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Preface

Cancer stands as the second leading cause of death globally. In 2020, approximately 10 million

individuals succumbed to this disease, as reported by the World Health Organization (WHO). Early

cancer identification remains paramount for successful treatment and halting metastasis. However,

the complexity within and between tumors complicates this task and the implementation of effective

therapies. Unveiling the detection, diagnosis, and treatment of cancer reveals a concealed structure

amidst seemingly chaotic medical occurrences, necessitating methodologies capable of grasping

cancer’s complexity to devise optimal diagnostic systems and therapies. In biology and oncology,

numerous complex problems arise, including genomic analysis, drug discovery and development,

disease diagnosis and prognosis, personalized medicine, understanding tumor heterogeneity, clinical

trial optimization, and healthcare resource allocation.

Artificial intelligence (AI) and machine learning have sparked a revolution in the realms

of discovery, diagnosis, and treatment design, particularly in the field of oncology. They offer

invaluable support not only in cancer detection but also in crafting tailored therapies, pinpointing

novel therapeutic targets to expedite drug discovery, and enhancing cancer surveillance through

the analysis of patient and cancer statistics. AI-driven cancer care holds promise for improving

clinical screening and management, thus yielding better health outcomes. Machine learning (ML)

algorithms, rooted in both biological and computer sciences, play a pivotal role in elucidating the

intricate biological systems underlying cancer initiation, growth, and metastasis. They empower

scientists to expedite the discovery process and assist physicians and surgeons in devising effective

diagnostic and treatment strategies across various cancer types. Moreover, AI and machine learning

stand to revolutionize biotechnology and pharmaceutical industries by streamlining drug discovery

processes. In essence, AI embodies the intelligent behavior of computer science, with its techniques

capable of learning from data and generalizing insights garnered from them. The potential of AI

extends beyond innovation; it holds the power to revolutionize biology and oncology by accelerating

research endeavors, enhancing diagnostic capabilities, and personalizing treatment modalities,

ultimately fostering improved outcomes for cancer patients. This transformative potential spans

across biology and oncology research, clinical practice, and patient care, promising a brighter future

for those affected by cancer.

This book covers some significant impacts in recent research AI and machine learning in both

the private and public sectors of cancer, biology, and oncology. The book is divided in 19 chapters in

Cancer, Biology, and Oncology.

Hamid Khayyam, Ali Hekmatnia, and Rahele Kafieh

Editors
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Article

Deep Learning-Based Classification and Targeted Gene
Alteration Prediction from Pleural Effusion Cell Block
Whole-Slide Images

Wenhao Ren, Yanli Zhu, Qian Wang, Haizhu Jin, Yiyi Guo and Dongmei Lin *

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology,
Peking University Cancer Hospital and Institute, Beijing 100142, China
* Correspondence: lindm3@163.com

Simple Summary: For many patients with advanced cancer, pleural effusion is the only accessible
specimen for establishing a pathological diagnosis. Some pleural effusion cell blocks have not
undergone adequate morphological, immunohistochemical, or genetic analysis due to problems with
the specimen itself or cost. Deep learning is a potential way to solve the above problems. In this
study, on the basis of scanning whole slide images of pleural effusion cell blocks, we investigated
the identification of benign and malignant pleural effusion, the determination of the primary site of
pleural effusion common metastatic carcinoma, and the alteration of common targeted genes using a
weakly supervised deep learning model. We achieved good results in these tasks. Although deep
learning cannot be the gold standard for diagnosis, it can be a useful tool to aid in cytology diagnosis.

Abstract: Cytopathological examination is one of the main examinations for pleural effusion, and
especially for many patients with advanced cancer, pleural effusion is the only accessible specimen
for establishing a pathological diagnosis. The lack of cytopathologists and the high cost of gene
detection present opportunities for the application of deep learning. In this retrospective analysis,
data representing 1321 consecutive cases of pleural effusion were collected. We trained and evaluated
our deep learning model based on several tasks, including the diagnosis of benign and malignant
pleural effusion, the identification of the primary location of common metastatic cancer from pleural
effusion, and the prediction of genetic alterations associated with targeted therapy. We achieved
good results in identifying benign and malignant pleural effusions (0.932 AUC (area under the ROC
curve)) and the primary location of common metastatic cancer (0.910 AUC). In addition, we analyzed
ten genes related to targeted therapy in specimens and used them to train the model regarding four
alteration statuses, which also yielded reasonable results (0.869 AUC for ALK fusion, 0.804 AUC
for KRAS mutation, 0.644 AUC for EGFR mutation and 0.774 AUC for NONE alteration). Our
research shows the feasibility and benefits of deep learning to assist in cytopathological diagnosis in
clinical settings.

Keywords: deep learning; pleural effusion; cell blocks; classification; gene alteration prediction

1. Introduction

Serous effusion cytology is a common clinical method used to differentiate benign
from malignant serous effusions due to its minimal discomfort and risk to patients [1–3].
With the gradual increase in treatment methods and the emergence of cell block technology,
clinical cytologists are required not only to distinguish benign and malignant pleural effu-
sions but also to identify the primary location of metastatic carcinomas or mutant genes
using auxiliary methods such as immunohistochemistry or molecular detection [4,5]. How-
ever, due to the subjective and regionally dependent diagnostic level of cytopathologists,
there is a problem of low consistency in the diagnosis of benign and malignant pleural
effusions [3,6]. In addition, malignant pleural effusions have not yet been recognized as

Cancers 2023, 15, 752. https://doi.org/10.3390/cancers15030752 https://www.mdpi.com/journal/cancers1
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routine substrates for the immunohistochemical or molecular testing pipeline due to their
occasionally low tumor fraction and sparse cellularity [7–9]. Low tumor cellularity means it
is not always possible to perform sufficient immunohistochemical and molecular analyses
to accurately diagnose gene mutation and the primary site of metastatic cancer. In cases
with sufficient cellularity, the cost burden is another reason some patients fail to undergo
immunohistochemistry or genetic testing.

In recent years, artificial intelligence in the form of deep learning has been extensively
utilized in the field of pathology and has the potential to solve several clinical pathology
problems [10–13], but fewer studies have focused on clinical cytopathology [14,15]. In this
study, we used a weakly supervised deep learning approach to investigate the determi-
nation of benign and malignant pleural effusion, the identification of the primary site of
metastatic cancer, and the prediction of genetic alterations associated with targeted therapy
using whole-slide images (WSIs) of pleural effusion cell blocks in an effort to solve some
urgent clinical issues with deep learning.

2. Materials and Methods

2.1. Materials

From January 2018 to September 2022, 1321 consecutive pleural effusion specimens
from Peking University Cancer Hospital were embedded to the greatest extent possible,
and the successfully embedded cases were then scanned as whole-slide images (WSIs) with
Pannoramic 250 Flash III scanner (3DHISTECH, Hungary). Several WSIs with unclear
scanning were rescanned. Patient demographics, clinical presentation, cytology and his-
tology reports, auxiliary tests, and patient management information were extracted from
pathology databases and electronic medical records. All sections were assessed blindly by
two senior cytopathologists (W.R. and Y.Z.), and in the case of inconsistent diagnosis, a
unified diagnosis was negotiated with the participation of a third cytopathologist (Q.W.).
Ultimately, 1307 digitized WSIs were included in the subsequent analysis.

For all malignant tumors, cases with a clear and unique tumor history did not confirm
their primary site through immunohistochemistry, whereas the remaining cases (those
with multiple prior malignancies or ambiguous primary locations) were confirmed with
immunohistochemistry.

The AmoyDx® Essential next-generation sequencing (NGS) Panel (Amoy Diagnostics,
Xiamen, China) was used to detect genetic abnormalities in FFPE cell block tumor tissues
(http://www.amoydiagnostics.com/productDetail_9.html, accessed on 1 January 2023).
The AmoyDx® Essential NGS Panel is an NGS-based in vitro diagnostic assay intended for
qualitative detection of single nucleotide variants (SNVs), insertions and deletions (InDels),
gene fusions, and copy number variations (CNVs) in driver genes. An amplification refrac-
tory mutation system polymerase chain reaction (ARMS-PCR) and a mutation detection kit
(Amoy Diagnostics) were used to identify the gene alteration in driver genes. This kit is
designed for the detection of common mutations in 10 genes in two categories: (1) mutation
gene detection (EGFR gene (exons 18, 19, 20, 21), BRAF gene (V600E mutation), KRAS
gene (codons 12 and 13 of exon 2), NRAS gene (codon 61 of exon 3), HER2 gene (exon 20),
PIK3CA gene (exons 9 and 20), MET gene (exon 14 skipping mutation)); and (2) fusion
gene detection (ALK, ROS1, RET fusion gene detection). In this study, we labeled a gene’s
alteration status as “NONE” if none of the 10 genes listed above contained abnormalities.

2.2. Datasets

All the HE-stained slides were digitized with a 40× magnification objective and a
resolution of 0.25 μm/pixel and saved in MRXS format according to the manufacturer’s
protocol (Pannoramic 250 Flash III scanner, 3DHISTECH, Budapest, Hungary).

The dataset was partitioned into three parts as shown in Figure 1: (1) the benign vs.
malignant dataset which was used to differentiate between benign and malignant pleural
effusion and contained 1307 WSIs (representing 533 benign lesions and 774 malignant
tumors); (2) the primary site dataset which was used to identify the primary site of com-
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mon metastatic cancers and contained 560 WSIs (representing 94 breast invasive ductal
carcinomas, 56 gastric adenocarcinomas, and 410 lung adenocarcinomas); and (3) the gene
alteration dataset, which was further divided into the ALK dataset (23 ALK fusions and
335 ALK wild-types), the EGFR dataset (215 EGFR mutations and 143 EGFR wild-types),
the KRAS dataset (31 KRAS mutations and 327 KRAS wild-types) and the NONE dataset
(53 NONE alterations and 305 gene mutations).

Figure 1. Case screening and establishment of datasets for three tasks.

According to the distribution of the dataset, whole-slide image (WSI) cases were
randomly assigned to the training set, validation set, and test set in a ratio of 6:2:2. In
order to solve the problem of unbalanced data, we performed different levels of data
augmentation (such as rotating, random flipping, Gaussian blurring, and clipping) on the
training set in different datasets. To analyze the predictive performance of the model more
accurately, we employed the 10-fold cross-validation method.

2.3. Image Preparation
2.3.1. Preprocessing

Our pipeline (as shown in Figure 2) began with automatic segmentation of the tissue
regions based on the operations associated with the Python Open-CV application pro-
gramming interface. Except for the manual markings that we removed from the slides
before scanning, we did not undertake any extra work, such as stain normalization or
removing artifacts, on our images and used the entire tissue region of each slide during
evaluation. Because the sizes of the tissue regions were still too large (~1.62 GB per image)
for direct input into a neural network, all the tissue regions were cropped from the original
microscopic images without overlapping and then resized to 299 × 299 pixels as input for
model training with Qupath (Version 0.3.0) [16]. The number of patches per slide depended
on the specimen size, and mean slide patches were 7989 ± 4568.

3
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Figure 2. Flowchart of the deep learning framework presented in this study.

2.3.2. Deep Learning Model Training

In our approach, inception-ResNet-v2 serves as the backbone [17], and the weakly
supervised WSI classification model is based on multiple instance learning (MIL), which
treats each WSI as a collection of many smaller regions or patches. According to MIL,
a slide should be labeled as positive if at least one of its patches is in the positive class,
and as negative if all of its patches are in the negative class [18]. In order to improve
the interpretability of the model, we added an attention-based pooling function to the
model [19]. Using attention-based learning, our model can generate interpretable heatmaps
that enable clinicians to visualize the regions that the model focuses on when making a
prediction. Without pixel-level annotation during training, we can determine for every
tissue region the relative contribution to and correlation with the model prediction.

During training, the slides were randomly sampled using a batch size of 299. The
pretrained classifier inferred all of the patches in the training dataset using the weights
learned from the ImageNet dataset [20]. The attention module’s weights and bias param-
eters were initialized at random, and the module was trained in conjunction with the
rest of the model using the slide-level labels. To generate the slide-level prediction for
inference during validation and testing, we utilized the model to create predictions for each
patch on the slide and then averaged their probability scores, according to the method of a
previous study [21].

If the validation loss did not reduce during a span of 20 validation epochs, the model
was terminated early. This process was repeated every 100,000 patches. The model with
the lowest validation loss at each checkpoint was chosen for evaluation on the test set. We
used a cross-entropy loss function and optimized the models’ parameters with stochastic
gradient descent and the Adam optimizer at a learning rate of 0.0002 and a weight decay
of 0.00001. To illustrate the relative contribution and significance of each tissue location,
heatmaps were utilized.

2.4. Hardware and Software for Data Processing

We used multiple hard drives to store the raw files of the WSIs. Segmentation and
patching of WSIs were performed on a computer with 40 Intel(R) Xeon(R) CPU E5-2640
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v4 @ 2.40 GHz and Qupath (Version 0.3.0). Model training, validation, and testing were
accelerated through data batch parallelization across three NVIDIA A5000 on local worksta-
tions. Our whole-slide processing pipeline is written in Python (3.6.2) and utilizes image-
processing packages such as OpenSlide (3.4.1), OpenCV (4.1.1), and NumPy (version 1.18.1).
The TensorFlow (version 2.9.0) deep learning library was used to load data and train deep
learning models.

2.5. Evaluation Metrics and Graph

We measured model performance using AUC (area under the ROC curve), accuracy,
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV),
and F1-score at the slide level. All plots were generated in R version 4.1.0.

3. Results

3.1. Patient Demographics and Clinicopathological Characteristics

The patient population consisted of 655 males and 652 females, with a median age
of 62 years (range 14–91 years). Figure 3A,B depicts the distribution of benign and malig-
nant pleural effusions by age and sex. One hundred and eight instances (14.0%) among
774 malignancies had pleural effusion as the initial symptom, while 10 cases (1.3%) had
multiple prior tumors. Malignant WSI that contained fewer than 10 tumor cells (contained
very few tumor cells) were present in 7.0% (54/774), 10–100 tumor cells were present in
29.8% (231/774), and more than 100 tumor cells were present in 63.2% (489/774). Figure 4
depicts the specific pathological categories of 774 cases of malignant pleural effusion, the
most prevalent of which were lung adenocarcinomas (410, 53.0%), breast invasive ductal
carcinomas (94, 12.1%), and gastric adenocarcinomas (56, 7.2%). In 360 of 410 cases of
metastatic lung cancers, genetic testing was successfully performed. Two cases containing
two types of genetic mutations were excluded from subsequent analysis, and a total of
358 cases with a single gene alteration were included in subsequent predictive analysis of
genetic alterations. The specific types of gene alterations are shown in Figure 5A,B. The
most prevalent mutations were EGFR mutations (215/358, 60.1%), ALK fusions (23/358,
6.4%), KRAS mutations (31/358, 8.7%), and NONE alterations (53/358, 14.8%). 21 L858R
(101/215, 47.0%) and 19 del (67/215, 31.2%) were the most common EGFR mutant subtypes.

3.2. Deep Learning Models for Differentiating between Benign and Malignant Pleural Effusions

According to our research aim, we initially trained our model to distinguish between
“benign” and “malignant” WSIs, with the terms simply representing the pathological
characterization of the sampled cells. This task was trained on 320 benign and 464 malignant
WSIs, validated on 107 benign and 155 malignant WSIs, and tested on 106 benign and
155 malignant WSIs. In terms of data set division, the benign and malignant tumors were
randomly allocated to the training set, validation set, and test set in proportion as a whole.
We did not deliberately allocate equal proportions to different types of malignant tumors.
Since we adopted the 10-fold cross-validation method, the bias caused by the imbalance in
the proportions of different types of malignant tumors in the training set, verification set,
and test set can be reduced to a certain extent. The learning curve, evaluation metrics and
confusion matrix of this task are shown in Figure 6A–C. In the test set, the results yielded
an average AUC of 0.932 (range: 0.899 to 0.993), an average accuracy of 0.891 (range: 0.847
to 0.962), an average sensitivity of 0.911 (range: 0.821 to 0.987), an average specificity of
0.870 (range: 0.793 to 0.960), an average PPV of 0.910 (range: 0.845 to 0.974), an average
NPV of 0.864 (range: 0.698 to 0.981), and an average F1-score of 0.909 (range: 0.873 to
0.967). The heatmaps (as shown in Figure 6D-E) demonstrate that our models are generally
capable of identifying the boundary between malignant and benign tissue and are able to
differentiate between tumor and nearby normal tissue without the usage of normal slides
or region-of-interests during training. The largest proportion of false-negative cases was
WSI with very few tumor cells (49.3%), and the largest proportion of false-positive cases
was WSI with hyperplastic mesothelial cells or hyperplastic lymphocytes (48.6%).
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Figure 3. (A) The distribution of benign and malignant pleural effusions by age. (B) The distribution
of benign and malignant pleural effusions by sex.

Figure 4. The specific pathological categories of 774 cases of malignant pleural effusion.
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Figure 5. (A) The specific types of gene alterations. (B) Number of mutant subtypes of EGFR.

 

Figure 6. Results of the deep learning model for differentiating benign and malignant pleural effusion.
(A) The learning curve of the deep learning model in distinguishing between benign and malignant
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WSI images. (B) Evaluation metrics in test set of benign vs. malignant dataset. (C) Confusion
matrix in test set of benign vs. malignant dataset. (D) A HE-stained image of breast invasive ductal
carcinoma, corresponding heatmap and magnified pictures of different attention regions in the
heatmap. The redder the color, the higher the confidence of the malignancy. (E) Another example of
an HE-stained image of gastric adenocarcinoma, corresponding heatmap and magnified pictures of
different attention regions in the heatmap.

3.3. Deep Learning Models in the Identification of the Primary Site of Metastatic Cancer

Next, we evaluated the performance of our method on the more difficult task of
differentiating between pleural effusions of common metastatic carcinomas. The task was
trained on 224 cases of breast carcinoma (augmented by 56 cases of breast carcinoma),
238 cases of gastric adenocarcinoma (augmented by 34 cases of gastric adenocarcinoma),
and 246 cases of lung adenocarcinoma. It was validated on 19 cases of breast carcinoma,
11 cases of gastric adenocarcinoma, and 82 cases of lung adenocarcinoma, and tested on
19 cases of breast carcinoma, 11 cases of gastric adenocarcinoma, and 82 cases of lung
adenocarcinoma. Because the conventional MIL method, which was intended and widely
implemented for weakly supervised positive/negative binary classification (for example,
cancer versus normal), was not suitable for this three-category task, we performed learning
with the mMIL method [22], which shows a good classification effect in multiclassification
tasks. In the test set, this process resulted in an average AUC of 0.910 (range: 0.879 to
0.960) and an average accuracy of 0.810 (range: 0.750 to 0.884), as shown in Figure 7A.
Among these, the average accuracy rates were 0.955 for gastric adenocarcinoma, 0.737 for
breast invasive ductal carcinoma, and 0.807 for lung adenocarcinoma (Figure 7B). Figure 7C
shown the confusion matrix of this task.

It is also important that in this classification task, the high attention regions of the
deep learning model were consistent with the areas that cytopathologists focus on when
making a diagnosis. For example, the trained model for gastric adenocarcinoma highlights
predominantly scattered isolated malignant cells (Figure 7D) and uses them as strong
evidence (high attention) for gastric adenocarcinoma, whereas the trained model for breast
invasive ductal carcinoma emphasizes acini/glands or round cell groups (Figure 7E). For
lung adenocarcinoma, the model emphasizes clusters with unregular borders and cellular
pleomorphism (Figure 7F), which are consistent with human pathology expertise.

Misclassified gastric adenocarcinomas were all predicted to be lung adenocarcinomas.
For misclassified breast cancers, 78% of them were predicted to be lung adenocarcinomas
and 22% were predicted to be gastric adenocarcinomas. Of the misclassified lung adenocar-
cinomas, 33.5% were predicted to be gastric adenocarcinomas and 66.5% were predicted to
be breast cancers.

3.4. Predicting Gene Alteration Status from Whole-Slide Images Using Deep Learning Models

Next, we focused on lung adenocarcinoma WSIs and examined whether deep learning
can be trained to predict gene alterations using only images as the input. To ensure that
the training and test sets comprised sufficient images of gene alteration cases, we only
selected common gene alterations as the target of this classification task. We investigated
each of the common genes individually using binary classification. The prediction results
for each common gene are shown in Figure 8A. The confusion matrices of common gene
alteration are shown in Figure 8B–E. The heatmaps of common gene alteration are shown
in Figure 8F–I.

8



Cancers 2023, 15, 752

Figure 7. Results of the deep learning models in the identification of the primary site of metastatic
carcinoma. (A) The ROC curve used for the common metastatic carcinomas on the test set. (B) The
average accuracy rate of common metastatic carcinomas predicted by deep learning. (C) The con-
fusion matrix used for the common metastatic carcinomas on the test set. (D–F) High-attention
regions in the classification tasks. The gastric adenocarcinoma (D) highlights predominantly scat-
tered isolated malignant cells, whereas the trained model for lung adenocarcinoma (E) emphasizes
clusters with unregular borders and cellular pleomorphism. For breast invasive ductal carcinoma
(F), the model emphasizes acini/glands or round cell groups. GC: gastric adenocarcinoma; LC: lung
adenocarcinoma; BC: breast invasive ductal carcinoma.
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Figure 8. (A) The prediction results of common gene alterations in lung adenocarcinoma. (B–E) The
confusion matrices of common gene alteration. (F–I) Examples of the heatmaps of ALK fusion, EGFR
mutation, KRAS mutation and NONE alteration, respectively. The darker the color, the higher the
confidence of the corresponding gene alteration.
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In the ALK dataset, the training set contained 345 ALK fusion (augmented by 23 ALK
fusion) and 335 ALK wild-type WSIs, the validation set contained 13 ALK fusion and
201 ALK wild-type WSIs, and the test set contained 5 ALK fusion and 67 ALK wild-type
WSIs. The results yielded an average AUC of 0.869 (range: 0.752 to 0.969), accuracy of
0.829 (0.750 to 0.903), PPV of 0.540 (0.200 to 0.800), and NPV of 0.850 (0.761 to 0.940) in the
test set.

The KRAS dataset consisted of 31 KRAS mutations and 327 KRAS wild-type WSIs.
After training on 190 KRAS mutations (augmented by 19 KRAS mutations) and 197 KRAS
wild-type WSIs, the test set (6 KRAS mutation and 65 KRAS wild-type) yielded an average
AUC of 0.804 (0.635 to 0.977), accuracy of 0.807 (0.648 to 0.930), PPV of 0.583 (0.166 to 0.833),
and NPV of 0.828 (0.646 to 0.938).

For EGFR mutation or wild-type, the test set contained 43 EGFR mutations and
29 EGFR wild-type WSIs. The average AUC, accuracy, PPV, and NPV were 0.644 (0.468 to
0.821), 0.592 (0.480 to 0.840), 0.600 (0.231 to 0.846), and 0.583 (0.333 to 0.833), respectively.
For ten gene alterations and NONE alterations, the test set contained 11 NONE-alteration
and 61 gene-alteration WSIs. The results yielded average AUC, accuracy, PPV, and NPV
values of 0.774 (0.615 to 0.879), 0.740 (0.458 to 0.917), 0.757 (0.377 to 0.934) and 0.645 (0.364
to 0.909), respectively.

4. Discussion

To the best of our knowledge, this is the largest study to date evaluating the application
of deep learning to the cytological diagnosis of pleural effusion cell blocks. Deep learning
focused in the direction of cytopathology is less available and has not been applied in more
complex clinical scenarios. The majority of studies have only performed the differentiation
of benign and malignant pleural fluid [23–25], and some research has studied only the
most frequently mutated genes in lung adenocarcinoma [21], although these genes have no
guiding meaning in target therapy. In addition, there are few publications on the use of
deep learning to forecast the primary site of metastatic tumors. Identifying the primary site
of metastatic cancer is a critical diagnostic task. Many patients present with pleural effusion
as their first symptom, and different primary sites can lead to very different treatments [26].

In this study, we evaluated the use of deep learning to distinguish benign pleural
effusion from malignant pleural effusion. Due to cytomorphologic overlap, proliferat-
ing mesothelial cells are frequently difficult to distinguish from cancer cells in routine
cytopathological diagnostic procedures [27]. Our study demonstrates that a deep learn-
ing model can be used to aid in diagnostic work; it can classify normal and malignant
effusions with an AUC of 0.932, an accuracy of 0.891, a sensitivity of 0.911, a specificity
of 0.870, a PPV of 0.910, an NPV of 0.864, and an F1-score of 0.909. In institutions where
there is a low level of diagnostic expertise, there is benefit to be gained from the use of
deep learning systems. We further analyzed the cases in which the deep learning model
misjudged, and found that the main reason for the false negative may be that the WSI
contains very few tumor cells (accounting for 59.3%), and the deep learning model fails to
make correct judgments based on these few tumor cells. The main causes of false positives
are proliferating lymph node cells and hyperplastic mesothelial cells (48.6%), proliferating
lymphocytes may not be well distinguished from lymphoma, small cell carcinoma, etc.,
and hyperplastic mesothelial cells may be indistinguishable from some malignant tumors
with similar morphology, such as mesothelioma, gastric cancer, etc., resulting in incorrect
prediction by deep learning systems.

Second, we examined the applicability of our model to the determination of the
primary site of metastatic cancer in pleural fluid. Significant cytomorphologic overlap
exists between carcinomas of different primary origins, and immunohistochemistry is
frequently needed to determine the primary site. However, some pleural effusions of
unknown primary may not be confirmed by limited immunohistochemical items due to
the low cellularity in the cell block [28,29]. In our study, after training and testing on
560 WSIs (94 breast invasive ductal carcinomas, 56 gastric adenocarcinomas, and 410 lung
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adenocarcinomas), we discovered that our deep learning model can distinguish between
the three types of metastatic cancer (0.910 AUC), which is of great benefit to patients with
only pleural effusion specimens available when the cell block contains sparse tumor cells.
According to the predictions of deep learning, the primary site is likely to be verified by
only two or three immunohistochemistry markers; deep learning can considerably improve
the confirmation rate of the primary site. It is worth mentioning that in clinical work, the
prediction of rare tumors is more clinically significant, because the primary lesions of rare
tumors often require a larger immunohistochemical panel to be clear, and the prediction
of rare tumors by deep learning prediction systems can reduce the workload and patient
costs. In our study, we did not make predictions for rare tumors due to the small number
of rare tumors and the lack of public datasets available for pleural effusion cell blocks, but
we shared our WSIs data in the hope that future studies can integrate our data to complete
deep learning predictions for rare metastatic cancer in pleural fluid.

When analyzing the misclassified cases, gastric adenocarcinoma achieved a good
accuracy, which may be caused by the relatively single morphology of metastatic gastric
adenocarcinoma. In our study, metastatic gastric adenocarcinoma cells in pleural fluid
were all scattered isolated malignant cells, and only 0.045% of gastric adenocarcinoma was
misclassified as lung adenocarcinoma. The main cause of breast carcinoma misclassification
(60%) is that some poorly differentiated breast invasive ductal carcinomas exhibiting as
three-dimensional round cell groups were misclassified as solid lung adenocarcinoma.
Lung adenocarcinoma has a variety of morphologies, including three-dimensional groups
in papillary configurations, proliferation spheres or single-cell scattered forms, or a combi-
nation of multiple forms, and the varied morphology may cause its morphological overlap
with breast and gastric adenocarcinoma, thereby reducing the accuracy of predictions.

We studied the feasibility of predicting targeted mutations using WSI images of
pleural effusion cell blocks. Numerous clinical investigations have demonstrated that gene
alteration status is a major predictor of the success of targeted therapy. The presence of
ALK and ROS1 gene fusions correlates with the efficacy of ALK/MET inhibitor therapy.
Patients with RET fusion could benefit from MET/RET/VEGFR inhibitors. BRAF-mutated
patients benefit from BRAF inhibitor therapy, and KRAS/NRAS/HER2/PIK3CA mutation
status is associated with the prognosis of some targeted drugs [30,31]. According to the
National Comprehensive Cancer Network Guidelines for non-small cell lung cancer, gene
mutation testing is essential prior to targeted therapy, and multitarget testing is strongly
suggested for the most effective precision oncology treatment. Given the significance and
impact of these genetic abnormalities, the ability to anticipate genetic alterations from
pathology images rapidly and affordably may aid in the treatment of cancer patients.
However, pleural effusion samples are not usually sufficient for a comprehensive analysis
of targeted mutations [32]. Although some gene mutations have certain morphological
characteristics [33], the positive rate of gene mutation prediction based on morphology is
still low. To improve the success rate of gene detection, we used deep learning to predict
the gene of most likely change.

In general, the results of our model in predicting targeted mutations are reasonable.
Our model acquired good performance in predicting ALK fusion and KRAS mutation
(0.869 AUC and 0.804 AUC), respectively, whereas the performance was relatively poor in
predicting EGFR and NONE alterations. We suggest that the reason for the poor prediction
accuracy of EGFR and NONE alterations is that they have more mutant subtypes. In our
study, the mutant subtypes of EGFR are depicted in Figure 5B. Different mutant subtypes
may result in different morphological alterations, thereby decreasing prediction accuracy.
In addition, only ten genes were identified in our study, and cases with NONE alterations
may contain altered genes other than the ten genes. The genetic complexity may further
lead to the confounding of the corresponding morphology, consequently diminishing the
accuracy of the prediction. In addition, the small amount of training data is a limiting factor
for achieving higher accuracy. Therefore, we have shared the WSIs and corresponding
genetic alteration information from this study so that future investigations based on using
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genetic subtypes and increasing the number of training instances may be able to further
improve the prediction accuracy.

Moreover, we found that the attention heatmaps exhibited a high level of agreement
with the cytologist’s target region when tested on the benign vs. malignant dataset and
primary site dataset, which gives us great hope and demonstrates the interpretability
and dependability of our model. Although the accuracy of our model in predicting gene
alterations is not very high, it is possible to detect morphological features associated with
gene abnormalities if future research improves prediction accuracy.

Our research has the following limitations: (1) This was a single center, data-based
study. There is no publicly available dataset for pleural effusion WSI images. Although we
took clinically consecutive instances and did not normalize our WSI images to improve
the robustness of the model, our model needs to be verified on a multicenter and larger
dataset. In an effort to address the paucity of data on pleural effusion, we have made the
data from this study available to researchers interested in additional investigation. (2) Due
to the small number of cases with uncommon metastatic cancer and unusual mutations,
our analysis was unable to forecast these conditions. More rare cases should be included in
future studies to develop a more clinically applicable deep learning model.

5. Conclusions

Overall, this study implies that a deep learning model based on the pleural effusion
cell blocks may be an effective diagnostic tool for cytopathologists. In addition to being able
to differentiate between benign and malignant pleural effusion, the model can also identify
the primary site of common metastatic malignancies, allowing for more precise medical
treatment of patients. Precision medicine focuses increasingly on the genetic alterations
of the disease, and different mutations result in different targeted therapies. Our model
performs well in predicting KRAS mutations and ALK fusions, but further improvements
are needed in predicting EGFR mutations and NONE mutations. Future research could
analyze the subtypes of targeted mutations and collect more rare pleural effusion metastatic
carcinomas and rare mutations to improve the model’s accuracy. Although deep learning
cannot be the gold standard for diagnosis, it can be a useful tool to aid in cytology diagnosis.
Immunohistochemistry and genetic tests can achieve their goals more efficiently with the
guidance of deep learning.
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Simple Summary: The overall incidence of spinal tumors in the United States was estimated to be
0.62 per 100,000 people. Surgical resection of spinal tumors intends to improve functional status,
reduce pain, and, in some patients with isolated metastases or primary tumors, increase survival.
Machine learning algorithms show great promise for predicting short-term postoperative outcomes in
spinal tumor surgery. With this study, we aim to develop machine learning algorithms for predicting
short-term postoperative outcomes and implement these models in an open-source web application.

Abstract: Background: Preoperative prediction of short-term postoperative outcomes in spinal
tumor patients can lead to more precise patient care plans that reduce the likelihood of negative
outcomes. With this study, we aimed to develop machine learning algorithms for predicting short-
term postoperative outcomes and implement these models in an open-source web application.
Methods: Patients who underwent surgical resection of spinal tumors were identified using the
American College of Surgeons, National Surgical Quality Improvement Program. Three outcomes
were predicted: prolonged length of stay (LOS), nonhome discharges, and major complications. Four
machine learning algorithms were developed and integrated into an open access web application
to predict these outcomes. Results: A total of 3073 patients that underwent spinal tumor resection
were included in the analysis. The most accurately predicted outcomes in terms of the area under
the receiver operating characteristic curve (AUROC) was the prolonged LOS with a mean AUROC
of 0.745 The most accurately predicting algorithm in terms of AUROC was random forest, with
a mean AUROC of 0.743. An open access web application was developed for getting predictions
for individual patients based on their characteristics and this web application can be accessed here:
huggingface.co/spaces/MSHS-Neurosurgery-Research/NSQIP-ST. Conclusion: Machine learning
approaches carry significant potential for the purpose of predicting postoperative outcomes following
spinal tumor resections. Development of predictive models as clinically useful decision-making tools
may considerably enhance risk assessment and prognosis as the amount of data in spinal tumor
surgery continues to rise.

Keywords: spine surgery; spinal tumors; artificial intelligence; machine learning; NSQIP; prediction;
online prediction tool

1. Introduction

The overall incidence of spinal tumors in the US was estimated to be 0.62 per
100,000 people [1,2]. The majority of spinal tumors (up to 70%) are metastatic tumors.
According to their location, spinal tumors are further divided into extradural (55%), in-
tradural extramedullary (40%), and intramedullary (5%) [3,4]. Surgical resection of spinal
tumors intends to improve functional status, reduce pain, and, in some patients with
isolated metastases or primary tumors, increase survival [5–7]. Similar to other patients un-
dergoing spine surgery, there is growing interest in finding the most effective ways to lower
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postoperative complications, length of hospital stays, and rate of nonhome discharges in
the population of patients with spinal tumors [8,9]. Postoperative complications have a
negative effect on a patient’s short-term quality of life, can lengthen their hospital stay, and
can raise the cost of their medical care [10,11]. Several preoperative risk factors, such as
preoperative functional status, disseminated malignancy, and poor baseline health, have
been shown to predict higher complications and length of stay (LOS) [12,13].

In order to track and determine risk-adjusted estimates for these outcomes, emphasis
is being placed on registries and databases as part of growing efforts to bend the healthcare
cost curve. As a result, clinicians nowadays must manage vast amounts of complex data,
which necessitates the employment of strong analytical techniques [14]. Machine learning
(ML) algorithms can utilize high-dimensional clinical data to create precise patient risk
assessment models, contribute to the formation of smart guidelines, and influence health-
care decisions by tailoring care to patient needs. In comparison to traditional prognostic
models, which usually incorporate logistic regression, ML provides significant advantages.
First, ML hardly ever requires prior knowledge of key predictors [15]. Second, compared
to logistic regression, ML often has fewer restrictions on the number of predictors used for
a given dataset. In large datasets with a considerable number of predictors, ML is useful
since associations between predictors and outcomes may not always be instantly evident.
Third, complex, nonlinear correlations in datasets that are more challenging to express and
interpret using logistic regression can be discovered through ML [16]. These benefits often
lead to ML being more accurate and robust than logistic regression techniques on the same
dataset [17,18].

Based on our literature search, no study has explored the ability of ML algorithms to
predict prolonged LOS, nonhome discharges, and postoperative complications in a single
study following surgery for spinal tumors, without dividing into subtypes. This study
aimed to assess the efficacy of machine learning algorithms in predicting postoperative
outcomes after spinal tumor resection and create a user-friendly and accessible predictive
tool for this purpose.

2. Materials and Methods

2.1. Data Source

Data for this study is from the American College of Surgeons (ACS) National Surgical
Quality Improvement Program (NSQIP) database, which was queried to identify spinal
tumor patients who were surgically treated from 2016 to 2020. We chose the most recent
five years of data to take into account the advances in medicine. The ACS-NSQIP database
is a national surgical registry with over 700 participating medical centers across the US
for adult patients who underwent major surgical procedures across all subspecialties,
except for trauma and transplant [19,20]. The data for each case, including demographics,
preoperative comorbidities, operative variables, and 30-day postoperative outcomes, are
being gathered by trained, skilled clinical reviewers [21]. Regular database auditing
guarantees high-quality data with a previously reported interobserver disagreement rate
of less than 2% in 2020 [22]. Detailed information about the database and data collection
methods have been provided elsewhere [23].

2.2. Guidelines

We followed Transparent Reporting of Multivariable Prediction Models for Individual
Prognosis or Diagnosis (TRIPOD) [24] and Journal of Medical Internet Research (JMIR)
Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedi-
cal Research [25]. This was a retrospective machine learning classification study (outcomes
were binary categorical) for prognostication in spinal tumors.

2.3. Study Population

We queried the NSQIP database to identify patients in whom the following inclusion
criteria were met: (1) elective surgery, (2) inpatient operation, (3) current procedural
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terminology (CPT) codes for surgical resection of spinal tumors, (4) operation under
general anesthesia, (5) surgical subspecialty neurosurgery or orthopedics. CPT codes we
used to define our cohort are provided in Table S1. We excluded patients with the following
criteria: (1) emergency surgery, (2) patients with preoperative ventilator dependence,
(3) patients with any unclean wounds (defined by wound classes 2 to 4), (4) patients with
sepsis/shock/systemic inflammatory response syndrome 48 h before surgery, (5) patients
with ASA physical status classification score of 4 and 5 or non-assigned.

2.4. Predictor Variables

Predictor variables included variables within the NSQIP database that were deemed
to be known prior to the occurrence of the outcome of interest. These included (1) demo-
graphic information: age, sex, race/ethnicity, BMI (calculated from the height and weight),
transfer status; (2) comorbidities and disease burden: diabetes mellitus, current smoker
within one year, dyspnea, history of severe chronic obstructive pulmonary disease (COPD),
ascites within 30 days prior to surgery, congestive heart failure within 30 days prior to
surgery, hypertension requiring medication, acute renal failure, currently requiring or
on dialysis, disseminated cancer, steroid or immunosuppressant for a chronic condition,
>10% loss of body weight in last 6 months, bleeding disorders, preoperative transfusion of
≥1 unit of whole/packed RBCs within 72 h prior to surgery, ASA classification, functional
status prior to surgery; (3) preoperative laboratory values: serum sodium, blood urea nitro-
gen (BUN), serum creatinine, serum albumin, total bilirubin, serum glutamic-oxaloacetic
transaminase (SGOT), alkaline phosphatase, white blood cell (WBC) count, hematocrit,
platelet count, partial thromboplastin time (PTT), International Normalized Ratio of pro-
thrombin time (PT) values, PT; (4) operative variables: surgical specialty, days from hospital
admission to operation, CPT code for the procedure; (5) spinal tumor variables: tumor
location (extradural, intradural). Definitions of these predictor variables are provided in
the ACS-NSQIP PUF User Guides (https://www.facs.org/quality-programs/data-and-
registries/acs-nsqip/participant-use-data-file/, accessed on 1 January 2023). For transfer
status, the variable values other than ‘Not transferred (admitted from home)’ were grouped
as ‘Transferred’; for diabetes, the variable values’ Non-Insulin’ and ‘Insulin’ were grouped
as ‘Yes’; for dyspnea, the variable values ‘Moderate Exertion’ and ‘At rest’ were grouped
as ‘Yes’. Race and ethnicity variables were aggregated into one column, ‘Race’. If the pa-
tients’ Hispanic ethnicity values were ‘Yes’, their ‘Race’ values were assigned as ‘Hispanic’
regardless of their original values.

2.5. Outcome of Interest

The primary outcomes were prolonged length of stay, which we defined as total
length of stay greater than 75% of the included patient population, nonhome discharges,
and major complications. We defined nonhome discharge by dichotomizing the variable
discharge destination. If patients required additional levels of care upon discharge, a
nonhome discharge destination was identified and included ‘Rehab’, ‘Skilled Care, Not
Home’, and ‘Separate Acute Care’. Patients with unknown discharge destinations, hospice
discharges, discharges to unskilled facilities, and patients who expired were not included.
We defined major complications, based on the previous literature [26–28], as having one of
these events post-operatively: deep incisional surgical site infection (SSI), organ/space SSI,
wound disruption, unplanned reintubation, pulmonary embolism, being on a ventilator
for more than 48 h, renal insufficiency, acute renal failure needing dialysis, cardiac arrest,
myocardial infarction, bleeding requiring blood transfusions, deep vein thrombosis, sepsis,
and septic shock. We did not include complications involving less serious events to major
complications, such as superficial wound infection, pneumonia, and urinary tract infection.

2.6. Data Preprocessing

In order not to introduce bias with the exclusion of patients with missing values, we
utilized imputation. Fifteen continuous variables contained at least one missing value.
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After excluding variables with missing values for more than 25% of the patient population,
missing values for continuous variables were imputed using the nearest neighbor (NN)
imputation algorithm [29]. A value generated from cases in the entire dataset is used
to replace each missing value for cases with missing values using NN imputation algo-
rithms [30]. The only categorical variable that contained missing values was the variable
race, and its missing values were imputed as ‘Unknown’.

The robust scaler was utilized to scale continuous variables to account for outliers [31].
Additionally, normalization is essential for ensuring that all feature values are on the
same scale and assigned the same weight. Each continuous variable (e.g., BMI, laboratory
values) was put on the (0, 1) range using a min–max normalization [32]. Categorical
nonbinary variables (e.g., race, CPT codes) were one-hot-encoded, and variables with
ordinal characteristics (e.g., ASA classification, functional status) were coded with the
ordinal encoder [33].

The adaptive synthetic sampling (ADASYN) approach for imbalanced learning was
used to artificially generate cases of positive outcomes of interest (i.e., prolonged LOS, non-
home discharges, major postoperative complications) based on the training and validation
sets in order to overcome the class imbalance for a positive outcome of interest [34]. In
order to enhance model learning and generalizability, ADASYN uses instances from the
minority class that are difficult to learn and creates synthetic new cases based on these
instances [35].

2.7. Training, Validation, and Test Sets

Data was split into training, validation, and test sets. The training set was used to
develop the models, the validation set to adjust hyperparameters, and the test set to assess
model performance. Data from 2015 to 2020 was split into training, validation, and test sets
in a 60:20:20 ratio.

2.8. Modeling

Four supervised ML algorithms were utilized using the predictor variables to predict
the outcomes: XGBoost, LightGBM, CatBoost, and random forest. We used the Optuna
optimization library, where the optimized metric was the area under the receiver operating
characteristic curve (AUROC). Optuna is a software framework for hyperparameter op-
timization that makes it simple to apply various state-of-the-art optimization techniques
to carry out hyperparameter optimization quickly and effectively. To generate AUROC
estimates that would serve as a guide for the optimization process, Tree-Structured Parzen
Estimator Sampler (TPESampler) was employed as the Bayesian optimization algorithm.
The final models for the outcomes were then built using the whole training set along with
the optimized hyperparameters. ML analyses were performed in Python version 3.7.15.

2.9. Performance Evaluation

Models were evaluated graphically with receiver operating characteristic (ROC) curve,
precision–recall curve (PRC), and calibration plots; and numerically with AUROC, area
under PRC (AUPRC), accuracy, precision, recall, and Matthew’s correlation coefficient
(MCC).

The ability of a binary classifier system to discriminate between positive and negative
cases is shown graphically in a ROC curve, and the AUROC summarizes the model’s ability
to do so. An AUROC of 1.0 indicates a perfect discriminator, whereas values of 0.90 to
0.99 are regarded as excellent, 0.80 to 0.89 as good, 0.70 to 0.79 as fair, and 0.51 to 0.69 as
poor [36].

The model’s ability to detect all positive cases without recognizing false positives
is shown graphically in a PRC, which plots recall (sensitivity) against precision (positive
predictive value) and is summarized by the AUPRC. AUPRC can be a more responsive
metric when used with datasets where the positive class is relatively uncommon because
PRCs assess the proportion of correct predictions among the positive predictions [37].
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In addition to the performance plots and metrics, we also utilized Shapley additive
explanations (SHAP) to investigate the relative importance of predictor variables. SHAP is a
visualization method frequently used in ML to comprehend how models make predictions.

2.10. Online Prediction Tool

We created a web application for getting predictions for individual patients based
on their characteristics (Figure 1). This application is based on the models presented
in this study with a few differences in implementation. The application and its source
code are accessible on a platform that allows users to share ML models, Hugging Face
(https://huggingface.co/spaces/MSHS-Neurosurgery-Research/NSQIP-ST, accessed on
1 January 2023).

Figure 1. A screenshot of the online web application.

2.11. Statistical Analysis

The descriptive analyses were reported as means (±standard deviations) for normally
distributed continuous variables, medians (interquartile ranges) for non-normally dis-
tributed continuous variables, and number of patients (% percentages). Group differences
in outcomes were tested with the independent t-test for normally distributed continuous
variables with equal variances, the Welch’s t-test for normally distributed continuous
variables with unequal variances, the Mann–Whitney U test for non-normally distributed
continuous variables, and the Pearson’s chi-squared test for categorical variables. Nor-
mality was evaluated with the Shapiro–Wilk test, and Levene’s test was used to assess
the equality of variances for a variable. The differences were considered to be statistically
significant at p < 0.05. All statistical analyses were performed in Python version 3.7.15.

3. Results

Initially, a total of 6060 patients were identified via CPT codes. Inclusion and exclusion
criteria were applied in a sequential manner. A total of 2449 were excluded due to non-
elective surgeries, 145 due to outpatient surgeries, 17 due to anesthesia techniques other
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than general anesthesia, 42 due to surgical specialties other than neurosurgery or orthope-
dic surgery, 5 due to emergency surgeries, 8 due to preoperative ventilator dependency,
55 due to unclean wounds, 67 due to preoperative SIRS or sepsis, 165 due to ASA class 4, 5
or none assigned, 20 due to unknown LOS, 3 due to unknown major complication status
and 11 due to discharge destination (Figure 2). After exclusion, 3073 patients were left in
the analysis. There were 752 patients with prolonged LOS, 718 with nonhome discharges,
and 379 with major complications. Characteristics of the patient population, both among
the groups and in total, are presented in Tables S2–S4.

Figure 2. Patient selection process.

The most accurately predicted outcomes in terms of AUROC and accuracy were
the prolonged LOS with a mean AUROC of 0.745 and accuracy of 0.804, and the major
complications with a mean AUROC of 0.730 and accuracy of 0.856. The most accurately
predicting algorithm in terms of AUROC was random forest, with a mean AUROC of 0.743,
followed by LightGBM, with a mean AUROC of 0.729. The mean AUROCs for CatBoost
and XGBoost were 0.726 and 0.704, respectively. Detailed metrics regarding the algorithms’
performances are presented in Table 1. AUROC and AUPRC curves for the three outcomes
are shown in Figures 3 and 4.

Table 1. Metrics regarding the algorithms’ performances.

Outcome Algorithm P R F1 MCC AUPRC ACC AUROC

LOS

XGB 0.503 0.565 0.532 0.398 0.609 0.789 0.744

LGB 0.449 0.641 0.528 0.423 0.621 0.808 0.748

CB 0.469 0.645 0.543 0.437 0.591 0.811 0.726

RF 0.490 0.621 0.548 0.431 0.586 0.807 0.760

Mean 0.478 0.618 0.538 0.422 0.602 0.804 0.745
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Table 1. Cont.

Outcome Algorithm P R F1 MCC AUPRC ACC AUROC

NHD

XGB 0.307 0.381 0.340 0.173 0.368 0.728 0.650

LGB 0.343 0.475 0.398 0.262 0.410 0.764 0.712

CB 0.436 0.477 0.455 0.304 0.454 0.763 0.725

RF 0.414 0.436 0.425 0.261 0.402 0.745 0.719

Mean 0.375 0.442 0.405 0.250 0.408 0.750 0.701

MC

XGB 0.192 0.405 0.261 0.212 0.293 0.862 0.718

LGB 0.192 0.375 0.254 0.197 0.305 0.857 0.726

CB 0.244 0.373 0.295 0.222 0.321 0.852 0.728

RF 0.256 0.377 0.305 0.231 0.318 0.852 0.749

Mean 0.221 0.383 0.279 0.216 0.309 0.856 0.730

P, precision; R, recall; MCC, Matthew’s correlation coefficient; AUPRC, area under the precision recall curve; ACC,
accuracy; AUROC, area under the receiver operating characteristic curve; LOS, length of stay; NHD, non-home
discharge; MC major complications; XGB, XGBoost; LGB, LightGBM; CB, CatBoost; RF, Random Forest.

Figure 3. (A): Algorithms’ receiver operator curves for the outcome prolonged length of stay.
(B): Algorithms’ receiver operator curves for the outcome nonhome discharges. (C): Algorithms’
receiver operator curves for the outcome major complications.
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Figure 4. (A): Algorithms’ precision–recall curves for the outcome prolonged length of stay.
(B): Algorithms’ precision–recall curves for the outcome nonhome discharges. (C): Algorithms’
precision–recall curves for the outcome major complications.

SHAP plot of the XGBoost model for the outcome prolonged LOS, the CatBoost model
for the outcome nonhome discharges, and the random forest model for the outcome major
complications are presented in Figure 5. The other SHAP plots can be seen in Figure S1.
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Figure 5. (A): The ten most important features and their mean SHAP values for the model predicting
prolonged length of stay with the LightGBM algorithm. (B): The ten most important features and
their mean SHAP values for the model predicting nonhome discharges with the CatBoost algorithm.
(C): The ten most important features and their mean SHAP values for the model predicting major
complications stay with the random forest algorithm.

24



Cancers 2023, 15, 812

4. Discussion

This study presents a set of ML algorithms that can preoperatively predict prolonged
LOS, nonhome discharges, and major complications for patients undergoing spinal tumor
resection. The results of the study here demonstrate significant potential for the prediction
of surgical outcomes and may help in the risk stratification process for spinal tumor
resections. Patients who are at risk of unfavorable outcomes after spinal tumor resection
can be better informed about the risks of surgery, and providers can better customize
patient care plans to reduce the risk of these unfavorable outcomes. This paper contributes
to the literature by demonstrating the efficacy and significance of incorporating machine
learning into clinical settings to predict postoperative spine surgery outcomes [38].

The ML algorithms were able to predict between 78.9% and 81.1% of the patients who
had prolonged LOS accurately with AUROC values between 0.726 and 0.760; between 72.8%
and 76.4% of the patients who had nonhome discharges accurately with AUROC values
between 0.650 and 0.725, and between 85.2% and 86.2% of the patients who had major
complications accurately with AUROC values between 0.718 and 0.749 in the test set. Based
on prediction mean accuracies and AUROC values for the different outcomes, the random
forest algorithm was found to have performed the best among all the algorithms tested.
These results can be deemed as fair classification performance, as previously explained.

In addition to reporting our methods and results in this paper, we created a web
application accessible to physicians worldwide. Our web application not only allows users
to see predictions for the three investigated outcomes by the four different algorithms
utilized in this study, but it also allows them to see visual explanations of the predictions
by SHAP values and figures. This additional interpretability might be of benefit in clin-
ical settings, where providers can address the individual risk factors to achieve the best
possible postoperative outcomes for their patients. To the best of our knowledge, this is
the first available ML-based web application that enables users to have predictions with
explanations for postoperative outcomes after spinal tumor resections.

Yang et al. posted an online calculator based on their regression-based nomogram
for spinal cord astrocytomas using patient data in the Surveillance, Epidemiology, and
End Results (SEER) Program of the National Cancer Institute [39]. First of all, the patients
included in this study were diagnosed between 1975 and 2016. It is a very broad timespan
and it is not reported how the year of diagnosis has impact on the individual survival
predictions because the online calculator does not have an input for the year of diagnosis.
Despite achieving comparable results with our study in terms of classification performance,
this online calculator does not incorporate advanced analytical techniques, such as the
ML algorithms we utilized in our study. Our web application provides predictions by
four ML algorithms, which allows users to have multiple insights for a single patient.
Moreover, the input for the mentioned tool includes variables like ‘histologic type’, ‘WHO
grade’ and ‘postoperation radiotherapy’ which would not be known prior to surgery. This
approach would not make personalized treatment plans possible preoperatively. With
this tool, users can have overall and cancer-specific survival predictions, while users can
have predictions for 30-day postoperative outcomes with our web application. Previously,
Karhade et al. incorporated only the best ML algorithm across the model performance
metrics for predicting 30-day mortality after surgery for spinal metastases into an interactive
interface web application [40]. This application only allows seven variables as input and
predicts one outcome, thirty-day mortality. Although Karhade et al. used ML algorithms as
classifiers, they did not mention the details of implementation in the paper. Preprocessing
of the data was not mentioned except the imputation of missing data and, the source code
for the classification algorithms and online application were not shared. The above factors
limit the reproducibility of the results. Moreover, both of these tools lack elaboration of the
predictions, unlike our application which provides that via SHAP values and figures.

The measures presented here for the machine learning algorithms are congruent with
the current literature. The outcomes we picked for this investigation have not been studied
in a single study using ML algorithms; nevertheless, a few publications have investigated
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the classification performance of machine learning algorithms in predicting postoperative
outcomes in spinal tumor patients employing different data sources. Using institutional
data, Masaad et al. compared the performance of the metastatic spinal tumor frailty index
(MSTFI) with ML methods in identifying measures of frailty as predictors of outcomes [41].
The random forest algorithm performed best in the study and had an AUROC value of
0.62 for postoperative complications. Jin et al. queried IBM MarketScan Claims Database
for adult patients receiving surgery for intradural tumors, with their primary outcomes
of interest being nonhome discharges and 90-day post-discharge admissions [42]. Their
classification models were developed using a logistic regression approach regularized by
the least absolute shrinkage and selection operator (LASSO) penalty, and they obtained
AUROC values of 0.786 for nonhome discharges and 0.693 for 90-day readmissions.

Although a few studies using the NSQIP database that analyzed the accuracy of
machine learning algorithms in predicting postoperative outcomes included, we did not
include some of the available variables that would not be known prior to the surgery
as input to our models, like total operative time [43,44]. The length of the procedure
may be a consequence of unfavorable outcomes rather than its cause [45]. The study, in
which Kalagara et al. analyzed the NSQIP database for readmissions following lumbar
laminectomy and developed predictive models to identify readmitted patients, reported an
overall accuracy of 95.9% and an AUROC value of 0.806 with a gradient boosting machine
(GBM) model using all patient variables [46]. The most important variables that made this
model achieve such good results included post-discharge complications and discharge
destinations. A second GBM model to predict readmission utilizing only information
known prior to readmission had an accuracy of 79.6% and an AUROC of 0.690. Still, this
model included postoperative variables such as discharge destination and total hospital
LOS, and those were among the most important features.

The SHAP analysis results are in line with the current literature on regression analysis
for the relative importance of predictor variables. A study on predictors of discharge dispo-
sition following laminectomy for intradural extramedullary spinal tumors identified age
over 65 years, ASA classification over three, and dependent functional status as predictors
of nonhome discharge [13]. These variables were among the most important features of
our machine learning models, as can be seen from the SHAP plots.

The study does have some potential limitations despite the strength of the methodol-
ogy described. First, the sample of patients undergoing spinal tumor resection may not
have accurately represented all the patients who undergo spinal tumor resection. The
NSQIP dataset depends on reporting from participating hospitals. As a result, patients
from hospitals with the infrastructure to uphold NSQIP reporting requirements will be
overrepresented in the sample of spine tumor patients between 2016 and 2020. In addi-
tion, coding errors and other inaccuracies always affect studies using an extensive clinical
database. Even though the NSQIP database is frequently used, there have been a few stud-
ies evaluating its actual accuracy. Neurosurgical procedure CPT codes contain numerous
internal inconsistencies, according to Rolston et al. [47]. Second, NSQIP data do not include
specific factors that might be associated with a patient’s risk of unfavorable postoperative
outcomes. For example, we could not assess the effect on outcomes of tumor-specific
variables, such as histologic type or tumor size, because we lacked access to more granular
data. While the current mean AUROCs between 0.703 and 0.734 are fair, adding these and
other relevant variables may enhance the algorithm’s performance.

5. Conclusions

Machine learning algorithms show great promise for predicting postoperative out-
comes in spinal tumor surgery. These algorithms can be incorporated into clinically practical
decision-making tools. The development of predictive models and the use of these models
as accessible tools may significantly improve risk management and prognosis. Herein,
we present and make publicly available a predictive algorithm for spinal tumor surgery
aiming at the above goals.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15030812/s1. Table S1: CPT codes we used to define
our cohort. Table S2: Characteristics of the patient population, both among the non-prolonged LOS
and prolonged LOS groups and in total. Table S3: Characteristics of the patient population, both
among the home discharge and nonhome discharge groups and in total. Table S4: Characteristics of
the patient population, both among the no major complications and major complication groups and
in total. Figure S1(a): The ten most important features and their mean SHAP values for the model
predicting prolonged length of stay with the XGBoost algorithm. (b): The ten most important features
and their mean SHAP values for the model predicting prolonged length of stay with the CatBoost
algorithm. (c): The ten most important features and their mean SHAP values for the model predicting
prolonged length of stay with the random forest algorithm. (d): The ten most important features and
their mean SHAP values for the model predicting nonhome discharges with the XGBoost algorithm.
(e): The ten most important features and their mean SHAP values for the model predicting nonhome
discharges with the LightGBM algorithm. (f): The ten most important features and their mean SHAP
values for the model predicting nonhome discharges with the Random Forest algorithm. (g): The ten
most important features and their mean SHAP values for the model predicting major complications
stay with the XGBoost algorithm. (h): The ten most important features and their mean SHAP values
for the model predicting major complications stay with the LighthGBM algorithm. (i): The ten most
important features and their mean SHAP values for the model predicting major complications stay
with the random forest algorithm.
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Abstract: After cardiovascular diseases, cancer is responsible for the most deaths worldwide. Detect-
ing a cancer disease early improves the chances for healing significantly. One group of technologies
that is increasingly applied for detecting cancer is artificial intelligence. Artificial intelligence has
great potential to support clinicians and medical practitioners as it allows for the early detection
of carcinomas. During recent years, research on artificial intelligence for cancer detection grew a
lot. Within this article, we conducted a bibliometric study of the existing research dealing with the
application of artificial intelligence in cancer detection. We analyzed 6450 articles on that topic that
were published between 1986 and 2022. By doing so, we were able to give an overview of this research
field, including its key topics, relevant outlets, institutions, and articles. Based on our findings, we
developed a future research agenda that can help to advance research on artificial intelligence for
cancer detection. In summary, our study is intended to serve as a platform and foundation for
researchers that are interested in the potential of artificial intelligence for detecting cancer.

Keywords: cancer detection; artificial intelligence; machine learning; deep learning; bibliomet-
ric study

1. Introduction

Living cells are the basic elements of all plants and animals. These cells constantly
divide to replace destroyed cells or to enable the individual to grow. Although this is
usually a balanced and controlled process, this genetic control can be damaged, possibly
resulting in cancer [1]. Cancer is a disease that can affect most cell-based life. It befalls
mankind as long as it has existed and was already recognized and acknowledged by the
ancient Egyptians [2]. After cardiovascular diseases, cancer is responsible for the most
deaths worldwide [3]. In 2018, there were more than 18 million new estimated cancer
cases and 9.6 million cancer deaths worldwide [4]. Given the threat that cancer constitutes,
researchers have already tried to understand for a long time how to cure this group of
diseases in the best way.

Apart from treatments once cancer occurs, it is important to recognize the disease as
soon as possible to increase the chances of recovery [5–8]. One reason why lung cancer
is the deadliest cancer type is that it is difficult to detect in early stages and hard to
cure in an advanced stage [9,10]. Given the high benefits of detecting cancer in early
stages, new approaches are steadily being developed to support an early cancer diagnosis.
Mammography was introduced in 1960 [11] and is nowadays one of the most common
tools to detect breast cancer [12]. With digitalization and advances in computing power,
computers have been increasingly used to support clinical practitioners with making a
medical diagnosis. Computer systems that help with the detection of cancer (computer-
aided detection, CAD) are an opportunity to support radiologists to achieve better detection
performance [13].

One technology that receives increasing attention in recent years is artificial intelligence
(AI). AI is a broad term that covers many different technologies and developments, such
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as machine learning (ML) or deep learning (DL) [14]. In recent years, AI has been applied
in medicine for several purposes, for example, to support medical practitioners with their
decision-making [15]. In the context of oncology, AI is increasingly investigated and used
for several different purposes [14]. One promising application is the detection and diagnosis
of cancer. Due to its potential to effectively screen or diagnose cancer or polyps [14,16], AI
might be a gamechanger in the early detection of cancer diseases and is the next step in the
evolution of CAD.

Not only in clinical practice but also as a research field, AI for cancer detection and
diagnosis grew rapidly over the past years. Since the 2010s, the annual research on AI-
supported cancer diagnosis has been steadily increasing. It is nowadays a research field
with contributions from different fields, such as medicine, computer science, mathematics,
and engineering. Despite the fact that there are many reviews about AI on cancer [17–19],
there is no comprehensive study that aims to give an overview of the research field of AI
in cancer detection as a whole. This is surprising, since due to the wealth of research and
publications, AI for cancer detection is nowadays a huge field that is hard to oversee. This
makes it difficult for interested researchers and practitioners to obtain an impression of this
field, its key publications, and the main topics addressed. Given that, we aim to close this
research gap by giving an overview of the literature on AI for cancer detection. The first
research question we aim to address is follows:

RQ1: What are the key topics of research on AI-supported cancer detection, and what
are the most contributing research constituents and articles?

To answer our research question, we conduct a bibliometric study. A bibliometric
study is a quantitative and statistical analysis of literature and allows for analyzing much
larger bibliographic datasets than systematic literature reviews that follow a qualitative
approach [20]. Due to their benefits, bibliometric studies have gained in popularity in
recent years. Bibliometric approaches have been used in many different areas and disci-
plines, including pharmacy [21–23], oncology [24], or business and management [25]. By
collecting and analyzing prior research, a bibliometric study can help to advance a field by
systematically summarizing existing results. By doing so, reviews of the existing literature
can also help to outline promising future research avenues and thus serve as a platform
for interested scholars [26]. We follow this assumption and aim to derive future research
avenues from our findings. Hence, our second research question is as follows:

RQ2: What are promising future research avenues that can help to advance the research
on AI-based cancer detection?

The remainder of this article is structured as follows. In the next section, we will give
an overview of AI and some foundational key terms. With that, we aim to equip readers
that are not familiar with AI with basic knowledge and foundations about that technology.
After that, we will explain our bibliometric approach in the third section. The bibliometric
approach is divided into two phases, data collection and data analysis. Both phases are
explained in more detail in two different subsections. In the fourth section, we will present
the results of the bibliometric study. This is followed by a future research agenda in the
fifth section. Finally, the sixth section consists of a discussion of this study’s limitations and
implications, while the seventh section contains concluding remarks.

2. Foundations of Artificial Intelligence

The beginning of AI can be dated to the year 1943 [27] when the first concept of an
artificial neuron was proposed by [28]. Thirteen years later, at the Darthmouth Conference,
the term artificial intelligence was used for the first time [29]. As such, AI is one of the
newest fields that is investigated in science and engineering [29] and is nowadays a complex
and thriving field with numerous research topics and many use-cases and applications
for companies and in practice [30–32]. Especially in recent years, AI has experienced
extensive growth and is viewed with interest from society and practice. The main reasons
are advances in computing power and increasingly more data that are available to train AI
systems [33]. It is important to note that AI is a multidisciplinary field, however, that is
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investigated in several research fields and disciplines, including neuroscience, psychology,
computer science, and mathematics [34,35].

AI is an umbrella term that comprises a lot of different algorithms and technologies.
One of the most frequently used AI technologies are artificial neural networks. If artificial
neural networks are multilayered and consist of several hidden layers, they are also referred
to as deep learning [30,31]. Artificial neural networks aim to simulate how humans and
other biological organisms learn [36]. As such, artificial neural networks are inspired by
the brains of living organisms and consist of processing units, called neurons, that are
connected to each other [31]. These neurons receive inputs, which then are processed
according to specific rules, resulting in an output of the neuron. Often, these neurons are
arranged in different modules or layers. In this context, the term deep learning describes
different types of complex neural networks that consist of a large number of neurons and
layers. There are several other technologies that belong to AI, such as random forests [37,38]
or support vector machines [39,40]. The explanation of these technologies, however, would
go beyond the scope of this paper and is not necessary to understand the further results of
this study.

Although modern AI systems have a lot of capabilities, they are not intelligent in
the narrow sense. To describe the capabilities of AI, [41] was the first to differentiate
between two forms of AI, namely strong and weak AI. Weak AI systems are only developed
for single tasks and are not generally intelligent. Additionally, they lack other human
characteristics like emotions, feelings, or a conscious mind [34,41]. Although weak AI
systems often seem like they would be intelligent, they only behave like that [29,42]. In
contrast, strong AI, also called artificial general intelligence (AGI), describes AI systems
that have the intelligence or capabilities of humans [43,44]. This not only includes the
intelligence but can also mean that these systems have emotions or feelings [34]. All of
today’s AI system belong to weak AI, while strong AI is not yet realized [45]. There are
many assumptions about the time when a strong AI will be realized, with some researchers
arguing that a strong AI might be never achieved [46].

3. Method

In this section, we explain our bibliometric approach. The conduction of a bibliometric
study can be roughly divided into two steps. First, the data to be analyzed have to be
collected. This step is described in the first subsection. The step of data collection is followed
by the actual analysis of the data. This process is outlined in the second subsection.

3.1. Collection of Data

The first step was to collect the bibliometric data for our analysis. For the collec-
tion of bibliometric data, several databases exist, nowadays, with Scopus and Web of
Science being among the most popular [47,48]. These databases differ in terms of their
features and functionalities [49]. We decided to follow the recommendation of [20] to
collect bibliometric data only from one database. We chose Scopus as the scientific database
for our data collection. Scopus is a well-known database that has been used by sev-
eral other bibliometric studies in the past [21,47,48,50–52]. Additionally, Scopus covers
more journals than Web of Science and was therefore found to be suitable to identify as
much research as possible [26]. Although there are other databases like Google Scholar
and PubMed, we decided not to use these databases. First, Scopus has the option to
develop a detailed search string and automatically download all bibliometric metadata,
which is not possible with Google Scholar. Second, in comparison to PubMed, Scopus
covers much more interdisciplinary research. As AI-based cancer detection is a multidisci-
plinary research topic, we found Scopus to be the most suitable database for conducting a
bibliometric analysis.

For the creation of our search string, we oriented ourselves to other recent bibliometric
studies that investigated AI within medicine [53] and pharmacy [21]. Our search string
consists of two parts, one that covers the technical terms and another that consists of the
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application domain. The technical part consists of general technical terms like “artificial
intelligence” or “machine learning”. To search more broadly, we additionally searched
for specific technologies, such as “artificial neural network”, “deep learn*”, fuzzy expert
system”, or “evolutionary computation”. The applicational terms consisted of “cancer
detect* and “cancer diagnos*”. The use of * symbol is due to the syntax of Scopus and
allows to search for all possible word endings of the search term. This led to the following
search string that was applied:

((“artificial intelligence” OR “machine intelligence” OR “artificial neural network*”
OR “machine learn*” OR “deep learn*” OR “thinking computer system” OR “fuzzy expert
system*” OR “evolutionary computation” OR “hybrid intelligent system*”) AND (“cancer
detect*” OR “cancer diagnos*”)).

The search was conducted in title, abstracts, and keywords on 23 September 2022. The
initial results consisted of 7206 documents. We did several exclusion steps to refine the
data collection and to come to our final sample. First, we limited our search to 2022 as the
latest year of publication. This led to an elimination of eight articles. After that, we elimi-
nated articles based on their document type. Herein, the only documents that remained
were journal articles, conference papers, or reviews. This step led to the elimination of
604 publications, with 6594 articles remaining. After that, we excluded 137 non-English
articles. As a last step, we eliminated seven articles with undefined authors. In summary,
this led to an elimination of 756 publications, leaving a final sample of 6450 publications.
Figure 1 shows an overview of the research process, the applied exclusion criteria, and the
respective numbers of eliminated publications.

Figure 1. Overview of the literature collection and the exclusion criteria.

3.2. Data Analysis

In recent years, many tools that can help to analyze bibliometric data appeared [20].
In our study, we used two tools in combination, namely Bibliometrix/Bilioshiny and
VOSviewer. First, Bibliometrix is an open source R package developed by [54]. It allows
for a broad variety of different forms of analysis on bibliometric data [49]. We additionally
complemented Bibliometrix with Biblioshiny. Biblioshiny enables the better creation of
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visualizations of bibliometric data [49]. We additionally complemented Biblioshiny and
Bibliometrix with VOSviewer. VOSviewer is a tool for the visualization of bibliometric data.
It was developed at Leiden University in the Netherlands by the Centre for Science and
Technology Studies [49,55]. VOSviewer was applied in several bibliometric studies and
enables the construction of bibliometric networks that show relationships between, among
others, publications, outlets, keywords, or researchers. Additionally, VOSviewer supports
the creation of co-citation, bibliographic coupling, and co-authorship analysis [49,55].
Although Biblioshiny stands out in terms of statistical functionalities, we found VOSviewer
a suitable tool to visualize keyword co-occurrences.

4. Findings

The following three sections contain the results of our bibliometric analysis. First, we
will give a general overview of the sample we collected and show of the fundamental key
metrics. After that, we will show the results of our performance analysis. This first contains
an overview of the sources with the most publications dealing with AI for cancer detection.
Second, we present the most contributing countries, funding sponsors, and affilications.
After the performance analysis, we present a thematic analysis of the most relevant topics
and key themes.

