
Topic Reprint

Design, Simulation and  
New Applications of 
Unmanned Aerial Vehicles 
Volume II

Edited by 

Andrzej Łukaszewicz, Wojciech Giernacki, Zbigniew Kulesza,  

Jaroslaw Alexander Pytka and Andriy Holovatyy

Published in Journals: Applied Sciences, Drones, 

Energies, Machines, Materials and Sensors

mdpi.com/topics



Design, Simulation and New
Applications of Unmanned
Aerial Vehicles—Volume II





Design, Simulation and New
Applications of Unmanned
Aerial Vehicles—Volume II

Editors

Andrzej Łukaszewicz

Wojciech Giernacki

Zbigniew Kulesza

Jaroslaw Alexander Pytka

Andriy Holovatyy

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Editors

Andrzej Łukaszewicz

Bialystok University of

Technology

Bialystok

Poland

Wojciech Giernacki

Poznan University of

Technology

Poznan

Poland

Zbigniew Kulesza

Bialystok University of

Technology

Bialystok

Poland

Jaroslaw Alexander Pytka

Lublin University of

Technology

Lublin

Poland

Andriy Holovatyy

Lviv Polytechnic National

University

Lviv

Ukraine

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Topic published online in the open access journals Applied Sciences

(ISSN 2076-3417), Drones (ISSN 2504-446X), Energies (ISSN 1996-1073), Machines (ISSN 2075-1702),

Materials (ISSN 1996-1944), and Sensors (ISSN 1424-8220) (available at: https://www.mdpi.com/

topics/UAV).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

Volume II

ISBN 978-3-7258-0979-0 (Hbk)

ISBN 978-3-7258-0980-6 (PDF)

doi.org/10.3390/books978-3-7258-0980-6

Set

ISBN 978-3-7258-0975-2 (Hbk)

ISBN 978-3-7258-0976-9 (PDF)

© 2024 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license.



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chih-Chen Yih and Shih-Jeh Wu

Sliding Mode Path following and Control Allocation of a Tilt-Rotor Quadcopter
Reprinted from: Appl. Sci. 2022, 12, 11088, doi:10.3390/app122111088 . . . . . . . . . . . . . . . . 1

Gesang Nugroho, Yoshua Dwiyanson Hutagaol and Galih Zuliardiansyah

Aerodynamic Performance Analysis of VTOL Arm Configurations of a VTOL Plane UAV Using
a Computational Fluid Dynamics Simulation
Reprinted from: Drones 2022, 6, 392, doi:10.3390/drones6120392 . . . . . . . . . . . . . . . . . . . 18

Krzysztof Mateja, Wojciech Skarka and Aleksandra Drygała

Efficiency Decreases in a Laminated Solar Cell Developed for a UAV
Reprinted from: Materials 2022, 15, 8774, doi:10.3390/ma15248774 . . . . . . . . . . . . . . . . . . 45

Zhouyu Qu and Andreas Willig

Sensorless and Coordination-Free Lane Switching on a Drone Road Segment—A
Simulation Study
Reprinted from: Drones 2022, 6, 411, doi:10.3390/drones6120411 . . . . . . . . . . . . . . . . . . . 61

Nurbanu Güzey

RF Source Localization Using Multiple UAVs through a Novel Geometrical RSSI Approach
Reprinted from: Drones 2022, 6, 417, doi:10.3390/drones6120417 . . . . . . . . . . . . . . . . . . . 85

Kuo-Hsin Tseng, Tsun-Hua Yang, Pei-Yuan Chen, Hwa Chien, Chi-Farn Chen

and Yi-Chan Hung

Exploring the Feasibility of Mitigating Flood Hazards by an Existing Pond System in
Taoyuan, Taiwan
Reprinted from: Drones 2023, 7, 1, doi:10.3390/drones7010001 . . . . . . . . . . . . . . . . . . . . 97

Shuai Zhou, Changcheng Yang, Zhenning Su, Ping Yu and Jian Jiao

An Aeromagnetic Compensation Algorithm Based on Radial Basis Function Artificial
Neural Network
Reprinted from: Appl. Sci. 2023, 13, 136, doi:10.3390/app13010136 . . . . . . . . . . . . . . . . . . 117

Krzysztof Mateja, Wojciech Skarka, Magdalena Peciak, Roman Niestrój and Maik Gude

Energy Autonomy Simulation Model of Solar Powered UAV
Reprinted from: Energies 2023, 16, 479, doi:10.3390/en16010479 . . . . . . . . . . . . . . . . . . . . 136

Samuel Teague and Javaan Chahl

Strapdown Celestial Attitude Estimation from Long Exposure Images for UAV Navigation
Reprinted from: Drones 2023, 7, 52, doi:10.3390/drones7010052 . . . . . . . . . . . . . . . . . . . . 167

Danyang Zhang, Zhaolong Xuan, Yang Zhang, Jiangyi Yao, Xi Li and Xiongwei Li

Path Planning of Unmanned Aerial Vehicle in Complex Environments Based on State-Detection
Twin Delayed Deep Deterministic Policy Gradient
Reprinted from: Machines 2023, 11, 108, doi:10.3390/machines11010108 . . . . . . . . . . . . . . . 184

Jun Wei, Yong-Bai Sha, Xin-Yu Hu, Zhe Cao, De-Ping Chen, Da Zhou and Yan-Li Chen

Research on Aerodynamic Characteristics of Trans-Media Vehicles Entering and Exiting the
Water in Still Water and Wave Environments
Reprinted from: Drones 2023, 7, 69, doi:10.3390/drones7020069 . . . . . . . . . . . . . . . . . . . . 202

v



Samia Shahrin Ahmed Snikdha and Shih-Hsiung Chen

A Computational Investigation of the Hover Mechanism of an Innovated Disc-Shaped
VTOL UAV
Reprinted from: Drones 2023, 7, 105, doi:10.3390/drones7020105 . . . . . . . . . . . . . . . . . . . 239

J. de Curtò, I. de Zarzà and Carlos T. Calafate

Semantic Scene Understanding with Large Language Models on Unmanned Aerial Vehicles
Reprinted from: Drones 2023, 7, 114, doi:10.3390/drones7020114 . . . . . . . . . . . . . . . . . . . 254

Wenhao Qiu, Gang Wang and Wenjing Zhang

Acoustic SLAM Based on the Direction-of-Arrival and the Direct-to-Reverberant Energy Ratio
Reprinted from: Drones 2023, 7, 120, doi:10.3390/drones7020120 . . . . . . . . . . . . . . . . . . . 269

Violet Ochieng’, Ivan Rwomushana, George Ong’amo, Paul Ndegwa, Solomon Kamau,

Fernadis Makale, et al.

Optimum Flight Height for the Control of Desert Locusts Using Unmanned Aerial
Vehicles (UAV)
Reprinted from: Drones 2023, 7, 233, doi:10.3390/drones7040233 . . . . . . . . . . . . . . . . . . . 293

Hang Xu, Lili Yi, Chuanyong Li, Yuemei Sun, Liangchen Hou, Jingbo Bai, et al.

Design and Experiment of Ecological Plant Protection UAV Based on Ozonated Water Spraying
Reprinted from: Drones 2023, 7, 291, doi:10.3390/drones7050291 . . . . . . . . . . . . . . . . . . . 305

Filip Škultéty, Erik Bujna, Michal Janovec and Branislav Kandera

Noise Impact Assessment of UAS Operation in Urbanised Areas: Field Measurements
and a Simulation
Reprinted from: Drones 2023, 7, 314, doi:10.3390/drones7050314 . . . . . . . . . . . . . . . . . . . 327

Wangwang Zhang, Bin Xu, Haitao Zhang, Changle Xiang, Wei Fan and Zhiran Zhao

Analysis of Aerodynamic Characteristics of Propeller Systems Based on Martian
Atmospheric Environment
Reprinted from: Drones 2023, 7, 397, doi:10.3390/drones7060397 . . . . . . . . . . . . . . . . . . . 343
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Sliding Mode Path following and Control Allocation of a
Tilt-Rotor Quadcopter

Chih-Chen Yih * and Shih-Jeh Wu

Department of Mechanical & Automation Engineering, I-Shou University, Kaohsiung 84001, Taiwan
* Correspondence: ccyih@isu.edu.tw; Tel.: +886-7-657-7711 (ext. 3229)

Abstract: A tilt-rotor quadcopter (TRQ) equipped with four tilt-rotors is more agile than its under-
actuated counterpart and can fly at any path while maintaining the desired attitude. To take advantage
of this additional control capability and enhance the quadrotor system’s robustness and capability, we
designed two sliding mode controls (SMCs): the typical SMC exploits the properties of the rotational
dynamics, and the modified SMC avoids undesired chattering. Our simulation studies show that
the proposed SMC scheme can follow the planned flight path and keep the desired attitude in the
presence of variable deviations and external perturbations. We demonstrate from the Lyapunov
stability theorem that the proposed control scheme can guarantee the asymptotic stability of the TRQ
in terms of position and attitude following via control allocation.

Keywords: tilt-rotor quadcopter (TRQ); sliding mode control (SMC); control allocation; path following

1. Introduction

Due to advancements in microprocessors and sensors, quadrotors have recently received
much attention, playing an increasingly important role in unmanned aerial vehicles (UAVs).
Now, quadrotors can easily hover indoors or outdoors and fly fast with global positioning
system (GPS) devices or tiny cameras. Generally, changing the velocities of rotors [1,2] can
generate lift and steering torque to control the attitude and position of the quadcopter.

Scholars and engineers have proposed several methods to solve the control problem
for a quadrotor. These methods can be divided into: PID control [3–5], feedback lineariza-
tion [6], optimal control [7], back-stepping [8,9], SMC [10–13], robust control [14], neural
control [15,16], and nonlinear control [17]. To handle uncertainty systematically, researchers
have extensively applied SMCs to address the robust control problem of quadrotors.

The super-twist control algorithm [18–20], a second-order SMC, has been studied to
alleviate harmful chattering and maintain the robust capability of first-order SMCs. The
studies in [21–23] demonstrate the stability and finite-time convergence of the super-twist
control algorithm for single-variable systems through a Lyapunov stability analysis. For
instance, Xu et al. [11] studied an adaptive terminal sliding mode for a quadrotor attitude
control with specified capability and input saturation. In addition, Besnard et al. [12]
proposed an observer-based SMC to address model uncertainty and wind perturbation.
The recent work in [24,25] introduced the perturbation observer incorporating enhanced
SMC for application in quadrotor UAV control.

Recently, several control methods have been proposed to solve the localization or
following problem of under-actuated quadrotors, but these methods are still insufficient
and have many shortcomings. For example, if the actuator fails or the rotor is damaged,
the quadrotor will crash due to a lack of actuator redundancy to restore attitude and
position. Tilt-rotor quadrotors [26] can increase the degree of control freedom and provide
control redundancy. Compared with under-actuated quadrotors, full-drive quadrotors
have more flexibility than under-actuated quadrotors and have recently attracted the
research community’s attention. Ryll et al. [27] proposed a modeling approach for an

Appl. Sci. 2022, 12, 11088. https://doi.org/10.3390/app122111088 https://www.mdpi.com/journal/applsci1



Appl. Sci. 2022, 12, 11088

overdrive quadrotor UAV. They provide a dynamic linearization control that uses higher-
order derivatives of the measured output. Hua et al. [28] studied the control of vertical
take-off and landing (VTOL) vehicles with bank thrust angle limitation. The proposed
control can achieve the primary and secondary goals of asymptotically stabilizing position
and direction. Recently, Rashad et al. [29] reviewed various UAV designs with fully actuated
multi-rotors, in the literature. They introduced the control allocation matrix to categorize
the proposed hardware framework and discussed the criteria for optimizing the UAV
design. Zheng et al. [30] introduced the hardware design of an experimental tilt-rotor drone
that uses linear servo motors to control the tilt mechanism. The authors also implemented
and tested their PD-based translation and attitude control scheme on the fully actuated
prototype quadrotor. To control the hovering and fixed-wing flight of a tilt-rotor UAV and
the transition between them, Willis et al. [31] proposed a control scheme, which includes a
low-level angular rate controller and a variable mixer, and an LQR following control

We propose a TRQ model based on translational and rotational dynamics, perturbation,
and model uncertainty. Note that the SMC presented for an under-actuated quadrotor
cannot be directly applied to a tilt-rotor quadrotor. We propose an SMC scheme with
control allocation, exploiting the structural features of rotational dynamics and avoiding
chattering in translational dynamics to further enhance the robustness and capability of
TRQ systems.

The paper is organized as follows: Section 2 discusses the TRQ’s dynamics and
various drive modes. Section 3 presents the proposed SMC scheme and control assignment.
Section 4 provides a stability analysis. In Section 5, the proposed SMC scheme is applied to
a TRQ for numerical simulation. Section 6 gives some conclusions.

2. Dynamic Model of a Tilt-Rotor Quadcopter (TRQ) with Various Actuation Modes

This section will establish a dynamic model from the Newton–Euler equation. First, we
present the dynamics of the TRQ (Figure 1). Using the variables defined in the nomenclature,
we propose various actuation modes from over-actuated, to fully actuated, to under-
actuated modes.

Figure 1. The schematic diagram of the TRQ for modeling.

2
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2.1. Rotational and Translational Dynamics

The rotation matrix BRPi
from the ith rotor frame to the body frame is

BRPi
= RZ(βi)RX(αi) (1)

RX(αi) =

⎡⎣1 0 0
0 cos αi − sin αi
0 sin αi cos αi

⎤⎦,

and

RZ(βi) =

⎡⎣cos βi − sin βi 0
sin βi cos βi 0

0 0 1

⎤⎦, βi = (i − 1)
π

2
, i = 1, 2, 3, 4.

The angular velocity is

wPi =
Pi RB wB +

[ .
αi 0 wi

]T (2)

We define

sgn(x) =
{

1 i f x > 0
−1 i f x < 0

where
w1 < 0, w3 < 0 , w2 > 0, w4 > 0

The rotational dynamics of the TRQ can be formulated as:

τB = IB
.

wB + wB × IBwB +
4

∑
i=1

BRPi
τPi (3)

where
τPi = IPi

.
wPi + wPi × IPiwPi − τdi (4)

τdi =
[
0 0 −kmw2

i sgn(wi
)
]T (5)

The force in the rotor frame is

Tpi =
[
0 0 k f w2

i
]T (6)

and the toque in body frame is

τB =
4

∑
i=1

(BOPi
× BRPi

TPi) (7)

The transform between body angular rates to the Euler rates is

.
r = RTwB (8)

where

RT =

⎡⎣1 sφ tan θ cφ tan θ
0 cφ −sφ

0 sφ sec θ cφ sec θ

⎤⎦ (9)

and r =
[
φ θ ψ

]T ∈ R3 is the attitude vector of the roll, the pitch, and the yaw angle.
We denote sqi = sin qi and cqi = cos qi.

Taking the derivative of (8) and ignoring IPi in (4), we have

..
r =

.
RT R−1

T
.
r + RT I−1

B (τB − wB × IBwB +
4

∑
i=1

BRPi
τdi) (10)

3



Appl. Sci. 2022, 12, 11088

We denote

τ =
4

∑
i=1

(BOPi
× BRPi

TPi) +
4

∑
i=1

BRPi
τdi (11)

Define the transform matrix
Ψ = R−1

T (12)

From (8), we have
wB = Ψ

.
r (13)

It follows from (10) and (12) that

ΨT IBΨ
..
r = −ΨT IB

.
Ψ

.
r − ΨTwB × IBwB + ΨT τ

= −
[
ΨT IB

.
Ψ + ΨT(Ψ .

r × IBΨ
)] .

r + ΨTτ
(14)

Considering the perturbation torque τd, we obtain

H(r)
..
r + C

(
r,

.
r
) .
r = ΨT(τ + τd) (15)

where
H(r) = ΨT IBΨ (16)

C
(
r,

.
r
)
=
[
ΨT IB

.
Ψ + ΨT(Ψ .

r × IBΨ
)]

(17)

Ψ(r) =

⎡⎣1 0 −sθ

0 cφ cθsφ

0 −sφ cθcφ

⎤⎦ (18)

and H(r) ∈ R3×3 is the inertia matrix, C
(
r,

.
r
) .
r ∈ R3 represents the centrifugal and Coriolis

forces. τ =
[
τφ τθ τψ

]T ∈ R3 is the vector of torques and τd ∈ R3 is the perturbation
torque.

The velocity in Fw is
.
p = W RB VB (19)

The derivative of velocity in FB can be expressed as

.
VB = −wB × VB + W RT

B
[
0 0 −g

]T
+

f
m

(20)

where

W RB =

⎡⎣cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

⎤⎦
and

f =
4

∑
i=1

BRPi
TPi (21)

where p =
[
x y z

]T ∈ R3. f =
[

fx fy fz
]T ∈ R3 is the vector of forces.

Taking the derivative of (19), ignoring W
.
RB and using (20), the translational dynamics

becomes
m

..
p = W RB = (−wB × VB + f )− [0 0 mg

]T
+ ud (22)

where ud ∈ R3 is the perturbation force in Fw.

4
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2.2. Over-Actuated, Fully Actuated, and Under-Actuated Modes

Denote α = [α1 α2 α3 α4]
T ,w = [w1 w2 w3 w4]

T , si = sin αi, and ci = cos αi, one
can arrange (21) and (11) as [

f
τ

]
=

[
K1(α)
K2(α)

]
U(w) (23)

where
U =

[
w2

1 w2
2 w2

3 w2
4
]T

K1(α) =

⎡⎣ 0 k f s2 0 −k f s4
−k f s1 0 k f s3 0

k f c1 k f c2 k f c3 k f c4

⎤⎦ (24)

K2(α)

=

⎡⎣ 0 Lk f c2 − kms2 0 −Lk f c4 + kms4
−Lk f s1 − kms1 0 Lk f c3 + kms3 0
−Lk f s1 + kmc1 −Lk f s2 − kmc2 −Lk f s3 + kms3 −Lk f s4 − kms4

⎤⎦ (25)

Remark 1. Over-actuated and fully actuated modes.

For over-actuated mode, the vector of tilt angles is

α = [α1 α2 α3 α4]
T

By setting α3 = − α1, α4 = − α2 , the vector of tilt angles for fully actuated mode is

α = [α1 α2 α1 α2]
T

Remark 1. Under-actuated mode.

By setting α =
[
0 0 0 0

]T , the force and the torque in (23) for the under-actuated
mode can be reduced as⎡⎢⎢⎣

fz
τφ

τθ

τψ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
k f k f k f k f
0 Lk f 0 −Lk f

−Lk f 0 Lk f 0
km −km km −km

⎤⎥⎥⎦U(w) (26)

3. Sliding Mode Path following and Control Allocation

In this section, we first propose the sliding mode-based attitude and position following
control via torque and force in (23). Then, we present the control allocation from the control
torque and force to the speed and tilt angle of four rotors. Figure 2 illustrates the TRQ
control scheme.

Figure 2. The TRQ control scheme.
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3.1. Attitude and Position following SMC

Define s1 ∈ R3
.
rr =

.
rd − Λ1(r − rd) (27)

and
s1 =

.
r − .

rr =
.
r − .

rd + Λ1(r − rd) (28)

where rd is the desired attitude and
.
rd is the desired angular velocity.

Now, we propose the following control for attitude following to exploit the structure
of the rotational dynamics:

τ = Ψ−T
[

Ĥ
..
rr + Ĉ

.
rr − K1 SGN(s1)− K3s1 − K4r̃

]
(29)

where r̃ = r − rd and (̂·) denotes the nominal of (·). K1, K3, K4 are positive diagonal
matrices, sgn(·) is the sign function, and

SGN
(
[x1 x2 x3]

T
)
= [sgn(x1) sgn(x2) sgn(x3)]

T (30)

We can now define s2 ∈ R3

s2 =
.
p − .

pd + Λ2(p − pd) (31)

where pd is the desired position and
.
pd is the desired velocity.

The position following control is proposed to alleviate the chattering effects as follows:

f = W R−1
B

⎛⎝u +

⎡⎣ 0
0

mg

⎤⎦ ⎞⎠ (32)

where u is designed as follows:

.
u = −(K2 + Λ2)u + m̂

(
(K2 + Λ2)

..
pd +

...
pd − K2Λ2

( .
p − .

pd
)− Λ3s2 − Λ4 SGN(s2)) (33)

where K2, Λ2, Λ3, Λ4 are positive diagonal matrices.

3.2. Control Allocation
3.2.1. Fully Actuated Mode

We use the following assumption for the fully actuated quadcopter system

α3 = −α1, α4 = −α2 (34)

Now, we propose the following steps to compute αi and wi:
Step 1: Initially, set the tilt angles ( α1 = α2 = 0).
Step 2: Compute f and τ from (32) and (29).
Step 3: Compute the rotor velocities.⎡⎢⎢⎣

w2
1

w2
2

w2
3

w2
4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
k f c1 k f c2 k f c3 k f c4

0 Lk f c2 − kms2 0 −Lk f c4 + kms4
−Lk f c1 − kms1 0 Lk f c3 + kms3 0
−Lk f s1 + kmc1 −Lk f s2 − kmc2 −Lk f s3 + kmc3 −Lk f s4 − kmc4

⎤⎥⎥⎦
−1⎡⎢⎢⎣

fz
τφ

τθ

τψ

⎤⎥⎥⎦ (35)

where si = sin αi and ci = cos αi (i = 1, 2, 3, 4).
Step 4: Compute the tilt angles from (23) and (24) using (34) as follows:

α1 = sin−1

(
− fy

k f
(
w2

1 + w2
3
)) = −α3 (36)

6
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α2 = sin−1

(
fx

k f
(
w2

2 + w2
4
)) = −α4 (37)

Step 5: Go to Step 2 to continue the iteration.

3.2.2. Over-Actuated Mode

We propose the steps to compute αi and wi:
Step 1: Initially, set the tilt angles αi = 0 ( i = 1, 2, 3, 4).
Step 2: Compute f and τ from (32) and (29).
Step 3: Compute the rotor velocities from (35).
Step 4: Compute the tilt angles from (23)–(25) as follows:(

k f s2

)
w2

2 +
(
−k f s4

)
w2

4 = τφ (38)(
Lk f c2 − kms2

)
w2

2 +
(
−Lk f c4 + kms4

)
w2

4 = τφ (39)(
−k f s1

)
w2

1 +
(

k f s3

)
w2

3 = τθ (40)(
−Lk f c1 − kms1

)
w2

1 +
(

Lk f c3 + kms3

)
w2

3 = τθ (41)

where si = sin αi and ci = cos αi(i = 1, 2, 3, 4). Using the triangular identities s2
i + c2

i =
1 (i = 1, 2, 3, 4), one can use the numerical method to solve for αi in the system of
nonlinear equations.

Step 5: Go to Step 2 to continue the iteration.

3.2.3. Under-Actuated Mode

Notice that, due to the lack of control degrees of freedom, the desired attitude φd and
θd is not arbitrary for the under-actuated quadrotor.

One can obtain φd and θd by

φd = sin−1

⎛⎝ uxsψd − uycψd√
u2

x + u2
y + (uz + mg)2

⎞⎠ (42)

θd = tan−1
(uxcψd + uysψd

uz + mg

)
(43)

The vector of w2
i is

⎡⎢⎢⎣
w2

1
w2

2
w2

3
w2

4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
k f k f k f k f
0 −Lk f 0 Lk f

−Lk f 0 Lk f 0
km −km km −km

⎤⎥⎥⎦
−1⎡⎢⎢⎣

f
τφ

τθ

τψ

⎤⎥⎥⎦ (44)

4. Stability Analysis

This section presents the stability analysis of the SMC scheme. Let us use λM(A), λm(A)
for the largest and smallest eigenvalue of a matrix A. We denote the Euclidean norm
for an n × 1 vector x by ‖x‖ =

√
xTx. The inertia matrix is symmetric, positive defi-

nite, and bounded by 0 < λm(H) ≤ ‖H(r)‖ ≤ λM(H). The matrix
.

H(r) − 2C
(
r,

.
r
)

is
skew-symmetric.

7
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4.1. Sliding Mode Attitude following Control

Theorem 1. Consider the dynamic model described in (15) and the control for attitude following in
(29). The attitude following error dynamics is exponentially stable if the switching gain satisfies the
following condition.

λm(K1) ≥
(
‖H̃‖‖..

rr‖+ ‖C̃‖‖ .
rr‖+ ‖τd‖

)
+ ε1 (45)

where ε1 is a positive constant.

Proof. Ĥ and Ĉ represent the nominal H and C, where H̃ = H − Ĥ and C̃ = C − Ĉ.
The rotational dynamics can be expressed as follows:

Ĥ(q)
..
r + Ĉ

(
r,

.
r
) .
q = ΨT(τ + τd) + h1

(
r,

.
r,

..
r
)

(46)

h1
(
r,

.
r,

..
r
)
= −H̃(r)

..
r − C̃

(
r,

.
r
) .
r

Define
.
rr =

.
rd − Λ1(r − rd) (47)

and
s1 =

.
r − .

rr =
.
r − .

rd + Λ1(r − rd) (48)

It follows from (48) that

.
s1 =

..
r − ..

rr =
..
r − ..

rd + Λ1
( .
r − .

rd
)

(49)

Now, we propose the control

τ = Ψ−T[Ĥ..
rr + Ĉ

.
rr − K1 SGN(s1)− K3s1 − K4r̃

]
(50)

where r̃ = r − rd and K1, K3, and K4 are diagonal matrices. �

Define the Lyapunov function

V1 =
1
2

sT
1 M(r)s1 +

1
2

r̃TK4r̃ (51)

Using (50) and taking derivative of V1 yield

.
V1 = sT

1 H
.
s1 +

1
2

sT
1

.
Hs1 + r̃TK4

.
r̃ (52)

If the switching gain meets the condition as follows

λm(K1) ≥
(
‖H̃‖‖..

rr‖+ ‖C̃‖‖ .
rr‖+ ‖τd‖

)
+ ε1 (53)

where ε1 is a positive constant.
From (52), we have

.
V1 ≤ −ε1 sT

1 SGN(s1)− sT
1 K3s1 − r̃TK4r̃ < 0 , s1 �= 0 (54)

The following adaptation law can replace the switching gain K1

K1 = diag([k1 k2 k3]) (55)

ki(t) = kci|ηi|+ kmi

8
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where kci > 0, kmi > 0 and ηi is the obtained by filtering the sgn(s1i) using a low-pass
filter

ζi
.
ηi + ηi = sgn(s1i), ηi(0) = 0 (56)

where ζi is a positive constant.

4.2. Sliding Mode Position following Control

Theorem 2. Consider the translational dynamic model described in (21) and the control for position
following in (32)–(33). The position following error dynamics is then asymptotically stable.

Proof. The translational dynamics is

..
p =

1
m

u +
ud
m

(57)

where

u =

⎡⎣ux
uy
uz

⎤⎦ = W RB f −
⎡⎣ 0

0
mg

⎤⎦ (58)

The nominal dynamics is
..
p =

1
m̂

u +
ûd
m̂

(59)

where m̂ is the nominal mass and ûd = 0.
The sliding surface s2 ∈ R3 is

s2 =
.
p − .

pd + Λ2(p − pd) (60)

Using (57) yields
.
s2 =

1
m̂

u − ..
pd + Λ2

( .
p − .

pd
)

(61)

and
.
s2 =

1
m̂

.
u − ...

pd + Λ2
( .
s2 − Λ2

( .
p − .

pd
) )

(62)

Define the Lyapunov function

V2 =
1
2

sT
2 Λ3s2 +

1
2

.
sT

2
.
s2 + γABS(s2) (63)

where
γ = [γ1 γ2 γ3]

It follows from (63) that

.
V2 =

.
sT

2
(..
s2 + Λ3s2 + Λ4 SGN(s2)

)
(64)

where Λ4 is a diagonal matrix with diagonal elements [γ1 γ2 γ3].
Then

..
s2 + Λ3s2 + Λ4 SGN(s2) = −K2

.
s2 (65)

and .
V2 =−K2

.
sT

2
.
s2 (66)

Using (62) and (65) yields

.
u = m̂

(−(K2 + Λ2)
.
s2 − Λ3s2 − Λ4 SGN(s2) +

...
pd + Λ2

2
( .

p − .
pd
)
) (67)

9
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Substituting
.
s2 from (61) into (64), we have

.
u = −(K2 + Λ2)u + m̂

(
(K2 + Λ2)

..
pd +

...
pd − K2Λ2

( .
p − .

pd
)− Λ3s2 − Λ4 SGN(s2)) (68)

We can derive from LaSalle-Yoshizawa theorem and (66) that
.
s2 → 0. On the basis

of (62) and the Barbalat’s lemma, one can conclude that
..
s2 → 0 . Therefore, we have the

following from (65)
Λ3s2 = −Λ4 SGN(s2) (69)

which ensures that
s2 = 0 (70)

�

5. Numerical Simulation

To illustrate the proposed control scheme’s design, we give an example of a fully
actuated TRQ.

5.1. Simulation Parameters

Assuming sqi = sin qi, cqi = cos qi, we have

H11 = Ix, H12 = 0, H13 = −Ixsθ

H22 = Iyc2
φ + Izs2

φ, H23 = cθcφsφ

(
Iy − Iz

)
H33 = Ixs2

θ + Iyc2
θs2

φ + Izc2
θc2

φ

The matrix of C
(
r,

.
r
)

is

C11 = 0

C12 = −Ix
.
ψcθ +

(
Iy − Iz

)( .
θsφcφ +

.
ψcθs2

φ − .
ψcθc2

φ

)
C13 = −Iy

.
ψc2

θsφcφ + Iz
.
ψc2

θsφcφ

C21 = Ix
.
ψcθ −

(
Iy − Iz

)( .
θsφcφ +

.
ψcθs2

φ − .
ψcθc2

φ

)
C22 = −Iy

.
φsφcφ + Iz

.
φsφcφ

C23 = −Ix
.
ψsθcθ + Iy

.
ψsθcθs2

φ + Iz
.
ψsθcθc2

φ

C31 = −Ix
.
θcθ + Iy

.
ψc2

θsφcφ − Iz
.
ψc2

θsφcφ

C32 = Ix
.
ψsθcθ + (Iz − Iy)

( .
θsθsφcφ +

.
φcθs2

φ − .
φcθc2

φ

)
− Iy

.
ψsθcθs2

φ − Iz
.
ψsθcθc2

φ

C32 = Ix
.
ψsθcθ + (Iz − Iy)

( .
θsθsφcφ +

.
φcθs2

φ − .
φcθc2

φ

)
− Iy

.
ψsθcθs2

φ − Iz
.
ψsθcθc2

φ

C33 = Ix
.
θsθcθ + Iy

(
−

.
θsθcθs2

φ +
.
φc2

θsφcφ

)
− Iz

( .
θsθcθc2

φ +
.
φc2

θsφcφ

)
We employ the following variables for simulation:

m = 2kg, L = 0.275m, g = 9.81m/s2,

Ix = 0.025kgm2, Iy = 0.025kgm2, Iz = 0.040kgm2,

km = 2.67·10−7Ns2, k f = 1.5·10−5Nms2.

with initial conditions [
x(0) y(0) z(0)

]
=
[
0 0 0

]

10
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and the desired positions[
xd

(
t f

)
yd

(
t f

)
zd

(
t f

)]
=
[
20 10 5

]
where t f = 20. The desired attitudes are

φd = 0, θd = 0, ψd = 0

The desired path is defined as

xd(t) = 2.5·10−2 t3 − 1.875·10−3 t4 + 3.75·10−5 t5

yd(t) = 1.25·10−2 t3 − 9.375·10−4 t4 + 1.875·10−5 t5

zd(t) = 6.25·10−3 t3 − 4.6875·10−4 t4 + 9.375·10−6 t5

Now, we use the following control parameters for simulation:

Λ1 = 10 I2 , Λ2 = 4I3, Λ3 = 40 I3, Λ4 = I3, K1 = I3,

K2 = 4I3, K3 = 4I3, K4 = 10I3, kci = 4I3, kmi = 0.1I3, (i = 1, 2, 3).

5.2. Simulation Results

We present the simulation results of the proposed attitude and position following
SMC control in Figures 3–8. Figures 3 and 4 show the attitude and position trajectories of
the quadrotor with variable changes (weights increased to 125%). The simulation results in
Figures 3 and 4 show that the proposed SMC can successfully drive the quadrotor from
the initial position through the desired path to the final destination while maintaining the
desired attitude. Figures 5 and 6 show the lift and steering torque produced by the four
tilt-rotors of the TRQ. Figure 7 shows the path of the tilt angle with parameter deviation.
The corresponding quadrotor speeds are shown in Figure 8.

Because the stability analysis in the previous section demonstrated robustness with
respect to parameter uncertainty and external perturbations, we then further evaluated
the impact of external perturbations on the TRQ. We used perturbation force [sin(4t) −
sin(4t) 2sin(4t)] N and perturbation torque [0.1sin(2t) 0.1sin(2t) 0.1sin(2t)] Nm applied to
TRQ for simulated motion. As shown in Figures 9–14, we can see that the perturbation has
little effect on the capability of the quadcopter because the proposed control and control
assignment can reject the perturbation and return the state variables to the sliding surface.

φ θ

ψ

Figure 3. The attitude path with variable deviations.
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Figure 4. The position path with variable deviations.

Figure 5. The propelling force with variable deviations.

τφ

τθ

τψ

Figure 6. The turning torque with variable deviations.
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α

α

Figure 7. The tilt angle path with variable deviations.

ω ω

ω ω

Figure 8. The rotor velocity with variable deviations.

φ θ

ψ

Figure 9. The attitude path with variable deviations and perturbations.
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Figure 10. The position path with variable deviations and perturbations.

Figure 11. The propelling force with variable deviations and perturbations.

τφ

τθ

τψ

Figure 12. The turning torque with variable deviations and perturbations.
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α

α

Figure 13. The tilt angle path with variable deviations and perturbations.

ω ω

ω ω

Figure 14. The rotor velocity with variable deviations and perturbations.

In summary, the numerical simulation results clearly show that the proposed SMC
schemes can accomplish the goal of trajectory tracking and counter the parametric variation
and external disturbances in the rotation and translation of TRQ via control allocation.

6. Conclusions

This paper presents the dynamic modeling, path following, and control allocation of a
TRQ. Two types of SMC are proposed to enhance the robustness and capability: one is the
first-order sliding mode for attitude following and the other is the second-order sliding
mode for position following. Considering the parameter changes and external perturbation,
we show the stability analysis based on the Lyapunov theory that the proposed control
scheme can ensure the error dynamics’ asymptotic stability for the position and attitude
following. In the numerical simulation of the fully actuated mode, we demonstrated
that the proposed SMC could achieve path following and attitude regulation goals in the
presence of variable changes and external perturbations. The tilt-rotor quadrotor has more
control degrees of freedom than the under-actuated quadrotor and, therefore, can make
full use of the control redundancy to complete the simultaneous trajectory tracking and
attitude control that a traditional quadrotor cannot do, and thus has a certain degree of
actuator fault tolerance. In the future, we will integrate the sliding mode path following
and control allocation into a fault-tolerant flight control.
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Nomenclature

B quadrotor body
Pi propeller i
Fw inerita world frame
FB body frame
FPi ith propeller frame
RT transform matrix from body angular rates to Euler rates
p position of B in Fw
q Euler angle of B in Fw
W RB rotation matrix from FB to Fw
BRPi

rotation matrix from FPi to FB
wi ith propeller spinning velocity about ZPi
wPi the angular velocity in the ith propeller frame
αi ith propeller tilting angle about XPi
TPi the force in the ith propeller frame
wB angular velocity of B in FB
vB velocity of B in FB
τB torque in FB
τPi torque in FPi

τdi ith propeller air drag torque about ZPi
Ti ith propeller thrust along ZPi
τwi motor torque along ZPi
m total quadrotor mass
IPi inertia of the ith propeller Pi
IB inertia of the quadcopter body B
k f propeller thrust coefficient
km propeller drag coefficient
L distance of FPi to FB
g gravity constant
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Abstract: A vertical take-off and landing plane (VTOL plane) is a fixed-wing unmanned aerial
vehicle (FWUAV) configuration with the ability to take off and land vertically. It combines the
benefits of fixed-wing and multirotor configurations, which gives it a high cruising range and
independence from a runway. This configuration requires arms as mountings for the VTOL’s motors.
This study discusses the design of a VTOL Plane with various VTOL arm configurations, and a
computational fluid dynamics (CFD) simulation was conducted to find out which configuration
performs the best aerodynamically. The VTOL arm configurations analyzed were a quad-plane, a
twin-tail boom, a tandem wing, and a transverse arm. The interpreted performances were the lift and
drag performances, stall conditions, flight efficiency, stability, and maneuverability. The relative wind
directions toward the longitudinal axis of the UAV, which are the sideslip angle and the angle of
attack, were varied to simulate various flying conditions. The results showed that the twin tail-boom
is the most advantageous based on the interpreted performances.

Keywords: VTOL plane UAV; VTOL arm configuration; computational fluid dynamics

1. Introduction

As the development of unmanned aerial vehicle (UAV) technology is becoming rapid,
new demands from countless fields are emerging due to its advantages of having small
dimensions, low operating cost, and minimal risk to the environment and human life.
UAVs are already commonly used in the military [1]. Furthermore, they have a promising
future in forestry [2], medical [3], and meteorology [4]. Ever-growing demands mean that
UAVs need to be developed in a variety of shapes and sizes to satisfy and achieve limitless
kinds of mission.

Despite being relatively new entrants to the airspace, UAVs have already come in a
variety of configurations. UAVs are generally classified into two configurations, namely
rotary-wing and fixed-wing. Each configuration has its advantages and disadvantages. A
vertical take-off and landing plane (VTOL plane) is a combination of those two configu-
rations, affording the benefit of high cruising range and efficiency from a fixed wing and
the capability of taking off and landing in a limited area from a rotary wing [5]. VTOL
Planes are ideal for usage in a remote area, rough terrain, or a vast body of water, making it
excellent for application to monitoring and surveillance.

Numerous design concepts for VTOL plane UAVs are available, such as a fixed-wing
VTOL and a tiltrotor. The main difference between the two is how the UAV transitions
from the VTOL phase to the cruising phase, and vice versa. However, the tiltrotor concept
uses a complicated mechanism to change the orientation of the rotors with a control system
too complex to be used as a design reference. On the other hand, the fixed-wing VTOL is
simpler to manufacture and operate, making it easier to develop and expand further.
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VTOL plane design requires arms to mount its rotary-wing rotors. Many UAV designs
and configuration concepts can be utilized as a VTOL plane design by placing arms as
mountings for the VTOL motors, namely a quad-plane [6], a twin-tail boom [7–9], a tandem
wing [10,11], and a transverse arm. Moreover, the quad-plane, twin-tail boom, and tandem
wing configurations are already available on the market [6–9,11]. The transverse arm is a
newly proposed idea based on the configuration’s geometry that could work as a VTOL plane
configuration. As such, it is not a common configuration and can not be found in the market.

Even though there are already CFD simulations [12–14] and experimental stud-
ies [10,15] of those configurations’ performances, no research has been conducted to
compare and determine which arm configuration performs the best aerodynamically. Fur-
thermore, different missions demand different performances of the UAV. Even though the
configurations being compared are already developed and quite mature, the comparison
result could work as a basis for customers or users to choose which configuration to de-
velop based on the mission’s need. As a result, this study will discuss each configuration’s
advantages and disadvantages, determine which configuration performs the best overall,
and what kind of mission each is suitable for.

Each configuration has its characteristics. Quad-plane configuration is the most
common because it resembles the conventional fixed-wing configuration the most with the
addition of VTOL arms. However, due to the fuselage stretching to the tailplane, it has
more drag than the twin-tail boom configuration. The tandem wing configuration uses
its two wings to support the VTOL motors, so it does not require additional beams. The
drawbacks include being more prone to wind gusts or less stable in crosswind conditions
due to its two wings [16]. The transverse arm configuration has two horizontal stabilizer
surfaces, in the forward and aft fuselage, as supports to mount the VTOL motors, making
it stable but susceptible to higher drag.

The arm configurations mentioned are all acceptable for a VTOL plane design. How-
ever, the design geometries are quite different. To determine which configuration performs
the best, all four configurations’ designs were analyzed using a CFD approach to find out
their aerodynamic performance in various wind situations to simulate real flight conditions.

2. Research Methods

The UAV is designed through several steps, beginning with conceptual design, prelim-
inary design, and detailed design [17–22]. These steps are necessary to ensure that the UAV
being designed is reliable and satisfies the DR&O. The performances being compared are
the lift and drag characteristics, stall conditions, efficiency, stability, and maneuverability.
To ensure that the performances are comprehended in various flight conditions, the angle
of attack and sideslip angle need to be considered since they influence stability [23]. The
angle of attack, α, is the angle between the longitudinal axis x and the projection of the

vector speed
→
V on the plane of symmetry x, z. The sideslip angle, β, is the angle between

the vector of speed relative to the air
→
V and the plane of the aircraft x, z [24]. Both angles

are illustrated in Figure 1.
A computational fluid dynamics approach was used to analyze the overall design

because it is more feasible than using a wind tunnel as an experimental approach. Further-
more, it does not require excessive cost. The simulation was conducted using an accurate
turbulence model to acquire accurate data.

The VTOL plane was designed to be hybrid, where the VTOL propulsion uses electric
motors, and the fixed-wing propulsion uses an internal combustion engine (ICE) with
gasoline to increase the cruise range and energy efficiency. The conversion to other con-
figurations follows several processes to make each configuration work based on similar
studies or comparison planes. We attempted to keep the variables, including the aircraft
weight, the cruise speed, the wing area, the wing planform design, horizontal and vertical
stabilizer volume coefficient, fuselage geometry, and the forward propulsion system intake
and exhaust geometry the same in all configurations. The following arm configurations
were used in the comparison:
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a. Quad-plane [6];
b. Twin-tail boom [7–9];
c. Tandem wing [10,11];
d. Transverse arm.

 
Figure 1. Definition of angle of attack and angle of sideslip.

2.1. Design Requirements and Objectives

The VTOL plane is designed to fly at low speed with low stall speed to accommodate
the transition from the vertical take-off phase to the cruising phase and then to the vertical
landing phase. The VTOL plane must not stall until the VTOL motors take over the lifting
duty and fully support the aircraft’s weight so the transition from forward flight to hovering
remains stable and smooth [25]. The civil aviation safety regulation (CASR) [26] was also
used to determine the requirements to ensure the aircraft conformed to governing body
regulations so it could be certified. Table 1 lists the DR&O, followed by Figure 2, which
shows the mission profile of the VTOL plane.

Table 1. Design requirements and objectives (DR&O).

No Requirement Value

1 Take-off transition distance 80 m
2 Landing transition distance 150 m
3 Cruising altitude 300 m
4 Cruising velocity 23 m/s
5 Stall speed 14 m/s
6 Load Weight 1 kg
7 Flight time 6 h
8 Rate of climb 5.5 m/s
9 Maximum take-off weight 10 kg
10 Wingspan 2 m
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Figure 2. VTOL plane mission profile. Note: 1—ground test; 2—engine start and warm up; 3—VTOL
take-off preparation; 4—VTOL take-off; 5—VTOL transition to forward flight; 6—Climb; 7—cruise;
8—loiter and cruise back; 9—descent; 10—forward flight transition to VTOL; 11—VTOL landing;
12—engine shutdown and ground test.

2.2. Conceptual Design

The conceptual design step configures the wing configuration, fuselage geometry, em-
pennage, and propulsion systems. To fulfill the requirement of a low stall speed, a high-lift
wing configuration is needed. Therefore, the high-wing configuration was chosen due to its
superior lift-to-drag ratio (L/D) to the mid-wing and the low-wing configurations [27]. The
wing was designed without dihedral angles to simplify the geometries in the CFD simulation.

The geometry of the fuselage is a combination of several comparison planes. The
dimensions of the fuselage were adapted to the electronic components and fuel tank volume
requirements. The propulsion system configuration chosen was a pusher with the ICE
mounted in the aft fuselage, to avoid obstructing the pitot tube, camera, and sensors
mounted at the nose of the fuselage. In a twin-tail boom design, the fuselage does not
need to be stretched to the tailplane because the tailplane is mounted on the twin-boom,
which shortens the fuselage length but still accommodates enough room for the necessary
electronic components and the fuel tank.

ALTI Ascend [7], ALTI Transition [8], and Foxtech Great Shark 330 [9] have similar
DR&O to the designed VTOL plane, so they were chosen as comparison planes in this study.
Those comparison planes were used as a reference to determine the fuselage geometry and
their specifications were needed as reference data to solve equations in the sizing step.

2.3. Preliminary Design

Preliminary design was divided into two steps, namely weight sizing and performance
sizing. In weight sizing, several values such as take-off weight, empty weight, fuel weight,
and fuel fraction were calculated. Data from comparison planes were used as a reference
to calculate those values, according to the equations provided by [18]. Fuel fraction is the
amount of fuel weight needed for a mission phase divided by the empty weight of the aircraft.

In performance sizing, the values to be calculated are the power loading (W/P) and
wing loading (W/S). They are obtained by calculating each phase’s performance equations
provided by [18] to obtain every phase’s range of accepted wing loadings and power
loadings based on the DR&O. The wing loading and power loading are then plotted in
one (W/P) vs. (W/S) graph to obtain an area where all design points within that area are
acceptable to fulfill the aircraft’s mission profile.

2.3.1. Weight Sizing

Table 2 shows the fuel fractions of each phase of the mission and Table 3 shows the
calculated weight sizing.
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Table 2. Fuel fraction [17].

Phase Value

Engine start and warm-up 0.998
VTOL take-off preparation 0.998

VTOL transition to forward flight 0.998
Climb 0.995
Cruise 0.998
Loiter 0.938

Cruise back 0.998
Descent 0.995

Landing, taxi, and shutdown 0.995

Table 3. Weight sizing.

VTOL Plane Weight Sizing

Maximum take-ff weight (MTOW) 10.04 kg
Empty airframe weight 3.5 kg

Ready to fly (RTF) dry weight 6.15 kg
Ready to fly (RTF) including fuel and batteries 9 kg

Maximum payload 1 kg
Fuel weight 1.1 kg

2.3.2. Performance Sizing

Figure 3 shows the (W/P) vs. (W/S) matching plot of every phase’s performance curve,
which resulted in an area where all points within are considered acceptable and capable
of fulfilling the DR&O. The white area shows the acceptable range for a design point. A
design point was then picked considering the optimum wing area and power needed. The
wing loading and the power loading values were provided by the selected design point,
shown as a red dot in Figure 3. The results of the performance sizing are listed in Table 4.

 

Figure 3. Performance sizing graph.
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Table 4. Performance sizing.

VTOL Plane Performance Sizing

Wing loading (W/S) 3.6 lb/ft2 = 17.6 kg/m2

Power loading (W/P) 11.8 lb/hp = 5.4 kg/hp
CLmaxTO 1.4
CLmaxL 1.3
CLmaxS 1.3

2.4. Detailed Design

Data that were obtained through the preliminary design step were used to design the
wing, VTOL arm, and empennage. After the calculations to obtain the dimensions had
been completed, a 3D design was created. Several simplifications had been carried out
to the design as it was solely used for simulation purposes, which means manufacturing
processes were not taken into consideration.

2.4.1. Wing Detailed Design

The planform of the wing was designed using equations from [18]:

s =
WTO(

W
S

) (1)

AR =
b2

s
(2)

Cr =
2

1 + λ
× s

b
(3)

Ct = λ × Cr (4)

where: s = wing area (m2), b = wingspan (m), Cr = root chord (m), Ct = tip chord (m),
AR = aspect ratio.

According to Table 4, the required coefficient of lift (CL) was 1.4, so the NACA 4412 was
selected as the wing airfoil because it had a CL of 1.6 [28]. Table 5 shows the results of the
wing design calculated using Equations (1)–(4). Figure 4 shows the wing planform design.

Table 5. Wing design.

Wing Design

s 0.57 m2

AR 7.01
b 2 m

Cr 0.315 m
Ct 0.215 m

Figure 4. Wing planform design in mm.

2.4.2. VTOL Arm Design

The VTOL arm design determines the position of the VTOL motors. The VTOL motors
used were Brushless DC Motors 490KV with 16-inch propellers, so the arms were designed
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with enough clearance so the propellers would not hit the fuselage. The stability of the
VTOL plane was the next consideration, as it is affected by the motors’ position relative to
the plane’s center of gravity. It was determined that the angle range should be between 30◦
and 60◦. Figure 5 schematically shows the position of the VTOL motor.

Figure 5. Schematic drawing of the VTOL motors’ position.

2.4.3. Empennage Detailed Design

In a twin-tail boom configuration, the tail boom is an extension of the VTOL arm.
As such, the horizontal stabilizer span is constrained. NACA 0006 was chosen for the
empennage airfoil as it has zero CL at 0◦ angle of attack [28]. Using equations provided
by [20], the necessary values and dimensions to design the empennage were calculated,
such as the vertical tail volume coefficient (Vv), the horizontal tail volume coefficient (Vh),
the vertical tail moment arm (Lv), and the horizontal tail moment arm (Lv). The tail moment
arm is the distance from 25% wing mean aerodynamic chord (MAC) to 25% tail mean
aerodynamic chord (MAC). Table 6 shows the results of the empennage design calculations.

Vv =
lV × SV

s × b
(5)

Vv =
lV × SV

s × b
(6)

2.4.4. Twin-Tail Boom Final Design

After all the size data had been obtained, a three-dimensional model was created. The
model was created using Autodesk Inventor Professional 2022 software. Figure 6 shows a
three-dimensional model of the VTOL plane with a twin-tail boom configuration.

2.5. Conversion to Other Configurations

The twin-tail boom design acted as a reference for other configurations, namely the
quad-plane, the tandem wing, and the transverse arm.
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Table 6. Empennage design.

Empennage Design

Vv 0.025
Vh 0.6
Lv 0.9 m
Lh 1 m

Vertical stabilizer root chord (Crvertical) 0.23 m
Vertical stabilizer tip chord (Ctvertical) 0.157 m

Vertical stabilizer span (bvertical) 0.17 m
Horizontal stabilizer root chord (Crhorizontal) 0.157 m
Horizontal stabilizer tip chord (Cthorizontal) 0.157 m

Horizontal stabilizer span (bhorizontal) 0.662 m

Figure 6. Three-dimensional model of the VTOL plane with a twin-tail boom configuration.

2.5.1. Quad-Plane Design

The difference between the twin-tail boom and the quad-plane configuration is mainly
in the empennage configuration. V-tail was selected as the empennage configuration for
the quad-plane design. The V-tail was found to be a stable configuration in crosswind
conditions [28]. The fuselage was extended to the V-tail as the tails needed to be mounted
on it. The V-tail geometry used the same Vv, Vh, Lv, and Lh values as the twin-tail boom
configuration. Those values were then used to determine the V-tail dimensions using the
equation provided by [20].

SV−tail= Sv+Sh (7)

Γ = tan−1

√
Sv

Sh
(8)

where Γ is the dihedral angle from the horizontal plane. Table 7 shows the results of
the V-tail geometry calculations, and Figure 7 shows the three-dimensional model of the
quad-plane configuration.

Table 7. V-tail design for the quad-plane configuration.

V-Tail Design.

Γ 36.54◦
V-tail root chord (CrV-tail) 0.2 m
V-tail tip chord (CtV-tail) 0.14 m

V-tail span (bV-tail) 0.53 m

2.5.2. Tandem Wing Design

The tandem wing configuration is unlike the other configurations in several parame-
ters. The CoG of a tandem wing is located between the fore and the hind wings, not at the
wing, like a classic fixed-wing configuration. Moreover, the hind wing acts as a horizontal
stabilizer and a lifting surface, causing major concerns for stability and controllability [16].
The aerodynamic performance of the hind wing is also heavily affected by the downwash

25



Drones 2022, 6, 392

of the forewing. The effect of longitudinal and vertical gaps between the two wings was
reported in [29].

Figure 7. Three-dimensional model of the VTOL plane with a quad-plane configuration.

Creating a gap vertically would mean creating a gap in the vertical positions of the
front and the rear VTOL motors because the motors were to be mounted at the tip of the
wings. The gap would cause stability problems in the hovering phase, so no vertical gap
was created between the forewing and the rear wing. Nonetheless, a bigger longitudinal
gap, also called a stagger (St), was created to minimize the downwash effect, with the
angle of the VTOL motors’ positions against the CoG taken into consideration. Specifically,
stagger is the longitudinal distance from the 25% forewing MAC to the 25% hind wing
MAC. The taper ratio of the forewing also has a significant effect on the aerodynamic
performance of the hind wing [30].

A V-tail configuration was chosen as the empennage configuration to help with the
pitch stability of the VTOL plane despite the hind wing acting as a horizontal stabilizer.
Nonetheless, the need for a horizontal stabilizer was diminished, and the horizontal area of
the V-tail was relatively small. Table 8 shows the tandem wing sizing. Figure 8 shows the
schematic drawing of the configuration, and Figure 9 shows a three-dimensional model of
the tandem wing configuration.

Table 8. Tandem wing sizing.

Tandem Wing Sizing

Stagger (St) 0.86 m
Γ 35◦

V-tail root chord (CrV-tail) 0.1 m
V-tail tip chord (CtV-tail) 0.07 m

V-tail span (bV-tail) 0.256 m

Figure 8. Schematic drawing of the tandem wing configuration.
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Figure 9. Three-dimensional model of the VTOL plane with the tandem wing configuration.

2.5.3. Transverse Arm Design

In the transverse arm configuration, there are two horizontal stabilizers, a canard, and
a horizontal tailplane. This configuration is also known as a three-surface aircraft. The
VTOL motors were to be mounted at the tip of the horizontal stabilizers. The parameters
needed to be calculated to make the conversion were the tailplane geometry and the VTOL
motors’ position. Table 9 shows the results of the tailplane sizing. Figure 10 shows a
schematic drawing of the configuration and Figure 11 shows a three-dimensional model.

Table 9. Transverse arm sizing.

Transverse Arm Sizing

Canard area (Sc) 0.077 m2

Canard chord (Cc) 0.13 m
Canard span (bc) 0.59 m

Horizontal tailplane area (Sh) 0.107 m2

Horizontal tailplane chord (Ch) 0.18 m
Horizontal tailplane span (bh) 0.59 m

Vertical tailplane area (Sv) 0.021 m2

Vertical tailplane root chord (Crv) 0.13 m
Vertical tailplane tip chord (Ctv) 0.1 m

Vertical tailplane span (bv) 0.21 m

Figure 10. Schematic drawing of the transverse arm configuration.
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Figure 11. Three-dimensional model of the VTOL lane with a transverse arm configuration.

2.6. CFD Simulation

A CFD simulation was run after all the configurations had been designed to determine
the parameters needed to compare the aerodynamic performances of the configurations.
The parameters sought were the coefficient of lift (CL), the coefficient of drag (CD), the
lift-to-drag ratio (L/D), the stall speed, the coefficient of pitch moment (Cp), the coefficient
of roll moment (Cr), the coefficient of yaw moment (Cy), and the turn radius (r). the
parameters for lift, drag, stall conditions, efficiency, and stability could be obtained using
equations provided by [31].

CL =
FL

1
2 × ρ × V2 × A

(9)

CD =
FD

1
2 × ρ × V2 × A

(10)

Cp =
Mp

1
2 × ρ × V2 × A × C

(11)

Cr =
Mr

1
2 × ρ × V2 × A × C

(12)

Cy =
My

1
2 × ρ × V2 × A × C

(13)

L/D =
FL

FD
(14)

Parameters for maneuverability could be obtained by parsing the resultant force acting
on the aircraft. Figure 12 shows a free-body diagram of the aircraft. Good maneuverability
means the aircraft can make a small turning radius without stalling.

∑ F = m × a (15)

FL × sin θ =
m × v2

r
(16)

FL × cos θ ≥ m × g (17)

2.6.1. Simulation Parameters

In this study, various flight conditions were simulated. The sideslip angle variations
were 0◦, 15◦, and 30◦ to simulate headwind and crosswind conditions. The angle of attack
also varied between 0◦ and 24◦ with an interval of 4◦ for the headwind condition, and
between 0◦ and 15◦ with an interval of 5◦ for crosswind conditions. The bank angle
simulated was varied between 0◦ and 40◦ with an interval of 10◦. The wind speed was set to
23 m/s (the aircraft’s designed cruising speed) and the air density was set to 1.225 kg/m3.
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Figure 12. Free-body diagram of the aircraft.

2.6.2. Simulation Setup

In the headwind simulations, the fluid domain of the CFD only used half of the plane to
reduce processing time. Unfortunately, the crosswind simulations could not do so because of
the asymmetrical airflow direction between the right side and the left side of the aircraft.

After creating the fluid domain model, the next step was to mesh the model. The
global mesh size was 0.8 m. To improve accuracy, further mesh sizing was added to the
domain, such as a body of influence sizing of the domain with 0.05 m. The body of influence
enveloped a small area within the fluid domain, which included the aircraft. A face sizing
of 0.005 m was added to the aircraft’s faces. For the simulation of the boundary layer and
surrounding airflow to be accurate, inflation of an 8e-5 m thick first layer was added.

To validate the mesh quality, the orthogonal quality and skewness were checked. The
average value of the orthogonal quality of the mesh was 0.74, and the average value of the
skewness was 0.25. The mesh quality was considered acceptable for further simulations [32].
Figures 13–15 shows the results of the mesh.

 

Figure 13. Mesh results visualization.
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Figure 14. Orthogonal quality distribution.

Figure 15. Skewness quality distribution.

A turbulent SST k-Omega was applied in this simulation. This model uses the k-
Epsilon model’s advantage in simulating free-stream conditions and the k-Omega model’s
advantage in simulating areas near the wall [33]. As the simulation’s Mach number was
less than 0.36, the fluid was incompressible, and the simulation was steady-state. The
determined convergence criteria were 10−3 for all the residuals and the force reports.

3. Results

3.1. Lift, Drag, and Efficiency

This study analyzed the performance of the lift force, drag force, and flight efficiency.
The greater the angle of attack, the bigger the lifting force is. However, the drag also
increases because the air encounters more surface area as the aircraft pitches up. Figure 16
shows the pressure contour of the VTOL plane at 0◦ AoA and 16◦ AoA, which visualizes
the lift and drag phenomenon. The bottom of the VTOL plane has greater pressure than
the top, which generates lift. The bigger the difference between the pressure at the bottom
and the top of the VTOL lane, the bigger the lift being generated, as well as the drag.

Using Equations (9) and (10), the CL and CD values for all configurations were obtained.
Figure 17 shows the CL and CD of all configurations at the simulated angles of attack in
headwind conditions. Figure 17a depicts that the CL increases as the AoA increases, which
is consistent with the prediction and the data that the pressure contours in Figure 16 depict.
With the same consistency, Figure 17b depicts that the CD also increases as the AoA increases.

At lower AoA, the twin-tail boom had the highest CL, while the other three configura-
tions did not differ significantly. However, at AoA higher than 12◦, the tandem wing had
the highest CL overall. The twin-tail boom, the quad-plane, and the transverse arm config-
urations started to lose lifting capabilities after 16◦ AoA, as could be seen in Figure 17a,
where the three configurations’ CL values started to drop. The tandem wing configuration’s
CL continued to increase and only started to drop at 20◦ AoA.

All four configurations’ drag did not differ significantly, although the tandem wing
configuration had the highest overall CD, as predicted, due to the extra wing compared to
the other configurations. The transverse arm had the second-highest overall CD because of
its extra surface, the canard. Meanwhile, the quad-plane had the lowest CD overall.

In crosswind conditions, the wing generates less lift than in the headwind condition
because one side of the wing does not receive clean air, as the air is already disturbed by
the fuselage. Figure 18 depicts the coefficient of lift in crosswind conditions. In crosswind
conditions with a sideslip angle of 15◦, the coefficients of lift were almost the same at
lower AoA. Even so, the phenomenon remained that at lower AoA, the twin-tail boom
configuration had the highest CL than the others, and then after a certain angle the tandem
wing generated more lift and the highest CL value.
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(a) (b) 

 
(c) (d) 

Figure 16. Pressure contours; (a) bottom view at 0◦ AoA, (b) top view at 0◦AoA, (c) bottom view at
16◦ AoA, and (d) top view at 16◦ AoA.

 
(a) 

 
(b) 

Figure 17. CL and CD in headwind conditions; (a) CL vs. AoA, and (b) CD vs. AoA.
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(a) 

 
(b) 

Figure 18. CL vs. AoA; sideslip angle: (a) 15◦, and (b) 30◦.

When the sideslip angle was 30◦, the tandem wing had the highest CL value overall,
as predicted, because it had an extra surface on either side of the wing. Meanwhile, data of
the twin-tail boom and the transverse arm configuration were almost matching. Overall,
the twin-tail boom had better lifting capabilities at lower AoA until the sideslip angle
reached 15◦. Meanwhile, the tandem wing was better at higher AoA and sideslip angle.
The quad-plane configuration was found to be poor in all conditions in terms of lifting
capabilities, but it was the better one in drag as it had the lowest CD value. In contrast, the
tandem wing had the highest CD value because of the two-wing configuration.

As the drag force is directly opposite to the thrust, the propulsion system has to
work harder to generate more thrust as the drag increases, causing inefficiency. Using
Equation (14), the L/D data could be obtained and used as a parameter to analyze efficiency
in the headwind and crosswind conditions. A higher L/D value means higher efficiency.
Figure 19 shows the L/D data.

Based on Figure 19a, it was found that the quad-plane configuration had the highest
efficiency in the headwind condition between 0◦ and 10◦ and then the twin-tail boom
was the most efficient from 10◦ to 16◦ even though the quad-plane was not far below the
twin-tail boom in that AoA range. In contrast, the tandem wing configuration was the most
inefficient at low AoA (0◦–16◦). At AoA higher than 16◦ though, the tandem wing was the
most efficient mostly because of its superior lifting capabilities.

In the crosswind condition with a 15◦ sideslip angle depicted by Figure 19b, the only
difference was that the twin-tail boom configuration was the most efficient. This was caused
by the lower drag of the twin-tail boom configuration because the fuselage is shorter than
the quad-plane configuration.

At a 30◦ sideslip angle, the tandem wing was far superior in efficiency because of its
far greater lifting capabilities. In contrast, the quad-plane configuration was found to be
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the least efficient than the others even though at level flight (0◦ AoA), every configuration
besides the tandem wing had almost the same efficiency.

 
(a) 

 
(b) 

 
(c) 

Figure 19. L/D vs. AoA; sideslip angle: (a) 0◦, (b) 15◦, and (c) 30◦.

3.2. Stalling Performance

A stall is the loss of the wing’s capabilities to generate lift. It can be visualized as the
breakdown of the smooth airflow over the wing, suddenly changing into turbulent airflow.
Figure 20 visualizes the stall phenomenon occurring on the twin-tail boom configuration,
where it can be seen that the airflow over the wing at 0◦ AoA is smooth, but at 24◦, the
airflow does not stick to the wing surface anymore and becomes turbulent and violent.

To understand the stalling performance of each configuration, the critical angle and
the stall speed need to be analyzed. The critical angle is an angle of attack at which the
VTOL plane generates the greatest amount of lift force. Beyond the critical angle, the CL
value drops, meaning the aircraft has stalled. According to Figure 17a, the twin-tail boom,
the quad-plane, and the transverse arm configuration had the same critical angle, which is
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16◦. The tandem wing configuration had a higher critical angle, 20◦, meaning the aircraft
could pitch with a greater angle before it stalled.

  
(a) (b) 

Figure 20. The stall phenomenon visualized by the airflow over the wing at (a) 0◦ AoA and (b) 24◦ AoA.

The stall speed refers to the transition of the VTOL plane from hovering mode to
forward flight mode. A low stall speed is determined as a good performance. The stall
speed data could be necessary for flight controller input or for monitoring the flight. The
stall speed value was obtained by using Equation (9), using the weight of the aircraft
(98.5 N) as the lift force variable. In doing so, the speed variable is the speed required
to support the aircraft’s weight. Figure 21 shows the stall speed data in headwind and
crosswind conditions.

(a)

( )

(c) 

Figure 21. Stall speed vs. AoA; sideslip angle: (a) 0◦, (b) 15◦, (c) 30◦.
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In the headwind condition depicted by Figure 21a, it was found that all configurations
had fulfilled the stall speed DR&O, which is 15 m/s, at 12◦ AoA. As the CL values dropped
after the critical angle, the stall speed increased. Besides the tandem wing, all configurations
had similar stall speed values at every AoA. The tandem wing performed the best as it had
the lowest stall speed, but only at AoA greater than 8◦.

Figure 21b shows the stall speed data of the crosswind condition with a 15◦ sideslip
angle. The VTOL plane fulfilled the stall speed DR&O at 15◦ AoA. The tandem wing
outperformed the other configurations, as predicted. Once again, the stall speed value
of other configurations did not differ significantly. Although at 0◦ AoA, the transverse
arm differed and had the highest stall speed value overall, meaning this configuration
performed the worst.

The tandem wing also performed the best at a 30◦ sideslip angle as depicted by
Figure 21c and had already fulfilled the DR&O at 15◦ AoA. Meanwhile, the twin-tail boom
and the quad-plane configuration were still similar. The transverse arm performed the
worst again at 0◦ AoA as it had a significantly higher stall speed than other configurations.

3.3. Stability Performance

An aircraft has three types of stability: longitudinal, lateral, and directional stability. In
this study, longitudinal stability was represented by the coefficient of pitch moment (Cp). In
crosswind conditions, the left and right sides of the aircraft have different pressure because
of the airflow direction. These differences cause a tendency for an aircraft to roll or yaw,
making lateral and directional stability a necessary parameter to analyze to determine each
configuration’s stability performance. The lateral stability can be determined by analyzing
the Cr value, while the directional stability can be determined by analyzing the Cy value.
The closer those values are to 0, the better the stability performance is. Having 0 coefficient
of moment means the aircraft maintains its position, and is stable and level, without any
tendency to pitch, roll, or yaw.

Figure 22 depicts the Cp of all configurations in headwind and crosswind conditions.
The quad-plane configuration had a positive Cp value between 0◦ and 8◦, causing the
aircraft to pitch up. However, the quad-plane had a zero Cp value, which means the aircraft
reached longitudinal stability. The further the Cp value, the worse the stability performance
is, requiring the elevator to work harder to counteract the aircraft’s tendency to pitch up
or down, only to keep the aircraft level. As can be seen in Figure 22a, the tandem wing
had the worst performance in longitudinal stability, mainly because its two wings were
generating lift far away from the CoG.

The twin-tail boom and the quad-plane configuration performed well in longitudinal
stability in crosswind conditions as depicted by Figure 22b,c. However, the quad-plane
performed better because the Cp approached zero as the angle of attack became greater.
Because the aircraft generates less lift in crosswind conditions, there are more instances
where the aircraft must pitch up to generate more lift, which makes the quad-plane the
most longitudinally stable. In contrast, the tandem wing continued to perform poorly in
longitudinal stability in crosswind conditions.

The tendency of an aircraft to roll and yaw in crosswind conditions is mostly because of
the difference in the lift force being generated between one side and the other. The fuselage
is also a disturbance for the airflow, causing one side of the wing not to receive clean air. To
determine the lateral stability, the Cr values were analyzed. The smaller the Cr value, the
more an aircraft can maintain its position on the longitudinal axis in crosswind conditions.

Figure 23 depicts the Cr values of the VTOL plane. Figure 23a shows the 15◦ sideslip
angle condition. It explains that the twin-tail boom and the quad-plane configuration
had similar Cr values, although the twin-tail boom slightly outperformed the quad-plane.
While the transverse arm performed poorly, the tandem wing had the worst longitudinal
stability; as predicted before, the tandem wing configuration had problems in stability and
controllability. Figure 23b shows the 30◦ sideslip angle condition, which does not depict
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any significant difference from the 15◦ sideslip angle condition. The twin-tail boom still
outperformed the rest, while the tandem wing was the most unstable longitudinally.

 
(a) 

 
(b) 

(c) 

Figure 22. Cp vs. AoA; sideslip angle: (a) 0◦, (b) 15◦, and (c) 30◦.

The ability of an aircraft to retain its position on the vertical (yaw) axis is called lateral
directional stability. The configurations’ directional stability performance could be determined
by analyzing the coefficient of yaw moment (Cy). The closer the Cy is to zero, the more stable
the aircraft is on the vertical axis. Figure 24 depicts the Cy values of the VTOL plane. It was
found that in crosswind conditions, Cy values generally decreased as the AoA increased. This
means that a higher AoA leads to better stability of the aircraft on the vertical axis. The sideslip
angle also affected this phenomenon, as depicted in Figure 24; in the 15◦ sideslip angle, Cy
values decreased as the AoA increased, but not significantly. In contrast, Cy values decreased
quite significantly as the AoA increased at a 30◦ sideslip angle.
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(a) 

 
(b) 

Figure 23. Cr vs. AoA; sideslip angle: (a) 15◦, and (b) 30◦.

 
(a) 

 
(b) 

Figure 24. Cy vs. AoA; sideslip angle: (a) 15◦, and (b) 30◦.

As depicted by Figure 24a, the twin-tail boom was the most directionally stable in a
crosswind condition with a 15◦ sideslip angle, followed by the quad-plane configuration,
although the difference was quite significant, which means that the twin-tail boom was
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far superior. The tandem wing was the most unstable configuration, caused by the extra
wing. The transverse wing also performed poorly, not far off from the Cy values of the
tandem wing. However, at 15◦ AoA in both 15◦ and 30◦ sideslip angles, the transverse
arm’s Cy values dropped, which means the aircraft became more stable. Nevertheless, it
was still outperformed by the twin-tail boom and quad-plane configurations. Figure 24b
shows the Cy values in a crosswind condition with a 30◦ sideslip angle. It further validates
that the performance ranking from the most stable to the least was the twin-tail boom, the
quad-plane, the transverse arm, and the tandem wing configuration.

After analyzing the coefficients of moment acting on the aircraft on the longitudinal,
lateral, and vertical axis and comparing the stability performance, it was determined that
the twin-tail boom configuration was the most stable overall in headwind and crosswind
conditions. The extra surface of the tandem wing and the transverse arm resulted in a less
stable aircraft. However, the transverse arm’s extra surface was a stabilizer that granted
better control authority and could be used to counteract the aircraft’s tendencies to pitch,
roll, and yaw. On the other hand, the extra surface on the tandem wing configuration was
a lifting surface, and it became a problem for stability and controllability, as predicted.

3.4. Maneuverability Performance

Maneuverability is an aircraft’s ability to maneuver. An aircraft with better ma-
neuverability can execute more extreme maneuvers without stalling. Determining good
maneuverability can be executed by analyzing the turn radius an aircraft makes. An aircraft
turns by moving the aileron in opposite directions on the right and the left side of the
wing, generating different lifting forces. The difference in lifting forces banks the aircraft
depending on which way the aircraft wants to turn. In this study, the VTOL plane was
analyzed at 10◦, 20◦, 30◦, and 40◦ bank angles.

Before the turn radius was calculated, the ability of the aircraft to turn at the predeter-
mined bank angles must be analyzed. Using Equation (17), the maximum bank angle of
the VTOL plane was determined. The maximum bank angle was described as the bank
angle at which the aircraft’s lifting forces could still fully support the aircraft’s weight. If
the aircraft’s maximum bank angle was more than the predetermined bank angles, the turn
radius was calculated using Equation (16).

Figure 25 depicts each configuration’s turn radius data in headwind conditions. The
twin-tail boom and quad-plane configuration had the tightest turn radius at low AoA.
Meanwhile, the tandem wing outperformed both configurations with an AoA greater than
12◦. The tandem wing and the transverse arm did not have sufficient lifting force at 4◦ AoA
and 30◦ bank angle, while the twin-tail boom and the quad-plane already had a sufficient
lift in the same condition. The smallest turn radius was 26.5 m, made by the tandem wing
configuration at a 40◦ bank angle and 20◦ AoA.

Figure 26 depicts the maneuverability performance of the VTOL plane in crosswind
conditions. The results in Figure 26a show that at a 15◦ sideslip angle, the VTOL plane
needed to pitch up to 5◦ AoA to execute the turn at 0◦–30◦ bank angles without stalling.
Furthermore, the transverse arm needed to pitch up more to 10◦ AoA to turn at a 30◦ bank
angle. To turn at a 40◦ bank angle, the VTOL plane needed a 10◦ AoA to generate enough lift.
The smallest turn radius, 29.2 m, was made by the tandem wing and occurred at a 40◦ bank
angle and a 15◦ AoA. The transverse arm had poor maneuverability performance in this
condition, already stalling at a 30◦ bank angle and 5◦ AoA, while the other configurations
could turn in the same conditions without stalling.

Figure 26b shows the superiority of the tandem wing further as it could execute 10◦
and 20◦ bank angle turns at 5◦ AoA in crosswind conditions with a 30◦ sideslip angle
without stalling. The other configurations could not complete this feat and needed a 10◦
AoA to execute a turn at the same bank angle and crosswind conditions. The smallest turn
radius at a 30◦ sideslip angle in crosswind conditions was 31.9 m by the tandem wing at a
40◦ bank angle and a 15◦ AoA.
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Figure 25. Maneuverability in headwind conditions; bank angles: (a) 10◦, (b) 20◦, (c) 30◦, and (d) 40◦.
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Figure 26. Cont.
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(d) 

Figure 26. Maneuverability in crosswind conditions; bank angle: (a) 10◦, (b) 20◦, (c) 30◦, and (d) 40◦.

Overall, the tandem wing was far superior to the other configurations in terms of
maneuverability. As could be seen in Figure 26b, at a 30◦ sideslip angle, where all configu-
rations generated less lift, the tandem wing matched the turn radius of other configurations
at the same bank angle but at a 15◦ sideslip angle. The tandem wing and the quad-plane
exhibited good maneuverability performance in headwind conditions at lower AoA but
struggled in crosswind conditions. The transverse arm performed poorly in headwind con-
ditions but outperformed the twin-tail boom and the quad-plane in crosswind conditions
with a 30◦ sideslip angle.

4. Discussion

This study compared the aerodynamic performance of a VTOL plane with different
VTOL arm configurations. The twin-tail boom had the best lifting performance at lower AoA
in headwind and crosswind conditions but was outperformed by the tandem wing at high
AoA. Overall, the tandem wing had the best lifting performance due to an extra lifting surface,
especially at greater AoA where the hind wing gets clean air, unobstructed by the forewing.
That superior lifting performance gave the tandem wing good maneuverability. However, the
extra surface generated more drag and caused inefficiency in headwind conditions.

In terms of efficiency, the quad-plane performed the best at low AoA in headwind
conditions, as could be seen by the L/D values. The twin-tail boom matched the quad-
plane’s efficiency starting from 8◦ AoA. The quad-plane and the twin-tail boom were
superior in efficiency because of the streamlined geometry that does not have any extra
surfaces as in the transverse arm and the tandem wing. However, in crosswind conditions,
the quad-plane, the twin-tail boom, and the transverse arm lost a lot of lift force, so the
tandem wing was more efficient due to the extra wing generating high lifting forces capable
of overcoming the drag force.

As the stall speed was directly affected by the generated lifting force, the tandem wing
had the lowest stall speed. Low stall speed was needed to stabilize the aircraft during
the transition from hovering to forward flight and vice versa. The twin-tail boom and
the quad-plane matched the tandem wing’s stall speed at low AoA in all conditions. The
transverse arm had the highest stall speed at 0◦ AoA, which made it a poor performance as
the VTOL plane’s wing needs level (0◦ AoA) to make a smooth and stable transition.

Stability is crucial for every aircraft. The simulation results showed that the quad-plane
configuration was the most stable longitudinally in headwind and crosswind conditions,
although the twin-tail boom and the transverse arm also did not perform poorly. On the
other hand, the tandem wing was the most unstable. Due to the center of gravity being in
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between the fore- and hind wings, any difference in lift generated by the two wings could
cause major longitudinal stability problems.

The difference between the transverse arm and the tandem wing is the extra surface
in the transverse arm configuration is a stabilizer with symmetrical airfoil. Symmetrical
airfoil generates less lift than asymmetrical airfoil. Hence, the extra surface of the tandem
wing configuration, which is a wing with an asymmetrical airfoil, generates more lift at a
distance from the center of gravity, causing stability problems. Moreover, a control surface,
namely the elevator, could be used to counter-moment the aircraft and keep the aircraft
stable while cruising. Even so, the pitch moment of the tandem wing was bigger to begin
with. An elevator needs to generate sufficient moment only to counter it, reducing the
pitching authority of the controller.

In crosswind conditions, the twin-tail boom was the most stable. Contrarily, the
tandem wing was the most unstable on the lateral and vertical axes. High Cr and Cy meant
that the tandem wing tended to roll and yaw extremely because of the crosswind and was
unable to maintain its position. Overall, having an extra lifting surface would cause an
unstable flight.

Depending on the mission, maneuverability could be important as well, although the
fixed-wing VTOL is an unlikely configuration choice for a UAV with a high maneuver-
ability requirement. Analysis of maneuverability is still crucial, though, to understand
the designed aircraft’s capabilities so that risky flight parameters can be avoided. A too
extreme bank angle could end in the aircraft stalling. A banking aircraft also generates
less lift than a level one, which means an aircraft would need to pitch up more to generate
sufficient lift, adding risks of stalling.

The simulation showed that in headwind conditions and low AoA, the twin tail
boom and the quad-plane performed the best. At AoA greater than 10◦, the tandem wing
outperformed both. The transverse arm had the worst maneuverability in headwind
conditions and was the most prone to stalling. In crosswind conditions, the tandem wing
was far superior and outperformed the other configurations. Moreover, the transverse arm
was better at a 30◦ sideslip angle than the twin-tail boom and the quad-plane. Overall,
the tandem wing had the best maneuverability due to its superior lifting capabilities. The
twin-tail boom performed well in a headwind condition but quite poorly in a high sideslip
angle crosswind condition.

In general, the twin-tail boom configuration had the most favorable aerodynamic
performance. The twin-tail boom had good lifting capabilities at low AoA and low drag
overall. The twin-tail boom was also efficient according to its L/D data. Furthermore, even
though the tandem wing had extra lifting surface, the twin-tail boom matched the tandem
wing’s stall speed at low AoA in headwind and crosswind conditions. A VTOL plane rarely
needs to pitch up to a big AoA for climbing because the VTOL motors take the aircraft
vertically to or nearly to its cruising altitude. As could be seen from the simulation results,
the twin-tail boom generally had good aerodynamic performance at low AoA, which made
it a suitable arm configuration for a VTOL plane. As such, many VTOL plane UAVs using
the twin-tail boom configuration can be found in the public market [7–9] because it is
suitable for monitoring missions in the agriculture and forestry fields.

The quad-plane performed slightly worse than the twin-tail boom in lateral and
directional stability, but had better efficiency in level flight. As such, the quad-plane is
suitable for surveillance missions [6], such as in a military or a search-and-rescue operation,
which require longer range but still stable flight. The tandem wing could be chosen for
missions that demand extreme maneuverability in exchange for its efficiency and stability.
The transverse arm did not perform outstandingly relative to the other configuration. It is
not as mature an idea as the others, but it showed promising performance in longitudinal
stability. Future revision to and development of the concept is needed to make it feasible
for a VTOL-plane design.
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5. Conclusions

This study examined four arm configurations for a VTOL plane and compared their
aerodynamic performance. A CFD simulation was carried out to obtain the data in head-
wind and crosswind conditions. The data were used to calculate several parameters, such as
the aerodynamic coefficients, moment coefficients, stalling conditions, and maneuverability
performance. Upon analyzing the parameters, it was found that the twin-tail boom is the
most suitable configuration for a VTOL plane, especially at a low angle of attack. The
twin-tail boom has desirable lifting capabilities, efficiency, maneuverability, and stability in
crosswind conditions. The quad-plane and the tandem wing are suitable for some specific
demanding missions. Meanwhile, the transverse arm still needs further development to
be implemented. Each configuration has its own infirmity, which could be increased by
proper tuning and control input.
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10. Okulski, M.; Ławryńczuk, M. A Small UAV Optimized for Efficient Long-Range and VTOL Missions: An Experimental Tandem-

Wing Quadplane Drone. Appl. Sci. 2022, 12, 7059. [CrossRef]
11. Foxtech Altair 370. Available online: https://www.foxtechfpv.com/foxtech-altair-370-tandem-wing-hybrid-vtol.html (accessed

on 25 September 2022).
12. Czyba, R.; Lemanowicz, M.; Gorol, Z.; Kudala, T. Construction Prototyping, Flight Dynamics Modeling, and Aerodynamic

Analysis of Hybrid VTOL Unmanned Aircraft. J. Adv. Transp. 2018, 2018, 7040531. [CrossRef]
13. Min, K.-M.; Chia, F.-Y.; Kim, B.-H. Design and CFD Analysis of A Low-Altitude VTOL UAV. Int. J. Mech. Prod. Eng. Res. Dev.

2019, 9, 555–562. [CrossRef]
14. Rosid, N.H.; Lukman, E.I.; Fadlillah, M.A.; Moelyadi, M.A. Aerodynamic Characteristics of Tube-Launched Tandem Wing

Unmanned Aerial Vehicle. J. Phys. Conf. Ser. 2018, 1005, 012015. [CrossRef]

43



Drones 2022, 6, 392

15. Gigacz, R.; Mohamed, A.; Poksawat, P.; Panta, A.; Watkins, S. Exploring Tandem Wing UAS Designs for Operation in Turbulent
Urban Environments. Int. J. Micro Air Veh. 2018, 10, 254–261. [CrossRef]

16. Brinkworth, B.J. On the Aerodynamics of the Miles Libellula Tandem-Wing Aircraft Concept, 1941–1947. J. Aeronaut. Hist. 2016, 2, 10–58.
17. Austin, R. Unmanned Aircraft Systems: UAVs Design, Development and Deployment; In AIAA Education Series, 1st ed.; American

Institute of Aeronautics and Astronautics; Wiley: Reston, VA, USA; Chichester, UK, 2010; ISBN 978-1-60086-759-0.
18. Roskam, J. Airplane Design Part I: Preliminary Sizing of Airplanes, 1st ed.; DARcorporation: Lawrence, KS, USA, 1986; ISBN

978-1-884885-42-6.
19. Roskam, J.; Lan, C.-T.E. Airplane Aerodynamics and Performance, 1st ed.; DARcorporation: Lawrence, KS, USA, 1997; ISBN

978-1-884885-44-0.
20. Raymer, D.P. Aircraft Design: A Conceptual Approach; In AIAA Education Series, 6th ed.; American Institute of Aeronautics and

Astronautics, Inc.: Reston, VA, USA, 2018; ISBN 978-1-62410-490-9.
21. Sadraey, M.H. Aircraft Design: A Systems Engineering Approach; In Aerospace Series, 1st ed.; Wiley: Chichester, West Sussex, UK,

2013; ISBN 978-1-119-95340-1.
22. Anderson, J.D. Aircraft Performance and Design, 1st ed.; WCB/McGraw-Hill: Boston, MA, USA, 1999; ISBN 978-0-07-001971-3.
23. Van Nguyen, N.; Tyan, M.; Lee, J.W.; Kim, S. Investigations on Stability and Control Characteristics of a CS-VLA Certified Aircraft

Using Wind Tunnel Test Data. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2016, 230, 2728–2743. [CrossRef]
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Abstract: Achieving energy autonomy in a UAV (unmanned aerial vehicle) is an important direc-
tion for aerospace research. Long endurance flights allow for continuous observations, taking of
measurements and control of selected parameters. To provide continuous flight, a UAV must be
able to harvest energy externally. The most popular method to achieve this is the use of solar cells
on the wings and structure of the UAV. Flexible solar cells mounted on the surface of the wings
can be damaged and contaminated. To prevent these negative changes, it is necessary to apply a
protective coating to the solar cells. One of the more promising methods is lamination. To properly
carry out this process, some parameters have to be appropriately adjusted. The appropriate selection
of temperature and feed speed in the laminator allows a PV (photovoltaic) panel to be coated with
film, minimizing any defects in the structure. Covering PV panels with film reduces the performance
of the solar cells. By measuring the current–voltage characteristics, data were obtained showing the
change in the performance of solar cells before and after lamination. In the case of testing flexible PV
panels, the efficiency decreased from 24.29 to 23.33%. This informed the selection of the appropriate
number of solar cells for the UAV, considering the losses caused by the lamination process.

Keywords: renewable energy; flexible solar cell; lamination; energy harvesting; UAV power
supply system

1. Introduction

External energy harvesting allows for standalone power supply systems to extend
their working time and even achieve full energy autonomy [1–3]. PV (photovoltaic) panels
allow electricity to be obtained from solar energy, and surplus energy can be stored in
batteries [4,5]. The use of such systems is gaining more and more popularity in the
electromobility industry in use, among others, in charging stations for electric cars, and
in aviation as an element of the wings or other parts of the vehicle structure. In the case
of UAVs (unmanned aerial vehicles), the operation of a solar cell under the conditions in
which it will be operated should be verified [2]. Currently, UAVs are used for, amongst
other functions, distributing shipments, mapping, surveillance, and monitoring of borders
and crops [6,7]. The biggest research area associated with UAVs is increasing flight duration
without unnecessary landing. For this purpose, systems should be developed to increase
flight duration, optimize the system in terms of weight and provide functionality in all
weather conditions. Obtaining external energy allows for energy autonomy; however, it
is closely related to the location and time of flight [8]. The use of solar cells allows for an
increase in flight duration, but it also has numerous limitations that have to be taken into
account during the design of power supply systems [9–11].

The sun is the largest source of free energy on Earth. Solar energy is a renewable,
pollution-free, sustainable, and inexhaustible resource. A solar cell is a device that converts
solar energy into electricity through the photovoltaic effect. The most-used material for
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solar cells is silicon. Other materials used for the construction of photovoltaic cells are
gallium arsenide, cadmium telluride, and copper indium gallium selenide. However, these
technologies are restricted by resource scarcity. The highest efficiency is provided by GaAs
solar cells, but these cost as much as ten times more than silicon-based devices [7,12,13].
Although different solar cell types on the market exist, very few are applied to UAVs due to
their energy conversion efficiency, cost considerations, environmental compliance, weight,
and flexibility.

Standard silicon solar cells are brittle and breakable, so this type is not suitable for
UAVs [14,15]. In the case of aircraft, solar cells must be able to distort due to the numerous
curvatures of the wing surfaces and also due to the stresses that occur on the UAV during
flight [16–18]. Solar cells used in aviation and space applications should be flexible to better
conform to the surface of the wings, tail, and hull [8,19,20].

Currently, solar cells convert most of the visible light spectrum and about half of the
ultraviolet and infrared light spectrum to usable energy. The efficiency of a solar cell is
a measure of its performance in converting sunlight into electricity [21]. The electrical
properties of solar cells are determined from measured current–voltage (I–V) characteristics
and power–voltage (P–V) characteristics.

The energy conversion is driven by the absorption of light (photon) energy, producing
electron–hole pairs in a semiconductor and charge carrier separation. A p–n junction is
used for charge carrier separation. For photovoltaic devices, reflection and transmission
are typically considered loss mechanisms, as photons that are not absorbed do not generate
power. To protect solar cells from external conditions, thin films that are resistant to
mechanical damage are used [20]. Solar panel lamination is one of the processes crucial to
ensuring a long lifespan, but it does affect the amount of light entering the device. In this
work, the influence of a protective film application on optical properties was investigated
via spectrophotometer. A spectrophotometer allows for the observation of changes in the
range of UV, visible, and infrared light transmitted, and to analyze if within these ranges
the characteristics of the tested samples are constant or variable [22].

Each protective layer on a solar cell’s surface together with the effects of ambient
temperature and irradiation variations cause the parameters of PV panels to change [23–26].
To perform tests on solar cells, it is necessary not only to measure the current–voltage and
power–voltage characteristics for different irradiation and temperatures of the solar cell,
but also to check the solar cell structure and protective layers on its surface [27,28].

During the lamination process, the microstructure of the solar cell may experience
changes [29]. Microfractures can be caused by environmental conditions such as thermal
cycling and humidity. Another cause of micro-cracks are mechanical stresses. This kind of
damage can be caused by choosing incorrect parameters for the lamination process, e.g., by
using too much pressure. Micro-cracking causes a reduction in output power resulting in
deterioration of the efficiency of the solar cell.

To strengthen solar cells and prevent mechanical damage, various protective coatings
are used on their upper surface: films, resins, and composite materials. This process is
also intended to improve the aerodynamics of the UAV. The coating protection extends the
service life of the system. It allows for quick cleaning of PV panels and also prevents the
ingress of moisture and dust into the system. The process of mounting solar cells on the
wing can be divided into several types of technology [20] using the following methods:

• Adhering to an existing wing—this method is good for retrofitting an existing UAV.
Aerodynamics are normally not affected as modules are extremely thin. The biggest
advantage of this solution is it allows the possibility of replacing PV cells in the event
of damage. Wiring between modules is time-consuming with large wings, as strings of
solar cells run from root to tip. The biggest disadvantage of this solution is the sealing
of the gap between two modules [20,30].

• Placed into a mold—the challenge is to fix the modules in their exact position and to
ensure no resin leaks onto the front of the module. The advantage of this solution is
the wiring, which is easy to arrange. The effects of PV modules on aerodynamics are
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largely eliminated but modules cannot be swapped in case of damage. One variation of
this method is to place solar cells inside the wing structure with a transparent coating,
e.g., transparent film. This technology is mainly practiced within hobby modeling
circles and the production process can be seen on models that are often developed
by enthusiasts, e.g., on YouTube channels. Due to the labor-intensive nature of this
method and the impossibility of replacing damaged elements, it is rarely used in
commercial UAVs.

• As the wing surface—lightweight solar modules need more ribs; more sturdy solar
modules need fewer ribs but have more weight. The wiring arrangements are easy in
this solution [31–34].

This article details aspects of the development of a solar-powered UAV which is
designed to be able to fly in the stratosphere—TwinStratos (TS) UAV [35–37]. The goal of
this research was to obtain an understanding of the laminated solar cells used in the first,
smaller prototype of TS (Figure 1). Decreases in efficiency and changes in the parameters of
solar cells can affect energy produced by the system. For the purposes of this experiment,
the UAV was equipped with SunPower Maxeon Ne3 solar cells, which are flexible and
allow for adaptation to curved surfaces. The manufacturer of the SunPower Maxeon Ne3
cells ensured efficiency at a level of 24.3% [38]. Data received from a test stand allowed
us to calculate if the number of solar cells assumed in the initial assumption was able to
perform the assumed flight mission. Data obtained in the test allowed the development of
a simulation model for a power supply system of the envisioned solar-powered UAV. In
previous works, this integrated design approach based on model-based system engineering
developed by the project team was applied to the design and testing of ultra-efficient racing
vehicles [39], automated guided vehicles (AGVs) [40], as well as for the design of general
aviation class aircraft [41].

 

Figure 1. The first prototype of TwinStratos.

2. Materials and Methods

2.1. Lamination Process

In this study, we decided to laminate solar cells and glue PV panels to the UAV’s
wings. This method of mounting was chosen due to the fact it allowed application onto an
existing aircraft. The second reason was related to the proof-of-concept stage of the UAV
being developed. If there were any changes needed, these could be made relatively easily.

Solar cell lamination has two purposes:

• Improving the aerodynamics of the wing with elimination of sharp edges;
• Protection against scratching of the solar cell, action of chemicals, and harmful effects

of weather conditions.

A disadvantage of lamination is the reduction in efficiency of solar cells in relation to
the efficiency of uncovered solar cells. The test plan relating to lamination has been divided
into individual stages:

1. Testing of films of various thicknesses involving local damage to samples and then
checking their reaction to external forces. This study enables the selection of a suitable
film ultimately used in the UAV.
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2. Examination of the selected film with a spectrophotometer to find out its characteristics
of reflection, absorption, and transmission.

3. Covering the solar cell with the selected film. During lamination of the solar cells, an
important aspect is the selection of appropriate process parameters.

4. Testing the current–voltage characteristics of solar cells before and after the lamina-
tion process.

2.2. Film for Lamination

There are a few types of film with different thicknesses that can be used as protective
surfaces for solar cells. In aerospace, one of the most widely used encapsulating materials
is EVA (ethylene–vinyl acetate) [42]. The advantages of this material are high transmission
and resistance to UV radiation [43]. The disadvantage in the case of EVA is the method
required in the lamination process. To provide a smooth connection between the film and
the solar cell, it is necessary to use a vacuum, ensuring that no air or humidity will be in
contact with the solar cells. This requires advanced equipment that increases the cost of
making the prototype of the UAV.

Another kind of film that can be used for solar cell lamination is PVC (polyvinyl
chloride) film. PVC and EVA are similar materials. EVA is more flexible, lighter, and
stronger than PVC, but the advantage of PVC is its ease of application to the solar cell. In
this case, use of vacuum is not necessary. The time needed to prepare PVC-laminated solar
cells is shorter than in the case of EVA.

For our prototype solution, we decided to use PVC film due to the simplicity of its
application to the solar cell’s surface. The films tested ranged from 60 to 250 microns
in thickness. The inner side of the film is covered with glue, allowing adhesion to the
laminated elements. The thinnest films were characterized by high flexibility but low
mechanical strength, thick films the inverse. To select the appropriate film thickness, we
decided to conduct several tests to check the strength of the films. Films were tested
primarily in terms of their actual application and the typical working conditions. For this
reason, at this stage of the work, no research was carried out with the use of advanced
equipment, but only with the use of simple tools—knives, drills, needles, and files. Prepared
damages are the most common defect that can occur during UAV flight operations. The
performed tests were to show whether the damage caused by the system would allow
further operation of the UAV or not. A visual method was used to check for defects
appearing after film failure.

Tests have been carried out on laminated films. A laminator was used to prepare the
samples. For lamination, we used a Laminator OPUS ProfiLAM (OPUS, Gliwice, Poland)
A3. For the PVC film method of solar cell lamination, it was found that during the welding
of the film, the guide rollers removed air just before the lamination process. With such
a laminating process, there was no need to control the pressure to facilitate getting rid
of air bubbles. The preparation of samples for testing began with laminating paper as
a precursor to laminating solar cells. Due to its hygroscopicity, the paper allowed the
adhesive to be absorbed, thanks to which no stains or air bubbles were formed. The use
of paper additionally allowed us to obtain a rigid surface like the surface of a laminated
solar cell. In the case of double lamination (film–paper–film), the second layer of film
additionally stiffened the whole, making the sample similar to the structure of the UAV’s
laminate surface.

2.3. Initial Film Thickness Tests

In the case of testing the mechanical strength of the film against damage in real
conditions, three tests were carried out. The first test consisted of cutting the film lengthwise
and then bending it. The purpose of the test was to show the reaction of the longitudinally
torn film to the stress on the wing of the UAV. Defects of this type may appear in the case
of incorrect performance during manufacturing. The second test consisted of creating spot
damage to the film and then checking whether the defect due to bends would enlarge. The
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purpose of this test was to present an example of films being damaged in flight. The final
test tested damage to the edges of the film and then analyzed how stresses and external
forces affected this damage. This test was similar to the second test, but the film was
damaged at the end of the sample. This type of damage may occur when the film is
detached from the UAV structure.

Every test was conducted several times on each film type with the number of bends to
the film occurring around a dozen repetitions. This number of repetitions made it possible
to observe changes in the structure of the samples. In the case where changes were not
noticeable, the test time and/or a change of method of loading the samples using stretching
and bending along other axes were added.

The incision test followed by the bend test yielded the observations in Table 1. Figure 2
presents the results of the incision test.

Table 1. Incision test results.

Film Thickness (μm) Effect

≤100 The incision damaged the inner side of the film. Due to the high
flexibility of the film, the incision did not enlarge.

125–200 The incision damaged the inside of the film, enlarging the gap due to
prolonged bending.

≥250 The incision did not damage the inner side of the film. However, due
to bending, the gap burst.

  
(a) (b) 

Figure 2. Samples tests: (a) incision test of a film with a thickness of 250 μm with a burst gap;
(b) incision test of a film with a thickness of 100 μm, which does not enlarge the damage.

In the second test, related to spot damage, all film thickness did not show any enlarge-
ment of defects, even under the influence of prolonged stresses as a result of bending or
applying tensile stress.

The third test, related to end damage to the film, showed the effects listed in Table 2.

Table 2. End damage results.

Film Thickness (μm) Effect

<100 In the case of thin film, the defect easily increased due to its delicate
surface.

100–200 In the case of the intermediate films, the defect increased, but more
slowly than in the case of thin and thick films.

≥250 In the case of thick films, the defect increased easily due to their
greater brittleness/fragility.
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Thinner films allow flexibility over a low radius equal to a few centimeters. This
feature of thin films allows for their use on small UAV elements such as hulls, ailerons,
and flaps. Thick films do not allow the same flexibility over a low radius as thin films do,
but they are more durable. Thick films provide higher resistance to mechanical damage.
However, the thicker film, the lower the efficiency of the solar cells. Thicker films are heavier
than thinner films, which is another point in favor of using the thinnest possible film.

After the lamination process, solar cells are soldered. Soldered joints stiffen the PV
panel, increasing its brittleness. Analyzing the research carried out on possible damage of
laminated solar cells during the flight of the test UAV and its response to defects, it was
decided that the thinnest film that could be used was a film with a thickness of 100 μm.

2.4. Parameters of the Lamination Process

While testing the film samples, the parameters of the lamination process were of less
importance due to the use of absorbent paper, to which the film adhered easily. In the
case of solar cells, these parameters are more important due to the non-absorptive nature
of solar cells. The parameters that played the greatest role in an optimized process were
temperature and speed of lamination.

An optimized lamination process should create a smooth texture on the surface of
the solar cell without visible defects (Figure 3a). The laminator used allowed 9 lamination
speeds, allowing a feed rate from 200 to 1800 mm/min with increments of 200 mm/min
for each speed. High feed rates (lamination speed) caused the film to peel off the solar
cell. A second disadvantage of high feed rates was the formation of adhesive stains on the
solarcell’s surface (Figure 3b). Feed rates over 1400 mm/min produced these defects.

  
(a) (b) 

  
(c) (d) 

Figure 3. Laminated solar cells: (a) without defects; (b) adhesive stains on the surface caused by too
fast feed; (c,d) damp patches from the adhesive caused by too low temperature of lamination.
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Another variable parameter was the temperature of lamination. The temperature range
of the lamination process was between 70–140 ◦C. Low temperatures caused ineffective
lamination, characterized by the formation of damp patches from the adhesive (Figure 3c,d).

Feed rates of 800–1000 mm/min and temperatures in the range of 90–105 ◦C produced
optimal results.

The selection of the appropriate lamination process parameters made it possible to
obtain a homogeneous PV panel surface free from flaws. Prepared samples were subjected
to tests that examined their electrical properties before and after lamination.

Parallel to the lamination of the chosen solar cells, a different type of flexible solar cells
was also laminated. For each type, the optimal parameters of temperature and lamination
speed determined for that type were used.

3. Test Stands

3.1. Test Stand for Collecting the Characteristics of Transmission, Absorption, and Reflection

During the research, we used an Evolution 220 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA) to measure the characteristics of transmission, absorption,
and reflection of the film. The spectrophotometer allowed for the determination of the
characteristics in wavelengths ranging from 190 to 1100 nm.

3.2. Microscale Characterization Method

To obtain images of the monocrystalline surface topography of solar cells we used
a scanning electron microscope (SEM). Images were obtained using a Supra 35 (Zeiss,
Thornwood, NY, USA) SEM using an acceleration voltage of 10 kV. The secondary electron
(in-lens) detector was used to obtain images of the surface topography.

3.3. Test Stand for Collecting Current–Voltage Characteristics of a Solar Cell

The test stand (Figure 4a) for measuring the current–voltage characteristics of solar
cells allowed measurements to be obtained for the tested solar cells for STC (standard test
conditions)—irradiated with a power of 1000 W/m2 at a temperature of 25 ◦C, and Air
mass 1.5 spectrum (AM 1.5) defined by European standard IEC 60904-3 [44]. This system
for I-V characteristic measurements of solar cells meets all the requirements of the IEC
60904-1 standard [45].

 

 

(a) (b) 

Figure 4. Test stand: (a) solar simulator with a xenon flash lamp, measuring table, and computer for
downloading current–voltage characteristics; (b) research conducted on flexible solar cells placed on
the measuring table.
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The device consists of a light source in the form of a xenon flash lamp with a power of
1430 watts. After passing through the filter (“Air Mass Filter”) and the optical system, it
uniformly illuminates the measuring table (Figure 4b).

4. Results and Discussion

4.1. Transmission, Absorption, and Reflection of the Film

The characteristics of absorption, reflection, and transmission are presented in
Figure 5b–d for both films before and after the lamination stage were tested. The SunPower
Maxeon Ne3 datasheet contains the spectral response of solar cells [38], which is presented
in Figure 5a. The spectral response is the ratio of current generated by the solar cell to
the power incident on the solar cell [46]. These characteristics make it possible to observe
changes in the spectral response depending on the wavelength. When analyzing the graphs,
the main observations were made of the wavelength range and places where the changes
in characteristics occurred. In terms of the solar energy supplied to solar cells, the changes
in the UV and infrared range are not as significant as in the visible light range.
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Figure 5. Characteristics of: (a) spectral response of Maxeon Ne3; (b) 100 μm film absorption;
(c) 100 μm film reflection; (d) 100 μm film transmission.

There are some changes in the UV wavelength range for transmission, absorption,
and reflection. From a value of about 300 nm, the characteristics stabilize at one level over
the entire range of visible light up to a final value of 1100 nm. The research carried out
on laminated film elucidated changes in reflection, absorption, and transmission in the
visible light range. A uniform value of the characteristics in the range from 300 to 780 nm
demonstrates that the parameters of the solar cell in the visible light range will be constant.
This information allows the conclusion to be made that the system will operate with similar
performance across the entire range of visible light.

4.2. Microscopic Scale Observations of the Solar Cell

Figure 6 shows the surface topography of a monocrystalline silicon solar cell. It was
observed that there are randomly distributed pyramids on the surface, which may indicate
the etching of the substrate in alkaline solutions. This chemical treatment of monocrystalline
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silicon significantly reduces the reflectance from the front surface of the solar cells. The
texturization of the silicon surface is a key element in the production of photovoltaic cells,
enabling the formation of an appropriate microstructure on the surface of the substrate,
trapping solar radiation inside the material by repeated reflection [47–49].

 

Figure 6. SEM textured surface topography of the N-type monocrystalline silicon solar cell.

All leads in the tested N-type solar cells are on the rear surface of the samples
(Figure 7). The electrode topography of a monocrystalline silicon photovoltaic cell is
shown in Figure 8a,b.

 
Figure 7. Rear surface of Maxeon Ne3 with visible connectors in the lower part.

When analyzing the structure of the solar cell before and after the lamination process,
no traces of microcracks were observed. The temperature changes during lamination and
the force generated by rollers pressing the film to the solar cell did not damage the upper
surface layer and the electrical connections of the solar cell. The decrease in the efficiency
of the solar cell is therefore not due to microcracks, but only due to the properties of the
layer of film applied during lamination. The lower efficiency and deterioration of electrical
parameters are related to the light transmittance factor of the film.
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(a) (b) 

Figure 8. Topography of the electric contact surfaces of a monocrystalline silicon photovoltaic cell of
the N-type: (a) contact of fingers (grid lines) with connectors; (b) finger (grid line).

4.3. Solar Cell Characteristics

The test stand allowed the determination of the electrical specification of the solar
cells (Table 3). These values, as a mean of all measurements, I–V (current–voltage) and P–V
(power–voltage) characteristics are presented in Figure 9.

Table 3. Electrical specifications of tested SunPower Maxeon Ne3 solar cells.

Data
Manufacturer Data
(Non-Laminated)

Non-Laminated Laminated (100 μm Film)

Voc (V) >0.731 0.733 0.726

Isc (A) >6.382 6.330 6.061

Vmp (V) >0.625 0.627 0.624

Imp (A) >6.050 5.92 5.747

Pmpp (Wp) >3.77 3.71 3.589

Fill Factor (%) 80.8 80.8 81

Efficiency (%) >24.34 24.29 23.33
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Figure 9. I–V and P–V characteristics of the SunPower Maxeon Ne3 cells.
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For each type (laminated and non-laminated) we used 25 samples of solar cells to
conduct research. The relative standard deviation (RSD) as well as the minimum and
maximum values obtained during tests are presented in Table 4.

Table 4. Specification of tested SunPower Maxeon Ne3 solar cells.

Data
Non-Laminated Laminated (100 μm Film)

Min Max RSD (%) Min Max RSD (%)

Voc (V) 0.728 0.738 0.77 0.725 0.731 1.81

Isc (A) 6.109 6.33 0.28 6.032 6.421 0.24

Vmp (V) 0.616 0.639 1.04 0.604 0.629 1.47

Imp (A) 5.793 6.039 0.79 5.724 6.05 1.15

Pmpp (Wp) 3.619 3.82 1.32 3.51 3.7 1.27

Fill Factor (%) 79.9 84.2 1.23 77.1 82.2 1.9

Efficiency (%) 24 24.77 1.12 23.01 23.79 0.85

The test stand allowed for an irradiation intensity with a power equal to 1000 W/m2

to be provided to cells. To obtain the characteristics for the lower range of irradiation
intensity, the commonly used generic simulation model using a MATLAB/Simulink system
was applied. Data obtained during the STC tests of the solar cell were used as inputs in
the simulation model. Data from the tested solar cells and different irradiation levels are
presented in Table 5. I–V and P–V characteristics are presented in Figures 10 and 11.

Table 5. MPPT data of tested solar cell.

Non-Laminated

Irradiation (W/m2) Voltage (V) Current (A) Power (W) Fill Factor (%)

1000 0.627 5.92 3.709 80.8

750 0.626 4.439 2.779 59.9

500 0.622 2.961 1.842 39.7

250 0.611 1.482 0.906 19.5

Laminated

Irradiation (W/m2) Voltage (V) Current (A) Power (W) Fill Factor (%)

1000 0.624 5.748 3.588 81

750 0.622 4.317 2.684 61

500 0.618 2.872 1.776 40

250 0.606 1.437 0.871 19.8

The data introduced into the system allowed for the determination of current–voltage
(Figure 12) and power–voltage (Figure 13) characteristics of solar cells for different temper-
atures. Using temperature coefficients of the SunPower Maxeon Ne3 cells, the following
values were applied: voltage: −1.74 mV/◦C, current: 2.9 mA/◦C, power: −0.29%/◦C.

Temperature coefficient data obtained in the simulation model allowed for the compar-
ison of these data with analytical calculations. Comparing these values, it can be concluded
that the simulation model results are consistent with the calculations. The data of a solar
cell for different temperatures are presented in Table 6.
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Table 6. MPPT data for tested solar cells in different temperatures.

Non-Laminated

Temperature Voltage (V) Current (A) Power (W) Fill Factor (%)

0 0.673 5.876 3.952 85.1

25 0.627 5.92 3.709 80.8

50 0.58 5.964 3.458 74.5

75 0.534 5.992 3.201 69

Laminated

Temperature Voltage (V) Current (A) Power (W) Fill Factor (%)

0 0.671 5.706 3.827 87

25 0.624 5.748 3.588 81

50 0.578 5.779 3.343 76

75 0.532 5.813 3.092 70.2

5. Conclusions

SunPower Maxeon Ne3 solar cells were selected for testing present repeatable electrical
and physical parameters. The flexibility of the solar cell allows it to be bent and influenced
by external forces without fear that the solar cell will be broken or damaged. These features
of the cell make it suitable for aerospace applications.

Flexible solar cells were covered with a thin film to provide protection and enhance-
ment of the solar cell and to improve the aerodynamics of the UAV structure. The reduction
in the solar cells’ efficiency because of the lamination process reduced the energy supplied
to the UAV power supply system. Tests carried out on test stands allowed for the deter-
mination of the efficiency of laminated and non-laminated solar cells. It was found that
the optimal film thickness for lamination, a PVC film of 100 μm, reduced efficiency by
4%. Spectrophotometric characteristics of transmission, absorption, and reflection allowed
the conclusion that in the full range of visible light, these values are constant. This data
demonstrates that losses of efficiency are constant for the visible light range. Reductions
in efficiency precipitate the need to use more solar cells to obtain the same energy value.
Reduced efficiency in relation to non-laminated solar cells, together with the benefits of
enhanced protection of cells that film lamination confers, result in the need to change the
design of the UAV, to optimize the energy consumption or redefine the battery capacity.
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Simulations that include the different parameters of solar cells in different tempera-
tures allow for the determination of the response of the system in conditions when solar
cells are exposed to frosty surroundings and to high temperatures. In the case of a specific
UAV being designed as part of this work, with an optimal flight time of over 24 h, this
reduction in efficiency due to lamination equal to 4% will be significant.

Further work is planned to validate the simulation models of the laminated PV panels
by testing the UAV in a real environment. The simulation model will allow predictions
for the control of the energy balance of the UAV. Data related to solar cells, such as sun
exposure, cloud cover, location, day duration, angular variation of the aircraft, flight
scenarios, and energy consumption will also be considered. These data, in combination
with the development of a power supply system, will allow for the calculation of the energy
balance and planning of optimal flight paths in the stratosphere.

The methods developed for lamination of solar cells and data obtained will be used
in the first prototype of the TS UAV. Subsequent improved iterations of TS will be able to
fly in the stratosphere and achieve a cruising altitude of 20 km. These extreme conditions
will allow verification of the initial assumptions with regard to the laminated PV systems
meeting the requirements of this demanding environment.

Author Contributions: Conceptualization, K.M.; methodology, K.M. and A.D.; validation, W.S.;
formal analysis, K.M.; investigation, K.M.; resources, A.D.; data curation, K.M.; writing—original
draft preparation, K.M.; writing—review and editing, W.S. and A.D.; visualization, K.M.; supervision,
W.S.; project administration, W.S.; funding acquisition, K.M. and W.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was partially funded from EEA and Norway Grants 2014–2021 and was
partially carried out in the framework of project No. 10/60/ZZB/153 “Long-endurance UAV for
collecting air quality data with high spatial and temporal resolutions”. This work has also been
supported by Silesian University of Technology (grant no. 10/060/BKM22/2025) and co-financed
by the European Union from the European Social Fund in the framework of the project “Silesian
University of Technology as a Center of Modern Education based on research and innovation”
POWR.03.05.00-71300-Z098/17. The APC was funded by Silesian University of Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to express our thanks to the following researchers for
their contribution to the research and carrying out some of the preparatory work as part of Project-
Based Learning—the supervisors: Tomasz Rogala, Roman Niestrój, and the students: Justyna Sobiech,
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Abstract: Copter-type UAVs (unmanned aerial vehicles) or drones are expected to become more and
more popular for deliveries of small goods in urban areas. One strategy to reduce the risks of drone
collisions is to constrain their movements to a drone road system as far as possible. In this paper, for
reasons of scalability, we assume that path-planning decisions for drones are not made centrally but
rather autonomously by each individual drone, based solely on position/speed/heading information
received from other drones through WiFi-based communications. We present a system model for
moving drones along a straight road segment or tube, in which the tube is partitioned into lanes.
We furthermore present a cost-based algorithm by which drones make lane-switching decisions,
and evaluate the performance of differently parameterized versions of this algorithm, highlighting
some of the involved tradeoffs. Our algorithm and results can serve as a baseline for more advanced
algorithms, for example, including more elaborate sensors.

Keywords: drones; wireless communications; path planning; collision avoidance; performance
evaluation

1. Introduction

Unmanned aerial vehicles (UAV) or drones are increasingly becoming an interesting
alternative for the delivery of small goods, in particular in densely populated urban
environments [1–3]. Rotary-wing or copter-type drones are advantageous for this class of
applications due to their manoeuvrability, their ability to hover and their vertical take-off
and landing capability. Drone-based delivery has important advantages: (i) drones can
move in three dimensions and can often take a much more direct route than possible on a
street network, reducing the distance to travel and speeding up the delivery of time-critical
items; (ii) they are less likely to be hampered by traffic congestion and in turn, do not
contribute to the congestion of passenger-carrying vehicles on the ground; (iii) delivery
of small goods via drones is potentially more environmentally sustainable, as the mass
of a drone to be moved is orders of magnitude lower than the mass of cars or vans (even
though the drone additionally has to work against gravity) [4–7]. We expect that delivery
drones will become more autonomous and will be used in increasingly large numbers.
At the same time, flying drones present a safety hazard for humans, particularly when
a drone loses control and crashes, when two or more drones collide fatally, or when a
drone enters an airspace also occupied by manned aircraft (e.g., close to an airport or in the
operational area of a rescue helicopter). One approach to manage safety risks is to confine
drones to move along pre-planned airspaces most of the time. Therefore, we envisage the
introduction of a drone road system similar to a road network for vehicles, a network of
straight cylindrical segments (or tubes) meeting at intersections, which drones can enter
and leave either at pre-planned on- and offramps or at arbitrary locations. A drone road
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network can be partially overlaid with the street network so that a crashing drone hits the
ceiling of a car instead of a human.

In this paper, we explore how drones can move along a drone tube such that most of
the time they fly at their preferred speed, stay within the tube, and above all avoid collisions
with other drones (and subsequent crashes). To cater to a wide variety of drone models
and drone operating procedures we make only minimal assumptions about the sensing
and communications capabilities of drones. We assume that drones are only equipped
with a GPS receiver and a WiFi adapter, and we express this by saying that drones are
sensorless. Drones continuously measure their own position and broadcast this and other
operational data (e.g., speed) regularly to a local neighbourhood—in other words, our
communications model for drones is very similar to the communications model in vehicular
networks, which is critically based on the frequent transmission of safety messages [8]. We
refer to these periodic transmissions (which are similar in spirit to the WAVE/SAE J2735
protocol’s basic safety messages used in vehicular networking [9]) as beacons. A drone can
use beacons received from other drones to estimate their trajectory, identify the risk of
upcoming collisions and take corrective actions. Similar to the case of vehicular networks,
beacons can get lost through packet collisions and other channel phenomena [10–13],
leading to potentially significant uncertainty about the position and speed of neighbouring
drones. These communication-induced uncertainties come on top of other uncertainties,
e.g., from noisy GPS receivers or weather conditions [14].

Fundamentally, to move in a tube, drones have to make decisions about their speed
and their position relative to the tube, such that they eventually reach their final destination,
avoid collisions with other drones or obstacles and do all that at a speed as close as possible
to their preferred speed. Drones have to achieve this in the presence of uncertainty about
other drones’ positions, resulting from packet losses. In this paper, we report on the
design and performance evaluation of a simple, computationally inexpensive, yet flexible
autonomous decision-making algorithm for controlling the movements of drones in a drone
tube. We make the following contributions:

• We present a system model for a drone tube, in which the space within the tube and
outside of it is subdivided into lanes, and in which drones exchange basic position
and velocity information through frequent broadcasting of beacons.

• We present a simple, computationally inexpensive, de-centralized and coordination-free
decision algorithm, by which drones decide the lane and speed to use, based on
information about neighboured drones received through beacons. The algorithm is
“greedy”, i.e., it is based on an internal and parameterizable cost model which takes
into account both the deviation from the preferred speed and the drone’s position
relative to the tube. The algorithm aims to minimize short-term costs. By adjusting
the algorithm parameters it becomes possible to choose appropriate tradeoffs between
deviations from the preferred speed and temporary movements out of the tube. By
“coordination-free”, we mean that drones can make use of the position and speed
information gathered from beacons of other drones, but no further data is included in
beacons that would allow them to inform (or even actively negotiate with) other drones
about any planned movements. Despite its simplicity, the algorithm is parameterizable
and can achieve a substantial range of different behaviours. To demonstrate this, we
define four noticeably different variants of our algorithm.

• We perform a simulation-based performance analysis of these four variants, reporting
results for the average number of drone collisions, average speed, and average distance
to the tube when moving out of the tube. The focus of our evaluation is the impact of
the underlying communications subsystem on key performance measures such as the
number of drone collisions. We, therefore, do not consider other sources of uncertainty,
such as GPS noise.

Our results show that: (i) The drone collision rate depends strongly on the density of
drones (very likely caused by excessive packet collisions and therefore uncertainty about
positions and speeds of neighboured drones), on the beacon sending rate and, broadly, on
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how “cautious” the algorithm is in its decision-making. (ii) There is a tradeoff between
the collision rate and the (reduction of) speed. To avoid frequent slowdowns, drones need
to switch lanes to maintain their preferred speed, but this increases the risk of having a
collision with other drones.

Our decision algorithm makes only minimal assumptions—it requires no sensors other
than GPS and it only relies on simple position and velocity reporting without elaborate
coordination. As such, it can serve as a baseline for more advanced algorithms relaxing
one or both of these restrictions. (The source code of the simulator is available at https:
//github.com/zqu14/Drone-lane-switching (accessed on 13 October 2022)).

The remaining paper is structured as follows. In Section 2, we briefly discuss related
work. In Section 3, we introduce our system model, including tubes and lanes, drones and
drone arrival process, communications and key performance measures. Following this, in
Section 4 we introduce the greedy lane-switching (GreedyLS) algorithm, by which drones
frequently make decisions on the lane and speed to take over the next short time window.
In Section 5, we present and discuss our simulation results and in Section 6 we conclude
the paper and discuss potential avenues for future work.

2. Related Work

In this section, we present related studies about path planning and packet loss prob-
lems for drones.

2.1. Drone Road Systems

Using drones for deliveries in urban areas is an idea that is gaining traction, ranging
from mundane items such as pizzas (https://dronedj.com/2022/01/27/dominos-pizza-
drone-delivery-new-zealand/ (accessed on 13 October 2022)) to more critical items such
as medications or blood samples [15,16]; see also [17] for a survey drone applications and
their communications properties. To simplify air traffic management, drone road systems
or drone highways (https://www.altitudeangel.com/news/uk-government-gives-the-
green-light-for-worlds-longest-drone-superhighway (accessed on 13 October 2022)) are
seen as attractive options and have started to gain traction in the research literature. For
example, in [18] a microscopic piecewise-continuous traffic flow model for drones moving
in a tube-like “channel” is proposed and analyzed from a stability perspective. In [19], the
risk generated by drones moving in a corridor is modelled and an airspace capacity analysis
is being carried out, which takes into consideration the collision rate and failure rate of
drones. In [20], the modelling of collision risks including risks arising from positional
uncertainty is discussed. The required ground infrastructure for urban air mobility and
related regulatory aspects are reviewed in [21].

2.2. Dynamic Path Planning for Drones

In our system model, a key challenge for drones is collision avoidance. To achieve
that, drones need to continuously detect the position, speed and heading of other drones
and plan their own path based on that. Dynamic path planning algorithms [22] address
this class of problems. In general, they generate several candidate paths and then choose
the optimal one based on a pre-established cost function. In our paper, we benefit from the
properties of our system model, which restricts the path decisions a drone can make to a
finite (and small) set, limiting computational complexity.

Path conflicts and inconsistency of wireless communication are typical problems
for drones when coordinating movements with others. In [23], Zhenyu et al. propose a
method to address these issues. The first step is to calculate the probability of a collision by
considering a random error vector to simulate the inaccuracy of the position information of
other drones, then a Kalman filter [24] is used to predict the state and plan the path. The
simulation results show the great effectiveness of the Kalman-filtering-based algorithm to
reduce the collision possibility among several drones.
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Several papers investigate dynamic path planning in different situations. Ragi and
Chong [25] present a partially observable Markov decision process (POMDPs) [26] ap-
proach to allow drones to track the positions of others and a target, and avoid collisions
with each other. Hu et al. [27] employ reinforcement learning to guide drones while
avoiding obstacles. Yu et al. [28] consider target tracking in an urban environment and
propose a cooperative path-planning algorithm integrating both aerial and ground-based
autonomous vehicles. Xiaolei et al. [29] provide a solution using an improved evolutionary
optimization algorithm. It can effectively solve the path planning problem at the cost of
high computational complexity.

