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Article

Application of Filters to Improve Flight Stability of Rotary
Unmanned Aerial Objects

Maciej Salwa and Izabela Krzysztofik *

Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Aleja Tysiąclecia Państwa
Polskiego 7, 25-314 Kielce, Poland; maciejsalwa@tu.kielce.pl
* Correspondence: pssik@tu.kielce.pl

Abstract: The most common filters used to determine the angular position of quadrotors are the
Kalman filter and the complementary filter. The problem of angular position estimation consist is
a result of the absence of direct data. The most common sensors on board UAVs are micro electro
mechanical system (MEMS) type sensors. The data acquired from the sensors are processed using
digital filters. In the literature, the results of research conducted on the effectiveness of Kalman and
complementary filters are known. A significant problem in evaluating the performance of the studied
filters was the lack of an arbitrarily determined UAV position. The authors of this paper undertook the
task of determining the best filter for a real object. The main objective of this research was to improve
the stability of the physical quadrotor. For this purpose, we developed a research method using a
laboratory station for testing quadrotor drones. Moreover, using the MATLAB environment, they
determined the optimal parameters for the real filter applied using the PX4 software, which is new
and has not been considered before in the available scientific literature. It should be mentioned that
the authors of this work focused on the analysis of filters most commonly used for flight stabilization,
without modifying the structure of these filters. By not modifying the filter structure, it is possible to
optimize the existing flight controllers. The main contribution of this study lies in finding the most
optimal filter, among those available in flight controllers, for angular position estimation. The special
emphasis of our work was to develop a procedure for selecting the filter coefficients for a real object.
The algorithm was designed so that other researchers could use it, provided they collected arbitrary
data for their objects. Selected results of the research are presented in graphical form. The proposed
procedure for improving the embedded filter can be used by other researchers on their subjects.

Keywords: extended Kalman filter; complementary filter; quadrotor; PX4; MATLAB; ROS

1. Introduction

The Kalman filter and the complementary filter are the most popular filters for deter-
mining the angular position of unmanned aerial vehicles (UAVs). The problem of angle
estimation is the absence of direct data. The most common sensors on board UAVs are micro
electro mechanical system (MEMS) sensors. Basic sensors are used, such as accelerometer,
gyroscope, magnetometer sensors. The data acquired from the sensors are processed by
using digital filters. The Kalman filter has been studied in [1–7]. Publications are available
in which the authors have undertaken modifications to the structure of the Kalman filter.
In 2015, Xiong, J.J., and Zheng, E.H. [8] developed an optimal Kalman filter (OKF) for
quadrotor position estimation. In 2019, Alawsi, A.A.A., Jasim, B.H., and Raafat, S.M. [9]
developed the unscented Kalman filter (UKF). In both these papers, the authors worked
exclusively on simulation objects. Information about the complementary filter and its use
in UAV navigation can be found in references [10–13]. The problem so far in evaluating
the filter’s performance has been the lack of an arbitrary UAV position. One of the first
attempts to compare the two filters was made by Walter Higgins [14]. In his 1975 paper, he
compared only the theoretical operation of the filters. The authors of reference [15] used a

Sensors 2022, 22, 1677. https://doi.org/10.3390/s22041677 https://www.mdpi.com/journal/sensors1
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nine-degrees of freedom (DOF) sensor and analyzed the resulting angular position from
the collected readings without reference to the actual value. A reference to the arbitrary
value can be found in paper [16], in which the authors attempted to represent one arm of
the drone by simulating it with two motors on a ramp. They read the true value using a po-
tentiometer. The authors of this paper did not clearly answer which of the compared filters
is better. They only conclude that for quadrotors for which the flight time is no more than
15 min, initial calibration bias is not a problem for stabilization purposes. Furthermore, the
simplicity of the algorithm makes the complementary filter the best choice for embedded
applications where there is not much computational power.

This conclusion inspired the authors of this paper to revisit the issue, albeit using a
real drone. This is an innovative approach to the UAV flight stabilization problem and has
not been explored in the scientific literature.

Similar work was carried out by Stanislaw Chudzik in 2021 [17]. He studied the
behavior of the filters for angle estimation for a self-balancing robot. In his research he
used the STM32 Discovery F303CTV6 development kit containing MEMS sensors. He
used a rotary encoder to read the actual tilt value. He too did not provide an answer as to
which filter is better for tilt angle estimation. In 2016, as an extension of their research on
filters used for UAVs, Gabriel Schmitz, Tiago Alves, Renato Henriques, Edison Freitas, and
Ebrahim El’Youssef [18] worked on a filter for the Pixhawk controller. However, this had
not been undertaken by the time the following article was written.

The authors of this paper undertook the task of determining the best filter for a real
object. For this purpose, they used an innovative method for comparing the performance
of filters using a drone test-bench. As a goal, they set out to answer unequivocally which
filter performs better on a real object using a physical radio-controlled quadrotor. They also
decided to take up a theme left uninvestigated by the aforementioned researchers; they
investigated a real Pixhawk controller to determine how the default filter implemented
in the PX4 software works. During their research, they developed a way to improve the
performance of an extended Kalman filter, which is embedded in the PX4 software. Details
concerning its differences from a standalone Kalman filter were also described. The authors
determined the optimal parameters for the filter using the MATLAB environment.

This paper is structured as follows. Section 2 presents an innovative test-bench for
unmanned aerial vehicle, the method of data collection including the whole algorithm in a
graphical form, and the drone on which the tests were carried out. Section 3 describes the
filters including mathematical relationships. Section 4 presents how the archived data were
processed. Section 5 presents the results of the conducted research. Section 6 contains a
discussion of the obtained results and directions for further research. Section 7 is conclusion
and describes concepts for improving the performance of physical flying objects using the
methods described in the paper..

2. Measurement Method

A real drone was used to conduct experimental research. PX4 software was uploaded
to the flight controller. It enabled the drone to connect to the computer, which is the central
unit of the ROS (robot operating system). The Mavlink protocol data and parameters of the
drone were transmitted using a 433 MHz radio module. The Mavros program supervised
the exchange of information in real time. The raw data from the sensors were archived
to a csv file along with the timestamp by ROS script (written in Python). The drone was
controlled via radio by the operator during the research. In the next step, the archived data
were processed and filtered. This made it possible to compare the two filters under the same
conditions. The raw data were recorded for all degrees of freedom in which the sensors
implemented in the flight controller operate. In parallel, through the same script, data were
collected concerning the physical position of the frame on which the drone was mounted.

The information about the angular position of the frame was measured by 3 Baumer
XX laser distance sensors. The sensors were spaced every 120 degrees (Figure 1). Each
sensor collected data concerning the distance of the ring on which the laser beam fell. The
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output signal of the sensors is a voltage. The analog signals were processed using ADCs of
the STM32 Nucleo-F429ZI development kit. The voltage values were divided by resistive
voltage dividers to go from a 0–10 V sensor output range to a 0–3.3 V one, corresponding
to the capabilities of the development board. The sensors were powered by an external
12 V power supply. Each voltage divider was made of three 470 Ohm precision resistors.
The analog signals were read using a device memory access (DMA) mechanism. The
microcontroller was clocked at a maximum frequency of 180 MHz. The analog readings
were converted into distance values expressed in millimeters in the main program loop.
The ring height was chosen to be within the sensor range of 100–600 mm. The width of the
ring was chosen to be able to perform tilt and roll of the drone up to 10 degrees. This is a
value consistent with the angular displacement that occurs in drones during flight, and the
tests were conducted within this range.

 

Figure 1. Test-bench for drones.

To convert the values from the three sensors to pitch and roll, the trigonometric
relationships and the arcus tangent function were used. The pitch is calculated using the
following formula:

ϕ = arctan

(
l1 − (l2+l3)

2
0.75d

)
(1)

where:
ϕ—pitch angle, rotation about the x axis,
l1, l2, l3—the height determined by the particular sensors,
d—the diameter of the circle.
The difference in height between the reading of sensor no. 1 and the average of

readings of sensors no. 2 and 3 is divided by the height of an equilateral triangle determined
by the sensors. It is a triangle inscribed in a circle (Figure 2). The pitch angle is determined
by relation (1).

3
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Figure 2. The position of the test-bench sensors in relation to the axis of the drone system.

The roll is determined from the following formula:

θ = arctan

(
l2 − l3√

3
2 ·d

)
(2)

where:
θ—roll angle, rotation about the y axis.
The difference in height between sensor no. 2 and sensor no. 3 is divided by the side of

the equilateral triangle defined by the sensors. The roll angle is determined by relation (2).
The described calculations were performed in the main loop of the program running

in the STM32F429 microcontroller. The positions calculated from the arcus tangent function
were compensated with a logical condition so that when the drone is in an angular position
deviated from the zero value in a direction not consistent with the direction of the increment,
a negative value is returned. The obtained values were sent to the ROS system node via
ST-link. This is a built-in programmer along with a serial communication port. Libraries
prepared by the Open Agriculture Foundation were used to send the data.

An ST-link programmer was connected via USB cable to the computer on which the
roscore unit was running. The rosserial library was used to receive data from the nucleo
development board. Data were data published to the topic from which the archiving script
subscribed. The same script in parallel subscribed to the data published by the flight
controller. The writing to the csv file was carried out line by line. Raw accelerometer and
gyroscope data, angular position estimated by the default Kalman filter, arbitrary values
from the test-bench collected by the development kit, and timestamp were written. Data
recording occurred in real time. The flight controller published the data at 50 Hz. As soon
as new data became available, the script archived it along with the corresponding data
from the arbitrary test-bench.

The full algorithm of the conducted research is included below (Figure 3).

4
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Figure 3. Block diagram of the filter optimization algorithm for a real flight controller.
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The above diagram shows the filter coefficient optimization algorithm. The essence
of this process is to collect the raw sensor data along with the arbitrary position. Then,
optimization (which involves multiple iterations in the computational environment) is
performed on the same data. Its effect is to obtain tuned filter coefficients, consistent in type
with the filter built into the flight controller. In most flight controllers, the manufacturer’s
software allows the user to enter their own filter coefficients.

2.1. Parameters of Drone

The selected type of drone is a quadrotor. The flight controller used is Pixhawk 2.4.8 to
which PX4 software v1.12.0 was uploaded. Communication with the operator is carried out
via FrSky RC radio. The drone is powered by four DC brushless motors. The KV constant of
the motors, which is the motor speed constant measured in revolutions per minute (RPM)
per volt, or radians per volt, is equal to 2300. The sensors are located on the board the
flight controller. The drone was rigidly mounted to the aluminum profiles of the test stand
(Figure 4). Roll and pitch are realized by the joint on which the profiles are supported.
Rotational movement of the yaw does not take place.

 

Figure 4. Drone mounted on the test-bench.

The position of the test-bench was leveled in the X and Y axes before the tests started.
Then, through the QGroundControl software, the zero level was set for the default Kalman
filter implemented in the PX4 software. Through the mavlink protocols, the flight controller
communicated with the ROS version of Melodic Morenia installed inside the Ubuntu Mate
18.04 operating system.

2.2. Drone Sensors

Angular position information is required to stabilize the UAV. This can be provided in-
directly from sensors measuring other values. Popular solutions include linear acceleration
sensors (accelerometers) and angular velocity sensors (gyroscopes). To obtain the angular
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position from the accelerometer, the ground acceleration is used. Depending on the position
of the accelerometer, it will be distributed across the axes. This requires establishing a base
position where the object is parallel to the ground. The premise of the measurement is to
detect roll or pitch by determining the deviation from the axis of gravity, which correlates
with acceleration due to gravity. The disadvantage of this solution is the influence of other
forces that generate linear acceleration. The noise caused is a high-frequency signal. To
determine the angular position from the gyroscope, it is necessary to integrate the data
obtained from this sensor. Before starting the integration, the angular position must be
given as the initial condition for integration. During the process of computing, the data,
accumulating small errors (resulting from integration) create a bias of the gyroscope. As a
result, as time passes, the calculated outcome may deviate from the true value.

The following sensors are implemented on board the flight controller:

1. L3GD20;
2. MPU6000;
3. LSM303D;
4. MS5611.

L3GD20 [19] is a low power three-axis gyroscope. It is produced by ST microelec-
tronics for navigation systems. The maximum sensitivity is 8.75 mdps (mili degrees per
second)/digit.

MPU6000 [20] is used as main accelerometer and secondary gyroscope. Depending
on the range of measured acceleration, the accuracy is from 2.048 to 16.384 lsb (least
significant bit)/g (acceleration expressed in relation to the acceleration due to gravity). The
gyroscope in this module is used secondarily. The measurements are used to verify the data
from the master module and, in case of discrepancies, represent the reason for rejecting
particular samples.

LSM303D [21] is three-dimension accelerometer, used as a secondary 3D magnetometer.
A magnetometer is needed for calculation of the yaw angle.

MS5611 [22] is a barometric pressure sensor, the measurements of which are not
relevant to the content of this paper.

3. Types of Filters

To obtain angular position, intermediate data are used by measuring other physical
values. From the accelerometer readings, the deviation from the vertical position is de-
termined by measuring the acceleration of the earth. From the trigonometric functions,
the pitch and roll of the measurement system relative to the earth system are calculated.
When other linear accelerations are involved, the ratio of the contribution of the ground
acceleration to the individual accelerometer axes may be disturbed. This effect is called
accelerometer noise. To obtain the angular position from the gyroscope readings, the col-
lected data corresponding to the angular velocity in the respective axes must be integrated.
The error that occurs in this case is called gyro drift. It is due to the integration process
and imperfections in the system, which, with prolonged operation, begin to accumulate
with the integration process. To compensate for these errors, digital filters are used (i.e., the
complementary filter and the Kalman filter). The authors of this paper chose to consider
these two mentioned filters due to their popularity in flight controllers.

3.1. Complementary Filter

The complementary filter is used when data come from different channels and sen-
sors [10]. To obtain the final result, part of the data is added (Figure 5). For every single
component, a specified filter (such as LPF (low-pass filter); HPF (high-pass filter)) is used.
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Figure 5. Summation of individual component signals.

The specificity of the filter can be described by the formula:

N

∑
i=1

Fi(s) = 1 (3)

To obtain the angular position of the drone, the data from two independent channels
are used (Figure 6). First, data comes from the gyroscope. The obtained value ω, which
is the angular velocity, is integrated to the angular position. Then, it is passed through a
high-pass filter. Secondly, data come from accelerometer and magnetometer. The pitch and
roll are calculated from the acceleration values a (as described in Section 2.2), while the
yaw is determined from the reading of the earth’s magnetic field m [11]. The data are then
passed through a low-pass filter.

Figure 6. Processing of the IMU sensor data by the complementary filter.

The LPF transfer function can be represented as:

HLPF(s) =
1

1 + T·s (4)

where T is the time constant of inertial component and s is the complex variable. Analo-
gously, according to the principle of the complementary filter, the HPF transfer function
can be written as:

HHPF(s) = 1 − HLPF(s) =
T·s

1 + T·s (5)

8
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The parameter for the complementary filter is f 0 which is defined as the cut-off
frequency. It determines frequencies for both the low-pass filter and high-pass filter
(Figure 7).

M
ag

ni
tu

de
 (d

B)

Figure 7. Cut-off frequency for complementary filter.

As may be noted in the figure above, by setting a boundary for one basic filter, it is
necessary to apply it to the other as well. The optimization of the complementary filter
comes down to determining this boundary.

3.2. Kalman Filter

The Kalman filter is an algorithm used for multiple measurements that contain inac-
curacies, such as statistical noise observed over time. It produces estimates of unknown
variable that are more accurate than results based on measurements from a single channel.
From the time of its invention until now, the Kalman filter has been refined. There are now
many versions of the Kalman filter that are the subject of scientific research [3].

The algorithm operates in a two-steps process. Considering the system as a discrete-
time model in state space, the following equations can be written [5]:

x(t + 1) = A·x(t) + B·u(t) + v(t) (6)

y(t) = C·x(t) + w(t) (7)

where:
x(t)—state of the system at time t,
A—state matrix,
B—input matrix,
v(t)—process noise,
y(t)—system output,
C—output matrix,
w(t)—measurement noise.
The first step is called the time update and it consists in computing the single state

prediction (i.e., the a priori estimate and its covariance).

x̂(t + 1) = A·x̂(t) + B·u(t) (8)

P(t + 1) = A·P(t)·AT + V (9)

where:
x̂(t)—a priori estimate,
P(t)—covariance matrix for x̂,
V—covariance matrix for v.

9
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In the next step, the time is increased by one and the algorithm goes on to update
the measurement.

ε(t) = y(t)− C·x̂(t − 1) (10)

S(t) = C·P(t − 1)·CT + W (11)

K(t) = P(t − 1)·CT ·S−1(t) (12)

x̂(t) = x̂(t − 1) + K(t)·ε(t) (13)

P(t) = P(t − 1)− K(t)·S(t)·KT(t) (14)

where:
W—covariance matrix for w,
ε(t)—the difference between the most recent measurement and the value expected

from state estimate,
S—covariance matrix for ε,
K(t)—Kalman gain.
Kalman gain decides what effect a new measurement has on the a posteriori estimate

of the state versus the a priori estimate. The algorithm repeats its steps alternately. This is
shown in Figure 8 [7].

 

Figure 8. Two steps Kalman filter algorithm.

Due to the nonlinearity in the measuring system associated with the readout of the
speed data, an EKF (extended Kalman filter) is a frequently used form of the Kalman
filter. It is presented in detail in [23]. For a nonlinear system, the matrices appearing in
Equations (6) and (7) are replaced with a set of nonlinear functions. The equations then
have the following form:

x(t + 1) = f [x(t), u(t)] + v(t) (15)

y(t) = h[x(t), u(t)] + w(t) (16)

where:
u(t)—input vector,
f , h—sets of nonlinear functions describing state and input dependencies.
In the case under consideration, the input vector is a measurement vector and can be

represented as [6]:

zk =
(

bat
bwt

)T
(17)

where:
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bat—the measurements of the linear accelerations, obtained from a triaxial accelerometer,
bwt—the three angular velocity measurements obtained from a triaxial rate-gyro.

Functions f , h must be differentiable after all parameters. This makes it possible to
linearize the equations. In order to carry out this process, the above-mentioned functions
should be developed into Taylor series. It is assumed that the obtained matrices A, B, C,
D approximate the behavior of the studied nonlinear system in the neighborhood of the
given operating point (x’, u’). To obtain the desired matrices, it is necessary to determine
the partial derivatives of the functions from the nonlinear model:

A =
∂ f
∂x

∣∣∣∣
x=x′ ,u=u′

(18)

B =
∂ f
∂u

∣∣∣∣
x=x′ ,u=u′

(19)

C =
∂h
∂x

∣∣∣∣
x=x′ ,u=u′

(20)

D =
∂h
∂u

∣∣∣∣
x=x′ ,u=u′

(21)

The EKF equations differ slightly from those of the linear Kalman filter and can be
expressed as follows:

x̂( t + 1|t) = f [x̂( t|t), u(t)] (22)

P( t + 1|t) = A( t|t)·P( t|t)·AT( t|t) + V (23)

Equations (10)–(14) corresponding to state updates can be reformulated as follows:

ε(t) = y(t)− h[x̂( t|t − 1), u(t)] (24)

S(t) = CT( t|t − 1)·P( t|t − 1)·C( t|t − 1) + W (25)

K(t) = P( t|t − 1)·CT( t|t − 1)·S−1(t) (26)

x̂( t|t) = x̂( t|t − 1) + K(t)·ε(t) (27)

P( t|t) = P( t|t − 1)− K(t)·S(t)·KT(t) (28)

These equations are well known. Detailed considerations for the EKF can be found in
the publications [4,23].

4. Data Processing

The MATLAB 2021a environment was used for data processing. Archived data were
collected to 12 precision decimal places. Ready-made filters available from version 2019b
were used to process the data. The arbitrary values are the data obtained from the measur-
ing station.

The test procedure carried out in this paper to obtain the optimal filter and to improve
the embedded filter included the following operations:

• Collection of position data along with arbitrary data;
• Obtaining position data from the readout of the sensors themselves;
• Data processing with complementary filter and EKF;
• Filter tuning;
• Comparison of the prepared results with the filter built in PX4 and arbitrary data;
• Update of the built-in filter (EKF coefficients);
• Repeating the experiment and collecting data;
• Comparison of the performance of the built-in filter after updating the coefficients.
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4.1. Raw Data

Figures 9 and 10 show the angular position calculated from the data from the indi-
vidual sensors. It can be noticed that the position obtained from the accelerometer looks
much noisier in comparison to the position from the gyroscope. There are a lot of peaks in
the figure, and the estimation run is very dynamically changed. It was assumed that the
initial position of the gyroscope, necessary for the integration process, should be taken from
the accelerometer.

Figure 9. x-axis rotation readings from accelerometer and gyroscope.

Figure 10. y-axis rotation readings from accelerometer and gyroscope.

Both figures above are taken from the raw data. They are provided to show how the
angle estimation task is handled by the various sensors. In the next steps, the obtained
estimates will be compared with the results obtained from the filters.

4.2. Complementary Filter

The complementary filter was designed using the ready-made ‘complementaryFilter’
object [24]. this corresponds to the theoretical considerations described in Section 3.1. The
data obtained from the filter were converted to Euler angles and are presented in Figure 11.
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Figure 11. Position estimation using the complementary filter.

4.3. Extended Kalman Filter

The EKF was designed using the ‘insfilterNonholonomic’ object [25]. This object is a
specialized version of the EKF, dedicated to work with data coming from IMU sensors. It
has a ‘tune’ method allowing one to optimize the filter parameters referring to arbitrary
data. The data obtained from this filter are shown in Figure 12.

Figure 12. Position estimation using the EKF.

4.4. Comparison between Filters

To compare the filters, apart from those designed in MATLAB environment, a default
filter implemented in PX4 software is presented. It is an extended Kalman filter. In
Figures 13 and 14, a summary of these filters together with the arbitrary position obtained
from the test-bench may be seen.
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Figure 13. Comparison of the angular position obtained from the filters with the physical position for
the x-axis.

Figure 14. Comparison of the angular position obtained from the filters with the physical position for
the y-axis.

5. Results

The criterion adopted to evaluate the filters is the integral absolute error (IAE). Esti-
mations from raw data from both sensors, a complementary filter, an EKF implemented
in MATLAB, and an EKF from PX4 software were evaluated. The results are presented in
Table 1.
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Table 1. Quality indicator.

IAE for x Axis IAE for y Axis

Gyroscope 704.6 628.9
Accelerometer 3897.8 4487.6

MATLAB complementary filter 489.4 472.5
MATLAB EKF 291.3 232.6

PX4 EKF 304.8 276.4

Definitely the worst in the comparison are the results estimated only on the basis of
the reading from the accelerometer. This is due to the accelerometer noise. A significant
improvement can be seen in the results obtained from integrating the gyroscope readings.
It should be recalled that the initial condition for integration (i.e., the initial position of
the drone) was assumed on the basis of the first reading from the accelerometer. Without
this, obtaining the angular position would have been impossible, or it would have been
necessary to assume that the drone always takes off from a specific position, which in
reality is not very realistic. The best physical position was calculated by extended Kalman
filters. The extended Kalman filter implemented in the PX4 firmware contains process
and measurement noise covariance matrices that do not take into account the drone’s
physical parameters. These parameters can be changed in the configuration structure when
uploading the software to the flight controller. This requires a change in the source code
and a build for a specific controller model. A simpler method is to find and change the
desired parameters in the QGroundControl software dedicated to the configuration of
flight controllers running under PX4 control. During the research work, QGroundControl
software version 4.1.1 was used. To compare the operation of filtering algorithms in the
extended Kalman filter, parameters selected by the tune function from MATLAB [26] were
uploaded to the flight controller. The bench test was carried out again. The results shown
in Figures 15 and 16.

Figure 15. Comparison of angular position for x-axis.
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Figure 16. Comparison of angular position for y-axis.

After transferring the filter parameters from the MATLAB script to PX4 software,
running the experiment on the test bench, re-archiving the data, processing the raw readings,
and filtering with the previously designed EKF, there is no difference in the comparison
of the estimation between the filter built in PX4 software and the filter designed in the
MATLAB environment.

The integral absolute error values are close to being the same Table 2. The difference
in values is less than 1% and can be considered negligible.

Table 2. Quality indicator.

IAE for x Axis IAE for y Axis

MATLAB EKF 238.3 311.0
PX4 EKF tuned 239.5 313.3

6. Discussion

The paper presents a comparison of available methods of filtering signals from the
most popular sensors used in unmanned aerial vehicles. Its purpose was to develop and
investigate an algorithm for improving angular position filtration in a real drone. The
research was conducted on a drone that can be self-assembled from commonly available
and affordable components. As can be seen from Table 1, using only one sensor is not
sufficient to obtain reliable data. It is necessary to use filtering. The authors of this study
showed that the extended Kalman filter is clearly preferable to the complementary filter.
It reproduces the course of changes in the angular position of the real drone much better.
Only during the biggest angular changes in peaks was the complementary filter closer to
the real value. As can be seen from the data presented in Table 1, the EKF after tuning in
MATLAB has the smallest IAE error. The development of embedded systems has made the
extended Kalman filter, despite its greater computational complexity, a solution that does
not overload the processing power of flight controllers.

Other researchers may use this work to practically improve the filter performance in
their drones by reflecting drone station and our procedure presented at the beginning of
Section 4. The authors recommend that anyone wishing to take advantage of the presented
results perform the individual steps on their own object. Due to the physical specifications
of the real quadrotor object, including sensors, it is not suitable to compare the results
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between different objects or between object and simulation. The MATLAB program was
used to process the data collected from the real object. Then, based on multiple iterations
of filtering processes on the same data, the best optimized filter was selected from those
available in the flight controllers. A further research direction projected by the authors is to
study the optimization of individual flying units and the effect of unit improvement on
swarm behavior during a cooperative task of multiple UAVs.

7. Conclusions

This article shows how the filter embedded in the flight controller software can be
improved. Popular flight controller software such as Ardupilot and PX4, have implemented
filters whose parameters can be changed by the user. Based on arbitrary angular position
data, a “tune” function was used to optimize the filter coefficients. Angular position
estimation of the real drone has been improved, which was our goal.
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Abstract: When natural disasters strike, users in the disaster area may be isolated and unable
to transmit disaster information to the outside due to the damage of communication facilities.
Unmanned aerial vehicles can be exploited as mobile edge servers to provide emergency service
for ground users due to its mobility and flexibility. In this paper, a robust UAV-aided wireless-
powered mobile edge computing (MEC) system in post disaster areas is proposed, where the UAV
provides charging and computing service for users in the disaster area. Considering the estimation
error of users’ locations, our target is to maximize the energy acquisition of each user by jointly
optimizing the computing offloading process and the UAV trajectory. Due to the strongly coupled
connectionbetween optimization variables and the non-convex nature for trajectory optimization, the
problem is difficult to solve. Furthermore, the semi-infinity of the users’ possible location makes the
problem even more intractable. To tackle these difficulties, we ignore the estimation error of users’
location firstly, and propose an iterative algorithm by using Lagrange dual method and successive
convex approximation (SCA) technology. Then, we propose a cutting-set method to deal with the
uncertainty of users’ location. In this method, we degrade the influence of location uncertainty by
alternating between optimization step and pessimization step. Finally, simulation results show that
the proposed robust algorithm can effectively improve the user energy acquisition.

Keywords: unmanned aerial vehicle; mobile edge computing; wireless power transfer; trajectory
planning; robust design

1. Introduction

Natural disasters, such as earthquake, flood, and typhoon, often cause huge and
unpredictable losses to human lives and properties [1–3]. Most of these disasters will result
in unavailability of, or severe damage to, traditional terrestrial wireless infrastructures,
as well as disruption to regional communication, which brings challenges to post-disaster
response and relief [4–6]. By virtue of the advantages of dynamic mobility, flexibility,
and on-demand deployment, unmanned aerial vehicles (UAVs) have been deemed as a
promising technique in post-disaster area communication recovery [7–9]. In particular,
the existence of line-of-sight (LoS) links between UAV and ground users has aroused a fast-
growing interest in utilizing UAVs as aerial wireless platforms [10–13], while the limited
power supply in disaster areas restricts the users’ survival time and equipment performance,
which also puts forward higher requirements for UAV-aided post-disaster services.

To tackle the above mentioned challenge, the combination of mobile edge computing
(MEC) and wireless power transfer (WPT) seems to be an effective approach [14–16]. On one
hand, by offloading computation tasks to UAVs, users can significantly improve their data
processing capabilities [17–20]. On the other hand, with the aid of WPT technology, users
can harvest radio-frequency (RF) signals from UAVs to prolong their survival time [21–23].
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Unfortunately, the severe propagation loss of the wireless signals over long distances will
degrade the performance of wireless information transfer (WIT) and WPT [24–26]. To
improve the efficiency of WIT and WPT, UAVs should know the exact location of users
in advance. However, in post-disaster areas, the exact location of users is difficult to
obtain. The incomplete location information profoundly affects the trajectory planning
of UAV and reduces the energy acquisition efficiency of users and the service quality of
UAV [27–30]. Therefore, the robust design of trajectory and resource allocation of UAVs in
post-disaster areas is of paramount importance.

Motivated by the requirements of a UAV-enabled wireless platform in a post-disaster
area, we consider a robust UAV-enabled wireless-powered MEC system in this paper. In
this system, a UAV equipped with MEC device and RF transmitter flies to the post-disaster
area to provide computing and charging services for ground users. In this paper, we assume
that terrestrial communications were destroyed in the disaster. Affected by this, the UAV
only knows the rough areas where the users are, but the exact locations of the users are
unknown. In order to ensure that users have enough power to maintain until the arrival of
ground rescue, our target is to maximize the energy acquisition of each user while meeting
the computation needs of users.

The considered problem is a non-convex semi-infinite optimization problem, which is
intractable and hard to solve. In order to solve this intractability, we transform the original
problem into a solvable form by ignoring the uncertainty of location first. Considering the
coupling between computation offloading optimization and trajectory planning, an iterative
optimization method is proposed by using Lagrange dual method and successive convex
approximation (SCA) technology, respectively. Then, a cutting-set method is proposed to
continuously decrease the impact of worst-case location of users on optimization. Due to the
worst-case location of users changing with the optimization of UAV trajectory, the cutting-
set method is achieved by alternating optimization, i.e., optimizing the UAV trajectory for
given subsets of worst-case users’ locations in the optimization step, and updating the
subsets of worst-case users’ locations according to UAV trajectory in the pessimization step.

To summarize, the difference between our work and those in [13,18] is mainly twofold.
First, the proposed system considers the imperfect location information of users, which
is more suitable for practical applications. Second, the proposed robust algorithm can
effectively degrade the influence of location uncertainty on user energy acquisition. To our
best knowledge, there are few studies that address the robust design for a UAV-enabled
wireless-powered MEC system. In summary, the main contributions of this paper are
as follows:

• We propose a UAV-enabled wireless-powered MEC system in a post-disaster area,
while the imperfect location of users is considered. To ensure users have enough power
in the post-disaster area, UAV provides charging and computing services for users.

• We propose a joint resource allocation and trajectory planning algorithm under known
users’ location to solve the strong coupling between optimization variables.

• We propose a robust cutting-set method to degrade the influence of worst-case location
of users on optimization.

The rest of this paper is organized as follows. We describe the system model and
formulate the optimization problem in Section 2. Then, we give a joint resource allocation
and trajectory planning algorithm under known users’ location in Section. In Section 4,
we propose a robust cutting-set method. After this, the numerical results are presented in
Section 5. Finally, we draw conclusions of our work in Section 6.

2. System Model and Problem Formulation

In this work, we propose a UAV-enabled wireless-powered MEC system in a post-
disaster area, as shown in Figure 1. The terrestrial wireless infrastructures were damaged
in the disaster. In order to get the situation of the disaster area and prepare for further
rescue, a UAV, which is equipped with an RF transmitter and an MEC device, provides
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charging and computing services for a set N � {1, . . . , N} of ground users, which has
certain computation tasks Rn to complete, trapped in the disaster area.

Figure 1. The UAV-enabled wireless-powered MEC system in post-disaster area.

Without loss of generality, we adopt a three-dimensional Euclidean coordinate system
to represent the locations, and measure all dimensions in meters. Affected by the destruction
of terrestrial wireless infrastructures, the UAV only knows the approximate location of
nth users, denoted by qn = (xn, yn, 0), with limited location information, while the exact
location of nth users is q̄n = (x̄n, ȳn, 0), with a estimation error Δqn. The relation between
the exact and approximate location of nth users is given by

q̄n = qn + Δqn,

Δqn ∈ Ωn � {‖Δqn‖ ≤ εn},
(1)

where Ωn is a continuous set of possible location estimation errors for the nth users, and εn
denotes the radius of the uncertainly region Ωn.

We assume that the UAV takes off and lands at a safe location qs = (xs, ys, 0) within
finite flight duration T . The flight duration T is discretized into T sufficiently small time
slots with equal length δ = T /T. Thus, the UAV can be seen as fixed in a certain position
in each time slot, and its horizontal plane coordinate at tth slot is qu[t] = (xt, yt). Similar
to [29], we assume that the UAV flies at a constant altitude H to avoid the flight energy
consumption caused by frequent ascend or descend. Correspondingly, the distance between
UAV and user n is

dn[t] =
√

H2+ ‖ qu[t]− qn ‖2, (2)

where ‖·‖ denotes the Euclidean norm. Similar to [18], we assume the wireless channel
between the UAV and users is LoS link. Then, the channel power gain between UAV and
users is

gn[t] = β0dn[t]−2, (3)

where β0 is the channel power gain at d0 = 1 m.
In downlink WPT mode, we consider that the UAV uses constant transmission power

Pu for wireless power transmission. The energy harvested by nth user is given as

Eh[t] = ηgn[t]Puδ, (4)
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where 0 < η ≤ 1 denotes the energy conversion efficiency of each user, while in uplink
WIT mode, for given offloading power Po,n[t], the offloading rate rtr,n[t] of nth user in the
tth slot is given as

rtr,n[t] = Blog2(1 +
Po,n[t]gn[t]

σ2 ), (5)

where B is the communication bandwidth, and σ2 is the variance of additive white Gaussian
noise with zero mean.

To utilize the energy in an efficient way, we assume that both UAV and users can
adaptively adjust the CPU frequency [29]. The computation task amounts Rc,n and the
computation energy consumption Ec,n of nth user in the tth slot are given as

Rc,n =
fn[t]δ
Cn

,

Ec,n = θn fn[t]3δ,
(6)

where fn[t] represents the CPU frequency of users, Cn denotes the number of CPU cycles to
complete the computation, and θn is the effective capacitance coefficient of the CPU. The
expressions of computation amounts Rc,u and computation energy consumption Ec,u of
UAV are consistent with users, which are not listed here.

For given UAV trajectory, we can obtain the flight speed of UAV on the horizon-
tal plane:

vu(t) =
‖qu,t+1 − qu,t‖

δ
. (7)

For safety consideration, the maximum flight speed of UAV is vmax. In order to focus
on designing the robust algorithm of trajectory planning and computation offloading
optimization, we adopt a simplified flight energy consumption model in this work, while
many factors will affect the flight energy consumption of UAV in reality. The flight energy
consumption of UAV can be expressed as

Ef ly[t] = 0.5muδvu[t]2, (8)

where mu is the mass of UAV.
Considering the inconvenience of obtaining energy in post-disaster areas, it is neces-

sary for users to obtain charging and computing services from UAVs as much as possible
to ensure that users gain more energy. The energy gain of the nth user is given as

Egain,n =
T

∑
t=1

(ηgn[t]Pu − θn fn[t]3)−
T−1

∑
t=1

Po,n[t]. (9)

In this work, our target is to maximize the minimum energy gain among users while
guaranteeing the completion of computation task; the UAV trajectory and offloading
optimization variables are jointly optimized under the estimation error of users’ location.
Then, the optimization problem can be formulated as
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P1 : max
Θ

min
n∈N

max
Δqn∈Ωn

Egain,n, (10a)

s.t. C1 :
T

∑
t=1

(Ef ly[t] + Pu) +
T

∑
t=2

θu fu[t]3 ≤ Ebat, (10b)

C2 :
T

∑
t=1

fn[t]
Cn

+
T−1

∑
t=1

rtr,n[t] ≥ Rn, ∀n ∈ N , (10c)

C3 :
T

∑
t=2

fu[t]
Cu

≥
N

∑
n=1

T−1

∑
t=1

rtr,n[t], ∀t ∈ T , (10d)

C4 : fu[t] ≥ 0, fn[t] ≥ 0, ∀n ∈ N , (10e)

C5 : qu[1] = qu[T + 1] = qs, (10f)

C6 : vu[t] ≤ vmax, ∀t ∈ T . (10g)

where Θ = {qu[t], fu[t], fn[t], Po,n[t]} is the optimal variable set, and T−T represents the set
T except the Tth time slot. C1 is the UAV battery constraint; C2 represents all computation
tasks for each user need to be processed; C3 denotes that all computation task from users
should to be handled by UAV in time; C4 are the CPU frequency constraints of user and
UAV; C5 indicates that the UAV takes off and lands at the same safe position; C6 gives the
maximum flight speed constraint of UAV.

3. Joint Resource Allocation and Trajectory Planning under Known Users’ Location

In this section, we propose a joint resource allocation and trajectory planning algorithm
to solve problem P1 under known users’ location. For the known users’ location, we can
ignore the estimation error εn of users, i.e., let q̂n := qn, ∀n ∈ N . Then, the original
optimization problem P1 can be transformed to

P2 : max
Θ

min
n∈N

Êgain,n, (11a)

s.t. C1 − C6. (11b)

Due to the coupling among the optimization variables, P2 is still difficult to solve.
Thus, we divide the optimization problem into two parts, i.e., computation offloading
optimization and trajectory planning, and optimize them alternately. Firstly, we optimize
the computation offloading resources by Lagrangian duality method under given UAV
trajectory. Then, the SCA method is adopted to optimize the UAV trajectory for given
computation offloading resources.

3.1. Computation Offloading Optimization

For given UAV trajectory, we can obtain the computation offloading variables opti-
mization problem P3:

P3 : min
Po,n , fu , fn

T

∑
t=1

θn fn[t]3 +
T−1

∑
t=1

Po,n[t],

s.t. C2, C4.

(12)

Obviously, P3 is a convex problem, which can be easily solved by Lagrange duality
method. Then, we can obtain Theorem 1 by solving the Lagrangian function.
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Theorem 1. For given UAV trajectory qu(t), the optimal offloading power and CPU frequencies
of usern can be respectively expressed as

Popt
o,n [t] =

[
λB
ln2

− σ2

gn[t]

]+
, (13)

f opt
n [t] =

√
λ

3θnCn
, (14)

where λ ≥ 0 denotes the dual variable associated with the constraint C2.

Proof. See the Appendix A.

Then, we adopt the subgradient method to obtain the value of dual variables.

λ(i + 1) = [λ(i)− θ(i)Δλ(i)]+, (15)

where i represents the iteration index, θ(i) denotes the iterative step, and the corresponding
subgradient Δλ(i) can be obtained by

Δλ(i) =
T

∑
t=1

f i,opt
n [t]

Cn
+

T−1

∑
t=1

Blog2(1 +
Pi,opt

o,n [t]gn[t]
σ2 )− Rn, (16)

where f i,opt
n [n], Pi,opt

o,n [t] represent the optimal solutions at the ith iteration.
Then, according to optimal offloading power Pi,opt

o,n [t] and constraint C3, we can obtain
the optimal CPU frequencies of UAV

f i,opt
u [t] =

B
δ

N

∑
n=1

log2(1 +
Pi,opt

o,n [t]gn[t]
σ2 ), (17)

since the lowest computation energy consumption can be obtained only when the compu-
tation frequency is a constant.

3.2. UAV’s Trajectory Planning

For given computation offloading variables, the UAV’s trajectory optimization problem
P4 can be expressed as

P4 : max
qu [t]

min
n∈N

T

∑
t=1

ηgn[t]Pu

s.t. C1, C2, C5, C6.

(18)

Due to the objective function of P4 being non-concave and the constraint C2 being
non-convex with respect to qu[t], the problem P4 is non-convex. For this problem, we
choose the SCA method to solve.

By adopting the SCA method, we can obtain

rtr,n[t] ≥ rlow
tr,n = B log2

(
1 +

Po,n[t]β0

σ2(H2 + l j
n[t]2)

)
− Po,n[t]β0log2e(ln[t]2 − l j

n[t]2)

(H2 + l j
n[t]2)(σ2H2+ σ2l j

n[t]2+ Po,n[t]β0)
,

(19)

where ln[t] =‖ qu[t]− qn ‖, the rlow
k is the lower bound of rn[t], and the equality holds

when ln[t] = l j
n[t].
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Similarly, we can obtain the lower bound glow
n of gn[t]:

gn[t] ≥ glow
n =

β0(H2 + 2l j
n[t]2 − ln[t]2)

(H2 + l j
n[t]2)2

. (20)

According to Formulas (19) and (20), we can transform the problem P4 to

P4.1 : max
qu [t]

N

∑
t=1

ηglow
n Pu (21a)

s.t. C2.1 :
T

∑
t=1

fn[t]
Cn

+
T−1

∑
t=1

rlow
tr,n ≥ Rn, ∀n ∈ N, (21b)

C1, C5, C6. (21c)

In problem P4.1, we can find that the objective function and the constraint C2.1 are
both convex with respect to qu[t]. Thus, the problem P4.1 is a convex problem. We can use
CVX to solve this problem.

3.3. Alternative Algorithm for Solving P2

Based on the Lagranginan duality method and SCA method, we propose a joint
resource allocation and trajectory planning (JRATP) algorithm under known users’ location
in this subsection. The detailed JRATP algorithm is shown in Algorithm 1.

Algorithm 1 Joint Resource Allocation and Trajectory Planning Algorithm under known
users’ location

Input: Initialize P1
o,n[t], f 1

n [t], f 1
u [t], q1

u[t] with feasible solution.
Initialization: Set the radio environment parameters B, β0, σ2, the operation parameters
Pu, η, Cn, Cu, θn, θu, and the tolerance error ε1, ε2
For each iteration i

Calculate Pi,opt
o,n [t], f i,opt

n [t] by Theorem 1 and calculate f i,opt
u [t] according to (17);

Update Δμ(i), and μ(i + 1) by subgradient formula;
Pi+1

o,n [t] = Pi,opt
o,n [t], f i+1

n [t] = f i,opt
n [t], f i+1

u [t] = f i,opt
u [t], qj

u[t] = qi
u[t].

For each iteration j
Using CVX to solve P4.1 for given Popt,j

o,n [t], f opt,j
n [t], f opt,j

u [t] and obtain q
opt,i
u [t];

If ∑N
t=1 ‖ q

j+1
u [t]− q

j
u[t] ‖≤ ε2, qi

u[t] = q
j
u[t], break

End If
update j = j + 1;

End For
If ||∑T

t=1(Ri
c,n[t]− Ri−1

c,n [t]) + ∑T−1
t=1 (Ri

o,n[t]− Ri−1
o,n [t])|| ≤ ε1, break

End If
update i = i + 1;

End For
Output Popt

o,n [t], f opt
n [t], f opt

u [t], q
opt
u [t].

The complexity of Algorithm 1 comes from three aspects: (1) the computation of
offloading power and CPU frequencies, (2) the computation of the dual variables, and (3)
the application of CVX for computing UAV trajectory. Let L1 and L2 denote the number of
iterations required for the outer loop and the inner loop of Algorithm 1. Let φ denote the
tolerance error for the subgradient method. Then, we can obtain the total complexity of
Algorithm 1 as O[L1(2NT + 1/φ2 + L2T3)], where O(·) is the big-O notation.

By solving each subproblem alternately, Algorithm 1 can guarantee convergence,
while, due to the usage of SCA method and alternating optimization, the global optimum
of problem P2 cannot be strictly guaranteed.
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4. Robust Design Based on Cutting-Set Method

In this section, we give a cutting-set method to degrade the influence from the un-
certainty of the users’ locations. The robust design is achieved by alternating between
optimization steps and pessimization steps. In the optimization step, joint resource alloca-
tion and trajectory planning are optimized under a given finite subset of worst-case users’
locations by Algorithm 1. Then, in the pessimization step, the subset of worst-case users’
locations is updated according to the UAV trajectory obtained in the optimization step.

4.1. Optimization Step under Finite Subsets of Users’ Location

Note that the worst-case locations of users are changed with the change of UAV
trajectory in the optimization process. To simplify the problem, we assume that the worst-
case locations of users are included in a finite subset of potential locations. Let Sn denote
the potential worst-case locations of the nth user. Then, we can express the finite subset of
the nth user in the kth optimization as Sk

n ⊂ Sn. For a given finite subset, we can transform
the original problem to

P5 : max
Θ

min
n∈N

max
qn∈Sk

n

Egain,n

s.t. C1 − C6,
(22)

while the problem P5 can be solved by Algorithm 1.

4.2. Pessimization Step under Given UAV Trajectory

For a given UAV trajectory obtained from the optimization step, the worst-case users’
location is updated in this step. Considering that the distances dn[t] between the UAV and
users are larger than the estimation error Δqn, in the optimization process, we discretize
the potential locations of the nth user into equal spacing grids-based worst-case locations
with the resolution of π.

For the UAV, the worst-case locations under different trajectories is also different.
Thus, the worst-case users’ location needs to be updated after each trajectory planning,
while, for the users, the location with the least energy harvest and the most transmission
energy consumption corresponds to the worst-case location. Thus, the worst-case location
qw,k

n of nth user after kth optimization is obtained as

‖qu − qw,k
n ‖ = ‖qn − qw,k

n ‖+ εn. (23)

Then, the obtained worst-case locations qw,k
n of the nth user is added into the infinite

subset Sk
n for the next turn of optimization.

4.3. Total Algorithm of Robust Resource Allocation and Trajectory Planning

Based on the cutting-set method, we propose a robust resource allocation and tra-
jectory planning algorithm to solve the uncertainty of users’ location in this subsection.
The detailed robust algorithm is shown in Algorithm 2.

As shown in Algorithm 2, the finite subset of potential users’ locations are firstly
initialized. Firstly, for a given finite subset of users’ locations, the optimal computation
offloading variables Pk

o,n[t], f k
n [t], f k

u [t] and UAV trajectory qk
u[t] are obtained by solving

P5 with Algorithm 1. Then, based on the UAV trajectory from the previous step, we can
obtain the worst-case users’ location and add it into Sk

n for the next turn of optimization.
The robust algorithm processes alternately until the improvement reaches the stable point
or reaches the maximum number k of iterations.
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Algorithm 2 Robust Offloading Trajectory and Computation Offloading Algorithm with
uncertainty of users’ location

Initialization: Set the iterative number k = 1.
Input: Initialize finite subset Sk

n.
repeat

calculate Pk
o,n[t], f k

n [t], f k
u [t] and qk

u[t] by Algorithm 1;
compute qw,k

n for given qk
u[t];

update finite subset Sk+1
n = {Sk

n, qw,k
n };

update k = k + 1;
until reach the stable point or the maximum iterative number k
Output Pk

o,n[t], f k
n [t], f k

u [t], qk
u[t].

5. Numerical Results

In this section, simulation results are presented to validate the performance of the pro-
posed robust joint resource allocation and trajectory planning algorithm, and are compared
with three benchmark schemes. (1) Non-robust: In this scheme, we ignore the estimation
error and optimize the problem under the estimated locations. (2) No-resource-allocation-
optimization: In this scheme, we offload all computation tasks to UAV with fixed offloading
power Po,n = Po,max. (3) No-trajectory-planning: In this scheme, we set the UAV trajectory
as a circle around users with a radius 200 m.

According to the parameters adopted in [21,30], we consider a 500 × 500 m2 post-
disaster area which includes five ground users. The location estimation errors of the users
are εn = 20 m. The flight altitude of UAV is H = 50 m, and the maximum flight speed of
UAV is set as Vmax = 25 m/s. The detailed environment settings are given in Table 1.

Table 1. Simulation parameters.

B 5 MHz The channel bandwidth.

β0 −50 dB The channel power gain at distance d0 = 1 m.

σ2 10−9 W The receiver noise power.

Pmax
o,n 0.5 W The maximum WIT transmit power of user.

Pu 50 W The WPT transmit power of UAV.

η 0.15 The energy conversion efficiency of user.

Cn, Cu 103 cycles/bit The number of CPU cycles.

θn, θu 10−28 The effective switched capacitance.

fn,max, fu,max 10 GHz The maximum frequency of CPU.

In Figure 2, we present the optimized UAV trajectories of the proposed robust joint
resource allocation and trajectory planning algorithm and non-robust scheme under differ-
ent battery capacity. From Figure 2, we can find that with the increase of battery capacity,
the UAV can approach each user to provide services. The reason is that on the premise of
completing the computation task, the larger the UAV battery capacity, the closer it can be to
the users to provide efficient charging services. Note that under the same battery capacity,
the proposed robust algorithm is much closer to users than the non-robust scheme. This
is because in order to eliminate the impact of the worst-case location error on the users’
power supply, the UAV should be close to the user greatly affected by the location error.
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Figure 2. The optimized UAV trajectories under different schemes and battery capacity.

Figure 3 shows the minimum energy gain of users of the proposed robust algorithm
with the other three benchmark schemes with different battery capacity of UAV. According
to Figure 3, we can find that the proposed robust algorithm obtains the highest energy
gain compared with other schemes. The reason is that the proposed robust algorithm can
maximize the minimum energy gain of users by jointly optimizing UAV’s trajectory and
offloading process, and decreasing the influence of estimation location errors, while the
other three schemes only optimize two of the three variables. We can also observe that with
the increase of battery capacity, the energy gain of users increases rapidly, and then slows
down gradually. That is, a larger UAV battery capacity can ensure UAV approach to users
to provide much more efficient charging services.As the distance between UAV and users
decreases, the impact of distance on energy supply decreases gradually, which leads to the
slowing down of energy gain. In addition, the energy gain of the no-trajectory-planning
scheme is a constant when battery capacity is bigger than 11,000 mAh. The reason is that
when the battery capacity can ensure that the UAV flies according to the fixed trajectory,
the distance between UAV and user is a constant. Then, the increase of battery capacity
will not affect the energy gain of users.

In Figure 4, we compare the minimum energy gain of users of the proposed robust
algorithm with the other three benchmark schemes with different estimation errors of users.
From Figure 4, we can find that with the increase of the estimation errors, the minimum
energy gain is decreased, while the reduction of the proposed robust algorithm is less than
the non-robust scheme and the no-trajectory-planning scheme. This is because with the
increase of the estimation errors, the worst-case location error will greatly increase the
distance between UAV and user. Furthermore, compared with the no-trajectory-planning
scheme flying as a circle, the non-robust scheme has less time to approach the user, which
also leads to the fastest decline among all the schemes. Therefore, for the environment with
location errors, it is necessary to introduce robust design into trajectory optimization.
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Figure 3. Energy gain of users under different schemes and battery capacity of UAV.

Figure 4. Energy gain of users under different schemes and estimation errors of users.

The distance between UAV and user is affected by horizontal distance and flight
altitude. Thus, we present the minimum energy gain of users of the proposed robust
algorithm with the other three benchmark schemes with different flight altitude of UAV
in Figure 5. It can be seen that with the increase of flight altitude, the decrease of user
energy gradually speeds up. The reason is that when the flight altitude is greater than the
horizontal distance dn[t], the distance between the UAV and users is mainly affected by
the flight altitude, and vice versa. Thus, in order to ensure that users receive more energy,
the UAV can appropriately reduce the flight altitude when the estimation error is small.

Figure 6 also compares the minimum energy gain of users of the proposed robust
algorithm with the other three benchmark schemes with different WPT transmit power of
UAV. We can find that the energy gain achieved by the proposed robust algorithm is the
highest among the schemes, while the increase of energy is proportional to the transmission
power. That is, the user’s energy gain is only affected by the transmitting power of the
UAV when the computation task is processed.
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Figure 5. Energy gain of users under different schemes and flight altitude of UAV.

Figure 6. Energy gain of users under different schemes and WPT transmit power of UAV.

6. Conclusions

In this paper, we proposed a robust UAV-aided wireless-powered MEC system in a
post-disaster area, where the UAV provides charging and computing services for ground
users to ensure that users have enough power. To maximize the energy acquisition of each
user, we jointly optimized the computing offloading and UAV trajectory. Particularly due
to the destruction of terrestrial communications, the UAV only has an imperfect location of
the users. Considering the strongly coupled connectionbetween optimization variables and
the influence of user location estimation error, the robust resource allocation and trajectory
planning was carefully addressed. Firstly, we proposed a joint resource allocation and
trajectory planning algorithm under known users’ location. Then, the robust cutting-set
method was proposed to reduce the impact of worst-case location of users on optimization.
Finally, we conducted extensive simulations to verify the effectiveness of the proposed
robust algorithm.
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Appendix A

Proof of Theorem 1. Let λ ≥ 0 denotes the dual variable associated with the constraint C2.
Then, for each user, we can get the Lagrangian function of P4−1 as

L(Θ) =
T

∑
t=1

(ηgn[t]Pu − θn fn[t]3)−
T−1

∑
t=1

Po,n[t] + λ{
T

∑
t=1

fn[t]
Cn

+
T−1

∑
t=1

rtr,n[t]− Rn}.

Taking the derivative of the Lagrangian function L w.r.t CPU frequency f [n] and
offloading power Po,n[t] yields

∂L(Θ)

∂Po,n[t]
= λ

B
ln2

g̃n[t]
σ2 + Po,n[t]g̃n[t]

− 1,

∂L(Θ)

∂ fn[t]
= −3θn fn[t]2 +

λ

Cn
.

Let ∂L
∂Po,n [t]

= 0 and ∂L
∂ fn [t]

= 0, the optimal Popt
o,n [t] and f opt

n [t] can be obtained. The proof
of Theorem 1 is finished.
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Abstract: In recent years, the drone market has had a significant expansion, with applications
in various fields (surveillance, rescue operations, intelligent logistics, environmental monitoring,
precision agriculture, inspection and measuring in the construction industry). Given their increasing
use, the issues related to safety, security and privacy must be taken into consideration. Accordingly,
the development of new concepts for countermeasures systems, able to identify and neutralize a
single (or multiples) malicious drone(s) (i.e., classified as a threat), has become of primary importance.
For this purpose, the paper evaluates the concept of a multiplatform counter-UAS system (CUS),
based mainly on a team of mini drones acting as a cooperative defensive system. In order to provide
the basis for implementing such a system, we present a review of the available technologies for
sensing, mitigation and command and control systems that generally comprise a CUS, focusing on
their applicability and suitability in the case of mini drones.

Keywords: counter-UAS systems; sensing; neutralization; command and control; drones; cooperative systems

1. Introduction

In recent years, the drone market has had a significant expansion, especially in the
consumer sector. Drones destined for this market are easily accessible thanks to their
relatively low cost. In addition, the characteristics of weight, size, and the ability to carry a
payload, such as a camera, allow them to be used in various fields, from the recreational to
the professional sector. In addition, from a research point of view, the use of these flying
platforms helps the development of technologies whose applications have a positive impact
on the community, such as search and rescue operations, intelligent logistics, environmental
monitoring or precision agriculture.

Given the increasing use of these technologies, the issues related to safety, security and
privacy must be taken into consideration. Their use could cause damage to the community
due to failures and improper or criminal use. A significant increase has been observed
in the number of accidents involving drones or unmanned aerial systems (UAS) [1]. For
example, improper use in the vicinity of an airport can represent a serious threat to public
safety and a source of discomfort, as evidenced by the hundreds of flights canceled at
London Gatwick airport in a few months of 2018 [2].

For this reason, the development of technologies for the detection, identification and
mitigation of malicious drones has become of primary importance. A countermeasure
system, also called a counter-UAS (C-UAS) or counter-UAS system (CUS), can identify and
neutralize an intruder drone classified as a threat.

From an architectural point of view, an anti-drone system generally consists of the
following fundamental sub-systems:

• Sensing system;
• Mitigation system;
• Command and control (C2) system.

Drones 2022, 6, 65. https://doi.org/10.3390/drones6030065 https://www.mdpi.com/journal/drones33
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The sensing system consists of one or more sensors capable of collecting information
from the surrounding environment. The mitigation system consists of one or more mitigat-
ing elements capable of disabling, destroying or taking control of the drone identified as a
threat. The C2 system collects data from sensors and executes detection algorithms, based
on which it establishes the presence of a threat, identifies it (i.e., classifies its entity) and
decides the most appropriate tracking and mitigation mode.

There are several C-UAS systems on the market. There are integrated systems that
implement both the detection part and the mitigation part on the same platform, but the
most adopted solution is to separate the mitigation part from the sensing one, distributing it
on different platforms, giving rise to distinct commercial products. For example, most of the
available solutions are ground-based, especially for the sensing part, while the sky-based
part is typically relegated to mitigation. Thus, a single platform may implement only some
of the sub-systems of the CUS (or part of them) and a network architecture is required to
implement the interactions between the platforms.

In this paper, a multiplatform CUS, based mainly on a team of mini drones acting as a
cooperative defensive system, has been used as a reference. Indeed, mini drones represent
an effective solution for the implementation of a CUS, being the ideal platforms for the
proximal sensing and tracking of moving targets (e.g., intruder drones) in high-mobility
scenarios. Moreover, a team of mini drones may be arranged as a mobile sensor network:
on the one hand, the single drones may act as mobile sensor nodes to keep the closeness
with moving targets; on the other hand, a cooperative behavior may be established by
means of the network of drones and a suitable coordination protocol. Such cooperative
behavior may ensure the simultaneous perception and tracking of different moving targets,
and may provide efficient coverage by balancing the load of the sensing and tracking tasks
amongst the sensor nodes. In the end, defensive drones may also be equipped to implement
proper neutralization actions with respect to intruder drones.

In order to provide the basis for the future implementation activities of a cooperative
drone-based CUS, this work presents a review of the available technologies for sensing,
mitigation and C2 systems by means of mini drones. In addition, the paper discusses
some challenges about the key technological enablers for the effective implementation
of these systems. This paper does not provide a review of the available technologies for
the communication network and for the cooperation algorithms, which are exhaustively
described in other works.

The remainder of this article is organized as follows. Section 2 presents the definitions
and the basic concepts for cooperative drone-based CUSs. In Section 3, the sensing system
is introduced, with a literature review and a comparison on the sensing techniques that
could be used aboard drones. In Section 4, different neutralization techniques are discussed
and neutralizers using mini drones are highlighted. A detailed description of the C2 system
is provided in Section 5. Section 6 presents some of the technological challenges. Section 7
discusses the main results of the work, while the last section is about the conclusions.

2. Definitions and Basic Concepts for Cooperative Drone-Based Counter-UAS Systems

This section provides the main definitions and the basic concepts about cooperative
drone-based CUSs.

2.1. Drones

A drone or unmanned aerial vehicle (UAV) is an aircraft with no human pilot on-board.
It is the central element of a UAS, which is the set comprised of the aircraft and all the
other elements supporting the service of a drone. In detail, a UAS is made up of the main
following components:

• Airframe, which is the mechanical part of the vehicle, including the propulsion system;
• Navigation and motion sensors that collect the information about the drone position

and its flight trajectory;
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• Flight control system (FCS), which controls the propulsion system and the servos in
order to apply a flight trajectory;

• Payload, which is the specific equipment to accomplish a given mission;
• Ground control station (GCS), which is a computer system or a network of computer

systems on the ground, which monitor and control UAS operation;
• Communication infrastructure, which is the set of data links and related equipment

for the communication between the vehicle and the GCS (or other external elements).

There are different classifications of drones according to several parameters, such as
weight, altitude, endurance, degree of autonomy, etc. Reference [3] provides a survey of
the main classification of drones. For example, the military domain includes a NATO UAS
classification system, which is shown in Figure 1. It sets three classes, based on the weight.
The classes are further divided according to other parameters, such as the employment, the
operating altitude and the mission radius. According to such a classification system, mini
drones are Class I drones with a weight less than 15 kg, whereas microdrones are Class I
drones with a maximum energy state less than 66 J.

Figure 1. NATO’s UAS classification system [4].

A slightly different classification for micro-, mini and small UAVs (sUAS, NATO
Class I) is described in [5] and shown in Table 1. The latter also reports endurance and pay-
load capabilities, as well as weight, altitude, range and same example platforms available
on the market.
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Table 1. Micro-, mini and small UAV classifications based on weight, altitude, range and payload.

Category
Weight
(in kg)

Normal
Operating

Altitude (in m)

Mission
Radius, Range

(in km)

Typical
Endurance (in h)

Payload
(in kg)

Available UAV
Models in Market

Micro <2 <140 5 <1 <1 DJI Spark, DJI Mavic,
Parrot Bebop2

Mini 2–25 <1000 25 2–8 <10
DJI Matrice600, DJI
Inspire2, Airborne

Vanguard

Small 25–150 <1700 50 4–12 <50 AAI Shadow 200,
Scorpion 3 Hoverbike

2.2. Multi-Drone Missions

Without the need for an on-board pilot, drones were usually designed to accomplish
the D-cube (dull, dangerous and dirty) envelope [6], which is the set of the following
mission classes: dull, i.e., monotonous or requiring high endurance for human occupants;
dirty, i.e., that could pose a health risk to a human crew; dangerous, i.e., that could result
in the loss of life for the on-board pilot. However, if the region of interest of a mission is
large and/or the mission objectives are several, the execution of a single-drone mission
may solicit a considerable amount of time and may entail poor performance in terms of
mission effectiveness.

Multi-drone missions may overcome this issue. They are essentially missions that
engage two or more drones with some common objectives. Thus, a multi-drone mission
aims at increasing the effectiveness with respect to the equivalent single-drone mission and
requires a sort of collaboration amongst the involved drones.

There is no common agreement about the definitions for this multi-drone collaboration
and the classification of the different levels of collaboration. For the purposes of this work,
the definitions in [7] are adopted and the following levels of collaborations in a multi-drone
setting are considered:

• Isolated individual—in this case, a drone independently acts. It may be piloted, or it
may exhibit a given degree of autonomy for the execution of its mission on its own.

• Group—a group of drones comprised of several isolated individuals, each with their
own mission without coordination, i.e., collaboration is not present.

• Team—a team of drones is a networked set of drones with a common mission, in
which all members are assigned specialized and different tasks to accomplish the
global mission.

• Swarm—a swarm of drones is a uniform mass of undifferentiated drones. Thus,
a swarm is typically composed of a large number of homogeneous drones, which
perform a single task.

According to the above classification, only drone teams and swarms envisage a sig-
nificant collaboration level, which entails a cooperation within the overall system. Such
cooperation should allow the achievement of more complex missions and/or effective
results with respect to isolated individuals and groups of drones. Cooperation is mediated
by coordination (or coordination protocol), which represents the mechanism ensuring
that the activities of the single vehicles keep the desired relationships and that the col-
lective behavior (intended as the set of individual behaviors in the system) achieve the
objectives for the global system. The members of a swarm usually coordinate each other
only through simple and local interactions, whereas the coordination of a team requires
diverse mechanisms for the allocation of several, possibly heterogeneous, tasks. In regard
to the coordination of a swarm, the emergency concept is usually adopted to indicate the
ability of the swarm to achieve a collective behavior for a complex operation by exploiting
limited interactions of the single vehicles, which individually accomplish simple behaviors
and tasks.
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Other definitions and classifications are possible for the collaborative sets of drones.
Indeed, such sets may be also managed as an interoperable system of systems (SoS) in order
to apply the interoperability concepts, as in reference [8]. In any case, the joint performance
of a networked set of drones (teams or swarms) for a common mission is expected to exceed
the sum of the performances achievable in the equivalent single-drone mission. In more
detail, the following general advantages are expected for a typical multi-drone mission
with teams or swarms of drones:

• Multiple simultaneous interventions—the system may simultaneously collect data
from multiple locations.

• Efficiency—the system may split up in order to efficiently cover a large area, optimizing
available resources.

• Complementarity—the system may perform different tasks with growing accuracy.
Clearly, this feature holds for drone teams.

• Reliability—the system assures fault-tolerant missions by providing redundancy and
capability of reconfiguration in the case of a failure of individual vehicles.

• Safety—the team or swarm may usually apply the smallest vehicles for a mission with
respect to the equivalent single-drone mission. For a permit to fly, the usage of smaller
drones is safer than a single great and heavy drone.

• Cost efficiency—a single vehicle to execute some tasks may be an expensive solution
when compared with several low-cost vehicles.

2.3. Counter-UAS Systems

In the literature, it is possible to find numerous surveys that have explored the char-
acteristics of anti-drone systems (see for example [5,9–13]). In this regard, the taxonomy
presented in [9] is of particular interest, in which CUS are grouped into two categories:
ground-based and sky-based, depending on their deployment, respectively, on the ground
or in the air using drones or other flying platforms (for example, stratospheric platforms).
Ground-based systems can be of the static type, if installed, even temporarily, in a fixed
manner within the perimeter to be defended, or of the mobile type if installed on-board
land vehicles or transported by hand by humans (human-handled). Sky-based systems are
implemented on board drones, UAS, balloons or stratospheric platforms, and deployed as
needed. They differ in high altitudes and low altitudes, depending on the operating altitude.

The two types of CUSs oppose each other with respect to the level of operational
mobility and the characteristics of weight, size and energy required for operation (size,
weight and power, SWaP). Ground systems have the clear advantage of being able to count
on weak SWaP requirements (increasingly from static systems to human-handled ones),
but have little flexibility in terms of adapting to the unpredictable behavior of malicious
drones. On the other hand, sky-based systems have greater adaptability thanks to the
inherent maneuverability and flexibility that are afforded with the much more stringent
SWaP requirements due to the limited power of the batteries and the low payload capacity
for the lighter flying platforms. In choosing the platform to be adopted, it is important
to consider its advantages and disadvantages and the operational scenario in which the
solution is used.

It is also possible to create a hybrid CUS as a heterogeneous and cooperative network
of different platforms (both ground-based and sky-based) to balance the limits that each
solution would have if used individually. Indeed, although a CUS can consist of a single
platform, it is difficult for such a solution to deal with the threats represented by a malicious
drone or even by several malicious drones, so solutions that offer greater reliability and
spatial coverage are represented by CUSs comprised of multiple platforms. In this case, the
platforms are networked to cooperate, maximizing the effectiveness.

2.4. Cooperative Drone-Based Counter-UAS Systems

This paper is focused on cooperative drone-based CUSs. These represent an instance
of hybrid CUS (as defined in Section 2.3), including a cooperative set of drones. Thus,
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according to the definitions reported in Section 2.2, such a cooperative set represents a team
or swarm of drones.

For the purposes of this work, teams of mini drones (based on the NATO’s UAS
classification system, as shown in Figure 1, or on the classification reported in [5] and
shown in Table 1) are considered as a reference subsystem of the hybrid CUS. This choice is
due to the following expected advantages, which are added to the advantages of a generic
multi-drone mission (described in Section 2.2):

Mobility—mini drones show extreme mobility; it is possible to bring them closer to the
malicious drones and the sensing operations could be done in the proximity of the target.
So, mini drones offer a mobile proximal sensing solution for a CUS, which can improve the
detection and identification phases by lowering the probability of a false alarm.

Coverage expansion—it is possible to increase the coverage of the protected area. In
fact, drones can be easily moved in order to circumvent obstacles and/or monitor areas
that are not covered or not effectively covered by ground platforms. In other words, it
is easy to extend the area protected by the CUS without increasing the number of used
platforms. Nevertheless, proper bases allocation, jointly with re-charging issues, must be
guaranteed. Coverage expansion can also be obtained using a single high-altitude platform,
but supposedly with higher costs.

Deployment flexibility—compared to other flying platforms, they are simpler and
faster to use, allowing lower response times to any threat.

Cooperative sensor network—the defensive team may be arranged as a cooperative
sensor network, i.e., as a set of mobile sensor nodes, which may cooperatively perceive,
identify and track one or more threats from different “perspectives”. This is even more
necessary for mobile proximal sensing to keep the closeness with different moving tar-
gets. Thus, a cooperative sensor network may be implemented for a distribution of the
sensing tasks and a load balancing amongst the sensor nodes. Such network is expected
to be reconfigurable for maintaining optimal performance. Clearly, the same concept
may be applied also for mitigation purposes if the drones are equipped with the proper
neutralization payloads.

Team coordination—as described in Section 2.2, a swarm requires a large mass of
homogeneous vehicles and the coordination of a swarm occurs by means of the emergency
concept. These features are not deemed suitable for a cooperative drone-based CUS.
Indeed, the homogeneity of vehicles may be incompatible with the heterogeneous tasks
in a CUS. Moreover, the large mass of vehicles and the emergency of a swarm imply a
non-deterministic behavior and the absence of a specific organizational structure since they
are based on individuals’ reactions [7]. Thus, it may be difficult to estimate the probability
of success of a mission, which is generally unacceptable for a CUS. To the contrary, a
drone team usually exhibits an explicit organizational structure by means of a deliberated
coordination. A team may also satisfy the requirement about the heterogeneous tasks for
the cooperative drone-based CUS.

Automated decision-making—given the speeds involved in the operating environment
for CUS systems, an automated decision-making capability is essential to aid an operator
in the selection of the most proper actions to manage the given threat scenario or attack
scenario and to enable the fastest possible reactions on the part of the defense system.
Mini drones, with their well-known aptitudes for autonomous behaviors (also as a team),
represent an ideal platform to support such capability.

Neutralization—if the intruder drone(s) did not immediately manifest the malicious
intentions, the defensive team would act in proximity by physically chasing it and would be
ready for mitigation when the threat has manifested [14], thus allowing a higher probability
of success for the neutralization phase. In the literature, there have been several recent
studies on the use of a drone team as a defensive tool (e.g., [15,16]). Indeed, the features for
mobile proximal sensing may be adapted also for mitigation purposes, and some defensive
drones may be equipped with specific electronic or kinetic-mechanical neutralization
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systems in order to perform preliminary mitigation actions and to take advantage of the
closeness to the moving targets.

Scalability—Traditional CUSs lack scalability and are not usually able to face intru-
sions of drone teams or swarms. To the contrary, a defensive team of drones inherently
represents a scalable solution. Indeed, the coordination mechanisms usually exhibit a
scalable computational complexity with respect to the cardinality of the team, especially
when decentralized approaches (i.e., without central decision points) are applied. These
approaches ensure self-configuration and robustness of the team in front of individual
off-nominal events (i.e., failures, communication losses, etc.) or threats (i.e., attacks to the
individual defensive drones). Moreover, with the proper sizing and payload configuration,
a defensive team may detect and track a team or swarm of rogue drones.

The suitability of drone teams for CUS solutions has also been confirmed by state-of-
the-art research works in the fields of autonomous multi-agent systems and cooperative
robotics, which have proposed several applications with some similarities with CUSs’
required capabilities. Indeed, examples of these applications are those related to multi-
robot systems for the observation of multiple moving targets, for which different control
approaches already exist, such as cooperative multi-robot observation of multiple moving
targets (CMOMMT), cooperative search–acquisition–track (CSAT), multi-robot pursuit
evasion (MPE) [17]. In addition, multi-drone systems have been analyzed in terms of
distributed multi-agent systems for multi-target tracking problems [18]. In the end, the
environmental domain presents some advanced multi-drone solutions for environmental
monitoring of dynamic natural threats, such as the ones for tracking the dispersion of
contaminant clouds [19]. Additionally, some current international projects are developing
cooperative drone-based solutions for surveillance and situational awareness applications,
such as the following European projects: ResponDrone [20], which aims at developing a
multi-UAS platform for first responders to enhance their situation awareness in support as-
sessment missions, search and rescue operations, forest fire fighting, etc.; ROBORDER [21],
which aims at developing and demonstrating an autonomous border surveillance system
with unmanned mobile robots, including aerial, water surface, underwater and ground
vehicles, which will incorporate multimodal sensors as part of an interoperable network;
LABYRINTH [22], which proposes a road traffic surveillance by means of a multi-drone sys-
tem; 5D-AeroSafe [23], which aims at developing multi-drone solutions for the monitoring
of airport and waterway daily operations; Drones4Safety [24], which aims at developing a
system of autonomous, self-charging and collaborative drones that can inspect a big portion
of transportation infrastructures in a continuous operation; RAPID [25], which aims at
delivering a fully automated and drone-based maintenance inspection service for bridges,
ship hull surveys and more. All these technologies and solutions represent a sound starting
point for the future cooperative drone-based solutions in the counter-UAS domain.

Besides, some recent works have already analyzed multi-agent systems for CUS,
although they were focused on the single phases of the counter-UAS process, i.e., sensing
or mitigation separately. For example, reference [14] proposed a network of defense
drones, which is capable of self-organizing its formation to intercept malicious drones.
However, this work specifically focused on formation management algorithms to realize
intercept and capture formations for the mitigation of drone intrusions, without considering
neutralization aspects. Instead, reference [26] proposed a multi-drone framework for the
autonomous detection of rogue drones in a defined airspace and detailed the preliminary
development of a hardware and software testbed, based on commercial systems.

Other ongoing research activities are developing a cooperative drone-based CUS
covering all the phases of the counter-UAS process. For example, the SWADAR (Swarm
Advanced Detection And Tracking) project [27] has been awarded the Defense Innova-
tion Prize 2020 (https://www.edrmagazine.eu/defence-innovation-prize, last accessed on
13 February 2022) (20.RTI.PRZ.080, “Innovative Solutions/Technologies for the Countering
of Swarms of UAVs, specifically on the Protection of Static and Dynamic Land Facilities
and Platforms”), assigned by the European Defense Agency (EDA). SWADAR builds an
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intelligent drone-based network for mobile proximal sensing, tracking and neutralization
of intruder swarms, as shown in Figure 2. Based on sensing and tracking data, SWADAR
autonomously assesses the behavior of the rogue swarm by evaluating instantaneous and
variational swarming metrics (i.e., cohesion, segregation, etc.) that can help in identifying
the attack scenario and predicting the course of action of the swarm attack. Such infor-
mation supports the selection of optimal neutralization actions to suppress the enemy
swarming behavior. Moreover, SWADAR relies on on-board sensors, like LiDAR (light
detection and ranging), optical and infrared sensors, etc., which are typically available on
the market.

Figure 2. SWADAR concept for assessing swarming metrics (a) and for multi-UAV cooperative
tracking (b) [27]. The left part shows some examples of useful metrics to measure the swarm
behavior of intruder drones. Some of these metrics are: the cohesion, the segregation, the presence of
hierarchical structures and clusters and the f-divergence (i.e., the temporal variation of the spatial
distributions of the swarm).

In the US, the DARPA is funding the Aerial Dragnet program that seeks to perform
persistent wide-area surveillance of multiple small drones in urban terrain on a city-wide
scale. This innovative sensor array should be mounted on tethered drones, enabling a
non-line-of-sight (NLOS) tracking and identification of a wide range of slow, low-flying
threats [28].

Worthy of note is also the European project JEY-CUAS (Joint European System for
Countering Unmanned Aerial Systems) [29], which will pave the way for the development
of a joint European counter-UAS capability by developing a new-generation C-UAS system
based on a modular and flexible plug‘n’play architecture to include the emerging challenge
of mini drones, increasingly used for defense purposes. The solution will contribute to
an improvement of the situational awareness and reaction engagement by reducing the
minimum reaction time.

However, not everything can be achieved through the use of mini drones. In some
cases, ground systems are required—if we consider the case of early detection, it would
be inefficient to keep drones in flight permanently to check for the presence of malicious
drones in the area to be protected. Furthermore, with mini drones, we should consider
SWaP constraints, and consequently, not all of the operations necessary to fight the threat
could be performed via these platforms. For example, it is not possible to use strong
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neutralizers (like high-power electromagnetics or high-power laser), which cannot be
integrated on mini drones due to obvious SWaP constraints. However, mini drones can be
a suitable solution, especially in civil contexts where protection is mainly required towards
small drones.

3. Sensing System

The perception of a threat makes use of the sensing system, consisting of one or more
sensors capable of collecting the information extrapolated from the electromagnetic or
acoustic spectrum, depending on the technology and the signal processing involved. In
general, the perception operation can be divided into the following phases:

• Detection: The finding of one or more object within the airspace to be monitored.
In this first phase, the system is not yet able to distinguish whether the detected
object is actually a drone. This phase can be characterized through the two indicators
“Detection Rate” and “False Alarm Rate”, which express the probability, respectively,
of correct detection and false alarm.

• Classification: Once the detection event has occurred, it is necessary to verify that the
detected object is actually present and that it is a drone. It could happen, for example,
that the target detected in the previous phase is a bird, which has electromagnetic
characteristics that can be similar to those of a drone (the radar cross section or the size
and geometric shape that is possible recognize visually). This verification is also called
“recognition” or “identification”. Subsequently, the system extrapolates some salient
attributes (features) of the drone, such as the type (size, type of propulsion, number of
rotors, model), the possible location of a remote pilot, the presence of a payload and
its typology. This phase may be found in the literature under the term “identification”.

• Localization/Tracking: The target is located by estimating its position in terms of
angle and distance. Triangulation techniques can be used to increase accuracy. Once
the target has been locked in, it must be tracked throughout its flight. Flight trajectory
could also be predicted.

The level of reliability of this information must be as high as possible so that the
C2 system can perform the threat analysis and select and adopt the most appropriate
mitigation measures in the shortest time interval. Detection, recognition and identification
(or classification) could be performed by a single type of sensor if the technology and
associated processing are compatible with the required output. Where this is not the case,
it is possible to adopt a heterogeneous sensing system consisting of sensors with different
technologies, which can contribute, thanks to data/sensor fusion techniques, to obtain a
reliable level of identification and to improve performance in terms of range, detection time
of the anti-drone system, detection rate and reduction of false alarms.

Clearly, to face an attack by a team or swarm of drones, the sensing system should be
enriched with functionalities for the perception and the processing of information about
the features that are strictly related to the teaming or swarming behavior of the attacker.

In more detail, one of the most complex scenarios that an anti-drone system can
face is that relating to the attack of a drone swarm, e.g., for saturation attacks and to
overwhelm the counter-capability of the target’s defense. As for a hostile team, this
scenario requires that the detection capabilities are also used for the extraction of “global”
features that characterize the swarm and not only for the “local” features related to the
drones that compose it. Moreover, specific information should be collected to quantify
swarming metrics (e.g., consistency, cohesion, etc.) related to the swarming behavior. For
this purpose, it may be useful to acquire both local information (e.g., flight configuration,
geometry characteristics and speed) and global information (e.g., number of vehicles,
relative distances, geometry of the swarm, etc.) [30]. Such information will be essential to
infer the mitigation decisions, since they may support the identification of the drones that
represent the “focal points” within the hostile swarm.
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3.1. Sensing Technologies

An anti-drone system, to fulfill its purpose, must be equipped with a sensing system
consisting of one or more sensors, including those of different technologies. There are,
in fact, different types of sensors, which are characterized by the observed phenomenon,
electromagnetic or acoustic, and by the spectrum band they use. For example, image
sensors operate in the electromagnetic spectrum, in all visible frequencies, while a radar
can operate at microwave frequencies.

The first technological distinction to which we can refer for the classification of sensors
is between active and passive sensing. The substantial difference between the two types
is based on the use of energy to “feel” the objects present in space. For active sensors,
an electromagnetic or acoustic radiation is emitted, with which it is possible to directly
measure the distance of objects in space through, for example, the measurement of the delay
between the radiation emitted by the sensor itself and that received by the back-scattered
reflections of the objects. Radars and LiDAR sensors belong to this category. On the other
hand, passive sensors receive energy from the environment and from the object to be
detected, which can be used to reconstruct useful information. Most of the passive sensors
used are optical and infrared cameras.

There are many reviews on the current state-of-the art technology in this wide variety
of sensors, both commercial and academic ones (for example: [31]). Instead, in the following
subsections, we are focusing on the literature with drone-based-only use cases. So, it is
possible to assume that all the following sensing technologies are suitable for use aboard
mini and micro-drones.

3.1.1. Acoustic Sensors

The engine and propellers of the drones generate acoustic waves in the frequency
range between 20 Hz and 20 kHz, which give rise to the acoustic signature of the vehicle.
A single microphone can acquire this information and thanks to the comparison with
a library of acoustic signatures, it can distinguish a drone from other objects and carry
out the identification phase of the aircraft by obtaining information on the model. If the
number of microphones is increased, it is possible to adopt spatial diversity techniques
or use beamforming techniques by arranging the installation of an array of microphones
onboard the drone. In this way, it is possible to estimate the azimuth and elevation of one
or more targets through the direction of arrival (DoA), perform multiple target tracking
and mitigate the ego-noise effects, i.e., the noises of the electric motors and the moving
propellers of the drone itself.

This type of sensor is particularly economical, but is sensitive to environmental noise
and climatic conditions related to wind or temperature and typically has a detection range
that depends also on the microphone array size. This technology is typically used for
ground-based counter-UAS platforms, but no airborne commercial products have been
found. However, as the following articles demonstrate, the dimensions of a microphone
array are compatible with the installation onboard a drone. For example, in [32] and in [33],
some small-sized drones were set up with an array of microphones to locate a generic noise
source. The ability to perform localization and tracking in terms of DoA and to identify
noise sources were analyzed in [34], in which a circular array (ground-based) was used and,
thanks to sound signal processing and array signal processing, an identification success
rate of 80% was shown under the test conditions described in the article.

The detection range depends on the quality of the microphones, the characteristics of
the array and the type of processing performed. In fact, the results that can be found in the
literature vary in a fairly wide range, from 5 m of [35] up to 600 m of [36]. In [37], a ground-
based system of two arrays of four microphones (spaced by 1 m) each was used for the
location of a drone through the calculation of the DoA. Comparable results were obtained
with GPS accuracy and a detection range of 100 m. In [36], a ground-based configuration
was used with the arrangement of the array of tetrahedron microphones. In this case, a
detection range of up to 600 m with a success rate of 99.5% was highlighted, at the same
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time, however, the tracking capabilities were poor. In [38], on the other hand, an array of
120 elements arranged on a spherical structure allowed the detection and identification of
various commercial drones up to about 290 m. It should be noted that the classification
range may be lower than the detection range, as shown by the test campaigns carried out
for the system described in [39].

Finally, an array of eight microphones was used in a scenario that is very similar to
the one considered in this study ([35]), involving a tracker drone and an intruder drone. In
this case, machine learning was used, and signal processing is done in real-time onboard
the aircraft. The detection range was extremely small, equal to about 5 m, but there were
excellent tracking capabilities.

3.1.2. Radio Frequency Sensors

Radio frequency (RF) sensors capture the electromagnetic signals radiated by a ma-
licious drone or by the remote pilot’s radio control, if present. It is, therefore, a passive
method that does not require the transmission of electromagnetic waves and, therefore,
has no restrictions on use (e.g., in an urban environment). Most commercial drones use an
uplink radio channel for remote control commands and a downlink channel for telemetry
and video signal. In the case of autonomous drones, there may be only direct downlink
transmission to the ground control station (GCS) or communication between the nodes of
the network in a swarm. The detection systems based on this technology make use of a RF
receiver between 400 MHz and 6 GHz and an array of antennas for the possible exploitation
of MIMO techniques. The receiver can be implemented through software-defined radio
(SDR) due to the reconfigurability and flexibility characteristics of the radio frequency front-
end and associated baseband processing. RF detection can be performed with techniques
based on a known protocol or recognition of the spectral pattern. In this case, we refer to
drones that communicate with the remote pilot through communication standards such as
IEEE 802.11 (Wi-Fi), a case that covers a large part of commercial drones. In this way, it is
possible to retrieve the MAC address of the device and trace the specific drone model.

In addition to the recognition of the spectrum and the communication protocol, it
is possible to recognize the RF fingerprint of the radio controller and then carry out the
classification of the drone through machine learning techniques, as described in [40]. These
techniques are not very effective if a known pattern is not used, if the communication
scheme has been customized or if the MAC address database is not updated ([41]).

For this reason, techniques based on the localization of the RF signal have been
developed. So, the DoA estimation is carried out in two different ways: based on received
signal strength (RSS) or spectral analysis. In the first case, the results are less accurate than
in the second. For example, in [42], an architecture based on an array of four antennas and
an SDR platform for processing was proposed, in which an angular precision between 1.9◦

and 6◦ was achieved over a coverage range between −60◦ and 60◦. In [43], an experiment
was presented in which, thanks to the use of commercial SDR platforms (FPGA-based), it
was possible to localize small drones with a maximum range of 75 m. Although previous
publications have been ground-based, they described techniques that could also be used
on-board. In [15], a UAV-based system was described, in which a tracker drone can track
an intruder drone by measuring RSS. The coordinated use of multiple drones for locating
the RF source was also considered in [44,45]. In the latter, the air-to-air communication
channel was simulated and compared with the ground-to-air one in an urban context. The
research aimed to analyze the differences in terms of location accuracy vs. SNR. The results
showed a clear advantage for the air-to-air solution.

3.1.3. Optical Sensors

Optical sensors detect electromagnetic waves in the range of frequencies from infrared
(300 GHz) to ultraviolet (790 THz). It is a passive technology, therefore with low energy
consumption, which can provide two-dimensional images of the surrounding environment.
Optical sensors can be divided into two main categories, depending on the frequency
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band in which they work: visible (VIS) or non-visible. For example, the first category
includes optical cameras, which can detect electromagnetic radiation in the 430–790 THz
frequency range, while the second category includes thermal cameras, which convert
infrared radiation (300–430 THz) into images.

Thanks to image processing techniques based on computer vision (CV), it is possible to
detect, classify and track drones that fall within the field of view (FoV) of the optical sensor.
The aforementioned operations are similar to object detection and tracking, which is a
much-studied problem in the CV field. An object can be detected thanks to features such as
geometric shape or outline and features related to movement between consecutive frames.
In the event that the sensing system is mounted on-board a drone, the dynamism of the
scene must be considered, which introduces problems of variation in lighting conditions
and background characteristics. The sensors that operate in the visible frequency band
show their limits in the case of adverse weather conditions (rain and fog) and the case of
low ambient light such as at night.

Infrared (IR) sensors allow us to overcome these limits ([46,47]) and offer greater
robustness against rapid changes in illumination [48]. Two types of existing approaches in
the literature are essential [49]: direct or feature-based techniques and machine learning
methods. The first category includes algorithms that try to identify a specific region of
interest in the image by looking at the best similarity with a reference representation of the
target. In direct techniques, information on the local gradient is used in each pixel of the
image, while in feature-based techniques, features are used that are followed in a sequence
of frames through specific descriptors. The detection and tracking capabilities are good, as
highlighted in [50], where the processing is based on techniques of background subtraction
and optical flow calculation.

Machine learning techniques are very popular among the scientific community. The
training of a neural network for target detection and classification is one of the most
studied fields of CV. In fact, given the great accessibility of standard optical cameras, this
research area has reached a fairly mature stage. Thanks to the large availability of public
image datasets, UAV detection challenges are often organized at international conference
workshops, such as Advanced Video and Signal-based Surveillance (AVSS) conference and
International Conference on Computer Vision Systems (ICCVS).

Image classification with the deep learning paradigm is one of the most active fields
of research. Most of the works that employ deep neural networks (DNNs) for drone
classification problems utilize a generic object detection architecture, with a powerful DNN
as a classification model targeted for drones. The most used architectures are:

• Single-shot multi-box detectors (SSD)
• Faster R-CNN

A particular SSD architecture is the You Only Look Once (YOLO) model, which has
gained great popularity thanks to a particular computational efficiency that allows its use
also on embedded systems in real time.

The adoption of different CNN architectures (e.g., Zeiler–Fergus (ZF), visual geometry
group (VGG16)) for drone detection has been investigated in [51]. To overcome the limited
amount of data available for training the deep networks, authors exploited transfer learning
from ImageNet and performed a pre-training to fine-tune the models. The experimental
results revealed that VGG16 with faster region-based convolutional neural network (R-
CNN) achieved the best performance among all the considered architectures.

The authors of “Drone Detection in Long-Range Surveillance” [52] worked on a
previous iteration of the same dataset, with quite good results in the detection of small
objects. They applied a Faster R-CNN network with various backbones and showed that
ResNet-101 had the best results.

In [53], a deep-learning-based detection method was adopted, termed YOLOv2, whose
training is performed using an artificial dataset obtained by mixing images of real birds
and drones, each with a different background. The obtained results demonstrated that
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the diversity and the scale of the dataset have a positive impact on the detection and
tracking processes.

The size, weight, required power and cost of the cameras is such that their use on
drones does not find particular impediments and certainly makes it possible to use them as
a sensing system for C-UAS for all operations of detection, identification and tracking.

3.1.4. LiDAR Sensors

LiDAR uses electromagnetic radiation at the optical and infrared wavelengths. It is an
active sensor that emits electromagnetic waves and receives reflected waves, similarly to
the operation of the radar, only at much higher frequencies, between 200 THz and 400 THz.
Thanks to the calculation of the time difference between the emitted and received ray (time
of flight), it is possible to process a 3D map of the surrounding environment and, thus,
obtain the position, direction and speed of the objects in the scene. The speed can also be
calculated from the doppler shift due to moving objects. These sensors are widely used in
the automotive sector for safety systems related to autonomous driving (adaptive cruise
control, lane-keeping, emergency braking). They can be used for simultaneous localization
and mapping (SLAM), which allows robots to orient themselves in an unknown space
and GPS-denied environment. The compact size allows it to be used on-board UAVs, both
as a payload, for example for aerial mapping applications, and as avionics for collision
avoidance systems.

There are different types of LiDAR sensors: those that measure only the range, called
1D, to those that measure the angle of arrival in the azimuth and elevation, as in an optical
camera, and in addition, they obtain information on the range. It should be noted that the
maximum operating range depends on the reflectivity value of the material and the color
of the object hit by the light radiation. Given the wavelengths, the LiDAR (especially in
the 1D case) can have a reduced operation in conditions of fog, clouds or rain, but offers
the advantage of being able to be used also in conditions of low ambient light (at night, for
example). The processing of the data acquired by this type of sensor requires a relatively
low–medium processing effort compared to other types of sensors.

Most publications in the context of counter-UAS systems are ground-based. In [54], a
LADAR (laser detection and ranging) is described, based on LASER, with a peak power
of 700 kW, which allows for the increase of the operating range up to 2 km. In [55], an
interesting experimental test campaign was carried out with a 3D LiDAR system mounted
on a land vehicle to determine the probability of detection for mini drones. The results
showed how, with sensors with a maximum operating range of 100 m, it is possible to have
a high detection success rate for targets within 30 m. In [56], sensor fusion techniques were
applied between a 3D LiDAR sensor and an RGB camera for detection, localization and
tracking applications, with a maximum range of 50 m.

In addition to the CUS systems, publications in the field of collision avoidance systems
(CAS) for UAVs that use sensing techniques based on LiDAR were also considered. The
problem of obstacle detection is very similar to that of the detection/identification and
localization of malicious UAVs. In [57], machine learning and data fusion techniques
were used for the combined use of 3D LiDAR and optical cameras, obtaining an obstacle
detection range of about 30 m. In [58], a 2D LiDAR sensor was used, obtaining a detection
range of about 8 m compared to the sensor’s maximum range of 25 m. The analysis of
the state of the art shows how LiDAR-based technology is widely used for the detection
of targets concerning CUS systems and obstacles concerning CAS. The ability to separate
objects from the background and range measurement are interesting features for this
category of sensors and can be used, for example, in the extrapolation of geometric features
related to a possible scenario involving a hostile swarm.

3.1.5. Radar Sensors

A radar is an active sensor, consisting of a transmitting segment that radiates elec-
tromagnetic waves in the frequency range from 3 MHz to 300 GHz, depending on the
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application. The waves are reflected by the target objects and are received by the receiving
segment of the radar. By properly processing the received signal, it is possible, for example,
to calculate the time of arrival and the frequency shift due to the Doppler effect to obtain
information on the distance and speed of the target. The power of the received signal is
directly proportional to the radar cross section (RCS), a parameter that measures how easily
an object is detectable and which depends on the size, material, distance and angle of the
incident and reflected wave. The RCS of mini-sized drones and their speed have lower
values than that of larger drones and aircrafts for which classic radar systems are designed.
To increase the detection possibilities of drones, the micro movements of vibrating and
rotating structures, such as motors and propellers, can be taken into consideration. In
fact, such structures have a characterizing micro-Doppler signature (mDS) [59]), thanks
to which, they can be recognized. There is a category of radars, called passive, which are
not equipped with a transmitter but use the electromagnetic radiation emitted by external
sources, such as those of the towers for broadcasting the DVB-T television signal, normally
already present in the communication channel. This category will not be taken into consid-
eration because it requires a priori knowledge of these sources and a static installation of
the passive radar.

The main advantages of the radar are related to the robustness against environmental
conditions: the operation is independent of the light conditions and atmospheric conditions.
The disadvantage is that to obtain a high detection range, it is necessary to increase the
transmission power, the limit of which will depend on the power available on-board
the drone. For this reason, it is not possible to use a classic surveillance radar, and the
use of the FMCW type (frequency-modulated continuous wave) is preferred, which has,
among other things, a more affordable cost. Signal processing can be done on software-
defined radio platforms equipped with FPGA technology and RF front-end. The most
popular radars in this area are mmWave and UWB radars, with one millimeter and ultra-
wideband respectively.

The literature analysis ([60–62]) showed that the detection range is typically around
100 m for millimeter-wave radars. In [63], a pair of UWB radars were used to locate a
drone up to about 80 m. The classification skills are very good ([64–67]), thanks to machine
learning techniques. In particular, in [67], the authors were able to discern the weight of
the payload of a commercial drone through the analysis of the mDS. Using a radar system
operating at the 2.4 GHz frequency, the classification allowed recognition of the cases that
belonged to the set {no payload, 200 g payload, 500 g payload} with 90% success and a
maximum detection distance of 100 m. In addition to the analysis of the scientific literature
relating to CUS systems, it is also possible to investigate that relating to the applications of
radar for collision avoidance, as the detection problem is common to the two systems. In
this regard, by deepening the survey proposed in [68], it is possible to confirm the feasibility
of installing these systems on-board small drones, despite the stringent SWaP constraints.

3.2. Sensing Technologies Comparison

As seen, the proximal sensing capability of a team of mini drones is the main clear
advantage over a static, ground-based CUS. For example, the optical occlusion problem
could have a minor impact on a drone-based video sensing system thanks to the possibility
to change the perspective, taking advantage of the mobility of the drone itself. On the
other hand, there is the need for an accurate video stabilization to mitigate the blur effect
due to the drone movement. In Table 2, some pros and cons of using sensing technolo-
gies integrated in mini-drone-based platforms with respect to the static ground case are
summed up.
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Table 2. Pros and cons of using sensing technologies on-board a drone.

Sensing Technique Pros Cons

Acoustic Possibility to move close to the target and
improve the identification task.

Need for proper ego-noise cancellation
due to the propellers noise.

Optical
Possibility to change the perspective and to

operate close to the target with a higher
resolution and better identification capabilities.

Limited computational power; need for
efficient video stabilization.

RF Better conditions of the air-to-air channel with
respect to the ground-to-air one.

LiDAR Possibility to move close to the target and
improve the detection phase. Limited on-board power.

Radar Thanks to the proximal sensing, less power of
the active sensor is required. Limited on-board power.

Each technology has a different detection range, classification capacity and energy
requirement. For example, the optical sensors in the visible work very well only in line
of sight (LOS) conditions, while the RF sensors can work in non-line of sight (NLOS)
conditions. It is, therefore, impossible to reach a satisfactory situational awareness level
with the adoption of a single technology and, in this regard, the simultaneous adoption of
different sensing techniques is the winning way, as previously addressed in the concept of
the defensive team and the related cooperative sensor network. Using sensor or data fusion
algorithms allows for better results than those that would be obtained individually. For
example, in [69], test campaigns were carried out on a detection system that showed how
the use of the data fusion technique increased the detection rate. These improvements were
achieved at the expense of system complexity and computational effort. The identification
of the technologies that best complement each other is a useful activity in order to optimize
the level of situational awareness with respect to the complexity and cost of the system.

The following tables have been constructed to better highlight the characteristics
of each technology. Table 3 contains a rough estimate of the performance in terms of
“detection”, “classification” and “global features characterization”. It is not easy to establish
the performance of each technology in absolute terms, which is why “low” to “high” range
values have been indicated and express a qualitative judgment based on the literature
reported in the previous paragraphs. It should be noted that the distances detected in
the experimental setups can be numerically very different from the datasheet of the CUS
products that can be found on the market. The explanation of this deviation could depend
on the different level of optimization that an engineering product has in front of the
experimental setup and the different requirements of ground- and sky-based devices.
However, the relationship between the different technologies should be respected beyond
the absolute numerical values.

Table 3. Sensing techniques’ relative performances.

Sensing Technique Detection Range Classification Capability
Global Feature

Characterization

RF Scanner Higher than 150 m High Low

RF RSS Higher than 150 m Low Low

Acoustic Higher than 150 m Medium Low

Lidar Between 50 m and 150 m Low Low

Radar Higher than 150 m Medium Medium

VIS Higher than 150 m High High

IR Lower than 150 m Low Low
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Table 4 is populated with the characteristics of localization/tracking and robustness
against adverse environmental and meteorological conditions.

Table 4. Sensing techniques’ tracking properties and robustness against environmental and meteoro-
logical conditions.

Sensing Technique Localization Multi-Tracking
Meteorological

Conditions
Environmental

Conditions

RF Scanner DoA Possible - RF Spectrum
congestion

RF RSS DoA Possible - RF Spectrum
congestion

Acoustic DoA Yes Wind Noise

Lidar DoA/Range Possible Fog, rain Direct Light

Radar DoA/Range/Speed Yes - -

Optical VIS DoA Yes Fog, rain Night

Optical IR DoA Yes Fog, rain Background
temperature

The RF, acoustic, radar and optical VIS sensors have a wide detection range, in
particular, the first two are able to work also in NLOS mode. Optical sensors, however, are
not a good choice in the presence of adverse weather conditions, and, in particular, VIS
sensors are unable to work in the absence of light.

As far as the classification process is concerned, optical systems are best expressed
in conditions of proximal sensing. RF and acoustic sensors use machine learning-based
pattern recognition techniques for the identification of remotely piloted amateur drones.
RF systems also allow for the estimation of the position of the pilot in addition to the
specific model of drone used. Radars have good classification capabilities based on the
micro-Doppler signature.

Radar allows the direct estimation of the distance and speed of one or more drones; for
this reason, it can be considered as an adequate technology for the extraction of the global
features of a drone swarm, and for their localization and for operation of tracking. The use
of optical sensors flanked by the ranging capability of the LiDAR allows, in this case, for the
extraction of visual features that allow the determination of the geometric characteristics of
the swarm, such as the occupied area and the flight configuration. Furthermore, tracking is
a task that is typically dealt with via computer vision with a good level of reliability.

Table 5 proposes a subdivision into “main” and “complementary” technologies on the
basis of the information developed so far.

Table 5. Main and complementary technologies.

Task Main Complementary

Detection Radar, Acoustic, RF Optical
Classification Optical, RF, Acoustic Radar

Global Feature Optical, Radar Lidar
Localization Radar, Lidar RF, Acoustic

Tracking Radar, Optical, Acoustic Lidar, RF

For each phase of the sensing, “main” technologies are indicated, which have a high
probability of completing the task successfully. The “complementary” technologies were
considered those that can improve the result obtained by the “main” ones.
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4. Neutralization Systems

Neutralization systems are activated by the command-and-control system to respond
to the threat posed by the detected malicious drone(s). Multiple neutralization systems
can be activated simultaneously in order to cooperate to improve the effectiveness of the
neutralization. Furthermore, these systems can be located on one or more distinct platforms
according to the CUS physical architecture.

According to the classification reported in [9], neutralization systems can carry out the
following actions: warning, control, interruption, disabling and destruction. These actions
are implemented through neutralization techniques, more simply indicated as neutralizers
(or mitigators). Neutralizers have been classified in different ways in the literature. In [9],
neutralizers were divided into physical and non-physical based on whether there was
physical damage to the m-drone. Moreover, in the case of non-physical neutralizers, there
is no contact between the neutralizer and the m-drone, but some of them can actually
cause damage to the m-drone. A similar subdivision was also shown in [10], even if some
neutralizers fell into different classes. However, in [5], the subdivision was made between
electronic neutralizers, based substantially on electromagnetic waves that do not cause
direct damage to the m-drone (for example jamming), and kinetics neutralizers, which
intercept the drone with physical means (for example nets), but the latter ones also include
high power lasers and microwaves. Given that each definition described gives rise to some
ambiguity, the following classification will be adopted:

• Electronic neutralizers, based on the use of electromagnetic waves capable of inter-
rupting (operations), disabling or even destroying (at least partially) a drone;

• Kinetic-mechanical neutralizers, based on the use of mechanical means, which involve
contact between the neutralizer (or a part of it) and the malicious drone.

4.1. Electronic Neutralizers

Electronic neutralizers allow instant actions, can easily aim at the target and are not
affected by environmental agents (for example wind and gravity). They can be implemented
with different techniques, such as cyber-attacks, high-powered electromagnetics and lasers.
Cyber-attacks include jamming and spoofing techniques, which constitute the vast majority
of neutralizers used in the context of UAVs, protocol-based attacks (for example, de-
authentication and address resolution protocol (ARP) cache poisoning in the case of Wi-Fi
networks) and replay attacks. Below a survey is reported.

4.1.1. Radio Frequency Jamming

Radio frequency (RF) jamming techniques allow users to disturb, lower the quality
of or interrupt communications between the malicious drone and the respective remote-
control station. They consist of generating an interfering signal in order to lower the SINR
(signal-to-interference-plus-noise ratio) input into the receiver of the m-drone in order
to make it difficult, if not impossible, to receive the information sent by remote control.
Obviously, it is also possible to jam on the remote control in order to disturb any feedback
data sent by the m-drone. A jammed drone can have different reactions depending on how
it is designed [5]: it can make a landing in its current position, it can perform a return-to-
home procedure, it can fall to the ground without control or it can fly in a random direction
with no control.

RF jamming can be applied to other signals in addition to the remote control one. For
example, in [70], jamming was applied to a video link used for the first-person view (FPV)
function, showing the possibility of disabling this function and preventing the operator
from maneuvering the drone in the absence of LOS conditions. Jamming can also be used
to improve the robustness of a wireless communication in the presence of an eavesdropper.
This is the case of cooperative jamming, in which a relay node transmits a jamming signal
at the same time as the legitimate source transmits its message in order to disturb any
eavesdropper [71]. By reversing the perspective, jamming can also be used to increase the
probability of interception of a communication. In [72], for example, a legitimate drone,
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used to follow the flight of two suspicious UAVs in order to prevent any threats, transmits
jamming signals to the receiving UAV in order to force the decrease of the exchanged
data rate and increase the likelihood of interception of information exchanged between
suspicious drones.

There are several radio frequency jamming techniques. In this paper, we refer to
the simplified taxonomy used in [10], but a more detailed one is available in [73]. The
first technique, the noise jamming (also known as barrage jamming), is the simplest to
implement and consists of applying a noisy signal to a portion or to the entire spectral band
occupied by the signal which has to be jammed in order to reduce the channel capacity
and increase the number of errors in the received data. Noise jamming can also be used
in the presence of m-drones equipped with a synthetic aperture radar (SAR) able to offer
autonomy thanks to SLAM techniques. In this case, the interference generated by the
jamming signal may be sufficient to mask the echoes related to the SAR, making the latter
unusable, as highlighted in [74]. The second technique is the tone jamming: in this case,
one or more tones (i.e., narrow band signals) are employed for the purpose of generating
interference. The effectiveness depends on the positioning of the tones and the transmitted
power. The third technique, named sweep jamming, consists of transmitting a narrow
band signal that sweeps the spectrum of frequencies of interest over time. At each instant
of time, only a portion of the spectrum is covered, but in a certain period (the amount
of time necessary to make a complete sweep) the whole band of interest is affected. The
fourth, and final, technique is smart jamming, also known as protocol-aware jamming. It is
applicable when the characteristics of the target signal are known a priori. For example,
if the communication system under jamming uses frequency hopping spread spectrum
(FHSS) and the hopping pattern is known, then the neutralizer can perform the same
frequency hops as the target and reduce the bandwidth required by the interfering signal.
Similarly, if the target communication system uses direct sequence spread spectrum (DSSS),
the spreading properties of the signal to be attacked can be used to transmit a jamming
signal possessing a high correlation with respect to the original one in order to increase
the bit error rate of the communication to neutralize. Therefore, smart jamming is both
effective, as it is calibrated precisely on the target signal to be disturbed, and efficient in
power, as it operates only in correspondence with the target signal (in time and frequency).
In any case, if no prior knowledge of the communication system to be neutralized is known,
an analysis of the relevant signal must be carried out in order to identify its characteristics
and weak points. Consequently, SDR technologies are well suited to the implementation
of smart jamming; thanks to their flexibility, they allow for both the analysis of the target
signal and the reproduction of an ad hoc signal to be used as an interfering signal ([75,76]).

The performance of the above jamming techniques can be assessed with respect to
most available communications on commercial drones, i.e., the communications based on
spread spectrum, like the transmission systems ACCST (Advanced Continuous Channel
Shifting Technology), based on FHSS, and FASST (Futuba Advanced Spread Spectrum
Technology), based on FHSS with the addition of Gaussian filtering and DSSS applied on
the data. Furthermore, in order to consider even drones equipped with Wi-Fi connection,
the IEEE 802.11b standard, based on DSSS, and the 802.11g standard, based on orthogonal
frequency division multiplexing (OFDM), can be assessed. The listed systems cannot
complete the panorama of implementable communications, but offer an early coverage of
the transmission protocols (with reference to the physical layer) typically used by drones.
The experimental evaluation of tone, sweep and smart jamming with respect to ACCST
and FASST is shown in [75]. The results showed that smart jamming is significantly more
efficient than tone and sweep jamming—the tone jammer can successfully jam a single
channel of the link but is not sufficient to terminate the remote control link, and the sweep
jammer requires relatively high jammer-to-signal ratios (JSRs) to completely prevent the
communication, whereas smart achieves successful jamming at relatively low JSRs but
requires significant knowledge about the targeted system. In the same work, noise jamming
was also evaluated (with respect to an FHSS/DSSS hybrid system by means of simulations),
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resulting in the techniques which require a higher JSR to prevent the communication. When
considering the impact that the jamming signals have on WLAN devices, a comparison
between noise and tone jamming is shown in [77]. If the jamming signal is stronger than
the desired signal, the 802.11g system cannot operate in any mode unlike the 802.11b
system, which uses lower rate DSSS modes, however, at the certain packet error ratio (PER)
the 802.11g system can offer higher data rates than the 802.1lb system under wideband
jamming. When tone jamming is used, the performance of the 802.11g system depends
highly on the jamming frequency. In DSSS systems, the jamming frequency is not as
important a factor as in OFDM, but higher JSRs are required to increase the PER with
respect to the noise jamming. An experimental comparison between sweep and smart
jamming for the WLAN case is shown again in [75]; in the most extreme cases, the sweep
jammer halted the WLAN communication, while the protocol-aware jammer solely limited
its maximum throughput.

Neutralizers based on RF jamming techniques, also known as jammers, can be in-
tegrated on static, mobile and/or portable ground platforms (examples are illustrated
in [78–80]). It is also possible to integrate them on aerial platforms, like mini drones. Finally,
they can be active, i.e., they continuously transmit interfering RF signals or randomly to
save energy, or are reactive, i.e., they transmit interfering signals only after having deter-
mined that the monitored frequency spectrum is occupied by unknown signals (see [81]).

4.1.2. GNSS Jamming

GNSS (Global Navigation Satellite System) jamming is not a different technique from
RF jamming, but simply refers to the jamming of GNSS signals. It is treated separately
because of its relevance considering that GNSS signals are typically those most subject to
neutralization. Signals received from satellites are characterized by low power value and,
thus, are vulnerable to interfering signals; therefore, the technique under consideration
can be effective. In fact, as reported in the study in [82], jamming the GPS receiver of a
commercial drone can result in drifting and control difficulties, as well as preventing the
return to home (RTH) procedure from working properly.

To implement GNSS jamming, the same radio frequency techniques illustrated in the
preceding paragraph can be used. These techniques have been analyzed and evaluated in
relation to GPS signals in [83], together with successive pulses jamming, which involves
transmitting a sequence of pulses over time with a small duty cycle to the central frequency
of interest and can be seen as a particular implementation of noise jamming. Best results are
obtained with smart jamming and sweep jamming—the first technique is the most effective
when compared to its purpose (making the GPS signal to the receiver unusable), while the
strength of the second one is the simplicity of implementation, although it should be noted
that the obtained efficiency depends on the speed used to sweep the frequency band.

GNSS jamming can be ineffective when malicious drones are equipped with IMU
sensors. In this case, if the drone is equipped with a remote control link, RF jamming can
also be useful. Similarly, GNSS jamming is highly important with m-drones not equipped
with a remote control (i.e., RF jamming is not applicable), which follow a pre-programmed
route with the aid of GNSS. Consequently, intrinsic weaknesses shown by RF and GNSS
jamming can be compensated for by their simultaneous deployment in order to improve
neutralization effectiveness.

Finally, considering the strategic importance of GNSS services, it should be noted
that much research has been done in order to prevent and/or mitigate GNSS jamming;
some methods, including those ones based on antenna arrays, are illustrated in the study
reported in [5]. Therefore, a CUS shall pay attention to the effects obtained by means of
such a neutralization.

4.1.3. Spoofing

Spoofing consists of generating a plausible fake signal with enough strength to trick the
malicious drone receiver into believing it is the legitimate signal. The signals under spoofing
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can be related to some different applications or devices: remote control communications,
payload data communications, GNSS, sensors. In order to perform spoofing, it is necessary
to know the communication protocol stacks used (not only the physical layer) so that they
can be reproduced. If the stacks are known it is possible to analyze them a priori, otherwise
first it is necessary to determine them in some way. Therefore, spoofing is a complicated
method and not always a successful one. In any case, at least in theory, by using spoofing
techniques, it could be possible to take control of the malicious drone and make it move
away from a protected area. Some examples are shown in [84,85].

As mentioned above, a typical class of signals often involved in spoofing is represented
by GNSS signals. In this specific case, it is possible to make the m-drone land, engage
the autopilot, remain hovering or follow a desired path. Studies presenting methods for
hijacking or disabling a drone using GNSS spoofing are reported in [86–88]. An interesting
study is reported in [89], where the authors determined the necessary conditions for
capturing a drone through GPS spoofing and examined a possible post-capture control
system. Furthermore, two different strategies are depicted: overt spoofing and covert
spoofing. In the first case, the spoofer (i.e., the spoofing-based neutralizer) does not hide its
attempt to “subjugate” the target system and, therefore, does not align the forged signals
with the legitimate ones. In particular, after a first phase in which it jams on the GPS receiver
in order to force it to lose the lock and reacquire all the signals, it can take control, as long as
the counterfeited signals have a power that satisfies two conditions: exceeding the receiver
acquisition threshold and forcing the authentic GPS signals below the aforementioned
threshold exploiting the receiver AGC (automatic gain controller) function. Experimental
trials have shown that when the ratio between the counterfeit signal power (Pc) and the
legitimate signal (Pl) is equal to 10 dB, the previous conditions are satisfied (as confirmed
also in [90]). Instead, in the case of covert spoofing, the spoofer assumes that the GPS
receiver and the navigation system are equipped with spoofing detection techniques, which
must be evaded using appropriate counterfeit signals. Experimentally, it has been verified
that if the spoofer can estimate the speed and position of the target drone with errors under
certain thresholds (respectively below 10 m/s and 50 m), then it can reliably and covertly
take control of the tracking loops of commercial receivers using small Pc over Pl ratio (of
the order of units of dB). Notice that covert spoofing can be generalized and applied to any
type of communication, especially if it has been assumed that the malicious drone receiver
is equipped with anti-spoofing technology. In these cases, the counterfeit signal should be
correlated to the legitimate signal as much as possible and with a similar power level trend
over time, so that it can be confused with the legitimate one.

Rather than generating compatible counterfeit signals, GNNS spoofing can also be
accomplished by meaconing ([10,90]), a technique consisting in interception and retransmis-
sion (at higher power) of the original signal to the malicious drone’s receiver. Whereas the
GPS signal is encrypted, a technique similar to meaconing, called security code estimation
and replay (SCER) ([10,90]), can be used. It provides for the estimation of each symbol of
the used coding by observing the signal received in the corresponding symbol period. The
symbol estimation is continuously updated and is used simultaneously in the spoofing
signal, trying to replicate the encoding as closely as possible.

Finally, spoofing applied to on-board sensors also deserve some attention. In this case,
the spoofing source sends false signals to sensors, which can lead to the destabilization
of the malicious drone control system. For example, as indicated in [91] and in references
reported there, gyroscopes and accelerometers are sensitive to ultrasound at their resonant
frequency and this vulnerability can be attacked. In [92], the authors spoofed the gyroscope
of a drone, causing it to land. However, these attacks require powerful speakers and are
limited in range due to the degradation of the sound wave with distance. Furthermore,
a reference for a possible solution to an acoustic attack is always present in [91]. Other
sensors that can be spoofed are those of the optical flow type. Their vulnerability was
demonstrated in [93], where a method was presented to hijack a drone by spoofing the
camera (thus affecting the stabilization algorithm) by means of a laser and a projector aimed
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at the drone’s surface. Again, in [91], there was evidence of the fact that the presence of a
magnetic field in the vicinity of a drone, in this case the DJI Phantom, always requires the
recalibration of the relative magnetometer before take-off.

4.1.4. Neutralizers Exploiting Protocol-Based Attacks and Replay Attacks

Some cyber-attacks try to exploit the vulnerabilities present in the protocols used in
communication networks to perpetrate malicious actions. These attacks include denial-
of-service (DoS) attacks, which consist in disabling a machine (or network), making it
inaccessible to intended users. Wi-Fi de-authentication, which consists of disconnecting a
user from the relative access point (WAP), and flooding, which consists of sending a large
amount of traffic to the target in order to make it unable to process legitimate messages,
belong to the above family. These attacks can also be aimed at drones. For example, as
documented in [91], some commercial drones based on Wi-Fi communications that do not
require authentication for network access have proved to be vulnerable to de-authentication
and flooding towards the drone network interface controller (NIC). In particular, with de-
authentication, it was possible to disconnect the commercial drone from its remote pilot in
order to activate a security procedure and take advantage of the disconnection window
to take control of it. Another cyber-attack used to disconnect a commercial drone from
its controller is the address resolution protocol (ARP) cache poisoning attack, as shown
in [94]. Many of these attacks can be prevented using a network access with authentication,
but the basic idea can be used to implement a neutralizer to exploit this kind of attack. In
other words, as in the spoofing case, it is possible analyze the protocols used by drones
to determine some weaknesses, at one or more layers of the communication stack, to be
used to carry out neutralization operations. It follows that this kind of neutralizer can
be applicable and effective for commercial drones whose protocols are known. They are
definitively not a robust solution if the above exploited weaknesses can be patched up
by the users, however they could be applicable as a first neutralization technique for
commercial drones used improperly but without illegal purpose.

Other techniques useful to implement as neutralizers are replay attacks. According to
the classification reported in [91], they can be included within the family of protocol-based
attacks. They are based on the interception of a data transmission and its subsequent retrans-
mission with a certain delay and can be used to hijack and disorient a drone. Examples are
reported in [95,96]. In the first case, a drone used by the police was hijacked by exploiting a
replay of the control commands sent to the drone by the ground control station using the
XBee 868LP protocol. In the second case, it was possible to hijack amateur drones using the
MAVLink protocol with replay attack. Therefore, even these kinds of attacks can be taken
in account, but because they are very simple, eventual countermeasures adopted by the
malicious drone(s) should be considered. For instance, the study reported in [97] showed a
detection mechanism applicable to replay attacks based on the authentication of the pilot
who controls the drone manually. The mechanism uses a classifier capable of recognizing
the pilot’s distinctive control style by exploiting data from on-board motion sensors.

4.1.5. High-Power Electromagnetics and Lasers

High-power electromagnetics can be used to create beams of electromagnetic energy
over a broad spectrum of frequencies, in a narrow- or a wideband way, causing a range of
temporary or permanent effects on electronics of targeted drones. According to the classifi-
cation shown in [9] they can be categorized in two classes: narrowband electromagnetics
(also referred as high-power microwaves, HPM), which include high power on a nearly
single-tone frequency, and wideband electromagnetics, which have short pulses in the time
domain and the energy distributed over a wide band. HMP requires very high power on a
single frequency. Consequently, the determination of the effective frequency, which causes
malfunctions in the drone to be attacked, is a key factor.

High-power electromagnetics must be directed precisely towards the target to be
effective, otherwise lethality is significantly reduced and some devices may still function
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after their use. Hence, the assessment of the neutralization effectiveness after a shot is also
an issue. An HPM-type device manufactured by Raytheon is illustrated in [98].

Lasers used as mitigators are capable of disabling or destroying an m-drone. As
described in [9], an electrolaser ionizes the path to the drone and emits an electric current
down the conductive track of the ionized plasma. Lasers can be categorized into low-
power or high-power lasers [9]: low-power ones can be used to neutralize some sensitive
sensors of the drone (for example, electro-optical sensors); high-power ones (operating at
megawatts) can be a real weapon, able to burn part of the drone and destroy it. For both
categories, accurate aiming is required, which implies sufficient time to track the target.
Laser weaknesses are represented by the need for high technological development for their
implementation (for the high-power lasers), sensitivity to weather conditions, accurate
pointing and tracking time. A laser-based neutralizer manufactured by Boeing is illustrated
in [99].

Both high-power electromagnetics and high-power lasers are a strong interdiction
measure, typically used in a military context. In a civil environment, they cannot be a viable
option, especially in crowded areas, due the risk of the uncontrolled drone crashing or of
triggering the deployment of dangerous payloads. Nor are they suitable for airports and
the surrounding space, due to the collateral hazard to aviation operations [5].

Finally, based on limited information available on the market about high-power
electromagnetics and high-power lasers, we can easily deduce that they always show large
size and weight and require a high power supply. Therefore, they can be mainly integrated
into terrestrial platforms (typically they are mounted on tracks) and are not suitable for
low-altitude platforms like mini drones.

4.2. Kinetic-Mechanical Neutralizers

Kinetic-mechanical neutralizers are able to physically block or even destroying m-
drones. Aiming and/or tracking of malicious drones is required in order to effectively
neutralize; in fact, these neutralizers must act as closely as possible to the drone under attack.
Let us briefly examine the various types of the available kinetic-mechanical neutralizers,
mainly using the data of the survey reported in [9].

For the sake of completeness, note that there is also a simple and economical method
of neutralization, classifiable as kinetic-mechanical, not linked to technology and based
on appropriately trained birds. This method, used for example by the Scottish and Dutch
police (see [9] and relative bibliography), is limited to slow and small drones (with respect
to speed and size and of the birds) and is not appropriate to mitigate multiple drones
simultaneously [9]. For obvious reasons, we do not consider it as a possible part of a CUS
system based on mini drones.

4.2.1. Neutralizers Based on Projectiles

These neutralizers are real weapons using projectiles capable of destroying m-drones.
They include machine guns, munitions, guided missiles, artillery, mortars and rockets.
Some of them (guided missiles) may require a guidance and tracking system in order to
track and hit the drone target, while others can be equipped with an optical sensor for
object detection and tracking. They are an expensive solution (the cost per shot is high) and
typically used in military contexts. Finally, they are also capable of causing collateral effects,
as the hit drone can fall to the ground causing damage to people and/or infrastructures.

4.2.2. Collision UAVs

In this case, a dedicated UAV (drone), equipped with detection and tracking capa-
bilities, follows the malicious drone in order to collide and destroy it. The neutralizer
drone requires high speeds to chase the malicious drone and, typically, it is effective for
small drones located in protected areas. Collision UAVs can employ detection methods
based on computer vision techniques and can carry explosives to maximize damage during
impact with the m-drone. They can cause collateral damage, as in the case of projectiles,
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and compared to the latter they are characterized by a higher neutralization delay. In
conclusion, these neutralizers are disposable systems, acting as a hybrid system halfway
between a drone and a missile. An example of a collision UAV is shown in [100].

4.2.3. Nets

Nets are used to trap and immobilize m-drones. They can be projected by a net cannon
(an example is shown in [101]) or can be carried by other drones (an example is shown
in [102]). Nets are useful for neutralizing small drones, which are difficult to intercept
by guns or guided missiles (see bibliography in [9]). They can then be equipped with
parachutes to assure a safe descent for the drone/net assembly and to prevent collateral
damages to other facilities or for forensic analysis. In any case, the effective neutralization
range is short.

4.3. Neutralizers Using Mini Drones

Aerial platforms, like mini drones, show some interesting characteristics, such as high
maneuverability, flexibility and deployment speed, but have limitations in terms of SWaP
constraints. Therefore, as already stated in the previous paragraphs, it is not feasible to
integrate neutralizers like high-power electromagnetics and high-power lasers in these
platforms. In addition, neutralizers based on projectiles are not applicable to mini drones,
both for SWaP constraints and because they are typically designed to be used with the
surface-to-air launcher installed in terrestrial platforms. Small projectiles could be installed
on mini drones, but they can be assimilated to nets. All other shown neutralizers, electronic
and kinetic-mechanical, can be used with mini drones, even if the use of low-power lasers
requires accurate pointing, which could represent a critical issue to solve. In particular, in
the case of collision UAVs, the platform is itself a neutralizer.

The use of mini drones can help to maximize the effectiveness or efficiency of some
neutralization techniques. An example is RF jamming: by exploiting the mobility of a
drone equipped with a jammer, it is possible to approach the m-drone in order to reduce
the power necessary to disturb the signal under attack. Let us assume, for example, that
in the case of a jammer installed on a ground platform, the minimum distance between
jammer and malicious drone is 100 m, and that in the case of a jammer installed on a mini
drone, the aforementioned distance is 10 m. The signal produced by the jammer installed
on the mini drone consequently undergoes an attenuation lower than 20 dB compared to
the signal emitted by the ground platform jammer. This advantage could be partially or
totally compensated considering that in the ground platform, a directive antenna can be
used to amplify the power transmitted in a certain direction, but, as shown in the work
reported in [103], an antenna system capable of offering some directivity can be installed
also on mini drones. Furthermore, multiples drones, which simultaneously transmit a
jamming signal, could be used in a cooperative way to increase the power of the resulting
interfering signal. An example is shown [104], where the authors investigated the problem
of simultaneous tracking and jamming of a rogue drone in a 3D space with a team of
cooperative drones.

Finally, a drone team can be used directly as a neutralization technique. In the work
reported in [16], a drone-based system was proposed for the purpose of intercepting and
escorting an m-drone outside a restricted flight zone. The system consists of a defensive
swarm, which is capable of self-organizing its defense formation in the event of intruder
detection and chasing the malicious drone as a networked swarm. The neutralization
approach is as follows: the swarm forms a three-dimensional cluster around the m-drone
in such a way that the m-drone has a minimum set of movement possibilities. Assuming
that the m-drone is going to avoid collisions with the drones of the swarm to maintain its
functioning, by moving the defensive drones in a cooperative way, it is possible to escort
the m-done outside the restricted flight zone.
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4.4. Comparison of the Neutralizers

A comparison of the neutralizers considered in this paper is shown in Table 6. For
each neutralizer, both features and limitations are shown together with the pros and cons
of using them as integrated in mini-drone-based platforms.

Table 6. Comparison of the neutralization techniques and their suitability with mini drones.

Neutralizers Features Limitations Pros and Cons with Drones

RF Jamming

• Interfering RF signals are
used to lower the SINR
(signal to interference plus
noise ratio) to the receiver
of the malicious drone

• Can be used with land
platforms (static, mobile,
portable) or even aerial
platforms (included
mini drones)

• Can interrupt or lower the
quality of the
command-and-control link
of the receiver drone

• Directional antennas can
be used to minimize
unwanted interference

• Allows users to increase
the interception capacity of
a UAV communication

• Can increase the security
level of a communication
(cooperative jamming)

• If the receiver of the
malicious drone gets
saturated, there are not
countermeasures

• Ineffective with
autonomous malicious
drones (i.e., without
command-and-control
links)

• The range of use depends
on the power delivered by
the jammer and the
distance between the
jammer and the malicious
drone

• Can create unwanted
interference, disturbing
other communications
(even critical ones)

• Regulatory restrictions can
limit its use

• Can cause uncontrolled
flights or crashes of the
malicious drones with
possible collateral damage

• Anti-jamming techniques
can undermine its
effectiveness

• Mini drones can provide
limited power for the RF
jamming

• Needed power for RF
jamming can be decreased
approaching the defensive
drone to the malicious one

• A lower jamming power
decreases unwanted
interference

• Needed RF power per
drone can be further
decreased using more
drones simultaneously

• A defensive drone can be
used as a relay node,
transmitting a jamming
signal in order to disturb
an eavesdropper

• Using more drones
simultaneously
surrounding a malicious
drone could allow users to
counter some
anti-jamming techniques
(e.g., those ones based on
the angle of arrival)

GNSS Jamming

• Can interrupt the GPS
connection of the
malicious drone

• Makes it more difficult to
control the malicious
drone

• GNSS signals are weak
and vulnerable (if not
encrypted), therefore this
technique can be simple to
apply

• In some cases, it can
prevent the
return-to-home function

• Can be used with land
platforms (static, mobile,
portable) or even aerial
platforms (including mini
drones)

• Ineffective with malicious
drones equipped with
IMU sensors

• Dangerous if used near
areas where satellite
navigation is required

• It can cause uncontrolled
flights or crashes of the
malicious drones with
possible collateral damage

• Regulatory restrictions can
limit its use

• Anti-jamming techniques
can undermine its
effectiveness

• Same pros and cons as for
the RF jamming technique
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Table 6. Cont.