4.1. General Metrics and Overview

In this first subsection, we will present an overview of our sample and present some
general metrics, such as annual production, document types, and information about the
contributing authors. Table 1 shows an overview of the basic metrics of our final sample. In
total, the sample consists of 6450 unique documents. These documents have been authored
and co-authored by 23,854 different scholars, which is equal to 0.270 documents per author.
In total, 247,762 references were cited and 9321 author’s keywords appear. Additionally,
21,192 keywords plus were identified. The 6450 documents were published in 2018 different
sources and received 19.87 citations on average. Of the 6232 multi-authored articles, around
25% were developed with an international team. The timeliness of this research topic is
underpinned by the fact that the average document age is only 3.72 years old. This indicates
that the majority of research has been published in the last 4 years.

Table 1. Main information and general metrics.

Metric Value

Main information
Timespan of publications 1986–2022

Sources (conferences and journals) 2018
Documents 6450

Average citations per document 19.87
Average document age 3.72

Total number of references 247,762
Number of author’s keywords 9321

Number of keywords plus 21,192
Document types

Journal article 4016
Conference article 1729

Review 708
Authors and collaboration

Number of different AI-cancer authors 23,854
Documents per AI-cancer author 0.270

Single-authored documents 218
Multi-authored documents 6232

Authors of multi-authored documents 23,651
Co-authors per document 5.89

Collaboration index 3.8
International co-authorship 24.97%

34



Curr. Oncol. 2023, 30

We compared our bibliometric data with other bibliometric studies on different topics
(for an overview, see Table 2). First, it is striking that a comparatively small number of
publications on AI for cancer detection have been single-author documents. Only 218 of
the 6450 documents were single-authored articles, which is equal to 3.38%. This might
be an indicator of the very high complexity of this topic that makes it necessary to work
together in large author teams. This assumption is further underpinned by the high
collaboration index for our study. The collaboration index is often used to measure the
cooperation between researchers and is calculated by dividing the total number of authors
that contributed to multi-authored documents by the total number of multi-authored
articles [56,57]. The number of documents per author is the lowest compared to the other
bibliometric studies. This shows that a lot of different researchers contribute to the field of
AI for cancer detection and that this field is not dominated by only a few researchers.

Table 2. Comparison of different bibliometric studies.

Study [58] [59] [21] [48] This Study

Topic Data
quality

Blockchain in
accounting

AI for drug
discovery

Data
governance

AI for cancer
detection

Documents 159 93 3884 780 6450
Documents per author 0.305 0.443 0.322 0.367 0.27

Collaboration index 3.60 2.83 3.26 3.26 3.8
Single-authored

documents - 29% 6.7% 22.18% 3.4%

Figure 2 shows the annual production of research dealing with AI for cancer detection.
The first research dealing with that topic was published in the 1980s. The first article can be
dated to 1986. In this article, an expert system for the early detection of cervical cancer was
proposed [60]. Until 1995, AI for cancer detection only experienced small growth in terms
of annual production. In 1988 and 1990, no articles on this topic were published at all. In
the following years, the number of publications only grew slowly. With 111 publications,
the annual productions first topped the hundred mark in 2014. As the importance and
potential of AI in general have increased, so has AI gained relevance in the field of cancer
detection. As a result, most publications have been published in recent years (2019–2021).
In 2022, 1213 publications had already been published before we collected the data for our
study (23 September). Since it appears like statistically more publications are published in
the last months of a year [21], we assume that the trend of increasing publications will be
ongoing in 2022. Based on an extrapolation, we assume the total number of publications
for 2022 will be 1872, with an estimate of 659 articles published after 23 September.

Figure 3 displays the distribution of disciplines among the publications. The data of
Figure 3 were derived from Scopus wherein a publication is assigned to a discipline based
on the outlet it was published in. However, some journals or conferences can belong to
more than one discipline. Not surprisingly, we see that medicine and computer science
outlets are the most popular ones within AI for cancer detection. A total of 23% and 21%
of all articles have been published in outlets that belong to these disciplines. Medicine
and computer science are followed by biochemistry, genetics, and molecular biology (11%);
pharmacology, toxicology, and pharmaceutics (9%); and chemistry (8%). The dominance
of medicine and computer science is not surprising, since oncology and the detection and
treatment of cancer is one of the central disciplines in medicine, while AI is traditionally
rooted within computer science.
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Figure 2. Overview of the annual production.

Figure 3. Overview of the most contributing disciplines.
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4.2. Sources, Countries, and Affiliations

In this subsection, we show the results of our performance analysis, wherein we focus
on the contributions of different research constituents. First, we take a look at the most
relevant sources in terms of their absolute publication count within our sample. Table 3
shows the 20 sources with the most publications on AI for cancer detection. In total, the
6450 articles of our sample were published in 2018 different sources, which is equal to
3.2 publications per source. With 169 publications, Lecture Notes in Computer Science is the
most important outlet in terms of absolute publication count. Lecture Notes in Computer
Science is followed by Progress In Biomedical Optics And Imaging Proceedings Of SPIE
(110 publications), Cancers (94 publications), and Computers In Biology And Medicine
(88 publications).

Table 3. Overview of the sources with the most publications.

Rank Source Publications

01 Lecture Notes in Computer Science 169
02 Progress In Biomedical Optics and Imaging Proceedings Of SPIE 110
03 Cancers 94
04 Computers in Biology and Medicine 88
05 Computer Methods and Programs in Biomedicine 81
06 Scientific Reports 79
07 Plos One 71
08 European Radiology 69
09 Diagnostics 68
10 IEEE Access 64
11 Artificial Intelligence in Medicine 61
12 Medical Image Analysis 59
13 Proceedings Of SPIE The International Society for Optical Engineering 58
14 Frontiers in Oncology 55
15 Medical Physics 55
16 IEEE Transactions on Medical Imaging 53
17 Advances in Intelligent Systems and Computing 50
18 Computerized Medical Imaging and Graphics 47
19 Biomedical Signal Processing and Control 46
20 ACM International Conference Proceeding Series 45

In Table 4, we show the 20 most productive countries within AI for cancer detection
in terms of absolute publication count. An article is assigned to a county when one of its
authors is affiliated with one institution or company that is located within that country.
Due to international collaboration, one article can therefore be assigned to more than
one country. Hence, the total number of articles in Table 4 exceeds the total number of
publications within our sample. Next to the total number of published articles, we also
show the average age of the documents, as well as the average number of citations each
document has received. Additionally, Table 4 shows the percentage of international co-
authorship for every country. For example, an international co-authorship percentage
of 50% would mean that 50% of the articles of one country have at least one author of
another country.

In total, authors from 118 countries have contributed to research on AI for cancer de-
tection. This very high number of contributing countries underlines the global importance
of this topic. With 1627 articles, authors from the United States were the most produc-
tive ones. The United States are followed by China with 1202 contributions and India
(1079 publications). The United Kingdom follows with a large gap (411 articles), Canada
(264 publications) is in the fifth place. With 262 articles, the first European country to
appear in the list is Germany in the sixth rank. Next to Germany, four other countries
of the European Union are among the 20 most contributing nations, namely Italy, Spain,
the Netherlands, and France.
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Table 4. Overview of the countries with the most publications.

Rank Country Articles Avg. Age (Years) Avg. Cit. Int. Co-Authorship

01 United States 1627 4.76 36.32 44.26%
02 China 1202 2.22 16.17 32.36%
03 India 1079 2.39 9.179 16.70%
04 United Kingdom 411 3.9 33.05 66.35%
05 Canada 264 3.52 33.94 55.88%
06 Germany 262 4.6 47.50 59.33%
07 Italy 248 3.73 28.39 55.21%
08 South Korea 221 2.53 23.63 40.95%
09 Japan 208 3.35 29.21 36.70%
10 Saudi Arabia 196 1.24 10.53 74.64%
11 Australia 190 3.36 32.81 70.47%
12 Spain 178 4.06 34.12 57.22%
13 Netherlands 177 2.8 41.17 64.90%
14 France 165 3.44 55.95 63.10%
15 Egypt 144 2.33 15.53 44.67%
16 Turkey 137 3.57 39.62 31.62%
17 Malaysia 134 3.36 17.31 49.50%
18 Iran 131 4.1 15.85 30.83%
19 Pakistan 123 1.69 13.78 67.42%
20 Taiwan 119 4.33 28.26 39.34%

When we look at the average age of the articles, it is striking that the United States
not only has the most articles but also the oldest ones. In average, contributions from the
United States have an age of 4.76 years. This is more than one year above the average
age of the total sample. Among the top 20 countries, only Germany (4.6 years), Taiwan
(4.33 years), Iran (4.1 years), and Spain (4.06 years) have an average article age of more than
4 years. This shows that these five countries are traditional contributors within the field of
AI for cancer detection. It is striking that the contributions of China, the country with the
second-most publications within our sample, are significantly younger. In average, Chinese
contributions were 2.22 years old. This indicates that Chinese authors have contributed a
lot, especially in the last few years. Only Saudi Arabia (1.24 years) and Pakistan (1.69 years)
have younger articles on average.

Additionally, Table 4 shows the average citations the publications from a given country
have received. The highest average citation numbers can be found for articles authored
by authors from France (55.95 citations), Germany (47.50 citations), and the Netherlands
(41.17 citations). The United States has received 36.32 citations on average, and Chinese
publications have received 16.17. However, large parts of the different average citation
counts can be explained with the average age of the articles. The average number of
citations per document correlates with the average age of the articles, since recent articles
have not had time to receive a high number of citations [47,61]. Additionally, it is interesting
to observe that Indian articles received a much lower number of citations on average than
Chinese ones (9.179 vs. 16.17), although the average age of the publications is relatively
close to each other. However, it might be possible to explain this by the percentage of
international co-authorship. While China has an international co-authorship ratio of 32.36%,
this value is significantly lower for India (16.70%). Given that, it can be assumed that Indian
research is much more isolated and probably not so much known in other countries, leading
to a lower citation score.

The highest ratios of international co-authorship can be found for articles authored
or co-authored by researchers from Saudi Arabia (74.64%), Australia (70.47%), Pakistan
(67.42%), and the United Kingdom (66.35%). The lowest scores can be found for Indian
(16.70%), Iranian (30.83%), Turkish (31.62%), and Chinese (32.36%) contributions. Fur-
thermore, we can see that the average percentage of international co-authorship of the
20 most contributing countries is much higher than this value for the whole sample (24.97%).
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Likewise, this shows that many countries with only a few contributions tend to have a
comparatively low amount of international co-authorship.

To further illustrate the international collaboration, Figure 4 shows an international
collaboration map. Herein, collaborations between different countries are depicted with
red lines. The thicker a red line between two countries is, the more collaboration took
place among researchers of these two nations. To not overload it, only relationships with
at least three contributions between two countries are depicted in Figure 4. Additionally,
the countries’ color represents their number of publications. The darker the blue is, the
more publications have been contributed from researchers a specific country. Herein,
we can see three large centers of collaboration, namely in the United States, China, and
the European Union. These three areas have a lot of different collaborations with many
different countries.

Figure 4. International co-collaboration map (generated with Biblioshiny).

Table 5 presents the 20 institutions and organizations that funded the most articles.
With 539 publications, the National Natural Science Foundation of China has funded
the most articles on AI for cancer detection. It is followed by the National Institutes of
Health (408 publications), the National Cancer Institute (336 publications), and the National
Science Foundation (113 publications). It is noteworthy that the top three funding sponsors
together funded 1283 articles, which is almost equivalent to 20% of all publications dealing
with AI for cancer detection. Both China and USA are most often represented, each with
six funding sponsors among the top 20. They are followed by the European Union with
three and Canada and UK with two funding sponsors.

Finally, Table 6 shows the 20 affiliations that authored the most publications within
the field of AI for cancer detection. An article is assigned to one affiliation based on the
contributing authors. Since an article can be authored or co-authored by researchers from
different institutions, certain articles can be linked to more than one affiliation. With
219 articles, researchers from Sichuan University contributed to the most publications deal-
ing with AI for cancer detection. The Sichuan University is followed by three affiliations
located in the United States, namely the University of California (199 publications), the
Memorial Sloan Kettering Cancer Center (195 publications), and the Stanford University
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(170 publications). Of the 20 most contributing affiliations, eight are located in China and
eight in the United States. Additionally, one affiliation is from the Netherlands (Radboud
University Medical Center, 145 publications), Japan (The University Of Tokyo, 95 publi-
cations), the United Kingdom (University Of Cambridge, 90 publications), and Canada
(University Of Toronto, 90 publications).

Table 5. Overview of the funding sponsors with the most funded publications.

Rank Funding Sponsor Country/Region Quantity

01 National Natural Science Foundation of China China 539
02 National Institutes of Health USA 408
03 National Cancer Institute USA 336
04 National Science Foundation USA 113
05 National Key Research and Development Program of Chinas China 106
06 U.S. Department of Health and Human Services USA 89
07 Fundamental Research Funds for the Central Universities China 79
08 National Research Foundation of Korea South Korea 67
09 Natural Sciences and Engineering Research Council of Canada Canada 60
10 European Regional Development Fund EU 58
11 European Commission EU 57
12 National Institute of Biomedical Imaging and Bioengineering USA 50
13 Japan Society for the Promotion of Science Japan 48
14 Ministry of Education of the People’s Republic of China China 40
15 Ministry of Science and Technology of the People’s Republic of China China 40
16 Canadian Institutes of Health Research Canada 39
17 Cancer Research UK UK 36
18 Science and Technology Commission of Shanghai Municipality China 36
18 National Institute for Health Research UK 34
19 Horizon 2020 Framework Programme EU 33
20 Nvidia USA 32

Table 6. Overview of the affiliations with the most publications.

Rank Affiliation Country/Region Articles

01 Sichuan University China 219
02 University of California USA 199
03 Memorial Sloan Kettering Cancer Center USA 195
04 Stanford University USA 170
05 Fudan University China 165
06 Shanghai Jiao Tong University China 151
07 Harvard Medical School USA 147
08 Huazhong University of Science and Technology China 145
09 Radboud University Medical Center Netherlands 145
10 University of Pennsylvania USA 132
11 Southern Medical University China 130
12 National Cancer Institute USA 107
13 University of British Columbia USA 104
14 Renmin Hospital of Wuhan University China 101
15 Zhejiang University China 101
16 The University of Tokyo Japan 95
17 Emory University USA 94
18 Sun Yat-Sen University Cancer Center China 93
19 University of Cambridge UK 90
20 University of Toronto Canada 90

4.3. Content Analysis

In this section, we will thematically dive into the topics that are dealt with in AI for
cancer detection research. First, Table 7 shows the 25 most frequently used keywords
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in our sample. This does not only include author keywords but also indexed keywords
from Scopus. The keywords “human” and “humans” were most-often used, which indi-
cates that most of the research belong to human medicine, specifically, cancer that affects
humans. This is followed by “cancer diagnosis” and “diseases”. The most frequently
used technical keywords and terms in our sample were “deep learning” (2275 appear-
ances), “machine learning” (2163 appearances), and “artificial intelligence”, which appeared
1735 times. Other frequently used technologies according to the most often used keywords
are “convolutional neural networks” (1021 appearances) and “artificial neural networks”
(903 appearances).

Table 7. Overview of most frequently used keywords.

Rank Keyword Quantity

01 Human 3585
02 Humans 2685
03 Cancer Diagnosis 2621
04 Diseases 2521
05 Deep Learning 2275
06 Machine Learning 2163
07 Artificial Intelligence 1735
08 Female 1648
09 Breast Cancer 1498
10 Sensitivity and Specificity 1407
11 Controlled Study 1336
12 Diagnosis 1325
13 Diagnostic Accuracy 1273
14 Diagnostic Imaging 1245
15 Major Clinical Study 1199
16 Procedures 1123
17 Male 1092
18 Priority Journal 1088
19 Medical Imaging 1081
20 Adult 1061
21 Convolutional Neural Network 1021
22 Algorithm 1016
23 Computer Aided Diagnosis 909
24 Artificial Neural Network 903
25 Learning Systems 882

When we specifically focus on cancer types, breast cancer is most frequently addressed
in the articles dealing with AI for cancer detection. With 1498 appearances, breast cancer
is the ninth of the most often-used keywords. This is not surprising, since breast cancer
is the most common carcinoma among women globally and comes with a low survival
rate [62]. Breast cancer is followed by lung cancer (598 appearances), which causes the
most cancer-related deaths worldwide [63]. Breast and lung cancer are followed by prostate
cancer (425 appearances) and melanoma (skin cancer, 247 appearances).

To obtain a deeper understanding of the topics dealt with, Figure 5 shows a word
cloud of the most frequently used keywords plus. Keywords plus are another way to
analyze a document’s content and are automatically generated out of words or phrases
that are frequently used in the titles of an article’s references [64,65]. In Figure 5, the size of
words is determined based on their frequency in the keywords plus. Herein, many of the
most frequently identified words are closely related to the cancer types that are most often
addressed (e.g., “mammography”, “lung cancer”, “breast tumor”, or “melanoma”), which
is not a surprising result.
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Figure 5. Word cloud of the most-frequently appearing keywords plus (generated with Biblioshiny).

Additionally, Figure 6 shows a keyword co-occurrence network of author keywords
and indexed keywords of our sample. Like in the word cloud in Figure 5, the font size
depends on the frequency a term is used. Terms that frequently appear together are linked
with lines and are arranged in clusters of the same color. Terms that appear in the center of
the network, such as “deep learning”; “machine learning”, “artificial intelligence”, or “ma-
chine learning”, are connected with many other words in the network. It is noteworthy that
it is hard to distinguish clear thematical clusters based on the color in Figure 6. Although a
red and a green cluster are visible, the keywords that belong to these clusters have many
relations to terms that do not belong to these clusters. Keywords in yellow, blue, or purple,
for example, are spread in the whole network and to not represent clearly distinguishable
thematic fields. Despite the fact that AI for cancer detection is a multidisciplinary field, we
can conclude from Figure 6 that knowledge and research on that topic is not fragmented.
Although different clusters can be identified, these are not isolated from other research
streams, which shows the overall coherence within that research field.

Finally, Table 8 shows the 30 most-cited articles in our sample. A total of 13 of
the 30 articles do have a general focus on AI’s potential for drug discovery and do not
focus on a single cancer type. Among the other articles, breast cancer (10 publications) is
the cancer type that is most often addressed, followed by brain tumors (3 publications).
With 2136 citations at the point of time our data were collected, the article “Classification
and diagnostic prediction of cancers using gene expression profiling and artificial neural
networks” is the most often cited publications in our sample. In their article, the authors
show the potential and applications of artificial neural networks for diagnosing cancer and
the identification of candidate targets for therapy. Although this article is comparatively old
and has been published in 2001, the results were already promising and showed the great
potential of artificial neural networks. In rank two, the article “The evaluation of tumor-
infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International
TILs Working Group 2014” follows with 1533 citations. Although AI and ML is only
partly covered in this article, the authors mention ML to be a promising tool for the future
assessment of TILs [66] (p. 269).
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Figure 6. Network of keyword co-occurences.

Table 8. Overview of the 30 most-often cited articles.

Rank Authors Year Focus Citations Reference

01 Khan et al. 2001 General investigation 2136 [67]
02 Salgado et al. 2015 Breast cancer 1533 [66]
03 Kourou et al. 2015 General investigation 1426 [68]
04 Bejnordi et al. 2017 Breast cancer/lymph node metastases 1305 [69]
05 Lu and Fei 2014 General investigation 1252 [70]
06 Coudray et al. 2018 Lung cancer 1018 [71]
07 McKinney et al. 2020 Breast cancer 774 [72]
08 Johnson et al. 2019 General investigation 720 [73]
09 Cruz and Wishart 2006 General investigation 693 [74]
10 Statnikov et al. 2005 General investigation 644 [75]
11 Spanhol et al. 2016 Breast cancer 626 [76]
12 Haenssle et al. 2018 Skin cancer 588 [77]
13 Litjens et al. 2016 Breast cancer/prostate cancer 581 [78]
14 Mazurowski et al. 2008 Breast cancer 557 [79]
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Table 8. Cont.

Rank Authors Year Focus Citations Reference

15 Akay 2009 Breast cancer 554 [80]
16 Bi et al. 2019 General investigation 553 [81]
17 Zacharaki et al. 2009 Brain tumors 542 [82]
18 Shrestha and Mahmood 2019 General investigation 525 [83]
19 Tang et al. 2009 Breast cancer 488 [84]
20 Statnikov et al. 2008 General investigation 467 [85]
21 Irshad et al. 2014 General investigation 450 [86]
22 Zhao et al. 2018 Brain tumors 428 [87]
23 Dou et al. 2017 General investigation 421 [88]
24 Zheng et al. 2014 Breast cancer 374 [89]
25 Lee et al. 2008 General investigation 372 [90]
26 Limkin et al. 2017 General investigation 364 [91]
27 Albarqouni et al. 2016 Breast cancer 360 [92]
28 Urban et al. 2018 Polyps/Colorectal cancer 347 [16]
29 Ribli et al. 2018 Breast cancer 346 [93]
30 Işın et al. 2016 Brain tumor 345 [94]

5. Future Research Agenda

In the prior sections, we presented the results of our bibliometric study. Based on our
findings, we will present promising avenues for future research in this section. These have
the purpose to serve as an orientation for interested scholars.

First, considering the word cloud in Figure 5 and the focus of the most-cited studies, it
becomes evident that the current state of research mainly focuses on the predictive perfor-
mance of a limited number of applied AI algorithms. The interaction between the computer
system and the humans involved, also referred to as human–computer interaction, is a topic
addressed much more rarely. It is important to investigate how the interaction between AI
and the humans may or should look in the context of cancer diagnosis. In general, there are
different conceivable scenarios, namely substitution, augmentation, and assemblage [95,96].
Augmentation refers to the scenario that AI and humans augment each other, while assem-
blage means that the AI and humans are brought together dynamically to function as a unit.
Finally, substitution means that the human is completely replaced by the AI system [96].
Future research needs to investigate which form of cooperation between AI and humans
is most suitable in the context of cancer diagnosis. This involves the question of whether
a substitution is possible and, especially, if it is desirable, at all. There are already a few
promising studies available that investigate human–computer interaction in the health
industry [97,98]. Therefore, these studies can be used as a foundation for future studies
that address the relationship between AI and humans. Additionally, trust between the AI
cancer detection model and humans involved is an important factor. Although AI systems
often have accuracy that surpasses that of human experts, there is a lack of trust in the
predictions generated by AI systems [99]. It should be therefore investigated what reasons
exist for a lack of trust and how trust in the AI system can be improved. This also holds
true for patients who might be subject to treatments that are mainly based on the results
of an AI system. Explainable artificial intelligence (XAI, see below) might be one way to
increase the trust in an AI system.

One important aspect is also the security and robustness of the AI models. Many AI
models that are described in the literature were evaluated only on one dataset. Therefore,
it might remain unclear if the AI model can be transferred to input data that stems from
different scanning machines. Therefore, it would be worthwhile to investigate how AI
models must be designed to ensure their transferability [100–102]. In this context, it also
might make sense to evaluate AI models using several datasets generated by different
sensors or different manufacturers. As outlined above, AI systems require a large amount
of data to learn and to develop robust models. When it comes to data, it is additionally
important to ensure the trustworthiness, reliability, and security of the sources or platforms
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the data stem from [103,104]. If malicious actors succeed in manipulating or changing
the data that are used as an input for the AI system, this might affect the AI system’s
result. Therefore, these results are not reliable anymore and might endanger the patient’s
health due to the risk of wrong results. Data storage is an especially important aspect,
as medical data is subject to special data-protection regulations. Therefore, it should be
examined what storage solutions are compliant with regulations, such as the GDPR or
HIPAA, and how to ensure that the data is not traceable. In this context, future research
should also verify whether the pseudonymization of the data is sufficient or whether
complete anonymization is required. Different researchers also examine whether new
technologies for the distributed storage and management of data, such as the blockchain,
might be suitable for medical data [105–107]. Future research could therefore take a critical
look if a blockchain would make sense for the purpose of managing and storing medical
data or if other technologies and databases are more suitable. Moreover, it is noteworthy
that there are already a few studies available that investigate security and robustness
aspects of AI models for cancer detection. Approaches such as the external validation
of AI algorithms [108] and robustness tests against adversarial images [109], as well as
comprehensive data preprocessing [110,111], are promising to achieve robustness and
security goals and should therefore be investigated in more detail. In this context, the
application of design science research could also be a way to iteratively address specific
security problems in order to find an efficient solution. Examples of design science research
can be found in business administration [31,112] and information systems [113,114].

As mentioned above, the explainability of an AI model is an important factor to ensure
the acceptance for and trust in an AI model. With an AI system’s advancing complexity,
it is increasingly difficult to understand how it comes up with its results and predictions.
This holds true for the most of today’s AI and machine learning algorithms, which are
very complex and [21,115] considered black boxes. Although XAI is hard to achieve, it
is necessary for certain use-cases in critical areas like law or medicine [116–118]. For
cancer detection, XAI can be considered very relevant. This might not be the case as
long as the AI system’s results are doublechecked by doctors or oncologist. However,
before AI can be used independently, explainability is an important challenge that needs
to be addressed [119]. Recent reviews and surveys demonstrate that XAI in medicine is
still one of the most signifcant research gaps and remains largely unanswered [102,120].
Future research should therefore investigate how AI systems for cancer detection can be
made transparent enough that their results are understandable. It might make sense to
collaborate with AI researchers or scholars from other disciplines since some promising XAI
applications and developments might not yet be applied in the context of cancer detection.

Table 9 below provides an overview of our future research agenda and presents possible
future research questions that might help advance the field of AI for cancer detection.

Table 9. Future research agenda.

Focus Possible Research Questions

Human Computer
Interaction

How can the interaction between doctors and AI models be
designed efficiently?

What is the current state of trust towards AI based models in medicine?
How can trust in AI be built for doctors and patients?

How can AI experts and clinical practitioners cooperate and work together in the best way?
What is the role of explainable AI for building trust?

Robustness and
security

How reliable are trained AI models on other cancer datasets
(e.g., generated by other sensors)?

Can adversarial attacks outsmart AI models in medicine?
How should an AI system for cancer detection be designed to make it robust and secure against adversarial

attacks and actors?
Could a cancer detection algorithm be applied to other types of cancer?
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Table 9. Cont.

Focus Possible Research Questions

Explainable AI

Should explainable AI models be preferred instead of the most accurate one?
How should explainable AI be designed to increase the trust in the

AI system and its decisions?
What are the promising approaches in XAI that have not yet been

applied in the medical field?

Data Storage
Where should the data of the scans be stored to ensure data privacy rights?

Do new technologies like blockchain have a potential for the storage and management of medical data?
Should patient data be irreversibly anonymized or only pseudonymized?

6. Discussion

In this study, we conducted a bibliometric analysis of 6450 articles dealing with the
potential and application of AI for cancer detection and diagnosis. To the best of our
knowledge, this is the first study that uses a bibliometric approach to analyze research
on AI for cancer detection. This study has several implications and benefits for both
researchers and practitioners. First, interested researchers can use the study at hand to
obtain an initial overview of research on AI for cancer diagnosis. This involves information
about the scientific landscape and the most influential articles, as well as core topics and
key themes investigated. As such, this study can help to equip interested scholars with
an initial understanding of the research field dealing with AI-based cancer detection. Our
research agenda furthermore can serve as a foundation for future research to build on
to further develop this exciting field. Additionally, both clinical as well as commercial
practitioners can use our study to obtain an initial insight about the potential of AI for
supporting the diagnosis of cancer.

Our study is subject to certain limitations. First, we used Scopus as the only scientific
database for the collection of our bibliometric data. Although, as outlined above, Scopus
covers a huge number of different conferences and journals, it is likely that different
publications were not covered by our research. Bibliometric studies on AI for cancer
detection that use other databases for data collection might therefore lead to slightly
different results. However, we believe that the most of our key results, especially the most
important topics and key themes, are likely to maintain constant even if other databases
would be used. Furthermore, the application of other bibliometric tools and analysis
methods like citation analysis [121] or bibliographic coupling [122,123] might lead to
additional results that were not part of this study. Additionally, AI is a fast-evolving field.
New research on AI for the purpose of cancer detection is published every month. This
study’s results are therefore only able to show the current state of the art.

7. Conclusions

AI is a promising technology that is increasingly applied to detect or diagnose cancer.
In recent years, research on AI for cancer detection grew rapidly, resulting in a high number
of research articles on that topic. Due to the large amount of research that is available, it is
hard for interested scholars or clinical practitioners to obtain an initial understanding of
this field. Against this backdrop, we aimed to provide researchers with an overview and
analysis of the research field of AI for cancer detection. For this purpose, we conducted a
bibliometric study of the existing research on that topic. In total, we identified and analyzed
6450 articles published between 1986 and 2022.

Our analysis consisted of different parts. First, we gave a general overview of our
sample and presented the development of scientific production over the year and which
disciplines contributed to it. After that, we conducted a performance analysis. Herein,
we identified the most productive institutions and countries. Additionally, we gave an
overview of the most relevant outlets and the international collaboration. Finally, we
thematically analyzed the sample and identified key topics and the most-cited publica-
tions. We found that breast and lung cancer are cancer types most often addressed by
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recent research. Based on these findings, we developed a future research agenda that is
supposed to guide researchers to further advance the field of AI-based cancer diagnosis.
We believe that we provide a systematic and holistic overview of this exciting field of
research and hope that our study will serve interested scholars and practitioners as a
valuable overview.
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Simple Summary: To differentiate IDH-mutant grade 4 astrocytomas from IDH-wild-type glioblas-
tomas, two MRI sequences (post-contrast T1 and T2-FLAIR) were acquired from 57 patients. The
images were resliced, resampled, and realigned. In the next step, tumors were segmented semi-
automatically into subregions including whole tumor, edema region, core tumor, enhancing region,
and necrotic region. A total of 105 radiomic features were extracted from each subregion. The data
were divided randomly into training and testing sets. A deep learning-based data augmentation
method (CTGAN) was implemented to synthesize 200 datasets. A total of 18 classifiers were used to
distinguish two genotypes of grade 4 astrocytomas. The best discriminatory power was obtained
from core tumor regions overlaid on post-contrast T1 using the K-best feature selection algorithm
and a Gaussian naïve Bayes classifier.

Abstract: This study aimed to investigate the potential of quantitative radiomic data extracted from
conventional MR images in discriminating IDH-mutant grade 4 astrocytomas from IDH-wild-type
glioblastomas (GBMs). A cohort of 57 treatment-naïve patients with IDH-mutant grade 4 astrocytomas
(n = 23) and IDH-wild-type GBMs (n = 34) underwent anatomical imaging on a 3T MR system with
standard parameters. Post-contrast T1-weighted and T2-FLAIR images were co-registered. A semi-
automatic segmentation approach was used to generate regions of interest (ROIs) from different
tissue components of neoplasms. A total of 1050 radiomic features were extracted from each image.
The data were split randomly into training and testing sets. A deep learning-based data augmentation
method (CTGAN) was implemented to synthesize 200 datasets from the training sets. A total of
18 classifiers were used to distinguish two genotypes of grade 4 astrocytomas. From generated
data using 80% training set, the best discriminatory power was obtained from core tumor regions
overlaid on post-contrast T1 using the K-best feature selection algorithm and a Gaussian naïve
Bayes classifier (AUC = 0.93, accuracy = 0.92, sensitivity = 1, specificity = 0.86, PR_AUC = 0.92).
Similarly, high diagnostic performances were obtained from original and generated data using 50%
and 30% training sets. Our findings suggest that conventional MR imaging-based radiomic features
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combined with machine/deep learning methods may be valuable in discriminating IDH-mutant
grade 4 astrocytomas from IDH-wild-type GBMs.

Keywords: grade 4 astrocytoma; glioblastoma; isocitrate dehydrogenase mutation; conventional
magnetic resonance imaging; radiomics; machine learning; deep learning

1. Introduction

Glioblastomas (GBMs) are devastating and universally fatal brain cancers in adults
despite advancements in diagnostic and therapeutic strategies [1]. Approximately 14,000
new cases of GBM are diagnosed in the US each year, with an estimated incidence of 3.19
per 100,000 people [2]. In recent years, the emergence of molecular profiling in neuro-
oncology has had a considerable bearing on the classification, diagnosis, prognosis, and
clinical management of GBM patients [3]. The 2016 WHO classification system recognized
the somatic mutation of the isocitrate dehydrogenase (IDH) gene in gliomas as a distinct
entity regardless of histopathological features [4]. IDH mutation occurs in 50–70% of
WHO grade 2/3 gliomas and 10% of GBMs [5], which has been considered as a new
paradigm in determining the prognosis of these patients. The new 2021 WHO system has
reclassified GBMs as IDH-mutant grade 4 astrocytomas or IDH-wild-type GBMs based on
gene expression profiles [6]. It has been widely reported that glioma patients harboring
IDH mutations demonstrate a better response to chemoradiation therapy and live longer
than those with IDH-wild-type alleles [7,8]. Immunohistochemical analyses and exomic
sequencing are considered the gold standard for determining IDH mutation status in
gliomas [9,10]; however, several factors, such as tissue heterogeneity, partial sampling
of tissue specimens, and presence of variable amounts of antigens constrain the utility
of these methods in reliable detection of IDH mutation status [11]. Moreover, it is not
always possible to perform neurosurgical interventions because of the eloquent locations
of these neoplasms.

Therefore, non-invasive identification of IDH-mutant gliomas is vital for making
informed decisions on therapeutic intervention and prognosticating these patients. IDH
mutations confer the neomorphic activity of an enzyme leading to the conversion of alpha-
ketoglutarate (α-KG) to 2-hydroxyglutarate (2HG) [12]. Prior studies [13–15] have reported
the clinical utility of modified MR spectroscopy sequences in identifying IDH-mutant
gliomas by detecting characteristic resonances of 2HG. However, not all IDH-mutant
gliomas show the neomorphic activity of the 2-HG production [16]. Moreover, these
sophisticated spectroscopic sequences are not readily available in routine clinical settings.

Conventional magnetic resonance imaging (MRI) remains the mainstay for determin-
ing tumor location, size, and structural features in neurooncology [17]. Radiomics is a
rapidly evolving translational field that automatically produces mineable
high-dimensionality data from positron emission tomography (PET) [18,19], computed
tomography (CT), and MRI images with high precision [20–22]. Several previous studies
have documented the clinical potential of quantitative radiomic features extracted from
conventional MRI data in diagnosis, determining molecular signatures, assessing treatment
response, and predicting survival outcomes in GBM patients [23–28]. Some other studies
have also reported promising findings in identifying IDH-mutant grade 4 astrocytomas
using conventional neuroimaging-based radiomic classification models with variable accu-
racies [29,30]. However, these studies were limited by the extraction of a sparse number of
radiomic features (n = 31) [29] or by the inclusion of a small sample size of IDH-mutant
grade 4 astrocytomas (n = 7) [30].

With these inadequacies in mind, the current study was designed to investigate the
potential utility of radiomic features extracted from different tumor habitats as visible on
widely available and universally acquired preoperative post-contrast T1 weighted and
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T2-FLAIR images in differentiating IDH-mutant grade 4 astrocytomas from IDH-wild-
type GBMs.

2. Materials and Methods

2.1. Patient Population

This retrospective study was approved by the institutional review board and was
compliant with the Health Insurance Portability and Accountability Act. The inclusion
criteria for enrollment in the present study were that all patients had (a) histopathologically
confirmed grade 4 astrocytoma according to the WHO classification system, (b) a known
IDH mutation genotype using immunohistochemistry and/or gene sequencing, and (c)
available preoperative anatomical MR images acquired using identical data acquisition
protocol. Based upon the inclusion criteria, a cohort of 57 patients (mean age = 57.7 ± 6.9
years, 39 males and 18 females) with newly diagnosed grade 4 astrocytoma and GBM were
recruited in this study. Of these 57 patients, 23 had the IDH-mutant genotype, and 34 had
the IDH-wild-type genotype.

2.2. Determination of IDH Mutational Status by Immunohistochemistry and Sequencing

Hematoxylin, eosin staining, and immunohistochemistry were conducted on 5-micron
thick, formalin-fixed (10%), paraffin-embedded tissue sections mounted on Leica Surgipath
slides followed by drying for 60 min at 70 ◦C. In addition, immunohistochemistry to detect
the IDH1 p.R132H variant was performed by using an anti-IDH1-R132H antibody (mono-
clonal mouse anti-human IDH1 (R132H), Dianova, DIA Clone H09) and DAB chromogen
was performed on a Leica Bond III instrument using a bond polymer refine detection
system (Leica Microsystems AR9800) following a 20-min heat-induced epitope retrieval
with Epitope Retrieval 2, EDTA, pH 9.0. Appropriate positive and negative controls were
included.

In addition, massively parallel sequencing or RealTime polymerase chain reaction
(PCR) was performed to confirm the immunohistochemical results and to interrogate other
IDH variants. For RealTime PCR, formalin-fixed, paraffin-embedded (FFPE) specimens
with >20% tumor content were analyzed for IDH1 and IDH2 variants using Abbott Re-
alTime Assays (Abbott Molecular, Inc., Abbott Park, IL, USA) after extraction using the
QIAamp DSP DNA FFPE Tissue Kit (Qiagen, Hilden, Germany). The Abbott RealTime IDH1
assay detects 5 single nucleotide variants (SNVs) in IDH1 (p.R132C, p.R132H, p.R132G,
p.R132S, and p.R132L). The Abbott RealTime IDH2 assay detects 9 SNVs in IDH2 (p.R140Q,
p.R140L, p.R140G, p.R140W, p.R172K, p.R172M, p.R172G, p.R172S, and p.R172W). The
Abbott m2000rt software performs variant calling, and results are qualitatively reported as
positive or not detected. Tests were performed according to the manufacturer’s instructions
by adding a dilution step to the IDH2 assay. For massively parallel sequencing, the panel
gives full gene coverage of 152 genes, using the Agilent Haloplex design with unique
molecular identifiers as described previously [31]. Briefly, DNA was extracted from FFPE
or specimens preserved in PreservCyt. Samples were multiplexed and sequenced on a
HiSeq with total deduplicated reads of 6.5 million/sample; duplicate reads were removed
based on incorporating unique molecular identifiers. All variants were identified using
an in-house data processing bioinformatics pipeline capable of detecting SNVs, insertions
and/or deletions (indels), and copy number gains for a subset of genes based on increased
read depth. An experienced neuropathologist (MPN) reviewed cases from all patients to
confirm the IDH status.

2.3. MRI Data Acquisition

All patients underwent an MRI on a 3T Tim Trio whole-body MR scanner (Siemens,
Erlangen, Germany) equipped with a 12-channel phased array head coil. The anatomical
imaging protocol included an axial 3D-T1-weighted magnetization-prepared rapid acquisi-
tion of gradient echo (MPRAGE) imaging [repetition time (TR)/echo time (TE)/inversion
time (TI) = 1760/3.1/950 ms]; in-plane resolution = 1 × 1 mm2; slice thickness = 1 mm; the
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number of slices = 192; and axial T2-FLAIR imaging (TR/TE/TI = 9420/141/2500 ms, slice
thickness = 3 mm; the number of slices = 60). The post-contrast T1-weighted images were
acquired with the same parameters as the pre-contrast acquisition after administration of
the standard dose of gadobenate dimeglumine (MultiHance, Bracco Imaging, Milano, Italy)
intravenous contrast agent using a power injector (Medrad, Idianola, PA, USA).

2.4. Image Processing

The overview of the image processing and radiomics pipeline, which includes image
registration, tissue segmentation, feature extraction, feature selection, and radiomics model
building, is shown in Figure 1. An investigator (SAH) blinded to the IDH mutational status
performed all image processing steps. Post-contrast T1-weighted images were resliced,
resampled, and co-registered with T2-FLAIR images using a linear affine transformation.
A semi-automatic segmentation approach was used to generate regions of interest (ROIs)
on the anatomical images. Care was taken to exclude surrounding normal brain vessels.
Manual inspections were performed by an experienced neuroradiologist to correct for any
pixel anomalies present within the ROIs. Accordingly, these ROIs were modified manually
by adding pixels for tumor regions not included in the initial ROIs or by removing pixels
for non-tumor regions included in the initial ROIs. Post-contrast T1 weighted images
were used to segment solid/contrast-enhancing regions, necrotic regions, and core tumors
(solid + necrotic region). T2-FLAIR images were used to segment peri-tumoral edematous
regions and whole tumor volumes. All tissue segmentations were performed using 3D
slicer software. To maximize the characterization of tumors, these 5 segmented ROIs
were overlaid on the source post-contrast T1-weighted images and T2-FLAIR images
for the data analysis (Figures 2 and 3). A bias field correction using N4 and an image
normalization using histogram matching were performed using the 3D slicer software on
the MRI images before feature extraction to avoid any potential bias field distortions and
data heterogeneity bias.

2.5. Radiomic Feature Extraction

From each segmented ROI, 105 original radiomic features from categories (shape,
first-order statistical, second-order texture, and higher-order statistic) were extracted using
the PyRadiomics package in python [32]. These original features can be sub-divided into
7 classes, including 13 shape features, 18 first-order statistical features, 23 gray level co-
occurrence matrix (GLCM) features, 14 gray level dependence matrix (GLDM) features,
16 gray level size zone matrix (GLSZM) features, 16 gray level run length matrix (GLRLM)
features, and 5 neighboring gray-tone difference matrix (NGTDM) features. Altogether,
525 radiomic features were extracted from 5 ROIs of each image for a total of 1050 features
from post-contrast T1- and T2-FLAIR images. The radiomics features used comply with
the standard described by the Imaging Biomarker Standardization Initiative (IBSI) [33].
A high-performance computer system with 16GB RAM and an Intel Core i7-7700 CPU
processor @3.60 GHz was used for data processing. The feature extraction took an average
of 2–3 min per patient image set. A list of all features is summarized in Supplementary
Table S1.

2.6. Radiomics Feature Selection/Dimension Reduction

It is important to eliminate irrelevant or redundant variables that may cause data
overfitting and may bias the performance of the prediction model. Multiple feature se-
lection algorithms, including recursive feature elimination (RFE), minimum redundancy,
maximum relevance (mRmR), and K-best were employed to select image features. Patients
were divided into 2 mutually exclusive training (80%, 50%, and 30%) and testing (20%, 50%,
and 70%) sets using the random shuffling method. Ten percent of the training set was split
off to serve as the validation set. All data were normalized by MinMax normalization. The
mRmR feature selection technique was used to select 15 features.
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Figure 1. The overview of the image processing and radiomics pipeline.

Figure 2. 2D and 3D visualization of various subregions of a grade 4 astrocytoma as visible on
post-contrast T1-weighted image.
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Figure 3. 2D and 3D visualization of various subregions of a grade 4 astrocytoma as visible on
T2-FLAIR image.

2.7. Deep Learning Approach for Data Augmentation

The current study implemented a deep learning method based on generative adver-
sarial networks (GAN) for data augmentation [34]. CTGAN is a GAN-based deep learning
data synthesizer to increase the number of our datasets that can improve the reproducibility
and discriminatory power of radiomics features [35–37]. After splitting the data set and
selecting bold features using various feature selection algorithms, the selected radiomic
features from each model with the highest number were used as the input value for CT-
GAN to synthesize 200 radiomic features. As a result, after splitting 80%, 50%, and 30%
of 57 original data for the training sets, 245, 228, and 217 datasets (80%, 50%, and 30% of
57 + 200 = 245, 228, and 217), including original and generated data, were synthesized,
respectively. Different splitting percentages were used to confirm our findings [38] and to
prevent the impact of data leakage in our results [39]. Furthermore, a random noise (normal
distribution, mean = 0.0, standard deviation = 0.05) [40] was added to the training set. The
test sets were not generated, and the original datasets were used for the testing sets.

2.8. Machine Learning Classifiers for Prediction Model Building

To develop a prediction model for distinguishing IDH-mutant grade 4 astrocytomas
from IDH-wild-type GBMs, a total of 18 single and ensembled machine learning classifiers
[Bernoulli naïve Bayes (BNB), multilayer perceptron (MLP), support vector classifier (SVC),
Gaussian naïve Bayes (GNB), quadratic discriminant analysis (QDA), bagging classifier,
linear discriminant analysis (LDA), logistic regression (RG), ridge, ada boost (AD), hist
gradient boosting (HGB), K-neighbors (KN) (K = 5), random forest (RF), gradient boosting
(GB), extra trees (ET), decision tree (DT), nearest centroid (NC), and passive aggressive (PA]
were employed using an in-house-developed python package. All cases in the training
cohort (80%, 50%, and 30%) were used to train the classifiers, and an internal validation
(cross-validation) was performed from the testing cohort (20%, 50%, and 70%). Receiver
operative characteristic (ROC) curve analyses were performed to evaluate the diagnostic
potentials of prediction models in distinguishing 2 groups (IDH-mutant grade 4 astro-
cytomas and IDH-wild-type GBMs). Area under the ROC curve (AUC), area under the
precision-recall curve (PR_AUC), accuracy (ACC), sensitivity, specificity, and negative and
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positive predictive values (NPV and PPV, respectively) were determined for each prediction
model as performance metrics.

3. Results

When original MRI data (n = 57) were used in discriminating IDH-mutant grade 4
astrocytomas from IDH-wild-type GBMs, the best discriminatory performance (AUC = 0.93,
ACC = 0.92, sensitivity = 1, specificity = 0.86, PR_AUC = 0.92) was obtained from solid/
contrast enhancing, and core tumor (solid + necrotic region) overlaid on post-contrast T1-
weighted images using various combinations of feature selection algorithms and machine
learning classifiers. The predictive power, accuracy, sensitivity, specificity, and PR_AUC
of the best 10 methods in distinguishing two genotypes of grade 4 astrocytomas are
summarized in Table 1.

Table 1. Best 10 performances of multi-segmentation approaches, multi-machine learning classifiers,
and multi-feature selection algorithms in discriminating IDH-mutant grade 4 astrocytomas from
IDH-wild-type GBMs using original (Or) data set.

Radiomic Feature Combination AUC Accuracy Sensitivity Specificity PR_AUC

Or_PC_T1_Core_AB_Kbest 0.93 0.92 1 0.86 0.92
Or_PC_T1_Core_KN_Kbest 0.93 0.92 1 0.86 0.92
Or_PC_T1_Core_LR_Kbest 0.93 0.92 1 0.86 0.92

Or_PC_T1_Core_MLP_Kbest 0.93 0.92 1 0.86 0.92
Or_T2-FLAIR_Enhancing_DT_Kbest 0.93 0.92 1 0.86 0.92

Or_T2-FLAIR_Enhancing_DT_mRmR 0.93 0.92 1 0.86 0.92
Or_T2-FLAIR_Enhancing_GB_mRmR 0.93 0.92 1 0.86 0.92
Or_T2-FLAIR_Enhancing_RF_mRmR 0.93 0.92 1 0.86 0.92

Or_PC_T1_Enhancing_HGB_RFE 0.93 0.92 1 0.86 0.92
Or_PC_T1_Enhancing_HGB_mRmR 0.93 0.92 1 0.86 0.92

The relative importance of the best 10 methods in terms of predictive power, accuracy,
sensitivity, specificity, and PR_AUC in discriminating two genotypes of grade 4 astrocy-
tomas by using various combinations of feature selection algorithms, machine learning
classifiers, and segmented tumor regions when 80%, 50%, and 30% of the generated data
were used as training sets are summarized in Table 2, Table 3, and Table 4, respectively.
From generated data using 80% as the training set (Table 2), the best discriminatory power
(AUC = 0.93, accuracy = 0.92, sensitivity = 1, specificity = 0.86, and PR_AUC = 0.92) in
distinguishing two genotypes of grade 4 astrocytomas was obtained from core regions
overlaid on post-contrast T1 images when K-best and RFE feature selection algorthims and
GNB and PA classifiers were applied. A similar high-diagnostic performance was obtained
from enhancing regions overlaid on T2-FLAIR images when the K-best feature selection
algorithm and DT and bagging classifiers were applied. From generated data using 50%
as the training set (Table 3), necrotic regions of co-registered, post-contrast T1 images
with mRmR feature selection and bagging and RF classifiers and the edematous region of
the co-registered, post-contrast T1 image with mRmR feature selection and KN classifier
provided the highest predictive power (AUC = 0.92, accuracy = 0.92, sensitivity = 0.91,
specificity = 0.94, and PR_AUC = 0.93). From generated data using 30% as the training set
(Table 4), the core regions of co-registered, post-contrast T1 images with K-best feature selec-
tion and LR classifier provided the highest predictive power (AUC = 0.91, accuracy = 0.92,
sensitivity = 0.86, specificity = 0.96, and PR_AUC = 0.92).

Heatmaps of predictive power (AUC), predictive accuracy (ACC), sensitivity (SEN),
and specificity (SPE) for discriminating IDH-mutant grade 4 astrocytomas from IDH-
wild-type GBMs utilizing a variety of feature selections (training set equal to 80%), and
machine learning algorithms applied to distinct subregions of neoplasms, are shown in
Supplementary Figures S1–S4, respectively. In addition, the comprehensive findings from
using a multi-segmentation approach, feature selection algorithms, and multi-machine
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learning classifiers in discriminating IDH-mutant grade 4 astrocytomas from IDH-wild-
type GBMs in original and generated data with different training and testing sets are
provided in the Supplementary File.

Table 2. Best 10 performances of multi-segmentation approaches, multi-machine learning classifiers,
and multi-feature selection algorithms in discriminating IDH-mutant grade 4 astrocytomas from
IDH-wild-type GBMs using generated (Ge) data with 80% training set.

Radiomic Feature Combination AUC Accuracy Sensitivity Specificity PR_AUC

Ge_PC_T1_Core_GNB_Kbest 0.93 0.92 1 0.86 0.92
Ge_PC_T1_Core_PA_RFE 0.93 0.92 1 0.86 0.92

Ge_T2_FLAIR_Enhancing_Bagging_Kbest 0.93 0.92 1 0.86 0.92
Ge_T2_FLAIR_Enhancing_DT_Kbest 0.93 0.92 1 0.86 0.92

Ge_T2_FLAIR_Whole_AB_Kbest 0.90 0.92 0.80 1 0.94
Ge_PC_T1_Core_RF_Kbest 0.90 0.92 0.80 1 0.94
Ge_PC_T1_Core_RF_RFE 0.90 0.92 0.80 1 0.94

Ge_PC_T1_Core_HGB_Kbest 0.90 0.92 0.80 1 0.94
Ge_PC_T1_Edema_AB_Kbest 0.90 0.92 0.80 1 0.94

Ge_PC_T1_Edema_Bagging_Kbest 0.90 0.92 0.80 1 0.94

Table 3. Best 10 performances of multi-segmentation approaches, multi-machine learning classifiers,
and multi-feature selection algorithms in discriminating IDH-mutant grade 4 astrocytomas from
IDH-wild-type GBMs using generated (Ge) data with 50% training set.

Radiomic Feature Combination AUC Accuracy Sensitivity Specificity PR_AUC

Ge_PC_T1_Necrosis_Bagging_mRmR 0.92 0.92 0.91 0.94 0.93
Ge_PC_T1_Necrosis_RF_mRmR 0.92 0.92 0.91 0.94 0.93
Ge_PC_T1_Edema_KN_mRmR 0.92 0.92 0.91 0.94 0.93
Ge_PC_T1_Necrosis_KN_RFE 0.89 0.89 0.91 0.87 0.89
Ge_PC_T1_Edema_HGB_RFE 0.89 0.89 0.91 0.87 0.89
Ge_PC_T1_Necrosis_KN_RFE 0.88 0.89 0.82 0.94 0.90
Ge_PC_T1_Necrosis_KN_RFE 0.88 0.89 0.82 0.94 0.90
Ge_PC_T1_Edema_HGB_RFE 0.88 0.89 0.82 0.94 0.90
Ge_PC_T1_Edema_HGB_RFE 0.88 0.89 0.82 0.94 0.90

Ge_PC_T1_Core_KN_RFE 0.88 0.89 0.82 0.94 0.90

Table 4. Best 10 performances of multi-segmentation approaches, multi-machine learning classifiers,
and multi-feature selection algorithms in discriminating IDH-mutant grade 4 astrocytomas from
IDH-wild-type GBMs using generated (Ge) data with 30% training set.

Radiomic Feature Combination AUC Accuracy Sensitivity Specificity PR_AUC

Ge_PC_T1_Core_LR_Kbest 0.91 0.92 0.86 0.96 0.92
Ge_PC_T1_Core_Ridge_Kbest 0.89 0.89 0.86 0.92 0.88
Ge_PC_T1_Core_SVC_mRmR 0.86 0.89 0.71 1 0.91
Ge_PC_T1_Core_LDA_Kbest 0.84 0.84 0.86 0.83 0.83

Ge_T2_FLAIR_Core_HGB_Kbest 0.82 0.79 0.93 0.71 0.80
Ge_T2_FLAIR_Core_LR_Kbest 0.81 0.84 0.71 0.92 0.83
Ge_PC_T1_Edema_GB_Kbest 0.81 0.84 0.71 0.92 0.83

Ge_T2_FLAIR_Core_LDA_Kbest 0.81 0.81 0.78 0.83 0.80
Ge_T2_FLAIR_Core_Ridge_Kbest 0.81 0.81 0.78 0.83 0.80

Ge_PC_T1_Enhancing_QDA_Kbest 0.80 0.79 0.86 0.75 0.79

4. Discussion

In this study, we investigated the clinical utility of a conventional neuroimaging-
based radiomics approach with deep learning in determining the IDH status of grade
4 astrocytomas. A total of 1050 radiomic features were extracted from different tumor
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habitats (solid/contrast enhancing, central necrotic, peritumoral edematous, core tumor,
and whole tumor regions), encompassing post-contrast T1-weighted and T2-FLAIR images.
Our work is an extension of previous studies as we used a GAN-based algorithm to increase
our sample size and used a large number of machine learning classifiers (n = 18) to build a
reliable prediction model in distinguishing IDH-mutant grade 4 astrocytomas and IDH-
wild-type GBMs. In the testing cohort, our best prediction model consisted of a central
necrotic region from post-contrast, T1-weighted images when a combination of the K-best
feature selection algorithm and Gaussian naïve Bayes classifier were used together. This
prediction model achieved a high diagnostic performance (AUC = 0.93, accuracy = 0.92,
sensitivity = 1, specificity = 0.86, PR_AUC = 0.92) in discriminating two genotypes of grade
4 astrocytomas.

IDH mutation has been recognized as one of the most important molecular markers for
diagnosis of gliomas and GBMs based on the 2016 WHO classification system. In addition,
according to the recent 2021 WHO classification of tumors of the central nervous system
(CNS) [6], previously called IDH-mutant GBM, is now designated as IDH-mutant grade
4 astrocytoma, and GBM is diagnosed in the setting of IDH-wild-type status. It has been
reported that IDH mutational status is an independent favorable prognostic factor for confer-
ring longer progression-free and overall survival in GBM patients [7,8]. Moreover, patients
with IDH-mutant grade 4 gliomas have been shown to exhibit a better prognosis than those
with IDH-wild-type grade 3 gliomas. Collectively, these clinical findings emphasize the
importance of determining IDH-mutant status in grade 4 astrocytomas [41]. The immuno-
histochemical assay is the most commonly used method for assessing IDH mutational status
following invasive surgical interventions, which are associated with operative risks [42,43].
Moreover, the possibility of sampling error is highly relevant to determining histological
grade and molecular profiling [11,44]. For example, IDH sequencing may be falsely negative
if there are few glioma cells present within a tumor specimen [44] or substantial genetic
heterogeneity occurs within the tumor specimen [11]. In addition, some exome sequencing
studies have reported that traditional immunohistochemical assays do not detect IDH-
mutant status in ~15% of gliomas [45]. Therefore, it is essential to develop non-invasive and
objective imaging biomarkers for determining IDH mutational status in gliomas.

Mechanistically, wild-type IDH normally catalyzes the reversible, NADP+-dependent
oxidative decarboxylation of isocitrate to alpha-ketoglutarate (α-KG) in the TCA cycle.
However, IDH mutations confer a neomorphic enzyme activity converting α-KG to 2HG.
Therefore, the oncometabolite 2HG has been proposed as a putative biomarker for IDH-
specific genetic profiles for gliomas. A few studies have employed modified spectroscopic
sequences and post-processing tools for detecting spectral resonances of 2HG from IDH-
mutant gliomas [15,46–48]. However, the non-availability of these sequences and tools in
the routine clinical setting renders these techniques less attractive. Moreover, diagnostic
challenges may also arise due to the presence of a high degree of genetic heterogeneity
within GBMs and partial sampling of these lesions, especially when single voxel spec-
troscopic methods are employed. In contrast, conventional MRI is a widely available,
fast, easy-to-use, and economically affordable imaging modality that provides valuable
information about brain tumor structural and morphological characteristics. Qualitative
imaging features, such as frontal lobe tumor location, homogeneous signal intensity, sparse
contrast enhancement within the tumor beds, and less intensive tumor infiltration are
some of the imaging signatures that have been used to identify IDH-mutant gliomas with
variable success [49–51]. However, all these qualitative associations were largely based
on univariate analyses and hence, were prone to inter-observer variably. Therefore, a
comprehensive analysis of imaging features is warranted for reliable prediction of IDH
mutational status in spatially and temporally heterogeneous GBMs.

Radiomics is a quantitative analytical method of medical images that provides in-
formation that is generally difficult to perceive by visual inspection. Compared with
conventional analytical approaches, radiomic analysis can provide a more efficient and
unbiased quantification of imaging information. Readily interpretable and quantitative
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features, such as intensity distributions, spatial relationships, textural heterogeneity, and
shape descriptors are extracted from a pre-defined ROI encompassing both solid and peritu-
moral regions of neoplasms in a typical fashion [52]. The training cohort is used to instruct
the computer algorithm to detect patterns of features that are subsequently examined in
a validation cohort to evaluate the algorithm’s performance in correctly predicting the
presence or absence of a feature and its association with an outcome. In the recent past,
the field of radiogenomics has been established to study the relationship between imaging
features and underlying molecular processes and characteristics. Recently, it has been
widely reported that radiomics/radiogenomics aids in guiding clinical decision making in
neuro-oncology, particularly for making an accurate diagnosis, prognosis, and response
assessment [23–27,53].

IDH mutation occurs only in 10% of grade 4 astrocytomas, so we could only include
data from 23 IDH-mutant cases in the present study. Due to this small sample size and
imbalance in data distribution, our data was prone to overfitting. Furthermore, in situations
with an insufficient number of training datasets, the model is often overtrained. Conse-
quently, the model performs well during the training stage but comparatively poorly during
the subsequent testing stage. To address this challenge of small sample size, we leveraged
the use of a well-established GAN method for synthesizing high-quality images and, in
turn, raised the total sample size from 57 to 200. GAN is a deep learning architecture in
which two neural networks compete against each other in a zero-sum game framework [54].
A GAN model consists of two components: a generator and a discriminator. In the training
stage, the datasets produced by the generator, along with real images, serve as inputs to
the discriminator. This can be considered comparable to enlarging the training datasets for
the discriminator, whose purpose is to differentiate the real from the generated images [55].
Consequently, the discriminator will not immediately succumb to overfitting through the
competitive relationship between these two networks, even when a limited number of
training samples are used.

In a previous study [56], IDH mutational status was determined from a mixed pop-
ulation of grade III and grade IV gliomas. In the present study, only a histologically
homogenous population of gliomas (grade IV astrocytomas) was included. Moreover,
numerous radiomics features and machine learning classifiers were applied to predict
IDH mutational status. Tumor necrosis was recognized as an important imaging feature
and contributed most to the prediction model for distinguishing IDH-mutant grade 4
astrocytomas from IDH-wild-type GBMs when the K-best radiomics feature algorithm
and decision tree (DT) classifier were used together. This finding is in agreement with an
earlier study [56] in which IDH mutation was associated with a smaller enhancing vol-
ume and a larger necrotic volume when multiparametric radiomic profiles were analyzed.
Additionally, imaging features from whole tumor volumes were found to be associated
with IDH mutation status when the K-best radiomics feature selection algorithm and AB
classifier were used together (AUC = 0.93). This finding may be explained by the fact that
IDH-mutant gliomas have a more heterogeneous imaging microenvironment because of
their stepwise gliomagenesis [57]. Our findings are also consistent with previous studies
that have reported a larger tumor volume [58] and a lower degree of cellularity [59] in
IDH-mutant compared to those in IDH-wild-type gliomas. Taken together, our results
and published findings indicate that quantitative radiomic features can predict the IDH
mutation status of grade 4 astrocytomas with high diagnostic power. However, these
findings warrant further validation in multicentric, prospective studies with larger patient
populations.

5. Conclusions

In conclusion, a prediction model based on conventional MRI-extracted radiomic
features achieved promising diagnostic power in distinguishing IDH-mutant grade 4
astrocytomas from IDH-wild-type GBMs.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15030951/s1, Figure S1: The area under the curve of AUC
(predictive power) heatmap for differentiating IDH-mutant from IDH wild-type grade-4 astrocytomas
employing a variety of feature selections and machine learning classifiers applied to distinct neoplasm
subregions; Figure S2: Accuracy (ACC) heatmap for differentiating IDH-mutant from IDH wild-type
grade-4 astrocytomas employing a variety of feature selections and machine learning classifiers
applied to distinct neoplasm subregions; Figure S3: Sensitivity (SEN) heatmap for differentiating
IDH-mutant from IDH wild-type grade-4 astrocytomas employing a variety of feature selections and
machine learning classifiers applied to distinct neoplasm; Figure S4: Specificity (SPE) heatmap for
differentiating IDH-mutant from IDH wild-type grade-4 astrocytomas employing a variety of feature
selections and machine learning classifiers applied to distinct neoplasm; Table S1. Radiomics features’
name, set, and family extracted in this study; Table S2: The complete result of multi-machine learning
algorithms, feature selection, and multi-segmentation approaches in discriminating IDH-mutant
grade-4 astrocytomas from IDH wild-type GBMs of generated data with 80:20 training:testing set;
Table S3. The complete result of multi-machine learning algorithms, feature selection, and multi-
segmentation approaches in discriminating IDH-mutant grade-4 astrocytomas from IDH wild-type
GBMs of original data.
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Simple Summary: Histology sample images are usually diagnosed definitively based on the radi-
ologist’s extensive knowledge, yet, owing to the highly gritty visual appearance of such images,
specialists sometimes differ on their evaluations. Automating the image diagnostic process and
decreasing the analysis time may be achieved via the use of advanced deep learning algorithms.
Diagnostic objectivity may be improved with the use of more effective and accurate automated
technologies by lessening the differences between the humans. In this research, we propose a CNN
model architecture for cancer image classification by accumulating layers closer together to further
merge the semantic and spatial features. Regarding precision, our suggested cutting-edge model
improves upon the current state-of-the-art approaches.

Abstract: The definitive diagnosis of histology specimen images is largely based on the radiologist’s
comprehensive experience; however, due to the fine to the coarse visual appearance of such images,
experts often disagree with their assessments. Sophisticated deep learning approaches can help to
automate the diagnosis process of the images and reduce the analysis duration. More efficient and
accurate automated systems can also increase the diagnostic impartiality by reducing the difference
between the operators. We propose a FabNet model that can learn the fine-to-coarse structural and
textural features of multi-scale histopathological images by using accretive network architecture that
agglomerate hierarchical feature maps to acquire significant classification accuracy. We expand on
a contemporary design by incorporating deep and close integration to finely combine features across
layers. Our deep layer accretive model structure combines the feature hierarchy in an iterative
and hierarchically manner that infers higher accuracy and fewer parameters. The FabNet can
identify malignant tumors from images and patches from histopathology images. We assessed the
efficiency of our suggested model standard cancer datasets, which included breast cancer as well
as colon cancer histopathology images. Our proposed avant garde model significantly outperforms
existing state-of-the-art models in respect of the accuracy, F1 score, precision, and sensitivity, with
fewer parameters.

Keywords: artificial intelligence; deep learning; pattern recognition; computer-assisted diagnosis;
convolutional neural networks; breast cancer; colon cancer; histopathological images

1. Introduction

Breast cancer is the most prevalent types of cancer in women, affecting 2.1 million
women annually, and it is responsible for the bulk of cancer-related deaths globally [1].
It has been estimated that the prevalence rates of breast cancer range from 19.3 per
100,000 African women to 89.7 per 100,000 European women [2]. Breast cancer is a fatal
condition that can occur in nearly any bodily region or tissue when irregular cells abnor-
mally spread, infiltrate, or move into adjacent tissues. The number of reported cases has
increased in recent years, and it is projected to reach 27 million by 2030 [3–7]. Considering
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the high cancer mortality rate, colonoscopy and computer tomography are recommended
for regular tests [8]. A biopsy examination is used to diagnose abnormalities in the breast
and colon if suspicious cells are found. Hematoxylin and eosin (H&E) are often used to
stain the isolated sample. When Hematoxylin interacts with Deoxyribonucleic Acid (DNA),
it dyes the nuclei purple or blue, while Eosin stains other structures pink when it reacts
with proteins [9].

The diagnosis of all cancer types, including breast and colon cancers, is based on
histopathological images, which are considered to be essential. Histopathological examina-
tion, contrastingly, is a long-winded clinical practice, with the key impediment to successful
image processing being a difference in the visibility in th H&E-colored regions. Various con-
siderations, such as laboratory technique anomalies, discrepancies in sample positioning,
operator-related heterogeneity, device diversity, and the usage of different fluorophores for
staining, may all influence the diagnosis [10]. For even seasoned oncologists, recognizing
and evaluating these discrepancies during a diagnosis could be challenging. As a result,
there is a significant necessity for intelligent automated diagnostic systems to provide
oncologists with reliable evaluations and improve the diagnostic performance.

Deep-learning-based approaches are currently the course of the research, and they
have a profound impact on clinical trials and even the evolution and progress of targeted
treatment methods. With the advancement in digital imaging technology, the automated
diagnosis and detection of cancer types in whole slides images have received a great
deal of interest. Several methods for analyzing histological images have been adopted,
ranging from conventional to machine-learning-based ones [11]. Deep learning (DL) ap-
proaches have increasingly outperformed traditional machine learning (ML) algorithms
in terms of end-to-end processing automation [12,13]. Deep learning-based techniques
such as convolutional neural networks (CNN) have been successfully used in medical
imaging to detect diabetic retinopathy [14], diagnose bone osteoarthritis [15], and for other
purposes [16]. CNN-based histological image analysis methods have previously been
shown to be effective for breast cancer diagnosis [17] and micro-level pathological image
analysis [18,19].

The advent of the use convolutional neural networks as the basis of several visual
tasks for different applications has made architecture searching a key driver in sustaining
advancement with the right task extensions and data [20–22]. Because of the growing size
and sophistication of networks, more effort is being put into developing the architecture
motifs of nodes and nodes connectivity strategies that can be integrated systematically. This
has resulted in wider and deeper networks; however, there is a need for more closely linked
networks. To overcome these obstacles, various blocks or units have been integrated to
match and change the network sizes, such as bottlenecks for reducing the dimensions [23,24]
or residual, concatenated connections for features propagation [25,26].

In this paper, we suggest a CNN model design by accumulating layers that are even
more close together to further fuse the semantic and spatial details for cancer image
classification. Our accretive architecture incorporates more depth and sharing by expand-
ing the existing approaches’ “shallow” skip connections [27] and focuses on merging
the features from all of the layers and channels. Our contributions to this research are
as follows:

1. We proposed a FabNet model that can learn the fine-to-coarse structural and textural
features of multi-scale histopathological images by accretive network architecture that
agglomerate hierarchical feature maps to acquire significant classification accuracy.

2. To preserve and integrate the features, our model links convolutional blocks in
a closely coupled tree-based architecture. This method employs every layer of the
network from the shallowest to the deepest layers to learn about the rich patterns that
occupy a large portion of the feature pile.

3. We assessed the FabNet model using two publicly available standard datasets that
are related to breast cancer and colorectal cancer and noticed that it outperforms the
current state-of-the-art models in terms of accuracy, F1 score, sensitivity, and precision
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when we evaluated our model at different magnification scales of both binary and
multi classification.

The rest of this article is structured as follows: Section 2 addresses the related work.
Section 3 defines the design of the proposed FabNet model. We define the experimental
setup, datasets, training, and implementation descriptions, and provide a detailed analysis
of the performance in Section 4. The discussion, conclusions, and possible future research
directions are all contained in Section 5.

2. Related Works

There has been extensive work that has been conducted in the literature to establish
strategies for classifying and recognizing breast and colon cancers from histopathology
images. The majority of the current approaches utilize computer-aided diagnosis (CAD)
techniques to identify breast-cancer-related tumors that include benign and malignant
ones. Before the deep learning breakthrough, the data were examined using conventional
machine learning techniques based on supervised learning methods [28] to obtain the
data features.

2.1. Conventional Learning Methods

The bulk of the research in this area has concentrated on a small data sample taken
mostly from proprietary datasets. In 2013, several algorithms were used to classify the
nuclei from a dataset containing five hundred images from fifty patients, including Gaus-
sian mixture models and fuzzy C-means clustering techniques. This study reported
96% accuracy for two category classifications [29], suggesting that such machine learning-
based approaches allowed adequately comprehensive and precise research and were con-
sidered to be useful for supporting breast cancer diagnostics. Spanhol et al. [30] published
yet another study in which they achieved 85.1 % accuracy on a breast cancer dataset.
They applied support vector machines for a patient-level analysis. Using a database of
ninety-two specimens, George et al. [31] proposed a breast cancer classification method by
applying neural nets with a support vector machine, which achieved 94 percent accuracy.
Zhang et al. [32] suggested a cascading approach with a refusal alternative. This procedure
was evaluated on a dataset with 361 specimens [33]. This study [34] suggested the appli-
cation of different classifiers such as support vector machines and the k-nearest neighbor
for breast cancer histology image classification. They achieved 87 % accuracy by utilizing
assembling voting using the mentioned techniques. In this study [35], adaptive sparse
support vector machine-based techniques were applied on a dataset at a 40× magnifi-
cation level. They reported 94.97% accuracy. There have been a couple of other studies
on histopathological representations for carcinoma classification; these studies specifi-
cally explain the dichotomies and shortcomings of various publicly accessible benchmark
data [36,37].