2.3. Congestion Control in Vehicular Networks

The setup considered in this paper has some similarities to the case of vehicular
networks, where vehicles periodically send local broadcasts to inform their neighbourhood
about their position, speed and heading. If the underlying wireless technology is based
on IEEE 802.11p, then these periodic packets experience both direct and hidden-terminal
collisions and this can negatively increase the uncertainty about the position and direction
of neighbours and possibly increase collision rates. This is known as the congestion control
problem in the context of vehicular ad hoc networks (VANETs) [30,31].

In [32], a simple VANET model is constructed to explore the possible approaches to
solve the congestion problem. Their results suggest three key factors: transmit power,
packet transmission duration/packet size and packet transmission rate. These can be
adapted to reduce the network load and hence control the congestion. There are also
many further proposals in the literature to solve the problem by adapting these factors;
see [33–36]. While the effects of congestion in vehicular networks (and by our adoption of
related communications technologies also in our drone network) are well understood on
a packet level (for example, rates of hidden-terminal and direct collisions), the impact on
physical collisions of drones or vehicles is less well studied. This is one of the key problems
addressed in this paper.

2.4. Packet Loss in Drone Communications

Packet loss is a crucial problem in drone communications, it can be caused by many
reasons. In [37], Fabra et al. investigated several parameters that can affect the packet loss
rate between drones. With increasing distance between two drones, the packet loss rate
tends to become larger. Furthermore, the degree of change is decided by the on/off status
of the engine. When the engine is off, the degree is high. Conversely, the degree becomes
low once the engine is turned on. Other parameters such as the remote control proximity
and the packet size affect the communication quality between drones only slightly.

In [38], Khalifeh et al. designed experiments to explore the influence of some factors
on the packet loss rate between the drones and the ground stations. One interesting finding
of this paper is that the height of the drones can have a great impact on the packet loss rate
under the utilized ZigBee protocol [39]. The packet loss rate stays at 0% when the height is
less than 150 m, and it will rapidly increase to 65% if the height reaches 200 m.

There also exists a rich literature exploring the impact of packet loss. In [40], James
et al. examine how the packet loss rate can affect the performances of three drone swarm
path planning algorithms [41,42]. The results show that a higher packet loss rate leads to an
increased rate of separation violations, thus requiring a larger minimum safety distance to
maintain the safety of the drone swarm. In addition, Buonocore et al. [43] have evaluated
the impact of some packet loss models on the drone formation control [44]. Results show
that even the simplest packet loss models can lead to some abnormal behaviours and
collisions under a centralized drone control algorithm [45], and the outcomes become
worse when more realistic loss models are used.
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3. System Model

In this section, we present our system model, starting with our model for drone tubes
and their internal structure, followed by our model for the drones themselves and the
drone arrival process, then introducing the communications protocols and channel model
used in this work and finally presenting the key performance measures.

3.1. Tube, Lanes and Tiers

For the purposes of this paper, we fix a three-dimensional coordinate system with
orthogonal axes, which we simply refer to as the x-, y- and z-axes. We assume that the
tube and all lanes (see below) run in parallel to the y-axis, which in turn runs parallel to
the surface of the earth. The tube is of finite length L meters. The coordinate origin is
placed at one end of the tube such that the y-coordinates of a drone moving in the tube
run from 0 (where drones are being injected into the tube) to the length of the tube (where
they are removed). The tube itself and the entire space around it is partitioned into lanes,
similar to the way a one-way street can be partitioned into lanes. A lane is a hexagonal
cylinder wide enough to contain any drone under consideration. A drone will fly in such
a way that it is completely within its current lane, with the exception of lane-switching
operations—while a drone flies in a lane, its centre point will be on the centre line of the lane.
We fix a particular lane to be at the centre of the tube and refer to it as tier-0 or centre lane
(shown in grey in Figure 1). Further lanes are packed around the centre lane in the manner
indicated in Figure 1, creating a hexagonal tiling. The lanes immediately neighbouring the
centre lanes are tier-1 lanes (shown in orange), the lanes immediately neighbouring tier-1
lanes that are not themselves tier-0 or tier-1 lanes are tier-2 lanes (shown in lime), and so
on. Note that in this arrangement the centre point of each lane has the same distance as the
centre point of each of its six neighboured lanes. As an example, in this paper we assume
that tiers 0 and 1 are within the tube, all further tiers are considered to be outside the tube.
The GreedyLS algorithm allows drones to move in lanes outside the tube, depending on
how its cost model assigns cost to out-of-tube lanes. It is important to point out that our
algorithm as such can work with arbitrary numbers of in-tube tiers, including partial tiers.
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(1,−1)(0,−2)
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(−2, 1)

(−1, 1)
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Figure 1. Lane layout when looking along the tube in the y-direction.
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Across its lifetime, the drone will move in parallel to the y-axis in a positive direction.
A drone might change its lane, which corresponds to changes in its x- and z-coordinates.
Restricting to these two axes, we can conveniently represent the coordinates of lane centre
points and tiers in the following way: if we denote by r the distance between the centre
points of neighboured lanes and introduce two basis vectors e1 and e2 in the x − z-plane
such that e1 points from the centre point of the centre lane (the grey lane in Figure 1, marked
as (0, 0)) to the centre point of the upper right neighbour lane (the orange lane marked as
(1, 0)), and e2 points from the centre point of lane (0, 0) to the centre point of the lower right
neighbour lane marked as (0, 1). With this, the centre points of all lanes can be represented
in the form i · e1 + j · e2 with (i, j) ∈ Z2; compare this with Figure 1. We will frequently
refer to a particular lane through these (i, j) integer coordinates. Note that in this setting
the centre lane has coordinates (0, 0), the lanes on the first tier are given by (1, 0), (−1, 0),
(0, 1), (0,−1), (1,−1) and (−1, 1), and generally the lanes of the n-th tier are given by:

• Corners: (n, 0),(−n, 0),(0, n),(0,−n),(n,−n),(−n, n).
• The points (x, n − x) for x ∈ {1, . . . , n − 1}.
• The points (−x,−(n − x)) for x ∈ {1, . . . , n − 1}.
• The points (−x, n) for x ∈ {1, . . . , n − 1}.
• The points (x,−n) for x ∈ {1, . . . , n − 1}.
• The points (n,−x) for x ∈ {1, . . . , n − 1}.
• The points (−n, x) for x ∈ {1, . . . , n − 1}.

(consider the lanes on tier 2 in Figure 1 as an example). Conversely, to work out to which
tier τ a given point (i, j) belongs, the following formula is helpful:

τ(i, j) =

⎧⎪⎪⎨⎪⎪⎩
abs(j) : i = 0
abs(i) : j = 0, i �= 0

abs(i) + abs(j) : sign(i) = sign(j), i �= 0, j �= 0
max{abs(i), abs(j)} : otherwise.

(1)

3.2. Drones

We assume all drones to be copter-type, due to their manoeuvrability and their ability
to hover and perform vertical take-off and landing. In this paper, we assume that each
drone has a preferred speed, which the drone operator can pick as a compromise between
required delivery speed and drone energy consumption. The drone will not exceed its
preferred speed, but it may travel temporarily at a slower speed when circumstances call
for it. We assume that each drone randomly picks its preferred speed from the interval
[20 m/s, 30 m/s], independently and from a uniform distribution.

For this paper we have decided to not model the drone dynamics in any detail, we
assume that drones can change their speeds instantaneously and that at any given speed
lane switching between neighboured lanes takes a constant amount of time Tswitch, which
is identical for all drones. Furthermore, for reasons of simplicity we have also decided not
to model the size of drones in any detail. Instead, we regard two drones as colliding when
the distance of their centre points falls below a threshold of dsa f ety meters. This threshold is
also referred to as the safety distance and we assume it to be 0.5 m in this paper. In general,
dsa f ety should be smaller than the distance r between centre points of neighboured lanes, so
that drones in different lanes do not collide.

Each drone has an accurate GPS receiver, i.e., it can determine its position as well as
the current time with sufficiently high accuracy—we do not consider measurement noise.
Furthermore, we are not concerned with the power/energy consumption of drones.

3.3. Drone Arrival Process

Drones only arrive at the starting end of the tube (y = 0) and only leave the system
when they collide or reach the other end of the tube. Drones only arrive at intra-tube lanes,
and we model arrivals by assigning to each intra-tube lane a separate and stochastically
independent random drone arrival process—using random arrivals reflects the indepen-
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dence of drones and the lack of centralized control. In this paper, the arrival process for
each intra-tube lane is a Poisson process of rate λ > 0, so that the inter-arrival times of
drones are independent and identically distributed with an exponential distribution of
parameter λ.

If we were to insert each arrived drone into its lane unconditionally, we would distort
drone collision statistics by a number of unwanted drone collisions, which occur indepen-
dently of any decision algorithm. The first reason for this is that the inter-arrival times
may with a certain probability be so small that the geographical distance between a newly
arriving and a previous drone on the same lane is smaller than the safety distance dsa f ety.
Furthermore, immediately after its arrival, a drone has not yet received any beacon from
others, it has no position and speed information about them and therefore cannot take any
corrective action such as speeding down.

To deal with this, we distinguish between the arrival and the actual insertion of a
drone into its lane, which is subject to certain conditions. If these conditions are not met, an
arrived drone is discarded without any further consequences.

Specifically, we check for each generated drone whether it is likely to not experience
a collision for at least the first TS seconds, which we refer to as the insertion safety time.
When a drone arrives on lane l ∈ Z2, it will be inserted when the distance between the new
drone and the ahead drone on the same lane is larger than the safety distance dsa f ety, and
furthermore, one of the following conditions is true:

• Its preferred speed vpre f does not exceed the current speed of the drone ahead in the
same lane.

• Its preferred speed vpre f is larger than the current speed of the drone ahead, but the
distance to the drone ahead is large enough for any collision to occur only at a time
larger than TS.

Under these assumptions (and in the absence of drones from neighbouring lanes
suddenly switching onto lane l) the candidate drone will have at least TS seconds time to
receive beacons and learn where the other drones are. If the conditions are not fulfilled,
the generated drone is dropped. We assume this insertion safety time to be TS = 0.5 s. The
actual GreedyLS algorithm starts running within an inserted drone a little earlier (at 0.4 s)
so that it can make adjustments to speed or position before the insertion safety time expires.

3.4. Communications Protocols and Channel Model

We view the requirements for drone communications to be quite similar to the require-
ments for safety-related communications in vehicular networks [8,9]. We assume that all
drones are equipped with a WiFi network adapter [46], operating with similar settings as
known from the former IEEE 802.11p amendment. Specifically, they operate in the 5 GHz
band over a 10 MHz wide channel, using OFDM with 16-QAM modulation on individual
sub-carriers and using a rate-1/2 encoder. These settings result in a 12 Mbps data rate.
On the MAC layer, we use the IEEE802.11 EDCA access function, with access class AC_BE,
CWmin = 31, CWmax = 1023 and AIFS = 7.

Drones frequently send beacons to their local neighbourhood using a MAC-layer broad-
cast. We assume that these beacons are the only type of messages that drones send on the
considered channel. The beacons contain safety-related information conveying the current
position and speed of the sending drone. The beacon size is fixed to a total length of 152
bytes, the beacon contents are shown in Figure 2. In this figure, the “LocalBroadcastHeader”
belongs to an enclosing protocol allowing to multiplex different types of local broadcasts,
the magic number is a fixed value that helps the receiver to confirm that the beacon contents
include a safety message, the version field encodes the version or structure of the safety
message being used (this allows to include different types of safety messages), the identifier
field is a unique identifier for the sending node, the sequence number is generated by
the sending node to allow receivers to estimate packet loss rates and the safety message
contains information such as the position and speed of the sending drone. The beacons
are being generated almost periodically, with an average rate of β beacons per second.
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The beacons are not generated strictly periodically, but with a jitter of 10% around the
average inter-beacon time of 1/β seconds. The beacon rate parameter β will be varied in
our experiments. Furthermore, all drones use the same fixed transmit power Pt, which
we keep fixed at 5 mW (as an indication of transmission range, this setting leads to a 50%
reception rate for our standard beacons at a distance of 119 m).

80211_DateHeader 
24B

8022_LlcSnapHeader 
8B

LocalBroadcastHeader 
8B

Beacon content 
108B

80211_MacTrailer 
4B

Magic number 
2B

Version
2B

Identifier
8B

Seqno 
6B

SafetyMessage 
90B

Figure 2. Beacon contents.

Each drone stores the information from received beacons in a neighbour table. The
neighbour table contains for each currently known neighbour drone the contents of the last
correctly received beacon as well as the local timestamp for the time this last beacon was
received. The timestamp allows a drone to assess the amount of uncertainty in a neighbours
position, but most importantly, the timestamp is critical for the soft-state operation of the
neighbour table: the table entries are checked frequently, and when too much time has
passed since the last beacon was received, the entry is dropped. The timeout value has
been set to ten seconds.

For the wireless channel, we use a simple log-distance channel model with variable
path loss exponent γ [47], i.e., the received power at distance d meters (for d being at least
as large as the reference distance d0, which here we assume to be one meter) is given by

Pr(d) =
Pt

PL0
·
(

d0

d

)γ

(2)

where PL0 is the path loss at the reference distance, which we assume to be 40 dB. This is a
reasonable model when drones operate sufficiently far away from any reflecting surfaces
and any shadowing from the drone’s body is ignored. We have used a path loss exponent of
γ = 2.5 for our simulations. Furthermore, we assume that there is no external interference.

3.5. Key Performance Measures and Problem Formulation

We use three key performance measures to assess the algorithms proposed in this
paper. They are:

• The average number of collisions per kilometre, where the average is taken over a
number of replications for a given set of parameters.

• The average speed of drones, taken over all inserted drones within a replication
(sampled regularly) and all replications for a given set of parameters. Note that, due
to the fact that preferred speeds are drawn uniformly from [20m/s, 30m/s] and that
drones are not allowed to go above their preferred speed, the average speed will not
exceed 25 m/s, and will often be below that.

• Average out-of-tube tier of drones, taken over all inserted drones within a replication
(sampled regularly) and all replications for a given set of parameters. In this statistic
the in-tube lanes will enter with a contribution of zero, the second tier (the first tier
out of the tube) will enter with a contribution of one, and so forth.

In our system model the key control knobs for a drone are the lane and the speed
to use, and it decides these dynamically based on the current neighbourhood. For real
deployments, a decision algorithm for speed and lane generally will attempt to maximize
both the average speed and the drone density, subject to constraints on the average number
of collisions and occupancy of out-of-tube lanes. Instead of maximizing the average
speed, one might be interested in minimizing the maximum deviation from the preferred
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speed. However, as the focus of this paper is more on exploring the tradeoffs achievable
with one particular algorithm, in our experiments we vary the drone density (or drone
generation rate) and obtain results for the number of collisions, the average speed and the
lane occupancy for different parameterizations or variants of the algorithm, so that we can
understand their tradeoffs.

3.6. Summary of All Fixed Parameters

The key fixed parameters for this paper are summarized in Table 1.

Table 1. Key parameters.

Parameter Explanation Value

Tube parameters

r Distance of neighbour lane centre
points 1 m

L Tube length 1 km

Drone and drone arrival parameters
dsa f ety Minimal safety distance 0.5 m

Preferred speed distribution U [20 m/s, 30 m/s]

Tswitch
Time required for switching to a
neighbouring lane 1 s

λ Drone arrival rate to an in-tube lane λ ∈ {0.1, 0.3, . . . , 1.5}
TS Insertion safety time 0.5 s

Communications and channel parameters
Beacon length (total) 152 B
PHY data rate 12 Mbps

β Beaconing rate β ∈ {10 Hz, 20 Hz}
Pt Transmit power 5 mW

PL0 Path loss at reference distance 40 dB
γ Path loss exponent 2.5

Neighbour table timeout 10 s

Our parameter settings are not in all cases completely realistic (e.g., lanes would nor-
mally be wider than one meter), and we have also chosen to ignore the noise in parameters
such as the GPS position readings. This is for two reasons. First, our parameters have
been chosen to achieve a higher rate of collisions, helping to more clearly highlight the
performance difference between the considered algorithms and displaying their relative
performance merits, and also avoiding rare-event simulation. Secondly, by restricting the
position uncertainty in the system to the effects of packet losses, we can clearly investigate
and display their impact, avoiding confounding the effects of packet losses with other
sources of uncertainty.

4. The Greedy Lane-Switching (GreedyLS) Algorithm

In this section, we first give a generic description of the greedy lane-switching (or
GreedyLS) decision algorithm, followed by presenting a number of algorithm variants with
specific choices for the cost parameters, expressing different tradeoffs between speed and
position cost.

4.1. Algorithm Description

We now describe the decision algorithm by which each drone decides the lane and
speed to use in the next few seconds. The decision algorithm runs periodically. The
(average) period needs to be significantly larger than the time required to switch to a
neighboured lane or to change the speed to a given setting. This allows us to treat lane
switching and speeding up/down as elementary actions and avoids the need to maintain
state information that would be necessary when these actions took multiple periods. We
also refer to the (average) period as the unit time.
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Our decision algorithm is “stateless”. i.e., a decision is always made only based on
current circumstances, not based on previously stored state information (other than the
contents of the neighbour table), and it is “greedy” in that it seeks to minimize costs in the
short-term, over only the next unit time. The algorithm does not allow drones to operate at
speeds higher than their preferred speed, only at lower speeds.

The cost model used for the algorithm employs two different types of cost. The drone
knows for every tier τ ∈ {0, 1, 2, . . .} the position cost for spending one unit of time at tier
τ, we refer to this unit position cost as cp(τ). The mapping cp(·) is known and identical for
all drones. Similarly, for a given speed v and preferred speed vpre f there is a mapping cs(·)
which gives the speed cost cs(v, vpre f ) of operating at speed v for one unit time when the
preferred speed is vpre f .

The GreedyLS algorithm runs on each drone separately and independently. It has the
following inputs:

• The current lane l ∈ Z2 and tier τ = τ(l) (cf., Equation (1)).
• The speed vahead of the drone ahead in the same lane l. If there is no (known) ahead

drone, then vahead = ∞.
• The distance dahead to the ahead drone in the same lane l. If there is no (known) ahead

drone, then dahead = ∞.
• For all available neighbour lanes:

– Their lane number li ∈ Z2 and tier τi = τ(li).
– The distance di,ahead to the closest drone ahead of us (taken in the y-coordinate

only) and having a y-coordinate at least as large as our own in lane li, and its
speed vi,ahead.

– The distance di,behind to the closest drone behind us in lane li, and its speed vi,behind.

If we want to also consider “concurrent collisions” (see below) then the neighbour
lane information above must be extended to include all lanes in the first two tiers
around the current lane.

Note that di,ahead, di,behind, vi,ahead and vi,behind are all inferred from the neighbour table.
The GreedyLS algorithm proceeds in the following steps:

• First step: build the list L =
{
(l′1, τ′

1, v′1), . . . , (l′k, τ′
k, v′k)

}
of eligible lanes l′i (and their

tiers τ′
i ) and allowable speeds v′i on them:

– The current lane l in tier τ is always eligible, its allowable speed is

v′ = min
{

vahead, vpre f

}
(3)

where vpre f is the own preferred speed.
– A neighbour lane m is eligible when both the following conditions are true:

* dm,behind ≥ ε1, i.e., the distance to the behind drone must be at least as large
as a given threshold ε1.

* dm,ahead ≥ ε2, i.e., the distance to the ahead drone must be at least as large as
a given threshold ε2.

These conditions together express that we only consider a neighbour lane eligible
when there is a sufficiently large “gap” around our current position.

– The previous eligibility conditions can be extended to better address a particular
type of collision, which we loosely refer to as “concurrent collisions”. These
can occur if two (or more) drones on different lanes find the same target lane
m eligible and decide to switch to it at the same time and position. To prevent
this, the previous eligibility conditions for neighbour lane m can be extended to
require that all neighbour lanes m′ of m excluding our own current lane l (we
refer to these as indirect neighbours of lane l) have a sufficiently large “gap”, i.e.,:
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* ∀m′ �= l, m′ is neighbour of m : dm′ ,behind ≥ ε3, i.e., the distance to the behind
drone in lane m′ must be at least as large as ε3 for all neighbour lanes m′ �= l
of target lane m.

* ∀m′ �= l, m′ is neighbour of m : dm′ ,ahead ≥ ε4, i.e., the distance to the ahead
drone in lane m′ must be at least as large as ε4 for all neighbour lanes m′ �= l
of target lane m.

– The allowable speed on the eligible neighbour lane m is given as

v′m = min
{

vpre f , vm,ahead

}
(4)

• Second step: From L determine the target lane/tier and speed as

(l∗, τ∗, v∗) = arg min
(l′ ,τ′ ,v′)∈L

(
cs(v′, vpre f ) + cp(τ

′) + cx(l, l′)
)

(5)

i.e., the lane/tier and speed combination giving the smallest total position, speed and
switching cost per unit of time. The term cx(l, l′) allows to model a cost for switching
into a neighboured lane, it is of the form cx(l, l′) = ε5 · 1{l′}(l), where 1{l′}(l) = 1 if
l = l′ and 0 otherwise. The parameter ε5 ≥ 0 represents lane switching cost.

• Third step: Switch to lane l∗ and adjust speed to v∗.

A pseudo-code summary of this algorithm can be found in Figure 3.

// Inputs
Current lane l and t i e r τ(l)
Prefer red speed vpre f
For a l l lanes m : d i s t a n c e dm,ahead to ahead drone on lane m
For a l l lanes m : d i s t a n c e dm,behind to behind drone
For a l l lanes m : speed vm,ahead of ahead drone

// Auxi l iary f u n c t i o n s and p r e d i c a t e s
Let N (m) be the neighbour lanes of lane m ∈ Z2 , not inc luding m
Let V(m) = min

{
vpre f , vm,ahead

}
Let I(m, l) = ∀m′ ∈ N (m), m′ �= l : dm′ ,behind ≥ ε3 ∧ dm′ ,ahead ≥ ε4

// F i r s t s tep : determine e l i g i b l e lanes
L0 = {l} ∪ {m : m ∈ N (l) ∧ dm,behind ≥ ε1 ∧ dm,ahead ≥ ε2 ∧ I(m, l)

}
L = {(m, τ(m),V(m)) : m ∈ L0}

// Second step : determine t a r g e t lane/ t i e r and speed as
(l∗, τ∗, v∗) = arg min(l′ ,τ′ ,v′)∈L

(
cs(v′, vpre f ) + cp(τ′) + cx(l, l′)

)
// Third step : switch lane and change speed as determined

Figure 3. Pseudocode of the GreedyLS algorithm.

For the purposes of this paper, we assume that

cp(τ) =

{
0 : τ ≤ 1

κ1(τ − 1)2 : τ > 1
(6)

for some κ1 ≥ 0, i.e., we assume that the intra-tube part consists of the centre lane and only
one tier around it. We furthermore assume that

cs(v, vpre f ) = κ2(v − vpre f )
2 (7)
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for some κ2 ≥ 0. Both speeds v and vpre f are assumed to be given in units of m/s. Note that
the two functions cp(·) and cs(·) are not considered part of the GreedyLS algorithm proper,
but are just examples chosen for the purposes of this paper. By changing the cost function
cp(·) we can model other tube layouts, e.g., we can include more tiers, or we can rule out
lanes that would collide with buildings by assigning them infinite costs. The remaining
GreedyLS algorithm can remain unchanged.

Note that the behaviour of this algorithm is determined by the five constants ε1 to ε5
as well as the position and speed cost per unit time mappings cp(·) and cs(·) (in our case,
in particular the constants κ1 and κ2). In addition to and independently of this algorithm,
each drone should nearly continuously monitor the distance to the ahead drone on the
same lane. This distance can change instantaneously, for example, when another drone
switches into our lane ahead of us. In response to such a change, we need to adapt our own
speed immediately to the speed of the new ahead drone (by adjusting our own speed to
the minimum of the ahead drone speed and our own preferred speed).

4.2. Baseline Algorithm and GreedyLS Variants

To limit the scope of the evaluation in this paper we make some preliminary choices
for some of the GreedyLS parameters, and then define a baseline algorithm and a number
of GreedyLS variants to compare.

With one exception, we will set ε5 = 0, i.e., in this paper we ignore lane-switching costs.
We set ε1 = ε2 = ε∗1, i.e., we assume that in neighboured lanes the required gap has the
same size ahead and behind. In our experiments, we only vary ε∗1 . We also set ε3 = ε4 = ε∗2 ,
i.e., we assume that the required gap in the neighbour lanes (to avoid concurrent collisions)
has the same size ahead and behind. In our experiments, we vary only ε∗2 . In particular, we
choose either ε∗2 = 0, effectively disabling the check for concurrent collisions, or we set ε∗2
to be the same as ε∗1 , and only the latter is varied.

The baseline algorithm considered in this paper is referred to as the Blind algorithm.
In this, an inserted drone never changes its lane or speed at all, i.e., it reflects the situation
where drones do nothing at all to avoid collisions. In addition, we define the following four
GreedyLS variants:

• Defensive algorithm: pick κ1 = κ2 = 1, ε∗1 = ε∗2 = 109 and ε5 = 109. These settings
effectively rule out any lane switching but allow for adaptation to the speed of the
ahead node on the current lane.

• Crowded-(ε∗1, ε∗2) algorithm: restrict to intra-tube lanes by setting κ1 = 109 (cf.
Equation (6)), κ2 = 1 and ε∗1 , ε∗2 to the given values.

• PreferInside-(ε∗1 , ε∗2): set κ1 = 25 and κ2 = 1. With these settings, an out-of-tube lane
becomes preferable only when the best achievable speed difference to the preferred
speed vpre f on any eligible intra-tube lane exceeds 5 m/s.

• PreferOutside-(ε∗1, ε∗2): set κ1 = κ2 = 1. With these settings already modest speed
differences to the preferred speed will make out-of-tube lanes more preferable.

For the last three algorithms, we have simulated the following combinations for
(ε∗1 , ε∗2):
• (10, 0), (20, 0), (50, 0);
• (10, 10), (20, 20), (50, 50).

We have summarized all relevant GreedyLS parameters (general decision algorithm
parameters, parameters for example cost functions, and restrictions of general parameters
used in this paper) in Table 2.
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Table 2. Key adjustable parameters of GreedyLS.

Parameter Explanation Value

Basic GreedyLS Decision Parameters

ε1
Required minimum distance to behind drone on a
neighbour lane varied

ε2
Required minimum distance to ahead drone on a
neighbour lane varied

ε3
Required minimum distance to behind drone on an
indirect neighbour lane varied

ε4
Required minimum distance to ahead drone on an
indirect neighbour lane varied

ε5 Lane-switching cost 0

Timing parameters
Unit time 3 s
Neighbour table timeout 10 s

Example cost function parameters
κ1 Position cost coefficient varied
κ2 Speed cost coefficient varied

GreedyLS parameter choices for this paper

ε∗1
Common value of ε1 and ε2 (required minimum distance
to ahead and behind drones on neighbour lanes) varied

ε∗2
Common value of ε3 and ε4 (required minimum distance
to ahead and behind drones on indirect neighbour lanes) varied

4.3. Further Comments

Algorithm Scope: It is important to point out that the GreedyLS algorithm is not limited
to the case with just two in-tube tiers of lanes, but rather can accommodate arbitrary layouts
of in-tube, allowed out-of-tube and completely forbidden lanes (e.g., ones that would go
through a building). This can be achieved through proper choice of the position cost
function cp(·), which in general can be made location- or time-dependent, and which may
even be adapted over time. A reliable system then needs to be in place to ensure that drones
always have access to the most recent position cost function relevant for their movements.

Algorithm Complexity: Fix a particular drone x and denote by M the number of current
neighbour drones of x. For each of these neighbour drones we know its position, its lane,
and its speed from the beacons we have received from it and which have been entered into
the neighbour table. There are three key operations for the neighbour table: enumerating all
neighbours and finding those on a particular lane, adding a new neighbour and periodically
checking the timers associated with each neighbour (and possibly deleting a timed-out
neighbour from the table). Each of these operations is O(M) at worst. If we denote by
L = 1 + 6 + 12 = 19 the number of lanes that the algorithm considers (the current lane,
the six neighbour lanes and the 12 indirect neighbour lanes), then for each of these L lanes
the GreedyLS algorithm needs to find out which drones are on that lane and in particular
the position and speed of the ahead and behind drones, which for each of the L lanes is
an O(M) operation at worst (and better with suitable data structures). The first step of the
decision algorithm is O(1), since for each of the six neighbour lanes we test the distance to
the ahead and behind drones on that lane and its six neighbours (indirect neighbour check).
The first step produces a result list with up to six candidate lanes, and in the second step
we evaluate the cost function (Equation (5)) for each of the candidate lanes, which is an
O(1) operation per candidate lane.

Handling Uncertainty: In a drone road system there will be various and substantial
uncertainties and disturbances, for example, wind gusts or noise in GPS position readings.
Addressing these uncertainties explicitly will be the subject of future research, in this paper,
we focus solely on the uncertainty induced by the underlying communications system
(and the packet losses it induces). We clearly expect that new decision algorithms will
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be developed that account for such uncertainty, but they will also be addressed in many
other ways, e.g., through advances in GPS receiver technology, through appropriate system
settings (for example, making lanes wider), and through specifying minimum technical
quality requirements for participating drones.

5. Results

We have built a discrete-event simulation model using the OMNeT++ simulation
framework (https://www.omnetpp.org (accessed on 13 October 2022)) and using the
IEEE 802.11 EDCA implementation provided by the INET framework in version 4.3.2.
(https://inet.omnetpp.org (accessed on 13 October 2022)).

In our simulations, we ran 50 independent replications for each considered parameter
combination, and we present averaged results. We have also checked the 95% confidence
intervals of our calculated averages. These are sufficiently tight, and we have not included
them in the figures to avoid visual clutter. Each replication ran for 200 simulated seconds.

5.1. Average Number of Collisions

In Figure 4, we show results for the average number of collisions per kilometre for
varying drone generation rate λ, a tube length of L = 1 km and all considered variants,
including the Blind variant. The curve shown for each variant is its average performance
over all combinations of beaconing rate β and (ε∗1 , ε∗2) combinations. Obviously, the Blind
variant is substantially worse than all the other variants, so we will not discuss it any
further. In Figure 5, we show results for the average number of collisions for all schemes
except the blind one, and for three different beaconing rates β ∈ {5 Hz, 10 Hz, 20 Hz}. For
each of the Crowded, PreferInside and PreferOutside algorithms we have selected a (ε∗1 , ε∗2)
combination with (close to) the lowest number of collisions for inclusion in the graph.

The first (and quite obvious) conclusion is that all considered algorithms provide vast
improvements over the Blind algorithm, which we only included as a baseline in the first
place. Its performance in the other metrics is clear from its construction: surviving drones
will always fly at their preferred speed (hence producing an average speed of 25 m/s) and
they will never leave the tube.

Figure 4. Average number of collisions per kilometre for varying drone generation rate λ and
beaconing rate β. L = 1 km. With the Blind algorithm.
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(a) 5 Hz beaconing rate.

(b) 10 Hz beaconing rate.

(c) 20 Hz beaconing rate.

Figure 5. Average number of collisions per kilometre for varying drone generation rate λ and
beaconing rate β, without the Blind algorithm. L = 1 km.
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The Defensive algorithm shows consistently the best performance, having a genuinely
lower average collision rate than any other algorithm. Note that the Defensive algorithm
effectively forbids any lane switching, whereas all the other algorithms allow it (either
restricted to in-tube lanes or not). This suggests that allowing lane switching increases
collision risk. To investigate this further, in Figure 6 we show the average number of
lane-switching operations per drone for selected algorithms. The figure confirms that the
algorithm allowing the most lane switching operations (PreferOutside) is also the algorithm
showing the highest average number of collisions for higher values of the drone generation
rate. The Crowded algorithm shows a “non-monotonic” behaviour in Figure 5, its collision
rate actually decreases at some point for increasing λ. This can also be explained with
reference to Figure 6. The Crowded algorithm is effectively limited to in-tube lanes, and
these leave fewer and fewer options for lane switching, so that as λ increases the Crowded
algorithm behaves more and more like the Defensive algorithm, leading to a reduction
in collisions.

Figure 6. Average number of lane switching operations per drone per kilometre for selected algorithms.

It is also noteworthy to point out the differences between the beaconing rates in
Figure 6. The relative performance of the considered algorithms changes, but clearly the
overall average collision numbers increase for decreasing beaconing rate.

To investigate the role that concurrent collisions play (see Section 4.1), in Figure 7
we show the average collision count for the considered combinations of (ε∗1, ε∗2) and an
average beaconing rate of β = 20 Hz for the for Crowded, PreferOutside and PreferInside
algorithms (cf., Section 4.2). It can be observed that for all three algorithms, the variants
which disable the check for concurrent collisions show much higher collision counts than
the variants which do check for the risk of concurrent collisions and the difference can
be quite substantial. Note that for each of these three algorithms we have included the
overall (close-to) top-performing variant (with (ε∗1, ε∗2) = (10 m, 10 m)) in Figure 5 and in
all subsequent figures.
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(a) Crowded Algorithm.

(b) PreferOutside Algorithm.

(c) PreferInside Algorithm.

Figure 7. Average number of collisions per kilometre for varying drone generation rate λ and different
choices for (ε∗1 , ε∗2), for Crowded, PreferOutside and PreferInside algorithms. L = 1 km.
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The number of drone collisions increases for all algorithms as the drone generation
rate λ increases. Clearly, the higher drone density packs drones more closely and also leads
to more packet collisions (either direct or hidden-terminal collisions), which in turn leads to
higher uncertainty about the position and speed of neighboured drones, including the ones
that are close and pose the highest collision risk. To shed further light on this, in Figure 8
we show the average number of packet losses (as a proxy for packet collision rates), which
we have inferred from sequence number gaps observed by receiving nodes. In this figure,
we have used a beaconing rate of 20 Hz. As expected, the number of packet losses increases
quickly for increasing drone density. The observation that the Defensive, Crowded and
PreferInside variants show a higher packet loss count than PreferOutside is likely due to
the fact that these variants produce fewer drone collisions than PreferOutside, leading to a
higher drone density and, therefore, more packet losses.

Figure 8. Average number of packet losses per kilometre for selected algorithms at a 20 Hz beacon-
ing rate.

It can also be observed that in general the curves for the higher beaconing rate
β = 20 Hz show better performance over the lower rate β = 10 Hz. Likely, the higher
beacon generation rate, while increasing channel congestion, still reduces the average time
between receiving beacons from a neighbour, therefore, reducing uncertainty about its
position and collision risk. It can be expected though that further increases the beacon-
ing rate are going to increase the collision risk, due to increasing hidden-terminal packet
collisions [12].

5.2. Average Speed

In Figure 9 we show the average speed of drones for varying drone generation rate λ,
for the Defensive algorithm and the best variants of the Crowded/PreferOutside/PreferIn-
side algorithms as identified in the previous section. As the preferred speeds are drawn
from the interval [20 m/s, 30 m/s], we would expect this average to be 25 m/s if drones
avoid slowing down.
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Figure 9. Average speed per kilometre for selected algorithms.

As expected, for all algorithms the average speed decreases as the drone generation
rate increases, as there is a higher chance that a drone might have to slow down to adapt
to the speed of an ahead drone, while simultaneously having fewer options for lane
switching. The Defensive algorithm shows this effect most strongly, as lane switching is
effectively ruled out. The Crowded algorithm has second-worst performance, followed by
PreferInside, as both algorithms have a tendency to restrict drones to intra-tube lanes. With
the PreferOutside algorithm, drones have a stronger tendency to move into out-of-tube
lanes, leading to an overall larger number of lanes being used and a lower drone density
per lane, which in turn allows for higher speeds. However, recall from Section 5.1 that the
PreferOutside algorithm also tends to have the highest collision count for large λ.

We have also investigated the average speed for the different choices of (ε∗1, ε∗2) for
the Crowded, PreferOutside and PreferInside algorithms (cf., Section 4.2). The results are
shown in Figure 10. It can be observed that for all three algorithms the variant that was
the best in terms of collision count also had the lowest average speeds, particularly as
λ increases.

(a) Crowded algorithm.

Figure 10. Cont.
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(b) PreferOutside algorithm.

(c) PreferInside algorithm.

Figure 10. Average speed for varying drone generation rate λ and different choices for (ε∗1 , ε∗2), for
Crowded, PreferOutside and PreferInside algorithms. L = 1 km.

5.3. Average Out-of-Tube Tier

In Figure 11, we show the average out-of-tube tier of drones for the varying drone
generation rate λ. Note that algorithms forcing drones to stay inside the tube (Defensive
and Crowded) incur a cost of zero, as confirmed in the figure. For the PreferOutside and
PreferInside algorithms, the figure confirms that it is indeed possible to achieve different
positional behaviours through careful selection of algorithm parameters.

We have investigated the average out-of-tube tier values for the different choices
of (ε∗1, ε∗2) for the PreferOutside and PreferInside algorithms. For both algorithms, the
variant with the lowest average collision count also had the lowest average out-of-tube
tier values as λ increases. This is because the variant that includes the most conservative
concurrent collision checks is also the most reluctant to switch lanes overall, which also
reduces lane-switching operations to out-of-tube lanes.
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Figure 11. Average out-of-tube tier per kilometre for selected algorithms.

5.4. Discussion

Our results already allow drawing some conclusions. The observation that collision
rates increase as the drone density increases is quite expected, and this can certainly in
parts be attributed to increased packet loss rates and the resulting increased uncertainty
about the positions and speed of neighboured drones.

The presence or absence of a check for concurrent collisions can have a substantial
impact on collision rates, and on the willingness of drones to switch lanes. Related to this is
the observation that lane switching generally increases the collision risk, even when drones
might move out of the tube. At the same time, avoiding lane switching comes at the cost of
average speed. Interestingly, the completely rigid Defensive algorithm has a much lower
collision count than the much more flexible PreferOutside algorithm, which ought to have
plenty of opportunities for drones to avoid collisions by leaving the tube and reducing
drone density.

Our results also show a tradeoff between collision count and speed or drone density
and one can expect that these tradeoffs will be experienced by any decision algorithm.

Finally, as explained in Section 3.6, for the simulation results presented so far we
have chosen parameters that “stress” the system, leading to a perhaps heightened number
of collisions. To give a glimpse at the impact of this choice, as an example we show in
Figure 12 the average number of collisions for the PreferOutside, PreferInside and Crowded
algorithms, in both a “stressed” setting (using the same parameters as previously) and
a “normal” setting with more relaxed parameters. In the normal setting, we have used a
generation rate of 0.1 drones generated per second per lane, ε∗1 = ε∗2 = 10 m, a distance
of 10 m between lane centre points, a uniform distribution between 10 m/s and 15 m/s
for the preferred speed, a 20 Hz beaconing rate and a 10 minimum safety distance dsa f ety
between inserted drones. It can be seen that indeed the average collision numbers are
substantially lower for the normal setting, while relative performance trends between
schemes are broadly preserved.
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Figure 12. Average number of collisions for selected algorithms under “stressed” and “normal”
settings, for a low drone generation rate of 0.1 Hz.

6. Conclusions and Future Work

The construction of a drone road system offers a principled way forward to use drones
on a larger scale for deliveries of small goods and other applications in urban environments.
Controlling the movements of drones in such a system should follow a distributed approach
for scalability reasons. We believe that any decision algorithm by which a drone decides
its lane and speed will face the tradeoffs that we have observed, for example, the tradeoff
between collision risk and speed or drone density.

Besides its ability to let users adjust their operating points in these tradeoffs by careful
parameter selection, the simple decision algorithm presented in this paper is mainly useful
as a baseline for more advanced algorithms incorporating additional sensor modalities or
additional information exchanged between drones (including active negotiation).

There are many opportunities for future research. The first is to extend the system
model for a drone road system by intersections, on- and offramps, arbitrarily curved and
oriented tubes and location-dependent cost functions for the speed and position cost, cp(·)
and cs(·), to accommodate differences in built infrastructure in various parts of a city.
Building on such an extended system model, there are then opportunities to design suitable
decision algorithms for turning at an intersection or zipping in at onramps. An important
addition to the system model (and perhaps to future decision algorithms) will be the explicit
consideration of system uncertainty, e.g., positional uncertainty from noisy GPS readings
or wind gusts. The system model can also be extended to include a more realistic model of
drone dynamics and decision algorithms then can express more fine-grained behaviour for
acceleration and deceleration, perhaps including more aspects of the behaviour of human
drivers. Beyond this, we can optimize important system parameters such as the beaconing
rate, physical layer parameters such as transmit power or the modulation and coding
scheme and the parameters of the GreedyLS algorithm, and perform a sensitivity study for
these parameters. Besides offline optimization, it is also very interesting to find dynamic
adaptation algorithms for particularly important parameters such as the beaconing rate.
Finally, since serious experimental work in the construction of drone road systems is still
far ahead in the future, it will be quite important to develop simulation tools allowing the
efficient simulation of large-scale road systems while preserving important properties of
the wireless communications technology and sensors.
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Abstract: In this paper, a novel geometrical localization scheme based on the Received Signal Strength
Indicator (RSSI) is developed for a group of unmanned aerial vehicles (UAVs). Since RSSI-based
localization does not require complicated hardware, it is the correct choice for RF target localization.
In this promising work, unlike the other techniques given in the literature, transmit power or path
loss exponent information is not needed. The procedure depends on the received power difference of
each receiver in UAVs. In the developed scheme, four UAVs forming two groups fly in perpendicular
planes. Each UAV in the group moves in a circle, keeping its distance from the plane’s center until
it gets equal power with the other members of its group. Using this movement rate, lines passing
through the source position are calculated. The intersection of these lines gives the position of the
RF target. However, in a noisy environment, the lines do not intersect at one point. Therefore,
the algorithm given in the manuscript finds a point that has a minimum distance to all lines and
is also developed. Simulation results are provided at the end of the manuscript to verify our
theoretical claims.

Keywords: localization; received signal strength indicator; unmanned aerial vehicles

1. Introduction

Unmanned Aerial Vehicles (UAVs) and other new smartly linked platforms have
become increasingly integrated into the Internet of Things, which is a vast global network
(IoT). UAVs not only provide a practical solution to the drawbacks of fixed terrestrial IoT
infrastructure, but also new ways to supply value-added IoT services through a variety of
applications ranging from monitoring and surveillance to on-demand last-mile deliveries
and people transport. UAVs are predicted to soon be a vital component of our cities and
rule the common low-altitude airspace if they live up to their potential [1].

Localization and tracking are crucial issues to be solved in commercial and military
applications such as air traffic control, remote sensing, and intelligence, surveillance, and
reconnaissance (ISR) [2]. Initially, ground-based methods were used to conduct localization.
However, due to the fast development of UAVs and sensor technology, UAVs are now able
to be used as airborne sensing devices. Furthermore, some applications, such as search
and rescue missions, may require only aerial localization. The aerial vehicles’ mobility and
extensive eyesight allow for successful and fast localization. Furthermore, flying above
ground level decreases signal propagation uncertainty due to obstacles and enhances RF
target identification. However, when the UAV wanted to follow a trajectory to track a
target, a control methodology was required. In [3], a vector-field method is proposed that
does not require knowledge of course dynamics or wind. In [4,5], an autopilot control
system is proposed.

Apart from search, rescue, and surveillance operations, UAVs are also used in smart
city applications where high technologies such as IoT and deep learning are used. In [6], it
is recommended to use computer vision and deep learning techniques in UAVs to improve
the quality of life of visually impaired individuals. UAVs are also used to detect, locate,
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and track unauthorized UAVs, which have been identified as of the utmost priority both in
military and civilian settings. In [7], an intermittent RF source is tracked with a UAV swarm.

2. Related Work

The localization of an RF target by using UAVs is studied in the literature in a number
of different ways. Some of the existing approaches include visual characteristics [8], RF
time of arrival [9], angle of arrival [10], time difference of arrival [11], Doppler and direction
of arrival [12,13], and received signal strength indicator (RSSI) [14–16]. Additionally, there
are techniques that directly track the target using GPS or range and angle sensors [17,18].
In [19], Bluetooth is used instead of GPS, and localization is enhanced with an intelligent
camera module.

Visual feature-based algorithms are effective in locating an item in a variety of situa-
tions; however, they may suffer in long-range localization operations, particularly when
vision is obscured, or light conditions are poor [20]. Thermal cameras can help with this
problem, but when the weather is hot, they can produce a lot of false positives. Time
of arrival and angle of arrival techniques require more complicated antennas and syn-
chronization challenges that might arise owing to the mobility of UAVs. Thus, in some
circumstances, the hardware configuration for determining the signal’s direction may not
be accessible, and the UAVs may be forced to depend only on the signal strength to locate
the target. Furthermore, because of the importance of energy restrictions in UAVs, a simpler
method is typically used to ensure that flight duration is increased, and the mission is
accomplished within the time constraints. RSSI techniques may yield promising outcomes
in this scenario.

Because of this, RSSI-based localization and tracking have been studied in the literature.
For example, [16] introduces an RSSI tracking method that makes use of the law of cosines
along with estimated distances from the RF source to determine the steering angle that
points the tracking agent toward the target. However, they presuppose a fixed transmit
power that cannot always be met. A particle filter approach [21] and RSSI-based method are
presented in [22], where the transmit power is estimated with an artificial neural network
before the localization process, which makes the procedure more complicated.

Particularly, UAVs flying in a predefined formation can locate and follow a target of
interest in order to gather information or deliver critical services [23]. In [24], it outlines
a set of UAVs with RSSI sensors that conduct trilateration, with the target’s position
established by a fusion center and the distances from the RF source approximated using
the log-normal shadowing model. For the localization of stationary RF targets in non-
convex settings, estimation and control techniques for a team of robots were presented
in [25]. In [26], differential RSSI (DRSSI) model is used for localization. The difference in
received signal powers by the UAVs is used to calculate the heading angles of the UAVs.
Furthermore, DRSSI measurements are enhanced with an Extended Kalman Filter for more
accurate results.

In our previous study, UAV groups used the signal strength difference received by
the UAVs for target localization. The UAV group was positioned above the target on the
x and y axes by preserving the formation. Since the position of the formation center is
known, the position of the target is determined [27]. Table 1 gives a summary of selected
localization methods.

This study examines a swarm of cooperative UAVs that are outfitted with basic RSSI
sensors and coordinate their movements to localize an object that emits radio waves. The
system is based on comparing the signal strengths received by the antennas carried by
four UAVs, which are divided into two groups. Each group consists of two UAVs. In each
group, UAVs move in a circular manner in the plane they fly to receive equal signal power
with their group mate. The UAV that is closer to the source moves away from the source,
and the UAV that is far from the source approaches the source at the same rate, and they
acquire equal power. By using the moving rate for each group, the location of the RF source
is calculated geometrically. Further, no time synchronization of transmitter and receiver
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antennas is required in this approach. Two circles are designed, one in the x-y plane and
the other in the x-z plane, which are perpendicular to each other, and their centers are fixed.
The desired trajectories of the UAVs are calculated in real-time so that they remain on these
circles. The movements of the UAVs on the circle are calculated according to the difference
in the signal strength they receive. With the PID logic, the UAVs are moved so that the
difference in the received signal power will be zero. In the developed algorithm, a total of
four UAVs were used, two in the x-y plane and two in the x-z plane. These are the minimum
numbers for the algorithm to work. Target localization accuracy can be increased by using
more UAVs. In addition, using more than four UAVs will increase the cost in practice.

Table 1. Comparison of different localization techniques.

Study Method Advantages Limitation/Disadvantages

S. M. Denghan et al. [26] Differential RSSI Transmit power value is not
required Nonlinear modeling for FIM and EKF

Hasanzade et al. [22] RSSI with EKF Noise reduction with EKF Transmit power value required, it is
estimated with NN

Hasanzade et al. [22] RSSI with Particle Filter Only one UAV is requied High computational complexity of
Partical Filter

Zhou et al. [19] Both RSSI and Visual
localiation Localization with Bluetooth Images can be poor for some

circumtances

The research objective in this study is:

• Ability to do localization in GPS-denied environments.
• Ability to do localization without knowing the output power of the target and without

the need for time synchronization between the transceiver and receiver antennas

The contribution of this article can be summarized as follows:

• For environments with weak GPS signals, a novel geometry-based localization method
has been developed.

• Since the receiving antennas are on the UAVs, a method has been developed that will
make it possible to detect the target location more precisely by increasing the distances
between the UAVs.

• An augmented point on the sphere is calculated where the line passing through this
point and sphere center also passes through the target position.

The rest of the paper is organized as follows: in Section 3, background on RSSI and
methodology of the proposed method are given, simulation results to verify the given
method are mentioned in Section 4, and the conclusion of this study and future work are
offered in Section 5.

3. Materials and Method

The details of RSSI-based localization using UAVs are given in this section. RSSI is
the technique that calculates the power of the signal strength at the receiver as a function
of different parameters, such as transmitting power, characteristics of the receiver and
transmitter antennas, distance between the receiver and transmitter, etc. [28]. Measured
signal strength can be converted to the distance between the transmitter and the receiver.
In space, as the distance between the transmitter and receiver changes, the signal strength
also changes. This can be measured by using the following Friis equation [28]:

Pr = PtDrDt

(
λ

4πd

)γ

+ N(0, σ) (1)

where Pt is the transmitted signal power from the transmitter, d is the distance between the
emitter and receiver, γ is the path loss exponent, and λ is the wavelength of the transmitted
signal. An additive Gaussian noise N is included within the equation to model error caused
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by reflections, measurements, and so on. The path loss exponent γ can take a value between
the range 2 and 4 due to different environmental conditions. It can also exceed this bound
under some special conditions [29].

In this manuscript, an RSSI-based geometrical solution is proposed to the localization
problem of RF devices in a GPS-denied environment.

The algorithm is derived in the presence of two major challenges:

• There is no prior information on the target’s location.
• Signal strength is all that is measured by UAVs; there is no time stamp or other useful

information in the signal. There is no direction-finding hardware on board.

To solve the problem, the following two conditions are assumed:

• There is always a clear line of sight between the UAVs and the target.
• There are no communication limitations; UAVs may send and receive data without

losing information.

The details of the method are given in the following subsections. In the first subsection,
the desired posture (3D Cartesian location) of each UAV is calculated so that the UAVs
would move on two perpendicular circles. One of the circles is in the x-y plane and at a
distance r from the center, and the other is chosen in the x-z plane and at a distance r from
the center. In the second subsection, rotating angles are calculated that will allow the UAVs
to rotate on the circle while maintaining the 2r distance between them. The derivatives of
the rotating angles are calculated using the difference in received signal powers.

3.1. Desired Initial Posture Derivation of Four UAVs

Suppose there are four UAVs equipped with RSSI receivers in arbitrary initial locations.
Their initial desired locations are derived as follows:

xd
1(t0) = xc − r cos(α(t0)) yd

1(t0) = yc − r sin(α(t0)) zd
1 = zc

xd
3(t0) = xc + r cos(α(t0)) yd

3(t0) = yc + r sin(α(t0)) zd
3 = zc

xd
2(t0) = xc − r sin(β(t0)) yd

2 = yc zd
3(t0) = zc − r cos(β(t0))

xd
4(t0) = xc + r cos(β(t0)) yd

4 = yc zd
4(t0) = zc + r sin(β(t0))

(2)

where C(xc, yc, zc) is the center of the formation, r is the radius of the circles, α(t0) and
β(t0) are the initial rotation angles, given as in Figure 1, defined by the user, and t0 is the
initial time. D1 and D3 UAVs form a group in the x-y plane, while D2 and D4 UAVs form
another group in the x-z plane.

Figure 1. Cont.
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Figure 1. Initial and desired locations of the UAVs.

The desired initial postures (2) of the UAVs moving both in the x-y axis and in the
x-z axis are calculated in a way that satisfies two basic constraints: (i) Both UAVs are at a
distance of r from the center; (ii) the distance between two UAVs is 2r. Thus, UAVs move
on the predetermined circle, and the distance between the UAVs is fixed. Derivation of the
rotating angle dynamics is given in the next subsection.

3.2. Rotating Angle Calculation

To find the direction of the target in both vertical and horizontal planes, the signal
power differences are defined as follows:

e1 = P3 − P1

e2 = P4 − P2
(3)

where P1, . . . , P4 are the received signal powers by D1, . . . , D4, respectively, while e1 is
obtained from the difference in signal strengths of the 3rd UAV and the 1st UAV, e2 is
obtained from the power differences of the 4th UAV and the 2nd UAV. Then the error
dynamics are given as follows:

.
e1 =

.
P3 −

.
P1

.
e2 =

.
P4 −

.
P2

(4)

Two UAVs moving in the x-z axis are used to find the horizontal direction of the target,
whereas UAVs moving in the x-y plane are used to find the vertical direction of the target.
Derivation of α and β are calculated to make the difference of the signal strength received
by the two UAVs zero. PID controller logic is used, and derivative of α was defined as the
function of e1 and derivative β as the function of e2. The desired rotating angle dynamics
are defined as:

.
α = kPe1 + kI

t∫
t0

e1(τ)dτ + kD
.
e1

.
β = kPe2 + kI

t∫
t0

e2(τ)dτ + kD
.
e2

(5)

where kP > 0, kI > 0, and kD > 0 are design parameters. Then the current rotating angles
are found as:

α(t) = α(t0) +
t∫

t0

.
α(τ)dτ

β(t) = β(t0) +
t∫

t0

.
β(τ)dτ

(6)
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Changing the α and β in time (6) will automatically change the desired locations of
the UAVs according to (7). This change continues until e1 and e2 converges to zero or a
pre-defined and tolerable error bound.

xd
1(t) = xc − r cos(α(t)) yd

1(t) = yc − r sin(α(t)) zd
1 = zc

xd
3(t) = xc + r cos(α(t)) yd

3(t) = yc + r sin(α(t)) zd
3 = zc

xd
2(t) = xc − r sin(β(t)) yd

2 = yc zd
3(t) = zc − r cos(β(t))

xd
4(t) = xc + r cos(β(t)) yd

4 = yc zd
4(t) = zc + r sin(β(t))

(7)

Remark: Consider the scenario shown in Figure 2, they detect a target while flying. The
received signal power in each group is compared by itself, and UAVs move in their planes
until they receive equal signal power. In this scenario, D4 gets more power than D2, so D4
moves away from the target and D2 moves towards the target. Same as for D1 and D3, D1
receives less power than D3, therefore D1 approaches to the target while D3 moves away
from the target, as given in Figure 3.

Figure 2. UAVs fly in the desired initial location with different received signal strengths.

Figure 3. UAVs move in a circular formation to receive the same RSSI value.
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Next, the augmented point and the lines that pass through the target position
are calculated.

3.3. Augmented Point and Direction Calculation

When power errors are within a tolerable error range, the plane formed by the line
through the D1–D3 and the line through the D2–D4 is calculated. The line that will be
perpendicular to this plane and pass through the center is determined. As the first step
in calculating the line, an augmented point is calculated on the sphere formed by the
perpendicular circles.

An augmented point, A(xaug, yaug, zaug), is defined on the sphere, which has equal
distance to each UAV and satisfies the criteria below:√

(xa − xc)
2 + (ya − yc)

2 + (za − zc)
2 = r

da1 =
√
(xa − xd

1)
2
+ (ya − yd

1)
2
+ (za − zd

1)
2

da2 =
√
(xa − xd

2)
2
+ (ya − yd

2)
2
+ (za − zd

2)
2

da3 =
√
(xa − xd

3)
2
+ (ya − yd

3)
2
+ (za − zd

3)
2

da4 =
√
(xa − xd

4)
2
+ (ya − yd

4)
2
+ (za − zd

4)
2

da1 = da2 = da3 = da4

(8)

with these criteria (8), the augmented point is calculated as follows:

ra = |r cos(β)|
zaug = zc + r sin(α) sin(β)

xaug = xc − ra sin(α)

yaug = yc − racos(α)

(9)

Claim: The line passes through the sphere’s center C(xc, yc, zc) and the augmented
point A(xaug, yaug, zaug) also intersects the target position. The definition of the line passing
through the A(xaug, yaug, zaug) and C(xc, yc, zc) is derived as follows:

y =
x−xaug
xc−xaug

(
yc − yaug

)
+ yaug

z =
y−yaug
yc−yaug

(
zc − zaug

)
+ zaug

(10)

This line is in the direction of the source. For the sake of localization, the group of
UAVs is moved while keeping the consensus to receive equal signal power. In their new
location, a new line is generated with new angles. This procedure is conducted multiple
times. Since all the lines are directed through the source, their intersection will give the
location of the source. In a noise-free environment, two lines are enough to locate the target.
However, since signal power may be seriously influenced by the environment and may
have a high level of noise, the lines may not intersect at one point. In a noisy environment,
the lines may not go through the source. Therefore, the point that has the shortest distance
to all lines is assigned as the source location. The Algorithm 1 that gives the minimum
distance to all lines is given in below. The overall framework of the proposed localization
process is given in the flowchart given in Figure 4.
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Figure 4. Flowchart of proposed localization method.

Algorithm 1: Minimum distance to lines calculation (xest_ f ,yest_ f ,zest_ f ).

1: Set n = length of line segments, N = number of line segments; P is a very large constant
2: p = 1;
3: for k = 1 to N;
4: for m = 1 to N
5: if m �= k
6: dmin = P
7: for i = 1 to n
8: for j = 1 to n

9: d =
√
(x(k, i)− x(m, j))2 + (y(k, i)− y(m, j))2 + (z(k, i)− z(m, j))2

10: if d < dmin
11: dmin = d,imin = i,jmin = j,
12: end if

13: end for

14: end for

15: xest(p) = x(k,imin)+x(m,jmin)
2 , yest(p) = y(k,imin)+y(m,jmin)

2 ,zest(p) = z(k,imin)+z(m,jmin)
2

16: p = p + 1
17: end for

18: end for

19: end for

4. Results

In this section, the performance of the proposed method is given. Localization of
a target in a 1 × 1 km2 search area was considered for simulation studies. The target is
assumed to be on the ground. In the beginning, UAVs search the GPS-denied area until
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they receive an RF signal. Then they rotate on the given circles until the UAVs in each
group receive equal power.

As mentioned above, the line intersects the augmented point, and the formation center
will also intersect the source position as given in Figure 5. Movements of UAVs on the
sphere and the angles are also demonstrated in Figure 5. One line is not enough to find
the source’s location. By moving the UAV group and keeping the formation, multiple
lines are generated, as demonstrated in Figure 6. The intersection of these lines gives the
source’s location.

Figure 5. Rotation of UAVs and a line passing through augmented point and formation center.

Figure 6. Intersection of multiple lines, which gives the source location.

As shown in Figure 6, UAVs with different received signal powers initially act in a
way to equalize the received power. When the center of gravity moves, the procedure starts
again and the received signal powers are equalized again. New augmented points with new
angle values are calculated, and the location of the target is determined by the intersection
lines passing through the center and the augmented points. Figure 7 demonstrates the
received power difference of the UAVs in each group.
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Figure 7. (a) Received power by D1 and D3, (b) received power by D2 and D4, and (c) power
differences of each group.

However, due to the noise effects, the received signal power values may vary from
their originals. Although the mean of multiple RSSI values is used in the algorithm, the
lines may not intersect at one point. In this situation, in order to find the point that has a
shortest distance to all lines the algorithm given in previous section is utilized. The point
that has a minimum distance to all lines is referred to as the source location, and the result
is demonstrated in Figure 8.

Figure 8. Source localization in a noisy environment.

Figure 8 shows target detection when the received signal strength is different from the
theoretically calculated signal power (1). Scanning is performed when the sphere center is
at three different points. After 100 Monte Carlo simulations, the mean error value is found
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to be 52.66 m when a noise with a 4% standard deviation over the signal power is added.
Table 2 shows localization errors for different noise values.

Table 2. Localization error of RF source with different noise ratios.

Standard Deviation Ratio Mean Error

2% 28.3 m
4% 52.66 m
8% 145.7 m

As can be seen from the table, localization error increases when the noise level increases.
As a continuation of this study, it is aimed to reduce the noise level by using nonlinear
filters. Thus, the proposed localization method will provide more accurate results.

5. Conclusions

A novel localization method that can work in GPS-denied environments which can
occur due to tall buildings, trees, canyon walls blocking the GPS satellite signals, or a lack
of coverage was proposed. This powerful geometrical solution performs the localization
process without the need for transmit power and path loss exponent information. The
procedure depends on the difference in received signal power measured by RSSI sensors.
UAVs move until each UAV receives equal power while keeping the formation. With
this movement rate, lines intersecting at the source location are calculated. In a noise-
free environment, two lines are enough to calculate the position. However, in a noisy
environment, these lines do not intersect. Therefore, generating more lines will improve
localization performance. An algorithm that finds a point which has a minimum distance
to all lines is also given in this manuscript.

In this study, the source location is calculated as the point that has a minimum distance
to all lines. Nonlinear filtering methods will be considered to find the source location with
minimum error will be considered as a future study. Furthermore, results are given based
on computer simulations. With the real-time application of the algorithm, the performance
of the method will be examined more precisely.
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Abstract: Changes in the global climate have induced densified rainfall and caused natural hazards
across the world in recent years. Formed by a central mountain range and a corridor of alluvial plains
to the west, Taiwan is at risk of flood hazards owing to its low-lying lands as well as the distinct
seasonality of rainfall patterns. The rapid discharge of surface runoff and a growing number of
impervious surfaces have also increased flood hazards during recent typhoon landfalls. A century
ago, ancestors in Taoyuan City constructed a system of water channels composed of thousands of
ponds to fulfill the needs of agriculture and aquaculture. During the expansion of urban areas, land
reformation replaced a majority of earlier ponds with residential and industrial zones. However, the
remaining ponds could potentially serve as on-site water detention facilities under the increasing
risk of floods. In this research, we first renewed an outdated pond database by deploying a novel
unmanned aerial vehicle (UAV) system with a micro-sonar to map the bathymetry of 80 ponds. Next,
a simplified inundation model (SPM) was used to simulate the flood extent caused by different
scenarios of rainfall in Bade District of Taoyuan City. Assuming that extremely that heavy rainfalls at
25, 50, 75, and 100 mm occurred in a very short period, the flood area would decrease by 96%, 75%,
52%, and 37%, respectively, when the ponds were preparatorily emptied.

Keywords: mobile mapping; UAV; sonar; simplified inundation model

1. Introduction

A network of ponds scattered over a 30 × 30 km area is an iconic landscape in northern
Taiwan (Figure 1). The ancient Shihmen river, flowing through the center of current Taoyuan
City and forming the alluvial plain, was captured by the northbound river and reduced
water levels at lower reaches more than 30,000 years ago [1]. The ancestors who arrived here
centuries ago had settled along the river bank or areas with accessible groundwater. Along
with the growing population, residents who in the early stage farmed with precipitation
and natural watercourses had to build water facilities in the last century [2]. Freshwater
supply had become an issue, so the ancestors irrigated with ponds and ditches. Although
Taoyuan’s geographical environment is unsuitable for dams as the average slope of streams
is 1/40–1/120 [2], the soil type composed of laterite and loess is conducive to constructing
artificial water storage facilities. As time went on, some of the ponds functioned as small
reservoirs in the water source management system and were linked with rivers and streams.
These ponds’ functionalities have become an intricate system for irrigation, drainage, wetland
conservation, and aquafarming [3] (Figure 1, inset figures).
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Figure 1. (Overview map) Taoyuan city in the red box is located in northern Taiwan. (Main) The
pond system in Taoyuan City (blue) is a multipurpose water facility for various applications, for
example: (a) irrigation; (b) fish farming; and (c) ecology parks.

1.1. Pond Network in Taoyuan

Recently, the demands for agricultural production decreased, and the rice fields in
many irrigated areas were progressively replaced by urban areas [2,4], due primarily to the
rapid development of industry and commerce. From 2002 to 2018, the area of cultivated
land decreased from 39,608 to 31,896 ha in Taoyuan [5]. According to the latest mapping
in 2011, there are still 2851 existing ponds, as delineated by the Department of Water
Resources, Taoyuan (TYWR) from aerial photography. Because of the cutback of water
demand for agriculture, some channel sectors within the network gradually disintegrated
where ponds were abandoned. These diminishing ponds have limited storage capacity
due to sedimentation. Wang (2013) [6] suggested that converting fish ponds into flood
detention basins could mitigate flood hazards regardless of whether the accumulated
precipitation is 150 mm or as high as 1200 mm. Wang & Chang (2016) [7] also explored the
spatial connection between the ponds in Taoyuan and investigated the possibility of flood
detention. They assumed an average depth of 3.4 m for 497 ponds and concluded that using
this existing configuration could effectively reduce flood risks. For a daily accumulated
rainfall of 200 mm, the ponds in Dayuan District, near Taiwan Taoyuan International
Airport in Figure 1, could reduce 55% of the water from a simulated flood event [7].

Unfortunately, most ponds have very limited information, even in the government
database. Incomplete background knowledge is a major drawback for an overall assessment
and planning. Therefore, to fully explore the potential usage of their capacities, detailed
geometric parameters are needed. This study, therefore, first intended to develop a complete
digital elevation model (DEM) to seamlessly connect the pond floor and the neighboring
land for later use in flood simulation. As demonstrated in Bade District of Taoyuan City in
Figure 2a, the DEM from the Ministry of the Interior (Taiwan) is unable to reveal detailed
pond shapes. As the close-up in the orange box in Figure 2a demonstrates, the water surface
is hydro-flattened during the editing of airborne LiDAR data, and thus the elevation is
similar to that of the neighboring land (Figure 2b). Therefore, as demonstrated in Figure 2c,
the DEM used in the following simulation was modified according to either a single depth
value in the database or the bathymetric maps updated by our fieldwork.
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(a) 

  
(b) (c) 

Figure 2. Bade District in Taoyuan City is the demonstration site for flood detention simulation:
(a) an overview of Bade District and pond locations (black polygon); (b) a blow-up view of the
orange box in panel (a). The 20-m resolution elevation model from MOI does not appropriately reveal
bathymetry in pond locations (red); and (c) The DEM is modified within ponds by depth information
from the government database or our fieldwork.

1.2. Methods for Measuring Inland Waterbodies

To measure point depth over a lake, surveyors used to deploy sounding rods, sounding
leads and other tools lowered from a vessel. Lately, optical and acoustic sounding sensors
were developed by counting the elapsed time of wave propagation. There are active and
passive mechanisms in optical sounding [8]. The most popular device for shallow water
areas is the airborne laser bathymetry (ALB) system, which estimates the range based on
the bidirectional propagation time of short pulses between the surface and bottom. ALB can
nominally survey depths to 60 m depending on the water clarity [9]. The laser is split by an
optical coupler into an infrared beam and a green beam. The infrared beam is used to detect
water surfaces because of its poor penetration, while the green beam zig-zagging across-
track aims to measure depths. The advantage of active ALB is the insensitivity of sunlight
angles and the reflections of wave surfaces as compared with passive optical sounding, as
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well as its workability under insufficient light sources [10,11]. Hilldale and Raff (2008) [12]
collected 220 km of ALB data at the Yakima Basin in Washington and the Trinity River
Basin in Texas to perform surveys of two riverbeds. Comparing LiDAR data and the
single-beam echosounder with the real time kinematic technique of the global positioning
system (RTK-GPS), the results showed that the standard deviation is at 0.3–0.42 m level
when the slope is less than 20%, and it may be up to 0.63 m otherwise.

In contrast, passive optical sensor onboard satellites can estimate water column thick-
ness from the light attenuation between spectral bands. This approach reduces costs in the
field and avoids the inaccessibility of remote areas. Stumpf et al. (2003) [13] proposed a
log-ratio transformation utilizing spectral attenuation based on the Beer–Lambert Law. By
comparing IKONOS satellite images with depth measurements, a linear variation algorithm
and an empirical proportional variation algorithm are constructed. An alternative way to
exploit optical images is based on the hypsometric approach. Getirana et al. (2018) [14]
used Landsat historical images and SARAL/AltiKa altimetry satellite to build a slope
elevation model for Lake Mead, USA. They further used flow direction and neighboring
hydrological formations to derive full reservoir bathymetry. In their results, interpolated
DEM in consideration of the upstream and downstream elevation agreed well with surveys
from scan-sonar and chirp seismic reflection.

Besides, acoustic methods had also been widely used to detect and locate objects/obstacles
in the water. Sound navigation and ranging (Sonar) can be divided into active and passive
types based on function and mode. Sonar systems are categorized as, for example, side-
scan sonar, multibeam sonar, acoustic communication system, positioning system, acoustic
Doppler system, and acoustic tomography network. Active sonar is mostly operated for
bathymetric mapping, fish detection, and sediment profiling [15]. However, these systems
are primarily used in waterbodies where the cruising of vessels allows. For a small pond or
a narrow channel, the mobility of ships is constrained and the cost of a survey campaign
may not be economically reasonable.

1.3. A Novel Bathymetry Technique

With the boom in commercial-grade drones, various ingenious applications have
been developed thanks to their outstanding maneuverability in the field. The unmanned
aerial vehicle (UAV) has been used to broaden research areas in agriculture, forestry, flood
monitoring, and geohazard assessment [16,17]. The DEM generated from aerial photos
using the structure from motion (SFM) technique has a high degree of conformity with
aerial LiDAR data [18]. Javemick et al. (2014) [19] used stereo-paired images taken at 600 m
and 800 m above the ground and performed SFM to construct a DEM. The geolocation
errors were 0.04 m in planar, and 0.10 m in vertical directions. UAVs have also been
utilized for bathymetric mapping, outperforming traditional approaches in efficiency and
accessibility. Alvarez et al. (2018) [20] conducted shallow water depth mapping in a small
reservoir in Oklahoma, USA, where the study area was about 28,000 m2. An echosounder
mounted onboard a floating platform was towed by a UAV to measure water depth. They
retrieved scattered point depths and applied cluster analysis to distinguish areas with large
standard deviations. The underwater topography map was obtained by spatial fitting of
the measured depth points, and a standard deviation of 0.37 m was reached between the
fitted terrain and reference data. Bandini et al. (2018) [21] combined a UAV, a sonar, an
inertial measurement unit (IMU), a SONY RX-100 camera, and a GNSS module to correct
the distortion and tilt. Similarly, the entire sonar system was towed by a UAV and the
result showed an accuracy of ~2.1% of actual depth with a maximum depth of 35 m. Many
innovative approaches developed in the abovementioned experiments considerably reduce
costs compared with traditional methods.

Due to the inaccessibility of several unmanaged ponds in Taoyuan, we also needed
a mobile platform with good flexibility when hovering above a pond. Therefore, a novel
measuring system was developed to map the depth of ponds. This research first renewed
the outdated depth of ponds with a mobile sounding system comprising a UAV, a smart-
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phone, and a micro-sonar. The innovation of this UAV module was to hang the sonar by an
aerial vehicle to skim the surface of the water, without the floating platform that is usually
restricted by launching and mobility in a small pond of a few thousand square meters.
Also, this is the first time that a group of pond models was integrated with an adjacent
DEM to simulate the overland flow under different rainfall scenarios using the simplified
inundation model (SPM) [22].

2. Methodology

2.1. Workflow

The workflow of this study is outlined in Figure 3. The first step was to select the
study area and ponds to be measured. Here, we picked 80 ponds in Taoyuan City, of
which 15 ponds are located in Bade District. To update the geometry of each site, four
main tasks were conducted, including the deployment of control points, operation of aerial
photography, UAV bathymetry, and other ground surveys. To model the neighboring land,
aerial photos taken within a 200 m buffer were stereo-paired to build a DEM constrained
by GNSS control points with precise point positioning (PPP) solutions. To model the under-
water part, the measured depth points were used to interpolate a mesh grid of bathymetry
in consideration of slope and channel geometry. For the land area outside the buffer or for
the pond without fieldwork, the 20 m digital terrain model (DTM) released by the Ministry
of the Interior (MOI), Taiwan (https://dtm.moi.gov.tw (accessed on 1 July 2022), version
2018) was used. The DTM was produced by a nationwide airborne LiDAR campaign, and
the specified accuracy of LiDAR measurement was 0.25 m in vertical for each 1 m grid
comprising more than 2 LiDAR points. The joint terrain model, composed of an underwater
DEM, a land DEM, and the MOI DEM, was assembled and bilinearly resampled into a
0.5 m resolution. The next step was to use this integrated DEM for SPM flood simulation.
Finally, the floodwater was assumed to be dissipated into the ponds via a virtual network,
and the contribution of the ponds to flood detention was assessed.

Figure 3. Workflow for pond measurements and to build an integrated digital elevation model with
neighboring terrain.

2.2. Fieldwork Procedure
2.2.1. Modeling of Terrain DEM

For fieldwork in the selected pond, one operator controlled a DJI Phantom 4 Pro
(DJI-P4P) UAV to take aerial photos for reconstructing DEM over the land area. A flight
height of 60 m and an overlap rate of 70% were set with a ~200 m buffer area outside
the pond. To ensure the quality of geolocation for the orthorectified images, 3–5 ground
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control points were positioned by a u-blox C94-M8P GNSS receiver for more than 30 min.
This GNSS chip provides single-frequency phase pseudo-ranges compatible with GPS,
GLONASS, and Galileo. GNSS observation files are imported to RTKLIB [23] open-source
software to solve Precise Point Positioning (PPP) coordinates. With PPP, the accuracy could
be increased to a decimeter level for phase pseudo-ranges, owing to the reduction of biases
and clock/orbital errors.

2.2.2. Modeling of Pond DEM

A DJI Phantom 3 Advanced (DJI-P3A) UAV was deployed to carry a bathymetric
module along the planned route above the water surface. Under moderate environmental
conditions, including good GPS visibility, calm wind speed, and low RF interference, the
UAV can stay within 1.5 m in horizontal and 0.1 m in vertical directions. The maximum
load under DJI-P3A is limited to ~500 g based on previous tests [24]. Hence, a lightweight
(89 g) Ling-Hui micro-sonar and a smartphone can be hung by the UAV with a fishing string
1.5 m long (Figure 4). The ranging capability of this leisure-grade fish finder is between
0.6 m and 30 m and the working temperature is <40 ◦C. Although the main application
of this low-cost (~70 USD) micro-sonar is for fish detection, it is possible to estimate the
depth owing to its sensitivity at ~10 cm level [24]. The sonar data were transmitted to the
smartphone through Wi-Fi, with a maximum transmission distance of 50 m.

 

Figure 4. (a) A sample of micro-sonar that can measure water depth in 0.6–40 m; and (b) the entire
module combines a DJI-P3A UAV, a micro-sonar, and an Android phone in a waterproof bag.

The operator first planned a grid of points on the pond where the UAV could stay
for 1 min. Water depths displayed in the mobile application (App) that came with the
sonar were screenshotted every 2 s, with a total of 25–30 repetitions for each point. After
removing the first and last 15 s when sonar readings were not yet stabilized, approximately
10–12 redundant measurements were retained for computing water depth. As this low-cost
sonar does not have a positioning module, the smartphone-recorded National Marine Elec-
tronics Association (NMEA) file was used for geolocations. The assisted global positioning
system (A-GPS), with good coverage of cellular networks, outperforms the code positioning
by GPS [25]. This approach also avoids positioning errors due to the obscured sky visibility
and ionospheric effects. The images screenshotted in the mobile App contains the resolved
depth information. Here, we used an automatic recognition module coded in MATLAB
to digitize water depth and timestamps recorded in each image. To produce DEM over
the land area, a Pix4D Mapper was adopted to process aerial photos and control points to
establish DEM and a mosaicked image. The water area mask was visually delineated from
the mosaic image.

Among several interpolation strategies for modeling terrain, the inverse weighted
distance (IDW) and the ordinary Kriging (OK) are most commonly favored to estimate
continuous surfaces [26]. A study in Saldanha Bay further suggested that IDW consistently
performed better than OK across multiple interpolation tests [27]. Based on the assumption
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that the bottom sedimentation of the ponds is smooth and the depth points are evenly
distributed, IDW is reasonable in the presentation of floor topography. Hence, to fit the
surface of underwater terrain from pointwise measurements, we adopted IDW as the
spatial interpolation method. The formula of IDW [28,29] is

D(i, j) =
∑n

x=1
Dx

d(i,j)x

∑n
x=1

1
d(i,j)x

=
∑n

x=1 DxW(i, j)x
∑n

x=1 W(i, j)x
(1)

where D(i, j) is the depth of an unknown point, Dx is the value of a measured point and
d(i, j)x is the Euclidean distance from the unknown point D(i, j) to the xth measured point.
The weight in IDW is thus Wi, such as 1 divided by d(i, j)x. IDW searches adjacent data at
the pixel to be interpolated, and calculates the weighted average inversely proportional to
the distance. Following that, the slope of the enclosing dyke is considered in generating an
underwater model. We assumed that the dyke had a uniform slope as they were mostly
renovated by a precast concrete form (Figure 5). The combination of slope measurement
and IDW can present a completely seamless model rather than just using one of them.
Finally, the joint pond model can be obtained by combining the underwater model with
the land model.

Figure 5. A schematic diagram of surveying parameters in the target pond, where d is the depth from
sonar, O1 is the highest water level without a water gate, and O2 is the highest water level when a
water gate exists. The slope along the pond edge is assumed a constant S.

To calculate the maximum storage (Vmax) of each site, dyke or water gate height
measured in situ was considered as the maximum water level. Equation (2) calculates
water storage for each 0.5 × 0.5 m pixel (row i from 1 to n and column j from 1 to m) falling
within the pond mask:

Vmax = ∑n
j=1 ∑m

i=1 A(i, j)× [D(i, j) + Ok]× M(i, j) (2)

where A is the unit area of each pixel (0.25 m2), D is the depth, Ok (k ∈ {1, 2}) is the extra
height measured in Figure 5, which is the lower one of height to the top of concrete dyke
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(O1) or the slab height of the water gate (O2). M is the pond mask, set to 1 within the pond
and 0 for the land area. Figure 6 displays two examples of pond model in Yangmei District
(YM145) and Bade District (BD033).

Figure 6. Two examples of the integrated pond model in YM145 (left) and BD033 (right). Color code
indicates water depth based on the highest water level.

2.3. Flood Simulation
2.3.1. Simplified Inundation Model (SPM)

SPM [23] refers to a set of simple physical properties that were developed to simulate
flooding extent by using DEM as the sole input parameter. The model requires rainfall and a
threshold that represents the acceptable difference between total flood and simulated flood.
It is suggested to set 10% of the rainfall remaining on the ground to calculate the extent
and depth of a flooding event [22]. Compared to other simulation methods, SPM produces
results promptly. The flow direction is first calculated and the rows of cell arrays are
sequenced, and cells located at the end of arrays would be considered a high contribution.
The flood would be drained to a lower elevation or a higher contribution, and the amount
of water is in line with the preset rainfall and threshold. D-infinity [30] is used to transport
water from flooding cells to surrounding cells. When the flow direction is between two
cells, water is distributed according to the slope as weight because the downstream areas
also have a higher risk of flood. As demonstrated in Figure 7a, a model with nine cells
represents the main terrain formation. As the water level increases from cell #5 in panel
(b), eight possible flowing directions are displayed as orange arrows while the steepest
slope is marked as the red arrow. Angles a and b between two flowing directions to cell #1
and #2 are used as the weight to allocate water from the center cell, in terms of b/(a + b)
and a/(a + b), respectively (Figure 7b). This process will continue until the water level is
balanced among surrounding cells (Figure 7c) [22,30].
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(a) (b) (c) 

Figure 7. A schematic of SPM redrawn from [22,30]: (a) the terrain is illustrated as nine cells with
varying elevations; (b) the flood occurs at cell #5 and the steepest slope in this region is shown as
the red arrow, between two (cell #1 and #2) out of eight possible flowing directions (orange arrows);
the planar angles between the red arrow and directions to cell #1 and #2 (angle a and b) are used as
weights to allocate water accumulated in cell #5; and (c) the allocation process is iterated among cells
until reaching a balanced water level.

The convenience and outstanding speed of SPM have been demonstrated in the
literature [31], highlighting that SPM using only elevation data for simulation was superior
in areas without detailed hydrological parameters. SPM is much faster than other models
in both data collection and processing efficiency, and the precision when performing on
the town- and village-scale could reach an acceptable level, where the fit indicator (the
overlapped flooded area divided by the total flooded area) is greater than 0.69 [31].

2.3.2. A Virtual Channel Scheme to Dissipate Floodwater

After simulation using SPM, the initial flood zones and their depths were estimated.
However, if we assumed a virtual channel network existed between the flood-prone areas
and the neighboring ponds, the flooded area might be further reduced based on a redistri-
bution scheme. First, we assumed that the pond collocated with a flooded area would be
filled. Next, the disconnected flooded areas in the SPM results were divided into patches.
Starting from the lowest elevation, the flooded patches, one by one, the ponds not full and
located downslope were searched. The flooded patch was first drained to the candidate
with the shortest Euclidean distance. When the pond was full, the flooded patch found
the next closest one to share floodwater, until no more successors located downslope had
room to accommodate them. It should be understood that although the virtual channels do
not exist in the field at this moment, based on our simulation, the demand for a drainage
system could be visualized and the route could be considered for future plans.

3. Result

3.1. Validation of UAV Depth Measurements

A ship survey campaign was conducted in a pond #GI215 in Guanyin District Taoyuan.
The Otter Unmanned Surface Vehicle (USV) carrying a Norbit iWBMS multibeam echosounder
was deployed to scan the bathymetry. As shown in Figure 8a, the detailed elevation from
the top of the dyke is revealed in USV sidescan results, with a range resolution of <1 cm.
To compare the depth with measurements from our UAV module, 14 points skimmed by
UAV are marked as black circles in Figure 8a,b, while the bathymetry in Figure 8b was
modeled by the IDW strategy. The accuracy of UAV data, in terms of standard deviation
and correlation coefficient as compared against USV data over those 14 depth points,
achieved 0.12 m and 0.86, respectively. The error is about 4.8% of depth if we took 2.5 m of
the averaged depth as a benchmark.

105



Drones 2023, 7, 1

   
(a) (b) (c) 

Figure 8. (a) The Otter Unmanned Surface Vehicle (USV) and a Norbit iWBMS multibeam
echosounder scanning bathymetry; (b) Our UAV and a micro-sonar measurement (14 points), and
the IDW-interpolated bathymetry; and (c) Scatterplot of depth values over 14 points.

3.2. Validation of Integrated Pond Models

In 2019, 80 ponds over the entire Taoyuan City were selected for fieldwork. Each location
required 3–4 onsite staff to take 1–1.5 h of measurement. The detailed data processing and
validation procedure can be found in [24,32]. The 80 models, as shown in Figure 9, have a
range of water depth from 0.7 to 4.4 m and a range of storage from 2191 m3 to 155,564 m3.
For comparing the configuration of ponds with historical data from TYWR, the correlation
coefficient of water extent reached 0.99 (Figure 10a). However, in the comparison of water stor-
age, two (CL143 and YM051, see #8 and #53 in Appendix A) had extraordinarily mismatched
values. The depth calculated roughly from storage and the area in the TYWR record was
just 0.07 m and 0.27 m for CL143 and YM051, respectively, which was far shallower than the
common depth ranging between 1.2 m and 2.0 m. Therefore, the outliers were attributed to
the significant underestimate of storage in the database. The correlation coefficient of storage
without those two sites was improved from 0.70 to 0.83 (Figure 10b).

The results shown here have two-fold implications. First, the fidelity of our pond
models should satisfy the needs of SPM simulation. Some depths in the database may be
unreliable due to an inaccurate taping observation or a lack of updating recent dredging
processes. The UAV sensing module introduced herein is flexible in cost, accuracy, and cov-
erage. Second, the historical data need to be routinely updated to grasp the current status
of bathymetry. Severe sedimentation is of great concern to some kinds of functionalities,
for example, aquafarming and irrigation water storage.

3.3. Design of Drainage Channels from Virtual Network Dissipating Scheme

In this research, Bade District in Taoyuan City (Figure 1) was chosen for flood simula-
tion because of its high level of urban development and the history of frequent flooding
events. During short periods of heavy rainfall, floods often took place owing to an inad-
equate drainage system, even though the number and scale of ponds in Bade are larger
than in other districts [33]. To assess the potential usage of the current infrastructure as a
floodwater detention facility, SPM was applied in Bade with rainfall amounts of 25 mm,
50 mm, 75 mm, and 100 mm. Because no drainage conditions other than elevation are
required in SPM, it has the great advantage of presenting short periods of heavy rainfall.
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Figure 9. The 80 selected pond models. Each pond has an area greater than 2500 m2 and at least
10 measurement points.

(a) (b) 

Figure 10. A log scale comparison of: (a) water extent; and and (b) water storage in 80 selected ponds.

The initial flooded area and redistribution procedure of floodwater was exemplified
by the 75 mm rainfall case. As the flood just happened, the area simulated by SPM was
shown as blue patches in Figure 11a. Those submerged areas could be further dissipated

107



Drones 2023, 7, 1

through a virtual channel scheme defined in Section 2.3.2. Following the algorithm, the
virtual network, or the lines connecting flooded patches to those ponds with unfilled space,
is visualized as black lines in Figure 11a. It is noted that because some detention basins
have been filled in the low-to-high elevation order, several flood patches need to be drained
across the main slope direction (south to north). If the floodwater could be successfully
redirected to the target ponds, the flooded areas could be reduced, as indicated by the
red patches in Figure 11b. The flooded extent is much smaller than its initial form, since
many ponds situated outside of flood-prone areas could potentially share stormwater
under the assumption of appropriate drainage facilities. However, considering the actual
constructional and operational difficulties of this virtual network, the black lines in panel
(a) are simplified as three main channels, such as A to A’, B to B’, and C to C’ in panel (c),
indicating three routes representative of the most demands in the simulation. It is observed
that a cross-tributary design in the upstream (A-A’) and a new channel linking flooded
areas to a huge pond (C-C’) or to a pond cluster (B-B’) are preferred for this purpose.

(a) (b) (c) 

Figure 11. SPM flood simulation under 75 mm rainfall scenario by using pre-emptied ponds:
(a) flood patches (blue) and their links to the unfilled ponds (black line); (b) reduced flood patches
(red) after floodwater redistribution; and (c) three main routes of water redirection to reduce flood
hazard.

A similar simulation of the dissipating procedure was conducted for the other three
rainfall scenarios and the results are illustrated in Figure 12. In this figure, the blue plus red
patches indicate flooded areas initially simulated by SPM and the red patches are the ones left
after virtual channel dissipating scheme, similar to an overlap of panel a and b in Figure 11.
Another symbol introduced in this figure is the green patch, which is used to highlight the
difference between using depth in the historical data (with green) and using the updated pond
model (without green) in simulations. For example, in the 25 mm case, the green patches in
the middle exist because old data underestimate pond storage, and thus the floodwater cannot
be shared by the neighboring ponds. In contrast, by updating several ponds through our
fieldwork (yellow filling) to the west, most sites were found bigger in their storage and hence
could accommodate floodwater from those green patches. It is clear, especially in 25 mm and
50 mm rainfall scenarios. However, as rainfall increases, the water storage capacity is minor in
the portion of floodwater, so the DEM correctness becomes less important. As a result, almost
no green patches can be seen in 75 mm and 100 mm cases.
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Figure 12. Simulation of the flooded area in Bade District (north up). The terrain declined from south
to north. Four panels represent rainfall simulations from 25 mm to 100 mm. The base map adopts
Sentinel-2 natural color composite on 17 November 2019.

Because SPM gives the highest contribution to the lowest elevation in this region, the
flood accumulates from the top (north) to the bottom (south) direction. When the rainfall
amount is 25 mm, most of the flooded areas could be dissipated if there was a channel
system linking ponds downslope of the flood hotspots. When rainfall amount reaches
50 mm, there could still be a significant reduction in the flooded areas. However, when
rainfall amount reaches 75 mm or 100 mm, the contribution of ponds becomes progressively
insignificant. Figure 13 shows the reduction percentage in flood areas and water volumes,
based on four rainfall scenarios. The red solid/dashed line and blue solid/dashed line
indicate the simulated flood area with/without our fieldwork and the simulated water
volume with/without our fieldwork, respectively. When rainfall amounts increase from
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25 mm to 50 mm, 75 mm, and 100 mm, reductions of flood area by the pond model updated
in this study are 96%, 75%, 52%, and 37%, respectively. A similar trend is found in flood
volume. When rainfall amounts increase in those four scenarios, reductions of flood volume
by the updated pond model are 93%, 56%, 28%, and 14%, respectively. Overall, results from
the updated pond model show up to 10% less flooded area and 3 to 7% less floodwater
volume than the old model (TYWR) in four rainfall scenarios. Based on this simulation,
the administrative agencies could have an overview of the first-order flood-prone areas in
this district, and plan/renovate inter-pond channels that are close to the flooded patches.
Meanwhile, those on-site tenants must carry out desilting work regularly, once the ponds
are requisitioned to the flood detention network.

Figure 13. The percentage of the reduced flood area and volume based on the TYWR database and
the ones based on our fieldwork.

4. Discussion

This study utilized a novel water depth measuring module that could apply to small
waterbodies difficult to be accessed or to be surveyed with traditional equipment. Mean-
while, the accuracy of UAV-assisted depth measurement was comparable with the reference
data. The advantage of this approach is the capability of recovering underwater terrain
of a pond insensible by optical remote sensing methods, or the ones full of aerators and
wires unable to operate a ship. The method is particularly handy for quickly verifying
the renovation of a pond. For example, the Xipo ecological park (labeled in Figure 11c, a
combination of BD089 and BD090 in Appendix A) has 88,092 m3 of the estimated storage,
which is close to the nominally new storage announced onsite (88,000 m3) [34] than the
record in the outdated TYWR database (40,543 m3). It is also the main reason why several
black lines in Figure 11a connect between flooded patches to the Xipo ecological park, such
as the route C-C’ in Figure 11c. Actually, the three main routes suggested in Figure 11c
are in accordance with a majority of built-up areas in Bade District, as shown in Figure A1
of Appendix B. It affirms the need for a new drainage system to reduce the risk of flood
hazards over the densely populated area. In the future, when this procedure could be
regularly operated, the tenant and owner (administrative agencies) should systematically
monitor the timely change of pond sedimentation.

Moreover, the actual storage is crucial for the first crop of paddy rice cultivation
(January–June) for irrigation purposes. Taiwan experienced a severe drought event in
2021 [35], which was the worst in 56 years, and forced almost all farmers to leave their land
fallow in April and May. Therefore, preparatory storage of water in the pond system could
mitigate the impact of drought events under any prompt water rationing schemes from the
reservoir upstream. Based on Appendix A, the sum of estimated storage (2,928,301 m3) is
greater than the TYWR record (2,647,510 m3) by 280,791 m3. If we took the 2500:1 as the
ratio of water supply for rice cultivation [36], the storage estimation uncertainty is 112 tons
of rice production in equivalent, which highlights the need for accurate quantification of
capacity in this regard.
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On the other hand, the pond system has an advantage in flood prevention. Although
the terrain of Taoyuan city belongs to the tableland, for the time being, historical flood
hazards had not caused a disastrous impact. Flood events in the record showed that regional
flooding was mainly caused by insufficient drainage and large amounts of precipitation in
a short period, which makes SPM applicable in this case. In this research, after updating the
storage of 15 ponds in Bade District, as the ones starting with “BD” in Appendix A, the total
water storage in Bade increases by 127,216 m3 (from 252,475 m3 to 379,691 m3), about 10%
of the previous total volume. Our analysis shows that the virtual detention system could
effectively reduce 83–93% and 45–56% of flood areas under 25 mm and 50 mm precipitation
scenarios, respectively. However, the flooded area is much less reduced when the rainfall
is 75 mm (28% reduction) and 100 mm (14% reduction) by using either new or old pond
DEM. Another simulation (not shown here) indicates that if a total of 224 ponds larger than
400 m2 in Bade could increase by 20% of its storage, the ratio of remaining flooded areas
and volumes could be further decreased by 4% and 3.4%, respectively when rainfall is 100
mm.

Compared with various depth mapping methods at present, traditional methods such
as surveying instruments are time-consuming and laborious or require the navigation of
ships. Although the precision and resolution of LiDAR are more attractive, the instrument
is expensive (updated every six years in Taiwan) and the operation is highly restricted
by water quality. In this study, a UAV combined with sonar was proven to reduce time
and labor costs [24]. Meanwhile, the UAV module shows high mobility characteristics
that undoubtedly provide a novel method for water storage estimation. Although a
few estimates in our research deviated from those in TYWR, attributed to seasonal and
anthropogenic factors, the study showed that most results match well with the planned
storage.

5. Conclusions

Flood hazard has become a deepening problem because of urban development and
the loss of natural pervious surfaces. Asphalt in urban reduces seepage and allows heavy
rainfall runoff to flood. Ancestors built thousands of ponds around current Taoyuan City to
collect precipitation for irrigation. However, with the transformation from an agricultural to
an industrial society, the watercourse has been deserted because of the lack of appropriate
management and operation. The basic information of waterbodies, i.e., area and storage,
has been poorly investigated and thus put huge uncertainty when using them for data
analysis and simulation. In this research, a novel bathymetry technique, UAV with sonar
and smartphone, was developed to perform bathymetry. Easily implementated with a few
operators at each site, the fully integrated pond model with the neighboring land can be
built for updating the outdated database. The system successfully detected two anomalies
(CL143 and YM051) whose storages were apparently incorrect in the record. In the future,
this system can be used to rapidly verify ponds whose single geometric parameter (area,
depth, and volume) is not convertible by others.

In flood simulation, SPM showed the potential of a >70% reduction in flood areas in
Bade when a sudden heavy rain of <50 mm occurred. The existing pond network in Bade
may assist in retaining floodwater and mitigating the severity of flood hazards. However,
it should be emphasized that the flood maps derived herein depend on the assumption of
virtual channels between flood patches and ponds located downslope. The results could
be a good reference for administrative agencies to optimize or reinvigorate abandoned
channels/pipelines currently in the field.
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Appendix A

Table A1. Pond parameters of 80 cases surveyed by the UAV module.

NUM ID S [◦]
Min Depth

[m]
Max Depth

[m]
Estimated
Area [m2]

TYWR
Area [m2]

Ok

[m]
Estimated

Storage [m3]
TYWR Storage

[m3]

1 GI275 20 1.0 2.0 68,737 71,039 0.2 106,664 163,711
2 CL086 60 0.5 1.5 36,456 39,632 0.6 51,313 22,194
3 BD293 25 1.2 1.8 24,394 24,219 0.7 45,185 31,152
4 BD027 60 0.7 1.1 25,922 25,975 0.8 39,370 39,890
5 YM145 25 1.1 2.2 21,350 22,033 0.5 39,399 67,300
6 GI277 25 1.2 2.2 64,744 62,735 0.7 134,353 145,900
7 CL170 30 0.9 2.1 31,474 29,986 0.2 43,348 16,200
8 CL143 27 1.3 2.5 62,326 64,182 0.5 133,196 4705
9 HW256 30 1.4 2.9 22,477 21,696 0.5 54,315 22,060

10 HW279 60 0.5 1.2 5732 7413 0 4303 12,416
11 GI278 60 0.5 0.7 9187 9824 0 4915 7398
12 GI279 60 0.5 0.8 23,608 25,315 0 13,343 19,063
13 GI281 30 0.8 1.5 25,078 28,369 0.6 40,726 20,450
14 GI283 60 0.5 1.2 36,175 37,414 0 28,719 21,290
15 CL186 60 0.7 1.5 5693 5529 0 5497 1493
16 PZ159 60 1.1 1.8 8068 8104 0 10,349 4537
17 PZ160 60 0.5 1.5 4289 4239 0 4338 2373
18 BD031 30 0.5 1.4 11,026 12,093 1.5 22,346 15,001
19 BD032 23 1.8 3.1 11,216 10,548 0.7 29,465 13,085
20 BD033 23 1.9 4.1 13,007 13,006 0.4 42,129 16,134
21 GI260 30 1.0 3.2 27,918 26,917 0.6 64,578 37,331
22 BD089 30 1.2 1.7 38,247 36,961 0.5 66,582 33,027
23 BD090 30 0.7 2.1 12,514 8411 0.5 21,510 7516
24 YM421 27 1.4 2.2 8661 8402 0.1 13,431 6715
25 YM422 60 1.4 1.8 2683 3610 0 3530 2885
26 YM427 30 0.9 1.8 6378 4918 0 6985 14,990
27 PZ047 28 1.4 2.7 12,712 12,427 0.4 28,408 33,626
28 PZ048 30 1.3 2.0 6846 6510 0.3 11,599 17,616
29 CL233 35 0.8 3.5 5648 9360 0.3 9371 7696
30 BD025 25 0.7 1.3 11,983 12,441 0 10,278 4336
31 BD026 25 0.5 1.0 4745 5118 0.4 4602 1784
32 BD010 30 1.0 1.4 5788 6340 0 6619 5790
33 BD011 30 1.0 1.9 23,093 22,898 1 48,102 47,323
34 YM187 30 2.2 4.4 40,608 38,727 0 112,656 42,380
35 YM189 30 0.9 1.7 24,959 21,433 0.4 35,428 23,454
36 YM344 22 0.7 1.9 86,244 86,085 0.7 155,564 247,140
37 CL128 60 0.5 0.8 13,516 13,763 0 7378 13,073
38 CL120 26 1.5 3.0 28,955 27,882 0.5 64,892 39,693
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Table A1. Cont.

NUM ID S [◦]
Min Depth

[m]
Max Depth

[m]
Estimated
Area [m2]

TYWR
Area [m2]

Ok

[m]
Estimated

Storage [m3]
TYWR Storage

[m3]

39 YM346 25 0.5 0.9 63,450 65,130 0.4 60,790 137,743
40 HW251 60 0.5 0.7 6560 6670 0.6 7169 5870
41 YM049 25 2.1 2.7 21,001 21,473 0.3 47,260 60,638
42 YM300 30 1.3 2.2 21,921 20,457 0.6 46,038 70,000
43 CL158 30 0.9 2.2 14,476 14,385 0 15,972 10,450
44 YM029 25 0.8 1.5 35,804 38,775 0.5 51,139 59,900
45 YM030 25 1.9 3.4 22,437 23,245 0.8 66,584 29,072
46 YM330 25 0.9 2.7 25,951 25,184 1 61,341 65,300
47 YM375 23 2.1 3.5 22,264 20,916 0 49,162 30,800
48 YM377 25 1.5 2.4 15,931 18,164 1.5 46,481 126,000
49 PZ144 30 1.9 2.2 2587 3261 0.6 5918 5454
50 PZ145 30 1.4 1.9 2712 2557 0.3 4618 4276
51 PZ175 30 0.9 1.3 5752 5391 0.5 8314 5355
52 PZ172 60 0.6 0.8 9652 10,337 0 6267 6206
53 YM051 30 2.1 3.8 46,761 45,493 0.6 137,851 12,495
54 YM052 27 1.9 2.5 31,836 30,557 0.4 71,891 40,334
55 YM343 30 0.8 2.0 37,884 36,331 0.5 69,664 82,160
56 YM082 35 1.4 1.9 14,798 15,159 0 21,119 5940
57 HW294 30 1.2 1.5 10,794 10,408 0 13,006 11,980
58 YM076 25 0.5 1.5 52,130 51,825 1 87,449 108,110
59 YM095 23 1.1 2.0 24,241 25,701 0.6 41,776 34,469
60 YM350 25 1.1 2.1 24,434 24,433 0.5 43,389 31,618
61 YM352 25 1.7 2.5 27,336 27,713 1 75,154 79,000
62 BD075 60 1.1 1.4 3639 4237 0 4154 2892
63 BD036 30 0.8 1.6 10,233 9402 0.6 15,025 9750
64 BD165 30 0.7 1.7 10,464 10,945 0.8 17,381 13,672
65 YM378 30 1.5 2.9 36,501 37,547 0.5 82,852 63,390
66 YM379 25 1.4 3.2 21,051 23,766 0.8 53,320 68,865
67 BD012 30 1.2 1.5 5894 5382 0 6943 11,123
68 CL273 60 0.5 0.7 14,079 14,365 0 7722 18,810
69 CL313 30 0.9 1.3 3906 4960 0 4060 6205
70 YM542 30 0.5 1.4 6108 6214 0.3 7016 11,380
71 YM520 30 0.9 1.7 3074 3379 0 3965 3210
72 YM462 30 0.8 1.2 5580 6647 0.6 7979 12,330
73 YM461 60 0.5 1.8 6256 7037 0 5392 11,776
74 YM147 60 0.6 0.9 5090 4703 0 3576 10,380
75 YM310 20 0.8 2.4 26,442 26,155 0.8 61,280 82,000
76 YM313 20 1.5 3.4 27,814 26,497 0.5 66,586 36,329
77 HW259 60 0.5 0.9 3462 4333 0 2192 5769
78 HW260 60 0.7 1.6 4444 3856 0 3904 5400
79 YM120 60 0.7 1.5 6448 7145 0 5347 10,298
80 YM163 30 0.8 1.5 6870 5573 0 6469 8034

113



Drones 2023, 7, 1

Appendix B

Figure A1. Land use map of Bade District. (modified from Taiwan MAP Service, National Land
Surveying and Mapping Center, https://maps.nlsc.gov.tw (accessed on 1 July 2022)).
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Abstract: Aeromagnetic exploration is a magnetic exploration method that detects changes of the
earth’s magnetic field by loading a magnetometer on an aircraft. With the miniaturization of magne-
tometers and the development of unmanned aerial vehicles (UAV) technology, UAV aeromagnetic
surveying plays an increasingly important role in mineral exploration and other fields due to its
advantages of low cost and safety. However, in the process of aeromagnetic measurement data, due
to the ferromagnetic material of the aircraft itself and the change of flight direction and attitude,
magnetic field interference will occur and affect the measurement of the geomagnetic field by the
magnetometer. The work of aeromagnetic compensation is to compensate for this part of the magnetic
interference and improve the magnetic measurement accuracy of the magnetometer. This paper
focused on the problems of UAV aeromagnetic survey data processing and improved the accuracy
of UAV based aeromagnetic data measurement. Based on the Tolles–Lawson model, a numerical
simulation experiment of magnetic interference of UAV-based aeromagnetic data was carried out,
and a radial basis function (RBF) artificial neural network (ANN) algorithm was proposed for the
first time to compensate the aeromagnetic data. Compared with classical backpropagation (BP) ANN,
the test results of the synthetic data and real measured magnetic data showed that the RBF-ANN has
higher compensation accuracy and stronger generalization ability.

Keywords: aeromagnetic compensation; radial basis function; deep learning; unmanned aerial
vehicles (UAV); local minimum

1. Introduction

With the development of the global economy, the demand for mineral resources in
all countries in the world is also increasing. However, due to complex terrain conditions,
many areas rich in mineral resources cannot be explored. In order to increase the detection
range and improve exploration efficiency, aeromagnetic measurement technology has been
rapidly developed. Airborne magnetic surveying is an important airborne geophysical ex-
ploration method, which can be used for magnetic data acquisition under various complex
terrain conditions.

Moreover, UAV technology has developed very rapidly and has been well used in all
walks of life, so UAV survey technology has gradually developed, and is now widely used
in resource exploration, regional survey and other fields [1,2]. With the development of
UAV technology, more and more countries have carried out the research and development
of UAV aeromagnetic measurement equipment technology and achieved remarkable results.
The available information indicates that the first company in the world to develop UAV
aeromagnetic survey equipment was Magsurvey in the United Kingdom, which developed
the PrionUAV aeromagnetic survey system in 2003 [3]. Since then, many companies around
the world have conducted research and development of UAV aeromagnetic survey systems,
such as the GeoRanger-I of the Dutch company Fugro [4], the Canadian company Universal
Wing Geophysical (UWG) Venturer [5], the Japanese RMAX-G1 [6], the Swiss and German
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jointly developed reconnaissance B1-100 [7], the German MD4-1000 [8], CH-3 [9] from the
Institute of Geophysical and Geochemical Exploration (IGGE) of the Chinese Academy of
Geological Science, and an integrated multi-rotor aeromagnetic survey system at Queen’s
University in Canada [10].

Due to the ferromagnetic material inside the UAV and its various influences during
flight, it will inevitably cause certain interference to the data collected by the magne-
tometer sensor; if we want to obtain high-quality aeromagnetic data, we must study the
appropriate aeromagnetic compensation technology [11,12].The compensation methods of
aeromagnetic interference are mainly divided into hardware compensation and software
compensation. The hardware compensation method is to first calculate the magnetic in-
terference of the detection platform, and then add several coils to the detection platform
to counteract the magnetic interference generated by the aircraft. In the late 20th century,
high-cost, low-precision hardware compensation began to be slowly replaced by software
compensation [11]. According to the nature and causes of magnetic interference, Tolles
and Lawson divided it into constant interference, induced interference, and eddy current
interference, and established the classic Tolles–Lawson model (T-L model) [13], which is
the foundation on which current aeromagnetic compensation methods are built. Based on
the T–L model, Leliak established an aeromagnetic compensation method based on FOM
compensation flight [14]. The variables in the T–L equation are not independent of each
other, and the linear relationship between the variables affects the stability of the solution,
and the linear relationship between the variables is called multicollinearity. Bickel proposed
a small-signal method to weaken the linear relationship between variables, resulting in a
more stable solution [15]. Leach first proposed to overcome the multicollinearity problem
of equations by introducing regularization terms through the linear regression method [16],
Hardwick et al. proposed a compensation algorithm for total field gradients [17]. Dou
proposes a new real-time method based on recursive least squares, and the simulation
results showed that the method has a good ability to compensate for magnetic interference
caused by an aircraft and its maneuvering [18]. Wu et al. use principal component analysis
(PCA) to reduce the multicollinearity of the T-L model [19]. Xu applied deep learning to
magnetic anomaly detection and noise cancellation [20].

Considering the lack of computational accuracy and generalization ability of linear
regression methods, people began to explore new aeromagnetic compensation algorithms
through neural networks. Williams successfully established an aeromagnetic compensation
model based on a neural network for the first time, but his model had the problem of
overfitting [21]. Zhang proposes a new compensation method that used a one-dimensional
convolutional neural network to perform secondary compensation on the data that were
compensated by the T–L model to eliminate the influence of tail boom swing, which
has a significant compensation effect on aeromagnetic noise [22]. Ma proposed a dual
estimation method for aeromagnetic compensation, combining a linear model with a neural
network to improve the accuracy of magnetic compensation [23]. Although the above two
methods improved the accuracy of aeromagnetic compensation, there were also problems,
such as difficult parameters selection and complex network structures in design. Yu et al.
proposed an aeromagnetic compensation algorithm based on deep autoencoder (DAE) [24],
which reduced the multicollinearity between variables in the T–L equation, but it was
not perfect for the feature extraction of high-dimensional complex data in the training
process of the autoencoder network, and the local minimum problem easily occurred. They
then proposed to use a generalized regression neural network (GRNN) to establish an
aeromagnetic compensation model, which had a fast calculation speed, high compensation
accuracy, and no backpropagation [25]. Although they solved the problem of over fitting,
the problem of gradient disappearance was not considered.

The aeromagnetic compensation method based on a neural network still has some
problems to be solved, such as local minimum problems in backpropagation, difficult
parameters selection, and complex network structures. In order to further improve the
accuracy of aeromagnetic compensation, this paper proposed, for the first time, a magnetic
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compensation method based on BRF-ANN, which is widely used in function approxima-
tion, pattern recognition, and signal processing [26]; it is also widely used in aerospace, such
as the longitudinal channel flight control of small UAVs [27], the navigation of UAVs [28],
issues related to the optimization of UAV [29], and so on. The hidden nodes of RBF-ANN
adopted the distance between the input mode and the center vector (such as the Euclidean
distance) as the independent variable of the function and used the radial basis function
(such as the Gaussian function) as the activation function, which is a local approximation
network with better generalization ability and a simple network design. The paper is
divided into five chapters. The first and last chapters present the introduction and conclu-
sion. The second chapter discusses compensation models and methods, introducing the
T–L model and the principles of BP-ANN and RBF-ANN, including the characteristics of
RBF-ANN. The third chapter introduces data simulation and testing, and the fourth chapter
shows the testing of the measured data; the results are displayed in graphs and tables
and a method effectiveness analysis was also carried out. The application and analysis of
theoretical synthetic data and real measured aeromagnetic compensation data showed that
the proposed method effectively solved the problem of high-precision compensation of
aeromagnetic survey data based on rotary wing UAV platform, and greatly improved the
error compensation accuracy of aeromagnetic dynamic measurement data.

2. Compensation Models and Methods

2.1. T-L Model

The conversion relationship between the local coordinate system and the aircraft
coordinate system is shown in Figure 1. The center of the magnetometer probe mounted
on the drone is set as the origin of the coordinate system O, xb, yb, and zb are the coordinate
axes of the aircraft coordinate system, and their distribution direction is parallel to the
direction of the three axes of the magnetometer. x, y, and z are the spatial axes of the local
coordinate system at the same origin as the aircraft coordinate system. The yc axis is the
projection of the yb axis on the xOy plane. The flight attitude during the flight of the drone
can be divided into three parts: side sliding, roll and pitch. Where, is the angle between xb
axis and plane xOy, is the angle between yb axis and yc axis, and is the angle between y axis
and yc axis. The local coordinate system can be rotated according to the sequence of yaws
ψ, pitches λ and rolls θ. The rotation sequence cannot be replaced at will [5].

Figure 1. Coordinate system conversion relationship.

Tolles and Lawson divide interference fields into constant interference fields, induced
interference fields, and eddy current interference fields, according to their nature and
causes [9]. The constant interference field (Hp) is caused by direct current in the ferromag-
netic material and wires inside the aircraft, and its value and direction are independent of
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the flight attitude of the aircraft, and the interference value is constant for the same aircraft.
The induced interference field (Hi) is produced by the magnetization of soft magnetic or
paramagnetic substances inside the aircraft by the geomagnetic field, and its magnitude
and direction are closely related to the flight attitude of the aircraft and the changes of
the local geomagnetic field. The eddy current interference field is generated by the metal
body cutting the geomagnetic field magnetic induction line during the flight of the air-
craft, and its size and direction change with the change of the geomagnetic field gradient,
flight acceleration and flight action [5]. They can be represented in the aircraft coordinate
system as:

HP = c1u1 + c2u2 + c3u3 (1)

Hi = T(c4u2
1 + c5u1u2 + c6u1u3 + c7u2

2 + c8u2u3 + c9u2
3) (2)

Hec = T(c10u1u′
1 + c11u2u′

1 + c12u3u′
1 + c13u1u′

3
+c14u2u′

3 + c15u3u′
3 + c16u1u′

2 + c17u2u′
2 + c18u3u′

2)
(3)

u1 =
Tbx
Tt

, u2 =
Tby

Tt
, u3 =

Tbz
Tt

(4)

Tt =
√

T2
bx + T2

by + T2
bz, (5)

where T represents the geomagnetic field, c1, c2, ......, c18 represents the compensation
coefficient, u1, u2, and u3 are the cosine values of the angle between the three axes of
the aircraft coordinate system and the geomagnetic field direction, u′

1, u′
2, u′

3 are the
differentiation of u1, u2, u3 with respect to time t, Tt represents the total geomagnetic field
data measured by the optical pump magnetometer, Tbx, Tby and Tbz represent the three
components of the fluxgate. The accuracy of the measured data of the triaxial fluxgate
magnetometer is far inferior to that of the optical pump magnetometer, and it also needs to
be corrected accordingly during its installation, resulting in errors in the measured fluxgate
three-component data, which indirectly affects the compensation effect. Therefore, this
paper needs to make corresponding corrections to the measured fluxgate three-component
data, and the correction formula is as follows:⎡⎣ Tbx

Tby
Tbz

⎤⎦ = D

⎡⎣ Tgx
Tgy
Tgz

⎤⎦ (6)

D =

⎡⎣ cos θ cos ψ sin θ cos ψ − sin ψ
cos θ sin λ sin ψ − sin θ cos λ sin θ sin λ sin ψ + cos θ cos λ sin λ cos ψ
cos θ cos λ sin ψ + sin θ sin λ sin θ cos λ sin ψ − cos θ sin λ cos λ cos ψ

⎤⎦ (7)

Tgx = T cos ϕ cos μ (8)

Tgy = T cos ϕ sin μ (9)

Tgz = T cos ϕ sin ϕ, (10)

where Ψ is the side roll angle when the aircraft is flying, λ is the pitch angle when the
aircraft is flying, θ is the side slip angle when the aircraft is flying, μ is the magnetization
bias angle, and ϕ is the magnetization tilt angle

Finishing Formulas (1)~(5) can be obtained, the total interference magnetic field (Ht)
of the aircraft is:

Ht = Hp + Hi + Hec
= T(c1u1/T + c2u2/Tt + c3u3/T
+c4u2

1 + c5u1u2 + c6u1u3 + c7u2
2 + c8u2u3 + c9u2

3
+c10u1u′

1 + c11u2u′
1 + c12u3u′

1 + c13u1u′
3 + c14u2u′

3
+c15u3u′

3 + c16u1u′
2 + c17u2u′

2 + c18u3u′)

, (11)
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According to the relationship between u1, u2, and u3

u2
1 + u2

2 + u2
3 = 1

u1u′
1 + u′

2u′
2 + u3u′

3 = 0
, (12)

After sorting out Equations (11) and (12), we get:

Ht =
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, (13)

where b1, b2, ..., b16 represent 16 compensation coefficients.

2.2. BP Artificial Neural Network

BP-ANN is an algorithm that can learn and store the relationship between input data
and output data without knowing the relationship between the two; it is currently the
neural network with the highest application frequency and the widest application field.
The calculation process of BP-ANN mainly consists of two parts: forward propagation of
information and backpropagation of error. The process of forward propagation is to conduct
the input data in the order of the input layer, the hidden layer, and the output layer, and
then compare the output data with the expected output. If the error reaches the specified
range, or the number of training times reaches a certain number of times, the training can
be stopped, otherwise it will be transferred to the backpropagation process of error. The
backpropagation of error refers to the process of finding the parameters corresponding
to the minimum value of the loss function of the neural network by continuously and
iteratively optimizing the weights and biases in the neural network. At present, gradient
descent is the most widely used optimization method in the backpropagation process. The
BP-ANN structure diagram is shown in Figure 2.
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Figure 2. Structure diagram of BP-ANN.

In the process of aeromagnetic compensation, the causes of aeromagnetic interference
were analyzed to determine the training parameters of BP-ANN, the same goes for RBF-
ANN, the compensation model had 9 input parameters, which consists of the fluxgate three
components, the directional cosine and its derivative to time. In addition, the output layer
is magnetic interference (Ht), and the number of hidden layers of BP-ANN and the number
of nodes per hidden layer can be determined by trial and error and the following empirical
formula:

r =
√

nl + δ, (14)

where δ take the integer (experience value) of 1~10, r is the number of hidden layer nodes,
n is the number of input layer nodes, l is the number of output layer nodes. In this paper,
the number of hidden layers of BP-ANN is 3, and the number of hidden layer nodes is 4.

The training process of BP-ANN is:
(1) The weights and bias vectors of the neural network are initialized, and the weights

and biases from the input layer to the hidden layer and the hidden layer to the output layer
are denoted as ω(0), b(0)1 , v(0) and b(0)2 , respectively.

(2) The forward propagation process of information is carried out to calculate the
output value of each layer and its corresponding loss function:

E(θ) =
1
n

n

∑
i=1

(yi − φ(viφ(wi + bi−1) + bi), (15)

where θ represents the parameter collection of the neural network, yi represents the true
value in the data, ωi represents the weight of the neural network, bi represents the bias of
the neural network and ϕ represents the activation function;

(3) Calculate the error terms of the output and hidden elements based on the loss
function. The error terms of the output unit are:

∇(k)v =
∂E
∂v

=
∂z2

∂v
∂E
∂z2

∂E
∂p

(16)

∇(k)b2 =
∂E
∂b2

=
∂z2

∂b2

∂p
∂z2

∂E
∂p

, (17)

The error terms of the hidden cell are:

∇(k)w =
∂E
∂w

=
∂z2

∂w
∂h
∂z1

∂z2

∂h
∂p
∂z2

∂E
∂p

(18)
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∇(k)b1 =
∂E
∂b1

=
∂z1

∂b1

∂h
∂z1

∂z2

∂h
∂p
∂z2

∂E
∂p

∇(k)b1 =
∂E
∂b1

=
∂z1

∂b1

∂h
∂z1

∂z2

∂h
∂p
∂z2

∂E
∂p

, (19)

where z1 represents the input value of the hidden layer, z1 represents the output layer, h
represents the output value of the hidden layer, and p represents the model predicted value;

(4) Update weights and biases in the neural network. The updated output unit is:

v(k) = v(k−1) − η∇(k)v (20)

b(k)2 = b(k−1)
2 − η

∂E
∂b2

, (21)

The updated hidden unit is:

w(k) = w(k−1) − η∇(k)w (22)

b(k)1 = b(k−1)
1 − η

∂E
∂b1

, (23)

where η represents the learning rate and k represents the number of iterations;
(5) Repeat the above steps repeatedly, when the loss function is less than a given thresh-

old or the number of iterations is greater than the set number of times, stop the iteration;
this article believes that the parameters obtained at this time are the best parameters.

Before feeding data into the neural network, it is important to normalize the data. This
can not only speed up the calculation of the neural network, but also improves the accuracy
of the algorithm. In order to facilitate the calculation, this paper normalized the data to the
interval of [−1,1], and the normalization method is:

y = −1 +
2(x − xmin)

xmax − xmin
, (24)

where x is the data before normalization and y is the normalized data.

2.3. RBF Artificial Neural Network

Compared with BP artificial neural network, RBF artificial neural network is an
effective feed forward neural network, which has significant advantages such as strong
global approximation ability, no local minimum problems and fast learning speed [30].
It usually consists of an input layer, hidden layer, and output layer, in which it can be
adjusted according to the actual need for the number of neurons in the hidden layer. In this
paper, the number of RBF-ANN neurons in the hidden layer was the same as the number
of input samples, and its network structure diagram is shown in Figure 3.
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Figure 3. Structure diagram of RBF-ANN.

BP-ANN can have one or multiple hidden layers, while BRF-ANN have only one
hidden layer. The first layer of the BRF-ANN is the input layer, which only plays the role of
transmitting information and does not do any transformation processing on the input data.
The second layer is a hidden layer, the number of nodes of the hidden layer is not fixed, it
can be adjusted according to actual need, and based on the task goal is constantly changing,
the activation function of the hidden layer is a non-negative linear function symmetrical
along the center point and constantly decaying rapidly to both sides, with local response
characteristics. The third layer is the output layer, which will linearly transform the input
data and then the output.

The activation function of the hidden layer of the BP-ANN calculates the inner product
of the input data and connection weights, while the independent variable of the activation
function in the hidden layer of the BRF-ANN is the Euclidean distance between the input
data and the center vector, and the activation function is the radial basis function. The
farther the input data is from the center of the radial basis function, the less active it is. It
can be seen that the output of the BRF-ANN is not related to all parameters, but only to a
small number of parameters, and this article calls this characteristic of the BRF-ANN a local
response characteristic. Therefore, BRF-ANNs are local approximation networks, while
BP-ANNs are global approximation networks.

The hidden and output layers of a BP-ANN can be linear or nonlinear, while the
hidden layer of an BRF-ANN is nonlinear, and the output layer is linear. The basic idea
of BRF-ANN is that the radial basis function is used to construct a hidden layer space
for the data in hidden nodes in the hidden layer, and the hidden layer converts the input
data to a certain extent, and converts the low-dimensional mode input data into the high-
dimensional space, so that the linear indivisible problem in the low-dimensional space
becomes linearly separable in the high-dimensional space.

In the learning process of BRF-ANN, the most critical problem is how to determine
the expansion coefficient of the hidden layer activation function. The common method is
to select directly from a given set of training samples according to a certain method, or to
determine by clustering. In this paper, the center point was randomly selected from the
input sample using the direct selection method.

