seg
}
= SLICN_seg(DI) (3)

where SLICN_seg(·) denotes the simple linear iterative clustering with different numbers of
segmented superpixels, and N_seg represents the number of superpixels. Generally, the
more superpixels, the smaller they are. In this case, we can obtain multi-scale superpixels
for the multi-scale feature recognition of the proposed MSGATN. Then, the region adjacency
co-relations Gsp of SDI can be modeled as

Gsp
(V , Esp

)
= RAG

(
SDI

)
(4)

in which RAG(·) represents the region adjacency graph construction operation. The
edges Esp are exploited to model the local and non-local relations inside bitemporal
superpixels. To achieve this, the bitemporal superpixels need to be firstly acquired as
ST1 =

{
p1

1, p1
2, · · · , p1

N_seg

}
and ST2 =

{
p2

1, p2
2, · · · , p2

N_seg

}
. Then, the bitemporal features

of these superpixels can be denoted as

F1 = concat
[
min

(
ST1

)
, max

(
ST1

)
, mean

(
ST1

)
, std

(
ST1

)
, skew

(
ST1

)
, kur

(
ST1

)]
(5)

F2 = concat
[
min

(
ST2

)
, max

(
ST2

)
, mean

(
ST2

)
, std

(
ST2

)
, skew

(
ST2

)
, kur

(
ST2

)]
(6)

where concat(·) indicates a feature-level integration, and min(·), max(·), mean(·), std(·),
skew(·), and kur(·) represent the superpixel-wise minimum, maximum, mean, standard
deviation, skewness, and kurtosis, respectively. Given these dependable and discriminative
features of bitemporal superpixels, the nodes can be obtained as follows:

V f = concat
(

F1, F2
)

(7)

at which concat(·) denotes a feature-wise concatenation. With the nodes and edges obtained,
the input multi-scale graphs for MSGATN can be constructed as

GN_seg
input =

(
V f , Esp

)
(8)
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With different N_seg, input graphs of varied scales can be provided for the proposed
MSGATN; thus, the multi-scale change objects obtain a finer cognition.

3.3. Multi-Scale Siamese Graph Attention Network

In the proposed MSGATN, a GATN is employed to better reveal the relationships
between multi-scale unstructured superpixels, and the graph attention mechanism is the
linchpin of GATN. To further facilitate the understanding for the proposed MSGATN, the
mathematical style of graph attention is given as follows: Let fi ∈ RCI and f j ∈ RCI be the
feature vectors of current node i and its neighbor node j, respectively. Then, the edge score
eij can be obtained by

eij =
(
concat

(
fiW, f jW

))
A (9)

where W ∈ RCI×CO and A ∈ R2CO×1 are the learnable supervised parameters, concat(·)
represents a feature-wise integration, and CI and CO denote the input and output feature
lengths, respectively. With each eij acquired, the attention score aij can be given as follows:

aij =
exp

(
LeakyReLU

(
eij
))

∑k exp(LeakyReLU(eik))
(10)

where LeakyReLU(·) represents a nonlinear activation, and k denotes all the neighbor
nodes of i. In the proposed MSGATN, the graph attention mechanism is widely used to
refine the graph feature representation. To improve the recognition for multi-scale objects,
the proposed network is trained over multi-scale graphs from superpixel segmentation of
different superpixel numbers. In our method, the N_seg is set to 2000, 4000, and 6000 to
obtain input graphs of different scales. Basically, GATN can tackle inductive tasks with
graphs of varied scales. Based on this fact, the proposed MSGATN can learn multi-scale
feature representation through training over several multi-scale constructed graphs in a
Siamese framework.

4. Experiments

4.1. Dataset Descriptions

To further test and verify the ability of the proposed method, two extensively used
remote sensing CD multi-spectral datasets, i.e., the Guangzhou city dataset and the Hongqi
canal dataset, are exploited, which are shown in Figures 2 and 3.

4.1.1. Guangzhou City Dataset

This dataset is composed of a bitemporal multispectral image pair with the spatial
resolution of 2.5 m, captured by the Systeme Probatoire d’Observation de la Terre 5 (SPOT-5)
satellite. It depicts the land cover change over urban areas of Guangzhou City between
October 2006 and October 2007, respectively, as shown in Figure 2. The bitemporal images
are the size of 877× 738 pixels, including red, green, and near-infrared bands. Its annotation
focuses on vegetation change.

Figure 2. Guangzhou City dataset: (a) T1-time image, (b) T2-time image, (c) ground truth image.
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4.1.2. Hongqi Canal Dataset

The second dataset, Hongqi Canal dataset, contains two high-resolution multispectral
remote sensed images which focus on the region of Yellow River Estuary near the city of
Dongying in China, as shown in Figure 3. The bitemporal images, which have the spatial
resolution of 2m and the size of 539 × 543, were acquired by GF-1 satellite on 9 December
2013 and 16 October 2015, respectively. It mainly describes the river changes of the Hongqi
Canal settled in Xijiu village.

Figure 3. Hongqi Canal dataset: (a) T1-time image, (b) T2-time image, (c) ground truth image.

4.2. Comparative Methods and Related Settings

In the experiments, to evaluate the performance of the proposed MSGATN, we selected
five related CD approaches for comparison with our MSGATN. All methods are described
as follows:

(1) PCA_K-means [19]: This approach is one of the popular unsupervised CD methods,
which adopts principal component analysis (PCA) and k-means clustering to acquire
binary change map. In this method, two parameters (h and s) should be set. For the
Guangzhou City dataset, h and s are set to 9 and 3, respectively. For the Hongqi Canal
dataset, h and s are set to 5 and 3, respectively.

(2) ASEA [66]: It is a state-of-the-art method that exploits the contextual information
around a pixel to improve detection accuracy. This method requires no parameter
setting.

(3) GaborPCANet [46]: This was proposed in [46]. It utilizes PCA filters as convolution
kernels to obtain representative neighborhood features. In this approach, a parameter,
patch size, is set to 5 for both experimental datasets.

(4) DBN [49]: This is a superpixel-based method, which can acquire a better detection
result by difference representation learning. For our experimental datasets, the param-
eter patch size is fixed to 5 in this method.

(5) CWNN [47]: It devises a convolutional-wavelet neural network in SAR images. In the
experiments, the parameter patch size is fixed to 7 for our datasets.

(6) Proposed MSGATN: In our MSGATN, the number of superpixels is a hyperparameter.
Specifically, in our method, we selected six scales of superpixel segmentation, which,
respectively, include 1000, 2000, 3000, 4000, 5000, and 6000 superpixels, to train
our MSGATN in a Siamese manner. For both experimental results, the results of
6000 superpixels are chosen to be compared with other methods.

4.3. Evaluation Criteria

To further evaluate the performance for CD, several widely used evaluation metrics,
which are precision, recall, F1, and overall accuracy (OA), are employed. Their definitions
are given as follows:

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)
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F1 =
2 × Precision × Recall

Precision + Recall
(13)

OA =
TP + TN

TP + TN + FP + FN
(14)

where TP, TN, FP, and FN are the numbers of true positive, true negative, false positive,
false negative pixels, respectively. Based on these well-acknowledged evaluation metrics,
the performance of different CD methods can be better revealed.

4.4. Comparative Results

In this subsection, the comparative results on two widely used CD datasets are given
in detail. To further illustrate the proposed method, corresponding analysis will be given
in detail. Detailed visual and quantized results and analysis are presented as follows.

4.4.1. Results on the Guangzhou City Dataset

The visualized and quantitative comparison results over the Guangzhou City dataset
are shown in Figure 4 and Table 1, respectively. From the quantitative comparison, our
MSGATN can achieve the best F1 and OA (90.54% and 97.19%). However, DBN and
GaborPCANet achieved the best precision and recall, respectively. Although the proposed
MSGATN does not achieve the best precision and recall, our method still provides relatively
reliable performance in terms of precision and recall. For example, compared with the DBN,
despite DBN reaching the best precision (98.05%), it obtained the second-worst performance
in recall (78.51%). Therefore, our MSGATN can acquire more balanced performance
for the four metrics. Different from other approaches, the proposed MSGATN adopts
a multi-scale graph attention network to effectively capture the representative features
of unstructured data, thereby improving the detection accuracy. Regarding the visual
results, the proposed MSGATN exhibits the fewest false detections compared to the other
five methods. Specifically, the GaborPCANet presents many false alarms compared to
the proposed MSGATN. Moreover, although the visual results of the DBN show fewer
false alarms, a large number of missed pixels are unavoidable. Compared with these
methods, our proposed MSGATN can obtain a more balanced performance in terms of
false detections and missed detections. Moreover, the proposed MSGATN can provide
more complete change information compared with other methods, except GaborPCANet.
Overall, the visual results also yielded similar conclusions to the quantitative comparisons.

Figure 4. The results of different methods on the Guangzhou City dataset: (a) PCA_K-means,
(b) ASEA, (c) GaborPCANet, (d) DBN, (e) CWNN, and (f) proposed MSGATN.
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Table 1. Accuracy comparison (in %) of different methods on the Guangzhou City dataset. The best
evaluation value are presented in bold for different metrics.

Methods Precision Recall F1 OA

PCA_K-means 97.33 78.22 86.74 96.43
ASEA 95.45 79.73 86.88 96.40

GaborPCANet 51.61 94.98 66.88 85.94
DBN 98.05 78.51 87.20 96.55

CWNN 42.19 87.17 56.86 80.23
Proposed MSGATN 91.04 90.04 90.54 97.19

4.4.2. Results on the Hongqi Canal Dataset

As presented in Table 2, the proposed MSGATN achieve the overall superiority over
the Hongqi Canal dataset compared to other selected CD methods. That is, our method
outperforms the other methods in all evaluation indicators, i.e., precision, recall, F1, and
OA, with a great gap. More exactly, the best precision (80.96%) and recall (57.17%) are
achieved by the proposed MSGATN, which leads to the best F1 (67.02%) for our method. It
indicates that the proposed MSGATN can capture finer complete land cover and acquire
better mapping for changed multi-scale objects with the help of input graphs with varied
scales, and similar conclusions can be discovered in the visualized CD results depicted in
Figure 5. Given the fact that the annotation of the Hongqi Canal dataset mainly focuses
on the river change, massive false alarms can be found in the CMs generated by other
methods. These false alarms are basically caused by the unchanged farmland around
the canal. However, they are well filtered out in the proposed MSGATN, which can be
attributed to the finer feature representation of our method. As a result, the river course
change in the Hongqi Canal dataset is well denoted by the proposed MSGATN, which
suggests the advantage of our method.

Figure 5. The results of different methods on the Hongqi Canal dataset: (a) PCA_K-means, (b) ASEA,
(c) GaborPCANet, (d) DBN, (e) CWNN, and (f) proposed MSGATN.
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Table 2. Accuracy comparison (in %) of different methods on the Hongqi Canal dataset. The best
evaluation value are presented in bold for different metrics.

Methods Precision Recall F1 OA

PCA_K-means 15.67 47.28 23.53 71.57
ASEA 16.26 50.69 24.62 71.28

GaborPCANet 3.71 12.89 5.76 60.99
DBN 19.17 34.53 24.66 80.47

CWNN 31.91 56.12 40.68 84.86
Proposed MSGATN 80.96 57.17 67.02 94.80

4.5. Parameters Analysis of the Proposed MSGATN on the Guangzhou Dataset

To further investigate the effectiveness of the proposed MSGATN, parameters analyses
are performed on the Guangzhou dataset in this section. In our MSGATN, the number
of superpixels is a hyperparameter. Furthermore, we selected six scales of superpixel
segmentation, which, respectively, include 1000, 2000, 3000, 4000, 5000, and 6000 superpixels
(as shown in Figure 6), to train our MSGATN in a Siamese manner. Generally, a larger
number of superpixels indicates a smaller segmentation scale. Conversely, a smaller
number of superpixels indicates a larger segmentation scale. Thanks to the characteristics
of the inductive GATN, our MSGATN can easily exploit multi-scale superpixel features.
By this way, features of different scales can be considered in our method. In this context,
different BCMs can be generated by the proposed MSGATN at each scale, as presented in
Figure 6. As the number of superpixels increases, the scale of superpixels also becomes
finer. Similarly, the BCM of each scale is also finer as the number of superpixels enlarges
for our MSGATN.

Figure 6. Segmentation results and the corresponding change detection results of different superpixel
numbers in the proposed MSGATN on the Guangzhou dataset: (a) 1000 superpixels, (b) 2000 super-
pixels, (c) 3000 superpixels, (d) 4000 superpixels, (e) 5000 superpixels, (f) 6000 superpixels.

Figure 7 more intuitively demonstrates the relationship between the number of su-
perpixels and detection accuracy. Concretely, as the number of superpixels increases, all
metrics show an upward trend. However, if the number of superpixels exceeds 3000, the
accuracy gradually decreases. Hence, the performance of the proposed MSGATN may not
continue to increase as the number of superpixels increases. Moreover, more superpixels
can lead to larger graph structures, which can significantly increase the computational
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cost. According to the above analysis, the number of superpixels cannot be continuously
increased in our method.

Figure 7. Relationship between change detection accuracy and superpixels numbers for the proposed
MSGATN on the Guangzhou dataset.

5. Conclusions

In this work, a novel superpixel-based multi-scale Siamese graph attention network
(MSGATN) is proposed for change detection in high-resolution remote sensed imagery. In
the proposed method, superpixel segmentation is exploited to aggregate homogeneous
difference information to construct heterogeneous change information for a better recog-
nition of multi-scale changed land cover. In addition, multi-scale superpixel-constructed
graphs are introduced to a graph attention network (GATN) in a Siamese framework, which
further facilitates the cognition of multi-scale objects for the GATN, thus improving the
performance. The proposed MSGATN is validated over two widely used change detection
datasets, and compared to several comparative change detection methods. Corresponding
results indicate that the proposed method outperforms other methods over all selected
evaluation metrics.

In the future work, efforts can be made to achieve a more fine-grained changed land
cover annotation in an unsupervised framework, which can be less time-consuming and
laboring in practical applications.
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Abstract: Quickly and accurately extracting buildings from remote sensing images is essential for
urban planning, change detection, and disaster management applications. In particular, extracting
buildings that cannot be sheltered in emergency shelters can help establish and improve a city’s
overall disaster prevention system. However, small building extraction often involves problems,
such as integrity, missed and false detection, and blurred boundaries. In this study, EfficientUNet+,
an improved building extraction method from remote sensing images based on the UNet model,
is proposed. This method uses EfficientNet-b0 as the encoder and embeds the spatial and channel
squeeze and excitation (scSE) in the decoder to realize forward correction of features and improve the
accuracy and speed of model extraction. Next, for the problem of blurred boundaries, we propose
a joint loss function of building boundary-weighted cross-entropy and Dice loss to enforce constraints
on building boundaries. Finally, model pretraining is performed using the WHU aerial building
dataset with a large amount of data. The transfer learning method is used to complete the high-
precision extraction of buildings with few training samples in specific scenarios. We created a Google
building image dataset of emergency shelters within the Fifth Ring Road of Beijing and conducted
experiments to verify the effectiveness of the method in this study. The proposed method is compared
with the state-of-the-art methods, namely, DeepLabv3+, PSPNet, ResUNet, and HRNet. The results
show that the EfficientUNet+ method is superior in terms of Precision, Recall, F1-Score, and mean
intersection over union (mIoU). The accuracy of the EfficientUNet+ method for each index is the
highest, reaching 93.01%, 89.17%, 91.05%, and 90.97%, respectively. This indicates that the method
proposed in this study can effectively extract buildings in emergency shelters and has an important
reference value for guiding urban emergency evacuation.

Keywords: deep learning; emergency shelter; building extraction; Google Image; transfer learning;
EfficientUNet+

1. Introduction

Extracting buildings is of great significance for applications such as urban planning,
land use change, and environmental monitoring [1,2], particularly for buildings in emer-
gency shelters. This process helps improve disaster prevention and mitigation and other
management capabilities [3]. An emergency shelter is a safe place for emergency evac-
uation and temporary dwelling for residents in response to sudden disasters such as
earthquakes [4]. These temporary facilities mainly include open spaces, such as parks,
green spaces, stadiums, playgrounds, and squares [5]. When disasters occur, buildings
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are prone to collapse and can injure people [6]. Some areas cannot be used for evacuation.
Therefore, extracting buildings from emergency shelters has important guiding relevance
in evaluating the emergency evacuation capabilities of shelters.

In the early days, the building footprint in emergency shelters was mainly obtained by
manual measurement. The spatial resolution of satellite remote sensing images has reached
the submeter level with the development of Earth observation technology. High-resolution
remote sensing images have the advantages of rich ground object information, multiple
imaging spectral bands, and short revisit time [7–9]. Thus, these images can accurately
show the details of urban areas, providing critical support for extracting buildings. Despite
the detailed information that these images provide, spectral errors, such as “intra-class
spectral heterogeneity” and “inter-class spectral homogeneity”, exist [10]. These errors
increase the difficulty of building extraction. Moreover, buildings have various features,
such as shapes, materials, and colors, complicating the quick and accurate extraction of
buildings from high-resolution remote sensing images [11,12].

The traditional methods of extracting buildings based on remote sensing images
mainly include image classification based on pixel features and object-oriented classifica-
tion. The extraction methods based on pixel features mainly rely on the information of
a single pixel for classification; these methods include support vector machine and mor-
phological building index, which are relatively simple and efficient to use [13]. However,
they ignore the relationship between adjacent pixels and lack the use of spatial information
of ground objects. They are prone to “salt and pepper noise”, resulting in the blurred
boundaries of the extracted buildings [14]. Based on object-oriented extraction methods,
pixels are clustered according to relative homogeneity to form objects for classification,
utilizing spatial relationships or context information to obtain good classification accu-
racy [15]. However, classification accuracy largely depends on image segmentation results,
and the segmentation scale is difficult to determine; thus, problems such as oversegmen-
tation or undersegmentation are prone to occur [16], resulting in complex object-oriented
classification methods.

Deep learning has a strong generalization ability and efficient feature expression abil-
ity [17]. It bridges the semantic gap, integrates feature extraction and image classification,
and avoids preprocessing, such as image segmentation, through the hierarchical end-to-end
construction method. It can also automatically perform hierarchical feature extraction on
massive raw data, reduce the definition of feature rules by humans, lessen labor costs,
and solve problems such as the inaccurate representation of ground objects caused by
artificially designed features [18,19]. With the rapid development of artificial intelligence
technology in recent years, deep learning has played a prominent role in image process-
ing, change detection, and information extraction. It has been widely used in building
extraction, and the extraction method has been continuously improved.

Convolutional neural network (CNN) is the most widely used method for structural
image classification and change detection [20]. CNN can solve the problems caused by in-
accurate empirically designed features by eliminating the gap between different semantics;
it can also learn feature representations from the data in the hierarchical structure itself [21],
improving the accuracy of building extraction. Tang et al. [22] proposed to use the vector
“capsule” to store building features. The encoder extracts the “capsule” from the remote
sensing image, and the decoder calculates the target building, which not only realizes the
effective extraction of buildings, but also has good generalization. Li et al. [23] used the im-
proved faster regions with a convolutional neural network (R-CNN) detector; the spectral
residual method is embedded into the deep learning network model to extract the rural
built-up area. Chen et al. [24] used a multi-scale feature learning module in CNN to achieve
better results in extracting buildings from remote sensing images. However, CNN re-
quires ample storage space, and repeated calculations lead to low computational efficiency.
Moreover, only some local features can be extracted, limiting the classification performance.

Fully convolutional neural network (FCN) is an improvement based on CNN. It uses
a convolutional layer to replace the fully connected layer after CNN; it also realizes end-to-
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end semantic segmentation for the first time [25]. FCN fuses deep and shallow features of
the same resolution to recover the spatial information lost during feature extraction [26].
It is widely used in image semantic segmentation. Bittner et al. [27] proposed an end-
to-end FCN method based on the automatic extraction of relevant features and dense
image classification. Their proposed method effectively combines spectral and height
information from different data sources (high-resolution imagery and digital surface model,
DSM). Moreover, the network increases additional connections, providing access to high-
frequency information for the top-level classification layers and improving the spatial
resolution of building outline outputs. Xu et al. [28] pointed out that the FCN model
can detect different classes of objects on the ground, such as buildings, curves of roads,
and trees, and predict their shapes. Wei et al. [29] introduced multiscale aggregation and
two postprocessing strategies in FCN to achieve accurate binary segmentation. They also
proposed a specific, robust, and effective polygon regularization algorithm to convert
segmented building boundaries into structured footprints for high building extraction
accuracy. Although FCN has achieved good results in building extraction, it does not
consider the relationship between pixels. It also focuses mainly on global features and
ignores local features, resulting in poor prediction results and a lack of edge information.
However, FCN is symbolic in the field of image semantic segmentation, and most of the
later deep learning network models are improved and innovated based on it.

The UNet network model belongs to one of the FCN variants. It adds skip connections
between the encoding and decoding of FCN. The decoder can receive low-level features
from the encoder, form outputs, retain boundary information, fuse high- and low-level
semantic features of the network, and achieve good extraction results through skip con-
nections [30]. In recent years, many image segmentation algorithms have used the UNet
network as the original segmentation network model, and these algorithms have been
fine-tuned and optimized on this basis. Ye et al. [31] proposed RFN-UNet, which considers
the semantic gap between features at different stages. It also uses an attention mechanism
to bridge the gap between feature fusions and achieves good building extraction results
in public datasets. Qin et al. [32] proposed a network structure U2Net with a two-layer
nested UNet. This model can capture a large amount of context information and has
a remarkable effect on change detection. Peng et al. [33] used UNet++ as the backbone
extraction network and proposed a differentially enhanced dense attention CNN for detect-
ing changes in bitemporal optical remote sensing images. In order to improve the spatial
information perception ability of the network, Wang et al. [34] proposed a building method,
B-FGC-Net, with prominent features, global perception, and cross-level information fusion.
Wang et al. [35] combined UNet, residual learning, atrous spatial pyramid pooling, and focal
loss, and the ResUNet model was proposed to extract buildings. Based on refined attention
pyramid networks (RAPNets), Tian et al. [36] embedded salient multi-scale features into
a convolutional block attention module to improve the accuracy of building extraction.

Most of the above methods of extracting buildings are performed on standard public
datasets or large-scale building scenarios. They rarely involve buildings in special scenarios,
such as emergency shelters. The volume and footprint of buildings in emergency shelters
are generally small. For such small buildings, UNet [30] structure can integrate high-
and low-level features effectively and restore fine edges, thereby reducing the problems
of missed and false detection and blurred edges during building extraction. We use
UNet as the overall framework to design a fully convolutional neural network, namely,
the EfficientUNet+ method. We verify this method by taking an emergency shelter within
the Fifth Ring Road of Beijing as an example. The innovations of the EfficientUNet+ method
are as follows:

(1) We use EfficientNet-b0 as the encoder to trade off model accuracy and speed. The fea-
tures extracted by the model are crucial to the segmentation results; we also embed the
spatial and channel squeeze and excitation (scSE) in the decoder to achieve positive
correction of features.
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(2) The accurate boundary segmentation of positive samples in the segmentation re-
sults has always been a challenge. We weight the building boundary area with the
cross-entropy function and combine the Dice loss to alleviate this problem from the
perspective of the loss function.

(3) Producing a large number of samples for emergency shelters within the Fifth Ring
Road of Beijing is time-consuming and labor-intensive. We use the existing public
WHU aerial building dataset for transfer learning to achieve high extraction accuracy
using a few samples. It can improve the computational efficiency and robustness of
the model.

This paper is organized as follows: Section 2 “Methods” introduces the EfficientUNet+
model overview, which includes EfficientNet-b0, scSE module, loss function, and transfer
learning; Section 3 “Experimental Results” presents the study area and data, experimental
environment and parameter settings, and accuracy evaluation and experimental results
of the EfficientUNet+ method; Section 4 “Discussion” validates the effectiveness of the
proposed method through comparative experiments and ablation experiments; Section 5
“Conclusion” presents the main findings of this study.

2. Methods

In this study, the method of deep learning was used to extract buildings in a special
scene, emergency shelters. Given that the buildings in the emergency shelters are generally
small, the use of high-resolution remote sensing images to extract buildings is prone to the
problems of missed mentions and false and blurred boundaries. Based on the UNet model,
EfficientUNet+, an improved building extraction method from high-resolution remote
sensing images, was proposed. Beijing’s Fifth Ring Road emergency shelters comprised the
research area. Figure 1 shows the technical route of this study.

 

Figure 1. The technical route of this study.

2.1. EfficientUNet+ Module Overview

The UNet model is an encoder–decoder architecture, which consists of a compressed
path for capturing context and a symmetric expansion path for precise localization. It uses
skip connections to fuse the high- and low-level semantic information of the network [37].
Good segmentation results can be obtained when the training set is small. However,
the original UNet model uses VGG-16 as the encoder, which has many model parameters,
and the feature learning ability is weak. This study follows the model framework of UNet,
applies EfficientNet in the UNet encoder, and proposes a deep learning-based method for
extracting buildings in emergency shelters, namely, EfficientUNet+. Figure 2 shows the
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EfficientUNet+ module structure. The emergency shelters within the Fifth Ring Road of
Beijing were taken as the research area to verify the effectiveness of the method in this study.
The method is improved as follows. (1) The deep learning model used by the encoder
is EfficientNet-b0, which is a new model developed using composite coefficients to scale
the three dimensions of width/depth/resolution and achieves satisfactory classification
accuracy with few model parameters and fast inference [38,39]. (2) The scSE is embedded
in the decoder. Embedding spatial squeeze and excitation (sSE) into low-level features can
emphasize salient location information and suppress background information; combining
channel squeeze and excitation (cSE) with high-level features extracts salient meaningful
information [40], thereby reducing false lifts of buildings. (3) The cross-entropy function is
used to weigh the boundary area, improving the accuracy of building boundary extraction.
The Dice loss is combined to solve the problem of blurred boundary extraction. (4) Given
the small number of samples in the study area, a transfer learning method is introduced to
transfer the features of the existing WHU aerial building dataset to the current Beijing Fifth
Ring Road emergency shelter building extraction task, thereby reducing the labor cost of
acquiring new samples and further improving the accuracy of building extraction.

Figure 2. EfficientUNet+ module structure.

2.2. EfficientNet-b0

In 2019, the EfficientNet model proposed by Google made a major breakthrough in the
field of image classification. The network model was applied to the ImageNet dataset and
showed superior performance. The model uses compound coefficients to scale the three
dimensions of network depth (depth), network width (width), and input image resolution
(resolution) uniformly; thus, the optimal classification effect can be obtained by balancing
each dimension [41]. Compared with traditional methods, this network model has a small
number of parameters and can learn the deep semantic information of images, greatly
improving the accuracy and efficiency of the model [37,39]. EfficientNet also has good
transferability [42].

The EfficientNet network consists of a multiple-module mobile inversion bottleneck
(MBConv) with a residual structure. Figure 3 shows the MBConv structure. The MBConv
structure includes 1 × 1 convolution layer (including batch normalization (BN) and Swish),
k × k DepthwiseConv convolution (including BN and Swish; the value of k is 3 or 5),
squeeze and excitation (SE) module, common 1 × 1 convolutional layer (including BN),
and dropout layer. This structure can consider the number of network parameters while
enhancing the feature extraction capability.
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Figure 3. MBConv structure.

EfficientNet-b0 is a baseline architecture for lightweight networks in image classifi-
cation [42]. As shown in Table 1, EfficientNet-b0 consists of nine stages. Stage 1 consists
of 3 × 3 convolution kernels with a stride of 2. Stages 2 to 8 consist of repeated stacking
of MBConv, and the column parameter layers represent the number of times the MB-
Conv is repeated. Stage 9 consists of a 1 × 1 convolution kernel, average pooling, and a
fully connected layer. Each MBConv in the table is followed by number 1 or number 6.
These numbers are the magnification factors. In particular, the first convolutional layer in
the MBConv expands the channels of the input feature map to n times the original. k3 × 3
or k5 × 5 represents the size of the convolution kernel in the DepthwiseConv convolutional
layer in MBConv. Resolution represents the size of the feature map output by this stage.

Table 1. Network structure of EfficientNet-b0.

Stage Operator Resolution Layers

1 Conv 3 × 3 512 × 512 1
2 MBConv1, k3 × 3 256 × 256 1
3 MBConv6, k3 × 3 256 × 256 2
4 MBConv6, k5 × 5 128 × 128 2
5 MBConv6, k3 × 3 64 × 64 3
6 MBConv6, k5 × 5 32 × 32 3
7 MBConv6, k5 × 5 32 × 32 4
8 MBConv6, k3 × 3 16 × 16 1
9 Conv1 × 1&Pooling&FC 8 × 8 1

The EfficientNetb1-b7 series of deep neural networks chooses the most suitable one in
width (the number of channels of the feature map), depth (the number of convolutional
layers), and resolution (the size of the feature map) according to the depth, width, and reso-
lution of EfficientNet-b0. The basic principle is that increasing the depth of the network can
obtain rich and complex features. This approach can be applied to other tasks. However,
the gradient disappears, the training becomes difficult, and the time consumption increases
if the network depth is too deep. Given that the sample data are relatively small, we used
EfficientNet-b0 as the backbone of the segmentation model.

2.3. scSE Module

scSE is a mechanism that combines spatial squeeze and excitation (sSE) and channel
squeeze and excitation (cSE) [43]. It comprises two parallel modules, namely, the sSE and
the cSE. Figure 4 shows the operation flow of the scSE module. This mechanism compresses
features and generates weights on channels and spaces, respectively, and then reassigns
different weights to increase the attention to the content of interest and ignore unnecessary
features [44].
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Figure 4. Operation flow of scSE module.

sSE is a spatial squeeze and excitation that improves the effectiveness of important
features by assigning different weights to different spatial locations on the feature map.
First, channel compression is performed on the feature map (C, H, W) using a 1 × 1
convolution block with channel C to transform this feature map (1, H, W). Then, the spatial
location weights of the features on each channel are generated by normalization by the
Sigmoid function. After the reconstruction of the spatial position relationship of the
original feature map, a new feature map is finally generated. Equation (1) presents the
calculation formulas.

UsSE = [σ(q1,1)u
1,1, ..., σ(qi,j)u

i,j, ..., σ(qH,W)uH,W ] (1)

where UsSE is the new feature map, σ is the activation function, qi,j is the linear combination
of spatial positions (i, j) under channel C, and ui,j is the spatial location of the feature.

cSE is a channel squeeze and excitation, which generates a channel-reweighted feature
map by integrating the weight relationship between different channels. Thus, a channel-
reweighted feature map is generated. First, the feature map (C, H, W) is generated by a
global average pooling vector Z ∈ RC × 1 × 1, where C, H, and W represent the channel
number, height, and width of the feature map, respectively. The vector Z is operated by
two fully connected layers to output a C × 1 × 1 vector. Then, a weight vector reflecting
the importance of different channels is obtained through the Sigmoid function. Finally,
the feature map is reweighted to generate a new feature map after feature filtering on the
channel. Equations (2)–(5) present the calculation formulas [21].

uc =
C′

∑
s=1

vs
c ∗ xs (2)

where uc is the output feature map; C′ and C are the number of input and output chan-
nels, respectively; vc is the second two-dimensional spatial convolution kernel; * means
convolution operation; and xs is the sth input feature map.

zc =
1

H × W

H

∑
i=1

W

∑
j=1

uc(i, j) (3)

where zc is the generated vector through uc after global average pooling (squeeze operation),
and H and W represent the height and width of the feature map, respectively.

s = σ(W2σ(W1z)) (4)
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where s is the vector output through z after the excitation operation, W1 ∈ R
C
r ×C, W2 ∈ RC× C

r ,

and r is the scaling factor. Through the operation, z converts to
∧
z and generates a new

feature map as follows:

UcSE = [σ(
∧
z1)u1, σ(

∧
z2)u2, ..., σ(

∧
zc)uc] (5)

2.4. Loss Function

The loss function is used to calculate the difference between the predicted value and
the true value. The network model parameters are updated through the backpropagation of
the error. The smaller the loss function value is, the better the model fitting effect is and the
more accurate the prediction is [45]. The cross-entropy loss function is the most commonly
used loss function in deep learning semantic segmentation. Equation (6) presents the
formula of the two-category cross-entropy function.

LossCE =
1
N ∑

i
−[yi · log(pi) + (1 − yi) · log(1 − pi)] (6)

where y is the prediction result and p is the ground truth. The weight of each pixel is
equal by considering the cross-entropy function. The boundary area of the building is
difficult to segment. We weigh the area’s cross-entropy loss from the perspective of the
loss function. In backpropagation, the network is enhanced to learn the boundary regions.
Equations (7) and (8) present the cross-entropy function formula for boundary weighting.

LossCE_BW = LossCE · Weight (7)

Weight =
{

1, not boundary
w, boundary

(8)

In this study, the value of w is 4. We introduce Dice loss to alleviate the imbalance
in the number of positive and negative samples. Equations (9) and (10) present the final
model loss function.

Loss = LossCE_BW + LossDice (9)

LossDice = 1 −
∑
i
| pi ∩ yi |

∑
i
(| pi | + | yi |) (10)

2.5. Transfer Learning

Training often relies on a large amount of sample data to prevent overfitting in the
process of training deep learning models. However, collecting sample data by visual
interpretation requires a certain amount of experience and knowledge. It is also time-
consuming and labor-intensive. In the case of a small number of samples, the existing data
can be fully utilized through the transfer learning method. Transfer learning is further
tuned by building a pretrained model on the source domain for feature extraction or
parameter initialization and applying it to a related but different target domain [46,47].
Compared with training from scratch on a dataset with small sample size, transfer learning
can improve computational efficiency and generalization of the model.

Given the complex, diverse, and changeable shapes and colors of target buildings,
obtaining a large number of fine samples in the process of extracting buildings from
emergency shelters within the Fifth Ring Road of Beijing is difficult even with manual visual
interpretation, resulting in a small amount of sample data. Supporting the learning needs
of a large number of network parameters is challenging. At present, most of the transfer
learning research in the field of remote sensing uses ImageNet dataset for pretraining.
However, ImageNet belongs to the field of natural images, and features such as resolution
and depth of field are quite different from remote sensing data.
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The WHU aerial building dataset is an open large-scale database often used for
building extraction. The WHU aerial building dataset is very similar to the require-
ments of our task. Although the characteristics of the two building datasets are different,
8188 image data with a size of 512 × 512 pixels were obtained through WHU because of the
relatively large amount of data in the WHU dataset. The characteristics of the buildings still
have great versatility. Therefore, this study used the transfer learning method to pretrain
the model based on the WHU aerial building dataset. The pretrained model parameters
were used as the initial values of the Beijing building extraction model, effectively increas-
ing the generalization ability of the model on the building dataset of the emergency shelters
within the Fifth Ring Road of Beijing.

3. Experimental Results

3.1. Study Area and Data
3.1.1. Study Area

Beijing is the capital of China, covering an area of 16.4 km2, with a resident popu-
lation of 21.893 million [48]. It has become a distribution center of population, economy,
and resources in the country. It also has an important geographical location in the coun-
try and even the world. Beijing is located at 39◦26′N–41◦03′N, 115◦25′E–117◦30′E, in the
Yinshan–Yanshan seismic zone. It is one of the only three capitals in the world located
in an area with a high earthquake intensity of magnitude 8. It is a key fortified city for
disaster prevention and mitigation in the country. The central urban area of Beijing has
dense buildings, a concentrated population, and the coexistence of old and new buildings.
Once a disaster occurs, the damage caused by casualties and economic losses in this city is
far greater than that in other areas. Therefore, the emergency shelters within the Fifth Ring
Road of Beijing were selected as the research area, including parks, green spaces, squares,
stadiums, playgrounds, and other outdoor open spaces. Among the emergency shelter
types, the park exhibits large types and numbers of buildings. Thus, only the extraction of
buildings in the park’s emergency shelters is considered in this study. According to the
list of emergency shelters published by the Beijing Earthquake Administration and the list
of registered parks published by the Beijing Municipal Affairs Resources Data Network,
the Fifth Ring Road of Beijing has 118 parks that can be used as emergency shelters. Figure 5
shows the spatial distribution of park emergency shelter sites within the Fifth Ring Road
of Beijing.

Figure 5. Spatial distribution of park emergency shelter sites within the Fifth Ring Road of Beijing.

3.1.2. Dataset

The WHU aerial building dataset was used in this study to pretrain the model. Then,
the created Google building dataset of emergency shelters within the Fifth Ring Road of
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Beijing was used to verify the effectiveness of the proposed method. Partial details of the
two datasets are shown in Figure 6.

    
(a) (b) 

Figure 6. Part of the details of WHU aerial building dataset and Google building dataset of emergency
shelters within the Fifth Ring Road of Beijing. (a) WHU aerial building dataset. (b) Google building
dataset of emergency shelters within the Fifth Ring Road of Beijing.

WHU aerial building dataset: The WHU dataset is divided into an aerial build-
ing dataset and a satellite building dataset. Given that the data used in this study are
Google Images, the WHU aerial building dataset is similar to Google Image features. Thus,
the standard open-source high-resolution WHU aerial dataset was used in this study as the
training sample for transfer learning. The dataset was acquired in New Zealand, covering
220,000 buildings of different shapes, colors, and sizes, with an area of 450 km2. The initial
spatial resolution of the image is 0.075 m. Considering the memory and operating efficiency
of the computer, Ji et al. [49] downsampled the spatial resolution of the image to 0.3 m and
cropped the image in the area to a size of 512 × 512 pixels, forming an image dataset with
8188 images, including 4736 in the training set, 1036 in the validation set, and 2416 in the
test set.

Google building dataset of emergency shelters within the Fifth Ring Road of Beijing:
The dataset uses Google’s high-resolution remote sensing imagery with a spatial resolution
of 0.23 m. We selected 21 typical parks with varying image sizes using expert visual inter-
pretation to produce ground truth values for model training and evaluation. The 21 images
and the corresponding ground truth values were cropped by the sliding window method
to obtain 1110 image blocks with a size of 512 × 512 pixels. A total of 710 images were
randomly selected as the training set for model parameter tuning, 178 images were used as
the validation set for model parameter selection, and 222 images were used as the test set
to evaluate the effect of the final model.

3.2. Experimental Environment and Parameter Settings

The experimental platform uses an Intel Core i7-8700@3.20 GHz 6-core processor,
equipped with 32.0 G memory and an Nvidia GeForce RTX 3090. In terms of the soft-
ware environment, we used the Windows 10 Professional Edition 64-bit operating system.
The programming language is Python 3.7, the model building tool is PyTorch 1.7, and the
graphics processing unit (GPU) computing platform is CUDA 11.0.

During model training, the batch size was set to 32, the initial learning rate was set
to 0.001, the learning rate was adjusted by cosine annealing (the minimum learning rate
is 0.001), the optimizer used Adam with weight decay (weight decay coefficient is 0.001),
the number of iteration rounds was 120 epochs, and the model parameters corresponding
to the rounds with the highest accuracy in the validation set were selected as the final
model parameters. In addition, data augmentation operations of horizontal flip, vertical
flip, diagonal flip, and 90-degree rotation were performed on the training data.

3.3. Accuracy Evaluation

This study used four indicators, Precision, Recall, F1-Score, and mean intersection over
union (mIoU), to assess the building extraction accuracy and quantitatively evaluate the
performance of the proposed method in extracting buildings [50,51]. Precision represents
the proportion of the number of correctly predicted building pixels to the number of pixels

206



Remote Sens. 2022, 14, 2207

whose prediction result is a building. Precision also focuses on evaluating whether the result
is misjudged. Recall represents the proportion of the correctly predicted building pixels
to the real building pixels. It focuses on evaluating whether the results have omissions.
The F1-Score combines the results of Precision and Recall. It is the harmonic mean of
Precision and Recall. The mIoU calculates the intersection ratio of each class and then
accumulates the average. The mIoU also represents the ratio of the number of predicted
building pixels to the intersection and union of the two sets of real buildings, that is,
the overlap ratio of the predicted map and the label map. Equations (11)–(14) present the
calculation formulas.

Precision = TP/(TP + FP) (11)

Recall = TP/(TP + FN) (12)

F1 = 2 × Precision × Recall/(Precision + Recall) (13)

mIoU =
1
k ∑k

i=0 [TP/(FN + FP + TP)] (14)

where TP means that the predicted building is correctly identified as a building; FP means
that the predicted building is misidentified as a building; TN means that the predicted non-
buildings are correctly identified as non-buildings; FN means real buildings are wrongly
identified as non-buildings; and k is the number of categories.

3.4. Experimental Results

The EfficientUNet+ method proposed in this study was used to pretrain the model
of the public dataset WHU aerial buildings. The experiments were conducted on the
park emergency shelter buildings in the study area through the transfer learning method.
The emergency shelter in Chaoyang Park has a large area and complex building types,
shapes, and colors. Therefore, we took the emergency shelter in Chaoyang Park as an ex-
ample. Figure 7 shows the results of the buildings extracted by the EfficientUNet+ method.

   
(a) (b) (c) 

Figure 7. Original image, building ground truth value, and extraction results of the emergency shelter
in Chaoyang Park. (a) Original image. (b) Ground truth. (c) Extraction results.

Five local areas of A, B, C, D, and E in the emergency shelter of Chaoyang Park were
selected to see the details of the experimental results clearly. Figure 8 shows the original
image, the corresponding ground truth, and extraction results.
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(a) 

(b) 

(c) 

Figure 8. Extraction results of buildings in emergency shelters of Chaoyang Park. (a) Google image.
(b) Building ground truth. (c) Building extraction results.

Figure 8 shows that the outlines of the buildings in the emergency shelter are all
extracted, the boundaries are complete and clearly visible, and only a few occluded build-
ings have broken boundaries. This observation shows that the EfficientUNet+ method
proposed in this study can pay attention to the details in information while obtaining deep
semantic information to achieve a complete building image, effectively extracting buildings
in remote sensing images.

The four indicators, namely, Precision, Recall, F1-Score, and mIoU, were selected to
evaluate the building extraction accuracy by the EfficientUNet+ method proposed in this
study. The evaluation results are shown in Table 2.

Table 2. Accuracy of EfficientUNet+ method for extracting buildings.

Precision Recall F1-Score mIoU

93.01% 89.17% 91.05% 90.97%

Table 2 shows the quantitative results of using the EfficientUNet+ method to extract
buildings from remote sensing images. The evaluation indicators reach approximately 90%;
in particular, the Precision is 93.01%, the Recall is 89.17%, the F1-Score is 91.05%, and the
mIoU is 90.97%. This finding indicates that the method can effectively extract buildings in
high-resolution remote sensing images.

We further visualize the multi-scale architectural features extracted by the proposed
model at different depths, as shown in Figure 9. From Figure 9b–f, we can see that the low-
resolution architectural features are gradually refined as the feature resolution increases.
The example in column (f) of Figure 9 illustrates that the semantic information of small-scale
buildings cannot be captured by high-level features, because they occupy less than one
pixel at low resolution.
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(a)  (b)  (c)  (d)  (e)  (f)  

Figure 9. Feature map visualization. (a) Sample image. (b) Depth = 1. (c) Depth = 2. (d) Depth = 3.
(e) Depth = 4. (f) Depth = 5.

4. Discussion

4.1. Comparison to State-of-the-Art Studies

To verify whether the proposed method performs better than other state-of-the-art
methods, several deep learning methods commonly used in semantic segmentation and
building extraction were selected as comparison methods, namely, DeepLabv3+, pyra-
mid scene parsing network (PSPNet), deep residual UNet (ResUNet), and high-resolution
Net (HRNet). Among these methods, the DeepLabv3+ method introduces a decoder,
which can achieve accurate semantic segmentation and reduce the computational com-
plexity [52]. The PSPNet method extends pixel-level features to global pyramid pooling to
make predictions more reliable [53]. The ResUNet method is a variant of the UNet structure
with state-of-the-art results in road image extraction [54]. The HRNet method maintains
high-resolution representations through the whole process, and its effectiveness has been
demonstrated in previous studies [55]. Some detailed images of emergency shelters were
selected to compare the extracted accuracy and edge information clearly. Figure 10 shows
the results of different methods.

(a) (b) (c) (d) (e) (f) (g) 

Figure 10. Partial details of the building in the emergency shelter through different methods. (a) Orig-
inal image. (b) Ground truth. (c) EfficientUNet+. (d) DeepLabv3+. (e) PSPNet. (f) ResUNet.
(g) HRNet.

Figure 10 shows that compared with other methods, the EfficientUNet+ method
extracts almost all the buildings in the image and clearly shows the details, such as the
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edges and corners of the buildings, closely representing the real objects. The red box
in Figure 10 shows that the above methods can extract the approximate location of the
building. However, the EfficientUNet+ method can also extract the edge of the building,
and its detail retention is higher than that of the other methods. The yellow box in Figure 10
shows that the results of DeepLabv3+, PSPNet, ResUNet, and HRNet methods have areas of
misrepresentation and omission, whereas the EfficientUNet+ method can extract buildings
more accurately than the other methods.

Four indicators were used to evaluate the extraction results of the EfficientUNet+,
DeepLabv3+, PSPNet, ResUNet, and HRNet methods and to quantitatively analyze and
evaluate the extraction accuracy. The results are shown in Table 3. The accuracy comparison
chart of the extraction results is shown in Figure 11 to intuitively compare the extraction
accuracy of each method.

Table 3. Accuracy comparison of the extraction results of different methods.

Methods Precision Recall F1-Score mIoU

DeepLabv3+ [52] 90.52% 87.15% 88.80% 88.92%
PSPNet [53] 76.40% 75.34% 75.87% 78.36%

ResUNet [54] 88.51% 80.72% 84.44% 85.16%
HRNet [55] 89.14% 83.43% 86.19% 86.63%

EfficientUNet+ 93.01% 89.17% 91.05% 90.97%

Figure 11. Accuracy comparison chart of different methods.

Table 3 and Figure 11 show that the accuracy of the EfficientUNet+ method for extract-
ing buildings is 2.49%, 16.61%, 4.5%, and 3.87% higher than that of DeepLabv3+, PSPNet,
ResUNet, and HRNet, respectively. The Recall of the EfficientUNet+ method is 2.02%,
13.83%, 8.45%, and 5.74% higher than that of DeepLabv3+, PSPNet, ResUNet, and HR-
Net, respectively. The F1-Score of the EfficientUNet+ method is 2.25%, 15.18%, 6.61%,
and 4.86% higher than that of DeepLabv3+, PSPNet, ResUNet, and HRNet, respectively.
The mIoU of the EfficientUNet+ method is 2.05%, 12.61%, 5.81%, and 4.34% higher than
that of DeepLabv3+, PSPNet, ResUNet, and HRNet, respectively. In summary, the Efficien-
tUNet+ method has the highest accuracy in each index, indicating that the EfficientUnet+
method proposed in this study can effectively extract the semantic information of buildings
and improve the generalization ability of the model. The proposed method has certain
advantages in extracting buildings from remote sensing images.

210



Remote Sens. 2022, 14, 2207

4.2. Ablation Experiment
4.2.1. scSE Module

The following ablation experiments were designed in this study to verify the effective-
ness of adding the scSE module to the decoder trained by the model: (1) the network model
with the scSE; (2) the network model without the scSE. Other experimental conditions
are the same. The two methods were applied to the experiments on the building dataset
of emergency shelters. The local details of the extraction results are shown in Figure 12.
The accuracy comparison is shown in Table 4.

(a) (b) (c) (d) 

Figure 12. Building extraction results with or without the scSE. (a) Original image. (b) Ground truth.
(c) EfficientUNet+. (d) EfficientUNet (without scSE).

Table 4. Accuracy comparison of extraction results of different decoders.

Method Decoder Precision Recall F1-Score mIoU

EfficientUNet Without scSE 90.81% 88.23% 89.50% 89.54%
EfficientUNet+ With scSE 93.01% 89.17% 91.05% 90.97%

Figure 12 shows that the EfficientUNet+ method with the scSE can basically extract all
the buildings in the image, whereas the buildings extracted by the EfficientUNet method
without the scSE have missed and false detection. Table 4 shows that adding the scSE to the
decoder can improve the accuracy of model extraction of buildings. The extraction result
analysis shows that the accuracy of each evaluation index after adding the scSE is improved.
In particular, the Precision, Recall, F1-Score, and mIoU are increased by 2.2%, 0.94%, 1.55%,
and 1.43%, respectively. The scSE added to the decoder enhances the feature learning of the
building area, improves the attention of the features of interest, and suppresses the feature
response of similar background areas, thereby reducing the false detection of buildings and
improving the classification effect.

4.2.2. Loss Function

The following ablation experiments were designed in this study to verify the effec-
tiveness of the boundary weighting in the loss function: (1) the cross-entropy function is
weighted on the boundary area, and the Dice loss is combined; (2) the regular cross-entropy
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function and joint Dice loss are used. Other experimental conditions are the same. Figure 13
shows the local details of the extraction results. Table 5 shows the accuracy comparison.

(a) (b) (c) (d)  

Figure 13. Building extraction results with different loss functions. (a) Original image. (b) Ground
truth. (c) LossCE_BW + LossDice. (d) LossCE + LossDice.

Table 5. Comparison of the accuracy of prediction results of different loss functions.

Loss Function Precision Recall F1-Score mIoU

LossCE + LossDice 92.07 87.39 89.67 89.71
LossCE_BW + LossDice 93.01 89.17 91.05 90.97

Figure 13 shows the results extracted by the EfficientUNet+ method using boundary-
weighted cross-entropy and Dice joint loss function. The boundary of the building is
complete, and the edge is clearly visible. However, the buildings extracted by the Effi-
cientUNet+ method without boundary weighting on the loss function have damaged and
jagged boundaries. Table 5 shows that the area boundary weighting on the cross-entropy
loss function improves the clarity, integrity, and accuracy of the edge details of the buildings
in the result. The reason is that the boundary region has a substantial weight in backpropa-
gation. The model also pays considerable attention, alleviating the boundary ambiguity
problem of building extraction to a certain extent.

4.2.3. Transfer Learning

The following ablation experiments were designed in this study to verify the effective-
ness of transfer learning: (1) the EfficientUNet+ method is first pretrained on the WHU
aerial building dataset and then adopts transfer learning techniques; (2) the EfficientUNet+
method is directly applied to the Google emergency shelter building dataset. Other ex-
perimental conditions are the same. Figure 14 shows the local details of the extraction
results. Table 6 shows the accuracy comparison, where “

√
” indicates that the transfer

learning technology is used for the experiment and “—” indicates that the transfer learning
technology is not used for building extraction.
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(a) (b) (c) (d) 

Figure 14. Building extraction results with and without transfer learning. (a) Original image. (b) Ground
truth. (c) EfficientUNet+ with transfer learning. (d) EfficientUNet+ without transfer learning.