Neutralizers Features Limitations Pros and Cons with Drones

Spoofing

• Can be used to replace the
C2 link or the GNSS
service, allowing users to
control the malicious
drone

• Can be applied to
on-board sensors to
destabilize the malicious
drone control system

• Can be used with land
platforms (static, mobile,
portable) or even aerial
platforms (included mini
drones)

• Information on the
systems that are integrated
in the malicious drone
(sensors, link C2) must be
available

• An accurate analysis of the
communication link or of
the sensors to be attacked
must be carried out

• The technique is often
complex and could not be
successful (e.g., it is not
ineffective for encrypted
GPS)

• Regulatory restrictions can
limit its use

• Anti-spoofing techniques
can undermine its
effectiveness

• No substantial advantages
compared to static
platforms other than the
possibility of exploiting
the mobility of drones to
increase the operative
range

• Sensor spoofing could be
not suitable with mini
drones (e.g., pointing
accuracy of the sensor to
be spoofed could be an
issue)

Protocol-Based and
Replay Attacks

• Exploit vulnerabilities in
drone communications
protocols

• Are often easy to
implement

• Allow to hijack a malicious
drone, destabilize its flight
or cause return-to-home
procedures

• If the vulnerabilities of the
communications have
been corrected, they are
ineffective

• Can be mitigated with the
help of machine learning
(e.g., in the case of replay
attacks)

• No substantial advantages
compared to static
platforms other than the
possibility of exploiting
the mobility of drones to
increase the operative
range

High-Power
Electromagnetics

• Can damage the electronic
systems of the malicious
drone

• Can be of two different
categories: narrowband
(high power over a narrow
frequency spectrum) and
wideband (short pulses in
the time domain)

• Aggressive
countermeasure
characterized by an
extended range of action

• Accurate pointing towards
the malicious drone is
required

• Lethality for the malicious
drone could be low

• It is difficult to assess the
effectiveness obtained
with this mitigation

• Can cause uncontrolled
flights or crashes of the
malicious drones with
possible collateral damage

• Not suitable for mini
drones because they
require large size and
weight and a high power
supply

Projectiles

• Traditional neutralizer
(ammunition, guided
missiles, etc.)

• Fast response times

• Require accurate pointing
• Wind and gravity also

need to be considered
(depending on the type of
the projectiles)

• Can cause crashes of the
malicious drone with
possible collateral damage

• High cost per shot in the
case of missiles equipped
with a tracking and
detection system

• Small projectiles could be
installed on mini drones,
but they can be assimilated
to the nets case
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Table 6. Cont.

Neutralizers Features Limitations Pros and Cons with Drones

Collision UAVs

• Require detection and
tracking capabilities of the
malicious drone to be
impacted

• Are a hybrid system
between a projectile and a
small UAV

• Effective for small drones

• Require capabilities of
tracking and approach to
the malicious drone to be
impacted

• Low-speed pursuit can
result in delays in
neutralization

• The crash following the
impact can cause collateral
damage

• The drone itself is a
neutralizer

Nets

• Can be projected from
cannons or from flying
platforms (included mini
drones)

• Nets equipped with
parachutes allow a safe
landing of the malicious
drone

• After the capture of the
malicious drone,
information can be
extracted from its
hardware

• Not appropriate at airports
as they can cause side
effects to other aircrafts

• They need small distances
from the malicious drone
to have an effective
neutralization

• Accuracy can depend on
the surrounding
environmental conditions

• Variable reaction times
depending on the behavior
of the malicious drone

• Effectiveness also depends
on the behavior of the
malicious drone

• Small distance from the
malicious drone to
neutralize can be obtained
thanks to the mobility of
mini drones

• The defensive drone must
track and pursue the
malicious one

• Another approach is based
on a team of drones
forming a
three-dimensional cluster
around the malicious
drone in order to limit or
force its movement
possibilities. The team of
drones can be seen as
a “net”.

5. Command and Control Systems

The command-and-control system (C2) is one of the sub-systems of a CUS and it is
an essential part for the implementation of the automated decision-making feature, which
has been addressed in Section 2. Indeed, it is in charge of (possibly automated) high-level
decision-making operations, such as:

• Providing a classification of the attack scenario to assess its threat level, based on the
feedbacks coming from the sensing system;

• Granting permission to fly over a specific protected area (for non-malicious drones);
• Selecting the proper mitigation techniques to be used based on the attack scenario and

its threat level;
• Planning CUS operations and monitoring their execution.

By means of the previous capabilities, the C2 system may aid the operator in facilitating
the automated decision-making for mitigation actions. It can also perform the supervision
and the management of the other sub-systems in a CUS. However, it may be convenient to
distribute these functions by deploying them in dedicated systems, especially in the case
of a cooperative drone-based CUS. In other words, the C2 system may be implemented
not as a single centralized decision-making entity, but as a coordinated set of distributed
decision-making entities. The rationale behind this assumption is as follows: a single
management system could not be feasible in a complex application, such as a CUS with a
higher number of platforms, in which some of the operations to be performed require a
high degree of autonomy. A single decision-making entity would not be able to provide
complete control of all the platforms, but it would have, at most, partial control over
the operations performed by the individual platforms, despite having an overview of
the threat represented by the malicious drone(s). A centralized decision-making system
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would be extremely complex, both for the required computational capacity and for the
communication network to be used to connect the various platforms. The latter, in fact,
should be able to convey all the raw data collected by the platforms to the C2 system and
to spread all the commands given by this latter system to the platforms of the CUS.

Clearly, one of the most critical design aspects of the C2 system is related to its
planning capability, which has to guarantee an automated execution and has to affect
the defensive team as a whole. Indeed, this capability represents the key enabler for the
automated decision-making feature of the system. Generally speaking, planning is the
reasoning side of acting and is an abstract and explicit deliberation process that chooses and
organizes actions by assessing the current environment’s situation (i.e., through automated
situational awareness) and by anticipating the expected outcomes of the planned actions.
This deliberation aims to achieve some predefined objectives as best as possible. It has to
be implemented according to the principles of automated planning, which is an area of
artificial intelligence (AI) that studies this deliberation process from a computational point
of view [105].

The addressed planning problem includes aspects of different planning cases, such
as activity planning (which is concerned with the allocation of activities or targets to a
given entity), route planning (which is concerned with the synthesis of routes from a
starting position to a set of targets a in a given area of interest), perception planning
(which is concerned with the planning around sensing actions for gathering information),
communication planning (which is concerned with the planning of communication actions
for the cooperation between different entities, both human and artificial), etc. All these
planning cases may be combined in the mission planning case, which is related to the
planning of actions or tasks by projecting the results of those actions according to a model
of the involved entities and by evaluating the desirability of those results. In the specific
case of an unmanned system (UMS) and of a network of unmanned systems (NUMS),
mission planning is defined as the process for the synthesis of a sequence of tasks in terms
of tactical objectives, a route (general or specific), timing and coordination actions [106].
According to these definitions, mission planning mainly refers to a strategic horizon, since it
represents a decision-making process to set objectives and tasks and to compute high-level
steps (e.g., routes, sensing actions, communication actions, etc.) to satisfy the assigned
objectives and tasks. Thus, it usually covers a wide temporal and spatial range with
respect to the missions. The outcomes of the mission planning process have to be provided
to tactical planners (e.g., the autopilots of the single vehicles), which have to compute
short-term and short-range actions (e.g., the real trajectories) to satisfy the assigned tasks.

In the reference CUS, the C2 system has to optimize the operations carried out by the
CUS and solve the mission planning process by:

• Computing the set of tasks to be carried out to counter the identified threat;
• Processing the optimal schedule (i.e., assignment and ordering) of the tasks, e.g., the

allocation and the sequencing of the target areas to be protected and of the vehicle
counter activities (in terms of detection, identification, classification, tracking and
neutralization) to be executed;

• Operating over the entire time horizon and space horizon of the threat resolution.

Thus, it is a strategic planning level that sets the general objectives (the threat resolution
strategy) and articulates the high-level steps to achieve them. Moreover, the reference
mission planning is a dynamic (i.e., online) mission planning to face the dynamic threat
scenario of the drone attack. Generally speaking, it is possible to carry out, where necessary
or convenient, the following hierarchical decomposition for the C2 system: a module of the
system may be explicitly in charge of the coordination of the team by means of a defensive
team planning. Such a module is fed by the mission goals and the data of the team and
deliberates the defensive tasks for all the vehicles by evaluating their effectiveness from
the point of view of the team’s mission and by considering the team’s relationships and
possible conflicts. It could be integrated in all the drones in order to obtain a decentralized
architecture, in a single drone (working as team leader) or a in ground platform in the case
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of a centralized architecture. Instead, lower-level planners, integrated in all the drones,
are in charge of the planning logic for the single vehicle and are fed by the team plan
that is deliberated at the higher level. The functional architecture of this planning logic is
illustrated in Figure 3.

Figure 3. Functional architecture of the planning logic for the C2 system. Such logic is divided into
team logic and vehicle logic. The former contributes to the planning of the actions of the overall team.
Starting from the team plan, the latter performs the planning and the execution for the single vehicle.

The functional architecture in Figure 3 is compliant with the multilevel optimiza-
tion principle [107] in order to ensure that the CUS-wide objectives and constraints are
respectively optimized and satisfied along the hierarchy. In particular, the global planning
problem is broken into simpler problems, which are independently solved. Moreover, the
upper levels coordinate the solutions of the decoupled problems of lower levels by means
of management functions.

The above hierarchical decomposition can also be used for operations provided by
the other systems that comprise the CUS. Detection carried out through the simultaneous
use of multiple drones is an example. In this case, based on the number of drones making
up the detection system, a model based on “cooperative autonomous systems” can be
applied, characterized by a collection of distinct decision-making entities (one per drone)
or by a centralized control implemented into a drone hired as the team leader. In both
the solutions, similarly to the previous case, the detection activity associated with drones
could be subdivided into detection planning (the mission planning), aimed at coordinating
the steps to complete the specific detection operation, and trajectory/flight planning (the
vehicle planning), consisting of the generation of the trajectories of the individual drones
between specific navigation points (scheduled by the detection planning).

Regardless of the shown hierarchical decomposition, it is clear that the use of mini
drones could inherently require decentralization of C2 operations in order to simplify the
overall CUS architecture.

6. Technological Challenges

A CUS based on mini drones can exploit some peculiarities of these platforms that give
added value compared to CUS based on other types of platforms. The fundamental aspect
concerns the use of teams, which allows operators to rework some of the techniques of

60



Drones 2022, 6, 65

detection, classification, tracking and mitigation systems in order to maximize performance
and effectiveness. However, in order to use drone teams, it is necessary to investigate and
develop still-challenging technologies. These technologies are listed below.

6.1. Team Coordination

The coordination mechanism (i.e., the underlying mechanism to achieve a cooperative
behavior) may concern: the imposition of an artificial interaction structure as a control or
communication structure, aspects of the task specification, interaction dynamics of agent
behaviors, etc. This may be seen as the “society design” or “macro design” of a multi-agent
system, that is, the synthesis of a logical and physical protocol to ensure that the single
agents interact to successfully achieve the global tasks and to avoid pursuing conflicting
strategies or plans [108]. Coordination may be also defined as the “process by which an
agent reasons about its local actions and the (anticipated) actions of others to try and
ensure the community acts in a coherent manner” [109]. These definitions highlight that
an effective coordination requires that each agent has to consider the actions of the other
agents and that the main achievement is related to coherency, i.e., the goodness of the joint
behavior according to the performance of interest for the given problem.

In regard to the design of the coordination mechanism of a team for a given application,
one critical point concerns the decision-making architecture, centralized or decentralized.
Note that, for the distinction between a centralized and decentralized coordination from
an algorithmic perspective, stricter criteria should be adopted, which establish that a
coordination of a planning problem is centralized if [110]:

• A single agent solves the overall problem; or
• All the agents solve the same overall problem; or
• The agents employ a wide number of communications (or a wide communication

band) to plan their coordinated actions; or
• The agents exchange full plans.

To the contrary, a coordination is decentralized if the agents make their decisions
independently and if they employ limited communications (i.e., to exchange positions,
maps, etc.). This algorithmic classification introduces a degree of decentralization and influ-
ences the theoretical and technical challenges to deal with for the coordination of teams of
unmanned vehicles. Indeed, the maximization of the degree of decentralization represents
a crucial aspect, looking also at the most recent works. However, such maximization should
also consider additional issues, often overlooked in the modelling, including the following
realistic scenarios: failures and cyberattacks, sensing noise and modelling uncertainties,
intermittent or limited communication, etc.

6.2. Team Communication Network

Considering the mobility characteristics of the drones belonging to a team, the com-
munication network will be a FANET with certain requirements of throughput, latency,
transmission robustness, multiple access, flexibility and with constraints of available energy
in relation to the mobile nodes (i.e., drones). A review on the communications perspectives
of FANETs, with key enabling wireless technologies, applications, challenges and open
research topics, is shown in [111]. In particular, the following key elements must be taken
care of.

• Routing—the algorithms used must be able to support a routing table capable of
rapidly adapting to the continuous topological variations of the network due to the
mobility of drones. A survey of routing techniques in FANETs is shown in [112].

• Reliability and security—the network must ensure availability and integrity (and,
depending on the application, confidentiality) of the communication between the
nodes, characteristics that can be obtained both by operating at a physical level and at
some higher levels.
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• Scalability—some network drones competing in the execution of a task may need to be
replaced for technical reasons or due to the exhaustion of their energy resources, so it
is necessary to add other drones to the team to efficiently complete the assigned task.

• Quality of service—different performances must be guaranteed according to the type
of information transmitted and the level of criticality.

• Placement—the drones may need to be appropriately arranged in the 3D space in order
to maximize the amount of information exchanged and minimize the time required
for the exchange, so as to satisfy any energy constraints characterizing the nodes
themselves. Clearly, this aspect also falls within the problem of coordination.

6.3. Team Simulation Framework

As previously mentioned, a CUS is a complex system that integrates multiple plat-
forms and different technologies, and the use of a team of drones further emphasizes
its complexity. Therefore, having a framework available to simulate the behavior of the
CUS and its systems, in particular, those based on teams, would allow users: to carry
out a sizing of the aforementioned systems, so that they can be “calibrated” based on the
area to be protected and on the possible threat (consisting of one or more m-drones), to
simulate scenarios in which teams are used and evaluate the performances by the CUS and
to develop and verify the procedures to be adopted for managing the threats.

Simulation can be used in different phases of the CUS development. The functional
allocations could be supported by a modelling framework of the systems, where different
architectural choices can be modelled, and by simulation and stressing or failure scenar-
ios, through which it is possible to assess the architecture according to different aspects.
Accordingly, looking also at the engineering guidelines on architectural assessment, CUS
system architecture metrics could be identified and assessed by means of simulation. The
architecture can be assessed with respect to its safety (for example to avoid bottle necks, or
single points of failures), its efficiency and in terms of the coverage of the extension area or
the coverage of different adversarial conditions.

The simulation can be used to build scenarios of attacks to verify the effectiveness
of the CUS and also to assure its evolutive behavior. Attack-building can leverage on
different techniques. The goal-based strategies aim to maximize the damages induced
by the attacking drones to the critical infrastructure. In this way, the assessment from
the CUS system of the threat scenarios can be verified and can be improved, assuring its
continuous learning. Going deeper in the simulation chain, the attacking drones can be set
up by using the generative adversarial networks (GAN), very promising techniques for
image synthesis, in order to ensure proper data for the training of the employed artificial
intelligence techniques

Finally, simulation can allow for the understanding of the proper human–machine
balancing and the level of automation of the CUS system.

7. Discussion

For the purposes of this work, teams of mini drones have been considered as a refer-
ence subsystem of the hybrid CUS. This choice was due to several advantages in terms
of mobility, coverage expansion, deployment flexibility, team coordination, automated
decision-making, neutralization and scalability. The suitability of drone teams for CUS solu-
tions was also confirmed by the analysis of the state-of-the-art research works in the fields
of autonomous multi-agent systems and cooperative robotics. Moreover, some current in-
ternational projects are developing both cooperative drone-based solutions for surveillance
and situational awareness applications, as well as cooperative drone-based CUS.

In regard to the sensing phase, this work argues that the proximal sensing capability
of a team of mini drones is the main clear advantage over a static ground-based CUS.
Drone-based video sensing systems are less affected by the optical occlusion problem, but
there is the need for an accurate video stabilization to mitigate the blur effect due to the
drone movement. Moreover, drone teams represent an ideal solution to balance the pros
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and cons of the different sensing technologies by means of a hybrid configuration of the
team and data fusion techniques. The selection of the technologies that best complement
each other is a useful activity in order to optimize the level of situational awareness with
respect to the complexity and cost of the system, considering the specific requirements (i.e.,
range, accuracy, etc.) of the application.

In regard to the neutralization phase, the use of mini drones can help in maximizing
the effectiveness or efficiency of some neutralization techniques. For example, RF jamming
may exploit the mobility of a single drone to reduce the power necessary to disturb the
signal under attack, or the mobility of multiples drones, which can be used in a cooperative
way to increase the power of the resulting jamming signal. Moreover, a drone team can be
used directly as a neutralization technique, or small projectiles could be installed on mini
drones, offering a similar solution to the nets case. In any case, for some techniques, it must
be taken into account that the target pointing required by the neutralization integrated in
the defensive drones can be a challenging issue.

In regard to C2 systems, teams of drones are prone to automated decision-making capa-
bilities according to the multilevel optimization principle. Based on the number of drones,
a model based on “cooperative autonomous systems” can be applied, which is usually
characterized by a collection of distinct decision-making entities for the decentralization of
C2 operations.

In the end, the implementation of a cooperative drone-based CUS raises several
technological challenges, in terms of team coordination, team communication network
and team simulation framework. All these challenges are also related to the reworking of
some of the techniques of detection, classification, tracking and mitigation systems, in order
to maximize performance and effectiveness by exploiting the underlying coordination
network of the team.

8. Conclusions

This paper focused on the concept of a multiplatform CUS, which consists of a team
of mini drones acting as an autonomous and cooperative system. In order to evaluate the
feasibility of this concept, the paper provided a systematic review of the main technological
pillars: sensing, mitigation and command and control. The analysis has confirmed the
effectiveness of the proposed system, while also highlighting the need for decentralization
of command-and-control operations. Moreover, the paper discussed some key challenges
in terms of team coordination, communication network and simulation framework.

Future work will regard the detailed design, the sizing and configuration of the
cooperative drone-based architecture for a specific scenario (e.g., intrusion in critical infras-
tructures such airports) and preliminary implementation and testing of basic capabilities
(coordinated detection of intrusions, cooperative tracking, etc.).
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Abstract: Ice accretion on commercial aircraft operating at high Reynolds numbers has been exten-
sively studied in the literature, but a direct transformation of these results to an Unmanned Aerial
Vehicle (UAV) operating at low Reynolds numbers is not straightforward. Changes in Reynolds
number have a significant impact on the ice accretion physics. Previously, only a few researchers
worked in this area, but it is now gaining more attention due to the increasing applications of UAVs
in the modern world. As a result, an attempt is made to review existing scientific knowledge and
identify the knowledge gaps in this field of research. Ice accretion can deteriorate the aerodynamic
performance, structural integrity, and aircraft stability, necessitating optimal ice mitigation techniques.
This paper provides a comprehensive review of ice accretion on fixed-wing UAVs. It includes various
methodologies for studying and comprehending the physics of ice accretion on UAVs. The impact of
various environmental and geometric factors on ice accretion physics is reviewed, and knowledge
gaps are identified. The pros and cons of various ice detection and mitigation techniques developed
for UAVs are also discussed.

Keywords: atmospheric icing; UAV; LWC; MVD; Reynolds number; aerodynamic penalties; IPS;
modal analysis

1. Introduction

UAV is an aircraft without an onboard human pilot. The main components of a UAV
are the aircraft structure, ground control center (remote), payload (camera), and a data
link for the communication between aircraft and ground control center [1]. According to
their structure, UAVs are classified into four broad categories: fixed-wing UAVs, rotary-wing
UAVs, flapping-wing UAVs, and blimps [2]. The smallest UAVs operate at less than 1200 feet
above ground level, while the largest can fly up to 60,000 feet. The size and cost of UAVs
vary according to application, ranging from pocket-sized micro-UAVs to large UAVs com-
parable in size to passenger aircraft. Even though crew safety is not a primary concern for
UAVs due to their unmanned nature, but due diligence must be exercised in the design
and manufacture of UAVs to avoid any financial losses. Historically, UAVs were used
exclusively for military and defense purposes. However, over the last decade, UAVs have
demonstrated their potential for use in various civil and public safety applications, in-
cluding mapping, surveying, and photography. In 2021, a German marketing consultancy
reported that UAVs have been used in 237 different applications [3]. As per the Unmanned
Aircraft System Roadmap 2005–2030 [4], currently, more than 250 models of UAVs are
manufactured globally by 32 nations.

With an increase in human activity in ice-prone high north regions, the use of UAVs
has increased as well, with potential applications including ice reconnaissance, determining
sea-ice thickness, surface roughness, and surface temperature over ice, water, and land, re-
trieving the spectral albedo of land surfaces, and monitoring coastal erosion [5]. UAVs also
play a critical role in emergency and catastrophe scenarios in cold regions [6]. In addition,
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UAVs can help ships to navigate safely by detecting icebergs. Arctic regions can serve
as a showcase for UAVs to demonstrate their capabilities in light of the global climate
change scenario. However, for optimal and safe UAV operation in ice-prone regions,
ice accumulation on its structure is a significant safety problem. Icing is considered as
one of the predominant causes of aircraft loss of control [7]. Three General Atomics MQ-1
Predator UAVs of the US military were crashed in Afghanistan in 2001 and 2002 due to
icing hazards. The US military’s Northrop Grumman Global Hawk UAV crashed due to
icing during the Enduring Freedom operation in Afghanistan [8]. Military UAV missions
have frequently been aborted due to inclement weather, which significantly impacts the
mission’s success [9]. For example, icing prevents Hunter UAV flights from October to
April in Kosovo [10]. As a result, there is a growing need for a thorough understanding of
ice accretion physics and the development of ice mitigation measures to ensure the safe
operation of UAVs in icing conditions.

The operation of UAVs in high north regions is prone to three main challenges: low
temperature, high wind speeds, and atmospheric icing. Some materials can become brittle
at low temperatures and develop cracks due to expansion and contraction. Additionally,
batteries lose their capacities in low temperatures and thus reduce the range and endurance
limits of a UAV flight. The lithium-ion battery used in UAVs is more sensitive to low
temperatures [11]. UAVs have a lower flight speed, lighter takeoff weight, smaller size,
and lower flight altitude than manned aircraft, so these factors make UAVs more susceptible
to wind disturbance compared to manned aircraft [12]. High wind speeds challenge the
stability of small UAVs operating at a velocity less than 20 m/s. It can lead to loss of control
and trajectory excursions resulting in a crash. Atmospheric icing can be considered the
most dangerous hazard for UAVs operating in high north regions (See Figure 1). The ice
accretion along a UAV structure causes deterioration of aerodynamic performance and
structural characteristics leading to catastrophic failures. Atmospheric icing occurs when
the super cooled water droplets freeze into ice upon impingement on a surface. In-cloud
icing on structures are mainly classified into rime, glaze, and mixed ice. Glaze ice can result
in the formation of complex ice structures like horns, large feathers, and “lobster tail like
structures”, and are therefore considered as the most dangerous icing condition.

 

Figure 1. Ice accretion on fixed-wing UAV [13,14].

UAVs are more prone to icing than conventional manned aircraft for the following
reasons: (1) The presence of supercooled water droplets is pervasive in the lower 10 km of
the atmosphere. Above 10 km, the concentration of supercooled water droplets decreases
due to the extremely low temperature (>−45 ◦C) and low liquid water content [15]. As most
UAVs fly in the lower atmosphere, they are more susceptible to ice accumulation than
manned aircraft [16]. The high-altitude UAVs flying above 10 km must still pass through
the icing layers during takeoff and landing and are also prone to icing effects. (2) UAVs
operating at lower velocities than conventional aircraft have prolonged exposure to icing
environments. (3) Manned aircraft operate with ice mitigation systems, but most UAVs
operate without any ice protection systems because of their weight and power constraints.
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(4) Composite materials used in the manufacturing of UAVs have lower thermal conductiv-
ity than the conventional metal-based airframes used for manned aircraft. Thus, the rate of
heat transfer and dissipation of latent heat of fusion released during solidification is much
slower for composite materials. It results in severe water runback and the formation of
complex rivulet-like ice structures on the surface of UAVs [17]. (5) Low Reynolds number
airfoils are so sensitive that even small changes on the surface of the main lifting element
could significantly impact its performance. Thus, ice accretion on unmanned aerial vehicles
(UAVs) must be studied separately from that on manned aircraft to understand the icing
characteristics better and propose appropriate ice detection and mitigation measures.

Ice accretion can deteriorate the aerodynamic performance, structural integrity, and air-
craft stability. Several studies can be found in the literature investigating the aerodynamic
performance of aircraft under icing conditions [18]. In the last couple of decades, similar
studies were also done for UAVs. Ice accretion on the UAV can alter its weight, which in
turn changes its center of gravity and thus causes a deterioration of the performance and
stability of aircraft [19]. Thus, proper ice mitigation techniques need to be implemented to
avoid performance losses due to ice accretion.

2. Methods of Studying Ice Accretion on a UAV

Atmospheric icing research was mainly focused on the ice accretion problems in large
Reynolds number applications like manned aircraft and the icing on structures like wind
turbines, power networks, and so on [18–23]. The study of ice accretion on UAVs has
gained interest only from the beginning of the 21st century and only a few researchers
have worked in this field of science. One of the earlier works for icing on UAVs was
published by Siquig in 1990 [16]. This can be considered a first reported work that discusses
the ice accretion characteristics and related aerodynamic consequences of UAVs explicitly.
The operational challenges of different UAVs under icing conditions and the need for
better forecasting techniques are discussed. Ice accretion on a UAV can be studied using
four different methodologies: (1) Analytical methods (2) Field measurements (3) Lab
experiments (4) Numerical simulation.

2.1. Analytical Modelling

An analytical expression for studying the ice accretion on structures was formulated by
Finstad et al. in 1986 [24]. Even though this analytical model is used to study aircraft icing,
it is based on her works about ice accretion on the cylinder and therefore cannot be used
directly for the icing on UAVs. Another analytical model suitable for the ice accretion on
UAVs was derived by Szilder et al. in 2011 [25]. This model was based on the conservation
of mass and energy for the impinging, flowing, and freezing droplets on the surface of the
airfoil, and it relates the atmospheric temperature (T∞) and Liquid Water Content (LWC)
for a specified Reynolds number (Re), Median Volume Diameter (MVD) and runback limit.

2.2. Field Measurements

Field measurements based on actual flight tests are the most accurate way to study
the ice accretion process. But these tests are costly and need constant monitoring and
waiting for the desired operating conditions. Only a few such studies are available in the
open literature for fixed-wing UAV icing. Avery [26] in 2013 performed flight testing of a
small UAV to characterize the atmospheric icing environments. In 2016, Williams et al. [27]
tested the Kahu-Hawk UAV’s aerodynamics and flight stability. Before the flight, prefab-
ricated ice shapes were glued to the wing’s leading edge. Similar studies were done by
Matiychyk et al. [28] in 2019 on a UAV M-10-2 “Oko”. In contrast to the previous study,
ice was naturally allowed to accrete on the UAV. Ice deposits were observed along the
wing’s full length leading edge, the tail unit’s leading-edge, on the front surfaces of the
pitot-static tube and video antennas. An ice thickness of 1.5 mm was observed on the wing
leading edge. The performance parameters were obtained with the help of a Mode of Flight
Recorder (MFR), and it was observed that the drag force increased about 40% due to icing.

71



Drones 2022, 6, 86

The increase in the drag force increased the power requirement by 10%, and thus, the aver-
age index of the battery rose from 25.5 A to 35 A. In 2021, Siddique [29] performed inflight
testing of a Sonicmodell Skyhunter fixed-wing UAV at three different flight conditions of
calm, windy, and icing conditions at the Iowa State University’s Bio Century Research Farm
(BCRF). The T∞ value observed during the icing condition test was −1.5 ◦C and it leads
to glaze ice formation on all leading edges and propellers. Water runback rivulets were
visible on the top surface of the wing downstream of the leading edge. The propellers were
heavily iced, leading to the formation of horns and ridges on pressure and suction sides.
A dramatic increase in power requirement of 240% was observed during the ice accretion
compared to calm weather conditions, leading to more battery power consumption.

2.3. Lab Experiments

Two major lab-based experimental techniques are employed to study the ice accretion
phenomenon: Icing wind tunnels and cold room experiments. Icing wind tunnels are like
standard wind tunnels with an additional cooling system to maintain the low temperatures
and a spray system to inject water droplets into the airflow prior to entering the tunnel
test section. The use of such icing wind tunnels allows for the prediction of ice shapes
along with the measurement of aerodynamic loads and forces [30]. In 1944, NASA built the
Icing Research Tunnel (IRT) at the Lewis Flight Propulsion Laboratory in Cleveland, Ohio.
Several icing experiments were then conducted to understand the effect of ice accretion on
the aerodynamic performance of aircraft [31,32]. However, most icing wind tunnels operate
without a force balance measure system and therefore can only be used to trace ice shapes,
but the ability to provide performance data is limited. NASA IRT [33], Boeing ice wind
tunnel [34], altitude icing wind tunnel research facility in Canada [35], Braunschweig icing
wind tunnel [36], Cranfield University icing wind tunnel [37], and CIRA ice wind tunnel in
Italy [38] are some typical ice wind tunnels around the world. Cold room experiments are
carried out in refrigerated cold rooms or outdoors in cold climates. A spray system located
in front of the test vehicle creates the icing cloud. The major drawback of these rooms is
their low operating velocity and they are often quite large in size [39]. Experiments on
lab facilities did not offer the necessary precision and accuracy in simulating the icing
conditions expected to be found in nature. A detailed discussion about the similarity
parameters and scaling laws considered during lab based icing studies can be found in [40].

2.4. Numerical Simulation

Numerical icing simulations have four major modules: (1) Aerodynamic simulations
for air flow field determination, (2) Determination of water droplet trajectories using a
droplet impingement solver, (3) Ice growth process using a thermodynamic model, and
(4) Remeshing module. Potential flow or Navier-Stokes stokes-based solvers are used for
flow field determination and the Eulerian or Lagrangian approach is used to determine
droplet trajectories. The thermodynamic solvers of most existing ice growth solvers are
based on the Messinger model [41]. A detailed description of the physics involved in
these processes can be found in [18]. Atmospheric parameters like wind speed, ambient
temperature, Liquid Water Content (LWC), Median Volume Diameter (MVD), or droplet
size distribution and duration of the icing event need to be supplied as an input to the
numerical solver. The typical ice accretion modeling tools include LEWICE based on a 2D
panel method developed by NASA Lewis Research Center [42], ONERA 2D/3D governed
by Euler equations developed by ONERA in France [43,44], IMPIN3D developed by CIRA,
Italy [45], CANICE based on the panel method developed by Bombardier Aerospace and
Ecole Polytechnique de Montreal, Canada [46], MORPHICE based on the morphogenetic
ice accretion model [47], and the second-generation 3D icing simulation system FENSAP-
ICE based on Reynolds-Averaged Navier-Stokes developed by Newmerical Technologies
International, Canada [48,49].

Icing tunnel experimental results are only available for the high Reynolds number
applications in the past. The paucity of low Reynolds number investigations hinders the
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validation of numerical ice accretion prediction codes for low Reynolds number applications
like ice accretion on UAVs. Therefore, such validations were performed in the past by
comparing the numerical predictions with the available lowest Reynolds number test
results. Szilder et al. in 2011 performed the validation of his numerical icing code based on
the morphogenetic ice growth model (MORPHICE) at low Reynolds number by comparing
its predictions with the results of icing tunnel test studies done on NACA 0012 airfoil
at Re = O

(
106) [50,51]. Following Szilder’s work, Hann et al. [52] in 2018 also used the

same experimental results to validate FENSAP ICE and LEWICE codes as a part of his ice
accretion studies on UAVs. The ice shapes predicted by icing tunnel tests and numerical
simulations vary greatly. The numerical codes underpredicted ice thickness, and the
icing extents are more than experimental predictions. Thus, the validation of the existing
numerical codes at low Re remains as a knowledge gap in the scientific literature.

To cover this gap, Williams et al. in 2017 [27] performed experimental studies on
RG-15 airfoil at the NRC Altitude Icing Wind Tunnel (AIWT), Canada. The icing test
was performed for a continuous maximum and an intermittent maximum icing condition
as per FAR 25 Appendix C atmospheric icing envelope [53]. Glaze ice was observed for
T∞ = −5 ◦C and rime ice characteristics were observed at T∞ = −20 ◦C. Later Richard Hann
of the Norwegian University of Science and Technology (NTNU), Norway conducted three
major experimental campaigns to generate the ice shapes data for UAV airfoils at low
Reynolds number. In spring 2019, Hann [54] performed experiments on RG-15 and NREL
S826 airfoil at the Cranfield icing wind tunnel. Ice conditions were chosen to generate
three different icing morphologies of glaze, mixed, and rime for Reynolds number in the
order of 105. The studies implemented and discussed two novel methods to capture the ice
shapes in experiments: 3D scanning and photogrammetry. Numerical icing simulations
were performed using FENSAP-ICE and LEWICE to validate the results, but there was a
significant difference in the prediction of ice shapes. In fall 2019, Hann et al. [55,56] again
performed icing studies on RG15 airfoil at the icing wind tunnel of the Technical Research
Centre of Finland (VTT). The experiments were done for the glaze and mixed ice conditions
to obtain the ice shapes as shown in Figure 2. In 2020, he [57] extended his experimental
studies to NREL S826 airfoil for three different icing conditions of glaze, mixed, and rime
ice respectively as shown in Figure 3.

Figure 2. Experimental ice shapes on RG-15 airfoil [56].
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(a) (b) 

Figure 3. Ice shape predicted by (a) experiments and (b) numerical codes on NREL S826 air-
foil [57]. These simulated ice shapes are marked with an asterisk to distinguish them from the
experimental shapes.

Numerical ice accretion studies on UAVs have been performed by researchers pri-
marily using three major icing codes: MORPHICE, LEWICE, and Ansys FENSAP-ICE.
The validation of MORPHICE at low Reynolds number (<O

(
105)) is not reported in open

literature at the time of writing this review paper. Hann et al. validated the LEWICE and
FENSAP-ICE ice codes by comparing their predictions with the results of his icing tunnel
tests [56]. Additionally, Hann compared the performance of these codes in predicting
the ice accretion on NACA 0012 and NREL S826 airfoil [52]. Overall, the predictions for
the rime ice conditions are better than the glaze ice, and the FENSAP ICE predictions
were closer to the experimental results. However, the numerical codes underpredict the
ice thickness and the ice limits, especially on the suction side. The ice shape predicted
by LEWICE is smooth, in contrast with the rugged ice surface in experimental results.
For glaze ice, the predictions of the FENSAP ICE validate with the experiments better than
the LEWICE predictions. This may be because of the limitations of the panel method in
predicting the complex flow behaviors, but on the other hand, FENSAP ICE based on the
Navier stokes equation showed higher accuracy.

These validation studies indicate the capability of existing numerical icing codes to
predict the ice shapes for different meteorological conditions. Overall, the numerical codes
can reliably predict the rime ice accretions but fall short of accurately predicting glaze
ice due to the intricate physics involved. Kind et al. [40] also made a similar observation
for ice accretion studies on manned aircraft. The difference in the ice shape predicted by
numerical codes and experiments can be attributed to the numerical model’s limitations
or experimental uncertainties. Experimental uncertainties mainly include the limitation
of existing techniques and the possibility of errors and some of them are listed here.
(1) Ice accretion is a dynamic process, and the shape of the accreted ice keeps on changing
with time. Therefore, the ice shapes obtained by manual tracing correspond to the ice
shape at a particular instant of time. So advanced ice shape tracing techniques need
to be developed to get the ice shape at various time instants. (2) Proper calibration of
LWC and MVD with accurate droplet distribution is necessary to obtain more realistic
experimental conditions. (3) The ice density variability during tunnel simulations is another
challenge for experiments [54]. (4) The ice accretion is usually obtained for a fixed value
of angle of attack, but the angle of attack keeps on changing during the actual flight
trajectory. (5) The assumption of the infinite wing concept in most studies also limits the
accuracy by restricting the flow dimensions to 2D. (6) The spatial and temporal variability
of the ice accretion test results is another phenomenon that questions the accuracy of icing
tunnel tests [51]. (7) When tests are conducted on a sub-scale model, dynamic similarity
parameters for the airflow, droplet trajectories, and thermodynamic freezing process must
be satisfied, but it is difficult to achieve in practice. Numerical models are usually built
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based on various simplifications and assumptions, and there is always a question of the
validity of the numerical models used. Unlike the fluid flow simulation, ice accretion
modeling includes coupling of a fluid flow solver, droplet trajectory module, and heat
transfer module. Thus, there are approximations at all three stages, which can considerably
affect the accuracy of the results. In addition, the accurate modeling of the boundary layer,
roughness effects, and the turbulent flow characteristics need to be considered. Additionally,
the existing numerical techniques and associated models are developed for ice accretion at
a high Reynolds number. Thus, it is necessary to validate these models at low Reynolds
numbers or develop approaches and models specifically for low Re situations. Surface
roughness has a considerable impact on the heat transfer process [58,59] and heat transfer
(especially convective heat transfer) is one of the significant mechanisms that control the ice
accretion process [60]. Roughness also has a major influence on the fluid flow and droplet
impingement module of the ice accretion modeling [61,62]. Therefore, the final ice shape
is very sensitive to the evolution of local surface roughness at the start and during the ice
accretion process and this demands efficient roughness models. Accurate experimental
results are mandatory to enhance the existing numerical models and develop new models.
The lack of proper experimental results for ice accretion at low Reynolds number still
remains a gap in this area.

3. Effect of Environmental, Geometrical, and Material Conditions on Ice Accretion

By the beginning of the 21st century, more researchers started working on icing-related
issues of UAVs. Most of them were concentrated on studying the sensitivity of nature
and the shapes of accreted ice to environmental and geometric conditions. The nature of
the ice forms depends primarily on free stream velocity (V∞), atmospheric temperature
(T∞), Liquid Water Content (LWC), the droplet Median Volume Diameter (MVD), angle
of attack (α), Reynolds number (Re), and the geometry of the structure (airfoil, chord,
mean effective camber and material). In this section, an attempt is made to review the
studies by various researchers to understand the influence of these parameters on the ice
accretion behavior of UAVs at low Reynolds number values. The results presented in this
section are mainly based on numerical studies using various ice accretion simulation codes.

3.1. Effect of Atmospheric Temperature (T∞)

The effect of atmospheric temperature (T∞) on ice accretion of a UAV was studied
by Koenig et al. in 2001 [63] and Szilder in 2011 [25,64]. The nature of the ice changed
from glaze to rime with a mixed ice behavior in between with a decrease in T∞. In both
these studies, the influence of T∞ is studied independently by keeping the MVD and LWC
value constant. However, the parameters are no longer independent when the studies are
based on the FAR 25 Appendix C icing envelope. Such studies were done by Szilder in
2015 [65], 2017 [66], Krøgenes and Hann in 2017 [57,67], and Fajt in 2019 [68] on different
airfoil geometries. The observations were qualitatively similar to Szilder’s initial studies
that the low temperatures favor rime ice formation and glaze formed at a temperature
near the freezing point with mixed ice formed in between. For temperatures very close
to the freezing point like T∞ = −2 ◦C the heat transfer process is not high enough to
freeze all the droplets upon impingement, therefore a part of the impinging droplets
runback along the airfoil surface leading to the glaze ice formation. Whereas at very
low temperatures of T∞ = −10 ◦C and above, most droplets freeze upon impingement
leading to rime ice formation. Additionally, it was observed that the rime ice formed at
lower temperatures (−30 ◦C) is just a scaled-up version of the same at higher temperatures
(−10 ◦C), this is due to the low value of the LWC at higher negative temperatures as
defined in the FAR 25 Appendix C icing envelope. Fajt also pointed out that the ice mass
increases with temperature.
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3.2. Effect of LWC and MVD

The combined effect of LWC and MVD on ice accretion of UAV was studied by
Koenig et al. [63] in 2002. The ice shape changes from smooth rime ice with no oblique
protrusion or horns to glaze ice with two enormous horns when the LWC and MVD values
increase. Additionally, a considerable rise in the amount of ice deposited is observed.
In 2011, Szilder studied the influence of LWC independently on the ice accretion behavior
by keeping the MVD or LWC and T∞ constant [25,64]. For temperature greater than −8 ◦C,
the ice shape changes from rime to mixed (glaze ice formed at the stagnation leading edge
and rime ice formed in the downstream region) and then to glaze ice with water run back
along the surface with an increase in LWC. Szilder [64] also pointed out that an increase
in the size of the droplet tends to diminish the parametric space for rime but increases
the space for the glaze. When the investigations are done based on FAR 25 Appendix
C icing envelope [55,64–67], the ice accreted is a function of T∞, MVD and LWC values.
Smaller MVD values correspond to large LWC values and favored glaze ice formation.
When the LWC is large, the latent heat that must be removed in order for the impinging
droplets to completely freeze is also large, thus favoring glaze ice. However, T∞ also
plays an important role here as the potential to remove the latent heat increases at lower
temperatures. Fajt [68] observed that when the LWC is less than 0.2 g/m3, the ice formed
is always streamline shaped (rime) irrespective of MVD and T∞. When Li [69] studied the
effect of LWC and MVD based on the FAR 25 icing envelope in 2020, it was observed that
as the value of MVD increases, the size of the ice horns decreases because of the reduction
in the LWC. With further increase in MVD, the presence of a horn has completely vanished,
and ice accreted in a streamlined fashion, increasing the effective camber and enhancing the
aerodynamic performance. From the analysis of droplet trajectories, Szilder inferred that
the larger droplets have higher inertia and have a slower response to the spatial variations
in the flow. It increases the collision efficiency and leads to a greater impingement extent.
At temperatures close to freezing point, the heat transfer rate is not high enough to freeze
all the water droplets leading to a glaze ice formation with water runback. Additionally,
the smallest droplets result in the greatest local maximum ice thickness (especially at
the leading edge) due to the large value of LWC as per the Appendix C icing envelope.
Similar observations were also made by Avery [26]. However, a contradicting observation
is made by Cistriani in 2007 [70] as a part of his studies on the design of Low Re airfoil
for the Falco UAV. The formation of the worst ice shape at Continuous Maximum (CM)
conditions with a low value of LWC compared to Intermittent Maximum (IM) conditions
with higher LWC values is mentioned. Since this study was not dedicated to icing issues,
much information regarding the software used and ice shapes formed at the remaining
conditions is unavailable. Koenig [10] in 2003 pointed out that the clustering of the LWC
value also has an effect on the ice accretion based on his icing tunnel test with constant and
variable rate LWC.

3.3. Effect of Reynolds Number (Re)

The ice accretion behavior at high Re has been widely studied in the literature but
a direct transformation of these results to low Re is not possible due to the problems
discussed in Section 1. Therefore, Szilder in 2011 [64] studied the effect of Re on the ice
accretion behavior by conducting numerical icing studies at two different Re of 5 × 106

and 5 × 104 [25,64]. The Reynolds number is varied by changing the values of V∞ and C.
The nature of the ice changes from rime to mixed and then to glaze with an increase in
LWC for low Re. Whereas the nature of the ice remains glaze for all the values of LWC
at high Re with only the extent of ice increasing with LWC. Further the thickness of the
ice is considerably smaller when compared to the low Re number cases. The reduction
in the thickness and decrease in the rate of icing can be attributed to the high values of
aerodynamic heating at higher velocities. Low Reynolds favors the formation of rime ice
which results in less aerodynamic penalties, but at the same time increases the relative ice
thickness making the total ice mass high.
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3.4. Effect of Free Stream Air Velocity (V∞)

Bottyan et al. in 2013 [71,72] observed that the increase in true airspeed from 10 m/s
to 130 m/s changes the ice behavior from less dangerous dry ice to more dangerous wet
ice with horns at T∞ = −4.2 ◦C. Further, an increase in the rate of icing with velocity is
also observed. Ice thickness at the stagnation region decreases, and it completely vanishes
at higher velocities leading to the formation of horns at an oblique angle with the surface.
The horns also got thicker and thicker with velocity. The decrease in the leading-edge ice
thickness can be because of the increase in the aerodynamic heating at higher velocities.
In 2021, Hann et al. [55] concluded that the free stream velocity significantly affects the ice
accretion behavior of the glaze and mixed ice more than rime ice. As the velocity increases,
the streamwise thickness of glaze ice decreases, whereas the spanwise extension increases.
At a very high velocity of 100 m/s, no ice was formed for the glaze icing conditions due to
increased surface temperature beyond the freezing point because of aerodynamic heating.
For mixed ice conditions, a large value of velocity is chosen by Krøgenes and Hann [57,67]
to obtain artificial ice shapes with distinct horn shape formation. It is in line with the
observation of Bottyan et al. [71] that an increase in the velocity leads to the formation of
significant horns near the leading edge.

3.5. Effect of Angle of Attack (α)
In 2015, Szilder et al. compared the UAV ice accretion behavior at cruise conditions

with α = 3◦ to the same at landing flight conditions with α = 9◦ [65]. During landing,
the large value of angle of attack increases the vertical component of drop velocity than
cruise conditions and the droplet impingement (and therefore the extent of ice formation) is
more on the lower surface of the airfoil. For the ice shapes obtained for landing conditions,
the stagnation region is shifted due to the large angle of attack, and a corresponding shift
in the icing location is observed. A similar shift is observed during the icing tunnel studies
of Williams on RG-15 airfoil [27].

3.6. Effect of Geometric Parameters

Various geometric parameters such as airfoil chord length, mean camber, thickness,
aspect ratio, and leading-edge cylinder diameter can affect ice accretion by influencing flow
behavior, droplet trajectories, and rate of heat transfer. Hann et al. in 2021 [55] studied the
effect of change in chord length on the ice accretion behavior and observed that the extent
of icing and its thickness increases with a decrease in chord length. In 2017, Szilder et al.
performed ice accretion studies on various UAV airfoils [66] and concluded that the ice
mass accumulated is small on a thinner airfoil. The ice thickness at the stagnation point is
very similar, but differences in the ice extends are observed. This could be due to variations
in the vertical component of drop velocity near an airfoil.

Most existing literature on numerical studies of UAV icing is limited to 2D airfoils.
An ice accretion simulation on a 3D swept wing was performed by Szilder et al. in 2017 [66].
The ice mass increased towards the wing root section because of growing wing thickness
near the root. The ice thickness decreases as we move along the leading edge from tip to
root because of the decrease in convective heat transfer coefficient in that direction due
to the reduction in velocity. Additionally, the extent of ice accretion is greater towards
the root section due to the water runback caused by less efficient freezing of water and a
large impingement mass. The changes in the ice accretion behavior along the spanwise
direction were also observed due to the difference in local chord length and wing shape.
Yirtici in 2020 [73] performed numerical icing simulations on a rectangular wing with
NREL S826 airfoil at three different aspect ratios and it was observed that the loss in CL/CD
decreases with the increase in wing aspect ratio.

3.7. Effect of Material Properties

In 2018, Li investigated the effect of thermal conductivity on ice accretion on the
airframe surface [17]. The ice accretion process on aluminum (representing the manned
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aircraft) and thermoplastic material (representing UAV) were investigated during the
studies. Under the same operating conditions, the thermoplastic material with a lower
thermal conductivity value causes a much slower dissipation of the released latent heat of
fusion associated with the solidification of the supercooled water droplets impinging on the
surface. Thus, resulting in water runback and the formation of more complex ice structures
like rivulets when compared to the aluminum surface with higher thermal conductivity.

Discussion: The investigations revealed the influence of various environmental geo-
metric and material properties on ice accretion. Reynolds number, free stream velocity,
and chord length can significantly influence the ice accretion behavior. These parameters
distinguish the operating conditions of manned aircraft from that of UAVs. Therefore,
the ice accretion phenomenon on a UAV needs to be studied separately from that of
manned aircraft. Siquig [16] reported the most vulnerable icing conditions as T∞ between
0 to − 10 ◦C, LWC more than 0.1 g/m3, and droplet diameter between 30 and 400 microns.
Rime ice formation is favored at low temperatures, whereas glaze is formed at a temper-
ature near the freezing point with mixed ice formed in between. All the other factors
discussed above can influence the icing extend, thickness, horns, ice lobes, and feather-like
structures. Szilder [65] concluded that the extent of ice formation increases with drop
size, but LWC mostly governs ice thickness. Fajt [68] observed the highest ice mass at
MVD of 20 μm and T∞ = −2 ◦C even though the LWC value at MVD of 20 μm is 20%
less than the same at MVD of 15 μm, this can be because of the larger droplet size. Thus,
the nature and shape of ice formed can be considered as a function of the complex interplay
of various environmental and geometric parameters. Most studies are concentrated on
the temperatures of T∞ = −2 ◦C,−5 ◦C and − 10 ◦C with the corresponding LWC and
MVD values proposed by Appendix C of FAR 25. It is observed from various studies that
glaze ice conditions can lead to more complex ice shapes, with a special case of mixed
icing conditions at T∞ ≥ −4 ◦C. Thus, the ice accretion studies need to be refined to more
temperature conditions between −2 ◦C and − 10 ◦C. Additionally, the detrimental effect
of Supercooled Large Droplets (SLD) is discussed in the literature, but the same is not
studied from the scope of low Reynolds number problems or UAVs. Since ice accretion is a
dynamic process and is highly sensitive to atmospheric and geometric conditions, the na-
ture and shape of the ice formed can differ from the expectations. Therefore, a correlation
between various geometric and environmental conditions and the ice formed cannot be
easily made. However, such attempts can be made from a research point of view so that
future researchers can correlate their predictions with these benchmarks and the variations
can be reported.

4. Aerodynamic Performance Penalties

Aerodynamic performance penalties can be considered as a significant consequence
of ice accretion on airfoil structures. So, it is essential to understand how icing affects
the aerodynamic performance of an airfoil. To study iced airfoil aerodynamic penalties,
one can use an icing wind tunnel like the NASA IRT, where the aerodynamic forces are
recorded simultaneously with the ice accretion process. This can be considered as the
precise method of measuring the aerodynamic forces and moments of the iced airfoil
as the process is fully transient. To the author’s knowledge, no such experiments have
been reported for a fixed-wing UAV in the open literature to date. Another option is
to 3D print the iced profile obtained from an icing tunnel test or numerical simulation
and attach it to the airfoil’s leading edge. It is then tested in a wind tunnel to determine
the aerodynamic forces and moments. Most researchers employ this approach because
conventional wind tunnels are more readily available than icing wind tunnels. However,
the accuracy of the measurements is compromised in this method because the ice shapes
and aerodynamic forces are measured only for a particular instant of time and are no
longer transient. In addition, the ice shape generated for a specific angle of attack (at
which the numerical simulation or icing tunnel experiment is carried out) is used to study
aerodynamic performance as a function of the angle of attack. In a way, this can lead to
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misleading results as the shape, location, and nature of the ice accreted changes with the
angle of attack and affects aerodynamic forces and moments. Both approaches can also be
used in numerical studies to predict the aerodynamic coefficients of an iced airfoil.

Cistriani et al. in 2007 [70] studied the aerodynamic performance of an iced UAV airfoil
in the wind tunnel. Icing reduced the maximum lift by 30% compared to the clean airfoil.
Szilder et al. performed the aerodynamic simulation of iced UAV airfoils SD7037 [65],
HQ309, and SD7032 [66] with the ice shapes obtained from MORPHICE simulations.
The turbulence model employed is the γ−Reθt transition model [74]. In glaze ice conditions
at −2 ◦C the SD7037 airfoil lost 16% lift, tripled drag (300%) and stalled prematurely at 9◦

(clean airfoil stalls at 11◦) along with a 12% decrease in pitching moment. The aerodynamic
penalties for rime ice are relatively smaller as it covers only a smaller portion of the airfoil.
It is worth noting that for large values of angle of attack, the aerodynamic performance
improved for the glaze ice more than rime ice. The author attributes this to the increase in
the effective camber due to the drooped leading edge, which delays the flow separation.
Overall, HQ309 with less thickness has better aerodynamic performance than SD707 at a
low value of α, and is reversed at higher α values. SD7032 revealed the best aerodynamic
performance at rime ice condition. The observations were based on numerical results and
no experimental validation is performed at low Reynolds number.

Hann et al. conducted wind tunnel studies on iced NREL S826 airfoil with the ice
shape obtained from the LEWICE simulations [67] and the icing tunnel experiments [57].
Surface roughness effects were superimposed on the models using half-spheres arranged in
a staggered pattern. The diameter of the sphere is the equivalent sand grain roughness (ks)
calculated using an empirical relation proposed by Shin et al. [31]. Former studies show
severe performance penalties for the mixed ice with 30% reduction in lift and 340% increase
in drag due to flow separation induced by the presence of horn structures. In contrast,
the icing tunnel predicts more complex ice shapes for glaze conditions, and no prominent
horns were observed for mixed ice conditions. Therefore, glaze ice had the largest aerody-
namic penalties. Low Reynolds number indicates severe performance penalties, as does
the increased surface roughness, especially for rime ice. In 2018, Hann [52] compared the
aerodynamic performance of the ice shapes predicted by FENSAP ICE and LEWICE codes
using the fluid flow solver FENSAP employing the SA turbulence model. The significant
difference in the ice shape predicted by both codes was also reflected in the aerodynamic be-
havior. Overall, mixed ice showed severe performance degradation followed by glaze and
rime. Further, numerical simulations were done with a forcibly tripped boundary layer and
compared with the fully turbulent simulations. The tripped cases showed slightly higher
performance penalties comparatively [57]. Severe aerodynamic penalties of RG-15 airfoil
at glaze ice conditions with an increase in drag coefficient up to 160% were also reported
by Fajt [68] based on his numerical studies using FENSAP and by Oswald [75] based on
his experiments at wind tunnel facility. Fajt [68] also presented an index visualization
of the aerodynamic coefficients to understand the intensity of performance degradation
for different icing conditions, as shown in Figure 4. In 2021, Hann [55] reported that the
increase in flow velocity has a detrimental effect on the aerodynamic performance of an
RG15 airfoil, whereas an increase in chord length is favorable.

The numerical and experimental research forecast aerodynamic coefficients differ-
ently [57]. Viscous boundary layer effects overwhelm the inertia effects at low Reynolds
numbers, favoring laminar flow. Existing turbulence models presume fully turbulent
flows and hence cannot accurately resolve these issues. Flow transition from laminar to
turbulent is another challenge; the initial laminar flow is so sensitive that even a mild
pressure gradient can separate the flow. The separated flow re-attaches under certain flow
conditions and forms a Laminar Separation Bubble (LSB) while transitioning from laminar
to a turbulent state. LSB is a function of airfoil geometry and flow velocity and can be
observed in the Reynolds number regime of 5 × 104 to 3 × 106 [76]. The flow separation
induced by ice formation on the airfoil’s leading edge is called an Ice Induced Separation
Bubble (ISB) [77]. The ISB formed immediately downstream of the accreted ice at the
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leading edge, increasing its size with α. In contrast, an LSB formed downstream from
the leading edge and moved upstream with increasing α. The formation of ISB or LSB
changes the behavior of the boundary layer from laminar before separation to turbulent
after reattachment. Additionally, the size of the LSB is contracted with the increase in
Re [78], leading to complex flow behavior at low Reynolds numbers.

Oo et al. performed studies on clean and iced RG-15 airfoil to understand the behavior
of LSB and ISB (Figure 5). The ice shapes were adopted from the icing tunnel studies of
Williams [27]. In 2018 [79], unsteady numerical simulations were done by employing the
Scale-Adaptive Simulation-Shear-Stress Transport (SAS-SST) model for turbulence [80].
LSB is not observed, and the flow is fully turbulent for the angle of attack considered.
He extended the studies by performing transient Large Eddy Simulations (LES) at a different
angle of attack (0◦, 3◦ and 6◦) in the successive years [81,82]. LSB is not observed on a clean
airfoil at α = 0◦, but separation near the trailing edge is observed. With an increase in
value of α, LSB is formed downstream of leading edge, and it moves upstream with further
increase of α. ISBs are observed for the iced airfoil and the extend of separation bubble
increased from 10 to 13% of the chord with increase in angle of attack, but the origin of
separation remains the same. High frequency oscillations were observed in the transitional
regions of ISB and LSB [83]. The frequency of these oscillations can sometimes be higher
than the vortex shedding frequency of an airfoil [84]. The author also concluded that the
characteristics of ISB and LSB are pretty similar, which agrees with the previous observation
made by Bragg [85]. Oo [83] further extended the studies to a lower Reynolds number
of 5 × 104. One of the key observations is that the flow reattachment is delayed for low
Reynolds numbers and the extent of separation increases. The formation of a secondary
separation bubble for α = 2◦ and 3◦ at a low Reynolds number is also observed. Similar
observations on the behavior of LSB on RG-15 airfoil are also made by Oswald [75,86].
In contrary to all previous observations on aerodynamic behavior, Oo observed an increase
in the lift coefficient from 0.11 to 0.22 and a decrease in drag for iced airfoils compared
to clean airfoil (RG-15). The author suggested that the lift increment can be due to the
boundary layer tripping, and the drag reduction can be due to the larger laminar separation
bubble on clean airfoil relative to the ice induced separation bubble.

Figure 4. Index visualization for the aerodynamic performance of RG-15 airfoil [68].
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Figure 5. Formation of Laminar Separation Bubble (LSB) and Induced Separation Bubble (ISB):
(a) 0◦ clean, (b) 0◦ iced, (c) 6◦ clean, (d) 6◦ iced [81].

A transitional three-equation turbulence model with a separated shear layer fix called
the SPF k − ν2 − ω model [87] was used by Li in 2020 [69] to investigate the aerodynamic
performance of an iced NREL S826 airfoil. It is observed that the pre-stall and near-stall
characteristics predicted by the turbulence model match well with the experimental results
compared to SST and SA turbulence models, which usually fail in the region close to
the stall. The maximum loss in lift coefficient is 24.3% and the stall angle decreases by
6 degrees. One of the major attractions of this paper is the optimization of the airfoil design
under icing conditions. The optimized airfoil design improves the lift coefficient by 18% by
modifying the ice shape.

Discussion: It can be concluded from the reviewed work that icing can lead to severe
aerodynamic penalties like loss of lift, an increase of drag, and premature stalling. A maxi-
mum reduction in the lift of up to 35% and an increase in drag of up to 340% is observed
in UAVs due to ice accretion. Premature stalling also occurs at an angle of attack as low
as 7◦. The reduction in the maximum lift value affects the stability of the UAV and the
increase in the drag coefficient leads to more power consumption. This can potentially
limit the range and endurance of the UAV and thus affect the successful completion of its
mission. Koenig [63] pointed out that glaze ice has a more significant impact on aerody-
namic characteristics due to the greater surface roughness and larger extend. Further, glaze
ice can lead to the formation of horns at an oblique angle with the surface, which in turn
can lead to flow separation. The magnitude of the aerodynamic penalties depends on the
shape, location, and extend of the ice accreted. The accumulated ice also adds weight to the
structure of the UAV, which also has an indirect effect on its performance. The magnitude
of the performance degradation is a function of ice shape, location, and extent. Fajt [68]
highlights that one of the important uncertainties in the icing simulation is the assumption
of fully turbulent flow. This can be valid for high values of angle of attack, due to the
earlier flow separation but, for a small angle of attack, the flow can still be laminar at
the leading edge. Thus, the assumption of fully turbulent flow induces artificial viscosity
affects the delay of any possible flow separation. This can lead to overprediction of the
lift coefficient and stall angle while underpredicting the drag coefficient. Additionally,
the turbulent flow may increase the evaporation rate and thus reduce the liquid content
leading to the wrong prediction of ice shapes as emphasized by Hann [88]. Thus, proper
transition turbulence models must be implemented to model the laminar-turbulent transi-
tion phenomenon. Most studies are limited to the use of the SA and K-ω SST turbulence
model, but they failed to predict the stall angle and maximum lift coefficient of the iced
airfoil. Most existing studies used the profile of ice accreted at an 0◦ angle of attack to study
aerodynamic performance as a function of the angle of attack. However, the position of
ice changes with the angle of attack and leads to a considerable difference in the value of
aerodynamic coefficients. Therefore, representative ice shapes at different angles of attack
must be used to obtain more reliable aerodynamic coefficients. A database for various
studies related to icing on fixed wing UAVs is given in Table 1.
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Table 1. Database of existing studies on ice accretion on Unmanned Aerial Vehicle (UAV).

Reference Year
Re

× 105 Airfoil
C

(m)
Aerodynamic

Data
Comments

Siquig [16] 1990 - - - × The impact of icing on two different
UAVs is compared.

Koenig [63] 2000 - UAV airfoil - × Influence of T∞, LWC, and MVD on ice
accretion.

Koenig [10] 2003 - NACA 0012 - × Influence of LWC clustering on ice
accretion.

Avery [26] 2003 - - - × Influence of T∞ and LWC on ice
accretion.

Cistriani [70] 2007 10 flap slotted airfoil 0.6 � Ice accretion at CM and IM conditions.

Szilder [64] 2011 0.5, 1, 5, 1, 50 NACA 0012 0.0625 to
0.625

× Influence of Re, T∞, LWC and MVD on
ice accretion.Szilder [25] 2012

Bottyan [71] 2013
4 Roncz Low Drag

airfoil 0.3
× Influence of V∞ on ice accretion.

40 NASA NLF 1015 1.6

Szilder [65] 2015 9 SD7037 0.47 �
Influence of T∞, α, LWC, and MVD on

ice accretion.

Szilder [66] 2017 9 HQ309,
SD7032SD7037 0.47 �

Effect of airfoil geometry on ice
accretion.

Williams [27] 2017 2 RG15 0.21 �
Icing tunnel experiments for 4 different

cases.

Hann [89] 2017 15 NREL S826 0.3 �
Aerodynamic performance studies based

on flight simulation.

Hann [52] 2018 4 NREL S826 0.45 �
Comparison of LEWICE and

FENSAP-ICE.

0o [79] 2018 2 RG-15 0.21 �
Flow separation behavior is studied

using the SAS-SST turbulence model.

0o [81] 2018 1 RG-15 0.21 × Flow separation behavior is studied
using LES.

Fajt [68] 2019 8.6–10 RG-15 0.45 �
Influence of T∞, LWC, and MVD on ice

accretion.

Hann [54] 2019 8.7 NREL S826,
RG-15 0.45 ×

Icing Tunnel studies,
Two new ice shape acquisition

techniques are discussed.

Hann [57] 2020 4 NREL S826 0.45 �
Aerodynamic data is generated for three
different Re of 2 × 105, 4 × 105, 6 × 105.

Oo [82] 2020 1.07 RG-15 0.21 × Flow separation behavior is studied
using LES.

Oo [83] 2020 0.5, 1 RG-15 0.21 × Flow separation behavior is studied
using LES.

Yirtici [73] 2020 4 NREL S826 0.45 � Influence of aspect ratio on ice accretion.

Oswald
[75,86] 2021 8.7 RG-15 0.45 �

Aerodynamic data is generated for three
different Re of 2 × 105, 4 × 105,

7.5 × 105.

Hann [55] 2021 8.7 RG-15 0.45 �
Effect of velocity and chord length on

ice accretion.

Li [69] 2021 20 NREL S826 0.45 �
A three-equation turbulence model

is used,
Design optimization of airfoils.

5. Effect of Icing on the Structural Integrity of UAVs

Ice accretion is a dynamic process, and the distribution of ice on the surface of a UAV
wing or propeller blade is not uniform. Most ice accreted on the stagnation regions like the
leading edge of wings or propellers, with the amount of ice accretion increasing from root
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to tip of the propeller blade. Further, the melting and ice shedding effects also contribute
to uneven mass distribution. This mass imbalance can cause excessive vibrations. The ice
accretion on the leading edge of the airfoil also shifts the center of gravity towards the
elastic axis (increasing the critical flutter speed), increases the mass and inertia properties,
increases the effective chord length, increases the aerodynamic drag and pitching moment
loads, and decreases the lift [90]. These changes in the aerodynamic and structural behavior
due to ice accretion can change the wing’s modal properties (natural frequencies and
damping ratio). They may lead to resonance and excess vibrations, affecting the aeroelastic
behavior [91] and fatigue life of the structure [92]. These fatigue loads considerably reduce
the lifetime of the UAV structure. Lighter systems like UAVs are more susceptible to
aeroelastic instabilities like flutter. Studies related to the understanding of the effect of ice
accretion on UAVs’ structural behavior are not developed and need to be addressed to
avoid potential structural damages. Similar studies were done on wind turbine applications
and other structures. A detailed review of such works is not intended here, but a few of
them are addressed here as a motivation for similar studies on UAVs. Etemaddar [92]
pointed out that “The aerodynamic properties are affected from the early stage of icing due to
change in roughness and geometry of the leading edge of the blade, whereas the change in structural
properties needs longer time and more ice accretion”. Additionally, he pointed out that the
effect of icing on fatigue life is negligible due to the short duration of operation under icing
conditions compared to the total lifetime.

In 2016, Gantasala et al. [91] studied the influence of ice accretion on the modal
behavior of wind turbines. The natural frequency and damping factor of the blade decrease
with ice accumulation. The ice mass distributed along the blade length determines the rate
of reduction in frequencies. The damping factor is a function of aerodynamic coefficients;
therefore, it depends mainly on the ice shape. It is also observed that the damping factor
has a more considerable reduction due to icing than the natural frequencies. The variation
of natural frequencies of the iced blade with wind velocities is negligible. Reducing the
damping factor to even negative values is observed at higher velocities, leading to unstable
vibrations. In 2017 [90], he conducted studies to understand the effect of aerodynamic and
structural responses on flutter instability. As the ice mass increases, the center of gravity
moves towards the elastic axis, and the flutter wind velocity increases. The flutter velocities
also tend to decrease when considering the chord length increase. This can be due to
increased pitching moment loads with the chord length. When aerodynamic behavior is
also considered, the flutter velocity increases for ice shapes with lower aerodynamic loads
and vice versa. Thus, the changes in the aerodynamic performance due to icing can be
considered a critical parameter that alters the flutter instability. Thus, the accumulation
of ice mass on the wing reduces its natural frequency and damping factor, decreasing the
flutter wind velocity, and increasing the risk of aeroelastic instability. If resonance occurs,
it can lead to excess vibration leading to failure and near-resonant vibrations can reduce
the fatigue life of the wings.

6. Ice Detection and Ice Mitigation Techniques

Anti-icing and de-icing systems are the two types of Ice Protection Systems (IPS).
The anti-icing mode heats the structure surface continually to prevent ice formation and
can be done in two ways: fully evaporative or running wet. There can be no water run
back in the first mode because the heat supplied entirely evaporates the droplet at the
impingement location. However, it requires considerable heat flux and results in high
surface temperatures. In the latter option, the heat is only used to keep the water from
freezing. This mode requires less heat flux and lower surface temperature, but the surface
must be heated extensively to prevent droplet freezing during water runback. In de-icing,
ice is allowed to accumulate on the surface, and heat is used to melt it. The ice-surface
interface can be melted or shed by aerodynamic forces. Dei-icing uses less power, but the
accumulated ice might cause drag and structural damage during ice shedding. The problem
of ice accretion on manned aircraft is extensively investigated, and suitable ice mitigation
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techniques are developed [19,93]. Traditional aircraft anti-icing methods use heat from
engine bleed air, electro-thermal systems, or freezing point depressant chemicals to prevent
ice buildup. Electromechanical systems like pneumatic de-icing boots, electro-expulsive
systems, and electro-impulsive systems are typically used as de-icing systems. These
systems are sophisticated, power-hungry, and require regular maintenance, limiting their
use in smaller aircraft or UAVs.

Proper ice detection techniques need to be developed for the successful operation of
an IPS. A brief overview of such systems designed for UAVs is done here before going to
the review of an IPS. Botura [94] developed an Ice/No-Ice Sensor System (INISS) based on
impedance measurement technique for in-flight ice detection on UAVs in 2003. The sensors
are capable of detecting even thin coatings of ice. Cristofarao et al. (2015) proposed a
Multiple Model Adaptive Estimation (MMAE)-based ice detection system for UAVs [95].
Unknown Input Observer (UIO) methods detect and estimate ice using changes in equi-
librium caused by ice accumulation. A UIO-based ice detection method for UAVs with
linearized longitudinal motion is proposed by Cristofaro et al. in 2015 [96]. This method is
extended to the longitudinal nonlinear aircraft dynamics using Linear Parameter Varying
(LPV) methods by Rotondo in 2015 [97]. Seron in 2015 [98] coupled the UIO and MMAE
methods to develop an ice detection system with prespecified accuracy. An icing detection
method based on the diagnosis of lift and drag changes on a UAV wing was proposed
by Sørensen et al. in 2015 [99] and was modified by Wenz et al. in 2016 [100]. Rotondo
developed an icing detection system that provides information about the icing location in
2017 [101]. The author published an extension of this work in 2019 [102]. A Fault Detection
and Isolation (FDI) framework that uses model-based estimators of the various faults,
implemented with multiple Kalman and Bayes filters, was proposed by Haaland et al.
in 2021 [103].

Electromechanical de-icing systems shed the ice by applying impulse force on the
wing surface with the help of some actuators. In 1988, Leonard Haslim invented the Electro
Expulsive Separation System (EESS) consisting of two conductors embedded in a flexible
material glued to the wing’s leading edge. The magnetic fields of the conductors repel
each other when current flows through them and provide enough impact to melt the
ice [104]. Bhakta proposed a magnetostrictive de-icing method for UAVs in 2005 [105].
When the magnetostrictive materials are magnetized, they exhibit a change in length and
create an impulse action. The ability of piezoelectric crystals to strain under an applied
electric field is called the piezoelectric effect. The waves, generated through piezoelectric
patches bonded onto the inner surface of the wing skin, cause a shear action at the ice/skin
interface [106]. The magnitude of this shear action is amplified at specific excitation
frequencies (Lamb waves), corresponding to wave lengths commensurable with the skin
thickness. In 2014, Ameduri et al. [107] investigated the use of lamb waves as dei-icing
systems for UAVs. The ultrasonic sound waves propagating at low frequency into a
material can cause vibrations and debonding [108]. Shape Memory Alloy (SMA) on heating
can change shape and create force through a martensitic phase shift [109].

Carbon Nano Tubes (CNT) have excellent electrical and thermal conductivity, making
them ideal for de-icing UAVs using the Joule heating property of conductors [110–115].
Buschhorn et al. [110] in 2013 developed a CNT-based IPS, which can prevent icing with a
power supply of only 1 kw/m2 during less harsh icing conditions. In 2015, Sørensen et al.
developed an electrically conductive paint based on graphene and carbon black nanoparti-
cles that heat up when electricity passes through it [116]. A disadvantage of this system
is the power consumption and increase in the weight of the UAV because of the coating,
battery, and other components. Thermodynamic analysis [117] and flight testing [118] of
the IPS are performed in successive years. The icing conditions at the high airspeed and low
ambient temperature necessitate significant power consumption. In 2020, Idris et al. [115]
used extrusion printing to fabricate electrical contacts on carbon fibers. The carbon fiber
composites are then integrated into UAV wings to create a self-heating de-icing mechanism.
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The carbon-based materials can shield the radio frequency signals, so an RF transmitting
heat was proposed by Hwang et al. in 2020 [119].

Hann et al. [88] evaluated LEWICE with FENSAP ICE for simulating and estimating
anti-icing loads in 2019. A sudden increase in the heat flux is observed at the transition
region as the rate of convective heat transfer increases due to higher turbulence. The studies
reveal the necessity of proper transition modeling for the icing studies at low Reynolds
numbers. Hann [120] then tested Sørensen’s IPS mounted on a wing with RG-15 airfoil for
ice detection, anti-icing, and completely autonomous capabilities. The stagnation point
at the leading edge has the highest power requirements. The author also concluded that
the average heat flux numbers might not be a fair estimate of overall necessary heat loads,
but the peak values around the leading edge are more significant. Hann et al. [120] tested
the anti-icing, de-icing, and Parting Strip (PS) approach for ice mitigation on the same IPS
in 2021. In the PS method, the stagnation zone at the leading edge is continuously heated
to avoid ice formation, separating the ice on the upper and lower part of the airfoil. The ice
split increases the aerodynamic force on the ice and allows for better shedding, as shown in
Figure 6. The parting strip model requires substantially less shedding time and heat flux
than conventional techniques. Thus, the author considers the parting strip mode as the
most energy-efficient ice mitigation mode.

  
(a) (b) 

Figure 6. Conventional (a) and Parting Strip (b) de-icing methods [120].

Superhydrophobic coatings can reduce the surface free energy and can generate hier-
archical micro/nano-structured roughness. This can reduce the ice adhesion strength on
the surface and thus prevent ice accumulation. Numerous studies related to different super-
hydrophobic coatings and the applicability of the same as an aircraft anti-icing material are
done by Bhushan et al. [121–124] and Farzaneh et al. [23,125–129]. Ice accretion behavior of
three different aluminum surfaces (hydrophilic, hydrophobic, and superhydrophobic) were
compared by Wang in 2010 [130]. The research focuses on transmission line anti-icing; how-
ever, the findings can also be used for UAV ice mitigation. Initially, just a few portions of the
superhydrophobic sample were coated with water droplets, whereas the hydrophobic was
partially and the hydrophilic was entirely covered. Water droplets turned into the ice with
increasing spraying time; however, no new ice crystals developed on superhydrophobic
surfaces. Ice covered more of the hydrophobic surface and the whole of the hydrophilic
surface with time. Thus, super hydrophobicity reduces surface wettability by increasing
the average water contact angle to over 150◦. The same for hydrophobic surfaces of more
than 90◦ and for hydrophilic surfaces, it is less than 70◦. Piscitelli [131] in 2020 proposed a
superhydrophobic coating for small aircraft that can reduce the surface free energy by 99%
with respect to the reference considered in the study. Additionally, the proposed coating
was effective at temperatures as low as −27 ◦C.

Discussion: The following are the primary requirements for an efficient IPS: (1) lightweight,
(2) low power consumption, (3) low maintenance and cost, and (4) reliable operation and
short response time. (5) Minimal/no change in aerodynamic design. The main disadvan-
tage of electromechanical and electrical heating systems is their weight. Continuous use
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of electromechanical systems can cause structural damage, while electric heating requires
more power, and superhydrophobic coatings degrade over time. As a result, an optimal ice
protection system for UAVs that meets all requirements has yet to be developed.

7. Conclusions

The existing scientific knowledge about the ice accretion phenomenon on fixed-wing
UAVs has been reviewed and the significant limitations in the current understanding of
the same are identified. Icing tunnel experiments and numerical icing simulations are
the most prominent methods used to study ice accretion. Icing tunnel experiments have
the limitation of being unable to precisely generate the icing conditions found in nature,
whereas numerical codes are lagging due to a lack of proper validation data. The capability
of existing numerical icing codes in predicting the ice accretion for glaze ice conditions
is limited due to the complex physics involved in its formation. Therefore, improved
understanding and modeling of such physics are required. The shape, size, and nature of the
ice formed are governed by the complex interplay of various environmental, geometrical,
and material properties. The accretion of ice on the surface of an airfoil can deteriorate the
aerodynamic shape of the airfoil as well as alter the surface characteristics like roughness,
mean camber, and effective chord length. The variation of these parameters can alter the
aerodynamic behavior by inducing flow transition (laminar to turbulent), flow separation,
and it can also affect the distribution of pressure and shear force on the surface of the
airfoil. Icing causes severe aerodynamic penalties like a decrease in the lift, increase in drag,
and premature stalling. Therefore, the development of low-cost, lightweight, and energy-
efficient ice mitigation systems is necessary to ensure the all-weather operation of UAVs.
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Abstract: The rapid air-to-ground search of injured people in the outdoor environment has been a hot
spot and a great challenge for public safety and emergency rescue medicine. Its crucial difficulties lie
in the fact that small-scale human targets possess a low target-background contrast to the complex
outdoor environment background and the human attribute of the target is hard to verify. Therefore,
an automatic recognition method based on UAV bimodal information is proposed in this paper.
First, suspected targets were accurately detected and separated from the background based on
multispectral feature information only. Immediately after, the bio-radar module would be released
and would try to detect their corresponding physiological information for accurate re-identification
of the human target property. Both the suspected human target detection experiments and human
target property re-identification experiments show that our proposed method could effectively realize
accurate identification of ground injured in outdoor environments, which is meaningful for the
research of rapid search and rescue of injured people in the outdoor environment.

Keywords: air-to-ground search; human target; multispectral imagery; bio-radar

1. Introduction

The search for injured people in outdoor environments has always been a hot topic in
the field of social public safety and emergency rescue medicine, and mainly include two
types [1]. The first search scenario is about the trapped survivors under ruins in an abnormal
post-disaster environment, such as natural or sudden disasters (earthquakes, building
collapses, landslides, etc.). The detection challenge under this scenario is how to penetrate
the ruins to reliably detect weak physiological movements of surviving human beings in
the post-disaster site with relatively limited area. To address this problem, a new bio-radar
detection technology, which is a combination of biomedical engineering technology and
radar technology, was firstly proposed by our group in the academic field. Bio-radar emits
electromagnetic waves to detect survivors’ physiological activities (breathing and heartbeat)
through the ruins and corresponding vital signs would be acquired by demodulating the
radar echo. Leveraging the bio-radar and various signal processing technologies [2–4],
a series of bio-radar equipment was developed, and corresponding functions are gradually
enriched so that we can not only detect the vital signs [5–8] but also localized information.
Specifically, with our proposed equipment and algorithms, we can even detect multiple
(Max. 3) survivors simultaneously [9,10]. Currently, our latest technologies are aiming to
distinguish between human and animals (non-human targets) under ruins [11,12], and even
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recognize human activities [13,14]. In practical applications, typical equipment we have
developed was also successfully used in many search-and-rescue operations (such as “SJ-
3000” and “SJ-6000” search-and-rescue UWB bio-radar used in the Wenchuan earthquake
in 2008, Yushu earthquake in 2010, Ludian earthquake in 2014, and so on in China) and
made a great contribution.

Another widespread and frequently occurring search scenario is about the injured
person in a normal outdoor environment, namely a natural environment, such as the
lost donkeys, crashed parachute jumpers, and wilderness travelers almost submerged in
the vast and diverse natural environment. For example, during a distressing disaster at
a sporting event, a large number of athletes suffered a safety accident due to the sudden
change of weather in the 2021 4th Yellow River Shilin Mountain Marathon 100 km cross-
country race in China [15]. Many athletes experienced the severe hypothermia phenomenon
and were trapped in the mountains, making it urgent but difficult to locate and detect them
quickly. However, due to the lack of air-to-ground rapid search and location technology,
the information of the trapped people in the outdoor environment was not sent to the rear
security center in time, resulting in a number of deaths that could not be treated in time.

In general, human target search technology in an outdoor natural environment can
be divided into constrained and unconstrained modes. For constrained methods, humans
need pre-wear auxiliary positioning devices, such as portable radio stations, wearable
GPS personal terminals, or wireless search devices with vital signs monitoring functions.
Nevertheless, these methods suffer from some inevitable deficiencies including increasing
body load, inconvenient operation, and high costs [16–18]. Moreover, in the above scenario,
our searching targets are often located in some extreme mountain forest environments or
carry-on devices might have been seriously damaged, making it hard or even incapable to
receive the information. Instead of wearing the auxiliary device, the unconstrained search
technology based on unmanned detection technology could effectively avoid the above
problems [19].

Currently, there is indeed some unconstrainedly unmanned aerial vehicle (UAV)-
based air-to-ground detection technologies for human target search in ideal background
environments. Different carried payloads mean different detection principles and detection
capabilities, and current technologies mainly include RGB high-definition camera [20,21]
and thermal imaging camera [22] on UAV for low altitude search. But the RGB camera still
appears to have insufficient resolution and low SNR when the detection distance is long
or the object is similar in color with the environment, and even appears underexposure
or overexposure when the ambient light changes [23]. Similarly, the thermal signal of the
human body would be covered by the halos when the ambient temperature is higher than
30 ◦C.

As an optimized form of hyperspectral technology, multispectral could relatively
streamline data volume and realize real-time imaging processing by rationally selecting
4~10 characteristic spectrum bands for data processing [24], which could ensure sufficient
information volume. By analyzing the differences of spectral characteristic curves between
target and circumstances, specific features in different bands can be exploited to identify
the target. At present, UAV-based multispectral detection technology is widely used in
agricultural, forestry, and environmental monitoring under low altitude cruise conditions.
Based on this technology, researchers have successfully achieved some detection perfor-
mance, such as the damage assessment to rapeseed crop after winter [25], decision support
system design for variable rate irrigation [26], fast Xylella symptoms detection in olive
trees [27] and inferring the spatial distribution of chlorophyll concentration and turbidity
in surface waters to monitor the nearshore–offshore water quality [25] and so on.

However, for the rapid detection and identification of injured human subjects in
an outdoor environment, the detection scenario is remarkably different from the above
scenarios, showing more severe detection difficulties and challenges. Unfortunately, there
is still a lack of corresponding effective technology. Fundamentally, the key difficulties
lie in: (1) the injured human subject in an outdoor environment is always in a still state
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without remarkable motion, such as lying on the ground, making it difficult to be detected;
(2) the injured human target is just a small target with a much smaller area compared
with the surrounding environment under an airborne high-altitude view; (3) the difference
between the clothing of injured people and the surrounding environment is weak, showing
low target-background contrast; (4) additionally, all these methods cannot acquire unique
physiological characteristics to identify the human attribute of the suspected target.

In this paper, we propose an automatic recognition method for injured human targets
in an outdoor natural environment based on UAV bimodal information. It can not only
efficiently detect the suspected human subjects based on multispectral features under low
target-background contrast but also acquire the vital signals for re-identification through
autonomously scanning large areas using a quad-rotor UAV equipped with a multispectral
imaging sensor and bio-radar.

This paper will be organized as follows: The materials and methods will be introduced
in Section 2, including multispectral image acquisition, multispectral image pre-processing,
and target identification. Section 3 presents the results of each step mentioned above.
Section 4 discusses the experiment results and conclusion.

2. Bimodal Information Collection System

In order to obtain bimodal information of ground targets, this study builds a bimodal
information collection system based on a UAV carrying dual sensors (shown in Figure 1),
with the main function of obtaining spectral feature information and vital sign information.
It is mainly composed of three components. Their relationship and system operation
principle is illustrated by Figures 2 and 3, respectively: (1) the optimal multispectral sensing
module acquires spectral information for the preliminary detection of suspected human
targets; (2) miniature bio-radar module acquires vital sign information for human subject
reconfirmation; (3) UAV carrying system and ground workstation are mainly responsible
for carrying out flight and information transmission control tasks. In the following, we
will give a detailed description of the 3 main components of the whole system and the
coordination between them.

Figure 1. The overall architecture of the bimodal information collection system.

 

Figure 2. The diagram of the bimodal information collection system.
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Figure 3. Suspected target detection and human nature re-identification based on UAV bio-modal
information from multispectral camera and bio-radar.

2.1. The Optimized Multispectral Sensing Module

The multispectral sensing (MSS) module on a cruising UAV at high altitude is used to
acquire some specific spectral features of the target background for suspected human targets
detection, which is referred to in stage 1 in Figure 3 during the entire search process. In our
study, a few multispectral bans are specifically selected by observing and analyzing the
sensitivity of different spectral bands to the environment and background. Consequently,
some optimal bands would be picked out from numerous hyperspectral bands, which has
the greatest ability to distinguish suspected human targets from the natural environment
with complex background situations.

Since the relative reflectivity was defined as follows:

Rrelative =
Lsubject

Lboard
·Rboard (1)

where Rrelative and Rboard are the reflectivity of subject and reference board, Lsubject and
Lboard are the spectral radiance of subject and reference board. According to the spectral
curve, we could pick out corresponding characteristic points which are promising to
distinguish green clothes from grassland.

In our study, a large number of preliminary measurement experiments were carried
out to obtain the wavelength-relative reflectivity curve for green vegetation (to simulate
background) and green camouflage (to simulate suspected injured human target outdoors)
using a spectrometer. Here, the ATP9100 portable object spectrometer was used to mea-
sure the current spectral parameters of ground objects (wavelength range of 300~1100 nm,
2048-pixel CCD detector, spectral resolution of 1.4 nm, wavelength accuracy of 0.5 nm, and
signal-to-noise ratio > 800) [28]. The instrument parameters are set as follows: automatic in-
tegral time, multiple detections, and followed with dark-current correction. Specifically, we
measured three times the ground objects in one validation experiment. The measurement
duration is 1–10 s and they will be integrated optimally. Then, the average spectral param-
eters of ground objects could be acquired by averaging. Finally, the spectral reflectance
curve of green clothes and green vegetation can be acquired as shown in Figure 4.
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Figure 4. The spectral relative reflectivity of green vegetation and green camouflage.

Target recognition based on single-band features is vulnerable and unstable. Therefore,
by constructing sensitive spectral indexes through inter-band operations, background-
target differences could be enhanced, which would facilitate the target extraction. By
observing the wavelength-relative reflectivity curve in Figure 4, there are six bands showing
significant differences between background and the target; thus, they are promising for
later target identification: (1) in the 400~500 nm band, the spectral curves of camouflage
clothing and green vegetation follow the same trend, and the reflectance is low and difficult
to distinguish, so the band of 450 nm can be used as the reference point for the inter-
band calculation; (2) there is a reflection peak caused by vegetation chlorophyll in the
spectrum curve of green vegetation in 550~560 nm band, which is much higher than that of
green camouflage. So, the band of 555 nm is selected; (3) in the 660~690 nm band, there
is an absorption peak that corresponds to the reflectance of green vegetation, which is
much lower than the reflectance of camouflage clothing, so the band of 660 nm is selected;
(4) nearby 710 nm, the reflectance of green vegetation rose sharply and reached the peak
rapidly, thus the band of 710 nm is adopted as the first high-reflectivity band; (5) the
high-reflectivity-platform continues until 1000 nm. This band of camouflage clothing has
high contrast with green vegetation, and the characteristics are obvious. Therefore, the
band of 840 nm and 940 nm are reasonably selected for feature recognition. Within a certain
band number range, more spectra contain richer information. Through extracting features
from these selected specific bands in the blue band, green band, red band, red edge band,
near-infrared band, the ability to specifically characterize the target will be strengthened,
which would greatly facilitate the target identification.

Based on the analysis above and market research, a multispectral sensor that meets
our requirements above, the MS600 camera, was adopted in our study. It is composed of six
single-band cameras. Each camera has its own optical path and photocarrier that records
the data of the corresponding imaging band. Six spectral bands (shown in Table 1) could be
acquired to form MS600 multispectral camera. Band selection should meet the requirements
of large amounts of information and small correlation between bands. The camera was
equipped with 1/3-inch sensor size, 1280 × 960 pixels, global shutter, 1.5 s maximum
capture rate, 7.5 cm ground pixel resolution at 120 m altitude, size 77 × 72 × 47 mm,
weight 170 g, DLS (downwelling light sensor) and GPS module, each image can record GPS
information in real-time. The image data collected by MS600 multispectral sensor were sets
of DN values (remote sensing image pixel brightness value) of six bands, which were used
to record the gray value of ground objects.
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Table 1. The selected spectral bands.

Band Number Band Name Centre Wavelength (nm)
Bandwidth

(nm)

1 blue 450 ± 3 nm 22 ± 5 nm
2 green 555 ± 3 nm 22 ± 5 nm
3 red 660 ± 3 nm 22 ± 5 nm
4 red edge 710 ± 3 nm 32 ± 5 nm
5

near-infrared
840 ± 3 nm 32 ± 5 nm

6 940 ± 3 nm 32 ± 5 nm

2.2. Micro-Bio-Radar Module

After the suspected targets are detected by multispectral technology, the bio-radar
module will play another critical role in re-identifying the human nature of these suspected
targets, which is referred to stage 2 in Figure 3 during the entire search process. Just as the
working principle illustrated by Figure 3, after the suspected human target is detected, the
bio-radar module will be triggered and accurately released around the target. Based on the
radar Doppler principle [4], the physiological activity information of the suspected target
can be obtained. Our group has successfully realized the detection of human respiration
and body movement in the field environment [29]. So, taking physiological motion features
(respiration rate or heartbeat rate) as a reference, accurate re-identification of surviving
human targets will be possible.

The bio-radars, which were thrown out to remote sensing the respiratory in our study
is JC122-3.3UA6 module. It is a 24 GHz continuous wave (CW) micro-radar and its effective
detection range is 10 m. The hardware of this system mainly includes a radar sensor for
human chest breathing detection [4], STM32 single-chip microcomputer, and LoRa module
for initial data A/D convert and data sending.

2.3. UAV Carrying System and Ground Workstation

The overall architecture of the bimodal information collection system is shown in
Figure 1. The M100 Quad-rotor UAV system [30], which could vertical take-off and land
with a payload of 1245 g, is adopted here to carry the multispectral camera and the
bio-radar module. The ground workstation is responsible for information transmission,
target identification, and system control. The coordination between the system mainly
includes four parts: (1) the MSS module on the cruising UAV first detect the suspected
targets; (2) ground workstation sends commands to the UAV, which automatically triggers
an airborne dropper to drop the bio-radar to a location around the target; (3) the bio-radar
sensor can transmit asymmetric wide beam signal and obtain the microwave echo reflected
by human chest moving. After being filtered and amplified, the respiratory signal is
converted into digital signals through STM32 A/D and sent to the ground -workstation
receiver by LoRa module; (4) by further analysis and judgment based on embedded
algorithms, both respiration rate detection and human target property re-identification
could be realized.

3. Bimodal-Information-Based Human Targets Recognition Method

Based on the ground target information collected by the above system, a bimodal-
information-based human target recognition method, namely a scheme, is proposed for
accurate injured human subject identification in an outdoor environment. The flowchart
of this method is shown in Figure 5 and is consist of two main parts: (1): suspected target
detection based on multispectral feature information, including multispectral images pre-
processing spectral feature extraction, and decision tree (DT) construction for suspected
target detection; (2) human subject reconfirmation based on respiration information de-
tected by bio-radar.
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Figure 5. The flowchart of bimodal-information-based human targets recognition method.

3.1. Suspected Target Detection Based on Multispectral Feature Information

(1) Multispectral image preprocessing

Before further analyzing and processing the multispectral images, it is necessary to
preprocess them to remove multifactor interference effects. The preprocessing process is
shown in Figure 6.

 

Figure 6. Flow chart of multispectral imagery preprocessing.

1st step: Radiometric calibration. Radiometric calibration consists of radiometric
correction and reflectance calculation. Radiometric correction mainly converts the DN
value into spectral radiance value and corrects radiation distortion caused by lens trans-
mission and sensor response [31]. The calculated reflectivity can reflect the real spectral
characteristics of ground objects. We should identify and calculate the average radiance of
the gray board pixels from gray board images, which were obtained by MS600 before the
flight. At the first step, identify the gray board area in the images by selecting the largest
nonzero connected region after running the function of binarization and image closure.
Then, locate the center of the gray board using the average values of row coordinates and
column coordinates. Make a square mask centered on the center coordinate point. The
DN value of the gray board area can be extracted by dot multiplication of mask and gray
board image. Finally, we can calculate the radiance of each pixel. With the above steps, the
DN value of the multispectral images was converted into the reflectivity value, and the
vignetting effect was corrected.

2nd step: Image registration. Each exposure of the MS600 camera can generate six
single-band images. Although this kind of sensor has the advantages of simple design
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and low cost, the limitation of the structure will lead to a dislocation between imaging
bands. Image registration must be done before further processing. In this stage, the main
task is to synthesize these six single-band images into one data file in TIFF format. Firstly,
the SURF (Speeded Up Robust Features) algorithm is used to detect the feature points in
every image, which is a robust local feature point detection and description algorithm [32].
The Hessian matrix is constructed to generate all interest points, build scale space, locate
feature points, and generate feature point descriptors. Then, after matching the feature
points between every two images, the RANSAC (random sample consensus) algorithm is
used to eliminate mismatching points [33]. Finally, abnormal matching points would be
eliminated by computing the affine transformation matrix between each image and the
registration will be completed through the affine transform.

(2) Multispectral feature extraction

The regions of interest (ROI) can be extracted manually according to the low altitude
high-definition images, which can show the distribution of experimental subjects (3 typical
objects are selected, including human subjects, vegetation, and soil). The reflectivity
feature is the top preferred feature. Here, a statistic experiment on the reflectivity feature
distribution of different targets is carried out based on numerous collected data. The
statistical result of the reflectivity of 3 ground objects in the image analyzed by ENVI
software is shown in Figure 7a. It is obvious reflectivity features of six bands could be
exploited to distinguish between target and background to some extent but cannot solve
the problem entirely.

Figure 7. Two kinds of features for 3 typical subjects. (a) Reflectivity of six bands, (b) Spectral indexes.

The spectral index can be another kind of feature to enhance target difference and quan-
tify it by band math. According to the spectral curves captured from the green camouflage,
vegetation, and bare soil, the following 8 spectral indexes were taken into consideration,
and they are calculated as shown in Table 2. Where NDVI stands for Normalized Differ-
ence Vegetation Index, NDGI (Normalized Difference Green Index), NGBDI (Normalized
Green-Blue Difference Index), PSRI (Plant Senescence Reflectance Index), SIPI (Structure
Insensitive Pigment Index), mNDVI (modified red edge Normalized Difference Vegetation
Index), MSR (Modified Simple Ratio Index), EVI (Enhanced Vegetation Index), R means
reflectivity, Rblue (band1), Rgreen (band2), Rred (band3), R710 (band4), Rnir and R840 (band5).

The statistical results of the 6 spectral indices over 3 ground objects based on numerous
data are shown in Figure 7b. It can be noticed that NDVI, mNDVI, MDR, PSRI, and SIPI
could separate vegetation from the ground subjects effectively. We chose NDVI to set
the upper bound and PSRI to set the lower bound that could achieve the best effect of
separating vegetation. Then, bare soil should be separated from the remaining area, EVI
and NGBDI were chosen to set a reasonable threshold to exclude the bare soil area. Band 6
was selected to filter the human subjects according to the band reflectivity figure and
combined with the size of the target area that noise spot could be excluded out.
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Table 2. Calculation formula of 8 spectral indexes.

Number Calculation Formula Number Calculation Formula

1 NDVI = Rnir−Rred
Rnir+Rred

5 SIPI = Rnir−Rblue
Rnir+Rred

2 NDGI = Rred−Rgreen
Rred+Rgreen

6 mNDVI = Rnir−Rredge
Rnir+Rredge−2∗Rblue

3 NGBDI = Rgreen−Rblue
Rgreen+Rblue

7 MSR = Rnir/Rred−1
Rnir/Rred+1

4 PSRI = Rred−Rgreen
Rnir

8 EVI = 2.5∗(Rnir−Rred)
Rnir+6∗Rred−7.5∗Rblue+1

(3) Decision tree construction for suspected target detection

The DT is exploited as the target classification and identification model for automatic
recognition and positioning in this study. As a method of extracting species information,
DT classification has the characteristics of convenience and high efficiency, which is widely
used in the classification of below three species [34]. Vegetation index and band reflectivity
were selected as spectral variables to classify by threshold method. Based on the spectral
index, band reflectance, and target area, we constructed a DT and set reasonable thresholds
to complete target identification as shown in Figure 8. Specifically, the NDVI threshold of
0.75 comes from the maximization of interclass variance (Otsu) and statistical experience
based on a large number of measured experiments.

 

Figure 8. The DT for identification of suspected target.

3.2. Human Subject Reconfirmation Based on Respiration Information Detected by Bio-Radar

After detecting the suspected human target based on the spectral features above, the
bio-radar module will be triggered and released near ground targets. It aims to detect the
physiological features of the suspected target for the reconfirmation of human attributes.
The CW bio-radar will transmit electromagnetic waves to illuminate the human target
around and the echo is modulated by micromotions of the body surface, such as breath-
ing. By demodulating the echo and obtaining the phase information, we can obtain the
respiration-related features. However, the outdoor environment is full of noise and clutter,
resulting in serious interference with radar echo, making it difficult to obtain a stable
and effective breathing signal. Therefore, finding a way to filter out the clutter and noise
interference from the radar is highly important.

Based on the characteristics analysis of the noise and breathing signals, the adaptive
line enhancer (ALE) is adopted for noise cancellation. The ALE is a deformation of the
adaptive pair eliminator, and we can use various adaptive filtering algorithms to process
the signal when the main and reference inputs are determined. Here the Normalized Last
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Mean Squares (NLMS) error algorithm is adopted for many reasons such as robustness,
timeliness, and convergence speed. The flow of the algorithm is as follows (Figure 9).

Figure 9. Block diagram of ALE.

s(k) is the useful respiration signal, n0(k) is noise signal, namely wideband signal.
s1(k) is the delayed respiration signal of s(k); thus, they have a strong correlation after
the delay, so the correlation between them is weak. According to the principle of self-use
pair eliminator, during the process of e(k) minimizing through z(k) and y(k) gradually
becoming close, the only way is to make the s1(k) and s(k) closest through FIR filter with
adjustable coefficients. Consequently, respiration signals with high SNR could be acquired
from z(k).

After the noise and clutter cancellation, the respiration rate could be acquired by
performing some frequency domain analysis on the preprocessed signal, which would be
the most direct and specific feature for human attributions reconfirmation.

4. Experiment and Results

4.1. Experimental Setup

The setup of the bimodal information collection system is shown in Figure 1. The
MS600 multispectral module containing those six specific bands and bio-radar module
are carried by the M100 Quad-rotor UAV system for target detection and recognition. The
flight mission was carried out in a wheat field in Hu County, Xi’an City, Shaanxi Province
on 24 March 2021. The weather is sunny, cloudless with downwards third-class winds,
which is suitable for the UAV flight. The flight remained at an altitude of 120 m, 5.3 m/s,
5 routes with 80% course overlap rate and 75% side overlap rate.

Two kinds of typical experiments were carried out in this study, namely the suspected
target detection experiment based on multispectral feature information only and the hu-
man subject reconfirmation experiment with auxiliary human vital sign information. More
specifically, the first kind of experiment was also conducted in two typical scenarios illus-
trated by Figure 10. Scenario 1 holds a relatively homogeneous environmental background
with a few kinds of components (green grassland and, a small piece of land). Twelve sets of
green camouflage clothes were laid on the field randomly to disguise as human subjects.
Scenario 2 is purposely selected as an outdoor bush environment in autumn, which is more
complex and closer to practical applications as shrubs, green lawns, trees, dark yellow,
and other vegetation randomly scattered. Here, three colors of camouflage (11 pieces of
camouflage and one real person in desert camouflage) were placed in different vegetation
areas of similar colors. Further, in the complex Scenario 2 described above, the subsequent
human subject reconfirmation experiment aims to distinguish between fake targets and
true human targets from multiple suspected targets with additional respiration information
detected by bio-radar.
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Figure 10. Illustration of experimental settings for two scenarios. (a) Scenario 1: 12 sets of green
camouflage clothes in a homogeneous grassland background, (b) 11 sets of green camouflage clothes,
and one real personnel in green camouflage clothing in a complex background.

4.2. Preliminary Detection of Suspected Human Targets

(1) Suspected human target detection in Scenario 1

Based on the multispectral sensor module, each exposure would acquire six bands of
remote sensing images (a certain area under the field of view for one exposure) as shown
in Figure 11. We can notice that the DN value of each band image is different because
different subjects have different spectral reflectance for different bands. In addition, we can
clearly observe the vignetting effect in the band six image that we must correct to achieve
accurate results.

Figure 11. Local multispectral remote sensing images in Scenario 1 acquired by MS600 (one exposure):
(a) 450 nm; (b) 555 nm; (c) 660 nm; (d) 710 nm; (e) 840 nm; (f) 940 nm.

To facilitate data analysis, it is necessary to preprocess the original multispectral
images. After the preprocessing on multiple sets of images from multiple exposures,
including image registration and radiometric calibration, and so on, a complete reflectance
panorama is formed as shown in Figure 12. Although we can visually find some suspected
target points, they need to be identified automatically and reasonably. Especially, when the
search range is large, it is impossible to find and locate the target quickly and accurately
rely on the human eye. Additionally, human subjectivity and visual fatigue have a great
impact on the results.
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Figure 12. The complete reflectance panorama in Scenario 1.

Next, the selected multispectral indexes and features in this study were fed to the
decision mechanism and applied to preliminarily identify and extract suspected human
targets automatically by setting a reasonable threshold. As the suspected target recognition
result shown in Figure 13, the red targets mean suspected targets. Obviously, 13 remarkable
suspected targets (corresponding to 13 red parts) were detected, including one undesired
recognition mistake and 12 non-human fake targets (camouflage). Results show that
this detection method based on multispectral feature information can effectively detect
suspected targets in this outdoor environment with a relatively single background.

 

Figure 13. Suspected target recognition result in Scenario 1 (green for vegetation, yellow for soil, red for
suspected target, blue for noise spot).

Moreover, we also compared the classification or recognition performance of the
DT with the state-of-art machine learning algorithms including Back Propagation neural
network (BP), Random Forest (RF), and Support Vector Machine (SVM) with a radial basis
kernel function. All these four classifiers are trained based on the same training dataset,
and the preprocessed image of one exposure marked in the red dashed box in Figure 12 is
taken as the test data. The classification results are as shown in Table 3. Obviously, based
on the same training data and test data, the recognition performance of different classifiers
does not differ greatly. It means that spectral features are the main factor affecting the
recognition results to some extent.
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Table 3. Recognition performance comparison of the state-of-art machine learning algorithms.

ML Algorithms Accuracy F1 Score

DT 99.76% 98.08%
BP 99.58% 99.62%
RF 99.37% 99.41%

SVM 99.65% 99.67%

(2) Suspected human target detection in Scenario 2

Scenario 2 is comprehensive and more representative for practical applications. The
background consists of many components with different colors (shrubs, green lawns, trees,
dark yellow, and other vegetation). The detection targets (eleven pieces of camouflage and
one real person in desert camouflage to disguise the human subject) contain three types of
color attributes and they were placed in different vegetation areas of similar colors. Since
the above analysis has demonstrated that the impact of different classifiers is not significant,
here we just chose DT as the representative classification algorithm in the subsequent study.

After the same preprocessing on multiple sets of images from multiple exposures,
a complete reflectance panorama is formed in Scenario 2 as shown in Figure 14. Obviously,
it is visually difficult to observe the ground suspected target in this complex scenario.
Especially for the target T9–T12, it is almost impossible to find them, due to their color
characteristics being similar to the background. Then, the proposed method based on
multispectral information only is applied to preliminarily detect suspected human targets
automatically as shown in Figure 15. It is clear that all the 12 suspected human targets were
still successfully detected in such a complex environment.

 
Figure 14. The complete reflectance panorama in Scenario 2.
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Figure 15. Suspected target recognition result in Scenario 2 (green for vegetation, yellow for soil, red for
suspected target, blue for noise spot).

However, we need to note that only suspected target T12 is a real human target. In other
words, just based on the multispectral information alone, we cannot distinguish clothes
and true human targets just relying on multispectral images. Therefore, this complex
Scenario 2 is taken as a typical example to test the effectiveness of the human subject
property re-identification method based on vital sign information proposed in this paper.

4.3. Accurate Re-Identification of Surviving Human Targets Using Bio-Radar

Based on the multispectral technology above, we can only detect the suspected human
targets in Scenario 2 but cannot make an accurate identification of surviving human targets.
Therefore, when suspected human subjects were found by aerial multispectral imaging,
the bio-radar will be released around the suspected target (within 8 m) to non-contact
detect respiratory signal (the detection direction of radar can be adjusted by the included
control components).

Just as shown in Figure 16a, since the human subjects are distributed in the outdoor
environment, we can find that the radar echo contains a lot of interference and noise, which
drowns out the breathing signal severely. Consequently, although the respiratory frequency
of the subject can be detected as 0.24 Hz in the normalized frequency spectrum, it still
contains a large amount of noise and interference components. When the environmental
interference is more intense, respiration detection would be more difficult. The noise cancel-
lation result of this signal using our proposed NLMS-ALE method is shown in Figure 16b.
Obviously, noise and interference are effectively removed from radar echo, and significant
respiration frequency can be acquired in the normalized frequency spectrum. This means
that even when the outdoor environment interference is strong, we are still able to detect
the breathing characteristics of the target using bio-radar. Then, this respiration information
would be transmitted wirelessly. Consequently, we can make accurate identification of
surviving human target (T12) as shown in Figure 16c and eliminate fake targets.
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Figure 16. Radar echo of human target T12 from 8 m and corresponding frequency analysis, (a) origi-
nal signal and normalized frequency spectrum, (b) noise cancellation signal and normalized frequency
spectrum, (c) human target reconfirmation result.

5. Discussion

Based on suspected target detection experiments under two typical Scenarios, experi-
mental results above clearly show that all suspected targets could be accurately detected
and separated from the background based on multispectral feature information only (with
only an additional detection mistake), even under a complex outdoor bush environment.
However, the study also amply demonstrates that the human attributes of the suspected tar-
get cannot be confirmed and verified based on unimodal information alone. Furthermore,
combined with auxiliary physiological information from the bio-radar, only the true human
target in Scenario 2 was accurately identified. Therefore, the bimodal-information-based
human target recognition method proposed is initially proven to be effective for ground
injured human subject search in an outdoor environment. For this challenging identification
task, the recognition is satisfactory to some extent. However, this method also has a few
limitations for practical application in the future.

With respect to the initial suspected target detection, the recognition algorithm adopted
in this experiment is the decision tree in supervised learning. Objects are classified by
different properties thresholds, which is conducive to real-time processing. Meanwhile, it
also leads to the problem that the robustness of the classification method is weak because
we cannot conclude spectral of all the clothes and find appropriate thresholds. Therefore,
our future research work will focus on superior target features with higher stability and
more intelligent and excellent recognition algorithms, such as deep learning recognition
algorithms. In addition, reducing the time complexity of the model and more robust
target recognition-based multimodal optoelectronic information fusion are also our future
research directions.

On the other hand, just as what we tried in this paper, the bio-radar is applied to
acquire the vital signals, which can help us to make the judgment whether the subject
is human or not and to infer the state of life. However, the detection environment and
condition are totally different and even more challenging than that of our previous indoor
vital sign detection in the medical field [35], and survivors detection under the ruins in the
post-disaster search-rescue field [7]. (1) Firstly, the effective detection range of the micro-
bio-radar is only 10 m, so finding a way to throw the bio-radar from the UAV platform to
a proper location around the suspected target to acquire vital signals is still a challenging
job. Secondly, the problem of “differentiation between human and non-human (animal) live
targets” and “respiration rate varies in different physiological conditions” are inevitable
issues to consider in the outdoor detection environment. Fortunately, our past studies
have tried some very similar exploring experiments [12,36,37]. These studies confirmed
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that some differences can be observed between human body respiration and that of other
animals (cats, dogs, pigs, etc.) in the time domain, but they are not significant. Nevertheless,
the human and other non-human (animal) live targets can be accurately differentiated
based on multi-domain features (time domain, time-frequency domain) combined with
some machine learning method. Therefore, we will try to embed these algorithms into the
UAV bio-modal system and improve it by carrying out some test experiments in our future
work. And for the problem of “the same subject’s respiration varies in different conditions”,
it can be solved by similar ideas.

6. Conclusions

In response to the challenging task of rapid search of ground injured human targets in
outdoor environments, a UVA-based detection and recognition technology combined with
bimodal sensors is developed. Considering that the key difficulties of the identification
task arise from the characteristics of the target and the detection environment, such as
small-scale target property compared to the ground background, low target-background
contrast, and weak physiological sign, an automatic recognition method based on bimodal
information is proposed. First, suspected targets were accurately detected and separated
from the background based on multispectral feature information only. Immediately after,
a bio-radar module would be released to detect the physiological information for accurate
re-identification of human target property. Both the suspected human target detection
experiments and human target property re-identification experiments show that our pro-
posed method could effectively realize accurate identification of ground injured in outdoor
environments, which is important for the research of rapid search and rescue of injured
people in the outdoor environment. Meanwhile, the robustness and convenience of this
technology in a practical application need to be further improved.

Our future work will focus on extracting superior target features with higher stability
and trying a more intelligent integration approach of feature extraction and recognition,
aiming to improve the recognition accuracy and application robustness. In this experiment,
there are few kinds of ground objects, and the complexity of the experimental environment
is not enough. In the follow-up research, the complexity of the field condition will be grad-
ually increased, thus the reliability of the identification model would be further improved.
Moreover, if the state of the target’s physical signs detected by bio-radar can be quickly
assessed based on vital signs and transmitted to the rear command timely, it is of great
significance for the search and rescue of injured people in the outdoor environment.
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Abstract: Coaxial rotor systems are appealing for multirotor drones, as they increase thrust without
increasing the vehicle’s footprint. However, the thrust of a coaxial rotor system is reduced compared
to having the rotors in line. It is of interest to increase the efficiency of coaxial systems, both to extend
mission time and to enable new mission capabilities. While some parameters of a coaxial system
have been explored, such as the rotor-to-rotor distance, the influence of rotor pitch is less understood.
This work investigates how adjusting the pitch of the lower rotor relative to that of the upper one
impacts the overall efficiency of the system. A methodology based on blade element momentum
theory is extended to coaxial rotor systems, and in addition blade-resolved simulations using compu-
tational fluid dynamics are performed. A coaxial rotor system for a medium-sized drone with a rotor
diameter of 71.12 cm is used for the study. Experiments are performed using a thrust stand to validate
the methods. The results show that there exists a peak in total rotor efficiency (thrust-to-power
ratio), and that the efficiency can be increased by 2% to 5% by increasing the pitch of the lower rotor.
The work contributes to furthering our understanding of coaxial rotor systems, and the results can
potentially lead to more efficient drones with increased mission time.

Keywords: computational fluid dynamics; blade element momentum theory; coaxial rotor;
aerodynamics

1. Introduction

Several designs for unmanned aerial vehicles exist today, with varying compromises
in terms of size, fuel system and speed [1]. Multirotor drones have the advantage of small
footprint, non-restrictive take-off/landing area requirements, high maneuverability and
high hovering capability. Multirotor drone designs can be found in sizes ranging from light
vehicles below 50 g [2,3] to larger vehicles designed for human transport [4,5].

The power unit on a multirotor drone is important, as it determines the type of op-
erations a drone can perform. The most common power source on multirotor drones is
batteries, although some designs exist that employ, e.g., hydrogen [6,7]. Increasing the effi-
ciency of the drones is important as it can extend the flight time, thereby extending mission
time or even enabling new types of mission capabilities.

The projected area of a drone can be a critical factor, as it determines how the drone
can be transported and the type of areas it can fly in. In a coaxial rotor system, one rotor
is put above the other instead of placing them side by side. Compared to larger aircrafts,
coaxial multirotor drones typically use fixed-pitch rotors to avoid complex mechanical
design [8]. The coaxial layout increases the thrust without increasing the projected area,
making this an attractive option for multirotor drones.

However, a disadvantage of a coaxial rotor system is that there is a loss of efficiency,
since the lower rotors operate in the wake of the upper rotors. Some attempts have
been made to increase the efficiency by adjusting the distance between the rotors [9–11].
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There are also some commercial designs using a different pitch for the lower rotor (e.g.,
CarbonCore Cortex X8 and Himax CR2816), and this has been proposed as a way to
increase the efficiency [12]. Although several studies on coaxial rotors exist in the scientific
literature, the influence of pitch has not been thoroughly explored. Most studies have also
been performed on larger rotors with systems for dynamically changing the collective
pitch of the blades, while in recent years, smaller drones with fixed pitches are becoming
increasingly relevant.

Yoon et al. [13] investigated changing the collective pitch of the lower rotor in a coaxial
system using detailed computational fluid dynamics (CFD) simulations. The study used
the XV-15 rotor with a diameter of 3.8 m. The emphasis was on balancing torque by
adjusting the pitch and the impact on thrust-to-power efficiency was not investigated.
Jinghui et al. [14] performed both wind tunnel tests and CFD simulations of a coaxial
rotor system with large blades of 4 m in diameter. This study also found that the thrust
on the lower rotor was lower than the upper since the effective angle of attack is lower,
but did not investigate the effect on efficiency of modifying the pitch of the lower rotor.
Kim et al. [15] used CFD simulations to study the efficiency of a coaxial rotor setup
for a conceptual personal air vehicle. They found that the optimal pitch for the upper rotor
was different than that of the lower rotor, but they did not perform simulations specifically
with different pitches for the two rotors. Leishman and Ananthan [16] looked specifically
at the influence of pitch angle in a coaxial rotor system. They performed simulations using
blade element momentum theory (BEMT) of a 7.6 m Harrington helicopter rotor in a coaxial
configuration. They found an optimal design where the pitch of the lower rotor is higher
than the upper rotor for the downwash region, with a slightly lower pitch than the upper
rotor for the outer part of the rotor.

This work uses a combination of simplified analysis with blade element momentum
theory and detailed blade-resolved CFD simulations to investigate the influence of changing
the pitch of the lower rotor in a coaxial system for a medium-sized drone. Experiments
in single-rotor and coaxial rotor setups are performed to validate the computational models.
The main contributions of the paper are to demonstrate that a simplified BEMT model can
give reasonable results for coaxial rotors with varying pitch angles, and also to provide
insight into the impact of using different pitch angles for the upper and lower rotor.

2. Computational Methods

2.1. Blade Element Momentum Theory

Blade element momentum theory (BEMT) combines two theories; momentum theory
and blade element theory. In momentum theory the rotor acts as a disk injecting momentum
into the flow, while in blade element theory, the rotor is divided into small, independent
elements and aerodynamic forces are calculated using tabulated values for lift and drag
for the airfoil. The methodology has been extensively used for both rotor systems and wind
turbines, and detailed derivations can be found elsewhere [17–19]. Hence, only a brief
explanation of the method applied in this study is given here. Figure 1 gives an overview
of both the momentum theory control volume and the blade element theory approach.

(a) (b)

Figure 1. Illustration of parameters and forces for blade element momentum theory. (a) Momentum
theory control volume. (b) Blade element.
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For a propeller, power is applied to the rotor to generate thrust along the rotation axis.
The incoming velocity that a blade element is subjected to is not a simple addition of the flow
velocity in the axial direction and the angular velocity of the rotor in the tangential direction.
The axial velocity is accelerated due to the presence of the rotor and the tangential velocity
is reduced due to swirl. This can be accounted for by introducing axial and tangential
induction factors,

v = (1 + a)V∞, (1)

v′ = (1 − a′)VΩ = (1 − a′)Ωr, (2)

U =
√

v2 + v′2, (3)

where v and v′ are axial and tangential velocities, and a and a′ are the axial and tangential
induction factors, respectively. U is the incoming velocity seen from the blade element.

In blade element theory, the force on a single blade element can be expressed by

ΔT = σπρU2CTrΔr, (4)

ΔQ = σπρU2CQr2Δr, (5)

where T is the thrust, i.e., force in axial direction, and Q is the torque, i.e., the moment around
the axial direction. σ = Bc/(2πR) is the blade solidity, where B is the number of blades and c
is the chord length. The thrust and torque coefficients in the above expressions are calculated as

CT = CL cos φ − CD sin φ, (6)

CQ = CL sin φ + CD cos φ. (7)

The drag and lift coefficients, CD and CL, respectively, are extracted from tabulated
values for the airfoil using the local angle of attack for the airfoil,

α = β − φ. (8)

Similar expressions as in Equations (4) and (5) for the incremental forces can also be
found from momentum theory,

ΔT = 4πρrV2
∞(1 + a)aΔr, (9)

ΔQ = 4πρr3V∞Ω(1 + a)a′Δr. (10)

Combining these equations, the induction factors can be expressed directly as

a =
1

κ − 1
, (11)

a′ =
1

κ′ + 1
, (12)

κ =
4 sin2 φ

σCT
, (13)

κ′ =
4 sin φ cos φ

σCQ
. (14)

From the rotor force diagram for a blade element, Figure 1, the local inflow angle φ
can be expressed from the local velocities as

tan φ =
(1 + a)ΩR
(1 − a′)V∞

. (15)

Once a solution for the inflow angle is found, the forces are calculated from the blade
element equations and integrated along the rotor to find the total forces. A well-known
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issue with BEMT methods is the overprediction of forces near the tip, since vortex shedding
from the tip is not accounted for in the induced velocities. This is typically alleviated by
the use of tip-loss correction methods. In this work, the classic Prandtl tip-loss method
is used [20], where a correction factor, F, is multiplied into the expressions for thrust and
torque for each element, Equations (9) and (10). This expression factor is given as

F =
2
π

cos−1 e− f , (16)

f =
B
2

R − r
r sin φ

. (17)

The above method is implemented in the open source software pyBEMT [21], devel-
oped by one of the authors. Equation (15) is solved for φ using root-finding functions
from the SciPy library [22].

Note that for the hover situation considered in this work, Equation (15) is not defined
since the axial inflow velocity is zero. To circumvent this, this velocity is instead set to a low
value, V∞ = 1 × 10−6.

The modelling of the coaxial rotor is based on momentum theory [17,23]. The lower
rotor will be in the slipstream created by the upper rotor. Some authors have been con-
sidering the varying slipstream contraction [24], but here a fully developed slipstream
will be considered. Additionally, it is assumed that the rotors are hovering, i.e., there is
a zero velocity inflow to the upper rotor, and that the lower rotor is a sufficient distance
below the upper rotor so that the slipstream is fully developed. For this case, the continuity
equation gives

ViπR2 = VsπR2
s , (18)

where Vi is the induced velocity just below the rotor and Vs is the slipstream velocity
in the fully developed wake. Rs is the radius of the slipstream region. For the momen-
tum, the thrust generated from the upper rotor is equal to the change in momentum
from the static region to the slipstream,

T = ρVi AVs. (19)

Finally, the work done by the upper rotor is equal to the kinetic energy in the slipstream

TVi =
1
2

ρVi AV2
s . (20)

From these equations, the following expressions for the slipstream properties are found:

Rs =
R√

2
(21)

vs = Cs

√
2T
ρA

(22)

Here, Cs is a model constant, accounting for the fact that for smaller UAV rotors,
the hub is a large part of the rotor, and there is not a sharp transition from the hub
of the rotor to the rotor, or from the slipstream to the outer part of the lower rotor. In this
work, this constant is set to Cs = 0.8. Additionally, the model assumes that the velocity
tapers linearly off from the slipstream to the outer part. The end of this taper region is set
to the middle of the slipstream radius and the radius of the rotor.

For the pitch adjustment of the lower rotor in the coaxial setup, it is desirable to main-
tain the same thrust when the pitch is modified. This is achieved by adjusting the angular
velocity of the lower rotor to obtain the same total thrust. In the BEMT solver, the root-
finding functions of the SciPy library are used for this purpose.
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2.2. Computational Fluid Dynamics

Several detailed simulation methods for rotor systems based on CFD methodology
exist today. These include blade-resolved methods where the blade is explicitly mod-
elled [13,25–28] and methods where the blade is modelled using embedded BEMT methods
or similar techniques and then represented as a volume force in the CFD simulation [29–31].

In this work, the blade-resolved method is used. The CFD simulations are per-
formed by solving the transient, incompressible Reynolds-averaged Navier–Stokes equa-
tions, together with the k-omega shear stress transport (SST) turbulence model [32]. In
Yoon et al. [26], it was found that an eddy-resolved method performed better than
the Reynolds-averaged approach for rotor flows. However, this was because the eddy vis-
cosity grows in the far-field due to how the turbulent length scale is modelled in the Spalart–
Allmaras (SA) turbulence model. The turbulence length scale in the SA model is dependent
on the distance from the wall, thereby growing larger than typical eddy sizes in the far-field.
In the k-omega SST model, the turbulence length scale is lt ∼

√
k/ω, thereby circumventing

this issue.
The simulations are performed using the open source software OpenFOAM [33,34] v7,

which is based on the finite volume method. The PIMPLE algorithm is used for the pressure–
velocity coupling and the time marching. This algorithm allows a larger time step to be taken
while maintaining numerical stability, combining outer pressure-momentum corrections with
inner pressure corrections. Here, the rotor is allowed to rotate 1° per time step. Up to 50 outer
correctors are used, reducing the sub-iteration residual by three orders of magnitude at each
time step. The implicit Euler scheme is used for temporal discretization. For the spatial
discretization, second-order schemes are used for all terms, and in particular, the upwind-
weighted linearUpwind scheme is used for the convective terms.

Rotation of the rotors is handled using Arbitrary Mesh Interface (AMI). A cylindrical
domain around the rotor is meshed separately and allowed to rotate at a constant angular
velocity. This region is then coupled to the surrounding static mesh using the cyclicAMI
boundary condition. At each time step, each face at the AMI boundary identifies overlap-
ping faces from the neighboring patch and the contribution from these faces is weighted
according to the intersecting area [35].

As for the BEMT solver, when a case is solved with a modified pitch for the coaxial
rotor setup, the angular velocity should be modified to maintain the same total thrust.
This is achieved by writing a custom version of the solid body motion solver in OpenFOAM,
where the angular velocity is adjusted during the simulation using a binary search algorithm
until the desired total thrust is found.

The simulations are run in parallel on a cluster using Intel Xeon E5-2695 v4 processors.
With the case decomposed over 108 cores, a single simulation of 10 full rotor revolutions
has an execution time of approximately 40 h.

3. Numerical Setup

3.1. Rotor Geometry

The main parameters of the rotor geometry are listed in Table 1. The geometry
is based on the commercial T-MOTOR G28x9.2 carbon fiber rotor, which has diameter
D = 28′′ = 71.12 cm and pitch P = 9.2′′ = 23.368 cm. This rotor size is chosen as it is used
in several commercial designs [36,37] and in research [11,38], due to giving sufficient thrust
for industrial payloads while maintaining a reasonable footprint for transportation and storage.
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Table 1. Description of rotor geometry.

Quantity Unit Value

Rotor diameter, D cm 71.12
Number of blades - 2

Hub diameter cm 5.4
Pitch at 0.75R in 9.2

Chord at 0.75R cm 4.4

The chord length is kept fixed for all blades, based on measurements of the T-MOTOR
rotor. The twist angle of the blade is varied according to the following formula,

β(r) = arctan
(

P
2πr

)
, (23)

where P is the pitch at 0.75R given in metres, except close to the hub of the blade where
the twist is gradually reduced to yield a geometry suitable for manufacturing. The twist
angles considered in this work along with the chord length along the blade span are shown
in Figure 2.
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Figure 2. Twist angle and chord length of the rotor blade.

For consistency, the rotor geometry is constructed using a single airfoil instead of using
the actual airfoil shape from the commercial rotor. The chosen airfoil is the Archer A18
airfoil, originally built for free-flight airplanes [39]. The coordinates for the airfoil are
taken from the UIUC Airfoil Coordinates Database [40]. A comparison of the A18 airfoil
against measurements of the commercial rotor is shown in Figure 3. Although there are
some discrepancies, especially towards the trailing edge where a thin edge is challenging
to manufacture for small rotors, the overall agreement is good. The tip of the rotor is also
simplified compared to the commercial airfoil, with a simple cut-off at the tip of the blade.
Figure 4 shows the 3D geometry used in the CFD simulations.
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Figure 3. Comparison of A18 airfoil against airfoils along the commercial T-MOTOR G28x9.2” blade
at four radial stations. From the bottom: 0.3R, 0.5R, 0.7R, 0.9R.

Figure 4. Top view (top) and front view (bottom) of the computational 3D rotor geometry for a pitch
of 9.2”.

The aerodynamic drag and lift coefficients for the airfoil, to be used in the BEMT
solver, are obtained by performing XFOIL simulations through the QBlade interface [41,42].
For the sake of simplicity, a constant Reynolds number of Re = 175,000 is used, which
is approximately the Reynolds number at r = 0.75R at a rotational speed of 2000 RPM.
The resulting drag and lift coefficients, along with the aerodynamic efficiency (drag-to-
lift ratio), are shown in Figure 5. The airfoil reaches a peak in aerodynamic efficiency
of CL/CD = 80 at angle of attack α = 5°.
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Figure 5. Aerodynamic drag and lift coefficients for the A18 airfoil, calculated using XFOIL at Re = 175,000.
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3.2. Mesh

The numerical simulations are performed over a mixed-element unstructured grid de-
veloped at neptech AB using Pointwise® (Cadence Design Systems, San Jose, CA, USA) [43],
a mesh-generation software specifically developed for CFD applications. Particular attention
is paid to the rotor surface mesh, which is shown in Figure 6a. Stretched anisotropic quadri-
laterals have been extruded from the leading edge and the trailing edge using the 2D T-Rex
algorithm. T-Rex allows us to grow layers of rectangular cells given the first cell thickness
and a growth factor, and the inflation is stopped once a smooth dimensional transition with
the rest of the surface mesh is achieved. The rest of the upper and lower surface domains consist
of triangles and quads generated by the “advancing front ortho” algorithm, and are automat-
ically shaped to comply with high-quality criteria, whilst fulfilling a specified maximum cell
dimension. The grid at the blunt trailing edge and at the wingtip has been designed to transition
smoothly to the T-Rex-extruded upper and lower surface cells using a structured-dominant
approach.