2.2. Deep Learning Approaches

Deep learning has ushered in a new era in the domain of general object classification
and detection. The classification of cancer histopathological images (i.e., breast and colon)
has been a significant field of study due to advances in medical computer vision and deep
learning. Because of the elevated histopathological image resolutions, the conventional
machine learning algorithms and deep neural network models used to explicitly view the
WSI have resulted in very complex network designs that are a challenge to training [38].
The number of samples used in the classification cancer histopathology images is limited,
and the image size is large, making the training of CNN models challenging. Furthermore,
image compression of the entire oncology image array to the CNN’s input size would result
in a loss of the richness of the detailed feature data. As a result, some researchers suggested
the classification of images based on patches to alleviate the challenge. In this study [39], the
author used a technique to achieve the arbitrary extraction of patches based on a window
slithering approach to extract image patches from the BreakHis dataset. AlexNet [40]
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was trained on the extracted patches, and then, integrated the outcomes to classify into
relevant categories. Another study by Arajo et al. [3] suggested a convolutional neural
network for automatic feature extraction from a dataset that contained 512 × 512 size
patches. The images were grouped into four classes during training, which were used for
multi-classification, as well as two classes, which were used for binary classification.

Because of the image patches extraction process, CNN became capable of training
whole slide images with reasonable details. This study [41] suggested a convolutional neu-
ral network with a two-level model for high-resolution WSIs classification. The first model
is based on a minimal anomaly model that can distinguish between patterns automatically
during training on image patches, and a second model that classifies the results by an SVM
classifier. In another study, Alom et al. [2] suggested the merging of three models to classify
breast cancer histology images. A CNN-based methodology achieved 77.8 percent accuracy
for multi-classification, while it found an 83.3 percent accuracy for binary classification on
the breast histology 2015 dataset [3].

Han et al. [42] recently suggested a class structure-based deep convolutional neural
network that achieved 93.2 percent accuracy on the BreakHis dataset. Table 1 elaborates on
the details of recent advancements in the cancer research domain.

Table 1. A review of supervised learning models. The staining abbreviations stand for H&E (hema-
toxylin and eosin); PHH3 (Phosphohistone-H3).

Reference Local/Global Cancer Type Staining Method Dataset

Ceresin et al.
(2013) [43] Local-level Breast Hematoxylin and eosin CNN ICPR2012 (50 images)

Wang et al.
(2014) [44] Local-level Breast Hematoxylin and eosin Rippled integration

of CNN ICPR2012 (50 images)

Raza et al.
(2016) [45] Local-level Colorectal Hematoxylin and eosin

Cell detection Spatially
constrained CNN +

handcrafted features

Private CRC dataset
(15 images)

Tellez et al.
(2019) [46] Local-level Breast Hematoxylin and

eosin; PHH3 CNN TNBC (36 images);
TUPAC (814 images)

Ehteshami et al.
(2017) [47] Global-level Breast Hematoxylin and eosin

Stacked CNN
incorporating

contextual information

Private set
(221 images)

Ehteshami et al.
(2018) [48] Global-level Breast Hematoxylin and eosin Integration of

DHACNN & LSTM
BreakHis

(7909 images)

Even though the preceding studies demonstrate that patch-based image classifica-
tion approaches are commonly used in different breast cancer histopathology datasets,
histopathology images contain a large number of fine details that need to be extracted
with utmost accuracy and precision. We present FabNet, a CNN model that ensembles
every fine-to-coarse detail for more accurate learning. This method employs every layer
of network from the shallowest to the deepest layers to learn about the rich patterns that
occupy a large portion of the feature pile.

3. FabNet: Features Agglomeration Approach

We define agglomeration as the combination or merging of network layers in a closely
coupled manner. In the proposed model FabNet, as shown in Figure 1, we are particularly
focused on the productive accumulation of depth, dimensions, and resolutions. We define
an agglomeration sequence as deep if it is holistic, discrete, and the initial agglomerated
layer moves features through several agglomerations. Since our network has multiple layers
and connections, we designed modular architecture that tends to reduce the complexity
by grouping and replication. The proposed network layers are subdivided into blocks, for
example, B1, which are further subdivided into stages based on the feature resolution. This
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design is focused on agglomerating the blocks to preserve and combine the feature channels.
In Figure 2, a conv block (i.e., B1) is shown, which comprises two convolutional layers
with 5 × 5 and 3 × 3 filter window sizes. Both of the convolutional layer activation maps
are concatenated, and then transferred to another convolutional layer with 1 × 1 filter size
window to reduce the optimal channels. Agglomeration starts on the smallest, shallowest
scale and gradually merges on the deeper, wider scales in a repetitive manner. In this
manner, the shallow features are redefined as they progress over to deeper blocks of layers.

Figure 1. FabNet model: a detailed architectural overview.

 

Figure 2. Internal architecture of conv blocks (i.e., B1). The input passes through two 5 × 5 and 3 × 3
convolutional layers; the output is concatenated in the proceeding step.

For a sequence of blocks {B1, B2, B3 . . . ..Bn}, we formulated the function � for such
a repetition below.

�(B1, B2, B3 . . . ..Bn) = �(ΣB1, B2, B3 . . . ..Bn) (1)
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In Equation (1), n is the number of blocks. To increase the depth of the network and
the performance, we merge or fuse blocks in a tree-like closely coupled structure. We pass
an agglomerated node’s feature map back to the baseline as the input feature map to the
next sub-module, instead of forwarding intermediate agglomerations further up the tree.
This spreads the agglomerations of all of the previous modules, rather than the preceding
module only, to help the best preservation of features. We combine the parent and left child
nodes of the same depth in the performance.

Our model consists of conv blocks, which are the basic building block of each node.
The input of a conv block in the case of B1 accepts an input of 224 × 224 × 3. This input is
passed to two different convolutional layers simultaneously for convolutional operations
to be performed. Both of the convolutional layers apply 16 kernels with filter window
sizes of 3 × 3 and 5 × 5 each with nonlinearity (ReLU), which aims to alleviate the issue
of vanishing gradients, as well as improve the network’s training speed. To generate
an optimal feature map, the feature maps of these two convolutional layers are combined,
and thereafter, transferred to a 1 × 1 convolutional layer. In each convolutional layer that
is discussed above, we use zero padding, which preserves the original image size, while
also providing valuable knowledge about feature learning, which aids in the extraction of
low-level features for the subsequent layers. Following that, we apply batch normalization,
which balances the inferences of the preceding activation layer by subtracting the batch
mean and dividing the batch division, thereby increasing the network stability.

The output of conv block B1 is fed into B2, which has a similar internal architecture
to that of B1, as depicted in Figure 2, except for the number of kernels. Conv B2 contains
32 convolution filters. The feature maps of both of the conv blocks are then concatenated,
which results in an enhanced collective feature map. We apply an average pooling operation
with an average pooling layer with 2 × 2 patches of the feature map with a stride of two.
This layer down-samples the estimation complexities and parameters from the evaluated
image by dividing it into rectangular pooling window areas, which is proceeded by a mean
value estimation for every region. The inference of the average pooled image propagates
to the next block as an input to conv block B3, which is fed into the final stage C5. As it
was mentioned earlier, B3 contains the same internal architecture as those of conv blocks
B1 and B2, but the number of convolution filters is 32. The output feature map of B3 is fed
into conv block B4 as an input. The internal convolutional layers of conv block B4 apply
64 convolution filters to learn the features. The feature maps of B3 and B4 are fused to
generate an extended feature map, which is proceeding by average pooling for down-
sampling. The average pooled value feeds into the next conv block B5. Conv block B6 is
fed to B5 as an input. B6 utilizes 128 convolution filters.

The feature maps of conv block B5 are conv block B6 which is concatenated to fuse the
feature, which results in an enhanced feature map with detailed data information. This step
is preceded by an average pooling operation to obtain half of the image size. The result
of the pooled value is fed into conv block B5. The network repeats the same operation
until it reaches conv block B10. The only difference is between the blocks is the number of
convolution filters, which is 256 for B8 and 512 for B10. Until it reaches B10, the feature
maps of the entire network resulted in optimized propagation from the shallower to the
deeper layers and blocks, which makes the proposed network compact and closely bind the
entire network. The best features of every block and stage are collected and fused at stage
C5 by the extensions from C1 to C5 and by bridging the adjacent blocks The C5 is subjected
to the global average pooling function, which significantly reduces the number of data,
and thus, the classification layers by measuring the average results of every feature map
in the preceding layer. The output layer, which is the last dense layer, includes neurons
for each class that have been normalized with the Softmax function; the amount of them
varies based on the classification category. We used binary and multi-class classifications in
this study.
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4. Methodology

As seen in Figure 3, the proposed method consists of three main steps. Firstly, we
obtain training samples by applying the extraction of patches technique to the dataset.
Secondly, stain normalization preprocessing of the dataset is performed to resolve the stain
variation in the images. For stain normalization, several methods have been suggested in
these studies [49–51]. DL-based approaches for classifying cancer histopathology images
employs a training set to detect a wide range of enhancements to distinguish variations
within, as well as across, the categories. A wide range of color inconsistencies in the
histopathological images may occur due to the color response of the automated scanners,
stain supplier materials and processing units or due to various staining procedures in
different laboratories. Therefore, stain normalization is a basic step during histopathological
image preprocessing. The key benefit of using image patches for each type of training
is that it preserves the local characteristic information from the histopathology images,
helping the model to learn the local characteristics features. Thirdly, we train our proposed
model with these extracted images to classify and differentiate between the benign and
malignant tumors. Furthermore, we outline the datasets, image preprocessing, model
training, and implementation details below.

 

Figure 3. An overview of the proposed methodology to classify the histopathological image.

4.1. Dataset

To evaluate our proposed model, we used the two main, public cancer histology
image datasets. Such datasets were considered with three motives: firstly, the diversity
of cancer types represented in the histology slides, such as breast cancer and colorectal
cancer; secondly, their amount; thirdly, the existence of multiple magnification factors
that helped us to carry different tests with the restricted equipment, while modifying
different parameters.

4.1.1. BreaHis

In this study, we assessed our model with BreakHis, a publicly available breast-cancer-
related histologic dataset [30]. Samples were created using breast tissue biopsy slides
that were colored with H&E staining. There are reportedly 7909 histopathological biopsy
images of 700 × 460 pixels in the BreakHis dataset from eighty-two individuals. The dataset
consists of two main categories: one of them is benign, and the other one is malignant,
which are further subdivided into 4 subclasses as per each category. Table 2 shows the
statistical specifics of this dataset, and Figure 4, shows a few illustrations of the histological
images. For our tests, we randomly divided the entire dataset in into training/testing
subgroups at a 70:30 ratio. To assess our model’s efficiency in clinical settings, we kept
a patient-based distinction between the training and test data. For stain normalization,
we adopted the technique suggested in [50]: an innovative composition-preserving color
normalization (SPCN) scheme is used in this process.
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Table 2. BreakHis dataset categorization at patient level at four magnifications (40×, 100×, 200×,
and 400×).

Category Subtypes
Magnification Sum Individuals

40× 100× 200× 400×

Benign

Phyllodes Tumor (PHT) 149 150 140 130 569 7
Fibroadenoma (FID) 253 260 264 237 1014 10

Adenosis (ADE) 114 113 111 106 444 4
Tubular Adenona (TUA) 109 121 108 115 453 3

Malignant

Papillary Carcinoma (PAC) 145 142 135 138 560 6
Ductal Carcinoma (DUC) 864 903 896 788 3451 38
Lobular Carcinoma (LOC) 156 170 163 137 626 5

Mucinous Carcinoma (MUC) 205 222 196 169 792 9

 

Figure 4. From the BreakHis dataset, the first row depicts benign 4 subclasses, while the second row
shows malignant 4 subclasses. These images have a magnification factor of 200×.

The illustration of stain normalized images is shown in Figure 5.

 

Figure 5. Stain normalized images of 4 different subcategories at a magnification factor of 400×.

4.1.2. NCT-CRC-HE-100K

This dataset includes publicly available 100 K images of human colorectal cancer
(CRC), as well as normal tissues [52]. To stain normalize this dataset, in which the image
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size was 224 × 224 pixels, the Macenko approach [53] was used. We used this color nor-
malization technique because the initial images had subtle variations between red and blue
tones, resulting in a misleading classification. Figure 6 shows descriptive representations
of the sample images. This dataset is divided into nine subclasses, which are adipose
tissue (ADI), lymphocytes (LYM), background (BACK), mucus (MUC), smooth muscle
(MUS), normal (NORM), debris (DEB), cancer-associated stroma (STR), and tumor (TUM)
ones. To improve the variance in this training set, normal tissue samples were obtained
primarily from clinical specimens, as well as from gastrectomy samples (such as upper
gastrointestinal smooth muscle). The number of distributed training set images in each
group was nearly equal, while the test samples contained 7180 images.

 

Figure 6. An illustrative image from nine classes of human colorectal cancer datasets.

4.2. Image Representation and Patch Extraction

Table 2 shows that the BreakHis dataset has a data imbalance problem, which was
calculated as 0.42 at the case image scale and 0.44 at the patient scale. The data disparity
problem can cause a discriminating performance of computer-aided diagnosis (CAD)
models against the majority class in classification problems. Equation (2) determines the
patch amount obtained from the dataset image of the ith class.

Ni =
⌈(

∑n
i=1 xi

/
n
∣∣∣xi

)
× β

⌉
(2)

Equation (2) depicts a mathematical representation of Ni patches derived from the i(th)
category, xi is the i(th) category’s number, xth is the i(th) category’s number, β is a constant
value, and n represents the classes. The fixed parameter (β) was set to 32. After that, each
class has nearly the same number of patches. The primary benefit of utilizing patches
during training for every individual class is that it preserves the regional distinctive details
in the histological image, which enables the model to learn the spatial information [54].
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To obtain an image classification, first, we use a patch classifier to compare several
distinct magnifications of patches, and afterward, we average the effects for the complete
image patches. The extraction and learning of similar features, for instance, the entire
tissue composition, nucleus state, and texture features are used to classify the images to
the desired categories. We inferred that 224 × 224, as well as 700 × 460-pixel patches,
would be sufficient to justify the proper cell formation of various tissues. We deduced that
700 × 460, as well as 224 × 224 px size for images, would be ample to explain the relevant
composition of different tissues.

5. Experimental Results

5.1. Model Training

We assessed the proposed model’s efficiency in two areas: (1) sample classification
based on binary and multi-class classification, and (2) sample classification based on patient-
and image-level classification. We used the datasets discussed in the study. These datasets
were subdivided into training validation sets. To find the optimal parameters for our model,
we use a five-fold cross-validation scheme. We assess our model with assessment metrics
such as accuracy, sensitivity, and precision, and F1 score in the performance assessment.
On an NVIDIA GTX 1080Ti, we used the Keras framework to implement the method. The
metrics of five successful completed trial experiments are reported. We compared our
model’s efficiency to that of cutting-edge models such as DenseNet 121 [55], VGG16 [56],
and ResNet 50 [57].

5.2. Implementation Details

FabNet model assimilates the fine-to-coarse structural and textural features of multi-
scale histopathological images by accretive network architecture that agglomerate hierar-
chical feature maps to perform significant learning. Our model propagates the features
from block to block, and overall, from stage to stage to ensemble the best feature map for
learning. We tuned the following hyperparameters in our model, which are a number of
convolutional blocks (the internal architecture is defined in Figure 2), epochs, learning rate,
optimizer, size of batch, and batch normalization. The epochs were set to 20, 50, 70, and
100, respectively, while 0.01, 0.001, 0.0001, and 10−4 learning rates were evaluated. We used
a batch size of 16, 32, and 64 due to hardware limitations. We tested the model with
different optimizers such as Adadelta, Adamax, SGD, RMSprop, and Nadam, but Adam
provided the optimal accuracy. The detailed optimized hypermeters are shown in Table 3.

Table 3. Optimized hyper-parameters for FabNet, Densenet121, DNet, VGG16, and ResNet50.

Dataset Parameters FabNet DenseNet121 VGG16 ResNet50

BreakHis

Epochs 100 100 100 100
Learning Rate 10−3 10−3 10−3 10−3

Batch Size 16 16 16 16
Number of layers 30 121 16 50

Optimizer Adam Adam Adam Adam
Number of parameters 3239 K 7138 K 14,765 K 23,788 K

NCT-CRC-HE-100K

Epochs 100 100 100 100
Learning Rate 10−3 10−3 10−3 10−3

Batch Size 64 64 64 64
Number of layers 30 121 16 50

Optimizer Adam Adam Adam Adam
Number of parameters 3239 K 7138 K 14,765 K 23,788 K

The proposed BreakHis and NCT-CRC-HE-100K datasets intended to serve as
a standard for breast and colon cancer CAD systems. Before discussing the results, we
define the evaluation matrices, which were used to assess the proposed model. The ex-
perimental procedure for evaluating the proposed approach for the BreakHis dataset is
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similar to that which was used in the previous study [39]. The authors defined two types
of accuracies, in which the first one reflects the performance accuracy achieved on the
patient scale.

If we suppose Np represents the images of the patient, while Nc is the patient images
that are accurately categorized and Nt are the total patients, the score for an individual
patient can be calculated as

Patient Score =
Np

Nc
(3)

While the global patient accuracy can be calculated as,

Patient Level Accuracy =
∑ Patient Score

Nt
(4)

The second case for the evaluation of classification accuracy is image-level accuracy.
If we let Ntb be the test image samples for breast cancer and Ncb be the images that are
classified by CAD system accurately, according to labeled classes, the image level accuracy
can be defined as follows,

Image Level accurcy =
Ntb
Ncb

(5)

The obtained accuracy at the image and patient levels for different magnification
levels is shown in Table 4. Largely, a malignant case is considered to be positive during
cancer diagnosis, whereas a benign case is considered to be negative. In clinical diagnosis,
sensitivity (also known as recall) is more significant for medical professionals. Therefore, in
this study, the proposed model is evaluated based on metrics defined below,

Precision =
True Possitive

True Possitive + False possitive
(6)

Recall =
True Possitive

True Possitive + False Negative
(7)

F1 score = 2 × Precision × Recall
Precision + Recall

(8)

Table 4. Performance comparisons in terms of accuracy for BreakHis dataset.

Accuracy (%) Method
Magnification Level

40× 100× 200× 400×

Patient Level
DenseNet 121 [55] 92.02 90.21 81.94 80.09
MSI-MFNet [58] 93.04 88.34 92.12 89.19
Proposed FabNet 99.01 89.26 98.38 96.96

Image Level
DenseNet 121 [55] 94.26 92.71 83.90 82.75
MSI-MFNet [58] 94.12 89.25 92.45 90.27
Proposed FabNet 99.03 89.68 98.51 97.10

Table 4 depicts the performance of the proposed model, which outperformed DenseNet
121 and MSI-MFNET in terms of test accuracy at each magnification level using the BreakHis
dataset. The model showed superior test accuracy at 40×, 200×, and 400× magnifications.
At the 100× magnification level, the model slightly lags behind Dense121, which achieves
90.21% accuracy at the patient level, while it achieves 92.71 for the image-level classifications.

The experiments are performed largely focused on binary and multiclass classification.
The patch-wise binary and multi-classification outcomes are shown in Table 5. The results
are shown using important metrics such as test accuracy and sensitivity (recall) using the
200× magnified image patches. The results are compared with those of two benchmark
models, which are DenseNet121 and MSI-MFNet. The experimental results that are ob-
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tained by the proposed FabNet were better than the mentioned models were, with a larger
margin in terms of test accuracy for binary classification as well as multi-class classification.

Table 5. Patch wise classification results of FabNet for BreakHis dataset on magnification level 200×
in terms of accuracy and sensitivity metrics.

Class Model Accuracy
Sensitivity

Benign Malignant

Binary

DenseNet [55] 0.92 0.75 0.97

MSIMFNet [58] 0.92 0.76 0.98

FabNet 0.99 0.989 0.990

ADE FIB PHT TAD DUC LOC MUC PAC

Multi

DenseNet121 [55] 0.84 0.60 0.84 0.72 0.84 0.86 0.85 0.97 0.91

MSIMFNet [58] 0.88 0.60 0.87 0.79 0.89 0.96 0.75 0.98 0.92

FabNet 0.97 1.00 0.88 1.00 1.00 0.804 0.89 0.784 0.865

In Table 6, the detailed results that are obtained from the proposed model are presented.
It is evident that the model exhibited better accuracy for binary classification, as well as
multi-classification at contrasting magnifications, for instance, 40×, 100×, 200×, and 400×.
The model showed better performance for binary classification, for instance, the accuracy
at the 40× magnification scale the model achieved 99 percent accuracy. The model showed
better performance for many classed as well.

Table 6. Detailed classification results of FabNet on BreakHis dataset based at different
magnification levels.

Class Magnification Level Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Binary

40× 99.00 98.991 98.986 98.989
100× 89.26 89.128 89.262 89.195
200× 99.00 98.352 98.355 98.354
400× 97.96 97.541 97.521 97.551

Multi

40× 91.26 90.635 89.126 88.289
100× 97.00 96.531 96.427 95.912
200× 97.05 85.972 85.526 85.748
400× 97.20 89.947 89.851 88.899

Table 7 depicts the classification results of the proposed FabNet for the NCT-CRC-
HE-100 K dataset. It is evident that the model exhibited an outstanding performance in
terms of test accuracy and sensitivity compared to those of the benchmark models such as
VGG16, DenseNet 121, and ResNet50.

In Table 8, detailed class-wise scores for important matrices such as precision, sensitiv-
ity, and recall are given to elaborate the efficiency using the NCT-CRC-HE-100K dataset.

The ROC curve is a graphical determination of the classification model’s results. It
is determined by plotting the true positive rate (TPR) against the false positive rate (FPR)
at various discriminatory thresholds, where TPR stands for sensitivity or recall, and FPR
stands for false positive rate (1-specificity). The ROC curve for a classification algorithm
would be a diagonal line from (0,0) to (1,1). Any curve above the diagonal line indicates
a decent classification model that randomly outperforms, and any curve below the diagonal
line indicates a model that randomly underperforms. The region under the ROC curve,
which is often between 0 and 1, is referred to as the AUC. A high AUC means that the
classification model is accurate according to the ROC curve concept. The ROC curve graph
can be seen for the binary classification of the BreakHis dataset in Figure 6, where class
0 indicates a benign tumor, and class 1 represents a malignant tumor. Figures 7 and 8 depict
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the ROC curve graph for the multi-classification performance using the BreakHis and NCT-
CRC-HE-100K datasets. The confusion matrix for the binary classification of the BreakHis
dataset at different magnification scales is shown in Figure 9. As can be seen in the cases of
different magnification levels, 40×, 100×, and 200×, our model tends to produce better
results for binary classification. Because of the diverse and significant areas in the images,
the representation of the confusion matrix results shows that binary scenarios performed
better than multi-classification scenarios did. The higher magnification of features give
further structural information to the model, which helps it to acquire a decent depiction of
patches with labels.

Table 7. Detailed classification results by FabNet on NCT-CRC-HE-100K dataset concerning bench-
mark models in terms of accuracy and sensitivity.

Model
Accuracy
(%)

Sensitivity

ADI BACK DEB LYM MUC MUS NORM STR TUM

VGG16 [56] 96.0 0.95 0.93 0.94 0.88 0.96 0.89 0.98 0.91 0.90
ResNet50 [56] 95.9 0.94 0.90 1.00 0.89 0.92 0.88 0.89 0.95 0.98
Dense Net 121 [55] 96.1 0.96 0.70 0.98 0.97 0.92 0.91 0.96 0.93 0.94
FabNet 98.2 0.96 0.98 1.00 1.00 1.00 0.98 0.99 0.94 0.99

Table 8. Class-wise results representation of FabNet in terms of precision, F1 score, and recall using
the NCT-CRC-HE-100K dataset.

Class Precision F1 Score Recall

Adipose Tissue 1.00 0.98 0.96
Background 1.00 0.99 0.98
Colorectal Cancer 0.98 0.99 1.00
Debris 1.00 1.00 1.00
Lymphocytes 0.95 0.97 1.00
Mucus 0.94 0.96 0.98
NC Tumor 0.99 0.99 0.99
Colon Mucosa 1.00 0.97 0.94
Cancer Stroma 0.99 0.99 0.99

Figure 7. ROC curves of FabNet Model for binary classification, (a) 40× magnification, (b) BreakHis
100× magnification, (c) BreakHis 200× magnification, (d) BreakHis 400× magnification.
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Figure 8. ROC curves of FabNet Model for multi classification, (a) 40× magnification, (b) BreakHis
100× magnification, (c) BreakHis 200× magnification, (d) BreakHis 400× magnification (e) ROC
curves for NCT-CRC colon cancer dataset.

Figure 9. Confusion matrices of FabNet that for BreakHis, (a) confusion matrix of 40× magnification,
(b) confusion matrix of 100× magnification, (c) confusion matrix of 200× magnification, (d) confusion
matrix of 400× magnification.
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The confusion matrix results for multi-classification in the case of NCT-CRC colon
cancer are shown in Figure 10.

Figure 10. Confusion matrix of FabNet, which shows the best score in the NCT-CRC-HE-100K dataset
testing set among 5-fold cross-validation.

Tables 9 and 10 shows the results of proposed model in comparison with benchmarks
related to breast and colon histology models.

Table 9 shows the mean and standard deviation of our results by experimenting with
satin and without stain normalization to better understand the use of the FabNet model in
studying cancer histopathology images.
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The model outperformed some of the one in the most current research studies. For
example, in [68], they obtained 97.58% and 97.45% accuracy rates with 7.6 million training
parameters, whereas we reached a 99.03% accuracy with 3239 K training parameters. De-
spite having fewer training parameters, our model achieved a higher degree of accuracy.
In another study [2], the authors proposed the Inception Recurrent Residual Convolu-
tional Neural Network (IRRCNN) network, which obtained 97.95% accuracy for image
classification and 97.65% accuracy for patient classification. Unlike IRRCNN, FabNet ob-
tained a 99.01% patient-level accuracy and 99.03% picture-level accuracy using this dataset.
The authors obtained 99.05% accuracy for binary classification and 98.59% accuracy for
multiclassification using data augmentation. We obtained comparable outcomes without
applying data augmentation. Data augmentation enables a learning model to overcome
important training constraints such as overfitting, hence improving its accuracy and gener-
alization capabilities. In the case of our model, we think that its ability for generalization
is strengthened despite the absence of data augmentation. A similar accuracy was shown
by Rui Man et al. [55] at the 40× magnification level, however our model achieved bet-
ter results at the 200× and 400× magnification levels. The authors proposed the use of
DenseNet121-ino, which has substantially more training parameters than FabNet does.

6. Conclusions

In this paper, we suggested the FabNet model that can learn the fine-to-coarse struc-
tural and textural features of multi scale histopathological images by accretive network
architecture, which agglomerates hierarchical feature maps to acquire significant classi-
fication accuracy. We expanded upon the conventional convolutional neural network
architecture by incorporating deeper integration to finely fuse information across layers.
This layer expansion had a small impact on the model’s depth; however, it made the model
more tightly linked with a compact form, ensuring that any piece of detail was transferred
to the deeper layers for better learning. Despite having fewer parameters, this lightweight
network architecture yielded better classification accuracy than the state-of-the-art models did.

Our model yields improved classification probabilities at both the patch as well as
the image levels. The efficiency and reliability of the FabNet were assessed using two
public datasets that included breast and colon cancer data based on several experiments,
for instance, multi- and binary classifications. The suggested FabNet improved upon
the existing state-of-the-art models when they were evaluated using both of the public
benchmark datasets. The experimental parameters were kept the same for the benchmark
models, as well as for the proposed model to precisely conclude the performance. The
proposed model achieved 99% accuracy and a 98.9% F1 score in the case of the binary
classification of BreakHis at the 40× magnification scale. The model achieved 98.2% test
accuracy and a 98.23% F1 score for NCT-CRC-HE-100K colon cancer dataset without
employing any data augmentation technique.

We believe that the model can reduce the cancer screening time for pathologists, as
well as oncologists. In diverse circumstances, oncologists and researchers working in the
field of cancer detection and diagnostics using histological images will benefit from the
proposed model’s high sensitivity and accuracy. Although the closely coupled architecture
tackled the imbalance in the dataset issue, which ultimately resulted in minor effects on the
model’s performances, since the data imbalance is so prominent in the clinical histology,
we intend to look at certain strategies for coping with this problem in the future. We will
also look at which feature map combinations which are most significant for classification.
The proposed model can be used to perform a variety of tasks related to histological
image-based classification in clinical environments.
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Simple Summary: Wilms’ tumor is the most common renal malignant tumor in children, and
chemotherapy is an indispensable part of the treatment for most Wilms’ tumor patients. Chemotherapy-
induced myelosuppression is the most common and serious toxicity of chemotherapy, which can
hinder the process of chemotherapy and even endanger life. However, there is a lack of tools to predict
chemotherapy-induced myelosuppression. We herein develop a model based on machine learning
that can effectively predict the risk of chemotherapy-induced myelosuppression in children with
Wilms’ tumor, offering the possibility to identify children with high risk of chemotherapy-induced
myelosuppression early and take preventive strategies.

Abstract: Purpose: Develop and validate an accessible prediction model using machine learning (ML)
to predict the risk of chemotherapy-induced myelosuppression (CIM) in children with Wilms’ tumor
(WT) before chemotherapy is administered, enabling early preventive management. Methods: A total
of 1433 chemotherapy cycles in 437 children with WT who received chemotherapy in our hospital from
January 2009 to March 2022 were retrospectively analyzed. Demographic data, clinicopathological
characteristics, hematology and blood biochemistry baseline results, and medication information
were collected. Six ML algorithms were used to construct prediction models, and the predictive
efficacy of these models was evaluated to select the best model to predict the risk of grade ≥ 2 CIM
in children with WT. A series of methods, such as the area under the receiver operating characteristic
curve (AUROC), the calibration curve, and the decision curve analysis (DCA) were used to test the
model’s accuracy, discrimination, and clinical practicability. Results: Grade ≥ 2 CIM occurred in
58.5% (839/1433) of chemotherapy cycles. Based on the results of the training and validation cohorts,
we finally identified that the extreme gradient boosting (XGB) model has the best predictive efficiency
and stability, with an AUROC of up to 0.981 in the training set and up to 0.896 in the test set. In
addition, the calibration curve and the DCA showed that the XGB model had the best discrimination
and clinical practicability. The variables were ranked according to the feature importance, and the
five variables contributing the most to the model were hemoglobin (Hgb), white blood cell count
(WBC), alkaline phosphatase, coadministration of highly toxic chemotherapy drugs, and albumin.
Conclusions: The incidence of grade ≥ 2 CIM was not low in children with WT, which needs
attention. The XGB model was developed to predict the risk of grade ≥ 2 CIM in children with WT
for the first time. The model has good predictive performance and stability and has the potential
to be translated into clinical applications. Based on this modeling and application approach, the
extension of CIM prediction models to other pediatric malignancies could be expected.
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1. Introduction

Wilms’ tumor (WT) is the most common renal malignancy in children and has the
second highest incidence of pediatric primary abdominal malignancies. Although multidis-
ciplinary treatments have advanced, recurrence occurs in approximately 15% of children
with WT, and the survival rate after recurrence is only about 50% [1–3]. As the surgical
resection of pediatric tumors is often difficult, chemotherapy is an indispensable part of the
treatment for most WT patients.

However, chemotherapy drugs have many toxicities and side effects. Chemotherapy-
induced myelosuppression (CIM) is the most common and severe toxicity of chemotherapy
for tumors, typically manifesting as anemia, neutropenia, thrombocytopenia, and/or lym-
phopenia [4–7], leading to an increased risk of life-threatening infection, fatigue, and
potential bleeding [8,9]. CIM often forces children to interrupt or postpone their chemother-
apy course, severely compromising the effectiveness of treatment and even leading to death
due to CIM-related complications. Studies have reported that the mortality rate related to
grade 4 CIM can reach 4–12% [10]. Therefore, early identification of children at high risk of
CIM and timely implementation of corresponding preventive and therapeutic measures
can not only improve the effectiveness of tumor treatment, but also significantly reduce the
disease burden caused by the related complications [11].

Studies have shown that risk factors for CIM include age, nutritional status, poor
liver and kidney function, low baseline white blood cell count (WBC), chemotherapy
cycles, etc. [12–15]. Various mathematical models for predicting CIM or febrile neutropenia
(FN) have been proposed [16–18] and successfully applied to predict dynamic changes in
neutrophil count [19,20]. However, these studies focused on predicting the risk of FN in
adult tumors such as breast cancer, small cell lung cancer, and colorectal cancer [14,21,22].

The predictors of CIM in pediatric malignant solid tumors, especially in WT, have not
been reported. In addition, most of the pharmacokinetic mathematical models developed
in these studies focus on predicting CIM/FN caused by a single drug, making it difficult
to extend to pediatric tumors requiring multidrug combination therapy. Moreover, the
application of these models requires repeated and frequent monitoring of changes in hema-
tological parameters and drug concentrations, such invasive tests are often unacceptable
to children and parents [20,22], and the relatively backward economic and medical levels
in developing countries seem to make the implementation of such monitoring strategies
more difficult.

Therefore, CIM or FN prediction models reported in the existing studies are difficult to
widely apply to predict CIM in children with WT. It is necessary to develop a CIM prediction
model for children with WT that is easy to use and has good prediction efficiency.

At present, artificial intelligence (AI) has been widely applied in the medical field.
Machine learning (ML), as a branch of AI, can overcome the shortcomings of traditional
logistic regression and mathematical models, and has a strong ability for feature recogni-
tion, classification, and prediction [23]. The models established based on machine learning
have been successfully used in predicting the prognosis of various tumors or diseases,
which presented good predictive ability [24–26]. Shibahara et al. collected pretreatment
clinical data of glioma patients treated with nimustine hydrochloride (ACNU), and fur-
ther successfully established a prediction model of CIM using machine learning, as well
as describing the relationship between myelosuppression and hematopoietic stem cells
(HSCs) [27]. In our study, various premedication clinical data in each chemotherapy cycle
of WT children with a large sample size from the clinical big data platform of our hospital
were collected, including blood cells baseline level, liver and kidney function indicators,
tumor stage, body weight, body surface area and other variables, and six ML algorithms

87



Cancers 2023, 15, 1078

were used to construct CIM prediction models. Meanwhile, further evaluation of each
model was carried out to select the model with the best prediction performance, which can
help doctors identify children with WT at high risk of CIM early and develop individual-
ized strategies for prevention, treatment, and follow-up to reduce the disease burden and
improve prognosis.

2. Methods

2.1. Patients

The data of patients with WT who received chemotherapy in our hospital from January
2009 to March 2022 were collected from our hospital’s clinical big data platform. Inclusion
criteria: (1) younger than 18 years old; (2) patients diagnosed with WT; (3) patients having
received at least one cycle of chemotherapy; (4) patients having received at least one routine
blood test and biochemical blood test before and after chemotherapy. Exclusion criteria:
(1) patients with other hematologic diseases or a history of HIV infection or stem cell
transplantation; (2) patients with incomplete medical records (missing more than 50% of
variables used for analysis); (3) patients with treatment interruption.

2.2. Collection and Definition of Variables
2.2.1. General Variables

Variables such as demographic data, clinicopathological characteristics, the laboratory
examination, and medication information after each admission were collected as follows:
age, gender, height, weight, tumor stage, COG grade, the routine hematologic index and
biochemical index, routine urinalysis, the type of chemotherapy drugs used, chemotherapy
cycles, etc.

2.2.2. Outcome Indicators

The occurrence of grade ≥ 2 CIM was taken as the outcome indicator. According to
the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE)
version 5.0, if one of the following 4 criteria is met after chemotherapy, it can be defined as
grade ≥ 2 CIM: (1) WBC < 3.0 × 109/L; (2) absolute neutrophil count (ANC) < 1.5 × 109/L;
(3) hemoglobin level (Hgb) < 100 g/L; (4) platelet count (PLT) < 75 × 109/L.

2.2.3. Calculation of Composite Variables

(1) Systemic immune-inflammation index (SII) = PLT × ANC/absolute lymphocyte
count (ALC) [28]

(2) Neutrophil to lymphocyte ratio (NLR) = ANC/ALC
(3) Platelet to lymphocyte ratio (PLR) = PLT/ALC
(4) Body surface area (BSA) = 0.035 × body weight + 0.1 (body weight ≤ 30 kg)

BSA = 1.05 + (body weight − 30) × 0.02 (body weight > 30 kg)

2.2.4. Derived Variables

Coadministration of highly toxic chemotherapy drugs refers to any high hematologic
toxicity chemotherapy drugs used during that chemotherapy cycle.

Chemotherapy drugs are divided into two categories according to the level of hema-
tological toxicity [29,30]: (1) high: cyclophosphamide (CTX), ifosfamide, doxorubicin,
epirubicin, actinomycin D, carboplatin, etoposide, topotecan, vindesine; (2) moderate/low:
cisplatin, vincristine, bleomycin, fluorouracil.

2.3. Data Preprocessing
2.3.1. Quality Control of Samples

Each chemotherapy cycle of each WT patient was taken as a separate sample. The
missing rate of each sample characteristic variable was counted, and 50% was selected as
the threshold value according to the distribution of each sample characteristic variable
and modeling requirements. If 50% or more of all characteristic variables were missing
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simultaneously, the sample characteristic variable was considered seriously missing and
met the exclusion criteria.

2.3.2. Imputation Methods of Missing Data

For clinical characteristic variables, after the sample size was determined, the missing
rate of each characteristic variable was checked, and 20% was selected as the threshold
according to the modeling requirements. If the missing rate of the characteristic variable
exceeds 20%, the variable will be deleted and not included in the model construction.
Other missing categorical variables were imputed with the mode while missing continuous
variables were imputed with the median. In addition, chemotherapy drugs with a relative
frequency of medication less than 5% were also deleted and not included in the model
construction (relative frequency of medication = frequency of drug use/total sample size).

2.4. Model Building
2.4.1. Datasets and Algorithms

Extreme gradient boosting (XGB), logistic regression (LR), random forest (RF), least
absolute shrinkage and selection operator (LASSO), support vector machine (SVM), and
CatBoost were used to establish the ML model. R version 4.2.0 and Python version 3.7 were
used for model construction and statistical analysis. Stratification was performed according
to the outcome, and the data set was randomly divided into the training set and the test set
at a 7:3 ratio.

2.4.2. Original Variables and Variable Selection

Information value (IV) was used as a correlation indicator, which can be used to
measure the difference in the distribution of a variable between the two groups of samples
to characterize the predictive ability of the variable on the outcome [31]. The threshold
value of IV was set as 0.2, and variables with IV less than 0.2 were deleted. Since the
chemotherapy cycle and the type of chemotherapy drugs have been confirmed to be related
to the occurrence of CIM, these two variables were included in the model even though their
IV were less than 0.2.

For the selected variables related to the outcome, the absolute value of the correlation
coefficient was calculated to examine the collinearity, and the threshold was set as 0.8.
The variable with the smaller IV was also deleted from the collinear variables exceeding
the threshold.

2.4.3. Modelling Procedure

Fivefold cross-validation (CV) was used to divide the CV training set and the CV
validation set inside the training set, then the optimal hyperparameter of the model was
obtained using Bayesian optimization. According to the optimal hyperparameter, the
model was trained again on the entire training set to obtain the final model, and further
evaluated the models’ prediction performance on the training set and test set.

The area under the curve (AUC), sensitivity (TPR), specificity (TNR), precision (ACC),
and precision (PPV) of the receiver operating characteristic curve (ROC) were used to
characterize the fitting and accuracy of the model. Population stability index (PSI) was
used to measure the stability of the model in the training set and validation set [32].
(PSI < 0.1, the model is stable; PSI: 0.1~0.25, the model is slightly unstable; PSI > 0.25, the
model is unstable). Hosmer–Lemeshow test was used to assess the calibration of models.
The decision curve analysis (DCA) was used to evaluate the clinical utility of these models.
Moreover, Coefficients of weight importance in the final model were provided to rank the
feature importance.

2.4.4. Clinical Application of the Model

In order to realize the translation of research results into clinical practice, the model
was presented and applied in our hospital information system (HIS) in the form of clinical
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decision support system (CDSS). After the first hematological examination for each patient,
the doctor preliminarily confirms the medication regimen, at which point the system
backstage automatically extracts the relevant data from the HIS into the model, then
calculate the risk value and present it in the CDSS. “Risk Scoring” is one of the essential
modules. A patient’s risk score was calculated based on the final model score × 100, where
low–medium risk was classified according to negative predictive value (NPV) = 0.8 and
medium–high risk was classified according to positive predictive value (PPV) = 0.9. That
is, the cutoff value for low–medium risk should ensure a negative prediction rate of >80%
for low-risk patients, and the cutoff value for medium–high risk should ensure a positive
prediction rate of >90% for high-risk patients.

To further improve the intuitiveness, accessibility, and practicability of the model,
a brief description and the scoring basis of the model were presented in the CDSS, and
the “Historical Trend” module was added to show the occurrence of CIM in previous
admissions. In addition, the system can provide recommendations for possible prevention
or intervention strategies based on the model scores.

2.5. Statistical Analysis Methods

Continuous variables were described in the form of the median (lower and upper
quantile), and categorical variables were described in the form of frequency and percentage.
Wilcoxon rank sum test and chi-square test were used to compare the differences between
groups for continuous variables and categorical variables, respectively. p < 0.05 was
considered statistically different.

The entire modeling procedure is shown in Figure 1.

 

Figure 1. The entire modeling procedure.
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3. Result

3.1. Description of Baseline Characteristics

On our hospital’s clinical big data platform, 437 cases of WT patients receiving
chemotherapy were retrieved, with a total of 1478 chemotherapy cycles. According to
the inclusion and exclusion criteria, 45 samples were excluded, resulting in a final sample
size of 1433. According to the National Cancer Institute Common Terminology Crite-
ria for Ad-verse Events (CTCAE) version 5.0, grade ≥ 2 CIM can be defined if one of
the following four criteria is met after chemotherapy: (1) WBC < 3.0 × 109/L; (2) ab-
solute neutrophil count (ANC) < 1.5 × 109/L; (3) hemoglobin level (Hgb) < 100 g/L;
(4) platelet count (PLT) < 75 × 109/L. The baseline characteristics of all patients and the
comparison of baseline characteristics of patients in different datasets are shown in Table 1,
and the comparison of baseline characteristics of patients with and without grade ≥ 2 CIM
is shown in Table 2.

Table 1. Comparison of baseline characteristics of patients in different data sets.

Variable ALL (N = 1433)
Training Set
(N = 1003)

Test Set
(N = 430)

Statistic (Z/χ2) p Value

Age (days), M (Q1–Q3) 1388 (807–2221) 1391 (810–2245) 1376 (803–2163) −0.814 0.416
Sex 2.707 0.100

Female 674 (47.0%) 486 (48.5%) 188 (43.7%)
Male 759 (53.0%) 517 (51.5%) 242 (56.3%)

Weight (kg), M (Q1–Q3) 14.5 (11.5–19.0) 14.5 (11.5–19.0) 14.0 (11.5–18.0) −0.844 0.398
BSA (m2), M (Q1–Q3) 0.61 (0.50–0.77) 0.61 (0.50–0.77) 0.59 (0.50–0.73) −0.823 0.410
Tumor stage 6.561 0.161

I 116 (8.1%) 84 (8.4%) 32 (7.4%)
II 224 (15.6%) 149 (14.9%) 75 (17.4%)
III 495 (34.5%) 360 (35.9%) 135 (31.4%)
IV 516 (36.0%) 360 (35.9%) 156 (36.3%)
V 82 (5.7%) 50 (5.0%) 32 (7.4%)

Risk classification (COG) 0.045 0.831
FH 1022 (71.3%) 717 (71.5%) 305 (70.9%)
uFH 411 (28.7%) 286 (28.5%) 125 (29.1%)

Chemotherapy cycles, M (Q1–Q3) 4.0 (2.0–9.0) 4.0 (2.0–8.0) 5.0 (2.0–9.0) 1.408 0.159
Hematologic index, M (Q1–Q3)

Neutrophil percentage 0.59 (0.48–0.70) 0.59 (0.48–0.70) 0.58 (0.47–0.69) −1.087 0.277
ANC (×109/L) 3.50 (2.36–4.91) 3.53 (2.35–4.99) 3.49 (2.39–4.83) −0.031 0.975
Monocyte percentage 0.04 (0.03–0.07) 0.04 (0.03–0.06) 0.04 (0.03–0.07) −0.659 0.510
AMC (×109/L) 0.28 (0.19–0.39) 0.28 (0.19–0.38) 0.30 (0.19–0.41) −1.212 0.225
P–LCR (%) 24.2 (19.0–29.8) 24.2 (19.0–29.9) 24.4 (18.9–29.7) −0.381 0.703
MCV (fL) 82.9 (78.7–87.6) 83.0 (78.6–87.6) 82.9 (78.8–87.5) −0.283 0.777
MCHC (g/L) 325.0 (315.0–333.0) 325.0 (316.0–333.0) 325.0(315.0–333.0) −0.100 0.920
MCH (pg) 27.1 (25.4–28.8) 27.0 (25.4–28.9) 27.1 (25.3–28.7) −0.423 0.673
Lymphocyte percentage (%) 0.30 (0.20–0.43) 0.30 (0.20–0.43) 0.32 (0.21–0.43) −0.842 0.400
ALC (×109/L) 1.75 (0.95–3.11) 1.71 (0.97–2.99) 1.94 (0.93–3.36) −1.220 0.223
WBC (×109/L) 6.10 (4.32–8.73) 6.01 (4.27–8.73) 6.28 (4.45–8.74) −0.809 0.419
RBC (×109/L) 3.96 (3.52–4.36) 3.94 (3.51–4.33) 4.02 (3.53–4.41) −1.427 0.154
RDW (%) 15.5 (14.0–17.3) 15.5 (14.0–17.3) 15.5 (14.1–17.5) −0.551 0.582
ARD (fL) 47.0 (41.0–52.0) 47.0 (42.0–52.0) 47.0 (41.0–52.0) −0.248 0.804
Hematocrit (%) 32.9 (29.9–35.5) 32.8 (29.9–35.3) 33.2 (29.8–35.9) −1.257 0.209
PDW (fL) 11.0 (9.8–12.4) 11.0 (9.8–12.4) 11.1 (9.8–12.3) −0.329 0.742
Thrombocytocrit (%) 0.31 (0.24–0.38) 0.31 (0.24–0.38) 0.32 (0.25–0.38) −0.114 0.909
MPV (fL) 10.0 (9.3–10.7) 9.9 (9.3–10.7) 10.0 (9.3–10.7) −0.274 0.784
PLT (×109/L) 297.0 (227.0–387.0) 295.0 (223.0–390.0) 304.0 (238.0–378.0) −0.903 0.366
Hgb (g/L) 107.0 (95.0–116.0) 107.0 (95.0–116.0) 107.0 (96.0–118.0) −1.100 0.271
SII 575.2 (334.7–951.1) 579.8 (336.0–967.5) 569.4 (333.4–917.1) −0.398 0.691
NLR 1.97 (1.12–3.37) 2.00 (1.13–3.44) 1.85 (1.09–3.24) −0.996 0.319
PLR 162.8 (101.4–274.4) 169.7 (102.5–276.5) 149.6 (96.8–268.8) −1.180 0.238
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Table 1. Cont.

Variable ALL (N = 1433)
Training Set
(N = 1003)

Test Set
(N = 430)

Statistic (Z/χ2) p Value

Urinalysis index
pH 6.52 (6.00–7.00) 6.52 (6.00–7.00) 6.52 (6.00–7.00) −0.433 0.665

Biochemical index
LDH (U/L) 286.8 (227.0–418.4) 286.5 (228.0–418.4) 287.0 (225.0–418.4) −0.246 0.806
UA (μmol/L) 284.8 (242.0–325.0) 284.8 (237.0–325.0) 284.8 (249.5–325.0) −1.598 0.110
TBIL (μmol/L) 6.80 (4.00–8.10) 6.80 (4.00–8.20) 6.50 (4.00–7.80) −0.970 0.332
TP (g/L) 63.8 (60.7–67.4) 63.8 (60.9–67.3) 63.8 (60.2–67.8) −0.313 0.755
Globulin (g/L) 22.2 (19.3–24.4) 22.2 (19.1–24.4) 22.2 (19.6–24.2) −0.202 0.840
Albumin (g/L) 41.7 (39.6–44.8) 41.7 (39.7–44.9) 41.7 (39.3–44.7) −0.592 0.554
ALP (U/L) 175.8(133.1–197.3) 175.8 (134.0–199.0) 175.8(132.0–193.5) −0.637 0.524
Scr (μmol/L) 34.3 (28.0–38.0) 34.3 (28.0–38.0) 34.3 (28.0–38.5) −1.139 0.255
ALT (U/L) 21.7 (14.4–26.0) 21.1 (14.3–25.6) 22.5 (14.6–27.1) −1.303 0.192
AST (U/L) 35.9 (28.1–40.0) 35.4 (28.0–39.4) 37.2 (29.0–41.3) −2.270 0.023

Grade ≥ 2 CIM 0.001 0.977
With 594 (41.5%) 416 (41.5%) 178 (41.4%)
Without 839 (58.5%) 587 (58.5%) 252 (58.6%)

AMC: absolute monocyte count; P–LCR: platelet–large cell ratio; MCV: mean corpuscular volume; MCHC: mean
corpuscular hemoglobin concentration; MCH: mean corpuscular hemoglobin; ALC: absolute lymphocyte count;
WBC: white blood cell count; RBC: red blood cell count; RDW: red blood cell distribution width; ARD: absolute
value of RBC distribution; PDW: platelet distribution width; MPV: mean platelet volume; PLT: platelet count; Hgb:
hemoglobin; LDH: lactate dehydrogenase; UA: uric acid; TBIL: total bilirubin; TP: total protein; ALP: alkaline
phosphatase; Scr: serum creatinine; ALT: alanine transaminase; AST: aspartate transaminase.

Table 2. Comparison of baseline characteristics of patients with and without CIM.

Variable
Grade ≥ 2 CIM

Statistic p Value
Without (N = 594) With (N = 839)

Age (days), M (Q1–Q3) 1554 (905–2478) 1294 (726–2022) −4.432 <0.001
Sex 11.368 0.001
Female 248 (41.7%) 426 (50.8%)
Male 346 (58.3%) 413 (49.2%)
Weight (kg), M (Q1–Q3) 16.0 (12.0–20.0) 14.0 (11.0–18.0) −5.388 <0.001
BSA (m2), M (Q1–Q3) 0.66 (0.52–0.80) 0.59 (0.49–0.73) −5.385 <0.001
Tumor stage 1.915 0.751

I 51 (8.6%) 65 (7.8%)
II 92 (15.5%) 132 (15.7%)
III 211 (35.5%) 284 (33.9%)
IV 211 (35.5%) 305 (36.4%)
V 29 (4.9%) 53 (6.3%)

Risk classification (COG) 3.011 0.083
FH 409 (68.9%) 613 (73.1%)
uFH 185 (31.1%) 226 (26.9%)

Chemotherapy cycles 5 (2.0–10.0) 4 (1.0–8.0) 5.574 <0.001
Hematologic index, M (Q1–Q3)

Neutrophil percentage (%) 0.59 (0.48–0.71) 0.59 (0.47–0.69) −1.398 0.162
ANC (×109/L) 3.68 (2.65–4.74) 3.38 (2.06–5.10) −2.631 0.009
Monocyte percentage (%) 0.04 (0.03–0.06) 0.05 (0.03–0.07) −4.919 <0.001
AMC (×109/L) 0.27 (0.19–0.37) 0.29 (0.20–0.40) −2.650 0.008
P–LCR (%) 25.2 (20.1–31.3) 23.7 (18.3–28.4) −3.726 <0.001
MCV (fL) 83.1 (79.4–87.3) 82.9 (78.1–87.7) −0.853 0.393
MCHC (g/L) 328.0 (319.0–334.0) 322.0 (312.0–332.0) −7.379 <0.001
MCH (pg) 27.3 (26.0–28.8) 26.9 (24.8–28.8) −3.545 <0.001
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Table 2. Cont.

Variable
Grade ≥ 2 CIM

Statistic p Value
Without (N = 594) With (N = 839)

Lymphocyte percentage (%) 0.31 (0.19–0.43) 0.30 (0.21–0.43) −0.562 0.574
ALC(×109/L) 1.85 (1.01–3.01) 1.70 (0.92–3.21) −1.272 0.203
WBC (×109/L) 6.35 (4.80–8.23) 5.98 (3.78–9.05) −2.253 0.024
RBC (×109/L) 4.21 (3.88–4.54) 3.73 (3.29–4.18) −13.946 <0.001
RDW (%) 14.8 (13.7–16.1) 16.1 (14.4–18.3) −9.918 <0.001
ARD (fL) 45.0 (41.0–49.0) 47.7 (42.0–54.0) −6.889 <0.001
Hematocrit (%) 34.9 (33.0–36.8) 30.8 (27.9–33.6) −18.756 <0.001
PDW (fL) 11.2 (10.0–12.6) 10.8 (9.7–12.1) −4.376 <0.001
Thrombocytocrit (%) 0.29 (0.24–0.37) 0.34 (0.25–0.40) −5.935 <0.001
MPV (fL) 10.0 (9.4–10.9) 9.9 (9.2–10.5) −4.009 <0.001
PLT (×109/L) 278.0 (218.0–345.0) 316.0 (237.0–413.0) −5.989 <0.001
Hgb (g/L) 114.0 (107.0–121.0) 98.0 (89.0–110.0) −19.054 <0.001
SII 516.2 (322.5–909.0) 616.0 (346.0–977.5) −2.349 0.019
NLR 1.90 (1.13–3.65) 2.00 (1.11–3.22) −0.650 0.516
PLR 140.0 (94.9–243.2) 180.1 (109.0–301.0) −4.873 <0.001

Urinalysis index
pH 6.52 (6.00–7.00) 6.52 (6.00–7.00) −0.535 0.593

Biochemical index
LDH (U/L) 275.0 (227.8–418.4) 297.1 (226.8–418.4) −2.666 0.008
UA (μmol/L) 284.8 (242.0–305.1) 284.8 (241.0–335.0) −3.076 0.002
TBIL (μmol/L) 6.86 (4.20–8.30) 6.10 (3.80–8.00) −2.992 0.003
TP (g/L) 63.8 (62.0–68.1) 63.8 (59.9–67.0) −4.537 <0.001
Globulin (g/L) 22.2 (19.2–23.9) 22.2 (19.5–24.8) −1.555 0.120
Albumin (g/L) 42.5 (41.6–45.5) 41.7 (38.1–44.1) −7.927 <0.001
ALP (U/L) 175.8 (160.0–204.8) 159.5 (118.9–188.0) −8.870 <0.001
Scr (μmol/L) 34.3 (28.0–37.0) 34.3 (27.5–39.0) −0.525 0.600
ALT(U/L) 21.0 (14.4–24.0) 22.0 (14.2–27.6) −1.216 0.224
AST (U/L) 35.9 (28.8–38.1) 35.9 (28.0–42.0) −1.416 0.157

AMC: absolute monocyte count; P–LCR: platelet–large cell ratio; MCV: mean corpuscular volume; MCHC: mean
corpuscular hemoglobin concentration; MCH: mean corpuscular hemoglobin; ALC: absolute lymphocyte count;
WBC: white blood cell count; RBC: red blood cell count; RDW: red blood cell distribution width; ARD: absolute
value of RBC distribution; PDW: platelet distribution width; MPV: mean platelet volume; PLT: platelet count; Hgb:
hemoglobin; LDH: lactate dehydrogenase; UA: uric acid; TBIL: total bilirubin; TP: total protein; ALP: alkaline
phosphatase; Scr: serum creatinine; ALT: alanine transaminase; AST: aspartate transaminase.

3.2. Selection of Variables during Modeling

Matching the patient’s first laboratory examination index after admission, a total of
46 clinically relevant characteristic variables were extracted, of which six characteristic
variables (absolute value of basophils, percentage of basophils, cholinesterase, prealbumin,
bile acids, and urine pH) had a missing rate of more than 20% and were excluded. Finally,
40 clinical characteristic variables were incorporated into the model for further screening,
as shown in Table 3.

3.3. Selection of Chemotherapy Drugs

The relative frequency of the use of each chemotherapy drug is shown in Table 4,
among which bleomycin, fluorouracil, topotecan, vindesine, and ifosfamide were excluded
because the relative frequency of use was less than 5% and significantly different from that
of other drugs. Thus, a total of nine variables including cisplatin, doxorubicin, epirubicin,
carboplatin, etoposide, actinomycin D, cyclophosphamide, and vincristine, as well as
the coadministration of highly toxic chemotherapy drugs, were incorporated into the
final model.
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Table 3. 40 clinical characteristic variables to be screened.

Variable Missing Sample Miss Rate (%)

Age 0 0.00
Sex 0 0.00
Weight 49 3.42
BSA 49 3.42
Tumor stage 1 0.07
Risk classification (COG) 48 3.35
Chemotherapy cycle 18 1.26
Neutrophil percentage 5 0.35
ANC 18 1.26
Monocyte percentage 8 0.56
AMC 45 3.14
P–LCR 94 6.56
MCV 3 0.21
MCHC 3 0.21
MCH 2 0.14
Lymphocyte percentage 6 0.42
ALC 16 1.12
WBC 2 0.14
RBC 1 0.07
RDW 4 0.28
ARD 102 7.12
Hematocrit 3 0.21
PDW 86 6.00
Thrombocytocrit 114 7.96
MPV 81 5.65
PLT 2 0.14
Hgb 1 0.07
SII 16 1.12
NLR 16 1.12
PLR 16 1.12
LDH 219 15.28
UA 204 14.24
TBIL 220 15.35
TP 219 15.28
Globulin 220 15.35
Albumin 219 15.28
ALP 220 15.35
Scr 205 14.31
ALT 221 15.42
AST 220 15.35

AMC: absolute monocyte count; P–LCR: platelet–large cell ratio; MCV: mean corpuscular volume; MCHC: mean
corpuscular hemoglobin concentration; MCH: mean corpuscular hemoglobin; ALC: absolute lymphocyte count;
WBC: white blood cell count; RBC: red blood cell count; RDW: red blood cell distribution width; ARD: absolute
value of RBC distribution; PDW: platelet distribution width; MPV: mean platelet volume; PLT: platelet count; Hgb:
hemoglobin; LDH: lactate dehydrogenase; UA: uric acid; TBIL: total bilirubin; TP: total protein; ALP: alkaline
phosphatase; Scr: serum creatinine; ALT: alanine transaminase; AST: aspartate transaminase.

3.4. Variables Finally Selected for the Model

According to the selection criteria of predictive variables, 19 variables finally incorpo-
rated into the model are shown in Table 5. In order to improve the interpretability of the
final model (XGB), we ranked the feature importance of the incorporated variables. The
five variables contributing the most to the model were hemoglobin (Hgb), white blood cell
count (WBC), alkaline phosphatase, coadministration of highly toxic chemotherapy drugs,
and albumin, as shown in Figure 2.
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Table 4. Frequency of use of each chemotherapy drug.

Drug Relative Frequency Frequency

Bleomycin 0.001 1
Fluorouracil 0.006 9
Topotecan 0.011 16
Vindesine 0.012 17
Ifosfamide 0.017 23
Cisplatin 0.124 172
Doxorubicin 0.126 176
Epirubicin 0.175 243
Carboplatin 0.254 354
Etoposide 0.342 476
Actinomycin D 0.348 485
Cyclophosphamide 0.504 701
Vincristine 0.703 978

Table 5. Variables finally included in the model.

Variable (n = 19) IV

Hgb 1.770
RBC 0.708
ALP 0.422
RDW 0.392
WBC 0.372
ANC 0.369
Albumin 0.328
MCHC 0.243
PLT 0.213
Chemotherapy cycles 0.082
Coadministration of highly toxic chemotherapy drug 0.061
Cisplatin 0.028
Vincristine 0.022
Epirubicin 0.013
Carboplatin 0.007
Actinomycin D 0.005
Etoposide 0.001
Cyclophosphamide 0.000
Doxorubicin 0.000

IV: information value; Hgb: hemoglobin; RBC: red blood cell count; ALP: alkaline phosphatase; RDW: red blood
cell distribution width; WBC: white blood cell count; MCHC: mean corpuscular hemoglobin concentration; PLT:
platelet count.

3.5. Evaluation of the Model

The fitting effect and authenticity evaluation results of each model are shown in
Figure 3, Tables 6 and 7, respectively. The results show that the XGB model has the best
fitting effect, the largest AUC (training set: 0.981, test set: 0.896), good sensitivity (76.2%),
and specificity (93.2%), and better stability. In the XGB model, the feature importance of
each variable is shown in Figure 2. The five variables that contribute the most to the model
are Hgb, WBC, alkaline phosphatase, coadministration of highly toxic chemotherapy drugs,
and albumin. In addition, the XGB model showed the best calibration in the comparison
of calibration curves of other models (Figure 4). DCA showed that the XGB model can
contribute to clinical decision-making (Figure 5).
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Figure 2. The ranking of feature importance in the XGB model. Briefly, the importance weight of a
feature is the sum of the number of its occurrences in all decision trees. In other words, the more
a feature is used to build a decision tree in the model, the higher its importance weight will be.
Hgb: hemoglobin; WBC: white blood cell count; ALP: alkaline phosphatase; RBC: red blood cell
count; MCHC: mean corpuscular hemoglobin concentration; PLT: platelet count; RDW: red blood cell
distribution width.

Figure 3. ROC curve of six ML models for predicting grade ≥ 2 CIM. (A) In the test set; (B) in the
validation set. SVM: support vector machine; RF: random forest; LR: logistic regression; LASSO: least
absolute shrinkage and selection operator; XGB: extreme gradient boosting.
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Table 6. Evaluation of fitting effect of each model.

Model
AUC

PSI
Training Set Test Set

XGB 0.981 0.896 0.033
CatBoost 0.996 0.888 0.086
RF 0.842 0.856 0.015
SVM 0.930 0.849 0.066
LR 0.843 0.842 0.007
LASSO 0.843 0.842 0.007

XGB: extreme gradient boosting; LR: logistic regression; RF: random forest; LASSO: least absolute shrinkage and
selection operator; SVM: support vector machine; PSI: population stability index.

Table 7. Evaluation of authenticity of each model.

Model Best Cutoff TPR TNR ACC PPV

XGB 0.529 76.2% 93.3% 83.3% 94.1%
RF 0.569 68.3% 88.2% 76.5% 89.1%
CatBoost 0.585 75.0% 90.4% 81.4% 91.7%
SVM 0.581 75.0% 84.3% 78.8% 87.1%
LR 0.687 66.3% 88.8% 75.6% 89.3%
LASSO 0.685 66.3% 88.8% 75.6% 89.3%

TPR: sensitivity; TNR: specificity; ACC: precision; PPV: precision; XGB: extreme gradient boosting; LR: lo-
gistic regression; RF: random forest; LASSO: least absolute shrinkage and selection operator; SVM: support
vector machine.

Figure 4. Calibration curves of the six ML models.

3.6. Clinical Application of the Model

Through a series of evaluations of the model, the XGB model with the best predictive
efficacy was selected, presented, and applied in our hospital’s HIS in the form of CDSS.
It includes modules such as the risk scoring and scoring basis of grade ≥ 2 CIM, model
description, historical trend of the previous occurrence of CIM, and management recom-
mendations (Figure 6). The predictive model is currently running smoothly in the HIS.
Moreover, to better demonstrate how our model works in reality and to further elaborate
on the clinical applicability of the model, we ran the model in our hospital HIS to assess
the risk of CIM in a particular child (Supplementary Materials).
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Figure 5. Decision curve analysis of the six ML models.

Figure 6. The interface of the CIM prediction model in the form of CDSS applied in our hospital

HIS. AI Evaluation: the “AI Evaluation” module shows the risk scores of patients with grade
≥ 2 CIM calculated by the model, with the corresponding “protective factors” and “risk factors”
listed below. Historical Trend: the “Historical Trends” module records the occurrence of CIM in
previous chemotherapy cycles. Model Description: this module provides a detailed description of
the applicable conditions and the model results. Management Recommendations: according to the
prediction results of the model, the management suggestions automatically output by the system
backstage are displayed in this module. References: this module presents some references.

4. Discussion

4.1. CIM Is Not Rare during the Treatment of Children with WT

Chemotherapy is one of the important means of treating tumors. Currently, most
chemotherapy drugs exert their effects through cytotoxicity. Cells with strong proliferative
activity may be more sensitive to chemotherapy drugs, making drugs more likely to
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damage hematopoietic stem cells or blood cell precursors, leading to severe CIM [27,33].
A clinical consensus is that grade ≥ 2 CIM requires close monitoring and even timely
intervention. Identifying patients with a high risk of grade ≥ 2 CIM before administration of
chemotherapy drugs can guide doctors to timely administer granulocyte colony-stimulating
factor (G-CSF) and other drugs to prevent the occurrence of CIM during the process of
closely monitoring the changes in blood cells levels, which avoids the interruption of the
chemotherapy course and even the occurrence of more serious complications caused by
CIM [34,35]. It is also why we choose the occurrence of grade ≥ 2 CIM as the outcome
indicator. In this study, grade ≥ 2 CIM occurred in 58.5% (839/1433) chemotherapy cycles.
Although Castagnola et al. reported that the incidence of FN in children with central
nervous system tumors was 27% [36], the outcome of the study was FN rather than CIM,
and the different types of tumors studied may also affect the incidence of FN, so our findings
cannot be compared with their study. Other studies have reported that the incidence of FN
in solid tumors is 13–21%, while FN in hematologic tumors is about 33% [37–39]. Whereas
most of the outcome indicators in these studies were FN, and the subjects were adults,
which could not be compared with the incidence of CIM in our study. However, this also
emphasizes that the incidence of CIM in children with solid tumors is still unknown and
more studies are needed to fill in the gaps. In addition, more than half of the chemotherapy
cycles in our study presented grade ≥ 2 CIM, which fully demonstrates that CIM is not
rare in treating pediatric tumors, especially WT, and the development of early prediction
models for CIM in children with solid tumors is indeed necessary.

4.2. Contribution of Variables to Model Prediction Results

According to the ranking of IV, 19 variables were finally included in the model. Studies
have shown that chemotherapy cycles and regimens can affect the occurrence of CIM, so
even if the IV of those relevant variables were less than 0.2, they were still included in our
model. Feature importance is an indicator to measure the contribution of each variable
to the model’s predictive result (Figure 1). In the XGB model, the Hgb level ranked first
in the feature importance ranking. This seems to differ from what most studies have
reported. More than one study reported that baseline WBC and ANC levels, but not
Hgb levels, were the most critical risk factors for CIM or FN [14,40,41]. On the contrary,
it has also been reported that a low baseline level of Hgb was associated with CIM in
elderly tumor patients [42]. It has been reported that in addition to Hgb, the decrease of
alkaline phosphatase, red blood cell count (RBC), and average hemoglobin concentration
and the increase of red blood cell distribution width (RDW) can also reflect anemia or
hematopoietic abnormalities to some extent [27,33]. Herein, except for RDW, the above
five indicators were lower in the CIM group than in the without-CIM group. This may be
because most of the children in this study underwent surgery before chemotherapy, and
inevitable intraoperative bleeding and the consumption of the tumor on the body led to a
lower baseline Hgb or RBC level before chemotherapy. While stimulated by blood loss, the
proliferation of bone marrow hematopoietic cells may be more active, thus more likely to
be attacked by chemotherapy drugs.

Although Aagaard et al. did not find that low levels of WBC and ANC were associated
with the development of bone marrow suppression in their study [43], most studies have
shown that low baseline WBC and ANC levels are risk factors for myelosuppression [12–14],
and our findings are consistent with them: the low baseline level of WBC and ANC in the
XGB model strongly predicts CIM. Due to the short cycle life of granulocytes, it is difficult
for haemopoietic stem cells or haemopoietic microenvironment damaged by chemotherapy
drugs to generate new granulocytes to replace the consumed granulocytes [27,30]. Hence,
a low ANC level is often the earliest manifestation of CIM. Lower baseline WBC or ANC
levels mean lower granulocyte reserves, meaning CIM is more likely to occur.

In addition, the low baseline level of albumin may be related to the nutritional status
of patients, thus affecting the occurrence of CIM, which is also consistent with the result of
another study [44].
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Moreover, different patients have different chemotherapy regimens [45–47], and dif-
ferent chemotherapy regimens incorporate chemotherapy drugs with different degrees
of hematological toxicity [48,49], so treating each chemotherapy regimen as a variable is
unrealistic. As a result, we added the variable “Coadministration of highly toxic chemother-
apy drugs” to investigate the effect of highly toxic chemotherapy drugs on the risk of
developing CIM. Although its IV was small, its feature importance ranked fourth in the
XGB model. It validates that chemotherapy drugs with high hematotoxicity are indeed
more likely to cause CIM. Unexpectedly, the ranking of feature importance of chemother-
apy drugs in the model seems to be different from our understanding of hematological
toxicity of chemotherapy drugs. Low hematologic toxicity drugs such as cisplatin and
vincristine ranked even higher than high hematologic toxicity drugs such as doxorubicin
and cyclophosphamide. This may be because drugs such as cisplatin and vincristine are
more frequently used in chemotherapy regimens for children with WT and are often used
in combination with other highly toxic chemotherapeutic drugs. Thus, the ranking of the
feature importance of these variables may differ slightly from our general understanding
of CIM risk factors. Nevertheless, the XGB model developed in this study still performed
surprisingly well in predicting grade ≥ 2 CIM.