The activation function of the BRF-ANN is generally the Gaussian function:

f (x) = e−
r2

2σ2 , (25)
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In the above equation, r is the Euclidean distance of the input data to the center point,
σ represents the rate at which the function falls to 0, also known as the expansion factor. As
can be seen from Figure 4, the smaller the expansion factor, the narrower the image.

Figure 4. Gaussian radial basis function.

The training process of the BRF-ANN is as follows:

(1) Determine the parameters. Initialize the connection weights between the hidden layer
and the output layer:

wkj = kmin + j
kmax − kmin

q + 1
, (26)

where kmin is the minimum value of the output of the k-th neuron, kmax is the maxi-
mum value of the output of the k-th neuron, and q is the number of output layer units.

Initialize the center parameters of each neuron in the hidden layer: In order to reflect
the characteristics of the input information to the greatest extent, the values of the centers of
neurons in different hidden layers should be as different as possible and should correspond
to the width vector. In order to show the characteristics of the input information more
obviously, this paper changes the initial value of the central component of each neuron in
the hidden layer from small to large equal spacing, so that the weaker input information
produces a stronger response near the smaller center. The size of the spacing is determined
by the number of neurons in the hidden layer. Finally, the initial value of the central
parameter of each neuron in the hidden layer of the BRF-ANN can be expressed as:

cji = imin +
imax − imin

2p
+ (j − 1)

imax − imin

p
, (27)

where imin is the minimum value entered for the i-th feature value imax is the maximum
value entered in the i-th feature, and p is the number of neurons in the hidden layer.
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Initialize the width vector: As can be seen from Figure 4, the smaller the width vector,
the narrower the image of the activation function, and the smaller the response of other
neuron centers in this neuron. Its calculation formula is:

dji = d f

√√√√ 1
N

N

∑
k=1

(xk
i − cji), (28)

(1) Input layer to hidden layer calculation:

zi = e
−‖ x−cj

Dj
‖

2

, (29)

where cj is the center vector corresponding to the j-th hidden layer neuron and Dj is
the width vector of the j-th hidden layer neuron.

(2) Calculation of the output layer:

yk =
p

∑
j=1

wkjzj, (30)

(3) Updated iteration of weight:

wkj(t) = wkj(t − 1)− η
∂E

∂wkj(t − 1)
+ α[wkj(t − 1)− wkj(t − 2)] (31)

cji(t) = cji(t − 1)− η
∂E

∂cji(t − 1)
+ α[cji(t − 1)− cji(t − 2)] (32)

dji(t) = dji(t − 1)− η
∂E

∂dji(t − 1)
+ α[dji(t − 1)− dji(t − 2)], (33)

where is η the learning rate and E represents the loss function.

In the training process, this paper first initializes the weight from the hidden layer
to the output layer, the central parameters of each neuron in the hidden layer, and the
width vector, and then calculates the loss function, when the loss function is less than the
given threshold or the number of iterations is greater than the set number of times, stop the
iteration, otherwise the gradient descent method is used to recalculate each weight until
the conditions are met.

3. Data Simulation and Testing

3.1. Data Simulation

In order to solve the T-L model, this paper simulated the magnetic interference gener-
ated by the UAV during flight according to a standardized flight method (FOM) designed
by Leliak and used the corresponding compensation algorithm to solve the simulated data,
calculate the corresponding 16 compensation coefficients, and apply them to another set of
data simulated by the standardized flight method to test the generalization ability of the
model.

The FOM flight method is as follows: the aircraft flies sequentially in the order of
north, east, south and west, each of which includes three ±5◦ yaws, three ±5◦ pitches and
three ±10◦ rolls, and the duration of each group of maneuvers is about 5~10 s, and 5 s of
flat flight are interspersed between each group of maneuvers. The magnetic field in the
flight area changes steadily, and in order to reduce the interference of shallow geological
bodies on the aircraft, the flight altitude is generally set to 2000~3000 m.

This paper simulated two different sets of FOM flight data, denoted as Flight A and
Flight B. Assuming that the aircraft is compensated in strict accordance with the FOM
flight method, the geomagnetic field T is 46,862 nT, the magnetization inclination angle

126



Appl. Sci. 2023, 13, 136

is −1.298◦, and the magnetization declination angle is 36.663◦, Tgx, Tgy and Tgz can be
calculated according to Formulas (8)~(10), and then the fluxgate three-component, Tbx, Tby
and Tbz can be calculated by correcting the obtained data according to Formulas (6) and (7).
The three-axis fluxgate and the corresponding aeromagnetic interference model obtained
by simulation are shown in Figures 5 and 6.

Figure 5. Simulation model of a three-axis fluxgate: (a) flight A; and (b) flight B.

Figure 6. Aeromagnetic interference model corresponding to FOM flight.
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3.2. Compensation Results

In order to verify the performance of the algorithm, this paper records two sets of
simulation data, Flight A and Flight B, as training and test sets, respectively. As shown
in Table 1, in the test set Flight A, the standard deviation of the raw data is 5.5873, the
BP-ANN reduces the standard deviation to 0.0792, the IR is 70.5465, and the BRF-ANN
reduces the standard deviation to 0.0649 and the IR is 86.1052. In the test set Flight B, the
standard deviation of the raw data is 5.5927, the BP-ANN reduces the standard deviation
to 0.0828 and the IR to 69.5160, and the BRF-ANN reduces the standard deviation to 0.0651
and the IR to 85.9473. The result after compensation is shown in Figure 7.

Table 1. Comparison of compensation results of BP-ANN and BRF-ANN.

Test Set Training Set Method/Model STDp STDf IR

Flight A Flight B BP-ANN
5.5873

0.0792 70.5465
BRF-ANN 0.0649 86.1052

Flight B Flight A BP-ANN
5.5927

0.0828 67.5160
RBF-ANN 0.0651 85.9473

Figure 7. Simulation data compensation results: (a) test set flight A; and (b) test set flight B.

4. Real Measured Data Test

4.1. UAV Compensation Flight

In order to establish a suitable UAV aeromagnetic compensation model, this paper
used a rotor UAV to carry out a compensation flight in Ma’anshan City, Anhui Province,
China. The terrain is flat, there are no interference factors such as high-voltage power
poles around, and the surrounding geomagnetic field does not change much, which is very
in line with the hypothetical conditions set by the T–L model. This paper developed a
UAV magnetic survey system, as shown in Figure 8, which is mainly composed of two
parts: UAV platform and aeromagnetic survey equipment. The selected UAV platform is a
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fuel-powered unmanned helicopter SU-H2M, which can take off and fly autonomously,
and has the characteristics of long endurance, fast speeds, and a large cruising distance.
The maximum payload is 45 kg, the battery life is 2 h, and the general cruising speed is
60 km/h. The aeromagnetic measurement equipment is mainly composed of five parts, as
shown in Figure 9: (1) a high-precision potassium pump magnetometer (GSMP-35U used
to measure the total magnetic field strength of the geomagnetic field; (2) a triaxial fluxgate
magnetometer (TFM100-G2) used to record aircraft attitude change information; (3) a laser
altimeter from the MDL company with a range of 0.05 m~200 m; (4) an inertial navigation
module, using OEM 62 GPS locator, with a static plane positioning accuracy within ±2 m;
and (5) the data collector and data processing platform, as shown in Figure 10 (detailed
parameters are shown in Table 2).

 

Figure 8. UAV detection platform.

Figure 9. Aeromagnetic measurement equipment.
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Figure 10. Flight C and Flight D flight paths.

Table 2. Main technical parameters of GSMP-35U high-precision potassium optical pump magne-
tometer.

Measuring Range 20,000 nT~120,000 nT

Gradient capacity 50,000 nT/m
Sensitivity 0.0003 nT@1Hz
Resolution 0.0001 nT

Measurement accuracy ±0.05 nT
Sample rate 1, 2, 5, 10, 20 Hz

Operating temperature −20 ◦C~+55 ◦C

A total of two flights were carried out in this experiment, and the aeromagnetic
interference data measured in the two compensation flight experiments are named Flight
C and Flight D. The flight data of the two compensated flights are shown in Figures 10
and 11.
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Figure 11. Aeromagnetic interference model: (a) Flight C; (b) Flight D.

4.2. Compensation Results

At present, the ratio (IR) of the standard deviation of magnetic interference before
and after aeromagnetic compensation is commonly used in the industry to evaluate the
compensation effect of aeromagnetic compensation methods.

IR =
STDp

STDf
(34)

STD =

√
1
n

n

∑
i=1

(xi − μ)2, (35)

where STDp is the standard deviation of the magnetic interference before compensation,
and STDf is the standard deviation of the residual magnetic interference after compen-
sation, μ is the arithmetic mean of the data.

In order to verify the aeromagnetic compensation effect of the above two methods, the
data of Flight D and Flight C are used as training sets to compensate for Flight C and Flight
D, respectively. The compensation result is shown in Figures 12 and 13. Table 3 shows
the comparison of the compensation effects of BP-ANNs and BRF-ANNs. In Flight C, the
BP-ANN reduced the standard deviation from 2.2804 to 0.3376 with an IR of 6.7547, and
the BRF-ANN reduced the standard deviation from 2.2804 to 0.3091 with an IR of 7.3775.
In Flight D, the BP-ANN reduced the standard deviation from 4.2558 to 0.5734 with an IR
of 7.4220, and the BRF-ANN reduced the standard deviation from 4.25584 to 0.4734 with an
IR of 8.9899. From the compensation results, it can be seen that the compensation effect
of BRF-ANN is better than that of BP-ANN, which proves the superiority of BRF-ANN
compensation method.
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Figure 12. Flight C compensation results: (a) BP-ANN and BRF-ANN compensation results; and
(b) compensation for the resulting sampling points 1000 to 1500.

Table 3. Comparison of compensation results of BP-ANN and BRF-ANN.

Test Set Training Set Method/Model STDp STDf IR

Flight C Flight D BP-ANN
2.2804

0.3376 6.7547
BRF-ANN 0.3091 7.3775

Flight D Flight C BP-ANN
4.2558

0.5734 7.4220
RBF-ANN 0.4734 8.9899

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.
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Figure 13. Flight D compensation results: (a) BP-ANN and BRF-ANN compensation results; and
(b) compensation for the resulting sampling points 1000 to 1500.

5. Conclusions

In the previous aeromagnetic compensation work, although the classical BP-ANN is
stronger than traditional regression algorithms in terms of fitting ability, the BP-ANN is a
global approximation network, with limited generalization ability, and there are problems,
such as falling into a local minimum easily, gradient disappearance, and an overfitting
problem in magnetic compensation which affects the accuracy of aeromagnetic compen-
sation. In order to improve the accuracy of compensation, on the basis of the T–L model,
we proposed a compensation algorithm based on BRF-ANN, in which the hidden layer
node uses the distance between the input mode and the central vector as the independent
variable of the function, and uses the radial basis function as the activation function, which
has the characteristics of local approximation and better generalization ability, avoids the
problem of local minimum effectively, and improves the accuracy of magnetic compensa-
tion to a certain extent. We verified the feasibility of this method in simulated data and
measured data experiments.
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Abstract: The energy autonomy of UAVs is an important direction in the field of aerospace. Long-
endurance aerial vehicles allow for continuous flight; however, to meet the guidelines, the power
supply system has to be able to harvest energy from outside. Solar cells allow the production of
electricity during the day when the sun shines on their surface. Depending on the location, time,
weather, and other external factors, the energy produced by PV panels will change. In order to
calculate as accurately as possible the energy obtained by solar cells, we developed a simulation
model that took into account all of the external restrictions and the UAV’s limits during flight. The
conducted analysis made it possible to obtain information for the specific input data on whether the
UAV is able to fly for 24 h in a specific flight scenario. The UAV powered by solar cells developed by
us and the performed aviation missions have shown that the UAV is capable of continuous flight
without the need to land.

Keywords: renewable energy; solar cell; Model-Based Design; energy harvesting; energy autonomy;
UAV power supply system

1. Introduction

Unmanned Aerial Vehicles (UAVs) are increasingly used in everyday life. The scope
of their work is constantly enlarged from casual filming [1] to advanced military use [2].
UAVs are used for distributing shipments, mapping, surveillance, and monitoring borders
or crops [3,4]. The limited duration of the UAV flight causes the necessity to land and
the resulting loss of time in terms of interrupting the mission, charging or replacing the
batteries. Designers of UAVs are looking for opportunities to obtain energy from outside; if
this is achieved, the time of flight will be extended [5]. The goal is to achieve full energy
autonomy. The energy autonomy of UAVs is an important direction in the field of aerospace
because, in addition to the possibility of continuous operation, another advantage is the
lower cost of this kind of application in comparison to using a satellite. One of the most
used sources is a solar cell [4,5].

Solar-powered UAVs are not a new concept of aerial vehicles. We can distinguish
many types of solar-powered UAVs, for example: Atlantic Solar [5,6], Solar Impulse 2 [7],
Airbus zephyr [8], PHASA-35 [9], and Odysseus [10]. Each of these aircrafts is based on a
lightweight composite structure and is equipped with photovoltaic (PV) panels. Depending
on the purpose of the UAV, the payload aspect, as well as the weight of the measuring,
detection, and control devices should be taken into account. A UAV’s weight should be as
low as possible. The load-bearing structure then enables a larger payload or an increase
in the capacity of the batteries, which allows for an extension in the applications of the
UAV [3,5].
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The possibility of obtaining electricity from solar cells makes them the main substitute
or complementary source of energy [11]. The use of PV panels can be found in small
devices, such as lights or toys, on the roofs of houses to provide partial electricity to
houses, or in a large area of desert, lake or farmland where they play the role of new power
plants [11,12]. The ease of generating electricity, the relatively low cost of such a power
supply system, and the newer materials of solar cells have seen them gain recognition in
new technology industries.

There are a number of different technologies are used for manufacturing solar cells
with different materials that are used in various industries [4]. The most commonly used
material for solar cells is silicon. Other materials used for the construction of photovoltaic
cells are gallium arsenide, cadmium telluride, and copper indium gallium selenide. How-
ever, this technology is restricted by the scarcity of the required materials. The most popular
silicon PV panels are rigid and breakable [13,14]. These kinds of solar cells are not resistant
to working under stresses where forces act on the PV panel. The wings, fuselages, tail are
curved surfaces. This makes it impossible to fit the silicon solar cell into the construction of
the UAV. For UAVs, aerospace, and aviation, we have to take into account flexible solar
cells, which are able to bend and are more durable than standard silicon solar cells [15,16].
Under the influence of stresses and forces during operation, the PV panel will not break
and will still be able to produce electricity. In this group, we can distinguish several types
of solar cells that could be used in the aviation industry. The most popular is the GaAs
(Gallium arsenide) solar cell, which provides the highest efficiency, exceeding 30% [4,17].
The disadvantage of GaAs is the high cost, meaning designers often cannot afford to build a
prototype. GaAs is used primarily in the space industry as probes, satellites and in the mili-
tary industry due to their flexibility, efficiency and weight. Another kind of solar cell that
can be used in aviation is flexible silicon solar cells [18]. This kind of PV panel provides an
efficiency of around 25%, at a much lower cost compared to GaAs. A DSSC (Dye-sensitized
solar cell) is a type of solar cell that has different properties than the previous two types [19].
Their maximum efficiency is around 13%, but they make up for this with long service life,
low production costs, high resistance to mechanical damage, and a wide-angle range of
sunlight [19,20]. In addition to low efficiency, another is its poor resistance to operation at
low and high temperatures [19,20].

To strengthen solar cells mounted on the UAV structure and to prevent mechanical
damage, various protective coatings are used on their upper surface, e.g., films and resins
to extend the service life of the system. Solar cells can be mounted to the wing via several
types of technology [21]:

• Adhering to the existing wing—this method is good for the retrofit of existing UAVs.
The advantage is the possibility of replacement in case of damage. The disadvantage
of this solution is sealing the gap between the two modules [21,22].

• Solar modules into the mold—this method is good for new UAVs. Solar cells are a
direct part of the wing. The advantage is its easy to arrange wiring, however, the PV
modules cannot be swapped in case of damage.

• Solar modules as wing surface—PV panels are used as the upper surface of the wings.
The advantage is its easy to arrange wiring, however, it requires additional ribs inside
the structure of the wing to strengthen the structure of the UAV [8,23–25].

UAV’s power supply system can be built using many different storage sources.
The current predominant battery energy storage technology for UAVs is the Li-ion bat-
tery [3,5,22,24]. The type of battery cell should take into account temperature range,
lifespan, energy density, safety, and performance. Another issue is the shape of the battery
cell. We can distinguish three main shapes of battery cells: prismatic, cylindrical, and
pouch [26,27]. The cylindrical cell has good mechanical strength, specific energy, and
energy density. The disadvantage of the cylindrical cell is its bad heat management. The
prismatic cell has good mechanical strength, heat management, specific energy, and energy
density but they have a heavy shell, which leads to certain restrictions on the energy density
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of the battery pack. Pouch cells have good heat management, energy density, and specific
energy. The disadvantage is its low mechanical strength [26,27].

To provide solar cells and battery cells that are fully functional, the power supply
system should be equipped with MPPT (Maximum Power Point Tracking) and a BMS
(Battery Management System). MPPT ensures the continuous supply of the maximum
power generated by the PV [28]. A photovoltaic module has non-linear I–V (current–
voltage) characteristics and its P–V (power–voltage) characteristics show that it possesses
only one point (Pmpp). This point also varies with the change in insolation and temperature.
MPPT is used to maximize the value of the solar energy produced by the PV module.
BMS is responsible for the proper work of the batteries. The BMS controls the charging
and discharging currents, the uniform voltage of cells, and the overall temperature of the
system [29].

As part of the research work, a team of scientists and designers developed and built a
family of UAVs called TwinStratos (TS), which are suitable for continuous flight missions.

As part of this work, several scale-up units have been built so far and are intended
to be built for the testing and verification of individual subsystems, as well as for the
implementation of planned research missions.

1. TwinStratos 110 (TS110) scaled 1:10—UAV for testing general layout and specific
simplified control system;

2. TS17 scaled 1:7—UAV for testing the power supply system, energy consumption
simulation model, and technology of manufacturing;

3. TS12 scaled 1:2—UAV for long endurance tests, verification flight parameters and
performance ranges in operation mode, designated for service use and research tests;

4. TS—target UAV intended for the research and implementation of commercial services.

The correct selection of solar cells, batteries, energy converters and energy manage-
ment devices with the simultaneous use of energy-saving propulsion systems should enable
the long-endurance flight of the UAV [5,6,30]. The aim of this article is to illustrate the
complexity of the issues of a solar-powered UAV. The simulation model developed as part
of this work was used to verify whether the aircraft is able to fly over 24 h under the given
conditions. In this research, the Model-Based Design (MBD) methodology was used. The
approach is characterized by placing the simulation models of the analyzed system in the
center of the development process. Using MBD is beneficial, particularly in designing
dynamic and complex systems, as it allows for a better understanding and reduction of
the complexity of UAVs [31,32]. Additionally, the MBD allows us to design and optimize
the technical parameters, work more efficiently in designing systems and ease cooperation
between specialists in different fields [33]. Such an integrated design approach based on
the MBD methodology was developed by the project team and applied to the design and
testing of ultra-efficient racing vehicles [34], Automated Guided Vehicles AGVs [33], as
well as for the design of General Aviation class aircraft [35].

2. Solar Energy Production

2.1. Irradiation

Irradiation is a key element in obtaining solar energy for PV cells. Solar cells can
produce energy when the sun is shining on the upper surface. The value of the energy
differs and depends on several factors. The most important factors, which cause the
most significant differences, are location and date (time) [11,12,36]. Whilst the sun always
produces the same value of energy, the circular and rotational movement of the earth means
that we cannot obtain this same value of energy in one place for 24 h. To calculate the
volume of energy we can produce in solar cells, we have to use equations that allow us
to calculate the value of the energy that can be transferred to the solar cells [36–39]. Solar
constant GSC = 1367 W/m2. To calculate the energy to the specific location, we have to use

138



Energies 2023, 16, 479

equations connected with the position of the earth, relative to the sun [39]. Declination (δ)
is the angle between the line to the sun and the equatorial plane.

δ = 23.45 × sin
(

360 × 284 + n
365

)
(1)

where n is the day of the year. The range of declination is −23.45◦ � δ � 23.45◦. The
maximum positive value is during the summer solstice and the maximum negative value
is during the winter solstice. The declination is the same across the world. The hour angle
(ω) changes all the time, by 15◦ per hour. We can write it with the following formula:

ω = 15◦ × (Solar time − 12) (2)

The range of the hour angle is −180◦ � ω � 180◦. The negative value is before solar
noon. Zenith angle θz is the angle between the line to the sun and the horizontal surface.
The formula of the zenith angle can be written as:

θz = cos(ϕ)× cos(δ)× cos(ω) + sin(ϕ)× sin(δ) (3)

where ϕ = latitude × π/180. The range of the zenith angle is 0◦ � θz � 90◦. When zenith
angle θz = 0◦ is sunrise, θz = 90◦ is sunset. Day length (N) can be calculated by the formula:

N =
2
15

× Arccos(− tan ϕ × tan δ) (4)

The irradiation on surface Gon when θZ = 0 just outside the atmosphere is calculated
from constant GSC and the day number as follows:

Gon = Gsc ×
[

1 + 0.033 × cos
360 × n

365

]
(5)

The solar constant GSC is a mean value. The earth’s orbit is elliptical and the distance
between the sun and earth varies by 3.3%.

The hourly radiation Io and the daily radiation Ho can be calculated by the formu-
las below:

Io = 12×3600
π × Gsc ×

[
1 + 0.033 × cos 360×n

365
]

×
[
cos(ϕ)× cos(δ)× (sin ω2 − sin ω1) +

π×(ω2−ω1)
180 × sin ϕ × sin δ

] (6)

where ω2, ω1 is the hour angle in the considered hours.

Ho =
24 × 3600

π
× Gsc ×

[
1 + 0.033 × cos

360 × n
365

]
× cos(ϕ)× cos(δ)× sin ωs+

π× ωs

180
× sin ϕ × sin δ (7)

The unit of the hourly radiation is J/m2. The daily radiation unit is J/day × m2. To
calculate these values to watt-hours (Wh), we had to convert this unit.

Air mass (AM) is the distance travelled by the atmosphere by the sun’s rays on the
Earth and can be calculated by the below formula [36,39]:

AM =
path length travelled

vertical depth of the atmosphere
=

1
cos θz

(8)

An explanation of air mass is posted below in Figure 1.
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Figure 1. Explanation of air mass notion.

Hottel [40] has presented a method for estimating the beam radiation transmitted
through clear atmospheres, which takes into account the zenith angle and altitude for a
standard atmosphere and for four climate types [39].

Beam and diffuse radiation are the two types of radiation that are the most important
in the case of irradiance solar cells. Beam (direct) radiation is the solar radiation that falls
straight to the surface. This radiation is not scattered by the atmosphere. Diffuse radiation
is scattered by the atmosphere in all directions. Only some of this radiation arrives at the
Earth’s surface. Beam radiation can be calculated by the following formula:

Gcb = τb × Gon × [cos(ϕ)× cos(δ)× cos(ω) + sin(ϕ)× sin(δ)] (9)

where τb is the ratio of the transmitted direct radiation to the total radiation incident at the
top of the atmosphere. This ratio can be calculated as follows:

τb =
Gcb
Go

= a0 + a1 × e(
−k

cos θz ) (10)

where Go = Gon × cos θz and a0, a1, k are the constant, calculated using next equations:

a0 = r0 ×
(

0.4237 − 0.00821 × (6 − A)2
)

(11)

a1 = r1 ×
(

0.5055 − 0.00595 × (6.5 − A)2
)

(12)

k = rk ×
(

0.2711 − 0.01858 × (2.5 − A)2
)

(13)

where A is the altitude of the site above sea level. These equations can be used only for
A < 2.5; r0, r1, rk are constant values from Table 1. Data for the Table 1 was develop based
on the Hottel estimation method [40].
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Table 1. Coefficients for climate type and sample location.

Climate Type r0 r1 rk Sample location

Tropical 0.95 0.98 1.02 Nairobi
Midlatitude summer 0.97 0.99 1.02 Rome

Subarctic summer 0.99 0.99 1.01 Ny-Ålesund
Midlatitude winter 1.03 1.01 1.00 Gliwice

The diffuse radiation can be calculated by the following formula:

Gcd = τd × Gon × [cos(ϕ)× cos(δ)× cos(ω) + sin(ϕ)× sin(δ)] (14)

where τd is the ratio of the transmitted diffuse radiation to the total radiation incident at
the top of the atmosphere. This coefficient can be calculated as follows:

τd =
Gcd
Go

= 0.271 − 0.294 × τb (15)

Using all of the previous equations, we can calculate the total radiation, which is
necessary to calculate the energy, which can be obtained by solar cells. The total radiation
received on a horizontal surface at the ground surface can be calculated as follows:

Gc = Gcb + Gcd = (τb + τd)× Gsc ×
[
1 + 0.033 × cos 360×n

365
]

×[cos(ϕ)× cos(δ)× cos(ω) + sin(ϕ)× sin(δ)]
(16)

The hourly radiation on a horizontal surface is written as follows:

Ic =
12×3600

π × (τb + τd)× Gsc ×
[
1 + 0.033 × cos 360×n

365
]

×[cos(ϕ)× cos(δ)× (sin ω2 − sin ω1)

+π×(ω2−ω1)
180 × sin ϕ × sin δ

] (17)

The above equations will be the basis for the source code, which will then be imple-
mented into the simulation environment. The equations allow us to obtain the value of
irradiation for a given time and location.

2.2. External Restrictions on Solar Energy Production

In the case of UAVs powered by solar energy, the power supply system is subject to
many dependencies and limitations. It can be divided into two groups. The first is related
to factors that are beyond human control, i.e., weather conditions, temperature, cloud
cover, air pollution. The second is related to the variable parameters that can be changed in
the UAV, e.g., electric motor power, mass, payload, flight path planning. The individual
elements are divided into subsequent components and each of them has an impact on the
energy balance. The general diagram of dependencies is presented in Figure 2.

Obtaining a negative energy balance makes it necessary to change the flight conditions
or the construction of the drone, reduce energy consumption, and reduce the weight of the
UAV [41]. Energy harvesting, in the case of solar powered UAVs, primarily depends on
the irradiation level. During the flight, we also have to take into account other external
restrictions, such as cloudiness, temperature, solar and air pollution.
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Figure 2. Energy balance general diagram.

2.2.1. Cloudiness

The calculations related to irradiation allow us to obtain the results for a given location
and on a specific day. This value shows the results for perfect conditions. In a real
environment, clouds often restrict the available sunlight. There are three main types of
clouds [42]:

1. cirrus clouds;
2. cumulus clouds;
3. stratus clouds.

Different types of clouds cause the scale of cloudiness to change. The cloudiness
is measured on the okta scale (from 0—no cloud cover, to 8—full cloud cover). The
percentage value that lowers the obtained energy can be written as: 0—100%, 1—98%,
2—94%, 3—88%, 4—79%, 5—70%, 6—54%, 7—50%, 8—27%. Cloudiness scale equal
9/8 is sky obscured—9—0% [43–45].

2.2.2. Temperature

Temperature is a variable that is important in the case of the efficiency of solar cells.
The higher the temperature, the lower the efficiency [36,39,46]. Every solar cell has a
temperature coefficient, which is connected with the voltage, current, and power [39]. The
increase in temperature causes the deterioration of the solar cell parameters, reducing its
power and efficiency (Figure 3).

For the UAV, we used a drop of air temperature between 0.5–1 ◦C, every 100 m [47].
The air temperature distribution depends mainly on: latitude, altitude, season, and topog-
raphy. This kind of calculation for the temperature drop we can use up to the tropopause.
Tropopause has this same temperature in the vertical section and amounts to −51 ◦C [47].
This temperature is maintained up to an altitude of 20 km.
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Figure 3. Efficiency decrease in solar cells.

The efficiency decrease in the solar cell with the increase in temperature is related to
the heating of the solar cell under the influence of sunlight and the reduction in the heat
dissipation capacity of the solar cell in the case of operation in high ambient temperature.
The operation of the PV panels at high temperatures not only results in lower electrical
power but also accelerates the degradation process of the solar cells.

In the simulation model, the current ambient temperature is connected with the height
of the flight. To calculate the current temperature we can use the below formula.

TC = TI − [HR × (TD × 100)] (18)

where TC is the current temperature on the height of the flight, TI is the temperature on the
ground, HR—is the relative height of the flight in meters, and TD is the temperature drop.
We can assume ~1 ◦C for a dry-adiabatic temperature gradient and ~0.6 ◦C for a humid
adiabatic temperature gradient [48].

2.2.3. Air and Solar Cell Pollutions

Air pollution and pollutions on the solar cells’ surfaces reduce the efficiency of the
solar cells. These data are difficult to measure. The dust layer, smog from chimneys, soot,
and hoarfrost cannot be precisely defined, particularly in the still changing conditions. In
order to define more precisely the pollutants that may appear on the surface of the PV
panels, it is necessary to group them. The purpose of this grouping is to facilitate the
identification of the locations and seasons of such pollution. The intensity and impact
on the operation of the solar-powered UAV power supply system should also be defined.
Sometimes, these kinds of pollutions are momentary and, in terms of the entire mission,
will not be of significant importance.

3. Materials and Methods—Numerical Model Data

The factors that were presented in the previous section are the first group of the
numerical model. These data can help us to calculate the energy balance, but we have
no influence on these variables. The second group is directly related to the power supply
system components; namely, the solar cells and battery cells. We can freely change these
elements and modify their connections in such a way as to obtain an energy surplus that
allows for a continuous UAV flight of at least 24 h.

To provide a flight for 24 h we have to take into account both the outside data (e.g.,
weather) and the inside data (e.g., battery capacity, UAV design, solar cells). All of the
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requirements should be fulfilled to allow us to complete the planned flight scenario. The
process of carrying out the concept selection is presented in Figure 4.

Figure 4. Flow chart of choosing the parameters of the power supply system.

To verify the numerical model, we took into account two types of TwinStratos: TS17
(Figure 5) and TS12. The parameters of both UAVs are given in Table 2, below:
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Figure 5. TwinStratos 17 prototype.

Table 2. Parameters of TS17 and TS12.

Parameter TS17 TS12

Mass [kg] 9.4 45
Wingspan [m] 3.6 12.4
Payload [kg] 2.5 2.5
Wing area [m2] 0.896 8.6
Rate of Climb (ROC) [m/s] 0.999 1.5
Rate of Descent (ROD) [m/s] 0.41 0.26
Climb speed [m/s] 13.3 11.1
Cruise speed [m/s] 13 13.9
Descend speed [m/s] 6.5 9.5
Angle of Attack range [◦] −3 to 8 −3 to 5
Maximum altitude [km] 8 20

Power supply system parameters—described in the below subchapters

Battery capacity [kWh] 0.622 2.797
Battery connection 4S12P 12S18P
Battery mass [kg] 2.4 10.8
Number of solar cells 40 350
Solar cell connection 40S1P 70S5P

3.1. Power Consumption

The UAV requires energy for its propulsion and additional systems, e.g., navigation,
control, safety, measurement. Electric motors consume the majority of the energy. This
value range can be wide due to the operational state of the flight. Take-off and climbing
consume the most energy during flight at this same height and descent lower. During
gliding, the electric motors do not consume energy; therefore, this stage of flight can be
used as an energy buffer.

When the power consumption of the motors is variable, for the peripheral devices
(control, navigation), we can use a constant value as the power consumption. The power
consumption of the system on the UAV board is difficult to define. Due to the low percent-
age of the whole energy consumption, we can take into account the maximum value of the
power consumption of the additional systems. In our case, this value is equal to 20 W for
TS17 and 50 W for TS12. To assess the energy consumption of the analyzed UAVs, we used
the simulation model developed in our previous study on the potential of General Aviation
electric aircrafts, which is widely described [35]. Due to the higher altitudes reached by the
UAVs, the COESA Atmosphere Model block responsible for calculating the changes in the
atmospheric parameters was replaced by the ISA Atmosphere Model block. The model
uses a backward approach. This approach allows us to assess the energy demand in order
to perform the movement of the vehicle with the predefined parameters and it does not
require control. Additionally, this approach performs calculations faster than the forward
approach [49].

The model consists of the following subsystems, which are responsible for different
calculations and behavior simulations (Figure 6):
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• Flight Control Module (FCM): controls the UAV and carries out the prepared mission
scenario;

• Environment: calculates the changes in the atmospheric parameters due to changes in
the UAV altitude;

• Airframe: calculates, based on the information from Flight Control Module and
Environment, the required torque and energy demand of the UAV to fly with the given
parameters;

• Power Subsystem: consists of the following subsystems: Battery, Electric Motor and
Loads, which are responsible for simulating the power demand for avionics.

Figure 6. The simulation model and the flow of data.

The model’s working principle can be described as follows: the Flight Control Module
passes the information regarding the changes in the UAV altitude to the Environment to
calculate the changes in the atmospheric parameters. Then, these subsystems send the
flight and atmospheric parameters to the Airframe, which, after calculating the torque
demand, “forces” the electric motor to produce the ordered value, which affects the battery
power consumption.

In our simulation model, we used the following simplifications:

1. The electric motor runs on a direct current;
2. The flight takes place in nonthermal and nonwind conditions;
3. The battery operation is not affected by the temperature;
4. The UAV is considered to be a mass point;
5. The UAV is not equipped with solar cells.

In the case of the last simplification, the task of this model is only to assess the energy
demand of the UAV, not its flight performance (e.g., range).

3.2. Power Supply System Elements
3.2.1. Solar Cells

As a base for our UAV, we decided to use flexible SunPower Maxeon Ne3 solar
cells [50]. The manufacturer ensures that the efficiency of this solar cell is over 24.34%
and the generated power is around 3.77 W. To check if the parameters included in the
datasheet are reliable, we decided to check the current-voltage (I-V) and power-voltage
(P-V) characteristics on the test stand. The tests were carried out both for the non-laminated
solar cells and for the solar cells laminated with 100 μm PVC (Polyvinyl Chloride) film
(Figure 7). Lamination decreases the efficiency of the solar cell but this coating increases its
durability and resistance to the mechanical damage that may occur during UAV flight [51].
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(a) (b) 

Figure 7. Solar cells samples: (a) Non-laminated solar cell in the test stand table; (b) Laminated solar
cell coated with 100 μm PVC film.

The test stand allows us to test solar cells in the STC (Standard Test Conditions):
irradiate with the power 1000 W/m2 in the temperature 25 ◦C, and Air mass 1.5 spectrum
(AM 1.5) defined by European standard IEC 60904-3 [52]. The system for the I-V charac-
teristic measurements of the solar cells meets all of the requirements of the IEC 60904-1
standard [53].

On the wings of the TS17, we could place a maximum of 40 pcs solar cells and, on the
TS12, 350 pcs. The exact type of solar cell connection also took into account the nominal
voltage of the battery and the voltage range of the MPPT converters. We decided to use a
connection 40S1P for TS17, and 70S5P for TS12. In a parallel connection, the disadvantage
is that, in case of damaging a single solar cell and lowering the current value, the whole
chain will generate this low current. By increasing the number of parallel connections,
we increased the redundancy of the system, and in the event of a single cell failure, we
increased the value of the generated energy.

3.2.2. Battery Cells

The battery was selected in such a way as to best meet the following criteria: the
lowest possible weight with the highest possible specific energy and energy density. The
initial parameters of the power supply system were determined on the basis of simplified
analytical calculations. Taking into account the number of solar cells and the energy that
can be obtained, the capacity of the battery was calculated. We chose Gliwice as the location
for the calculation. The vernal equinox was used for the irradiation equations.

For TS17 and TS12, we decided to use this same battery cell: Samsung INR18650-35E
(Figure 8). The chosen battery cell generates 3.7 V, with a capacity of 3.5 Ah. The weight is
equal to 50 g. As the connection, we used 4S12P for TS17 and 12S18P for TS12. A wide range
of operating temperatures is essential in case of wide varying temperatures during flight.
The Samsung INR18650-35E continues to work, even at −20 ◦C. The storage system was
designed in such a way as to provide battery heating for long flights at high altitudes and
at low temperatures. The heater starts to heat up the battery pack space if the temperature
drops below the set level.
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Figure 8. Samsung INR18650-35E tested in the insulation layer.

3.3. Simulation Model

A simulation model of the TwinStratos power supply system was prepared analogi-
cally, similar to the general diagram in Figure 2 (Figure 9). The main goal of the simulation
model is to obtain the output data, such as the energy from the PV, the SoC (State of Charge),
and time to discharge. Simulation allows us to check whether the given parameters in the
adopted scenario will be feasible.

 

Figure 9. General diagram of the TwinStratos power supply system.
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The scenarios that took into consideration time and location were either able or not
able to achieve a 24 h flight. The flow chart (Figure 10) shows the change procedure for
achieving a 24 h flight.

Figure 10. Flow chart of the energy balance of the UAV.

3.4. Scenarios of Path of Flight

To develop the UAV flight scenarios, we took into account the basic operations: take-
off, climbing, gliding. The scenario helps to define the UAV energy demand so that it is
possible to determine the power needed for each stage of flight. In the simulation model,
we decided to prepare two main flight scenarios. Flight paths allow us to optimize the
power consumption during the flight and increase the working time of the power supply
system. The properly prepared scenarios for the UAV, in combination with the properly
selected solar cells, batteries, and power consumption devices, allow for obtaining long
endurance, which should ultimately achieve full energy autonomy of the UAV. The flight
planning paths are mainly based on reaching the set altitude and then, depending on the
needs, we can start the gliding or supporting the flight at a certain altitude. The goal of the
simulation is to achieve a milestone in the form of a flight over 24 h. All of the scenarios
were developed to take-off at sunrise. The single scenario is 24 h and it repeats every
day thereafter.

The TwinStratos 1:7 scenarios were divided into two parts (Figure 11):

1. Ascending to a height of 5 km and then holding that ceiling. We start gliding to 1 km
in this way to finish gliding in 24 h from the take-off

2. Ascending to a height of 8 km and then holding that ceiling. We start gliding to 1 km
in this way to finish gliding in 24 h from the take-off
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Figure 11. Flight scenarios for TS17.

The TwinStratos 1:2 scenarios were divided for three parts (Figure 12):

1. Ascending to a height of 10 km and then holding that ceiling. We start gliding to 1 km
in this way to finish gliding in 24 h from the take-off.

2. Ascending to a height of 15 km and then holding that ceiling. We start gliding to 1 km
in this way to finish gliding in 24 h from the take-off.

3. Ascending to a height of 20 km and then gliding to 1 km.

Figure 12. Flight scenarios for TS12.

For the initial scenarios, we used a location of Gliwice. At the time of the first flights,
we decided to set to the vernal equinox. If the UAV was unable to fly in this season, we
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would change the time to summer solstice to compare the results. As the temperature for
the vernal equinox, we take a temperature of 15 ◦C, and for the summer solstice, 25 ◦C.

The data (partially included in Table 2) for the simulation model of the power con-
sumption were developed by aviation designers. These parameters were entered into the
model. In the simulation model, we used data where the flight path angle is 4.3◦ for TS17
and 7.7◦ for TS12. To provide enough lift force, the angle of attack is equal to 6◦ for TS17
and 3.5◦ for TS12.

As in the initial stage of flight (take-off), we can climb fast with a high flight path
angle; in further climbing to the higher levels, this value will be lower due to the air density
decrease and pressure decrease. It can cause lower energy consumption.

The lower the air density, the higher the speed required by the UAV to fly. We assumed
that to simplify the simulation model, the power consumption data will be the same as in
the simulation model of the propulsion system. Increasing the airspeed at a reduced flight
path angle should, to some degree, increase the power consumption. Table 3 contains the
flight path angle used in the power supply system simulation model.

Table 3. Flight path angle included in the simulation.

Altitude [km] TS17 Altitude [km] TS12

From 0 to 2 3◦ From 0 to 10 5◦

From 2 to 5 2◦ From 10 to 15 4◦

From 5 to 6 1◦ From 15 to 17 2◦

From 6 to 8 0.5◦ From 17 to 20 1◦

4. Results and Discussion

4.1. Irradiation Value in the Model

The irradiation, which is able to reach the solar cells, depends on time, location, and
weather conditions. The formulas included in Section 2 allowed us to prepare a script that
calculates the value of irradiation for the given parameters. We are planning to perform
the first flights of TS12 and TS12 in Gliwice (Poland). As the initial assumption, we chose
the vernal equinox as the time point for the mission. Depending on the season, we obtain
different values of irradiation for Gliwice (Figure 13).

Figure 13. Irradiation for Gliwice for different days beginning seasons of the year.

In the case of different places of flight at this same time, we obtain an irradiance
parabola with a different peak value and time of solar insolation. To compare the location
of Gliwice with different places—in both directions to the equator and to the pole—we
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chose four additional locations to see results. The geographical coordinates of all of the
places are presented below:

• Ny-Ålesund—latitude: 78◦55′0” N; longitude: 11◦56′0” E;
• Gliwice—latitude: 50◦17′32” N; longitude: 18◦40′3” E;
• Rome—latitude: 41◦53′0” N; longitude: 12◦29′0” E;
• Mexico City—latitude: 19◦26′0” N; longitude: 99◦8′0” W;
• Nairobi—latitude: 1◦16′0” S; longitude: 36◦48′0” E;

For each location, we prepared an irradiation plot for the vernal equinox (Figure 14).
On this day, across the globe, the day lasts 12 h. Figure 14 shows how important the location
of a flight with a solar-powered UAV is.

Figure 14. Irradiation for different location in the Vernal equinox.

In all of these places, we use a 0 level as height above sea level. The results will vary if
the data take into account the altitude above sea level. To show how the altitude affects
the irradiation, we prepared another analysis. Figure 15 shows the difference between 0
and 2.5 km altitude for Gliwice in the vernal equinox. For the 0–2.5 km range of height, the
peak values were as follows:

• 0 km—563 W/m2

• 0.5 km—596 W/m2

• 1 km—623 W/m2

• 1.5 km—644 W/m2

• 2 km—660 W/m2

• 2.5 km—670 W/m2

The difference is the highest in the first 0.5 km and 1km. It is equal to 6 and 10.5%,
respectively. In the last range, between 2 and 2.5 km, the difference is significantly smaller,
and it is equal to 1.5%. The difference between the peak values from 0 and 2.5 km is equal
to 19%.

In our simulation model, we used 0-level data as the input for the solar-powered
power supply system. More precise data will be used in the model after the first flights.
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Figure 15. Irradiation for Gliwice in vernal equinox for different altitude.

4.2. Solar cells

The P-V and I-V characteristics of the solar cells allow us to obtain the exact parameters
of the SunPower Maxeon Ne3. The obtained data are shown in Table 4. The I-V and P-V
characteristics are presented in Figure 16.

Table 4. Electrical specification of tested solar cells.

Data
Manufacturer Data
(Non-Laminated)

Non-Laminated
Laminated

(100 μm Film)

Voc [V] >0.731 0.733 0.726

Isc [A] >6.382 6.330 6.061

Vmp [V] >0.625 0.627 0.624

Imp [A] >6.050 5.92 5.747

Pmpp [Wp] >3.77 3.71 3.589

Efficiency [%] >24.34 24.29 23.33

Figure 16. I-V and P-V characteristics of the SunPower Maxeon Ne3.
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We researched non-laminated and laminated solar cells. In the case of TS17 and TS12,
we used laminated solar cells, which have lower efficiency than non-laminated ones. In
the simulation model, we used parameters of this type of solar cell. Figure 17 shows the
characteristics with a different irradiation level, Figure 18 shows the characteristics of a
different temperature solar cell. Tables 5 and 6 present the parameters of the laminated
solar cells.

Figure 17. P-V and I-V characteristics of the laminated SunPower Maxeon Ne3 for different irradiance.

Figure 18. P-V and I-V characteristics of the laminated SunPower Maxeon Ne3 for different temperatures.

Table 5. MPPT data of tested solar cell.

Laminated SunPower Maxeon Ne3

Irradiation [W/m2] Voltage [V] Current [A] Power [W] Fill Factor [%]

1000 0.624 5.748 3.588 81

750 0.622 4.317 2.684 61

500 0.618 2.872 1.776 40

250 0.606 1.437 0.871 19.8
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Table 6. MPPT data for tested solar cell in different temperatures.

Laminated SunPower Maxeon Ne3

Temperature Voltage [V] Current [A] Power [W] Fill Factor [%]

0 0.671 5.706 3.827 87

25 0.624 5.748 3.588 81

50 0.578 5.779 3.343 76

75 0.532 5.813 3.092 70.2

4.3. Power Consumption

The power consumption data for climbing are shown in Figure 19 for TS17 and in
Figure 20 for TS12. The data obtained by the simulation model allows us to obtain the value
of the power consumption of the electric motors. The low power of the electric motors is
caused by a specific and very light UAV.

Figure 19. Power consumption of TS17 electric motors during climbing.

Figure 20. Power consumption of TS12 electric motors during climbing.

The cruise speed for TS17 was defined as 13 m/s and 13.9 m/s for TS12. Changes to
the Angle of Attack (AoA) cause either greater or less aerodynamic drag. Figures 21 and 22
show the differences in the power consumption caused by changing AoA. Depending
on the altitude, the range of the cruise speed may be significantly wider; to simplify the
calculations, we present the data on the power consumption for these cruise speeds.
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Figure 21. Power consumption of TS17 electric motors for cruise speed.

Figure 22. Power consumption of TS12 electric motors for cruise speed.

In the simulation model of the power supply system, the value of the power con-
sumption was additionally multiplied by the efficiency of the electric motors. The climbing
efficiency of the electric motors was 90% both for TS17 and TS12; the cruise efficiency
was 50%.

4.4. Battery Cell

To obtain the precise parameters of the power supply system, the model was adjusted
to the parameters obtained on real systems. On the test stand, we received the data and
tuned the simulation model. For each range of the discharge current, the model is adjusted
separately due to significant changes in the discharge characteristics of the battery cells.
The research was conducted for six discharge currents in the range 0.2–5 A (Figure 23).
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Figure 23. Tuned characteristics of the Samsung INR18650-35E battery simulation model.

To simplify the simulation model, we did not use a temperature effect and an ageing
effect. By using the heater in the battery pack, we want to provide the optimal condition of
work for the batteries. The ageing effect was omitted. When building the prototype, the
decrease in the capacity after a few hundred charging cycles is redundant.

The developed calculations of the power consumption show that the power supply
system will be discharged with low currents. For both of the UAVs, these values are similar
and they are presented in Table 7.

Table 7. Discharging currents during the flight.

Stage of Flight TS17 TS12

Cruise flight 0.28 A 0.25 A

Climbing ~1.1 A ~1.1 A

Descend—without work of
electric motors (avionics) 0.11 A 0.06 A
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4.5. Power Supply System Simulation Model
4.5.1. Twin Stratos 17

We have a three main points for changing the power consumption. At these points,
there is a fundamental change in the flight state. The UAV goes from climbing to cruise
flight and then to gliding.

The power consumption for the 5 km and 8 km scenarios reflects the scenario shown
in Figure 11. During the climb, the power supply system drew the most energy with a
gradual decrease in the power consumption (reflection of Figure 19). Flight at a certain
altitude (5 km or 8 km) allows for a reduction in energy consumption. Both the climb and
cruise values take into account the efficiency of the electric motors. Starting gliding saves
energy, then only the control measuring devices consume energy.

MPPT power is the power that is provided to the power supply system from the PV
panels. We can see a significant difference between the energy delivered at the vernal
equinox and the summer solstice. The power obtained by the PV panels during the summer
solstice is 92% higher than in the vernal equinox for Gliwice.

In the vernal equinox, TS17 is not able to ensure full energy autonomy (Figure 24).
The battery was drained after 14 h and 30 min from take-off. The battery is discharged at a
height of 5 km. This gives the UAV time for gliding, but it is a dangerous situation because
the UAV is not able to rotate and change the direction of descent. To ensure the continuity
of the mission, the battery cannot become entirely unloaded.

Figure 24. TwinStratos 17 5 km scenario in the vernal equinox.

During the summer solstice, TS17 was able to fly for over 24 h at the maximum altitude
of 5 km (Figure 25). The lowest SOC was equal to 11.5% and it occurred in the morning of
the second day, at an altitude of 5 km. At this height, the UAV starts charging the battery
because the energy from the PV is higher than the power consumption during cruising.

In the case of the flight to the highest altitude equal to 8 km, TS17 was not able to
achieve this height (Figure 26). This was a result of the PV providing less energy and less
energy storage and this caused the battery to be drained after 6 h and 30 min from take-off.

In Figures 24 and 26, we can see recharging the battery on the second day. This shows
that the simulation model of the power supply system works correctly, but the position of
the UAV in space is not noticeable through this system. The system only recognizes the
energy demand and the energy balance.
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Figure 25. TwinStratos 17 5 km scenario in the summer solstice.

Figure 26. TwinStratos 17 8 km scenario in the summer solstice.

4.5.2. Twin Stratos 12

For TS12, the energy consumption was analogous to Figure 12. The climb values
were taken from Figure 20. All of the values include the efficiency of the electric motors.
During the vernal equinox, we can observe that the power from the PV is higher than the
power consumption in the 10 km (Figure 27) and 15 km (Figure 28) scenarios, when the
TwinStratos begin cruising. Higher flight altitude and longer gliding time allows for longer
energy saving than in the case of the TS17. The power consumption spikes again after
the glide phase ends and the climb phase resumes. We can observe it returning to the set
altitude. Then, the SoC of the battery reaches its lowest value. The value of the SoC was
correspondingly equal to 29% for the 10 km scenario and 20.5% for the 15 km scenario. In
the TS12 scenarios, during flights up to altitudes of 10 km and 15 km, the UAV obtained its
energy autonomy in the vernal equinox.
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Figure 27. TwinStratos 12 10 km scenario in the vernal equinox.

Figure 28. TwinStratos 12 15 km scenario in the vernal equinox.

For the flight up to 20 km, the energy accumulated in the batteries and produced by
the PV were not able to provide a surplus energy balance in the vernal equinox. The energy
needed to achieve an altitude of 20 km was too high at the stage of climbing; 11 h after
take-off, the battery was drained (Figure 29). The last two kilometers were achieved with a
low degree of climb, equal to 1◦. To achieve an altitude equal to 20 km, we had to change
the time of the flight.

During the summer solstice, TS12 was able to fly for over 24 h (Figure 30). The lowest
SoC was at the beginning of the flight, up to the moment when the power from the PV was
higher than the current power consumption, which occurred about 4 h and 30 min after
take-off. The lowest value of SoC was equal to 22.5%. On the second day, the battery began
to lower the SoC when the power from the PV was lower than the power consumption.
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Figure 29. TwinStratos 12 20 km scenario in the vernal equinox.

Figure 30. TwinStratos 12 20 km scenario in the summer solstice.

As it was written in the previous case (for TS17), the power obtained by the PV panels
during the summer solstice is 92% higher than in the vernal equinox for Gliwice. For our
location, almost twice as much energy from the PV allows for a flight to an altitude of
20 km. Changing the flight time to the summer solstice allowed us to obtain a positive
energy balance for the 20 km scenario.

5. Conclusions

By analyzing the simulation graphs, it can be concluded that the most important
issue when planning a long-endurance flight is the flight path and the appropriate weather
conditions. The simulations show that a 24 h flight is feasible for the location of Gliwice
during the spring equinox for TS12 and during the summer solstice for TS17. For both
scenarios, sunny weather was adopted without cloud cover, which additionally allowed
the UAVs to obtain more energy from the PV.

As the altitude increases, the energy obtained from the solar cells increases. However,
due to the impossibility of obtaining the data from the real environment, the increase in
this value was omitted and the data from 0 m above sea level were adopted.

The falling speed of TS12 and TS17 depends on the altitude, but for the calculations,
this value has been simplified to one constant value for TS12 — 0.26 m/s — and0.41 m/s
for TS17.
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By analyzing the numerical simulations and the prepared flight scenarios, it can be
concluded that the best ways to achieve a long endurance flight (at least 24 h) are the
following elements:

• The flight begins at sunrise. Take-off and climb are the stages that consume the most
energy, so it is good to compensate for high energy consumption with energy produced
from the photovoltaic system;

• The potential energy accumulated in the form of height should be used as a time
buffer, which is best used at night, when the photovoltaic system does not produce
energy and the drive system does not consume energy from the power supply system;

• Continuous, gradual increase in altitude during the day and keeping the altitude as
high as possible until sunset or even more depending on the type of mission;

• Commencement of the UAV gliding stage with sunset or supporting a specific altitude
in such a way as to complete the stage of gliding to a given altitude with sunrise or
later depending on the type of mission;

• Flight sustain should be performed at the highest altitudes due to the lower energy
demand of UAV propulsion systems;

• When it is not possible to obtain a long endurance flight for the UAV, it may be
necessary to change the flight duration, location, time of flight, or flight path;

• If it is not possible to obtain flight-long endurance for the key set parameters, it may
be necessary to change the design of the UAV, the number of solar cells, the capacity
of the battery, or the weight of the payload.

It can be concluded that the TS17 scale is a bit too small for full energy autonomy.
TS12 shows a greater degree of energy autonomy by achieving higher ceilings and a lower
value of the ROD (Rate of Descent) than in the case of TS17. The TS12 has almost ten times
more wing area than the TS17, as a result of which it is able to obtain ten times more energy
during the flight than the TS17. An additional advantage in the energy balance of the TS12
is that the maximum power consumption is seven times higher than in the case of TS17.
Comparing the energy that can be produced by the TwinStratos 1:2 and 1:7 and their energy
demand, it can be seen that a better energy balance is achieved by TS12.

Another milestone that our team has taken into account is the highest possible alti-
tude to be achieved. When analyzing the flight duration, we noticed that sometimes the
maximum altitude of TS is not possible to reach, particularly when starting the flight at
sunrise (e.g., Figures 26 and 29), or during the not appropriate period. In the event that the
energy demand during take-off and climb is the highest, and the PV energy is insufficient
at some point, the battery discharges, preventing the UAV from continue to climb.

By analyzing the energy demand and PV power, it can be concluded that the best
time to complete the mission aimed at achieving the highest ceiling is not sunrise, but
around noon, when the sun is at its highest. In this case, the energy obtained from the
PV will partially cover the energy demand of the electric motors and the UAV’s control
systems. The limitations are also related to the time needed to reach a given altitude.
These considerations should be taken into account when we are choosing the time of the
UAV’s take-off.

The full set of equipment depends on the mission being performed, which is not fully
defined at this stage of the work; therefore, simplifications have been made in the model
after defining the mission and the various sets of measuring/observation devices. Another
reason for simplifying the model is the lack of detailed data for many on-board subsystems
with energy consumption characteristics. For many, only the maximum power of the device
is given and the load characteristics are not analyzed. In laboratory tests, it is also difficult
to confirm the characteristics of many subsystems. The team is planning intensive work
on the problem indicated by the reviewer during the flight tests. Therefore, the entire
power supply system has been measured in detail and is equipped with controllers and
accessories that allow for connecting and disconnecting individual power supply systems.

TS17 and TS12 will be made with the technology of ultra-light composite structures.
Currently, TS17 is at the construction stage and the prototype is shown in Figure 5. Only
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flights in the real environment will allow the correctness of the simulation and its results
to be verified. The completed missions will provide the necessary data to fine-tune the
simulation model. Another stage will be the intended use of the UAV, taking into consider-
ation its equipment and the weight of its on-board devices. In the event that, in a given
mission, it is not possible to perform a long-endurance flight, the mission can be postponed
until the summer solstice or the 24 h flight stage can be avoided, with an emphasis on the
implementation of a specific mission.
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Abbreviations

δ Declination angle
θz Zenith angle
ϕ Latitude angle
τb Ratio of the transmitted direct radiation to the total radiation incident at the top of

the atmosphere
τd Ratio of the transmitted diffuse radiation to the total radiation incident at the

top of the atmosphere.
ω Hour angle
A Altitude of the site above sea level
AGV Automated Guided Vehicle
AM Air mass
AoA Angle of Attack
BMS Battery Management System
DSSC Dye-sensitized solar cell
FCM Flight Control Module
Gc Total radiation
Gcb Beam radiation
Gcd Diffuse radiation
Gon Irradiation on surface
GSC Solar constant
GaAs Gallium arsenide
Ho Daily radiation
HR Relative height of the flight in meters,
Ic Hourly radiation on a horizontal surface
Imp Optimum Operating Current
Io Hourly radiation

163



Energies 2023, 16, 479

Isc Short Circuit Current
I-V Current-Voltage
MBD Model-Based Design
n Day of the year
N Day length
Pmpp Nominal Maximum Power
P-V Power-Voltage
PV Photovoltaics
PVC Polyvinyl Chloride
r0, r1, rk Coefficients for climate type
ROC Rate of Climb
ROD Rate of Descent
SoC State of Charge
TC Current temperature on the height of the flight
TD Temperature drop
TI Temperature on the ground
TS12 TwinStratos 1:2
TS17 TwinStratos 1:7
UAV Unmanned Aerial Vehicle
Voc Open Circuit Voltage
Vmp Optimum Operating Voltage
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Abstract: Strapdown celestial imaging sensors provide a compact, lightweight alternative to their
gimbaled counterparts. Strapdown imaging systems typically require a wider field of view, and
consequently longer exposure intervals, leading to significant motion blur. The motion blur for a
constellation of stars results in a constellation of trails on the image plane. We present a method
that extracts the path of these star trails, and uses a linearized weighted least squares approach to
correct noisy inertial attitude measurements. We demonstrate the validity of this method through its
application to synthetically generated images, and subsequently observe its relative performance
by using real images. The findings of this study indicate that the motion blur present in strapdown
celestial imagery yields an a posteriori mean absolute attitude error of less than 0.13 degrees in the
yaw axis, and 0.06 degrees in the pitch and roll axes (3 σ) for a calibrated wide-angle camera lens.
These findings demonstrate the viability of low-cost, wide-angle, strapdown celestial attitude sensors
on lightweight UAV hardware.

Keywords: celestial; stellar; navigation; strapdown; attitude

1. Introduction

The use of stabilized celestial navigation sensors for uncrewed aerial vehicle (UAV)
attitude determination is well documented [1]. With recent demand for size, weight
and power constrained systems, strapdown celestial sensors have become more common.
A strapdown [2] celestial navigation sensor is rigidly mounted to the airframe, causing
imagery to be subjected to motion artefacts from the aircraft, such as actuation, vibration
and turbulence. The length of the exposure window is the primary factor governing the
severity of the resultant motion blur. For wide-angled lenses, it is necessary to use longer
exposure windows so as to increase the total light energy incident on the sensor. Under sta-
ble flight conditions, longer exposure windows enable the detection of higher magnitude
stars, and consequently provide a more accurate attitude estimate. Under motion, however,
the longer exposure window results in “smearing” of star images, leaving a trail as seen in
Figure 1. This image shows a region of interest (ROI) containing a single star trail captured
in-flight from a strapdown celestial imaging system. We can see from this ROI that the
resultant trail tends to be noisy, and the angular velocity tends to change throughout the
exposure interval.

The premise for this research comes from the hypothesis that the observed star trails
contain high-resolution information pertaining to the attitude of the aircraft during the
exposure window. We present a method which estimates high-resolution attitude data from
long-exposure images, provided availability of a low resolution approximation from the au-
topilot (e.g., from an inertial measurement unit). This method makes use of long-exposure
strapdown imagery simulation, presented in [3], to provide an initial approximation of the
star trail location and orientation, and corrects for attitude and attitude rate errors from the
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inertial unit. We demonstrate the effectiveness of this method in estimating aircraft attitude
under high motion conditions.

Figure 1. A region of interest containing a single star trail, captured from a strapdown celestial
imaging sensor (Pi Camera HQ, 500 ms exposure interval). The shape of the star trail indicates that
the camera was subjected to significant changes in attitude throughout the exposure interval.

The method presented in this paper is unique in the domain of drone navigation.
Similar research has been conducted in the field of satellite navigation for the removal of
motion blur. A common technique for the removal of motion blur includes estimation of the
blur kernel. Knowledge of the kernel enables methods such as inverse filtering and Wiener
filtering to correct the motion-blurred image. Estimation of the blur kernel is typically
straightforward when analyzing stellar imagery, due to the sparsity of the stars; thus, it is
is common practice to estimate the kernel parameters as seen in [4] and apply filters that
utilize this kernel, as seen in [5,6]. While offering an effective means of removing motion
blur in satellite imagery, such approaches tend not to capture rotational motion about the
optical axis, due to the assumption that the blur kernel is spatially invariant. The method
presented in [7] does explicitly take into account rotation about the boresight; however, the
linear approximation used in this method is not applicable for UAV applications.

The work presented in [8] estimates the motion parameters of a given image, and uses
this information to estimate the centroid of a blurred star. This assumes that there exists a
global degradation function, which tends not to be the case for UAV navigation. The method
presented in [9] uses an attitude correlated frames approach, in which the attitude between
frames is measured with a gyroscope to within 1 arcsecond precision. This work also
assumes that the rotation about the optical axis is negligible. The approach in [10] identifies
correlation between subsequent short-exposure frames, and superimposes these frames to
generate a long exposure image. This approach is limited by the sensor sensitivity, however,
due to the need to identify stars from the shorter exposure images.

We can see in Figure 1 that the assumption of a spatially invariant blur kernel does not
hold true when factors such as turbulence and aircraft control are taken into consideration.
The aircraft will typically experience rotation about the yaw axis to some extent, leading
to spatial variations in the motion blur on the imaging plane. Additionally, correlated
frames approaches, such as those seen in [9,10], require levels of sensitivity from the
imaging equipment that are not achievable with lightweight hardware at low altitudes.
Furthermore, inertially aided approaches to noise removal tend to assume that gyroscope
measurements contain negligible error, as seen in [9]. We observe that, especially with low-
cost UAV hardware, angular rate measurements tend to be subjected to multiple sources of
noise, and thus do not offer the level of precision required to perform image stabilization.

The method presented here is unique in that no attempt is made at denoising the
image. Rather, we detect points from each star trail that are correlated, and infer the
attitude by using a least-squares approximation that corrects the noisy inertial navigation
system (INS) attitude measurements. This approach gives rise to potential use cases such
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as in-flight magnetometer calibration and thermal photogrammetry. Additionally, this may
be used to correlate points from different star trails within a single frame, enabling the use
of traditional point-source celestial imaging techniques, such as camera calibration [11] and
star identification/tracking [12].

2. Methods

The methodology outlined in this section assumes that the camera orientation, relative
to the aircraft body frame, is calibrated and fixed throughout the flight. It also assumes that
the camera calibration matrix is known. These calibrations are conducted prior to takeoff.

The following steps are performed in attitude estimation:

1. Estimate the theoretical curve of the star trail on the image plane by using INS
measurements.

2. Apply a smoothing filter, morphological operations, and clustering to extract the star
trail for each star with brightness above a given magnitude threshold.

3. Apply a thinning algorithm on each star trail to remove the effects of Gaussian point-
spread diffusion.

4. Identify the endpoints of each star trail given the INS-simulated approximation.
5. Use the endpoints of the thinned star trails, along with the endpoints of the INS

approximation, to compute the weighted least squares approximation for the mean
attitude offset throughout the exposure window.

6. For each point in the mean-error corrected INS approximation, compute the least
squares approximation of the precise attitude offset.

This method is valid for star trails which form a simple curve with observable end-
points on the image plane. Complex curves create ambiguity in the apparent motion of
the airframe.

2.1. Image Processing

We denote the series of n INS attitude measurements (pertaining to a long-exposure
image) as

ri =

⎡⎣φ
θ
ψ

⎤⎦ (1)

for attitude measurement i with roll φ, pitch θ and yaw ψ. We compute the theoretical curve
of the star trails on the image plane following the methodology in [3], denoted sj, for star
j. Initial corrections to right ascension and declination are applied given annual proper
motion, precession, nutation, and aberration given the location of the aircraft and time of
flight. These corrections are only applied once per flight, prior to further calculations.

Given the hour-angle of a star, ω, the local elevation El of a celestial body given
declination δ and latitude Lat is computed:

El = asin
(

sin(δ) sin(Lat) + cos(δ) cos(Lat) cos(ω)
)

(2)

and the local azimuth, Az, is given by:

Az = atan2
(

sin(ω) , cos(ω) sin(Lat) − tan(δ) cos(Lat)
)
+ π. (3)

We subsequently correct for refraction, given by

R =
1.02

tan
(

El +
10.3

El + 5.11

) , (4)
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where R is the refractive distance, expressed in arcminutes; thus, the apparent elevation of
a star El′ is then given by

El′ = El + R. (5)

Given the azimuth and elevation of a star, the corresponding unit vector in northeast-
down (NED) coordinates is given by

X = cos(Az) cos(El′)
Y = sin(Az) cos(El′)
Z = − sin(El′)

. (6)

The rotation from the local NED frame to the aircraft frame is computed from the roll,
pitch, and yaw of attitude measurement i, represented as matrix Ca/ned. The transformation
from aircraft to camera frame, Cc/a, remains constant, and is determined by the orientation
of the camera with respect to the inertial unit. The unit vector in local NED coordinates vl

is then transformed to the camera frame of reference, vc:

vc = Cc/aCa/lv
l . (7)

For components x, y and z of unit vector vc, we compute the homogeneous point P in
the camera frame of reference:

P =

⎡⎢⎢⎢⎢⎣
X
Z
Y
Z
1

⎤⎥⎥⎥⎥⎦. (8)

The camera intrinsic matrix, K, is assumed to be known, given by

K =

⎡⎣ fx 0 x0
0 fy y0
0 0 1

⎤⎦, (9)

where fx and fy are the focal lengths in the x and y axes, respectively, and x0 and y0 are the
x and y locations of the principal point on the image plane. Thus, the pixel location, sj[i],
of the star for attitude measurement i is computed:

sj[i] = KP. (10)

Each sj contains n two-dimensional points on the image plane, corresponding with
the n attitude measurements. The prior calculations are performed n times for each star
visible in the theoretical camera field of view to produce the array sj. Reference stars are
selected based on their intensity, such that the brightest o stars in the frame are chosen.
For each theoretical star trail, we apply a series of image-processing operations on the real
image, as shown in Figure 2.

We first extract the ROI from the real image, given the theoretical star trail. A buffer is
applied to the height and width of the ROI to allow for INS errors, typically corresponding
to 2–3◦ of angular deviation. Gaussian blur is applied to the image with a 3 × 3 kernel,
so as to reduce the magnitude of the image noise. A binary threshold is applied at five
standard deviations above the average pixel value, as measured from the original full-scale
image. This threshold is typical of stellar imaging sensors [13]. Image opening is performed
with a 3 × 3 kernel to remove any remaining noise. The remaining contours are clustered,
originating with the centre-most contour, and accumulating additional contours which
are within 0.25◦ angular separation of the clustered set. Finally, the clustered contours are
thinned by using the method presented in [14], so as to extract the centre-line from the
star trail. Disjoint sections in the thinned image are connected by a straight line segment.
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The thinned image is reduced to an array of two-dimensional points that are ordered from
endpoint to endpoint. We denote this array as pj, for star j.

Figure 2. Flow diagram of image processing chain, with example images (black and white images
converted to a perceptually uniform colour scale).

There is a possibility that the correspondence between endpoints in pj and sj is
reversed. We use the approximate orientation from sj to resolve the polarity of pj. We
measure the angle on the image plane, θs, between the first and last elements of sj, as well
as θp, the angle between the first and last elements of pj. If the magnitude of the difference
between these angles exceeds π

2 , we reverse the indices of array pj to match the orientation
of sj.

2.2. Orientation Estimation

Orientation estimation is performed in two steps. We first compute the mean attitude
correction required to correlate the endpoints in s with the endpoints in p. Once aligned,
we compute the individual offsets for each of the n INS attitude measurements.

The rotation which transforms a vector from real-world coordinates to camera coordi-
nates via a yaw-pitch-roll Euler sequence, is given by

R =

⎡⎣ c(θ)c(ψ) c(θ)s(ψ) −s(θ)
−c(φ)s(ψ) + s(φ)s(θ)c(ψ) c(φ)c(ψ) + s(φ)s(θ)s(ψ) s(φ)c(θ)
s(φ)s(ψ) + c(φ)s(θ)c(ψ) −s(φ)c(ψ) + c(φ)s(θ)s(ψ) c(φ)c(θ)

⎤⎦, (11)

where c(x) and s(x) represent cos(x) and sin(x), respectively.
Stars are framed in the celestial coordinate system; thus, translation is negligible.

Therefore, the image coordinates, x, for infinitely distant objects, is given by

x = KRX, (12)
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where X is the vector containing the local NED world coordinates at a given point:

X =

⎡⎣X
Y
Z

⎤⎦. (13)

We expand the vector x into its components to get the image coordinates x, y, and z:

x = fx
[
(cos θ cos ψ)X + (cos θ sin ψ)Y − (sin θ)Z

]
+ px

[
(sin φ sin ψ + cos φ sin θ cos ψ)X

+ (− sin φ cos ψ + cos φ sin θ sin ψ)Y + (cos φ cos θ)Z
]

(14)

y = fy
[
(− cos φ sin ψ + sin φ sin θ cos ψ)X

+ (cos φ cos ψ + sin φ sin θ sin ψ)Y + (sin φ cos θ)Z
]

+ py
[
(sin φ sin ψ + cos φ sin θ cos ψ)X

+ (− sin φ cos ψ + cos φ sin θ sin ψ)Y + (cos φ cos θ)Z
]

(15)

z =
(

sin φ sin ψ + cos φ sin θ cos ψ
)
X +

(− sin φ cos ψ +

cos φ sin θ sin ψ
)
Y +

(
cos φ cos θ

)
Z. (16)

The two-dimensional homogeneous image pixel coordinates, are subsequently given by

u =

[
u
v

]
; u =

x
z

, v =
y
z

. (17)

The Jacobian containing partial derivatives of pixel location with respect to changes in
orientation is then given by (see Appendix A.1 for partial derivative equations):

J =

⎡⎢⎢⎢⎢⎣
∂u
∂φ

∂u
∂θ

∂u
∂ψ

∂v
∂φ

∂v
∂θ

∂v
∂ψ

⎤⎥⎥⎥⎥⎦. (18)

Thus, the first order Taylor series expansion gives

u′ = u + JΔr, (19)

where Δr is the vector containing the change in roll, pitch, and yaw required to translate
pixel u to u′:

Δr =

⎡⎣Δφ
Δθ
Δψ

⎤⎦.

The linearized relationship between change in pixel location and change in orientation
can be expressed as

Δu = JΔr. (20)

We extend this notation for multiple observations, Δû, where each observation Δui =
[Δui, Δvi]

T is vertically stacked to give a vector of length 2m:

Δû =
[
Δu1, Δv1, . . . Δum, Δvm

]T (21)
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and similarly the Jacobian Ji for each observation is vertically stacked to give the matrix of
size [2m × 3]:

Ĵ =

⎡⎢⎣ J1
...

Jm

⎤⎥⎦. (22)

Thus, provided a minimum of m = 2 points, we can apply the weighted least squares
solution for Δr,

Δr =
(
ĴTWĴ

)−1
ĴTWΔû, (23)

where the diagonal weight matrix W with size [2m × 2m] contains the weighting for each
observation

W =

⎡⎢⎢⎢⎢⎢⎣
w1 0 . . . 0 0
0 w1 . . . 0 0
...

...
. . .

...
...

0 0 . . . wm 0
0 0 . . . 0 wm

⎤⎥⎥⎥⎥⎥⎦, (24)

where wi is calculated from the signal strength of observation i, such that salient stars are
weighted more heavily,

wi = log10

(
pi − μ

σ

)
, (25)

and pi is the peak pixel intensity for observation i, μ is the mean value across the image
(pi � μ), and σ is the standard deviation in pixel intensity in the image. Note that the
weightings for the u and v components of a given observation are equal.

The mean-offset corrected camera attitude is computed iteratively, such that

Δrk = Δrk−1 +
(
ĴT

k−1WĴk−1
)−1

ĴT
k−1WΔûk−1 (26)

until |Δrk − Δrk−1| ≤ 10−6 rad. Values Δûk−1 and Ĵk−1 are recomputed at each iteration
from Equations (17) and (18), given the updated attitude:

r′i = ri − Δrk. (27)

Equation (26) yields the mean attitude offset throughout a given exposure window.
In some cases, this level of precision is satisfactory (for example, for online magnetome-
ter calibration). The long exposure image typically contains higher-resolution attitude
information pertaining to the aircraft orientation throughout the exposure window. This
information can be obtained by aligning elements from the mean-corrected array s′j with
elements from observation pj. An example demonstrating the difference between mean
and fine alignment can be seen in Figure 3.

A similar process to the mean attitude correction is followed for the high-resolution
attitude estimation. For each star, the theoretical curve of the trail is recomputed with the
mean attitude offset applied to obtain s′j, and the polarity once again checked to ensure
that the elements of pj are in the correct order. We make the following assumptions when
mapping s′j to pj:

1. The INS sampling period, Ts, is constant.
2. The photon flux density incident on the sensor from a given luminary is constant.
3. The path taken by the airframe results in a simple curve on the image plane (i.e., the

star trail does not cross itself at any point).

From these assumptions, it is evident that for each successive point in the fine-attitude
corrected set, s′′, the rate of increase in the cumulative intensity must be constant,

I
(
s′′j [i]

)− I
(
s′′j [i − 1]

)
= C, (28)
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given pixel intensity I(x) at location x in the frame. Thus, the location of pixel s′′[i] should
be chosen to satisfy

I
(
s′′j [i]

)
= I
(
s′′j [i − 1]

)
+ C, (29)

where the first element, s′′j [0] is equal to pj[0], and C is chosen to ensure the last element in
s′′j is equal to the last element in pj:

C =
1
n

p

∑
i=0

I(pj[i]) (30)

given n elements in sj, and p elements in pj.

Figure 3. An example of attitude correction, displaying a region of interest for a single star. Greyscale
images are overlaid onto a three-channel image. Left: mean-only alignment, Right: fine attitude
alignment. Green, real image; blue, synthetic image from INS; red, reprojection after corrections.

The candidates for s′′j [i] are contained in the ordered set of thinned points from the
real image, pj. We use a cumulative sum of real image intensities along the skeleton to
solve for s′′j empirically, as shown in Algorithm 1:

Algorithm 1 Mapping from INS points to real image points.

s′′j [0] ← pj[0]
n ← 1
sum ← 0
for i = 1; i < p do

sum ← sum + pj[i]
if sum ≥ C then

overshoot ← (sum − C)
s′′j [n] ← Interpolate

(
pj[i], pj[i − 1], overshoot

)
sum ← overshoot
n ← n + 1

end if
end for

For each observed star, there exists a set of mean attitude corrected points, s′j, and a
set of fine attitude corrected points, s′′j . For each of the n INS attitude measurements, we
apply the least squares solution from Equation (26). The Jacobian J is computed for each
attitude by using Equation (18), and the change in pixel location, Δu, is computed as s′j − s′′j .
The updated attitudes, r′′i , are given by

r′′i = r′i − Δr
ik. (31)
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The updated direction cosine matrices (DCM), R′′
i, are constructed from the Euler

angles r′′i similarly to Equation (11). Given the rotational transformation Cc/a which relates
the aircraft frame of reference to the camera frame of reference, the aircraft DCM for each
attitude, expressed in NED coordinates is calculated:

Ca/ned[i] = CT
c/a[i]R

′′
i. (32)

Thus, we use Equation (32) to compute the updated aircraft DCM for each attitude
measurement from the INS.

In theory, two endpoints from a single star are sufficient to estimate attitude. In prac-
tice, however, there does not exist enough angular resolution to accurately correct for
aircraft yaw (under normal flight conditions, with the camera facing upward). For this
reason, we limit estimation to images containing three or more salient stars, separated by
at least one third of the image width.

3. Results

Due to limitations in the accuracy of INS estimation with the available hardware, we
are unable to acquire a ground-truth attitude reference for images captured in flight at
the level of precision required. Consequently, we use the methodology presented in [3]
to generate high-quality simulation images from real flight data for quantitative analysis.
We treat the INS attitude measurements as ground truth, and apply two forms of noise to
these measurements:

1. A random-valued constant offset, and
2. Perlin noise.

The random valued constant offset is applied to every attitude measurement through-
out the exposure interval, and is representative of attitude/estimation bias. The gradient-
based Perlin noise is generated for each individual measurement, and is representative of
attitude drift from the INS estimator. We selected Perlin noise due to its gradient-based
nature, and zero-crossing properties, which are typical of iterative estimators. Both sources
of noise are applied together. We measure the efficacy of the methodology presented in
Section 2 based on its ability to correct for these sources of noise and recover the true
attitude of the aircraft.

Real imagery and INS attitude data was captured from a single test flight. A Pixhawk
version 2 autopilot was used for vehicle control and attitude estimation. Attitude data was
logged from the autopilot’s extended Kalman filter (EKF) at a rate of 30 Hz. The camera
was mounted to the autopilot via a rigid plastic 3D-printed structure, such that all autopilot
attitudes were coupled with the aerial imagery. We used a Raspberry Pi 4 companion
computer for image storage, and a Raspberry Pi high-quality camera sensor fitted with
the official 6-mm wide-angle lens for image capture. The sensor resolution was set to
3280 × 2464, with an ISO of 800. The flight was conducted at a height of 150 m above
ground level with an exposure interval of 500 ms. No clouds were present, and the trial
was conducted under moonless conditions. The airframe used for this study was a Zeta
Science FX61 with 1.5 m wingspan, with an approximate mass of 1.5 kg, as seen in Figure 4.
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Figure 4. Zeta Science FX61 airframe used for capturing in-flight imagery.

3.1. Simulation Results

For each image captured, a series of attitude measurements were stored to disk
corresponding with the exposure interval. We used a static ground image to calibrate the
simulation, and subsequently generate each synthetic image from the log data. A uniformly
distributed random offset between −1◦ and 1◦ was applied to the roll and pitch channels,
and a uniformly distributed random offset between −3◦ and 3◦ was applied to the yaw
channel. We applied a greater offset to the yaw channel to replicate the magnetometer bias
typically seen in low-cost INS systems. A sequence of Perlin noise of length n was generated
for the roll, pitch, and yaw channels, with number of octaves uniformly randomly selected
between 0.1◦ and 2◦, and magnitude less than 0.5◦. This noise is representative of angular
rate errors, as can be seen in Figure 5.

Figure 5. An example of Perlin gradient-based noise generation across various octaves (frequencies).

The methodology from Section 2 was applied, given the synthetic images (ground
truth) and noisy attitude data (INS). Points pj were extracted by using the presented image
processing methods, and points sj were computed by using the noisy attitude data.

A total of 110 images were simulated and processed. From these, 56 images contained
a sufficient number of salient stars to perform attitude estimation (in accordance with the
constraints set in Section 2). Each image had n = 14 noisy attitude estimates. Figure 6
shows histograms of mean absolute errors. Table 1 shows detailed results from this test.
For each image captured, the mean, mean absolute, and max errors were recorded from the
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attitude correction output. We can see from these results that the mean errors were close
to zero, indicating that bias in the estimation process is low. The three standard deviation
limit indicates that 99.7% of yaw errors are less than 0.2828◦, pitch errors less than 0.1453◦,
and roll errors less than 0.1366◦. Similarly, 99.7% of mean absolute yaw errors fell within
±0.1294◦, pitch errors within ±0.0591◦, and roll errors within ±0.0604◦. The residual
mean absolute error in the least squares approximation was 1.246 pixels, and an average of
6.036 stars were used for each estimation.

(a)

(b)

(c)

Figure 6. Histogram of mean absolute errors from each simulated image containing n = 14 attitude
references. (a) Yaw. (b) Pitch. (c) Roll.
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We can see from testing that the corrected attitude contained significantly reduced
errors. Yaw errors with average magnitude 1.5◦ were typically corrected to within ap-
proximately 0.05◦, and roll and pitch errors with average magnitude 0.5◦ were corrected
to within approximately 0.02◦. The maximum errors were also significantly lower than
the average Perlin noise of 0.2◦, highlighting the efficacy of this algorithm in removing
both sources of noise. A graphic showing the simulated attitude correction can be seen in
Figure 7.

Table 1. Simulated flight results. All units in degrees.

Mean Median Std Mean + 3σ

Max yaw error 0.1053 0.0903 0.0856 0.2828
Max pitch error 0.0503 0.0414 0.0317 0.1453
Max roll error 0.0506 0.0418 0.0286 0.1366

Mean absolute yaw error 0.0428 0.0442 0.0274 0.1294
Mean absolute pitch error 0.0205 0.0167 0.0128 0.0591
Mean absolute roll error 0.0217 0.0207 0.0129 0.0604

Mean yaw error 0.0118 0.01076 0.0322 -
Mean pitch error −0.0080 −0.0061 0.0138 -
Mean roll error −0.0078 −0.0061 0.02124 -

Figure 7. An example of simulation attitude correction, displaying superimposed regions of interest.
Green channel, baseline simulation image; blue channel, synthetic image from noisy INS; red channel,
synthetic image after corrections. Max yaw error: 0.0727◦, max pitch error: 0.0286◦, max roll
error: 0.0226◦.

3.2. Real Imagery

To supplement the simulation results, we observe the output of our methodology
when applied directly to a real image. Although no ground truth was available, we assess
the resulting reprojection in a qualitative manner, so as to validate the efficacy of the image-
processing techniques. The real images are subjected to small errors in the camera matrix
K, which are most prevalent at maximal radial distance from the principal point, as well as
other minor unmodeled sources of noise.
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From the 110 images captured, 49 satisfied the requirements for attitude estimation.
The mean residual error of the least squares estimation was 3.945 pixels, as compared
with 1.264 pixels in simulation. The average number of stars used for estimation was
5.510, as compared to 6.036 in simulation. Figures 8 and 9 demonstrate the efficacy of this
method in practice. We show the ROI for each star used in the attitude estimation process.
The green channel contains the real image, the blue channel contains the uncorrected INS
data, and the red channel is a reprojection of the corrected INS data. We can see that our
method corrected for both types of noise. Some bias remains present in some stars, which
is more prominent at greater distances from the optical centre.

Figure 8. ROIs of stars used for attitude correction on a real image. Green channel, real image; blue
channel, synthetic image from raw INS data; red channel, synthetic image from corrected INS data.
The intensity of each ROI is amplified such that the peak pixel intensity is 255.

Figure 9. ROIs of stars used for attitude correction on a real image. Green channel, real image; blue
channel, synthetic image from raw INS data; red channel, synthetic image from corrected INS data.
The intensity of each ROI is amplified such that the peak pixel intensity is 255.
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4. Discussion

The assumptions made in Section 2 may limit potential use cases for this approach.
Assumption 2, constant photon flux density from a given luminary, disqualifies the use of
rolling shutter cameras, and indicates that the performance will be hindered if the image is
subjected to obscurities such as partial cloud cover. Assumption 3, that the star forms a
simple curve on the image plane, may become limiting for imaging systems with longer
exposure intervals, due to the increased likelihood of complex curves forming on the image
plane. Interestingly, it may be possible to plan aircraft trajectories, which reduces the
likelihood of this occurring.

It is evident in the results that some re-projection bias remains when performing
attitude correction on the real images (3.945 pixels, as compared with 1.264 in simulation).
There are two potential causes for this value being significantly higher than in simulation.

1. The camera calibration matrix, K does not perfectly characterize the camera.
2. Unmodeled sources of noise caused the image processing techniques not to transfer

from simulation to reality.

Our observation is that the former is the most likely cause of this error. It is evi-
dent that certain areas on the imaging plane are defocused and do not conform with a
Gaussian point-spread distribution, which may be contributing to the delocalization of
pixels during the image processing stage. The image-thinning algorithm preserves the
endpoints of the simulated stars (which are drawn from a sequence of Gaussian point-
spread functions); however it tends to truncate the endpoints of the real stars. We postulate,
however, that this effect is less significant than the effect caused by camera calibration. We
see in Figures 8 and 9 that the fine-attitude correction appears to remove both the high-
and low-frequency components of noise, but the bias offset remains for some stars. If the
image-processing techniques were failing, we would not observe the removal of noise,
particularly with the lower signal-to-noise ratio stars seen in Figure 8. We also observe that
the bias tends to be greater for stars located further from the optical centre. These effects
are indicative of residual nonlinear errors, such as radial and tangential distortion. Despite
our efforts to remove the sources of distortion, this is a practical limitation of low-cost
hardware. Interestingly, if this bias is caused by nonlinear distortion, then the residual error
is not a good indicator of attitude error. This is evident when considering that a perfect
attitude estimate will still yield reprojection errors.

The geometry of the camera tends toward a greater error in yaw than for pitch and
roll. Under stable flying conditions (minimal roll and pitch), the yaw angle of the aircraft
is measured from the angle of arc between stars about the principal point. When only a
small number of observations are made, the dispersion of stars about this principal point is
unlikely to be uniform, and consequently the resolution is decreased. In theory, this could
be offset by applying a higher weight to stars that are further displaced from the principal
point. In practice, however, the effects of lens distortion are most prominent at points
farthest from the principal point, and these observations are likely to be more erroneous.

In this study we seldom encountered multiple stars within the same ROI. With more
sensitive optical equipment, or less accurate attitude sensors, the occurrence of multiple
stars may increase. We have not explored the possibility of outlier removal; however,
we expect that the use of a random sample consensus (RANSAC) [15] algorithm may be
beneficial for the selection of stars under such circumstances.

5. Conclusions

We have demonstrated a novel use for long-exposure imagery captured from a low-
cost strapdown celestial sensor mounted to a lightweight, low-altitude, fixed-wing airframe.
The captured imagery contains high-resolution data pertaining to the attitude of the air-
craft. Standard image processing techniques were used on the long exposure images,
in conjunction with a linearized weighted least squares approximation, so as to produce a
corrected attitude estimate for each attitude reported by the INS. Through simulation, we
demonstrated that attitude is estimated with means absolute error less than 0.13 degrees in
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the yaw axis, and less than 0.06 degrees in the pitch and roll axes (3 σ). We subsequently
demonstrated that this algorithm translates to real imagery, with some additional noise due
to calibration. Future work will explore the use of this technique for the online calibration
of magnetometer offsets.
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Appendix A

Appendix A.1. Jacobian Matrix Entries

The partial derivatives of the image coordinates with respect to the aircraft Euler
angles are given by:

∂x
∂φ

=px
[

cos φ
(

sin ψX − cos ψY
)

− sin φ
(

sin θ cos ψX + sin θ sin ψY + cos θZ
)]

(A1)

∂x
∂θ

=− fx
(

sin θ cos ψX + sin θ sin ψY + cos θZ
)

+ px cos φ
(

cos θ cos ψX + cos θ sin ψY − sin θZ
)

(A2)

∂x
∂ψ

= fx cos θ
(− sin ψX + cos ψY

)
+ px sin φ

(
cos ψX + sin ψY

)
+ px cos φ

(− sin θ sin ψX + sin θ cos ψY
)

(A3)

∂y
∂φ

= fy
[(

sin φ sin ψ + cos φ sin θ cos ψ
)
X

+
(− sin φ cos ψ + cos φ sin θ sin ψ

)
Y

+
(

cos φ cos θ
)
Z
]
+ py

[(
cos φ sin ψ − sin φ sin θ cos ψ

)
X

+
(− cos φ cos ψ − sin φ sin θ sin ψ

)
Y − ( sin φ cos θ

)
Z
]

(A4)

∂y
∂θ

= fy
[(

sin φ cos θ cos ψ
)
X

+
(

sin φ cos θ sin ψ
)
Y +

(− sin φ sin θ
)
Z
]

+ py
[(

cos φ cos θ cos ψ
)
X

+
(

cos φ cos θ sin ψ
)
Y +

(− cos φ sin θ
)
Z
]

(A5)
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∂y
∂ψ

= fy
[(− cos φ cos ψ − sin φ sin θ sin ψ

)
X

+
(− cos φ sin ψ + sin φ sin θ cos ψ

)
Y
]

+ py
[(

sin φ cos ψ − cos φ sin θ sin ψ
)
X

+
(

sin φ sin ψ + cos φ sin θ cos ψ
)
Y
]

(A6)

∂z
∂φ

=
[

cos φ sin ψ − sin φ sin θ cos ψ
]
X

+
[− cos φ cos ψ − sin φ sin θ sin ψ

]
Y +

[− sin φ cos θ
]
Z (A7)

∂z
∂θ

=
[

cos φ cos θ cos ψ
]
X +

[
cos φ cos θ sin ψ

]
Y

+
[− cos φ sin θ

]
Z (A8)

∂z
∂ψ

=
[

sin φ cos ψ − cos φ sin θ sin ψ
]
X

+
[

sin φ sin ψ + cos φ sin θ cos ψ
]
Y (A9)

and the 2-dimensional homogeneous image coordinates are given by:

u =
x
z

, v =
y
z

(A10)

then by applying the quotient rule, we compute the partial derivatives:

∂u
∂φ

=
z ∂x

∂φ − x ∂z
∂φ

(z)2 (A11)

∂u
∂θ

=
z ∂x

∂θ − x ∂z
∂θ

(z)2 (A12)

∂u
∂ψ

=
z ∂x

∂ψ − x ∂z
∂ψ

(z)2 (A13)

∂v
∂φ

=
z ∂y

∂φ − y ∂z
∂φ

(z)2 (A14)

∂v
∂θ

=
z ∂y

∂θ − y ∂z
∂θ

(z)2 (A15)

∂v
∂ψ

=
z ∂y

∂ψ − y ∂z
∂ψ

(z)2 (A16)
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Abstract: This paper investigates the path planning problem of an unmanned aerial vehicle (UAV)
for completing a raid mission through ultra-low altitude flight in complex environments. The UAV
needs to avoid radar detection areas, low-altitude static obstacles, and low-altitude dynamic obstacles
during the flight process. Due to the uncertainty of low-altitude dynamic obstacle movement, this
can slow down the convergence of existing algorithm models and also reduce the mission success
rate of UAVs. In order to solve this problem, this paper designs a state detection method to encode
the environmental state of the UAV’s direction of travel and compress the environmental state space.
In considering the continuity of the state space and action space, the SD-TD3 algorithm is proposed
in combination with the double-delayed deep deterministic policy gradient algorithm (TD3), which
can accelerate the training convergence speed and improve the obstacle avoidance capability of the
algorithm model. Further, to address the sparse reward problem of traditional reinforcement learning,
a heuristic dynamic reward function is designed to give real-time rewards and guide the UAV to
complete the task. The simulation results show that the training results of the SD-TD3 algorithm
converge faster than the TD3 algorithm, and the actual results of the converged model are better.

Keywords: unmanned aerial vehicle; deep reinforcement learning; TD3; dynamic reward function;
state detection

1. Introduction

In recent years, UAVs have been widely used in the military by virtue of their stealth
and high maneuverability. The small and medium-sized UAVs are widely used on the
battlefield to attack important enemy targets because of their small size and the ability
to evade radar detection by flying at low or ultra-low altitudes [1–4]. In addition, under
the original technology, UAVs were controlled by rear operators for all operations and
did not achieve unmanned operation in the true sense. Further, with the advancement of
artificial intelligence technology, UAV intelligent pilot technology has also been rapidly
developed, and UAV autonomous control can be realized in many functions. However, in
order to further enhance the UAV’s autonomous control capability, research on UAV path
planning, real-time communication, and information processing needs to be strengthened.
Among them, UAV autonomous path planning is a hot issue attracting current researchers’
attention [5–8].

The path planning problem can be described as finding an optimal path from the
current point to the target point under certain constraints, and many algorithms have been
used so far to solve UAV path planning problems in complex unknown environments.
Nowadays, the common path planning algorithms are the A*algorithm, the artificial poten-
tial field algorithm, the genetic algorithm, and the reinforcement learning method [9,10].
In recent years, deep learning (DL) and reinforcement learning (RL) have achieved a lot of
results in many fields. Deep learning (DL) has strong data fitting ability, and reinforcement
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learning (RL) can model the process reasonably and can be trained without labels [11–13]
combined the advantages of DL and RL to obtain deep reinforcement learning (DRL),
which provides a solution to the problem of perception and decision-making for UAVs in
complex environments [14].

The DRL can effectively solve problems with both continuous and discrete spaces.
Therefore, many researchers proposed using DRL to solve the path planning problem.
Mnih, V., et al. proposed the deep Q-network (DQN) algorithm [15] by combining Q-
learning and deep learning to solve the problem of dimensional explosion triggered by
high-dimensional inputs. The DQN algorithm has achieved greater results in discrete
action and state spaces but cannot effectively solve the continuous state and action spaces.
In addition, when the changes of states and actions are infinitely partitioned, the amount of
data for states and actions will show exponential growth with the increase of degrees of
freedom, which can significantly impede the training and ultimately result in the algorithm
failing [16]. Moreover, the discretized state and action space actually removes a large
amount of important information, which will eventually lead to poor control accuracy,
which will not meet the requirements for UAV control accuracy in air warfare. The actor-
critic (AC) algorithm has the ability to handle the continuous action problem and is therefore
widely used to solve problems in the continuous action space [17].The network structure
of the AC algorithm includes an actor network and a critic network, actor network is
responsible for outputting the action, and the critic network evaluates the value of the
action and uses a loss function to continuously update the network parameters to get the
optimal action strategy [18]. However, the effect of the AC algorithm relies heavily on
the judgment of the value of the critic network, and the critic network converges slowly,
which leads to the actor network. Lillicrap, T.P. et al. [19] proposed the deep deterministic
policy gradient (DDPG) algorithm. The DDPG builds on the DQN algorithm’s principles
and combines the Actor-Critic algorithm’s framework with several enhancements over
the original AC algorithm to more effectively tackle the path planning problem in static
environments. However, when applying the DDPG algorithm to solve path planning
problems in dynamic environments, there is the problem of overvaluation of the value
network, which leads to slow model convergence and a low training success rate. Scott
Fujimoto [20] et al. improved on the deep deterministic policy gradient (DDPG) algorithm
to obtain the twin delayed deep deterministic policy gradient (TD3) algorithm, which is
the TD3 algorithm that incorporates the idea of the double DQN algorithm [21] into the
DDPG algorithm, which effectively solves the problem of difficult algorithm convergence
in a dynamic environment.

In this paper, a state detection method is proposed and combined with a dual-delay
deep deterministic policy gradient (TD3) to form the SD-TD3 algorithm, which can solve
the global path planning problem of a UAV in a dynamic battlefield environment and also
identify and avoid obstacles. The main contributions of this paper are as follows:

(1) After combining the battlefield environment information, the information inter-
action mode between UAV and the battlefield environment is analyzed, a simulation
environment close to the real battlefield environment is built, and the motion model of
UAV autonomous path planning is constructed.

(2) The network structure and parameters most suitable for the SD-TD3 algorithm
model are determined through multiple experiments. A heuristic dynamic reward function
and a noise discount factor are also designed to improve the reward sparsity problem and
effectively improve the learning efficiency of the algorithm.

(3) A state detection method is proposed that divides and compresses the environment
state space in the direction of the UAV and encodes the space state by a binary number, so
as to solve the problem of data explosion in the continuous state space of the reinforcement
learning algorithm.

(4) The simulation experiments are carried out to verify the performance of the SD-TD3
algorithm, and the simulation experiments are based on the model of a UAV performing
a low airspace raid mission. The results show that the SD-TD3 algorithm can help the UAV
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avoid radar detection areas, mountains, and random dynamic obstacles in low-altitude
environments so that it can safely and quickly complete the low-altitude raid mission.

(5) By analyzing the experimental results, it can be concluded that the SD-TD3 al-
gorithm has a faster training convergence speed and a better ability to avoid dynamic
obstacles than the TD3 algorithm, and it is verified that the SD-TD3 algorithm can further
refine the environmental state information to improve the reliability of the algorithm model,
so that the trained algorithm model has a higher success rate in practical applications.

The rest of the paper is structured as follows, with related work presented in Part II.
The third part models and analyzes the battlefield environment. Part IV describes the state
detection scheme, the specific structure of the SD-TD3 algorithm, and the setting of the
heuristic reward function, and Part V verifies the performance of the SD-TD3 algorithm
through a simulation environment and analyzes the experimental results. The conclusion
is given in the sixth part.

2. Related Work

In recent years, a lot of research on autonomous UAV path planning has been carried
out at home and abroad, which can be divided into four categories of algorithms accord-
ing to their nature: graph search algorithms, linear programming algorithms, intelligent
optimization algorithms, and reinforcement learning algorithms.

The graph search algorithm mainly contains the Dijkstra algorithm, the RRT algorithm,
the A* algorithm, the D* algorithm, etc. The most classical Dijkstra algorithm shows higher
search efficiency than depth-first search or breadth-first search in the problem of finding
the shortest path. However, the execution efficiency of the Dijkstra algorithm gradually
decreases as the map increases. Ferguson, D. et al. [22] optimized Dijkstra and proposed
the A* and D* algorithms. Zhan et al. [23] proposed an UAV path planning based on
the improved A* algorithm for the path planning problem of low altitude UAVs in a 3D
battlefield environment that satisfies UAV performance constraints such as safe lift and
turn radii. Saranya, C. et al. [24] proposed an improved D* algorithm for the path planning
problem in complex environments, which introduced slope into the reward function. The
simulations and experiments proved the effectiveness of the method, which can be used
to guarantee the flight safety of UAVs in complex environments. Li, Z. et al. [25] applied
the RRT algorithm to the unmanned ship path planning problem, and an improved fast
extended random tree algorithm (Bi-RRT) is proposed. The simulation results show that
the optimized RRT algorithm can shorten the planning time and reduce the number of
iterations, which has better feasibility and effectiveness.

The linear programming algorithm is a mathematical theory and method to study
the extremum of a linear objective function under linear constraints that is widely used
in the military, engineering technology, and computer fields. Yan, J. et al. [26] proposed
a mixed-integer linear programming-based UAV conflict resolution algorithm that estab-
lishes a safety separation constraint for pairs of conflicting UAVs by mapping the nonlinear
safety separation constraint to sinusoidal value-space separation linear constraints, then
constructs a mixed-integer linear programming (MILP) model, mainly to minimize the
global cost, and finally conducts simulation experiments to verify the effectiveness of the
algorithm. Yang, J. et al. [27] proposed a cooperative mission assignment model based
on mixed integer linear programming for multiple UAV formations against enemy air
defense fire suppression. The algorithm represents the relationship between UAVs and cor-
responding missions by decision variables, introduces continuous time decision variables
to represent the execution time of missions, and establishes the synergistic relationship
among UAVs and between UAVs performing missions by mathematical descriptions of
linear equations and inequalities between decision variables. The simulation experiments
show the rationality of the algorithm.

The intelligent optimization algorithms are developed by simulating or revealing
certain phenomena and processes in nature or the intelligent behaviors of biological groups,
and they generally have the advantages of simplicity, generality, and ease of parallel

186



Machines 2023, 11, 108

processing. In UAV path planning, genetic algorithms, particle swarm algorithms, ant
colony algorithms, and hybrid algorithms have been applied more often. Hao, Z. et al. [28]
proposed an UAV path planning method based on an improved genetic algorithm and an A*
algorithm for system positioning accuracy in the UAV path planning process, considering
the UAV obstacle constraints and performance constraints, and taking the shortest planned
trajectory length as the objective function, which achieved the goal of accurate positioning
with the goal of the least number of corrected trajectories. Lin, C.E. [29] established
an UAV system distance matrix to solve the multi-target UAV path planning problem
and ensure the safety and feasibility of path planning, used genetic algorithms for path
planning, and used dynamic planning algorithms to adjust the flight sequence of multiple
UAVs. Milad Nazarahari et al. [30] proposed an innovative artificial potential field (APF)
algorithm to find all feasible paths between a starting point and a destination location
in a discrete grid environment. In addition, an enhanced genetic algorithm (EGA) is
developed to improve the initial path in continuous space. The proposed algorithm not
only determines the collision-free path but also provides near-optimal solutions for all
robot path planning problems.

Reinforcement learning is an important branch of machine learning that can opti-
mize decisions without a priori knowledge and by continuously trying to iterate to obtain
feedback information based on the environment. Currently, many researchers combine
reinforcement learning and deep learning to form deep reinforcement learning (DRL),
which can effectively solve path planning problems in dynamic environments. Typical
DRL algorithms include the deep Q-network (DQN) algorithm, the actor-critic (AC) algo-
rithm, the deep deterministic policy gradient (DDPG) algorithm, and the twin delayed
deep deterministic policy gradient (TD3) algorithm. Cheng, Y. et al. [31] proposed a deep
reinforcement learning obstacle avoidance algorithm under unknown environmental dis-
turbances that uses a deep Q-network architecture and sets up a comprehensive reward
function for obstacle avoidance, target approximation, velocity correction, and attitude
correction in dynamic environments, overcoming the usability problems associated with
the complexity of control laws in traditional parsing methods. Zhang Bin [32] et al. applied
the DDPG algorithm. The improved algorithm has significantly improved efficiency com-
pared with the DDPG algorithm. Hong, D. [33] et al. proposed an improved double-delay
deep deterministic policy gradient (TD3) algorithm to control multiple UAV actions and
also utilized the frame superposition technique for continuous action space to improve the
efficiency of model training. Finally, simulation experiments showed the reasonableness
of the algorithm. Li, B. [34] et al. combined meta-learning with the dual-delay depth-
deterministic policy gradient (TD3) algorithm to solve the problem of rapid path planning
and tracking of UAVs in an environment with uncertain target motion, which improved the
convergence value and speed. Christos Papachristos et al. [35] proposed an off-line path
planning algorithm for the optimal detection problem of an a priori known environment
model. The actions that the robot should take if no previous map is available are iteratively
derived to optimally explore its environment.

In summary, many approaches for autonomous path planning have been proposed
in the field of UAVs, but relatively little work has been done to apply these approaches to
battlefield environments. In the previous experiment, we selected the DQN algorithm, the
DDPG algorithm, and the TD3 algorithm. The experimental results show that the DQN
algorithm and the DDPG algorithm are difficult to converge, and the training results are not
ideal. In this paper, the double-delay deep deterministic policy gradient (TD3) algorithm is
selected for UAV path planning because TD3 not only has powerful deep neural network
function fitting capability and better generalized learning capability but also can effectively
solve the problem of overestimation of Q-value during the training process for algorithmic
models with actor-critic structure. The TD3 also has the advantage of fast convergence
speed and is suitable for acting in continuous space. However, the original TD3 algorithm
usually only takes the current position information of the UAV as the basis for the next
behavior judgment, and the training effect is not ideal in a dynamic environment. In
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this paper, we provide a state detection method to detect the environmental space in the
direction of UAV flight so that the algorithm model can have stronger environmental
awareness and make better decisions during the flight process.

3. Environmental Model

3.1. Description of the Environmental Model

Figure 1 illustrates the battlefield environment of an UAV on a low-level raid mission,
where the UAV is assigned to attack a radar position 50 km away. In order to avoid flying
too high and being detected by radar, the UAV must take a low-altitude flight below 1 km.
During low-altitude flight, the UAV needs to autonomously avoid static ground obstacles
such as mountains and buildings. At the same time, because the low-altitude environment
is susceptible to dynamic obstacles such as flying birds and civilian low-altitude vehicles,
the UAV also needs to make accurate and timely responses to random dynamic obstacles.

 

Figure 1. Schematic of battlefield environment.

3.2. Environment Parameters Setting

The simulation experimental environment is set as a low-altitude area of 50 km long
and 1 km high, and the radar position Radar(x,y) and the UAV initial position UAV(x0,y0)

can be expressed as:
Radar(x,y) = [50 km, 0.2 km] (1)

UAV(x0,y0)
= [0 km, 1 km] (2)

The velocity v of the UAV can be divided into horizontal velocity vxi ∈ (0 m/s, 100 m/s)
and vertical velocity vyi ∈ (−3 m/s, 3 m/s), and the UAV real-time position uav(ti) can be
expressed as

uav(ti) = [xti , yti ] = [∑
i
(vxi∗Δt), ∑

i
(vyi∗Δt)] (3)

The UAV should avoid collision with static ground obstacles such as mountains and
buildings during low-altitude flight. In addition, the assumption is that the height of the
ground obstacle is 100 m and the coordinates of its lowest center point Static_obstacle(x,y)
can be expressed as:

Static_obstacle(x,y) = [20 km, 0 km] (4)

In the process of low-altitude flight, the UAV should also avoid dynamic obstacles
such as flying birds, low-altitude civil vehicles, etc. Assuming that dynamic obstacles are
randomly generated in the area below 300 m in height and the initial position is expressed
as (x0, y0), its dynamic real-time position Dynamic_obstacle(x,y) can be expressed as follows:

Dynamic_obstacle(x,y) = [xd, yd] =
[

x0 + vdx∗Δt, y0 + vdy∗Δt
]

(5)

The initial position (x0, y0) in Equation (5), x0 ∈ (0 km, 50 km), y0 ∈ (0 km, 0.3 km),
dynamic obstacle moving speed vdx ∈ (−10 m/s, 10 m/s), vdy ∈ (−1 m/s, 1 m/s).
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A safe distance of more than 50 m should be maintained between the UAV and the
dynamic obstacle.

dsa f e =
∣∣∣uav(ti)− Dynamicobstacle(x,y)

∣∣∣ = √(xti − xd)
2 + (yti − yd)

2 ≥ 0.05 km (6)

The maximum firing range of the air-to-ground missile on the UAV is 10 km. Assuming
that the missile has a 100% hit rate within the firing range, the UAV is considered to have
completed its mission when it safely reaches a position 10 km from the radar. The UAV
is equipped with a radar warning device to determine if it is locked by the radar, and the
maximum radius of the guided radar is 40 km. However, the probability P of an UAV
being detected by radar in the airspace below 1 km in altitude is related to the distance
d between radars and the current flight altitude h due to factors such as the curvature of
the earth, detection angle, ground obstructions, and ground clutter. If the UAV is flying at
too low an altitude, there is a low altitude blind zone that is completely undetectable by
radar. Assuming that the radar blind zone is an airspace with an altitude less than 300 m,
the radar detection probability model can be expressed as:

P =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 d > 50 km
0 h < 0.3 km
1 d ≤ 50 km, h ≥ 1 km

1
0.01+2e−5h+5 − d2

3200 + 1
2 d ≤ 50 km, 0.3 km ≤ h ≤ 1 km

(7)

Equation (7) can be obtained from the radar detection probability model as shown in
Figure 2.

Figure 2. Probability model of radar detection.

From Figure 2, we can see that the d-axis is the distance between the UAV and radar,
the h-axis is the flight height of the UAV, and the p-axis is the probability of the UAV
being detected by radar. In addition, through the analysis, it can be seen that the UAV can
effectively avoid the detection of radar when it flies below 300 m but the probability of
being detected by radar is not 100% in the range of flight altitude h ∈ (0.3 km, 1 km), which
makes it difficult for the UAV to accurately identify the radar-covered airspace during the
training process. In summary, this path planning experiment is challenging.

4. TD3-Based UAV Path Planning Model

In this section, we will describe the origin and development of the TD3 algorithm and
improve it to better solve this path planning problem. The improvements are twofold. First,
a dynamic reward function is set up to solve the problem of sparse rewards in the traditional
deep reinforcement learning algorithm model, which can provide real-time feedback to the
corresponding rewards according to the state of the UAV and speed up the convergence of
the algorithm model in the training process. Secondly, the SD-TD3 algorithm is proposed,
which mainly sets the segmentation of the region in the flight direction of the UAV, detects
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and encodes the states at different regional locations with binary numbers, and adds the
detected environmental state values to the input of the algorithm model to improve the
UAV’s obstacle avoidance capability.

4.1. Deep Reinforcement Learning Model

Deep reinforcement learning (DRL) is a learning method combining DL and RL that
combines the data processing capability of DL with the decision-control capability of RL.
In recent years, DRL has achieved great results in continuous space motion control and can
effectively solve the UAV path planning problem. The deep deterministic policy gradient
(DDPG) algorithm is a representative algorithm in DRL for solving continuous motion
space problems, which can lead to deterministic actions based on state decisions. The idea
of the DDPG algorithm is derived from the Deep Q Network (DQN) algorithm, and the
update function of DQN can be expressed as:

Q(s, a) = Q(s, a) + α

(
r + γmax

a′
Q(s′, a′)− Q(s, a)

)
(8)

where α ∈ (0, 1] is the learning rate, which is used to control the proportion of future
rewards during learning. In addition, γ ∈ (0, 1) is the decay factor, which indicates the
decay of future rewards. r denotes the reward after performing action a. From Equation (8),
it can be seen that DQN is updated using the action currently considered to be of the
highest value at each learning, which results in an overestimation of the Q-value, and thus
DDPG also suffers from this problem. In addition to this, DDPG is also very sensitive to
the adjustment of hyperparameters [36].

The double-delay deep deterministic policy gradient (TD3) algorithm solves these
problems. The TD3 makes three improvements over the DDPG: first, it uses two indepen-
dent critic networks to estimate Q values and selects smaller Q values for calculation when
calculating the target Q values, which can effectively alleviate the problem of overesti-
mation of Q values; second, the actor network uses delayed updates. The critic network
is updated more frequently compared with the actor network, which can minimize the
error; third, smoothing noise is introduced in the action value output from the actor target
network to make the valuation more accurate, but no noise is introduced in the action value
output from the actor network.

The pseudo-algorithm of TD3 can be expressed as Algorithm 1:

Algorithm 1: The Pseudo-Algorithm of TD3

1. Initialize critic networks Qθ1 , Qθ2 , and actor network with random parameters θ1,θ2,
2. Initialize target networks θ′1←θ1, θ′2←θ2, ′ ←
3. Initialize replay buffer B
4. for t = 1 to T do

5. Select action with exploration noise a ∼ π (s) + ε, ε ∼ N(0, σ)
and observe reward r and new state s′
6. Store transition tuple (s, a, r, s′) in B
7. Sample mini-batch of N transitions (s, a, r, s′) from B
8. Compute target action ã ← π ′ (s′) + ε , ε ∼ clip(N(0, σ̃),−c, c)
9. Compute target Q value y ← r + γmini=1,2Qθ′i (s

′, ã)

10. Update critics θi ← argminθi N
−1 ∑

(
y − Qθi (s, a)

)2

11. if t mod d Then

12. Update by the deterministic policy gradient:

13. ∇ J = N−1 ∑∇aQθ1 (s, a)
∣∣∣a=π (s)∇ π (s)

14. Update target networks:
15. θ′i←τθi + (1 − τ)θ′i
16. ′←τ + (1 − τ) ′
17. end if

18. end for
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4.2. State Detection Method

The conventional TD3 algorithm takes the current position information (x,y) of the
UAV as input, outputs the action to the environment, and continuously learns from the
environment with rewards for interaction. When trained enough times, the UAV is able to
take the corresponding correct action at any position to reach the destination. In this method,
it is difficult to effectively achieve the purpose of avoiding obstacles through the current
position information of the UAV when dynamic obstacles appear in the environment. In
order to be able to effectively complete the path planning task in a complex dynamic
environment, the UAV must be able to identify the environmental state of the forward
region, and when an obstacle appears in the forward region, the UAV can immediately
identify the location of the obstacle and make a decision to avoid the obstacle. Therefore, in
this paper, a state detection coding method is designed to encode the environmental state
of the UAV’s forward area.

The UAV is usually equipped with various sensors for detecting the surrounding
environment. Suppose the UAV is equipped with sensors that can detect the state of the
area ahead, and the working maximum distance of the sensors is 100 m. In addition,
through these sensors, the UAV can detect whether there is an obstacle in the area ahead.
We use the binary number 1 or 0 to indicate the presence or absence of obstacles. Further,
through the state detection code, we can get a set of current environment state information
arrays; this array will be added to the input of the algorithm model. In this way, the
UAV can make the correct decision based on the environmental state information of the
forward area.

By the state detection coding method, the environment space of the UAV advance
region needs to be divided. Since the current environment is a continuous space, it can
theoretically be divided an infinite number of times, but it will cause an increase in the
training computation. Therefore, our scheme takes a limited number of divisions, which
can also be regarded as the compression of the environmental state space in front of the
UAV. Taking Figure 3 as an example, it can be seen that the region in front of the UAV is
divided into six parts on average, and there are seven location points for encoding. The
state input information of the UAV, SUAV , can be expressed as follows:

SUAV = [s0, s1, s2, s3, s4, s5, s6, x, y], si ∈ [0, 1] (9)

Figure 3. Schematic diagram of status detection code.

In Equation (9) si represents the environmental state information about each direction;
si = 0 means there is no obstacle in the corresponding direction, and si = 1 means there is
an obstacle in the corresponding direction. In addition, by inputting SUAV to the algorithm
model, after training the UAV can make correct decisions based on environmental state
information in the forward direction, and thus accomplish the task of avoiding various
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obstacles. In order to verify the effectiveness of the state detection coding method, this
experiment will also further refine the state and divide the area in front of the UAV into
12 parts on average; the location points for coding will then be 13, and the state input
information SUAV can be expressed as:

SUAV = [s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, x, y], si ∈ [0, 1] (10)

4.3. Heuristic Dynamic Reward Function

The reward functions, also known as immediate rewards, are an important component
of deep reinforcement learning algorithm models. When an UAV performs an action, the
environment generates feedback information for that action and evaluates the effect of that
action. In traditional reinforcement learning algorithms, intelligence is rewarded when it
completes a task and is not rewarded in other states. However, such rewards are prone
to the reward sparsity problem in the face of complex environments [37]. The effective
rewards are not available in a timely manner, and the algorithm model will be difficult to
converge, which can be solved by setting up a heuristic reward function with guidance.
The heuristic reward function designed in this paper can be expressed as follows:

R =

⎧⎨⎩
β(D−dt+1)

D , dt > dt+1

− β(D−dt+1)
D , dt+1 ≥ dt

(11)

In Equation (11) β ∈ (0,+∞) is the reward coefficient, D is the initial distance of 50 km
between the UAV and radar position, dt is the distance between the UAV and radar position
at the current moment, and dt+1 is the distance between the UAV and radar position at
the next moment. In analyzing Equation (11), we can see that when the UAV performs
each action, if it is closer to the target at the next moment, it gets a positive reward, and the
closer it is to the radar position, the greater the positive reward value it gets; if it is further
away from the radar position at the next moment, it gets a negative reward, and the further
it is from the radar position, the greater the negative reward value it gets.

In addition to the heuristic reward, when the distance between UAV and a dynamic
obstacle is less than the safe distance dsa f e or when there is a collision with a static obstacle,
the reward of 300 dollars will be obtained, the environment will be reset, and UAV will start
training from the initial position again. In addition, when the distance between the UAV
and the radar is less than 10 km, the mission is completed, the reward of 300 dollars will be
given, the environment is reset, and the UAV starts training again from its initial position.

In general, the reward function in this study is a dynamic reward function generated
by combining the current state of the UAV. The dynamic nature of the reward function
has two main points. One is that the reward generated by the environment interaction
is generated in real time when the UAV is trained in the environment, which solves the
problem of sparse reward compared to traditional reinforcement learning. Second, the
reward value obtained during the training process of UAV and environment interaction
will change with the current location information. According to the change in reward
value, the UAV can be guided to move in the appropriate direction, which can promote the
convergence of the algorithm model. The reward function has the role of heuristic guidance
for UAVs, so it can be called the heuristic reward function.

4.4. State Detection Double-Delay Depth Deterministic Policy Gradient Algorithm Model

In combining the TD3 algorithm model with the above-mentioned heuristic reward
function and the state detection method, it is possible to design the state detection double-
delay depth deterministic policy gradient (SD-TD3) algorithm model. The UAV detects
the state information s of the environment in the forward region, encodes it as the input
of the algorithm model, and outputs the action after calculating it with the TD3 model.
Figure 4 shows the specific algorithm. During the process, the UAV executes a and the
environment’s state changes to the next state, s′; while executing a, the environment will
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feedback a reward r, according to the reward function, and the quadratic information set
(s, a, r, s′) is obtained. The quaternion information reaches the experience pool, and when
the experience pool is stored to a certain number, random samples are drawn for training,
and by inputting these sample data, they are used to update the network of actor-critic. The
existence of the experience pool helps UAV learn from previous experiences and improve
the efficiency of sample utilization. The random sampling can break the correlation between
samples and make the learning process of the UAV more stable [38].

Figure 4. The combination of the state probing method and the TD3 model.

The TD3 algorithm model sets up a total of six neural networks based on the actor-
critic structure, which are actor network π , actor target network π ′ , critic network Qθ1 ,
critic network Qθ2 , critic target network Qθ1

′ , critic target network Qθ2
′ . The roles and

updates of these networks can be expressed as:

1. Actor network π : input the current state s of the UAV, output the current action a and
then interact with the environment to reach the next state s′ and the obtained reward
r. The actor network parameters are updated iteratively in this process.

2. Actor target network π ′ : s′ in the quaternion is used as input after random sampling
from the experience pool, and the next action a′ is generated after adding noise ε to
the output result. The actor target network parameter ′ is based on the actor network
parameter for delayed soft update, θ′i = τθi + (1 − τ)θ′i .

3. Critic network Qθi : input current state s and current action a, output current Q
value Qθi (s, a), and iteratively update critic network parameter θi in this process.
in calculating the target Q value, take the smallest of Qθ1

′(s′, a′) and Qθ2
′(s′, a′) is

calculated, y = r + γmini=1,2Qθ′i (
s′, a′).

4. Critic target network Qθi
′ : After random sampling from the experience pool, s′ in the

quaternion and the next action a′ generated by the Actor target network are used as
input, and Qθ1

′(s′, a′) and Qθ2
′(s′, a′) are output. The critic target network parameter

θi
′ is delayed soft update based on critic network parameter θi, ′ = τ + (1 − τ) ′.

For the Critic network, the loss function is expressed as:

J(θi) = N−1 ∑
(
y − Qθi (s, a)

)2 (12)

For actor networks, a deterministic strategy is used to optimize the parameters, and
the loss function is expressed as

∇ J( ) = N−1 ∑∇aQθ1(s, a)
∣∣∣a=π (s)∇ π (s) (13)
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5. Simulation Experiment Setup and Result Analysis

In order to test the effectiveness of SD-TD3 algorithm performance, this experiment
set up two simulation experimental environments for training Environment 1 is a static
environment, set up with a radar detection area and a mountain range as static obsta-
cles. Environment 2 is a dynamic environment, in which a random low-altitude dynamic
obstacle is added to Environment 1, and the relevant environmental parameters are de-
scribed in Section 3.2. The TD3 algorithm and SD-TD3 algorithm are verified in these two
environments. All training experiments were conducted on a computer with an Intel(R)
Core(TM) i7-10700 CPU and an NVIDIA GeForce RTX3060Ti GPU, using Python 3.9 as the
project interpreter. The deep learning framework Pytorch-1.12.1 is used for neural network
training under Windows.

5.1. Algorithm Hyperparameter Settings

The hyperparameters of TD3 and SD-TD3 algorithms are: neural network structure
parameters, learning rate α, discount factor γ, experience pool size R, number of samples
B, target network soft update factor τ, noise attenuation factor k. These parameters have
different effects on the performance of the algorithms. If the number of hidden layers
and hidden layer neurons in the neural network is too small, the neural network cannot
fit the data well, and if the number of hidden layers and hidden layer neurons in the
neural network is too large, the increase in the calculation amount of the algorithm cannot
effectively learn. The larger the value of learning rate α, the faster the training speed of
the algorithm, but prone to oscillation; the smaller the value, indicating that the slower
the training speed model is difficult to converge. The larger the discount factor γ, the
more the algorithmic model focuses on past experience; the smaller the value, the more it
focuses on current experience. In addition, both the size of the experience pool R and the
number of samples sampled B affect the learning efficiency of the algorithm; if the value is
too small, the learning efficiency will be low, and if the value is too large, the algorithm
tends to converge to a local optimum. The smaller the soft update coefficient τ of the target
network, the more stable the algorithm is, and the smaller the change of the target network
parameters, the slower the algorithm will converge. Since the action values of the actor
target network output in the algorithm model is added with smoothing noise ε

ε ∼ clip(N(0, σ̃),−c, c) (14)

In Equation (14), σ̃ is the standard deviation of the normal distribution, and the larger
the value, the larger the value of the added noise. However, as the model gradually
converges with the training process, it is not easy to converge if the noise value is too
large to produce oscillations. Therefore, the noise attenuation factor k ∈ (0, 1) is set in
this experiment, and the standard deviation σ̃ is multiplied by the noise attenuation factor
k to reduce the noise whenever the UAV completes a task during training. The specific
hyperparameter settings are shown in Table 1.