Table 6. Accuracy comparison of prediction results with and without transfer learning.

Transfer Learning Precision Recall F1-Score mIoU

— 92.75% 88.92% 90.79% 90.73%√
93.01% 89.17% 91.05% 90.97%

Figure 14 shows that the pretrained model EfficientUNet+ on the existing public
WHU aerial building dataset is applied to the created Google building dataset using the
transfer learning technology, thereby increasing the model’s ability to extract buildings
and its generalization ability. Table 6 shows that the extraction accuracy of the transfer
learning technology applied to the real object dataset is high, and the performance is stable.
This finding shows that transfer learning can make full use of the existing data information,
effectively solve the insufficient number of samples leading to model overfitting, and im-
prove the generalization ability of the network. Thus, it can achieve satisfactory results in
information extraction.

4.3. Efficiency Evaluation

We visualize the training loss versus epoch in Figure 15. It can be seen that the
training loss of the proposed method decreases the fastest, far exceeding other comparison
methods, which verifies its efficiency in the training phase. In addition, in order to verify the
extraction efficiency of the proposed method, we count the operation time of the validation
set, as shown in the table. It can be seen that the inference time and training time of the
proposed method are 11.61 s and 279.05 min respectively, which are the shortest and the
most efficient of all the compared methods. Table 7 shows that the method proposed in this
study can quickly extract the buildings in emergency shelters.
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Figure 15. Visualization graph of training loss and epochs.

Table 7. Operation time of buildings extracted by different methods.

Time DeepLabv3+ PSPNet ResUnet HRNet EfficientUNet+

Inference time 16.31 s 13.42 s 15.96 s 32.05 s 11.16 s
Train time 362.77 min 312.82 min 334.77 min 427.98 min 279.05 min

5. Conclusions

Buildings in special scenes, such as emergency shelters, are generally small. The extrac-
tion of such small buildings is prone to problems, such as integrity, misrepresentation and
omission, and blurred boundaries. An improved deep learning method, EfficientUNet+,
is proposed in this study, taking the emergency shelters within the Fifth Ring Road of
Beijing as the research area. The effectiveness of the proposed method to extract buildings
is verified. The following are the conclusions: (1) EfficientNet-b0 is used as the encoder,
and the scSE is embedded in the decoder, which can accurately correct the feature map.
Thus, the features extracted by the model are conducive to building extraction. (2) The joint
loss function of building boundary-weighted cross-entropy and Dice loss can enforce
constraints on building boundaries, making the building extraction results close to the
ground truth. (3) Transfer learning technology can complete the high-precision extraction
of buildings with few training samples in a specific scene background and improve the
generalization ability of the model. The Precision, Recall, F1-Score, and mIoU of the Effi-
cientUnet+ method are 93.01%, 89.17%, 91.05%, and 90.97%, respectively. Its accuracy is
the highest among all evaluation indicators. This finding shows that the EfficientUnet+
method has suitable performance and advantages in extracting buildings in emergency
shelters. The extraction results have guiding relevance in improving urban emergency
evacuation capabilities and building livable cities.

However, the model sometimes misses extracting buildings that are obscured by
trees. In the future, we will continue to optimize and improve the EfficientUNet+ method,
try to extract buildings under different phenological conditions in summer and winter,
and improve the accuracy and performance of remote sensing image building extraction.
The method proposed in this study is suitable for optical remote sensing images. In the
future, we will try to apply the proposed method to other datasets, such as side-scan sonar,
to further verify the advantages of this method in small building extraction.

214



Remote Sens. 2022, 14, 2207

Author Contributions: Conceptualization, D.Y., F.W. and S.W.; methodology, Z.W., D.Y., F.W.
and S.W.; software, D.Y. and Z.W.; validation, Y.X., F.W. and S.W.; formal analysis, D.Y.; investi-
gation, D.Y.; resources, F.W.; data curation, J.W. and Y.X.; writing—original draft preparation, D.Y.;
writing—review and editing, S.W. and Y.Z.; visualization, F.W. and Z.W.; supervision, S.W. and Y.Z.;
project administration, D.Y. and S.W.; funding acquisition, D.Y. and S.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Finance Science and Technology Project of Hainan
Province (no. ZDYF2021SHFZ103) and the National Key Research and Development Program of
China (no. 2021YFB3901201).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We thank Wuhan University for providing the open access and free aerial image
dataset. We would also like to thank the anonymous reviewers and the editors for their insightful
comments and helpful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
FCN Fully Convolutional Network
DSM Digital Surface Model
GIS Geographic Information System
scSE Spatial and Channel Squeeze and Excitation
sSE Spatial Squeeze and Excitation
cSE Channel Squeeze and Excitation
BN Batch Normalization
SE Squeeze and Excitation
mIoU Mean Intersection over Union
TP True Positive
FP False Positive
FN False Negative
Adam Adaptive Moment Estimation
GPU Graphics Processing Unit
PSPNet Pyramid Scene Parsing Network
ResNet Residual UNet
HRNet High-Resolution Net
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Abstract: In this paper, the local correspondence between synthetic aperture radar (SAR) images and
optical images is proposed using an image feature-based keypoint-matching algorithm. To achieve
accurate matching, common image features were obtained at the corresponding locations. Since the
appearance of SAR and optical images is different, it was difficult to find similar features to account
for geometric corrections. In this work, an image translator, which was built with a DNN (deep
neural network) and trained by conditional generative adversarial networks (cGANs) with edge
enhancement, was employed to find the corresponding locations between SAR and optical images.
When using conventional cGANs, many blurs appear in the translated images and they degrade
keypoint-matching accuracy. Therefore, a novel method applying an edge enhancement filter in the
cGANs structure was proposed to find the corresponding points between SAR and optical images to
accurately register images from different sensors. The results suggested that the proposed method
could accurately estimate the corresponding points between SAR and optical images.

Keywords: image registration; keypoint matching; synthetic aperture radar; deep neural network;
generative adversarial networks

1. Introduction

When a natural disaster such as an earthquake or tsunami occurs, visual information
can provide essential data for emergency management. Aerial images obtained from
satellites, aircraft, and drones can simultaneously capture a wide range of features; thus,
they may be utilized for response and recovery operations after a disaster event [1,2].
The higher the shooting altitude, the wider the view; however, the visibility of optical
images can deteriorate owing to the lack of a light source or the influence of clouds.
Alternatively, synthetic aperture radars (SARs) can capture data over a large area without
much deterioration. Therefore, SARs are often used in disaster situations, such as damage
area detection [3–5], infrastructure damage assessment [6,7], etc. However, SAR has some
problems in practical use, including (a) they are relatively less readable by humans and
(b) landmark points may be difficult to locate, especially with coarse resolution data. To
obtain geographic information, the combined use of SAR images and optical data can
provide a wealth of information. Thus, the geometric registration of the two data is essential,
which may be challenging. The accurate registration of SAR images and optical data can
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provide valuable information, which would otherwise be difficult, especially during natural
disasters, such as floods of large magnitude. Hence, the precise registration of optical and
microwave data can support rapid scanning of flood areas or the identification of collapsed
buildings after an earthquake or tsunami for rescue and evacuation efforts.

The pixel values in SAR images represent the intensity of electromagnetic waves, and
they are expressed in backscatter values. This differs from visible light, thereby resulting
in varying responses of several ground features. Thus, when handling SAR images, it is
common to compensate for their low readability by registering them with optical images.

Image registration is traditionally performed using a digital elevation model (DEM) [8].
However, when the spatial resolution of both the optical and SAR images is high, DEM
may not be effective. Moreover, when a disaster event occurs, landforms may be drasti-
cally changed such that DEM may not achieve accurate image registration. An alternative
method is image-based registration, which is independent of DEM. In this method, com-
plementing factors associated with the acquisition and processing of optical and SAR data
are considered because optical images are prone to atmospheric disturbances, especially
during disasters such as floods, while SAR can acquire data in any weather. Combining the
SAR data acquired during the disaster and the optical images before/after the disaster can
make response and recovery operations much easier. Meanwhile, an automated method for
the geometric rectification of images from different sensors is not as easy due to variations
in the spectral response of ground features. Hence, two datasets can be combined by
translating the appearance of a SAR image to an optical image using generative adversarial
networks (GANs) [9] for subsequent keypoint matching.

We proposed a method for finding local feature correspondence between multimodal
(SAR and optical) images using an image-based feature keypoint extraction, description,
and matching algorithm [10], as shown in Figure 1. Image translation with a GAN is used to
transform a SAR image into an optical image. Although this method has good accuracy, the
blurring of features could be a significant issue (Figure 2). To obtain more corresponding
points, blurring should be removed to highlight the local features. However, it is difficult
to achieve this with conventional GANs.

Figure 1. Outline of the proposed method. Using a GAN as a pre-processing step before keypoint
matching, local correspondence was established for multimodal image registration.
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Figure 2. An optical image generated by a conditional GAN ([11], left) and an optical image (right).
Note the loss of local features due to blurring.

In this work we proposed a SAR and optical image registration method for overcoming
the above-mentioned problem. By training the GAN with an edge-enhancement technique,
we could obtain an image translator (generator) with higher quality than a conventional
GAN. Furthermore, comparative evaluation was conducted to quantitatively analyze the
effectiveness and performance of the proposed method. Meanwhile, local features were
necessary for finding the corresponding points, and they could be obtained by applying an
edge-enhancement filter. The main contributions of this work are as follows.

a A novel method was proposed for finding the corresponding points between SAR and
optical images for image registration.

b The SAR-to-optical image translator was improved by training a GAN with edge-
enhanced images to maintain local image features and improve keypoint extraction.

c The efficiency of the proposed method was demonstrated by a comparison experiment
with conventional methods and a qualitative experiment.

This paper is organized as follows. Conventional image-registration methods for
multimodarl images are discussed in Section 2, as well as image translation methods
with GANs. In Section 3, we describe how to train a GAN to obtain a generator that can
perform SAR-to-optical-image translation. The methods for finding the corresponding
points between the optical and generated optical images are described in Section 4. The
experimental setting, results, and discussions are given in Section 5. Finally, the conclusion
and major findings of this work are discussed in Section 6.

2. Related Work

An image-based (not DEM-based) registration method is expected to match multi-
modal images based on the similarities of their edges and corners. Thus, template-based
methods with traditional metrics, such as normalized cross-correlation (NCC) or mutual
information between two images, have been proposed for image registration [12,13]. Mean-
while, other suitable metrics have been proposed for more accurate template-matching of
SAR and optical images [14–17]. However, these methods use image features of a relatively
wide area. The template-matching accuracy decreases with small template size, whereas
its robustness for occlusions and partial difference (e.g., between pre- and post-disaster)
decreases with large template size. Although machine-learning-based (especially deep-
learning-based) SAR and optical image-matching methods have been proposed [18–20],
the range of pixels considered in these methods are whole image correspondences or some
of them have a limitation in rotation robustness. The identification of local correspondence
is not possible with these methods; hence, a new technique that can perform image registra-
tion with local features when applied to disaster sites is required since landform responses
may be partially or fully changed after a disaster event.

Local image features are often employed to achieve the image-based registration of
satellite data. Particularly, keypoint-based methods [21–23] can estimate the correspon-
dence between two images using uncorrelated local features, similar to template-based
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methods. Methods that adopt a keypoint detector and a feature descriptor [24–27] are
frequently used to match (i.e., estimate the correspondence of) two images. These meth-
ods describe features that are robust to geometric fluctuation (e.g., rotation, scaling) and
changes in environmental (e.g., lighting) conditions. They find keypoint pairs that have
similar features as corresponding points, thereby achieving image matching. Since these
methods use local features, they can achieve partial correspondence, even when a part of
the captured area has collapsed due to disaster.

Meanwhile, machine learning methods based on deep neural networks (DNNs) have
been widely used for image modal translation [28–32]. In this work, we mainly focus on
GANs. A GAN trains a generator that generates data and a discriminator that determines the
authenticity of the data to produce a generator that can generate data similar to the original
features through comparison. The loss function of a GAN, LGAN, is given as follows:

LGAN(G, D) = Ey[logD(y)] +Ez[log(1 − D(G(z)))], (1)

where G() indicates the generated data based on the input data by the generator (G), D()
indicates the probability that a discriminator (D) can correctly discriminate between a real
input and a fake (artificial) input, y and z indicate the answer and a random value, respectively.
The purpose of training a GAN is to obtain a well-trained generator that can produce sufficient
fake data to deceive the discriminator. The generator G∗ is given as follows:

G∗ = arg min
G

max
D

LGAN(G, D). (2)

An application of a GAN is a conditional GAN (cGAN), whose generator obtains
inputs rather than random values. It is a common multipurpose image interpretation
method, and its loss function LcGAN is given as follows:

LcGAN(G, D) = Ey[logD(y)] +Ex,z[log(1 − D(x, G(x, z)))], (3)

where x indicates the input. A well-trained generator for the cGAN can be obtained in
the same way as Equation (2). It has been demonstrated that cGAN permits multimodal
image-to-image translation, e.g., from an artificial room image to a real photo [33], or a
sketched image to a real photo [11].

Another advantage of a GAN is that fewer training datasets are required [11]. Al-
though a large number of training datasets is necessary for conventional machine learning
methods, GANs can achieve high performance with fewer datasets owing to their gen-
erator and discriminator models. This was a crucial advantage for this study because
it was difficult to prepare several datasets of aligned SAR and optical images under a
disaster situation.

Therefore, we proposed a method for performing SAR-to-optical image translation
using a GAN so that a keypoint-matching algorithm could be applied to multimodal images.
By applying cGAN to SAR-to-optical image translation, the challenging task of multimodal
image registration was reduced to the conventional task of monomodal image registration,
which could be solved using a feature-based image-matching algorithm.

Blurring, as shown in Figure 2, is one of the factors that reduces the accuracy of match-
ing. Edge enhancement for super-resolution [34] and that for small object detection [35]
have been proposed. Although these methods include edge enhancement in the neural
network structures, they increase the complexity of implementation, such as parameter
tuning from applying the methods to problems. Therefore, in this paper, we used a neural
network structure, which was used in previous studies and its performance had been
established. The edge enhancement was used to pre-process the image, which simplified
the implementation and improved the performance.
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3. Training a GAN for SAR-to-Optical Image Translation with Edge Enhancement

In this section, the process of training a GAN to generate optical images (generated
optical images) from SAR images is described. The generated optical images were obtained
by machine-learning-based prediction using SAR images as input. Figure 3 shows the
cGAN training model, in which the generator G and discriminator D are combined to
obtain higher-quality generated optical images. In preparing SAR and optical image pairs
that were already co-registered, we set the SAR images as input x to the model and y as the
correct answer for training G and D. With this SAR-to-optical image translation process,
the generated and original optical images had the same modality, and it was possible to
perform image-registration processing with keypoint matching.

Figure 3. Structure of the training generator and discriminator model with an edge enhancement
filter of the proposed method.

Since the objective of image translation is to find the corresponding points, important
pieces of information in the generated image are the local image features (edges and
corners). However, as shown in Figure 2, there were cases where the details were blurred
and local features were lost in the cGAN. We solved this problem by proposing a method
that applied an edge-enhancement filter, which adjusted pixel values of pixels along edges
to emphasize edges, to the training data in advance to enable the cGAN network to learn
the edges and corners more actively. The discriminator training is shown in Figure 3.

4. Finding Corresponding Points Using the Keypoint Detector and Descriptor

The keypoint-matching process is shown in Figure 4. As mentioned previously, the
cGAN training model was used to obtain G, which generated images that were similar to
the original optical images. Afterwards, keypoint matching was performed between the
optical and generated optical images.

Figure 4. The keypoint-matching process. The trained G obtained in Section 2 predicted optical
images (generated optical images) from the input of SAR images.

Finding corresponding points consists of three major steps: keypoint detection, key-
point description, and keypoint matching. A typical process using SIFT [24], which is a
major algorithm in keypoint matching, is outlined below. In the feature point detection step,
the DoG (difference of Gaussian) image is used to detect tentative keypoints and the range
(scale) is used for feature description. In the subsequent localization step, the sub-pixel
positions are estimated by deleting the sub-pixels from the detected tentative keypoints
that are not suitable for keypoints. In the feature description step, the direction of each
feature point is determined from the bright gradient to obtain rotation-invariant features,
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and 128-dimensional feature vectors are described for each feature point according to the
direction and scale. In the final keypoint-matching step, two points in two images with
similar feature vectors are extracted as corresponding points.

During the process of finding the corresponding points, false correspondences were
also obtained. These false correspondences might decrease the registration accuracy; there-
fore, a process was required to remove them. In the case of matching between map-projected
images, the difference between the two images could be regarded as scale, rotational, and
translational transformation. Hence, the false corresponding points were removed based on
the scale value and the gradient direction information of the correspondences [36]. Figure 5
shows the results of the corresponding points after eliminating the false correspondences.

Figure 5. An example of a local correspondence between two images. The yellow lines are the
connectors of corresponding points and the blue points are the points without corresponding points.

5. Evaluation of Keypoint Matching

5.1. Objective of the Evaluation

The objective of this experiment was to quantitatively evaluate the accuracy of the
corresponding points to verify the effectiveness of the proposed method. Specifically, the
accuracy of the positions where the corresponding points were extracted was evaluated.
We used co-registered SAR and optical images for this experiment. In the evaluation scale,
the average of the Euclidean distances d of the positions of the corresponding points in the
SAR and optical image was used, which is given by the following:

d =
1
n ∑n

i ‖ pi − pi
′ ‖, (4)

where pi and pi
′ are the positions of the corresponding points in the optical and generated

optical image, respectively. If the registration was perfect, the corresponding points ideally
had the same positions in each coordinate; hence, the closer the evaluation scale d was to 0,
the higher the accuracy.

The results of the proposed method were compared with those of six other methods,
which were as follows: (1) DLSC [14]—a method for finding corresponding points using
dense local self-similarity; (2) HOPC [15]—a method for finding corresponding points
using a histogram of orientated phase congruency (HOPC), which is based on the structural
properties of images; (3) CFOG [16]—a method for finding corresponding points using
CFOG, which is an extension of the pixel-wise HoG (histogram of Gaussian) descriptor;
(4) Pix2pix [11]—a method that uses SIFT [24] for keypoint detection and description, and
images obtained by a Pix2pix prediction; (5) Pix2pix + Edge Enhancement (EE)—a method
that uses SIFT and edge-enhanced images obtained by applying an edge-enhancement
filter to the Pix2pix prediction; and (6) Proposed—our method that uses SIFT for keypoint
detection and description, and a discriminator trained by edge-enhanced images.
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5.2. Environment of the Evaluation
5.2.1. The GAN Structure and Loss Function of the Experiment

Figure 6 shows the network structure used for learning. U-Net [37] was used for the
generator, and PatchGAN [11,38] was used for the discriminator. U-Net and PatchGAN,
which were used in the original Pix2pix, showed good and stable image translation results
in its paper. Therefore, our proposed method was based on the Pix2pix network structure,
and we mainly evaluated the effectiveness of the edge enhancement filter.

Figure 6. Structure of the generator and discriminator networks.

U-Net has skip structures in the layer, which makes it possible to pass information to
the previous layer without loss before the convolution layer compresses the information.
The number of down/up convolution layers was set to 8 (= log2 256), depending on the
size of the training data, which was 256 × 256 pixels. To introduce randomness to the
network, dropout (probability = 0.5) layers were added to three layers, as shown in Figure 6.
The U-Net is considered appropriate for optical and SAR image translation because the
proposed method preserves the edges and corners of the features, which are common in
both optical and SAR images.

For the discriminator, the PatchGAN discriminator was used to discriminate the
separated input images. The internal structure uses a general 7-layer convolutional encoder.

For the loss function, we adopted a function that uses L1 norm, which is the same as
that used in Pix2pix. The Pix2pix loss function is given by the following:

LPix2pix(G, D) = LcGAN(G, D) + λLL1(G)
= LcGAN(G, D) + λEx, y,z[‖ y − G(x, z) ‖1].

(5)

Referring to Equations (3) and (5), our proposed loss function is given by the following:
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LProposed(G, D) = Ey

[
logD

(
Fedge(y)

)]
+Ex,z[log(1 − D(x, G(x, z)))] + λEx, y,z

[
‖ Fedge(y)− G(x, z) ‖1

]
, (6)

where λ indicates a constant value, which was set to 10 [11] in this experiment, and Fedge()
indicates edge enhancement. Similar to Equation (2), the objective generator G∗∗ is given
by the following:

G∗∗ = arg min
G

max
D

LProposed(G, D). (7)

5.2.2. Dataset

The SEN1-2 dataset [39] was prepared from Sentinel-1 (SAR satellite) and Sentinel-2
(optical satellite) of the European Space Agency [40]. The dataset contains co-registered
Sentinel-1 and Sentinel-2 image patches. Each item of the Sentinel-1 data has one 8-bit and
256 × 256-pixel channel (C-band, VV polarization), while that of Sentinel-2 data has three
8-bit and 256 × 256-pixel channels (red, green, and blue band). Their spatial resolution is
10 m per pixel. The “Urban”, “Farm”, and “Hill” areas were selected from the “spring”
data in the SEN1-2 dataset due to their importance during a disaster event, and 2936, 3320,
and 3224 image pairs were extracted, respectively. From these pairs, 300 sets each were
selected as the test and validation data, respectively, and the remaining sets were used as
training data. Figure 7 shows examples of the training, validation, and test image data for
the experiment.

Figure 7. Examples of training, validation, and test images for the experiment. The upper half of
each dataset represents SAR images, and the others represent optical images.
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5.2.3. Implementation

The PatchGAN patch size was set to 128 × 128 pixels, with a batch size of 32. NVIDIA
Tesla V100 GPU was used for parallel processing, and Adam [41] optimization was used to
train the generator and discriminator, with a learning rate of 10−3.

Each training time was 36 h. The training time represented the time when the L1 losses
of the generators were low enough. The loss curves for each dataset are shown in Figure 8.

Figure 8. Loss curves of each data set. Blue lines show training, and orange lines show validation.

SIFT [24] was used as the keypoint detector and descriptor, and the parameters
were the default values of OpenCV [42] version 3.4.3. To remove the false corresponding
points [36], the threshold values of the scale and gradient direction were set to two octave
layers and 5 degrees, respectively.

The template window sizes of the DLSC, HOPC, and CFOG were set to 100 × 100 pixels,
and the distance threshold of the corresponding points was set to 1.5 pixels. This indicated
that corresponding points with distances greater than 1.5 pixels we re considered outliers.
The same threshold was applied to all the other methods.
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An edge-enhancement filter based on the Laplacian filter was used, which is given by
the following:

Fedge(I) =

⎡⎣ −v −v −v
−v 1 + 8v −v
−v −v −v

⎤⎦I, (8)

where v is a parameter for setting the strength of the edge enhancement. In this experiment,
v = 0.1 was used because it revealed good results in preliminary experiments.

5.3. Result and Discussion

The generated optical images were properly translated when Pix2pix or the proposed
method—which used GANs in their structure—were applied. The average, standard
deviation and median values of the peak signal-to-noise ratio (PSNR) of 300 test images for
Pix2pix were 22.70, 3.08, and 22.50 dB, respectively, whereas those of the proposed method
were 23.01, 3.14, and 22.87 dB, respectively. PSNR is calculated as

PSNR(I1, I2) = 10 × log10
MAX(I1)

2

MSE(I1, I2)
, (9)

where MAX(I1) is the possible maximum value of image I1, and MSE(I1, I2) is the mean
squared error between I1 and I2. MAX(I1) needs to equal MAX(I2).

Figure 9 shows the results of the SAR-to-optical image translation. It shows the
input, output, and ground truth sets with the best PSNR values. Afterward, we evaluated
the probability of these images for keypoint matching. Figure 10 shows an example of
improvement by the proposed method. The proposed method improved the local blur and
low reproducibility that were problems in the conventional cGANs.

Figure 9. Results of SAR-to-optical image translation.
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Figure 10. Improvement examples of image translation with our proposed method.

Tables 1 and 2 summarize the results of the quantitative evaluation experiments.

Table 1. Mean average (pixels) of the d in Equation (4).

DLSC HOPC CFOG Pix2pix Pix2pix + EE Proposed

Urban 0.965
0.863 0.838 0.564 2 0.566 0.538 1

(10.6%) 3 (13.2%) (41.6%) (41.3%) (44.2%)

Farm 0.847
0.847 0.700 0.675 0.676 0.569
(0%) (17.4%) (20.3%) (20.2%) (32.8%)

Hill 1.128
1.052 1.114 0.668 0.667 0.577

(6.7%) (1.2%) (40.8%) (40.9%) (48.9%)

1 A bold number represents the best value in the row. 2 An underlined number represents the second best value
in the row. 3 A value on each second row shows improving rate (%) compared to DLSC. This was calculated as
Improve_rateX = 100 × (1 − ResultX/ResultDLSC).

Table 2. Mean number of corresponding points (correct matches). The improvement score was larger
in the “Farm” and “Hill” datasets.

DLSC HOPC CFOG Pix2pix Pix2pix + EE Proposed

Urban 49.8
80.7 1 63.0 67.6 63.5 78.5 2

(62.0%) (26.5%) (35.7%) (27.5%) (57.6%)

Farm 62.5
65.9 62.1 57.4 57.2 101.1

(5.4%) (−0.6%) (−8.2%) (−8.5%) (61.8%)

Hill 17.2
45.2 22.6 57.5 56.4 85.0

(162.8%) (31.4%) (234.3%) (227.9%) (394.2%)

1 A bold number represents the best value in the row. 2 An underlined number represents the second best value
in the row. 3 A value on each second row shows improving rate (%) compared to DLSC. This was calculated as
Improve_rateX = 100 × (ResultX − ResultDLSC)/ResultDLSC .

Table 1 shows the accuracy of the corresponding point detection. In the test dataset
for each “Urban”, “Farm”, and “Hill” area, the proposed method had high precision with
an average accuracy of 0.538 pixels, 0.569 pixels, and 0.577 pixels, respectively. The result
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of the proposed method was more accurate than those of DLSC, HOPC, CFOG, Pix2pix,
and Pix2pix + EE; the absolute accuracy was the highest in the “Urban” area. However, the
improved accuracy of the “Farm” and “Hill” was higher than “Urban”. This was because
several objects had strong local features with sharp edges and corners, such as artificial
structures, in urban areas. On the other hand, the local features of the “Farm” and “Hill”
areas are weaker than those of the “Urban” area.

When edge enhancement was applied to the prediction result of Pix2pix in the
Pix2pix + EE method, the accuracy was not as high as that of the proposed method, proba-
bly because the enhancement was equally applied to the artifacts generated in the prediction
result. Hence, it was difficult to selectively enhance the effective local features.

Table 2 shows the number of detected corresponding points (correct matches). In the
test dataset for each of the “Urban”, “Farm”, and “Hill” areas, the average scores of the
proposed method were 78.5, 101.0, and 85.0 points, respectively. As the results in Table 1
indicate, the improvement score was larger in the “Farm” and “Hill” datasets. Although
the number of corresponding points in the “Urban” dataset for HOPC was more than that
of the proposed method, only the proposed method achieved more accuracy and several
corresponding points.

Table 3 shows the inlier (correct matches) rates, in which our proposed method
achieved a high inlier rate. For Pix2pix, Pix2pix + EE, and the proposed method, some
outliers were already removed based on the scale value and the gradient direction of each
keypoint [36]. This was the reason why the three methods achieved higher inlier rates than
DLSC, HOPC, and CFOG.

Table 3. Mean inlier (correct matches) rates.

DLSC HOPC CFOG Pix2pix Pix2pix + EE Proposed

Urban 0.437
0.703 0.575 0.900 0.900 2 0.913 1

(60.8%) 3 (31.6%) (105.9%) (105.9%) (108.9%)

Farm 0.588
0.615 0.606 0.805 0.815 0.896

(4.6%) (3.1%) (36.9%) (38.6%) (52.4%)

Hill 0.155
0.396 0.200 0.809 0.808 0.880

(155.5%) (29.0%) (421.9%) (421.3%) (467.7%)

1 A bold number represents the best value in the row. 2 An underlined number represents the second best value
in the row. 3 A value on each second row shows improving rate (%) compared to DLSC. This was calculated as
Improve_rateX = 100 × (ResultX − ResultDLSC)/ResultDLSC .

Figure 11 shows the results of the optical image generation and the subsequent feature-
point matching. A sufficient number of correspondences were estimated, and it was
confirmed that Pix2pix was effective for SAR-to-optical image translation. Although false
correspondences remained, they could be removed using a robust estimation method, such
as RANSAC [43].

As Figures 9 and 10 show, the Pix2pix + EE results indeed gave sharper images than
those of Pix2pix and Proposed. However, the quantitative evaluation result showed better
results than the others. The reason was that Pix2pix + EE enhanced not only effect image
features but also artifacts. After all, the Pix2pix + EE results seemed sharper, but did not
yield as good results.

Considering the “Urban” dataset in Figure 11 more closely, the center part of the
generated optical image failed to translate in both methods. Even if fewer corresponding
points were found in some parts of the images, it was possible to correctly calculate the total
correspondences in a case where partial correspondence was correctly achieved in other
areas since SIFT or other keypoint detection/description methods could calculate local
features. Through this experiment, we confirmed that precise feature matching between
the optical and generated optical images was possible.
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Figure 11. Results of keypoint matching. Yellow points connected by yellow lines mean correspond-
ing points, and blue points mean other keypoints. No local feature correspondences were found in a
collapsed area, but many corresponding points could be found in the remaining area.

A practical example of SAR-to-optical registration is shown in Figures 12 and 13.
A SAR image was projected onto an optical image that had a rotation and translation
formation. The projection was estimated by finding the corresponding points between the
optical and generated optical images. We confirmed that high-precision image registration
was achieved, even on the assumption of planarity, since this dataset covered an area that
was not very wide. Alternatively, we could estimate a 3D projection of the corresponding
keypoint if necessary [22].

Figure 12. Example of SAR and optical image registration assuming planarity. To overlay a SAR image
on the target optical image (a), after finding the local feature correspondences between the optical
and generated optical images, the original SAR image was projected onto the optical image using an
estimated homography transform (b). Half of the area was transparent, similar to a checkerboard
pattern (c), and ground truth, which was registered by accurate DEM (d).

Figure 13. (a,b) are Close-up of a part of Figures c and d in Figure 12. Yellow lines were drawn along
the roads to demonstrate the registration accuracy. It could be confirmed that image registration
between SAR and optical images was performed with high accuracy.

230



Appl. Sci. 2022, 12, 4159

A limitation of the proposed method was that it was hard to apply this method to
very high spatial resolution images; we confirmed this with 3-m/pixel imagery by Cosmo-
SkyMed [44]. That was because layovers in SAR images prevented training datasets from
accurate image registration. We confirmed that the proposed method worked well in
middle resolution images (about 10 m/pixel). Considering the balance between the size of
the observation area and its detail, the dataset of 10 m/pixel used in this evaluation was
considered to be an appropriate spatial resolution dataset.

6. Conclusions

In this paper, we proposed a method for translating SAR images to optical images
using a GAN so that a keypoint-matching algorithm could be applied to multimodal
images. By applying this method for SAR-to-optical image translation, we performed
keypoint-matching on the monomodal images. Through quantitative evaluations of the
keypoint-matching accuracy, we confirmed that the proposed method could achieve accu-
rate keypoint matching between the optical and generated optical images using a cGAN.
In the translation from optical to generated optical images using the cGAN, the local
features could not be obtained, and the corresponding points could not be established
due to blurring. Therefore, an improvement was achieved in our proposed method by
applying the edge-enhancement filter to the training data for the discriminator and training
the generator to actively learn the local features. Furthermore, we conducted a compara-
tive experiment and confirmed that our proposed method was effective for finding local
corresponding points.
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Abstract: Image registration technology is widely applied in various matching methods. In this
study, we aim to evaluate the feature matching performance and to find an optimal technique for
detecting three types of behaviors—facing displacement, settlement, and combined displacement—in
reinforced soil retaining walls (RSWs). For a single block with an artificial target and a multiblock
structure with artificial and natural targets, five popular detectors and descriptors—KAZE, SURF,
MinEigen, ORB, and BRISK—were used to evaluate the resolution performance. For comparison, the
repeatability, matching score, and inlier matching features were analyzed based on the number of
extracted and matched features. The axial registration error (ARE) was used to verify the accuracy of
the methods by comparing the position between the estimated and real features. The results showed
that the KAZE method was the best detector and descriptor for RSWs (block shape target), with the
highest probability of successfully matching features. In the multiblock experiment, the block used as
a natural target showed similar matching performance to that of the block with an artificial target
attached. Therefore, the behaviors of RSW blocks can be analyzed using the KAZE method without
installing an artificial target.

Keywords: feature matching; image registration; natural target; RSW

1. Introduction

Since the concept of reinforced earth was proposed by Vidal in the late 1950s [1],
reinforced soil retaining walls (RSWs) have been widely used, owing to their low cost
and rapid construction. A general safety inspection is carried out at least two times a
year, and a precision safety inspection is conducted once every 1–3 years, according to
the Special Acts On Safety Control And Maintenance Of Establishments [2], to inspect the
physical condition of RSWs. However, RSWs frequently collapse, owing to heavy rainfall
or dynamic loads, such as those produced during earthquakes. It is very difficult to detect
the risk of an unexpected collapse of RSWs through a periodic safety inspection. Several
RSWs that were diagnosed as safe (Grade B—no risk of collapse, management required)
collapsed within 6 months after safety inspections (e.g., one in Gwangju in 2015 and one
in Busan in 2020 [3,4]). Therefore, a real-time or continuous safety monitoring system is
necessary for detecting RSW collapse, which is hard to detect with only periodic safety
inspections [5,6].

Various studies have been conducted to analyze the behavior of RSWs using a strain
gauge, displacement sensor, inclinometer, and pore water pressure sensor [7–10]. However,
these experimental approaches only monitor a specific location in RSWs where sensors were
installed. In addition, numerous sensors and considerable effort are required to measure
the overall behavior of RSWs, resulting in inefficiency in terms of cost and labor. Therefore,
this study was carried out as a pilot-phase experiment to analyze the overall behavior of
structures based on images and to overcome the abovementioned disadvantages of current
monitoring methods. The analysis of the RSW behavior can be divided into the matching
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procedure of the target and the calculation procedure of the displacement based on the
matching result. The matching procedure finds and matches identical points between
image pairs, and the calculation procedure calculates displacement from the changes in the
pixels. In this study, we focused on the matching procedure. A feature matching technique
was applied to accurately match the target before and after the behavior.

With the continuous development of image processing technologies, feature matching
techniques have been widely applied across various fields, such as biomedical image reg-
istration [11–14], unmanned aerial vehicle (UAV) image registration [15], and geographic
information systems (GISs) [16–18]). Additionally, a fusion study of feature and machine
learning technology was performed in the field of vehicle matching [19]. Feature match-
ing techniques show high-resolution image pairing performance between different scales,
transformations, rotations, and three-dimensional (3D) projections of transformed objects
in images. Tareen and Saleem [20] matched buildings and background images with over-
lapping parts using this technique. Image matching results were evaluated based on the
changes in size, rotation, and viewpoint. SIFT, SURF, and BRISK are scale-invariant feature
detectors. ORB and BRISK were invariant to affine change, and SIFT had the highest overall
accuracy. Pieropan et al. [21] applied several methods to track moving elements in images
based on specificity, tracking accuracy, and tracking performance. Here, AKAZE and SIFT
showed high performance when detecting the deformations of small objects. Moreover,
ORB and BRISK showed high performance when sequences with significant motion blur
were matched. Mikolajczyk and Schmid [22] evaluated the performance of descriptors
based on various image states, targets, and transforms. Their results showed that GLOH
and SIFT had excellent performance. Chien et al. [23] evaluated feature performance on
KITTI benchmark datasets produced using monocular visual odometry. SURF, AKAZE, and
SIFT showed excellent performances in each condition of the interframe and accumulated
drift errors and the segmented motion error on the translational and rotational components.
Previous studies indicated that different feature matching methods should be applied
according to the feature extraction and matching conditions (i.e., type of target, change of
scale, and rotation). In addition, various studies have been conducted to select optimal
feature matching techniques with different types of targets and transforms. Therefore, it is
necessary to select an optimal feature detector and descriptor with the best performance to
accurately evaluate RSW behavior through image processing.

The use of remote sensing methods in combination with high-resolution image record-
ing technology could allow for the continuous evaluation of structure movement and
displacement behavior. Feng et al. [24] used a template matching method to analyze the
time-lapse displacement of attached arbitrary targets on railway and pedestrian bridges.
Apparent targets (i.e., patterns, features, and textures) of the surrounding features enable
easier comparison of structure images in different states and times. Lee and Shinozuka [25]
measured the dynamic displacement of target panels attached to bridges and piers through
texture recognition techniques from motion pictures. Choi et al. [26] carried out deforma-
tion interpretation of the artificial target (AT) to reference two-story steel frames taken by a
dynamic displacement vision system. However, a critical limitation of these techniques
was that only a local movement near the AT could be detected.

Therefore, in this study, the RSW behavior was simulated through single- and multi-
block laboratory experiments to determine the most efficient feature matching method
for the RSW structure. A facing of a block with a sheet target was defined as the AT,
and a block face without an additional pattern was defined as the natural target (NT).
Five feature matching methods were applied to the single-block experiment with ATs and
the multiblock experiment with ATs and NTs. Furthermore, the usability of NTs in the
multiblock experiment was evaluated by comparing the performance of four NTs with that
of ATs. Through this analysis, we determined a feature matching technique that analyzes
NTs similar to the performance of analyzing ATs.
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2. Background and Objectives

2.1. Behavior of RSW

A single point existing in the 3D space can be moved in all directions. However, a
specific behavior only occurs predominantly in the case of a geotechnical structure, such as
an RSW, that was constructed continuously in the lateral direction. Berg et al. [27] specified
the measurement of the facing displacement and settlement of RSWs to evaluate both the
internal and external stabilities during the design and construction stage. Koerner and
Koerner [28] investigated the collapse of 320 geosynthetically reinforced, mechanically
stabilized earth (MSE) walls worldwide due to facing displacement and settlement caused
by surcharge and infiltration. Therefore, facing displacement (corresponding to the bulging
type), settlement, and their combined displacement were considered in this study. Hori-
zontal displacements in the lateral direction were excluded because they hardly occurred
based on the nature of the RSW.

2.2. Feature Detection and Matching

Feature detection and matching techniques were used to detect the features of target
regions in image pairs and to match the features presumed to be identical to the detected
features, respectively. These technologies are widely used in various computer machine
vision fields, such as object detection, object tracking, and augmented reality [20]. As
applications expand, various methods for detecting and matching features have been
developed and improved to provide higher accuracy. Feature detection and matching
techniques consist of a detector and a descriptor. The detector is used to discover and locate
areas of interest in a given image, such as edge and junction. The areas should contain strong
signal changes and were used to identify the same area in images captured with different
view angles and movement of objects in the image. By contrast, the descriptor provides
robust characterization of the detected features. It provides high matching performance
through high invariance, even for changes in scale, rotation, and partial affine image
transformation of each feature in the image pairs [29].

In this study, we used five methods—MinEigen [30], SURF [31], BRISK [32], ORB [33],
and KAZE [34]—provided in MATLAB to evaluate the performance of each feature detector
and description algorithm. Feature detection and matching for images before and after
the behavior was performed in the following order: (1) set a target for detection and
matching analysis in the image, (2) detect target features using each detector and express
each feature as a feature vector through each descriptor, and (3) calculate pairwise distances
for each feature vector in image pairs. Each feature was matched when the distance
between two feature vectors was less than the matching threshold (a matching threshold
of 10 was applied to binary feature vectors, such as MinEigen, ORB, and BRISK, and a
matching threshold of 1 was employed for KAZE and SURF). Moreover, the sum of squared
differences (SSD) method was used to evaluate the feature matching metric for KAZE and
SURF, and the Hamming distance was used for binary features, such as MinEigen, ORB,
and BRISK. The MSAC algorithm with 100,000 iterations and 99% confidence was used to
exclude the outliers and determine the 3 × 3 transformation matrix. The inlier-matched
features had to exist within two pixels of the position of the point projected through the
transformation matrix.

2.3. Feature Performance Evaluation

Various evaluation methods have been suggested to evaluate the performance of
feature detection and matching techniques. We analyzed the repeatability and matching
score, which were widely used for quantitative evaluation based on features. In addition,
the number of inlier features was evaluated to avoid image distortion. Image distortion may
occur when the matching technology is not suitable for the image features and matching
conditions. Even if the extracted and actual feature vectors have high similarity, distortion
may occur if the number of exact matching features is insufficient. Therefore, for successful
feature matching, two solutions are used to reduce the matching error and distortion:
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(1) matching with more precisely matching feature vectors that result in higher similarity
and (2) selecting proper feature detectors and descriptors to obtain highly consistent
transformation matrices with a large number of inlier matching features. However, the
feature vectors of the first solution are inherent properties that do not change unless the
image changes. Therefore, in this study, it was not possible to arbitrarily add more feature
vectors with higher similarity because specific targets were already selected as the facing
of the block. Instead, the second solution could be used by selecting the optimal feature
detector and descriptor to obtain a highly consistent transformation matrix with many
inlier matching features for the given target.

The repeatability for a pair of images is the number of feature correspondences found
between the pair of images divided by a minimum number of features detected in the
image pair [35,36]. In this study, feature matching was performed on the target image
extracted from the initial state and the entire image in which the behavior occurs. Because
the minimum number of features were always detected in the former, the number of
features in the target image at initial was used as the denominator.

Repeatability =
No. of matching features

No. of detected features( in target image at initial)
(1)

The matching score is the average ratio between ground truth correspondences and the
number of detected features in a shared viewpoint region [36–38]. Moreover, repeatability
focuses on finding the same feature in two image pairs. Further, the matching score indicates
how accurate matching is performed by excluding outliers. Matching scores of 1 and
0 indicate that the matched features are perfectly inlier and perfectly outlier, respectively.

Matching score =
No. of inlier matching features

No. of detected features( in target image at initial)
(2)

The number of inlier matching features represents the number of features from which
the outlier matching features have been removed among the matching features. More
accurate matching can be performed when estimating the transformation using more inlier
matching features.

Registration error is used to quantify the error when images (e.g., CT and MRI images)
are matched [39,40]. It is used as a criterion for evaluating the matching performance in
various forms, such as target registration error (TRE), landmark registration error (LRE),
and mean of target registration error (mTRE). All registration errors calculate the error for
each feature in the image plane based on their locations. However, it is difficult to express
the error in a shape change of a block occurring in 3D space. Therefore, in this study, we
proposed ARE to quantify the error of the x-axis (upper and lower edges of block) and
y-axis (left and right edges of the block) during the matching between the images before and
after the behavior. Figure 1 shows an example of the features and vertices for calculating
TRE and ARE. The inlier matching features (in the initial imaget=initial) at the front of
the block were defined as Ai, Bi, Ci, Di, and Ei. Meanwhile, the inlier matching features
(in the imaget=n) at the front of the block were defined as An, Bn, Cn, Dn, and En. The
transformation matrix (TOD) was calculated using the pairs of the inlier matching features
in the image pair, and the transformed target was derived by applying the transformation
matrix to the target in the initial image. The outlier matching features were defined as Fi,
Gi, Hn, and Jn in the images. Ai,n, Bi,n, Ci,n, Di,n, and Ei,n in the image pair are correctly
estimated and matched inlier features by feature matching, and Fi, Gi, Hn, and Jn are the
mismatched outlier features. The TRE calculates the registration error for each matching
point as follows:
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TRE(A) = |TOD Ai − An|
TRE(B) = |TODBi − Bn|
TRE(C) = |TODCi − Cn|
TRE(D) = |TODDi − Dn|
TRE(E) = |TODEi − En|

⎤⎥⎥⎥⎥⎦ (3)

Figure 1. Example of features and vertices to determine TRE and ARE.

Different features may be extracted and matched depending on the type of feature
detector and descriptor. Thus, the features may not be extracted and matched at the desired
location, such as vertices, and it is difficult to quantify the registration error for the block
shape with TRE. Therefore, ARE must be used to calculate the registration error for the
block shape based on locations of vertices. All vertices were manually selected to exactly
represent the block shape. The derivation of the ARE is given by Equations (4) and (5).

AREh1 = |TOD Ai − TODBi|−|An − Bn|=|At − Bt|−|An − Bn|
AREv1 =|At − Ct|−|An − Cn|
AREh2 =|Ct − Dt|−|Cn − Dn|
AREv2 =|Bt − Dt|−|Bn − Dn|

⎤⎥⎥⎦ (4)

AREh =
AREh1 + AREh2

2
, AREv =

AREv1 + AREv2

2
, ARE =

AREh + AREv

2
. (5)

where TOD is the transformation matrix; A, B, C, and D are the target block vertices of top
left, top right, bottom left, and bottom right, respectively; subscripts i, n, and t represent
initial image, subsequent image, and transformed image, respectively, as shown in Figure 1;
Ei and En are the detected features of the block image at the initial condition and after
behavior, respectively; and TOD is estimated through the relationship between imaget=initial
and imaget=n of the target. In addition, the transformed target image is obtained by
applying TOD to the initial target image, as shown in Figure 1. AREh, AREv, and ARE were
calculated by applying Equations (4) and (5) to four vertices in the transformed target and
target after the behavior. AREh1 and AREh2 were calculated at the top and bottom sides of
the block, respectively, and AREv1 and AREv2 were calculated at the left and right sides of
the block, respectively. Based on these values, we quantitatively evaluated the horizontal
and vertical errors of the target block. The conversion registration error of the block
type can be analyzed intuitively. ARE was calculated by comparing the positions where
the transformation matrix was applied and the position of the block after the behavior.
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The location of each vertex was extracted based on the pixel information of the block in
each image.

3. Laboratory Experiment

In this study, two experiments were performed to evaluate the performance of feature
detection and matching based on the behavior of blocks. Figure 2a,b show the single-block
experimental setup for constant displacement on a linear stage and multiblock experiments
on a moving table, respectively. In the experiments, a block with a height of 56.5 mm, a
width of 89 mm, and a length of 190 mm was used to simulate the facing of the RSW.

(a) (b) 

Figure 2. Experimental setups and target parts for single block and multiple blocks. (a) Single-block
experiment on linear stage; (b) Multiblock experiment on steel plate.

The three types of behavior were generated in a single-block experiment, as shown in
Figure 2a. Images were taken and analyzed before and after each displacement occurred.
Subsequently, the matching performance was analyzed for 12 incident angles between
5◦ and 85◦. The analyses were repeated 10 times under identical conditions to quantify
the error. In the multiblock experiment presented in Figure 2b, three types of behaviors
were generated similar to that in the single-block experiment. Images were taken and
analyzed at the incidence angle that indicated excellent performance in the single-block
experiment. To analyze the matching performance of blocks evenly distributed in the image
among 51 blocks, 12 block facings with artificial targets were evaluated as AT (parts 1–12).
In the case of the RSW structure, the features of a specific target could be confused with
those of other blocks in the RSW structure because similar feature vectors are detected
in the same blocks. Therefore, AT could be applied for reliable point identification and
matching in the image matching method [41]. In addition, several studies reported that
specific types of ATs (i.e., metal plate, black circle centered at a cross, roundel, concentric
circles, cross, and speckle patterns) should be used to obtain sufficient intensity variations
when a region of interest (ROI) is not sufficient [25,26,42,43]. However, because an object
with sufficient strength change can be used as an NT without installing a sheet target,
four NTs were assigned in the multiblock experiment to verify the usability, as shown in
Figure 2b. The matching performance of four NTs was evaluated by comparing the 12 ATs.
The best detector and descriptor and the usability of the block as NTs were evaluated when
matching based on the behavior of the SRW structure.

4. Experimental Results and Discussion

4.1. Single-Block Experiment

In the single-block experiment, images were taken and analyzed for 12 incidence
angles distributed from 5◦ to 85◦ to evaluate the performance of five feature matching
methods. Figure 3 shows the repeatability of each method for a single block with an AT.
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MinEigen, ORB, and BRISK have repeatabilities of less than 0.2 to the block facing. KAZE
and SURF have relatively high repeatabilities of 0.288–0.875 based on the results of 10
repetitions. Moreover, KAZE and SURF showed better matching performance compared to
other methods for a single block, although the repeatabilities fluctuated as the incidence
angle changed. The repeatability of three different behaviors was relatively high in the
section with low incidence angles, such as 5–15◦, indicating that it was effective in matching
because high-intensity variations were expressed in the facing of the blocks captured at
low incidence angles.

(a) (b) (c) 

Figure 3. Repeatability of five feature matching methods. (a) Facing displacement; (b) Settlement;
(c) Combined displacement.

The accurately detected and matched features were used to calculate the matching
score, as shown in Figure 4. For all types of displacement, KAZE and SURF have better
matching scores than MinEigen, ORB, and BRISK. We obtained more inlier matching
features on the facing displacement than the settlement and combined displacements
because the facing displacement in the image causes a relatively small shape deformation.
In addition, the average matching scores for the overall incidence angle gradually decrease
in the order of facing, settlement, and combined displacements. The changes in the image
of the facing of the block, settlement, and combined displacements were compared with the
normal state, as shown in Figure 5. The displacement in reality shows the actual behavior
in the target area (dotted line) when the displacements (facing displacement, settlement,
and combined displacement) of the block, which is located in the center of the target
area, were generated. The displacement in the image shows what types of deformation
appear in the image plane when actual behavior occurs from the normal state. Then, we
described the scale transformation in the facing displacement, shearing transformation
in the settlement, and scale and shearing transformation in the combined displacement.
Compared to the shearing transformation, the scale transformation shows relatively better
matching performance because it appears more similar to the existing feature vectors of the
block in a normal state. Furthermore, the feature vector appears differently when both types
of transformations occur together. Therefore, higher repeatability and matching scores
were obtained in the order of facing, settlement, and combined displacement. Both KAZE
and SURF have excellent repeatabilities and matching scores. Furthermore, KAZE shows
less deviation of the matching score at all incidence angles, making it more appropriate
than SURF for the images before and after the behavior of a single block.

Figure 6 presents the number of inlier features with respect to the incidence angle
for five feature matching methods. KAZE detects a remarkably large number of inlier
features compared to other methods. The number of inlier matching features tends to
increase with the number of matching features. However, it does not increase significantly
compared to the increase in the number of detected features when the incidence angle
increases. For better matching performance, more inlier matching features are required,
as described previously. Therefore, images taken and used at incident angles of 50–80◦
were recommended to extract features with sufficient resolution in the registration process.
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There must be at least four 2D inlier matching features to be converted to a 3D projection
transformation geometry (x-, y-, and z-axis with perspective) [37].