4.3. XGB Model Has Good Predictive Performance for Grade ≥ 2 CIM

Since the first mechanism model based on pharmacokinetics and pharmacodynam-
ics was developed, other mathematical models for predicting CIM or investigating the
relationship between a chemotherapy drug and changes in blood cell levels have been
developed one after another. These mathematical models can simulate hematopoiesis,
granulocytopoiesis, myelosuppression, and leukemia cytodynamics. Recently published
reviews have provided a comprehensive overview and summary of various models [50,51],
and studies have reported associations between the occurrence of CIM and genomic speci-
ficity [52–54]. Of these models, the maximum AUC of the model predicting FN or CIM
occurrence is only 0.83. Notably, after evaluating the fitting effects of several models used
in our study, we found that the XGB model had an AUC of up to 0.981 in the training
set and 0.896 in the test set, with satisfactory sensitivity and specificity, as well as good
stability. The calibration curve and DCA also suggested that the XGB model had good
calibration and could promote clinical decision-making. In addition to good predictive
performance, the XGB model we developed has other advantages: the modeling variables
we selected were from the baseline data of hematological and biochemical tests before
chemotherapy, and the information about the proposed chemotherapy regimen. These
variables are readily available prior to drug administration. Children do not need to bear
the expensive cost such as genomic marker detection, or the burden and pain caused by
frequent laboratory tests.

4.4. Application of CIM Prediction Model in Clinical Practice

Translating clinical research results to clinical applications has been a significant
challenge. The clinical decision support system (CDSS) helps doctors improve and enhance
the efficiency of decision-making by providing systematic medical knowledge and in-
depth analysis of medical records through a human–computer interaction model, thereby
improving the quality of medical care [55]. CDSS is a vital bridge to facilitate the translation
of clinical research into clinical application.

Considering the application scenarios of the CIM prediction model, we present the
final model in the form of CDSS in our hospital HIS. Patients undergo hematological and
biochemical tests after admission. The doctor then specifies the current chemotherapy
regimen, followed by the system backstage immediately extracting the relevant data,
calculating the CIM risk score through the model and outputting it via CDSS. Doctors
can make appropriate treatment plans based on the predicted results. Despite the risk
score module, the “Management Recommendations” module and the “Historical Trend”
module that records the occurrence of CIM in previous chemotherapy cycles can greatly
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help doctors make better clinical decisions. To better demonstrate how our model works
in reality and to further elaborate on the clinical applicability of the model, we ran the
model in our hospital HIS to assess the risk of CIM in a particular child. Please refer to the
Supplementary Materials (Figure S1) for sample cases and model results output interface.

By applying this approach, firstly, doctors can identify high-risk patients early and
adopt appropriate management plans to improve patients’ prognosis. Secondly, the model
calculations and results output are carried out automatically by the system backstage,
eliminating the inconvenience of other predictive modeling tools requiring manual data
input for the corresponding variables. Thirdly, the relevant data of CIM occurrence in each
admission will be automatically stored in the system, which will be helpful for other related
clinical studies in the future. All of the above fully reflect the practicability, accessibility,
and high predictive efficiency of our model in clinical application.

4.5. Limitations and Prospects

However, our study also has some limitations. Firstly, the nature of the retrospective
study may inevitably introduce some selection bias; secondly, the risk factors related to
CIM, such as prealbumin, BMI, bile acid, bilirubin, etc., which have been reported in other
studies [40,56], were not included in the model due to a large amount of missing data.
This may be because doctors or patients have insufficient awareness of CIM and do not
conduct relevant tests. Thirdly, the dynamic changes in blood cells may be able to predict
the specific time when CIM occurs and finding this time point will help doctors develop
more accurate prevention strategies for CIM. However, these data were also missing in
this study. In addition, our sample size needs to be expanded to make more accurate
predictions for different grades of CIM. Furthermore, our model has been successfully
piloted in HIS with CDSS, and more data needs to be collected prospectively to further
verify the model’s accuracy. Finally, different types of tumors may affect the occurrence of
CIM, but only children with WT were included in this study. Therefore, the models that
can be extended to other pediatric malignant solid tumors need further development. To
summarize, a prospective clinical study with large samples and regularly collected data
needs to be carried out. We are currently conducting animal experiments related to CIM in
order to accurately predict the CIM by finding other more readily available indicators. We
intend to validate these indicators in prospective clinical studies and incorporate them into
the model for continuous calibration and optimization. Despite these limitations, to our
knowledge, this study is the first to use ML algorithms to establish a predictive model for
CIM in children with WT, achieving better predictive effects than other pharmacokinetic
or mathematical models. Based on the construction method and clinical application ap-
proach of this ML model, a CIM prediction model that can be extended to other pediatric
malignancies and facilitates widespread clinical applications can be expected.

5. Conclusions

The incidence of grade ≥ 2 CIM was not low in children with WT, which needs more
attention. This study developed an ML-based prediction model to predict the risk of
grade ≥ 2 CIM in WT children for the first time. The model has good predictive perfor-
mance and stability and is also convenient for clinical application, which will help doctors
identify patients at high risk of CIM earlier, and develop and implement individualized
preventive medication strategies, thus reducing the disease burden and economic burden of
CIM in children with WT. Based on this modeling and application approach, the extension
of CIM prediction models to other pediatric malignancies is expected.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15041078/s1. Figure S1. Case example: the interface of
CIM prediction model output results. The text in the figure has been translated into English.
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Simple Summary: Differentiating atypical lipomatous tumors from lipomas on MR images is a
challenging task due to similar imaging characteristics. Given these challenges, it would be highly
beneficial to develop a reliable diagnostic tool, thereby minimizing the need for invasive diagnostic
procedures. Therefore, the aim of this study was to develop and validate radiogenomic machine-
learning models to predict the MDM2 gene amplification status in order to differentiate between ALTs
and lipomas on preoperative MR images. The best machine-learning model was based on radiomic
features from multiple MR sequences using a LASSO algorithm and showed a high discriminatory
power to predict the MDM2 gene amplification. Due to the varying settings in which patients with
lipomatous tumors present, this model may enhance the clinical diagnostic workup.

Abstract: Background: The aim of this study was to develop and validate radiogenomic models
to predict the MDM2 gene amplification status and differentiate between ALTs and lipomas on
preoperative MR images. Methods: MR images were obtained in 257 patients diagnosed with ALTs
(n = 65) or lipomas (n = 192) using histology and the MDM2 gene analysis as a reference standard.
The protocols included T2-, T1-, and fat-suppressed contrast-enhanced T1-weighted sequences.
Additionally, 50 patients were obtained from a different hospital for external testing. Radiomic
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features were selected using mRMR. Using repeated nested cross-validation, the machine-learning
models were trained on radiomic features and demographic information. For comparison, the
external test set was evaluated by three radiology residents and one attending radiologist. Results:
A LASSO classifier trained on radiomic features from all sequences performed best, with an AUC
of 0.88, 70% sensitivity, 81% specificity, and 76% accuracy. In comparison, the radiology residents
achieved 60–70% accuracy, 55–80% sensitivity, and 63–77% specificity, while the attending radiologist
achieved 90% accuracy, 96% sensitivity, and 87% specificity. Conclusion: A radiogenomic model
combining features from multiple MR sequences showed the best performance in predicting the
MDM2 gene amplification status. The model showed a higher accuracy compared to the radiology
residents, though lower compared to the attending radiologist.

Keywords: radiomics; machine learning; soft-tissue sarcomas; radiology; MRI

1. Introduction

Lipomatous tumors are the most common neoplasms encountered by physicians and
the most frequent soft-tissue tumors of the extremities [1]. Of these, 40 to 45% are benign
adipocytic tumors (lipomas) or atypical lipomatous tumors (ALTs) [2–5]. Lipomas only re-
quire treatment if the mass effect causes symptoms such as pain or functional disorders [6].
ALTs may show locally aggressive growth and may dedifferentiate into high-grade sarco-
mas [7–10]. Therefore, ALTs are typically resected [11]. Histopathological differentiation
relies on the detection of atypical hyperchromatic nuclei and the immunohistochemical
evaluation of the molecular analysis of the mouse double minute 2 (MDM2) gene [12].
However, the detection of these atypical hyperchromatic cells can be challenging since
they are frequently scattered throughout the lesion, and detection is often complicated by
fibrous septa, subsequently requiring a careful analysis of the entire tumor [12–14]. Previ-
ous studies have shown that the MDM2 amplification status is the most accurate marker
to differentiate ALTs and lipomas, and there is a tendency towards sampling errors if the
MDM2 status is not determined [12,15–17]. Unfortunately, the majority of MR imaging
studies differentiating ALTs from lipomas did not include a molecular analysis, or only
performed a molecular analysis in a subset of patients [6,14,18,19].

MR imaging is the standard imaging modality for the assessment of soft-tissue tumors
due to its excellent soft-tissue contrast [20–22]. Specific imaging features such as the tumor
size, tumor location, presence of thick septa, and amount of contrast uptake can be used
to differentiate ALTs from lipomas [6,13,18,19,23]. However, since there is a substantial
overlap between these imaging features in both tumor types, differentiating ALTs from
lipomas is a challenging task. Moreover, previous studies of systematic radiologic readings
have reported relatively low inter-observer reproducibility, with a kappa agreement ranging
from 0.17 to 0.42 [13,19,24]. Given these challenges, it would be highly beneficial to develop
a reliable diagnostic tool to differentiate ALTs from lipomas on preoperative MR images,
thereby minimizing the need for invasive diagnostic procedures.

Machine-learning techniques, including imaging-based radiomics, permit a non-
invasive detailed analysis of a tumor phenotype by using a quantitative imaging feature
analysis [25,26]. However, one of the main challenges of radiomic models includes repro-
ducibility in different datasets [27,28]. Therefore, the aim of this study was to develop and
validate radiogenomic machine-learning models based on multiparametric MR examina-
tions to predict the MDM2 gene amplification status in order to differentiate between ALTs
and lipomas on preoperative MR images. The models were evaluated using an independent
external cohort for testing and were compared to the performance of radiologists.

2. Materials and Methods

The local institutional review boards approved this retrospective multi-center study
(ethics committee 666/21 S) The study was performed in accordance with our institutional
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ethic guidelines and the 1964 Declaration of Helsinki and its later amendments. Written
and informed consent was waived for this retrospective anonymized analysis.

2.1. Datasets

We retrospectively reviewed the records of all patients with lipomatous tumors in the
upper or lower extremities or trunk that had surgery performed at our sarcoma referral
center between 2010 and 2021 (n = 573). Of these, 424 patients had a histologically con-
firmed diagnosis of a lipoma or an ALT. The MDM2 amplification status, determined by
fluorescence in situ hybridization (FISH) of the MDM2 gene locus, was available for n = 257
patients. Patients without an MDM2 amplification status were excluded. Therefore, in the
final dataset, both the histology and the MDM2 gene amplification status were available
for all patients. Two senior pathologists specializing in the analysis of soft-tissue tumors
provided a final consensus diagnosis based on the MDM2 gene amplification status and
histology according to the World Health Organization criteria. The patient selection process
is shown in Figure 1.

Figure 1. Subject selection flowchart. ALT = atypical lipomatous tumor; MDM2 = murine double
minute.

In addition, an external test set was obtained from a further sarcoma referral center,
the University Hospital of Freiburg (M1), for final independent testing and geographical
validation. The external test set included patients with a diagnosis of a lipoma or an ALT
confirmed by their histology and MDM2 amplification status.

2.2. MR Imaging Protocol and Image Segmentation

Pre-operative MR images were acquired using 3 or 1.5 Tesla scanners. Sequences
were acquired in at least two planes that were oriented along the short and longitudinal
axes of the long articulating bone(s). The protocols included a T2-w turbo spin echo (TSE)
sequence (T2w), a T1-w TSE sequence (T1w), and a fat-saturated T1-w TSE sequence after
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the administration of a contrast agent (T1fsgd). Detailed information on the acquisition
parameters is provided in Supplementary Material Table S1.

To define the volumes of interest (VOIs), tumor segmentations were performed manu-
ally by two radiology residents (S.C.F. and G.C.F.) using the open-source software 3D Slicer
(3D Slicer, Version 4.8, stable release) and extracted as Neuroimaging Informatics Technol-
ogy Initiative (NIfTI) label maps for further analysis. Multiple delineations were performed
by S.C.F. and G.C.F. in 20 randomly selected patients to account for inter-reader variability.

2.3. Radiomic Feature Extraction and Machine-Learning Model Development

All preprocessing steps and radiomic feature extractions were conducted in accor-
dance with the Imaging Biomarker Standardization Initiative guidelines [29] using the
Python package PyRadiomics (version 2.2) implemented in Python (3.7), as previously
described [30]. Image discretization was conducted using a bin width of 10 to achieve a
bin count between 16 and 128, as recommended by the pyradiomics documentation [31].
Image intensity normalization was achieved via redistributing the image at the mean with
a standard deviation and a scale of 100. Bspline interpolation was used to perform isotropic
resampling to a voxel size of 1 × 1 × 1 mm of the image and VOI mask. A total of 104 fea-
tures were extracted from the original image of each sequence within the segmented label
map (resulting in a total of 312 radiomic features), including first-order features, shape fea-
tures, and texture features. The latter comprised “gray-level co-occurrence matrix” features,
“gray-level size-zone matrix” features, “gray-level run-length matrix” features, “neighbor-
ing gray-tone difference matrix” features, and “gray-level dependence matrix” features. No
features were extracted from filtered versions of the image due to a missing IBSI consensus.
A detailed list of all extracted features is provided in Supplementary Material Table S2.
Feature values were transformed to a common scale using min–max normalization in order
to conserve their original distribution in the [0,1] range. Data normalization was performed
prior to splitting the data into training and testing groups due to the batch harmonization
step requirements. Nonparametric ComBatBatch harmonization was applied to account for
the variability introduced by different MR scanners, as described previously [30]. Clinical
features such as age, sex, and body region of the tumor (torso/head, upper extremity,
or lower extremity) were also included. Categorical features were encoded into dummy
numeric arrays using one hot encoder. All radiomic features susceptible to segmentation
variations were excluded using a threshold intraclass correlation coefficient (ICC 3,1) of 0.8.
This statistic resulted in 5, 15, and 4 radiomic features that were excluded from the T1w,
T2w, and T1fsgd sequences, respectively. ICC 3,1 was chosen, as the raters were not rated
as representative of a defined rater group due to their differing extents of training.

An estimate of the number of reduced features to use was calculated using a prin-
cipal component analysis (PCA) with 95% of data variance: 11 to 13 features for the
individual sequences (T1w, T2w, and T1fsgd) and 19 to 21 features for the combined fea-
tures of all sequences. Each respective number of features was selected using minimum
redundancy–maximum relevance (MRMR). Synthetic minority over-sampling and random
under-sampling of the majority class were used to counteract the class imbalance. The
ratios were tuned to find an optimal balance between data augmentation and data discard,
with ratios of 0.5–0.6:1 after SMOTE and 0.6–0.8:1 after the random under-sampling of the
majority class. The remaining class imbalance was handled by using balanced accuracy
as the optimization criteria during hyperparameter optimization. Four machine-learning
algorithms were implemented and compared in their performance: the support vector ma-
chine (SVM), the random forest classifier (RFC), the least absolute shrinkage and selection
operator (LASSO; built from a stochastic gradient descent classifier), and a fully connected,
feedforward artificial neural network (ANN; multilayer perceptron classifier). A flow chart
of the data processing and analysis of the radiomic features can be found in Supplementary
Material Figure S1. For each algorithm, models were developed by (i) using demographic
information only, (ii) using radiomic features for each individual sequence (T1w, T2w, or
T1fsgd), (iii) using the radiomic features of all sequences, and (iv) using a combination of
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both the radiomic features of all sequences and demographic information. An overview of
the radiomic workflow is shown in Figure 2.

 

Figure 2. Radiomic workflow. Abbreviations: SVM, support vector machine; LASSO, least absolute
shrinkage and selection operator; ANN, artificial neural network.

2.4. Model Optimization, Evaluation, and Statistical Analysis

Training and validation were performed using 3-fold nested cross-validation with
50 repetitions for statistical robustness, for a total of 150 averaged iterations per modeling
algorithm and dataset. Hyperparameter optimization was conducted using an exhaustive
grid search. This step was performed in the inner fold, after the feature selection step via
MRMR, to prevent data leakage. Balanced accuracy was used as the optimization criterion
to determine the best set of hyperparameters.

The performance of the models was evaluated with the area under the curve (AUC)
obtained from the receiver–operator curve (ROC), plotted after averaging the yielded
values. We also included the accuracy, sensitivity, and specificity as the output measures.
For an unbiased evaluation, a final cross-validation step was implemented by selecting
the best values obtained from the internal dataset before evaluating the performance on
the external dataset. Stochastic gradient descent was used to calculate the probability of
each class prediction. Calculations of model metrics were performed using scikit-learn
(version 1.0.2).

For comparison, MR images of the external test set were rated independently by three
radiology residents (I.L., S.C.F., and G.C.F., with 2, 3, and 5 years of experience, respectively)
and one musculoskeletal imaging fellowship-trained radiologist (A.S.G., with 10 years of
experience) experienced in musculoskeletal tumor imaging. All readers were blinded to all
clinical and histopathological findings.

3. Results

3.1. Study Subjects

A total of 257 patients were included in the internal dataset (192 lipomas, 65 ALTs;
age, 62.4 ± 14.5 years; 125 (48.6%) women). Fifty patients were included in the external
dataset (30 lipomas, 20 ALTs; age, 60.6 ± 12.5 years; 22 (44%) women). All patients had
a lipomatous tumor in one of the following six regions: chest, back, neck, leg, arm, hand,
or foot. In both datasets, the highest number of patients had a tumor located in the leg
(143/257 in the internal dataset and 27/50 in the external dataset), while the fewest number
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of patients had a tumor located in the foot (two in the internal dataset and none in the
external dataset). Table 1 provides an overview of the subject characteristics.

Table 1. Patient characteristics.

Patient Characteristics Internal Dataset (n = 257) External Test Set (n = 50)

Age (years) * 62.4 ± 14.5 60.6 ± 12.5
Sex (women) 125 22

Tumor Location (Anatomical
Region)

Chest/Back 19 6
Neck 15 2
Leg 143 27
Arm 75 14
Hand 3 1
Foot 2 0

Lipomas n = 192 n = 30
Age (years) * 62.3 ± 14.4 57.5 ± 11.1
Sex (women) 88 12

Atypical Lipomatous Tumors
(ALT) n = 65 n = 20

Age (years) * 62.5 ± 15 65.2 ± 13.5
Sex (women) 37 10

* Data are given as mean ± standard deviation.

3.2. Evaluation of the Developed Machine-Learning Models

Table 2 shows the final performance of the developed models on the external test set
using demographic information only, radiomic features only (of all sequences combined),
and a combination of demographic and radiomic features. The best-performing machine-
learning model was based on a LASSO algorithm using a combination of all sequences,
achieving an AUC of 0.88 at 70% sensitivity and 81% specificity with an accuracy of 76% on
the external test set. The feature importance table, a confusion matrix, and a boxplot of the
prediction probabilities from this model can be found in Supplementary Material Table S5,
Supplementary Material Figure S2, and Supplementary Material Figure S3, respectively.

The AUC and accuracy for the individual sequences were lower for most models
compared to models based on the radiomic parameters from all sequences combined, with
a more imbalanced sensitivity/specificity. For T1w, the LASSO algorithm yielded an AUC
of 0.83 at 80% sensitivity and 43% specificity with an accuracy of 58%. For T2w, the AUC
was 0.82 at 42% sensitivity and 83% specificity with an accuracy of 69%. The highest AUC
(0.84) was yielded for the T1fsgd sequences, though the sensitivity and specificity were
highly imbalanced at 6% and 100%, respectively, with an accuracy of 60%. The performance
of the developed models for the individual sequences on the external test set is shown in
Supplementary Material Table S3.
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Table 2. Performance of the machine-learning models on the external test set using demographic
information or radiomic features only, as well as combining radiomic features and demographic
information for the following model architectures: least absolute shrinkage and selection operator
(LASSO), support vector machine (SVM), random forest classifier (RFC), and an artificial neural
network (ANN). External performance represents the values yielded when a final cross-validation
step considering only the best 150 best hyperparameter sets was implemented to predict the external
test set.

Model
Architecture

Score
Demographic

Features
Combined
Sequences

Combined Sequences +
Demographic

Features

LASSO

AUC * 0.56 (0.540.58) ± 0.07 0.88 (0.85–0.91) ± 0.07 0.72 (0.66–0.78) ± 0.15
Accuracy 0.58 0.76 0.77
Sensitivity 0.05 0.70 0.40
Specificity 0.93 0.81 1.00

SVM

AUC * 0.54 (0.51–0.57) ± 0.12 0.84 (0.80–0.88) ± 0.11 0.85 (0.82–0.88) ± 0.09
Accuracy 0.56 0.53 0.69
Sensitivity 0.10 0.90 0.80
Specificity 0.87 0.31 0.63

RFC

AUC * 0.63 (0.61–0.65) ± 0.06 0.87 (0.85–0.89) ± 0.05 0.87 (0.85–0.89) ± 0.05
Accuracy 0.50 0.69 0.69
Sensitivity 0.00 0.50 0.40
Specificity 0.83 0.81 0.88

ANN

AUC * 0.68 (0.66–0.70) ± 0.08 0.81 (0.77–0.85) ± 0.10 0.81 (0.77–0.85) ± 0.10
Accuracy 0.60 0.69 0.65
Sensitivity 0.00 0.70 0.60
Specificity 1.00 0.69 0.69

* Data are given as mean (95% confidence interval) ± standard deviation.

Interestingly, combining radiomic features and demographic information as the input
for the machine-learning models did not improve the performance of the LASSO algorithm
to differentiate ALTs from lipomas and resulted in a decrease in the sensitivity from 70%
to 40%, though the specificity increased to 100%. The averaged nested cross-validation
results of the internal dataset are shown in Supplementary Material Table S4. The training
parameters and source code can be found online (https://github.com/deedeedav/alt-
lipoma-radiomics (accessed on 9 March 2023)). Figure 3 shows an example of an ALT with
typical imaging findings encasing the right gracilis muscle, while Figure 4 shows a typical
example of a well-defined intramuscular lipoma in the right posterior thigh. Both cases
were identified correctly by the machine-learning model.

3.3. Comparison with Radiologists

The results of the independent radiological readings of the external test are shown in
Table 3. The radiology resident with 2 years of experience achieved an accuracy of 60%, a
sensitivity of 55%, and a specificity of 63%; the resident with 3 years of experience achieved
an accuracy of 70%, a sensitivity of 60%, and a specificity of 77%; and the radiology resident
with 5 years of experience achieved an accuracy of 70%, a sensitivity of 80%, and a specificity
of 63%. In comparison, the attending radiologist that was experienced in musculoskeletal
tumor imaging achieved an accuracy of 90%, a sensitivity of 96%, and a specificity of
87%. Compared to the radiology residents, the model showed a higher accuracy and
higher specificity, while the sensitivity was lower compared to the resident with 5 years
of experience, but higher compared to the residents with 2 or 3 years of experience. The
attending radiologist had a higher accuracy, sensitivity, and specificity. Figure 5 shows an
ALT with atypical imaging findings located subcutaneously. The machine-learning model
and the attending radiologist classified this tumor as an ALT, while all residents classified
this tumor as a lipoma.
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Figure 3. Lipomatous tumor in the medial right thigh, encasing the gracilis muscle (G). (A) The
axial T2-weighted and (B) axial T1-weighted MR images show a large heterogeneous tumor with
thick septa. (C) Septal contrast enhancement on the coronal T1-weighted images with fat saturation.
(D) The machine-learning algorithm classified the tumor as an ALT with a probability of 99.8%. This
diagnosis was confirmed by pathology and immunohistochemistry after surgical resection.
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Figure 4. Axial T2-weighted (A) and T1-weighted (B) MR images showing a well-defined intramuscu-
lar lipomatous tumor (lipoma) in the right posterior thigh without significant contrast enhancement
on the axial T1-weighted image with fat saturation (C). (D) The machine-learning model classified
this tumor as a lipoma (probability of 97.8%). This was in accordance with the diagnosis made by the
radiology residents and the attending radiologist.

Table 3. Performance of the radiology residents with 2, 3, or 5 years of experience and the fellowship-
trained radiologist that was experienced in musculoskeletal tumor imaging. Readers were blinded to
all clinical and histopathological findings.

Score
Radiology

Resident, 2y
Radiology

Resident, 3y
Radiology

Resident, 5y
Fellowship-Trained

Radiologist

Accuracy 0.60 (30/50) 0.70 (35/50) 0.70 (35/50) 0.90 (45/50)
Sensitivity 0.55 (11/20) 0.60 (12/20) 0.80 (16/20) 0.96 (19/20)
Specificity 0.63 (19/30) 0.77 (23/30) 0.63 (19/30) 0.87 (26/30)
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Figure 5. Sagittal T2-weighted (A) and axial T1-weighted (B) MR images of a lipomatous tumor
located subcutaneously, anteromedial to the right proximal tibia. (C) A sagittal T1-weighted image
with fat saturation shows a moderate septal contrast enhancement. All radiology residents classified
this tumor as a lipoma, while the attending radiologist classified this tumor as an ALT. (D) The
machine-learning algorithm also classified this tumor as an ALT with a probability of 71.6%. The
diagnosis of an ALT was confirmed by pathology after surgical resection.

4. Discussion

In this study, machine-learning models were developed and validated to predict the
amplification status of the MDM2 gene, to differentiate between atypical lipomatous tumors
and lipomas on preoperative MR images, and to compare the results to the performance
of radiologists using an external test set. The best-performing model was based on the
combination of all MR sequences and achieved an AUC of 0.88 at 70% sensitivity and 81%
specificity with an accuracy of 76%. In comparison, the accuracy of the readings by all
radiology residents was lower, while the accuracy of the fellowship-trained radiologist was
higher. Notably, the performance of the LASSO algorithm for each individual sequence
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was lower compared to the model that included all sequences (T2w, T1w, and T1fsgd),
suggesting that all sequences are required for optimal discrimination.

Radiomic models for differentiating lipomas from ALTs have previously been devel-
oped in smaller patient cohorts. Leporq et al. evaluated 2D radiomic models of 40 lipomas
and 41 ALTs, including one MR image slice per patient [32]. Their best-performing model
achieved an accuracy of 95% at 100% sensitivity and 90% specificity using the histology
as the reference standard, though no specific information regarding the MDM2 gene am-
plification status was included, which may have led to a false classification of ALTs as
lipomas [32]. Cay et al. evaluated 45 lipomas and 20 ALTs using histology and MDM2
amplification as the gold standards [33]. They achieved an AUC of 0.987 at 96.8% sensitivity
and 93.72% specificity using 1000-fold bootstrapping [33]. However, since there was no
separate test set, the algorithm was likely optimized on data used for validation in another
bootstrapping iteration; therefore, these results may be inaccurately high [33]. A study by
Vos et al. included 116 patients (58 lipomas and 58 ALTs) and used MDM2 amplification as
the reference standard [34]. Their model performance was lower compared to our study,
yielding an AUC of 0.81 at 66% sensitivity and 84% specificity with an accuracy of 75%. An
important limitation of these aforementioned studies is that no external validation on an in-
dependent dataset was included. Also notably, the model performance was comparatively
high in studies based on smaller patient cohorts (n < 90). A possible explanation may be
a lack of variation in smaller datasets, which could affect the reproducibility in different
datasets. However, this is not clear, since no external testing was included.

Interestingly, combining imaging parameters and clinical data did not improve the
performance of most models for differentiating ALTs from lipomas, or only improved
the performance marginally. While some demographic differences have been described
between patients with ALTs and lipomas [23], it is likely that radiomic MR features are
considerably more relevant for differentiating between these tumor types, and including
parameters with less predictive power could hinder the capability of the models to identify
relevant patterns. It should be noted that only a limited number of clinical features were
included (age, sex, and tumor body region). Including additional clinical features may im-
prove the predictive value of the radiomic models. Future studies could also include clinical
outcome parameters to detect image-defined high-risk patients, thereby individualizing
tumor treatment.

Some limitations are pertinent to this study. Since the cohort included only patients
with histopathologically confirmed tumors, this potentially introduced a selection bias.
Moreover, our specialized sarcoma center typically only receives larger or atypical lipomas
on referral, subsequently increasing the amount of particularly challenging lipoma cases in
the dataset. We also used manual segmentations as input for the models, and developing a
pipeline that includes automated segmentations would be highly beneficial. In addition,
more advanced sequences such as diffusion-weighted imaging or pharmacokinetic dynamic
contrast-enhanced imaging were not included in the protocol. Including these sequences
could potentially improve the differentiation between ALTs and lipomas. Finally, the
developed models only differentiated between ALTs and lipomas, and while this is the
most challenging and clinically relevant task, further studies are warranted on the ability
to distinguish among all benign and malignant lipomatous tumors.

The advantages of the current study include its multicenter design, which allowed the
evaluation of the models on an independent external test set, thereby reducing potential
bias introduced by overfitting. Moreover, the dataset used for training was, to the best of
our knowledge, the largest MRI dataset of histopathologically confirmed lipomas and ALTs.
In addition, a histopathological analysis was conducted by pathologists specialized in the
analysis of soft-tissue tumors and included the immunohistochemistry for the assessment of
the MDM2 status in all cases. Furthermore, we excluded inter-/intra-reader segmentation-
dependent features and included variability features, making the model performance more
stable and reliable for other datasets.
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5. Conclusions

In conclusion, radiogenomic models were developed that showed a high discrimi-
natory power for predicting the MDM2 gene amplification status to distinguish between
atypical lipomatous tumors and lipomas on preoperative MR images. The best-performing
model was based on a LASSO algorithm using all MR sequences, with a higher accuracy
compared to radiology residents, suggesting that these algorithms would be particularly
helpful for radiologists with less experience. Due to the varying settings in which patients
with lipomatous tumors present, this model may enhance the clinical diagnostic workup
and improve the detection rate for atypical lipomatous tumors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15072150/s1. Supplementary Material Table S1: Magnetic
resonance imaging sequence parameters. Supplementary Material Table S2: Extracted radiomic
features (n = 104). Supplementary Material Table S3: Performance of the machine-learning models on
the external test set of each individual sequence (T1w, T2w, and T1fsgd) using the following model
architectures: least absolute shrinkage and selection operator (LASSO), support vector machine (SVM),
random forest classifier (RFC), and an artificial neural network (ANN). The external performance
represents the values yielded when a final cross-validation step considering only the best 150 best
hyperparameter sets was implemented. Supplementary Material Table S4: Internal performance
representing the averaged values over 150 models resulting from the nested cross-validation using
demographic information, radiomic features of each individual sequence (T1w, T2w, and T1fsgd), or
radiomic features of all sequences combined, as well as combining radiomic features (of all sequences)
and demographic information for the following model architectures: least absolute shrinkage and
selection operator (LASSO), support vector machine (SVM), random forest classifier (RFC), and an
artificial neural network (ANN). The metrics are given as mean ± standard deviation. Supplementary
Material Table S5: Feature importance of the best-performing model (least absolute shrinkage and
selection operator (LASSO) trained on features from all radiomic sequences). Supplementary Material
Figure S1: Flow chart of the statistical analysis of the extracted radiomic features. Supplementary
Material Figure S2: Confusion matrix of the best-performing model, a least absolute shrinkage and
selection operator (LASSO) trained on all radiomic sequences. Misclassification rate: 0.23 ((FN +
FP)/(N + P)). Supplementary Material Figure S3: Boxplot of the prediction probabilities made by the
best-performing model (least absolute shrinkage and selection operator (LASSO) trained on features
from all radiomic sequences). The probability cut-off used was 0.5.
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Simple Summary: Testicular germ cell tumour (TGCT) is the most common solid cancer in men below
40. The majority present with disease confined to the testis (stage 1), with its primary treatment being
radical orchiectomy. Despite the multiple options for managing stage 1 tumours, optimal management
is controversial, with further treatment options including active surveillance, chemotherapy and
retroperitoneal lymph node dissection or low dose radiotherapy of the paraaortic region. In this study,
the authors incorporated quantitative imaging features and clinical risk factors to stratify patients
according to lymph node metastases, thus promoting precision imaging in clinical oncology.

Abstract: Accurate retroperitoneal lymph node metastasis (LNM) prediction in early-stage testicular
germ cell tumours (TGCTs) harbours the potential to significantly reduce over- or undertreatment
and treatment-related morbidity in this group of young patients as an important survivorship
imperative. We investigated the role of computed tomography (CT) radiomics models integrating
clinical predictors for the individualised prediction of LNM in early-stage TGCT. Ninety-one patients
with surgically proven testicular germ cell tumours and contrast-enhanced CT were included in this
retrospective study. Dedicated radiomics software was used to segment 273 retroperitoneal lymph
nodes and extract features. After feature selection, radiomics-based machine learning models were
developed to predict LN metastasis. The robustness of the procedure was controlled by 10-fold
cross-validation. Using multivariable logistic regression modelling, we developed three prediction
models: a radiomics-only model, a clinical-only model, and a combined radiomics–clinical model.
The models’ performances were evaluated using the area under the receiver operating characteristic
curve (AUC). Finally, decision curve analysis was performed to estimate the clinical usefulness of
the predictive model. The radiomics-only model for predicting lymph node metastasis reached a
greater discrimination power than the clinical-only model, with an AUC of 0.87 (±0.04; 95% CI)
vs. 0.75 (±0.08; 95% CI) in our study cohort. The combined model integrating clinical risk factors
and selected radiomics features outperformed the clinical-only and the radiomics-only prediction
models, and showed good discrimination with an area under the curve of 0.89 (±0.03; 95% CI). The
decision curve analysis demonstrated the clinical usefulness of our proposed combined model. The
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presented combined CT-based radiomics–clinical model represents an exciting non-invasive tool for
individualised LN metastasis prediction in testicular germ cell tumours. Multi-centre validation is
required to generate high-quality evidence for its clinical application.

Keywords: radiomics signature; prediction; machine learning; testicular cancer; personalised
oncology; precision imaging

1. Introduction

Testicular germ cell tumours (TGCTs) are the most common malignancy among men
aged 15–40 [1,2]. Its characteristic patient population and high cure rate make this disease
unique, constituting one of the few success stories in cancer care [3,4]. Besides cure,
reducing the amount of therapy-related acute and long-term toxicity is the goal of care
due to the young age of the TGCT patients and the long life expectancy following curative
therapy [5–10]. The main risk factors for TGCTs include cryptorchidism, family or personal
history of TGCT and contact with organochlorine compounds [11,12]. TGCTs are classified
histologically into seminoma and non-seminoma, including pure non-seminoma and mixed
germ cell tumours, with seminoma accounting for approximately 55% of all cases with
an average age at diagnosis in the fourth decade of life, about eight years later than non-
seminoma [12]. TGCT are diagnosed by physical examination, testicular ultrasound and
specific tumour markers, such as alpha-fetoprotein (AFP), beta-hCG (β-hCG) and lactate
dehydrogenase (LDH) [13,14].

Ninety-five percent of all metastases from TGCTs involve the ipsilateral retroperitoneal
lymph nodes. Thus the present German guidelines recommend that in early-stage semi-
noma, patients with certain criteria, such as a tumour with a diameter >4 cm, an adjuvant
therapy be applied, consisting of either one to two cycles of carboplatin or radiotherapy
of the paraaortic region with 20 Gy [15]. However, retroperitoneal lymph node dissection
(RPLND) is the only treatment modality to correctly stage the nodal status of early testicular
cancer. Unfortunately, due to the short- and long-term complications, such as retrograde
ejaculation, the implementation of adjuvant chemotherapy regimens, and the excellent
prognosis with surveillance approaches in stage I disease, RPLND plays a negligible role
as the primary treatment of early-stage TGCTs [16]. The most commonly used tumour
markers, AFP, β-HCG, and LDH, are not very specific and are present in only about 60% of
men with testicular cancer [14,17]. Worse, some conditions lead to false-positive elevation
of testicular markers, such as liver disease or genetic reasons [18].

Due to its exceptional spatial resolution, CT imaging is regarded as well suited for
identifying pathologically enlarged lymph nodes; in clinical practice, a short axis larger
than 7–8 mm is considered pathologic (AUC with a sensitivity and specificity approaching
70%) [19]. Nonetheless, CT cannot distinguish between affected and normal lymph nodes
in small lymph nodes [20].

Suboptimal therapeutical management, however, jeopardises the excellent outcomes
of TGCT patients, with either over- or undertreatment being equally harmful.

Advanced medical imaging integrating high-resolution image acquisition, powerful
computational technologies and artificial intelligence (AI)-based image analysis enabled
researchers to develop the field of radiomics [21,22]. This way, data characterisation
algorithms can detect specific diagnostic image patterns and convert them into quantitative
mineable “big data” [23,24].

In the era of precision medicine, AI-based image analysis addresses the challenges of
biopsy with the advantages of being non-invasive, repeatable, and applicable to hard-to-
reach lesions within the body by analysing texture features of a region of interest (ROI) that
reflect tumour physiology and radiologic phenotype according to current data [25,26].

Many studies have evaluated the diagnostic potential of radiomics for classifying
lymph nodes in different cancer types, including gastric, rectal, and bladder cancer,
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with promising results [27–30]. AI-based advanced imaging could provide new imaging
biomarkers or radiomic signatures to combat the urgent problem of under- or overtreatment
of TGCT patients.

Our study is the first to investigate computed tomography (CT) radiomics models
integrating clinical risk factors for the individualised prediction of lymph node metastasis
in patients with early-stage TGCT, thus promoting precision imaging in clinical oncology.

Based on the findings above, we hypothesised that:

(1) The radiomics features extracted from retroperitoneal lymph nodes might potentially
predict TGCT recurrence.

(2) Integrating important clinical factors, including age, histotype, AFP, ß-HCG, and BMI,
into a combined clinical-radiomics model might add an incremental value to predict
TGCT recurrence.

2. Materials and Methods

2.1. Patients and Imaging Protocol

Ninety-one treatment-naive patients with surgically proven stage I TGCT who under-
went contrast-enhanced CT scans at our institution between January 2006 and December
2016 were included in this retrospective study.

Patient demographic, laboratory and clinical data were collected through a careful
review of electronic medical records and the radiology information system. Exclusion
criteria included incomplete clinical or imaging records and no histologic confirmation
after surgery.

The primary endpoint of our study was retroperitoneal LN metastases from TGCT
based on subsequent clinical and imaging examinations determined from records in elec-
tronic medical records.

Of the 167 patients originally screened, 91 could be included in the final study cohort
according to the selection criteria. The patients in the final study cohort were followed up
for at least six years after orchiectomy.

A flowchart of the cohort selection is shown in Figure 1.

Figure 1. Recruitment pathway of the study.
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CT scans were conducted before orchiectomy (+/−2 weeks) (mean time 3 ± 11 days,
range 2–24) to determine disease status. Images were obtained as part of the routine staging
on the Philips Brilliance CT 16-channel multi-row detector CT or Philips Brilliance CT
64-channel scanner (Philips Healthcare, Cleveland, OH, USA). CT scans were performed
using acquisition and reconstruction parameters by the standard protocol after intravenous
contrast injection of Ultravist® 370 (Bayer Schering Pharma, Berlin, Germany) at a weight-
matched dose with a delay of 70–80 s for the portovenous phase of the chest and abdomen
(tube voltage 100 kV–120 kV with automatically calculated tube current, matrix of 512 ×
512, in-plane resolution between 0.62 × 0.62 mm and 0.86 × 0.86 mm, section thickness of
2.0–5.0 mm). Using two different CT scanners, a heterogeneous data set was generated to
represent a routine clinical scenario as well as possible.

2.2. Segmentation and Radiomic Feature Extraction

First introduced by Haralick et al. in 1973 [31], image feature extraction, such as
histogram features or features from the co-occurrence matrix, has demonstrated eminent
potential in various questions in different cancers [22,32].

Three-dimensional region-of-interest segmentation, texture analysis, and feature ex-
traction were conducted using mint Lesion™ software (version 3.8.4, mint Medical GmbH,
Heidelberg, Germany). Details of the extraction settings are given in Appendix A, Table A1.
The schematic diagram for ROI segmentation and feature extraction for model development
is shown in Figure 2.

Figure 2. The schematic diagram for ROI segmentation and feature extraction for model development.
Details regarding the extraction settings are listed in Appendix A, Table A1.

Two board-certified radiologists, with over 10 years of experience in oncologic imaging
and over 8 years’ experience in texture analysis, analysed all images.

Three retroperitoneal lymph nodes along the infrarenal aorta were segmented per
patient, resulting in 273 eligible samples randomly divided into a training set (n = 191) and
a testing set (n = 82) at a ratio of 70:30.

Radiomic features were quantified regarding their distinctive pattern of grey lev-
els within the ROI using texture feature descriptors according to the Image Biomarker
Standardization Initiative (IBSI) guidelines [24].
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Eighty-five imaging features were extracted from each ROI: features related to the
3D size and shape, first-order statistics characterising the distribution of voxel intensities
within the selected region, and features relating to the grey-level co-occurrence matrix (see
Tables A2 and A3 in Appendix A).

2.3. Feature Selection and Development of the Predictive Radiomics Model

Analogous to other data mining applications, radiomics extracts many texture features
from the regions of interest [33].

For more generalisable, powerful, and faster modelling and reduced overfitting, we
selected optimal features using the logistic regression model with the smallest absolute
shrinkage and the selection operator (lasso) [34,35]. Each feature had an associated covariate
coefficient. With a continuous increase in λ-value, some regression coefficients continuously
declined and tended to 0. The remaining variables with non-zero values were chosen as
the best-performing predictors. The optimal hyperparameter λ = 0.001 was found by grid
search [36,37].

Multivariable logistic regression developed the most appropriate radiomics model by
using the selected radiomic features as the input variables to classify between the binary
output variables.

Patients with LN metastases within the 6-year observation period were assigned to
the high-risk group, whereas those with complete remission were classified in the low-risk
group.

To handle the imbalance between LN metastases (negative vs. positive, 81/10) and
avoid bias toward majority class cases to achieve a high classification rate, we applied the
synthetic minority over-sampling technique (SMOTE) to the training cohort. SMOTE is an
approach in which the minority class is over-sampled by creating “synthetic” examples
rather than over-sampling with replacement. Thus, more related minority class samples to
learn from are provided, allowing the learner to carve broader decision regions, leading
to more coverage of the minority class limitations [38]. For greater generalisability of our
results, we performed a stratified 10-fold cross-validation on the under-sampled data in all
experiments to train and test the model resulting in a train and test partition of 90% and
10%, respectively, for each fold. We performed patient-specific splits to ensure that each
patient’s lymph nodes remained together in either the training or test set. We reported
the mean and standard deviation of the area under the ROC-curve, accuracy, precision,
recall, and F1-sore over the test set results of the ten runs. Furthermore, receiver operating
characteristic (ROC) curves were plotted for each cohort. To ensure that our model was
more than just a complicated surrogate for volume, we ran our experiments using only
Volume and Mean Intensity as input features.

The correlation coefficients and constant of the model were computed (Figure 3,
Appendix A, Figure A1). It is worth mentioning that the feature selection and the model
construction were all from the date of the training cohort.

Discrimination performance was assessed by the Harrell concordance index (C-index).
The feature selection and the construction of the radiomics signature model were

performed using our in-house software programmed with the Python Scikit-learn package
(Python version 3.10, Scikit-learn version Scikit-learn 0.23.3, http://scikit-learn.org/) [36,39].

The features IMAD (Intensity Median Absolute Deviation) and GCS (GLCM Cluster
Shade) use the secondary axis; all other features use the primary axis.

The following are the abbreviations used for the features:
IE—Intensity Energy
IMAD—Intensity Median Absolute Deviation
GCP—Glcm Cluster Prominence
GCS—Glcm Cluster Shade
HV—Histogram Variance
GAC—Glcm Auto Correlation
IMX—Intensity Maximum
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IMN—Intensity Mean
GCT—Glcm Cluster Tendency
GC—Glcm Contrast
IV—Intensity Variance
IRMS—Root Mean Square

Figure 3. Feature weights generated by the LASSO logistic regression model’s coefficients indicate
positive or negative correlation with lymph node metastasis.

2.4. Development of the Clinical and the Combined Prediction Models

The clinical factors included in our analysis were age, AFP level, B-HCG level, his-
totype (seminoma and non-seminoma), and body mass index (BMI). These factors were
included as they have all been suggested to be prognostic in TGCT [40–43].

Our study included purely clinical and laboratory chemistry parameters to represent
a real-life scenario for the individualised preoperative prediction of LNM at the time of the
CT scan.

The selected clinical features and their relationship to lymph node metastasis were
assessed with a univariable logistic regression algorithm in the training set. Variables with
p < 0.2 from the univariable analysis were included for further application in a multivariable
logistic regression algorithm using forward stepwise selection. A cutoff value of 0.25 is
supported by the literature [44,45].

Then, multivariable logistic regression analysis built three prediction models—a
radiomics-only model, a clinical-only model and a combined clinical-radiomics model,
incorporating the selected radiomics and clinical features.

Their predictive performance for detecting LN metastasis was assessed using the
receiver operating characteristic curve (ROC) analysis, in which the areas under the curve
(AUC), accuracy, precision, and F1-Score were established.

The clinical utility was demonstrated by decision curve analysis (DCA) to evaluate
the net benefits of the prediction models at different threshold probabilities in the training
cohort and compare their discriminatory performance.
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3. Results

3.1. Clinical Features

The study flowchart is presented in Figure 1.
Ninety-one consecutive patients with histologically-proven TGCT (mean age

35.2 ± 9.4 years, range 18–63) met the criteria for participation in the study. In this cohort,
10 patients (9.1%) relapsed within the six-year observation period (mean 9.8, 35.2 ± 9.4
years, range 18–63); there were no statistically significant differences in clinical charac-
teristics between the LNM-positive group and LNM-negative group. After univariable
LR analysis, age, AFP level, B-HCG level, histotype, and body mass index (BMI) were
independent predictors in the clinical model.

All patients’ baseline clinical characteristics are summarised in Table 1.

Table 1. Baseline demographic and clinical data.

Average age (range) 35.2 ± 9.4 Years (18–63)
Histological type

Seminoma 60 Patients (66%)
Non-seminoma 31 Patients (34%)

Tumour classification (T)
T1a 64 (70%)
T1b 27 (30%)

Tumour marker
AFP positive 21 Patients (19%)
B-HCG positive 40 Patients (44%)
AFP und B-HCG positive 10 Patients (11%)

BMI (range) 25.9 ± 4.6 (19.3–43.9)
Patients’ status in 6-year follow up

Complete remission (CR) 81 (89%)
Relapse of disease (RD) with metastatic lymph nodes 10 (11%)

In total, the dataset consisted of 273 sample instances (three LN ROIs/patient), with
33 instances in the category “relapse of disease” (minority class) and 240 instances in the
category “without relapse of disease” (majority class). According to a proportion of 7:3,
the 273 sample instances were randomly divided into a training cohort (n = 191) and a test
cohort (n = 82).

Due to the class imbalance in the dataset, the under-sampling technique called “In-
stance Hardness Threshold” was used to balance the data. The balanced data were used
for the logistic regression machine learning mode.

3.2. Feature Selection and Performance of the Radiomics Prediction Model

A total of 85 radiomics features were extracted from the venous-phase CT images of
the training cohort (Appendix A, Table A2). After screening these features, we chose the 12
radiomics features that had non-zero coefficients using the LASSO logistic regression model
as the best-performing predictors for LN metastasis (Figure 3; Appendix A, Table A3).

These features were used as input volume for the machine learning-based radiomics
modelling. Traditional measurements of machine learning-based modelling were used,
including accuracy, precision, F1-Score, and the area under the ROC curve (AUC), to assess
the performance of predicting lymph node metastases.

All tests were two-sided; p < 0.05 was considered statistically significant.
In the ROC analysis of the radiomics model, the classification evaluation metrics of

the 10-fold cross-validation were AUC 0.84 ± 0.17, accuracy 0.76 ± 0.12, precision 0.80 ±
0.18, recall 0.72 ± 0.23, and F1 score 0.73 ± 0.17 in the training cohort (Table 2).
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Table 2. Performance of the radiomics, clinical, and combined models.

Model AUC (95% CI) Accuracy Precision Recall F1 Score

Radiomics-only 0.87± 0.04 0.80 ± 0.06 0.81 ± 0.06 0.80 ± 0.08 0.80 ± 0.06
Clinical-only 0.75 ± 0.08 0.68 ± 0.10 0.66 ± 0.11 0.71 ± 0.16 0.68 ± 0.12

Combined
clinical-radiomics 0.89 ± 0.03 0.81 ± 0.04 0.80 ± 0.07 0.83 ± 0.06 0.81 ± 0.04

Using only Volume and Intensity Mean as input features led to inferior results with
an accuracy of 0.58 ± 0.16, with a precision and recall of 0.11 ± 0.07 and 0.43 ± 0.27,
respectively.

3.3. Performance of the Clinical and the Combined Prediction Model

The clinical-only and combined clinical-radiomics models were built by applying
multivariable logistic regression analysis.

The predictive performances of the radiomics-only, the clinical-only and the combined
clinical-radiomics models on the training cohort are shown in Table 2.

The different models’ overall accuracy and F1 score for predicting LN metastases were
77% (range: 65–90%, AUC = 0.60–0.94) and 61% (range: 20–90%).

The combined clinical-radiomics model showed the best prediction accuracy with 90%
(AUC 0.94–0.10), indicating that adding radiomics features could improve the predictive
performance.

Figure 4 shows the receiver operating characteristic (ROC) curves for the clinical, the
radiomics, and the combined clinical-radiomics models on the training cohort.

Figure 4. The ROC curves of the radiomics-only, the clinical-only, and the combined clinical-radiomics
models show that the combined model outperforms the radiomics and the clinical model in predicting
LN metastasis (training cohort 94% vs. 84% and 60%, respectively).

We performed a decision curve analysis to assess the clinical value of the combined
clinical-radiomics model. With threshold probability on the x-axis and net benefit on the
y-axis, the decision curve analysis graph illustrates the trade-offs between true and false
positives (describing benefit and harm) as the threshold probability changes (see Figure 5).
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Figure 5. The decision curve analysis for the combined prediction model.

The x-axis represents the threshold probability, the y-axis the net benefit, and the blue
line shows the combined prediction model. The green line represents the hypothesis that
no patients had LN metastases, and the orange line that all patients had LN metastases.
The threshold probability is where the treatment’s expected benefit equals the benefit of
avoiding treatment. If the possibility of LN metastasis is over the threshold probability, then
a therapeutical strategy for LN metastases should be adopted. The DCA of the combined
model shows that if the threshold possibility is between 0 and 0.13, then using the combined
model to predict LNM adds more benefit than treating either or all patients.

4. Discussion

We developed a clinical-radiomics model for the individualised preoperative pre-
diction of LNM in testicular germ cell tumour (TGCT) patients that consisted of clinical
risk factors and radiomics features to identify the stage I (TGCT) patients who required
adjuvant therapy and those who did not.

Our main findings can be summarised by the following:
Using multivariable logistic regression analysis, we constructed a radiomics-only

model, a clinical-only model, and a combined predictive model integrating clinical and
radiomics features. The combined radiomics–clinical model showed the highest accuracy
in predicting LNM (AUC = 0.89 ± 0.03; 95% CI); accuracy: 81%, precision 80%, recall 83%,
and F1 score 81%.

Most TGCT patients initially present with stage I disease, and >95% of all stage I semi-
noma or non-seminoma patients are cured regardless of the therapeutical strategy [46–48],
resulting in controversies regarding adjuvant chemotherapy, radiotherapy, or retroperi-
toneal lymph node dissection following orchiectomy due to short- and long-term side
effects, such as secondary malignancies, cardiovascular disease, peripheral neuropathy,
and loss of antegrade ejaculation [5–7,49].

The serum biomarkers AFP, β-hCG, and LDH are substantial instruments for diagnos-
ing, prognostication, and monitoring testicular cancer, which is reflected in the International
Germ Cell Cancer Consensus Group prognostic index [17,50,51]. However, sensitivity is
limited; up to 40% of patients with recurrence have “normal” values [52].

Several studies have proposed further prognostic clinical risk factors, including age
and BMI, but their roles have not yet been sufficiently clarified, with somewhat controversial
discussion [40–43].

To date, neither imaging nor serum tumour markers have been proven to be suitable
predictors of the presence of lymph node metastases [53,54]. However, the inherently excel-
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lent prognosis can be put at risk by suboptimal treatment, with over- and undertreatment
being equally detrimental.

Several studies demonstrate the ability of radiomics based on MR- or CT-imaging to
detect lymph node metastasis, including lung, oesophagal, breast, cervical, bladder, and
colorectal cancer [28,29,55–58]. Classification accuracy in these studies ranged from 76% to
84%, which is lower than the results of our study.

Until now, few studies have been performed to distinguish between benign and
malignant LN in testicular cancer.

In their study, Baessler et al. showed that a machine-learning classifier based on (CT)
radiomics could predict the histopathology of lymph nodes after LN dissection following
chemotherapy in patients with metastatic non-seminomatous germ cell tumours of the
testis [59]. This single-centre retrospective study included eighty patients with a total of
204 lesions classified by a support vector model and achieved 81% classification accuracy.

Nevertheless, in contrast to our study, they did not include clinical variables in their
radiomics approach to further increase diagnostic performance.

Furthermore, they split the study cohort, which was altogether of moderate size, into
three subgroups, with only 19 patients in the test group and with an overall reduction
in statistical significance as a result. To address the moderate dataset, we used a cross-
validation approach, which involves repeated data splitting to prevent overfitting while
obtaining accurate estimates of the model coefficients [60]. Lewin et al. achieved in
their retrospective, single-centre study on 77 metastatic TGCT patients with 102 lesions a
classification accuracy of only 72% [61].

Lewin et al. used only one single CT scanner. In contrast, our study analysed data
from two scanners, thus being more representative of data acquired during routine clinical
practice. Like Baessler et al., Lewin et al. did not integrate clinical factors into a combined
clinical-radiomics model.

Given our 10-fold cross-validation approach, the a priori inhomogeneity of our dataset,
and the integration of clinical risk factors, we are convinced that our combined prediction
model is more generalisable, and forthcoming investigations should further validate our
trained model in prospective studies.

Beyond radiomics-based models, several clinical models exist to predict the occurrence
of LNM in TGCT. However, these models yielded conflicting results and could not be
included in today’s clinical decision-making [53,62–64].

Taken together, identifying and implementing novel biomarkers might be helpful for
early diagnosis and monitoring of disease relapse.

Our study is the first to use a combined CT-based radiomics model integrating clinical
predictors for the individualised preoperative prediction of LNM in early-stage TGCT to
reduce overtreatment in this group of young patients.

However, we acknowledge some limitations in the present study.
As a retrospective study with a modest cohort size, there may be inevitable selection

bias. Furthermore, classes were highly unbalanced, in line with the normal distribution,
with 80% of all stage 1 TGCT patients showing an excellent outcome. Nevertheless, unlike
prior radiomics investigations on LN metastasis that mostly extracted features from the
largest cross-sectional area, our study performed whole lesion analysis by considering all
available CT slices, thus providing abundant information about tumour heterogeneity.

Second, our case was a single-institution study. Due to our patient population’s
high cure rate, it is challenging to power studies to examine prognostic and predictive
factors adequately. However, prospective and multicenter validation is warranted to obtain
higher-quality evidence for clinical use.

Moreover, only one (imaging) modality and the circulating tumour markers β-HCG
and AFP were used in this study. Among other prognostic factors, such as lymphovascular
or rete testis invasion, tumour size is the most valuable prognostic factor for early-stage
seminoma relapse [65,66]. Our study included solely clinical and laboratory parameters that
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can be collected easily, quickly, and non-invasively so that a preoperative risk assessment
of the individual patient can already be made at the time of CT.

In addition to the known serum markers, studies show the potential of non-coding
RNAs as biomarkers with stem cell-associated microRNAs (miR-371a-3p and miR-302/367
clusters) outperforming the conventional tumour markers in detecting newly diagnosed
TGCT patients [67,68].

If more modalities were combined as a multi-omics approach, the obtained feature
pool might increase the ability to predict LNM in patients with testicular cancer.

Our presented CT-based radiomics–clinical model represents an exciting non-invasive
prediction tool for individualised prediction of LN metastasis in testicular germ cell tu-
mours to reduce overtreatment in this young group of patients. Multi-centre, retrospective
validations and prospective randomised clinical trials should be undertaken to gain high-
quality evidence for clinical applications in subsequent studies.

5. Conclusions

In conclusion, our combined clinical-radiomics model applied on preoperative CT
imaging represents an exciting new tool for improved prediction of lymph node metastases
in early-stage testicular germ cell tumour (TGCT) patients to reduce overtreatment in
this group of young patients. The presented approach should be combined with novel
clinical biomarkers, such as microRNAs (miR-371a-3p and miR-302/367 cluster) and further
validated in larger, prospective clinical trials.
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Appendix A

Table A1. Settings of the radiomics feature extraction.

Setting Determination

Bin Method FBN
Bin Amount 32
LoG Filter 0
LoG Sigma 2

Matrix Aggregation 3D Average
Method Directions

Resample Filter 1
Resample Spacing X 1
Resample Spacing Y 1
Resample Spacing Z 1

Second-Order Distance 1
Threshold Filter 0

Table A2. Radiomics features extracted for model development.

Radiomics Features of First Order
Radiomics Features of Second Order:

Gray Level Co-Occurrence Matrix (GLCM)

Histogram Minimum Joint Maximum
Histogram Maximum Joint Average

Histogram Range Standart Deviation
Histogram Mean Joint Variance

Histogram Variance Joint Entropy
Histogram Standart Deviation Difference Average

Histogram Skewness Difference Variance
Histogram Kurtosis Difference Entropy
Histogram Entropy Sum of Averages

Histogram Uniformity Sum of Variance
Histogram Mean Absolute Deviation Sum of Entropy

Histogram Robust Mean Absolute Deviation Angular Second Moment
Histogram Median Absolute Deviation Contrast

Histogram Coefficient Variation Dissimilarity
Histogram Quartile Coefficient Dispersion Inverse Difference

Histogram Interquartile Range Inverse Difference Normalised
Histogram P10th Inverse Difference Moment
Histogram P25th Inverse Difference Moment Normalised
Histogram P50th Joint Maximum
Histogram P75th Joint Average
Histogram P90th Standart Deviation

Histogram Minimum Histogram Gradient
Intensity Joint Variance

Histogram MaximumHistogram Gradient
Intensity Joint Entropy

Intensity Minimum Difference Average
Intensity Maximum Difference Variance

Intensity Range Difference Entropy
Intensity Mean Sum of Averages

Intensity Variance Sum of Variance
Intensity Standart Deviation Sum of Entropy

Intensity Skewness Angular Second Moment
Intensity Kurtosis Contrast
Intensity Energy Dissimilarity
Intensity P10th Inverse Variance
Intensity P25th Correlation
Intensity P50th Auto Correlation
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Table A2. Cont.

Radiomics Features of First Order
Radiomics Features of Second Order:

Gray Level Co-Occurrence Matrix (GLCM)

Intensity P75th Cluster Shade
Intensity P90th Cluster Prominence

Intensity Root Mean Square Cluster Tendency
Intensity Mean Absolute Deviation Information Correlation 1

Intensity Robust Mean Absolute Deviation Information Correlation 2
Intensity Median Absolute Deviation Inverse Variance 41

Intensity Coefficient Variation
Intensity Quartile Coefficient Dispersion

Intensity Interquartile Range 44

Table A3. Radiomics features selected by LASSO.

Radiomics Features of First Order
Radiomics Features of Second Order:

Gray Level Co-Occurrence Matrix (GLCM)

Histogram Variance Auto Correlation
Intensity Maximum Cluster Shade

Intensity Mean Cluster Prominence
Intensity Variance Cluster Tendency
Intensity Energy Contrast

Intensity Root Mean Square
Intensity Median Absolute Deviation

Figure A1. Feature weights generated by the coefficients of the logistic regression model indicating
positive or negative correlation with lymph node metastasis.
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Abstract: Background: We investigated the feasibility of a deep learning algorithm (DLA) based
on apparent diffusion coefficient (ADC) maps for the segmentation and discrimination of clinically
significant cancer (CSC, Gleason score ≥ 7) from non-CSC in patients with prostate cancer (PCa).
Methods: Data from a total of 149 consecutive patients who had undergone 3T-MRI and been
pathologically diagnosed with PCa were initially collected. The labelled data (148 images for GS6,
580 images for GS7) were applied for tumor segmentation using a convolutional neural network
(CNN). For classification, 93 images for GS6 and 372 images for GS7 were used. For external
validation, 22 consecutive patients from five different institutions (25 images for GS6, 70 images
for GS7) representing different MR machines were recruited. Results: Regarding segmentation and
classification, U-Net and DenseNet were used, respectively. The tumor Dice scores for internal and
external validation were 0.822 and 0.7776, respectively. As for classification, the accuracies of internal
and external validation were 73 and 75%, respectively. For external validation, diagnostic predictive
values for CSC (sensitivity, specificity, positive predictive value and negative predictive value) were
84, 48, 82 and 52%, respectively. Conclusions: Tumor segmentation and discrimination of CSC from
non-CSC is feasible using a DLA developed based on ADC maps (b2000) alone.

Keywords: magnetic resonance imaging (MRI); diffusion-weighted imaging (DWI); prostate cancer;
Gleason score; deep learning

1. Introduction

Prostate cancer (PCa) is the second most frequently diagnosed cancer in men world-
wide and the fifth most common cause of death [1]. Gleason score (GS) is a classification
system based on the structure of PCa and is closely related to tumor aggressiveness. GS7
(particularly 3 + 4, International society of urological pathology (ISUP) grade 2) and above
are classified as clinically significant cancers (CSCs) and GS6 (ISUP grade 1) as non-CSC [2].

PCa can be treated individually, depending on the degree of aggressiveness, risk of
recurrence, and staging. Non-CSC is associated with relatively lower progression and
mortality, suggesting a relatively good prognosis; thus, active surveillance and observation
can be followed. However, as CSC is associated with a relatively high probability of adverse
outcomes, active treatment, such as radical prostatectomy and/or radiation therapy, is
required in general [3]. To date, the National Comprehensive Cancer Network (NCCN)
guideline lists active surveillance for patients with favorable intermediate-risk prostate
cancer (1 IR factor + Grade 1 or 2 + <50% positive biopsy cores) [4]. Another guideline
promotes active surveillance for selected patients with low-volume GS 3 + 4 prostate
cancer [5]. Therefore, efforts have been made to determine treatment policies based on risk
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stratification. However, due to the sampling errors inherent in systemic biopsy [6,7] as
well as the possibility of complication associated with invasive approaches [8], interest in
evaluating tumor aggressiveness using non-invasive imaging modalities such as magnetic
resonance imaging (MRI) has increased.

There have been several promising studies on the usefulness of deep learning al-
gorithms (DLAs), as based on mono-parametric or bi-parametric (bp) MRI for tumor
detection of PCa [9–15]. DLA studies based on bp-MRI or mono-parametric MRI for seg-
mentation and classification between CSC and non-CSC are less frequently found in the
literature [2,3,9]. One of these studies undertook to distinguish CSC from non-CSC with
deep-transfer-learning-based models using combined T2-weighted imaging (T2WI) and
diffusion-weighted imaging (DWI) and a corresponding apparent diffusion coefficient
(ADC) map, and the study revealed a similar diagnostic performance to that of prostate
imaging reporting and data system (PIRADS) v.2.0 [3]. Both of those studies [2,3], however,
employed sophisticated methods to combine the T2WI and DWI and used a low b value
of 800 s/mm2. PIRADS score, moreover, has inherent limitations, such as a moderate
inter-observer agreement and a probability scale by itself [16].

For PIRADS v.2.1, acquisition of high-b-value DWI (≥1400 s/mm2) is recommended.
Furthermore, recent studies have shown that DWI b2000 is better than DWI b1000 for the
localization of PCa [17,18]. However, to the best of our knowledge, DLA studies based on
high-b-value DWI alone are scarce. Thus, we hypothesized that a DLA based on acquired
DWI b2000 and corresponding ADC maps as a single input for discriminating CSC from
non-CSC might deliver more beneficial results. The purpose of this study was to investigate
the feasibility of using a DLA developed based on ADC maps (b2000) alone for tumor
segmentation and discrimination of CSC from non-CSC in patients with PCa.

2. Materials and Methods

2.1. Patient Selection Criteria

The pertinent institutional review board approved this retrospective study (IRB num-
ber blinded). Informed consent from patients was waived. Between October 2018 and
March 2022, the relevant medical records of a total of 157 patients meeting the following
inclusion criteria were collected: (i) complete 3T-MRI, including DWI and corresponding
ADC maps, (ii) histological diagnosis of PCa and topographic map availability via radical
prostatectomy and (iii) GS documentation availability via pathological reports. Among
them, 8 patients were excluded based on one of the following exclusion criteria: (i) poor MR
image quality due to severe artifacts (n = 1) or (ii) incomplete pathologic topographic map
(n = 7). Finally, 149 patients (mean age: 69.2 years, range: 47–84 years) were enrolled for the
training and internal validation datasets (80 and 20% of the data, respectively). For external
validation, 22 consecutive patients (mean age: 69.6 years, range: 56–80 years), for whom
five different MR machines had been employed and different parameters applied, were
separately recruited during the same period. The case enrollment process is summarized
in Figure 1.

2.2. MRI Technique

All of the MRI examinations for the training and internal validation datasets were
performed using a 3.0-T MR machine (Achieva TX; Philips, Best, The Netherlands) with a
parallel-array torso coil (SENSE Torso/cardiac coil; USA Instruments, Gainesville, FL, USA).

The scanning protocol was composed of axial, sagittal and coronal T2-weighted
turbo spin-echo (TSE) and axial DWI sequences (b values, 0, 100, 1000, 2000 s/mm2).
Corresponding ADC maps were generated for the designated b values, respectively. The
detailed scan parameters are summarized in Table 1.
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Figure 1. Flowchart of case enrollment process.

Table 1. MRI sequence parameters for training set.

Parameters
T2-Weighted Axial, Sagittal,

and Coronal TSE
DWI (b = 0, 100, 1000 and

2000 s/mm2)

TR (msec) 3370.7 5725

TE (msec) 100 77.8

Slice thickness (mm) 3 3

Slice gap (mm) 0.3 0.3

Matrix size 316 × 272 120 × 118

NEX 1 1

FOV (mm × mm) 220 × 220 240 × 240

Number of slices 30 30
TR, repetition time; TE, echo time; NEX, umber of excitations; FOV, Field of view; TSE, Turbo spin echo. Note that
diffusion-weighted imaging (DWI) was performed using the single-shot echo-planar imaging (SS-EPI) technique.

2.3. Data Processing

Two radiologists (with 18 and 3 years of experience, respectively) determined the tu-
mor and whole-gland borders by consensus on axial ADC maps generated from b values of
0 and 2000. For segmentation, they reviewed T2WI in 3 planes and DWI (b = 2000 s/mm2)
after referencing the topographic map as a ground truth. After determination of the tumor
and gland borders, the junior radiologist drew the regions of interest (ROIs) along the deter-
mined tumor and gland borders on the ADC maps (b = 2000 s/mm2) using DEEP:LABEL
software v.1.0.4 (Deepnoid, Seoul, Republic of Korea). When there were multiple tumors in
a patient, the largest one was considered as the index tumor. The reviewers also recorded
the PIRADS score for the index tumor based on PIRADS v2.1. The order of patients was
random. The reviewers were blinded to the patients’ GS.

2.4. DL Architecture for Tumor and Gland Segmentation

As a convolutional neural network (CNN), U-Net was used for tumor and gland
segmentation due to its high accuracy at various image sites. This architecture consists of
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a down-sampling encoder for features learning and an up-sampling decoder for feature
production, and it is efficient, even with small datasets [19].

In the gland segmentation, each of the following pre-processing steps was performed
for overall segmentation effectiveness. All of the labeled images were cropped with a
margin of 5 pixels for delineation of the borders of the prostate gland. The Min–Max
normalization guaranteed that all features were of the same scale. Finally, all of the images
were resized to 128 × 128 pixels for use as inputs to the U-Net architecture for gland
segmentation. Several hyper-parameters were tested to train the optimal DLA, for which
purpose the Adam optimizer (learning rate: 0.001, decay rate: 0.95) was selected. In
the tumor segmentation, the same pre-processing steps were performed, and the Adam
optimizer (learning rate: 0.0001, decay rate: 0.95) was again employed for DLA training.

After tumor and gland segmentation, all of the labeled tumor data (148 images for GS6,
580 images for GS7) and gland data (535 images for GS6, 935 images for GS7) were used
to evaluate the DLA predictive performance for accuracy, sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV) and Dice score.

2.5. DL Architecture for Tumor Classification
2.5.1. Training Architecture

For tumor classification, the labeled tumor data were filtered with a cutoff of 25 pixels.
Finally, 93 images for GS6 and 372 images for GS7 were used. For balanced training, the
GS7 images were randomly allocated into four subsets of 93 images each in order to match
the number of GS6 images. Therefore, 186 GS6/7 images were divided into 146 images for
use as a training dataset and 40 for use as an internal validation dataset in each session.
The Min–Max normalization and resizing steps were performed in the same manner as for
the segmentation task.