Due to the fact that both TD3 algorithm and SD-TD3 algorithm use the actor-critic
framework, the learning rates αa and αc of the Actor module network and Critic module
network are important hyperparameters. Where αa corresponds to actor network π
and actor target network π ′ , αc corresponds to critic network Qθ1 , critic network Qθ2 ,
critic target network Qθ1

′ and critic target network Qθ2
′ . so, αc has a large impact on the

convergence effect of the model. In order to select a suitable αc, we set five different αc for
training in environment 1 and environment 2 through several experiments, and compare
the convergence of the TD3 algorithm and SD-TD3 algorithm in different environments by
analyzing the results.
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Table 1. Hyperparameter settings.

Hyperparameters Symbol Value

Hidden layers - 2
Hidden layer units - 256

Max episodes - 3000
Max steps per episode - 400

Actor network learning rate αa 0.0001
Critic network learning rate αc 0.001

Discount factor γ 0.99
Replay buffer size R 6400

Batch size B 128
Soft update rate τ 0.005

Noise attenuation factor k 0.999

5.2. Analysis of Experimental Results
5.2.1. TD3 Algorithm Model

Figures 5 and 6 show the training effects achieved by the TD3 algorithm after setting
five different critic module network learning rates αc in environments 1 and 2, respectively.
From Figure 5, it can be seen that the most suitable αc for the TD3 algorithm model in
Environment 1 is 0.0009, and the model starts to converge at a round number of 660 No
oscillation occurs after the model converges. From Figure 6, it can be seen that in environ-
ment 2, the most suitable αc for the TD3 algorithm model is 0.0001, and the model starts
to converge when the number of rounds is 710. Due to the dynamic obstacles of random
appearance and random motion in environment 2, the model can converge, but there are
still more obvious oscillations.

Figure 5. Training result of TD3 algorithm model in environment 1.

Figure 6. Training result of TD3 algorithm model in environment 2.
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5.2.2. SD-TD3 Algorithm Model

To verify the performance of the SD-TD3 algorithm model, the area in front of the
UAV is divided equally into six parts. Figures 7 and 8 show the training results achieved
by the SD-TD3 (6) algorithm with five different critic module network learning rates αc set
in environment 1 and environment 2, respectively. From Figure 7, it can be seen that the
most appropriate αc for the SD-TD3 (6) algorithm model is 0.0003 in Environment 1, and
the model starts to converge at a round number of 410. From Figure 8, it can be seen that
under environment 2, the most suitable αc for the SD-TD3 (6) algorithm model is 0.001, and
the model starts to converge at a number of rounds of 635. At this point, it can be seen that
the SD-TD3 (6) algorithm model converges faster compared to the TD3 algorithm model.

Figure 7. Training result of SD-TD3 (6) algorithm model in environment 1.

Figure 8. Training results of SD-TD3 (6) algorithm model in Environment 2.

In order to further validate the performance of the SD-TD3 algorithm model, the area
in front of the UAV’s travel was divided equally into 12 sections. Figures 9 and 10 show the
training results achieved by the SD-TD3 (12) algorithm in Environment 1 and Environment
2 after setting five different Critic module network learning rates αc, respectively. From
Figure 9, it can be seen that the most appropriate αc for the SD-TD3 (12) algorithm model is
0.0009 in Environment 1, and the model starts to converge at a round number of 90. From
Figure 10, it can be seen that under environment 2, the most suitable αc for the SD-TD3 (12)
algorithm model is 0.0009, and the model starts to converge at the number of rounds of
210. At this point, it can be seen that the SD-TD3 (12) algorithm model converges faster
compared to the SD-TD3 (12) algorithm model.
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Figure 9. Training result of SD-TD3 (12) algorithm model in environment 1.

Figure 10. Training result of SD-TD3 (12) algorithm model in environment 2.

5.2.3. Comprehensive Analysis

Figure 11 compares the best training results of the three algorithmic models in the
two environments.

In analyzing all the training results, it is clear from them that the TD3 algorithm model
and the SD-TD3 algorithm model eventually obtain the same reward value in both static
and dynamic environments, and both can reach convergence, but the convergence speed in
the dynamic environment is slower than that in the static environment. In comparison with
the convergence speed of the three models, the SD-TD3(12) algorithm model converges
faster than the SD-TD3(6) algorithm, and the SD-TD3(6) algorithm model converges faster
than the TD3 algorithm. Therefore, the convergence speed of the SD-TD3 algorithm model
is higher than that of the TD3 algorithm model in both static and dynamic environments.

Further observation of the training results shows that the oscillation amplitude of the
three models in the dynamic environment is larger than that in the static environment. In
order to verify the robustness of the model, the model that had been trained and reached
convergence was run for 30,000 rounds in two environments, and the analysis was carried
out by comparing the probability of successfully completing the task.

In Figure 12, the blue color indicates the probability in environment 1, and the orange
color indicates the probability in environment 2. The actual success rates of the three
algorithm models in the static environment are similar and close to 1. The actual success
rates of the three models in the dynamic environment are lower compared to those in the
static environment, but the SD-TD3 algorithm’s performance is higher compared to the
TD3 algorithm, and the performance of the SD-TD3 algorithm model can be improved with
further refinement of the spatial states, thus improving the actual success rates.
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(a) (b) 

Figure 11. The best training results of the three algorithmic models. (a) Best training results of the
model in environment 1; (b) Best training results of the model in environment 2.

Figure 12. Success rate of all algorithmic models in both environments.

6. Conclusions

In this paper, we propose a state detection method based on the TD3 algorithm to solve
the autonomous path planning problem of UAVs in low-altitude conditions. Firstly, the
process of a UAV raid mission in a complex low-altitude environment was modeled, as were
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the static environment and dynamic environment of low-altitude flight. Similarly, in order
to solve the problem of sparse reward in traditional reinforcement learning, a dynamic
reward function with heuristic guidance is set up, which can make the algorithm model
converge faster. On the basis of these works, combined with the state detection method, the
SD-TD3 algorithm is proposed. The simulation results show that the convergence speed
of the SD-TD3 algorithm model is faster than that of the TD3 algorithm model in both
a static and a dynamic environment. In the static environment, the actual task completion
rate of the SD-TD3 algorithm is similar to that of the TD3 algorithm, but in the dynamic
environment, the success rate of the SD-TD3 algorithm model to complete the raid task is
higher than that of the TD3 algorithm, and with the detailed division of the space state
information in the direction of UAV travel, the success rate of the SD-TD3 algorithm model
will also improve. In general, the SD-TD3 algorithm has a faster training convergence
speed and a better ability to avoid dynamic obstacles than the TD3 algorithm. The SD-
TD3 algorithm needs to accurately extract environmental information to determine the
position of obstacles, but in practical applications, many sensors are needed to extract and
process environmental information. This paper does not study the collaborative processing
method of these sensors, so it will be challenging in practical applications. In future work,
it can be further studied to change the input mode of the algorithm model and input more
effective environmental information to promote the algorithm model’s ability to make
correct decisions. At the same time, the SD-TD3 algorithm is combined and compared with
other DRL algorithms, such as the PPO (proximal policy optimization) algorithm and SAC
(soft actor critic) algorithm.
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Abstract: The problem of aircraft entering and exiting water is a complex, nonlinear, strongly
disturbed, and multi-coupled multiphase flow problem, which involves the precise capture of the
air/water interface and the multi-coupling interaction between aircraft, water, and air. Moreover, due
to the large difference in medium properties during the crossing, the load on the body will suddenly
change. In this paper, the VOF (volume of fluid) algorithm is used to capture the liquid surface
at the air/water interface, and since body movement is involved in this process, the overset grid
technology is used to avoid the traditional dynamic grid deformation problem. In the process of
this numerical simulation prediction, the effects of different water-entry angles and different water-
entry heights on the body load and attitude of the trans-medium aircraft, as well as the cavitation
evolution law of the body water entry are analyzed. On this basis, to simulate the authenticity and
complexity of the water-entry environment, numerical wave-making technology was introduced to
analyze the water-entry load, posture, and cavitation evolution law of the body under different wave
environments. The numerical parameters under the condition of wave and no wave are compared,
and the difference in water-entry performance under the condition of wave and no wave is analyzed.

Keywords: transmedia aircraft; multiphase flow; overset grid; cavitation evolution; numerical
wave making

1. Introduction

With the rapid development of small aircraft, ships, underwater submersibles, and
other intelligent mobile platforms in search and rescue, detection, communications, combat
reconnaissance, combat, and other types of military activities [1], civilian fields are widely
used. However, the three-dimensional process of modern warfare is accelerating, and the
environment in which combat equipment is located is gradually changing from the original
single type to the multi-phase type [2]. To better adapt to the operational needs of modern
warfare, the study of trans-media vehicles has become crucial.

The dynamic model of the trans-medium aircraft [3] is the basis for analyzing its
motion characteristics and studying flight stability control. As the core key link of the
dynamic model, the numerical prediction of the outlet/inlet section plays a vital role in
the accurate response of the dynamic model. The water-entry process is a complex fluid
phenomenon with strong nonlinear and unsteady characteristics [4]. From a mechanical
point of view, the water-entry process of an object passing through the water surface at
a relative speed mainly includes three stages [5]: the slamming when it contacts the free
surface, the open cavity with large deformation of the free surface, and the underwater
movement after the open cavity closes [6]. The first slamming stage is mainly a matter of
impact dynamics, while the last two water-entry stages involve fluid–structure interaction
of hydrodynamics and structural dynamics coupling [7]. In the initial stage of water entry,
due to the large difference in the characteristics of the liquid and gas media, the slamming
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process will instantly generate a large load on the airframe, causing the part of the trans-
medium aircraft in contact with the free surface to suffer a short-term, high-intensity
pressure shock wave [8]. This propagates inside the body, causing the body to produce
plastic deformation and have an oscillation effect. After entering the water, due to the large
deformation of the free surface and the fluid–solid coupling between the hydrodynamic
force and the body [9], cavitation evolution will occur on the surface of key components
such as the body rotor, and the unsteady evolution and collapse of the cavitation will
produce corresponding damage on the surface of the structure. Pressure pulsations cause
significant dynamic responses in the body structure.

A crucial step in the numerical prediction of water entry is the simulation of large
deformation of the free interface and the boundary conditions of the dynamic mesh [10].
The simulation of large deformation of free interface mainly includes two types: one is the
interface tracking technology, and the other is the interface capture technology [11]. Typical
free interface simulation methods include the level-set and VOF methods. The level-set
method is a grid-based interface tracking method proposed by Osher and Sethian [12].
This method expresses the free interface as a continuous function, which is convenient
for directly using mathematical tools The geometric characteristic parameters and surface
tension of the interface are solved, and this method can also be extended to higher-order
spaces [13]. The applicable scenarios of the level-set method are mainly distributed in the
simulation of the movement of water droplets, the fusion of water droplets on the air-water
free interface, and the evolution of bubbles in water [14–17]. Since this method does not
consider the function of the continuity equation, it does not have the property of volume
conservation [18]. Therefore, it often faces the problem of mass non-conservation when
the numerical simulation is used to track free interfaces [19]. To solve the problem of the
non-conservation of mass, Hirt, and Nichols [20] proposed the VOF method. The VOF
(volume of fluid) method is an interface tracking method based on the Euler grid. In this
method, the mutually incompatible fluid components share a set of momentum equations,
and the phase interface tracking in the calculation domain is realized by introducing the
variable of phase volume fraction ζ [21,22]. ζ represents the volume of one phase as a
percentage of the mesh volume in which it is located. The VOF method can construct the
interface by calculating the phase fraction of each grid unit in the entire computational
domain [23]. It has very good and accurate numerical prediction results for dam breaks,
surf waves, and Rayleigh Taylor instability. Ashgriz and Poo [24] proposed the FLAIR (flux
line-segment model for advection and interface reconstruction) technology based on the
traditional VOF method. The basic principle is to construct a straight-line segment with an
inclination angle to approximately replace the physical free interface. Then calculate the
fluid volume flow through the mesh approximation surface per unit of time and use it as a
correction value of the numerical flux as a function of fluid volume. The PLIC (piecewise
linear interface calculation) reconstruction technology proposed by Youngs [25] is also
based on the traditional VOF method. The principle of the PLIC reconstruction technology
is similar to that of the FLAIR reconstruction technology. This method is also widely used
in liquid surface capture [26,27]. Sussman and Puckett [28] combined the superiority of
level-set to calculate the curvature and the conservation of VOF to propose the CLSVOF
(coupled level-set volume of fluid) method, which is widely used in numerical simulations
of other gas–liquid two-phase interfaces, such as oceans, water conservancy, hydropower,
liquid jets, etc. [29–32].

2. Airframe Design Scheme for Trans-Media Aircraft

Because of its ability to span multiple media, the trans-medium aircraft must adapt to
the differences in physical properties of multiple media at the same time. Such prerequisites
bring inevitable contradictions to its airframe structure design, but in general, the design
concept of the cross-medium aircraft is to balance the difficulties that need to be overcome
when the multi-medium crosses under the premise of satisfying the stable operation of the
single-medium function, such as (1). However, in the underwater navigation stage, due to
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the nonlinear disturbance of water flow, to obtain sufficient steering stability, the aircraft
should ensure that the aircraft body has considerable weight and structural strength. (2). In
terms of the shape of the fuselage, based on the similarity principle of Reynolds number,
the speed of the same fuselage shape in water and air media is quite different, which causes
instability in the medium transition process of the trans-medium aircraft, which leads to
the failure of crossing. (3). In terms of wing layout, when the aircraft is flying in the air,
the pressure difference between the upper and lower surfaces of the wing generates lift
to overcome gravity. When the flight speed is constant, the lift is related to the wing area.
Influenced by airframe drag, the wing surface has a relatively short span and narrow chord.
(4). In terms of pressure and tightness, underwater navigation has high requirements for
pressure and tightness, while in air flight, especially in low-altitude flight, sealing and
pressure performance are hardly considered. Even the pressure-resistant hulls used in
high-altitude flights are no match for cabins used in underwater voyages.

Through the analysis of the above difficult problems, this paper proposes a water–air
dual-power ducted structure scheme based on the multi-rotor aircraft architecture based
on the basic principles of the trans-medium aircraft, as shown in Figure 1. By taking into
account the design of the structure and power system, the detailed design of the airframe
of the trans-medium aircraft is carried out.

Figure 1. Schematic diagram of the overall structure of the water–air dual-power ducted trans-
medium aircraft.

As shown in the figure above, the overall structure of the trans-medium aircraft is
based on the “X” layout of the four-rotor aircraft. The air flight and the vertical medium
transition between water and air are realized through the air rotors. It has strong operational
stability. The structural design of the cross-section duct realizes the reduction in water-
entry slamming during the medium transition process and the duct-collection effect on
the power of the underwater propeller. The underwater propellers are arranged in pairs
in the center of the duct body in a “cross” shape to provide power for underwater multi-
directional movement.

2.1. Layout and Principle of Airframe Propulsion System

This design combines the advantages of the layout of the four-rotor unmanned aerial
vehicle. The air rotor power propeller adopts the “X” layout scheme, and the underwater
propeller power adopts the “cross” layout scheme. The propeller types and their layout are
shown in Figure 2, the red triangle represents the forward direction of the aircraft, and the
front and back blades of the rotor are distinguished by different colors.
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Figure 2. Schematic diagram of thruster type and its arrangement.

Through the description of the propeller types and their arrangement above, a brief
introduction will be given to the working principles of the different missions of the trans-
medium aircraft described in this paper, as shown in Figure 3. The four aerodynamic
propellers are mainly responsible for the air flight mission of the aircraft. The basic propul-
sion principle is consistent with the drive mode of the quadrotor aircraft, and the purpose
of flying in six degrees of freedom in space is achieved by changing the speed input of the
four motors. Arrows of different sizes in the figure represent the differences in motor speed
resulting in differences in the lift, thereby achieving the purpose of changing the aircraft’s
motion attitude.

2.2. Internal Structure Design of Trans-Media Aircraft
2.2.1. Conduit Shape Design

For the layout design of the underwater propeller, the presence of the culvert body can
effectively increase the efficiency of underwater propulsion. The duct body of the water–air
dual-power ducted system mainly plays the role of protecting the propeller (underwater
turbulence impact), supporting the body structure, and storing the integrated electronic
control system inside the aircraft. Due to the existence of the duct body, the impact noise
of the propeller tip is reduced, and the induced resistance is small so that the operating
efficiency of the propeller is improved and greater thrust will be generated under the same
power consumption condition, which greatly improves the aerodynamic performance of
the ducted system. In the basic shape of the duct body design, a part of the cylindrical
duct body section resembles a curved airfoil. The performance enhancement of ducted
propellers has three geometrical features: a properly designed air inlet accelerates the
flow of the propeller rotating medium, the gap between the propeller blades and the duct
wall (tip clearance) improves the blade tip flow, and the diffuser partially suppresses the
shrinkage of the flowing medium [33].

As shown in Figure 4, the duct is generally divided into three parts, the inlet section, the
middle section, and the expanded outlet section. Its main shape and structure parameters
are the inlet curvature R, the inner diameter Dc, the expanded outlet diameter De, the duct
expansion angle Φ, and the culvert road height H. The above geometric variables can be
dimensionless through the inner diameter or propeller diameter.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) (h) 

Figure 3. Schematic diagram of the working principle of the power system of the trans-medium
aircraft: (a–d) translation, roll, pitch, yaw (air layout); (e–h) translation, roll, pitch, yaw (under-
water layout).
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Figure 4. Schematic diagram of the cross-sectional structure of the duct body.

By placing the propeller inside the duct, the trans-medium aircraft has unparalleled
safety for the operator and the surrounding environment, and through its VOTL capability,
it can take off and land and operate in a narrow environment. With the support of the
designed duct, the duct wall can effectively convert the propeller slipstream into thrust,
thereby generating additional thrust.

2.2.2. Frame Structure Design

The frame structure is the bearing platform of the aircraft. According to the core,
internal components of the trans-media aircraft and the overall layout structure under
different media conditions, the air four-rotor support frame, and the underwater four-
propeller thrust support frame are respectively designed. The air-supported frame only
uses a wheelbase of 500 mm and is directly connected to the duct body in a rigid body.
The frame layout adopts an “X” shape, as shown in Figure 5a, and the material is mainly
carbon fiber, which greatly reduces the weight of the body and enhances the water entry of
the aircraft, its anti-slamming ability. The main supporting component of the underwater
support frame is the propeller drive motor. To realize the internal layout of the culvert
body of the propeller, a cross-shaped frame body is used, and its material is also carbon
fiber. The propeller support base and the cross-shaped frame are fixed to realize the culvert
body. The layout of the four propellers in the “ten” shape inside the channel body is shown
in Figure 5b,c. The propeller support base and the cross-shaped frame are fixed by pipe
clamps. The design form of the overall aircraft frame is shown in Figure 5d. The frame
bears the load of the underwater thrust device and is driven by independent power systems
to complete single-medium and multi-medium crossing and multi-modal movements.

 
(a) (b) 

 
(c) (d) 

Figure 5. Schematic diagram of the frame structure design of the trans-media aircraft: (a) air quad-
copter support frame; (b) cross frame structure; (c) underwater propeller support rack; (d) aircraft
overall rack layout design.
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3. Based on OpenFOAM Numerical Calculation Theory

3.1. Numerical Water/Gas Two-Phase Flow Mathematical Model

For the numerical simulation of water–air two-phase flow, its solution models are
mainly divided into two categories: high-phase fraction models and interface capture
models [34]. In this study, the trans-medium vehicle is used to cross the water–air two-
phase flow medium. Such a fluid–fluid problem with a clear boundary can be well-applied
to the interface capture model. The two key issues of the interface capture idea are: (1) the
interface should be as thin as possible; (2) the algorithm should be as stable as possible
when the interface is unstable [35]. The interFOAM solver based on the VOF method is used
to solve the interface of water–gas two-phase flow in OpenFOAM [36]. The interFOAM
solver is based on incompressible, adiabatic, insoluble, non-mixing (mixing refers to the
distribution of one fluid in another fluid, such as the movement of bubbles in liquid)
two-phase interface capture to solve. The volume fraction method (VOF) is used to capture
the free interface of two-phase flow, while the finite volume method [37] (FVM) is used for
spatial discretization.

The complex flow conditions in nature are controlled by three basic physical principles,
namely the law of conservation of mass, Newton’s second law, and the law of conservation
of energy. These three basic physical principles correspond to three governing equations,
that is, the governing equations of fluid mechanics (continuity equation, momentum
equation, and energy equation), and these three equations are the mathematical description
of the corresponding physical principles. According to the above three basic physical
principles, the governing equation of the incompressible Newtonian fluid is as follows:⎧⎨⎩ ∇·U = 0

∂U
∂t +∇·(UU) = −∇ p

ρ +∇·(υ∇U)
(1)

where ρ is the density, U is the velocity of the control body, ρ is the pressure, and υ is
the viscosity.

Through the above basic incompressible N-S equation, the momentum equation
of the insoluble multiphase system can be obtained under the condition of gravity and
source term:

∂ρU
∂t

+∇·(ρUU)−∇·τ = −∇p + ρg + F (2)

where F is the surface tension. The continuity equation can be expressed as:

∂ρ

∂t
+∇·(ρU) = 0 (3)

If two kinds of fluids are considered to be incompressible, that is to say, the fluid
element of a certain fluid motion is considered, and its material derivative is 0, that is:

Dρ

Dt
=

∂ρ

∂t
+ U·∇p = 0 (4)

The density in Equation (4) can be solved for the pure convection equation when the
velocity U is known. In the volume of fluid (VOF) method, ζ is defined to represent the
phase fraction of the fluid. Consider a gas–liquid two-phase system of a certain grid unit, if
the grid unit is filled with fluid, then ζ = 1; if the grid unit is filled with gas, then ζ = 0. If
the value of ζ is between 0 and 1, there is gas–liquid mixing in this grid cell.

As shown in Figure 6, if the phase fraction of the entire grid is calculated to construct
the interface, it will be found that the volume fraction is a step function in space and
is discontinuous in space, so the reconstructed phase interface is discontinuous. The
interface between two adjacent grids is discontinuous, and the physical quantity is also
discontinuous when passing through the interface. This phenomenon is called parasitic
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current. The main work of the VOF method at present is to alleviate the parasitic flow
phenomenon caused by the numerical method.

Figure 6. Spatial distribution of phase fraction and its interface reconstruction by VOF method.

Next, the surface tension equation in the momentum equation of the insoluble multi-
phase system is deduced. The most important feature of the surface tension is that there is
a sharp pressure drop Δp at the interface. Take the fluid microelement of the two-phase
interface, and let p1 be the downward pressure exerted by the air above the element; p2 is
the upward pressure exerted by the liquid below the surface microelement, so Δp = p1 + p2
can be obtained, and the surface tension of the curved surface microelement is defined as F.
As shown, Figure 7 is a schematic diagram of the force on the surface micro-element at the
two-phase interface.

Figure 7. Schematic diagram of the force on the surface microelement at the interface of two phases.

In the figure, s1 and s2 are the lengths of the sides of the surface micro-element, so the
area of the surface micro-element is ds1ds2. dα and dβ are the curvature angles of different
curves on the surface micro-element, and R1 and R2 are the radii of curvature of different
curves on the surface micro-element, respectively. The magnitude of the combined force on
the surface micro-element is:

Fp = (p1 − p2)ds1ds2 (5)

The definition of surface tension shows that it acts on the four edges of the surface
micro-element and that the combined force of tension is vertical and balanced with Fp above.
Defining the coefficient of surface tension as σ, the magnitude of the tension on the s1-edge
is σds1, and the magnitude of its component in the vertical direction is σds1 sin(dβ/2).
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In the case of small β, σds1 sin(dβ/2) ≈ σds1(dβ/2). Similarly, the tension acting on the
s2-edge is σds2(dα/2). Thus, the surface tension acting on the surface micro-element is:

Fσ = σ(ds1dβ + ds2α) = σ(
dβ

ds1
+

dα

ds2
)ds1ds2 (6)

Now denote by n the unit normal to the surface differential element, which points
from a higher phase fraction to a lower phase fraction, modulo 1. Then we have:

∂nx

∂x
=

dα

dx
=

1
R1

(7)

∂ny

∂y
=

dβ

dy
=

1
R2

(8)

∂nz

∂z
= 0 (9)

So the surface tension expression can be translated as:

Fσ = σ(
1

R1
+

1
R2

)ds1ds2 (10)

In addition because:

∇·n =
∂n
∂x

+
∂n
∂y

+
∂n
∂z

=
1

R1
+

1
R2

(11)

Therefore:
Fσ = σ∇·nds1ds2 (12)

With the surface micro-element in force equilibrium, then we have:

Δp = p1 − p2 = σ(
1

R1
+

1
R2

) = σ∇·n (13)

Next, the surface tension is modeled according to the continuum surface force model
to obtain:

∇p = σκ∇ζ (14)

where K represents the curvature at the interface.
Next, to solve the pressure term and body force term in the momentum conservation

equation, define prgh in OpenFOAM as follows:

prgh = p − ρg·h (15)

where the prgh is the reference pressure, which is obtained by splitting the pressure p. It has
very good stability during the solution calculation; therefore, in general form, the reference
pressure is used as the variable for the iterative calculation.

Since the two-phase flow problem is involved, the density in the basic governing
equation is related to the physical properties of water and gas, so for the unification of the
equations, ρ is defined as follows:

ρ = ζρ1 + (1 − ζ)ρ2 (16)

where ρ1 and ρ2 are different phase densities, respectively.
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Therefore, by substituting the previously derived expressions for each variable into
the incompressible N-S Equation (1), the fluid micro-element control equation under the
VOF method is obtained as follows:

∂ζ

∂t
+ U·∇ζ = 0 (17)

∂ρU
∂t

+∇·(ρUU)−∇·(υ∇U)−∇U·∇υ = −∇prgh − g·h∇p + σκ∇ζ (18)

∇·U = 0 (19)

It can be seen from the above governing equations that there is no essential difference
between the VOF equation and the single-phase flow equation, both of which contain a
momentum equation and a continuity equation. The continuity equations are exactly the
same. The momentum equation, the VOF model is supplemented with a space-varying
viscosity and an additional surface tension term. In addition, a phase transport equation
is included. To sharpen the free interface, OpenFOAM uses the method proposed by
Waller [38] to add artificial convection terms to the phase equation to squeeze the phase
fraction near the phase interface to counterbalance the solution. The equation causes the
ambiguity of the phase boundary caused by numerical dissipation to ensure the clarity of
the interface. According to the idea of adding an artificial convection term, the VOF model
can be expressed as:

∂ζ

∂t
+∇·(ζU) +∇·(ζ(1 − ζ)Uc) = ζ∇·U (20)

The third item in Equation (20) is an artificially added compressible item. According
to the mathematical properties of this item, when ζ = 0 or 1, the calculated value is 0; that
is, its value is 0 in pure phase (non-interface). A non-zero value exists when ζ is between 0
and 1. Uc is the compression velocity, the direction is the same as the phase gradient, so:

Uc = c|U| ∇ζ

|∇ζ| (21)

where c represents a controllable compression factor. When c = 0, there is no compression
effect. The larger c is, the faster and more obvious the compression effect will be. The final
phase equation embedded in the OpenFOAM solver is as follows:

∂ζ

∂t
+∇·(ζU) +∇·(ζ(1 − ζ)c|U| ∇ζ

|∇ζ| ) = ζ∇·U (22)

3.2. Trans-Medium Aircraft Multi-Medium Spanning Moving Mesh Technology

It is very convenient to use dynamic overset grids for complex structures with relative
motion. The relative motion between subdomains does not require grid deformation, let
alone regenerate the grid, and only needs to define the law of grid motion under the
condition that the subdomains overlap each other.

The advantage of the overset grid method is that it allows complex integrated or
separated geometries to be processed using multiple overlapping meshes. Each component
grid can handle a part of the domain and can be moved freely or as specified. Before solving
the flow-governing equations, all component meshes need to be assembled to determine the
information connectivity between different domains. This process includes the following
key steps: (1) cutting holes, (2) overlapping boundary search, and (3) contribution unit
search. The specific schematic diagram is shown in Figure 8.
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Figure 8. Schematic diagram of the assembly principle of overset grid.

3.3. Numerical Wave Making

The application scenario of modern numerical wave-making technology is the sim-
ulation of buildings in the marine environment. In this paper, to verify the ability of the
medium-crossing medium of the trans-medium aircraft in the wave environment and
compare the load impact on the body with the data under the condition of still water, the
aerodynamic performance of the trans-media aircraft entering and exiting water under
different external environments is obtained.

The numerical wave-making technology in this paper is still the numerical solution
of the two-phase flow, and the solver used is the same as that of the aircraft entering the
water under still water conditions, which is overInterDyFoam, which uses finite volume
discretization and the volume fraction of fluid (VOF) method to solve the 3D Reynolds-
averaged Navier–Stokes (RANS) equations for two incompressible phases and handle
dynamic meshes. The calculation domain of numerical wave-making is shown in Figure 9.

Figure 9. Schematic diagram of the numerical wave-making calculation domain.
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4. Numerical Prediction of Aircraft Entering and Exiting the Water

4.1. Mesh Independence Test

To verify the grid independence, the trans-medium aircraft is selected as the research
object, and different levels of grids are calculated under the condition of the air rotor of the
aircraft at 2000 r/min. The air rotor model is APC-1047SF.

Figure 10a–c are the rotor thrust curves, the tip speed curve when R/r = 1.1, and the
tip speed curve when R/r = 1.2 under different grid levels, respectively. R is the air rotor
radius and r is the sampling radius.

 
(a) (b) 

 
(c) 

Figure 10. Schematic diagram of variable curves under different grid levels: (a) rotor thrust curve;
(b) the tip speed curve when R/r = 1.1; (c) the tip speed curve when R/r = 1.2.

From the above schematic diagram of the curve change, it can be seen that better
computational accuracy can also be obtained when the grid is controlled at a medium level.
Therefore, in this study, the computational grid level for the numerical prediction of aircraft
entry and exit is controlled at a medium level, which can effectively save computational
power and obtain more accurate results with limited computational resources.

To verify the convergence of the solution iteration process, the residual curves of the
turbulence parameters involved in the RANS modeling method are extracted by sampling
in this paper, and the curves are shown in Figure 11.

By observing the above curves, it can be found that each parameter gradually con-
verges to a constant value as the solution time increases. By such a trend of functional
variation, it can be judged that the numerical simulation converges during the computa-
tional solution of the grid-independent numerical experimental validation. The simulated
debugging parameters are shown in Tables 1–3.
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Figure 11. Residual curve.

Table 1. Mesh convergence analysis.

Mesh Type Number of Grid Cells
Grid Base Size/m

Background Area Overlapping Area

coarse 1,554,953 0.13 0.06
medium 3,663,283 0.10 0.05

fine 4,437,138 0.07 0.04

Table 2. Boundary Conditions.

Turbulence
Parameters

Inlet Outlet Wall Blades

k fixedValue inletOutlet kqRWallFunction kqRWallFunction
nut calculated calculated nutUSpaldingWallFunction nutUSpaldingWallFunction

omega fixedValue inletOutlet omegaWallFunction omegaWallFunction
p fixedFluxPressure totalPressure fixedFluxPressure fixedFluxPressure
U fixedValue pressureInletOutletVelocity fixedValue movingWallVelocity

Table 3. Simulation of debugging parameters.

Mesh Type Turbulence Model
Physical Time

Step
Maximum y+

Value
Whether to Use
Wall Functions

Solving Time

coarse k-omega two-equation
model 3 × 10−4 s 40 YES 0.88 h (64 CPUs)

medium k-omega two-equation
model 2 × 10−4 s 35 YES 2.07 h (64 CPUs)

fine k-omega two-equation
model 1 × 10−4 s 32 YES 2.54 h (64 CPUs)

4.2. Mesh Generation Verification Analysis

Numerical prediction of trans-medium aircraft entering and exiting water involves
body movement, so there is a dynamic grid problem. During the solution process, the move-
ment and deformation of the grid will have a huge impact on the solution accuracy and
solution convergence, so the overlapping grid method will be used in the pre-processing
grid generation process for the numerical simulation of aircraft entering and exiting the
water. The overlapping grid method needs to establish two sets of grids, in which the
calculation domain of the external flow field of the trans-media aircraft is used as the
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background grid, and the aircraft itself is used as a moving overlapping grid. The role of
moving in the grid, the numerical communication between the two sets of grids adopts the
Lagrange interpolation shape function method because this process does not involve the
deformation of the moving grid, thus ensuring the stability and convergence of the solution
process. However, the numerical communication in the solution process leads to a longer
calculation time for this kind of mesh method than that of traditional deformable dynamic
mesh. Figure 12 is a schematic diagram of the grid generation of the aircraft entering and
exiting the water.

Figure 12. Schematic diagram of grid generation for numerical prediction of water inflow and outflow.

4.3. Research on the Water-Entry and -Exit Characteristics of the Aircraft in the Static Water State
4.3.1. Water-Entry Characteristics at Different Angles

In this paper, the initial conditions for the water-entry characteristics of the trans-
media aircraft at different angles are set as follows: the water-entry height is 0.4 m, the
initial velocity of water entry is 0, the free fall hits the water surface, and the body enters
the water body under the action of gravity. To verify the water-entry performance of the
aircraft at different angles, this paper sets its water-entry angles to 0◦, 10◦, 20◦, 30◦, and 40◦,
respectively. The angle of entry into the water is defined as the angle between the plane of
the air rotor blades and the water surface. The vehicle is in the process of entering the water
and is to turn off all power devices at a certain angle and height of free fall into the water.

To reveal the influence of the static water flow disturbance on the speed and impact
load of the aircraft during the water-entry process, this paper takes the aircraft at a height
of 0.4 m and an inclination angle of 40◦ as an example and obtains the phase change of the
water flow field and the motion of the aircraft through numerical simulation calculations.
The streamlined diagram is shown in Figure 13.

It can also be seen from the above water flow phase change diagram and body motion
streamline diagram that at the moment of water entry and slamming, the high-speed zone
is near the water/air interface, and as the water-entry process proceeds, the water flow
buffers the body speed to gradually decrease; the kinetic energy of the body movement is
transformed into the kinetic energy of water flow disturbance cavitation sputtering.
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Figure 13. Water flow phase change and body motion streamline diagram of the inflow flow field.

Next, to analyze the vortex structure of the flow field during the water-entry process
of the trans-medium aircraft, it is necessary to be able to identify and detect the vortex in
the flow field through an effective visualization method. In this paper, the Q criterion [39]
method is used for the above analysis.

The theory of the Q criterion comes from the velocity gradient tensor. The velocity
gradient tensor expression is as follows:

∂ui
∂xj

= 0.5[
∂ui
∂xj

+
∂uj

∂xi
] + 0.5[

∂ui
∂xj

− ∂uj

∂xi
] (23)
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Among them, the symmetric part is denoted as S, which is usually called the strain
rate tensor; the antisymmetric part is denoted as Ω, which is usually called the rotation
rate or vorticity tensor.

S = 0.5[
∂ui
∂xj

+
∂uj

∂xi
] (24)

Ω = 0.5[
∂ui
∂xj

− ∂uj

∂xi
] (25)

The Q value is defined as the second invariant of the velocity gradient tensor, namely:

Q = 0.5[||Ω||2F − ||S||2F] (26)

It can be seen from the above formula that the positive value of Q indicates the region
where the vorticity is dominant in the flow field, and the negative value indicates the region
where the strain rate or viscous stress is dominant. As shown in Figure 14, when the aircraft
enters the water at 40◦, the cloud diagram of the vorticity changes the Q criterion when
entering the water.

  

  

  

Figure 14. Q-value cloud chart when entering the water at 40◦.
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The flow mechanism of this changing cloud image reveals that the vortex at the
boundary and front end of the aircraft body is mainly affected by shearing, and the contin-
uous development of the cavity leads to the complexity and fragmentation of the positive
and negative Q value alternating area of the cavity development. This indicates that the
formation of the cavitation region is mainly affected by the joint action of rotation and shear.

4.3.2. Water-Entry Characteristics at Different Heights

This paper explores the aerodynamic characteristics of the vertical entry of the aircraft
into the water at different altitudes. The initial conditions for the aircraft are set as follows:
the aircraft maintains a vertical attitude and enters the water, and the initial heights of
entering the water are set to 0.2 m, 0.3 m, and 0.5 m, respectively. Through the data sampling
and analysis of the numerical results of the aircraft entering the water at different heights,
the body load impact curves and speed curves suffered by the airframe in the process of
entering the water at different heights are obtained, as shown in Figures 15 and 16.

Figure 15. Variation curve of water load impact at different heights.

Figure 16. Velocity curves of the body entering the water at different heights.

It can be seen from the curve of load impact change that, when entering the water
at different heights, there is a second extreme value in the peak value of the load impact
on the body, indicating that in the process of entering the water, there is a periodical
change in the load impact of the body in a part of a very short period. This process will
produce alternating loads and stress mutations on the body structure, thus reflecting that
the structural stability of the trans-medium aircraft needs to be extremely guaranteed.
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According to the different water-entry heights, the peak value of the load impact is also
different. It can be seen from the curve that as the initial height increases, the water-entry
slamming is more severe and the load peak value is also higher. It can be seen from the
graph of body speed change that because of the difference in the initial height, the speed
at which the aircraft reaches the water–air interface is also different. The impact effect is
also more obvious, so the rate of change of its velocity is also greater, and the momentum
impact is also stronger.

The Figure 17 shows the cavitation phase transition diagram of the aircraft vertically
entering the water at different heights.

Through the above cavitation phase transition diagram, it can be found that when
different initial heights enter the water, the degree of fragmentation of the water flow
cavitation is different at the moment of water collision. The higher the height, the greater
the speed of water entry, and the stronger the degree of cavitation fragmentation. In
addition, the bigger it is, the greater the kinetic energy of the body is converted into the
kinetic energy of water flow. As mentioned above, the streamlined distribution map of the
flow field body is obtained through numerical calculation, as shown in Figure 18.

Through the above-streamlined distribution diagram, it can be found that the velocity
field of the overall calculation domain presents a dynamic unsteady change with the
evolution of the cavitation phase transition. As the water-entry speed increases, the high-
speed area at the tail also gradually moves up. This high-speed area will gradually expand
upward and finally form a certain far-field airflow.

4.3.3. Aircraft Water-Exit Characteristics

After the aircraft completes the underwater diving mission, it transitions to the air
medium to perform the air flight mission. This process must go through the water-exit
action from water to air. The water and air media are quite different, so this process
will lead to sudden changes in the body load at the moment of water exit. In addition,
the airframe undergoes continuous and stable water resistance load until the load almost
disappears, which will also lead to the imbalance of the control of the trans-medium aircraft.
Therefore, the numerical prediction of the water-outlet characteristics of the aircraft can
provide mechanical sensing analysis for the imbalance adjustment of the controller in the
water-outlet stage.

 
(a)  

Figure 17. Cont.
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(b)  

(c)  

Figure 17. Phase transition diagram of water flows cavitation at different heights: (a) 0.2 m high into
the water; (b) 0.3 m high into the water; (c) 0.5 m high into the water.

Consistent with the previous analysis method, based on the OpenFOAM open-source
numerical platform, the numerical aerodynamic characteristics of the water-exit process
are calculated using the overlapping grid method. The initial conditions are set as follows:
the initial speed of the trans-media aircraft is 2 m/s, and the vertical water-exit attitude
is used to complete the water-exit process. In the process of the aircraft out of the water,
the underwater propellers’ upward propulsion close to the water’s surface, when the air
rotor is exposed to the water’s surface, starts the rotor, the underwater propeller, and the
air rotor dual thrust to complete the role of leaving the water surface. In the simulation
process, the underwater propeller and air rotor are divided into rotating areas, and the
stationariness and motion of the rotating areas are controlled to achieve the above physical
process. Figure 19 shows the water load change curve of the body.
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Figure 18. Velocity flow line diagram of the calculation domain under different altitude conditions.

Figure 19. Body water load change curve.

It can be seen from the change curve that as the aircraft gradually moves from the
deep-water area to the shallow-water area, the body load will decrease. When approaching
the free water surface at a certain initial speed, the impact effect still exists, and the body
load will reach the peak value in a short time. When the body jumps out of the water, the
load of the body is gradually reduced until the body jumps out of the water completely
and the load reaches a smaller value. Due to the inertia effect of the body and the viscosity
effect of the water flow during the water exit, the body still entrains the water flow, so the
load is still at the same level. The value underwater is almost the same. As it continues
to rise, the water flow leaves the fuselage, and the load reaches a minimum value. At this
time, the load on the aircraft is equal to that in the air flight stage.

Figure 20 shows the change curve of the attitude angular velocity of the trans-medium
aircraft during the water exit.
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Figure 20. Angular velocity variation curve of aircraft out of water attitude.

Through the analysis of the above angular velocity change curve, it can be seen that
the pitch attitude of the aircraft remains stable during the process of exiting the water,
while the roll attitude and yaw attitude have some changes because of the disturbance
of the water flow in this process, and the change range of the yaw attitude is larger than
that of the roll. The attitude is a little bigger, but it remains stable after changing to the
peak value, while the roll attitude is irregular and nonlinear under the wave disturbance
because the water flow disturbance wave is consistent with the roll direction during the
water-discharge process. According to the analysis of the simulated attitude change of the
aircraft entering and exiting the water, the controller can be adjusted reasonably, effectively,
and stably, thus providing a certain simulation practice basis for the control design of the
trans-medium aircraft.

The generation of the above mechanical properties is related to the cavitation phase
transition of the water flow during the water-exit process. Through the numerical calcula-
tion of the convection field, the schematic diagram of the cavitation phase transition of the
water flow during the water exit of the aircraft is obtained, as shown in Figures 21 and 22.

Through the above longitudinal and top-down views of the water flow cavitation
phase transition diagram of the aircraft’s water-exit process, the analogy with the body
load and attitude change results obtained above shows that since the aircraft body is close
to the free surface of the water, the influence of the free surface on the water-exit process
cannot be ignored. When the aircraft passes through the free surface, the water resistance
will suddenly decrease, and it is often asymmetrical concerning the body, which will cause
the body to deflect, which is consistent with the attitude change results mentioned above.
In addition, the water discharge hits the free liquid surface to cause the liquid level to
fluctuate, which further increases the randomness of the water-discharge process. The
influence of water flow cavitation on the viscosity of the fuselage during water discharge
cannot be ignored, just like the load results of the fuselage mentioned above.

4.4. Research on Water-Entry Characteristics in Wave State

In the real physical environment, the trans-medium aircraft will be impacted by strong
nonlinear waves during the process of entering and exiting the water. Therefore, to be close
to the real physical scene, the water column impact nonlinear wave is used in the numerical
prediction of the aircraft entering and exiting the water in the wave environment. The basic
method is as follows: set a water column with a certain height and width in the calculation
domain, and these water columns will hit the free water surface under the action of gravity,
thereby generating strong nonlinear wave disturbance. The schematic diagram of the shock
wave generation is shown in Figure 23.
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Figure 21. Schematic diagram of cavitation phase transition of water flow in water-outlet process (portrait).

As shown in the figure above, this paper uses a fixed water-column width of 0.7 m
and different water-column heights to simulate the wave intensity variable. The idea of
variable parameter analysis in this paper has two aspects. On the one hand, under the
condition of fixed wave intensity, the aircraft enters the water at different angles. On the
other hand, under the condition that the aircraft enters the water at a fixed angle, the
water-entry characteristics of the aircraft are analyzed with different wave intensities.

4.4.1. Fixed Wave Intensity (the Height of the Water Column Is a Fixed Value)

Set the height of the water column to 0.2 m, and the aircraft enters the water at 0◦, 10◦,
20◦, 30◦, and 40◦, respectively. Through numerical calculation, the schematic diagram of
the wave height change curve at the central axis position of the calculation domain under
different water-entry angles is shown in Figure 24.
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Figure 22. Schematic diagram of cavitation phase transition of water flow in water-outlet process
(overlook).

From the changing trend of the above curves, it can be judged that the nonlinearity
produced by the water-column impact wave-making method is very strong, which is closer
to the real physical scene. It can also be seen from the figure that the wave disturbance on
the water surface when entering the water vertically is stronger than that when entering
the water obliquely.

By visualizing the calculation results, a schematic diagram of the cavitation evolution
of the phase volume fraction of the aircraft entering the water at different angles is obtained,
as shown in Figure 25.
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Figure 23. Schematic diagram of shock wave generation.

Figure 24. Schematic diagram of wave height curve changes under different water-entry angles.

It can be seen from the schematic diagram of the cavitation evolution of the volume
fraction of the water-entry phase from the above-mentioned angles that when the body
enters the water vertically, the degree of wave interference is the largest, and the cavitation
evolution of the water flow is the most severe; when the body is inclined into the water, the
impact of wave disturbance on the body posture is larger. In the case of a small inclination
angle, the body posture can naturally achieve self-warming, but as the inclination angle
increases, the body posture loses its self-stabilization condition and rolls significantly
during the water-entry process because of the drooping impact of waves. Therefore, when
it comes to the controller, external interference should be added to make the aircraft perform
feedback adjustments under the drooping impact of the wave to achieve stability of the
body attitude.

To quantitatively analyze the attitude change of the aircraft, the angular velocity
change curves of the aircraft entering the water at different angles are obtained through
numerical simulation, as shown in Figure 26.

It can be seen from the above curves that the yaw attitude of the airframe changes
significantly in the state of vertical entry into the water, while the pitch and roll attitudes do
not change significantly. In the case of entering the water at a small angle, the roll attitude
of the body changes slightly because of the impact of waves, and the change in the pitch
attitude is a necessary change because of the influence of the restoring moment of the body.
After the water-entry process is completed, the body can still achieve stability. When the
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body enters the water at a relatively large angle, there is a second peak phenomenon in the
pitching angular velocity. The generation of the initial peak value is still affected by the
restoration torque. With the completion of the water-entry process, the body cannot achieve
self-stabilization conditions because of the excessive water-entry angle under the sagging
impact of the waves, resulting in the loss of balance of the body posture, roll posture, and
yaw. Attitude will change significantly

Figure 27 is a schematic diagram of the change of the mechanical parameter curve dur-
ing the body’s entry into the water, showing the changing trend of the body’s load impact,
body speed, and body movement displacement when entering the water at different angles.

It can be seen from the load curve that the load of the body entering the water vertically
is greater than the load impact of the oblique entry into the water, and the load under the
small angle of the water entry will gradually tend to balance, while the load of the large
angle of the water entry will show a nonlinear change that is due to instability. When the
body speed enters the water vertically or at a small angle, after the water-entry process is
completed, the speed will increase linearly because of the drooping impact of the wave. The
large-angle water-entry velocity curve also has a secondary peak phenomenon, which is
still caused by the drooping impact of the wave, which causes the body to become unstable,
so that the body moves downward in the form of a rollover, which greatly reduces the
resistance on the body; thus, this makes the body obtain greater downward speed. It can
be seen from the displacement curve that after the body rolls over, the speed increases,
resulting in a greater displacement of the body at the same time.

Figure 28 is a binary diagram of the phase volume fraction. Through the binary
diagram, we can observe the generation and closure of cavitation under different angles of
water entry.

(a) 

Figure 25. Cont.

226



Drones 2023, 7, 69

(b) 

(c) 

Figure 25. Cont.
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(d) 

(e) 

Figure 25. Schematic diagram of cavitation evolution of water phase volume fraction at different
angles: (a–e) are, respectively, 0◦, 10◦, 20◦, 30◦, and 40◦ into the water.

To visualize the impact of wave drooping on the body, this paper performs post-
processing on the velocity flow field in the calculation domain to obtain the flow field
velocity streamline diagram in the vertical direction, as shown in Figure 29.

Through the visual streamline diagram processing, under the condition of large-angle
water entry, the impact of wave drooping impact on the rollover of the body can be seen.
When the angle of the body deviates to one side, the drooping force of the wave will form a
flow around this place, so that the body that is already inclined cannot maintain its original
state. This is the root cause of the body rollover.
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(a) (b) 

 
(c) (d) 

 
(e) 

Figure 26. Schematic diagram of the angular velocity change curve of entering the water at different
angles: (a–e) are, respectively, 0◦, 10◦, 20◦, 30◦, and 40◦ into the water.

4.4.2. Fixed Water-Entry Angle (Changes Wave Intensity)

Enter the water at a fixed angle of 40◦ and create waves of different intensities by
changing the height of the impacting water column. In this paper, the heights of the
impacting water columns are set to be 0.2 m, 0.3 m, and 0.4 m, respectively. Under different
wave intensities, the wave height curves at the central axis of the calculation domain are
obtained, as shown in Figure 30.

Similar to the previous ones, the generated waves have strong nonlinearity, which is
close to the scene of real aircraft entering the water.

Figure 31 is a schematic diagram of the cavitation evolution of the phase volume
fraction caused by the body entering the water at an angle of 40◦ under different
wave intensities.
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(a) (b) 

 
(c) 

Figure 27. Schematic diagram of the change curve of the mechanical parameters of the body: (a) body
load impact; (b) body movement speed; (c) body motion displacement.

From the figure above, it can be seen that in the calculation time of 0.6 s, the aircraft
was unstable when the height of the water column was 0.2 m, but it was not unstable when
the height of the water column was 0.3 m and 0.4 m. This is because, with the increase in
the height of the impacting water column, the wave strength is too large, so that when the
water column initially sinks, the weight of the body cannot overcome the influence of the
wave force, so that the body obtains an upward moment, which cancels out the rollover
moment. Therefore, the aircraft can still realize the self-stabilizing condition in a short
time. With the arrival of the next wave-dropping moment, the body will still roll over and
become unstable.

The Figure 32 shows the change curve of the mechanical characteristics of the body,
which is similar to the previous one. They are the change curve of the body load, the change
curve of the body motion speed, and the change curve of the body motion displacement.

It can also be seen from the above mechanical characteristic curve that when the wave
intensity is too large, the body will be temporarily given an upward wave moment to
maintain the posture balance. Through the speed curve, it can be seen that under the
condition of the highest wave intensity, such an upward wave moment will temporarily
change the speed direction of the body and make the body move upward.

To show the evolution law of water flow cavitation more intuitively, similar to the
above, a binary map of the phase volume fraction of the body entering the water is extracted,
as shown in Figure 33.
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(a) 

 
(b) 

 
(c) 

Figure 28. Cont.
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(d) 

 
(e) 

Figure 28. Phase volume fraction binary map: (a–e) are, respectively, 0◦, 10◦, 20◦, 30◦, and 40◦ into
the water.

 
(a) 

 
(b) 

Figure 29. Cont.
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(c) 

 
(d) 

 
(e) 

Figure 29. Schematic diagram of vertical velocity streamlines in the computational domain flow field:
(a–e) are, respectively, 0◦, 10◦, 20◦, 30◦, and 40◦ into the water.

Figure 30. Variation curves of wave height at the central axis position under different wave intensities.
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(a) 

(b) 

Figure 31. Schematic diagram of cavitation evolution: (a) 0.3 m; (b) 0.4 m.

 
(a) (b) 

Figure 32. Cont.
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(c) 

Figure 32. The mechanical characteristic curves of the body: (a) load curve; (b) speed curve; (c) dis-
placement curve.

 
(a) 

 
(b) 

Figure 33. Phase volume fraction binary map: (a) 0.3 m; (b) 0.4 m.

The above binary diagram clearly shows the evolution diagram of water-entry cavita-
tion under two different wave intensities. As mentioned above, under the action of upward
wave torque, the body gradually achieves self-stabilization in a short period. The expansion
and closure of the cavity during the water-entry process have also been displayed.
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5. Conclusions

In this paper, the VOF method with overset meshes is used to capture the air–water
interface for vehicle entry into the water, and the results of mechanical properties are
obtained for different angles and different heights under static water conditions and
different angles and different wave intensities under wave conditions. Under still water
conditions, due to the great disparity of the water–air medium, a restoring moment opposite
to the tilt direction will be generated during the tilt angle entering the water, resulting in
obvious changes in the pitching attitude of the aircraft. Under the condition of small wave
intensity, after the body enters the water at a large angle, due to the influence of the wave-
dropping moment, the attitude of the body will be unstable and rollover will occur. Under
the condition of large wave intensity, due to the large drooping moment squeezing the fluid
around the body, the body generates an upward moment, which cancels out the rollover
moment, so that the body can achieve attitude balance in a short time. Through the analysis
of the load curve graph of the body into the water and the horizontal projection view of
the phase volume fraction, we know that in the horizontal projection, the area of the water
bubble evolution of the vertical water entry is larger, resulting in the vertical resistance to
the body also being larger, and the submersion speed also being slower. Therefore, the
vertical resistance to water entry can be reduced by tilting the water entry at a certain angle.
The above research on the hydraulic mechanism of entry and exit provides a theoretical
basis for the design of the medium-crossing controller of trans-medium aircraft.

The different stages through which the trans-media vehicle enters the water are
analyzed by the schematic diagram of the evolution of the water bubble for different
operating conditions as follows:

(1) At the beginning of the water entry, the wet water area of the vehicle increases rapidly,
and if the speed of entry is relatively large, there will be a relatively stable vacuole
separation line; the water is separated from the surface of the body, and the entry
vacuole begins to form.

(2) After the vehicle enters the water for a period of time, the vacuole will be connected
to the atmosphere; air continues to fill the rear space of the object entering the water,
and the vacuole continues to increase, which is partly air and partly steam. As the
vacuole increases, the buoyancy force on the vehicle increases.

(3) The next step in the development of the incoming vacuole is the closure of the vacuole,
where the air on the surface of the water no longer enters the vacuole. When the forces
that determine vacuole closure (hydrostatic pressure, dynamic pressure of air flowing
in the vacuole, and surface tension) dominate, the vacuole begins to narrow, neck,
and finally close. When the bubble closes, the waters moving inward collide together
and produce upward and downward water jets.

(4) After the bubble is closed, as the object continues to move, the bubble, due to the water
hostage effect, gradually reduces to completely disappear. After the disappearance
of the air bubble, the object in the water begins to enter the full wetting motion; at
this time, the object is far from the free surface of the water, and the free surface of the
flow of the impact can be disregarded. The flow is unbounded.
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Abstract: Inventive approaches are constantly being revealed in the field of vertical take-off and
landing (VTOL) unmanned aerial vehicle (UAV) configuration concepts and designs. To date, a
body-associated configuration of UAVs for augmented lift remains unclear among other approached
designs. The current paper investigates the mechanism of a high-lift ducted fan mounted in the
central body for VTOL UAV designs. We report an unresolved design of a disc-shaped UAV with
a single rotor that aims to enhance the cost-effectiveness of fuel consumption with a substantial
contribution of body lift to hover thrust. The convex upper surface curvature was applied to generate
a significant lift contribution from the body during hover. The computational fluid dynamics (CFD)
approach based on unstructured discretization followed by three-dimensional steady Reynolds-
averaged Navier–Stokes (RANS) flow was applied in ANSYS CFX to mechanistically investigate the
underlying design considerations. The disc-shaped UAV uses the lip curvature on the duct inlet to
generate a vertical force that demonstrates a significant contribution of 95% of the rotor thrust during
hovering. The UAV’s upper surface generates prolonged flow entrainment free from momentum
losses in swirling flows. This phenomenon is followed by reduced power consumption in hovering
and vertical flight, making the UAV aerodynamically stable and environmentally safe.

Keywords: computational fluid dynamics (CFD); VTOL UAV; disc-shaped drone; hover; vertical flight

1. Introduction

From the beginning of the 21st century, researchers and industries have been com-
ing forward to model the innovative engineering designs of effective flying drones with
improved aerodynamic performances and capabilities. A recent review report [1], gave
an overview of the types of UAVs and their subsystems and evaluated different appli-
cations related to remote sensing, spraying of liquids, and logistics. Another study [2],
reported a classification, a broad spectrum of applications, and the existing challenges of
UAV designs. Some of the most common applications of flying drones are remote sensing;
aerial photography for completing intelligence, surveillance, and reconnaissance missions;
environmental protection; mailing and delivery; and other miscellaneous applications.

The rotary wing design of UAVs or drones allows them to fly at high speeds and
perform VTOL and hovering flight; however, to date, challenges associated with efficient
performance in cruise flight are being faced [3]. Although rotary-wing drones have simple
control systems and they are maneuverable, their main disadvantage is power consump-
tion [4,5]. The aerodynamic interactions between multiple rotors, fuselage, and lifting
bodies add further complexities. The SUI endurance simulations of forward flight in [6]
have provided insight into better designs during cruise; under-mounting the fore rotors
and over-mounting the aft rotors improves the aerodynamic efficiency of the vehicle. The
hybrid SUI increases the forward horizontal force by 63% compared to the standard SUI.
However, even with mild rotor–rotor interactions, the aerodynamic performance of the
vehicle is affected, thus requiring design improvements. The authors of [6] conducted a
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study on the flight phases of the classic commercial quadcopter DJI Phantom and reported
that an octa-rotor (coaxial quadrotor) not only increases the thrust but also the power re-
quired to fly it. The authors of [7] showed that, at the same power consumption, the thrust
is significantly greater than the simple superposition of the thrust generated by the eight
small single rotors. However, the power consumption of the rotor is affected by the inward
interaction from the rotor wake. The difficulties associated with the rotor–rotor interactions
of the quadrotor aircraft were further analyzed by [8] through numerical simulations, both
in hover and forward flight. They reported that the inflow caused by interaction between
rotors during hover was higher than that of a single rotor; additionally, the tip vortex and
downwash flow of the upstream rotors have a strong impact on the downstream rotors
during forward flight.

Another appealing branch of multirotor drones is the design of coaxial rotor systems.
The authors of [9] reported that there is a peak in the total rotor efficiency (thrust-to-power
ratio) for coaxial rotors, and that the efficiency can be increased by 2% to 5% by increasing
the pitch of the lower rotor. However, the thrust of a coaxial rotor system is reduced
compared to having the rotors in line or having a single octa-rotor.

The aerodynamic behaviors of UAVs make it difficult to demonstrate the maximum
efficiency with minimum power consumption. The authors of [10] reported wind tunnel
experiments of the small-scale rotor used in multirotor vehicles, in forward flight at various
inflow angles. Their investigation pointed out that, at larger angles of attack, an increase in
the freestream advance ratio results in a decrease in thrust and power, whereas, at angles
of attacks of less than 15◦, the thrust and power follow the increasing trend with increasing
advance ratios. However, their results did not report ways to compensate the power
consumption at high-speed edgewise flows. In this paper, our simpler comprehensive
design approached the disadvantage of high-power consumption from the propellers of
multirotor flying drones.

Considering all these challenges of rotorcraft designs in respect to energy resource
limitations, in this paper, we propose an innovated design of a disc-shaped VTOL UAV
concentrating on energy saving due to the upper surface flow speeding up, leading to
lower pressure for extra lift other than rotor thrust. The momentum theory of rotors in
hover and vertical flight, first addressed by Glauert [11], is applied to evaluate the thrust,
as stated in earlier studies [12]. The lifting rotor is mechanized by achieving lift force and
thrust force through the momentum change based on the concept of the induced velocity
normal to the disc plane. Moreover, the induced velocity in the far wake is twice that at the
rotor disc. The body generates a significant portion of hover thrust to reduce the load of
the rotor, resulting in less energy consumption along with longer endurance. The design of
the body was modulated by applying the concept of the upper surface curvature on the
disc-shaped UAV. Such a curvature effect is an important fluid mechanics phenomenon
that has not yet been utilized at its full potential and capabilities. Hatton [13] introduced a
family of Coanda UAVs named Geoff’s Flying Saucers (GFS), which have a circular canopy
as a housing for the propulsion system with an orthogonal arrangement of the Coanda
surfaces. Many engineers [14] have applied their own innovative approaches to Coanda-
based UAVs, such as the addition of helium chambers and tandem rotor arrangements
to extract higher thrust. The proposed innovative design, based on the upper surface
curvature, addresses three key design limitations of conventional Coanda UAVs. Firstly,
these designs suffer from thrust losses due to radially broadened geometry. The authors
of [15] reported this limitation by developing a mathematical model; however, their model
used for the flight mechanics of a Coanda UAV could not contribute to the lift in the
spanwise direction. Similarly, [16] reported that the radially broadened structure of Coanda
UAVs averts the convex surfaces from high lift contribution along the linear spanwise
direction. Moreover, another design limitation is the baseplate of the Coanda UAV that
generates negative lift due to propeller downwash. The authors of [17] approached the
limitation of negative lift generation with an effective thrust reduction of 34% and 17%,
respectively. However, unlike the previous studies, we approached mitigating the net
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thrust reduction by considering a suck-in configuration with a spherical flat lower surface
and achieved significant improvement in thrust reduction.

Thirdly, another limitation with such VTOL designs is an alternate to high thrust re-
quirement from the propellers while hovering. Based on the hover performance study [18,19]
mechanistic investigations on the hover power compensation of quadcopters, hex copters,
or octocopters represent an underdeveloped area of research. Considering the precedent
studies, we simulated the conditions of UAV body contribution to hover thrust compensa-
tion with the ring-wing airfoil concept [20] by inhaling the air at the center of the craft. The
authors of [12] approached the hovering by considering a disc-shaped annular-ducted lift
fan system with two fans of 36 blades. However, they did not mention the ways to compen-
sate for the high thrust requirement while hovering. Interestingly, [21] achieved a smooth
transition to forward flight by tilting the toroidal fuselage of ‘Cypher’, an unmanned aerial
vehicle with two coaxial counter-rotating rotors in a ducted fan arrangement. Their study
used the cyclic path of the rotors to reduce the excessive pitching moment generation from
the inlet-nose flow separation and the drag penalty on the aft part of the shroud. However,
it required a considerable amount of power and did not eliminate the drag generation on
the trailing side of the rotor.

This paper presents the aerodynamic behavior of a disc-shaped UAV and aims to in-
vestigate the feasibility and flyability of this concept in both vertical flight and hover modes.
This system aims to present a substitute for a conventional multirotor propeller-based
UAVs, with its body ducting the octa-bladed rotor to improve the propulsive efficiency
and lower energy consumption. The proposed VTOL UAV design suggests a minimum
energy usage (at a lower RPM) with a compensation of thrust contribution from the body
during hover.

2. The Disc-Shaped VTOL UAV at a Glance

The engineering design software tool Solidworks2018 was used to design the 3D CAD
model of the lifting vehicle. We designed the fan blades by considering the NACA 4424 airfoil
profile for its satisfactory lift-to-drag ratio. The undertaken drone was a VTOL aircraft with
a doughnut shape and a ducted rotor in its center that drove the lifting vehicle. The UAV
body diameter equaled 3 m. The simpler comprehensive geometry made the UAV lighter
than conventional anuloid UAVs [22]. Both the lift and cruise were generated by a single
propulsion system. Figure 1 represents different views of the 3D diagram of the lifting
vehicle, with an octa-bladed rotor placed in the inner section of the UAV. The upper surface
curvature was designed to apply the lip effect to maintain prolonged flow entrainment
during VTOL and the hover mode of the UAV. This geometry belongs to a new class of UAV
configuration, where the disc-shaped body essentially makes a significant contribution to
the rotor’s thrust.

Figure 1. Design parameters of the lifting UAV; (a) isometric view, (b) bottom view, (c) side view, and
(d) top view.
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3. Computational Method

3.1. Mathematical Modeling and Governing Equations

High-fidelity computational fluid dynamics (CFD) simulations are performed to eval-
uate the aerodynamic characteristics of the vehicle in hover and vertical flight. Fluid
dynamic simulations were performed using the general-purpose code [23] ANSYS CFX.
The equations that govern the motion of the Newtonian fluid are the continuity, the mo-
mentum (Navier–Stokes equations), and the energy equation expressed in terms of surface
integrals using Gauss’ divergence theorem over the control volume, V. More often, the
solver describes the flow field of the governing equations with the mean values by taking
a time-averaged form of the equations known as the Reynolds averaged Navier–Stokes
(RANS) equations. With the approach of the eddy viscosity principle after Boussinesq
(1877), the general time-averaged RANS equations can be expressed in the tensor form as:
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However, the RANS equation requires a turbulence model for its closure in order to
approximate the real-world flow field. In this paper, we applied one of the most popular
turbulence models, the SST k − w model developed by Menter. The SST k − w model is
advantageous for its good behavior in adverse pressure gradients and separating flow.
The SST formulation also switches to a k − ε behavior, developed by Wisconsin, in the
freestream and thereby avoids the common k − w problem of becoming too sensitive to
the inlet freestream turbulence properties. It solves two transport equations, one for the
turbulent kinetic energy and one for the turbulent frequency, w.

Turbulent kinetic energy: ∂k
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and Pk is the production rate of turbulence.
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ϕ = ϕ1F1 + ϕ2(1 − F1), α1 = 5
9 , α2 = 0.44, β1 = 3

40 , β2 = 0.0828, β∗ = 9
100 , αk1 = 0.85,

αk2 = 1, σω1 = 0.5, and σω2 = 0.856, where y is the distance to the nearest wall. F1 = 1 is
applied inside the boundary layer and 0 in the free stream. Similarly, F2 = 1 is applied
for the boundary layer flows and 0 for the free shear flows. The structure of the turbulent
boundary layer exhibits large velocity gradients and quantities characterizing turbulence
rising to a need for near-wall treatment. The finite volume code in the CFX solver imple-
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ments the wall functions by adding source terms in the momentum equations and by using
the log-law, U

uτ
= 1

k lmEy+, where E = 9.8 is equivalent to the additive constants. Using

τω = ρuτ
2, we obtain τω = ρuτkU

lnEy+ . For the wall treatment at the viscous sublayer, the first
computational wall is generated with its centroid at y+ ≈ 1. This requires a fine mesh
adjacent to the wall. However, a higher y+ is acceptable as long as it is well inside the
viscous sublayer.

The volume and surface integrals of the flow equations are discretized in ICEM CFD
by using unstructured mesh. The mesh is then imported to the CFX pre-solver, which
utilizes the element-based finite volume method [24] to solve the Navier–Stokes equations,
the turbulent kinetic energy, and the turbulent dissipation rate. A fully coupled solver
scheme between momentum and pressure equations resolve the pressure–velocity coupling
with the second order upwind discretization of the pressure equation.

3.2. Generating Computational Mesh

The computational cylindrical domain is a 11D radius measured by a 17D height
flow field containing the rotational domain with a height of 120 mm and a radius of
506.25 mm. The UAV in the domains is imported to the widely used commercial software
ANSYS ICEM 19.0 for generating the mesh topology. From the experience of many other
researchers [25], the unstructured mesh technique is successfully applied to the geometry
as depicted in Figures 2 and 3. CFD methods with unstructured grid techniques offer the
advantage of handling complex aero geometries with high accuracy results through locally
refining the cells as required. Tetrahedral-based volume mesh (Figure 4) is generated
by the quick Delaunay method, which provides a fine mesh quality with a smoother
transition in the volume element size. The mesh contains 8M cells with 30 prismatic layers
in each domain. Previously published reports [26] established high-quality mesh with
20–40 prism layers (each with an expansion ratio of 1.2). The complex flow-oriented zone
in the rotational domain contains 5M cells for the sake of solution accuracy. The first layer
height of the boundary layer is measured to be 0.006 mm to ensure y+ ≈ 0.7 on most of the
surface area, depending on the freestream velocity in the cruise mode. In CFD modeling,
a y+ value near unity with a greater number of prism layer elements accurately predicts the
flow separation, surface pressure, and aerodynamic forces [27]. Hence, a high resolution of
prism mesh is needed to fully resolve the thin boundary layer or the viscous sublayer.

Figure 2. (a) Surface mesh on the UAV body inside the stationary domain, (b) duct, (c) lower surface,
(d) lip curvature, and (e) upper surface.
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Figure 3. (a) Surface mesh on the UAV parts in the rotating domain, (b) zoomed-in view of the mesh
on the blades.

Figure 4. (a) Hub showing the blade section, (b) volume mesh through the mid-section of the UAV in
the density zone.

3.3. Boundary Conditions and Physical Modeling

This paper addresses the following features of ANSYS CFX (Table 1). Steady state
simulations are carried out in CFX solver with the physical model as explained in Figure 5.
For the simulation of the UAV in hover, the computational domain is divided into stationary
(inlet and outlet regions) and rotational (rotating fan blades with hub) domains. The steady
state physics of the analysis is set up with a velocity inlet (velocity in hover, U = 0 m/s)
and pressure outlet definitions. On the side surface, an opening boundary condition is
assumed for an opening boundary condition allowing the flow to both enter and leave
the fluid domain across the boundary with zero pressure offset during the course of the
solution. Air density, dynamic viscosity, and ambient temperature were defined at standard
ideal gas states. The solid surfaces of the UAV and the shroud surface of the rotating zone
are set as no-slip walls at the adiabatic heat transfer.
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Table 1. Physical modeling in CFX.

Component Feature Details

ANSYS CFX—Pre

Simulation type Steady state

Fluid type Air ideal gas

Domain type
Multiple domain

Rotating frame of reference
Stationery frame of reference

Turbulence model SST

Heat transfer Total energy

Boundary conditions

Velocity inlet (Subsonic)
Pressure outlet (Subsonic)

Wall: no-slip
Wall: adiabatic

Far-field: opening

Domain interfaces
General connection

Frozen rotor
Specified pitch angles (360o)

Timestep Physical timescale: 0.1
ω

ANSYS CFX—Solver Manager Start Double Precision

ANSYS CFX—Post Plots
Contour: pressure, and velocity

Streamlines
Velocity vector

Figure 5. (a) Computational domain interpreting boundary conditions; (b) interface between the
rotational and stationary domains.

For multi-reference domains, the stationary and the rotational reference frames are
bridged by an interface connection. A ‘frozen rotor’ type interface model is used in
calculations for modeling the frame change with specified pitch angles of 360o on each
side. A frozen-rotor interface model can significantly reduce the computational effort
and provide reasonably accurate results for steady-state simulations [28,29]. When a
frozen rotor is selected, the rotating blades and the body are both frozen, for the actual
incoming flow is axisymmetric. Moreover, the attitude of the rotating blades is relative
to the rotor and is almost unchanged. With the limited computational effort, the high
accuracy and acceptance rate of the frozen rotor model has already been established by
many aerodynamics experts [17,18,30]. With this setting, the solid structure of the rotor
itself remains fixed; hence, this approach is proposed by many authors [18] due to its
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reliable accuracy in simulating propeller flow for small-scale multirotor UAVs. The general
grid interface (GGI) is used for mesh connections between interfaces. GGI connections
refer to gluing the meshes where faces do not match or when a frame change occurs.
Menter’s shear stress transport (SST) version of the k − ω turbulence model, known for its
reliability [31–33] and robustness, is applied to solve the boundary layer near the wall surface
of the UAV. The zero gradient turbulence model is used for the steady developed flow [34].
Turbulent flows require a heat transfer model for simulation purposes. Accordingly, both
the fluid domains were simulated by applying the total energy heat transfer model to
characterize the transport of enthalpy, including the kinetic energy effects. The rotating
fluid motion was simulated by adding source terms for Coriolis forces and centrifugal
forces. Counter-rotating wall velocities were assigned at the shroud surface.

4. Results

4.1. Mesh Sensitivity Analysis

To validate the computational model, mesh sensitivity analysis was conducted consid-
ering the mesh element sizes from coarser to finer. A coarse grid topology with a global
maximum element size of 6800 mm for stationary domain parts and 600 mm for rotational
parts was selected for the first simulation of the UAV in vertical climb and hovering. The
coarse grid topology generates 1M cells. The vehicle thrust coefficient is selected for the
mesh independence test parameter. The simulation results led to insignificant results with
the coarse grids. However, the thrust coefficient in hover converges to a significant value by
refining the mesh elements. The finer mesh is generated by considering global maximum
element sizes of 680 mm and 60 mm, respectively, for the stationary and rotational domain
parts. Eventually, a negligible discrepancy in the thrust coefficient is achieved with 9M and
11M cells. The thrust coefficient is calculated following the normalized thrust coefficient
equation of the momentum theory [35].

Therefore, to reduce the available computational resources, the mesh with 9M cells,
containing 5M cells in the rotational domain and 4M cells in the stationery domain, is
considered for further investigations in this study. This converged hover thrust coefficient
(Figure 6) with a varied number of mesh elements hereby establishes the computational
validity of this study.

Figure 6. Mesh sensitivity analysis in hovering.

4.2. Hover and Vertical Flight Results

The drone was conceptually designed by combining the upper surface curvature
effects and rotor propulsion for lift generation. The CFD tool was applied to validate the
physical feasibility of the conceptual design. A curvature on the upper surface of the body
and the inlet lip induced a larger and smoother flow into the rotor and created a favorable
lower pressure (Figure 7). As the air passes through the rotor following a curved wall,
the contact pressure on the curved wall is lower than the ambient pressure because of
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the presence of viscous phenomena. The shape of such a surface lip plays an important
role in improving hover efficiency by generating lower pressure on the contour of the
upper surface. Positive pressure arises on the lower surface of the UAV body, adding to
the driving pressure gradient and eventually suggesting a high lift contribution from the
body. A low-pressure gradient is created on the upper convex lip surface, delineating a
high lifting force induced by the curvature effect.

Figure 7. Pressure contour at hovering, U∞ = 0 m/s. (a) XY, Z = 0 mid-plane, (b) YZ, X = −0.5 upper
surface, and (c) YZ, X = 0.5 lower surface cross-sectional plane.

As shown in Figure 8, the air velocity passing over the upper surface of the drone is
greater than that passing over the lower surface, leading to higher dynamic pressure on
the upper surface compared to the lower surface. In particular, the rotor thrust, and body
generated lift acting on the UAV, is increased with the high dynamic pressure, as indicated
by the increased velocity gradient on the upper surface. The lower surface velocity profile
resembles a star shape formation because of the rotation of the octa-bladed rotor.

Figure 8. Velocity contour at hovering, U∞ = 0 m/s. (a) XY, Z = 0 mid-plane, (b) YZ, X = −0.5 upper
surface, and (c) YZ, X = 0.5 lower surface cross-sectional plane.

The velocity streamlines and the velocity vector plot in Figure 9 indicate a prolonged
flow entrainment by the UAV body with stable symmetric flow patterns free from fluid
momentum losses in the radial direction. One possible explanation for this innovative
design’s efficiency can be observed through the visual interpretation of velocity vector
plots. Commonly, conventional saucer-shaped UAVs experience flow separations along the
curvature of the upper surface [36]. To study the flow separation mechanism, the velocity
vectors are plotted across the central cross-sectional plane, as depicted in Figure 9b, which
describes a stable blanket of high velocity air remaining attached to the contours of the
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upper surface convex curvature without experiencing flow separations. The stability of
attached streamlines is achieved at a much lower RPM of 3800 than the investigation of
Najafi et al. [37], who observed the stable flow at 8000 RPM on the considered UAV design.
The upper body curvature and the spherical disc shape of the UAV account for maintaining
attached flow at the aircraft’s trailing edge. However, to study this phenomenon in more
detail, future experimental setups would need to provide the ability to visualize the
flow separations.

Figure 9. Mid-section plane plots of (a) surface streamlines, and (b) velocity vector in hovering, at
U∞ = 0 m/s.

Prolonged flow attachment augments the lift contribution from the body surfaces,
which act as a wing to balance the aerodynamic stability of the UAV. As shown in Figure 10a,
the upper surface acts as a wing and generates a significantly high lift of 0.96 of rotor thrust.
This happens due to the flow speeding up by the convex curvature of the upper surface.
However, the lower surface negligibly generates a negative lift of 0.01 of rotor thrust,
which reduces the overall body lift by 1%. This negative lift or drag increment, caused
by the lower surface due to the rotor downwash, is compensated by the body upper
surface. Thus, while hovering, the effective lift from the body alone is 0.95 of the rotor
thrust. This significant extra lift from the body augments the hover efficiency compared
to the conventional UAVs because the lift contribution from the body makes the vehicle
advantageous to the environment for reduced energy consumption. As the vertical wind
speed increases, the overall thrust and body lift decreases due to the increasing drag
from the lower surface, as shown in Figure 10b,c. During vertical flight, air approaches
the UAV at a higher speed, which drags the vehicle towards the fluid flow direction.
Thus, the lower surface generates more negative lift at an increasing vertical wind speed.
Following the vertical climb theory, keeping a constant RPM, the thrust coefficient of the
lifting system decreases with the increasing wind velocity (Figure 10d). This is because,
with the increasing inflow speed the angle of attack of the blades decreases and the body
contribution becomes less significant due to the force coming from the incoming vertical
wind. When the vertical wind speed reaches 15 km/h, the body lift dwindles by 30% of the
lift generated in hover mode. This body lift decreases further as the vertical wind speed
reaches 30 km/h. Therefore, the specific disc-shaped configuration of the drone body and
central position of the fan promoted the lift efficiency due to the low pressure in the upper
surface curvature generating a significant thrust contribution from the body.
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Figure 10. (a) Extra lift contribution from the body delineating the UAV hover efficiency, (b) discrete
hover and vertical flight thrust with body lift, (c) percentage generation of body lift and rotor thrust
in hover and vertical flight, and (d) thrust coefficient of the UAV with increasing vertical wind speed.

The simulation results show a hover thrust of 1090N with a significant contribution
from the body lift of 1040N. Therefore, the generated thrust gives the rotor efficiency
η = 111.149

95.05
kg
hp = 1.17 kg/hp and the body lift efficiency T

P = 106.05
95.05 = 1.12 kg/hp.

The moment on the fan, produced by the aerodynamic force of the rotating blades, is
obtained as 215 N m. Thus, the simulated mechanical power of the rotor in hover mode
achieved 95.05 hp, which was used to accelerate the air going through the disc area of the
rotating rotor. The low power required to run the fan reduces the corresponding drag on the
fan blades, resulting in sufficiently less energy consumption. We aimed to design the UAV
body to reduce the load on the rotor and then eventually reduce the power consumption.
The current multirotor VTOL drones provide hover thrust only by the propellers, with
substantial power consumption. In our strategy of a curvature body VTOL UAV, the body
shares the lift required to hover by reducing the power consumption of the rotor.

As the UAV starts vertical climbing with the increasing inflow wind speed, the per-
centage of body lift contribution to the rotor thrust declines. Figure 11a portrays that,
while hovering, the body contribution is 0.95 of rotor thrust. As the vertical wind speed
reaches 15 km/h, the body lift contribution reduces to 0.66 of rotor thrust, which further
decreases to 0.32 of rotor thrust at the wind speed of 30 km/h and constant RPM of 3800.
This suggests that the body alone covers a considerable part of hover thrust. The significant
portion of the body lift contribution comes from the UAV upper surface due to the curvature
configuration. Because the body generates such a significant amount of lift force, unlike
conventional multirotor UAVs, this extra lift contributes to the energy-saving potential of
the propulsion system, leading to a longer endurance. As shown in the lift distribution of
Figure 11b, with the increasing wind speed in vertical flight, the upper surface induces a
higher percentage of lift out of the total lift. However, it associates an increasing negative
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lift from the lower surface. The increasing wind force accounts for the rising drag of the
lower surface. To approach the vertical windspeed of 30 km/h at a null incidence with
constant RPM, a negative lift of 1.05 of total body lift is generated by the lower surface;
nevertheless, this is compensated by the upper surface. The increasing downwash-induced
velocity accounts for rising negative lift from the lower surface. The extra lift from the body
accelerates the UAV to move vertically upwards toward the wind.

Figure 11. (a) The percentage of extra lift generated by the body compared to the rotor thrust, (b) lift
distribution of the body from hover with 0 m/s to the vertical flight with increasing wind velocity.

The specific UAV design can save energy due to the following facts: (1) The elimination
of rotor wake swirling loss and wake coning loss. The duct associated body eliminates
the fan blade tip vortex and prevents the downstream flow from contraction. (2) The
substantial amount of extra lift generated by the body as a significant contribution to the
rotor thrust. (3) The additional body lift helps to reduce the corresponding power required
to operate the UAV and increase the flight endurance. The CFD results of hovering showed
that 0.95 of rotor thrust comes from the upper surface curvature lift. Moreover, a negligible
drag or negative lift of 0.01 of the total thrust comes from the lower base surface.

5. Discussion

As the new design has demonstrated an effective hover and vertical flight performance
with a significant lift contribution from the body, the next stage of the study would be
comprised of conducting forward flight simulations. Presumably, in forward flight, the
body would play the role of a wing to reduce the load on the rotor. This is because the disc-
shaped body would act as a cross-section of the airfoil to generate more lift in forward flight.
We attempted to address the reduction in the overall net lift due to the disc-shaped lower
surface of the UAV in hover and vertical flight. Figure 11 exhibits a 1 % reduction in the
overall net lift generated from the body while hovering at 0 m/s. This reduction percentage
due to the flat lower surface is much less than body-associated UAVs with concave or
convex lower surfaces, as presented by Nauddin’s UAV in [17], where a 34% body lift
reduction was obtained. Furthermore, Barlow et al.’s [20] application of a ring-wing airfoil
on a radial UAV generated less than favorable results. However, the application of a
ring-shaped upper surface in our inventive design achieved more than favorable results
due to the recovery of thrust losses in the radial direction. The duct enclosing the rotor acts
as the anti-noise material, resembling Shin et al.’s [38] observations of a reduced acoustic
signature of UAV.

The surface streamlines and velocity vector plots depict an interesting behavior of flow
attachment, complying with an annular disc of earlier studies [12]. However, inconsistent
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with the previous study, we considered the upper surface in our geometry, which acts as
the wing for the UAV. Generally, the aerodynamic challenges include flow separation from
the wings. Nevertheless, our results show highly improved flow separation and swirling
flows of the surface streamlines. This ensures reduced thrust losses with efficient energy
consumption by the control systems and increases the aerodynamic performance of the
UAV and proves to be of a greater potential interest to the industry.

One possible explanation for the innovated design’s efficiency can be observed through
the visual interference of velocity vector plots. In conventional saucer-shaped UAVs, flow
separations along the convex surface are a common occurrence [36]. Many designers have
used vortex generators and axial vanes to prevent or delay flow separations such that
the flow remains attached to the curved surface [39]. Researchers in their investigations
experienced flow separation characterized by a swirling vortex generated above the upper
surface. However, our velocity vector plots show a stable blanket of high velocity attached
to the contours of the convex upper surfaces and the flat lower surface without experiencing
flow separations.

6. Conclusions

The aerodynamic characteristics of the disc-shaped lifting system for VTOL UAV
from vertical climb to hover were investigated by applying the ANSYS CFX software. A
significant lift contribution to the hover thrust was generated by the UAV body, with a
negligible negative lift caused by the disc-shaped flat lower surface due to rotor downwash.
This study proves the concept that the drone body can produce significant extra lift to the
rotor, reducing the load on the rotor, both in vertical flight and in hover. This is caused
by the pressure differential along the UAV body surfaces, particularly by the flow passing
through the upper surface before entering the rotor and creating large negative pressure
to lift up the vehicle. In addition to a substantial hover thrust, 95% of the rotor thrust is
generated by the UAV body as an extra lift.

For an efficient design along with the energy resource limitations, an alternative lift of
the UAV can be generated from the body. The drone body alone generated 0.95 of hover
thrust, which significantly contributes to the energy-saving potential of the propulsion
system. Thus, the innovative disc-shaped vehicle could eventually lead to longer endurance,
which is a common limitation of multirotor UAVs. Additionally, in forward flight the body
would play the role of a wing to reduce the load of the rotor to be studied in future. This
would result in substantially reduced energy consumption in forward flight.

In future work, the model will be validated for transition to horizontal flight with con-
trol approaches to improve the stability of the control system. The predicted simulation data
provide useful insights for future experimental studies of the disc-shaped UAV. The unique
disc-shaped UAV has high lift efficiency and acceptable lift, generating characteristics of
the body with great potential for future VTOL transportation.
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Abstract: Unmanned Aerial Vehicles (UAVs) are able to provide instantaneous visual cues and a high-
level data throughput that could be further leveraged to address complex tasks, such as semantically
rich scene understanding. In this work, we built on the use of Large Language Models (LLMs)
and Visual Language Models (VLMs), together with a state-of-the-art detection pipeline, to provide
thorough zero-shot UAV scene literary text descriptions. The generated texts achieve a GUNNING
Fog median grade level in the range of 7–12. Applications of this framework could be found in the
filming industry and could enhance user experience in theme parks or in the advertisement sector.
We demonstrate a low-cost highly efficient state-of-the-art practical implementation of microdrones in
a well-controlled and challenging setting, in addition to proposing the use of standardized readability
metrics to assess LLM-enhanced descriptions.

Keywords: scene understanding; large language models; visual language models; CLIP; GPT-3;
YOLOv7; UAV

1. Introduction and Motivation

Unmanned Aerial Vehicles (UAVs) have proven to be an essential asset for practically
addressing many challenges in vision and robotics. From surveillance and disaster response
to the monitoring of satellite communications, UAVs perform well in situations where
seamless mobility and high-definition visual capture are necessary. In this work, we
focused on tasks that require a semantic understanding of visual cues and that could
guide initial estimates in proposing an adequate characterization of a certain environment.
Problems that are of interest include semi-adaptive filming [1] and automatic literary
text description. In this setting, we propose a complete pipeline that provides real-time
original text descriptions of incoming frames or a general scene description given some
pre-recorded videos. The descriptions are well-suited to creating an automatic storytelling
framework that can be used in theme parks or family trips alike.

Foundation models are techniques based on neural networks that are trained on
large amounts of data and that present good generalization capabilities across tasks. In
particular, Natural Language Processing (NLP) has seen a dramatic improvement with
the appearance of GPT-2 [2] and its subsequent improvements (GPT-3 [3]). Indeed, Large
Language Models (LLMs) and Visual Language Models (VLMs) have recently arisen as a
resource for determining widespread problems in disciplines from robotics manipulation
and navigation to literary text description, completion, and question answering. We attempt
to introduce these techniques in the field of UAVs by providing the vehicle with enhanced
semantic understanding. Our approach uses a captioning technique based on CLIP [4,5],
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along with the YOLOv7 detector [6], which enhances the captioning output with the object
annotations detected and then wires the text into GPT-3.

The descriptions provided are accurate and show a detailed understanding of the
scene, and they introduce hallucinated elements that yield sound and consistent seed
captions. The literary style allows for the system to be used in a wide variety of situations;
for example, a human companion can use the generated text for assistance in writing
a script.

The system can be used without fine-tuning in a wide variety of environments, as
the base models are trained on large amounts of data. However, to further improve the
consistency of the descriptive text, a proper fine-tuning of the detector could be useful when
the objects that the system would normally encounter are not present in the COCO object
classes [7,8], or when one wants to emphasize certain aspects of the visual cues; for instance,
in an amusement park, a fine-tuning of the data could add specificity to the descriptions,
e.g., providing captions that include trademark imaginary characters or specific attractions,
rides, or games.

This article proposes, from the point of view of system integration, a novel zero-shot
literary text description system using state-of-the-art large-language modules through
the use of microdrones (RYZE Tello) and UAVs; additionally, a proposed set of measures
is newly introduced in this context to assess the adequacy of the output text for the
target audience.

One of the main technical issues of applying LLMs to UAVs is that the data have to
be relayed to the computer, where either computation has to take place or a query has to
be formulated to use an API. On-board processing is possible, but it is limited due to the
amount of GPU memory that state-of-the-art models need. A high-definition camera, well-
calibrated and possibly stabilized, is crucial for the optimal behavior of the overall system,
as it mainly relies on visual cues for processing the entire pipeline. Another limitation is
due to the object detector (YOLOv7) that is used to improve the query formulation prior to
using GPT-3; in this particular setting, we used a pretrained model trained on the COCO
dataset, but specific training data may be needed for a target application. Furthermore, the
object detector could be integrated into the on-board processing using a CORAL board.

The main goal of this manuscript is to propose a system that could be used in many
real-life applications. The majority of the techniques used have been thoroughly tested
in standard datasets before, but there has been little experimentation in real settings with
varying conditions and equipment. For testing the system, we used standardized measures
originally used to assess texts written by human instructors in the context of the military,
education, and so on.

2. Contribution and Paper Organization

A low-cost, highly efficient practical implementation of the system was performed
through the use of microdrones (e.g., RYZE Tello), which perform real-time video streaming
on a ground computer that controls the vehicle. The level of autonomy of the system could
be further enhanced by performing part of the computation on-device; for example, by
the attachment of a CORAL Dev Board Mini (Google), which only adds 26 g of payload,
to the body of the microdrone. This endows the UAV with a TPU (2GB) that can process
on-device real-time detections, for instance, through the use of state-of-the-art models such
as SSD MobileNet V2 [9] and EfficientDet-Lite3x [10].

The RYZE Tello drone is a compact and lightweight quadrotor drone designed for use
in educational and recreational applications. It is equipped with an Intel processor and a
variety of sensors, including a camera, an IMU, and ultrasonic range finders. The drone
is capable of autonomous flight using a pre-programmed set of commands and can be
controlled remotely using a compatible device, such as a smartphone. It is also equipped
with a number of interactive features, such as gesture control and throw-to-fly, which allow
users to easily interact with the drone in a variety of ways; that is, the RYZE Tello drone is
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a versatile and user-friendly platform that is well-suited for a wide range of applications,
including education, entertainment, and research.

A more professionally driven, inexpensive prototype appropriate for outdoor use was
attempted by the use of an NXP Hover Games Drone Kit with a CORAL Dev Board Mini
(Google) and a high-definition camera (see Figure 1). It also includes GPS and a Flight
Management Unit (FMU) that supports the PX4 autopilot flight stack. Autonomy could
be enhanced by the use of a LiDAR lite-v3 for navigation purposes, a lightweight 23 g
light-ranging device with a high accuracy and range (40 m). In a well-controlled situation,
such as a film studio, a tethered UAV could be used to eliminate the limitation of the battery
capacity of the vehicle.

Figure 1. RYZE Tello Microdrones and the NXP Hover Games Drone Kit.

The NXP Hover Games Drone Kit is a hardware and software platform designed for the
development and evaluation of autonomous drone systems. It includes a quadrotor drone
equipped with an NXP S32 processor, a variety of sensors including an IMU, ultrasonic
range finders, and stereo cameras, and a range of peripherals such as LED lights and a
buzzer. The kit also includes a software library and sample code for implementing various
autonomous flight behaviors such as hovering, takeoff, and landing. It is intended for use
by researchers and developers working in the field of autonomous drone systems, and can
be used for a wide range of applications, including drone racing, search and rescue, and
aerial photography. Overall, the NXP Hover Games Drone Kit is a comprehensive and
versatile tool for exploring the capabilities and limitations of autonomous drone systems.

Experimental results based on a UAV testbed show that the proposed pipeline is able
to generate accurate state-of-the-art zero-shot UAV literary text descriptions.

The remainder of the paper is structured as follows: an overview of state-of-the-art
approaches that entail the use of foundation models is provided. Next, Section 4 addresses
the proposed methodology, as well as the background for the prior knowledge needed
for the experimental assumptions, while experiments are presented in Section 5. Section 6
proposes standardized readability metrics to evaluate LLM-generated descriptions. Finally,
Section 7 provides the conclusions and describes further work.

3. Overview and State of the Art

Large Language Models (LLMs) [11–13] and Visual Language Models (VLMs) [5] have
emerged as an indispensable resource to characterize complex tasks and bestow intelligent
systems with the capacity to interact with humans in an unprecedented way. These models,
also called foundation models, are able to perform well in a wide variety of tasks, e.g., in
robotics manipulation [14–16], and can be wired to other modules to act robustly in highly
complex situations, such as in navigation and guidance [17,18].

LLMs are ML models that are trained on very large datasets of text and are capable
of generating human-like text. These models are typically based on neural networks,
which are composed of interconnected processing units that are able to learn and adapt
through training. The goal of large language models is to learn the statistical patterns and
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relationships present in the training data and use this knowledge to generate coherent and
plausible text.

One of the key features of large language models is their ability to generate text that
is difficult to distinguish from text written by humans. These models are trained on vast
amounts of text and, as a result, are able to capture a wide range of linguistic patterns and
structures, including syntax, grammar, and vocabulary. This enables them to generate text
that is highly coherent and grammatically correct, and these models can thus be used for a
variety of tasks, such as translation, summarization, and text generation.

In addition to their language generation capabilities, large language models have also
been shown to be effective at a variety of natural language processing tasks, including
language translation, question answering, and text classification. In essence, LLMs are a
powerful and versatile tool for understanding and working with natural language data.

Visual Language Models (VLMs) are ML models that are trained on large datasets of
text and images and are capable of generating natural language text that is coherent and
grammatically correct. The goal of VLMs is to learn the statistical patterns and relationships
present in the training data and use this knowledge to generate text that is descriptive and
informative about the visual content of an image or a set of images.

One of the key features of visual language models is their ability to generate text that
is grounded in the visual content of an image or a set of images. This means that the text
generated by these models is specifically related to the objects, people, and events depicted
in the image and provides descriptive and informative details about these elements. For
example, a VLM could be used to generate a caption for an image depicting the occurrence
of a particular action.

In addition to generating descriptive text, visual language models can also be used for
a variety of other tasks, such as image classification, object detection, and image captioning.
These models can be trained to recognize and classify different types of objects and events
in an image and can also be used to generate coherent and grammatically correct captions
that describe the content of an image.

VLMs are a powerful and versatile tool for understanding and working with both
text and image data. By enabling the generation of descriptive and informative text that is
grounded in the visual content of an image, these models have the potential to facilitate a
wide range of applications, including image and video analysis, content generation, and
natural language processing.

Drones, also known as unmanned aerial vehicles (UAVs), have the potential to be used
for a wide range of applications involving semantic scene understanding, which refers to
the ability of a system to analyze and interpret the meaning or significance of the objects,
people, and events present in a scene. This capability is important for many applications,
including robotics, surveillance, and autonomous driving.

One way in which drones can be used for this particular purpose is through the use
of on-board sensors and cameras to capture visual data and other types of data about the
environment. These data can then be processed and analyzed using ML algorithms to
identify and classify the objects and events present in the scene. For example, a drone
equipped with a camera and an object recognition algorithm could be used to identify and
classify different types of objects in a scene, such as vehicles, pedestrians, and buildings.

In addition to object recognition, drones can also be used for other types of tasks, such
as event detection and tracking. For example, a drone equipped with a camera and an event
detection algorithm could be used to identify and track the movements of people or vehicles
in a scene. This could be useful for applications such as surveillance or traffic monitoring.
By enabling the analysis and interpretation of the meaning or significance of objects and
events in a scene, drones can provide valuable insights and information for a variety of tasks
and scenarios. In this work, we built on the improvements in object detection [19,20] and
model reparameterization [21,22] to apply LLMs and VLMs in the field of Unmanned Aerial
Vehicles (UAVs) [1]. State-of-the-art techniques of captioning [23–25] have allowed computers
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to semantically understand visual data, while advances in automated storytelling can now
generate realistic storylines from visual cues [26,27].

4. Methodology

UAV real-time literary storytelling refers to the use of Unmanned Aerial Vehicles
(UAVs), also known as drones, to generate narrative stories in real-time based on data they
collect. This could involve using the UAVs to capture visual data and other types of data
about the environment and then processing and analyzing these data using ML algorithms
to identify the objects and events present in the scene. The resulting data could then be
used to generate a narrative story that describes and explains the objects and events in the
scene coherently and grammatically.

One potential application of UAV real-time literary storytelling is in the field of jour-
nalism, where UAVs could be used to capture newsworthy events and generate narratives
about these events in real time. For example, a UAV could be used to capture images
and video of a natural disaster and then generate a narrative story about the disaster that
is based on the data collected by the UAV. This could provide a more immersive and
interactive way of reporting on events and could enable journalists to generate stories more
quickly and efficiently.

Another potential application is in the field of entertainment, where UAVs could be
used to capture data about live events and generate interactive narratives about these
events in real time. For example, a UAV could be used to capture data about a sports game
and then generate a narrative story about the game that is based on the data collected by the
UAV. This could provide a more engaging and interactive way of experiencing live events
and could enable users to experience events in a more immersive and interactive way.

UAV real-time literary storytelling offers potential for a wide range of applications,
including journalism, entertainment, and education. By enabling the generation of narrative
stories in real time based on data collected by UAVs, this technology has the potential to
facilitate a more immersive and interactive way of experiencing and understanding events
and situations.

CLIP (Contrastive Language-Image Pre-training) is a neural network architecture
developed by researchers at OpenAI that can be used for image captioning and other
natural language processing tasks. It is based on the idea of pre-training a model on
a large dataset of images and text and then fine-tuning it for a specific task, such as
image captioning.

CLIP uses a transformer architecture, which is a type of neural network that is particu-
larly well-suited for tasks involving sequential data, such as natural language processing.
The model is trained to predict the next word in a sentence given the previous words, using
the images as additional context. One key feature of CLIP is that it is able to learn a con-
tinuous space of image and text representations, which allows it to generate high-quality
captions for a wide range of images. It is also able to learn from a large amount of data,
which helps it to generalize to new images and improve the performance in the image
captioning task.

The problem of captioning can be formulated as follows: given a dataset of paired
images and captions {xz, cz}N

z=1, the aim is to be able to synthesize adequate captions given
an unseen sample image. In our approach, we built on recent work that uses the embedding
of CLIP as a prefix to the caption and that is based on the next objective, where the captions
can be understood as a sequence of tokens cz = cz

1, . . . , cz
�, padded to a maximum length �:

max
θ

N

∑
z=1

�

∑
w=1

log pθ(cz
w| xz, cz

1, . . . , cz
w−1). (1)

We consider, as in [4], an autoregressive language model that predicts the consequent
token without considering future tokens.
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The CLIP embedding is then projected by a mapping network, denoted as F:

pz
1, . . . , pz

k = F(CLIP(xz)). (2)

where pz
w is a vector with the same dimension as a word embedding and then concatenated

with the caption embedding. A cross-entropy loss is used to train the mapping F.
YOLO (You Only Look Once) [19,20] is a real-time object detection algorithm. It is

an end-to-end neural network model that is able to detect and classify objects in images
and videos. YOLO works by dividing the input image into a grid of cells and predicting
the class and location of objects within each cell. The model uses anchor boxes to make
predictions at multiple scales, so it can detect objects of different sizes. The model also
predicts the confidence of each detection, which helps to filter out false positives.

One of the main advantages of YOLO is its speed. It is able to process images and
videos in real time, making it suitable for use in applications such as video surveillance and
autonomous vehicles. YOLO has undergone several versions, with each version improving
the accuracy and efficiency of the model. YOLOv7 is the latest version of YOLO and
includes several enhancements over previous versions.

We propose a general pipeline for UAV real-time literary storytelling (see Figure 2)
that is based on the previously described captioning technique that utilizes CLIP prefix
captioning [4,5,28] and that combines the obtained sentence trained with Conceptual
Captions [29] with detections given by YOLOv7 [6]. The output of the object detector is
processed by a module of sentence formation such that it can be fed into a GPT-3 module,
which provides an enhanced literary description. A query formulating the task to be
determined by GPT-3 is needed. The system can work in real time on the streaming frames
of the vehicle or as a post-processing module once the UAV has landed.

Figure 2. UAV real-time literary storytelling.

The pipeline does not require fine-tuning to specific tasks, although it would benefit
from such tuning if used in a particular environment where some specific objects need to
be identified, e.g., when there is a need to be specific in terms of trademark names.

The main blocks of the architecture are CLIP Prefix for Image Captioning, YOLOv7,
and GPT-3.

CLIP Prefix for Image Captioning is a transformer-based architecture that enables
the generation of captions while the CLIP and GPT-2 model are frozen. It consists of the
training of a lightweight mapping network based on a transformer [30,31] that translates
from the CLIP embedding space to GPT-2.

YOLOv7 is the state-of-the-art object detector in terms of speed and accuracy. It is a
generalization of previous YOLO-based architectures with the use of Extended Efficient
Layer Aggregation Networks (E-ELANs) [6]. E-ELANs address the problem of control-
ling the shortest longest gradient path so that the network converges effectively. It uses
expand, shuffle, and merge cardinality to continue learning without losing the original
gradient path.
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GPT-3 is used to enhance the captions by the natural language instruction and prompt
engineering. All of our experiments used the API of OpenAI, and the model is surprisingly
effective with zero-shot prompts.

Having said that, the manuscript has the goal of deploying state-of-the-art LLMs
to accomplish the task of zero-shot semantic scene understanding through the use of a
low-cost UAV (RYZE Tello or a NXP Hover Games Drone Kit) that incorporates a high-
definition camera. Further integration by the use of a Raspberry Pi Zero W or a CORAL
board can move some of the computation on-device with the proper module adaptation,
both for object detection and also for the LLM API. In the latter case, a call to OpenAI API is
necessary at this stage but advances on the field will soon make it possible to test the trained
models directly on-board (e.g., pruning the LLM model to make it fit on memory) without
the need to relay the video frames to the computer for further processing. In either way,
model pruning can be used to reduce the model size and thus reduce the computational
requirements. Another technique would be to use model quantization to reduce the
precision of the model and make it more efficient. Additionally, another viable approach is
knowledge distillation, where the knowledge of a large teacher model is transferred to a
smaller student model for the purpose of using it on a resource-constrained environment.

5. Results and Experiment Set-Up

Experiments were conducted on a well-controlled challenging environment with the
use of RYZE Tello, streaming the data in real time to a ground computer that processes the
frames one by one. Figures 3–6 illustrate all of the stages of the used methodology for a
number of UAV captured stream frames, with contrasting levels of descriptive goodness.
The drone captures a particular visual scene that is consequently sent to the ground
computer, where a first caption is generated using CLIP Prefix for Image Captioning with
beam search. The caption is improved by the output of a YOLOv7 object detector after
sentence formation. Finally, a query is formulated together with the resultant caption to
generate an enhanced text description by the GPT-3 module. The results are consistent and
robust and exhibit original and genuine descriptions of the imagery, and the modules of
captioning and object detection are effective and efficient.

CLIP Prefix for Image Captioning presents an average runtime of 206 ms and the
YOLOv7 Object Detector presents one of 556 ms, using a GPU Tesla V100-SXM2 (16GB)
and a two-core Intel(R) Xeon(R) CPU @ 2.00 GHz. Prompts to the OpenAI API take an
average of 3.9 s using the completion model text-davinci-002, where max_tokens = 401 and
temperature = 0.9.

Figure 3 shows the methodology when the CLIP captioning module and the YOLOv7
object detection produce accurate outputs, and the GPT-3 module produces a very good
enhanced literary description.

Figure 4 shows the methodology when the CLIP captioning module and the YOLOv7
object detection produce relatively good outputs (detection of the majority of objects—not
all or not completely accurate), and the GPT-3 generates a realistic literary description but
with the presence of hallucinated elements that provide realism but are not actually in
the scene.

Figure 5 shows the methodology when the CLIP captioning module and the YOLOv7
produce somewhat adequate outputs, but they are not particularly accurate, e.g., detecting
objects but misclassifying some of them, or generating overly general caption descriptions.
The GPT-3 then produces an enhanced description, but not a very accurate one.

Finally, Figure 6 shows the methodology when the CLIP captioning module or
YOLOv7 object detection fail to describe the scene accurately, and the GPT-3 module
generates an erroneous text description.
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(a)

(b)

(c)

Figure 3. UAV captured frame processing and GPT-3. Very good GPT-3 descriptions of the scene.

(a)

Figure 4. Cont.
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(b)

(c)

Figure 4. UAV captured frame processing and GPT-3. Adequate literary GPT-3 descriptions.

(a)

Figure 5. Cont.
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(b)

(c)

Figure 5. UAV captured frame processing and GPT-3. Somewhat good descriptions, but the CLIP
captioning module and the YOLOv7 produce inaccurate outputs.

(a)

(b)

Figure 6. UAV captured frame processing and GPT-3. Failure cases.

6. Readability Analysis

GPT-3 (short for “Generative Pre-training Transformer 3”) is a large language model
developed by OpenAI that is trained on a very large dataset of text and is capable of
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generating human-like text. It is based on a type of neural network called a transformer,
which is composed of interconnected processing units that are able to learn and adapt
through training. The goal of GPT-3 is to learn the statistical patterns and relationships
present in the training data and use this knowledge to generate coherent and plausible text.

One of the key features of GPT-3 is its ability to generate text that is difficult to
distinguish from text written by humans. It is trained on a dataset of billions of words and,
as a result, is able to capture a wide range of linguistic patterns and structures, including
syntax, grammar, and vocabulary. This enables it to generate text that is highly coherent
and grammatically correct, and it can thus be used for a variety of tasks, such as translation,
summarization, and text generation.

Readability measures are tools that are used to evaluate the complexity of written
text and determine how easy or difficult it is for readers to understand. One common
readability measure, for instance, is the GUNNING Fog index, which is a formula that
estimates the number of years of education a reader would need to understand a piece of
text. The GUNNING Fog index is based on the average number of words per sentence and
the percentage of complex words (those with three or more syllables) in the text.

To calculate the GUNNING Fog index, the following steps are followed:

• Count the number of words in a sample of the text;
• Count the number of sentences in the sample;
• Divide the total number of words by the total number of sentences to calculate the

average number of words per sentence;
• Count the number of complex words (those with three or more syllables) in the sample;
• Divide the number of complex words by the total number of words, and multiply the

result by 100 to calculate the percentage of complex words in the sample;
• Add the average number of words per sentence and the percentage of complex words.

The result is the GUNNING Fog index.

The GUNNING Fog index is typically used to evaluate the readability of written
materials, such as reports, documents, and articles. It is a useful tool for determining
the level of difficulty of a piece of text and ensuring that it is appropriate for a particular
audience. For example, a text with a GUNNING Fog index of 8 would be considered
suitable for readers with an eighth-grade education or higher.

Such readability measures are useful tools for evaluating the complexity of written
text and ensuring that it is appropriate for a particular audience. This can help writers and
editors to produce written materials that are clear, concise, and easy to understand and can
help readers to more easily comprehend and retain information presented in a text.

A readability analysis of the GPT-3-enhanced text is provided by the use of standard-
ized measures, the one introduced earlier being the most effective. In this manuscript,
we propose analyzing LLM texts by the following metrics: FLESCH reading ease, DALE
CHALL readability, the Automated Readability Index (ARI), the COLEMAN LIAU index,
GUNNING Fog, SPACHE, and Linsear Write. The scores obtained by the use of these
formulas were designed by linguists to assess the readability of texts to approximate their
usability and have been extensively used by, for example, the Office of Education of the
United States of America to calibrate the readability of textbooks for the public school
system, daily newspapers and monthly magazines to target the appropriate audience, the
Department of Defense to help assess the adequacy of technical manuals, and, in general,
many US Government Agencies to evaluate the difficulty of a reading passage written
in English.

FLESCH reading ease [32] is a simple approach used to assess the grade level of the
reader. It is based on the average sentence length and the average number of syllables
per word. It is a score in the set [0, 100]; the higher the number, the easier the text is to
read. According to the scale, [0, 30] means a text is easily understood by a college graduate,
[60, 70] means it is easily understood by eighth and ninth graders, and [90, 100] means it is
easily understood by a fifth grader.
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DALE CHALL readability [33] calculates the grade level of a text sample based on
the average sentence length in words and the number of difficult words according to a
designated list of common words familiar to most fourth-grade students. Adjusted scores
are as follows: <5: Grade 4 and below; [5, 6): Grades 5–6; [6, 7): Grades 7–8; [7, 8): Grades
9–10; [8, 9): Grades 11–12; [9, 10): College; ≥ 10: College Graduate.

The Automated Readability Index (ARI) consists of a weighted sum of two ratio
factors: the number of characters per word, and the average number of words per sentence.
It assesses the understandability of a text and outputs a value that approximates the grade
level needed to grasp the text. For example, the tenth grade corresponds to 15–16 years
old, the eleventh grade corresponds to 16–17 years old, the twelfth grade corresponds to
17–18 years old, and greater than twelve corresponds to the level of college.

The COLEMAN-LIAU index [34] is similarly based on the average number of letters
per 100 words and the average number of sentences per 100 words. It is like the ARI, but
unlike most of the other metrics that predict the grade level, it relies on characters instead
of syllables per word.

GUNNING Fog [35] is based on the scaled sum of the average sentence length and
the percentage of hard words. It measures the readability of a text passage, and the ideal
value is 7 or 8. Texts with a score above 12 are too hard for most people to understand. The
measure scores highly with short sentences written in simple language but penalizes long
sentences with complicated words.

The SPACHE readability formula [36] is based on the average sentence length and the
number of difficult words according to a third grader. It is similar to Dale Chall, but for
primary texts until the third grade. To assess the readability of a text, SPACHE is first used,
and if the result is higher than third grade, Dale Chall is used.

Linsear Write is a readability formula based on sentence length and the number of
words with three or more syllables. Analogous to the previous formulations, it scores a text
passage according to the grade level.

Table 1 shows the proposed metrics on several example frames. The metrics are
computed on unique frames in Row 1–3 and on multi-frame configurations in Row 4–8. We
can observe that the storylines generated exhibit a relatively consistent behavior among the
statistical indices, where unique frames tend to be ranked at a lower grade level and multi-
frame configurations are closer to college level. All SPACHE readability indices are higher
than third grade, so Dale Chall has to be considered, where the frames are consistently
ranked with a median grade level of [7, 8]. Among the measures, GUNNING Fog presents
an ideal behavior, as all values are in the range of [7–12], which means that the level of
generated texts is comparable to that of established publications in magazines and books,
and therefore can be understood by the general public while presenting a rich vocabulary.

Table 1. Readability analysis of a random stream of data captured by RYZE Tello. Score (upper row)
and grade level (lower row) for each metric.

Frame(s)
Metric

FLESCH Reading Ease Dale Chall ARI Coleman Liau GUNNING Fog SPACHE Linsear Write

00
68.36 6.56 6.29 9.10 9.47 4.56 6.1
[8, 9] [7, 8] [7] [9] [9] [5] [6]

01
84.22 6.06 3.63 4.36 8.18 3.91 7.14

[6] [7, 8] [9, 10] [4] [8] [4] [7]

02
84.57 5.67 3.80 5.04 7.40 4.18 6.46

[6] [5, 6] [9, 10] [5] [7] [4] [6]

03–05
71.11 6.82 10.27 7.89 11.81 5.82 13.14

[7] [7, 8] [16, 17] [8] [12] [6] [13]

06–07
82.08 6.82 4.36 7.89 7.56 3.64 6.94
[7, 8] [5] [8] [8] [4] [7]

08–10
74.30 6.35 7.05 7.53 10.58 4.87 9.0

[7] [7, 8] [13, 14] [8] [11] [5] [9]

11–13
75.94 6.33 8.54 7.47 10.76 5.33 11.5

[7] [7, 8] [9] [7] [11] [5] [12]
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7. Conclusions

An RIZE Tello drone is a small, lightweight, and low-cost quadrotor drone that is
equipped with a camera and is capable of autonomous flight. In this system, the drone is
used to capture video footage of a scene and transmit it to a ground computer in real time.

On the ground computer, the video stream is processed using state-of-the-art LLMs
together with a module of object detection to produce accurate text descriptions of a scene
in the form of captions. These captions can be used to provide a verbal description of the
scene for individuals who are deaf or hard of hearing, or to provide additional context for
individuals who are able to see the video footage.

A pipeline for semantic scene understanding given a stream of UAV data frames was
proposed. The methodology does not require fine-tuning; rather, it provides zero-shot text
descriptions. The modules consist of state-of-the-art architectures. A captioning module
based on CLIP Prefix for Image Captioning is wired through sentence formation to a
YOLOv7 object detector, and the generated text is enhanced by prompting GPT-3 natural
language instructions. We are the first to provide zero-shot UAV literary storytelling that
can stream to a ground computer in real time or after landing (in this latter case, the video
would be stored on an SD card, and the RYZE Tello drone needs to be equipped with
a board computer, e.g., a Raspberry Pi Zero W or a CORAL board) and that provides
state-of-the-art accurate literary text descriptions. Metrics used to assess the readability of
LLM texts are proposed, leveraging standardized measures from linguistics.

The system combines the capabilities of an RIZE Tello drone (or an NXP Hover
Games Drone) with advanced techniques of computer vision to provide a rich and detailed
description of a scene in real time. The system has potential applications in a wide range of
fields, including surveillance, search and rescue, and environmental monitoring.

As further work, the trajectory of the drone could be optimized for a certain filming
style to help the text description module to obtain better shots for particularly interesting
events that need to be addressed in the storyline. That being said, in the current work, we
did not take planning and trajectory issues into consideration and assumed that the UAV is
being remotely controlled or is flying using an adequate autopilot policy. In addition, GPS
coordinates and positioning information from other sensors such as IMU or LiDAR could
be used to further improve the resultant text descriptions by prompting the GPT-3 module
with the corresponding trajectories.

There are a number of other ways that the previously described system could be
extended or improved upon. Some potential areas of further work include the following.

The accuracy and reliability of the algorithms that handle captioning and object de-
tection can be improved: while current LLMs and object detection algorithms are highly
accurate, there is always room for improvement. Further research could focus on devel-
oping new techniques or fine-tuning existing algorithms to increase their accuracy and
reliability. Other sensors can be added: the RIZE Tello drone is equipped with a camera,
but additional sensors, such as LiDAR or RADAR, could allow the system to gather more
detailed and comprehensive data about the scene. The drone’s autonomy could be en-
hanced: the RIZE Tello drone is capable of autonomous flight, but further work could focus
on developing more advanced autonomy algorithms to enable the drone to navigate more
complex environments and perform more sophisticated tasks. Real-time analysis could
be implemented: at the moment, the system processes the video stream and generates
captions and object detections after the fact. However, implementing real-time analysis
could allow the system to provide updates and alerts in near-real time, making it more
useful for applications such as surveillance or search and rescue. Finally, applications could
be developed for specific domains: the system could be tailored to specific domains by
training the captioning and object detection algorithms on domain-specific data and devel-
oping domain-specific applications. For example, the system could be used for agricultural
monitoring by training the algorithms on data specific to crops and farm machinery.

The ultimate goal is to be able to confer autonomous systems (e.g., UAVs and self-
driving cars) with literary capabilities comparable to those provided by human counterparts.
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Specifically, the use of LLMs and VLMs push the boundaries of system perception and the
understandability of events, situations, and contextual information.
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The following abbreviations are used in this manuscript:

ML Machine Learning
NLP Natural Language Processing
LLM Large Language Models
VLM Visual Language Models
GPT Generative Pre-training Transformer
CLIP Contrastive Language-Image Pre-training
YOLO You Only Look Once
LiDAR Light Detection And Ranging
RADAR Radio Detection And Ranging
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Abstract: This paper proposes a new method that fuses acoustic measurements in the reverberation
field and low-accuracy inertial measurement unit (IMU) motion reports for simultaneous localization
and mapping (SLAM). Different from existing studies that only use acoustic data for direction-of-
arrival (DoA) estimates, the source’s distance from sensors is calculated with the direct-to-reverberant
energy ratio (DRR) and applied to eliminate the nonlinear noise from motion reports. A particle filter
is applied to estimate the critical distance, which is key for associating the source’s distance with the
DRR. A keyframe method is used to eliminate the deviation of the source position estimation toward
the robot. The proposed DoA-DRR acoustic SLAM (D-D SLAM) is designed for three-dimensional
motion and is suitable for drones. The method is the first acoustic SLAM algorithm that has been
validated on a real-world drone dataset that contains only acoustic data and IMU measurements.
Compared with previous methods, D-D SLAM has acceptable performance in locating the drone
and building a source map from a real-world drone dataset. The average location accuracy is 0.48 m,
while the source position error converges to less than 0.25 m within 2.8 s. These results prove the
effectiveness of D-D SLAM in real-world scenes.

Keywords: simultaneous localization and mapping; robot audition; direct-to-reverberant energy
ratio; mobile robots

1. Introduction

Recently, there has been renewed interest in simultaneous localization and mapping
(SLAM). Many meaningful and excellent works in SLAM have been based on optical and
visual sensors, such as VINS [1]. Different from visual SLAM, some works have focused on
acoustic SLAM, where acoustic sensors are involved. Most works on acoustic SLAM have
been conducted in underwater environments [2–4], while indoor acoustic SLAM [5–7], by
contrast, has received scant attention. Conventional SLAM techniques based on optical and
visual sensors are unsuitable for some special indoor environments, for example, foggy
rooms where light and lasers cannot penetrate. Conversely, the indoor acoustic SLAM-
based acoustic sensors can use continuous environmental sources as landmarks to assist
the mapping of robots in such a foggy indoor environment. It is preferable to use acoustic
SLAM in an indoor environment where light and lasers cannot penetrate and continuous
environmental sources exist.

Based on the sensor type used, indoor acoustic SLAM can be classified as active or
passive acoustic SLAM. Active indoor acoustic SLAM is usually based on active sonar,
and a sonar beam is utilized in an active sonar sensor model to measure the positions
of landmarks. To assist in localization, a motion sensor is required to generate motion
reports. Passive indoor acoustic SLAM is usually based on microphone arrays for direction-
of-arrival (DoA) estimates and motion sensors (such as an odometer) for motion reports.
In 2009 Hu et al. [5] proposed an acoustic SLAM method based on a cross-shaped micro-
phone array and odometry, and in 2013, Kallakuri et al. [6] developed a method based
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on a microphone array and light detection and ranging (LiDAR). The two studies above
were both capable of locating the robot and mapping the environment in experiments.
However, highly accurate motion reports from odometry or LiDAR are necessary for accept-
able results. For example, the robot’s trace measured with only motion sensors (without
information from acoustic sensors) coincided perfectly with the final estimation where
all sensors were involved (see experimental results in Figure 4 of [5]). Thus, the accuracy
of those methods is likely heavily dependent on the accuracy of motion sensors. Due to
indoor reverberation, strong noise or even errors are common during DoA estimates. When
the motion reports are inaccurate or even false, the above methods can hardly achieve
acceptable results.

To facilitate robustness against false DoA estimates using motion sensors such as
inertial measurement units (IMUs), Evers et al. [7,8] developed their own acoustic SLAM,
“Acoustic SLAM” (aSLAM) with probabilistic source triangulation in 2018. However,
aSLAM was only tested in simulations where the measurement noise of motion reports
is ideal. Specifically, simple Gaussian noise was added to the true velocity of the robot to
simulate the velocity measurement. However, the noise of a typical motion sensor, such as
an IMU, is mainly non-Gaussian and nonlinear. It will be demonstrated in this paper that
the result of feeding the aSLAM with practical datasets is undesirable.

As mentioned before, there are occasionally false DoA estimates due to reverberation
in real indoor environments. At the same time, due to unavoidable integral error, motion
sensors such as IMUs cannot provide accurate velocity logs or motion paths. Acoustic
SLAM methods [5–7] that fuse DoA estimates and motion reports can be considered bearing
only SLAM [9]. As the DoA estimates contain only directional information, highly accurate
motion sensors are necessary to gain an acceptable overall positioning and mapping
accuracy. However, low-price motion sensors, including IMUs, have an evident integral
error, and their noise model is nonideal. If we want to obtain acceptable SLAM results
with low-accuracy motion measurements in experiments, more information from acoustic
sensors is vital in addition to the DoA. In addition to bearing information, the range that
denotes the distance between the source and the robot should be beneficial for acoustic
SLAM, especially when false DoA estimates are common and motion reports coming from
low-accuracy IMU sensors suffer from severe drifting.