Once a reasonably fine and high-quality 2D grid is obtained, the 3D T-Rex algorithm
is employed to inflate layers of high-aspect-ratio hexahedra and prisms in the near-wall
region to effectively capture viscous effects. The remaining AMI block is filled with isotropic
tetrahedra. As shown in Figure 6b, T-Rex ensures a smooth dimensional transition between
the last extruded prism or hexahedron and the outer tetrahedra through one layer of high-
quality pyramids. The remainder of the far-field domain surrounding the AMI blocks is
cylindrical and fully consists of isotropic tetrahedra with increased characteristic dimension
(Figure 6c). In order to achieve a more detailed solution in the far-field for the wake
immediately downstream of the rotor, a cylindrical source has been shaped enclosing this
region to introduce a local grid refinement.

(a)

(b) (c)

Figure 6. Illustration of mesh arrangements. (a) Rotor surface mesh. (b) Close-up of mesh near rotor
with layers generated using 3D T-Rex extrusion. (c) Mesh around rotors. The yellow rectangles
indicate the AMI blocks.

The geometric dimensions of the cylindrical source and mesh blocks are reported
in Table 2. The lower AMI block height has been adjusted to fit with the increased pitch
of the lower rotors. The values of the most relevant grid setup parameters are summarised
in Table 3.

Pointwise’s mesh quality-check tool can effectively cope with the strict constraints
of OpenFOAM. For instance, the solver is particularly sensitive to cells showing a high
non-orthogonality, which can potentially lead to simulation divergence. A reasonable trade-
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off between cost efficiency and cell quality has been found, with the number of severely
non-orthogonal cells (>70) reduced to less than 600 per AMI block and grouped in non-
critical flow regions. Preliminary simulations provided a reasonably stable solution.
Figure 7 shows the y+ values over the blades at r = 0.75R. The y+ value is lower
than one over the majority of the rotor surface, except in a small region at the leading edge.
It is overall lower than two across the entire blade, thus indicating a satisfactory resolution
for the viscous effects.
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Figure 7. Non-dimensional wall distance along rotor surface at radius r = 0.7R for RPM = 2200.

Table 2. Mesh size parameters for the cylindrical blocks and source.

Object Base Diameter Height Ratio to D

Upper AMI block 84.0 cm 5.50 cm
Lower AMI block 84.0 cm 6.95 cm
Cylindrical source 1.00 m 3.00 m ∼4 D

Far-field block 10.0 m 10.0 m ∼14 D

Table 3. Main mesh setup parameters.

Quantity Unit Value Ratio to D

Rotor surface maximum cell size mm 2.00 ∼ D/350
3D T-Rex 1st layer thickness m 1 × 10−5

3D T-Rex inflation growth factor - 1.2
AMI block maximum cell size mm 5.00 ∼ D/140

Source delimited region max. cell size cm 2.00 ∼ D/35
Far-field block maximum cell size cm 20.0 ∼ D/4

Total number of cells - 14.1 × 106

4. Experimental Setup

The experiments are performed on a RCbenchmark Series 1780 dynamometer and
thrust stand. The experimental setup is shown in Figure 8. The rotors used are T-MOTOR
G28x9.2 rotors, driven by T-MOTOR U8II KV100 brushless motors with power supplied
by 1500 W power supplies. For the coaxial setup, the rotors are mounted facing each other
and rotating in opposite directions.

The angular speed is measured by an optical tachometer, and the thrust and torque
are measured by a load cell with a given experimental tolerance of ±0.5%.
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(a) (b)

Figure 8. Picture of experimental setup showing the thrust stand in coaxial configuration and
a close-up view of the load cell and motor. (a) Thrust stand. (b) Load cell and motor.

5. Validation

5.1. Mesh Sensitivity Study

The reliability of the mesh was tested through a mesh sensitivity study for a sin-
gle rotor. When designing a refined and coarser mesh setup, it was found that changes
in the cell dimension over the rotor surface grid resulted in poorer quality 3D blocks,
with an increased number of severely non-orthogonal cells. This phenomenon can affect
the solution stability and thus lead to a non-reliable mesh sensitivity study. Therefore,
in order to provide setups with overall similar quality, the characteristic maximum di-
mension of the tetrahedra of the AMI block was varied. This parameter was increased
to 10.0 mm for the coarser setup and decreased to 3.75 mm in the finer setup. Table 4 shows
the total number of cells of the three configurations along with their simulation results.
The coarse setup solution highlights a reasonable but non-negligible change in thrust and
efficiency compared to the chosen medium setup. In contrast, the fine setup shows only
minor differences, hence the medium mesh is chosen for the remainder of the simulations
in this work.

Table 4. Mesh sensitivity study.

Number of Cells Thrust Efficiency

(×106) (N) (N W−1)

5.50 25.5 0.124
8.78 25.9 0.127
13.2 26.0 0.127

5.2. Single-Rotor Validation

Figure 9a shows a comparison of the computed thrust with BEMT and CFD against
the experimental values for varying angular velocities. Included also are data from the ven-
dor for the T-MOTOR G28x9.2 rotor [44]. The vendor data are in good agreement with
the performed experiments, acting as validation of the experimental setup. The CFD simu-
lations match the trend of the experiments, but predict thrust values to be approximately
15% lower. It should be noted that since the simulated rotor geometry does not exactly
match the commercial rotor design, an exact match can not be expected. In particular,
the tip design of the commercial rotor is expected to be more efficient than the simulated

119



Drones 2022, 6, 91

design. The BEMT results are also in good agreement with the experiments, but with
increasing underprediction at higher angular velocities.

Figure 9b shows a comparison of the computed efficiency with BEMT and CFD
against the experimental values for varying angular velocities. The efficiency is defined
as the thrust-to-power ratio, where the power is calculated as the torque multiplied by
the rotational velocity. Similar trends as for the thrust are observed here. The CFD sim-
ulations are close to the experiments, with an underprediction of approximately 2% to
5%. The BEMT simulations also follow the same trend as the experiments but with an
overprediction ranging from around 15% at low rotational speeds to 5% at high rotational
speeds.
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Figure 9. Comparison between experiments, BEMT simulations and CFD simulations for a single
rotor. (a) Thrust. (b) Efficiency.

Further details of the flow pattern are given in Figure 10, which shows the averaged
velocity magnitude from the CFD simulations in a vertical slice at the four simulated
angular speeds. The flow pattern is the same for all angular speeds, but with an increase
in the velocity magnitude for higher angular speeds. Flow is accelerated from the static
air above the rotor, resulting in a high-velocity wake below the rotor. There is a low-
velocity region just underneath the rotor hub where there is no pitched airfoil to accelerate
the flow. The wake clearly contracts into a vena contracta, with a close-to-uniform velocity
in the center of the blade and a sharp fall-off to zero at the sides. Although the wakes
become closer towards the center at a distance from the rotor, a lower-velocity core remains
at the center.

Figure 11 shows the vertical velocity component as a function of radial distance,
at a distance of 0.115 m below the rotor. This is the distance where the lower rotor is placed
for the coaxial simulations. The predicted inflow velocity from the coaxial BEMT model is
shown as dashed lines. There appears to be good agreement between the velocity simulated
from CFD and the velocity predicted from the BEMT model. This indicates that the BEMT
model is also applicable to coaxial systems.
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Figure 10. Magnitude of velocity vector for single-rotor setup at varying RPM. The grey line indicated
in (a) shows the position of the second rotor for the coaxial setup. (a) RPM = 1600. (b) RPM = 1900.
(c) RPM = 2200. (d) RPM = 2500.
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Figure 11. Vertical velocity at a vertical distance 0.115 m from the rotor (indicated by the grey line
in Figure 10), estimating inflow velocity for the lower rotor in the coaxial setup. The dashed lines are
the values predicted from the coaxial BEMT model.

5.3. Coaxial Rotor Validation

The same validation was performed for a coaxial setup, using two T-MOTOR G28x9.2
rotors. The rotors are placed at a distance of 0.115 m apart, rotating in opposite direc-
tions at the same angular velocity. Figure 12a shows a comparison of the computed
thrust with BEMT and CFD against the experimental values for varying angular velocities.
The experimental results and CFD results for the upper rotor are almost identical to the iso-
lated rotor results, indicating that the upper rotor is not significantly affected by the lower

121



Drones 2022, 6, 91

rotor. Note that for the CFD results, the thrust values presented here are averaged results.
In the coaxial setup, the thrust will oscillate based on the angular position of the rotor
relative to the lower rotor. The lower rotor, as expected, shows lower thrust than the upper
rotor. For the experiments, the thrust values are 60% to 65% of the upper rotor. The CFD
results are again close to the experimental results. For the lower rotor there is a maximum
of 6.5% discrepancy in the results. The coaxial BEMT model gives an underprediction
of the thrust from 10% at lower angular speeds to 20% at higher angular speeds.
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Figure 12. Comparison between experiments, BEMT simulations and CFD simulations for the coaxial
rotor setup. (a) Thrust. (b) Efficiency.

Figure 12b shows a comparison of the computed efficiency with BEMT and CFD
against the experimental values for varying angular velocities. The efficiency for the CFD
simulations again follow the trend of the experiments and have values in good agreement
with the experimental values. The BEMT method also follows the same trends, but signifi-
cantly overpredicts the efficiency for the lower rotor with values 20% to 35% higher than
the experimental values. This is an indication that there are interactions between the rotors
not captured by the simple coaxial model used in this work. Still, as both the CFD method
and the BEMT method predict the same trends as the experiments, both in terms of thrust
and efficiency, they should provide valuable insight on the effect of changing the pitch
of the lower rotor.

The CFD method has the additional benefit of capturing more flow details and ro-
tor interactions than the BEMT method. Figure 13 shows the averaged velocity magni-
tude from the CFD simulations in a vertical slice at the four simulated angular speeds.
The velocities are larger than in the corresponding Figure 10 for the single-rotor setup,
due to the additional thrust from the lower rotor. It is also clear that the outer region
of the lower rotor operates outside the wake of the upper rotor. The total wake from both
rotors is also wider than for the single rotor, with a higher velocity core from the combined
wake of the two rotors and a lower velocity outer rim from the wake generated by the outer
region of the lower rotor. These observations are similar to previous simulations performed
on a larger coaxial rotor system by Jinghui et al. [14].

122



Drones 2022, 6, 91

(a) (b)

(c) (d)

0 2 4 6 8 10 12 14

Velocity magnitude (m/s)

Figure 13. Magnitude of velocity vector for coaxial rotor setup at varying RPM. (a) RPM = 1600.
(b) RPM = 1900. (c) RPM = 2200. (d) RPM = 2500.

6. Results

In this section, the impact of the lower rotor pitch on efficiency is investigated. First,
the BEMT method is used to sweep over a range of pitches for the lower rotor. The case
of RPM = 2200 and a pitch of 9.2′′ for both rotors is used as a reference case. The pitch
of the lower rotor is varied from 8.2′′ to 16.2′′ and the RPM of the lower rotor is adjusted
to give the same total thrust for each case. Using the CFD method, three pitches of 12.2′′,
13.2′′ and 14.2′′ are simulated, while also adjusting the RPM of the lower rotor until the same
total thrust as the reference case is obtained.

The resulting efficiencies are plotted in Figure 14. The BEMT results indicate a clear
peak in efficiency at a pitch of 14′′, with an improvement in efficiency of 2.3%. For the CFD
method, the peak is found at a pitch of 13.2′′, and with a higher improvement in efficiency
of 5.0%. Both methods predict a peak in the efficiency, and the location of the peak is
also found at a similar pitch, but the CFD method predicts a higher efficiency value. To
compare the two solutions, Figure 15 shows the thrust along the rotor for the two methods
for a pitch of 14.2′′. For the middle part of the rotor, the methods have similar thrust,
which indicates that the coaxial model in the BEMT method works well. The transition
from the part of the rotor that is inside the slipstream to the outer part of the rotor is
sharper in the BEMT solution than in the CFD solution. Although the coaxial model has
a linear transition in incoming velocity, as seen in Figure 11, there should be an additional
smoothing to match the CFD solution. Additionally, the tip correction appears to be too high,
as the thrust tapers off towards the tip of the rotor faster than in the CFD solution. Despite these
differences, the BEMT method captures the overall behavior of the lower rotor.
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Figure 14. Total efficiency relative to total efficiency at pitch 9.2′′ for the coaxial rotor system
as a function of lower rotor pitch.
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Figure 15. Comparison of BETM and CFD for thrust along blade for pitch 14.2′′.

Figure 16a shows the thrust along the blade from the BEMT method for three dif-
ferent pitches. It is clear that the majority of the thrust is produced at the outer region,
outside of the wake from the upper rotor. As the pitch is increased from 9.2′′ to 14.2′′,
the amount of thrust generated from the inner region is increased while the amount of thrust
from the outer region is decreased. The reduction in thrust from the outer region is due
to the reduction in angular velocity to maintain the same total thrust. The angular velocity
is reduced from RPM = 2200 to RPM = 1714 for the lower rotor. This also leads to an
overall improvement in aerodynamic efficiency, as shown in Figure 16b. This means that
at the original angular velocity of RPM = 2200 and at the original pitch of 9.2′′, the airfoil is
not operating at its optimal point. Increasing the pitch to 14.2′′ brings it close to the peak
efficiency in the outer region, as evident in Figure 16b. When the pitch is further increased
to 17.2′′, the airfoil is still below its stall point, hence lift is still increased and the angular
velocity is further reduced to RPM = 1554 to maintain the same total thrust. However,
at this pitch, the outer region has an angle of attack higher than the optimal point, thus
drastically reducing the aerodynamic efficiency by almost half compared to a pitch of 14.2′′.
Hence, even though the efficiency is improved for the inner region, the total efficiency is
still reduced.
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Figure 16. BEMT results along the blade for the lower rotor for three different pitches. (a) Thrust
along blade. (b) Aerodynamic efficiency along blade.

Next, some results from the corresponding CFD simulations are shown, to give further
details of the influence of changing the lower rotor pitch. Figure 17b shows contour plots
of the pressure coefficient at a radial distance of r = 0.3R, i.e., in the inner region of the blade.
The plot also shows the flow pattern as seen by the blade (the velocity subtracted by
the angular velocity), visualized using the line integral convolution technique [45]. For
the pitch of 9.2′′, the incoming flow comes in at a negative angle of attack, leading to a region
of low pressure near the leading edge at the beginning of the pressure side of the airfoil.
At the pitch of 14.2′′, the incoming flow operates at an angle of attack close to zero, hence
leading to a pressure profile that is more optimal, with lower pressure on the suction side
and higher pressure on the pressure side compared to the original pitch.

(a) (b)
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Figure 17. Pressure coefficient and flow pattern (as seen from the rotor) for the lower rotor at radius
r = 0.3R for two different pitches. (a) Pitch 9.2′′. (b) Pitch 14.2′′.

The pressure coefficient over the blade for the two cases is also plotted in Figure 18.
Here, the drop in pressure at the leading edge for pitch 9.2′′ is clearly seen. It is also apparent
that for pitch 14.2′′, the pressure is lower on the suction side and higher on the pressure
side over the entirety of the airfoil compared to the original pitch of 9.2′′.
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Figure 18. Pressure coefficient over the lower rotor blade at radius r = 0.3R for two different pitches.

7. Conclusions

A computational study was performed investigating the influence of varying pitch
on the rotor efficiency in a coaxial rotor setup. An efficient blade element momentum
theory method for a coaxial rotor system was developed, and detailed computational
fluid dynamics simulations were performed. The chosen rotor has a diameter of 71.12 cm,
corresponding to a typical rotor size used in medium-sized multirotor drones.

The two methodologies were validated by comparing against experiments on a single-
rotor system and a coaxial rotor system. The CFD methodology showed good agreement
on both systems. The BEMT methodology reproduced the experimental trends, but over-
predicted the efficiency of the coaxial rotor system.

The results showed that an optimum value for the pitch of the lower rotor could be
obtained with both methods, where the total efficiency of the coaxial system was increased
by 2% to 5% compared to using the same pitch for the upper and lower rotors. This was
found to be due to increasing the efficiency of both the inner region of the rotor, acting
in the wake of the upper rotor, and the outer region of the rotor.

Future work will focus on further optimizing the rotor setup. As the current work
only used a single pitch for the entire rotor, further increases in the efficiency could be
obtained by tailoring the rotor pitch fully to a coaxial setup with pitches designed to be
optimal over the entire rotor. This could also include using different airfoils for different
parts of the rotor to better match the induced angles of attack. Currently, commercial rotor
designs are not available for the high pitches proposed in this work. Future work will
also aim to manufacture optimized rotor designs to test experimentally. The current work
also only considered the situation of a hovering rotor, and having a system in forward
flight should also be investigated. Finally, a more detailed study of the rotor dynamics
and wake interactions should be performed, as well as investigating full drone setups with
rotor–body interactions.
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Abstract: As an important component of autonomous intelligent systems, the research on au-
tonomous positioning algorithms used by UAVs is of great significance. In order to resolve the
problem whereby the GNSS signal is interrupted, and the visual sensor lacks sufficient feature points
in complex scenes, which leads to difficulties in autonomous positioning, this paper proposes a new
robust adaptive positioning algorithm that ensures the robustness and accuracy of autonomous navi-
gation and positioning in UAVs. On the basis of the combined navigation model of vision/inertial
navigation and satellite/inertial navigation, based on ESKF, a multi-source fusion model based on a
federated Kalman filter is here established. Furthermore, a robust adaptive localization algorithm is
proposed, which uses robust equivalent weights to estimate the sub-filters, and then uses the sub-filter
state covariance to adaptively assign information sharing coefficients. After simulation experiments
and dataset verification, the results show that the robust adaptive algorithm can effectively limit
the impact of gross errors in observations and mathematical model deviations and can automati-
cally update the information sharing coefficient online according to the sub-filter equivalent state
covariance. Compared with the classical federated Kalman algorithm and the adaptive federated
Kalman algorithm, our algorithm can meet the real-time requirements of navigation, and the accuracy
of position, velocity, and attitude measurement is improved by 2–3 times. The robust adaptive
localization algorithm proposed in this paper can effectively improve the reliability and accuracy
of autonomous navigation systems in complex scenes. Moreover, the algorithm is general—it is not
intended for a specific scene or a specific sensor combination– and is applicable to individual scenes
with varied sensor combinations.

Keywords: UAV; robust adaptation filter; multi-source fusion; error state Kalman filter (ESKF);
information sharing coefficient

1. Introduction

With the rapid development of research on autonomous and intelligent unmanned
systems, UAVs can now operate in high-risk and complex environments, thus expanding
the scope for human activities by virtue of their flexibility, low cost, and strong adaptability.
Therefore, research on their application is of great significance to the military and civilian
fields [1–3].

At present, sensors that can be used for autonomous navigation and positioning
include inertial sensors, visual sensors, satellite navigation sensors, and so on [4]. As
the heart and eyes of autonomous navigation systems, these sensors are intrinsic to the
realization of autonomous and intelligent drones. However, satellite signals are interrupted
by urban canyons and complex environments; in fog, heavy snow, and disaster scenarios,
visual sensors lack sufficient feature points; inertial sensors face problems such as long-term
error accumulation. Therefore, a single type of sensor alone cannot meet the autonomous
navigation requirements of UAVs used in complex scenarios; multi-source sensors need
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to be used for fusion navigation. The multi-source fusion method can make up for the
shortcomings of using a single type of sensor and establish complementary advantages
and information supplementation between different sensors [5,6]. In this way, optimal
estimations are obtained, and the reliability and real-time performance of an autonomous
navigation system can be guaranteed.

Multi-source fusion localization algorithms include sequential filtering, decentralized
filtering, centralized Kalman filtering, etc., [7,8]. As a distributed multi-source fusion
filtering method, the federated Kalman method can facilitate plug-and-play in a multi-
source fusion mode, thereby ensuring the navigational integrity and accuracy of the system.
A. Carlson [9] proposed a two-stage distributed filtering federated Kalman filter algo-
rithm, which includes N sub-filters, all of which are evenly distributed with information
distribution coefficients.

However, in practical applications, the performance and estimation accuracy of a local
system constantly change with the complex navigation environment, and the traditional
Kalman filter information sharing coefficient is fixed, which means the different require-
ments of the navigation system cannot be met in complex scenarios. In order to improve
the performance of the federated filter, Shen et al. [10] proposed a new adaptive federated
Kalman filter with time-varying information sharing coefficients based on an observabil-
ity analysis of the integrated navigation of unmanned ground vehicles. Xiong et al. [11]
designed a novel dynamic vector-form information-sharing method based on an analysis
of the error covariance matrix and the observation matrix of federated filters in highly
dynamic environments. Zhang et al. [12] proposed a multi-source information fusion
localization algorithm based on the federated Kalman filter, which has verified that the
algorithm proposed in this paper displays fault tolerance and reduces the amount of re-
quired computation by comparing the centralized Kalman filter. Yue et al. [13] proposed
an adaptive federated filtering algorithm that can calculate the information distribution
coefficient using previous information and adjust the information distribution coefficient in
real time. Lyu et al. [14] proposed an adaptive joint interactive multi-model (IMM) filter for
complex underwater environments, which combines adaptive joint filtering with the IMM
algorithm. Focusing on the problem of the variable accuracy of each navigation sensor,
Guo et al. [15] designed an adaptive allocation algorithm of information factors based on
prediction residuals. However, most of these studies focus on specific scenarios and the
failure of a single sensor and lack discussions of different scenarios and different types
of sensor failures. In this paper, we consider general adaptability. The proposed robust
adaptive algorithm is not aimed at a single specific scene with a specific combination of
sensors but is suitable for similar scenes with variable sensor combinations.

Focusing on the problems of GNSS signal interruption and the lack of sufficient
feature points for visual sensors in complex scenes, this paper proposes a new robust
adaptive positioning algorithm for UAV based on IMU/GNSS/VO, which can achieve the
autonomous navigation and positioning of UAVs. Based on the ESKF, this paper establishes
an integrated navigation model of IMU/GNSS and IMU/VO, incorporating system error
model, measurement model and so on. Then, a robust adaptive localization algorithm
is proposed based on a federated Kalman filter as the algorithmic framework, combined
with robust equivalent weights and sub-filter adaptive shared coefficients. Finally, the
time and accuracy of the three schemes are compared and analyzed through mathematical
simulation experiments; the ‘OutBuilding’ scene data are selected, and the reliability and
robustness of the proposed algorithm are verified through dataset tests.

This paper is organized as follows: A multi-source fusion model based on ESKF and
federated Kalman filtering is established in Section 2, on the basis of the IMU/GNSS and
IMU/VO integrated navigation model. In Section 3, an equivalent weight adaptive filtering
algorithm is proposed based on robust equivalent weights and sub-filter adaptive shared
coefficients. In Section 4, the accuracy and real-time performance of the three schemes are
discussed and analyzed through mathematical simulation experiments. In Section 5, the
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effectiveness of the proposed algorithm is proven through dataset validation. Finally, the
conclusions are drawn in Section 6.

2. Multi-Source Fusion Model

2.1. ESKF (Error State Kalman Filter)

Compared with the classical Kalman filter, the ESKF can constrain the error state to
run at a position close to the origin, thereby avoiding the possible parameter singularity
and gimbal lock problems and ensuring parameter linearization. In this paper, a loose
combination of vision/inertial navigation and satellite/inertial navigation is modeled
based on the ESKF. Similar to the classic Kalman approach, the ESKF performs prediction
and measurement updates. The prediction model is kinematically updated based on the
IMU (Inertial Measurement Unit) model, and the measurement is updated based on VO
(Visual Odometry—the position and attitude data are obtained by solving camera image
poses) and GNSS (Global Navigation Satellite Systems) measurement data.

2.1.1. Predictive Model

This paper adopts the local navigation coordinate system, and the system state quantity
is [q, v, p, ab, ωb]

T, where q represents UAV attitude quaternion, v represents UAV speed,
p represents UAV position, ab represents the accelerometer bias, and ωb represents the
angular velocity bias. The UAV kinematics equation is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

.
q = 1

2 q ⊗ (ωm − ωb)
.
v = Cn

b (am − ab)
.
p = δv
.
ab = 0
.

ωb = 0

(1)

Considering that the actual measurement contains errors, here, the state quantity is set
to the error state x(t) = [δθ, δv, δp, δab, δωb]

T. The UAV error state equation is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δ
.
θ = [ωm − ωb]×δθ − δab − wω

δ
.
v = −Cn

b [am − ab]×δθ − Cn
b δωb − Cn

b wa

δ
.
p = δv

δ
.
ab = wab

δ
.

ωb = wωb

(2)

where δθ is the attitude angle error state that satisfies δq = eδθ/2, δv is the velocity error
state, δp is the position error state, δab is the accelerometer bias error state, and δωb is the
angular velocity bias error state. ωm is the measurement value of the gyroscope, wω is the
measurement noise of the gyroscope, and wωb is the noise of the gyroscope bias. am is the
measurement value of the accelerometer, wa is the measurement noise of the accelerometer,
and wab is the noise of the accelerometer bias.
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With reference to Equation (2), the equation for state is:

.
x(t) = F(t)x(t) + G(t)w(t)

F(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[ωm − ωb]× 03×3 03×3 −I3×3 03×3

−Cn
b [am − ab]× 03×3 03×3 03×3 −Cn

b

03×3 03×3 I3×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

G(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I3×3 03×3 03×3 03×3

03×3 −Cn
b 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
w(t) =

⎡⎢⎢⎣
wa
wω

wab

wωb

⎤⎥⎥⎦

(3)

Using Taylor expansion, the formula is discretized, and the following formula is
thus obtained:

xk+1 = (I + FΔT)xk + GΔTwk

= Φkxk + Γkwk
(4)

where ΔT is the sampling time.

2.1.2. Measurement Update

The UAV measurement update equation is as follows:

zk = Hkxk + vk (5)

The GNSS measurement data are converted into the local navigation coordinate system
of this paper, and the measurement matrix is obtained as follows:

HGNSS
k = [ I3×3 I3×3 03×3 03×3 03×3 ]

vk = [ nGNSS
v nGNSS

p ]
T

, nGNSS
v ∼ N(0, σ2

nGNSS
v

), nGNSS
p ∼ N(0, σ2

nGNSS
p

)
(6)

where nGNSS
v is the velocity measurement white noise, and nGNSS

p is the white noise pro-
duced by position measurement.

Similarly, the VO measurement data are the position and attitude values obtained from
the original image through pose calculation, and the measurement matrix is as follows:

HVO
k = [ I3×3 03×3 I3×3 03×3 03×3 ]

vk = [ nVO
θ nVO

p ]
T

, nVO
θ ∼ N(0, σ2

nVO
θ

), nVO
p ∼ N(0, σ2

nVO
p
)

(7)

where nVO
θ is the attitude measurement white noise, and nVO

p is the position measurement
white noise.

2.2. Fusion Model

The UAV measurement data are derived from two types of sensors, GNSS and VO, so
the multi-source fusion method is used for state estimation. Considering the need to ensure
the fault tolerance and reliability of the navigation system, the distributed filtering method
is adopted in this paper. Figure 1 shows the classic fusion feedback mode of federated
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Kalman [16]. Two sub-filters are established using GNSS/IMU and VO/IMU, respectively,
and finally the UAV navigation state is estimated by fusing the data of the two sub-filters.

Figure 1. Federated Kalman filter.

2.2.1. Time Update

The measurement update equation is as follows:⎧⎨⎩ Xi
k+1/k = Φi

k+1/kXi
k, i = 1 · · · N, m

Pi
k+1/k = Φi

k+1/kPi
kΦi

k+1/k
T + Γi

kQi
k(Γ

i
k)

T (8)

where Xi
k is the state quantity of the i-th (i = 1 · · · N) filter at time k, Xm

k is the state quantity
of the main filter at time k, Xi

k+1/k is the one-step predicted state, Qi
k is the system state

covariance, Φi
k+1/k is the state transition matrix of the i-th filter, and Pi

k+1/k is the one-step
predicted state covariance of the i-th filter.

2.2.2. Measurement Update

The measurement update equation is as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ki

k+1 = Pi
k+1/k(Hi

k+1)
T
(Hi

k+1Pi
k+1/k(Hi

k+1)
T
+ Ri

k+1)
−1

Xi
k+1 = Xi

k+1/k + Ki
k+1(Zi

k+1 − Hi
k+1Xi

k+1/k)

Pi
k+1 = (I − Ki

k+1Hi
k+1)Pi

k+1/k, i = 1 · · · N

(9)

where Ki
k+1 is the gain matrix, Hi

k+1 is the measurement matrix, Ri
K+1 is the measurement

state covariance, Xi
k+1 is the predicted state, and Pi

k+1 is the predicted state covariance.

2.2.3. Information Fusion

The state quantity and state covariance of the main filter are obtained by fusing the
sub-filters. The fusion equation is as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pg
k+1 = [

N
∑

i=1
(Pi

k)
−1

]
−1

, i = 1 · · · N, m

Xg
k+1 = Pg

k+1[
N
∑

i=1
(Pi

k)
−1Xi

k+1]

(10)

where Pg
k+1 is the state covariance after the main filter fusion, and Xg

k+1 is the state quantity
after the fusion of the main filter.
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2.2.4. Information Sharing and Feedback

The information sharing and feedback factor model is as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Qi
k = βi

−1Qg
k

Pi
k = βi

−1Pg
k

N
∑

i=1
βi = 1

Xi
k = Xg

k , i = 1 · · · N, m

(11)

where βi is the sub-filter sharing factor, and βm is the main filter sharing factor.

3. Robust Adaptive Filtering

In a complex environment, considering that errors, or even gross errors, arise in the
measurement values of random dynamic systems, the statistical characteristics of noise
will change, which will reduce the accuracy of Kalman filtering, and even cause diver-
gence [15,17]. In this case, the availability of sub-filter data is reduced or even completely
eliminated. One should consider performing residual testing and robustness processing on
the sub-filters before the data fusion of the main filter in order to reduce the availability
of observations. Unusable observations are isolated from the main filter so as not to con-
taminate the entire filtering process, thus improving the accuracy and fault tolerance of the
entire system.

3.1. Robust Equivalent Weight Filtering

The system state residual is determined by both the model error and the observation
error. When the model error is small, the residual can be used to represent the observation
error, and the robustness equivalent weight factor can be used to alter the observation
availability gain [18–21].

The state residual is si
k = (zi

k − Hi
kxi

k/k−1), and its covariance matrix is
wi

k = Hi
kPi

k/k−1Hi
k

T + Ri
k.

Here, si
k represents the residual of the i-th filter at time k in distributed filtering.

The residual of the i-th subfilter is normalized as follows:

vi = (si)
T(w i)

−1si (12)

Here, the IGG3 [22] weight function is introduced for robust processing, and the
residual gain matrix is adaptively adjusted using the system’s normalized residual.

μi =

⎧⎪⎨⎪⎩
1 |vi|≤ k0

(k0/
∣∣∣vi

∣∣∣ )d2
i

k0 <|vi| ≤ k1

0 |vi|> k1

di =
k1−|vi|
k1 − k0

(13)

In the absence of gross errors in observations, the normalized residuals vi obey the
standard state distribution: vi ∼ N(0, 1). Robust processing is performed on observations
that exceed the 95% confidence level, where k0 is set to 1 and k1 is set to 2. After the
observation robustness is processed, the measurement update is performed as follows:⎧⎨⎩ Xi

k+1 = Xi
k+1/k + μiKi

k+1(Zi
k+1 − Hi

k+1Xi
k+1/k)

Pi
k+1 = (I − μiKi

k+1Hi
k+1)Pi

k+1,k, i = 1 · · · N
(14)

3.2. Adaptive Information Sharing Coefficient

In the classical federated Kalman, the sub-filters equally distribute the information
sharing coefficient, i.e., β1 = . . . = βn = 1/n [17,23].
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In practice, considering that the filtering accuracy of different sub-filters is inconsistent,
it is necessary to adjust the proportion of information in each of the sub-filters according
to the filtering accuracy. The information sharing coefficient determines the role of each
sub-filter in the information fusion process. Specifically, the larger the information sharing
coefficient, the larger the proportion of the state estimates dealt with by the local sub-
filters [24].

In filtering, the state covariance Pi positively reflects the filtering quality of the filter.
The smaller the value of Pi, the more accurate the filter, and vice versa. Here, the accuracy
of the sub-filter λi(k) and the state covariance Pi are defined by Equation (15), as follows.

λi(k) =
√

tr(Pi(k)·Pi(k)
T) (15)

As discussed in the previous section, the normalized residuals vi reflect the availability
of filter observations, so we can combine vi and Pi to comprehensively consider the accuracy
of the sub-filters. Here, the IGG3 weight function is introduced to constrain the availability
of observations. Considering Equations (13) and (15), the accuracy of the sub-filter can be
determined as follows:

λi(k) = μi(k)·
√

tr(Pi(k)·Pi(k)
T) (16)

given that in the federated Kalman filter, the information sharing coefficient satisfies [25–28]:

N

∑
i=1

βi(k) = 1, 0 ≤ βi(k) ≤ 1 (17)

where βi(k) is the information sharing coefficient of the i-th filter at step k.
Here, the main filter does not distribute information, so the adaptive information

sharing coefficient and sub-filter precision λi(k) are expressed as follows:

βi(k) =
1/λi(k)

1/λ1(k) + 1/λ2(k) + · · ·+ 1/λN(k)
, i = 1, 2, · · · , N (18)

3.3. Robust Adaptive Multi-Source Model

As shown in Figure 2, based on the federated Kalman filter, this study uses
IMU/GNSS/VO to build a multi-source fusion navigation system. Robust filtering is
performed on IMU/GNSS and IMU/VO, respectively, and the information sharing coeffi-
cients are adaptively adjusted by robust equivalent weights.

Figure 2. Robust adaptive multi-source model.
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4. Simulation Experiment

In order to verify the effectiveness and robustness of the algorithm proposed in
this paper, the parameters are set in alignment with the real characteristics of different
sensors, and the scene is set with consideration for the complexity of the real environment.
Simulation experiments are carried out to compare and analyze different schemes in
different scenarios. We here highlight that the following simulation experiments have been
developed and realized on the basis of the PSINS toolbox, completed by Prof. Yan Gongmin
of Northwestern Polytechnical University.

4.1. Simulation Settings
4.1.1. Track Settings

The simulation is set up with the initial position (local coordinates) as [0 m; 0 m; 0 m],
the initial attitude (pitch, roll, yaw) as [0◦; 0◦; 0◦], and the initial velocity (local coordinates)
as [0 m/s; 0 m/s; 0 m/s]. The trajectory of the drone in the air is simulated, including
acceleration, climbing, turning, descending, decelerating, and landing.

4.1.2. Scene Settings

In consideration of the real urban environment, the challenging scenarios faced by
UAV flight are here simulated. The following two periods are prone to measurement
errors and have been designed considering the limitations of the motion model, and the
complexity of the terrain and the environment.

Period 1: 100 s~200 s, when the UAV is flying between buildings; because there are few
feature points, 20 times the RVO gross error is added to the VO positioning measurement.
RVO is the measurement error value, including position error and attitude error, as shown
in Table 1.

Table 1. Sensor parameter settings.

Sensor Type Parameter Value

IMU

Gyro bias error 0.1
◦
/h

Gyro random walk error 0.08
◦
/
√

h
Accelerometer bias error 200 μg

Accelerometer random walk error 50 μg/
√

h
Frequency 100 Hz

GNSS
Position error [1 m; 1 m; 3 m]
Speed error [0.1 m/s; 0.1 m/s; 0.1 m/s]
Frequency 1 Hz

VO
Position error [0.5 m; 0.5 m; 0.5 m]
Attitude error [0.5◦; 0.5◦; 0.5◦]

Frequency 2 Hz

Period 2: 270 s~370 s, when the UAV flying height drops; here, the urban canyon
environment is simulated, and 20 times RGNSS gross error is added to the GNSS positioning
measurement. RGNSS is the measurement error value, including position error and speed
error, as shown in Table 1.

4.1.3. Sensor Parameter Settings

Table 1 shows the measurement error parameters and update frequency settings of
each sensor (IMU, GNSS, VO).

4.1.4. Simulation Scheme

In this paper, three schemes are designed to simulate the trajectory of the UAV in the
above simulation.
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Scheme 1: Traditional federated Kalman filtering. Information sharing coefficients are
distributed equally.

Scheme 2: Adaptive federated Kalman filtering. The sub-filter remains unchanged,
and the main filter adaptively adjusts the information sharing coefficient according to the
accuracy of the sub-filter.

Scheme 3: Robust adaptive federated Kalman filtering. The sub-filter performs robust
filtering, and the main filter adaptively adjusts the information sharing coefficient according
to the accuracy of the sub-filter.

4.2. Experimental Results and Discussions
4.2.1. Information Sharing Coefficient Simulation

The capacity of the information sharing coefficient for online adaptation can improve
the accuracy and fault tolerance of the whole system in the case of partial sensor failure.
The following shows a comparative analysis of the information sharing coefficients of the
three schemes.

Figure 3 shows the distribution of information sharing coefficients for the three
schemes proposed in this paper. In Scheme 1, the sub-filter information sharing coef-
ficients are evenly distributed. In Scheme 2, since the sub-filter observation error holds
a fixed value, the mean square error shows a stable change trend, and the final factor
weight of sub-filter information allocation is not changed. In Scheme 3, the information
sharing coefficient shows a changing trend in periods 1 and 2. This is due to the presence
of gross measurement or model errors, and the sub-filters worsen. The adaptive algorithm
proposed in this paper can automatically reduce its corresponding information sharing
coefficient and increase the sharing factors of the other two sub-filters. This is in line with
expectations. Therefore, the algorithm can guarantee the fault tolerance of the whole system
in a complex environment.

Figure 3. Comparison of information sharing coefficients of three schemes: (a) Scheme 1; (b) Scheme 2;
and (c) Scheme 3.

4.2.2. Comparison of State Estimation of Different Combined Systems

In Figure 4, the black line represents the real trajectory, the red line represents the
VO/IMU estimated trajectory, the green line represents the GNSS/IMU estimated trajectory,
and the blue line represents the VO/GNSS/IMU estimated trajectory. If the three sub-filters
are used for independent navigation, the state estimation accuracy will decrease due to the
presence of gross errors in the observation values in different time periods (1, 2), which
will cause a deviation from the true trajectory and mean the accuracy requirements of the
entire navigation system are unmet. As expected, the performance of the VO/GNSS/IMU’s
global optimal fusion is not seriously affected by abnormal signals given by local sensors
and can achieve high accuracy.
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Figure 4. Comparison of state estimation of different combined systems. Asterisk indicates the
starting position, the dotted line indicates the position of the enlarged area, and the arrow indicates
the specific enlarged area (a,b).

4.2.3. Comparison of the Results of Different Schemes

In Figure 5, the black line represents the true trajectory. The red line represents Scheme
1, which is the estimated trajectory of the federated Kalman filter. The green line represents
Scheme 2, which is the estimated trajectory of the adaptive federal Kalman filter. The
blue line represents Scheme 3, which is the estimated trajectory of the robust adaptive
federal filtering proposed in this paper. It can be seen from Figure 5 that all three filtering
methods can be used for VO/GNSS/GNSS system navigation. However, on the whole,
and especially during the 100~200 s and 270~370 s periods, compared to the estimated
trajectories of adaptive federated Kalman filtering and federated Kalman filtering, the
estimated trajectories of the robust adaptive federal filter are the closest to the true values.
This is because the robust adaptive federated Kalman can perform robust and adaptive
adjustments on the sub-filter estimates, and the main filter performs adaptive information
sharing coefficient allocation according to the estimated weights of the sub-filters. As
expected, the performance of the main globally optimal fusion filter is not severely affected
by local sensor anomalies and can achieve high accuracy.

Figure 5. Comparison of trajectories of different schemes. Asterisk indicates the starting position, the
dotted line indicates the position of the enlarged area, and the arrow indicates the specific enlarged
area (a,b).
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The attitude error estimation curve is shown in Figure 6. The attitude angle estimates
obtained by the three filtering methods can all track the change in the true attitude angle,
but their estimation accuracies are different. The error in the pitch angle and roll angle is
within 100 arc seconds, and the error in the yaw angle is within 30 arc minutes. Compared
with the actual data, the error here is small, which has a strong impact on the accuracy
of the initial value and initial state covariance set by the simulation. At the same time, it
can be seen that the accuracy of Scheme 3 is greatly improved compared with the other
two schemes.

t

t

t

Figure 6. Comparison of attitude errors.

Figures 7 and 8 show the comparison charts of speed and position error. According
to the error estimation curve, it can be seen that the overall error of Scheme 3 is relatively
stable, with a slight oscillation around the zero value. In the two time periods set in this
paper, even when the local sensors are interfered with or fail entirely, the whole system can
still maintain sufficiently high precision for navigation. This is because Scheme 3 can switch
between different systems in time to reassign weights when local sensors are affected by
external disturbances. Therefore, the robust adaptive filter can use the current adaptive
state of each local system and can effectively utilize sub-filters with higher state accuracy,
thereby reducing the estimated value of the error.

t

t

t

Figure 7. Speed error comparison chart.

139



Sensors 2022, 22, 2832

t

t

t

Figure 8. Comparison of position errors.

In order to further compare the three schemes used for information fusion, we carried
out 20 Monte Carlo simulations analogous to the real environment. The noise, trajectory
and speed of each setting are different. The mean absolute errors (MAEs) of the position
errors for the 20 experiment groups are listed in Table 2, and the average error precision is
shown in Figure 9.

Table 2. The MAEs of position errors (m) in the 20 experiment group.

Number Scheme 1 Scheme 2 Scheme 3

1 0.4818 0.1813 0.1470
2 0.3065 0.1891 0.0755
3 0.3805 0.2339 0.1125
4 0.3480 0.1894 0.0616
5 0.3754 0.1758 0.0641
6 0.4136 0.1953 0.0983
7 0.4064 0.2052 0.0929
8 0.3724 0.2280 0.0258
9 0.4319 0.1735 0.0093
10 0.4257 0.2243 0.0267
11 0.4267 0.2148 0.0140
12 0.3838 0.2646 0.0730
13 0.4428 0.2031 0.0542
14 0.4273 0.2063 0.0559
15 0.5012 0.1648 0.0162
16 0.4434 0.1562 0.1018
17 0.4471 0.2241 0.0882
18 0.4030 0.2017 0.0671
19 0.3493 0.2318 0.1115
20 0.3860 0.1759 0.0357

As shown in Figure 9 and Table 2, the accuracy of Scheme 3 (robust adaptive Federated
Kalman filtering) is significantly better than those of the other two schemes. The average
position error accuracies of the 20 experiment groups were calculated separately, and the
errors of the three schemes were obtained as follows: 0.4009 m, 0.2117 m, and 0.0719 m.
Compared with Scheme 2, the accuracy of Scheme 3 increased by 66%, and compared
with Scheme 1, it increased by 82%. The discussion and analysis of the above results
further prove that the robust adaptive federated Kalman filtering algorithm proposed in
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this paper achieves high accuracy and good robustness, and the algorithm can be applied
to complex environments.

Figure 9. The MAEs of position errors (m) in the 20 experiment groups.

The calculation times of the three algorithms have been tested. The test environment
was Windows C++, and the test platform was configured at 1.99 GHz, with Intel(R) Core
(TM) i7-8550U CPU. The times required for the single-step execution of the three schemes
are shown in Table 3. The time required for the single-step execution of the robust adaptive
federated Kalman filter algorithm was 2.12 × 10−2, which meets the real-time requirements
of practical applications.

Table 3. The time required for the single-step execution of the three schemes.

Scheme 1 Scheme 2 Scheme 3

Time (s) 7.56 × 10−3 9.01 × 10−3 2.12 × 10−2

5. Dataset Validation

On the basis of the simulation verification preformed in the previous section, the
dataset collected by the Shanghai Beidou Navigation and Location Services Key Laboratory
(UAV configuration sensors and related parameters are shown in Figure 10 and Table 4) are
used for verification. This dataset includes four scenarios: 5 × 5 × 2.5 m testing room with
Vicon, “Room”; 8 × 12 × 5 m hall of office with Vicon, “Hall”; 20 × 20 m outdoor square,
“OutSquare”; 50 m2 outdoor area near the building, “OutBuilding”. Among the four scenar-
ios, “OutBuilding” (“OutBuilding” is shown in Figure 10) is the most representative, and
offers the conditions of short-term errors in or interruptions of GNSS and VO measurement
due to signal occlusion or single features. In order to test the applicability of the algorithm
in this paper in a complex environment, the SE_OutBuilding_06.bag data are here used to
artificially add errors in different time periods. By comparing the final results of the three
different schemes, the effectiveness of the algorithm in this paper is verified.

First, based on the ESKF model, the state estimation results of the VO/IMU, GNSS/IMU,
and VO/GNSS/IMU integrated navigation systems are obtained, as shown in Figure 11.
It can be seen that these integrated navigation systems meet the needs of navigation and
positioning, without model or measurement errors. The positioning accuracy is deter-
mined by the accuracy and combination of the sensors themselves. The VO/GNSS/IMU
combination shows the highest accuracy, followed by the VO/IMU combination, and
finally GNSS/IMU.
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Figure 10. UAV sensor configuration (different sensors and mounting locations for UAV)
and “OutBuilding”.

Table 4. Sensors and related parameters.

Sensor Product Model Collection Frequency (Hz)

Optical flow Px4flow v1.3.1 20
Stereo camera 640 × 480 × 2 OV7725 30

IMU MPU9250 40
RGB-D Camera ASUS Xtion Pro Live 40

Vicon Vero 360 100
RTK GNSS receiver Ublox M8P 10

Figure 11. Location estimation for different scenarios.

In consideration of the real properties of the sensor and the complex external envi-
ronment, the following two time periods are set. These two periods contain model and
measurement errors, which can enable us to more effectively verify the algorithm proposed
in this paper.
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Period 1: 10~40 s; non-Gaussian noise is added to RGB-D Camera measurement,
which obeys the following distribution:

g(ω) =
1 − ε

σ1
√

2π
exp(− ω2

2σ2
1
) +

ε

σ2
√

2π
exp(− ω2

2σ2
2
)

where σ1= 2500 μrad, σ2= 4σ1 and ε = 0.5.
Period 2: 60~90 s; 20R random error is added to RTK GNSS receiver posi-

tioning measurement.
As shown in Figure 12, the information sharing coefficients of different schemes show

different trends, as consistent with the simulation results in Section 4.2. Since the mea-
surement accuracy of the vision sensor is higher than that of GNSS, when the information
sharing coefficient in Scheme 2 stabilizes, the ratio of VO/IMU will be higher. At the same
time, the information sharing coefficient of Scheme 3 shows a change trend, which indicates
that the information sharing coefficient of the robust adaptive equivalent Kalman filter
algorithm can be adjusted online when the environment changes, thereby improving the
accuracy of the entire system.

Figure 12. Information sharing coefficient of different schemes (Scheme 1, Scheme 2, Scheme 3).

Using the three schemes set in Section 4.1, a position estimate is obtained as shown
in Figure 13. Here, the black line represents the true trajectory; the red line (Scheme 1)
represents the estimated trajectory of the federated Kalman filter; the green line (Scheme 2)
represents the estimated trajectory of the adaptive information sharing coefficient of the
main filter; the blue line (scenario 3) represents the estimated trajectory of the robust
adaptive federated filter proposed in this paper. As can be seen, the robust adaptive
federated Kalman filter proposed in this paper can effectively track the ground truth.

Figure 14 shows a comparison of the position, velocity, and attitude errors of the
three schemes. Compared with Scheme 1 and Scheme 2, Scheme 3 has a higher overall
accuracy, which is consistent with the simulation results shown in Section 4.2. For the next
20 analyses, the mean absolute errors (MAEs) and standard deviations (STDs) of the state
estimation errors of the three schemes are obtained individually, as shown in Table 5.

As can be seen from Table 5, compared with Scheme 1 and Scheme 2, the average
value of the pitch angle and roll angle in Scheme 3 is increased by 1 degree, and the
average value of the yaw angle is increased by 2 degrees. The average speed is increased
by 0.2 m/s, and the average position is increased by about 0.2 m. These experimental
results further demonstrate that the robust adaptive Kalman filter algorithm proposed in
this paper can effectively improve the accuracy and robustness of the multi-source fusion
navigation system. Scheme 3 is significantly better than the other two schemes, with an
overall accuracy improvement of 2–3-fold.
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Figure 13. Position estimation for different scenarios.

 

Figure 14. Comparison of position, speed, and attitude errors of different schemes.
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Table 5. Accuracy statistics of different schemes (the mean absolute errors (MAEs) and standard
deviations (STDs) of the state estimation errors of the three schemes).

Error
Pitch

(◦)
Roll
(◦)

Yaw
(◦)

VX
(m/s)

VY
(m/s)

VZ
(m/s)

X
(m)

Y
(m)

Z
(m)

Scheme 1
MAE 1.56 1.62 3.01 0.30 0.25 0.22 0.26 0.24 0.19
STD 0.95 0.97 1.97 0.23 0.22 0.19 0.50 0.55 0.64

Scheme 2
MAE 1.08 1.12 1.78 0.15 0.14 0.12 0.13 0.12 0.11
STD 0.81 0.85 1.25 0.15 0.11 0.09 0.32 0.45 0.84

Scheme 3
MAE 0.62 0.55 0.95 0.07 0.07 0.06 0.06 0.07 0.06
STD 0.41 0.23 0.52 0.10 0.08 0.07 0.15 0.18 0.14

6. Conclusions

With the intention of improving the reliability and robustness of UAV autonomous
navigation and positioning in complex scenarios, we have here designed an autonomous
positioning fusion algorithm. The main innovation is that the algorithm can not only
independently evaluate the working performance of the sub-filters online, but it can also
dynamically adjust the information sharing coefficient. In order to verify the effectiveness
and robustness of the algorithm proposed in this paper, an urban canyon scene has been
simulated. Through comparative analysis of the two scenarios and three schemes set
up, Scheme 3 displayed the highest accuracy of robust adaptive federal kalman filtering,
followed by Scheme 2 (adaptive federal Kalman filtering), and finally Scheme 1 (federal
Kalman filtering). In addition, by testing the time taken for the single-step debugging of
the robust adaptive federal Kalman filter, it has been proven that the algorithm can meet
the requirements of actual real-time measurements. Further, this paper used the Beidou
Navigation and Location Services Key Laboratory dataset for verification. Using the “Out-
Building” data, the artificially simulated model errors and measurement gross errors have
been added, and the final results show that the overall accuracy of the algorithm proposed
in this paper is improved 2–3-fold. In summary, the algorithm can significantly improve
the accuracy and tolerance of the navigation system in complex environments and can be
applied to UAV autonomous navigation in urban canyons and GNSS loss-of-lock scenarios.
Moreover, the algorithm is general, and can be applied in similar complex scenes and other
sensor combinations. Therefore, using the robust adaptive fusion algorithm proposed in
this paper, reliable, adaptive, robust and high-precision positioning information can be
obtained. Next, we will focus on the actual application of UAVs in complex environments
to verify the effectiveness of the algorithm proposed in this paper.
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Abstract: Swarms of unmanned vehicles (air and ground) can increase the efficiency and effectiveness
of military and law enforcement operations by enhancing situational awareness and allowing the
persistent monitoring of multiple hostile targets. The key focus in the development of the enabling
technologies for swarm systems is the minimisation of uncertainties in situational awareness infor-
mation for surveillance operations supported by ‘system of systems’ composed of static and mobile
heterogeneous sensors. The identified critical enabling techniques and technologies for adaptive,
informative and reconfigurable operations of unmanned swarm systems are robust static sensor
network design, mobile sensor tasking (including re-allocation), sensor fusion and information fusion,
including behaviour monitoring. The work presented in this paper describes one of the first attempts
to integrate all swarm-related technologies into a prototype, demonstrating the benefits of swarms
of heterogeneous vehicles for defence applications used for the persistent monitoring of high-value
assets, such as military installations and camps. The key enabling swarm system technologies are
analysed here, and novel algorithms are presented that can be implemented in available COTS-based
unmanned vehicles. The algorithms have been designed and optimised to require small computa-
tional power, be flexible, be reconfigurable and be implemented in a large range of commercially
available unmanned vehicles (air and ground).

Keywords: unmanned systems; persistent monitoring; autonomy

1. Introduction

Advances in microelectronics, UAV development, autonomous systems and guidance,
navigation and control systems have enabled the development of unmanned vehicles to
perform complex missions, such as surveillance and persistent monitoring tasks. These au-
tonomous systems, mostly operated in small groups, are able to deliver significant amounts
of data in real time; however, they are constrained by the levels of autonomy available and
the difficulties of integrating multiple vehicles in swarms. Multiple unmanned vehicles can
add not only strength in numbers, but unique capabilities in redundancy, mission flexibility
and target tracking/monitoring which can enhance mission capabilities for defence and
law enforcement needs. Asymmetrical warfare and the need to simultaneously detect
unidentified targets with multiple behaviours are challenging current autonomous systems,
as a single, yet capable UAV is not necessarily able to detect, track and persistently monitor
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multiple targets. Furthermore, large conventional unmanned vehicles, or UAVs, do not
have advanced levels of autonomy to date, but rather use human-in-the-loop decision mak-
ing and control protocols and resources to perform surveillance and monitoring tasks which
might become fully automated. Our paper presents the results of a recently completed re-
search project in which a pilot scaled autonomous swarm of unmanned vehicles performed
a persistent monitoring mission to protect a mock high-value asset, such as a military
installation. A fully integrated, autonomous swarm-based framework was developed and
simulated, in which sensor fusion, behaviour monitoring, target and resource allocation
and guidance/control algorithms facilitate efficiently tracking hostile targets. A scaled
outdoor demonstration using 7–10 UAVs and UGVs has shown the feasibility, challenges
and benefits of using a swarm of unmanned vehicles for defence missions. The paper
presents an overview of the mission scenario addressed and the swarm system architecture
developed. Section 3 details the swarm tracking and control strategy developed. Section 4
details the situational awareness and sensor fusion algorithms developed for implementa-
tion in unmanned aerial and ground vehicles which have limited computational power.
Section 5 describes the guidance laws developed for the swarm, and Section 6 presents the
fully integrated swarm system that was successfully implemented on multiple unmanned
vehicles in an outdoor environment (Cranfield Airport) and used to provide persistent
monitoring of a high-value asset.

2. Swarm System Architecture

The work presented in this paper was focused on testing and demonstrating that
efficient and effective operation of unmanned swarm systems can bring a profound impact
to the military arena. The key focus in the development of the enabling technologies was
the minimization of uncertainties in situational awareness information for surveillance
operations supported by a swarm system of systems composed by static and mobile
heterogeneous sensors. The functionalities and features of the main enabling technologies
developed can be summarized as follows: (i) an optimal sensor network—static sensors to
sense the environment and potential targets; (ii) mobile tasking, including decision making,
assigning mobile sensing platforms to the set of tasks, completing the situational awareness
information gap on the sensor network and improving the searching and monitoring
capabilities; (iii) sensor fusion, target detection and identification, improving the accuracy
of the target tracking performance; (iv) information fusion, behaviour monitoring and target
assessment (obtaining the threat levels of the targets), to improve the decision making of the
mobile sensing platforms; (v) cooperative guidance, path planning and following mobile
sensing platforms. Research on all building blocks of a swarm system is extensive [1–15]
(task allocation, trajectory planning, etc.), and various new techniques can be applied to
swarm scenarios, such as for nonlinear trajectory estimation [15].

Swarm Mission Scenario, Functionalities and Requirements

A mission scenario is used in the work in which a specific area of high interest requires
persistent monitoring/surveillance. It is assumed that the scenario takes place near a
battlefield in a conflict with a well-armed and competent opponent. The high-value asset
(HVA), a military camp, is located in a rough and partly hilly terrain, and a sophisticated
sensor system to support perimeter surveillance is available. As the terrain limits the
visibility in the protected area, centralized sensors are ineffective. Instead, ground sensors
are distributed in a large area around the camp that facilitate early indications of enemy
reconnaissance or approaching formations. The ground sensors are sensitive to the presence
of humans, vehicles and animals and give prompt alarms if potential targets are in the
vicinity. The ground sensors do little to assess the nature and severity of the threats but
are on the other hand robust and persistent. They enable coverage of a large area for their
price and maintenance requirements. To support alarm verification, the network of ground
sensors is completed with drones (air and ground) that operate autonomously in the sensor
system. The drones are only activated for special tasks and missions. For instance, on a
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ground sensor alarm, the drones do a verification that may give the guard high fidelity
video and other sensor data from the target or target area in real time. The drones are
autonomous and can collaborate in pairs, groups or swarms to meet the high demands on
service quality and persistence toward hostile means of deception and attacks.

The key top level functional requirements in the HVA mission scenario are presented
in Table 1.

Table 1. Key top level functional requirements in the HVA mission scenario.

Num. Functional Requirement Vehicles Time (min) Performance Metrics

1

Swarm performs persistent
monitoring in an indoor

environment 20 × 5 × 3 m with 2
targets

1 UGV
2 UAV ~20′ Position accuracy, speed, situational

awareness, path planning accuracy, target
position accuracy, speed, time to track, loss

of data, link robustness,
resilience, bandwidth2

Swarm performs persistent
monitoring of a 500 × 500 × 100 m

area with multiple targets

2 UGV
5 UAV ~20–30′

3. Swarm Sensor Tasking and Control

The task allocation problem is assigning each agent (mobile platform and/or onboard
sensor) to a task or a bundle of tasks. The strength of autonomous swarm systems of
aerospace vehicles hinges on the distributed nature of the resources available, making the
successful assignment of these resources key to maximize its operational advantages and
thus minimizing uncertainties.

Efficient cooperation of a swarm of autonomous systems, termed as task allocation, is
a vital part for mission success. Task allocation problems are defined as reward function
maximization problems. The main objective of task allocation algorithm is to find out
the agent and task combinations which maximize the reward function. For the problems
with small numbers of agents and tasks, it is possible to calculate the reward function
values of all the possible agents and tasks combinations and select the combination with
the maximum reward function value. However, since task allocation problem is combi-
natorial and NP hard, as the numbers of agents and tasks enlarge, computation loads
dramatically increase. In this report, approximate algorithms are applied for task allocation
problems. One advantage of approximate algorithms is that the computation load is mathe-
matically calculated. This implies that the required computation load for the given task
allocation problem and optimization algorithm. The other one is that, although approxi-
mate algorithms cannot guarantee the actual optimal solution, they provide solutions with
mathematically guaranteed certain levels of optimality.

It is evident that the key enabler of the task allocation is allocation with near real time,
so that the agents in the swarm system should be immediately allocated to appropriate
task(s). To this end, this project will develop an approximation. Remind that approximation
algorithms balance between the optimality and the computational time. Moreover, their
quality of the solution and polynomial time convergence could be theoretically guaranteed
as long as the objective function satisfies certain conditions, e.g., submodularity. The
first focus will be to design a new task allocation model in a manner guaranteeing the
submodularity. Note that the objective function of the task allocation problem in the
project will be the situational awareness information. It is well-known that the information
generally holds the submodularity. Hence, it will be possible to design the problem to
hold the submodularity condition. Once the submodularity of the new task allocation
model is proven, then implementation of such an approximate algorithm will enable
resolution of the task allocation problem in an almost optimal manner in real time. A
novel task allocation algorithm based on the greedily excluding technique was developed
and validated for EuroSWARM which was shown to be more computationally efficient
than current algorithms and can enable the use of existing, low power COTS processing
technology available in the UAV and microelectronics markets.
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Recently, there have been scientifically interesting developments in approximation
algorithms for submodular maximization subject to abstract matroid constraints. In this
section a novel decentralized task allocation algorithm has been developed for swarms
which consist of for Multi Robot Systems (MRS) using approximation guarantees for general
positive-valued submodular utility functions. Two approximate algorithms are investigated
and enhanced for swarm control. The well-known greedy algorithm was analysed and
enhanced as a greedily excluding algorithm. In the newly developed algorithm, in contrast
with other submodular maximization algorithms, at the beginning, all the tasks are assigned
to each agent. In each step, the new algorithm reward function reduces, by ‘excluding’ all
subtasks of each task (which are calculated), and then the task with the smallest reward
function reduction is then excluded. These procedures are repeated until each of all of the
tasks is assigned to a single agent. The main purpose of introducing greedily excluding
algorithm is to relieve the computation load of the task allocation algorithm. The two major
criteria of performance validation on task allocation algorithms are the level of guaranteed
optimality and computation load, as mentioned above. The task allocation algorithms
are required to be operated in real time for rapidly changing environments, such as those
encountered in battlefield scenarios. However, in cases with large numbers of tasks, the
computation loads dramatically increase. This implies that low computation load is a
major requirement for the application of task allocation algorithms to rapidly changing
problems with many tasks. In the proposed task allocation algorithm, the computation
load is reduced using a greedily excluding algorithm. This computation load reduction
capability is mathematically calculated, and it is shown that the reduction grows as the
number of tasks enlarges. The optimality of the greedily excluding algorithm is tested and
compared with the greedy and exhaustive algorithms through simulation.

The Greedy algorithm (Figures 1 and 2) is one of the most well-known submodular
maximization algorithms. The element which provides the largest marginal gain is selected
and added to the solution set. The selected element is excluded from the ground set. The
same procedures are repeatedly conducted while predefined constraints are satisfied. The
greedy algorithm under cardinality constraint could be expressed as below (Algorithm 1).

Algorithm 1 Greedy Algorithm with Cardinality Constraint

1: A ← ϕ

2: while |A| < k do
3: e* ← argmaxe∈Gf A(e)
4: A ← A∪{e*}
5: G ← G\{e*}
6: end
7: return A
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Tasking

Mobile Vehicle
Task Allocation
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Figure 1. An overview of the autonomous swarm framework building blocks.
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Figure 2. Swarm task allocation with multiple UAV agents and targets.

A is the solution set and G is the ground set, k is the cardinality limit of the solution
set and f (·) is the reward function. As shown in the above figure, the algorithm terminates
when the number of elements of the solution set reaches the cardinality limit. The task
allocation algorithm proposed in this section is based on the basic greedy algorithm. In each
step, the marginal reward function values for all the possible agent and task combinations.
The agent and task combination with the largest marginal gain is selected and this task is
assigned to the solution set of that agent. The assigned task is excluded from the ground
set of tasks. This algorithm is described in Algorithm 2.

Algorithm 2 Task Allocation Algorithm using Greedy Algorithm

1: A1, . . . , AN ← ϕ

2: while |T|> 0 do
3: e*, i*← argmaxe∈T, i∈[1, N] f Ai(e)
4: Ai* ← Ai*∪{e*}
5: T ← T\{e*}
6: end
7: return A1, . . . , AN

Where Ai is the solution set of agent i and N is the number of agents, T is the ground
set of tasks. As described in the above figure, this algorithm assigns one task at each step.
After all the tasks are assigned, the algorithm terminates.

The Greedily excluding algorithm is introduced and used as the swarm task allocation
algorithm and builds on the previously presented algorithms shown in Figures 1 and 2. In
this algorithm, all the elements of the ground set are assigned to the solution set. In each
step, the element whose exclusion results in the smallest reward function value reduction,
is excluded, from the solution set. This procedure is repeated until a certain constraint is
satisfied. Here, the cardinality constraint is implemented as shown in Algorithm 3.
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Algorithm 3 Greedily Excluding Algorithm with Cardinality Constraint

1: A ← G
2: while |A| > k do
3: e* ← argmine∈A, [f (A) − f (A − {e})]
4: A ← A\{e*}
5: end
6: return A

The proposed task allocation approach using the Greedily excluding algorithm is
shown in Algorithm 4.

Algorithm 4 Task Allocation Algorithm using Greedy Excluding Algorithm

1: A1, . . . , AN ← T
2 : A∗

1, . . . , A∗
1 ← T

3: while each of the tasks is assigned to a single event, do
4 : e∗i ← argmine∈A*, [f (A) − f (A − {e})] for i∈[1, N]
5: Ai ← A\

{
e∗i
}

6: A∗
i ←A∗

i \
{

e∗i
}

7: for all the tasks
8: if a task e’ is not assigned to any agent,
9: k* ← argmaxk[f (Ak + {e’}) − f (Ak)] where k ∈ {}i|e∗i = e′ }
10: Ak* ← Ak* + {e*}
11: end
12: end
13: end
14: return A1, . . . , AN

The reward function consists of two parts. The first part is the function which shows
whether the targets are matched with the proper sensors. In this reward function, the
visibility of the j-th target, λj, is assumed to be defined as a simple Gaussian distribution
with mean and variance.

λj = N
(

μj, σ2
j

)
(1)

The sensing characteristics of i-th sensor, are also defined as a simple Gaussian distri-
bution:

νi ∼ N
(

μi, σ2
i

)
(2)

Bhattacharyya distance between the probability distribution functions of i-th agent
and j-th target is defined as:

Δ(λi , νi ) =
1
8
(
μj − μi

)T
(

σ2
j + σ2

i

2

)(
μj − μi

)
+

1
2

ln

⎛⎝
(

σ2
j + σ2

i )/2
)

√
σ2

j σ2
i

⎞⎠ (3)

Using Bhattacharyya distance, the relevancy between i-th agent and j-th target ωij
is obtained:

ωij = e−
Δ2(λj ,νι)

2σ2 (4)

where σ is a design parameter. In order to limit the relevancy between agent and task set,
the reward function on sensor suitability, f 1, is developed as shown below:

f 1(Ai) = min{Mi(Ai), δMi(T)} (5)
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where δ ∈ [0, 1] is a design parameter and T is the ground set of tasks. The second part of
the reward function is to prevent assigning excessively many tasks to a single or small part
of agents. This reward function, f 2, for i-th agent is defined as follows:

f 2(Ai) =
|Ai |
∑
j=1

I − j
|T| (6)

where Ai is the set of tasks assigned to i-th agent and T is the ground set of tasks. Note
that the sum of f 2 for all agents diminishes as the tasks are concentrated on a single agent.
The total reward function, fTOT, for i-th agent is defined as the weighted sum of those two
partial reward functions, f 1 and f 2:

f TOT(Ai) = a1 f 1(Ai) + a2 f 2(Ai) (7)

where α1 and α2 are the weights on each part, and they are defined by the users according
to the problem cases. The total reward function for the task allocation result is defined as
the sum of fTOT for all the agents.

f (A1, . . . , AN) =
N

∑
i=1

f TOT(Ai) (8)

Swarm Task Allocation Numerical Simulation

In order to demonstrate the performance of the proposed task allocation algorithm,
a simulation of a swarm system of aerial and ground unmanned vehicles is constructed,
which consists of 3 enemy soldiers and 2 enemy vehicles which approach a protected
high-value asset (camp), and the positions and visibility of the targets defined in Table 2
and Figure 1. 2 UAVs detect the targets in this case. One UAV is equipped with an infrared
sensor, and the other UAV has an optical sensor.

Table 2. Swarm task allocation simulation parameters.

j (XTi,YTi) μj σ2
j

Soldiers 1 (0, 0) 1 12

2 (0, 3) 1 12

3 (3, 0) 1 12

Vehicles 4 (7, 10) 10 52

5 (10, 7) 10 52

i (XAi,YAi) μi σ2
j

Infrared Camera 1 (4, 4) 1 12

Optical Camera 2 (6, 6) 10 52

The design parameters for the reward function selected are (σ, α1, α2) = (1, 0.5, 0.5).
In the simulation mission scenario, moving targets are approaching a protected asset, and
the agents with sensors are operated to track and observe the targets. The initial positions
of the targets are assumed to be known from external sensors, and the task allocation is
autonomously. The main objective of the task allocation, as shown in Figure 2, is to assign
targets to the agents equipped with IR/optical sensor which fits the characteristics of them
most. Additionally, the tasks should not be assigned excessively on a certain agent; they
should be assigned as evenly as possible to the agents. Two sorts of moving targets are
considered in this simulation study. The first group is the enemy soldiers, which emit a
heat signature. The second group is the enemy ground vehicles, whose purpose differs
from their equipment. Two types of UAVs are considered to detect mobile targets. Some
of the UAVs are equipped with an infrared sensor (IR), which is suitable for sensing heat
emitted from human bodies. The other UAVs are equipped with optical sensors.

153



Drones 2022, 6, 94

The task allocation results for the swarm simulation are obtained using the task
allocation formulation of Equations (1)–(7).

The task allocation in results, Table 3, show that the computation loads of the newly
developed task allocation approximate algorithms are significantly less than exhaustive
search case while achieving the same level of optimality. The computation load of the
newly developed greedily excluding algorithm is smaller than that of greedy algorithm by
40% (number of fTOT calculations). Despite the differences in computation effort, all three
of the task allocation algorithms compared show the same task allocation performance
output, having assigned all the soldiers to the infrared camera-equipped UAV and all the
vehicles to the optical camera.

Table 3. Swarm task allocation simulation results.

Algorithm
Task Allocation

Result
# of fTOT

Calculation
f(A1,. . . ,AN) Optimality (%)

Greedy A1 = {1,2,3}
A2 = {4,5} 60 4.1 100

Greedy
Excluding

A1 = {1,2,3}
A2 = {4,5} 36 4.1 100

Exhaustive
(Optimal)

A1 = {1,2,3}
A2 = {4,5} 35 (=243) 4.1 100

The task allocation algorithms using approximate submodular maximization and
compared for swarm type of scenarios have been selected due to their ability to handle
multiple agents. In order to decrease the computation load of the well-known greedy
algorithm, a greedily excluding algorithm was developed. Through simulation and using
different mission scenarios (number of agents/targets), it is shown that the computation
load of the newly developed greedily excluding algorithm is smaller than that of greedy
algorithm, and the difference increases as the number of tasks becomes larger. The task
allocation problem for target detection was set up and simulated using the greedy and
greedily excluding algorithms. The results are compared with the actual optimal solution,
which requires much larger computation load. The simulation results show that the
computation loads are smaller in the greedily excluding algorithm, but the task allocation
results are the same with the optimal solution. The proposed task allocation algorithm will
thus enable the use of existing, low power COTS processing technology available in the
UAV and microelectronics markets for use on swarm scenarios for defence applications
which use multiple unmanned vehicles and targets.

4. Situational Awareness

Compared to traditional traffic surveillance sensors such as loop detectors and video
cameras positioned at fixed locations, UAV aerial sensing can provide better coverage with
the capability to survey large areas at a high speed without being confined to prescribed
ground navigation routes. Therefore, this airborne monitoring capability enables suspicious
or unusual behaviour in road traffic or on the battlefield to be identified and investigated
promptly so that operator’s situational awareness is increased in support of border patrol,
law enforcement and protecting infrastructure. Typical behaviour monitoring or abnormal
detection approach requires domain experts to analyse the obtained data to detect the
potentially suspicious behaviours. This approach is cumbersome and unsustainable under
a deluge of data and information which could result from complex scenes. Therefore, there
is a strong need to develop high-level analysis algorithms to process target information
and detect anomalous behaviours, to reduce the human operator’s workload. Behaviour
monitoring, or more generally detecting anomalous behaviours, usually can be classified
into two routes: the first approach codifies the behaviours using experience and domain
knowledge of experts and the behaviours are learned from data in the second approach.
A general framework for autonomous behaviour has been developed for the monitoring
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of ground vehicles/targets using airborne surveillance to notify the human commander
about the potentially dangerous vehicles.

4.1. Mathematical Model of Target Monitoring

The proposed approach consists of a trajectory analysis tool and an abnormal driving
mode classifier based on Refs. [16,17]. The trajectory analysis tool extracts the driving
(target) modes, defined by specific alpha-numeric strings, from the filtered target trajectories
using speed and curvature analysis. The driving mode classifier provides potential threat
alerts by means of a learning-based string-matching approach. With reference to the
pattern matching process, a neural-network based regular expression dictionary (RD)
algorithm is introduced to match commonly observed target behaviours. The advantage
of utilizing the RD, instead of simple string matching, lies in its flexibility and generality
in handling the minor differences between two patterns that perform almost the same
behaviours of interest. Simulation results are performed to demonstrate the effectiveness
of the proposed framework.

The proposed monitoring method utilises a regular expression dictionary (RD) to
match commonly observed target behaviours. The RD contains several bins with each bin
representing a set of regular expressions of behaviours that have same regularity level.
The advantage of utilising the regular expression, instead of simple string matching, lies
in its flexibility and generality in handling the minor differences between two patterns
that perform almost the same behaviours of interest. Compared to typical learning-based
approaches, especially neural network, the proposed RD approach can be easily adapted to
different scenarios without significant changes. This can be carried out by simply moving
one string from one bin to another bin or simply adding one specific string to one bin,
depending on the application scenarios. Another promising advantage of the proposed
RD approach is that it can significantly reduce the computational time by a top-to-down
search, compared with purely neural network assessment. The behind reason of this aspect
is that most targets are normal and therefore, their corresponding behaviours can be readily
matched by the top bins.

The simplest and most intuitive way to implement the pattern matching for abnormal
detection is to define a reference RD pattern and match the extracted driving modes with
the reference patterns to find particular threat. The advantage of this approach is that
it can precisely identify particular behaviours of interest. However, it is clear that this
approach requires domain experts to define the reference patterns for specific scenarios
and therefore, is case-by-case solution, which is not in a cost-effective manner. To tackle
this issue and provide the possibility to detect general unexpected target behaviours that
significantly differ from the regular manoeuvres exhibited by the vehicles. In this section,
a new learning-based pattern matching approach is used for behaviour monitoring by a
swarm of agents/unmanned vehicles.

The proposed approach defines a driving mode mk at each time instant k. The driving
mode characterises the moving behaviour of the monitored target vehicle during the con-
sidered time-window. These modes can then be leveraged for defining classes of complex
behaviours that could draw the attention on the monitored target. This is achieved by com-
paring the driving modes, extracted from the filtered vehicle trajectories, with particular
pre-defined behaviour strings by the means of pattern/string matching. Considering, for
example, the case where the monitoring UAV is interested in detecting a ‘deceleration +
stop/slowly moving’ manoeuvre performed by a vehicle near a protected military base.
An example of pattern to look for could be ‘444,000’, meaning that the vehicle decelerates
for achieving a velocity that is close to zero or keeping stationary to monitor the military
base. Obviously, lots of similar strings could be recognised as this peculiar behaviour, e.g.,
‘944,000’, and ‘994,400’. Therefore, using simple exact string matching might be an exces-
sively strict policy to pattern recognition and cannot account for minor differences in the
compared strings. This means that the exact string matching might consider a potentially
threat as a normal vehicle. Although one can use thresholding to account for the minor
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difference between the referenced patterns and extracted driving mode strings, the tuning
of the threshold is often a complex process, requiring deep insight into the considered
scenario. These observations motivate the investigation of a new and flexible approach
to define the reference patterns. In order to overcome the shortcomings of simple string
matching, this report suggests a more flexible way to define the reference patterns by the
means of RD. This allows defining a fixed binding structure for the behavioural patterns of
interest, specifying mandatory and optional terms.

The objects of the proposed learning process are patterns of driving modes, which are
sequences of alphanumerical characters with no ordinal meaning. Given this characterisa-
tion, the most suitable learning approach appears to be the use of a neural network. This
tool, if properly trained, can accept a sequence of driving modes of fixed length as input
and produce a single value denoting to what extent the pattern can be assumed as normal
or abnormal. After properly training the neural network, it can be utilised to assess the
vehicle trajectories. However, the issues here are the assessment tends to suffer from a high
computational burden for real-time applications when considering complex scenarios and
the neural network needs to be re-trained when adding some ‘assumed normal/abnormal’
behaviours to the neural network for some specific scenarios. For example, the ‘decelera-
tion + stop/slowly moving’ pattern is a normal behaviour when we consider public traffic
monitoring but is becomes abnormal when a vehicle is loitering a high-value asset such as
a military base. In order to accommodate these issues, a RD dictionary algorithm is created
by summarising the observed manoeuvre patterns provided by the neural network. This
can be carried out by providing a new dataset, called RD-training set, as an input dataset to
the neural network and follows the same procedure used for the NN-training set. Since the
output of the neural network lies in [0, 1], the RD-training driving patterns can be divided
into several bins based on their associated neural network output as:{

net(pi) > γ

net(pi) ∈
[
1 − (1−γ)(j−1)

Nb
, 1 − (1−γ)j

Nb

] => pi ∈ bj (9)

where net (·) denotes the neural network operator; pi is i-th pattern of the RD-training
set; γ is the threshold on the neural network output for the pattern to be considered; Nb
represents the number of bins of the RD dictionary; and bj stands for the j-th bin. After
splitting the RD-training patterns into different bins, a set of regular expressions is then
generated for each bin to represent the level of regularity. As we stated earlier, by utilising
the regular expressions, one can accommodate the minor difference between two different
but almost same patterns. Given a RD dictionary, the assessment can then be performed by
searching the dictionary from the top to find the regular expression that matches with the
input pattern. Note that most of the driving patterns in a real-world scenario are normal.
Therefore, searching from the top bin can save the computational power. Assume that
the querying result of a generic input pattern is q, then, the normal level of this pattern is
given by:

1 − (1 − γ)(q − 1)
Nb

(10)

As stated earlier, the advantage of the RD dictionary, compared with the neural
network, is that it can be easily updated in a real time. This can be carried out by adding a
new pattern into one bin or moving one pattern from one bin to another bin. For example,
‘44,000’ is a normal behaviour pattern when applying to public traffic/driving behaviour
monitoring of targets, but it might be a suspicious pattern when considering a high-value
asset/military base monitoring scenario. Therefore, when the scenario changes to a military
base monitoring, one needs to move the regular expression that represents ‘44,000’ pattern
to a bin with the output close to 0. By doing so, the proposed approach can quickly adapt
to different scenarios without changing the assessment architecture and thus reducing
complexity and computational effort.
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4.2. Numerical Simulation of Target Monitoring Algorithm

This section validates the proposed approach through numerical simulations. In order
to train the neural network, the dataset with positive labels are manually created by the
means Markov Chain. By means of the Markov Chain, plausible patterns are generated
as the positive data to train the neural network. As for the negative dataset, the pattern
is generated as a random sequence of driving modes where a sub-sequence is added
that represent a known abnormal behaviour. The following datasets have been produced
when applying the proposed algorithm: (i) NN-training set: 20,000 patterns, including
75% positive and 25% negative data, used to train the neural network; (ii) RD-training set:
20,000 patterns, including 75% positive and 25% negative data, used to query the trained
network and create the RD dictionary. A simplified military scenario using the high-value
asset (military base) baseline shown in Figure 3 is used, to showcase the performance
benefits of the proposed behaviour recognition algorithm as shown in Figures 4 and 5. In
the considered scenario, there are six different roads, as shown in Figure 4, and the routes
or roads of interests are 2, 3, 4, 5 as they are around the military base.

 
Figure 3. Surveillance of a high-value military asset, where a swarm of air/ground drones serve
multiple purposes, such as acquisition of completing camera angles and establishing relay chains for
effective and secure communication (source FOI).

 
Figure 4. Simulation scenario for monitoring a high value asset (military base).
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(a) (b) 

Figure 5. (a) Results for the RD dictionary using the neural network. (b) Results for the RD dictionary
using the neural network with 100 bins.

With regard to the accuracy of the generated RD dictionary, as it is generated by the
trained neural network, it is reasonable to see to what extent the RD dictionary query
output matches with that of the neural network for various test patterns. To assess the
accuracy of the algorithm, a test set with 2000 randomly generate patterns is used, for this
comparison. The simulation results are shown in Figure 6a,b. The correct matching in the
results means that the difference of the outcomes of these two methods lies within a given
error threshold. The numeric results indicate that the proposed dictionary query approach
has been able to reproduce the NN outputs for a fair portion of the test patterns accounting
for approximately 85% of correct matching assuming an error threshold of 20%.

 
(a) (b) 

Figure 6. (a) Assessment for the normal vehicle. (b) Assessment for the abnormal vehicle.

Two vehicles, normal and abnormal, with different trajectories are considered. For the
abnormal vehicle, it starts from Road 1, loitering the military base through Roads 2, 3, 4, 5,
and performs a ‘deceleration + stop/slowly moving’ manoeuvre at time 145 s at Road 5. For
the normal vehicle, it starts from Road 1, regularly pass the military base through Roads 2,
3, and ends at Road 6. The trajectories of these two vehicles are presented in Figure 6a and
the road histories are shown in Figure 6b. The assessment results, using neural network
and RD dictionary query, of these two vehicles are provided in Figure 7a,b, where Figure 7a
is for the normal vehicle and Figure 7b is for the abnormal one. It is clear that the regularity
level, provided by both neural network and RD dictionary, of the normal vehicle is very
close to 1. This means that the proposed approach considers this car behaves regularly.
From Figure 7b, it can be observed that the proposed assessment method successfully
identifies the potential threat at around 145 s which is indicated by the output regularity
level is close to 0. The recorded running time shows that the RD dictionary query saves
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approximate 50% time than that of the neural network method. This clearly verifies the
proposed new RD method can reduce the computational time.

 
(a) (b) 

Figure 7. (a) Assessment for the normal vehicle. (b) Assessment for the abnormal vehicle.

For improved situational awareness of swarms of unmanned aerospace vehicles, a
novel behaviour recognition algorithm was developed based on regular dictionary tech-
niques (RD) to detect target behaviours. Simulations using multiple agents in a swarm
have shown that the novel RD dictionary algorithm saves approximate 50% time than that
of neural network methods when used in a swarm to detect multiple targets thus reduce
the computational time needed.

5. Sensor Fusion

Sensor fusion is synonymous with technology to support the commander’s situational
awareness. Automatic target detection and tracking are fundamental sensor fusion tasks
upon which both situational awareness and other support functions such as anomaly
detection rely. An efficient system will detect targets early and produce reliable target
coordinates, regardless environmental factors and hostile attempts to mislead or disrupt the
system. Target tracking is not only concerned with the progress of target coordinates, but
also the coordinates of mobile or UAV borne sensors that provide target input. A challenge
in systems that rely on sensors swarms is indeed to and a (cost) effective solution that
produce the sensor positions and orientation, collectively termed their pose. To that end,
tracking also relies on sensor calibration, that is, the sensor data need to be interpreted in
accurate real-world geometrical terms. Techniques for sensor positioning include satellite
positioning systems (GNSS), inertial measurement units, ultra-wideband transceivers,
simultaneous localization and mapping, and so on. These techniques will however, not be
reviewed here. Instead, the focus will be on the relation between pose error and tracking
feasibility and accuracy in scenarios relevant for the swarm mission scenario shown in
Figure 1. The algorithm developed for tracking follows a decentralized architecture such as
the one depicted in Figure 8. In contrast to distributed variants, detections are collected
at a possibly local fusion node, where exclusively the target state in terms of real-world
coordinates is estimated. To be mentioned, today’s research and development, however,
strive toward distributed tracking algorithms with an aim to increase fault tolerance while
simultaneously meeting bandwidth restrictions.

The sensor fusion algorithm used for the swarm mission analysed in this work is
broken down in the four steps. First an abstract idea on how the targets and sensors
shall move is formulated using concrete matrices with sampled object coordinates and
sensor detections. A motion planning program uses a script that indicates the object
speed along the associated spline, and between station points. For each station point,
the script determines the speed, or maximum speed, to be aimed for to the next station
point, and if the object shall pause, or if there is a rendezvous with another object, and
so on (Figure 9). The motion planning program samples the object coordinates at desired
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sampling frequency, for instance 10 Hz, and also generates soft transitions by imposing
continuity requirements on the acceleration. A six-state tracking filter is used to track all
agents and targets. Figure 9a shows the targets and sensor allocations from the airborne
UAV-sensor field of view, while Figure 9b shows the full view of three UAVs flying over a
single ground target and performing the required monitoring task with sensor fusion from
three UAV sensors.

 

Figure 8. Breakdown of the target tracking components. Sensors were used with sensor-attached
detectors that propagated target detections in terms of coordinates to a local fusion node.

  

 (a)  (b)  

Figure 9. (a) Screenshot of simulated targets and sensor motions, where the sensor is a UAV-borne
camera trained for the (red) person in the centre (b) full view.

The evaluation of the sensor fusion algorithm is based on Monte-Carlo simulations
given a scenario with three UAV-born sensors over a single ground target, as shown in
Figure 10. To evaluate the robustness against navigation errors, the true sensor position
and orientation are perturbed by band limited Gaussian processes. The bandwidth of the
perturbation is selected to 1/100 Hz. Regarding the orientation, the major perturbation
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is on the yaw angle, while the pitch and yaw receive only a tenth of the variation. This
reflects the assumption, that the yaw is more difficult to determine than the vertical axis,
which can be given by a rather simple inclinometer or g-sensor. An ordinary magnetic
compass, on the other hand, would be susceptible for spurious magnetic fields from power
lines and iron masses and would also depend on local magnetic declination. Regarding
the position, the perturbations for the east, north, and up components are independent
and equally distributed. In the simulation, the ground target is moving at different speeds
3–8 km/h and is occasionally standing still at the station points. Three air borne sensors
are trained at the ground target, of which two exhibit an (almost) perpendicular linear
motion, and the third a circular motion. The sensor levels are 25–30 m above ground. The
sensors continuously travel back and forth along their preferred trajectories with speed up
to 10 km/h. No occlusion occurs in this scenario. However, the knowledge (certainty) of
sensor positions and/or orientations is assumed to be limited. The simulation time is 185 s
and the sampling frequency is 10 Hz. The primary evaluation criterion is the tracking root
mean square error distance, RMSE.

Figure 10. Simulated swarm navigation errors from UAV sensors.

Figures 11–14 show a single realization with and without collaborative positioning.
Here, only the sensor orientation is perturbed with the realization illustrated in Figure 11,
that is, σyaw = 4◦ (standard deviation). The target tracking simulation outcome is presented
in Figure 12 (without collaborative positioning) and in Figure 13 (with collaborative posi-
tioning.) Without collaborative positioning, to start with, the tracking error is on average
RMSE-j = 1.2 m, but can apparently exceed 5 m, occasionally. Indeed, with collaborative
positioning the error is significantly reduced, RMSE-j = 0.5 m, and the estimate follows
the ground truth curve. For clarity it should be mentioned, that the RMSE is computed in
three dimensions, while the vertical error is transparent in Figures 13 and 14. Collaborative
positioning with yaw compensation allows larger orientation errors, but it has not always
positive effect in the presence of position errors. Target tracking from a swarm of UAVs and
UGVs requires that the platforms are fitted with suitable and well-calibrated sensors and
that they have navigation ability to determine the position and orientation of the sensors
with some accuracy. The tracking performance deteriorates quickly with increased naviga-
tion error. In the example scenario with three UAVs and a single ground target, the average
yaw error must not exceed 4.5◦ and the average position error must fall below 0.4 m to
meet an example requirement on tracking RMSE < 1 m. If the navigation units carry inertial
measurement units, it can be assumed that the navigation error varies slowly, compared
with platform and target movements. Then, techniques for collaborative positioning can
be used to mitigate the effects of navigation errors, which in turn can reduce overall cost
and weight on navigation solutions. In the example scenario it was demonstrated that
collaborative positioning in the form of yaw error compensation reduced the susceptibility
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for orientation error by almost 50%. It was also observed that yaw compensation alone can
increase the sensitivity for position error, so future investigations of combined yaw and
position error compensation are indeed warranted. In the swarm demonstration phase,
practical test results with real time swarm-based tracking, based on the algorithm presented
in this section will be presented, using real data from a swarm of unmanned aerial and
ground vehicles.

Figure 11. Simulation of target tracking. The continuous curve (blue) is the true track, and the dashed
curve (red) is the EKF estimate. The corresponding tracking RMSE is 1.2 m.

Figure 12. Simulation as in Figure 15 but with implementation of the collaborative positioning
algorithm. The corresponding tracking is significantly reduced to <0.5 m.
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Figure 13. Tracking RMSE resulting from the Monte Carlo simulation.

 
Figure 14. Tracking RMSE using a collaborative positioning algorithm. The corresponding tracking
is significantly reduced by up to 50%.

6. Guidance for Swarm System Control

The mission of interest is the persistent monitoring mission described in Section 1. A
static network of Ng sensor is assumed to be deployed on the ground and provide informa-
tion regarding to possible intruders inside an area of interest around a protected asset. In
addition to the ground static sensors, N mobile vehicles equipped with onboard sensors
are assumed to be available. They may consist in ground mobile robots and/or aerial
vehicles (UAVs). To define the objectives of the cooperative guidance and reconfiguration
algorithms to be designed the following requirements are introduced and will be used:

• R1: enabling cooperation among the vehicles of the swarm to safely perform the
monitoring task

• R2: ensuring complementarity between mobile vehicles of the swarm and the ground
static sensor network

• R3: compensating by mobile vehicles for possible faults in the static sensor network.

From the mobile vehicles’ point of view, the mission consists of reaching assigned
targets while contributing to improve the monitoring of the area of interest along the
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performed trajectories. The targets are assumed to be assigned by the “Mobile Vehicle Task
Allocation” building block (see Figure 5) and defined as way points. They can correspond
for example to locations of intruders detected by the ground sensors, to locations of areas
over which complementary information is required to improve situational awareness or to
locations of faulty ground sensors. It is assumed that a target is assigned to each vehicle
of the swarm, with the possibility to assign multiple vehicles at the same location. In this
section a reactive and distributed cooperative guidance law is designed as in Ref. [4] for the
mobile vehicles involved in the analysed monitoring mission. A common criterion reflecting
the mission and safety objectives is defined and evaluated according to each vehicle action
and result, taking also into account the interaction between vehicles. Interactions between
the vehicles and the static sensor network can also be handled by this criterion to ensure
complementarity and reconfiguration in the monitoring mission. Guidance laws can be thus
derived by optimization of this criterion, relying on approaches such as model predictive
control (MPC).

6.1. UAV Swarm Guidance Algorithm

MPC has been widely used for the guidance of UAVs in various contexts, for example
UAV flocking and formation flight have been discussed in [1]. In distributed MPC [5–7],
each vehicle computes its control inputs at each timestep as a solution of an optimization
problem over the future predicted trajectory. For tractability reasons, finite prediction and
control horizon lengths, respectively, denoted as Hp and Hc are used. The future control
inputs and the resulting state trajectories of a vehicle i are written as:

Ui = {ui(t), ui(t + 1), . . . , ui(t + Hc − 1)}
Xi =

{
ξ(t + 1), ξi(t + 2), . . . , ξi

(
t + Hp

)} (11)

If Hc < Hp, the control input is set to 0 after Hc steps. Once the optimal input sequence
U∗

i has been computed, each vehicle communicates its predicted trajectory to the rest of
the fleet and applies the first sample of the computed optimal control sequence u∗

i (t). The
optimization problems at time t takes the following form:

minimize Ji(Ui, Xi)

over Ui ∈ UHc
i

subject to ∀k ∈
[
t + 1; t + Hp

]
, ξi(k) ∈ Xi

(12)

where Ji is the cost function associated with vehicle i. The constraints coupling the dynamics
of the vehicles, such as collision avoidance, are taken into account by means of a penalty
factor in the cost function. At the next timestep, each vehicle searches for its solution of
the optimization problem. The cost function Ji is composed of a weighted sum of terms
reflecting the objectives of the mission. These terms are detailed in the following sections.
Each cost function or its subcomponents are defined such that their norm is less or equal to 1
and weighted with a coefficient w• to give priority to some of the objectives with respect to
the others. Each vehicle defines its own trajectory online to achieve the mission objectives
and constraints: (i) Head towards its assigned waypoint (ii) Maximize the cumulated
area covered, in cooperation with the ground static sensors and the other mobile vehicles
(iii) Avoid collisions between vehicles (iv) Minimize energy consumption to increase the
monitoring capability. The associated global cost function is given as:

Ji = Jnav
i + Jcov

i + Jsa f e
i + Ju

i (13)

The instant of time at which all these computations are carried out is t. The cost Jnav
i

to guide the vehicle i towards its assigned waypoint pp
i has the following expression:

Jnav
i =

1
2Hpvmax

t+Hp

∑
n=t

wp‖pi(n)− p̂i(n)‖+ w f D
(

pi
(
t + Hp

)
− B

t+Hp
i

)
(14)
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The first part penalises the distance of the predicted trajectory pi over the horizon
Hp to a virtual best-case trajectory p̂i which is a straight line towards the waypoint pp

i at
nominal speed vnom. The second part encourages the vehicle to reach closer to the waypoint
at the end of the predicted trajectory by penalising the distance to a reference ball Bi around
the waypoint as illustrated in Figure 15.

 

Figure 15. Definition of virtual trajectory and ball for navigation cost.

The cost Jsa f e
i to avoid collisions between the vehicles is defined as:

Jsa f e
i = wsa f e ·

2
Hp

t+Hp

∑
n=t+1

N

∑
j = 1
j �= i

1
2
[
1 + tanh

((
dij(n)− β

)
.α
)]

(15)

where dij(n) = ‖pi(n)− pj(n)‖ denotes the distance between vehicles i and j, and pi =

[xi, yi]
T .

The coefficients α and β, respectively, parameterize the width of the interval of fast
variation of the hyperbolic tangent and its inflexion point. Two distances are defined: ddes
is the activation distance of the collision avoidance mechanism and dsa f e is the mandatory
safety distance between vehicles. They are related to α and β by α = 6

(ddes−dsa f e)
and

β = 1
2

(
ddes + dsa f e

)
.

With this choice, the cost variation is less than 5% of its maximal value in the range
[ddes,+∞]. For implementation, the penalty function is set to 0 for dij > ddes, i.e., the
vehicles do not consider each other above this distance. The cost Ju

i to limit the energy
spent by the vehicles is:

Ju
i =

1
Hp

t+Hp

∑
n=t

wv

vmax
(vi(n)− vnom)

2 +
wω

ωmax
ω2

i (n) (16)

It penalizes the difference between the actual speed and the desired speed vnom and
favours straight lines over curved trajectories. The cost function Jcov

i should reflect the
gain in terms of map coverage for a potential trajectory. Each vehicle is assumed to have
an attached sensor (of range rsensor), described by a function fcov of the relative position
between the observed point and the vehicle. The cooperatively covered area at time t is:

Ω = ∪
n = 1, . . . , t

i = 1, . . . , N + Ng

Dn
i (17)
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where Dn
i is the sensing footprint of vehicle i at timestep n. Since this representation is

impractical, the mission field is approximated as a grid of resolution dgrid. A matrix G
stores the level of exploration of each cell of the grid. Each element Gl,m (where (l, m)
are the integer coordinates of the cell of the grid) ranges between 0 when no vehicle has
covered this location on a reference period and 1 when it has been entirely observed. Each
vehicle stores a copy of this exploration map and updates it with the information from
the rest of the fleet and the ground sensors (if their status is healthy). The precision of the
representation only depends on the parameter dgrid. When a vehicle comes at a distance d
from the centre of cell (l,m), the exploration level is updated:

G+
l,m = max(Gl,m, fcov(d)) (18)

The exploration index is increased only if the vehicle is close enough. The function
fcov is chosen to be continuous and identically 0 for d > rsensor as:

fcov(d) =

{
0 i f d ≥ rsensor

1
2

(
1 + cos

(
πd

rsensor

))
i f d < rsensor

(19)

The coverage matrix also takes into account the information from the ground sen-
sor: the sensor footprint of each ground sensor whose status is known to be healthy is
incorporated in G, hence ensuring complementarity between static and mobile sensors.
In case of failure detection in a static sensor, the corresponding footprint is changed back
to “not covered” in the map. This allows the mobile vehicles to take into account this
new information in the computation of their next control input and naturally reconfigure
the coverage mission of the swarm. The coverage cost function is thus defined to reward
trajectories that cooperatively increase the global level of exploration of the map. Note that
it takes negative values since the overall cost function is minimized, while the objective is
to maximize the coverage.

Jcov
i = −wcov ∑

l,m
Gl,m

(
t + Hp

)
− Gl,m(t) = −wcov1T(G(t + Hp

)
− G(t)

)
1 (20)

where G
(
t + Hp

)
is the predicted exploration map associated with the vehicle trajectory

and 1 is the vector of appropriate dimension whose components are all 1. This cost function
represents the total increase in the global coverage level resulting from a predicted trajectory.
Since the vehicles share information, flying in already covered zones (by mobile or static
sensors) is therefore, penalized and this also allows covering the area leaved free by a
faulty sensor.

6.2. MPC Optimization and Cost Function Online Computation

The MPC optimization problem is a constrained nonlinear program, the solution
of which cannot be found analytically. Numerical optimization must hence be used to
approximate the solution. Global optimization procedures based, for example, on interval
analysis [9] or genetic algorithms [10] can be used but may in practice be computation-
ally prohibitive for real-time implementation. Numerical optimization methods, such
as Sequential Quadratic Programming (SQP), Active Set or Interior Point methods are
thus generally preferred [11]. Other methods suitable for MPC problems have also been
developed [12,13]. Nevertheless, a global solution can be hard to find because of potential
local minima. The computational time required for a MPC approach strongly depends on
the parameterization of the control sequence. Low dimensional parameterizations have, for
example, enabled successful applications to control systems with fast dynamics. Another
solution consists of considering a finite set of predefined feasible control sequences, from
which the one minimizing the cost function will be. This last solution is used in this paper
for implementation of the MPC strategy, based on [8]. This systematic search strategy has
several main advantages over a traditional optimization procedure. Firstly, the computation
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load necessary to find a control sequence is constant in all situations leading to a constant
computation delay. The second advantage is that the systematic search strategy can be
less sensitive to local minima problems since the entire control space is explored. Finally,
the systematic search requires no initialization of the optimization procedure. The studied
search procedure consists of defining, prior to the mission, a set S of candidate control
sequences that satisfy control constraints. At each timestep, the control problem is solved
using the proposed search procedure, as follows:

1. Using a model of the vehicle dynamics, predict the effect of each control sequence of
the set of candidates S on the state of the vehicle;

2. Remove from S all of the candidate control sequences that lead to a violation of
constraints on the state of the vehicle;

3. Compute the cost Ji corresponding to each remaining candidate control sequence;
4. Select the control sequence that entails the smallest cost.

Since all of the feasible candidates in the set S will be evaluated, the computation load
of associated predictions should be as limited as possible. A simple parameterization of
the control sequence is therefore, adopted, by considering a control input constant over
the control horizon Hc and then null over the remainder of the prediction horizon Hp. In
addition, the distribution of the candidate control sequences is chosen so as to limit their
number, while providing a good coverage of the control space.

The following three rules have been chosen:

• The set S of candidates includes the extreme control inputs, to exploit the full potential
of the vehicles;

• The set S of candidates includes the null control input, to allow the same angular and
linear accelerations to be continued with;

• Candidates are distributed over the entire control space, with an increased density
around the null control input.

6.3. Swarm Guidance Algorithm Numerical Simulation

This section presents the evaluation and performance analysis of the proposed swarm
guidance algorithm. Different simulation scenarios are considered to illustrate the compli-
ance with the three requirements listed in Section 6.1 and influence of simulation parameters.
The parameters of the swarm simulation scenarios performed are shown in Table 4.

Table 4. Swarm guidance simulation parameters.

Parameter Value

(vminvmaxvnom) (0.3, 1, 0.7) ms−1

(wminwmaxΔwmax) (−0.2, 0.2, 0.05) rads−1

(Δvmax) 0.1 ms−1(
ddesdsa f edgrid) (9, 3, 2.5) m

(wpwvwcov) 1, 0.5. 2
w f wωwsa f e 4, 0.5, 10

rsensor 5 m
(Hp Hc) 21, 3

Five mobile vehicles represented by arrows are considered in Figure 16. The circle
around each vehicle represents its sensor footprint. Five mobile vehicles are available.
Two targets are assigned to two groups of two vehicles. A fifth target is assigned to the
remaining vehicle. A fifth target is assigned to the remaining vehicle. A target way point
(coloured dot) is assigned to each vehicle. The area covered by the sensor footprint of each
vehicle during the mission is represented in grey levels corresponding to the exploration
value (Equation (18)). Footprints of ground static sensors are represented by blue circles
inside which the area is assumed to be covered. All vehicles successfully reach the assigned
targets, starting from randomly chosen initial conditions in terms of position, orientation
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and velocities. While arriving close to their targets, the vehicles start to perform trajectories
to improve monitoring while staying as close as possible to the targets. This results in a
quasi-circular trajectory for the green vehicle and local cooperative trajectories ensuring
collision avoidance and complementarity in the monitoring for the three others. The ground
static sensor network is assumed to be composed of:

• Four high range sensors (rg
sensor = 10 m) located at the centre of the area and with

overlapping footprints (e.g., sensors monitoring a protected asset),
• Four middle range sensors (rg

sensor = 5 m) and 12 low range sensors (rg
sensor = 1.5 m)

located all around the centre of the area as an “early warning frontier”.

Figure 16. Monitoring mission—nominal scenario.

Illustration of fulfilment of the reconfiguration requirement (R3) is addressed through
three simulation scenarios:

• a “nominal scenario” with no failure among the static sensors,
• a “reconfiguration scenario 1” with failure of two high range and one low range

sensors during the execution of the mission,
• a “reconfiguration scenario 2” with failure of one middle range sensor and one low

range sensor during the execution of the mission.

Faulty sensors are represented by red circles.
In the nominal scenario shown in Figure 16, cooperation between the vehicles enables

to improve monitoring in a cooperative way to the static sensor network while minimizing
overlaps as much as possible. As already mentioned, when the vehicles become close to
their assigned targets, they keep moving close to the targets and improving coverage in
this area. In the faulty scenario 1 presented in Figure 17, the trajectory of one of the vehicles
is modified online to cope with failure of two high-range sensors. Some information is
therefore, collected by opportunity over the areas not covered anymore by the static sensors.
A failure has also been simulated for a small range sensor located on the top part of the
area. Vehicles close to this sensor also start to modify their trajectories, because of the
event. Online reconfiguration is also performed in the faulty scenario 2 shown in Figure 18,
where trajectories of the vehicles are adapted online to compensate for missing information
from the faulty sensors. Note that if one would wish to “permanently” compensate for
faulty sensors by ensuring a full or persistent coverage of the area not monitored anymore,
a new target should be assigned to some vehicle(s) in this/these location(s). Hence, the
vehicle(s) would perform “circular”-like motions over the area(s) compensating for the
faulty sensor(s).
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Figure 17. Monitoring mission—faulty scenario 1 (faulty sensors in red).

Figure 18. Monitoring mission—faulty scenario 2 (faulty sensors in red).

In summary, a reactive and distributed cooperative FDIR/guidance algorithm has
been designed for mobile vehicles enabling cooperation and reconfiguration has been
proposed for a persistent monitoring mission. The algorithm is based on Model Predictive
Control and is designed in a distributed way, enabling each vehicle to compute its own
control input, resulting in more robustness with respect to failure of one of the mobile
vehicles. The algorithm enables to ensure monitoring complementarity among the vehicles
in combination with a ground static sensor network. It also addresses safety issues by
avoiding collisions between the vehicles in case of conflicting trajectories. The algorithm is
validated via simulation and online reconfiguration is shown to cope with possible failures
among the ground sensors.

7. Practical Swarm Demonstration

All swarm technologies presented in earlier sections are combined, simulated and then
validated via a practical demonstration in a scaled outdoor environment. Due to the time
and budget constraints the testing areas was limited in size and the unmanned platforms
used to form a swarm of robots were based on COTS systems available in the market.
The main objectives of the practical demonstration were to set up the demonstration
environment, communications network and test the swarm functionalities for a persistent
monitoring scenario as shown in Figure 7. For the outdoor demonstration 8 air and ground
unmanned vehicles/agents were used in combination with static and mobile (ground)
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targets. All agents are targets and are connected to a WIFI network or used radio telemetry.
The navigation information of each agent and targets are shared via ROS based protocols.
The task allocation system also is connected to ROS and the results of task allocation
are also shared in ROS. Each agent is using the allocated mission information which is
shared by the task allocation algorithm. Multiple combinations of agents, type of vehicles
and number of targets where implemented, thus assessing homogeneous (same type of
vehicle/sensors) and heterogeneous vehicles (optical/IR sensors, fixed wing/quadrotor
UAVs). The unmanned systems used, and their physical Specifications of agents are
summarized in Table 5.

Table 5. Physical specification of agents.

Parameter Parrot Bebop 2 Parrot Disco Erle Copter Erle Hexacopter Erle-Rover

Width 330 mm 1150 mm 360 mm 590 mm 325 mm
Length 330 mm 580 mm 360 mm 515 mm 465 mm
Height 89 mm 120 mm 95 mm 95 mm 145 mm
Weight 500 g 750 g 1300 g 1700 g 2100 g

Endurance ~30 min
Max Speed 40 km/h 40 km/h 30 km/h 30 km/h 5 km/h

The targets consist of two types: static targets (Type 1) and moving vehicles (Type 2),
both using the Erle-Rover UGV. The outdoor demonstration took place at the Cranfield
University Airport on 8 February 2018. Considering the proposed mission scenario, re-
source availability, project time limitations and costs/vehicle compatibility, the following
demonstration parameters are used: 4 quadrotors, 1 fixed wing micro drone and 3 un-
manned ground vehicle (UGV), operating in a 100 × 100 × 30 m volume using GPS-optical
guidance/navigation as shown in Table 6.

Table 6. Unmanned vehicles for swarm outdoor demonstration.

Model Type Units

Agent Bebop UAV 3
Agent Erle-copter UAV 1
Agent Rover UGV 1
Agent Disco Fixed wing UAV 1
Target Rover UGV 2
Target Stationary target Stationary target 5
GCS PC GCS 1

Figure 19a shows the guidance, navigation and control structure for the first outdoor
demonstration. An Erle-copter and a rover are integrated as agents newly and they are
operated with own navigation and control system in on-board system. The navigation
systems are based on the GNSS and INS integrated navigation system. A fixed wing UAV
(Disco) is operated as a top-layer observer.

Figure 19b shows the network structure for the swarm outdoor demonstration. All
agents are targets are connected to ROS through WIFI network. The results of the target
behaviour monitoring algorithm, target detection algorithm, and sensor fusion algorithm
are shared in ROS. The target information which is acquired from these algorithms also can
be utilized in task allocation algorithm through ROS. An example of one of the outdoor
demonstration/trials is presented in Figure 20a, which took place at Cranfield University
Airport on 9 February 2018. The swarm system consisted with four agents and three
moving targets with the mission trajectory shown in Figure 20a, where the dotted lines
represent moving target’s trajectories, the square markers are the stationary targets, and the
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solid lines are trajectories of each UAV. Figure 20b shows the target detection probability
which indicates the probability of detection of all the targets. If the probability becomes 1,
it means all the targets are detected. The results show that the maximum probabilities of
detection converge to 1 in the heterogeneous swarm case.

 
(a) (b) 

Figure 19. Swarm structure for (a) guidance, navigation and control system; (b) network.

(a) (b) 

Figure 20. (a) Mission trajectory for the EuroSWARM outdoor experiment. (b) Time history of target
detection probability.

8. Conclusions

A swarm of unmanned vehicles, mostly composed of micro-UAVs has been studied
for use in the defence sector, for the protection of high-value assets such as military bases
or installations. By testing and demonstrating an autonomous swarm of heterogenous vehi-
cles, it has been shown that efficient and effective operation of unmanned swarm systems
can bring a profound impact to the military arena. The key focus in the development of
the enabling technologies has been the minimisation of uncertainties in situational aware-
ness information for surveillance operations supported by a swarm ‘system of systems’
composed by static and mobile heterogeneous sensors. Critical enabling techniques and
technologies for adaptive, informative and reconfigurable operations of unmanned swarm
systems were developed in the work presented via the use of computationally efficient
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algorithms for, mobile sensor tasking (including re-allocation), sensor fusion, information
fusion including behaviour monitoring. Simulation and practical results, described in the
paper, from a demonstration using a swarm of 10 micro-UAVs and UGVs has demonstrated
the benefits of swarms of heterogeneous vehicles for defence applications such as for the
persistent monitoring of high-value assets. Novel guidance, sensor fusion and task alloca-
tion algorithms which form the basic technologies for swarm systems have been matured
in this work, through the development of algorithms which can be implemented in COTS
based unmanned vehicles available today. The described algorithms have been integrated
in a fully autonomous swarm system of a small scale and were designed and optimised
to require small computational power, be flexible, reconfigurable and with the ability to
be implemented in a large range of commercially available unmanned vehicles (air and
ground). A realistic, persistent surveillance and monitoring scenario was implemented
showing that efficient and effective operation of unmanned swarm systems can allow the
swarm system end user in the battlefield to obtain real-time, relevant situational aware-
ness information and help commanders make time efficient and effective decisions, while
reducing risk/mission costs and human exposure to threats.
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Abstract: This paper presents the design of a small size Unmanned Aerial Vehicle (UAV) using the
3DEXPERIENCE software. The process of designing the frame parts involves many methods to
ensure the parts can meet the requirements while conforming to safety and industry standards. The
design steps start with the selection of materials that can be used for the drone, which are polylactic
acid (PLA), acrylonitrile styrene acrylate (ASA), and acrylonitrile butadiene styrene (ABS). The drone
frame consists of four main parts, which are the center top cover (50 g), the side top cover (10 g),
the middle cover (30 g), and the drone’s arm (80 g). A simulation was carried out to determine the
stress, displacement, and weight of the drone’s parts. Additionally, a trade-off study was conducted
to finalize the shapes of the parts and the various inputs based on their priorities. The outcome of this
new design can be represented in design concepts, which involve the use of the snap hook function
to assemble two body parts together, namely the middle cover and the center top cover, without the
need of an additional fastener.

Keywords: UAV; polylactic acid; acrylonitrile styrene acrylate; acrylonitrile butadiene styrene;
trade-off study

1. Introduction

A drone is an aircraft without a human pilot inside and it is also known as an Un-
manned Aerial Vehicle. It has many functions and applications such as for medical trans-
port [1], health care service [2], high-rise firefighting [3], drone monitoring application
for marine megafauna [4], and many other usages in our current modern society. This
research presents a new design concept and creative 3D design idea of a drone that was
designed with the 3DEXPERIENCE software. The main reason for using 3DExperience
software for this project is that it is a software that emphasizes having a collaborative
environment. Since this project has included a few people, and each with a different role, it
has been convenient to use the software for project sharing and discussion all within the
platform, especially during the current COVID-19 pandemic situation. The platform itself
has a variety of applications within it, which include software for 3D modelling (CATIA
and SOLIDWORKS), simulation (SIMULIA), social and collaborative (ENOVIA) as well as
information intelligence (NETVIBES) [5]. Therefore, each user can have roles such as project
manager, simulation engineer, and 3D designer and use the applications according to their
roles. With that, the tasks can be distributed easily based on different roles, the project
models and files can be seen and shared by everyone in the group, and the project timeline
can be managed within the platform, which allows easy tracking of the project. All these
can be done within the same software, which makes the software a good choice for a group
project that requires much collaboration. Three dimensional designing through simulation
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rather than creating a prototype can reduce the cost for a designer. Since it is a 3D design,
engineers can come up with more advanced engineering knowledge and technology. This
process is necessary to ensure the parts are able to meet the requirements while conforming
to safety and industry standards. While using 3DModelling, the applications used are
Part Design and Assembly Design. This research concentrates on the design phase of the
drone. The various designing steps included in this phase are discussed. The objectives
of this research are to simulate a drone frame to optimize the bottom cover, to study and
compare concept shapes of the top cover, arm, leg bracket, and bottom cover of a drone
using a trade-off study, and to analyze the force that is generated by the motors in order to
determine how much the drone can handle.

Researchers have a lot of interest in designing the parts of a drone and the design is
dependent on the application of the drone, where there are many factors to be considered
such as speed-motor selection and airframe selection [6]. In this research project, the design
of the drone has been made for parcel delivery purposes, which consists of four DC motors.
The single motor has a thrust of 5227 Ibs/g. The researchers in [7] studied and analyzed
the efficiency of a small quadrotor using air-foils. In this work, the modelling and control
design were demonstrated through a series of repeated flights. The researchers in [8]
analyzed the aerodynamic interaction between rotors of a micro-quadcopter. Equation (1)
was used to calculate the Reynolds number [8], where Re represents the Reynolds number,
ρ represents the density of air, Ω represents the rotor angular velocity, and μ represents the
dynamic viscosity of air.

Re =
ρΩRc

μ
(1)

Figure 1 depicts the different designs of drone available for development, which
are X-design, H-design, and hybrid H-design. Each design has its own advantages and
disadvantages. X-design has the advantage of being light and is usually used for racing
purposes [9]; however, it requires long landing gear. H-design has the disadvantage of
being heavy [10]. Part Design is an integrated application in 3DEXPERIENCE that includes
design, weight calculation, and 3D structure. The application’s aim is to give a better
view of the design when the design is constructed. The Assembly Design application in
3DEXPERIENCE helps to fix the parts that have been designed and shows the constraint
between the parts. This can optimize the design and can solve the issue of overlapping. As
shown in Table 1, the drone design has a total of six different parts, and they are classified
into two main groups. The upper part of the drone is the drone frame and the lower
part of the drone is the drone carriage, which is used to carry the payload. The details of
the parts included in each of the categories and the number of parts contributing to the
overall drone are presented in Table 1. Figure 2 shows the novel design of the drone using
3DEXPERIENCE. Three Dimensional printing, also known as additive manufacturing, is
used in this project for the fabrication of the drone frame. With the use of a CAD software,
which in this case is 3DEXPERIENCE, the designed models can be sent to a 3D printer
and the parts can be printed within a few hours [11–13]. A 3D printer is a device used
for computer-aided manufacturing, whereby it creates 3D objects through “printing” and
solidifying of materials [11,14], which range from polymers (thermoplastic) to metal and
even food [15]. Thermoplastics are the most widely adopted 3D printing material and they
come in various forms such as the most used extrusion (also known as filament), resin, and
powder [16].
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Figure 1. Drone hybrid H-design, H-design, and X-design Available for Development [8].

Table 1. Drone’s Parts.

Category Part Name Numbers of Parts

Upper drone Drone Frame
Centre Top Cover 1

Side Top Cover 2
Drone Arm 4

Lower drone
Carriage
(Payload)

Middle Cover 1
Leg Bracket 4

Bottom Cover 1

 

Figure 2. Original Design of the Drone using 3DEXPERIENCE.

The technique used for the 3D printing of the thermoplastic is known as the Fused
Filament Fabrication (FFF) [17] where the working principle of the desktop FFF 3D printer
is originated from the Fused Deposition Modelling technology [18]. The FFF technique
works on the principle of fabricating parts layer by layer. The thermoplastic material,
which is in the form of a filament roll, is firstly heated and melted then extruded through
a nozzle. The nozzle extrudes the melted filament to a platform in layers based on the
predefined pattern of the model [19,20]. The figure below shows an example of a desktop
FFF 3D printer.

Using the technology of 3D printing, a wide range of applications can be performed,
which range from manufacturing UAV parts with different functionalities and specifica-
tions [21–24] to fabricating medical devices [25], and even the field of musical instrument
research [26]. This shows that 3D printing has a high potential in diverse applications.

2. Materials and Methods

In this section, a simulation model of the drone is presented by using 3Dexperience
software, where an overview of the drone frame and the originality of the design is provided.
The type of chassis of the frame used in this design is X-Chassis. Choosing this chassis
rather than the (+) chassis or H chassis ensures that the drone can be stable. This chassis can
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hover longer compared to other chassis and it is easy to control and maneuver. The suitable
location for the center of gravity is in the middle of the drone, which will make controlling
the drone easier and will make the drone more stable. Therefore, the components’ weight
will be distributed on the drone based on the most suitable position for the center of gravity.
The momentum theory represents the basic understanding of the drone motion, where the
thrust is calculated based on this theory [26].

The general forces considered for all parts are the gravity, the landing force, and the
lifting force as shown in Table 2. The gravity will usually be at the center of the part with a
standard value of 9.8 m/s or 9.8 N/kg. These slight forces may have an effect; thus, they
have been included in the consideration for the design of the parts. In normal conditions,
when the drone lands, the force acting on it is the weight of the whole drone with the
payload or without the payload if it is a return journey. Thus, the landing force can also be
considered as the weight of the drone. On the other hand, the lifting force occurs when the
motors turn the propellers and lift the drone. Each of the motors will produce a lifting force
of 5 N, hence, giving a total lifting force of 20 N. Equation (2) [27] represents the thrust in
terms of mathematical samples, where T is the thrust measured in Newton (N), A is the
area of the propeller rotor in meter square (m2), ρ is the density of the air in kilogram per
cubic meter (kg/m3), υ is the velocity of the air at the propeller in meter per second (m/s),
and Δυ is the velocity of the air accelerated by the propeller in meter per second.

T = A × ρ × υ × Δυ (2)

Table 2. Landing and Lifting Forces.

Landing Force

1 part 1600 g/15.6906 N
2 parts 800 g/7.8453 N
4 parts 400 g/3.9227 N

Lifting Force

1 part 20 N
2 parts 10 N
4 parts 5 N

2.1. Drone Frame and Originality in Design

The drone frame consists of parts that will be used to place the controller, the battery,
the motor, etc. Figure 3 illustrates the design of the drone arm, center top cover, side cover,
and middle cover. The outcome of this new design can be represented in design concepts
through the use of the snap hook function to assemble 2 body parts together, namely the
middle cover and the center top cover, without the need of an additional fastener. Figure 3c
shows the cantilever snap fit design. This design will help to reduce extra cost and the
weight of the drone. It will also reduce the time needed when performing maintenance.
Furthermore, snap fit allows the process of assembly and disassembly of the parts to be
carried out easily. The body of the drone was designed referring to honeycomb design.
Honeycomb sandwich structures are frequently used to attain these aims in the aerospace,
automotive, housing, packaging, and sports equipment sectors, among others [28]. A
honeycomb construction is created by sandwiching an array of hollow tubes or cells
between two solid walls. The advantage of the design is also reducing weight and it
increases the structure impact resistance. It also increases the cooling of the electrical
components and increases the lifespan of the components. The honeycomb design can
carry weight as well as being a light structure. The hexagonal shape of the honeycomb
design is usually the strongest shape. This design will be more rigid and also lightweight,
where it is a new concept in drone designs. Other than that, it also increases the air flow
in the middle cover where the components are placed. This can cool down the electronic
components and can reduce overheating.
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(a) (b) 

  
(c) (d) 

Figure 3. Drone’s Frame Design. (a) Top View of Drone. (b) Drone’s Arm. (c) Cantilever Snap Fit
Design for Side Cover. (d) Cantilever Snap Fit Design for Middle Cover.

2.2. Material Selection

The focus of the project is to design a lightweight quadcopter drone for parcel delivery
purposes. From the material specifications, both ASA and ABS have a similar density
value. However, ABS material has a higher Young’s Modulus, which indicates that the
material is stiffer as compared to ASA [29]. On top of that, the maximum stress that ABS
can take before breaking is also higher than ASA, which makes it good for parts such as the
drone arm that requires some flexibility since it is attached to the motors that will provide
lifting force.

Although the weather and thermal resistant properties of ASA are higher than
ABS [30,31], there are a few drawbacks of using ASA. ASA is more expensive, and it
has a lower market availability as compared to ABS [32]. On top of that, ASA can be
difficult to print as it requires a higher extruder temperature during the printing process;
hence, it is harder to facilitate. Since the electronics components used will not produce
too much heat, ABS is chosen to be used as it can fulfil the requirements and budget
constraints. According to [33], the glass transition temperature (Tg) of PLA is between
55 ◦C and 80 ◦C depending on the different types of molecular weight and stereochemistry,
while the melting point ranges between 130 ◦C and 180 ◦C. Thus, these temperature ranges
should be sufficient for the average temperature in Malaysia, which falls within 21 ◦C and
32 ◦C [34]. The materials used for the drone are PLA, ASA, and ABS. The materials were
defined in 3DEXPERIENCE using the Material Definition App according to the values
given in Table 3. However, PLA and ABS material are chosen to be used in the final design
of the drone. PLA is used for most parts that need to be denser, stiffer, and stronger, as it
can protect the inner part of the drone, while ABS material is chosen to be used for some
parts to reduce the overall weight of the drone since it is light but is still much stiffer and
can withstand a greater stress before breaking as compared to ASA material. Only the core
material is defined because the covering material does not have much effect during the
simulation. Figures 4–6 show the materials chosen to be used from 3DEXPERIENCE and
their stress–strain curves, which show the maximum stress that can be withstood before
breaking. On top of that, the maximum stress suggested that the deflection of a part should
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be less than 4.7 mm, as shown in the setting of the materials using the Material Definition
App and their respective stress–strain curves.

Table 3. Material Specifications.

Material PLA ASA ABS PETG

Density (kg/m3) 1240 1070 1050 1270
Young’s Modulus (MPa) 1.98 × 109 1.35 × 109 1.70 × 109 1.38 × 109

Poisson Ratio 0.33
Maximum Stress before breaking (MPa) 47 28 35 -

The drone is to be manufactured using 3D printing. In general, there are 4 types of
material that can be used while performing FDM/FFF Thermoplastics 3D printing and
they are PLA, ASA, ABS, and PETG. Each of them provides a different performance based
on the nature of the material. Since the objective of this project is to build a drone that is
lightweight but strong enough to fly at a certain height for the longest period of time, the
main characteristics that need to be assessed are the density and the Young’s Modulus of
the materials.

For the center top cover, the material selected to be used as the core material is ABS
material. Since this part implements the snap hook system, it has to be slightly flexible;
moreover, ABS material is not too stiff as compared to PLA material. For the side top cover
and the middle cover, the material selected to be used is PLA material. This is because PLA
is stiffer and stronger than the other materials as mentioned earlier. Thus, it can “protect”
the inner accessories of the drone as the battery, controller, ESC, etc., that are utilized for
controlling the drone will be inside these parts. For the drone arm, the material selected
to be used as the core material is ABS material. This is because ABS is stiffer as compared
to ASA material, but it is lighter as compared to PLA material. Thus, it can bend slightly
without breaking since it is not too stiff, as the drone arm will be directly connected to
the motor.

2.3. Sketch Constraint and Design for Manufacturability

Constraints are ideal for creating practical 3D printing objects. It is important to pick
the sketch objects that are desired to be limited in order to apply a constraint and click the
corresponding constraint in the menu. The order in which the objects are picked will also
influence how the constraint is implemented. The costs of manufacturing a drone can be
reduced by designing a part or assembly for manufacturability. Manufacturability refers to
the situation where a product can be quickly assembled from fewer parts. For example, the
whole drone design is made up of six parts, which are shown in Table 1. Thus, this product
is easier to be assembled and built in a shorter period of time. The parts of the drone are
designed with standard sizes and they are easier to fabricate. This helps to optimize the
parts of the drone such that it can be created more easily and at a cheaper cost. Reducing
the cost and increasing the quality will make sure the product is sustainable in the market.
The labor cost is also reduced, thanks to the fewer parts.

2.4. Carriage (Payload) and DOF

The most important factor when flying a drone is the degree of freedom (DOF). This
factor has a large impact when it comes to the stability of the drone in maneuvering and
travelling over a distance. The six main parts’ DOFs should be followed to ensure more
smooth and stable movements. Referring to the drone designed, it can move longitudinally,
vertically, and laterally. This will also ensure the drone can make roll, pitch, and yaw
movements on each axis.
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Figure 4. PLA Stress Curve.
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Figure 5. ABS Stress Curve.
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Figure 6. ASA Stress Curve.
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3. System Simulation

Due to their wide range of applications, the attention towards drones has been con-
stantly growing for the past decade. With the help of CAD software, many studies have
been conducted to continue optimizing the performances of current drones in recent years
while adapting the use of 3D printing technologies because they will play an integral part in
the fourth industrial revolution [35]. Table 4 represents several examples of drone designs.
Three Dimensional printing, which is a type of rapid prototyping, allows the low cost
of drone fabrication [36,37], while CAD software enable the simulation such as the finite
element analysis (FEA) to be carried out [38]. The main application used to simulate the de-
sign of the drone is the Functional Generative Design (FGD) application. Generative design
is a revolutionizing product design and development technique of exploring multiple per-
mutations of a solution to obtain the best design option. This application aims to optimize
manufacturability and create a lightweight design; hence, saving material usage during
manufacturing of the product. By applying different inputs based on the requirement and
target, multiple variations can be generated in the system, which allows the user to perform
a trade-off study to compare and analyze the options available. Finally, a detailed design
can be constructed based on the chosen design for additive manufacturing.

Table 4. Several examples of drone designs.