Several CNNs, such as Inception, ResNet and DenseNet, were trained for tumor
classification, and DenseNet 201 was selected for tumor classification due to its superior
performance in distinguishing GS6 from GS7 [20–22]. DenseNet connects each layer to
every other layer in a feed-forward manner. It also alleviates the vanishing-gradient
problem, strengthens feature propagation, encourages feature reuse and substantially
reduces the number of parameters [22]. It has shown good performance, even with an
insufficient dataset. In the present study, based on four training and internal validation
sessions, the DLA with the best diagnostic performance was selected and applied for
external validation. All of the data processing as well as DL and training procedures
were implemented in DEEPPHI (http://www.deepphi.ai/, accessed on 25 April 2022), a
web-based open artificial intelligence platform.

2.5.2. External Validation

For external validation of segmentation and classification, 22 consecutive patients
from 5 different institutions (25 images for GS6, 70 images for GS7) representing different
MR machines each with different parameters were recruited. The MR machines consisted
of 1.5T (n = 1) and 3.0T (n = 21) scanners, and the images with the highest b values of DWI
were composed of b800 (n = 1), b1000 (n = 4) and b2000 (n = 17). A total of 95 tumor slices
(25 GS6 images, 70 GS7 images) and 180 gland slices were included and analyzed in order
to externally validate the DLA that had been developed with the training dataset.

2.6. Reference Standard

Dedicated urologists performed the radical prostatectomies. A dedicated pathologist
assessed each pathological slide according to the Gleason grading system [23] and drew up
a topographic map that served as the ground truth for tumor segmentation on MRI. For
classification of CSC and non-CSC, the GS, as obtained after surgery, was set as the gold
standard. CSC was defined as GS ≥ 7 and non-CSC as GS6 [24].
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2.7. Statistical Analysis

For the categorical data, the chi-square test or Fisher’s exact test was used to find
any difference between the training and external validation datasets. For the continuous
data, the t-test was used. The Dice score was used to quantify the performance of image
segmentation. A Dice score of 1.0 means perfect overlap, and a score of 0.0 corresponds to
no overlap [25]. The diagnostic performance for classification was calculated via receiver
operating characteristic (ROC) curve analysis and expressed as the area under the ROC
curve (AUC). Diagnostic predictive values, including accuracy, PPV and NPV, were also
estimated under the maximal AUC. For all of the statistical calculations, MedCalc software
for Windows (MedCalc Software version 20.111, Mariakerke, Belgium) was used. A p value
of less than 0.05 was considered statistically significant.

3. Results

3.1. Patient Demographics

The age, prostate-specific antigen level, GS, PIRADS score and tumor location were not
significantly different between the training and external validation datasets. The average
time interval between MRI and surgery was 37.0 days (range, 5–447 days). The average
volume of GS 6 tumors was not significantly different from that of GS 7 tumors in both
training and internal validation sets (GS 6, 4.1 ± 6.6 cm3; GS 7, 7.0 ± 7.3 cm3, p = 0.1822)
and the external validation set (GS 6, 1.9 ± 1.9 cm3; GS 7, 6.3 ± 6.1 cm3, p = 0.1348). The
patients’ demographic data and analysis results are presented in Table 2.

Table 2. Demographic data and analysis results for study population.

Parameter All
Training and Internal

Validation Sets
(n = 149)

External Validation Set
(n = 22)

p Value

Mean Age, years [range] 69.2982 [47–84] 69.2483 [47–84] 69.6364 [56–80] 0.8049

Mean PSA, ng/mL [range] 14.6315 [0.85–149] 14.4478 [0.85–149] 21.1709 [3.0–131] 0.3597

GS, n (%)
6 46 (27) 40 (27) 6 (27) 0.9307
7 125 (73) 109 (73) 16 (73) 0.9912

3 + 4 89 76 13
4 + 3 36 33 3

PIRADS v2.1, n (%)
3 17 (10) 17 (11) 0 (0) 0.1131
4 55 (32) 49 (33) 6 (27) 0.7006
5 99 (58) 83 (56) 16 (73) 0.3307

Tumor location, n (%)
Peripheral zone 92 (54) 81 (54) 11 (50) 0.8245

Transitional zone 48 (28) 38 (26) 10 (45) 0.1204
Fibromuscular zone 4 (2) 4 (3) 0 (0) 0.4422

Diffuse 27 (16) 26 (17) 1 (5) 0.1453

GS, Gleason score; PSA, prostate-specific antigen.

3.2. Diagnostic Performance of DLA

In terms of gland segmentation, U-Net had a sensitivity of 95%, a specificity of 96%
and a Dice score of 0.951 for internal validation and 92%, 97% and 0.9413, respectively, for
external validation (Figure 2). As for tumor segmentation, it had a sensitivity of 82%, a
specificity of 96% and a Dice score of 0.822 for internal validation and 77%, 95% and 0.7776,
respectively, for external validation (Figure 3) (Table 3).

As for classification, the overall accuracies of internal and external validation were
73 and 75%, respectively. For internal validation, the diagnostic predictive values for CSC
(hereafter sensitivity, specificity, PPV and NPV, in order) were calculated as 72, 74, 74 and
72%, respectively. For external validation, the diagnostic predictive values were estimated
as 84, 48, 82 and 52%, respectively (Table 4). The DenseNet 201 classifier achieved an
AUC of 0.6269. The average precision scores for GS6 and GS7 were 0.4462 and 0.8149,
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respectively (Figure 4). Out of a total of 95 tumor slices (25 GS6 images, 70 GS7 images),
13 slices of GS6 were over-estimated as GS7 and 11 slices of GS7 were under-estimated as
GS6 (Figures 5 and 6).

   

Figure 2. A representative case of gland segmentation. (a,b) The Dice score for the gland segmen-
tations was 0.94. Axial T2-weighted image (a) and corresponding ADC map (b) (b = 2000 s/mm2)
with gland segmentation ((b), dotted lines). (c) Segmentation through the convolutional neural
network (CNN, U-Net) shows that the green color represents the matched area and the red color the
unmatched area.

   

Figure 3. A representative case of tumor segmentation with GS7(4 + 3). (a,b) The Dice score for
the tumor segmentations was 0.78. Axial T2-weighted image (a) and corresponding ADC map
(b) (b = 2000 s/mm2) with tumor segmentation ((b), dotted lines). (c) Segmentation through the
convolutional neural network (CNN, U-Net) shows that the green color represents the matched area
and the red color the unmatched area.

Table 3. Diagnostic predictive values of DLA for segmentation of glands and tumors.

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)
Dice
Score

Gland

Internal
validation 96 95 96 95 96 0.951

External
validation 95 92 97 96 93 0.9413

Tumor

Internal
validation 93 82 96 83 96 0.822

External
validation 92 77 95 79 95 0.7776

U-Net was used for deep learning algorithm (DLA).
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Table 4. Diagnostic predictive values of DLA for tumor classification.

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC

Internal validation set
CSC 73 72 74 74 72

External validation set
CSC 75 84 48 82 52 0.6269

DenseNet 201 was used for the deep learning algorithm (DLA). CSC, clinically significant cancer.

Figure 4. Graphs showing precision recall curve (a) and receiver operating characteristic (ROC) curve
(b) of deep learning algorithm (DLA) for tumor classification as applied to external validation dataset.
Average precision for GS6 and GS7 was 0.4462 and 0.8149, respectively. The DenseNet 201 classifier
achieved an AUC of 0.6269 for both GS6 and GS7.

   

Figure 5. A representative case of misclassification: over-estimation of GS6 as GS7. (a,b) Axial
T2-weighted image (a) and ADC map (b) (b = 2000 s/mm2) show a tumor in the Rt. mid-transitional
zone (arrows). (c) Segmentation and classification through the convolutional neural network (CNN,
DenseNet 201) show the tumor area as blue color.
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Figure 6. A representative case of misclassification: under-estimation of GS7 as GS6. (a,b) Axial
T2-weighted image (a) and ADC map (b) (b = 2000 s/mm2) show a tumor in the Lt. mid-transitional
zone (arrows), respectively. (c). Segmentation and classification through the convolutional neural
network (CNN, DenseNet 201) show the tumor area as blue color.

4. Discussion

Regarding tumor segmentation, the DLA, which was based on ADC maps (b2000)
alone in our study, showed Dice scores of 0.94 and 0.78 for gland and tumor segmentation,
respectively. Our observations are similar to those of a previous study on mono-parametric
MRI. Alkadi et al. reported that the accuracy of a DLA, which was based on T2WI only for
tumor segmentation, was 89% [9]. As for tumor segmentation based on bp-MRI, Schelb
et al. reported that the Dice scores for a DLA based on bp-MRI (T2WI + DWI b1500)
using U-Net for detection and segmentation of CSCs were 0.35 for tumors and 0.89 for
glands [10]. Relative to this latter study, in our opinion, the relatively high Dice score for
tumor segmentation in this present study might have been due to the use of DWI b2000.
Rosenkrantz et al. revealed that DWI b2000 achieved significantly higher sensitivity for
tumor detection than b1000 [17]. Vural et al. found that b2000 showed the best lesion
conspicuity and background suppression among b values of 1500, 2000 and 3000 [26].
In addition, Cha et al. reported that the optimal b value of DWI was within a range of
1700–1900 for the detection of a prostatic lesion [27].

In terms of tumor classification, the DLA in the present study showed an accuracy
of 75% and an AUC of 0.63 in external validation. Recently, many deep-learning-based
computer-aided detection/classification (DL-CADe/CADx) systems have been developed
to assist human radiologists. Rampun et al. compared the 11 different CAD systems
employed to detect peripheral-zone cancer (GS ≥ 7), only for T2WI on 3T-MRI [12]. The
results varied from an AUC of 0.69 (k-Nearest Neighbor classifier) to 0.93 (combined
Bayesian Network and Multilayer Perceptron classifiers), according to the applied CNNs.
Ishioka et al. reported AUCs ranging from 0.636 to 0.645 for tumor (GS ≥ 6) detection via
combined U-Net with ResNet50, as trained on T2WI only with the 1.5T-MRI machine [13].
Although only ADC maps (b2000) were used in our study, the diagnostic performance for
tumor classification seems comparable to mono-parametric MRI using T2WI alone.

Beyond mono-parametric MRI, Arif et al. found that a DLA (Keras with TensorFlow)
developed based on bp-MRI (T2WI + DWI b800) showed an AUC of 0.89, a sensitivity of
94% and a specificity of 74% for discrimination of CSCs from non-CSCs [2]. In our study,
the sensitivity and specificity for GS7 were 84 and 48%, respectively. The relatively low
specificity might have been due to the mono-parametric MRI based study, without any
other sequences. Zhong et al. compared the diagnostic performance of DLA models trained
with T2WI (DLAT2) alone, ADC images (DLAADC) alone and combined T2WI and ADC
images (DLAT2 + ADC) in discriminating CSC from non-CSC [3]. All three models showed
the same sensitivity of 77%, and the combined T2WI and ADC (b800) information, notably,
helped to reduce false-positive prediction, thereby improving the specificity from 52 to 64%
after adding DLAT2 + ADC to DLAADC.

Considering the previously mentioned merits of DenseNet, including reduction in the
vanishing gradient, enhancement of feature propagation, reuse of features, reduction in
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the number of parameters [22] and its robustness, we think that our DLA, as developed
by DenseNet and based on ADC maps, could be a simple and convenient option for the
differentiation of CSC from non-CSC.

Our study has several limitations. First, tumor segmentation was conducted not on
a three-dimensional (3D)-volume data basis but on a 2D-image basis, due to the inherent
technical limitation of the segmentation tool. Therefore, when a classification error occurred
in one tumor-bearing slice, there was a tendency that those errors would continue to
consecutive slices. As a result, diagnostic performance for tumor classification might have
been underestimated. Second, there is a possibility of selection bias, as only GS7 tumors
were included in the CSC group. However, GS8-or-higher tumors are frequently advanced
cases of metastatic disease, for which systemic chemotherapy would be adopted rather
than radical prostatectomy. Considering the purpose of this study, to separate the group
capable of surveillance from the group that is not, the study was conducted except for
tumors with a score of GS8 or higher that were already inoperable. It would be better to
have a larger sample size for GS6 in the external validation set; however, it was difficult to
enroll patients with GS6. Patients with GS6 have a relatively good prognosis; thus, active
surveillance and observation can be followed instead of radical prostatectomy. Third, the
DLA’s value added to the human radiologists’ performance for tumor classification was
not investigated. As for the added value, several previous observations have been reported
in the literature [14,15]. Winkel et al. reported that the DL-CAD system increased the
diagnostic accuracy in detecting clinically suspicious lesions (PIRADS ≥ 4) and reduced
both the inter-reader variability and the reading time [14]. However, it was beyond the
scope and aim of the present study. To investigate the added value of a DLA to the
performance of human radiologists for tumor classification, further studies on DLA efficacy
in this regard are warranted.

5. Conclusions

In conclusion, tumor segmentation and classification of PCa through a DLA developed
based on ADC maps (b2000) alone are feasible.
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Simple Summary: This paper focuses on interpreting machine learning (ML) models’ decisions
in medical diagnoses, specifically for four types of posterior fossa tumors in pediatric patients.
The proposed methodology involves using kernel density estimations with Gaussian distributions
to analyze individual MRI features, assess their relationships, and comprehensively study ML
model behavior. The study demonstrates that employing a simplified approach in the absence
of large datasets can lead to more pronounced and explainable outcomes. Furthermore, the pre-
analysis results consistently align with the outputs of ML models and existing clinical findings. By
bridging the knowledge gap between ML and medical outcomes, this research contributes to a better
understanding of ML-based diagnoses for pediatric brain tumors.

Abstract: Machine learning (ML) models have become capable of making critical decisions on our be-
half. Nevertheless, due to complexity of these models, interpreting their decisions can be challenging,
and humans cannot always control them. This paper provides explanations of decisions made by ML
models in diagnosing four types of posterior fossa tumors: medulloblastoma, ependymoma, pilocytic
astrocytoma, and brainstem glioma. The proposed methodology involves data analysis using kernel
density estimations with Gaussian distributions to examine individual MRI features, conducting an
analysis on the relationships between these features, and performing a comprehensive analysis of ML
model behavior. This approach offers a simple yet informative and reliable means of identifying and
validating distinguishable MRI features for the diagnosis of pediatric brain tumors. By presenting
a comprehensive analysis of the responses of the four pediatric tumor types to each other and to
ML models in a single source, this study aims to bridge the knowledge gap in the existing literature
concerning the relationship between ML and medical outcomes. The results highlight that employing
a simplistic approach in the absence of very large datasets leads to significantly more pronounced and
explainable outcomes, as expected. Additionally, the study also demonstrates that the pre-analysis
results consistently align with the outputs of the ML models and the clinical findings reported in the
existing literature.

Keywords: posterior fossa pediatric brain tumors; magnetic resonance imaging; machine learning;
exploratory data analysis; kernel density estimation

1. Introduction

Brain tumors are the most prevalent type of childhood cancer, comprising over a
quarter of all cases. Among these tumors, 60–70% arise in the posterior fossa (PF), with
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medulloblastoma (MB), ependymoma (EP), pilocytic astrocytoma (PA), and brainstem
glioma (BG) being the most common types in children. These tumors can negatively impact
mental and physical development.

Clinical information from radiological interpretations and the histopathological fea-
tures of tumors plays a crucial role in diagnosing, prognosticating, and treating PF tumors
in children. Histopathological evaluation, which is necessary for the initial diagnosis,
helps to evaluate patient prognosis and direct clinical and therapeutic management. It
remains the gold standard in differentiating PF tumors [1,2]. Although biopsies of different
PF brain tumors can reveal distinct visual characteristics, they carry significant risks of
morbidity and mortality, in addition to being expensive. Recent progress in characterizing
tumor subtypes based on cross-sectional diagnostic imaging indicates that it can help to
predict differential survival and responses to treatment. This development is particularly
promising for future treatment stratification in PF tumors. Hence, developing a novel
non-invasive diagnostic tool is essential in classifying tumors based on type and grade and
aiding in planning treatment.

Magnetic resonance imaging (MRI) is currently the most preferred non-invasive method. It
offers high intrinsic soft-tissue contrast without the risk of ionizing radiation. Conventional MRI
protocols, including T1-weighted (T1W), T2-weighted (T2W), and fluid-attenuated inversion
recovery (FLAIR) MRI sequences, have shown promising results in differentiating types of
PF tumors in children [3–21]. Additionally, diffusion-weighted imaging (DWI) with apparent
diffusion coefficient (ADC) maps allows the assessment of physiological features to discriminate
between low- and high-grade tumors and their different subtypes [22–37].

While numerous advancements have been made, the diagnosis and prognosis of specific
tumor matches still present significant challenges due to the voxel-wise overlap [23,27,38]. The
classification process necessitates the inclusion of a tumor’s molecular profile as a critical
variable to predict the diverse biological behaviors of entities that exhibit histological simi-
larities or even indistinguishability [2]. An extensive exploration of tumor classifications
has been conducted using MRI in the literature. Nevertheless, accurately distinguishing
between these tumor types remains an active area of research [20,39–42]. The differentia-
tion between MB and EP is of the utmost importance, considering the distinct treatment
planning required for each, underscoring the significance of their accurate diagnosis in
numerous cases.

Artificial intelligence (AI) applications in pediatric brain tumor research are currently
not well documented when compared to the available literature for adults. Challenges
arise due to the unique pathology of pediatric cases and limitations in available data, which
hinder the development of AI applications specifically tailored to children [43]. While
there is growing interest in utilizing AI for pediatric brain tumor classification [44–55],
the integration of AI into clinical workflows encounters significant obstacles beyond mere
classification. One major challenge is the limited interpretability of many AI methods;
creating a “black-box” model raises concerns among clinicians and patients. To address this
issue, our research aims to enhance the interpretability of ML models’ outcomes, which are
frequently either blindly accepted or disregarded due to their black-box nature. To the best
of our knowledge, there is a lack of literature specifically focusing on the issue of reasoning
and explainability [56].

This study had two main objectives, aiming to bridge the gaps between ML outcomes
and medical knowledge. Firstly, it sought to investigate the significance of clinical MRI
features in classifying pediatric PF tumors (MB, EP, PA, and BG) through exploratory data
analysis (EDA). Secondly, it aimed to offer explanations for the ML outcomes by leveraging
the insights gained from the data exploration (Figure 1).
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Understanding the Data & Exploring the Relationships
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Figure 1. A flowchart depicting the proposed analysis for the classification of pediatric PF tumors:
standardization of the dataset, pairwise feature analysis to examine various features of PF tumor
types, and aligning interpretations of pre-analysis with ML models’ outcomes.

2. Materials and Methods

2.1. Ethics Statement and Patient Characteristics

This prospective study (Ref: 632 QÐ-NÐ2 dated 12 May 2019) was conducted in
both Radiology and Neurosurgery departments and approved by the Institutional Review
Board in accordance with the 1964 Helsinki declaration. Prior to the MRI procedure,
written informed consent was obtained from the authorized guardians of the patients.
The study included 112 pediatric patients diagnosed with PF tumors, including 42 with
MB, 11 with EP, 25 with PA, and 34 with BG. All BG patients were confirmed based on full
agreement between neuroradiologists and neurosurgeons, while the remaining MB, EP,
and PA patients underwent either surgery or biopsy for histopathological confirmation.

The demographics of the patient population were analyzed to gain insights into their
age, gender, and weight distributions. The age statistics revealed a mean age of 6.55 years,
with a median age of 6.0 years. The age range varied from a minimum of 0.6 years to a
maximum of 15.0 years, reflecting the diversity within our cohort. Regarding gender, we
observed a greater representation of males, with a count of 68, compared to females, with
a count of 44. The mean weight was calculated to be 22.54 kg, with a median weight of
20.5 kg. The range of weights varied from a minimum of 3 kg to a maximum of 48 kg.

In-depth patient demographics can be found in the accompanying Table 1, which
provides a comprehensive overview of the study population. Table 1 includes detailed
information on gender, age, and weight for the patients.

Table 1. Patient demographics.

Age Weight

Tumor Type Gender Count Mean ± Std Min Max Mean ± Std Min Max

Medulloblastoma
Girl 16 7.16 ± 3.74 0.6 13 20.81 ± 8.53 8 35
Boy 26 6.77 ± 3.40 1 13 21.19 ± 8.51 9 40

Ependymoma
Girl 3 5.67 ± 0.58 5 6 20.33 ± 4.16 17 25
Boy 8 4.00 ± 3.42 1 11 18.38 ± 12.35 9 45

Pilocytic Astrocytoma
Girl 11 8.18 ± 3.66 3 14 25.18 ± 12.16 9 48
Boy 14 5.79 ± 3.24 1 12 24.07 ± 10.22 10 44

Brainstem Glioma
Girl 14 6.43 ± 3.69 1 15 22.86 ± 11.81 3 47
Boy 20 6.65 ± 2.85 3 14 24.95 ± 7.82 15 48
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2.2. Data Acquisition and Assessment of MRI Features

The MRI protocol was performed in the supine position using a 1.5 Tesla MRI scanner
(Philips, Best, The Netherlands) and included T1W, T2W, FLAIR, DWI (b values: 0 and
1000) with ADC, and T1 contrast-enhanced (T1CE) sequences with macrocyclic gadolinium-
based contrast enhancement (0.1 mL/kg Gadovist, Bayer, Germany or 0.2 mL/kg Dotarem,
Guerbet, France).

MR images of all patients were imported into the Medical Imaging Interaction Toolkit,
developed by the German Cancer Research Center’s Division of Medical Image Computing
in Heidelberg, Germany. The radiologists precisely identified the slice in which the largest
diameter of the PF tumor was present. For each patient, ROIs corresponding to the posterior
fossa tumors and normal-appearing parenchyma were manually delineated on the T1W, T2W,
FLAIR, DWI, and ADC images. These delineations were based on the consensus reached by
two expert radiologists with over 10 years of experience in interpreting neuro MR images.
An example of ROI delineation on a T2W MRI is provided in Figure 2. For additional ROI
delineations of other sequences, please refer to Figure S1 in the Supplementary File S1.

Medulloblastoma Ependymoma Pilocytic Astrocytoma Brainstem Glioma

Tumor Reference Tumor Reference Tumor Reference
Tumor

Reference

a b c d

Figure 2. Example of ROI delineation on a T2W MRI. (a) MB: 8 years old, boy. (b) EP: 3 years old,
boy. (c) PA: 7 years old, girl. (d) BG: 6 years old, girl.

The following MRI features were evaluated: signal intensities (SIs) of T2, T1, FLAIR,
T1CE, DWI, and ADC. The ratio of each MRI feature was calculated as the quotient of
the tumor’s SI and the SI of the normal-appearing parenchyma (Ratio = Tumor Feature

Parenchyma Feature ).
Additionally, ADC values were quantified for both the PF tumor and parenchyma regions
using the MR Diffusion tool available in the Philips Intellispace Portal, version 11 (Philips,
Best, The Netherlands).

2.3. Exploratory Data Analysis

The quality of a dataset has a direct impact on the effectiveness of the trained model.
Therefore, EDA plays a crucial role in understanding the data by revealing its inherent
structure, identifying anomalies and outliers, extracting significant features, and facilitating
the appropriate ML models to establish correlations between MRI feature characteristics
and the various types of pediatric PF tumors.

In this study, we performed an exploratory analysis using kernel density estimations
(KDE) with Gaussian distributions, focusing on the MRI features. The proposed analysis
consisted of three parts: standardization, data analysis involving visualization of the
distributions of each MRI feature, as well as exploring relationships between different
features, and analyzing the ML models’ outcomes through the extracted knowledge from
EDA. All figures were generated using the Matplotlib package (version 3.5.2) in Python.

2.4. Standardization

The patient dataset underwent a standardization process known as Z-score normaliza-
tion. This process was carried out using the Python programming language, specifically
Python version 3.9.13, along with the Scikit-Learn library version 1.0.2.
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To perform the standardization, the StandardScaler function from Scikit-Learn was
utilized. This function ensured that numerical attributes within the patient dataset were
transformed into a standardized format. It achieved this by subtracting the mean and
scaling the values to have a unit variance.

The StandardScaler function normalizes each feature individually, meaning that each
column/feature/variable in the input matrix X will have a mean (μ) of 0 and a standard
deviation (σ) of 1. The normalization is accomplished using the formula z = xi−μ

σ , where xi
represents the value of a specific feature for a patient.

2.5. Pairwise Feature Analysis

The pairplot function in the Seaborn Python package (version 0.11.2) enables the
visualization of the pairwise relationships between variables in a dataset. Numerical
variables are split into a single row on the y-axis and a single column on the x-axis by default.
The position of one variable on the vertical or horizontal axis indicates its correlation with
another variable in the same row of data. The relationship between the MRI features was
further examined through Pearson’s correlation coefficients, calculated using the default
corr() function in the pandas dataframe.

2.6. Revealing Distribution Differences of Patients between Tumor Types

To effectively illustrate the distinctions among the four PF tumor types, we utilized
the kdeplot and pairplot functions from Seaborn as necessary. Additionally, we assigned
a hue parameter to represent the tumor type, thereby facilitating a semantic mapping.
This assignment transforms the default marginal plot into a layered KDE, which helps
to address the challenge of reconstructing the density function f using an independent,
identically distributed (iid) sample x1, x2, ..., xn from the respective probability distribution.

The generalized estimate used in plotting can be expressed as follows:

f̂ (x) =
1

nhd

n

∑
i=1

k
(

x − xi
h

)
, (1)

where h is a bandwidth parameter, and the kernel is commonly a Gaussian,

k(z) =
1√
2π

exp
(
− 1

2
z2
)

. (2)

2.7. Machine Learning

We employed eight ML models, including support vector machine (SVM), linear
support vector machine (LSVM), logistic regression (LR), a random forest classifier (RF),
a decision tree classifier (DT), a gradient boosting classifier (GBM), a catboost classifier
(CB), and an extreme gradient boosting classifier (XGB), to assess the consistency of our
interpretations of the raw data with the outcomes. CB and XGB were obtained from their
respective libraries (CatBoost version 1.1.1, XGBoost version 1.5.1), while other models
were obtained from the Scikit-Learn library.

To ensure methodological consistency, we utilized the default versions of all ML mod-
els, as our primary objective was not to maximize the classification scores. It is important to
acknowledge that tuning the model parameters could potentially lead to improved results.
However, considering the limited data size, the presence of rare tumor types, and the
absence of an external dataset from another hospital, such parameter adjustments carried
a significant risk of overfitting on our data. In order to mitigate this risk and uphold the
credibility of our findings, we chose to adhere to the default model configurations through-
out the analysis. This decision safeguarded the integrity of our research and ensured the
validity of our conclusions.

Tree-based models, such as RF, DT, GBM, CB, and XGB, are commonly utilized in ML.
However, they can be prone to overfitting when the trees are deep and have a large number
of features. To address this issue, RF, which is a bagging model, generates a set of decision
trees by training on different data samples or subsets of features. XGB, on the other hand,
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is a sequential model that adopts a different approach to building decision trees. To ensure
that our models did not have a bias towards certain features and generalized well, we
conducted an analysis of the prioritization and proportional distribution of features used
by the RF and XGB models during prediction. This analysis strengthened our explanations
of the models’ high performance and accuracy in predicting outcomes.

To ensure the reliability of our ML models, particularly with a small dataset, we
conducted five runs using stratified random sampling based on tumor type with 55%
train and 45% test patients. We used random states to obtain samplings and preserve the
train/test distributions for the reproducibility of the experiment. Ultimately, we calculated
the averaged outcomes with their standard deviations.

The accuracy metric is not employed in the presentation of our results due to significant
class imbalance in our dataset. Utilizing the accuracy metric could have led to misleading
results. Instead, we relied on the precision, recall, and F1 score, computed based on the number
of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN), as
fundamental evaluation metrics to assess the performance of our classifiers in both binary and
multiclass classification tasks. Precision gauges the proportion of correctly predicted positive
instances among all positive predictions, highlighting the accuracy of positive classifications.
Conversely, recall assesses the proportion of positive instances that were correctly identified
by the classifier, emphasizing the completeness of the positive predictions.

While high precision and high recall are typically desirable, we were aware of the
potential trade-off between these two metrics in certain scenarios. To gain a comprehensive
understanding of our classifier’s effectiveness, we utilized the F1 score, which harmoniously
considers both precision and recall.

To ensure a precise interpretation of the ML results, we chose not to equalize the labels.
Instead, we utilized the macro precision, macro recall, and macro F1 score metrics to ensure
that all labels contributed equally to the results. This approach allowed us to assess the
classifier’s performance while considering the impact of varying patient counts across
different labels.

The validation metrics used in ML are as follows:

Macro Precision =
1
n

n

∑
i=1

TPi
TPi + FPi

(3)

Macro Recall =
1
n

n

∑
i=1

TPi
TPi + FNi

(4)

Macro F1 Score =
1
n

n

∑
i=1

2 × TPi
2 × TPi + FPi + FNi

(5)

where n represents the total number of classes.

2.8. Statistical Analysis

Statistical analysis was performed using the SPSS software (version 25.0, 64-bit edition,
IBM Corp., Armonk, NY, USA). A two-sided p-value of <0.05 was considered statistically
significant. The statistical summary of the variability of ML outcomes is presented in the
mean ± standard deviation format.

2.9. Hardware Requirements for Machine Learning

Designing an ML pipeline with the current number of patients and their tabular data
does not require significant computational power. The entire machine learning system
was developed utilizing a system equipped with an Apple M1 chip CPU and a memory
capacity of 16 GB, namely the Hynix LPDDR4.

3. Results

3.1. Single MRI Feature Analysis

Our feature analysis, which utilized KDE on the standardized distributions presented
in Figure 3a–f, yielded several valuable insights.
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T2_Tumor features possess distributions that are expected to differentiate PA from EP
and MB but cannot differentiate between MB and EP or PA and BG (Figure 3a). Moreover,
the T2_Ratio might aid in distinguishing between MB and EP, as well as PA and BG.

The distributions of FLAIR_Tumor and FLAIR_Ratio generate notably different dis-
tributions (Figure 3b), even though the Ratio feature is mathematically dependent on the
Tumor feature. The FLAIR distributions might be effective in distinguishing between MB
and EP, as demonstrated by FLAIR_Tumor, which exhibits a broad EP and a narrow MB
distribution. Furthermore, the FLAIR_Ratio exhibits two distinct and narrow Gaussian
distributions, which also might aid in distinguishing between MB and EP. In contrast, the
other scenarios do not present any discriminative characteristics.

The DWI characteristics (Figure 3c) demonstrate distributions that allow differentiation
between MB and PA. Additionally, although to a lesser extent, discrete distributions can be
observed in the differentiation between MB and BG, as well as between EP and PA. On the
other hand, despite their high distinctive distributions overall, DWI_Ratio features are not
expected to be effective in distinguishing between PA and BG due to significant overlap.

ADC (Figure 3d) demonstrates separate distributions in distinguishing each tumor
pair, with the highest distinction observed between MB and PA and the least between PA
and BG. When considering tumors as a whole rather than in pairs, ADC and DWI present
the most distinct distributions for all tumor types. ADC shows highly distinct distributions
for each tumor, with DWI following closely behind.

The T1 features, as shown in Figure 3e, do not demonstrate any distinctive distributions
that can effectively differentiate between different tumor scenarios. However, the T1_Ratio
appears to be a critical factor in distinguishing PA from other types of tumors. In addition,
T1CE presents important distinct distributions for all other tumor matches with BG, as
depicted in Figure 3f.

a b c

d e f

Figure 3. Kernel density estimations with Gaussian distributions of MRI features for PF tumors.
(a) T2, (b) FLAIR, (c) DWI, (d) ADC, (e) T1, and (f) T1CE.
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3.2. Pairwise Analysis of MRI Features

The scatter correlation plots (Figure S2 in the Supplementary File S1) and Pearson’s
correlation coefficients (Figure 4) illustrate varying degrees of correlation between the
MRI features and tumor types. Notably, MB exhibits clustered shapes, while PA appears
scattered in most cases, and BG and EP show dispersed and uncertain distributions. Outlier
patients with correlated features were identified, and some features exhibited no correla-
tions with the tumor types.

The results of the Pearson’s correlation analysis indicated that the T2 and ADC fea-
tures, with complex distributions compared to other features, exhibited significant positive
correlations, particularly T2_Tumor and ADC_Tumor (r = 0.87, p < 0.0001), T2_Tumor and
ADC_Ratio (r = 0.85, p < 0.0001), T2_Ratio and ADC_Tumor (r = 0.78, p < 0.0001), and
T2_Ratio and ADC_Ratio (r = 0.79, p < 0.0001). Conversely, significant negative correlations
were observed between the T2 and DWI features, as well as between the DWI and ADC fea-
tures, namely T2_Tumor and DWI_Tumor (r = −0.46, p < 0.0001), T2_Tumor and DWI_Ratio
(r = −0.52, p < 0.0001), T2_Ratio and DWI_Tumor (r = −0.51, p < 0.0001), T2_Ratio and
DWI_Ratio (r = −0.44, p < 0.0001), ADC_Tumor and DWI_Tumor (r = −0.68, p < 0.0001),
ADC_Tumor and DWI_Ratio (r = −0.79 p < 0.0001), ADC_Ratio and DWI_Tumor (r = −0.66,
p < 0.0001), and ADC_Ratio and DWI_Ratio (r = −0.78, p < 0.0001).

Figure 4. Pearson’s correlation coefficients between each MRI feature.

FLAIR_Tumor did not demonstrate a significant correlation with any other features
(T2_Tumor (r = 0.08, p = 0.39), T1_Tumor (r = 0.02, p = 0.84), T1CE_Tumor (r = −0.09,
p = 0.34), DWI_Tumor (r = 0.02, p = 0.85), and ADC_Tumor (r = 0.06, p = 0.52)), while
FLAIR_Ratio could exhibit correlations in logarithmic or reduced dimensions (T1_Ratio
(r = 0.25, p = 0.008). Similar patterns to FLAIR were observed for T1_Tumor (T2_Tumor
(r = −0.16, p = 0.08), T1CE_Tumor (r = 0.07, p = 0.45), DWI_Tumor (r = 0.03, p = 0.76),
and ADC_Tumor (r = −0.12, p = 0.19)), and T1_Ratio (T2_Tumor (r = −0.47, p < 0.0001),
T2_Ratio (r = −0.53, p < 0.0001), T1CE_Tumor (r = −0.19, p = 0.045), T1CE_Ratio (r = −0.21,
p = 0.03), ADC_Tumor (r = 0.41, p < 0.0001) and ADC_Ratio (r = 0.40, p < 0.0001)), empha-
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sizing the importance of using a ratio computed with reference to parenchyma. In contrast,
T1CE_Tumor and T1CE_Ratio showed dispersed distributions, with non-linear patterns
that could be observed for certain tumor types.

3.3. Findings from Machine Learning

The ML procedure involved analyzing feature importance scores, the test scores of
eight ML models (Tables S1–S7 in the Supplementary File S2), and confusion matrices to
assess the accuracy and reliability of the results. We trained the models on all possible
tumor pairs to identify unique features for each case, and the most favorable outcomes
are summarized in Table 2. Additionally, we conducted a comprehensive analysis of the
feature importance scores for all four tumor types, providing further insights into their
distinguishing characteristics.

We focused on the RF and XGB models since RF delivered the best scores for the
classification of all tumors, while XGB possesses a distinct tree structure compared to RF,
allowing us to explore and compare the variations in the ML models’ outcomes. Although
various ML models could have been employed for this analysis, we specifically chose XGB
and RF to illustrate how the methods’ structures differ in generating importance scores and
to present a clear and concise analysis.

Notably, as shown in Figure 5a, the FLAIR_Ratio was identified as the most discrim-
inating feature in distinguishing between MB and EP in both the RF and XGB models,
followed by the ADC_Ratio. However, the two models relied on different features for
decision-making. Therefore, relying solely on the analysis presented in Figure 5 may not
be sufficient for model comparison, as they prioritize different features. The performance
evaluation of both models showed that the RF model, which prioritized diffusion features
(4 out of top 5, 65.38%), demonstrated greater accuracy in feature selection compared to the
XGB model (2 out of top 5, 60.08%). Therefore, the features highlighted by the RF model
should be considered more significant in distinguishing between MB and EP.

Table 2. Best test scores for each case from evaluation of 8 different ML models.

Best Model Precision Recall F1 Score

MB-EP LR 70.65 ± 4.55 68.21 ± 7.86 67.70 ± 6.19
MB-PA LSVM 97.46 ± 1.57 97.28 ± 1.70 97.28 ± 1.52
MB-BG LR 94.94 ± 2.38 94.77 ± 2.50 94.81 ± 2.42
EP-PA LR 95.90 ± 4.17 96.33 ± 4.11 95.80 ± 3.85
EP-BG LR 91.46 ± 7.58 87.50 ± 10.94 87.48 ± 9.73
PA-BG CB 89.95 ± 5.97 88.69 ± 6.86 89.04 ± 6.50

MB-EP-PA-BG RF 76.77 ± 9.78 71.34 ± 3.53 71.74 ± 5.41

In differentiating between MB and PA, the RF model showed a more dispersed reliance
on various features, whereas the XGB model heavily relied on ADC_Tumor (Figure 5b).
The study suggests that DWI features play an important role in distinguishing between
these tumors, with T2 features being crucial in the decision-making process of the RF model,
leading to a higher F1 score (RF: 93.81%, XGB: 90.15%).

To differentiate between MB and BG, our results indicated that the XGB model heavily
relied on the ADC_Tumor feature (∼80%), while the RF model utilized a more diverse
set of features, such as ADC, DWI, T1CE, and T2 (Figure 5c). Surprisingly, both models
performed equally well in this scenario, with an F1 score of 93.62%. Therefore, our results
suggest that the ADC_Tumor feature is crucial in distinguishing MB from BG.

In differentiating EP from BG, the ML models were mainly impacted by the ADC_Tumor
feature, with a supportive influence of the T1CE_Ratio and T1CE_Tumor features (Figure 5d).
The RF model was also influenced by T2_Tumor, which might have led to a slight decrease
in the overall F1 score (RF: 69.96%, XGB: 73.34%). As there was significant feature overlap
between EP and BG, the performance scores for this classification task were lower compared
to other tumor pairs, except MB and EP.
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In distinguishing EP from PA, T2 features provided significant discriminative power
(Figure 5e). However, the ADC_Tumor and ADC_Ratio features were found to be the
leading contributors to the F1 score of 92.18% for the RF model, while the XGB model
achieved a score of 81.48% due to its strong dependency on T2.

To differentiate PA from BG, both ML models heavily relied on T1CE features in
their decision-making processes, with the T2_Ratio also providing discriminative power
(Figure 5f). The XGB model outperformed the RF model, achieving a higher F1 score of
89.01% compared to 87.25%.

Additionally, the LR model achieved the highest F1 score in the MB-EP case and
emerged as the dominant model in the MB-BG, EP-PA, and EP-BG cases. Furthermore, the
LSVM outperformed other models in distinguishing between MB and PA. For the PA-BG
case, the CB model attained high scores.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Averaged feature importance scores generated by RF and XGB models for behavior
comparison. (a) MB-EP; (b) MB-PA; (c) MB-BG; (d) EP-BG; (e) EP-PA; (f) PA-BG.

The analysis revealed varying degrees of feature importance in differentiating be-
tween the four tumor types in the MB, EP, BG, and PA classification task. Among the
models, the RF model achieved the highest F1 score of 71.74%, outperforming the other
models. Figure 6c illustrates the significant role of ADC features in overall differentiation,
followed by the T1CE and T2 features. The DWI and FLAIR features also contributed to
the discriminative power, albeit to a lesser extent.

We also identified the most challenging discrimination task, which involved dis-
tinguishing between MB and EP (Figure 6a), and the easiest discrimination task, which
involved distinguishing between MB and PA (Figure 6b). In the challenging classification
problem of MB and EP, the Gaussian distributions of the best distinguishing features were
found to overlap significantly, while, in the easiest one, MB and PA, the distributions of the
best features did not overlap at all. Conversely, the least important features overlapped
completely in every scenario.

The impact of stratified random sampling on the feature selection and performance
of the RF model was examined and the findings are as given below (Figure S3 in the
Supplementary File S1).
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• In State 1, the model misclassified nine patients, including two with a BG tumor, three
with an EP tumor, one with an MB tumor, and three with a PA tumor. The most infor-
mative features for this classification were ADC_Tumor, ADC_Ratio, and T1CE_Ratio.

• In State 2, the model performed slightly better in predicting BG and could distinguish
all MB from other types. However, it misclassified two more PA patients, using
ADC_Ratio, ADC_Tumor, and T2_Ratio as the most significant features.

• In State 3, the model could distinguish almost all PA test patients except one. However,
it missed one BG, which was previously predicted as EP in State 2.

• In State 4, the model was unable to differentiate three BG, three EP, and three PA test
patients from other types.

• In State 5, the model attributed the highest importance to the T1CE_Tumor feature,
which led to the misclassification of all EP patients and four BG patients.

Worst 1

Most Important Features

Least Important Features

Most Important Features

Least Important Features

Most Important Features

Least Important Features

(a)

(b)

(c)

Figure 6. The three most and least effective features for the classifications using the Random Forest
(RF) model. (a) The hardest case: MB vs. EP; (b) The easiest case: MB vs. PA; (c) Case of all tumor
types.

4. Discussion

Pediatric brain tumors pose a significant clinical challenge due to the substantial
degree of spatial heterogeneity in tumor characteristics. Tumors such as those arising
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from the posterior fossa have a significant imaging feature overlap, leading to difficulty
in differentiation, even among experts. The need to differentiate is important due to
the different treatment options available for each of them. Thus, precise diagnosis and
treatment are crucial in improving outcomes and enhancing quality of life.

Despite the significant advancements observed in AI and medical imaging, the de-
pendability and accuracy of these approaches are profoundly influenced by the quality of
the data, meticulous system design, and the comprehensive dissemination of transparent
results. Therefore, we conducted a comprehensive and systematic analysis focusing on
four distinct tumor types in pediatric brain tumor research. We employed an approach
that integrated EDA to interpret ML outcomes, while the ML models provided additional
insights into the underlying patterns and relationships among the MRI features.

This study was motivated by the idea that the feature distribution obtained from KDE
can provide reliable estimates of ML results prior to the actual model training. The esti-
mation provides insights into which features are the most effective and which features
contribute negligibly to the ML models’ decisions. To test this hypothesis, we conducted
several pre-training analyses without relying on prior clinical knowledge and analyzed
the feature distribution plots. In the present research, a thorough investigation of the
diverse characteristics of pediatric PF tumor types was carried out through the utilization
of Gaussian distributions, which can be observed in Figure 3. Through this analysis, a
number of predictions have been drawn, indicating that certain features are likely to be
highly effective in distinguishing particular tumor types, while others are deemed to have
a limited impact on classification.

The single-feature analysis using Gaussian distributions, shown in Figure 3, revealed
that some MRI features are effective in distinguishing specific pediatric PF tumor types,
while others have minimal contributions towards classification. ADC and DWI features
are the most effective in differentiating between tumor types, with clear differences in the
distributions of these features for different tumors, whereas T1 and T1CE features are less
effective in distinguishing between tumor types, although there are some differences in the
distributions for different tumors. Moreover, T2 and FLAIR features show some differences in
the distributions for different tumors, but these are less pronounced than for ADC and DWI.

Our analyses in the single-feature section are consistent with both the clinical and ML
results in almost every instance, and we provide corresponding references in this section
to validate our findings. Specifically, our analysis indicates that the T2_Tumor feature
can effectively differentiate PA from EP and MB (Figure 5b–d), but cannot differentiate
between MB and EP or PA and BG (Figure 5a–f). Remarkably, the incorporation of the hand-
crafted feature T2_Ratio further enhances the effectiveness of T2 for tumor classification
(Figure 5a,b,e,f). This is particularly evident in the differentiation between MB and EP,
as well as PA and BG tumors (Figure 5a–f). Our findings also shed light on the potential
of FLAIR features in distinguishing between different tumor types (Figures 3b and 5).
The distributions of FLAIR_Tumor and FLAIR_Ratio exhibit notable differences, despite
the lack of distributional disparities for parenchyma, which serves as a reference point.
Specifically, FLAIR_Tumor shows a broad distribution for EP and a narrow distribution
for MB, while FLAIR_Ratio displays two distinct and narrow Gaussian distributions. The
ML results highlight that FLAIR features are useful in distinguishing between MB and
EP tumors (Figure 5a), although the discriminative characteristics are not evident in the
rest of the scenarios (Figure 5b–f). These findings are consistent with those of previous
studies [10–12,15,17,19,20].

The results of our study also indicate that the DWI characteristics display distinct
distributions that enable the differentiation of MB and PA (Figures 3c and 5b). While the dis-
tributions are less clear, there are still noticeable differences in the DWI characteristics when
distinguishing between MB and BG, as well as between EP and PA (Figures 3c and 5c,e).
However, we found that the DWI_Ratio features, despite having highly distinctive distri-
butions overall, were not likely to be useful in distinguishing between PA and BG due to
their significant overlap (Figures 3c and 5f). Moreover, our findings revealed that the ADC
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had distinct distributions for each tumor pair, with the most noticeable distinction between
MB and PA and the least between PA and BG (Figures 3d and 5a–f). When considering
the distributions of all tumors collectively, rather than in pairs, ADC exhibited the most
prominent differences among all tumor types (Figure 6c). The difference in diffusivity
between various types of PF tumors is due to their cellular characteristics and arrangements,
as well as the presence of cystic spaces within the tumor bulk. These results are in line with
previous research findings [20,22–24,30–32].

While our study identified several features that can effectively differentiate between
different types of PF tumors, not all features are equally informative. Some features may
exhibit significant overlap between different tumor types, which can limit their useful-
ness in certain scenarios. For instance, our study demonstrated that T1_Tumor features
did not exhibit any notably distinctive distributions in distinguishing between different
tumor types (Figures 3e and 5a–f). However, it could be seen that T1_Ratio is a crucial
factor in differentiating PA from other tumor types (Figure 5b,e,f). Additionally, T1CE dis-
plays notable distinctive distributions when differentiating all other tumor types from BG
(Figures 3f and 5c,d,f).

Based on the pairwise analysis of the dataset, our findings suggest that MB exhibits
a more distinct set of MRI features that are strongly correlated with the tumor type. Con-
versely, PA appears to be more heterogeneous in terms of its MRI features, and the MRI
features associated with BG and EP may not be well defined. Furthermore, the positive
correlation between both T2 and ADC features may reflect the diverse nature of these tumor
types, with different subtypes exhibiting distinct MRI features. The negative correlation
observed between DWI and ADC, as well as DWI and T2 features, may reflect differences
in tumor cellularity and tissue microstructure. This finding may have important implica-
tions for treatment planning, particularly with regard to therapies that target the tumor
microenvironment. The findings of this study offer significant insights into the correlations
between tumor types and MRI features.

In an ML classification model, a feature’s ability to distinguish between different
classes, such as different tumor types, is determined by the degree of separation or overlap
between the distributions of the feature values for each class. When the distributions
are close together and have significant overlap, the feature is unlikely to provide much
discriminative value and will have little impact on the classification decision. Conversely,
when the distributions are far apart and have minimal overlap, the feature is more likely
to provide discriminative value and will significantly impact the classification decision.
Examining the distribution of tumor types across various features can help to identify
potential biomarkers that may be useful for diagnostic or prognostic purposes.

Our preliminary analysis in this study agrees with the results obtained from the RF
model, thus substantiating its decision-making process. However, there is a possibility
of the ML model selecting a non-distinctive feature as the most critical factor, which is
irrational. Therefore, it is imperative to provide an explanation for the model’s decisions.
To this end, we have proposed a methodology to elucidate the correlation between the KDE
analysis and the averaged feature importance of the ML results, as presented in Figure 6, to
bring clarity to this association.

The performance of ML models can be significantly influenced by the distribution
of samples in the training and testing sets, even if the samples belong to the same class.
To ensure more generalizable results, we utilized stratified random sampling to evaluate the
dataset across five different distributions. The feature importance was then computed and
averaged over the five distributions, as demonstrated in Figures 5 and 6. However, there
was still a considerable degree of variability in the results for each distribution (Figure S3 in
the Supplementary File S1). Thus, it is crucial to take into account the sample distribution
when assessing ML models and to implement stratified random sampling to ensure robust
and generalized outcomes.

We evaluated the performance of eight different ML models and determined that LR
is suitable for binary classification tasks. However, in discriminating between all tumor
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types simultaneously, RF outperformed all other models. To enhance the interpretability of
the RF model’s results, we aligned its feature importance values with the KDE predictions.
To ensure reproducibility, we used five different random seeds and computed the mean
of the resulting outputs. Comprehensive analysis of the ML results side by side revealed
that no single model outperformed the others, as demonstrated in Table 2. Furthermore,
the results differed depending on the models and data structure. To demonstrate this,
we compared the RF and XGB models for PF tumor classification, as shown in Figure 5.
This approach provided a clear understanding of how the models’ behavior influenced the
results, which was crucial for the PF tumor classification task.

Analyzing patient distributions can provide insights into subtypes with unusual pat-
terns that ML models may not detect, leading to errors in calculating tumor characteristics.
These outliers can reveal unique features that improve the reliability and accuracy of ML
models for medical diagnosis and treatment. Clustering and explaining ML models with
larger labeled datasets could enhance our understanding of the heterogeneity within patient
subtypes in future studies.

In clinical practice, tumors are assessed based on location, the effect exerted by the
tumor on the surrounding tissue, and tumor behavior, including the tendency to invade
surrounding tissues or the presence of cystic components or calcification. Tumors with
classic imaging features in pathognomonic locations can be identified even by novice
radiologists with ease. However, distinguishing between tumors with similar characteristics
and locations requires a more in-depth analysis of the imaging features, as demonstrated in
this study. When two tumors exhibit near-similar characteristics and locations, the ability
to differentiate them based on imaging features such as those studied in this work becomes
important. AI models trained on MRI sequences can assist in diagnosing similar lesions
and aid in management planning. The transparent use of ML methods with pre-analysis
and proper testing procedures is crucial for reliable, reproducible, and accurate findings.
Ultimately, the primary goal of any analysis is to produce explainable and reproducible
results that can be verified by other researchers, improving the diagnostic features and
patient outcomes in medical research.

There are some limitations that need to be considered in the present study. First, the
dataset used for analysis was limited in scope and size. Although it contained a sufficient
number of samples to train ML models, the dataset may not have been representative of all
possible scenarios, and the results may not generalize well to other datasets. To address
this, we employed stratified random sampling to ensure that each tumor subtype was
represented proportionally in the training and testing datasets. This approach helped
to minimize bias in the model training and increase the generalizability of our findings.
Second, our dataset only included four types of pediatric PF tumors, which may not fully
represent the diversity of pediatric brain tumors. Third, the study was limited to the
analysis of a single feature and pairwise interactions between features. Other important
features or higher-order interactions that were not considered in this analysis may exist,
and their inclusion may change the outcome. Future studies with larger sample sizes and
additional advanced MRI protocols, such as semiquantitative and quantitative perfusion
MRI and MR spectroscopy, could provide more insights into the diagnostic and prognostic
value of MRI features for pediatric PF tumors. Additionally, further research is needed to
investigate the potential of ML models and EDA to improve the reliability of pediatric PF
tumor diagnosis and treatment.

5. Conclusions

The significance of our study lies in its ability to surpass the constraints of prior
research in this field. While previous studies have often focused on only one binary
differentiation or incorporated numerous exceptions, leading to reduced transparency, our
research stands out by offering a comprehensive analysis of four distinct tumor subtypes
within a single source. This paper offers a comprehensive and holistic understanding of
the subject matter.
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Through our analysis, we have uncovered the effectiveness of specific MRI features,
such as ADC and DWI, in accurately distinguishing between tumor types, while also shed-
ding light on the limited impact of features such as T1 and T1CE. The combination of EDA
and ML has provided valuable insights into feature distributions and their importance in
classification. Additionally, handcrafted features such as T2_Ratio and T1_Ratio enhanced
the effectiveness of T2 and T1 features, respectively, in tumor classification. Overall, we
identified RF as a suitable model for tumor classification, while LR emerged as the optimal
choice for most binary cases.

In our analysis, we focused on MRI features that demonstrated minimal overlap
between tumor types within their KDE distributions, as they offered valuable discrimina-
tory information. Our findings have highlighted the potential of specific features, such
as ADC_Ratio and ADC_Tumor, in effectively differentiating between tumor types. This
effectiveness can be attributed to the distinct cellular characteristics, arrangement, and
presence of cystic spaces within the tumor mass.

We have also demonstrated that in situations where patient data are limited, complex
systems may not always be necessary to evaluate feature importance; in fact, they could
impair both performance and interpretability. By conducting comprehensive analyses using
simpler approaches, we can still extract valuable insights into the significance of specific
features. This emphasizes the importance of adaptability and resourcefulness in leveraging
available data to make informed decisions in clinical settings.
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Simple Summary: Colorectal cancer (CRC) is among the leading causes of cancer-related deaths.
Despite extensive efforts, a limited number of biomarkers and therapeutic targets have been identified.
Therefore, novel prognostic and therapeutic targets are needed in the management of patients and
to increase the efficacy of current therapy. The majority CRC patients follow the conventional
chromosomal instability (CIN), which is started by several mutations such as APC, followed by
genetic alterations in KRAS, PIK3CA and SMAD4, as well as the hyperactivation of pathways such as
Wnt/TGFβ/PI3K. Although the underlying genetic changes have been well identified, the mutational
signature of tumor cells alone does not enable us to subclassify tumor types or to accurately predict
patient survival and suppression of those pathways have often not been effective in treatment. Our
data showed some new genetic variants in ASPHD1 and ZBTB12 genes, which were associated with
a poor prognosis of patients.
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Abstract: Introduction: Colorectal cancer (CRC) is among the leading causes of cancer-related deaths.
Despite extensive efforts, a limited number of biomarkers and therapeutic targets have been identified.
Therefore, novel prognostic and therapeutic targets are needed in the management of patients and
to increase the efficacy of current therapy. The majority CRC patients follow the conventional
chromosomal instability (CIN), which is started by several mutations such as APC, followed by
genetic alterations in KRAS, PIK3CA and SMAD4, as well as the hyperactivation of pathways such as
Wnt/TGFβ/PI3K. Although the underlying genetic changes have been well identified, the mutational
signature of tumor cells alone does not enable us to subclassify tumor types or to accurately predict
patient survival and suppression of those pathways have often not been effective in treatment. Our
data showed some new genetic variants in ASPHD1 and ZBTB12 genes, which were associated with
a poor prognosis of patients. Colorectal cancer (CRC) is a common cancer associated with poor
outcomes, underscoring a need for the identification of novel prognostic and therapeutic targets
to improve outcomes. This study aimed to identify genetic variants and differentially expressed
genes (DEGs) using genome-wide DNA and RNA sequencing followed by validation in a large
cohort of patients with CRC. Methods: Whole genome and gene expression profiling were used to
identify DEGs and genetic alterations in 146 patients with CRC. Gene Ontology, Reactom, GSEA, and
Human Disease Ontology were employed to study the biological process and pathways involved
in CRC. Survival analysis on dysregulated genes in patients with CRC was conducted using Cox
regression and Kaplan–Meier analysis. The STRING database was used to construct a protein–protein
interaction (PPI) network. Moreover, candidate genes were subjected to ML-based analysis and
the Receiver operating characteristic (ROC) curve. Subsequently, the expression of the identified
genes was evaluated by Real-time PCR (RT-PCR) in another cohort of 64 patients with CRC. Gene
variants affecting the regulation of candidate gene expressions were further validated followed
by Whole Exome Sequencing (WES) in 15 patients with CRC. Results: A total of 3576 DEGs in
the early stages of CRC and 2985 DEGs in the advanced stages of CRC were identified. ASPHD1
and ZBTB12 genes were identified as potential prognostic markers. Moreover, the combination
of ASPHD and ZBTB12 genes was sensitive, and the two were considered specific markers, with
an area under the curve (AUC) of 0.934, 1.00, and 0.986, respectively. The expression levels of
these two genes were higher in patients with CRC. Moreover, our data identified two novel genetic
variants—the rs925939730 variant in ASPHD1 and the rs1428982750 variant in ZBTB1—as being
potentially involved in the regulation of gene expression. Conclusions: Our findings provide a proof
of concept for the prognostic values of two novel genes—ASPHD1 and ZBTB12—and their associated
variants (rs925939730 and rs1428982750) in CRC, supporting further functional analyses to evaluate
the value of emerging biomarkers in colorectal cancer.

Keywords: machine learning; colorectal cancer; bioinformatics; biomarker; prognosis

1. Introduction

Colorectal cancer (CRC) is the second most common cause of cancer-related mortal-
ity [1], and its incidence is increasing despite the advances in the detection of prognostic
and/or therapeutic targets. This is partly due to the limited number of therapeutic agents
that have been identified. A high proportion of patients with CRC develop metastatic
cancer(s) or become resistant to therapy. Therefore, novel prognostic biomarkers and new
therapeutic targets that can help to assess the risk of developing CRC recurrence or increase
the efficacy of current therapy are urgently needed.

Integrated analyses of multi-omics data provide useful insight into the pathogenesis of
CRC and help to identify novel diagnostic and prognostic biomarkers. With the success of
artificial intelligence technologies, machine learning (ML) is being used in healthcare. ML
methods provide novel techniques of integration and analyzing omics for the discovery of
novel biomarkers [2,3]. Hammad and collaborators [4] identified 105 differential expression
genes (DEGs) using datasets from the Gene Expression Omnibus (GEO). Functional enrich-
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ment analysis revealed that these genes were enriched in cancer-related biological processes.
The protein–protein interaction (PPI) network selected 10 genes, including IGF1, MYH11,
CLU, FOS, MYL9, CXCL12, LMOD1, CNN1, C3, and HIST1H2BO, as hub genes. Support
Vector Machine (SVM), Receiving Operating Characteristic (ROC), and survival analyses
demonstrated that these hub genes can be considered potential prognostic biomarkers
for CRC.

Maurya et al. [5] used Least Absolute Shrinkage and Selection Operator (LASSO) and
Relief for feature selection from the Cancer Genome Atlas (TCGA) dataset and applied RF,
K-Nearest Neighbor (KNN), and Artificial Neural Network (ANN) to check the accuracy
of the models. The joint set of selected features between LASSO and DEGs was 38 genes,
among which VSTM2A, NR5A2, TMEM236, GDLN, and ETFDH were correlated with the
overall survival (OS) of patients with CRC and could be used as prognostic biomarkers. For
example, Liu et al. [6] identified 16 lncRNAs as an immune-related lncRNA signature (IRLS)
for predicting patients’ prognosis of CRC using machine learning-based integrated analysis.
They performed further investigations to validate the application of IRLS in practice. The
efficacy of immune-related lncRNA signature was validated using qRT-PCR on CRC tissues
collected from 232 patients. A prospective cohort study, RECOMMEND (NCT05587452),
aimed to assess the accuracy of a novel AI-based integrated analysis screening method for
CRC and advanced colorectal adenomas using plasma multi-omics data.

Genome-wide association studies (GWAS) have already allowed significant progress
in the understanding of the complex genetics behind the pathogenesis of CRC. There are at
least three major molecular pathways that can lead to CRC, including the chromosomal
instability pathway (characterized by aneuploidy or structural chromosomal abnormalities),
chromosomal instability, and mutations (e.g., APC, KRAS, PIK3CA, SMAD4, or TP53).
There is a growing body of evidence on targeting deregulated intracellular pathways, such
as the hyperactivation of WNT–β-catenin, PI3K/Akt, or RAS signaling, although it has
been shown that inhibiting these pathways has often not been effective in the clinical
management of CRC [7–10]. Many patients with CRC had conventional chromosomal
instability (CIN), which is started by several mutations such as APC, followed by genetic
alterations in KRAS, PIK3CA, and SMAD4, as well as the hyperactivation of pathways
such as Wnt/TGFβ/PI3K. Although the underlying genetic changes have been sufficiently
identified, the mutational signature of tumor cells alone does not enable us to subclassify
tumor types or to accurately predict patients’ survival, and the suppression of those
pathways has often not been effective in treatment [11]. In this study, we attempted to
develop and validate novel prognostic biomarkers based on ML-based integrated analysis
as well as validation of novel candidate genes in two additional cohorts of CRC in DNA and
RNA levels using whole exome sequencing (WES) and reverse transcription polymerase
chain reaction (RT-PCR), respectively.

2. Materials and Methods

2.1. Data Sources and Data Processing

RNA-sequencing (RNA-seq) expression data and clinicopathological information were
retrieved from The Cancer Genome Atlas (TCGA) database, which included 287 CRC tissue
samples and 41 non-cancers tissue samples. In this study, RNA-seq data were obtained
from TCGA-colorectal adenocarcinoma. Patients with colorectal cancer were classified into
early-stage and late-stage. Early-stage CRCs were classified into three subgroups based on
microsatellite instability (MSI) status: low MSI (MSI-L), high MSI (MSI-H), and MSI-stable
(MSI-S). Late-stage CRCs were classified into two subgroups based on the therapeutic
regimens (chemotherapy versus targeted therapy).

2.2. Patient’s Samples

Sixty-four CRCs were included in this study based on histological confirmation by
two pathologists. All the eligible patients were chemotherapeutic naive patients treated at
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the Omid Hospital of Mashhad University of Medical Sciences. The study was approved
by the local Hospital Ethic Committee of Mashhad University of Medical Sciences.

2.3. DNA-Seq and Whole Exome Sequencing

Data from the TCGA database were downloaded and prepared for further analysis in
the R programming language. The data were downloaded in the Mutation Annotation For-
mat (MAF). MAF is a standardized format used by TCGA for storing and analyzing various
types of somatic mutations in cancer. The patients were divided into two groups: patients
in the early stages (I, II) of CRC and patients in the advanced metastatic stage (IV). The first
group consisted of 118 patients, while the second group consisted of 28 patients. MAF data
belonging to each group is analyzed with the maftools package in R programming.

The genes with a significant p-value of less than 0.05 obtained from the survival
analysis were combined with the whole exome sequencing data of TCGA for colorectal
cancer. Then, the variants of the candidate genes obtained from sequencing data were
analyzed using the Maftools package. Then, two candidate genes, ASPHD1 and ZBTB12,
were further evaluated for their impact on gene expression using RegulomeDB and
3DSNP. Subsequently, the candidate genes were further confirmed in an additional
cohort performed for the Whole Exome Sequencing (WES) data of 15 patients with CRC,
as described previously.

2.4. Differential Gene Expression Analysis

Normalization was performed, while the PCA plots, volcano plots, heatmap, and
karyoplote were represented by the R packages “ggplot2”, “heatmap”, and karyoploteR to
visualize data. Significance analysis of differentially expressed genes (DEGs) was performed
using DESeq2 in R software with the cutoff criteria of |log fold change | ≥ 1.5 and an
adjusted p-value of <0.05.

2.5. Gene Set, Ontology, and Pathway Enrichment Analysis

The significant enrichment analysis of DEGs was assessed based on Gene Ontology
(GO), Reactom, GSEA, and Human Disease Ontology (DO). GO analysis (http://www.
geneontology.org/) is used for annotating genes and gene products and investigating the
biological aspects of high-throughput genome or transcriptome data, including biological
processes, cellular components, and molecular function. The Reactom database was used
for the analysis of gene functions in biological signaling pathways. We set a p-value < 0.05
and a false discovery rate (FDR) < 0.05 as the statistically significant criteria to output. The
whole transcriptome was employed for GSEA, and only gene sets with p-value < 0.05 and
FDR q < 0.05 were set as statistically significant criteria. Statistical significance was set
at an adjusted p-value of <0.05. Several R packages were utilized to perform enrichment
analyses, including ReactomePA, enrichplot, clusterProfiler, and topGO.

2.6. Survival Analysis

The univariate/Cox proportional hazards regression model was used to identify
DEGs that were significantly correlated with overall survival and assess the independent
prognostic factors. R version 4.2.1 software was used to analyze the data.

2.7. Machine Learning Method

Two machine learning techniques were used, including the decision tree learning and
deep learning. Deep learning models were applied to identify the effective factors. The
significant variables obtained from the feature selection method (Weight by Correlation)
were the final parameters in creating the model. The coefficient of correlation between
variables is presented as a correlation matrix. The correlation coefficient is measured from
–1 to 1; positive values represent that the variables are in the same direction, and negative
correlations show the variables in opposite directions. The lack of correlation was displayed
as 0.
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2.8. Computational Workflow

Python3.7 was utilized for modeling. Parameters of epochs = 10, activation function = Rec-
tifier, and learning rate = 0.01 were set in deep learning. The standard workflow was utilized
as follows: Splitting the source data set into a training set and test set was performed to
provide some independent evaluation levels. Subsequently, the model was optimized using
the training data and then independently evaluated using the test data. In this study, a 70/30
train/test ratio was determined for the ML models. For each workflow, a model with the
fixed optimal hyperparameter values was retrained on data and randomly sampled from
the complete dataset. Machine learning method assessment was performed by 5 indicators,
including accuracy, R2, MSE, and AUC.

Accuracy = (TP + TN)/(TP + TN + FP + FN)

where TP is true positive, FP is false positive, TN is true negative, and FN is false negative.

MSE (Mean Squared Error) = (1/n) × Σ (actual − forecast)2

where Σ represents a symbol that means “sum”, n is the sample size, actual is the actual
data value, and the forecast is the predicted data value.

R2 (R-Squared) = 1 − Unexplained Variation/Total Variation

R2 is the coefficient of determination, and it tells you the percentage variation in y
explained by x-variables. AUC (Area Under the Curve) represents the degree of separability
and illustrates the capability of the model in distinguishing the classes.

2.9. Protein–Protein Interaction (PPI) Network

The STRING database (https://string-db.org/) was checked to find the relationship
between the studied proteins obtained from DEG and the proteins that are directly or
indirectly involved in the development of cancers. A minimum effective binding score of
≥0.4 was established. Genes with significant interactions were screened.

2.10. Kaplan–Meier Survival Curve

Kaplan–Meier survival curve comparison was conducted to measure the prognostic
value of candidate genes in CRC using the log-rank test.

2.11. Receiver Operating Characteristic (ROC) Curve Analysis

Receiver operating characteristic (ROC) curves are a fundamental analytical tool for
assessing diagnostic tests and identifying diagnostic biomarkers. ROC curve analysis
evaluates the accuracy of a test to differentiate between diseased and healthy cases, thereby
measuring the overall diagnostic performance [12]. A ROC curve and the area under the
curve (AUC) were employed to determine the specificity, sensitivity, likelihood ratios,
positive predictive values, and negative predictive values using the R package (pROC,
version 1.16.2).

2.12. Quantitative Real-Time-PCR Validation

Total RNAs were extracted from tissues using a total RNA extraction kit according
to the manufacturer’s protocol (Parstous, Tehran, Iran). RNA quantity and quality were
assessed using a Nanodrop 2000 spectrophotometer (BioTek, USA EPOCH), and forty RNAs
that passed the quality control were used for the next step. The RNAs were then reverse-
transcribed into complementary DNA (cDNA) using a cDNA Synthesis Kit (Parstous,
Tehran, Iran) according to the manufacturer’s instructions. Primers were designed (Forward
Reverse: ASPHD1: AGTGGCTCACAATGGCTCC and AAGACAAAGTCGAGGGCCTG
and ZBTB12: TTGCTCCTCTCCTGCTACACG and AACTGGCTGAGGGCATTCCG), and
RT-PCR was performed via the ABI-PRISM StepOne instrument (Applied Biosystems,
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Foster City, CA, USA) using the SYBR green master mix (Parstous Co. Tehran, Iran).
Gene expression data were standardized to glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) using a standard curve of cDNAs obtained from quantitative polymerase chain
reaction (qPCR) Human Reference RNA (Stratagene, La Jolla, CA, USA).

3. Results

3.1. Whole Exome Sequencing

The Mutation Annotation Format (MAF) data were divided into two groups: patients
in the early stages and advanced metastatic stage, as shown in Figures 1 and 2, containing
118 and 28 patients, respectively. The MAF data were analyzed using the maftools package
in R programming. Figures 1 and 2 show different plots, including plot maf Summary,
oncoplots, Transition and Transversions reports, Plotting VAF (Variant Allele Frequencies),
Somatic Interactions reports, Drug–Gene Interactions, and Oncogenic Signaling Pathways
to visualize the MAF distribution in a different group. As shown in Figures 1A and 2A, in
the early and late stages, missense mutations were more frequent than other mutations,
and they were typically referred to as single-nucleotide polymorphism (SNP) types. Ad-
ditionally, in both groups, 70–71% of patients had mutations in their APC or TP53 genes.
Most of the variants are involved in Wnt/B-catenin _signaling, Genome integrity, and
MAPK signaling (Figures 1B and 2B). The clonal status of the most mutated genes can be
estimated using the Variant Allele Frequencies plot; clonal genes usually have an average
allele frequency of about 50% in pure samples. In the early stages of tumor development,
TP53 was observed to have clonal status in the tumor tissue, while SMAD4, RYR4, and
TP53 exhibit such a status in the late stages, as shown in Figures 1D and 2D.