(a) (b) (c) 

Figure 4. Matching scores of five feature matching methods. (a) Facing displacement; (b) Settlement;
(c) Combined displacement.

 

Figure 5. Block shape in reality and in the image according to the occurrence of three types of behaviors.

(a) (b) (c) 

Figure 6. Number of inlier matching features of five feature matching methods. (a) Facing displace-
ment; (b) Settlement; (c) Combined displacement.

241



Remote Sens. 2022, 14, 1697

Although all methods performed matching based on four or more matching features,
the matching results of images appeared in various forms, as shown in Figure 7. The KAZE
and SURF methods were successfully transformed, as shown in Figure 7a,b. The MinEigen,
ORB, and BRISK methods were transformed with distortion, even if more than four matched
features were used. Figure 7c–e shows examples of each image transformation. This
problem occurred when the transformation matrix was estimated and matched through
insufficient evidence in pairs of features. The KAZE and SURF methods did not result in
distorted matching cases.

 

(d) (e) (c) 

(a) (b) 

Figure 7. Successful and failed transformed image results. (a) Successful result with KAZE (incidence
angle = 60◦, combined displacement); (b) successful result with SURF (incidence angle = 60◦, com-
bined displacement); (c) failed result with MinEigen (incidence angle = 70◦, facing displacement);
(d) failed result with ORB (incidence angle = 30◦, facing displacement); (e) failed result with BRISK
(incidence angle = 40◦, combined displacement).

For KAZE, SURF, and MinEigen, the x-axis registration error (AREh), y-axis registration
error (AREv), and combined axial registration error (ARE) were evaluated for different
incidence angles and each method in facing displacement (Figure 8), settlement (Figure 9),
and combined displacement (Figure 10). In ORB, features were not detected for several
angles of incidence, and BRISK matched less than four inlier matching features, even though
features were extracted at most incident angles. Therefore, we found that BRISK and ORB
could not perform ARE analysis and were inappropriate for detection and matching based
on the behavior of blocks. Therefore, the results for BRISK and ORB were excluded
from subsequent analysis. Moreover, KAZE has a registration error lower than 2 at an
incident angle of 50–80◦ and has less deviation compared to other methods, as shown in
Figures 8–10. To calculate the ARE, the x-y coordinates of the vertices of the block where the
actual behavior occurred and the block where the behavior is estimated should be extracted
and compared. However, the vertices of the block appear in various shapes as the behavior
occurs. In addition, it is difficult to equally define the vertices with different shapes of
blocks according to the matching methods. Moreover, vertices are not clearly present in
one pixel and are distributed within two or more pixels, owing to the characteristics of an
image composed of pixel units. Therefore, each vertex must be manually selected for the
same behavioral shape, and ARE contains minor errors by default. Even if minor errors
are included, the performance of each method could be relatively compared because the
coordinates of the vertices after the actual behavior occurs were similar in each method.
Table 1 lists the average and standard deviation of AREh, AREv, and ARE estimated in
the behavior of each method. Specifically, KAZE showed better performance than SURF
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and MinEigen, and the matching performance of KAZE was consistently superior at all
incidence angles, as shown in the repeated results. The KAZE method resulted in an ARE
of less than 2 pixels between 50◦ and 80◦ (AREh: 0.3–1.86 pixels, AREv: 0.22–1.69 pixels, and
ARE: 0.4–1.4 pixels). Based on the above results, the optical feature matching method for
three types of behaviors for RSW was determined as KAZE, and the subsequent analyses
were performed.

(a) (b) (c) 

Figure 8. Distribution of AREh, AREv, and ARE with different feature matching methods at facing
displacement. (a) AREh; (b) AREv; (c) ARE.

Table 1. Average and standard deviation of AREh, AREv, and ARE with different feature match-
ing methods.

Method

Facing Displacement Settlement Combined Displacement

Average
Standard
Deviation

Average
Standard
Deviation

Average
Standard
Deviation

AREh

KAZE 0.87 0.31 1.14 0.57 0.80 0.43

SURF 2.19 1.59 2.16 2.13 3.35 4.21

MinEigen 24.45 42.26 71.77 226.51 9.34 17.52

AREv

KAZE 0.89 0.51 1.17 0.66 1.36 0.88

SURF 2.71 2.72 2.35 3.13 4.55 8.35

MinEigen 24.92 50.25 67.76 195.74 11.59 22.77

ARE

KAZE 0.88 0.28 1.15 0.40 1.08 0.52

SURF 2.45 2.05 2.25 2.60 3.95 6.17

MinEigen 24.68 42.76 69.76 210.89 10.47 19.59

(a) (b) (c) 

Figure 9. Distribution of AREh, AREv, and ARE with different feature matching methods at settlement.
(a) AREh; (b) AREv; (c) ARE.
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(a) (b) (c) 

Figure 10. Distribution of AREh, AREv, and ARE with different feature matching methods at com-
bined displacement. (a) AREh; (b) AREv; (c) ARE.

4.2. Multiblock Experiment

Figure 11 presents an example of images of the same size (800 × 640 pixels) for the
multiblock experiment and graffiti images taken from well-known datasets from the Univer-
sity of Oxford [44]. In addition, 3138 and 8638 features were extracted from the laboratory
experiment images and graffiti images, respectively. In the laboratory experiment images,
relatively fewer features were detected because the facing of blocks was smooth and simple.
Specific patterns (edges, corners, and blobs) were not included in the multiblock structure
in which blocks with low-feature-intensity variation were repeatedly arranged. Therefore,
repeated feature vectors with low-intensity variations may be disadvantageous in the image
matching procedure. Therefore, the KAZE method, which was verified as the technique
with the best performance in the single-block experiment, was applied and validated in
this experiment. We analyzed how the aforementioned phenomenon affected the feature
matching procedure and whether it exhibited excellent performance for RSW structures
simulated with multiple blocks.

(a) (b) 

Figure 11. Detected features with different types of images. (a) Laboratory experiment; (b) Graffiti.

An experiment was performed to verify the matching performance of KAZE for a
multiblock structure, where same-sized blocks, including 12 ATs and 4 NTs, were repeatedly
arranged, as shown in Figure 2b. The multiblock experiment was analyzed by taking images
at an incident angle of 60◦ (targeting the center of the multiple blocks) included in the range
of 50–80◦ with the highest resolution in the single-block experiment. Figure 12 shows the
repeatability, matching score, and number of inlier matching features in the multiblock
experiment. The results of ATs showed that the repeatability, matching score, and inlier
matching features were 0.36–0.83, 0.15–0.47, and 90–440, respectively. This was a sufficient
result for high-resolution feature matching compared with the result of the single-block
experiment. Moreover, relatively high feature matching performance was detected in
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blocks collinear in the gravitational direction of the optical axis of the camera under all
types of displacement (i.e., parts 2, 5, 8, and 11). Furthermore, the resolution decreased
slightly as the angle decreased or increased. In particular, parts 3, 6, 9, and 12 exhibited low
inlier matching performances with incidence angles lower than 60◦. However, these parts
also had 90–218 inlier matching features, which is sufficient for 3D projected geometry
transformations. Based on the results of NTs, the repeatability, matching score, and inlier
matching features were 0.38–0.65, 0.22–0.43, and 126–327, respectively, with a similar
distribution to that reported for ATs at similar incidence angles. Furthermore, there was
an adequate number of inlier matching features for 3D transformation. This shows a
sufficient potential for NTs to replace ATs when analyzed using the KAZE method as a
feature matching technique in RSW structures.

(a) 

(b) 

(c) 

Figure 12. Comparison metrics in multiblock experiment with KAZE method (incidence angle = 60◦).
(a) Repeatability; (b) Matching score; (c) The number of inlier matching features.

Table 2 lists the minimum and maximum values for the feature performance evaluation
measured from the single- and multiblock experiments, including ATs and NTs. Each
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value of the multiblock experiment was distributed similarly to the results of the single-
block experiment. Therefore, the repetitive arrangement of blocks in the image is not a
disadvantage if the ROI region is properly set in the process of extracting and matching
features. Further, light casts a shadow on the block boundaries when the blocks are
repeatedly arranged, allowing for more feature extraction than the edges of the single
block. This phenomenon allows for more successful feature matching in the image after
the behavior occurs. Figure 13 reveals the feature extraction results used as targets in
single- and multiblock experiments. The single-block features were not extracted at the
left edge of the facing, owing to the low color contrast, as shown in Figure 13a. However,
the features of continuous blocks in the RSW structure were extracted from all corners
by the color contrast between block and shadow, as shown in Figure 13b. As a result,
570 and 789 features were extracted for a single and multiple blocks, respectively, showing
a significant difference. The ratio of inlier matching features and total extracted features was
35.09% (200/570) for the single block and 49.68% (392/789) for multiple blocks, indicating
the relatively higher resolution of the matching performance of the latter compared to that
of the former. Therefore, multiple repeatedly arranged blocks constituted an advantage
rather than a disadvantage in the feature detection and matching procedure. In the multi-
block experiment, multiple blocks were variously distributed in the image. Therefore, size
and feature vector characteristics appeared differently depending on the location of the
target. Therefore the performances of feature matching were slightly different.

Table 2. Minimum and maximum values for the feature performance evaluation measured from the
single- and multiblock experiments.

Comparison Matrix

Single-Block Experiment
(at Incidence Angle = 50–80◦)

Multiblock Experiment

Min. Max. Min. Max.

Repeatability 0.3247 0.4965 0.3599 0.8289

Matching score 0.2131 0.3654 0.1449 0.4715

Number of inlier
matching features 139.9 208.4 90 440

 

(a) (b) 

Figure 13. Examples of extracting features at facing displacement. (a) Single block (pixel size:
350 × 268); (b) Block (part 2) in multiple blocks (pixel size: 330 × 298).

Figure 14 shows the distributions of AREh, AREv, and ARE for each displacement
type of RSW structure. The distributions of AREh, AREv, and ARE for ATs in each behavior
type were approximately 0.18–1.11, 0.12–1.32, and 0.15–1.27 pixels, respectively, for fac-
ing displacement; 0.10–1.55, 0.40–1.70, and 0.32–1.27 pixels, respectively, for settlement;
and 0.39–1.84, 0.16–1.68, and 0.54–1.29 pixels, respectively, for combined displacement.
Moreover, the distributions of AREh, AREv, and ARE for NTs in each behavior type were
0.38–1.58, 0.29–1.31, and 0.49–1.27 pixels, respectively, for facing displacement; 0.58–1.03,
0.40–1.70, and 0.49–1.16 pixels, respectively, for settlement; and 0.78–1.56, 0.31–1.01, and
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0.54–1.29 pixels, respectively, for combined displacement. The averages of AREh, AREv, and
ARE were 0.86, 0.74, and 0.80 for the ATs and 0.92, 0.83, and 0.87, respectively, for the NTs.
Although the results of NTs were slightly higher, they were similar to those of single-block
experiments at incidence angles between 50◦ and 80◦ (0.99, 0.88, and 0.94). In addition,
maximum AREh, AREv and ARE values were obtained in AT (1.84), NT (1.68), and AT
(1.29), respectively. The behavior of the entire section in the image could be analyzed at ATs
and NTs by using KAZE; these results are compared in Table 3. The repeatability, matching
score, number of inlier matching features, and ARE between ATs and NTs show similar
performance. Therefore, we confirmed that NTs are a suitable target for feature matching
and behavior analysis based on the feature performance evaluation, even if it does not
attach a sheet target to the center of the block like AT. In addition, NTs can overcome the
limitation of ATs that a specific target must be manually installed and detected.

(a) 

(b) 

(c) 

Figure 14. Distribution of AREh, AREv, and ARE for three types of behaviors. (a) Facing displacement;
(b) Settelemt; (c) Combined displacement.
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Table 3. Average values for feature performance evaluation of KAZE method with ATs and NTs.

Average of All
Displacement Types

Repeatability Matching Score
No. of Inlier

Matching Points
ARE

AT
(Parts 1–12) 0.53 0.28 250 0.8

NT
(Parts 13–16) 0.48 0.31 203 0.87

5. Conclusions

Experiments were conducted to find the optimal feature matching method (detector
and descriptor) to detect behaviors of blocks. Two laboratory experiments (i.e., single- and
multiblock experiments) were analyzed. In the single-block experiment, the best feature
matching method was selected by analyzing the values for feature performance evaluation.
In contrast, in the multiblock experiment, the applicability and performance of the primarily
simplified feature matching method were evaluated. Subsequently, the feature matching
performance of NTs and ATs were compared to confirm the applicability of NTs for RSW
structures. The main findings of this study are as follows:

1. Feature matching technology was applied to detect and match target changes in
image pairs according to block behavior. Both the KAZE and SURF methods showed
excellent performance in repeatability and matching score, which were based on the
number of features. In particular, the KAZE method showed a remarkably large
number of inlier matching features and obtained stable results at all incidence angles
compared to other methods. In addition, ARE based on the position of the vertices of
the block in the image pair (original image, transformed image) was the best in KAZE.
Therefore, the KAZE method was selected as the best feature matching method, owing
to its great ability (among the compared methods) to detect and match image changes
based on the behavior of the block type.

2. The feature matching performance of the KAZE method was evaluated according
to the behavior of multiple blocks where blocks were consecutively arranged. The
repeatability, matching score, number of inlier matching features, and ARE showed
excellent performance. All these results are similar to the single-block experiment
results listed in Table 2. The KAZE results show that the matching performance of
NTs (parts 13–16) was similar to that of ATs (parts 1–12). Therefore, the KAZE method
could be applied to perform feature matching when evaluating the behavior of blocks
in RSWs without installing ATs.

The ability to accurately match the 3D behavior of multiple blocks can be used as a ba-
sic step to quantitatively analyze the behavior of RSW structures in three-dimensional space.
Therefore, if the KAZE technique is applied to RSWs, it can be used to accurately analyze
the behavior of the retaining wall through high-accuracy behavior matching performance.
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Abstract: The existence of multiplicative noise in synthetic aperture radar (SAR) images makes SAR
segmentation by fuzzy c-means (FCM) a challenging task. To cope with speckle noise, we first propose
an unsupervised FCM with embedding log-transformed Bayesian non-local spatial information
(LBNL_FCM). This non-local information is measured by a modified Bayesian similarity metric which
is derived by applying the log-transformed SAR distribution to Bayesian theory. After, we construct
the similarity metric of patches as the continued product of corresponding pixel similarity measured
by generalized likelihood ratio (GLR) to avoid the undesirable characteristics of log-transformed
Bayesian similarity metric. An alternative unsupervised FCM framework named GLR_FCM is then
proposed. In both frameworks, an adaptive factor based on the local intensity entropy is employed
to balance the original and non-local spatial information. Additionally, the membership degree
smoothing and the majority voting idea are integrated as supplementary local information to optimize
segmentation. Concerning experiments on simulated SAR images, both frameworks can achieve
segmentation accuracy of over 97%. On real SAR images, both unsupervised FCM segmentation
frameworks work well on SAR homogeneous segmentation in terms of region consistency and
edge preservation.

Keywords: image segmentation; synthetic aperture radar (SAR); fuzzy c-means (FCM); speckle noise;
non-local means

1. Introduction

Segmentation is a fundamental problem in SAR image analysis and applications.
The primary purpose of segmentation is to segment the image into non-intersecting and
consistent regions that are homogeneous [1]. Due to coherent speckle noise, which can
be modeled as a powerful multiplicative noise, SAR image segmentation is recognized
as a complex task. So far, many SAR image segmentation methods have been proposed
to cope with the effect of speckle noise on image segmentation, such as threshold-based
method [2], edge-based methods [3], region-based methods [4–9], cluster methods [10–13],
Markov random field methods [3,14], Level set methods [15], graph-based methods [16,17],
and deep learning based methods [18–21]. Among these methods, clustering is a commonly
used method in segmentation tasks due to its effectiveness and stability. The fuzzy s-means
(FCM) [22] is a classical clustering algorithm and has been extensively used to segment
images. Unlike the hard clustering strategy, FCM is a soft clustering algorithm that allocates
membership degrees to every category for each pixel. The FCM can achieve a good result
for noise-free images. However, the standard FCM is noise-sensitive and lacks robustness
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without considering any spatial information. Thus, many modified algorithms have been
proposed to enhance the effectiveness and robustness of standard FCM against noise.

Ref. Ahmed et al. [23] incorporated the spatial neighborhood term into the objective
function of FCM, named BCFCM. BCFCM can modify the label of the center pixel by
neighborhood weight distance and enhance the robustness to noise. However, it is time
consuming. To reduce the complexity, Ref. Chen and Zhang [24] replaced the spatial
neighborhood term with a mean-filtered and median-filtered image, respectively, called
FCM_S1 and FCM_S2. Because of the availability of these two images in advance, the time
complexity is greatly reduced. Besides, kernel methods were embedded into FCM_S1 and
FCM_S2 to explore the non-Euclidean structure of data. Then two kernelized versions,
KFCM_S1 and KFCM_S2, were derived. Ref. Szilagyi et al. [25] proposed the enhanced
FCM, named EnFCM, which executed clustering on a gray level histogram rather than
pixels to reduce the computation cost considerably. Afterwards, the fast generalized FCM
(FGFCM) was proposed by Cai et al. [26]. In FGFCM, a new factor Sij was used to measure
the local (both spatial and gray) similarity instead of α in EnFCM. The original image and
its local spatial and gray level neighborhood are used to construct a non-linear weighted
sum image, and then the clustering process is executed on the gray level histogram of the
summed image. Thus, the computational load is very light. It is noteworthy that in all
the aforementioned algorithms, the parameters for balancing noise immunity and edge
preservation are needed. To avoid the parameter selection, Ref. Krinidis and Chatzis [27]
introduced a new factor, Gki, incorporating local spatial and gray information into the
objective function in a fuzzy way and proposed a new FCM named FLICM. This algorithm
completely avoids the selection of parameters and is relatively independent of the type
of noise.

However, when an image is contaminated with powerful noise, the local information
may also be contaminated and unreliable. Actually, for a pixel, plenty of pixels with a
similar neighborhood structural configuration exist on the image [28]. Exploring a larger
space and incorporating nonlocal spatial information is necessary. Ref. Wang et al. [29]
proposed a modified FCM with incorporating both local and non-local spatial information.
Ref. Zhu et al. [30] introduced a novel membership constraint and a new objective function
was constructed, named GIFP_FCM. Afterwards, Ref. Zhao et al. [31] incorporated non-local
information into the objective function of the standard FCM and GIFP_FCM, respectively, and
proposed two improved FCMs: An FCM with non-local spatial information (FCM_NLS) [31]
and a novel FCM with a non-local adaptive spatial constraint term (FCM_NLASC) [32].

While the improved FCM listed above works well on simulated, nature, and MR
images, none of them consider the statistical characteristics of SAR images. Consequently,
the above-mentioned methods cannot assure a segmentation result on SAR images. To
solve this problem, Ref. Feng et al. [33] proposed a robust non-local FCM with edge
preservation (NLEP_FCM). In this algorithm, a modified ratio distance to measure patch
similarity for SAR images was defined, and a sum image was constructed. The edge was
rectified on the summed image. Ref. Ji and Wang [34] defined an adaptive binary weight
NL-means and adopted an adaptive filter degree parameter to balance noise removed and
detail preservation. Besides, a fuzzy between-cluster variation term was embedded into
the objective function. Eventually, a new FCM named NS_FCM was proposed. However,
the NS_FCM applied Euclidean distance, which is not suitable for SAR. Ref. Wan et al. [35]
directly considered the statistical distribution of SAR image and derived a patch-similarity
metric for SAR image based on Bayes theory. However, the assumption of additive Gaussian
noise in the Bayes equation is not considered. Therefore, it is still a challenge to segment
SAR images effectively.

In this paper, we incorporate the non-local spatial information into the objective
function of FCM and propose two improved FCMs for segmenting SAR images effectively.
In [36], an implicit assumption that the NL-means can emerge from the Bayesian approach
is that the image is affected by additive Gaussian noise. Hence, we first apply the
logarithmic transformation to convert the SAR multiplicative model into an additive
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model and then apply the Bayesian formula to derive a modified patch similarity metric.
We then incorporate the non-local spatial information obtained by this new similarity
metric into FCM and propose a more robust FCM named LBNL_FCM. Afterward, this
Bayesian theory-based similarity metric is analyzed. Three undesirable properties that are
incompatible with human intuition are determined, even if LBNL_FCM yields a satisfactory
regional consistency. In order to avoid these undesirable distance characteristics, a statistical
test method called generalized likelihood ratio (GLR) is introduced. The generalized
likelihood ratio was applied to SAR images in the study of Deledalle et al. [37] and was
proven to possess good distance properties. However, unlike the logarithm summation
form in [37], we construct the patch similarity as the continued products of the similarity of
corresponding pixels by combining the SAR statistical distribution. This continued product
GLR-based similarity metric is used to generate an additional image that is insensitive to
speckle noise. The additional auxiliary image is then added into the objective function of
FCM as the non-local spatial information term and we propose GLR_FCM. Besides, an
adaptive factor based on local intensity entropy is utilized to balance the original image
and the nonlocal spatial information. Eventually, a simple membership degree smoothing
and majority voting are adopted in LBNL_FCM and GLR_FCM to compensate for local
spatial information. The basic idea is that the membership degree of a pixel should be
influenced by neighborhood pixels. Experiments will demonstrate that LBNL_FCM can
achieve a better result in region consistency than previous algorithms. GLR_FCM avoids
the decay parameter selection and achieves a good balance between region consistency and
edge preservation.

The main contributions are as follows:

(1) A robust unsupervised FCM framework incorporating adaptive Bayesian non-local
spatial information is proposed. This non-local spatial information is measured by the
log-transformed Bayesian metric which is induced by applying the log-transformed
SAR distribution into the Bayesian theory.

(2) To avoid undesirable properties of the log-transformed Bayesian metric, we construct
the similarity between patches as the continued product of corresponding pixel
similarity measured by the generalized likelihood ratio. An alternative unsupervised
FCM framework is then proposed, named GLR_FCM.

(3) An adaptive factor is employed to balance the original and non-local spatial information.
Besides, a sample membership degree smoothing is adopted to provide the local
spatial information iteratively.

The rest of this paper is organized as follows. In Section 2, the relevant theories are
described in detail. Section 3 presents the experimental results and parameters analysis. In
Section 4, the qualitative evaluations of results are discussed. The conclusion is provided in
Section 5.

2. Materials and Methods

2.1. Theoretical Background
2.1.1. The Standard FCM

Fuzzy C-Means Clustering is based on fuzzy set theory, proposed by Bezdek [38]. The
standard FCM segments the image X into c clusters by iteratively minimizing the objective
function. The objective function of the FCM algorithm is

min Jm(U, V) =
c

∑
k=1

N

∑
i=1

um
ki‖xi − vk‖2 (1)

where X = {x1, x2, ..., xN} denotes an image with N pixels, m is the fuzzy weighing
exponent, usually set as 2, c is the number of clusters, and vk is the kth cluster center. um

ki
represents the membership degree of the ith pixel belonging to the kth cluster, satisfying
uki ∈ [0, 1] and ∑c

k=1 uki = 1.

253



Remote Sens. 2022, 14, 1621

We can minimize Equation (1) by the Lagrange multiplier method. The uki and vk can
be update by

uki =
1

∑c
j=1(

‖xi−vk‖2

‖xi−vj‖2 )
1

m−1

(2)

vk =
∑N

i=1 um
ki xi

∑N
i=1 um

ki

(3)

When the objective function reaches the minimum, we can convert the membership
degree U into a segmentation result by assigning each pixel a class possessing the largest
membership degree.

2.1.2. Nonlocal Means Method

Many algorithms have demonstrated the effectiveness of local information for the
segmentation of low-noise images. However, the local information may be disturbed and
unreliable when the noise is severe. In addition to local information, for a particular pixel,
many pixels with a similar neighborhood configuration [28] exist over the entire image.
We call this nonlocal spatial information. More specifically, for the ith pixel in image X, its
non-local spatial information x̃i can be calculated by the following formula

x̃i = ∑
j∈Wr

i

wijxj (4)

where Wr
i denotes the non-local search window of radius r centered at the ith pixel, wij(j ∈

Wr
i ) represents the normalized weight coefficient depending on the similarity of patches

centered at the ith and jth pixel, i.e., vs(Ni) and vs(Nj). The similarity wij can be defined as

wij =
1
Zi

exp(−
∥∥vs(Ni)− vs(Nj)

∥∥2
2,σ

h2 ) (5)

where h controls the smoothing degree, Zi = ∑j∈Wr
i

exp(−‖vs(Ni)−vs(Nj)‖2
2,σ

h2 ) is the normalized
constant, v(Ni) = {xk, k ∈ Ni} indicates the vectorized patch at pixel i, Ni is the local
neighborhood with size s × s at pixel i, and

∥∥vs(Ni)− vs(Nj)
∥∥2

2,σ denotes the Euclidean
distance between patches vs(Ni) and vs(Nj).

2.1.3. Nonlocal Spatial Information Based on Bayesian Approach

Kervrann et al. [36] claims that the NL-means filter can also emerges from the Bayesian
formulation and the Bayesian estimator ûs(Ni) of vectorized patch centered at the ith pixel
can be written as

ûs(Ni) ≈=
∑j∈Wr

i
vs(Nj)p(vs(Ni)|vs(Nj))

∑j∈Wr
i

p(vs(Ni)|vs(Nj))
(6)

where Wr
i denotes the non-local spatial information search window centered at pixel

i with size r × r, vs(Ni) is the observed vectorized patch centered at pixel i, the set
{vs(N1), ..., vs(Nr2)} is the observed patch samples in Wr

i . Once we know p(vs(Ni)|vs(Nj)),
we can calculate the Bayesian estimator ûs(Ni).

In [36], a usual additive noise model is considered, i.e., v(xi) = u(xi) + n(xi), v(xi) is
the grayscale value of pixel i in the observed image, u(xi) is the grayscale value of pixel i
in the noise-free image, n(xi) is the additive Gaussian white noise. The likelihood can be
factorized as

p(vs(Ni)|vs(Nj)) =
s2

∏
k=1

p((xk
i )|(xk

j )) (7)
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Due to the additive Gaussian noise model being considered, the vs(Ni)|vs(Nj) follows
a multivariate normal distribution. Thus, the Bayesian estimator ûs(Ni) is analogous to
NL-means (Equation (4)) in form, and we can get

p(vs(Ni)|vs(Nj)) =
s2

∏
k=1

p((xk
i )|(xk

j )) ∝ exp

(
−
∥∥vs(Ni)− vs(Nj)

∥∥2

h2

)
(8)

2.2. The Modified FCM Based on Log-Transformed Bayesian Nonlocal Spatial Information

The initial NL-means can emerge from the Bayesian approach on the premise that the
image is disturbed by additive Gaussian noise. Different from the work in Wan et al. [35]
that directly considers Nakagami–Rayleigh distribution, we first utilize the logarithmic
transformation to convert the multiplicative speckle noise model into the additive model.
Then the Bayesian approach (Equation (8)) is used on log-transformed distribution to
derive a new similarity metric for SAR images. We note that this is a reasonable treatment.
Actually, Ref. Xie et al. [39] has proved that, for the amplitude concerning the SAR image,
the PDF of the log-transformed distribution is statistically very close to the Gaussian PDF.
Therefore, the image analysis methods based on the Gaussian noise image can work equally
well on the log-transformed amplitude SAR image.

Considering the multiplicative noise model, which can be described as

X = RX ∗ nX (9)

where X represents the observed image, RX is the noise-free amplitude image and is
equal to R

1
2 , R is the radar cross section, nX is the speckle noise. Under the assumption

of fully developed speckle [40], the PDF of L-look amplitude of SAR images obeys the
Nakagami–Rayleigh distribution [41], represented as

p(X|R) = 2LL

Γ(L)RL X2L−1 exp(− LX2

R
) (10)

where Γ(·) is the Gamma function; then the log transformation converts Equation (10) into

X̄ = R̄X + n̄X (11)

where X̄ = ln X, R̄X = ln RX, n̄X = ln nX. Since the logarithmic transformation is
monotonic, the PDF of X̄ is

pX̄(X̄|R) = 2
Γ(L)

(
L
R

)L
exp(− L exp(2X̄)

R
) exp(2LX̄) (12)

Then, applying Equation (12) to the Bayesian formulation, we obtain
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P(vs(Ni)|vs(Nj)) =
s2

∏
k=1

p(xk
i |xk

j )

=
s2

∏
k=1

2
Γ(L)

(
L
xk

j
)L exp(− Le2xk

i

xk
j

) exp(2Lxk
i )

=

(
2

Γ(L)

)s2

LLs2
s2

∏
k=1

exp

(
−L ln xk

j −
L exp(2xk

i )

xk
j

+ 2Lxk
j

)

=

(
2

Γ(L)

)s2

LLs2
exp

(
−L

s2

∑
k=1

ln xk
j +

exp(2xk
i )

xk
j

− 2xk
i

)

∝ exp

[
−L

s2

∑
k=1

(
ln xk

j +
exp(2xk

i )

xk
j

− 2xk
i

)]

∝ exp

⎡⎢⎢⎣−∑s2

k=1

(
ln xk

j +
exp(2xk

i )

xk
j

− 2xk
i

)
h2

⎤⎥⎥⎦

(13)

where s2 denotes the number of pixels in patch vs(Ni) and vs(Nj), xk
i is the kth pixel in the

patch centered at the ith pixel, h2 = 1
L is the decay parameter of the filter. Then, a new

patch similarity metric based on the Bayesian approach and log-transformed statistical
distribution of SAR is derived. So far,

∥∥vs(Ni)− vs(Nj)
∥∥2 in Equation (5) can be replaced by

D̄s(vs(Ni), vs(Nj)) =
s2

∑
k=1

ln xk
j +

exp(2xk
i )

xk
j

− 2xk
i (14)

Hence, the weight wij between patches vs(Ni) and vs(Nj) can be calculated by

wij =
1
Zi

exp

(
D̄s(vs(Ni), vs(Nj))

h2

)
(15)

Equation (15) can be applied to Equation (4). Thus an additional auxiliary image
Ĩ, which is speckle noise insensitive, can be obtained. With Ĩ as the non-local spatial
information term, incorporating into the standard FCM, a new robust FCM based on
the log-transformed Bayesian non-local information (LBNL_FCM) can be obtained. The
objective function is as follows

min Jm(U, V) =
c

∑
k=1

N

∑
i=1

um
ki ||xi − vk||2 +

c

∑
k=1

N

∑
i=1

ηium
ki ||x̃i − vk||2

s.t.
c

∑
k=1

uki = 1, 0 ≤ uki ≤ 1, 0 ≤
N

∑
i=1

uki ≤ N

(16)

Minimizing Equation (16) by using the Lagrange multiplier method, the membership
degree uki and cluster vk can be updated by

uki =
1

∑c
j=1(

‖xi−vk‖2+ηi‖x̃i−vk‖2

‖xi−vj‖2
+ηi‖x̃i−vj‖2 )

1
m−1

(17)

vk =
∑N

i=1
(
um

ki xi + ηium
ki x̃i

)
∑N

i=1
(
um

ki + ηium
ki
) (18)
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2.3. Some Problems on Patch Similarity Metric by Bayesian Theory

In the last section, we made the amplitude SAR image log transformed and combined
the Bayesian equation to derive a new similarity metric. This new metric for patch
satisfies the assumptions in [36] and the non-local spatial information can be appropriately
measured. However, there are still three problems that bother us.

Problem 1: In Equation (15), a decay parameter h is always needed to calculate the
weights of the non-local spatial information. In most cases, it is difficult to obtain a
satisfactory value.

Problem 2: The logarithmic transformation is homoerotic transformation (nonlinear
transformation), which converts multiplier noise into additive noise while reducing the
contrast of the SAR image. The original statistical distribution is changed.

Problem 3: In experiments, the LBNL_FCM effectively suppresses speckle noise and
achieves the best region consistency. However, this similarity metric has three distance
characteristics that do not match the characteristics one would intuitively expect. Here, we
list three properties that Deledalle [37] used for the assessment of a similarity metric.

Property 1 (Symmetry). A good similarity metric should be invariant to changes in position.

�(z1, z2) = �(z2, z1) f or ∀z1, z2 (19)

Property 2 (Self-Similarity Maximum). A good similarity measurement should have the property
of being the maximum similarity between itself.

�(z1, z1) >= �(z1, z2) f or ∀z1, z2 (20)

Property 3 (Self-Similarity Equal). For a good similarity measurement, the maximum similarity
should not depend on the variation of variables .

�(z1, z1) = �(z2, z2) f or ∀z1, z2 (21)

To further illustrate, we consider x = 1, 2, 3, 4, 5 and y = 1, 2, 3, 4, 5. We set xi,k = x
and xj,k = y. Then we put xi,k and xj,k into Equation (14) and get the similarity matrix.

Figure 1 shows the similarity matrix. From the green square we can see Property 1
is not satisfied; from the orange square we can see Property 2 is not be satisfied; from the
purple square we can see Property 3 is not be satisfied. The problems discussed above
encourage us to find other better similarity metrics, even if the Bayesian similarity metric is
good at keeping region consistency in segmentation. Fortunately, Deledalle [37] proposed
that the similarity of patches can be measured by statistical test. He proved the generalized
likelihood ratio satisfied properties used in evaluating the similarity metric.

Figure 1. The similarity matrix between x and y. The elements marked green, orange and purple are
sampled to illustrate the unsatisfied properties of the log-transformed Bayesian distance.
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2.4. The New FCM Based on Generalized Likelihood Ratio

Generalized likelihood testing is defined as the ratio between the maximum value of
the likelihood function with constraints to the maximum value of the likelihood function
without constraints. The basic idea is that, if the parameters imposed on the model are
valid, adding such a constraint should not lead to a significant decrease in the maximum
value of the likelihood function. Considering Nakagami–Rayleigh distribution, for a pair
of patches (vs(Ni), vs(Nj)) on a SAR image, we can define its likelihood ratio (LR)

ψLR(vs(Ni), vs(Nj)) =
p(vs(Ni), vs(Nj), Ri = R0, Rj = R0;κ0)

p(vs(Ni), vs(Nj), Ri = R1, Rj = R2;κ1)
(22)

where κ0 and κ1 represent two hypotheses, defined as

κ0 : Ri = Rj = R0(Null Hypothesis)

κ1 : Ri = R1; Rj = R2; R1 �= R2(Alternative Hypothesis)
(23)

vs(Ni) is the patch centered at pixel i, and vs(Nj) denotes the non-local patch centered
at pixel j. Ri and Rj as the hypothesis parameters denote the noise-free backscatter value
of center pixel i. Hypothesis κ0 means a parametric constraint on statistical distribution
that the two patches (vs(Ni), vs(Nj)) come from the same distribution. Thus, they have the
same backscatter value, formalized as Ri = Rj = R0. Hypothesis κ1 means no constraint
on the statistical distribution of vs(Ni) and vs(Nj), formalized as Ri �= Rj. For the sake of
mathematical simplicity, we choose parameters in this way

R0 = max
Θ

p(vs(Ni), vs(Nj), Ri = Rj = R0;κ0)

R1 or R2 = max
R1,R2∈Θ

p(zs(Ni), zs(Nj), Ri = R1, Rj = R2;κ1)
(24)

Thus, Equation (22) becomes the generalized likelihood ratio (GLR), defined as

ψGLR(vs(Ni), vs(Nj)) =
supR0

p(vs(Ni), vs(Nj), Ri = Rj = R0)

supR1,R2
p(vs(Ni), vs(Nj), Ri = R1, Rj = R2, R1 �= R2)

(25)

where 0 < ψGLR(vs(Ni), vs(Nj)) < 1; the larger the ψGLR(zs(Ni), zs(Nj)), the larger the
probability that hypothesis κ0 holds, and the more inclined to accept κ0. This also means
that there is a higher probability of two patches vs(Ni) and vs(Nj) coming from the same
distribution. Thus, we can use GLR to measure the similarity between two patches.

Unlike the Deledalle [37] approach, we construct the patch similarity as the continued
product of corresponding pixel similarity. Next, we will give a detailed derivation.

Now, we assume vs(Ni) and vs(Nj) are irrelevant, and the corresponding pixel
within the patch is independent. Thus, the similarity between vs(Ni) and vs(Ni) can
be calculated by

ψGLR(vs(Ni), vs(Nj)) =
N

∏
k=1

ξGLR(xk
i , xk

j ) (26)

where N = s2 is the number of pixels in the patch, and ξGLR(xk
i , xk

j ) is defined as

ξGLR(xk
i , xk

j ) =
supR0

p(xk
i , xk

j ; R1 = R2 = R0)

supR1,R2
p(xk

i , xk
j ; Ri = R1, Rj = R2, R1 �= R2)

=
supR0

[p(xk
i , xk

j ; R1 = R2 = R0)]

[supR1
p(xk

i ; Ri = R1)] ∗ [supR2
p(xk

j ; Rj = R2)]

(27)
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xk
i and xk

j denote the kth pixel in patch; R0, R1, R2 denote noise-free backscatter value.

To obtain the maximum likelihood value supR0
p(xk

i , xk
j , Ri = Rj = R0), we need get

joint probability

p(xk
i , xk

j ; Ri = Rj = R0) = p(xk
i ; R0) ∗ p(xk

j ; R0)

=

(
2

Γ(L)

)2
∗
(

L
R0

)2L
∗
(

xk
i xk

j

)2L−1 ∗ exp
{
− L

R0

[(
xk

i

)2
+
(

xk
j

)2
]} (28)

To obtain the maximum likelihood estimator R̂0 of R0, we construct the maximum
likelihood function

L(R0) =
M

∏
m=1

p(xkm
i ; R0) ∗ p(xkm

j ; R0)

=
M

∏
m=1

(
2

Γ(L)

)2
∗
(

L
R0

)2L
∗
(

xkm
i xkm

j

)2L−1

∗ exp
{
− L

R0

[(
xkm

i

)2
+
(

xkm
j

)2
]}

(29)

Then, making the logarithm on L(R0) and differentiating

∂lnL(R0)

∂R0
=

∂

∂R0

{ M

∑
m=1

ln
4L2L

Γ2(L)
− 2L ln R0 + (2L − 1) ln

(
xkm

i zkm
j

)
− L

R0

[(
xkm

i

)2
+
(

xkm
j

)2
]}

= −2LM
R0

+
L

R2
0

M

∑
m=1

[(
xkm

i

)2
+
(

xkm
j

)2
] (30)

Let ∂lnL(R0)
∂R0

= 0; then, we get

R̂0 =
1

2M

M

∑
m=1

[(
xkm

i

)2
+
(

xkm
j

)2
]

(31)

considering that there is only one available observation for each pixel in the patch, that is
to say M = 1; thus, we can get

R̂0 =
1
2

[(
xk

i

)2
+
(

xk
j

)2
]

(32)

With the same derivation process as above, we can obtain the maximum likelihood
estimator R̂1 and R̂2 for R1 and R2

R̂1 =
(

xk
i

)2

R̂2 =
(

xk
j

)2
(33)

Now, we replace R0, R1, R2 with maximum likelihood estimators R̂0, R̂1, and R̂2 in
Equation (27); then, we get the similarity between corresponding pixels

ξGLR(xk
i , xk

j ) =
supR0

p(xk
i , xk

j ; R1 = R2 = R0)

supR1,R2
p(xk

i , xk
j ; Ri = R1, Rj = R2, R1 �= R2)

=

4L2L

Γ(L) ∗
{

1
2

[(
xk

i

)2
+
(

xk
j

)2
]}−2L

∗
(

xk
i xk

j

)2L−1 ∗ exp(−2L){
2LL

Γ(L) (xk
i )

−2L ∗ (xk
i )

2L−1 ∗ exp(−L)
}
∗
{

2LL

Γ(L) (xk
j )

−2L ∗ (xk
j )

2L−1 ∗ exp(−L)
}

(34)
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After simplifying Equation (34), we get

ξGLR(xk
i , xk

j ) =

[
2xk

i xk
j

(xk
i )

2 + (xk
j )

2

]2L

(35)

Equation (35) can measure the similarity between corresponding pixels within two
patches. Figure 2a shows the similarity ξGLR(xk

i , xk
j ), where xk

i = [1, 2, 3, 4, 5] and xk
j =

[1, 2, 3, 4, 5]. From Figure 2a we can see that the Properties 1 and 3 mentioned earlier can be
satisfied. Figure 2b is the change curve of similarity ξGLR(xk

i , xk
j ) when xk

i is fixed at 1 and

xk
j = [1, 2, ..., 10]. The maximum ξGLR(xk

i , xk
j ) can be obtained when xk

i = xk
j = 1. Besides,

ξGLR(xk
i , xk

j ) gradually decreases with increasing distance. Thus, Property 2 can be proved.

(a) (b)

Figure 2. The similarity value ξGLR(xk
i , xk

j ) based on GLR. (a) The X and Y axes indicate values of xk
i

and xk
j . (b) The similarity when xk

i = 1 and xk
j are taken from 1 to 10.

Therefore, by putting Equation (35) into Equation (26), a patch similarity metric based
on GLR can be derived as follows

ψGLR(vs(Ni), vs(Nj)) =
N

∏
k=1

ξGLR(xk
i , xk

j ) =
N

∏
k=1

[
2zk

i xk
j

(xk
i )

2 + (xk
j )

2

]
(36)

We then can use this similarity metric based on GLR (Equation (36)) to obtain the
weight of each patch in a non-local search space centered at pixel i. Then the recovered
amplitude of pixel i in in SAR image can be calculated as follows

x̃i = ∑
j∈Wr

i

ψGLR(vs(Ni), vs(Nj)) ∗ xj (37)

where x̃i is the estimator of the ith pixel, ψGLR(vs(Ni), vs(Nj)) is the weight between patch
vs(Ni) and vs(Nj). After visiting all pixels in SAR image, we can construct an auxiliary
image Ĩ = {x̃1, x̃2, ...x̃i, ..., x̃N}. Then Ĩ is added into the objective function of standard FCM
as non-local spatial information term and we can obtain GLR_FCM

min Jm(U, V) =
c

∑
k=1

N

∑
i=1

um
ki ||xi − vk||2 +

c

∑
k=1

N

∑
i=1

ηium
ki ||x̃i − vk||2

s.t.
c

∑
k=1

uki = 1, 0 ≤ uki ≤ 1, 0 ≤
N

∑
i=1

uki ≤ N

(38)
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By minimizing Equation (38) using Lagrange multiplier method, the membership
degree uki and cluster vk can be updated by

uki =
1

∑c
j=1(

‖xi−vk‖2+ηi‖x̃i−vk‖2

‖xi−vj‖2
+ηi‖x̃i−vj‖2 )

1
m−1

(39)

vk =
∑N

i=1
(
um

ki xi + ηium
ki x̃i

)
∑N

i=1
(
um

ki + ηium
ki
) (40)

In the objective function of LBNL_FCM and GLR_FCM, an adaptive factor based
on local intensity entropy ηi is introduced to balance the original detail information and
non-local spatial information. ηi is defined as

ηi = α × exp(max Ei)− exp(Ei)

exp(max Ei)− 1

α = Med{σ1, σ2, ..., σi, ..., σN−1, σN}
(41)

where Ei = −∑k
j=1 pi log(pi) denotes the information entropy of the local area histogram

at the ith pixel. k is the number of quantized gray levels. σi denotes the local variance at
the ith pixel, Med indicates a median operation, and N is the total number of pixels.

In Equation (41), ηi is determined by the local intensity entropy Ei. In the homogeneous
region, the amplitude values tend to be the same, and Ei is small; hence, a large weight ηi
will be assigned for non-local spatial information. Conversely, at the edges, where the local
entropy Ei is relatively large, and ηi receives a small value, the original SAR information is
given more consideration.

Figure 3a–e are original SAR image slices and Figure 3f–j are the ηi maps for Figure 3a,b,
respectively. We can see a black color near the edge, which indicates that the intensity
value of ηi at the edge is small and relatively large in the homogeneous regions. Thus, the
original image information and non-local spatial information can be dynamically balanced
and adjusted.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. The results of dynamically balanced factor ηi. (a–e) Five sample SAR image slices. (f–j) ηi

maps of (a–e), respectively.

2.5. The Membership Degree Smoothing and Label Correction

In addition to non-local spatial information, local spatial information is also useful.
For a pixel, its class should be influenced by the surrounding pixels. Thus, we add
membership degree smoothing into the iteration process. For the ith pixel in the SAR
image, we sum the membership vector of the neighborhood pixels to obtain a weight vector
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φi(φi = [φ1i φ2i ... φci]), and φi is weighted to the membership vector of the ith pixel.
Then we can get the new membership degree u′

i for the ith pixel.

φki = ∑
j∈Ni

ukj

u
′
i = ui • φi

(42)

where Ni is the neighborhood pixels of the ith pixel, ui is the membership before smoothing,
and u′

i is the weighted membership degree. Figure 4 shows the calculation process.

Figure 4. The calculation process of weight vector φi for three classes. In this example, the
neighborhood size is specified as 5 × 5.

Besides, label correction is used as a homogeneous region smoothing technique in SAR
segmentation in [42]. It has been shown to be effective in the correction of error class labels.
Hence, we will adopt a simple method to correct the error pixel class. This framework uses
the majority voting strategy to revise the error pixel label upon completion of the iteration.
Specifically, a fixed-scale window is utilized to slide over the image. The class label with
the largest number in the slid window is the final class of the central pixel. Figure 5 shows
that the framework of GLR_FCM and LBNL_FCM is alike.

Figure 5. The framework of proposed segmentation algorithm GLR_FCM, and the LBNL_FCM
is similar.

3. Experiments and Results

In this section, we perform LBNL_FCM and GLR_FCM on simulated SAR images
and real SAR images to illustrate the effectiveness of our proposed algorithms. The
segmentation results are evaluated qualitatively and quantitatively. Several popular
improved FCM algorithms are used as baselines to illustrate the advantages of the proposed
algorithms in edge preservation and region consistency. These methods are FCM [22],
FCM_S1 and FCM_S2 [24], KFCM_S1 and KFCM_S2 [24], EnFCM [25], FGFCM [26],
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FCM_NLS [31], NS_FCM [34], and RFCM_BNL [35]. Note that, for real SAR images,
we focus more on visual inspection because it is difficult to obtain its ground truth.
Experiment images are selected from four different satellites, including AIRSAR, ALOS
PolSAR, TerraSAR-X, and GF3.

3.1. Experimental Setting

For all algorithms, the parameters are selected as follows: The stopping threshold
δ = 10−5, Maximum iterations T = 200, membership exponent m = 2. We set α = 5 for
FCM_S1, FCM_S2, KFCM_S1, KFCM_S2, EnFCM, and FCM_NLS. According to [34], we
set α = 6 for NS_FCM. λs and λg in FGFCM are set to 2 and 7, respectively. For NS_FCM
and FCM_NLS, the local neighbor size is 5 × 5, and the non-local search window is set to
11 × 11 and 15 × 15, respectively. For RFCM_BNL, LBNL_FCM and GLR_FCM, the local
neighbor window is set to 3 × 3 and the non-local search window is set to 15 × 15, 9 × 9,
and 23 × 23. For LBNL_FCM and GLR_FCM, the membership degree smoothing and label
correction window is set to 5 × 5. In LBNL_FCM and GLR_FCM, when calculating ηi, the
gray level is quantized into 16 bins, i.e., k = 16.

3.2. Evaluation Indicators

Evaluating results is a key step in measuring the effectiveness of the algorithms. In
this paper, the effectiveness of the proposed and reference algorithms is assessed from both
objective and subjective aspects. Moreover, we concentrate on two crucial aspects of the
segmentation results: Compactness and separation. Whether it is a visual inspection by
human eyes or a quantitative evaluation, a good segmentation algorithm should make
the intra-class dissimilarity as small as possible and the inter-class variability as large as
possible, i.e., corresponding to compactness and separation, respectively. Table 1 shows
several assessment indicators that we intend to use to quantitatively evaluate these two
properties, whose efficacy was proved in [43].

Table 1. The quantitative evaluation indicators used in simulation SAR image experiments for results.

Indicator Formulation Description

PC (Partition Coefficient) [44] PC = 1
N ∑c

c=1 ∑N
i=1 u2

ci The larger the PC value, the better the partition result

PE (Partition Entropy) [45] PE = − 1
N ∑c

c=1 ∑N
i=1 uci log(uci) The smaller the PE value, the better the partition result

MPC (Modified PC) [46] MPC = C×PC−1
C−1 The MPC eliminates the dependency on c, the

PC = 1
N ∑c

c=1 ∑N
i=1 u2

ci large the MPC is,the better the partition result

MPE (Modified PE) [46] MPE = N×PE
N−C Similar to above that the smaller the

PE = − 1
N ∑c

c=1 ∑N
i=1 uci log(uci) MPE is, the better the partition result

FS(Fukuyama-Sugeno Index) [47]
FS = Jm(U, V)− Km(U, V) The first term indicates the compactness and

= Jm − ∑N
i=1 ∑c

c=1 um
ci‖vc − ṽ‖2 the second term indicates the separation. And

where ṽ = 1
N ∑N

i=1 xi the minimum FS implies the optimal partition

3.3. Segmentation Results on Simulated SAR Images

We can obtain accurate ground truth for simulated SAR images, so we use segmentation
accuracy to evaluate the segmentation performance. In addition, five numerical evaluation
indexes are computed. The segmentation accuracy is defined as the number of correctly
segmented pixels divided by the total number of pixels, and the formula is as follows:

SA =
∑c

k=1 Ak
⋂

Ck

∑c
j=1 Cj

(43)
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where c represents the number of segmentation objects, Ck denotes the number of pixels
within the kth class in the real SAR image, Ak indicates the number of pixels belonging
to the kth class in the segmentation result, and ∑c

j=1 Cj corresponds to the total number
of pixels.

3.3.1. Experiment 1: Testing on the First Simulated SAR Image

The first experiments are carried out on a one-look simulated SAR image with
250 × 200 pixels as shown in Figure 6a. This simulated SAR image includes five classes
with intensity value taken as 10, 50, 100, 150, 200. Its gray and color ground truth are shown
in Figure 6b,c.

(a) (b) (c)

Figure 6. The simulated SAR image and ground truth. (a) Simulated SAR image; (b) ground truth
with gray; (c) ground truth with color

The experiment results of the proposed algorithms and comparative algorithms
are shown in Figure 7. It can be seen that the original FCM has the worst result in
regional consistency and many noise points are present. FCM_S1 and FCM_S2 enhance the
segmentation result by adding local information. The kernel distance versions of KFCM_S1
and KFCM_S2 obtain further enhancement results. Nevertheless, there are still plenty
of noise pixels. The reason is that the local neighborhood information on SAR images is
contaminated by noise. The reliability of local spatial information is severely weakened,
which ultimately leads to the failure of segmentation.