Drone Type Designs of Drones Material Used

PoliDrone UAV [36]

 

Customizable multirotor
drone frame

Iris + drone [39]
Drone frame can be printed

using the Fused Filament
Fabrication (FFF)

Skeleton X-14 Quadcopter [40]

 

FFF-printable with a
single-piece body

As well as the FGD application, another element that is used is the Linear Structural
Validation (LSV) application. This application is used to provide a simple insight into the
design; hence, informed design decisions can be made easily. It is based on a powerful
finite element solver that allows complex simulations. The four types of methods available
for LSV are static stress, buckling, frequency, and thermal. This is usually used at the end
of the design process to validate the final model used. Static stress analysis is used in this
project, which includes evaluation of the stress, strain, and displacement of the model.
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Restrain/Connection

For the center top cover, restraining is performed using a “clamp” at both inner sides
of the part as shown in Figure 7a. The two sides will be attached to the middle cover using a
snap hook system; therefore, it should be fixed throughout the flight. For the side top cover,
restraining is performed using a “clamp” where the four holes at the sides are clamped as
shown in Figure 7b. The four holes will be bolted to the middle cover; hence, the degree
of freedom should be fixed as it is undesired for the part to move. For the middle cover,
restraining is performed using a “clamp” at the eight holes, which are at each of the corners
as well as at the side of the middle part that will be connected to the top cover using the
snap hook system as shown in Figure 7c. The eight holes will be bolted to the leg bracket
and the drone arm as well as the side top cover; thus, the degree of freedom should be
fixed as it is undesired for the part to move. As well as that, the sides where the snap
hook system is applied are clamped as well because they will be connected to the center
top cover.

  
(a) (b) 

  
(c) (d) 

Figure 7. Restraining of the Drone Parts. (a) Center Top Cover. (b) Side Top Cover. (c) Middle Cover.
(d) Arm.

For the drone arm, restraining is performed using a “clamp” at the two holes at the
end of the part as shown in Figure 7d. The two holes will be bolted in between the side top
cover and the middle cover; therefore, the degree of freedom should be fixed because the
part should not be moving.

4. Results and Discussion

4.1. Drone’s Parts’ Stress and Displacement

Figure 8 shows the simulation results of the drone frame, which includes the center top
cover, the middle cover, the side top cover, and the drone arm. From the results obtained, it
is safe to conclude that the drone frame will not fail when it needs to sustain the maximum
possible lift force from the motor as well as during the landing process. This is because
the Setup Validation showed that the stress and the displacement of the parts were within
the accepted range. Furthermore, for the parts that looked bent after going through the
simulation, the values were actually very small and insignificant. Figure 9 illustrates the
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simulation results of the drone carriage that is used to carry the payload, and it includes
the leg bracket and the bottom cover. Similar to the rest of the parts in the drone frame, the
deformation value was actually very small. For future enhancements, a slight optimization
of the center top cover and side top cover can be performed because the parts have a very
plain surface, where some unnecessary edges can be removed to reduce the weight of the
parts. However, the optimization conducted will just be minimal because these parts will
be used to cover up the components inside the drone; hence, it should not have too many
holes or else the components may drop out during the flight. Similar to the center top cover
and the side top cover, the middle cover can also be optimized, but not by much since this
is the part where the components will be placed and it is undesired for the parts to drop
off during the flight. As for the drone arm, the part is still very bulky even though a more
optimized design is used to start off with. Hence, the optimization process can also be
performed for this part to reduce its unnecessary weight.

4.2. Trade-Off Study

For the center top cover, the top four concept shapes generated were compared
by performing a trade-off study. The variants that were assessed were the mass, the
displacement, and the stress of the part. The mass was given the highest priority; hence,
it was set to have a key performance indicator (KPI) of 5. The target of the mass was also
set. As well as that, the stress and displacement were given a KPI of 3 as they were less
important for this part as it is connected at both ends. As shown in Figure 10, based on
the variants and their respective KPIs, the first design scored the highest with a score of
60.3502. However, since this part is supposed to cover up the components inside, it is not
suitable for it to have a big hole at the middle of the part. Thus, Centre Top Cover Sim
1 Shape Validation 5, which scored the second highest, was chosen to be the final design
since the other variants were still in the acceptable range. For the side top cover, only two
concept shapes generated were compared by performing a trade-off study since not much
optimization can be conducted for this part.

The variants assessed were the mass, the displacement, and the stress of the part. The
mass was given the highest priority; hence, it was set to have a KPI of 5. As well as that,
the stress and displacement were given a KPI of 3 as they were not that important for this
part as it is connected at both ends. As shown in Figure 11, based on the variants and their
respective KPIs, the first design scored higher as compared to the second design with a
score of 100. Thus, Side Top Cover Sim 1 Shape Validation 2 was chosen to be the final
design since the other variants were still in the acceptable range. For the middle cover,
the top three concept shapes generated were compared by performing a trade-off study.
Similarly, the variants assessed were the mass, the displacement, and the stress of the part.
The mass was given the highest priority; hence, it was set to have a KPI of 5. As well as
that, the stress and displacement were given a KPI of 3 as they were not that important for
this part as it is connected at all corners.
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(a) 

 

(b) 

Figure 9. Drone’s Carriage Stress and Displacement. (a) Leg Bereket. (b) Bottom Cover.
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Figure 10. KPI of Centre Top Cover.

  

Figure 11. KPI of Side Top Cover.
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As shown in Figure 12, based on the variants and their respective KPIs, the first design
scored the highest with a score of 87.8811. Thus, Middle Cover Sim 2 Shape Validation
2 was chosen to be the final design as all the other variants were in the acceptable range
as well. A trade-off study was conducted for the drone arm, where the top four concept
shapes generated were compared. The variants assessed were the mass, the displacement,
and the stress of the part. The mass was given the highest priority; hence, it was set to
have a KPI of 5. As well as that, the stress and displacement were given a KPI of 4 as they
were slightly more important as compared to the previous parts because one end of this
part is not be clamped to the other parts. As shown in Figure 13, based on the variants
and their respective KPIs, the fourth design scored the highest with a score of 90.2502.
Thus, Drone Arm Sim 2 Shape Validation 6 was chosen to be the final design as all the
other variants of the parts were in the acceptable range as well. For the leg bracket, the
top three concept shapes generated were compared by performing a trade-off study. The
variants assessed were the mass, the displacement, and the stress of the part. The mass
was given the highest priority; hence, it was set to have a KPI of 5. The targeted mass was
also inserted. On the other hand, the stress and displacement were given a KPI of 3 as they
were not that important for this part since it is connected to both the top and bottom. As
shown in Figure 14, based on the variants and their respective KPIs, the third design scored
the highest with a score of 54.5. However, the mass of that part differed quite a lot from the
targeted mass. Hence, Leg Bracket Sim 3 Shape Validation 2 that scored slightly lower but
had a mass that was closer to the targeted mass was chosen to be the final design since the
other variants were still in the acceptable range. For the bottom cover, the top three concept
shapes generated were compared by performing a trade-off study. The variants assessed
were the mass, the displacement, and the stress of the part. The mass was given the highest
priority; hence, it was set to have a KPI of 5. The targeted mass was also inserted. On
the other hand, the stress and displacement were given a KPI of 4 since they were equally
important after the mass.

Figure 12. Cont.
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Figure 12. KPI of Middle Cover.

 

 

Figure 13. KPI of Arm.
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Figure 14. KPI of Leg Bracket.

As shown in Figure 15, based on the variants and their respective KPIs, the third
design scored the highest with a score of 84.4588. The stress and the displacement were
within the acceptable range as well. Furthermore, it was not the lightest design, the stress
was lower as compared to the first design, and it had the smallest displacement. Therefore,
Bottom Cover Sim 1 Shape Validation 1 scored the highest among the three designs and it
was chosen to be used as the final design.
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Figure 15. KPI of Bottom Cover.

4.3. Simulation Results of Drone’s Weight

The Centre top cover was set to have a weight of 0.050 kg as shown in Figure 16a. It
was set based on the initial assumption, where this part’s targeted weight was at 50 g. The
simulation was set to run for 150 cycles to produce the maximum stiffness for a given mass
and it was shown that the target weight was reached at the end of the simulation. The side
top cover was set to have a weight of 0.015 kg as shown in Figure 16b. This is based on the
initial assumed weight, where this part’s targeted weight was at 15 g each. The simulation
was set to run for 50 cycles to produce the maximum stiffness for a given mass, where the
simulation results show that the weight was suitable for this part and the target weight was
reached at the end of the simulation. The execution stopped at the 46th cycle when all the
constraints had been met. The middle cover was set to have a weight of 0.1 kg as shown in
Figure 16c. The value of the weight was determined based on the initial assumed weight,
where this part’s targeted weight was at 100 g. The simulation was set to run for 80 cycles
to produce the maximum stiffness for a given mass, where the simulation results show
that the weight was suitable for this part and the target weight was reached at the end of
the simulation. The execution stopped at the 68th cycle when all the constraints had been
met. The drone arm was set to have a mass of 0.8 kg as shown in Figure 16d. Although the
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initial assumed weight showed that the targeted mass of this part was 30 g, the preserved
faces already had a mass of 30 g. Therefore, the system would have to remove everything
to reach the target, which is not possible. With that, the target mass was increased slightly
to 80 g. The simulation was set to run for 80 cycles to produce the maximum stiffness for a
given mass, where the simulation results show that the weight was suitable for this part
and the target weight was reached at the end of the simulation. The execution stopped at
the 76th cycle when all the constraints had been met.

  
(a) (b) 

  
(c) (d) 

Figure 16. Output Weight of the Drone’s Parts. (a) Center Top Cover. (b) Side Top Cover. (c) Middle
Cover. (d) Drone’s Arm.

4.4. Final Hardware Design

As shown in Figure 17, the final design of the drone consists of four main parts
referred to in the Supplementary Material. The first part is the middle cover, which has the
advantages of being lightweight and having good heat dissipation. The second part is the
top cover, which is for electronic components’ protection. The third part is the brackets,
where there are four brackets to support the landing force. The brackets are locked between
the frame and the carriage. The fourth part is the hook cover mechanism, which is used to
close the upper side of the casing.
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Figure 17. Hardware of the Drone Design.

4.5. Three Dimensional Printing Process

The drone was printed using the ANYCUBIC I3 MEGA. The Cura software was used
to convert stl file format into G-code format to print the drone parts. The infill was set
to 100% to increase the design structure strength. The types of filament used were PLA;
195 degree Celsius is the standard to print PLA material. The retraction speed was adjusted
to 40 mm/s. The retraction distance was adjusted to 4.5 mm, the layer height adjusted to
0.2 mm, and the bed temperature was set to 60 degree Celsius. It takes an average of 6 h to
print a part. The steps listed below were followed:

1. Download and install Cura.
2. Slice the 3D model into smaller pieces.
3. Three Dimensional model saved to an SD card as G-Code.
4. SD card is inserted into the 3D printer.
5. Load filament into the 3D printer.
6. Activate the printing application.

5. Conclusions

Modelling for a drone’s parts has been presented in this project. Simulation of the parts
was conducted using the 3DEXPERIENCE software, which provides modelling, simulation,
and optimization functions, to obtain the best design option and to make sure that the final
design of the parts was aesthetically novel with no un-smooth edges or uneven shapes.
Simulation of the drone’s stress and displacement was carried out, where the results show
that the drone frame will not fail when it needs to sustain the maximum possible lift force
from the motor as well as during the landing process. In addition, the concept shapes that
were generated were compared by performing a trade-off study. The variants assessed were
the mass, the displacement, and the stress of the parts. Simulation of the drone’s weight
was carried out for the center top cover (50 g), side top cover (10 g), middle cover (30 g),
and drone’s arm (80 g). The simulation of the parts was performed by using 3D Designer;
hence, more details can be obtained through the trade-off study and the simulation of the
drone’s weight.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/drones6040097/s1, Figure S1: Dimention of drone Leg breaket;
Figure S2: Dimention of drone side top cover. Figure S3: Dimention of drone arm, Figure S4: Dimen-
tion of drone midell cover, Figure S5: 3D printer model, Figure S6: Side top cover, meddle cover and
center top cover of the drone, Figure S7: Description of 3D printed parts.
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prehensive evaluation of flexible FDM/FFF 3D printing filament as a potential material in medical application. Eur. Polym. J.
2020, 138, 109958. [CrossRef]

19. Krishnanand; Soni, S.; Taufik, M. Design and assembly of fused filament fabrication (FFF) 3D printers. Mater. Today Proc.
2020, 46, 5233–5241. [CrossRef]

20. Vasudevarao, B.; Natarajan, D.P.; Henderson, M. Sensitivity of Rp Surface Finish to Process. In Proceedings of the 2000
International Solid Freeform Fabrication Symposium, Austin, TX, USA, 25–27 July 2000; pp. 251–258.

21. Galatas, A.; Hassanin, H.; Zweiri, Y.; Seneviratne, L. Additive Manufactured Sandwich Composite/ABS Parts for Unmanned
Aerial Vehicle Applications. Polymers 2018, 10, 1262. [CrossRef]

22. Bishay, P.L.; Burg, E.; Akinwunmi, A.; Phan, R.; Sepulveda, K. Development of a New Span-Morphing Wing Core Design. Designs
2019, 3, 12. [CrossRef]

23. Sharma, V. Advances in Drone Communications, State-of-the-Art and Architectures. Drones 2019, 3, 21. [CrossRef]
24. Muralidharan, N.; Pratheep, V.; Shanmugam, A.; Hariram, A.; Dinesh, P.; Visnu, B. Structural analysis of mini drone developed

using 3D printing technique. Mater. Today Proc. 2021, 46, 8748–8752. [CrossRef]
25. Negrelli, V. “From earth to heaven”: How professional 3D Printing and Windform® GT material helped in the construction of

drone and medical devices. Reinf. Plast. 2017, 61, 179–183. [CrossRef]
26. Kantaros, A.; Diegel, O. 3D printing technology in musical instrument research: Reviewing the potential. Rapid Prototyp. J.

2018, 24, 1511–1523. [CrossRef]
27. Shen, C.H.; Albert, F.Y.C.; Ang, C.K.; Teck, D.J.; Chan, K.P. Theoretical development and study of takeoff constraint thrust

equation for a drone. In Proceedings of the 2017 IEEE 15th Student Conference on Research and Development (SCOReD), Wilayah
Persekutuan Putrajaya, Malaysia, 13–14 December 2017; pp. 18–22. [CrossRef]

28. Research and Development in Modern Materials. Available online: https://blogs.deakin.edu.au/remstep/materials-activities/
honeycomb-structures/ (accessed on 1 January 2022).

29. Amza, C.G.; Zapciu, A.; Eyþórsdóttir, A.; Björnsdóttir, A.; Borg, J. Mechanical properties of 3D printed composites with ABS/ASA
substrate and glass fiber inserts. In Proceedings of the MATEC Web of Conferences, Kursk, Russia, 1 November 2019; Volume 290,
p. 04002. [CrossRef]

30. Afshar, A.; Wood, R. Development of Weather-Resistant 3D Printed Structures by Multi-Material Additive Manufacturing.
J. Compos. Sci. 2020, 4, 94. [CrossRef]

31. Butt, J.; Bhaskar, R. Investigating the effects of annealing on the mechanical properties of FFF-printed thermoplastics. J. Manuf.
Mater. Process. 2020, 4, 94. [CrossRef]

32. Comparing 3D Printing Filament Features: ABS vs. ASA Filament. Available online: https://www.makeshap-er.com/2020/01/
24/3d-printing-filament-features-abs-vs-asa-filament/ (accessed on 28 February 2022).

33. Iannace, S.; Sorrentino, L.; Di Maio, E. Biodegradable Biomedical Foam Scaffolds; Woodhead Publishing Limited: Federico II, Italy,
2014; pp. 163–187. [CrossRef]

34. Malaysian Information Climate. Available online: https://www.malaysia.gov.my/portal/content/144 (accessed on
28 February 2022).

35. Rayna, T.; Striukova, L. From rapid prototyping to home fabrication: How 3D printing is changing business model innovation.
Technol. Forecast. Soc. Chang. 2016, 102, 214–224. [CrossRef]

36. Brischetto, S.; Torre, R. Preliminary Finite Element Analysis and Flight Simulations of a Modular Drone Built through Fused
Filament Fabrication. J. Compos. Sci. 2021, 5, 293. [CrossRef]

37. Kantaros, A.; Piromalis, D.; Tsaramirsis, G.; Papageorgas, P.; Tamimi, H. 3D Printing and Implementation of Digital Twins:
Current Trends and Limitations. Appl. Syst. Innov. 2022, 5, 7. [CrossRef]

38. Kantaros, A.; Karalekas, D. FBG Based In Situ Characterization of Residual Strains in FDM Process. Conf. Proc. Soc. Exp. Mech.
Ser. 2014, 8, 333–337. [CrossRef]

39. 3D Robotics IRIS + RTF Kit (433). Available online: https://www.megapixel.cz/3d-robotics-iris-433 (accessed on 2 March 2022).
40. Skeleton X-14 Quadcopter. Available online: https://cults3d.com/en/3d-model/gadget/skeleton-x-14-quadcopter (accessed on

2 March 2022).

197



Citation: Zhan, G.; Gong, Z.; Lv, Q.;

Zhou, Z.; Wang, Z.; Yang, Z.; Zhou, D.

Flight Test of Autonomous Formation

Management for Multiple Fixed-

Wing UAVs Based on Missile Parallel

Method. Drones 2022, 6, 99. https://

doi.org/10.3390/drones6050099

Academic Editors: Andrzej

Łukaszewicz, Andriy Holovatyy,

Wojciech Giernacki, Jarosław Pytka

and Zbigniew Kulesza

Received: 14 March 2022

Accepted: 13 April 2022

Published: 19 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Flight Test of Autonomous Formation Management for
Multiple Fixed-Wing UAVs Based on Missile Parallel Method

Guang Zhan 1,*, Zheng Gong 2, Quanhui Lv 2, Zan Zhou 2, Zian Wang 2, Zhen Yang 1 and Deyun Zhou 1

1 School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China;
nwpuyz@mail.nwpu.edu.cn (Z.Y.); dyzhou@nwpu.edu.cn (D.Z.)

2 Department of Aerospace Engineering, College of Aerospace Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing 210095, China;
matthewzhenggong@nuaa.edu.cn (Z.G.); quanhui.lv@nuaa.edu.cn (Q.L.); zhouzan@nuaa.edu.cn (Z.Z.);
wangzian@nuaa.edu.cn (Z.W.)

* Correspondence: zhanguang@mail.nwpu.edu.cn

Abstract: This paper reports on the formation and transformation of multiple fixed-wing unmanned
aerial vehicles (UAVs) in three-dimensional space. A cooperative guidance law based on the classic
missile-type parallel-approach method is designed for the multi-UAV formation control problem.
Additionally, formation transformation strategies for multi-UAV autonomous assembly, disbandment,
and special circumstances are formed, effective for managing and controlling the formation. When
formulating the management strategy for formation establishment, its process is divided into three
steps: (i) selecting and allocating target points, (ii) forming loose formations, and (iii) forming short-
range formations. The management of disbanding the formation is formulated through reverse
thinking: the assembly process is split and recombined in reverse, and a formation disbanding
strategy that can achieve a smooth transition from close to lose formation is proposed. Additionally,
a strategy is given for adjusting the formation transformation in special cases, and the formation
adjustment is completed using the adjacency matrix. Finally, a hardware-in-the-loop simulation and
measured flight verification using a simulator show the practicality of the guidance law in meeting
the control requirements of UAV formation flight for specific flight tasks.

Keywords: formation management; missile parallel method; flight test

1. Introduction

Form formation management is an important research topic for multiple unmanned
aerial vehicles (UAVs) flying in cooperative formation [1,2]. Because of the limited control
of fixed-wing UAVs, their formation management is very different from that of quadro-
tor UAVs. By contrast, static and fixed-wing UAVs cannot wait for other UAVs during
formation [3], which makes stable and reliable formation challenging.

In recent decades, many scholars have researched the formation of fixed-wing UAVs.
Zhang [4] proposed a proportional integral–derivative (PID) integrated control method
based on robust control; this comprehensive control method improves the hit rate and
flight stability of UAV formation, reduces the dynamic response of the steady-state error,
and shortens the convergence time, but the influence of the coupling effect of the integrated
controller on the entire control system was not considered in the corresponding experi-
ment. Kada [5] proposed (i) a smooth distributed cooperative control method for multiple
aircraft (such as UAVs) based on multi-agent system (MAS) consistency and (ii) a smooth
distributed consistency algorithm, as well as designing a formation control model for
three-dimensional (3D) geometry tracking; however, the disadvantage of this approach
is that it fails to consider (i) formation tracking in the case of external interference and
(ii) obstacle avoidance among flying agents. Wang [6] analyzed the optimality of formation
configuration, provided an optimal formation design strategy for multi-UAV patrol tasks,
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and developed a model prediction trajectory replanning algorithm. However, the disad-
vantages of this approach are that it (i) considers only the mission and motion planning
level and (ii) does not involve low-level flight-control problems. Reference [7] proposed
a robust decentralized tracking control scheme for a large-scale UAV-formation network
control system and verified it in such a system.

Research on formation maintenance and transformation remains sparse. Proposed
herein is a formation management method based on cooperative waypoint following.
Additionally, formation reconfiguration strategy is designed considering how some typ-
ical unexpected situations influence cooperative formations. Combining the guidance
law of the parallel-approach method [8,9] and the calculation method of virtual dynamic
tracking points, a method is proposed for cooperative path-point following in formation
control [10–12] to realize multi-machine formation flight of fixed-wing UAVs. It has the
advantages of fast tracking response in the low-altitude formation flight, and rapid for-
mation reconstruction in unexpected situations. Finally, the stability and agility of the
guidance law in formation cooperative control are verified by hardware-in-the-loop [13–15]
simulation and flight-test measurements.

Based on the flight control of a single fixed-wing aircraft [13–15], this paper designs
a layered control framework, as shown in Figure 1. The control framework includes
four submodules: the intermachine communication module, the cooperative waypoint-
following control module, the cooperative formation module, and the stabilization loop
control module. After receiving the instruction to start the formation, the cooperative
formation module generates the desired waypoints for the UAVs. Compared with trajectory
tracking, waypoint tracking is more widely used in aviation, and a series of static waypoints
often represent common single-plane flight tasks. Waypoint tracking is used more widely in
aviation, and a series of static waypoints often represent common single-plane flight tasks.

Figure 1. Formation control framework based on cooperative waypoint-following.

2. Design of Guidance Law and Verification by Simulation

2.1. Design of Guidance Law

The required lateral movement is determined by calculating virtual dynamic tracking
points according to the formation relative distance of the formation, and the virtual dynamic
tracking points are those of the wingmen.

Assuming that the UAVs are all mass points when flying in formation, as shown in
Figure 2, in the case of two UAVs, let point A be where the leader is located, let point B be
where the virtual dynamic tracking point is located, and let point C be where the wingman
is located. Define the coordinate formation system Of X f Yf Zf fixed to the lead plane
L:Of X f is parallel to the direction of the speed vector of the lead plane and points forward;
the axis Of Yf is perpendicular to Of X f and points to the right of the flight direction; the axis
Of Zf is perpendicular to Of X f Yf and points downward. Points A and B are on concentric
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circular arcs whose lengths are Δx and arc, respectively, and the concentric circular arcs are
on Of X f Yf ; Δy is the length of the straight line of the leader aircraft to the arc, RL is the
flight radius of the lead aircraft, R is the radius of the concentric circular arcs, and ϕ is the
included angle of point A and B. In this coordinate system, point B is relative to point A and
its positional differences are Δxerr and Δyerr, whose lengths can be obtained geometrically.

Figure 2. Schematic for calculating the virtual dynamic tracking point.

When ϕ is small, we have {
Δxerr = arc
Δyerr = Δy

(1)

When ϕ is larger, we have{
Δxerr =

arc
ϕ sin ϕ

Δyerr = Δy − arc
ϕ (1 − cos ϕ)

(2)

where arc is calculated as
arc = Rϕ (3)

Therefore, the distance difference [xerr yerr]
T between the virtual dynamic track-

ing point B and the leader A can be obtained through the distance [Δx Δy]T set for
the formation.

The transformation matrix for converting from the formation coordinate system
x f Of y f to the ground coordinate system xgOgyg is

Lg f =

[
cos ψL sin ψL
− sin ψL cos ψL

]
(4)

where ψL is the angle between the two vector axes Ox f and Oxg.
Then, the coordinate difference between points A and B in the ground coordinate

system is [
x′err
y′err

]
= Lg f

[
xerr
yerr

]
(5)

As can be seen, the coordinates of point B are[
x′L
y′L

]
=

[
xL − x′err
yL − y′err

]
(6)
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Letting the distance difference between points B and C be [Px Py]
T , we obtain[

px
py

]
=

[
xF − x′L
yF − y′L

]
(7)

The key to designing the guidance law for the wingmen in the formation is to convert
the relative distances between the UAVs and the target tracking points, the velocity vector
deviations, the heading deviations, and other information into guidance commands. The
algorithm for the guidance law can be designed using either geometric methods or control-
theory methods. The former use the geometric relationship between UAV and target point
to design the guidance law, characterized by convenient analysis and simulation; geometric
methods are the ones used most commonly in engineering practice.

The geometric parallel-approach method is used as the guidance law for cooperative
formation. The parallel-approach method was designed originally for missile interception
and attacking targets, and the resulting trajectories are relatively straight. The specific
implementation of the parallel-approach method herein is to keep the line of sight from
UAV to target point unchanged during flight, and the line-of-sight angle forms a set of
parallel lines in space, as shown in Figure 3.

Figure 3. Schematic of guidance by parallel-approach method.

In Figure 3, vm is the velocity vector of the UAV tracking the target point whose
azimuth angle is ηm. The velocity vector Vd of the UAV has components vi that are equal to
vm, i.e.,

vi = vm (8)

In the formation of the lead-aircraft–wingman control mode selected herein, the lead
aircraft sends real-time status information through an airborne data link, and the wingmen
in the formation obtain vm and ηm of the lead aircraft through calculation.

The realization of the parallel-approach method in this paper is to keep the line-of-
sight angle q between the wingman and the dynamic tracking point unchanged during
the flight. In the ground coordinate system, the line-of-sight angle between the wingman
and the dynamic tracking point is ψe, and the angle between the velocity vector and the
line-of-sight direction is defined as the lead angle, as shown in Figure 4. Then, the flight
speed of the wingman is VF, the speed azimuth is ψF, and the lead angle is ηF; the flight
speed of the dynamic tracking point is VL

′, the speed azimuth is ψF
′, and the lead angle is

ηF
′. The horizontal straight-line distance between the wingman and the dynamic tracking

point is dhoriz.
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Figure 4. Relationship between wingman and dynamic tracking point.

The following geometric relationships exist between the lead angle, velocity azimuth
angle, and line-of-sight angle of the wingman and the dynamic tracking point:{

ηF = ψe − ψF
η′

L = ψe − ψ′
L

(9)

The relative motion speed
.
dhoriz of the wingman and the dynamic tracking point is

.
dhoriz = VF cos ηF − V′

L cos η′
L (10)

The change law of the line-of-sight angle between the wingman and the dynamic
tracking point is

.
ψe =

1
dhoriz

(V′
L sin η′

L − VF sin ηF) (11)

These two formulas are the guiding equations of the parallel-approach method.
The constraints of the equation are:

ε =
.
ψe = 0 (12)

In the formula, ψe can be calculated from the position of the wingman and the position
of the dynamic tracking point. As shown in Figure 2, the coordinate difference between
points B and C is [Px Py]

T , and the positional relationship is shown in Figure 4, then the
calculation of ψe is

ψe = arctan
Py

Px
(13)

V′
L sin η′

L is the projection of the velocity of the dynamic tracking point in the normal
direction of the line of sight, vnormal , shown in Figure 4, using the calculation method
of vector dot product. Let the position difference vector P = [Px Py]

T between the
wingman and the virtual dynamic point, the speed vector of the virtual dynamic point
is v = [vn

′ ve
′]T , then Pv = |P||v| cos ηL

′, where |v| cos ηL
′ is the speed of the dynamic

virtual point VL
′ on the vector P Tangential projection of vhoriz.

vhoriz = |v| cos η′
L =

(Pxv′n + Pyv′e)
|P| (14)
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The vector of velocity vhoriz is expressed as

vhoriz =
[

Pxvhoriz
|P|

Pyvhoriz
|P|

]T
(15)

The normal projection velocity vector of the velocity V′
L of the dynamic virtual point

on the vector
→
P is denoted as vnormal = v − vhoriz. The modulus of vnormal is recorded

as |vnormal |, which is the numerical value of |vnormal |, and the expected heading control
command of the wingman can be obtained as

ψFc = ψe − arcsin
|vnormal |

VF
(16)

2.2. Simulation Verification of Guidance Law

Here, we introduce the method of using software modeling and simulation to simulate
the built formation model, which is an effective way to test the algorithm’s robustness and
provide data support for the subsequent actual flight. The specific method is to model the
stand-alone control models of the lead plane and the wingmen under MATLAB/Simulink
and perform modular encapsulation processing to facilitate the subsequent expansion of
the formation scale. At the same time, the guidance-law part is also modeled to simulate
the control of the aircraft by the guidance law and the control law during actual flight.
Finally, the aircraft’s control, trajectory, and attitude parameters are output for subsequent
data analysis and visual trajectory analysis.

2.2.1. Construction of Simulation Model

The guidance-law simulation is mainly to verify the performance of the guidance-law
module. Here, we establish a particle model of a sample UAV. The channel dynamics of
the leader and wingman control models are simulated using transfer functions, and their
response is the same as the current design control. The law remains the same. Each control
channel of the UAV in the particle model can respond to the command signal given by
the guidance law in time and at the same time directly output basic information such as
altitude, speed, and attitude angle. The output form is convenient for subsequent analysis
of the simulated flight trajectory.

The lateral-heading control channel’s modeling involves the roll-angle-rate control
loop as a first-order inertial link because bank-to-turn is used in control herein to control
the heading channel. Therefore, the modeling of the heading channel can be realized based
on the roll channel and on the complex number field; the physical relationship is

ψ(s) =
g tan φ

vg

1
s

(17)

where ψ is the heading angle, φ is the roll angle, vg is the target speed, and g is the
acceleration of gravity.

As shown in Figure 5, the model input is the roll-angle command φc of the formation
guidance-law module, and the outputs are the UAV model’s roll angle and heading angle.
The intermediate variable of the control channel is the control of the angular roll rate, and
we use a first-order transfer function with a bandwidth of ωn = 6 to simulate the dynamics
of the angular-rate channel.

Figure 5. Attitude control modeling of lateral-heading channel.
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The modeling of the longitudinal pitch control channel involves regarding the pitch-
angle-rate control loop as a first-order inertial link, as shown in Figure 6. The input is
the pitch-angle command θc of the formation guidance-law module, and the output is the
pitch angle of the UAV model. The intermediate variable of the control channel is the pitch
rate, and the modeling uses a first-order transfer function with a bandwidth of ωn = 7 to
simulate the dynamics of the angular-rate channel.

Figure 6. Attitude control modeling of pitch channel.

The longitudinal velocity control channel is modeled by considering acceleration as a
first-order inertial link, as shown in Figure 7. The input is the target-speed command vgc of
the formation guidance-law module, and the output is the indicated airspeed of the UAV
model currently flying. The acceleration is modeled using a first-order transfer function
with a bandwidth of ωn = 3 to simulate its dynamics.

Figure 7. Control modeling of velocity channel.

2.2.2. Results of Simulation of Guidance Law

The formation guidance law can be simulated by building the leader–follower forma-
tion simulation model. The intermediate variables of the flight trajectory and guidance
law are stored temporarily in the MATLAB workspace, and various output data can be
visualized and analyzed by graph-drawing scripts.

The core index of the guidance law of the parallel-approach method is the tracking
effect of the heading channel. Figure 8 shows the dynamic change in the heading angles
and velocities of the leader and the three wingmen with time. When the heading of the
leader changes rapidly, the heading channels of the three wingmen respond and track it in
time. When the lead plane’s heading becomes stable, the wingmen follow it smoothly after
a small amount of overshoot in time.

(a) (b)

Figure 8. Tracking effect of wingman: (a) time histories of the heading angle; (b) time histories of
the velocities.
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In summary, the guidance law designed herein leads to a good formation and meets
the requirements of fast response and stable tracking. Therefore, it can be used in the
subsequent semiphysical simulation and actual flight.

3. Formation Management and Control

The flight mission of the leader in the cooperative formation [16–18] is described by a
set of waypoints known as a waypoint list. After switching to fixed-wing mode, the lead
pilot executes a mission route consisting of waypoints, flying to each waypoint in the list
in turn. Before the wingmen enter formation mode, there are also waypoints to maintain
normal fixed-wing flight. The waypoints in the lead waypoint list are represented using
the position vector

pi = (xi, yi, zi)
T , (18)

and those of the wingman is represented by the position vector

p f i = (xi, yi, zi + dzi)T , (19)

where dz is the cross-track error of the wingman waypoint relative to the leader in the
vertical direction, thereby allowing calculation of the list of waypoints that each wingman
flies before entering formation mode.

The cooperative formation-management method [19–22] herein involves the lead
plane flying in formation with the wingmen in the link by managing a set of cooperative
waypoints. The lead plane coordinates and moves the set of waypoints when formation
changes are required. As shown in Figure 9, a group of parallel cooperative path points is
generated by the wingmen following the leader, and a straight formation is formed.

Figure 9. Schematic of linear formation for collaborative waypoint management.

3.1. Formation Keeping Based on Coordinated Waypoints

The formation maintenance of cooperative formations is studied in the formation
coordinate system. As the coordinator, the lead aircraft generates a list of cooperating
waypoints by adjusting their positions, and it sends it to the corresponding wingmen in
the link through the intermachine communication module. The wingmen then extract the
corresponding waypoints from the list of cooperative waypoints assigned by the lead plane
according to its own, thereby realizing coordinated formation flight. Based on this method,
we design the following three types of formation.

1. Linear formation. In the formation coordinate system, the position coordinates of the
lead aircraft are (0, 0), those of the first cooperative path point are (0, xoffset), and those
of the other i cooperative path points are (0, xoffset × i). We then construct the list of
cooperative waypoints for a straight-line formation. Figure 10 shows the relationship
of coordinated waypoints in straight horizontal formation.
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Figure 10. Relationship of coordinated waypoints in straight horizontal formation.

2. Triangular formation. In the formation coordinate system, the position coordinates
of the lead aircraft are (0, 0), and there are at most (2n−1) cooperative waypoints
in n lines, i.e., one line has one cooperative waypoint, and two lines have three
cooperative waypoints. The y-axis coordinate interval between every two rows of
collaborative path points is yoffset, and the x-axis coordinate interval between every
two columns of collaborative path points is xoffset. A list of cooperating waypoints for
a triangular formation can be constructed from this. Figure 11 shows the relationships
of cooperating waypoints in horizontal triangular formations.

Figure 11. Relationship of cooperating waypoints in horizontal triangular formation.

3. Stepped formation. A stepped formation is 3D, and in the formation coordinate
system, the position coordinates of the leader are (0, 0) and each line has only one
collaborative path point. As shown in the plan view of the stepped formation in
Figure 12, the y-axis coordinate interval between every two rows of cooperative
waypoints in the horizontal direction is yoffset, and the x-axis coordinate interval
between every two columns of cooperative waypoints is xoffset. The side view of
the stepped formation in Figure 13 shows that in the vertical direction, the z-axis
coordinate interval between every two rows of cooperative path points is zoffset, and
the z-axis coordinate interval between every two columns of cooperative path points
is xoffset. A list of cooperating waypoints for the stepped formation can be constructed
from this.
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Figure 12. Plan view of relationship among coordination waypoints for stepped formation.

Figure 13. Side view of relationship among coordination waypoints for stepped formation.

The formations mentioned above are three common ones in which the target tracking
position can be determined by moving several waypoints on the spatial geometric position.
Each wingman invokes the guidance-law algorithm according to its position and the
positional relationship with the reference cooperative waypoint, and it controls the speed
and attitude of its UAV to reach the desired position and form a specific formation.

3.2. Research on Formation Transformation Method of Cooperative Formation

In many mission scenarios, UAVs must form different formations to adapt to changes
in the mission, which requires research on changes of collaborative formations. After
creating a coordinated formation, the UAVs will continue to fly in the existing formation
until a new mission requirement arises. Herein, a command from the ground-station
software initiates a change in formation. For the coordinated formation of fixed-wing
UAVs, the under-actuation and control limitations of the fixed-wing make it impossible
to form trajectories from all initial positions to the desired formation; the only possible
trajectories involve movement that maintains normal airspeed while approaching the
desired location. Additionally, the intermediate transition process of cooperative formation
change is very important [23–26], and it is necessary to consider possible collisions in the
process of short-range formation change. According to the control strategy of formation
keeping, we design a method for changing formation while also preventing collisions.
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Before discussing the formation transformation method, we define the standard for
forming a close-range formation. The current position of the center of mass of each
wingman is pi, which includes the 3D position information, i.e.,

pi = (x f i, y f i, z f i)
T (20)

The location of each collaborative waypoint is

wi = (xwi, ywi, zwi)
T (21)

and the position error distance derr of a wingman and a cooperative waypoint in the
horizontal direction determines whether the formation forms a tight formation on the
X f Of Yf surface, where

derr =
√
(x f i − xwi)

2 + (y f i − ywi)
2 (22)

We define the variable k to indicate whether the cooperative formation has formed
a tight formation; k = 0 means that a wingman has not reached the cooperative target
waypoint in the horizontal direction, whereas k = 1 implies that the wingman has reached
the cooperative target waypoint in the horizontal direction and is now partnered with
the leader. The value of k is judged by the relay method, with the judgment condition
depending on the position error distance derr between the wingman position and the
cooperative path point; we have

k =

{
0, i f (derr > rmax)
1, i f (derr ≤ rmax)

(23)

where rmax is the distance difference between judging whether the wingman reaches the
cooperative path point, which is related to the UAV’s wingspan and formation spacing; for
the actual flight, we use rmax = 2m.

The formation transformation method [27–30] for cooperative formation proposed
herein involves performing formation transformation in the horizontal direction first and
then in the vertical direction when the wingmen in the horizontal direction reach the
constraint condition of close formation. The specific method is when it means that the
wingman has not yet reached the cooperative target waypoint in the horizontal direction,
and the control of the altitude channel is the height of the wingman waypoint, which
means that the formation has completed the close formation in the horizontal direction. At
this time, the wingmen set the control target of the altitude channel. To correspond to the
heights of the cooperative waypoints, the transformation process is as shown in Figure 14.

As an example to illustrate the process of formation transformation, we take the trans-
formation from a linear formation to a stepped formation. As shown in Figure 15, the
formation keeps flying in a straight formation until time t1, and it begins to adjust the flight
altitude of each wingman to the corresponding waypoint altitude. At time t2, the lead plane
starts to redistribute the list information of the cooperative waypoints, transforming from a
linear formation to a stepped one. At time t3, the positions of the cooperative waypoints
are reassigned, and the wingmen begin to track the new cooperative waypoints. At time t4,
the horizontal direction satisfies the constraints for a tight formation. After that, the vertical
formation height control is carried out to meet the corresponding vertical spacing require-
ments of the stepped formation. After this, the formation has completed a transformation.
The advantage of this method is that in the formation transformation process, it effectively
reduces the probability of collision between the UAVs in short-range formation.
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Figure 14. Schematic of formation transformation process.

Figure 15. Example of formation change process.

4. Formation Reconfiguration Strategy

The coordinated formation of UAVs involves some complex flight environments; there
is a certain probability that some UAVs will suffer structural damage or power failure
during the flight mission. Some complex electromagnetic environments may also cause the
loss of communication links. These contingencies must be incorporated into the formation
control strategy to complete the established formation flight mission.

To this end, we design a formation reconstruction strategy for some typical unexpected
situations, which we divide into two types: (i) data-link topology damage and (ii) UAV self-
failure. The data links use the mesh networking mode with antidestruction characteristics
for this topic. In cases where there is no direct path between the transmitting node and the
target node, automatic path searching can be enabled to find and provide path information
to ensure that data are delivered to the destination node. By discovering unknown paths
automatically and using the best one to transfer the data to the expected destination
effectively, the redundancy of the data channel can be maintained when the data-link
topology is damaged. As shown in Figure 16, there are multiple redundant channels for the
communication between each UAV and the others. Taking the communication connection
from vehicle A to vehicle C as an example, there are three paths in the link that can reach
vehicle C, i.e., ABC, AFC, and AEDC; therefore, if the communication of a node is damaged,
it will not affect the data transmission from vehicle A to vehicle C.
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Figure 16. Data-link survivable network architecture.

Failure of a UAV itself is divided into (i) lead-aircraft failure and (ii) wingman failure.
In the coordinated formation of leader–follower mode, all the wingmen receive the position
information of the leader in real-time. When more than λ communication cycles, the
wingman still does not receive the leader’s data, and the leader is considered to be damaged.
The follower with the minimum ID number in the link then acts as the leader; the other
wingmen begin to receive the control information from the new leader, who also begins to
output the list of cooperative waypoints.

In coordinated formation flight in leader–wingman mode, the wingmen far outnumber
the leader, so the probability of a wingman being damaged is higher. When flying in a
coordinated formation, the lead plane maintains a status table of whether each wingman is
online. This status table is calculated based on the heartbeat packets sent by the wingmen
to the lead plane. The specific logic is as follows: if the lead plane continues to receive a
wingman’s heartbeat packet for time Tmin, then add this wingman to the online status table;
if the lead plane does not receive a wingman’s heartbeat packet for time Tmax, then remove
this wingman from the online status table. Here, Tmin is the shortest time for the lead plane
and a wingman to establish a stable connection, and Tmax is the longest waiting time for
the lead plane and a wingman to lose the connection; these two times are set according
to the specific indicators of the data links. Therefore, when a wingman loses connection,
the leader must remove it from the online status table, and the formation’s coordinated
waypoint list is also adjusted accordingly. As shown in Figure 17, if vehicle 2 is damaged,
then vehicle 3 moves to take its place.

Figure 17. Schematic of formation reconstruction.

5. Hardware-In-The-Loop Simulation

5.1. System Composition

The semiphysical simulation system consisted of a simulation machine, a flight-control
system, ground-station telemetry software, trajectory display software, and data-link
communication equipment. The relationship among the different approaches is shown in
Figure 18. The nonlinear six-degrees-of-freedom dynamic model of the UAV ran in the
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simulator, and the flight-control computer received the model data of the simulator for
calculation. The command signal was output to the simulator to control the model. The data
links were responsible for the communication between the flight-control computers and the
ground-station software. The latter was divided into a display area and a command area:
the display area displayed status information about the UAV flight, while the command
area contained common remote-control commands to control the UAV formation. Finally,
the Tacview trajectory-display software can display the flight trajectories of all the UAVs in
the formation, thereby showing the formation more intuitively.

Figure 18. Relationship among all systems in hardware-in-the-loop simulation.

The equipment connection relationship of the constructed semiphysical simulation sys-
tem is shown in Figure 19. The simulation machine used the Speedgoat real-time simulation
platform. The ground-station computer was responsible for starting the simulator, running
the ground-station software, and establishing communication with the simulator through
network protocols. The ground-station computer was connected to a communication node
of the data communication link to establish wireless communication with all flight-control
computers participating in the simulation; communication between the simulator and the
flight-control computers was carried out through an RS422 serial port.

Figure 19. Device connection diagram for hardware-in-the-loop simulation.
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The Speedgoat real-time simulation system is the official hardware platform of MAT-
LAB/Simulink, and its operating system and software were developed by MathWorks and
integrates MATLAB/Simulink seamlessly. The simulation system used an Intel processor
and had powerful computing ability. All the logic was written in Simulink, and there was
no need to write much code; the model could also be converted directly into real-time code
for execution. This project used the Baseline-S basic-version simulator from Speedgoat,
which is small and easy to move, weighing only 2.56 kg. It has two RS232 ports and three
USB ports, which can be connected to multiple UAVs simultaneously.

The flight-control computer and the data communication links constituted the flight-
control system. We used four sets of flight-control systems to simulate the formation of four
aircraft. Each control system was connected to the Speedgoat real-time simulation system,
receiving simulation data and controlling the dynamic model running in the simulator.
The data communication links click the four sets of flight-control computers with the
ground-station computers for networking communication.

5.2. Semiphysical Simulation Process

The flight-control system had to be started first to perform semiphysical simulation.
After establishing a connection with the ground-station software, we set the flight-control
system to the hardware-in-the-loop simulation mode, we then started the Speedgoat
simulator, whereupon the UAV model in the simulator started to run and output data
to the flight-control computer. After the ground-station software had checked that the
flight-control computer system was in a normal state, each UAV model took off in sequence,
and then a formation start command was sent in fixed-wing mode to enter the formation
simulation verification.

The semiphysical simulation was a desktop simulation verification link before the
actual flight test in the field, and it was necessary to test the scenes used in the flight
accordingly. Herein, we report the semiphysical simulation of the following scenarios.

• Case 1: Simulation of formation-mode flight

This simulation was aimed at multiple UAVs flying in cooperative formation, with a
two-aircraft formation and a four-aircraft formation used as the research objects to conduct
semiphysical simulations. The specific operation was for each UAV to takeoff according
to the process and enter the fixed. Start the coordinated formation flight mode after the
wings are in the state. Figure 20 shows the simulation results from the perspectives of the
ground station (Figure 20a) and the Tacview trajectory-display software (Figure 20b) in
cooperative formation mode. As can be seen, each wingman maintained a fixed distance
from the leader to fly cooperatively.

(a) (b)

Figure 20. Hardware-in-the-loop simulation: (a) ground-station perspective; (b) Tacview software
perspective.
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• Case 2: Simulation of formation change

The simulation of formation transformation verified the proposed method for trans-
forming the cooperative formation. First, the UAVs were operated to form a stable forma-
tion, whereupon the ground-station software issued the command for formation transfor-
mation. The transformation of the four-machine formation from the triangular formation to
the stepped formation as the research object shows the transformation results in Figure 21.

(a) (b) (c)

Figure 21. Three-dimensional view of hardware-in-the-loop simulation of formation transformation:
(a) triangular formation; (b) formation in the middle of changing; (c) stepped formation.

The position changes in the formation transformation simulation are related to the
formation before and after the transformation, as shown in Figure 22, where the ordinate is
the position difference between wingman and leader during formation flight. During trian-
gular formation flight, the three wingmen were distributed behind the leader: follower 2
was the closest to the leader and was located directly behind it, and followers 1 and 3 were
on either side of follower 2. After the formation had changed to the stepped formation,
the three followers were distributed evenly on one side of the leader plane in turn and
flew at fixed distances; follower 3 was on the outermost side of the formation and farthest
from the lead plane. Figure 22 shows that the trajectories of position movement during the
formation transformation were relatively stable with no rapid jumps.

Figure 22. Changes of positions of wingmen relative to leader in formation change.

The formation transformation simulation also verifies the guidance law’s response
characteristics to changes regarding the guidance target. The most important parameter to
change is the heading angle. In this semiphysical simulation, the lead plane and the wing-
men kept the same heading and flew parallel in the triangular formation. The formation
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management module generated a new path tracking point after receiving the formation
change command, and the wingman guidance law guided the UAVs to the unique path
tracking point, which mainly produced changes in the heading angle. Having completed
the formation change, the lead plane and the wingmen flew in the new stepped formation
and kept the same heading while flying in parallel. Figure 23 shows the evolution of head-
ing angle in the formation change. As can be seen, the wingman heading angle changed
rapidly after the command to change the formation, and the wingman heading converged
quickly upon completion of the formation change.

Figure 23. Change in heading angle during formation transformation.

6. Actual Flight Verification

6.1. Flight Platform and Ground Measurement and Control System

The UAVs used in the test are electric vertical takeoff and landing aircraft (eVTOL).
The aircraft in this layout can takeoff and land vertically with the rotor, thereby extending
the total flight time, which can fly in the air for a long time to verify the control method
proposed in this paper. As shown in Figure 24, it adopts the layout of large wingspan and
high flat tail. The wingspan is 2.2 m and the takeoff weight is 6 kg. The main parameters of
the UAV are shown in Table 1.

Figure 24. Electric vertical takeoff and landing aircraft.

Table 1. The main parameters of the UAV.

Item Parameter

Mass (kg) 6.0
Reference area

(
m2 ) 0.46

Reference span (m ) 2.2
Cruising speed (m/s ) 20

Maximum airspeed (m/s ) 23
Minimum airspeed (m/s ) 17

As the best way to show the practicality of the designed control method, the actual
flight test in the field was the final verification link of the fixed-wing UAV cooperative

214



Drones 2022, 6, 99

formation control method intended herein. The main equipment involved in the real
flight test was the UAV flight platform and the ground measurement and control system,
described separately below.

The UAV flight platform comprised two categories of equipment: (i) the flight-control
system comprising the flight-control computer and the data-link radio and (ii) the actuating
equipment, such as motors, electric speed controllers, and steering gears. The complete
equipment of the flight platform is shown in Figure 25.

Figure 25. UAV flight platform equipment.

The main parts of the ground measurement and control system were the ground-
station computer, the real-time kinematic (RTK) base station, and the data-link desktop
terminal, as shown in Figure 26. Among these, the ground-station computer was the
main equipment for remote control and telemetry between the ground station and the
UAVs; it was responsible for checking the real-time status of the UAVs and sending control
instructions. The RTK base station generated differential positioning data; coordinated
formation flight requires high positioning accuracy. The differential data generated by the
base station were transmitted to the flight-control computer through the data link to enable
the drones to enter positioning mode with centimeter-level accuracy. The desktop end of
the data link was a node of the data link, and this node was connected to the ground-station
computer, securing the ground-station software to the entire communication link.

Figure 26. Connections of ground measurement and control system.
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The UAV flight platform and the ground measurement and control system were the
core equipment of the formation flight test. Figure 27 shows the equipment connection for
the four-machine formation flight test, where a dotted line is a wireless connection between
data links. The ground-station system monitored the status of each UAV flight platform
in real-time during flight and also initiated some control commands, such as opening,
changing, and closing the formation.

Figure 27. Connections of formation test equipment.

6.2. Formation Flight Test

The outdoor flight test reported herein involved a four-aircraft formation. Figure 28
shows a photograph of the UAVs before takeoff.

Figure 28. Photograph of four-plane coordinated formation before takeoff.

First, each UAV was placed at a fixed takeoff point and a power-on operation was
performed. After the flight-control computer system was initialized, the ground station
began to detect the states of the UAVs. If any of the drones did not meet the takeoff status,
the status of all the drones was rechecked until the takeoff conditions were met. Send the
takeoff command, then all drones enter the fixed-wing mode, when all drones are flying to
the right place. The station sends the “open formation” command, and the drones enter
the cooperative formation flight mode. At this time, the command was sent to change the
cooperative formation, and the flight modes of the wingmen in the tight formation were
changed according to the flight requirements. After the formation test was completed, the
ground station sent a “close formation” command, whereupon the leader and wingmen
exited the coordinated formation mode, flew along their respective routes, and finally
returned to their takeoff points for recovery (Figure 29).
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Figure 29. Flow chart of formation flight test.

The ground-station software was connected to the communication links of the UAVs
through the ground data-link node, and it was responsible for real-time communication
with all the UAVs in the formation to (i) monitor their status during the flight, (ii) send
the takeoff and landing instructions to each aircraft, and (iii) send the mission instructions,
among other duties. The flight-control interface of the ground-station software is shown in
Figure 30.

Figure 30. Flight interface of ground-station software.

In the figure, the corresponding commands can be sent to the drone through the
control panel. The status of the current drone can be seen in the attitude instrument and
flight parameter information in the upper-right corner.

The command panel of the ground-station software was the main functional area for
controlling the flight of the UAVs, including the command areas related to (i) single-aircraft
takeoff and landing and (ii) formation. The instructions for single-aircraft takeoff and
landing are to complete the takeoff and landing of a single UAV, including unlocking,
locking, takeoff, and landing. The formation commands control the opening and closing
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of the formation mode and set the formation parameters after the UAVs entered the fixed-
wing flight state; they included instructions such as turning the formation mode on and off
and setting the formation shape and spacing parameters.

In this test, two types of coordinated formation flight were carried out, i.e., the stepped
formation and the straight-line formation. The two formation arrangements were relatively
simple but could also verify the control method of formation maintenance and change
proposed herein. This outdoor flight began with a coordinated flight in a straight formation,
and then the ground-station software issued the “set stepped formation” command, and
the formation changed to a stepped formation and continued to fly. Figure 31 shows the
actual outdoor flight conditions of the linear collaborative formation (Figure 31a) and the
stepped collaborative formation (Figure 31b).

(a) (b)

Figure 31. Photographs of actual flight of four-machine coordinated formation: (a) ground view of
straight formation; (b) aerial view of stepped formation.

When it was necessary for the UAVs to return, the ground station sent the command to
dissolve the formation, and all the UAVs participating in the formation exited the formation
mode and automatically returned to the mission route of single-machine flight (Figure 32).
Finally, the ground station sent the software command to return to the takeoff points and
complete the return landing and recovery one by one.

Figure 32. UAV returning after leaving formation.

6.3. Flight Data Analysis

Analyzing the flight outcome provides direct and effective data to support the re-
sults of the outdoor flight. After the outdoor flight test was completed, the track file
recorded in the flight-control computer was imported for data analysis. The data were
processed in different drawing and visualization software to analyze the flight results from
other dimensions.

The direct indicator of the guidance-law effect in the data is the wingman heading
angle’s tracking development after the guidance target change. Figure 33 shows the change
curve of the heading angle of each UAV in the formation for times between 634 and 654 s in
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the track record file. As can be seen, when the heading angle of the leader changed, those
of the wingmen responded and tracked it in time. Therefore, the response characteristics of
the guidance law used herein are verified, and it is shown that the guidance-law algorithm
can meet practical needs.

Figure 33. Control effect of actual flight-heading channels of four aircraft in cooperative formation.

Furthermore, the flight trajectory of each UAV in the formation reflects intuitively
the effect of cooperative formation from the data. Figure 34a shows the 3D trajectories
of the actual flight route as plotted from the data for a stable formation section. The
trajectories comprise the three geographical coordinates of longitude, latitude, and altitude;
the horizontal coordinates are longitude and latitude, and the vertical coordinate is altitude.
As can be seen, each UAV kept a fixed distance within the allowable error range, and the
UAVs flew together. Figure 34b shows the entire formation trajectory, which intuitively
reflects the flying effect of the trajectory in the real scene.

(a) (b)

Figure 34. Three-dimensional maps of actual flight route of four-plane cooperative formation:
(a) trajectory diagram from plotting software; (b) flight trajectory.

Within a certain allowable range of control error, this paper reports research on a
cooperative formation control method for fixed-wing UAVs. The effect of the actual flight
of the formation meets the design requirements and the requirements of formation control
for some specific tasks.
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7. Conclusions

The management of UAVs entering and departing from formation is an indispensable
part of intelligent and information-based UAV operations. Aimed at the problem of
maintaining a multi-UAV formation, reported herein was the design of a collaborative
guidance law based on the classic missile-type parallel-approach method. According
to (i) the flight mission characteristics of a lead aircraft following a route and wingmen
following the lead aircraft and (ii) the general characteristics of the route, a guidance law
was designed for three guidance modes: straight line, turning, and circling. The design of
the entry and departure management of the formation led to strategies for the access and
departure management of multi-machine independent assembly, dissolution, and special
cases, thereby allowing effective management and control of the formation. An entry
and departure adjustment strategy for special circumstances was given. The hardware-
in-the-loop simulation and measured flight verification showed that the guidance law is
practical in meeting UAV formation flight-control requirements for specific flight missions.
Although it was tested on low-speed UAV platforms, it is still applicable to high-speed
UAV platforms. Future work will focus the algorithm on high-speed platform validation.
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Abstract: Drones, which were first used in military applications, are now widely used by civilians
for various purposes such as for deliveries and as cameras. There has been a lack of research into
what drone users expect in terms of drone design and operation from a user perspective. In order
to figure out what users want from drones, it is necessary to investigate the perception and design
preferences of users with regard to drones. Surveys were conducted to collect data on preferences for
various aspects of the design and operation of drone technology. Features relevant to the design and
operation of drones were considered. We have identified the underlying factor structures of drone
design and operation: outdoor mission type, user interface, military mission type, usefulness, risk,
special mission type, and concern. The most important factors that contribute to all the dependent
variables are the user interface and usefulness. The fact that drones will be increasingly used in the
future is clear; however, the purpose of this study was to find out the areas on which to focus and
pay further attention.

Keywords: drones; design; operation; user preference; user interface; usefulness

1. Introduction

Drones, which were first used in military applications, are now widely used by
civilians for various purposes such as for deliveries and as cameras. They have endless
possibilities for scientific investigations, emergency response, traffic control, and aerial
photography [1]. The drone market has grown steadily and it is predicted that in the future,
they will become an indispensable product in our daily lives similar to smartphones [2].
However, despite these prospects, drones are not widely used in our society due to concerns
about safety [3,4]. In addition, user-controlled accidents account for a high proportion of
drone accidents [5].

Drone-piloting experience using a joystick controller has some problems. The current
experience of piloting a drone using a joystick is not intuitive, so it is not well-understood
how the drone is operated [6]. In addition, the experience of piloting a drone requires a
high mental workload, which can lead to accidents [7]. This could be a big problem in the
civilian drone market for users with poor drone-piloting skills. Therefore, it is important to
design safe and intuitive ways to interact with aerial systems [8].

Most of the control interfaces for short-range drones utilize radio controller (RC)-based
joysticks [9]. However, a lot of skill is required to control the drone using the RC-based
control interface [10]. There has been a study that proposed using speech, body position,
hand gestures, and visual marker interactions to directly send commands to a drone [8].
Interfaces utilizing a user’s natural behavior are more intuitive and easier to learn than
interfaces created utilizing communication through machines [11]. In addition, these
interfaces are known to require a low mental workload [12]. Therefore, utilizing a more
natural interface could solve the problems of the existing drone-piloting experience, such
as a lack of intuition, a difficult learning curve, and a high cognitive load.

There has been a lack of research into what drone users expect in terms of drone design
and operation from a user perspective. In order to figure out what users want from drones,
it is necessary to investigate the perceptions and design preferences of users with regard
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to drones. Therefore, a survey was conducted on the perception, design, and operation
of drones from the perspective of drone users. Surveys were conducted to collect data on
preferences for various aspects of the design and operation of drone technology. Features
relevant to the design and operation of drones were considered. Our findings will be able
to help make drone use more convenient and reduce drone accidents caused by users.
Through this, our research is expected to contribute to the popularization and activation
of drones.

2. Background

A drone is a flying robot that can be remotely controlled or fly autonomously using
software-controlled flight plans; therefore, a drone is considered an unmanned air vehicle
(UAV) [13,14]. Drones range in size from vast fixed-wing unmanned air vehicles to smart
dust (SD) that consist of many tiny micro-electro-mechanical systems including sensors
or robots [15].

Drones are used in a variety of environments. Drone classifications are based on
the type of mission (military/civil), the type of flight zone (outdoor/indoor), and the
type of environment (underwater/on the water/ground/air/space). A wide variety of
drones have been used for military and civilian purposes [15]. Although drones are
considered a vital part of military missions, they are also being increasingly used for
performing environmental actions, such as managing national parks and agricultural
lands, tracking wildlife in different areas, observing the effects of climate change, and
monitoring the biodiversity of different ecosystems from rainforests to oceans [16]. Drones
can be used for the recognition and investigation of natural disasters including forest
fires, avalanches, etc. [17]. Drones can perform both outdoor and indoor missions in very
challenging environments [18]. Drones can be equipped with various sensors and cameras
for intelligence, surveillance, and reconnaissance missions.

Drones are used for a variety of purposes. Drones can be used for search and rescue
missions, environmental protection, mailing and delivery, performing missions in oceans or
other planets, and other miscellaneous applications [19]. Drones have been used for military
surveillance, planetary exploration, and search-and-rescue in the past few years [20]. One
of the environments in which drones can be used is space and the exploration of other
planets. Drones can be applied in marine environments to study marine organisms, identify
the location of oil spills, and for other military or civilian applications [21–23]. Drones’
miscellaneous applications include anti-drones, runway drones, drones that scare birds
away from airport runways, window-cleaning drones, gutter-cleaning drones, solar panel-
cleaning drones, and hobby drones.

Drones can provide a rapid overview of a target area without any danger. Drones
equipped with infrared cameras can provide images even in darkness [24]. Drones can be
put into action immediately without any loss of time. Modular drones provide operational
benefits in terms of readiness and size. They also have advantages in terms of delivery time
and energy consumption compared to non-modular drones [25].

Recently, drone delivery services have become an interesting topic for different com-
panies around the world. Many companies are now using drones to deliver packages
to customers. For delivery, the designed drones land and take off vertically and are pro-
grammed with the customer’s address for delivery of the cargo. Recently, there was a
study about consumer preference for drone delivery [26]. Australian people preferred a
traditional delivery service over drone delivery, but drone delivery services could become
competitive if they are considered faster and cheaper than traditional delivery services.

Human factors should be addressed to improve drone design [27]. A number of
options, features, and confusing choices need to be improved [27]. A standardized set of
core functions using common terminology is required for drone interfaces [27]. Providing
the main functions only for the drone interface makes the operator faithful to the mis-
sion [27]. For controlling the drone camera, an uncluttered and efficient user interface (UI)
is preferred [28].
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Drone-related problems were investigated for drone users [29]. According to their
flight experience, there were many problems with user interactions. Controlling drones
is seen as difficult. Leisure drones provide a camera function by default. However, with
the addition of camera capabilities in drones, users have faced increasing difficulties. They
have had to learn to master the drone operation as well as use the camera function [30].
In order to improve the camera function, research on a gimbal system that can reduce
vibrations has been conducted [31].

It was found that users experience a significant cognitive load just by controlling
RC-based drones. An even higher cognitive load is experienced by users with a drone that
includes a camera. This could be a factor that hinders the user experience. An egocentric
drone-control interface was proposed to lower the user’s cognitive load and as a result,
the egocentric drone-control interface outperformed the traditional drone-centric control
interface by removing the cognitive load of mental rotation [32]. It is possible to consider
a multimodal drone display to provide the pilot with information about the drone’s sur-
roundings [33]. Haptic information delivered to the joystick improved situation awareness.
Multimodal displays may reduce the cognitive and perceptual workload levels [33].

The guidance, navigation, and control (GNC) of drones are traditionally carried out
using three methods, namely radio control, video base, and autopilot [34]. One of the most
common ways to control and navigate drones is using a radio-control system. The best way
to guide, navigate, and control a drone is an autopilot system. Google glass was applied to
control a quadrotor drone using head movements. By using a brain–computer interface
(BCI), they made the quadrotor turn, rise, dip, and even fly through a ring [35]. To control
and navigate the movement of small drones, smartphones have also been utilized.

Camera drones are receiving increased attention and delivery drones and drone-racing
for leisure sports are also gaining interest [36]. In order to popularize drones, relevant
regulations or laws need to be revised. However, there are still concerns about the negative
side of the spread of drones [29]. Australians were relatively neutral about drones [37].
They did not consider drone technology to be overly unsafe, dangerous, beneficial, or
threatening [37]. A lack of knowledge about drones was identified as the biggest concern.
Also, privacy, safety, and security were significant public concerns. Nguyen, Manley, and
Saidi investigated how drones are being used in public safety operations [38]. They found
out that the use of drones in some public safety operations needs to increase.

Therefore, it is necessary to investigate the perception and design preferences of the
users of drones. Previously, there were no user-centered studies related to user expectations
of drone technology. Therefore, this study will perform a survey related to user preferences
of drone design and operation.

3. Study Method

The current study investigates what potential users expect with regard to drone design
and operation since user-centered insights have not been well-established. We created ques-
tionnaire items related to various issues in drone-related areas from the literature [15,37,39].
The questionnaire consists of two parts (Appendix A). The first part asks about the extent
to which the participants have experienced drone technology. The second part contains
questions about drone design and operations. A 7-point Likert-type scale was used for the
response categories.

Then, surveys were conducted to collect data on preferences for various aspects of
the design and operation of drone interfaces. The participants were invited by email or
were personal contacts. The voluntary nature of the survey was explained during the
process of invitation and no compensation was paid for participation. The participants
were given the web page address of the questionnaire and completed it at their own
convenience. Features relevant to the design and operation of drones were considered.
Various issues in drone-related areas were perceptions of drone technology, applications,
interface, and control.
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Through factor analysis, the issues related to drone design and operation will be
grouped into several categories and multiple regression analyses will be performed to
identify the factors necessary for the further popularization of drones.

4. Results

A total of 173 people participated in the survey from May to July 2019. Data from one
participant was removed because the participant rated the same score for all items. Of the
remaining 172 participants, 129 were male and 43 were female. With regard to their level of
education, 52 participants were undergraduate students, 59 held a bachelor’s degree, 24
held a master's degree, and 37 held a Ph.D. The average age of the participants was 31.2
years, with a standard deviation of 8.73 (Min = 19, Max = 49). A total of 131 participants
were from the College of Engineering and 22 were from Management. The other 19
participants were recruited from science and liberal arts areas (science 8, liberal arts 6,
design 4, and no major, 1).

The level of early adopter was neutral (M = 4.2, SD = 1.38). The level of hearing-drone
technology was high (M = 5.5, SD = 1.63). The level of knowing how to control a drone
and the level of experiencing drone technology were rather low, respectively (M = 3.3,
SD = 1.98; M = 3.2, SD = 2.03). Since our focus was to investigate what people expect from
drone technology, we did not exclude potential drone users without drone experience from
the survey. To sum up, many participants have heard about drone technology but have not
had much experience with it.

The internal consistency of the survey responses was assessed by measuring the
intercorrelation among the two-paired questionnaire items. The values of Cronbach’s alpha
for the two-paired features of compatibility and delivery functions were 0.75 and 0.84,
indicating that the participants were answering the questions consistently.

The mean and standard deviation for each rating are shown in Appendix B. Since
there were so many items, we checked whether dimension reduction could be made by
performing principal component analysis (PCA) with the correlation matrix. We obtained
seven eigenvalues above the point where the curve starts to level off in a scree plot, which
explained 61.20% of the variance. Therefore, the individual items can be grouped into
seven factors.

To establish a factor structure and derive important design and operational factors
among the many drone technology aspects, exploratory factor analysis was performed.
The results of this analysis are shown in Table 1. The seven factors derived were labeled
as outdoor mission type, user interface, military mission type, usefulness, risks, special
mission type, and concerns.

Factor 1 is a dominating factor that explained 31.4% of the total variance of the
data. The first factor, outdoor mission type, includes survey items about people’s general
perceptions of various outdoor missions that drones can offer. As drones can be used in a
variety of outdoor environments, the outdoor mission type was a dominating factor. Factor
2, user interface, contains the survey items asking people’s opinions about the drone user
interface. Factor 3 consists of the military mission type questions or statements. Factor 4,
usefulness, includes survey question items about people’s thoughts on drone usefulness.
Factor 5 is about the risk issues related to drones. Lastly, Factors 6 and 7 consist of survey
items about special mission types and people’s concerns about drones, respectively.

The means, standard deviations, and Cronbach’s alphas of the factors are listed in
Table 2. It shows that all factor items were well-grouped. All factors except for risk have
above-neutral (>4) levels, with their means ranging from 4.5 to 5.6. People believe that
drone technology can conduct many outdoor missions, military missions, and special
missions. The current user interface and usefulness levels are mediocre. People believe that
drone technology is not that risky but they still have some concerns.
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Table 1. Factor analysis results.

Item
Number

Rotated Factor Pattern

Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7

18 0.58051 0.14129 0.29829 0.18243 0.01440 0.03895 0.29160
19 0.66074 0.16379 0.37771 0.09782 0.07361 0.09898 0.10496
21 0.50973 0.17347 0.22055 0.17077 −0.04194 0.12588 0.38103
28 0.60638 0.22438 0.38708 0.18359 −0.01064 0.17462 −0.01864
29 0.59450 0.24390 0.27694 0.09267 −0.11973 0.23810 0.26732
30 0.67305 0.09209 0.23379 0.30475 −0.02514 0.10006 0.14565
31 0.82253 0.15125 0.08977 0.05967 0.04294 0.17182 0.13171
32 0.76550 0.16515 0.16819 0.07912 −0.02949 0.24092 0.10310
33 0.85618 0.13096 0.17729 0.07390 0.09309 0.18043 0.04625
34 0.78426 0.13917 0.07050 0.00594 0.10209 0.22370 −0.01851
36 0.82153 0.19672 −0.01443 0.06616 0.10209 0.08474 0.06911
37 0.80788 0.19884 −0.09086 −0.00566 0.10099 0.10235 0.02001
38 0.74703 0.21540 0.10520 0.10684 0.14839 0.26398 0.03754
45 0.22011 0.65910 0.18134 0.14012 0.02192 0.20998 −0.00899
46 0.20637 0.63776 0.32202 0.13286 0.06021 0.07088 −0.13414
47 0.25218 0.72321 0.31873 0.05612 −0.07713 0.13403 −0.04737
48 0.14274 0.74136 0.20577 0.23047 −0.09223 −0.03693 0.17310
49 0.18651 0.73657 0.25018 0.13506 −0.09388 −0.02096 0.12309
50 0.15125 0.79333 0.05167 0.13027 0.03061 0.14112 0.09679
51 0.14559 0.65839 0.05978 0.14050 −0.12534 0.15677 −0.25837
52 0.17287 0.60020 −0.00647 0.19214 −0.16439 0.22088 −0.13612
16 0.09169 0.01141 0.65635 0.09617 0.05607 −0.00270 0.05269
24 0.15814 0.37096 0.69304 0.06606 0.04537 0.19877 0.00784
25 0.19694 0.27910 0.67789 0.09292 0.13633 0.21797 −0.15718
26 0.25988 0.30174 0.68803 0.16714 0.00681 0.06445 −0.07147
3 0.16631 0.24537 0.12328 0.63438 0.02998 0.19190 −0.22658
4 0.19443 0.01340 0.18146 0.62420 −0.09167 0.02573 0.11905
8 0.00236 0.20293 0.01055 0.65065 0.06637 0.05216 −0.18265
9 −0.03478 0.23252 0.03868 0.75011 −0.07970 0.16718 −0.03579

10 0.14145 0.25148 0.29347 0.58828 0.13929 0.09074 0.05975
1 −0.02479 0.14085 −0.20787 0.37868 −0.60480 −0.04155 −0.09430
2 0.14450 −0.08022 0.18095 −0.08256 0.63714 0.01547 0.24078
5 0.01081 0.03857 −0.14457 0.16055 0.75389 −0.08031 −0.06839
6 0.01211 −0.05507 −0.27106 0.21590 0.66892 −0.18336 0.10796
14 0.24827 −0.16538 0.03950 −0.04306 0.61840 0.02059 0.32013
15 0.06304 −0.04685 0.12704 −0.10211 0.67330 0.11834 0.09963
39 0.42414 0.01166 0.12089 0.25289 0.06540 0.51730 0.02259
40 0.36496 0.33513 0.21849 0.01976 0.10000 0.51511 −0.11413
41 0.30574 0.07305 0.13604 0.28482 −0.07393 0.66121 0.16045
42 0.32674 0.18405 0.03951 0.13254 −0.06027 0.73790 0.04610
43 0.32936 0.26914 0.09471 0.13159 0.00958 0.75548 0.07646
11 0.04818 −0.19738 −0.07369 −0.22532 0.32765 −0.02774 0.53197
12 0.22976 0.10359 0.02802 −0.03289 0.20016 0.05106 0.75466
13 0.24622 −0.04545 −0.03079 0.04905 0.22699 0.16188 0.76377

For each factor, bold font indicates the significant component factors.

Table 2. Mean and standard deviation of each factor for drone design and operation.

Factors Mean SD Cronbach’s Alpha

Outdoor mission type 5.6 1.11 0.95
User interface 4.8 1.12 0.90

Military mission type 5.2 1.32 0.84
Usefulness 4.5 1.09 0.79

Risk 3.8 1.09 0.79
Special mission type 5.1 1.21 0.85

Concern 4.7 1.32 0.74
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To determine which of the seven factors strongly influence the various dependent
variables, multiple regression analyses were performed using SAS 9.4. The data we used
are the average scores for each factor since each factor contains several items. The seven
dependent variables we selected are the intention of buying drones, interest in drone
functions, self-vision about using drone technology in 5 years’ time, the intention of using
drones, the increase in satisfaction in daily life, saving time in daily life, and saving energy
in daily life. Table 3 shows the multiple regression results for various dependent variables.

Table 3. Multiple regression results.

Factors
Partial

R-Square
Model

R-Square
F Value Pr > F

Prediction for intention of buying drones

F2 0.3589 0.3589 95.16 <0.0001
F4 0.0383 0.3972 10.74 0.0013
F5 0.0128 0.41 3.65 0.0578
F1 0.0175 0.4275 5.1 0.0252

Prediction for interest in drone functions

F2 0.371 0.371 100.25 <0.0001
F4 0.0653 0.4363 19.59 <0.0001
F6 0.0314 0.4677 9.92 0.0019
F5 0.017 0.4847 5.51 0.0201
F1 0.0069 0.4916 2.25 0.1354

Prediction for self-vision about using drone technology in 5 years’ time

F2 0.2723 0.2723 63.62 <0.0001
F4 0.0916 0.364 24.35 <0.0001
F6 0.0201 0.3841 5.48 0.0204
F5 0.0145 0.3986 4.04 0.0461

Prediction for intention of use with drone technology

F2 0.3828 0.3828 105.42 <0.0001
F4 0.0748 0.4576 23.3 <0.0001
F5 0.0177 0.4752 5.66 0.0185
F6 0.0152 0.4904 4.97 0.0271

Prediction for increase in satisfaction in daily life

F4 0.3829 0.3829 105.48 <0.0001
F2 0.1308 0.5137 45.45 <0.0001
F6 0.0118 0.5255 4.17 0.0426
F5 0.0143 0.5397 5.17 0.0242

Prediction for saving time in daily life

F4 0.3473 0.3473 90.47 <0.0001
F2 0.0636 0.4109 18.23 <0.0001
F5 0.0143 0.4252 4.17 0.0427
F6 0.0133 0.4384 3.94 0.0487

Prediction for saving energy in daily life

F4 0.3728 0.3728 101.06 <0.0001
F2 0.0779 0.4508 23.98 <0.0001
F5 0.0165 0.4673 5.21 0.0237
F6 0.0107 0.478 3.41 0.0666

Using the intention of buying drones as the dependent variable and the seven factors
as the independent variables, we performed a stepwise regression analysis to select the rel-
evant independent variables. The results of the regression indicated a significant difference
for the intention of buying drones regarding four variables (F(4, 167) = 31.18, p < 0.0001).

227



Drones 2022, 6, 133

R2 was 0.4275. The four variables that were selected are user interface, usefulness, risks,
and outdoor mission type. Obviously, risks were affected negatively.

Using the interest in drone functions as the dependent variable, the results of the
regression indicated a significant difference for the interest in drone functions regarding
five variables (F(5, 166) = 32.11, p < 0.0001). R2 was 0.4916. The five variables that were
selected are user interface, usefulness, special mission type, risks, and outdoor mission type.

Using self-vision about using drone technology in 5 years’ time as the dependent
variable, the results of the stepwise regression analysis indicated a significant difference
for self-vision about using drone technology in 5 years’ time regarding four variables
(F(4, 167) = 27.67, p < 0.0001). R2 was 0.3986. The four variables that were selected are user
interface, usefulness, special mission type, and risks.

Using the intention of using drones as the dependent variable, the results of the
regression indicated a significant difference for the intention of using drones regarding four
variables (F(4, 167)= 40.17, p < 0.0001). R2 was 0.4904. The four variables that were selected
are user interface, usefulness, risks, and special mission type.

Using the increase in satisfaction in daily life as the dependent variable, the results of
the regression indicated a significant difference for the increase in satisfaction in daily life
regarding four variables (F(4, 167) = 48.96, p < 0.0001). R2 was 0.5397. The four variables
that were selected are usefulness, user interface, special mission type, and risks.

Using saving time in daily life as the dependent variable, the results of the regression
indicated a significant difference for saving time in daily life regarding four variables
(F(4, 167) = 32.59, p < 0.0001). R2 was 0.4384. The four variables that were selected are
usefulness, user interface, risks, and special mission type.

Using saving energy in daily life as the dependent variable, the results of the regression
indicated a significant difference for saving energy in daily life regarding four variables
(F(4, 167) = 38.23, p < 0.0001). R2 was 0.4780. The four variables that were selected are
usefulness, user interface, risks, and special mission type.

The variable that had the greatest influence on drone purchase and the intention to
use drone technology was the user interface. Therefore, we can increase the intention to
purchase and use drones through the improvement of the user interface. Also, the variable
that most affects the daily use of drones was usefulness. It was found that the usefulness
needs to be increased in order to use drones in daily life more. In addition, risks and special
mission type were also influential factors. If the risks of using drones are reduced and the
special mission types of drones are provided, greater utilization will occur in daily life.

5. Discussion & Conclusions

One-hundred and seventy-two subjects participated in the preference survey to inves-
tigate what potential users expect with regard to drone design and operation. We have
identified the underlying factor structures of drone design and operation: outdoor mis-
sion type, user interface, military mission type, usefulness, risk, special mission type, and
concern. From multiple regression analyses, four main factors for drone-buying intention
were derived. They are user interface, usefulness, risk, and outdoor mission type, which
explained 42.75% of the variance that accounts for users’ drone-purchasing intentions. The
most important factors are user interface and usefulness, which account for 39.72% of the
total variance contributing to drone-purchasing intention. By identifying these, we are able
to provide drone designers and manufacturers with the advice that the user interface and
usefulness factors should receive the most attention for achieving drone technology success.

From regression analyses, five main factors for interest in drone functions were derived.
They are user interface, usefulness, special mission, risk, and outdoor mission type, which
explained 49.16% of the variance that accounts for users’ interest in drones. Again, the
most important factors are user interface and usefulness, which account for 43.63% of the
total variance contributing to interest in drones.

From regression analyses, four main factors for self-vision about using drone tech-
nology in 5 years’ time, drone use intention, increase in satisfaction in daily life, saving
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time in daily life, and saving energy in daily life, were derived. They are user interface,
usefulness, risk, and special mission type, which explained 39.86%, 49.04%, 53.97%, 43.84%,
and 47.80% of the variance. The most important factors are user interface and usefulness,
which account for 36.40%, 45.76%, 51.37%, 41.09%, and 45.08% of the total variance.

The most important factors are user interface and usefulness, which contribute to all
the dependent variables. They should be improved and garner more attention to achieve
the popularization and success of drones. The most important factor in the intention to
buy drones, interest in drone functions, self-vision about using drone technology in 5 years’
time, and intention of using drones is user interface, whereas the most important factor in
the increase in satisfaction in daily life, saving time in daily life, and saving energy in daily
life is usefulness. User interface must be improved to allow users to buy and use drones,
and the usefulness of drones must also be enhanced to heighten user satisfaction. As in the
study of Merkert et al. [26], the more useful drones are, the more competitive they become.

People believe that drone technology can conduct many outdoor missions, military
missions, and special missions. The similarity of our findings to those of Nguyen et al. [38]
with regard to public safety operations suggests that drone technology can play a significant
role in various missions. The current user interface and usefulness levels are not very high.
People believe that drone technology is not that risky but they still have some concerns.
People know that drone technology can be used for various purposes but they still feel
that the UI or usefulness levels are not high. It is important to help people understand that
drones are highly useful through practical experience. In addition, we need to improve the
UI for better control and utilization of drones. Although we do not feel it is very dangerous,
there are still concerns about drone technology so it seems necessary to promote it in
order to address these concerns as well as to increase people’s experience and utilization
of drones.

We were able to develop a questionnaire for drone technology to ask about user prefer-
ences in the perception, design, and operation of drones. The questionnaire consisted of two
parts. The first part asks about the extent to which the participants have experienced drone
technology. The second part contains questions about drone design and operation. The
questionnaire can provide a drone design and operation checklist for drone designers and
manufacturers. The current study investigated what potential users expect with regard to
drone design and operation since user-centered guidelines have not been well-established.

A limitation of this research is as follows. It was difficult to derive specific design
guidelines and only the overall preference for the operation was investigated. If we
had performed an experimental study, we could have established detailed drone design
guidelines. Also, we recruited the survey participants from the Korean population, but
we did not consider other populations such as the United States, China, etc. If we had
performed the survey with other populations, we might have been able to provide different
implications. Nevertheless, this research makes several contributions to drone design and
operation by identifying the underlying factor structures of drone technology and several
important dimensions that influence the popularization and success of drones. The fact that
drones will be increasingly used in the future is clear but for now, this study has discovered
the areas on which to focus and pay further attention.
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Appendix A Drone Survey Questionnaire

Evaluating Preferences for Drone design and operation
Welcome to the drone survey!
The purpose of this survey is to see what you expect with regard to drone design and

operation. Drones are flying robots that include unmanned air vehicles (UAVs) that fly
thousands of kilometers and small drones that fly in confined spaces. In answering, please
consider the following.

Read each statement. Decide how much you agree or disagree or how much you like
or dislike and mark the appropriate response.

The survey consists of two parts. The first part is about your demographic information.
Part I comprises eight questions. The second part will ask you about what you expect
with regard to drone technology. There are 60 questions related to preferences about drone
design and operation in Part II.

It takes about 10 min in total to complete the whole survey.

I. Part I

Please fill out every question in the following questionnaire.

1. What is your gender?

� Male � Female

2. The year of birth (e.g., 1976): ___________________________________

3. What is your highest degree?

� High school (undergraduate student)
� Bachelor’s degree
� Master’s degree
� Doctorate degree
� Other _______________________

4. What is your major/area of study? __________________________

Decide how much you agree or disagree or like or dislike and mark the appropriate
response.

1 2 3 4 5 6 7
Strongly
disagree

Strongly
agree

5. I am an early adopter.

1 2 3 4 5 6 7

6. I have heard about drone technology.

1 2 3 4 5 6 7

7. I know how to control a drone.

1 2 3 4 5 6 7

8. I have experienced drone technology.

1 2 3 4 5 6 7

II. Part I

1. Drone technology is safe.

1 2 3 4 5 6 7

2. Drone technology is risky.

1 2 3 4 5 6 7

3. Drone technology is beneficial to my family and me.
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1 2 3 4 5 6 7

4. Drone technology is beneficial to society.

1 2 3 4 5 6 7

5. Drone technology is threatening to my family and me.

1 2 3 4 5 6 7

6. Drone technology is threatening to society.

1 2 3 4 5 6 7

7. Drone technology is as safe or safer than other technologies that perform the same
task.

1 2 3 4 5 6 7

8. Using drone technology will be compatible with all aspects of my work.

1 2 3 4 5 6 7

9. Using drone technology will fit into my lifestyle.

1 2 3 4 5 6 7

10. Basically, I find drone technology useful.

1 2 3 4 5 6 7

11. I want no drones over my property.

1 2 3 4 5 6 7

12. What bothers me is that there is no way to identify whether the drone is filming.

1 2 3 4 5 6 7

13. What bothers me is that I cannot infer the purpose of use from the appearance of
drones.

1 2 3 4 5 6 7

14. I fear injuries from an accident with a drone.

1 2 3 4 5 6 7

15. Drones scare me.

1 2 3 4 5 6 7

16. How much do you like the idea that a drone can be used for military missions?

1 2 3 4 5 6 7
Very much

dislike
Very much

like

17. How much do you like the idea that a drone can be used for civil missions?

1 2 3 4 5 6 7

18. How much do you like the idea that a drone can be used for planetary exploration?

1 2 3 4 5 6 7

19. How much do you like the idea that a drone can be used for search-and-rescue?

1 2 3 4 5 6 7

20. How much do you like the idea that a drone can be used for mailing and delivery?

1 2 3 4 5 6 7

21. Drones should perform outdoor missions in very challenging environments.
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1 2 3 4 5 6 7
Strongly
disagree

Strongly
agree

22. Drones should perform indoor missions in very challenging environments.

1 2 3 4 5 6 7

23. Drones with various sensors and cameras should perform intelligence missions.

1 2 3 4 5 6 7

24. Drones with various sensors and cameras should perform reconnaissance missions.

1 2 3 4 5 6 7

25. Drones with various sensors and cameras should perform surveillance missions.

1 2 3 4 5 6 7

26. How much do you like the idea that drones equipped with infrared cameras can give
images even in darkness?

1 2 3 4 5 6 7
Very much

dislike
Very much

like

27. How much do you like the idea that drones can provide a rapid overview around the
target area without any danger?

1 2 3 4 5 6 7

28. How much do you like the idea that drones can be put into action immediately
without any loss of time?

1 2 3 4 5 6 7

29. How much do you like the idea that drones can manage national parks and agricul-
tural lands?

1 2 3 4 5 6 7

30. How much do you like the idea that drones can track wildlife in different areas?

1 2 3 4 5 6 7

31. How much do you like the idea that drones can observe the effects of climate change?

1 2 3 4 5 6 7

32. How much do you like the idea that drones can monitor the biodiversity of different
ecosystems?

1 2 3 4 5 6 7

33. How much do you like the idea that drones can be used for the recognition and
investigation of natural disasters?

1 2 3 4 5 6 7

34. How much do you like the idea that a drone can be used for environmental protection?

1 2 3 4 5 6 7

35. How much do you like the idea that drones can be used for delivering packages to
customers?

1 2 3 4 5 6 7

36. How much do you like the idea that drones can be applied in marine environments?

1 2 3 4 5 6 7
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37. How much do you like the idea that drones can be used for studying marine organ-
isms?

1 2 3 4 5 6 7

38. How much do you like the idea that drones can be used for identifying the location of
oil spills?

1 2 3 4 5 6 7

39. Anti-drones that are used to take down offensive drones are needed.

1 2 3 4 5 6 7
Strongly
disagree

Strongly
agree

40. Runway drones that can be used as a runway for another drone are needed.

1 2 3 4 5 6 7

41. Drones that scare birds away from airport runways are needed.

1 2 3 4 5 6 7

42. Window-cleaning drones are needed.

1 2 3 4 5 6 7

43. Solar panel-cleaning drones are needed.

1 2 3 4 5 6 7

44. Hobby drones are needed.

1 2 3 4 5 6 7

45. How much do you like the idea that drones are controlled and navigated using a
radio-control system?

1 2 3 4 5 6 7
Very much

dislike
Very much

like

46. How much do you like the idea that drones are controlled and navigated using a
camera installed on the drone?

1 2 3 4 5 6 7

47. How much do you like the idea that drones are controlled and navigated using an
autopilot system?

1 2 3 4 5 6 7

48. How much do you like the idea that drones are controlled and navigated using
smartphones?

1 2 3 4 5 6 7

49. How much do you like the idea that drones are controlled and navigated using a
brain–computer interface (BCI)?

1 2 3 4 5 6 7

50. How much do you like the idea that drones are controlled and navigated using a
smart glass?

1 2 3 4 5 6 7

51. I believe that my interaction with a drone will be clear and understandable.

1 2 3 4 5 6 7
Strongly
disagree

Strongly
agree
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52. I believe that it is easy for drone technology to do what I want it to do.

1 2 3 4 5 6 7

53. Overall, I believe that a drone is easy to use.

1 2 3 4 5 6 7

54. If cost is not an issue, I would consider buying drone technology.

1 2 3 4 5 6 7

55. I am really interested in the sort of functions a drone could offer.

1 2 3 4 5 6 7

56. I could see myself utilizing drone technology in 5 years’ time.

1 2 3 4 5 6 7

57. I would like to utilize drone technology.

1 2 3 4 5 6 7

58. A drone will increase satisfaction in my daily life.

1 2 3 4 5 6 7

59. A drone will be able to save time that I spend in my daily life.

1 2 3 4 5 6 7

60. A drone will be able to save efforts that I spend in my daily life.

1 2 3 4 5 6 7

Appendix B

Table A1. Mean and standard deviation of ratings for each item (n = 172).

Variables Mean SD Variables Mean SD

a1 4.2 1.38 b29 5.7 1.35
a2 5.5 1.63 b30 5.6 1.32
a3 3.3 1.98 b31 5.6 1.51
a4 3.2 2.03 b32 5.5 1.41
b1 3.9 1.41 b33 5.8 1.34
b2 4.3 1.50 b34 5.5 1.55
b3 4.4 1.60 b35 5.1 1.50
b4 5.3 1.31 b36 5.4 1.53
b5 3.1 1.45 b37 5.3 1.56
b6 3.5 1.52 b38 5.5 1.41
b7 4.2 1.38 b39 5.1 1.55
b8 3.9 1.60 b40 4.8 1.36
b9 4.1 1.47 b41 5.2 1.55

b10 5.0 1.36 b42 5.1 1.60
b11 4.1 1.82 b43 5.2 1.52
b12 5.1 1.49 b44 4.8 1.60
b13 4.9 1.57 b45 4.8 1.39
b14 4.5 1.74 b46 5.0 1.43
b15 3.4 1.69 b47 5.0 1.47
b16 5.2 1.68 b48 5.1 1.54
b17 5.2 1.49 b49 4.9 1.47
b18 5.9 1.30 b50 4.7 1.43
b19 6.1 1.34 b51 4.7 1.44
b20 5.4 1.54 b52 4.6 1.43
b21 5.8 1.40 b53 4.4 1.47
b22 4.7 1.78 c1 5.0 1.75

234



Drones 2022, 6, 133

Table A1. Cont.

Variables Mean SD Variables Mean SD

b23 5.4 1.39 c2 5.0 1.59
b24 5.2 1.51 c3 4.5 1.58
b25 5.0 1.69 c4 4.9 1.54
b26 5.1 1.54 c5 4.5 1.51
b27 5.3 1.45 c6 4.5 1.70
b28 5.3 1.36 c7 4.5 1.61
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Abstract: With the rising popularity of unmanned aerial vehicles (UAVs) and increasing variety of
their applications, the task of providing reliable and robust control systems becomes significant. An
active fault-tolerant control (FTC) scheme requires an effective fault detection and isolation (FDI)
algorithm to provide information about the fault’s occurrence and its location. This work aims to
present a prototype of a diagnostic system intended to recognize and identify broken blades of rotary
wing UAVs. The solution is based on an analysis of acoustic emission recorded with an onboard
microphone array paired with a lightweight yet powerful single-board computer. The standalone
hardware of the FDI system was utilized to collect a wide and publicly available dataset of recordings
in real-world experiments. The detection algorithm itself is a data-driven approach that makes use of
an artificial neural network to classify characteristic features of acoustic signals. Fault signature is
based on Mel Frequency Spectrum Coefficients. Furthermore, in the paper an extensive evaluation of
the model’s parameters was performed. As a result, a highly accurate fault classifier was developed.
The best models allow not only a detection of fault occurrence, but thanks to multichannel data
provided with a microphone array, the location of the impaired rotor is reported, as well.

Keywords: UAV; fault detection; rotor; data-driven; acoustic

1. Introduction

1.1. Background

The increasing number and variety of applications of unmanned aerial vehicles raise
the question of operational safety and reliability [1,2]. Few recent studies have pointed
out the key causes of drone accidents in flight, with actuator faults being one of the major
issues, both in military and commercial UAVs [3,4]. This challenge is often addressed with
fault-tolerant control systems, which provide minimal performance for the aerial vehicle
in the occurrence of faults [5]. FTC strategies are typically divided into two categories.
Passive approaches aim to provide robustness of control algorithms and utilize hardware
redundancy. On the other hand, active systems are based on the fault detection algorithm
and real-time adjustment of the control laws [6]. The fault diagnosis stage itself is frequently
divided into the basic detection of the fault followed by its isolation, which is defined as
the determination of the exact location of the faulty component [7]. It is believed that
precise fault detection and isolation systems, as crucial components of FTC control schemes,
will significantly increase the safety of operating UAVs and, as a result, accelerate their
introduction to practical applications [8].

1.2. Research Motivation

In this article, a new approach to the problem addressed in a couple of our previous
works [9,10] is presented. The main focus was placed on the problem of efficient fault
detection and isolation of damaged propellers of multirotor UAV. The initial approaches
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were based on the analysis of airframe vibrations thanks to data obtained with microelec-
tromechanical (MEMS) accelerometers. These methods have proven to be efficient, with
classification accuracy exceeding 96%. First, there is still room for improvement in terms
of detection accuracy itself. Additionally, our solutions lacked precision in locating faulty
rotors, especially in a situation where more than one blade was damaged. Finally, the
method based on a sensory network required quite serious interference with the structure
and equipment of the drone. Conducting experiments with vibration data led to the ob-
servation of clearly audible differences in the sound of healthy and damaged rotors. It
leads to the concept of utilizing acoustic emission as a source of information about the
propellers’ condition.

1.3. Literature Review

The topic of FDI schemes designed to detect UAV actuator faults is covered in quite
a few recent papers. The first category of approaches to this diagnostic problem utilizes
model-based fault diagnosis with sophisticated methods to evaluate model residuals and
conclude on the fault’s occurrence. Notable examples are articles published by Cen et al.
that comprise a series of developments, from initial proof of concept to practical imple-
mentation [11–13]. Their method is based on a nonlinear observer which was later boosted
with adaptive mechanisms and implemented in real-time application on multirotor UAV.
However, the study addresses only the consequence of the rotor’s impairment, since the
analyzed type of fault is a simulated loss of effectiveness (LoE) in thrust generation. Some
other papers follow the same approach with various methods of model-based fault esti-
mation algorithms and following control strategies [14,15]. It is worth mentioning that the
literature considers other types of UAV actuator faults, including stuck control signal [16] or
multiple fault class scenarios. An example is an article describing the method that enabled
the detection of wear of rotor shaft bearings, LoE and increases in winding resistance at the
same time [17].

The problem of detecting physical damage to drone rotors is frequently solved thanks
to data-driven FDI methods. They are based on statistical modeling and classification
algorithms with sensory data used as a source of information. Some solutions are based
on analysis of system states, such as attitude, angular rate and values of control signals.
A notable example [18] that allows detection of a significantly damaged rotor is based on
an artificial recurrent neural network (RNN) with long short-term memory architecture
(LSTM) and provides a fault detection accuracy of approximately 92%. However, the
majority of papers focus on two types of raw sensor signals: vibrations and acoustic
emission. Among the first category, a few articles present methods based on characteristic
features of vibration signals obtained with on-board inertial measurement units (IMUs).
The work of Pourpanah et al. shows that such an approach, boosted with motor current
measurements, can improve the accuracy of fault detection by more than 94% [19]. In
another example, the success rate of fault classification is even higher at the cost of long
(over 10 s in most cases) analysis time. It is worth mentioning that our previous works fall
into this category as well.

Only a couple of papers describe FDI systems based on the analysis of acoustic
emission. A notable example is the work of Gino et al. [20], with outstanding fault detection
accuracy that exceeds 98%. However, the experiments were performed with a stationary,
ground-fixed drone and an external high-class microphone. In addition, the detected fault
was an imbalance of the rotor, which, as the authors assumed, was comparable to an actual
partial loss of the blade. The results show a high potential for acoustic waves as a source of
information on the occurrence of faults. In another article, a similar neural-based algorithm
with physically impaired rotors and data collected in a real flight scenario resulted in only
92% of fault detection accuracy [21]. A paper written by Altinors et al. [22] considers even
a wider set of fault conditions, including broken rotor blade, bearing failure and eccentric
shaft faults. The algorithm presented was based on one-second-long sound samples
collected with external recording equipment placed in the vicinity of faulty motors. Several
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different classification algorithms have proven to be very accurate in classifying fault
signatures based on statistical features of audio signals. This is yet another work showing
the potential of using acoustic emission in data-driven FDI systems for UAV actuators.

1.4. Main Contribution

We consider that acoustic-based FDI for UAV rotors proves to be a very promising
field, both in terms of improving accuracy and the possibility of practical implementation.
However, to the best of our knowledge, no method has been developed that would include
the isolation of a faulty rotor. In addition, all of the existing works were carried out with
external audio recording systems and very limited coverage of different flight scenarios. We
consider that the acoustic emission of the hovering drone is significantly different from that
of intensive maneuvers during which the rotors’ angular velocity varies more significantly.
A number of papers show great potential in audio signals as a source of information on
the fault occurrence and its properties. However, no experiments were performed using
the signals recorded on board in close proximity to the rotors. The accuracy of data-driven
FDI based on such data remains unclear. Therefore, we share an extensive dataset of audio
recordings collected in different flight phases with multiple fault classes related to the
location of a broken propeller. The data were collected with our custom-built onboard
microphone array subsystem. Finally, the algorithm presented in this article shows the
practical application of a highly accurate FDI system based on the mentioned dataset with
an onboard acoustic data acquisition and processing system.

1.5. Study Outline

The following parts of this paper are composed as follows: the next section describes
some major technical details of our work. It includes specific aspects of the Falcon V5 UAV
used in experiments and the custom hardware setup for the acquisition and processing
of audio signals. In addition, some initial observations and conclusions about the effects
of operating broken UAV rotors are also presented. The third section provides a broad
description of our fault detection and isolation algorithm, with consecutive steps of signal
processing and feature classification explained. The fourth part of the article presents
an acoustic dataset with multiple fault types and shows the results of the experimental
evaluation. The final section summarizes the paper with some conclusions and future
improvement plans.

2. Analyzed Uav System

2.1. Rotor Impairments

Partial destruction of the rotor leads to a series of consequences. At first, there are
some practical implications of operating the UAV with such a fault. To show these negative
effects, a short series of experiments was carried out using a stationary propulsion test
stand [23]. The rig allows measuring thrust, power consumption and angular velocity
of various motor–rotor setups. Three exemplary types of rotors were used, one in brand
new condition and two that were diversely damaged. Figure 1 shows the blades used in
stationary tests, with (H) a healthy rotor, one with a damaged edge (E) and several ones
with fractured tips (F), as well as the general structure of the test stand.

A BrushLess Direct Current (BLDC) motor, rotor and Electronic Speed Controller (ESC)
used in the experiments were identical to those mounted on our Falcon V5 UAV, which was
later used for validation experiments. Multiple series of test runs were carried out with
a full range of control signal applied and the results were averaged for every rotor. The
performance graphs are shown in Figure 2. The measured values were the total thrust FT
generated by the rotor and the power efficiency η, expressed as the amount of thrust in
relation to a single watt of electrical power.
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Figure 1. Samples of rotors used in fault detection experiments and overview of the propulsion
test rig.

Figure 2. Performance comparison of faulty and undamaged rotors: thrust of a single motor–rotor
unit (top) and achieved power efficiency (bottom).

Stationary analysis of faulty propulsion shows that even slight damage to the rotor
blades results in an observable loss in the thrust produced. The power efficiency drops
significantly as well, therefore reducing flight time and payload capabilities of the UAV.
In addition, during those test runs that utilized faulty units, a vibration resonance was
observed. It confirms state-of-the-art knowledge on the effects of the broken and, as a result,
the imbalanbced rotor [24,25]. In the case of undamaged blades, the mass distribution is
symmetric around the motor shaft, which is the pivot point. After the fracture, it becomes
irregular and the centrifugal forces induced by rotating blades no longer compensate. The
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resultant force leads to observable vibrations. In our previous works, this phenomenon
was measured directly with MEMS accelerometers and used as a basis for fault diagnosis.
In the presented solution, we utilize sound waves as derivatives of vibrations themselves.
We consider several possible advantages of this new data source. Initially, some additional
audio signal features that come from the aerodynamic effects of the broken rotor blade may
increase the accuracy of the FDI system. Furthermore, microphones provide a much wider
frequency coverage compared to inertial data.

2.2. Falcon V5 Uav

The Falcon V5 UAV was used to collect the acoustic recording dataset. It is a custom-
built aerial research platform based on the so-called X8 quadrotor configuration and our
custom-built avionics system. The vehicle provides high lift capabilities, a flight time of
about 8 min and numerous data and power interfaces for attaching additional equipment
used in experiments. An overview of the drone is presented in Figure 3.

Figure 3. The Falcon V5 UAV used for FDI experiments and a detailed view of the coaxial propul-
sion unit.

The main chassis of the UAV is designed as a four-arm cross with coaxial propulsion
units at each end. The span of opposite rotors is equal to 450 mm with a vehicle mass of
2300 g. Eight MN3110 electric BLDC motors allow up to 65 N of total thrust to be produced
within compact external dimensions of the UAV, as small as 610 × 610 mm. Each propulsion
unit consists of two vertically aligned motors with 10 × 3.3′′ rotors. This design has been
shown to be redundant in hardware and safer to operate in the event of partial or complete
rotor loss [26], which greatly benefited us during numerous flight tests in faulty scenarios.

2.3. Acoustic Diagnostic System

In order to capture in-flight acoustic signals, a prototype of a data acquisition and
processing system was developed. The aim was to utilize easily available off-the-shelf com-
ponents to shorten preparations for experiments and provide a proof-of-concept solution
that precedes the development of a dedicated embedded subsystem. Our setup is based
on a single-board computer (SBC) Raspberry Pi 3B+ and a dedicated microphone array
module. The latter component is Respeaker 4-mic Array (https://respeaker.io/4_mic_array/,
accessed on 28 April 2022), a printed circuit initially designed for IoT (Internet of Things)
solutions and dedicated to create voice-enabled applications in particular. The stack of
RaspberryPi SBC and ReSpeaker “hat” is shown in Figure 4.

The key components of the ReSpeaker microphone array are four MSM321A3729H9BP
top-port miniature microphones manufactured in MEMS technology. They are located in
every corner of the rectangular printed circuit board, which in our intention will allow one
to locate the faulty rotor. Since these components are equipped with an analog output, the
ReSpeaker module consists of a dedicated AC108 analog-to-digital converter (ADC). The
ADC provides four independent channels of acquisition, a programmable gain block and
a I2S output bus. The maximum sampling rate for all four microphones reaches up to
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48 kSps. Some important parameters of the MSM321A3729H9BP microphone are presented
in Table 1.

Figure 4. The stack of Raspberry Pi 3B+ SBC and microphone array module.

Table 1. Selected properties of the MSM321A3729H9BP microphone.

Parameter Value Unit

Frequency band 100∼10 k [Hz], range of ±3 dB
THD 0.1 [%]
AOP 123 [dB SPL]
SNR 65 [dB]
Sensitivity −32 dB [dB] for 1 kHz in relation to 1 V/Pa

It is worth mentioning that although the performance of the array is quite mediocre in
comparison to high-end components of this class and significantly lower in comparison
to full-scale regular microphones, such a low-cost system provided us with satisfactory
results. However, one of the key parameters in our consideration was the acoustic overload
point (AOP) of the microphones, which is commonly defined as a level of sound pressure
at which the total harmonic distortion (THD) factor exceeds 10%. The importance of AOP
is crucial since the array is located in the direct vicinity of loud rotors. Some of the other
MEMS microphone-based devices tested did not satisfy our needs, as the recorded sound
was distorted beyond the level that would enable accurate fault detection.

The ready-to-flight experimental setup consisting of Falcon drone, SBC and microphone
array is depicted in Figure 5. Custom 3D-printed brackets were prepared to fix the ReSpeaker
module above the main avionics of the UAV.

Custom software was developed for a Linux-based Rapsberry Pi computer. The set
of Python programming language scripts was written based on the official driver for the
ReSpeaker microphone array. Combined with built-in Wi-Fi connectivity and remote ac-
cess mechanism such as SSH, the data acquisition system allows convenient experiments
in flight. In addition, the quite considerable computing power of SBC enables the im-
plementation of not only data acquisition, but also further signal processing and fault
classification algorithms.
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Figure 5. Experimental setup to acquire acoustic data.

3. Proposed Method

Our approach to the stated FDI problem utilizes data-driven fault detection that takes
advantage of a machine learning-based fault classifier with multichannel acoustic signal
features as the model input. The following section describes the processing pipeline in a
sequential manner, from raw acoustic data to the FDI system output indicating detected
fault class.

3.1. Signal Processing

An algorithm is based on short chunks of the acoustic signal acquired with the UAV
onboard microphone array. The length of the signal acquisition period is a factor that affects
the classification performance, since longer chunks contain more information and provide
the classifier with better-quality data.

At first, the raw acoustic signal is multiplied by a window function. The process
is applied to all four channels of the audio file concurrently since the fault classifier is
processing the data from all of the microphones combined. A Kaiser windowing function
was used in presented analysis.

Afterward, the Mel Frequency Cepstrum Coefficients (MFCCs) are extracted indepen-
dently for every audio channel. MFCC-based signal features are applied primarily and
quite broadly in speech recognition systems [27]. However, they have also been used in nu-
merous applications in the field of condition monitoring and fault detection as well [28,29].
The main idea behind the MFCC technique is first to convert every signal frame into a
magnitude spectrum by applying a Fast Fourier Transform (FFT). Afterward, the obtained
spectrum is passed through a set of triangle-shaped band-pass filters known as the Mel
filter bank. The number of filters in the bank, annotated as n f , is an adjustable variable. The
name “mel” corresponds to a unit of measure with variable spacing that is more natural to
the frequency perceived by the human ear. In the next step, the logarithm is applied to filter
bank outputs and finally, the discrete cosine transform of the resultant signal is taken to
obtain MFCCs. In our algorithm, 104 cepstral coefficients are extracted from each channel.
As a result, the fault classifier is provided with a 425-element input vector, consisting
of MFCCs from 4 microphones and 9 labels of considered fault classes. The process of
pre-processing acoustic signals in the FDI system is summarized in Figure 6.

3.2. Fault Classification

Several models were developed for the fault classification task and two of them were
chosen for further evaluation as the most promising ones. The first classifier is based on
the LSTM artificial neural network (ANN) architecture. This kind of ANN falls into the
category of recurrent neural networks with the great advantage of being able to overcome
a vanishing gradient problem. LSTM-based models are commonly used in a variety of
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tasks that involve speech and acoustic recognition algorithms [30]. Such networks have
been shown to be very efficient in time series prediction and keeping track of long-term
dependencies [31]. In recent years, they have received widespread attention in the fields of
fault diagnosis and condition monitoring, with a particularly high number of applications
in the data-driven diagnosis of rotating machinery [32,33].

Figure 6. Summary of the pretraining signal processing steps.

The LSTM-based network is more computationally demanding than the regular RNN
because of the more complicated structure of a single cell of the LSTM network. An LSTM
unit consists of a cell, an input gate, an output gate and a forget gate. The cell stores values
over some arbitrary time intervals and the gates control the flow of data from subsequent
iterations. This ensures that the output is affected by data from any range without gradient
fading. Our model consists of one LSTM layer and two fully connected layers. The latter
serves as an output layer to return the probability of the occurrence of a predefined fault
type. The network outputs 9 such values, of which the first 8 are meant for combinations
of two fault types at four different rotor locations (please refer to Table 2 for details about
considered fault classes). The last output reports whether all the rotors are in healthy
condition. The structure of the described ANN is shown in Figure 7.
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Figure 7. Structure of the LSTM-based fault classifier.

Table 2. Summary of flight experiments conducted and the quantities of data for every fault class
considered.

Flight Scenario No. Flights Audio Data Length [s]

Nominal (healthy) condition 10 2400
Single damaged blade 12 2400

Two damaged rotors
Adjacent locations 9 1800
Opposite locations 5 1000

Fault Class
Broken Blade Location

Fault Type No. Flights Audio Data Length [s]
A B C D

H − − − − none 10 2400
AF + − − − 5 1000
BF − + − − 5 1000
CF − − + − 5 1000
DF − − − +

fractured tip

4 800
AE + − − − 4 800
BE − + − − 5 1000
CE − − + − 3 600
DE − − − +

edge distortion

6 1200

The second classifier developed in our solution is based on convolutional ANN
(CNN). Applications of this architecture proliferated mainly in the field of image processing.
However, many successful attempts at machine diagnosis have been made [34,35]. A
distinguishing feature of CNNs is that in the process of training, the parameters of neuron-
shared filters are affected, instead of training weights that connect each neuron of one layer
with each neuron of the next layer. This approach significantly reduces the memory size of
the network. In each layer, a certain number of kernels move every stride along the input
vector, creating representations that serve as inputs to subsequent layers.

A model consisting of six convolutional layers and one fully connected output layer
was used to solve the rotor fault detection problem. The first convolutional layer has four
channels, which corresponds to the data from the four-channel microphone array collected
during the study. A ReLu activation function is used along with batch normalization to
regularize inputs and prevent overfitting. The second layer has 64 channels, and each
subsequent layer doubles the number of channels. The last convolutional layer reduces the
number of channels down to 1 in order to link it to a fully connected output layer, whose
input size depends on the number of convolutional layers and the size of the kernel. In our
case, it has 9 outputs that serve as fault indicators in a manner similar to the previously
presented LSTM-based classifier. Figure 8 shows a graphical representation of the structure
of the CNN fault classifier.
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Figure 8. Structure of CNN-based fault classifier.

4. Experimental Evaluation

4.1. Acoustic Dataset

In order to train and validate the presented fault classifiers, a series of flight exper-
iments was carried out. The idea behind them was to collect acoustic data in flight in
different scenarios with variable locations and types of faulty rotors. There were 36 flights
in total and during each one of them, 200 to 240 s of 4-channel audio data were recorded.
The rotors were switched in between the experiments, with variable location, type and
number of damaged blades placed in the system. The sampling rate of sound signals is
equal to 44,100 Hz. Recordings made during flights with damaged rotors were shorter due
to the increased power consumption of the propulsion system. The methodology of the
conducted experiments is shown in Figure 9.

Figure 9. Process of gathering samples of acoustic dataset and evaluating FDI method.

During every experiment, the UAV trajectory included a mix of hovering, ascending,
descending and translational motions. The tests were carried out indoors inside the sports
hall with dimensions of about 20 × 10 × 5 m. Three main categories of experiment scenar-
ios were considered: flights with all-healthy rotors, the occurrence of a single damaged
propeller and UAV equipped with two impaired rotors at the same time. In the latter
variant, some of the tests were performed with two adjacent rotors damaged and the others
with faults in opposite actuators. Figure 10 shows the flight variants performed.
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Figure 10. Types of fault scenarios considered in experiments: (1) no faults, (2) single damaged rotor,
(3) dual fault, adjacent, (4) dual fault, opposite actuators.

Multiple specimens of damaged rotors were used and healthy–damaged combinations
were chosen in a way that provides all fault classes with a similar and sufficient amount of
data for training the intelligent classifier. In the analysis, two types of blade impairment are
considered: the fractured rotor tip and distorted edge, just as the initial examples analyzed
with the stationary test stand. The structure and fault classes included in the dataset are
summarized in Table 2.

The signal frames used in processing were extracted from audio files using variable
window length and overlap, thus boosting the number of samples to several thousand for
every model training process. In Figure 11, some selected samples of raw audio signals are
shown. They are taken from the recordings of all-healthy flight (a) and the scenario with a
single damaged propeller present in the system (b,c). Sample (b) was recorded with the
microphone located opposite to the fault location, while frame (c) was acquired with the
sensor located in the closest vicinity of the faulty rotor. Next to the raw signals, a power
spectral density estimate is plotted to show differences in the frequency content of the
recorded sounds.

In further analysis, the dataset was split into training, validation and testing sets.
Signals from different flights were used in each of the three subsets to avoid overfitting
the models. It is worth mentioning that to reduce data bias, the whole dataset was not
always used for training and validation. However, since we aim to share the data publicly,
all of the recordings are included, since some approaches may utilize different parts of the
dataset. Refer to the Data Availability section at the end of the article for more details on
access to the dataset.

Figure 11. Cont.
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Figure 11. Samples of recorded audio signals along with their PSD estimates: (a) all rotors healthy,
(b) single damaged rotor, opposite microphone, (c) single damaged rotor, closest microphone.

4.2. Classification Results

The developed fault classifiers were put through the evaluation process to determine
the impact of certain parameters of the signal processing and classification pipeline on the
final efficiency. A set of conventional performance metrics was used to compare different
models with accuracy, precision, recall and F-score among them. The two best classifiers
mentioned in the previous section were considered as a reference point and several of their
parameters were evaluated to show the capabilities of the proposed FDI scheme.

4.2.1. LSTM-Based Fault Classifier

At first, the lightweight LSTM model was evaluated with regard to the impact of layer
sizes. The smallest ANN considered used 64 LSTM cells and 32 neurons in a linear layer.
From this point on, the size of the network doubled at every step, to the point where no
substantial improvement in performance metrics was observed. Table 3 summarizes the
change in classifier efficiency due to the increase in the size of the layers.

The fourth model was selected for further analysis since no further performance
improvement was observed. It is noticeable that even the smallest network provided
satisfactory results. However, a low precision score meant that a higher proportion of false
positives was reported. Therefore, models based on smaller ANNs provided a higher rate
of false alarms. The hyperparameters of the selected classifier are summarized in Table 4.
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Table 3. Evaluation of the LSTM-based fault classifier.

Id LSTM Layer Size Linear Layer Size F-Score Precision Recall Accuracy

1 64 32 0.910 0.858 0.969 0.967
2 128 64 0.936 0.900 0.975 0.977
3 256 128 0.982 0.987 0.978 0.994
4 512 256 0.985 0.989 0.980 0.995

Table 4. Parameters of the selected LSTM-based fault classifier.

Parameter Value

Number of input layer neurons 512
Number of hidden layer neurons 256
Number of output layer neurons 9
Batch size 640
Loss function CrossEntropyLoss
Output layer activation function Sigmoid
Optimizer Adam
Compiler metric accuracy
Checkpoint monitor validation loss
Number of epochs 866
Training loss 2.19
Training accuracy 1
Validation loss 2.36
Validation accuracy 0.998
Test accuracy 0.994

For the selected model, a final classification test was performed with a 7900-element
subset of data derived from separate sound recordings. The confusion matrices for every
fault class considered are shown in Table 5.

Table 5. Confusion matrices for the LSTM-based fault classifier.

AF Prediction AE Prediction BF Prediction

True Label 0 1 True Label 0 1 True Label 0 1

0 6727 0 0 6270 66 0 6335 1

1 39 1134 1 52 1512 1 10 1554

BE Prediction CF Prediction CE Prediction

True Label 0 1 True Label 0 1 True Label 0 1

0 6317 19 0 6321 15 0 6726 1

1 29 1535 1 95 1469 1 2 1171

DF Prediction DE Prediction H Prediction

True Label 0 1 True Label 0 1 True Label 0 1

0 6336 0 0 6331 5 0 7404 25

1 0 1564 1 11 1553 1 1 470

The results of the classification test show that although some fault classes are predicted
with more false negatives and positives, the differences are relatively small in comparison
with the correct predictions. Both types of faults are clearly distinguishable from each other.
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4.2.2. CNN-Based Model

The second fault classifier was evaluated first on the basis of the internal parameters
of the network. Different counts of convolutional layers, two kernel sizes and a variable
number of filters were considered. The results are summarized in Table 6.

Table 6. Evaluation of CNN-based fault classifier.

Kernel Size No. Kernels No. Filters F-Score Precision Recall Accuracy

2 0.789 0.707 0.893 0.918

4 0.876 0.839 0.918 0.956

8 0.889 0.850 0.932 0.960

16 0.884 0.817 0.962 0.957

32 0.963 0.968 0.957 0.987

4

64 0.964 0.973 0.956 0.988

2 0.804 0.736 0.885 0.926

4 0.910 0.881 0.940 0.968

8 0.939 0.930 0.948 0.979

16 0.963 0.971 0.955 0.987

32 0.965 0.972 0.958 0.988

5

64 0.969 0.978 0.961 0.990

2 0.811 0.748 0.886 0.929

4 0.910 0.907 0.912 0.969

8 0.957 0.973 0.942 0.986

16 0.967 0.977 0.957 0.989

32 0.963 0.976 0.949 0.987

3

6

64 0.980 0.986 0.975 0.993

2 0.844 0.789 0.908 0.942

4 0.896 0.862 0.934 0.963

8 0.949 0.943 0.956 0.983

16 0.957 0.960 0.954 0.985

32 0.971 0.978 0.964 0.990

4

64 0.973 0.983 0.964 0.991

2 0.862 0.801 0.933 0.949

4 0.937 0.926 0.947 0.978

8 0.948 0.941 0.955 0.982

16 0.966 0.974 0.959 0.989

32 0.965 0.975 0.956 0.988

5

64 0.970 0.978 0.961 0.990

2 0.909 0.898 0.921 0.969

4 0.931 0.938 0.924 0.976

8 0.940 0.958 0.924 0.980

16 0.965 0.974 0.956 0.988

32 0.964 0.974 0.954 0.988

5

6

64 0.971 0.975 0.967 0.990
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Performance metrics increase along with the number of convolutional layers and
filters. Enlarging the kernel size increases accuracy with a small number of filters. However,
it is the latter parameter that affects the memory footprint of the model most significantly.
The best results were obtained with the highlighted model and therefore it was the subject
of final testing. The global parameters of the selected classifier are summarized in Table 7.

Table 7. Parameters of the best developed CNN-based fault classifier.

Parameter Value

Batch size 640
Loss function CrossEntropyLoss
Output layer activation function Sigmoid
Between layer activation function ReLU
Optimizer Adam
Compiler metric accuracy
Checkpoint monitor validation loss
Number of epochs 38
Training loss 2.27
Training accuracy 1
Validation loss 2.38
Validation accuracy 0.997
Test accuracy 0.993

Detailed confusion matrices of the best CNN model are presented in Table 8.

Table 8. Confusion matrices for CNN-based fault classifier.

AF Prediction AE Prediction BF Prediction

True Label 0 1 True Label 0 1 True Label 0 1

0 6725 2 0 6269 67 0 6334 2

1 34 1139 1 43 1521 1 19 1545

BE Prediction CF Prediction CE Prediction

True Label 0 1 True Label 0 1 True Label 0 1

0 6310 26 0 6318 18 0 6725 2

1 63 1501 1 106 1458 1 23 1150

DF Prediction DE Prediction H Prediction

True Label 0 1 True Label 0 1 True Label 0 1

0 6330 6 0 6326 10 0 7394 35

1 0 1564 1 6 1558 1 21 450

Both fault detectors yield satisfactory results, with the main performance metrics
scoring more than 97%. In either case, accuracy was the highest value, since it was a main
metric used in the training process. Slightly better results were achieved with the LSTM-
based model with regard to precision and recall. However, the differences are small enough
to consider both approaches equally successful. On the other hand, the convolutional
network is much more complicated with a larger number of layers and individual neurons.
Therefore, some additional validation steps were performed.

4.2.3. Computation Time

Both models were tested for computational demands. The code was run using a PC
workstation equipped with AMD Ryzen 9 3950X CPU, 128 GB DDR3 RAM and supported
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with an Nvidia RTX 2070 graphics card. Execution time of the signal processing stage,
model training and single sample classification were gathered. The results are summarized
in Table 9.

Table 9. Execution time for feature extraction, training and classification steps.

LSTM CNN

Avg. per frame [ms] 2.860
MFCC extraction

Std dev. [ms] 0.032
Model training Total [min] 24 7

Avg. per frame [ms] 0.037 0.630
Fault classification

Std dev. [ms] 0.003 0.011

As suspected, the time of fault signature classification for a single signal frame with
four channels and 204 cepstral coefficients each is significantly higher in the case of a more
sophisticated CNN-based model. Training of the latter classifier has a shorter duration.
However, it is not a problematic issue since our plans for further development assume
deploying an already pretrained classifier to an onboard embedded system. Another
noteworthy fact is the relation of processing time in consecutive steps of the processing
pipeline. The classification stage that consumes a fraction of a millisecond contributes
to a small extent to the time elapsed from a fault’s occurrence to detection, since MFCC
extraction consumes around 3 ms and the time of signal acquisition for considered models
equals half of a second. However, we expect that the target implementation of signal
processing on a low-power SBC will result in considerably longer computation. Therefore,
substantial effort was put into optimizing the fault classifier.

4.2.4. Signal Frame Length

Since signal acquisition time contributes to the highest degree to a full FDI process,
additional validation of the LSTM model was performed with shorter bursts of audio data.
The main aim was to investigate how far the signal frame can be reduced with satisfactory
performance metrics maintained. The results of the analysis are summarized in Table 10.

Table 10. Effects of the length of the signal frame on the performance of the LSTM-based fault classifier.

Frame Length [ms] F-Score Precision Recall Accuracy

600 0.980 0.986 0.975 0.993
500 0.985 0.989 0.980 0.995
400 0.975 0.980 0.969 0.991
300 0.964 0.972 0.955 0.988
200 0.947 0.956 0.938 0.982
100 0.907 0.896 0.919 0.968
75 0.868 0.842 0.896 0.953

It is clearly seen that buffer lengths below 200 ms result in a significant drop in
performance, with precision and recall falling rapidly in the first place. Acquisition time is
directly related to the spectral resolution of FFT as a part of the MFCC extraction process.
With a constant sampling frequency, frame length becomes the only factor that affects the
process. Therefore, with longer data frames, it is possible to observe and extract more
detailed patterns. The results are consistent with our previous works [9,10], where similar
lengths of vibration signals proved to be sufficient.

4.2.5. Number of Cepstral Coefficients

The last step of validation was to analyze the performance of the selected LSTM-based
fault classifier due to the size of an input vector. Several quantities of MFCCs extracted
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for every channel were selected and performance metrics were computed. Table 11 shows
the results with a similar outcome to the frame length validation. Since the number of mel
filters controls how many frequencies are clustered into one cepstrum, a smaller number of
MFCCs results in less detailed signal features. Some key fault frequencies might contribute
to a smaller number of more generalized values and, as a result, be ignored by the model.
However, the performance of fault classification decreases with the number of coefficients
doubled in relation to the reference model. We suspect that such a phenomenon occurs due
to the size of the ANN layers being insufficient for the 4 × 208 input vector.

Table 11. Performance of the LSTM fault classifier with different numbers of cepstral coefficients
extracted for every audio channel.

No. MFCC F-Score Precision Recall Accuracy

208 0.971 0.980 0.962 0.990
104 0.985 0.989 0.980 0.995
52 0.960 0.959 0.962 0.986
26 0.915 0.891 0.940 0.970
13 0.885 0.836 0.939 0.958

5. Conclusions

In the article, the development of a comprehensive, data-driven FDI method for
multirotor UAV rotor faults is presented. An algorithm is aimed towards early detection
of damaged rotor faults, which lead to degraded flight stabilization, decrease safety of
the UAV operation and increase power consumption of the power train. An intelligent
fault classification algorithm is based on the MFCC-based features extracted from the
four-channel audio signal. The data were recorded in real-life flight experiments using a
custom-built onboard microphone array subsystem. Various rotor impairments and their
locations were considered with flights that included single- and double-damaged rotors
in different combinations. The dataset was split into individual audio frames and MFCCs
were extracted as input for the ANN-based fault classifiers. Two main approaches were
tested, with convolutional and LSTM-based neural networks validated. Both variants
provided satisfactory results, with the prediction accuracy and the F1 metric exceeding
98%. However, the LSTM-based model is more lightweight and consumes less computing
time. Therefore, it was selected for further evaluation with the goal of decreasing fault
detection and isolation time. The final analysis has shown that the longest step of the
process, signal acquisition, can be further shortened with a slight drop in performance.
As a result, the presented FDI algorithm based on 200 ms long signal samples achieved
an accuracy exceeding 98%. The proposed method is able to accurately detect broken
rotor blade faults with an additional ability to precisely predict which propulsion unit
is damaged. Furthermore, both evaluated classification methods correctly distinguished
between two types of impairment—fractured tip and damaged edge of the blade.

Our further development plans include real-time implementation of the fault clas-
sification algorithm on the low-power onboard SBC. Therefore, the method was tested
with a decreased number of cepstral coefficients since the MFCC extraction step introduces
the largest amount of computational load. Furthermore, many possible improvements
to the FDI system are considered, such as training the classifier to recognize different
actuator-related faults. Some initial analysis of the audio data suggests that the statisti-
cal and spectral features of the signals may allow the proposed FDI system to recognize
motor-related bearing faults. Other possible improvements include extending the dataset
with experiments carried out using different UAVs and combining features of vibration
and acoustic signals to boost the FDI capabilities.
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Abbreviations

The following abbreviations are used in this manuscript:

ADC Analog-to-Digital Converter
ANN Artificial Neural Network
AOP Acoustic Overload Point
BLDC Brushless Direct Current
CNN Convolutional Neural Network
ESC Electronic Speed Controller
FDI Fault Detection and Isolation
FFT Fast Fourier Transform
FTC Fault-Tolerant Control
I2S Inter-IC Sound
IMU Inertial Measurement Unit
LoE Loss of Effectiveness
LSTM Long Short-Term Memory
MEMS Micro-electro-mechanical Systems
MFCC Mel Frequency Cepstral Coefficients
RNN Recurrent Neural Network
SBC Single-Board Computer
SNR Signal-to-Noise Ratio
SSH Secure Shell
THD Total Harmonic Distortion
UAV Unmanned Aerial Vehicle
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Abstract: A novel cooperative strategy for distributed unmanned aerial vehicle (UAV) swarms with
different functions, namely the mission chain-driven unmanned aerial vehicle swarms cooperation
method, is proposed to allow the fast search and timely rescue of injured human targets in a wide-
area outdoor environment. First, a UAV-camera unit is exploited to detect the suspected human
target combined with improved deep learning technology. Then, the target location information is
transferred to a self-organizing network. Then, the special bio-radar-UAV unit was released to recheck
the survivals through a respiratory characteristic detection algorithm. Finally, driven by the location
and vital sign status of the injured, a nearby emergency-UAV unit will perform corresponding medical
emergency missions, such as dropping emergency supplies. Experimental results show that this
strategy can identify the human targets autonomously from the outdoor environment effectively, and
the target detection, target sensing, and medical emergency mission chain is completed successfully
relying on the cooperative working mode, which is meaningful for the future search-rescue mission
of outdoor injured human targets.