(A)

 

(B)

 
(C) (D)  

Figure 1. Cont.
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Figure 1. Visualization and summary of the analysis results of MAF data in the early-stage group
(I, II stages) with the maftools package. (A) Bar and box plots display the frequency of different
variants across samples (DEL: Deletion, INS: Insertion, SNP: Single-nucleotide polymorphism, ONP:
Oligo-nucleotide polymorphism). (B) Oncoplots (note: variants annotated as Multi_Hit are genes
that are mutated repeatedly within the same sample). (C) Transition and Transversion mutations (Ti:
Transition; Tv: Transversions). (D) A boxplot of Variant Allele Frequencies. (E) Somatic Interactions
show results of exclusive/co-occurrence event analysis. (F) Drug–gene interaction analysis based on
the Drug–Gene Interaction database. (G) Oncogenic Signaling Pathways.

(A) (B)

Figure 2. Cont.
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Figure 2. Visualization and summary of the analysis results of MAF data in the advanced-stage
group (IV stage) with the maftools package. (A) Bar and box plots display the frequency of different
variants across samples (DEL: Deletion, INS: Insertion, SNP: Single-nucleotide polymorphism, ONP:
Oligo-nucleotide polymorphism). (B) Oncoplots (note: variants annotated as Multi_Hit are genes
that are mutated repeatedly within the same sample). (C) Transition and Transversion mutations (Ti:
Transition; Tv: Transversions). (D) Boxplot of Variant Allele Frequencies. (E) Somatic Interactions
show the results of exclusive/co-occurrence event analysis. (F) Drug–gene interaction analysis based
on the Drug–Gene Interaction database. (G) Oncogenic Signaling Pathways.

Somatic Interactions analysis indicated exclusive or co-occurrence (Figures 1E and 2E).
Mutually exclusive events happen in cancer when mutations in one gene prevent the occurrence
of mutations in another gene. Co-occurring events, on the other hand, arise when mutations
in two or more genes occur together more frequently than would be expected by chance.
Determining mutually exclusive genes implies that these genes may participate in the same
pathway or process, and there might be functional overlap between them. On the other hand,
identifying genes that co-occur may indicate that they collaborate to facilitate the growth
of tumors, or that their cumulative impact is essential for the development of cancer. The
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interaction between genes and drugs that target tyrosine kinase, transcription factor complex,
DNA repair, and other related processes is illustrated in Figures 1F and 2F. The involvement of
mutated genes in colorectal cancer across different oncogenic signaling pathways, including
RTK-RAS, Wnt, Hippo, Notch, and others, is demonstrated in Figures 1G and 2G.

3.2. Gene Expression Profiling, Identification of DEGs, and Pathway Enrichment Analysis

We performed gene expression profiling in 287 CRC cases, analyzed by the DESeq2
package, according to the adjusted p-value of <0.05 and a |logFC| ≥ 1.5 (Table S1). The PCA
plots, volcano plots, and heat maps of each subgroup are shown in Figures 3 and S1. Moreover,
the gene expression of each subgroup, obtained from the DEG analysis was exhibited in the
ideogram of chromosomes using the karyoploteR package (Figure 3C). Enrichment analysis
showed that DEGs were significantly enriched in biological processes related to cancer pro-
gression. Based on GO analysis, the main biological processes involving the DEGs included
ion homeostasis, inorganic cation transmembrane transport, and the regulation of hormone
levels. In terms of cellular components, the DEGs were mostly enriched in the external
encapsulating structure and extracellular matrix (ECM). In terms of molecular functions, the
DEGs were linked by cation transmembrane transport activity, receptor regulator activity,
signaling receptor activator activity, etc. (Figures 4A and S2–S6).

(A)

 

(B)

(C) (D)

 

Figure 3. The results of the analysis of differentially expressed genes (DEGs) in colorectal adenocar-
cinoma (COAD) were generated using R software https://www.r-project.org/. (A) The heat map.
(B) Principal component analysis (PCA). (C) karyoplot. (D) Volcano plot.
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Figure 4. (A) Gene Ontology (GO), (B) GSEA functional annotation, and (C) Reactome functional
pathways in colorectal adenocarcinoma (COAD). The p-value is less than 0.05 and is shown by the
color. (D) A Venn diagram indicating the number of survival-related genes and the overlap between
the different subgroups.

GSEA analysis showed that there was a relationship between identified DEGs and
cell cycle, cell cycle checkpoint, DNA repair, mitotic nuclear division, cellular response
to DNA damage stimulus, programmed cell death, epithelial cell differentiation, DNA-
binding transcription factor activity, regulation of transcription by RNA polymerase II, Wnt
signaling pathway, keratin filaments. According to the Reactom database analysis, DEGs
were involved in GPCR signaling and its downstream signaling pathways, the regulation of
Insulin-like growth factor (IGF), SLC-mediated transmembrane transport, the degradation
of the extracellular matrix (ECM), collagen degradation, biological oxidation, and the
activation of matrix metalloproteinases. (Figure 4B,C).

To further explore the prognostic value of emerging DEGs, we performed univariate
Cox proportional hazards regression (Table S2).
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3.3. Machine Learning Analysis

The results of the ML analysis are shown in Table 1. The deep learning method
achieved an accuracy of 97.14%, 97%, 98%, and 92% for predicting CRC in the MSI-H, MSS,
chemotherapy, and targeted therapy subgroups, respectively, with AUC values of 1.0, 1.0,
1.0, and 0.88. This model had the best performance in the MSI-H and MSS subgroups.
Then, 14 candidate genes were identified as novel genes which were dysregulated in
both DNA and RNA levels. Also, the candidate genes and common genes resulting from
the survival analysis were then displayed on a Venn diagram (Figure 4D and Table S3).
Following the visualization described in the MAF data analysis stage, 232 variants from
14 candidate genes related to survival were analyzed (Figure 5). Then, we confirmed the
candidate genes in an additional cohort of our patients, which was detected by whole
genome sequencing (WES) in 15 cases. Then, 11 genes emerged between the different
cohorts, including ASPHD1, C2orf61, C6orf223, CADPS, CCDC150, DCAF4L1, MIA, NEK5,
ONECUT3, PNPLA3, and TMEM145 (Table S4).

Table 1. Results of machine learning analysis.

Subgroups R2 AUC MSE RMSE Accuracy Prauc

MSI-H 0.99 1.0 1.95 0.0044 97.14% 1.0
MSI-S 0.99 1.0 0.0023 0.0489 97% 1.0
Receiving chemotherapy 0.95 1.0 0.0076 0.0876 98% 1.0
Receiving targeted therapies 0.64 0.88 0.0554 0.0235 92% 0.95

 

Figure 5. (A) A Venn diagram shows the count of variants for 14 candidate genes which are common
between DNA-seq and RNA-seq analysis. (B) Bar and box plots displaying the frequency of different
variants across samples. (C) Oncoplots. (D) Transition and Transversion mutations. (E) Boxplot
of Variant Allele Frequencies. (F) Somatic Interactions show the results of exclusive/co-occurrence
event analysis. (G) Drug–gene interaction analysis based on the Drug–Gene Interaction database.

3.4. The Prognostic Value of ZBTB12 and ASPHD1

Of note, RNA-seq data certified the dysregulation of candidate genes identified from
Ml and DNA-seq and shortlisted ZBTB12 and ASPHD1 as the disease-associated genes
(Figure 6). According to the Human Protein Reference Database, ZBTB12 and ASPHD1
interact with HRAS, Ras-associated protein 1, and HRAS, PRRC2A, MSL3, and PIK3CA
(Figure 6A,B). The results of WES found nine genetic variants in ASPHD1 and ZBTB1
(Figure 6C,D). According to the RegulomeDB database and 3DSNP, the rs925939730 variant
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of the ASPHD1 and rs1428982750 variant of the ZBTB1 regulate gene expression and affect
chromatin state in the colon and rectum (Tables S5 and S6). Moreover, the rs1428982750
variant was linked to VARS and EHMT2 genes, and the rs925939730 variant was associated
with the MAZ gene (Tables S7 and S8). The rs1428982750 variant of the ZBTB12 gene had
a score of 0.60906 for its role in gene expression regulation. Also, this variant affected
the state of the chromatin transcription activity in the colon and rectum. Chromatin
immunoprecipitation coupled with sequencing (CHIP-seq) results showed that the ZBTB12
gene variant affects the binding site of transcription factors and various regulatory factors.
(Figure S7C). The rs925939730 variant of the ASPHD1 gene had a score of 0.77967 for its
role in regulating gene expression. Also, this variant affected the state of the chromatin
transcription activity in the colon and rectum. CHIP-seq results showed that the ASPHD1
gene variant affects the binding site of transcription factors and various regulatory factors.
(Figure 6E). The results of the rs1428982750 variant of the ZBTB12 gene in the 3DSNP
database showed that the association of this variant with the regulatory factors of gene
expression has a score of 58.4 (Figure S7A). The different positions of this variant. The
results of the rs925939730 variant of the ASPHD1 gene in the 3DSNP database showed that
the association of this variant with the regulatory factors of gene expression has a score of
59.7 (Figure S7B).

Figure 6. Cont.
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Figure 6. (A,B) Protein–protein interaction (PPI) network of the two genes (ZBTB12, ASPHD1)
identified by survival analysis from STRING. (C,D) The different types of ZBTB12 and ASPHD1
variants, along with their respective alterations in the amino acid sequence on chromosomes, as well
as the rate of somatic mutation. (E) CHIP-seq results have shown that variants of two genes (ZBTB12,
ASPHD1) affect the binding site of transcription factors and various regulatory factors from the
Regulome DB Database. (F,G) Kaplan–Meier plot of ZBTB12 and ASPHD1 with a prognostic value,
p-value < 0.05. (H) ROC curve analysis revealed the biomarker potency of ZBTB12 and ASPHD1
individually and together using R 4.3.1’s combioROC package. (I) qRT-PCR results indicate that the
expression levels of the two genes (ZBTB12 and ASPHD1) are elevated in tumor tissue compared to
non-neoplastic tissue. *** p > 0.01; **** p > 0.001.

ROC curve data was obtained by plotting the rate of sensitivity versus specificity.
Also, Kaplan–Meier revealed that the overall survival of patients with cancer having low
ASPHD1 expression had higher overall survival (OS) than patients with cancer with high
ASPHD1 expression (p < 0.05). Similarly, cancers with high ZBTB12 expression were
associated with poor patient survival compared to cancers with low ZBTB12 expression
(p < 0.05) (Figure 6F,G). As shown in Figure 6H and Tables 2 and 3, ASPHD1, ZBTB12,
and their combination were able to discriminate CRC with an area under the curve (AUC)
of 0.948, 0.96, and 0.986, respectively. At the cutoff values of 0.863, 0.891, and 0.886, the
sensitivities of ASPHD1, ZBTB12, and their combination were 0.878%, 0.861%, and 0.934%,
respectively, with specificities of 1. The combination of ASPHD1 and ZBTB12 showed
higher AUC and sensitivity than each of these candidate genes alone.

Table 2. The area under the curve (AUC) and a cut-off value of ASPHD1, ZBTB12, and their
combination in CRC.

Biomarker AUC SE SP Cutoff ACC TN TP FN FP NPV PPV

ASPHD1 0.948 0.878 1 0.863 0.893 41 252 35 0 0.539 1
ZBTB12 0.96 0.861 1 0.891 0.878 41 247 40 . 0.506 1
Combination 0.986 0.934 1 0.886 0.942 41 268 19 . 0.683 1

Table 3. Results for the ROC curve for ASPHD1, ZBTB12, and their combination in CRC.

Biomarker Intercept Coefficients Degrees of Freedom Null Deviance Residual Deviance AIC
ASPHD1 −10.37 Log (ASPHD1 + 1):3.032 327 247.2 136.3 140.3
ZBTB12 −22.345 Log (ASPHD1 + 1):5.165 327 247.2 118.3 122.3
Combination 1 −36.814 5,6,2 327 247.2 63.99 69.99

To further verify their values, the expression of these two candidate genes was evalu-
ated in an additional cohort of CRC via qRT-PCR. The data showed a significantly higher
expression of ASPHD1 and ZBTB12 in CRC tissues (p < 0.05) (Figure 6I).

4. Discussion

Colorectal cancer ranks as the third most common cause of cancer-related mortal-
ity [13]. Early diagnosis of this disease leads to more effective treatment, reduced treatment
costs, reduced disease progression, and decreased morbidity and mortality. Since cancer
is intimately linked to genetic alterations, pinpointing these changes is especially critical
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for early diagnosis. Implementing the right analyses of gene expression information can
promote optimal treatment selection in the early stages of the development of various
cancers. Identifying prognostic biomarkers and achieving diagnosis constitute a worth-
while tactic for disease management and care [14,15]. Artificial intelligence (AI) and deep
learning (DL) are being widely adopted in medicine to enhance diagnosis, treatment, and
research on diagnosing colorectal cancer (CRC) has followed this trend. DL is now inte-
grated across CRC diagnostic approaches such as histopathology, endoscopy, radiology,
and biochemical blood tests. By automating complex data analysis, DL allows for more
precise CRC detection and characterization. Although AI adoption faces regulatory hurdles,
it has the potential to optimize the diagnosis of CRC recurrence and personalized care
by synthesizing diverse medical data and uncovering new insights. Overall, AI and DL
are transforming the management of patients with CRC through improved diagnostic
accuracy [16].

Our previous studies identified prognostic and diagnostic biomarkers in colorectal
cancer and gastric cancer using RNA-seq analysis and machine learning [17–19]. In contrast
to our previous study, the current study was designed based on an integrated two omics
and deep learning approach to identify prognostic and diagnostic biomarkers in colorectal
cancer (CRC) patients at different disease stages (early and metastatic). By combining
multi-omics data and advanced computational methods, the present study provides novel
insights into stratifying CRC patients based on genetic and expression profiles correlated
with disease progression and outcomes. To the best of our knowledge, this is the first study
showing the potential association of two genetic variants, rs1428982750 in ZBTB12 and
rs925939730 in ASPHD1 genes, and the prognostic value of these genes in colorectal cancer.
Bian Wu et al. used WES and RNA-seq to indicate prognosis prediction in patients with
stage IV colorectal cancer. The results showed the following mutations in the genes: APC,
TP53, KRAS, TTN, SYNE1, SMAD4, PIK3CA, RYR2. BRAF did not reveal any significant
associations between the mutational status of those genes and patient prognosis [20]. Our
study revealed that mutations in the genes ZBTB12 and ASPHD1 may serve as potential
prognostic markers in patients. Specifically, we demonstrated that the mutational status of
ZBTB12 and ASPHD1 was associated with clinical outcomes in the patient cohort examined.
Chen et al. analyzed gene expression data from the GEO and TCGA databases and
identified 10 hub genes with high diagnostic values based on ROC curve analysis. A nine-
gene prognostic signature was also identified and shown to predict overall survival [21].
Importantly, we validated the expression of ASPHD1 and ZBTB12 genes through qPCR
and their variants using whole exome sequencing in additional patient cohorts.

Data from the PPI network showed that ASPHD1 is related to several proteins and
genes such as KIF22, INO80E, SEZ6L2, and DOC2A, most of which are cancer-related.
Kinesin family member 22 (KIF22) is a regulator of cell mitosis and cellular vesicle transport.
It is involved in spindle formation and the movement of chromosomes during mitosis. The
alteration of KIF22 is associated with several cancers, including CRC. A previous study
indicated that KIF22 is upregulated in CRC samples and that KIF22 expression is correlated
with tumors and the clinical stage of CRC. Moreover, the suppression of KIF22 inhibited
cell proliferation and xenograft tumor growth [22].

SEZ6L2 regulates cell fate by involving the transcription of type 1 transmembrane
proteins. A study showed that SEZ6L2 was significantly upregulated in CRC tissues, and
this upregulation was associated with poor prognosis in patients with CRC [23]. Lastly,
INO80E is involved in transcriptional regulation, DNA replication, and probably DNA
repair. Therefore, we hypothesize that ASPHD1 may play a critical role in the pathogenesis
of CRC.

PRRT2 is also related to several kinds of human solid tumors [24]. The results of
the Protein–protein interaction network demonstrated that ZBTB12 is linked to numerous
genes, including HRAS, PIK3CA, MSL3, and PRRC2A.

Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), an important kinase involved
in the PI3K/AKT1/MTOR pathway, plays a crucial role in the growth and proliferation of
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various solid tumors, and PIK3CA is one of the most frequently mutated genes in CRC [25].
Harvey rat sarcoma viral oncogene homolog (HRAS) is involved in the activation of Ras
protein signal transduction, and its mutations can be found in bladder and head and neck
squamous cell carcinomas [26]. It has been shown that proline-rich coiled-coil2A (PRRC2A)
takes part in tumorigenesis and immunoregulation. Recent studies have revealed that
PRRC2A impacts pre-mRNA splicing and translation initiation [27]. In this context, several
studies have demonstrated that there is a relationship between PRRC2A and several kinds
of human cancers, such as hepatocellular carcinoma [28] and non-Hodgkin lymphoma [29].

Collectively, ASPHD1 and ZBTB12 are linked to multiple proteins and genes which are
associated with cancer initiation and progression. Moreover, our results from WES analysis
indicated that the rs925939730 variant of the ASPHD1 gene and the rs1428982750 variant
of the ZBTB1 gene regulate gene expression and affect the chromatin state in the colon
and rectum.

In addition, our findings demonstrated that there was an interaction between the
rs1428982750 variant and VARS and EHMT2 genes. Valyl-tRNA synthetase (VARS) was
linked with CRC [30], breast cancer [31], and leukemia [30]. Euchromatic histone-lysine
N-methyltransferase 2 (EHMT2) methylates histone H3 lysine 9 to generate heterochro-
matin and inhibit tumor suppressor genes [32]. Furthermore, the rs925939730 variant
was associated with the MAZ gene. MAZ acts as a transcription factor that can be com-
bined with c-MYC and GA box to regulate the initiation and termination of transcription.
The deregulated expression of MYC-associated zinc finger protein (MAZ) is correlated
with the progression of tumors such as colorectal adenocarcinoma [33], hepatocellular
carcinoma [34], renal cell carcinoma [35], glioblastoma [36], breast carcinoma [37], and
prostate adenocarcinoma [38]. Altogether, the rs925939730 and rs1428982750 gene variants
of ASPHD1 might be involved in gene expression and epigenetic regulation.

5. Conclusions

Our data show the prognostic value of ASPHD1 and ZBTB12 in CRC, warranting
further investigations to validate their clinical potential as prognostic markers and pre-
dictive markers for colorectal cancer. Our study had some limitations and challenges,
including the difficulty we experienced obtaining access to more patients for evaluating
gene expression, carrying out functional studies, and analyzing other omics data to assess
important pathways and biological processes in cancer. Expanding our omics approaches
beyond just transcriptomics to also include proteomics, metabolomics, etc., would provide
a more comprehensive understanding of the key mechanisms in cancer. Overcoming these
limitations will be critical for future efforts to elucidate the complex molecular landscape
of cancer and identify novel therapeutic targets or biomarkers.
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Simple Summary: Glioma tumor aggressiveness is expressed as tumor grading which is crucial
in guiding treatment decisions and clinical trial participation. Accurate and standardized grading
systems are essential to optimize care and improve outcomes. However, integrating molecular
and clinical information in the grading process has the potential to expose molecular markers
that have gained importance in understanding tumor biology as a means of identifying druggable
targets. In this study, a novel approach called GradWise is introduced with the goal of enhancing
feature selection performance while employing various machine learning models of glioma grading.
GradWise combines a rank-based weighted hybrid filter (mRMR) and an embedded feature selection
method (LASSO) to select the most relevant features from clinical and molecular predictors and was
evaluated using two commonly employed public biomedical datasets, TCGA and CGGA, utilizing
two feature selection methods and five supervised models. The findings support existing evidence
and provide pioneering results for glioma-specific biomarkers, highlighting the effectiveness of the
approach and future directions for biological mechanisms of glioma progression to higher grades.

Abstract: Glioma grading plays a pivotal role in guiding treatment decisions, predicting patient
outcomes, facilitating clinical trial participation and research, and tailoring treatment strategies.
Current glioma grading in the clinic is based on tissue acquired at the time of resection, with tumor
aggressiveness assessed from tumor morphology and molecular features. The increased emphasis on
molecular characteristics as a guide for management and prognosis estimation underscores is driven
by the need for accurate and standardized grading systems that integrate molecular and clinical
information in the grading process and carry the expectation of the exposure of molecular markers
that go beyond prognosis to increase understanding of tumor biology as a means of identifying
druggable targets. In this study, we introduce a novel application (GradWise) that combines rank-
based weighted hybrid filter (i.e., mRMR) and embedded (i.e., LASSO) feature selection methods
to enhance the performance of feature selection and machine learning models for glioma grading
using both clinical and molecular predictors. We utilized publicly available TCGA from the UCI ML
Repository and CGGA datasets to identify the most effective scheme that allows for the selection of
the minimum number of features with their names. Two popular feature selection methods with a
rank-based weighting procedure were employed to conduct comprehensive experiments with the
five supervised models. The computational results demonstrate that our proposed method achieves
an accuracy rate of 87.007% with 13 features and an accuracy rate of 80.412% with five features
on the TCGA and CGGA datasets, respectively. We also obtained four shared biomarkers for the
glioma grading that emerged in both datasets and can be employed with transferable value to other
datasets and data-based outcome analyses. These findings are a significant step toward highlighting
the effectiveness of our approach by offering pioneering results with novel markers with prospects
for understanding and targeting the biologic mechanisms of glioma progression to improve patient
outcomes.
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1. Introduction

Tumor grading is the classification of tumor aggressiveness determined via the evalu-
ation of tumor characteristics with additive molecular features under the microscope [1].
Gauging the aggressiveness of a tumor, in this case, glioma represents a surrogate for
anticipatory biological behavior. A sense of how the tumor will behave with or without
treatment is crucial for decision-making at diagnosis, which connects to managing, moni-
toring, and treatment planning [2]. Gliomas are the most common primary brain tumor
originating from glial cells and can be highly aggressive, progressive, and neurologically
devastating [3,4]. Currently, according to the World Health Organization (WHO) guide-
lines, gliomas are categorized into low-grade (LGGs) and high-grade gliomas (HGGs), with
glioblastoma multiforme (GBM) being the most aggressive and invasive. Treatment options
and survival rates are highly dependent on tumor grade.

The current approach for treating gliomas is primarily determined by the grade
of the tumor and typically involves maximal surgical removal followed by radiation
therapy (RT) [2,4,5]. Additionally, patients may receive systemic treatment in the form
of chemotherapy using temozolomide (TMZ) administered concurrently or sequentially
with either sequential PCV or PC (Procarbazine, CCNU with or without vincristine) as
an alternative [2,4,5]. Typically, the diagnosis of glioma is made by obtaining tissue for
pathological examination with molecular alterations being increasingly important for CNS
tumor classification [6–8]. The isocitrate dehydrogenase (IDH) mutation is now more
routinely employed as a molecular marker, given its prognostic value [4,9,10], but is limited
by the associated costs and turnaround time of molecular testing, with p.R132H-specific
IDH1 immunohistochemistry costing USD 135, single-gene sequencing costing USD 420,
and next-generation sequencing costing USD 1800 [9] and the time required for analysis
ranging from approximately two days for immunohistochemistry to up to 14 days for next-
generation sequencing [9]. IDH mutation vs. IDH wild-type confers superior prognosis,
particularly when accompanied by 1p19q co-deletion altering the management of non-GBM
gliomas in terms of type and timing of systemic management, while GBMs are treated
with standard-of-care concurrent chemo-irradiation irrespective of IDH status. However,
despite the superior prognosis conferred by IDH mutation, there is an ongoing lack of
clarity as to the mechanism by which IDH mutation connects to the prognosis conferred to
patients. There is an ongoing need to identify markers that allow for glioma grading via
linkage to biological mechanisms that can be exploited to alter outcomes by modulating
tumor resistance and response.

The tumor grading process incorporates clinical features such as age and gender [11],
but publicly available datasets lack robust higher-level clinical annotation, which limits
the connection between relevant molecular features and clinical data. This gap could be
bridged by increasing reimbursement for molecular testing, which could promote more
widespread use and benefit value-added care [4]. Therefore, selecting the best molecular
and clinical markers that distinguish between tumor grades would not only reduce costs
to healthcare systems and patients but also enhance tumor grading performance. This
improvement in performance would enable the selection of significant molecular features
for future research and testing of novel targeted agents [4]. However, given the partial
nature of available molecular information, optimal utilization of such data would require
computational analysis. Hence, feature selection plays a vital role in this context.

The feature selection stage is a critical step in machine learning, where the objective
is to select a subset of relevant features among all features that improve the accuracy
of the model while reducing complexity. Feature selection is generally utilized for data
analysis, pattern recognition, data mining, and machine learning tasks. This process aims
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to improve performance (e.g., tumor grading) and classification accuracy rate and provide
computational efficiency by removing irrelevant or redundant features and reducing the
dimensionality of data [12–17]. There are various feature selection methods available, such
as filter methods, wrapper methods, and embedded methods [12,18], each with its own
advantages and limitations. The selected features can be used for further analysis, such
as identifying biomarkers, developing predictive models, and gaining insights into the
underlying biology of the disease.

Generally, feature selection methods are applied to training-test sets to determine
the relevant feature subset, or these methods are aimed at reducing costs and improving
classification evaluation results. If there is no training-test set separation, we should use
these methods with the cross-validation technique for validation purposes. However,
identifying molecular feature names is crucial to being able to leverage the identified
features biologically and clinically. To this end, feature-weighting, counting, or rank-based
approaches can be used [19]. While several markers are being used in the clinic and
additional markers are being proposed, given evolving research, there is currently no
robust biomarker list or panel that defines glioma grading and employs data from TCGA
and CGGA, which are the most commonly available and utilized datasets of clinical and
molecular data. In this study, the goal was to identify the most important, discriminative,
and likely optimal molecular and clinical features for glioma grading by using a novel
application of a hybrid rank-based filter and embedded feature selection based-method
(GradWise) and five supervised learning models taught with TCGA and CGGA glioma data
and to link the results to described mutations in glioma and novel biological applications.

The main contributions of our study are summarized as follows:
Our study proposes the first application and method that employs a rank-based hybrid

feature selection method for feature selection and supervised machine learning models to
improve glioma grading.

• We combine the advantages of various feature selection methods via a rank-based
feature-weighting approach for glioma grading on two commonly used glioma datasets
(TCGA and CGGA).

• We utilize feature-weighting to determine which features are significant, enabling
validation of this method for glioma grading tasks.

• We conduct a comprehensive computational analysis comparing our feature selection
methods, given that these are two commonly employed glioma datasets that share
similarities but also exhibit differences.

• Our objective is to determine the optimal combination of feature subsets and learning
models during the feature selection stage, aiming to achieve high accuracy with a
minimal number of features while accounting for dataset variability in large-scale
datasets. This approach seeks to provide accurate results that can be transferred and
applied effectively across different scenarios.

• We introduce a TCGA- and CGGA-specific shared feature set and connect identified
features for glioma grading with described mutations in glioma and identify potential
mechanistic implications for progression to higher grade.

The remaining sections of our study are structured as follows: In Section 2, we provide
an overview of the employed methodology and explain the related feature selection, feature-
weighting methods, and classification models for glioma grading. In Section 3, we describe
the experimental procedures, datasets employed, and evaluation metrics and provide
comprehensive experimental results with discussions. Finally, Section 4 encompasses the
study’s conclusion, a discussion of the results, and potential avenues for future research.

2. Methods

In this section, we present a concise summary of the feature selection and weighting
architecture that is being proposed for glioma grading via clinical and molecular char-
acteristics. The subsequent subsections outline the methods used for feature selection,
feature-weighting, and classification in this study.
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2.1. The Utilized Methodology for Glioma Grading

In this study, we employ a hybrid method for weighting and selecting of features
based on ranks [19] which can be used to categorize glioma grades. Our used methodology
consists of two main phases: (i) feature selection (FS) and (ii) feature-weighting (FW) [19].
Figure 1 and Table 1 provide a sample algorithmic diagram of our utilized architecture and
related processes, showcasing the two feature selection methods used: LASSO and mRMR.

At the outset, all clinical and molecular features are fed into the feature selection (FS)
model using a cross-validation technique. For each fold, the feature sets selected by the two
FS methods are saved, and their counts are increased based on the corresponding weights
assigned by the rank-based approach. Next, the minimum weight-based feature list is
evaluated with all weight values. In the final stage, we obtain the final selected feature list
by evaluating all weight values and identifying those with the highest accuracy rate.

Figure 1. A detailed overview of the proposed methodology.
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Table 1. The related textual representation of an employed scheme for the proposed GradWise
approach.

1. Input: Clinical and molecular predictors with labels

2. Feature Selection with cross-validation:
For each fold:

-
Choose supervised models (e.g., KNN, random forest, SVM, etc.)

-
Apply the mRMR (i.e., multivariate filter) FS method

-
Apply the LASSO FS (i.e., embedded) FS method

-
Select the most relevant features

-
Apply feature-weighting (increase the selected features’ weights based on their ranks)

3. Try all weights with all machine learning models to determine the maximum accuracy rate with
the minimum number of features
4. Evaluation:

-
Use TCGA and CGGA datasets

-
Calculate performance metrics (e.g., accuracy rate)

5. Results:

-
Obtain accuracy rates and feature counts for TCGA and CGGA datasets

-
Identify shared biomarkers for glioma grading

6. Conclusion:

-
Highlight and discuss the potential advantages of GradWise approach

-
Provide pioneering results for glioma-specific biomarker research and conceptualize
findings given existing evidence for driver mutations and progression to a higher grade in
glioma.

In other words, LASSO and mRMR feature selection methods are employed to select
features for each fold of the cross-validation of the dataset based on clinical and molecular
predictors. After selecting the features, their weights are increased according to their rank-
based importance level, which is determined based on their performance results in terms
of accuracy (see Tables 2 and 3). Specifically, the weight of a feature selected by LASSO
is increased by two, while that of a feature selected by mRMR is increased by one. If the
same feature is chosen by both methods for all five folds of cross-validation, its weight is
15, which is the maximum weight value for 5-fold cross-validation. On the other hand, if a
feature is not selected by either FS method for a given iteration, we assign it a weight of 0.
However, we ensure that the minimum weight value of a selected feature is identified as
at least 1 to use all selected features of all cross-validation iterations for the experimental
results.

Table 2. The related features and class information for the datasets employed. TCGA has 23 features
(3 clinical, 20 molecular), whereas CGGA has 22 features (2 clinical, 20 molecular), given it contains
of a Chinese population with race not included in the database.

# Type Name # Type Name # Type Name

1 Clinical Gender 9 Molecular CIC 17 Molecular BCOR
2 Clinical Age 10 Molecular MUC16 18 Molecular CSMD3
3 Clinical Race 11 Molecular PIK3CA 19 Molecular SMARCA4
4 Molecular IDH1 12 Molecular NF1 20 Molecular GRIN2A
5 Molecular TP53 13 Molecular PIK3R1 21 Molecular IDH2
6 Molecular ATRX 14 Molecular FUBP1 22 Molecular FAT4
7 Molecular PTEN 15 Molecular RB1 23 Molecular PDGFRA
8 Molecular EGFR 16 Molecular NOTCH1 24 Class Grade
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Table 3. The effects of using feature selection methods on the TCGA dataset.

ML-ACC Without FS LASSO mRMR

SVM 86.769 87.007 74.733
LR 86.414 86.414 85.935

KNN 82.837 83.313 82.839
RF 82.841 82.362 81.886

AdaBoost 85.339 85.101 84.621

Following the feature selection and feature-weighting stages, we obtain total weights
with the corresponding feature lists and evaluate the minimum weight-based feature lists
to select the final features for all weight values. To illustrate this process, consider an
example. Suppose we determine the minimum weight as 12 for our study. In this case, we
can select the features with weight values of 12, 13, 14, and 15 as the final feature set. We
evaluate these weight values based on their performance results in terms of accuracy rate
and identify the minimum weight value that achieves the highest accuracy rate with the
minimum selected number of features for all values in the dataset.

2.2. Feature Selection and Feature-Weighting

The aim of feature selection methods is to reduce the dimensionality of data space by
obtaining a suitable feature subset from all features. This process eliminates redundant,
insignificant, or irrelevant features and yields better model interpretation and diagnosis
capability, thus accelerating prediction speed and reducing the time requirement of the
training stage of the machine learning model [12,20,21]. Additionally, feature selection
methods deal with high-dimensional data, computational and storage complexity, data
visualization, and high-performance issues for machine learning-related problems in real-
world applications [12,22]. Feature selection methods are generally classified into three
categories, depending on the evaluation metric of the feature subset: filter, wrapper, or
embedded methods [18]. Univariate filter and multivariate filter FS methods are two sub-
categories of filter methods that consider relationships between features and/or between
features and the target/class or output variable [19]. In this study, we utilized a multivari-
ate filter FS method called minimum redundancy maximum relevance (mRMR) and an
embedded-based FS method called LASSO to select the clinical and molecular features
of glioma patients’ data. We chose to avoid the computational load of the wrapper FS
method and the dependence on model-specific features associated with this approach in
order to enhance the transferability of our used approach. In the feature-weighting stage,
the importance level of each selected feature in discriminating pattern classes is typically
represented by a weight value, which can be added or multiplied to feature values [19,23].
In this study, a rank-based feature-weighting approach was adopted. The two-feature se-
lection (FS) methods, LASSO and mRMR, were ranked based on their performance results
in terms of the accuracy rate as described in [19].

2.3. Classification

The classification phase is a fundamental task in machine learning that involves assign-
ing predefined labels or categories to input data points based on their features. The goal of
classification is to build a predictive model that can accurately classify new instances into
their appropriate classes. Classification algorithms learn patterns and relationships from
labeled training data, enabling them to make predictions from unlabeled data. Commonly
used classification algorithms include k nearest neighbors, logistic regression, support
vector machines, random forests, and AdaBoost. We briefly describe these learning models
in the subsequent subsections in our previous work [4].

3. Experimental Work

This section describes the experimental processes and environment, relevant parame-
ters, and performance metrics and explains our clinical and molecular dataset for glioma
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grading. Subsequently, we provide a detailed presentation of our comprehensive computa-
tional results, highlighting the impacts of various feature selection methods.

3.1. Experimental Process

To implement the proposed methods in this study, we employed the experimental
process previously described [4,19].

We used a preprocessed glioma grading dataset with clinical and molecular features
and performed a z-score normalization approach to age feature values before the feature
selection and classification phases. We also employed a 5-fold cross-validation technique
during the feature selection and weighting processes to ensure robustness. This approach
allowed us to evaluate the performance of the utilized learning models and obtain average
performance results, enhancing the reliability of our findings. For the evaluation of the
learning models in this study, the GBM class was designated the positive class, while the
LGG class served as the negative class.

Both the mRMR and LASSO methods were employed at the hybrid feature selection
stage. In the mRMR-based feature selection, a heuristic value was utilized by taking the
logarithmic value of the total number of features (i.e., �log2(Total Number of Features)	
= round of log2(Total Number of Features(23)) = 5) to determine the number of selected
features. For LASSO-based feature selection, a 10-fold cross-validation was performed to
determine the optimal alpha parameter value across iterations and identify the number of
selected features.

In the feature-weighting stage, a rank-based approach was utilized, where the weights
of features were determined based on the performance results of the feature selection
methods, specifically the accuracy rate. To identify the final selected feature set, various
minimum weight values ranging from 15 to 1 for 5-fold cross-validation were tested to
find the subset of features that achieved the highest accuracy rate while using the smallest
number of features.

3.2. Dataset

We employed the Cancer Genome Atlas (TCGA) [24] and the Chinese Glioma Genome
Atlas (CGGA) [25] databases, which are widely used for analyzing brain tumors (specifi-
cally glioma), to assess our employed methodology for rank-based feature-weighting and
selection processes. The original TCGA dataset is described in our previous work [4] and
Table 2 with the preprocessed TCGA dataset for glioma grading available on the UCI Ma-
chine Learning Repository [24]. The CGGA dataset consists of 22 features (one fewer than
TCGA) with the same characteristics described in Table 2. The dataset query and storage
operations were facilitated via the NIDAP environment [26]. The quantitative description
of gene expression (mutated/not mutated frequencies) in TCGA is presented in Supplemen-
tary Figure S1 and was described for TCGA by Yan et al. [27]. Quantitative description is
available for CGGA at http://www.cgga.org.cn/analyse/WEseq-data-oncoprint-result.jsp,
and was described by Hu et al. [28].

3.3. Performance Metrics

To assess the performance of the utilized methodology in feature selection and classifi-
cation, six evaluation metrics were used: classification accuracy (ACC), area under the ROC
curve (AUC), F-measure (F1), precision (PRE), recall (REC), and specificity (SPEC) [29].
These were described in detail in our previous work [4].

3.4. Computational Results

In this subsection, we present the experimental results showcasing the impact of the
feature selection and feature-weighting approaches on the performance analysis of the
models investigated in this study. The most optimal results are indicated by bold values.
# represents the number. The best result for each method is highlighted in bold.
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3.4.1. The Effects of Using Feature Selection Methods

During the initial phase, we conducted experiments using five supervised learning
models to examine the potential benefits of feature selection (FS) techniques on the glioma
grading datasets. Tables 3 and 4 present the average performance results of these models
(i.e., 5-fold cross-validation) on TCGA and CGGA datasets in terms of accuracy rate (%).

Table 4. The effects of using feature selection methods on the CGGA dataset.

ML-ACC Without FS LASSO mRMR

SVM 76.564 76.915 73.085
LR 76.570 76.921 76.933

KNN 74.816 76.576 71.670
RF 74.840 72.741 73.442

AdaBoost 74.834 72.033 76.576

The findings in Tables 3 and 4 demonstrate that the supervised learning models with
the LASSO method generally achieved better results compared to the mRMR and no feature
selection methods. Using the LASSO FS method, we obtained the best accuracy rate value
of 87.007 with the SVM model, while without FS, the best accuracy rate value of 86.769 was
achieved with the same learning model, according to Table 3 results. The LASSO FS method
also provided better results from the CGGA dataset compared to the no FS method in terms
of accuracy rate (see Table 3). This is depicted in dark green in Table 4. The LASSO method
has three higher performance results than the best accuracy rate value (i.e., 76.570%) of no
FS method result on the CGGA dataset. Additionally, the mRMR method yielded accuracy
rate values of 85.935 and 76.933 for the TCGA and CGGA datasets, respectively. Following
this stage, in which we obtained these results, we proceeded to the next level of the FS
process, which involved assigning corresponding ranks to these FS methods, a process
known as feature-weighting. We selected the LASSO FS method as the more significant
method with respect to the results obtained from Tables 3 and 4 to assign ranks to the
corresponding methods (increasing feature weight value by two and one for the LASSO
and mRMR FS methods, respectively).

3.4.2. The Effects of Using LASSO and mRMR Feature Selection and
Feature-Weighting Methods

After the initial evaluation of features and assigned ranks based on their performance
results, the related computational results obtained via the utilization of both LASSO and
mRMR-based feature selection (FS) with weighting methods are presented in Tables 5 and 6
and Figures 2 and 3, which denote the mean accuracy rate values obtained using 5-fold
cross-validation. k represents the minimum weight value.

As seen in the results given in Table 5, the most optimal outcome was characterized by
an accuracy rate of 87.007, a minimum weight value of 10, and the selection of 13 features
using the support vector machine model. The selected feature names for the best result
from the TCGA dataset are as follows: ‘CIC’, ‘Age’, ‘IDH1’, ‘PTEN’, ‘ATRX’, ‘PIK3R1’,
‘NF1’, ‘IDH2’, ‘GRIN2A’, ‘NOTCH1’, ‘TP53’, ‘EGFR’, ‘MUC16’. It is noteworthy that the
number of selected features remained constant for both minimum weight values of 10
and 9. Consequently, the selection of the minimum weight value did not affect the results.
However, in the scenario where the accuracy rate remains unchanged while different
numbers of features for various weight values result, the maximum value could have
been assigned as the minimum weight value to facilitate the selection of the minimum
number of features. The second-best different result achieved the same accuracy rate of
87.007 with a minimum weight value of 8 and the selection of 18 features using the support
vector machine. Figure 2 also depicts the line chart for the comparative illustration of
feature-weighting and selection results on the TCGA dataset.
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Table 5. Average performance results (i.e., ACC %, CV = 5) obtained utilizing both LASSO and
mRMR-based feature selection with feature-weighting methods on the TCGA dataset.

k # of Features SVM LR KNN RF AdaBoost

15 4 85.340 86.054 84.626 80.100 84.264
14 4 85.340 86.054 84.626 80.100 84.264
13 4 85.340 86.054 84.626 80.100 84.264
12 5 85.102 85.816 84.983 80.814 84.502
11 6 85.698 85.816 84.627 81.172 84.859
10 13 87.007 86.890 84.983 82.481 84.862
9 13 87.007 86.890 84.983 82.481 84.862
8 18 87.007 86.533 82.599 82.481 85.577
7 18 87.007 86.533 82.599 82.481 85.577
6 20 86.768 86.533 82.479 82.484 85.458
5 20 86.768 86.533 82.479 82.484 85.458
4 22 86.768 86.414 82.718 82.603 85.339
3 22 86.768 86.414 82.718 82.603 85.339
2 23 86.769 86.414 82.837 82.244 85.339
1 23 86.769 86.414 82.837 82.244 85.339

Table 6. Average performance results (ACC %, CV = 5) obtained utilizing both LASSO and mRMR-
based feature selection with feature-weighting methods on the CGGA dataset.

k # of Features SVM LR KNN RF AdaBoost

15 4 79.371 78.669 74.477 74.476 77.278
14 4 79.371 78.669 74.477 74.476 77.278
13 4 79.371 78.669 74.477 74.476 77.278
12 5 80.412 79.014 75.178 75.886 76.225
11 5 80.412 79.014 75.178 75.886 76.225
10 8 80.073 79.716 76.219 73.799 76.231
9 8 80.073 79.716 76.219 73.799 76.231
8 10 79.722 76.921 75.517 75.535 74.840
7 10 79.722 76.921 75.517 75.535 74.840
6 11 76.219 77.623 75.535 72.396 74.834
5 11 76.219 77.623 75.535 72.396 74.834
4 13 76.915 76.921 75.173 73.799 73.781
3 14 76.915 77.272 74.822 75.892 73.073
2 16 76.915 77.272 75.523 72.752 72.371
1 16 76.915 77.272 75.523 72.752 72.371

As can be seen from Table 6, the best performance results had an accuracy rate value
of 80.412 in conjunction with the minimum weight value of 12 and the number of selected
features as 5, employing the support vector machine classifier on the CGGA dataset for
the glioma grading task. The second-best different result achieved an accuracy rate value
of 80.073, with a minimum weight value of 10 and the selection of 8 features, using
the support vector machine. The following feature names were selected for the optimal
result obtained from the CGGA dataset: ‘IDH1’, ‘Age’, ‘PTEN’, ‘PDGFRA’, and ‘NF1’.
Additionally, Figure 3 is a line chart that visually represents and compares the results of
feature-weighting and selection from the CGGA dataset.

By employing this approach, it was possible to identify and select shared clinical and
molecular predictors from the initial set of 22 or 23 features depending on the dataset
used (i.e., TCGA or CGGA) in the glioma grading dataset. These selected and shared four
features have the following names: ‘IDH1’, ‘Age’, ‘PTEN’, and ‘NF1’.

190



Cancers 2023, 15, 4628

Figure 2. Comparative illustration of feature-weighting and selection results on the TCGA dataset.

Figure 3. Comparative illustration of feature-weighting and selection results on the CGGA dataset.
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3.4.3. Other Performance Results Based on Feature Selection and Weighting Process

We have obtained comprehensive computational results by employing a hybrid feature
selection and weighting, taking into consideration six performance metrics: accuracy rate
(ACC) %, area under the ROC curve (AUC), F-measure, precision, recall, and specificity.
Tables 6 and 7 present the detailed average performance results on the TCGA and CGGA
glioma grading datasets with/without feature selection and weighting. The green indicator
shows that feature selection and weighting give better results than not applying the feature
selection method, while the red indicator represents worse results in the same situation.

Table 7. Comprehensive average performance results (CV = 5) obtained by observing the effects of
the feature selection and feature-weighting methods on the TCGA dataset.

Without FS With FW and FS Without FS With FW and FS

ML ACC% AUC

SVM 86.769 87.007 0.904 0.911
LR 86.414 86.890 0.918 0.923
KNN 82.837 84.983 0.893 0.906
RF 82.841 82.481 0.897 0.900
AdaBoost 85.339 84.862 0.905 0.908

Without FS With FW and FS Without FS With FW and FS

ML F1 PRE

SVM 0.852 0.855 0.801 0.804
LR 0.847 0.852 0.805 0.808
KNN 0.802 0.826 0.782 0.802
RF 0.793 0.792 0.796 0.786
AdaBoost 0.832 0.829 0.803 0.789

Without FS With FW and FS Without FS With FW and FS

ML REC SPEC

SVM 0.912 0.915 0.837 0.839
LR 0.897 0.905 0.843 0.845
KNN 0.827 0.856 0.832 0.846
RF 0.796 0.802 0.853 0.842
AdaBoost 0.869 0.878 0.845 0.830

As shown in Tables 7 and 8, since we focused on obtaining a high accuracy rate from
the best-supervised learning model by using feature selection and weighting approaches in
this study, support vector machine with FS and FW provides higher accuracy rate values
than no FS method. Regarding Tables 7 and 8, the green color in cells means that the result
after FW and FS is higher than the result without FS. Otherwise, the color is orange in cells.
The SVM model achieved the highest values on the TCGA dataset, yielding 87.007%, 0.855,
and 0.915 for ACC, F-measure, and recall, respectively. The LR model had the highest
values for AUC and precision, namely 0.923 and 0.808, respectively, and KNN also yielded
the highest value for specificity on the TCGA dataset, namely 0.846. Ash shown by the
CGGA dataset-based results (see Table 7), the SVM model on the CGGA dataset achieved
the highest values, yielding 80.412%, 0.815, 0.679, 0.807, and 0.913 in terms of ACC, AUC,
F-measure, precision, and specificity, respectively. The RF model had the highest value,
namely 0.610, in terms of recall on this dataset for this study as well.
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Table 8. Comprehensive average performance results (CV = 5) by observing the effects of the feature
selection and feature-weighting methods on the CGGA dataset.

Without FS With FW and FS Without FS With FW and FS

ML ACC% AUC

SVM 76.564 80.412 0.815 0.798
LR 76.570 79.014 0.792 0.788
KNN 74.816 75.178 0.772 0.753
RF 74.840 75.886 0.758 0.767
AdaBoost 74.834 76.225 0.759 0.749

Without FS With FW and FS Without FS With FW and FS

ML F1 PRE

SVM 0.609 0.679 0.759 0.807
LR 0.633 0.656 0.706 0.788
KNN 0.555 0.577 0.743 0.706
RF 0.592 0.629 0.659 0.663
AdaBoost 0.625 0.603 0.661 0.717

Without FS With FW and FS Without FS With FW and FS

ML REC SPEC

SVM 0.527 0.607 0.901 0.913
LR 0.584 0.582 0.862 0.907
KNN 0.454 0.516 0.908 0.880
RF 0.549 0.610 0.855 0.835
AdaBoost 0.605 0.536 0.829 0.888

3.4.4. Comparison with the Related Methods for Glioma Grading

In this subsection, we compare the performance on the two datasets used of the
utilized method of feature selection with another related method from the literature for
glioma grading tasks with molecular and clinical characteristics.

In Table 9, the accuracy rates are displayed as percentages along with the number of
selected features for each method/dataset combination. Our method surpasses all its com-
petitors by selecting 13 features for the TCGA dataset and 5 features for the CGGA dataset.
Taking into account the obtained accuracy rate values, our method also outperforms its
competitor [4] with 80.412% from the CGGA dataset.

Table 9. Comparison with the related methods in the literature for glioma grading tasks on the
datasets employed.

Dataset TCGA CGGA

Total # of
Features

23 22

Study Our Method [4] Our Method [4]

Selected # of
Features

13 14.9 5 17.6

ACC % 87.007 87.606 80.412 79.668

Study Our Method [4]

Method mRMR + LASSO Hierarchical voting-based ensemble
scheme

Advantages
Effective, more realistic, and

consistent results, and identified
feature names

The method employs an ensemble
procedure
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Table 9 gives the significant differences between our approach and those of [4] while
noting their respective advantages as well. Since we focused on determining feature names
with the minimum number of selected features and maximum accuracy rate by using both
feature-weighting and selection strategy in this study, our performance results (i.e., ACC)
can be lower than the related method’s (e.g., [4]) results (e.g., TCGA dataset). However,
our methodology presents more robust, effective, realistic results and identified feature
names for the related classification task. The utilization of our method, which incorporates
feature-weighting and selection approaches, led to a substantial enhancement in identifying
the names of the final selected feature set in our biomarker discovery process.

4. Discussion

Based on the empirical findings from our rank-based weighted hybrid filter and
embedded feature selection methodology applied to the TCGA and CGGA datasets with
molecular and clinical characteristics, several insights emerged. Our utilized feature
selection method demonstrated superior performance in terms of the number of selected
features as compared to our previous related method [4] when applied to the same datasets.
Since this hybrid method harnesses the advantages of two popular and effective feature
selection methods, we hypothesize that it generates superior results as compared to the
individual selection methods employed in isolation. This is, however, a novel application
to this setting (glioma) and these datasets (TCGA/CGGA), and comparison with the
results of other studies is yet limited. In a recent benchmarking study of feature selection
strategies in multi-omics data, wherein 15 cancer multi-omics datasets were employed to
compare four filter methods, two embedded methods, and two wrapper methods with
respect to their performance in relation to the prediction of a binary outcome, the authors
found that the feature selection methods mRMR, the permutation importance of random
forests, and the Lasso method tended to outperform the other methods [30]. Bhadra et al.
compared five widely used supervised feature selection methods (mRMR, INMIFS, DFS,
SVM-RFE-CBR, and VWMRmR) for multi-omics datasets from a multi-omics study of
acute myeloid leukemia (LAML) from TCGA to successfully identify gene signatures in
each data subset [31]. Empirical results suggest that our feature selection and weighting
methodology with supervised learning models holds promise for glioma grading tasks. By
employing two different feature selection methods and five individual learning models
using rank-based weighting strategies, we achieved optimal results in this study. Our
methodology also generally outperformed the results of using a no feature selection method
when tested on two datasets with different model schemes. A pivotal objective of this
study was to determine the names of the final features in the set by assigning ranks and
weights to the corresponding methods according to their importance level in terms of
accuracy rate compared to the no FS methodology. Although the selections by the best-
supervised learning models and features varied across the datasets, we can conclude that
our proposed approach [19] yields more robust and effective results compared to our
previous feature selection approach [4]. We anticipate that, as integral sources of shared
molecular data, TCGA and CGGA will continue to evolve with increasing number of
features, and we hypothesize that providing a method that allows for the selection of
the most biologically relevant TCGA and CGGA features, the future cost of molecular
characterization may be reduced with increasing prediction performance and potential
to examine biological pathways of glioma progression at a higher grade. To address
the challenge of having a limited number of cases with high-dimensional features, we
employed a 5-fold cross-validation technique to mitigate bias. By combining the strengths
of both filter and embedded popular feature selection (FS) methods, we achieved highly
effective results, even in the presence of high-dimensional features and the complexity of
the problem. It should be noted that the choice of the most suitable feature subset may
differ based on the feature selection method(s), parameters, heuristics, data type, and
dataset size, as there is no universally optimal method that applies to all situations (as
exemplified by the ‘no free lunch theorem’) [19]. We acquired thirteen and five significant
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clinical and molecular biomarkers for TCGA and CGGA datasets, respectively. Differences
in identified features between TCGA and CGGA can be attributed to the number of patients,
the number of features, data distribution, and characteristics in each set. Four features
were shared among TCGA and CGGA: Age, IDH1, PTEN, and NF1. This indicates that
given this input data, these are the currently most robust if not the most informative
markers of glioma grading. The shared features align with existing data surrounding the
distinction of diagnostic labels in glioma. Age as the sole shared clinical feature between
TCGA and CGGA reflects tumor subtype distribution, which is distinctive between lower-
grade gliomas occurring more often in younger patients in contrast to high-grade gliomas,
including GBM occurring in older patients. IDH status as a co-localizing feature of more
favorable biological behavior separates lower grade from higher grade glioma due to its
association with LGG as compared to GBM, of which only approximately 10% are IDH
mutated [32,33]. PTEN alteration is more associated with aggressive biological behavior
and higher-grade glioma [34,35]. The role of NF1 is an equally well-recognized mutation
in glioma, albeit not as common [36]. The shared features thus validate the method
based on existing literature evidence (see Table 10). The additional features identified
in TCGA (CIC, ATRX, PIK3R1, IDH2, GRIN2A, NOTCH1, TP53, EGFR, MUC16) and
CGGA (PDGFRA) provide interesting avenues for analysis of progression to a higher grade
in glioma via linkage to known signaling pathways of tumor progression and treatment
resistance (Table 1, Figure 4). In particular, MUC16, also known as CA-125, merits additional
investigation given its emergence as a distinctive grading feature, since current literature
supports this marker in ovarian cancer with clinical use; however, it is identified as mutated
in only a relatively small percentage of gliomas [37]. Recent evidence supports its role
in tumor grading and prognosis [38], and it carries mechanistic implications via linkage
with PDGFRA, a feature also identified in the current study and interestingly identified in
CGGA [39]. Connecting PTEN, ATM, and p53, the feature GRIN2A, only described to date
in a small minority of GBMs, merits further study as a marker of possible genetic evolution
to a higher grade and post-therapeutic adaptation [35]. Similarly, CIC emerged in this
method as a distinctive marker. It has been reported in 20% of LGGs [32]; however, CIC
protein instability has been associated with tumorigenesis in GBM [40]. The identification
of features such as MUC16 (already in use in the clinic albeit not in the glioma setting)
and GRIN2A and CIC, both relatively novel, as evidenced by current ingenuity pathway
analysis (IPA) (Figure 4) [41], is not currently employed in the clinic but shows promise in
analyzing mechanistic progression to higher grade and showcasing the clinical promise
of novel applications such as GradWise as potential tools to identify novel biomarker
in existing datasets such as TCGA and CGGA. The reality in the clinic is that multiple
loci of different molecular subtypes may be present in tumors, complicating diagnosis
(Supplementary Figure S2). The method in this study may advance diagnostic capabilities
by leveraging the complex feature composites of several markers and molecular subtypes to
match them to the most appropriate diagnostic code. This aspect will be further improved
by incorporating progression and survival outcomes as well as complex DNA methylation
analysis, which is subject to implementation in multidisciplinary pathology discussions
and future directions. The limitations of the study include the small scale of data and low
quantity of features. TCGA resulted in several more distinctive grading features compared
to CGGA, which indicates dataset-dependent limitations grounded in tumor heterogeneity
and class imbalance.
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Table 10. The 13 features were identified using GradWise. Features that emerged in both TCGA and
CGGA are shown in bold.

Feature

Frequency
of

Mutated
Genes in
TCGA in
GBM [37]

Somatic
Genomic

Alter-
ations in
GBM [33]

% GBM
Patients

Harboring
Specific

Oncogenic
Mutations
in TCGA

[42]

Mutation
Landscape

of LGG [32]
Current Role in Oncology

Mechanistic
Connections

Literature Evidence Use in Clinic

Age n/a n/a n/a n/a

Age-associated with
unfavorable neuropathological

and radiological features in
gliomas [43]

Yes, for clinical
decision-making

via recursive
partitioning criteria

Investigational

IDH1/IDH2 n/a n/a 3% 77%
IDH mutation in glioma:

molecular mechanisms and
therapeutic targets [44,45]

Yes, for tumor
molecular

characterization
HIF-1α

PTEN 34% 31% 19% n/a
Identification of the Prognostic

Signatures of Glioma With
Different PTEN Status [34]

Yes, for tumor
molecular

characterization
TP53, GRIN2A

NF1 11% 11% 9% n/a
An Update on

Neurofibromatosis Type
1-Associated Gliomas [36]

Yes, for clinical
decision-making
and management

discussion

EGFR, PTEN

EGFR 26% 26% 15% 6%
Updated Insights on EGFR

Signaling Pathways in Glioma
[46]

Yes, for tumor
molecular

characterization
NOTCH1

TP53 34% 29% 16% 46%

Genetic and histologic
spatiotemporal evolution of

recurrent, multifocal,
multicentric and metastatic

glioblastoma [35]

Yes, for tumor
molecular

characterization

PTEN,
GRIN2A

PIK3R1 18% 11% 6% n/a Somatic Mutations of PIK3R1
Promote Gliomagenesis [47]

Not currently used
in the clinic PI3K

ATRX n/a 6% 5% 33% The Role of ATRX in Glioma
Biology [48]

Yes, for tumor
molecular

characterization
ATM

PDGFRA n/a 4% 5% n/a

High frequency of PDGFRA
and MUC family gene
mutations in diffuse

hemispheric glioma, H3
G34-mutant: a glimmer of

hope? [39]

Investigational MUC16

NOTCH1 n/a n/a n/a n/a

Oncogenic and
Tumor-Suppressive Functions

of NOTCH Signaling in
Glioma [49]

Investigational EGFR

GRIN2A n/a n/a 4% n/a

Somatic mutation of GRIN2A
in malignant melanoma results

in loss of tumor suppressor
activity via aberrant NMDAR

complex formation [35]

Investigational PTEN, TP53

MUC16
(CA-125) 11% n/a n/a n/a

MUC16 mutation is associated
with tumor grade, clinical
features, and prognosis in

glioma patients [38]

Used as a serum
biomarker in

ovarian cancer
with implications

for other cancers as
well [50]

PDGFRA

CIC n/a n/a n/a 20%
CIC protein instability

contributes to tumorigenesis in
glioblastoma [40]

Not currently used
in clinic EGFR
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Figure 4. Network output of the 12 GradWise identified molecular features with oligoden-
droglioma annotation in IPA ((QIAGEN Inc., https://www.qiagenbioinformatics.com/products/
ingenuitypathway-analysis) accessed on 6 September 2023) [41]. Several identified features associated
with progression to a higher grade and complex biological interplay do not currently exhibit known
biological measurement (NOTCH1, PDGFRA, IDH1/2, CIC). GRIN2A and MUC16 did not map in
this framework, supporting a more novel role in glioma biology.

5. Conclusions and Future Work

This study introduces GradWise, a novel application of a rank-based weighted hybrid
filter and embedded feature selection method employing LASSO and mRMR-based feature
selection and weighting methods for glioma grading. The results demonstrate that the
method is effective in identifying features representative of tumor grade and is in agree-
ment with existing evidence, and it thus can serve as a framework for feature selection,
classification, and pattern recognition towards value-added care, particularly in the context
of molecular, clinical, and proteomic markers, while enhancing the predictive performance
of models. The exploration of higher-dimensional biomedical datasets, including proteomic
or metabolomic data, suggest future directions of this study to further validate this method.
Future directions include the aggregation of additional datasets, including clinical, imaging,
and omic data, with higher-dimensional features. This will allow us to further leverage
and compare the performance and validation of GradWise against other approaches and
explore the use of alternatives or combinations of the ensemble machine learning predictors
to improve performance results for specific large-scale medical data scenarios.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15184628/s1, Figure S1: Expression of mutation features in
TCGA dataset; Figure S2: Gene expression profiles in TCGA by primary diagnosis for the 13 features
identified (underlined) using GradWise.
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Simple Summary: Intensity Modulated Radiation Therapy (IMRT) is a cancer treatment that targets
cancer cells while protecting nearby healthy organs using a linear accelerator. Traditional IMRT
planning involves a sequential process: optimizing beam intensities (Fluence Map Optimization) for
a set of angles and then sequencing (Multi-Leaf Sequencing). Unfortunately, treatment plans obtained
by the sequencing step are severely impaired. One approach that addresses the problem described
is the Direct Aperture Optimisation (DAO) approach. The DAO problem aims at simultaneously
determining deliverable aperture shapes and a set of radiation intensities. This approach considers
physical and delivery time constraints, allowing clinically acceptable treatment plans to be generated.
In this work, we adapt the Particle Swarm Optimisation to solve the DAO and introduce a reparation
heuristic to enhance treatment plans. We tested our method on prostate cancer patients and found
that it delivers radiation more efficiently than the traditional approach, reducing treatment time and
improving outcomes.

Abstract: Intensity modulated radiation therapy (IMRT) is one of the most used techniques for cancer
treatment. Using a linear accelerator, it delivers radiation directly at the cancerogenic cells in the
tumour, reducing the impact of the radiation on the organs surrounding the tumour. The complexity
of the IMRT problem forces researchers to subdivide it into three sub-problems that are addressed
sequentially. Using this sequential approach, we first need to find a beam angle configuration that
will be the set of irradiation points (beam angles) over which the tumour radiation is delivered.
This first problem is called the Beam Angle Optimisation (BAO) problem. Then, we must optimise
the radiation intensity delivered from each angle to the tumour. This second problem is called the
Fluence Map Optimisation (FMO) problem. Finally, we need to generate a set of apertures for each
beam angle, making the intensities computed in the previous step deliverable. This third problem is
called the Sequencing problem. Solving these three sub-problems sequentially allows clinicians to
obtain a treatment plan that can be delivered from a physical point of view. However, the obtained
treatment plans generally have too many apertures, resulting in long delivery times. One strategy to
avoid this problem is the Direct Aperture Optimisation (DAO) problem. In the DAO problem, the
idea is to merge the FMO and the Sequencing problem. Hence, optimising the radiation’s intensities
considers the physical constraints of the delivery process. The DAO problem is usually modelled
as a Mixed-Integer optimisation problem and aims to determine the aperture shapes and their
corresponding radiation intensities, considering the physical constraints imposed by the Multi-Leaf
Collimator device. In solving the DAO problem, generating clinically acceptable treatments without
additional sequencing steps to deliver to the patients is possible. In this work, we propose to solve the
DAO problem using the well-known Particle Swarm Optimisation (PSO) algorithm. Our approach
integrates the use of mathematical programming to optimise the intensities and utilizes PSO to
optimise the aperture shapes. Additionally, we introduce a reparation heuristic to enhance aperture
shapes with minimal impact on the treatment plan. We apply our proposed algorithm to prostate
cancer cases and compare our results with those obtained in the sequential approach. Results show
that the PSO obtains competitive results compared to the sequential approach, receiving less radiation
time (beam on time) and using the available apertures with major efficiency.
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1. Introduction

Cancer is a type of disease that causes abnormal growth of cells in the body, leading to
the formation of carcinomas, which can eventually turn into malignant tumours. In 2020,
the International Agency for Research on Cancer reported 19.3 million new cancer cases
and nearly 10 million cancer-related deaths [1]. There are various methods for treating
cancer, and the treatment choice largely depends on the specific type of cancer and its
impact on the patient’s health.

Radiotherapy is a commonly used cancer treatment technique involving exposing
patients to ionising radiation to target cancerous cells. There are various forms of radio-
therapy, such as Volumetric Modulated Arc Therapy (VMAT), Stereotactic Body Radiation
Therapy (SBRT), and Intensity Modulated Radiation Therapy (IMRT), among others. IMRT
is one of the most widely used methods of radiation therapy, and is delivered using a linear
accelerator (linac) machine [2] (Figure 1). IMRT aims to effectively deliver the prescribed
radiation dose to the cancerous cells while minimising the exposure of healthy structures [3].
This is achieved by modulating the radiation passing through the linac using a multi-leaf
collimator (MLC) device.

Figure 1. Linear accelerator from the Centro Oncologico Hondureño in Honduras.

The IMRT technique enables the delivery of an optimal radiation dose to the tu-
mour while minimising exposure to surrounding healthy organs [4]. However, finding a
treatment plan that balances the desired dose to the tumour and minimal side effects on
surrounding organs is highly complex. To address this, the IMRT planning process is typi-
cally split into three sequential sub-problems: beam angle optimisation (BAO), fluence map
optimisation (FMO), and multi-leaf collimator sequencing [5]. First, the BAO problem aims
to identify the best possible combination of beam angles from which the radiation should
be delivered, also known as the beam angle configuration (BAC). Once a BAC has been
selected, the optimal intensities for that BAC must be found (Fluence Map Optimisation
problem, FMO). Finally, in the MLC sequencing problem, we compute a set of deliverable
aperture shapes and their corresponding intensities.
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This sequential approach ends with a treatment plan consisting of a large set of
aperture shapes (with corresponding intensity values). Unfortunately, having too many
apertures and larger intensity values per aperture means longer treatment time. The total
delivery time of a treatment plan is calculated considering both the beam-on time and the
decomposition times. The beam-on time (BoT) is the total time a patient is exposed to
radiation. The decomposition time is the time the linear accelerator needs to move from
one bean angle in a BAC to the next one and the time needed by the MLC to move from
one aperture shape to the other [6,7].

As a general rule, prolonged treatment time is something we want to avoid, as it
increases the attention time per patient and, thus, reduces the number of patients treated
per day [8]. Further, longer treatment plans are more likely to suffer from inaccuracies
produced, for instance, by patient’s movements.

One strategy commonly used to minimise the total delivery time of treatment plans
generated using the sequential approach described before is to reduce the number of
apertures. This can be made by “rounding” the intensity values computed during the FMO
phase. Unfortunately, such strategies can severely impair the final treatment plan quality.

One alternative to the sequential approach that does not require any “rounding”
process is the direct aperture optimisation problem (DAO). The main idea in DAO is to
solve the FMO problem considering a limited number of deliverable aperture shapes and
the physical constraints associated with the MLC sequencing.

To solve the DAO problem, we must find a set of aperture shapes and their associated
intensity values [9]. Usually, aperture shapes are optimised using heuristic strategies [10,11]
or looking for the best possible combination of aperture shapes from a pre-defined set of
apertures [12]. To optimise intensity values, gradient-based optimisation methods are usually
implemented. Compared to the sequential approach, the treatment plan obtained using DAO
is not only deliverable, but also better regarding the objective function value [13].

In this paper, we implement a particle swarm optimisation algorithm (PSO) combined
with a mathematical programming technique to solve the DAO problem. PSO is recognised
for effectively solving large-scale nonlinear optimisation problems through a good balance
between exploitation (local search) and exploration (global search) [14,15]. While the PSO
algorithm finds the best aperture shapes at each beam angle for a given BAC, the mathemat-
ical programming algorithm optimises each aperture’s intensity value. Also, we present a
reparation heuristic for those aperture shapes that have a negligible effect on the treatment
plan. To analyse our algorithm results, we use a set of clinical cases of prostate cancer and
compare the treatment plans obtained by our algorithm to those obtained by the traditional
sequential approach. The results show that our algorithm can find deliverable treatment
plans using fewer apertures and significantly reduce the beam-on time compared to the
traditional sequential approach. Compared to deliverable treatment plans with a similar
number of apertures, our algorithm outperforms them regarding objective function values.

The remainder of this paper is organised as follows: Section 2 introduces the general
concepts of IMRT and DAO and the mathematical models we will consider in this study. In
Section 3, the algorithms we implement in this paper are presented. Section 4 presents the
results obtained by our algorithm applied to a prostate case. A discussion of these results
is also included in this section. Finally, in Section 5, we draw the main conclusions of our
work and outline future work.

2. IMRT and the DAO Problem

In this section, we first discuss the main features of the IMRT problem and how to
model it. Then, we introduce the DAO problem and present a brief literature review,
focusing on the algorithms that have been previously proposed to solve the DAO problem.

2.1. Intensity Modulated Radiation Therapy

To mathematically model the IMRT problem, we first need to discretise each beam
angle into beamlets, and each region (tissues and tumour) into a set of small sub-volumes
called voxels [16]. See Figure 2 for a graphical representation of these concepts.
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Figure 2. Representation of beam angles and organs discretised into beamlets and voxels, respectively
(Cabrera-Guerrero et al. [17]).

Thus, the IMRT problem can be modelled using the representation depicted in
Figure 2 [12,17–21]. First, we model the dose distribution deposited in the voxels that
compose a region. As mentioned above, beam angles are divided into a set of n beamlets,
being n, the total number of beamlets summed over all the possible beam angles. Let A
be a BAC and x ∈ Rn

�0 be an intensity vector or fluence map solution for A . Each vector
component xb represents the length of time the patient is exposed to the radiation of the
b-th beamlet. The radiation dose deposited into each voxel v of region r by fluence map x
is computed by the expression [16,20]

dr
v(x) =

n

∑
b=1

(Dr
v1ixb) ∀v = 1, 2, . . . , mr, (1)

where mr is the total number of voxels in the region r, r ∈ R = {O1, . . . , OQ, T} is an
element of the index set of regions, with the tumour indexed by r = T and the organs at risk
and normal tissue indexed by r = Oq with q = 1, . . . , Q. Dr ∈ Rmr×n is the dose deposition
matrix related to region r, where Dr

vb � 0 defines the rate at which the radiation dose along
beamlet b is deposited into voxel v of region r (As shown Figure 3). The set X(A ) ⊆ Rn is
the set of all feasible fluence maps when the BAC A is considered. Note that searching for
an optimal fluence map x over the X(A ) space implies solving the FMO problem.

Based on the dose distribution in Equation (1), physical and biological models have
been proposed in the literature (see Ehrgott et al. [16] for a survey). This study uses the
convex nonlinear penalty function in [22,23]. In this model, each voxel is penalised according
to the squared difference between the actual and the prescribed doses. This formulation
yields a quadratic programming problem with only linear non-negativity constraints on the
fluence values [22]. This model is as follows:

min
x

z(x) = ∑
r∈R

[
1

mr

mr

∑
i=1

[
λr(Yr − dr

v(x))2
+ + λr(dr

v(x)− Yr)
2
+

]]
(2)

where parameter mr is, again, the number of voxels of the region r and Yr is the desired
dose for the voxels of the region r. The function (·)+ is the maximum between 0 and (·),
dr

v(x) gives the dose delivered by fluence map x to voxel v of the region r (see Equation (1)),
and λr and λr are the penalty weights parameter of under-dose and overdose related to
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region r, respectively. Since the Equation (2) is convex, the optimal fluence maps can be
obtained using mathematical programming techniques.