FCM_NLS and NS_FCM in Figure 7h,i consider the non-local information. However,
the non-local spatial information is measured by Euclidean distance, which is inappropriate
for SAR images. So they still have significant misclassification problems. The RFCM_BNL
takes into account the characteristics of SAR images and therefore achieves a relatively good
result in terms of the regional coherence. However, there is still a large number of isolated
pixels near the edges. The result of LBNL_FCM presents a better continuity of edges
and homogeneous regions cleaner than that of RFCM_BNL. However, the Bayesian-based
FCM algorithm is not the best in terms of edge preservation in Figure 7j,k. There is a
serious misclassification phenomenon at the edges, i.e., the region between the green region
and the blue region is divided into yellow class. In Figure 7l, GLR_FCM achieves the
best visual result for maintaining regional consistency and edge preservation. Effectively
eliminating the false class of RFCM_BNL and LBNL_FCM at the edges and almost no
isolated noise pixels.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. The segmentation results on simulated SAR image. (a) FCM. (b) FCM_S1. (c) FCM_S2.
(d) KFCM_S1. (e) KFCM_S2. (f) EnFCM. (g) FGFCM. (h) FCM_NLS. (i) NS_FCM. (j) RFCM_BNL.
(k) LBNL_FCM. (l) GLR_FCM.

Table 2 displays the SA (%) and executed time of each algorithm. We see that the
kernel method is valid for results. The non-local information is more useful for SAR
image segmentation compared to local information. Because of the statistical property of
SAR images, higher segmentation accuracy is obtained by FCM_RBNL, LBNL_FCM and
GLR_FCM. Besides, GLR_FCM obtains the best segmentation accuracy of 99.16%, consistent
with the visualization in Figure 7. The algorithms based on the non-local information have
higher time consumption because each pixel is visited in computing auxiliary.

Table 2. SA (%) and executed time(s) on the first simulated SAR image.

Method SA (%) Time (s) Method SA (%) Time (s)

FCM 60.58 2.16 FGFCM 94.65 5.64
FCM_S1 90.49 1.11 FCM_NLS 83.61 7.27
FCM_S2 90.49 1.46 NS_FCM 95.03 7.77

KFCM_S1 92.66 1.27 RFCM_BNL 97.29 10.88
KFCM_S2 91.42 1.20 LBNL_FCM 97.64 12.11

EnFCM 90.63 1.85 GLR_FCM 99.16 17.73

Table 3 shows the quantitative evaluation for the first simulated SAR image. VPC
and VMPC express the fuzziness of the partition result. The larger the value, the better the
partition result. In contrast, the minimums of VPE and VMPE imply the optimal result. The
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VFS describes the compactness and separation. The best partition can be obtained with
the minimum VFS. In addition to the optimal value obtained by the NS_FCM on VFS, the
LBNL_FCM and GLR_FCM obtain the best value in the other criteria.

Figure 8 provides the change curve of the objective function. We can see that the
objective function of LBNL_FCM descends fastest and obtains the minimum value. The
objective function of GLR_FCM decreases at a similar speed to that of LBNL_FCM. Moreover,
a relatively small value of the objective function is obtained.

Table 3. Quantitative evaluation on the first simulated SAR image.

Method VPC VPE VMPC VMPE VFS

FCM 0.7994 0.3995 0.7492 0.3995 −3.12 × 108

FCM_S1 0.7203 0.5581 0.6504 0.5582 −1.36 × 108

FCM_S2 0.7350 0.5347 0.6688 0.5347 −1.78 × 108

KFCM_S1 0.6783 0.6623 0.5978 0.6624 −1.01 × 108

KFCM_S2 0.6861 0.6537 0.6076 0.6537 −1.39 × 108

EnFCM 0.8518 0.3031 0.8147 0.3031 −1.56 × 108

FGFCM 0.8750 0.2595 0.8438 0.2595 −2.33 × 108

FCM_NLS 0.7175 0.5892 0.6469 0.5893 −1.70 × 108

NS_FCM 0.6932 0.6342 0.6165 0.6342 −9.03 × 107

RFCM_BNL 0.8069 0.4165 0.7587 0.4165 −1.34 × 108

LBNL_FCM 0.9609 0.0792 0.9511 0.0792 −1.54 × 108

GLR_FCM 0.9855 0.0260 0.9819 0.0260 −1.78 × 108

Figure 8. The objective function change curve of each algorithm on the first simulated SAR image.

3.3.2. Experiment 2: Testing on the Second Simulated SAR Image

The second simulated SAR image is composed of 283*283 pixels, and includes five
classes with amplitude values settled as (0, 64, 128, 192, 255). Figure 9a–c show the original
simulated SAR image and the ground truth. Figure 9d–o show the segmentation results of
each algorithm.

Visually, the result of FCM (Figure 9d) has plenty of noise points. In Figure 9e–j, due
to integration of the local spatial information, the isolated speckle pixels are significantly
suppressed. The result of FCM_NLS obtains a better region consistency in red and green
classes. However, there are still some blocks that are not properly classified under other
categories. The results of NS_FCM and RFCM_BNL yield good regional coherence and
smoothed edges. However, there are still serious classification mistakes on the periphery
of different regions. In contrast, LBNL_FCM and GLR_FCM obtain relatively satisfactory
segmentation results. Isolated pixels and blocks of speckle noise are practically non-existent
there in homogeneous regions. In terms of structural information, GLR_FCM protects
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the continuity and smoothness of the edges, even when crossing regions with similar
magnitude values. The edge can be well discriminated as shown in Figure 9o. Only slightly
blurred edges exist at the nodes adjacent to the three regions.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 9. The segmentation results on the second simulated SAR image. (a) Original Image
(b) Ground Truth (Gray) (c) Ground Truth (Color) (d) FCM (e) FCM_S1 (f) FCM_S2 (g) KFCM_S1
(h) KFCM_S2 (i) EnFCM (j) FGFCM (k) FCM_NLS (l) NS_FCM (m) RFCM_BNL (n) LBNL_FCM
(o) GLR_FCM.

A conclusion similar to the first experiment can be obtained from Table 4. In SAR
image, non-local spatial information is more robust to speckle noise compared to local
information. Thus, the FCMs with the non-local information terms obtain relatively good
segmentation accuracy above 96%. However, they are time consuming because of the
auxiliary image calculated in advance.

Table 4. SA (%) and executed time(s) on the second simulated SAR image.

Method SA (%) Time (s) Method SA (%) Time (s)

FCM 73.82 3.47 FGFCM 97.88 9.36
FCM_S1 95.83 1.16 FCM_NLS 95.03 8.85
FCM_S2 96.55 1.27 NS_FCM 96.10 9.59

KFCM_S1 96.36 1.02 RFCM_BNL 98.66 16.58
KFCM_S2 96.94 1.22 LBNL_FCM 98.82 16.83

EnFCM 95.88 2.03 GLR_FCM 99.86 18.45

The quantitative evaluation indicators of each algorithm are recorded in Table 5.
GLR_FCM obtains the optimal value on VPC, VPE, VMPC, and VMPE and significantly
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outperforms other algorithms. The LBNL_FCM has relatively optimal indicators. On VFS,
EnFCM obtains the minimum value of −6.27 × 109.

Table 5. Quantitative evaluation of the second simulated SAR image.

Method VPC VPE VMPC VMPE VFS

FCM 0.8354 0.3298 0.7943 0.3298 −6.28 × 108

FCM_S1 0.8204 0.3667 0.7755 0.3667 −4.76 × 108

FCM_S2 0.8298 0.3524 0.7872 0.3524 −5.34 × 108

KFCM_S1 0.7880 0.4492 0.7351 0.4492 −4.34 × 108

KFCM_S2 0.7923 0.4448 0.7404 0.4448 −4.86 × 108

EnFCM 0.9060 0.1971 0.8825 0.1971 −6.27 × 109

FGFCM 0.9307 0.1511 0.9134 0.1511 −5.66 × 108

FCM_NLS 0.8171 0.3890 0.7714 0.3890 −4.90 × 108

NS_FCM 0.8085 0.4102 0.7607 0.4103 −4.26 × 108

RFCM_BNL 0.8939 0.2414 0.8674 0.2414 −4.79 × 108

LBNL_FCM 0.9882 0.0208 0.9852 0.0208 −4.99 × 108

GLR_FCM 0.9972 0.0051 0.9965 0.0051 −5.24 × 108

Figure 10 shows the curve of objective function on the second simulated SAR image. It
can be seen that FCM_RBNL, LBNL_FCM, and GLR_FCM consider the statistical properties
of SAR images, so their objective function decreases fastest and only needs two iterations
to converge. In addition, at the convergence, GLR_FCM has the minimum loss value of the
objective function. This also implies best segmentation performance.

Figure 10. The objective function curve of each algorithm on the second simulated SAR image.

3.4. Segmentation Results on Real SAR Images

Experiments on simulated SAR images only illustrate the validity and feasibility of
algorithms. Therefore, we will test the practicality of proposed algorithms on real SAR
images taken from different satellites. It is difficult to get ground truths for real SAR images;
thus, segmentation results are accessed mainly by visual inspection.

3.4.1. Experiment 1: Experiment on the First Real SAR Image

The first experiment was carried out on an L-band, HH-polarized, SAR image with
2 m spatial resolution taken by AIRSAR in the Flevoland area of the Netherlands, as shown
in Figure 11a. This area includes roughly four crop types, and the amplitudes are bright,
dark, darker, and black. Figure 12 shows the segmentation results.

The auxiliary images of LBNL_FCM and GLR_FCM are shown in Figure 11b,c. The
auxiliary image used by LBNL_FCM (see Figure 11b) strongly suppresses the noise and has
a strong smoothing ability. The auxiliary image used in GLR_FCM (see Figure 11c reduces
speckle noise while retaining the structural information. However, a slight texture noise
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remains inside the homogeneous region, which can be easily attenuated or removed by
local information such as membership smoothing.

(a) (b) (c)

Figure 11. The first real SAR image and auxiliary images. (a) Original real SAR image; (b) The
auxiliary image of LBNL_FCM; (c) The auxiliary image of GLR_FCM.

The most terrible result is provided by FCM in Figure 12a and almost fails when
processing SAR images. The FCM_S1, FCM_S2, and the kernel methods suppress the
noise to some extent. However, the results are still not very desirable. The EnFCM
and FGFCM enhance the consistency of segmented regions compared with the previous
methods by incorporating local information and using the histogram as the segmentation
object. However, the darker region is misclassified to dark class from Figure 12f,g. FCM_NS
has a better region coherence than FCM_NLS, but there is still severe misclassification
in the region with similar intensity. Among these methods, RFCM_BNL, LBNL_FCM,
and GLR_FCM obtain relatively satisfactory results. Visually, the segmentation results
almost correctly reflect the region information of the original image. The large regions
which are misclassed in other algorithms are correctly classified. However, the edges in
RFCM_BNL and LBNL_FCM are not satisfactory enough, as shown in Figure 12j,k. A third
class may appear in the middle of two adjacent regions. The result of GLR_FCM effectively
overcomes this problem with the suitable similarity properties. Besides, most of the
structure information is preserved in Figure 12l. A balance between regional homogeneity
and edge preservation can be achieved well.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 12. The segmentation result of each algorithm on the real SAR image. (a) FCM. (b) FCM_S1.
(c) FCM_S2. (d) KFCM_S1. (e) KFCM_S2. (f) EnFCM. (g) FGFCM. (h) FCM_NLS. (i) NS_FCM.
(j) RFCM_BNL. (k) LBNL_FCM. (l) GLR_FCM.

3.4.2. Experiment 2: Experiment on the Second Real SAR Image

An L-band, HH-polarized SAR image taken by AIRSAR is selected in this experiment.
Figure 13a presents the original image. This area contains four kinds of crops shown as
bright, gray, dark, and black. Figure 13a shows that the region with the brightest magnitude
suffers from speckle noise. There is a gradual change in amplitude value.

The segmentation results of each algorithm are shown in Figure 13. The results of
NS_FCM and FCM_NLS (Figure 13i,j) are relatively clean and accurate. However, there
are many misclassified categories at the intersection of different regions. The segmentation
results of RFCM_BNL and LBNL_FCM eliminate the isolated pixels and obtain good region
conformity. However, RFCM_BNL and LBNL_FCM are prone to misclassification at the
edge. The segmentation results of GLR_FCM are cleaner. The serious misclassification
at the edge is weakened in GLR_FCM. Some small scale regions can also be segmented,
such as roads that appear black being correctly segmented. However, with the noise
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enhancement, GLR_FCM tends to produce isolated patches when combined with label
correction. Figure 14 shows the local detail map of four non-local spatial information FCMs.
There is a significant reduction in misclassification at the edge of GLR_FCM.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m)

Figure 13. The segmentation results of each algorithms on the real SAR image. (a) Original
image. (b) FCM. (c) FCM_S1. (d) FCM_S2. (e) KFCM_S1. (f) KFCM_S2. (g) EnFCM. (h) FGFCM.
(i) FCM_NLS. (j) NS_FCM. (k) RFCM_BNL. (l) LBNL_FCM. (m) GLR_FCM.
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(a) (b)

(c) (d)

Figure 14. Local detail maps of segmentation results. (a) The result of NS_FCM. (b) The result of
RFCM_BNL. (c) The result of LBNL_FCM. (d) The result of GLR_FCM.

3.4.3. Experiment 3: Experiment on the Third Real SAR Image

The fourth experiment is performed on a TerraSAR image shown in Figure 15a,
which has 5 m spatial resolution and HH polarization in X-band strip imaging mode
with 402 × 381 pixels. The SAR image is taken of an area of farmland near the border of
Saxony in the German region and includes four categories. Some buildings show high
amplitude values, and roads show low amplitude values. These unfavorable factors make
it difficult to segment SAR images.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m)

Figure 15. The segmentation results on real image 4. (a) Original image. (b) FCM. (c) FCM_S1.
(d) FCM_S2. (e) KFCM_S1. (f) KFCM_S2. (g) EnFCM. (h) FGFCM. (i) FCM_NLS. (j) NS_FCM.
(k) RFCM_BNL. (l) LBNL_FCM. (m) GLR_FCM.
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The partition results of each algorithm are provided in Figure 15b–m. Obviously,
the results of FCM, FCM_S1, FCM_S2 and kernel editions are not satisfactory. Because
of the effect of speckle noise, many misclassified pixels, blocks and regions exist. The
EnFCM and FGFCM correct the middle area label that is misclassified into highlighted
categories in Figure 15c–f. However, the pixels in gray and darker are substantially
confused. The addition of NLS_FCM and NS_FCM with non-local information reduces the
misclassification, but there is still some isolated noise due to unsuitable Euclidean distance.

Moreover, RFCM_BNL (Figure 15k) obtains good region conformity, but a tiny portion
of darker areas is still segmented into black classes. The result of LBNL_FCM significantly
weakens the influence of speckle noise, and the best smoothing effect is obtained. GLR_FCM
(Figure 15m) is enabled to balance the speckle noise suppression and edge preservation.
The region consistency is guaranteed without damaging structure information.

3.4.4. Experiment 4: Experiment on the Fourth Real SAR Image

The fifth experiment is a 3 m spatial resolution, 222 × 516 pixels, HH-polarized SAR
image taken from GF-3 with the imaging mode of the strip, and this area is located near
the Daxing Airport in Beijing. The original image is shown in Figure 16a. The buildings,
land, and runways are included in this SAR image; they show in magnitude as highlighted,
dark, and black, respectively. Some small areas, such as lakes, also appear black.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m)

Figure 16. Segmentation results of each algorithm on GaoFen-3 SAR Image. (a) Original image.
(b) FCM. (c) FCM_S1. (d) FCM_S2. (e) KFCM_S1. (f) KFCM_S2. (g) EnFCM. (h) FGFCM.
(i) FCM_NLS. (j) NS_FCM. (k) RFCM_BNL. (l) LBNL_FCM. (m) GLR_FCM.
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Figure 16b–m display the experimental results. As can be seen from Figure 16b the
FCM is sensitive to the speckle noise. FCM_S1 and FCM_S2 slightly improve the results.
The kernel versions further enhance the separability and homogeneity. However, some
speckle blocks are not removed. Due to the complexity of this SAR image, EnFCM, FGFCM,
FCM_NLS, and NS_FCM can barely segment correctly. Specifically, EnFCM and FGFCM
cannot distinguish the ground and lake. In the results of FCM_NLS and NS_FCM, the
building area and ground mix into the same category. This illustrates that the Euclidean
distance is unreliable concerning SAR images. Due to the distribution of SAR being
considered, RFCM_BNL, LBNL_FCM, and GLR_FCM obtain relatively satisfactory results.
The two Bayesian-based FCMs slightly outperform the GLR_FCM in terms of region
consistency. However, they are poor in edge localization. Additionally, in terms of structure
information preserving, the GLR_FCM surpasses all the algorithms. In Figure 16m, we
notice the contour of the lake can be segmented explicitly.

3.5. Sensitivity Analysis to Speckle Noise

In this section, we evaluate the sensitivity of proposed frameworks to noise intensity
by adding different levels of speckle noise to Figure 6a. The SA (%) of different algorithms
on images with eight speckle look is shown in Figure 17a. The SA (%) of most methods
improves with the weakening of speckle noise. GLR_FCM obtains the best SA (%), which
always exceeds 97%. Besides, the stability to different intensity of noise can be observed.
LBNL_FCM obtains relatively good SA (%) and is stable for speckle look. The SA (%)
of some algorithms fluctuates significantly to the number of speckle look. The variation
between the best SA (%) and worst SA (%) exceeds 60%. The partial enlarged view can be
seen in Figure 17b.

(a) (b)

Figure 17. The segmentation accuracy of different algorithms testing on the first simulated SAR
image with adding speckle noise of different looks. (a) SA curves of different methods. (b) The partial
enlarged view of (a).

3.6. Parameters Analysis and Selection

The non-local search window size w × w and the square neighborhood size r × r are
two crucial parameters related to the non-local spatial information. In this section, we
investigate the optimal parameters on two simulated SAR images (Figures 6a and 9a) for
LBNL_FCM and GLR_FCM.

On the first simulated SAR image (Figure 6a), we set the non-local spatial information
search window w = [5, 7, 9, 11, 13, 15, 17, 19, 21, 23] and local neighborhood patch r =
[3, 5, 7, 9, 11]. The SA (%) of LBNL_FCM and GLR_FCM on the first simulated SAR image is
shown in Figure 18a,b, respectively. From Figure 18a, the SA curve of LBNL_FCM decreases
rapidly for ab arbitrary r value when w exceeds 9. One reason for this is that the logarithm
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transformation reduces the contrast of image amplitude. As the window w expands, more
pixels are included to calculate non-local information. Hence, the weight of reliable pixels
decreases. The SA (%) curve of GLR_FCM can be seen from Figure 18b. The SA curve of
r = 3 is always higher than others and the accuracy achieves the optimal with w = 23.
Therefore, in the parameter range above, the optimal value for r is 3. On the first simulated
SAR image, we set r = 3, w = 9 for LBNL_FCM and r = 3, w = 23 for GLR_FCM. Figure 19
shows the SA curve of LBNL_FCM and GLR_FCM on the second simulated SAR image.
Some similar phenomena can be observed. The curve with local neighborhood size r = 3 is
always more accurate than others.

(a) (b)

Figure 18. The SA (%) of LBNL_FCM and GLR_FCM carried out on the first simulated SAR
image with different sizes of search window w × w and different sizes of local neighborhood r × r.
(a) LBNL_FCM; (b) GLR_FCM.

(a) (b)

Figure 19. The SA (%) of LBNL_FCM and GLR_FCM carried out on the second simulated SAR
image with different sizes of search window w × w and different sizes of local neighborhood r × r.
(a) LBNL_FCM; (b) GLR_FCM.

3.7. Computational Complexity Analysis

The computational complexity of the aforementioned algorithms is given in Table 6.
Where N is total pixels, c denotes the number of clustering centers, T represents the
iterations, w is the size of the window, r is the size of the non-local search window, s is the
size of the neighborhood, W denotes the sliding window for calculating the factor ηi, Q
corresponds to the number of gray levels.

The computational complexity of proposed frameworks LBNL_FCM and GLR_FCM
consists of three parts. The first part O(N × r2 × s2) is contributed by the calculation of
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the non-local spatial information. It is calculated before the iterative process. The second
part O(N × W2) comes from the calculation of the factor ηi. The third part O(N × c × T) is
from the iteration process. To sum up, the total computational complexity of LBNL_FCM
and GLR_FCM is O(N × r2 × s2 + N × W2 + N × c × T).

Table 6. The computational complexity of algorithms used in this study.

Method Computational Complexity Method Computational Complexity

FCM O(N × c × T) FGFCM O(N × w2 + Q × c × T)
FCM_S1 O(N × w2 + N × c × T) FCM_NLS O(N × r2 × s2 + N × c × T)
FCM_S2 O(N × w2 + N × c × T) NS_FCM O(N × r2 × s2 + N × c × T)

KFCM_S1 O(N × w2 + N × c × T) RFCM_BNL O(N × r2 × s2 + N × W2 + N × c × T)
KFCM_S2 O(N × w2 + N × c × T) LBNL_FCM O(N × r2 × s2 + N × W2 + N × c × T)

EnFCM O(N × w2 + Q × c × T) GLR_FCM O(N × r2 × s2 + N × W2 + N × c × T)

4. Discussion

In the previous experiments, the effectiveness and robustness of both frameworks
are verified. On the simulated SAR images, both algorithms obtain high segmentation
accuracy (always exceeding 97%), and some unsupervised assessment indicators, such as
vPC, vPE, also state that the fuzziness of clustering centers in results is reduced. On the
real SAR images, LBNL_FCM shows a best region consistency in results compared with
the previous algorithms. However, like FCM_NLS, NS_FCM, and RFCM_BNL, artifacts
appear at the edge. Except for the factor that the amplitude value is prone to blur near the
edge, it is also related to the characteristic of the log-transformed Bayesian metric reducing
image contrast. Compared with FCM_NLS and NS_FCM, the results of GLR_FCM show
satisfactory region uniformity; no isolated pixels exist. Compared with RFCM_FCM and
LBNL_FCM, GLR_FCM can preserve the image details and the edges can be properly
defined. The main reason is that the similarity metric constructed by the continued product
of the generalized likelihood ratio is a ratio form in mathematical expression. That makes it
easy to give a small contribution weight to the patches possessing dissimilar amplitude
values with the central pixel, which implies the patches involved in reconstructing the
real amplitude of central pixel in Equation (37) are trustworthy. Another feature of the
proposed unsupervised FCM frameworks is that the non-local spatial information can be
adaptively adjusted. Remarkably, in most previous methods, the relevant parameter is
empirically set to a constant. Consequently, edge blurred artefacts are greatly reduced in
GLR_FCM.

In addition to the methods involved in this article, there are many methods combining
FCM with machine learning. For instance, MFCCM, proposed by Balakrishnan et al. [48],
fused the characteristics of deep learning to clustering, and produces a satisfactory fuzzy
clustering result. However, the disadvantage of its high computational complexity is also
significant. Besides, a semi-supervised method combining CNN and IFCM [49] provided a
more in-depth understanding and representation of the data features, although it requires
a lot of training data. Compared to the advanced deep learning models, our proposed
unsupervised FCM frameworks can quickly and efficiently deliver segmentation results.
However, due to the lack of feature extraction and feature expression, the image data
cannot be understood in depth.

In the parameter analysis, we confirm that r = 3 is an optimal value for neighborhood
size when measuring patches. However, we found the optimal size of non-local search
window of GLR_FCM is w = 23, which is different from the optimal value w = 15 explored
by other algorithms, such as FCM_NLSL, NS_FCM, and RFCM_BNL. We speculate that,
because of the strong inhibition of the GLR_FCM on dissimilar patches, more reliable
patches can be obtained by expanding the scope of the search window.

In this paper, an empirical statistical distribution (Nakagami–Reigh) is utilized to
describe SAR images. The dedicated model is appropriate for the homogeneous region
of the SAR. In other scenarios, such as mountainous areas, urban areas, etc., statistical
properties may not be expressed correctly. Besides, The relatively high computational
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complexity is a limitation of the proposed method. In Section 3.7, the computational
complexity was listed (O(N × r2 × s2 + N × W2 + N × c × T)). From the loss function
curve shown in Figures 8 and 10, we can observe that the iterative speed is very fast.
Therefore, in the practical application, the computational cost mainly comes from the
calculation of the non-local spatial information. In addition, appropriately reducing the
number of iterations can also improve the efficiency without reducing the accuracy.

5. Conclusions

To suppress the effect of speckle noise on SAR image segmentation by clustering
algorithms, we propose two unsupervised FCM frameworks incorporating non-local
spatial information term, named LBNL_FCM and GLR_FCM, respectively. The non-local
spatial information in LBNL_FCM and GLR_FCM is obtained by combining the statistical
properties of SAR images with Bayesian methods and generalized likelihood ratio methods.
Therefore, speckle noise can be suppressed. In both frameworks, a simple membership
smoothing strategy complements the local information, allowing the membership of the
pixel to be iteratively adjusted towards the most probable class in the local neighborhood.
Besides, we add a balance factor to adaptively control the effect of non-local spatial
information on the edges, so as to reduce the artifact caused by blurred edges. On the
synthetic SAR images, both unsupervised FCM frameworks can obtain 99% segmentation
accuracy. Several unsupervised evaluation indicators also indicate LBNL_FCM and GLR_FCM
can reduce the fuzziness of the divided clusters in results (vPC = 0.9855, vPE = 0.0260).
Experiments on the real SAR images show that LBNL_FCM can achieve best region
consistency, and GLR_FCM can balance noise removal while preserve image detail and
reduce edge blur artifacts.

In future research, we will consider combining unsupervised FCM with the characteristic
of deep learning to explore intelligent clustering computing.
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Abstract: As an essential part of point cloud processing, autonomous classification is conventionally
used in various multifaceted scenes and non-regular point distributions. State-of-the-art point
cloud classification methods mostly process raw point clouds, using a single point as the basic unit
and calculating point cloud features by searching local neighbors via the k-neighborhood method.
Such methods tend to be computationally inefficient and have difficulty obtaining accurate feature
descriptions due to inappropriate neighborhood selection. In this paper, we propose a robust and
effective point cloud classification approach that integrates point cloud supervoxels and their locally
convex connected patches into a random forest classifier, which effectively improves the point cloud
feature calculation accuracy and reduces the computational cost. Considering the different types of
point cloud feature descriptions, we divide features into three categories (point-based, eigen-based,
and grid-based) and accordingly design three distinct feature calculation strategies to improve feature
reliability. Two International Society of Photogrammetry and Remote Sensing benchmark tests show
that the proposed method achieves state-of-the-art performance, with average F1-scores of 89.16 and
83.58, respectively. The successful classification of point clouds with great variation in elevation also
demonstrates the reliability of the proposed method in challenging scenes.

Keywords: point cloud classification; supervoxel; random forest; feature fusion; segmentation

1. Introduction

With the development of photogrammetry and light detection and ranging (LiDAR)
technologies, urban three-dimensional (3D) point clouds can be easily obtained. Three-
dimensional point cloud data are used in many applications, such as power line inspec-
tions [1], urban 3D modeling [2,3], and unmanned vehicles [4]. However, the most basic
requirement for these applications is the semantic classification of 3D point cloud data,
which has been a research focus among photogrammetry and remote sensing communities.

Early classification efforts mainly focused on extracting low-level geometric primitives,
such as point features, line features, and surface features, which were used for surface
reconstruction or point cloud alignment. In recent years, researchers have developed
methods for extracting high-level semantic features for structure model reconstruction
from point cloud data through machine learning-and deep learning-based methods [5–7].
The core challenges of point cloud data classification are extracting discriminative features
from neighborhoods and constructing point cloud classifiers [8,9]. Accurate classification
depends on a combination of robust point cloud features and proper classifiers [8,10].
Recent works have applied deep learning networks to directly learn per-point features
from raw point clouds [11,12]. Similar to traditional machine learning, these methods
focus on the extraction of higher-order features from point cloud data by building a new
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convolutional neural network. Although remarkable performance has been achieved using
these methods, large training sample sets are required to pre-train the classification models.
These semantic tags require manual labeling, which is time-consuming and labor-intensive.
Moreover, the training models obtained by such methods are difficult to generalize to other
scenarios [13].

To solve the model generalization and incomplete label data problems, many re-
searchers prefer traditional machine learning methods, which require only a small sample
dataset to achieve fast and accurate semantic point cloud data classification [14–16]. How-
ever, original point cloud features are often highly unstable due to the influence of point
cloud data accuracy and noise, especially data acquired by tilt photogrammetry. Thus,
more researchers are exploiting high-order features and their contextual information for
scene classification. As dimensional objects expanding upon the concept of the “super-
pixel” [17], “supervoxels” [18] are generated by partitioning 3D space as point clusters.
Supervoxels have been increasingly applied to describe adjoining points related to the same
objects [16,19]. Transferring the original point cloud to the “supervoxel cloud” propagates
simple point-based classification to an object-based level. Some point cloud segmentation
methods, such as locally convex connected patches (LCCP), recognize points through
supervoxel-adjacent relationships. In addition to features, classifiers that can effectively
deal with massive data must be considered. Machine learning methods such as random
forest (RF) that are capable of handling complex data are gaining attention for this pur-
pose [20,21].

Here, we propose a robust and effective point cloud classification approach that
integrates point cloud supervoxels and their LCCP relationships into an RF classifier. The
proposed method involves three strategies to effectively improve classification accuracy.
(1) Features are divided into three categories based on their description types (point-based,
eigen-based, and grid-based), and three unique feature calculation strategies are designed to
improve feature reliability. (2) A centroid point is used to represent supervoxel geometries,
and every point that belongs to the same cluster shares all properties. (3) Supervoxel local
neighborhoods are segmented by LCCP to avoid the inclusion of object borders.

The rest of this paper is organized into four sections. In Section 2, we review and
compare similar methods for solving classification issues in two categories. Section 3
presents the framework of the proposed supervoxel-based RF model, providing the feature
descriptions and RF model process and algorithm. The statistical and visual results of
the data training and validation are shown in Section 4, and our research conclusion and
remarks are given in Section 5.

2. Related Works

Previous classification approaches can be categorized as knowledge-driven and model-
driven methods predicated on the classifier type. Reviews of the logical bases for these
methods are presented below.

2.1. Knowledge-Driven Methods

Knowledge-driven methods involve the detection of structural features consisting of
points; human expert knowledge of the terrestrial surface is then used to extract various
objects from the original point cloud. In some cases, correction systems are applied to fix
obvious faults [16]. Typically, these approaches focus on two crucial points: what features
to extract and how to build a reliable human-knowledge-based system for classification.
Generally, some human-eye optical features, such as height, slope, and color, can be used
in real cases. Huang et al. [22] integrated multispectral imagery and ALS data to obtain the
ground truth red–green–blue (RGB) color and surface elevation values in each pixel and
built a classification system based on color information and urban elevation knowledge
for executing segmentation of different objects. Germaine and Hung [23] constructed two
systems based on surface height and surface slope, respectively. Polygonal features can also
be used in knowledge-based approaches. For instance, Zheng et al. [24] used the Fourier
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fitting method [25] to classify the pointcloud, in which the geometrical eigen features
and basic features were integrated in their classification algorithm. Including spectral
information assures reliable results, and combining various features ensures the system
has high performance. Additionally, simple rules derived from gained features facilitate
increased accuracy in the postprocessing stage. By regularizing objects placed at different
heights and with distinctive surface slopes, a correction system can fix local classification
faults in point clouds [22,26].

Knowledge-driven methods are well-acknowledged for their succinct and distinct pro-
cesses based on the human recognition of ground objects [26]. However, these approaches
rely on prior information, and precise airborne imagery is essential for acquiring reliable
outputs. Moreover, matching the LiDAR dataset and multispectral image coordinates is
time-consuming, which restricts knowledge-based processes to a small area range and can
create spectral error accumulation. Furthermore, specific knowledge cannot generalize
to diverse situations, such as vehicles and clusters on a small scale, which may generate
errors in the final output. Thus, complex urban scenes may be challenging to classify using
knowledge-driven methods.

2.2. Model-Driven Methods

Model-driven methods construct classification models from features extracted from
or calculated based on point clouds, before segregating clouds into a training dataset and
validation dataset. The training set fits the model and modifies the original parameters, and
the validation set provides the current classification performance of the model. Appropriate
model structures are crucial for such methods. The primary differences between knowledge-
and model-driven methods are the classifier types and structures.

Many approaches use convolutional neural networks [27] as the basic model struc-
ture [28–31]. The network structure is designed according to the actual composition of
the point cloud dataset, and then the points are separated into clusters used for input.
Through many rounds of forward and backward propagation, a relatively reliable classifi-
cation model can be built. Varied features are included to increase the input complexity
and optimize model performance. Wang et al. [31] developed a dynamic graph network
structure that could simultaneously finish classification and segmentation to identify shape
properties and include neighborhood features. Hong et al. [28] built upon this method by in-
cluding a modification module to balance the performance and cost and using an optimized
skip connection network for efficient training. Classic models, such as RF, conditional ran-
dom fields [14] with integrated RF, and support vector machines [32], have also been used
for the labeling process [21,33,34]. The supervoxel-based method representing object-based
routes has been incorporated into simple classifiers [35], and the supervoxel-adjacency
relationship can also be considered as a feature of the local neighborhood [36].

Most existing model-driven methods based on supervoxel extraction are prone to
include real object boundaries in the local neighborhood of voxels, which decreases the
homogeneity of supervoxel adjacency and polygonal feature accuracy. Combining a precise
object segmentation utility with previous model-driven methods will effectively solve this
problem. Object edges can be detected by particular network structures or LCCP [37].
Feng et al. [38] developed a local attention-edge convolutional network that identified
objects by summarizing the features of all neighbors as a weight value learned by the
network. The LCCP examined the connection between two adjacent supervoxels and
determined whether they relate to one object by calculating the included angle of two
normal vectors. The former method focused on whole object segmentation, whereas the
latter recognized as many connected edges as possible. To better exploit supervoxel features
and their contextual relationships for point cloud classification, we propose a robust and
effective classification approach that integrates point cloud supervoxels and their LCCP
relations into an RF classifier to improve the accuracy of feature calculation and reduce
computational costs.
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3. Methodology

3.1. Overview of the Approach

The approach starts with a voxel-grid-based downsampling algorithm [39] to prevent
the point cloud from becoming over-dense without impacting the original structure. Next,
a noise-rejection statistical-outlier-removal filter is used to remove dynamic objects and
erroneous points from the aerial laser point cloud. The threshold is calculated from the
average distance between a single point and its k-neighbors referring to a certain range of
standard deviation.

The technical route for our approach after data preprocessing is shown in Figure 1.
The features are divided into three categories, point-based, eigen-based, and grid-based.
First, the original 3D point cloud is transformed into a set of supervoxels by the supervoxel
calculation method, in which points located in the same supervoxel generally have similar
feature descriptions. The original point cloud is also divided using a regular grid to facilitate
the extraction of grid-based elevation features in the later stage. Instead of semantic
labeling of the raw points, supervoxels are used as the basic unit for semantic classification,
and the centroids of the supervoxels are generated from the supervoxel structure. Three
kinds of features are calculated: (1) The eigen-based features are first calculated using a
principal component analysis algorithm, and the corresponding geometric shape features
are generated by deformation and combination with those eigenvalues. Specifically, the
adjacency relationship built by voxel cloud connectivity segmentation (VCCS) is used to
determine the supervoxel neighborhood ranges. (2) The point-based features, including
the local density, point feature histogram, point’s normal vectors, elevation values, and
RGB color properties, are obtained via neighborhood calculation or the point cloud’s raw
attributes. (3) We introduce a grid-based elevation feature to decrease the influence of
uneven topography during point cloud classification. Based on the regularized grid of the
point cloud data, the relative elevation of the horizontal location is used as the elevation
feature of each supervoxel centroid. Finally, all three feature types are used to train the
supervoxel-based RF model, which is used for point cloud classification.

Figure 1. Supervoxel-based random forests framework for point cloud classification. The equation
of the random forest model located at the bottom-left refers to the least squares method applied in
the model to predict unlabeled points, in which Y represents the label, X represents an individual
centroid point, and Θ represents the coefficient matrix.
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3.2. Two-Level Graphical Model Generation for Feature Extraction

Supervoxels are defined as groups of points that contain similar geometric features or
attributes, such as location, color, and normal direction. Additionally, adjacency relation-
ships embedded in supervoxels can provide more effective information for neighborhood
searching, improving the robustness and accuracy of feature calculation. For this classifica-
tion method, we use supervoxels, rather than single points, as the basic unit to construct
the RF model, and the domain information is constrained via LCCP segmentation. There-
fore, a two-level graphical model using supervoxel calculation and LCCP optimization
is generated from the raw point cloud. Figure 2 illustrates the two-level graphical model
generation process.

Figure 2. Illustration of two-level graphical model generation. (a) The fundamental process of
supervoxel-based object segmentation. (b) The octree structure used for supervoxel clustering.
(c) The locally convex connected patches (LCCP) segmentation scheme. Colored arrows show the
corresponding normal vectors of supervoxels.

3.2.1. First-Level Graphical Model Generation by the Supervoxel and VCCS Algorithm

First, we generate the supervoxel model in two steps, namely, randomly setting down
seeds within the point cloud and clustering by calculating the feature distances among
neighboring points. The supervoxel clustering algorithm estimates the point homogeneity
via color, space, and normal dimensions as in Equation (1).

d = ispace ∗ dspace + inormal ∗ dnormal

dspace =

√
Δx2 + Δy2 + Δz2

rvoxel

dnormal =
v1 ∗ v2

| v1 | ∗ | v2 |

(1)

where d represents the summarized estimation of homogeneity across all dimensions, dspace
represents the Euclidean distances between the seed points and surrounding points, and
dnormal is the normal of the fitted plane by the least squares fitting method based on the
neighbor points. In this approach, the weights for distance ispace and normal inormal during
supervoxel clustering are set to 0.4 and 0.6, in which the higher the weight, the greater the
contribution. rvoxel is the size of each supervoxel, and v1 and v2 are the normal vectors
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of pairwise adjacent supervoxels. The entire point cloud is clustered into supervoxels
using Voxel Cloud Connectivity Segmentation (VCCS) as proposed by [18]. Figure 2b
shows the schemes for supervoxel generation in which the octree structure is used to define
branches and separate areas. Based on the supervoxel clustering results, the centroids
of each supervoxel are calculated and then used for RF point cloud classification. All
points within their respective supervoxel have similar features, and the centroid points
are ordered in a mesh-like shape to simplify the complex computation of plane shape
features. Specifically, an adjacency map containing the adjacent connections relations
among supervoxels is simultaneously generated, which presents coterminous connection
information that can greatly reduce the cost of neighborhood searching and improve the
robustness and accuracy during neighbor calculation [40,41].

3.2.2. Second-Level Graphical Model Generation via LCCP Calculation

In order to determine the neighborhood relationship more accurately, we realize the
extraction of a second-level graphical model by applying the Locally Connected Convex
Patches (LCCP) algorithm on the first-level supervoxel model. In this algorithm, the
connection relations implicit in the supervoxels are used for the determination of the
neighborhood information, and these connection relations are defined as edges. The edges
between adjacent supervoxels are given concave and convex type information based on
a surface convexity detection. In order to ensure the aggregation of neighboring super
voxels with similar characteristics, we calculate the “robust neighbors” of each supervoxel
by judging the concave–convex relationship of edges. “Robust neighbors” means that the
domain information can more reasonably represent the geometric features of the current
location. Figure 2 shows the convex–concave estimation method among the supervoxels.
The method of determining the concave–convex relationship is shown in Equation (2).
When two super voxels have a concave domain relationship, they are considered to belong
to two different objects. Therefore, after LCCP-based calculations, the adjacency relations
of super voxels are given concave and convex properties, which can assist in obtaining
more robust domain information quickly and accurately during feature calculations.

d̂ =
−→x1 −−→x2

‖ −→x1 −−→x2 ‖
Δα = −→n1 · d̂ −−→n2 · d̂

(2)

where −→x1 and −→x2 indicate the centroids of these two observed two supervoxels, and −→n1 and−→n2 represent their normal vectors. The relationship is considered a convex connection when
Δα > 0, which indicates the angle between the normal vector of the current supervoxel and
the linear vector defined by −→x1 −−→x2 is small. Alternatively, the relationship is considered a
concave connection when Δα < 0.

3.3. Hybrid Feature Description
3.3.1. Point-Based Feature Description

Considering that some features are extracted from the original point cloud with better
robustness, we present five types of point cloud feature description and extraction methods.
The five main types contain “Local density”, “Point feature histogram (PFH)”, “Direction”,
“Relative elevation”, and “RGB color”, as follows.

(1) Local density of the point cloud: the density feature is calculated as the average
distance from one point to the nearest k-neighbors. For each centroid in the super
voxel, fast retrieval of domain points is achieved by the construction of a KDTREE
and the fast library for approximate nearest neighbors (FLANN) algorithm [42]. Then,
the local density feature of the point is obtained by calculating the average of the
Euclidean distance between two pairs of neighboring points.

(2) Point feature histogram (PFH): The goal of the PFH formulation is to encode a point’s
k-neighborhood geometrical properties by generalizing the mean curvature around
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the point using a multidimensional histogram of values [43,44]. A Point Feature
Histogram representation is based on the relationships between the points in the
k-neighborhood and their estimated surface normals. In this work, the PFH feature of
each centroid point is calculated by KDTREE searching from the original point cloud.

(3) Direction: The direction feature indicates the angle between the normal of the location
and the horizontal plane, which is calculated as follows (Equation (3)).

c =
n1 · n2

| n1 | · | n2 | =
z1√

x1
2 + y1

2 + z1
2 (3)

where c refers to the cosine value, n1 represents the normal vector of the supervoxel,
and n2 is the normal vector of the horizontal plane (defined as (0,0,1)), respectively. In
this paper, to facilitate feature normalization, the cosine value is used to represent the
directional features of the supervoxels.

(4) Relative elevation: The relative elevation feature is the distance from the center
point of the supervoxel to the ground in the extended z-direction. Considering the
influence of ground undulation on elevation features, this paper proposes a grid-based
optimization strategy for elevation feature extraction (see Section 3.3.3).

(5) RGB color: RGB color information can achieve effective judgment of feature types,
and this paper uses color features as a basic feature of supervoxels. Considering
that this paper uses supervoxels as the basic unit for feature classification experi-
ments, their color features are determined by the average value of points inside the
supervoxels.

3.3.2. Eigen-Based Feature Description

Eigen values illustrate the local shape characteristics of the point neighborhood, which
helps distinguish objects, such as ground points which have small values in one direction
and vegetation points which have similar values. The traditional method of computing
Eigen-based features is implemented by K-neighborhood search of point clouds. In or-
der to obtain more robust neighborhood information, this paper implements accurate
neighborhood estimation based on the LCCP algorithm, which can accurately estimate the
boundaries of different types of objects. Then these neighborhood supervoxels satisfying
the LCCP conditions are used for Eigen-based feature calculation. Figure 3 shows the
flow of the super voxel neighborhood calculation method in which the concave–convex
relationship between supervoxels is derived from the second-level graphic model.

Figure 3. Locally convex connected patches (LCCP) neighborhood optimization. The neighborhood
ranges used to calculate eigenvalues are shown at the bottom.
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The three eigenvalues will be calculated by feature decomposition, and sorted in
descending order (λ1 ≥ λ2 ≥ λ3 ≥ 0). Based on the mathematical meaning of eigenvalues,
different combinations of eigenvalues demonstrate particular shape characteristics [10].
In this work, five types of shape features are used for the classification of supervoxels,
including “Curvature”, “Linearity”, “Planarity”, “Scattering”, and “Anisotropy”. The
specific calculation formulas are shown in Table 1.

(1) Curvature: Describes the extent of the curve for a point group.
(2) Linearity: Describes the extent of the line-like shape for a point group.
(3) Planarity: Describes the extent of the plane-like shape for a point group.
(4) Scattering: Describes the extent of the sphere-like shape for a point group.
(5) Anisotropy: Describes the difference between the extents of entropy in respective

directions of eigenvectors for a point group.

Table 1. Computing method for eigenvalue-based shape features. Feature definitions on the left are
described in Section 3.3.2. Three eigenvalue symbols are sorted in descending order from 1 to 3 in
the formulas.

Feature Definition Computing Formula

Curvature Ce =
λ3

λ1+λ2+λ3

Linearity Le =
λ1−λ2

λ1

Planarity Pe =
λ2−λ3

λ1

Scattering Se =
λ1
λ3

Anisotropy Ae =
λ3−λ1

λ3

3.3.3. Grid-Based Elevation Feature Description

When the original elevation features of point cloud data are used for point cloud
data classification, it is easy to produce misclassification in areas with large topographic
undulations. In particular, features with similar geometric shapes or colors can easily cause
confusion in classification, such as the ground and the top surfaces of buildings. Some
methods use DEM information to reduce the influence of terrain height difference on data
classification, but it is often difficult to obtain accurate DEM data. Therefore, this paper
proposes a grid-based method for calculating elevation features, which can accurately
calculate the relative elevation information between the features and the ground. As shown
in Figure 4a, we first project the original point cloud data onto a 2D plane, i.e., XOY plane
and then divide the projected data into a grid according to the area size. Therefore, the
relative elevation of each point can be obtained by subtracting the ground elevation from
that point. In general, we take the smallest elevation value in the grid as the ground
elevation of the target location. However, some hindrances, such as the absence of ground
points below the building roof and large-scale clusters, are typical in 3D urban scenes due
to the shortage of ray reflection, meaning that roof points, especially with a flat shape, are
occasionally confused with ground points. A lattice filter kernel is used to solve the ground
detection error problem, the basic principle of which is similar to image processing [45]. As
illustrated in Figure 4b, each cell is checked by a 5 × 5 filter kernel, the outliers are first
removed by the Gaussian distribution strategy. Then the algorithm corrects the ground
elevation value of the current cell with the average value of the filter, when the standard
deviation does not satisfy the Gaussian distribution condition [46].
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Figure 4. Grid-based elevation computation and filtering. (a) The illustrated point cloud data (left)
and the 2D-projected data with grid segmentation (right). (b) The grid filter examining anomalies of
calculated elevation values in grid squares.

3.4. Supervoxel-Based Random Forests (RF) Model

The RF model is an ensemble learning method for classification, regression, and other
tasks that operates by constructing a multitude of decision trees at training time. For
classification tasks, the output of the random forest is the class selected by the most trees.
In order to integrate the above three hybrid features for point cloud data classification, a
supervoxel-based RF model is constructed in this paper. In this method, the supervoxels
will be used as the basic classification units, and the extracted hybrid features will be used
as training information input for decision tree generation. The random forest construction
process is constrained by two main parameters including the “max depth” and the “total
number of decision trees”. Here, the “max depth” represents the depth of each tree in
the forest. The deeper the tree, the more splits it has, and it captures more information
about the data. However, too large a depth value can easily cause problems such as
overfitting or excess processing time. In this paper, to balance operational efficiency and
classification accuracy, the max depth and the total number of decision trees are set to 25
and 10, respectively. So to obtain an optimal number, the accuracy of the output RF model
is verified with the validation set. The algorithm applies the mean squared generalization
error to evaluate the classification correctness, as Equation (4) shown in [20].

EX,Y = ΣΘΣX,Y(Y − h(X, Θ))2 (4)

where X refers to the random feature vector, and Y refers to the corresponding label. Θ is a
single tree inside the forest, appearing in tandem with one X.

The framework proposed by the ETH Zurich RF template library [47] is used to train
the supervoxel-based random forest model. It should be noted that the framework contains
three kinds of classification method, including ordinary classification, local smooth classifi-
cation, and graph cut-based classification. In our approach, graph cut-based classification
is employed for training purposes, since it is optimized with an energy minimization
method [48] and provides the best overall classification accuracy.
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4. Experimental Results

To verify the effectiveness of the proposed method in this paper, two sets of data were
used for classification testing and accuracy analysis. The publicly available dataset from the
ISPRS benchmark [49] contains data collected in Toronto, Canada, and Vaihingen, Germany,
both the Toronto and German datasets were used for accuracy verification. Subsequently,
a classification experiment was conducted with the airborne LiDAR dataset collected in
Shenzhen City, China. In our experiments, three accuracy assessment metrics were used
for accuracy evaluation according to the conventional accuracy assessment methods for
point cloud classification [50,51]. We selected three indices, including the overall accuracy
(OA), the mean intersection over union (mIoU), and the F1-score, which were calculated
as follows.

OA =
True Positive

True Positive + True Negative + False Positive + False Negative

mIoU =
True Positive

True Positive + 2 × (True Negative + False Positive + False Negative)

p =
True Positive

True Positive + False Positive

r =
True Positive

True Positive + False Negative

F1 =
2 ∗ p ∗ r

p + r

(5)

where True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN)
values are extracted from the confusion matrix of the classification result, and p and r are
the precision and recall percentages, respectively.

4.1. ISPRS Benchmark Datasets
4.1.1. Toronto Sites

The Toronto dataset was divided into two regions, Area 1 and Area 2 for testing
purposes. The classification results are shown in Figure 5. The overall scene was divided
into four types, buildings, vegetation, ground, and background. As shown in Figure 5,
there was a large amount of overlap and crossover between buildings and vegetation in the
Toronto data, as well as incomplete facade collection, which can easily lead to the problem
of confusion between tree and building facades during classification process. Meanwhile,
due to the lack of color information in Toronto’s point cloud data, the classifier relied
more on geometric features for semantic classification.Thanks to the grid-based elevation
features and the supervoxel-optimized Eigen features, the proposed algorithm still achieved
good classification results when only geometric features were used. Figure 6 shows the
comparison of the classification accuracy before and after using the grid-based elevation
features, in which it can be clearly seen that the ground level and the top surfaces of the
buildings could be accurately distinguished after the optimization of the elevation features.

However, the method proposed in this paper still suffered from some classification
errors. As illustrated in Figure 7, some misclassified areas are shown enlarged; those errors
were mainly caused by similar geometric features or missing data. For example, some
buildings were incorrectly classified as ground due to their low elevation values, and some
buildings with missing facades were classified as ground.