Keywords: cooperative strategy; UAV swarms; deep learning; self-organizing network; bio-radar

1. Introduction

After natural disasters, wars, and other public safety events, complex environments
put forward severe tests for the search for the wounded. A wide range of areas in distress
makes the search for the wounded inefficient, thus missing the best rescue time for the
wounded. In addition, if rescuers can obtain the location information and life status of
the injured in a timely manner, it is crucial to improve the rescue effect. At this stage, the
wounded search equipment includes mainly individual search equipment and wounded
search unmanned aerial vehicles. Common single-soldier search equipment includes chest
bands, wristbands, and handheld search devices, and the main vital signs monitored
include breathing, heart rate, and blood oxygen [1]. This kind of equipment has the
following deficiencies: first, the equipment needs to be distributed in advance, and it
is easy to cause inconvenience in the movement of the user personnel; second, when
this equipment is damaged by impact, fire, etc., the accuracy of the collection of life
information of the injured will be reduced. To solve the limitations of wearable technology,
researchers can effectively improve the search efficiency of outdoor injured people by using
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an unmanned aerial vehicle (UAV) equipped with a variety of sensors to detect injured
people in large areas of distress [2].

Multirotor UAVs have strong manoeuvrability, hovering stability, and flexibility and
are not affected by terrain and landforms. Multirotor UAVs with sensors are widely used
in power line inspection, remote sensing, and disaster rescue. The image obtained by the
visible light camera of the UAV is processed by methods such as semantic segmentation
to extract the power lines in the image. Compared with traditional human power line
inspection, it is more efficient [3]. Through the UAV-based multispectral camera system, all
the ground targets would be screened, and specific features of the spectral image would be
extracted for target recognition [4]. Therefore, the UAV-based searching system is adopted
in various search-rescue environments, such as maritime distress and post-earthquakes,
effectively reducing task risk and improving rescue efficiency [5–7].

However, a single UAV is limited by its endurance and communication distance, and
it is difficult to complete some large-scale tasks. The technology of UAV swarms will make
the working mode of the above scenes better expanded and deepened [8,9]. Affected by
the limited power of the UAV and irregular distribution of the wounded, the search and
rescue capability of a single UAV is very weak in a rescue mission. If an information-
sharing network is established among multiple UAVs to coordinate the work of UAVs
with different functions, rescue efficiency will be improved. Therefore, it is necessary to
establish a sharing network in advance to realize the combination of searching and sensing
the wounded by UAV swarms [10].

In the existing UAV networking solutions, centralized and distributed approaches
occupy the mainstream [11–13]. The centralized networking solution adopts a one-to-many
communication module that will return the status of the UAVs to the ground workstation
processing and then the ground workstation coordination. The distributed network solution
mainly adopts each UAV carrying onboard edge device real-time processing of UAV images
or external sensor data, directly controlling the status of the UAV to realize the coordination
of the cluster. Both have their own advantages and disadvantages in different application
scenarios. The former does not require an additional load, but the higher bandwidth of
transferring the data to the ground station causes a delay in the system response. The latter
improves the response speed, but the computing power is lower than the computing power
of the ground station equipment.

The construction of shared networks makes collaboration between different functional
UAVs possible. Besides, the real-time search for injured outdoor human targets in the jungle
requires a high-performance object-detection algorithm. A large number of object-detection
algorithms have been proposed based on deep convolutional neural networks (CNNs) to
extract target features and improve detection accuracy. Such algorithms mainly include two
categories, and one is the regression-based single-stage, which directly uses CNN to extract
features to predict object classification and location. The other is the two-stage algorithm,
which generates preselected boxes (region proposals) that may contain the objects to be
inspected in advance and then uses the CNN to classify each box. The two-stage includes R-
CNN and Faster R-CNN [14]. Typical single-stage detection algorithms include single-shot
detection (SSD) [15] and You Only Look Once (YOLO) [16]. Although single-stage networks
expose a deficiency of lower accuracy than two-stage networks, it outperforms two-stage
networks in terms of processing speed. Thanks to this, single-stage networks deployed
on Nvidia edge devices are optimized through TensorRT to meet real-time and accuracy
requirements [17], which greatly improves the inference speed for vehicle recognition.
For this reason, the TensorRT-based optimized YOLO is suitable and thus adopted in our
searching task for outdoor injured human targets.

Subsequently, after the UAV cluster obtains the target detection results of the injured
outdoor personnel, it is necessary to judge the survival status of the target in time to provide
detailed data support for the rescue plan. To realize this, acquiring vital signs of the target
is a convincing and direct way and serves as a trigger for the emergency UAV to throw
corresponding medical emergency supplies.
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In this paper, a novel mission chain-driven unmanned aerial vehicle swarms co-
operation method is proposed to improve the performance of UAV swarms during the
search-rescue task for injured outdoor human targets and solve the problems of low en-
durance and low efficiency of individual UAVs. It combines long-range radio (LoRa)
self-organizing network, machine vision, bio-radar, and medical emergency together. Thus,
the human targets would be screened twice via different modal sensors, providing effective
rescue guidance for ground search and rescue personnel.

2. System Design

The UAV swarm collaboration system, shown in Figure 1, consists of the LoRa self-
organizing network, human target detection, and remote sensing of breath signals. In one
mission execution, the system will first use the LoRa self-organizing network to establish
information sharing between UAVs. Secondly, the onboard edge device (Nvidia jetson
Nano) will use an object-detection algorithm to process the images captured by the camera
in real-time. Finally, the UAV equipped with a bio-radar will further perceive the breath
signals of the remote sense target. UAVs carrying emergency relief supplies will deliver
medical supplies to the targets. A schematic diagram of the collaboration between UAVs
with different functions is shown in Figure 2.

UAV
formation

Lora self organizing
network

Ground station

Remote sense

Emergency
supplies

.

Suspected
targets

Human
target

Camouflage
clothesAnimals
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UAV
swarms state
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Figure 1. UAV swarm’s collaboration system.
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Figure 2. Collaboration between UAVs with different functions.

2.1. Main Hardware of the System
2.1.1. UAV Swarms

For UAV swarms that collaborate on missions outdoors, excellent manoeuvrability,
flexibility, and hover stability are essential. To adapt to better communication and control,
we chose a quadcopter UAV as a delivery platform, which can cooperate with Jetson Nano
to fly autonomously and combine external modules such as communication modules and
cameras to form a multifunctional intelligent unmanned aerial vehicle system. The camera
has 12.4 million pixels and can provide an effective target detection image at a height of
70 metres. This program-based development control design greatly improves the intelligent
control performance of the UAV cluster and reduces manpower expenditure in the search
and rescue mission. Figure 3 shows the appearance of these UAV swarms.

Figure 3. UAV swarms for carrying real-time target detection and sensing systems.

2.1.2. Bio-Radar Module and First Aid Kit

The bio-radar sensor (model: JC122-3.3UA6) was custom-developed. When a nor-
mal person breathes with minute displacement, the thoracic cavity will reflect the mi-
crowave emitted by the radar sensor to generate an echo signal. According to the Doppler
effect [18,19], there will be a phase difference between the original radar beams and the
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echo beams. The relationship between the phase variation and the chest displacement can
be expressed as below:

Δθ(t) =
4π

λ
Δx(t) (1)

where Δx(t) is the chest displacement, λ is the wavelength of the bioradar, and Δθ(t) is the
phase change introduced by the breathing activity of the human subject.

After analogue amplification and filtering, the respirational waveform can be obtained.
Observing this waveform can be used to judge the physiological condition of a person. The
bioradar operated with a wavelength of 1.25 cm and provided continuous linear waves
with a maximum transmission power of 1 mW. Taking advantage of the wide sensing range
of the bio-radar (horizontal angle: ±60◦, vertical angle: ±16◦), the respiration signal of the
tested target is detected by throwing multiple bio-radars at different angles and distances.

The appearance of the outdoor first aid kit is shown in Figure 4. The first aid kit is
equipped with commonly used medicines and equipment, including scissors, fixing belts,
tourniquets, cotton wool, various dressings, haemostatic drugs (powder), quick-acting
rescue pills, hypertension drugs, nitroglycerine, Star intestine medicine, malaria medicine,
cold medicine, cough medicine, etc.

Figure 4. Main configuration of the outdoor first-aid kit.

2.1.3. Control and Information Processing Center

Jetson Nano is a powerful embedded device produced by Nvidia. The device contains
a 128-core Maxwell architecture graphics processing unit (GPU), which achieves balanced
processing in terms of power consumption, volume, and price. The official test frame rate
of Tiny YOLO running on Jetson Nano after TensorRT acceleration is FPS = 38. Combining
the advantages of small size and excellent computing power, Jetson Nano can meet the
needs of onboard suspected target detection.

The model of the LoRa chip we used for networking is ATK-LoRa-SX1278. Based
on spread spectrum technology, the LoRa chip can perform ultralong-distance wireless
transmission and has the characteristics of low power consumption and many networking
nodes. Jetson Nano will configure the LoRa channel, baud rate, and other parameters to
build a communication network between UAVs.

This shared network could further achieve the function of the secondary screening of
suspected targets through UAV-based radar. Based on the open-source Python-dronekit
control library, we have developed programs for autonomous flight of UAVs based on
shared point locations. The UAV that performs the detection of life forms will throw
the perception module equipped with bio-radar near the target to obtain the target’s
respiration signal.

2.2. Mission Chain Driven UAV Swarms Cooperation Algorithm

Based on the above platform, for the real-time search and rescue of injured human tar-
gets in a wide-area environment, we propose a cooperative process based on the functional
differences driven by the mission chain. The collaboration process of the UAV swarm refers
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to the three function types of UAVs: detect, sense, and supply. The schematic diagrams of
the three are shown in Figure 5.

(1) UAV-camera-based suspected human target detection. After the UAVs receive the
Take-off command, they will automatically form a formation to go to the mission
point and automatically perform the search task according to the “zigzag” pattern.

(2) UAV-radar-based human target reconfirmation. We wrote a Python script to obtain the
location of the UAV when the target was detected and share the location information
of the injured to the sensing UAV through the self-organizing network. The sensing
UAV will autonomously fly near the injured person and throw a sensing module to
further obtain the breath signal of the target.

(3) Medical emergencies through the emergency UAV. Finally, after the target survival
is determined, the UAVs that deliver emergency rescue will provide the necessary
support to keep the wounded alive.
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Figure 5. Schematic diagram of UAV Swarms.
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2.2.1. UAV-Camera-Based Suspected Human Target Detection

(1) Tiny Yolov4

To meet the real-time and accuracy requirements of target recognition detection al-
gorithms on airborne edge devices, we tried the recognition and detection effects of the
YOLO series of algorithms on low-contrast targets in the grass, including yolov3, yolov4,
and yolov4-tiny. The Yolov4-tiny structure is a simplified version of Yolov4, a lightweight
model. The overall network structure has a total of 38 layers. Using three residual units,
the activation function uses LeakyReLU, the classification and regression of the target are
changed to use two feature layers, and the feature pyramid network (FPN) is used when
merging the effective feature layers.The feature structure of Yolov4 tiny is shown in Figure 6.

CSPDarknet53 Tiny

Inputs(416,416,3)

DarknetConv2D_BN_Leaky(208,208,3)

DarknetConv2D_BN_Leaky(104,104,3)

Resblock_body(13,13,512)

Resblock_body(52,52,128)

Resblock_body(26,26,256)

DarknetConv2D_BN_Leaky(13,13,512)

FPN

Concat

Conv

Conv+UpSampling

Yolo Head

Yolo Head

Figure 6. Yolov4-tiny feature structure diagram.

(2) K-means clustering methods

In object recognition detection, the network model learns the target category based
on multiple features and needs to learn the position and size of the target in the graph.
Therefore, algorithms such as Faster regional-based convolutional neural network (RCNN),
SSD, and YOLO preset a set of reference boxes of different sizes and aspect ratios on the
image in advance before recognition and detection. These cover almost all positions of the
picture to match the width and height of the target in the datasets to calculate the target
box faster and better. It is called the anchor point in the Faster RCNN, and the SSD is called
the previous bounding box. Starting with YOLOv2, the detection mechanism of the YOLO
series uses an anthropology mechanism. The difference is that in Faster-RCNN, anchor
points are set manually; however, for different datasets, one needs to preset the appropriate
anchors based on the target size. In YOLO, the k-means clustering algorithm is used to
cluster the bounding boxes in the training set. Finding the appropriate size of the anchor
solves this problem very well.

(3) TensorRT Acceleration

In the actual deep learning model deployment link, the efficiency of using the original
network framework is relatively inefficient, so Nvidia has developed a TensorRT infer-
ence library for its own GPU. TensorRT is a C++ inference framework that can run on
Nvidia’s various GPU hardware platforms. We use PyTorch, TF, or other frameworks to
train the model, which can be converted to TensorRT format, and then use the TensorRT
inference engine to run our model, thereby improving the speed of this model running on
Nvidia GPUs.
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2.2.2. UAV-Radar-Based Human Target Reconfirmation

After receiving the location information of the suspected target, the UAV equipped
with bio-radar will fly near the target, collect the breath signal of the suspected target by
throwing the sense device, determine whether the target is still alive, and transmit this
information to the lower layer. There are two important problems to be solved in the
process of life information perception of the wounded: the acquisition of the wounded
information and the long-distance transmission of the information. Therefore, the design
of the system adopts modularization, which is composed of three modules: a life sensing
device, an air communication device, and a ground station processing terminal, as shown
in Figure 7.

Sense life device Air communication device Ground station

Throw near
target

Breathing
signals Location Radio

forward
LoRa
receive

Respiratory
waveform

Location
distribution

LoRa Radio

Figure 7. Schematic diagram of sensing life.

The life-sensing device uses bio-radar to collect the respiration signal of the casualty
noncontact. It throws multiple life-sensing devices integrating the positioning module,
bio-radar, and communication modules at the target point (Figure 8) to collect the position
and respiration signal of the casualty. The information is processed by the Stm32 controller
and sent to the air communication device in the form of data packets through LoRa. The
ground network and air communication transfer are used to expand the perception range
of the wounded. The ground station processing terminal is responsible for the visualization
of the life information and location information of the wounded, big data analysis, injury
level assessment, and other operations, providing effective information for searchers.

Figure 8. Design of the life sensing device; (a) Stm32F103; (b) Positioning module; (c) LoRa;
(d) Bio-radar; (e) System power switch.

The air communication device is carried on the UAV. It is responsible for connecting
the life sense device and the ground station processing terminal up and down, using
LoRa and radio to transmit data. First, the life sensing device autonomously alarms after
detecting a life signal. It simultaneously transmits the life information of the wounded to
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the unmanned air communication terminal, and then the wireless transmitter transmits the
information to the ground workstation processing terminal. A physical diagram of the air
communication device is shown in Figure 9.

Figure 9. Design of the air communication device on the UAV; (a) Nvidia Jetson Nano; (b) Usb-ttl;
(c) Usb-ttl; (d) Radio module; (e) LoRa; (f) Stm32F103; (g) Battery.

3. Experiments and Discussion

To verify the actual performance of the UAV swarm, the experiment was divided into
three parts for testing:

(1) Multi-UAV cooperation: The communication distance of the ad hoc network and the
task coordination based on functional differences are mainly tested.

(2) Human target detection: The YOLOv4-Tiny algorithm was tested to match the accu-
racy and speed of object recognition detection.

(3) Human Target reconfirmation: The accuracy of the sensing device on the respiration
signal acquisition of human targets was tested and analysed.

(4) Medical emergencies through the emergency UAV

3.1. Multi-UAV Cooperation

First, we tested the communication distance of the LoRa ad hoc network: the maximum
communication distance of a single node was tested in a relatively open offsite environment.
Change the distance between the LoRa acquisition and receiver ends. Test signal strength
and packet loss were tested at 1000 m, 1500 m, and 1600 m, and the communication was
stable at 1500 m without data loss. The packet loss rate was 5% at 1500 m and more than
50% at 1600 m.

Second, the communication distance between the air communication device and the
ground station was tested in the same way, and the communication quality between them
was stable at 1500 m. By combining two communication modules, the communication
range is effectively expanded, and the communication quality is stable. In the subsequent
testing process, the communication protocol will be improved to enhance the anti-jamming
performance of the system wireless communication in different environments.

Multi-UAV cooperation includes two parts: four-UAV formations and three-UAV
cooperation. We conducted a formation test of four UAVs outdoors to verify whether
multiple UAVs could respond to ground workstation commands in real-time. As shown in
Figure 10a, after receiving the take-off command from the ground workstation, the four

264



Drones 2022, 6, 138

UAVs fly to the vicinity of the target area according to the “one-line” formation and the
search mission. The test results show that the formation effect is ideal, the action feedback
is accurate and timely, and the planned mission area can be covered.

(a) (b)

Figure 10. (a) Real-time formation test of four UAVs, (b) Target detection experiment based on UAV
swarms with different functions.

Then, we carried out a simulated searching experiment of outdoor injured people in
the playground and designed a working group of two search UAVs and a sensing UAV.
The two UAVs responsible for the search sent the simulated position of the wounded to the
perception UAV in the coverage search mission. After receiving the position, the perception
UAV quickly went to the point to throw the respiration signal perception module. As shown
in Figure 10b, the cooperation of three UAVs can be initially realized, and the information
transmission and receiving in communication (like the target’s position information) among
them could reach 65%. To solve this problem, we analysed the reason for the external
interference to affect the stability of the communication. In the future, we will propose
a method to improve the stability of communication protocol, and we will continue to
improve the accuracy.

3.2. Human Target Detection
3.2.1. Experimental Design and Configuration

This experiment mainly simulates the identification and detection of wounds in an
outdoor low-contrast environment. It builds a training platform for an in-depth learning
model and a platform for UAV target identification and detection. Among these operating
modes, the former trains the data with better computing power, thus providing good
training and testing standards for the airborne system of the latter.

The main experiment process includes making datasets, model training, and algorithm
deployment. First, 2130 images of targets at different heights and positions were collected,
and the wounded targets in these images were labelled. The data were divided into a
training set and a test set at a ratio of 7:3. The algorithm is trained by a neural network,
and the precision and recall rate of the test set are calculated. The parameters of the deep
learning platform we use for training data are mainly shown in Table 1.

Table 1. Key Parameters of the System Setup.

Parameter Configuration

CPU Inter i7-1180H
GPU Nvidia RTX 3050

System Windows10/Ubuntu20.04
Accelerate environment CUDA11.4 cuDNN8.2

Training framework Darknet
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3.2.2. Results and Analysis

Based on the above dataset and experimental configuration, the dataset was prepro-
cessed by operations such as labeling and normalization. The initial learning rate (0.001)
and decay parameter (0.0005) have the best training effect. Using mean average precision
(mAP50) (IOU = 50) and frames per second (FPS) detection speed as evaluation indica-
tors, we compared the detection effects of the original Yolov4-tiny, clustered yolov4-tiny,
Yolov4-tiny after clustering, and TensorRT acceleration.

As shown in Table 2, compared to the original Yolov4-tiny, the detection accuracy of
Yolov4-tiny after clustering the anchor box by the K-means clustering algorithm increased
by 23.69%. The detection speed remained unchanged. The clustered Yolov4-tiny refers to
the size of the anchor box clustered in advance when predicting the target, which improves
the detection effect. The detection accuracy of the TensorRT acceleration of the clustered
Yolov4-tiny decreased by 3.86% and the detection speed increased by 171% compared to
the clustered Yolov4-tiny. Compared with the original Yolov4-tiny, the detection speed was
improved on the premise of ensuring a higher detection accuracy. The results show that
the algorithm has a good detection effect on low-contrast targets with a height of less than
70 m. As shown in Figure 11, it can accurately detect the wounded in trenches and weed
coverage, and can meet the needs of UAV target detection.

Table 2. Comparison of experimental results.

Model mAP50 FPS

Yolov4-tiny 67.38% 14
clustered yolov4-tiny 91.07% 14

Yolov4-tiny after clustering
and TensorRT acceleration 87.21% 38

(a) (b)

Figure 11. Human target detection. (a) Human target in the weed cover. (b) Human target in
the gully.

3.3. Human Target Reconfirmation

After a suspected human target has been detected based on a UAV camera, the
following necessary mission is to confirm further whether it is a surviving human body
and to sense the corresponding physiological state.

Therefore, once the video detects a suspected target, the drone will be triggered,
and the bio-radar module will be precisely dropped around the human target. Since the
electromagnetic waves emitted by bio-radar can detect regular chest wall movement caused
by human respiratory movement, the respiratory characteristic analysis of radar echoes can
determine whether the suspected target is a human body. In addition, a previous research
group showed that after human injury (blood loss, temperature loss), human respiratory
radar echoes would have morphologically specific characteristics, which can be used to
assess the physiological state of survivors. The physical state of the survivor is good or bad,
or even terrible (being dying), which could directly represent the urgency of the need of
the survivor to be treated in time.
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To test the effectiveness of detecting human respiration signals by throwing bio-radar,
we tested the detection distance and angle of the bio-radar separately. Ideally, it is assumed
that the radar can be accurately thrown to the position of 0.5 m in front of the human chest.
The experiment of the effective detection distance of the respiration signal was carried out
by increasing the distance by 0.5 m successively. Then, with the human body target as
the centre, the detection effect of different angles (the view angle to the human chest wall)
(0 degrees, 45 degrees, 90 degrees, 135 degrees, 180 degrees) at 0.5 m were tested with 0
degrees in the direction of the chest cavity. Finally, the detection effect of different angles
corresponding to different distances was tested.

Like the respiratory detection results of a typical example (0 degrees, 2 m) shown in
Figure 12, a strong and regular respiratory signal was clearly acquired. There was only
weak and chaotic noise when the human target left, demonstrating that the respiration
feature acquired by bio-radar could convincingly confirm the human attribution. Moreover,
the statistical results of different detection positions (angle and position) show that almost
all human respiration can be detected from most view angles within a distance. Even the
detection failure at 90 degrees can be solved by throwing over two radar modules or using
our proposed omnidirectional bio-radar integrated module [20].

0°
1m 3m0.5m 1.5m 2m 2.5m

45°

90°

135°

180°

60° 120°

(a) (b)

Figure 12. Respiration signal detection. (a) Different distances and angles. (b) Respiration signal waveform.

However, our previous studies have effectively verified that the injured human body
will go through four typical physiological stages, including normal, transitioning, and
agonal stages. Fortunately, the bio-radar could effectively detect and judge these stages
based on some signal features combined with machine learning methods [21]. Consequently,
it could help determine the most appropriate rescue strategy of emergency UAV swarms
for rescuers and finally help save more lives.

3.4. Medical Emergencies through the Emergency UAV

The degree of urgency and priority of medical treatment depends mainly on the degree
of injury and physiological state. Therefore, these medical emergency UAVs will perform
reasonable treatment missions according to the physiological state evaluation based on the
detected respiratory radar signal. As shown in Figure 13, this type of UAV is equipped with
a throwing switch and an outdoor first-aid kit for autonomously throwing medical supplies.
Bandages and haemostatic drugs can provide the injured person with timely treatment for
trauma. In addition, quick-acting rescue pills, cold medicine, and nitroglycerin can relieve
some sudden acute symptoms and effectively obtain more rescue time for those in distress.
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UAV Throwing
Switch

Figure 13. Emergency UAV for emergency supply.

4. Conclusions

Targeting the challenging mission chain, including searching, sensing, and emergency
treatment of injured human targets under a wide-area outdoor jungle environment, a novel
cooperative strategy for distributed UAV swarms is proposed. In this way, the multi-
UAV network will work collaboratively to perform a quick search, accurate sensing, and
timely medical treatment. This provides a strong basis for the planning of rescue programs,
reducing the difficulty of searching for the wounded and effectively improving the efficiency
of searching for and rescuing the wounded. The combination of casualty search and
technology such as drones, machine vision, and bio-radar will subvert traditional search
and rescue methods. Generally, however, the collaborative search and rescue of the outdoor
injured based on the distributed drone swarms could also be continuously improved,
such as the accuracy of physiological state evaluation. However, it is promising to lay a
foundation for the intelligent search and rescue of the injured in the new era.
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Unmanned Aerial Vehicle UAV
Deep Learning DL
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Leaky Rectified Linear Unit LeakyReLU
Feature Pyramid Network FPN
Single Shot MultiBox Detector SSD
Mean average precision mAP
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Abstract: One common issue of object detection in aerial imagery is the small size of objects in pro-
portion to the overall image size. This is mainly caused by high camera altitude and wide-angle
lenses that are commonly used in drones aimed to maximize the coverage. State-of-the-art general
purpose object detector tend to under-perform and struggle with small object detection due to loss
of spatial features and weak feature representation of the small objects and sheer imbalance between
objects and the background. This paper aims to address small object detection in aerial imagery by
offering a Convolutional Neural Network (CNN) model that utilizes the Single Shot multi-box Detec-
tor (SSD) as the baseline network and extends its small object detection performance with feature
enhancement modules including super-resolution, deconvolution and feature fusion. These modules
are collectively aimed at improving the feature representation of small objects at the prediction layer.
The performance of the proposed model is evaluated using three datasets including two aerial images
datasets that mainly consist of small objects. The proposed model is compared with the state-of-
the-art small object detectors. Experiment results demonstrate improvements in the mean Absolute
Precision (mAP) and Recall values in comparison to the state-of-the-art small object detectors that
investigated in this study.

Keywords: deconvolution; feature fusion; small object detection; SSD; super-resolution

1. Introduction

Object detection is one of the core research areas in computer vision. Recent break-
throughs in Convolutional Neural Network (CNN) and object detection unlocked new
horizons and possibilities in various domains ranging from security and surveillance appli-
cations, such as face detection, crowd analysis and activity recognition to medical image
analysis and self-driving vehicles research [1–4].

Despite the contextual similarities of these domains, they utilize different image
acquisition techniques that often require significant adaptation and alteration of the state-of-
the-art general purpose object detectors to achieve desirable results. A prominent example
of such a domain is Unmanned Aerial Vehicles (UAV) imagery. The UAV imagery is getting
more popular than ever before with a variety of applications including smart farming [5],
search and rescue [6], disaster management [7], archaeological structure modeling [8],
security and surveillance [9] and many others. In UAV imagery, due to the flight altitude,
the top-down camera perspective and wide-angle lenses, object shapes and appearances
are relatively unconventional and they usually take up a small fraction of the image area,
as illustrated in Figure 1. General purpose object detectors are trained and tuned on datasets,
such as ImageNet and COCO, which mainly offer ground-level medium-sized images.
These detectors fail to provide good detection accuracy when it comes to out-of-ordinary
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small objects captured by UAVs. A reliable small object detection demands mechanisms
that preserve and enhance small object feature representation in the detection layer [10].

Figure 1. Objects in UAV images are usually small in size (proportional to total image size) and
general purpose object detectors are not designed to cope with it [11].

Pre-deep learning object detection techniques, such as boosted cascade [12], His-
tograms of Oriented Gradients (HOG) [13] and Deformable Part Models (DPM) [14]
were relatively inaccurate and unreliable for real-world applications; however, availability
of GPU computing and abundant of labeled training data (ImageNet) fast-tracked the rise
of CNN-based object detection. The CNN-based object detectors have become the preferred
choice for many researchers due to their unprecedented accuracy and availability of ample
training data and processing power. These approaches can be categorized into one-stage
and two-stage object detectors.

The one-stage object detectors require only a single pass through the neural network
to detect and localize the objects. These methods treat object detection as a simple regression
problem by taking an input image and learning the class probabilities and bounding box
coordinates. For instance, You Only Look Once (YOLO), which is one of the notable one-stage
object detectors, splits the input image into a grid of S × S cells [15]. If a bounding box
center falls into a cell, that cell is “responsible” for detecting the existence of that object.
More precisely, each cell is in charge of predicting the exact coordinates of bounding boxes,
a confidence score indicates the likelihood that the cell contains an object, and a probability
of object class conditioned on the existence of an object in the bounding box. The YOLO
utilize a fairly standard CNN (similar to GoogLeNet) that receives the input image, extracts
spatial features, and at the end outputs an encoded vector designed to predict bounding
boxes, confidence for those boxes, and class probabilities.

When it comes to the small objects, the efficiency and reliability of this and similar
approaches degrade. To successfully detect small objects, a considerably finer S × S
grid is required to reliably predict the coordinates of the bounding boxes and maintain
the significance of the confidence scores. This exponentially increases the computational
complexity of the detector for an insignificant accuracy boost in return. Overall, the one-
stage object detectors are simpler and faster, although they can sometimes struggle with
localization and detection accuracy. The most prominent examples of one-stage object
detectors are YOLO and Single Shot multi-box Detector (SSD) [16].
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On the other hand, two-stage object detectors first attempt to extract candidate regions
of objects (region proposal), which significantly reduces the number of locations that are
likely to contain the objects and then they employ a combination of ConvNets and other
techniques to classify and refine the extracted region proposals. For instance, the Region-
based Convolutional Neural Network (R-CNN) [17], which is one of the earliest two-stage object
detectors, uses selective search to extract 2000 region proposals. This method employs
a graph-based segmentation algorithm [18] to generate an over-segmented segmentation
map and then iteratively and hierarchically merges these segments into larger region
proposals based on their color, texture, size, and shape similarity.

In the second stage, pre-trained AlexNet is used to extract the feature vector of the cropped/
reshaped region proposals. Then, Support Vector Machines (SVMs) are used to generate a confi-
dence score classify these regions into different classes. A greedy non-maximum suppression
algorithm only retains overlapping regions with a higher confidence scores. Finally, a linear re-
gression model is used to further refine the bounding boxes for each identified object. Two-stage
detectors have higher localization and object recognition accuracy; however, these techniques
tend to be significantly slower than their one-stage counterparts. These methods are fairly slow
to begin with and it can be argued that they require a significantly higher number of region
proposals to deal with small objects. Moreover, we have realized that the segment merging
process is less effective when it comes to small-sized objects. Popular two-stage detectors are
the R-CNN detectors and the various extensions of it [17,19,20].

In recent years, novel techniques, including Detection Transformer (DETR) [21],
Saliency detection [22], Swin Transformer [23], and Hybrid Task Cascade (HTC) [24],
have been conceived to improve object detection and segmentation accuracy; while these
techniques managed to successfully improve object detection accuracy, their primary focus
is on general and reasonably sized objects on datasets such as COCO and not small objects
in aerial images.

Most object detection algorithms perform well when the objects are represented with
reasonable size, proportion, and resolution; however, when it comes to small-sized ob-
jects, they under-perform severely. This is mainly caused by weak feature representation
of the small-sized objects in deeper layers of CNN and a significant imbalance between
the background and target objects proportion. Though there is no standard definition
of the scale of an object to be qualified as a small object, the (D)etection, (O)bservation,
(R)ecognition and (I)dentification (DORI) criteria conceived by [25] states that 10% of the im-
age height is required for the object observation and detection. In Figure 1 in [11], it can
be observed that the objects are considerably small/insignificant proportional to the total
image size and can be categorized as small objects. Figure 2 illustrates how a typical CNN
fails to properly resolve and represent small objects features. At each layer of the network,
features of the small object down-sampled through pooling or stride >1 (typically, with
half the resolution size of the previous layer) results in a progressive reduction and some-
times disappearance of small object feature representation at the prediction layer, which
deteriorates the learning and detection process.

The majority of the image and video acquisition applications, such as surveillance,
autonomous driving, and satellite and aerial imagery, can only capture distant objects
in small sizes, mainly due to technological and physical constraints and limitations. Cur-
rent general purpose object detectors, including SSD, YOLO, R-CNN, CenterNet++, and
their variants, under-perform when it comes to the detection of small objects [26]. For
instance, although the SSD utilizes a multi-scale feature representation that supposedly
provides a relatively better detection accuracy for small objects, it uses a fairly deep CNN
(VGG16) in its back-end, which degrades the spatial resolution of the small objects and
makes detection of these objects difficult [27–29]. CenterNet++ [30], a state-of-the-art object
detector that benefits local perception swin transformer in its backbone is capable of gener-
ating accurately positioned bonding boxes and achieve outstanding mAP, but it relatively
under-performs when it comes to datasets that mainly exhibit small objects.
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Figure 2. Poor feature representation of small objects at deeper layers of typical Convolutional Neural
Networks, which are usually caused by multiple pooling and stride >1 processes.

Therefore, innovative measures are required to develop object detectors, capable
to demonstrate high accuracy in detecting small objects. Small object detection is a relevant
research problem and is gaining research attention. One approach that is particularly
explored for small object detection is the multi-scale feature representations structure
in the network architectures. Object detectors such as SSD and Deconvolutional Single
Shot Detector (DSSD) [31] use multi-scale representations in their network for predictions.
Features from different layers in the network are explored and combined for better repre-
sentation of object features and to improve the detection of smaller objects. Table 1 provides
an overview of some of the recent works related to CNN-based small object detection and
summarizes their approaches.

Table 1. A summary of selected works on CNN-object detection for small objects in images.

Strategy Authors Model Features Data Results

Tw
o-

st
ag

e
de

te
ct

or
s

[32] Feature extraction CNN combined
with the R-CNN framework

Mobile Mapping
Systems (MMS) images

mAP of up to 85%.
Comparatively, 12%
higher accuracy than
ResNet-152

[33]

R-CNN network combined with
Tiny-Net, global attention block
followed by a final classification
block

Remote sensing images
Higher detection
accuracy than R-CNN
variants

[34] A R-CNN network combined with
a deconvolution layer Remote sensing images

Higher accuracy than
Faster R-CNN is
reported

[35]

A region proposal network
combined with fusion network that
concatenates spatial and semantic
information

Remote sensing
Improved detection
accuracy compared
to state-of-the-art

[27]
Multi-block SSD consists of three
stages, including patching,
detection, and stitching

Railway scene dataset

Improved detection
rate of small objects by
23.2% in comparison
with the baseline object
detectors
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Table 1. Cont.

Strategy Authors Model Features Data Results

Si
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ct
or

s

[36]

Various configurations of SSD
architecture, including stride
elimination at different parts
of the network

MS COCO dataset

Better detection
accuracy for small
objects in the COCO
dataset when
compared to baseline
SSD

[25] Tiling-based approach for training
and inference on an SSD network

Micro aerial vehicle
imagery

Improved the detection
performance on small
objects when compared
with full frame
approaches

[37]
Modification of YOLOv3 model
for multi-scale feature
representation

UAV imagery

Improvement in small
object detection when
compared to base
YOLOv3 model

[38] YOLO model with multi-scale
feature fusion

Traffic imagery for car
accident detection

Able to detect car
accidents in 0.04
seconds with 90%
accuracy

[39] Feature fusion and feature dilation
combined with YOLO model Vehicle imagery

Improved accuracy
in the range of 80% and
88% on different
datasets

[40]
YOLOv3 Residual blocks optimized
by concatenating two ResNet units
that have the same width and height

UAV imagery

Improved IoU to over
70% to 80% across
different datasets
compared with
the baseline models

[41]

Region Context Network attention
mechanism shortlists most
promising regions, while discarding
the rest of the input image to keep
high resolution feature maps
in deeper layers.

USC-GRAD-STD and
MS COCO dataset

Improvement
in average precision
from 50.8% in baseline
models to 57.4%

[42] Feature fusion and spatial
attention-based Multi-block SSD LAKE-BOAT dataset 79.3% mean average

precision

Su
pe

r-
re

so
lu

ti
on

[43]

Patch-based and pixel-based CNN
architectures for image
segmentation to identify small
objects

Remote sensing images Classification accuracy
of 87% reported

[26]
A super-resolution-based generator
network for up-sampling small
objects

COCO dataset

Improved detection
performance on small
objects when compared
with R-CNN models

[44]
Super-resolution method for feature
enhancement to improve small
object detection accuracy

Several RGB image
datasets

Better detection
accuracy compared to
other
super-resolution-based
methods

[45]
A super-resolution-based
Generative Adversarial Network
(GAN) for small object detection

Several RGB image
datasets

Achieved higher
detection accuracy
in comparison
to R-CNN variants

274



Sensors 2022, 22, 4339

Table 1. Cont.

Strategy Authors Model Features Data Results

Fe
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e

Py
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m
id

s

[46]

Extended feature pyramid network
which employs large-scale
super-resolution features with rich
regional details to decouple small
and medium object detection

Small traffic-sign
Tsinghua-Tencent and
MS COCO dataset

Better accuracy across
both datasets compared
to the state-of-the-art
methods

[47]

A two-stage detector (similar
to the Faster-RCNN) which first
adopts the feature pyramid
architecture with lateral connections,
then utilizes specialized anchors
to detect the small objects from large
resolution image

Small traffic-sign
Tsinghua-Tencent
dataset

Significant accuracy
improvement
compared with
state-of-art methods

[48]

A parallel feature pyramid network
constructed by widening
the network width instead
of increasing the network depth.
Spatial pyramid pooling adopted
to generate a pool of feature

MS-COCO dataset
7.8% better average
precision over latest
variant of SSD

[49]

Multi-branch parallel feature
pyramid network (MPFPN) used
to boost feature extraction
of the small objects. The parallel
branch is designed to recover
the features that missed
in the deeper layers and
a supervised spatial attention
module used to suppress
background interference

VisDrone-DET dataset

Competitive
performance compared
with other
state-of-the-art
memthods

[50]
Feture fusion and scaling-based SSD
network with spatial context
analysis

UAV imagery

Achieved 65.84%
accuracy on PASCAL
Visual Object Classes
dataset. High accuracy
on small objects in UAV
images

This study attempts to address the small object detection problem using a multi-scale
feature representation CNN model. The proposed model design includes the SSD network
as the baseline network and extends it with an additional deconvolution module, super-
resolution module and a shallow layer feature-fusion module. These three additions result
in better preservation of small object features at deeper CNN layers that subsequently
improved small objects detection accuracy compared to the base SSD model.

The main contributions of this study are as follows:

• A novel deep model capable of improving feature representation of small objects
at the prediction layer that leads to overall better small objects detection accuracy;

• A deconvolution module that up-scales small objects’ feature resolution and provides
more details to the prediction layer;

• A super-resolution module that applies residual and up-sampling blocks to shallow
layers and improves scale invariancy and enhances resolution of the small objects
at the prediction layer;

• A shallow layer feature fusion module that combines features from multiple stages
of the network and improves scale invariancy and feature representation.

These contributions are collectively aiming to improve feature representation of small
objects at the prediction layer that eventually leads to overall better small object detection
accuracy. The rest of the paper is organized as follows: the proposed network is described
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in detail in Section 2, followed by Section 3, which discusses its implementation, evaluation,
and results. A discussion on the proposed model is provided in Section 4 followed by
the conclusion.

2. System Overview

The proposed small object detection model consists of SSD as the baseline paired with
three other modules: a Shallow Layer Feature Fusion module, a Deconvolutional Module, and
a Super-resolution module. This model is partially inspired by the Deconvolutional Single
Shot Detector (DSSD) [31], Deep CNN with Skip Connection and Network in Network
(DCSCN) [51], and Super-Resolution Generative Adversarial Network (SRGAN) [52], and
incorporates some variant of these techniques to improve small object detection accuracy.
Figure 3 shows the architecture of the proposed small object detector model. In this figure,
the super-resolution module along with the feature fusion module are illustrated in green
and with a ’+’ symbol, respectively. The SSD layers are illustrated in blue followed by
a series of a deconvolution layers (red) that end with a prediction layer.

Figure 4 shows a schematic comparison of the proposed approaches against various
other object detectors. Figure 4a represents the approach used by single stage detectors
(e.g., YOLO) that solely relies on the final feature representation for detection.
These approaches work with relatively limited features that negatively impact small
object detection; however, they demonstrate high detection speeds. Figure 4b shows
the multi-level presentation of the features at the detection layer that are used by models
such as the SSD. They usually perform better for small objects but have relatively lower
detection speeds. The shallow layer feature fusion approach shown in Figure 4c and
used in models such as the FSSD and the FFSSD improves on the SSD by concatenat-
ing additional features from lower layers to enhance small object detection performance.
The DSSD approach extends the SSD model by combining the SSD layers with additional
deconvolutional layers for better representation of features at the prediction layer, as shown
in Figure 4d. Figure 4e shows the structure of our proposed network. The presented ap-
proach combines deconvolution and feature fusion methods to provide richer, multi-scale
feature maps at the prediction layer. The overall goal of this architecture is to provide
a mechanism to collate features from multiple layers across the network and present them
at the prediction layer. The multi-scale features at the prediction layer provide enhanced
feature representations for small objects and improve their detection accuracy.

Figure 3. Network architecture of the proposed object detection model. The SSD model is used
as the baseline network and extended to include deconvolution module (orange), super-resolution
module (green), and shallow layer feature fusion module (+).
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Figure 4. Schematic comparison of approaches used by different types of object detectors.
(a) Single stage detectors (e.g., YOLO). (b) Multi-level features used at prediction layer (e.g., SSD).
(c) Approach of supplying shallow layer features for prediction (e.g., FSSD). (d) Deconvolutional lay-
ers for improved feature representation (e.g., DSSD). (e) Network schema of our proposed approach.

2.1. Single Shot Multibox Detector (SSD)

The SSD is used as the baseline network in our model due to its high speed and
accuracy in object detection. The SSD detector itself is composed of a base network (VGG16)
followed by six extra convolutional layers and a Non-Maximum Suppression (NMS) layer
for final detection [53]. The base VGG16 network (without its final classification layers) is
purely used for feature extraction. The additional six convolutional layers that are attached
to the end of the VGG network (apart from the first one) will be used for prediction
of the bounding boxes and confidence score for different objects. These layers progressively
decrease in their size to accommodate detection of objects at multiple scales; however, due
to structural limitation of SSD, small object detection accuracy remains undesirable [27,29].

The SSD’s performance relies heavily on default boxes, specifically their scale and
aspect ratios. Each feature map corresponds to a specific scale of default box along with
a list of five aspect ratios for each scale. The minimum and maximum scales are set to 0.2
and 0.9, respectively, while aspect ratios are 1, 2, 3, 1/2, and 1/3. The prediction layers
receive several feature maps from “Extra feature layers“, representing multiple scales/aspect
ratios and determining classification scores and bounding box coordinates [16]. The pyra-
midal feature hierarchy in “Extra feature layers“ enables SSD detect objects of various sizes
in the images; however, its performance for small objects is sub-optimal [27–29].

In our proposed model, we extend the multi-scale feature representation concept
for enhanced feature representation at the prediction layer by applying the feature fusion,
deconvolutional. and super-resolution modules.

2.2. Deconvolution Module

In the SSD model after the VGG16 network, the feature maps are scaled down consid-
erably and lack fine details of the objects. The large objects might be sufficiently represented
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and detected; however, the feature resolution might be insufficient for small objects, leading
to poor detection. A deconvolution operation up-scaling the feature resolution [54] and
provides more details to the prediction layer. In our proposed network, after the SSD
layers, a series of deconvolution layers are added. This structure inspired by [31] partially
addresses the inefficiency of feature resolution for small object detection.

The deconvolution module includes a series of five consecutive deconvolution layer
that successively increases the feature maps supplied to the prediction layer. This module
includes a 2 × 2 deconvolutional layer with a stride of 2, followed by a convolutional
layer activated by the ReLU activation layer and a batch normalization. Figure 5 shows
the deconvolution module used in our network. Furthermore, every deconvolution layer
is fused with a corresponding SSD of the same resolution size. The fusion is done using
an element-wise sum operation followed by a ReLU activation.

A deconvolutional layer is added for each SSD convolutional layer, effectively up-
scaling all the feature layers to be used by the prediction layer. The feature maps of the SSD
convolutional layer and deconvolutional layer are combined through an element-wise
sum operation. Each SSD layer undergoes two sets of two convolutional operations
followed by batch normalization and a ReLU activation layer before combining with
the deconvolution feature maps. The element-wise sum operation allows point to point
combination of the feature maps at different levels into equivalent weights, as shown
in Figure 6.

Figure 5. A deconvolutional module unit used after the SSD layers.

Figure 6. A deconvolutional module unit merged with an SSD layer using element-wise sum
operation.
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2.3. Super-Resolution Module

The super-resolution (SR) method enables deriving high resolution (HR) features
from low resolution (LR) feature maps [55]. SR is a well-explored topic and is applied
in various areas, including remote sensing [56] and video SR [57]. In our proposed
model, the two shallow layers Conv4_3 and Conv5_3 are considered as LR feature maps.
The SR method is applied to derive a HR version of the two shallow layers. Inspired by
the techniques proposed by [58,59], we apply an SR technique on the Conv4_3 and Conv5_3
layers to obtain HR feature maps.

The SR module in our network is based on residual and up-sampling blocks, as il-
lustrated in Figure 7. Two residual blocks are applied to both of the shallow layers.
Furthermore, each residual block consists of two sub-block units of a 3 × 3 convolutional
layer, a batch normalization layer and a ReLU activation layer. As with residual blocks, skip
connections are achieved using an elementwise sum operation. The two residual blocks
are followed by an elementwise sum operation, concatenating the shallow layer output
with the residual layer outputs. The residual blocks enable to obtain multi-scaled features
of both shallow layers. The concatenation operation is followed by two up-sampling blocks.
The up-sampling blocks help in achieving SR in our model. For the up-sampling purpose,
the Pixelshuffle [58] layer, which is used in several SR approaches including [52,59], was
employed in this study.

PixelShuffle is an operation used in SR models to increase the spatial resolution
of the feature maps. This technique utilizes sub-pixel convolutions with a fractional stride
of 1/r (up-sampling ratio) in the LR space. PixelShuffle specifically rearranges elements
in a tensor of shape (∗, C × r2, H, W) to a tensor of shape (∗, C, H × r, W × r), where r is
the up-sampling ratio and C is the color channels; essentially, it trades layer depth with
higher spatial resolution [58]. The up-sampling block in our proposed architecture consists
of a 3 × 3 convolutional layer, a pixelshuffle layer, and a ReLU activation layer.

Figure 7. The super-resolution module.

2.4. Shallow Layer Feature Fusion Module

Multi-scale feature representation works by combining features from multiple stages
of the network to provide an enhanced feature map at the prediction layer and improve
small object detection accuracy. Such approach has been used in Feature fusion Single
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Shot multi-box Detector (FSSD) [60], Deconvolutional SSD (DSSD) [31], Feature-Fused SSD
(FF-SSD) [61], and Feature fusion and Scaling-based SSD (FS-SSD) [50].

The feature fusion approach used in our implementation mitigates loss of small
object features. The feature maps from the Conv4_3 and Conv5_3 are fused and supplied
to the prediction layer. There are two different ways to fuse features from shallow layers:
concatenation and element-wise summation. The concatenation approach requires inputs with
matching shapes except for the concatenation axis. However, element-wise summation
works with tensors with similar batch sizes and follows arrays broadcasting rules [62].
In the shallow layer feature fusion module, a 1 × 1 convolution layer is applied after
the concatenation, which leads to better learning and enhancement of small objects’ features
over the background. The concatenation operation is illustrated in Figure 8.

Figure 8. Concatenation of the Conv4_3 and Conv5_3 feature layers.

The Conv5_3 layer feature resolution differs from the resolution of the Conv4_3 feature
layer. For fusion of both the layers, the Conv5_3 layer is up-sampled to the same size
of the Conv4_3 layer. The up-sampling is achieved through a deconvolution operation
at the Conv5_3 layer. Next, both the feature layers undergo a 3 × 3 convolution operation,
batch normalization, and ReLu activation function. The output feature map of the feature
fusion module is supplied to the prediction layer. In comparison to the standard SSD
network, the prediction layer of our model receives more feature maps with potentially
better representation of the small objects.

3. Experiments

The proposed model is evaluated for its object detection accuracy with an emphasis
on small object detection. The details of multiple experiments conducted with the proposed
model are presented in the following sections.

3.1. Datasets

The model was evaluated on three datasets: a custom UAV image dataset of livestock
captured as part of the 5G rural integrated test-bed (5GRIT) project [63], the Stanford Drone
Dataset (SDD) [11], and a crowd monitoring dataset acquired as part of the European
Union (EU) project, MONICA [64]. The custom livestock dataset consists of aerial images
of livestock captured over farms across the UK. The dataset includes only one labeled
class of livestock (sheep). The images were captured from a UAV flown at 50 m altitude.
In total, 425 RGB images with a very high resolution of 5400 × 3600 pixels were acquired.
Figure 9 shows some example images of the dataset.
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Figure 9. Example images of the livestock dataset. In the images, sheep are small targets for the object
detectors.

As can be seen in Figure 9, the livestock dataset exhibits aerial images of livestock
(sheep) with considerably small spatial size proportional to the total image size.
This poses a challenge to the existing state-of-the-art object detectors, which make this
dataset a suitable test-bed and use case to evaluate our small object detector performance.
Since images in the livestock dataset have very high resolution, it is not possible to use
them directly for the training of a neural network model. Hence, each image was split
(cropped) into multiple images of 300 × 300 resolution. As a result of this operation, a total
of 3900 images were available for training based on the livestock dataset.

The SDD dataset consists of 400 aerial images of people captured using a UAV
at an original resolution of 6000 × 4000 pixels. The Pedestrian category images were used
for training and evaluation in our study. Since images in the SDD dataset are of very
high resolution, each image was split into multiple images of 600 × 400 for training.
We used different cropping factors in livestock (300 × 300) and the SDD dataset (600 × 400)
mainly to equalize the average scale of small objects across both datasets. Livestock
dataset objects (sheep) are considerably smaller than benchmark SDD objects (Pedestrian).
This helped to improve the consistency of our experiments and results across both datasets.
Figure 1 shows some example images of this dataset. After training and evaluation using
the SDD dataset on Pedestrian category, the MONICA dataset, which consists of images
of the crowd, is used for further evaluation of our proposed model.

3.2. Implementation

The proposed model is based on the SSD object detector. For our experiments,
the Keras implementation of SSD with VGG16 used in [65] is employed as our baseline
architecture network. For training purposes, parameters from the original SSD implementa-
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tion is used in our studies. The anchor box ratios, scaling factors, and other parameters were
kept unchanged from the original recommendation. To improve the volume of the training
dataset, the data augmentation process recommended in the original SSD implementation
is adopted to increase the training dataset image count. The data augmentation process
includes randomly sampling an entire original input image such that it has a minimum
Jaccard index with objects of around 0.1, 0.3, 0.5, 0.7, or 0.9, and then randomly sampling
a patch. The batch size was set to 32 for training and the learning rate ranged from 0.001
for the first 60 k steps, 0.0001 for up to 80 k and 0.00001 for 100 k steps. The maximum
iteration was set to 100 k steps.

3.3. Comparison on the Livestock Dataset

The performance of our model is compared with several popular CNN-based object
detectors including Faster R-CNN [20], variants of SSD including SSD300 and SSD512 [16],
YOLOv3 [66], and CenterNet++ [30]. Moreover, the proposed model has been compared
with several state-of-the-art small object detectors including Deconvolutional SSD (DSSD) [31],
FS-SSD [50], FF-SSD [61], MPFPN [49], and EFPN [46].

The mean Average Precision (mAP) of all the detectors are shown in Table 2.
The mAP is adopted as the primary criterion (Figure of merit) for detection accuracy,
which is an indicator related to the Intersection over Union (IoU) threshold. We take
the most used threshold IoU = 0.5 in our experiments.

All the target objects in the Livestock dataset have been checked for fulfillment
of DORI’s small object criterion [25]. Bear in mind that, objects in the Livestock dataset
are considerably small (significantly smaller than what DORI outlines as small object)
and general purpose object detectors in this comparison such as YOLOv3, SSD, Center-
Net++, and Faster R-CNN are not purely made to deal with such small scale of objects.
The enclosure of general purpose object detectors in this comparison is mainly to demon-
strate how purposely made small object detectors can positively contribute to the small
object detection performance in aerial imagery.

For the livestock dataset, our proposed model achieves the highest accuracy with
a mAP of 79.12%. The YOLOv3 and Faster R-CNN show the lowest mAP and Recall
compared to other detectors considered in the experiment. Among general purpose object
detectors, CenterNet++ with a respective mAP and Recall of 76.18 and 92.44 ourperformed
other general purpose object detector; however, it came short when compared to small
object detectors. In terms of Recall, once again the proposed model, with 94.10%, outper-
formed all other detectors in this comparison. The FS-SSD, with a mAP and Recall of 77.14%
and 93.91%, respectively, was the second-best detector in this comparison; however, with
17.35 Frames per Second (FPS), FS-SSD outperformed our model in this respect.

Small object detection is important in UAV and satellite imagery as the object sizes are
usually small relative to the total image size. The livestock dataset consists of considerably
small top-down images of livestock (sheep) and our proposed model performs well in de-
tecting these objects compared to other methods in this comparison. Figure 10 shows a qual-
itative comparison of the original SSD300 object detector, FS-SSD, and our proposed model.
Images in Figure 10 have been chosen randomly to retain the fairness of our qualitative compar-
ison. It can be observed that the SSD misses several instances of livestock across the images;
however, FS-SSD’s performance and accuracy is very comparable to our proposed model. It
is worth mentioning that due to extremely small object sizes, all models in this comparison
fail to detect sheep in a few instances. Keep in mind that the majority of the models in this
comparison are very close in terms of mAP and Recall values (around 2% mAP difference
between our model and the second best model in this study based on livestock dataset results)
and qualitative comparison of these models using a few random sample images might not be
a good indication of their overall performance.
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Figure 10. Comparison of small object detection between the proposed network (bottom row),
the SSD network (middle row) and the FS-SSD network (top row) on the custom livestock dataset.

Furthermore, a qualitative evaluation of the proposed model detection performance is
shown in Figure 11. The ground truth and the predicted bounding boxes are shown in blue
and red, respectively. It can be observed that the prediction bounding boxes are reasonably
aligned with the ground truth and the object in the image.

Figure 11. Qualitative evaluation of bounding box predictions by the proposed network on custom
livestock dataset. Blue boxes correspond to the ground truth label and red boxes are the predicted
bounding boxes.
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Table 2. The mAP, Recall, and FPS comparison of the proposed model with the state-of-the-art small
object detectors on our custom livestock dataset. Some of the general purpose object detectors have
been included in this comparison.

Model FPS Recall (%) mAP (%)

SSD300 36.50 88.20 74.80
SSD512 19.25 91.32 75.20

CenterNet++ 4.70 92.44 76.18
YOLOv3 48.95 78.23 69.40

Faster R-CNN 7.40 83.60 71.20
DSSD 10.30 93.15 76.40

FS-SSD 17.35 93.91 77.14
FF-SSD 41.36 91.01 75.93
MPFPN 2.04 86.18 72.94
EFPN 4.14 90.23 74.81

Proposed 8.75 94.10 79.12

3.4. Comparison with the Stanford Drone Dataset (SDD)

One major use case for small object detection is person detection and localization
from aerial images. Hence, we attempted to evaluate and compare our model performance
in this area. For this experiment, the Pedestrian category images from the Stanford Drone
Dataset (SDD) is considered [11]. This dataset has been used by many other researchers
for small object detection in aerial imagery. Contenders of this comparison are the same
as our previous comparison on the Livestock dataset.

The quantitative results of this comparison are shown in Table 3. In terms of Pedestrian
detection, our proposed model achieves the highest mAP of 68.71%, followed closely by
DSSD and FS-SSD with a mAP of 66.20% and 66.02% respectively. Again, general purpose
object detectors including YOLOv3 and Faster R-CNN show the lowest mAP when com-
pared to other detectors in the experiment. Among general purpose object detectors only,
once again, CenterNet++, with respective a mAP and Recall of 66.01 and 83.91, performed
the best; however, it came short when compared to small object detectors such as the pro-
posed, DSSD, and FS-SSD. In terms of Recall, DSSD with 87.26% outperformed any other
models in this comparison including our proposed model, with a Recall rate of 85.95%. In
terms of inference speed, our proposed model with an average FPS of 8.75 meets the re-
quirements of real-time detection. However, for applications such as oncoming traffic
analysis, where detection speed is critical, FF-SSD with 42.51 FPS might be the preferred
option.

Figure 12 shows a qualitative comparison of the proposed model against SSD300 using
sample images from the SDD dataset. It can be observed that the SSD300 misses several in-
stances of Pedestrian across the sample images. However, as the models in this comparison
are competing closely in terms of mAP and Recall values, qualitative comparison using
a few random sample images might not be a good indication of their overall performance.

To identify how our model performs in other similar datasets, the trained model on the SDD
dataset has been tested qualitatively for person detection on images obtained from the MONICA
project dataset [64]. Images in the MONICA dataset were captured from surveillance cameras
at various public outdoor events. Due to an insufficient number of labeled samples in this
dataset, we have only reported the qualitative comparison results mainly to demonstrate how
these models perform under different conditions and they can be adopted to different scenarios
and circumstances. The qualitative results for person detection using the MONICA dataset
are shown in Figure 13, while both models exhibit inferior results in terms of Recall compared
to what we saw in the previous experiments, the proposed model seems to have a slight
edge over the SSD in this comparison. A drop in both models’ performance was predictable,
as these models were trained on a different dataset (SDD) with a relatively different nature,
camera perspective, object scale, and lighting condition. Although this might be less than
ideal, it shows the adaptability of the proposed model to similar real-world scenarios such
as surveillance. Due to a limited number of labeled images in the MONICA dataset, we are
unable to provide statistically reliable quantitative comparison results. Furthermore, on some
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occasions, the proposed model mistakenly combines the bounding boxes of the nearby objects.
We believe this is mainly caused by the difference in the objects’ scale in training (SDD) and
testing (MONICA) datasets and can be mitigated by readjusting the raw input image slicing-
factor (cropping) to equalize the average size of objects in the training dataset (SDD) and testing
datasets (MONICA).

Figure 12. Comparison of small object detection of our proposed network (bottom row) with the SSD
network (top row) onthe Pedestrian category from the Stanford drone dataset.

Table 3. The mAP, Recall, and FPS comparison of the proposed model with state-of-the-art small
object detectors on a subset of SDD dataset containing aerial images. Some of the general purpose
object detectors have been included in this comparison.

Model FPS Recall (%) mAP (%)

SSD300 36.40 81.45 64.31
SSD512 19.35 83.58 65.24

CenterNet++ 4.72 83.91 66.01
YOLOv3 49.20 78.64 57.42

Faster R-CNN 7.40 80.75 59.60
DSSD 10.30 87.26 66.20

FS-SSD 18.05 85.88 66.02
FF-SSD 42.51 83.66 65.36
MPFPN 2.35 79.32 61.79
EFPN 4.33 82.11 63.94

Proposed 8.75 85.95 68.71

Figure 13. Comparison of small object detection of our proposed network (bottom row) with SSD
network (top row) on a custom dataset acquired under MONICA project data.
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3.5. Ablation Studies of the Proposed Network

Ablation studies allow us to identify the impact of different modules on our model
performance and speed. These experiments were conducted incrementally in isolation
to identify how feature fusion, super-resolution, and deconvolution modules individually
and collectively improve baseline SDD300 model performance and how they impact its
inference speed in term of FPS in small object detection. The ablation study is conducted
on the livestock dataset. The results of the ablation study are shown in Table 4. In the abla-
tion study, SSD300 in the void of other modules is considered as the baseline network of our
proposed model and achieved mAP 74.80%. The first study is to evaluate the shallow layer
feature fusion model, wherein both the element-wise sum and the concatenation operations
are evaluated. The element-wise sum method improved the accuracy of SSD300 from 74.80%
to 75.70%. However, the concatenation method of feature fusion showed a slightly better
performance of 76.10%. Hence, for the remaining ablation studies of the deconvolutional and
the super-resolution modules, the concatenation feature fusion approach used as the preferred
option. In terms of FPS, there is no significant difference between the element-wise sum
and the concatenation operations and both of these techniques drop the FPS from 36.50
in the baseline SSD300 to around 22 FPS. Next, we attempted to identify how the shallow
layer feature fusion (concatenation) performs along with the super-resolution module.
The result shows improved performance of 77.20% was achieved as a result of this combi-
nation. In terms of FPS, inclusion of super-resolution module dropped the FPS from 22.42
to 17.64. The ablation study on the combination of deconvolutional and the shallow
layer feature fusion (concatenation) further improved the mAP to 77.90%, but it dropped
the inference FPS down to 14.52 only. Finally, the complete proposed model, including
the super-resolution, the shallow layer feature fusion (concatenation), and the deconvolu-
tional module, attained the best mAP performance of 79.12%; however, it slowed down
the baseline SSD300 from 36.50 to 8.75 FPS.

Table 4. Ablation study of the proposed network on the livestock dataset. Different combinations
of the feature fusion methods, super-resolution, and deconvolution were evaluated based on mAP and
FPS.

Feature Fusion Deconvolution SuperResolution mAP FPS

NA NA NA 74.80 36.50
Element-wise sum NA NA 75.70 22.86

Concatenation NA NA 76.10 22.42
Concatenation NA YES 77.20 17.64
Concatenation YES NA 77.90 14.52
Concatenation YES YES 79.12 8.75

4. Discussion

UAV imagery is getting more popular than ever before with a variety of applications,
including urban planning, smart farming, search and rescue, and security and surveil-
lance. Due to many intrinsic characteristics of UAV imagery, such as high flight altitude,
top-down camera perspective, and wide-angle lenses, objects in aerial imagery appear
to have a distinctive shape and spatial properties and they usually take up a small fraction
of the entire frame, which may pose a challenge to conventional object detectors.

Many researchers have attempted to address small object detection by introducing
additional feature enhancement modules to conventional object detectors. Likewise, the pro-
posed model in this research utilizes the SSD as the baseline network and improves its
small object detection performance by incorporating deconvolution, super-resolution, and
feature fusion modules. These modifications allow better feature representation of small
objects at the prediction layer, which improves the baseline model’s mAP (IoU = 0.5)
in small object detection while retaining the requirements for the majority of real-time
applications. Figure 14 shows the speed and accuracy comparison of the proposed model
against the state-of-the-art models on the livestock dataset.
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Figure 14. Speed and accuracy comparison of the proposed method with the state-of-the-art methods
on the livestock dataset. It can be observed that the proposed model supersedes other approaches
in terms of mAP, which makes it suitable for applications where accuracy is critically important.

As can be observed in Figure 14, the proposed model trumped other models in this com-
parison in terms of mAP. Other models, such as FS-SSD and FF-SSD, also managed to deliver
reasonably good accuracy; however, their superior performance in terms of FPS makes them
a more desirable option for applications such as oncoming traffic analysis where detection speed
is critical. The proposed model can be used in applications such as precision farming, search and
rescue, and disaster management, where accuracy is critically important. The majority of the im-
ages in the livestock dataset exhibit a low-contrast scenery of greenery with distinct foreground
objects (livestock), which might skew the detection results. Hence, besides the livestock dataset,
we have tested our model performance on the Stanford Drone Dataset (SDD). The SDD is
a popular benchmark dataset used by many researchers [11,50,67,68] for (small) object detection
in aerial imagery. Again, our comparative results showed the superiority of the proposed
model over methods in the comparison. Although the focus of our comparison was mainly on
the Pedestrian category of the SDD dataset, further investigations showed that our model per-
forms equally well in some other object categories, including Bicyclist and Car on the SDD dataset.
Figure 15 illustrates this comparison.

Beside the mean average precision (mAP) with an IoU of 0.5, we have attempted
to investigate how the proposed model performs and compares with other detectors
using a challenging IoU of 0.75. As expected, we observed a significant drop in mAP
across all models involved in the comparison. Although our model is not the best per-
former in this experiment, it performs comparably with other detectors in this study and
is better than the baseline model. Figure 16 illustrates comparison of mAP with IoU
of 0.5 and 0.75 on Pedestrian category of SDD dataset across selected models in this study.
Such an abrupt drop in accuracy indicates models in this comparison are having a hard
time aligning the bounding boxes with the ground-truth labels in the regression process.
Due to the smaller size of the objects, a slight misalignment significantly degrades the area
of overlap and increases the area of union, which negatively impacts mAP.

The results of our experiments and ablation studies imply deconvolution, super-
resolution, and feature fusion modules enhanced feature representation of small objects
at the prediction layer, which results in better accuracy in small object detection. Our
proposed model not only improved the overall accuracy of the baseline SSD300 model but
also competes with some of the state-of-the-art small object detectors.
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Figure 15. Comparison between the proposed model mAP with some other object detectors
on the SDD dataset. Car, Bicyclist, and Pedestrian categories were considered in this comparison.

Figure 16. Comparison of mAP with IoU of 0.5 and 0.75 on the Pedestrian category of the SDD dataset.

5. Conclusions

In this paper, an object detection model with the goal of improving small object detection
in aerial images is presented. The proposed model extends the SSD using the methods of decon-
volution, super-resolution, and shallow layer feature fusion. The proposed extension enhances
the feature representation of the objects at the prediction layer and leads to improved object
detection accuracy. This approach is particularly beneficial for small object detection because
with many state-of-the-art object detectors, the features of small objects are not represented
sufficiently at the prediction layer for a reliable detection. The proposed model was trained and
evaluated on two datasets: a custom UAV dataset of livestock, and the Stanford drone dataset.
The results of the experiments showed that the proposed model performs mostly better than
other object detectors considered in the comparative study. The proposed model can be used
in applications such as precision farming, search and rescue, and disaster management, where
accuracy is critically important.

Author Contributions: Writing, Review and Editing, M.M.D.O.; Writing—Original Draft and
Methodology, M.R.; Supervision and Project Administration, P.R. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

288



Sensors 2022, 22, 4339

Data Availability Statement: Data and source code can be made available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Qin, H.; Yan, J.; Li, X.; Hu, X. Joint training of cascaded CNN for face detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3456–3465.

2. Subetha, T.; Chitrakala, S. A survey on human activity recognition from videos. In Proceedings of the 2016 International
Conference on Information Communication and Embedded Systems (ICICES), Chennai, India, 25–26 February 2016; pp. 1–7.

3. Ukil, A.; Bandyoapdhyay, S.; Puri, C.; Pal, A. IoT healthcare analytics: The importance of anomaly detection. In Proceedings
of the 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), Crans-Montana,
Switzerland, 23–25 May 2016; pp. 994–997.

4. Feng, D.; Rosenbaum, L.; Dietmayer, K. Towards safe autonomous driving: Capture uncertainty in the deep neural network
for LIDAR 3D vehicle detection. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems
(ITSC), Maui, HI, USA, 4–7 November 2018; pp. 3266–3273.

5. Lottes, P.; Khanna, R.; Pfeifer, J.; Siegwart, R.; Stachniss, C. UAV-based crop and weed classification for smart farming.
In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Marina Bay Sands, Singapore, 29
May–3 June 2017; pp. 3024–3031.

6. Niedzielski, T.; Jurecka, M.; Miziński, B.; Remisz, J.; Ślopek, J.; Spallek, W.; Witek-Kasprzak, M.; Kasprzak, Ł.; Chlaściak, M.
A real-time field experiment on search and rescue operations assisted by unmanned aerial vehicles. J. Field Robot. 2018, 35,
906–920. [CrossRef]

7. Giordan, D.; Manconi, A.; Remondino, F.; Nex, F. Use of Unmanned Aerial Vehicles in Monitoring Application and Management
of Natural Hazards; Taylor & Francis: Oxfordshire, UK, 2017.

8. Mesas-Carrascosa, F.; Garcia, M.N.; Larriva, J.; Garcia-Ferrer, A. An analysis of the influence of flight parameters in the generation
of unmanned aerial vehicle (UAV) orthomosaics to survey archaeological areas. Sensors 2016, 16, 1838. [CrossRef] [PubMed]

9. Saska, M.; Vonásek, V.; Chudoba, J.; Thomas, J.; Loianno, G.; Kumar, V. Swarm distribution and deployment for cooperative
surveillance by micro-aerial vehicles. J. Int. Robot. Syst. 2016, 84, 469–492. [CrossRef]

10. Li, Y.; Wang, S.; Tian, Q.; Ding, X. Feature representation for statistical-learning-based object detection: A review. Pattern Recognit.
2015, 48, 3542–3559. [CrossRef]

11. Robicquet, A.; Sadeghian, A.; Alahi, A.; Savarese, S. Learning social etiquette: Human trajectory understanding in crowded
scenes. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016;
pp. 549–565.

12. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision Furthermore, Pattern Recognition, CVPR, Kauai, HI, USA, 8–14 December 2001; Volume 1.

13. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893.

14. Felzenszwalb, P.; Girshick, R.; McAllester, D. Cascade object detection with deformable part models. In Proceedings of the 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010;
pp. 2241–2248.

15. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

16. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.; Berg, A. SSD: Single shot multibox detector. In Proceedings
of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.

17. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

18. Felzenszwalb, P.; Huttenlocher, D. Efficient graph-based image segmentation. Int. J. Comput. Vis. 2004, 59, 167–181. [CrossRef]
19. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Compuer Vision, Columbus, OH, USA, 23–28

June 2015; pp. 1440–1448.
20. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural

Inf. Process. Syst. 2015, 28, 91–99. [CrossRef]
21. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers.

In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 213–229.
22. Jian, M.; Zhang, W.; Yu, H.; Cui, C.; Nie, X.; Zhang, H.; Yin, Y. Saliency detection based on directional patches extraction and

principal local color contrast. J. Vis. Commun. Image Represent. 2018, 57, 1–11. [CrossRef]
23. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted

windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Nashville, TN, USA, 20–25 June 2021;
pp. 10012–10022.

289



Sensors 2022, 22, 4339

24. Chen, K.; Pang, J.; Wang, J.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Shi, J.; Ouyang, W. Others Hybrid task cascade for instance
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019; pp. 4974–4983.

25. Unel, F.; Ozkalayci, B.; Cigla, C. The power of tiling for small object detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 15–20 June 2019.

26. Bai, Y.; Zhang, Y.; Ding, M.; Ghanem, B. SOD-MTGAN: Small object detection via multi-task generative adversarial network.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 206-221.

27. Yundong, L.; Han, D.; Hongguang, L.; Zhang, X.; Zhang, B.; Zhifeng, X. Multi-block SSD based on small object detection for UAV
railway scene surveillance. Chin. J. Aeronaut. 2020, 33, 1747–1755.

28. Sun, C.; Ai, Y.; Wang, S.; Zhang, W. Mask-guided SSD for small-object detection. Appl. Intell. 2021, 51, 3311–3322. [CrossRef]
29. Li, H.; Lin, K.; Bai, J.; Li, A.; Yu, J. Small object detection algorithm based on feature pyramid-enhanced fusion SSD. Complexity

2019, 2019, 7297960. [CrossRef]
30. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. CenterNet++ for Object Detection. arXiv 2022, arXiv:2204.08394.
31. Fu, C.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A. DSSD: Deconvolutional single shot detector. arXiv 2017, arXiv:1701.06659.
32. Yang, Z.; Liu, Y.; Liu, L.; Tang, X.; Xie, J.; Gao, X. Detecting Small Objects in Urban Settings Using SlimNet Model. IEEE Trans. Geo

Remote Sens. 2019, 57, 8445–8457. [CrossRef]
33. Ye, Q.; Huo, H.; Zhu, T.; Fang, T. Harbor detection in large-scale remote sensing images using both deep-learned and topological

structure features. In Proceedings of the 2017 10th International Symposium on Computational Intelligence and Design (ISCID),
Hangzhou, China, 9–10 December 2017; Volume 1, pp. 218–222.

34. Zhang, W.; Wang, S.; Thachan, S.; Chen, J.; Qian, Y. Deconv R-CNN for Small Object Detection on Remote Sensing Images.
In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27
July 2018; pp. 2483–2486.

35. Liu, J.; Yang, S.; Tian, L.; Guo, W.; Zhou, B.; Jia, J.; Ling, H. Multi-component fusion network for small object detection in remote
sensing images. IEEE Access 2019, 7, 128339–128352. [CrossRef]

36. Mudassar, B.; Mukhopadhyay, S. Rethinking Convolutional Feature Extraction for Small Object Detection; BMVC: Cardiff, UK, 2019;
Volume 1, p. 234.

37. Hu, Y.; Wu, X.; Zheng, G.; Liu, X. Object detection of UAV for anti-UAV based on improved YOLO v3. In Proceedings of the 2019
Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 8386–8390.

38. Tian, D.; Zhang, C.; Duan, X.; Wang, X. An Automatic Car Accident Detection Method Based on Cooperative Vehicle Infrastructure
Systems. IEEE Access 2019, 7, 127453–127463. [CrossRef]

39. Ju, M.; Luo, J.; Zhang, P.; He, M.; Luo, H. A simple and efficient network for small target detection. IEEE Access 2019, 7,
85771–85781. [CrossRef]

40. Liu, M.; Wang, X.; Zhou, A.; Fu, X.; Ma, Y.; Piao, C. UAV-YOLO: Small object detection on unmanned aerial vehicle perspective.
Sensors 2020, 20, 2238. [CrossRef]

41. Bosquet, B.; Mucientes, M.; Brea, V. STDnet: Exploiting high resolution feature maps for small object detection. Eng. Appl. Artif.
Intell. 2020, 91, 103615. [CrossRef]

42. Jiang, D.; Sun, B.; Su, S.; Zuo, Z.; Wu, P.; Tan, X. FASSD: A feature fusion and spatial attention-based single shot detector for small
object detection. Electronics 2020, 9, 1536. [CrossRef]

43. Kampffmeyer, M.; Salberg, A.; Jenssen, R. Semantic segmentation of small objects and modeling of uncertainty in urban remote
sensing images using deep convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, Las Vegas, NV, USA, 27–30 June 2016; pp. 1–9.

44. Noh, J.; Bae, W.; Lee, W.; Seo, J.; Kim, G. Better to follow, follow to be better: Towards precise supervision of feature super-
resolution for small object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul,
Korea, 27–28 October 2019; pp. 9725–9734.

45. Li, J.; Liang, X.; Wei, Y.; Xu, T.; Feng, J.; Yan, S. Perceptual generative adversarial networks for small object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 1222–1230.

46. Deng, C., Wang, M., Liu, L., Liu, Y. & Jiang, Y. Extended Feature Pyramid Network for Small Object Detection. IEEE Trans.
Multimedia 2021, 24, 1968–1979.

47. Liang, Z.; Shao, J.; Zhang, D.; Gao, L. Small object detection using deep feature pyramid networks. In Proceedings of the Pacific
Rim Conference on Multimedia, Hefei, China, 21–22 September 2018; pp. 554–564.

48. Kim, S.; Kook, H.; Sun, J.; Kang, M.; Ko, S. Parallel feature pyramid network for object detection. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 234–250.

49. Liu, Y.; Yang, F.; Hu, P. Small-object detection in UAV-captured images via multi-branch parallel feature pyramid networks.
IEEE Access 2020, 8, 145740–145750. [CrossRef]

50. Liang, X.; Zhang, J.; Zhuo, L.; Li, Y.; Tian, Q. Small object detection in unmanned aerial vehicle images using feature fusion and
scaling-based single shot detector with spatial context analysis. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 1758–1770.
[CrossRef]

290



Sensors 2022, 22, 4339

51. Yamanaka, J.; Kuwashima, S.; Kurita, T. Fast and accurate image super resolution by deep CNN with skip connection and network
in network. In Proceedings of the International Conference on Neural Information Processing System, Long Beach, CA, USA, 4–9
December 2017; pp. 217–225.

52. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z. Photo-realistic
single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 4681–4690.

53. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
54. Xu, L.; Ren, J.; Liu, C.; Jia, J. Deep convolutional neural network for image deconvolution. Adv. Neural Inf. Process. Sys. 2014, 27,

1790–1798.
55. Yang, J.; Wright, J.; Huang, T.; Ma, Y. Image super-resolution via sparse representation. IEEE Trans. Image Process. 2010, 19,

2861–2873. [CrossRef]
56. Shao, Z.; Wang, L.; Wang, Z.; Deng, J. Remote Sensing Image Super-Resolution Using Sparse Representation and Coupled Sparse

Autoencoder. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2663–2674. [CrossRef]
57. Yi, P.; Wang, Z.; Jiang, K.; Shao, Z.; Ma, J. Multi-temporal ultra dense memory network for video super-resolution. IEEE Trans.

Circuits Syst. Video Technol. 2019, 30, 2503–2516. [CrossRef]
58. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video

super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883.

59. Li, J.; Fang, F.; Mei, K.; Zhang, G. Multi-scale residual network for image super-resolution. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 517–532.

60. Li, Z. & Zhou, F. FSSD: Feature fusion single shot multibox detector. arXiv 2017, arXiv:1712.00960.
61. Cao, G.; Xie, X.; Yang, W.; Liao, Q.; Shi, G.; Wu, J. Feature-fused SSD: Fast detection for small objects. In Proceedings of the Ninth

International Conference on Graphic and Image Processing, Qingdao, China, 14–16 October 2017.
62. Van Der Walt, S.; Colbert, S.; Varoquaux, G. The NumPy array: A structure for efficient numerical computation. Comput. Sci. Eng.

2011, 13, 22–30. [CrossRef]
63. 5G Rural Integrated Testbed. 2018. Available online: http://www.5grit.co.uk/ (accessed on 1 July 2019).
64. MONICA Project. 2018. Available online: https://www.Monica-project.eu/MONICA (accessed on 5 January 2020).
65. A Keras Port of Single Shot MultiBox Detector. 2017. Available online: https://github.com/rykov8/ssd_keras (accessed on 5

January 2020).
66. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
67. Tang, T.; Deng, Z.; Zhou, S.; Lei, L.; Zou, H. Fast vehicle detection in UAV images. In Proceedings of the 2017 International

Workshop On Remote Sensing With Intelligent Processing (RSIP), Shanghai, China, 19–21 May 2017; pp. 1–5.
68. Wang, X.; Cheng, P.; Liu, X.; Uzochukwu, B. Fast and accurate, convolutional neural network based approach for object detection

from UAV. In Proceedings of the IECON 2018-44th Annual Conference Of The IEEE Industrial Electronics Society, Washington,
DC, USA, 21–23 October 2018; pp. 3171–3175.

291



Citation: Giernacki, W.; Stępień, S.;
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Abstract: In the paper, a new cascade control system for an autonomous flight of an unmanned aerial
vehicle (UAV) based on Proportional–Integral–Derivative (PID) and finite-time State-Dependent
Riccati Equation (SDRE) control is proposed. The PID and SDRE controllers are used in a hybrid
control system for precise control and stabilization, which is necessary to increase the drone’s flight
stability and maneuver precision. The hybrid PID-SDRE control system proposed for the quadrotor
model is quasi-optimal, since the suboptimal control algorithm for the UAV stabilization is used.
The combination of the advantages of PID and SDRE control gives a significant improvement in the
quality of control while maintaining the simplicity of the control system. Furthermore, the use of the
suboptimal control technique provides the UAV attitude tracking in finite time. These remarks are
drawn from a series of simulation tests conducted for the drone model.

Keywords: state-dependent riccati equation technique; SDRE control; PID control; attitude control;
UAV; quadrotor

1. Introduction

In recent years, there has been a strong trend in the development of control and
estimation techniques for unmanned aerial vehicles (UAVs) [1]. This is mainly due to their
wide availability, which, in combination with photo- and video-recording devices, greatly
extends the scope of their applicability. To operate safely and precisely in an environment
close to humans [2], drones need appropriate hardware and sensory tools as well as efficient
control algorithms.

Currently, a cascade closed-loop control system is widely used [3]. The speed and
precision of control is there based on the outer and inner loops for adjusting the orientation
and position of the drone in 3D space. It usually uses well-known, simple, fixed-value
controllers in the P, PD or PID structure. For an underactuated plant such as a drone, using
four inputs expressing the expected/reference position of the drone and its orientation
around the Z axis (yaw angle) in the observer (Earth) coordinate system, already roughly
selected controller gains allow for a stable, controllable, autonomous flight, which in terms
of image recording from a camera equipped with a stabilizer is more than enough.

The situation is quite different in the cases that require greater precision. Here, more
advanced solutions are sought to ensure fast stabilization in flights with variable mass [4],
mobile manipulation [5], or military missions [6]. Often in military tasks, the vector
correlated with the front of the drone marks the target, and it is necessary not only to
move the drone from point to point but also to orientate and stabilize it in the 3D space
by tracking predefined angles that express the orientation of the drone (roll, pitch, yaw
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angles). This paper is devoted to this application problem, which is still recognized and
classified as one of the key areas of research in the UAV community. In the following
article, the proposed hybrid quasi-optimal PID-SDRE quadrotor control method will serve
to achieve this goal.

The potential of the SDRE control strategy being considered and extended here has
already been validated with the success by the UAV community over the last two decades.
For the first time in the world scientific literature, a non-linear UAV control system based on
state-dependent Riccati equations (SDRE) was proposed in [7], where its aim is to stabilize
a desired velocity vector and the attitude of a multirotor UAV model. In [8], an INS/GPS
sensor fusion scheme was introduced as an alternative to the extended Kalman filter (EKF).
There, the state-dependent Riccati equation navigation filter was tested in the flight scenario.
The aim was to minimize the influence of linearization errors on the tracking performance
of the reference signals. In the paper, one may also find the stability proof of the SDRE
non-linear filter and comparison with the classical EKF filter. Furthermore, in [9], through
the integration process of the differential SDRE filter algorithm and the finite-horizon
SDRE technique, the authors created an efficient online technique to control the missile
guidance system.

The latest research trends in the use of the SDRE method in UAVs are, respectively:

• Development of a flight controller for quad tilt-wing UAV that during its transition
flight (with the change of wing angle) will be able to deal with high nonlinearity in
this situation and provide drone stability [10];

• Development of a suboptimal integral sliding mode trajectory tracking anti-interference
controller based on the state-dependent Riccati equation [11];

• Development of non-linear controllers for cargo UAVs to obtain precise robot flight
and efficient reduction of load oscillations by exploiting the natural coupling between
horizontal UAV movement and payload oscillation [12].

Last but not least (to summarize the state-of-the-art of SDRE methods for UAVs) are
the papers of Nekoo, Acosta and Ollero [13–15]. They are devoted to aerial–acrobatic
maneuvers and collision avoidance of the SDRE controller using the artificial potential
field method.

Except for the SDRE control method, state-of-the-art analysis for UAV control provides
a wide spectrum of approaches, both model-free and model-based [16–18]. In this paper
and research, using the advantages of both, we proposed a hybrid method, in which the
model-free PID control is used to control the UAV’s position, while the model-based finite-
time SDRE method will increase the precision level in tracking the UAV orientation (via
attitude control in inner loop).

The novelty and added value of our work is the development of an original cascade
hybrid finite-time quasi-optimal PID-SDRE quadrotor control system as well as comparative
simulation tests for the problem of stabilization of the set orientation of the drone in a
predefined time horizon.

The new contribution of this work is described as follows:

• Optimal attitude stabilization and control with finite time;
• An increasing precise attitude control method;
• Elimination of the PID stabilizer and the tuning problem.

The paper is organized as follows: In Section 2, the dynamical model of the quadrotor
is presented. Section 3 contains a description of the control system design with the new PID-
SDRE attitude controller, the P-PID attitude controller, and the finite-time SDRE stabilizer,
respectively. The UAV used in simulation experiments, as well as their comprehensive
report and analysis, can be found in Section 4. Finally, the conclusion is drawn in Section 5.

2. Quadrotor Model

In most mathematical models of UAVs, its dynamics is considered for the structure
treated as a rigid body with the mass of the UAV placed in the center of gravity and
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the mass of each of four propulsion units placed symmetrically in the cross-type frame.
Therefore, the rigid body equations of motion are the differential equations that describe
the evolution of the basic states of the quadrotor.

Furthermore, regarding the shape of the drone (Figure 1), and its natural X-type layout
configuration, the North-East-Down (NED) axes convention with regard to the observer’s
coordinate system (the so-called Earth frame—{EF}) is used. In this convention, the x axis
of the UAV’s local coordinate system (body frame—{BF}) follows the camera direction,
the y axis is perpendicular to the right, and the z axis is looking down according to the
right-hand rule, respectively.

Figure 1. AtraxASF UAV used for drone modeling and simulation experiments.

The dynamics of the quadrotor is generally defined using Newton’s force and moment
equations [3]. The force equation is the following

F = m(v̇ + ω × v), (1)

where v is a quadrotor linear velocity, ω is the angular velocity, m is the mass of the aircraft
and F denotes the force vector. For completeness, the moment equation should also be
considered. The equation describes all the moments that act on the aircraft, which are equal
to the rate of change in angular momentum.

M = Iω̇ + ω × Iω, (2)

where I is an aircraft inertia matrix and M denotes the moment vector. When considering
the vector v defined for all components in the direction x, y and z and ω for roll φ, pitch θ
and angle of yaw ψ

v =
[
u v w

]T (3)

and
ω =

[
p q r

]T (4)

then equations of aircraft aerodynamics can be defined for linear and angular speeds.
In addition, because of symmetry, in the inertia matrix, only the diagonal elements
become nonzero

I =

⎡⎣Ix 0 0
0 Iy 0
0 0 Iz

⎤⎦. (5)
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The system of non-linear equations that describes the flight dynamics of aircraft,
considering gravity force g and force due to thrust FT , is the following⎡⎣ u̇

v̇
ẇ

⎤⎦ =

⎡⎣rv − qw + 1
m Fx

pw − ru + 1
m Fy

qu − pv + 1
m Fz

⎤⎦, (6)

⎡⎣ ṗ
q̇
ṙ

⎤⎦ =

⎡⎢⎢⎣
Iz−Iy

Ix
rq + 1

Ix
Mx

Ix−Iz
Iy

pr + 1
Iy

My
Iy−Ix

Iz
pq + 1

Iz
Mz

⎤⎥⎥⎦, (7)

where Fx = k1 ẋ, Fy = k2ẏ, Fz = k3ż, Mx = k4 ϕ̇2, My = k5θ̇2, Mz = k6ψ̇2, and k1, k2, k3 are
translational air drag coefficients, while k4, k5, k6 are aerodynamic friction coefficients.

Equations (6) and (7) are non-linear functions of states, and they have to be easily
formed as the state-dependent coefficient (SDC) form. Therefore, the separation of (6)
and (7) is not complicated because, in general, the variables in the state are in the form
of products.

To describe the aircraft orientation, the kinetic equations should be considered as
functions that transform its angular position from the Earth frame to the body frame⎡⎣φ̇

θ̇
ψ̇

⎤⎦ =

⎡⎣p + (qsinφ + rcosφ)tanθ
qcosφ − rsinφ

(qsinφ + rcosφ)secθ

⎤⎦, (8)

where secθ = 1/cosθ.
To convert between the body frame (BF) and the Earth frame (EF), the following

rotation matrix from BF to EF is used:

RBE =

⎡⎣cosθcosψ sinϕθcosψ − cosϕsinψ cosψsinθcosϕ + cosψsinϕ
cosθsinψ sinψsinθsinϕ + cosϕcosψ sinψsinθcosϕ − cosψsinϕ
−sinθ cosθsinϕ cosθcosϕ

⎤⎦, (9)

where RX(ϕ), RY(θ), and RZ(ψ), are matrices of Euler angles: roll (ϕ), pitch (θ) and yaw
(ψ), defined as

RX(ϕ) =

⎡⎣1 0 0
0 cosϕ −sinϕ
0 sinϕ cosϕ

⎤⎦, (10)

RY(θ) =

⎡⎣ cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

⎤⎦, (11)

RZ(ψ) =

⎡⎣cosψ −sinψ 0
sinψ cosψ 0

0 0 1

⎤⎦. (12)

3. Control System Design

3.1. PID-SDRE Attitude Controller

The quadrotor is an unstable plant. Therefore, a UAV control system should contain a
stabilization subsystem in design to make attitude control fast in response and free from
overshoots. Then, from the point of view of practical implementation and drone usefulness,
both the angular and linear speeds should stabilize. This is a reason why two blocks of
controllers are proposed: one to control the orientation in space by the angular position and
the other to stabilize the angular quadrotor speeds. These requirements can be achieved by
using a PID attitude controller coupled to PID stabilizers. However, the use of PID-type
controllers has affected efforts to tune and achieve optimal performance for the control
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system. Thus, a better idea is to use the PID-SDRE coupled solution or full integrated SDRE
controller, which does not need to be optimized because it is optimal for control purposes.

Taking into account the above, this paper deals with the hybrid PID-SDRE controller
dedicated to attitude control and finite-time stabilization. The control system schema is
presented in Figure 2.

Figure 2. PID-SDRE control schema of the 6 DoF quadcopter model.

As shown, the controller consists of three control units. The attitude control system is
implemented in outer closed-loop systems using the P controller, but the speed stabilization
problem is performed by the inner closed-loop subunit with the PID controller and the
feedback compensator employing the finite-time SDRE control technique. The stabilization
problem can also be realized by the following:

• PID controller without SDRE stabilizer;
• SDRE feedback compensator neglecting PID stabilizer.

This means that the PID speed controller or SDRE speed compensator is redundant
and the system can work as a two-unit and two-closed-loop control system. In this case,
a thrust force FT is set as constant and allows one to obtain the desired altitude. The other
variables contained in Figure 2 denote: x =

[
v ω

]T
=
[
u v w p q r

]T—state

vector of the 6 DoF model, u =
[
Mx My Mz

]T—attitude control vector and error vector

of the attitude angles e =
[
φre f − φ θre f − θ ψre f − ψ

]T .

3.2. P-PID Attitude Controller

The control system presented in Figure 2 includes two PID-based controllers: situated
in the main loop P controller for attitude control and located in the inner loop PID controller
for angular speed control (stabilization). The main P controller operates in the Earth frame
and performs the UAV space orientation task, controlling the attitude angles: roll φ, pitch θ,
and yaw ψ to the reference values. The inner-loop PID controller is used to stabilize the
attitude speeds to zero. The PID-based control system works when fine and optimal tuning
of P and PID controllers is achieved; however, sometimes it is problematic and not easy.

Considering the kinematic relations from Earth to the quadrotor frame, the control
law for the main P controller is as follows

up =

⎡⎣pp
qp
rp

⎤⎦ =

⎡⎣
(
eφ − eψsinθ

)
kpφ(

eθcosφ − eψsinφcosθ
)
kpθ(

eψcosφcosθ − eθsinφ
)
kpψ

⎤⎦, (13)

where

e =

⎡⎣eφ

eθ

eψ

⎤⎦ =

⎡⎣ φre f − φ

θtheta − φ
ψre f − ψ

⎤⎦ (14)

is the error signal e, which is a vector of three elements fed to the P controller. The PID
controller used to stabilize the quadrotor space consists of three independent controllers
for the rolling speed p, the pitching speed q, and the yawing speed r. The output of a PID
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controller uPID=
[
MxPID MyPID MzPID

]T is calculated in the time domain from the
feedback speed error as follows:

uPID = kPω + kI

∫
ωdt + kD

dω

dt
. (15)

The speed error signal is equal to ω, because the reference angular speed is equal to
zero. Then, a three-element vector fed to the PID controller is computed that performs the
proportional, derivative, and integral functions of this signal with respect to time. kP, kI ,
and kD are proportional, integral, and derivative gain matrices:

kP = diag
(

kP p, kPq, kPr

)
,

kI = diag
(

kI p, kI q, kIr

)
,

kD = diag
(

kD p, kDq, kDr

)
.

(16)

The integral matrix gain kI times the integral of the error vector plus the derivative
matrix gain kD times the derivative of the error vector are calculated using its approxima-
tion and creating the digital form of the PID. This is a standard formulation of digital PID
that uses the bilinear transformation of the continuous integral and derivative action [1].

3.3. Finite-Time SDRE Stabilizer

The state-dependent Riccati equation (SDRE) optimal control method is a promising
and rapidly emerging tool for the control of non-linear systems. The technique with further
improvement and a modified approach is widely described in recent literature [19–23].
Scientists can follow the state-dependent Riccati equation (SDRE) approach in the context of
the non-linear control problem with a quadratic objective function [24–27]. The formulation
based on a quadratic objective function is commonly used in practical solutions because
the objective function defines energy, i.e., energy lost and delivered to the system, which is
compatible with practical applications.

The finite-time control problem consists of finding an optimal control law that mini-
mizes the following objective function defined for control time t f [28]

J(u) = 1/2xT(t f )S(x(t f ))x(t f ) + 1/2
∫ t f

0

(
xT Q(x)x + uT R(x)u

)
dt (17)

subject to non-linear dynamics for affine systems

ẋ = F(x) + B(x)u. (18)

Non-linear dynamics (18) can be written using the state-dependent coefficient (SDC)
form [29]

ẋ = A(x)x + B(x)u, (19)

where S(x) and Q(x) are symmetric, positive semi-definite weighting matrices for states, and
R(x) is the symmetric, positive definite weighting matrix for control inputs. Equation (18)
includes the vector F(x), which is piecewise continuous in time and smooth with respect to
its arguments, and that satisfies the Lipschitz condition.

Taking into account the SDC approximation (19), if the pair A(x), B(x) is a stabilizable
parameterization of the system, then to check the controllability of the affine system,
this pair in the linear sense should be controllable. On the other hand, checking the
controllability of that pair does not require state or control input information [19,21,27]. It
can be simply checked by the matrix

M(x) =
[
B(x) A(x)B(x) . . . An−1B(x)

]
(20)
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often called the controllability matrix. Then, the system (18) or (19) is controllable if the
controllability matrix (20) has full rank.

Employing Hamiltonian theory, the optimal control law is as follows

u = −R(x)−1B(x)T K(x)x, (21)

where K(x) is a state-dependent feedback compensator that can be obtained from the
solution of a state-dependent differential Riccati equation (SDDRE)

K̇(x)+ K(x)A(x)+ A(x)T K(x)− K(x)B(x)R(x)−1B(x)T K(x)+ Q(x) = 0. (22)

Equation (22) is in the form of a differential SDRE for affine systems and must be
solved many times for each x throughout the control process with the final condition
K(x(t f )) = S(x(t f )). The solution of the equation exactly results in suboptimal control
because it neglects the so-called ’SDRE necessary condition for optimality’, which tends
to zero [19,23,27]. Equation (22) known as differential SDRE or shortly SDDRE (State-
Dependent Differential Riccati Equation); it can be solved numerically employing different
algorithms. In the literature, there are many efficient algorithms dedicated to finding a
solution of the SDDRE. The most popular are: backward iteration, state transition matrix
approach, Lyapunov-based method, Riccati root method, etc. [30].

4. Experimental Results

4.1. UAV Used in Simulation Experiments

In the conducted experiments with the use of MATLAB/Simulink environment, a dy-
namical model of a military AtraxASF drone (shown in Figure 1) was used. AtraxASF
is a quadrotor specially designed to perform precise test flights to inspect wild animals,
especially in terms of detecting wild boars suffering from ASF (African swine fever). It
was built as part of the research and development project financed by the National Center
for Research and Development (Poland) and constructed by the Air Force Institute of
Technology (ITWL, Warsaw, Poland). The UAV is equipped with a high-resolution thermal
imaging sensor and has the following parameters:

• Take-off mass: 13 kg,
• Max. flight time: 40 min,
• Flight range: 4.5 kg,
• Optimal flight speed: 30 km/h,
• Max. flight speed: 60 km/h.

This military UAV was chosen to be modeled, as the authors of this article have all the
UAV data (some can be provided on request) and its hardware and software characteristics
gathered and verified during laboratory, test stand, and flight tests with AtraxASF.

4.2. Simulation Experiments

The non-linear UAV model is applied to check the PID-SDRE control for attitude and
stabilization when it tries to find the desired angular position during flight or take-off.
Using the governing equations that describe the UAV aerodynamics in SDC form (19),
the control problem consists of finding the φ, θ, and ψ moments with trust generated by
UAV rotors. As defined in (6) and shown in Figure 2, the thrust acts positively along the
positive body axis z. To perform the attitude control, to adjust its ψ angle, or to make it turn
left or right, the vehicle applies more thrust to one set of motors generating ψ moment. φ
and θ are adjusted by applying more thrust to one rotor and less to the other opposing rotor,
generating φ and θ moments. In this simple way, rolling, pitching, or yawing moments are
generated. According to the control schema proposed in Figure 2, the control applied to
the UAV is a sum of the PID control and the SDRE stabilizator control, where the controller
outputs are φ, θ, and ψ moments. Z-axis force related to altitude is assumed to be constant,
and the forces on the x and y axes generated by the controller are neglected. Therefore,
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the output of an SDRE subcontroller uSDRE =
[
MxSDRE MySDRE MzSDRE

]T is calculated
from (21). Using the described UAV model, the PID-SDRE control technique is applied
to control the UAV attitude considering finite-time horizon SDRE feedback compensation
for stabilization. To be exact, as shown in Figure 2, the attitude is controlled by the P
controller (13), but the PID stabilization works, zeroing angular speeds (15). An additional
SDRE feedback compensator additionally stabilizes the UAV angular position and makes it
possible not only in finite time but also for rapid attitude changes. Briefly, the PID-SDRE
method makes possible rapid response for user commands and moreover enables rapid
stabilization of the path of flight when unexpected external forces try to change its position
and orientation during flying action. Taking into account the above, the control problem
consists of finding the state dynamics of the UAV and the PID-SDRE controls for the
prescribed attitude for φre f = 30 deg, θre f = 45 deg, ψre f = 15 deg with and reference
angular speed pre f = 0 deg/s, qre f = 0 deg/s, rre f = 0 deg/s.

In association with (13), the gains of the P attitude controller are: kPφ = 10,
kPθ = 20, kPψ = 100. PID stabilizer gains (15) are chosen as: kP = 0, 3I3×3, kI = 0, 1I3×3,
kD = diag(0.01, 0.01, 0.0) and finally, the quadratic functional cost weighting matrices de-
fined in (22) are as follows: S = 2I6×6, Q = 0, 5I6×6 and R = 0, 1I6×6.

The dynamics of the state of the UAV, in other words, the speed response, including
its orientation to the desired angle position, is shown in Figures 3 and 4. The UAV attitude
control has been activated at time t = 1 s; then, the UAV angulary has been moved from
the “zero” attitude to the reference angular position. First, simulations are performed for
the UAV controlled by the P and PID stabilizer only, neglecting the SDRE stabilizer.

Looking at the above figures (Figures 3 and 4), the angular position and speed re-
sponses are quick due to the large gains in the P-controller. However, the presented P-PID
technique controls the attitude with overshoots and oscillations. Generally, the control
works and is easy to implement; however, the system fails in precision operation in airspace.
In this type of control, stabilization and improvement of accuracy seems to be necessary.

Next, simulations are performed for the complete PID-SDRE controller to show how
the UAV can stabilize in a finite time t f in the context of angular speeds. To verify precision
and rapidity and to compare the proposed technique considering the SDRE-based method
with the commonly used PID technique, a numerical experiment is performed three final
times: t f = 4 s, t f = 2 s, and t f = 1 s with the same reference attitude. The simulation
results are presented in Figures 5–10 with the impact of the successively reduced control
time t f from 4 to 1 s.

Figure 3. UAV angular response—PID control mode.
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Figure 4. UAV angular speed response—PID control mode.

Figure 5. Angular response of UAV—PID-SDRE control mode, t f = 4 s.

Figure 6. UAV angular speed response—PID-SDRE control mode, t f = 4 s.
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Figure 7. Angular response of UAV—PID-SDRE control mode, t f = 2 s.

Figure 8. UAV angular speed response—PID-SDRE control mode, t f = 2 s.

Figure 9. Angular response of the UAV—PID-SDRE control mode, t f = 1 s.
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Figure 10. UAV angular speed response—PID-SDRE control mode, t f = 1 s.

When looking at and analyzing Figures 5 and 6, the proposed PID-SDRE control shows
that the quadrotor can be successfully controlled to referenced angles, zeroing angular
speed, and reducing or eliminating overshoots. As expected, the referenced attitude is
reached at the control time t f = 4 s. When considering the following Figures 7–10, the same
results are obtained for different control times t f = 2 s and t f = 1 s. Therefore, the insertion
and use of the SDRE optimal stabilizer in the standard PID control system increases the
complexity of the controller, making a hybrid PID-SDRE controller appropriate, because it
allows for avoiding oscillations and allows the possibility of operating in airspace with high
precision and adjustable control time t f . The results presented as an effect of performed
numerical experiments prove the usefulness and correctness of the proposed technique;
moreover, they allow us to verify its behavior.

5. Conclusions

The hybrid PID-SDRE finite-time control technique is formulated and solved for the
UAV-quadrotor attitude control problem. The UAV non-linear 6 DoF state-dependent
parametrized model is proposed. The P-PID fine-tuned control methodology with an optimal
non-linear SDRE feedback speed stabilizer, performing attitude control and stabilization task,
is analyzed. The effectiveness of the presented technique is demonstrated in a numerical
example in which a UAV response is found using a finite-time SDRE-based technique.
The presented results show that the proposed technique can be successively applied to
UAV flight control systems when it must operate precisely in airspace. The next step of the
analysis and research performed is preparation for application in a real UAV control system.
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Abbreviations

The following abbreviations are used in this manuscript:

BF Body Frame
EF Earth Frame
EKF Extended Kalman Filter
GPS Global Positioning System
INS Inertial Navigation System
NED North-East-Down
PID Proportional–Integral–Derivative Controller
QTW UAV Quad Tilt-Wing Unmanned Aerial Vehicle
SDC State-Dependent Coefficient
SDRE State-Dependent Riccati Equation
UAV Unmanned Aerial Vehicle
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Abstract: Low-altitude flight in mountainous terrains is a difficult flight task applied in both military
and civilian fields. The helicopter has to maintain low altitude to realize search and rescue, reconnais-
sance, penetration, and strike operations. It contains complex environment perception, multilevel
decision making, and multi-objective flight control; thus, flight is currently mainly conducted by
human pilots. In this work, a control framework is implemented to realize autonomous flight for
unmanned helicopter operations in an unknown mountainous environment. The identification of
targets and threats is introduced using a deep neural network. A 3D vector field histogram method
is adopted for local terrain avoidance based on airborne Lidar sensors. In particular, we propose
an intuitive direct-viewing method to judge and change the visibilities of the helicopter. On this
basis, a finite state machine is built for decision making of the autonomous flight. A highly realistic
simulation environment is established to verify the proposed control framework. The simulation
results demonstrate that the helicopter can autonomously complete flight missions including a fast
approach, threat avoidance, cover concealment, and circuitous flight operations similar to human
pilots. The proposed control framework provides an effective solution for complex flight tasks and
expands the flight control technologies for high-level unmanned helicopter operations.

Keywords: autonomous flight control; unmanned helicopter operation; terrain avoidance; visual
servo control; threat avoidance

1. Introduction

Unmanned aerial vehicles (UAVs) have received substantial interest from the research
community and the general public alike in recent years [1,2], especially small UAVs and
multi-rotors, whose low cost and convenient use provide ideal testbeds and development
impetus for innovative technologies of control approaches [3,4], advanced intelligent
perception [5], and complete autonomy [6–9]. Small and medium UAVs can hardly meet the
demands of high payloads and long flight distances. Therefore, more and more large-scale
UAVs are being developed to provide long-endurance flights and perform various missions
like manned aircraft. There are also related research projects developing independent
autonomous equipment [10,11] or executing modifications [12] to convert manned aircraft
to UAVs. There is a great need to investigate autonomy flight technologies for application
scenarios of large-scale UAVs, manned aircraft, and helicopters for unmanned operations.

Helicopters demonstrate unique characteristics of maneuverability and low-speed
performance, significantly extending their application in both military and civil fields [13].
With the development of advanced sensing devices and technologies, various sensor sys-
tems including cameras, radar, laser/light detection and ranging (Lidar), electro-optical
(EO) system, acoustic system, and infrared (IR) sensors are deployed on helicopters to
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realize a higher level of perception and automation [14,15]. Researchers have been mo-
tivated to investigate autopilot technologies based on multi-source information percep-
tion to complete typical helicopter missions, such as target tracking [16–18], autonomous
landing [16,19,20], and obstacle avoidance [21–24]. There have also been some stud-
ies of unmanned helicopter operations focused on specific flight scenes and missions.
Gimenez [25,26] presented a transportation system for carrying a suspension payload
through two helicopters considering collision avoidance, wind disturbance, and reasonable
distribution of load weight. A ship–helicopter cooperative system was extensively inves-
tigated to allow helicopters to automatically approach and land on vessel decks [27–30].
Many studies demonstrated the landing performance of helicopter recovery on the vessels
under visual guidance [31,32]. Chen [33] presented an efficient algorithm for the path-
planning problem of multiple-helicopter formations in a realistic environment. Different
solutions and control frameworks for formation flight and formation reconfiguration can
be found in [34–36]. Recently, some new control frameworks including deep reinforcement
learning framework [37,38] and genetic fuzzy trees [39] were applied and achieved good
results. Chamberlain [40] presented an autonomy package allowing a full-scale unmanned
helicopter to automatically fly through unmapped, obstacle-laden terrain, find a landing
zone, and perform a safe landing near a casualty, all with no human control or input.
Nikolayevich [41] proposed a new method based on enhanced 3D motion primitives for 3D
path planning close to the flight dynamics limits of helicopters, enhancing their assistance
and autonomy in missions. Schopferer [42] studied onboard and online flight path planning
for small-scale unmanned rotorcraft to plan safe, dynamically feasible, and time-efficient
flight paths using cubic splines. To summarize, the existing studies of unmanned helicopter
operations mainly focused on basic tasks such as path planning, target tracking, and ob-
stacle avoidance. Due to the lack of a higher level of autonomy and integrated control
frameworks, few adequate solutions of complex tasks with diversified flight missions have
been proposed.

Low-altitude flight in complex mountainous terrains is a difficult flight task applied
in many fields. Especially for military applications, a low-altitude penetration flight is
a typical example making use of the ultralow-altitude maneuvering of helicopters, so
as to effectively use the terrain to avoid the detection and threat of the defense system,
as well as improve flight survivability. Low-altitude flight is also widely used in civil
fields for low-level reconnaissance, remote site material delivery, search and rescue, and
casualty evacuation. Matthew [43] studied the low-altitude flight of a full-scale helicopter
in complex terrains and demonstrated a tight integration of terrain avoidance, control, and
autonomous landing. During the low-altitude flight, increasing levels of concealment are
achieved by adopting different tactics such as terrain following, terrain avoidance, and
threat avoidance [44]. For low-altitude flight, obstacle avoidance and terrain avoidance are
the core flight tasks [45]. Zheng [46] designed a real-time flight control algorithm combin-
ing the fuzzy obstacle avoidance algorithm with the L1 control algorithm for helicopter
low-altitude flight in complex environment. Chandrasekaran [47] reviewed helicopter
wire strike protection and prevention devices for low-altitude flight, and carried out a
multicriteria decision-making analysis to rank different wire strike prevention methods.
Merz [48] introduced a system enabling robotic helicopters to fly safely without user inter-
action at low altitude over unknown terrain with static obstacles. Wang [49] proposed a
collision avoidance strategy method and the corresponding calculation approach of optimal
collision avoidance for small unmanned helicopters in low-altitude applications. There
have also been many studies focusing on UAV obstacle avoidance in dynamic building
environments [50,51]. Low-altitude flight also involves threat/target identification, visi-
bility judgement, multilevel decision making, and multi-objective flight control. It poses
a challenge to the implementation of unmanned operations. To automatically realize un-
manned low-altitude flight like human pilots. It is necessary to establish an integrated
control framework, which was rarely studied systematically in previous research.
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In this research, the unmanned helicopter operations of low-altitude flight in complex
mountainous terrains are investigated in detail. The flight scenes and mission requirements
of low-altitude flight are discussed considering target/threat recognition and decision mak-
ing on the basis of the recognition result. Low-altitude flight is divided into several basic
tasks: target/threat recognition, target tracking, threat avoidance, and terrain following.
We developed the control methods of the basic tasks according to the application scenarios
of the mountainous terrains. A new method for judging target visibilities is proposed,
which is inspired by the human perceptual method and is especially suitable for a complex
and unknown environment. Then, we combined the basic tasks and established a coupled
control method to realize flight missions including active approaching, threat avoidance,
and circuitous flight operations. The control methods presented in this research were
verified through high-realistic flight simulations.

The remainder of the paper is organized as follows: we briefly describe the mission
requirements of low-altitude flight in mountainous terrains and present the modeling
method of the simulation environment in Section 2; the implementation of target recogni-
tion, visual servo control, and terrain avoidance is investigated in Section 3, which also
contains simulation verification and performance evaluation; Section 4 details the visibil-
ity judgment method and proposes the overall control framework based on a finite state
machine; Section 5 presents the simulation validation of the proposed control framework;
lastly, the conclusions are summarized in Section 6.

The main contributions and innovations of this research are listed as follows:

• We extend the low-altitude penetration flight by introducing target recognition and
threat determination into the existing tactics [52–54], providing a wide perspective for
the complicated flight tasks and various flight scenes of helicopter low-altitude flight.

• The helicopter visibility with respect to ground threats or specific facilities is inves-
tigated in this research, which was rarely studied in previous studies about threat
avoidance or survivability assessment [55,56]. We also propose a direct viewing
method to judge and change the visibility quickly and robustly.

• On the basis of the visibility judgement, an integrated control framework is established
using the finite state machine. Compared with many existing studies [13,19,40,47,57],
this framework focuses on solving complex multi-objective flight tasks and realizing
unmanned helicopter operations of cover concealment and circuitous flight similar to
human pilots.

2. Problem Formulation

2.1. Low-Altitude Flight in Complex Mountainous Terrains

Low-altitude flight is generally applied for mountainous or undulating terrains, where
helicopters can make full use of the terrain to block detection and give full play to the
advantages of mobility. Here, the low-altitude penetration flight used in military fields
provides a great example which covers massive flight scenes of the low-altitude flight.
We intend to state the basic tasks of the penetration flight and extend them to develop
a more comprehensive control framework for the low-altitude flight. The main feature
of penetration flight is maintaining a low flight altitude to avoid radar detection, and
flying covertly to avoid ground defense and various detectors. To increase the level of
concealment, TF/TA2 tactics [58] have been developed and adopted as typical flight tasks
of the penetration flight. The tactics are described as follows:

• Terrain following: flight maneuvering with the terrain contour in the vertical plane
according to the predetermined minimum ground clearance. This penetration method
can use terrain cover and reach the destination in a short time.

• Terrain avoidance: flight maneuvering in the azimuth plane, flying around moun-
tains and other tall obstacles. This penetration method can make full use of the
terrain as cover and facilitate hiding, but increases the likelihood of colliding with
terrain obstacles.
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• Threat avoidance: flight maneuvering in the azimuth plane, avoiding detection and
weapon attacks, fully approaching the target, realizing sudden attacks, and reducing
enemy interference.

The above tactics constitute the basic needs of the penetration flight, but there is still a
lack of an integrated decision-making framework or specific maneuvering methods when
facing various flight missions. Therefore, we extend the above tactics, and put forward
broader flight tasks as follows:

• Target/threat recognition: identifying the target/threat facilities during the flight and
determining the threat degrees; making maneuvering decisions on the basis of the
recognition result.

• Target approaching: identifying the target using airborne cameras, tracking and
approaching the target through visual servo control, avoiding terrain obstacles, and
maintaining the ability to approach the target when it is blocked or temporarily lost.

• Cover concealment: when a threat is detected, finding cover through the terrains and
moving to the terrain cover to escape the threat; discriminating and changing the
helicopter’s visibility through flight maneuvers.

• Circuitous flight: comprehensive flight maneuvering around the terrain, avoiding the
threat, and following the terrain contour near the predetermined heading, so as to
finally reach the destination safely.

In this work, we focus on the implementations of the unmanned helicopter operations
of these flight tasks. Furthermore, we build a decision-making framework which can
autonomously deal with different flight tasks without human intervention.

2.2. Modeling Method of the Simulation Environment

A helicopter exhibits six-degree-of-freedom rigid-body dynamics. The flight dynamic
equations are as follows:

.
V =

F
m

− ΩV, (1)

.
S = I−1M − I−1ΩIS, (2)

.
α = ES, (3)

.
P = RBGV, (4)

where V = [u v w]T is the linear velocity, S = [p q r]T is the angular velocity, α = [ϕ θ ψ]T

is the Euler angle of roll, pitch, and yaw, P = [X Y Z]T is the position vector in ground
coordinates, m is the mass of the helicopter, and F and M are the forces and moments of the
components of the helicopter.

I is the moment of the helicopter inertial matrix, Ω is the angular rate antisymmetric
matrix, RBG is the conversion matrix from body coordinates to ground coordinates, and E
is the conversion matrix from body angular velocity to Euler angular velocity.

RBG =

⎡⎣cos θ cos ψ sin θ sin ψ cos ψ − cos ϕ sin ψ sin θ cos ϕ cos ψ + sin ϕ sin ψ
cos θ cos ψ sin θ sin ϕ sin ψ + cos ϕ cos ψ sin θ cos ϕ cos ψ − sin ϕ sin ψ
− sin θ sin ϕ cos θ cos ϕ cos θ

⎤⎦. (5)

E =

⎡⎣1 sin ϕ tan θ cos ϕ tan θ
0 cos ϕ − sin ϕ
0 sin ϕ/ cos θ cos ϕ/ cos θ

⎤⎦. (6)

For the helicopter dynamic model, F and M are generated by the aerodynamic forces
of the fuselage and the control forces which originate from the main rotor thrust and tail
rotor thrust. The helicopter has large aerodynamic interference and is a highly coupled
complex dynamic system, which makes it difficult to establish a fully dynamic model.
Therefore, the linearized dynamic model was adopted in this research to simulate the
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helicopter dynamic responses. The linearized model is obtained through frequency-domain
identification of the flight experiment, and it is widely used in helicopter controller design
and dynamic characteristic analysis. The complete linearized dynamic model can be
illustrated in state-space representation as follows [59]:

.
x = Amx + Bmu, (7)

where Am and Bm are the system matrix and control matrix at different equilibrium points,
establishing a linear-parameter-varying (LPV) helicopter dynamics model.
x = [u w q θ v p φ r ψ] is the state vector and u = [δeδcδaδp] is the control input vector,
where δc is the collective control input of the main rotor blade, δe and δa are the cyclic
control inputs giving the explicit pitch in longitude and lateral directions, and δp is the
collective pitch for the tail rotor.

Cascade PID (proportion integration differentiation) controllers were adopted to re-
alize the low-level control of the helicopter. As shown in Figure 1, the helicopter control
system was divided into the longitude channel, lateral channel, altitude channel, and
yaw channel. For each channel, an independent cascade PID controller was applied. The
inner loop controllers maintain the attitude stability, while the middle loop and outer
loop controllers are used to track speed or position commands. The stability analysis
and convergence of the cascade PID framework are essential for the controller implemen-
tation, but beyond the scope of this work. A detailed analysis can be found in [51] for
further discussion.

(a) 

(b) 

Figure 1. Cont.
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(c) 

(d) 
Figure 1. Cascade PID controllers of the helicopter control channels: (a) longitude channel; (b) lateral
channel; (c) altitude channel; (d) yaw channel.

It should be mentioned that helicopters have multiple flight mode transitions arising
from the complicated aerodynamic nature of thrust generation, while the control channels
are strongly coupled. Various flight control methodologies have been developed for the
flight control system of helicopters to improve the flight performance, which is beyond
the scope of this research. We used simple and decoupling low-level controllers to clearly
explain the implementation of visual servo control and terrain avoidance. In addition, the
simple controllers used in this study would cause more oscillations and longer adjustment
time during the flight. This required a high-level control framework to provide more
margins in the design stage, forcing the control framework to be more adaptive and
practical for engineering realizations.

A simulation based on realistic scenarios is a crucial part of testing algorithms. We
built the simulation environment using the Unreal Engine package to visualize scenarios
with realistic graphics and generate sensor data. A co-simulation framework was used to
realize the communication interface between Unreal Engine and MATLAB Simulink, as
shown in Figure 2. For each simulation step, the helicopter dynamic model received the
flight control signals and updated the flight state. The flight state was sent to the simulation
environment through a communication interface, driving the Unreal Engine to realize real-
time virtual rendering. Various sensors were modeled to obtain ground-truth data in the
simulation environment. The established control framework receives the sensor data and
output control signals to the helicopter model, forming a closed-loop simulation system.
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Figure 2. Closed-loop system of the realistic simulation environment.

A realistic scenario based on a mountainous map was built to carry out flight sim-
ulations of the low-altitude flight, as shown in Figure 3. We set up natural terrains and
different facilities in the scenario. The terrains and facilities were built using static meshes,
which could be detected by the virtual Lidar sensors of the helicopter. The virtual camera
was mounted around the helicopter to obtain visual information. Benefitting from the
powerful lighting, rendering, and mapping ability of Unreal Engine package, the virtual
camera was able to display real-scene lighting effects such as area shadows and diffuse
reflection, providing a high-fidelity simulation environment for this research.

 

Figure 3. Realistic scenario of the mountainous terrain.

3. Target Tracking and Terrain Avoidance

3.1. Target Tracking
3.1.1. Target Recognition

For a low-altitude flight, the flight map information and accurate facility positions are
generally unknown. Detecting targets and evaluating threat degrees represent the basis of
decision making in unmanned helicopter operations. We expect that the target recognition
method should be able to cover different types of targets as best as possible to deal with
various unknown facilities that may appear in mountainous terrains. In this research,
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target recognition was realized using the YOLOv2 network, which can be trained offline on
labeled images to cover a large number of target features [60]. The YOLO model runs a deep
learning CNN (convolutional neural network) on an input image to decode the predictions
and generate bounding boxes, as shown in Figure 4. The detection network contains a
series of conventional, batch norm, and rectified linear unit (ReLU) layers. By labeling and
adding training samples of specific scenes, the YOLO model can better recognize distant or
fuzzy targets.

Figure 4. Structure of the YOLO Network.

The YOLO network introduces anchor boxes to improve the speed and efficiency for of
detection. The anchor boxes are defined on the basis of object sizes in the training datasets.
During detection, the predefined anchor boxes are tiled across the image. The position of
an anchor box is determined by mapping the location of the network output back to the
input image. The object detectors learn offsets to apply to each tiled anchor box, refining
the anchor box position and size. The network predicts five coordinates for each bounding
box: tx, ty, th, tw, and to. The cell is offset from the top left corner of the image by (cx, cy),
and the bounding box prior has width and height pw, ph; the predictions can be drawn
as follows:

bx = s(tx) + cx, (8)

by = σ(ty) + cy, (9)

bw = pwetw , (10)

bh = pheth , (11)

Pr(object)× IOU(object, b) = s(to), (12)

where, bx, by, bh, and bw are the box position and size parameters, σ refers to the sigmoid
function, and σ(to) is the value of confidence after sigmoid transformation. For target
recognition in low-altitude flights, the anchor boxes of the YOLO network provide the
target dynamics within the sight ranges. The positions and sizes of anchor boxes also imply
the relative position and attitude information of the target, which can provide the basis for
the visual servo control.

The detection efficiency and generalization capabilities of the YOLO network depend
on the number and diversity of training data. Without loss of generality, we extracted
the images of some buildings and vehicles in the simulation environment as recognition
targets. The images were manually calibrated to form a training dataset, and the network
was trained using the SGDM (stochastic gradient descent with momentum) method. The
precision of the trained detector at varying levels of recall is shown in Figure 5. The YOLO
network can be replaced by frontier and stronger algorithms to obtain better recognition
performance, but it was considered fairly effective for the overall control framework of
this research.
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Figure 5. Precision–recall (PR) curve of the YOLO network.

3.1.2. Visual Servo Control

Visual servo control is an important part of unmanned helicopter operations in low-
altitude flight. It can also help verify the stability of the YOLO detector and the effectiveness
of the proposed helicopter controllers in this research. Therefore, we designed a typical
flight task to carry out flight simulations on the basis of visual servo control. The helicopter
identified the target through the YOLO detector, and then automatically hovered around
the target, as shown in Figure 6. This has been used as the ground target tracking method
of fixed-wing aircrafts [61,62]. For helicopters, we let the helicopter always head to the
target, move horizontally through lateral maneuvers, and finally hover around the target.

Figure 6. Circling flight around the target.

The commonly used methods of visual servo control can be divided into position-
based visual servo (PBVS), image-based visual servo (IBVS), and end-to-end visual servo.
PBVS establishes the mapping relationship between the image signal and the helicopter
pose, calculates the pose information, and compares it with the required pose to form a
closed-loop control. As PBVS needs accurate image signals, even a small error in the image
measurements can lead to a large offset in the pose estimation. IBVS directly compares
the image signal measured in real time with the image signal of required pose and uses
the obtained image error for feedback control. The end-to-end servo method takes the
captured image as the input, and directly outputs the control signals by constructing neural
networks. However, there exist challenges including time complexity and servo stabilities
when using this method. For a low-altitude flight, the target is generally unknown and
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far away from the helicopter. It is difficult to extract a characteristic point of the image
and calculate relative pose information using PBVS. Therefore, we adopted IBVS to realize
visual servo control; the control framework is illustrated in Figure 7. We used the size and
position of the anchor boxes provided by the YOLO network as the control commands of
the helicopters control channels. The control commands were calculated as follows:

Sbox = bwbh, (13)

uRe f = −ku(Sbox − Sdes), (14)

rRe f = −kr(bx − bmid), (15)

vRe f = Vdes − α1(Sbox − Sdes)− α2(bx − bmid), (16)

uRe f =

{
u f orward, St = 0, by

t−k > 0
ubackward, St = 0, by

t−k < 0
, (17)

where Sbox represents the area of the anchor box, which characterizes the distance from
the helicopter to the target. We defined a desired box area Sdes that points to the desired
distance, and counted the error during feedback to the control command of linear velocity
uRe f . ku is the control gain. The target center is restricted to the horizontal center of the
image to ensure that the helicopter is always oriented to the target. The error between target
center bx and image center bmid is calculated and multiplied by the control gain kr as the
control command of the yaw rate rRe f . We set Vdes as the desired lateral velocity and correct
it through the errors of box area and helicopter orientation to generate the control command
of lateral velocity vRe f , as shown in Equation (16), where α1 and α2 are the correction factors.
In this way, priority is given to the helicopter maintaining its distance and orientation to
the target, and then maneuvering laterally to hover around the target. Furthermore, in case
the target is lost and deviates from the image, i.e., the anchor box area becomes 0, we preset
longitudinal flight maneuvers to retrieve the target, as shown in Equation (17). When the
target disappears from the top of the image, and the vertical coordinate of the target center
before disappearing is positive (by

t−k > 0), the helicopter will fly forward to approach the
target; otherwise, it will fly backward with linear velocity ubackward.

Figure 7. Visual servo control of the circling flight.

According to the above control frame, the IBVS method was established, and the
control gains were determined. We set up the initial positions of helicopter and target, and
we carried out flight simulations. The virtual camera was mounted under the helicopter
body with a downward pitch angle of 20◦. The sample time of the virtual camera was set as
0.01 s and the resolution of each frame was set to 640 × 360 to maintain image accuracy and
detection efficiency. The flight path of the helicopter hovering around the static target is
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shown in Figure 8. It can be seen that the helicopter approached the target from a distance
and gradually maintained a stable circular trajectory. The linear velocity of the helicopter
contained high-frequency oscillations caused by the visual servo control, but the overall
trend was regular and stable, as shown in Figure 9. Figure 10 shows the anchor box size
during the flight. The width and height of the anchor box changed periodically in a large
range, which was caused by the different target poses under different viewing angles.
The target was lost at some point and could be retrieved rapidly to continue tracking.
On the basis of simulations around static targets, we carried out flight simulations to
circle and hover around a moving target. The flight path is illustrated in Figure 11, which
demonstrates the effectiveness of the control framework. Therefore, the proposed IBVS
method can be further applied in low-altitude flight.

Figure 8. Flight path of the helicopter hovering around a static target.

Figure 9. Helicopter linear velocities during a circling flight.
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Figure 10. Anchor box size during a circling flight.

Figure 11. Flight path of the helicopter hovering around a moving target.

3.2. Terrain Avoidance

Terrain avoidance is a basic task in low-altitude flight, whereby the helicopter senses
objects according to the airborne sensors, and autonomously executes obstacle avoidance
and path planning in an unknown environment. Therefore, the global obstacle avoidance
methods which rely on complete prior information are generally inappropriate. Moreover,
low-altitude flight generally requires a helicopter to reach the destination rapidly to re-
duce flight time and risks. A reactive local obstacle avoidance method is more adaptable
compared with a global mapping method. The terrains of mountainous areas are compli-
cated and contain various environment objects. Radar and Lidar equipment have been
commonly used for manned helicopters to sense and avoid terrain obstacles in mountain-
ous terrains. Considering the sensing equipment, algorithm efficiency, spatial complexity,
and application scenes, the 3D VFH (vector field histogram) method based on Lidar sen-
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sors was established to realize terrain avoidance for unmanned helicopter operations in
this research.

The 3D VFH algorithm originates from the widely used VFH algorithm in a 2D
environment. It does not need specific map information, but it can provide multiple paths
to maintain different requirements by designing different path weights, which is especially
suitable for low-altitude flight. For 3D environment applications, the 3D VFH method
divides the voxels near the helicopter into multiple cells through the two dimensions of the
azimuth angle βz and the elevation angle βe, as shown in Figure 12. The spherical voxels
unfold into a 2D primary polar histogram, where each cell represents the possible direction
of the helicopter.