Figure 3. Radiation is delivered from a subset of beamlets, and it irradiates voxels at both tumour
and organs at risk (Cabrera-Guerrero et al. [17]).

2.2. Direct Aperture Optimisation

The Direct Aperture Optimisation [10] merges the FMO and MLC problems, optimis-
ing the fluence map considering the constraints imposed by the MLC device. This means
that the decision variables we focus on are not the beamlet intensities (as we did in the FMO
problem), but the beamlet apertures and their corresponding aperture intensities. One
consequence of this change is that the model becomes a mixed integer nonlinear problem as
the beamlet apertures are binary variables (open/closed). Having binary variables makes
the problem too hard to be solved by mathematical programming techniques, as we used
to do with the FMO problem.

Let us consider a BAC A = {A1, . . . , AU}, where U ∈ N>0 represents the number of
beams that are part of the BAC A . Consider that we represent a DAO solution as the set
H = {(P1, I1), . . . , (PN , IN)}, where the (Pc, Ic) tuples correspond to a set of Θc aperture
and intensity values for some beam angle c. We define each aperture shape Sc

i ∈ Pc as a
matrix of binary variables. Figure 4 gives an example of a tuple (Pc, Ic) for a beam angle c.

Figure 4. Set of aperture shapes and intensity values associated with a beam angle.

As we can see, the value of an element in the matrix is 1 if the radiation passes through
the associated beamlet and 0 otherwise. The elements with value −1 are not considered, as
the associated beamlets do not hit any voxel from the tumour. Also note that because of
MLC physical constraints, the matrix Sc

i is a consecutive 1’s matrix (C1), that is, for each
row, 1 values must be consecutive, with no 0 value in between them.

205



Cancers 2023, 15, 4868

To evaluate z(x), it is necessary to obtain the fluence map x, used in Equation (1), from
the DAO solution. To this end, we first need to compute an aggregated matrix for each
tuple in H. This aggregated matrix can be obtained through a positive linear combination
of the aperture shapes Sc

i and their corresponding intensities Ic
i for angle A:

Ac =
Θc

∑
i=1

Sc
i · Ic

i (3)

Then, we need to convert the aggregated matrix Ac obtained in Equation (3) to a
fluence map x vector. We perform this by mapping the position of each beamlet in the
aggregated matrix of beam angle A to its corresponding position b in the fluence map
solution x of beam angle A. Figure 5 shows how to do this.

Figure 5. Generation of a fluence map from an angle’s apertures and associated intensities.

Direct Aperture Optimisation Related Work

The DAO problem was first introduced by Shepard et al. [10]. In their paper, the authors
identify as input of the problem the beam angles, the beam energies, and the number of
apertures per beam angle. At the same time, the decision variables are the aperture shapes
and their intensities. Currently, several different techniques have been used to solve the
DAO problem. Some of these techniques are classified as stochastic search methods. These
methods apply small changes in the leaf position of the apertures. When a change in the
leaf position improves the objective function, it is accepted. It is important to remark that
the changes in this method are stochastic [3,10–12,21,24–27].

Other methods for solving the DAO problem are based on gradient leaf refinement.
In these methods, the leaf position is used as the optimisation variable. The relation-
ship between the objective function and the leaf position is established, and the first
derivative is given. Such algorithms have been applied to various commercial therapeutic
systems, including the direct machine parameter optimisation model used in Pinnacle and
RayStation systems [28,29]. Column generation methods have also been proposed in the
literature [9,30–33]. In these methods, the initial apertures are not set at the beginning of
an iteration; instead, deliverable apertures are individually added to the treatment plan.
The iteration process involves two steps. First, the price problem is solved to generate
the deliverable aperture that can improve the objective function, which is added to the
treatment plan. Then, the new set of aperture weights is optimised in the master problem.

Unfortunately, the methods above also suffer from some issues. For instance, column
generation approaches usually converge very fast; however, they do not allow for a hard
limit on the number of apertures, which may translate to unreasonably long total treatment
times and negligibly small apertures [34]. A relevant issue in stochastic search and gradient-
based leaf refinement techniques is generating the initial solution. The quality of the initial
solution influences the quality of the given final solution, as seen in [12,24].

All in all, solving the DAO problem using a limited number of apertures and obtaining
good objective quality function values is an open problem that is worth to be studied.
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3. Solution Method

This section introduces our hybrid PSO algorithm to solve the DAO problem. The main
goal of our algorithm is to obtain a high-quality treatment plan for IMRT that consists of a
set of deliverable set of aperture shapes and their corresponding intensity values.

In Section 3.1, we explain the original PSO algorithm proposed in [35] and how we
adapt it to the DAO problem. Then, in Section 3.2, we define a reparation heuristic that uses a
mathematical programming algorithm to improve the solution found by our PSO algorithm.

3.1. Particle Swarm Optimisation

The PSO is a nature-inspired population-based metaheuristic algorithm that imitates
the social behaviour of birds in nature. This swarm consists of particles that search the
objective space intending to find different high-quality solutions. Each particle is, in turn,
composed of two fitness-related elements. The first element is the current fitness value of
the i-th particle, and the second element is the fitness value of the best position the i-th
particle has ever found during the algorithm execution, pbesti. Finally, the algorithm also
keeps track of the best fitness value found so far, gbest.

The PSO starts with an initial population of particles whose positions have been
randomly assigned. The i-th particle’s position at iteration t is represented by xt

i . The
direction of particles in each iteration is determined by a velocity variable denoted by vt

i
that obtains its value from Equation (4).

vt+1
i = c f ∗ (wvt

i + c1r1(pbesti − xt
i ) + c2r2(gbest − xt

i )), (4)

where t is the current iteration, pbesti is the best position the i-th particle has achieved,
and gbest is the best position any particle in the swarm has achieved. Parameter c f is the
constriction factor used to adjust the velocity of each particle and obtain a balance between
exploration and exploitation. The parameter w is the algorithm’s inertia and controls the
last velocity contribution. Parameter c1 and c2 are learning factors for managing the impact
of pbesti and gbest. Parameters r1 and r2 are random numbers between 0 and 1. The new
position of each particle is updated by adding the current velocity to the function of the
position of the particle, as shown in Equation (5).

xt+1
i = xt

i + vt+1
i (5)

In the proposed algorithm, we represented the particles as shown in Figure 6. As we
can see, the particle is composed of three attributes, namely the current fitness value (a
real-valued attribute), its best singular position (a treatment plan), and its current position
(a treatment plan). Naturally, the current fitness value results from evaluating the current
particle’s position in the objective function considered by the algorithm.

Figure 6. DAO solution on particle representation.
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As in any other heuristic algorithm, solutions generated by the PSO algorithms are
not (necessarily) optimal. One drawback of the PSO implemented here is that there is no
relation between the intensity values associated with an aperture and the aperture itself.
Unfortunately, as mentioned before, the aperture shape optimisation problem is an NP-
hard problem that mathematical programming solvers cannot solve in a reasonable time.
Unlike this, the apertures’ intensity optimisation problem (also known as aperture weight
optimisation [9] or segmentation weight optimisation) is a convex continuous problem
that can quickly be solved for solvers such as Gurobi (see, for instance, [24–26]). Then, we
propose to implement a hybrid PSO with a mathematical programming algorithm to solve
the DAO problem. We use the PSO algorithm to find a set of aperture shapes and their
corresponding intensities, which the linear solver will then optimise.

To better understand the algorithm’s behaviour, we can see in Figure 7 how an aperture
shape and the associated intensities change in each step. Considering the representation
of the treatment plan mentioned in Section 2.2, we can represent the aperture shape and
the intensities obtained by the PSO algorithm like a tuple (Pc, Ic). The intensities Ic are
optimised by the solver at the end of each iteration of the PSO algorithm. As a result, we
obtain a new tuple (Pc, I′c) where, as mentioned before, some intensities in I′c are set to zero
by the solver. To improve the aperture shapes that resulted in (near) zero intensity value
after the solver optimisation, we use a reparation heuristic. This heuristic only modifies Pc,
leading to a new tuple (P′c, I′c). Finally, the reparation heuristic passes on the Solver the
tuple (P′c, I′c) so we can obtain the optimal intensity values for the new set of apertures
P′c, generating the tuple (P′c, I′′c). Finally, the treatment plan defined by the tuple (P′c, I′′c)
is passed onto the PSO algorithm for the next iteration. This process is repeated until the
PSO algorithm meets some termination criterion (e.g., it reaches a predetermined number
of iterations).

PSO al-
gorithm Solver

Reparation
heuristic

(Pc, Ic)

(P′c, I′′c)

(Pc, I′c)

(P′c, I′c)

Figure 7. Interaction between PSO algorithm, linear solver and reparation heuristic.

3.2. Reparation Heuristic

As mentioned in the previous paragraph, as a result of the solver usage, we obtain
the optimal intensities for each aperture at each beam angle. Since the optimisation solver
is conditioned to the aperture shapes obtained at each iteration by the PSO algorithm, it
is not unusual that some of the intensities end up in the optimisation process with values
close to zero.

In practice, apertures with associated intensities near to zero value are equivalent
to having no aperture at all, i.e., an insignificant (or null) impact on the treatment plan.
Further, improving the shapes of those apertures with intensity values close to zero is
complex. To address this issue, we propose a reparation heuristic that allows us to avoid
(as much as possible) those apertures with a negligible effect on the treatment plan.

Figure 8 shows a numerical example of the intensities optimisation process. On top of
the image, we can see four aperture shapes with their associated intensities. We can see
that all the intensities are modified on the bottom part of the same image.

The main idea of the reparation heuristic proposed here is to replace those apertures
with intensity values closer to zero with apertures that (hopefully) can help after running
the solver. Particularly, we aim to irradiate those parts of the aperture shape that are not
irradiated from any other aperture of the beam angle.

To this end, we generate a new aperture that results from overlapping the apertures
with an intensity value greater than 1. We call this new aperture the “overlapped aperture”,
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and the ones with intensity values greater than one “the original apertures”. Figure 9 shows
an example of the apertures overlapping process. Fields with a value of 1 correspond
to beamlets radiation passes through. Fields with zero value correspond to the beamlets
closed in the original apertures. Finally, −1 corresponds to the inactive beamlets (those that
do not hit the tumour).

Figure 8. Representation of the change in the intensities of a set of apertures using the solver.

Figure 9. Overlapping matrix from the apertures with intensities over one.

As shown in Figure 9, the overlapped aperture corresponds to the original apertures’
aggregation, i.e., the overlapped aperture keeps open beamlets that are open in at least
one original aperture and sets closed those beamlets that are closed in all the original apertures.

As a result of this aggregation process, we have a matrix showing all the beamlets
currently open in at least one original aperture. As mentioned above, we want to diversify
our search, and thus, we want to irradiate from those fields that are not currently in use.

To this end, the reparation heuristic generates the complementary matrix of the over-
lapped matrix, as shown in Figure 10.

Figure 10. Complementary matrix generated from the overlapping matrix.

It is important to keep in mind some considerations about the application of our repa-
ration heuristic. First, in some cases, the shape of the complementary matrix does not satisfy
the MLC physical constraints and can not directly replace the original aperture. In that case,
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we can select part of the aperture that is actually deliverable and remove those parts that do
not satisfy MLC physical constraints. As shown in Figure 11, we divide the complementary
matrix into two different apertures that satisfy the MLC physical constraints.

Figure 11. Dividing the complementary matrix so we can obtain deliverable aperture shapes.

Second, suppose the number of original apertures with an intensity value close to
zero is more than one. In that case, we must divide the complimentary matrix to generate
as many new apertures as needed. Note that this situation can help us to solve our
first consideration (undeliverable aperture shapes), as we can divide the complementary
matrix in such a way that all (or most of) the open beamlets in the complementary matrix
can be added to the new apertures (see, for instance, Figure 11).

Finally, the reparation heuristic replaces those apertures with (near) zero intensity
values by the aperture shapes obtained in the previous step. We need to note that, in
some cases, one or more apertures still with (near) zero intensity values as the number of
deliverable aperture shapes produced by the reparation heuristic is less than the number of
apertures with (near) zero intensity values. Once we obtained the repaired aperture shapes,
we optimised the intensities values, as shown in Figure 12.

Figure 12. Representation of the apertures obtained after the reparation process.

4. Computational Experiments

This Section introduces the experiments performed by our algorithm and analyses
the obtained results. The Section is divided into three subsections. In Section 4.1, we in-
troduce the set of instances considered in our study and the parameters used by the PSO.
In Section 4.2, we obtain the best parameters for the PSO algorithm using the framework
Irace [36]. Finally, in Section 4.3, we compare our PSO to two algorithms used in the litera-
ture. Comparison is made regarding the obtained objective function values, the required
number of aperture shapes, and their beam-on time.
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4.1. Experimental Setup

In this work, we perform a set of initial experiments on the prostate case instance from
CERR package [37] and also examine a prostate case acquired from Clinica Alemana de
Santiago, Chile. This particular patient is denoted as TRT001 [19]. We use this prostate case
to evaluate the performance of the PSO algorithm introduced in Section 3.1. For the CERR
and TRT001 cases, we consider three organs: the prostate, where the tumour is located, the
bladder, and the rectum (see Figure 13). We label the rectum and the bladder as organs at
risk (OARs) and the prostate as planning target volume (PTV).

Figure 13. Prostate case from CERR. Two OARs (bladder and rectum) are considered.

The number of voxels per region in the CERR case is 15,172 for the prostate, 22,936 for
the bladder and 18,128 for the rectum. We consider 72 beam angles, all of which are on the
same plane. Similarly, in the TRT001 case, the prostate comprises 13,081 voxels, the bladder
holds 19,762 voxels, and the rectum encompasses 8500 voxels.

Like other works in the problem we consider a set of 14 equidistant BACs [12,17,18,21,24,25].
Each BAC consists of five beam angles for the CERR and TRT01 instances, as shown in
Table 1.

Table 1. Equidistant BACs and their corresponding number of beamlets for the CERR and TRT01 cases.

BAC Beam Angles # Beamleats # Beamleats
θ1 θ2 θ3 θ4 θ5 CERR TRT

1 0 70 140 210 280 336 327
2 5 75 145 215 285 336 329
3 10 80 150 220 290 333 328
4 15 85 155 225 295 333 330
5 20 90 160 230 300 329 334
6 25 95 165 235 305 328 334
7 30 100 170 240 310 333 333
8 35 105 175 245 315 336 330
9 40 110 180 250 320 337 329
10 45 115 185 255 325 335 329
11 50 120 190 260 330 331 335
12 55 125 195 265 335 329 335
13 60 130 200 270 340 329 332
14 65 135 205 275 345 328 328

Table 2 details the prescribed doses, Yr, considered per each organ at all the instances
and the weights for both under-dose λr and overdose λr.
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Table 2. Value of Ti, λi and λi for function z(x).

Organ Yr λr λr

PTV 76 Gy 5 5
Rectum 65 Gy 0 1
Bladder 65 Gy 0 1

4.2. Irace Parameter

To optimise the parameter used in the PSO algorithm implemented, we tried the package
Irace [36]. This package is an extension of the iterative F-race algorithm (I/F race) [38,39]. The
principal use of this method is for the automatic configuration of optimisation algorithms.
This is performed by finding the most appropriate configuration of parameters from a set
of instances executed in the algorithm. This package has also been used for the parameters
optimisation of the algorithm proposed by Caceres et al. [21]. That said, using IRace aims to
find suitable parameters for our PSO implementation. The parameters to optimise within
the IRace package are shown in Table 3.

Table 3. Parameters of PSO used in Irace.

Parameter Description Range

Npop Number of population Npop ∈ [100, 600]
c1a Local Learning factor on Apertures c1a ∈ [0, 2]
c2a Global Learning factor on Apertures c2a ∈ [0, 2]
wa Inertia weight on Apertures wa ∈ [0, 2]
c fa Constriction factor on Aperture c fa ∈ [0, 2]
c1i Local Learning factor on Intensities c1i ∈ [0, 2]
c2i Global Learning factor on Intensities c2i ∈ [0, 2]
wi Inertia weight on Intensities wi ∈ [0, 2]
c fi Constriction factor on Intensities c fi ∈ [0, 2]

Table 4 shows the results provided by the IRace package:

Table 4. Best parameters’ values obtained by IRace.

Parameter Value

Npop 418
c1a 1.8751
c2a 0.2134
wa 0.5774
c fa 1.6641
c1i 0.3158
c2i 1.7017
wi 0.5331
c fi 1.2389

The number of iterations used by our algorithm is given by Equation (6), where we
set the evaluation to 40,000 (number obtained testing the algorithm) and an Npop of 518
(given in Table 4) doing a total of 95 iterations, like limits for the algorithm.

Iterations =
evaluation

Npop
. (6)

4.3. Experiments on Test Instances

In our experiments, we measure the performance of the proposed PSO using the
best-found parameter configuration, described in Section 4.2. Note that we run our algo-
rithm 30 times per BAC, as 30 is a widely accepted value for statistical analysis [40].
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Tables 5–8 report the results obtained by both the sequential and the PSO approaches
when applied to the CERR and TRT001 cases. As mentioned in the previous section, the
IMRT sequential approach obtains a fluence map, optimising the dose-volume model of the
FMO problem. Next, the MLC sequencing problem is solved for the resulting fluence maps
by using a well-known algorithm from [7], which finds a set of apertures that minimise the
BoT. In Tables 5 and 6, column z(x∗) corresponds to the cost of the optimal fluence map
using the function in Equation (2). Columns z(r(x∗)), z(r2(x∗)) and z(r4(x∗)) correspond
to the cost of the fluence maps with intensities rounded to the nearest integer, the nearest
multiple of 2, and the nearest multiple of 4, respectively. For each rounding, we also report
the number of apertures generated by the MLC sequencing algorithm (#ap) and the BoT.

Table 5. Results reported by the traditional two-step approach in the CERR dataset.

BAC z(x∗) z(r(x∗)) # ap BoT z(r2(x∗)) # ap BoT z(r4(x∗)) # ap BoT

1 42.98 44.84 140 196 49.29 87 192 61.54 51 204
2 43.40 43.40 140 215 48.76 84 212 61.72 52 224
3 43.70 44.98 144 203 48.83 87 202 72.87 49 208
4 43.53 45.06 145 206 51.77 89 208 66.48 50 212
5 43.23 44.55 142 200 47.40 89 202 67.48 51 204
6 43.05 44.47 149 212 49.23 90 208 66.05 50 208
7 42.86 44.48 152 212 48.05 96 214 62.96 49 212
8 43.06 44.70 146 197 48.00 88 196 61.75 48 196
9 43.66 45.03 141 186 50.62 83 190 70.76 46 192

10 44.14 45.71 144 200 51.21 89 204 59.64 47 200
11 43.83 45.02 138 190 51.97 86 190 68.84 47 200
12 43.31 44.35 144 214 47.38 94 212 64.03 55 228
13 42.84 44.98 157 229 49.05 98 226 82.49 56 232
14 42.85 44.24 142 217 48.57 92 214 68.45 51 220

Average 43.32 44.71 144 205 49.30 89 205 66.80 50 210

Table 6. Results reported by the traditional two-step approach in patient TRT001 in the CAS dataset.

BAC z(x∗) z(r(x∗)) # ap BoT z(r2(x∗)) # ap BoT z(r4(x∗)) # ap BoT

1 55.78 56.92 146 220 63.05 92 222 89.97 52 224
2 56.35 58.38 138 212 63.66 89 212 84.22 49 212
3 56.72 58.39 141 211 63.55 85 210 77.01 49 216
4 56.55 57.99 132 210 63.22 88 220 74.48 51 224
5 55.98 57.97 138 210 64.31 90 214 81.44 49 220
6 55.19 56.37 139 208 59.81 87 204 80.24 47 196
7 55.21 56.54 129 192 59.55 78 192 78.24 44 196
8 56.14 57.26 131 187 62.71 84 188 82.21 46 188
9 56.62 58.13 136 218 62.58 88 210 76.24 52 216

10 56.94 58.30 140 207 63.59 85 206 92.40 50 212
11 56.74 58.27 152 231 61.47 100 234 84.80 56 232
12 56.17 57.99 144 218 61.18 96 218 79.20 54 216
13 55.32 57.54 134 204 59.75 87 204 76.08 49 204
14 55.46 56.85 142 212 59.99 95 214 82.88 41 212

Average 56.08 57.64 138 210 62.03 88 210 81.39 49 212

Tables 7 and 8 report the results obtained by our PSO algorithm. Due to its stochastic
nature, the strategy was run 30 times on each instance. We report the mean over the
14 instances of each set, the best value for each set, the mean number of apertures with
intensity different to zero, and the mean BoT. We need to point out that apertures for which
the intensity is set to zero by the mathematical programming solver in the last iteration are
considered closed.
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Table 7. Results reported by the PSO algorithm in the CERR dataset.

BAC z(x∗) # ap BoT

1 56.34 11.70 63.47
2 57.49 13.07 64.13
3 57.39 12.63 61.31
4 57.33 12.67 61.60
5 56.24 12.13 65.38
6 54.76 12.59 60.72
7 54.38 12.60 62.46
8 54.57 12.57 66.49
9 57.53 12.29 61.28
10 57.36 11.67 64.57
11 56.18 12.75 68.62
12 54.96 12.35 61.54
13 55.85 12.25 60.35
14 54.41 12.60 62.49

Average 56.06 12.42 63.17

Table 8. Results reported by the PSO algorithm in the TRT001 dataset.

BAC z(x∗) # ap BoT

1 71.33 12.40 62.44
2 72.39 12.70 62.13
3 73.79 12.00 62.96
4 73.85 12.20 63.07
5 73.80 11.10 58.99
6 73.75 11.40 63.91
7 72.52 10.90 58.94
8 72.65 10.20 60.30
9 74.27 12.10 66.04
10 77.58 11.40 63.30
11 74.63 12.60 62.51
12 72.00 12.10 60.13
13 69.75 11.30 60.32
14 71.31 10.50 59.74

Average 73.18 11.64 61.77

When comparing the objective function value reported by the PSO and the optimal
(but not deliverable) fluence map, the difference is 29.41% and 30.49% for CERR and TRT001,
respectively, with the PSO algorithm being the one with the higher objective value. This
difference in the objective function value is reduced when the rounding process is applied
to the optimal fluence map. For instance, when the optimal fluence map is rounded to the
nearest multiple of 1(z(r(x∗))) and 2(z(r2(x∗))), the difference is 25.39% and 13.71% for
the CERR case and 26.98% and 17.98% for the TRT001 case, respectively. Further, rounding
to the nearest multiple of 4(z(r4(x∗))) leads to an impairment in the quality of the rounded
treatment plan that makes solutions provided by our PSO algorithm become better in all
cases. Further, even though our algorithm is not better than the r1(x∗) and r2(x∗) treatment
plans (with respect to the objective function value), the number of aperture shapes our
solutions need is always smaller than the apertures needed by the solutions obtained by
the sequential approach. Also, it is interesting to note that even though our approach is not
directly focused on reducing the beam on time value, our approach reports better values in
all cases compared to the sequential approach. This is mainly because of the fact that we
use far fewer aperture shapes in our final treatment plans.

In addition, we report the dose-volume histogram (DVH) for the CERR and TRT001 in
Figures 14 and 15, respectively. DVH curves specify the received dose level by different
volumes of structures. In the case of CERR, we can see that our algorithm obtains treatments
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that do not overdose the voxels in the PTV. Unlike this, the solutions obtained by the optimal
fluence map overdose above 30% of PTV voxels. When observing the OARs, our algorithm
overdoses more voxels than the optimal fluence map. However, the max overdose received
for the voxels is less than the received by the optimal fluence map. In the case of TRT001,
the PSO and the optimal fluence map have a similar curve, where both do not overdose the
PTV. When observing the OARs, our algorithm overdoses more voxels than the optimal
fluence map. It is necessary to remember that the optima fluence map is not a deliverable
treatment and needs to pass for the MLC sequencing problem.

Figure 14. Dose-volume histogram comparing dose obtained by PSO algorithm (solid line) and optimal
fluence map obtained by FMO (dashed line) for a prescribed dose of 76 Gy to PTV, and 65 Gy to
the rectum and bladder (purple and black horizontal dashed-point line, respectively) with BAC 1 in
CERR instance.

Figure 15. Dose-volume histogram comparing dose obtained by PSO algorithm (solid line) and
optimal fluence map obtained by FMO (dashed line) for a prescribed dose of 76 Gy to PTV, and 65 Gy
to the rectum and bladder (purple and black horizontal dashed-point line, respectively) with BAC 1
in TRT001 instance.

5. Conclusions

This paper introduces a hybrid heuristic based on PSO and mathematical program-
ming to solve the DAO problem in radiation therapy for cancer treatment. The proposed
PSO heuristic finds a set of deliverable aperture shapes and their corresponding intensities
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for each beam angle within a clinically acceptable time. Further, even though our heuristic
algorithm was allowed to use only five aperture shapes per beam angle, they could find
very competitive treatment plans.

Comparing our algorithm with the traditional sequential approach shows that the
proposed algorithm can obtain competitive results regarding the objective function value.
However, the difference with the optimal solution generated by the FMO is still significant.
On the opposite, when evaluating the number of apertures generated by our algorithm,
we can observe a substantial reduction compared to the traditional approach. This is very
important as fewer aperture shapes mean, in general, shorter treatment times, which is
something desirable from a clinical point of view.

In future work, we can see different research lines to improve the obtained results.
First, we believe that improving the reparation heuristic to activate apertures that have
intensities close to zero would allow us to find better-quality treatment plans. This is
because the more apertures are used, the better the treatment plan quality. Note that, as
mentioned before in the paper, this would be at the cost of longer treatment times. In
addition, we seek to extend our single-objective PSO algorithm to a multi-objective one.
This is because IMRT is an inherently multi-objective problem, since there is a compromise
between tumour irradiation and avoiding damage to the organs at risk. Extending our
approach to a multi-objective one is a challenging task from both computational and clinical
points of view. However, we are sure that addressing the problem as a multi-objective
one will help us better understand the underlying trade-offs between tumour control and
OARs sparing.
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Abbreviations

The following abbreviations are used in this manuscript:

ASO Aperture Segmentation Optimisation
AWO Aperture Weight Optimisation
BAC Beam angle configuration
BAO Beam angle optimisation
BoT Beam-on-Time
CERR Computational Environment for Radiological Research
DAO Direct Aperture Optimisation
DVH Dose-Volume histogram
FMO Fluence map optimisation
IMRT Intensity modulated radiotherapy treatment
MLC Multi-leaf Collimator
Npop Population of solution
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OAR Organ at risk
PTV Planning target volume
PSO Particle Swarm Optimisation
SBRT Stereotactic Body Radiation Therapy
VMAT Volumetric Modulated Arc Therapy
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Simple Summary: This study developed an interpretable scoring system using artificial intelligence
and bladder tissue images. It identified two distinct risk groups with different outcomes in high-
grade bladder cancer. The scoring system was associated with various molecular features and gene
mutations. This system can save shared clinical decision making and cost by identifying patients
who need further molecular testing.

Abstract: Muscle-invasive bladder cancer (MIBC) is a highly heterogeneous and costly disease with
significant morbidity and mortality. Understanding tumor histopathology leads to tailored therapies
and improved outcomes. In this study, we employed a weakly supervised learning and neural
architecture search to develop a data-driven scoring system. This system aimed to capture prognostic
histopathological patterns observed in H&E-stained whole-slide images. We constructed and exter-
nally validated our scoring system using multi-institutional datasets with 653 whole-slide images.
Additionally, we explored the association between our scoring system, seven histopathological fea-
tures, and 126 molecular signatures. Through our analysis, we identified two distinct risk groups
with varying prognoses, reflecting inherent differences in histopathological and molecular subtypes.
The adjusted hazard ratio for overall mortality was 1.46 (95% CI 1.05–2.02; z: 2.23; p = 0.03), thus
identifying two prognostic subgroups in high-grade MIBC. Furthermore, we observed an association
between our novel digital biomarker and the squamous phenotype, subtypes of miRNA, mRNA,
long non-coding RNA, DNA hypomethylation, and several gene mutations, including FGFR3 in
MIBC. Our findings underscore the risk of confounding bias when reducing the complex biological
and clinical behavior of tumors to a single mutation. Histopathological changes can only be fully
captured through comprehensive multi-omics profiles. The introduction of our scoring system has
the potential to enhance daily clinical decision making for MIBC. It facilitates shared decision making
by offering comprehensive and precise risk stratification, treatment planning, and cost-effective
preselection for expensive molecular characterization.

Keywords: deep learning; digital biomarker; bladder cancer; FGFR3; WSI; risk stratification;
histology images
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1. Introduction

Bladder Cancer (BC) is the tenth most common cancer in the United States, mostly
affecting people older than 55 years. Bladder cancer (BC) exhibits a gender disparity,
affecting men approximately four times more frequently than women [1]. Furthermore,
BC encompasses a broad spectrum of disease behavior, ranging from a slow-growing
non-muscle-invasive form (NMIBC) to a highly aggressive muscle-invasive variant (MIBC).
Although most BC patients are diagnosed with NMIBC, up to 25% of BC are identified
as MIBC with substantial risk for mortality [2]. BC cases with stage I or II show a 5-year
relative survival rate of 96% or 70%, respectively, whereas 38 of 100 cases with stage III
will survive 5 years; cases with stage IV have the poorest survival outcome with 6% of a
5-year relative survival rate. Moreover, BC reveals distinct multilevel molecular subtype
profiles associated with prognosis and treatment responses [3]. However, determining
multilevel molecular subtype profiles (i.e., protein expression, gene mutation, mRNA,
DNA methylation, and miRNA) requires a complex and expensive infrastructure likely
unavailable in most cancer centers worldwide. Therefore, a cost-effective solution could
ideally help to manage the patient selection according to their risk of having progressive
cancers or to identify cases likely to benefit from certain treatment regimens.

Recent studies revealed the potential of deep learning (DL) to predict a new gener-
ation of digital biomarkers for detection, prognosis, molecular signature, and treatment
response in different cancers, including bladder cancer [4–6]. For instance, Woerl et al.
reported the potential of DL to forecast the molecular subtypes of MIBC by analyzing
hematoxylin and eosin (H&E) slides [7]. As a proof-of-concept, Mundhada et al. have
shown the DL capability to distinguish low-grade from high-grade histology [8]. Zheng
et al. purposed a DL framework to predict survival from histology images with BC [9].
While deep learning holds immense potential, addressing certain tendencies that have
arisen within its application is essential. Specifically, a majority of prior research treated
confidence scores as equivalent to probability scores, disregarding the well-recognized
problem of overconfidence in deep learning models [10,11]. Furthermore, these studies
have not provided a feasible means of interpreting whether the feature distributions in
the latent feature spaces reflect alterations in histological patterns that contribute to the
prediction scores.

Given the limitations of previous studies, our hypothesis posits that morphometrical
patterns observed at the histological level are indicative of prognostic confidence scores,
which are then associated with omics signatures specific to advanced bladder cancers.
Our primary objective is to identify prognostic subgroups that reveal associations with
molecular subtypes, utilizing histology images, including bladder cancers and weakly
supervised learning. The major contribution of the current work is to provide a novel
strategy that facilitates the development of interpretable prognostic scores derived from a
collection of mixed histology patterns associated with molecular subtypes and potential
treatment options for bladder cancers.

2. Methods

2.1. Survival Modeling
2.1.1. Data

Complete data were available for 113 patients diagnosed with urothelial carcinoma of
the bladder (BC) from the Prostate, Lung, Colon, and Ovarian Cancer Screening (PLCO) trial.
PLCO is a randomized controlled trial aimed to determine whether certain screening exams
reduce mortality from prostate, lung, colorectal, and ovarian cancer (NCT00339495) [12,13].
Although this trial did not screen for BC, it tracked diagnoses of BC during the trial period.
Briefly, 154,900 participants from the general population aged 55 through 74 years were
enrolled between 1993 and 2001 [14]. Only subjects without a history of prostate, lung,
colorectal, or ovarian cancer were enrolled. Cancer diagnoses were confirmed by retrieving
results and information from medical records and the cancer registry system. This study
used a linkage with the National Death Index to extend mortality follow-up to a maximum
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of 19 years after randomization [15]. During the study follow-up period, 1430 cases of BC
were diagnosed, from which the PLCO study organizer randomly selected 285 cases to
scan representative whole slides with samples containing BC. All samples were originally
obtained through transurethral resection of bladder tumors.

After excluding the slide images of cases with missing follow-up information, a total of
196 H&E-stained slides of the bladder cancer cohort were available from nine U.S. centers
and digitally scanned at 40× objective magnification (one pixel corresponds to ~0.2532 μm)
using a Leica Biosystems device (Wetzlar, Germany) and stored in SVS format.

We split these images, as the development set, into a training set, optimization set, and
validation set by institutions to prevent overlapping between these sets; cases of a center
having the largest portion in our cohort were selected for the training set, the center with
the smallest portion was considered for optimization set and the remaining centers for the
validation set. Figure 1 summarizes our framework for developing the digital biomarker
for mortality.

 

Figure 1. Illustrates the abstract AI framework for our approach. First, the tissue area is masked and
tiled into small patches labeled with the cancer-specific survival status (weakly labeling). We trained
the model to predict the cancer-specific survival status, and we then explored the distribution of the
latent features and histology patterns stratified by the prediction deciles to develop the cancer-specific
score system consisting of two prediction deciles (orange and lilac colors) reflecting distinguishable
histology patterns.

2.1.2. Image Preprocessing

The rectangle boundary of the tissue area was estimated after thresholding the
gray color version of the thumbnail image (1× magnification) for each image and up-
scaled to correspond to 40× magnification. After that, the tissue area was divided into
2048 × 2048 pixels (px) tiles, and tiles mostly (>50% of the tile pixels) matching the white
background colors were excluded. The resulting tiles were downsized to 512 × 512 px
(~10× objective magnification). Each tile originated from the same patient and was labeled
for the binary cancer-specific death status (CSD) on the death certificate.

2.1.3. Model Development

The current study applied the neural architecture search (NAS) algorithm for Plexus-
Net [16] and the training set to determine the optimal model architecture for CSD predic-
tion. Here, we used the grid search and an abstract search space covering the type of block
(i.e., attention block, ResNet, or inception block), depth (i.e., how often to repeat the blocks),
and the branching factor (i.e., number of multi branches in the network) of the convo-
lutional neural network and the transformer inclusion, resulting in the examination of
1296 models with different architecture configurations (Table 1). In addition, we applied
the widely accepted optimization algorithm “ADAM” with the standard hyperparameter
configuration and the cross-entropy loss function to train each model for one epoch. For the
NAS, the batch size was set to 64 patches and the learning rate to 1 × 10−3. To optimize the
computational efficiency of NAS, we employed a downsizing technique from our previous
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work, reducing the patches to a 32 × 32 pixel dimension [16]. This approach allows us to
focus computational resources on smaller patches, reducing complexity while extracting
meaningful information. The downsized patches balance between computational efficacy
and the ability to explore diverse architectural designs, streamlining the NAS process for
large-scale experiments and real-world applications [16]; the two-fold cross-validation was
applied to train and evaluate each model for balanced classification accuracy. Finally, the
final model architecture with the highest average performance on two-fold cross-validation
was selected.

Table 1. The search space for the neural architecture search.

Parameter Options

Block architecture (microarchitecture design)

Inception block (Inception)
Residual block (ResNet)

Conventional block (VGG)
Attention block (soft_att)

Width 2, 4, 6
Depth 3, 4, 5

Length (pathways) 2, 3, 4
Junctions (interconnection between pathways) 1, 2, 3

Global pooling Average vs. Maximum
Addition of transformer Yes vs. No

The resulting model was then trained on the whole training set with 512 × 512 px
patches until convergence. During model training, we set an early stopping algorithm
(stop training when the loss values on the optimization setting are not improved for
ten epochs) to mitigate the model overfitting; Adam with weight decay was applied as
instructed by the authors for model training while the learning rate was set to 1 × 10−4.
The binary patch label was randomly smoothed with +/− 0.25 to moderate the model
overconfidence in addition to model overfitting and to improve the model calibration. The
image augmentation was applied and included random rotation, flipping, clipping, and
color space augmentations, as described previously in the image preprocessing section. For
each epoch, we validated the model performance on the optimization set at the patient
level. Here, we measured the average confidence scores for CSD on all patches for each
patient and the discriminative accuracy for CSD prediction using a time-dependent area
under the receiver operating characteristic curves (AUROC) and c-index at the case level.

We applied the validation set to validate the case-level model accuracy at the patient
level and to visualize the feature space of the last convolutional layer (not the global
pooling) using t-SNE (t-distributed stochastic neighbor embedding). We then clustered the
feature spaces according to the deciles of CSD prediction to visualize the correspondence
between CSD prediction and feature space. After that, we determined two deciles based
on the feature clusters. The first decile cluster (reference decile, r) shows a feature space
dominant for negative patches, whereas the second decile cluster corresponds to the median
decile (m).

After finding deciles r and m, we developed an algorithm to estimate the CSD score
for each case as follows:

(1) We first calculated the patch frequency for 10 bins with equal width (histogram) at
the case level. The bin width was calculated for each case using Equation (1).

bin width = (smax − smin)/
√

10 (1)

where smax is the maximum CDS score, and smin is the minimum CSD score for each case.

(2) Secondly, we applied the maximum normalization to the patch frequencies, including
Dr and Dm, to achieve a value range between 0 and 1 for all bins. Third, we estimated
the unadjusted CSD score (Su) using the following equation:
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Su = Dm − Dr (2)

(3) Since out-of-distribution data may have a different frequency distribution than the
development set, we introduced the following algorithm to adjust the CSD score
estimation without having the ground truth:

(a) Calculate the mean μ of Su;
(b) Calculate the median μ1/2 of (Su − μ);
(c) Adjust the scores by μ and μ1/2 according to the equation:

SCSD = −(μ + μ1/2) + Dm − Dr (3)

We also applied thresholding to SCSD to define a binarized risk category. The threshold
(T) was determined using the following equation:

T = μ0 + 1.05 σ0 + α (4)

where σ0 is the standard deviation of Su, σ0 and μ0 were calculated on development
set, and α is the correction factor that counts the difference between μ0 and the mean of
out-of-distribution cohort (μc) and can be expressed as

α = μ0 − μc (5)

Since the bin range differs from case to case by the CSD score range, we asserted
that the median for the case-wise midrange of CSD scores for Dr (MR = 0.17; interquartile
range, IQR: 0.16–0.18) and Dm (MR = 0.41; IQR: 0.37–0.42) was comparable between
the development and out-of-the distribution cohort (external validation) to ensure the
generalization of binning with equal width.

2.2. Evaluation
2.2.1. Data

We obtained 457 H&E-stained whole slide images from The Cancer Genome Atlas
(TCGA)—Urothelial Bladder Carcinoma cohort [17], from which 412 images included
survival information. This TCGA cohort contains genetic, demographic, and clinical
outcome data for various cancers, and this data is made publicly available through their
online platform (NCI Genomic Data Commons). The TCGA study for bladder cancer has
received contributions from 36 institutions worldwide. The sources of bladder cancer tissue
specimens were radical cystectomy (RC) specimens. The slides with bladder cancer tissue
specimens were digitally scanned at 40× objective magnification (one pixel corresponds to
~0.2532 μm on average) using a Leica Biosystems device (Wetzlar, Germany) and stored
in SVS format. Clinicopathological and follow-up information was available at the case
level. We also applied the same image preprocessing strategy and scoring system described
earlier to this cohort. All images with available molecular profiles and clinicopathological
and follow-up information were considered. Each case corresponded to a single whole-
slide image.

2.2.2. Prognosis

We assessed the prognostic value of our novel risk group using the univariate and
multivariate Cox proportional hazards models. In multivariate analysis, cancer-stage
grouping and age at diagnosis were added to adjust the hazard ratio for the novel risk
group. The outcome was the overall survival (OS) from the diagnosis, as the TCGA dataset
is highly qualitative and widely used for overall survival analyses in cancer research [18].
Patients lost to follow-up were censored at the date of the last contact.

223



Cancers 2023, 15, 4998

2.2.3. Association with Familiar Molecular Signatures of Bladder Cancer

We evaluated seven histopathologic (e.g., squamous phenotype) and 126 molecular
signatures (e.g., the mutation in FGFR3 and molecular subtypes) investigated by the TCGA
study [17] in bladder cancers (see the signature list in the Supplementary Materials File S1)
for their association with the categorized risk score groups. In addition, for any significant
signatures with more than two categories, we performed post hoc comparison analyses to
determine which categories significantly differ between the novel two risk groups.

2.3. Metrics, Statistics and Software

We applied the time-dependent AUROC at the fifth follow-up year [19] and univari-
ate and multivariate Cox regression analyses to assess our novel scoring system on the
development set before the external validation.

The classification and accuracy of prognosis were quantified with AUROC and Harrel’s
c-index [20,21]. The goodness of fit was measured according to the Akaike information
criterion (AIC) and Bayesian information criterion (BIC), where the lower the value, the
better the model fit [22–24]. Finally, Kaplan–Meier survival estimates were applied to
approximate the survival probability for our novel risk classification.

The chi-square tests were performed to determine whether there is an association
between categorical variables (n × m contingency tables). In contrast, the Fisher test was
applied to estimate the odd ratios and assess 2 × 2 contingency tables. Finally, we used
the Wilcoxon Rank Sum Test to assess the differences in a numerical variable between the
novel risk groups.

The comparison analyses for categorical signatures include repeating the Fisher test
for each signature category as one-versus-other and the significance determination for
each comparison test according to the Benjamini-Hochberg (B-H) procedure [25]. Here, the
critical value was calculated for each comparison test after the p-values of comparison tests
were ranked from low to high. The following equation was used to estimate the critical
value at a false discovery rate (FDR) of 0.20:

Critical value = rank/(number of comparisons) × 0.20 (6)

A comparison test is deemed significant according to the last p-value lower than
its critical value. The Pearson Correlation coefficient estimated the correlation between
two numerical variables, while the Kendall rank correlation coefficient (τ) was estimated
to measure the ordinal association between one numerical variable and one categorical
variable or between two categorical variables [26,27]. VIF (variance inflation factor) was
used to assess the multicollinearity in the COX regression model [28].

Model development and analyses were performed using Keras 2.6 [29], TensorFlow
2.10 [30], Python™ 3.8, and the R statistical package system (R Foundation for Statistical
Computing, Vienna, Austria). All statistical tests were two-sided, and statistical significance
was set at p ≤ 0.05 for prognosis or p ≤ 0.10 to consider molecular or histopathologic
signatures for comparative analyses.

3. Results

3.1. Survival Modeling

Table 2 summarizes the cohort description of the development set. We found no
significant difference in the cohort characteristics between the subsets (i.e., training, opti-
mization, and validation sets). We considered the diverse BLC pathologies (not limited
to muscle-invasive bladder cancer) to increase the likelihood of capturing differential
histopathological patterns by our model for prognosis. In alignment with the literature,
77% of training set cases were non-muscle invasive BC and representative of the popula-
tion. The optimization set was utilized to fine-tune the model, enabling it to distinguish
between non-lethal and lethal patches while considering the various WHO Grades that
exhibit heterogeneous patterns. Using a small sample size for optimization allowed the
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domain expert to manually review the predicted patch classes and streamline performance
optimization accordingly. The validation set had a balanced distribution of NMIBC and
MIBC cases, and G1/2 and G3 cases, thereby minimizing the effect of sampling bias.

Table 2. The cohort description of the development set. +Given the study’s history and design, the
previous grade was available.

Training Set Optimization Set Validation Set

Characteristic N = 26 N = 6 N = 81 p-Value 1

Age at diagnosis in year,
median (IQR) 65.0 (62.2–68.8) 69.0 (65.8–70.0) 65.0 (61.0–68.0) 0.50

Sex, n (%) 0.13

Male 25 (96%) 5 (83%) 64 (79%)

Female 1 (3.8%) 1 (17%) 17 (21%)
WHO Grade 1973, n (%)+ 0.26

G1 5 (19%) 1 (17%) 15 (19%)
G2 10 (38%) 3 (50%) 15 (19%)
G3 11 (42%) 2 (33%) 47 (58%)

Unknown 0 (0%) 0 (0%) 4 (4.9%)
AJCC tumor staging

T stage, n (%) 0.35
Ta 4 (15%) 0 (0%) 1 (1.2%)
Tis 11 (42%) 5 (83%) 31 (38%)
T1 5 (19%) 1 (17%) 19 (23%)
T2 3 (12%) 0 (0%) 22 (27%)
T3 2 (7.7%) 0 (0%) 4 (4.9%)
T4 0 (0%) 0 (0%) 1 (1.2%)

Unknown 1 (3.8%) 0 (0%) 3 (3.7%)

N stage, n (%) 0.46

Nx/N0 25 (96%) 6 (100%) 74 (91%)
N1 0 (0%) 0 (0%) 4 (4.9%)

Unknown 1 (3.8%) 0 (0%) 3 (3.7%)
M stage, n (%) 0.47

Mx/M0 25 (96%) 6 (100%) 75 (93%)
M1 0 (0%) 0 (0%) 3 (3.7%)

Unknown 1 (3.8%) 0 (0%) 3 (3.7%)
Follow-up duration in months, median (IQR) 172 (130–201) 151 (87–192) 168 (130–197) 0.80

Cancer-specific death, n (%) 6 (23%) 1 (17%) 25 (31%) 0.60

Whole-slide images, n (%) 46 (23.5%) 8 (4.1%) 142 (72.4%) -

Patches, n (%) 26,949 (16.5%) 7574 (4.6%) 129,122 (78.9%) -
1 Kruskal–Wallis rank sum test; Pearson’s Chi-squared test.

The Neural Architecture Search (NAS) examined 1296 PlexusNET architecture con-
figurations (duration: ~12 h) [16] and suggested a shallow model (model configuration:
VGG D6L2J1F2 + transformer and global average pooling; these parameters regulate the
design of the model architecture and the model scaling) having only 23,783 parameters
and 20 fully connected representation features as the best model configuration for cancer-
specific death (CSD) prediction. The Levene test indicated a significant difference in 18 out
of the 20 two-dimensional feature maps between the patches derived from patients who
died due to bladder cancer and those who survived. In other words, the feature maps were
found to be unequal or dissimilar between the two groups, indicating the extraction of
significant feature representation for CSD from histology images (Figure 2).
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Figure 2. Lists the density histograms for the last 8 × 8 two-dimensional feature maps (pixels)
according to the cancer-specific death status at the pixel level (i.e., pixel values) on 25,000 patches from
the validation set. A size of 1 × 1 pixel on a feature map corresponds to an area with 64 × 64 pixels
on the corresponding patch image (512 × 512 pixels). The Levene test was applied to assess the
equality of variance between cancer survivors and cancer-specific death patches. We identified that
some features (e.g., F13, F14, F15, F16, and F20) revealed histogram ranges for pixel values of specific
feature maps more common in cancer-specific death patches (red areas).

Following the instructions provided in the Section 2 to derive a risk score from his-
tology images, we visualized the feature space and determined the feature subspaces
using the prediction deciles. The t-SNE visualization of the feature space showed that the
prediction deciles sorted feature points, and the evaluation of the corresponding patch
images confirmed the differences in histopathology appearance according to the deciles
(Figure 3). Therefore, based on the t-SNE feature visualization and the assessment of the
histopathology appearance, the second decile (D2) and the fifth decile (D5) met the selection
criteria described in the Section 2.
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Figure 3. Summarizes the t-SNE visualization of penultimate features intuitively sorted by the
deciles of the model inference scores (predications aka confidence) on representative 25,000 patch
images randomly selected from the validation set. These patches represent the entire cases (n = 81)
of the validation set. The corresponding patches were evaluated and identified to be altered by the
prediction deciles. Based on the data evaluation and the domain knowledge, we selected the second
decile and fifth decile; the second decile (orange color) was predominantly associated with negative
patches (>50%), including bladder cancer, while the fifth decile (lilac color) was the center decile
between the first and the ninth decile (the tenth decile was not considered due to its negligible sample
size). (A) The 3D feature visualization; (B) the 2D visualization of features stratified by prediction
deciles; (C) the 2D visualization of features stratified by the cancer-specific death status.

At the patient level, the risk score was prognostic for cancer-specific mortality (HR: 8.0;
95% CI: 1.4–46.1; z: 2.332; p = 0.0197). The 5-year AUC was 0.772 ± 0.04. The multivariate
Cox regression analysis further strengthened the independent prognostic significance of
our novel risk score, even after adjusting for age at diagnosis and tumor grade. Including
our novel scoring system in the analysis offered an alternative approach for assessing
histopathological characteristics that is distinct from tumor grade (Table 3).
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Table 3. The multivariate Cox regression analysis for cancer-specific mortality. HR: Hazard ratio;
CI: Confidence Interval. Grading on the PLCO validation set. Due to the PLCO study design, only
the WHO 1973 grading was available. Nonetheless, it is important to emphasize that WHO grading
is a well-established prognostic parameter, lending significance to its inclusion in our analysis.

Variable HR 95% CI z p

Age at diagnosis 1.03 (0.96–1.11) 0.87 0.39
Grading (WHO 1973)

G1 (ref.) – – – –
G2 2.21 (0.20–24.48) 0.64 0.52
G3 11.99 (1.61–89.21) 2.43 0.02

Unknown 11.72 (1.03–133.02) 1.99 0.05
Risk score 8.39 (1.53–46.12) 2.45 0.01

The Kaplan–Meier Curve revealed that the risk score (categorized) delivered two distinc-
tive risk groups (p = 0.014), as shown in Figure 4. The median survival for the high-risk group
was achieved between 204 (17 years) and 216 months (18 years) after the initial diagnosis.

 

Figure 4. The Kaplan–Meier curve for cancer-specific survival stratified by the categorized risk scores
(Low-risk vs. High-risk) on the PLCO validation cohort. The dot line reveals the median survival
(the time it takes to reach 50% survival) between 210 and 216 months.

3.2. Prognosis for Muscle-Invasive Bladder Cancer

Table 4 summarizes the cohort description of the external validation set. The vast
majority of cases included high-grade MIBC. The distribution of the risk scores around
the cohort-specific threshold (T = 0) is shown in Figure 5. The categorization of the risk
score was driven by the dominance of either D2 or D5 in each case, and D2 and D5 were
associated with distinct histopathologic patterns of bladder cancers in the TCGA cohort
(Figure 6).
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Figure 5. The distribution of the case risk scores is determined by D2 and D5, which are the relative
frequencies of patches for the second and fifth deciles of the prediction for each case. The frequency
corresponds to the case number. The cohort-specific threshold was estimated to be 0 for the TCGA
dataset. Thresholding the risk scores results in two risk groups, where D2 and the high-risk group by
D5 dominate the low-risk group. Figure 6 illustrates the histopathologic patterns associated with D2
and D5.

Table 4. The cohort description of the external validation set.

Characteristic N = 412

Age at diagnosis in years, median (IQR) 68 (60–76)
Sex, n (%)

Female 107 (26%)
Male 305 (74%)
pM

M0/x 398 (97%)
M1 11 (2.7%)

Unknown 3 (0.7%)
pN
N0x 282 (68%)
M1 123 (30%)

Unknown 7 (1.7%)
pT
T1 2 (0.5%)
T2 112 (27%)
T3 190 (46%)
T4 54 (13%)

Unknown 54 (13%)
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Table 4. Cont.

Characteristic N = 412

Grade, n (%)
Unknown 1 (0.2%)

High grade 390 (95%)
Low grade 21 (5.1%)

History of non-muscle invasive bladder cancer, n (%)
Unknown 127 (31%)

NO 227 (55%)
YES 58 (14%)

Bladder cancer pathologic stage, n (%)
I–II 151 (36.7%)
III 130 (31.6%)
IV 130 (31.6%)

Unknown 1 (0.2%)
Death, n (%) 185 (45%)

Follow-up duration in month, median (IQR) 19 (12–33)

 

Figure 6. Exemplifies the distinct histopathologic patterns for D2 and D5 on the TCGA cohort. The
absolute difference in the proportions between D2 and D5 in histology images determines whether
the case is assigned to a low- or high-risk group (Figure 5). A negligible small fraction of patches in
D2 solely included arteria vessels as luminal structures.
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We found that the risk groups are prognostic for overall survival on the external vali-
dation set (HR: 1.46; 95% CI: 1.05–2.02; z: 2.23; p = 0.03). The multivariate Cox regression
analysis showed that risk groups are, in addition to the pathologic stage and age at diagno-
sis, independent prognosticators for overall survival as well (Table 5). The multicollinearity
for these covariates was negligibly small (VIFs < 2).

Table 5. Multivariate Cox regression analysis for overall mortality. HR: Hazard ratio, CI: Confidence
Interval. The AJCC pathologic tumor stage is a result of combining the subcategories of the TNM
classification. We excluded the tumor grade as the muscle invasive bladder cancers are typically
high-grade, and 95% of tumor grades in our cohort has high-grade BC.

Variable HR 95% CI z p

High- vs. Low-risk group 1.35 (1.01–1.80) 1.99 0.0462
Age at diagnosis 1.02 (1.00–1.03) 2.32 0.0201

AJCC pathologic tumor stage
I/II (ref.) – – – –

III 1.51 (1.03–2.21) 2.10 0.0357
IV 2.21 (1.54–3.18) 4.30 <0.0001

The Kaplan–Meier curve and the log-rank test indicate that the risk groups were
statistically distinct (p = 0.037), as shown in Figure 7. Both risk groups reached the median
overall survival, but at different time points (~30 months for high-risk vs. ~60 months
for low-risk); the high-risk group reached the median survival ~2.5 years earlier than the
low-risk group for muscle-invasive bladder cancers. Figure 8 provides the Kaplan–Meier
curve for the stages of bladder cancer for comparison.

 

Figure 7. The Kaplan–Meier curve for overall survival stratified by the categorized risk scores (low-
risk vs. high-risk) on the external validation set (TCGA cohort). p value was estimated using the log
Rank test. The dot lines reveal the median survival for each risk group.
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Figure 8. The Kaplan–Meier curve for overall survival stratified by the AJCC pathologic stages of
bladder cancer on the external validation set (the TCGA Cohort). This staging system combines the
subcategories of the TNM classification. p value was estimated using the log Rank test. The single
case with unknown stage information was not visualized. The dot lines reveal the median survival.

3.3. Association with Molecular Signatures of Bladder Cancer

We identified molecular and pathologic signatures significantly associated with the
risk groups at case level, as shown in Table 6. Specifically, the TCGA clusters for miRNA,
mRNA, lncRNA, and DNA methylation were associated with our novel risk groups. In
addition, multiple mutations, including TSC1, FGFR3, and ERBB3, occurred differently
between the novel risk groups.

The luminal papillary cluster was associated with the low-risk group, whereas the
basal/squamous cluster and the neuronal cluster were associated with the high-risk group
(Table 7). Moreover, cluster 2 for DNA hypomethylation is associated with the high-
risk group; in contrast, cluster 4, with lesser DNA hypomethylation than cluster 2, was
associated with the low-risk group. At the long non-coding RNA level, cluster 3 was
frequently seen in the low-risk group and cluster 4 in the high-risk group. At the miRNA
level, cluster 3 was more frequent in the low-risk group, and cluster 4 was common in the
high-risk group.

The low-risk group included 72% of the TSC1 mutation (28 of 39 TSC1 mutations) or
67% of the ERBB3 mutation (30 of 45 ERBB3 mutations) in bladder cancer (Tables 8 and 9).
The odd ratio of TSC1 mutation was 0.36 (95% CI: 0.15–0.76; p = 0.004), and the odd ratio of
ERBB3 was 0.46 (95% CI: 0.22–0.91; p = 0.0179) for high-risk groups.

The true positive rate of our low-risk group was 65% for FGFR3 mutations (Table 10)
with an AUC of 0.593 (95% CI: 0.55–0.69). The odd ratio for FGFR3 mutation in the high-
risk group was 0.49 (95% CI, 0.27–0.87; p = 0.0102). The high-risk group included 63.3%
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of the squamous pathology. The supplementary section provides different results for
significant signatures.

Table 6. Analysis summary of signatures and features associated with the risk group. p-values for a
signature were estimated using Chi-Squared tests.

Signature p Value
Features Associated with

 Low-Risk or High-Risk Group

microRNA cluster 0.003998001
 Cluster 3

Cluster 1
mutation in TSC1 0.006496752  TSC1 mutation

mRNA cluster 0.009995002

 Luminal papillary

Basal/Squamous

Neuronal
mutation in FGFR3 0.010994503  FGFR3 mutation

lncRNA cluster 0.012493753
 Cluster 3

Cluster 4
mutation in ERBB3 0.016991504  ERBB3 mutation
mutation in FAT1 0.023488256  FAT1 mutation

mutation in PIK3CA 0.028485757  PIK3CA mutation
mutation in KANSL1 0.033983008 KANSL1 mutation
mutation in TMCO4 0.038480760  TMCO4 mutation
mutation in KDM6A 0.044977511  KDM6A mutation
mutation in METTL3 0.057971014  METL3 mutation
Squamous pathology 0.066466767 Squamous histopathology

mutation in PSIP1 0.075462269  PSIP1 mutation
mutation in ZNF773 0.092453773  ZNF773 mutation

Hypomethylation cluster 0.092953523
 Cluster 4

Cluster 2
mutation in GNA13 0.093953023  GNA13 mutation

Table 7. The distribution of molecular clusters for mRNA, lncRNA, miRNA, and DNA hypomethylation.

Risk Groups Molecular Signatures

mRNA

Luminal papillary Basal/Squamous/Neuronal

Low-risk 85 (59%) 56 (36%)

High-risk 58 (41%) 101 (64%)

lncRNA

Cluster 3 Cluster 4

Low-risk 47 (64%) 61 (41%)

High-risk 26 (36%) 87 (59%)
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Table 7. Cont.

Risk Groups Molecular Signatures

miRNA

Cluster 3 Cluster 1

Low-risk 77 (62%) 30 (39%)

High-risk 47 (38%) 47 (61%)

DNA hypomethylation

Cluster 4 Cluster 2

Low-risk 23 (68%) 27 (39%)

High-risk 11 (32%) 42 (61%)

Table 8. The distribution of TSC1 mutation between the risk groups.

TSC1 Gene

Risk groups wild-type mutated

Low-risk 177 (47%) 28 (72%)

High-risk 196 (53%) 11 (28%)

Table 9. The distribution of ERBB3 mutation between the risk groups.

ERBB3 Gene

Risk groups wild-type mutated

Low-risk 175 (48%) 30 (67%)

High-risk 192 (52%) 15 (33%)

Table 10. The distribution of FGFR mutation between the risk groups.

FGFR3 Gene

Risk groups wild-type mutated

Low-risk 163 (47%) 42 (65%)

High-risk 184 (53%) 23 (35%)

4. Discussion

In this study, we developed and externally validated an AI-based algorithm that
stratifies muscle-invasive bladder cancer by mortality risk directly from histology images.
Moreover, our novel risk groups can reveal which histopathological pattern is dominant in
tissues with bladder cancers. Our approach is feasible thanks to the intuitively well-sorted
feature space generated by weakly supervised learning. This property has made it possible
to discretize the feature space into ten small segments organized decile-wise, allowing us
to evaluate the histopathological patterns for each prediction decile.

Earlier studies in bladder cancer applied deep learning to infer staging [31], grade [32,33],
recurrence risk [34], FGFR3 mutation [35], and specific molecular subtypes [7] from his-
tology images. Although some previous studies examined the prediction of molecular
targets, the current study found that prognostic histopathological patterns for bladder
cancer are rather associated with multi-omics profiles (i.e., transcriptomic, genomics, and
epigenomics); these multi-omics profiles are already covering the specific molecular sub-
types and the FGFR3 mutations investigated earlier, and we have shown that the accuracy
of our risk groups for FGFR3 mutation is similar to the previous report, signifying the
impact of multi-omics profiles as confounding factors on the results of earlier studies. In
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support of our findings, the BLCA-TCGA study (molecular characterization of bladder
cancer) revealed that the molecular subtypes and signatures are linked with each other
and distinct histopathologic patterns (e.g., papillary, basal/squamous) were connected
with omics profiles that are prognostic and have different therapeutic targets [3,17]. A
comparable study in Lung cancer reported that omics features are predictive of histology
patterns as well [36].

Although multiple studies identified the detection potential of single mutations or spe-
cific molecular subtypes from histology images [37–41], the histopathological appearance is
mainly driven by a collection of multifaceted molecular modulations and reflects the cancer
malignancy and survival. Subsequently, establishing a direct association between a single
molecular signature and histology images must be inadequate, given other confounders
for bladder cancers.

Our novel risk groups are linked with therapeutic targets like FGFR3 (erdafitinib) [42],
ERBB3 (afatinib) [43], PI(3)K (LY294002, other mTOR inhibitors) [44,45], and TSC1 (nab-
sirolimus, study no.: NCT05103358) [3] as well as with female gender-biased gene mutations
like KDM6A mutation (a histone lysine demethylase) [46]. Accordingly, our novel risk
group holds a potential clinical utility in pre-screening for mono- and combinational target
therapies (Figure 9). This potential will be more evident once prospective randomized
studies to validate the clinical utility of our approach for patient selection in the real-world
clinical setting are available.

 

Figure 9. Overview of each risk group’s molecular characteristics and proposed treatment options.
CIS: Carcinoma in situ; NAS: neoadjuvant chemotherapy; EMT: Epithelial–Mesenchymal Transition.
The information is based on the TCGA-BLCA studies that investigated the treatment responses
of main molecular subtypes (i.e., luminal, basal, squamous, and neural subtypes). We emphasize
that this overview is abstract and not comprehensive and aims to generate hypotheses for potential
treatment options for each risk group. The overview covers only the common main molecular
subtypes (i.e., luminal and basal) for each risk group. The molecular features for these subtypes are
already investigated by TCGA-BLCA studies.

A detailed examination of the multi-omics profiles associated with our risk groups
reveals unique molecular regulatory profiles at the microRNA, lncRNA, and DNA methyla-
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tion levels. We found that the low-risk group is linked with molecular subtypes with good
survival for coding and non-coding RNAs or DNA methylation. These multi-omics sub-
types are associated with papillary tumors, high FGFR3 mutations and miR-200 levels, and
low Epithelial–Mesenchymal Transition (EMT) scores, CD274 (PD-L1) and PDCD1 (PD-1)
level [17]. In contrast, the high-risk group is linked with molecular subtypes with poor
survival for coding and non-coding RNA, which are further associated with lymphocyte
infiltration, the high expression of CIS (carcinoma in situ) signature genes, CD274 (PD-L1)
and PDCD1 (PD-1) levels, high TP53 mutations and EMT scores [17]. The high-risk group is
additionally linked to cluster 2 for DNA hypomethylation, which has more DNA hyperme-
thylation signals (more gene inactivation) than cluster 4, which is linked with the low-risk
group [17]. Our data further facilitates deriving a hypothesis that the low-risk group, with
favorable multi-omics profiles, is likely more responsive to different targeted therapies
than the high-risk group, and the high-risk group may benefit from immune checkpoint
inhibitors (i.e., anti-PD-1 or PD-L1); our data also suggest that epigenetic therapy could
be a potential therapeutic option for our high-risk group. Figure 9 summarizes each risk
group’s molecular characteristics and potential treatment options.

Comparable studies utilized activation maps or tiles with top scores to interpret
the model inference. However, the trustworthiness of activation maps could be more
questionable as deep neural network classifiers have an opportunistic nature, and the
existing saliency methods inherit a high risk for misinterpretation, limited reproducibility,
and sparse visualization [47,48]. Moreover, it should be considered that tiles with top
scores ignore the variance in histology patterns between two categories after thresholding
predictions, as evident by our data on the correlation between histology patterns and
prediction deciles.

We applied the neural architecture search to achieve a data-driven architecture design
with a better trade-off between accuracy, interpretability, and model complexity. In our
study, only 20 feature representations (i.e., the 2D feature maps of the last convolutional
layer) are sufficient to derive accurate predictions from histology images and correspond,
for example, to 4% of feature representations of ResNet18 [49] (i.e., 512 features), an
off-the-shelf model commonly used in medical imaging research. Reducing the feature
representation is associated with a better computation cost for downstream analysis and im-
proved human interpretation of these features. Moreover, our approach helps visualize and
analyze three-dimensional representative features that preserve topological information at
reasonable computation costs (e.g., analysis of 8,000,000 data points required ~30 min using
parallel computing). In contrast, comparable studies that utilized off-the-shelf models are
limited by extremely reduced feature granularity (1D) with loss of topological information
for downstream analysis, given the high computation cost to analyze a large number of 3D
representative features that these models have. Accordingly, comparable studies excluded
the most information from the feature representation to conduct downstream analysis.
In contrast, our approach preserves the high granularity of the feature representation for
downstream analysis and consequently improves the interpretability of our AI model.

Despite the strengths of our study, it is essential to acknowledge certain limitations.
Firstly, using slide images introduces potential variability in image quality due to factors
such as diverse scanning technologies, staining variations, and image artifacts. These
variations can introduce inconsistencies that may impact the accuracy and reliability of
image analysis and interpretation. Nevertheless, we took measures to mitigate this concern
by using PlexusNET to address the domain shift [16], conducting a comprehensive manual
review involving domain experts and validating our findings on multicentric datasets.
Additionally, we employed feature visualization techniques to identify the potential impact
of artifacts and reviewed for the staining variations on the selected histological patterns.
Secondly, it is crucial to recognize that TCGA slide images offer a glimpse of a specific
tumor region or patient sample, which may not fully capture the complex intra- and inter-
tumor heterogeneity. Tumors can exhibit spatial and molecular heterogeneity, resulting in
significant variations between different regions within the same tumor or among tumors
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of the same type. Analyzing only a subset of slide images may provide an incomplete
representation of tumor characteristics. Nonetheless, it is noteworthy that the TCGA and
PLCO study followed good research practices, aiming to select the most representative
samples from each patient according to the existing technical feasibility. Moreover, the
quality of survival data of TCGA was validated for overall survival analyses [18]. The
good research practices and the data quality help mitigate this limitation to some extent. It
is important to emphasize that TCGA slide images, obtained through the TCGA project,
do not directly correspond to the specific sampling areas used for molecular examination.
These images are prepared using Hematoxylin and Eosin (HE) staining, a common tech-
nique for histological analysis. In contrast, molecular examinations and profiling involve
separate samples or portions of the tumor that undergo different processing steps. TCGA
employs distinct protocols for various analyses, including genomic, transcriptomic, and
proteomic profiling, which are not directly applied to the same tissue sections used for
generating slide images. These protocols often utilize specialized techniques, such as
DNA sequencing or protein expression analysis, requiring separate tissue preparation and
processing. Hence, it is crucial to note that TCGA slide images, while they provide valuable
histological information, do not directly correlate with the specific regions of the tumor that
underwent molecular examination. Rather, they serve as representative snapshots of the tu-
mor’s morphology and architecture, offering valuable context for researchers analyzing the
genomic and molecular data obtained from the TCGA project. We preferred slide images
with formalin-fixed paraffin-embedded (FFPE) tissues as this approach offers standardized
staining and more reliable histology images. In contrast, the process of preparing and
staining frozen tissue slides are demanding and often result in associated artifacts; freezing
can cause structural changes and cellular damage, while its staining consistency can be
challenging due to variations in tissue quality and protocols [50–52]. Finally, histology
images from frozen sections are also snapshots, contrary to a common misconception that
assumes these images are direct complements to the entire TCGA samples.

The current study introduces a novel AI-based risk grouping system for survival
derived from bladder cancer H&E slides. We show the linkage between our risk groups
and multi-omics profiles for muscle-invasive bladder cancers. We highlight the concerns
with predicting single molecular signatures (e.g., FGFR3) from histology images. While
our approach has been rigorously tested and validated in the context of bladder cancer, its
applicability extends beyond this specific disease.

Challenges and Future Directions

The present work underscores the significance of associating feature space distribu-
tions with prediction scores for the purpose of developing an interpretable scoring system
for the mortality prediction. One of the prevailing challenges within the medical domain
pertains to the divergence between the development dataset and unseen cohorts, which
poses a persistent issue for existing algorithms. In response to this challenge, we have
introduced a normalization strategy tailored for out-of-distribution cohorts, which seeks
to mitigate skewness, following the principles of the central limit theorem. Our proposed
normalization technique necessitates the utilization of a representative cohort to ensure
the reliability of outcomes. Furthermore, we have put forth a continuous normalization
approach with instantaneous threshold adjustments; this, however, requires either a latency
period or initial representative data for accurate normalization. Another challenge that
need to be addressed is the application boundary of our approach. The application bound-
ary is generally determined by the image quality as well as the cohort characterization of
the development set. One of the foremost challenges lies in harmonizing and integrating
multi-omics data, including transcriptomics, genomics, and epigenomics. Future research
should focus on developing robust methodologies and computational tools to streamline
such a process, including all available data types. Integrating multi-omics analysis into the
clinical workflow is a significant challenge.
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Future efforts will focus on validating our approach for clinical utility to optimize the
treatment management for bladder cancer. Digital biomarkers, such as histomics, have
the potential to serve as companion variables for disease staging and patient selection.
Future research should also explore integration with Electronic Health Records (EHRs)
and decision support systems, ensuring clinicians can access and utilize the integrated
data efficiently. Integrating multi-omics data can further our understanding of disease
mechanisms, potentially leading to breakthroughs in treatment and prevention. Yet, it is
not clear whether omics strategies provide superior clinical benefits compared to a single
data modality. Finally, possessing a scoring system that captures the omics features of the
underlying disease from a single image modality (in our case, FFPE histology images) may
help justify customizing the molecular profiling in the clinical setting.