In addition, the quantitative classification results were compared with those of five
state-of-the-art algorithms, including MAR_2, MSR, ITCM, TICR, and TUM. The first two
rely mainly on the geometric information of the original point cloud for classification, while
the last three approaches fuse point cloud and image features for classification.The OA, mIoU,
and F1-score are listed in Table 2. The proposed method achieved high accuracy classification
results in both regions, similar to the classification accuracy of MAR_2 and MAR. It should
be noted that the MSR method achieved better classification accuracy in most cases, mainly
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due to the use of DEM data. The proposed method achieved an OA accuracy of 93.2%, mIoU
accuracy of 87.4%, and an F1-score of 92.6% in Area 1; in particular, the F1 accuracy was the
best among all methods. Similarly, in Area 2, the classification method proposed in this
paper achieved an OA accuracy of 93.1%, an mIoU accuracy of 87%, and an F1_score of
85.8% respectively.

Figure 5. Classification results of two Toronto site areas. (a) The classification result of Area 1 and
(b) the clasification result of Area 2.

Figure 6. The comparison of the classification accuracy before and after using the grid-based elevation
features on the Toronto sites.
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Figure 7. Misclassification cases in which roof points were recognized as ground points in the
Toronto sites. (a–c) refer to different types of misclassification results from roof to ground separately.

Table 2. Quantitative comparison of the proposed method and previous related methods tested on
the Toronto sites. Two methods, MAR_2 and MSR, used only the point cloud for classification; MSR
applied terrestrial digital models. ITCM, ITCR, and TUM used the point cloud and images.

Methods
Area 1 Area 2

OA (%) mIoU (%) F1-Score (%) OA (%) mIoU (%) F1-Score (%)

MAR_2 94.3 89.2 88.9 94.0 88.7 88.4
MSR 95.5 91.4 91.2 94.8 90.1 89.7
ITCM 81.3 68.5 66.1 83.0 70.9 67.9
ITCR 84.2 72.7 69.2 85.4 74.5 72.4
TUM 82.6 70.4 68.1 83.1 71.1 68.9

Our method 93.2 87.4 92.6 93.1 87.0 85.8
OA, overall accuracy; mIoU, mean intersection over union.

4.1.2. Vaihingen Sites

The height of buildings in the Vaihingen data was similar to the vegetation and did not
contain color information, which was be a major challenge for point cloud data classification
for the data set. Similar to the experiment of the Toronto area, the scene was divided into
four categories of labels, buildings, vegetation, ground, and background. The classification
results are shown in Figure 8. It can be clearly seen that the classification results were
worse than those of the Toronto data, which was mainly caused by the similarity of geo-
metric features among different types. Due to connections between supervoxels containing
medium-height vegetation and building facades and some oddly curved roof surfaces,
points with building groundtruth values were more likely to be partially or completely
misjudged as trees. Figure 9 shows some cases of misclassification in the Vaihingen region,
in which some parts of buildings were misclassified into trees.

Meanwhile, seven existing classification algorithms were used for comparative analy-
sis of classification accuracy. The OA, mIoU, and F1-score are listed in Table 3. It can be
seen that the classification algorithm proposed in this paper achieved the best classification
accuracy of 85.2% OA, 74.2% mIoU accuracy, and 83.6% F1_score accuracy, respectively.

However, with the building outline explicitly extracted, the proposed method per-
formed well in the remaining areas, achieving an overall F1-score above 83%, which
surpassed some methods using heterogeneous data sources.
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Figure 8. Classification results of the Vaihingen sites.

Figure 9. Misclassified regions in the Vaihingen site caused by unexpected connections between
supervoxels of different objects. (a–c) mean misclassification situations in different minor scenes from
roof to vegetation.

Table 3. Quantitative comparison of the proposed method and previous related methods tested on
the Vaihingen sites sorted by overall accuracy (OA) in ascending order. The F1-score was computed
based on the same categories (building, vegetation, and ground).

Methods OA (%) mIoU (%) F1-Score (%)

UM 80.8 67.8 78.1
BIJ_W 81.5 68.8 78.6
LUH 81.6 68.9 80.4
RIT_1 81.6 68.9 79.0

D_FCN 82.2 69.8 80.9
WhuY3 82.3 69.9 81.0
WhuY4 84.9 73.8 80.8

Our method 85.2 74.2 83.6
mIoU, mean intersection over union.
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4.2. Airborne Laser Scanner Dataset in Urban Scenes of Shenzhen

RGB color information plays a significant role in the proposed classifier because three
discriminative features are computed by RGB reflection data, and multispectral aerial
images cannot be included. Furthermore, the two datasets used for testing carried little
or incomplete spectral band information. Point cloud data assisted by spectral informa-
tion during generation and reconstruction with complete color data and high resolution
can more comprehensively prove the performance of the proposed method. Integrated
reconstruction of the facade is also beneficial for the extraction of buildings.

The selected dataset included four urban regions, one for the training set and three for
independent validation [marked as (a), (b), (c)]. The training area was 350 m × 200 m, and
the validation areas were approximately 400 m × 300 m. The entire dataset was downsam-
pled to a resolution of 0.3 m. The classification results are illustrated in Figure 10. Most
vegetation points and ground points were accurately classified, and explicit outlines of
buildings were visible in the resulting figure. In most scenes, vegetation was distinguished
from adjacent buildings. Moreover, the centroid-based classification method enabled low
computation costs, even though each validation area contained more than four million
points after the downsampling process. This demonstrates that the proposed classifier
successfully handles large datasets. The point-based classification method in CGAL li-
brary [52] was used for comparison purpose. The quantitative performance evaluations of
our proposed method and the pointbased method are shown in Table 4. As expected, the
super voxel-based method proposed in this paper achieved better classification accuracy
in all three regions compared to the traditional point cloud-based methods. Specifically,
the proposed method achieved 3.6, 5.8, and 4.4 percent, respectively, in the OA, mIoU, and
F1_score in Area (a). Similar results were found in the other two regions.

The average performance of the proposed method was higher for the Shenzhen
dataset than the Vaihingen and Toronto datasets. The mostly rectangular rooftop shapes
and integrated facade structures prevented building points from being recognized as
vegetation, whereas the uncertainty of object consistency in the Vaihingen set led to false
classification. Compared with the Toronto sites, which were comparably generated except
without color information, most elevated vegetation points and buildings with low height
and more detailed facades were successfully distinguished using RGB color features in
the Shenzhen dataset. However, some exceptional situations in the dataset affected the
overall accuracy of the classification results. As shown in Figure 11a, the neighborhood
information of partial rooftop points that were similar to roads, such as rises at the edge or
street light posts, reduced the contextual consistency of the local region and affected the
classification. Additionally, due to the intricate and uncertain shape appearances in modern
urban scenes, a single training area provided limited polygonal examples. Parts of buildings
with minor scale or unusual contours that were not provided in the training region were
misclassified as ground pieces in the validation sets [Figure 11b], which reduced the overall
classification accuracy.

Benefiting from supervoxel extraction processing, the point cloud of Shenzhen Uni-
versity can be rapidly aggregated into supervoxel structures, which effectively reduced
the point cloud density and complexity. In turn, with supervoxels as the basic unit, the
classification method proposed in this paper achieved point cloud classification with high
efficiency, and the overall computation costs were about 1.5 h. Moreover, the utilization of
LCCP object homogeneity segmentation in supervoxel-based neighborhoods contributed
to the considerable classification precision with complete object surfaces consisting of point
arrays, which advanced the object-based theory.
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Figure 10. Classification results of airborne LiDAR-generated Shenzhen sites. Three selected sites
have been marked as (a–c).

Figure 11. Misclassification cases in the Shenzhen dataset. (a) Faults due to edge interruption.
(b) Faults due to untrained object shapes.

Table 4. Quantitative evaluation of the supervoxel-based results and point-based results of the
proposed method on the Shenzhen airborne LiDAR dataset.

Area (a) Area (b) Area (c)

OA
(%)

mIoU
(%)

F1-Score
(%)

OA
(%)

mIoU
(%)

F1-Score
(%)

OA
(%)

mIoU
(%)

F1-Score
(%)

Our method 94.0 88.7 90.1 93.5 87.8 91.8 93.5 87.8 91.7
Point based 90.6 82.9 85.6 87.6 78.0 84.2 86.1 75.6 79.8

OA, overall accuracy; mIoU, mean intersection over union.

4.3. Discussions of the Experimental Results

For the classification results of the ISPRS benchmark datasets, due to missing RGB
color information and some incomplete facades of buildings, the classifier lacked RGB
band features, and eigen features were less discriminative. As a result, separated low roofs
were classified as vegetation with a similar height. However, most of the borders dividing
buildings and vegetation were successfully detected, which showed the excellent effect
of applying VCCS and LCCP object-based segmentation into the classifier. For the result
of the dataset of the Shenzhen urban scene, although complicated urban scenes provided
multi-aspect obstacles for the classifier, the outcome of the proposed method reached our
expectations. The proposed classifier achieved a high accuracy classification using only 3D
point cloud data without the assistance of digital models and multispectral images, as illus-
trated in the ISPRS benchmark site outputs. Furthermore, benefited by the RGB information
contained in this dataset, the borders between two objects in different types were more
distinct, which means color information assisted the object-based classification process.

5. Conclusions

In this paper, we proposed a robust and effective airborne LiDAR point cloud classifi-
cation method that integrated hybrid features, including point-based features, eigen-based
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features, and elevation-based features, into a supervoxel RF model. Three main innovations
were applied to effectively improve the classification accuracy of the proposed model.

(1) Rather than single points, we used supervoxels as the basic entity to construct the RF
model and constrain the domain information via LCCP segmentation.

(2) A two-level graphical model involving supervoxel calculation and LCCP optimization
was generated from the raw point cloud, which significantly improved the reliability
and accuracy of neighborhood searching.

(3) The features were divided into three categories based on feature descriptions (point-
based, eigen-based, and grid-based), and three unique feature calculation strategies
were accordingly designed to improve feature reliability. We conducted three ex-
periments using ALS data provided by ISPRS and real scene data collected from
Shenzhen, China, respectively. We compared the quantitative analysis of ALS datasets
with other state-of-the-art methods, and the classification results demonstrated the
robustness and effectiveness of the proposed method. Furthermore, this method
achieved fine-scale classification when the point clouds had different densities.

However, the proposed method still had some limitations on scene generalizability.
The algorithm may fail to recognize roof components when lacking facade information,
which is caused by a loss of the connection relationship between supervoxels. In the future,
we would like to integrate external constraints into the classification process to prevent the
influence of over-segmentation.
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Abstract: In this paper, we focus on the problem of contextual aggregation in the semantic seg-
mentation of aerial images. Current contextual aggregation methods only aggregate contextual
information within specific regions to improve feature representation, which may yield poorly robust
contextual information. To address this problem, we propose a novel multi-level context refinement
network (MLCRNet) that aggregates three levels of contextual information effectively and efficiently
in an adaptive manner. First, we designed a local-level context aggregation module to capture local
information around each pixel. Second, we integrate multiple levels of context, namely, local-level,
image-level, and semantic-level, to aggregate contextual information from a comprehensive perspec-
tive dynamically. Third, we propose an efficient multi-level context transform (EMCT) module to
address feature redundancy and to improve the efficiency of our multi-level contexts. Finally, based
on the EMCT module and feature pyramid network (FPN) framework, we propose a multi-level
context feature refinement (MLCR) module to enhance feature representation by leveraging multi-
level contextual information. Extensive empirical evidence demonstrates that our MLCRNet achieves
state-of-the-art performance on the ISPRS Potsdam and Vaihingen datasets.

Keywords: semantic segmentation; aerial imagery; feature extraction; multi-level context modeling;
feature refinement

1. Introduction

Image segmentation or semantic annotation is an exceptionally significant topic in
remote sensing image interpretation and plays a key role in various real-world applica-
tions, such as geohazard monitoring [1,2], urban planning [3,4], site-specific crop manage-
ment [5,6], autonomous driving systems [7,8], and land change detection [9]. This task
aims to segment and interpret a given image into different image regions associated with
semantic categories.

Recently, deep learning methods represented by deep convolutional neural net-
works [10] have demonstrated powerful feature extr4action capabilities compared with
traditional feature extraction methods, thereby sparking the interest of researchers and
prompting a series of works [11–16]. Among these works, FCN [11] is a pioneer in deep
convolutional neural networks and has made great progress in the field of image segmenta-
tion. Its encoder–decoder architecture first employs several down-sampling layers in the
encoder to reduce the spatial resolution of the feature map to extract features. Then, it uses
several up-sampling layers in the decoder to restore the spatial resolution, and it exhibits
many improvements in semantic segmentation. However, limited by the structure of the
encoder–decoder, FCN suffers from inadequate contextual and detail information. On one
hand, some of the detail information is usually dropped by the down-sampling operation.
On the other hand, due to the inherent nature of convolution, FCN does not provide
adequate contextual information. This task leaves plenty of room for improvement. The
key to improving the performance of semantic segmentation is to obtain strong semantic
representation with detail information (e.g., detailed target boundaries, location, etc.) [17].

Remote Sens. 2022, 14, 1498. https://doi.org/10.3390/rs14061498 https://www.mdpi.com/journal/remotesensing
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To restore detail information, several studies fuse features that come from encoder
(low-level features) and decoder (high-level features) by long-range skip connections. FPN-
based approaches [18–20] employ a long-range lateral path to refine feature representations
across layers iteratively. SFNet [17] extracts location information from low-level features at
a limited scope (e.g., 3 × 3 kernel size) and then applies it to calibrate the target boundaries
of high-level features. Although impressive, these methods solely focus on harvesting
contextual information from a local perspective (the local level) and do not aggregate
contextual information from a more comprehensive perspective.

Furthermore, to improve the intra-class consistency of feature representation, some
studies enhance feature representation by aggregating contextual information.
Wang et al. [21] proposed the self-attention mechanism, a long-range contextual relation-
ship modeling approach that is used by the segmentation model [22–25] to aggregate
contextual information across an image adaptively. EDFT [26] designed the Depth-aware
Self-attention (DSA) Module, which uses the self-attention mechanism to aggregate image-
level contextual information to merge RGB features and depth features. Nevertheless,
these approaches only focus on harvesting contextual information from the perspective
of the whole image (the image level) without explicit guidance of prior context informa-
tion [27], and they suffer from high computational complexity O((HW)2), where HW is
the input image size [28]. In addition, OCRNet [29], ACFNet [30], and SCARF [31] model
the contextual relationships within a specific category region based on coarse segmentation
(the semantic level). However, in some regions, the contextual information tends to be
unbalanced (e.g., pixels in the border or small-scale object regions are susceptible to inter-
ference from another category), leading to the misclassification of these pixels. Moreover,
ISNet [32] models contextual information from the perspective of the image level and
semantic level. HMANet [33] designed a Class Augmented Attention (CAA) module to
capture semantic-level context information and a Region Shuffle Attention (RSA) module to
exploit region-wise image level context information. Although these methods improve the
intra-class consistency of the feature representation, they still lack local detail information,
resulting in lower classification accuracy in the object boundary region.

Several works have attempted to combine local-level and image-level contextual in-
formation to enhance the detail information and intra-class consistency of feature maps.
MANet [34] introduces the multi-scale context extraction module (MCM) to extract both
local-level and image-level contextual information in low-resolution feature maps.
Zhang et al. [35] aggregate local-level contextual information in a high-resolution branch
and harvest image-level contextual information in a low-resolution branch based on HRNet.
HRCNet [36] proposes a light-weight dual attention (LDA) module to obtain image-level
contextual information, and then the feature enhancement feature pyramid (FEFP) module
is designed to exploit the local-level and image-level contextual information in parallel
structure. Although these methods harvest local-level and image-level contextual infor-
mation within the single module or between different modules, they are still missing the
contextual dependencies of distinct classes. This paper seeks to provide a solution to
these issues by integrating different levels of contextual information efficiently to enhance
feature representation.

To this end, we propose a novel network called the multi-level context refinement
network (MLCRNet) to harvest contextual information from a more comprehensive per-
spective efficiently. The basic idea is to embed local-level and image-level contextual
information into semantic-level contextual relations to obtain more comprehensive and
accurate contextual information to augment feature representation. Specifically, inspired by
the flow alignment module in SFNet [17], we first design a local-level context aggregation
module, which discards the warp operation that demands extensive computation and en-
hances the feature representation with a local contextual relationship matrix directly. Then,
we propose the multi-level context transform (MCT) module to integrate three levels of con-
text, namely, local-level, image-level, and semantic-level, to capture contextual information
from multiple aspects adaptively, which can improve model performance but dramatically
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increased GPU memory usage and inference time. Thus, an efficient MCT (EMCT) module
is presented to address feature redundancy and to improve the efficiency of our MCT
module. Subsequently, based on the EMCT block and FPN framework, we propose a multi-
level context prior feature refinement module called the multi-level context refinement
(MLCR) module to enhance feature representation by aggregating multi-level contextual
information. Finally, our model refines the feature map iteratively across FPN [18] decoder
layers with MLCR.

In summary, our contribution falls into three aspects:

1. We propose a MCT module, which dynamically harvests contextual information from
the semantic, image, and local perspectives.

2. The EMCT module is designed to address feature redundancy and improve the
efficiency of our MCT module. Furthermore, a MLCR module is proposed on the
basis of EMCT and FPN to enhance feature representation by aggregating multi-level
contextual information.

3. We propose a novel MLCRNet based on the feature pyramid framework for accurate
semantic segmentation.

2. Related Work

2.1. Semantic Segmentation

Over the past decade, deep learning methods represented by convolutional neural
networks have made substantial advances in the field of semantic segmentation. FCN
is a seminal work that applies convolutional layers on the entire image to replace fully
connected layers to generate pixel-by-pixel labels, and many researchers have made great
improvements based on it. These improvements can be roughly divided into two categories.
One is for encoders to improve the robustness of feature representation. Yu et al. [37] de-
signed an efficient structure called STDC for the semantic segmentation task, which obtains
variant scalable receptive fields with a small number of parameters. HRNet [38] obtains a
strong semantic representation with detail information by parallelizing multiple branches
with different spatial resolutions. The other improvement is for the decoder, which intro-
duces richer contextual information to enhance feature representation. DeepLab [13–15]
presents the ASPP module that collects multi-scale contexts by employing a series of
convolutions with different dilation rates. SENet [39] harvests global contexts by using
global average pooling (GAP), and GCNet [40] adopts query-independent attention to
model global contexts. This work concentrates on the latter, which aggregates more robust
contextual information to enhance feature representation.

2.2. Context Aggregation

Based on the scope of context modelling, we can roughly categorize these contextual
aggregation methods into three categories, namely, local level, image level, and semantic
level. OCRNet [29], ACFNet [30], and SCARF [31] model contextual relationships within a
specific category region based on coarse segmentation results. FLANe [41] and DANet [22]
use self-attention [21] to gather image-level contexts along channel and spatial dimensions.
Li et al. [42] present a kernel attention with linear complexity to capture image-level
context in the spatial dimension. ISANet [43] disentangles dense image-level contexts
into the product of two sparse affinity matrices. CCNet [44] iteratively collects contextual
information at a criss-cross pathway to approximate image-level contextual information.
PSPNet [45] and DeepLab [13–15] harvest context at multiple scales, and SFNet [17] harvests
local-level contextual information by using the flow alignment module.

2.3. Semantic Segmentation of Aerial Imagery

Unlike natural images, the use of semantic segmentation in aerial images is more
challenging. Niu et al. [33] proposed hybrid multiple attention (HMA), which models
attention in channel, spatial, and category dimensions to augment feature representation.
Yang et al. [46] designed a collaborative network for image super-resolution and the
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segmentation of remote sensing images, which takes low-resolution images as input to
obtain high-resolution semantic segmentation and super-resolution image reconstruction
results, thereby effectively alleviating the constraints of inconvenient high-resolution data as
well as limited computational resources. Saha et al. [47] proposed a novel unsupervised joint
segmentation method, which separately feeds multi-temporal images to a deep network,
and the segmentation labels are obtained from the argmax classification of the final layer.
Du et al. [48] proposed an object-constrained higher-order CRF model to explore local-level
and semantic-level contextual information to optimize segmentation results. EANet [49]
combines aerial image segmentation with edge prediction tasks in a multi-task learning
approach to improve the classification accuracy of pixels in object contour regions.

3. Methods

3.1. General Contextual Refinement Framework

As shown in Figure 1, the general contextual refinement scheme can be divided into
three parts, namely, context modeling, transformation, and weighting:

C = fc(X) (1)

A = ft(C) (2)

X′ = fw(A, g(X)) (3)

where X ∈ RD is the input feature map, fc is the contextual information aggregate function,
C is the context relation matrix, function ft is adopted to transform context relation into
context the attention matrix A ∈ RD, fw is the weighting function, and X′ ∈ RD is the
output feature map. The function g is used to calculate a better embedding of the input
feature map. In this paper, we take g as part of fw and set g as identity embedding:
g(x) = x.

Context 
Modeling

Transform

Weighting

C

A XX’

Figure 1. General contextual refinement framework.

According to the different context modelling methods, the generic definition can be
divided into three specific examples, namely, local-level context, image-level context, and
semantic-level context.

3.1.1. Local-Level Context

The main purpose of proposed local-level context is to calibrate misalignment pixels
between fine and coarse feature maps from the encoder and decoder. Concretely, stan-
dard encoder–decoder semantic segmentation architecture relies heavily on up-sampling
methods to up-sample the low spatial resolution strong semantic feature maps into high
spatial resolution. However, the widely used up-sampling approaches, such as bilinear
up-sampling, can not recover spatial detail information, which is lost during the down-

301



Remote Sens. 2022, 14, 1498

sampling process. Therefore, the misalignment problem must be solved by utilizing the
precise position information from the encoder feature map. As depicted in Figure 2, we
first harvest local-level context information CL:

CL = ζ(Cat(τ(F), β(X))) (4)

where F ∈ RC′×HW is a C′-dimensional feature map from the encoder; X ∈ RC×H×W is the
decoder feature map; τ and β are used to compress the channel depth of F and X to be the
same, respectively; Cat represents the channel concatenation operation; ζ is implemented
by one 3 × 3 convolutional layer; CL ∈ RK×HW ; and K is the category number. Then, CL is
transformed into the local-level context attention matrix AL:

AL = ϕ(CL), (5)

where ϕ is the local-level context transformation function and implemented by one 1 × 1
convolutional layer, and AL ∈ RC×HW .

F

X

CLA L

Figure 2. Local-level context module.

3.1.2. Image-Level Context

The main purpose of the image-level context is to model the contextual information
from the perspective of the whole image [32]. Here, we adopt the GAP operation to gather
image-level prior context information CI :

CI = ρ(GAP(X)) (6)

where ρ is implemented by two 1 × 1 convolutional layer, and CI ∈ RC×1. Then, repeat is
adopted to generate the image-level context attention matrix AI :

AI = repeat(CI) (7)

where AI ∈ RC×HW is the image-level context attention matrix.

3.1.3. Semantic-Level Context

The central idea of semantic-level context is to aggregate contextual information based
on semantic-level prior information [29–31]. We first employ an auxiliary segmentation
head ξ and class dimension normalized exponential function So f tmax to predict the cate-
gory posterior probability distribution P:

P = So f tmax(ξ(X)) (8)

where X ∈ RC×HW (C, H, and W stand for the number of channels, height, and width of
the feature map, respectively), and P ∈ RK×HW (K is the number of semantic categories).
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Then, we aggregate the semantic prior context CS according to the category posterior
probability distribution:

CS = XPT (9)

where CS ∈ RC×K is the semantic-level contextual information. Finally, we apply self-
attention to generate the semantic-level context attention matrix AS:

AS = η(CS)So f tmax

(
φ
(
CT

S
)
ψ(X)√
d

)
(10)

where AS ∈ RC×HW is the semantic-level context attention matrix, η, φ, and ψ are em-
beddings implemented by two 1 × 1 convolutional layer, and d is the number of the
middle channel.

3.2. EMCT

The intuition of the proposed EMCT is to efficiently and dynamically extract contextual
information from the category, image, and local perspectives.

3.2.1. Multi-Level Context Transform

The most straightforward way to transform multi-level contextual information is to
directly sum up all levels’ context attention matrices. As shown in Figure 3, we propose
a multi-level context transformation block, called MCT block, which first computes the
local-level, image-level and semantic-level contextual attention matrices separately, and
then directly sums them together to obtain the multi-level contextual attention matrix:

ÂML = reshape(AL + AI + AS) (11)

where AL ∈ RC×HW , AI ∈ RC×HW , and AS ∈ RC×HW are the local-level, image-level
and semantic-level contextual attention matrices mentioned in Section 3.1, reshape is
adopted to switch the dimension of the multi-level context attention matrix to RC×H×W ,
and ÂML ∈ RC×H×W is the multi-level context attention matrix.

Fusion 

Local-Level Context

Image-Level Context

Semantic-Level Context

X

F

P

CL

CI

CS

A L

A S

A IA ML
^

Figure 3. The multi-level context transform (MCT) module.
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3.2.2. Reduction of Computational Complexity

To alleviate contextual information redundancy and reduce computational complexity,
we design an EMCT module by reframing the context transform operation based on the
MCT block. As illustrated in Figure 4, we construct the EMCT block as:

AML = (CS � CI)CL (12)

where AML ∈ RC×H×W and � is the broadcast element-wise multiplication that we use to
embed image-level contextual information into semantic level contextual information. Then,
we further fuse it with the local contextual information matrix CL by matrix multiplication
to generate the multi-level contextual relationship matrix AML. Our designed EMCT
module outperforms the MCT module in terms of time complexity and space complexity.
Detailed complexity comparison results are presented in Section 4.2.4.

Ef cient Fusion 

Local-Level Context

Image-Level Context

Semantic-Level Context

X

F

P

CL

A ML CI

CS

Figure 4. The efficient multi-level context transform (EMCT) module. The image-level contextual
information CI is first embedded into semantic-level contextual information CS, then we further fuse
them with local contextual information matrix CL by matrix multiplication to generate multi-level
contextual attention matrix AML.

3.3. Multi-Level Context Refinement Module

Based on the EMCT block, we propose a multi-level context feature refinement module
called the MLCR module. According to Figure 5, we construct the MLCR block as:

X′ = [EMCT(Upsample2×(X), F)� Upsample2×(X)]⊕ F (13)

where F ∈ RC×H×W is the fine feature map from the encoder, X ∈ RC×H/2×W/2 is the prior
decoder layer output, Upsample2× is the bilinear up-sample operation, ⊕ stands for the
broadcast element-wise addition, and X′ is the refined feature map.
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EMCT

F

X

X’ A ML

Figure 5. MLCR module.

3.4. MLCRNet

Finally, we construct a coarse-to-fine network based on the MLCR module called
MLCRNet (Figure 6). MLCRNet incorporates the backbone network and FPN decoder,
and any standard classification network with four stages (e.g., ResNet series [16,50,51])
can serve as the backbone network. The FPN [18] decoder progressively fuses high-level
and low-level features by bilinear up-sampling to build up a hierarchical multi-scale
pyramid network. As shown in Figure 6, the decoder can be seen as an FPN armed with
multiple MLCRs.

 

MLCR

1x1
Conv

MLCR MLCR

Input

Prediction

X4X3X2X1

F4F3F2F1

Figure 6. Overview of the proposed MLCRNet.

Initially, we feed the input image I ∈ R3×H×W into the backbone network and pro-
jected it to a set of feature maps {Fs}s∈[1,4] from each network stage, where Fs ∈ RCs×Hs×Ws

denotes the i-th stage of the backbone output, Hs =
H

2s+1 , and Ws =
W

2s+1 . Then, considering
the complexity of the aerial image segmentation task and the overall network computation
cost, we replace the 4th stage of the FPN [18] decoder with one 1 × 1 convolution layer,
reduce the channel dimension to Cd, and obtain the feature maps X4 ∈ RCd×H4×W4 . Then,
we replace all the rest of the stages of the FPN decoder with MLCR:

Xs = MLCR
(

Xs+1, Fs+1
)

(14)
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where Xs ∈ RCd×Hs×Ws is the FPN decoder output feature map of stage s ∈ [1, 3], MLCR
is the MLCR module, and Fs is the backbone network output feature map of stage s. The
coarse feature map Xs and the fine feature map Fs are fed into the MLCR module to produce
the fine feature map X1. We obtain the output feature map X1 by refining the feature maps
iteratively. Finally, following the same setting of FPN, {Fs}s=1,2,3,4 are up-sampled to the
same spatial size of F1 and concatenated together for prediction.

4. Experiments and Results

In this part, we first introduce the benchmarks, implementation, and training details of
the proposed network. Next, we introduce the evaluation metric. Afterwards, we perform
a string of ablation experiments on the Potsdam dataset. Finally, we compare the proposed
method with the others from Potsdam and Vaihingen.

4.1. Experimental Setup
4.1.1. Benchmarks

We conducted experiments on two challenging datasets from the challenging 2D
Semantic Labeling Contest held by the International Society for Photogrammetry and
Remote Sensing (ISPRS).

Potsdam. The ISPRS Potsdam [52] data set contains 38 orthorectified patches, each
of which is composed of four wave bands, namely, red (R), green (G), blue (B), and near-
infrared (NIR), plus the corresponding digital surface model (DSM). All patches have a
spatial resolution of 6000 × 6000 pixels and a ground sampling distance (GSD) of 5 cm. In
terms of dataset partitioning, we randomly selected 17 images as the training set, 14 images
as the test set, and 1 image as the validation set. It should be noted that we do not use NIR
and DSM in our experiments.

Vaihingen. Unlike the Potsdam semantic labeling dataset, Vaihingen [52] is a relatively
small dataset with only 33 patches and an average size of 2494 × 2064 pixels. Each of
them contains NIR-R-G channels. Following the division method suggested by the dataset
publisher, we used 16 patches for training and 17 for testing.

4.1.2. Implementation Details

We utilized ResNet50 [16] pre-trained on ImageNet [53] as the backbone by dropping
the last several fully connected layers and by replacing the last stage down-sampling
operations by dilated convolutional layer with dilation rate 2. Aside from the backbone, we
applied Kaiming initialization [54] to initialize the weights. We replaced all batch normal-
ization (BN) [55] layers in the network with Sync-BN [56]. Given that our model adopted
deep supervision [57], for fair comparison, we used deep supervision in all experiments.

4.1.3. Training Settings

In the training phase, we adopted the stochastic gradient descent (SGD) optimizer with
a batch size of 16, and the initial learning rate, momentum, and weight decay were set to
0.001, 0.9, and 5 ×10−4, respectively. As a common practice, ”Poly” learning rate schedules

were adopted to update the initial learning rate by a decay factor
(

1 − cur_iter
total_iter

)0.9
after

each iteration. For Potsdam and Vaihingen, we set the training iterations as 73.6 K.
In practice, suitably enlarging the size of the input image can improve network

performance. After balancing performance and memory constraints, we employed a sliding
window with 25% overlap and clipped the original image into pixel 512 × 512 patches. We
adopted random horizontal flip, random transpose, random scaling (scale ratio from 0.5 to
2.0), and random cropping with a crop size of 512 × 512 as our data augmentation strategy
for all benchmarks.
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4.1.4. Inference Settings

During inference, we used the same clipping method as the training phase. By default,
we do not use any test time data augmentation. For the comprehensive quantitative
evaluation of our proposed method, the mean intersection of union (mIoU), overall accuracy
(OA), and average F1 score (F1) were used for accurate comparison. Furthermore, a
number of float-point operations (FLOPs), memory cost (Memory), number of parameters
(Parameter), and frames per second (FPS) were adopted for computation cost comparison.

4.1.5. Reproducibility

We conducted all experiments based on the PyTorch (version ≥ 1.3) [58] framework
and trained on tow NVIDIA RTX 3090 GPUs with a 24 GB memory per card. Aside from
our method, all models were obtained from open sourcing code.

4.2. Ablation Study
4.2.1. Ablation Studies of the MLCR Module to Different Layers

To demonstrate the effectiveness of the MLCR, we replaced various FPN [18] decoder
stages with our MLCR. As illustrated in Table 1, from the top four rows, MLCR enhances
all stages and exhibits the most progress at Stage 1, bringing an improvement of 1.3% mIoU.
By replacing MLCR in all stages, we achieved 76.0% mIoU by an improvement of 1.9%.

Table 1. Ablation results for MLCR module to different insert positions on Potsdam test set.

Method 3 2 1 mIoU (%) Δα (%)

Baseline 74.1 —

MLCR � 74.8 0.7 ↑
MLCR � 75.0 0.9 ↑
MLCR � 75.4 1.3 ↑
MLCR � � 75.7 1.6 ↑
MLCR � � � 76.0 1.9 ↑

We up-sampled and visualized the feature maps outputted from the 4th stage of
FPN [18] and after MLCR enhancement, as shown in Figure 7. The features enhanced by
MLCR are more structural.

4.2.2. Ablation Studies of Different Level Contexts

To explore the impact of different levels of context on performance, we set the irrelevant
contextual information to one and then observed how performance was affected by different
levels of contextual information (e.g., set the image level context information CI and local
level context information CL to one when investigating the importance of semantic level
context). As shown in Table 2, the first to fourth rows suggest that improvements can come
from any single level of context. Compared with the baseline, the addition of semantic-
level and image-level contextual information brings 1.2% and 1.3% mIoU improvement,
respectively. However, the addition of local-level context information only results in a
0.9 app mIoU improvement, most likely because local-level context improves the accuracy
of object boundary areas, which occupy a comparatively small area. Meanwhile, combining
semantic-level context and image-level context yields a result of 75.7% mIoU, which brings
1.4% improvement. Similarly, combining image-level context with local-level context also
results in a 1.5% mIoU improvement. Finally, when we integrated local-level, image-level,
and semantic-level context, it behaved superiorly compared with other methods, thereby
further improving to 76.0%. In summary, our approach brings great benefit via exploiting
multi-level context.
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Figure 7. Visualization of features. Our module enhances the representation of more structural features.

Table 2. Ablation studies of different level context on Potsdam test set.

Method S I L mIoU (%) Δα (%)

Baseline — — — 74.1 —
� 75.3 1.2 ↑

� 75.4 1.3 ↑
� 75.0 0.9 ↑

� � 75.6 1.5 ↑
� � 75.5 1.4 ↑
� � 75.6 1.5 ↑
� � � 76.0 1.9 ↑

4.2.3. Ablation Studies of Local-Level Context Receptive Fields

To evaluate our proposed local-level context, we varied the kernel size to investigate
the effect of different harvesting scopes on local-level contextual information, and the results
are reported in Table 3. Appropriate kernel sizes (e.g., 3 × 3) can achieve maximum accuracy
(76.0% mIoU) with a small additional computational cost. However, larger convolutions
(e.g., 5 × 5) achieve results (75.8%) similar to those of 3 × 3 but come with a significant
additional computational expense. Notably, smaller kernel sizes (e.g., 1 × 1) yield results
similar to those when local context information (e.g., set local contextual relation CL as
one) is eliminated, with results of 75.5% and 75.5%, respectively. This finding demonstrates
that our proposed local-level context is effective in harvesting local information within an
appropriate scope.
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Table 3. Ablation study on kernel size k in local-level context module.

Method mIoU (%) FLOPs (G)

k = 1 75.5 42.7
k = 3 76.0 43.3
k = 5 75.8 44.3
k = 7 75.8 45.9

4.2.4. Ablation Studies of Computation Cost

We further studied the efficiency of the MLCR module by applying it to the baseline
model. We reported the model memory cost, parameter number, FLOPs, FPS, and per-
formance in the inference stage with the batch of size one. As illustrated in Table 4, the
performance difference between MCT and EMCT is statistically negligible. However, EMCT
only incurs minimal additional computation cost overhead. Specifically, MCT increases
GPU memory usage by 255 M compared with the Baseline. However, EMCT increased it by
only 2 M, and the same was true for the Parameter (+2.1 vs. +0.5), GFLOPs (+8.0 vs. +0.6),
and FPS (−26.7 vs. −10.3).

Table 4. Ablation study on computation cost.

Method Memory (Mb) Parameter (M) FLOPs (G) FPS mIoU (%)

Baseline 915 25.2 42.7 90.3 74.1
MCT 1170 (+255) 27.3 (+2.1) 50.7 (+8.0) 63.6 (−26.7) 75.8 (+1.7)

Efficient MCT 917 (+2) 25.7 (+0.5) 43.3 (+0.6) 80.0 (−10.3) 76.0 (+1.9)

4.3. Comparison with State-of-the-Art

Potsdam. Given that some models (e.g., ACFNet [30], SFNet [17], and SCARF [31])
apply additional context modelling blocks, such as ASPP [13] or PPM [45], between the
backbone network and the decoder, we removed these additional blocks for a fair com-
parison. Considering that the ASPP module is part of the decoder in DeepLabV3+ [15],
we retained the ASPP module in DeepLabV3+. Likewise, we preserved the PPM module
in PSPNet [45]. Tables 5 and 6 compare the quantification results on the Potsdam test
set. At first glance, our method achieves the best performance (76.0% mIoU) among these
approaches. In the subsequent sections, we analyze and compare these approaches in detail.

Table 5. Quantitative comparisons with state-of-the-arts on Potsdam test set.

Model Backbone Stride mIoU (%) Acc (%) F1
Parameter

(M)
FLOPs (G)

FCN [11] ResNet50 16× 72.5 83.0 83.5 32.9 33.7
OCRNet [29] ResNet50 16× 73.9 84.0 84.4 39.0 47.6
CCNet [44] ResNet50 16× 74.1 84.1 84.6 47.4 57.4
ISANet [43] ResNet50 16× 74.5 84.5 84.8 40.0 49.5
PSPNet [45] ResNet50 16× 74.5 84.2 84.8 46.6 52.0
ACFNet [30] ResNet50 16× 74.7 84.3 84.9 30.1 39.3
DANet [22] ResNet50 16× 74.9 84.4 85.1 47.4 198.1

DepLabV3+ [15] ResNet50 16× 75.1 84.7 85.1 40.3 69.3
MANet [42] ResNet50 16× 75.2 84.7 85.2 33.5 49.6
AttUNet [59] ResNet50 16× 75.3 84.6 85.3 96.5 207.8

SFNet [17] ResNet50 16× 75.4 84.9 85.4 30.6 100.1
ISNet [32] ResNet50 16× 75.7 85.0 85.6 44.5 58.8

SCARF [31] ResNet50 16× 75.7 85.3 85.6 25.9 45.0

Ours ResNet50 16× 76.0 85.2 85.8 25.7 43.3
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Table 6. Per-class results (mean intersection over union) on the Potsdam test set.

Model Imp.sur Building Low.veg Tree Car Clutter mIoU(%)

FCN [11] 79.8 90.3 70.6 72.6 72.2 49.8 72.5
OCRNet [29] 80.9 90.9 71.6 73.5 74.7 51.9 73.9
CCNet [44] 81.1 91.5 71.9 73.3 75.6 51.3 74.1
ISANet [43] 81.2 91.5 72.4 74.1 74.7 52.8 74.5
PSPNet [45] 81.4 91.3 72.1 74.1 75.4 52.5 74.5
ACFNet [30] 81.3 91.4 71.5 73.4 79.4 51.0 74.7
DANet [22] 81.7 91.5 72.0 74.4 76.4 53.2 74.9

DepLabV3+ [15] 81.5 91.4 72.0 73.1 80.9 51.4 75.1
MANet [42] 81.6 91.1 72.2 73.8 81.7 50.6 75.2
AttUNet [59] 81.6 91.3 71.9 73.1 81.4 52.3 75.3

SFNet [17] 81.9 91.5 72.5 73.7 81.0 51.8 75.4
ISNet [32] 82.1 91.7 72.7 74.3 81.1 52.1 75.7

SCARF [31] 82.1 91.5 72.8 74.1 81.4 52.1 75.7

Ours 82.3 91.4 73.1 73.7 81.6 53.7 76.0

Table 5 shows that MLCRNet outperforms existing approaches with 76.0% mIoU,
85.2% OA, and a 85.8 F1 score on the Potsdam test set. Among previous works, semantic-
level context methods, for instance, OCRNet [29], ACFNet [30], and SCARF [31], achieve
73.9% mIoU, 74.7% mIoU, and 75.7% mIoU, respectively. Image-level context models,
such as CCNet [44], ISANet [43], and DANet [22], achieve 74.1% mIoU, 74.5% mIoU,
and 74.9% mIoU, respectively. Local-level context approach SFNet [17] yields a result of
75.4% mIoU, 84.9% OA, and an 85.4 F1 score. Multi-level context methods, such as ISNet,
MANet, DeepLabV3+, and PSPNet, reach 75.7% mIoU, 75.2% mIoU, 75.1% mIoU and
74.5% mIoU, respectively. Compared with these methods, MLCRNet harvests contextual in-
formation from a more comprehensive perspective, thereby achieving the best performance
results with the lowest number of parameters (25.7 M) and relatively modest FLOPs (43.3 G).

Table 6 summarizes the detailed per-category comparisons. Our method achieves
improvements in categories such as impervious surfaces, low vegetation, cars, and clut-
ter. Our method effectively preserves the consistency of segmentation within objects at
various scales.

Figure 8 shows the visualization results of our proposed MLCRNet and baseline model
on the Potsdam datasets, which further proves the reliability of our proposed method.
As can be observed, by introducing multi-level contextual information, the segmentation
performance of large and small objects can be well improved. For example, in the first and
third rows, our method improves the consistency of segmentation within large objects. In
the second rows, our MLCR improves the consistency of segmentation within large objects.
In the second row, our method not only enhances the consistency of the segmentation
within small objects but also improves the performance of regions that are easily confused
(e.g., the region sheltered by trees, buildings, or shadows). In addition, some robustness
experiment results are presented in the Appendix A.

Vaihingen. We conducted further experiments on Vaihingen datasets, which is a
challenging remote sensing image semantic labelling dataset with a total data volume
(number of pixels) of roughly 8.1% of that of Potsdam. Table 7 summarizes the results, and
our method achieves 68.1% mIoU, 77.5% OA, and a 79.8 F1 score, thereby significantly
outperforming previous state-of-the-art methods by 1% mIoU, 1.1% OA, and a 0.8 F1 score
due to the robustness of MLCRNet.

310



Remote Sens. 2022, 14, 1498

 

Figure 8. Qualitative comparisons against the Baseline on the Potsdam test set. We marked the
improved regions with red dashed boxes (best viewed when colored and zoomed in).

Table 7. Quantitative comparisons with state-of-the-arts on Vaihingen test set.

Model Backbone Stride mIoU (%) Acc (%) F1

FCN [11] ResNet50 16× 64.6 74.7 77.1
CCNet [44] ResNet50 16× 65.5 75.2 77.7

OCRNet [29] ResNet50 16× 66.3 76.5 78.6
ISNet [32] ResNet50 16× 66.4 76.7 78.6

ISANet [43] ResNet50 16× 66.6 76.4 78.7
PSPNet [45] ResNet50 16× 66.6 76.0 78.6
ACFNet [30] ResNet50 16× 66.7 76.4 78.7
DANet [22] ResNet50 16× 66.8 76.4 78.8

DepLabV3+ [15] ResNet50 16× 66.9 76.4 78.8
MANet [42] ResNet50 16× 66.9 76.2 78.8
AttUNet [59] ResNet50 16× 67.1 76.4 79.0

Ours ResNet50 16× 68.1 77.5 79.8

As listed in Table 8, our proposed method achieves outstanding performance consis-
tently in categories such as impervious surfaces, buildings, low vegetation, trees, and cars.
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Table 8. Per-class results (mean intersection over union) on the Vaihingen test set.

Model Imp.sur Buildings Low.veg Tree Car Clutter mIoU (%)

FCN [11] 78.9 86.1 63.8 72.8 49.9 36.0 64.6
CCNet [44] 80.1 86.7 65.0 73.5 52.5 35.3 65.5

OCRNet [29] 79.6 86.5 64.6 73.5 54.1 39.4 66.3
ISNet [32] 79.8 86.1 63.8 72.9 58.8 36.9 66.4

ACFNet [30] 80.6 87.1 65.2 74.1 57.8 35.3 66.7
DANet [22] 80.1 86.4 65.3 73.8 59.4 36.0 66.8

DepLabV3+ [15] 80.4 86.5 64.3 73.7 61.3 35.2 66.9
MANet [42] 80.3 86.5 64.1 73.5 63.4 33.7 66.9
AttUNet [59] 80.4 86.6 64.3 73.7 63.2 34.4 67.1

Ours 81.3 87.2 65.4 74.3 64.4 36.1 68.1

To further understand our model, we displayed the segmentation results of the Base-
line and MLCRNet on the Vaihingen datasets, which can be seen in Figure 9. By integrating
different levels of contextual information to reinforce feature representation, MLCRNet
increases the differences among the different categories. For example, in the first and
second rows, some regions suffer from local noise (e.g., occluders such as trees, buildings,
or shadows) and tend to be misclassified. Our proposed MLCRNet assembles different
levels of contextual information to eliminate local noise and to improve the classification
accuracy in these regions.

 

Figure 9. Qualitative comparisons between our method and Baseline on Vaihingen test set. We
marked the improved regions with red dashed boxes (best viewed when colored and zoomed in).
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5. Discussion

Previous studies have explored the importance of different levels of context and
have made many improvements in semantic segmentation. However, these approaches
tend to only focus on level-specific contextual relationships and do not harvest contextual
information from a more holistic perspective. Consequently, these approaches are prone
to suffer from a lack of contextual information (e.g., image-level context provides little
improvement in identifying small targets). To this end, we aimed to seek an efficient and
comprehensive approach that can model and transform contextual information.

Initially, we directly integrated local-level, image-level, and semantic-level contextual
attention matrices, which improved model performance but dramatically increased GPU
memory usage and inference time. We realize that these three levels of context are not
orthogonal. Moreover, concatenating the three levels of contextual attention matrices
directly suffers from the redundancy of contextual information. Hence, we designed the
EMCT module to transform the three levels of contextual relationships into a contextual
attention matrix effectively and efficiently. The experimental results suggest that our
proposed method has three advantages over other methods. First, our proposed MLCR
module has made progress in quantitative experimental results, and ablation experimental
results on the Potsdam test set reveal the effectiveness of our proposed module, thereby
lifting the mIoU by 1.9% compared with the Baseline and outperforming other state-of-the-
art models. Second, the computational cost of our proposed MLCR module is less than those
of other contextual aggregation methods. Relative to DANet, MLCRNet reduces the number
of parameters by 46% and the FLOPs by 78%. Lastly, from the qualitative experimental
results, our MLCR module increases the consistency of intra-class segmentation and object
boundary accuracy, as shown in the first row of Figure 10. MLCNet improves the quality of
the car edges while solving the problem of misclassification of disturbed areas (e.g., areas
between adjacent vehicles, areas obscured by building shadows). The second and third
rows of Figure 10 show the power of MLCRNet to improve the intra-class consistency of
large objects (e.g., buildings, roads, grassy areas, etc.). Nevertheless, for future practical
applications, we need to continue to improve accuracy.

Figure 10. Qualitative comparison in terms of prediction errors on Potsdam test set, where correctly
predicted pixels are shown with a black background and incorrectly predicted pixels are colored
using the prediction results (best viewed when colored and zoomed in).
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6. Conclusions

In this paper, we designed a novel MLCRNet that dynamically harvests contextual
information from the semantic, image, and local perspectives for aerial image semantic
segmentation. Concretely, we first integrated three levels of context, namely, local level,
image level, and semantic level, to capture contextual information from multiple aspects
adaptively. Next, an efficient fusion block is presented to address feature redundancy and
improve the efficiency of our multi-level context. Finally, our model refines the feature map
iteratively across FPN layers with MLCR. Extensive evaluations on Potsdam and Vaihingen
challenging datasets demonstrate that our model can gather the multi-level contextual
information efficiently, thereby enhancing the structure reasoning of the model.

Author Contributions: Z.H. and Q.Z. conceived of the presented idea and designed the study,
respectively. Z.H. derived the models and performed the experiments. The manuscript was drafted
by Z.H. with support from Q.Z. and G.Z. All authors discussed the results and contributed to the
final manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of Shanghai (21ZR1421200),
the National Nature Science Foundation of China (Grant Nos. 61731009 and 41301472), and the Science
and Technology Commission of Shanghai Municipality (Grant Nos. 19511120600 and 18DZ2270800).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and the code of this study are available from the correspond-
ing author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Robustness Evaluation

Appendix A.1. Incorrect Labels and Rectification

During the early experiments, we noticed that two labels in Potsdam datasets (e.g.,
IDs: 4_12 and 6_7) were incorrect, with all pixels of labels 4_12 and some pixels of 6_7
(approximately 6000 pixels) inconsistent with the labels defined by the dataset publisher.
We randomly selected three 512 × 512 patches in 4_12 (Figure A1). As shown in the second
column, the original labels are mixed with noise, most likely because the dataset publisher
failed to remove the original image channels after the tagging was completed.

After comparing the RGB channels of the incorrect labels with normals, we found
that the RGB channels of the incorrect labels were shifted to varying degrees (offset ≤ 127).
Therefore, we used the binarization operation to process the incorrect label:

GTk,i,j =

{
255, i f GT′

k,i,j ≥ T
0, oterwise

(A1)

where GT′ ∈ R3×H×W is the original ground truth; GT ∈ R3×H×W is the fixed ground
truth; and T is the threshold, which is set as T = 127. We show the modified result in the
third column of Figure A1. Next, we are to present the results of quantitative experiments
on a training set that includes incorrect labels. Note that we have re-implemented the
experiment with corrected labels and reported the results in the main text.
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Figure A1. Error and binarization-corrected labels in the Potsdam datasets (best viewed when colored
and zoomed in).

Appendix A.2. Robustness Evaluation Results

We presented the experimental results before fixing the incorrect label to demonstrate
the robustness of our proposed method. Table A1 shows that our method is less affected by
the incorrect label than the other methods.

Table A1. Robustness evaluation results on the Potsdam test set.

Model Backbone Stride mIoU (%) Acc (%) F1

ISNet [32] ResNet50 16× 70.2 81.3 81.8
FCN [11] ResNet50 16× 71.5 81.9 82.8

OCRNet [29] ResNet50 16× 73.6 83.6 84.2
DepLabV3+ [15] ResNet50 16× 74.5 84.2 84.8

SCARF [31] ResNet50 16× 74.6 83.9 84.8
SFNet [17] ResNet50 16× 74.7 84.1 84.9

Ours ResNet50 16× 75.3 84.6 85.4
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Abstract: Deep-learning methods rely on massive labeled data, which has become one of the main
impediments in hyperspectral image change detection (HSI-CD). To resolve this problem, pseudo-
labels generated by traditional methods are widely used to drive model learning. In this paper, we
propose a mutual teaching approach with momentum correction for unsupervised HSI-CD to cope
with noise in pseudo-labels, which is harmful for model training. First, we adopt two structurally
identical models simultaneously, allowing them to select high-confidence samples for each other to
suppress self-confidence bias, and continuously update pseudo-labels during iterations to fine-tune
the models. Furthermore, a new group confidence-based sample filtering method is designed to
obtain reliable training samples for HSI. This method considers both the quality and diversity of the
selected samples by determining the confidence of each group instead of single instances. Finally, to
better extract the spatial–temporal spectral features of bitemporal HSIs, a 3D convolutional neural
network (3DCNN) is designed as an HSI-CD classifier and the basic network of our framework. Due
to mutual teaching and dynamic label learning, pseudo-labels can be continuously updated and
refined in iterations, and thus, the proposed method can achieve a better performance compared
with those with fixed pseudo-labels. Experimental results on several HSI datasets demonstrate the
effectiveness of our method.