Figure 12. Formation of the 2D primary polar histogram.

We built a virtual Lidar sensor which was fixed under the helicopter cockpit in the
simulation environment. It enabled the helicopter to sense the surrounding terrain obstacles
in a determined range. The vertical and horizontal fields of view of the Lidar sensor were
set as 60◦ and 360◦, respectively. The detection range was set to 300 m to maintain the
effectiveness and data scale. As shown in Figure 13, the Lidar sensor generated the point-
cloud data in an ellipsoid range centered on the helicopter.

 
Figure 13. Generation of point-cloud data of virtual Lidar sensor.
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For any node Pi of the point-cloud data, we assume the coordinates (xi, yi, zi). The
azimuth angle and elevation angle can be calculated using Equations (18) and (19), where α
is the resolution of the 2D polar histogram, and the floor function creates natural numbers
as the coordinates of the 2D primary polar histogram. Using the point-cloud data, we can
evaluate the distance and size of terrain obstacles to calculate the risk weights, and add
them to the 2D primary polar histogram. The weight of the voxels can be calculated using
Equation (20), where op is the occupancy certainty, lP is the Euclidean distance, which is
influenced by the helicopter radius, safe radius, and voxel size, and a and b are predefined
constant values. The detailed derivations can be found in [63].

βz = floor(
1
α

arctan
xi
yi
). (18)

βe = floor(
1
α

arctan
zi√

xi
2 + yi

2
). (19)

Hz,e =

⎧⎨⎩ ∑
P

op
2(a − blP) , if e ∈

[
βe − λ

α , βe +
λ
α ] and z ∈

[
βz − λ

α , βz +
λ
α

]
0, otherwise

. (20)

The 2D primary polar histogram presents a simplified description of collision risks
at different directions. A 2D binary polar histogram was established to further reduce
the information. This was accomplished by comparing every cell in the 2D primary polar
histogram with a threshold τ. The size of the threshold depends on the helicopter radius,
flight speed, sensor resolution, and bounding sphere size. When the cell weight is higher
than τ, the point will be 1 in the 2D binary polar histogram. When the value is lower than
τ, the point will be 0 in the 2D binary polar histogram.

The VFH method searches for available paths and detects openings by moving a
window around the 2D binary polar histogram. This window marks the path passable if all
the elements in the window are equal to 0. It defines three path weights combined for the
candidate direction to select the path with lowest path weight μ, as shown in Equation (20).
The first path weight μ1 is used to multiply the difference between the target angle kt and
the candidate direction vc. The second path weight μ2 multiplies the difference between the
helicopter yaw angle ψ and the candidate direction vc. The last path weight μ3 multiplies
the difference between the previous selected direction kt−1 and the candidate direction
vc. The function Δ (x, y) calculates the difference between the two direction vectors. By
changing the path weights, multiple flight paths with different preferences can be obtained.
For low-altitude flight in mountainous terrains, we can change the path weight allowing
the helicopter to maintain low-altitude flight using turning motions or climbing motions to
approach the target aggressively.

μ = μ1 · Δ(kt,vc) + μ2 · Δ(vψ,vc) + μ3 · Δ(kt−1,vc). (21)

A narrow mountainous area with dense terrain obstacles was built to verify the terrain
avoidance performance of the VFH method, as shown in Figure 14. We arranged an
additional static mesh of obstacles in the terrains to increase the difficulty of obstacle
avoidance. At each simulation step, the VFH method provided a desired direction and
desired yaw angle according to the virtual Lidar sensor. For helicopters in low-altitude
flight, turning maneuvers are more sensitive and stable than lateral maneuvers. Therefore,
we took the desired yaw and vertical components of the desired direction as the helicopter
control command to realize terrain avoidance in the low-altitude flight. The lateral control
channel maintained the helicopter stability, and the longitudinal control channel changed
the approaching speed of the helicopter to the destination.
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Figure 14. Narrow mountainous area with additional obstacles.

Lastly, we carried out flight simulations using the VFH method, where the helicopter
was placed in a narrow mountainous area without map information. The virtual Lidar had
a range resolution of 0.2 m. The vertical resolution and horizontal resolution of the Lidar
were set as 2.5◦ and 5◦, respectively. The vehicle size and minimum distance to obstacles
of the VFH method were set as 5 m and 20 m. The sample time of the virtual Lidar was
0.1 s. A distant destination was defined, and the helicopter approached the destination
and executed terrain avoidance during the flight. The path weights in Equation (21) were
set as 3, 2, and 0.3, respectively. The flight path and linear velocities of the helicopter are
illustrated in Figures 15 and 16, which demonstrates that the helicopter could maintain a
low altitude and stably approach the destination. Figure 17 further shows the helicopter
during the low-altitude flight. The helicopter avoided all the terrain obstacles in the
narrow environment. This shows the good adaptability of the proposed VFH method in
mountainous areas for the helicopter.

Figure 15. Flight path of the 3D VFH method.
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Figure 16. Helicopter linear velocities during the low-altitude flight.

 
Figure 17. Helicopter during the low-altitude flight.

4. Autonomous Decision-Making Framework

4.1. Visibility Judgment

For low-altitude flight in mountainous terrains, helicopters can effectively avoid spe-
cific facilities or threats such as dense buildings, fires, and danger using obstacle avoidance
and path replanning methods. In previous studies, these threats were often regarded as
obstacles during the flight. However, in many situations of military applications, low-
altitude flight requires the helicopter to resist ground detection and avoid ground defense
to improve flight survivability. Since flying at low altitude can effectively block the detec-
tion of ground radars, the visibility of the helicopter to the ground facilities is crucial for
decision making and maneuver selection. The helicopter needs to not only bypass and
avoid the threats, but also escape from the sight range of the threats. Human pilots estimate
the visibility of the helicopter using their eyes and intuition to make decisions such as
taking cover, avoiding reconnaissance, or executing circuitous flight. On the other hand,
the visibility judgement is quite difficult for unmanned operations, which generally needs
complete state estimation, threat location, and accurate map information.

Here, we propose an intuitive direct-viewing method which can quickly judge the
helicopter’s visibility, as shown in Figure 18. The threat detection method uses a deep
neural network, which is the same as the target recognition method presented in Section 3.1.
We can add samples to the dataset and train a detection network to simultaneously identify
targets and threats. When the helicopter detects a threat during low-altitude flight, it
immediately turns to head to the target using the visual servo control method as mentioned
in Section 3.1. At this moment, the helicopter is visible to the threat. To change its visibility,
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the helicopter maneuvers laterally. This is because when the helicopter is heading to the
threat, lateral maneuvers gain more variation than longitude and vertical maneuvers in
the sight range of the threat. This also helps the helicopter to approach terrain cover in
mountainous areas. During lateral maneuvers, if the threat is lost from view and the Lidar
sensor can detect obstacles ahead, it can be considered that the line of sight between the
helicopter and the threat is blocked, and the visibility is changed. In order to ensure the
complete concealment of the whole helicopter, we set a margin to make the helicopter
continue to fly laterally for a certain distance after its visibility changed.

 

Figure 18. Direct-viewing method of visibility judgement.

The proposed method of the visibility judgment is essentially based on the line of sight,
which is inspired by the perception method of human intuition. It is simple and effective,
but requires the helicopter to keep heading to the threat. Obviously, continuously heading
to the threat is not the optimal method to avoid it. This limits the helicopter’s movement
and possibly further exposes the helicopter to the threat. However, it provides a fast and
reliable method to realize real-time judgement of the visibility without comprehensive map
information or a complex calculation process. Moreover, the helicopter has good lateral
maneuverability; when facing a threat, lateral maneuvers are faster and more continuous
than turning or other maneuvers to hide. Overall, this provides a reactive method to judge
and change the helicopter’s visibility, which is easy to deploy and especially suitable for
implementation in complex unknown environments.

4.2. Finite State Machine

Visibility judgement and target and threat recognition are fundamental factors of
decision making in low-altitude flight. The visual servo control and terrain avoidance
methods presented in this research were verified to be effective in target tracking and
obstacle avoidance. On this basis, a finite state machine was established to combine the
decision-making and control methods, thus forming the overall framework for unmanned
helicopter operations in low-altitude flight, as shown in Figure 19. The finite state machine
established a continuous operation process without human interference and covered most
scenes in the low-altitude flight.
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Figure 19. Finite state machine of the decision-making framework.

In low-altitude flight, a helicopter is given a distant destination and required to
approach the destination at low altitude. Meanwhile, the detection network works to
detect targets and threat facilities. Once the target is detected, the helicopter immediately
heads to the target through visual servo control and revises the target’s position. In this
case, the helicopter does not know its exact position with respect to the target on the map;
however, it is able to estimate the distance and yaw direction using airborne equipment.
Therefore, the helicopter can estimate the target’s direction on the basis of its heading.
Several target points are placed along the target direction for path replanning of the VFH
method. The helicopter continues heading toward the target. Generally, keeping the target
in the center of the camera can ensure that the target is not lost during the flight approach.
In case the target is lost, the helicopter continues flying to the defined target points to
approach the target and returns to visual servo control when the target is rediscovered.
After arriving at the target, the helicopter can revise the destination location to fly to the
original destination or end the flight mission. This fast approach process can realize a quick
attack on or reconnaissance of specific facilities.

If the detection network detects a threat during the flight, the threat degree E is firstly
evaluated. We propose a simple way to quantitatively evaluate the threat, as expressed
in Equation (22). ξclass is the coefficient for different classes of threats. Sbox implies the
distance to the threat. Basically, a closer distance indicates a greater threat. There are more
intricate methods of threat evaluation, but they are outside the scope of this research. We
calculated the threat degree mainly to distinguish between serious threats and small threats,
so as to design different control strategies. We defined a threat threshold ET, whereby a
threat degree that higher than ET is considered as a serious threat. In this situation, the
helicopter executes fast avoidance flight to escape the sight range of the threat as soon as
possible, seeking terrains as cover to change its visibility. For this purpose, the helicopter is
forced to head to the threat for visibility judgement. The target points of the VFH method
are reset as the points of the history path. Then, the helicopter executes lateral maneuvers
so as to quickly restore invisibility behind terrain cover. When the threat is lost in the
camera, the helicopter can fly away from the threat or carry out further orders. In this
research, we gave a higher priority to fast avoidance than to fast approach. The helicopter
executes fast avoidance upon detecting a serious threat, regardless of whether a target is
detected in the view. If multiple threats are detected during the flight, the helicopter heads
toward the threat with highest threat degree to execute fast avoidance.
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If the threat degree is lower than ET, the detected threat is considered a small threat,
and the helicopter executes circuitous flight. In this situation, the top priority is still
restoring the helicopter’s invisibility, which requires the helicopter to head toward the
threat and seek cover. However, the helicopter is allowed to move laterally. The target
points of the VFH method are reset to the sides of the helicopter. When the threat is lost,
the helicopter resets the target points and continues its approach to the destination. In this
study, the helicopter automatically placed the target points on the opposite site of the threat
and followed the path of the VFH method. Many other path-planning methods can also be
used for circuitous flight; however, we mainly focused on introducing visibility judgement
and realizing reactive threat avoidance.

E = Sboxξclass. (22)

The finite state machine presents a detailed decision-making framework through the
state transitions of different flight tasks, such as long-range penetration, fast approach, fast
avoidance, and circuitous flight. These flight tasks contain multiple objectives, and their im-
plementation is complicated. Here, we designed the control law for each flight task, all the
control methods were derived from the visual servo control and terrain avoidance method
in Section 3. Since the control channels are decoupled as illustrated in Section 2.2, we can
clearly explain the control method through the control commands of different channels.

For the long-range penetration task, the helicopter approaches the destination and
avoids terrain obstacles according to the VFH method. Specifically, the VFH method
provides the control commands of the yaw channel and altitude channel, as shown in
Equation (23). RGB is the conversion matrix from ground coordinates to body coordinates.
The desired direction produced by the VFH method is defined in the ground coordinates
and must be converted to body coordinates to generate control commands. u, v, and w
are the control gains of the linear velocities. The longitude channel and lateral channel
maintain the helicopter’s stability.⎧⎪⎪⎨⎪⎪⎩

ψ = ψVFH
u = u
v = 0
w = wRGBZVFH

. (23)

For the fast approach task, the control command of the helicopter yaw channel is
provided by the visual servo control method allowing the helicopter toward head to the
target. The target points are placed according to the heading direction of the helicopter, as
shown in Equation (24), where d is a predefined value that affects the interval between target
points, and Z is the reference altitude of the low-altitude flight. The longitude channel,
lateral channel, and altitude channel are all controlled by the VFH method, as shown
in Equation (25), enabling safe terrain avoidance when the helicopter heading direction
is locked to the target. If the target is lost in view, which may be caused by detection
network failure, helicopter attitude oscillation, or terrain occlusion, the fast approach task
is converted back to the long-range penetration task with revised target points.⎧⎨⎩

XTarget = X + nd cos ψ

YTarget = Y + nd sin ψ

ZTarget = Z
, n = 1, 2, 3, . . . (24)

⎧⎪⎪⎨⎪⎪⎩
rRe f = −kr(bx − bmid)
u = uRGBXVFH
v = vRGBYVFH
w = wRGBZVFH

. (25)

The control laws of the fast avoidance and circuitous flight are similar to those of the
fast approach, as shown in Equation (23). The VFH method provides different maneuvers

323



Drones 2022, 6, 150

by setting different target points. The target points of fast avoidance and circuitous flight
are placed as shown in Equations (26) and (27), respectively, where T is the predefined time
interval to sample the history path points, and (XDestination, YDestination) are the coordinates
of the original destination. For circuitous flight, the target points are placed on the side of
the helicopter, and the desired direction of the VFH method is converted to lateral control
commands in the body coordinates. The direction of the lateral maneuver is determined
according to the threat position, destination position, and history path. Generally, using
three control channels to follow the control commands of the VFH method can ensure
that the helicopter safely escapes the threat and takes cover behind the terrain to change
its visibility. ⎧⎨⎩

XTarget = Xt−nT
YTarget = Yt−nT
ZTarget = Zt−nT

, n = 1, 2, 3, . . . (26)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
XTarget = X − nd sin ψsgn(Δ(

[
cos ψ
sin ψ

]
,
[

XDestination − X
YDestination − Y

]
))

YTarget = Y + nd cos ψsgn(Δ(
[

cos ψ
sin ψ

]
,
[

XDestination − X
YDestination − Y

]
))

ZTarget = Z

, n = 1, 2, 3, . . . (27)

5. Simulation Experiments

In order to verify the performance of the proposed control framework, we built a typi-
cal mountainous map including target or threat facilities, as shown in Figure 20. The target
and threat facilities were set at the same position, as were the helicopter initial position and
original destination, to better compare the flight performance of the different flight tasks.
We designed four flight scenes by defining different facilities in the target/threat position
to carry out long-range penetration, fast approach, fast avoidance, and circuitous flight.
The installation and parameters of the virtual camera and Lidar were the same as those of
the simulations in Section 3.

 
Figure 20. Simulation scene of the low-altitude flight.

The long-range penetration flight path is illustrated in Figure 21a. The target/threat
was removed from the map. The helicopter followed the command of the VFH method
on the premise of low altitude. The helicopter first flew along the hillside of the right-side
mountain, and then selected the middle valley to approach the destination. At this moment,
the left-side terrain blocked the destination, and the helicopter continued to fly along the
hillside of the left-side terrain. When the terrain altitude became low, the helicopter went
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over the terrain gap and finally arrived at the destination. The whole flight path was similar
to that observed for terrain avoidance in Section 3.2, showing good performance.

 
(a) (b) 

 
(c) (d) 

Figure 21. Flight paths of the flight tasks in the low-altitude flight: (a) long-range penetration; (b) fast
approach; (c) fast avoidance; (d) circuitous flight.

The flight path of the fast approach is illustrated in Figure 21b. A target facility was
set in the target/threat position. At the initial position, the target was blocked by the
right-side mountain, and the helicopter followed the command of the VFH method. When
the helicopter bypassed the right-side mountain, the target was detected. The helicopter
flew straight toward the target along the middle valley. Here, the forward velocity could be
tuned by changing the control gain u to realize a faster approaching speed while satisfying
other task requirements. The sight range of the middle valley was wide; the helicopter kept
the target in view and finally reached the target position.

Figure 21c shows the flight path of the fast avoidance task. The facility in the tar-
get/threat position was identified as a serious threat by the detection network. When the
threat was detected, the target points of the VFH method were reset as the path points
behind the right-side mountain. The helicopter maintained its heading toward the threat
and then moved horizontally to fly away from the threat. The control gains of the linear
velocities could be tuned to decrease the flight oscillations and increase the flight stability.
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Finally, the helicopter flew behind the obstacles and changed its visibility in a short time,
verifying the effectiveness of the fast avoidance method. The helicopter continued to fly
laterally for a while after the threat was lost from view, before turning around to head to
the target points.

Figure 21d shows the flight path of the circuitous flight, which mainly contained three
flight phases. The facility in the target/threat position was identified as a small threat.
Firstly, the helicopter executed long-range penetration and flew along the hillside of the
right-side mountain, just as in the previous flight simulations. Then, the helicopter detected
the threat and carried out visual servo control to maintain its heading toward the threat.
The target points of the VFH method were reset and placed on the left side of the helicopter,
which was closer to the destination. The helicopter moved laterally to the left side and
finally flew behind the left-side terrain, changing its visibility. Subsequently, the target
point was set as the original destination, and the helicopter turned left to approach the
destination. Here, the VFH method considered the cost of the current direction, and we
could change the path weight to ensure that the helicopter would not return to the threat
once its visibility changed. We could also manually define a rule for the helicopter to
choose a direction away from the threat. If the threat was detected again during the flight,
the helicopter would repeat the above operations to change the target points and escape
the threat. In the flight simulation, the helicopter bypassed the left-side terrain and finally
arrived at the destination without detecting the threat. For a better comparison of the flight
paths, we present all flight tasks in Figure 22. The decision making and approximate paths
of all flight tasks are shown, verifying the overall control framework and control method
proposed in this study.

Figure 22. Diagrammatic presentation of all flight tasks.

6. Conclusions

In this study, the implementation of unmanned helicopter operations for low-altitude
flight was investigated. Specific flight scenes in mountainous terrains were discussed in
detail. We introduced target and threat recognition into the overall control framework,
and we disassembled the low-altitude flight into several basic tasks. The target and threat
were identified using the YOLO network. Using the anchor box of the YOLO network, the
helicopter realized stable and effective visual servo control in the flight simulations. The 3D
VFH method was used for terrain avoidance of the helicopter, achieving good adaptability
and performance in unknown mountainous terrains.

Visibility judgment is crucial for low-altitude flight, yet it was rarely investigated
in previous research. We proposed a direct-viewing method which can quickly estimate
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helicopter visibility without comprehensive map information or threat positions. On this
basis, we built the overall control framework using a finite state machine. Such a design
incorporated four flight tasks to cover most flight scenes encountered in low-altitude
flight. A coupling control method of visual servo control and terrain avoidance was
developed to realize these tasks, and their performance was verified through high-fidelity
flight simulations.

Using the overall control framework presented in this research, the helicopter could
automatically complete complex flight tasks such as fast attack, cover concealment, and
circuitous flight similar to human pilots. The control methods are explicable, and the
control gains can be tuned to adapt to various flight tasks and scenes. Furthermore, some
implementations of the framework can be optimized. For example, the detection network
may lose the target, rendering the visual servo control invalid. This can be improved by
designing state observers and filters. The target point selection of the VFH method can be
further optimized to improve the flight performance and efficiency.

Author Contributions: Conceptualization, Z.J., L.N., D.L. and J.X.; methodology, Z.J., L.N. and D.L.;
software, Z.J. and L.N.; validation, Z.J. and L.N.; formal analysis, Z.T.; investigation, Z.J.; resources,
D.L. and J.X.; data curation, Z.J.; writing—original draft preparation, Z.J. and L.N.; writing—review
and editing, D.L. and Z.T.; supervision, D.L. and Z.T.; project administration, D.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hassan, S.; Ali, A.; Rafic, Y. A survey on quadrotors: Configurations, modeling and identification, control, collision avoidance,
fault diagnosis and tolerant control. IEEE Aerosp. Electron. Syst. Mag. 2018, 33, 14–33.

2. Lee, H.; Kim, H.J. Trajectory tracking control of multirotors from modelling to experiments: A survey. Int. J. Control Autom. Syst.
2016, 15, 281–292. [CrossRef]

3. Yang, H.; Lee, Y.; Jeon, S.Y.; Lee, D. Multi-rotor drone tutorial: Systems, mechanics, control and state estimation. Intell. Serv. Robot.
2017, 10, 79–93. [CrossRef]

4. Nascimento, T.P.; Saska, M. Position and attitude control of multi-rotor aerial vehicles: A survey. Annu. Rev. Control 2019, 48,
129–146. [CrossRef]

5. Skowron, M.; Chmielowiec, W.; Glowacka, K.; Krupa, M.; Srebro, A. Sense and avoid for small unmanned aircraft systems:
Research on methods and best practices. Proc. Inst. Mech. Eng. 2019, 233, 6044–6062. [CrossRef]

6. Lin, Y.; Gao, F.; Qin, T.; Gao, W.; Liu, T.; Wu, W.; Yang, Z.; Shen, S. Autonomous aerial navigation using monocular visual-inertial
fusion. J. Field Robot. 2018, 35, 23–51. [CrossRef]

7. Faessler, M.; Fontana, F.; Forster, C.; Mueggler, E.; Pizzoli, M.; Scaramuzza, D. Autonomous, Vision-based Flight and Live Dense
3D Mapping with a Quadrotor Micro Aerial Vehicle. J. Field Robot. 2015, 33, 431–450. [CrossRef]

8. Doukhi, O.; Lee, D.J. Deep Reinforcement Learning for End-to-End Local Motion Planning of Autonomous Aerial Robots in
Unknown Outdoor Environments: Real-Time Flight Experiments. Sensors 2021, 21, 2534. [CrossRef]

9. Zhou, Y.; Lai, S.; Cheng, H.; Hamid, M.; Chen, B.M. Towards Autonomy of Micro Aerial Vehicles in Unknown and GPS-denied
Environments. IEEE Trans. Ind. Electron. 2021, 68, 7642–7651. [CrossRef]

10. Jin, Z.; Li, D.; Wang, Z. Research on the Operating Mechanicals of the Helicopter Robot Pilot. In IOP Conference Series: Materials
Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 887, p. 012022.

11. Jeong, H.; Kim, J.; Shim, D.H. Development of an Optionally Piloted Vehicle using a Humanoid Robot. In Proceedings of the
52nd Aerospace Sciences Meeting, National Harbor, MD, USA, 13–17 January 2014.

12. Kovalev, I.V.; Voroshilova, A.A.; Karaseva, M.V. On the problem of the manned aircraft modification to UAVs. In Journal of Physics:
Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1399, p. 055100.

13. Hu, J.; Gu, H. Survey on Flight Control Technology for Large-Scale Helicopter. Int. J. Aerosp. Eng. 2017, 2017, 5309403. [CrossRef]
14. Xiang, Y.; Zhang, Y. Sense and avoid technologies with applications to unmanned aircraft systems: Review and prospects. Prog.

Aerosp. Sci. 2015, 74, 152–166.

327



Drones 2022, 6, 150

15. Bijjahalli, S.; Sabatini, R.; Gardi, A. Advances in Intelligent and Autonomous Navigation Systems for small UAS. Prog. Aerosp. Sci.
2020, 115, 100617. [CrossRef]

16. Marantos, P.; Karras, G.C.; Vlantis, P.; Kyriakopoulos, K.J. Vision-based Autonomous Landing Control for Unmanned Helicopters.
J. Intell. Robot. Syst. 2017, 92, 145–158. [CrossRef]

17. Lin, C.H.; Hsiao, F.Y.; Hsiao, F.B. Vision-Based Tracking and Position Estimation of Moving Targets for Unmanned Helicopter
Systems. Asian J. Control Affil. ACPA Asian Control Profr. Assoc. 2013, 15, 1270–1283. [CrossRef]

18. Lin, F.; Dong, X.; Chen, B.M.; Lum, K.Y.; Lee, T.H. A Robust Real-Time Embedded Vision System on an Unmanned Rotorcraft for
Ground Target Following. IEEE Trans. Ind. Electron. 2012, 59, 1038–1049. [CrossRef]

19. Yong, C.; Liu, H.L. Feature article: Overview of landmarks for autonomous, vision-based landing of unmanned helicopters. IEEE
Aerosp. Electron. Syst. Mag. 2016, 31, 14–27.

20. Miao, C.; Li, J. Autonomous Landing of Small Unmanned Aerial Rotorcraft Based on Monocular Vision in GPS-denied Area.
IEEE/CAA J. Autom. Sin. 2015, 2, 109–114.

21. Andert, F.; Adolf, F.; Goormann, L.; Dittrich, J. Autonomous Vision-Based Helicopter Flights through Obstacle Gates. J. Intell.
Robot. Syst. 2009, 57, 259–280. [CrossRef]

22. Marlow, S.Q.; Langelaan, J.W. Local Terrain Mapping for Obstacle Avoidance Using Monocular Vision. J. Am. Helicopter Soc. 2011,
56, 22007. [CrossRef]

23. Hrabar, S. An evaluation of stereo and laser—Based range sensing for rotorcraft unmanned aerial vehicle obstacle avoidance. J.
Field Robot. 2012, 29, 215–239. [CrossRef]

24. Paul, T.; Krogstad, T.R.; Gravdahl, J.T. Modelling of UAV formation flight using 3D potential field. Simul. Model. Pract. Theory
2008, 16, 1453–1462. [CrossRef]

25. Javier, G.; Gandolfo, D.C.; Salinas, L.R.; Claudio, R.; Ricardo, C. Multi-objective control for cooperative payload transport with
rotorcraft UAVs. ISA Trans. 2018, 80, 481–502.

26. Gimenez, J.; Salinas, L.R.; Gandolfo, D.C.; Rosales, C.D.; Carelli, R. Control for cooperative transport of a bar-shaped payload
with rotorcraft UAVs including a landing stage on mobile robots. Int. J. Syst. Sci. 2020, 51, 3378–3392. [CrossRef]

27. Watson, N.A.; Owen, I.; White, M.D. Piloted Flight Simulation of Helicopter Recovery to the Queen Elizabeth Class Aircraft
Carrier. J. Aircr. 2020, 57, 742–760. [CrossRef]

28. Topczewski, S.; Narkiewicz, J.; Bibik, P. Helicopter Control During Landing on a Moving Confined Platform. IEEE Access 2020, 8,
107315–107325. [CrossRef]

29. Ngo, T.D.; Sultan, C. Variable Horizon Model Predictive Control for Helicopter Landing on Moving Decks. J. Guid. Control Dyn.
2021, 45, 774–780. [CrossRef]

30. Zhao, S.; Hu, Z.; Yin, M.; Ang, K.Z.; Liu, P.; Wang, F.; Dong, X.; Lin, F.; Chen, B.M.; Lee, T.H. A Robust Real-Time Vision System
for Autonomous Cargo Transfer by an Unmanned Helicopter. IEEE Trans. Ind. Electron. 2014, 62, 1210–1219. [CrossRef]

31. Truong, Q.H.; Rakotomamonjy, T.; Taghizad, A.; Biannic, J.-M. Vision-based control for helicopter ship landing with handling
qualities constraints. IFAC-PapersOnLine 2016, 49, 118–123. [CrossRef]

32. Huang, Y.; Zhu, M.; Zheng, Z.; Low, K.H. Linear Velocity-Free Visual Servoing Control for Unmanned Helicopter Landing on a
Ship with Visibility Constraint. IEEE Trans. Syst. Man Cybern. Syst. 2021, 52, 2979–2993. [CrossRef]

33. Chen, Y.B.; Yu, J.Q.; Su, X.L.; Luo, G.C. Path Planning for Multi-UAV Formation. J. Intell. Robot. Syst. 2015, 77, 229–246. [CrossRef]
34. Bassolillo, S.R.; Blasi, L.; D’Amato, E.; Mattei, M.; Notaro, I. Decentralized Triangular Guidance Algorithms for Formations of

UAVs. Drones 2022, 6, 7. [CrossRef]
35. Fei, Y.; Sun, Y.; Shi, P. Robust Hierarchical Formation Control of Unmanned Aerial Vehicles via Neural-Based Observers. Drones

2022, 6, 40. [CrossRef]
36. Karimoddini, A.; Lin, H.; Chen, B.M.; Tong, H.L. Hybrid three-dimensional formation control for unmanned helicopter. Automatica

2013, 49, 424–433. [CrossRef]
37. Hu, D.; Yang, R.; Zuo, J.; Zhang, Z.; Wang, Y. Application of Deep Reinforcement Learning in Maneuver Planning of Beyond-

Visual-Range Air Combat. IEEE Access 2021, 9, 32282–32297. [CrossRef]
38. Yang, Q.; Zhang, J.; Shi, G.; Hu, J.; Wu, Y. Maneuver Decision of UAV in Short-Range Air Combat Based on Deep Reinforcement

Learning. IEEE Access 2019, 8, 363–378. [CrossRef]
39. Kivelevitch, E.; Ernest, N.; Schumacher, C.; Casbeer, D.; Cohen, K. Genetic Fuzzy Trees and their Application Towards Au-

tonomous Training and Control of a Squadron of Unmanned Combat Aerial Vehicles. Unmanned Syst. 2015, 3, 185–204.
40. Chamberlain, L.; Scherer, S.; Singh, S. Self-aware helicopters: Full-scale automated landing and obstacle avoidance in unmapped

environments. In Proceedings of the 67th American Helicopter Society International Annual Forum 2011, Virginia Beach, WV,
USA, 3–5 May 2011; pp. 3210–3219.

41. Nikolajevic, K.; Belanger, N. A new method based on motion primitives to compute 3D path planning close to helicopters’
flight dynamics limits. In Proceedings of the 7th International Conference on Mechanical and Aerospace Engineering (ICMAE),
Cambridge, UK, 18–20 July 2016; Volume 23, pp. 411–415.

42. Schopferer, S.; Adolf, F.M. Rapid trajectory time reduction for unmanned rotorcraft navigating in unknown terrain. In Proceedings
of the International Conference on Unmanned Aircraft Systems (ICUAS), Wyndham Grand, Orlando Resort, Orlando, FL, USA,
27–30 May 2014; pp. 305–316.

328



Drones 2022, 6, 150

43. Whalley, M.S.; Takahashi, M.D.; Fletcher, J.W.; Moralez, E.; Ott, L.C.R.; Olmstead, L.M.G.; Savage, J.C.; Goerzen, C.L.; Schulein,
G.J.; Burns, H.N.; et al. Autonomous Black Hawk in Flight: Obstacle Field Navigation and Landing—Site Selection on the
RASCAL JUH—60A. J. Field Robot. 2014, 31, 591–616. [CrossRef]

44. Sridhar, B.; Cheng, V.H.L. Computer vision techniques for rotorcraft low-altitude flight. Control Syst. Mag. IEEE 1988, 8, 59–61.
[CrossRef]

45. Friesen, D.; Borst, C.; Pavel, M.D.; Stroosma, O.; Masarati, P.; Mulder, M. Design and Evaluation of a Constraint-Based Head-Up
Display for Helicopter Obstacle Avoidance. J. Aerosp. Inf. Syst. 2021, 18, 80–101. [CrossRef]

46. Zheng, J.; Liu, B.; Meng, Z.; Zhou, Y. Integrated real time obstacle avoidance algorithm based on fuzzy logic and L1 control
algorithm for unmanned helicopter. In Proceedings of the Chinese Control And Decision Conference (CCDC), Shenyang, China,
9–11 June 2018; pp. 1865–1870.

47. Chandrasekaran, R.; Payan, A.P.; Collins, K.B.; Mavris, D.N. Helicopter wire strike protection and prevention devices: Review,
challenges, and recommendations. Aerosp. Sci. Technol. 2020, 98, 105665. [CrossRef]

48. Merz, T.; Kendoul, F. Dependable Low-Altitude Obstacle Avoidance for Robotic Helicopters Operating in Rural Areas. J. Field
Robot. 2013, 30, 439–471. [CrossRef]

49. Wang, D.; Li, W.; Liu, X.; Li, N.; Zhang, C. UAV environmental perception and autonomous obstacle avoidance: A deep learning
and depth camera combined solution. Comput. Electron. Agric. 2020, 175, 105523. [CrossRef]

50. Aldao, E.; Gonzalez-Desantos, L.M.; Michinel, H.; Gonzalez-Jorge, H. UAV Obstacle Avoidance Algorithm to Navigate in
Dynamic Building Environments. Drones 2022, 6, 16. [CrossRef]

51. Hermand, E.; Nguyen, T.W.; Hosseinzadeh, M.; Garone, E. Constrained Control of UAVs in Geofencing Applications. In
Proceedings of the 26th Mediterranean Conference on Control and Automation, Zadar, Croatia, 19 June 2018; pp. 217–222.

52. Jiang, M.; Xu, C.; Ji, H. Path Planning for Aircrafts using Alternate TF/TA. In Proceedings of the Chinese Automation Congress
(CAC), Shanghai, China, 6–8 November 2020; pp. 3702–3707.

53. Kosari, A.; Kassaei, S.I. TF/TA optimal Flight trajectory planning using a novel regenerative flattener mapping method. Sci. Iran.
2020, 27, 1324–1338. [CrossRef]

54. Chen, H.-x.; Nan, Y.; Yang, Y. A Two-Stage Method for UCAV TF/TA Path Planning Based on Approximate Dynamic Program-
ming. Math. Probl. Eng. 2018, 2018, 1092092. [CrossRef]

55. Hao, L.; Cui, J.; Wu, L.; Yang, C.; Yu, R. Research on threat modeling technology for helicopter in low altitude. In Proceedings of
the 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 26–28 August 2016;
pp. 774–778.

56. Machovina, B.J. Susceptibility Modeling and Mission Flight Route Optimization in a Low Threat, Combat Environment. Doctoral
Thesis, University of Denver, Denver, CO, USA, 2010.

57. Woo, J.W.; Choi, Y.S.; An, J.Y.; Kim, C.J. An Approach to Air-To-Surface Mission Planner on 3D Environments for an Unmanned
Combat Aerial Vehicle. Drones 2022, 6, 20. [CrossRef]

58. Tang, Q.; Zhang, X.; Liu, X. TF/TA2 trajectory tracking using nonlinear predictive control approach. J. Syst. Eng. Electron. 2006,
17, 396–401. [CrossRef]

59. Hilbert, K.B. A Mathematical Model of the UH-60 Helicopter; No. NASA Technical Memorandum 85890; NSNA: Washington, DC,
USA, 1984.

60. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

61. Yang, L.; Liu, Z.; Wang, X.; Xu, Y. An Optimized Image-Based Visual Servo Control for Fixed-Wing Unmanned Aerial Vehicle
Target Tracking with Fixed Camera. IEEE Access 2019, 7, 68455–68468. [CrossRef]

62. Yang, L.; Liu, Z.; Wang, X.; Yu, X.; Wang, G.; Shen, L. Image-Based Visual Servo Tracking Control of a Ground Moving Target for
a Fixed-Wing Unmanned Aerial Vehicle. J. Intell. Robot. Syst. 2021, 102, 81. [CrossRef]

63. Vanneste, S.; Bellekens, B.; Weyn, M. 3DVFH+: Real-Time Three-Dimensional Obstacle Avoidance Using an Octomap. In
Proceedings of the Morse 2014—Model-Driven Robot Software Engineering, York, UK, 21 July 2014; Volume 1319, pp. 91–102.

329



Citation: Emmanuel, S.; Isnin, I.F.B.;

Mohamad, M.M.B. A Reliable

Merging Link Scheme Using

Weighted Markov Chain Model in

Vehicular Ad Hoc Networks. Sensors

2022, 22, 4861. https://doi.org/

10.3390/s22134861

Academic Editors: Jaroslaw Pytka,

Andrzej Łukaszewicz, Zbigniew

Kulesza, Wojciech Giernacki and

Andriy Holovatyy

Received: 11 March 2022

Accepted: 20 June 2022

Published: 27 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Reliable Merging Link Scheme Using Weighted Markov
Chain Model in Vehicular Ad Hoc Networks

Siman Emmanuel *, Ismail Fauzi Bin Isnin and Mohd. Murtadha Bin Mohamad

Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; ismailfauzi@utm.my (I.F.B.I.);
murtadha@utm.my (M.M.B.M.)
* Correspondence: esiman@graduate.utm.my; Tel.: +60-1137030907 or +234-(0)8065641551

Abstract: The vehicular ad hoc network (VANET) is a potential technology for intelligent transporta-
tion systems (ITS) that aims to improve safety by allowing vehicles to communicate quickly and
reliably. The rates of merging collision and hidden terminal problems, as well as the problems of
picking the best match cluster head (CH) in a merged cluster, may emerge when two or more clusters
are merged in the design of a clustering and cluster management scheme. In this paper, we propose
an enhanced cluster-based multi-access channel protocol (ECMA) for high-throughput and effective
access channel transmissions while minimizing access delay and preventing collisions during cluster
merging. We devised an aperiodic and acceptable merge cluster head selection (MCHS) algorithm for
selecting the optimal merge cluster head (MCH) in centralized clusters where all nodes are one-hop
nodes during the merging window. We also applied a weighted Markov chain mathematical model
to improve accuracy while lowering ECMA channel data access transmission delay during the cluster
merger window. We presented extensive simulation data to demonstrate the superiority of the
suggested approach over existing state-of-the-arts. The implementation of a MCHS algorithm and
a weight chain Markov model reveal that ECMA is distinct and more efficient by 64.20–69.49% in
terms of average network throughput, end-to-end delay, and access transmission probability.

Keywords: weighted Markov chain; clustering; weight value; merge window; merging link; merge
collision; predicting probability

1. Introduction

In a vehicle ad hoc network, topological changes are frequent as nodes (vehicles)
move in accordance with traffic laws [1–3]. As automobile density grows, access collisions
occur as a result of poor packet data transmission during slot allocation [3]. Therefore, an
effective clustering can lengthen the lifespan of a network. Clustering is a technique for
dissecting a network’s architecture. Topological data are obtained more quickly due to the
network’s smaller size (cluster). Because of the lack of centralized administration, network
topology management and resource allocation become difficult, resulting in inefficient
throughput and increased access latency [1]. To overcome hidden terminal problems and
merge collisions, an effective clustering technique is required. When using an allocated
technique to assign a period allocation [4], two sorts of conflicts can occur: access collision
and merge collision. Due to mobility, two vehicles that started more than two hops apart try
to join a single period allocation at the same moment [5]. Automobiles traveling in reverse
directions with RSUs fastened to the road [6] and two or more clusters merging can cause
merging conflicts. Assuming the nodes in this scenario have already been assigned time
slots in their clusters during the cluster merging process, they must be released from their
current time slot to acquire a new one, which may result in merging collision [7], whereas
access collision occurs when more than one node (that has not yet acquired a time slot)
within transmission coverage, or approximately two hops apart, attempts to enter a single
available period allocation. Therefore, increasing traffic density that is not in cluster may
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cause hidden terminal issues and access conflicts, leading in inefficient medium usage and
increasing access delays. When the IEEE 802.11p MAC detects an idle channel, it instantly
initiates transmission or selects a backup value from the contention window (CW) and
initiates a countdown phase [8]. When a vehicle transports a high quantity of data packets,
it participates in multiple competitions. Because 802.11p does not support RTS/CTS for
data packet broadcasting [9], it is susceptible to hidden terminal issues and conflict [10].
Therefore, collisions between data packets are not immediately noticeable. The TDMA
protocol was proposed for automotive ad hoc networks in order to improve transmission
efficiency and overcome IEEE 802.11p’s restrictions. Numerous shared TDMA-based MAC
principles for VANETs have been presented that aimed to eliminate or mitigate merging
conflicts as well as the hidden terminal problems [8,9]. In the centralized TDMA protocol,
the centralized node allocates the time slot, and in the distributed TDMA protocol, each
node manages the time slot [11–14]. Due to the high vehicle density, the TDMA Cluster
MAC (TC-MAC) recently modified the approach for allocating TDMA slots in group-based
(Cluster) VANETs. Unlike DSRC, TC-MAC maintains a better level of reliability for safety
messages [15,16].

Due to the widespread use of VANETs, an intelligent transport system must transfer
data to several nodes [17,18]. When vehicles are partitioned into virtual clusters, scalability
of the network becomes a challenge. In [17], clusters are led by a cluster head (CH), which
is assisted by cluster members (CM). When merging leads in bigger clusters [18], numerous
recent clustering methods employ a small intra- and inter-cluster process size (Figure 1) [19].
The enhanced weight-based clustering algorithm (EWCA) [17] was demonstrated in a
cluster. It considers the time and position of vehicles in the cluster, and it is assumed that
vehicles are traveling at similar speeds. Every node within broadcast range of its nearest
neighbors was considered. This was done to ensure cluster stability and the effective
transmission of safety data. As a result, the techniques are more suited to a single traffic
condition, and the mobility component is overlooked, resulting in access and merging
crashes with all automobiles travelling at constant speed in a medium-density environment.

 

Figure 1. Merging cluster structure.

In [20], MAMC-MAC protocol was developed to increase VANET reliability and
to convey safety alerts. It utilized a hopsector message direction schema to maximize
the message delivery into a particular domain in real time. TDMA is used to divide
the dedicated short range communication (DSRC) band into frames. The MAMC-MAC
protocol is more appropriate for a single traffic scenario, and the mobility factor is not taken
into account. Furthermore, all vehicles are traveling at a constant speed in a medium traffic
density, and also the clusters merging scenario is not taken into account. It is likely to result
in access collisions and merging collisions. In addition, there are hidden terminal issues,
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resulting in merging collisions. The cluster merging process is the process which merges
two adjacent clusters into a larger cluster. This process occurs during a period called the
merging window (Mw). Based on the above issues, our contributions are as follows:

• We studied and created a merge cluster head selection (MCHS) algorithm that mini-
mizes the frequencies of merging collision and hidden terminal concerns while also
electing the best-fit CH in a merged cluster when two or more clusters merged.

• We used a weighted Markov chain model to describe the transformation operation
within a cluster and differentiated it from other clusters based on the weighted value.

• During the clusters merging window, the weighted Markov chain mathematical model
improved accuracy while reducing ECMA channel data access transmission delay with
unmatched transition speed in a time slot and state slot (frame). During the window
time (T), this speeds up transitions while eliminating hidden terminal difficulties and
access collision.

• The aperiodic MCH selection is based on the merge window period probability and the
development of a centralized cluster in a VANET where all nodes are one-hop nodes.

• In a merged cluster, the CHs choose the best candidate as the MCH. Although their
cluster members (CMs) inside the transmission range released their time slots and
acquired a new time slot from the new MCH, the other CHs became CMs. The CMs
that are outside of the new MCH’s transmission range will continue to cling to their
previous CH, which has now turned to gateway node (Gw), until all of the remaining
CMs are inside the MCH’s transmission range, at which point the Gw will eventually
switch to CM.

• For performance evaluation, we built a detailed simulation model and put the sug-
gested technique into action. Extensive simulation results indicated the superiority
and scalability of the proposed ECMA method.

The remainder of this paper is organized as follows. Section 2 provides the existing
works on merging collisions. Section 3 describes the proposed method that applies the
new weighted Markov chain and the cluster head selection algorithm in the merged
cluster. The fourth part presents the performance evaluation of the selected indicators,
simulation parameters, and their values, followed by Sections 5 and 6 as the Discussion
and Conclusion respectively.

2. Existing Works on Merging Collisions

The set of vehicles, called a cluster, allows vehicles to communicate with their neigh-
bors, called intra-cluster networks, and two or more cluster may communicate with each
other, called inter-cluster networks [13,14]. When two clusters are in a merging process
the node is relieved of their access time slot and acquires new ones which may result in
merging collisions. Because merging collisions occur due to vehicle movement and are
marginal based on time slot size [15–17], Vehicle ad-hoc network media access control
protocol (VeMAC) calculates the rate of merging collisions in the time frame rather than
in the time slot. Although access collision occurs when nodes attempt to acquire a time
slot, a merging collision occurs when vehicles have successfully acquired a time slot. It
can also occur when cars traveling in the same direction but at different speeds. As node x
moves into THS2 (Two hopes state II) and shares the same time slot as node z, a merging
collision occurs at z, as shown in Figure 2. As a result, when a node detects a merging
collision on an access channel, it releases its time slot and acquires a new one, resulting in
an access collision, especially with hidden terminal occurrence. In [21,22], a distributed
algorithm was used in VeMAC, which requires two vehicle transceivers, one tuned to the
control channel and the other to the service channel. However, because of the large size of
the control frame in VeMAC, contact over the control channel becomes an overhead.
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Figure 2. Merge collision due to node mobility [20]. Note: THSO is the ratio of a THS’s necessary
time slots to the total number of time slots available for that THS.

In [23], the Direction based clustering and multi-channel medium access control (DA-
CMAC) protocol is an extension of the VeMAC protocol to improve the transmission
reliability of the safety message, where RSU, GW, and CH consist of time slots for cluster
members (CMs) that the work divide into two, depending on the location of the vehicles to
reduce the rate of change in DA-CMAC access and merging collisions. In addition, each
cluster member (CM) is given one slot in both the control and service channels to ensure
channel access equity. The application of the Gw node [24] and the allocation of slots from
the RSU to CMs in different directions at different speeds result in merging collisions [25]
when two or more clusters merge. In [26], the authors used leadership-based clusters
(LCM) merging to investigate the impact of merging collisions in a cluster vehicular ad
hoc network. When clusters in the same direction combine to form a new unified cluster,
the scheme assigns the best connection to each cluster member and remains stable. Two
CHs moving in the same direction and in the same transmission range would activate
the merging detection mechanism in this scheme. That study only examined the impact
of hidden terminal problems and the transmission of access data in a merging cluster by
relying on the identification mechanism for cluster stability mergers. In [27], researchers
used a cluster merging mechanism in CCFM-MAC to avoid cluster merging until they were
sufficiently close to each other. The Hello or cluster head packets are received by all the
cluster heads within the transmission range between each. When the CHs are within a
certain time interval of each other’s communication range, the CHs repeat the Hello and
CH packet responses, and the clusters merge. When two or more clusters combine, the CH
with the highest ALERT remains the CH, while the other cluster members are dissolved.
The goal is to avoid cluster merging in a short period of time and to increase cluster stability.
However, gateway vehicles are used as a connection sub-domain that allows CMs and
CHs to link. Hidden terminal problems and collision-free clusters [7] are solved using this
scheme. Disjointed time slot sets are associated with distinct lanes on the same road segment
and distinct road segments at intersections, according to MoMAC [28]. Furthermore, each
vehicle transmits safety messages along with time slots occupying neighboring vehicle
data; vehicles can detect time-slot collisions and access a vacant time slot in a completely
distributed manner by updating time slots occupying information from two-hop neighbors
(obtained indirectly from one-hop neighbors) using Chain Markov [29,30]. In this situation,
two CHs which are in the same contact range resolves to cluster merging [31]. The CH
with the highest weight value [32], on the other hand, will continue to be the CH, while the
others stepped down. CMs have the option of joining the new leadership, joining another
cluster, or forming their own. In a cluster-based TDMA MAC protocol [33], the duty of the
CH is to assign a slide of time to the CMs. Meanwhile, the authors have only looked at
cluster stability and have yet to incorporate the dynamic slot allocation approach into a
clustering mechanism to reduce the rate of merging collisions.
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The extended delay problem that vehicles can encounter in the event of a merging
collision with a TDMA-based MAC protocol for VANET is highlighted and formulated
in [34]. This study demonstrated that this delay is proportional to the number of collided
packets immediately following the merging collisions. The proposed slot suggestion system
is used to prevent additional access collisions between vehicles that have vacated their time
slots because of a slot-merge collision. After an access collision, this method minimizes the
likelihood of additional access collisions [5].

3. Proposed Method

In this section, we proposed the Merge Cluster-Head Selection algorithm (MCHS) to
reduce the rates of merging collisions and hidden terminal problems when two or more
clusters merge, as well as the selection of the best match MCH in a merged cluster. Merging
collisions occur when vehicles from separate clusters combine to enter a shared time slot.
When the algorithm is used, as presented in Algorithm 1, the merging collision can be
significantly reduced. By adapting clustering and MCHS algorithm in a merged cluster,
the proposed ECMA protocol attempts to achieve collision-free in a cluster while also
minimizing the rate of merging collisions in an inter-cluster VANET.

As the different clusters at ‘M’ converge, they come into contact as in ‘N’, where
the two CHs are in the transmission range of each other. In ‘L’, the appropriate CH
becomes the MCH, the other CH becomes Gw and remains attached to the CMs beyond the
MCH’s transmission range, and in ‘Q’, all the cluster members (CMs) are inside the MCH’s
transmission range, and the Gw becomes a CM, as shown in Figure 3.

 

Figure 3. Illustrations of cluster merging phases (from M –> N –> L –> Q).

3.1. Weighted Markov Chain

During the clusters merging window, the weighted Markov chain mathematical model
enhances accuracy and minimizes ECMA channel data access transmission delay with
unmatched transition speed in timeslot and state-slot (frame). This speeds up transitions
while avoiding hidden terminal issues and access collision during the window time (T). In
the frame’s frequency state of slot reservations, self-correlation coefficients represent various
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reservation prevalence packet data relationships. The frequency state of slot reservation in
present frames can be used to predict the frame prevalence packet data in the future. Then,
in comparison to the future frames, a weighted average based on the frequency of other
current frames slot reservation can be calculated. As a result, the prediction goal of making
full and equitable use of knowledge has been met. This is the fundamental idea behind
weighted Markov chain prediction [35,36].

A branch of the Markov chain process is the weighted Markov chain [37]. If the
system’s present state is given, then (conditionally) the past and future are independent.
Such an action is referred to as the system’s Markov property. In a discrete (countable) state
space with respect to discrete or continuous time, a Markov chain evolves.

A stochastic process X = {X(t),t∈T} is defined on a probability space (Ω, F, P), where
parameters set T = {0, 1, 2, . . . }, and state space E = {0, 1, 2, . . . }.

P{X(m + k) = im + k | X(m) = im, X(j1) = j1, . . . ,

X
(

j2
)
= j2, X(j1) = j1

}
= P{X(m + k)

= im + k | X(m) = im} (1)

The general time-slot transition step is given by Pt for any slot time t. The Markov
chain nodes X0, X1, . . . , Xn have a slot time reservation state, S = (1, 2, 3, . . . , n), (Figure 4),
where the Transition Matrix P element is defined as:

P(Xt = j|X0 = i) = P(Xn+t = j|Xn = i) =
(

Pt)
ij for any n. (2)

 

Figure 4. The transition process of Xn.

The window period probability is πj (3), and the mean recurrence time to state j is
μjj. Taking the inverse of the mean recurrence time is one technique for determining the
window period probability, as shown by the preceding identity.

πj =
1
μjj

(3)

An ergodic Markov chain is an irreducible Markov chain that is aperiodic and positive
recurrent. Equation (4) depicts the ergodic chain’s finite distribution j, which is the only
nonnegative solution to the equations.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

πj =
∞

∑
k=o

πk pkj j = 0, 1, 2, . . .

∞

∑
j=o

πj = 1
(4)

The Markov chain’s long-run proportion of time spent in state j can now be written
as πj. Based on the above Markov chain and the window period probability, the specific
method of weighted Markov chain prediction is expressed as follows [38]:
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Determine a criterion for categorizing the frame’s incidence of slot reservation based
on the length of the super frame and the specific adaptability requirement. The distance
between the ideal one-hop node (OHN) and the CH in two-dimensional Euclidean space
is expressed as E = 1, 2, 3, 4, and so on. The frequency condition of slot reservation is
determined for each frame based on the classification standard of the threshold value (Sthr).
Equation (5) is used to calculate the various self-correlation coefficients rk, k ∈ ΔSthr, where
rk denotes the k-frame self-correlation coefficient, x1 = 1, 2, . . . , n denotes the ith frame slot
reservation prevalence, x denotes the mean value of x1, and n denotes the length of the slot
reservation series’ frame frequency state.

rk =
n−k

∑
l=1

(x1 − x)(x1+k − x)/
n

∑
ı=1

(x1 − x)2 (5)

We create a diverse set of self-correlation coefficients and use them consistently. The
weights of multiple (steps) Markov chains must also be considered (m is the maximum
step predicted). As the prediction probability index, take the weighted average Wk of the
various predicting probabilities for the same condition as shown in Equation (6).

Wk = | rk |/
m

∑
k=1

| rk | (6)

We can derive various phases of Markov chain transition probability matrices from
the statistical results from slot reservation prevalence transitions, which determine the
probability rule. For example, in a different frame, the frequency of slot reservation
Pi(k), isthr can be predicted and combined with the relative transition probability ma-
trices of a different frame, where k is the Markov chain step and k = 1, 2, . . . , m. If
Pi = max {Pi, Pi ∈ ΔSthr} (7), then i represents the predicted future state of the current
frame slot reservation prevalence.

Pi =

m

∑
k=1

WkPi
(K), i ∈ E (7)

By repeating steps 4 through 8, we can predict the slot reservation condition for the
next frame after determining the current frame’s slot reservation frequency and adding
it to the original series. The cluster head with the best stable neighbors is chosen as the
CH with the lowest weight value (wi) based on the calculation of the combined wi. In
contrast to the EWCA, all other CHs in the cluster follow the same steps from step two to
step nine. Wi is equal to the sum of the weighting factors (wf) in this equation, which is
wf1 + wf2 + wf3 + wf4 = 1. Table 1 shows that the group of weighting factors (0.47, 0.24,
0.24, and 0.05) produced the best results in terms of greatest PDR, network throughput, and
lowest end-to-end delay. This is due to the weighting variables in this group emphasizing
high group mobility (0.47), followed by degree difference (0.24), and distance metrics (0.24)
while lowering the impact of cumulative time (0.05) on the (merge cluster head) MCH
selection process. If the next CH is chosen based on the maximum number of MCHs and the
highest relative direction with the shortest remaining distance, the selected road segment
will have strong connectivity, increasing the packet delivery ratio (PDR) and decreasing
the MAC delay. On the one hand, if the protocol’s generated delay is based on a high
remaining cumulative time with less attention paid to the quantity of MCH, the protocol’s
generated delay will be high, especially in low traffic density cases; on the other hand, the
packet delivery ratio (PDR) will be unaffected because the access method is the same as
IEEE 802.11p RTS/CTS. Finally, if the relative distance metric is minimal, the protocol delay
will improve because of a reduction in the time it takes the vehicles to transmit the packet
until it arrives at its destination.
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Table 1. Simulation Parameters.

Parameter Value Parameter Value

DSRC channel
frequency 5.9 GHz DSRC channel

bandwidth 10 MHz

MAC/PHY WAVE/IEEE 802.11p Mean deviation 0-Vmax
Simulation time 1000 s Vehicle densities 50, 100, 150, 200

Merge window (Mw) 5, 15, 25, 35, 45 Weight factor level 0.47, 0.24, 0.24, 0.05
Radios r 500 m Region’s size 1000 × 1000
Data rate 100 Mbps Packet arriving rate 25 Packets/s

3.2. Periodic Access and CH Connectivity Level

The Merge Cluster Head Selection Algorithm (MCHS) utilizing a Stable Weighted Clus-
tering Algorithm is a theoretical model that employs a vehicle weight value for merge clus-
ter head (MCH) selection during the window phase of the cluster merging process (SWC).

The several metrics analyzed for the MCH election process are listed in this section.
These metrics include information about the mobility of each cluster head (CH), such as
movement direction, road ID, CH mean velocity, CH connectivity level, and cluster head
mean distance from its CH neighbors. A CH finds its neighbors by sending out periodic
transmissions with mobility information. A CH’s movement direction and a centralized
cluster’s total weight value should only be detected by any surrounding CH before it can
receive and process its neighbors’ broadcast message. These metrics are utilized to establish
a cluster head’s suitability to become a merging cluster head (MCH) since they ensure a
CH’s preparedness.

T = 1 + p (K − 1) (8)

For a successful access probability P, the period T, in Figures 4 and 5, to occupy a time
slot by a node as it transmits in a frame is given in Equation (8).

T =

[
1 + Pij (K − 1)

CHi
∗ (Wph − Wp1) + Wp1

]
(9)

The greatest window period Wph and the lowest window period Wp1 contention
values are employed based on the total number of cluster head (CHi). The duration T
required for a node to successfully occupy a time slot when it transmits in a frame is
described in Equation (9), similar to [17].

3.3. Merging Channel Access Mechanism

During cluster merging, the four channel access modes in the CH are super-frames
that can easily adapt to new traffic levels while maintaining stable transmissions. The
CH periodically polls clusters for traffic. If the traffic value of two consecutive rounds is
significantly different from the initial traffic value, the current access mode for the traffic
level is used. The CH gathers data about traffic concentrations and the probability of
channel-based merging collision and compares them to the threshold value of various
traffic levels during the cluster merging window, as follows: Low traffic level is when the
traffic load is lower than the threshold values (Ltv). Light traffic level is when the traffic
load is lower than the threshold values (Stv) and higher than threshold (Ltv). Medium
traffic level is when the traffic load is lower than the threshold values (Htv) and higher
than threshold (Stv). High traffic level is when the traffic load is higher than the threshold
values (Htv) as illustrated in Figure 5b.

The ECMA access modes between the CHs in a merging cluster are shown in Figure 5b.
Random access is used when the traffic is light. The access technique is the same as
that of the IEEE 802.11p RTS/CTS. Only the CHs that need to send a packet to other
CHs do so by sending the RTS. The CTS packet indicates that the CHs were successfully
accessed. On-demand access is used during low traffic. The access of the cluster head is
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determined dynamically by its message demands and stated in the RTS packet as related to
random access.

The clustering time slot reservation access is implemented at a medium traffic level.
Only CHs in the same group can reserve and compete for a time slot. Otherwise, they can
compete only in the next frame. CHs 1 and 2 did not compete for the same access time slot,
whereas nodes 3 and 4 did. CHs 1 and 2 must wait for the next frame. Polling access occurs
in high-traffic level when each cluster head receives a CH polling. If a cluster head needs
to send data, the other cluster head prepares a time slot. The polling cycle duration was
increased to allow for data transmission from the cluster head. After polling the CH1 for
readiness, the cluster head also polls CH2 for readiness, and so on, until the cluster head
discovers a CH within its transmission range that has data to transfer, at which point the
cluster head initiates a cluster merging.

 

(a) 

Figure 5. Cont.
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(b) 

Figure 5. (a): Diagram of ECMA protocol. (b): Merge cluster head channel access.

Cluster merging happens as follows: as the cluster merges, two CHs in the transmis-
sion range of each other tend to exchange information and reconfigure the CH with the
lowest suitability weight value (Wi) to become the MCH. In Algorithm 1, the other CH
transforms into Gw and continues attached to the CMs beyond the MCH’s transmission
range until all of the CMs are within the MCH’s transmission range and Gw becomes a
CM. The CM then enters the cluster and, alongside the other cluster members, decides to
join the cluster, be assigned a time slot, and acquires a new CMID. As a result, the rates of
re-clustering and merging collisions are reduced, as well as the hidden terminal problems.

Algorithms 1: MCH selection in a merged cluster

Require: No. of neighboring CH, nodes, position, speed, node weight value, threshold, CMID, and MCH. 
Ensure: Weight value (Wi). 
1: broadcast CHi 
2: if CHi recieves RTS then 
3: if | Si − Mi | < ∆Sthr 
4: if multiple beacon frames received then 
5: if (Si,CHi < Mi) & (pos.CHi>pos.CHi) then //Weight value in CH compared. 
6: lowest_CHi = array [0] // The CH with the id starting from zero. 
7:    for all CHi do 
8:     if array[i] > lowest_CHi then 
9:     lowest_CHi = array[i] 
10:        status.CHi = MCH 
11:     End if 
12:  End if 
13:    End if 
14:     CHi.status = Gw// when the other CMsi  are not in the TX of MCH but CHi. 
15:  Gwi.status = CM// when all the CMs are in the TX of MCH. 
16:   join Clusterj // or join Clusterj and affiliate with CHj. 
17:   else 
18:       leaving cluster  
19:    Update and share status info with the CMs 
20: else 
21:     status.CHi = Gw // The search repeats until new CH is selected. 
22:     Gwi.status = CM// when all the CMs are in the TX of MCH. 
23:   join Clusterj // or join Clusterj and affiliate with CHj. 
24:   else 
25:       leaving cluster  
26:    Update and share status info with the CMs 
27:           end ifcummulative 
28: end for// End cluster formation.  
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4. Performance Evaluation

The simulation results were compared side by side to determine the effectiveness
of the proposed algorithm in ensuring an effective cluster merging. We evaluated the
performance of the ECMA protocol with the weight-model MCH selection algorithm for
efficient transmission of access data packets from the CH and allocate the reserved slot to
the CMs to reduce the impact of merging collisions during cluster merging at the simulation
phase. The performance metrics for the method are network throughput, end-to-end delay,
and access transmission probability.

i. Average network throughput—the average number of data packets successfully transmit-
ted to neighboring CMs within a unit time is known as the average network throughput.

ii. The end-to-end delay—the time required for a data packet transmitted and success-
fully received by neighboring nodes.

iii. Successful access transmission probability—defined as the ratio of the number of data
packets successfully transmitted in the network to the total number of data packets
effectively transmitted.

Simulation and Parameters

In the simulation, SUMO, NS-2, and MATLAB are used. SUMO is a program that gen-
erates road status files by simulating traffic. We used NS2 to embed information about the
state of the highway, then evaluated the NS2 to obtain data. We used MATLAB to evaluate
data in order to obtain the most important performance indicator information. Wave mod-
ule is used to communicate across DSRC channels, which are defined by the IEEE802.11p
MAC and PHY layer standards. The simulation parameters are listed in Table 1.

5. Discussion

5.1. Access Delay Time-Slot Probability

Figure 6 shows the probability of access delay theoretical structure based on a weighted
Markov chain model: First, as the number of nodes grows, channel access becomes re-
stricted, resulting in access collision.
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Figure 6. Access delay at various state.

For example, when the node adapts to different access mechanisms on frames 1 to 4
at ith slot 10, ECMA provides 19%, access collisions prevention, while EWCA provides
68.8%. When the transition flow was at k and ith = 15, the ECMA protocol increased by
15%, whereas the EWCA protocol increased by 82.24%. When two or more clusters merge,
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the unified weighted cluster network deals with hidden terminal problems and secures all
CMs to their CH. The MCH elections and the new merged cluster have a special resistance
to merging collisions owing to the transition pace.

5.2. Cluster Head Lifetime and Its Influence on Merge Window

The influence of CH duration and the merging window (Mw) is predictable based on
the above model and analyses by the simulation process. The MCH selection algorithm with
the aperiodic window period also increases the speed of the transition process and generates
a new stable merge cluster. This gives the novel ECMA protocol a better performance, even
as vehicle densities in a different merge scenario change. Figure 7 attests to the fact that in
as much as the density of the vehicles increases from scenarios ‘a to d’ where the average
CH duration during the merging window is low from ‘a’ and have a slight rise increases in
‘b’, ‘c’ and ‘d’ scenarios. However, the MCH in the ECMA protocol stays longer than the
MCH in the EWCA and VeMAC. Based on the above model and simulation results, the
impact of the CH duration and the merging window (Mw) can be predicted. The MCH
selection algorithm, combined with the aperiodic window period, speeds up the transfer
process and results in a new, stable merge cluster.

Figure 7. CH lifetime and it influence on Mw.

5.3. Cluster Member Disconnection Frequency and It Influence on Merge Window

When other CHs are relieved of their leadership and become ordinary CMs, the rate
of cluster members disconnecting from the network during the cluster merger process is
affected. In this case, the CMs must give up their current time slot and request a new one
from the new leadership (MCH). CMs that have been separated from their CH during
the Mw process may either join the new MCH or leave to form or join another cluster.
Figure 8 shows how the CH relinquishes leadership to become the gateway (Gw) node
in the ECMA protocol, which continues to connect and link the CMs that are not within
the transmission range of the new MCH. In addition, the remaining CMs which are either
within the transmission range of the new MCH may cling to the Gate way node or join a
new cluster. Second, even though the clusters’ CMs are all within the transmission range of
one another, each cluster’s centralized system ensures that each CM is only connected to its
own CH. In contrast to EWCA and VeMAC, this function of the ECMA protocol stabilizes
and maintains a high-throughput and a timely successful access transmission during the
merging window, thereby eliminating the HTP and merging collision.
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Figure 8. CM disconnection frequency and it influence on Mw.

Even if different cluster members are in the transmission range of each, the centralized
network structure (one to all and all to one) using the weighted Markov chain model,
where each cluster contains its total weight value, which serves as the cluster ID, signifi-
cantly connects each CM to its CH. This technique effectively solves the hidden terminal
problems, thus eliminating merging collisions. Figure 9 shows that ECMA outperforms
VeMAC. Figure 10 demonstrates how the weight-based algorithm is used to achieve a
quick transition during the merging process. The construction of a centralized cluster in a
vehicle ad hoc network (VANET), where all nodes are one-hop nodes, and aperiodic MCH
selection is based on the window period probability. In multi-channel access, the drift in
transition dependent on the access mechanism preserves its unique time slot even as this
set of nodes transitions from one state to the next. The ECMA protocol outperformed the
VeMAC protocol in terms of the transfer speed, resulting in a shorter end-to-end delay.
The CHs selects the best candidate to be the MCH in a combined cluster. The other CHs
became CMs as their CMs within the transmission range released their time slots and
received a new time slot from the new MCH. For a while, the CMs outside of the new CH’s
transmission range will stick to their previous CH, which has now switched to Gw Node,
until all of the remaining CMs are within the MCH’s transmission range, at which point the
Gw is converted to CM. When comparing the ECMA and VeMAC in terms of successful
access transmission probability during average velocity, the ECMA protocol in Figure 11
performs better.
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Figure 9. Average network throughput versus average velocity.

Figure 10. Average end-to-end delay versus average velocity.

Figure 11. Successful access transmission probability versus average velocity.

6. Conclusions

In this study, we proposed an enhanced cluster-based multi-access channel protocol
(ECMA) for high-throughput and effective access channel transmissions while minimizing
access delay and avoiding collisions during cluster merging. We created a merge cluster
head selection (MCHS) algorithm that eliminates merging collision and hidden terminal
problems, as well as the selection of the best match MCH in the merged cluster when
two or more clusters merge. When multiple sets of vehicles collide or when two or more
clusters merge, MCHS algorithm resolves hidden terminal concerns and connects all CMs
to their CH. The MCH elections and the new merged cluster are particularly resistant
to merging collisions owing to the rapid transition from one state to the other. In high-
speed merge, a weighted Markov chain model is used to describe the transformation
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operation within a cluster. The application of a weighted Markov chain model represents
the transformation operation within a cluster and distinguishes it from other clusters based
on the weighted value. In addition, the weighted Markov chain mathematical model
enhances accuracy while decreasing ECMA channel data access transmission delay with
unmatched transition speed in timeslot and state-slot during the clusters’ merger window.
These speeds up transitions while avoiding hidden terminal issues and merging collisions
during the window period (T). Extensive simulation data were supplied to demonstrate the
effectiveness of the proposed strategy. In summary, this work gives a detailed discussion
of the basic ECMA protocol modeling and the MCHS algorithm, as well as a thorough
analysis of their technology. The discussion concluded that cluster member disconnection
frequency is minimal, as well as a longer cluster head lifetime and a positive influence on
merge window. Therefore, when ECMA is compared to EWCA and VeMAC, the weighted
MCHS algorithm and weighted Markov chain yields a distinct output in terms of average
network throughput, end-to-end delay, and efficient access transmission probability by
64.20%–69.49%, avoiding HTP and eliminating merging collisions. In the future, the
proposed MCHS algorithm will be assessed in traffic scenarios involving vehicles driving
in opposite directions with heterogeneous radio access in order to facilitate information
transmission between cluster heads.
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Abstract: The large volume and windward area of the heavy-duty semi-rigid airship (HSA) result in a
large turning radius when the HSA passes through every mission point. In this study, a multi-mission-
point route planning method for HSA based on the genetic algorithm and greedy strategy is proposed
to direct the HSA maneuver through every mission point along the optimal route. Firstly, according
to the minimum flight speed and the maximum turning slope angle of the HSA during turning, the
minimum turning radius of the HSA near each mission point is determined. Secondly, the genetic
algorithm is used to determine the optimal flight sequence of the HSA from the take-off point through
all the mission points to the landing point. Thirdly, based on the optimal flight sequence, the shortest
route between every two adjacent mission points is obtained by using the route planning method
based on the greedy strategy. By determining the optimal flight sequence and the shortest route, the
optimal route for the HSA to pass through all mission points can be obtained. The experimental
results show that the method proposed in this study can generate the optimal route with various
conditions of the mission points using simulation studies. This method reduces the total voyage
distance of the optimal route by 18.60% on average and improves the flight efficiency of the HSA.

Keywords: multi-mission-point; route planning; minimum turning radius; optimal flight sequence;
shortest route

1. Introduction

The heavy-duty semi-rigid airship (HSA) is different from ordinary aerial photography
unmanned airships as the HSA has a large volume and can carry a heavy load for a long
voyage [1,2]. As a result, many HSAs have been widely used to perform observation,
transportation, and other missions across multiple cities or regions [3–5], such as Germany
Zeppelin NT airship [6], American ML866 airship [7], and China ASQ-HAA380 [8], to name
a few. The HSAs are also different from airplanes due to their large volume and windward
area, which result in a larger turning radius when performing flight missions. Therefore, in
the HSA route planning, the shortest route between two mission points is not a straight
line but a curve. How to obtain the optimal route so that HSAs can accurately pass through
all mission points, e.g., cities or regions, in sequence with the shortest flight route identified
to improve flight efficiency is critically important, however, multi-mission-point route
planning remains challenging.

The multi-mission-point route planning problem of the HSA can actually be reduced to
a traveling salesman problem (TSP) to solve [9], which is a famous combinatorial optimiza-
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tion problem. For HSA route planning, the problem can be specifically defined as finding
the shortest loop that does not repeatedly pass through all target cities [10–12]. To the
best knowledge of the authors, this problem has been extensively studied with numerous
algorithms developed for solving TSP problems including the greedy algorithm; genetic
algorithm [13–15]; simulated annealing algorithm [16,17]; ant colony algorithm [18,19];
and particle swarm optimization algorithm [20,21], etc. Lideng, P. and Xiaofeng, H. [22]
proposed a simple heuristic greedy method to solve the traveling salesman problem by
using the distance information between cities. Dengwu, M. and Wen, Y. [14] proposed an
optimization method based on an adaptive pseudo-parallel genetic algorithm based on a
basic genetic algorithm. The optimal flight route of the aircraft obtained by this method
strictly passes through the starting point and the target point of the aircraft. X. Yue, W.
Zhang [23] proposes a UAV route planning method based on the K-means algorithm and
simulated annealing algorithm. The K-means algorithm is used to classify the target points,
and the simulated annealing algorithm is used to draw the shortest route for all the target
points that the UAV will take, and maximize the UAV cruise coverage. The algorithm
improves the overall efficiency and cruise coverage of the UAV. X. Chen, Y. Dai [24] pro-
posed an ant colony algorithm integrating the genetic algorithm to solve the path planning
problem. The algorithm combines the advantages of ant colony algorithm and genetic
algorithm and reduces the number of iterations of the optimal solution as well as the
calculation time and cost. Based on the particle swarm optimization algorithm, Shu-Juan, T.
and Ke, Z. [25] which improved the global search ability of route planning and obtained a
more authoritative optimal route, this method solves the problem of single-machine path
planning problem detection and multi-machine cooperation, and achieves good results.
Although various algorithms have been proposed in the above literatures to solve the TSP
in aircraft route planning through optimization algorithms or multi-algorithm fusion with
success to some extent, it is worth noting that the influence of aircraft large turning radius
on route planning was never considered.

Li, R. and Xu, H. [26] proposed a UAV path planning approach based on modified ant
colony algorithm and DUBINS curve. The DUBINS curve is used to smooth the turning
angle to obtain a shorter and smoother flight path and improve the operation efficiency of
the UAV. Cheng, J. and Hu, X. [27] proposed an improved ant colony algorithm that can
solve feasible paths and speed up the convergence speed. At the same time, the DUBINS
curve is used to curve the solution path, so that the solution path can meet the requirements
of the UAV flight curvature. Hansen, K.D. and Cour-Harbo, A.L. [28] proposed a variable
radius trajectory generation and waypoint planning method based on DUBINS curve. This
method proposes an improved genetic algorithm, which optimizes the continuous heading
and target speed of the waypoints while optimizing the combined sequence. At the same
time, the generation method of DUBINS curve with variable radius is introduced. The
studies from the above literature use the DUBINS curve to solve the influence of the turning
radius on the route when planning the route.

The DUBINS curve is the shortest path connecting two points under the constraints of
curvature and tangent direction at the specified start and end points, and the target can
only travel forward. Under the constraints, there will be multiple curves feasible, so the set
of DUBINS curve D = {LSL, RSR, RSL, LSR, RLR, LRL}. The shortest route in the DUBINS
curve set is the optimal solution [29,30]. However, the DUBINS curve has limitations,
limiting the direction of the target and the direction of speed at the beginning and ending.
Therefore, the optimal solution in the DUBINS curve set is only the optimal solution in the
specific beginning and ending speed directions.

Table 1 summarizes the influence of whether the turning radius of the route planning
algorithm proposed in the above studies was considered in route planning.
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Table 1. Various route planning algorithms.

Ref Proposed Method
Consider Turning

Radius Effects

[22] A simple heuristic greedy method NO

[14] An optimization method based on an adaptive pseudo parallel
genetic algorithm NO

[23] Combined the K-means clustering algorithm and simulated
annealing algorithm NO

[24] An ant colony algorithm integrating genetic algorithm NO
[25] Combined particle swarm optimization algorithm and genetic algorithm NO

[26] A UAV path planning approach based on modified Ant colony algorithm and
DUBINS curve YES

[27] Mixed ant colony Algorithm Based on DUBINS Path YES

[28] A variable radius trajectory generation and waypoint planning method based
on DUBINS curve. YES

When planning the route of the HSA, using the naive global search algorithm solely
to find the optimal route will increase the computational time significantly and make it
infeasible. Therefore, to address the aforementioned challenges, a multi-mission-point
route planning method for HSA based on the genetic algorithm and greedy strategy is
proposed in this paper. Firstly, according to the minimum flight speed and the maximum
turning slope angle of the HSA, the minimum turning radius of the HSA near each mission
point is determined. Secondly, the global search ability of the genetic algorithm is used to
determine the optimal flight sequence of the HSA from the take-off point through all the
mission points back to the landing point. Thirdly, based on the optimal flight sequence, a
route planning method based on the greedy strategy is proposed, which uses the greedy
strategy to decompose the optimal route problem of all mission points into the local optimal
route problem of every two adjacent mission points. Then, this method traverses the multi-
mission points in the optimal flight sequence in turn to obtain the shortest route between
every two adjacent mission points. Finally, the optimal route of the HSA from the take-off
point, through all the mission points, and back to the landing point is obtained. Figure 1
shows the flow chart of the proposed method that gives a holistic overview of the route
planning algorithm.

Solving the minimum turning radius

The optimal flight sequence of multi-mission 
points is obtained based on genetic algorithm

Input the offline information

The shortest route between two mission points is 
obtained by the route planning method based on 

greedy strategy

Output the optimal route of 
multi-mission-point

 

Figure 1. The overall flow chart of the route planning algorithm proposed. The input offline
information includes HSA take-off and landing points and route mission points, the minimum flight
speed, and the maximum turning slope angle of the HSA during turning.
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The method proposed in this paper combines the global search ability of the genetic
algorithm and the local optimal characteristics of the greedy strategy, which reduces the
amount of calculation and improves the computing efficiency. At the same time, this
method can accurately generate the optimal route and improve the flight efficiency. It can
be seen from Table 1 that the route planning algorithms proposed in the literature [14,22–25]
do not consider the influence of the turning radius, and the literature [26–28] proposed
to use the DUBINS curve to solve the influence of the turning radius on the route. The
DUBINS curve, however, has limitations, limiting the direction in which the target is
heading and the speed direction at the beginning and ending. Therefore, the method
proposed in this paper is compared with the multi-mission-point route planning method
based on the DUBINS curve, and the results show that the total voyage of the optimal route
obtained by the proposed method is reduced by 18.60% on average.

The rest of the paper is organized as follows: Section 2 introduces the multi-mission-
point route planning method for the HSA. In Section 3, the experimental analysis is carried
out. In Section 4, the findings are discussed. Finally, in Section 5, the conclusions are drawn.

2. Materials and Methods

In this section, the minimum turning radius of HSA is first introduced, and then the
two stages of the method are introduced in detail. First, the optimal flight sequence of
the multi-mission points is obtained based on the genetic algorithm. Second, the route
planning method based on the greedy strategy obtains the shortest route between every
two adjacent mission points in the optimal flight sequence.

2.1. Minimum Turning Radius

Since the HSA has a large volume and windward area, there is a large turning radius
when passing through each mission point. Therefore, in the HSA route planning, the
shortest route between two mission points is not a straight line but a curve. It is necessary
to consider the influence of the turning radius on route planning. The turning radius of an
airship [31,32] can be found by:

R =
TAS2

g × tan γ
(1)

TAS = IAS

√
Pa
Pa0

(2)

where TAS is the vacuum velocity of the airship; IAS is the indicated airspeed of the airship;
g is the local gravitational acceleration; γ is the slope angle when the airship turns; Pa is the
current external air pressure value of the flight; Pa0 is the standard sea level pressure value.

From Equation (1), it can see that the turning radius of the HSA is affected by the flight
speed and the turning slope angle. The HSA has a fixed maximum turning slope angle
during turning, so the smaller the flight speed of the HSA is during turning, the smaller
the turning radius will be. Before route planning, according to the minimum flight speed
Vmin of the HSA and the maximum turning slope angle γmax during turning, the minimum
turning radius R of the HSA during turning can be obtained by Equations (1) and (2).
Therefore, in the following route planning, the turning radius of the HSA passing through
each mission point adopts the minimum turning radius R.

2.2. Genetic Algorithm Based Approach for Optimal Flight Sequence of Mission Points

After the HSA enters the working altitude, it will traverse all the selected mission
points from the take-off point. References [9,33] simplified this problem as a traveling
salesman problem, which aims to find a closed loop with the shortest distance in a series
of nodes. As every route of the HSA starts from a fixed take-off point, the route planning
problem for HSA can be described as a closed loop that traverses n mission points from the
take-off point. In this way, the route distance of the HSA can be shortened, and the flight
efficiency can be improved as well.
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Among the various algorithms for solving the TSP problem, the genetic algorithm is
an intelligent algorithm that searches for the optimal solution by simulating the natural
evolution process. Furthermore, the genetic algorithm has the global search ability, which
has a good effect on the TSP problem to quickly obtain better optimization results. It
is worth noting from the above analysis that the influence of turning radius needs to
be considered when HSA turns. In order to improve the flight efficiency of an airship,
HSA adopts the minimum turning radius R. Therefore, before route planning, this paper
investigated and demonstrated the global search ability of the genetic algorithm to obtain
the optimal flight sequence of HSA passing through the multi-mission points. The specific
steps of the proposed genetic algorithm are as follows:

1. Input the coordinates of take-off and landing point PO and mission points Pi
(i = 1, 2, 3, . . . , n), and the number of nodes N = n + 1;

2. Set the maximum genetic algebra, crossover probability, and mutation probability;
3. Calculate the distance Dij(i, j = 1, 2, 3, . . . , N) between every two adjacent mission points;
4. Initialize the population and randomly generate multiple individuals starting from

the take-off point;
5. Selection operation: calculate the fitness value of each individual in the population,

and select the individual with a large fitness value as the new population to replace
the original population;

6. Crossover operation: every two adjacent individuals in the population have a cer-
tain crossover probability. According to the single point crossover, the partial node
sequences of the same length in the two adjacent individuals are cross exchanged to
generate new individuals to replace the original individuals;

7. Mutation operation: each individual in the population has a certain mutation probabil-
ity. The individual performs partial mutation, that is, two nodes in the node sequence
are randomly selected and their sequence is exchanged;

8. Repeat steps 5–7 until the genetic algebra is the maximum genetic algebra, and output
the individual with the maximum fitness in the evolutionary process;

9. According to the node sequence in the optimal solution individual, the coordinates of
take-off and landing point, and mission points are output.

Note: the fitness value is the reciprocal of the total distance of the route.

2.3. Route Planning Method Based on the Greedy Strategy

The greedy strategy means that the agent always makes the best choice at present, in
other words, the choice made by the greedy strategy is only a locally optimal solution in a
certain sense. The main idea of the greedy strategy is to divide the problem into several
sub-problems, solve each sub-problem to obtain the local optimal solution, and finally
synthesize the local optimal solutions of all sub-problems into the optimal solution for the
original problem.

From the above, the minimum turning radius during the HSA flight and the optimal
flight sequence of the HSA passing through all multi-mission points can be obtained. Thus,
the main goal of route planning becomes how to find an optimal route with the shortest
distance and improve flight efficiency. Therefore, this paper proposes a route planning
method based on the greedy strategy. This method adopts the idea of the greedy strategy
to decompose the optimal route problem of all mission points into a local optimal route
problem of every two adjacent mission points. The novel method reduces the computational
complexity and improves the computational efficiency. Additionally, this method helps to
traverse the multi-mission points in the optimal flight sequence in turn to determine the
shortest route between every two adjacent mission points. Finally, the complete optimal
route of the HSA from the take-off point to the landing point through all mission points
can be obtained.

In order to simplify the problem and facilitate efficient calculation, this paper does not
consider the direction of HSA at take-off and landing points, the following assumptions
are proposed and met:
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Assumption 1. The HSA takes off along the positive semi-axis direction of the X axis of the global
coordinate system of the input multi-mission points.

Assumption 2. The HSA can return to the landing point from any direction.

Assumption 3. The take-off and landing point of the HSA coincide with the same point.

The detailed steps of the proposed route planning method are presented as follows:

1. Input the initial information, such as the coordinates of the multi-mission points of
the optimal flight sequence of the HSA;

2. Translation transformation of the coordinate system, the translation of the global
coordinate system of the input multi-mission points is transformed into the local
coordinate system of the mission point Pi+1, and the parameter expression of the
coordinates of the circle center Oi+1 can be obtained;

3. Determine the coordinates of the circle center Oi
′ in the route PiPi+1, according to

the coordinates of the circle center Oi in the route Pi−1Pi, the coordinates of the circle
center Oi

′ can be determined;
4. Determine the shortest route of the route PiPi+1, the expression of the total voyage

distance of the route PiPi+1 is expressed by the coordinates of the circle center Oi+1,
and the shortest route of the route PiPi+1 is determined by changing the coordinates
of the circle center Oi+1;

5. Coordinate transformation of the shortest route, converting the shortest route from
the local coordinate system back to the global coordinate system;

Note: Steps 2–5 could be repeated if necessary. When traversing back to the landing
point of the HSA, the method will output the optimal route of the HSA from the take-off
point through all the mission points back to the landing point.

The flow chart of this method is shown in Figure 2 with detailed algorithms described
as follows:

Input the initial information

Translation transformation of 
coordinate system

Determine the coordinates of circle 
center      in the route 

Determine the shortest route of 
the route         

Output the optimal route of 
the multi-mission points

OP

Coordinate transformation of 
shortest route

Return to landing 
point     

No

Yes

iO ′

i iPP+

i iPP+

 
Figure 2. Flow chart of route planning method based on the greedy strategy. The initial input
information includes the coordinates of the multi-mission points of the optimal flight sequence of the
HAS and the coordinates of the circle center OO of the take-off point PO.
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2.3.1. Input the Initial Information

From the above, the optimal flight sequence of the HSA from the take-off point,
through all the mission points, and back to the landing point can be obtained by using the
global search ability of the genetic algorithm. At the same time, according to Assumption
1, the HSA takes off along the positive semi-axis direction of the X axis of the global
coordinate system OXY, so the coordinates of the circle center OO of the take-off point PO
are set as (xPO , yPO + R).

Therefore, the input initial information includes the coordinates of the multi-mission
points of the optimal flight sequence of the HSA and the coordinates (xPO , yPO + R) of the
circle center OO.

2.3.2. Translation Transformation of the Coordinate System

The input multi-mission-point coordinates are located in the global coordinate system
OXY, in order to obtain the shortest route PiPi+1 from the mission point Pi to the mission
point Pi+1 for convenience. The global coordinate system OXY is translated to the position
where the origin coincides with the mission point Pi+1, so the local coordinate system
O′X′Y′ of the mission point Pi+1 is obtained. The translation transformation equation of
the coordinate system is: {

xi
′ = xi − xPi+1

yi
′ = yi − yPi+1

(3)

where xi
′, yi

′ are the x-coordinate and y-coordinate of each point in the local coordinate
system O′X′Y′; xi, yi are the x-coordinate and y-coordinate of each point in the global
coordinate system OXY; xPi+1 , yPi+1 are the x-coordinate and y-coordinate of the mission
point Pi+1 in the global coordinate system OXY.

The coordinates of the circle center Oi+1 of the mission point Pi+1 in local coordinate
system O′X′Y′ are parameterized as follows:{

xOi+1
′ = R cos θ

yOi+1
′ = R sin θ

, (θ ∈ [0, 2π)) (4)

where xOi+1
′, yOi+1

′ are the x-coordinate and y-coordinate of the circle center Oi+1 in the
local coordinate system O′X′Y′; θ ∈ [0, 2π) is the angle parameter, where each parameter θ
corresponds to a circle center Oi+1 coordinate. Under different circle center Oi+1 coordi-
nates, the total voyage distance of the route PiPi+1 will be different. Therefore, by changing
the value of θ, when the total voyage distance of the satisfied route is the smallest, the
corresponding route will be the shortest route.

2.3.3. Determine the Coordinates of the Circle Center Oi
′ in the Route PiPi+1

According to the shortest route Pi−1Pi from the mission point Pi−1 to the mission point
Pi, the coordinates of the circle center Oi of the mission point Pi can be obtained. Then the
mission point Oi, the mission point Pi, and the mission point Pi+1 form a corner ∠OiPiPi+1.
The size of ∠OiPiPi+1 can be divided into two cases: ∠OiPiPi+1 ≤ 90◦ and ∠OiPiPi+1 > 90◦,
which are discussed separately as follows:

Case 1: ∠OiPiPi+1 ≤ 90◦:
When ∠OiPiPi+1 ≤ 90◦, the circle center Oi

′ of the mission point Pi in the route PiPi+1
coincides with the circle center Oi of the mission point Pi in the route Pi−1Pi, then the
coordinates of the circle center Oi

′ are:{
xOi

′ ′ = xOi
′

yOi
′ ′ = yOi

′ (5)

where xOi
′ ′, yOi

′ ′ are the x-coordinate and y-coordinate of the circle center Oi
′ in the local

coordinate system O′X′Y′; xOi
′, yOi

′ are the x-coordinate and y-coordinate of the circle
center Oi in the local coordinate system O′X′Y′.
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Case 2: ∠OiPiPi+1 > 90◦:
When ∠OiPiPi+1 > 90◦, the circle center Oi

′ of the mission point Pi in the route PiPi+1
and the circle center Oi of the mission point Pi in route Pi−1Pi are symmetrical about the
mission point Pi, then the coordinates of the circle center Oi

′ are:{
xOi

′ ′ = 2 × xPi
′ − xOi

′

yOi
′ ′ = 2 × yPi

′ − yOi
′ (6)

where xOi
′ ′, yOi

′ ′ are the x-coordinate and y-coordinate of the mission point Pi in the local
coordinate system O′X′Y′.

2.3.4. Determine the Shortest Route of the Route PiPi+1

The distance DOi
′Pi+1

from the circle center Oi
′ to the mission point Pi+1 is:

DOi
′Pi+1

=
√
(xOi

′ ′ − xPi+1
′)2 + (yOi

′ ′ − yPi+1
′)2 (7)

where xPi+1
′, yPi+1

′ are the x-coordinate and y-coordinate of the mission point Pi+1 in local
coordinate system O′X′Y′.

Regarding the geometric relationship between the distance DOi
′Pi+1

and the minimum
turning radius R, there are three cases: DOi

′Pi+1
> R, DOi

′Pi+1
< R, and DOi

′Pi+1
= R, which

are discussed separately as follows:
Case 1: DOi

′Pi+1
> R:

As shown in Figure 3, when the distance DOi
′Pi+1

is greater than the minimum turning
radius R, the route PiPi+1 includes three parts: the arc route where the mission point Pi is
located, the arc route where the mission point Pi+1 is located, and the straight line in the
middle. Among them, the arc route where the mission point Pi is located and the arc route
where the mission point Pi+1 is located are both inferior arcs.

iP
iP

i iO O

R

iO

iT iT X

Y

R

 

iP
iP

iO

R

iO

iT

X

Y

R

iO

iT

(a) (b) 

Figure 3. Schematic diagram of route planning when the distance DOi
′Pi+1 is less than the minimum

turning radius R. (a) is the schematic diagram of route planning at ∠OiPiPi+1 ≤ 90, (b) is the
schematic diagram of a route planning at ∠OiPiPi+1 > 90, the red line is the calculated shortest route.

By defining the tangent point between the arc route where the mission point Pi is
located and the straight route as Ti; and defining the tangent point between the arc route
where the mission point Pi+1 is located and the straight route as Ti+1, it can be seen from
Figure 3 that the geometric relationship ∠PiOi

′Oi+1 = ∠PiOi
′Ti + 90◦ is valid, so

cos (∠PiOi
′Ti)

2
+ cos (∠PiOi

′Oi+1)
2
= 1 (8)

which leads to

(
Oi

′Pi
2 + Oi

′Ti
2 − TiPi

2

2 × Oi
′Pi × Oi

′Ti
)

2

+ (
Oi

′Pi
2 + Oi

′Oi+1
2 − Oi+1Pi

2

2 × Oi
′Pi × Oi

′Oi+1
)

2

= 1 (9)
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where Oi
′Pi and Oi

′Ti are equal to the minimum turning radius R; TiPi is the distance from
the tangent point Ti to the mission point Pi; Oi

′Oi+1 is the distance from the circle center
Oi+1 to the circle center Oi

′
; Oi+1Pi is the distance from the circle center Oi+1 to the mission

point Pi.
The tangent point Ti is located on the circle with center Oi

′, so Oi
′Ti = R, that is:

(xOi
′ ′ − xTi

′)2
+ (yOi

′ ′ − yTi
′)2

= R2 (10)

As it can be seen from the above, ∠Oi
′PiPi+1 ≤ 90◦, and ∠Oi

′PiPi+1 +∠TiPiPi+1 ≤ 90◦,
so ∠TiPiPi+1 ≤ 90◦, that is:

TiPi
2 + PiPi+1

2 − TiPi+1
2

2TiP × PiPi+1
≥ 0 (11)

where PiPi+1 is the distance from the mission point Pi to the mission point Pi+1; TiPi+1 is
the distance from the tangent point Ti to the mission point Pi+1.

It can be seen from Equations (9)–(11) that the coordinate (xTi
′, yTi

′) of the tangent
point Ti can be obtained. Similarly, the coordinate (xTi+1

′, yTi+1
′) of the tangent point Ti+1

can also be obtained.
Therefore, the route PiPi+1 includes arc route PiTi, straight route TiTi+1 and arc route

Ti+1Pi+1. The voyage distance of each part of the route is:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
l1 = 2R × a sin(

√
(xPi

′−xTi
′)2+(yPi

′−yTi
′)2

2R )

l2 =
√
(xTi

′ − xTi+1
′)2 + (yTi

′ − yTi+1
′)2

l3 = 2R × a sin(

√
(xPi+1

′−xTi+1
′)2+(yPi+1

′−yTi+1
′)2

2R )

(12)

where l1 is the distance of the arc route PiTi; l2 is the distance of the straight route TiTi+1; l3
is the distance of the arc route Ti+1Pi+1.

Then, the total voyage distance l of the route PiPi+1 is:

l = l1 + l2 + l3 (13)

Change the value of parameter θ(0 ≤ θ < 2π). When θ satisfies that the total voyage
distance l of the route PiPi+1 at the minimum value, the corresponding route is the optimal
route. At this time, the coordinates of the circle center Oi+1 corresponding to the θ are:{

xOi+1
′ = R cos θ

yOi+1
′ = R sin θ

(14)

Case 2: DOi
′Pi+1

< R:
As shown in Figure 4, when the distance DOi

′Pi+1
is less than the minimum turning

radius R, the route PiPi+1 includes three parts: the arc route where the mission point Pi is
located, the arc route where the mission point Pi+1 is located, and the straight line in the
middle. Among them, the arc route where the mission point Pi is located is the inferior arc,
and the arc route where the mission point Pi+1 is located is the superior arc.
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Figure 4. Schematic diagram of route planning when the distance DOi
′Pi+1 is less than the minimum

turning radius R. (a) is the schematic diagram of route planning at ∠OiPiPi+1 ≤ 90, (b) is the
schematic diagram of a route planning at ∠OiPiPi+1 > 90, the red line is the calculated shortest route.

Similarly, let the tangent point between the arc route where the mission point Pi is
located and the straight route be Ti; let the tangent point between the arc route where the
mission point Pi+1 is located and the straight route be Ti+1.

It can be seen from Equations (9)–(11) that the coordinate (xTi
′, yTi

′) of the tangent
point Ti and the coordinate (xTi+1

′, yTi+1
′) of the tangent point Ti+1 can be obtained.

Since the arc Ti+1Pi+1 is the superior arc, the arc Ti+1Pi+1 is equally divided into
two sections, and the midpoint of the arc Ti+1Pi+1 is taken as Mi+1. According to the
explicit method of locating the midpoint of the arc in the Cartesian plane mentioned in
reference [34], the coordinates of the point Mi+1 of the arc Ti+1Pi+1 can be obtained as
(xMi+1

′, yMi+1
′).

Therefore, the route PiPi+1 includes: arc route PiTi, straight route TiTi+1 arc route
Ti+1Mi+1 and arc route Mi+1Pi+1. The voyage distance of each part of the route is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1 = 2R × a sin(

√
(xPi

′−xTi
′)2+(yPi

′−yTi
′)2

2R )

l2 =
√
(xTi

′ − xTi+1
′)2 + (yTi

′ − yTi+1
′)2

l4 = 2R × a sin(

√
(xMi+1

′−xTi+1
′)2+(yMi+1

′−yTi+1
′)2

2R )

l5 = 2R × a sin(

√
(xMi+1

′−xPi+1
′)2+(yMi+1

′−yPi+1
′)2

2R )

(15)

where l4 is the distance of the arc route Ti+1Mi+1; l5 is the distance of the arc route Mi+1Pi+1.
Then, the total voyage distance l of the route PiPi+1 is:

l = l1 + l2 + l4 + l5 (16)

Similarly, change the value of parameter θ(0 ≤ θ < 2π). When θ satisfies that the total
distance l of the route PiPi+1 at the minimum value, the corresponding route is the optimal
route. At this time, the coordinates of the circle center Oi+1 corresponding to θ are shown
in Equation (13).

Case 3: DOi
′Pi+1

= R:
As shown in Figure 5, when the distance DOi

′Pi+1
is equal to the minimum turning

radius R, the mission point Pi and the mission point Pi+1 are located on the arc of the circle
center Oi

′ at the same time. At this time, the route PiPi+1 only includes the arc route PiPi+1.
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Figure 5. Schematic diagram of route planning when the distance DOi
′Pi+1 is equal to the minimum

turning radius R. (a) is the schematic diagram of route planning at ∠OiPiPi+1 ≤ 90, (b) is the
schematic diagram of a route planning at ∠OiPiPi+1 > 90, the red line is the calculated shortest route.

In order to prevent the arc PiPi+1 from being the superior arc, the midpoint of the arc
PiPi+1 is taken as Mi. Then according to the explicit method of locating the midpoint of the
arc in the Cartesian plane mentioned in reference [34], the coordinates of the midpoint Mi
of the arc PiPi+1 can be obtained as (xMi

′, yMi
′).

Therefore, the route PiPi+1 includes arc route Pi Mi and arc route MiPi+1. The voyage
distance of each part of the route is:⎧⎪⎨⎪⎩ l6 = 2R × arcsin(

√
(xPi

′−xMi
′)2+(yPi

′−yMi
′)2

2R )

l7 = 2R × arcsin(

√
(xMi

′−xPi+1
′)2+(yMi

′−yPi+1
′)2

2R )

(17)

where l6 is the distance of the arc route Pi Mi; l7 is the distance of the arc route MiPi+1.
Then, the total voyage distance l of the route PiPi+1 is:

l = l6 + l7 (18)

At this time, the circle center Oi+1 coincides with the circle center Oi
′, which coordi-

nates are: {
xOi+1

′ = xOi
′

yOi+1
′ = yOi

′ (19)

2.3.5. Coordinate Transformation of the Shortest Route

The shortest route PiPi+1 and the coordinates of the circle center Oi+1 in the above
process are all located in the local coordinate system O′X′Y′. In order to obtain the shortest
route of the entire route, it necessary to convert back to the global coordinate system OXY.
The translation transformation equation of the coordinate system is:{

xi = xi
′ + xPi+1

yi = yi
′ + yPi+1

(20)

Therefore, the shortest route PiPi+1 and the coordinates of the circle center Oi+1 in the
global coordinate system OXY are obtained.

By repeating steps 2–5 of the proposed route planning method based on the greedy
strategy, the method traverses the mission points in the optimal flight sequence in turn
to obtain the shortest route between every two adjacent mission points, and outputs the
optimal route of the HSA as shown in Figure 6.
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Figure 6. Schematic diagram of optimal route. PO is the take-off and landing point of the HSA,
P1, P2, P3, P4 are the input multi-mission points, PO → P2 → P4 → P3 → P1 → PO is the optimal
flight sequence based on the genetic algorithm, and the red line is the optimal route obtained by the
route planning method based on the greedy strategy.

3. Experimental Analysis

To validate the method proposed in this paper, this paper leveraged the simulation
software of the plant protection UAV route planning developed by the authors [35] and
further developed simulation software for the multi-mission-point route planning of the
HSA. The software interface and layout are shown in Figure 7.

 

Figure 7. Layout of route planning simulation software developed for multi-mission-point route
planning. After selecting the “Multi-Mission Points” mode, the user can click “Set Mission”, then
click on the map to set the coordinates of the multi-mission points, and finally click “Generate”. And
the optimal route will be displayed on the map.

In this paper, the simulation study and analysis adopted the Zeppelin NT airship as
a representative HSA as shown in Figure 8, which is 75 m long and 20 m wide. During
the simulation, the flight speed of the HSA is set as Vmin = 100 km/h and the maximum
turning slope angle as γmax = 20◦. Randomly selected multi-mission points are illustrated
in Figure 9.
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Figure 8. Representative HSA, Zeppelin NT airship adopted in the simulation study and validation.

Figure 9. The mission point selection diagram, where the unnumbered point represents the take-off
and landing point, and the marked points numbered 1∼9 represent the nine mission points selected
in sequence.

Firstly, according to the minimum flight speed Vmin = 100 km/h and the maximum
turning slope angle γmax = 20◦ of the HSA when turning, by Equations (1) and (2), the
minimum turning radius of the HSA can be obtained as:

R =
Vmin

2

g × tan γmax
=

100
3.6

2

9.8 × tan 20◦
≈ 220 m (21)

Secondly, the optimal flight sequence of the multi-mission points is obtained based on
genetic algorithm. First, enter the take-off point coordinates of the HSA, and the coordi-
nates of the randomly selected mission points 1~9. Then, set the maximum evolutionary
generation to 1000, the crossover probability to 0.9, and the mutation probability to 0.1.
Finally, based on the genetic algorithm, the optimal flight sequence of mission points 1~9 is
obtained as: start → 9 → 7 → 6 → 4 → 5 → 8 → 3 → 2 → 1 → end ;

Then, according to the route planning method based on the greedy strategy proposed
in this paper, the multi-mission points in the optimal flight sequence are traversed in turn,
and the shortest route between every two adjacent mission points start → 9 , 9 → 7 , 7 → 6 ,
6 → 4 , 4 → 5 , 5 → 8 , 8 → 3 , 3 → 2 , 2 → 1 , and 1 → end are obtained. Among them,
the route of mission points 2 → 1 belongs to the situation where the distance DOi

′Pi+1
is

greater than the minimum turning radius R in the above; the route of mission points 8 → 3
belongs to the situation where the distance DOi

′Pi+1
is less than the minimum turning radius

R in the above. Figure 10 is the partial enlarged view of the shortest route of mission points
8 → 3 .
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Figure 10. The partial enlarged view of the optimal route of mission points 8 → 3 . The red line with
arrows is the calculated best route, the marked points represent the mission point.

According to the route planning method based on the greedy strategy proposed in
this paper, the shortest route of mission points 2 → 1 is solved. The specific steps are as
follows:

First, the translation transformation of the coordinate system can obtain the parameter
expression of the coordinates of the circle center O1 of the mission point P1. Second,
according to the coordinates of the circle center O2 of the mission point P2 in the shortest
route 3 → 2 , the coordinates of the circle center O2

′ of the mission point P2 in the route
2 → 1 can be determined. Then, the distance D21 from the mission point P2 to the mission
point P1 is greater than the minimum turning radius R, so the expression of the total
voyage distance of route 2 → 1 is as Equation (12). By changing the coordinates of the
circle center O1, the shortest route of the route can be determined. Finally, the relationship
between the parameter θ and the route distance of the mission points 2 → 1 is shown
in Figure 11a. When the parameter θ is 274◦, the shortest distance of the route 2 → 1 is
1742.76 m. Similarly, the shortest route of mission points 8 → 3 is solved by the route
planning method based on the greedy strategy proposed in this paper, and the relationship
between the parameters θ and the route distance of the mission points 8 → 3 is shown
in Figure 11b. When the parameter θ is 340◦, the shortest distance of the route 8 → 3 is
1753.91 m.

  
(a) (b) 

Figure 11. Schematic diagram of the route distance of two adjacent mission points corresponding to
different parameters θ. (a) the relationship between parameter θ and the route distance of the mission
points 2 → 1 , (b) the relationship between parameter θ and the route distance of the mission points
8 → 3 .
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Finally, the optimal route of the HSA from the take-off point, through all the mission
points, and back to the landing point is obtained. The total voyage distance of the optimal
route is 15,139.92 m, as shown in Figure 12.

 

Figure 12. Schematic diagram of the output result of the route planning software. The blue line with
arrows is the calculated best route, and the red line is the route that the simulated airship has traveled.
And the output shows that the total route distance of the optimal route is 15,139.92 m.

In the literature [26], the DUBINS curve is used to perform curve fitting on the solution
path, and the influence of the turning radius on the route is solved, as shown in Table 1.
The literature [29] proposed that the DUBINS curve has only six control combinations
that describe all the shortest paths: LSL, RSR, RSL, LSR, RLR, and LRL, as shown in the
Figure 13. Among them, the LSL control combination means that the HSA starts from the
beginning point PS, first turns left, then goes straight line, and finally turns left to reach the
ending point PE, as shown in Figure 13a.

The multi-mission-point route planning method based on DUBINS curve needs to
determine the speed direction of the airship at the beginning and the ending when solving
the shortest route between two mission points. Therefore, in the shortest route from the
mission point Pi to the mission point Pi+1, the speed direction of the beginning point Pi
can be determined by the shortest route from the mission point Pi−1 to the mission point
Pi. The speed direction of the ending point Pi+1 points to the mission point Pi+2. The
simulation results are shown in the Figure 14. Among them, the shortest route of the
mission points 8 → 3 is the RSR in the six control combinations of the DUBINS curve. The
shortest distance of route 8 → 3 is 1857.47 m. Compared with this method, the method
proposed in this paper reduces the shortest distance by 5.58% in the route of mission points
8 → 3 . At the same time, the total voyage distance of the optimal route is reduced by
18.77%, as shown in the route 1 in Table 2.
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Figure 13. The main types of DUBINS path. PS represents the beginning speed direction, PE represents
the ending speed direction,S represents the straight line, R represents the right turn, and L represents
the left turn. (a) LSL means that the HSA starts from the beginning point PS, first turns left, then goes
straight line, and finally turns left to the ending point PE. (b) RSR means that the HSA starts from
the beginning point PS, first turns right, then goes straight line, and finally turns right to the ending
point PE. (c) RSL means that the HSA starts from the beginning point PS, first turns right, then goes
straight line, and finally turns left to the ending point PE. (d) LSR means that the HSA starts from the
beginning point PS, first turns left, then goes straight line, and finally turns right to the ending point
PE. (e) RLR means that the HSA starts from the beginning point PS, first turns right, then turns left,
and finally turns right to the ending point PE. (f) LRL means that the HSA starts from the beginning
point PS, first turns left, then urns right, and finally turns left to the ending point PE.

 

Figure 14. Schematic diagram of the simulation results of the multi-mission-point route planning
method based on DUBINS curve. The red line with arrows is the calculated best route, and the blue
line is the route that the simulated airship has traveled. And the output shows that the total route
distance of the optimal route is 18,637.87 m.
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Table 2. Comparison of simulation results of two route planning methods.

The Number of
Mission Points

Proposed Method Based on DUBINS Curve Optimization

Total voyage of route 1 9 15,139.92 m 18,637.87 m 18.77%
Total voyage of route 2 9 16,175.89 m 19,935.23 m 18.86%
Total voyage of route 3 9 13,350.61 m 16,446.26 m 18.82%
Total voyage of route 4 10 11,820.58 m 14,257.90 m 17.09%
Total voyage of route 5 24 42,841.27 m 53,194.56 m 19.46%

Average Optimization 18.60%

In order to prevent the accidental occurrence of the mission points selected for route 1,
this paper randomly selects five sets of route data for comparative experiments. The take-
off and landing points of routes 1~5 are the same, and the minimum turning radius of
the airship is also R = 220 m. The multi-mission points in the routes 1~5 are randomly
selected, and the number of multi-mission points is shown in Table 2. The route planning
method of multi-mission points based on DUBINS curve, and the multi-mission points
route planning method proposed in this paper are used to plan the five sets of route data,
respectively. The total voyages of the optimal routes of routes 1~5 are shown in Table 2. At
the same time, the experimental results show that compared with the multi-mission-point
route planning method based on DUBINS curve, the total voyage of the optimal routes of
routes 1~5 obtained by the proposed method is reduced by 18.60% on average, as shown in
Table 2.

From the simulation results, it can be seen that for various situations of multi-mission
points, the multi-mission-point route planning method for HSA based on the genetic
algorithm and greedy strategy proposed in this paper can generate the optimal route under
the influence of turning radius. Furthermore, this method can ensure the accurate passing
through multi-mission points and improve the flight efficiency of HSA. At the same time,
the total voyage distance of the optimal route was reduced by 18.60% on average. The
simulation results fully illustrate the feasibility of the route planning algorithm.

4. Discussion

Due to the large volume and large windward area of the HSA, there is a large turning
radius when passing through each mission point. However, the route planning algorithms
proposed in the literature [14,22–25] do not consider the influence of turning radius. The
literature [26–28] proposed to use the DUBINS curve to solve the influence of the turning
radius on the route, but the DUBINS curve has limitations, limiting the forward direction
of the target and the speed direction at the beginning and ending. Therefore, the optimal
solution in the DUBINS set is only the optimal solution in the specific beginning and ending
speed directions. As such, this paper proposed a multi-mission-point route planning
method for HSA based on genetic algorithm and greedy strategy. The method consists of
the following two parts:

1. Optimal flight sequence: the global search ability of the genetic algorithm is used to
determine the optimal flight sequence of the HSA from the take-off point through all
the mission points back to the landing point.

2. Shortest flight route: a route planning method based on the greedy strategy is pro-
posed, which uses the greedy strategy to decompose the optimal route problem of
all mission points into the local optimal route problem of every two adjacent mission
points. The shortest route between every two adjacent mission points can be obtained.

Through the optimal flight sequence and the shortest flight route, the optimal route of
the HSA from the take-off point, through all the mission points, and back to the landing
point is finally obtained. The advantages and characteristics of this method are as follows:
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1. Under the influence of the large turning radius of the HSA, the optimal route can
be generated quickly and accurately, and the flight efficiency of the HSA is greatly
improved;

2. Combining the global search ability of genetic algorithm and the local optimal charac-
teristics of the greedy strategy to improve overall computing efficiency;

3. This method has a broader range of applicability and can be applied to various
complex mission situations between multiple mission points.

In the shortest flight route part, the method proposed in this paper can obtain the
global shortest route between two adjacent mission points. The multi-mission-point route
planning based on the DUBINS curve only obtains the local shortest route between two
adjacent mission points in the case of a specific beginning and ending speed directions.
Therefore, compared with the multi-mission-point route planning method based on DU-
BINS curve, the total voyage of the optimal route obtained by the proposed method is
reduced by 18.60% on average.

However, there are still some remaining challenges and future work as this paper
ignores problems such as the influence of environmental dynamics on the airship, especially
the influence of wind, and the dynamic process of acceleration and deceleration and
slope angle changes throughout the flight. The follow-up studies will take these into
consideration. In addition to those identified limitations, this research lacks the evidence of
flight experiments, which will be supplemented in the subsequent stage of research, where
this proposed method is expected to be continuously improved with more adequate and
realistic data.

5. Conclusions

In this study, a two-step approach considering the optimal flight sequence and the
shortest route sequence is used to obtain the optimal route of the HSA from the take-off
point, through all the mission points, and back to the landing point. The method proposed
in this paper combines the advantages of the genetic algorithm and greedy strategy to
enhance the adaptability of the algorithm and improve computational efficiency. The
experimental results show that in view of the various conditions of the mission points, the
method can generate the optimal route under the influence of turning radius, which greatly
reduces the total voyage distance and improves the flight efficiency of the HSA. Compared
with the multi-mission-point route planning method based on DUBINS curve, the total
voyage of the optimal route obtained by the proposed method is reduced by 18.60% on
average. At the same time, the feasibility and reliability of the route planning algorithm are
demonstrated through experimental studies and simulation.
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Abstract: Simulation plays a critical role in the development of UAV navigation systems. In the
context of celestial navigation, the ability to simulate celestial imagery is particularly important, due
to the logistical and legal constraints of conducting UAV flight trials after dusk. We present a method
for simulating night-sky star field imagery captured from a rigidly mounted ‘strapdown’ UAV camera
system, with reference to a single static reference image captured on the ground. Using fast attitude
updates and spherical linear interpolation, images are superimposed to produce a finite-exposure
image that accurately captures motion blur due to aircraft actuation and aerodynamic turbulence. The
simulation images are validated against a real data set, showing similarity in both star trail path and
magnitude. The outcomes of this work provide a simulation test environment for the development of
celestial navigation algorithms.

Keywords: celestial; stellar; simulation; strapdown; imagery

1. Introduction

Celestial navigation in uncrewed aerial vehicles (UAV) has been a topic of interest for
over half a century (see, for example, [1]). The significance of this mode of navigation has
been overshadowed, however, by the ubiquity of global navigation satellite systems and
the integration of compact micro-electromechanical attitude sensors into aviation platforms.
Nonetheless, celestial navigation has unique advantages due to its independence from
critical infrastructure and robustness to external interference. We see recent works, such
as [2,3] integrating celestial imaging into their navigation solutions. Modern UAVs must
typically conform to size, weight and power constraints and, to this end, benefit from a
strapdown celestial implementation, as opposed to an actively stabilized alternative. In
a strapdown configuration, the imaging sensor has no control authority over the vehicle,
and therefore requires a larger field of view, and longer exposure intervals, to track stars
during motion. We propose here a method for simulating the imagery captured from such
a strapdown celestial system.

Celestial imagery is commonly used in spacecraft to obtain a highly accurate atti-
tude reference. This technique is less commonly used, however, in low altitude aircraft
navigation. Aircraft are subjected to many sources of noise that spacecraft are not, such
as light pollution, cloud cover, atmospheric diffraction, aerodynamic turbulence, engine
vibration and control/actuation, which all impact the signal strength of a celestial image
obtained from an aircraft. These effects are exacerbated by the need for long-exposure
imagery when operating at low-altitude (less than 500 m). The standard approach to this
problem is to use a stabilized viewing platform with a telescopic lens [1], which limits the
aforementioned attenuation. Such an approach is costly and adds significant weight to
an airframe. The design of this simulation has arisen from the desire for a low cost, low
weight, “strapdown” [4] celestial navigation solution.

As with all avionic navigation solutions, simulation plays an important role in the
system design and precedes the implementation. The intent of this work is to provide
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a means of simulating imagery from a camera with a wide-angle lens, rigidly mounted
to a fixed wing airframe with no active stabilization. Preliminary testing indicated that
despite the increased motion blur, longer exposure images are consistently able to capture
stars at lower levels of illumination. Consequently, the need arises for a simulation that
can replicate the effects of motion blur due to these longer exposure images. In addition,
there is benefit to tuning the simulation based on a reference image captured from the
ground. This provides a quick solution for users to encapsulate their camera sensor and
lens characteristics in the simulation environment, without the logistical constraints of
night flying.

The use of star field simulation is most commonly seen in star identification research
and development [5]. In this field, simulation is used to obtain baseline performance
metrics for newly designed algorithms. An example of star field simulation for this purpose
can be seen in [6], in which, rather than rendering stars, their position and magnitude
are generated directly, with the addition of Gaussian noise. Other works tend to follow a
similar design, seen in [7,8]. These simulations are intended to replicate imagery captured
from spacecraft, which is not typically affected by rotational motion, nor atmospheric
attenuation. Recent work considers the effects of star smearing [9] and the effect this has
on the observability of stars. This work leverages from the simulation concepts presented
in [10], later followed by [11]. These studies assume the angular velocity of the camera to
be constant; however, we can see in Section 3 that for aerial vehicles, this assumption is
invalid. Advancements were made in [12], highlighting the importance of modeling in
star sensor design and calibration. In each of these cases, testing was conducted using a
turntable, and as indicated in [10], this approach is not capable of running in real-time due
to the large number of integral calculations involved.

This work offers two significant contributions to this field of research. We present a
simple and effective framework for the real-time simulation of long-exposure images from
non-stabilized UAV-mounted hardware using spherical linear interpolation, and a method
for calibrating the simulation based on a ground reference image. Concepts from this work
may be extended to aid in simulation design for spacecraft in highly dynamic situations.

2. Simulation Architecture

The position of stars and planets in the sky are represented in the International Celestial
Reference Frame (ICRF). The location of a celestial body is expressed in terms of right
ascension, α, and declination, δ, as seen in Figure 1. Stars are assumed to be infinitely far
away, lying on the celestial sphere. Consequently, translational motion has no effect on the
apparent position of the stars.

Figure 1. Celestial equatorial coordinate system.

368



Drones 2022, 6, 207

The aircraft position is represented in the Earth-centred, Earth-fixed WGS84 system.
This is the standard reference frame for GPS positional data. Aircraft attitude is represented
in the local North-East-Down (NED) coordinate system. The camera is assumed to be
mounted to the aircraft, sharing a location with the vehicle and differing in orientation by a
single rotational transformation. The camera coordinate system is oriented with z positive
in the optical axis, x positive towards the right of the image plane and y positive towards
the bottom of the image plane.

A star catalogue must be used as a reference for the location of stars. While there are
many star catalogues available, we selected the Yale Bright Star Catalogue (BSC) due to its
minimal size. The BSC contains records of stars down to magnitude 6.5, totalling 9110 stars.
This magnitude threshold is sufficient for most aircraft camera systems (including stabilized
systems) [1]. For ease of implementation, the ASCII-format catalogue was converted into
an SQLite database. Indices were created for magnitude, right ascension and declination,
including additional composite indices to allow fast querying of the database.

This simulation initially corrects for celestial phenomena which perturb the right
ascension and declination in the star catalogue, before entering a simulation loop. The
simulation loop performs the following steps:

1. Update position, time and attitude of simulation;
2. Calculate star homogeneous coordinates in camera frame of reference;
3. Project each star onto the image plane;
4. Render the star.

2.1. Initial Corrections

On initialization, adjustments are made for the right ascension and declination of stars
due to annual proper motion (the apparent motion of stars), precession (changes in the
Earth’s rotational axis over time), nutation (axial changes due to the Moon’s gravitational
pull) and aberration (due to the velocity of the Earth’s orbit).

Proper motion is provided in star catalogues and is compensated by computing the
change in right ascension and declination since the given epoch, such that:

α̂ = α0 + α̇T

δ̂ = δ0 + δ̇T
(1)

where α0 and δ0 are the right ascension and declination at the epoch. α̇ and δ̇ are the annual
proper motion, typically expressed in arcseconds per year, and T is the time (in years) since
the epoch (J2000 in our case). Subsequently, right ascension and declination are corrected
due to precession, following the method outlined in [13]. That is, we use the polynomial
approximation for the precession angles ζ, z and γ:

ζ = 2306.2181t + 0.30188t2 + 0.017998t3

z = 2306.2181t + 1.09468t2 + 0.018203t3

γ = 2004.3109t − 0.42665t2 − 0.041833t3

(2)

where t is the number of centuries since the J2000 epoch. Right ascension α and declination δ
are then found given:

tan(α − z) =
sin(α̂ + ζ)

cos γ cos(α̂ + ζ)− sin γ̂ tan δ̂

sin(δ) = sin γ cos δ̂ cos(α̂ + ζ) + cos γ sin δ̂

(3)
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Following [13], we correct for the effects of nutation. Nutation is comprised of nutation
in longitude, Δλn, and nutation in obliquity, Δε. These quantities can be approximated to
within 0.5 arcseconds by the following equations (expressed in arcseconds):

Δλn = −17.20 sin Ω + 1.32 sin 2L − 0.23 sin 2L′ + 0.21 sin 2Ω (4)

Δε = 9.2 cos Ω + 0.57 cos 2L + 0.10 cos 2L′ − 0.09 cos 2Ω (5)

where Ω, the longitude of the ascending node of the Moon’s mean orbit on the ecliptic,
expressed in degrees, is approximated as:

Ω = 125.04452 − 1934.136261t (6)

where t is expressed in Julian centuries, as above. L and L′, the mean longitudes of the Sun
and Moon, respectively, expressed in degrees, are given by:

L = 280.4665 + 36000.7698t

L′ = 218.3165 + 481267.8813t
(7)

The mean obliquity of the ecliptic can be found given the following equation, expressed
in degrees:

ε0 = 23.439291 − 13.004166 t × 10−3 − 0.1639 t2 × 10−6 + 0.50361 t3 × 10−6 (8)

Subsequently, the true obliquity of the ecliptic ε is given by:

ε = ε0 + Δε (9)

The resulting corrections due to nutation, Δαn, Δδn for the star’s right ascension and
declination, respectively, are given by:

Δαn =(cos ε + sin ε sin α tan δ)Δλn − (cos α tan δ)Δε (10)

Δδn =(sin ε cos α)Δλn + (sin α)Δε (11)

We also consider the effects of aberration, as presented in [13]. Given the constant
of aberration, κ = 20.29552 arcseconds, the true longitude of the Sun λs, eccentricity of
the Earth’s orbit e, and the longitude of the perihelion, ρ, we can compute the corrections
Δαa, Δδa for the star’s right ascension and declination with the following equations:

Δαa = −κ

(
cos α cos λs cos ε + sin α sin λs

cos δ

)
+ eκ

(
cos α cos ρ cos ε + sin α sin ρ

cos δ

)
(12)

Δδa = −κ
[

cos λs cos ε(tan ε cos δ − sin α sin δ) + cos α sin δ sin λs
]

+ eκ
[

cos ρ cos ε(tanε cos δ − sin α sin δ) + cos α sin δ sin ρ
]

(13)

where:

e = 16.708634 × 10−3 − 42.037t × 10−6 − 0.1267t2 × 10−6 (14)

ρ = 102.9375 + 1.71946t + 0.46t2 × 10−3 (15)

and the true longitude of the Sun is calculated as:

λs = L0 + C (16)

where the mean longitude of the Sun, L0, is given by:

L0 = 280.46646 + 36000.76983t + 0.3032t2 × 10−3 (17)
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and the Sun’s equation of the center, C, is given by:

C =
[
(1914.602 − 4.817t − 0.014t2) sin M

+(19.993 − 0.101t) sin 2M

+ 0.289 sin 3M
]
× 10−3 (18)

and the mean anomaly of the Sun, M, is given by:

M = 357.52911 + 35999.05029t − 0.1537t2 × 10−3 (19)

The correction terms, Δαa, Δδa, Δαn and Δδn are added to α and δ, yielding the
corrected celestial coordinates of the star.

2.2. Updating Position and Time

Conversion from terrestrial time (as measured with the Gregorian calendar) to celestial
time (typically expressed in Julian days) is a necessary step in simulating celestial bodies.
The BSC represents the location of stars with respect to the J2000 epoch. The conversion from
Gregorian date to Julian day is detailed in [13]. The basic steps are shown in Algorithm 1.

Algorithm 1 Conversion from Gregorian date to Julian day

let Y be the current year � Integer, Gregorian
let M be the current month � Integer [1..12], Gregorian
let D be the current day � Decimal, Gregorian
if M ≤ 2 then

Y = Y − 1
M = M + 12

end if

let A = int
(

Y
100

)
let B =2 − A + int

(
A
4

)
J = int(365.25(Y + 4716)) + int(30.6001(M + 1)) + D + B − 1524.5 � Julian Days

This conversion expresses the current time with respect to the number of Julian days
that have elapsed since 4716 BC. Furthermore, the J2000 epoch is expressed in relation to
the Gregorian date 1 January 2000 and can be found by subtracting the Julian day at that
time from the current Julian date:

J2000 = JD − 2451545.0 (20)

Sidereal local time, analogous to celestial longitude, can be calculated given WGS84
longitude and the current time of day expressed in decimal hours. Given longitude λ,
Julian date JD expressed in the J2000 epoch, and decimal hours HD, the local sidereal time
LST is given by [13]:

LST = 100.46 + (0.985647JD) + λ + 15HD (21)

LST is typically limited to the range [0, 360] degrees. The hour-angle ω of a celestial
body can then be simply calculated from LST and right ascension α as:

ω = LST − α (22)
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The hour-angle of a body can be used to compute its azimuth and elevation, expressed
in local NED coordinates. The local elevation θ of a celestial body given hour angle ω,
declination δ and latitude φ is given by:

θ = asin(sin δ sin φ + cos δ cos φ cos ω) (23)

Subsequently, using elevation from Equation (23), the local azimuth ψ is given by the
following equation:

ψ = atan2(sin ω , cos ω sin φ − tan δ cos φ) + π (24)

where the addition of π radians converts azimuth to a representation that is positive East
of North [13].

The observed elevation of a celestial body is altered due to the effects of atmospheric
refraction. Consequently, objects in the sky appear at a greater elevation than they would
without the atmospheric effects. This effect is exaggerated at lower elevations (closer to the
horizon), which leads to an angular displacement of up to 0.5◦. For cameras in the visible
light spectrum, the refractive distance R (expressed in arcminutes) can be approximated to
within 4 arcseconds [14], given the following formula:

R =
1.02

tan
(

θ +
10.3

θ + 5.11

) (25)

If a greater level of accuracy is required, alternative methods such as that seen in [15]
can be used. The apparent elevation θ′ is then given by:

θ′ = θ + R (26)

The inverse of this formula, Equation (27) [16], allows for the correction of observations:

R =
1

tan
(

θ′ +
7.31

θ′ + 4.4

) (27)

Formulas (25) and (27) assume an atmospheric pressure of 1010 millibars, and an air
temperature of 10 ◦C. According to [13], an approximate scale factor may be applied given
pressure P at the Earth’s surface, and air temperature T ◦C, given by the following formula:

P
1010

× 283
273 + T

(28)

Finally, we map the celestial sphere onto a unit sphere for the purposes of image plane
projection. Given the azimuth and elevation of a star, the corresponding unit vector in local
NED coordinates is given by:

x = cos ψ cos θ′

y = sin ψ cos θ′

z = − sin θ′
(29)

For resource constrained systems, the rate at which these unit vectors are updated
should be chosen relative to the precision required by the simulation. For reference, a
geostationary camera with an update rate of 1 Hz will be accurate to within ±15 arcseconds
(4.17 × 10−3 degrees). For an aircraft at a latitude of ±45 ◦, travelling East/West at mach 1,
an update rate of 1Hz will be accurate to within ±30 arcseconds ( 8.37◦ × 10−3 ).
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2.3. Updating Attitude

Representing celestial bodies in the local NED frame of reference simplifies the trans-
formation from aircraft attitude to camera attitude. Aircraft attitude should come either
directly from the onboard attitude reference or from a simulator. The work presented here
uses the open source Ardupilot toolchain. Attitude log data collected from real flights
were used for this research, so as to correlate real images with their simulated counterparts.
The roll pa, pitch qa and yaw ra Euler angles of the aircraft in local NED coordinates were
logged at 30 Hz. These Euler angles can be represented as a rotation matrix, through a
yaw–pitch–roll rotation sequence. The rotation matrix, Ca/l , transforms objects in the local
NED frame to the aircraft body frame, where Ca/l is given by:

⎡⎣ c(qa)c(ra) c(qa)s(ra) −s(qa)
−c(pa)s(ra) + s(pa)s(qa)c(ra) c(pa)c(ra) + s(pa)s(qa)s(ra) s(pa)c(qa)
s(pa)s(ra) + c(pa)s(qa)c(ra) −s(pa)c(ra) + c(pa)s(qa)s(ra) c(pa)c(qa)

⎤⎦ (30)

where c(x) and s(x) represent cos x and sin x, respectively. The camera is mounted to the
aircraft, with roll pc, pitch qc and yaw rc expressed in the aircraft body frame. The z axis of
the camera is parallel to the optical axis, positive in the direction of the image plane. The
y and x axes are orthogonal and directed towards the bottom and the right of the image
plane, respectively. The rotation matrix, Cc/a, transforms objects in the aircraft body frame
to the camera frame, where Cc/a is given by:⎡⎣ c(qc)c(rc) c(qc)s(rc) −s(qc)

−c(pc)s(rc) + s(pc)s(qc)c(rc) c(pc)c(rc) + s(pc)s(qc)s(rc) s(pc)c(qc)
s(pc)s(rc) + c(pc)s(qc)c(rc) −s(pc)c(rc) + c(pc)s(qc)s(rc) c(pc)c(qc)

⎤⎦ (31)

Given rotation matrices Ca/l and Cc/a, the transformation of a unit vector, u, from the
local NED frame to the camera frame, can be computed as:

uc = Cc/aCa/lu (32)

Equation (32) allows the unit vectors of the celestial bodies computed in Section 2.2 to
be represented in the camera frame of reference.