Several methods have been proposed for estimating the source’s distance [10], includ-
ing the time difference of arrival (TDOA), deep learning, triangulation, and the direct-to-
reverberant energy ratio (DRR). The TDOA is sensitive to the array size [10], and the sound
source distance estimation methods based on deep learning are unable to adapt to new
environments unless retraining is carried out in advance for each new environment [11,12].
The distance estimations with triangulation vary considerably and are still affected by the
accuracy of the motion sensors [13]. The DRR method, which is based on the phenomenon
of indoor sound reflections, can be used to estimate the direct source’s distance from the
sensor in a reverberant field. Estimates with the DRR method are insensitive to the array
size and do not rely on information from motion sensors [14], so it may be suitable to
estimate the range to eliminate the error of motion sensors.

In 2018, M. Strauss, P. Mordel, V. Miguet, and A. Deleforge published the DREGON
dataset, aiming at source localization research [15]. In this dataset, a drone with a mi-
crophone array and an IMU flies in an airtight room containing a loudspeaker. Publicly
available data include the IMU data and the audio recordings during the entire flying
period. Moreover, the airtight room was equipped with a motion capture system to obtain
precise ground truth positions of the drone and the loudspeaker at all times. The DREGON
dataset contains all the information needed for the evaluation and comparison of different
acoustic SLAM algorithms and will be applied here to validate our proposed method.

In this paper, a DoA-DRR acoustic SLAM (D-D SLAM) is proposed for the situation
when strong noise exists in IMU motion reports. The source’s distance from the robot,
which is estimated using the DRR method in different time frames, is added to acoustic
SLAM as a new constraint of D-D SLAM. The critical distance, which is necessary for
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associating the source’s distance with the DRR, is estimated with an online method during
the complete time period. Overcoming the deficiencies of Evers’ aSLAM [7], the proposed
D-D SLAM is validated using datasets generated from simulations and real-world indoor
scenes drone measurements in the DREGON dataset. The continuous environmental
source is required as a landmark in the D-D SLAM. The DRR metric is unsuitable for
estimating sound source distance in a free field, so the D-D SLAM is only applicable to
indoor scenarios. Generally, this paper proposes a new methodology for acoustic SLAM
using only a microphone array and IMU. The essay has been organized in the following way.
Section 2 is the problem formulation, and Section 3 introduces the necessary background
knowledge. Section 4 derives the proposed D-D SLAM. Section 5 presents the setup of
the simulation and experiment. Section 6 shows and analyses the results. Section 7 is
the conclusion.

2. Problem Formulation

In previous acoustic SLAM research, the applied robot movement model always
constrained the robot’s velocity to be along the direction of orientation of the robot [5–7].
This constraint can be easily satisfied in simulation. Meanwhile, the coupling of the robot’s
orientation and its velocity direction simplified the mathematical deduction. However, it is
only practical in a few kinds of real robots, for instance, two-wheel robots.

For the sake of generality, a three-dimensional robot movement model is applied in
the proposed method. The model decouples the direction of the robot’s velocity from its
orientation; thus, it is suitable for most real robots, such as drones. As depicted in Figure 1,
the robot’s state at time t is considered as rt= [pT

t , Rt], where pt= [ux,t,r, uy,t,r, uz,t,r, vx,t,r,
vy,t,r, vz,t,r] is the position/velocity vector and Rt is the rotation matrix corresponding to
the robot’s orientation. Symbols az, el, and r in Figure 1 denote the azimuth, elevation,
and radius of the sound source in the robot frame, respectively. The robot dynamics are
given by:

pt = Ftpt−1 + dpt−1|t + vt,p, vt,p ∼ N (06×1, Σt,p
)

(1)

Rt = ζ
(
[θ, ψ, ϕ]T + vt,R

)
, vt,R ∼ N (03×1, Σt,R) (2)

where vt,p denotes unbiased Gaussian noise with covariance Σt,p. dpt−1|t is the small
variation of pt from time step t − 1 to t, and ζ(θ, ψ, ϕ) is a nonlinear function converting
Euler angles, [θ, ψ, ϕ], to a rotation matrix. The matrix Ft and dpt−1|t are given by:

Ft= [ I6 ] (3)

dpt−1|t = [dux,t−1|t, duy,t−1|t, duz,t−1|t, dvx,t−1|t, dvy,t−1|t, dvz,t−1|t] (4)

where In is the n×n identity matrix. It is clear that dux,t−1|t, duy,t−1|t, and duz,t−1|t are
related to dvx,t−1|t, dvy,t−1|t, and dvz,t−1|t. The method to estimate these values will be
introduced in Section 3.

The measurements of the robot velocity v and orientation R are defined as yt � [yt,v, yt,R]
and modeled as:

yt,v = hpt + wt,v (5)

yt,R = ζ([θ, ψ, ϕ]T + wt,R) , wt,R ∼ N (03×1,σ2
w,Rt

) (6)

where wt,v is non-Gaussian noise, and wt,R denotes the measurement of Gaussian noise
with covariance σ2

w,Rt
. In addition, h � [03 × 3, I3]. In fact, robots equipped with a 9-axis

IMU can provide accurate Euler angles with small errors. Therefore, D-D SLAM neglects the
influence of the measurement noise on orientation, which means that σ2

w,Rt
is considered

to be zero. Thus, (6) can be simplified to:

yt,R = yt−1,RΔRt−1|t (7)
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where ΔRt−1|t denotes the constraints of robot orientation from time step t − 1 to t and is
introduced in Section 3.

Figure 1. World frame and robot frame.

As the absolute positional state of the sound source is the landmark in mapping, the
absolute state (sa

t,n � [xa
t,n, ya

t,n, za
t,n]T) of source n in the world frame at time step t is defined

as [7]:
sa

t,n = sa
t−1,n + nt,n, nt,n ∼ N (03×3, Q) (8)

where n = 1, . . . ,Nt is the index of Nt sources, the superscript a stands for the world frame,
and nt,n is the process noise with covariance Q. The transformation of the source’s position
in the world frame to that in the robot frame is given by:

st,n = Γ(sa
t,n − [ux,t,r, uy,t,r, uz,t,r]

T), Γ = Rt (9)

where st,n � [xt,n, yt,n, zt,n]T is the positional state of the source in the robot frame, and Γ is
the rotation matrix between the world frame and the robot frame.

The bearing information of the source is estimated by the DoA algorithm and is
modeled as [7]:

Ωt = [
Nt∪

n=1
D(st,n)] ∪ Kt (10)

where D(st,n) is the process that models the missing DoAs and estimation errors, and Kt
denotes the Poisson point process of Nt independent and identically distributed (IID) false
DoA estimates distributed uniformly over a unit sphere.

The source’s distance from the sensors is also estimated solely with the DRR. The DRR
estimation method is developed using interaural magnitude-squared coherence (MSC),
and the source’s distance is estimated by computing the discrete Fourier transform (DFT)
on overlapped windowed signal frames [16]. A small sound piece is sampled at time step t
and divided into several parts by a sliding window. In each part of the sound piece, the
source’s distance from the sensors is estimated. The estimation is modeled by:

d̂n
t,μ ∼ N (dn

t , Rt,d) (11)

where μ denotes the windowed signal frame indices, and dn
t is the true source’s distance

from the sensors at time step t. In a short time, the estimated distances d̂n
t,μ in different

window frames at time step t tend to follow a nearly normal distribution that is modeled
with the mean dn

t and the covariance Rt,d.
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The positional state of the sources in the robot frame st,n is associated with the DoA,
and the distances of the sources are computed with the DRR. The relationship is as follows:{

[ωt,m, rt,m]
T = G(st,n) + et,m

et,m ∼ N (03×1, diag(Rt,m, Rt,d))
(12)

where m = 1, . . . ,Mt denotes the index of DoA estimates, Mt is the number of DoA estimates
in time step t, ωt,m = [φt,m, γt,m]T, G(•) is a function that is used to transform from Cartesian
coordinates to spherical coordinates (azimuth φt,m, elevation γt,m, and radius rt,m), and
et,m denotes the measurement error with covariance which consists of DoA estimation
covariance Rt,m and distance estimation covariance Rt,d.

Estimating rt and sa
t,n using Ωt, d̂n

t,μ, and yt, presents more challenges than other methods.

(1) The robot’s movement is nonuniform motion, and the velocity direction is decoupled
from the robot’s orientation. Therefore, the robot dynamics in this paper have more
freedom of motion than in [5–7], meaning the movement estimation becomes more
complex and difficult.

(2) The velocity and orientation are measured using an IMU, whose velocity measurement
noise is non-Gaussian and nonlinear. This kind of noise is common in real instruments
and cannot be simply removed with a traditional Kalman filter or even an extended
Kalman filter (EKF) by fusing DoA measurements due to its strong nonlinearity.

(3) The distance estimation and the DoA measurement usually intermingle with strong
noise and disturbances, causing a few incorrect estimations of the sound source
position, leading to no convergence.

(4) The critical distance, which is essential for the estimation of the distance from the
DRR, is usually calculated with the acoustic coefficients and geometry of the room.
However, these parameters are unknown in our situation.

As mentioned before, new constraints, i.e., the source’s distance from the sensor, are
needed to overcome challenges 1 and 2. Based on a particle algorithm, a method for
online estimation of the critical distance is designed to handle challenge 4, which will be
introduced in Section 4. Regarding challenge 3, a filter based on a Gaussian mixture model
is implemented, which will be discussed in Section 4.

3. Background Knowledge about IMU Preintegration and DRR

3.1. IMU Preintegration

To summarize hundreds of inertial measurements into a single relative motion con-
straint and update the robot states expediently, IMU preintegration [17] is used in this
paper. The absolute robot state is updated by [17]:

Rt = Rt−1ΔRt−1|t (13)

Vt = Vt−1 + gΔt + RtΔVt−1|t (14)

Xt = Xt−1 + Vt−1Δt +
1
2

gΔt2 + RtΔXt|t−1 (15)

where Xt = [ux,t,r, uy,t,r, uz,t,r]T, Vt = [vx,t,r, vy,t,r, vz,t,r]T, g denotes the gravitational accelera-
tion, Δt is the time difference from time step t − 1 to t, and ΔRt−1|t, ΔXt|t−1, and ΔVt|t−1
represent the pre-integrated measurements calculated with Gaussian pre-integrated mea-
surements (GPMs) [18]. To be specific, ΔRt−1|t, ΔXt|t−1, and ΔVt|t−1 are estimated with
Equations (20), (27), and (26) of Ref. [18], respectively, by feeding IMU measurements.
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3.2. DRR Computing and Distance Estimator

For distance estimation, it is useful to determine how sound is reflected in reverberant
fields. The DRR is a useful ratio to estimate a source’s distance [19] and can be calculated
using only acoustic data. The source’s distance d(μ) is estimated by

d(μ) = dc(
√

ηMSC(μ))
−1

(16)

where ηMSC(μ) is the broadband DRR calculated with the algorithm based on interaural
MSC [16], and dc is the critical distance that connects the source’s distance and the DRR.
The equivalent relative HRTF of the microphone array is used to apply the MSC [16] on
drone data. The interaural level difference is estimated with the directivity indices of the
microphone array, and the interaural time difference (ITD) is calculated with the DoA result
and the array shape. The coherence of the reverberant components is set as a sinc function
related to the frequency index and the pairwise distance between microphones [20]. The dc
is defined as [19]:

dc = 0.1
√

ρsρr

√
VR(πT60)

−1 (17)

The accuracy of the proposed D-D SLAM is based on the source’s distance estimation
with the DRR. A large reverberation time, which indicates a small critical distance, con-
tributes to the improvement of the source’s distance estimation with the DRR, but larger
reverberation times also make the estimation of ITD and ILD more distorted, which may
affect the DRR estimation [16]. If the critical distance is too small, the reverberant energy
received by the microphone array is much larger than the direct energy, and thus, the
ITD and ILD would be seriously affected. If the critical distance is too large, the direct
energy received by the microphone array is much larger than the reverberant energy, so the
acoustical field of the room is similar to the free field. The acoustical free field does not meet
the subject of the proposed D-D SLAM. Thus, the D-D SLAM cannot be used outdoors.

For common SLAM problems, the critical distance dc is initially unknown because the
source directivity indices ρs, the receiver directivity indices ρr, the room volume VR and
the reverberation time T60 cannot be measured in advance. Hence, an online method is
proposed in Section 4 to estimate the critical distance during SLAM exploration.

4. Mapping and Locating

With the fundamental theory of SLAM [21], the acoustic SLAM problem can be
modeled with the SLAM posterior probability density function (PDF), which is usually
factorized into two parts:

p(rt, st, dc|η1:t, Ω1:t, y1:t) = p(st|rt, Ω1:t)p(rt, dc|η1:t, Ω1:t, y1:t) (18)

where st is the set of all sound source positions, p(st | rt, Ω1:t) is a sound source’s position
posterior PDF corresponding to the mapping problem in SLAM, and p(rt, dc |η1:t, Ω1:t, y1:t)
represents the robot posterior PDF corresponding to the locating problem in SLAM. The
critical distance dc is the random variable to be estimated. η1:t denotes the DRR estimates
from the beginning to time step t that are computed with the method based on interaural
MSC [16].

4.1. Mapping

The sound sources are considered landmarks on the map, so the focus of the mapping
procedure is the estimation of the source positions. To solve existing problems, including
false DoA estimates, Evers et al. [7] proposed a mapping method based on probabilistic
source triangulation and a random finite set. Their method performs well when the robot
keeps moving and receiving a signal from the sound source. However, when the positions
of both the robot and the sound source remain stationary, mapping mistakes may occur
during the emerging process, which is often used to limit the number of Gaussian mixture
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(GM) components. In this situation, the robot’s position and DoA estimates do not change,
resulting in the repeated emergence of the same new GM components located in the same
zone. As the new GM components satisfy both the wrapped Gaussian distribution in
angle and the uniform distribution in the radial direction [7], the component’s distribution
density in the sector region is uneven. The distance between any two GM components l
can be calculated by:

l =
√

2r2 + Δr2 + 2rΔr(1 − cos(Δγ)) (19)

where r is one of the component’s distances from the robot, and Δr and Δγ are the difference
between the two components in radius and angle, respectively. With the same Δr and Δγ,
the shorter the radius distance of the GM component is, the shorter the distance between
different GM components is. Thus, the component density in the region closer to the robot
is higher than others. Figure 2c reveals this false trend.

Figure 2. Extensive simulation of the origin method when the robot and the source remain still for
(a) beginning (3 time steps), (b) 10 time steps, and (c) 17 time steps.

Before the clustering of GM components for source estimation, mixture reduction
is usually applied to limit the number of components through merging. The criterion
equation of merging components is given by [22]:

(mi
k − mj

k)
T
(Pi

k)
−1

(mi
k − mj

k) ≤ U, i = 1, . . . , Jk (20)

where Jk is the number of GM components, j is the index of the component with the
maximum weight, mi

k denotes the position of the GM component in the robot frame, Pi
k is

the covariance of the GM component’s position, and U is the threshold of merging.
With the criterion Equation (20), it is found that the component merging is relevant to

the covariance and the range between components. The new components are created with
the same covariance and weight. Therefore, when they have a denser distribution (closer
to the robot), they are more likely to be merged together, forming merged components
with larger weights. When both the sound source and the robot remain stationary, new
components will be created repeatedly in the same zone, and the distribution of weights
(after merging) will become increasingly uneven over time. The area closer to the robot
will receive much larger weights compared with that far from the robot. This trend has a
negative influence on GM component clustering and may finally lead to a false estimation
of the sound source position, indicating that it is much closer than the true value. Here, a
simulation test is conducted to illustrate the problem mentioned above, while a solution
will also be introduced in this section. The simulation test setup is basically the same as that
of part C in Section 4 of [7], while an extra time segment is added when the robot remains
stationary for several time steps.

Figure 2 is a heatmap of the source weight density calculated using the origin method [7] in
the simulation setup with an extra time segment. A higher saturation level of red indicates
a higher weight density. As shown in Figure 2a, just after the robot moved for three time
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steps (same as that in the original simulation [7]), the GM components were clustered into
the place close to the true source where the probability density peak is located. However,
as shown in Figure 2b,c, the longer the robot remains stationary, the greater the peak of
the probability density deviates toward the robot. The same trend can be found with the
weighted centroid of the GM components. This deviation causes an incorrect estimation of
the source position, leading to incorrect mapping.

To fix this problem, a solution is developed. The solution is the use of keyframes.
When the robot and source remain stationary, new GM components are always created in
the same region so that the new GM components are merged into a false component with
a large weight. The weight of the false component increases over time, and the weighted
centroid of the components is eventually shifted toward the robot. If the creation and
merging of GM components stop when the robot and source remain stationary, a false
component with a large weight is avoided. The basic idea is that a keyframe factor is
calculated to evaluate the difference between the current frame and the last keyframe:

T = (T̂1
t > T1

KF)‖(T̂2
t > T2

KF)‖(T̂3
t > T3

KF) (21)⎧⎨⎩ T̂1
t = ‖(ux,t,r, uy,t,r, uz,t,r)

T − (ux,KF,r, uy,KF,r, uz,KF,r)
T‖

T̂2
t = OSPA(Ωt, ΩKF)

T̂3
t = ‖ζ−1(RtRT

KF)‖
(22)

where the subscript KF denotes a keyframe, Tk
KF for k = 1, 2, 3 denotes the given threshold

of the keyframe, ||•|| is the two-norm, ζ−1(•) is a function converting a rotation matrix
to Euler angles, || indicates the OR operation, and OSPA is the Optimal Subpattern
Assignment distance [23]. The correspondence of the DOA estimations between the two
sets is unknown, so the OSPA is applied for the best match. The OSPA is defined as:

OSPA(Ωt, ΩKF) = [
1
N

min
π∈ΠN

M

∑
i=1

lc(Ωt,i, ΩKF,π(i)) + (N − M)c] (23)

where Ωt � {Ωt,1, . . . , Ωt,N}, ΩKF � {ΩKF,1, . . . , ΩKF,M}, ΠN stands for the set of permu-
tations of length M with elements from {1, . . . , N}, lc (Ωt,i, ΩKF,π (i)) = min(c, || Ωt,i −
ΩKF,π (i)||) and c is a cutoff value of 30◦.

When the robot and the source remain stationary, T̂k
t will be less than Tk

KF, making T
false. When T is false, the current frame in time step t is not a keyframe. In contrast, when
the robot moves far enough, T̂k

t becomes larger than Tk
KF, making T true. Thus, the current

frame is considered a new keyframe, and the state of the keyframe is updated with the
following equations:⎧⎨⎩ (ux,KF,r, uy,KF,r, uz,KF,r)

T = (ux,t,r, uy,t,r, uz,t,r)
T

ΩKF = Ωt
RKF = Rt

(24)

When GM components are only created and merged in keyframes, a false merged
component with a large weight is avoided. To eliminate accidental errors, a limiting filter is
applied to the clustering of GM components. The limiting filter is modeled as:

LF(st) =

{
st , OSAP(st, st−1) ≤ sLF

st−1, OSAP(st, st−1) > sLF
(25)

where st is the source estimation which is calculated with the mapping method based on
probabilistic source triangulation and random finite set [7] by feeding the data of keyframe,
sLF denotes the threshold value of the limiting filter, which is related to the maximal
variation of the source position between time steps t − 1 and t. The OSAP is also applied,
but the cutoff value c is changed to 0.5 m.
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Using the probabilistic source triangulation in [7] and the keyframe method mentioned
above, the source posterior PDF p(st | rt, Ω1:t) can be estimated using the evidence of the
DoA estimation L(Ωt | rt, dc). The implementation is given by:

L(Ωt|rt, dc) � e−Nt,c−pd Nt|t−1
Mt

∏
m=1

�(ωt,m|rt, dc) (26)

where pd denotes the probability of detection, Nt,c is the number of false alarms, Nt|t−1
stands for the quantity of predicted features [7], and ωt,m is the DoA estimation computed
from the GM components and the position of the robot. �(ωt,m|rt,dc) is evaluated with
Equation (34) in [7]. The mapping process is only fed with the data of the keyframe.

4.2. Locating

This section proposes a method to estimate the robot’s location by fusing the IMU
measurements and the DoA and DRR estimates. Additionally, the critical distance is
estimated online. Because the relationship between the state of the robot and the sensor
measurements is nonlinear and complicated, it is difficult to estimate the critical distance
dc and the state of the robot rt directly from just the IMU measurements and the DoA and
DRR estimates. Particle filters [24] are usually applied to model the robot posterior PDF of
this nonlinear problem. With this method, the robot posterior PDF p(rt, dc |η1:t, Ω1:t, y1:t)
is modeled as:

p(rt, dc|η1:t, Ω1:t, y1:t) ≈
I

∑
i=1

αi
tδr̂i

t ,d̂
i
c
(rt, dc) (27)

where I is the number of particles, αi
t denotes the weight of a particle, and δr̂i

t ,d̂
i
c

(rt, dc) is

the Dirac-delta function centered at rt, dc and evaluated at r̂i
t, d̂i

c. Because the state of the
robot and the critical distance are estimated at the same time, there is a large amount of
uncertainty, so large quantities of particles are required to model the robot posterior PDF.

Using (16) the source’s distance from robot d̂ can be computed with the DRR if the
critical distance is known. As the source’s distance is helpful in the estimation of the robot’s
position, it is easier to estimate the state of the robot when the critical distance is known.
To simplify the robot posterior PDF, the marginalization [25] is adopted to decouple the
posterior PDF into that of dc and rt separately, i.e., the robot posterior PDF p(rt, dc |η1:t,
Ω1:t, y1:t) is factorized into two parts:

p(rt, dc|η1:t, Ω1:t, y1:t) = p(dc|η1:t, Ω1:t, y1:t)p(rt|dc,η1:t, Ω1:t, y1:t) (28)

Using (15), the state of the robot can be computed from the IMU measures. Meanwhile,
the source’s distance from the robot computed from a given dc, η1:t using (16), and DoA
estimates can be used to correct the state of the robot. Therefore, this paper takes the
estimation of the robot’s state rt as a nonlinear substructure [25] of the estimation of critical
distance dc. Thus, for each dc particle, there is a substructure corresponding to the robot
state and the source position.

The critical distance is assumed to be within a certain range d̂c∈[dmin
c , dmax

c ] and obeys
a uniform distribution:

d̂i
c ∼ U (dmin

c , dmax
c ), i = 1, . . . , I (29)

where dmin
c and dmax

c are the minimum and maximum of the critical distance, respectively,
and I is the number of particles. A critical distance particle is drawn from the uniform
distribution. For each critical distance particle and each source, the estimations of the
source’s distance at time step t can be calculated in the following formula according to (16):

d̂i
t,m,μ = d̂i

c(
√

ηt,m,μ)
−1, μ = 1, . . . , B (30)
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where B denotes the number of windowed signal frames in time step t, m = 1, . . . , Mt and
d̂i

t,m,μ is the source’s distance corresponding to d̂i
c.

Theoretically, the state of the robot can be computed using iterative calculation of
(13)–(15) as long as the initial value of the robot’s state is given. In fact, a 9-axis acceleration
gyroscope sensor can provide an accurate rotation matrix Rt that can be used to accurately
describe the attitude of the robot. Therefore, Rt is computed directly from IMU measure-
ments and the GPMs in this paper. However, the velocity and position of the robot cannot
be computed using only the IMU measurements due to unacceptable integral error. There-
fore, the DoA estimates and DRR are used to eliminate those errors by fusing all measures
with an EKF [26]. For weakly nonlinear systems, an EKF has better performance than a
Kalman filter. The sound source distance estimation from DRR is added as a constraint to
suppress the noise of IMU measurements along the direction of sound arrival. With the
addition of range information, the state of the robot has weaker nonlinearity than that of
the robot which only contains bearing information and IMU measurements. Therefore,
EKF is suitable for the estimation of the weakly nonlinear state of the robot in D-D SLAM.
Using (13)–(15), the implementation of the EKF is given by:

X’i
t = Xi

t−1 + Vi
t−1Δt +

1
2

gΔt2 + Rt ΔXt−1|t (31)

where X’i
t denotes the prediction of the robot’s position in the EKF. The rotation matrix

Rt and the velocity Vt are determined from Equations (13) and (14). The pre-integrated
measurement of position ΔXt−1|t is estimated with Equation (27) of Ref. [18] by feeding
IMU measurements. The prediction of covariance in the EKF is given by:

Cov′it,m = FtCovi
t−1,mFt

T + Qi
Xt

(32)

where Covi
t−1,m denotes the covariance of the EKF, Ft is given by (3) and Qi

Xt
is the process

non-Gaussian noise of the robot position. Qi
Xt

is associated with the process noise of the
robot’s velocity, according to (31) with the variance-covariance propagation law:

Qi
Vt

= Qi
Vt−1

+ dQVt−1|t (33)

Qi
Xt

= Qi
Xt−1

+ ΔtQi
Vt−1

Δt + dQXt−1|t (34)

where dQXt−1|t and dQVt−1|t denote the variances of the GPMs of the robot’s position
and velocity, respectively. For each source, the observational equation in the EKF is
determined by:

[ω̂i
t,m, r̂i

t,m]
T
= G(Rt(X

′i
t − ŝi

t−1,m)) (35)

where m = 1, . . . , Mt, Rt is estimated with Equation (13) and G(•) is the Cartesian-to-
spherical transformation. According to the mapping procedure (Section 4.1), the estimation
of source ŝi

t−1,m is given using GM component clustering of the keyframe data. Hence, the
Kalman gain and the correction of Kalman gain are given by:

Ki
t,m = Cov′ it,m (Hi

t,m)
T
(Hi

t,m Cov′ it,m (Hi
t,m)

T
+ REKF)

−1
(36)

X̂
i
t,m,μ = X’i

t + Ki
t,m([Ωt,m, d̂i

t,m,μ]
T − [ω̂i

t,m, r̂i
t,m]

T
) (37)

V̂
i
t,m,μ = (X̂

i
t,m,μ − Xi

t−1)/dt (38)

Covi
t,m = (I3 − Ki

t,mHi
t,m)Cov′ it,m (39)

where H is the Jacobian matrix of the observational equation, V̂
i
t,m,μ is the velocity of the

robot corresponding to each output of the EKF, dt denotes the time difference between
two adjacent keyframes, which is different from Δt, and REKF is the measurement noise,
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which is assumed to be known. The output of the EKF, X̂
i
t,m,μ, corresponds to each source’s

distance d̂i
t,m,μ. As the estimation of the robot’s position is nonlinear and the rotation matrix

Rt is computed directly from IMU measurements, the Gaussian mixture model (GMM) is
applied to model the robot posterior PDF p(Xt |d i c, η1:t, Ω1:t, y1:t):

p(Xt|di
c,η1:t, Ω1:t, y1:t) =

m

∑
Mt

μ

∑
B

wi
t,m,μN (Xt|X̂i

t,m,μ, Covi
t,m) (40)

where wi
t,m,μ denotes the weights of the GM components in the windowed signal frame

indices μ of time step t and is given by:

wi
t,m,μ = N (X̂

i
t,m,μ|X’i

t, Qi
Xt
) (41)

It is clear that the smaller the difference between the outputs of the EKF and GPMs
is, the larger the component weight wi

t,m,μ is. For the GMM, the estimation of the robot
position, the robot velocity, the source’s distance from the robot, and the covariance in the
EKF are computed with the weighted average method

Xi
t =

m

∑
Mt

μ

∑
B

wi
t,m,μ X̂

i
t,m,μ (42)

Vi
t =

m

∑
Mt

μ

∑
B

wi
t,m,μV̂

i
t,m,μ (43)

di
t,m = ‖Xi

t − ŝt,m‖ (44)

Covt,m =
m

∑
Mt

μ

∑
B

wi
t,m,μ Covi

t,μ (45)

The weight of each critical distance and robot position particle is given by:

αi
t = N (Xi

t

∣∣∣X’i
t, Qi

Xt
) (46)

Equation (46) reflects the coincidence degree between the robot position corresponding
to each critical distance particle and the GPM measurements. The GPMs of the IMU are
used to evaluate each critical distance particle. The weights of the critical distance particle
that fits the GPM measurements well will become larger. The final estimation of the robot
and source position will be in the best interests of all measurements.

4.3. Posterior PDF of the D-D SLAM

This section provides the implementation of evaluating the SLAM posterior PDF.
Because a rotation matrix can describe the attitude of the robot accurately with the GPMs of
the IMU data and the source triangulation does not depend on velocity, (18) is reduced to:

p(Xt, st, dc|η1:t, Ω1:t, y1:t) = p(st|Xt, Ω1:t)p(Xt, dc|η1:t, Ω1:t, y1:t) (47)

According to the Bayes rule, using (26) and (27), the posterior PDF p(Xt, dc |η1:t, Ω1:t,
y1:t) is given by:

p(Xt, dc|η1:t, Ω1:t, y1:t) =

I
∑

i=1
αi

t L
(

Ωt

∣∣∣X̂t, d̂c

)
δX̂t ,d̂i

c
(Xt, dc)

I
∑

j=1
α

j
t L
(

Ωt

∣∣∣X̂t, d̂c

) (48)
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Using (48) in (47), the SLAM posterior PDF is reduced to:

p(Xt, st, dc|η1:t, Ω1:t, y1:t) =
I

∑
i=1

βi
t δX̂t ,d̂i

c
(Xt, dc) p(st|Xt, Ω1:t) (49)

βi
t =

αi
t L
(

Ωt

∣∣∣X̂t, d̂c

)
I

∑
j=1

α
j
t L
(

Ωt

∣∣∣X̂t, d̂c

) (50)

where βi
t is the weight and is used to evaluate the particle and estimate the position of the

robot and the source. The D-D SLAM is summarized in pseudocode (see Algorithm 1).

Algorithm 1: D-D SLAM

Data: DoAs Ωt, DRR ηt, IMU Measure yt
for i = 1, . . . , I do

Compute r̂i
t using (13)(14)(15);

Compute KeyFrame factor using (21)(22);
if KeyFrame then

Compute Qi
Xt

, Cov′ i
t,m using (34)(33)(32);

for m = 1, . . . , Mt do

Predict ω̂i
t,m, r̂i

t,m using (35);
Compute Ki

t,m using (36);
for μ = 1, . . . , B do

Evaluate X̂
i
t,m,μ, V̂

i
t,m,μ using (37)(38);

Compute wi
t,m,μ using (41);

end

end

Update Covt,m using (45);
Update Xi

t, Vi
t using (42)(43);

Evaluate αi
t using (46);

Compute si
t using the mapping method [7] by

feeding the date of keyframe;
GM reduction of mapping [27];
Evaluate L(Ωt | rt, dc) using (26);
Evaluate βi

t using (50);
Update particle state;

else

Update Qi
Xt

, Cov′ i
t,m using (34)(33)(32);

end

end

Resampling [28];

Each particle is now evaluated by the evidence of mapping (26) and the weight of
locating (46). When the velocity of the robot is updated with (43), first-order recursive
temporal smoothing is applied to smooth the speed to minimize the jitter of the velocity:

Vi
t = apVi

t−1 + (1 − ap)
m

∑
Mt

μ

∑
B

wi
t,m,μV̂

i
t,m,μ (51)

where ap is a smoothing parameter. In the procedure “Update particle state”, the estimation
of the robot and the source at time step t is computed with the weighted mean method.
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5. Simulation and Experiment Setup

5.1. Simulation Setup

This simulation is designed to compare the performances of D-D SLAM and aSLAM [7]
in a simulation room. In the simulation, the feasibility of the proposed online estimation
algorithms for the critical distance used in D-D SLAM is also illustrated. The simulation
room is similar to that in [7], i.e., a sealed 6 m × 6 m × 3 m room. A continuous signal
source is placed in the center of the room (3 m, 3 m, 1.5 m), and the reverberation times
T60 are set to 0.15 s and 0.5 s, respectively. The robot moves in the direction of a random
orientation, similar to the movement in [7]. The magnitude of the velocity is set to 2 m/s
with reference to the famous robot, TurtleBot2.

Under the condition of the reverberation times of 0.15 s, the signal of the source is a
piece of music. The frequency of the music used in the simulation is time-varying and is
within the range of 0–4000 Hz. A random path where the robot always keeps moving is
used to test the proposed D-D SLAM (with the keyframe method) and the aSLAM. Another
similar path where the robot keeps still for 10 times step during movement is used to justify
the use of the proposed keyframes-based solution. The D-D SLAM with and without the
keyframe method is tested in this path. The removal of the keyframe method means that
each data frame is fed to the locating and mapping process.

Under the condition of the reverberation times of 0.5s, the signal of the source is white
noise. The frequency range of the white noise sound source used in the simulation is
0–8000 Hz. Different levels of noise are added to the received signal of the microphone
array, corresponding to different Signal-Noise Ratios (SNR). The D-D SLAM is tested with
different SNRs, which contain 6 dB, 3 dB, 0 dB, and −3 dB.

The trajectory and IMU data are simulated using Robot Operating System (ROS) and
Gazebo. A TurtleBot2 equipped with a microphone array and IMU is set in the room and
moves randomly. The IMU data that are simulated by ROS contain only the numerical error.
For vraisemblance, two types of Gaussian white noise are added artificially to the output
data of the accelerometer and the gyroscope with variances of 1 × 10−3 and 1 × 10−2,
respectively, similar to that of the familiar low-cost IMU MPU6050. Therefore, the simulated
IMU data contain both the nonlinear numerical error and the Gaussian measurement noise.
The true trajectory data are recorded as the ground truth.

A sound record with eight channels is generated according to the image source
method [29,30] using a room impulse response (RIR) simulator. The sample frequency is set
to 16,000 Hz, and the microphone array shape is the same as in the DREGON dataset [15]
mentioned above. The microphone array is fixed on the robot, and the transformation
matrix between their positions and orientations is constant.

The DoA method based on SRP-PHAT [31] is applied to estimate the direction of the
source, and the GPMs are applied to provide the observed values of the velocity, position,
and orientation. With SRP-PHAT, the error of the DoA estimates is less than 2 degrees. The
DRR computation is introduced in Section 3.

In [7], the measured velocity is simulated by adding Gaussian noise directly to the
true velocity, which is different from the true IMU model. However, the velocity computed
using IMU integration contains an accumulated error, which is nonlinear and cannot be
eliminated simply by a Kalman filter. As a result, the accuracy of aSLAM with true IMU
data will decrease over time. For comparison, three groups are developed under the
condition of reverberation times of 0.15 s. Group I: aSLAM with motion reports, which
is simulated by adding Gaussian noise to the true velocity directly, i.e., the same as in [7].
The noise signal is unbiased, and the root mean squared error (RMSE) of the noise signal is
0.75 m/s for velocity and 5 deg for azimuth. Group II: aSLAM with motion reports, which
is computed with GPMs on the simulated IMU data that contain both nonlinear numerical
error and Gaussian measurement noise. Group III: the proposed D-D SLAM with the same
simulated IMU data as that in Group II. In all groups, the same DoA measurements are
used, the robot starts in the same place, the number of particles is set to 10, the standard
deviation of the DoAs is set to 2 deg, and the standard deviation of the source’s distance
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from the robot is set to 0.35 m. In this simulation, the time step, i.e., the time difference
between nearby frames, is 1 s, and the total simulation time is 100 s (100 data frames).

5.2. Experiment Setup

To evaluate the effects of the algorithms on real indoor data, the DREGON dataset [15],
which contains real data sampled with a drone flying in a real room, is applied. In the
DREGON dataset, a MikroKopter unmanned aerial vehicle (UAV) equipped with a micro-
phone array and IMU flew indoors. In this paper, the Free Flight-White Noise Source at
High Volume case in the DREGON dataset is used. A continuous white noise sound source
was placed in the room and sampled by an array of eight microphones (8SoundsUSB and
ManyEars). The motion reports were measured with the onboard IMU (which is integrated
with FlightCtrl 2.5). Meanwhile, the positions and orientations of the UAV and the source
were recorded precisely by a 12-camera Vicon motion capture system and considered the
ground truth. According to the dataset, the speed of the UAV is no faster than 1 m/s, and
the flight contains hovering, a rectangle, spin, up and down.

It is clear that the magnitude of the UAV velocity is variable and that the direction
of the UAV velocity is independent of the orientation of the UAV. To test aSLAM on the
DREGON dataset, the robot dynamics must be updated for the flight patterns of the UAV.
For comparison, three experimental groups were used. Group IV: aSLAM [7] with updated
observer dynamics. Group V: the proposed D-D SLAM with the keyframe method. Group
VI: the proposed D-D SLAM without the keyframe method. In both groups, the DoA
estimates and motion reports are computed using the same method as in the simulation,
and the particle number is set to 10. The UAV started in the same place and with the
same posture. On the real indoor dataset, the elevation search boundaries are limited in
[−90◦, 20◦] to avoid the drone noise’s influence, which has an elevation angle that is mostly
60◦. The error of the DoAs estimated with SRP-PHAT is also less than 2 degrees. Then, the
standard deviation of the DoA estimates is set to 2 degrees. The standard deviation of the
source’s distance estimation from the robot is set to 0.35 m. In this experiment, the time
step, i.e., the time difference between nearby frames, is 0.0464 s, and the total simulation
time is 46 s (993 data frames). Each data frame in the experiment contains 2048 audio
sample points (0.0464 s) and 43 IMU measurements on average.

5.3. Performance Metric

To quantitatively analyze the accuracy, the error between the positional estimation
and ground truth is evaluated with the Euclidean distance. The Euclidean distance is
calculated by:

d(Xgt
t , Xest

t ) = ‖X
gt
t − Xest

t ‖ (52)

where the superscripts gt and est denote the ground truth and estimation, respectively, and
X
(•)
t is the position of the robot or the source.

6. The Results

6.1. Simulation Results

The results of the aSLAM and the proposed D-D SLAM in the simulation are shown
in Figure 3. The results of the D-D SLAM under different conditions are shown in
Figures 4 and 5, respectively. As shown in Figure 3 with the orange dashed-dotted line
and solid circles, the trajectory and source position estimations of aSLAM with the true
speed, which only contains Gaussian noise similar to that in [7], reach the expected effect,
meeting the mean accuracies of 0.136 m and 0.14 m for estimations of the trajectory and
source position, respectively.
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Figure 3. T60 = 0.15 s, Trajectory estimation on simulations for aSLAM with true speed plus noise
(orange dash-dotted line), aSLAM with IMU data (blue dashed line), and the D-D SLAM with IMU
data (red dotted line).

Figure 4. T60 = 0.15 s, Trajectory and source estimations on simulations for D-D SLAM with and
without the keyframe method.

283



Drones 2023, 7, 120

Figure 5. T60 = 0.5 s, Trajectory and source estimations on simulations for D-D SLAM under the
condition of different SNRs.

However, when the simulated IMU data that contain nonlinear numerical error and
Gaussian measurement noise are applied, aSLAM has poor performance. As shown by the
blue dashed line in Figure 3, the trajectory estimation deviation increases with time. Within
29 s (29 time steps), the estimated position of the robot starts to be outside the room. The
corresponding source position estimations are nonconvergent and sometimes even out of
the room, so they cannot be marked as static points in Figure 3. In contrast, the proposed
D-D SLAM with the same simulated IMU data performs well. As shown in Figure 3, the
trajectory estimation of D-D SLAM in the red dotted line basically matches the ground
truth, and the source position estimation in the red solid triangles is always close to the
true source’s position. During the whole process of 100 s (100 time steps), the estimation of
the trajectory and source position with the proposed D-D SLAM is convergent and stable.

The poor performance of aSLAM with IMU data implies that additional constraints are
needed in this situation. As the nonlinear noise is due to the integration error of the IMU,
the DRR is used to compute the source’s distance from the robot, which is applied as a new
constraint. The result shown in Figure 3 demonstrates the different performances under the
same conditions between aSLAM and the proposed D-D SLAM, proving the effectiveness
of D-D SLAM. The use of the DRR for source distance estimations, which is considered an
additional constraint, is key to eliminating the nonlinear error of IMU measurements.

Quantitative analysis of the accuracy using the Euler distance is illustrated in Figure 6.
Under the condition of T60 = 0.15 s, the result of aSLAM is drawn as a blue line with solid
squares, while that of the proposed D-D SLAM is drawn as a red line with solid squares.
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Figure 6. Simulation results for (a) the trajectory errors and (b) the source position errors over
time steps.

For aSLAM with IMU data, the trajectory error reaches a maximum of 3.9 m at 91 s
(91 time steps), and its mean value is 1.55 m, as shown in Figure 6a. Moreover, the overall
trend of its trajectory error increases over time. With the random initial source position, the
corresponding source position estimation error is unstable, as shown in Figure 6b. The error
also reaches a maximum of 6.0 m at 91 s (91 time steps), and its average is 3.0 m. Within a
room of 6 m × 6 m × 3 m, the trajectory and source position errors are unacceptable.

For the proposed D-D SLAM with IMU data, the maximum trajectory error is less than
0.48 m, and the mean value of the trajectory error is 0.14 m. Meanwhile, the source position
error is less than 0.19 m just after 16 s (16 time steps), even though the source position error
at the beginning is quite large due to the random initial source position. Compared with
aSLAM, the source position error of D-D SLAM converges faster even with the larger initial
value of the source position error. These results show that the proposed D-D SLAM has
better performance using the same simulated IMU measurement, which proves that D-D
SLAM has stronger robustness for the nonlinear noise of motion reports.

The good performance of the proposed D-D SLAM relies on reliable source distance
estimates, which are based on the accurate estimate of the critical distance dc. However, dc is
initially unknown. With the online estimation method in this paper, dc is calculated during
the SLAM process. Different particles of critical distance dc are initialized in the beginning,
and the weight of each dc particle is evaluated with the coincidence degree between the
robot position, which corresponds to each dc particle and the IMU measurements. During
the SLAM procedure, those dc particles whose corresponding robot position matches poorly

285



Drones 2023, 7, 120

with IMU measurements, DoA estimates, and sound source distance estimations from DRR
are dropped. Figure 7 is the result of dc at different time steps, where the different color
dashed lines represent values of different dc particles and the red solid line represents
their weighted mean. The mean of dc converges rapidly to a stable value in less than 27 s
(27 time steps). The results show that the proposed online estimation method can obtain
a convincing critical distance, even though the directivity of the source and receiver, the
room size, and the reverberation time are unknown.

Figure 7. The state of different critical distance particles and the weighted critical distance with
simulation data under the condition of T60 = 0.15 s.

The reverberation time T60 of the room is a general acoustic character of the environ-
ment. The simulation results of different reverberation times (T60 = 0.15 s and T60 = 0.5 s)
are shown in Figures 3 and 5, respectively. As shown in Figure 6, the average errors of
trajectory and source position are 0.14 m and 0.21 m, respectively, when T60 = 0. 5 s and
SNR = 6 dB, while the average errors of trajectory and source position are 0.14 m and
0.29 m, respectively, when T60 = 0. 15 s. In different acoustic environments, the proposed
D-D SLAM still gets small errors and has similar performances, showing its robustness
against changing the environment.

As shown in Figures 3 and 5, the D-D SLAM can work with the continuous sound
source of music or white noise, so the white noise sound source is unnecessary. The
frequency ranges of the music and the white noise used in the simulation are different,
and the frequency of the music is time-varying, so the D-D SLAM is insensitive to the
frequency range.

The influences of different SNRs are studied. As shown in Figure 6, the average errors
of trajectory and source position are 0.14 m and 0.21 m, respectively, when SNR = 6 dB,
while the average errors of trajectory and source position are 0.16 m and 0.27 m, respectively,
when SNR = 3 dB. The errors of trajectory estimation do not converge when SNRs are
0 dB and −3 dB. The trajectory error of −3 dB SNR grows faster than that of 0 dB SNR.
Therefore, simulation results show that received signals whose SNR is bigger than 3 dB is
necessary for the proposed technique.

In the simulation, the results of the D-D SLAM with and without the keyframe method
are shown in Figure 4. The trajectory estimations of the D-D SLAM with and without the
keyframe method are comparable before the robot remains stationary. The robot begins to
remain stationary after moving for 20 time steps. After remaining stationary for 10 time
steps, the trajectory estimations of the D-D SLAM without the keyframe method (blue
line) go seriously wrong. And the source position estimations of the D-D SLAM without
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the keyframe method (blue triangle) are much closer to the position where the robot
remains stationary rather than the position of the true source. This result is similar to the
phenomenon presented in Figure 2. On the contrary, the D-D SLAM with the keyframe
method (red line) still performs well after remaining stationary for 10 time steps. It is
possible for a robot to remain stationary for some time during the SLAM procedure, so the
keyframe method is necessary to prevent false source and trajectory estimations when the
robot keeps still.

6.2. Experimental Results

Figure 8 shows the estimated trajectory and source position using D-D SLAM and
aSLAM for real indoor datasets [15]. Even worse than that in simulation Group II, the esti-
mated trajectory of aSLAM in the experiment goes outside the boundary of the experiment
room after 18.7 s (402 time steps) and never returns during the remainder of the experi-
ment. Therefore, it is not fully shown in Figure 8. The gradual divergence of the estimated
trajectory is because of the shifting integrated velocity from the IMU measurements. Due
to the incremental error of trajectory estimation, the source estimation of aSLAM is also
unstable, and out of the room, so it cannot be marked in Figure 8. In contrast, the estimated
trajectory of the proposed D-D SLAM always converges to a small neighborhood of the
ground truth, as shown in Figure 8. Meanwhile, the estimation of the source position also
converges with the true source position.

Figure 8. The estimation of trajectory and the source position using aSLAM and D-D SLAM with and
without the keyframe method.

Figure 9 illustrates the estimation errors of the trajectory and source position. For
aSLAM with real indoor data, the overall trajectory error tends to increase during the
complete SLAM process, which is unacceptable. The source position error has the same
trend as that of the trajectory error.

For the proposed D-D SLAM with the keyframe method, the maximum trajectory error
reaches 1.18 m at 16.1 s (347 time steps), and its mean value is 0.48 m. In the meantime, the
maximum error of the source position estimates of 0.66 m occurs at the beginning because
the initial source position is random, and the error quickly converges to the stable value of
0.25 m after 2.8 s (60 time steps).
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Figure 9. Dataset result for (a) the trajectory error and (b) the source position estimation error over
time steps.

Compared with aSLAM, the proposed D-D SLAM has an acceptable performance in
the trajectory and source position error, proving its validity for real world indoor scenes.
The results in Figure 9 show the potential of the proposed D-D SLAM to work with an IMU
in closed environments.

In the experiment, the results of the D-D SLAM with and without the keyframe
method are shown in Figure 8, and the corresponding errors are shown in Figure 9. There
are only small differences between the results of the D-D SLAM with and without the
keyframe method. Thus, the keyframe method has a limited impact on the accuracy of
estimations. Meanwhile, the use of the proposed D-D SLAM contributes to reducing the
computing effort.

Figure 10 shows the critical distance estimation on the DREGON dataset. Similar to
that in the simulation, the estimated critical distance converges rapidly to a stable value
near 6.8 m.

Figure 10. The state of different critical distance particles and the weighted critical distance with
real data.
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With Intel i5-7500 CPU (4 cores 3.40GHz), under the condition of 10 particles, the
expected latency is 0.1392 s, and the D-D SLAM performs at a speed of 7.1 FPS. The received
audio signals do not change significantly when the microphone on the robot moves slightly,
so the FPS of 7.1 should be acceptable for acoustic SLAM.

6.3. Analysis

In this section, the reasons for the trajectory errors are analyzed. The trajectory errors
are affected by the number of particles, the max number of GM components used in
source mapping, the DoA estimates, the IMU measurements, and the robot’s distance from
the source.

The positional errors in different particle numbers are observed (as triangle and circle
marks in Figure 11a). It is also important to determine the influence of the particle number
on the critical distance estimation. The experiment in Section 5.2 is repeated for 5, 8, 10, 15,
and 20 particles to investigate if a further improvement of the positional accuracy and the
critical distance estimation can be achieved.

 

Figure 11. The positional error and the critical distance estimation with (a) different numbers of
particles and (b) the max number of GM components.

When the number of particles increases from 5 to 10, the errors of source position
and robot trajectory estimation decline quickly because the brute force strategy consists
of increasing the number of particles and proves to be effective [32]. When the number
of particles increases above 10, the errors of the source position and the robot trajectory
estimation stabilize at values of 0.25 m and 0.48 m, respectively. The reason for this is that
the contribution of increasing the particle number is negligible after a few iterations [33].
The critical distance estimation also quickly converges to a stable value for the same reason.

The experiment in Section 5.2 is also repeated for different max numbers of GM
components used in source mapping (as triangle and circle marks in Figure 11b). With an
increase in the maximum of GM components, the positional error and the critical distance
estimates quickly converge to a stable value.

As mentioned before, the SRP-PHAT with limited elevation search boundaries has
high-accuracy DoA results. Even if the direction of the drone noise is in the range of
the source direction, the Wiener Filter with the noise sample can be applied for noise
reduction [15]. Incidentally, the drone noise can only affect the ITD and the coherence of
binaural signals in the calculation process of DRR. As the ITD is calculated with accurate
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DoA estimates, the ITD is robust to drone noise. As the drone noise is diffuse and inco-
herent between different channels, it can be suppressed when calculating the coherence of
binaural signals.

As the covariance of the DoA estimates and the IMU measurements are considered
to be time-invariant while the trajectory errors have obvious variation with time, the
time-varying robot’s distance from the source is considered. In Figure 12, the true robot-
source distance is represented with the blue dashed line, and the trajectory error of D-D
SLAM is drawn with the solid red line. What Figure 12 clearly shows is that the trajectory
error increases with the decrease in the true robot-source distance. Roughly speaking, the
trajectory error reaches the maximum when the true robot-source distance approaches the
minimum. Therefore, it can be assumed that the trajectory error is associated with the
robot-source distance.

Figure 12. The robot-source distance and the trajectory error of D-D SLAM.

Using (16), the estimation of the robot-source distance depends on the critical distance.
The critical distance should be fixed when the reverberation field is stable. However, the
reverberation field may vary if there are moving objects. The closer the robot is to the
source, the larger its influence on the reverberation field. The reason is that when they are
close, the multiple diffractions and the multiple reflections they cause will become stronger,
and the influence on the reverberation field is also heavier, and vice versa.

As shown in Figure 10, when the robot is still far from the source, the critical distance
estimation has already converged to a stable value, leading to particle dilution of the critical
distance. After that, the variation in the reverberation field caused by the change in distance
between the robot and the source can no longer be considered with the diluted particle
filter. As a result, the outdated estimation of the critical distance will affect the estimation
of the robot-source distance, according to (16). The deviation of the robot-source distance
finally causes an increase in the trajectory estimation error.

7. Conclusions

Focusing on the solution of indoor SLAM with acoustic data and an IMU, D-D SLAM
is proposed. With the keyframe method, D-D SLAM performs well in mapping regardless
of whether the robot moves or remains stationary. The use of the DRR for the estimation of
the source’s distance from the robot as a new constraint in D-D SLAM effectively eliminates
the nonlinear noise of the IMU measurements. As the key factor to calculate the source’s
distance from the DRR estimates, the critical distance is unknown initially, so a particle
filter is applied to estimate the critical distance online, and the estimation of the critical
distance converges to a stable value.

According to the results, D-D SLAM has good performance in both simulations and
experiments. For the first time, an acoustic SLAM algorithm is validated with a real indoor
dataset containing only acoustic data and IMU measurements. Different from previous
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work, D-D SLAM is designed for three-dimensional motion and rotation. On the real indoor
dataset, the proposed D-D SLAM can locate the robot with an average accuracy of 0.48 m
and build a source map with an average accuracy of 0.25 m. Even though the initial source
position is random, the error of the source position converges to less than 0.25 m within
2.8 s.

These results demonstrate the effectiveness of the proposed D-D SLAM in real-world
indoor scenes. In the future, D-D SLAM may contribute to robot localization and map build-
ing when conventional optical sensors are not suitable for special indoor environments, for
example, foggy rooms where light and lasers cannot penetrate during navigation missions.
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Abstract: Desert locust is one of the most destructive migratory pest in the world. Current methods
of control rely on conventional chemical insecticides during invasion. Some environmentally friendly
biopesticides based on Metarhizium acridum and insect growth regulators have also been deployed
in preventive control operations. They have been tested in sprayers mounted on commonly used
platforms such as vehicles, aircraft, and human. However, despite being used successfully, these
tools present many challenges, hence the need to supplement them with suitable alternatives. The
successful use of drones to control pests such as fall armyworm, planthoppers, aphids, among others,
makes it an attractive technology that has the potential to improve locust management, especially in
inaccessible areas. However, key parameters for the safe and optimal use of drones in desert locust
control are not documented. This study established the key parameters for spraying desert locusts
with a drone. To test the optimum height for spraying Metarhizium acridum on the locusts, the drone
was flown at five different heights: 2.5, 5, 7.5, 10, and 12.5 m. At each height, the drone sprayed the
ink mixture on spray cards pinned to the ground to approximate the droplet density and compare
it to the standard droplet density recommended for desert locust control. To assess the efficacy of
M. acridum and the effectiveness of drones in its application, 50 g of spores were mixed in 1 L of
diesel and sprayed on caged live locusts of different stages (3rd and 4th instars, as well as the adults);
they were monitored for twenty-one days in a controlled room, and their mortality was determined.
Variation in droplet density between the tested heights was significant. A height of 10 m agrees
with the recommended standard droplet density within the 45 droplets/cm2 range. Mortality varied
among the locusts’ developmental stages within and between heights. Survival probability varied
between heights for 3rd instar, 4th instar, and adults. All the developmental stages of the desert locust
were susceptible to Novacrid and the recommended target stage is the 3rd instar. Management of
desert locusts by the use of drone technology appears promising when the pesticides are applied at
an optimum height and standard operating procedures are followed. Further research could explore
the gap in the effects of environmental parameters on flight application efficiency.

Keywords: drones; Metarhizium; pesticides application; optimum height; droplets density;
mortality rate

1. Introduction

Desert locust, Schistocerca gregaria Forskål (Orthoptera: Acrididae), is one of the most
destructive migratory pest in the world [1] and exhibits solitary and gregarious phases
that vary in biology and behavior [2–5]. Upsurge of desert locusts have prompted the
use of chemical pesticides such as organochlorines, carbamates, organophosphates, and
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pyrethroids as the main control measures [6,7]. However, although these chemical pesti-
cides may provide an effective means of control, there are risks to the environment and
human health and safety [8]. Moreover, invasion sometimes occurs in sensitive areas, such
as near human settlements, and to some extent in protected areas with numerous beneficial
organisms, which limits their use [9,10].

Consequently, safe and environment-friendly biopesticides based on Metarhizium
acridum (Novacrid® and Green Muscle®) were developed [11–13] as oil formulations
suitable for ultra-low volume (ULV) application. They have been tested in a range of
commonly used spinning-disk sprayers, including the hand-held Micron Ulva-Plus and
vehicle-mounted Ulva-Mast [14]. These sprayers were used successfully on various pes-
ticide application platforms during the 2019–2022 desert locust invasions but presented
some challenges, such as the accessibility of hard-to-reach areas and economic cost, both of
which required improvements for the effective management of locusts [15,16].

Modern approaches and technologies, such as the use of UAVs, have the potential to
complement the existing methods of desert locust management [1]. An UAV is an aircraft
that flies without a human pilot onboard [1,17–22], whose development has become more
practically feasible and affordable in precision agriculture [18,23,24]. The application of
pest control products using UAV has been increasing over the years [25]. Importance is
ascribed to the correctness of the process and application, taking into account the effects of
sprayed liquid on the environment [26]. The fundamental issue in these processes is quality
and efficiency, since they determine the efficacy and deposition of the pesticide [27]. One of
the critical parameters to be optimized and considered for the effectiveness of UAV-enabled
spraying is droplet deposition, measured by droplet density [18].

The efficiency of UAVs in spraying aphids and spider mites in cotton [28], brown plant
hoppers [26], cowpea thrips [29], rice plant hoppers [30], fall armyworm in sugarcane [31],
and wheat aphids [32] has been demonstrated. There have also been suggestions that UAVs
can be used to apply pesticides on desert locusts [16,33], even though much remains to be
completed in terms of research and implementation, or operationalization. Nonetheless,
the parameters optimized in the studies on other insect pest species may not apply to
desert locusts because of the differences in biology and behavior of the latter. There is a
need to explore the potential of UAV technologies to improve locust management before
populations build up and swarms invade extensive farming areas. One of the important
factors to be considered for the effectiveness of UAV-enabled spraying is the droplet
deposition. The parameters used for measuring the effectiveness of droplet deposition
include droplets density. This measure is used to understand how the field is covered with
pesticide and how well the pesticide is dispersed. The droplet density deposition is the
number of droplets deposited per unit area and is often measured using water-sensitive
papers. Effective control of pests requires the optimum dose of the pesticide applied
so that droplets on the target surface can have the best coverage, spread, attachment,
and absorption [18]. Droplets deposited on water-sensitive papers are counted through an
automated solution, such as a swath kit, Dropscan, Agroscan, Dropleaf, and Image J software,
among others. Flight altitude affects the effectiveness of a drone significantly [27,28,34] and
it is logical that as the flight altitude increases, the droplet density reduces and droplet
uniformity increases [34]; therefore, the goal is to achieve the highest possible flight altitude
to increase effectiveness. At present, there is little information available on the optimum
flight height when drones are used for desert locust control. Therefore, scientific-based
field testing is required. This study established the optimum height for the application of
pesticides for the control of desert locusts.

2. Materials and Methods

2.1. Field Site for the Experiment

The trials were conducted at the Kenya Agricultural and Livestock Research Organiza-
tion (KALRO) Station, located at the Muguga Research Centre (1◦13′ S, 36◦38′ E), which lies
30 km from Nairobi, off the Nairobi–Nakuru highway. This study was conducted during
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the second week of October (2021) on a day when the weather was sunny and cloudless
with a low relative humidity of 65%, with temperatures varying between 26 and 29 ◦C and
wind speeds varying between 3.0 and 3.6 m s−1. Temperature and wind conditions, as well
as site characteristics, were similar to conditions required during some actual locust survey
and control operations [13,35].

2.2. Parameters for Spraying Pesticides Using a Drone

A DJI Agras T20 drone fitted with an ultra-low volume (ULV) atomizer was used
to assess the effect of spray application heights on droplet density on the ground. The
drone was fitted with a Micronair 12 ULV spraying boom with three atomizers and a
20 L spray tank. White A4 papers measuring 210 × 297 mm were used as spray cards to
estimate the deposition of droplets at different spray heights. The spray tank was filled
to its maximum volume with a mixture of water-soluble black ink and water in a ratio of
1:3 (v/v) to produce the payload of 20 L at the start of the trial and was reloaded when the
tank was empty. The spray cards were placed and pinned on the ground at intervals of 1 m
in three equal and parallel rows that were 50 m apart. The drone’s flight path bisected the
three rows in the middle at right angles. A total of 61 spray cards were pinned on each row,
30 on the left and 30 on the right, with one card at the mid-line that marked the drone flight
path (Figure 1). The spray cards were appropriately labelled according to the spray height
tested and distance from the drone flight path. The flight trajectory was programmed
using the drone’s software to spray the ink mixture at five different heights: 2.5 m, 5.0 m,
7.5 m, 10.0 m, and 12.5 m. At each height, the drone sprayed the ink mixture at a constant
flow rate of 1 L/min at a constant speed of 14 km/h. After every flight, the pinned spray
cards were collected sequentially for analysis. This procedure was repeated three times for
each flight height. The sprayed papers were scanned using a scanner (LaserJet Pro MFP
MI30NW, Hewlett Packard) at 600 dpi and stored in Joint Photographic Group (JPG) format.
The images (Figure 2) were imported to the Dropleaf app, which processed and analyzed
droplet density through five steps: color space conversion to grayscale, binarization by
threshold for noise removal, dilation and erosion, production of contours, and droplet
identification [36]. The spread factor was assumed to be such that the values calculated by
the app were the ones used for analysis.

A primary progeny of 140 desert locust hoppers in different developmental stages
was obtained from the University of Nairobi, Department of Biology, and reared at the
KALRO Muguga Center for six months, during which they were able to breed and generate
a total of 1280 individuals in various developmental stages. A total of 324 individuals were
selected for this experiment, comprising 108 individuals at the 3rd and 4th instars and
adults. The temperature and relative humidity maintained in the insectary were 33 ◦C and
60%, respectively.

To test the efficacy of the Novacrid® biopesticide sprayed by a drone on live desert
locusts, a total of 324 desert locusts were placed in 54 cages, each measuring 30 × 30 × 30 cm,
with six locusts per cage. Each developmental stage had a total of 18 designated cages, of
which 15 were for treatment (one treatment per drone flight height, repeated twice) and
three were untreated controls.

A total of 500 g of Novacrid® biopescide was mixed with 20 L of diesel to form a
homogenous solution and loaded into the drone’s container. At each of the five different
flight heights, one cage for each developmental stage was randomly placed in a 1 ha area,
parallel to the flight route (Figure 3). The drone was launched to spray at the selected
height, and this process was replicated three times. After spraying, the labelled cages were
transferred to a quarantine room at the insectary, while the untreated locusts (the control)
were left at the main insectary for observation, with a daily mortality recorded for a period
of 21 days. The dead locusts were removed on a daily basis from the experimental cages
and incubated in the laboratory at a temperature of 28 ◦C and 80% relative humidity to
encourage external growth and sporulation of the fungus.
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Figure 1. Illustration of the experimental layout of spray cards for establishing optimum droplet
density by spraying at different heights using an Agras T20 drone fitted with a Micronair 12 ultra-low
volume (ULV) spraying boom.

 

Figure 2. Samples of papers with droplets.
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Figure 3. Wire mesh cages (objects arranged within the yellow circle) with live locusts arranged
parallel to the drone flight path (object within the red circle).

2.3. Data Management and Analysis of Optimum Droplet Density at Different Flight Heights

The recorded density of the droplets was subjected to the Hampel filter in the R
statistical software to identify outliers as part of data management. The Hampel filter
considers outliers as values outside the interval (I) formed by the median, plus or minus
3 median absolute deviations (MAD);

I = [median − 3.MAD; median + 3.MAD], (1)

where MAD is defined as the median of the absolute deviations from the data’s median
x̃ = median(x):

MAD = median(|xi − x̃|). (2)

To compute the optimum density of droplets, one litre sprayed in one hectare was
converted to cubic micrometres (1.0 × 1015). This was because it was known that during
desert locust control, about 0.5–1.0 L of ULV insecticide was optimally sprayed in 1 hectare
using rotary atomizers (spinning discs or rotating cages) to produce droplets in a small
size range (50–100 μm) in diameter [13,34]. For optimization, a compromised diameter of
75 μm was used to estimate the volume of each droplet:

Volume of each droplet =
4
3
πr3 =

4
3
×
(

22
7

)
×
(

75
2

)3
= 220, 982 μm3. (3)
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Estimated droplet volume was used to estimate the number of droplets in 1 L,

No. droplets =
1 litre

(
μm3)

Droplet size (μm3)
=

1.0 × 1015

220, 982
= 4, 525, 252, 525. (4)

It was assumed that droplets were homogenously distributed in 1 ha (=100,000,000 cm2),
and then from this assumption, the optimum density of standard droplets Ø75 μm in one
hectare was estimated from the following calculation, resulting in 45 droplets/cm2:

No. droplets /cm2 =
4, 525, 252, 525
100, 000, 000

= 45 droplets/cm2. (5)

The data on droplet density obtained from the dropleaf app was subjected to statistical
analysis using R statistical software(Version 4.1.1). Anova was used to test the effect of
flight height on droplet deposition. Tukey’s honest significant difference (HSD) test was
used where significant effects of flight heights on droplet density were observed (p < 0.05).
One sample t-test was used to compare the standard calculated density against densities at
different spray heights.

2.4. Efficacy of Metarhizium on Desert Locusts

Mortality in respective cages was transformed into percentages and corrected using
Abbotts’s correction formula to eliminate natural mortality as follows [37]:

Corrected mortality(%) =

(
Trt − Co
100 − Co

)
, (6)

where Trt and Co are the daily treatment and control mortality, respectively.
Data were subjected to the Shapiro–Wilk test to test for normality. Mortalities in the 3rd

instar, 4th instar, and adult stages in all the cages were subjected ANOVA to test the effect
of spraying height on mortality. The Cox proportional hazard model was used to assess the
statistical difference in survival probability of different developmental stages between flight
heights. Survival distribution curves were generated using the Kaplan–Meier estimator.

3. Results

3.1. Variation in Droplet Density among Different Drone Flight Heights

Droplet density varied significantly among the tested heights (F4,40 = 7.2; p < 0.001)
(Table 1). The highest and lowest mean droplet densities (152.2 ± 4.8 and 24.8 ± 6.51) were
recorded at the lowest (2.5 m) and highest tested flight height (12.5 m), respectively. Droplet
density observed at 5.0 m, 7.5 m, 10.0 m, and 12.5 m did not vary significantly, but at 2.5 m
it was significantly different from other tested flight heights except for 7.5 m (Table 1).

Table 1. Mean (±SE) spray droplet density at different drone flight heights.

Flight Height (m) Mean (±SE) Droplet Density

2.5 152.2 ± 24.8 b

5.0 75.3 ± 11.1 a

7.5 96.0 ± 29.4 ab

10.0 40.2 ± 10.1 a

12.5 24.8 ± 6.51 a

F4,40 7.2
p-Value 0.0002

Same letters indicate no significant difference.

3.2. Optimum ULV Spraying Heights Using a Drone

One sample comparison between standard droplet density and observed mean droplet
density varied among different heights (Table 2). Mean droplet densities were significantly
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higher than the standard density (45 droplets/cm2) at 2.5 m (t227 = 6.02; p < 0.05) and
5 m (t289 = 3.63; p < 0.05). The mean droplet density at 10 m was not different from the
standard droplet density (t308 = 1.031; p > 0.05). Mean droplet density at a flight height
of 10 m was concordant with the volume application rate (VAR) recommended by the
manufacturer because the mean droplet density observed was within the standard range
of 45 droplets/cm2. However, the droplet density was lower than the standard at 12.5 m
(t343 = 6.39; p < 0.05).

Table 2. One sample t-test comparison of the standard droplet density (45 droplets/cm2) against
droplet densities observed at different spray heights using a drone.

Spray Heights
Mean Droplet

Density
One Sample t-Test (Mu = 45 Droplets/cm2)

(m) (x ± SE) t-Value Df p-Value

2.5 152.2 ± 24.8 6.02 227 7.07 × 10−9 ***
5.0 75.3 ± 11.1 3.63 289 0.0003 ***
7.5 96.0 ± 29.4 2.07 369 0.039 *

10.0 40.2 ± 10.1 1.03 308 0.304
12.5 24.8 ± 6.51 6.39 343 5.61 × 10−10 ***

*** shows strong significant difference of mean droplet density from the standard droplet density. * show least
significant difference.

3.3. Effects of Drone Spraying Height on Mortality of Desert Locusts

Mortality varied among the locusts’ developmental stages at different heights (F2,30 = 25.71;
p < 0.0001) (Table 3). Variation in mortality between different developmental stages was
evident at 10.0 m (F2,6 = 16.73; p = 0.0035) and 12.5 m (F2,6 = 27.97; p < 0.0009). At 10.0 m,
the mortality of the 3rd and 4th instars was similar and high compared to the adults, while
at 12.5 m, the mortality of the third instar was high, followed by the fourth and lowest in
adults. Mortality of all the locusts’ stages was similar at 2.5 m (F2,6 = 1.22; p = 1.00), 5.0 m
(F2,6 = 2.04; p = 0.21), and 7.5 m (F2,6 = 1.53; p = 0.29).

Table 3. Mortality of different life cycle stages of desert locusts sprayed with Novacrid® biopesticide
at different spray heights using an Agras T20 drone fitted with an ULV atomizer.

Stages of
Desert
Locusts

Drone Spraying Height (Metres above Ground Level)

2.5 5.0 7.5 10.0 12.5 F4,10 p-Value

Third 100.00 ± 0.00 cA 100.00 ± 0.00 cA 86.66 ± 6.67 bA 80.00 ± 0.00 bB 40.00 ± 0.00 aC 68.50 <0.0001
Fourth 100.00 ± 0.00 cA 86.66 ± 6.67 bcA 86.66 ± 6.67 bcA 73.33 ± 6.66 bB 26.66 ± 6.67 aB 22.74 <0.0001
Adults 100.00 ± 0.00 dA 83.33 ± 8.33 cA 75.00 ± 0.00 cA 50.01 ± 0.00 bA 0.00 ± 0.00 aA 109.00 <0.0001

F2,6 1.22 2.04 1.53 16.73 27.97
p-value 1.00 0.21 0.29 0.0035 0.0009

The same superscripted lowercase letters in the same row indicate no significant difference in the mortality among
different spray heights, while the same superscripted uppercase letters in the column indicate no significant
difference in the mortality across life cycle stages; Turkey test (HSD), p = 0.05.

Mortality of all the locusts’ stages varied between heights (F4,30 = 143.39; p < 0.0001)
(Table 3). Variation of mortality between heights was evident in the third instar (F4,10 = 68.50;
p < 0.0001), with the highest and similar mortality at 2.5 m and 5.0 m (100 ± 0.00), followed
by 7.5 m (86.66 ± 6.67), 10.0 m (80.00 ± 0.00), and lowest at 12.5 m (40.00 ± 0.00). Similar
variation was observed at the fourth instar (F4,10 = 22.74; p < 0.0001) and adults (F4,10 = 109.00;
p < 0.0001). Both the fourth instar and adults exhibited the same trend of reduced mortality
with an increase in spray height, except at 5.0 m and 7.5 m, where mortality was the same.
Interaction between spray heights and different stages of locusts also had a significant
effect on mortality (F8,30 = 3.6745; p = 0.004271).
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3.4. Effects of Drone Spraying Height on Survival Rates of Desert Locusts

The survival rate of different locusts’ developmental stages (3rd, 4th, and adults)
varied between different heights (Figure 4). Survival probability varied between heights
for the 3rd instar (χ2

4 = 56.84; p < 0.0001), the 4th instar (χ2
4 = 54.17; p < 0.0001), and adults

(χ2
4 = 47.57; p < 0.0001). In the 3rd and 4th instars, locusts sprayed at 2.5 m and 5.0 m did

not survive and all died by the 12th and 15th days, respectively. High survival probability
was observed at 12.5 m, followed by 10.0 m, and least at 7.5 m, where some treated locusts
remained alive after 21 days of monitoring. On the other hand, all the adults sprayed at
2.5 m died, while a high survival rate was observed at 12.5 m, followed by 10.0 m, 7.5 m,
and 5.0 m, respectively.

Figure 4. Cont.
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Figure 4. Kaplan—Meier survival curves for different stages of desert locusts sprayed with Novacrid®

at different drone flight heights. The same small letters adjacent to the legend indicate no significant
difference in the survival distribution curve at p > 0.05. (A) Survival curve of the 3rd instar, (B) survival
curve of the 4th instar, and (C) survival curve of adults. “+” indicates right censorship.

4. Discussion

According to the formula derived from the information provided by Dobson [35],
the recommended optimum droplet density for use in the management of desert locust
is 45 droplets/cm2. In this study, the droplet densities at the selected heights of 2.5 m,
5.0 m, 7.5 m, 10.0 m, and 12.5 m were 152.2 ± 4.8, 96.0 ± 29.4, 75.3 ± 11.1, 40.2 ± 10.1,
and 24.8 ± 6.51, respectively. In reference to the optimum droplet density as provided
by Dobson [35], the droplets were deposited more uniformly and sufficiently at the flight
height of 10.0 m (40.2 ± 10.1). When the flight height was lower or higher than 10.0 m, the
droplet densities indicated either over- or under-spraying, respectively. At lower heights
(2.5 m, 5.0 m, and 7.5 m), the droplet density was higher near the nozzle area, resulting in
an uneven distribution of droplets. Additionally, the swirling airflow caused by the flight
effect of the drone flying perpendicular to the ground resulted in increased downward
pressure on the droplets when the flight height was too low.

The variation of droplet densities with spray heights reported in this study matches the
findings of earlier experiments in which a higher density of droplets was reported at lower
heights than at higher heights [34,38–40]. High volumes and droplet densities at lower
heights can also be the result of a strong downward swirling airflow that makes the air
below sway substantially and affects the distribution and density of the droplets [26,40,41].
Lower droplet density at 12.5 m can be attributed to the downwash wind field above
the ground, which is weakened when this flight height is maintained. Additionally, the
weakened wind field in a vertical orientation causes an increase in the horizontal wind
field that aggravates droplet transfer and drift to non-target areas, resulting in a sharp
reduction in the density of droplets deposited on the target. These results are similar to a
recent observation that an increase in height changes the downwash wind field, leading
to a gradual reduction in droplet deposition within the effective target area [39,40]. The
increased distance and time required for the spray to reach the targeted area also cause it to
be dragged by the ambient air at higher heights compared to lower heights [41].

Drones have been identified as a potential platform for the application of pesticides in
pest and weed management [24]. Their use in the management of desert locusts has been
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challenged by a lack of data on optimum spraying height and the efficacy of biopesticides
on different development stages of locusts in a field setting. This study demonstrated that
although the application of Novacrid® at all the spraying heights tested caused mortality
in the three different developmental stages of the desert locust, there were variances in the
mortality rate and survival probability. In this experiment, lower spray heights produced a
high rate of mortality and a lower survival probability in all the tested locust’s lifecycle
stages compared to higher spray heights (12.5 m), which was comparable to other similar
studies conducted to assess effects of spraying heights on mortality of other pests upon
application of synthetic pesticides using a drone [26,39,42,43]. For example, a significantly
higher mortality of wheat hoppers was reported when sprayed with chlorpyrifos pesticides
at lower flight heights [26]. The high concentration of conidia at a lower height can be
attributed to reduced drift that maximized pesticide deposition in the target. Depending
on the pesticide used, accuracy in deposition and distribution is dependent on application
height [40], which could affect the penetration of the active ingredients of the pesticides [43].
Furthermore, as the height increases, droplet dispersion increases and deposition decreases,
causing pesticides to be carried to non-target areas [39].

Our findings on the mortality and survival of the desert locust can also be explained by
the mode of action of Metarhizium acridum, which is through direct contact and germinates,
invading the hemocoel within 24 h after application of conidia to the insect’s cuticle. The
rate of mortality achieved is dependent on the dosage of conidia that is in contact with the
locusts [11].

In this study, it was observed that at all heights, the 3rd instar was more susceptible
to Novacrid®, followed by the 4th instar, and finally adults. The comparatively lower
dose received at 12.5 m lengthened the infection period and lowered the mortality rate,
leading to a high survival probability after 21 days of application. This finding was similar
to those of other studies that treated desert locusts of different stages with Metarhizium
acridum [44–46]. For example, experimental studies in a laboratory setting have previously
reported the highest mortality (50%) in the 3rd instar, followed by the 5th instar (43%), and
adults (33%) [44]. In this study, at the selected height of 10.0 m that deposited the standard
droplet density, mortality was highest in the 3rd instar (80%), followed by the 4th instar
(73%) and adults (50%). The high percentage of mortality observed at the 3rd nymphal
stage could be due to a weakened immune system coupled with a soft exoskeleton that
enabled the biopesticide to penetrate faster compared to the 4th instar and adults. At the
hopper stage, their behavior includes banding and marching, and the band densities tend
to reduce with the increase in size (30,000 hoppers per m2 for the first instar and 50 to
100 hoppers per m3 for the late instars) [4]. Therefore, targeting the most susceptible early
stages is also cost-effective in terms of the density of bands that will be controlled at once
unlike the female adult desert locusts which can lay at least one egg pod before dying after
an estimated 21 days of Novacrid® application. Therefore, drones can be used to improve
the control of desert locusts.

5. Conclusions

This study has demonstrated that spraying desert locusts using a drone at any height
below 10.0 m may lead to over-deposition of the pesticide, while heights above 10.0 m may
lead to under-application, which may limit exposure of the locusts to Metarhizium spores or
pesticide molecules. This study demonstrated that spraying a control agent from a specific
height is more effective than other heights tested.

Despite all the developmental stages of the desert locust being susceptible to Novacrid®,
the recommended target stage for management using this biopesticide is the 3rd instar
stage because of the higher mortality rate and lower survival probability at this stage.

Further studies could explore the gap in the effects of environmental parameters on
application efficacy and the effectiveness of using more than one drone (drone swarms),
which allow greater area coverage at the same time.
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Abstract: With the development of pesticide substitution technology, ozonated water has been grad-
ually applied in agricultural plant protection. This paper describes our development of an ecological
plant protection unmanned aerial vehicle (UAV) that can produce and spray ozonated water while
flying. Firstly, this paper carries out the design of the ozonated water system, including the selection
of the ozone generator and the gas-liquid mixing method. Secondly, the conceptual design method
of the ecological plant protection UAV is introduced, including total weight estimation, propulsion
system selection, layout and structure design, battery modeling, center of gravity evaluation, and
control system. Then, static analysis was computed in ANSYS Workbench on the UAV fuselage.
Finally, the field test verified that the hovering time of the UAV could reach the design requirement
of 10 min when it was fully loaded. The effective spraying width (with a height of 2 m and a speed
of 3 m/s) is 5.25 m. The UAV was used to spray ozonated water with a concentration of 17 ppm
continuously once a day; on day 7, the control effect could reach 76.4% and the reduction rate of the
larvae population was 59.3%. Therefore, spraying ozonated water with a concentration of 17 ppm
every day by using the ecological plant protection UAV can effectively control broccoli diamondback
moth larvae and achieve the control effect of traditional pesticides (Chlorantraniliprole SC).

Keywords: plant protection UAV; ozonated water; conceptual design; finite element analysis (FEA);
field tests

1. Introduction

In recent years, under the support and guidance of the state, pesticide substitution
technologies and green prevention and control technologies have been continuously devel-
oped, resulting in a continuous reduction in the use of pesticides in China [1,2]. As one of
the most important technologies in green prevention and control, ozone plant protection
technology causes no pollution to the environment or pesticide damage.

At present, ozonated water plant protection equipment has been widely studied by
researchers in the field of pest control. The ozonated water plant protection is mainly
carried out in the form of backpack, fixed, and ground-mounted mobile vehicles. Chai et al.
developed a backpack ozonated water sprayer that used a gas-liquid mixing pump as the
ozonated water mixing method, and manual spraying was required during operation [3].
Kenji et al. developed a portable ozone spray sterilization system to prevent and control
pests in agricultural management. Studies showed that the ozone derivative free radicals
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produced in ozone spray could improve the rate of aphid destruction, and all aphids
were destroyed within 30 min [4]. Steffen et al. developed the PHYTO3-tech PCRO
protection system, which can be mounted on a tractor to spray ozonated water with a
concentration of 8 ppm to control yeast, mold, and insect damage, forming a field green
plant protection operation equipment [5]. Fan et al. developed a crawler-type ozonated
water plant protection unmanned vehicle that used PLC and single-chip microcomputer
control technology to integrate the ozonated water preparation and spraying system with
the crawler vehicle [6]. When the unmanned vehicle was operating, it could produce
ozonated water in real time and spray it out. The plant protection test in the vineyard
shows that the control effect is not significantly different from that of traditional pesticides
when spraying with 20 ppm ozonated water for 6 days. Hu et al. developed an ozonated
water spray system that could be mounted on a high-clearance vehicle [7]. The ozonated
water spray system in the vehicle could produce ozonated water in real time and spray it
during operation. In the rice control effect test, the combined use of ozone and pesticides can
better control the leaf roller pests. The above ozonated water plant protection equipment is
mainly aimed at greenhouse and orchard crops and is not suitable for open-field vegetables
such as broccoli.

In recent years, the plant protection UAV and agricultural aviation industries have
developed rapidly [8–11]. The literature [12] pointed out that using the DJI T20 plant
protection UAV to spray ozonated water with a concentration of 1 ppm and a half-life of
8 min can be used for disinfection outdoors, but this concentration of ozonated water has
no significant effect on the survival rate of diamondback moth larvae. The disadvantage of
using traditional plant protection UAVs to spray ozonated water is that the ozonated water
decomposes quickly, and the concentration of the ozonated water produced on the ground
will decrease after being transported. Therefore, we put forward the idea of mounting the
ozonated water production equipment into the UAV. Due to the high requirements of the
UAV on the weight and position of the load, it is necessary to consider the concentration
of ozonated water prepared, the load weight, and the center of gravity of the UAV when
designing an ecological plant protection UAV.

This paper introduces an ecological plant protection UAV that will continuously
produce and spray ozonated water during the flight, which is suitable for plant protection
operations in vegetable fields.

Section 2 proposes the design process of the ecological plant protection UAV and
determines the design parameters of the UAV.

Section 3 presents the conceptual design method of the ecological plant protection
UAV, including selection of ozonated water system components, total weight estimation,
propulsion system selection, layout and structure design, battery modeling, control system,
center of gravity evaluation, and static structural analysis of the UAV.

Section 4 introduces the field tests of the UAV, including the hovering time test, the
effective spraying width test, and the control efficacy test on diamondback moth larvae.

2. Design Process and Requirements

2.1. Design Process

When designing the ecological plant protection UAV, first of all, it is necessary to deter-
mine the design goals and parameters of the ecological plant protection UAV. Secondly, the
ozone generator and the gas-liquid mixing device were selected. Thirdly, the weight of the
plant protection UAV was estimated according to the weight of the workload (the ozonated
water system), and the suitable propulsion system was selected. Then, the structure of the
UAV fuselage was designed, the model of the UAV was built using Solidworks, lithium-
polymer (Li-Po) battery capacity was calculated according to the power consumption of the
UAV, and the center of gravity was viewed through Solidworks. Finally, the static structural
analysis of the UAV fuselage was performed in ANSYS Workbench to verify the structural
reliability of the UAV. The design process for ecological plant protection UAVs is shown in
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Figure 1. The major parameters of the ecological plant protection UAV after the test are
shown in Table 1.

Figure 1. The design process for ecological plant protection UAV.

Table 1. Major parameters of ecological plant protection UAV after the test.

Parameter Value

Flight speed (m/s) 1–7
Maximum take-off weight (kg) 58.3

Battery capacity (mAh) 44,000
Hover time at full load (min) 10.2

Total capacity of the water tank (L) 16
Ozone production (g/h) 0–24

Ozonated water concentration (ppm) 0–17
Dimensions (mm) 2100 × 2100 × 600
Total flow (L/min) 0–4.5
Number of nozzles 4

Effective spraying width (m)
(with a height of 2.0 m and a speed of 3.0 m/s) 5.25

The ecological plant protection UAV is composed of the flight control system, ground
control system, propulsion system, power system, and ozonated water system. The flight
control system is the brain of the UAV, which is mainly responsible for the autonomous
flight of the UAV. The ground control system cooperates with the flight control system
to control the flight of the UAV and one can choose automatic flight settings or manual
operation. The propulsion system is responsible for powering the UAV to climb, hover, fly,
and land. The power system consists of the battery and a power distribution unit (PDU),
and the battery supplies power to the propulsion system, ozonated water system, and flight
control system. The ozonated water system consists of production and spraying equipment,
and ozonated water can be produced and sprayed in real time. Figure 2 shows the UAV
composition and each system’s workflow.
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Figure 2. The UAV composition and each system’s workflow.

2.2. Design Requirements and Objectives

Before starting to design the UAV, it is necessary to determine the design requirements
and objectives. We put forward the design requirements and objectives, as shown in Table 2.
Taking the technical parameters of conventional plant protection UAVs as a reference, the
design objectives of the ecological plant protection UAV were determined. We selected a
number of plant protection UAVs from SZ DJI Technology Co., Ltd. (Shenzhen, China) and
Guangzhou XAG Technology Co., Ltd (Guangzhou, China). The parameters of these UAVs
were counted [13,14]. The hovering time of plant protection UAVs is shown in Figure 3.
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Table 2. Design requirements and objectives for the UAV.

S/N Requirement Value

1 Hover time at full load (min) 10
2 Endurance flight time (min) 7
3 Maximum take-off weight (kg) 60
4 Flight altitude (m) 0–6
5 Flight speed (m/s) 0–7
6 Capacity of the water tank (L) 15
7 Spraying efficiency (hm2/h) 4
8 Ozonated water concentration (ppm) 15
9 Effective spraying width (m) 4

Figure 3. Statistics of the hovering time of plant protection UAV. Green balls represent the projection
on the plane composed of the “Hover time” axis and the “Total weight” axis, and blue balls represent
the projection on the plane composed of the “Total weight” axis and the “Battery weight” axis.

Figure 3 shows that the hovering time of plant protection UAVs with full loads is
7–10 min. Therefore, the ecological plant protection UAV is required to hover for at least
10 min under full load. Considering that the ecological plant protection UAV needs to carry
the ozonated water workload, the capacity of the water tank should not be too high, and
the minimum capacity is 15 L. The UAV’s spraying area per sortie formula is as follows:

Espray = t f×Dwidth×v f (1)

where Espray is the UAV’s spraying area per sortie, t f is endurance flight time, Dwidth is
effective spraying width, and v f is flight speed of the UAV.

According to Formula (1), when the endurance flight time is 7 min, the flight speed is
4 m/s, the effective spraying width is 4 m, and the UAV’s spraying efficiency per sortie is
6720 m2. If the spraying efficiency is to reach 4 hm2/h, the UAV needs to fly 6 sorties per
hour. Therefore, the preset operating parameters of the UAV are reasonable.

The literature [6] indicates that the concentration cannot be too low when working
with the ozonated water system. The literature [15] indicates that ozonated water with a
concentration of 15 ppm has a better control effect on aphids and cabbage caterpillar. Guo
et al. explored the control of pests of green vegetables by ozonated water and found that
ozonated water with a concentration of 6.0 ppm had a significant effect on preventing the
occurrence of vegetable pests [16]. In order to ensure the control effect of ozonated water
on insect pests, the concentration of ozonated water should reach 15 ppm. Because the
concentration of ozonated water decays quickly, the ozonated water system needs to work
continuously during the flight to maintain the concentration within a certain range.
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3. Conceptual Design Method of UAV for Ecological Plant Protection

3.1. Selection of Ozonated Water System Components

The ozonated water system consists of the controller, the ozonated water production
device, and the spraying device. The ozonated water production device is composed of an
oxygen cylinder, an oxygen solenoid valve, a water outlet solenoid valve, two sets of ozone
generators, and a gas-liquid mixing pump. The spraying device consists of a brushless DC
pump and four nozzles. The ozone generator’s output and the gas-liquid mixing efficiency
are necessary conditions for producing high-concentration ozonated water. The weight
and cost of each component in the ozonated water system are shown in Table 3.

Table 3. The weight and cost of each component in the ozonated water system.

S/N Component Weight (kg) Cost (CNY)

1 Ozonated water system controller 0.22 500
2 Oxygen cylinder (with pressure reducing valve) 1.53 1300
3 Gas flowmeter 0.11 950
4 Cylinder solenoid valve 0.16 49
5 Water outlet solenoid valve 0.55 38
6 Relay module 0.20 42
7 Two sets of ozone generators 1.23 700
8 Ozone high voltage power supply 0.90 300
9 Gas-liquid mixed pump and its controller 3.24 2100
10 Water tank (full load) 17.27 259
11 Brushless DC pump 0.36 280
12 Four nozzles 0.40 180

Total 26.17 6698 (CNY)/975 (USD)

The SQ-12 ozone generator (Suiquan Electromechanical Co., Ltd., Guangzhou, China)
was selected as the device for producing ozone. The device uses a dielectric barrier
discharge method, as shown in Figure 4. After oxygen molecules are introduced into a
high-frequency and high-voltage electric field, high-energy electrons decompose oxygen
into oxygen atoms, and eventually the oxygen atoms collide to form ozone. Two sets of
SQ-12 ozone generators were connected in series to increase the production efficiency of
ozone gas. The total output of the two sets of ozone generators is 24 g/h, and the combined
power of the two sets of ozone generators is 240 W.

Figure 4. The ozone generator’s working concept.

There are generally three ways to mix ozone and water: the direct aeration method,
the Venturi jet method, and the gas-liquid mixing pump method [6]. The gas-liquid mixing
pump method uses a gas-liquid mixing pump to mix ozone gas with water. The high-
speed rotating turbine generates negative pressure through the gas-liquid mixing pump,
sucking ozone gas into the pump chamber where it can be fully mixed with water under
pressure. The dissolving effectiveness ranges from 70–90%. The gas-liquid mixing pump
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(type 8ZTDB-40, Lingbo Electromechanical Pump Industry Co., Ltd., Yangjiang, China)
was used in the design of the ozonated water system. Its rated flow and rated power are
0.77 m3/h and 200 W, respectively.

In order to compare the production efficiency and attenuation of ozonated water under
different gas-liquid mixing methods, the above three mixing methods were used to conduct
tests. The three groups of tests used ozone generators with a total output of 24 g/h and
supplied oxygen with the 0.8 L carbon fiber oxygen cylinder (Tianhai Industrial Co., Ltd.,
Beijing, China). After the gas cylinder was filled with oxygen, the pressure was 13 Mpa, and
the oxygen concentration was 99.5%. In the ozonated water production and attenuation
test, the ozone analyzer (type PM8200CL, GreenPrima Instruments Ltd., London, UK)
was used to detect the ozone concentration in real-time, with the measurement range of
0–20 ppm, and the resolution of 0.01 ppm. The ozone concentration was recorded every
30 s and were repeated 3 times for each group of experiments, as shown in Figure 5.

 
(a) (b) 

Figure 5. Variation of ozonated water concentration in different production modes: (a) generation of
ozonated water concentration; (b) attenuation of ozonated water concentration.

Figure 5a shows that the gas-liquid mixing pump method can prepare ozonated water
with a concentration of up to 17 ppm at 4.5 min, which is greater than the aeration method
and the Venturi jet method. Figure 5b shows that the half-life of the ozonated water
concentration is around 15 min.

3.2. Estimation of Total Weight

The total weight of the ecological plant protection UAV is expressed as Wtotal , which is
composed of the frame structure weight WS, propulsion system weight WP, power system
weight WB, flight control system and other electronic equipment weight WEL, and the
workload weight WL. The formula for the total weight of the UAV can be obtained:

Wtotal = WS+NmotorWP+WB+WEL+WL (2)

At present, we only know the weight of the ozonated water system, and other parts of
the UAV have not been finalized, so it is necessary to estimate the total weight of the UAV.
We counted the total weight and workload weight of plant protection UAVs from DJI and
XAG. Figure 6 shows the fitting results of the total weight and the workload weight.
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Figure 6. Statistics of workload weight and the total weight of plant protection UAV.

The fitting formula of the total weight and the workload weight is:

WL = 0.4818Wtotal − 3.2393 (3)

where Wtotal is the total weight of the ecological plant protection UAV, and WL is the
workload weight.

The workload of the ecological plant protection UAV includes the ozonated water
system and the water contained in the water tank. The sum of the weight of each component
is 26.17 kg, as shown in Table 3. The workload also includes other accessories, such as
water pipes, so the total weight is 27 kg. According to Formula (3), the total weight of the
ecological plant protection UAV is 62.92 kg.

3.3. Selection of Propulsion System

The propulsion system of the UAV consists of brushless motors, brushless electric
controllers (ESC), and propellers. With a greater total weight of the plant protection UAV,
the larger-sized propeller and the motor with a lower KV value need to be selected. KV
represents the ratio of the motor’s speed per minute to voltage. With a larger diameter of
the paddle, the lower KV motor is more efficient than the higher KV motor [17]. The XRotor-
X9 propulsion system (Hobbywing Technology Co., Ltd., Shenzhen, China) was selected,
and its specifications are shown in Table 4. This system is equipped with 34.7 inch high-
efficiency folding propellers, using FOC electric adjustment, and the maximum pulling
force of a single axis can reach 22 kg.

Table 4. XRotor-X9 propulsion system specifications.

Specification Value

Total weight of propulsion system (kg) 1.4
KV (rpm/V) 100

Size of the stator (mm) 96 × 16
Supported Battery Type Li-Po (6–12 cells)

Electrical signal frequency modulation (Hz) 50–500
Working pulse width of electrical modulation (us) 1100–1940

Maximum allowable voltage (V) 52.2
Maximum allowable current (A) 120

According to the data of the XRotor-X9 propulsion system given on the official web-
site [18], we plotted the load performance diagram of the propulsion system as shown in
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Figure 7. The fitting formulas of pulling force and motor rotational speed, and current and
motor rotational speed, are as follows:

Tp = 4.89enm/2121.74 − 6.46 (4)

Ip = 2.92enm/1057.85 − 6.1 (5)

where Tp represents the weight of propulsion by each propulsion system, nm represents the
rotational speed of the motor, and Ip represents current for the propulsion system.

Figure 7. The load performance diagram of the propulsion system.

3.4. Layout Design

The layout of the fuselage and propulsion system must be considered in the design
of the plant protection UAV. Common fuselage layouts for plant protection UAVs include
four-rotor, six-rotor, and eight-rotor aircraft. The plant protection UAV’s tolerance for the
propulsion system failure increases with the number of rotors. By redistributing the control
output signals in the event of a single power motor failure, the flight control system can
maintain the stability of the plant protection UAV, increase its safety, and prevent damage to
people or property. More rotors, however, are not necessarily better. The distance between
the geometric center of gravity of the plant protection UAV and the center of gravity of the
rotors will increase as the number of rotors does as well. In light of these factors, the plant
protection UAV’s fuselage uses a six-rotor layout.

From the literature [19], the number of arms and the size of the blades are closely
attached to the dimensions of the plant protection UAV in the standard multi-rotor layout.
The following relationship exists between the angle of the arms θ, the number of arms
Nmotor, the radius of the UAV fuselage R, the radius of the propeller Rp, and the maximum
radius of the propeller Rmax: ⎧⎪⎪⎨⎪⎪⎩

R = Rmax
sin θ

2

θ = 360◦
Nmotor

1.05Rp ≤ Rmax ≤ 1.2Rp

(6)

The output tension of the propulsion systems keeps a dynamic balance relationship
with the take-off weight while the UAV is hovering. In order to make the model simpler,
each propulsion system’s pulling weight is stated as 1/6 of the six-rotor UAV’s take-off
weight [20–22]. Since the weight of the UAV estimated above is 62.92 kg, the 6 sets of
XRotor-X9 propulsion systems meet the flight requirements of the UAV for plant protection.
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The number of arms is 6, the radius of the propeller is 44 cm, and the maximum radius
of the propeller is 1.15 times the radius of the propeller. The UAV fuselage radius may be
calculated using Formula (6) to be 101.2 cm.

In terms of material selection, carbon fiber reinforced polymer (CFRP) is frequently
used in the plant protection UAV’s fuselage structure. Both the specific strength and the
specific modulus of this material are high. Under conditions of equal quality, the material
has a large bearing capacity and minimal deformation as compared to other metal materials.
The UAV’s fuselage structure used CFRP T300, and the connecting parts used aluminum
alloy 6061-T6.

The 3D model of the ecological plant protection UAV was designed using Solidworks,
as shown in Figure 8. The material properties were assigned to each component, and the
software will calculate the weight of each part. The material properties used are shown in
Table 5.

Figure 8. The 3D model and the layout design of the ecological plant protection UAV.

Table 5. Material properties of aluminum alloy and carbon fiber.

Materials Poisson Ratio
Density
(kg/m3)

Young Modulus
(GPa)

Yield Strength
(MPa)

Aluminum Alloy 6061-T6 0.33 2.7 69 275
CFPR T300 0.3 1.76 230 3530

The center frame is the core of the UAV fuselage, and its interior is mainly equipped
with a flight control system and power distribution unit. The center frame’s upper and
lower carbon fiber panels are supported by several aluminum columns and six arm bases.
The propulsion system is connected to the center frame by the UAV arm. The folding
components are positioned in the middle of the arm and attached to the carbon fiber tubes
on either side to make it easier to fold the UAV arm.

A 16 L water tank is chosen for the ozonated water system, and several threaded holes
are set aside on the exterior of the water tank. Components such as the ozone generator,
oxygen cylinder, brushless DC pump, relay, and controller are firmly connected to the
water tank through bolts. Under the center frame, the water tank is attached to the UAV’s
landing gear via 4 aluminum alloy connectors that are 20◦ inclined. Install the gas-liquid
mixing pump vertically behind the UAV’s center frame using fasteners such as aluminum
columns and bolts, and attach the controller of the mixing pump to the water tank. The
bottom of each propulsion system can be equipped with a nozzle. The nozzles in the center
and back of the plant protection UAV will spray ozonated water when it is flying ahead,
but they will not spray it on other equipment. The battery is preset on top of the center
frame to keep the plant protection UAV’s center of gravity as close to the module’s center
as possible.
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3.5. Battery Selection and Endurance of Flight

The ecological plant protection UAV’s battery capacity, total weight, and flying power
consumption all have a major impact on the UAV’s endurance. Currently, 90% of UAVs
use Li-Po batteries, which have a high energy density and discharge rate [23]. The rated
voltage of a LiPo battery’s Cell is 3.7 V, and the fully charged voltage of the battery is
4.2 V/Cell. The battery state of charge (SOC) is zero, which indicates that the battery
is entirely discharged, when the Li-Po battery voltage is less than 3.5 V/cell [24]. Only
80% of the battery’s capacity can be utilized when using Li-Po batteries to ensure battery
longevity [25]. Therefore, the minimum remaining capacity set by the battery discharge
protection is 20% of the battery capacity.

The actual battery discharge process must be simplified while carrying out battery
modeling. Assuming that the voltage stays constant throughout the discharge process and
that the battery’s remaining capacity shifts linearly [20,23], the battery model formula can
be obtained as follows: ⎧⎪⎪⎨⎪⎪⎩

tb = Cb−Cmin
Ib

60
1000

Cmin= 0.2Cb

Ib= Nmotor Ip+IEL+IL

(7)

where tb is the hovering time of the plant protection UAV, Ib is the total current of the plant
protection UAV in the hovering state, Ip is the current for a single propulsion system, IEL
is the current of the flight control system, IL is the current of the ozonated water system,
Cb is the battery capacity, and Cmin is the minimum remaining capacity set by the battery
discharge protection.

In order to calculate the required capacity of the batteries, the current of the propulsion
system needs to be known. The current of the plant protection UAV changes during
flight. Choose the total current of the plant protection UAV’s hovering condition for quick
calculations. The power parameters of the flight control system and ozonated water system
are shown in Table 6.

Table 6. The power parameters of the flight control system and ozonated water system.

System Device Power (W) Voltage (V) Current (A)

Flight control system Main control module 8 24 0.33
Data link communication module 7.8 12 0.65

Ozonated water system

Cylinder solenoid valve 6 24 0.25
Water outlet solenoid valve 20 24 0.83

Brushless DC pump 60 48 1.25
Two sets of ozone generators 240 24 10

Gas-liquid mixing pump 200 24 8.33

The relationship between the weight propelled by each propulsion system and the
total weight in the hovering state is as follows:

Whover =
Wtotal
Nmotor

(8)

where Whover is the weight of propulsion by each propulsion system in the hover state.
We have estimated the total weight of the UAV at 62.92 kg and assumed the hovering

time of the UAV is 10 min. The current of the flight control system is 0.98 A, and the current
of the ozonated water system is 20.66 A. From Formulas (4), (5), (7), and (8), the weight of
propulsion by each propulsion system in the hover state is 10.49 kg, the rotational speed of
the propeller is 2640 rpm, the current for the propulsion system is 29.32 A, the total current
of the plant protection UAV in the hovering state is 197.56 A, and the battery capacity is
41,158 mAh.
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To meet the requirement that the plant protection UAV must hover for at least 10 min,
the battery capacity is at least 41,158 mAh. Therefore, by connecting the batteries in series
and parallel, we can make a Li-Po battery pack (44,000 mAh, 12 cells, 44.4 V) using 4 Li-Po
batteries (22,000 mAh, 6 cells, 22.2 V). The weight of a Li-Po battery (22,000 mAh, 6 cells,
22.2 V) produced by Shenzhen Grepow Battery Co., Ltd. (Shenzhen, China) is 2.55 kg.

In order to ensure the safety of battery discharge, the maximum working current of
the UAV must be less than the maximum discharge current of the battery. The formula for
the maximum discharge current and the maximum discharge rate is as follows:

Kb = 1000
IbMax

Cb
(9)

where Kb is the maximum discharge rate, and IbMax is the battery’s maximum allowable
discharge current.

The battery should be able to operate safely under the full-throttle mode of the propul-
sion system [26]. The maximum discharge current should meet the following:

IbMax ≥ Ib1 = Nmotor IpMax + IEL + IL (10)

where Ib1 is the maximum working current of the UAV, and IpMax is the maximum current
for the propulsion system.

From Table 4, the propulsion system’s maximum current is 120 A. The maximum
discharge rate is 25 C. It can be obtained that the maximum discharge current of the battery
is 1100 A, and the maximum working current of the UAV is 741.64 A. As a result, the Li-Po
battery’s maximum discharge current satisfies the requirement of Formula (10), and the
UAV can work safely under full-throttle mode.

3.6. Center of Gravity Evaluation

We could view weight properties in Solidworks. The center of gravity (CG), weight,
and moment of inertia of the UAV are shown in Figure 9. The CG is located below the center
frame. Among them, the x-axis and y-axis are 6.90 mm and 0.19 mm away from the central
axis (z-axis) of the UAV, respectively; in the direction of the z-axis, the center of gravity is
located at 75.69 mm on the center frame. The accurate weight of the UAV is 56.57 kg. The
moments of inertia (MOIs) around CG are given as Ixx = 6.59 kgm2, Iyy = 6.75 kgm2, and
Izz = 10.21 kgm2. The deviation of the CG position from the pitch axis and the roll axis is
not large, which is within the controllable range of the flight control system.

 

Figure 9. The 3D model and the layout design of the ecological plant protection UAV.
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3.7. Control System
3.7.1. Flight Control System

The flight control system is in charge of the plant protection UAV’s autonomous flying,
which includes taking off and landing, route flight, and steady hovering. The DJI A3 flight
control system is used, including the main control module (built-in IMU), GPS module,
PMU, LED module, and data link communication module, as shown in Figure 10a. The
rotation of the motors (1, 3, and 5) is counterclockwise, and the rotation of the motors (2, 4,
and 6) is clockwise, as shown in Figure 10b.

 
(a) (b) 

Figure 10. (a) The direction of motor rotation; (b) The layout of the flight control system.

3.7.2. Control of Ozonated Water Production and Spraying

The ozonated water system uses the STM32F407 microprocessor (STMicroelectronics)
as the main controller, integrating electronic switches, relay modules, and voltage conver-
sion. The system realizes the control of the working status of the solenoid valve, ozone
generator power supply, and gas-liquid mixing pump, thereby remotely controlling the
production of ozonated water.

The input and output channels of the PWM signal in the flight control are the F5 to F8
channels, and the F5 and F6 channels of the flight control are connected, respectively, to the
signal terminals of the electronic switch and the brushless DC pump. Control of the lever of
the remote controller is on the ground, the PWM signal is input from the flight controller to
the electronic switch, and the electronic switch is controlled to be turned on. The 24 V direct
current provided by the power distribution unit passes through the voltage conversion
module and supplies 5 V to the single-chip microcomputer. At this time, the single-chip
microcomputer is started. The I/O port of the single-chip microcomputer outputs a high-
level 3.3 V to power the gas-liquid mixing pump, the solenoid valve, the ozone generator,
and the multi-channel relay module after it has received the instructions. At this point, the
system started to produce ozone and ozonated water. Once the concentration of ozonated
water has been reached, the UAV can begin spraying. The spraying flow can be adjusted
by turning the knob on the remote control. When the spraying process is finished, the
ozonated water system is turned off by operating the remote control’s lever and knob. The
control block diagram of the ozonated water system is shown in Figure 11.
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Figure 11. Control block diagram of the ozonated water system.

3.8. Static Structural Analysis

After the structural design is complete, we need to conduct the structural static analysis
on the plant protection UAV’s fuselage to verify the dependability of the UAV’s overall
structure. Simplify the plant protection UAV’s 3D model in Solidworks before importing it
into ANSYS Workbench. Add the properties from Table 5 to the engineering data in ANSYS
Workbench, assign materials to the parts, and set the contact type based on how the parts
are connected.

Combining the global automatic meshing setting with the local mesh refinement
pattern was used to mesh the UAV fuselage, as shown in Figure 12a. After meshing, the
element size of the arm bases, the aluminum alloy connectors for the landing gear, and
the connectors for the water tank, is 2 mm. The element size of the others is 4 mm. There
are 648,268 elements, and the average value of mesh quality is 0.8, which is greater than
0.7. As a result, the mesh quality satisfies the requirements for meshing. When setting the
boundary conditions, a fixed support was applied to the center frame’s lower carbon fiber
panels, an upward force was applied to the ends of each arm, and downward pressure was
applied to the connectors for the water tank, as shown in Figure 12b.

  
(a) (b) 

Figure 12. (a) Mesh model of the UAV; (b) the boundary conditions.

The largest deformation of the plant protection UAV is at the end of the arm, with
a maximum displacement of 1.0587 mm, which has little effect on the flight posture and
control of the UAV, as shown in Figure 13a. The maximum equivalent stress of the UAV is
26.213 MPa, which is located on the arm base, as shown in Figure 13b. The allowable stress
condition for parts is as follows:

σmax ≤ [σ]

ns
(11)

where σmax is the maximum equivalent stress, [σ] is the yield strength, and ns is the safety
factor.
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(a) (b) 

Figure 13. The results of UAV statics analysis: (a) total deformation of the UAV; (b) equivalent stress
of the UAV.

The yield strength of aluminum alloy 6061-T6 is 240 MPa, and the safety factor is
taken as 1.5. From Formula (11), the maximum stress on the fuselage is less than the yield
strength. As such, fatigue failure will not occur in the structure of the UAV fuselage.

4. Field Tests and Discussion

4.1. Hovering Time Test

The hovering time test of the plant protection UAV was carried out on the South Lawn,
Shandong University of Technology. The temperature was around 20 ◦C during the test,
and the ground wind speed was 0–1 m/s, which met the test conditions. According to the
characteristics of lithium batteries, the battery voltage cannot be lower than 3.6 V/cell [27].
Therefore, the lowest voltage for the UAV was set to 43.2 V.

Before the test, we used an electronic scale to get the weight of the ecological plant
protection UAV (no load) to be 42.3 kg and charged the Li-Po battery pack to the full
voltage of 50.4 V. Then, we installed two power meters to measure the discharge energy
and controlled the UAV to keep hovering after take-off, as shown in Figure 14. The UAV
landed automatically when the lowest voltage was reached. Finally, the power meters were
viewed and the discharge energy was recorded. Each time the UAV’s weight was increased
by 4 kg, the weight values for the five groups were 42.3 kg, 46.3 kg, 50.3 kg, 54.3 kg, and
58.3 kg, respectively.

  
(a) (b) 

Figure 14. The hovering time test of the ecological plant protection UAV: (a) install the power meter;
(b) the UAV stays in hover.

Figure 15 shows that the actual hovering time under different weights is lower than
the theoretical hovering time. The battery pack’s rated discharge energy (44,000 mAh,
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12 cells, 44.4 V) is 2006.4 Wh. The test results show that the ecological plant protection UAV
can hover for longer than 10 min when fully loaded, which meets the design requirements.

Figure 15. Comparison of hover times at different weights.

4.2. Effective Spraying Width Test

The accurate assessment of the effective spraying width of the plant protection UAV
is the premise of precision agricultural aviation operations and plays an essential role in
ensuring and improving the operation’s efficiency and quality [28].

The effective spraying width test was carried out on the South Lawn, Shandong
University of Technology. During the test, the ground wind speed was between 0–1 m/s,
which met the test conditions. Referring to Technical Specifications of Quality Evaluation
for Crop Protection UAV (NY/T 3213–2018) issued by the Ministry of Agriculture of the
PRC, we placed 2 rows of sampling points in the middle of the lawn, 5 m apart, with
36 sampling points in each row. The interval between 2 sampling points was 0.2 m, and a
droplet test card was fixed at each sampling point. The layout plan is shown in Figure 16a.

  
(a) (b) 

Figure 16. The effective spraying width test: (a) the layout plan; (b) the test site.

The Kromekote card was used as the droplet test card [29]. After adding Allura Red as
a tracer to the liquid, the droplets sprayed by the UAV could be displayed on Kromekote
cards [30,31]. The UAV flight speed was 3.0 m/s and the height was 2.0 m, and the spraying
flow rate was 3.5 L/min, as shown in Figure 16b. The UAV started spraying 50 m before the
sampling point and stopped spraying 50 m behind. The test was repeated twice, and the
collected Kromekote cards were brought back to the laboratory. We used the scanner (type
Epson DS-1610, Epson Co., Ltd., Beijing, China) to scan the droplets on the Kromekote
card at a grayscale resolution of 600 dpi, and then used the image processing software
DepositScan (USDA, Wooster, OH, USA) to measure the droplet deposition density [32,33].
The droplet deposition density diagram obtained in two flights is shown in Figure 17.
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Figure 17. The effective spraying width of the UAV in two flights (a total of four rows).

According to the droplet density determination method, when the aircraft performs
ultra-low-capacity agricultural spraying, the effective spraying width is defined as the
droplet density of the operation object reaching 15 droplets/cm2 or more [28]. Figure 17
shows that the effective spraying widths of 2 flight sorties (4 rows total) are 5.0 m, 5.4 m,
5.4 m, and 5.2 m. With the average value, the effective spraying width of the plant protection
UAV is 5.25 m (with a height of 2.0 m and a speed of 3.0 m/s).

4.3. Control Efficacy Test on Diamondback Moth Larvae
4.3.1. Test Methods

The test was conducted on diamondback moth larvae in broccoli fields to test the effect
of ecological plant protection UAV on pest insects. The test was carried out at the Siyuan
Agricultural Experimental Base in Shandong, China, for 8 days (from 23 to 30 September
2022). During the test period, the weather was clear, the temperature varied between 23
and 30 ◦C, the wind direction was southwest, and the wind speed was 1–2 m/s.

The test plots were divided into four treatments: (a) the ecological plant protection
UAV spraying ozonated water with a concentration of 17 ppm and spraying continuously
for 6 days; (b) the ecological plant protection UAV spraying ozonated water with a con-
centration of 17 ppm, spraying at intervals of 1 day, and spraying 3 times in total; (c) X8
large-load plant protection UAV spraying 20% Chlorantraniliprole SC, with a dosage of
150 mL/hm2, diluting with water and spraying once in total; and (d) X8 large-load plant
protection UAV spraying water (control). Treatments (a), (b), and (c) were set up in 3 test
plots, respectively; treatment (d) was set up in 1 test plot, for a total of 10 test plots, each
with an area of 840 m2. When dividing the test plots, the control treatment was placed
upwind to prevent the impact of environmental wind on the drift of fog droplets. The
ecological plant protection UAV and X8 large-load plant protection UAV were used to
spray ozonated water and pesticides, respectively, as shown in the Figure 18. The X8
large-load plant protection UAV was developed by the Precision Agricultural Aviation
Team of Shandong University of Technology [34]. Its full-load take-off weight is 54 kg, the
capacity of the medicine box is 25 L, and the effective spray width is 4.5 m (height 2.0 m,
speed 3.0 m/s).
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(a) (b) 

Figure 18. (a) The ecological plant protection UAV; (b) X8 large-load plant protection UAV.

In each test plot, 10 plants were randomly selected for fixed-point investigation, and
the investigated plants were marked. Before the first spraying, the number of diamondback
moth larvae was investigated. During the test, two plant protection UAVs were operated at
a flying height of 2.0 m, a flying speed of 3.0 m/s, and a spraying flow rate of 3.5 L/min, as
shown in Figure 19. After the first spraying, the number of larvae was investigated on days
1, 3, and 7. The calculation formulas for the reduction rate of larvae population and control
effect are as follows [35]:

R =
C1 − C2

C1
×100% (12)

E =
R1 − R2

1 − R2
×100% (13)

where C1 is the number of larvae before spraying, C2 is the number of larvae after spraying,
R is mortality, R1 is observed mortality, R2 is control mortality, and E is control effect.

 

Figure 19. Ecological plant protection UAV spraying operation.

4.3.2. Results and Discussion

The mean number (±SE) of diamondback moth larvae collected from four treatments
is shown in Figure 20. According to Figure 20, we know that the mean number of di-
amondback moth larvae in treatments (a) and (b) continued to decrease, and the mean
number of larvae in treatment (d) gradually increased. It shows that spraying 17 ppm
ozonated water every day or every other day has the effect of killing larvae. In treatment
(c), the mean number of larvae showed a downward trend on days 1 and 3 after spraying
Chlorantraniliprole SC, but the mean number of larvae on day 7 was slightly higher than
that on day 3. This shows that on day 7 after spraying Chlorantraniliprole SC, the larvae
tend to break out, so it is necessary to spray Chlorantraniliprole SC in time.
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Figure 20. During the testing period, mean number (±SE) of diamondback moth larvae collected
from four treatments.

The reduction rate of diamondback moth larvae population is shown in Table 7. From
Table 7, treatments (a) and (b) had the lowest reduction rates on day 1, at 27.2 ± 3.7% and
19.4 ± 5.0%, respectively, and increased on days 3 and 7. The reduction rates on days
3 and 7 of treatment (a) were 56.3 ± 4.9% and 59.3 ± 7.1%, respectively, while those of
treatment (b) were 42.2 ± 5.2% and 44.6 ± 6.1%, respectively. However, the reduction rate
of treatment (c) on days 1, 3, and 7 did not change much, being 60.2 ± 4.4%, 68.4 ± 4.7%,
and 64.1 ± 7.4%, respectively. It can be seen from the insect population reduction rate that,
on day 1 after spraying, the reduction rate of spraying pesticides is much higher than that
of spraying ozonated water. As the number of times of ozonated water spraying increased,
the decline rate was also increasing.

Table 7. Reduction rate of diamondback moth larvae population in broccoli.

Treatment
Mean Number of

Larve before Spraying
Reduction Rate of Larvae Population (%)

Day 1 Day 3 Day 7

a 108.7 ± 10.1 27.2 ± 3.7 56.3 ± 4.9 59.3 ± 7.1
b 132.3 ± 11.9 19.4 ± 5.0 42.2 ± 5.2 44.6 ± 6.1
c 140.0 ± 9.6 60.2 ± 4.4 68.4 ± 4.7 64.1 ± 7.4

d (CK) 91.0 −13.2 −38.0 −72.5

The control effect of different treatments on broccoli diamondback moth larvae is
shown in Table 8. The control effects of treatments (a), (b), and (c) all reached their highest
value on day 7, and treatment (c) with Chlorantraniliprole SC once in total had the highest
control effect (79.2 ± 4.3%). On day 7, the control effect of treatment (a) was 76.4 ± 4.1%,
which was not significantly different from the control effect of treatment (c). The control
effect of treatment (b) was the worst (67.9 ± 3.6%), and was significantly different from
treatments (a) and (c). The control effect of treatment (c) was 77.1 ± 3.4% on day 3, which
had little change compared with the control effect on day 7. The tests have shown that
spraying 17 ppm of ozonated water every day by using the ecological plant protection UAV
can effectively control broccoli diamondback moth larvae and achieve the control effect
of pesticides (Chlorantraniliprole SC). Although the use of the ecological plant protection
UAV has increased, its advantages lie in the fact that it causes no pollution and no chemical
damage.
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Table 8. Control effect of diamondback moth larvae in broccoli.

Treatment
Control Effect (%)

Day 1 Day 3 Day 7

a 35.7 ± 3.3 b 68.5 ± 3.5 b 76.4 ± 4.1 a
b 28.8 ± 4.4 c 58.2 ± 3.7 c 67.9 ± 3.6 b
c 64.8 ± 3.9 a 77.1 ± 3.4 a 79.2 ± 4.3 a

The same lowercase letters in the same column indicate no significant difference in the control effect among
different treatments, p < 0.05.

4.4. Cost Effectiveness of UAV for Ecological Plant Protection

We assessed the manufacturing cost of the ecological plant protection UAV prototype,
which cost $6379 (USD), as shown in Table 9. The detailed cost of each component of the
ozonated water system is shown in Table 3. We selected 4 UAVs with a load capacity of
20–30 kg: V40 (XAG), XP-2020 (XAG), T20 (DJI), and T30 (DJI); their prices are $5369, $7569,
$5822, and $7278 (USD), respectively. Compared with the prices of these four UAVs, the
cost of our ecological plant protection UAV is in the middle.

Table 9. Cost of each component of ecological plant protection UAV.

Component Cost (CNY)

Flight control system 5500
Propulsion system (6 sets) 7130

Power system (4 batteries and a PDU) 8300
Ozonated water system 6698

Ground control system and data transmission 12,999
UAV fuselage 3200

Total 43,827 (CNY)/6379 (USD)

5. Conclusions

This paper describes an ecological plant protection UAV that will continuously pro-
duce and spray ozonated water during the flight, which is suitable for plant protection
operations in vegetable fields. This paper carried out the design of the ozonated water
system, the conceptual design of the UAV, and the structural strength analysis. Finally,
the pilot production and field tests were conducted. As a result, the hovering time of the
UAV could reach the design requirement of 10 min when it was fully loaded. The effective
spraying width (with a height of 2.0 m and a speed of 3.0 m/s) is 5.25 m. The control effect
test on broccoli diamondback moth larvae showed the ecological plant protection UAV
was used to spray ozonated water with a concentration of 17 ppm once a day, and the
control effect could reach 76.4%. It is proven that spraying 17 ppm ozonated water with the
ecological plant protection UAV can effectively prevent and control some pests at certain
concentrations. The ecological plant protection UAV can be used for plant protection in
fields and orchards, meeting the requirements for the prevention and control of common
diseases and pest larvae caused by harmful agricultural microorganisms such as bacteria
and fungi. In the future, our work needs to be improved, and we need to explore the
optimal spraying parameters for different crops and different pests and diseases. We also
need to study the impact of high-concentration ozonated water on crop yield and pest
reproduction.

6. Patents

A patent has been applied for and granted for this research. The patent issued as
Luxembourg Patent LU101533 [36] on 14 April 2020.
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Abstract: This article’s main topic is an assessment of unmanned aircraft system (UAS) noise pollution
in several weight categories according to Regulation (EU) 2019/947 and its impact on the urban
environment during regular operation. The necessity of solving the given problem is caused by an
increasing occurrence of UASs in airspace and the prospect of introducing unmanned aircraft into
broader commercial operations. This work aims to provide an overview of noise measurements
of two UAS weight categories under natural atmospheric conditions to assess their impact on the
surrounding environment. On top of that, modelling and simulations were used to observe and
assess the noise emission characteristics. The quantitative results contain an assessment of the given
noise restrictions based on the psychoacoustic impact and actual measured values inserted into the
urban simulation scenario of the Zilina case study located in northwest Slovakia. It was preceded by
a study of noise levels in certain areas to evaluate the variation level after UAS integration into the
corresponding airspace. Following a model simulation of the C2 category, it was concluded that there
was a marginal rise in the level of noise exposure, which would not exceed the prescribed standards
of the Environmental Noise Directive.

Keywords: drone; UAS noise measurement; noise emission characteristics; noise modelling; noise
simulation; Zilina case study

1. Introduction

In the near future, the concept of parcel and medicine delivery by drones, increasingly
associated especially with the perceptions of global shipping carriers, is a challenge for
many research areas. It is expected that there will be an enormous increase in the number
of unmanned aerial vehicles (UAVs) used not only for commercial operations but also for
recreational purposes. With increased unmanned aircraft system (UAS) traffic, there is also
a presumption of increased noise in the surrounding environment and the adverse impact
of psychoacoustic phenomena on humans or animals.

The significance of this work lies in assessing the characteristics of the noise spreading
by multirotor drones regarding the risks of psychological influences and negative impact
on the population. The intention is to create a background for the future investigation of
regular UAS operations through the practical introduction of the case study via a simulation
environment. At present, there is no uniform rule for measuring and assessing the noise
of drones, and each Member State has its regulations for this purpose, which are mostly
based on a uniform ISO standard. Therefore, our future work will contain the assessment of
whether actual legislation is adequate and whether there will be a necessity to implement
new harmonised rules for EU member states.