Keywords: change detection; bitemporal hyperspectral image; pseudo-label; mutual teaching

1. Introduction

Hyperspectral imaging techniques can obtain continuous spectral information over a
wide range of spectral wavelengths. The ability to display the subtle spectral variations
of different ground objects has played an important role in many land-cover monitoring
applications, such as mineral exploration [1,2], land-use monitoring [3,4], and military
defense [5]. Change detection (CD) is the process of identifying differences in the state
of an object or phenomenon by observing it at different times [6], which has been an
indispensable application in the remote sensing field for a long time. Because of the rapid
increase in spectral information, hyperspectral images (HSIs) are able to help detect finer
changes than other remote sensing images and observe more change details. However, due
to the spectral variability and redundant information, it is still a substantial challenge to
effectively mine the spectral–spatial information to complete the HSI-CD task.

For decades, a variety of unsupervised methods have been applied to HSI-CD. Change
detection aims to generate an accurate binary change map. In traditional methods, the
change map can be obtained by analyzing the difference image (DI), which is usually based
on differencing or log-rationing function. The most typical method is the change vector
analysis (CVA) method [7], which identifies the changed pixels and the type of change
according to the magnitude and direction of the spectral change vector. Some techniques
utilize image transformation to extract new features for better performance. Principal
component analysis (PCA) [8] retains the main information of original images according
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to the statistical characteristics, which reduces data redundancy enormously. Both mul-
tivariate alteration detection (MAD) [9] and the improved iteratively reweighted MAD
(IRMAD) [10] methods calculate the degree of change by canonical correlation analysis.
These measures all assume that the characteristics of unchanged pixels are uniform, but
in reality, due to atmospheric conditions, illumination, etc., completely identical features
rarely exist [11]. To suppress the difference in unchanged pixels, slow feature analysis (SFA)
extracts the most temporally invariant component and then converts images into a new
feature space [12]. Furthermore, some methods [13,14] directly determine the changing
type of pixels using the postclassification comparison (PCC), but their performances fully
depend on the accuracy of the classifier.

Recently, deep-learning (DL) methods have been favored by many researchers because
of their strong nonlinear representation ability. Change detection needs to process bitempo-
ral images simultaneously, as feature fusion must be carried out to form a single feature
vector, which is usually a similarity measure between those two features [15]. Conven-
tional methods inevitably lose partial information via difference or other processing, while
deep-learning methods can avoid this problem. Mou et al. [16] proposed an end-to-end
network. A convolutional neural network (CNN) extracts spectral–spatial features and
a recurrent neural network (RNN) analyzes the temporal dependence between images.
Considering the mixed pixels in HSIs, some methods [17] utilize subpixel-level information
obtained by unmixing to improve detection accuracy. Chen et al. [18] proved that the 3D
convolution kernel combined with regularization can effectively extract the spectral–spatial
features of HSIs for classification tasks. Based on this, a 3D convolutional neural network
(3DCNN) for hyperspectral image change detection is designed as the basic model of the
proposed framework.

However, the great success of existing deep learning methods in many tasks mainly
benefits from a large amount of labeled data. Pixel-wise labels for bitemporal HSIs need
to be annotated by experts, which is time-consuming and expensive. Thus, it is difficult
to obtain in large quantities. To solve the problem, existing unsupervised HSI-CD meth-
ods usually use pseudo-labels generated by traditional algorithms [17,19–21]. One of the
main challenges is that the training process of neural networks is susceptible to noise in
pseudo-labels. It is difficult to deal with the high-dimensionality of hyperspectral data
for traditional CD methods. Additionally, affected by atmospheric conditions, illumina-
tion, and topography changes, the spectral variability of ground objects further increases
the difficulty of change detection. Due to the limitations of these traditional methods,
there certainly exist some discrepancies between the pseudo-labels and the true labels.
Zhang et al. [22] proved that advanced neural networks can easily fit training sets with arbi-
trary labels. Once the network fits inaccurate labels, it will seriously affect the classification
results. Wang et al. [17] utilized subpixel information to enhance robustness of the model.
Du et al. [19] designed a deep slow feature analysis (DSFA) algorithm based on SFA theory
and deep network to extract invariant components. These methods largely ignore handling
the noisy labels. Li et al. [20] added a noisy model with zero-mean Gaussian distribution to
their loss function, yet the experimental effect was general. The authors in [21] adopted two
unsupervised algorithms to jointly generate credible labels. However, the same problem
still exists, where it is impossible to filter all noisy labels by only one-time sample selection.

To address the noisy labels, we propose dynamically correcting pseudo-labels instead
of safely relying on labels. The momentum correction approach is based on mutual teaching,
where two learning models are mutually updated to jointly learn. Dynamic learning
approaches by sample selection are popular in robust learning from noisy labels [23–27].
Yao et al. [24] adjusted the number of training samples in each iteration according to the
learning curve. Self-paced learning (SPL) [25,26], which reduces the confidence threshold as
the number of iterations increases, automatically selects more complex samples. However,
the self-training of networks is prone to self-confidence bias and cannot be corrected when
errors accumulate. Co-teaching [27] trains two classifiers simultaneously and enables them
to select small loss samples for each other in every mini-batch, effectively suppressing the
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phenomenon of overfitting. It is generally assumed that small loss samples are more likely
to be correctly labeled. Nevertheless, simply using loss to select training data is not suitable
for bitemporal HSIs with complex variations. The selected samples are easily concentrated
in the two categories of maximum and minimum changes, which is not conducive to the
generalization of models. Therefore, we divide all samples into multiple groups according
to the similarity of the difference vector in advance and randomly select from the high-
confidence groups to ensure that multiclass samples can be selected. In addition, although
our approach uses incompletely correct labels during initialization, utilizing the newly
derived more reliable results to update the pseudo-labels can further boost the classifier
performance [28,29]. The main contributions are summarized as follows:

(1) We introduce to a novel mutual teaching framework with momentum correction for
resisting noisy labels generated by traditional methods in unsupervised HSI-CD. Due
to mutual teaching and dynamic label learning, pseudo-labels can be continuously
updated and refined in iterations, and thus the proposed method can achieve superior
results.

(2) A group confidence-based sample selection approach is proposed to avoid selecting
the two most extreme types of samples, and it is used alternately with another selection
mechanism in iteration to ensure that complex samples can participate in training.

(3) An end-to-end 3DCNN is designed as a classifier for HSI-CD and the basic model
of the proposed framework. Experiments on four datasets demonstrate that our
framework can effectively improve model performance.

2. Related Work

2.1. Unsupervised Deep Methods for Change Detection

Remote sensing image annotation is more difficult than that of natural images, espe-
cially for pixel-level change detection. Therefore, unsupervised methods without manual
labeling steps have more advantages. Currently, unsupervised deep-learning methods
can be divided into two categories. As shown in Figure 1a, the network is treated as a
feature extractor to transform original images into a new feature space, and the model
parameters are optimized based on the analysis of current output features in each iteration.
For example, Liu et al. [30] proposed a symmetric convolutional coupling network (SCCN),
which was initialized by a denoising autoencoder, and then minimized the feature differ-
ence between those unchanged pixels. Zhang et al. [31] adopted clustering analysis and
detected multiple types of changes. Liu et al. [32] established an energy function driven
network according to the feature difference. The advantage of these methods is that the
newly derived features are used in each iteration to progressively improve the accuracy
of the results. However, due to the limitation of optimization, it is difficult to use more
complex models without any labels and the high dimension of HSIs is not conducive to
model convergence. The other is shown in Figure 1b. The results obtained by the traditional
algorithms are assigned to all samples as pseudo-labels to train neural networks, which
is more commonly used [17,19–21,25,26,33,34]. These methods are easy to implement and
closer to end-to-end patterns, avoiding the intermediate steps of difference image analysis.
The only problem is that the pseudo-labels are not completely correct, which may mislead
the network training. Inspired by the first category of methods, we utilize new predictive
values to update pseudo-labels in multiple iterations to gradually reduce noise labels.
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(a) (b)

Figure 1. Architectures of two unsupervised deep methods for change detection. (a) Feature analysis-
driven model training. (b) Pseudo-labels-driven model training.

2.2. Deep Learning with Noisy Labels

Noisy labels are ubiquitous in deep-learning applications, such as in large-scale low-
quality datasets collected from the internet or crowdsourcing platforms in supervised
learning, predictive pseudo-labels in semi-supervised learning and in domain adaptation
learning. The overfitting of noisy labels will directly weaken the generalization of the
models. Thus, learning with noisy labels still attracts researchers’ attention. The noise
transition matrix and robust loss function are commonly used for antinoise training. Gold-
berger et al. [35] added another softmax layer to capture the transitional relationship
between the noisy and true labels. Ghosh et al. [36] confirmed that the loss function based
on the mean-absolute error is inherently robust to noise. CleanNet [37] determined whether
the sample label is correct by comparing it with a representative “class prototype”. How-
ever, these methods generally require prior knowledge or rely on certain constraints. To
avoid consuming additional resources or more complex networks, it is a good way to select
clean parts from noisy instances to update models. The memorization effects of deep neural
networks show that the samples with smaller values collected from the loss function are
more likely to be correctly annotated. Therefore, some studies [24–27] allow the model to
select reliable samples for itself in each iteration to improve classification accuracy, which
is similar to active learning and reinforcement learning.

2.3. Mutual Teaching Paradigm

Although sample selection can effectively prevent noisy labels from participating
in training, it is difficult to ensure that the selected labels are absolutely clean. The self-
training process is sensitive to noise and outliers, and multiple iterations will accumulate
the model bias caused by a few wrongly selected instances or unbalanced samples. For
this purpose, MentorNet [38] is learned to compute time-varying weights for each training
sample based on a predefined course, which provides meaningful supervision to help
StudentNet overcome corrupted labels. However, the problem of error accumulation still
exists. Inspired by co-training [39], co-teaching [27] trains two identical deep networks
and lets them select small loss samples for each other in every minibatch. The difference
between them is that co-training needs to establish two viewpoints to generate reliable
pseudo-labels, which are generally used for semisupervised learning. Co-teaching only
needs one viewpoint, which utilizes the randomness of the network training process to
resist self-confidence bias, similar to finding their potential shortcomings by “peer-review”.
Likewise, deep mutual learning [40] enables multiple student networks to learn from
each other to produce a more robust and generalized network in model distillation. This
simple and effective learning paradigm is easily extended to other applications [41–44].
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Unfortunately, few studies have focused on pseudo-label noise in HSI-CD. Therefore, we
develop a dynamic change detection framework using the novel mutual teaching approach
and an improved sample selection method.

3. Methodology

In this section, we detail the proposed method from three aspects: the training process
of the mutual teaching framework, sample selection and class balancing, and the classifier
for HSI-CD.

3.1. The Mutual Teaching Framework

An overview of the proposed mutual teaching framework for bitemporal HSI-CD is
shown in Figure 2. First, the original pseudo-labels are obtained from a traditional method,
and after screening, they are used to initialize two DL models with the same structure.
After each iteration, the two DL models update pseudo-labels for each other with new
predictions and alternately use two different sample selection procedures to ensure the
accuracy and diversity of training instances. In the end, the final result is generated by
combining the predictions of the two models.

Figure 2. Graphical illustration of the proposed method. (a) Overall framework of the proposed
mutual teaching based on collaborative training and label correction. Both models update their
pseudo-labels with each other’s predictions and select clean samples to optimize parameters. (b) The
model parameters and pseudo-labels are alternately updated and the final result is generated by the
predictions of the two models. (c) Two sample selection methods jointly ensure the accuracy and
diversity of training samples.

In this work, the HSI-CD task is regarded as a classification problem, that is, to
determine whether the sample corresponding to each pixel belongs to the changed or
unchanged class. Taking a pair of pixels in the same position of bitemporal images as
a training instance. With a total of m samples, xi is the ith sample, and m equals w × h,
where w and h are the width and height of the original image, respectively. We adopt
the CVA algorithm to obtain initial pseudo-labels y ∈ Rm, yi equals 1 to represent the
change sample, and 0 is unchanged. In contrast to the existing deep-learning-based change
detection methods, the pseudo-labels generated by CVA are only used to initialize the

323



Remote Sens. 2022, 14, 1000

parameters of the two networks w(A) and w(B) and serve as initial values of y(A) and y(B).
They will be updated dynamically by mutually training the two networks.

To further improve the accuracy of classifiers, it is necessary to select samples with
the label as correct as possible. After feeding all pseudo-labels into the sample selection
program, two sets of training data v(A) and v(B) can be obtained. Here v ∈ Rm indicates
whether the sample xi is selected, where vi equals 1 indicating selected and 0 unselected.
The parameter updating procedures of both models are described below:

ŵ(A) = argmin
w(A)

m−1

∑
i=0

v(A)
i L

(
y(A)

i , f
(

xi, w(A)
))

ŵ(B) = argmin
w(B)

m−1

∑
i=0

v(B)
i L

(
y(B)

i , f
(

xi, w(B)
)) (1)

where L(yi, f (xi, w)) is the loss between the classifier’s predicted value f (xi, w) and the
pseudo-label yi. Then, we can update the pseudo-labels with a new prediction:

ŷ(A)
i = αy(A)

i + (1 − α) f
(

xi, w(B)
)

ŷ(B)
i = αy(B)

i + (1 − α) f
(

xi, w(A)
) (2)

where α is the momentum parameter. Note that both models use each other’s predicted
values to update their own pseudo-labels for mutual teaching purposes.

Sample selection can effectively reduce noisy labels, but it is impossible to completely
screen them. Due to various factors such as unbalanced samples and noisy labels, it is
inevitable for the classifier to generate confidence bias. The error will be transferred back
to itself in the next iteration, and it should be increasingly accumulated in the self-training
process. Benefiting from the respective training of the two models, they can filter out
different types of errors by mutual teaching and effectively reduce the accumulation of
these errors. Meanwhile, with the improvement of model prediction accuracy, the influence
of noisy labels can also be mitigated by gradually modifying pseudo-labels. After multiple
iterations, the final results are derived from the predicted values of two classifiers. When
their predictions are different, we choose one with less loss.

3.2. Sample Selection

To reduce the impact of noisy labels, sample selection is utilized in large studies.
The most common approach is to judge the credibility according to the sample loss, which
can be formulated as:

vi =

{
1, if |yi − f (xi, w)| < λ

0, otherwise
(3)

The threshold λ is a critical parameter. When λ is too large, noisy labels will increase,
and when λ is too small, the lack of complex samples is not conducive to the generalization
of the classifier.

In previous studies [25,26], the above selection method was used, and it is designed
for synthetic aperture radar (SAR) image data, which is comparatively simple. However,
it performs poorly on HSIs. The selected samples tend to focus on the simplest regions
and ignore other types. Thus, we need to design a more appropriate sample selection
algorithm for such HSIs. Considering the distribution of data, we use a clustering-based
method to select data in blocks. The data in the same cluster have high similarity. When
most samples in the cluster have consistent prediction, it is relatively reliable. To select
samples of different types evenly and ensure correct labels, a group confidence-based
sample selection approach is designed, as shown in Figure 3. First, the PCA is used to
reduce the feature dimension of the difference image, and k-means algorithm is applied
on the results to obtain the grouping information. Then, we can obtain a grouping label
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vector c ∈ Rm, which indicates the grouping information of all samples and takes the value
in {0, 1, . . . , n − 1}, while n is the total number of groups. We consider the label with the
highest proportion in each group as the group label:

gj = max
l∈{0,1}

{
m−1

∑
i=0

(ci == j)× (yi == l)

}
, j = 0, 1, · · · , n − 1 (4)

where yi is the pseudo-label; g = [g0, . . . , gn−1] ∈ Rn, gj is the group label. If there are more
changed samples than unchanged samples within the group, gj takes 1; otherwise, it takes
0. The group confidence is determined by the proportion of group labels:

rj =
∑m−1

i=0 (ci == j)× (
yi == gj

)
∑m−1

i=0 (ci == j)
, j = 0, 1, · · · , n − 1 (5)

where r ∈ Rn represents a group confidence vector. When the value exceeds a certain
threshold, the sample in the group is considered reliable:

vi =

{
yi == gj, if rj ≥ σ

0, otherwise
s.t. j = ci (6)

where σ is the group confidence threshold. Note that we only select samples with the same
label as the group. In this way, the selected training dataset contains samples of varying
degrees of change and has a low proportion of noisy labels.

Figure 3. Sample selection based on group confidence. (a) Pseudo-labels. (b) Multiclass map.
(c) Sample loss-based method. (d) Group confidence-based method. In (c,d), white is the selected
samples with correct label, red is the selected noisy samples, and black is the discarded samples.

Figure 3c,d shows the samples selected in two ways respectively. It is obvious that
the dataset contains two main changes, and the changed samples selected by a single
sample confidence focus on one class while ignoring the other. Moreover, the sampling of
our method is more even, and the noisy labels contained in both methods are negligible.
Another advantage of our method is that it can be used on pseudo-labels of discrete values,
such as 0 or 1. The sample loss-based algorithm can only be used on continuous values,
which are usually between 0 and 1.

The group confidence-based sample selection approach can consider screening noisy
labels and the diversity of the training data. There are mainly two kinds of samples to be
discarded: one with low group confidence and the other has a different label from most of
the samples in the group. Thus, some complex samples may never participate in training,
and the two models cannot adequately exchange information. Therefore, we alternately
use two selection strategies to jointly guarantee the accuracy and the stability of the final
results, as shown in Figure 2c. The group confidence-based sample selection method is
used to select samples which are as clean possible, to improve the accuracy of models, and
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the parameter σ is set to 0.8. The loss-based method is used to select as many samples as
possible to encourage these easily overlooked complex samples to participate in training,
and the parameter λ is set to 0.4.

In addition, we apply different weights for sample loss to balance class. General binary
classification uses cross-entropy loss, which can be defined as follows:

lce(yi, pi) = −yi log pi − (1 − yi) log(1 − pi) (7)

where pi is the predicted value. Then, the final weighted loss function is:

L(yi, f (xi, w)) = |yi − f (xi, w)|γ · lce(yi, f (xi, w)) (8)

where the first item enhances the weight of large loss samples, and γ is set to 2 according to
article [45]. The weighted loss can balance the multiclass samples to avoid a large deviation
of the model. The entire procedure for the proposed method is summarized in Algorithm 1.

Algorithm 1: Procedure of the proposed method.
Input: Two images I1 and I2; thresholds σ and λ; the number of iterations nt; the

momentum parameter α.
Output: The final result p.

// Initialization
Get pseudo-labels y and multiclass map c; initialize y(A) and y(B);
Randomly initialize w(A) and w(B);
for i ← 1 to nt do

if i % 2 == 1 then

Update selected sample v(A) and v(B) by (6);
else

Update selected sample v(A) and v(B) by (3);
end

Update model parameters w(A) and w(B) by (1) and (8);
Update pseudo-labels y(A) and y(B) by (2);

end

p ⇐ {p(A) = f
(

x, w(A)
)

, p(B) = f
(

x, w(B)
)
}

3.3. A 3D Convolutional Neural Network Establishment

The bitemporal hyperspectral data have four dimensions, two spatial axes, a spectral
axis and a temporal axis. To extract features using general 2D convolution kernels, most
change detection methods reduce one dimension of data by stacking or with a difference
operation. However, direct stacking increases the number of convolution kernel channels
and network parameters, especially for HSIs with hundreds of channels, and the difference
operation leads to the loss of original information. In HSI classification, the authors in [18]
verified that 3D convolution can better extract spectral spatial features of HSI than 2D
convolution. In some video processing applications, 3D convolution kernel has been used
to extract temporal and spatial features simultaneously. Similar to change detection, these
kinds of data have an additional temporal dimension relative to a single image. Therefore,
3D convolution is an appropriate feature extractor without additional operations in HSI-CD.

In convolutional layers, the calculation of new features uses convolution kernels to
multiply local domain features of the previous layer, then adds a bias and passes through
an activation function. For 2D convolution, the value of the feature map extracted by the
ith convolution kernel of the lth layer at position (x, y) is calculated as:

Xxy
l,i = f

(
∑
m

Pi−1

∑
p=0

Qi−1

∑
q=0

Wpq
l,i X(x+p)(x+q)

l−1,m + bl,i

)
(9)
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where f (·) is the activation function, Pi and Qi are the height and width of the kernel,
Wpq

l,i is the value of the kernel connected to the feature map at position (p, q), m represents
the l − 1th layer feature map connected to the current feature, and bl,i is the bias. For 3D
convolution, the value of the feature map extracted by the ith convolution kernel of the lth
layer at position (x, y, z) is calculated as:

Xxyz
l,i = f

(
∑
m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

Wpqr
l,i X(x + p)(y+ q)(z+ r)

l−1,m + bl,i

)
(10)

where Ri is the size of the 3D kernal along the spectral dimension. Because the adjacent
spectral channels of HSIs have a strong correlation, it is reasonable to extract the spatial and
spectral neighborhood information of two images simultaneously with 3D convolution.

For HSI-CD tasks, we design a 3D convolutional neural network as the basis classifier,
as shown in Figure 4. A sample consists of two data blocks of a neighborhood size of 3
extracted from bitemporal images at the same location, and is filled to size 5 with 0 when
input into the network. After three 3D convolution layers and a pooling layer, the fused
feature vector is extracted, and finally, the change information is output through two fully
connected layers. The last layer is activated by the softmax function, and the other uses
the ReLU function. After all of the samples are fed into the network, a result map with
the same size as the original image representing the degree of change can be obtained. To
verify the effectiveness of 3D convolution, we design a similar 2D convolutional neural
network for comparison in subsequent experiments.

Figure 4. Architecture of the proposed 3DCNN.

4. Result

To verity the effectiveness of the proposed method, several experiments were con-
ducted using a multispectral dataset and three popular hyperspectral datasets. This section
first introduces the datasets used in the experiment. Then the evaluation measures of
change detection and experimental setup are described. Finally, comparative experiments
with other methods are analyzed in detail.

4.1. Introduction to Datasets

The first dataset “Bastrop” is shown in Figure 5a,b, which consists of two multispectral
images (MSI) taken before and after a forest fire in Bastrop County, Texas, in September
2011 and October 2011 [46]. This multispectral dataset was selected from Landsat 5 The-
matic Mapper (TM) multispectral images consisting of six spectral bands with a spatial
resolution of 30 m for bands 1–5 and 7 and one thermal band (band 6). Their spatial size is
1534 × 808 pixels with 7 bands.

The other three HSI datasets were collected from Earth Observing-1 (EO-1) Hyperion
data. EO-1 has a spectral resolution of 10 nm and a spatial resolution of approximately
30 m, with a total of 242 different bands. The second dataset “Umatilla” is irrigated
farmland in Umatilla County, OR, USA, as shown in Figure 5d,e. The images contain
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390 × 200 pixels and 242 bands. The third dataset, “Yancheng”, was acquired on 3 May
2006, and 23 April 2007, in Yancheng, Jiangsu Province, China, as shown in Figure 5g,h.
The two images both consist of 450 × 140 pixels with 155 bands after eliminating the
noise. The fourth dataset, “river”, was obtained on 3 May 2013, and 31 December 2013,
in Jiangsu Province, China, as shown in Figure 5j,k. This dataset contains two HSIs with
463 × 241 pixels and 198 channels [17].

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 5. Experimental datasets. (a) Bastrop dataset in September 2011. (b) Bastrop dataset in October
2011. (d) Umatilla dataset on 1 May 2004. (e) Umatilla dataset on 8 May 2007. (g) Yancheng dataset
on 3 May 2006. (h) Yancheng dataset on 23 April 2007. (j) River dataset on 3 May 2013. (k) River
dataset on 31 December 2013. (c,f,i,l) groundtruth change map for Bastrop, Umatilla, Yancheng and
River dataset, respectively.

4.2. Evaluation Measures and Experimental Configurations

In this paper, specific evaluation metrics are used to evaluate the change detection
results of all methods on the datasets. Generally, the results of change detection use pixel-
level indicators, which mainly include the following four metrics: true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN). The positive sample refers to
the changed samples, displayed in white in the result image, and the negative sample refers
to unchanged samples, displayed in black. The correct rate of classification is represented
by the overall accuracy (OA), and the formula is

OA =
TP + TN

TP + TN + FP + FN
(11)

Compared with OA, the kappa coefficient and F1 score can better reflect the consistency
between the predicted results and the actual results. It is calculated as

PRE=
(TP + FP)×(TP + FN) + (FN + TN)×(FP + TN)

(TP + TN + FP + FN)2 (12)
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Kappa =
OA − PRE

1 − PRE
(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1 =
2 × Precision × Recall

Precision + Recall
(16)

For the experimental setting, the proposed 3DCNN network structure is shown in
Figure 4. For hyperspectral images, the size of the first two 3D convolution kernels is
2 × 2 × 5, while on the Bastrop dataset, the size of the 3D convolution kernels is 2 × 2 × 1
because it has only seven bands. The parameter n is the total number of groups. For
the Bastrop datasets, n is set to 10, and for the other three datasets, n is set to 20. The
momentum parameter α is set to 0.4.

4.3. Comparison with Other Methods

To verity the effectiveness of the proposed method, we tested our method on three
hyperspectral datasets and a multispectral dataset, then compared it with other classical
methods, including the change vector analysis (CVA) [7], iteratively reweighted multivari-
ate alteration detection (IRMAD) [10], iterative slow feature analysis (ISFA) [12], support
vector machines (SVM), GETNET [17], 2DCNN, and 3DCNN. The Otsu threshold algorithm
is used in CVA to generate the final change detection result, which is used as pseudo-labels
for other methods that require labeled data. Among the above methods, only CVA, IRMAD
and ISFA do not require labeled samples. Other classification-based methods use the same
pseudo-labels for supervised training and select training samples through our proposed
sample selection method.

4.3.1. Experiments on the Bastrop Dataset

Figure 6 shows the final binary result images of the eight methods, and Table 1 lists
the results of the numerical evaluation. It can be clearly seen from the figure that there
is a large amount of misclassification noise in CVA, mainly false negative samples, and
the kappa coefficient is only 0.7241. IRMAD is the worst and ISFA is relatively better
among the three unsupervised traditional algorithms, but they have the same problems.
Other methods use the results of CVA as pseudo-labels to train their models. Although
SVM significantly reduces FP values, it also leads to a huge deviation that causes the
changed samples to be mistaken for unchanged. Then, the kappa coefficient was reduced
by 22%. Deep-learning methods have wonderful advantages. They all increase the OA
and the kappa coefficients and outperform traditional algorithms visually. Remarkably, the
performance of our method is considerably better than other methods on this dataset, with
kappa rising to 0.9406, which is 9% higher than the second-highest value. In particular, a
large number of false negative samples have been well-corrected.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. The change map on Bastrop dataset. (a) CVA. (b) IRMAD. (c) ISFA. (d) SVM. (e) GETNET.
(f) 2DCNN. (g) 3DCNN. (h) ours.

Table 1. Quantitative evaluation of CD results by different methods for Bastrop dataset.

Methods FP FN OA Kappa F1

CVA 10,272 46,813 0.9539 0.7241 0.7487
IRMAD 13,490 54,000 0.9455 0.6688 0.6977

ISFA 10,082 32,010 0.9660 0.8073 0.8259
SVM 2799 83,435 0.9304 0.4992 0.5290

GETNET 6744 31,319 0.9693 0.8241 0.8408
2DCNN 6923 34,276 0.9668 0.8076 0.8257
3DCNN 7420 26,299 0.9728 0.8473 0.8623

ours 7212 6811 0.9887 0.9406 0.9469

4.3.2. Experiments on the Umatilla Dataset

These dataset results are shown in Figure 7 and listed in Table 2. Among the three
unsupervised traditional algorithms, CVA has the most serious noise and the lowest
accuracy. From the visual effect, the results of IRMAD are closest to the real labels, but there
is no substantial advantage compared with ISFA in quantitative analysis. Deep-learning
methods can basically filter out the background noise, which also confirms the effectiveness
of our sample selection method. Although the gap is small, our method has achieved the
best performance in quantitative analysis.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. The change map on Umatilla dataset. (a) CVA. (b) IRMAD. (c) ISFA. (d) SVM. (e) GETNET.
(f) 2DCNN. (g) 3DCNN. (h) ours.

Table 2. Quantitative evaluation of CD results by different methods for Umatilla dataset.

Methods FP FN OA Kappa F1

CVA 1092 198 0.9835 0.9258 0.9352
IRMAD 452 246 0.9911 0.9586 0.9637

ISFA 506 191 0.9911 0.9588 0.9639
SVM 256 2125 0.9695 0.8442 0.8612

GETNET 216 337 0.9929 0.9667 0.9707
2DCNN 210 445 0.9916 0.9604 0.9651
3DCNN 277 291 0.9927 0.9660 0.9701

ours 151 309 0.9941 0.9723 0.9756

4.3.3. Experiments on the Yancheng Dataset

The changes in this dataset are mainly related to farmland. The results are shown
in Figure 8 and listed in Table 3. The Yancheng dataset is a relatively simple, traditional
method that can also achieve a good performance, especially the performance of ISFA
and deep-learning methods that are very similar. Additionally, their OAs are all over 97%.
The performance of SVM is the worst and there is too much noise in the changed area. In
addition, these four deep-learning methods have all performed very well, but GETNET
and 2DCNN still have obvious noise in the unchanged regions, and 3DCNN performs
poorly in the changed regions. Only our method eliminates the background noise and also
ensures the accuracy of the changed region with multiple iterations.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8. The change map on Yancheng dataset. (a) CVA. (b) IRMAD. (c) ISFA. (d) SVM. (e) GETNET.
(f) 2DCNN. (g) 3DCNN. (h) ours.

Table 3. Quantitative evaluation of CD results by different methods for Yancheng dataset.

Methods FP FN OA Kappa F1

CVA 1833 1158 0.9525 0.8860 0.9197
IRMAD 2268 356 0.9583 0.9019 0.9318

ISFA 1303 296 0.9746 0.9394 0.9574
SVM 512 4619 0.9186 0.7882 0.8419

GETNET 810 792 0.9746 0.9383 0.9562
2DCNN 1162 611 0.9719 0.9323 0.9522
3DCNN 554 1059 0.9744 0.9373 0.9553

ours 548 817 0.9783 0.9472 0.9624

4.3.4. Experiments on the River Dataset

The River dataset is more complex than the other datasets and contains a variety
of changes, mainly the disappearance of substances in rivers. Figure 9 shows the maps
obtained by eight methods and the quantitative comparison is shown in Table 4. It is
obvious from the numerical indicators that the results of CVA are extremely unbalanced,
and the number of false-positive samples is approximately 6 times that of the false-negative
samples. In addition, ISFA, which performs relatively well in the other datasets, has the
worst accuracy here. There is no significant difference among the results of the three
networks. The OA can grow to more than 95%, which once again proves that the deep
neural network has a strong learning ability and that sample selection can effectively
suppress noisy labels. Through multiple iterations and sample selection, the proposed
method eliminates the huge deviation of the initial pseudo-labels and obtains the best
performance.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. The change map on River dataset. (a) CVA. (b) IRMAD. (c) ISFA. (d) SVM. (e) GETNET.
(f) 2DCNN. (g) 3DCNN. (h) ours.

Table 4. Quantitative evaluation of CD results by different methods for River dataset.

Methods FP FN OA Kappa F1

CVA 6196 1123 0.9344 0.7103 0.7467
IRMAD 3343 3089 0.9424 0.7005 0.7328

ISFA 10,244 1355 0.8961 0.5897 0.6453
SVM 2595 6007 0.9229 0.5373 0.5784

GETNET 4185 1369 0.9502 0.7636 0.7915
2DCNN 3618 1127 0.9575 0.7958 0.8196
3DCNN 2447 2215 0.9582 0.7827 0.8061

ours 1595 1809 0.9695 0.8387 0.8558

5. Discussion

5.1. Ablation Study

To argue the effectiveness of the mutual teaching paradigm, on the above four datasets
we make the two networks perform mutual teaching and separate training under the same
conditions. Figure 10 shows the OA of the results in 10 consecutive iterations. Classifiers A
and B refer to each other’s predicted values, while A′ and B′ only use their own results. The
two sets of experiments have the same initialization. In the mutual teaching framework,
high-precision classifiers are often dragged down by low-precision classifiers, undergoing
raising and lowering changes. However, overall, the performances of the two models
basically show an upward trend. Although this process has some fluctuations, it does not
affect the overall performance. The self-training performance is relatively poor, and the
Umatilla and Yancheng datasets are almost not improved. The improvement of the Bastrop
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and River datasets is mainly due to sample selection and label correction, but it is also
inferior to the mutual teaching models.

(a) (b)

(c) (d)

Figure 10. The iterative performance of the mutual teaching framework, where A and B use mutual
teaching and A′ and B′ are self-training. (a) Bastrop dataset. (b) Umatilla dataset. (c) Yancheng
dataset. (d) River dataset.

As shown in Figure 11, we compare the alternating training with only one sample
selection method. If a dataset itself is relatively simple, the difference between these results
is not large. To show the difference in performance, we only use the most complicated River
dataset. Figure 11 shows the overall accuracy of the final results and the variance between
two models under three settings in each iteration on the River dataset. Although the model
accuracy increases faster when only the group confidence-based sample selection method
is used, the accuracy no longer increases and remains stable from the sixth iteration. The
overall accuracy is further improved by alternating training and significantly exceeds other
settings, which proves that the participation of complex samples in training is beneficial to
improving the model performance and preserving the details of the change map.

Figure 11. The result accuracy and the variance of two models under three settings on River dataset.
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5.2. Compatibility of the Proposed Framework with Other Models

Figure 12 displays the change detection results of three networks during initialization
and after 10 iterations in our framework. GETNET and 3DCNN have considerably more
false-positive samples during initialization, which is mainly misled by the pseudo-labels
generated by CVA. However, after multiple corrections, these noises have been improved
to a certain extent, especially for the 3DCNN (as shown in the red box). The main error
of the 2DCNN result is that some changed regions were not detected, and it had also
been recovered after iteration. In other words, both false-positive and false-negative noise
labels have the opportunity to be corrected under the proposed framework. The results
demonstrate that the mutual teaching framework can also benefit other deep-learning
methods based on pseudo-labels.

(a) (b) (c)

(d) (e) (f)

Figure 12. Results of different networks in the first and last iterations on River dataset. (a) GETNET
in the first iteration. (b) 2DCNN in the first iteration. (c) 3DCNN in the first iteration. (d) GETNET in
the last iteration. (e) 2DCNN in the last iteration. (f) 3DCNN in the last iteration.

5.3. Hyperparametric Analysis
5.3.1. Analysis of the Pseudo-Label Update Rate

In the process of pseudo-label correction, the momentum parameter α (in Equation (2))
selection is worth discussing. When α = 0, pseudo-labels in each iteration are determined
only by new predicted values; when α = 1, our method depends entirely on the initial
pseudo-label without any updates. We measure the results of different parameters on four
datasets, as shown in Figure 13. Experimental results show that the update of pseudo-labels
can bring a better performance. If the false labels are not corrected, they will inevitably
limit the final result. With the increase in α, the overall accuracy shows a downward trend.
A value of 0.2∼0.5 is a suitable range for all datasets. Therefore, we choose α = 0.4 for our
experiments.
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(a) (b)

(c) (d)

Figure 13. Analysis of the momentum parameter α. (a) Bastrop dataset. (b) Umatilla dataset.
(c) Yancheng dataset. (d) River dataset.

5.3.2. Analysis of the Number of Groups

Sample selection by clustering methods can ensure the diversity of training samples.
However, too detailed a classification makes it difficult to remove noise for datasets with
simple ground objects types (the sample loss-based method is more effective here). For com-
plicated datasets, especially HSI that are sensitive to ground changes, classified sampling
is crucial to class balance and model generalization. The results for different numbers of
groups are shown in Figure 14. Since the Bastrop dataset has only one change type, and the
spectral information of MSI is much less than that of HSI, the value of n needs to be small.
Based on the experiment, we choose n = 10 on the Bastrop dataset. For the other three
HSI datasets, we choose n = 20. Moreover, other clustering methods that automatically
determine the number of groups can be considered to avoid parameter selection.

(a) (b)

Figure 14. Cont.
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(c) (d)

Figure 14. Analysis of the number of groups n. (a) Bastrop dataset. (b) Umatilla dataset. (c) Yancheng
dataset. (d) River dataset.

5.4. Computing Time

The computing device is equipped with Intel i7-9700K CPU (3.6 GHz) and NVIDIA
GeForce RTX2080Ti GPU. The program is written in Python via the code library of PyTorch.
Here, we list the computing time for each dataset in Table 5. With the multiple models and
numerous iterations for optimization, the proposed method suffers from high computa-
tional complexity. Theoretically, the optimization process of the two models is independent.
Therefore, the method can be accelerated by parallel computing to reduce the computing
time by 50%, which is the same as the self-training time of a single model.

Table 5. Time cost (seconds) of each dataset.

Bastrop Umatilla Yancheng River

3DCNN 343.52 51.18 46.94 67.99
ours 2919.93 414.29 339.44 496.96

6. Conclusions

In this article, a general mutual teaching framework with momentum correction is
proposed for the HSI-CD task by dual-3DCNN. It aims to perform robust training for deep-
learning methods using pseudo-labels generated by traditional approaches. Adopting
the idea of collaborative training, the proposed framework encourages the two models
to teach each other to mitigate self-confidence bias and boosts label correction in the
iterative process to further improve performance. Then, focusing on the complexity of HSI
change types, a new sample selection method based on group confidence is designed to
extract better quality and diverse training data. Furthermore, the 3DCNN can effectively
extract spatiotemporal spectral features of bitemporal HSIs, and thus, it is developed as
the basic classifier of the above framework. Our approach uses pseudo-labels obtained by
unsupervised algorithms, which means it can also be compatible with other networks that
require labeled data.

We implemented our approach and performed experiments on a multispectral dataset,
as well as on three public hyperspectral datasets. The visual and quantitative results show
that our method can effectively improve the robustness and generalization of the deep
neural network for the HSI-CD task.
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Abstract: As the foremost step of spectral unmixing, endmember extraction has been one of the
most challenging techniques in the spectral unmixing processing due to the mixing of pixels and
the complexity of hyperspectral remote sensing images. The existing geometrial-based endmember
extraction algorithms have achieved the ideal results, but most of these algorithms perform poorly
when they do not meet the assumption of simplex structure. Recently, many intelligent optimization
algorithms have been employed to solve the problem of endmember extraction. Although they
achieved the better performance than the geometrial-based algorithms in different complex scenarios,
they also suffer from the time-consuming problem. In order to alleviate the above problems, balance
the two key indicators of accuracy and running time, an adaptive surrogate-assisted endmember
extraction (ASAEE) framework based on intelligent optimization algorithms is proposed for hyper-
spectral remote sensing images in this paper. In the proposed framework, the surrogate-assisted
model is established to reduce the expensive time cost of the intelligent algorithms by fitting the fully
constrained evaluation value with the low-cost estimated value. In more detail, three commonly
used intelligent algorithms, namely genetic algorithm, particle swarm optimization algorithm and
differential evolution algorithm, are specifically designed into the ASAEE framework to verify the
effectiveness and robustness. In addition, an adaptive weight surrogate-assisted model selection
strategy is proposed, which can automatically adjust the weights of different surrogate models
according to the characteristics of different intelligent algorithms. Experimental results on three data
sets (including two simulated data sets and one real data set) show the effectiveness and the excellent
performance of the proposed ASAEE framework.

Keywords: hyperspectral remote sensing; intelligent optimization algorithms; endmember extraction;
surrogate-assisted model

1. Introduction

Hyperspectral remote sensing image, with hundreds of continuous spectra containing
rich ground object information in each pixel [1], has been used in various fields, such as
terrain change detection [2], geological exploration [3] and agricultural monitoring [4].
However, limited to the low spatial resolution of the hyperspectral remote sensor, mixed
pixels are inevitably appear in the hyperspectral image. The mixed pixels contain at least
one ground object material, such as water, soil, and trees, etc., which interferes with the
accurate analysis of the hyperspectral image to a certain extent [5,6]. Spectral unmixing,
as an efficient technique to solve the problem of mixed pixels, aims to decompose the
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mixed pixels into a set of pure substances (also known as endmembers) and estimate the
proportion of the corresponding endmembers (also called abundances) [7]. In general, end-
member extraction and abundance estimation are the two main tasks of spectral unmixing.
There are many mixture models in spectral unmixing, such as linear mixture model (LMM),
bilinear mixture model and nonlinear mixture models [8]. However, other models have
higher complexity than LMM, most endmember extraction researches are based on the
LMM. In the LMM [9], it assumes that each observable pixel can be expressed as a linear
combination of pure endmembers. Therefore, for a hyperspectral image consisting of m
endmembers, each pixel in the LMM can be written as

yi = Eα + ni (1)

where yi = [y1, y2, ..., yL]
T is the i-th mixed pixel in the hyperspectral image; E = [e1, e2, ..., em]

represents the set of endmembers that reconstructs the hyperspectral image Y, in which
each endmember in e contains L spectral bands; α = [α1, α2, ..., αm]T denotes the abundance
vector of the corresponding endmember set e; ni = [n1, n2, ..., nL]

T is the noise term for the
i-th mixed pixel. For a hyperspectral image with N observed pixels, (1) can be written as
the matrix form

Y = EA + N (2)

where Y = [y1, y2, ..., yN] is the hyperspectral image matrix, A = [α1, α2, ..., αN] and N =
[n1, n2, ..., nN] represent the abundance matrix and the noise matrix, respectively. Due to
physical limitations and constraints, the abundance needs to satisfy two constraints, namely
the abundance sum-to-one constraint (ASC, ∑m

j=1 αj = 1) and the abundance nonnegative
constraint (ANC, αj ≥ 0, j = 1, 2, ..., m) [10].

Geometrically, it is assumed that there are pure endmembers in the hyperspectral
image, and all pixels can be contained in a simplex whose vertices correspond to the
endmember set constituting the image [11]. Therefore, in recent decades, many geometrial-
based endmember extraction methods have been proposed to obtain the vertices of the
simplex, among which the classical algorithms include the pixel purity index (PPI) [12], N-
FINDR [13] and the vertex component analysis (VCA) [14], etc. PPI extracts the endmember
set by projecting spectral vectors into random vectors and employed the minimum noise
fraction for reducing the dimension. N-FINDR selects the simplex with the largest volume,
and their vertices are used as the terminal endmembers. VCA obtains the endmembers
by continuously projecting the extreme values until reaching the prescribed number of
endmembers. Low computational complexity and high accuracy of extraction results are
the advantages of these algorithms, but there are also some unavoidable shortcomings.
For example, when the data do not meet the simple structure, the extraction accuracy of
geometrial-based method will be significantly reduced, and it is also vulnerable to noise
and outliers [15,16].

In order to alleviate the above problems, some intelligent optimization algorithms have
been applied in endmember extraction in recent years. In the literature, the intelligent-based
endmember extraction algorithms can be roughly divided into three main categories, which
are the based on the genetic algorithms (GA) [17–20], the particle swarm optimization (PSO)
algorithms [21–27] and the differential evolution (DE) algorithms [28,29]. Zhang et al. [21]
employed the discrete particle swarm optimization (DPSO) to minimize the root mean
square error (RMSE) between the reconstructed image and the original image to obtain the
appropriate endmember set by encoding each particle as the potential position of the active
endmember in the hyperspectral image. In [19], the combination of genetic algorithm and
the orthogonal projection, called genetic orthogonal projection (GOP), was proposed to
solve the problem of endmember extraction. To overcome the problem of poor performance
and low efficiency, Zhong et al. [28] proposed an adaptive differential evolution (ADEE)
algorithm, which explore the endmember set with the adaptive crossover and mutation
strategies to avoid manual setting of parameters. Liu et al. [23] explored a novel quantum-
behaved particle swarm optimization (QPSO) with the row-column coding to overcome the
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dimension disaster of the standard PSO algorithm, and a cooperative approach is designed
to expand the whole particle swarm search space. In [26], an improved QPSO (IQPSO)
was designed to enhance the precision of extracted endmembers. Although the above
intelligent-based endmember extraction algorithms are more effective and robust than the
traditional algorithms, they suffer from a serious problem of time-consuming. It is difficult
to satisfy the rapidity of endmember extraction in practical applications. In addition, if the
time-consuming is reduced by decreasing the number of algorithm cycles, the intelligent-
based algorithms are easy to fall into the local optimum.

As mentioned earlier, the abundance is subject to the ASC and the ANC, and four
abundance estimation strategies including the fully constrained least squares (FCLS), the
sum-to-one constrained least squares (SCLS), the nonnegative constrained least squares
(NCLS) and the unconstrained least squares (UCLS) can be employed to solve this problem.
However, mathematically, it takes much less time to solve the abundance inversion problem
with the other three methods than FCLS. Therefore, some intelligent-based endmember
extraction algorithms [25,30] directly employed the UCLS for the abundance inversion in
order to reduce the computational cost. Nevertheless, the extraction accuracy of the SCLS,
NCLS and UCLS is not convincing compared with the FCLS. Therefore, it is urgent to
reduce the computational cost for the intelligent-based endmember extraction algorithms.
The surrogate-assisted evolutionary algorithms (SAEAs), have been widely adopted as one
of the most effective methods to solve the expensive optimization problems [31–33]. As
the name suggests, it aims to establish a surrogate model to approximate the expensive
objective evaluation function to significantly reduce the computational cost. At present,
many efficient surrogate models such as polynomial regression (PR) [34], support vec-
tor machines (SVM) [35–37], radial basis function networks (RBF) [38,39] and Gaussian
processes (GP) [40,41] have been studied and developed. Taking this cue, it is a natural
idea to estimate the expensive evaluation value of FCLS from the cheap estimates with
the SAEAs. In summary, an efficient adaptive surrogate-assisted intelligent algorithms
(ASAEE) framework for endmember extraction is proposed in this paper to overcome the
costly time problem. The major contributions of this paper are threefold:

(1) This paper solves the endmember extraction problem with the proposed ASAEE
framework. The overall convergence characteristics and the time-consuming issue can
be significantly improved by the proposed framework.

(2) Three algorithms of ASAEE-GA, ASAEE-PSO and ASAEE-DE based on the ASAEE
framework are specifically designed. The experimental results of these three algo-
rithms have been greatly improved compared with the corresponding state-of-the-art
intelligent-based endmember extraction algorithms.

(3) An adaptive weight surrogate-assisted model selection algorithm is designed, which
is able to automatically adjust the weights of different surrogate-assisted models
according to the characteristics of different intelligent optimization algorithms.

(4) We also transfer the ASAEE framework to other intelligent-based endmember extrac-
tion algorithms, which greatly reduces the expensive time cost while maintaining the
accuracy.

The remainder of this paper is structured as follows. Section 2 briefly reviews the re-
search related to the employing of intelligent algorithms to solve the endmember extraction
problem. In Section 3, the proposed ASAEE framework and its combination with three
intelligent optimization algorithms, namely ASAEE-GA, ASAEE-PSO, and ASAEE-DE are
described in detail. Section 4 reports the experimental results of the proposed method
compared with several state-of-the-art endmember extraction algorithms. Conclusions are
drawn in Section 5.

2. Related Work

In this section, we first review the intelligent-based optimization algorithms for
endmember extraction. Relevant researches on the surrogate-assisted models are also
briefly introduced.
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2.1. Intelligent-Based Endmember Extraction Algorithms

The intelligent-based endmember extraction methods can effectively compensate for
the shortcomings of geometrial-based methods in terms of reduced accuracy when the
simplex condition is not satisfied. Furthermore, they can obtain the better accuracy for
endmembers with undesirable distribution in the search space, which means that the
intelligent-based algorithms have higher robustness and less dependence on data. Most of
the intelligent-based methods transform the endmember extraction task of hyperspectral
images into a combinatorial optimization problem and solve it by intelligent optimization
algorithms, such as GA, PSO and DE.

The optimization objective function is important for the final results of endmember
extraction. Most of the endmember extraction methods focus on the RMSE value, and the
result will have a smaller RMSE when it is closer to the ground truth. Zhang et al. [21]
proposed the DPSO which represents the combination of endmembers in hyperspectral
image with binary encoding for particle positions and velocities, and searches for the
optimal result in the discrete feasible space with the classical discrete particle swarm
optimization. In subsequent studies, QPSO [23] is designed with the quantum-behaved
strategy to strengthen the robustness and the convergence rate and in the multi-dimensional
search space. IQPSO [26] improved the QPSO in the global search capability and the high-
dimensional difficulty. In [19], Rezaei et al. employed a GA to determinate the exact
number and position of each endmember obtained by the projecting the data in an orthog-
onal subspace. In [28], Zhong et al. designed an adaptive differential evolution strategy
to the classical DE algorithm, which solves the drawback that traditional differential evo-
lution method requires multiple runs to find the appropriate parameters for different
practical problems.

The other commonly used optimization objective is to maximize the volume. As the
volume of the convex simplex with the endmembers as the vertices, the larger volume is
obtained when the result is closer to the real endmember set, which is defined as follows

Volume(E) =

∣∣∣∣det
[

1 1 ... 1
e1 e2 ... em

]∣∣∣∣
(m − 1)!

(3)

where m is the number of endmembers. A novel mutation operator accelerated quantum-
behaved particle swarm optimization (MOAQPSO) [24] proposed by Xu et al. is one of the
methods based on maximization of volume. Different from the DPSO, there is no velocity
vector in MOAQPSO, which explores the best combination of endmembers by the position
of the particles and employs the mutation rate to avoid falling into local optimum.

Some researches also employed other intelligent-based optimization algorithms for
endmember extraction, such as the ant colony optimization algorithms [15,42], the bee
colony optimization algorithms [43], and the discrete firefly algorithms [44], etc. In addition,
refs. [18,22,25–27,29] have turned to multiobjective optimization algorithms to optimize
two indicators simultaneously, namely minimizing the RMSE and maximizing the volume.