2.4. Projection

We assume that the camera intrinsic matrix, K, is known. The intrinsic properties
of a camera can be found through a calibration method such as that described in [17],
yielding matrix:

K =

⎡⎣ fx s x0
0 fy y0
0 0 1

⎤⎦ (33)

where fx and fy are the x and y focal lengths in pixel units, x0 and y0 are the x and y pixel
locations of the principal point, respectively, and s describes the sensor skewness (typically
0 for digital sensors).

We first convert each celestial body unit vector into homogeneous coordinates. For
components x, y and z of unit vector uc, the homogeneous point P in the camera frame of
reference is calculated as:

P =

⎡⎢⎢⎢⎢⎣
x
z
y
z
1

⎤⎥⎥⎥⎥⎦ (34)
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Objects whose depth value, z, is less than 0 are ignored due to being positioned behind
the camera object. Finally, given no translational component to our camera, the pixel
location, x, of the object is found as:

x = KP (35)

Lens distortion may also be included in the model. Lens distortion models are typically
non-linear, and expressed as a function of displacement from the principal point. Various
models exist for lens distortion, and should be chosen according to the level of precision
required [18]. If using a lens distortion model, this should be applied after the star is
rendered, so as to capture the resultant eccentricities from the distortion. We do not model
lens distortion in our simulation; instead, we rectify all images prior to analysis, such that
any residual distortion is negligible.

2.5. Calibration

The apparent pixel intensity of a star is determined by the apparent star magnitude,
atmospheric conditions, lens properties and sensor properties. We present here a method
which precludes the need for detailed modeling, through a single-image calibration process.
We use a reference image captured from a stationary aircraft on the ground and fit an
exponential curve to define the relationship between star magnitude and pixel intensity.

The relationship between observed brightness and apparent star magnitude is given
by the equation:

mx − mr = −2.5 log10

(
Bx

Br

)
(36)

where mx is the observed star magnitude, mr is the reference star magnitude, Bx is the
observed star brightness and Br is the reference star brightness. This magnitude scale is
designed such that a magnitude difference of −5 correlates with a brightness factor of 100.
That is to say, a magnitude 1 star is 100 times brighter than a magnitude 6 star. For this
work, we take the brightness of a star to be its maximum pixel value. Images are converted
from the blue–green–red (BGR) colour space to the hue–saturation–value (HSV) colour
space, and the value channel is used as a greyscale image.

By rearranging Equation (36) we can compute the brightness of an observed star, given
that we have a reference brightness Br, reference magnitude mr and observed magnitude mx:

Bx = Br 10

mx − mr

2.5 (37)

The choice of reference star is an important factor, as the magnitude of stars are
typically considered to be unreliable [19]. Many factors can cause the apparent magni-
tude of a star to differ from the catalogue, including spectral attenuation caused by the
atmosphere, camera characteristics, atmospheric refraction, as well as the luminescent
characteristics of the star itself. We assume that the magnitude error follows a zero-mean
Gaussian distribution. Following this assumption, we select the star with magnitude and
brightness that minimizes the Frobenius norm of the difference between observed and
calculated brightness:

min
(
[∑

i
abs(B′

i − Bi)
2]1/2

)
(38)

where B′
i is a vector containing all calculated star brightnesses, and Bi is a vector containing

all measured star brightnesses. The vector B′
i is computed for each star in the reference

image by choosing Br and mr from the reference star, and recomputing Bx for all stars in
the image using Equation (37). Stars whose brightness is saturated (i.e., have a maximum
pixel value of 255) are excluded from this process. Figure 2 shows the output from this
calibration process, conducted on an image captured from a grounded aircraft, using a
PiCamHQ with 500 ms exposure interval. We note that this procedure is most effective
with a larger number of visible stars, such that the sample better represents the population.
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In this example, stars were automatically detected and matched to the database using a star
identification algorithm. As an alternative to this automated process, one could manually
label each star in the reference image.

Figure 2. Calibration curve of image brightness using a PiCamHQ, 500 ms exposure time.

Stars are effectively point light sources. The camera lens will tend to defocus a star,
such that it appears larger than one pixel. The apparent size of a star is affected by
magnitude only to the extent that otherwise-undetectable pixels exceed the noise floor.
Consequently, we can treat each star as having constant size, and changes to the star’s
brightness will yield a larger or smaller effective area. We assume that the pixel intensity of
a star follows a two-dimensional Gaussian point spread function, with diagonal covariance
matrix whose elements are equal. That is, a star image is circularly symmetric about its
center. In practice, this may not be the case, and we note that such methods might be
used for calibrating lens and sensor distortion (this is, however, out of scope for this work).
Following this assumption, we measure the standard deviation across the x and y axes of
each normalized star detection in the reference image and use the median value across all
stars as the reference size for rendering in the simulation. We normalize by scaling the peak
pixel value to 1. The standard deviation σB is calculated as:

σB =
1
n ∑

n
std
(

Bn �
1

max(Bn)

)
(39)

where Bn is the histogram of intensities with respect to pixel position, std(x) is the standard
deviation of sample set x, the symbol � represents element-wise multiplication, and
max(Bn) is a scalar value equal to the maximum-valued element of Bn.

A graph showing the standard deviation in pixel intensity vs. star magnitude can
be seen in Figure 3, demonstrating the approximate uniformity of apparent projected star
size across various magnitudes. Figure 4 shows an example of a Gaussian star render,
reconstructed from the standard deviation and star brightness.

Simulation noise levels are calibrated from the reference image. Sources such as
moonlight and atmospheric light pollution contribute to Gaussian noise observed in an
image and consequently reduce the signal-to-noise ratio and observability of stars. The
mean and standard deviation is measured in the value channel of the image. We ignore
sections of the image in which stars have been detected so as to avoid bias introduced by
the stars themselves. Thus, we have the noise function:

X ∼ N(μ, σ2) (40)
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Figure 3. Calibration of standard deviation in star brightness using a PiCamHQ, 500 ms exposure time.

Figure 4. Pixel intensity of a measured star (red wireframe), with the simulated pixel intensity
overlaid (blue solid).

2.6. Rendering

A long exposure image can be generated by superimposing multiple short-exposure
images. Doing so requires a fast attitude update so as to reproduce the motion of the
aircraft throughout the exposure period. The required temporal resolution is affected by
the aircraft dynamics; however we found that a 5 ms (200 Hz) attitude update results in the
contiguous rendering of stars for wide-angled lenses, even during aggressive maneuvers.
A 200 Hz attitude measurement is not typically available on low-cost hardware, so we inter-
polate attitude measurements using the spherical linear interpolation algorithm described
in [20] to achieve the desired rate. This method requires orientations to be represented as
quaternions. The details are omitted here for brevity; however, most computer graphics
libraries support this operation, transforming the direction cosine matrix in Equation (32)
to quaternion format. We can retrieve any arbitrary orientation between two quaternions
with the following equation:

Slerp(q1, q2, u) = q1
(
q−1

1 q2
)u, {u ∈ R : 0 ≤ u ≤ 1} (41)

where Slerp is the spherical linear interpolation function; a value of u = 0 returns q1, a value
of u = 1 returns q2 and intermediate values of u provide interpolation along the shortest
path between q1 and q2 on the unit sphere. Interpolation is performed such that attitudes
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are captured at 5 ms intervals from the beginning of the camera exposure interval, to the
end, yielding a total of n = 200Δt attitude references, where Δt is the camera exposure time
in seconds.

The long-exposure image is constructed by superimposing n floating point images.
For each attitude ai, the pixel location x of each star Sj in the database is found from
Equation (35). A discrete Gaussian kernel, G is constructed using the standard deviation
found in Equation (39). The kernel is programmatically generated (see [21]) such that the
value Gi of element i is given by:

Gi = α exp
(−(i − (k−1)

2 )2

(2σ2)

)
, {i ∈ Z : 0 ≤ i < k} (42)

where the kernel size k = �6σ2� is odd and is selected to contain a minimum of 99.7%
of the total star energy, and α is selected such that ∑i Gi = 1. The kernel is subsequently
scaled, such that the maximum element at index i = k−1

2 is equal to the peak pixel value,
Bx, calculated from Equation (37) using the magnitude mx of star Sj, as well as the reference
magnitude and intensities, mr and Br respectively. Finally, the kernel is scaled down by a
factor of n. Assuming the photon flux density is constant across the exposure window, a
single short-exposure window contains a fraction 1

n of the total star energy. This scaling of
kernel G generated in Equation (42) is given by:

Gi = Gi

(
Bx

n ∗ Gmax

)
, {i ∈ Z : 0 ≤ i < k} (43)

Note that G is stored as a floating point array. The short-exposure star is drawn to
the image canvas by centering the kernel G on pixel x and rotating 180◦ about the centre,
adding the values of G to the canvas, so as to render the star symmetrically. This process is
repeated for each star in the database Sj at the current attitude.

Once each of the short-exposure images have been rendered, the Gaussian noise
defined in Equation (40) is added to the canvas. Finally, the image is converted from a
single-channel floating point image to an 8-bit single-channel image. The resulting image
contains stars rendered with the motion blur caused by camera movement throughout the
exposure interval.

3. Results

We compare here the simulation output with images captured during a flight to
evaluate the performance of the simulator. Attitude logs from the flight test were recovered,
and used to generate these simulation images. We followed the procedure outlined in
Section 2 for image generation. We used a Phantom FX-61 airframe (Figure 5), with a
PixHawk v2 autopilot, a Raspberry Pi 4 companion computer for image capture and
storage and a Raspberry Pi High Quality Camera sensor, mounted with the official 6mm
wide-angle lens. The camera was rigidly mounted to the autopilot, so as to mechanically
couple sources of vibration and deflection. An approximate transform from aircraft body
frame to camera frame is used for this test, at a yaw angle of −90◦, pitch angle of 90◦ and
roll angle of 0◦ (given a yaw-pitch-roll Euler sequence).

A flight was conducted capturing images every 3 s, with an exposure interval of 500 ms
and ISO set to 800. Ground images were captured prior to launching the aircraft. The
aircraft climbed to an altitude of 150 m above ground level, and loitered for several minutes
before landing. A total of 130 images were captured for analysis. Attitudes throughout each
exposure window were recorded as image metadata at a rate of 30 Hz, and retrieved from
the flash logs after the flight. A ground image was selected for performing the simulation
calibration outlined in Section 2.5. Simulation images were subsequently generated using
these calibration parameters.
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Figure 5. Phantom FX-61 with camera mounted in fuselage.

A visual comparison of simulation output against in-flight images can be seen in
Figures 6 and 7. By observation, we can see that the shape and trajectory of the simulated
light trail closely matches reality. Figure 6 shows a cluster of stars, captured while the
aircraft was yawing at a rate of 8◦ per s. The difference in star trail direction between stars
is due to alignment of the yaw axis, approximately directed toward the centre of the image.
Figure 7 pictures the brightest visible stars in the image, highlighting the effectiveness
of the spherical linear interpolation, and its ability to reproduce trajectories with visual
magnitude similar to what is observed in reality.

Figure 6. Lower magnitude stars captured in-flight (4× increased brightness for display purposes).

We evaluate the performance of the simulator based on its ability to replicate in-flight
star intensities, given a ground calibration image. Figure 8 shows individual stars which
were identified across multiple images in-flight. The intensity of the simulated star was
plotted against the intensity of the observed star, such that points lying on the line y = x
represent a perfect match between reality and simulation. Three stars are shown here; these
stars were identified frequently in both reality and simulation. We can see that, in practice,
there tends to be error in the pixel intensity. The mean error is near-zero with a value of
3.38 pixels. The mean absolute percentage error in pixel intensity is measured at 47.4%
(this is an average of per-star absolute percentage errors), which is similar to the mean
absolute percentage error of 51% in the brightness ground calibration, as expected. Using
Equation (36), a 47.4% error in star magnitude correlates to an absolute magnitude error
of 0.42. This is within comparable range to the noise level simulated in other works, such
as [7,8], which artificially add magnitude noise with standard deviation in the range of
0.3–0.9 to their simulation.
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(a)( )

(b)( )

(c)( )

(d)
Figure 7. Close-up of bright stars captured in motion. Real images (left) are paired with their
simulated counterpart (right). (a) Image captured during aerial manoeuvre; (b) Image captured
during constant-rate turn; (c) Image captured with high pitch-rate; (d) Image captured during
aerial manoeuvre.
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(a)

(b)

(c)
Figure 8. Individual stars over multiple images, comparing measured intensity to simulated intensity.
Red crosses indicate the peak pixel intensity for a given observation. (a) Visual magnitude: 1.5, mean
error: −23.6, mean percentage error: 37.5%; (b) Visual magnitude: 2.25, mean error: 12.2, mean
percentage error: 82.3%; (c) Visual magnitude: 2.45, mean error: −6.3, mean percentage error: 38.0%.

Furthermore, we consider the difference between the centroids of stars detected in
both simulation and reality. A region of interest (ROI), R, is chosen for each star such that
R is the smallest grayscale image that contains the star. We compute the weighted centre
Dx, Dy for both real and simulated images, expressed with respect to the centre of the ROI:

[
Dx
Dy

]
=

⎡⎢⎢⎣
w
2
h
2

⎤⎥⎥⎦− 1
M ∑

x,y
Rx,y

[
x
y

]
(44)
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M = ∑
x,y

Rx,y (45)

where w and h are the width and height of the region of interest, respectively, x and y
are the column and row indices of image R and scalar Rx,y is the pixel intensity of R at
pixel (x, y).

We compute the L2 norm of the difference between simulation centroid and real
centroid to find the distance L:

L =
√
(Ds

x − Dr
x)

2 + (Ds
y − Dr

y)
2 (46)

for simulation centroid Ds
x, Ds

y and real centroid Dr
x, Dr

y. A histogram containing the
computed centroid errors can be seen in Figure 9. For reference, we also compute a baseline
estimate, which assumes the centroid is located at the centre of the ROI (analagous to
simulating stars as a straight line with uniform intensity). The mean simulation error
is measured to be 0.92 pixels, with a median error of 0.68 pixels. By comparison, the
mean baseline error is measured at 1.23 pixels, with a median error of 0.93 pixels. This
corresponds to a 25.2% reduction in mean centroid error.

Figure 9. Histogram of absolute differences in star centroids between real and simulated images.

4. Discussion

The temporal correlation between the camera and attitude sensor, as well as the
attitude sensor’s accuracy and resolution, and individual differences between the database
and observed star magnitudes, pose limitations to the accuracy with which simulation
images can be generated. The tendency towards a low mean error, however, is an indication
that there is little systematic error propagating from the simulation architecture, and that
large sample sets will provide a statistically accurate representation of star intensity.

We can see in Figure 8 that despite a low mean error across the sample set, individual
stars tend to be subjected to biases in intensity. Future work could make use of multiple
ground images to map the intensity of individual stars, so as to reduce bias within indi-
vidual stars. Furthermore, it is apparent that brighter stars will tend to be detected more
frequently than dimmer stars. One may be able to determine an appropriate magnitude
threshold for the observability of stars in-flight and bias the calibration towards the brighter
stars, which are more likely to be detected.
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We note that the ground calibration process is effective only for low-altitude appli-
cations. The simulation does not account for changes in atmospheric attenuation due
to altitude. Higher-altitude flight will also result in changes to atmospheric refraction.
Furthermore, the ground calibration process is subjected to light pollution, which again
is a function of altitude. The simulation of higher altitude flight should make use of
atmospheric models to account for these disparities between ground and high-altitude
observations. The level of image noise due to moonlight is assumed to be constant here;
however, in practice there is some degree of variation as the viewing angle changes with
respect to the position of the moon. This is most noticeable within a 5◦ viewing angle [22],
but less significant at greater angles.

Validation of this simulation was conducted with a fixed wing aircraft; however, the
simulation architecture is applicable for any airframe which is capable of reporting its
attitude. This might also be used for simulating motion artefacts from two-axis gimbals.
While the Raspberry Pi Camera HQ is fit with a rolling shutter, long exposure images are
achieved by a series of shorter exposures, similar to the process followed in this simulation.
The intra-frame motion is not captured by this simulation; however, this effect appears to
be negligible. If the characteristics of a rolling shutter are known, one could replicate this
effect by interpolating at a faster rate and selecting an appropriate attitude given the time at
which the shutter exposes the star. It is common, however, for charged-couple device (CCD)
cameras to be used for celestial imaging. These cameras utilize a global shutter, which
exposes all pixels simultaneously and hence are not subjected to the rolling shutter effect.

5. Conclusions

The intent of this work was to design and validate a simulation architecture to support
the development of strapdown celestial navigation solutions in lightweight, low-altitude
aircraft. An architecture for replicating the effects of long-exposure imagery was designed
and implemented by superimposing multiple short-exposure images from aircraft attitude
data. Additionally, a method for augmenting low-rate attitude data was proposed and
validated. Simulation calibration was achieved through a single ground reference image,
producing results which match reality within reasonable tolerance. The simulation architec-
ture provides a tool for baseline testing star detection and identification algorithms. Future
work will extend the capability of this simulator from low-altitude to high altitude through
atmospheric modeling.
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Abstract: Understanding the causal impacts among various parameters is essential for designing
micro aerial vehicles (MAVs). The simulation of computational fluid dynamics (CFD) provides us
with a technique to calculate aerodynamic forces precisely. However, even a single result regularly
takes considerable computational time. Machine learning, due to the advance in computer hardware,
shows another approach that can speed up the analysis process. In this study, we introduce an
artificial neural network (ANN) framework to predict the transient aerodynamic forces and the
corresponding energy consumption. Instead of considering the whole transient changes of each
parameter as inputs, we utilised the technique of Fourier transform to simplify the ANN structure
for minimising the computation cost. Furthermore, two typical activation functions, rectified linear
unit (ReLU) and sigmoid, were attempted to build the network. The validity of the method was
further examined by comparing it with CFD simulation. The result shows that both functions are able
to provide highly accurate estimations that can be implemented for model construction under this
framework. Consequently, this novel approach makes it possible to reduce the complexity of analysis,
study the flapping wing aerodynamics and enable a more efficient way to optimise parameters.

Keywords: micro aerial vehicle; flapping wing; neural network; aerodynamics

1. Introduction

While a human can fly into the sky with a machine, the mechanism of insect flight
remains yet a mystery of sorts. Unlike conventional artificial aircraft, an insect exhibits
its fascinating aerial manoeuvrability by repeatedly flapping its wings. This particular
mechanism has recently been extensively investigated to develop an improved micro aerial
vehicle (MAV). Furthermore, aerodynamics at a small Reynolds number provides a more
efficient flight [1], which allows a MAV to cruise at a low speed to execute examination
tasks [2]. As MAVs can overcome terrain constraints, they are expected to search for victims
in narrow buildings or explore dangerous environments by employing various sensors [3,4].
However, as the flapping wing system is a relatively novel concept compared with other
aircraft, its mechanism has not been fully revealed yet. Considerable time is therefore
required to examine the impact of various variables.

Among various methods, some studies have reported their findings through biological
observations. Ellington [5] claimed that wing paths had no consistent patterns among
numerous insects. Wakeling and Ellington [6] displayed exceptional steady-state aerody-
namic property of dragonfly wings and utilised it to predict the parasite drag. Josephson
and Stevenson [7] measured the oxygen consumption from insects to evaluate the energy
efficiency of various flight patterns; Dial et al. [8] also presented the measured power con-
sumption of birds that flew at different speeds by examining the electromyograms (EMGs).
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As it is tough to reproduce the same experiment due to the individual differences
and the uncontrolled environmental variables, some studies consequently built flapping
wing mechanisms to clarify the relationship between various parameters. By utilising a
rack-pinion mechanism, T.A. Nguten et al. [9] investigated the effect of parameters such
as wing aspect ratio and flapping frequency; Sato et al. [10] built a flapping wing robot
and discussed the control strategy of altering the flapping amplitude of wings. Miyoshi
et al. [11] found that the asymmetric wingbeat amplitude only affects the pitch and roll
moments. These mechanism-based approaches enable us to regenerate the same flying
condition readily. Furthermore, by controlling the variables, we can figure out the impact
of each parameter on flight performance.

On the other hand, without utilising the technique of particle image velocimetry
(PIV), aerodynamic information such as the leading edge vortex (LEV), which produces
high transient lift [12], can be directly visualised by computational approaches. From the
simulation, we can further obtain precise details such as vorticity to explain the mechanism
behind it [13]. Zou et al. [14] and Lai et al. [15] unveiled impacts caused by phase lag
and the wing–wing interaction through computational fluid dynamics (CFD) simulation;
Johansson and Henningsson [16] compared the effect of the clap mechanism between
rigid and flexible wings. This numerical approach allows researchers to simulate how the
airflow interacts with various objects without spending extensive time and effort creating
experimental environments [17–19]. To obtain precise aerodynamic outputs, building a fine
mesh of calculation field is necessary. Nevertheless, it takes several days or weeks for a
machine to complete the calculation.

With the advances in computer hardware, machine learning shows another approach
for modelling. Unlike conventional computation, related mechanisms are not required
(e.g., governing equations). Recently, some studies have shown that machine learning
methods can be implemented in aerospace science, including flight pattern recognition [20]
and aeroelastic estimation [21]. In the study of flapping mechanics, some researchers
have tried to adopt this new technique into control systems [22–24]. Nevertheless, the
application for flapping flight aerodynamic analysis has not yet been fully developed. Two
studies [25,26] utilised this method to predict the net forces produced in a single flapping
cycle, but the transient analysis has not been completed yet. Therefore, researchers still
relied on conventional approaches to obtain details, such as the changes during upstroke
and downstroke, to explain the impacts of different flight modes.

In this study, we introduce a neural network approach accompanied by CFD simula-
tion to shorten the considerable computational time of transient analysis. We first collected
flapping kinematics by biological observations and utilised them to build a model for
CFD simulations. Afterwards, the data were split into training, validation and testing
groups. We utilised the first two groups of data to create neural network models and
evaluated them with the testing data. As reports [27,28] have shown that wing and body
kinematics are the main parameters affecting butterfly flight performance, we considered
wing rotation and body oscillation as inputs and utilised them to predict the corresponding
changes in aerodynamic forces and power consumption. The effectiveness of the method
was examined by comparing it with the results obtained by CFD simulation afterwards.

2. Data Collection

2.1. Biological Experiment

To record the flapping motion, we utilised the blue tiger butterfly (Tirumala septentrio-
nis) as a reference (Figure 1a). Before the measurement, objects were frozen at −7 °C for
24 h. The morphological parameters were then measured (N = 4), including mass, body
length and wing area, span and mean chord (see Table 1). Afterwards, we calculated the
aspect ratio AR of a single wing with the equation:

AR =
S
c̄

, (1)
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in which S and c̄ represent the wingspan and mean chord, respectively. These parameters
were considered a reference to build a simulation model later.

(a) (b)

Figure 1. Experimental setup. (a) Photograph of a blue tiger butterfly (T. septentrionis). (b) Measure-
ment method. Two synchronised high-speed cameras were mounted onto a transparent chamber
orthogonally along the y- and z-axis. By utilising the photographed images, a butterfly’s position
could be determined.

Table 1. Measured (N = 4) and simulation model’s morphological parameters of the butterfly.

Parameters Measurement Simulation

Mass (mg) 379.93 ± 72.99 350
Wing Area (mm2) 923.67 ± 42.55 925
Wingspan (mm) 46.00 ± 1.23 46.04

Mean Chord (mm) 20.07 ± 0.39 20.11
Aspect Ratio 2.29 ± 0.02 2.29

To capture the details of a butterfly’s body action, we utilised two high-speed cameras
(Phantom v7.3 and v310, Vision Research, Wayne, NJ, USA). Both cameras were operated at
1000 frames per second with a resolution of 1024 × 1024 and placed outside a transparent
chamber (size: 1 m × 0.35 m × 0.35 m) in which a butterfly could fly inside freely. As
these cameras were placed orthogonally, we defined the direction from the chamber to the
two cameras as y- and z-axis (see Figure 1b); the synchronised photographed films were
examined to determine the angles between various body parts. To attract a butterfly to fly
forward, we placed a light source on one side of the chamber. As the study focused on the
flapping motion of forwarding flight, we abandoned the data for which the butterfly flew
with turning. On counting the number of frames, we deduced the wingbeat frequency to
be around 11.020 ± 1.076 Hz (N = 15).

To obtain the flapping kinetic equations, we utilised the coordinates measured from
the experiments to rebuild them. Figure 2a shows the heading direction�b was determined
by the body from B0 to B1. The angle between the x-axis and�b was defined as the body
pitching angle θ. Still, the vector �w1 was determined by the root W0 and the wingtip W1;
the sweeping angle η was obtained by calculating the complementary angle of the angle
between �w1 and �b. Additionally, the wing plane was constructed with �w1 and �w2 (the
direction pointing from W0 to W2, with W2 located on the trailing edge of the hindwing).
Lastly, the wing rotation angle α was computed from the normal vector of the wing �wN (i.e.,
the direction of �w2 × �w1) and�r ×�b; the angle between the latter and the negative z-axis
was defined as its flapping angle, where�r represents the axis of rotation. These parameters
were utilised to describe the flapping flight behaviour of a butterfly.
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(a) (b)
Figure 2. Angle parameters of a flying butterfly. (a) Definitions of angles. From the coordinates of
each feature’s points, body pitching angle θ, sweeping angle η, rotation angle α and flapping angle φ

were obtained. (b) Angles measured from the experiments (N = 15). The solid lines indicate four
feature angles; the surrounding shaded areas represent the 95% confidence intervals. The abscissa
axis denotes the normalised time in a flapping period; the blue area (from T = 0 to 0.6) indicates the
downstroke phase, and the rest (from T = 0.6 to 1) is upstroke.

Figure 2b shows the variation of the four angles in a flapping period measured from
the experiments (N = 15) with 95% confidence intervals (shaded areas). These curves were
recognised as input parameters for subsequent simulation afterwards.

2.2. Computational Fluid Dynamics Simulation

To deduce the aerodynamic interactions that were hard to observe directly, we chose
CFD simulation to generate highly accurate datasets. The obtained morphological parame-
ters and kinematic equations were further utilised to build a butterfly model and regenerate
the flight behaviour through a commercial solver (Fluent, Ansys, Canonsburg, PA, USA).
The SIMPLEC algorithm was applied to resolve pressure and velocity fields [29]. To re-
duce the computational cost, we simulated the flow field under a relative condition frame.
Therefore, the butterfly was flying at the centre of a sphere (see Figure 3a). The butterfly
would thus encounter an incoming airflow with a virtual acceleration a created by its flight.
To avoid inaccurate outcomes affected by the wall effect, the diameter of the spherical
flow domain was set to 20S (around 900 mm). As the Reynolds number of a natural flying
butterfly is around 103–104 [30], the medium was considered an incompressible Newtonian
laminar airflow, with a density of ρ = 1.23 kg/m3 and viscosity of μ = 1.79 × 10−5 Pa·s.
Furthermore, we utilised the following governing equations for computation:

∇ · u = 0 (2)

ρ
Du

Dt
= −∇p + μ∇2u + ρ(g + a) (3)

in which u, t, p and g represent the velocity, time, pressure and gravity, respectively.
The entire domain was split into two for giving different boundary conditions [29,31,32].
The front of the butterfly was considered to be the velocity inlet with an incoming flux
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accompanied by a. As a result, the stream fluctuated with the flight at each time step. The
rear sphere was the pressure outlet. These conditions were defined as:

u = −âx ẋ − âyẏ (4)

p = −ρgy, (5)

in which âx and ây indicate the unit vector along the x- and y-axis, respectively.

(a) (b)
Figure 3. Conditions of the simulation. (a) Boundary conditions (inlet: velocity, outlet: pressure).
(b) Grid convergence test.

The grid size of the butterfly’s surface was 0.5 mm with a no-split condition (the air
had zero velocity relative to the boundary), whereas its surroundings were set to 1 mm.
This setting can enhance the precision of the simulation results [31,33]. We also utilised
the lift force to do the grid convergence test. The result converged as the number of grids
increased. Figure 3b illustrates the comparison among three different settings: the coarse
grid (blue solid line, 7 million), the medium grid (red dashed line, 8 million) and the fine
grid (amber dotted line, 12 million). From the result, we found that the maximum value
difference between the coarse and fine settings was about 0.5% merely. Considering the
balance between accuracy and computational cost, we hence selected the medium setting
for the following computation.

We also chose the method of dynamic mesh (smoothing and remeshing) to prevent a
negative mesh volume [34]. A flapping cycle was divided into 250 calculation time steps.
The simulation outputs were the horizontal force Fh, vertical force Fv, normal force acting
on a single wing Fw and power consumption P at the 10th flapping cycle (stable flight). All
these values were nondimensionalised by the following equation:⎡⎢⎢⎢⎢⎢⎣

Fh

Fv

Fw

P

⎤⎥⎥⎥⎥⎥⎦ =
1

1
2

ρV2(2Sc̄)

⎡⎢⎢⎢⎢⎢⎣
f ∗h
f ∗v
f ∗w

p∗/V

⎤⎥⎥⎥⎥⎥⎦, (6)

in which the wingtip velocity V = 4φ f S; f ∗h , f ∗v , f ∗w and p∗ were the corresponding untrans-
formed forces and power. The Reynolds number of the simulation result was 6130, which
was close to the experimental result of 6050.

As the study focused on the influence caused by amplitudes of body oscillation and
wing rotation, we altered the simulated conditions of body pitching angle and wing rotation
angle by multiplying them with scalers b and w. In total, 25 flapping data were collected
(see Figure 4).
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Figure 4. Generated datasets. The data were randomly separated into training (64%, blue markers,
N = 16), validation (16%, red markers, N = 4) and testing (20%, amber markers, N = 5) groups. The
testing data were merely utilised for evaluation and did not participate in the training processes.

3. Artificial Neural Network

An artificial neural network (ANN) is constructed by several connected computing
cells (artificial neurons) inspired by the human brain as shown in Figure 5. The output y of
the cell n can be calculated by the following equation:

yn = σ(
m

∑
i=1

wnixni + bn), (7)

in which xn1, xn2, ..., xnm are the input signals; wn1, wn2, ..., wnm are the respective weights;
bn is the bias; and σ is the activation function (transfer function) [35]. The inputs were
the scalers b and w. To increased the training performance, we normalised the values in
the interval of [0, 1] [36]. On the other hand, instead of predicting 250 time steps for each
aerodynamic property, we simplified it by fitting each parameter by a Fourier series:

F(t) = A0 +
m

∑
n=1

An cos 2πn f t + Bn sin 2πn f t, (8)

where m is the order of the Fourier series. When choosing m = 5 to fit the data, each
aerodynamic property could be described by a vector formed by 11 parameters. We hence
considered these 44 parameters (four aerodynamic properties, Fh, Fv, Fw and P) as the
output of an ANN model. As the number of outputs was shrunk from 1000 to 44, we
could consider utilising a smaller number of hidden cells for the following calculation. The
training process hence can be curtailed at the same time.
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Figure 5. Structure of an ANN model. The inputs were b and w, and the outputs were Fourier
coefficients of Fh, Fv, Fw and P.

Figure 6 shows two common activation functions utilised for neural networks. Re-
cently, Rectified Linear Unit (ReLU) has been chosen as the activation function in various
applications [37]. The function is defined by the formula:

ReLU(x) =
{

0 if x < 0,
x otherwise.

(9)

Although the vanishing gradients problem is a critical issue when training an ANN,
ReLU has a constant gradient of 1 when the input is greater than 0. Therefore, it is widely
applied to ANNs. However, previous flapping wing studies chose the sigmoid function
to estimate the mean values of aerodynamic coefficients [25,38]. The function can be
described by:

Sigmoid(x) =
1

1 + e−x . (10)

As the s-shaped output of the sigmoid varies continuously in the interval of [0, 1],
the activation values hence do not disappear. Because we aimed to predict transient
aerodynamic statuses rather than their mean values, we need to evaluate which function
can provide precise estimations. We consequently constructed two models based on these
functions and compared the results afterwards.

Figure 6. Two types of activation functions.

To train the model, we utilised Adam optimiser [39], an advanced backpropagation
method [40], with the loss function of mean square error (MSE) to minimise the error.
Although many studies [41–45] had proposed their rules of thumb to select the number
of hidden units, the main idea is to improve the prediction accuracy and minimise errors.
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Therefore, we randomly picked up 80% of the data to train two types of models through
a various number of hidden units iteratively. Among these datasets, 80% (i.e., 64% of the
entire data) were utilised for tuning weights and bias; 20% (i.e., 16% of the entire data)
were for validation. Considering the balance between accuracy and computational time,
we have examined the loss when the number of hidden neurons was between 20 to 40. To
avoid the setting merely benefiting specific cases, each training was repeated 30 iterations
with the same settings but different training data selections. Figure 4 shows one of the
random states that we have utilised. The learning rate and the epoch size were set to 0.001
and 60,000.

Figure 7 depicts the mean convergent curves of each case during the training process.
From the testing result, we found that though the training loss of ReLU model kept
decreasing when epoch size was greater than 10,000, the validation loss of it remained
around 10−3. We further found that as the number of hidden units was 40, which had
the smallest loss, its validation loss was 8.28 × 10−4 and 8.05 × 10−4 when epoch sizes
reached 30,000 and 60,000. As the difference between these two values was less than 3%,
we considered the 40 hidden neurons and 30,000 epochs to be an adequate setup. On the
other hand, the training and validation loss of sigmoid model plots reveal that a larger
number of hidden neurons did not promise a smaller loss. When the number of hidden
units was 30, the validation loss difference between epochs 50,000 and 60,000 was less than
3% (epoch 50,000: 8.12 × 10−6, epoch 60,000: 7.93 × 10−6). Consequently, we considered
the number of hidden units and epochs to be 30 and 50,000, respectively.

(a)

(b)
Figure 7. Loss, the MSE of the 44 output parameters, of ReLU- (a) and sigmoid- (b) based ANN
training processes.

It was unsure if the accuracy of the ReLU activation function was sufficient to predict
the four aerodynamic properties, though the validation loss of the sigmoid-based model
was even lower. We hence utilised both models for the following analysis. To avoid
overfitting, the unused 20% of the data were assigned as testing datasets. As all the data
generated by the CFD simulation were from the same system, the model that fits one group
should fit the other as well. Because these cases were not utilised for previous training,
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they were considered to be unseen data for the following model evaluation. If the number
of datasets is sufficient, we can utilise a large number of cases to evaluate our models.
However, it is not easy to collect hundreds of results as it generally takes about 4 to 7 days to
complete a single simulation. To deal with a limited amount of data, k-fold cross validation
was implemented for obtaining a reliable evaluation [46]. To implement this method, the
database needs to be randomly split into k groups first so that we can evaluate a model k
times. In each iteration, we only utilise k − 1 groups to train our network. As there is one
group that does not join the training process, it can be utilised for testing. Therefore, this
can be utilised to protect our models from overfitting as the model will be examined by k
different combinations. To keep 20% of the entire data for testing, we chose k to be 5 in this
study (see Figure 8).

Figure 8. k-Fold cross validation (k = 5).

4. Results and Discussion

4.1. Model Comparison

As the outputs of our models were coefficients of the four aerodynamic parameters, we
converted the signal back by utilising Equation (8). The prediction can hence be compared
with the original curves by calculating the coefficients of determination R2. The mean and
standard deviation (SD) of the two models are given in Table 2. We first checked if the
overtraining occurred on our model. Since the training and testing R2 values are all close
to 1, the models encountered neither underfitting nor overfitting problems. Although the
MSE loss of the sigmoid-based model was smaller than the other one, as they both have
mean values greater than 0.99, the differences were not obvious. However, the SD values of
the ReLU-based model were slightly higher. The result implies that the sigmoid activation
function generally provided higher precise estimations.

Table 2. Statistics of the ReLU- and sigmoid-based models (mean ± SD).

Parameters
ReLU Sigmoid

R2
Train R2

Test R2
Train R2

Test

Fh 0.995 ± 0.018 0.989 ± 0.025 0.999 ± 0.003 0.998 ± 0.005
Fv 0.998 ± 0.007 0.995 ± 0.012 0.999 ± 0.003 0.999 ± 0.003
Fw 0.999 ± 0.004 0.997 ± 0.006 0.999 ± 0.002 0.999 ± 0.002
P 0.996 ± 0.016 0.989 ± 0.034 0.999 ± 0.003 0.997 ± 0.009

As it is difficult to understand the difference between the two models by just viewing
the R2 values, we picked up a case from the testing group, which had a maximum R2

test value
difference of 0.005, for comparison. Figure 9 presents the output aerodynamic properties
as the b and w were assigned to 1 and 0, respectively. By comparing these curves, we can
find that the red dashed line (sigmoid) almost overlaps with the black solid line (CFD
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simulation). On the other hand, the blue dashed line (ReLU) is slightly off in the peaks. By
way of illustration, the blue dashed line shifted marginally to the right at T = 0.3 in the
Fh-T plot. Nevertheless, the trends of four aerodynamic properties can still be identified.

Figure 9. Validation of the two models in comparison with the CFD simulation. The black solid lines
were calculated by CFD simulation; the blue and red dashed lines were obtained from the ReLU- and
sigmoid-based ANNs, respectively.

4.2. Aerodynamic Performance

While the traditional CFD simulation takes several days to complete a single compu-
tation, these two ANN models take less than a second merely. Due to the high R2, both
methods achieve elevated estimation accuracy and can be implemented to accelerate the
analysis process. The networks hence can be utilised to investigate the interactions between
body oscillation and wing rotation behaviours. Owing to the limited payload, a MAV
cannot carry a battery of substantial volume. Consequently, how to efficiently generate
lift is a critical issue. We can hence utilise this neural network approach to optimise the
flapping motion, such as searching the efficient flying kinematics.

In our study, the mean lift efficiency Ēv can be defined by:

Ēv =
F̄v

P̄
, (11)

where F̄v and P̄ are the mean values of Fv and P in a single flapping period, respectively.
We could hence obtain a quick result by utilising the ANN method. Figure 10 depicts the
corresponding F̄v and Ēv when b and w are in the interval of [0, 2]. Because the two models
presented similar outcomes, we only display the sigmoid-based calculation in Figure 10.
The result illustrates that the maximum F̄v appears at

[
b, w

]
=
[
2, 2

]
. Nevertheless,

the lift efficiency can still be improved by reducing w to 1.2. To verify if it fits the actual
circumstance, we ran the simulation and compared the results (see Figure 11). The MSEs
of Fv and P were 5.19 × 10−4 and 8.35 × 10−4, respectively. Considering the high R2 and
low MSE values, we believe this neural network approach can provide precise estimations
which can be utilised for studying the flapping wing system.

Although it is still challenging to provide details such as flow fields with the current
framework, we can utilise it to make a quick analysis and perform full CFD simulations
of specific cases to clarify abnormal phenomena. This technique hence will be a great
advantage when dealing with a complex system. Moreover, as we verified that the network
could successfully estimate transient aerodynamic properties, we can extend the framework
to include more complicated flapping motions as inputs in the future.
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Figure 10. Net vertical force F̄v and corresponding efficiency Ēv in a single flapping period.

Figure 11. Optimal aerodynamics obtained by the ANN in comparison with CFD simulated result.

5. Conclusions

In this study, we introduce a novel neural network approach to speed up the transient
analysis of flight mechanics. For evaluation, we analysed the butterfly’s flapping motions
by CFD simulation and trained the model with these datasets. To simplify the model, we
further utilised Fourier transform to reduce the number of neural cells. Through a series of
tests, we found that both ReLU- and sigmoid-based models can accurately predict these
coefficients, which can be utilised to obtain the original transient results. This enables us to
rapidly estimate the corresponding aerodynamic properties with the given inputs.

The series of work conducted in this study aims to reduce the computational time
cost. As the complex structure of flapping motion aerodynamics is non-linear, conventional
approaches take excessive effort to analyse the unsteady system. With the aid of neural
networks, we do not need to stick to CFD simulation for each case but can still obtain
precise results without spending plenty of time. The technique reported here sheds new
light on the development of flapping wing systems. This is a great advantage when a large
amount of computing is required and provides us with a more efficient way to discuss
the interactions among various parameters. Prior to this study, it was difficult to verify
that the selected parameters were optimal. The technique introduced in the study makes it
possible. We believe the framework will provide an efficient way to delve deeper into the
flight mechanism and design a more efficient MAV.
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Nomenclature

a Virtual acceleration
AR Aspect ratio
b Scaler of the body pitching angle
c̄ Mean chord
Ēv Mean lift efficiency
f Frequency
Fh Nondimensionalised horizontal force
f ∗h Horizontal force
Fv Nondimensionalised vertical force
f ∗v Vertical force
Fw Nondimensionalised normal force acting on a single wing
f ∗w Normal force acting on a single wing
g Gravity
k Consecutive fold number
P Nondimensionalised power consumption
p Air pressure
p∗ Power consumption
R2 Coefficient of determination
S Wingspan
T Normalised time
t Time
u Airflow velocity
V Wingtip velocity
w Scaler of the wing rotation angle
α Rotation angle
η Sweeping angle
θ Body pitching angle
μ Air viscosity
ρ Air density
σ Activation function
φ Flapping angle
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Abstract: The deployment performance of the unfolded wing determines whether the winged missiles
can fly normally after being launched, infecting the attack performance of the winged missiles. The
paper proposes a new deployment mechanism with clearance eliminator. Based on the slider-crank
principle, the proposed deployment mechanism achieves fast and low-impact deployment of the
wings. The proposed clearance eliminator with shape memory alloy (SMA) effectively eliminates the
clearance of the sliding pair and improves the support stiffness and stability of the deployed wing.
The collision characteristics and the clearance elimination are studied for the deployment mechanism.
The influence of the collision force on the motion state of the wing during the deployment is analyzed.
The static stiffness of the wing under the clearance state and the deformation is analyzed. The
dynamic stiffness under the catapult clearance elimination state is modeled based on the fractal
geometry and contact stress theory. The relationship between the locking force and the support
stiffness is revealed. The kinetic simulation is used to analyze the motion response during the action
of the deployment mechanism. Modal analysis, harmonic response analysis, and random vibration
analysis were conducted for the whole wings. A prototype was developed to verify the ejection
performance of the wing according to the input load characteristics. The dynamic stiffness of the
unfolded wings is tested by the fundamental frequency experiments to verify the performance of
the clearance elimination assembly. The experimental results show that the designed deployment
mechanism with clearance compensation achieves fast ejection and high stiffness retention of the
missile wing.

Keywords: deloyment mechanism design; clearance eliminator with shape memory alloy; characteristic
analysisp; stiffness enhancement

1. Introduction

Winged missiles have the advantages of good maneuverability, easy control, and both
the active and passive segments of the flight trajectory can be controlled. This form has
been applied to airborne missiles, anti-ship missiles, anti-tank missiles, and air defense
missiles [1–5]. As winged missiles increase in lethality, strike accuracy, and battlefield de-
terrence, the number of missiles carried and their launch efficiency are becoming important
indicators of the attack capability of modern weapons such as warplanes and ships. If the
space occupied by individual missiles can be reduced, the amount of ammunition carried
will be significantly increased, and the carrying capacity of the aircraft will be greatly
enhanced. Morphing wings can realize flexible maneuvering in different flight environ-
ments and maintain high flight efficiency [6–11]. The aircraft wing can be divided into the
in-plane deformation of the wing [12,13], the out-plane deformation of the wing [14–19],
and the wing deformation [20–23]. Winged missiles generally have foldable or retractable
wings [24–28], so that they can be stowed in the launcher in a small footprint and their
wings can open automatically when the missile is launched. In order to reduce the lateral
dimensions of the missile; facilitate storage, transportation and launch; save storage and
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transportation space; improve the storage and transportation capacity; and improve the
mobility and operational capability of the weapon system, the wings or part of the wings
of the missile are often contracted to reduce the wingspan [29–33]. When the missile flies
away from the launch device, the wings automatically unfold to ensure the normal flight of
the missile.

The missile wings with the proposed deployment mechanisms are completely folded
inside the missile body in the process of storage and transportation, which can effectively
increase the loading rate. After the missile flies away from the launching device, the
deployment mechanisms push out the wings synchronously and quickly and achieve
position locking and stiffness maintenance. It can significantly improve the contraction rate,
deployment efficiency, and wing surface stiffness of the missile wing and make the wing
provide better aerodynamic force for the missile body. In order to improve the loading
capacity and launch efficiency of the missile launch platform, the wing is usually designed
to be retractable, and the existing retractable wings have two forms: rotational deployment
and direct-acting deployment [34–38]. According to the rotational direction of the missile
wing, the main airfoil is rotated and retracted horizontally and vertically. The rotational
deployment radius is large, the aerodynamics of the airfoil during the deployment process
is unstable, and the locking stiffness is low after the deployment of the wing. The direct-
acting wing refers to the wing moving in a straight line during deployment. The airfoil
aerodynamic force is more stable during the unfolding process than that of the rotational
deployment, the airfoil is completely stowed inside the missile body when it is folded, and
the stowage ratio is large. The direct-acting wing deployment mechanism requires the
wing to be fully stowed inside the body in a straight line during retraction, which requires
a higher stowage ratio, but the direct-acting wing deployment mechanism has obvious
advantages in reducing the lateral dimensions of the missile and expanding the capacity
of the magazine. The direct-acting wing deployment mechanism can hide all the wings
inside the body of the missile when closing, which is effective in reducing the lateral size
of the missile. The use of the telescopic rudder surface is more flexible, and the wings
can be controlled before and after deployment. The rudder deflection can be preset or
deflected according to the command when the aircraft and missile are separated to control
the separation attitude of the rudder, which is more conducive to separation safety.

The deployment performance of the unfolded wing is related to whether the winged
missile can fly normally after being launched, which restricts the attack performance of the
winged missile. After the wing deployment process, there are inevitably clearances between
the wing and the kinematic pair of the missile body, and the influence of the kinematic pair
clearance on the wing is often ignored in the traditional design. To improve the dynamic
stiffness and stability of the wing, measures should be taken to eliminate the kinematic
clearance. Therefore, in order to make the wings of the missile synchronized and to achieve
fast deployment as well as reliable operation, the design of the transmission, wing locking,
clearance elimination, and stiffness retention mechanisms of the wing deployment scheme
are particularly important.

The main contributions and innovations of this paper lie in two aspects: 1. A new
deployment mechanism is designed based on the slider-crank principle to achieve the
fast and low-impact ejection of the missile wings. 2. A clearance eliminator with shape
memory alloy (SMA) is designed for the deployed missile wing to achieve high stiffness
and stability. The sections of the paper are organized as the following: Section 2 presents a
new deployment mechanism of missile wings. The configuration and operating principle
of the drive actuator and the clearance eliminator are introduced. Section 3 analyzes the
effect of ejection collision characteristics on the motion of the wings and the stiffness under
the clearance locking and unlocking. Section 4 analyzes the dynamic characteristics of the
wing and the modalities of the whole mechanism. In Section 5, the ejection performance
and the effect of eliminating clearance are investigated through prototype experiments.
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2. Structure and Principle of the Missile Wings

2.1. Deployment Mechanism

In order to achieve a large stowage ratio, fast actuation, and high stiffness retention,
we propose a new deployment mechanism with clearance eliminator for missile wings. The
designed deployment mechanism mainly consists of the drive actuator and the clearance
eliminator, as shown in Figure 1. The principle of wing ejection and locking is shown
in Figure 2. The operating principle of the deployment mechanism includes three steps:
1. With the command of the unlocking issued, the upper and bottom locking devices realize
the unlocking action of the wing through the compression springs. 2. Driven by the torsion
spring, the crank slider mechanism of the drive actuator pushes out the wing along a
straight line. 3. With the wing fully extended, the clearance eliminator eliminates the
clearance of the kinematic pair to improve the wing stiffness.

Figure 1. Deployment mechanism for the missile wings.

 

Figure 2. The principle of wing ejection and locking.

2.2. Drive Actuator

The drive actuator consists of a drive element, linkage mechanism, missile wings, and
pulley block, as shown in Figure 3. The torsion spring, as the drive source, is mounted
on the input shaft to save design space. One arm of force is supported on the base, and
the other arm of force acts on linkage and pushes the missile wing out by linkage b. The
ejection assembly of the deployment mechanism is based on the slider-crank principle, as
shown in Figure 4. When the wing is pushed out, it is subjected to lateral load, resulting in
friction resistance that affects the pushing out of the wing. In order to change the sliding
friction between the wing and the base into rolling friction, an axial pulley and a lateral
pulley are embedded in the root of the wing, and a pair of ball bearings with flanges are
installed inside the pulley to enhance the smoothness and stability of the movement and to
limit the pulley axially at the same time.
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Figure 3. Structure of drive actuator.
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α

Figure 4. Working principle of drive actuator.

2.3. Clearance Eliminator

There are clearances between the kinematic pairs of the wing and the missile body
to enable the smooth ejection of the wing. In order to improve the dynamic stiffness and
stability of the wing, measures should be taken to eliminate the clearance of the kinematic
pair. A Clearance eliminator with SMA is proposed to drive a wedge to eliminate the
clearance of the kinematic pair between the wing and the base, to generate a locking
force to improve the support stiffness of the wing and the base joint, and to improve the
resonance frequency and stability of the wing.

The configuration of the clearance eliminator is shown in Figure 5. The end cap and
the base are solidly connected to the missile body, and the shape memory alloy driver
is hinged to the base at one end and the wedge at the other end. In order to speed up
the deformation response of the shape memory alloy material, the memory alloy rod is
heated by directly energizing it. The design of the SMA drive requires consideration of
insulation and thermal insulation. As shown in Figure 6, conductive sheets are embedded
in both ends of the memory alloy rod and heated by electricity. Heat-preserved sleeve
made of insulating material is set on the outside of the memory alloy rod to play the role of
insulation and heat preservation. A holding sleeve made of alloy steel is set on the outside
of the heat-preserved sleeve to enhance the axial stiffness of the alloy rod and prevent
destabilization under pressure. The working principle of the clearance eliminator is shown
in Figure 7. The wedge is driven by the shape memory alloy to contact the base and the
missile wing and generate mutual force. A positive pressure Fy on the contact surface of
the wedge and the wing produces an axial locking effect on the wing, and a frictional force
Fx on the contact surface of the wedge and the wing produces a lateral locking effect on
the wing. By applying the locking force to the wing, the support stiffness of the root of the
wing is improved and the stability of the wing is enhanced.
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Figure 5. Configuration of clearance eliminator.

Figure 6. Configuration of SMA driver.
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Figure 7. Working principle of the clearance eliminator.

3. Missile Wing Deployment and Clearance Elimination Analysis

3.1. Collision Characterization

In the movement of the wing, the joint at the hinge will cause vibration and collision
force due to the existence of the clearance, so that the displacement and speed of the wing
jitter. During the collision, the contact point can move relative to the collision body, and the
collision force passes through the action point. The collision force and the deformation dis-
placement of the collision body satisfy the theory of elasticity, the collision force equations
are as follows:

Fn = Fk + Fd = Kδn + C(δ)
·
δ (1)
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C(δ) =
3K(1 − e2)

4
·

δ−
(

·
δ)n (2)

where Fn is the normal contact force, Fk is the equivalent spring force, Fd is the equivalent
damping force, K is the equivalent joint stiffness coefficient, C is the damping coefficient,

δ is the normal puncture depth at the contact point,
·
δ is the normal relative velocity at the

contact point, n is an exponent, 1.5 for metallic contacts, e is the collision recovery factor,

and
·

δ− is the relative velocity before collision.
The tangential friction at the clearance is expressed using the Coulomb friction model

in ADAMS as:
Ft = −μdFnsgn(v) (v �= 0) (3)

where sgn(v) is the sign function, v is the relative sliding velocity at the contact point, and
μd is the friction factor.

The elastic force and friction are both simulated by the step function and friction
function in Adams to analyze the collision at the hinge of the deployment mechanism. The
missile wing and the deployment mechanism are simplified as shown in Figure 8. The
collision force at the clearance and the effect of the clearance on the motion of the wing
are calculated.

Figure 8. Simplified model of the wing deployment mechanism.

The stiffness coefficient K was taken as 1.2 × 105 N/m, the damping coefficient C was
taken as 120 N·s/m, and the static and dynamic friction coefficients were set as 0.3 and
0.25, respectively. The simulations were carried out with the clearance of 0.1 mm, 0.3 mm,
and 0.5 mm, respectively. The variation in the contact force in the driving joint and the
wing joint with time is shown in Figures 9 and 10. The displacement and velocity of the
wing with time are shown in Figures 11 and 12.

Figure 9. Collision force at the driving joint.
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Figure 10. Collision force at the wing joint.

Figure 11. The effect of clearance on the displacement of the wing.

Figure 12. The effect of clearance on the velocity of the wing.

From the calculation results, it can be seen that when the clearance is 0.3 mm, the wing
deployment time is the shortest. The clearance collision force is smaller, and the collision
frequency is lower. The clearance has less influence on the fluctuation of the movement
speed of the wing. This analysis result plays an important guiding role in the design of the
subsequent joint manufacturing accuracy and the control of the dimensional chain.

3.2. Static Stiffness Characteristics with Clearance

In order to ensure that the wing is pushed out smoothly, the clearance δ between the
wing and the kinematic pair is predetermined, as shown in Figure 13. After the wing is
pushed out, due to the existence of the clearance, the wing is in a free state in a certain space
and deflects freely under the surface load, and after deflecting a certain displacement, it
bends under a certain component of the uniform load. As a result, the static deformation of
the wing in the clearance state can be divided into two parts, i.e., the deformation deflection
v1 turning angle β1 during the free deflection and the bending deformation v2 and β2
after one end is restrained; then, the static deformation of the wing under the action of the
uniform load in the clearance state is the superposition of the two processes of deformation.
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Figure 13. Static stiffness analysis of the missile wing.

From the geometric relationship, we obtain that:

v1 = δ (4)

β1 = θ − α (5)

θ = arcsin(
2δ + d√
d2 + w2

) α = arctan(
d
w
) (6)

β1 = arcsin(
2δ√

d2 + w2
)− arctan(

d
w
) (7)

Since the wing is subjected to a uniform load perpendicular to the wing surface as
shown in Figure 14, only the transverse bending of the wing is considered, and a unit of
arbitrary width Δb in the face is selected for analysis, which can be equated to a cantilever
beam with length L, width Δb, and height h. The equivalent distributed load on it is F′.

bΔ

Figure 14. Schematic of the wing subjected to normal load.

From the deflection characteristics of the cantilever beam, it follows that:

v =
F′L4

8EI
β =

F′L3

6EI
I =

Δbh3

12
F′ = F

Δb
b

Substituting equations F′ and I into the deflection v and angle of rotation β formulas, it
is found that the deflection characteristics can be solved using the cantilever beam formula
for any cross-sectional width under the action of a normal uniform load perpendicular
to the surface, so the missile wing can be equated to a cantilever beam structure. The
equivalent distributed load on it is q cos(β1). Then, the deflection characteristics of the
missile wing are as follows:

v2 =
q cos(β1)L4

8EI
(8)

β2 =
q cos(β1)L3

6EI
(9)
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where E is the modulus of elasticity of the material, and I is the moment of inertia of the
section; then, the maximum angle of rotation β of the wing and the maximum deflection v
at the end of the wing are as follows:

β = β1 + β2 = arcsin(
2δ√

d2 + w2
)− arctan(

d
w
) +

q cos(β1)L3

6EI
(10)

v = v1 + v2 = δ +
q cos(β1)L4

8EI
(11)

The deflection angle and deflection of the wing under the uniform load are shown in
Figures 15 and 16.

 

Figure 15. Deflection angle–load relationship.

 
Figure 16. Deflection–load relationship.

In accordance with the design index of the wing deployment mechanism, the maxi-
mum normal load is 700 N. The airfoil uniform load is q = 700

L = 9.33 N/mm, the wing
deflection angle is 14.8402 × 10−6◦, and the end deflection is 0.1008 mm. From the static
load analysis results, it can be seen that the clearance has a great impact on the deforma-
tion of the wing so that there is a certain degree of free deflection of the wing. In order
to enhance the stability of the wings, it is necessary to design a clearance eliminator to
compensate for the clearance at the kinematic pair of the wings.

3.3. Clearance-Free Locking Stiffness Modeling

When the structure and material of the missile wing deployment mechanism are
determined, the mass matrix of the deployment mechanism system is fixed. So, the
vibration frequency of the deployment mechanism is mainly affected by the system stiffness.
By locking the root of the wing through the clearance eliminator to provide reliable support
to the wing root, the system stiffness can be effectively improved, further improving the
dynamic stiffness characteristics.
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By eliminating the clearance at the kinematic pair of the missile wing using the
clearance eliminator, the connection between the root of the missile wing and the base
is transformed from the clearance state to the contact state, as shown in Figure 7. In the
x direction, the wing contacts the base through the V-shaped contact surface and applies pre-
stress to the contact surface in the x direction by applying transverse locking force. In the y
direction, the top and bottom ends of the wing contact the base by the wedged force and
apply pre-stress to the contact surface in the y direction by applying longitudinal pre-stress.

The wedge interacts with the wing and the base under the action of the driving force of
the shape memory alloy FSMA. The transverse locking force Fx is generated by the frictional
force f interacting between the wedge and the missile wing. During the interaction between
the wedge and the missile wing, small deformations occur tangentially and normally along
the contact surface, and it is known from Coulomb friction theory that the frictional force
f is proportional to the contact surface load Fy, i.e., f = kFy and Fy = FSMA

sin θ (θ is the
inclination angle of the wedge). The relationship between the transverse locking force Fx
and the driving force of the shape memory alloy FSMA can be introduced as:

Fx = 2 f =
2k

sin θ
FSMA (12)

The frictional force f generated at the contact surface under different FSMA is obtained
by simulation analysis, as shown in Figure 17.

SMAF

f

Figure 17. Relationship between FSMA and f .

It can be seen that f basically varies linearly with FSMA. It can be determined by the
slope of the image that the parameter k = 0.052, from which the relationship between Fx
and FSMA can be obtained as:

Fx =
0.104
sin θ

FSMA (13)

The wing root is connected to the base through the clearance eliminator. The connec-
tion characteristics of the contact surface have a great influence on the dynamic stiffness
of the wing. If the root support is reliable, the wing structure can be equivalent to a can-
tilevered thin plate. Its modal characteristics can be derived according to the finite element
method. The inherent frequency is only related to the shape parameters of the wing and the
structural material. With the structural material of the wing given, the inherent frequency
is constant. Therefore, the dynamic stiffness analysis of the wing focuses on the dynamic
stiffness analysis of the connection between the wing root and the base. Assuming that the
wing is a rigid body, the relationship between the different locking forces and the frequency
response of the wing is established under the clearance elimination state.

The locking force Fx in the x direction generates a lateral contact force Fcx on the
V-shaped contact surface, creating a contact stiffness on the V-shaped contact surface. The
wing root can be equated to a support structure as shown in Figure 18. The support of the
contact surface can be equated to a spring of the same stiffness.

407



Drones 2022, 6, 211

eK

xF

Figure 18. Equivalent diagram of the support part.

Based on fractal geometry, the normal contact stiffness of the V-shaped contact surface
is modeled with reference to the Hertz contact theory. Due to the large area of contact
area of the bonding surface, it can be assumed that a small amount of elastic deformation
� occurs at the bonding surface. �c is the critical contact deformation of the contact surface
from elastic to elasto-plastic deformation. � is much smaller than �c.

According to Hertz contact theory, when the micro-convex body between V-contact
surfaces is in elastic contact, the contact load fe(�) of the micro-convex body can be
obtained as follows:

fe(�) =
4
3

ER
1
2 �

3
2 (14)

From k = d f
d� we can obtain the contact stiffness of micro-convex body as:

ke(�) = 2ER
1
2 �

1
2 (15)

where R is an equivalent radius of curvature of the micro-convex body on the contact surface,
and E is the composite modulus of elasticity of the material, E= [(1− ν1)/E1+(1−ν2)/E2]

−1.
E1 and E2 are the modulus of elasticity of the two surface materials, respectively, and ν1 and ν2
are the corresponding Poisson’s ratios. � is the deformation of the contact point.

According to fractal theory, the equivalent radius of curvature of a micro-convex body
on a machined contact surface is calculated by the following equation:

R =
a

D
2

24−2Dπ
D
2 GD−1

√
lnγ

(16)

where a is and intermediate variable, a = ( 29−2DG2D−2πD−3 lnγ

H2λ2 )
1

D−1 ; G is the characteristic
factor responding to the contour size, and the height dimension parameter of the milled
machined surface is 1.2117 × 10−4 m. γ is the spatial frequency of the random contour, and
γ = 1.5. D is the number of fractal cones of the contour, which is 1.2183. H is the hardness
of the material, and H = 2.8Y. Y is the yield strength of the material. λ is the average
contact surface pressure coefficient, and λ = 0.4645 + 0.314v. v is the Poisson’s ratio of the
material at the bonding surface.

By Hooke’s law: σ = E · ε = F
S → E · w

l = F
S . Then, the deformation is: w = Fl

SE ,
where σ, ε, F, l, S are the contact surface stress, strain, contact surface normal pressure,
contact surface thickness, and contact area, respectively, which in turn leads to:

ke(�) = {
[( 29−2DG2D−2πD−3 lnγ

H2λ2 )
1

D−1 ]

D
2

24−2Dπ
D
2 GD−1

√
lnγ

} 1
2 {

Fx
2 sin ϕ l

S E
2(1−ν)

} 1
2 (17)

The angular velocity of vibration of the missile wing root is w =
√

ke
m . Intrinsic

frequency at the root support of the missile wing is f = we
2π .

Taking l, S, ϕ as 6 mm, 2661.5 mm2, and 37.37◦, respectively, the relationship between
the missile wing vibration frequency f and the transverse locking force Fx is derived as
shown in Figure 19.
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Figure 19. Vibration frequency versus locking force.

As can be seen from Figure 19, the frequency response of the wing first increases
sharply when the locking force increases from 0 under the action of transverse locking. Then,
when the locking force reaches 20 N, increase in frequency the wing starts to slow down
with the increase in the locking force, and the frequency response of the wing gradually
tends to become smooth as the locking force continues to increase. The parameters are
optimized by simulation software, and the frequency response of the wing under different
lateral locking forces is shown in Figure 20.

 f

Fx

Figure 20. The relationship between the intrinsic frequency of the wing and the locking force.

The simulation results show that when transverse locking is applied, a small locking
force can cause the vibration frequency of the root of the wing to stop. The frequency
response tends to stabilize with the increase in the locking force. Comparing with the
theoretical results, it can be found that both of them have the tendency that the frequency
response of the wing starts to increase sharply with the increase in the locking force. The
frequency response of the wing gradually tends to be stable with the increase in the locking
force. The reason for the difference between the theoretical and simulation results is that
the constraint boundary conditions of the wing root are different between theory and
simulation. From the perspective of theoretical modeling, the locking force on the wing
root will have a great effect on the contact stiffness. While from the simulation analysis, the
effect of the locking force on the frequency response of the wing is not obvious because it
ignores the surface characteristics of the contact surface. It considers the contact form as
unconsolidated once the lateral locking force is applied. Therefore, the effect of the locking
force on the frequency response of the missile wing is not obvious.
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4. Mechanical Characterization

4.1. Kinetic Characteristics

The state of motion during the deployment of the wing is analyzed. The rolling friction
coefficient between the wing and the contact surface during the motion of the wing is set to
0.05. The frictional reaction force generated by the air load during the deployment of the
wing is equated by attaching a spring to the wing, and the driving torque is set to 1 Nm.
The displacement versus time and velocity versus time during the deployment of the wing
are shown in Figures 21 and 22, respectively.

 

Figure 21. Displacement versus time.

 
Figure 22. Velocity versus time.

From the simulation results, it can be seen that the deployment time of the wing is
about 0.154 s, which is basically the same as the solution of the kinetic equation. It can be
determined that the time to push the wing into place is about 0.15∼0.16 s, which meets the
speed requirement of the deployment mechanism.

4.2. Modal Analysis

In the unlocked state, Figure 23 shows the boundary conditions and mesh division
according to the loading environment. For convenience, we use free mixed mesh generation
in the study. The modal analysis is carried out in the unpreloaded state. The results of the
fundamental frequency and the first six orders of frequency are shown in Table 1.
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Figure 23. Mesh division and modal analysis under docking condition.

Table 1. First six orders of frequency of the whole machine in the unlocked state. (Hz).

The First-Order The Second-Order The Third-Order The Fourth-Order The Fifth-Order The Sixth-Order

1017.8 1196.5 1197.9 1269.7 1314.3 1315

After the wing is pushed into place and the clearance eliminator is actuated, the
pre-stress-modal analysis is performed on the wing. The pre-stress loading is shown in
Figure 24a. The load simulates the driving force of the SMA actuator, and the results of the
wing modal analysis are shown in Figure 24b. The first six orders of its inherent frequency
are obtained as shown in Table 2.

   
(a) (b) 
Figure 24. Modal analysis with deployment: (a) Pre-stress loading; (b) Results of modal analysis.

Table 2. First six orders of frequency after the deployment of the missile wing (Hz).

The First-Order The Second-Order The Third-Order The Fourth-Order The Fifth-Order The Sixth-Order

351.77 986.6 1406.1 1885.4 2129.4 2567.7

Based on the existing pre-stress modal analysis results, the harmonic response analysis
of the missile wing was carried out with the frequency band set to 0~500 Hz and the
damping coefficient set to 0.05. In addition, a 700 N uniform normal load was applied on
the surface of the wing, and the amplitude versus frequency response was obtained as
shown in Figure 25. At resonance, the swept frequency phase angle is set to 90◦, as shown
in Figure 26, and the maximum deformation of the missile wing is 7.855 mm.
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Figure 25. Amplitude–frequency response characteristics.

 
Figure 26. Schematic diagram of maximum deformation of the wing during resonance.

With the maneuvering flight of the missile, the deployed wing is subjected to complex
non-constant aerodynamic effects. The environmental loads on the wing deployment
mechanism are mostly manifested as irregular dynamic inputs. In order to evaluate the
random vibration fatigue characteristics of the mechanism, the random vibration analysis
is performed on the basis of the modal analysis for the wing deployment mechanism.
By setting the power spectral density parameters specified in the vibration test standard
to simulate the irregular dynamic environmental loads on the mechanism, the random
vibration response analysis is performed on the missile wing deployment mechanism.

The results of the modal analysis are used as the initial conditions of the random
vibration analysis, and the power spectral density excitation in the xyz direction is set as
shown in Figure 27. The displacement response of the device as a whole is obtained, as
shown in Figure 28. The maximum deformation of the end of the wing is 0.273 mm, which
means that it will not cause structural instability or damage under the large power spectral
density excitation.
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Figure 27. Loaded power spectral density.

 
Figure 28. Displacement response spectrum.

In order to verify the connection stiffness of the wing deployment mechanism along
the x-direction and z-direction, the acceleration response spectrum of a point at the end of
the wing is selected, as shown in Figure 29, in which the x-direction’s and z-direction’s input
power spectrum densities are the same. The results show that the acceleration responses
almost completely overlap, indicating that the transverse connection stiffness of the device
is high and the stability is excellent.

Figure 29. Acceleration response.

5. Experimental Research

5.1. Verification of Wing Deployment Characteristics

The developed principle prototype is shown in Figure 30. To save costs and improve
the test efficiency, only one set of opposing wings was deployed. In order to reduce the
weight of the mechanism, except for the key stressed parts which are machined by 40Cr
material, the rest of the parts are made of aluminum alloy, and the overall mass of the
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prototype is about 15 Kg. A high-speed camera is used to record the deployment time of
the principle prototype wing, as shown in Figure 31. The deployment process is shown in
Figure 32. The complete deployment time of the missile wing is about 0.14 s, which meets
the requirement of rapidity. The experiments show that there is a difference of about 6 ms
between the deployment times of the two wings. There are three main reasons for this
difference: 1. The manufacturing error of the prototype leads to inconsistent clearances.
The impact forces acting on the wining are also inconsistent during the deployment process.
2. The assembly error causes the installation position of the torsion spring to shift, such as
the assembly error of the shaft hole of the torsion springs. 3. The performance difference of
the torsion springs leads to inconsistent driving torques of the deployment mechanisms.
The size and stiffness coefficient of the torsion springs cannot be completely consistent.

Figure 30. Principle prototype of deployment mechanism.

 
Figure 31. High-speed camera test system.

 
Figure 32. Testing results of the high-speed camera.
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According to the design index of the wing deployment mechanism, the wing is
subjected to a normal load that varies linearly with the push-out distance during the
deployment process. The load was equated to a spring load, and the launch function test
was conducted on the missile wing deployment mechanism under loading conditions.
The test device is shown in Figure 33. The test of the wing deployment process under the
applied load condition, the wing can be pushed out quickly under the normal load that
varies linearly with the push-out distance in the range of 0~700 N.

 

Figure 33. Wing load test.

5.2. Fundamental Frequency Test

The prototype of the developed clearance eliminator and the built modal test set are
shown in Figure 34. The internal SMA driver of the prototype is heated by energizing. The
support stiffness of the wing is tested to verify the function of the clearance eliminator and
to test the dynamic support stiffness performance after the wing is deployed.

 

Figure 34. Modal test experiment.

As shown in Figure 34, the acceleration sensors are arranged at the four corners of
the wing, and the vibration characteristics of the wing are measured by the LMS modal
test system. The amplitude–frequency characteristics of the wing vibration are shown in
Figure 35. The action of the clearance eliminator is obtained by the hammering test, and
its mode of vibration is shown in Figure 36. The first-order frequency of the wing is about
220 Hz, which is smaller than the FEM results. There are three main reasons: 1. The rough
mesh division of assembly leads to a low accuracy of the calculation results. 2. The material
parameters used in assembly simulation cannot be completely consistent with the actual
values. 3. There are errors and clearance during processing and assembly. Excessive bolt
preload causes component deformation. By analyzing the mode of vibration, the support
stiffness of one side of the wing is lower than the other side, indicating that the clearance
eliminator on the weaker side has not fully eliminated the clearance of the kinematic pair of
the wing. This is because the clearance is too large due to machining errors, exceeding the
memory alloy actuator travel. In addition, the prototype has become deformed during the
test process, making the clearance larger. According to the overall test results of the wing
deployment mechanism, it can be verified that the function of the clearance eliminator
meets the design requirements.
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Figure 35. The amplitude–frequency of the wing vibration.

Figure 36. The mode of wing vibration.

6. Conclusions

In order to achieve rapid ejection and high stiffness retention of the missile wings, a
deployment mechanism with clearance elimination is proposed. The deployment perfor-
mance and wing locking performance are studied through theoretical modeling, simulation
and experiment. The static load bearing of the deployment mechanism is analyzed, and
the stresses of the overall and internal components of the deployment mechanism are
obtained. The static stiffness characteristics of the deployment mechanism are analyzed,
and the deflection of the missile wing under load in the clearance state is obtained. The
dynamic stiffness characteristics of the wing deployment mechanism are analyzed, and
the relationship between the locking force and the dynamic support stiffness of the wing is
obtained. The influences of the collision force on the motion state of the wing are analyzed.
The kinetic simulations are conducted to obtain the displacement and velocity response
to time during the launch of the wing. Static simulation analysis is carried out to obtain
the force and deformation of the wing deployment mechanism under static load condi-
tions. The modal analysis, harmonic response analysis, and random vibration analysis
are conducted for the locking and clearance elimination states, respectively. The results
show that the overall joint stiffness is high and the stability is great. The prototype of the
deployment mechanism has been developed with an ejection stroke of 75 mm. High-speed
camera recording results show that the deployment time is 0.14 s. Under the simulated
load of the springs, the actuation of the deployment mechanism is reliable and stable. The
vibration characteristics of the wings are measured by the LMS modal test system. The
results show that the first-order frequency of the wing is about 220 Hz after the gap elimi-
nation, indicating good dynamic support stiffness is achieved. The designed deployment
mechanism with gap compensation achieves fast ejection and high stiffness retention. In
future research, we will enhance the performance of the deployment mechanism with a
clearance eliminator to improve actuation synchronization and consistency.
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Abstract: This study aims to identify the factors associated with the adoption of drone delivery in
Medellín, Colombia, in the context of the COVID-19 pandemic. For that purpose, it implemented
the Diffusion of Innovation (DOI) theory and the Technology Acceptance Model (TAM), which have
constructs that complement each other to determine the decision to accept a given technology. A
survey was administered to 121 participants in order to validate the model proposed here, which is
based on variables that reflect the perceived attributes and risks of this innovation and individuals’
characteristics. The results indicate that the factors Performance Risk, Compatibility, Personal
Innovativeness, and Relative Advantage of Environmental Friendliness have the greatest influence
on Intention to Use Drone Delivery (mediated by Attitude Towards Drone Delivery). This paper
offers relevant information for the academic community and delivery companies because few other
studies have investigated this topic. Additionally, the proposed technology adoption model can be a
benchmark for other emerging economies in similar social, economic, and technological conditions.

Keywords: drones; drone delivery services; contactless delivery strategies; COVID-19; pandemic

1. Introduction

In a globalized and competitive world, innovation becomes a strategy for companies
to remain in the market [1]. However, some factors limit their success; for example, end
consumers are still reluctant to migrate to some new technologies or trends and question
whether it is advisable or not to adopt them because they are satisfied with the services they
have traditionally received and feel that adopting these new technologies is irrelevant [2].
In the present day, companies adopt technologies to improve production, sales, and logistics
processes due to their multiple advantages. The number of logistics operations of delivery
services has been increased by the growing volume of online orders. As a result of this
expansion and the different alternatives in the market, customers raise their expectations
regarding high-quality, faster delivery, for which they are willing to pay a premium price [3].

Consequently, companies are constantly investing in the search for innovative solu-
tions to improve their delivery systems that enhance their effectiveness and are environ-
mentally friendly [4]. For example, they have explored electric vehicles, artificial vision,
and machine learning for autonomous vehicles [5]. Taking into account the current context
of COVID-19 pandemic, the use of drones for parcel delivery is expected to increase in the
foreseeable future [6]. This is especially true considering that the current crisis is generated
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by the COVID-19 virus, which spreads mainly through the respiratory system of infected
individuals and has led to social distancing as a strategy to reduce the risks of spreading
it [7]. Thus, autonomous vehicles such as drones present a great opportunity for food
or even drug delivery, offering a possible solution to the current problems caused by the
presence of COVID-19 [8]. For instance, drones have been shuttling medicine and samples
from suspected COVID-19 patients for testing [9] to difficult-to-access areas in developing
countries, such as Ghana [10].

During the 2020–2021 COVID-19 lockdowns in Medellín, Colombia, a startup company
called Rappi developed a special way of delivering its orders. It deployed a fleet of robots,
built by Kiwibot, to deliver takeout food to people in lockdown [11]. In the same city,
drones have been used to generate landslide risk mitigation strategies in low-income
settlements [12] and as support for the thermal analysis of urban environments, facilitating
the analysis of urban heat islands [13]. This reflects the recent acceptance and adaptation
of drones in different services in Medellín. Therefore, we should analyze the issue of
merchandise delivery employing these technologies in said city.

Due to the crisis generated by the COVID-19 pandemic, Medellín faced challenges in
different sectors, but especially in health care services. For example, during the contingency,
medicine and pharmaceutical care were provided in person. However, at the same time,
mobility restrictions were imposed, the demand for medicine increased, and there was a
countrywide shortage of medical products. Thus, the national government established
vulnerability criteria, prioritization strategies, and restrictions for the general population.
In such situations, it was necessary to establish new home care channels or models to
strengthen self-care supported by technological tools [14].

In a more global context, it has become necessary to generate mechanisms to prevent
contagion in everyday activities, such as studying, working, or buying from home, which
are possible thanks to recent technological developments [15]. Regarding online purchasing,
recent data from 2022 [16] indicate a significant growth in the volume of scientific literature
on the logistics of e-commerce. Approximately 56% of the articles about this topic have
been published in the last three years.

Due to the growth of e-commerce, the logistics market is being confronted by chal-
lenges and requirements brought about by digitization [17]. For example, according to
Statista (2019) as cited in [18], worldwide e-commerce sales reached 3.53 trillion US dollars
in 2019. To deliver that volume of orders, drivers and service providers strive to provide
adequate customer service [19]. However, difficulties arise on a daily basis (e.g., delayed or
broken packages, stressed employees, and angry customers).

Consumers have become more demanding regarding these inconveniences, and, due
to their faster pace of life, they require delivery that is timely (among other characteris-
tics) [20]. Therefore, companies that use e-commerce seek to meet their expectations by
ensuring responsiveness, while optimizing their resources in terms of costs and time [21].
Technological advances present both good and bad aspects, but as mankind adapts itself
and interacts with them and the technology is improved, they turn out to be beneficial [22].

Different technologies can be implemented to respond to these challenges in delivery
services, and drones are one of them. A drone is an aircraft that can be remotely flown
without a human pilot [21]. The use of drones has advantages and disadvantages perceived
by both user companies and end consumers [23]. However, this type of technology has a
high potential for the commercial sector due to its qualities in terms of speed, cost, safety,
and minimal human intervention [24]. In the context of the COVID-19 pandemic, Euchi [8]
identified advantages in drones, such as disinfection (which reduces the risk of contagion)
and social distancing (because they are remotely controlled). They can also transport
samples of suspected COVID-19 patients, once again contributing to social distancing [25].

Jiang and Ren (2020) [20] proposed a prospect theory that takes into account the factors
that support the superiority of drones over manned aircrafts. Such factors include delivery
distance, degree of rider delay, pickup time, and consumer attitudes towards drone delivery.
However, it is clear to them that this is a very vast field yet to be explored [26]. For example,
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the weather can pose a threat to their normal operation, and the layout of drone airports
should be further analyzed. Raj and Sah (2019) [21] consider it important to investigate the
critical success factors for this kind of technology in the logistics sector, its technical aspects,
availability of skilled workforce, and government policies.

During the pandemic due to the outbreak of the COVID-19 virus, drones were pro-
posed as an innovative tool with a vast potential to reduce the risk of contagion in that
exceptional context marked by social distancing. Thus, to bridge the gaps produced by
physical separation, drones have been employed to respond to specific challenges related
to the pandemic (e.g., disinfection, delivery, and surveillance) [27] in several countries, but
not necessarily everywhere or in the same way.

For example, in India a mechanism was proposed to effectively improve the process of
treating COVID-19 patients by implementing drone services to reduce the risk of infection
of doctors or other medical staff, thus preventing the spread of the infection [28]. In Spain, a
study [29] evaluated the possibility of using drones for disinfection tasks in outdoor public
service areas to reduce virus transmission. In Ireland, these systems have been used to
combat COVID-19 through monitoring and detection, social distancing, disinfection, data
analysis, and delivery of goods and medical supplies [30]. In Turkey, since the virus can be
easily transmitted from person to person, retailers have started testing drones to deliver
products ordered online. Therefore, drones are indeed an alternative delivery system that
could solve some of these problems in different regions [31].

Although drone delivery during the pandemic has been researched in some developed
countries [7,31,32], few studies have addressed this phenomenon in Latin America. There-
fore, as stated above, this study aims to (1) analyze the factors associated with the adoption
of drones for goods delivery in the context of the COVID-19 pandemic in Medellín and
(2) present an overview of how this service is perceived in a developing economy.

2. Narrative Literature Review

Using drones as vehicles for cargo delivery is an opportunity for economic and environ-
mental development and establishes a new sustainable business model [33]. Drone delivery
is based on machine learning and artificial intelligence technologies that require a high
initial investment in terms of skilled workforce, technicians, and fulfillment centers [21], as
well as the construction of infrastructure known as drone airports [34].

One of the main advantages perceived by end consumers in drone delivery is envi-
ronmental protection through environment-friendly products and the reduction in air and
noise pollution, for which they are willing to pay a higher price [21]. The environmental
friendliness of this technology is a key factor influencing and motivating its adoption [35].
Therefore, it is very important to raise consumer awareness in this regard based on research
on their behavior in terms of values, beliefs, and social norms [36]. The environmental
education of consumers is a step toward ensuring the preservation of the environment [37].

In addition to ecological advantages, drones offer benefits such as cheaper, faster
shipping [38], safety, speed, environmental friendliness, and convenience. Thus, they could
replace traditional transportation in parcel delivery services [39]. Drones are not affected
by traffic jams or heavy traffic on roads. They are operated by a computer system that
can reduce labor costs, which is a clear advantage for sustainability [37]. However, in the
post-COVID-19 period, consumers may radically change their behavior in terms of their
attitude towards and intention to use drones for the delivery of goods such as food or
medicine [7].

The advantages of drones over traditional means in logistics are evident, especially
their significant reduction in package delivery time and increased reliability, efficiency,
security, and stability. However, as explained by Sah et al. (2021) [40], the widespread
implementation of this disruptive logistics technology is not yet visible. The most relevant
barriers for the implementation of drones in logistics are related to a greater extent to
the regulations of each country and the threats they might pose to individual privacy
and security. Other barriers include public perception and environmental, technical, and
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economic aspects. Additionally, not all types of suppliers can use drones to provide their
logistics services. Thus, it may be impractical to implement a finely differentiated delivery
strategy [41] because, for that purpose, logistics providers should cooperate more intensely,
and the flow of goods needs to be further consolidated [42].

Despite the potential advantages of drones, users also perceive their risks and disad-
vantages. For example, as they are remotely controlled by computers, they are exposed to
cyberattacks. Also, people fear for their privacy due to the possibility of being recorded or
attacked by drones [43]. Therefore, detailed user knowledge of drones and their functions is
a key factor for their adoption [21]. Consumer reactions to drone delivery indicate that they
resist the change and the adoption of new technologies because of their strong belief that
the traditional system is safer. However, the credibility of certain brands and consumers’
trust in them influences the adoption and acceptance of drones [3].

To use drones for food delivery services, we should consider different risks associated
with it. As explained by Mathew et al. (2021) [44], consumers may perceive risk in a new
technology-mediated product/service due to ambiguity or lack of credibility. Three main
types of risks are evident in food delivery: performance, delivery, and privacy. Thus, the
image of drone food delivery services tends to be affected by perceived risks stemming
from concerns about the use of new technologies. Said concerns also refer to financial and
psychological risks. Performance risk reflects consumers’ concerns about losses incurred
when the service does not work as expected, especially in times of COVID-19; thus, they
cannot make accurate performance decisions before using the service [45,46].

Other perceived disadvantages regarding the functionality of drones are their batteries
and flight duration, due to which logistics centers or airports would have to be built at
certain distances. Their maximum weight capacity is also a limiting factor for the provision
of the delivery service because it is usually 5 kg [3]. In addition, some other external factors
may cause accidents, such as falling from heights; colliding with trees, buildings, animals,
power lines [38], or drones from other companies; and weather conditions that prevent
the provision of the service [5–7]. As a result, designating special airways for drones is
essential. Nevertheless, some countries lack national policies to regulate drone logistics for
delivery services [47].

Companies have found physical and financial risks in drones that result in drawbacks
for their adoption. In addition, end consumers have expressed that social interaction
(which they would not have with drones) is important in the provision of the service [17].
Such beliefs regarding the risks of product delivery methods vary among consumers.
According to Zhu (2019) [48], exploring consumer behavior and profiles and conducting
communication campaigns contribute immensely to the acceptance of commercial drone
delivery. In general, the estimates of user acceptance range between great skepticism and
exaggerated optimism.

Although some companies are already using autonomous vehicles in pilot tests of
delivery services for e-commerce [5], safety and privacy are still a concern for end con-
sumers. Therefore, it is necessary to inquire about their intention to adopt or oppose the
use of this kind of service, especially in the context of a pandemic in which precisely social
distancing was encouraged to reduce the risks of spreading COVID-19 [7]. The business
world is actively considering the use of drones for delivery to increase efficiency and
respond to current customer needs. Consequently, consumer reactions to and perceptions
of this new delivery method should also be analyzed. According to Farah et al. (2020) [3],
despite efforts to position and consolidate drones as delivery service devices, consumers
are skeptical about this innovation. Therefore, we should study how behavioral intentions
towards drone food delivery services are formed after the COVID-19 outbreak [7,31].

2.1. Model and Hypotheses

Drones have shown great potential for parcel delivery both before [7] and after the
pandemic [31,32]. However, the application of drones in food delivery services is not yet
widely commercialized, as it is considered a novel technology in an emerging stage [32].
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In the literature, the public acceptance of drones for goods delivery has been researched
adopting the Diffusion of Innovation (DOI) theory and the Technology Acceptance Model
(TAM) [31,49]. The DOI theory was proposed by Rogers (1983) [50] to understand why
consumers adopt innovative technologies. He identified five attributes of innovations
that could affect people’s decision to adopt them: relative advantage, compatibility, com-
plexity, observability, and trialability. Nevertheless, relative advantage, compatibility, and
complexity have been the most commonly used [31].

Many times, the DOI theory has been applied in combination with the TAM proposed
by Davis (1989) [51]. The TAM aims to explain how users come to accept the use of a
certain technology based on a series of factors that influence their decision about how
and when they will use it (e.g., perceived ease of use and usefulness as determinants
of attitude (which in turn determines use) and external variables) [52]. Thanks to their
similar constructions, the DOI and the TAM can complement each other. Furthermore, the
attributes of innovation have often been considered to be determinants of attitude toward
and intention to adopt certain technologies [53].

Yoo et al. (2018) [49] proposed a model that applies the DOI and TAM to formulate
theoretical constructions and hypotheses. From Rogers’ model (1983) [50], they took relative
advantage, compatibility, complexity, and personal innovation as perceived technological
factors. From Davis’ model (1989) [51], they took the constructions attitude and intention
to use. Finally, they evaluated perceived risks as an additional variable to those of the DOI
and the TAM.

2.1.1. Relative Advantages

Relative advantage refers to the degree to which the consumer perceives that an inno-
vation provides more benefits than the traditional tool or technology [54], in other words,
its perceived superiority over the status quo and other options (e.g., for home package
delivery). Nevertheless, said advantage can change due to different spatial characteristics
or between cultures, beliefs, values, and other social dimensions. According to Rogers
(1983) [50], this advantage is associated with a cost-benefit analysis to determine how
convenient it is to adopt an innovation.

It has been found that the adoption of drones could be largely a matter of cost in
relation to, e.g., helicopters [55] or traditional logistics systems [31]. Therefore, consumers
perceive that drone delivery provides a relative advantage, which influences their attitude
to adopt it thanks to its speed and environmental friendliness [31,49]. Park et al. (2018) [56]
claim that the use of drones for food delivery is appropriate because they are fast and
offer environmental benefits. Based on this information, this study proposes the first
two hypotheses:

Hypothesis 1. The relative advantage of speed positively affects attitude toward drone delivery.

Hypothesis 2. The relative advantage of environmental friendliness positively affects attitude
toward drone delivery.

2.1.2. Complexity

Complexity is defined as consumers’ perception of technological advances and the
ease of use of technologies [31,57]. According to Rogers (1983) [50], complexity is the
extent to which an innovation is perceived by users as easy to use and understand. From a
general point of view, innovations that are easier for consumers to use will be adopted more
quickly; conversely, complex technologies may take longer or be rejected as they require
new knowledge and development of skills [58]. The trialability of drones provides testing
buffer prior to adoption, but their potential complexity is a concern that could hinder said
adoption [22]. Therefore, a more generalized perception of less complexity in the use of
drones for package delivery would influence their adoption [49]. As a result, the following
hypothesis is proposed:
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Hypothesis 3. Lower complexity positively affects attitude toward drone delivery.

2.1.3. Compatibility

Compatibility is a fundamental measure to predict or facilitate innovation, and it
is defined depending on particular needs, values, and user experience [59]. Hence, it is
assumed that people who find technologies to be compatible with their existing routines and
needs are more likely to use them [60]. Regarding drone delivery, compatibility influences
attitude, which plays an important role in the formation of behavioral intentions [61]. This
is because when consumers evaluate new technologies, the overlap of perceived usefulness
with perceived ease of use in the past positively affects their perceived compatibility and
attitude toward new technologies [31]. Therefore, the following hypothesis is proposed:

Hypothesis 4. Compatibility positively affects attitude toward drone delivery.

2.1.4. Perceived Risks

Perceived risks have been used in a systematic way to try to explain and analyze the
behavior of consumers in the face of new technologies; for instance, their anxiety in the
face of unpleasant situations that they may experience when they buy new products or
acquire new services, which are generally found in emerging fields [62].

Performance risk reflects consumers’ concerns about losses incurred when a ser-
vice does not work as expected; thus, they cannot make accurate performance decisions
before using the service [45]. Consumers perceive a high performance risk in new prod-
ucts/services due to their lack of experience, which negatively affects their attitude toward
them [62]. Thus, the following hypothesis is proposed:

Hypothesis 5. Performance risk negatively affects attitude toward drone delivery.

Delivery risk also reflects people’s concerns about not getting a package delivered for a
variety of reasons, such as an accident, damage, or theft of a drone carrying the package [45].
In addition, it is believed that drones might malfunction, perform inaccurate deliveries,
or not find a place to land at residences [63]. Based on this, the following hypothesis
is proposed:

Hypothesis 6. Delivery risk negatively affects attitude toward drone delivery.

Privacy risk refers to how much people value the confidentiality of their information,
which directly influences their adoption of technologies. In the context of drone deliv-
ery, privacy is a driver of concern given the sensitivity of the information that may be
collected [64]. This risk is related to the feeling of insecurity that individuals experience
when they have to share personal data such as credit card number, address, and phone
number [46]. Therefore, the following hypothesis is proposed:

Hypothesis 7. Privacy risk negatively affects attitude toward drone delivery.

2.1.5. Individual Characteristics

In general, individual characteristics are determinants of attitudes toward a technol-
ogy [65], and individual innovativeness is a predominant factor in attitudes toward drone
delivery [50,66]. This factor represents the degree to which a person feels open to using
new technologies. Consequently, those with a great capacity for personal innovativeness
are more likely to easily adopt new technologies and thus overcome the uncertainties that
are generated in these processes. According to Ciftci et al. (2021) [66], this is a personality
trait that drives an individual’s initial intention to try innovations. Thus, the following
hypothesis is proposed:
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Hypothesis 8. Personal innovativeness positively affects attitude toward drone delivery.

Communication channels are especially useful to raise innovation awareness [67].
Mass media channels (e.g., the internet, television, radio, advertisements, and newspa-
pers [49] inform individuals about new technologies [68]. During the pandemic, communi-
cation channels (especially social media) determined the acceptance and use of drones [69].
Thus, the following hypothesis is formulated:

Hypothesis 9. Mass media channels positively af fect attitude toward drone delivery.

Over time, consumers’ environmental awareness has increased, motivating the adop-
tion and use of environmentally friendly—also called green—technologies. In the literature,
environmental concerns have been related to the collective awareness of current environ-
mental problems, according to Wu et al. (2019) [70], which can be indicated by the attitude,
recognition, and response of individuals towards environmental problems. In particular,
the adoption of drone delivery offers potential benefits for green consumers who believe
that, by using this type of technology, are reducing their carbon footprint [64]. Therefore,
the following hypothesis is proposed:

Hypothesis 10. Environmental concern positively affects attitude toward drone delivery.

2.1.6. Attitude and Intention

In the literature, it has been proposed and proven that attitude influences behavioral
intentions, which is based on the ideas in the TAM. Consequently, behavioral intentions
measure the probability of performing a certain action, such as adopting a technology [32].
Attitude refers to a person’s positive or negative evaluation of a behavior, which has a
direct effect on their intention to use [51]. In the case of drones, attitude is the negative or
positive evaluation of their delivery service [31]. Based on this, the following hypothesis
is presented:

Hypothesis 11. Attitude toward drone delivery positively affects intention to use it.

These eleven hypotheses (taken from [49]) compose the theoretical model adopted in
this study to determine and analyze the factors that affect attitude toward drone delivery
in Medellín, which in turn affects the intention to use said delivery in that city during the
COVID-19 pandemic.

3. Materials and Methods

A survey was administered to 121 participants (15 and older) in Medellín. The
participants were in different occupations and had knowledge of the existence of drones
and some of their functions. The goal was to analyze the factors that affect their adoption
of drone delivery in 2020 after the WHO declared a pandemic due to the outbreak of the
COVID-19 virus. At that time, organizations were looking for service delivery strategies to
face social distancing and lockdowns imposed to prevent the spread of the virus.

First, respondents were presented with the objective of this study. It was made
clear to them that the survey was anonymous, they would not be paid or charged for
participating in it, and they could be withdrawn from the study at any time. In the survey,
drone delivery was connected to different significant sectors: food (home delivery), health
(medicine delivery), and, in general, home delivery of online orders. The first part of
its questionnaire included a total of 28 items designed to characterize the sample using
open-ended questions about their interest in using drone delivery. The second part of the
survey was a series of statements that participants rated on a Likert scale to measure the
following constructs: Relative Advantage of Speed, Relative Advantage of Environmental
Friendliness, Compatibility, and Complexity.
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The first aim of this study was to apply and validate a model to examine the adoption
of drone (unmanned aircraft) delivery in Medellín (a city in Colombia). The variables
investigated here were selected from the model proposed by Yoo et al. (2018) [49], which
includes the following eleven constructs: Attitude Towards Drone Delivery (ADD), Com-
plexity (CX), Mass Media Channel (MMC), Compatibility (CM), Intention to Use Drone
Delivery (IUD), Personal Innovativeness (PI), Delivery Risk (DR), Privacy Risk (PVR),
Performance Risk (PMR), Relative Advantage of Environmental Friendliness (RAEF), and
Relative Advantage of Speed (RAS). We designed the variables to extract the most useful
information and thus achieve the aims of this study (see Table 1).

Table 1. Constructs and variables in the proposed model. The constructs were taken from [30].

Construct Variable

Attitude Towards Drone Delivery (ADD)
Drone delivery is easy to use.

Using drones suits my lifestyle.

Complexity (CX)

My interaction with drone delivery is clear and understandable.

Drone delivery can provide me with a better service.

Using drone delivery fulfills my delivery service expectations.

Mass Media Channel (MMC)
I have a lot of information from the media about drone delivery.

The media have helped me to better understand drone delivery.

Compatibility (CM)
Drones emit less carbon dioxide during delivery.

Using drone delivery is compatible with all the aspects of my work.

Intention to Use Drone Delivery (IUD)
Using the drone delivery technology is a good idea.

Receiving parcels delivered by drones is something that will happen in the long term.

Personal Innovativeness (PI)
I have often seen articles about drone parcel delivery.

Drone delivery is desirable.

Delivery Risk (DR)
The package carried by the drone can be stolen.

The package carried by the drone can be damaged by others.

Privacy Risk (PVR)
Drone delivery will result in a loss of my privacy.

Drone delivery might be used in a way that violates my privacy.

Performance Risk (PMR)
The package carried by the drone might arrive late or be incomplete.

Drone delivery will make me lose control over my privacy.

Relative Advantage of Environmental
Friendliness (RAEF)

Drone delivery helps the environment.

Drone delivery allows me to receive products in an environmentally friendly way.

Relative Advantage of Speed (RAS)
Drone delivery is a fast way to deliver packages.

Drone technology is useful for fast goods delivery.

Source: Yoo et al. [50].

In the survey, 45% of the participants were 30 or older, 31% were between 26 and 29,
and the remaining percentage were between 16 and 25 years old. Additionally, 75% of those
surveyed had never operated a drone in their lives, and the remaining 25% claimed that
they had had an “excellent” or “very good” experiences with them. Among the participants,
55% would recommend buying a drone to their relatives and 68% thought that using drones
is safe.

4. Results

IBM SPSS software was used to analyze and calculate the correlation statistics. Other
values were also calculated: sampling adequacy measure, Bartlett’s test of sphericity,
standardized factor loadings, reliability of the measurement scale, and correlation between
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the constructs in the model. The validity of the measurement scale was determined based
on the analyses of convergent validity and discriminant validity. Such analyses had two
aims: (1) to establish the reliability of the model based on the observable items and their
impact on a latent variable and (2) to be able to claim that the measures of a single construct
were valid; that is, that they were highly correlated to each other and could be discriminated
from the measures proposed for a different construct [71].

4.1. Convergent Validity and Discriminant Validity

Principal component analysis was used for feature extraction. The factor loadings were
obtained to interpret the function of every variable and define each one of the factors. The
significant values reported in Table 2 determine that each variable adequately represents the
factor that contains it. The guidelines to identify significant factor loadings were based on
the sample size (121 participants), which accepts up to 0.50 in the value of each variable [72].

Table 2. Factor loadings of constructs in the proposed model.

Factor Item Standardized Factor Loading
Average of Standardized

Factor Loadings

Attitude Towards Drone Delivery (ADD)
ADD1 0.812

0.812
ADD2 0.812

Complexity (CX)

CX1 0.838

0.870CX2 0.909

CX3 0.863

Mass Media Channel (MMC)
MMC1 0.928

0.928
MMC2 0.928

Compatibility (CM)
CM1 0.761

0.761
CM2 0.761

Intention To Use Drone Delivery (IUD)
IUD1 0.900

0.900
IUD2 0.900

Personal Innovativeness (PI)
PI1 0.872

0.872
PI2 0.872

Delivery Risk (DR)
DR1 0.951

0.951
DR2 0.951

Privacy Risk (PVR)
PVR1 0.955

0.955
PVR2 0.955

Performance Risk (PMR)
PMR1 0.731

0.731
PMR2 0.731

Relative Advantage of Environmental
Friendliness (RAEF)

RAEF1 0.886
0.886

RAEF2 0.886

Relative Advantage of Speed (RAS)
RAS1 0.967

0.967
RAS2 0.967

Created using IBM® SPSS® Statistics.

Regarding the correlation between variables, Bartlett’s test of sphericity and the Kaiser-
Meyer-Olkin (KMO) measure of sampling adequacy were calculated, and the fit of the
model was determined to carry out a factor analysis. The KMO is a statistical test that
detects the correlation between variables and returns the probability that the correlation
matrix contains significant values. Its p-value must be lower than the critical levels (0.05 or
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0.01). Note that this test is very sensitive to increases in sample size because the larger the
sample, the easier it is to find significant correlations [73].

Furthermore, the value of the KMO sampling adequacy measure (between 0 and 1) is
defined as an index that compares the magnitudes of the observed correlation coefficients
with those of the partial correlation coefficients. It characterizes those values on a scale
in which KMO measures from 0.90 to 1.00 are marvelous; from 0.80 to 0.89, meritorious;
from 0.70 to 0.79, middling; from 0.60 to 0.69, mediocre; from 0.50 to 0.59, miserable; and
from 0.00 to 0.50, unacceptable [74]. Table 3 shows that the coefficients obtained by SPSS
for each of the factors meet the criteria mentioned above, indicating that the data reduction
technique can be applied.

Table 3. Sampling adequacy and Bartlett’s test of sphericity of the factors in the proposed model.

Factor KMO Value Bartlett Value Meets Criteria

Attitude Towards
Drone Delivery 0.500 0.000 Yes

Complexity 0.697 0.000 Yes

Maas Media Channel 0.500 0.000 Yes

Compatibility 0.500 0.000 Yes

Intention to Use Drone Delivery 0.500 0.000 Yes

Personal Innovativeness 0.500 0.000 Yes

Delivery Risk 0.500 0.000 Yes

Privacy Risk 0.500 0.000 Yes

Performance Risk 0.500 0.000 Yes

Relative Advantage of
Environmental Friendliness 0.500 0.000 Yes

Relative Advantage of Speed 0.500 0.000 Yes

Created using IBM® SPSS® Statistics.

The discriminant validity is evaluated in Table 4, which provides evidence of the
confidence intervals of the model. Discriminant validity is one of the most common criteria
used to evaluate scales for measuring latent constructs in social sciences. To prove the
discriminant validity of the measures, those of the same construct must be highly correlated,
and this correlation must be greater than that existing with respect to the measures proposed
for any different construct [75].

Table 4. Confidence intervals of the variables in the model.

ADD CX MMC CM IUD PI DR PVR PMR RAEF RAS

A
D

D

. . .

C
X [0.179;0.576] . . .

M
M

C

[0.209;0.616] [0.256;0.626] . . .

C
M [0.367;0.684] [0.208;0.579] [0.075;0.493] . . .

IU
D [0.318;0.622] [0.115;0.516] [0.220;0.556] [0.411;0.706] . . .

PI [0.312;0.687] [0.261;0.631] [0.489;0.754] [0.325;0.656] [0.274;0.595] . . .

D
R [0.406;0.030] [0.263;0.141] [0.292;0.088] [0.094;0.505] [0.077;0.328] [0.063;0.397] . . .

PV
R

[0.152;0.567] [0.065;0.338] [0.143;0.483] [0.111;0.489] [0.021;0.415] [0.139;0.263] [0.094;0.312] . . .
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Table 4. Cont.

ADD CX MMC CM IUD PI DR PVR PMR RAEF RAS

PM
R

[0.712;0.345] [0.200;0.218] [0.194;0.557] [0.115;0.554] [0.164;0.559] [0.002;0.440] [0.473;0.751] [0.473;0.751] . . .

R
A

EF [0.260;0.606] [0.016;0.377] [0.036;0.391] [0.430;0.717] [0.121;0.506] [0.126;0.527] [0.082;0.471] [0.099;0.319] [0.013;0.445] . . .

R
A

S

[0.127;0.555] [0.184;0.603] [0.126;0.306] [0.187;0.618] [0.127;0.507] [0.208;0.603] [0.206;0.227] [0.027;0.379] [0.042;0.406] [0.227;0.641] . . .

Created using IBM® SPSS® Statistics.

In this study, the discriminant validity analysis was carried out by confirming that the
confidence interval in the estimate of the correlation between each pair of factors did not
contain a value of one [76].

4.2. Realiability

Next, we established the reliability of the measurement scale and verified the ex-
planatory power of the model; for that purpose, we calculated the Cronbach’s alpha of
the respective scales of each construct. This procedure is necessary because Cronbach’s
alpha is an index used to measure the reliability of the internal consistency of a scale [77].
Its value ranges between 0 and 1, where numbers closer to 1 indicate a greater internal
consistency of the items under analysis [78]. As shown in Table 5, the measurement instru-
ment seems to have an adequate reliability of the internal consistency of the measurement
scale because the value of the coefficients is within the range recommended by the authors
mentioned above.

Table 5. Reliability coefficient.

Factor Cronbach’s Alpha

Attitude Towards Drone Delivery 0.811

Complexity 0.910

Mass Media Channel 0.943

Compatibility 0.745

Intention to Use Drone Delivery 0.912

Personal Innovativeness 0.890

Delivery Risk 0.963

Privacy Risk 0.964

Performance Risk 0.707

Relative Advantage of Environmental Friendliness 0.896

Relative Advantage of Speed 0.973

Created using IBM® SPSS® Statistics.

4.3. Hypothesis Testing

At the conceptual level, a factor analysis starts with previous hypotheses based on
a given model. Then, the hypotheses are tested to determine the influence that certain
variables have over others. The model proposed in this study was estimated to identify
the determiners of the adoption of drone delivery in Medellín. The hypotheses formulated
here were included in said model, and their degree of association was measured using
Somers’ D statistic.

Somers’ D, which was used for this validation stage, is a measure that determines the
strength and direction of the association between an ordinal dependent variable and an
ordinal independent one. Thus, these ordinal variables contain a natural order that was
measured on a Likert scale [79]. In this regard, the measure took values between −1 and 1,
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where those close to 1 indicate a strong relationship between two variables (i.e., all pairs of
the variables agree), and those close to −1 indicate that there is a week or no relationship
between the constructs (i.e., all pairs of the variables disagree) [80].

Figure 1 presents the model proposed here and the Somers’ D values obtained for the
association between its constructs (i.e., variables). According to the theory reviewed in
this study, we can conclude that the association coefficients calculated for the hypothetical
relationships in the model present positive and significant values, which shows a high
correlation between the variables evaluated in this analysis. In addition, SPSS provided the
Somers’ D coefficient and placed it in a cross tabulation to indicate the degree of association
between the factors that were part of the hypotheses and those that were not. This enabled
us not only to verify the degree of association of the hypothesized relationships but also to
compare it with that between other constructs in the model.

Figure 1. Model of adoption of drone delivery in Medellín.

5. Discussion

The results obtained for these hypothetical relationships show that Performance Risk
has a significant correlation with Attitude Towards Drone Delivery, which is the strongest
relationship in the model. This indicates that the possibility of an inconvenience in the
provision of the service is a reason for consumers to perceive that the technical staff does
not have complete control of the device when they send packages. This risk can generate
great uncertainty in users and become a factor against the adoption of drones as a channel
for goods delivery. These results coincide with those obtained by Yaprak et al. in 2021 [31]
in the context of the COVID-19 pandemic. However, the construct Performance Risk can
also be the key to change or improve perceptions of drone delivery because, if customers
perceive its speed and efficiency, their satisfaction with the service is likely to increase and,
thus, their attitude towards drone adoption is likely to improve.

The construct Personal Innovativeness has a strong association with Attitude Towards
Drone Delivery, which is evidence that an individual’s interest, level of curiosity, and
conception of the delivery process have a positive impact on their Attitude Towards Drone
Delivery. This construct is often one of the most influential in attitude towards drone
delivery in emerging economies after the COVID-19 pandemic [44,81]. This is in line with
Hwang et al. (2021) [82], who found that, under moderating effects, after the COVID-19
outbreak, consumers who were motivated to use drone food delivery services showed
more favorable attitudes toward that new technology encouraged by social innovation.
Consequently, organizations that provide drone delivery services should identify the
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specific aspects that motivate consumer innovativeness in order to improve the efficiency
of their services.

This claim is supported by the study of Yoo et al. (2018) [49], where the relative
advantages of drone delivery, usability, perceived risks, and personal innovativeness
were the main determinants of attitude towards drone delivery. Similarly, the results
of the analysis by Kim et al. (2021) [7] highlighted the fundamental role of perceived
innovativeness in the construction of consumer attitudes towards drone delivery services
in the context of the COVID-19 pandemic.

Compatibility also exhibits a high level of association with Attitude Towards Drone De-
livery. This result, which is supported by previous research [83], highlights the importance
of compatibility for the adoption of flight technologies as means of packet transport. Hence,
the organizations that support the implementation of delivery drones should further em-
phasize their compatibility on different media [84]. Therefore, Compatibility, an important
factor according to the literature [85], influences Attitude Towards Drone Delivery.

Drones’ Relative Advantage of Environmental Friendliness also presents a strong
relationship with consumers’ Attitude Towards Drone Delivery. The green image that
delivery drones project (in terms of a small impact on the environment) favors a positive
attitude towards their implementation. Likewise, previous studies have confirmed the
advantages of environmentally friendly practices for shaping customers’ attitude and,
therefore, their intention to use drone delivery in emerging countries [44]. This may
indicate that more and more people are transferring the principles of their lifestyle and
their ethical and moral values to their decision-making process. If something deviates from
their beliefs, they may not consider or approve it.

If individuals do not perceive that drone delivery contributes to the environment,
their interest in using it may be reduced, and programs or actions that promote it may be
undermined. Nevertheless, previous studies [8] have shown that drones will be able to
optimize the way of eliminating contamination with a very high percentage (through the
reduction of human contact) with the increase of the flexibility of the flight (reaching the
less accessible regions every hour of the day).

Another significant relationship in the model was found between Attitude Towards
Drone Delivery and Intention to Use Drone Delivery, which shows that the use of drone
delivery technology should be associated with a positive feeling. These results are con-
sistent with those of previous studies on consumer perception during the COVID-19
pandemic [31,82], which confirmed a positive relationship between attitude towards drone
delivery service and intention to use that service. Individuals who are more inclined to
be in favor of this technology consider that drone delivery is a good idea in the long term.
However, prospective users should also feel that this technological reality is part of their
lifestyle and not simply a utopian scenario they cannot be part of or benefit from in terms
of product delivery.

Finally, the model presented a low correlation between the constructs Delivery Risk
and Attitude Towards Drone Delivery. This indicates that, if their expectations are fulfilled
and their needs are met, users tend to be more satisfied and motivated to continue using
the services offered by drone delivery companies [31].

According to [31], there is a limited number of studies on order delivery using drones
in times of the pandemic. Moreover, many studies on drone delivery have been conducted
in developed economies, but only a few in their emerging counterparts [44], particularly
in Latin America. The difference between this study and previous research is the context
examined here, i.e., Medellín during lockdowns due to the COVID-19 pandemic declared
by the WHO in 2020. This study revealed differences between findings obtained before and
after the pandemic in developed economies and their emerging counterparts, but it focused
on Medellín, Colombia, an emerging economy in Latin America. For that purpose, it tested
the relationships between relative advantages, complexity, compatibility, perceived risks,
individual characteristics, attitude, and intention in said city.
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Before the pandemic, Yoo et al. (2018) [49] found that, in a developed country, relative
advantage of speed, relative advantage of environmental friendliness, complexity, perfor-
mance risk, privacy risk, and personal innovativeness were all significant predictors of
attitude toward drones. In contrast, in this study, the most significant predictors were per-
formance risk, compatibility, personal innovativeness, relative advantage of environmental
friendliness, and control over the order. This indicates that, in an emerging economy (i.e.,
Medellín), the factors that influence drone delivery adoption are fast delivery, environmen-
tal friendliness, compatibility with lifestyles, performance of the technology device, home
and personal data privacy, and orientation towards the use of innovative technologies.
Contrary to the case analyzed by Yoo et al. (2018) [49], where customers were concerned
about delivery speed, in Latin America they are more concerned about lack of control and
product loss or damage caused by the drones during transport.

In the study by Yaprak et al. (2021) [31], the compatibility of drones was not influential
in the context of the pandemic. This could be because the lifestyles of many people changed
during the lockdowns, and new ways to meet people’s daily needs were adopted. Other
authors have paid attention to consumers in developed economies and their perception of
the benefits and risks of drones. In emerging economies, personal innovativeness tends
to be ranked higher than consumer attitudes and environmental friendliness with respect
to drone adoption [44]. Considerable attention has also been paid to opinion passing
and perceived privacy risk [83], and the results largely coincide with those obtained
in this study.

Regarding theoretical implications, the results of this study provide empirical evidence
of the robustness of the model proposed by Yoo et al. (2018) [49]. They also indicate that
Performance Risk, Compatibility, Personal Innovativeness, and Relative Advantage of
Environmental Friendliness are the most influential factors on Intention to Use Drone
Delivery (mediated by Attitude Towards Drone Delivery). In addition, this study paves
the way for future research in this area in Latin America after the pandemic because
drones have become an innovative technology for parcel delivery and have proven to be
very useful in the context of a pandemic. Indeed, not many studies have been published
in this field. Therefore, this study contributes to the emerging line of research on the
adoption of drone delivery in emerging economies in Latin America. Furthermore, it
highlights the relevant role of performance risk, compatibility, innovativeness, and relative
advantage of environmental friendliness in a positive attitude toward the use of drones.
Participants’ decisions are greatly influenced by concerns about theft or damage, lifestyles,
early adoption of innovations, and the trend of environmentally friendly technologies.
Although these results are not unexpected, they provide additional information about
a lockdown scenario that was not considered in the original TAM. Future studies could
address other important factors in the literature (e.g., ease of use and perceived usefulness)
in other cities in Colombia or other Latin American countries.

In terms of practical implications, this paper can provide an input for decision-making
by companies interested in adopting this technology for commercial purposes. Thus, they
can consider the factors that affect user attitudes to refine their drone delivery systems.
Based on the results obtained, organizations can find a way to promote the use of this
type of service so that customers have reason to believe that drone package delivery is
innovative, safe, and environmentally friendly. They can also identify the perceived risks
that generate the greatest concern in consumers to act and disseminate relevant information
on the matter. Thus, to enjoy these benefits and scale business drone operations after the
pandemic, drone delivery services should be geared towards improving convenience with
proper packaging, tracking, and trouble-free deliveries, as well as faster delivery times,
lower costs (to attract a larger number of consumers), and environmental advantages. In
general terms, this study is valuable for decision-makers at organizations that provide
online shopping services and are working on the implementation of drone delivery as a
means of transporting packages.
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The limitations of this study are present in three aspects. First, it is necessary to con-
sider the current lack of knowledge of all the different possible uses of drones, especially
for goods distribution, which could greatly affect the adoption of this type of technology.
Second, trust is important for drone delivery, especially in developing countries. Con-
sequently, distrust due to security and privacy issues may delay drone adoption in the
delivery market in said countries. Third, the sample size was not large enough to generalize
the findings to the overall adoption of drones to distribute goods in Medellin. A larger
sample is needed to obtain more generalizable results.

Investigating the adoption of a technology implementing technology acceptance mod-
els reduces technical, operational, and organizational uncertainty for developer companies.
Technology adoption was accelerated during the COVID-19 pandemic and much more so
in the post-pandemic context. This pressing need is forcing different sectors to acknowl-
edge emerging technological capabilities. For instance, drones have potential to transform
industries and improve productivity. Importantly, the data collected in this study highlight
key elements to foster innovation.

Innovative initiatives combine research, collaborative work, needs, resources, and the
market, among other aspects. Thus, identifying the particular factors that influence the
adoption of drones for goods delivery reduces uncertainty for organizations because they
can use specific constructs to guide product development or corporate process innovation.

This study presented theoretical information about drone delivery adoption, but
knowledge generation in this field is still limited. Participants in the survey were concerned
about technical aspects of drones; however, they were open and willing to use drone
delivery if it improves their quality of life. Finally, they were also concerned about drones’
performance risk, which means that knowledge dissemination campaigns should be imple-
mented to highlight the advantages and possible integration of drone delivery services.

6. Conclusions

The COVID-19 pandemic has generated the need to reduce the risk of infection using
various self-care strategies such as social distancing. Even after the pandemic, some changes
that were implemented as preventive measures will remain in force. Such is the case of
drone delivery, which was already being developed before the outbreak and had attracted
the interest of scholars and companies that provide this commercial service.

Multiple organizations have made efforts to implement contactless delivery strategies,
but users’ attitude is vital in the implementation of these technologies as a means of
delivery. Therefore, the aim of this study was to apply and validate a model to identify the
determinants of the adoption of drones (unmanned aircraft) to deliver goods in Medellín
in the context of the COVID-19 pandemic. The knowledge of the consumer attitudes that
influence the acceptance of these technologies has positive applications in academic and
commercial contexts.

This study proposed and applied a model in which relative advantage is a multidimen-
sional construct. It also investigated the determinants that directly influence consumers’
attitude towards and intention to adopt drone delivery services by using three types of
variables: (1) perceived attributes, (2) perceived risks, and (3) individual characteristics.
Compatibility and Relative Advantage of Environmental Friendliness (perceived attributes);
Performance Risk (a perceived risk); and Personal Innovativeness (an individual character-
istic) exhibited the strongest influence on Attitude Towards Drone Delivery in this model
applied in the context of the COVID-19 pandemic in Medellín.
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Abstract: In this paper, a new adaptive observer is proposed to estimate the actuator fault and distur-
bance of a quadrotor UAV system with actuator failure and disturbance. Based on this, a nonsingular
fast terminal sliding mode controller is designed. Firstly, according to the randomness of faults and
disturbances, the UAV system under faults and disturbances is regarded as one of the Markov jump
nonlinear systems (MJNSs). Secondly, an adaptive observer is designed to simultaneously observe
the system state, fault, and disturbance. In order to improve the precision, the fast adaptive fault
estimation (FAFE) algorithm is adopted in the adaptive observer. In addition, a quasi-one-sided
Lipschitz condition is used to deal with the nonlinear term, which relaxes the condition and contains
more nonlinear information. Finally, a nonsingular fast terminal sliding mode controller is designed
for fault-tolerant control of the system. The simulation results show that the faults and disturbances
can be observed successfully, and that the system is stochastic stable.

Keywords: fault-tolerant control (FTC); nonsingular fast terminal sliding mode control (NFTSMC);
UAV; FAFE; Markov jump nonlinear systems (MJNSs)

1. Introduction

Markov jump systems (MJSs) were firstly proposed by N. M. Krasovskii and E. A.
Lidskii in 1961 [1]. Over the years, relevant theories have been continuously improved.
Since they can better describe the system of stochastic mode jump, MJSs have been gradually
proven valid in the practical [2–4], and have had considerable research and application
in the fields of economics, physics, unmanned systems, machine learning, and so on.
On the other hand, unmanned aerial vehicles (UAVs) first appeared in the 1920s. Due
to their outstanding performance on the battlefield, Western countries ushered in an
upsurge of UAV research in the 1990s. In recent years, more and more cases of UAVs
being used in rescue and disaster relief have sprung up [5–8]. Considering the safety and
stability of UAVs, they can replace human beings by going to dangerous disaster relief sites
and accomplishing some dangerous tasks. Due to the particular working environment,
a quadrotor UAV system is easily affected by the wind environment, carried objects, human
intervention, and other factors in the process of performing missions. Therefore, the output
of the UAV system could be unstable. This kind of fault can be regarded as a Markov jump
process, and the UAV system can be described by the continuous-time MJSs.

At present, there have been many studies on the stability and control law of Markov
jump systems. Guan studies the stability of T-S fuzzy Markov jump systems based on
sampling control in [9]. Wang studies the stochastic stability of the MJSs, which are affected
by parameter uncertainty and actuator saturation [10]. Instead of asymptotic stability,
Chen et al. [11] paid more attention to the changes in the transient properties. They studied
the finite-time stability of a class of disturbed MJSs with random time delay. In terms of
the reinforcement learning of agents, Jiang creatively combines the reinforcement learning
method with Markov jump nonlinear systems (MJNSs). Based on this, he realizes optimal
tracking control for MJNSs in [12], which opened new data-based fields in the studies
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of MJSs. He et al. [13] utilized another reinforcement learning method with the optimal
control for Markov linear jump systems.

Furthermore, fault-tolerant control (FTC) has been developed and is involved in
industrial systems. Usually, FTC can be divided into passive and active FTC. Sliding
mode control (SMC), which was proposed for a class of control problems with unknown
disturbance, is one of the primary methods for FTC. Since it owns the advantages of quick
response, and easy calculation and design, SMC has been used to design controllers and
observers in fault diagnosis. For passive FTC, Liu et al. [14] study a novel SMC of a
classic uncertain stochastic system with time delay, and design the corresponding adaptive
sliding mode control law. Two experiments demonstrate the advantages of this method.
Besides, for active FTC, Le et al. [15] proposed an extended state observer to estimate the
fault of a robot manipulator. They designed a fault-tolerant conventional sliding mode
controller and proved its stability. Considering a system with uncertain disturbances and
actuator faults, Mao et al. [16], who combined the adaptive method with SMC, proposed a
novel fault-tolerant controller to deal with the unknown bound of the input uncertainty.
For nonlinear systems, Guo et al. [17] combined SMC with a radial basis function neural
network and proposed a novel FTC control scheme. Zhao et al. [18] designed a novel
nonsingular terminal sliding mode controller (NTSMC) for a quadrotor affected by variable
mass. Compared with other SMC or FTC methods, the new FTC performs better.

Meanwhile, observer based on fault diagnosis and fault-tolerant control is a significant
active FTC method. This method monitors the system’s original state and actual state
by establishing an observer system to observe the type and time of fault, and provide an
essential reference for subsequent maintenance. A disturbance observer [19] combined with
neural networks, FO calculus and SMC is utilized to approximate nonlinearities, actuator
faults, and so on. For a Surface Vehicle, Wang [20] investigates a finite-time observer to
design FTC to handle input saturations and uncertain faults. For multi-agent systems,
an adaptive observer is designed for an event-triggered FTC to compensate for the fault
in [21]. Song et al. [22] proposed an adaptive hybrid fuzzy output feedback controller based
on a fuzzy observer to estimate the system state. A novel composite adaptive disturbance
observer used to estimate the disturbances and faults is given to design the FTC in [8].

However, the fault-tolerant theorems are seldom used to control Markov jump systems.
Scholars have concentrated on this field and done some research. Considering possible
multiple faults in high-speed trains, a novel disturbance observer is given in [23] to promise
the system’s stability. Yang et al. [24] regarded a specific aero-engine system as one of the
MJSs. Then, they considered that under the conditions of unknown sensor fault, actuator
fault, and bounded external disturbance, a linear generalized reduced-order observer is
designed to realize fault estimation, and the accuracy and effectiveness of the algorithm
were validated. Adaptive and fuzzy theorems are utilized in the FTC of MJNSs in [25] to
handle additive and multiplicative faults. For networked control systems, Bahreini et al.
regarded them as classic MJSs. In consideration of the difficulty of estimating stochastic
fault, a novel auxiliary system approach is used to estimate the random fault of continuous-
time MJSs in [26]. In the case of partly unknown transition probabilities, they also proposed
a new FTC to deal with actuator faults in [27]. When actuator and sensor fault happened
simultaneously, Chen et al. [28] proposed two novel fault estimation observers to estimate
the faults of MJSs.

In the field of fault estimation and UAV control, there have also been development
and research in recent years. A novel robust nonlinear controller is proposed for a UAV
system in [29] to achieve Cartesian position trajectory tracking capability. Besides, a novel
fault estimation method based on an adaptive observer is designed for taking off mode.
Nian et al. [30] designed a robust adaptive fault estimation observer to obtain the actuator
fault of a UAV system. Then, they proposed a dynamic output feedback fault-tolerant
controller for the stability of the system. For a high-altitude long-endurance UAV, an es-
timation algorithm is proposed to estimate the three-axis accelerations in [31]. Through
flight tests, the algorithm can detect the fault of the accelerometer. Combining with a novel
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two-stage Kalman filter, a fault estimation algorithm is designed in [32]. Using a sensor
fault detection algorithm and robust Kalman filter, the state parameters of the UAV can
be accurately estimated. Goslinski et al. [33] also pay attention to estimation of the state
of UAVs, and they proposed a quadrotor model for fault-tolerant observation and a new
filtration method.

In order to facilitate analysis and calculation, the theoretical research is mostly based
on a linear system. In practical engineering applications, most systems will be affected
by nonlinear phenomena, which will destroy the stability of the system. This work will
concentrate on the observer-based FTC of MJNSs. We take the specificity of the work
environment and the impact of nonlinearity on UAV systems into consideration, and that
actuator faults and disturbances are stochastic and hard to predict in advance. Therefore,
an observer with adaptive technology is designed in this work. A nonsingular fast terminal
sliding mode controller is adopted to improve the rapidity and to avoid the singularity.
Moreover, the Lyapunov-Krasovskii functional (LKF) and linear matrix inequalities (LMI)
techniques are utilized to guarantee the stochastic stability of the fault-tolerant controller.
The main contributions of this paper are summarized as follows:

1. We consider the specificity of the work environment, and the UAV system is regarded
as a Markov jump nonlinear system that is proven to be stochastically stable. The non-
linear term is satisfied with the quasi-one-sided Lipschitz condition, which relaxes
the constraints and contains more nonlinear information.

2. The FAFE algorithm is utilized to design the adaptive observer to estimate the fault
and disturbance, where there is is no need to know the bound of the fault in advance.

3. Based on the estimation given by the observer, a nonsingular fast terminal sliding-
mode fault-tolerant controller is applied to control the MJNS, which is proven stable
by the LKF.

4. The simulation results on a quadrotor UAV system show the feasibility of the theory.

The rest of this paper is arranged as follows: Section 2 gives a dynamic model of MJNSs
and some assumptions, lemmas, and definitions, which will be utilized in the following
sections. In Section 3, an adaptive observer is given to estimate the faults and disturbances
of the UAV system, and a nonsingular fast terminal sliding-mode fault-tolerant controller
whose stability is ensured by the Lyapunov-Krasovskii functional is designed. In Section 4,
by the numerical simulation on the UAV system, the feasibility of the method is proven.
Eventually, brief conclusions are given in Section 5.