The noise assessment was based on previous measurements and results used in our
measurements and assumptions in determining the characteristics of sound spreading
in space. These measurements were preceded by studies and examinations of the UAV
noise sources and the influence of the external environment, which had to be considered
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in other contexts. It is necessary to focus on a specific location when assessing noise,
even when putting unmanned vehicles into operation. A study of legislation, current
restrictions, and impacts on humans and wildlife preceded it. Based on information on
legislation and measurements of sound propagation in the environment, it is possible to
assess the effects on humans and provide data for further research and model situations in
the natural environment.

1.1. Theory of Sound and Rotor Noise

The production of sound is achieved through the transmission of vibrations that
propagate through the layers of air. This process involves the disturbance of air particles,
which can be visualised as sinusoidal waves with varying amplitudes that correspond to
the intensity of the sound. The peaks of the sinusoidal waves occur when the air particles
are compressed and subsequently expanded.

1.1.1. Equations

The gap between the repeating wave period of sound waves is wavelength λ (m),
tightly connected with the frequency of the sound f (Hz) and speed of sound c (m.s−1),
which is the speed of spreading of acoustical waves in air. It depends on actual atmospheric
conditions with the most significant influence on temperature [1].

λ = c/f (1)

The sound can be transferred from the source, which could be a monopole, dipole,
or quadrupole. This statement forms the basis of the theory of sound developed by Lord
Rayleigh in the nineteenth century [2].

The sound source emits the tones with some power. This is called sound power, with
the unit watt (W). This energy is transmitted through the air per unit of time. The air serves
as a surface through which the sound is transferred, which is the sound intensity with the
unit (W/m2). Since the sound intensity is a relation between sound power and the surface
of wave propagation whose sound is transported, the equation is:

I = W/S (2)

Moreover, when the sound is transferred in every direction, it is possible to write the
equation for sound power:

W = 4πr2 I (3)

where r is the radius in a sphere (m); during observation, this is one of the minor variables
of sound pressure. During measurement, microphones do it all the time. This pressure is
responsible for the displacement of air molecules in all directions [1]. The relation between
sounds we hear with exact power and the reference power is called the sound power level,
LW. It is measured in decibels and could be expressed via logarithmic function [2]. The
reference power is considered to be 10–12 W. This is because it represents the lowest sound
humans may discern. This parameter is used to measure overall noise regardless of the
location because sound power level is not a function of distance from the sound source.

LW = 10log W/Wref (4)

In the same way, as shown in Equation (4), it is possible to identify sound intensity
levels where sound power W and reference power Wref are replaced by sound intensity
I (Wm2) and reference sound intensity Iref. Sound intensity is a parameter showing the
direction and amount of acoustic energy in a specific area. However, sound pressure level
(SPL) Lp is used to identify how loud the source of sound is. It is the difference between a
sound wave and the ambient pressure the sound travels through. Before expressing the
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equation for SPL, it is necessary to mention that it is feasible to express sound intensity
in Equation (1)

I = p2/ρc (5)

where p2 is the root mean square pressure (RMS), ρ is the density of air (kg.m−3), and c is
the speed of sound (m.s−1). Additionally, the RMS pressure is used in the equation for SPL,
which is proportional to the PWL equation and can be expressed as “ten times logarithm
to the base 10 of the square of sound pressure p, to the square of a reference value pref,
expressed in decibels” [3]

Lp = 10log p2/pref
2 (6)

Lp = 20log p/pref (7)

Reference values for both sound intensity and sound power are known. Reference
sound intensity was set as Iref equals 10–12 W/m and reference sound power was set as
Wref equals 10–12 W. In a numerical way, intensity and sound pressure levels are almost
equal in room temperature and sea level pressure. When the area of the surface is taken
into account, sound pressure level and sound power level are related to each other as:

Lp = LW − 10logS (8)

where S is the surface through which sound is transported. From this relation, Pref is taken as
equivalent with sound power but, generally, it is known as the limit of audibility, 20 (μPa).

The last variable that it is important to incorporate during the measurement process is
the distance of the source of the sound from the receiver. Distance has to be included when
the sound of the exact source is measured due to the inverse square law [4].

1.1.2. Rotational Propeller Noise

Noise radiating from the rotor consists of three components: blade slap, rotational
noise, and vortex noise. In the case of rotors, it is caused by a lack of symmetry. The
advancing blade meets air with higher velocities during a forward flight than the retreating
blade. Another essential feature of the rotor aerodynamic is the rotor wake from a noise and
vibration point of view. Amplitudes of higher harmonics specific to helicopters or UAVs
vary and also depend on flight conditions. A large part of the detectable noise observed is
related to vortex effects.

External inputs also affect every numerical calculation, which limits the accuracy of
calculations. However, blade slap noise is more complex for hand calculations and more
sophisticated software is necessary for its calculations. Assumptions made by M.V. Lowson,
which help to analyse and calculate trends of the behaviour of rotational noise generated by
rotors during steady flight, can be used to achieve and use reasonable and valuable results
of noise harmonies, which differ from computer calculations by no more than 2 dB [1].

1.2. Literature Review

Literature synthesis contributes to developing new insights and perspectives and helps
identify gaps or inconsistencies in the previous research. In the databases, it is possible
to reveal a trend and the frequency of the occurrence of scientific works on similar topics.
Leslie, Wong, and Auld were among the first to focus on noise from UAS operations. They
published a 2008 conference paper on broadband propeller noise reduction [5]. Massey and
Gaeta dealt with noise measurements of tactical UAVs in 2010 [6]. Similar research was
carried out in 2013 by Sinibaldi and Marino, particularly focused on experimental analysis
of the noise of propellers for small UAVs [7]. The investigation involved generating an
acoustic signature profile of a small multirotor UAS conducted by Kloet, Watkins, and
Clothier [8]. Acoustic measurements carried out in an anechoic room were performed by
Papa et al. as part of the research for a conference paper in 2016 [9].
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We can include a computational study on the aeroacoustics of a multirotor unmanned
aerial system by Heydari, Sadat, and Singh [10], and a combined experimental and numer-
ical assessment of UAV noise emissions by Cussen, Garruccio and Kennedy [11] among
the latest works that prove the relevance of the issue. Several works are also devoted, for
instance, to noise certifications, such as [12], or preliminary research on transverse noise
topics [13–21]. Nevertheless, there are only a few works conducted on real measurements
according to official regulations on the noise of rotorcraft, followed by acoustic maps or
simulation of noise propagation in a natural environment, which is the area of our interest.
For example, Treichel et al. [22] conducted in 2022 a series of eight UAV noise measurements
according to ISO standard 3744. However, the authors did not visualise the noise maps or
directional characteristics of frequency analysis. On the other hand, Kenedy, Garruccio and
Cussen [23] investigated the suitability of the software package ‘iNoise’ for modelling noise
emission by drones. Relatively recent activity in the area of investigating the UAS impact
as part of the U-space system is addressed by Deliverable D4.2 of DACUS Project [24]. The
project has recognised the necessity of consolidating the concept of a social impact hotspot,
which refers to a specific area where the demand for drone traffic results in noise and visual
exposure that exceeds acceptable thresholds for a predetermined duration or frequency
within a given period.

2. Materials and Methods

When the measurements were conducted, it was necessary to comply with specific
conditions. Results of measurement might be affected by factors that cause them to deviate
from results measured in an ideal reference area with specific reference conditions. These
reference conditions are given and must be in compliance with approval by the certificating
authority. Measurement in compliance with the reference procedure should follow reference
atmospheric conditions:

− Sea level atmospheric pressure of 1013.25 hPa;
− Ambient temperature of 20 ◦C (ISA may be used);
− Relative humidity of 65%;
− Zero wind.

If the maximum rotor speed is given, the maximum operating rotor speed shall be
taken as the highest speed, tolerance should be given on this speed, and measurement
shall be conducted using this rotor speed. In case the rotor speed is adjustable maximum
operating rotor speed for the reference conditions shall be used for the purpose of mea-
surement and certification [25]. Test criteria, especially in case the measurement is in a
non-airport area, should include criteria affecting results such as terrain, residual sound,
weather conditions, microphone placement, and pilot sight [6]. Irregularities in terrain,
such as mounds and furrows, can result in reflections and these surface anomalies may
influence measured sound levels. Not only the terrain surface but also the highness of
vegetation may influence the reflection of sound waves from ground level. Vegetation can
result in the variation of sound level, more frequently with decreasing sound level, but the
sound level may be higher. The surface of the measured area is also important, and the
hardness of the surface is an important factor because hard surfaces, such as paved areas,
may result in higher measured sound levels than soft ones.

Obstructions, for example, buildings, trees, vehicles, and even test personnel, may
cause reflections that influence noise levels. For this reason, obstructions of this character
are unacceptable in the vicinity of the measuring point. During measurement, there should
not be any obstacle causing reflection in a conical shape area above the measurement device.
Figure 1, created according to the ICAO standards [25], depicts this conical shape area
defined as the axis normal to the ground and the axis formed by the angle of 80◦ around the
vertical axis. Besides material, the object’s width is important in reflection consideration
and environmental correction can be negligible.
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Figure 1. Conical area without obstructions during measurement.

2.1. Measurement Devices

For our experiment, NORSONIC Nor-140 measuring devices were used. Every chosen
device is a hand-held device. They are composed of a microphone cartridge, microphone
preamplifier, display, keyboard, sockets, and battery compartment. Our measurements
were important mapping levels versus time display and level versus frequency. The display
is possible to set as a dual view to observe more parameters at the same time. Nor-140
can also measure in the 120 dB range for one or one-third of an octave band. Every one
of these three sound level meters is a measuring device class 1. It is possible to make a
frequency analysis using the range within measuring devices depending on octave bands.
The octave band has a wider span range than the third-octave bands. Nor-140 measures
the range for frequency analysis in the one-third octave band from 0.4 Hz to 20 kHz. These
span ranges are satisfactory for our experiment due to measuring frequencies which are
hearable for the human ear. Basic measurement parameters are SPL, LMax, LMin, LLeq, and
Lpeak. Results from measurements can be easily scanned through captured recordings in a
measurement device without transferring data to a PC. However, it is more convenient to
use a PC afterwards and post-process data in reporting software [26–28].

These data, which are measured in decibels referenced to 20 μPa, are updated at least
once per second. In the settings, if necessary, it is always possible to switch measurements to
another weighting. It is crucial because sound level meters respond differently to different
sound frequencies compared with human hearing sensitivity. The most usable weighting is
A because it measures the noise similarly, as humans are sensitive to sound. A-weighting
is common for almost all environmental noise measurements. The analysis software may
assess the result of equivalent sound-level data. Method, which is suitable for assessing
noise audibility of tones, uses 1/3 octave measurements. One-third octave bands provide a
more precise outlook on noise levels regarding frequency composition.

2.2. Evaluated UAVs

In our experiment, two types of drones were chosen, each representing a specific
weight category. For each weight there are specified rules of flight determined in Regula-
tion (EU) 2019/947. DJI Mavic 2 Pro and DJI Inspire 2 quadcopters were chosen for the
experiment. The aforementioned regulation outlines the specific conditions under which
the selected UAVs may be operated. Both are classified under the A2 sub-category of
the ‘open’ category, which obtains the primary framework for most recreational drones
and low-risk commercial operations. The elementary specifications of UAVs used in this
evaluation are shown in Table 1. Size, weight and velocity data were obtained from the
official store [29].
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Table 1. Basic specifications of UAVs.

DJI Mavic 2 Pro DJI Inspire 2

Take-off weight (g)
Dimensions with unfolded propellers (mm)
Max speed (km/h)

907 3440
322 × 242 × 84 605 × 605 × 300

72 108
Weight category C1 C2

2.3. Methodology

The methodology of outdoor measurements of UAS is described in the Commission
delegated regulation (EU) 2020/1058 from 27 April 2020. This regulation should ensure
the same conditions for measurement and it is based on ISO 3744 2010, where general
conditions of measurement are described and methods of counting sound power levels
are described. Part 13 describes the noise measurement prescription, which describes the
determination of the A-weighted sound pressure level in the area surrounding the source
of the sound.

The A-weighted time-averaged sound pressure level is measured at least three times
for UAV configuration. Suppose a couple of these three measurements differ from the
results by 1 dB. Measurements are repeated. The acoustic sound pressure level is the
arithmetic mean of the two highest results. DJI Mavic 2 Pro belongs to category C1,
whereas DJI Inspire, whose weight is 3440 g, belongs to category C2.

According to the Annex to Delegated Regulation (EU) 2019/945—Part 13 “The mea-
surement surface shall have its origin at the point O lying in the ground plane directly
below the UA”. The minimum flight and hovering height above ground level of selected
DJI UAVs is 0.5 m. Therefore, the UAVs shall hover above a hard acoustic surface at a
sufficient distance from any reflecting wall or ceiling, or any reflecting object so that the
requirements given in Annex A of EN ISO 3744:2010 will be satisfied on the measurement
surface. The measurement surface is the hemisphere with one origin point O, in the middle,
shown in Figure 2. This figure shows the displacement of microphones during measure-
ments. The displacement was managed according to Annex F of ISO 3744 2010 standard,
where A determines the measurement surface, B determines the reference surface, and
r determines the measurement surface radius which is 4 m.

Figure 2. Microphone array on a hemispherical measurement surface for measurement.

According to the Commission delegated regulation (EU) 2020/1058 from 27 April 2020,
the measurement of A-weighted sound power level LWA shall be executed above a hard
surface with minimal sound absorption. This provides objective results compared to sound
pressure measurements. It allows for determining the acoustic power emitted by the device
regardless of the direction of noise from the source. Knowing the sound power level is very
useful and it allows the sound output of different devices to be objectively compared.

For this reason, the former local airstrip mainly used for agricultural works in Rosina
village was chosen, as shown in Figure 3. Fields surrounded the place where the measure-
ment was executed and the highest possible permanent source of the sound, the highway,
was distanced 3 km from the measuring place. Measurements were partially interrupted
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by non-permanent sources of sound, e.g., passenger cars. In these times, measurements
were paused and results were not included with these non-desirable factors.

 
Figure 3. Microphone array at the airstrip.

The placement of the microphones is displayed according to ISO 3744 2010 Annex F
in Figure 3. According to regulations, microphones are needed for measurement purposes
at positions 2, 4, 6, 8, 10, and 12. However, our measurement was a round base divided by
two with microphones in positions 6, 8, 12. Turning the UAV and flying with UAVs back and
forth created perception from both sides of UAVs and made the imaginary hemispherical
area. The x-axis served as an overflight line with a hard pad in the middle of the axis
and the centre of the thought circle served as starting pad during hovering measurements.
Microphones 6 and 8 were deployed according to ISO 3744 2010 Annex F conditions in the
x- and y-axes from the circle’s centre point. These two were distanced from the x- and y-axis
2.62 m. These two microphones were placed at 1.5 m height AGL. The third microphone
was distanced from the x-axis 2.6 m and from the y-axis 1.08 m. Its height deployment was
2.84 m AGL. This placement was used to measure equivalent sound pressure level LAeq
and count sound power levels LWA of each UAV.

The values of the A-weighted sound power levels, the sound power levels in the third-
octave bands, and the A-level sound exposure level were measured with sound level meter
strings based on Nor-140 sound analysers. NORSONIC N1225 measuring microphones
with NORSONIC Nor1209 measuring preamplifiers were used to record audio signals.
A total of three measurement strings were used to measure acoustic performance, four
to measure flights, and sound exposure levels A were determined. The microphones
were equipped with wind and dust covers with a diameter of 60 mm. The monitored
quantities were determined based on measuring the time course of the values of short-term
A-weighted equivalent sound pressure levels and equivalent sound pressure levels on
third-octave bands with mean frequencies in the range of 20 Hz to 20 kHz. The averaging
period was T = 125 ms. The particular periods were continuously linked to each other
during the time intervals of measurement of the respective flight operations, overflights,
and hovering.

The determination of the value of the quantity describing the residual sound, the
background noise, was determined from the values of the measured quantities at time
intervals when no overflights were performed.
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Verification of the correct sensitivity setting of the measurement strings was performed
before and after all series of measurements were performed. Verification was performed
using a reference signal source (microphone calibrator) NORSONIC Nor1251.

Sound analysers and specified elements of measuring chains, at the time of measure-
ment, had valid verifications in accordance with the Act of the National Council of the
Slovak Republic No. 157/2018 Coll. on metrology and related regulations, as amended.

2.4. Calibration

When measuring the level of the assessed source and the noise of the assessed source,
there is background noise, which is included in the total SPL level. If the difference between
the total level and the background noise level is in the range from 3 dB to 18 dB, then the
noise level of the assessed source is determined by level LAeq which is deducted by the
correction K1 determined according to the equation:

K1 = −10 log(1 − 10−0,1(LS−LB)) (9)

where LS means time-averaged sound pressure level, with source gained from the array of
microphones in the measurement surface, and LB means SPL of the background noise. If
the difference exceeds 18 dB, the background noise negligibly affects the source level under
consideration. The assessed value is then measured (resp. determined and adjusted for the
length of exposure to noise sources), and the value of the determining quantity is increased
by the measurement uncertainty adjusted by corrections and determined for the relevant
reference time interval. Then:

LR,Aeq = (LAeq + K1 + KT) (10)

where LR,Aeq is the assessed equivalent sound level A for the reference time interval, LAeq
is equivalent sound level A for the reference time interval, K1 is the correction factor for
background noise, and KT is the assessed value for specific noise determined by adding
the correction KT = +5 dB to the equivalent sound level A unless otherwise stated. The day
and evening KT correction only applies if the total duration of the specific noise exceeds
10 min per day or 5 min per evening.

When 50 dB residual sound was recorded during measurements, the difference in
Figure 4 illustrates the adjustment between the residual sound and the sound from the
source in the 20 to 25 dB range. This means that the correction for K1 is negligible and, after
substituting the values into Equation (9), the correction for K1 is up to 0.1 dB.

Figure 4. Equivalent sound pressure levels in time of DJI Inspire during hovering.
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3. Results

Figures 4 and 5 describe LAeq during hovering and overflight of the DJI Inspire
from UAV weight category C2, which provide an illustrative view of the perception of
microphones during two flight modes. As mentioned, the microphones were placed on half
the measuring surface. Therefore, the measurements were performed twice with the UAV
rotated in both directions. The rotation of the UAV concerning the microphones is shown
in both figures by dark blue rectangles. Each side was measured with three microphones.
Therefore, for both figures, the record on the right contains microphones M2 marked in
red, M6 marked in blue, and M4 marked in green, and the record on the left contains
microphones M1 marked in green, M7 marked in blue, and M3 marked in red colour. In
this way, the entire surface needed to perform the measurements was covered.

Figure 5. Equivalent sound pressure levels in time of DJI Inspire during the overflight.

From Figure 4, it is possible to observe the value of the residual sound before the
UAV takes off over a solid surface of 0.5 m. From the graph, it is possible to find that the
microphones at positions 6 and 7 recorded a higher level of LAeq than the four microphones
distributed along the edges of the area at a lower height. This value differs from the values
measured on four microphones while hovering by approximately 5 dB.

In Figure 5 are expressed the results of six DJI Inspire overflights at a speed of 5 km/h.
The depicted LAeq noise levels present three flyovers in each direction along the specified
section of the asphalt runway. In the time period between 17:39 and 17:40 you can spot the
discrepancy in the measurement, which was caused by passage of the motorcycle on the
road located right next to the airfield.

Measurements when UAVs were hovering above the hard surface and overflying the
measuring area were performed for weight categories C1 and C2 with their representatives
DJI Mavic 2 Pro and DJI Inspire 2. Measurements evaluated the A-weighted equivalent
sound pressure level LAeq. However, in order to compare the noise load for comparison
between chosen weight categories, it is necessary to convert the averaged equivalent sound
pressure levels to sound power levels LWA, using Equation (11), where S is the area of
the measurement surface and S0 equals 1 m2. Results for DJI Inspire are displayed in
Table 2 and for DJI Mavic 2 Pro in Table 3. These results compare the LWA of UAVs from
the C1 category, mostly used in the hobby sphere, and C2, which might also be used in
commercial operations, from both categories; this is described as maximal LWA in the
Commission delegated regulation (EU) 2020/1058.
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LWA= LAeq + 10log S/S0 (11)

Table 2. Corrected equivalent sound pressure levels of DJI Inspire 2.

Acoustic Sound Power Level Corrected with LWA Equation (dB)
Middle Filter Frequency

(Hz) 5 kmh−1 10 kmh−1 20 kmh−1 Hovering

20 13.9 6.4 9.3 11.2
40 24.9 23.6 22.0 22.5
80 40.3 40.7 44.1 36.9

160 65.1 65.5 71.9 56.2
315 75.6 76.4 80.2 63.1
630 78.2 81.8 81.7 69.2
1250 83.0 83.9 85.3 73.1
2500 83.5 83.8 85.6 72.7
5000 79.9 82.6 84.4 69.5

10,000 71.6 75.3 77.3 62.5
20,000 58.8 64.2 67.6 51.3

Table 3. Corrected equivalent sound pressure levels of DJI Mavic 2 Pro.

Acoustic Sound Power Level Corrected with LWA Equation (dB)
Middle Filter Frequency

(Hz) 5 kmh−1 10 kmh−1 20 kmh−1 Hovering

20 8.4 8.2 13.2 14.7
40 21.4 20.2 24.8 36.3
80 33.9 38.0 39.3 40.3

160 53.0 57.6 63.9 53.3
315 64.1 66.4 67.8 60.9
630 66.5 70.2 73.7 67.0
1250 70.0 73.6 76.1 70.7
2500 68.6 72.4 75.1 70.0
5000 67.8 70.3 73.7 68.9

10,000 65.0 65.5 67.7 64.7
20,000 55.8 54.5 55.8 54.2

Both Tables 2 and 3 show the A-weighted sound power levels during overflights at
the height of 0.5 m, which is intended for measurements for this purpose of two drones at
different speeds, as well as the values measured at 0.5 m above the ground during hovering.
The measured values of LWA are displayed in the range of the audible spectrum of the
human ear from 20 Hz to 20 kHz.

Figures 6 and 7 depict a comparison of two drones, DJI Inspire 2 and DJI Mavic 2 Pro,
during hovering and during overflight at a speed of 10 km/h. It is possible to see from
a comparison of the graphs that, during hovering, the values of both categories are ap-
proximately the same when it is possible to observe similar levels of acoustic power at the
same frequencies. However, as can be seen from Figure 6 at 10 km/h overflights, the DJI
Inspire has been shown to reach higher LWA than the DJI Mavic 2 Pro. However, during
flights with DJI Mavic 2 Pro, higher frequencies were recorded at the same LWA, which was
audible with listening as “buzzing”, which may have the effect of annoyance of people
around. The following case study focuses on the DJI Inspire 2 only.
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Figure 6. Comparison of LWA for the two drones during overflight at a speed of 10 kmh−1

at 0.5 m height.

Figure 7. Comparison of LWA for the two drones during hovering at 0.5 m height.

Simulation for Zilina Case Study

Based on the results, the implementation of the DJI Inspire 2 operation of weight
category C2, which has the prerequisites to carry smaller goods, was considered according
to cooperation with Mr. Kamenický [30]. The operation was intentionally simulated in the
noise-sensitive environment of the University Hospital in Zilina. During this simulation, it
was considered that DJI Inspire 2 might be able to transfer medication or blood from two
pre-designated areas of the Faculty Hospital with the Polyclinic of Zilina.

The operation was simulated so that the UAV takes off from a place near the regional
public health office building to a height of 50 m, the minimum height for flights over
non-participants. According to the marked blue route, it will fly to the place near the
building of the faculty hospital at the prescribed height and end its flight there.

The model situation was designed so that the UAV operation with one drone, DJI
Inspire, with a speed of 20 kmh−1, took place during the day reference time interval (12 h),
defined from 6:00 to 18:00 with an average of 10 flights per hour with a total of 120 flights
per day. The flight distance in this case study was 640 m. The duration of one UAV flight in
the simulation was 120 s, excluding take-off and landing time.
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For the visualisation of the case study, DataKustik GmbH CadnaA software was used.
We started with the simulation of light rotorcraft (Robinson R22 Beta helicopter) noise
propagation, which was modified according to our previously measured parameters. The
aircraft database was based on the Integrated Noise Model (INM 7.0d), which is also
recommended for noise mapping in the vicinity of airports. The ECAC Doc. 29 and
AzB 2008 standards were alternatively considered. The noise model for the DJI Inspire 2
was modified and subsequently simulated for its flight path, taking into account the effects
of atmospheric conditions and ground reflection. Both 2D and 3D visualisations were
developed by the PlotDesigner function combined with the Eurosence Digital Terrain
Model, including buildings and road corridors in the investigated geographical area.

Figures 8 and 9 graphically express the noise load of the selected place of operation, at
a height of 1.5 m above the ground, which can be considered the ears’ level. The difference
between the two visualisations is as follows. The 2D visualisation contains a simulation of
sound propagation in the given corridor. Figure 8 does not include residual sound, so it
is possible to see that the noise load in the given area of the flight reaches the equivalent
level of A-weighted sound from 40 to 45 dB. Due to the fact that the flight altitude is
50 m, the noise load at higher buildings in the area may be higher. The 3D visualisation
(Figure 9) represents the resulting state of the investigated environment regarding road
traffic noise, which was obtained based on the long-term measurements of the Euroakustik
Ltd. Company, (Bratislava, Slovakia).

Since the noise load must be assessed based on the category of the specific area and
the reference time interval, for this model situation, the operation in the first category of
the territory with special noise protection during the day reference time interval is shown
in which the maximum LAeq from other sources is defined by the Decree of the Ministry of
Health of the Slovak Republic 549/2007 by 45 dB.

 

Figure 8. Noise load around flight corridor at 2D visualisation.
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Figure 9. Noise load around flight corridor at 3D visualisation.

Concerning residual noise, it is necessary to assess the impact of whether the noise
load of the examined sound source exceeds the noise load of surrounding objects such
as roads. The impact of road noise was assessed in a 3D visualisation model situation in
which it was found that the possible introduction of the UAV DJI Inspire 2 operation into
the selected environment does not contribute to increasing the noise load.

From the model situation as well as the measured values, it is also possible to say
that the commissioning of UAV DJI Inspire 2 will in no way cause health problems for
people in the specific area and its short flight time over non-participants, which lasts only a
few seconds, will not cause any long-term medical consequences associated with migraine
headache or other problems.

4. Conclusions

This work confirmed the source of sound sources radiated by drones, which can be
encountered in the hobby and commercial spheres. The precondition for the creation of
the manuscript was the vision that, in the future, drones could, in increased numbers,
affect people’s mental health and annoyance. In this work, we confirmed the parameters of
sound propagation of drones in the environment that have been estimated or known so far.
Following the evaluation of frequency analyses from indoor measurements were outdoor
measurements, which were not affected by excessive ambient sound undesirable to detect
the noise load. These measurements were performed to determine and compare UAVs’
sound power levels during hovering and overflights at increased RPM corresponding
to the operation. Based on the provided data, the LWA of UAVs from the C1 and C2
categories were evaluated. The corrected equivalent sound pressure levels of DJI Inspire 2
and DJI Mavic 2 Pro were measured at different speeds and frequencies. At a middle filter
frequency of 160 Hz, the LWA of the DJI Inspire 2 ranges from 65.1 dB to 71.9 dB, while the
LWA of the DJI Mavic 2 Pro ranges from 53.0 dB to 63.9 dB, indicating that the Mavic 2 Pro
produces less noise than the Inspire 2 at this frequency.

Based on the measured values, we found that UAVs used for hobby flying do not
exceed the limits listed in the category of other sources in the decree of the Ministry of
Health of the Slovak Republic. Also, after a model simulation in the specific area of the
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commissioning of the UAV DJI Inspire, no significant increase in the noise load on the
population was found.

In this work, the data were provided for implementing measurements and subsequent
assessment of the impact of noise on the external environment in introducing unmanned
aerial vehicles into actual operation. Based on spectral analyses, a graphic model of sound
propagation from an unmanned aerial vehicle could be designed in the future and, with
an assessment of its radiation characteristics, placed in the map base of a specific model
situation from which the consequences for broad-spectrum use would be derived.
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Abbreviations

Abbreviations

AGL Above ground level
EU European Union
ISA International standard atmosphere
ISO International Organization for Standardization
PC Computer
PWL Sound power level
RMS Root mean square
RPM Revolutions per minute
SPL Sound pressure level
UAS Unmanned aircraft system
UAV Unmanned aerial vehicle
List of symbols

λ Wavelength
f Frequency
Hz Hertz
c Phase velocity
dB Decibel
W Watt
m Meter
Pa Pascal
Prms Root mean square pressure
ρ Density
LAeq A-weighted equivalent continuous sound level
LWA A-weighted sound power level
LW Sound power level
Lp Sound pressure level
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Abstract: Compared to detection methods employed by Mars rovers and orbiters, the employment
of Mars UAVs presents clear advantages. However, the unique atmospheric conditions on Mars pose
significant challenges to the design and operation of such UAVs. One of the primary difficulties lies
in the impact of the planet’s low air density on the aerodynamic performance of the UAV’s rotor
system. In order to determine the aerodynamic characteristics of the rotor system in the Martian
atmospheric environment, a rotor system suitable for the Martian environment was designed under
the premise of fully considering the special atmospheric environment of Mars, and the aerodynamic
characteristics of the rotor system in the compressible and ultra-low Reynolds number environment
were numerically simulated by means of a numerical calculation method. Additionally, a bench
experiment was conducted in a vacuum chamber simulating the Martian atmospheric environment,
and the aerodynamic characteristics of the UAV rotor system in the Martian environment were
analyzed by combining theory and experiments. The feasibility of the rotor system applied to
the Martian atmospheric environment was verified, and the first generation of Mars unmanned
helicopters was developed and validated via hovering experiments, which thereby yielded crucial
data support for the design of subsequent Mars UAV models.

Keywords: Martian atmospheric environment; low air density; compressed; ultra-low Reynolds
number; aerodynamic characteristics; vacuum chamber experiment

1. Introduction

In the solar system, Mars and Earth have a high degree of similarity, with both having
obvious changes in seasons, atmosphere and water. As such, the exploration of Mars is
not only conducive to the exploration of the origin of life, but also has a considerable
significance in respect of expanding human living space. Peijian Ye and Jing Peng [1]
summarized some activities and plans for human deep space exploration, including the
exploration of Mars, and introduced the significance and development process of deep
space exploration; Weiren Wu and Dengyun Yu [2] elaborated on the development and
future key technologies of deep space exploration, and provided a detailed introduction to
the exploration process of the moon and Mars. In the past, Mars rovers or orbiters have
been used for the exploration of Mars, but both have obvious drawbacks. Since the surface
of Mars is full of hills and ravines, which is a major obstacle for rover exploration, there
is a considerably limited exploration range and slow exploration speed. With regard to
orbiters, due to the high distance from the surface of Mars, there are difficulties in exploring
the surface of Mars in-depth. Due to the aforementioned factors, airborne platforms are
particularly significant, owing to the higher exploration speed, wider detection range, and
broader field of view. Further, areas that are inaccessible to Mars rovers can be accessed, and
superior imaging and sensing resolution can be provided compared to orbiters. Anubhav

Drones 2023, 7, 397. https://doi.org/10.3390/drones7060397 https://www.mdpi.com/journal/drones343



Drones 2023, 7, 397

Datta [3] described the necessity of using a Mars unmanned aerial vehicle and described
the design of an autonomous rotor vehicle (MARV) for Mars exploration. Thus, when
considering such factors comprehensively, the airborne platform appears to be the most
efficient means of detection.

Revolutionary changes have taken place in the future of Mars exploration. On
9 April 2021, the American Mars Helicopter “MH” successfully landed on Mars, com-
pleted the first test flight of human beings on Mars, and unveiled the new chapter of Mars
exploration—Cheng, C. [4]. Ruiz, M.C. [5] and Balaram, J. [6], respectively, described the
Mars helicopter “MH” to varying degrees, and based on this, conducted deeper research
on the aerodynamic characteristics of the Mars propeller. The 1.8 kg “MH” Mars UAV
is an unloaded aerodynamic demonstrator, the main purpose of which is to verify the
possibility of flying UAVs in the Martian atmosphere and to facilitate understanding of the
basic aeronautics of Mars—this is introduced in Balaram, J.’s [7] article; Pipenberg T.B. [8]
described the design and testing process of the Mars helicopter rotor system, including
the aerodynamic performance, structural strength, vibration characteristics, control strat-
egy, and environmental adaptability of the rotor. To further scientific exploration, the air
dynamic performance of Mars rotor systems needs to be more explored.

In recent years, increasing numbers of countries and institutions have begun to explore
Mars UAV systems. Due to the unique atmospheric environment of Mars, the rotor blades
of Mars UAVs rotate under low Reynolds numbers and compressible flow conditions,
which poses new challenges for the design of Mars rotor systems and is a relatively new
field for aerodynamics, with few numerical simulations and experimental data currently
available. Takaki et al. [9] simulated and calculated the lift–drag characteristics of various
airfoils in the Martian environment and found that the effect of a low Reynolds number on
the lift–drag characteristics of airfoils was much greater than that of a Mach number on
the lift–drag characteristics of airfoils; Shrestha et al. [10] conducted hovering performance
experiments on a 200 g Martian coaxial helicopter propeller in a vacuum chamber, and
the quality factor of the propeller at different Reynolds numbers was further explored;
Kakeru et al. [11] studied the aerodynamic characteristics of an airfoil in the propeller
slipstream at low Reynolds numbers and elucidated the effect of propeller slipstream
on the control surface efficiency through aerodynamic measurements and particle image
velocimetry measurements; Benjamin et al. [12] presented a detailed description of the rotor
system and landing gear system of the MH Mars helicopter; KONING et al. [13] calculated
the instability points, laminar separation points, and excess points on the surface of the
C81Gen airfoil to approximate the two-dimensional rotor boundary layer state during
hovering, and used the results on turbulence modeling in fluid dynamics; Kunz et al. [14],
Liu et al. [15], and Bohorquez et al. [16] optimized the propeller airfoil for Re < 10,000 based
on the theory of lobe element momentum; Oyama et al. [17] used finite element simulations
to conclude that unconventional airfoils with considerably thin airfoil thickness and large
airfoil curvature can significantly improve the lift-to-drag ratio and mechanical efficiency
of Mars propellers in the Martian atmospheric environment; the Ames Research Center
of NASA provided a performance comparison between several low Reynolds number
airfoils, finding that the cambered airfoil can outperform conventional airfoils [18]; T.
Désert analyzed the effects of Reynolds numbers and Mach numbers on the flow through
airfoils in a low Reynolds number compressible flow, and proved the significant effect on
flow separation and subsequent wake shape [19].

While the aerodynamics of rotor systems in the Martian atmosphere have been in-
vestigated in several studies, most rely on numerical simulations, with few experiments
conducted to replicate the vacuum conditions of the Martian environment. Such experi-
ments still fall short in comparison to the distant and unknown Martian environment. In
order to further explore the aerodynamic characteristics of the propeller in the Martian
atmospheric environment, the special atmospheric environment of Mars was fully consid-
ered in the present study. In addition, a lightweight Mars UAV rotor system was designed,
and strength and stiffness analyses of the lightweight propeller were combined with finite
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element software. The method of combining numerical simulation calculations and simula-
tions of the vacuum chamber bench experiments of the Martian atmospheric environment
was used to further study the aerodynamic characteristics of the rotor system in the Martian
atmospheric environment, analyzed the influence of different Reynolds numbers and Mach
numbers on the aerodynamic performance of Mars propellers, and established a Blade
Element Theory inflow ratio model for the Martian atmospheric environment, so as to
provide more sufficient data support for the design of Mars UAVs.

2. Materials and Methods

2.1. Dynamic Conditions in the Atmospheric Environment of Mars
2.1.1. Martian Atmosphere

Compared with the atmospheric environment of the Earth, the Martian atmospheric
environment is undoubtedly much worse in the drone flight environment, posing a sig-
nificant challenge to the design of Mars UAVs. The atmospheric density of Mars is about
1/80 of that of the Earth, which has been identified as the biggest obstacle to the design
of Mars UAV rotor systems. Although the gravity acceleration on Mars is only 1/3 of
that of the Earth, the impact of the low air density cannot be offset. At the same time, the
sound speed on Mars is much lower than that on Earth, further limiting the tip speed of
the propeller and increasing the difficulty of propeller design. The proportion of carbon
dioxide in the Martian atmosphere is as high as 95%, but because the thinner atmosphere
cannot bind the heat energy of the sun, there is a particularly low temperature on Mars.
Notably, the lowest temperature reaches minus 140 ◦C, while the highest temperature is
only 20 ◦C. Low temperature is another challenge that needs to be considered for Mars
UAVs, especially for the electronic components inside, which need to be able to withstand
low temperatures and other harsh environments. Moreover, in the design of Mars UAV
avionics systems, a thermal insulation system needs to be set up so that the electronic
components on the Mars UAV can be properly insulated, and the thermal insulation system
needs to consume a lot of electric energy, which greatly shortens the endurance of the
Mars UAV. As previously reported, the US “MH” Mars UAV has about 2/3 of the electrical
energy for internal system insulation, and only 1/3 of the electrical energy is used for flight.
Owing to the condensation and sublimation of the polar CO2 of Mars, the atmospheric
environment on Mars shows seasonal changes. In fact, these comparisons between the
Martian and Earth atmospheric environments are presented in Braun, Refs. [20,21] Detailed
descriptions were provided in all studies. Table 1 presents a comparison of the atmospheric
environment characteristics of Mars and Earth.

Table 1. Characteristics of Martian and Earth’s Atmospheric Environment.

Features Mars Earth

Acceleration of gravity (m/s2) 3.72 9.78
Atmospheric pressure (Pa) 756 101,300

Air density (kg/m3) 0.0167 1.22
Mean temperature (◦C) −63 15
Sound velocity (m/s) 227 340
Atmospheric dynamic

viscosity (kg/(m·s)) 1.289 × 10−5 1.789 × 10−5

Gas constants (J/kg/K) 188 287
Specific heat capacity ratioγ 1.29 1.40

Molar mass (g/mol) 44.01 28.96

2.1.2. Air Dynamics under Low Reynolds Numbers

Due to the relatively thin density of the atmosphere on the surface of Mars, a simple
calculation of the aerodynamic conditions in the Martian atmospheric environment is
needed before the propeller design so that the numerical simulation can be conducted
more accurately. The Knudsen number (Kn) [22] is the ratio of the mean free path of gas
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molecules to the characteristic scale. In rarefied gas mechanics, the size of the Knudsen
number is often used to determine whether a fluid is suitable for the continuity hypothesis.
Generally, in fluid mechanics, when Kn < 0.01, the flow of gas belongs to a continuous
medium flow, and the Navier–Stokes equation can be used. The Knudsen number can be
calculated using Equation (1):

Kn =
kT√

2πσ1
2PL

(1)

where k is the Boltzmann constant, with a value of 1.3806498 × 10−23; T is the thermody-
namic temperature; σ1 is the particle diameter, because 95% of the Martian atmospheric
environment is carbon dioxide, so the diameter of carbon dioxide can be used instead of
the diameter of the Martian atmosphere example diameter; P is the total pressure; and
L is the characteristic length, with the propeller diameter considered here being 1.21 m.
The indicators present in the Martian atmosphere suggest that the Knudsen number is
significantly below 0.01, indicating that the continuity assumption is applicable to the
Martian atmospheric environment.

2.1.3. Effect of Reynolds Number on the Aerodynamic Performance of Mars Propellers

The low air density and relatively small rotor size in the Martian atmosphere result in
a low Reynolds number for the propeller, and the general chord-based Reynolds number
range is Re = 103~104—this is reflected in Desert [23] research. There is a scarcity of research
on Reynolds numbers in such a range. However, Ref. [24] research suggests that the flight
of insects and birds on Earth notably falls within such range. In the Earth environment,
propellers generally operate in a Reynolds number range greater than 104, with low-speed
propellers corresponding to lower Mach numbers, and high-speed propellers correspond-
ing to higher Mach numbers and Reynolds numbers. The common Reynolds number and
Mach number research range is shown in Figure 1 [25–27].

Figure 1. General Mach–Reynolds number research areas.

A low Reynolds number leads to a significant decrease in the lift-to-drag ratio of
Martian propellers, which increases the difficulty of flight mainly because a low Reynolds
number increases the viscous drag of the blades, resulting in a significant increase in
the power consumed by the propeller [10]. G. K. Ananda [28] developed the external
platform force balance device LRN-FB, which solved the deficiencies in the field of low
Reynolds number aerodynamics and ten flat wings were tested at a low Reynolds number
(60,000~160,000); the results show that no hysteresis phenomenon is observed on all flat
wings, and the slope of the thrust curve shows a strong Reynolds number effect.

To summarize the relationship between the airfoil lift–drag ratio and Reynolds num-
ber in the larger Reynolds number range, McMasters and Henderson summarized the
experimental results of the aerodynamic characteristics of different airfoils, as shown in
Figure 2 [25]. The critical point for the Reynolds number is Re = 105. When Re < 105,
rough airfoils exhibit better aerodynamic performance than smooth airfoils, which is due
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to the contribution of roughness in promoting boundary layer transition and slowing
down laminar flow separation on the rough airfoil surface. Controlled turnaround is the
key to mitigating the adverse effects of air bubbles at laminar flow separation points and
designing airfoils in low Reynolds number regions. Therefore, when designing Martian
propellers, the appropriate roughness of the propeller surface is conducive to improving
the aerodynamic performance of Mars propellers.

Figure 2. Maximum section lift-to-drag ratio versus Reynolds number.

2.2. Mars UAV Rotor System Design

The unique atmospheric environment on Mars has brought new challenges to the
design of propellers, and propellers suitable for the Earth’s atmospheric environment will
no longer be suitable for the Martian atmosphere. Okamoto et al. [29] analyzed various
airfoils when the Reynolds number was less than 104 and found that the airfoil suitable for
such a low Reynolds number range had a thin airfoil, a sharp leading edge, and even an
insect-like corrugated shape. In a study conducted by Hervé et al. [30], it was determined
that a corrugated wing demonstrated superior performance as a flapping wing, but was not
suitable for rotor applications, particularly in the hovering state. Thus, for hovering in the
Martian atmospheric environment, airfoils with thin profiles and high camber are typically
favored. In view of such circumstances, the clf5605 airfoil developed by AeroVironment
was selected as the base airfoil for the propeller design in the present study.

In order to maximize the efficiency of the Martian propeller, the minimum energy
loss method was used to design the propeller. Figure 3 shows the blade element force
analysis diagram of the clf5605 airfoil, in which L, D, T, and F are the lift, drag, thrust,
and tangential forces of the airfoil, respectively. W and W1 are the combined velocity
and induced combined velocity; Va, Vt, and V′ indicate axial inducted speed, circulation
induced speed and induced angle of attack, respectively; α, β, ϕ0, and ϕ, respectively,
represent the actual angle of attack, interference angle, geometric inflow angle, and actual
inflow angle.

Figure 3. Force analysis of blade element.
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The actual inflow angle ϕ can be calculated using Equation (2):

tan ϕ =
V0 + Va

Ωr − Vt
=

Vt

Va
=

V′ cos2 ϕ

V′ cos ϕ sin ϕ
(2)

When the amount of the blade element circulation at the radial position r of the
propeller blade increases ΔΓ, the thrust and torque of the corresponding propeller will
increase ΔT and ΔM. The ratio of the propeller’s useful work to absorbed energy can then
be calculated using Equation (3):

k =
V0ΔT
ΩΔM

(3)

{
ΔM = ρΔΓ(V0 + Va)rdr
ΔT = ρΔΓ(Ωr − Vt)dr

(4)

By substituting Equation (4) into Equation (3) and then combining Equation (2), the
following can be obtained:

k =
V0ΔT
ΩΔM

=
V0

Ω
(Ωr − Vt)

(V0 + Va)r
=

V0

V0 + V′ (5)

The minimum energy loss is required to be constant along the blade k distribution [31].
From Equation (5), the induced angle of attack distribution along the blade is a constant
value, but the induced pitch corresponding to each blade element section is different. First,
the size of the induced pitch needs to be determined. The total thrust force of the propeller
can be calculated using Equation (6):

T =
∫ rmax

rmin
f

4πrρ

Nb

(
V0 + V′ cos2 ϕ

)
V′ cos2 ϕdr (6)

The induced angle of attack can be obtained by iterating Equation (6). Then, according
to the Kutta–Joukowski theorem, the distribution of circulation quantities can be obtained:

Γ(r) =
1
2

WC1b = f
4πr
Nb

V′ cos ϕ sin ϕ (7)

Through iterating Equation (7), the chord length and twist angle distribution at differ-
ent values of radial r of the impeller can be obtained. Then, the obtained chord length and
torsion angle can be smoothed to obtain the torsion angle distribution and chord length
distribution in different parts of the Martian propeller, as shown in Figure 4.

(a) (b) 

Figure 4. Torsion angle and chord length distribution of different parts of propeller: (a) twist angle
distribution; (b) chord length distribution.

The shape of the final propeller is shown in Figure 5.
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Figure 5. Propeller model.

2.3. Numerical Simulation
2.3.1. Unsteady Compressible Streams

In fluid mechanics, the weak form of the mass conservation equation affected by the
momentum conservation equation and the state equation is equivalent to the strong form
of the governing equation of unsteady compressed flow [32].

The weak form of the mass conservation equation can be calculated using Equation (8):

�
δpdVdt =

� (
∂φ

∂t
+

1
2

v2
j

)1/(k−1)
δ

(
∂φ

∂t
+

1
2

v2
j

)1/(k−1)
dVdt = 0 (8)

where p is pressure; V is volume; φ is velocity potential; vj is the component of velocity in
the j direction; k is the ideal gas constant; and t is time.

An equation of the state for an ideal gas can be calculated using Equation (9):

p
p0

=

(
ρ

ρ0

)k
(9)

where p is the pressure; ρ is the gas density; and (·)0 is the initial state.
The momentum equation can be calculated using Equation (10):

∂vi
∂t

+ vj
∂vi
∂xj

=
1
ρ

∂p
∂xi

(10)

where vi is the ith component of velocity; xi is the ith component of the spatial coordinates;
xj is the jth component of the spatial coordinates; p is pressure; and t is time. vi can be
calculated as follows:

vi =
∂φ

∂xi
, vj =

∂vj

∂xj
(11)

By bringing Equation (11) into Equation (10) and then integrating xi, one has:∫ 1
ρ

dp = −∂φ

∂t
− ∂φ

∂xj

∂φ

∂xj
= −∂φ

∂t
− 1

2
v2 (12)

According to Equation (9), it can be obtained that:

∫ 1
ρ

dp = (1 − 1
k
)

(
p1/k

0
ρ0

)
p(1−

1
k ) = cp(1−

1
k ) (13)

where c is a constant. Therefore, substituting Equation (13) into Equation (12) and solving
for pressure:

p = −
(
−1

c

)k/(k−1)(∂φ

∂t
+

1
2

v2
j

)k/(k−1)
(14)
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One can drop the constant coefficient −
(
− 1

c

)k/(k−1)
, then, δp can be calculated using

Equation (15):

δp = δ

(
∂φ

∂t
+

1
2

v2
j

)k/(k−1)
=

(
k

k − 1

)(
∂φ

∂t
+

1
2

v2
j

)1/(k−1)
δ

(
∂φ

∂t
+

1
2

v2
j

)
(15)

For the convenience of the later calculations, A can be introduced, which is defined as
follows: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A =
(

∂φ
∂t +

1
2 v2

j

)1/(k−1)
=
(
− a2

k−1

)1/(k−1)

a2 = −(k − 1)
(

∂φ
∂t +

q2
i

2

)
qi =

∂φ
∂xi

(16)

where a is the speed of sound. Equation (16) can be brought into Equation (15) and further
into Equation (8), so as to obtain the following:

�
δpdVdt =

� (− a2

k−1

)1/(k−1) ∂2φ

∂x2
j
−� 1

k−1

(
a2

1−k

)k/(1−k)( ∂2φ
∂t2 + ∂φ

∂xi

∂2φ
∂xj∂t

)
δφdtdV

−� ( 1
k−1

)(
a2

1−k

)k/(1−k) ∂φ
∂xj

(
∂2φ

∂t∂xj
+ ∂φ

∂xi

∂2φ
∂xi∂xj

)
δφdtdV

(17)

Assuming that δφ is arbitrary, the following is established:

1
k−1

(
a2

1−k

)k/(1−k)( ∂2φ
∂t2 + ∂φ

∂xj

∂2φ
∂xj∂t

)
−
(
− a2

k−1

)1/(k−1) ∂2φ

∂x2
j

+
(

1
k−1

)(
a2

1−k

)k/(1−k) ∂φ
∂xj

(
∂2φ

∂t∂xj
+ ∂φ

∂xi

∂2φ
∂xi∂xj

)
= 0

(18)

After multiplying Equation (18) by −(1 − k)1/(1−k)a−2/(1−k), under the action of the
equation of state and the equation of conservation of momentum, the unsteady, compress-
ible, potential flow equation is:

1
a2

∂2φ

∂t2 +
2
a2

∂φ

∂xj

∂2φ

∂xj∂t
− ∂2φ

∂x2
j
+

1
a2

(
∂φ

∂xj

∂φ

∂xi

∂2φ

∂xi∂xj

)
= 0 (19)

2.3.2. Numerical Simulation Calculations

The current cost of sending UAVs to Mars is considerably expensive, therefore, before
proceeding to Mars propeller manufacturing, extensive finite element simulations are
required to ensure the dynamics of the propeller system. Since there are difficulties in
determining the aerodynamic properties of propellers designed for the Martian environ-
ment using purely empirical formulas, Fluent software was used to perform aerodynamic
analysis of the Mars propeller. In the numerical simulation, different angles of attack and
rotational speeds of the Mars propeller were considered, and the range of angles of attack
was taken from 0◦ to 12◦, being calculated every 2◦ (the results were only taken from 0◦ to
10◦ due to the poor convergence of the calculation results at 12◦ angle of attack). Meanwhile,
the range of rotational speeds could be roughly derived from the speed of sound and Mach
number of the Martian atmosphere. The range of rotational speeds can be calculated using
Equation (20):

n <
Ma ∗ a ∗ 60

D ∗ π
(20)

where n is the rotational speed in RPM (Revolutions Per Minute); Ma is the Mach number,
which is taken as 0.85 to avoid transonic effects; a is the speed of sound in the Martian
atmosphere, which is taken as 230 m/s; and D is the propeller diameter, which is taken
as 1.21 m. The maximum rotational speed of the designed Mars propeller was calculated
to be 3087 RPM. Because the air density on Mars is low, when the speed is small, the lift
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provided by the propeller is small; therefore, the simulated speed was selected as 1200 RPM
to 3000 RPM, being calculated every 200 RPM.

In order to simulate the Martian atmosphere as much as possible, the atmospheric
density was set to the atmospheric density of Mars (0.0167 kg/m3). Figure 6 shows the
scheme of the whole computational domain. The whole computational domain is divided
into a static domain (a) and a rotating domain (b). These two domains are connected by
three pairs of interfaces, namely interface-prop-up and interface-far-up, interface-prop-
down and interface-far-down, and interface-prop-wall and interface-far-wall. The static
domain is a cylinder with a diameter of 20D and a height of 15D, which is used to simulate
the outflow field of the Martian propeller. Figure 6c shows the mesh details of the propeller
surface and the blade tip near the wall of the rotating domain. It can be seen that the leading
and trailing edges of the propeller and the tip of the blade near the rotating field have a more
dense grid, which is done to have more accurate calculation results. Numerical calculations
of lift coefficients and power coefficients were performed for the Mars propeller at different
angles of attack and rotational speeds, and the results were compared and analyzed with
the results obtained from the simulated Mars atmospheric bench experiments in Section 3.2.

   
(a) (b) (c) 

Figure 6. Mars propeller three-dimensional mesh: (a) static zone; (b) rotating zone; (c) blade tip
area mesh.

In order to investigate the influence of the number of grids on the calculation results,
3 different densities of grids were selected, and then the thrust and torque of the propeller
were calculated at a 0◦ angle of attack and 3000 RPM under the Martian atmosphere. The
calculation results are shown in Table 2.

Table 2. Results of the grid dependency test for prototype.

Mesh Density
(104)

Simulation
Time (h)

Thrust Error Torque Error

Coarse 1237 15 5.77% 6.228%
Medium 2506 26 0.985% 2.076%

Fine 5032 38 0% 0%

Numerical simulation analysis was conducted by means of the same method for the
aforementioned three grid density models. From the results, an observation can be made
that the difference between the results calculated by the medium density grid and the
high density grid was considerably small, while the error of the results calculated by the
low density grid was relatively large. As such, considering the calculation accuracy and
calculation efficiency, the medium density grid was ultimately chosen for the numerical
calculation. Figure 7 visualizes the vortex structure of the flow field at a high speed rotation
of the propeller with a 0◦ angle of orientation in the Martian atmospheric environment by
extracting the equivalent surface of the Q-criterion = 5000, and also shows the pressure
(Unit: Pa) distribution on the propeller blade. It can be seen that as the propeller speed
increases, the vortex volume generated at the tip of the propeller blade becomes larger

351



Drones 2023, 7, 397

and thicker below the blade, and at the same time, the vortex core increases. The pressure
contour diagram shows that the pressure on the propeller blade increases as the speed
increases, and the closer the tip, the greater the negative pressure, while the maximum
positive pressure is found at the leading edge of the blade near the tip, which is due to the
interaction with the air when the propeller rotates at high speed.

 

(a) (b) 

  
(c) (d) 

Figure 7. Diagram of propeller vorticity structure on the iso−surface of the Q−criterion = 5000 in
Martian: (a) 2000 RPM; (b) 2400 RPM; (c) 2600 RPM; (d) 3000 RPM.

2.4. Lightweight Design and Strength Calibration of Mars Propellers

The low air density and low Reynolds number of the Martian atmospheric environ-
ment poses a significant challenge in propeller design and fabrication. The low density
reduces the available thrust for a given size rotor and increases the power required to fly
the vehicle relative to the Earth’s atmospheric environment. Thus, as a critical factor, the
overall weight of the vehicle must be kept as low as possible. Obviously, reducing the
weight of the propeller is more simple and logical than reducing the weight of the electron-
ics. To ensure optimal performance in the Martian environment, a propeller must possess
sufficient lift-to-weight ratio, which necessitates a lightweight design. Consequently, the
pursuit of reduced weight has emerged as a significant challenge in the development and
production of propellers intended for Mars.

In order to reduce the weight of the propeller, a foam sandwich structure was adopted,
with the propeller having foam in the middle and the outside being covered with carbon
fiber fabric, as shown in Figure 8a. The yellow part is the PMI (Polymethacrylimide) foam
core part, and the gray part is the T300 carbon fiber covered part. The surface area of
the whole propeller is 0.098 m2, and local reinforcement was performed at the root of
the propeller to ensure the strength of the propeller. The density of the fabric prepreg
is 1600 kg/m3, the thickness of the single layer is 0.2 mm, and the lay-up direction is
0◦/90◦/45◦. The total weight of a single propeller was calculated to be 100 g when laying
3 layers of carbon fiber fabric.
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(a) (b) 

Figure 8. Propeller structure and the finite element model: (a) structure diagram of the foam sandwich
of the Mars propeller; (b) finite element model of the Mars propeller.

Although the foam sandwich structure largely reduced the weight of the Mars pro-
peller, the strength and stiffness of the propeller were inevitably weakened while satisfying
the lightweight requirements. Thus, the propeller must be calibrated for strength and other
aspects before manufacturing. In this study, the HyperMesh and Nastran finite element
software were used for joint simulation to check the deformation and failure factor of the
propeller. The finite element model of the propeller is shown in Figure 8b.

The aerodynamic force (aerodynamic force at 10◦ angle of attack, 3000 RPM) obtained
from aerodynamic simulation of the propeller under the Martian atmosphere was loaded
onto the surface of the propeller, and the deformation of the propeller under the Martian
atmosphere (as shown in Figure 9a) and the failure factor of the carbon fiber layup on the
surface of the propeller (as shown in Figure 9b) could be obtained. From the deformation
diagram, an observation can be made that the main deformation of the propeller was
concentrated in the tip part of the propeller blade, and the maximum deformation was
19.8 mm, which was only 3.3% of the radius of the Mars propeller. As such, the stiffness
of the propeller meets the requirements. As the trailing edge part of the propeller is
considerably thin and is seriously affected by the trailing vortex during high speed rotation,
the failure factor of the trailing edge part was also the largest. From the simulation results,
the maximum failure factor was 0.11, much less than 1, meaning that the strength of the
blade had a large surplus.

  
(a) (b) 

Figure 9. Finite element analysis results of Mars Propeller: (a) axial direction deformation of the Mars
propeller; (b) failure factors of the Mars propeller.

2.5. First-Generation Mars UAV Flight

The harsh Martian atmosphere poses a significant challenge in the design of unmanned
helicopters, while the spatial size of the lander further limits the size of the Mars UAV. A
reasonable structural layout can satisfy the structural size while minimizing the weight of
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the UAV. The co-axial twin propellers were chosen as the initial structure form for the Mars
UAV, as illustrated in Figure 10.

 
Figure 10. Mars unmanned helicopter model.

2.5.1. Dynamical Equations and Equations of Motion of an Unmanned Helicopter on Mars

Assuming that the Mars unmanned helicopter is a rigid body, ignoring the Martian
curvature, and considering the Martian coordinate system as an inertial coordinate system,
the equations of motion of the Mars unmanned helicopter can be divided into two parts
to describe the translational and rotational motion, and according to the Newton-Euler
equation, the translational motion of the Mars unmanned helicopter can be expressed as:

.
V=

F
mb

−ωb×Vb (21)

.
ωb=I−1[M−ωb×(Iωb)] (22)

where mb indicates the total mass of the Mars unmanned helicopter; Vb = (u,v,w)T rep-
resents the linear velocity of the Mars unmanned helicopter; ωb = (p,q,r)T represents the
angular velocity of the Mars unmanned helicopter; F and M represent the combined exter-
nal force and moment of the Mars unmanned helicopter; and I indicates the moment of
inertia of the Mars unmanned helicopter.

I =

⎛⎝ Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

⎞⎠ (23)

Due to the peculiarities of the Martian unmanned helicopter in structure, the belief of
the present authors is that the symmetry in both the transverse plane and the longitudinal
plane had Ixy = Ixz = Iyz = 0, and Equation (24) can be converted to:

I =

⎛⎝ Ixx 0 0
0 Iyy 0
0 0 Izz

⎞⎠ (24)

By bringing the linear velocity, angular velocity, and resultant force of the three axes of
the Mars unmanned helicopter into Equation (21), the linear motion equation of the Mars
unmanned helicopter can be obtained:

m
(

du
dt + wq − vr

)
+ mg sin θ = X

m
(

dv
dt + ur − wp

)
+ mg cos θ cos φ = Y

m
(

dw
dt + vp − uq

)
− mg cos θ sin φ = Z

(25)

where u, v, w are the linear velocities along the ObXb, ObYb, ObZb axes, respectively; p, q, r
are the angular velocities around the ObXb, ObYb, ObZb axes, respectively; X, Y, Z are the
net forces acting on the ObXb, ObYb, ObZb axes, respectively.
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The velocity differential equation can be obtained by sorting out Equation (26):⎡⎣ .
u
.
v
.

w

⎤⎦ =
1

mb

⎡⎣ X
Y
Z

⎤⎦+

⎡⎣ −g sin θ
g cos θ sin φ
g cos θ cos φ

⎤⎦+

⎡⎣ 0 −r q
−r 0 −p
−q p 0

⎤⎦⎡⎣ u
v
w

⎤⎦ (26)

The linear velocity, angular velocity, and moment of inertia of the three axes of the
Mars unmanned helicopter were brought into Equation (22) to obtain the angular motion
equation of the UAV around the center of mass:

Ix
dp
dt +

(
Iz − Iy

)
qr = L

Iy
dq
dt + (Ix − Iz)pr = M

Iz
dr
dt +

(
Iy − Ix

)
pq = N

(27)

where Ix, Iy, Iz are, respectively, the rotational inertia of the unmanned helicopter on the
ObXb, ObYb, ObZb axes, respectively; L, M, N are the sum of the torques rotating about the
ObXb, ObYb, ObZb axes, respectively.

According to Equation (27), the angular rate differential equation can be calculated
using Equation (28):⎡⎣ .

p
.
q
.
r

⎤⎦ = I−1

⎛⎝⎡⎣ L
M
N

⎤⎦−
⎡⎣ 0 −r q

r 0 −p
−q p 0

⎤⎦× I

⎡⎣ p
q
r

⎤⎦⎞⎠ (28)

According to the relationship between attitude angle and angular rate, the rotation
kinematics equation can be written as follows:⎡⎢⎣

.
φ
.
θ
.
ψ

⎤⎥⎦ =

⎡⎣1 sin φ tan θ cos φ tan θ
0 cos φ sin φ
0 sin φ sec θ cos φ sec θ

⎤⎦⎡⎣ p
q
r

⎤⎦ (29)

2.5.2. System Nonlinear Model

For Mars unmanned helicopters, the lift thrust moment on the ObZb axis is provided
by the reverse torque of the upper and lower propellers—that is, N = NT = −ND1 + ND2—
and the torque on the ObXb axis and ObYb axis is mainly provided by the servos—that is,
L = LT , M = MT . Assuming that the angular velocity of the upper and lower rotors is
Ω1, Ω2, the thrust generated by the upper and lower rotors can be expressed as:

F1 = bΩ2
1

F2 = bΩ2
2

(30)

where b is the thrust coefficient. The motion characteristics of the Mars unmanned helicopter in
the previous section could be sorted out and simplified, because the test flight was mainly aimed
at simulating the vacuum chamber environment of the Martian atmosphere, ignoring external
interference, such as strong winds. When hovering in a vacuum chamber, the air resistance is
relatively small and, therefore, negligible, resulting in a simplified mathematical model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

..
x =

.
u = (sin θ cos φ cos ψ + sin φ sin ψ)

b(Ω2
1+Ω2

2)
m

..
y =

.
v = (sin θ cos φ cos ψ − sin φ cos ψ)

b(Ω2
1+Ω2

2)
m

..
z =

.
w = cos φ cos θ

b(Ω2
1+Ω2

2)
m − g

..
φ =

(Iy−Iz)
Ix

.
θ

.
ψ + L

Ix..
θ = (Iz−Ix)

Iy

.
φ

.
ψ + M

Iy
..
ψ =

(Ix−Iy)
Iz

.
φ

.
θ + N

Iz

(31)
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3. Results

3.1. Experimental Protocol

Due to the large differences between the Martian environment and the Earth envi-
ronment, the designed propeller needed to be further verified experimentally, and the
Martian atmospheric environment needed to be restored as much as possible during the
experiment. In the hovering experiments, the UAV hovering performance test device
was used to measure the aerodynamic parameters of the Mars rotor system simulating
the Martian atmospheric environment, and the feasibility of UAV flight in the Martian
environment was evaluated. Such methods can verify the rationality of the model of the
simulation method, intuitively reflect the dynamic performance of the UAV, and realize
the evaluation of the aerodynamic characteristics of the rotor system of the Mars UAV.
The experiment was conducted at the Vacuum Chamber Experimental Base of the China
Academy of Aerospace, as illustrated in Figure 11. The chamber has a diameter of 4 m
and a depth of 10 m, and can maintain a pressure below 10 Pa. However, notably, the
experiment could not entirely replicate the Martian environment. The atmospheric density
could only be reduced to approximate that of the Martian atmosphere. The temperature
and gravitational acceleration could not simulate the Martian atmospheric environment.
Additionally, due to the limitations of the experimental conditions, the composition of the
atmosphere could not be the same as that of Mars.

 

Figure 11. A vacuum chamber simulating the atmospheric environment of Mars.

During the experiment, the propeller test bench was placed in a vacuum chamber for
fixation, and then the air density in the vacuum chamber was reduced to be comparable to
the density of air on Mars. The test bench was designed according to the size of the interface
in the vacuum chamber. In order to reduce the wall effect, the diameter of the propeller
disc was parallel to the diameter of the vacuum chamber when designing the bench, and at
the same time, the propeller was placed 4 m away from the outlet during installation, so as
to reserve as much space as possible for the tail and minimize flow recirculation. During
the experiment, a T-Motor MN7005 brushless motor was used, which could increase the
speed of the propeller to 3000 RPM at the density of the Martian atmosphere, reaching
the subcritical acoustic velocity. The test bench of the propeller in the vacuum chamber
was installed, as shown in Figure 12, and the propeller retention frame was connected to
the aisles on both sides of the cabin to fix the entire test bench. The main performance
parameters of each sensor on the test bench are shown in Table 3. Under conditions of air
density equivalent to that of the Martian atmosphere, the propeller generated a relatively
small pull force at a low speed. As a result, the measured value of the pull force at a low
speed was not significantly high. Additionally, due to the limited accuracy of the thrust
sensor, the thrust error measured at a low speed was relatively large. Therefore, the final
rotation speed range of 1200 RPM to 3000 RPM was chosen to measure the pull and torque
of the propeller.
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Figure 12. The test system of the Mars propeller in the vacuum chamber.

Table 3. Main performance parameters of each sensor.

Range Accuracy

Force sensor/kg 0~3 0.2% ± 20 g
Temperature sensor/◦C −40~350 ±1% ± 1.5

Voltage sensor/V 11~55 ±0.03% ± 0.03
Current sensor/A 0.2~80 ±0.4% ± 0.1
Speed sensor/rpm 1500~3000 ±0.5% ± 20

Figure 13 shows a schematic diagram of the data acquisition system. The force sensor,
torque sensor, temperature sensor, current and voltage sensor are connected to the Arduino
mega development board. The pulse signal output by the rotary encoder is also transmitted
to the Arduino mega development board through the speed acquisition card, and then
communicated with the personal computer through the serial port and the information
interaction port on the vacuum bin.

Figure 13. Data collection system of the test bench.
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During the experiment, the propeller was subjected to thrust and torque tests at
different speeds and different angles of attack. The rotation speed range was 1200 RPM to
3000 RPM, being measured every 200 RPM, and the angle of attack was 0◦ to 10◦, being
measured every 2◦. The reason for the angle of attack only being 10◦ is that when using
commercial software CFD for aerodynamic simulation, the convergence of the calculation
results was not good when the angle of attack was greater than 10◦, and the aerodynamic
performance of the propeller was reduced. Such findings could be attributed to the fact that
with the increase in the angle of attack, laminar flow separation occurs on the surface of the
blade, thereby reducing the aerodynamic efficiency of the propeller. During the experiment,
the pitch mechanism could be used to change the angle of attack of the propeller, thereby
significantly saving costs and avoiding uneven air density in the vacuum chamber after
each air extraction caused by multiple openings. Each set of data was measured four times,
and then the average data were obtained by adopting the average method.

3.2. Experimental Results and Analysis

The lift thrust coefficient is the main parameter for characterizing the thrust character-
istics of propellers, and the data obtained by the vacuum chamber bench test simulating
the Martian atmospheric environment were compared with the data calculated by CFD
numerical simulation. The results measured by the experiment obviously have the same
trend as the results obtained by the CFD simulation, but there were certain errors between
the two.

The difference in rotational speed caused the Reynolds number on the surface of
the blade to change, which affected the thrust coefficient. As shown in Figure 14, as the
rotational speed increases, the thrust coefficient would also slowly increase. However, the
changes observed were notably not significant, and the thrust coefficient of the propeller
demonstrated nearly identical changes with speeds at different angles of attack. The
experimental results indicate that the thrust coefficient of the propeller exhibited varying
changes at different angles of attack, and on average, the magnitude of the changes observed
was greater than those shown by numerical simulation results.

Figure 14. Thrust coefficient at different rotating speeds and angles of attack.

Undoubtedly, the angle of attack has the most significant influence on the thrust
coefficient. In general, as the angle of attack increases, the thrust coefficient also increases.
However, when the angle of attack exceeds a certain threshold, the laminar flow over
the surface of the propeller separates, resulting in a reduction of the thrust coefficient.
Therefore, changes in the angle of attack should be within a reasonable range. During the
CFD numerical simulation of the propeller, the convergence effect of the thrust coefficient
calculation was found to deteriorate significantly when the angle of attack exceeded 10◦.
Therefore, the aerodynamic performance of the propeller was analyzed only in the range
of angle of attack between 0◦ and 10◦. The CFD numerical simulation results show that
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with the increase in the angle of attack, the thrust coefficient almost increased in the form
of an equal difference series, and the maximum thrust coefficient was achieved when
the angle of attack was 10◦ and the speed was 3000 RPM. Compared with the numerical
simulation results, the experimental results were more volatile. In the range of 0◦ to
8◦, with the increase in the angle of attack, the thrust coefficient increased, but unlike
the CFD simulation results, when the angle of attack was 10◦, the thrust coefficient was
smaller than the thrust coefficient when the angle of attack is 8◦. At the same time, the
changes in the thrust coefficient between adjacent angles of attack did not show equal
differences compared with the numerical simulation, which was caused by equipment and
environmental errors during the test.

The thrust coefficient can be calculated using Equation (32):

CT =
3600T
ρn2D4 (32)

where T is the thrust generated by the propeller during rotation; ρ is the density of the
Martian atmosphere; n is the rotational speed of the propeller in the Martian atmospheric
environment; and D is the diameter of the paddle disc of the Mars propeller.

The power factor Cp is a performance indicator that measures the efficiency of pro-
pellers. The increase in the angle of attack means that the windward area of the propeller
when rotating at high speed also increases, the resistance is correspondingly increased, and
the power consumed is greater. As shown in Figure 15, comparing the CFD numerical sim-
ulation results and the vacuum chamber bench experimental results, an observation can be
made that, in respect of numerical terms, the difference between the two was considerably
large, and the results measured by the vacuum chamber bench test were obviously much
larger than the CFD numerical simulation results; but, in terms of trends, the two were
similar. As shown in Figure 15, with the increase in the angle of attack, the difference in
the power coefficient between the adjacent angles of attack also increased, and at the same
angle of attack, the speed increased, but the power coefficient showed a slight decrease,
which is because the larger the rotational speed, the greater the inertia generated when
the propeller rotates. In this way, the power loss can be reduced to a certain extent. The
experimental data indicate that under the same angle of attack, the power coefficient of the
propeller gradually decreases with an increase in speed. Moreover, within the range of 0◦
to 8◦ blade angles, the power coefficient increased with the angle of attack. Additionally,
the greater the angle of attack, the more the power coefficient was affected by the increase
in rotational speed. Notably, the power coefficient obtained from the experimental test was
markedly different from the power coefficient obtained by CFD simulation. Specifically,
under the same angle of attack, the power coefficient changed only slightly with an increase
in rotational speed in the CFD simulation, while the experimental data showed a substantial
change in the power coefficient with the increase in rotational speed. The biggest difference
still occurred in the case of an angle of attack of 10◦, and the experimental data show that
when the rotational speed was less than 2400 RPM, the power coefficient at an angle of
attack of 10◦ was significantly smaller than the power coefficient at an angle of attack of 8◦.
However, when the rotational speed was greater than 2400 RPM, the opposite trend could
be seen, and as the rotational speed increased, the power coefficient at an angle of attack of
8◦ further decreased.
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Figure 15. Power coefficient at different speeds and angles of attack.

The power factor can be calculated using Equation (33):

Cp =
3600P
ρn3D5 (33)

where P is the power consumed by the Martian propeller as it rotates in the Martian
atmosphere.

The merit factor is one of the main factors in evaluating the performance of the
propeller, and the higher the merit factor, the higher the efficiency of the propeller in
such states. The CFD numerical simulation results shown in Figure 16 indicate that, with
the increase in propeller angle of attack, the merit factor also increased, but the increase
became increasingly smaller. When the angle of attack was 8◦ and 10◦, the merit factor of
the propeller was roughly equal. At the same time, with the increase in speed, the merit
factor also increased correspondingly; and, under the same angle of attack, the merit factor
increases linearly with the increase in speed. There was a significant difference between
the merit factor obtained from the vacuum warehouse bench experiment and the CFD
numerical simulation. Not only was there a difference in value, but also in trend. The merit
factor measured by the vacuum warehouse bench experiment did not increase with the
angle of attack, but presented a disorderly pattern. However, the merit factor under the
same angle of attack still increased with the increase in speed. At an angle of attack of 8◦
and a speed of 3000 RPM, the merit factor was optimal. Considering the thrust coefficient
and power coefficient, it can be concluded that the optimal performance could be achieved
at an angle of attack of 8◦.

Figure 16. Merit factors at different speeds and angles of attack.
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The merit factor can be calculated using Equation (34):

FM =
1√
2

C3/2
l
Cp

(34)

where Cl and Cp indicate the thrust coefficient and power coefficient, respectively.
From the comparison of the experimental data and CFD simulation data, although

there were errors therebetween, the general trend was the same. Therefore, to some extent,
the CFD simulation results can be used to judge the quality of propeller design. In order to
verify whether there was an increase in error caused by the vacuum chamber environment,
we attempted to conduct outdoor experiments using the same experimental equipment in
a calm environment, and conducted CFD simulations using the same numerical simulation
methods. Comparing the numerical results with the simulation results, the errors of the
thrust coefficient and torque coefficient are both within 10%. The specific experimental
data will be presented in another manuscript. Therefore, we believe that the factor causing
significant errors is the significant difference between the vacuum chamber environment
and the open environment on Mars. The belief of the present authors is that the following
reasons could have caused the errors:

(1) In the process of pumping the density of air in the vacuum chamber to the same
as that of the Martian atmosphere, there were errors, and there were difficulties in
achieving exactly the same between the two;

(2) The accuracy of force and torque sensors was not enough, leading to the deviation of
the tested data;

(3) Due to the mechanism of the experimental bench, a great centrifugal force will be gen-
erated when the propeller rotates at a high rotational speed, which will lead to the vi-
bration of the test bench in the process of testing, and then produce a certain deviation;

(4) Due to the existence of an idle stroke (due to mechanical structural gaps), the angle of
attack will produce a certain deviation in each variation of pitch, which will affect the
experimental results to a great extent;

(5) The vacuum chamber is a closed container. In the process of the experiment, certain
wall effects and air reflux will be formed.

3.3. Mars Unmanned Helicopter Hover Experiment

The limited space within the vacuum chamber makes it challenging to perform ma-
neuvering flight experiments. Therefore, the primary goal for the original Mars unmanned
helicopter was to verify its hovering performance in the vacuum chamber. Notably, the
gravitational acceleration on Mars is only one-third of that on Earth, and to simulate the
Martian environment, the other two-thirds of Earth’s gravitational acceleration were coun-
terbalanced by lifting heavy objects at one end of the pulley set. As the vacuum chamber
equipment was unable to fully simulate the Martian atmospheric environment—with the
temperature in the chamber being maintained at Earth’s room temperature—there was a
failure to replicate the significantly lower temperature on Mars. In order to ensure that the
Mars unmanned helicopter achieved hovering in an environment similar to the Mars air
density, the pressure in the vacuum chamber was extracted to a pressure of approximately
1950 Pa instead of the Martian atmospheric pressure of 756 Pa. To achieve control, the
hovering of the Mars unmanned helicopter was realized using a PID control, as shown in
Figure 17, which illustrates the hovering state of the first generation of a Mars unmanned
helicopter in the vacuum chamber simulating the Martian atmospheric environment.
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Figure 17. Hovering experiment of mars unmanned helicopter in vacuum chamber.

4. Conclusions

In the present study, by analyzing the dynamic conditions of the Martian atmospheric
environment, a rotor system suitable for the Martian atmospheric environment was de-
signed and a strength test of the lightweight Martian propeller was conducted by means of
the finite element method. At the same time, the aerodynamic characteristics of the Martian
propeller in the Martian atmospheric environment were explored by combining numerical
simulations and vacuum chamber experiments. The following conclusions could be drawn:

(1) In order to reduce the weight of the Martian propeller, the adopted foam sandwich
structure had a good weight reduction effect, and through finite element calculation
and Earth environment bench experiments, the three-layer carbon fiber ply was
verified to not only meet the lightweight and strength requirements, but also meet the
requirements of the manufacturing process, which is the most suitable manufacturing
method of the Mars propeller at present.

(2) Under the CFD numerical simulation, when the angle of attack was fixed, the thrust
coefficient of the Martian propeller increased with the increase in speed, and the power
coefficient decreased accordingly. The merit factor also increased with the increase in
the propeller speed. When the propeller speed was constant, the thrust coefficient and
power coefficient of the propeller increased accordingly with the increase in angle of
attack, and the merit factor also increased accordingly. However, at 8◦ and 10◦ angles
of attack, it had almost the same quality factor.

(3) A vacuum chamber experiment simulating the Martian atmospheric environment
was conducted on the Martian propeller, and the aerodynamic characteristics of the
Martian propeller in the Martian atmospheric environment were further explored.
There was an error between the experimental results and the numerical simulation
results, mainly because the numerical simulation was a simulation calculation in an
ideal environment, while the experimental test had many external interferences, but
the two exhibited roughly the same trend.

(4) The numerical simulation method considered the unsteady compressible flow and
the vacuum chamber experiment of the simulated Martian atmospheric environment
verified that the designed propeller system had good aerodynamic performance in
the Martian atmospheric environment. On this basis, the initial design of the Mars
unmanned helicopter was formulated, and the relevant hover experiments were
conducted, providing reference and theoretical support for the design of subsequent
Mars UAV sequences.
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Abstract: In this paper, the characterization of 3D-printed materials that are considered in the design
of multirotor unmanned aerial vehicles (UAVs) for specialized purposes was carried out. The multi-
rotor UAV system is briefly described, primarily from the aspect of system dynamics, considering
that the airframe parts connect the UAV components, including the propulsion configuration, into a
functional assembly. Three additive manufacturing (AM) technologies were discussed, and a brief
overview was provided of selective laser sintering (SLS), fused deposition modeling (FDM), and
continuous fiber fabrication (CFF). Using hardware and related software, 12 series of specimens were
produced, which were experimentally tested utilizing a quasi-static uniaxial tensile test. The results
of the experimental tests are provided graphically with stress–strain diagrams. In this work, the focus
is on CFF technology and the testing of materials that will be used in the production of mechanically
loaded airframe parts of multirotor UAVs. The experimentally obtained values of the maximum
stresses were compared for different technologies. For the considered specimens manufactured using
FDM and SLS technology, the values are up to 40 MPa, while for the considered CFF materials and
range of investigated specimens, it is shown that it can be at least four times higher. By increasing
the proportion of fibers, these differences increase. To be able to provide a wider comparison of CFF
technology and investigated materials with aluminum alloys, the following three-point flexural and
Charpy impact tests were selected that fit within this framework for experimental characterization.

Keywords: multirotor UAV airframe parts; additive manufacturing; continuous fiber fabrication;
fiberglass reinforcement; material experimental characterization; uniaxial tensile test

1. Introduction

Technologies of rapid prototyping enabled a great step forward in various fields. Addi-
tive manufacturing technologies, which are widely used in biomedicine [1,2] to mechatronic
systems such as unmanned aerial vehicles (UAVs), play a major role. The advantages of
AM technologies come to full expression in the development sector or the production of
small series. Nowadays, there are numerous types of research and applications of aircraft in
various sectors, such as aerial photography [3], surveillance [4], precision agriculture [5,6],
transport and logistics [7], research [8,9], and many others. Due to the possibility of vertical
take-off and landing (VTOL), and therefore stationary flight and moderate-speed flight,
multirotor UAVs are suitable for missions that require a high degree of system autonomy.
Furthermore, the performance of the propulsion system consisting of several rotors enables
greater agility and maneuverability, which consequently enables precise and complex
movements. That fact places them in the category of aerial robotic systems and, in general,
for specialized purposes. Major manufacturers mostly offer conventional multirotor con-
figurations that are intended for specific applications. For example, the largest multirotor
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UAV manufacturer DJI has several aircraft sizes that are intended for aerial photography,
from the Mini to the Inspire UAV. In addition, there is a series of Agras UAVs that are
intended for smart spraying tasks. These are large series of aircraft for which the frame
parts are produced by conventional technologies, such as injection molding.

The multirotor type of UAV is used in more and more specific applications, and small
series or unique aircraft are often required. The development of rapid prototyping tech-
nology is correlated with the development of specialized multirotor UAVs, where the key
area is additive manufacturing (AM), 3D printing. There are many studies describing UAV
systems that are built using additive technologies, such as fixed-wing type of UAVs [10]
or considered multirotor [11]. With today’s dynamic market demands based on shorter
product life cycles that require smaller production batches, there is a need to move from
traditional production systems to next-generation production systems [12]. Such systems
must have high flexibility and reconfigurability in order to adapt to changes in the market,
and this is exactly what is achieved with reconfigurable production systems (RMS) [13].
This is made possible by a quick response to the customer’s needs by making products
according to his requirements, which achieves his satisfaction. In contrast to the mass cus-
tomization paradigm [14], where customers choose a product from a multitude of offered
combinations, with mass individualization, the customer himself participates in the design
of the product, which is suitable for the use of AM technologies, which gives advantages
from the economic side due to the creation of a unique product adapted to an individual
customer [15]. Increasing demands for unique customer-oriented products switch to the
mass individualization paradigm, where the goal is to reduce the price of products to the
level of products made by the mass customization paradigm.

AM technologies play a crucial role in the fourth industrial revolution by offering the
ability to surpass the limitations of traditional production systems. Due to its flexibility,
agility, and speed of placing new products on the market, AM is no longer used only
for the creation of prototypes but also for the serial production of functional structural
parts with the required accuracy and mechanical properties. With the development of new
materials and forms of workpieces that ultimately lead to an increase in product quality,
AM is used more and more often in research, especially in mechatronics, where production
can be roughly divided into the design phase and the production phase itself. With this
common approach, parts, or 3D objects, are created with the addition of materials, using
technology by adding layers on top of each other. There are different AM technologies
such as fused deposition modeling (FDM) [16], stereolithography (SLA) [17], selective laser
sintering (SLS) [18], polyjet technology [19], laminated object manufacturing (LOM) [20],
and others. Compared to other methods, FDM technology has its advantages, such as the
variety of low-cost materials, which is why it is the most commonly used method, but there
are always problems related to mechanical properties and dimensional accuracy. The most
commonly used conventional materials are acrylonitrile butadiene styrene (ABS), polylactic
acid (PLA), and polyethylene terephthalate glycol (PETG).

Additively manufactured polymers alongside polymer composites represent anisotropic
materials [21]. With regard to the considered application of the parts, it is extremely im-
portant to identify the mechanical properties concerning the material and production
parameters. In the research [22], the applicability of test methods for the mechanical
characterization of test specimens manufactured with FDM technology was discussed.
Furthermore, the numerical and experimental study of the PLA material compression
uniaxial properties is presented in the research [23]. There are many types of research and
works on the topic of improving the mechanical properties of materials that are made with
FDM technology. One of the directions is joining polymer with composite materials that
are widely used in research and the aerospace industry, where various types of materials
and different purposes are represented, such as prototyping and production of wing struc-
tures shown in the papers [24,25]. The paper [26], gives an overview of strategies such as
short fiber reinforcement (SFR), continuous fiber reinforcement (CFR), powder addition
reinforcement (PAR), and other methods. Further related to the production of UAV parts,
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in paper [27] a novel sandwich structure consisting of an ABS base laminated with carbon
fiber-reinforced polymer (CFRP) layers was proposed. The main disadvantage of such
materials is the time required to manufacture such parts. The solution is imposed with
new 3D printers that are based on FDM technology, known as continuous fiber fabrication
(CFF). In the paper [28], an experimental investigation of the additive manufacturing of
continuous carbon fiber composites was carried out.

In this paper, experimental characterization was performed for 3D-printed specimens
where three AM technologies were considered. The design of a multirotor type of UAV for
specialized purposes is studied, and since the need for making prototypes or small series
of UAVs, AM technologies are investigated for the production of airframe parts. To achieve
the UAV assembly construction more efficiently integration of the process of characterizing
the materials into the design process is examined. Results for the performed uniaxial
tensile test are shown, and two more tests are being preliminarily investigated, which
will also be integrated into the material characterization process. The goal is to enable a
comprehensive comparison with aluminum alloys with high-reliability requirements such
as in the automotive industry. To conduct experimental tests, 12 series of test specimens
were produced using FDM, SLS, and CFF technologies. Test specimens are subjected to
mechanical testing and experimental data are processed, saved, and graphically presented
for each specimen. Since the emphasis in this study is on mechanically loaded airframe
parts, particular attention is given to composite materials with reinforcement for enhancing
the structural integrity of the airframe. The results for different reinforcement parameters
are shown, and from the aspect of maximum stress, composite specimens have up to
four times higher maximum stresses in the considered parameter range compared to
conventional materials. At the same time, specimens with a higher proportion of fibers can
be compared with aluminum alloys.

2. Multirotor UAV System Description

Multirotor-type UAVs represent an extremely complex system in terms of design
and control. Such a type of aircraft is an inherently unstable system, which results from
the fact that it cannot independently return to the point of balance (hover) if it loses the
functionality of the control loops but will fall or begin to move uncontrollably in space.
Furthermore, multirotor UAVs are nonlinear systems since rotor aerodynamic forces and
moment characteristics are nonlinear functions with respect to angular velocities. The
multirotor UAV is mathematically described by a rigid body dynamic model with 6 second-
order differential equations, 12 state variables, and N input variables, which makes them
a multivariable system. From the design point of view, it is important to emphasize that
such UAVs are high energy-consumption systems, considering that for the needs of motion,
rotary wings are used, which with their aerodynamic forces, among other effects, must
cancel the gravity force.

The number of control variables depends on the aircraft configuration, which is
determined by the geometric arrangement of the rotors. Conventional configurations are
characterized by a planar arrangement of rotors. Typical designs are configured with four
rotors, the quadrotor or quadcopter [29], with six rotors, a hexarotor, and with eight rotors
(octorotor). Typical configurations are shown in Figure 1, the first heavy-lift quadrotor
prototype and the 3D model of the hexarotor assembly that was presented within the
modular configuration in the previous research [30].

Multirotor UAV dynamics are influenced by the forces and moments of the environ-
ment and of the propulsion subsystem. The equations of motion can be derived using the
Newton–Euler method. The gravitational force, external disturbances, such as wind gusts,
air resistance, gyroscopic effect, and others, act on the rigid body of the multirotor UAV.
The only vector through which the dynamics of the aircraft can be directly influenced is the
control vector, containing forces and moments of the propulsion configuration (subsystem,
module). The multirotor UAV propulsion configuration is defined by the geometric arrange-
ment and characteristics of the rotor. The configuration geometric arrangement is defined
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by the position and orientation of each rotor in relation to the aircraft coordinate system,
and a more detailed derivation is presented in the previous research [9,28]. In conventional
propulsion configurations, the rotors are electric propulsion units (EPUs) whose central
part is the brushless DC (BLDC) motor driven by an electronic speed controller (ESC). This
type of electric propulsion converts electrical energy obtained from lithium-polymer (LiPo)
batteries into mechanical work. Fixed-pitch propellers mounted on the rotor axis of the
BLDC motor, with their rotation, create aerodynamic effects, from which it follows that the
aircraft dynamics directly depend on the rotors’ angular velocities.

 
(a) (b) 

Figure 1. Multirotor UAV platform: (a) quadrotor heavy-lift prototype; (b) hexarotor 3D model.

When it comes to the design of specialized multirotor UAVs, such aircraft are produced
in small series and often exist as unique systems designed to perform specific tasks. In
small series production, the price per unit increases dramatically; therefore, it is important
to consider technologies for rapid prototyping where manufacturing costs are not sensitive
to changes in production volume. In general, it can be said that the design of the aircraft
system primarily depends on the purpose, that is, the profile of the mission that the aircraft
typically needs to perform. The aircraft system can be divided into subsystems, where from
the aspect of designing and mass budgeting, each subsystem is defined by its mass. Payload
(equipment and cargo) is determined by the UAV purpose and further dictates the choice
of parameters and components of other subsystems. The total mass of the UAV obtained
by adding the masses of the subsystems represents the take-off mass of the aircraft.

The basic performance of the multirotor UAV is defined by the ratio of the maximum
thrust of the propulsion subsystem in the vertical aircraft axis and the take-off mass. The
unwritten rule is that this thrust-to-mass ratio (TMR) is approximately two, except in
extreme situations such as racing drones, and a more precise ratio can commonly be read
from the specifications of the propulsion components manufacturers. As mentioned earlier,
multirotor UAVs are characterized by high energy consumption, which in turn depends
on the aircraft’s mass. When designing a system, the ratio of battery mass and capacity
is one of the key data. The propulsion and energy subsystems are mutually dependent
because, for example, as the power of the aircraft increases, so does the need for energy,
which results in a larger mass of the aircraft. The design of the propulsion subsystem is the
most complex part of the overall design in terms of the mechanical properties that the parts
of the assembly should possess. The multirotor type of UAV can be used in a wide power
range, from several tens of watts to several tens of kilowatts, so it is necessary to choose
materials and technologies concerning the selected propulsion components. In the aircraft
design phase, the parts of the frame that connect everything into a functional assembly
have to be modeled and manufactured based on the selected components, where the main
requirements are high strength and absorption energy, and low specific mass (weight).
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The production of parts for specialized multirotor UAVs can be divided into two main
phases. The first phase represents the phase of designing the aircraft where various CAx
techniques and tools are utilized, which are outlined through previous research [31–33].
In this phase, parts and assemblies are modeled using a 3D software package, and also
simulations of airframe parts that need to meet certain mechanical properties can be carried
out. The final versions of the 3D CAD model are exported performing a triangulation
process to STL format, which is further used for the production of parts. In this research,
the SOLIDWORKS software package (Dassault Systèmes SE, Vélizy-Villacoublay, France)
is used for 3D modeling purposes. The next phase is the production, i.e., prototyping of
the airframe parts. The first step of the prototyping phase is setting print parameters in
accordance with the selected AM technology. The print parameters are adjusted in the
software package, the slicer, which makes up the software package of a particular 3D
printer. After setting the parameters, the G-code is generated for the 3D-printing execution,
with which the 3D printer creates a physical model. The last step in this phase is the
post-processing of the parts, such as removing the support, or sandblasting and cleaning
the parts produced by the SLS technology.

Typically for a multirotor UAV, it can be stated that the mechanically loaded parts of
the platform can be divided into propulsion airframe parts and landing gear. Whether it
is the forces and moments of the propulsion units that act on airframe parts or the forces
during landing that occur on the landing gear assembly, such parts are so far developed and
tested using CFF technology. For a small UAV that can be classified as a micro aerial vehicle
(MAV), landing airframe printed parts are depicted in Figure 2, alongside the heavy-lift
multirotor UAV landing gear section. Heavy-lift multirotor UAV landing gear assembly
consists of printed parts and prefabricated composite elements, such as tubes, and the
whole assembly is shown in Figure 1a.

 
Figure 2. Examples of 3D-printed airframe parts.

3. Additive Manufacturing Considerations and Experimental Testing

Given that multirotor UAVs are used in various applications where small series or
prototypes are used, it is important to consider rapid prototyping technologies in the
system design phase. This is an additional benefit from the aspect of using such aircraft
in engineering education and research. In addition to the fact that small series rapid
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prototyping technologies are cheaper compared to conventional technologies, they also
significantly reduce development time through rapid iteration and the possibility of early
and frequent testing of many different designs or partial designs with critical features. The
development of AM and new materials has led to an increase in the quality of the product;
it is used more and more often in various industries, such as biomedicine, the automotive
industry, and the space industry [34]. AM technology enables the production of structural
parts with the required accuracy and mechanical properties at increased production speed,
given that the development procedure is relatively simple for different technologies.

3.1. Considered Additive Manufacturing Technologies

In the field of making UAVs that are used mainly for research or education, FDM
3D-printing technology is mainly utilized, and recently, due to the availability of cheaper
equipment and materials, SLS technology is prominent. In this paper, specimens made with
SLS technology using the Lisa 3D printer by Sinterit (Sinterit sp. z o.o., Kraków, Poland),
and using Sinterit Studio software (1.7.0.2), were investigated. For the considered FDM
technology, a series of specimens can be made on a low-cost Prusa i3 MK3s 3D printer
(Prusa Research a.s., Prague, Czech Republic) using the corresponding Prusa Slicer software
(2.4.0). For UAV airframe parts that are mechanically loaded, composite materials are used,
usually carbon fiber tubes and plates, from which structural parts can be quickly made.
This means that it takes relatively little time from the design phase to the production of the
aircraft, which is why it is cheaper. Although 3D printing is widely used, it is mostly for
smaller UAVs. In the case of, for example, heavy-lift UAV, it is necessary to design parts
that are mechanically more loaded, and most often, the propulsion airframe parts are made
by processing aluminum. The development of CFF 3D-printing technology enabled the
production of parts made of polymer-reinforced materials whose mechanical properties
can be compared to aluminum parts, especially in combination with composite parts. In
this work, the emphasis is on testing the specimens produced by CFF technology, where
the Onyx Pro 3D printer (Markforged, Waltham, MA, USA) by Markforged is utilized.

Regardless of the type of AM technology, the production of the part is based on layer-
by-layer construction, which is also the case with SLS technology. This AM technology
uses powder materials that are sintered by thermal energy generated by a laser. Modeling
by this process can be applied to all materials with powder particles that are sintered due
to the application of heat. The most commonly used are polymer powder materials, the
most important of which are polycarbonate (PC) and polyamide (PA). To further improve
the mechanical and thermal properties of the material, reinforced polymers can be used,
where fiber reinforcement is added to PA materials. Unlike other considered technologies
in this work, SLS technology is suitable to produce small series of parts with complex
geometry. A schematic representation of the working principle is shown in Figure 3, where
the manufacturing process begins with the creation of a laser beam that is directed by the
laser system to the exact desired position on the XY plane of the printed part. Changing the
height of the layer is most often performed by lowering the build platform, the powdered
material needed to create a new layer is added from the material feed chamber via a
roller. The process of making the layer starts as a result of the action of the laser beam into
the powder material. The required temperature applied to the powder particle must be
between the crystallization temperature and the melting temperature of the particle [35].
In this research, test specimens were made from polyamide material with the trade name
PA12 [36], using Sinterit Lisa Pro 3D printer Sinterit Studio software.

FDM 3D-printing technology is the most popular and most frequently used technology
in research and development, education, and industry. It is based on the melting of
solid polymer materials into a semiliquid that passes through a nozzle, forming objects
by applying the polymer layer by layer. The working principle of FDM technology is
schematically represented in Figure 4a. The created objects are made of thin layers of
material whose direction of application defines the mechanical properties of the anisotropic
material. Compared to other AM technologies, FDM has its advantages, such as the variety
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of hardware/software and low material costs, which is why it is the most widely used.
Since it is applied layer by layer, the support material is printed for parts with overhanging
geometries [37]. Several issues need to be addressed related to mechanical properties,
dimensional accuracy, consistency, and undetected defects within the structure of the
products. The most used thermoplastic materials for FDM technology are ABS, PLA, and
PETG. In this work, test specimens were made from PLA [38] and PETG [39] filament.

Figure 3. SLS technology—schematic overview.

 

(a) (b) 

Figure 4. AM technologies—schematic overview: (a) FDM; (b) CFF.

Due to the FDM working principle, by adapting this technology it is possible to pro-
duce parts that are reinforced with composites. Considering the type of composite with
which the polymer material is reinforced, they can be divided into fiber reinforcements,
particle reinforcements, and nanoparticle reinforcements. Composite materials are usually
synthetic carbon fiber (CF), glass fiber (GF), and Kevlar fiber. Additionally, more environ-
mentally friendly natural biodegradable fibers can be produced [40]. Polymer materials
with a reinforced matrix, have significantly increased strength and are used more and
more, considering that at the same time they have a low mass [41]. In this paper, the CFF
technology with direct reinforcement is discussed, which requires two nozzles, one for the
matrix material and the other for the reinforcement fibers, where a composite sandwich
structure is formed, as schematically shown in Figure 4b. The system with two nozzles
can produce parts only from matrix materials (FDM), and the paper will examine a series
of specimens produced from micro carbon fiber-filled nylon material, commercial name
Onyx [42], using Markforged equipment and a slicer.

Utilizing the Onyx Pro 3D printer, this system of separate nozzles is used to produce
parts of the sandwich structure of the composite, where the Onyx material is used as the
matrix and the fiberglass as reinforcement. The mechanical properties of the parts depend
on parameters that can be adjusted, such as the number of reinforcement layers and the
different geometric arrangements of fibers. Models made with CFF technology have an
advantage over those made with conventional FDM technology in terms of significantly
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higher tensile strength, depending on the proportion of fibers in the composite structure.
Test specimens with a different number of reinforcement layers and with various fiber
orientations were considered in the testing phase.

3.2. Experimental Methods and Equipment

Numerous methods have been used so far to test the mechanical properties of printed
materials, such as the Charpy test [43] or rotating bending fatigue analysis [44]; in this
work, uniaxial tensile testing is utilized. Test specimens according to the ISO 527-2 standard
(Figure 5), with a square cross-section, were modeled in the SOLIDWORKS software
package, then exported in .stl format suitable for 3D printing. The print orientation of the
test specimens placed on the XY plane of the 3D printer is shown in Figure 6. Researching
the literature has determined that the print orientation where the direction of the layers is
perpendicular to the direction of the test force gives the lowest values of tensile strength
due to simple delamination of the layers. For this reason, such an orientation of the test
specimens will not be examined. The data described by the 3D CAD model, according to
which the test specimen is made, is inserted into the software called slicer, which is the link
between the real and digital models.

 

Figure 5. Test specimen (ISO 527-2 [45] standard test specimen for uniaxial quasi-static tensile
testing)—G-code generation in a slicer.

Figure 6. Additive manufacturing and experimental measurements flow chart.
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Figure 6 shows the basic flowchart of the conducted experiments for one series of test
specimens. In the first part, the process related to additive manufacturing is presented,
where, regarding the experiment, specimen geometry is selected. Depending on the AM
technology, in slicer software, printing parameters are defined. Steps and movements
that the printer will perform during the creation of the physical part are described by
G-code. The generated G-code is transferred to the printers where the manufacturing
begins. It is possible to print one test specimen at a time, or it is possible to print the whole
series at once, regardless of the AM technology. When printing test specimens with FDM
and CFF technology, there is no post-processing because, due to the geometry of the test
specimens, there are no support structures. With SLS technology, it is necessary to clean
the test specimens of powder using sandblaster hardware. After the test specimens have
been produced for one series, the second part of the process related to the implementation
of experimental testing, data processing, and display begins. The first step in this part
is the preparation of a test specimen in the clamp of the experimental hardware. After
the specimen is clamped, the measurement can be started for the selected test parameters.
During the test, data acquisition is performed, and raw data are obtained. Depending on
the used equipment and software, in addition, experimental software can generate a report
with a graphic display of the test results, as was the case in this research. After the last
specimen in the series is tested, the raw data are further processed and interpreted. In this
research, the MATLAB software package is used, and the results are graphically presented
in the form of stress–strain diagrams.

The test specimens were subjected to a quasi-static uniaxial tensile test on a Shimadzu
AG-X plus universal industrial equipment (Figure 7), which can achieve a tensile test force
of up to 100 kN. The test was carried out at a constant speed of 30 mm/min without the use
of external stress reading devices. The accompanying software of the equipment creates a
stress–strain diagram from which the mechanical properties of the material and the critical
points of the stress–strain diagram can be analyzed. Raw data measured over a certain
time interval during the test are suitable for interpretation in the MS Excel or MATLAB
software package. During the testing of polymer materials, clamping problems occur. Due
to the lower tensile and compressive strength of the specimen, it is not possible to clamp
the specimens into packs with the same force as aluminum and steel specimens because,
during the test, the specimen breaks in a place that is not intended for it. These problems
are especially pronounced when clamping composite test specimens because the highest
values of tensile and compressive strength are expressed in the direction of the fibers, so
such values should be achieved in the direction of the test axis, which is perpendicular
to the forces that act when clamping the specimens. For this reason, by increasing the
tensile strength of the composite specimen, a slip can occur between the packs and the
clamped specimen.

Figure 7. Experimental equipment: (a) SHIMADZU AG-X; (b) performing quasi-static uniaxial
tensile stress on the test specimen.
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3.3. Selection of Test Specimens Technological Parameters

In addition to striving to achieve the highest possible tensile strength of the tested
specimens, it is more important to express the limit of elasticity. Due to the very small differ-
ences between the elastic limit and the maximum tensile strength of the printed specimens,
the maximum tensile strength is used as an orientation value for testing purposes. The
construction of unmanned aerial vehicles must ensure sufficient tensile strength and criteria
of rigidity and stability. In order for the aircraft to be in a functional state, its structural
parts must remain in the elastic region; that is, there must be no permanent deformations
in the plastic region that would cause displacements of the structure that could adversely
affect flight dynamics. The forces that occur due to thrust during flight would deform
ductile materials, so it is desirable to have as much rigidity as possible in the construction
material. To test the mechanical properties of airframe parts that are statically loaded with
the load carried by aircraft, the best description is provided by the uniaxial static tensile
test that was carried out in this research. The criteria that the material must meet are low
mass, high stiffness, higher elastic limit, and orientation of composite fibers that will be
satisfactory in different directions of force.

For this reason, a uniaxial quasi-static tensile test is performed on standard test
specimens, from which a stress–strain diagram is obtained. During production, layer by
layer, the anisotropic property of the material occurs. Due to the dimensional inaccuracy
of the production, non-homogeneity also occurs, which results in different mechanical
properties of the material and is present in all printing technologies, unlike mold-injected
parts. This is why it is necessary to test several AM technologies using different materials
and 3D-printing parameters. Five test specimens are produced for each specimen series
(S01–S12). Low-cost PLA and PETG materials were considered, from which specimens
(S01–S06) are produced by FDM technology using Prusa equipment and a slicer. Standard
printing parameters were investigated, and furthermore, the infill percentage and the
number of edge layers were varied. Table 1 shows the materials and parameters of 3D
printing for test specimens manufactured using FDM technology. The test specimens
(S01–S06) have four floor layers, six roof layers, and a triangles infill pattern. To make a test
specimen (S07) with SLS technology, the factory parameters set in Sinterit Studio software
are used, and the test specimens are composed of PA12 material.

Table 1. FDM print parameters.

Specimen
Series

Material Infill %
Wall Layer Number

(Vertical Shells)
Mass (g) Time (min)

S01 PLA 20 2 5.90 27
S02 PLA 40 2 6.62 30
S03 PLA 20 4 6.34 29
S04 PETG 20 2 6.04 27
S05 PETG 40 2 6.78 30
S06 PETG 20 4 6.50 29

The stiffness of the non-composite polymer materials used in the tests made by FDM
and SLS technology is sufficient for the production of parts of UAVs, while their strength
is low for the production of functional, structural airframe parts such as parts of the
UAV propulsion assembly. The goal is to achieve the highest possible strength of the test
specimens compared to conventional FDM and SLS technologies and to be comparable to
aluminum alloys. Due to the most similar conditions when UAVs hit the ground or other
unpredictable objects, a car chassis is compared as a reference, where it is tried to achieve
a yield strength equal to or greater than the aluminum alloys used for the production
of structural car chassis. This is made possible by CFF 3D-printing technology, where
composite specimens are obtained by combining matrix and reinforcement materials. Then,
micro carbon fiber-filled nylon matrix material is investigated, from which test specimens
(S08) with default (factory) parameters (triangular infill 37%) are produced by a Markforged
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Onyx 3D printer. Reinforcement materials are made from different fiber orientations with
the aim of achieving the required values for the design of UAVs. The considered 3D-printing
parameters of composite materials are shown in Table 2.

Table 2. CFF print parameters.

Specimen Series Material
Number of Reinforcement

Layers/Fill Type
Fiber Reinforcement

Angles
Mass (g) Time (min)

S08 Carbon fiber-filled nylon None - 6.14 33

S09 Carbon fiber-filled nylon +
fiberglass reinforcement 8/Concentric - 6.24 68

S10 Carbon fiber-filled nylon +
fiberglass reinforcement 8/Isotropic [0/90/±45]8 6.95 80

S11 Carbon fiber-filled nylon +
fiberglass reinforcement 8/Isotropic [30/45/60/0]8 6.95 82

S12 Carbon fiber-filled nylon +
fiberglass reinforcement 12/Isotropic [30/45/60/0]12 7.52 92

The mechanical properties depend on the number of reinforcement layers, as well
as the reinforcement fill type. Changes in mechanical properties with a change in the
proportion of fibers in printed composites with fiberglass reinforcement are noted in the
paper [46]. The initial specimen consisted of four layers of fiberglass with a total volume
share of approximately 4%, so for subsequent specimens, 4 layers were added up to
30 layers of fiberglass (33% volume share). They did not reach the limit of 40% to 50% fiber
content in CFF; however, it was clearly proven that with each increase in fiber content,
the maximum tensile strength of the tested specimen increases. The arrangement of fibers
can be divided into concentric, which is shown in Figure 8, and isotropic. The concentric
fiber pattern orientation has fibers in the directions as the walls in the FDM technology
following the wall of the model, and for that pattern, a series (S09) of test specimens
were 3D printed according to standard Markforged parameters. Isotropic fiber orientation
represents parallel fiber lines at different angles. Other test specimen series with different
numbers and fiber orientations were made using this pattern approach.

 

Figure 8. S09 test specimen with concentric fiber reinforcement.

Fibers in the axial direction have very high strength, but also composites with the
action of force perpendicular to the direction of the fiber have the lowest strength, which
is why it is necessary to make a compromise with the orientation of the fibers because, in
reality, there are multiaxial forces acting on the structure. Placing the fibers longitudinally
at 0 degrees in the load direction gives the highest tensile strength. By rotating the fibers
(increasing the angles), the tensile strength of the composite material decreases because
the applied force is no longer only longitudinal to the fibers but also to the layers of the
matrix. By increasing the angles from 0◦ to 90◦, more and more load is transferred to the
matrix, which has a significantly lower tensile strength than the fibers, and thus the overall
tensile strength of the composite material decreases. In the research [47], such behavior
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of the material was shown, where the orientation of the fibers was varied by increasing
the angle by 22.5◦ from 0◦ to 90◦. When constructing the airframe of UAVs, the bending
load on the rotor arms caused by the thrust of the propeller has a great influence on the
airframe construction. When making such parts from composite structures, it is essential to
take into account the anisotropic properties of CFF specimens that, due to bending, cause
variations in the strain rate, increasing the shear stress between layers that lead to material
failure [48]. The behavior of the flexural properties by testing the material is described in
the work [49], where increasing the angle of the fibers increases the ductility of the tested
specimens. With the structure of the specimens with angles [+45◦/−45◦], they could not
break due to high ductility; however, by adding more layers, a more balanced structure is
obtained [48], which is the reason for testing the orientation [30,45,60,0]. The test is carried
out for three different setups (S10–S12) of isotropic reinforcement parameters, which are
shown in Table 2. Figure 9 shows the geometric arrangement of fibers considered in
the test.

 

Figure 9. CFF—fiber reinforcement angles.

3.4. Experimental Testing Procedure Integration in Design Process

Technological parameters of test specimens are adjusted for certain technologies in
software tools that come with 3D printers. This step is also the first step in the production
of the airframe parts that make up the UAV system, and the output of the step is the G-code
that is executed on the 3D printer. In general, after adjusting the considered parameters
of the 3D model (part or test specimen), it is necessary to prepare the material in the
additive manufacturing execution step, which is in the form of filament for FDM and CFF
technologies and in powder form for SLS technology. With CFF technology, for the used
material, it is necessary to dehumidify the box in which it is placed, and before starting
printing, it is necessary to create a purge line of ejected material located between the dry box
and the nozzle. With SLS technology, a sieve is used to prepare the material, which is fed
into the feed chamber. After the material is ready for production, the G-code execution itself
follows. The execution time depends on the technology and the parameters of individual
technologies. After the end of printing, depending on the technology, the parts need to be
post-processed.

When it comes to test specimens, after the production of a particular series is finished,
the testing stage is approached. Figure 10 schematically shows the material testing process,
the integration of which in the design process enables a more efficient design of structural
parts and the aircraft assembly in general. Furthermore, the testing process may include
other methods, such as the three-point flexural test or the Charpy impact test. In the
next chapter, the test results and characterization for the considered series of specimens
(S01–S12) are presented.
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Figure 10. Integrated experimental procedure for material characterization.

4. Results of Experimental Testing

Investigation of the mechanical properties of the printed specimens by a uniaxial
tensile test is shown by the stress–strain diagrams. For each series of different speci-
mens that are shown in Tables 1 and 2, five test specimens were used to obtain more
reliable results. Each specimen in the series from S01 to S12 is shown separately on the
stress–strain diagrams.

4.1. Measurement Results Shown by Stress–Strain Diagrams

The first group of materials made by the FDM technology consists of specimens S01,
S02, and S03, which are composed of PLA material. The mechanical properties depend on
the parameters of the print, and this paper considers the infill (percentage) and the number
of vertical shells. The first series of specimens use the default settings; in the second series,
the percentage of infill has been doubled, while in the third series, the number of vertical
shells has been doubled. From the measurement results (Figures 11–13), it can be seen that
with an increase in the number of vertical shells, the mechanical properties improve more
significantly in relation to an increase in the percentage of infill, which can further serve as
a milestone in the design of airframe parts that will be made by the FDM technology from
PLA material, which require higher tensile strength. Although slightly, S03 specimens are
also lighter comparing S02 specimens, and the printing time is slightly shorter.

Figure 11. Stress–strain diagram for specimen 1 (S01) series experimental measurements.

Figure 12. Stress–strain diagram for S02 experimental measurements.

377



Materials 2023, 16, 5060

Figure 13. Stress–strain diagram for S03 experimental measurements.

The next three series of test specimens are also produced using the FDM technology
but from PETG material. The same 3D-printing parameters were considered, and as with
PLA material, it can be concluded that specimens with a higher percentage of infill have
higher tensile strength than the default settings, while specimens with twice the number of
vertical shells have the highest, as shown in Figures 14–16. In relation to PLA material, it
is important to emphasize that PETG material generally has lower tensile strength but is
more resistant to elevated temperatures and chemical influences.

Figure 14. Stress–strain diagram for S04 experimental measurements.

Figure 15. Stress–strain diagram for S05 experimental measurements.

Figure 16. Stress–strain diagram for S06 experimental measurements.
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Utilizing the SLS technology, one series of test specimens is manufactured using PA12
powder material. Compared to the test specimens made by the FDM technology from PLA
and PETG materials, S07 has significantly higher ductility and higher tensile strength. Due
to the manufacturing process, a greater homogeneity of the material is obtained compared
to the FDM technologies; thus, there is greater independence of the direction of the force
acting on the specimen, which is more credible for real structural UAV airframe parts,
which are rarely loaded uniaxially. Figure 17 shows the results of the experimental test for
S07 specimens.

Figure 17. Stress–strain diagram for S07 experimental measurements.

The next series of test specimens will be produced using Markforged equipment and
software, which, in addition to the classic FDM technology, also enable the production of
parts using the CFF technology. First, a series of specimens made of Onyx carbon fiber-filled
nylon material, without reinforcement, is tested. For this material, the highest ductility is
obtained, but also the lowest tensile strength (Figure 18). Due to its high ductility, which
causes displacement of the test specimen, and tensile strength values close to those of PETG
and PLA specimens, a significantly larger area under the curve of the graph is obtained, i.e.,
absorption energy of the specimen. From the point of view of the impact of the UAV on the
objects, it is very favorable; however, larger displacements at lower load forces would lead
to problems in flight dynamics. Due to its high ductility, this material is suitable for use as
a matrix of a composite structure that is tested further.

Figure 18. Stress–strain diagram for S08 experimental measurements.

Furthermore, the CFF technology is considered, which enables the production of
reinforced composite materials such as parts reinforced with fiberglass. Anisotropy of
printed parts is present regardless of how the printing parameters are selected in the slicer;
however, in the case of composite structures, the printed polymer forms only a material
matrix that is equally printed in all layers of the part. The second part of the composite
structure, the fiberglass reinforcement, can be oriented differently to each printing layer. In
this research, four series of test specimens were considered. The first composite structure
of specimen S09 was made by concentric distribution of fibers in a standard test specimen,
and Figure 19 shows the test results. All other specimens of series S10, S11, and S12 have
an isotropic fiber arrangement with different fiber orientations, for which the results of
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the experimental test are shown in Figures 20–22. As can be expected, the most significant
increase in the value of the maximum tensile strength has the specimens with an increase
in the number of fiberglass reinforcement layers.

Figure 19. Stress–strain diagram for S09 experimental measurements.

Figure 20. Stress–strain diagram for S10 experimental measurements.

Figure 21. Stress–strain diagram for S11 experimental measurements.

Figure 22. Stress–strain diagram for S12 experimental measurements.

As previously described, due to the problem of clamping composite materials into
packs, increasing it to 16 layers makes clamping even more difficult. The higher the tensile
strength of the specimen, the more difficult it is to clamp; that is, by increasing the fibers,
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the tensile strength significantly increases in the axial direction of the test specimen but not
so much in the radial direction of clamping, so the test specimens break due to excessive
clamping. If it is not clamped enough, then slippage occurs, so there is a small range to
clamp the test specimen so that it does not break and, on the other hand, so that it does not
slip. Precisely because of these problems, only one specimen consisting of 16 layers was
tested. As expected, that specimen had an even higher tensile strength. For this reason, in
future work, testing on a different test device is planned.

4.2. Comparison of Maximum Stress for Different AM Technologies

For a better presentation and visualization of the results, bar charts are used with
the mean values of the maximum stress of each series of tested specimens. In the first
diagram shown in Figure 23, the values of maximum stress for specimens S01 to S06 made
of PLA and PETG materials using FDM technology on the Prusa printer are compared. The
diagram shown in Figure 24 shows specimens that actually represent the default parameters
for three different technologies and three different printers. Therefore, specimens S01 (PLA)
and S04 (PETG) regarding FDM, specimen S07 (PA12) regarding SLS, and finally, S08
(Onyx) regarding CFF/FDM are compared. The following is a comparison of the composite
materials that are the main focus of this research. Figure 25 shows all five series of specimens
that were produced on the Onyx 3D printer, including the unreinforced specimen S08 to
compare with the reinforced specimens.

Figure 23. Mean values of the maximum stress regarding PLA and PETG materials.

Figure 24. Mean values of the maximum stress regarding default print parameters for PLA, PETG,
PA 12, and Onyx materials.
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Figure 25. Mean values of the maximum stress regarding CFF technology using Onyx and fiberglass
reinforcement.

Onyx material from which specimen series 8 was produced is further used as a matrix
material for the production of series S09, S10, S11, and S12. Apart from the fact that the
type of reinforcement (concentric or isotropic) and the orientation of the fibers affect the
maximum stress, the number of layers in which the fibers are applied has the greatest
influence. Considering that of the specimens (S09, S10, S11), which are reinforced with
eight layers of fibers, specimen S11 with the highest maximum tensile strength, is further
considered, and the proportion of fibers is increased to 12. The specimen S12 with 12 fiber
layers orientation is obtained [30/45/60/0]12, which, as expected, gives the highest value
of maximum tensile strength. With 12 layers of fibers, the tensile strength is up to 164 MPa.
For one measurement that has been completed in the case of 16 fibers, the tensile strength
of 174 MPa was recorded.

5. Discussion

In this paper, the focus was on CFF technology, which enables the production of
multirotor UAV airframe parts more resilient to mechanical loads. For early development
and prototyping, it is most advantageous to use FDM technology due to the low cost and
faster model creation if mechanical properties are not crucial when prototyping and testing
the assemblies and subassemblies. The price of PLA and PETG materials is almost equal
and the lowest compared to other technologies, so it is taken as a reference for comparison
in terms of costs. Comparing the materials of FDM technology, PLA has a higher tensile
strength compared to PETG material for the same printing parameters. The difference
between the lowest and highest obtained tensile strength values for the tested materials is
not as significant as when changing the technology.

If higher tensile strength and stiffness of the structural airframe part are required, it is
more advantageous to use CFF technology because higher values are achieved compared to
FDM and SLS technologies. Although different mechanical properties can be obtained by
combining the proportion and orientation of the fibers as shown by the experiment, when
making the structural part, it is also necessary to consider the manufacturing costs [50].
Onyx material is approximately 10 times more expensive compared to PLA and PETG
materials per kilogram. By adding fibers for making composites, this price increases even
more, and compared to PLA is approximately 50 times higher. The powder material for
SLS technology used in this work is 13 times more expensive than PLA.

Regarding CFF technology, first, tests were carried out on unreinforced specimens
(S08), where the lowest values of tensile strength are obtained in relation to all considered
AM technologies and materials in this research. However, the highest ductility is obtained
for the same material as shown by experiments, which makes this material suitable as a
matrix for composite connection applying fiberglass. As possible matrix reinforcements,
Kevlar, carbon, and fiberglass can be used. According to the results in paper [51], the maxi-
mum tensile strength of the composite consisting of fiberglass reinforcement is higher than
Kevlar reinforcement but lower than carbon reinforcement. From the aspect of mechanical
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properties, carbon fiber reinforcements have better characteristics; however, compared
to fiberglass reinforcements, they are between 1.5 and 2 times more expensive. The char-
acterization of test specimens produced by CFF technology with different reinforcement
parameters was presented. It is evident from the test results that the considered materials
can be compared with aluminum alloys 5xxx and 6xxx, which are used for car frame
production, as shown in the paper [52]. In Europe, aluminum alloy 6016-T4 is used for the
outer panels of cars, whose yield strength is approximately 110 MPa.

In addition to the various technologies and materials examined in this paper and given
that the integration of other experimental setups is considered in future work, preliminary
testing of test specimens is conducted using a three-point flexural test [53]. Figure 26 shows
the equipment and the execution of the test. Universal testing machine Shimadzu AGS-X
5kN (Shimadzu, Kyoto, Japan) is used, standard ISO 178 [54], with a distance of 62 mm,
speed of 1%/min, and preload of 0.5N. Experimental testing of three series of three test
specimens was carried out, and the flexural modulus for the tested specimens is presented
in Table 3. Based on preliminary testing, a test framework will be established. Moreover,
the Charpy impact test will also be integrated into the material characterization process.

 

Figure 26. Three-point flexural test—equipment and test execution.

Table 3. Experimental data for three-point flexural test.