2.2. Brief Introduction of the Surrogate-Assisted Models

The purpose of establishing the surrogate-assisted models is to reduce the expensive
evaluation cost of the intelligent optimization algorithms by employing a small amount of
expensive real evaluation to construct and update the surrogate-assisted model, which is
also known as data-driven optimization. Most of regression or classification techniques,
such as PR, RBF, SVM, GP, etc., can be employed as the surrogate-assisted models.

The data-driven surrogate-assisted evolutionary optimization is mainly divided into
two major research directions, namely offline and online data-driven optimization. The
modeling of the surrogate-assisted model can only rely on offline data in the offline data-
driven evolutionary optimization process. While the online data-driven evolutionary
optimization is to select the appropriate data in the evolutionary search process to im-
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prove the fitting quality of the surrogate-assisted model. Therefore, in the online surrogate
management methods, many model management strategies such as population-based,
individual-based and generation-based are widely studied. The population-based model
management employed multiple populations for evaluation, and each population is evalu-
ated with different fidelity. As its name suggests, the individual-based model management
aims to construct and update the surrogate model according to the specific individuals,
pre-selection method, clustering based method, uncertainty based method, random strategy
and best strategy are often employed in the selection of individuals. The generation-based
model management, a relatively simple example, is to use some data to construct the
surrogate-assisted model before optimization, and be updated in the number of iterations
with the appropriate data to improve the surrogate-assisted model.

In the field of remote sensing, the surrogate-assisted models have also been explored
in many research directions in accelerating the convergence and improving the efficiency,
such as endmember selection [20], hyperspectral image classification [45] and hyperspectral
nonlinear substitution [46], etc.

3. Proposed Method

In this section, we first describe the motivation for designing the surrogate-assisted
model with the intelligent optimization algorithms to solve the endmember extraction
problem. Then initialization mechanism and the objective optimization function will be
introduced. Subsequently, the ASAEE framework will be described in detail, including the
construction and updating of the surrogate model. Finally, the ASAEE framework with the
evolution strategies of GA, PSO and DE are proposed.

3.1. Motivation

After determining the optimal endmember set with the intelligent-based optimization
algorithms, the extracted endmembers must meet two constraints, i.e., all abundances
cannot be negative, and the sum of all abundances is one. In general, the FCLS can be
employed to accurately estimate the abundance of inversion. However, mathematically,
due to the time spent by FCLS is very expensive, some researches have turned to the NCLS,
UCLS and other low-time-cost abundance inversion methods instead. However, it will lead
to inaccurate situations where the abundance from the inverse is negative or the sum is not
one. Therefore, it is very promising to employ the surrogate model to replace the true FCLS
abundance inversion value and reduce the expensive time cost of the intelligent-based
endmember extraction algorithms.

3.2. Initialization and Objective Optimization Function

Considering that the evolution strategies of different intelligent algorithms have their
own advantages and disadvantages, it is very important for the ASAEE framework to
design a unified coding and initialization which is suitable for most intelligent algorithms.
The encoding of individual or particle is shown in Figure 1. Specifically, the length of the
encoded vector is N, and the elements in the vector are all binary encoded. Among them,
the element of 0 means that the corresponding pixel in the hyperspectral image is not a
candidate endmember. On the contrary, if the element is 1, it means that the pixel is the
endmember to be extracted. In summary, the number of elements in the vector is equal to
the pixels in the hyperspectral image, and the sparsity of the vector (i.e., the number of
1 elements) is equal to the number of endmembers to be extracted.
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Figure 1. The initialization mechanism of the individuals or particles.

In this paper, we mainly focus on the single objective optimization. For the evaluation
of individual or particle, as an important measurement index for endmember extraction,
RMSE is regarded as the optimization objective, which can be expressed as

fASAEE = RMSE(Y, Ŷ) =
1
N

N

∑
i=1

√
1
L
‖yi − ŷi‖2

2 (4)

where yi and ŷi are the pixels in the original image Y and the reconstructed image Ŷ,
respectively. N and L represent the number of pixels and the number of spectral bands,
respectively.

3.3. ASAEE Framework

The pseudo code of the overall framework is shown in Algorithm 1. The entire ASAEE
framework can be divided into three parts, namely the construction of the surrogate-assisted
model, evolution strategies and the updating of the surrogate-assisted model. The first step
is to generate the initial population and construct the adaptive surrogate-assisted model.
Because different surrogate-assisted models have their own characteristics, it is difficult
to determine only one surrogate-assisted model to optimize for a specific optimization
problem. Therefore, a stable and efficient surrogate-assisted model with adaptive weights
is designed to be constructed, which can be expressed as

Saw =
s

∑
t=1

wtSt (5)

where St is the t-th of all s surrogate-assisted models. Four classical surrogate-assisted
models including the PR, SVM, RBF and GP are employed in this paper. wt is the weight
corresponding to the t-th surrogate-assisted model, which is defined as

wt =
∑s

q=1 rq − rt

2 ∑s
q=1 rq

(6)

where rt is defined as: ∑R
i=1

√
1
R‖fi − f̂i‖2, R is the number of samples used to construct or

update the surrogate model, fi and f̂i are the value evaluated by FCLS and the surrogate-
assisted model, respectively.
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Algorithm 1 The ASAEE Framework
Input: Y: the original hyperspectral image, Maxgen: the max generation number, K: the

population size.
Output: Ê: the endmember set for reconstructing the remixed image.
1: Generate the initial population P0.
2: %Construct the surrogate-assisted model
3: D0 ←Randomly select K/10 individuals and Evaluate them with FCLS.
4: Construct the surrogate-assisted model by: Saw = ∑s

t=1 wtSt.
5: Evaluate each pi in P0 with the surrogate model Saw.
6: gen ← 1.
7: while gen < Maxgen do
8: Evolve the Pgen with an intelligent optimization algorithm.
9: Evaluate each pi in Pgen with the surrogate-assisted model Saw.

10: %Update the surrogate-assisted model
11: P

′
gen ← the reinitialized population with K/10 individuals.

12: (x∗gen, y∗gen) ← Obtain the individual with the best fitness in Pgen.
13: (xu

gen, yu
gen) ← Obtain the individual with the most uncertain in Pgen.

14: (xr
gen, yr

gen) ← Obtain the individual by randomly selecting in P
′
gen.

15: Calculate the fitness of (x∗gen, y∗gen), (x
u
gen, yu

gen) and (xr
gen, yr

gen) with FCLS.
16: Dgen ← Dgen ∪ (x∗gen, y∗gen) ∪ (xu

gen, yu
gen) ∪ (xr

gen, yr
gen).

17: Update the surrogate-assisted model Saw with Dgen.
18: gen = gen + 1.
19: end while

The construction of the surrogate-assisted model with adaptive weights is shown in
Figure 2. It is difficult to determine which surrogate-assisted model is more suitable for
expensive evaluation problems. Therefore, it makes more sense to assign the corresponding
weights according to the errors of different surrogate-assisted models.

After constructing the surrogate-assisted model, since the samples selected at the
beginning are not enough for the predicted value of the surrogate-assisted model to simu-
late the whole real abundance inversion value, we design the online data-driven model
management strategy to update the surrogate-assisted model. In each generation of evo-
lution, the optimal fitness sample (x∗gen, y∗gen), the most uncertain sample (xu

gen, yu
gen) and a

random sample (xr
gen, yr

gen) are selected to update the surrogate-assisted model to ensure
accurate and efficient approximation of the expensive evaluation function. It should be
noted that the (x∗gen, y∗gen) is obtained by selecting the individual with the best fitness value
evaluated by the surrogate-assisted model for all the individuals in Pgen. The (xu

gen, yu
gen) is

obtained by calculating the maximum neighborhood distance of all individuals evaluation
values in Pgen. The (xr

gen, yr
gen) is randomly selected from an initial population P

′
gen with

K/10 individuals. With the above designs, the overall computational complexity of the
ASAEE framework is almost reduced by KgenOFCLS times compared with the traditional
intelligent-based algorithms.
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Figure 2. Illustration of the proposed ASAEE Framework.

3.4. Evolution Strategies

In this section, in order to verify the generality and robustness of our proposed ASAEE
framework, three intelligent algorithms, including the GA, PSO and DE, are employed to
design with the ASAEE framework for evolution.

3.4.1. ASAEE-GA

For the ASAEE-GA, population Pgen will first form the parent population P
′
gen with

the tournament selection, which is used to generate the offspring population Cgen. Then
each two individuals pa and pb are selected from P

′
gen for the crossover and mutation, and

their corresponding offspring are generated as: ci = Mutation(Crossover(pa, pb)), where
the Crossover() and Mutation() are the multi-point crossover operator and the uniform
mutation operator, respectively. The crossover operation randomly selects multiple points
on the parent chromosome, and then exchanges part of genes in pa and pb to obtain two
new individuals. In addition, uniform mutation randomly generates a number within the
interval [Umax, Umin] to replace the original variable at the mutated genes. Umax and Umin are
respectively the upper and lower bounds of the decision variable. The offspring population
Cgen is generated through repeating this step until there is no unselected individual in the
population P

′
gen. Then K individuals with the best fitness are selected from Pgen∪Cgen to

form the next parent population Pgen+1. As the current generation reaches the maximum
number of generations Maxgen, the individual with the best fitness is selected as the
reconstructed endmember set Ê.

3.4.2. ASAEE-PSO

In the ASAEE-PSO, the concept of basic PSO is applied to quantum space, and the
wave functions is used to describe the motion states of the particles, which enables the
motion of particles in feasible solution space to exhibit global randomness. Instead of the
traditional PSO that uses position and velocity to represent the particle state, quantum-
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behaved PSO (QPSO) evolves only with the particle positions, which also has the advantage
of fewer parameters. For the evolution of the ASAEE-PSO, suppose that the j-th decision
variable of the i-th particle at generation gen is expressed as xgen

i,j . In addition, xgen
ibest and xgen

gbest
represent the self-optimum position of the i-th particle and the global optimal position
of all particles, respectively. The self-optimum position and the global optimal position
can be obtained according to the objective function (4), and their update rules are shown
as follows

xgen+1
ibest =

⎧⎨⎩xgen+1
i , if fASAEE(x

gen+1
i )< fASAEE(x

gen
ibest)

xgen
ibest, if fASAEE(x

gen+1
i ) ≥ fASAEE(x

gen
ibest)

xgen+1
gbest = argmin{fASAEE(x

gen+1
ibest }, i=1, 2, ..., K.

(7)

In a quantum system, particles are attracted by quantum delta potential wells centered
on local attractor points. The update of the xgen+1

i,j is obtained by solving the probabilistic
model of the particle position and then transforming it from the quantum state to the
classical state by Monte Carlo Simulation method, which is expressed as follows

xgen+1
i,j = ogen

i,j ± ∗β ∗
∣∣∣bestgen

j − xgen
i,j

∣∣∣ ∗ ln

[
1

ugen
i,j

]
ugen

i,j = rand(0, 1), i = 1, 2, ..., K, j = 1, 2, ..., m

bestgen
j =

1
K

K

∑
i=1

xgen
ibest,j, j = 1, 2, ..., m,

(8)

where β is the contraction-expansion coefficient, which controls the convergence speed of
the algorithm and its value will change linearly with gen from 1.0 to 0.5 according to [47].
bestj is the average position of the j-th decision variable in the self-optimum particles of all
individuals, and ui,j is a random number in the interval [0, 1]. In addition, oi,j is the position
of the local attractor, which can be expressed as

oi,j = ϕi,j ∗ xibest,j + (1 − ϕi,j) ∗ xgbest,j

ϕi,j = rand(0, 1), i = 1, 2, ..., K, j = 1, 2, ..., m,
(9)

where ϕi,j is also a random number in the interval [0, 1]. After the number of generations
reaches the termination condition, the particle of xgen

gbest is taken as the optimal endmem-
ber set.

3.4.3. ASAEE-DE

Different from ASAEE-GA, the mutation in ASAEE-DE adds the difference of the
selection vectors to the basis vector to realize the change of the decision variable. The
mutation operator adopts the “DE/rand/1” strategy, which can be expressed as follows

vgen
i = xgen

r1 + F(xgen
r2 − xgen

r3 ), (10)

where vi is the i-th vector generated by the individuals (xr1 , xr2 , xr3 ) through the mutation
operator. F is the mutation scaling factor, and r1, r2 and r3 are three mutex integers randomly
selected from the range [1, K]. In addition, the binomial crossover is employed after the
mutation operation to generate offspring c, which is shown as follows

cgen
i,j =

⎧⎨⎩vgen
i,j if j = jrand or randi,j ≤ Cr

xgen
i,j otherwise,

(11)

where jrand is an integer randomly selected from the range [1, m] and randi,j is a random
number within the interval [0, 1]. The crossover rate Cr and the mutation scaling factor F
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will be adaptively updated according to [28]. A (μ + λ) strategy [48,49] is applied in the
selection stage, which combines μ parents and λ generated offsprings to obtain a population
with (μ + λ) individuals, and the best μ individuals are selected to enter the next generation.
In ASAEE-DE, the number of parents μ and the number of offspring λ are the same as the
size of the population K. Finally, the individual with the best fitness in the max generation
Maxgen is regarded as the final endmember set.

4. Experimental Results

In order to verify the effectiveness of the proposed ASAEE framework, a series of
experiments are designed and performed on three benchmark data sets, including two
simulated data sets and one real data set. In the following, these three data sets are briefly
introduced first. Then the ablation experiments are analyzed to prove the rationality
of the ASAEE framework design. Then the ablation experiments are analyzed to prove
the rationality of the ASAEE framework. The proposed method is compared with other
endmember extraction algorithms on different data sets. In addition, three algorithms of
the proposed framework are compared with the state-of-the-art peer competitors. Finally,
the generality of the proposed framework is reflected in the transfer to some classical
intelligent-based endmember extraction algorithms.

4.1. Data Sets Description

In these experiments, three widely used endmember extraction benchmark data sets
are employed to examine the performance of the proposed ASAEE framework. The first
data set (DS1) and the second data set (DS2) are two simulated hyperspectral image from the
USGS spectral library [50], which are displayed separately in Figure 3a,b. Five endmembers
including the Alunite, Buddingtonite, Calcite, Kaolinite and Muscovite synthesize the DS1
with 80 × 100 pixels. On the basis of these five endmembers, five more endmembers (Illite,
Jarosite, Nontronite, Halloysite, and Pyrophyllite) constitute a total of ten endmembers to
simulate DS2 with 160 × 160 pixels. The spectra of DS1 and DS2 are shown in Figure 3c,d,
respectively. The third data set (DS3) is a widely used real hyperspectral image [19] (the
AVIRIS Cuprite image) with 400 × 350 pixels, including 50 spectral bands, which is shown
in Figure 4.

In addition, two important indicators are employed to measure the performance of the
algorithms, which are the RMSE and the running time. The RMSE is an index to measure
the difference between the reconstructed image and the original image, and the running
time is an important manifestation of the efficiency of the algorithms. Moreover, for the
simulated data sets, experiments will be performed on three different levels of signal-to-
noise ratio (SNR), namely, 20, 30 and 40 dB. The endmembers in the simulated data sets
are known in advance, so the number of endmembers in DS1 and DS2 is set to 5 and 10,
respectively. In the real data set, since the number of endmembers cannot be obatined
as the priori knowledge, the number of endmembers is set to 5, 10, 15, 20 respectively
as recommended in reference [21,28]. In all the intelligent-based algorithms, the number
of individuals or particles is set to 20 and the number of iterations is set to 200. Besides,
all the experimental results take the average of 10 independent experiments as the final
presentation. All the experiments are implemented on the Matlab 2021 platform using Intel
i5-10400 CPU@2.90GHz.
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Figure 3. Simulated data sets. (a) The image and the abundance of 5 endmembers of DS1. (b) The
image and the abundance of 10 endmembers of DS2. (c) Five spectra in DS1. (d) Ten spectra in DS2.

Figure 4. The AVIRIS Cuprite image.

4.2. Experiments on the Proposed ASAEE Framework

In this section, two ablation experiments are performed to prove the rationality and
validity of constructing the adaptive surrogate-assisted model. First, we would investigate
whether the construction of surrogate-assisted model will affect the endmember extraction
performance. Second, we would also explore the performance between the proposed
adaptive surrogate-assisted model and other single surrogate-assisted models.
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The experimental results on two simulated data sets of with and without surrogate-
assisted model are shown in Figure 5. In the results, EE-GA, EE-PSO, and EE-DE represent
three classic intelligent-based endmember extraction algorithms, and the FCLS are all
employed for their individual evaluations. On the contrary, ASAEE-GA, ASAEE-PSO
and ASAEE-PSO are combined with the proposed ASAEE framework. It can be observed
from the experimental results that the endmember extraction algorithms based on the
ASAEE framework can significantly reduce the expensive time cost compared with ordinary
intelligent-based endmember extraction algorithms. In addition, the comparison results on
the real data set with and without the ASAEE framework are illustrated in Figure 6. The
above experimental results clearly shows that the proposed ASAEE framework improves
the expensive cost of previous intelligent-based endmember extracion algorithms on all the
benchmarks. To be specific, the ASAEE framework reduces the time in simulated data sets
and the real data set by almost thirty times and two thousand times respectively compared
with the original algorithms, which coincides with the analysis of the algorithm complexity
in Section 3.3.
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Figure 5. Comparison with and without ASAEE framework on DS1 and DS2 under different SNR.
(a) DS1 20 dB. (b) DS2 20 dB. (c) DS1 30 dB. (d) DS2 30 dB. (e) DS1 40 dB. (f) DS2 40 dB.
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Figure 6. Comparison with and without ASAEE framework on DS3. (a) Methods with ASAEE
framework. (b) Methods without ASAEE framework.

Besides, Figure 7 illustrates the experimental results of different surrogate-assisted
models and the proposed adaptive surrogate-assisted model. In other word, four repre-
sentative surrogate models constructed with PR, SVM, RBF and GP are compared with
the proposed model. It can be concluded that the performance of different surrogate
models has great differences for each hyperspectral data sets, but the proposed adaptive
surrogate model strategy can assign different weights to each surrogate model for obtaining
a compromise between these surrogate models, which is capable of better approaching
the real evaluation results. In summary, the design of adaptive surrogate-assisted model
can not only reduce the expensive time cost for the intelligent algorithms, but also allocate
the appropriate weights to select the most suitable surrogate models according to their
corresponding fitting.
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Figure 7. Comparison of the proposed adaptive surrogate-assisted model with other surrogate-
assisted models in different data sets. (a) DS1. (b) DS2. (c) DS3.

4.3. Comparison of the Proposed ASAEE with Other Methods

In this section, three algorithms based on the ASAEE framework are compared with
other endmember extraction algorithms. The comparison algorithms employed in this pa-
per include PPI [51], N-FINDR [13], VCA [14], GOP [19], DPSO [21], ADEE [28], QPSO [23]
and IQPSO [26]. Specifically, the PPI, N-FINDR and VCA are three classical geometrial-
based approaches, and the GOP, DPSO, ADEE, QPSO and IQPSO represent the endmember
extraction algorithms based on GA, PSO and DE in the intelligent algorithms. For the sake
of fairness, the parameter settings of these intelligent-based algorithms are consistent with
their respective papers. In addition, in the experimental results presented in the table, the
best data is shown in bold, and the second best data is shown in bold and underlined.

Tables 1–3 present the indicators’ values obtained by three ASAEE-based algorithms
and the comparison algorithms in identifying the real endmembers on two simulated data
sets under different SNR and four endmember situations in the real data set, respectively.
In general, in the simulated data sets, the performance of all algorithms are improved as
the SNR increases, and the time spent are also increase except for the geometrial-based
algorithms. In terms of the indicator of time, although the traditional geometrial-based
algorithms have achieved the excellent results, their performance in accurate extraction are
not ideal reflected by the RMSE indicator. On the contrary, the intelligent-based algorithms
are generally better than the traditional methods in terms of endmember extraction accuracy,
but the time of these algorithms is also very expensive. However, the endmember extraction
algorithms with the ASAEE framework has achieved a good compromise between these
two indicators. Specifically, the ASAEE-DE has the best endmember extraction performance
in two simulated data sets, while ASAEE-GA has the excellent performance in the real data
sets. In terms of time index, ASAEE-DE takes the shortest time due to the simplicity of its
evolutionary steps, followed by ASAEE-PSO and ASAEE-GA takes the longest.
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Table 1. Comparison of the proposed ASAEE framework with other algorithms on DS1.

Attributes
SNR 20 30 40

Methods RMSE Time (s) RMSE Time (s) RMSE Time (s)

PPI 0.6062 3.100 0.6069 3.365 0.6055 3.599
Geometrial-based N-FINDR 0.0823 1.436 0.0263 1.522 0.0183 1.626

VCA 0.0735 0.910 0.0232 0.936 0.0173 0.980

GOP 0.0784 1558.228 0.0224 1835.942 0.0109 2212.031
DPSO 0.0811 1429.519 0.0196 1701.182 0.0115 2064.372

Intelligent-based ADEE 0.0809 1291.413 0.0171 1534.217 0.0098 1727.190
QPSO 0.0739 1357.904 0.0157 1660.213 0.0091 1882.512
IQPSO 0.0717 1332.013 0.0138 1653.510 0.0072 1861.607

ASAEE-GA 0.0731 66.706 0.0171 70.272 0.0095 74.264
ASAEE-based ASAEE-PSO 0.0722 59.958 0.0143 62.391 0.0080 66.220

ASAEE-DE 0.0697 43.331 0.0114 45.447 0.0061 47.059

Table 2. Comparison of the proposed ASAEE framework with other algorithms on DS2.

Attributes
SNR 20 30 40

Methods RMSE Time (s) RMSE Time (s) RMSE Time (s)

PPI 0.5132 4.522 0.5063 4.642 0.5051 4.723
Geometrial-based N-FINDR 0.0805 1.995 0.0336 2.061 0.0218 2.102

VCA 0.0711 1.236 0.0306 1.309 0.0189 1.381

GOP 0.0780 2050.407 0.0295 2273.227 0.0113 2587.485
DPSO 0.0802 1813.623 0.0305 2099.171 0.0136 2392.728

Intelligent-based ADEE 0.0759 1472.874 0.0273 1651.492 0.0101 1884.253
QPSO 0.0724 1668.131 0.0262 1891.692 0.0098 2105.269
IQPSO 0.0679 1613.092 0.0240 1810.125 0.0082 2080.572

ASAEE-GA 0.0702 74.408 0.0273 78.559 0.0094 83.952
ASAEE-based ASAEE-PSO 0.0684 67.945 0.0265 71.623 0.0089 75.798

ASAEE-DE 0.0658 54.151 0.0208 58.847 0.0075 62.801

Table 3. Comparison of the proposed ASAEE framework with other algorithms on DS3.

Attributes
Endmember 5 10 15 20

Methods RMSE Time (s) RMSE Time (s) RMSE Time (s) RMSE Time (s)

PPI 20.7768 30.774 18.3991 42.293 16.8536 57.495 14.3208 65.473
Geometrial-based N-FINDR 5.8611 26.633 4.0298 34.205 3.8376 48.465 3.2275 59.217

VCA 5.5463 25.495 3.8370 32.197 3.5101 43.151 2.9383 57.542

GOP 5.2643 1.590 × 106 3.8251 1.985 × 106 3.5212 2.308 × 106 2.9180 2.820 × 106

DPSO 4.5321 1.373 × 106 3.3797 1.764 × 106 3.0944 2.081 × 106 2.7488 2.556 × 106

Intelligent-based ADEE 4.2970 1.24 × 106 3.3102 1.586 × 106 3.0206 1.912 × 106 2.6831 2.401 × 106

QPSO 4.1542 1.270 × 106 3.1326 1.600 × 106 2.9437 2.005 × 106 2.6704 2.493 × 106

IQPSO 4.0720 1.258 × 106 3.0327 1.581 × 106 2.7794 1.990 × 106 2.5925 2.451 × 106

ASAEE-GA 4.3364 954.296 3.4417 1309.780 3.1561 1613.094 2.7436 1940.092
ASAEE-based ASAEE-PSO 4.0862 826.323 3.1058 1198.461 2.8456 1436.977 2.6024 1805.624

ASAEE-DE 3.7321 751.325 2.8469 984.226 2.5564 1318.374 2.2613 1705.950

From Tables 1–3, we can find that the indicators’ values obtained by ASAEE framework
are smaller than those obtained by other comparison algorithms except for one time value
compared with geometrial-based algorithms. For the results of real data set, Figure 8
illustrates the comparison of abundance inversion results of some endmembers obtained
by the ASAEE framework. Overall, the results are in line with our expectations, the
original intention of the ASAEE design is to reduce the expensive time cost while ensuring
that the extraction accuracy is not severely affected for the intelligent-based endmember
extraction algorithms.
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Figure 8. The abundance maps of five endmembers obtained from (a–e) ASAEE-GA. (f–j) ASAEE-
PSO. (k–o) ASAEE-DE.

4.4. Transfer to Other Intelligent-Based Endmember Extraction Algorithms

In this section, we will prove the applicability of the ASAEE framework by transferring
it to five intelligent-based comparison methods. As can be seen from Figure 9, the results
are the time comparison before and after the transfer of ASAEE framework. It can be
concluded that it is very significant with the evaluation from the surrogate-assisted model
to the intelligent-based algorithms in endmember extraction. Theoretically, as long as it
is an intelligent-based algorithm involving individual or particle evaluation, the ASAEE
framework can be transferred and greatly shorten the entire evaluation time.
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Figure 9. Time Comparison of transferring the proposed ASAEE framework to other algorithms on
different data sets. (a) DS1. (b) DS2. (c) DS3.

5. Conclusions

This paper has proposed an adaptive surrogate-assisted intelligent optimization al-
gorithms framework to deal with the endmember extraction for hyperspectral remote
sensing image. Specially, the surrogate-assisted model is established in the abundance
inversion stage of the intelligent algorithms, an adaptive weight strategy are designed to
automatically assign the weights according to the fitting degree of various surrogate mod-
els, so as to reduce the evaluation time and accelerate the convergence of the algorithms
under the condition of ensuring certain accuracy. Three intelligent algorithms, ASAEE-GA,
ASAEE-PSO, and ASAEE-DE, combined with the design of an adaptive surrogate-assisted
model, are proposed to efficiently solve the endmember extraction problem.
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In the future work, we will focus on solving more complex endmember extraction
scenarios and improve the robustness and practicability of the ASAEE framework. In
addition, other intelligent-based algorithms, such as the ant colony algorithms and bee
colony algorithms, will also be explored to incorporate into the ASAEE framework. The
MOEA-based intelligent endmember extraction algorithms will also be studied.
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Abstract: Recent deep models trained on large-scale RGB datasets lead to considerable achievements
in visual detection tasks. However, the training examples are often limited for an infrared detection
task, which may deteriorate the performance of deep detectors. In this paper, we propose a transfer
approach, Source Model Guidance (SMG), where we leverage a high-capacity RGB detection model
as the guidance to supervise the training process of an infrared detection network. In SMG, the
foreground soft label generated from the RGB model is introduced as source knowledge to provide
guidance for cross-domain transfer. Additionally, we design a Background Suppression Module
in the infrared network to receive the knowledge and enhance the foreground features. SMG is
easily plugged into any modern detection framework, and we show two explicit instantiations of
it, SMG-C and SMG-Y, based on CenterNet and YOLOv3, respectively. Extensive experiments on
different benchmarks show that both SMG-C and SMG-Y achieve remarkable performance even if
the training set is scarce. Compared to advanced detectors on public FLIR, SMG-Y with 77.0% mAP
outperforms others in accuracy, and SMG-C achieves real-time detection at a speed of 107 FPS. More
importantly, SMG-Y trained on a quarter of the thermal dataset obtains 74.5% mAP, surpassing most
state-of-the-art detectors with full FLIR as training data.

Keywords: infrared object detection; limited training examples; knowledge transfer

1. Introduction

Recently, thermal infrared cameras have become increasingly popular in security and
military surveillance operations [1,2]. Thus, infrared object detection, including both classi-
fication and localization of the targets in thermal images, is a critical problem to be invested
in. With the advent of Convolution Neural Network (CNN) in many applications [3–7]
such as action recognition and target tracking, a number of advanced models [8–10] based
on CNN are proposed in object detection. Those detectors lead to considerable achieve-
ments in visual RGB detection tasks because they are mainly driven by large training data,
which are easily available in the RGB domain. However, the relative lack of large-scale
infrared datasets restricts CNN-based methods to obtain the same level of success in the
thermal infrared domain [1,11].

One popular solution is finetuning an RGB pre-trained model with limited infrared
examples. Many researchers firstly initialize a detection network with parameters trained
on public fully-annotated RGB datasets, such as PASCAL-VOC [12] and MS-COCO [13].
Then, the network is finetuned by limited infrared data for specific tasks. To extract infrared
object features better, most of the infrared detectors improve existing detection frameworks
by introducing some extra enhanced modules such as feature fusion and background
suppression. For example, Zhou et al. [14] apply a dual cascade regression mechanism
to fuse high-level and low-level features. Miao et al. [15] design an auxiliary foreground
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prediction loss to reduce background interference. To some extent, the aforementioned
modules are effective for infrared object detection. However, it is hard for simple finetuning
with inadequate infrared examples to eliminate the difference between thermal and visual
images, which hinders the detection of infrared targets.

An alternative solution is to borrow some features from a rich RGB domain. Compared
to the finetuning, this method leverages abundant features from the RGB domain to boost
accuracy in infrared detection. Konig et al. [16] and Liu et al. [17] combine visual and
thermal information by constructing multi-modal networks. They feed paired RGB and
infrared examples into the network to detect the objects in thermal images. However, the
paired images from two domains are difficult to be obtained, which hampers the develop-
ment of the multi-modal networks. To tackle this problem, Devaguptapu et al. [1] employ
a trainable image-to-image translation framework to generate pseudo-RGB equivalents
from thermal images. Although this pseudo multi-modal detector is feasible in the absence
of large-scale available datasets, the complicated architecture is difficult to train and thus
rarely reaches advanced performance.

In this work, we address this problem from a novel perspective, knowledge trans-
fer. Our proposed approach, named Source Model Guidance (SMG), is the first transfer
learning solution for infrared limited-examples detection, to the best of our knowledge.
By leveraging existing RGB detection models as source knowledge, we convert recent
state-of-the-art RGB detectors to infrared detectors with inadequate thermal data. The basic
idea is that if we already have an RGB model with strong ability to distinguish foreground
from background, the model can be used as a source model to supervise another network
training for infrared detection. Then, the problems becomes how to transfer the source
knowledge between different domains and where to add the source supervision.

We first observe modern RGB detection frameworks including anchor-based (Faster
RCNN [8], SSD [9], YOLOv3 [18]) and anchor-free (CenterNet [19], CornorNet [20], Ex-
tremeNet [21], FCOS [22]) methods. All of them consist of two main modules, a Feature
Extraction Network (FEN) to calculate feature maps and a Detection Head (DH) to generate
results. Many researchers have trained those frameworks with large-scale RGB datasets
and exposed network weights as common RGB object detection models. Despite the fact
that an RGB model is designed for visual images, it still can detect most infrared targets
when given a thermal image. However, the precise categories and bounding boxes are hard
to be predicted by it due to the difference between two domains. Therefore, we combine all
category predictions as a foreground soft label, which is regarded as the source knowledge
to be transferred. Then, we look for where to add the source supervision. Different from
ground-truth supervision on the final DH, we propose a Background Suppression Module
(BSM) to receive the source knowledge. BSM is inserted after FEN to enhance the feature
maps and produce a foreground prediction at the same time. By calculating the transfer
loss between the foreground prediction and the soft label, we introduce source supervision
into the training process of the infrared detector, as shown in Figure 1.

Theoretically, our transfer approach SMG can be implemented in any visual detection
networks effortlessly. In this paper, we choose two popular frameworks, CenterNet [19]
and YOLOv3 [18], as instantiations, and the frameworks we proposed are named SMG-C
and SMG-Y, respectively. To validate the performance of SMG, we conduct extensive
experiments on two infrared benchmarks, FLIR [23] and Infrared Aerial Target (IAT) [15].
Experimental results show that SMG is an effective method to boost detection accuracy
especially when there are limited training examples. On FLIR, using only a quarter of
training data, SMG-Y obtains higher mAP than the original YOLOv3 finetuned on the
entire dataset. Furthermore, compared to other infrared detectors, both SMG-C and SMG-Y
achieve state-of-the-art accuracy and inference speed.

The main contributions are described as the following three folds:

• First, we propose a cross-domain transfer approach SMG, which easily converts a
visual RGB detection framework to an infrared detector.
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• Second, SMG decreases the data dependency for an infrared network. The detec-
tors with SMG maintain remarkable performance even if trained on the small-scale
datasets.

• Third, two proposed instantiations of SMG, SMG-C and SMG-Y, outperform other
advanced approaches in accuracy and speed, showing that SMG is a preferable strategy
for infrared detection.

Figure 1. The overall framework of SMG, which mainly consists of two parts: a source model to
provide source knowledge and a target network to predict infrared detection results. Red arrows
indicate the backpropagation pathways.

The structure of this paper is as follows. In Section 2 , we briefly present some aspects
related to our work. Section 3 shows the proposed method SMG in detail. Extensive
experiments and ablation studies are conducted in Sections 4 and 5, respectively. We
explain why SMG works well and analyze the failure cases of our detectors in Section 6.
Finally, the summary is drawn in Section 7.

2. Related Work

In this section, we briefly introduce recent object detection frameworks including both
visual and infrared methods. In addition, we describe the knowledge transfer, which is the
inspiration of our method.

2.1. Object Detection

Current object detection frameworks can be divided into two groups: anchor-based
methods such as Faster RCNN [8], SSD [9], and YOLOv3 [18] and anchor-free methods
represented by CenterNet [19], CornorNet [20], ExtremeNet [21], and FCOS [22]. Anchor-
based methods firstly define a series of rectangle bounding boxes, called anchors, as
proposal candidates. Then, all potential object detections are enumerated exhaustively
according to proposed anchors. Finally, additional Non-Maximum Suppression (NMS) [24]
is used to remove duplicated locations for the same instance. To avoid the redundant
design of anchors and lessen the computation burden, anchor-free methods regard the
detection problem as a keypoint estimation without pre-defined anchors. For example,
CenterNet [19] predicts the center point of an object and then regresses to other properties
such as object size. Although those algorithms achieve remarkable performance, they
are mainly driven by extensive public training data and focus on detecting the targets in
standard visual RGB images. For infrared detection, the lack of large-scale labeled thermal
images hinders the power of detectors based on CNN. Researchers cope with this problem
from two aspects: one is finetuning a pre-trained model [14,15], the other is introducing
corresponding RGB images as supplements [1,16]. The first strategy hardly makes full use
of the information from the RGB domain, and the sophisticated structures in the second
method are difficult to be performed. Different from two solutions, our SMG not only
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leverages existing RGB models as the guidance for infrared detectors but also is easily
plugged in any modern detection framework.

2.2. Knowledge Transfer

Knowledge transfer is a popular strategy to tackle various problems, such as object
classification [25–27], model compression [28,29], and detection [30–32]. It first distills
knowledge from a trained model (source) and then transfers the knowledge to another
network (target). Hinton et al. [25] introduce the concept of soft label as the guidance
in knowledge transfer for classification tasks. In comparison with the hard label such
as ground truths, the soft label is a softened version of the final output from the source
model. Benefiting from the soft label, the target network can learn how the source model
classifies different objects. Many methods [28,29] with soft label obtain achievement in
classification and retain accuracy in model compression. However, applying transfer
techniques to object detection is challenging because detection is a more complex task that
combines regression, region proposals, and classification. To tackle this problem, Chen
et al. [31] designed a novel teacher bounded regression loss for knowledge transfer and
adaptation layers to better learn from the source model. Although this method is easy to
be applied in object detection, the method is driven by large-scale training datasets. Some
researchers try to perform transfer learning in few-shot detection and construct a target-
domain detector with very few training data. Chen et al. [32] alleviate transfer difficulties
in low-shot detection by adding a background-depression regularization and designing a
deep architecture, a combination of SSD and Faster RCNN, called LSTD. However, LSTD is
suitable for RGB object detection without involving the transfer between different domains.
Additionally, it just masks feature maps with the ground-truth bounding boxes in the
background-depression regularization, which damages the features extracted from the
backbone. Different from LSTD, our SMG introduces an independent block BSM to enhance
the foreground features of thermal infrared images by taking advantage of the knowledge
from the visual RGB domain.

3. Method

In this section, we detail our method Source Model Guidance (SMG). First, we intro-
duce the structure of SMG, including the overall framework and proposed Background
Suppression Module (BSM). Then, we describe the training details of SMG, including how
to transfer knowledge from the source model to the target network and how to train the
whole network. Finally, we show two explicit instantiations of SMG, SMG-C and SMG-Y.

3.1. Overall Framework

As illustrated in Figure 1, we train an infrared object detector by using the knowledge
of a source model. The source model is a high-capacity RGB detection model, which has
been trained with large-scale RGB datasets. The source model is composed of two modules,
a Feature Extraction Network (FEN) for feature map calculation and a Detection Head (DH)
to generate the prediction. We choose two popular detection models, CenterNet [19] and
YOLOv3 [18], as source models to guide different infrared detectors, named SMG-C and
SMG-Y, respectively.

Compared to the source model, the infrared detection network not only consists of
FEN and DH but also has an extra part, Background Suppression Module (BSM). The
structure of FEN is flexible, and it can be the same or different from the source model. The
DH in an infrared detection network is similar to the source model except for the predicted
category. For BSM, it is a novel part with two functions, predicting the foreground and
enhancing the feature map from FEN.

3.2. BSM

The BSM in the infrared detection network (target network) is a key module to receive
the knowledge transferred from the source model. We describe the principle of BSM, as shown
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in Figure 2. The idea of BSM is inspired by the concept of attention mechanism [33–37], and
thus, its main structure is a transformation mapping from the input X ∈ RH×W×C to an
enhanced feature map X′ ∈ RH×W×C. In addition, an extra prediction, named foreground
prediction PFG ∈ RH×W×k, is obtained in BSM. The PFG is defined as the combination of
ground-truth targets based on anchors, where k is the number of anchors and k is 1 for
anchor-free methods.

To be specific, the input X first passes two convolutional layers to produce an inter-
mediate feature map. Then, it is fed into to two different branches: one for predicting
foreground and the other for feature enhancement. The foreground prediction is achieved
by a convolution with sigmoid function to generate a score PFG. The intermediate feature
map is also employed to re-weight the input feature map over spatial dimension because it
reflects the feature of the foreground. After a 1 × 1 convolution for channel transformation,
we use an average pooling to squeeze global information into channel-wise weights. Finally,
the enhanced feature map branch X′ is obtained by rescaling input X with the weights.

3 × 3
3 × 3
1 × 1

× × 256
× × 64

1 × 1 ×

1 × 1

X : × ×

× ×

X: × ×

P : × ×

1 × 1 ×

Figure 2. The network structure of BSM.

3.3. Transfer-Knowledge Regularization

Although the foreground enhancement in BSM can alleviate the disturbance of back-
ground, the foreground prediction PFG from BSM should be supervised in the limited-
examples scenario. For this reason, we propose a novel transfer-knowledge regularization
by leveraging the source model as a guidance.

In this paper, the foreground prediction PFG with values within 0 and 1 is supervised
by the foreground soft label SFG generated from the source model. Different from the hard
label in ground-truth supervision, we adopt the soft label in knowledge transfer because it
contains hidden information about how the source model makes inferences when given
samples. In every position of SFG, the value of the soft label is in [0, 1] based on anchor,
while the hard label is either 0 or 1.

For different source models, we choose different methods to obtain the foreground
soft label SFG. We sum the label prediction (heatmap) for all positions in SMG-C and
use the anchor confidence directly in SMG-Y, as shown in Figures 3 and 4. The soft label
SFG is the foreground score based on anchor and has the same size with foreground
prediction PFG from the target network. We take SFG as source-domain knowledge to
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regularize the training of target network. Mean Squared Error (MSE) is applied as a
transfer-knowledge regularization:

LTK = MSE(SFG, PFG). (1)

In this case, the trained RGB detection model can be integrated into the training
procedure of the infrared detector, which achieves cross-domain transfer in SMG.

3.4. Training Algorithm

The whole loss L of SMG consists of two parts: one is the standard detection loss with
ground truth supervision LGT , and the other is the transfer-knowledge loss LTK mentioned
in the above subsection:

L = LGT + λLTK. (2)

The weight λ represents hyper-parameters to control the balance between different
losses. We fix it to be 1 in SMG-C. In SMG-Y, λ is 0.3 because we introduce 3 BSMs to
generate the transfer-knowledge loss in SMG-Y, as explained in the following subsection.

During the training, we first initialize the source model with public parameters trained
on COCO, which is a large-scale RGB detection dataset. For the target network, the FEN
is initialized with ImageNet pretrained parameters, and other modules are randomly
initialized. Then, training loss is calculated according to Equation (2). Finally, we update
the weights of target network in the back propagation. It is notable that the source model
is not updated, and thus, we just employ the target network as an infrared detector in
the inference.

3.5. Instantiations

SMG can be implemented in standard visual RGB detection networks and convert
those networks to infrared detectors. To illustrate this point, we apply SMG in both
anchor-free and anchor-based detection frameworks, which is described next.

We first consider CenterNet [19], an anchor-free model, as an instantiation, and the
framework we proposed is named SMG-C. As shown in Figure 3, CenterNet predicts center
points of targets directly by producing a heatmap Ŷ ∈ [0, 1]H×W×class, where class is the
number of categories (for RGB models trained on COCO, class = 80 ). Therefore, the sum of
the heatmap represents foreground prediction, and we use it as SFG to transfer knowledge.
For the infrared detection network of SMG-C, only a BSM is inserted in between FEN and
DH in comparison with CenterNet.

S : × × 1
P : × × 1

× ×
× × 2
× × 2

× × 80
Figure 3. The framework of SMG-C.

SMG is also applied in YOLOv3 [18], an anchor-based model, and Figure 4 shows the
framework of SMG-Y. YOLOv3 predicts bounding boxes at 3 different scales by extracting
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features from 3 scales. As a result, we add 3 BSMs in the infrared detection network.
Furthermore, YOLOv3 sets k anchors with different sizes, and thus, the prediction in every
scale is a k-d tensor encoding location, confidence, and class. The confidence reflects
whether there is an object in the anchor, and we adapt it as the foreground soft label SFG

directly. In this work, we set k = 3 according to the original paper [18].

S : × ×P : × ×

× × × ( + + )
× × × ( + + )

, ,

Figure 4. The framework of SMG-Y.

4. Experiments

In this section, we first introduce experimental details and the training datasets we
use in this paper. Then, we conduct extensive experiments to evaluate the detection
performance of two frameworks, SMG-C and SMG-Y. Finally, our method is compared
with some popular detectors on the public FLIR benchmark.

4.1. Dataset and Experimental Setup

We adopt the public FLIR dataset [23] and self-build IAT dataset [15] for our experi-
mental studies.

FLIR [23] collects 9214 infrared images with annotations, where the labeled objects
contain a person, car, and bicycle. It is acquired via a thermal camera mounted on a vehicle,
and all images are taken on the streets and highways, as illustrated in Figure 5. To evaluate
the capability of our method with limited data, we perform experiments with full, half, and
one-quarter of training examples in FLIR. The statistics of the training datasets are shown
in Table 1. Although the numbers of training images are different in the three datasets, their
test sets are the same as those provided in the FLIR benchmark.

Table 1. Numbers of instances on FLIR datasets.

Dataset Person Car Bicycle

FLIR 22,372 41,260 3986
FLIR-1/2 10,997 20,700 1979
FLIR-1/4 5574 10,286 928

The IAT [15] consists of 2750 infrared images with aerial targets, including five cate-
gories: airline, bird, fighter, helicopter, and trainer. All images are captured by ground-to-air
infrared cameras, and some samples on IAT are shown in Figure 6. Different from the
images with target occlusions in FLIR, IAT contains small targets in complex aerial back-
grounds, and the main challenge of it is background interference. We split IAT with the
ratio of 7:3 as the training set and test set, respectively. Similar to FLIR, we use all and half
of the training images to implement experiments, as presented in Table 2.
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Figure 5. Samples on FLIR dataset.

Table 2. Numbers of instances on IAT datasets.

Dataset Airline Bird Fighter Helicopter Trainer

IAT 121 535 667 310 469
IAT-1/2 64 277 321 152 242

Figure 6. Samples on IAT dataset.

All experiments are implemented on a PC with an i7-8700K CPU and a signal GTX1080Ti
GPU. For SMG-C, we adopt CenterNet with ResNet-18 [19] as the source model, because
it is light-weight and enough to provide the guidance. The FEN of the target network in
SMG-C is the fully convolutional upsampling version of Deep Layer Aggregation (DLA-
34) [38]. For SMG-Y, YOLOv3 with DarkNet-53 [18] is used as the source model and the
backbone of the target network is DarkNet-53. The source models of two frameworks are
RGB detection models trained on COCO [13].

The input resolution is set to 512 × 512 in SMG-C and 416 × 416 in SMG-Y. During
the training process of two frameworks, we follow their original papers [18,19] separately
for training setting and hyper-parameters, unless specified otherwise. In the inference, we
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evaluate the performance with the mean Average Precision (mAP) at IoU of 0.5, which is a
common metric for object detection tasks.

4.2. SMG-C Results

We use SMG-C as the detection framework and implement experiments on both FLIR
and IAT benchmarks. The baseline method in this subsection is the original CenterNet [19]
without SMG.

Table 3 shows the comparison of AP for each class and mAP of SMG-C against the
baseline detection network when trained with different numbers of training examples on
the FLIR benchmark. One can see that our SMG-C outperforms the baseline detector across
all classes when trained with the same dataset. For example, SMG-C on FLIR obtains 75.6%
mAP, which is 4.5% higher than the baseline. This can be attributed to the fact that the
source model offers sufficient guidance for the infrared detector in SMG.

More importantly, SMG-C achieves outstanding performance when the training data
are insufficient. Taking the bicycle as example, we find that its AP maintains 51.5%,
although the training examples are reduced to 1/4 of the original. In contrast, the highest
bicycle’s AP is 51.2% for the baseline method. Furthermore, the mAP of SMG-C trained on
FLIR-1/2 obtains 73.3% mAP, surpassing the original CenterNet trained on the entire FLIR
(71.1%).

Table 3. Detection results of SMG-C on the FLIR benchmark.

Dataset Method mAP (%)
AP (%)

Person Car Bicycle

FLIR Baseline 71.1 76.6 85.4 51.2
SMG-C 75.6 79.0 85.8 62.0

FLIR-1/2 Baseline 68.1 75.1 83.5 45.8
SMG-C 73.3 78.7 86.0 55.3

FLIR-1/4 Baseline 65.8 71.5 81.8 44.1
SMG-C 70.9 76.7 84.5 51.5

We also report the results on the IAT benchmark in Table 4. All mAPs of SMG-C
exceed 95%, while the highest accuracy of CenterNet is only 93%. When we reduce training
datasets to half of the original, the accuracy of the baseline drops to 90.6%, while SMG-C
maintains 95.2% in mAP. Furthermore, SMG-C trained on IAT-1/2 surpasses the baseline
method trained with the entire training dataset. This demonstrates that SMG-C yields an
effective infrared detection method even when there are a lack of available training data.

Some results on IAT-1/2 are visualized in Figure 7. When the target is small, some
interference from the background may adversely affect the detection especially in the
absence of enough training examples. As shown in Figure 7, the baseline CenterNet
hardly overcomes this problem so as to generate many wrong detection results. However,
SMG-C guided by the high-performance RGB model suppresses the interference from the
background and predicts more precisely than the baseline.

Table 4. Detection results of SMG-C on the IAT benchmark.

Dataset Method mAP (%)

IAT Baseline 93.0
SMG-C 96.8

IAT-1/2 Baseline 90.6
SMG-C 95.2
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Figure 7. Visualization results on IAT-1/2.

4.3. SMG-Y Results

Similar to SMG-C, we conduct experiments on both FLIR and IAT datasets to evaluate
the performance of SMG-Y. SMG-Y is compared with the baseline detector, YOLOv3 [18].

Table 5 presents the results of SMG-Y on the FLIR benchmark. The mAP of SMG-Y
exceeds the baseline method nearly 10% on the same dataset, and the gap of them increases
with the decrease of training examples. On FLIR-1/4, SMG-Y achieves 62.5% AP in bicycle
detection in comparison with 29.1% for the baseline. We also observe that the accuracy of
SMG-Y on FLIR-1/4 (74.5% mAP) outperforms the baseline method trained with full FLIR
(69.4% mAP), which demonstrates SMG-Y maintains remarkable accuracy with limited
training data. When the dataset is reduced to 1/4 of the original, the mAP of SMG-Y
decreases by 2.5% (from 77.0% to 74.5%). However, the mAP of the baseline method drops
by 13.2% (from 69.4% to 56.2%). The low reduction of SMG-Y indicates that it can take full
advantage of the knowledge from the source model and decrease the data dependency of
the network.
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Table 5. Detection results of SMG-Y on the FLIR benchmark.

Dataset Method mAP (%)
AP (%)

Person Car Bicycle

FLIR Baseline 69.4 74.5 84.4 49.2
SMG-Y 77.0 78.5 86.6 65.8

FLIR-1/2 Baseline 64.9 68.5 82.1 44.0
SMG-Y 75.4 76.9 86.7 62.7

FLIR-1/4 Baseline 56.2 61.2 78.3 29.1
SMG-Y 74.5 76.6 84.4 62.5

We visualize some results of SMG-Y and its baseline YOLOv3 when both of them are
trained on FLIR-1/4, as shown in Figure 8. We find that the baseline method hardly predicts
the position of the bicycle because it is always obscured by people. Furthermore, due to
insufficient training data, YOLOv3 is difficult to recognize objects with special gestures,
such as the sitting woman in the last row of Figure 8 (note that most people in the training
dataset are walking or riding). However, SMG-Y overcomes those problems and detects
precisely under the circumstances of severe occlusion and appearance change even if the
training examples are limited.

Experiments are also conducted on the IAT benchmark, and the results are shown in
Table 6. We witness a sharp fall in the baseline accuracy as the number of training instances
decreases. In contrast, SMG-Y trained on IAT-1/2 keeps competitive accuracy with 96.2%
mAP, which is slightly lower than that trained on the full IAT dataset.

Table 6. Detection results of SMG-Y on the IAT benchmark.