2. System Description and Preliminaries

2.1. Quadrotor Kinematic Model

To establish the kinematic model of a quadrotor like Figure 1, it is necessary to analyze
the motion and the force of the system in the same coordinate system.

Figure 1. Model of a quadrotor.
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As is shown in Figure 1, the origin of body coordinate system B is the center of mass
of the quadrotor. The x-axis is the roll axis of the body, the y-axis is the pitch axis of the
body, and the z-axis is the yaw axis of the body. We select the reference coordinate system
E, whose origin coincides with the origin of the body coordinate system.

There is a rotation matrix from coordinate system B to E, which can be given by the
following formula.

RE
B(φ, θ, ψ) = Rx(φ) · Ry(θ) · Rz(ψ) (1)

where,

Rx(φ) =

⎡⎣1 0 0
0 cosφ sinφ

0 −sinφ cosφ

⎤⎦, Ry(θ) =

⎡⎣cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

⎤⎦, Rz(ψ) =

⎡⎣ cosψ sinψ 0
−sinψ cosψ 0

0 0 1

⎤⎦ (2)

Therefore,

RE
B(φ, θ, ψ) =

⎡⎣cosθcosψ cosψsinθsinφ − sinψcosφ cosψsinθcosφ + sinψsinφ
cosθsinψ sinψsinθsinφ + cosψcosφ sinψsinθcosφ − cosψsinφ
−sinθ sinφcosθ cosφcosθ

⎤⎦ (3)

Regarding the quadrotor system as a rigid body and ignoring the change of the earth’s
shape and gravitational acceleration, the mass center motion equation can be written as:{

�F = md�V
dt

�M = d�H
dt

(4)

where V =
[
vx vy vz

]T is the velocity vector of the center of mass of the quadrotor, �F is
the sum of all external forces acting on the quadrotor, m is the equality of the quadrotor, �M
is the linear momentum, and �H is moment of momentum of the quadrotor relative to the
ground coordinate system.

The elevating force and the torque can be given as:⎧⎪⎪⎨⎪⎪⎩
F =

4
∑

i=1
kFω2

i

M =
4
∑

i=1
kMω2

i

(5)

where, kF is the lift coefficient, kM is the torque quotient, and ωi =
[
p q r

]T
(i = 1, 2, 3, 4)

is the angular rate of the ith motor. The conversion relationship between the angular
velocity of the Euler angle and the angular velocity of the body is as follows:⎡⎣p

q
r

⎤⎦ =

⎡⎣ φ̇ − ψ̇sinθ
θ̇cosφ + ψ̇sinφcosθ
−θ̇sinφ + ψ̇cosφcosθ

⎤⎦ (6)

If the quadrotor is symmetrical, the moment of the inertia matrix can be given as:

Iφθψ =

⎡⎣Ix 0 0
0 Iy 0
0 0 Iz

⎤⎦ (7)

The equations of motion for angular velocity are as follows:⎡⎣Mx
My
Mz

⎤⎦ =

⎡⎣ ṗIx − ṙ Ixz + qr
(

Iz − Iy
)
− pqIxz

q̇Iy + pr(Ix − Iz) +
(

p2 − r2)Ixz
ṙIz − ṗIxz + pq

(
Iy − Ix

)
+ qrIxz

⎤⎦ (8)
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Therefore, we can obtain the kinematic equations of the quadrotor.

⎡⎢⎢⎢⎢⎢⎢⎣

ẍ
ÿ
z̈
φ̈
θ̈
ψ̈

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Fx−Kx ẋ
m

Fy−Kyẏ
m

Fz−mg−Kzż
m

(Mx + (Ix − Iz)qr)/Ix(
My + (Iz − Ix)qr

)
/Iy(

Mz +
(

Ix − Iy
)
qr
)
/Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(9)

Design the input of the system,⎧⎪⎪⎨⎪⎪⎩
U1 = kFl

(
ω2

1 − ω2
2 − ω2

3 + ω2
4
)

U2 = kFl
(
ω2

1 + ω2
2 − ω2

3 + ω2
4
)

U3 = kM
(
ω2

1 − ω2
2 + ω2

3 − ω2
4
)

U4 = k f
(
ω2

1 + ω2
2 + ω2

3 + ω2
4
) (10)

where U1, U2, U3 represent the control input of roll, pitch, and yaw, respectively, and U4 is
the input control of height.

Considering the UAV flying at low speed, we can simplify the model:

⎡⎢⎢⎢⎢⎢⎢⎣

ẍ
ÿ
z̈
φ̈
θ̈
ψ̈

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(sinφsinψ+cosφsinθcosψ)U4
m

(−sinφcosψ+cosφsinθsinψ)U4
m

(sinθcosφ)U4
m

U1+θ̇ψ̇(Iy−Iz)
Ix

U2+φ̇ψ̇(Iz−Ix)
Iy

U3+φ̇θ̇(Ix−Iy)
Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

In this paper, we pay more attention to the attitude of the quadrotor, and complete
further simplification of the model [34]:

⎡⎢⎢⎢⎢⎢⎢⎣

φ̇
θ̇
ψ̇
φ̈
θ̈
ψ̈

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p
q
r

U1
Ix
U2
Iy
U3
Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

Selecting the equilibrium points as [34], the state space equation can be written into:{
ẋ = Ax + Bu

y = Cx
(13)

where A =

[
O3×3 I3×3
O3×3 O3×3

]
, B =

[
O3×3
I−1
φθψ

]
, C =

[
I3×3 O3×3

]
.

2.2. Markov Jump Nonlinear Systems Dynamic Model

In practice, under the interference of external factors, actuator failure, uncertain
disturbance, and other influencing factors easily appear. Therefore, this paper comprehen-
sively considers these factors and gives the following dynamic model of a Markov jump
nonlinear system.{

ẋ(t) = A(r(t))x(t) + B(r(t))(u(t) + f (x(t), t)) + Fa(r(t)) fa(t) + Bω(r(t))ω(t)
y(t) = C(r(t))x(t)

(14)
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where, x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control input vector, and y(t) ∈ R
p

is the measured output vector. The coefficient matrices A(r(t)) ∈ R
n×n, B(r(t)) ∈ R

n×m,
C(r(t)) ∈ R

p×n are known constant matrices. f (x(t), t) represents the nonlinear function,
fa(t) represents actuator failure, and ω(t) is the disturbance. In addition, Fa(r(t)) and
Bω(r(t)) are the constant matrices with appropriate dimensions and column full rank.

Let {r(t), t ≥ 0} be a Markov process with right continuous trajectories on the proba-
bility space (Ω, F, P). r(t) takes values in the finite set N = {1, 2, · · · , n}.

The state transition matrix Π =
(
πij
)

is set as:

Pr{r(t + δ) = j|r(t) = i} =

{
πijδ + o(δ), i �= j
1 + πiiδ + o(δ), i = j

(15)

where, δ > 0, lim
δ→0

o(δ)
δ = 0. When i �= j, πij > 0, which is the transition Rates (TRs) from

state i at time t to state j at time t + δ and satisfies that πii = −
n
∑

j=1,i �=j
πij < 0.

Therefore, the transition rate matrix can be expressed as:

Π =

⎛⎜⎝π11 · · · π1n
...

. . .
...

πn1 · · · πnn

⎞⎟⎠ (16)

When the system is in the state i, that is, when r(t) = i, i ∈ N , A(r(t)), B(r(t)), C(r(t))
can be simplified to the real constant matrix Ai, Bi, Ci, and the nonlinear function f (x(t), t)
is written as fi(x(t), t).

System (14) can be rewritten as follows:{
ẋ(t) = Aix(t) + Bi(u(t) + fi(x(t), t)) + Fai fai(t) + Bωiω(t)
y(t) = Cix(t)

(17)

Remark 1. In this paper, N is the set of positive integers, and R is the set of real numbers. Rn

denotes the n-dimensional vector space and R
m×n denotes the space of all m × n-dimensional

matrices. AT represents the transpose of matrix A. ‖·‖ indicates the Euclidean norm of the vector.
The inner product of vectors x, y ∈ R

m is denoted by 〈x, y〉, and 〈x, y〉 = xTy.

Assumption 1. The nonlinear term fi(x(t), t) is continuous with x(t) and satisfies the following
inequality on the domain of definition:

〈 fi(x(t), t)− fi(x̂(t), t), x(t)− x̂(t)〉 ≤ (x − x̂)T M(x − x̂), x(t) ∈ R
n (18)

where, M is a real symmetric matrix and the one-sided Lipschitz constant matrix, and x̂ is the
estimation of x.

Assumption 2 ([35]). The nonlinear term fi(x(t), t) satisfies the quadratic inner-boundedness
condition. If ∃α, βεR is in a continuous closed region containing the origin, such that ∀x, x̂ ∈ R

n,

‖ fi(x(t), t)− fi(x̂(t), t)‖2 ≤ α‖x(t)− x̂(t)‖2 + β〈x(t)− x̂(t), fi(x(t), t)− fi(x̂(t), t)〉 (19)

Remark 2. The two assumptions are used to describe the quasi-one-sided Lipschitz condition.
In the system description, the nonlinear terms are assumed to satisfy this condition. Compared
with traditional Lipschitz, this quasi-one-sided Lipschitz condition relaxes restrictions, which can
facilitate the calculation of LMI.
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Definition 1 ([36]). For any e0 ∈ R
n, r0 ∈ N ; when u(t) = 0, if the MJSs satisfy the following

inequality, the MJSs are stochastically stable.

E
{∫ t

0
‖e(t)‖2dt

∣∣∣e0, r0

}
< ∞ (20)

Definition 2 ([37]). For the stochastic Lyapunov-Krasovskii function V(x(t), i), the weak in-
finitesimal operator L meets with

LV(x(t), i) = lim
Δ→0+

1
Δ
[E{V(x(t + Δ), rt+Δ)|x(t), rt = i} − V(x(t), i)]

= Vt(x(t), i) + Vx(x(t), i)ẋ(t) +
n

∑
j=1

πijV(x(t), j)
(21)

Lemma 1 ([38]). For given real matrices A, B, C, D, E , F , and Ξ, there exists a symmetrical
matrix P > 0, such that ⎡⎣PAT +AP + Ξ B PCT

∗ D ET

∗ ∗ F

⎤⎦ < 0 (22)

Lemma 2 ([39]). According to the classical Paul and Peter inequality, for a scalar ρ > 0, real
vectors x and y, and a symmetric positive definite matrix R, only for real Euclidean space E, endowed
with the scalar product 〈·|·〉, the following inequality holds:

2xTy ≤ 1
ρ

xT Rx + ρyT R−1y (23)

Lemma 3 ([40]). Consider a nonsingular fast terminal sliding mode surface:

s = z1 + κ−1
i1 zγ

1 + κ−1
i2 z

p
q
2 (24)

If s(0) �= 0, the convergence time to s = 0 can be given as:

T =
∫ |z1(0)|

0

kq/p
2

(z1(t) + k1z1)
q/p dz1

=

p
q |z1(0)|1−q/p

k1

(
p
q − 1

) F

(
q
p

,
p
q − 1

(λ − 1) p
q

; 1 +
p
q − 1

(λ − 1) p
q

;−k1|z1(0)|λ−1

) (25)

3. Main Results

3.1. Observer Design and Fault Estimation

Considering the fault and disturbance, this paper sets that Fig(t) = Fai fa(t) + Bωiω(t).
Then, the following adaptive observer is designed for the dynamic system model (17):{ ˙̂x(t) = Aix̂(t) + Bi(u(t) + f (x̂(t), t)) + Fi ĝ(t) + Li(y(t)− ŷ(t))

ŷ(t) = Cix̂(t)
(26)

where, Li is the gain matrix of the observer, x̂(t) is the estimation of the true state x(t), ŷ(t)
is the estimation of the true output y(t), and ĝ(t) is the estimation of g(t).

Define the estimation error as: e(t) = x(t)− x̂(t), ey(t) = y(t)− ŷ(t), ea(t) = g(t)−
ĝ(t). Then, the error equation is given by ė(t) = ẋ(t)− ˙̂x(t).

Considering Equations (17) and (26), the expression of the error dynamic system is:

ė(t) = (Ai − LiCi)e(t) + Bie f (x(t), x̂(t)) + Fieg(t) (27)

444



Drones 2022, 6, 233

A fast adaptive fault estimation (FAFE) algorithm can be adopted in the adaptive
observers. The estimation of the derivatives of faults can be written as:

˙̂g = −ΛTi
(
ey + ζ ėy

)
(28)

where ζ > 0 is a scalar, Λ ∈ R
n×p is a symmetric positive definite matrix, Ti ∈ R

r×p, and
their specific definitions will be given in Theorem 1.

From Equation (28), the uniformly ultimate boundedness of ex(t) and ey(t) can
be achieved.

3.2. Observer-Based Nonsingular Fast Terminal Sliding Mode Fault-Tolerant Control Design

This section designs a nonsingular fast terminal sliding mode fault-tolerant controller
(NFTSM-FTC) for the system (14). Considering Equation (17), the controller can be de-
signed as: {

ẋ1 = x2
ẋ2 = Aix2 + Bi(u(t) + fi(x2(t), t)) + Fi ĝ(t) + Fieg(t)

(29)

where Fi ĝ(t) represents the estimation of fault and disturbance that is known, eg(t) includes
the uncertain part of fault and disturbance, and Fieg(t) = Faieai(t) + Bωieω(t).

The tracking error z1 and the second error z2 are defined as follows:

z1 = x1 − xd

z2 = x2 − �
(30)

where � = −χz1 + ẋd is a virtual control.
Then, by calculating the differential of the equation, we can get:

ż1 = ẋ1 − ẋd

ż2 = ẋ2 − �̇
(31)

Considering the system (29), we design the following sliding surface for each Markov
mode i ∈ N :

s = z1 + κ−1
i1 zγ

1 + κ−1
i2 z

p
q
2 (32)

where s = (s1, · · · , sn)
T ∈ R

n is the sliding variable, κ−1
i1 = diag

{
κ−1

11 , . . . , κ−1
1n

}
and

κ−1
2 = diag

{
κ−1

21 , . . . , κ−1
2n

}
are diagonal positive definite matrices, p, q > 0, and they are

odd numbers satisfying the relation 1 < p/q < 2, γ > p/q.
Calculating ṡ, we can get:

ṡ = ż1 + κ−1
i1 zγ−1

1 · ż1 + κ−1
i2

p
q

z
p
q −1

2 · ż2 (33)

where zγ−1
1 = diag

{
|z11|γ−1sgn(z11), . . . , |zn1|γ−1sgn(zn1)

}
,

z
p
q −1

2 = diag
{
|z21|

p
q −1sgn(z21), . . . , |z2n|

p
q −1sgn(z2n)

}
.

Design the following NFTSM-FTC:

u(t) = u1 + u2 + u3 (34)

where
u1 = −B+

i (Aix2 + Fi ĝ(t)− κ̇)− fi(x2(t), t) (35)

u2 = − q
p

B+
i κi2z

1− p
q

2 ·
(

ż1 + κ−1
i1 zγ−1

1 · ż1

)
(36)
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u3 = − q
p

B+
i κi2 · z

1− p
q

2 ε|s1|sgn(s) (37)

where B+
i satisfying the relation BiB+

i = I, is the generalized inverse matrix of Bi, ε ∈ R+.

Proof. Choose the Lyapunov function as:

V1(x(t), i) =
1
2

sTs (38)

According to the Definition 2 and paper [14], we have

LV1(x(t), i) =
1
2

lim
Δ→0

1
Δ

{
N
∑

j=1,i �=j
Pr{r(t + δ) = j | r(t) = i}sT(t + Δ)s(t + Δ)

+Pr{r(t + h) = i | r(t) = i}sT(t + Δ)s(t + Δ)− sT(t)s(t)
}

=
1
2

lim
Δ→0

1
Δ

{
N
∑

j=1,j �=i

�ij(FXi(δ + Δ)− FXi(δ))

1 − FXi(h)
sT(t + Δ)s(t + Δ)

+
1 − FXi(δ + Δ)

1 − FXi(δ)
sT(t + Δ)s(t + Δ)− sT(t)s(t)

}
= sT(t)ṡ(t) +

1
2

N
∑
j=1

πij

= sT(t)ṡ(t)

(39)

where δ is the time from mode i to mode j; � represents the probability from mode i to
mode j. FXi(x) denotes the cumulative distribution function (CDF) of x on mode i.

Therefore,

LV1(x(t), i) = sTṡ

= sT
(

ż1 + κ−1
i1 zγ−1

1 · ż1 + κ−1
i2

p
q

z
p
q −1

2 · ż2

)
= sT

(
ż1 + κ−1

i1 zγ−1
1 · ż1

)
+ sTκ−1

i2
p
q

z
p
q −1

2 ·
(

Aix2 + Bi(u(t) + fi(x2(t), t)) + Fi ĝ(t) + Fieg(t)− �̇
)

(40)

Substituting (34) into (40), it becomes:

LV1(x(t), i) ≤ sTκ−1
i2

p
q

z
p
q −1

2 ·
(

Fieg(t)
)
− sTε|s|sgn(s)

≤
n

∑
j=1

{(
κ−1

i2
p
q

z
p
q −1

2

)
j
·
∣∣sj
∣∣ · ∥∥Fieg(t)

∥∥
∞

}
− sTε|s|sgn(s)

≤ −ε‖s‖2

(41)

Since ε > 0, when s �= 0, we can get LV1(x(t), i) < 0. According to Lemma 3, the time
in which the system state reaches the equilibrium point is finite, and the convergence time
T can be given. This is if and only if s = 0, LV1(x(t), i) = 0.
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Theorem 1. The error dynamic system (27) and the control system (29) are stochastically stable,
if there exist symmetrical matrices Qi > 0, Q > 0, Oi > 0, O > 0, Λ > 0, Mi > 0, which is the
Lipschitz constant matrix, and Oi ∈ R

r×r, Ti ∈ R
r×p, such that the following conditions hold

n

∑
j=1

πij(−Oj) ≤ −O,
n

∑
j=1

πijQj ≤ Q

FT
i Qi = TiCi

Φ =

⎡⎢⎢⎣
Φ11 Φ12 Φ13 0
∗ Φ22 Φ23 0
∗ ∗ Φ33 0
∗ ∗ ∗ Φ44

⎤⎥⎥⎦ < 0

(42)

where
Φ11 = Qi(Ai − LiCi) + (Ai − LiCi)

TQi +
n
∑

j=1
πijQj + ki Mi + αimi

Φ12 = − 1
ζ

(
AT

i QiFi − (QiLiCi)
T Fi

)
Φ13 = QiBi +

1
2 (βimi − ki)I

Φ22 = − 2
ζ FT

i QiFi +
1

ζρ Oi +
1
ζ

n
∑

j=1
πijΛ−1

Φ23 = − 1
ζ FT

i QiBi
Φ33 = −mi I
Φ44 = − ρ

ζ (O + Λ−1OiΛ−1)

Proof. Choose the Lyapunov function as:

V2(x(t), i) = e(t)TQie(t) +
1
ζ

eT
g (t)Λ

−1eg −
ρ

ζ
gT(t)Λ−1OiΛ−1g(t) (43)

Like the proof of the Lyapunov function (39), we now calculate LV2(x(t), i),

LV2(x(t), i) = e(t)T
(

Qi(Ai − LiCi) + (Ai − LiCi)
TQi

)
e(t)

+ 2e(t)TQiBie f (x(t), x̂(t)) + 2e(t)T FT
i Qieg(t) +

2
ζ

eT
g (t)Λ

−1 ėg(t)

− ρ

ζ
ġT(t)Λ−1OiΛ−1g(t)− ρ

ζ
gT(t)Λ−1OiΛ−1 ġ(t) +

n

∑
j=1

πijV2(x(t), i)

= e(t)T
(

Qi(Ai − LiCi) + (Ai − LiCi)
TQi

)
e(t) + 2e(t)TQiBie f (x(t), x̂(t))

− 2
ζ

eT
g (t)TiCi(A − LC)ex(t)−

2
ζ

eT
g (t)FT

i Qi

(
Fieg(t) + Bie f (x(t), x̂(t))

)
− 2

ζ
eT

g (t)Λ
−1 ġ(t)− ρ

ζ

(
ġT(t) + gT(t)

)
Λ−1OiΛ−1(ġ(t) + g(t)) +

n

∑
j=1

πijV2(x(t), i)

(44)

According to Lemma 2,

− 2
ζ

eT
g (t)Λ

−1 ġ(t) ≤ 1
ζρ

eT
g (t)Oieg(t) +

ρ

ζ
ġT(t)Λ−1OiΛ−1 ġ(t) (45)
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Substitute (45) into (44),

LV2(x(t), i) ≤ e(t)T
(

Qi(Ai − LiCi) + (Ai − LiCi)
TQi

)
e(t) + 2e(t)TQiBi e f (x(t), x̂(t))

− 2
ζ

eT
g (t)TiCi(A − LC)ex(t)−

2
ζ

eT
g (t)FT

i Qi

(
Fieg(t) + Bie f (x(t), x̂(t))

)
+

1
ζρ

eT
g (t)Oieg(t) +

ρ

ζ
ġT(t)Λ−1OiΛ−1 ġ(t)

− ρ

ζ

(
ġT(t) + gT(t)

)
Λ−1OiΛ−1(ġ(t) + g(t)) +

n

∑
j=1

πijV2(x(t), i)

(46)

Considering the assumptions (1) and (2), the following equations can be given:{
kie(t)T Mie(t)− kie f i(x(t), x̂(t))Te(t) ≥ 0
αimie(t)Te(t)− mie f i(x(t), x̂(t))e f i(x(t), x̂(t))T + βimie(t)Te f i(x(t), x̂(t)) ≥ 0

(47)

where ki, mi ∈ R+.
Add Formula (47) to the right of Formula (46), and then we can get:

LV2(x(t), i) ≤ e(t)T
(

Qi(Ai − LiCi) + (Ai − LiCi)
TQi

)
e(t) + 2e(t)TQiBi e f (x(t), x̂(t))

− 2
ζ

eT
g (t)TiCi(A − LC)ex(t)−

2
ζ

eT
g (t)FT

i Qi

(
Fieg(t) + Bie f (x(t), x̂(t))

)
+

1
ζρ

eT
g (t)Oieg(t) +

ρ

ζ
ġT(t)Λ−1OiΛ−1 ġ(t)

− ρ

ζ

(
ġT(t) + gT(t)

)
Λ−1OiΛ−1(ġ(t) + g(t)) + kie(t)T Mie(t)

− kie f i(x(t), x̂(t))Te(t) + αimie(t)Te(t)− mie f i(x(t), x̂(t))e f i(x(t), x̂(t))T

+ βimie(t)Te f i(x(t), x̂(t))

+ e(t)T
n

∑
j=1

πijQje(t) +
1
ζ

eT
g (t)

n

∑
j=1

πijΛ−1eg(t)−
ρ

ζ
gT(t)Og(t)

(48)

The inequation (48) can be written as:

LV2(x(t), i) <

⎡⎢⎢⎣
e(t)
eg(t)

e f i(x(t), x̂(t))
g(t)

⎤⎥⎥⎦
T⎡⎢⎢⎣

Ai Bi Ci 0
∗ Di Ei 0
∗ ∗ Fi 0
∗ ∗ ∗ Gi

⎤⎥⎥⎦
⎡⎢⎢⎣

e(t)
eg(t)

e f i(x(t), x̂(t))
g(t)

⎤⎥⎥⎦ (49)

where
Ai = Qi(Ai − LiCi) + (Ai − LiCi)

TQi +
n
∑

j=1
πijQj + ki Mi + αimi

Bi = − 1
ζ

(
AT

i QiFi − (QiLiCi)
T Fi

)
Ci = QiBi +

1
2 (βimi − ki)I

Di = − 2
ζ FT

i QiFi +
1

ζρ Oi +
1
ζ

n
∑

j=1
πijΛ−1

Ei = − 1
ζ FT

i QiBi
Fi = −mi I
Gi = − ρ

ζ (O + Λ−1OiΛ−1)
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Based on Lemma 1, we obtain that

LV2(x(t), i) ≤ ηT(t)Φiη(t)

= −ηT(t)(−Φi)η(t)

≤ −μ‖η(t)‖2

(50)

where ηT(t) =
[
eT(t) eT

g (t) eT
f (x(t), x̂(t)) g(t)

]
, Φi =

⎡⎢⎢⎣
Ai Bi Ci 0
∗ Di Ei 0
∗ ∗ Fi 0
∗ ∗ ∗ Gi

⎤⎥⎥⎦, and

μ = min
i∈N

{σ(−Φi)} > 0.

According to the Dynkin theorem,

E{V(x(t), i)} − E{V0} ≤ − μE
{∫ t

0
(LV(x(t), i))ds

}
E
{∫ t

0
(LV(x(t), i))ds

}
≤ − 1

μ
[E{V(x(t), i)} − E{V0}] ≤

1
μ

E{V0}

E
{∫ t

0
‖e(t)‖2dt

∣∣∣e0, r0

}
< ∞

(51)

Based on Definition 1, the system is stochastically stable.

4. Simulation Study

In this paper, the quadrotor of Canada company is used as the simulation object of the
fault-tolerant algorithm [41]. The quadrotor system used in the experiment is presented in
Figures 2–4. This quadrotor system can upload control programs and faults to the onboard
processor via Wi-Fi, which is helpful for fault injection and experiments. This experimental
platform includes a Qdrone quadrotor, an OptiTrack motion capture system, and a ground
station with a PC and a router. Through the data from 12 OptiTrack Flex-3 motion capture
cameras, the OptiTrack Tools software on the PC can give the real-time flight status of
the Qdrone quadrotor, so as to realize online control of the quadrotor. In addition, faults,
nonlinear factors, and disturbances can be designed on the PC for experiments.

Figure 2. Qdrone.
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Figure 3. OptiTrack Flex-3 motion capture cameras.

Figure 4. The ground station.

According to [41], we choose the appropriate parameters of the quadrotor UAV system
in Table 1.

Table 1. Parameters of the Qdrone.

Parameter Numerical Value Unit

m 1.121 kg
g 9.80 m/s2

Ix 0.010 kg · m2

Iy 0.008 kg · m2

Iz 0.015 kg · m2

We choose N = 4, and the transition rates matrix is chosen as:

Π =

⎡⎢⎢⎣
−0.36 0.16 0.16 0.04
0.64 −0.84 0.16 0.04
0.64 0.16 −0.84 0.04
0.64 0.16 0.16 −0.96

⎤⎥⎥⎦ (52)

The trajectories of the system mode are presented in Figure 5.
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Figure 5. System mode.

When some actuators considering the rolling and pitching directions fail, the matrix B
will change. Four different modes of matrix B are given as follows:

B1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

100 0 0
0 125 0
0 0 67

⎤⎥⎥⎥⎥⎥⎥⎦, B2 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

75 0 0
0 125 0
0 0 67

⎤⎥⎥⎥⎥⎥⎥⎦, B3 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

100 0 0
0 93.75 0
0 0 67

⎤⎥⎥⎥⎥⎥⎥⎦, B4 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

75 0 0
0 93.75 0
0 0 67

⎤⎥⎥⎥⎥⎥⎥⎦ (53)

where B1 represents the healthy system and others represent actuator faults of different
direction. B2 represents some actuator failure in the roll direction, B3 represents some
actuator failure in the pitch direction, and B4 represents actuator failure in both the roll
direction and pitch direction.

Taking the parameters p = 7, q = 5, γ = 2, ε = 0.1, ζ = 1, m = 0.5, k = 0.5.
The initial attitude of the UAV system is shown as

[
φ θ ψ

]T
=
[
0.2 −0.2 0.5

]T ,

and the initial angle rate is shown as
[
φ̇ θ̇ ψ̇

]T
=
[
0 0 0

]T . Besides, the nonlinear
term is f (x(t), t) = 5sin(πt). Moreover, the actuator faults and disturbances are given as:

ω(t) =
{

0, 0 ≤ t < 2
e−0.8t, 2 ≤ t ≤ 10

(54)

fa(t) =

⎧⎨⎩
0, 0 ≤ t < 0.5

te−0.8t, 0.5 ≤ t < 2
0.8sin(πt), 2 ≤ t ≤ 10

(55)

By solving the linear matrix inequalities in Theorem 1, the parameter matrices can be
given as follows:

Q1 =

⎡⎢⎢⎢⎢⎢⎢⎣

76.4090 −3.0527 −7.5335 −0.5193 −0.0131 0.0455
−3.0527 64.9062 −6.5765 0.0013 −0.4108 0.0449
−7.5335 −6.5765 97.3179 0.0091 −0.0083 −0.7604
−0.5193 0.0013 0.0091 0.0072 0.0021 0.0021
−0.0131 −0.4108 −0.0083 0.0021 0.0049 0.0022
0.0455 0.0449 −0.7604 0.0021 0.0022 0.0132

⎤⎥⎥⎥⎥⎥⎥⎦,
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Q2 =

⎡⎢⎢⎢⎢⎢⎢⎣

91.1962 −4.9524 −7.3058 −0.6946 −0.0137 0.0401
−4.9524 64.8688 −6.0623 0.0279 −0.4145 0.0431
−7.3058 −6.0623 97.5787 0.0285 −0.0116 −0.7758
−0.6946 0.0279 0.0285 0.0115 0.0022 0.0021
−0.0137 −0.4145 −0.0116 0.0022 0.0049 0.0022
0.0401 0.0431 −0.7758 0.0021 0.0022 0.0136

⎤⎥⎥⎥⎥⎥⎥⎦,

Q3 =

⎡⎢⎢⎢⎢⎢⎢⎣

59.0632 −5.0682 −6.3968 −0.3917 0.0049 0.0337
−5.0682 60.8165 −6.5345 0.0001 −0.4149 0.0331
−6.3968 −6.5345 69.7799 −0.0019 0.0018 −0.5558
−0.3917 0.0001 −0.0019 0.0067 0.0019 0.0021
0.0049 −0.4149 0.0018 0.0019 0.0073 0.0021
0.0337 0.0331 −0.5558 0.0021 0.0021 0.0111

⎤⎥⎥⎥⎥⎥⎥⎦,

Q4 =

⎡⎢⎢⎢⎢⎢⎢⎣

49.1919 −3.3174 −4.2157 −0.4438 0.0021 0.0252
−3.3174 42.6652 −4.0112 0.0224 −0.3625 0.0355
−4.2157 −4.0112 52.8587 0.0099 0.0035 −0.4967
−0.4438 0.0224 0.0099 0.0091 0.0024 0.0025
0.0021 −0.3625 0.0035 0.0024 0.0064 0.0023
0.0252 0.0355 −0.4967 0.0025 0.0023 0.0108

⎤⎥⎥⎥⎥⎥⎥⎦,

O1 =

⎡⎣−12574 770 814
770 −12598 1059
814 1059 −12769

⎤⎦,

O2 =

⎡⎣−12490 827 415
827 −12595 935
415 935 −12570

⎤⎦,

O3 =

⎡⎣−8890.5 163.7 316.1
163.7 −8865.5 320.6
316.1 320.6 −8664.8

⎤⎦,

O4 =

⎡⎣−5896.2 193.5 128.1
193.5 −5985.4 232.8
128.1 232.8 −5904.0

⎤⎦,

L1 =

⎡⎢⎢⎢⎢⎢⎢⎣

370160 −18210 −37230
−5120 309560 −24930
−62930 −60550 469170
−2510 40 50
−110 −1940 −80
430 440 −3670

⎤⎥⎥⎥⎥⎥⎥⎦, L2 =

⎡⎢⎢⎢⎢⎢⎢⎣

437770 −41530 −42600
−14220 310500 −22000
−49140 −53640 469420
−3330 280 190
−120 −1960 −100
300 410 −3730

⎤⎥⎥⎥⎥⎥⎥⎦,

L3 =

⎡⎢⎢⎢⎢⎢⎢⎣

186440 −18190 −23090
−20060 190580 −25500
−34660 −35090 208300
−1220 30 30

50 −1290 50
220 220 −1660

⎤⎥⎥⎥⎥⎥⎥⎦, L4 =

⎡⎢⎢⎢⎢⎢⎢⎣

105470 −11190 −10920
−9370 93370 −11390
−12080 −14630 113900
−950 90 40

30 −790 30
80 130 −1070

⎤⎥⎥⎥⎥⎥⎥⎦.

Compared the adaptive algorithm in [42], the FAFE algorithm used in the adaptive
observer has obvious advantages, which can be seen in Figure 6.

From Figure 6, it can be obviously seen that both observers have an accurate estimation
of faults and disturbances. The observer method proposed in this paper has a shorter
response time and smaller steady-state error than the method proposed in [42].
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Figure 6. Estimated fault and disturbance from observer.

From Figures 7 and 8, the method proposed by this paper can do well with actuator
faults and disturbances, and finally converge to zero.
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Figure 7. State response of attitude angle.

453



Drones 2022, 6, 233

0 1 2 3 4 5 6 7 8 9 10

time(s)

0

0.2

0.4

0.6

S
ta

te
 r

es
po

ns
e 

of
 a

ng
le

 v
el

oc
ity

roll rate
pitch rate
yaw rate

Figure 8. State response of angular velocity.

Figures 9 and 10 show the state response of attitude angle and angle velocity, based on [43].
The state responses in Figures 7 and 8 have faster responses than those in Figures 9 and 10.
Comparing the results of the two methods, the nonsingular fast terminal sliding mode controller
proposed in this paper has better control performance.
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Figure 9. State response of the attitude angle by the method in [43].
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Figure 10. State response of the angular velocity by the method in [43].

5. Conclusions

In this paper, an adaptive-based nonsingular fast terminal sliding mode controller of
Markov jump nonlinear systems is discussed. An adaptive observer with the FAFE method
is proposed to estimate the actuator faults and external disturbances. Based on this observer,
a nonsingular fast terminal sliding mode controller is provided for fault-tolerant control.
By utilizing the Lyapunov-Krasovskii functional (LKF) and linear matrix inequalities (LMI)
techniques, the original system is ensured to be stochastic stable.

Through the method proposed in this paper, the MJNSs can demonstrate resistance to
actuator faults and disturbances. In practice, UAVs may encounter more complex situations,
including human factors and environmental factors. Future research should consider more
factors and focus on eliminating chattering.
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Abstract: A trans-medium aircraft is a new concept aircraft that can both dive in the water and fly
in the air. In this paper, a new type of water–air multi-medium span vehicle is designed based on
the water entry and exit structure model of a multi-rotor UAV. Based on the designed structural
model of the cross-media aircraft, the OpenFOAM open source numerical platform is used to analyze
the single-medium aerodynamic characteristics and the multi-medium spanning flow analysis. The
rotating flow characteristics of single-medium air rotor and underwater propeller are calculated by
sliding mesh. In order to prevent the numerical divergence caused by the deformation of the grid
movement, the overset grid method and the multiphase flow technology are used for the numerical
simulation of the water entry and exit of the cross-medium aircraft. Through the above analysis, the
flow field characteristics of the trans-medium vehicle in different media are verified, and the changes
in the body load and attitude at different water entry angles are also obtained during the process of
medium crossing.

Keywords: trans-media aircraft; multi-rotor drone; multimedia spanning; aerodynamics;
multiphase flow

1. Introduction

With the continuous exploration of natural space by human beings, both ship and
aviation technology have made great progress in their respective fields. Among them,
aircraft have been widely used due to their advantages of high speed and good maneuver-
ability, but they also have shortcomings such as short endurance and poor concealment,
which can be compensated by submersibles [1]. Trans-medium aircraft is a new conceptual
aircraft that can both sneak in water and fly in the air. Due to its concealment of flight and
diversity of functions, it can realize both aerial reconnaissance and underwater inspection,
which expands the spatial scope of navigation [2]. Therefore, it combines the advantages of
aerial drones and underwater submersibles, which have been favored by researchers from
various countries since the early 20th century [3]. However, due to the large difference in
the characteristics of the water–air medium, it is not a simple matter to cross the water–air
medium, which involves the complex model entering and exiting the water process [4].
The process of aircraft entering and leaving water has a strong slamming effect. Slamming
generally refers to the violent impact phenomenon between the object and the medium
during the process of entering and leaving the water at a certain speed, which has a strong
nonlinear and complex flow process. Violent slamming may cause damage to the airframe
structure; thus, accurately predicting the change of slamming pressure with time becomes
extremely critical [5].

The process of entering and leaving the water is an important subject in marine
engineering and naval engineering. Considerable work has been conducted by predecessors
on the problem of objects entering and leaving the water. Von Karman [6] is a pioneer in
the research on the slamming theory of structures entering water. He uses the momentum
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theorem to give an estimation formula for the slamming load of a two-dimensional wedge
and proposes the additional mass method to calculate the slamming load of seaplanes.
Wagner [7] introduced a fairly flat theoretical assumption based on Von Karman and
obtained the Wagner model with better calculation results. Based on the velocity potential
theory, Dobrovol [8] assumes that the wedge-shaped body enters the water at a constant
speed, while ignoring the influence of gravity, and thus obtains the analytical solution
of the two-dimensional wedge-shaped body entering the water at a constant speed [9].
However, although the above methods have obtained relatively accurate solutions, they all
ignore the physical properties of the fluid itself; thus, there is no real numerical prediction
for the study of water entry and exit. Therefore, Mei et al. [10] proposed the boundary
element method (BEM) based on Dobrovol. For wedges and circular cylinders, they
derive closed-form solutions using conformal mapping for the boundary value problem at
any instant.

In recent years, high-performance computer technology has become more and more
mature, and the parallelization of computing efficiency [11] has increased so that relatively
complex coupled dynamics problems can be handled. Zhao [12] et al. proposed an
analytical CFD-DEM-IBM algorithm to capture free surfaces by fusing traditional CFD,
DEM, IBM algorithms. The motion of solids and their interactions are modeled by the
discrete element method (DEM) [13], and the immersion boundary method (IBM) [14] is
used to track solid boundaries. The method has remarkable accuracy and mass conservation
characteristics and achieves the purpose of fine numerical description of the water entry
process. Guo et al. [15] performed numerical simulations of the planned forced landing of a
transport aircraft on calm water. They solved the Reynolds-averaged Navier–Stokes (RANS)
equations for unsteady compressible flow and used the realizable j-e equations to model
turbulent flow, showing that the optimal initial angle of forced landing was between 10◦

and 12◦. Streckwall, H et al. [16] numerically simulated the physical process of an aircraft
emergency landing on water based on the commercial RANS solver “Comet”, and they
performed aerodynamic simulations of the forced landing of the fuselage for the general
shape of the A, D, and J fuselage. To simplify the method, they derived hydrodynamic
forces in all details through RANS simulations while approximating aerodynamic forces
and moments. Simultaneously, simulations were carried out at TUHH using the program
“Ditch”, which is based on an extension of the “momentum method” developed by von
Karman and Wagner.

Although the solution of the water entry problem has a propelling effect on the aerody-
namic prediction of the trans-medium vehicle, there are still problems in the aerodynamic
simulation of the whole process of the movement of the trans-medium vehicle and the
prediction of the water entry of the complex shape vehicle. In this paper, the Navier–Stokes
equation is solved, and the secondary development is carried out based on the OpenFOAM
open source platform. The VOF (volume of fluid) method is used to numerically capture the
water–air interface [17], and the overset grid technology is used to establish the interaction
between the fluid and the body structure of the trans-medium aircraft. By simulating
the process of entering and exiting water of a trans-medium aircraft, the accuracy of the
numerical model is verified, and the aerodynamic characteristics of single medium and
multi-medium and the evolution law of fluid cavitation when crossing multiple media
are analyzed.

2. Modeling an Aircraft across Media

To simplify the complexity of the model, the following physical assumptions are made
for the trans-medium aircraft: (1) the mass and moment of inertia of the trans-medium
aircraft do not change during the multi-media crossing process; (2) the geometric center
of the trans-medium aircraft and its center of gravity coincide (regular and symmetrical
geometry); (3) after the trans-medium aircraft is subjected to force in motion, the shape and
size remain unchanged, and the relative positions of internal points remain unchanged
(rigid body) [18].
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The purpose of establishing the mathematical model of the trans-medium aircraft is
to analyze the changes in the position and attitude of the trans-medium aircraft when it
is subjected to external forces and moments [19]. Among them, the input of the dynamic
model is the pulling force and torque provided by the propeller, and the output is the speed
and angular velocity of the aircraft; the input of the kinematic model is the output of the
dynamic model, that is, the speed and angular velocity of the aircraft, and the output is the
position and attitude of the aircraft [20]. The relationship is shown in Figure 1.

Figure 1. Flight control rigid body model for trans-media aircraft.

Before building a model, it is necessary to define the coordinate system representing the
vector. This article will use two coordinate systems, namely the inertial coordinate system
(static coordinate system), the Earth coordinate system, and the non-inertial coordinate
system (moving coordinate system), the body coordinate system.

The Earth coordinate system takes the center of the Earth as the coordinate origin,
which is fixedly connected to the Earth, and the body coordinate system takes the position
of the center of gravity of the aircraft as the coordinate origin, which is fixedly connected
to the quadrotor aircraft. The obxb axis direction is the forward direction of the aircraft, as
shown in Figure 2.

Figure 2. Schematic diagram of the coordinate system of the trans-media aircraft.

In this paper, according to the different medium environments in which the trans-
media aircraft is located, its movement process is divided into the following three parts:
(1) the air navigation segment (close underwater propellers, open-air rotors); (2) the multi-
media spanning segment ((a) turn off the underwater propeller, and close the air rotor (free
entry); (b) the underwater propeller pushes up and close to the water surface, when the
air rotor is completely out of the water, turn off the underwater propeller and turn on the
air rotor (out of water)); (3) the underwater submerged segment (close the air rotor, open
the underwater propeller). Therefore, in the process of dynamic modeling, it can also be
divided into three stages according to the above multi-stage motion process.
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2.1. Modeling of Air Media

The modeling of the air medium of the trans-media aircraft is the same as the modeling
of ordinary multi-rotor UAVs, and its motion process includes translation and rotation.

First, the translation of the trans-medium aircraft is discussed. According to Newton’s
second law, it can be obtained:⎛⎝ 0

0
T1 + T2 + T3 + T4

⎞⎠−

⎛⎝ 0
0

Mg

⎞⎠ = M

⎛⎝ax
ay
az

⎞⎠ (1)

In the formula, T1, T2, T3, T4 is the pulling force generated by the air rotor of the aircraft,
M is the overall mass of the aircraft across the medium, and ax, ay, az is the acceleration of
the body in all directions.

Since the pulling force generated by the propeller is expressed in the body coordinate
system, there is a transformation relationship between the relative and the whole Earth
coordinate system; thus, the result of the above formula in the Earth coordinate system is:

Re
b

⎛⎝ 0
0

T1 + T2 + T3 + T4

⎞⎠−

⎛⎝ 0
0

Mg

⎞⎠ = M

⎛⎝ax
ay
az

⎞⎠ (2)

where Re
b is the rotation matrix [21] from the body coordinate system to the Earth

coordinate system,

Rn
b =

⎛⎝cosθcosψ cosψsinθsinφ − sinψcosφ cosψsinθ + sinψsinφ
cosθsinψ sinψsinθ + cosψcosφ sinψsinθcosφ − cosψsinφ
−sinθ sinφcosθ cosφcosθ

⎞⎠ (3)

φ, θ, ψ represent the roll angle around the x-axis, the pitch angle around the y-axis,
and the yaw angle around the z-axis, namely Euler angles.

Substitute (3) into (1) to obtain:⎧⎨⎩
M

..
x = (cosφsinθcosψ + sinφsinψ)F

M
..
y = (cosφsinθsinψ − sinφcosψ)F

M
..
z = cosφcosθ ∗ F − Mg

(4)

This results in the equation of the resultant external force and velocity in the dynamic
model, that is, the position dynamic model. where F = T1 + T2 + T3 + T4.

Next, the rotation of the trans-medium aircraft is discussed, which is obtained by
Euler’s equation [22]:

J
.

ω
b
+ ωb × Jωb = Ga + τ (5)

In the formula, ωb represents the angular velocity in the body coordinate system; Ga
represents the gyro moment; τ represents the moment generated by the propeller on the
body axis, including the rolling moment τx around the Obxb-axis, the Pitch moment on the
Obyb-axis τy and yaw moment around the Obzb-axis τz.

About the inertia matrix J: based on the assumptions made earlier, the inertia matrix
can be expressed as:

J =

⎛⎝Jxx
Jyy

Jzz

⎞⎠ (6)
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Let ωb =

⎛⎝ωx
ωy
ωz

⎞⎠, Ga =

⎛⎝Ga,φ
Ga,θ
Ga,ψ

⎞⎠ =

⎛⎝ JRPωx(�1 − �2 + �3 − �4)
JRPωy(−�1 + �2 − �3 + �4)

0

⎞⎠, substitute into

(5) formula to obtain: ⎧⎪⎨⎪⎩
.

ωx = 1
Ixx

[
τx + ωyωz(Iyy − Izz)− JRPωyΘ

]
.

ωy = 1
Iyy

[
τy + ωxωz(Izz − Ixx) + JRPωxΘ

]
.

ωz =
1

Izz

[
τz + ωxωy((Ixx − Iyy))

] (7)

where Θ = −�1 + �2 − �3 + �4.�1,�2,�3,�4 is the rotational speed of the motor that
drives the air rotor.

The above is the dynamic modeling of the trans-medium aircraft (air medium), which
represents the relationship between the input resultant external force, the resultant external
torque, and the output velocity and angular velocity.

Next, kinematic modeling of aircraft across media needs to be discussed (air medium),
which describes the quantitative relationship between the velocity and angular velocity of
the input and the position and attitude of the output.

The equation for the position is simple and can be expressed as:

.
P

e
= ve (8)

In the above formula, Pe =
(
x y z

)T is used to represent the coordinate position of
the aircraft in the Earth coordinate system, and then, Formula (8) is expanded to obtain:( .

x
.
y

.
z
)T

=
(
vx vy vz

)T (9)

Next comes the equation for attitude.
The rate of change of the attitude angle is related to the rotational angular velocity of

the body as follows:
.

Ω = Γ•ωb (10)

In the formula, Ω is the three attitude angle (Eulerian angle) matrix of the trans-
medium aircraft, Γ is the attitude calculation coordinate transformation matrix, which
measures the transformation relationship between the rate of change of the attitude an-
gle and the rotational angular velocity of the body. Thus, the above formula can be
fully expanded: ⎛⎜⎝

.
φ
.
θ
.
ψ

⎞⎟⎠ =

⎛⎝1 tanθsinφ tanθcosφ
0 cosφ −sinφ
0 sinφ/cosθ cosφ/cosθ

⎞⎠⎛⎝ωx
ωy
ωz

⎞⎠ (11)

In the case of small disturbance, that is, under the premise that the change of each
angle is small, the Γ matrix is a unit matrix; thus, it can be obtained:⎛⎜⎝

.
φ
.
θ
.
ψ

⎞⎟⎠ =

⎛⎝ωx
ωy
ωz

⎞⎠ (12)

Thus far, the model establishment for the trans-medium aircraft (air medium) has
been completed.

Remark 1. The reason for the left-multiplied rotation matrix in Equation (2) is that the body
coordinate system performs a rotation about the geostationary coordinate system. Equation (3), as a
rotation matrix, reflects the equivalent relationship of the transformation from the Earth coordinate
system to the airframe coordinate system.
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Remark 2. Equation (5) describes the differential equation for the motion of a rigid body, in the
motion of a rigid body around a fixed point, reflecting the relationship between angular velocity,
angular acceleration and the moment on the rigid body.

2.2. Establishment of Underwater Propeller Propulsion Model

First, underwater dynamics modeling needs to be considered. When a trans-medium
aircraft moves underwater, it will drive a small part of the fluid around the aircraft to move
at the same time, and this small part of the fluid acts on the aircraft; thus, the additional
mass of the aircraft during motion needs to be considered [23]. The physical expression of
this additional mass is that the inertial coefficient of the aircraft produces an increment λik
(i, k = 1, 2, · · · 6, representing six directions). The motion of this small part of the fluid can
be regarded as a rigid-body-like motion, that is, the motion of the fluid is a rigid-body-like
motion at the same speed as the trans-medium aircraft. There is only one symmetry plane
Obybzb for the trans-medium aircraft; thus, there are 12 inertial coefficient increments λik
that are not zero. Therefore, the underwater dynamic model of the trans-medium aircraft
defined by generalized parameters is as follows:

M
.
v + W(v)v = ∑ F (13)

In the formula, M is the generalized mass matrix of the trans-medium aircraft, W(v)
is the external force coefficient matrix received, and ∑ F is the external force received
by the fluid resistance, lift, etc., which can be solved by the OpenFOAM open source
numerical platform.

Next, model the underwater kinematics of the trans-medium aircraft. The purpose of
kinematic modeling is to convert the coordinate variables in the body coordinate system to
the Earth coordinate system through the coordinate transformation matrix. The modeling
idea is consistent with the previous air medium.( .

p
.
ς

)
=

(
(Rb

e )
−1

03×3
03×3 Tς(ς)

)
•
(

v
ω

)
(14)

Then, the kinematic equation can be expressed in the form of generalized velocity and
generalized position:

.
P = J(R)V (15)

J(R) =

(
(Rb

e )
−1

03×3
03×3 Tς(ς)

)
(16)

Rb
e =

⎛⎝ cosθcosψ cosθsinψ −sinθ
sinφsinθcosψ − cosφsinψ cosφcosψ + sinφsinθsinψ sinφcosθ
sinφsinψ + cosφcosψsinθ cosφsinθsinψ − sinφcosψ cosφcosθ

⎞⎠ (17)

In the formula, P is the generalized position matrix, V is the generalized velocity
matrix, Tς(ς) = Γ (11), φ, θ, ψ are the roll angle, pitch angle, yaw angle of the aircraft as
mentioned above.

Remark 3. The main diagonal element Rb
e of the matrix in Equation (16) corresponds to the coordi-

nate transformation matrix of the velocity, and the element Tς(ς)corresponds to the transformation
matrix of the angular velocity and the rate of change of the Euler angles.

2.3. Multimedia Spanning Model Establishment

When the aircraft is performing multi-medium spanning, the body is subject to the
combined action of the air medium and the water medium. Therefore, in the vertical plane,
the relationship between the buoyancy of the body and the propeller tension and gravity
needs to be considered. In the horizontal plane, there are two cases: (1) the aircraft across
the medium is in still water conditions, and no force is considered in the horizontal plane;

463



Drones 2022, 6, 236

(2) under non-stationary conditions, the flow resistance of the aircraft during the medium
crossing process needs to be considered.

In the vertical plane, when the body crosses the medium vertically, the force diagram
of the trans-medium aircraft is as follows, as shown in Figure 3.

 
(a) (b) 

Figure 3. Schematic diagram of the multi-medium spanning force of a trans-medium aircraft (a) Free
entry; (b) Out of water.

For the free entry stage, there are:

Fb = ρgSsectionH (18)

G − Fb = M
..
z (19)

H is the immersion depth of the aircraft, z is the displacement of the aircraft in the
vertical direction.

When the aircraft is out of water (uniform speed), there are:

FT + Fb = G (20)

FT = T1 + T2 + T3 + T4 (21)

Ti = CTρni
2D4, i = 1 , 2 , 3 , 4 (22)

In the above formula, Ti is the thrust generated by the propeller, CT is the rotational
speed of the propeller, D is the diameter of the propeller, and ni is the rotational speed of
the propeller.

When the trans-medium aircraft enters and leaves the water at a certain attitude angle,
and the aircraft does not completely leave the water surface, as long as the attitude changes,
the size of the buoyancy and the position of the center of buoyancy will change, and the
aircraft needs to generate a restoring torque to overcome this attitude change [24]. The
magnitude of the restoring moment is related to gravity and buoyancy.

Since the pitch and roll attitude changes of the trans-medium aircraft in this paper
have the same effect on the force during the multi-medium crossing process of the aircraft,
the two are analyzed together, and a generalized attitude angle Γ is defined. Figure 4 is a
schematic diagram of the force when the trans-medium aircraft enters the water at a certain
attitude angle.
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Figure 4. Schematic diagram of the force of a trans-medium aircraft entering water at a certain
attitude angle.

Define the length of one side of the aircraft submerged in the water as L, the displace-
ment of the center of gravity in the vertical direction as z, and the radial distance between
the motor and the center of gravity of the aircraft as r, and the center of the restoring
moment as the center of the cross-section between the aircraft and the water surface, then
there are:

MR = −Fb•
L
2
− Gzcosγ

sinγ
(23)

where Fb has been obtained from (16). When the aircraft enters the water in the pitch
attitude, γ = θ; when the aircraft enters the water in the roll attitude, γ = f .

In the horizontal plane, it is considered that the water surface of the trans-medium
aircraft is in a non-stationary state, and there is an impact effect of waves on the body.
Therefore, in the water entry and exit stage, the trans-medium aircraft has a certain displace-
ment in the horizontal plane, and its displacement expression is expressed by Newton’s
second law, which can be obtained:

Svpw = M
..
x (24)

In the formula, pw is the wave force action matrix, Sv is the cross-sectional area of the
wave action body, and x is the displacement matrix of the trans-medium aircraft.

At this point, the dynamic and kinematic model of the trans-medium aircraft has
been established. The following, Figures 5 and 6, are schematic diagrams of the complete
multi-medium crossing process of the trans-medium aircraft.

 
(a) (b) 

Figure 5. Vertical access to water: (a) vertical into the water; (b) vertical out of water.
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(a) (b) 

Figure 6. Enter and exit the water at a certain attitude angle: (a) water entry process; (b) out of
water process.

3. Numerical Simulation Based on OpenFOAM Open-Source Platform

Through the selection and layout design of each component of the trans-media
aircraft, a parametric mechanical structure model of the trans-media aircraft is estab-
lished. Import the parametric model of the aircraft into the OpenFOAM platform tool for
simulation analysis.

Consistent with the previous analysis idea, the motion process of the trans-medium air-
craft is analyzed in sections. The specific processes simulated in this paper are:
(1) aerodynamic simulation analysis of a single air medium; (2) hydrodynamic simulation
analysis of a single underwater medium; (3) simulation analysis of the aircraft entering
the water vertically and at a certain attitude angle; (4) simulation analysis of the aircraft
leaving the water surface vertically.

3.1. Fluid Governing Equations

The solution to the medium flow problem is the solution to the Navier–Stokes equa-
tion, which is the theoretical basis for describing the medium flow. The flight speed of the
trans-medium aircraft model established in this paper is lower than the speed of sound;
thus, the medium in which it is located can be regarded as an incompressible flow. Incom-
pressible flow governing equations include continuity equation and momentum equation,
as follows [25]: {

∇•U = 0
∂U
∂t +∇•(UUT) = − 1

ρ∇p +∇•(υ∇U) + S (25)

where U is the fluid velocity vector, p is the fluid pressure, and υ is the fluid
kinematic viscosity.

The essential work of numerical simulation for fluid media is to solve the above
equations, but for the above equations, it is difficult to obtain their analytical solutions in
the sense of actual equations; thus, it is necessary to numerically discretize their differential
equations and obtain matrix equations through discretization processing. The solution of
the equation is the numerical solution of the equation. Although the numerical solution is
not the real solution of the original equation, the error with the real solution can be reduced
by selecting a suitable discretization method and matrix solving algorithm to approach the
real solution.

Remark 4. Equation (25) is a simplification of the N-S equation, which exhibits the continuity
equation and the momentum conservation equation for incompressible flow. In this study, under
low velocity conditions, the medium can be regarded as a continuous incompressible form.
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3.2. Turbulence Model

During the movement of the trans-medium aircraft, the flow of the fluid medium
in which it is located is irregular, multi-scale, and structured, that is, three-dimensional
unsteady flow, which has strong numerical diffusivity and numerical dissipation [26].
No matter how complex the turbulent motion is, the unsteady continuity equations and
Navier–Stokes equations are still applicable to the instantaneous motion of turbulent flow.
However, the strong transient nature and nonlinearity of turbulent flow make it impossible
to accurately describe all the details related to the three-dimensional time of turbulent flow
by analytical methods. Changes in the mean flow field are often caused by turbulence.
In this way, mathematical calculation methods for different simplifications of turbulent
flow have emerged. It reduces the computational cost, and by simplifying the operation,
practically valuable physical phenomena can be effectively extracted. The turbulence
model implanted in this paper based on the OpenFOAM (OpenFOAM V-2112) open source
platform is the kOmegaSST model, which is a hybrid model of the kEpsilon model and
the kOmega model. The purpose of the mixture is to use the kOmega model with a better
effect on the reverse pressure gradient near the wall and use the kEpsilon model that is
insensitive to incoming flow parameters elsewhere [27]. Its model equation is as follows:

Turbulence intensity k equation:

∂ρk
∂t

+∇(ρkU) = ∇
[
(μ +

μz

σk
)∇k

]
+ pk − bkρkω (26)

Turbulence frequency ω equation:

∂ρω

∂t
+∇(ρωU) = ∇

[
(μ +

μz

σω
)

]
+ a

ω

k
pk − bωρkω2 (27)

In the above formula, pk is the turbulent kinetic energy generated by the laminar
velocity gradient, σk and σω are the Prandtl number of the turbulent energy; the eddy
viscosity is μ = −ρk/ω.

Remark 5. Equation (26) and Equation (27) are simplified calculations for solving the turbulent
flow of the N-S equation. Due to the strong transient nature of the turbulent flow, Reynolds
averaging is performed on the physical quantities of the flow field in the time domain. After
averaging, the N-S equation is not closed; thus, two variable equations a and b are introduced
for solving. The two variable equations are semi-empirical formulas, which are summed up from
experimental phenomena.

3.3. Simulation Analysis of Multi-Medium Crossing for a Trans-Medium Aircraft
3.3.1. Air Single Medium Aerodynamic Analysis

The carrier of the air single-medium analysis is the air rotor; thus, first, a basic me-
chanical characteristic analysis of the air rotor of the trans-medium aircraft designed in
this paper is carried out. The air rotor parameters for this article are as follows: Model
APC1047SF, which has a diameter of 10 inches and a pitch of 4.7 inches. The physical and
model diagrams are as follows, as shown in Figure 7.

Next, the rotor flow field is discretized, and the computational domain of the flow field
is divided into two parts: the outer domain and the inner domain, as shown in Figure 8.
The inner domain is centered on the rotating shaft of the air rotor, with a diameter of 1.2D
(D is the rotation diameter of the blade); the outer domain is the outer cylindrical area of
the rotor, with a length of 10D and a diameter of 5D.
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(a) (b) 

Figure 7. APC1047SF air rotor: (a) physical map; (b) model diagram.

(a) (b) 

Figure 8. Flow computation domain: (a) computational domain scale modeling; (b) computational
domain division and boundary setting.

In the fluid computing domain, the interface between the inner domain and the outer
domain adopts a slip mesh; the purpose is to not only realize the high-speed rotation
of the air rotor around the axis at a certain speed but also to save computing resources.
This movement process is as described above in that its medium flow is an unsteady
flow. The computational domain has meshed with the “blockMesh” mesh algorithm and
“SnappyHexMesh” mesh algorithm implanted in the OpenFOAM open source platform.

The meshing method is based on OpenFOAM this time: the O-type mesh topology
method is used to define the “blockMesh” parameter dictionary for background meshing,
and then, the “snappyHexMesh” tool is used to mesh the air rotor and establish the interface
between the inner domain and the outer domain. Mesh division is shown in Figure 9.

The completion of the grid division means that the pre-processing part of the simula-
tion process has been completed. Next, the above-mentioned physical process is numeri-
cally solved through the matrix solving algorithm implanted in the OpenFOAM platform,
and the required results are processed and analyzed. The kOmegaSST turbulence model
is used, and the boundary conditions are set as follows: the inlet boundary of the outer
domain of the cylinder adopts the velocity inlet condition, the outlet boundary adopts the
pressure outlet condition, and the cylindrical boundary of the cylinder adopts the wall
surface condition.

Through the variable parameter analysis of different rotational speeds of the air rotor,
the mechanical characteristics and flow field characteristics under different rotational
speeds are compared. In this study, the rotational speeds of the air propellers were set
to 2000, 3000, 5000, 7000, and 8000 (unit round × min−1), respectively. Figure 10 shows
the comparison between the thrust of the air rotor obtained by numerical simulation at
different speeds and the experimental thrust of the APC1047SF blade.
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(a) (b) 

 

(c) (d) 

Figure 9. Schematic diagram of computational domain meshing results: (a) outer domain meshing
situation; (b) air rotor meshing; (c) inner domain meshing; (d) meshing of the interface between the
inner and outer domains.

Figure 10. Numerical thrust and experimental thrust at different rotational speeds.

It can be seen from the above figure that the overall calculation error is not large,
and the error between the simulated value and the experimental value can be ignored
under the condition of low speed. As the rotational speed increases gradually, at higher
rotational speeds, the error between the simulated value and the experimental value also
increases gradually, but is within a reasonable error range. The reason why this error
gradually increases at higher rotational speeds is that there is an error in the meshing
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accuracy under high rotational speed conditions, and high-resolution meshes are not used
for high rotational speed conditions. However, because of saving computing power, this
study uses a medium-resolution grid within the range of ensuring a reasonable error.

Figure 11 shows the pressure cloud map and speed cloud map of a certain section of
the air rotor under different rotational speed conditions.

 
(a) 

 
(b) 

 
(c) 

Figure 11. Cont.
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(d) 

 
(e) 

Figure 11. Cloud map of aerodynamic characteristics of a single propeller of an air rotor.
(a) RPM = 2 × 103; (b) RPM = 3 × 103; (c) RPM = 5 × 103; (d) RPM = 7 × 103; (e) RPM = 8 × 103

(unit round × min−1).

It can be seen from the change in the above pressure cloud diagram that the air rotor
rotates at a certain speed, and the tip of the blade generates a low-pressure area due to
high-speed friction with the air. The entire blade produces a symmetrically distributed
pressure vortex ring backward along the direction of the central axis of rotation. This is
because, in the case of airflow disturbance, there is a pressure difference between the front
and rear positions of the vortex ring, which leads to the generation of the phenomenon of
surrounding flow, thereby generating a pressure vortex. The creation of pressure vortices is
also what causes the thrust of the air rotor to drop. It can be seen from the figure that there
is a pressure difference in the flow field before and after the rotor, and the rotor generates
thrust due to the effect of this pressure difference.

It can be seen from the above velocity cloud diagram that the airflow at the rear end of
the blade produces a symmetrically distributed high-speed band due to the high-speed
rotation of the rotor, and it can be found that the paddle where the blade is located has a
current-collecting effect, and the airflow passes through this paddle. The airflow flows in
from the front end of the paddle disc, and after the constriction of the current collecting
effect of the paddle disc, the airflow flowing to the rear end rotates and takes on a spiral
shape, which generates the circumferential induced velocity.

Figure 12 shows a schematic diagram of the change of the tip vortex under each
speed condition:
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Figure 12. Schematic diagram of the tip vortex.

As the rotational speed continues to increase, the more severe the disturbance of the
blade tip is, the more obvious the dragging effect of the blade tip wake is in the figure.

In order to accurately capture the vortex structure in the flow field, the Q criterion [28]
is applied to the post-processing vortex capture technology. Figure 13 shows the schematic
diagram of the vortex structure in the flow field under various rotational speed conditions
(Q ∈ [−100, 100]).

Figure 13. Schematic diagram of wake vortex structure.

It can be seen from the above figure that the wake vortex of the rotor is symmetrically
distributed at different rotational speeds. As the rotational speed increases, the structure of
the wake vortex becomes more complex. The more severe the airflow disturbance is, the
more serious the gas disturbance is.

Next, take the rotational speed RPM = 7000 round × min−1 as an example, and focus
on analyzing the specific numerical change relationship of each physical quantity in the
flow field.

To find the variation relationship of each physical quantity with time and space, the
following Figure 14 shows the variation relationship between the position and physical
quantity along the rotation axis from left to right and the variation relationship between
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the time step and physical quantity solved under different position conditions (top and
bottom of paddle).

 
(a) (b) 

 

(c) (d) 

Figure 14. Curve diagram of physical quantities changing with time and space: (a) graph of pressure
versus position; (b) graph of pressure change with time; (c) graph of velocity versus position;
(d) graph of speed change with time.

It can be seen from Figure 14a that between 1 and 1.5 m on the abscissa (the area near
the paddle disc) the pressure will show a high- and low-pressure area, the pressure at the
lower part of the paddle disc will increase, and a high-pressure area will appear, while the
upper-pressure will drop, and a low-pressure area will appear, and with the advancement
of the time step, the amplitude of the upper-pressure drop will increase, resulting in an
increase in the upper and lower-pressure difference, which is the reason for the increase in
the thrust of the blade at the beginning. Figure 14b shows that there is a pressure difference
between the upper and lower surfaces of the propeller disc, which is the reason for the
thrust generated by the previously mentioned propeller blades. Figure 14c reflects that
the fluid velocity peaks in the area near the paddle disk, and the position of the peak
gradually moves down with the increase in the time step, which is consistent with the
results presented in the previous velocity cloud map. Figure 14d reflects the process of
increasing the velocity of the upper and lower surfaces of the paddle disc in the initial time.
With the increase in time, the velocity gradually tends to be stable, and the velocity on the
lower surface is always greater than that on the upper surface.

The above is the analysis of the aerodynamic characteristics of the air blades of the
trans-medium aircraft. Next, it is necessary to carry out a numerical simulation study on
the air flight characteristics of the trans-medium aircraft, and the method used is the same
as the previous one. The mesh division is shown in Figure 15:
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(a) (b) 

 
(c) (d) 

Figure 15. Schematic diagram of grid and computational domain division: (a) fluid computational
domain size; (b) computational domain boundary conditions; (c) internal and external computational
domain division; (d) blade meshing.

Next, the numerical simulation method is used to simulate the hovering and for-
ward flight motion of the trans-medium aircraft, and the obtained simulation results are
physically analyzed.

Figure 16 shows the structure of the rotor tip vortex in the hovering state of the whole
machine. It can be seen from the figure that the wake vortex generated by the friction
between the blade and the air will continuously impact the arm of the machine, thereby
causing the body to vibrate.

Figure 16. Hover state tip vortex.

Figure 17 shows the numerical simulation cloud image of the hover state. It can be
seen from the pressure and velocity contour that a high-pressure area is generated at the
lower part of the paddle plane, and due to the large velocity interference at the lower part,
the flow phenomenon is caused, resulting in a pressure vortex, which is also the reason for
the drop in lift. A low-pressure area is generated in the upper part such that the pressure
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difference between the upper and lower surfaces is generated, which is the key factor for
the rotor to generate lift [29].

  

(a) (b) 

Figure 17. Numerical cloud map in hover state: (a) pressure cloud map; (b) axial velocity contour.

To study the aerodynamic interference of the trans-medium aircraft in the forward
flight state, this paper sets the forward flight inclination angle of the trans-medium aircraft
as 10◦, the blade speed as 4000 round × min−1, and the forward flight speed as 1.5 m•s−1,
5 m•s−1. There are three cases of 10 m•s−1, and the forward ratio of the aircraft is 0.289.

Figure 18 is a comparison of the rotor wake structures at three forward flight speeds.
It can be seen from the figure that the wake is dragged out from the blades and the fuselage,
and the flow to the downstream area induces the entire flow field, and with the increase
in the forward speed, the inclination of the trailed wake is also larger, and the flow field
fluctuation is also more complicated.

Figure 18. Forward flight wakes at different forward flight speeds.
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Figure 19 shows the contour of the flow field pressure and velocity change of the
trans-medium aircraft under different forward flight speeds. Different from the hovering
state, in the forward flight state of the trans-medium aircraft, the wake will move backward,
and it is behind the flight. Compared with the hovering state, the impact of the propeller on
the aerodynamic force of the fuselage is greatly reduced, and the wake of the propeller in
the front will hit the fuselage, which is the main reason for the change in the aerodynamic
force of the fuselage.

 
(a) 

 
(b) 

 
(c) 

Figure 19. Numerical contour of flow field under different forward flight speeds: (a) longitudinal
pressure contour; (b) longitudinal velocity contour; (c) axial velocity contour.
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Through the analysis of the above longitudinal pressure and velocity contour, it can
be seen that with the increase in the forward flight speed, the pressure vortex gradually
shifts to the rear, and the direction of the high-speed airflow region at the rear is the same
as that of the pressure vortex. Through the analysis of the axial velocity cloud diagram of
the propeller disc, it can be seen that the axial velocity of the four blades is all downward,
and the wake of the flow around the cloud diagram gradually moves backward with
the increase in the forward speed. It can be seen from the wake structure diagram in
Figure 19 that the blade is impacted by the wake of the front blade, and the aerodynamic
characteristics of the rear blade are most disturbed during the flight.

Figure 20 is a graph showing the variation of the force characteristics of each blade with
time. It can be seen from the figure that with the forward flight process of the aircraft, the
force characteristics of each blade change periodically, and due to the backward movement
of the forward flight trail, the forward flight effect of each blade is also different. It can
be seen from the graph that the fluctuation of the force characteristics of the No. 2 and
No. 3 blades is significantly higher than that of the No. 1 and No. 4 blades. This is because
the wake has a greater effect on the No. 2 and No. 3 blades than on the No. 1 and No. 4
blades. The unbalanced fluctuation of the force characteristics causes the body to generate
an unbalanced moment during forward flight [30].

3.3.2. Hydrodynamic Analysis of Single Underwater Medium

The carrier that provides underwater power for the trans-medium aircraft is the un-
derwater propeller, and the hydrodynamic performance of the underwater propeller plays
a vital role in the underwater propulsion of the trans-medium aircraft. At present, open
water tests are usually used to determine the hydrodynamic performance of propellers [31].
With the rapid development of computer-aided software and the in-depth study of the
mathematical model of fluid dynamics, a numerical simulation based on the CFD method
is widely used in propeller performance optimization and dynamic characteristic analysis.

  

  

Figure 20. Cont.
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(a) (b) 

  

(c) 

Figure 20. Variation diagram of the force characteristics of each blade of the aircraft: (a) forward
flight speed is 1.5 m•s−1; (b) forward flight speed is 5 m•s−1; (c) forward flight speed is 10 m•s−1.

In this paper, two pairs of 60 mm propellers are used, and the underwater thrust
system is arranged in a “cross” shape at the duct of the aircraft. First, it is necessary to
numerically analyze the water performance of a single propeller. By implanting a numerical
algorithm based on the OpenFOAM open source platform, its single propeller is divided
into the flow field area, and the division form and solution algorithm are consistent with the
method used for the analysis of the aerodynamic characteristics of the air rotor. Figure 21 is
a schematic diagram of the grid area division for the numerical analysis of the propeller’s
water performance.
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(a) (b) 

Figure 21. Schematic diagram of single propeller meshing: (a) computational domain model parame-
ters; (b) boundary conditions and division of internal and external domains.

To quantitatively describe the hydrodynamic performance of the underwater
propeller [32], the numerical simulation method is used to accurately evaluate the pro-
peller’s water performance parameters. The specific embodiment is to obtain the change
curve diagram of its thrust coefficient KT , torque coefficient KQ and efficiency η0 by chang-
ing the propeller advance coefficient, as shown in Figure 22.

Figure 22. Propeller hydrodynamic performance curve.

It can be seen from the above figure that there is a certain calculation error between the
CFD numerical simulation results and the experimental propeller hydrodynamic perfor-
mance curve results. For KT and η0, under the condition of a low advance coefficient, the
error can be ignored. The calculation error also increases, and the overall parameter error
is within the allowable range of 5%, which meets the actual engineering requirements.

3.3.3. Numerical Simulation of Water Entry and Exit for a Trans-Medium Aircraft

The problem of entering and leaving water across the medium involves the dynamic
grid problem. During the solution process, the motion deformation of the grid will have a
huge impact on the solution accuracy and the convergence of the solution. The overset grid
method [33] is used in the numerical simulation of water entry and exit of a trans-medium
aircraft [34]. The overset grid method needs to establish two sets of grids. The flow field
where the external trans-media aircraft is located is used as the background grid, and
the trans-media aircraft itself is used as the overset grid. The overset grid moves in the
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background grid. Interpolation is used for the numerical transfer, which does not involve
grid deformation; thus, the stability of the solution is guaranteed. However, the two sets
of grids need to interpolate each other during the solution process; thus, its calculation
time is longer than that of traditional dynamic grids. The water entry and exit process of
a trans-medium aircraft is a mirror image process; thus, this paper conducts a numerical
simulation of its water entry process. Figure 23 is a schematic diagram of the meshing of
the water entry process of the trans-medium aircraft.

  

(a) (b) 

(c) 

Figure 23. (a) Flow field area grid; (b) background mesh and overset mesh; (c) background grid and
overset grid area marker map (1 for overset grid, 0 for background grid).

In this paper, the initial conditions for the entry of the trans-medium aircraft into the
water are set as follows: the entry height is 0.4 m, the initial velocity of entry into the water
is 0, and the free-falling body hits the water surface and enters the water body under the
action of gravity. In order to verify the performance of the trans-medium aircraft entering
the water at different angles, this paper sets its water entry angles as 0◦, 10◦, 20◦, 30◦, and
40◦. The pressure and speed of the body movement with the time curve are shown in
Figure 24.

It can be known from the pressure curve that the load pressure peak of the body is
different when entering the water at different angles, and the peak size gradually decreases
with the increase in the angle. This reflects that the impact on the vertical entry and exit of
the cross-medium aircraft is significantly greater than the impact on the oblique entry and
exit of the water. In general, in the water entry stage of the trans-medium aircraft, the load
pressure of the body reaches the maximum at the moment of contact with the water surface,
and after the water entry process is completed, the load gradually tends to be stable. It can
be known from the speed curve that as the water entry angle increases, the speed of the
body changes more gently, which corresponds to the previous pressure curve results. The
two together indicate that it is most reasonable for the body to enter the water within a
limited range of inclination angles.
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(a) (b) 

Figure 24. (a) Pressure curve; (b) speed curve.

It can be seen from Figure 25 that when entering the water vertically, the yaw attitude
of the cross-medium aircraft changes. When the inclination angle enters the water, the pitch
attitude changes more violently, and with the increase in the water entry angle, the angular
velocity of the attitude change is larger.

  

  

 

Figure 25. Attitude change curve of entering water at different angles.
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The schematic diagram of the specific physical process of a trans-medium aircraft
entering water is shown in Figure 26.

  

(a) (b) 

  
(c) (d) 

 
(e) 

Figure 26. The physical evolution process of cavitation entering water from different angles:
(a) vertical into the water; (b–e) inclined angle into the water (10◦, 20◦, 30◦, 40◦).

It can be seen from the above figure that the trans-medium aircraft roughly includes
three stages in the process of entering the water: the impact of the contact moment, the
open cavitation with large deformation of the free surface, and the water movement after
the open cavitation is closed. When a trans-medium aircraft hits the water, the water in
contact with the aircraft and the water near the aircraft suddenly start to move, with great
acceleration. Due to the high density of water and the large attachment mass of water to
the aircraft, at the moment of entering the water, the aircraft is subjected to much greater
hydrodynamic action than the general flow around. In the initial stage of water entry, the
wet area of the aircraft increases rapidly, and then, a relatively stable cavitation separation
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line appears. The water separates from the aircraft, and cavitation begins to form. For a
period of time, after the aircraft enters the water, the cavitation bubbles will communicate
with the atmosphere, the air will continue to fill the rear space of the aircraft entering
the water, and the cavitation bubbles will continue to grow, some of which are air and
some of steam. As the cavitation increases, the buoyancy of the aircraft also increases, and
gradually, the cavitation begins to close, and the air on the water surface no longer enters
the cavitation. After the cavitation is closed, as the aircraft continues to move, the cavitation
gradually decreases and disappears completely due to the entrainment of the water flow.

4. Conclusions

In this paper, the kinematics and dynamics modeling of a trans-media aircraft is car-
ried out, and on this basis, the open source numerical platform OpenFOAM is flexibly used
for numerical analysis, and the moving process of the trans-media aircraft is segmented.
Carrying out numerical analysis greatly simplifies the difficulty of the numerical solution
and realizes the feasibility of a multi-process numerical solution. From the results of the nu-
merical analysis of each sub-process, the main challenge facing the fluid dynamics analysis
of the trans-media aircraft is the analysis of the unsteady flow characteristics in the process
of the medium crossing [35]. THIs is realized by means of simulation or physical experi-
ments. The process of medium spanning involves complex flow problems and is a typical
gas–liquid two-phase flow [36] disturbance motion, accompanied by the air cushion effect,
gas–liquid coupling effect, jet phenomenon, and the growth, development, and collapse
of water cavitation. In this process, due to the large differences in the physical properties
of the medium, the body will be subject to severe nonlinear disturbances. Therefore, the
requirements for the resistance, aerodynamic and hydrodynamic shape, material, and
structural strength of the trans-medium aircraft are higher than those of the ordinary single
medium. This paper shows a series of nonlinear water flow disturbances and cavitation
evolution processes in the multi-medium crossing process but does not study the deep-level
mechanism of the disturbance and cavitation evolution [37]. The aerodynamic shape is the
key to drag reduction and the stability of the medium spanning; thus, the research in this
area has a great breakthrough significance in the direction of the medium spanning aircraft.
In the research of this paper, the aerodynamic characteristics of the trans-medium aircraft
near the water surface are not analyzed and studied. During the movement close to the
water surface, the air rotor or the underwater propeller will also produce a certain amount
of suction to the water flow or air when it rotates at a high speed. This kind of inhalation
phenomenon will have an impact on the underwater diving or aerial flight efficiency of the
trans-medium aircraft. In the future, the specific mechanism of this inhalation phenomenon
and the specific effect of this phenomenon on the flow model of the trans-medium aircraft
will be discussed in depth in this regard.
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Abstract: There is a strong trend in the development of control systems for multi-rotor unmanned
aerial vehicles (UAVs), where minimization of a control signal effort is conducted to extend the flight
time. The aim of this article is to shed light on the problem of shaping control signals in terms of
energy-optimal flights. The synthesis of a UAV autonomous control system with a brain emotional
learning based intelligent controller (BELBIC) is presented. The BELBIC, based on information from
the feedback loop of the reference signal tracking system, shows a high learning ability to develop
an appropriate control action with low computational complexity. This extends the capabilities of
commonly used fixed-value proportional–integral–derivative controllers in a simple but efficient
manner. The problem of controller tuning is treated here as a problem of optimization of the cost
function expressing control signal effort and maximum precision flight. The article introduces several
techniques (bio-inspired metaheuristics) that allow for quick self-tuning of the controller parameters.
The performance of the system is comprehensively analyzed based on results of the experiments
conducted for the quadrotor model.

Keywords: UAV; quadrotor; optimization; minimum energy control; brain emotional learning;
BELBIC

1. Introduction

1.1. Background

In recent years, there has been a growing interest in unmanned aerial vehicles
(UAVs) [1,2]. Among the various types of UAVs, multi-rotor robots are particularly interest-
ing due to their small size, good flight properties (including the possibility of hovering and
flying stably at very low speeds), and relatively low cost [3]. In each of the diverse missions
(transportation, agricultural, industrial, photogrammetry, reconnaissance, surveillance,
etc.), UAV features such as maximum flight time and smooth, non-overshooted flight tra-
jectories are in demand. These properties determine the safety of control of this inherently
unstable and underactuated plant. The appropriate selection of controllers and their proper
tuning are of prime importance since they allow the optimal use of highly limited energy
resources to generate the appropriate thrust and torques of the particular propulsion units
of the UAV.

Nowadays, numerous types of controllers are used in multidimensional UAV control
systems [4]. In addition to a number of advanced solutions in which the control system is
able to autonomously control the UAV with rapidly changing, time-varying aerodynamic
characteristics during flight (briefly characterized in [5]), techniques based on model predic-
tive control (MPC) [6], fuzzy control [7], sliding mode control (SMC) [8], and adaptive fault-
tolerant control [9] are widely used. In addition to these techniques, many new ones have
appeared [10–13] which are related to advanced intelligent control of nonlinear systems
and may be easily adaptable to UAVs. However, the most common commercially avail-
able multi-rotor UAVs use solutions based on classical fixed-value feedback controllers of
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proportional–derivative (PD) or proportional–integral–derivative (PID) type [14]. They
provide good trajectory tracking and do not require a UAV dynamics model.

1.2. Research Motivation

The research motivation was based on the idea that the quality of the above-mentioned
fixed-value feedback controllers may be improved by:

• The use of appropriate techniques to optimize their gains.
• Inclusion of fixed-value controllers in the structure of intelligent controllers.

In this article, both improvement solutions are presented. The research was also
indirectly inspired by [15], where the SafeOpt algorithm (based on Bayesian optimization)
was proposed to solve the problem of automatic adjustment of the controller parameters
to ensure a more precise flight. Interesting results are also presented in [16], in which
the authors, via an in-flight run of the modified relay feedback test, looked for near-
optimal tuning of the quadrotor attitude controllers. In previous articles [17–19], we
proposed deterministic optimization methods based on modified zero-order iterative
algorithms (Fibonacci-search, golden-search) for in-flight auto-tuning of UAV controllers.
These methods of automatic tuning of the gains of fixed-value controllers on the basis
of machine learning (iterative learning) algorithms allow, by comparing the obtained
values of the cost function for various combinations and of gains, to search for the (locally)
optimal gains for specific expectations expressed by the mathematical formula of the cost
function. As a result, controllers capable of increasing the tracking precision of the UAV
reference trajectory are obtained, and in the case of [19], the energy consumption of the
UAV is indirectly optimized by introducing a penalty mechanism for large picks of control
signals (included in the optimized cost function value). This mechanism forms the basis
for the minimum energy control considerations in this paper. Moreover, in the current
article, attention is focused on batch tuning of controllers, as our previous techniques for
in-flight tuning of gains of fixed-value UAV controllers do not guarantee stability during the
tuning process. Therefore, the in-flight approaches are predefined more for the successive
improvement of controller gain in the daily exploitation of drones, and pre-tuning can be
performed based on the approach proposed here.

In the synthesis of UAV control systems, in the process of optimizing gains described
above, techniques inspired by examples from nature have been used successfully [20].
Naturally, since 2014, when Duan and Li published their book, at least a dozen new
and now well-recognized algorithms have been proposed. The most interesting include,
among others, the cuttlefish algorithm (CFA) [21], Harris hawks optimization [22], a
mayfly optimization algorithm [23], jellyfish search [24], golden eagle optimizer [25], and
firebug swarm optimization [26]. In this article, it was decided to use two of them in
the synthesis of a UAV autonomous control system with a neurobiologically inspired
intelligent controller. They are, respectively: the particle swarm optimization (PSO) and
cuttlefish algorithm, used in the author’ earlier works, including optimization in nonlinear
MPC [27] and auto-tuning of a UAV altitude controller [21]. The preliminary research and
the promising results obtained in the previous works were a direct motivation for the
selection of these algorithms.

1.3. The State of the Art

Since obtaining perfect accuracy of the nonlinear mathematical model of UAV dy-
namics is a challenging task, model-free, soft-computing-based controllers are preferred.
Especially those that are robust and can deal with real-world environmental complexities
and disturbances. Furthermore, the capability of self-learning is expected (with a small
computational cost and with simple self-adapting mechanisms). Thus, intelligent con-
trollers (especially PID-type-based) with learning capability are a prime solution to provide
appropriate control actions in UAV autonomous low-level control. It is expected that these
controllers will have a simple structure and fewer parameters to be tuned than the neural
networks and fuzzy equivalents.
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Within the universe of model-free neurobiologically inspired intelligent controllers, so-
lutions with low computational complexity are gaining in importance every year—especially
those offering a transparent, analytical structure of the control system, as well as reward-
and penalty-based learning mechanisms in the controller’s response to external emotional
stimuli. Emotional learning is one of the leading psychologically motivated learning strate-
gies (Figure 1), which is then used to produce control actions (emotional response) in the
output of intelligent neuromorphic controllers based on the desired and actual system
response (sensory input). The emotional learning process is based on emotional evalua-
tions. According to [28], ‘emotions play an essential role in rational decision-making, perception,
learning, and a variety of other cognitive functions’. Additionally, emotions help humans
survive and react immediately in an emergency or danger. Emotional stimuli (for example,
fear, aggression, and anxiety) cause emotional behaviors and the brain’s quick reactions
to danger, often far from the complex reasoning and logic. The evaluation of the effect of
such an emotional reaction is firmly established in the learning process. Additional actions
are not caused only by rational reasoning but are determined and biased by emotions.
Thus, emotions may be considered as ‘a tacit expert system’ [29]. In [30], the concept of
dividing brain work into rational mind and emotional mind is presented. The latter has a
key important feature, which is an extremely fast reaction. Fast emotional processing is
possible [31] due to synapses (inhibitory connections) and short pathways in the limbic
system of the emotional brain.

Figure 1. Block diagram of the BEL model (briefly characterized in Section 1.4), proposed by Moren
and Balkenius [29], where: SI—sensory input, ES—emotional signal, OC—orbitofrontal cortex,
A—amygdala, MO—memory output.

In 2004, Lucas Caro et al., in [32], proposed the idea of a brain emotional learning
based intelligent controller (BELBIC), where context processing and an open-loop cognitive
amygdala-OFC model created by Moren and Balkenius [29] in 2000 were used (Figure 1).
Since 2000, BELBIC controllers have been successfully used, e.g., in developing a new fuzzy
neural network by incorporating a BELBIC with fuzzy inference rules [33]. Its performance
was evaluated on the model of an inverted double pendulum system. In [34], implementa-
tion of the intelligent adaptive controller for an electrohydraulic servo system based on
the brain emotional learning (BEL) mechanism was presented. Joao Paulo Coelho et al.
adapted BELBIC controllers into two control systems: (a) one with a mathematical model
of magneto-rheological (MR) damper [35], and (b) one with a model of a non-collocated
three-story building with MR [36], respectively. Lucas Caro et al. applied an intelligent
controller to the neurofuzzy microheat exchanger model in [37,38] to control the laboratory
overhead travel crane in a model-free and embedded manner. Another interesting paper by
Lucas Caro et al. is the control of the speed and flux of induction motors using a BELBIC
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controller [39]. The last publication worth mentioning is [40], where fuzzy inference is
designed to tune the BELBIC reward function parameter online that is used to control the
electrohydraulic actuator.

There is relatively little research on this control strategy in the field of aviation and
aerospace. In [41], intelligent autopilot design may be found for a nonlinear model of
an autonomous helicopter using an adaptive emotional approach. Valencia and Kim,
in [42], used BELBIC to build a control system capable of autonomously operating multiple
quadrotors in the leader–follower configuration. Interesting research may be found in the
works of Jafari et al., especially [43,44], where real-time flocking control of multi-agent
systems in the presence of system uncertainties and dynamic environments and distributed
intelligent flocking control of networked multi-UAS were considered, respectively.

1.4. BELBIC—General Idea and Areas for Improvements

A mathematical model of the limbic system of the human brain (Figure 1) with areas
responsible for emotional learning and processing such as the orbitofrontal cortex, the
amygdala, the sensory cortex, and the thalamus has been developed in BELBIC controllers
with the use of an artificial network with adaptable parameters (adjustable gains)—details
of mathematical formulas are provided in Section 2.3. In both cases, i.e., biological and
artificial brain models, two networks affecting each other: sensory neural network (SNN)
and emotional neural network (ENN) build an internally interconnected system. SNN is
used to simulate the brain’s orbitofrontal cortex and is responsible for the major output
of the BELBIC controller, while the ENN is used to represent the amygdala cortex, and
it undergoes stimulation by external factors and has indirect impact on the SNN. This
structure of the brain model conforms to Mowrer’s cognitive theory of the learning process.
The theory states that emotional evaluation (connection of response with stimulus) occurs
after association of the stimulus with an emotional consequence. Therefore, emotions in the
sensory learning system can be used as constant feedback. They also provide information
to evaluate the level of success in applying control actions and to provide a new control.

The emotional response from the emotional brain will appear when input of stimuli
from environments will put the state of the limbic system out of balance. This reaction is
learning- and adaptation-oriented to provide a higher level of robustness to a constantly
changing environment. In the sensorial switching station, which is the thalamus, stimulus
inputs are gathered and preprocessed. That sensory data are being properly distributed
to the amygdala or to the cerebral cortex (sensory and orbitofrontal cortex). A center for
the processing of emotional behavior is the amygdala, which communicates with all other
areas of the limbic system. It responds to emotional stimuli, since here, as LeDoux found in
1992 [45], the association between a stimulus and its emotional consequence has a place. The
stimulus in the learning process needs to be paired with a primary reinforcer (the reward
and penalty), which in the artificial BEL model can be freely chosen. The amygdala interacts
with the OFC, which evaluates the response of the amygdala and prevents inappropriate
responses based on the context. In the OFC, negative reinforcement signals are being
generated. These signals are used to inhibit and mitigate inappropriate signals generated
by the amygdala, when there is a difference between the expected prediction of the system
and the actual emotional signal received. OFC controls learning extinction in the amygdala
to give a proper emotional signal.

In the context of the control theory, using the mimicry of the cognitive functions of the
brain, introducing in the control system additional information from the feedback from the
control signal to the controller input and the reinforcement critic mechanism, allows for a
smooth transition from fixed-value control to the intelligent model-free BELBIC. During the
control system synthesis, the emotional signal and sensory input are considered as arbitrary
cost functions of signals such as control error, control signal or reference signal—depending
on the needs and expectations of the control system designer. It is worth mentioning that
finding an appropriate cost function is not a trivial task.
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One needs to remember that the BELBIC controller has basically two disadvantages.
The first one is similar to fuzzy and neural network controllers—it requires some initial
knowledge (expert knowledge) about the control system in its synthesis process. However,
unlike these controllers, here, just the functions of sensory input and reward (emotional)
signal need to be appropriately arbitrarily chosen by the control system designer. The
second drawback is, unfortunately, the difficult design of such controllers during UAV
flight, because there is no guarantee of full stability [46]. Therefore, in this article, it
was decided to use at the prototyping stage the closed-loop control system model with
controllers and plant models—although the BELBIC controller itself is of the “model-free”
type. The advantage of this approach is also the possibility of using bio-inspired heuristic
optimization methods for shaping transients in flight trajectories.

1.5. Main Contribution

It is proposed to extend the capabilities of the brain emotional learning based intelli-
gent controller in the field of autonomous UAV control, using metaheuristic optimization
techniques to conduct the most precise flight of the drone in a minimal energy manner.

The added value of this research is as follows:

• Synthesis of the autonomous drone control system with the BELBIC controller in the
proposed controller structures and model of UAV dynamics.

• Formulation of an optimization problem in order to optimize the gains of the BELBIC
controller in terms of minimizing the energy expenditure of the UAV flight for selected
optimization solvers.

• Evaluation of the performance of the proposed control system by means of numerical
experiments, including providing knowledge of whether the proposed method of
control can extend the flight time of the drone while increasing the precision of the
flight in relation to the fixed-value controller approach.

1.6. Study Outline

The paper is organized as follows: in Section 2, the synthesis of the autonomous
control system is presented. Furthermore, here, one may find details of the UAV model.
The BELBIC controller paradigm is explained. Section 3 is the most important one, since
here the proposed improvements to BELBIC are shown to obtain the minimum energy
control of the UAV. The optimization problem is outlined for the chosen sensory input
and emotional signal functions. Furthermore, this section contains the necessary details of
bio-inspired optimization algorithms used to find the solution of the optimization problem,
i.e., gains of BELBIC controllers to autonomously control the UAV. In Section 4, one may
find the representative results obtained from the numerical experiments carried out to
validate the minimum energy control of the UAV. Extensive performance analysis of the
BELBIC-based UAV autonomous control system is shown. Section 5 summarizes the article
and future research plans are described. The meaning of symbols used in the paper are
found in Table 1.

Table 1. Meaning of symbols used in the paper.

Symbol Meaning

a1, a3, a3 translational air drag coefficients
a4, a5, a6 aerodynamic friction coefficients

b thrust constant
ci, si cognitive, social vectors of PSO algorithm

d drag factor
e(t) control error
Fd translational drag force
FT thrust force generated by UAV rotors
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Table 1. Cont.

Symbol Meaning

g gravitational acceleration
I UAV symmetrical inertia matrix

IR rotor inertia
J performance index (cost function in optimization procedure)

k1, . . . , kn gains of BELBIC controller
l distance between the propulsion unit axis and the UAV’s center of the mass
m UAV mass
p vector of measured coordinates of UAV position

pi, vi position, velocity vectors of PSO algorithm
R rotation matrix
th flight time horizon

u(t) control signal (in time domain)
Vi amygdala i-th gain
Wi orbitofrontal i-th gain
w UAV output vector

xd, yd, zd reference, desired coordinates of UAV position
x, y, z measured position of the UAV
y(t) output signal
α, β learning coefficients for the amygdala and orbitofrontal cortex

φ1, φ2 cognition and social constants in PSO algorithm
φd, θd, ψd reference, desired pitch, roll, and yaw angles

Ω vector of measured UAV angles
BF body frame of reference
EF Earth frame of reference

τx, τy, τz roll, pitch, and yaw torques applied to the body of the UAV
Γ weight coefficient for the control error in J cost function
Ψ weight coefficient for the control signal in J cost function
λ inertia weight in PSO algorithm

2. Control System Synthesis

2.1. Autonomous Control of the UAV

Let us consider the autonomous control system of a quadrotor UAV from Figure 2,
where four input signals are enough to stabilize all of the drone’s six degrees of freedom
(expressed by position and orientation vectors in 3D space) and to provide precise tracking
of the predefined drone flight path. It is possible, since there are two control loops: (a) posi-
tion control (outer, slower) and (b) attitude control (inner, faster). In this architecture, input
signals may be written as a reference vector:

v =
[
xd yd zd ψd

]T , (1)

where xd, yd, and zd reference the desired coordinates of UAV position in 3D, and ψd the
desired rotation around the z-axis. All four reference signals are defined according to the
Earth coordinate system {EF} (see Figure 3 for details).

To describe the UAV measured orientation and position in the 3D space during its
autonomous flight, two vectors are introduced. The first one, describing the UAV measured
position according to {EF}, is

p = [x, y, z]T , (2)

where x, y, and z are current coordinates of the UAV position in 3D.
The second vector used in the UAV output description is

Ω = [ϕ, θ, ψ]T (3)

for current orientation, where ϕ, θ, and ψ are the roll, pitch, and yaw measured angles,
respectively.
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On the base of Equations (2) and (3), the UAV output may be written as a following
vector:

w =
[
p Ω

]T
=
[
x y z ϕ θ ψ

]T . (4)

Often, first, second, and even third derivatives of a vector’s w elements are used in
struggling with UAV stabilization and for desired trajectory tracking. In this research, in
every moment of flight, one may use the comparison (difference) between corresponding
elements of v and w vectors—known as control errors. These control errors are used next
in BELBIC controllers to provide proper control actions, as well as to calculate the cost
function value in controller gains optimization in order to find minimum energy control of
the UAV—details in Section 3.

Figure 2. Block diagram for autonomous control of the UAV (thrust and torques ui for i = 1, . . . , 4 are
defined in Equation (15).

Figure 3. Reference frames related to the X4-flyer II simplified graphics. Left (4) and right (2)
propulsion units rotate clockwise, while the front (1) and rear (3) counterclockwise.

2.2. Quadrotor Model

Quadrotor UAVs are currently the most widely used multi-rotor drones. Therefore,
let us consider the nonlinear model of such a UAV dynamic, originally published in [47]
and adapted here with an additional translational drag effect. It is further assumed in
the research that the quadrotor UAV behaves like a rigid body with construction mass
accumulated to its geometric center, and it has four rotors with symmetrically distributed
propellers at each cross-type frame end.

Model of the UAV from Figure 3 is based on ‘+’ type layout configuration, where the
x-axis of the UAV’s local coordinate system (body frame–{BF}) coincides with the line
drawn from the back propulsion unit to the front one, the y-axis is perpendicular to the
right, and the z-axis is looking down according to the right-hand rule, respectively. These
axes conventions with regard to the observer’s coordinate system (Earth frame—{EF}) is
the so-called North–East–Down (NED). In the UAV control and measurements, conversions
between {BF} and {EF} are necessary. The rotation matrix R ∈ SO3 from {BF} to
{EF} is

RZYX(ψ, θ, ϕ) = RZ(ψ)RY(θ)RX(ϕ), (5)
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where RZ(ψ), RY(θ), and RX(ϕ), are Euler angle matrices as follows

RZ(ψ) =

⎡⎣cosψ −sinψ 0
sinψ cosψ 0

0 0 1

⎤⎦, (6)

RY(θ) =

⎡⎣ cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

⎤⎦, (7)

RX(ϕ) =

⎡⎣1 0 0
0 cosϕ −sinϕ
0 sinϕ cosϕ

⎤⎦. (8)

Using Equations (6)–(8), the matrix RZYX(ψ, θ, ϕ) from Equation (5) can be written as

RZYX(ψ, θ, ϕ) =

⎡⎣cψcθ cψsθsϕ − sψcϕ cψsθcϕ + sψsϕ
sψcθ sψsθsϕ + cψcϕ sψsθcϕ − cψsϕ
−sθ cθsϕ cθcϕ

⎤⎦, (9)

where c = cos, and s = sin.
The mathematical model that describes the UAV position may be written according to

Newton’s second law of motion as

mp̈ = −Fg + FT − Fd, (10)

where m—UAV mass, Fg =
[
0 0 g

]T—gravitational force on Earth, g—gravitational

acceleration, and FT =
[
0 0 T

]T—thrust force generated by four rotors, and

T = b
4

∑
i=1

ω2
i , (11)

where b—thrust constant and ωi—rotational speed of the rotor i.
For UAV’s airframe, the translational drag force may be written as

Fd =
[
a1 ẋ a2ẏ a3ż

]T , (12)

where a1, a2, and a3—translational air drag coefficients.
It is now possible to rewrite the Equation (10) for the position of the UAV in the

following form:

p̈ = −g

⎡⎣0
0
1

⎤⎦+ R
b
m

4

∑
i=1

ω2
i

⎡⎣0
0
1

⎤⎦− 1
m

⎡⎣a1 ẋ
a2ẏ
a3ż

⎤⎦, (13)

while its orientation is considered according to Euler’s rotation equation:

IΩ̈ = −Ω̇ × IΩ̇ −
4

∑
i=1

IR

⎛⎝Ω̇ ×

⎡⎣0
0
1

⎤⎦⎞⎠ωi +

⎡⎣τx
τy
τz

⎤⎦+

⎡⎣a4 ϕ̇2

a5θ̇2

a6ψ̇2

⎤⎦, (14)

where I—symmetrical inertia matrix, IR—rotor inertia, τx, τy, and τz,—roll, pitch, and yaw
torques applied to the body of the vehicle, and a4, a5, and a6—aerodynamic friction coefficients.
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For the considered quadrotor UAV in ‘+’ type layout configuration, the control input
vector is ⎡⎢⎢⎣

u1
u2
u3
u4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
T
τx
τy
τz

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−b −b −b −b
0 −lb 0 lb
lb 0 −lb 0
d −d d −d

⎤⎥⎥⎦
⎡⎢⎢⎣

ω2
1

ω2
2

ω2
3

ω2
4

⎤⎥⎥⎦, (15)

where l—distance between the propulsion unit axis and the UAV’s center of the mass, and
d—drag factor.

After transformations, Equations (13) and (14) formulate the final description of the
UAV’s dynamics ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ = (sinϕsinψ + sinθcosϕcosψ) u1
m − a1

m ẋ

ÿ = (−sinϕcosψ + sinθcosϕsinψ) u1
m − a2

m ẏ

z̈ = −g + cosϕcosθ u1
m − a3

m ż

ϕ̈ = (
Iyy−Izz

Ixx
)θ̇ψ̇ − IR

Ixx
θ̇ωd +

u2
Ixx

− a4
Ixx

ϕ̇2

θ̈ = ( Izz−Ixx
Iyy

)ϕ̇ψ̇ + IR
Iyy

ϕ̇ωd +
u3
Iyy

− a5
Iyy

θ̇2

ψ̈ = (
Ixx−Iyy

Izz
)ϕ̇φ̇ + u4

Izz
− a6

Izz
ψ̇2

, (16)

where Ixx, Iyy, and Izz—inertias on the main diagonal of the matrix I, and

ωd = ω2 + ω4 − ω1 − ω3. (17)

2.3. BELBIC Controller Design

Let us consider the BELBIC controller structure illustrated in Figure 4, introduced by
Lucas Caro in [32], where he adjusted Moren and Balkenius’s computational model of emo-
tional learning in the amygdala (so-called BEL model) [29] to create a feedback mechanism
in the closed-loop control system with Sensory Input (SI) function and Emotional Signal
(ES) generator—both need to be defined by the user. Since the amygdala is responsible
for reinforcement and the orbitofrontal cortex for penalty, one needs to know that the
amygdala will never unlearn the emotional response once learned; thus, the orbitofrontal
cortex’s role is to inhibit the inappropriate response of the BELBIC controller. The BELBIC,
here, is more a control paradigm than a typical controller with fixed structure, but even
with this flexibility in the selection of SI and ES, it always operates on two inputs (SI and
ES) and one model output (MO), defined as

MO = ∑
i

Ai − ∑
i

OCi, (18)

where i—number of sensory inputs.
From Equation (18), the difference between the provocative amygdala outputs (Ai)

and the prohibitive orbitofrontal cortex outputs (OCi) is calculated. The Ai and OCi are
defined as follows [48]:

Ai = ViSIi, (19)

OCi = Wi × SIi, (20)

where Vi, Wi—weight parameters (the amygdala and orbitofrontal gains), and SIi is the
i-th sensory input. During control, the weights Wi, Vi are updated according to the
following formulas:

ΔVi = α × SIi × max

(
0, ES − ∑

i
Ai

)
, (21)

ΔWi = β × SIi × (MO − ES), (22)
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where α, β—learning coefficients for the amygdala and orbitofrontal cortex (usually be-
tween 0 and 1).

The last important equation in the BEBLIC model is the one for the Ath signal from
the thalamus to the amygdala:

Ath = Vth × max(SIi), (23)

where Vth—weight parameter.

Figure 4. (a) BEL computational model, (b) SISO closed-loop control system with BELBIC controller.

3. Minimum Energy Control of Quadrotor UAV

3.1. Optimization Problem

By introducing the structure of the BELBIC controller from Figure 4 into the au-
tonomous drone control system of Figure 2, the aim is to obtain: (a) stabilization of the
system from Figure 5 during UAV flight and (b) to provide minimum energy control. Since,
the BELBIC controller is considered as ‘an action selection methodology’ [49], the ES and
SI signals need to be properly chosen by the designer. In general, these are functions
defined as:

ES = G(e, u, r, y), (24)

SI = F (e, u, r, y), (25)

where e—control error, u—control signal, r—reference signal, and y—output signal.
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Figure 5. MATLAB-based block diagram of the UAV autonomous control system with BELBIC
controllers (inputs: UAV’s desired position in xd, yd, and zd axis and desired yaw angle ψd; while
output: UAV state vector of current position and orientation).

Since UAV autonomous control systems use at most six separate controllers (usually
PD or PID type), it is proposed to use inner and outer control loops (see Figure 5), following
functions ESl and SIl for l = {1, . . . , 6} in their BELBIC counterparts

ESl = kl1el(t) + kl2

∫ th

0
el(t)dt + kl3

d
dt

el(t), (26)

SIl = kl4el(t) + kl5
d
dt

el(t), (27)

where th—time horizon of control, and kl1, . . . , kl5, are positive gains of ESl and SIl functions
of l-th PID- and PD-type controllers based on el(t) tracking error.

Based on its high flexibility, the PID-type controller was chosen for ESi, and since
UAV as an unstable plant is often approximated by a linear double-integrating term that
can be counteracted by the derivative term of simple PD-type controller, this structure
was proposed for SIi. Furthermore, according to the control theory, in the autonomous
control system of the UAV, in Formulas (26) and (27), gains kl1 and kl4 adjust the UAV
settling time, gains kl3 and kl5 reduce the overshoot, and kl2 determines the steady-state
error, respectively.

The ES function reflects information about the deterioration of the control quality,
i.e., when l-th control error increases, it mimics a negative emotion in BEL. Thus, the
l-th BELBIC controller will work via the l-th SI according to the Algorithm 1 to provide
proper control signal for the UAV. To force the BELBIC to work more energy efficiently and
precisely, optimization mechanisms can be easily adapted. Accordingly, the optimization
task for minimum energy control of the UAV is formulated as follows:
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• Goal: Ensure the smallest tracking errors during the UAV flight:

ep = pd − p, (28)

eψ = ψd − ψ, (29)

at lowest possible energy effort.
• Cost function (performance index) J(t):

J(t) =
∫ th

0
(Γ|e(t)|+ Ψ|u(t)|)dt, (30)

where Γ and Ψ—weight coefficients for the control error and the control signal of a
particular controller, respectively.

• Optimization problem formalism:

min
k1,k2,...,kN

J(t) =
∫ th

0 (Γ|e(t)|+ Ψ|u(t)|)dt,

s.t.

0 ≤ k1 ≤ kmax
1

0 ≤ k2 ≤ kmax
2

. . .
0 ≤ kN ≤ kmax

N

(31)

where kmax
1 , kmax

2 , . . . , and kmax
N are predefined by designer upper bounds of ranges where

the optimizer explores the search space for optimal gains of N controller parameters.

Gains k1 and k5 for each of the BELBIC controllers may be found using bio-inspired
optimization algorithms.

Remark 1. Γ and Ψ are used to profile the UAV output signals in a meaning of energy efficient
flights, that is, penalizing by using larger values of Ψ will cause more smooth flight characteristics,
avoiding large control signal and aggressive controller work, and thus the flight time will be extended.

Algorithm 1 The BELBIC-inspired algorithm for UAV control

1: Variables initialization Set: Vi = 0, Vth = 0, W = 0, for i = 0,. . .,6
2: Define ESi = cost f unction, for i = 0,. . .,6
3: for Each iteration t = ts do
4: for Each control inputs l do

5: Compute ESl = kl1el(t) +kl2
∫ th

0 el(t)dt + kl3
d
dt el(t)

6: Compute SIl = kl4el(t) + kl5
d
dt el(t)

7: Compute Al = VlSIl
8: Compute OCl = WlSIl
9: Compute Ath = Vthmax(SIl)

10: Compute MOl
11: Update Vl
12: Update Wl
13: Update Vth
14: end for
15: end for

3.2. Bio-Inspired Optimization Algorithms

In optimization tasks, where an approach based on a control system model is possible,
nature- and bio-inspired algorithms have been used successfully for years [20]. By means
of numerical calculations, they allow the J index to be calculated for a large number of
combinations of controller gains. On the basis of the state of the art, it was decided to
use two: the “classical”, well-known particle swarm optimization (PSO) and the “rising”
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cuttlefish algorithm (CFA). In this paper, only the mathematical formulas for both are
presented. For more details, see [50,51].

3.2.1. Particle Swarm Optimization

The PSO algorithm mimics the behavior of a group of animals that live in flocks and
communicate with each other, e.g., to find the best food supplies. Each particle in the
optimization method is treated as a set of controller gains. The PSO algorithm starts with
an initial set of particles and, by the movement of these particles, explores the constrained
search space of size m. The movement of each i particle in the subsequent iteration of the
PSO algorithm is determined by its individual and social behavior. The velocity of the
particle vi = [vi1, vi2, . . . , vim]

T and its position xi = [xi1, xi2, . . . , xim]
T in the t iteration can

be updated according to the following equations

vi(t + 1) = vi(t) + ϕ1ci(t) + ϕ2si(t), (32)

xi(t + 1) = xi(t) + vi(t + 1), (33)

where φ1 and φ2 are cognition and social constants to explore the search space. They are
usually chosen as values from 0 to 2 to establish the proper balance between cognitive (ci)
and social (si) oriented exploration. Vectors ci = [ci1, ci2, . . . , cim]

T and si = [si1, si2, . . . , sim]
T

are defined as
ci(t) = pi(t)− xi(t), (34)

si(t) = gi(t)− xi(t), (35)

where the vector pi = [pi1, pi2, . . . , pim]
T is the best position obtained from the particle i

until the current iteration t, and the vector gi = [gi1, gi2, . . . , gim]
T is the best position of all

particles in iteration t.
In 2001, Eberhart and Kennedy proposed in [50] the modification of their PSO algo-

rithm (32)–(35) by introducing an additional inertia weight λ for a better convergence of
the algorithm to the optimum; thus, in the equation:

vi(t + 1) = λ(t)vi(t) + ϕ1ci(t) + ϕ2si(t) (36)

higher values of λ provide more social (global) exploration and smaller, more cognitive
(local) exploration in the available search space, respectively.

3.2.2. Cuttlefish Algorithm

Cuttlefish, in danger, can very quickly change color to be as invisible as possible in the
water environment or, contrarily, become stunningly visible. This behavior is mimicked in
the cuttlefish optimization algorithm, where the color change mechanism (based on the
reflection and visibility processes) is used to solve optimization tasks. In nature, all the colors
and patterns on the skin of cuttlefish come from reflected light from different layers of cells,
which are stacked together. These mirror-like cells are chromatophores, iridophores, and
leucophores. In the first effect, reflection, light can be reflected from cells in six combinations.
In the second effect, which is visibility, the cuttlefish try to mimic the patterns of their water
environment. In CFA, that is the difference between the best and current solutions of the
optimization task. Using the effects of reflection and visibility, as well as the division of cells
into four groups, the CFA algorithm (Figure 6) explores the search space of cells. Groups no.
1 and 4 are used for the local search, while no. 2 and 3 are used for the global search. All
groups share the best solution and work independently. In the case considered in the article,
each cell represents a particular combination of controller gains, and a new solution (newP)
is calculated in every iteration t of the CFA algorithm according to the following equation

newP = re f lection + visibility. (37)
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Figure 6. The CFA algorithm [51].

To start the CFA algorithm (Figure 6), a population P (cells) of N initial solutions
P = cells = {points1, points2, . . . pointsN} is spread over d size search space at random
positions (points) using:

P[i].points[j] = random · (upperLimit − lowerLimit) + lowerLimit
i = 1, 2, . . . , N; j = 1, 2, . . . , d

, (38)

where upperLimit and lowerLimit are the upper and lower limits in the problem domain,
since random is a value between 0 and 1.

In the CFA algorithm, a single cell in the population is represented by pointsi. It is
also associated with two values: fitness and a vector of continuous values of dimension d.
Best keeps the best solution, while AVBest stores the calculated average of Points. These
metrics are used in calculations performed in each of six cases for four cell groups:
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• Cases no. 1 and 2 for Group G1:

Re f lection[j] = R · G1[i].Points[j] (39)

Visibility[j] = V · (Best.Points[j]− G1[i].Points[j]) (40)

• Cases no. 3 and 4 for Group G2:

Re f lection[j] = R · Best.Points[j] (41)

Visibility[j] = V · (Best.Points[j]− G2[i].Points[j]) (42)

• Case 5 for Group G3:

Re f lection[j] = R · Best.Points[j] (43)

Visibility[j] = V · (Best.Points[j]− AVBest) (44)

• Case 6 for Group G4—Equation (38), where i—i-th cell of group G1, Points[j]—j-th
point of i-th cell, R—degree of reflection, and V—degree of visibility.

The values of R and V are calculated according to the following equations

R = random · (r1 − r2) + r2, (45)

V = random · (v1 − v2) + v2, (46)

where random()—function to generate random numbers between (0, 1), while r1, r2, v1,
and v2—constant values that determine the stretch interval of the chromatophores cells
and the visibility degree interval of the final view of the pattern, respectively.

4. Simulation Tests

4.1. Simulation Environment

For the performance analysis of the proposed control system, due to the number of
repetitions necessary to determine the best gains of particular BELBIC controllers, the
possibilities of computer simulation were used. For this purpose, a drone model widely
recognized and validated by the UAV community was selected, that is, the X4-flyer II
proposed by Paul Pounds et al. in [52]. This quadrotor UAV was built at the Australian
National University. Its important construction and dynamical parameters are summarized
in Table 2. The X4-flyer II model, as well as BELBIC controllers, were implemented with
the use of open source software, i.e., Robotics Toolbox created by Peter Corke et al. [53] for
MATLAB/Simulink. In this environment, elements of Brain Emotional Learning Toolbox [54]
were also implemented and optimization algorithms (PSO and CFA) were integrated.

Table 2. Parameters of the UAV quadrotor X4-flyer II (in SI units) [52,53].

Parameter Symbol & Value

UAV mass m = 4
Rotational inertia matrix J = diag([Ixx Iyy Izz]), Ixx = Iyy = 0.082, Izz = 0.149

Height of rotors above CoG h = 0.007
Length of flyer arms d = 0.315

Number of blades per rotor n = 2
Rotor radius r = 0.165
Blade chord c = 0.018

Flapping hinge offset e = 0.0
Rotor blade mass Mb = 0.005

Estimated hub clamp mass Mc = 0.010
Blade root clamp displacement ec = 0.004

Non-dim. thrust coefficient Ct = 0.0048
Lift slope gradient a = 5.5
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All simulation tests were carried out using a Dell Inspiron 3543 laptop, with an Intel
Core i5-5200U CPU@2.2 GHz processor, with 8 GB RAM memory under the 64-bit Windows
8.1 operating system. For the calculations, the MATLAB/Simulink 2016a was used.

The selected, most important, representative, and interesting research results regarding
the tuning process of BELBIC controllers to provide minimum energy control are presented
in the following subsections.

4.2. Experiment No. 1: Preliminary Adjustment

The autonomous control system of the UAV in Figure 2 is considered with the dy-
namical model of X4-flyer II and the parameters of Table 2. Nominal PD-type controllers
from [53] are used to stabilize angles φd, θd, and ψd, while the movement of the drone in x,
y, and z are controlled by the BELBIC type. In the preliminary stage of research, the trial-
and-error tuning approach is usually the first choice. This approach allows one to acquire
‘expert knowledge’ and to know the useful gain ranges. One needs to remember that in the
case of each BELBIC controller (Equations (26) and (27)), there are ten different parameters
that need to be tuned, i.e., K1–K5, α, β, Vi, Wi, and Vth, and this is not a trivial task.

The results of an interesting example of BELBIC position controllers’ pre-tuning are
shown in Figure 7 and on the AeroLab website (animated, recorded flight trajectories from
the simulation tests discussed in the article are available at http://www.uav.put.poznan.pl
and https://youtu.be/iVDeJbMYlQQ, accessed on 20 May 2022). They were obtained in
the mission, where the UAV starts from the initial position (−1, 0, 0), rises to 1.5 m, and
flies to draw a square-shaped shape within the time horizon of 20 s. For the X and Y axes,
the same controller gains were used due to the symmetric construction of the drone.

With respect to Figure 7, an interesting effect is visible. The drone accelerates rapidly,
but there are overshoots and it takes a long time to obtain the expected precision around the
control waypoints. It can be seen that BELBIC-type position controllers are over-reactive
and force a change in the altitude of the drone instead of its tilt only when moving forward
and sideways.

4.3. Experiment No. 2: PSO-Based Gains Selection vs. Path-Tracking Precision
(Altitude Controller)

In experiment no. 2, toward minimum energy control in the problem of proper gains
selection, research was conducted to give the answer to the question: How do the gains of the
designed BELBIC controllers determine their performance in reference path tracking?

It was decided to implement the following modifications regarding the configuration
of the setup from Experiment No. 1:

• Only the BELBIC-type altitude controller is analyzed, the rest are native PD-type
controllers with the gains from [53].

• In the reference trajectory, a circle was introduced in place of the square shape (avoid-
ing sudden moments of position switching at this stage of gains selection).

• During flight, the UAV aims to rotate simultaneously around the Z-axis of {EF}.
• The integral of the absolute error (IAE) was introduced as a measure of flight perfor-

mance assessment:

IAE =
∫ th

0
|e(t)|dt, (47)

• The PSO algorithm was used to search for the optimal gains of the BELBIC controller
according to Table 3.

Table 3. Parameters for tuning the BELBIC-type altitude controller using the PSO algorithm.

K1 K2 K3 K4 K5 α β V Vth A

min 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 1 0.001
max 700 700 700 100 100 0.1 0.1 const const const
best 699.99 0.01 256.62 32.31 11.28 0.09 0.01 const const const
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Figure 7. Experiment No. 1: An exemplary test of the effectiveness of square-shaped path tracking
for the X-4 Flyer II drone model in a system with BELBIC controllers tuned by trial and error:
(a–c) reference (desired) and actual (measured) positions of the UAV on the X, Y, and Z axes, (d) flight
trajectory in 3D.

In the search for optimal gains, a swarm consisting of 20 particles was used. The
values of K1, K2, and K3 were changed with a step equal to 50, and the PSO algorithm was
repeated three times in each case to average the IAE value obtained for the best result, as
shown in Figure 8, where the function IAE = f (Ki) (for i = 1, . . . , 3) is presented.

In experiment No. 2, the PSO algorithm was initialized 45 times, and 289,660 com-
binations of the BELBIC altitude controller gains were checked. As shown in Figure 8,
good performance close to optimal solution is obtained by the limits of Ki equal to 400.
Since in BELBIC we are based on the PID structure in ES, higher actuation (through K1 and
K3) is favored by a better response of the controller (see Figure 9), and theoretically better
precision can be achieved by proper selection of other parameters. However, it should be
remembered that in the closed-loop autonomous control system of the UAV, the control
signal of the BELBIC controller is saturated to protect the propulsion units, and a high
value of the control signal will simply be saturated.

For further synthesis and performance analysis of the BELBIC-based energy-saving
control, a maximum gains limit of 400 was selected. For this limit, the results obtained
with an exemplary combination of gains from Table 4 are shown in Figure 10, where the
altitude controller works dynamically and generates just minimal overshoot, which in the
considered case is still desirable, since in subsequent experiments additional restrictions in
the form of a penalty function will be imposed on the control signal, due to which it will be
possible to slow down the controller’s emotional response (and thus reject the overshoot)
to ensure the expected tracking precision.
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Figure 8. Experiment No. 2: Function IAE = f (Ki) (for i = 1, . . . , 3).

Figure 9. Experiment No. 2: Function IAE = f (K1, K2, K3) for gains limited to the value of 400 and
α = 0.1, β = 0.01.

Table 4. Parameters of the BELBIC altitude controller used in Experiment No. 2.

K1 K2 K3 K4 K5 α β V Vth A

value 399.9993 182.3310 31.4309 11.3261 0.0999 0.01 0.01 1 1 0.001
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Figure 10. Experiment No. 2: Test of the performance of circle-shaped path tracking for the X-4
Flyer II drone model in a system with BELBIC altitude controller: (a) reference (desired) and actual
(measured) positions of the UAV in the Z axes and (b) flight trajectory in 3D.

4.4. Experiment No. 3: Gain Tuning for Minimum Energy Control of the UAV
(Altitude Controller)

In the next experiment considered, attention was focused on the first 5 s of the UAV
flight, where how savings in generating the control signal affect the quality of the reference
path tracking was analyzed. In the optimization process, the smallest value of the cost
function of the Equation (30) was searched by increasing the value Ψ (see Table 5), which is
a penalty for too large control signals. To be able to compare the results of the experiments,
the integral of absolute error (IAE) is analyzed as a measure of control precision and the
integral of absolute of the control signal (IAU) as the equivalent of the energy expenditure
in this (altitude control) part of the drone control system. Analyzing the results shown in
Figure 11, it can be seen that, depending on the expectations expressed by the value of Ψ,
using the optimization algorithm, one can search for the gains of the altitude controller
that will provide a slower flight profile (with a smoother shape), which is desirable, for
example, during video recordings with the use of a drone. When comparing the results
for Ψ = 0 and Ψ = 0.005, there is a difference in the output signal response by 0.2 s (IAE
deteriorated by 14.19%), and energy expenditure is reduced by 32.16%. In the case of the
highest difference in the value of Ψ, the obtained value of IAU is double. It seems intuitive
to introduce a mechanism that allows controllers to modify/switch gains depending on the
needs or type of particular drone mission (agile maneuvers, cargo, filming, etc.).

Table 5. Results of the tuning of the BELBIC-type altitude controller using the PSO algorithm (Ψ = var,
Γ = 1).

K1 K2 K3 K4 K5 α β IAE IAU

min 0.01 0.01 0.01 0.01 0.01 0.01 0.001 — —
max 400 5 200 100 50 1.0 0.01 — —

Ψ = 0.000 399.99 0.06 156.55 91.76 30.15 0.998 0.001 0.895 167.0
Ψ = 0.001 298.49 0.01 159.35 47.79 19.08 0.038 0.001 0.901 164.0
Ψ = 0.002 264.44 0.01 185.18 46.65 20.19 0.023 0.001 0.937 138.0
Ψ = 0.003 259.92 0.01 199.99 44.99 20.46 0.020 0.001 0.959 128.6
Ψ = 0.004 209.15 0.02 162.11 46.42 22.65 0.046 0.003 1.003 126.8
Ψ = 0.005 215.31 0.01 199.99 46.40 24.08 0.012 0.001 1.022 113.3
Ψ = 0.006 197.87 0.01 199.99 44.99 25.74 0.010 0.002 1.061 105.6
Ψ = 0.007 263.42 0.01 112.22 41.01 28.31 0.999 0.001 1.083 108.1
Ψ = 0.008 121.44 4.70 86.730 85.22 38.19 0.984 0.010 1.138 101.7
Ψ = 0.009 157.10 0.02 187.15 33.15 25.29 0.010 0.004 1.251 89.93

504



Energies 2022, 15, 7566

Figure 11. Experiment No. 3: (a) Z = f (t) [m] of the X-4 Flyer II drone model in a system with
BELBIC altitude controller in 5 s flight time horizon for Ψ = var, and Γ = 1, (b) IAE and IAU values.

4.5. Experiment No. 4: Performance Evaluation of Position Controllers

A similar experiment was conducted as before for the square-shaped flight profile
with position controllers in a time horizon of 10 s. The most important obtained results are
summarized in Table 6. It can be noticed that the use of the CFA algorithm to optimize the
PID controller gains improved the flight performance in the Z-axis, which in turn had a
positive effect on the precision of the drone positioning in the X and Y axes, with a slightly
worse tracking of ψ changes. The last interesting case is the fourth one in the Table 6, where
the minimum energy control of the yaw angle was obtained with the imposed penalty for
the too large control signal of the BELBIC-type controller. A slight slowing down of the
rotation angle changes interferes with the results for the X and Y axes. The slower turning
of the aircraft minimally deteriorates the tracking (higher IAE value recorded).

Table 6. Results obtained for the square-shaped flight profile with different position controllers in a
time horizon of 10 s.

Ψ Value Z-Axis ψ-Axis X, Y Axes IAE (Z) IAE (ψ) IAE (X,Y)

0 PD PD PD and PD 2.608 1.642 9.170
0 PID (PSO) PD PD and PD (PSO) 1.222 1.801 3.751
0 PID (CFA) PD PD and PD (PSO) 1.091 1.838 3.519

3 × 10−3 PID (CFA) BELBIC (PSO) PD and PD (PSO) 1.111 1.810 4.032

5. Conclusions

The minimum energy fine-tuning control methodology is proposed for the predefined
quadrotor UAV path-tracking task. The autonomous cascade control system with the
nonlinear six DoF mathematical model of the X4-flyer II drone and neurobiologically
inspired intelligent controller is used to find the best possible gains that will provide a
good tracking quality with the lowest possible control signal effort. The synthesis of the
control system is presented for the chosen BELBIC-type controller structures, bio-inspired
optimizers, cost functions, and gains ranges (on the basis of expert knowledge). The
performance analysis of the proposed control method is validated on two simple flight
missions. By means of numerical experiments, new knowledge is provided, i.e., how
long for altitude and X, Y axes control tasks; it is possible to extend the flight time of
an unmanned aircraft (while increasing the precision of tracking) using brain emotional
learning based intelligent controllers in the proposed shape. path tracking task

The results presented from five selected experiments illustrate the potential of the
proposed fine-tuning BELBIC-based control methodology to be applied to very demanding
hardware applications with limited energy sources, such as the one that is the next target
for real-world scenario controller applications in our fault-tolerant Falcon V5 drone, which
is a coaxial X8 quadrotor (details in [55]). It is also planned to verify the performance of the
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solution on our flapping-wing microdrones. Furthermore, in parallel, comparative studies
of the tracking quality of the proposed solution are conducted with the optimal regulators
based on the linear quadratic regulator (LQR), coefficient diagram method (CDM), dynamic
pole motion (DPM) approach [56], and State-Dependent Riccati Equation (SDRE) technique.
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Abbreviations

The following abbreviations are used in this manuscript:

BEL Brain Emotional Learning
BELBIC Brain Emotional Learning Based Intelligent Controller
CDM Coefficient Diagram Method
CFA Cuttlefish Algorithm
CoG Center of Gravity
ENN Emotional Neural Network
IAE Integral of the Absolute Error
LQR Linear Quadratic Regulator
ES Emotional Signal
MO Model Output
MPC Model Predictive Control
MR Magneto-Rheological (Damper)
OFC Orbitofrontal Cortex
PD Proportional–Derivative (Controller)
PID Proportional–Integral–Derivative (Controller)
PSO Particle Swarm Optimization
SI Sensory Input
SISO Single-Input Single-Output
SMC Sliding Mode Control
SNN Sensory Neural Network
SDRE State-Dependent Riccati Equation
UAV Unmanned Aerial Vehicle
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