Specimen Series
Flexural Modulus (MPa)

Meas. 1 Meas. 2 Meas. 3 Mean

S03 2899 2860 2849 2869
S10 3638 3395 3581 3538
S11 3718 3726 3650 3698

6. Conclusions

It has been shown by experiments that even by using a concentric pattern of reinforced
material, the mechanical properties are significantly improved concerning tensile strength
and ductility, which is the goal of obtaining optimal construction of UAVs. The isotropic
reinforcement pattern has a higher proportion of fibers; therefore, higher tensile strength
and the orientation of the fibers can be modified. A typical way to elevate tensile strength
is by increasing the number of reinforcement layers, as shown by the literature and experi-
ments. This results in an increase in the price but also in an increase in production time.
In this paper, a contribution to previous research is provided in the form that different
fiber orientations were investigated with the aim of increasing the tensile strength for the
same proportion of fibers. Three orientations were tested, and the results are presented
for two, with the one having the lowest maximum tensile strength of 132 MPa and strain
of 6% has S10—[0/90/±45]8, which still exceeds the tensile strength properties of some
aluminum alloys. The highest value of maximum tensile strength of 136 MPa is obtained
for S11—[30/45/60/0]8. To achieve higher tensile strength, comparable to the 5xxx and
6xxx series aluminum alloys, an isotropic reinforcement pattern with the highest tensile
strength is investigated for the case of 12 and 16 reinforcement layers. For 12 layers, tensile
strength is up to 164 MPa, and for 16 layers, one measurement was carried out, and a
strength of 174 MPa was recorded, which is comparable to the considered aluminum alloys.
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Due to the similar requirements of the construction of UAVs to those of the automotive
industry, such as absorption energy, lower mass, and high strength, the composites tested
in this paper will be subject to extensive testing, which, in addition to the uniaxial test,
includes the three-point flexural test and the Charpy impact test. Moreover, the plan is
to analyze the microstructure and the specimens’ fracture. In future work, the goal is to
enable a more diverse and extensive comparison with aluminum alloys.
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Abstract: An approach to the implementation of a neural network for real-time cryptographic data
protection with symmetric keys oriented on embedded systems is presented. This approach is
valuable, especially for onboard communication systems in unmanned aerial vehicles (UAV), because
of its suitability for hardware implementation. In this study, we evaluate the possibility of building
such a system in hardware implementation at FPGA. Onboard implementation-oriented information
technology of real-time neuro-like cryptographic data protection with symmetric keys (masking
codes, neural network architecture, and matrix of weighting coefficients) has been developed. Due
to the pre-calculation of matrices of weighting coefficients and tables of macro-partial products
and the use of tabular-algorithmic implementation of neuro-like elements and dynamic change of
keys, it provides increased cryptographic stability and hardware–software implementation on FPGA.
The table-algorithmic method of calculating the scalar product has been improved. By bringing
the weighting coefficients to the greatest common order, pre-computing the tables of macro-partial
products, and using operations of memory read, fixed-point addition, and shift operations instead of
floating-point multiplication and addition operations, it provides a reduction in hardware costs for its
implementation and calculation time as well. Using a processor core supplemented with specialized
hardware modules for calculating the scalar product, a system of neural network cryptographic data
protection in real-time has been developed, which, due to the combination of universal and specialized
approaches, software, and hardware, ensures the effective implementation of neuro-like algorithms
for cryptographic encryption and decryption of data in real-time. The specialized hardware for neural
network cryptographic data encryption was developed using VHDL for equipment programming in
the Quartus II development environment ver. 13.1 and the appropriate libraries and implemented
on the basis of the FPGA EP3C16F484C6 Cyclone III family, and it requires 3053 logic elements and
745 registers. The execution time of exclusively software realization of NN cryptographic data
encryption procedure using a NanoPi Duo microcomputer based on the Allwinner Cortex-A7 H2+
SoC was about 20 ms. The hardware–software implementation of the encryption, taking into account
the pre-calculations and settings, requires about 1 msec, including hardware encryption on the FPGA
of four 2-bit inputs, which is performed in 160 nanoseconds.

Keywords: neural network (NN); cryptographic protection; UAV; UAS; onboard system; encryption;
decryption; tabular-algorithmic method; scalar product; real time

1. Introduction

Cryptographic protection of data transmission between the UAV and the remote-
control centre is important to ensure the confidentiality and integrity of the information
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transmitted. However, there are certain practical problems and influencing factors that
must be taken into account when developing a cryptographic protection system for data
transmission, specifically for UAVs. The main ones are limited computing resources;
ensuring requirements for energy consumption, dimensions, and weight of equipment;
provision of data transmission between the UAV and the remote control centre in real time;
ensuring the requirements for the cost of the system of cryptographic protection of data
transmission; algorithmic problems of cryptographic algorithms, which are associated with
security vulnerabilities and malicious attacks; limitation of physical access to means of
cryptographic protection; organization of an effective key management system; damage or
loss of data in the wireless transmission channel; and change in altitude and environmental
conditions that affect the quality of communication and data transmission.

The key problem is to guarantee the cryptographic security of data transmission
in the management of UAVs [1,2], intelligent robots [3], microsatellites [4], and various
mobile transport systems [5]. Due to the security vulnerabilities of UAVs and illegal
and malicious attacks against UAVs, especially against communication data and UAV
control, solutions to prevent such attacks are needed, and one of them is to encrypt UAV’s
communication data [6–8]. Unmanned aerial vehicles (UAVs) must be energy-efficient,
especially in data processing, because of limited battery capacity [9]. Solving this problem
requires the development of neural network (NN) technology [10–12] for cryptographic
data protection, which is focused on use in UAV onboard communication systems. When
developing onboard cryptographic data protection systems, it is necessary to provide a
real-time mode, increase cryptographic resistance and noise immunity, and reduce power
consumption, weight, size and cost [13–23]. The usage of an auto-associative NN of
direct propagation, which is trained on the basis of the principal components analysis,
helps to conform to such requirements. A specific feature of such neural networks is
the ability of weight pre-calculation and to apply the tabular-algorithmic method for the
implementation of neuro-like elements using the basis of elementary arithmetic operations.
For NN cryptographic encryption and decryption of data, it is proposed to use symmetric
keys, which include masking codes, NN architecture and a matrix of weights [24,25].

Through the extensive use of a modern component base and the development of
new VLSI methods, algorithms, and structures, high technical and operational rates of
onboard cryptographic data protection systems are achieved. Onboard systems for NN
cryptographic protection of data must have variable hardware for rapid changes in NN
architecture. The use of modern element base (microcontrollers, programmable logic in-
tegrated circuits FPGA) in the development of onboard and embedded systems makes it
possible to reduce their weight, size, and power consumption [26,27] and, in the develop-
ment of onboard systems of NN cryptographic, data protection provides a quick change of
encryption and decryption keys.

NN cryptographic encryption and decryption of data in real-time is achieved through
the application of parallel encryption and decryption of data, hardware implementation of
neuro-like elements based on a multi-operand approach and macro-partial products tables.

Therefore, the urgent problem is to propose an approach to the implementation of
NN for cryptographic data protection, focused on implementing onboard systems with
high technical and operational characteristics. The objective of the work is to study how to
implement the onboard NN for real-time cryptographic data protection. In order to achieve
this goal, the following tasks have to be solved:

• Development of the approach to NN cryptographic data protection;
• Development of the structure of the system of NN cryptographic protection and

real-time data transmission;
• Development of components of onboard systems of NN cryptographic encryption–

decryption of data;
• Implementation of the specialized hardware components of NN cryptographic data

encryption on FPGA.
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This article is structured as follows. In the Introduction, we have considered the
problem relevancy and the main objectives of this research. Section 2 contains a brief
review of the related works (the research context). The structure of NN technology for
cryptographic data protection is described in Section 3, and the main stages of NN data
encryption/decryption are considered here as well. Section 4 presents the structure of
the system for NN cryptographic data protection and transmission (stationery and UAV
onboard parts) developed using an integrated approach. The components of the onboard
system for NN cryptographic data encryption and decryption are proposed in Section 5,
and the diagrams for the specialized hardware are given.

2. Related Works

The study of the main trends in the area of UAV onboard systems development for
real-time cryptographic data protection shows that NN methods are increasingly used for
performing data encryption and decryption in such systems [28–32]. These publications
show that the implementation of NN methods of cryptographic data protection is generally
performed by software. The critical drawback of software implementation of NN crypto-
graphic data protection is the difficulty of providing a real-time mode and the constraints
imposed on onboard systems in terms of weight, size, power consumption, and cost.

The possibilities of adapting the auto-associative NN with non-iterative learning for
data protection tasks are considered in [28–32]. The peculiarity of the functioning of such
an NN is the preliminary calculation of weights as a result of its training based on the
principal component analysis (PCA). In this case, a system of eigenvectors is used that
corresponds to the eigenvalues of the covariance matrix of input data [33]. To encrypt and
decrypt data, the auto-associative NN with pre-calculated weights is applied. In [34], it was
shown that for the masking codes, the architecture of the NN and the matrix of weights are
the basis for cryptographic encryption and decryption of data in neural networks.

Publications [35–37] are devoted to the hardware implementation of neural networks,
showing that they are based on neural elements. The feature of such neural elements is that
the number of inputs and their bit length are determined by the NN architecture, which
is one of the characteristics of the data encryption key. The main operation of the neuro
element is the calculation of the scalar product using pre-calculated weights.

In [37–39], the methods for calculating the scalar product using the basis of elementary
arithmetic operations, addition and shift, are considered. The peculiarity of these meth-
ods is the formation of macro-partial products, their shift, and addition to the previously
accumulated amount. Hardware implementation of such methods requires significant
equipment costs. The implementation of a tabular-algorithmic method for calculating
the scalar product, which is reduced to the operations of reading macro-partial products,
addition and shift, requires fewer equipment costs and less computation time. The dis-
advantage of this method is that it is limited to fixed-point data format (for input data
and weights).

Analyzing the works [31,40,41], it can be noted that NN tools for cryptographic
symmetric encryption and decryption of data [42] are implemented on the basis of micro-
processors supplemented by hardware that implements time-consuming computational
operations using FPGA [43]. The high speed of NN tools for cryptographic encryption
and decryption of data is achieved through parallelization, pipeline computing processes,
and hardware implementation of neural elements. The disadvantage of the existing NN
tools for cryptographic data protection is the difficulty of changing the encryption and
decryption key rapidly.

3. The Approach to NN Implementation for Cryptographic Data Protection

3.1. Structure of NN Technology of Cryptographic Data Protection

The implementation of NN for cryptographic protection of data transmission is fo-
cused on hardware and software implementation with high technical and operational
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characteristics. It is proposed that to carry out such implementation on the basis of an
integrated approach includes the following:

• Research and development of theoretical foundations of neuro-like cryptographic data
protection;

• Research and development of new algorithms and structures of neuro-like encryption
and decryption of data focused on modern element base;

• Modern element base with the ability to program the structure;
• The means for automated design of software and hardware.

Figure 1 shows the developed structure of NN technology for cryptographic data
protection, which is focused on hardware implementation and provides encryption with
symmetric keys. When implementing the symmetric cryptosystem, the encryption key
and the decryption key are the same, or the decryption key is easily calculated from the
encryption key.

Calculation of the 
macro-partial 

product table for 
data encryption. 

NN tabular-
algorithmic data 

encryption

Formation of the 
weight matrix for 
data decryption

Calculation of the 
macro-partial 

product table for 
decryption of 

encrypted data.

NN tabular-
algorithmic 

decryption of 
encrypted data

Configuration of the 
NN architecture for 

the decryption of 
encrypted data

Figure 1. Structure of NN technology for cryptographic data protection: (a) the process of data
encryption; (b) the process of decrypting data.

For hardware implementation, the proposed technology is based on the selection
of auto-associative neural networks, which are trained non-iteratively. This allows us to
calculate the matrix of weighting coefficients in advance and to store them in the lookup
tables since they will be fixed for the selected NN configuration. The calculation of the
output of the neuro-like element of this NN can be represented as the sum of the products
of the weighting coefficients and the input data to be encrypted. To implement a quick
calculation on the FPGA of the product of the fixed weighting coefficients and the input
data, a table-algorithmic method of their calculation is applied. The tabular-algorithmic
method makes it possible to implement high technical and operational characteristics of
data encryption–decryption tools. A combination of these approaches ensures the effective
implementation of FPGAs. The details of the above-mentioned steps are described further
in the article.

A specific feature of the proposed technology is the pre-calculation of matrices of
weighting coefficients for possible variants of neural networks and the use of the tabular-
algorithmic method for the implementation of neuro elements. Such pre-calculation of
matrices and tables provides the possibility of dynamically changing keys and, accordingly,
increasing cryptographic stability. The use of elementary arithmetic operations in fixed-
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point format for the hardware tabular-algorithmic implementation of the neuro element
provides a reduction in hardware costs when building specialized hardware modules.

Ensuring the real-time mode when encrypting (decrypting) data can be achieved by
selecting the necessary number of specialized hardware modules and reducing the time
of calculating the scalar product in such modules. It is possible to reduce the time of
calculating the scalar product by using an algorithm that provides for submitting g bit
slices to the address inputs of g tables of macro-partial products. Using such an algorithm
reduces the time of calculating the scalar product by g times.

3.2. Main Stages of NN Encryption

The encryption uses a key consisting of N neurons in the NN, a weight matrix, and
masking operations. The main stages of message encryption are considered below.

Choice of NN architecture. The number of neuro elements N, the number of inputs k,
and the bit inputs m determine the architecture of the NN. The number of neural elements
is defined according to the following formula:

N =
n
m

, (1)

where n is the bit length of the message, and m is the bit length of the inputs.
The incoming messages, which are encrypted, can have different bit lengths (n) and

different inputs number (k), which is equal to the number of neuro elements N. The
architecture of the NN depends on the value of the bit length of the message n and the
number of inputs k. Such configuration of the NN architecture is available to encrypt the
n = 16 bit message: m = 2, k = 8, N = 8; m = 4, k = 4, N = 4; m = 8, k = 2, N = 2, in
case of n = 24 they are: m = 2, k = 12, N = 12; m = 3, k = 8, N = 8; m = 4, k = 6, N = 6,
m = 6, k = 4, N = 4; m = 8, k = 3, N = 3; m = 12, k = 2, N = 2.

Calculation of the weight matrix. For data encryption–decryption, we will use an auto-
associative NN, which learns non-iteratively using the principal components analysis
(PCA), which performs a linear transformation following the formula

y = W · x (2)

According to Equation (2), the matrix W ∈ Rn×n is used to convert the input vector
x ∈ Rn into the output vector y ∈ Rn. The conversion is as follows. A system of linearly
independent vectors selects an orthonormal system of eigenvectors corresponding to the
eigenvalues of the covariance matrix of the input data.

The input data is a set of N vectors xj, j = 1, . . . N, with dimension n,
xj =

(
xj1, xj2, . . . , xjn

)
:

X = (x1, x2, . . . , xN)
t. (3)

For N vectors, the autocovariance matrix xj is

R = Xt · X, (4)

where each of the elements is expressed by

rjl =
N

∑
i=1

xjl xil =
N

∑
i=1

(
xji − μj

)
(xil − μl), (5)

where j, l = 1, 2, . . . , n, and μj; μl—mathematical expectations of vectors xj, xl .
The eigenvalues of R symmetric non-negative matrix are real and positive numbers.

They are arranged in descending order λ1 > λ2 > . . . > λn. Similarly, the eigenvectors cor-
responding to λi are placed. Therefore, a linear transformation (2) is defined by the matrix
W. Here, y = (y1, y2, . . . , yn) is a vector of the PCA principal components corresponding
to the input data vector x. The number of principal components vectors N conforms with
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the number of input data vectors x [29]. The matrix of weights used to encrypt the data is
as follows: ∣∣∣∣∣∣∣∣∣

W11 W12 · · · W1k
W21 W22 · · · W2k

...
... · · · ...

WN1 WN2 · · · WNk

∣∣∣∣∣∣∣∣∣. (6)

The basic operation of the NN used to encrypt data is the operation of calculating
the scalar product. This operation should be implemented using the tabular-algorithmic
method because the matrix of weights Wjs, where j = 1, . . . , N, s = 1, . . . , k,
is pre-calculated.

Calculation of the table of macro-partial products for data encryption. The specificity of
the scalar product calculation operation used in data encryption is that the weights are
pre-calculated (constants) and set in floating point format, and the input data Xj is in
fixed point format with its fixing before the high digit of a number. The scalar product is
calculated by means of the tabular-algorithmic method according to the formula

Z =
N

∑
j=1

WjXj =
n

∑
i=1

2−i
N

∑
j=1

WjXji =
n

∑
i=1

2−i
N

∑
j=1

Pji =
n

∑
i=1

2−iPMi, (7)

where N is the number of products; Xj is the input data; Wj is the j-th weight coefficient; n
is the bit length of the input data; Pij is the partial product; and PMi is the macro-partial
product formed by adding N partial products Pij, as follows: PMi = ∑N

j=1 Pji.
Formation of the tables of macro-partial products for floating-point weights

Wj = wj2
mWj (where wj is the mantissa of Wj weight coefficient; mWj is the order of

Wj weight coefficient) foresees the following operations to be performed:

• Defining the largest common order of weights mWmaxc;
• Calculation of the order difference for each Wj weight coefficient: ΔmWj = mWmaxc − mWj ;
• Shift the mantissa wj to the right by a difference of orders ΔmWj ;
• Calculation of PMi macro-partial product for the case when x1i = x2i = x3i = . . . = xNi = 1;
• Determining the number of overflow bits q in the PMi macro-partial product for the

case when x1i = x2i = x3i = . . . = xNi = 1;
• Obtaining scalable mantissas wh

j by shifting them to the right by the number of
overflow bits;

• Adding to the largest common order of weight mWmaxc the number of overflow bits q,
as per the formula mj = mWmaxc + q.

The table of macro-partial products is calculated by the formula

PMi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i f x1i = x2i = x3i = . . . = xNi = 0
wh

1, i f x1i = 1, x2i = x3i = . . . = xNi = 0
wh

2, i f x1i = 0, x2i = 1, x3i = . . . = xNi = 0
wh

1 + wh
2, i f x1i = 1, x2i = 1, x3i = . . . = xNi = 0

...
wh

2 + . . . + wh
N , i f x1i = 0, x2i = x3i = . . . = xNi = 1

wh
1 + wh

2 + . . . + wh
N , i f x1i = x2i = x3i = . . . = xNi = 1

, (8)

where x1i, x2i, x3i, . . . , xNi address inputs of the table, and wh
j is the mantissa of Wj weight

coefficient brought to the greatest common order.
The possible combinations number of PMi macro-partial products and the table size

are as follows:
Q = 2N . (9)
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By dividing all N products by parts N1 and N2, we can reduce the table size. For each
of these parts, separate tables of macro-partial products PN1Mi and PN2Mi are formed and
stored in separate memory blocks or a single memory block. When using two memory
blocks, parts of the macro-partial products PN1Mi and PN2Mi are read in one clock cycle and
in one memory block—in two clock cycles. The sum of two macro-partial products PN1Mi
and PN2Mi gives us the macro-partial product PMi.

NN tabular-algorithmic data encryption. During the training of the NN, the matrix of
weights W is determined. Figure 2 shows the structure of auto-associative NN used for
data encryption. Here, Mj is the mask for the j-th input, xj is the j-th input data, and XOR
is the masking operation using the exclusive OR elements.

Figure 2. The structure of the data encryption NN.

To perform the NN data encryption, we multiply the W matrix by the input data
vector x according to the formula

yj =

∣∣∣∣∣∣∣∣∣
W11 W12 · · · W1k
W21 W22 · · · W2k

...
... · · · ...

WN1 WN2 · · · WNk

∣∣∣∣∣∣∣∣∣×
x1
x2
...

xk

. (10)

The multiplication of the matrix of weights W by the vector of input data x is reduced
to performing N scalar product calculations:

yj =
k

∑
s=1

Wjsxs (11)

where k—number of products, s = 1, 2, . . . , k; j = 1, 2, . . . , N.
The calculation of scalar products will be achieved using the tabular-algorithmic

method, where the weights Wjs are set in floating-point format, and the input data xs is in a
fixed-point format with fixation before the highest digit. Tabular-algorithmic calculation
of the mantissa of the scalar product is reduced to reading the macro-partial product PMi
from the j-th table (memory) at the address corresponding to the i-th bit slice of N input
data, and adding it to the before accumulated sums according to

yMji = 2−1yMj(i−1) + PMji, (12)

where yMj0 = 0, i = 1, . . . , m, and m is the bit length of the input data. The number of
tables of macro-partial products corresponds to N—the number of rows of the matrix (10).
The result of calculating the scalar product yj consists of the mantissa yMj and the order mj.
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The time required to compute the mantissa of the scalar product (SP) is determined by
the formula

tSP = m
(
ttable + treg + tadd

)
, (13)

where tSP is the time of calculation of the scalar product, ttable is the time of reading from
the table (memory), treg is the time of reading (writing) from the register, and tadd is the
time of adding.

Data encryption can be performed either sequentially or in parallel, depending on the
speed required. In the case of sequential encryption, the encryption time is the result of
the formula

tencrypt = Nm
(
ttable + treg + tadd

)
, (14)

where tencrypt is the time required for encryption. The encryption time can be reduced by
performing N operations of calculating the scalar product in parallel.

As a result of NN data encryption, we obtain N encrypted data in the form yj = yMj2
mj ,

where yMj is the mantissa at the j-th output, and mj is the order value at the j-th output. It
is advisable to bring all encrypted data to the highest common order for transmission, and
such reduction to the greatest common order is performed in three stages:

• Define the greatest order mencr;
• For each encrypted data yj, calculate the difference between the orders Δmj = mencr − mj;
• By performing shift of the mantissa yMj to the right by the difference of orders Δmj,

we obtain mantissa of the encrypted data yh
Mj reduced to the greatest common order.

The mantissa of the encrypted data yh
Mj reduced to the largest common order and the

largest common order mencr are sent for decryption.

3.3. The Main Stages of NN Cryptographic Data Decryption

Now the encrypted data presented by mantissa yh
Mj reduced to the largest common

order mencr need to be decrypted. The encrypted data will be decrypted according to the
following procedure.

Configuration of the NN architecture for the decryption of encrypted data. The architecture
of the NN for the decryption of encrypted data, in terms of the number of neural elements,
is the same as the architecture of the NN used for the encryption of data. In this NN, the
number of inputs and the number of neurons corresponds to the number of the encrypted
mantissa yh

Mj. The NN architecture used to decrypt encrypted data is presented in Figure 3.

Figure 3. The NN architecture for decryption of encrypted data.

The bit rate of the inputs during decryption corresponds to the bit rate of the encrypted
mantissa yh

Mj. Its value determines the decryption time, and to reduce it, the lower bits of
the mantissa may be discarded because they will not affect the original message recovery.
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Formation of the weight matrix. The matrix of weights for decrypting encrypted data is
formed from a matrix of weights for encrypting input data by transposing it:∣∣∣∣∣∣∣∣∣

W11 W12 · · · W1k
W21 W22 · · · W2k

...
... · · · ...

WN1 WN2 · · · WNk

∣∣∣∣∣∣∣∣∣
T

=

∣∣∣∣∣∣∣∣∣
W11 W21 · · · WN1
W12 W22 · · · WN2

...
... · · · ...

W1k W2k · · · WNk

∣∣∣∣∣∣∣∣∣. (15)

The basic operation for the encryption of input data and decryption of encrypted data
is the calculation of the scalar product, which is implemented using a tabular-algorithmic
method.

Calculation of the table of macro-partial products for decryption of encrypted data. A specific
feature of the scalar product calculation operation used to decrypt encrypted data is that the
weights are pre-calculated (constants) and set in floating-point format, while the encrypted
data yj are received in block-floating-point format. The calculation of the scalar product
using the tabular-algorithmic method is performed by Equation (7). Preparation and
calculation of possible variants of macro-partial products are performed as in the previous
case under Equation (8).

The amount of encrypted data determines the number of macro-partial products PMi
and the size of the table. The largest common order mPms is computed for each table.

NN tabular-algorithmic decryption of encrypted data. The NN decryption is specified by
multiplying the W matrix by the encrypted data vector y:

xs =

∣∣∣∣∣∣∣∣∣
W11 W21 · · · WN1
W12 W22 · · · WN2

...
... · · · ...

W1k W2k · · · WNk

∣∣∣∣∣∣∣∣∣×
y1
y2
...

yN

. (16)

The multiplication of the weights matrix WT by the input data vector y is reduced to
performing N scalar product calculations:

xs =
N

∑
j=1

Wsjyj (17)

where N is the number of products, and s = 1, 2, . . . , k; j = 1, 2, . . . , N.
Tabular-algorithmic calculation of the mantissa of the scalar product is reduced to

reading the macro-partial product PMi from the table (memory) at the address correspond-
ing to the i-th bit-slice of k input data, and adding it to the previously accumulated sums,
according to the formula

xMsi = 2−1yMs(i−1) + PMsi, (18)

where xs0 = 0, i = 1, . . . , g, and g is the bit rate of the encrypted data. The time necessary
to calculate the scalar product mantissa is defined under the formula

tSP = g
(
ttable + treg + tadd

)
, (19)

where tSP is the time for scalar product calculation, ttable is the time for reading from a table
(memory), treg is the time of reading (writing) from the register, and tadd is the time for
adding. The result of the calculation of the xs scalar product consists of a mantissa xMs and
order, which is equal to mdecrs = mPMs + mencr.

At the output of the NN (see Figure 3), we obtain k decrypted data in the following
form xs = xMs2mdecrs , where xMs is the mantissa at the s-th output, and mdecrs is the value
of the order at the s-th output. To obtain the input data, it is necessary to shift the s-th
mantissa xMs by the value of the order mdecrs.
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4. The Structure of the System for NN Cryptographic Data Protection and Transferring
in Real-Time Mode

The development of the structure of the system for NN cryptographic data protection
and transmission in real-time will be carried out using an integrated approach, which
contains the following:

• Research and development of theoretical foundations of NN cryptographic data
encryption and decryption;

• Development of new tabular-algorithmic algorithms and structures for NN crypto-
graphic data encryption and decryption;

• Modern element base, development environment and computer-aided design tools.

A system for NN cryptographic data protection in real-time was developed using the
following principles:

• Changeable composition of the equipment, which foresees the presence of the proces-
sor core and replaceable modules, with which the core adapts to the requirements of a
particular application;

• Modularity, which involves the development of system components in the form of
functionally complete devices;

• Pipeline and spatial parallelism in data encryption and decryption;
• The openness of the software, which provides opportunities for development and

improvement, maximising the use of standard drivers and software;
• Specialising and adapting hardware and software to the structure of tabular algorithms

for encrypting and decrypting data;
• The programmability of hardware module architecture through the use of programmable

logic integrated circuits.

In order to provide neural-like encryption and decryption of data arrays in real time, it
is necessary that encryption and decryption occur without accumulating delays. Encrypting
(decrypting) an array of h messages in real time imposes a time limit for their encryption
(decryption), which must meet the following:

htE/De ≤ ta, (20)

where tE/De is the time of encryption (decryption) of one message, and ta is the time of
arrival of h messages, which is determined as follows:

ta =
hn

Fdsnk
, (21)

where n is the bit rate of the message, s is the number of channels through which the
message is received, nk is the bit rate of the channels, and Fd is the frequency of message
arrival.

Knowing the time ta, it is possible to determine the encryption (decryption) time of
one message tE/De according to the following formula:

 
(22)

In the case of the NN approach to encryption (decryption), it is proposed to supple-
ment the processor core with the specialized modules that implement neural elements in
hardware to ensure real time. The number of specialized modules and the time of calcula-
tion of the scalar product in such modules should ensure the fulfilment of the condition
tE/De ≤ ta/h. It is possible to choose the time of calculation of the scalar product by using
an algorithm that involves the use of q tables of macropartial products for calculation by
applying q bit slices to their address inputs. The use of such an algorithm reduces the time
of calculating the scalar product by q times.
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The system of NN cryptographic real-time data protection and transmission consists of
a stationary part, which is a remote-control centre, and a UAV onboard part. The structure
of the stationary part of the system of NN cryptographic data protection and transmission
is shown in Figure 4.

 
Figure 4. Structure of the stationary part of the system of NN cryptographic data protection and
transmission.

The processor core of the remote-control center is implemented on the basis of a
personal computer. The transceiver is used to transmit encrypted data; it communicates
with the processor core through the interface based on a microcontroller.

The UAV onboard part of the system for NN cryptographic real-time data protection
and transmission is implemented on the processor core, which is supplemented by dedi-
cated hardware and software. The processor core of the UAV onboard part of the system
is designed on a microcomputer. The structure of the onboard part of the system of NN
cryptographic data protection and receiving is depicted in Figure 5.

Figure 5. Structure of the UAV onboard part of the system of NN cryptographic data protection and
transmission.

The effective implementation of NN encryption–decryption and encoding–decoding
algorithms in real time is achieved by combining universal and customized software and
hardware. The use of modern elements (microcomputer, microcontroller, FPGA) in the
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development of the UAV onboard part ensures the accomplishment of the requirements for
weight, dimensions and energy consumption.

The effectiveness of the system for NN cryptographic real-time data protection and
transmission is directly associated with the choice of both hardware and software imple-
mentation.

5. Development of the Components of the Onboard System for NN Cryptographic
Data Encryption and Decryption

In general, the problem of developing onboard systems for NN cryptographic
encryption–decryption of data can be formulated as follows:

• To develop an algorithm for the onboard system of NN encryption–decryption of data
and present it in the form of a specified flow graph;

• To design the structure of the onboard system for NN data encryption–decryption
with the maximum efficiency of equipment use, taking into account all the limitations
and providing real-time data processing;

• To determine the main characteristics of neural elements and carry out their synthesis;
• To choose exchange methods, determine the necessary connections and develop algo-

rithms for exchange between system components;
• To determine the order of implementation in time of NN data encryption–decryption

processes and develop algorithms for their management.

Components of the onboard system of NN cryptographic data encryption and de-
cryption should provide the implementation of the selected NN, ability to change masks,
and calculate matrices of weights Wj and tables of macro-partial products PMi for possi-
ble NN options. To effectively implement the components of the onboard system of NN
cryptographic encryption–decryption of data, it is proposed to use hardware–software
implementation of the algorithms based on a microcontroller supplemented by specialized
hardware. The structure of the component of NN cryptographic data encryption, which
meets such requirements, is presented in Figure 6, where MC is the microcontroller, MN is
the mask node, MP is the macro-partial product, Rg is the register, and Add is the adder.

Figure 6. Structure of the component of NN cryptographic encryption of data.

The developed component of NN cryptographic data encryption has a variable com-
position of equipment, which is based on the core of the system and a set of modules for
calculating the scalar product. The system core is constant for all applications and consists
of microcontroller MC, mask node MN, keys memory, and module of the shaper of the NN
architecture and bit slices of input data. The scalar product calculation modules implement
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the basic operation of the tabular-algorithmic method of scalar product calculation under
the formula

Zi = 2−1Zi−1 + PMi, (23)

where Z0 = 0.
The number of modules for calculating the scalar product depending on the required

speed is determined by the following formula:

s =
N
2v , (24)

where N is the number of neuro-like elements, and v = 0, . . . , d, d = log2N. The system of
NN cryptographic data encryption reaches its highest speed when the number of computa-
tional modules of the scalar product corresponds to the number of neural elements N. To
ensure real-time data encryption, it is proposed to implement the scalar product calculation
modules, mask node module (MN), and module of the shaper of NN architecture and bit
slices of the input data in the form of specialized hardware.

The NN cryptographic data encryption component works as follows. Before encrypt-
ing the data, the MC configures the NN architecture (determines the number of neural
elements N, the number of inputs k and their bit-size m). For the selected NN architecture
matrix of weights Wj and tables of PMi macro-partial products are calculated by MC, and
then they are written in the memory of MP. In addition, the masks selected from the keys’
memory are stored in the MN node. The message X to be encrypted comes to input of MN
in fixed-point format; here, it is masked. The masked message X∗ from the output of MN
comes to input of the module of the shaper of NN architecture and bit slices, where it is
divided into N groups with m bit rate and bit slices are formed x1i, . . . , xNi. It should be
noted that forming of bit slices x1i, . . . , xNi begins with lower bits. The formed bit slices
x1i, . . . , xNi are the addresses for reading macro-partial products PMi from the MP memory.
The read macro-partial product PMi is written to the Rg1 register. The adder (Add) performs
a summation of macro-partial products PMi as per Equation (23). The number of cycles
required to calculate the scalar product is determined by the bit size of input m. Control
of the encryption process in the onboard system of NN cryptographic data encryption is
performed by MC.

The structure of the component of NN cryptographic data decryption is shown in
Figure 7, where DCSB is the decryption component setting block, and x∗j ¯j-th masked
initial data.

Figure 7. Structure of the component of NN cryptographic decryption of data.
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The NN cryptographic data decryption component with symmetric keys works as
follows. Before the start of data decryption, a key arrives, which, with the help of DCSB,
configures the architecture (the number of N neuro-like elements) of the NN. For the
selected NN architecture, the matrix of weighting coefficients Wj and the table of macro-
partial products PMi are calculated using DCSB, and the mask digits are recorded in the
MN node. Encrypted data y1, . . . , yN in floating-point format are sent to the input of
the DCSB, in which the order alignment of the encrypted data and the formation of bit
sections of the mantissas of the encrypted data y1i, . . . , yNi are performed. Alignment of
the orders of the encrypted data y1, . . . , yN is performed by determining the maximum
order mmaxy, calculating the difference of orders for each yj of the encrypted number
Δmyj = mmaxy − myj , and shifting the mantissa of each number to the right by the amount
Δmyj . After the alignment of the orders, the formation of bit cuts of the mantissa of the
encrypted numbers y1i, . . . , yNi is performed, starting with the lowest digits.

The bit cuts y1i, . . . , yNi obtained at the output of the DCSB are the address for reading
from the MP memory of the macro-partial product PMi, which are used in the proposed
table-algorithmic calculation of the scalar product. Calculated macro-partial PMi product
is recorded in the register Rg1. With the help of the adder Add, the summation of macro-
partial products PMi is performed according to Equation (23). The number of cycles required
to calculate the scalar product is determined by the mantissas of encrypted numbers ny.
Management of the process of decryption of encrypted data is performed using MC.
Decrypted masked initial data x∗1 , . . . , x∗N are received at the inputs of the MN, at the output
of which we receive the initial data x1, . . . , xN .

The process of decrypting encrypted data takes much longer than the encryption pro-
cess. The number of cycles required to calculate the scalar product during data decryption
has increased by q =

⌈
ny
m

⌉
times, where � �—the sign of rounding up to a larger whole

number, ny is the digits number of the mantissa of the encrypted data, and m is the digits
number of the input data x1, . . . , xN . It is possible to reduce the time of calculating the
scalar product by using an algorithm that provides for the submission of q bit slices to the
address inputs of q tables of macro-partial products. The use of such an algorithm reduces
the time of calculating the scalar product by q times.

6. Results and Discussion

For experimental verification of the proposed NN technology for cryptographic protec-
tion of data transmission system, the simulation was performed. Currently, the hardware
description languages such as VHDL, VHDL-AMS, Verilog, and Verilog-AMS are widely
used for creating behavioral descriptions and models of digital, analog, and mixed-signal
devices and systems [44,45].

The design of specialized onboard hardware systems for NN cryptographic data
encryption was performed in the VHDL hardware programming language in the Quartus
II ver. 13.1 development environment using its libraries. The Quartus II development
environment supports the entire process of designing specialized hardware, from user
input to FPGA programming and debugging of both the chip itself and the tools as a whole.

A schematic diagram of the specialized hardware components of NN cryptographic
data encryption is shown in Figure 8. The inputs of module XOR_Mask1_4_2:
X [7..0]—are the input data; Clk—input sync for input data download; X_Mask [7..0]—8-bit
mask. At the output of this block, N vectors with bit length m are formed. Synchronization
is implemented on the leading edge of Clk pulses.

Block V_Cutter with N = 4 input vectors of bit length m = 2 consists of N registers of
parallel-serial type and forms vertical bit slices. Input data: Data_1 [n-1..0], . . ., Data_N [n-
1..0]—N input vectors with bit length n; Clk—pulses of synchronization of forming vertical
bit slices; Reset—the signal of the initial reset in the “0” output of the registers R_Par_Ser;
Load—the signal to allow data to be loaded into the R_Par_Ser registers. Outputs: V_Out1,
. . ., V_OutN—vertical bit slice. The formation of vertical sections begins with the lower bit.
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Figure 8. A circuit of the specialized hardware components of NN cryptographic data encryption.

The weights of the NN with N = 4 inputs with a bit length of m = 2 are stored in the
FPGA ROM in the form of four tables. Each of them consists of 16 words with a bit length
of 32 bits. Reading data from these tables is performed using blocks ROM_W_4_2_1, . . .,
ROM_W_4_2_4.

Inputs of these blocks: addr [3..0]—the address of the cell of the table from which the
data will be read; clk—synchronization pulses for reading data from the table. Synchro-
nization is implemented on the leading edge of the pulses clk. Output: q [31..0]—data read
from the cell with the input address.

The data read from the tables is transmitted to the input blocks Shift_EXP, which
perform their multiplication by 2j, where j = 0, . . . , n − 1. Upon receipt of this block of
data corresponding to the zero digit, the bit counter is reset. Synchronization of this block
is carried out by means of clock pulses Clk. At the output X_Out [0..31], we obtain the
input data multiplied by 2j.

From the output of the Shift_EXP blocks, the data are sent to one of the inputs of
the adders FP_ADD. The other input of the adders is connected to their output. Adder
input signals: clk—synchronization pulses; reset—signal to reset the input data opa when
implementing the adder with the battery; opa [0..31], opb [0..31]—terms. On the leading
edge of the first pulse clk, the adders are loaded into the adder, and on the leading edge of
the second pulse, the received sum is displayed. Adder output: the sum add [0..31].

From the output of the adders, FP_ADD data is fed to the input of the block XOR_
Mask2_32, which performs the overlay of the 32-bit mask. Inputs of the block XOR_Mask2_
32: X [31..0]—encrypted output data; Clk—synchronization of input data download;
X_Mask [31..0]—32-bit mask. Block output: vector Y [31..0]. Synchronization is imple-
mented on the leading edge of Clk pulses. The encrypted data are obtained at the outputs
D_Out_1, D_Out_2, D_Out_3, D_Out_4.

The timing diagram of the specialized hardware of NN cryptographic data encryption
is presented in Figure 9.

The time diagram (Figure 9) shows an example of NN cryptographic encryption of
eight-bit data, which are received in binary code at inputs X_In X [7..0]. An 8-bit mask
170 = 0xAA is received at the X_Mask [7..0] inputs, which is set using the lpm_const_XOR1
component (Figure 7). It is used to mask input data using the XOR operation. For
input X_In_1—01001100 XOR 10101010 = 11100110; for input X_In_2—01010100 XOR
10101010 = 11111110. For the first number 01001100 at the outputs Y_1[1. . .0], Y_2[1. . .0],
Y_3[1. . .0], Y_4[1. . .0] of the XOR_Mask1_4_2 block, we obtain 11, 10, 01, and 10, respec-
tively. When encrypting the first vector of input data at the Adr outputs, we obtain 4-bit
slices starting from the lowest bits, which are sent to the address inputs of ROM_W4_2_1,
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ROM_W4_2_2, ROM_W4_2_3, and ROM_W4_2_4 blocks. These lookup tables contain
pre-calculated neuro elements’ weights.

Figure 9. The timing chart of the specialized hardware of NN cryptographic data encryption.

For lower bits 1010 from ROM_W4_2_1 block, the 32-bit macro-partial product BEE-
BAE00 is read, which is fed to the input D_In_1 and to the input of the first block Shift_EXP,
which performs the multiplication operation by shifting by 2j, where j = 0, . . . , n − 1. At
the output of the first block Shift_EXP and at the input D_In_2, we obtain BEEBAE00. For
the next 1101 bits, the 32-bit macro-partial product 3ED81E40 is read from the ROM_W4_2_1
block. At the output of the first block Shift_EXP and at the input D_In_2, we obtain the
macro-partial product multiplied by two, which is equal to 3F581E40.

In the first adder FP_ADD, we sum up the data from the outputs of the first block
Shift_EXP and obtain the sum (its value is not displayed on the time charts), which is sent
to the first block XOR_Mask2_32. In the first block, XOR_Mask2_32, the XOR operation is
performed with the sum in IEEE 754 format and mask 2852192170 = 0xAA00FFAA. At the
D_Out_1 output, we obtain the encrypted value 0x94C4712A.

For input data with a dimension of 1 byte X_In = {01001100}, we obtain an encrypted
value with a dimension of 16 bytes D_Out_1 = 0x94C4712A; D_Out_2 = 0x153912B0;
D_Out_3 = 0x6A69F209; D_Out_4 = 0x6A01F74C.

The implementation of the specialized hardware for NN cryptographic data encryption
based on the FPGA EP3C16F484C6 Cyclone III family [46] requires 3053 logic elements and
745 registers. Approximately 160 nanoseconds are required to encrypt one input vector.

For comparison with the above-described hardware implementation on FPGA, the
same components were implemented exclusively as the software. The components were
created in the C language using the Code::Blocks development environment version 20.03.
The execution time of a similar NN cryptographic data encryption procedure using a
NanoPi Duo microcomputer based on the Allwinner Cortex-A7 H2+ SoC was about
20 ms. The results of the comparison allow us to see a significant gain in time for the
implementation of NN cryptographic data encryption and decryption.

The authors understand the importance of the issue of cryptographic stability. How-
ever, this is beyond the scope of this study. The security of the neural network cryptographic
approach mainly depends on the length of the key, which is determined by the masking
codes, the neural network architecture, and the floating-point weighting matrix, as well
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as on the frequency of its change. The length of the key depends on the number of neural
elements N, which determine the size of the matrix of weighting coefficients.

The operation of onboard communication cryptographic systems for UAVs can be
exposed to an attack on the secret key by breaking, through which it is possible to gain
access to protected data. However, the time and resources required to crack the key and
decrypt the encrypted data depend on the complexity of the algorithm for calculating
the floating-point weighting matrix and the decryption algorithm. The number of opera-
tions required to calculate the matrix of weighting coefficients is approximately equal to
N2n arithmetic operations (where n is the data bit width), and the number of operations
required to decrypt encrypted data approximately equals N2 operations of multiplying
floating-point numbers and N2 operations of adding floating-point numbers. Therefore, the
computational complexity of the proposed NN approach is high. Obviously, the evaluation
of security analysis could be performed in further studies.

7. Conclusions

The approach to the implementation of neural networks for cryptographic protection
of data transmission at UAV onboard communication systems has been presented in this
work. This paper describes the UAV onboard system for NN cryptographic data protection
in real-time using an integrated approach based on the following principles: variable
equipment composition; modularity; conveyorization and spatial parallelism; software
openness; and suitability for hardware implementation on FPGA.

The information technology of real-time neuro-like cryptographic data protection with
symmetric keys (masking codes, neural network architecture, and matrix of weighting
coefficients) oriented for onboard implementation has been developed. Due to the pre-
calculation of matrices of weighting coefficients and tables of macro-partial products, use
of tabular-algorithmic implementation of neuro-like elements, and dynamic change of
keys, it provides increased cryptographic stability and hardware–software implementation
on FPGA.

The table-algorithmic method of calculating the scalar product has been improved,
by bringing the weighting coefficients to the greatest common order, pre-calculating the
tables of macro-partial products and using instead of floating-point multiplication and
summation the operations of reading from memory, fixed-point summation and shift, it
provides a reduction hardware costs for its implementation and calculation time.

A real-time neural network cryptographic data protection system has been developed
on the basis of a processor core supplemented with specialized hardware modules for
calculating the scalar product, which, due to the combination of universal and specialized
approaches, software and hardware, ensures the effective implementation of neuro-like
algorithms for real-time cryptographic encryption and decryption of data.

The specialized hardware for NN cryptographic data encryption was developed in the
VHDL equipment programming language in the Quartus II environment and implemented
using family Cyclone III FPGA EP3C16F484C6.
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Abstract: Carrier-based unmanned aerial vehicles (UAVs) require precise evaluation methods for
their landing and arresting safety due to their high autonomy and demanding reliability requirements.
In this paper, an efficient and accurate simulation method is presented for studying the arresting hook
engaging arresting cable process. The finite element method and multibody dynamics (FEM-MBD)
approach is employed. By establishing a rigid–flexible coupling model encompassing the UAV and
arresting gear system, the simulation model for the engagement process is obtained. The model
incorporates multiple coordinate systems to effectively capture the relative motion between the
rigid and flexible components. The model considers the material properties, arresting gear system
characteristics, and UAV state during engagement. Verification is conducted by comparing simulation
results with experimental data from a referenced arresting hook rebound. Finally, simulations are
performed under different touchdown points and roll angles of the UAV to analyze the stress
distribution of the hook, center of gravity variations, and the tire touch and rollover cable response.
The proposed rigid–flexible coupling arresting dynamics model in this paper enables the effective
analysis of the dynamic behavior during the arresting hook engaging arresting cable process.

Keywords: carrier-based UAV; engagement; FEM-MBD; rigid–flexible coupling model; dynamic analysis

1. Introduction

The engagement of the arresting hook with the arresting cable is a critical maneuver
that most directly reflects the success of arrestment and serves as the most complex stage
in terms of dynamics in the carrier-based aircraft landing process [1,2]. Carrier-based
UAVs usually land in a collision [3]. To achieve a successful arrest on a carrier, UAVs must
approach with the specified speed and attitude, and land precisely on the desired area
of the carrier deck [4]. The arrested landing process of UAVs includes multiple intricate
dynamic stages. The arresting hook, located at the tail of the aircraft, makes contact with
the deck upon landing and rebounds to a limited height under the influence of the hook’s
damper. Subsequently, the arresting hook engages with the arresting cable on the deck,
transferring the arresting force to the fuselage and bringing the aircraft to a rapid stop.

Due to the complexity of carrier arresting systems and the unique operational environ-
ment, it is challenging to accurately measure real-time loads via experiments [5]. During
the design phase of a carrier-based aircraft, the analysis of the hook–cable engagement
process plays an important role in confirming the safety area for deck landing [6]. The
primary research employed analyzes the arresting performance through theoretical analysis
and simulation methods [7,8]. Thomlinson [9] conducted research on the motion of the
aircraft arresting hook within the plane of symmetry after impacting the deck. In the
paper, it was assumed that the carrier-based aircraft had no yaw deviation during the
arresting process. Jones [10] obtained a fitting equation and curve for the arresting force
based on statistical data from the arresting system. Gao [11], Liu [12] and Peng [13,14]
established the mechanical relationships among the aircraft, deck and arresting hook for
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an arresting hook impacting the deck. Zhu [15] considered the influence of frictional force
on the collision between the arresting hook and deck, and established a more accurate
model for the arresting hook and deck collision. The previous research provides a better
understanding of the interaction between the arresting hook and deck during the collision
process. Additionally, the enhanced model proposed has a guiding effect on the design of
the arresting hook system. However, it is acknowledged that the model assumptions in
these studies limit the comprehensive analysis of the dynamics involved in the arresting
process in different scenarios.

In order to conduct a comprehensive analysis of a hook’s cable engagement process, it
is essential to establish accurate model for both the aircraft and the arresting cable [16,17].
Various methods can be employed to model cable dynamics, including the absolute node
coordinate method [18] and finite segment method [19,20]. Deng [21] developed a 2D non-
material variable-domain co-rotational element to perform a nonlinear dynamic analysis
of arresting gears, and the nonlinear equation of the hydraulic damper sub-system was
formulated. The propagation mechanism of longitudinal waves and kink waves was inves-
tigated. Software such as LS-Dyna [22] and PAM-Crash [23] have also been widely used to
simulate the dynamic characteristics of aircraft landing and arrest. Shen [24] established a
full-scale dynamic model of an MK7-type arresting gear system based on the multi-body
dynamics method. Zhang [25] adopted arbitrary Lagrangian–Eulerian formulation to effi-
ciently simulate hook/pulley-cable moving contact in arresting cable systems. Zhang [26]
developed a dynamic model for the rebound of the arresting hook during collision, using
the numerical iteration calculation method to obtain the longitudinal safety envelope of the
aircraft during the landing and arresting process. Peng [27] conducted an impact rebound
test for the arresting hook and subsequently refined the coefficient of restitution for the
deck coating based on the test results. The comprehensive examination of the arresting
hook engaging cable process necessitates a meticulous analysis encompassing the model
of landing gear shock absorbers and flexible tires, as well as the material properties and
mechanical characteristics of the arresting cable and hook.

In this paper, a novel rigid–flexible coupling model of a carrier-based UAV for arresting
engagement is established based on the FEM-MBD approach. The dynamic model is
verified by comparing simulation results with experimental data from references, and
simulations are conducted with different touchdown points and roll angles. The proposed
simulation method can accurately capture the process of UAV arresting hook engagement,
including the rebound motion of the hook upon deck impact, the bending of the cable
during engagement and the stress distribution on the hook. The results obtained from this
analysis offer valuable insights into the performance of the engagement process, which
can be used to test various design configurations virtually and improve the design of
carrier-based UAVs for carrier landing.

2. Dynamic Model of Carrier-Based UAV Landing and Engagement with Cable

2.1. Model Description
2.1.1. Finite Element Discretization and Contact

The finite element method primarily employs eight-node hexahedral elements and
four-node shell elements to describe the structural components. The dynamic equation for
each finite element is as follows:

mi
..
ut+Δt

i + ci
.
ut+Δt

i + kiut+Δt
i = f t+Δt

i (1)

where mi, ci, ki are the mass, damping and stiffness matrices of node i, respectively, and
f t+Δt
i is the external load at time, t + Δt. ut+Δt

i ,
.
ut+Δt

i ,
..
ut+Δt

i are the displacement, velocity

and acceleration matrices, respectively.
.
ut+Δt

i , ut+Δt
i can be calculated via the central

difference method.
The contact force between elements is illustrated in Figure 1. ni represents the slave

node, Sj represents the master surface, m1, m2, m3, m4 represents the master surface node,
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Hcont represents contact thickness, δi represents the penetration between elements, vi
represents relative sliding velocity at the contact point with respect to the master surface, Fi
represents the contact force acting on the slave node ni, and f1, f2, f3 and f4 represent the
equivalent force acting on the master node.

Figure 1. Schematic diagram of element contact.

The contact force, Fi, between elements can be resolved into the normal component fs
and tangential component fc, which are determined via Equation (2).

Fi = fs + fc
fs = | fs,e + fs,v| · n

fc = min(|u fs|, | fc,e|) · t
(2)

where fs,e is the normal elastic force, fs,v is the normal viscous force, fc,e is the tangential
elastic, u is the coefficient of friction, n is the unit vector in the normal direction of contact,
and t is the unit vector in the tangential direction of contact.

The normal elastic force, fs,e, and normal viscous force, fs,v, between elements are
given by Equations (3) and (4), respectively.

fs,e = kNiδi =

(
1 +

(ε − 1)δi
2

H2
cont

)
kiδi (3)

fs,v = −cNivi (4)

where ki is the local contact stiffness, ε is the proportionality factor of the contact force,
cNi = 2ξi

√
kNimi is the internal damping, ξi is the contact damping coefficient, mi is

the mass of the slave node, and vi is the relative velocity in the normal direction at the
contact point.

The tangential elastic force, fc,e, and tangential friction force, fc, between elements are
as follows.

fc,e =
3

2(2 − ν)(1 + ν)
kNiδj (5)

fc = u fs (6)

where kNi is the normal stiffness, ν is Poisson’s ratio, and δj is the tangential relative
displacement at contact nodes.

2.1.2. Model Description

Noticing a common technique to simplify system dynamic equations and reduce
computational costs, this paper adopts the approach of connecting multiple rigid bodies
through joints. The UAV model consists of the fuselage, landing gear, and arresting hook.
The simulation model of the arresting gear system includes wire rope supports, a deck, an
arresting cable, a damper and sheaves. The simulation model of the integrated UAV and
arresting gear system is shown in Figure 2.
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Figure 2. Schematic diagram of UAV and arresting gear system.

2.2. Model of Carrier-Based UAV
2.2.1. Configuration of UAV

The deformation and stress of the UAV structure are not the main concern. Therefore,
it is modeled using rigid bodies described by the degree of freedom (DoF) kinematic and
dynamic differential equations. The UAV model in this paper consists of the arresting hook,
nose landing gear (NLG), main landing gear (MLG) and fuselage as shown in Figure 3a.
Aerodynamic force is applied as a 6 DoF load (X, Y, Z, L, M, and N) on the fuselage rigid
body, with the point of application being converted into the center of gravity. X, Y, Z, L, M,
and N are calculated via Equation (7).

X = 1
2 ρu2Sre f Cx

Y = 1
2 ρu2Sre f Cy

Z = 1
2 ρu2Sre f Cz

L = 1
2 ρu2Sre f bCl

M = 1
2 ρu2Sre f cCm

N = 1
2 ρu2Sre f bCn

(7)

where ρ is the density of air, u is the UAV velocity, and Cx, Cy, Cz, Cl , Cm, and Cn are
aerodynamic coefficients, respectively. c, b, and Sre f are the reference chord, reference span
and reference wing area of the UAV, respectively.

  
  

Figure 3. Main parts of UAV model: (a) Side view of carrier-based UAV; (b) Top view of carrier-
based UAV.

The influence of the engine’s rotational torque is neglected, and the engine thrust is
decoupled into a three-axis force acting at a point in the fuselage’s rigid body [28]. The
thrust during this process remains constant at 14 tons in this paper. The relative positions
of aerodynamic force and thrust with respect to the UAV body are depicted in Figure 3b.

2.2.2. Model of Landing Gear

The landing gear is the ground support system of the UAV and plays a crucial role
as an energy-absorbing component during the landing process. As shown in Figure 4, the
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dynamic model of the landing gear comprises the upper strut, lower strut, torque link,
wheel axle and tire assemblies. The upper strut is collected in the same rigid body as the
fuselage, while the lower strut is collected in the same rigid body as the wheel axle. Three
revolute joints are set between the upper strut and upper torque link, the upper strut and
lower torque link, and the lower strut and lower torque link, respectively.

 

(a) (b) 

Figure 4. FEM model of landing gear. (a) MLG; (b) NLG.

The displacement of the shock absorber is determined via the relative motion of the
upper and lower struts [23]. The hydraulic force, FS, can be expressed as

FS = Fa + Fu (8)

where Fa is the air spring force, and Fu is the hydraulic damping force.
The air spring force, Fa, can be expressed as

Fa =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

AL
a

⎡⎢⎣ PL
a0(

1− AL
a S

VL
a0

)γ − Patm

⎤⎥⎦ , S ≤ SH0

AL
a

⎡⎢⎣ PL
a0(

1− AL
a S

VL
a0

)γ − Patm

⎤⎥⎦+ AH
a

⎡⎢⎣ PH
a0−PL

a0(
1− AH

a (S−SH0)
VH

a0

)γ − Patm

⎤⎥⎦, S > SH0

(9)

where AL
a is the initial pressure area of the low-pressure air chamber, AH

a is the pressure
area of the high-pressure air chamber, and PL

a0 is the initial pressure in the low-pressure air
chamber. PH

a0 is the initial pressure in the low-pressure air chamber. Patm is the atmospheric
pressure, S is the stroke of the damper, and SH0 is the initial stroke of the high-pressure
chamber. VL

a0 is the initial volume of the low-pressure chamber, VH
a0 is the initial volume of

the high-pressure chamber, and γ is the polytropic exponent.
The hydraulic damping force can be expressed as follows:

Fu =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρh A3

h

.
S

2

2(C+
d )

2
A2

d

+
ρh A3

hL

.
S

2

2(C+
dL)

2
(A+

dL)
2 ,

.
S ≥ 0

− ρh A3
h

.
S

2

2(C−
d )

2
A2

d

− ρh A3
hL

.
S

2

2(C−
dL)

2
(A−

dL)
2 ,

.
S ≤ 0

(10)
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where ρh is the oil density,
.
S is the stroke velocity, Ah is the effective area of the buffer, Ad

is the main oil cavity oil hole area, C+
d and C−

d are the flow coefficient of the main oil hole
under the forward and reverse stroke, AhL is the effective area of the back oil hole, A+

dL
and A−

dL are the effective flow areas of the oil return hole under the forward and reverse
stroke, and C+

dL and C−
dL are the flow coefficient of the back oil hole under the forward and

reverse stroke.
In addition to the load of the shock absorber, the flexibility of the tire also contributes

significantly to the impact load during UAV landing. The compression of the tire under
the impact load constitutes a substantial proportion of the overall compression stroke
of the landing gear’s damping system. The internal structure of the tire is illustrated in
Figure 5a. The inner layer of the tire is defined as the fabric material and the change of
volume surrounded by the wheel rim and the inner fabric layer of the tire conforms to the
ideal gas equation.

 

(a) (b) 

Figure 5. Schematic of tire assemblies. (a) Internal structure of tire; (b) FEM model of tire and
constraint.

The tread and the wheel rim share common nodes on the adjacent surface, and the
rotational constraints of the tire are defined using a coordinate system, O-XYZ, located
at the center of the wheel rim as shown in Figure 5b. The rubber material of the tire is
modeled using eight-node hexahedral elements, employing the Mooney–Rivlin material
model. The constitutive equation for this model is as follows:

W = A(I − 3) + B(II − 3) + C
(

III−2 − 1
)
+ D(III − 1)2 (11)

where C = 0.5A + B, D = A(5v−2)+B(11v−5)
2(1−2v) , A and B are the Rivlin constants determined

through uniaxial tensile testing, v is Poisson’s ratio, and I, II and III are the Green–Lagrange
strain tensor constants.

2.2.3. Model of Arresting Hook

The dynamic model of the arresting hook [29] is shown in Figure 6. The model of the
arresting hook comprises fuselage assembly, the hold down damper, lateral damper, hook
shank, hook, joint part and two revolute joints. Fuselage assembly and the fuselage are set
to a rigid body. The hold down damper has one end node located at the fuselage assembly
and the other end node located at the joint part. By defining revolute joints 1 and 2, the
longitudinal and lateral rotations of the arresting hook are, respectively, determined.

Prior to engaging the arresting cable, the arresting hook collides with the deck and
rebounds with a certain velocity. The rebound height of the arresting hook is limited by
the hold down damper to ensure the successful engagement of the arresting hook with the
cable. The hold down damper of the arresting hook plays a critical role in determining the
height of the rebound [25], and it is modeled as a bar element.
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Figure 6. Schematic diagram of arresting hook.

2.3. Model of Arresting System

The deck is partitioned into the arresting hook contact area and non-contact area as
shown in Figure 7. Additionally, the arresting gear system in this paper is based on the
MK7-3 hydraulic arresting gear system [8]. The complete hydraulic arresting gear system
model is divided into three components: the pulley system, the hydraulic system and
arresting cable system. The pulley system comprises fixed pulleys, moving pulleys, and
steering pulleys. The hydraulic system is composed of the damper sheave, main hydraulic
cylinder and cable anchor damper system, which are modeled using the shell element and
spring damper beam.

Figure 7. Diagram of arresting gear system.

2.3.1. Modeling of Rigid Bodies in the Arresting Cable System and Constraints

The arresting hook of a carrier-based UAV engages with the arresting cable, resulting
in the cable being pulled out during the arresting process. The cable is threaded through the
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arresting gear system, forming a block and tackle mechanism. This mechanism is designed
to transfer the load from the UAV to the hydraulic machine. Within the hydraulic machine,
the kinetic energy of the UAV is converted into heat and subsequently dissipates.

The arresting gear system is a complex mechanical hydraulic system. In this paper, the
arresting gear system is modeled using three arresting cables (one deck pendant and two
purchase cables), block and tackles (forty-eight sheaves), and five hydraulic dampers (two
damper sheave installations, two cable anchor dampers and one hydraulic cylinder). In
this research, the deformation and stress of the pulley, piston and cylinder system are not
the main concern. Therefore, they are modeled as rigid bodies. The fixed sheave assembly
is merged into the deck, which prevents there from being unnecessary fixed joints between
the deck and itself. The other sheaves, piston and cylinder shown in Figure 7 undergo
translation and rotation simultaneously.

2.3.2. Arresting Cable

The configuration of the pendant and wire rope support is shown in Figure 8. To
improve computational efficiency, the arresting cable is divided into two parts based on the
connecting muffle, the pendant and the purchase cable, as shown in Figure 8. The purchase
cable is modeled using a nonlinear tension bar. This modeling approach takes into account
the nonlinear dynamic characteristics of the cable under tension by accounting for factors
such as material properties, cable diameter and applied tension force.

Figure 8. Diagram of arresting cable and wire rope supports.

The FEM model of the pendant is modeled using a shell and spring beam element
with 6 DoF as shown in Figure 9. The beam element is connected to the shell element at
the node Ni and the nodes Ni1–Ni8 of the shell element. These nodes collectively form a
rigid body. In the local coordinate system (Ni-SiRiTi), Ni represents the origin point of the
coordinate system, Si denotes the direction vector along the beam axis, Ri represents the
direction vector along the cross-sectional plane of the beam, and Ti represents the direction
vector perpendicular to both Ri and Si. Defining the constitutive characteristics of the beam
in the local coordinate system enables an accurate representation of the beam’s deformation
and response to applied loads.

 

Figure 9. FEM model of pendant.
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2.3.3. Wire Rope Supports

Wire rope supports serve as a means of elevating the cable above the deck to guarantee
the engagement of the arresting cable on the incoming arresting hook. The four wire rope
supports are equidistantly placed across the deck and maintain a minimum cross-deck
cable height of 0.5 m, measured from the bottom of the cable to the deck at its lowest point
(Figure 8). Each wire rope support is directly tied to the deck [30].

As shown in Figure 10, the model of the wire rope support is established based on a
four-node shell element. The forward end of the wire rope support spring is secured using
a cam mounted in a deck recess and a follower pinned at the end of the wire rope support.
The aft end of the wire rope support is also pinned and set between adjustable forward
stops as required.

Figure 10. FEM model of wire rope support.

3. Verification of the Dynamic Model of the Collision and Rebound of the
Arresting Hook

All the computations presented in this study are performed using an in-house-developed
code solver and a combination of tools of PAM-Crash was utilized. The code solver solves
the governing finite element equations based on a central difference explicit integration
scheme in time [31]. Simulation is performed to verify the collision rebound of the arresting
hook. As shown in Figure 11a, fuselage assembly and main landing gear sleeve are defined
as a rigid body. Below the arresting hook is a rotating disc, and the collision point between
the hook and disc is located at the edge of the disc. The rotation direction of the disc is
shown in Figure 11b. In this simulation, the relative linear velocity between the hook and
disc is equal to the velocity of the UAV at the collision of point. The simulation conditions
including the sinking velocity, horizontal velocity and arresting hook configuration are
consistent with the results of the collision rebound test in reference [27]. The elastic modulus
of the hook and rotating disc material is 210 GPa, and Poisson’s ratio is 0.3. The collision
rebound height and distance are matched to the test in the reference by adjusting the spring
and damping parameters of the arresting hook’s longitudinal buffer.

The simulation results for the collision rebound height of the arresting hook, corre-
sponding to sinking velocities of 3.6 m/s, 4 m/s, and 5 m/s, are presented in Figure 12.
With the requirement of an increased sinking velocity, the bounce height on the aircraft hook
increases correspondingly. The satisfactory agreement observed between the simulated
and experimental data regarding the rebound height and rebound span of the arresting
hook demonstrates the accuracy of the dynamic model established in this paper for the
collision rebound process.
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(a) 

(b) 

Figure 11. Diagram of simulation test of arresting hook bounce. (a) Left-side view (b); top-side view.

  
(a) (b) 

Figure 12. Cont.
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(c) 

Figure 12. Comparison of bounce height of arresting hook between experiment and simulation.
Sinking velocity = (a) 3.6 m/s; (b) 4 m/s; (c) 5 m/s [13].

4. Results and Discussion

4.1. Setting of Carrier-Based UAV Attitude

Figure 13a illustrates the initial condition of the UAV, and the mass of the fuselage’s
rigid body is set as 16,500 kg. The horizontal and sinking velocity of the carrier-based
UAV at the moment the hook touches the deck are 60 m/s and 4.5 m/s, respectively. The
diagram of the distance between the touchdown point, cable d and the roll angle, ϕ, is
shown in Figure 13b,c. The position of the aerodynamic force and thrust is same as that
described in Section 2.2.1. The control of variables facilitates a comparative study of the
similarities and differences between different touchdown points and roll angles of an UAV.

 
(a) 

  
(b) (c) 

Figure 13. Carrier-based UAV model and parameters. (a) Configuration of UAV; (b) diagram of
distance between touchdown point and cable d; (c) diagram of UAV roll angle, ϕ.

4.2. Influence of Touchdown Point on the Engagement of Hook with Cable

The hook engages with the arresting cable after the UAV hook touches down on the
carrier deck. Subsequently, the UAV starts to slow down under the action of the arresting
gear system. In this section, the influence of distance between the touch point and cable
on the engagement process is studied. The initial condition of the UAV is represented in
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Figure 13a, and the distance between the touchdown point and cable d is set at 0, 2 m, 4 m
6 m, 8 m and 10 m. The distance between the touchdown points and the cable significantly
influences the rebound height of the arresting hook at the moment of engagement. The
engagement location of the arresting hook with the arresting cable varies depending on
the distance from the touchdown point to the arresting cable. However, the contact force
between the arresting hook and cable are nearly equal, at approximately 54 kN, for different
touchdown point distances.

The stress–strain situation of the arresting hook is depicted in Figure 14. At d = 1 m,
the arresting hook rebounds and engages with the cable in the upward phase of the first
rebound. The maximum stress, reaching 187 MPa, occurs at the groove of the arresting hook.
At d = 2 m, the arresting hook rebounds and engages with the cable in the downward phase
of the first rebound. The maximum stress at this point is 179 MPa. At d = 4 m, the arresting
hook engages with the cable during the second rebound phase. The engagement location is
in the upper part of the hook, resulting in a maximum stress of 172 MPa. When d = 6 m, the
arresting hook engages with the cable during the third rebound phase. The engagement
location is at the connection between the hook head and the hook shank, leading to a larger
high-stress area. Additionally, the maximum stress in this case is 184 MPa. For d = 8 m,
the arresting hook engages with the cable during the deck drag phase. The engagement
location is at the connection between the hook head and the hook shank. Additionally, the
maximum stress is 188 MPa. When d = 10 m, the arresting hook engages with the cable
during deck drag on the deck. However, there is an occurrence of the cable being crushed
by the tire, which significantly affects the location of the cable’s engagement. The location
of maximum stress in this case is at the point where the hook shank and the cable engage,
with a maximum stress of 165 MPa.

  
(a) (b) 

  
(c) (d) 

Figure 14. Cont.
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(e) (f) 

Figure 14. Stress distribution of the arresting hook at the moment the hook engages the cable.
(a) d = 1 m; (b) d = 2 m; (c) d = 4 m; (d) d = 6 m; (e) d = 8 m; (f) d = 10 m.

Figure 15 illustrates the process of the arresting cable being run over by the tire during
the aircraft’s arrest. As the tire rolls over the arresting cable, a significant bending effect
occurs at the point of contact, leading to the propagation of bending waves along the
cable’s length. Notably, at 0.03 s, when the bending wave reaches the middle section of
the arresting cable, it forcefully makes contact with the deck, resulting in a rebound effect.
During the rebound, the cable momentarily loses tension at 0.04 s and then regains tension
at 0.08 s. The simulation model effectively captures the dynamic behavior of the arresting
cable after the tire rolls over, providing valuable insights into the engagement process of
the cable and hook.

T = 0 T = 0.005 s T = 0.01 s 

T = 0.02 s T = 0.03 s T = 0.04 s 

T = 0.05 s T = 0.06 s T = 0.07 s 

Figure 15. Cont.
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T = 0.08 s T = 0.1 s T = 0.12 s 

Figure 15. Engagement process after tire rolling cable.

At a sinking velocity of 4.5 m/s, the bounce height of the arresting hook remains below
the height of the arresting cable. Therefore, under the above conditions, no failures in
engaging the cable were observed during UAV arrestment. The optimal distance between
the touchdown point and cable for the UAV on the carrier deck is 4 m. At this distance, the
arresting hook undergoes a secondary collision with the deck before engaging the cable,
resulting in a low bounce height and a high success rate of engagement.

4.3. Influence of Roll Angle on the Engagement of Hook with Cable

In this section, the influence of roll angle on the engagement process is studied. The
initial condition of UAV is represented in Figure 12. The distance between the touchdown
point and cable d is 4 m and the roll angle, ϕ, is set at 0, 2◦, 4◦ and 6◦. Figure 16 depicts the
change in the height of the UAV’s center of gravity after the tire makes contact with the
deck. One side of the landing gear touches down earlier, resulting in a higher altitude of
the UAV’s center of gravity at the moment of touchdown compared to that in the situation
without any roll angle. The greater the roll angle, the larger the distance of the center of
gravity descent.

Figure 16. Time history of the height of the center of gravity after the landing gear touches the deck
under different roll angles.

The stress distribution at the moment of the hook engaging the cable is shown in
Figure 17. It can be observed that the roll angle has a minor influence on the contact force
during cable engagement, which remains around 54 kN. However, the roll angle affects the
contact area of the hook, resulting in an increased high-stress region in the arresting hook.
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(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 17. Stress distribution of the arresting hook at the moment the hook engages the cable:
(a) ϕ = 0; (b) ϕ = 2◦; (c) ϕ = 4◦; (d) ϕ = 6◦; (e) ϕ = 8◦.

It is noteworthy that at a roll angle of 8◦, one side of the tire makes contact with the
arresting cable, and the engagement location of the arresting hook and the cable is at the
connection between the hook and hook shank. This particular process of the tire touching
the cable is depicted in Figure 18. Upon tire–cable contact, the arresting cable undergoes
bending, leading to induced vertical movements. The arresting cable bends and transmits
the force to the wire rope support. At 0.05 s, the bending is effectively transmitted to
the wire rope support, resulting in the near elimination of the vertical movements of the
arresting cable. Due to the impact from the tire collision, the arresting cable experiences a
slight forward movement after 0.05 s until the hook engages with the cable.
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T = 0 

 
T = 0.005 s 

 
T = 0.01 s 

 
T = 0.03 s 

 
T = 0.04 s 

 
T = 0.05 s 

 
T = 0.06 s 

 
T = 0.07 s 

 
T = 0.08 s 

 
T = 0.09 s 

 
T = 0.1 s 

 
T = 0.11 s 

Figure 18. Hook engaging cable after one side of the tire touches the cable.

Furthermore, a scenario involving one side tire rolling over the cable is observed when
the distance between the touchdown point and the cable is 8 m, and the UAV experiences
a roll angle of 4◦. As depicted in Figure 19 at 0.1 s after the tire makes contact with the
cable, it is evident that tire rollover exerts a considerably larger interference on the motion
of the arresting cable compared to the scenario where the tire touches the cable. Specifically,
when the tire of the right landing gear rolls over the arresting cable, it applies a substantial
bending force on the cable due to the pressure and friction at the contact point, leading to
significant cable flexing and deformation along its length. Subsequently, the bending action
propagates towards the wire rope supports on the other side, consequently impacting the
cable’s tension and dynamics. In this case, the bending is transmitted to the left-side wire
rope support at 0.05 s. Simultaneously, the arresting cable undergoes a forward motion in
the direction of the tire, affecting the engagement location of the hook and cable.
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T = 0 

 
T = 0.01s 

 
T = 0.02 s 

 
T = 0.03 s 

 
T = 0.04 s 

 
T = 0.05 s 

 
T = 0.06 s 

 
T = 0.08 s 

 
T = 0.1 s 

Figure 19. Hook engaging cable after one side of the tire rolls over the cable.

5. Conclusions

Successful engagement requires careful coordination and attention to detail, including
aspects such as the configuration of a UAV and arresting cable setup, as well as a deter-
mination of the precise landing point for the UAV. In this paper, a FEM-MBD numerical
method is used to study the dynamic characteristics of a carrier-based UAV. Simulation was
conducted to investigate the engagement process under different touch down points and
UAV roll angles. Analysis of the scenarios involving cable and tire contact was performed.

(1) A rigid–flexible coupling model of the hook–cable engagement process is established
for a specific carrier-based UAV using the FEM-MBD method. To validate the ratio-
nality of the finite element model in solving the hook’s rebound dynamics, the results
are compared with experimental data from a relevant reference. The comprehensive
model incorporates three key elements: the coupling of the carrier deck, aircraft body
and the landing gears; a detailed arresting hook and cable model which considers
their material properties and contact interactions; wire rope supports and a full-scale
arresting gear system model. The established FEM-MBD model offers a framework
for examining the dynamic behavior of the hook–cable engagement process.

(2) The touchdown position significantly influences the height of the arresting hook at
the moment of hook and cable engagement, leading to variations in the maximum
stress location on the arresting hook. When the touchdown point is 10 m away from
the arresting cable, the cable is rolled over by the tires of the UAV. As a consequence,
the arresting cable undergoes bending at the point of contact with the tires, and this
bending effect is transmitted to both sides of the cable. The propagation of bending
along the cable leads to the cable’s contact with the deck and subsequent rebound. At
the same time, the arresting cable experiences rapid movement in the direction of the
tire roll-over. This movement has an impact on the engagement of the hook and cable,
affecting the hook and cable’s engagement location.

(3) In the case of an UAV carrier landing with a roll angle, the main landing gear on
one side makes contact with the deck first, resulting in a more significant variation
in the height of the UAV’s center of gravity during hook engagement compared to
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that in situations without any roll angle. As the roll angle increases, the downward
displacement of the center of gravity increases. The roll angle has a minimal effect on
the contact force at the moment of cable engagement, but it influences the location of
cable contact at the engagement moment. A larger roll angle increases the high-stress
area of the arresting hook at the engagement moment.

(4) The detailed analysis of this tire–cable interaction sheds light on the complex dynamics
involved in the engagement process. Under a roll angle of 8◦ and distance of 4 m
between the touch point and the cable, the tire makes contact with the cable. The cable
undergoes bending at the point where the tire touches the cable, and the bending
leads to the small-scale vertical movement of the arresting cable. Under the condition
of a 4◦ roll angle and an 8 m distance between the touchdown point and the cable, the
tire rolls over the arresting cable on one side. The bending caused by the tire rolling
over is greater than that of the tire touching the cable. As the single tire rolls over the
arresting cable, it causes a rapid movement of the cable in the direction of the UAV’s
motion and transmits force to the wire rope support. Simultaneously, this movement
of the arresting cable amplifies the uncertainty of engagement.
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Abstract: With the advantages of long-range flight and high payload capacity, large fixed-wing UAVs
are often used in anti-terrorism missions, disaster surveillance, and emergency supply delivery. In
the existing research, there is little research on the 3D model design of the V-tail fixed-wing UAV
and 3D flight environment modeling. The study focuses on designing a comprehensive simulation
environment using Gazebo and ROS, referencing existing large fixed-wing UAVs, to design a V-tail
aircraft, incorporating realistic aircraft dynamics, aerodynamics, and flight controls. Additionally, we
present a simulation environment modeling approach tailored for obstacle avoidance in no-fly zones,
and have created a 3D flight environment in Gazebo, generating a large-scale terrain map based on
the original grayscale heightmap. This terrain map is used to simulate potential mountainous terrain
threats that a fixed-wing UAV might encounter during mission execution. We have also introduced
wind disturbances and other specific no-fly zones. We integrated the V-tail fixed-wing aircraft model
into the 3D flight environment in Gazebo and designed PID controllers to stabilize the aircraft’s
flight attitude.

Keywords: fixed-wing UAV simulation; V-tail aircraft; 3D flight environment; threat scenario;
simulation environment modeling; Gazebo

1. Introduction

A V-tail aircraft is a distinct class of aircraft that features a V-shaped tail configuration.
This unconventional design replaces the traditional horizontal stabilizer and vertical fin
with two surfaces angled to form a V shape, which serve as both elevator and rudder
control surfaces [1]. The V-tail design offers advantages such as reduced weight, improved
maneuverability, and reduced drag [2]. Due to these advantages of the V-shaped tail, this
tail design is widely used in large fixed-wing UAVs in various countries, such as the CAIG
Wing Loong II, CASC Rainbow CH-4, and General Atomics MQ-9 Reaper [3].

The primary objective of this project is to create a realistic simulation framework
using Gazebo and ROS for V-tail aircraft, allowing for the accurate modeling of their flight
dynamics, control systems, and response to flight threat scenarios. Through leveraging
the capabilities of Gazebo, a powerful physics-based simulator, and ROS, a flexible and
widely used robotic framework [4–7], we can create a comprehensive and interactive
simulation environment.

In existing research [8–10] on fixed-wing aircraft flight simulation, the majority of
studies are based on developing flight dynamics models, control algorithms, and trajectory
planning using MATLAB software. Scott et al. [11] developed a fixed-wing aircraft simula-
tion tool that incorporates aerodynamics, structural dynamics, kinematics, and kinetics, but
has only numerical simulation calculations and no visual scene interface. Deiler et al. [12]
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proposed dynamic aircraft simulation models that cover the effects of local icing, but did
not incorporate actual flight scenarios, only numerical calculations. Heesbeen et al. [13]
proposed a multi-purpose aircraft simulation architecture, but it requires a lot of hardware
equipment. These studies [14–18] combined MATLAB and FlightGear for the flight simu-
lation of aircraft. Horri et al. [19] studied the co-simulation of an aircraft using MATLAB
combined with Xplane, FlightGear, and VFTE simulation software. These studies [20–22]
combined MATLAB and X-Plane for co-simulation to design and verify the performance of
aircraft controllers. There are also some aircraft simulation studies based on the Gazebo sim-
ulation platform. Yang et al. [23] studied the hardware-in-the-loop simulation of fixed-wing
UAVs in Gazebo. Irmawan et al. [24] studied the 3D simulation of a VTOL fixed wing in
Gazebo. Lee et al. [25,26] combined the PX4 autopilot and Gazebo simulation environment
to test the controller performance of a fixed-wing aircraft under control surface failure
conditions. Ellingson et al. [27] designed a fixed-wing autopilot for education and research
and used Gazebo for the remote flight simulation of an aircraft model. In these simulation
studies, most of them use existing aircraft models to simulate flight, and many of them
do not combine the corresponding flight scenarios, and the scalability of the simulation
platform is poor.

Different from the existing aircraft simulation framework, this paper focuses on the
model establishment of V-tail aircraft and flight simulation based on Gazebo, and uses the
powerful performance of the Gazebo simulator to create the flight threat scenario of aircraft
and support the flight control of multiple aircraft in the same scenario. It lays a foundation
for subsequent research on aircraft route planning algorithms and multi-aircraft cooperative
flight algorithms. Through this project, we aim to provide researchers, engineers, and
aviation enthusiasts with a robust and customizable simulation framework for V-tail
aircraft, enabling them to evaluate the aircraft’s behavior under realistic conditions and
explore novel flight threat scenarios. This simulation framework can serve as a valuable
tool for performance analysis, algorithm development, and decision-making in V-tail
aircraft-related research and development.

The paper is organized as follows. Section 2 introduces the simulation system frame-
work used in this study. Section 3 provides the aerodynamics mathematical model of the
fixed-wing aircraft and the establishment of the 3D model of the V-tail aircraft. Section 4
presents a simulation environment modeling approach tailored for obstacle avoidance in
no-fly zones. Section 5 presents the attitude control of the V-tail aircraft in the Gazebo flight
environment. Finally, Section 6 contains the conclusions.

2. Simulation System Framework

Gazebo and ROS are two powerful tools which are widely used in the field of robotics
and simulation. Gazebo is an open-source, multi-robot simulator that provides a highly
realistic and dynamic environment for simulating robots, UAVs, and complex systems. It
allows for the simulation of physics-based interactions, sensor data, and control algorithms.
ROS, on the other hand, is a flexible framework for building robotic systems. It provides
a collection of software libraries, tools, and conventions that facilitate communication
between different components of a robotic system. ROS enables the development of
modular and scalable robotic applications through offering features such as message
passing, service calls, and parameter management.

When combined, Gazebo and ROS form a powerful simulation environment that
allows for the integration of realistic physics-based simulation with sophisticated robot
control and interaction. This combination has become a standard in the robotics community
for developing and testing robotic systems.

In the context of V-tail aircraft and flight threat scenario modeling, Gazebo provides a
platform for creating a realistic simulation environment that accurately models the physics
and dynamics of the aircraft. It enables the simulation of aerodynamic forces, environmental
factors, and realistic sensor data. Gazebo’s visualization capabilities also allow for the
real-time monitoring and visualization of the simulation.
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Through leveraging the capabilities of Gazebo and ROS, researchers and engineers
can create comprehensive and interactive simulations of V-tail aircraft and flight threat
scenarios. This allows for the in-depth analysis of the aircraft’s behavior, performance
evaluation, and the testing of control algorithms. The integration of Gazebo and ROS
provides a seamless workflow, enabling users to develop and validate their models and
algorithms in a realistic virtual environment before deploying them on real aircraft.

3. Fixed-Wing UAV Vehicle Modeling

3.1. Aircraft Aerodynamics

In the V-tail fixed-wing aircraft simulation environment created in this study, the
primary reliance is on the aerodynamics plugin provided by Gazebo’s official sources
to simulate the aircraft’s flight lift. Referring to existing literature [28–30], the following
aerodynamics mathematical model is established.

Wind speed has a significant impact on UAV motion, which can have an impact on
flight performance, flight trajectory, and control requirements. Taking the body coordinate
system as a reference, the airspeed vector of the UAV is denoted as vb

r , the ground speed
vector is denoted as vb, and the wind speed vector is denoted as vb

ω . Then, the relationship
between wind speed, ground speed, and airspeed can be obtained as follows:

vb
r = vb − vb

ω (1)

The relationship between the size of UAV airspeed Va and the airspeed vector vb
r of an

UAV under the aircraft system is as follows:

vb
r =

⎛⎝u
v
w

⎞⎠ = Rb
w

⎛⎝Va
0
0

⎞⎠ = (Rw
b )

T

⎛⎝Va
0
0

⎞⎠ =

⎛⎝cos βcos α − sin βcos α − sinα

sin β cos β 0
cos β sinα − sin β sinα cos α

⎞⎠⎛⎝Va
0
0

⎞⎠ (2)

where Rb
w is the rotation matrix from the air flow coordinate system to the body coordinate system,

α is the angle of attack, β is the sideslip angle, and Va is the magnitude of the airspeed, which can be
calculated using the following equation.⎧⎪⎪⎪⎨⎪⎪⎪⎩

α = arctan
(

w
u

)
β = arcsin

(
v

Va

)
Va =

√
u2 + v2 + w2

(3)

The translational kinematic equation of the UAV is given by

.
pn = Rn

b vb (4)

vb
r = vb − Rb

nvn
wind (5)

where pn represents the position of the UAV in the inertial frame, vb represents the ground velocity
vector of the UAV in the aircraft system, Rn

b represents the rotation matrix from the aircraft system to
the inertial frame, and vn

wind represents the wind speed vector in the inertial frame.
The wind speed is assumed to be constant or slowly varying. Newton’s second law is applied to

the UAV in translational motion, and the force and velocity under the UAV system are expressed as

dvb
r

dtb
= −S

(
wb

n,b

)
vb

r + fb/m (6)

where m is the mass of the UAV, d
dtb

is the time derivative in the body coordinate system, and fb is the
sum of all external forces acting on the UAV under the aircraft system, including gravity, aerodynamic
force, and thrust. wb

n,b is the angular velocity between the machine system and the inertial frame.

fb = Rb
nfn

g + Rb
wfw

aero + fb
thrust (7)
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where fn
g = [0 0 mg]T is the heavy force vector under inertial system, and g is the acceleration degree

of heavy force. fb
thrust = [T 0 0]T is the thrust vector under the aircraft system. Most aircraft are

designed with thrust directly along the aircraft body axis ib. fw
aero is the aerodynamic force vector

under the flow system, which can be expressed as

fw
aero =

1
2

ρSV2
a

⎡⎣−
(
CD0 + kC2

L
)

CYβ
β

−(CL0 + CLα
α)

⎤⎦ (8)

where ρ is air density, S is the plane airfoil area, C(·) is the coefficient of aerodynamics, and
CL = CL0 + CLα

α. k is a constant scalar value that depends on the aircraft configuration.
The quaternion based rotational kinematics equation of aircraft is as follows:

.
qn,b =

1
2

qn,b ⊗
[

0
ωb

n,b

]
(9)

where qn,b represents the quaternion of rotation from the body coordinate system to the inertial system.
Under the body coordinate system, Euler’s momentum equation is applied to a rotating aircraft.

dhb

dtb
+ ωb

n,b × hb = τb
aero (10)

where hb is the vector form of angular momentum under body coordinate system. τb
aero is the

aerodynamic torque vector of body coordinate system. For a rigid body, angular momentum is
defined as the product of the moment of inertia matrix J and the angular velocity vector: hb = Jωb

n,b.

J =

⎛⎝ Jxx −Jxy −Jxz
−Jxy Jyy −Jyz
−Jxz −Jyz Jzz

⎞⎠ (11)

Thus, Equation (10) can be rewritten as:

.
ω

b
n,b = J−1[−S(ωb

n,b)Jωb
n,b + τb

aero] (12)

Aerodynamic torque is defined as:

τb
aero = f(α, β)− Dωn

n,b + Bu (13)

where u = [δaδeδr]
T is a vector consisting of three control quantities used to control the rotation

angles of the aileron, elevator, and rudder. f(α, β) is the aerodynamic torque vector function, which
can be expressed as:

f(α, β) =
1
2

ρSV2
a

⎡⎢⎢⎣
b
(

Cl0 + Clβ
β
)

c(Cm0 + Cmα α)

b
(

Cn0 + Cnβ β
)
⎤⎥⎥⎦ (14)

D is a positive definite matrix denoted by:

D =
1
2

ρSV2
a

⎡⎢⎢⎣
b2

2Va
Clp 0 b2

2Va
Clr

0 (c)2

2Va
Cmq 0

b2

2Va
Cnp 0 b2

2Va
Cnr

⎤⎥⎥⎦ (15)

B is the control matrix and is defined as:

B =
1
2

ρSV2
a

⎡⎣bClδa
0 bClδr

0 cCmδe
0

bCnδa
0 bCnδa

⎤⎦ (16)

where b is the wingspan length and c is the average aerodynamic chord.
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In summary, the following dynamic model can be obtained through combining the translational
motion and rotational motion of the fixed-wing aircraft.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
pn = Rn

b vb

.
vb

r = −S(wb
n,b)v

b
r + (Rb

nfn
g + Rb

wfw
aero + fb

thrust )/m
.
qn,b = 1
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3.2. V-Tail Fixed-Wing UAV 3D Modeling
SolidWorks is a computer-aided design (CAD) software widely used for creating 3D models,

assemblies, and drawings of various mechanical and engineering components, including aircraft.
In the Gazebo simulation platform, there is no open-source V-tail aircraft available, and the official
offering only includes the Cessna C-172 aircraft model. Therefore, we designed a V-tail aircraft
using SolidWorks and configured the aerodynamics of our model through referencing the Cessna
C-172 aircraft model files.

The aircraft model we built using SolidWorks is shown in Figure 1. This V-tail aircraft is modeled
according to our reference to existing mainstream reconnaissance fixed-wing UAVs, such as the CAIG
Wing Loong II and CASC Rainbow CH-4.

 

Figure 1. A 3D model of a V-tail fixed-wing UAV created using SolidWorks. The aircraft model has
8 moving parts, which are 1© right aileron, 2© left aileron, 3© right tail, 4© left tail, 5© propeller,
6© front wheel, 7© right wheel, and 8© left wheel.

We rely on the aerodynamic plugin provided by the Gazebo simulator for the flight simulation
of our aircraft model, which does not require the aircraft model to have an accurate aerodynamic
shape, so we do not consider aerodynamic appearance when modeling in SolidWorks. At the same
time, we omit the moving part modeling of the aircraft flaps, and we incorporate the functions of the
flaps into the ailerons of the aircraft model.

In the Gazebo simulator, model description files are used to describe the objects in the simulation,
including robots, UAVs, buildings, etc. The model description file contains the geometry of the object,
physical properties, sensor information, and controllers, among others. Gazebo uses SDF (Simulation
Description Format) as the default model description file format. SDF is an XML format used to
describe simulation scenarios, which has rich functions and flexibility. In addition, URDF (Unified
Robot Description Format) is a model description file format used in ROS. Gazebo can import URDF
files with ROS plugin support and use the model in simulations.

In this project, we use the SDF file format as the aircraft model description file, because using
SDF allows us to use the latest plugin provided by Gazebo. Stephen Brawner et al. developed
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a SolidWorks plugin for converting assembly models made in SolidWorks to URDF format [31].
Next, using the command line method provided by Gazebo [32], we can easily convert the model
description file in URDF format to SDF format. Figure 2 shows the flow chart of converting a
SolidWorks model to SDF format.

 

Figure 2. Flowchart of converting a SolidWorks model to SDF format. In SolidWorks, individual 3D
models of different components of the aircraft are created separately. These components are then
assembled to form a complete aircraft. A model format conversion plugin is used to convert this
model into URDF format. Finally, the model is converted to the SDF format recommended by Gazebo
using the format conversion command in the terminal.

In the generated aircraft model file, we introduced an open-source aerodynamics plugin pro-
vided by Gazebo’s official sources [33]. This plugin’s mathematical model aligns with the aerody-
namics mathematical model proposed in Section 3.1. Figure 3 shows the aerodynamic plugin used in
the SDF model description file. The plugin has the following parameters to configure:

 

Figure 3. Add aerodynamic plugin to the SDF aircraft model description file. Using the official
aerodynamics plugin provided by Gazebo, the figure displays the aerodynamic parameters of the left
wing. In the aircraft model description file used in this study, the same plugin is also employed for
the right wing and tails.
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“a0” is the negative value of the zero-lift angle of attack.
“cla” is the slope of lift line.
“cda” is the slope of drag line.
“cma” is the slope of aerodynamic moment line.
“alpha_stall” is the stall angle of attack.
“cla_stall” is the slope of the lift line after stall.
“cda_stall” is the slope of the drag line after stall.
“cma_stall” is the slope of the aerodynamic torque line after stall.
“link_name” is the link applied by the aerodynamic force.
“cp” is the coordinate of the pressure center (in link coordinate system).
“aera” is the reference area of the aerodynamic surface.
“air_density” is the air density.
“forward” is the forward-direction vector (in link coordinate system).
“upward” is the up-direction vector (in link coordinates system).
“control_joint_name” is the name of the joint that controls the rudder axis.
“control_joint_rad_to_cl” is the rate of change of the lift coefficient with the control value.
If you intend to control models within Gazebo through an external program, there are typically

two methods. The first involves creating a Gazebo plugin and embedding it into the model file
you wish to control. However, this method lacks flexibility, and modifying plugin code can be
cumbersome. The second method is for the external program to utilize Gazebo’s provided external
interface, combined with ROS for controlling models in Gazebo and managing real-time simulation
data for the models. In this study, we are using the second method. To incorporate ROS into the
Gazebo simulation, we need to create a ROS launch file following ROS standards. This ROS launch file
includes our V-tail aircraft model file, environment model file, and certain initialization parameters
for Gazebo. Running this ROS launch file opens our aircraft simulation. Figure 4 depicts the
initialization interface of the successfully opened simulation, where the aircraft model can be observed
positioned on the runway.

Figure 4. V-tail aircraft in Gazebo. After successfully launching the simulation program, the aircraft
model will appear on the runway scene in Gazebo.

We have chosen Gazebo as our aircraft simulator not only due to its capacity for customizing
various simulation scenarios, but also for its support of simulating multiple models within a single
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scene. This feature provides a foundation for researching cooperative control algorithms for multi-
agent systems. Figure 5 showcases our addition of nine V-tail aircraft within a single simulation scene.

 

Figure 5. Multiple V-tail aircraft in Gazebo. Gazebo supports the simultaneous simulation of multiple
aircraft models, which facilitates the research of multi-UAV formation flight algorithms.

4. 3D Flight Environment Design

Another focus of this study is the simulation modeling method tailored for obstacle avoidance
in no-fly zones, providing a 3D flight scenario for aircraft models. The centerpiece of this scene is a
large terrain model containing multiple mountain ranges. Custom no-fly zones are added, and wind
disturbances are introduced to challenge the aircraft’s safe flight. These environmental models pose a
challenge to ensuring the aircraft’s safe navigation.

4.1. Wind Disturbance
Wind disturbances can have significant effects on the behavior of an aircraft during flight, and

it is crucial for pilots and control systems to account for these disturbances to ensure safe and stable
operations. In this project, we mainly consider wind disturbances as gusts, steady wind, wind shear,
and their combination.

Gusts refer to sudden and brief increases in wind speed that occur over a short period of time.
These rapid changes in wind velocity can have significant effects on the flight performance and
handling characteristics of aircraft. The mathematical representation of a discrete gust is:

Vgusts =

⎧⎪⎪⎨⎪⎪⎩
0 x < 0
Vm
2

(
1 − cos

(
πx
dm

))
0 ≤ x ≤ dm

Vm x > dm

(18)

where Vm is the gust amplitude, dm is the gust length, x is the distance traveled, and Vgusts is the
resultant wind velocity in the body axis frame.

Steady wind refers to a constant and uniform wind flow with consistent speed and direction
over time. In the context of atmospheric conditions, it means that the wind is blowing at a steady rate
and maintaining a constant heading for a significant period.
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Wind shear refers to the change in wind speed and/or direction with altitude. It is a meteo-
rological phenomenon that occurs in the Earth’s atmosphere and can affect aircraft during takeoff
and landing. Strong wind shear can create turbulence and sudden changes in airspeed, making it
challenging for pilots to maintain control and stability. The magnitude of the wind shear is given by
the following equation for the mean wind profile as a function of altitude and the measured wind
speed at 20 feet (6 m) above the ground.

Vshear = W20

ln
(

h
z0

)
ln
(

20
z0

) , 3 f t < h < 1000 f t (19)

where Vshear is the mean wind speed, W20 is the measured wind speed at an altitude of 20 feet, h is
the altitude, and z0 is a constant equal to 0.15 feet for Category C flight phases and 2.0 feet for all
other flight phases. Category C flight phases are defined in reference [34] to be terminal flight phases,
which include takeoff, approach, and landing.

In Gazebo, SDF plugins are used to extend the functionality of the simulation environment and
add custom behavior to models or the world. SDF plugins are written in C++ and are loaded by
Gazebo during the simulation startup.

In the simulation, the effect of wind disturbance on the aircraft can be regarded as a continuous
external force acting on the body coordinates, and the wind disturbance model is packaged into an
SDF plugin to activate it during simulation. To create a wind disturbance SDF plugin and add it to
the aircraft flight environment, we typically follow these steps:

Step 1: Write the Plugin Code.

Create a C++ source file for the plugin and define the desired forces generated by wind distur-
bances acting on the body coordinate system.

Step 2: Build the Plugin.

Compile the plugin into a shared library (.so file) using CMake. Ensure that the plugin is linked
to Gazebo and its required libraries.

Step 3: Load the Plugin.

In the Gazebo SDF file, include a “<plugin>” element that references the compiled plugin library
and specifies any necessary parameters.

Figure 6 shows a wind plugin provided by Gazebo, which needs to have the following parame-
ters to configure:

 
Figure 6. Add wind plugin to the SDF aircraft model description file. Using the officially provided
wind disturbance plugin, you can set the wind direction and magnitude for both constant wind
and gusts.

“linkName” is the link affected by the wind.
“xyzOffset” is the spatial offset of the link coordinate system to form the new coordinate system,

which is the reference coordinate system for the wind.
“windDirection” is the force direction under the wind coordinate system.
“windForceMean” is the average value of the wind.
“windGustDirection” is the direction of the gust.
“windGustDuration” is the duration of the gust.
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“windGustStart” is the start time of the gust.
“windGustForceMean” is the average value of the gust.

4.2. Terrain Model
Mountainous regions pose a threat to the safe flight of aircraft. When large fixed-wing UAVs

are engaged in low-altitude penetration missions, their flight altitude is often relatively low. Aircraft
must promptly adjust their flight altitude and course based on terrain obstacles to avoid collisions. In
this section, we generate a large-scale terrain model using a heightmap.

In Gazebo, a heightmap is a type of terrain representation used to model the elevation and
topography of the ground surface in a simulation environment. Heightmaps are an efficient way to
create realistic and detailed terrains, especially for large outdoor scenes. A heightmap is essentially
a 2D grid of elevation values, where each cell in the grid represents a point on the terrain, and the
value in the cell determines the height or elevation of that point above a reference level, typically the
ground level (Z = 0). The elevation values can be measured in meters, feet, or other units, depending
on the scale of the simulation.

Figure 7 is a heightmap that we utilize. Essentially, it is a grayscale image. In the Gazebo
environment model file, this heightmap can be configured to automatically generate the terrain
model. In order for Gazebo to successfully load the heightmap and generate the terrain model,
the original map needs to be cropped to the pixel size of (2n+1, 2n+1). In this project, the original
heightmap was cropped to the pixel size of (1025, 1025).

 
Figure 7. Original heightmap. Different grayscale values represent different altitudes, where higher
grayscale values (whiter pixels) indicate higher elevations.

At the same time, in order to make the generated terrain model more realistic, maps are used on
the surface of the terrain. In the terrain model shown in Figure 8, three maps of water, grass, and
sand are used, and different maps are used in different height threshold ranges. Figure 9 is a partial
enlargement of the terrain model in Gazebo. The mountains in the figure are automatically generated
terrain, and the height of the mountains can be scaled in the model profile.
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Figure 8. Terrain model in Gazebo. Different textures are applied to different altitudes: blue texture
represents ocean areas, green texture represents grassland regions, and brown texture represents
mountainous areas.

Figure 9. Terrain model in Gazebo (local zoom). The image displays details from Figure 8, where
the red dashed box highlights mountains at different altitudes. These mountains pose a threat to
low-altitude aircraft flight.
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4.3. No-Fly Zones
There are some areas where the flying of aircraft, drones, or other aerial vehicles is restricted

or prohibited due to safety, security, or regulatory concerns. These zones are often established to
prevent potential conflicts with other air traffic, protect sensitive areas, maintain privacy, and ensure
public safety.

The restricted airspace designed in this study consists of multiple hemisphere models and
cylindrical models. In our simulation scenario, the size and coverage of these no-fly zones are not
fixed and remain dynamically deployable. The no-fly zone models are dynamically generated based
on the terrain model designed in Section 4.2. Prior to launching the simulation program, we have the
flexibility to customize the number, type, coverage area, and world coordinates of the no-fly zones.
Therefore, a wide variety of different no-fly zone configurations can be applied on the same terrain
model. Furthermore, during the aircraft flight simulation, it is possible to dynamically add additional
no-fly zones to the original simulation environment. These zones can also be specified to undergo
certain changes, such as translation with a fixed speed, based on predefined rules.

For the aircraft, the information about these no-fly zones is known. It can either be known to
the aircraft before takeoff, including all the no-fly zones and threat areas, or it can be received in
real-time by external perception devices (such as satellite remote sensing) through a data link. Based
on this known information about no-fly zones and threat areas, the aircraft can plan its flight path in
advance. When encountering newly acquired information about no-fly zones, the aircraft needs to
perform dynamic avoidance maneuvers and replan its flight path accordingly.

The hemispherical no-fly zone model is formulated as follows:

Li(x, y, z) = ∑(x − xi)
2 + (y − yi)

2 + z2 = R2
Rimax z ≥ 0 (20)

where the coordinate of the hemispherical no-fly zone i is (xi, yi, zi), and RRimax is the maximum
detection radius of the ground no-fly detector.

The Gazebo terrain model includes multiple hemispheres as no-fly zones, which can be cus-
tomized in position, radius size, and color, as shown by the five red semi-transparent hemispheres
in Figure 10.

 

Figure 10. Hemisphere models in Gazebo. On the foundation of the terrain model, some custom
semi-transparent red hemisphere regions are added as no-fly zones.

The cylindrical no-fly zone model is formulated as follows:

Li(x, y, z) = (x − xi)
2 + (y − yi)

2 − R2
Mimax = 0 zi = [0, Zih] (21)

where Li(x, y, z) represents the hemispherical no-fly zone i, (xi, yi) represents the center coordinate
of the cylinder i, RMimax represents the horizontal threat radius of the cylinder i, and Zih represents
the vertical threat altitude of the cylinder i.

Multiple cylinders are added to the Gazebo terrain model as no-fly zones; these cylinders are
customizable in position, radius size, and color, as shown by the five purple translucent cylinders
in Figure 11.
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Figure 11. Cylinder models in Gazebo. On the foundation of the terrain model, some custom
semi-transparent purple cylindrical regions are added as no-fly zones.

5. Comprehensive Simulation

In this section, we combine the V-tail aircraft designed in Section 3 with the flight threat scenario
proposed in Section 4. The aircraft model performs flight simulation in the Gazebo simulator and
collects and uses ROS to manage the data of the aircraft, such as position, attitude angle, angular
velocity, and angular acceleration.

Figure 12 illustrates the main modules and primary data flow within the comprehensive
simulation. Gazebo serves as the simulation platform for comprehensive control experiments of the
V-tail aircraft, deployed within a large-scale 3D flight environment. We have designed two Python
programs and use ROS for data management. The first program is utilized to retrieve the aircraft
model’s state data in Gazebo at each simulation time step. It extracts the aircraft’s attitude and
velocity data from the raw state data. The second program is responsible for controlling the desired
state of the aircraft model. It includes attitude angle controllers and a flight speed controller, both
employing PID control algorithms. These controllers output the deflection angles of the ailerons and
V-tail, as well as the engine thrust magnitude, which are used to control the aircraft model in Gazebo.

The controller program for the V-tail fixed-wing UAV primarily consists of an attitude angle
controller, flight speed controller, and altitude controller, as depicted in Figure 13. The attitude
angle controller comprises three distinct control programs: pitch, roll, and yaw. The roll controller
controls the aircraft’s roll angle through adjusting the aileron control surface. Both the pitch and yaw
controllers use the deflection angles of the V-tail’s two control surfaces as outputs. Consequently,
there is coupling between pitch and yaw control in V-tail aircraft. We use the pitch controller’s output
control surface angle as a baseline, and the control surface angle output from the yaw controller
is added to this baseline. This approach allows us to achieve yaw control while maintaining the
desired pitch angle.

The flight speed controller adjusts the engine thrust to maintain the desired flight speed. The
altitude hold controller is a two-loop controller, where the outer loop takes the desired altitude as
input and outputs the pitch angle magnitude. The inner loop is the pitch angle controller. In this
study, these controllers all use PID control algorithms.

In order to control the aircraft model in Gazebo from an external program, we established a
link between ROS and Gazebo, as shown in Figure 14, where the oval box represents the ROS node
and the connecting line represents the ROS topic, “/gazebo_gui” is the visual simulation interface of
Gazebo, and “/gazebo” contains a variety of Gazebo simulation data, which is used to obtain and
set the state of the model. “/object_position_publisher” retrieves multiple state data of the model
from “/gazebo/model_states”, extracts the position and pose of the model, and publishes them
through the topic “/plane_pose”. “/aircraft_command” publishes the angle and throttle controls of
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the aircraft, using three PID controllers to control the angles, corresponding to the pitch, roll, and yaw
control of the aircraft. The desired angles are input by the keyboard key, and the controllers output
the control values of the aircraft rudder surfaces.

Figure 12. The comprehensive simulation system flowchart.

 

Figure 13. The block diagram for the V-tail aircraft controller design.

 

Figure 14. ROS node graph. Using the official ROS tool, “rqt_graph” generates a ROS node graph,
where ellipses represent individual nodes and arrows indicate the direction of data transmission.

Figure 15 depicts the comprehensive simulated flight environment, primarily composed of
two terrain models. One is the runway model, utilized for taxiing and takeoff, while the other
is the mountainous terrain model, simulating potential mountain obstacles that the aircraft may
encounter during flight missions. We have designed an aircraft flight state controller program that
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enables control over the aircraft’s flight attitude angles and throttle through keyboard commands,
as shown in Figure 16. The program continuously prints expected and actual flight states in real
time. Using this control program, we have accomplished fundamental aircraft maneuvers such as
climbing and rolling.

 

Figure 15. Comprehensive simulation flight scenario. The flight environment consists of two parts:
one is the runway scene used for taxiing and takeoff of the aircraft, and the other is the terrain model
used to simulate obstacles encountered by the aircraft during flight.

 

Figure 16. Keyboard control. The figure displays an aircraft control program we designed, which
allows controlling the aircraft’s attitude and throttle through keyboard inputs. It also prints the
desired and actual values in real time.
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Figure 17 illustrates the simulated aircraft’s attitude angle data over a period of time. The deep
blue line represents the roll angle data, the red line represents the pitch angle data, and the light
blue line represents the yaw angle data. During the flight simulation, in conjunction with the flight
controller program, the desired aircraft attitude angles are set through keyboard inputs. The attitude
angle controller employs a PID control algorithm to manipulate the ailerons and V-tail to achieve
the desired angles.

Figure 17. Attitude angle data of the aircraft. During flight testing, a segment of attitude angle data
is recorded. Through configuring different desired attitude angles, the attitude angle controller steers
the aircraft to reach the desired angles.

We tested the pitch angle controller of the aircraft. In the takeoff phase, the pitch angle was set
to −0.3 radians, and the throttle was increased at the same time. The aircraft experienced overshoot
and fluctuation in the pitch angle during the climbing phase, and finally stabilized at −0.3 radians as
shown in Figure 18. Figure 19 shows the simulation screenshot of the aircraft in the climbing phase,
and the PID controller of pitch angle outputs the maximum angular control (0.52 radians) to the tail.
Figure 20 is a simulation screenshot of the aircraft reaching the pitch angle set point of −0.3 radians.
In the pitch angle PID controller, set Kp = −3, Ki = −0.05, Kd = 0.05.

Figure 18. Pitch angle data of the aircraft. Pitch angle data during the aircraft’s takeoff phase is
recorded. At the moment of takeoff, the desired pitch angle is set to −0.3 radians. After a period of
angular fluctuations, the pitch angle eventually stabilizes at −0.3 radians.

440



Drones 2023, 7, 601

 

Figure 19. Aircraft is in the climbing phase. The aircraft’s V-tail control surface is set to rotate within
the range of −0.52 radians to 0.52 radians. At takeoff, the pitch angle is set to −0.3 radians, at which
point the V-tail control surface is at its maximum deflection.

 

Figure 20. The pitch angle of the aircraft is stable at −0.3 radians. When the aircraft’s pitch angle
stabilizes at −0.3 radians, due to excessive lift, the V-tail control surface needs to rotate downward by
a certain angle to maintain pitch stability.

A PD controller is employed for the aircraft’s roll angle control, with PD controller parameters
set as follows: Kp = −5 and Kd = −0.05. Figure 21 displays the roll angle curve of the aircraft,
demonstrating that the use of the PD controller effectively stabilizes the aircraft’s roll angle. It’s
important to note that the roll angle control involves a system with significant delays. This is why we
opted not to introduce integral control, as it could potentially affect the stability of the control system.
Figure 22 depicts a 3D simulation snapshot of the aircraft’s roll angle stabilizing at 0.42 radians.
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Figure 21. Roll angle data of the aircraft. During the stable flight phase, multiple desired roll angles
for the aircraft are set to evaluate the performance of the roll angle controller.

 

Figure 22. The roll angle of the aircraft is stable at 0.42 radians. A screenshot of the aircraft maintaining
a roll angle of 0.42 radians is taken. At this moment, the aileron control surface is essentially not
deflected. Due to excessive lift generated by the high aircraft speed, the V-tail control surface rotates
downward by a certain angle to maintain pitch stability.

6. Conclusions

Nowadays, large fixed-wing UAVs are being utilized for a variety of tasks. Relevant research
indicates that V-tail configurations can effectively reduce aerodynamic drag and enhance flight
endurance. However, achieving efficient customized development and various intelligent functional-
ities in a specific domain remains an unresolved challenge. This study integrates SolidWorks model
design with aircraft simulation technology, establishing a comprehensive aircraft simulation system
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in Gazebo that encompasses kinematics, dynamics, and collision characteristics. Additionally, a simu-
lation environment modeling approach for obstacle avoidance in no-fly zones is presented, creating a
large-scale flight environment model that includes mountains, wind disturbances, and no-fly zones.
Data communication and motion control are achieved through ROS, and the aircraft’s attitude control
is implemented using a PID algorithm. The primary contribution of this research lies in providing
a 3D visualization simulation platform for dynamic obstacle avoidance, trajectory planning, and
formation flying applications in the context of large-scale fixed-wing unmanned aircraft.

Currently, this research is at the initial stage, and there is still a lot of work to be done. The
following outlines the future directions of the study:

(1) Develop trajectory planning and tracking algorithms for the research aircraft to achieve obstacle
avoidance flight with minimal cost.

(2) Investigate multi-aircraft formation flying algorithms, aiming to maintain formation while
avoiding threat areas as effectively as possible.
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Abstract: The collaborative deployment of multiple UAVs is a crucial issue in UAV-supported disaster
emergency communication networks, as utilizing these UAVs as air base stations can greatly assist
in restoring communication networks within disaster-stricken areas. In this paper, the problem of
rapid deployment of randomly distributed UAVs in disaster scenarios is studied, and a distributed
rapid deployment method for UAVs´ emergency communication network is proposed; this method
can cover all target deployment points while maintaining connectivity and provide maximum area
coverage for the emergency communication network. To reduce the deployment complexity, we
decoupled the three-dimensional UAV deployment problem into two dimensions: vertical and
horizontal. For this small-area deployment scenario, a small area UAVs deployment improved-
Broyden–Fletcher–Goldfarb–Shanno (SAIBFGS) algorithm is proposed via improving the Iterative
step size and search direction to solve the high computational complexity of the traditional Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm. In a large area deployment scenario, aiming at the
problem of the premature convergence of the standard genetic algorithm (SGA), the large-area UAVs
deployment elitist strategy genetic algorithm (LAESGA) is proposed through the improvement of
selection, crossover, and mutation operations. The adaptation function of connectivity and coverage
is solved by using SAIBFGS and LAESGA, respectively, in the horizontal dimension to obtain the
optimal UAV two-dimensional deployment coordinates. Then, the transmitting power and height
of the UAV base station are dynamically adjusted according to the channel characteristics and the
discrete coefficients of the ground users to be rescued in different environments, which effectively
improves the power consumption efficiency of the UAV base station and increases the usage time
of the UAV base station, realizing the energy-saving deployment of the UAV base station. Finally,
the effectiveness of the proposed method is verified via data transmission rate simulation results in
different environments.

Keywords: disaster emergency communication; UAV connectivity; UAV deployment optimization;
UAV coverage

1. Introduction

In recent decades, the frequency of all kinds of natural disasters has been increasing
year by year, especially earthquakes, floods, and debris flows, which often bring incalculable
losses to the affected areas [1]. In these disasters, the ground communication facilities in
the accident area are often destroyed, which can make it difficult for information on the
disaster situation in the accident area to be transmitted in time and makes the post-disaster
relief work difficult to carry out effectively. Unmanned aerial vehicles (UAVs), which are
characterized by their low cost, high flexibility, and high line-of-sight link probability [2],
can be utilized to establish low altitude platforms (LAP) for emergency communication
purposes [3], satisfying post-disaster communication needs [4–8].

However, given the urgency and timeliness of disasters, a UAV-assisted emergency
communications network must be deployed in a timely manner [9], and the key challenges
are the following. First, UAVs have limited computing power [10], and the dynamic
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tracking of disaster areas to rescue ground users will consume a lot of computing resources,
increasing the deployment time of UAVs. Second, the UAV’s energy storage is limited [11];
the dynamic adjustment of the height of the UAV will further increase energy consumption,
reducing the UAV emergency communications service time.

A reasonable channel model can improve the deployment effect of UAVs, minimizing
the path loss, expanding the coverage area, and reducing the deployment time of the UAVs.
In [12], the authors assumed that UAVs are fixed in a two-dimensional plane without
seeking a balance between deployment range and link loss. In [13], the authors derived the
air-to-air channel model among UAVs while considering height factors. In [14], the authors
incorporated the characteristics of the air-to-ground propagation channel, the impact of
co-channel interference from other UAV base stations, and energy constraints of the UAV
base stations. In [15], the authors proposed a framework for evaluating flight height and
area coverage using a fixed number of drones and area dimensions. In [16], the authors
presented a distributed deployment algorithm specifically designed for line-of-sight (LoS)
scenarios which allowed UAV base stations to determine their motion based solely on local
information, making it suitable for large area UAVs deployments.

By integrating considerations of connectivity and coverage, the communication con-
nectivity and area coverage challenges in the deployment of emergency communication
UAVs can be effectively addressed, thereby enhancing the efficiency and accuracy of the
emergency response. In [17], the authors proposed a three-dimensional UAV deployment
scheme based on the improved genetic algorithm (IGA), which ensured the connectivity
of the UAV network in both static and dynamic user scenarios. In [18], the authors in-
vestigated the maximum coverage deployment problem while maintaining connectivity
conditions in the absence of user location information. In [19], the authors presented a
combined approach using the steepest descent method and genetic algorithm to optimize
the deployment scheme of wireless sensor nodes, aiming to achieve network connectivity
while meeting coverage constraints. In [20], the authors proposed a graphic coalition
formation game that combines UAV time-varying topology with a coalition formation
game.

To reduce the complexity of the UAV deployment problem, some scholars have pur-
sued some interesting research. In [21], the authors took into consideration the complexity
of 3D UAV deployment by decoupling the UAV deployment problem into vertical and
horizontal dimensions. In [22], the authors demonstrated the existence of an optimal
vertical height that achieves a maximum coverage range for UAV energy efficiency.

Due to the limited endurance of UAVs, researchers have investigated the power
allocation problem for UAVs. In [23], the authors proposed a new analysis model to study
the key factors affecting UAV power consumption. In [24], the authors proposed a joint
power allocation and deployment scheme in UAV-based IoT networks, aiming to optimize
the deployment locations and power allocation of UAVs by maximizing network coverage
and minimizing network interference. In [25], the authors proposed an adaptive UAV
deployment scheme with the objective of optimizing UAV positions to cover as many
navigation grids as possible while reducing communication energy consumption. In [26],
the authors analyzed the effects of wind speed, wind direction, and turbulence on the
endurance of UAVs. In [27], the authors studied the use of hybrid precoding to reduce
hardware complexity and energy consumption in UAVs.

Applying the meta-heuristic optimization algorithm to solve the UAV deployment
optimization problem can simplify the solution process, improve the deployment efficiency,
and optimize the deployment effectiveness. The most common meta-heuristic methods
include real-coded genetic algorithm (RCGA-rdn) [28], water strider algorithm (WSA) [29],
thermal exchange optimization algorithm (TEO) [30], and so on.

Moreover, there exist several intriguing research directions. In [31], the authors
presented a UAV emergency communication system architecture based on 5G and its sub-
sequent technologies. This system exploits UAVs as communication relay nodes to provide
communication services within disaster-stricken areas. In [32], the authors proposed a relay
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deployment and network optimization framework based on non-orthogonal multiple ac-
cess. The framework aims to maximize network coverage and service quality by optimizing
the deployment locations and power allocation of relay nodes. In [33], the authors consid-
ered a facility location problem with drones. In [34], the authors proposed a new UAV or
UAV platform that can connect a network of sensors and actuators on demand. In [35],
the authors proposed a base station interference management method for UAVs based on
affinity propagation and machine learning. In [36], the authors proposed a lightweight,
privacy-preserving protocol for UAV internet environments. In [37], the authors developed
a multi-UAV cooperative search model (MCSM) with communication cost and formation
benefit as an optimization function to ensure the effectiveness of multi-UAV search.

The above research focuses on solving the problems of UAV energy consumption
and UAV communication effect but does not consider the efficiency of UAV deployment.
In view of the urgency and timeliness of disaster emergency communication, we design
the rapid deployment method for UAV base stations which is suitable for small areas
and large areas, respectively. Then, according to different disaster scenarios, the launch
power and deployment height of the UAVs are dynamically adjusted to provide emergency
communications for different disaster scenarios.

The main contributions of this paper are as follows:

• First, we decouple the UAV deployment problem for disaster emergency commu-
nication into two sub-problems: horizontal deployment and height regulation. We
extract the horizontal deployment problem into the solution of UAV coverage rate
and connectivity rate and calculate the optimal horizontal deployment coordinates
of the UAV base stations, which effectively improves the deployment speed of UAV
base stations after disasters. Then, the transmitting power and deployment height of
the UAV base station are adjusted according to the channel model of urban, suburban,
and rural environments and the distribution characteristics of the users waiting for
rescue on the ground; in this way, energy-saving communication for the UAV base
station is realized effectively.

• Secondly, we proposed the small-area UAV deployment improved-Broyden–Fletcher–
Goldfarb–Shanno algorithm (SAIBFGS) to solve the UAV two-dimensional deploy-
ment problem for small-scale disaster scenarios, which reduces the complexity of the
algorithm by improving the iterative step size and search direction. For large-scale
disaster scenarios, we proposed a large area UAV deployment elitist strategy genetic
algorithm (LAESGA) to solve the UAV two-dimensional deployment problem. By
improving the selection, crossover, and mutation operations, the premature conver-
gence of genetic algorithm is avoided. Simulation results show the convergence of the
algorithm.

The remaining sections of this paper are as follows: Section 2 presents the system
model and problem-solving approach for the rapid deployment of disaster emergency
communication UAVs. Section 3 proposes deployment methods for unmanned UAVs
applicable to different scales of disaster scenarios, along with the validation of the proposed
algorithms’ effectiveness in problem solving. Section 4 provides simulation results and
analysis. Finally, Section 5 concludes the paper.

2. System Model

The present paper primarily investigates a UAVs-assisted model for disaster emer-
gency communication networks, as depicted in Figure 1. We consider a disaster scenario
with a square area of S. The system comprises IUAV of UAVs, Jperson of ground users
awaiting rescue, and L target deployment points are located, the sets IUAV = {1, 2, . . . i},
Jperson = {1, 2 . . . j} and L = {1, 2 . . . l}. In the disaster scenario described in this paper, the
target deployment point represents the damaged ground communication base station, and
the UAV base stations replace these damaged ground communication base stations to pro-
vide emergency communications services for the rescue ground users. The communication
links depicted in Figure 1 include UAV-to-UAV communication (U2U) and UAV-to-ground
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communication (U2G) for interaction between unmanned aerial vehicles and ground users
in need of rescue. In addition, Table 1 summarizes the main notations used in this paper.

 

Figure 1. Communication network model of UAV base stations.

Table 1. Table of notations.

Notations Description

IUAV UAVs’ set
Jperson Sets of ground users awaiting rescue

D The horizontal distance between the user’s equipment antenna on the rescue surface
and the UAV´s station antenna

Z(hmsta) The antenna parameter calibration factor
k The scenario type calibration factor

Rui ,li
Euclid distance between UAVs and target deployment points

Rui ,Zi Euclid distance between a UAV and any point
ui The horizontal coordinates of a UAV
li The horizontal coordinates of the target deployment points
Zi The coordinates of any point in the rectangular area
f1 The connectivity fitness function
f2 The coverage fitness function

f it f inal Fitness function
Ploss Pathloss

ϑ Random variable
ak Step size
dk The search direction
N Number of UAVs
L Number of target deployment points
M Number of the ground users awaiting rescue

dmin UAVs safe distance
dmax Maximum communication distance of UAVs

f0 Carrier frequency
T1 Path loss threshold
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Table 1. Cont.

Notations Description

hmsta The effective height of the user equipment antenna on the rescue surface
hsta The effective height of the UAVs station antenna
ω The number of chromosomes
Ci The offspring chromosome
Fi The parent chromosome
� The crossover probability
� The mutation probability

γ1, γ2 Number of iterations
Pt UAVs launch power
Pr Power received by ground users to be rescued

Ctarget The coordinates of the target deployment points
Cf inal The final deployment coordinates

Mi The number of users in need of rescue within the coverage range of the UAVs
MCOV The user coverage ratio

S The accuracy of deployment
FBW Bandwidth frequency
M Data transmission rate

SINR The signal-to-noise ratio of the communication.
σ,τ Random variable
er f Error function
U A random number uniformly distributed over an interval (0,1)

CD The discrete coefficient of user distribution on the ground to be rescued
ZJperson The coordinates of the ground users to be rescued

Pextra A power loss function

2.1. Channel Model

For the recovery of UAV communications in the disaster area, we assume that the
people who survived in the disaster area can still use their smartphones, but because the
ground base stations in the disaster area are overloaded or damaged, it makes it impossible
for smartphones to communicate with the outside world. At this time, UAV can be used as
a mobile node in the communication network to provide emergency communications for
disaster areas. We hypothesized two scenarios that would require UAVs deployment. One
scenario would be a large event space, where the large number of user communications
requests exceed the load of the ground base station, and the UAVs would overcome
geographic barriers that limit communication at the event horizon, providing temporary
emergency communications to the region. In the other scenario, where ground base stations
are damaged by a disaster such as an earthquake or mudslide [5], UAVs are deployed
immediately to provide a temporary emergency communications network in open areas.
The Hata–Okumura model [38] is employed to evaluate path loss and signal enhancement.
This model enables the assessment of path loss in urban, suburban, and rural environments,
and can be represented as follows:

Ploss= 69.55+26.16lg( f o)−13.82lg(h
sta

)
−Z(hmsta)+(44.9 − 6.55lg(h sta))× lg(D)+k (1)

Z(hmsta) =

⎧⎪⎨⎪⎩
3.2 × (lg(11.75 × hmsta))

2 − 4.97 f0 > 300MHz
8.29 × (lg(1.54 × hmsta))

2 − 1.1 f0 ≤ 300MHz
(1.11 lgf0 − 0.7)hmsta − 1.56lgf0+0.8 others

(2)

k =

⎧⎪⎪⎨⎪⎪⎩
0 urban
−2 × (lg( f 0 /28))2 − 5.4 suburban

−4.78 × (lg( f 0))
2+18.33 × lg( f 0

)
− 40.98 rural

(3)
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In the equation, hmsta represents the effective height of the user equipment antenna
on the rescue surface, hsta represents the effective height of the UAVs station antenna, D
represents the horizontal distance between the users equipment antenna on the rescue
surface and the UAVs station antenna, Z(hmsta) is the antenna parameter calibration factor,
k is the scenario type calibration factor, and f0 is the carrier frequency of the U2U channel.
Due to the requirement of setting a certain redundancy value for path loss in disaster
scenarios, this paper does not consider the path loss generated by the transmission and
reception signals between the UAV and the ground user equipment. The relationship curve
between path loss Ploss and horizontal distance D is plotted using Equations (1) to (3), as
shown in Figure 2:

Figure 2. Plot of path loss versus horizontal distance.