Dataset Method mAP (%)

IAT Baseline 92.5
SMG-Y 97.8

IAT-1/2 Baseline 88.3
SMG-Y 96.2

4.4. Comparison of SMG-C and SMG-Y

We compare two instantiations and their baseline methods in Figure 9. It is notable
that SMG-Y outperforms SMG-C but YOLOv3 is inferior to CenterNet. In other words, the
gap between SMG-Y and its baseline is larger in comparison with SMG-C. To be specific,
SMG-Y achieves 77.0% mAP, which is 7.6% higher than its baseline when trained on a
full FLIR. In contrast, SMG-C obtains 75.6% mAP, exceeding its baseline by 4.5%. We
attribute this phenomenon to the fact that three different BSMs are added in SMG-Y to
receive knowledge from different scales, and only one BSM is inserted in SMG-C.

Additionally, the data dependency for a detector can be reflected in the performance
degradation when we reduce the training examples, which is also the slope of the curves
in Figure 9. The decline of CenterNet is less than that of YOLOv3 due to the different
principles between two frameworks: one is anchor-free and the other is anchor-based. We
observe that the curves of both SMG-Y and SMG-C are smoother than their baselines. For
example, a slight reduction in mAP can be witnessed in SMG-Y while its baseline accuracy
drops dramatically, which indicates that SMG is an efficient strategy to decrease the data
dependency for an infrared detection network.
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Figure 8. Visualization results on FLIR-1/4.

371



Appl. Sci. 2022, 12, 1896

Figure 9. The comparison of SMG-C and SMG-Y in terms of mAP.

4.5. Comparison with State-of-the-Arts

Our frameworks (SMG-C and SMG-Y) are compared with some recent state-of-the-art
detectors on the FLIR benchmark. The compared trackers are divided into two categories,
visual and infrared detectors. The visual detectors such as SSD [9], YOLOv3 [18], Faster-
RCNN [8], CenterNet [19], and RefineNet [39] are designed for RGB object detection and
finetuned on the training set of FLIR. The infrared detectors, including MMTOD-CG [1],
MMTOD-UNIT [1], Effi-YOLOv3 [40] and Pesudo-two-stage [14], are applied for thermal
images directly.

We present the qualitative results in Table 7. It is remarkable that two proposed
detection frameworks achieve outstanding performance. Specifically speaking, SMG-Y
obtains the highest mAP with 77.0% and the AP of person, car, and bicycle are 78.5%,
86.6%, and 65.8%, respectively. It outperforms advanced detectors in mAP, and the speed
of it maintains 40 frames per second (FPS), keeping the balance of accuracy and speed.
Despite the slightly lower mAP (75.6%) in comparison with SMG-Y, SMG-C runs at the
speed of 107 FPS, which is five times faster than other infrared detectors. Compared to
the high-speed detector CenterNet [19], SMG-C gains 4.5% improvement in mAP, which
shows that SMG-C is an efficient real-time detector.

More importantly, SMG-Y with 1/4 training data also achieves 74.5% mAP, surpassing
all visual detectors and most infrared detectors trained on full FLIR. The bicycle accuracy
in SMG-Y-1/4 is 62.5% AP, which is on par with that of Pseudo-two-stage [14]. Note that
the training dataset of SMG-C-1/4 only contains 928 bicycle instances, while Pseudo-two-
stage [14] is trained with 3986 examples for bicycle detection.
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Table 7. Detection results of different detectors on the FLIR benchmark.

Category Model mAP (%)
AP (%)

FPS
Person Car Bicycle

Visual
detectors

SSD [9] 62.1 63.1 75.8 47.5 24
YOLOv3 [18] 69.4 74.5 84.4 49.2 42

Faster-RCNN [8] 70.9 71.3 75.8 61.8 8
CenterNet [19] 71.1 76.6 85.4 51.2 107
RefineDet [39] 74.3 79.4 85.6 58.0 22

Infrared
detectors

MMTOD-CG [1] 61.4 63.3 70.6 50.3 -
MMTOD-UNIT [1] 61.5 64.5 70.7 49.4 -
Effi-YOLOv3 [40] 70.8 74.5 84.7 53.2 22

Pseudo-two-stage [14] 75.6 78.7 85.5 62.5 21
SMG-C 75.6 79.0 85.8 62.0 107
SMG-Y 77.0 78.5 86.6 65.8 40

SMG-Y-1/4 74.5 76.6 84.4 62.5 40
SMG-Y-1/4 is trained on FLIR-1/4, and the other detectors are trained on FLIR.

5. Ablation Studies

In this section, we conduct ablation studies with SMG-C to understand the effect
of image resolution, guidance, and backbone. All networks are evaluated on the FLIR
benchmark, and the source model is CenterNet with ResNet-18 [19].

5.1. Effect of Image Resolution

We employ ResNet-18 as the FEN in the target network, and the compared baseline
is the original CenterNet without SMG. Table 8 presents the mAP of two methods when
the image resolution is changed from 384 × 384 to 512 × 512 . It is obvious that the higher
resolution contributes to better accuracy. However, at different resolutions, SMG-C exceeds
the baseline more than 5% in mAP. It indicates that the image resolution just affects the
performance of the baseline network and has less influence on SMG.

Table 8. Detection results on the FLIR benchmark at different image resolutions.

Input Size Method mAP (%)

384 × 384 Baseline 53.9
SMG-C 59.0

512 × 512 baseline 62.7
SMG-C 68.8

5.2. Guidance with Hard or Soft Label

In SMG, we use the foreground soft label generated from the source model as the
guidance. However, the hard label from the ground truth also can be utilized as the
guidance. The hard label is the ground-truth foreground score, which is the combination of
all ground-truth targets mapped to the heatmap. In every position of heatmap, the value of
the hard label is either 0 or 1, which is different from the soft label in [0, 1].

We fix the image resolution at 512 × 512 and compare the baseline (no guidance) with
three different guidance methods, including hard, soft, and both of them in Table 9. The
methods with guidance surpass the baseline more than 5% in mAP, which shows that
the guidance is an important factor in performance improvement. Furthermore, the soft
guidance obtains higher accuracy than other guidance methods. We attribute it to the fact
that the soft label contains hidden information about how the source model distinguishes
foreground from background, which is exactly what the target network needs to learn.
Therefore, we choose the soft guidance in SMG other than hard guidance.
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Table 9. Detection results of different guidance methods on the FLIR benchmark.

Guidance Method mAP (%)

No guidance (baseline) 62.7
Hard 67.7

Hard and soft 68.1
Soft 68.8

5.3. Effect of Backbone

In this subsection, two different backbones, ResNet-18 [19] and DLA-34 [38], are used
as FENs in the target networks. Table 10 shows the comparison of the their mAP with
corresponding baselines at the image resolution of 512 × 512. The structure of DLA-34 is
more complicated than ResNet-18, and thus, higher detection accuracy can be achieved.
In spite of different backbones, we observe a significant increase in mAP (over 5%) when
SMG is added to the framework. That indicates SMG is an effective strategy no matter
which backbone we employ.

Table 10. Detection results of SMG-C with different FENs on the FLIR benchmark.

Backbone Method mAP (%)

ResNet-18 Baseline 62.7
SMG-C 68.8

DLA-34 Baseline 71.1
SMG-C 75.6

6. Discussions

In this section, we give some insights about why our proposed SMG works well when
there are limited training examples. Then, we analyze the failure cases of our methods.

6.1. Why SMG Works Well

In SMG, we suppress the background disturbances by borrowing the knowledge from
the source model so as to reduce the data dependency of the target network (infrared
detection network). Taking SMG-C as an example, we visualize the soft label generated
from the source model and the heatmap of the target network. Figure 10 shows that
the source model can filter out the main background, such as roads, houses, and so on.
However, it hardly detects specific targets in heavy occlusion, such as people in the crowd,
cyclists, and bicycles. In other words, the soft label from the source model can be viewed as
effective knowledge to provide supervision, but it cannot be leveraged directly. We solve
this problem by inserting a BSM in the target network to receive the knowledge transferred
from the source model and enhance the foreground at the same time. The last column in
Figure 10 illustrates that the target network with BSM locates center points of targets more
precisely than the source model. As a result, the target network can pay more attention to
target objects, which is important for training with limited examples.
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Figure 10. The visualization of soft label and heatmap.

6.2. Missed Detections

Although SMG promotes accuracy in infrared object detection, the limited-examples
detection is still a challenging task. By visualizing the results of SMG-Y trained on FLIR-1/4
and full FLIR in Figure 11, we study the missed detections in absence of training examples.
We also represent logarithmic average miss rates of SMG-Y and SMG-Y-1/4 in Table 11.
The miss rates of SMG-Y-1/4 are slightly higher than those of SMG-Y. When two objects
are close to each other, such as two pedestrians walking together, SMG-Y-1/4 may detect
them as a single target, while SMG-Y with sufficient training data easily distinguishes them,
as shown in Figure 11. Furthermore, we find that both SMG-Y and SMG-Y-1/4 miss the
small objects located far from the camera or obscured by others, such as person and bicycle.
We attribute this drawback to the fact that their source model YOLOv3 has poor detection
performance for small targets. In the future, we will focus on these challenges and try to
cope with them.
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Figure 11. Some examples of missed detections. Note that SMG-Y-1/4 represents SMG-Y trained on
FLIR-1/4.

Table 11. Miss rates of SMG-Y and SMG-Y-1/4 on the FLIR benchmark.

Method Person Car Bicycle

SMG-Y 0.53 0.41 0.52
SMG-Y-1/4 0.55 0.43 0.55

7. Conclusions

In summary, we present a novel cross-domain transfer approach SMG to address the
problem of infrared detection on small-scale datasets. SMG can convert a visual detection
framework into an infrared detector by borrowing the knowledge from the source model,
which is a trained RGB detection model. We apply SMG in both anchor-free and anchor-
based detection frameworks, named as SMG-C and SMG-Y, respectively. Experiments on
FLIR and IAT illustrate that our infrared detectors achieve outstanding performance in lack
of available training data. Compared to state-of-the-art detectors, SMG-Y with only 1/4
training data outperforms most of them, demonstrating that SMG is a preferable method
for limited-examples infrared detection.
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Abstract: Marine hydrological elements are of vital importance in marine surveys. The evolution of
these elements can have a profound effect on the relationship between human activities and marine
hydrology. Therefore, the detection and explanation of the evolution laws of marine hydrological
elements are urgently needed. In this paper, a novel method, named Evolution Trend Recognition
(ETR), is proposed to recognize the trend of ocean fronts, being the most important information
in the ocean dynamic process. Therefore, in this paper, we focus on the task of ocean-front trend
classification. A novel classification algorithm is first proposed for recognizing the ocean-front trend,
in terms of the ocean-front scale and strength. Then, the GoogLeNet Inception network is trained to
classify the ocean-front trend, i.e., enhancing or attenuating. The ocean-front trend is classified using
the deep neural network, as well as a physics-informed classification algorithm. The two classification
results are combined to make the final decision on the trend classification. Furthermore, two novel
databases were created for this research, and their generation method is described, to foster research
in this direction. These two databases are called the Ocean-Front Tracking Dataset (OFTraD) and the
Ocean-Front Trend Dataset (OFTreD). Moreover, experiment results show that our proposed method
on OFTreD achieves a higher classification accuracy, which is 97.5%, than state-of-the-art networks.
This demonstrates that the proposed ETR algorithm is highly promising for trend classification.

Keywords: remote sensing; video signal process; sea surface

1. Introduction

The ocean dynamic process contains essential factors that characterize and reflect
the ocean hydrological status and phenomena. Detection, localization, and classification
of their formation and interaction processes are essential in various ocean-related fields,
such as fisheries and global warming. Several ocean-related variables have been identified
for the ocean dynamic process, such as ocean currents, ocean tides, inner waves, ocean
fronts, mesoscale vortices [1], etc. The oceanfront is an important branch of the ocean
dynamic process [2–4]. Specifically, ocean fronts are located at the boundary between
water masses with different properties [5,6], such as density, temperature, salinity, etc.
Changes in the strength and scale of ocean fronts are some of the most vital subjects being
studied, because they play an important role in the coupling of winds and the ocean
processes [7,8]. For example, water masses in the ocean-front system have a great effect
on air-sea exchange [9–11], activate the biological activity of the region [12], and absorb
atmospheric carbon dioxide [13,14].
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For marine fishing and marine environmental protection, it is vitally important to
characterize the trend of the ocean front [15–19]. In fact, identifying the trend of an
oceanfront is a difficult task, because simply working on short snippets cannot provide
sufficient information to recognize it. The key to achieving high trend-recognition accuracy
is to extract features from the consecutive frames, i.e., a video clip. The video sequence
should include the whole process of an ocean-front trend. Usually, the length of a sequence
is no more than 200 frames. In our dataset, we choose videos containing 5 to 200 frames. To a
certain extent, action recognition is similar to ocean-front trend recognition. Recognizing the
actions in a video, e.g., walking, jumping, etc., requires observing the entire motion process.
Similarly, we have to consider a certain number of consecutive frames for recognizing the
trend of an oceanfront, which is in either an enhancement or attenuation state.

In our previous work [20–25], both traditional machine-learning methods and deep
neural networks were introduced to detect, recognize and predict ocean fronts and eddies.
However, to the best of our knowledge, there is little previous work trying to recognize
ocean-front trends based on oceanfront video sequences, but there are plenty of works
trying to recognize or classify actions based on surveillance video sequences. Action clas-
sification [26–28] is an active field of research attracting increasing attention, due to its
numerous potential applications in surveillance, video analysis, etc. The long-standing
research on this classification task can be roughly divided into two categories. The first
category relies on statistical feature extraction, followed by classifiers [29,30], while the
second category is based on convolutional neural networks (CNNs). Examples of methods
based on statistical features include [31–33]. However, these methods have limited gener-
alization ability compared with CNNs. CNNs, which replace handcrafted features with
“learned-from-data” features, have been successfully used for image classification [34,35].
Specifically, deep-learning-based methods [36–40] have achieved remarkable progress in
video analysis.

According to our previous work, deep learning models are promising methods for
ocean-front recognition and prediction. Thus, in this paper, we propose to use deep
learning methods to classify ocean-front evolution trends. However, if deep learning
models, such as CNNs, are directly applied to a video sequence, Karpathy et al. [41] found
that the recognition performance achieved was inferior, compared with the state-of-the-art
statistical features. Besides, inspired by the success of the region-proposal methods for
object detection [42,43], some methods have attempted to extract temporal information
from short snippets [28,44,45], by sparsely sampling from a long video sequence.

To improve the classification accuracy, a two-stream deep model [46], consisting of
a spatial and a temporal CNN, was proposed, which achieved comparable performance
with the most representative statistical features. One major limitation of the two-stream
CNNs is that the method pays too much attention to the features extracted from a single
RGB frame and the short-term motions, rather than the entire temporal information. Those
frames, which are not within the selected short snippets of the video, may contain important
temporal information, which can help improve the classification accuracy. Therefore, the
deep model dismisses some useful temporal information. On the contrary, statistical
features have an advantage in extracting the temporal information by using a specifically
designed feature extraction algorithm based on prior knowledge. Therefore, in this paper,
we propose a new fusion method for recognizing the ocean-front trend. We propose new
statistical algorithms, which can extract temporal information from a video sequence,
and we also apply a deep learning model to learn the deep feature from the video sequence,
we then use weighted fusion to incorporate temporal information to improve classification
accuracy. In our experiments, we prove that the proposed method can achieve high
classification accuracy, better than using state-of-the-art deep-learning-based methods.

The novelty of this paper is twofold. (1) We introduce an Evolution Trend Recognition
(ETR) method, which is based on classifiers with prior physical knowledge. The method not
only gets rid of the complex operations required for selecting the frames with ocean fronts
from a video sequence but can also aggregate the information extracted from different
classification methods. (2) We have created a new database for ocean-front trend recognition,
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to encourage other researchers to evaluate their methods for ocean-front trend classification
and facilitate them in using data-driven methods, especially deep-learning-based methods,
to deal with this challenging task.

More specifically, our ETR method uses an effective mechanism to combine results
from classification algorithms based on strength and scale, and employs deep-learning-
based classification methods, based on the GoogLeNet Inception network [47], to recognize
the ocean-front trend. Our experiment results show that the proposed ETR method achieves
superior recognition performance over state-of-the-art methods on the Ocean-front Trend
Dataset (OFTreD).

The remainder of this paper is organized as follows. The ETR framework and the
process of building the OFTreD and Ocean-front Tracking Dataset (OFTraD), used in our
experiments, are presented in detail in Section 2. Experimental results are presented in
Section 3 and discussed in Section 4, and finally, Section 5 concludes this paper.

2. Materials and Methods

2.1. The Proposed Method

Extracting representative features from a video sequence is of prime importance for
the task of ocean-front trend recognition. In this section, we will describe a novel idea
for extracting discriminative features for recognizing the ocean-front trend, based on the
analysis of a whole video. The key idea of the proposed method is shown in Figure 1,
the proposed trend recognition method relies on the combination of the statistical algo-
rithms and deep learning models. Softmax classifier is then applied for trend recognition
of enhancement and attenuation. The proposed method avoids the complex operations
required for selecting recommended frames, because the proposed method can extract
representative temporal and deep features from the video sequence, and hence, it is efficient
and effective.

Figure 1. The proposed trend recognition method is composed of the strength-based algorithm,
the scale-based algorithm, and the GoogLeNet network. Each of these three parts will be processed
by the softmax classifier and give 2 scores. The scores then are used to recognize the enhancement
and attenuation oceanfront.

In this section, we first described the network structure of the proposed recognition
method in Section 2.1.1. Then, we described the ocean-front classification algorithm based
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on strength and scale feature in Sections 2.1.2 and 2.1.3, respectively. In Section 2.1.4, we
explained the feature matrices generation method. Then, we described the ocean-front
trend classification algorithm based on the GoogLeNet Inception network in Section 2.1.5.
Finally, we described the ocean-front tracking algorithm in Section 2.1.6.

2.1.1. Network Structure

The proposed recognition framework, which is composed of three parallel networks,
is depicted in Figure 2. The first and second networks are designed for trend classification,
based on prior physical knowledge, which will be explained in Sections 2.1.2 and 2.1.3.
Their inputs are the video sequences from OFTreD. The OFTreD database is proposed for
the ocean-front trend recognition task. The third network is also designed for ocean-front
trend classification, based on GoogLeNet Inception, whose input is the optical flow images
extracted from the video sequences in OFTreD. The first, second and third networks are
integrated to classify the ocean-front trends. In this paper, two kinds of ocean-front trends
are defined, namely, the enhancement trend and attenuation trend. In Figure 2, Score A
and Score B are used to classify the ocean-front trend. The value of Score A denoted as
sA, represents the probability that an oceanfront enhancement trend, and that of Score
B, denoted as sB, represents the probability that an oceanfront has an attenuation trend.
The scores sA and sB are computed as follows:

sA = w1 × s1 + w2 × s3 + w3 × s5 (1)

sB = w1 × s2 + w2 × s4 + w3 × s6 (2)

where wi, i = 1, 2, 3, are the weights, whose values will be discussed in Section 4. sj,
j = 1, ..., 6, represents the value of Score j in Figure 2. The larger score of sA and sB will be
used to determine the ocean-front trend category.

Figure 2. The overall network architecture. The input video sequences are fed to three parallel
networks. The input frames of the Ocean-Front Trend Database (OFTreD) are fed to the strength and
scale-based classification algorithms directly without pre-processing. However, the input frames
of the OFTreD dataset are pre-processed to form warped optical flow images, before feeding to a
GoogLeNet Inception network. Besides, for the three parallel networks, Scores 1 to 6 are produced.
Scores 1, 3, and 5 are combined to obtain the Score A, and scores 2, 4, and 6 are combined to obtain the
Score B according to Equations (1) and (2). These two scores are used to determine if the oceanfront is
under enhancement or attenuation, Score A is for enhancement and Score B for attenuation.

Each of the three proposed networks ends with a softmax layer, which outputs two
scores to represent the probabilities of the input video sequence belonging to the enhance-
ment or the attenuation trend. In total, six classification scores are generated. The six scores,
i.e., Score 1 to Score 6, are used to classify whether the oceanfront is enhancing or atten-
uating. In our experiments, Scores 1, 3, and 5 are used to represent the probabilities of
belonging to the enhancement trend, while the Scores 2, 4, and 6 are used to represent the
attenuation trend. An ocean front in a video sequence belongs to either the “enhancement”
class or the “attenuation” class. Finally, we integrate these six weighted scores to make the
final decision on the trend class.

As shown in Figure 3, we also propose an oceanfront tracking algorithm to check
whether the current input video sequence contains an oceanfront and where the ocean-
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front trend is in the video sequence. For this task, we train a GoogLeNet network on the
OFTraD dataset.

Figure 3. The procedure of the proposed ocean-front tracking algorithm. The input RGB images
are fed to a GoogLeNet Inception network. Then, the softmax gives the probabilities of the input
image belonging to the foreground or the background. The foreground images are used to track the
ocean-front location in a video sequence.

The input of this network is the RGB images from OFTraD. The network is used to
determine whether the input belongs to the background or the foreground. Those images
that contain a tracking target, i.e., an oceanfront, belong to the foreground class, otherwise,
they belong to the background class. Based on the location information carried by the input
images, the output labeled images can be reconstructed into ocean-front video sequences,
and then the ocean-front trend in the video sequences can be tracked.

2.1.2. Ocean-Front Classification Algorithm Based on Strength

The ocean-front trend classification algorithms based on strength and scale are trained
on OFTreD. As shown in Figure 4, we calculate the mean intensity of the oceanfront to
represent the oceanfront strength information of a frame. For the scale, we count the number
of pixels of the oceanfront in each frame and use it to represent the scale information for
the frame.

Figure 4. The ocean-front classification algorithms are based on strength and scale. These algorithms
are very similar. First, the feature values are calculated from the video sequences (a). Then, these
values are used to fit a curve (b). After that, we can extract points from the curve to form a matrix.
Then, this matrix is processed and fed to softmax for classification. The scores hence can be acquired
and used to label the enhancement and attenuation classes (c).

To improve the classification accuracy, we focus on the classification of ocean-front
trends in a video sequence, rather than the snippets of a video. We analyze the overall ocean-
front trend in a video sequence, based on the ocean-front strength and scale. The ocean-front
strength can be represented by the numerical intensity of an oceanfront, while the ocean-
front scale can be represented by the area of the existing oceanfront. Since the scale and
strength of an oceanfront are highly correlated with the ocean-front trends, they can be
used to effectively infer the trend of an oceanfront in a video sequence. Based on this
prior knowledge, the scale and strength information of an ocean-front video sequence
is used as an important reference for formulating the corresponding feature matrices
B1 and B2 ∈ R(H−1)×W , where W is the number of representative points extracted from
a feature curve, and H represents the number of frames in the video. The details of
computing the strength and scale feature matrices for an ocean-front video are shown in
Algorithms 1 and 2, respectively. The method of generating a feature curve and extracting
representative points from the feature curve will be described later in Section 2.1.4.
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Algorithm 1 Classification Algorithm Based on Strength

1: Input: A video vi(x, y), i = 1, ..., H, where H is the number of frames, and (x, y) are the
pixel coordinates

2: for i = 1 to H do
Calculate the mean intensity of the ocean front in the frame i, denoted as ms(i),

which is computed as follows:

ms(i) =
1

nr × nc

nc

∑
x=1

nr

∑
y=1

vi(x, y), (3)

where nr and nc are the number of rows and columns, respectively, in a frame.
3: end for

Generate the mean intensity vector a1 = [ms(1)...ms(H)]T for the video.
Apply a curve fitting technique to a1 to form the feature curve V1, and sample the

curve V1 with (H − 1)× W points, where W is the number of representative points of
each frame. In our experiments, W is set at 10. The sampled points then formulate a
matrix B1 ∈ R(H−1)×W .

Then, use an average pooling filter to process the matrix B1 to generate the re-
sulting vector c1. The resulting elements are denoted as m f , and hence the vector
c1 = [m f (1)...m f (40)]T , whose dimension is set at 40 × 1 in our implementation. c1 is
the feature vector with unified dimension for trend classification.

Use the trained softmax to classify the vector c1
4: Output Classification scores s1, s2

Algorithm 2 Classification Algorithm Based on Scale

1: Input: A video containing H frames
2: for i = 1 to H do

Count the number of ocean-front points in the frame i, denoted as ns(i), which are
detected using the oceanfront detection method [22].

3: end for
Count the number of ocean-front points for each of the H frames, to form the

vector a2 = [ns(1)...ns(H)]T for the video.
Apply a curve fitting technique to a2 to form the curve V2, and sample the curve

V2 with (H − 1)× W points, where W is the number of representative points of each
frame. In our experiments, W is set at 10. The sampled points then formulate a matrix
B2 ∈ R(H−1)×W .

Then, use an average pooling filter to process the matrix B2, get the result-
ing vector c2. The resulting elements are denoted as n f , and hence the vector
c2 = [n f (1)...n f (40)]T , whose dimension is set at 40 × 1 in our implementation. c2
is the feature vector with unified dimension for trend classification.

Use the trained softmax to classify the vector c2
4: Output Classification scores s3, s4

2.1.3. Ocean-Front Classification Algorithm Based on Scale

With the proposed algorithms, we will illustrate how to extract the strength and scale
information about the oceanfront in a video sequence and the databases used for training
and testing. Algorithm 1 is designed for recognizing ocean-front trends based on the
strength of an oceanfront. To classify the trend, we need to compute the variations of the
ocean-front strength. Since the strength of an oceanfront varies from point to point, we
propose to use the mean intensity of an oceanfront in a frame to represent its strength.
Similarly, Algorithm 2 is designed to classify the ocean-front trend based on its scale.
The scale of an oceanfront is calculated based on the number of oceanfront points in a
frame. The greater the number of ocean-front points, the larger the ocean-front scale is.
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Here, the vectors a1 and a2 represent the strength and scale information, respectively,
and the matrices B1 and B2 represent the points extracted from the corresponding curves,
and the feature vectors c1 and c2 represent the filtered output from the corresponding
matrices B1 and B2. Thus, the feature vectors c1 and c2 represent the processed strength
and scale information, respectively. We use the feature vectors c1 and c2 to classify the
ocean-front trend. Then, these feature vectors are sent to softmax for classification and
generate the output si, i = 1, 2, 3, 4.

2.1.4. Feature Matrices Generation Method

In the ocean-front trend algorithms, the number of frames of different videos may be
different, so the dimensions of the strength vector a1 and the scale vector a2 of different
videos, as described in Algorithms 1 and 2, respectively, are different. To make the two
vectors always have the same length, Algorithms 1 and 2 apply curve fitting to the vectors
a1 and a2, then resamples the two curves with a fixed number of points. Specifically,
as shown in Figure 5, we use the cubic polynomial interpolation method to fit the curves.
With a fixed number of points on the curve, two matrices, B1 and B2 ∈ R(H−1)×W , are
generated. The matrices generation process is shown in Figure 6, starting from the point
representing the strength/scale of the first frame, we sample points on the curve at regular
intervals until the point that represents the last frame. We set W = 10 in our experiments,
because we need to extract more than 40 points from the curve. As analyzed in Section 4,
the best vector dimension is 40 × 1, too small will not meet the requirement, too large is
unnecessary. After that, the matrices B1 and B2 are processed by three pooling filters to
obtain fixed-dimensional vectors c1 and c2.

Figure 5. The curve fitting technique. The strength and scale features extracted from each frame are
represented by a point in (a,b). Therefore, the number of the points is equal to the frame number.
Then, using the cubic polynomial interpolation method to fit the curves, we get feature curve (c,d).

Given matrices B1 and B2 ∈ R(H−1)×W , we vectorize the matrices B1 and B2 to acquire
the feature vectors b1 and b2. The elements of the matrices B1 and B2 are denoted as mp
and np, and hence the vector b1 = [mp(1)...mp((H − 1)×W)]T , b2 = [np(1)...np((H − 1)×
W)]T , whose dimension is [(H − 1)× W, 1]. As shown in Algorithm 3, according to the
dimension of the matrices B1 and B2, we use different pooling filters. If the dimension
of the feature vectors b1 and b2 is greater than 200 × 1, average pooling is performed
every 5 elements from the first and the last 50 elements in the feature vectors, that is
b1[1 : 50, 1], b1[(H − 1)× W − 49 : (H − 1)× W, 1], b2[1 : 50, 1], and b2[(H − 1)× W − 49 :
(H − 1)×W, 1], the filter size is [5, 1]. Then, We assign c1[1 : 10, 1], c1[31 : 40, 1], c2[1 : 10, 1],
and c2[31 : 40, 1] the value of the processed data. Then, the number of the remaining
elements in the feature vectors b1 and b2 is (H − 1)× W − 100. The pooling size is set at
((H − 1)× W − 100)/20 × 1, the stride is set at ((H − 1)× W − 100)/20. Average pooling
is performed every ((H − 1)× W − 100)/20 elements from b1[51 : (H − 1)× W − 50, 1]
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and b2[51 : (H − 1)× W − 50, 1]. And then we assign c1[11 : 30, 1] and c2[11 : 30, 1] the
value of the processed data.

Figure 6. The construction of the matrices B. 10 points are sampled from every two adjacent frames,
there are totally (H − 1)× W points sampled from the curve. The sampled points are sorted into a
matrix B ∈ R(H−1)×W .

Algorithm 3 The matrix processing method

1: Input: Matrices B1 and B2
Given matrices B1 and B2 ∈ R(H−1)×W , we vectorize them to acquire its feature

vectors b1 and b2.
2: if the dimension of the feature vectors b1 and b2 > [200, 1] do

Average pooling is performed every 5 elements from the first 50 elements and the
last 50 elements of the matrices, the filter size is [5, 1], the stride is 5. The processed
data is assigned to c1 and c2. Average pooling is applied to the remaining elements
in the feature vectors b1 and b2, the filter size is set according to the number of the
remaining elements.

3: else if the dimension of the feature vectors b1 and b2 > [100, 1] do
Average pooling is performed every 2 elements from the first and the last 30 ele-

ments, the filter size is [2, 1], the stride is 2. The processed data is assigned to c1 and c2.
Average pooling is applied to the remaining elements in the feature vectors b1 and b2,
the filter size is set according to the number of the remaining elements.

4: else do
The first and the last 15 elements of the vectorized matrices B1 and B2 are assigned

to c1 and c2. Average pooling is applied to the remaining elements in the feature vectors
b1 and b2, the filter size is set according to the number of the remaining elements.

5: Output Feature vectors c1 and c2

Otherwise, if the the dimension of the feature vectors b1 and b2 > [100, 1], average
pooling is performed every 2 elements from the first and the last 30 elements in the
feature vectors, that is b1[1 : 30, 1], b1[(H − 1) × W − 29 : (H − 1) × W, 1], b2[1 : 30, 1],
and b2[(H − 1)× W − 29 : (H − 1)× W, 1], the filter size is [2, 1]. We assign c1[1 : 15, 1],
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c1[26 : 40, 1], c2[1 : 15, 1], and c2[26 : 40, 1] the value of the processed data. Then, the number
of the remaining elements in the feature vectors b1 and b2 is (H − 1)×W − 60. The pooling
size is set at ((H − 1)×W − 60)/10× 1, the stride is set at ((H − 1)×W − 60)/10. Average
pooling is performed every ((H − 1)×W − 60)/10 elements from b1[31 : (H − 1)×W − 30]
and b2[31 : (H − 1)× W − 30]. We assign c1[16 : 25, 1] and c2[16 : 25, 1] the value of the
processed data, assign c1[11 : 30, 1] and c2[11 : 30, 1] the value of the processed data.

If the dimension of the feature vectors b1 and b2 < [100, 1], we assign c1[1 : 15, 1],
c1[26 : 40, 1], c2[1 : 15, 1], and c2[26 : 40, 1] the value of the first and the last 15 ele-
ments in the feature vectors, that is b1[1 : 15, 1], b1[(H − 1)× W − 14 : (H − 1)× W, 1],
b2[1 : 15, 1], and b2[(H − 1)×W − 14 : (H − 1)×W, 1]. Then, the number of the remaining
elements in the feature vectors b1 and b2 is (H − 1)× W − 30. The pooling size is set at
((H − 1)× W − 30)/10 × 1, the stride is set at ((H − 1)× W − 30)/10. Average pooling
is performed every ((H − 1)× W − 30)/10 elements of b1[16 : (H − 1)× W − 15, 1] and
b2[16 : (H − 1)× W − 15, 1]. Then we assign c1[16 : 25, 1] and c2[16 : 25, 1] the value of the
processed data. In this way, feature vectors c1 and c2 can be constructed.

2.1.5. Ocean-Front Trend Classification Algorithm Based on GoogLeNet

The structure of the GoogLeNet is shown in Figure 7, the Inception block helps to
handle the high-dimensional features and balance the width and depth of the network.
It also enables the network to perform spatial aggregation in low-dimensional features
without worrying about losing too much information. So, we apply this network to
recognize the ocean-front trend and track the ocean-front location.

Figure 7. The architecture of GoogLeNet Inception V2 network [48]. Its basic convolutional block is
named Inception. There are three kinds of Inception blocks in the network, Inception A, Inception B,
and Inception C, respectively.

Figure 8 shows the process of the ocean-front trend recognition, GoogLeNet Inception
network is employed to classify enhancement and attenuation of an oceanfront. The video
input is warped by using the optical flow method. The GoogLeNet Inception network
is trained and tested on the OFTreD dataset. The video sequence is first processed into
warped optical flow images. Then, these images are sent to the GoogLeNet Inception
network for classification. The softmax layer of the network generates the scores si, i = 5, 6,
which are used to label the video sequence as an enhancement or attenuation trend.
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Figure 8. The oceanfront classification network is based on the GoogLeNet Inception network,
including the following steps. First, the video sequence (a) is processed into warped optical flow
images (b). Then, these images are sent to the GoogLeNet Inception network (c) for classification.
The softmax layer (d) of the network produces the final scores, which are used to label the video
sequence as an enhancement or attenuation trend. The ocean-front tracking algorithm. Firstly,
the images are sent to the GoogLeNet Inception network to perform classification. The foreground
images are changed to white, and the background image blocks remain unchanged. Finally, the images
are used to reconstruct the video sequence.

2.1.6. Ocean-Front Tracking Algorithm Based on GoogLeNet

As shown in Figure 9, the ocean-front tracking algorithm is also based on the GoogLeNet
Inception network. The network is used to classify image blocks into two classes: the
oceanfront and the background. We first colored the oceanfront image blocks in white,
and then, we further use the location information and place them back to the same position
in the original frame. In this way, we can track the ocean-front location in a video sequence.
It is worth noting that this network is trained on OFTraD, with 8000 and 2000 image blocks
from the database used for training and testing, respectively.

(b)(a) (d)(c)

Figure 9. The ocean-front tracking algorithm. Firstly, the images (a) are sent to the GoogLeNet
Inception network (b) to perform classification. The foreground images are changed to white, and the
background image blocks remain unchanged (c). Finally, the images are used to reconstruct the video
sequence (d).

The input of our algorithm is the image blocks and their time-position information.
Firstly, we extract the RGB image blocks from each video sequence, and feed them into
the GoogLeNet Inception network for classification. The color of the image blocks is set to
white, if the image block is classified as the oceanfront. In our experiments, the block size
is set to 5 × 5, because this size can cover mesoscale ocean fronts. If the size of the blocks
is too large, it will be hard to find the exact location of the background. If the block is too
small, the classification accuracy will be reduced. Then, according to the corresponding
time-position information, the blocks are put together to form a video sequence. When
dividing an ocean-front frame into image blocks, we label their names with the time-
position information, so that when getting their classification labels, we can put them back
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to their original time-position location. Therefore, the location of the oceanfront in a video
sequence can be located.

2.2. Construction of the Dataset

To the best of our knowledge, there is no public database available for ocean-front
trend classification. This may be one of the reasons why ocean-front trend classification is
a difficult task. In this paper, one of our contributions is the creation of the two training
databases: OFTreD and OFTraD. The OFTreD contains 1000 video sequences, and the
number of image blocks of OFTraD reaches 10,000. 90% of the video sequences are used
for training, and 10% are used for testing. 80% of the image blocks are used for training,
and 20% are used for testing. We believe that our work will inspire more researchers to
research trend classification and will be used as a benchmark for this new research area.
The microcanonical multiscale formalism (MMF) will first be described in detail, and then
used to detect the ocean front.

2.2.1. Microcanonical Multiscale Formalism

In this paper, we aim to recognize an oceanfront and classify it into either the en-
hancement or the attenuation type. To recognize an ocean-front trend, we need to detect
and locate the oceanfront from remote sensing images. Currently, ocean-front detection
methods can be roughly divided into three categories. The methods in the first category
are those based on the computation of the vertical and horizontal gradients [49,50]. In the
second category, the methods make use of the ocean-water characteristics for ocean-front
detection, since ocean fronts are often located at the boundary of two or more ocean waters
with different characteristics. These methods include those based on histogram representa-
tions [51] and those based on the MMF [22,52]. The third category includes those based on
data-driven methods, such as deep neural networks [20]. Each of these categories has its
own advantages. In this paper, we use MMF, because it is efficient, accurate, stable, and
has been one of the best automatic ocean-front detection approaches.

To extract an oceanfront from a video sequence, we use the mathematical formalism,
which is computed based on the strength variations between adjacent pixels. By using
MMF [22], physical processes, like ocean fronts and eddies, can be easily recognized,
and then a deep neural network [20] can be used to classify them.

The key point of MMF is the accurate computation of the Singular Exponent (SE) value
h(−→x ) at pixel position x. In this context, the method proposed in [53] provides numerically
stable computation of the SE value at each pixel, as follows:

h(−→x ) =

log(τψμ(−→x ,r0))

<τψμ(.,r0)>

log r0
+ o(

1
log r0

) (4)

where r0 is used for image normalization. Given an image with the size of N × M,
r0 = 1

N×M . < τψμ(., r0) > is the average value of the wavelet coefficients of the whole
signal, and τψμ(x, r0) is the wavelet projection at point x. The smallest SE, namely the Most
Singular Manifold (MSM), corresponds to the strongest temperature variations in the SST
image, i.e., the oceanfront. The MSM is defined as follows:

F∞ = −→x : h(−→x ) = h∞ = min(h(−→x )) (5)

To simplify the detection task, we use the inverse of SE. This is because it is more
desirable to recognize and track the more obvious parts of an image.

2.2.2. Ocean-Front Trend Database (OFTreD)

The OFTreD takes the time-space variations of ocean fronts into account. The video
sequences were taken from the Advanced Very High-Resolution Radiometer (AVHRR)
satellite, which has a high-resolution imaging system and can collect images with a resolu-
tion of 5 km. Our databases focus on the videos captured in the Atlantic Ocean and the
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Pacific Ocean, from 2010 to 2015. We created a total of 1000 ocean-front video sequences.
Then, we divided these video sequences into ocean-front enhancement and attenuation
classes, according to the trend of the ocean fronts in the video sequences. In the process
of creating the databases, an ocean front is classified to have an enhancement trend, if its
tendency is becoming larger and stronger. However, a part of the oceanfront with the
enhancement trend may become weaker and smaller in a short snippet of a video sequence.
In the same way, an ocean front with the attenuation trend tends to become smaller and
weaker. It is also possible that a part of the oceanfront with the attenuation trend becomes
larger and stronger in short snippets. The existence of this phenomenon is determined by
the variability and irregularity characteristics of the ocean fronts. In OFTreD, the number
of frames in the ocean-front video sequences ranges from 5 to 200, and the size of each
frame is always larger than 20 × 40. These characteristics can ensure the robustness of the
database. If the frame number is too short or too long, it is difficult to classify its trend.
If the size is too small, it may not be able to cover an ocean front.

This database was created based on the efforts of six graduate students, with expertise
in oceanography. Each student labeled about 200 video sequences, and then, checked the
correctness of the video sequences labeled by the other five students. On average, it took
about 20 min to label one video sequence. In total, the students took two weeks to complete
the labeling and checking tasks for this database.

In addition, in order to facilitate calibration, we start by randomly selecting an area of
the selected ocean and randomly selecting a frame. Then, we display the ocean-front images
of the same area 20 days before and after. Thus, we need to check whether the area contains
an oceanfront. If an ocean front exists, we change the time-span and choose the suitable
start and end frames of the video sequence. Otherwise, another frame will be chosen
randomly. The space-time information of the selected frames is also recorded automatically.

We invited a number of oceanographic experts to check the classification results of
the 1200 video sequences created, and eliminated 200 of them, which are hard to classify.
The difficult sequences contain many ocean fronts, each ocean-front has its own trend.
The variation of the speed of the ocean-front trends is another factor that increases the
classification difficulty. However, this is a problem we should solve. Therefore, in this
research, we locate the ocean fronts in a video sequence, followed by identifying which
parts of the ocean fronts are enhancing and which parts are attenuating.

2.2.3. Ocean-Front Tracking Dataset (OFTraD)

The construction procedures of the ocean-front tracking database can be summarized
as the following steps. First, we split each frame in an oceanfront video sequence into
multiple fixed-size image blocks. The time-space-position information of each image block
is also recorded. Then, each image block is sequentially, from left to right and from top
to bottom, sent to the GoogLeNet Inception network for classification. The image blocks
are rearranged into frames so that we can locate the position of the oceanfront from frame
to frame.

3. Results

The environment configuration used in our experiments is Ubuntu16.04 + GeForce
GTX 1080 GPU card + Caffe deep learning framework [54]. The algorithm proposed in this
paper is partly based on the GoogLeNet Inception network. Fine-tuning is performed to
the pre-trained GoogLeNet Inception network [48] to reduce the negative impact of using a
small dataset and to improve the classification accuracy. Furthermore, we apply the TVL1
method [55] to extract optical-flow images. Every two consecutive frames can generate
one warped optical-flow image, and these optical-flow images can be used to capture the
tendency of the oceanfront between two consecutive frames. Experiment results show that
our algorithm is robust, efficient and effective.

As shown in Figure 10, we use the ocean-front tracking algorithm to obtain the position
of the ocean fronts in a video sequence. Sixteen representative frames were selected as
examples. Figure 10 displays the frames of an ocean-front sequence with the enhancement
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trend on the top row, the frames with the attenuation trend on the second row, and their
tracking label in the third and the bottom rows, respectively.

Figure 10. The ocean-front trend example. From the top to bottom is an ocean-front attenuation video
sequence, an ocean-front enhancement video sequence, an ocean-front attenuation video sequence
tracking label, and an ocean-front enhancement video sequence tracking label.

To verify the effectiveness of the ocean-front tracking method, a comparison exper-
iment is carried out. The comparison methods include the traditional method, machine
learning method, artificial neural network, and deep learning method. A traditional
method, such as BoVW (Bag of Visual Words), learns to classify the foreground and back-
ground images by extracting dense sift features from the training data [56]. Different from
BoVW, SVM (Support Vector Machine) can simplify the classification task to a minimization
problem of loss function [57]. In recent years, CNN (Convolutional Neural Network) has
become a classical method in the field of image classification. CNN also relies on extracting
features from the training data, but different from BoVW, CNN can extract robust features
which are invariant to various degrees of distortions and illumination, the effectiveness
of the CNN model has been proved in various recognition and classification tasks. Deep
learning is large neural networks. As the development of machine learning, deep learning
model, such as GoogLeNet Inception network, has been proposed and gradually become
the most widely used machine learning method. It has the advantage of learning from
massive amounts of data and has outperformed state-of-the-art machine learning methods,
such as SVM and CNN in many domains [58].

As shown in Table 1, we trained the GoogLeNet Inception network on OFTraD. Suf-
ficient training data allows us to train the network to track the position of ocean fronts,
with an accuracy of 96%. Compared with BoVW, SVM, and CNN, the GoogLeNet Incep-
tion network achieves the highest prediction accuracy. Therefore, we use this network
to classify image blocks into the background and foreground classes, and to track the
ocean-front location.

Table 1. Tracking accuracy using different methods.

Algorithm Accuracy Dataset

BOVW 64.5% OFTraD
SVM [58] 90% OFTraD

CNN 94.9% OFTraD
GoogLeNet Inception 96.1% OFTraD

4. Discussion

We analyzed the effect of different dimensions of the feature vectors c1 and c2 on
classification accuracy. Specifically, we use different pooling operations to produce the
feature vectors c1 and c2, whose dimensions are hence different. The experimental results
are shown in Table 2. We set the vector dimensions of c1 and c2 to 40 × 1, 60 × 1, 80 × 1 and
100 × 1. As the vector dimension is limited by the number of frames in a video sequence,
the largest vector dimension is 100 × 1. The experiment results show that the best vector
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dimension is 40 × 1, reaching the highest classification accuracy of 90.96%. This is probably
because 40 pixels are enough to represent the strength information of a video sequence.
Thus, we set the vector dimension at 40 × 1.

Table 2. Classification results using different feature vector dimensions.

Dimension 40 60 80 100

Accuracy 90.96% 87.63% 87.16% 87.75%

Then, we compare the classification accuracy and maximum runtime of the classifica-
tion algorithms based on strength (N1), scale (N2), the GoogLeNet Inception network (N3).
As shown in Table 3, the classification algorithm based on strength (N1) achieves the highest
accuracy among N1, N2, and N3. Besides, the accuracy of the classification algorithms
based on strength (N1) and scale (N2) are both higher than that of the GoogLeNet Inception
network (N3). When comparing the runtimes, as shown in Table 3, we found that the train-
ing time is only 283 min totally and the testing time of the classification algorithms based
on strength and scale is only 0.375 s, twice faster than that of the GoogLeNet Inception
network, which is 0.7 s. Therefore, our algorithm is computationally efficient.

Table 3. Classification accuracy using different networks of the proposed algorithms.

Algorithm Accuracy Test Time

N1 91.32% 0.375 s
N2 87.50% 0.375 s
N3 69.90% 0.7 s

As shown in Table 4, we tabulate the classification scores of the classification algo-
rithms for strength (N1) and scale (N2), with that of the output of the softmax layer of
the GoogLeNet Inception network (N3), which is called the ETR algorithm. Moreover,
we conducted comparative experiments to integrate the three classification results, using
different weights for the strength, scale, and actual output, i.e., w1, w2, and w3, used to
implement the weighted fusion.

Table 4. Classification results using different integration weights.

Algorithm
Integration Weights

Accuracy
w1 w2 w3

ETR

1 0 0 91.3%

0 1 0 87.5%

0 0 1 69.9%

1 1 0 90%

1 1 1 87.5%

−1 1 1 60%

1 −1 1 65%

1 1 −1 95%

2 1 −1 97.5%

The scenarios in this experiment can be divided into the following categories: (1) we
use the strength-based classification algorithm only. (2) we use the scale-based classification
algorithm only. (3) we use the GoogLeNet network only. (4) we combine the strength-based
and scale-based algorithms, and the weight of the two algorithms is 1:1. (5) we use the
three algorithms together, and the weight of the strength-based, scale-based algorithms,
and GoogLeNet network is 1:1:1. (6) we set the strength-based algorithm weight at −1,
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and the weight of the strength-based, scale-based algorithms, and GoogLeNet network is
−1:1:1. (7) we set the strength-based algorithm weight at −1, and the weight of the strength-
based, scale-based algorithms, and GoogLeNet network is 1:−1:1. As the recognition
accuracy achieved by the strength-based algorithm is the best, and that of the GoogLeNet
network is the worst. We employed two more sets of experiments. (8) we use the three
algorithms together, but the weight is 1:1:−1. (9) we use the three algorithms together,
but the weight is 2:1:−1.

As shown in Table 4, the accuracy of each network in our algorithm can reach, or even
exceed, 70%. This indicates that these networks are effective. Furthermore, when we
integrate these networks together, we can obtain much better classification accuracy. This
proves that the different networks in our algorithm are complementary to each other.
Although the classification accuracy of the GoogLeNet Inception network is only about 70%,
the final classification accuracy can be improved by integrating with the other two networks.

What’s more, the experimental results show that the classification accuracy is the
highest, when the weights are in the proportion of 2:1:−1. From Table 4, we have the
following interesting results. (1) The classification accuracy is higher when the weight of
the GoogLeNet Inception network is negative, lower when the weight of the GoogLeNet
Inception network is 0, proving that the classification results given by the GoogLeNet
network are relevant. The reason for this might be that there is a negative correlation
between the GoogLeNet Inception network and the classification algorithms based on
strength and scale. (2) The classification accuracy is higher when the classification algorithm
uses a larger weight for strength. This is probably because the strength information can
better represent the ocean-front trend. Therefore, increasing the weight for strength, relative
to that for scale, can achieve higher accuracy. (3) When the weights for strength and scale
are negative, the classification accuracy is the worst. This indicates that the strength and
scale information is closely correlated to ocean-front trends.

As shown in Table 5, we compare the classification accuracy of different learning
models on OFTreD. It can be seen that our algorithm can achieve higher classification
accuracy than that of SVM, Structured Segment Networks (STN), and GoogLeNet Inception
network. This proves that our algorithm is effective, in terms of classification accuracy.

Table 5. Classification accuracy compared with other networks.

Algorithm Accuracy Dataset

SVM 41% OFTreD
STN [48] 52% OFTreD

GoogLeNet Inception 69.90% OFTreD
ETR 97.50% OFTreD

5. Conclusions

In this paper, we proposed a novel and effective algorithm for ocean-front trend
recognition, namely Evolution Trend Recognition (ETR), which combines the GoogLeNet
Inception network and classification algorithms based on the strength and scale of ocean
fronts. For this research, we have also created two novel databases for ocean-front trend
recognition and ocean-front tracking. Firstly, we use the Microcanonical Multiscale Formal-
ism (MMF) method to detect the oceanfront in an ocean-front image. Then, we classify the
evolution trend in ocean-front video sequences. In our method, we classify the evolution
trend of an oceanfront based on its strength, scale, and optical-flow information. The trend
classification algorithms are based on strength and scale, and use a curve fitting method to
generate feature matrices, which are converted to a specific dimension by using average
pooling. Then, based on the feature matrices, the trend category of an oceanfront is deter-
mined by the softmax classifier. The trend classification method based on warped optical
flow images uses the GoogLeNet Inception network to directly classify the evolution trend
of an oceanfront. All of the three trend classification methods have their own advantages.
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Finally, a weighted fusion method is used to combine the three trend classification methods
to achieve the highest classification accuracy.

Although our proposed method applies to any video classification task, there are
still some constraints, which can be reflected in two aspects. First, for complex scenarios,
creating and labeling a database with a large number of samples is very labor-intensive.
Second, feature extraction requires prior knowledge, which may be hard to obtain. These
constraints are the shortcomings of our proposed algorithm. Besides, the ocean-front
enhancement and attenuation trend recognition is only a simple scenario for the ocean-
front evolution process, and the proposed fusion method for trend recognition still needs to
be improved. In our future research, we will try to analyze more complex scenarios in the
oceanfront evolution process, and try to propose a novel end-to-end deep learning network
to improve the classification accuracy.
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