When the path loss Ploss is less than or equal T1 to the threshold, it can be inferred that
the quality of customer service (QoS) of all ground users [39] under the coverage of UAV
ith in need of rescue is ensured.

2.2. Connectivity and Coverage Model

Assume a rectangular area R, within which L target deployment points are located,
denoted by the set L = {1, 2 . . . l}, li = (lxl , lyl) representing the horizontal coordinates
of the target deployment points. Let N UAVs be distributed within this area, ui = (xi, yi)
representing the horizontal coordinates of the ith UAV. Ri represent the communication
radius of the ith UAV. Let Zi = (zxi, zyi) represent the coordinates of any point in the
rectangular area. The distance between any two UAVs must not be less than the UAVs safe
distance, nor exceed the maximum communication distance. The distance between UAVs
can be expressed as follows:

di,k =

√
(hsta − hk)

2 + (ui − uk)
2 ≥ dmin (4)

where dmin represents the UAVs safe distance.
Modeling the connectivity rate as a function of Euclid distance Rui ,li between UAVs ui

and target deployment points li: max

Pui ,li =

{
1, 0 ≤ Rui ,li ≤ dmax
0, Rui ,li > dmax

(5)

Rui ,li =

√
hsta2 + (lxi − xi)2 + (lyi − yi)2 (6)

where dmax represented the maximum communication distance of UAVs.
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The connectivity fitness function is:

f1 = ∑li∈RPui ,li (7)

Modeling coverage as the Euclid distance Rui ,li between a UAV ui and any point Zi
within a given region:

Pui ,Zi =

{
1, 0 ≤ Rui ,Zi ≤ dmax
0, Rui ,Zi > dmax

(8)

Rui ,Zi =

√
(zxi − xi)2 + (zyi − yi)2 (9)

The coverage fitness function is:

f2 = ∑Zi∈RPui ,Zi (10)

The connectivity fitness function and the coverage fitness function are specified as
follows:

Maximize : f it f inal =

[
ϑ × f1

L × L
+ (1 − ϑ)× f2

S

]
, ϑ ∈ (0, 1) (11)

3. UAVs Deployment Methods for Disaster Scenarios of Different Scales

According to the requirement in disaster emergency response that UAVs must be
deployed precisely and timely at the target point, this paper designs SAIBFGS, which is
suitable for small-area UAV deployment, and LAESGA, which applies to large area UAV
deployment.

3.1. Small Area UAVs Deployment Improved-Broyden–Fletcher–Goldfarb–Shanno

The quasi-Newton method is one of the most efficient approaches for solving nonlinear
optimization problems, initially proposed by American physicist W. C. Davidon in the
1950s. Presently, the prevalent variants of the quasi-Newton method are the well-established
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. Additionally, the steepest descent
methods (SD) are frequently employed to tackle nonlinear optimization problems [19].

The conventional BFGS quasi-Newton method, due to its excessive computational
demands, is not suitable for application in disaster emergency communications UAV
deployment tasks. Therefore, this paper proposes the low-complexity and low-storage-
demand SAIBFGS method. The SAIBFGS algorithm process is defined in Algorithm 1.

The standard iterative form of the BFGS algorithm is as follows:

xk+1 = xk + akdk = xk − akbkgk (12)

From the above equation, it can be observed that the computational burden of the
standard BFGS algorithm primarily lies in the search direction dk and iteration step ak.
In order to cater to the exigent communication scenarios during disaster emergencies,
improvements need to be made in these two aspects.

Firstly, we consider the iteration step size ak. In the quasi-Newton method, in order
to ensure the convergence of the function, it is required that the line search be monotonic.
Considering the requirement of conserving computational resources in disaster emergency
communication, we made the following improvements.

Exact search step size:

ak =
(dk)

T(gk)

(dk)
T B(dk)

(13)

Simplify the direction of the search:

dk+1 = −gk+1 +
(akdk)(akBdk)

T

(akdk)
T(akBdk)

gk+1 (14)
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In the equation, B is a positive definite matrix.
Compared to the standard BFGS algorithm, the SAIBFGS algorithm obviates the

need for direct calculation of the inverse Hessian matrix bk, thereby effectively reducing
computational complexity. The computational complexity of the standard BFGS algorithm
is L(6k2 + 6k), while that of the SAIBFGS algorithm is L(2k2 + 7k).

Algorithm 1 Small-Area UAV Deployment Improved-Broyden–Fletcher–Goldfarb–Shanno
(SAIBFGS)

Input: The starting coordinates of the UAV and the coordinates of the ground users awaiting
rescue.
Output: The final coordinates for the deployment of the unmanned aerial vehicle.
Step1: Initialize the two-dimensional coordinate points for the unmanned aerial vehicle, initialize
the step size, and store the data of the nearest m iterations.
Step2: While it is less than the iteration number and greater than the error, do the following.
Step3: Calculate the iterative step size: ak.
Step4: Modify and refine key points: xk+1 = xk + akdk
Step5: Compute the correction operator: pk = akdk, qk = akBdk.
Step6: Calculate the updated gradient value: gk+1 = gk + qk.
Step7: Compute a novel trajectory for the search: dk+1.
Step8: Update: k = k + 1
Step9: End

The accuracy of SAIBFGS is high, but as the number of UAVs increases and the
deployment range expands, it is prone to getting trapped in local optima. Additionally,
SAIBFGS further reduces computational complexity, making it suitable for small-scale UAV
deployment.

3.2. Large Area UAVs Deployment Elitist Strategy Genetic Algorithm

The standard genetic algorithm (SGA), proposed by John Holland of the United States
in the 1970s, is a computational technique that utilizes mathematical methods and computer
simulations to transform the problem-solving process into a series of chromosome-based
genetic operations such as selection, crossover, and mutation, similar to biological evolution.
Genetic algorithms can be encoded using either binary or real-number representations, and
this article adopts the real-number encoding scheme. The LAESGA algorithm process is
defined as shown in Algorithm 2.

Selection operation: The common selection method for genetic algorithms is binary
tournament selection; because only two individuals are compared at a time, the mechanism
of this method is simple, reducing diversity. In view of the defects of the binary tournament,
we made some improvements to the selection operation. First, the fitness function values
of each individual in the population are calculated and ranked from large to small. Then,
an elite strategy is applied to the first two ranked individuals, which are preserved and
directly copied to the next generation; the remaining ranked individuals were equally
divided into two groups, and the individuals with the same rank in each group were
cross-operated, thus avoiding limiting the population to a local optimal solution. Since
only a comparison between two individuals is involved at a time, the calculation is simple
and fast. To understand the selection operation more clearly, below is a schematic of a
selection operation with a chromosome number of 10, as shown in Figure 3:
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Figure 3. Schematic of the selected operation.

The chromosome before ranking is X = (X1, X2, . . . , Xω); after ranking, it becomes
X∗ = (X∗

1 , X∗
2 , . . . , X∗

ω) and satisfies f it f inal(X∗
1 ) ≥ f it f inal(X∗

2 ) ≥ . . . ≥ f it f inal(X∗
ω).

Crossover operation: The uniform crossover operation based on random weights is
adopted. In each crossover process, two parent individuals are selected from the mating
pool, denoted as Fi and Fi+1 respectively. Then, the decision of whether to perform crossover
is determined based on the probability of the crossover rate PC. If the randomly generated
number is less than PC, the crossover operation is executed. The crossover operator is
expressed as follows:

Ci = σFi + (1 − σ)Fi+1 (15)

Ci+1 = τFi+1 + (1 − τ)Fi (16)

Ci is the offspring chromosome, Fi is the parent chromosome, and σ and τ are random
values between 0 and 1. The crossover probability � is set at 0.9, the mutation probability
� is set at 0.09, and the number of chromosomes ω is 30.

Mutation operation: Gauss’s mutation method can generate continuous variation,
which allows the genetic algorithm to fine-tune and search in solution space and provides
a mechanism for global search, so it is widely used in genetic algorithms for unconstrained
optimization problems.

The genetic algorithm has shown promising results in the application of UAV deploy-
ment. However, the standard genetic algorithm suffers from lengthy computation times
and premature convergence. To address these limitations, LAESGA was devised to enhance
the overall convergence capability of the standard genetic algorithm. Consequently, the
deployment accuracy of UAVs is significantly improved, making it suitable for extensive
UAV deployments.
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Algorithm 2 Large-Area UAV Deployment Elitist Strategy Genetic Algorithm (LAESGA)

Input: The starting coordinates of the UAV and the coordinates of the ground users awaiting
rescue.
Output: The final coordinates for the deployment of the unmanned aerial vehicle.
Step1: Initialization, establishing maximum number of iterations.
Step2: Initialize the population, initialize the parameters.
Step3: If the number of iterations is less than and the error is greater than the number.
Step4: Calculate the fitness value and perform the elitist selection operation.
Step5: For the paternal chromosomes in the mating pool, the crossover operator generates
offspring.
Step6: For all offspring generated, do the following.
Step7: If mutation operation.
Step8: Then, the current progeny is undergoing mutation.
Step9: End
Step10: End
Step11: End
Step12: Calculate the fitness value and update the next offspring.
Step13: Update the iteration number.
Step14: End

4. Simulation Results and Discussion

In this section, we conducted simulations to validate the convergence and effectiveness
of the proposed methodology. The specific simulation parameters are presented in the
following Table 2:

Table 2. Simulation parameter settings.

Parameter Description Value

N Number of UAVS 8–12
M Number of the ground users awaiting rescue 200

dmin UAVs safe distance 100 m
dmax Maximum communication distance of UAVs 100–750 m

f0 Carrier frequency 1440 MHz
T1 Path loss threshold 150 dB

hmsta
The effective height of the user equipment antenna on the rescue

surface 1.5 m

hsta The effective height of the UAVs station antenna 30–200 m
ω The number of chromosomes 30
� The crossover probability 0.9
� The mutation probability 0.09

γ1, γ2 Number of iterations 1500, 4000
Pt UAVs launch power 20–60 dBm
Pr Power received by ground users to be rescued −80 dBm

FBW Bandwidth frequency 40 MHz
σ,τ Random variable 0~1

EUAV The power of a single UAV base station 600 Wh

4.1. Convergence Performance

To delve into the convergence performance of algorithms, we conducted simulations
in both small-area (500 m × 500 m) and large-area (4000 m × 4000 m) scenarios. In the
500 m × 500 m area scenario, we envision a short-lived communications outage in this
small area, which would be suitable for the deployment of subminiature UAVs. Eight
UAVs were deployed to execute mission tasks, with a communication radius set at 100 m.
To assess the effectiveness of the UAV deployment, we set the error threshold between
the UAV’s horizontal coordinates and the Euclidean distance of the target deployment
point to 10m. In the 4000 m × 4000 m area scenario, 10 UAVs were deployed, with a
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communication radius of 750 m. To assess the effectiveness of the UAV deployment, we set
the error threshold between the UAV’s horizontal coordinates and the Euclidean distance
of the target deployment point to 50 m.

Figure 4a–c shows the fitness curve of UAV deployment in the small area scenario,
where Figure 4d depicts the fitness curve in the large area scenario. It is observed that our
proposed algorithm converges after a certain number of iterations, which demonstrates the
effectiveness of our method in achieving rapid deployment for emergency communication
UAVs. As illustrated in Figure 4a, both the SAIBFGS algorithm and the LAESGA algorithm
achieve higher accuracy in solving the 500 m × 500 m area deployment, enabling more
accurate deployment overall. In Figure 4c, the SAIBFGS is difficult to converge in a
2500 m × 2500 m area. In contrast, Figure 4d shows that the SAIBFGS algorithm struggles
to handle large area deployment tasks, while the LAESGA algorithm effectively solves
such tasks. Although SGA converges quickly, its convergence time is too early to reach the
specified accuracy. So, while the area is less than 1500 m × 1500 m, we recommend using
the SAIBFGS algorithm to calculate the optimal horizontal deployment coordinates of UAV
base stations.

 
(a) (b) 

 
(c) (d) 

Figure 4. Fitness curve of iteration number and the Euclid distance between UAVs and target
deployment points. (a) Fitness curve for 500 m × 500 m area UAV deployment (eight UAVs);
(b) fitness curve for 1500 m × 1500 m area UAV deployment (eight UAVs); (c) fitness curve for
2500 m × 2500 m area UAV deployment (eight UAVs); (d) fitness curve for 4000 m × 4000 m area
UAV deployment (10 UAVs).

4.2. Efficiency Analysis of the Algorithm

In a rectangular area with dimensions of 500 m × 500 m, UAVs are randomly deployed.
Within area R, there are, respectively, 6, 8, 10, and 12 targets that require priority emergency
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communication. Simulation experiments are conducted to compare the single search CPU
average computation times of the SD algorithm, SAIBFGS algorithm, LAESGA algorithm,
and SGA algorithm. The aim is to validate the efficiency of these algorithms in solving the
problem at hand. Each algorithm is run 10 times for different numbers of targets, and the
average values are obtained, as shown in Figure 5 for statistical analysis.

Figure 5. Comparison of average computing time.

As depicted in Figure 5, the line search method, such as the SD algorithm and SAIBFGS
algorithm, showcases remarkable advantages in terms of computational efficiency when
compared to genetic algorithms. The improved genetic algorithm, compared to the stan-
dard genetic algorithm, demands less computational time, thereby conserving computing
resources.

4.3. Small Area UAV Deployment Simulation

Eight UAVs are randomly deployed within a rectangular area of 500 m × 500 m.
Additionally, eight target deployment points are set for UAV redeployment, while 200 users
in need of rescue are distributed within the area. The fitness function for redeployment is
calculated using three algorithms: SABFGS, LAESGA, and SGA. The coordinates of the
target deployment points are denoted as Ctarget = (xtarget, ytarget), and the final deployment
coordinates calculated with the three algorithms are denoted as Cf inal = (x f inal , y f inal). The
number of users in need of rescue within the coverage range of the UAVs is denoted as Mi,
and the user coverage ratio is calculated using the following formula:

MCOV =
Mi
M

× 100% (17)

We evaluate the accuracy of deployment by normalizing the error between the final
coordinates of the UAV deployment and the coordinates of the target deployment point:

S = (100 − 1
2 × N

N

∑
i=1

√
(xtarget − x f inal)

2 + (ytarget − y f inal)
2)× 100% (18)

We configure the maximum number of iterations γ1 for the three algorithms as 1500.
To ensure user QoS in the small-scale UAV deployment scenario, we establish a UAV
communication radius of 100 m.

As depicted in Figure 6, the pink circle represents UAV communication radius. And
demonstrated by Tables 3 and 4, all targets are encompassed within the UAV’s coverage
area. This indicates that all three algorithms are capable of achieving redeployment of the
unmanned aerial vehicles within a limited range. In terms of connectivity and coverage,
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all three algorithms are capable of achieving 100% connectivity. The SAIBFGS algorithm
yields a user coverage rate of 91%, while the LAESGA algorithm achieves a user coverage
rate of 92%, and the SGA algorithm achieves a user coverage rate of 88.5%. Regarding
deployment accuracy, the SAIBFGS algorithm boasts a deployment accuracy of 89.85%,
the LAESGA algorithm exhibits a deployment accuracy of 90.85%, and the SGA algorithm
demonstrates a deployment accuracy of 90.83%.

 
(a) (b) 

 
(c) (d) 

Figure 6. A simulated representation of the deployment of small area UAVs. (a) UAVs initial
deployment of small area; (b) UAVs final deployment results under the small area LAESGA algo-
rithm; (c) UAVs final deployment results under the small area SAIBFGS algorithm; (d) UAVs final
deployment results under the small area SGA algorithm.

Table 3. Small-area deployment coordinate parameters.

Coordinate SAIBFGS LAESGA SGA

(444, 326) (444.17, 326.74) (460.60, 321.16) (426.14, 355.8)
(88, 286) (88.65, 286.77) (83.91, 283.83) (85.16, 289.06)
(94, 331) (94.68, 331.65) (82.27, 313.19) (76.08, 334.73)
(370, 296) (328.45, 275.85) (334.97, 290.48) (391.88, 284.28)
(386, 81) (386.72, 81.39) (388.15, 62.04) (382.45, 72.84)
(89, 38) (89.47, 38.46) (110.57, 48.95) (69.59, 60.12)
(57, 41) (158.88, 85.38) (54.15, 48.96) (56.75, 29.28)

(236, 146) (236.42, 146.79) (251.43, 150.47) (250.42, 148.75)
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Table 4. Performance comparison of three algorithms for small-area deployment.

Indicators Initial SAIBFGS LAESGA SGA

Connectivity 100% 100% 100% 100%
Coverage of
ground users

awaiting rescue
65.5% 91% 92% 88.5%

Accuracy of
deployment / 89.85% 90.85% 90.83%

4.4. Large Area UAV Deployment Simulation

In a rectangular area of 4000 m × 4000 m, we arrange 10 UAVs randomly and set
up 10 target deployment points for the deployment of the UAVs. Within the area, there
are 200 ground users in need of rescue. We employ the SAIBFGS algorithm, LAESGA
algorithm, and SGA algorithm to compute the fitness function for the deployment. We set
the maximum iteration count γ2 for the three algorithms as 4000. In order to ensure user
QoS during the large-area deployment, we set the communication radius of the UAVs to be
750 m.

As depicted in Figure 7, the pink circle represents UAV communication radius. All the
targets presented in Tables 5 and 6 lie within the coverage range of the UAVs, illustrating
that all three algorithms can facilitate large-scale redeployment of UAVs. In terms of
connectivity and coverage, all three algorithms achieve 100% connectivity. The SAIBFGS
algorithm attains a user coverage rate of 92%, the LAESGA algorithm a user coverage rate
of 86.5%, and the SGA algorithm a user coverage rate of 85.5%. Concerning deployment
accuracy, the SAIBFGS algorithm exhibits a deployment accuracy of 45.87%, the LAESGA
algorithm a deployment accuracy of 90.36%, and the SGA algorithm a deployment accuracy
of 89.26%.

Table 5. Large area deployment coordinate parameters.

Coordinate SAIBFGS LAESGA SGA

(2807, 1496) (2807.36, 1496.75) (2807.33, 1495.58) (2825.22, 1478.14)
(2673, 113) (2465.86, 692.99) (2608.97, 282.28) (2678.63, 108.52)
(2508, 640) (2544.33, 625.63) (2507.94, 641.11) (2493.34, 621.13)
(73, 2026) (464.17, 2080.26) (76.40, 2023.19) (81.51, 2034.20)

(3193, 399) (3193.26, 3972.49) (3193.15, 3972.21) (3225.98, 3972.82)
(3329, 1845) (3329.76, 1845.79) (3328.76, 1844.83) (3363.03, 1854.57)

(882, 740) (882.63, 740.26) (881.94, 742.02) (880.13, 741.81)
(3250, 3570) (3250.36, 3570.79) (3248.72, 3569.72) (3250.04, 3582.09)
(2285, 1643) (2280.70, 1669.93) (2284.94, 1642.83) (2283.87, 1598.43)
(2032, 2681) (2031.29, 2682.36) (2031.90, 2682.67) (2020.11, 2666.59)

Table 6. Performance comparison of three algorithms for large area deployment.

Indicators Initial SAIBFGS LAESGA SGA

Connectivity 100% 100% 100% 100%
Coverage of
ground users

awaiting rescue
66.5% 92% 86.5% 85.5%

Accuracy of
deployment / 45.87% 90.36% 89.26%
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(a) (b) 

 
(c) (d) 

Figure 7. A simulated representation of the deployment of large-area UAVs. (a) UAVs´ initial
deployment in the large area; (b) UAVs´ final deployment results under the large area LAESGA
algorithm; (c) UAVs´ final deployment results under the large area SAIBFGS algorithm; (d) UAVs´
final deployment results under the large area SGA algorithm.

4.5. Minimum Power Consumption Simulation of UAVs Base Station

We set the simulation environment in a rectangular area of 4000 m × 4000 m, arrange
10 UAVs randomly, and set up 10 target deployment points for the deployment of the UAVs.
Within the area, there are 200 ground users in need of rescue. In order to describe the
distribution of users on the ground to be rescued, a properly defined measure of distance
between points [40] is used to represent the deviation from uniformity. We define the
coordinates of the ground users to be rescued as:

ZJperson = li + (
1
2
× (1 + er f (

U√
2
)))

−1
× CD (19)

where er f is the error function, U is a random number uniformly distributed over an
interval (0, 1), CD represents the discrete coefficient of user distribution on the ground to
be rescued.

After the disaster environment and the UAV deployment location are determined, all
the ground users who are waiting for rescue have the same path loss. On the premise of
satisfying the communication service quality of all ground users to be rescued within the
coverage range of UAV base stations, the efficiency of UAV base station power consumption
can be improved by enabling the UAV base stations to cover the rescue ground users with
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a minimum transmission power. The minimum launch power of the UAV base stations is
expressed as:

Pt = Pr + Ploss − Pextra (20)

where Pextra is a power loss function that varies according to different environments.
In order to study the specific energy-saving situation of UAVs based on the UAV power

consumption model [41], we express the single UAV base station energy consumption
as follows:

EUAV = Pt × t + (13.0397hsta + 196.894)× t + 4.6817h2
sta − 11.9708hsta + 135.3118 (21)

where EUAV represents the energy of a single UAV base station and t represents the usage
time of the UAV base station.

Figure 8 shows a fixed UAV base station with a launch power of 20 dBm. We study the
minimum UAV altitude for urban, suburban, and rural environments with a given ground
user dispersion coefficient.

Figure 8. The relationship between the height of the UAV base station and the discrete coefficient of
ground users to be rescued.

Figure 9 shows a fixed UAV base station with a height of 200 m. We study the
minimum UAV launch power in urban, suburban, and rural environments to meet the
specified ground user dispersion coefficient.

Figure 9. The relationship between the launch power of UAVs base station and the discrete coefficient
of ground users to be rescued.
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In previous studies, we found that the higher the base station deployment height, the
greater the coverage radius, and the higher the base station deployment height, the greater
the path loss between the UAV and the user on the ground to be rescued. As shown in
Figure 8, we found that the height of UAV base stations needs to be increased to some
extent with the increase of the dispersion coefficient of ground users to be rescued in urban,
suburban, and rural environments. As shown in Figure 9, we found that with the increase
of the dispersion coefficient of ground users to be rescued in urban, suburban, and rural
environments, the launch power of UAV base stations needs to be increased to varying
degrees. The dispersion coefficient of the ground users in an urban environment is much
larger than that in a rural environment, and the dispersion coefficient of the ground users
in a suburban environment is between the other two. Based on this, we can conclude that
UAV base stations in rural environments can choose larger deployment heights and smaller
transmitting power, such as a 200 m hover height deployment and a transmitting power of
20 dBm. UAV base stations can be deployed at a moderate altitude and transmit power, for
example, at a hovering altitude of 150 m and transmit power of 30 dBm. UAV base stations
in urban environments can be deployed at a lower altitude and with a larger launch power,
such as a 100 m hover deployment with a launch power of 40 dBm. Thus, the QoS can
be maintained while covering a large area of ground users to be rescued, and the power
consumption efficiency of the UAV base station can be improved.

4.6. Simulating the Data Transmission Rate in Diverse Environments

To verify the effectiveness of the rapid deployment approach for UAV communications
restoration in disaster-affected areas, we performed a data transmission rate verification
in Figures 10–12. We divide the disaster areas into three types: urban, suburban, and
rural. The actual data transmission rate of deployed drones will vary because the density of
ground users awaiting rescue varies from disaster to disaster. Specifically, we first calculated
the distance between each ground user awaiting rescue and a nearby target deployment
point, calculated the signal quality index SINR based on the distance, calculated the data
transmission rate of each location based on SINR, and finally, a contour map of the data
transmission rate based on the minimum data transmission rate. The bandwidth frequency
is expressed as FBW . By calculating the distance between each ground user and the nearest
ground base station, the value of SINR is obtained, where a value M greater than or equal
to 1 Mbps is considered effective communication. The formula for calculating the data
transmission rate is as follows:

M = FBW × log 2(1 + SINR) (22)

We set the initial hover height of the UAVs base station to 200 m, and the initial
launch power of the UAVs base station to 60 dBm. At this time, in urban environments, the
deployment of the central data transmission rate reaches 900 Mbps, with the deployment
of the edge data transmission rate being 100 Mbps (Figure 10b); we assume a single UAV
base station energy of 600 Wh and, according to Formula (21), calculated the UAV base
station usage time as being 519.08 s. Then, we adjusted the hover height of the UAV base
station to 100 m and the launch power of the UAV base station to 40 dBm. At this time,
in urban environments, the deployment of the central data transmission rate also reaches
900 Mbps, with the deployment of the edge data transmission rate also being 100 Mbps
(Figure 10a); thus, according to Formula (21), we calculated the UAV base station usage
time as 1399.39 s. In urban environments, our approach increases the usage time of UAV
base stations while maintaining the data transmission rate.

We set the initial hover height of the UAVs base station to 200 m, and the initial launch
power of the UAVs base station to 60 dBm. At this time, in suburban environments, the
deployment of the central data transmission rate reaches 700 Mbps, with the deployment
of the edge data transmission rate being 100 Mbps (Figure 11b); we assume a single UAV
base station energy of 600 Wh, so, according to Formula (21), we calculated the UAV base
station usage time as 519.08 s. Then, we adjusted the hover height of the UAV base station
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to 160 m and the launch power of the UAV base station to 30 dBm. At this time, in suburban
environments, the deployment of the central data transmission rate also reaches 700 Mbps,
with the deployment of the edge data transmission rate also being 100 Mbps (Figure 11a);
thus, according to Formula (21), we calculated the UAV base station usage time is 893.93 s.
In suburban environments, our approach increases the usage time of UAV base stations
while maintaining the data transmission rate.

 
(a) (b) 

Figure 10. The data transmission rate of UAVs base station in urban environment: (a) 100 m hover
height deployment and 40 dBm launch power; (b) 200 m hover height deployment and 60 dBm
launch power.

(a) (b) 

Figure 11. The data transmission rate of UAVs base station in suburban environment: (a) 160 m
hover height deployment and 30 dBm launch power; (b) 200 m hover height deployment and 60 dBm
launch power.

We set the initial hover height of the UAVs base station to 200 m, and the initial
launch power of the UAVs base station to 60 dBm. At this time, in rural environments, the
deployment of the central data transmission rate reaches 500 Mbps, with the deployment
of the edge data transmission rate being 50 Mbps (Figure 12b); we assume a single UAV
base station energy of 600 Wh, so, according to Formula (21), we calculated the UAV base
station usage time as 519.08 s. Then, we adjusted the hover height of the UAV base station
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to 200 m and the launch power of the UAV base station to 20 dBm. At this time, in rural
environments, the deployment of the central data transmission rate also reaches 500 Mbps,
with the deployment of the edge data transmission rate also being 50 Mbps (Figure 12a);
thus, according to Formula (21), we calculated the UAV base station usage time as 704.12 s.
In rural environments, our approach increases the usage time of UAV base stations while
maintaining the data transmission rate.

 
(a) (b) 

Figure 12. The data transmission rate of UAVs base station in rural environment: (a) 200 m hover
height deployment and 20 dBm launch power; (b) 200 m hover height deployment and 60 dBm
launch power.

5. Conclusions

In order to address the issues of low efficiency and insufficient accuracy in the de-
ployment of disaster emergency communication UAVs, this paper presents a method for
the rapid deployment of disaster emergency communication UAV base stations. This
method utilizes efficient algorithms tailored to different scale scenarios, greatly improv-
ing deployment efficiency, and the feasibility of the proposed algorithms is validated
through simulations. By dynamically adjusting the launch power and deployment height
of UAVs to provide emergency communication for different disaster scenarios, the power
consumption efficiency of the UAVs is improved, the usage time of the UAV base stations
is increased, and the energy-saving deployment of the UAV base stations is realized. From
the perspective of data transmission rate in urban, suburban, and rural environments after
UAVs´ deployment, this method effectively provides emergency communication services
for disaster areas with multiple scenarios.

Although the algorithm in this paper allows for the rapid deployment of UAVs to
restore emergency communication in disaster areas, it does have certain limitations. Specif-
ically, it does not consider complex dynamic environmental interference factors. Therefore,
further improvement of the proposed algorithm and the consideration of the interrelation
between rapid UAV deployment and multi-hop self-organizing communication of relay
UAVs should be explored in future research.
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Abstract: In this research, the design of a robust curved-line path-following control system for fixed-
wing unmanned aerial vehicles (FWUAVs) affected by uncertainties on the latitude plane is studied.
This is undertaken to enhance closed-loop system robustness under unknown uncertainties and
derive the control surface deflection angle directly used to control FWUAVs, which has rarely been
studied in previous works. The system is formed through the mass center position control (MCPC)
and yaw angle control (YAC) subsystems. In the MCPC, the desired yaw angle, which is treated as
the reference signal for the YAC subsystem, is calculated analytically using path-following errors,
current flow angles, and the yaw angle. In the YAC, a disturbance estimator is designed to estimate
uncertainties such as nonlinearities, couplings, time variations, model parameter perturbations, and
unmodeled dynamics. Predictive functional controllers are designed to target nominal systems in the
absence of uncertainties, such that the estimations of the uncertainties can be incorporated through
feedback for closed-loop system robustness enhancement. The simulation results show that higher
path-following precision and stronger robustness for the FWUAVs based on the proposed approach
can be achieved using only rough model parameters compared with the conventional nonlinear
dynamic inversion, which requires detailed model information.

Keywords: fixed-wing unmanned aerial vehicles; path following; disturbance estimator; predictive
functional control; nonlinear dynamic inversion

1. Introduction

Due to the advantages of long endurance, fast flight, and high energy availability, fixed-
wing unmanned aerial vehicles (FWUAVs) have become increasingly attractive in many
areas, such as reconnaissance, patrol inspection, and monitoring. When executing missions,
FWUAVs are required to follow a prescribed reference path. The mission execution effect
relies on the path-following control performance, making the design of the path-following
control system important with engineering significance.

Path-following errors are adjusted via attitude angles. According to the path-following
errors, the mass center position controller generates the desired attitude angles, which are
regarded as the references for the attitude controller so that the control surface deflection
angles as well as the control laws of FWUAVs can be derived.

In the MCPC, establishing a motion model is quite important. By considering aerody-
namic complexities, variable couplings, fast time variations, and high nonlinearities, the
geometric approach and control technique are mainly applied for model establishment.
The two approaches have the advantages of a simple model structure and irrelevant model
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information, such that their superiority is obvious when compared with conventional
modeling methods [1].

The commonly utilized geometric approaches include the line-of-sight (LOS) [2–7],
vector field [8–14], virtual target following [15–21], and L1 guidance approaches [22–28].
Analytical solutions of the desired attitude angles or body rates regarded as reference
signals can be derived through the relationships among the path-following errors, the
current flow angles, and the current attitude angles.

Being different from the geometric approach, the control technique assumes that there
is a virtual target point attached to the prescribed reference path. A natural frame also
named the Frenet frame [21,29–32], whose origin coincides with the virtual target point, is
established; in this case, the Frenet frame overlaps with the body frame if the FWUAV can
strictly follow the path. In the control technique, path-following error kinematic models
whose inputs are the error angles (also called error attitude angles) between the Frenet frame
and the body frame are built without using any plant model information. The advantages
of the control technique are that the error attitude angles can be designed through different
control theories, such as L1 adaptive control [33], L1 state feedback control [34], nested
saturation control [35], linear model-based predictive control [36], optimal control [37], and
nonlinear model predictive control [38], and that the approach has been studied widely.

By considering that FWUAVs are easily influenced via external wind fields, approaches
such as a new guidance law combined with pure pursuit and the LOS [39], a VTP-based
nonlinear guidance law [15], optimal control with the wind amplitude available [16],
feedback control with wind estimation and compensation [37], and adaptive backstepping
control [40] have been presented.

However, the existing path-following control schemes are incomplete since they mainly
focus on the establishment of a path-following error kinematic model and the design of
mass center position controllers. Once the desired attitude angles/body rates have been
obtained, the studies are ceased, meaning that the design of the attitude controllers is
ignored and that the final deflection laws of the control surfaces actually used to steer the
FWUAVs are not given. It is well known that attitude control plays a decisive role not only
in path-following control but also in the field of flight control. Hence, the design of an
attitude control system and control performance enhancement cannot be ignored.

To address these problems, targeting the movement of FWUAVs on the latitude plane,
a robust path-following control approach is presented in this paper. The path-following
control performance can be improved using only a small amount of rough dynamic model
information. The main outcomes and contributions of this paper are twofold:

(1) A path-following control scheme for FWUAVs is perfected.

Being different from most existing studies, this paper aims to improve attitude system
performance via improving path-following control performance. Effective deflection angles
of the control surfaces as well as the control laws are designed;

(2) A robust control approach is proposed for attitude control.

A novel disturbance estimator (DE) [41,42] is applied to estimate uncertainties, such
as nonlinearities, strong couplings, and system unmodeled dynamics, so that, in the design
of controllers, only a small amount of model information is used. As pointed out in the
two literatures, the novel DE has better performance than the commonly used extended
state observer [43–48]. In addition, a predictive functional controller (PFC) is designed
for the nominal system in the absence of uncertainties to improve system input/output
performance. The estimation of the uncertainties is incorporated into the PFC for feedback
compensation so that the closed-loop system’s robustness can be improved.

2. System Modeling

In this section, a movement model based on the latitude plane is established. The
fundamentals of the curved path following the latitude plane are illustrated in Figure 1.
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Figure 1. Path following on the latitude plane.

Here, OxIyI and Pxbyb represent the inertia frame and body frame, respectively. P
represents the current mass center position of the FWUAV, which is denoted as (x, y).
Pp represents the desired position denoted as (xp, yp), which the FWUAV should locate.
u and v are the velocities along Pxb and Pyb, respectively. β = arctan v

u represents the
side-slip angle. Va =

√
u2 + v2 is the air speed. ψ is the yaw angle. xe and ye represent

the components between the current position P and the desired position Pp in the frame
Ppxpyp. Δ is the look-ahead distance, which is a positive number.

2.1. Computation of Desired Attitude Angles

The prescribed reference path is denoted as Pp = [xp(s), yp(s)]
T , with s representing

the path parameter and xp(s) and yp(s) being the second-order derivatives with respect to
s. Then, the desired path angle can be written as

ψp = arctan2
(
yp(s), xp(s)

)
(1)

where arctan2(∗) represents the quadrant function.
The transformation matrix from OxIyI to Ppxpyp can be given using

Lpg =

[
cos ψp − sin ψp
sin ψp cos ψp

]
(2)

The following errors can be computed using Figure 1:

e = [xe, ye]
T = Lpg

(
P − Pp

)
(3)

Differentiating Formula (3) relative to time yields

·
e =

·
Lpg
(

P − Pp
)
+ Lpg

( ·
P − ·

Pp

)
(4)

One can also have ·
Lpg = SpLpg (5)

Sp =

⎡⎣ 0
·
ψp

− ·
ψp 0

⎤⎦ (6)
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The transformation matrix from PxKyK to Ppxpyp can be given using

Lpk =

[
cos ψr sin ψr
− sin ψr cos ψr

]
(7)

By considering the wind velocities along Pxb and Pyb denoted as uw and vw, respectively,

the perturbed airspeed denoted by Vg can be calculated using Vg =
√
(u + uw)

2 + (v + vw)
2.

Since Vkg =
[
Vg, 0

]T , we can have

·
P = LT

pgLpkVkg (8)

The velocity of the desired path in Ppxpyp can be expressed as Vpg = [Vp, 0]T ; then, we
can derive ·

Pp = LT
pgVpg (9)

and ∣∣∣∣ ·
Pp

∣∣∣∣ = ∣∣∣LT
pgVpg

∣∣∣ (10)

where |∗| represents the norm of a vector.
It can be determined from Formula (10) that

·
s =

Vp√
x′p2(s) + y′p2(s)

(11)

where x′p(s) =
∂xp(s)

∂s and y′p(s) =
∂yp(s)

∂s .
Bringing Formulas (5), (8), and (9) into (4) yields

·
e = SpLpg

(
P − Pp

)
+ Lpg

(
LT

pgLpkVkg − LT
pgVpg

)
= Spe + LpkVkg − Vpg

(12)

Then, the desired yaw angle can be calculated as

ψd = ψr + ψp − β (13)

with ψr defined as

ψr= arctan
(−ye

Δ

)
(14)

Take the following Lyapunov function:

Ve =
1
2

eTe (15)

Differentiating the Lyapunov function relative to time yields

·
Ve = eT ·

e
= eT

(
Spe + LpkVkg − Vpg

) (16)

It is easy to prove that eTSpe = 0. Then, via carrying out a simple mathematical
operation, one can derive

·
Ve = xe

(
Vg cos ψr − Vp

)
+ yeVg sin ψr (17)
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To guarantee
·

Ve ≤ 0, we can take

Vp = Vg cos ψr + τxe (18)

where τ > 0 is a tuning variable.
Bringing Formula (18) into (11) yields

·
s =

Vg cos ψr + τxe√
x′p2(s) + y′p2(s)

(19)

Bringing Formulas (14) and (18) into (17) yields

·
Ve = −τx2

e − Vg
Δye

2√
Δ2 + ye2

< 0 (20)

It can be seen from the definition that the velocity Vg must be a positive number. Δ
is the look-ahead distance, which is a positive number and has also been defined before.

Thus,Vg > 0 and Δ > 0 can guarantee −Vg
Δye

2√
Δ2+ye2

< 0, which also implies
·

Ve < 0.

Formula (20) indicates that the real flight path of the FWUAV can converge gradually to
the prescribed reference path under the designed desired yaw angle (14).

The complete curved path-following scheme can be summarized as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

·
s = Vg cos ψr+τxe√

x′p2(s)+y′p2(s)

ψr= arctan
(−ye

Δ

)
ψd = ψr + ψp − β

(21)

Equation (21) describes the path-following error of the center of mass of the FWUAV.
The first equation

·
s describes the changing rate of the path variable s relative to time so that

the desired path to be followed can be digitalized and programmed in the flight control
hardware. The rest of the two equations afford reference signals to the yaw angle system to
design the deflection laws of the rudder.

2.2. Yaw System Model

In the yaw movement, the force acting on the FWUAV is mainly the yaw torque, which
depends on the rudder. The expression of the yaw torque N is given by [49]:{

N = 1
2 ρV2

a SbCn
Cn = Cn0 + Cnβ

β + Cnr
br

2Va
+ Cnδr

δr
(22)

where ρ, S, b, and δr are the air density, wing area, wing span, and rudder deflection angle,
respectively. r is the yaw rate. Cn0 is the zero yaw moment coefficient. Cnβ

, Cnr , and Cnδr
are derivatives of the yaw moment with respect to the side-slip angle, yaw rate, and rudder,
respectively, which can also be seen in [49].
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Then, by referring to [49] and considering uncertainties, the yaw movement model is
given using ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

·
ψ = r

·
r = N

Iz
+ ds

=
Cn0 + Cnβ

β

Iz
+

Cnr br
2Va Iz

+ ds︸ ︷︷ ︸
fr

+
Cnδr

Iz︸︷︷︸
br

δr

= fr + brδr

(23)

where Iz is the moment of inertia. ds represents the uncertainties, including the unmodeled
dynamics and model parameter perturbations.

Then, the remaining task of this paper is to design the deflection angle of the rudder
δr so that the yaw angle of the FWUAV ψ in Formula (23) can track the desired value of ψd
derived from Formula (21) using the dynamic model (23).

2.3. Existing Approaches and Defects

To highlight the approach proposed in the paper, the existing approaches and their
defects are summarized in Table 1.

Table 1. The existing approaches and their defects.

Approach Category Literatures Defects

LOS [2–7] Poor robustness, no attitude control system

vector field [8–14] Complicated theories, Poor robustness, no
attitude control system

virtual target following [15–21] Too many virtual targets, poor robustness, no
attitude control system

L1 guidance [22–28] Poor robustness, no attitude control system
Frenet [21,29–32] Poor robustness, no attitude control system

3. Yaw Angle Control Design

In this section, based on the desired yaw angle derived in Section 2.1, a control scheme
for the yaw movement can be designed.

3.1. Design of DE

By referring to the literature [41], the design of the DE for estimating the nonlinear
term fr can be divided into the following steps:

Step 1: design of the nominal model
In the absence of fr in Formula (23), the nominal model in the continuous-time domain

can be given using
·
rm = brδr (24)

The discrete-time version is written as

rm(k + 1) = rm(k) + Tbrδr(k) (25)

where rm is the state of the nominal model, and T is the sampling period;
Step 2: DE formulation
The DE is designed as follows:⎧⎪⎨⎪⎩

f̂r(k) =
Δεr(k)

T + φ̂(k) · Δδr(k)

φ̂(k) = φ̂(k − 1) +
η[Δr(k)−φ̂(k−1)Δδr(k−1)]Δδr(k−1)

μ+|Δδr(k−1)|2
(26)
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where f̂r is the estimated value of fr, εr(k) = r(k) − rm(k), Δεr(k) = εr(k) − εr(k − 1),
Δδr(k) = δr(k)− δr(k − 1), Δr(k) = r(k)− r(k − 1), μ > 0, η ∈ (0, 2], and φ̂(0) is specified
by users.

A stability analysis of the DE can be seen in Appendix C in [42].

3.2. Controller Design

In Formula (23), the desired yaw rate for manipulating the yaw angle is designed as follows:

rd(k) = ω1[ψd(k)− ψ(k)] (27)

According to the predictive functional control theory [50,51], the system input can be
formulated using {

δr(k + i) = δ1 + i · δ2
Δδr(k + i) = δ2

(28)

Then, in Formula (23), in the absence of fr, a predictive model for the yaw rate model
can be given using ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

r(k + 1) = r(k) + Tbrδ1
r(k + 2) = r(k) + Tbr(δ1 + δ2)
r(k + 3) = r(k) + Tbr(δ1 + 2δ2)

...
r(k + n) = r(k) + Tbr[δ1 + (n − 1)δ2]

(29)

The following receding horizon performance index function is selected:

J(k) =
1
2

2

∑
j=1

[
r
(
k + nj

)− rd
(
k + nj

)]
(30)

where n1 and n2, which are two positive integers, are the lengths of the receding horizon.
Denote u(k) = [δ1, δ2]

T . Then, by letting ∂J(k)
∂u(k) = 0, the optimal rudder deflection angle

can be derived as follows:

δr(k) = [1, 0]
[

Tbr Tbr(n1 − 1)
Tbr Tbr(n2 − 1)

]−1[rd(k + n1)− r(k)
rd(k + n1)− r(k)

]
(31)

Through combing Formulas (26) and (31), the final control law is summarized as

δr(k) = [1, 0]
[

Tbr Tbr(n1 − 1)
Tbr Tbr(n2 − 1)

]−1[rd(k + n1)− r(k)
rd(k + n1)− r(k)

]
− 1

br
f̂r(k) (32)

4. Numerical Simulations

In this section, two groups of numerical simulations are carried out to demonstrate
the effectiveness and superiority of the proposed control scheme via a comparison with the
conventional nonlinear dynamic inversion (NDI) approach [52–54], which is commonly
used in flight control. The conventional nonlinear dynamic inversion controller for the yaw
angle control is designed as follows:{

rd(k) = ρ1[ψd(k)− ψ(k)]
δr(k) = 1

br
{ρ2[rd(k)− r(k)]− fr(k)} (33)

where ρ1 > 0 and ρ2 > 0 are two tuning parameters.
The geometry and aerodynamic parameters in Formulas (22) and (23) are

Iz = 1.759 kg · m2, Cn0 = 0, Cnβ
= 0.25, Cnr = −0.35, and Cnδr

= −0.032. The trimmed
conditions of the FWUAV are Va = 30 m/s, xp = yp = 0, ψ = r = 0, and δr = 0. The values
of the controller parameters for the NDI are ρ1 = 5 and ρ2 = 10. The values of the controller
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parameters for the proposed approach are μ = 0.1, η = 0.1, φ̂(0) = 1, ω1 = 2, n1 = 5, and
n2 = 10. The uncertainty term is ds = 4 sin(0.5t) + 3 cos(t) when 45 s ≤ t ≤ 90 s, and the
wind velocities along OxI and OyI are 0 and 3 m/s when 15 s ≤ t ≤ 30 s, respectively.
Actually, the wind disturbances along OxI would not have great effects on the flight path
of the FWUAV since the wind can only decrease the flight speed and prolong the mission
accomplishment time of the path following. However, the wind along OyI has entirely
different effects on the FWUAV since it affects the airplane from the side direction, which
would influence the stability of the FWUAV.

The prescribed reference path (unit: m) is given using{
xd(s) = −450 sin(s)
yd(s) = 450 cos(s) + 450

(34)

4.1. Case Study 1

In this group, wind disturbances along OxI and OyI and the uncertainty of ds regeared
as unmodeled dynamics are considered. The unmodeled dynamics ds would affect the
flight stability of the FWUAV since it can cause unstable poles.

The simulation results are illustrated below.
Figures 2 and 3 clearly prove that the proposed approach is superior to the NDI

approach. The absolute maximum following errors of the proposed scheme along OxI
and OyI are only 0.02 m and 2 m, respectively, compared with the ones based on the
NDI approach, which are up to 0.12 m and 12 m along OxI and OyI , respectively. The
path-following errors of the proposed approach are much smaller than those of the NDI.
Additionally, the two figures also indicate that the NDI approach has a trend of divergence
after 45 s when the unmodeled dynamics are encountered, since the NDI approach does
not have any anti-disturbance mechanisms. However, the situations are different in the
proposed scheme due to the existence of the DE, which has a strong disturbance estimation
capability and superb estimation accuracy.

 

Figure 2. Path−following effect.

Figure 4 shows that, when dealing with wind disturbances, the controllers of the
proposed approach generate more effective control inputs than those of the NDI approach
to guarantee path-following precision. However, to deal with the unknown unmodeled
dynamics, too-frequent deflection for the rudder occurs in the NDI-based closed-loop
system, which places a heavy burden on the actuator of the FWUAV. The reason for this
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is that the closed-loop system based on the proposed control scheme has a disturbance
rejection mechanism that enables the FWUAV’s strong robustness. Figure 5 shows the
accurate estimation capability of the DE, which is the fundamental reason for the proposed
control approach being superior to the conventional NDI approach.

Figures 6–8 show the attitude control performance of the FWUAV during flight. In the
flight control field, attitude maintenance capability plays a decisive role and determines
path-following performance. In Figures 7 and 8, the NDI approach-based path-following
control system is incapable of steering the yaw movement when unmodeled dynamics
are encountered. It can be seen in Figure 7 that the yaw angle of the NDI approach has
frequent fluctuations. In Figure 8, the FWUAV has large changing rates, which reach up to
30 degrees (should be around zero) for the yaw movement. A poor attitude control capabil-
ity would cause large path-following errors for the FWUAV, which results in unsatisfying
control performance in path-following missions. The situations are quite different in the
proposed approach, as shown in Figure 6, due to the disturbance rejection function because
the unmodeled dynamics can be estimated and compensated successfully.

 

Figure 3. Path−following errors.

 

Figure 4. Control laws.
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Figure 5. Uncertainty estimation and estimation error er = fr − f̂r.

 
Figure 6. Yaw angles: proposed approach.

4.2. Case Study 2

In this group, all uncertainties, including wind disturbances along OxI and OyI , the
model parameter perturbations for br, and uncertainty ds, are considered. To validate
the proposed scheme completely, +30% and −30% perturbations of br are considered.
Furthermore, the results of the two perturbation cases are also combined with those of the
case without any perturbations to show the effectiveness of the proposed scheme.

The simulation results are illustrated below.
It can be determined from Figures 9 and 10 that the proposed approach-based path-

following control system can achieve great flight performance regardless of whether the
important model parameter has perturbations. The absolute maximum following error
of the proposed approach in the two situations along OyI is only 0.02 m, and the mean
path-following errors are all very close to zero. Additionally, when recalling the results in
Section 4.1, it is found that, even when the model parameter perturbs within a wide range,
the control performance of the proposed approach is much better than that of the NDI.
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Figure 7. Yaw angles: the NDI approach.

 

Figure 8. Yaw rates.

Figure 11 shows that the control law can be designed requiring only a small amount of
rough model information. In addition, due to the existence of the DE, the dynamics of the
model perturbation can be observed accurately and compensated effectively so that even
slight changes in the characteristics of the closed-loop system would not happen. Thus, the
trends of the rudder deflection angles in the two situations are similar, which means that
even the model parameter undergoes large perturbations, and the rudder deflection angles
similar to those in the case without any perturbations can be used to steer the FWUAV.
Figures 12 and 13 show that the DE can estimate the uncertainties accurately, even when
large perturbations occur in the model parameter. It has an advantage in that the design
of the control system for the FWUAV is mildly correlated with the system modeling and
model parameter measurement.

Figures 14–16 show that similar yaw movements in the two situations can be achieved
during path following. Under the uncertainties induced via the unmodeled dynamics
and the parameter perturbation, the yaw angle changes stably without any jumping or
fluctuation, which proves that the frame stability of the FWUAV can be guaranteed and
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that the closed-loop system’s robustness can be significantly enhanced under large model
parameter perturbations.

 
Figure 9. Path−following effects.

 
Figure 10. Path−following errors.
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Figure 11. Control laws.

 

Figure 12. Uncertainty estimation: +30% and estimation error er = fr − f̂r.

 

Figure 13. Uncertainty estimations: −30% and estimation error er = fr − f̂r.

478



Appl. Sci. 2023, 13, 11577

 

Figure 14. Yaw angles: +30%.

 

Figure 15. Yaw angles: −30%.

 

Figure 16. Yaw rates.
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5. Conclusions

In this study, a novel, robust flight control system was designed for FWUAVs following
curved paths under uncertainties on the latitude plane. Without using any model infor-
mation, the desired yaw angle can be derived by using path-following errors, flow angles,
and the current yaw angle. The model-free approach for deriving the desired yaw angle is
easy to implement in hardware for engineering applications, and it dramatically reduces
the burden of flight control computers. For the yaw angle control, firstly, though the yaw
movement system is full of nonlinearities, couplings, time variations, and external winds,
which would seriously degrade flight performance, the designed disturbance estimator can
estimate all the uncertainties existing in the yaw movement model accurately for feedback
compensation such that the path-following accuracy can be improved significantly. The
path-following errors for the x and y directions are only 0.02 m and 2 m, respectively,
compared with 0.12 m and 12 m for the NDI approach. Secondly, due to the existence of
the disturbance estimator, the frame parameters of FWUAVs are allowed to perturb within
a wide range between −30% and +30%. Through consuming quite a similar amount of
input power (the deflection angles of the rudder), almost the same path-following control
performance with very small path-following errors can be achieved. The yaw system has
strong robustness in dealing with uncertainties, which allows the desired yaw angle of the
position system to be tracked precisely. The yaw rate has small fluctuations in situations
where external wind fields are encountered. However, the yaw rate can return to a stable
value within a short time period.
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Abstract: Over the past few years, there has been an increasing fascination with electric unmanned
aerial vehicles (UAVs) because of their capacity to undertake demanding and perilous missions while
also delivering advantages in terms of flexibility, safety, and expenses. These UAVs are revolutionizing
various public services, encompassing real-time surveillance, search and rescue operations, wildlife
assessments, delivery services, wireless connectivity, and precise farming. To enhance their efficiency
and duration, UAVs typically employ a hybrid power system. This system integrates diverse energy
sources, such as fuel cells, batteries, solar cells, and supercapacitors. The selection of an appropriate
hybrid power arrangement and the implementation of an effective energy management system are
crucial for the successful functioning of advanced UAVs. This article specifically concentrates on UAV
platforms powered by batteries, incorporating innovative technologies, like in-flight recharging via
laser beams and tethering. It provides an all-encompassing and evaluative examination of the current
cutting-edge power supply configurations, with the objective of identifying deficiencies, presenting
perspectives, and offering recommendations for future consideration in this domain.

Keywords: UAV; power supply; battery swapping; laser beam inflight charging; tethered UAV;
batteries; battery systems; materials of batteries; efficiency; duration; hybrid power system; energy
management system

1. Introduction

An unmanned aerial vehicle (UAV), also referred to as a flying robot or drone, pos-
sesses the ability to operate independently or under remote control for specific missions [1].
In recent times, UAVs have garnered considerable attention as a result of advancements
in microprocessors [2,3] and artificial intelligence (AI) [4–7], sensors [8–14], and the de-
sign [15–18] and manufacturing process [16–20], facilitating the creation of intelligent UAVs.
The term “intelligent UAVs” refers to these drones’ capacity to operate autonomously or
semi-autonomously, making real-time decisions based on data from their sensors and AI
algorithms. These intelligent UAVs can adapt to changing environments, navigate with
precision, and perform tasks with a level of autonomy that was once reserved for science
fiction [21]. Moreover, the UAV wireless charging system represents a significant departure

Appl. Sci. 2023, 13, 11932. https://doi.org/10.3390/app132111932 https://www.mdpi.com/journal/applsci483



Appl. Sci. 2023, 13, 11932

from conventional cable-based charging methods. This innovation has attracted substantial
interest in the field [22], as it offers a promising alternative to traditional charging mecha-
nisms, further enhancing the appeal of UAV technology. These technologically advanced
UAVs offer a multitude of benefits, including cost efficiency and exceptional maneuver-
ability, leading to their utilization in diverse military and civilian domains such as mine
clearance, surveillance, delivery services, wireless connectivity, and agriculture [23,24].
It is crucial to highlight that UAVs have significant advantages over UGV operational
requirements [25], but UGVs are preferred for heavy-load missions due to their ability to
carry substantial payloads [26]. Prominent multinational corporations are making sub-
stantial investments to enhance UAV capabilities and expand their application spectrum.
Nowadays detection techniques improve safe and reliable UAV operations due to fault
detection methods [27]. It is estimated that the market value of UAVs will reach a staggering
USD 127 billion by 2022 [28,29]. This surge is propelled by remarkable advancements in
microprocessors, artificial intelligence (AI), sensors, design, and manufacturing processes.
Recent statistics and trends underscore their growing significance, as UAVs have become
integral in numerous real-world applications. For instance, in 2021, the global drone market
was valued at USD 22.5 billion, and it is projected to reach a staggering USD 42.8 billion
by 2026 [28,29]. These numbers reflect not only the market’s explosive growth but also the
increasing adoption of UAVs across various sectors. From precision agriculture to search
and rescue missions, surveillance, and even package delivery services, the ubiquity of
UAVs is a testament to their versatile and dynamic role in modern society.

UAVs exhibit diverse features and configurations that are tailored to meet specific mis-
sion demands. Consequently, the literature provides multiple classifications that emphasize
various parameters [30,31]. In terms of their physical structure, UAVs can be classified into
distinct categories such as fixed-wing, rotary-wing, flapping-wing, hybrid, or balloon con-
figurations. When considering their dimensions, UAVs come in different sizes, including
mini, micro, and nano variations. The North Atlantic Treaty Organization (NATO) has
established a classification system for UAVs, grouping them into three classes based on
their maximum take-off weight (MTOW). Each class is further divided into subcategories,
which take into account factors such as altitude and mission radius [32].

Electric UAVs are favored for their advantageous characteristics, such as their relia-
bility [33], reduced noise, disturbance rejection [34] and thermal signatures [35,36], high
efficiency [5], absence of pollutant emissions, self-starting capabilities, and advanced con-
trol mechanisms that enable exceptional maneuverability. For instance, electric UAVs have
excelled in urban environments where noise and emissions regulations are stringent. They
are being utilized for tasks like monitoring traffic, delivering medical supplies, or capturing
aerial footage with minimal disruption. On the other hand, internal combustion engine
(ICE)-based UAVs offer longer endurance due to the high power and energy densities
of ICE. Thus, ICE-based UAVs, with their extended endurance, still have their place in
missions requiring long flight durations, such as search and rescue operations in remote
areas or the surveillance of large, sparsely populated regions. The choice between electric
and ICE-based UAVs often depends on the specific demands of the mission and the environ-
mental considerations [35]. However, they necessitate an auxiliary starting motor, involve
more complex control demands [37], and generate high acoustic and thermal signatures.
Some researchers [38,39] have explored hybrid architectures that combine electric motors
with ICE to harness the advantages of both engine types. Nevertheless, the depletion of
fossil fuels and the growing concerns regarding greenhouse gas (GHG) emissions have
diminished the appeal of thermal engines, prompting the adoption of electric propulsion as
a sustainable technology across various sectors, including transportation [40]. International
policies and market trends that aim to phase out ICE vehicles [41] are expected to extend to
UAVs in the foreseeable future, fostering the development of environmentally friendly de-
vices. The shift away from ICE in UAVs, particularly for tasks that do not require extensive
endurance, can be attributed to these factors.
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Batteries serve as the primary source of electric power, but their flight durations in
UAVs are limited by their low energy density and long-lasting charging time [41] similar to
all unmanned types of unmanned vehicles [42]. These challenges are common to various
types of unmanned vehicles. In addition to energy density and charging time concerns, the
safety of battery energy storage systems has become a paramount consideration, especially
in light of the increasing use of electric vehicles [43]. Monitoring the state of charge (SOC)
and battery temperature has proven to be instrumental in enabling comprehensive decision-
making within the system, ultimately enhancing safety and performance. Furthermore,
batteries may not offer the required power response for rapid maneuvers due to their
slow power dynamics. To address these limitations, supercapacitors present a suitable
option for balancing the constraints imposed by batteries [44]. It should be noted that
flight endurance can be improved through aerodynamic optimization during the UAV
design phase [45]. Recent advancements in battery technology have slightly extended
endurance to approximately 90 min using lithium polymer (LiPo) batteries [46]. However,
increasing the number of batteries becomes impractical due to weight and space limitations.
One of the key challenges is the limited energy density of batteries, which constrains the
amount of energy that can be stored within a given weight and volume [47]. This limitation
impacts the flight duration and payload capacity of electric UAVs, making it a critical
consideration in mission planning. Additionally, batteries exhibit slow power dynamics,
meaning they may not provide the rapid power response required for sudden maneuvers
or emergencies. These challenges are central to the quest for improving the endurance and
overall capabilities of electric UAVs [22]. To enhance UAV endurance, additional power
sources must be employed to supplement batteries while adhering to weight and space
constraints. In this regard, fuel cells offer a promising solution due to their high specific
energy and near instantaneous refueling capability. They can typically achieve up to five
times higher energy density than LiPo batteries, significantly enhancing the endurance of
hybrid UAVs [48]. It is worth mentioning that many existing electric UAVs utilize fuel cells
as their primary power source. Supercapacitors can also contribute to the power supply
process due to their high-power density and rapid response to peak power demands
during UAV take-off and sudden maneuvers. They excel in providing high power density,
enabling electric UAVs to execute swift maneuvers and respond promptly to changing
flight conditions. Additionally, supercapacitors boast a longer cycle life, meaning they can
endure a higher number of charge and discharge cycles without significant degradation.
The combination of batteries and supercapacitors in a hybrid system capitalizes on the
strengths of both technologies, optimizing energy storage and delivery for UAVs. Fixed-
wing UAVs have the advantage of incorporating solar cells and harnessing solar energy,
which can reduce fuel consumption and greatly enhance endurance when combined with
an energy storage system [49].

Therefore, in order to achieve longer endurance for UAVs, it becomes necessary to
employ hybrid power supply systems that combine multiple power sources. The selection
of the power supply system structure is crucial and depends not only on the characteristics
of the power sources but also on the specific mission requirements of the UAV. To effectively
manage the distribution of power among the onboard power sources and ensure optimal
performance and efficiency for the intended mission, the implementation of an energy
management system (EMS) is essential. An EMS is a sophisticated control system that
plays a pivotal role in efficiently managing the distribution of power among the UAV’s
onboard power sources. It employs a combination of current and voltage sensors for
monitoring power flow, converters for regulating the power source outputs, and a pro-
cessing unit responsible for executing the adopted power management strategy. The EMS
ensures that power is allocated optimally, enabling the UAV to meet its specific mission
requirements. In addition to hybridization, there are alternative techniques available to
extend the endurance of battery-based UAVs. These techniques include battery swap-
ping [50,51], in-flight recharging using laser beams [52–55], and tethered UAVs [56–58].
Battery swapping involves replenishing depleted batteries of a UAV during its mission by
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utilizing ground stations located at specific locations. In-flight recharging utilizes a laser
beam transmitted from a generator at a ground station to provide light power, enabling
recharging without the need for landing. Tethered UAVs have the advantage of unlimited
endurance as they receive a continuous power supply through connection lines that link
the UAV to a ground-based power supply station.

Numerous review papers in the literature have extensively covered various aspects
of UAVs. These include topics such as fuel storage and generation in small fixed-wing
UAVs [41], the classification, advancements, and research trends in small-scale UAVs [58],
the classification and design challenges of UAVs [30], path planning algorithms for fixed-
wing UAVs [59], the guidance, navigation, and control of rotorcraft unmanned aircraft
systems [60], and the modeling and control of quadrotors [61]. However, the specific
focus of this review is centered on the energy aspect of UAVs. Its objective is to provide a
comprehensive and critical assessment of the existing power supply structures [62] and
their corresponding energy management systems. This review will not only identify any
existing gaps but also provide valuable recommendations and prospects to guide future
research in this field.

2. Unmanned Aerial Vehicle (UAV)

Prior to discussing the various power sources, it is important to provide a brief
introduction to the two main types of UAVs, as illustrated in Figure 1. These types are
rotary-wing UAVs and fixed-wing UAVs. Rotary-wing UAVs are characterized by a body
structure that incorporates multiple rotors for propulsion. In contrast, fixed-wing UAVs
resemble conventional aircraft, featuring fixed wings on either side of the body. Rotary-
wing UAVs, also known as rotorcraft types, have gained popularity due to their ability
to perform vertical take-off and landing, eliminating the need for a runway or launcher.
They are capable of hovering in the air and exhibit exceptional agility, making them well-
suited for precise maneuvering tasks. However, the design of rotary-wing UAVs involves
mechanical and electronic complexities, resulting in more intricate maintenance procedures,
reduced operational time, and increased costs. Additionally, rotary-wing UAVs generally
have lower payload capacities, higher power requirements, shorter operational durations,
and even higher costs.

  
(a) (b) 

Figure 1. Two types of drones: (a) fixed-wing drone, (b) rotary-wing drone.

Fixed-wing UAVs present several advantages over rotary-wing UAVs. They possess a
simpler structure, leading to easier maintenance and improved aerodynamics, resulting in
reduced operational costs and increased flight time. The presence of fixed wings enables
natural gliding capabilities, leading to lower power consumption. Additionally, fixed-wing
UAVs can carry larger payloads over longer distances with less power, enhancing efficiency
and cost-effectiveness. However, they require a runway or launching device for take-off
and landing, lack the hovering capability of rotary-wing UAVs, and tend to be larger and
bulkier, compromising maneuverability. In addition to rotary-wing and fixed-wing UAVs,
there is a unique type of drone that combines the characteristics of both. This hybrid drone
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offers the stability and maneuverability of a rotary-wing drone along with the extended
flight range of a fixed-wing drone. Importantly, it does not require a runway or additional
equipment for take-off. Figure 2 provides an illustration of this combination drone. Each
type of UAV—rotary-wing, fixed-wing, and hybrid—has its own applications that align
with their respective advantages and disadvantages. Moreover, various power sources are
employed in these drones.

Rotary-wing UAVs are highly versatile, excelling in tasks that require precision and
agility, such as surveillance, search and rescue, and monitoring. They are ideal for stable
and controlled aerial observation in confined spaces and urban environments. On the other
hand, fixed-wing UAVs are preferred for endurance and long-range missions, making them
suitable for tasks like precision agriculture, mapping, wildlife tracking, border patrols,
and high-speed data collection in expansive areas. The choice between these UAV types
depends on the specific mission requirements and operational constraints.

The unmanned aerial vehicle (UAV) platform, depicted in Figure 2, comprises several
essential components. Firstly, there is an onboard flight control system encompassing
processing units that handle various tasks, including implementing guidance, navigation,
and control (GNC) algorithms, collecting and analyzing in-flight data, establishing commu-
nication with the ground station, and planning mission activities. Secondly, a propulsion
system is integrated, which consists of multiple elements such as power supply sources,
speed controllers, converters, energy management systems, motors, and propellers. These
components work together to generate the required thrust and control the UAV’s speed.
Thirdly, the UAV is equipped with sensors that enable autonomous flight by providing
crucial feedback and accurate measurements about the surrounding environment. Lastly,
there is the payload, which includes additional equipment necessary for specific mis-
sions. This may comprise actuators, cameras, radar systems, or other specialized tools and
instruments [63].

Figure 2. A typical UAV block diagram [64].

The propulsion system of a UAV plays a critical role as it consumes a significant portion
of the onboard power. Its main purpose is to convert stored electrical energy into mechanical
power, which propels the UAV through the motor propeller system called a propulsion
unit. In fact, the propulsion system can constitute more than half of the total weight of
the UAV. Figure 3 provides a typical schematic diagram of a UAV propulsion system. The
power from the onboard sources is supplied to the DC bus through unidirectional and
bidirectional converters, allowing for battery charging and discharging. These converters
enable control over the power flow and receive control signals from the energy management
system (EMS), which manages power distribution. Among the various motor types utilized
in small UAVs, the brushless DC (BLDC) motor is widely preferred. This motor type offers
significant advantages, including high efficiency and power density [65], as well as features
such as high speed, favorable torque characteristics, reliability, ease of control via electronic
speed controllers, ESCs, and long lifespan [66]. While induction motors are cost-effective
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and robust, they have limitations such as relatively low efficiency, cooling challenges, and
lower torque output.

Figure 3. UAV propulsion system block diagram.

2.1. Unmanned Aerial Vehicle (UAV) Power Sources

Gas turbine engines have been widely used in aircraft propulsion systems due to
their favorable power-to-weight ratio [67] and extended operational duration [30]. Gas
turbine engines operate on the principle of air compression, combustion, and exhaust
propulsion. They intake air, compress it, mix it with fuel for combustion, and then release
the high-velocity exhaust gases to produce thrust. These engines are known for their high
power-to-weight ratio, making them suitable for fast and agile UAVs. However, their
optimal performance is limited to high-power ranges [68], typically above 100 hp [69]. As a
result, they are not suitable for small-scale UAV applications, as they exhibit drawbacks
such as inefficiency in fuel consumption, low overall efficiency, and high noise levels [70]. In
contrast, the internal combustion engine (ICE) has traditionally served as the cornerstone of
aircraft propulsion systems [71,72]. These engines are characterized by their energy density,
making them suitable for long-endurance missions in UAVs. Compared to electric motors
(EMs), ICEs offer advantages in terms of higher fuel energy and power densities, enabling
longer flight times and larger payload capacities, which are crucial factors in flight missions.
However, the multi-step energy production process in ICEs results in decreased system
efficiency [56]. EMs are the preferred choice for UAVs due to their distinct characteristics,
including minimal thermal and acoustic signatures, well-established electronic control
systems, adaptability to automatic control, self-starting capabilities [37], cost-effectiveness,
and higher reliability, which minimizes the risk of crashes caused by motor shutdown or
failure. It should be noted that electric propulsion systems may encounter electronic speed
controller (ESC) failures due to issues such as overheating and melting of the ESC casing.
One potential solution to mitigate this problem is duplicating components [73].

A research paper [37] introduced a novel hybrid power propulsion prototype for
unmanned aircraft systems (UAS), aiming to combine the advantages of thermal and electric
engines. Although simulation results showed a 13% improvement in endurance, the system
was considered complex and not environmentally friendly. Other researchers [73] have also
discussed hybrid parallel powertrain architectures using electric motors (EMs) and internal
combustion engines (ICEs). However, the incorporation of ICEs in UAVs is currently
not the preferred solution due to limitations in fuel usage and endurance optimization.
Therefore, this section will solely focus on electric propulsion-based UAVs and provide a
critical evaluation of available electric power sources for UAV applications. Additionally,
alternative supply strategies including swapping, laser beam inflight recharging, and
tethered UAVs will be discussed, particularly for UAVs relying on a single power source.

2.2. Battery-Based Supply Techniques
2.2.1. Battery-Powered Unmanned Aerial Vehicles (UAVs)

Battery power is widely utilized in small UAVs, especially quadrotors, as it offers
simplicity and flexibility to the propulsion system [71]. Battery-based platforms, partic-
ularly those using lithium batteries, such as LiPo batteries, are popular in hobbyist and
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commercial applications due to their flight time capabilities and cost effectiveness. How-
ever, the endurance of small battery-powered UAVs is limited by the weight constraints of
the battery pack, typically allowing for a maximum flight time of around 90 min using LiPo
batteries [46]. LiPo batteries are preferred for small UAVs due to their lightweight nature
and relatively high specific energy. In fact, LiPo batteries power the majority of micro aerial
vehicles weighing less than 2 kg and with a length below 100 cm [30].

In selecting the appropriate battery technology for a given UAV application and mis-
sion, various characteristics such as specific energy, energy density, and specific power are
taken into consideration. Table 1 provides detailed information on these characteristics for
four different battery technologies, aiding in the battery technology selection process [44].
Additionally, in a specific study, different battery technologies were assessed based on
the state of charge (SOC) for a particular mission, further emphasizing the importance of
considering mission requirements when choosing battery technologies [58].

Table 1. Comparison of different batteries with their characteristics [57,58].

Characteristics Ni-Cd Ni-Mh LiPo Li-S

Specific energy (Wh/kg) 40 80 180 350

Energy density (Wh/L) 100 300 300 350

Specific power (W/kg) 300 900 2800 600

Ref. [74] focused on examining the factors that affect the performance of UAVs pow-
ered by batteries. Mathematical equations were developed to assess the UAV’s range and
endurance, taking into consideration the discharge conditions of the battery. The study
establishes relationships to estimate the range and endurance of battery-powered aircraft,
considering battery discharge rate and voltage drop effects. The research demonstrates that
the Peukert effect can enhance range and endurance, particularly when battery capacity
significantly exceeds current demand. Conversely, when the current draw approaches
the battery’s nominal capacity, effective capacity decreases. In situations with geometric
constraints and a fixed battery weight as a fraction of the total aircraft weight, increasing
battery capacity can lead to reduced performance due to higher power requirements and
current draw.

One of the main challenges encountered by electric vehicles relying on battery power,
including UAVs, is the limited autonomy they possess. Extensive efforts have been devoted
to enhancing the performance of batteries in order to prolong operational duration and
enable extended missions for electric vehicles. Despite the advancements made in battery
technology, the specific energy of current batteries still poses limitations on the endurance
and range of UAVs, which may not meet the requirements of numerous UAV applications.
Additionally, improvements in energy density can have implications for the stability and
safety levels [75]. To tackle these limitations, various solutions have been proposed in
the existing body of literature. Fuel cells have emerged as a promising alternative due
to their higher specific energy. Furthermore, numerous existing UAVs employ a hybrid
configuration in their power supply, utilizing multiple energy sources such as batteries,
fuel cells, solar cells, and supercapacitors. In practice, hybrid configurations integrate
various power sources, such as batteries, fuel cells, solar cells, or generators, to work in
harmony. The energy management system (EMS) plays a crucial role in optimizing power
distribution among these sources to achieve enhanced efficiency and endurance [76].

The advantages of hybrid configurations over single-source systems are numerous.
They offer improved endurance, as different sources can complement each other. For
example, batteries can provide immediate power for take-off, while fuel cells or genera-
tors can sustain operations for longer durations. They enhance reliability by providing
redundancy—if one source fails, others can take over. Additionally, hybrid systems can be
more environmentally friendly, using cleaner energy sources in combination with tradi-
tional ones [76,77].
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2.2.2. Swapping Method Algorithm

The technique known as swapping is employed to recharge the batteries of a UAV
while it is in the midst of its mission. This process involves the exchange of depleted batter-
ies with fully charged ones, which can be performed either autonomously or with human
intervention. A specific type of swapping, called hot swapping, enables the immediate
replacement of a depleted battery with a fully charged one, allowing the UAV to main-
tain power and continue its operation without interruption. Subsequently, the UAV can
return to its assigned operational area and resume its tasks. By deploying multiple UAVs
and coordinating their actions, a multi-agent system can ensure uninterrupted coverage
of a specific area [34]. To successfully carry out a swapping operation, three important
conditions must be fulfilled: (1) the presence of a ground recharge station where UAVs
can land for battery charging or replacement, (2) a group of UAVs capable of continuous
operation, and (3) a management system that facilitates cooperation among the swarm of
UAVs. Figure 4 illustrates the techniques of swapping and hot swapping.

Figure 4. The swapping and hot swapping algorithms.

In the infrastructure network for UAVs, ground stations (GS), are strategically placed
in various locations, such as cities or along connecting paths between cities. These GS can
be installed on different structures like cell towers, streetlights, rooftops, power poles, or
standalone pylons. As part of this infrastructure, battery swap stations are established,
which consist of several components including ground electronics, an onboard circuit, a
landing frame, and a contact mechanism. The batteries can be recharged through contact-
based pathways or by utilizing inductive coupling. The docking platforms at the swap
stations can be powered through a combination of power lines, large batteries, and solar
cells, especially for stations located in remote areas.

There was also research that developed a multi-rotor aerial prototype specifically
designed for long-duration missions using the swapping approach. The main goal of their
study was to ensure the uninterrupted operation of the airborne platform by monitoring
the battery’s state of charge (SOC). Their concept involved having three quadcopters in
a rotating system, with one quadcopter always in a loiter position. When the SOC of a
quadcopter drops below a predetermined threshold, it is replaced by another quadcopter,
allowing the former to return to the ground station for battery charging. This cycle continues
until all batteries are depleted or the mission is completed. The number of batteries required
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for sustainable operation depends on the discharge time and the duration needed for
charging, rather than the number of UAVs. However, a larger number of batteries increases
the system’s resilience and reliability [34–36].

However, it is important to mention that the process of battery swapping and charg-
ing on the launch platform was not automated and still relied on human intervention.
Additionally, the field test conducted in the study did not involve specific missions that
required the use of sensors; instead, only static loitering was performed. In a separate
study, researchers conducted an economic comparison of battery refilling and recharging
platforms. They developed three stations based on axiomatic design principles, which
allowed them to analyze and establish relationships between cost, complexity, and coverage
levels [78]. This analysis provided valuable insights into the various factors associated with
the implementation of battery refilling and recharging platforms.

The comparison between refilling and exchange stations has indicated that refilling
stations are suitable for low-coverage scenarios, while exchange stations are preferable
when higher coverage levels are required. In [79], research was conducted on a comparison
of battery charging and replacement systems using a Petri net model. A Petri net model
is a mathematical tool used to model and analyze systems with concurrent processes,
making it relevant in designing efficient battery management systems. The authors also
discussed in detail the design options for autonomous swapping stations, aiming to achieve
precise UAV positioning for swapping regardless of landing errors. However, it is worth
noting that the estimated swap time in their study was approximately one minute, which
is relatively long compared to other studies researches. Moreover, the system was not fully
operational, as certain modules were not prototyped or tested. In a separate study [57], a
ground recharge station was designed for battery-powered quadrotor helicopters, and an
algorithm was implemented to reduce the battery recharge duration. It can significantly
reduce downtime and enhance the efficiency of quadrotor helicopters in applications like
search and rescue, surveillance, delivery services, agriculture, infrastructure inspection,
environmental monitoring, film production, and security. The proposed autonomous
charging process utilized safer electrical contacts and a balancer specifically designed for
swarm applications. It is important to mention that similar to the majority of the conducted
studies, no experiments or flight tests were performed, and the study did not consider
battery lifetime as a factor.

An automated refueling station for small-scale UAVs was designed and implemented
in a study [80] to enable long-duration autonomous missions with multi-agent UAV systems.
The study developed a planning and learning algorithm and tested it in a 3 h persistent
flight involving 3 UAVs and over 100 battery swaps. The battery recharger mechanism
used a linear sweeping motion, resulting in a simple and robust design. However, the cost
of the system was not taken into account, and it should be noted that increasing the number
of batteries and UAVs could potentially lead to a more expensive and complex system
to manage. In a study [81], a swapping system based on online algorithms for energy
management, UAV health monitoring, and accurate landing was proposed. The system
utilized a servo-based lift for battery swaps and placed the batteries onto a horizontally
mounted hexagonal mat for charging. However, this swap mechanism introduced power
losses in the UAVs. While individual tests were conducted for all the components, the entire
system was not tested as a whole. In another study [82], an autonomous docking platform
was designed using active infrared imaging. The system operated during both day and
night and incorporated a camera and an infrared filter to achieve high-precision landing.

In a study [73], a hardware platform was introduced featuring a dual-drum structure
for efficient hot swapping of batteries. The platform included a buffer of eight batteries, and
experimental work provided insights into the average time required for battery swapping.
A flight test was conducted, focusing on a search and track mission with communication
constraints. However, the maximum operational time achieved for this mission using the
developed station with three quadrotors was approximately 70 min. In a recent paper [83],
the focus was on cyclically repeated missions, such as aerial delivery services. They
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proposed the use of mobile battery swapping stations (MBS) that would move to designated
swapping points according to a preset timetable. UAVs could then join the appropriate
station for battery replacement and cargo loading/unloading. The study addressed the
optimization of the number of UAVs and the distance traveled by proposing a declarative
model for routing UAVs and MBS. However, it should be noted that this approach is
applicable to only a limited range of missions, and the feasibility of mobile swapping
stations may vary. The study primarily focused on the routing task, and no specific
experiments related to swapping were conducted. Table 2 provides a critical analysis of the
various swapping approaches discussed in the literature.

Table 2. The critical evaluation of available swapping studies [78–80,84].

Main Contribution Advantages Limitations

An aerial prototype utilizing multiple
rotors designed for surveillance missions

of extended duration by employing
battery health monitoring.

The hardware prototype enables
uninterrupted operation by taking into
account battery health considerations.

The system does not include autonomous
swapping, and its operation is managed

using a laptop instead of an
embedded controller.

The design, testing, and construction of
an autonomous ground recharge station

were carried out, incorporating a balancer
and safer electrical contacts.

A hardware platform was developed that
enabled autonomous swapping, utilizing
an embedded controller. An optimization
algorithm was implemented to minimize

the recharge duration.

Although no flight test was conducted,
the hardware platform focused on

autonomous swapping and did not
consider battery health as a factor in

its design.

A planning and learning algorithm was
developed and tested during a 3 h long
persistent flight involving 3 UAVs and

over 100 battery swaps.

The design and hardware
implementation of an automated

refueling system was carried out, and
flight tests were conducted to evaluate

its performance.

The discussion of system cost and the
consideration of landing accuracy were

not included in the analysis.

An automated swapping mechanism was
implemented, incorporating online
algorithms for energy management,

vehicle health monitoring, and accurate
landing. The system aimed to optimize

the swapping process by efficiently
managing energy resources, monitoring
the health of the vehicles, and ensuring

precise landing during the
swapping operation.

The constructed platform is designed to
sustain the continuous operation of a

single UAV indefinitely. It incorporates
algorithms for precision landing,

ensuring accurate and safe landing
during the swapping process.

Additionally, the platform includes
battery health tracking algorithms to

monitor and manage the condition of the
batteries, optimizing their performance

and lifespan.

The entire system, including all its
components and functionalities, was not
tested as a whole. While individual tests
were conducted for specific aspects of the

system, such as precision landing and
battery health tracking, a comprehensive
test involving the complete system was

not performed.

A design for an autonomous docking
platform was developed, incorporating
the use of active infrared imaging. The

system utilized a combination of a
camera and an infrared filter to achieve

precise and accurate docking between the
unmanned aerial vehicle (UAV) and the
docking platform. The active infrared

imaging technology enabled the system
to operate effectively both during the day

and at night, enhancing the reliability
and versatility of the docking process.

A hardware platform was created to
enable accurate and fast swapping of
components, specifically targeting an
impressive swapping time of 8 s. The

platform was designed to operate
seamlessly during both daytime and

nighttime conditions, ensuring its
usability in various environments and

lighting conditions. This capability
allows for continuous and efficient

operations, minimizing downtime and
maximizing the overall efficiency of

the system.

No flight tests were conducted to
evaluate the performance of the hardware
platform. Additionally, the study did not

focus on discussing the specific
improvements in endurance achieved
through the implemented technology.

492



Appl. Sci. 2023, 13, 11932

Table 2. Cont.

Main Contribution Advantages Limitations

A dual-drum structure was implemented
in the hardware platform to enable fast
and efficient hot swapping. This design
feature allows for the quick replacement
of batteries, enhancing the efficiency of

the swapping process.

A flight test was conducted to evaluate
the performance of the system, taking

into account communication constraints.
During the test, the system was assessed
under real-world conditions, considering
limitations in communication capabilities.
This provided valuable insights into the
system’s performance and effectiveness

in scenarios with
communication constraints.

The study did not include tracking the
health of the vehicle or monitoring its

condition. Additionally, the experiments
conducted had a maximum mission time
of only 70 min. Therefore, the study did
not focus on monitoring and assessing

the overall health and performance of the
vehicle throughout extended missions.

A declarative model was proposed to
optimize the routing of a multi-agent

system consisting of UAVs and mobile
battery swapping stations (MBS) for

delivery missions. The model aimed to
efficiently plan the routes and schedules

of UAVs and MBS to ensure timely
battery replacements and

loading/unloading of goods. However, it
is important to note that the study

primarily focused on the routing aspect
and did not involve specific experiments
or tests related to the functionality and
feasibility of mobile battery swapping

stations in the context of
delivery missions.

The study focused on optimizing the
distance traveled and the number of
UAVs in the context of the proposed

multi-agent system with mobile
battery-swapping stations. The goal was

to find an optimal configuration that
minimizes the overall distance traveled

by the UAVs and maximizes the
efficiency of the system. By optimizing

these factors, the study aimed to enhance
the performance and cost-effectiveness of
the system. However, it should be noted

that the feasibility and practicality of
implementing the proposed

optimizations were not specifically tested
or evaluated in the study.

The study presented computational
results related to the optimization of the

traveled distance and the number of
UAVs in the context of the multi-agent
system with mobile battery swapping
stations. However, it did not include

experimental validation or testing of the
proposed techniques. The focus of the
study was on computational modeling

and analysis, providing insights into the
potential benefits of the proposed

optimizations. The specific details and
mechanisms of the swapping technique

were not discussed in the study, as it
primarily concentrated on the

computational aspects of routing
and optimization.

The study aimed to achieve precise UAV
positioning after landing with minimal

error. The researchers focused on
developing techniques or algorithms that
would ensure accurate positioning of the

UAVs after the landing process. By
minimizing the positioning error, they

aimed to enhance the overall
performance and efficiency of the system.
However, it is important to note that the
specific methods or approaches used to
achieve precise UAV positioning after

landing were not detailed in the
information provided.

The research focused on achieving
precise UAV positioning for swapping

operations, regardless of any errors that
may occur during the landing process.

The objective was to develop techniques
or strategies that would ensure accurate

and reliable positioning of the UAVs
during swapping, even if the initial

landing had some degree of error. By
addressing this challenge, the researchers

aimed to enhance the efficiency and
effectiveness of the swapping process,
enabling seamless battery replacement
and continuous operation of the UAVs.

However, specific details about the
methods or approaches employed to

achieve precise positioning in the
presence of landing errors were not
provided in the given information.

The study reported a relatively long
swapping duration, indicating that the

process of replacing batteries in the
system took a considerable amount of
time. However, it should be noted that

the entire system, including all its
components and functionalities, was not
tested as a whole. This means that while
certain aspects of the swapping process
may have been examined or validated
individually, the complete integration

and performance of the system were not
assessed through comprehensive testing.

As a result, the overall efficiency and
effectiveness of the swapping mechanism,

as well as its potential limitations or
drawbacks, remain uncertain and require

further investigation or evaluation.

2.2.3. Laser Beam Inflight Recharging

The swapping approach has shown promise in extending the operational time of
battery-powered UAVs by utilizing ground stations for battery replacement or recharging.
However, an alternative approach that has been proposed is wireless recharging, as dis-
cussed in the previous literature [51,85]. This method involves a ground station equipped
with a primary power source, which generates a laser beam transmitted to the UAV while
it is in flight. The UAV has an embedded optical receiver that converts the light into elec-
tricity, effectively powering the UAV. With wireless recharging, UAVs can remain airborne
indefinitely without the need to land for battery recharging. When recharging is necessary,
the UAV can access an aerial power link area to receive energy. This approach enhances
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safety by eliminating risks associated with take-off and landing. Laser transmitters can
be strategically positioned on tall building rooftops to ensure an unobstructed laser beam
path, or they can be installed on a mobile station, as depicted in Figure 5. This establishes a
radiative link between the UAV and the nearest energy source, enabling fast power transfer.
Companies like LaserMotive (Washington, DC, USA) have developed working prototypes
capable of transferring hundreds of watts of power [54]. Furthermore, experiments de-
scribed in [53] have demonstrated the feasibility of this technique, achieving flight times
of over 12 h for a quadcopter. Wireless recharging offers the potential for continuous
operation and extended flight durations, addressing limitations associated with battery
capacity and swapping cycles. However, further research and development efforts are
necessary to optimize the technology and overcome challenges related to power efficiency,
safety, and scalability.

Figure 5. A laser-powered UAV inflight charging system [54,58,68].

While the laser beam inflight recharging approach offers potential benefits, it also
introduces certain constraints and considerations that need to be taken into account. One
such constraint is the need for UAVs to operate at reduced heights and within a limited area
to maintain a reliable power transfer from the laser transmitter. This limitation is influenced
by regulations, such as those imposed by the FAA, which set a maximum altitude of 400 feet
for small UAVs weighing less than 26 kg. Compliance with these regulations is crucial for
safe and legal operations. Another consideration is that each UAV utilizing laser beam
inflight recharging requires its own dedicated laser transmitter. This can pose limitations
on the number of UAVs that can be deployed in a given area, as multiple transmitters
would be needed to support a larger fleet. Additionally, the individual transmitters can
significantly increase the overall cost of implementing the laser beam inflight recharging
system [34]. Therefore, the scalability and economic feasibility of this approach should
be carefully evaluated before widespread adoption. It is important to conduct a compre-
hensive assessment of the operational and regulatory aspects, as well as the economic
implications, when considering the integration of laser beam inflight recharging for UAVs.
This evaluation should involve a careful balance between the benefits of extended flight
time and the potential limitations and costs associated with this technology. By addressing
these considerations, researchers and industry professionals can make informed decisions
regarding the practical implementation of laser beam inflight recharging in UAV operations.

2.2.4. Tethered UAVs

Tethered UAVs offer a unique solution for achieving unlimited autonomy by con-
necting to a power supply station through tethering lines. This eliminates the need for
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frequent recharging or battery replacement, enabling long-duration missions. Typically
located on the ground, the power supply station continuously provides electricity to the
UAV through the tethering lines, ensuring uninterrupted operation. Traditionally, copper
wires have been used for the tethering lines of UAVs. However, there is a growing trend
toward using fiber optic technology in this domain. Fiber optic cables allow for the transfer
of kilowatts of power using high-intensity light, offering several advantages over copper
wires. Optics-based power transfer reduces detectability by eliminating electrical signatures
and significantly reduces both the payload weight of the UAV and the weight of the power
lines compared to copper wires. In fact, fiber technology can reduce weight by up to eight
times. Furthermore, power losses in fiber optic cables are minimal, making them more
efficient for high-altitude operations.

Tethered UAVs have found applications in various fields. For instance, in maritime
pollution monitoring, a tethered UAV can be deployed on a ship to detect oil spills in the
sea, preventing contamination of the shoreline [57]. In data-gathering applications, tethered
UAVs equipped with sensors can be utilized to collect information in specific areas [58].
However, one limitation of tethered UAVs is the restricted operating area imposed by the
length of the connecting cable, which prevents the UAV from flying far from its ground
station. To overcome this limitation, in some cases, a moving vehicle is used to carry
the prime power source, allowing the UAV to cover a larger area. In missions requiring
extremely long endurance, such as monitoring nuclear power plants, tethered UAVs can be
deployed to provide continuous aerial surveillance for days or even months, as long as the
tethered cable provides a continuous power supply [55]. Prototypes of tethered UAVs have
been designed and successfully demonstrated in outdoor environments, showcasing the
feasibility and potential of this technology. The use of fiber optic cables in tethered UAV
systems presents unique advantages in terms of weight reduction, power efficiency, and
reduced detectability, making them an attractive option for extended-duration missions in
various applications.

2.3. Fuel Cell Powered UAVs

Hydrogen-powered UAVs offer significant benefits compared to traditional battery-
powered UAVs, particularly in terms of flight duration and refueling time [86,87]. LiPo
batteries, commonly used in UAVs, have a specific energy of up to 250 Wh/kg. In contrast,
a fuel cell system with a compressed hydrogen tank can provide a specific energy of up
to 1000 Wh/kg, allowing for much longer flight times [46,48]. This substantial increase
in specific energy enables hydrogen-powered UAVs to fly for hours instead of just a
few minutes.

Furthermore, refueling hydrogen-powered UAVs is nearly instantaneous compared
to the time-consuming recharging process required for batteries. While batteries need a
significant amount of time to recharge and replenish their energy, refueling a hydrogen-
powered UAV involves simply replacing the depleted hydrogen tank with a fully charged
one. This enables quick turnaround times and continuous operation. These advantages
make hydrogen-powered UAVs highly desirable for applications that require extended
flight durations and rapid refueling, such as long-range surveillance, mapping, and moni-
toring missions. However, it is essential to consider the infrastructure needed for hydrogen
storage, transportation, and refueling, as well as the safety considerations associated with
handling hydrogen gas [88]. Proper safety protocols and infrastructure development are
necessary to ensure the efficient and secure use of hydrogen-powered UAVs. Thus, a
comprehensive comparison of battery-based supplying techniques is presented in Table 3
for a better understanding on their advantages and limitations.
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Table 3. A comparison between battery-based supplying techniques [54,58,78–80].

Power Supplying Technique Advantages Limitations and Drawbacks

Swapping

Hydrogen-powered UAVs offer the advantage
of unlimited operating time, making them a

viable option for long-range missions. Unlike
battery-powered UAVs that require multiple

battery packs or frequent recharging,
hydrogen-powered UAVs rely on a single

energy source, namely hydrogen fuel. This
significantly reduces the weight and

complexity of power management systems.

With a hydrogen fuel cell system, the UAV can
continuously generate electrical energy by

combining hydrogen and oxygen, producing
water vapor as a by-product. This continuous

power generation eliminates the need for
carrying multiple batteries or landing for

recharging, allowing the UAV to operate for
extended periods without interruption.

The reduction in weight and complexity of
power management systems brings several

benefits. Firstly, the overall weight of the UAV
is reduced, enabling increased payload

capacity or longer flight durations. Secondly,
the simplified power management system

decreases the risk of component failures and
improves overall reliability. Moreover, the

reduced complexity also simplifies
maintenance and servicing, contributing to

more efficient operations.

These advantages make hydrogen-powered
UAVs particularly suitable for long-range

missions where endurance and uninterrupted
operation are crucial. Applications such as

aerial surveillance, environmental monitoring,
and remote sensing can greatly benefit from

the extended operating time and reduced
power management requirements of

hydrogen-powered UAVs.

However, it is important to consider the
infrastructure for hydrogen storage,

transportation, and refueling, as well as safety
considerations associated with handling

hydrogen gas. Proper infrastructure
development, safety protocols, and regulations

are necessary to support the widespread
adoption of hydrogen-powered UAVs and
ensure their safe and efficient operation.

The use of a ground station (GS) in the context
of battery-powered UAVs can introduce

certain challenges and considerations. While a
GS can provide benefits, such as battery

charging or swapping capabilities, it also
brings along some limitations that impact

operational efficiency.

One of the major concerns is the increased cost
associated with deploying and maintaining a
GS. As the number of batteries and UAVs in
operation increases, the infrastructure and

resources required for the GS also need to scale
accordingly. This can result in higher costs for

equipment, maintenance, and operational
management.

Another challenge is the coordination and
cooperation between UAVs and the GS.

Efficient communication and synchronization
are essential for smooth operations. UAVs

need to interact with the GS to initiate battery
charging or swapping processes, which

requires effective communication protocols
and coordination algorithms. Failure in

communication or synchronization can disrupt
operations and lead to inefficiencies.

Autonomous swapping, which involves
landing and battery-changing operations, can

introduce additional issues. Precise UAV
positioning during landing is crucial to ensure

safe and accurate battery swapping. Any
errors or discrepancies in landing can affect
the efficiency and reliability of the swapping
process. Designing and implementing robust
algorithms and mechanisms to achieve precise

positioning and seamless battery-changing
operations is a complex task.

Furthermore, autonomous swapping systems
need to address concerns related to the

compatibility of different UAV models and
battery types. Ensuring that the swapping

mechanism is compatible with a wide range of
UAVs and batteries adds complexity to the

system design and may require customization
or adaptation for different configurations.

Overall, while the concept of a ground station
and autonomous swapping holds promise for

extending UAV operational time, it is
important to address the challenges associated
with cost, cooperation between UAVs and the
GS, and the technical issues related to landing
and battery-changing operations. Thorough

planning, system design, and testing are
necessary to achieve efficient and reliable

autonomous swapping systems in practical
applications.
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Table 3. Cont.

Power Supplying Technique Advantages Limitations and Drawbacks

Laser beam
charging

The concept of wireless refueling offers
significant advantages for UAVs, including the

potential for unlimited operating time and
extended mission durations. With this

approach, UAVs can receive a continuous
supply of power without the need to land or

swap batteries. This eliminates the limitations
imposed by battery capacity and enables

persistent missions.

By utilizing a wireless power transfer system,
UAVs can remain in the air while receiving
power from a ground station or an aerial
power link area. This continuous power

supply ensures that the UAVs can operate
without interruption, effectively extending

their operating range and mission capabilities.

The use of a single energy source in wireless
refueling simplifies the power management

system of the UAV. There is no need to manage
multiple batteries or swap them out, reducing

the weight and complexity associated with
power management. This streamlined

approach enhances the overall efficiency and
reliability of the UAV system.

Wireless refueling also eliminates the need for
UAVs to land, reducing the risks and

challenges associated with take-off and
landing operations. This improves safety and
minimizes potential damage or wear and tear

on the UAVs during landing and take-off
maneuvers.

With unlimited operating time and extended
range, wireless refueling opens up possibilities
for a wide range of applications. UAVs can be

deployed for persistent surveillance,
long-range mapping, remote sensing, and

other missions that require continuous
operation over extended periods.

However, it is important to note that wireless
refueling is still an emerging technology, and
further research and development are needed
to optimize its efficiency, safety, and scalability.

Challenges such as power efficiency,
regulatory considerations, and infrastructure

requirements must be addressed to fully
realize the potential of wireless refueling for

UAVs.

While wireless refueling using laser beams
offers potential benefits for UAVs, there are
certain constraints and considerations that

need to be addressed. One of these constraints
is the necessity of a ground station (GS)

equipped with a laser transmitter to provide
power to the UAVs. This means that the UAVs
need to operate within a certain range of the

GS to maintain a reliable power transfer. This
range limitation can restrict the operating area

of the UAVs and may not be suitable for
missions that require long-range coverage or

operations in remote areas.

Another constraint is related to the operating
heights of the UAVs during laser beam

recharging. In order to maintain a consistent
power transfer, the UAVs typically need to
operate at reduced heights, which can be

influenced by regulations and safety
considerations. For instance, the Federal

Aviation Administration (FAA) sets maximum
altitude restrictions for small UAVs, limiting

their operating height to 400 feet. Compliance
with these regulations may further restrict the

altitude range for UAVs using laser beam
refueling.

Obstruction of the laser beam is another
consideration. The laser beam used for

refueling needs a clear path between the GS
and the UAV. This means that obstacles such as

buildings, trees, or other structures can
obstruct the beam, potentially interrupting the

power transfer. Careful planning and
positioning of the GS and the UAVs are

required to minimize the risk of obstruction
and ensure a reliable power supply.

Furthermore, the range of laser beams used for
wireless refueling is typically limited
compared to the range of traditional

propulsion systems. This can impact the
operational range of the UAVs, especially for
missions that require long-distance coverage

or operations in remote areas.

Overall, while wireless refueling using laser
beams offers advantages, such as extended

flight duration and continuous operation, the
necessity of a GS, constraints related to

operating heights and beam obstruction, and
reduced range need to be carefully considered
when evaluating its suitability for specific UAV

missions. Proper planning, regulatory
compliance, and technological advancements
are necessary to overcome these constraints
and fully leverage the benefits of laser beam

refueling for UAVs.
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Table 3. Cont.

Power Supplying Technique Advantages Limitations and Drawbacks

Tethered
UAVs

Wireless refueling using laser beams offers the
potential for unlimited operating time for

UAVs without the need to land. By utilizing a
single energy source, such as a ground station
equipped with a laser transmitter, the UAVs
can receive a continuous and uninterrupted

power supply while in flight. This eliminates
the need for frequent battery changes or

recharging, allowing for persistent operation
and extended mission durations.

In addition to providing power, wireless
refueling also enables safe and effective data

transfer between the UAV and the ground
station. Along with power, the laser beam can
be used to transmit data and communication
signals, ensuring seamless connectivity and
information exchange between the UAV and

the ground control.

The ability to operate continuously and receive
power and data transfer wirelessly offers
several advantages. It enables UAVs to

perform long-duration missions without
interruption, making them suitable for

applications that require persistent
surveillance, monitoring, or data gathering. It
also reduces the logistical challenges and risks
associated with manual battery replacement or
refueling operations, as the UAVs can remain

in the air and operational throughout their
mission.

Moreover, wireless refueling contributes to
increased safety by eliminating the need for

frequent take-offs and landings, which can be
risky maneuvers for UAVs. The continuous

operation and avoidance of landing
procedures minimize the chances of accidents

or incidents during mission execution.

Overall, wireless refueling with a single energy
source provides UAVs with the capability for

unlimited operating time, persistent operation,
safe data transfer, and reduced reliance on
ground-based support. These advantages
make it an attractive solution for various

applications where extended flight durations,
continuous operation, and efficient data

transfer are essential.

While wireless refueling offers the advantage
of unlimited operating time and eliminates the

need for landing or battery replacement, it
comes with certain limitations. One of these

limitations is the necessity of a ground station
(GS) to provide the power supply or laser

transmitter. The GS serves as the central hub
for supplying power or transmitting the laser

beam to the UAV in flight.

Additionally, wireless refueling methods often
have constraints related to the operating area
of the UAV. For example, laser beams used for
power transfer may have a limited range or be
affected by obstructions, such as buildings or
other objects that can block or interfere with

the transmission. This can restrict the
operational altitude and area of the UAV,

requiring it to operate within a specific range
from the GS to maintain a consistent power

supply.

Another concern with wireless refueling is the
potential for UAV damage in case of tethering
loss. In some cases, UAVs may be tethered to
the power source or laser transmitter through
physical connections, such as cables or beams.
If the tethering connection is lost or severed, it

can lead to a sudden loss of power or
disruption in the energy transfer, which may

result in the UAV losing control or
experiencing a sudden shutdown. This can
potentially lead to damage to the UAV or

compromise the mission’s success.

To mitigate these limitations and concerns,
careful planning, system redundancy, and

safety measures need to be implemented. This
may involve the use of backup power sources

or redundant laser transmitters to ensure
uninterrupted operation and minimize the risk

of power loss. Additionally, thorough risk
assessments and safety protocols should be in
place to prevent or mitigate potential damage
to the UAV in case of tethering loss or system

failures.

Overall, while wireless refueling offers
advantages, such as unlimited operating time
and no landing requirements, it is important to
consider the necessity of a GS, the limitations

on operating area, and the potential risks
associated with tethering loss. Proper

planning, robust systems, and safety measures
can help address these concerns and ensure

the efficient and safe operation of UAVs using
wireless refueling methods.

In a study [89], a comparison of various battery types (Li-ion, Ni-Cd, Ni-Mh) and fuel
cells was conducted, considering criteria such as energy and power densities, discharging
characteristics, temperature effects, efficiency, and endurance. However, it is important
to note that flight tests were not conducted to evaluate the actual behavior, capabilities,
and performance of these power sources in real flight conditions. Figure 6 in the study
presents a comparison of specific power versus specific energy for batteries, fuel cells, and
supercapacitors. It indicates that fuel cells demonstrate higher specific energy compared
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to other power sources, which makes them a promising option for achieving extended
endurance in UAVs while maintaining a given weight [57]. Nevertheless, it should be
acknowledged that fuel cells may have lower energy density compared to lithium batteries
due to the additional volume required for hydrogen storage in the form of a tank.

Figure 6. The fuel cell system auxiliaries.

In a separate study, the development of a UAV for mobile crane inspection was
explored, with a focus on proton exchange membrane fuel cells [90] and lithium-ion
batteries [91]. The research involved an economic analysis and a life cycle assessment
to compare the two power sources. One of the main conclusions drawn from the study
was that from a commercial standpoint, fuel cells, being a niche product, tend to be more
expensive compared to lithium-ion batteries. This fact emphasizes the trade-offs between
fuel cells and batteries in terms of specific energy, energy density, cost, and commercial
viability. The selection of the appropriate power source for UAV applications relies on
specific requirements, mission profiles, and considerations such as flight endurance, weight
limitations, cost constraints, and the availability of infrastructure.

2.3.1. Fuel Cell Efficiency Issues

The process of electricity generation from fuel cells involves certain elements. Fuel
cells can achieve an efficiency level of up to 60% [89]. However, this efficiency is lower
compared to lithium batteries, which can exceed 90%. One of the reasons for the lower
efficiency of fuel cells is the presence of auxiliary equipment required for the operation
of the fuel cell stack. These auxiliary components add complexity to the system and can
contribute to energy losses, thus reducing overall efficiency [80]. Additionally, the onboard
hydrogen generation system, which is necessary for fuel cell operation, can also introduce
complexity and potentially decrease efficiency. While fuel cells may have lower efficiency
compared to lithium batteries, they offer advantages in terms of specific energy and longer
operational duration. While proton exchange Membrane fuel cells (PEMFCs) hold promises
for enhancing the endurance of drones and hydrogen–lithium composite energy storage
systems prove adaptable to specialized working conditions, certain challenges must be
addressed for their large-scale commercialization. Notably, PEMFCs require higher power
and current densities to meet the demands of commercial applications. However, at
elevated operating current densities, issues such as the accumulation of liquid water in
the Gas Diffusion Layer (GDL) can lead to flooding and impede gas diffusion, resulting
in a rapid degradation of cell performance [92]. Consequently, the improvement of water
management capabilities is imperative to unlock the full potential of PEMFCs and achieve
better cell output performance. The choice between fuel cells and batteries depends on
specific application requirements, taking into account factors such as flight endurance,
weight limitations, cost considerations, and the availability of infrastructure. The cost of
implementing fuel cells in drones varies based on factors such as fuel cell type, size, and
specific application requirements. While fuel cells offer advantages in terms of extended
endurance and reduced environmental impact, their cost is a significant consideration in
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the adoption of this technology. Cost reduction efforts, advancements in research and
development, and economies of scale are expected to make fuel cells more cost-effective in
the future. The decision to use fuel cells as the primary means of power generation and
energy supply in drones will depend on the specific drone applications, regulatory support,
competition with evolving battery technology, and a comprehensive evaluation of the total
cost of ownership, taking into account initial purchase, maintenance, and operational costs.

2.3.2. Fuel Storage

Hydrogen has a low density at standard temperature and pressure, which poses
a challenge for storing a sufficient amount of fuel for UAV missions. The low density
means that hydrogen tanks need to be bulky to accommodate the required amount of
fuel, which can impact the size and weight of the UAV. In addition to the size and weight
considerations, safety is also a significant concern when it comes to storing hydrogen. Pure
hydrogen cannot be stored under extremely high pressure and low temperatures due to
safety reasons. Therefore, alternative techniques are employed for hydrogen storage in
UAVs.

The three main techniques currently used for hydrogen storage in UAVs are as follows:

1 Compressed hydrogen gas: Hydrogen gas is stored in tanks under high pressure.
This method allows for easier storage and refueling compared to other techniques.
However, it requires high-pressure tanks, which can add weight and volume to
the UAV.

2 Liquid hydrogen: Hydrogen is stored in a liquid state at very low temperatures.
This method provides a higher energy density compared to compressed gas storage.
However, it requires specialized cryogenic storage systems and insulation, which can
add complexity and weight to the UAV.

3 Chemical hydrogen generation: Hydrogen is generated onboard the UAV through
chemical reactions, such as the reaction between a metal hydride and water. This
method offers the advantage of generating hydrogen as needed, eliminating the need
for storing large quantities of hydrogen. However, it requires additional components
and can have limitations in terms of hydrogen generation rate.

Table 4 in the referenced study likely provides a detailed analysis of the advantages
and drawbacks of each hydrogen storage technique in UAV applications, allowing for a
comprehensive comparison and evaluation of the different options.

Table 4. Comparison between compressed and liquid hydrogen storage [80,89].

Compressed H2 Liquid H2

Properties

The most commonly used method for
hydrogen storage in UAV applications is

high-pressure storage. Hydrogen is
stored at pressures ranging from 35 to
70 megapascals (MPa). At these high
pressures, the density of hydrogen
increases, reaching approximately

42 kg/m3 at 70 MPa

Hydrogen has a density of approximately
71 kg/m3 at 1 bar and a temperature of
−252.87 ◦C, which is extremely low. To

store hydrogen in its liquid form, a
thermal insulation system is necessary to

maintain such low temperatures.

While hydrogen storage has benefits for
large-scale applications, it can be

challenging on a smaller scale. The
liquefaction process requires extremely
low temperatures, making it costly and
energy intensive. It is more practical for
large-scale production and distribution

systems rather than
small-scale applications.
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Table 4. Cont.

Compressed H2 Liquid H2

Advantages

High-pressure storage offers several
advantages. It is a relatively simple

method, requiring a pressure vessel to
contain the hydrogen gas. The storage

mass penalty, or the additional weight of
the storage system, is relatively low
compared to other storage methods.
Additionally, high-pressure storage
allows for rapid refueling capability,
enabling quick turnaround times for

UAV operations.

However, there are certain drawbacks to
high-pressure storage. One significant

disadvantage is the low storage efficiency.
The energy required to compress

hydrogen to high pressures results in
energy losses, reducing the overall

storage efficiency. This can impact the
range and endurance of the UAV.

There are several advantages to using
hydrogen as a fuel despite its low density.
One advantage is its high energy density,

which means that a relatively small
volume of hydrogen can store a large
amount of energy. This high energy

density enables longer flight durations
and increased operational efficiency

for UAVs.

Hydrogen storage also offers improved
safety compared to other fuel options.

Hydrogen is non-toxic and non-polluting,
and it dissipates rapidly in the event of a
leak. However, safety measures are still

necessary due to its flammability and the
potential for embrittlement of materials

in the presence of hydrogen.

Disadvantages

Safety risks are also a concern with
high-pressure storage. The high

pressures involved in the storage process
increase the potential for leaks or
ruptures, which can be hazardous.

Proper safety measures and precautions
must be in place to mitigate these risks.

Another consideration is the larger
volume required for high-pressure

storage systems. The pressure vessels
need to be sized to accommodate the
required amount of hydrogen at the

specified pressure. This can increase the
overall size and volume of the UAV,

affecting its aerodynamics and
payload capacity.

In summary, high-pressure storage is a
commonly used method for hydrogen

storage in UAVs. It offers simplicity, low
storage mass penalty, and rapid refueling
capabilities. However, it has drawbacks

such as low storage efficiency, safety
risks, and the need for larger storage

volumes. These factors should be
carefully considered when selecting the

appropriate storage method for
UAV applications.

Handling and transporting hydrogen in
its liquid form can be difficult due to the
low temperatures involved and the need
for specialized storage and transportation
infrastructure. Additionally, the weight
of the storage tanks can be significant,

impacting the overall weight of the UAV.

In summary, while hydrogen offers
advantages, such as high energy density,

improved safety, and the potential for
long-duration flights, there are challenges

associated with its low density, high
liquefaction energy requirements,

impractical small-scale production, and
the need for careful handling and storage.

These factors must be carefully
considered in the design and

implementation of hydrogen storage
systems for UAV applications.

2.4. Hybrid Power Sources (Fuel Cell and Battery)

Fuel cells face limitations when used as the sole power source for UAVs. Their time
constant is relatively long, typically in the range of seconds, due to the requirements
of fuel and air supply facilitated by pumps, valves, and compressors. This sluggish
response is primarily attributed to the mechanical characteristics of the pumps, flow delay,
thermodynamic properties, and the effect of capacitance [93]. Consequently, when there
are significant fluctuations in current demand, there is a potential risk of fuel shortage,
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which can negatively impact the fuel cell system’s lifetime, reliability, and efficiency [94]. To
tackle these challenges, researchers have explored the integration of fuel cells with batteries
to form hybrid power supply systems, which have emerged as a promising solution. By
harnessing the strengths of both power sources and mitigating their weaknesses, hybrid
systems can deliver enhanced performance and efficiency for UAV propulsion [48,95,96].
The battery can swiftly provide power for sudden changes in demand, while the fuel cell
can supply sustained power for extended durations. This approach enables superior power
management, heightened system dependability, and overall improved UAV performance.

In a hybrid UAV propulsion system, the battery plays a crucial role in supplying
power during high-demand maneuvers, like take-off and climbing. Its higher power
density, quicker response time, and greater efficiency make it well-suited for such tasks
compared to a fuel cell. On the other hand, the fuel cell takes over as the primary power
source during cruise or descent phases, providing sustained power and also recharging
the battery to maintain its state of charge (SOC) above a certain threshold. To evaluate the
performance of hybrid UAV propulsion systems, researchers have employed hardware-in-
the-loop (HIL) simulations. These simulations analyze the behavior of each power source in
various test scenarios, considering factors such as endurance and hydrogen consumption.

The role of the battery in the hybrid system has been extensively considered in stud-
ies, such as [63]. These experiments have specifically focused on analyzing the battery’s
performance during different flight mission phases and under varying demands. Ad-
ditionally, ref. [75] provides a comprehensive characterization of the hybrid propulsion
system using diverse mission profiles and speeds. However, it should be noted that these
studies mainly concentrated on passive power-splitting methods and did not delve into
the development of an active energy management strategy. The implementation of an
energy management strategy is a crucial aspect of hybrid UAV propulsion systems. It
involves actively regulating the power flow between the fuel cell and battery to optimize
the overall performance, efficiency, and longevity of the system. This strategy determines
the appropriate utilization of each power source based on the prevailing flight conditions,
load requirements, and the battery’s state of charge. By employing intelligent power man-
agement algorithms, the hybrid system can achieve enhanced efficiency and prolong the
UAV’s mission endurance. Table 5 in this review paper offers a comprehensive comparison
between batteries and supercapacitors, providing a detailed analysis of their characteristics
and performance. Moving forward, Table 6 provides a comprehensive overview of the
advantages and disadvantages associated with batteries and supercapacitors, aiding in
the assessment of their suitability for various applications. Lastly, Table 7 is dedicated to
a thorough comparison of diverse power supply configurations, facilitating a nuanced
understanding of the various options available for power delivery in different contexts.
These tables, with their respective data and insights, play a pivotal role in elucidating key
aspects of energy storage and power supply solutions.

Table 5. Comparison between batteries and supercapacitors [48,95,96].

Type
Energy
Density
(Wh/kg)

Power
Density
(W/kg)

Cycle
Life

(Times)

Efficiency
(%)

Lead-acid battery 30–40 200–300 300–400 75
Ni-MH battery 60–80 800–1500 1000 75
Li-ion battery 100–120 600–2000 1000 90

Supercapacitor 4–15 1000–100,000 100,000 85–98
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Table 6. Batteries and supercapacitor advantages and disadvantages.

Type Advantages Disadvantages

Lead-acid battery Affordable, rapid discharging
rate, and high recyclability.

Inadequate performance in
low-temperature conditions.

Ni-MH battery
High energy density, quick

charging and discharging, and
extended lifespan.

Pronounced self-discharge
rate, the necessity for a

cooling system, and higher
manufacturing expenses.

Li-ion battery

Elevated voltage, superior
energy density, lightweight,
durable cycle life, minimal
self-discharge, absence of

memory effect,
and eco-friendly.

Reduced lifespan in
high-temperature

environments, susceptibility
to overcharging and

over-discharging, and
stringent

security requirements.

Supercapacitor

Swift charging and
discharging capabilities,

absence of pollution,
and remarkability.

Limited energy density.

Table 7. Comparison of power supply configurations.

Energy
Sources

Architecture Advantages Limitations and Drawbacks

Thermal
energy

Gas turbine engine
Impressive ratio of power to weight,

coupled with extended duration
of operation.

Extremely poor fuel efficiency and
elevated noise levels.

ICE

Exceptionally high power and
energy densities, extended
endurance, and significant

payload range.

Decreased efficiency, thermal and
acoustic signatures, greenhouse gas

emissions, and high fuel costs.

One
electrical

source

Battery

Significant energy density and
storage (rather than generation),
resulting in a rapid response to

power demand.

Limited power density, decreased
endurance, and prolonged recharging
time with the presence of a “memory

effect” in certain battery types. To
enhance autonomy, additional batteries
need to be added, leading to increased

weight and cost.

Fuel cell

Significant energy density and,
instant refueling without the

presence of a “memory effect,”
allowing for increased autonomy
using more fuel within the same

stack, resulting in weight reduction.

Due to the process of energy
generation, there is a slower response

to power demand in fuel cells.
Additionally, auxiliary equipment, such

as compressors and regulators, are
required for their operation. Challenges

related to the lack of hydrogen
distribution infrastructure, issues with
hydrogen storage, safety concerns, and
the high cost of hydrogen production

are also present.
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Table 7. Cont.

Energy
Sources

Architecture Advantages Limitations and Drawbacks

Hybrid
power
supply

Fuel cell and
battery

The high energy and power
densities of the hybrid power

supply result in increased
endurance and faster response time.

This allows for efficient energy
generation and storage, enhancing

the overall performance of
the system.

The use of a hybrid power supply
system leads to an increase in weight,

as additional components, such as
controllers and converters, are required
to manage the system. This introduces
added complexity to the UAV, further

contributing to the overall weight.

Fuel cell, battery, and
solar cells

The inclusion of an additional
energy source in a hybrid power

supply system results in improved
endurance for the UAV. This extra
source provides clean and readily
available energy, which leads to a
decrease in energy costs and saves

on hydrogen usage.

Large UAV wings are necessary for the
implementation of a hybrid power

supply system. However, this
configuration is not suitable for

rotary-wing UAVs. Additionally, an
energy storage device is required to

store and manage the energy generated
by the system. The hybrid system also

necessitates the use of an energy
management system (EMS) and
Maximum Power Point Tracking

(MPPT) to optimize the power flow and
ensure efficient operation.

Fuel cell, battery, and
supercapacitor

The hybrid system consisting of a
fuel cell, battery, and supercapacitor

offers several advantages. It
provides very-high-power density,

enabling efficient and rapid
charging. It also contributes to
reduced weight and minimized
fluctuations in the direct current
(DC) bus. The system exhibits a
very long lifetime, thanks to its
reduced internal resistance, and
experiences minimal heat loss.

These features make the hybrid
system highly desirable for various

applications, ensuring optimal
performance and reliability.

The integration of an energy
management system (EMS) is essential
in the hybrid system, which includes a

fuel cell, battery, and supercapacitor.
The EMS plays a crucial role in

coordinating and regulating the power
flow between these components. It
ensures efficient utilization of the

energy sources, manages charging and
discharging processes, and maintains

the stability of the system. Additionally,
the voltage regulation of the

supercapacitor is necessary to ensure its
proper operation and prevent any

voltage-related issues. The EMS and
supercapacitor voltage regulation

contribute to the overall performance
and reliability of the hybrid system.

3. Conclusions

The primary focus of this research paper is to examine and evaluate the energy aspects
of onboard propulsion systems in UAV platforms. By conducting a comprehensive review
and analysis of different power supply architectures and energy management strategies,
the objective is to establish a foundation for the development of high-performance UAV
propulsion systems. This assessment aims to facilitate the assessment of trade-offs and
considerations when selecting suitable power sources for UAVs.

Relying solely on a single power source can be limiting for UAVs, as different power
sources exhibit diverse performance characteristics under varying operating conditions.
Therefore, the integration of hybrid power sources with complementary capabilities is
increasingly recognized as a standard approach for designing UAV electric power sys-
tems. The selection and sizing of hybrid power sources depend on the specific mission
requirements and associated weight/duration constraints of the UAV.
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By comparing and analyzing various power supply architectures and energy manage-
ment strategies, this research paper aims to contribute to the advancement of efficient and
reliable UAV propulsion systems. The objective is to enable UAVs to operate optimally in
different mission scenarios, enhance overall performance, extend mission durations, and
improve the adaptability of the propulsion system to changing operating conditions.

Therefore, some key points regarding the advantages and limitations of different
power sources for UAV propulsion systems are highlighted. Combustion engines, although
robust, are typically heavier and more commonly used in fixed-wing UAVs. On the other
hand, fuel cells (FCs) and batteries, such as lithium polymer (Li-Po) batteries, offer longer
flight times and greater maneuverability. However, they may struggle to supply peak
current when required and can deplete their energy rapidly. Hybrid systems, which
combine multiple power sources, offer significant advantages over single-source systems.
By leveraging the specific strengths of each power source, hybrid systems can address
issues such as prolonged charging times, short flight durations, and limited peak power
supply. Supercapacitors (SCs) are commonly used in hybrid systems due to their ability
to overcome the drawbacks of other power sources. SCs have high energy density, short
recharge periods, and virtually unlimited cycle life, making them a promising replacement
for Li-Po batteries in hybrid systems.

Hydrogen fuel cells, often incorporating Li-Po batteries, can be considered a type of
hybrid system. However, Li-Po batteries present several disadvantages in drone applica-
tions, including low energy density, short flight times, long recharge times, environmental
hazards, and limited lifespan compared to other power sources. SCs, with their high
energy density, short recharge periods, and long cycle life, offer a potential solution as a
replacement for Li-Po batteries in hybrid systems. Further research is necessary to evaluate
the impact of SCs on the effectiveness of fuel cell systems in drone applications. Overall,
the implementation of hybrid systems with SCs shows promise in improving the flight
time and efficiency of UAVs. To truly advance current systems, hybrid systems need to be
comparable in weight and size to existing drones while providing enhanced performance
and addressing the limitations of single-source power systems. Further research and devel-
opment are required to optimize the integration and performance of hybrid power systems
in UAV applications.
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