5. Conclusions

Our scoring system has the potential to facilitate shared decision making by offer-
ing comprehensive and precise risk stratification, treatment planning, and cost-effective
preselection for expensive molecular characterization.
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Simple Summary: Double/triple-hit lymphomas (DHLs/THLs) are an aggressive type of high-grade
B-cell lymphomas (HGBLs), characterized by translocations in MYC and BCL2/BCL6. DHL patients
respond poorly to standard chemoimmunotherapy regimens; thus, timely and accurate diagnosis
is of paramount importance for their proper clinical management. The standard technique used
for the identification of these translocations is fluorescence in situ hybridization (FISH), which is
not routinely performed at every medical center to all potential patients. In the current study, we
employed an image-based, artificial intelligence, deep learning algorithmic tool for the identification
of DHL/THL cases by analyzing scanned histopathological H&E-stained tissue slide images. Our
preliminary results demonstrate high performances, suggesting the potential use of such a solution
in the clinical workflow to support the management of HGBL patients.

Abstract: Deep learning applications are emerging as promising new tools that can support the
diagnosis and classification of different cancer types. While such solutions hold great potential for
hematological malignancies, there have been limited studies describing the use of such applications in
this field. The rapid diagnosis of double/triple-hit lymphomas (DHLs/THLs) involving MYC, BCL2
and/or BCL6 rearrangements is obligatory for optimal patient care. Here, we present a novel deep
learning tool for diagnosing DHLs/THLs directly from scanned images of biopsy slides. A total of
57 biopsies, including 32 in a training set (including five DH lymphoma cases) and 25 in a validation
set (including 10 DH/TH cases), were included. The DHL-classifier demonstrated a sensitivity of
100%, a specificity of 87% and an AUC of 0.95, with only two false positive cases, compared to FISH.
The DHL-classifier showed a 92% predictive value as a screening tool for performing conventional
FISH analysis, over-performing currently used criteria. The work presented here provides the proof
of concept for the potential use of an AI tool for the identification of DH/TH events. However,
more extensive follow-up studies are required to assess the robustness of this tool and achieve high
performances in a diverse population.

Keywords: diffuse large B-cell lymphoma (DLBCL); high-grade B-cell lymphoma (HGBL); double
hit; MYC rearrangement; BCL2 rearrangement; artificial intelligence; deep learning

1. Introduction

Diffuse large B-cell lymphoma (DLBCL) is an aggressive lymphoma. It is the most
common type of non-Hodgkin’s lymphoma (NHL), accounting for approximately 30–40%
of NHL cases. More than 20 years ago, gene expression profiling stratified DLBCL into
three main subgroups, according to the cell of origin (COO); germinal center B-cell-like
(GCB), activated B-cell-like (ABC) and unclassified (“type 3”) DLBCL [1,2]. These groups
are characterized by different gene expression patterns, with a more favorable prognosis
for GCB-type lymphoma compared to ABC.
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An additional layer of B-cell lymphoma classification includes the presence of chro-
mosomal rearrangements. MYC, a master regulator of multiple cellular processes such as
cell proliferation, apoptosis and differentiation, is one of the most commonly rearranged
oncogenes in B-cell lymphoma [3]. MYC deregulation can be found in many cancers, and
translocations involving this oncogene occur in 5–15% of patients with DLBCL [4,5].

High-grade B-cell lymphoma (HGBL) was established as a distinct category of B-cell
lymphomas in the 2016 revision of the World Health Organization (WHO) classification of
lymphoid neoplasms [6]. A unique group among high-grade lymphomas, characterized by
specific gene rearrangements, these lymphomas carry translocations in MYC together with
one, or both, of the anti-apoptotic proto-oncogenes, BCL2 and BCL6. HGBL, reported in
less than 10% of cases of diffuse large B-cell lymphoma (DLBCL), have been referred to
as double-hit (DH) or triple-hit (TH) lymphomas, if two or all three rearrangements are
demonstrated, respectively.

Patients with HGBL-DH/TH poorly respond to R-CHOP (rituximab, cyclophos-
phamide, doxorubicin, vincristine and prednisone) chemoimmunotherapy and are at
increased risk for central nervous system (CNS) involvement; therefore, other therapeutic
regimens, aiming to overcome R-CHOP resistance and ensure CNS penetration, are often
considered [7]. These include dose-adjusted R-EPOCH (rituximab, etoposide, prednisone,
vincristine, cyclophosphamide, doxorubicin) [8], R-CODOX-M/IVAC (rituximab cyclophos-
phamide, vincristine, doxorubicin and high-dose methotrexate alternating with ifosfamide,
etoposide and high-dose cytarabine) [9] and hyper-CVAD-R (cyclophosphamide, vin-
cristine, adriamycin and dexamethasone with rituximab, alternating with methotrexate
and cytosine arabinoside) [10,11].

The current diagnosis of DHL relies on fluorescence in situ hybridization (FISH) anal-
ysis, demonstrating MYC rearrangements together with BCL2//BCL6 translocations [12].
However, using FISH is costly and requires elaborate laboratory protocols, which are
not routinely performed at every medical center. Moreover, FISH results are usually not
instantly attained, so the “DH molecular status” is often unknown by the time the first
course of chemoimmunotherapy is administered. Thus, in most patients with DHL, the
standard R-CHOP regimen is used at least in the first cycle of treatment and not a more
intense protocol. Therefore, efforts are made to define restrictive criteria in order to iden-
tify the cases where FISH for DHL needs to be employed. The Ki-67 proliferation index
(often high in patients with DHL), immunohistochemical (IHC) expression of c-MYC or
diagnosis of the germinal GCB COO subtype have all been suggested [13], yet were found
to be insufficiently specific and were associated with unacceptable rates of false negative
cases [5].

The current diagnosis practices range from the performance of FISH analysis in all
large B-cell lymphoma cases to a highly selective approach, restricting the analysis only
to very suspicious clinical–pathological cases. While the first approach ensures accurate
diagnosis, it is associated with considerable resources and high costs [14]. Conversely, the
latter approach reduces efforts and costs, but increases the risk of missing DHL cases.

Deep learning (DL) applications are being extensively explored in digital pathology as
novel solutions for cancer diagnosis [15,16]. The use of DL for both histopathology and
molecular image-based analysis using the hematoxylin and eosin (H&E)-stained tissue
slides can provide an immediate, objective and scalable solution that is exceedingly needed.
This necessity is specifically prominent in hematopathology, where the microscopic diagno-
sis of hematological malignancies can be extremely challenging and molecular screening is
not always available [17–19]. Indeed, there have been several publications in the last few
years describing the potential use of DL for the identification and diagnosis of different
subtypes of lymphoma, including DLBCL, using H&E-stained tissue slide images [20–25].
This approach of applying machine learning for the diagnosis of hematological neoplasms
and DLBCL specifically is showing promising results and could significantly enhance the
diagnostic process. However, the diagnosis and classification of hematological malignan-
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cies often rely not only on histopathological features but also on the characterization of
genetic alterations [26].

Deep learning, which is adept in extracting relevant features from complex, variable
data, is emerging as a powerful tool for identifying morphological patterns associated
with molecular alterations from digitized histological slides [27]. Although the use of DL
for the detection of a variety of molecular alterations directly from H&E slides is being
widely investigated in diverse cancer types [28–31], its application for detecting genetic
changes in lymphoma remains notably limited. A recent study, investigating the use of DL
for the inference of MYC rearrangements from biopsies of patients with aggressive B-cell
lymphoma, confirmed the potential value of this technology, demonstrating a sensitivity
of 0.93 [32]. However, the specificity was only 0.52, attributing to high false positive rates
of more than 30% [32]. Thus, despite their potential, DL solutions for the prediction of
molecular alterations has not been broadly adopted in clinical settings yet, as they do not
display high enough accuracies in robust large-scale studies [31].

Given the promising capabilities of DL and the importance of the identification of
rearrangements for the proper management of DLBLC and HGBL patients, we chose to
explore the abilities of AI tools in detecting DH/TH events in lymphoma specimen slides.
In this study, we present a digital image-based approach, employing DL algorithms to
differentiate between DHL/THL and non-DHL/THL cases by analyzing scanned images
of H&E-stained tissue slides. While our work still requires further validation in a broader
study, our DL classifier demonstrated high accuracies, suggesting that such an approach
has the potential to be beneficial within hematological clinical settings.

2. Materials and Methods

2.1. Study Population

Patients diagnosed with aggressive B-cell lymphomas (DLBCL and HGL) between
January 2017 and January 2022 at the Tel Aviv Sourasky Medical Center (TASMC), who
were analyzed through FISH as part of their pathological workup, were included in this
study. Patients with non-informative FISH results, attributed to technical issues, were
excluded. The scanning of whole slide images (WSIs) of patients’ H&E-stained diagnostic
slides was performed at 40× magnification, using a Philips Ultra-Fast Scanner (Philips
Digital Pathology Solutions, Philips, Best, The Netherlands). Thirty-two biopsies from
30 patients were included in the training set, including 27 non-DH biopsies and 5 DH
biopsies. The validation set included 25 cases, 15 non-DH and 10 DH/TH cases.

This study was approved by the Ethics Committee at the Tel Aviv Sourasky Medical
Center (IRB 0308-22-TLV).

2.2. Data Collection

Data including patient demographics; clinical and laboratory characteristics at pre-
sentation (ECOG performance status, disease stage at diagnosis, lactic dehydrogenase
(LDH) levels); the final results of histological diagnosis (DLBCL or HGBL); the results of
immunohistochemistry staining focusing on BCL2, BCL6, c-MYC, CD10, MUM-1 and Ki-67;
and the results of the FISH analysis for MYC, BCL2 and BCL6 were all collected from the
patients’ electronic medical records.

2.3. Histopathological Analysis and Immunohistochemical (IHC) Staining

Immunohistochemical staining was performed using the following antibodies: anti-
CD10 (clone 56C6, Master Diagnostica, Sevilla, Spain), anti-BCL6 (clone GI191E/A8, Cell
Marque, Rocklin, CA, USA), anti-MUM-1 (clone MRQ-8, Cell Marque, Rocklin, CA, USA),
anti-c-Myc (clone EP121, Cell Marque, Rocklin, CA, USA), anti-BCL2 (clone E17, Cell
Marque, Rocklin, CA, USA) and anti-Ki-67 (clone SP6, Cell Marque, Rocklin, CA, USA).
Staining was performed on the Ventana Ultra Benchmark (Ventana Medical Systems,
Tucson, AZ, USA) automatic slide stainer. Positivity for the expression of CD10, BCL6 and
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MUM-1 was defined as 30% or more positive cells, 50% or more for BCL2 and 40% or more
for c-MYC. The COO was determined using the HANS algorithm [33].

2.4. Fluorescence In Situ Hybridization (FISH) Analysis

FISH analysis was performed to assess MYC rearrangements using the Vysis MYC
Break Apart FISH Probe Kit; BCL2 rearrangements were assessed using the Vysis LSI
IGH/BCL2 Dual Color, Dual Fusion Translocation Probe; and BCL6 rearrangements were
assessed using the Vysis LSI BCL6 (ABR) Dual Color Break Apart Rearrangement Probe
(Abbott Molecular, Des Plains, IL, USA) and an automated fluorescence microscope scan-
ning system (BioView Duet workstation; BioView Ltd., Rehovot, Israel). One hundred
tumor cells at a minimum were evaluated per sample (except for rare cases where a mini-
mum of 50 cells were evaluated). A cutoff of 10% was used to determine the positivity for
each rearrangement.

2.5. Algorithm Development and Application
2.5.1. Model Training

For the training of the DHL model, a self-supervised scheme with dynamic data
augmentation, combined with multiple instance learning (MIL) algorithms, were applied.

In the self-supervised step, the model is pre-trained on large numbers of unlabeled
histopathology slides. This initial step establishes a foundation model that can be adapted
to various downstream tasks using limited numbers of training samples. As such, this
approach is particularly useful in the field of histopathology and is increasingly being
adopted, given the limited availability of labeled samples [34,35].

In the following fine-tuning step, in addition to the foundation model, multiple
instance learning (MIL) is utilized and training is performed on labeled data. Each WSI
is subdivided into multiple smaller patches which are used as input for modeling. Given
that the labeling is assigned on a slide level and the model receives multiple patches that
collectively represent the entire slide, the MIL approach, which allows one to make use
of such weakly labeled data and provides a single classification for the entire slide, is a
powerful technique for classifying WSIs [35,36].

The self-supervised step was performed using untagged pan-cancer (not including
lymphoma biopsies) WSIs of FFPE H&E-stained tissues scanned at 40× or 20× magnifica-
tion from Imagene’s internal database (including slides from the TCGA research network).
All 40× images were transformed to 20× for analysis. Data augmentation was performed
using over 20 techniques, including color jitter and channel shuffle. For model fine-tuning
and the generation of the final DHL, the foundation model, together with MIL, were applied
on the lymphoma WSIs training set described above, using patches of 384 × 384 pixels.
Training was performed for 20 epochs using a categorical cross-entropy loss, the Adam
optimizer and a learning rate of 0.0001 (Figure 1).

2.5.2. Model Performance Evaluation

For the validation step, a categorical prediction (positive/negative) was made using
the DHL-classifier model (comprising both the foundation model and the MIL algorithm)
and the results were compared to the FISH results for the MYC and BCL2/6 rearrangements
(Figure 1).
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Figure 1. Study schematic representation. A self-supervised step was performed on a pan-cancer
cohort (including cases of solid cancers with no lymphoma biopsies), establishing a foundation
model, followed by a fine-tuning step using the training set’s WSIs, generating the final DHL-
classifier. For the DHL-classifier performance evaluation, the DH/TH status of 25 cases included
in the validation set was evaluated, and the results were compared to the official results reported
in the FISH analysis. WSI—whole slide image, MIL—multiple instance learning, DHL—double-hit
lymphoma, DH—double-hit, TH—triple-hit.

3. Results

3.1. Patient Characteristics

This study included 57 biopsies from 55 patients, divided into a training set, which
included 32 biopsies, and a validation set, which included 25 unique patients. The charac-
teristics of the patients are presented in Table 1. Biopsies from lymph nodes represented
approximately a third of the samples (39%, n = 22), and the rest were biopsies from extran-
odal tissues (61%, n = 35). The DHL/THL patients (n = 15) were mostly diagnosed with
the germinal center B-cell (GCB) COO subtype determined based on IHC (73.3%, n = 11),
with a median Ki-67 of 88% (range 40–100%) and c-MYC and BCL2 expression in 85.7%
(n = 12/14, one with no available data) and 64.3% (n = 9/14, one with no available data) of
the cases, respectively.
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Table 1. Patient characteristics.

Entire Cohort
(n = 57)

Training Set
(n = 32)

Validation Set
(n = 25)

Male, n (%) 32 (56.1) 18 (56.3) 14 (56)

Age (years), median (range) 62 (8–84) 66.5 (8–84) 60 (17–77)

Tested tissue, n (%)

Lymph node 22 (38.6) 16 (50.0) 6 (24.0)

Extra nodal 35 (61.4) 16 (50.0) 19 (76.0)

Procedure, n (%)

Needle biopsy 43 (75.4) 24 (75.0) 19 (76.0)

Excisional 14 (24.6) 8 (25.0) 6 (24.0)

ECOG PS, n (%) *

0/1 38 (82.6) 24 (82.8) 14 (82.4)

≥2 8 (17.4) 5 (17.2) 3 (17.6)

Disease stage *

I/II 13 (24.5) 7 (23.3) 6 (26.1)

III/IV 40 (75.5) 23 (76.7) 17 (73.9)

LDH level *

Normal 14 (28.0) 10 (32.3) 4 (21.1)

Increased 36 (72.0) 21 (67.7) 15 (78.9)

COO, n (%) #*

GCB 27 (52.9) 13 (46.4) 14 (60.9)
IHC
Ki67 *

Median % (range) 80 (10–100) 80 (10–100) 85 (40–100)

Ki67 ≥ 90% 23 (41.8) 12 (37.5) 11 (47.8)

c-MYC expression *

Positive/borderline positive 33 (61.1) 20 (64.5) 13 (56.5)

Negative 21 (38.9) 11 (35.5) 10 (43.5)

BCL2 expression *

Positive/borderline positive 33 (62.3) 21 (67.7) 12 (54.5)

Negative 20 (37.7) 10 (32.3) 10 (45.5)

BCL6 expression *

Positive/borderline positive 49 (89.1) 29 (90.6) 20 (87.0)

Negative 6 (10.9) 3 (9.4) 3 (13.0)
FISH
DHL/THL, n (%) 15 (26.3) 5 (15.6) 10 (40)

ECOG PS—Eastern Cooperative Oncology Group performance status; COO—cell of origin; LDH—lactic dehy-
drogenase; GCB—germinal center B-cell; IHC—immunohistochemistry; FISH—fluorescence in situ hybridization;
DHL/THL — double/triple-hit lymphoma; % are depicted from the total n with information per criteria. # GCB—
based on HANS immunohistochemical criteria; * missing data: ECOG PS (n = 11), disease stage (n = 4), LDH (n = 7),
COO (not determined/equivocal; n = 6), Ki-67% (n = 2), c-MYC (n = 3), BCL2 (n = 4) and BCL6 (n = 2).

3.2. Digital Imaging Analysis

The DHL-classifier was developed using H&E-stained slide images of 32 biopsies
(as described in the methods section) (training set) that included five cases of DHL. The
DHL-classifier was then blindly validated on an independent validation set, containing
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25 DLBCL/HGL cases. The algorithm results were compared to the official clinical diagno-
sis that was based on the FISH analysis for the MYC, BCL2 and BCL6 rearrangements.

The validation set comprised nine DHL cases, one THL case and fifteen non-DH DL-
BCL cases. Altogether, the model correctly identified all 10 DHL/THL cases, demonstrating
100% sensitivity. The specificity was 86.7% due to two false positive cases (negative for
FISH analysis). The accuracy rate was 92% and the area under the curve (AUC) was 0.95
(Figure 2A).

Figure 2. Performance of the DHL-classifier. (A) DHL-classifier results and performance in the vali-
dation cohort. N—negative, P—positive, TN—true negative, TP—true positive, FN—false negative,
FP—false positive, AUC—area under the curve. (B) Predictive values of conventional methods vs.
the DHL-classifier as a screening tool for FISH analysis. Presented are the number of samples in
the relevant bars and predictive values for each screening method used. The number on the bars
represents the number of cases in the relevant group.

3.3. AI Classifier as a Screening Tool for Selecting Cases for FISH Analysis

Current criteria for selecting cases for FISH analysis often rely on the presence of high
Ki-67 (≥90%), the IHC expression of c-MYC and the classification of the GCB subtype.
Therefore, we assessed the performance of these criteria, as well as the AI DHL-classifier,
as a screening tool for referring cases for FISH analysis. The DHL classifier was found
to provide a predictive value of 92%, compared with 57–74% for any of the three IHC
evaluable criteria (Figure 2B and Table S1). The AI DHL-classifier displayed the highest
sensitivity (100%) and specificity (87%) rates, with only two excess unnecessary tests and
no missed DHL cases. The conventional screening criteria showed variable sensitivities,
ranging from 56% to 89%, and variable specificities ranging from 54% to 64% (Table S1).
When all three IHC parameters were used together as screening criteria (Ki-67 ≥ 90% or
increased c-MYC expression or GCB subtype), the accuracy remained low (57%), with an
excess of non-valuable tests; only four cases out of the entire evaluated cohort (n = 23) did
not meet the FISH screening criteria.

4. Discussion

The outcome of DHL patients treated with R-CHOP is generally poor. Intensive
treatment regimens such as dose-adjusted R-EPOCH, R-CODOX-M/IVAC and hyper-
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CVAD-R are often implemented in clinics to treat HGBL-DH/TH. Thus, the rapid and
accurate diagnosis of DH/TH lymphoma is highly necessary. Unfortunately, diagnoses of
DHL/THL are often delayed, or even missed, due to the limited availability of FISH tests,
which are essential for establishing the diagnosis.

Here, we describe a deep learning-based algorithmic tool trained to detect DHL/THL,
using H&E-stained biopsy slide images obtained from aggressive B-cell lymphoma pa-
tients. To evaluate the performance of our DHL-classifier, we used a cohort comprising
images of samples that had been subjected to FISH during their diagnostic assessment
and were not part of the training set. The cohort included, in total, 10 DHL/THL and
15 non-DH/TH samples. Our DHL-classifier identified all 10 DHL/THL cases, demon-
strating 100% sensitivity. The specificity was 86.7%, with an AUC of 0.95 due to two false
positive (FP) cases, where DH translocations were not identified through the FISH. Of note,
cryptic rearrangements, undetected with FISH, may exist in up to 20% of DHL cases [37,38],
raising the possibility that our FP cases might be due to “cryptic DHL changes”. However,
this speculation requires further evaluation.

The rapid identification of patients with DHL, enabling the early upfront admin-
istration of more intensified and compatible therapies, is imperative. FISH analysis is
the currently used method for the identification of patients that are positive for DH/TH-
associated gene rearrangements. Testing all high-grade lymphoma cases, although ensuring
the detection of most DHL/THL patients, is associated with increased diagnostic costs
and a high testing burden. Given that several studies have shown that more than 20% of
DHL/THL cases are of a non-GCB origin, 15–30% of MYC-rearranged cases fail to overex-
press c-MYC, and at least a third of DHL cases exhibit Ki-67 lower than 90% [39,40]; using
these specific parameters for selecting cases for FISH testing seems to be inappropriate.
These findings were also reflected in the current study, with less than 75% of DH cases
being of GCB origin, ~50% with high proliferative index and ~15% not displaying high
c-MYC expression. Therefore, new screening methods are direly needed.

In light of this unmet clinical need and considering that AI-based solutions offer
accessible tools that can provide a biomarker status within minutes, we assessed whether
the AI DHL-classifier could provide an alternative screening tool for aggressive DH B-cell
lymphoma cases. Although our cohort size was small, our preliminary data demonstrated
that the classifier effectively detected DHL cases with a predictive value of 92%, capturing
all FISH-positive cases. Confirmation in a larger cohort, representing a more diverse group
of patients, is required. However, our results, if confirmed, suggest that the DHL AI-based
classifier may serve as a useful screening tool in places where FISH analysis is limited.

Our study has several limitations, mainly attributed to its retrospective nature and
the small cohort size. During the study period, FISH was not routinely performed in our
institution, but was reserved for patients with highly aggressive disease and/or a high
Ki-67 proliferative index, introducing a selection bias of cases that were more likely to be
positive. Moreover, the number of patients included in our study was small and all the
samples were attained from a single center. All these factors, together with the known
impact of scanning devices, specimen processing and staining protocols on histological
slide images [41], emphasize the need for validating our results in a large prospective
cohort, representing a more diverse group of patients, in order to assess the robustness
and generalizability of our DHL-classifier. Additionally, NGS was not performed in any of
the cases; thus, it is impossible to conclusively determine whether our false positive cases
represent DHL cases with cryptic translocations. Therefore, evaluating samples with NGS
in addition to the traditional FISH in follow-up studies can be of value for a more detailed
investigation and characterization of the cohort, particularly in the case of false positives.

Moreover, the definition of HGBL-DH has been recently changed, referring now to pa-
tients with MYC/BCL2 rearrangement only [42]. Therefore, a new algorithm, differentiating
between MYC/BCL2 and MYC/BCL6-rearraged cases, is currently warranted.

Lastly, while our algorithms’ lack of interpretability poses challenges in model refine-
ment and obtaining insights that can drive advances in the molecular pathology realm,
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we are optimistic that future advancements in explainable AI algorithms will facilitate
substantial improvements in this field.

5. Conclusions

We presented here a proof of concept for the potential use of a DL algorithmic tool
for the identification of DH/TH events, promoting the performance of FISH in “DH/TH-
suspected” cases only. While further investigation, development and implementation of
the proposed tool are required, it would be of great interest to further investigate the impact
of integrating such a tool within the clinical workflow. Moreover, it would be of great
interest to explore if such a tool could also be used for other lymphomas, for example, the
identification of MYC translocations in Burkitt lymphoma, and to establish whether such
AI solutions can improve hematological cancer patients’ care.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15215205/s1, Table S1: Predictive values of conventional
criteria vs. the AI DHL-classifier for correctly deciding whether to perform FISH testing.

Author Contributions: Conceptualization, I.A., D.H. and N.P.-Y. Investigation I.A., C.P., I.G. and
N.P.-Y. Formal analysis, I.A., I.G. and N.P.-Y. Software A.A. Methodology, I.A., I.G., A.A. and N.P.-Y.
Data curation, C.P., O.G., S.H., N.H., D.H. and I.A. Writing—original draft preparation, I.A., I.G. and
N.P.-Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by IMAGENE AI LTD and Imagene AI Inc.

Institutional Review Board Statement: This study was approved by the Ethics Committee at the Tel
Aviv Sourasky Medical Center (IRB 0308-22-TLV 26 July 2022).

Data Availability Statement: The datasets generated during the current study are not publicly
available and are available upon reasonable request.

Acknowledgments: The results published here are, in part, based upon images generated by the
TCGA Research Network: https://www.cancer.gov/tcga (accessed on 1 October 2023).

Conflicts of Interest: C.P., O.G., S.H., N.H., D.H. and I.A. declare no conflict. I.G., A.A. and N.P-Y.
are employees of IMAGENE AI LTD. and have stock options.

References

1. Alizadeh, A.A.; Eisen, M.B.; Davis, R.E.; Ma, C.; Lossos, I.S.; Rosenwald, A.; Boldrick, J.C.; Sabet, H.; Tran, T.; Yu, X.; et al. Distinct
types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000, 403, 503–511. [CrossRef] [PubMed]

2. Rosenwald, A.; Wright, G.; Chan, W.C.; Connors, J.M.; Campo, E.; Fisher, R.I.; Gascoyne, R.D.; Muller-Hermelink, H.K.; Smeland,
E.B.; Giltnane, J.M.; et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma.
N. Engl. J. Med. 2002, 346, 1937–1947. [CrossRef] [PubMed]

3. Nguyen, L.; Papenhausen, P.; Shao, H. The Role of c-MYC in B-Cell Lymphomas: Diagnostic and Molecular Aspects. Genes 2017,
8, 116. [CrossRef] [PubMed]

4. Barrans, S.; Crouch, S.; Smith, A.; Turner, K.; Owen, R.; Patmore, R.; Roman, E.; Jack, A. Rearrangement of MYC is associated with
poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab. J. Clin. Oncol. 2010, 28, 3360–3365.
[CrossRef] [PubMed]

5. Savage, K.J.; Johnson, N.A.; Ben-Neriah, S.; Connors, J.M.; Sehn, L.H.; Farinha, P.; Horsman, D.E.; Gascoyne, R.D. MYC
gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP
chemotherapy. Blood 2009, 114, 3533–3537. [CrossRef] [PubMed]

6. Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz,
A.D.; et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016, 127, 2375–2390.
[CrossRef] [PubMed]

7. Phuoc, V.; Sandoval-Sus, J.; Chavez, J.C. Drug therapy for double-hit lymphoma. Drugs Context 2019, 8, 1–13. [CrossRef]
[PubMed]

8. Dunleavy, K.; Fanale, M.A.; Abramson, J.S.; Noy, A.; Caimi, P.F.; Pittaluga, S.; Parekh, S.; Lacasce, A.; Hayslip, J.W.; Jagadeesh, D.;
et al. Dose-adjusted EPOCH-R (etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab) in untreated
aggressive diffuse large B-cell lymphoma with MYC rearrangement: A prospective, multicentre, single-arm phase 2 study. Lancet
Haematol. 2018, 5, e609–e617. [CrossRef]

249



Cancers 2023, 15, 5205

9. McMillan, A.K.; Phillips, E.H.; Kirkwood, A.A.; Barrans, S.; Burton, C.; Rule, S.; Patmore, R.; Pettengell, R.; Ardeshna, K.M.;
Lawrie, A.; et al. Favourable outcomes for high-risk diffuse large B-cell lymphoma (IPI 3-5) treated with front-line R-CODOX-
M/R-IVAC chemotherapy: Results of a phase 2 UK NCRI trial. Ann. Oncol. 2020, 31, 1251–1259. [CrossRef]

10. Landsburg, D.J.; Falkiewicz, M.K.; Maly, J.; Blum, K.A.; Howlett, C.; Feldman, T.; Mato, A.R.; Hill, B.T.; Li, S.; Medeiros, L.J.; et al.
Outcomes of Patients With Double-Hit Lymphoma Who Achieve First Complete Remission. J. Clin. Oncol. 2017, 35, 2260–2267.
[CrossRef]

11. Zhuang, Y.; Che, J.; Wu, M.; Guo, Y.; Xu, Y.; Dong, X.; Yang, H. Altered pathways and targeted therapy in double hit lymphoma. J.
Hematol. Oncol. 2022, 15, 26. [CrossRef] [PubMed]

12. Swerdlow, S.H. Diagnosis of ‘double hit’ diffuse large B-cell lymphoma and B-cell lymphoma, unclassifiable, with features
intermediate between DLBCL and Burkitt lymphoma: When and how, FISH versus IHC. Hematol. Am. Soc. Hematol. Educ.
Program. 2014, 2014, 90–99. [CrossRef] [PubMed]

13. Thirunavukkarasu, B.; Bal, A.; Prakash, G.; Malhotra, P.; Singh, H.; Das, A. Screening Strategy for Detecting Double-Hit
Lymphoma in a Resource-Limited Setting. Appl. Immunohistochem. Mol. Morphol. 2022, 30, 49–55. [CrossRef]

14. Stephens, D.M.; Smith, S.M. Diffuse large B-cell lymphoma—Who should we FISH? Ann. Lymphoma 2018, 2, 8. [CrossRef]
15. Shmatko, A.; Ghaffari Laleh, N.; Gerstung, M.; Kather, J.N. Artificial intelligence in histopathology: Enhancing cancer research

and clinical oncology. Nat. Cancer 2022, 3, 1026–1038. [CrossRef]
16. Baxi, V.; Edwards, R.; Montalto, M.; Saha, S. Digital pathology and artificial intelligence in translational medicine and clinical

practice. Mod. Pathol. 2022, 35, 23–32. [CrossRef]
17. Laurent, C.; Baron, M.; Amara, N.; Haioun, C.; Dandoit, M.; Maynadie, M.; Parrens, M.; Vergier, B.; Copie-Bergman, C.; Fabiani,

B.; et al. Impact of Expert Pathologic Review of Lymphoma Diagnosis: Study of Patients From the French Lymphopath Network.
J. Clin. Oncol. 2017, 35, 2008–2017. [CrossRef] [PubMed]

18. Bowen, J.M.; Perry, A.M.; Laurini, J.A.; Smith, L.M.; Klinetobe, K.; Bast, M.; Vose, J.M.; Aoun, P.; Fu, K.; Greiner, T.C.; et al.
Lymphoma diagnosis at an academic centre: Rate of revision and impact on patient care. Br. J. Haematol. 2014, 166, 202–208.
[CrossRef]

19. Matasar, M.J.; Shi, W.; Silberstien, J.; Lin, O.; Busam, K.J.; Teruya-Feldstein, J.; Filippa, D.A.; Zelenetz, A.D.; Noy, A. Expert
second-opinion pathology review of lymphoma in the era of the World Health Organization classification. Ann. Oncol. 2012, 23,
159–166. [CrossRef]

20. Syrykh, C.; Abreu, A.; Amara, N.; Siegfried, A.; Maisongrosse, V.; Frenois, F.X.; Martin, L.; Rossi, C.; Laurent, C.; Brousset,
P. Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning. NPJ Digit. Med. 2020, 3, 63.
[CrossRef]

21. Li, D.; Bledsoe, J.R.; Zeng, Y.; Liu, W.; Hu, Y.; Bi, K.; Liang, A.; Li, S. A deep learning diagnostic platform for diffuse large B-cell
lymphoma with high accuracy across multiple hospitals. Nat. Commun. 2020, 11, 6004. [CrossRef]

22. Steinbuss, G.; Kriegsmann, M.; Zgorzelski, C.; Brobeil, A.; Goeppert, B.; Dietrich, S.; Mechtersheimer, G.; Kriegsmann, K. Deep
Learning for the Classification of Non-Hodgkin Lymphoma on Histopathological Images. Cancers 2021, 13, 2419. [CrossRef]
[PubMed]

23. Achi, H.E.; Belousova, T.; Chen, L.; Wahed, A.; Wang, I.; Hu, Z.; Kanaan, Z.; Rios, A.; Nguyen, A.N.D. Automated Diagnosis of
Lymphoma with Digital Pathology Images Using Deep Learning. Ann. Clin. Lab. Sci. 2019, 49, 153–160. [PubMed]

24. Miyoshi, H.; Sato, K.; Kabeya, Y.; Yonezawa, S.; Nakano, H.; Takeuchi, Y.; Ozawa, I.; Higo, S.; Yanagida, E.; Yamada, K.; et al.
Deep learning shows the capability of high-level computer-aided diagnosis in malignant lymphoma. Lab. Investig. 2020, 100,
1300–1310. [CrossRef] [PubMed]

25. Mohlman, J.S.; Leventhal, S.D.; Hansen, T.; Kohan, J.; Pascucci, V.; Salama, M.E. Improving Augmented Human Intelligence to
Distinguish Burkitt Lymphoma From Diffuse Large B-Cell Lymphoma Cases. Am. J. Clin. Pathol. 2020, 153, 743–759. [CrossRef]
[PubMed]

26. Taylor, J.; Xiao, W.; Abdel-Wahab, O. Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood 2017,
130, 410–423. [CrossRef] [PubMed]

27. Echle, A.; Rindtorff, N.T.; Brinker, T.J.; Luedde, T.; Pearson, A.T.; Kather, J.N. Deep learning in cancer pathology: A new generation
of clinical biomarkers. Br. J. Cancer 2021, 124, 686–696. [CrossRef]

28. Mayer, C.; Ofek, E.; Fridrich, D.E.; Molchanov, Y.; Yacobi, R.; Gazy, I.; Hayun, I.; Zalach, J.; Paz-Yaacov, N.; Barshack, I. Direct
identification of ALK and ROS1 fusions in non-small cell lung cancer from hematoxylin and eosin-stained slides using deep
learning algorithms. Mod. Pathol. 2022, 35, 1882–1887. [CrossRef] [PubMed]

29. Rawat, R.R.; Ortega, I.; Roy, P.; Sha, F.; Shibata, D.; Ruderman, D.; Agus, D.B. Deep learned tissue "fingerprints" classify breast
cancers by ER/PR/Her2 status from H&E images. Sci. Rep. 2020, 10, 7275. [CrossRef]

30. Kather, J.N.; Heij, L.R.; Grabsch, H.I.; Loeffler, C.; Echle, A.; Muti, H.S.; Krause, J.; Niehues, J.M.; Sommer, K.A.J.; Bankhead, P.;
et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat. Cancer 2020, 1, 789–799. [CrossRef]

31. Cifci, D.; Foersch, S.; Kather, J.N. Artificial intelligence to identify genetic alterations in conventional histopathology. J. Pathol.
2022, 257, 430–444. [CrossRef] [PubMed]

32. Swiderska-Chadaj, Z.; Hebeda, K.M.; van den Brand, M.; Litjens, G. Artificial intelligence to detect MYC translocation in slides of
diffuse large B-cell lymphoma. Virchows Arch. 2021, 479, 617–621. [CrossRef] [PubMed]

250



Cancers 2023, 15, 5205

33. Hans, C.P.; Weisenburger, D.D.; Greiner, T.C.; Gascoyne, R.D.; Delabie, J.; Ott, G.; Muller-Hermelink, H.K.; Campo, E.; Braziel,
R.M.; Jaffe, E.S.; et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry
using a tissue microarray. Blood 2004, 103, 275–282. [CrossRef]

34. Chen, R.J.; Ding, T.; Lu, M.Y.; Williamson, D.F.K.; Jaume, G.; Chen, B.; Zhang, A.; Shao, D.; Song, A.H.; Shaban, M.; et al. A
General-Purpose Self-Supervised Model for Computational Pathology. arXiv 2023, arXiv:2308.15474. [CrossRef]

35. Saldanha, O.L.; Loeffler, C.M.L.; Niehues, J.M.; van Treeck, M.; Seraphin, T.P.; Hewitt, K.J.; Cifci, D.; Veldhuizen, G.P.; Ramesh, S.;
Pearson, A.T.; et al. Self-supervised attention-based deep learning for pan-cancer mutation prediction from histopathology. NPJ
Precis. Oncol. 2023, 7, 35. [CrossRef]

36. Ilse, M.; Tomczak, J.M.; Welling, M. Attention-based Deep Multiple Instance Learning. arXiv 2018, arXiv:1802.04712. [CrossRef]
37. Hilton, L.K.; Tang, J.; Ben-Neriah, S.; Alcaide, M.; Jiang, A.; Grande, B.M.; Rushton, C.K.; Boyle, M.; Meissner, B.; Scott, D.W.; et al.

The double-hit signature identifies double-hit diffuse large B-cell lymphoma with genetic events cryptic to FISH. Blood 2019, 134,
1528–1532. [CrossRef]

38. King, R.L.; McPhail, E.D.; Meyer, R.G.; Vasmatzis, G.; Pearce, K.; Smadbeck, J.B.; Ketterling, R.P.; Smoley, S.A.; Greipp, P.T.;
Hoppman, N.L.; et al. False-negative rates for MYC fluorescence in situ hybridization probes in B-cell neoplasms. Haematologica
2019, 104, e248–e251. [CrossRef] [PubMed]

39. Landsburg, D.J.; Petrich, A.M.; Abramson, J.S.; Sohani, A.R.; Press, O.; Cassaday, R.; Chavez, J.C.; Song, K.; Zelenetz, A.D.;
Gandhi, M.; et al. Impact of oncogene rearrangement patterns on outcomes in patients with double-hit non-Hodgkin lymphoma.
Cancer 2016, 122, 559–564. [CrossRef]

40. Laude, M.C.; Lebras, L.; Sesques, P.; Ghesquieres, H.; Favre, S.; Bouabdallah, K.; Croizier, C.; Guieze, R.; Drieu La Rochelle, L.;
Gyan, E.; et al. First-line treatment of double-hit and triple-hit lymphomas: Survival and tolerance data from a retrospective
multicenter French study. Am. J. Hematol. 2021, 96, 302–311. [CrossRef]

41. Howard, F.M.; Dolezal, J.; Kochanny, S.; Schulte, J.; Chen, H.; Heij, L.; Huo, D.; Nanda, R.; Olopade, O.I.; Kather, J.N.; et al.
The impact of site-specific digital histology signatures on deep learning model accuracy and bias. Nat. Commun. 2021, 12, 4423.
[CrossRef]

42. Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.;
Calaminici, M.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid
Neoplasms. Leukemia 2022, 36, 1720–1748. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

251



Citation: Tweel, J.E.D.; Ecclestone, B.R.;

Gaouda, H.; Dinakaran, D.;

Wallace, M.P.; Bigras, G.;

Mackey, J.R.; Reza, P.H. Photon

Absorption Remote Sensing Imaging

of Breast Needle Core Biopsies Is

Diagnostically Equivalent to Gold

Standard H&E Histologic

Assessment. Curr. Oncol. 2023, 30,

9760–9771. https://doi.org/10.3390/

curroncol30110708

Received: 11 September 2023

Revised: 27 October 2023

Accepted: 2 November 2023

Published: 6 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Photon Absorption Remote Sensing Imaging of Breast Needle
Core Biopsies Is Diagnostically Equivalent to Gold Standard
H&E Histologic Assessment

James E. D. Tweel 1,2, Benjamin R. Ecclestone 1,2, Hager Gaouda 1,2, Deepak Dinakaran 2, Michael P. Wallace 3,

Gilbert Bigras 4, John R. Mackey 2 and Parsin Haji Reza 1,*

1 PhotoMedicine Labs, University of Waterloo, Waterloo, ON N2L 3G1, Canada; jtweel@uwaterloo.ca (J.E.D.T.);
benjamin.ecclestone@uwaterloo.ca (B.R.E.); hgaouda@uwaterloo.ca (H.G.)

2 Illumisonics Inc., 22 King Street South, Suite 300, Waterloo, ON N2J 1N8, Canada;
deepak@illumisonics.com (D.D.); john.mackey@illumisonics.com (J.R.M.)

3 Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
michael.wallace@uwaterloo.ca

4 Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
gilbert.bigras@albertaprecisionlabs.ca

* Correspondence: phajirez@uwaterloo.ca

Abstract: Photon absorption remote sensing (PARS) is a new laser-based microscope technique that
permits cellular-level resolution of unstained fresh, frozen, and fixed tissues. Our objective was to
determine whether PARS could provide an image quality sufficient for the diagnostic assessment
of breast cancer needle core biopsies (NCB). We PARS imaged and virtually H&E stained seven
independent unstained formalin-fixed paraffin-embedded breast NCB sections. These identical tissue
sections were subsequently stained with standard H&E and digitally scanned. Both the 40× PARS
and H&E whole-slide images were assessed by seven breast cancer pathologists, masked to the origin
of the images. A concordance analysis was performed to quantify the diagnostic performances of
standard H&E and PARS virtual H&E. The PARS images were deemed to be of diagnostic quality,
and pathologists were unable to distinguish the image origin, above that expected by chance. The
diagnostic concordance on cancer vs. benign was high between PARS and conventional H&E (98%
agreement) and there was complete agreement for within-PARS images. Similarly, agreement was
substantial (kappa > 0.6) for specific cancer subtypes. PARS virtual H&E inter-rater reliability was
broadly consistent with the published literature on diagnostic performance of conventional histology
NCBs across all tested histologic features. PARS was able to image unstained tissues slides that were
diagnostically equivalent to conventional H&E. Due to its ability to non-destructively image fixed and
fresh tissues, and the suitability of the PARS output for artificial intelligence assistance in diagnosis,
this technology has the potential to improve the speed and accuracy of breast cancer diagnosis.

Keywords: photon absorption remote sensing (PARS); breast core biopsy; breast cancer; concordance
analysis

1. Introduction

A breast needle core biopsy (NCB) is a medical procedure in which a small, cylindrical
piece of breast tissue is removed for examination and diagnosis, typically with the aid of
imaging guidance (e.g., ultrasound) [1]. The procedure is performed when an abnormality
is found in the breast, such as a palpable mass, or an area of suspicious tissue seen on a
mammogram or other imaging tests. It is an established standard of care for obtaining
accurate preoperative histological diagnosis of suspicious breast lesions [2–7]. In addition,
it offers numerous advantages, including reduced cost and complication rates, over surgical
biopsies primarily due its minimally invasive approach [8–11].
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Following the NCB procedure, the samples undergo standard tissue processing and
staining procedures to enable histological analysis. Samples are formalin-fixed and sub-
sequently embedded in paraffin wax where they are thinly sectioned (~5 μm) and placed
on glass slides for staining with hematoxylin and eosin (H&E) [12,13]. Hematoxylin stains
anionic regions like the nuclei of cells blue-purple, while eosin stains cationic regions
like the cytoplasm and extracellular matrix pink [13]. This creates a contrast between the
different components of the tissue, allowing pathologists to identify different structures
and cells within the sample. H&E is the gold standard staining method used in pathology
to visualize the tissue structure of biopsy samples. It is the primary means by which
pathologists assess breast NCB samples to distinguish between malignant and benign
breast tissue, as well as to determine the type and grade of cancer [14].

The conventional tissue processing and staining procedures, despite being an essential
part of histological analysis, are burdensome due to the significant costs, time, and expertise
required [15]. However, advancements in label-free imaging technologies may have the
potential to eliminate the need for these procedures, while preserving valuable biopsy
samples for use in redundant or auxiliary screening procedures. Among the most promising
ways of imaging tissue is an emerging technology called photon absorption remote sensing
(PARS) microscopy. PARS enables simultaneous capture of contrast from both radiative
and non-radiative relaxation processes following optical absorption, along with scattering
contrasts in a tissue specimen [16]. The technique uses a picosecond-scale pulsed excitation
laser to generate perturbations in the sample following absorption. The optical emissions
from the radiative relaxation are broadly captured, while the non-radiative contrast is
measured as a percentage modulation in the backward or forward scattering intensity of a
secondary probe beam [16]. Depending on the excitation wavelength, PARS can provide
sensitivity to a variety of chromophores including hemoglobin [17,18], DNA [16,19], collagen,
elastin, cytochromes, and lipids [16,20,21]. Furthermore, by simultaneously capturing both
absorption fractions, PARS provides additional contrast such as the quantum efficiency ratio
(QER). QER is defined as the ratio of the non-radiative and radiative absorption portions
(QER = Pnr/Pr) and is expected to yield additional biomolecular information [16].

Recent works have employed an ultraviolet-based (UV, 266 nm) PARS imaging system
for label-free virtual histology [22,23]. Using the UV excitation source, PARS captures
detailed nuclear contrast through the non-radiative relaxation of DNA absorption [24,25],
as well as connective tissue contrast from the radiative relaxation of primarily collagen and
elastin [26]. These contrasts are highly analogous to H&E staining and can be intelligently
combined to virtually stain the sample. A deep learning-based image-to-image translation
model is employed for H&E emulation and is trained on loosely registered PARS and
H&E whole-slide images pairs [22]. The resulting virtual H&E images demonstrate a high
degree of structural and colour similarity; however, its diagnostic efficacy has not been
thoroughly measured. To assess diagnostic equivalence, a concordance analysis can be
used to quantify the level of agreement between the PARS virtual H&E images and the
gold standard H&E-stained samples.

Concordance rates refer to the degree of agreement between two or more pathologists
who independently review the same tissue sample. Variability in the interpretation of
breast core biopsies among pathologists can arise due to several contributing factors. These
factors include the quality of the tissue sample obtained during the biopsy procedure and
the level of experience of the pathologist. In addition, the amount of tissue available for
histologic examination plays a role, wherein higher numbers of cores and longer cores tend
to improve concordance among pathologists [27]. Therefore, in the context of breast NCBs,
concordance rates are important to define because they reflect the diagnostic accuracy
of the procedure, which typically informs subsequent surgical treatment decisions. In
comparing PARS virtual H&E and true H&E, a high concordance rate would indicate a
strong agreement, suggesting that the virtual histology method is successfully replicating
the diagnostic information present in the traditional H&E staining. Evaluating concordance
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rates is crucial for validating PARS virtual H&E as a viable alternative to traditional H&E
staining techniques in diagnostic applications.

We conducted a prospective study of seven independent breast tissue core biopsies
representing a spectrum of known histologic findings spanning normal breast, ductal carci-
noma in situ, invasive ductal carcinoma, and invasive lobular carcinoma. Unstained tissue
was scanned via PARS microscopy to generate virtual H&E images, and then standard H&E
staining of these same seven core biopsies was performed. The diagnostic characteristics
of these images were assessed by multiple breast cancer expert pathologists, masked as
to the origin of the images. We performed a concordance analysis to define the diagnostic
performance of the two imaging modalities, standard H&E and PARS.

2. Materials and Methods

This study was approved by the Research Ethics Board of Alberta (Protocol ID: HREBA.CC-
18-0277) and the University of Waterloo Health Research Ethics Committee (Protocol ID: 40275;
Photoacoustic Remote Sensing Microscopy of Surgical Resection, Needle Biopsy, and Pathology
Specimens). The ethics committees waived the need for patient consent as these archival tissues
were no longer necessary for patient diagnostics. Researchers were not provided with any
information pertaining to the identity of the patients. All human tissue experiments were
conducted in accordance with the government of Canada guidelines and regulations, including
“Ethical Conduct for Research Involving Humans (TCPS2)”.

2.1. Patient Materials

Tissues were acquired from the Cross-Cancer Institute (Edmonton, AB, Canada)
through collaboration with clinical partners. The samples were obtained from anony-
mous patient donors, with all patient identifiers removed to ensure anonymity. The seven
independent breast tissue core biopsies used in this study represented a spectrum of known
histologic findings. Specifically, three of the breast core biopsy samples had invasive ductal
carcinoma only, two samples had both invasive ductal carcinoma and ductal carcinoma in
situ, one sample had invasive lobular carcinoma, and one was normal glandular tissue.

2.2. Sample Preparation Prior to PARS Imaging and Gold Standard H&E Staining

The breast core biopsy samples were obtained from patients using a hollow core
needle and processed in a dedicated core facility. Immediately after excision, the collected
tissue samples were placed in a formalin solution for fixation and preservation of the fresh
tissue. The samples were stored in the formalin solution for a period of 24 to 28 h to ensure
proper fixation. Following fixation, a skilled laboratory histotechnician performed a series
of preparation steps. First, the samples were dehydrated using ethanol and then treated
with xylene to remove any residual ethanol and fats. The samples were then subsequently
embedded in paraffin wax, creating standard formalin-fixed paraffin-embedded (FFPE)
blocks. A microtome was then used to cut thin tissue sections (~4–5 μm) from the FFPE
blocks. Tissue sections were placed on glass microscope slides and briefly baked at 60 ◦C to
evaporate excess paraffin.

2.3. PARS Microscope Imaging

Whole-slide label-free PARS images were acquired from the unstained tissue sections
using a custom-built PARS microscope system. A more detailed recount of the PARS
optical design, system schematic, and imaging process is reported in [28]. In brief, the
sample is precisely targeted with focused excitation pulses from a 50 kHz 400 ps 266 nm
UV laser (Wedge XF 266, RPMC; Bright Solutions, Pavia, Italy). To achieve 40× imaging
magnification, these excitation events are spaced 250 nm apart, while three-axis mechanical
stages move the sample across the objective lens in an “s”-shaped scanning pattern. At each
excitation event, time-resolved radiative, non-radiative relaxation, and scattering signals
are measured and compressed into single pixel intensity values. These intensity values
collectively form the three co-registered label-free images.
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To measure the radiative signal intensity, the spectrum of emitted photons is broadly
collected with an avalanche photodiode (APD130A2; Thorlabs, Newton, NJ, USA) and
the peak amplitude value is recorded. To measure the non-radiative relaxation effect,
time-domain photothermal and photoacoustic signals are recorded. This is performed
using a 405 nm continuous-wave probe beam (OBIS-LS405; Coherent, Santa Clara, CA,
USA) which is coaxially aligned with the excitation spot. From this, a single non-radiative
intensity value is extracted as the percentage modulation of the transmitted probe beam
intensity before and after excitation. The scattering intensity of the sample is determined by
calculating the average probe transmission intensity prior to excitation. Both the excitation
and detection beams are focused onto the sample using a 0.42 numerical aperture (NA)
UV objective lens (NPAL-50-UV-YSTF; OptoSigma, Santa Ana, CA, USA). The transmitted
probe light and radiative photons are collected using a 0.7 NA objective lens (278-806-3;
Mitutoyo, Aurora, IL, USA). The radiative spectrum (>266 nm) and 405 nm detection
wavelength are then spectrally separated prior to measurement.

The entire sample is scanned in 500 × 500 μm parts which are later stitched back
together into a single whole-slide image. The 405 nm scattering contrast is primarily used
to find and maintain sharp focus across the sample while the radiative and non-radiative
images are primarily used for virtual staining.

2.4. Gold Standard H&E Staining and Digital Image Acquisition

After all samples were imaged with the PARS microscope, standard H&E staining
was performed on each of the seven core biopsies. Digital whole-slide H&E images were
then acquired at 40× resolution using a standard brightfield microscope (Morpholens 1;
Morphle Digital Pathology, New York, NY, USA).

2.5. PARS Virtual H&E Colourization

A cycle-consistent generative adversarial network (CycleGAN), first developed by Zhu
et al. [29], was employed to convert the PARS label-free data to virtual H&E images. While
fixed-colour relationships have previously been applied to PARS data for emulating H&E
staining [16], there are several advantages to using a deep learning-based virtual colouring
process. For instance, a virtual staining algorithm can adaptively suppress data that is not
directly necessary for generating a virtual H&E, as demonstrated in [22]. Additionally,
the virtual colouring process has the capability to consider structural information when
combining the raw PARS contrasts into a colourized H&E. The CycleGAN deep-learning
based image-to-image translation model has previously been used for virtual H&E staining
of PARS label-free contrast [22]. Here, with the exception of the Noise2Void denoising
algorithm, the same training workflow and data preparation process was used, and a
virtual H&E model was trained using a distinct set of whole-slide image pairs. These
additional training samples underwent the same tissue processing, imaging, and staining
procedures as the core needle biopsies.

In brief, the PARS label-free whole-slide images are first loosely registered to their
corresponding ground truth H&E pairs using a simple affine transform with three regis-
tration points. Images are then cut into 512 × 512 px (128 × 128 μm) tile pairs for use in
model training.

Prior to slicing, the PARS label-free contrasts are combined into a single total absorp-
tion (TA) coloured image where the radiative channel is blue, and the non-radiative channel
is red. An example TA whole-slide image and corresponding training pairs can be seen in
Figure 1 alongside its corresponding ground truth H&E image. The virtual staining model
in this study was trained on roughly 1000 training pairs. Once the virtual staining model is
trained, the same model was then applied to all seven breast core needle biopsies, forming
the virtual and real H&E pairs.
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Figure 1. An example PARS total absorption (TA) image side-by-side with its corresponding ground
truth H&E whole-slide image. Example 512 × 512 px pairs that can be used to train the model can be
seen below each image.

2.6. Evaluation by Expert Pathologists

The PARS virtual H&E and true H&E images were randomly oriented and displayed
in a pre-specified, custom random order generation algorithm designed to maximize the
distance between the two image pairs (PARS and true H&E) for each individual sample.
Each of the 14 images were placed on a customized web-based histology visualizing
software platform without any identification except core biopsy #1 through core biopsy
#14. The order of sample display was P2, P5, T1, T4, T3, T6, T2, P1, P7, P4, T5, T7, P3,
and P6, where ‘P’ corresponds to PARS virtual H&E and ‘T’ corresponds to true H&E.
Each of 14 images were provided independently to breast cancer focused board-certified
anatomic pathologists, and 7 surveys were completed. The pathologists were masked to the
clinicopathologic details of the cases and the origin of the digital images (either true H&E
or PARS virtual H&E). Each pathologist was asked to score each image on the parameters
shown in Table 1, including histologic diagnosis, grade of in situ disease, grade of invasive
disease, and the origin of the digital image (Table 1).

Table 1. Survey questionnaire given to pathologists for each of the 14 total images.

1. The primary tissue diagnosis is:
Invasive ductal

carcinoma
Invasive lobular

carcinoma DCIS Normal glandular
tissue

Image inadequate for
diagnosis� � � � �

2. DCIS necrotic score:
No in situ

disease present Grade 1 Grade 2 Grade 3 Not assessable
� � � � �

3. DCIS nuclear grade:
No in situ

disease present Grade 1 Grade 2 Grade 3 Not assessable
� � � � �

4. Evaluation for invasive disease:
No invasive

disease Score 1 Score 2 Score 3 Not assessable
Tubule formation � � � � �

Nuclear pleomorphism � � � � �
Mitotic rate � � � � �

5. Type of image: Is this image from FFPE H&E-stained tissue?
Yes, this is H&E No, this is not H&E Uncertain� � �

� Symbol indicates the options provided to pathologists for each question.
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2.7. Statistical Analysis

Concordance analysis is a statistical method used to measure the agreement between
two or more raters or observers in their interpretation or classification of a set of data.
Concordance may be measured through Cohen and Fleiss kappa coefficients. Cohen’s
kappa coefficient is a measure of inter-rater reliability that takes into account the possibility
of agreement occurring by chance [30]. It is used to determine whether two raters agree
beyond what would be expected by chance alone. Fleiss’ kappa is an extension of Cohen’s
kappa to compare more than two raters [31].

Kappa values range from −1 to 1, with a value of 1 indicating perfect agreement and a
value of 0 indicating agreement no better than chance. Negative values indicate agreement
worse than chance. Interpretation of kappa values vary, but a value in excess of 0.6 is
considered “substantial” [32] or “good” [33].

This method has several advantages over other measures of agreement, including its
ability to account for chance agreement and its robustness to variations in the prevalence of
different categories of data [30]. All calculations were performed in R statistical software
(version 4.2.0) [34].

3. Results

3.1. Example Whole-Slide Image Pairs

Figures 2 and 3 show two exemplary sets of PARS virtual H&E and real H&E images
employed in this study. At the top of each figure is the raw total absorption (TA) PARS
image serving as the input to the virtual staining algorithm. Both of these figures show
examples of invasive ductal carcinomas, with higher magnification regions showcasing
irregular malignant glandular structures infiltrating a fibrofatty stroma, characteristic of
invasive breast carcinoma. One benefit to the virtual H&E stains is that they all share
consistent stain colouring, which matches the colouring of the training dataset. In contrast,
staining colours for true H&E images can vary depending on specifics of the preparation,
digitization and storage of the tissue samples [35]. As such, the virtual H&E images in
Figures 2 and 3 share similar staining colours, whereas their true H&E counterparts exhibit
a slight difference in colours. Nonetheless, both the virtual and H&E images achieve
excellent epithelial and stromal contrast and highlight the same tissue structures.

 

Figure 2. Example PARS total absorption (TA), virtual H&E, and true H&E pair used in this study.
The sample exhibits closely matched staining colours between the virtual and real representations.
(a,b) depict two regions of higher magnification on the sample.
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Figure 3. Example PARS total absorption (TA), virtual H&E, and true H&E pair used in this study.
Both the virtual and real H&E images exhibit excellent epithelial and stromal contrast and highlight
the same tissue structures. (a,b) depict two regions of higher magnification on the sample.

3.2. Image Origin

For each image, either true H&E or PARS virtual H&E, respondents were asked to identify
the origin of each image, whether it was a true FFPE H&E-stained slide (yes), not a true FFPE
H&E-stained slide (no), or uncertain. Three raters responded ‘Yes’ when asked if a PARS image
was a true H&E image for all seven images. The fourth respondent reported ‘Uncertain’ for
all seven PARS and H&E images. For the remaining three pathologists, PARS images were
misidentified as true H&E images 0/7, 1/7, 3/6 times and true H&E images were misidentified
as virtual H&E images 1/7, 3/7, 3/6 times (the final pathologist only responded to this question
for six image pairs). These results show that masked pathologists were unable to reliably
distinguish between conventional H&E and PARS virtual H&E.

3.3. Primary Diagnosis

Respondents were asked to make a primary diagnosis for both the PARS virtual H&E
images as well as the true H&E images. All respondents were able to make a primary
diagnosis for each whole-slide image with the exception of the fourth respondent, who
selected ‘Image inadequate for diagnosis’ precisely once.

If all primary diagnosis responses are combined into either a high-level ‘cancer’
or ‘benign’ category, out of the 48 image-pair assessments (excluding one diagnosis of
‘image inadequate’), there was only one disagreement between an H&E and PARS pair
(kappa = 0.921). In total, 40 image pairs were both assessed as cancerous, while the re-
maining 7 image pairs were both assessed as benign. This indicates there was reliable
discrimination between cancerous and benign cases. Here, ‘cancer’ comprises the diagnosis
of invasive lobular carcinoma, invasive ductal carcinoma, and DCIS.

For the specific cancer subtypes, a concordance analysis for the primary diagnosis among
the seven pathologists was performed for both true H&E only and PARS virtual H&E only. The
Fleiss’ kappa value for agreement between rater for true H&E images was 0.639. The Fleiss’
kappa value for agreement between rater for PARS virtual H&E images was 0.620. Next, a
pairwise comparison was conducted, calculating Cohen’s kappa, to assess the concordance
of the primary diagnosis between the PARS virtual H&E and true H&E images. Four of the
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seven pathologists (raters 3, 5, 6, 7) agreed on the primary diagnosis for all seven image pairs
(kappa = 1). The first respondent disagreed on the primary diagnosis for a single image pair
(kappa = 0.611). The second and fourth respondents disagreed on the primary diagnosis for
two image pairs (rater 2, kappa = 0.364; rater 4, kappa = 0.417). Table 2 shows a comparison
between the primary diagnosis given to the H&E and PARS image pairs.

Table 2. Summary of pathologist responses to question “the primary tissue diagnosis is”.

H&E Diagnosis

PARS Diagnosis IDC ILC DCIS Benign Image Inadequate Total

IDC 36 0 1 1 0 38
ILC 1 1 0 0 0 2

DCIS 1 0 0 0 0 1
Benign 0 0 0 7 0 7

Image Inadequate 1 0 0 0 0 1
Total 39 1 1 8 0 49

Note: IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; DCIS, ductal carcinoma in situ.

3.4. Evaluation of Tissue Gradings

A similar analysis to the primary diagnosis response was performed to assess the con-
cordance for the evaluation of invasive tissue components: tubule formation score, nuclear
pleomorphism score, and mitotic rate score. This analysis was also performed on the final
Nottingham histological grade. In Table 3, a Fleiss’ kappa coefficient was computed for the
within-H&E-only invasiveness gradings and the within-PARS-only invasiveness gradings. This
was performed to first observe the concordance among pathologists for H&E only and for PARS
only and contrast it with the concordance result for a pairwise comparison of concordance be-
tween H&E and PARS. For the pairwise comparison, a Cohen’s kappa coefficient was computed
for each rater and the average coefficient is reported in Table 3. The kappa coefficients were
computed from responses of all image pairs excluding image pair six. Image pair six was not
involved because it was given the primary diagnosis of ‘normal glandular tissue’ from all raters
except one (rater 2, PARS image).

Table 3. Inter-rater reliability of invasive cancer scores.

Evaluation Component Comparison Kappa Coefficient *

Invasive Tubule Formation Score
Within H&E 0.553
Within PARS 0.300
H&E–PARS 0.420

Invasive Nuclear Pleomorphism Score
Within H&E 0.051
Within PARS 0.058
H&E–PARS 0.188

Invasive Mitotic Rate Score
Within H&E 0.125
Within PARS 0.148
H&E–PARS 0.032

Nottingham Histological Grade
Within H&E 0.161
Within PARS 0.126
H&E–PARS 0.073

* The pairwise H&E–PARS comparisons are the mean Cohen’s kappa coefficient values among raters.

In some cases, for both true H&E and PARS images, pathologists were unable to
assess or submit a grading between 1 and 3. Table 4 summarizes the total number of ‘not
assessable’ responses for each image type across all 49 image pair assessments. ‘Both’ is the
number where the rater categorized both H&E and PARS images in the same pair as not
assessable for that evaluation.
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Table 4. Distribution of “not assessable” responses.

DCIS Necrotic DCIS Nuclear
Invasive
Tubule

Formation

Invasive
Nuclear

Pleomorphism

Invasive
Mitotic Rate

Nottingham
Histological

Grade *

H&E 1 7 1 5 15 15
PARS 2 4 1 6 14 14
Both 1 3 0 3 8 8

* Nottingham grade “not assessable” if any of the invasive components are “not assessable”.

For each rater, there was widespread agreement between which images were assessable
or not. The accessibility was highest for the tubule formation score (48/49 H&E, 48/49 PARS),
slightly lower for nuclear pleomorphism score (44/49 H&E, 43/49 PARS), and much lower
for the mitotic rate score and the Nottingham histological grade (34/49 H&E, 35/49 PARS).
Additionally, the number of image pairs where pathologists agreed that both PARS and H&E
was either assessable or not assessable followed the same trend. Agreement was observed in
47/49 image pairs for the tubule formation score, 44/49 for nuclear pleomorphism score, and
36/49 for the mitotic rate score and Nottingham histological grade.

4. Discussion

4.1. Study Summary and Key Findings

In this pilot validation study, seven pairs of PARS virtual and conventional H&E im-
ages were assessed by seven pathologists masked with respect to the origin of the images.
Comparative analysis of PARS and H&E using the standardized synoptic reporting of
the single core biopsy images demonstrated several key findings. Both PARS virtual and
conventional H&E images were of diagnostic quality, and reliably allowed the discrimi-
nation of cancer (the aggregate diagnoses of invasive ductal carcinoma, invasive lobular
carcinoma, and DCIS) from benign breast tissue. With respect to the primary diagnostic
categories above, the raters showed almost identical agreement across H&E images as they
did across PARS images. Furthermore, the diagnoses made by our pathologists viewing
conventional H&E were comparable to the diagnoses of pathologists viewing PARS virtual
H&E; with the granular categorization of each image into the five primary diagnostic
results, overall concordance among pathologists was substantial (kappa > 0.6) and was not
meaningfully higher with conventional H&E images rather than the PARS virtual H&E
images. Four of the seven pathologists agreed on the primary diagnosis for all seven image
pairs, one pathologist disagreed on the primary diagnosis for a single image pair, and two
pathologists disagreed on the primary diagnosis for two image pairs.

4.2. Interpretation of Findings in Context

Diagnostic reproducibility in breast cancer histology remains suboptimal and un-
derpins the difficult of evaluating new histologic techniques. Within the context of our
study, PARS-based breast core biopsy imaging was equivalent to more traditional digital
histopathology using H&E-stained slides. Inter-observer discordance appeared lower than
previously reported intra-observer discordance. For example, pathologists given the same
breast cancer biopsy material on which they had previously issued a diagnostic report,
separated by a six month interval, exhibit surprisingly low intra-observer agreement rates
of 92% for invasive breast cancer, 84% for DCIS, and 53% for benign with atypia [36]. Simi-
larly, a pathology review of the original breast cancer needle core biopsy in a pre-operative
quality assurance process identified 403 discordance cases out of 4950 (~8%) [37]. Further-
more, histologic interpretation and grading of core needle biopsies is dependent on the
quantity of available tissue, which in our study was limited to a single core biopsy per case.
The authors could find no published literature on the inter-rater reliability of breast cancer
core biopsy gradings, so it is difficult to put the grading data we generated in context,
other than to state that grading concordance was poor (0.6 or less) with both conventional
and PARS virtual H&E. As determination of mitotic rate requires the counting of mitoses
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in 10 high-power fields with invasive cancer, single core biopsies can have insufficient
tissue for reliable assessment of mitotic rate. Consequently, in clinical practice, core biopsy
pathology reports frequently omit overall grade [11,14], deferring definitive grading to the
larger, surgical excision specimens.

4.3. Strengths, Limitations, and Future Research

Among the strengths of our study was the use of masked pathologists, the use of 40×
digital scanning equivalent to standard digitized conventional H&E images, and efforts to
reduce confounding observer recognition of serially presented images by re-orienting pairs
of biopsies and maximizing their sequence separations. Furthermore, our study used the
identical tissue for the two images, rather than adjacent slides, allowing direct cell-to-cell
concordance of the images. Limitations of our study include its relatively small sample
size, and the selection of tissues representing only the most common histologic findings
on breast biopsy. Future research should aim to conduct larger studies with additional
samples to substantiate and build upon our findings.

5. Conclusions

This prospective cohort study provides evidence supporting the effectiveness of PARS
microscopy for the diagnostic interpretation of human breast tissue core biopsies. The
images were deemed to be of diagnostic quality by expert breast cancer pathologists.
The key consideration of cancer vs. benign tissue was reliably distinguished in both
conventional and PARS virtual H&E histology images. Similarly, cancer subtypes were
reliably distinguished with both techniques.

While the initial diagnosis of breast cancer is typically made via conventional H&E
evaluation of core biopsies, the complexity of the tissue preparation and staining frequently
requires one week or more before the pathology report is available. PARS is an imaging
technique that can be applied not only to fixed, unstained tissues, as in this specific study,
but also to freshly resected specimens and in vivo examination of tissue. As such, PARS
has the potential to dramatically reduce diagnostic timelines.

Finally, PARS is a non-destructive process that generates a rich dataset suitable for
analysis by artificial intelligence algorithms, which are being successfully applied to cancer
diagnosis of digital histology [38,39]. The virtual colourization process already leverages
in-house developed AI algorithms, and analysis via AI would be a natural extension of
this process. The unstained tissue remains suitable for any additional subsequent analy-
ses, which allows downstream standard-of-care processing of samples to be unaffected.
Consequently, PARS virtual histology has the potential to both improve the speed and
the accuracy of diagnostic interpretation of breast histology, reduces the consumption of
limited biopsy tissue, and is, in principle, widely applicable to histologic evaluation of
benign and malignant tissues of any origin. Moreover, this study was limited to human
breast cancers but should be directly applicable to all other types of biopsied organs since
tissue preservation and H&E staining are the same procedure for all types of tissues.
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Simple Summary: Neoadjuvant chemotherapy is the standard treatment for locally advanced rectal
cancer. Preoperative chemoradiotherapy yields clinically significant tumor regression; while some
patients exhibit a minimal response, others exhibit a complete pathologic response. We developed
deep learning and machine learning models to predict chemoradiotherapy response across external
tests using multicenter data. The machine learning model, which used harmonized image features
extracted from 18F-FDG PET, showed higher performance and demonstrated reproducibility through
external tests compared to the deep learning models using 18F-FDG PET images. Our study highlights
the feasibility of predicting the chemoradiotherapy response of individual patients using non-invasive
and reliable image feature values.

Abstract: We developed machine and deep learning models to predict chemoradiotherapy in rectal
cancer using 18F-FDG PET images and harmonized image features extracted from 18F-FDG PET/CT
images. Patients diagnosed with pathologic T-stage III rectal cancer with a tumor size > 2 cm were
treated with neoadjuvant chemoradiotherapy. Patients with rectal cancer were divided into an internal
dataset (n = 116) and an external dataset obtained from a separate institution (n = 40), which were
used in the model. AUC was calculated to select image features associated with radiochemotherapy
response. In the external test, the machine-learning signature extracted from 18F-FDG PET image
features achieved the highest accuracy and AUC value of 0.875 and 0.896. The harmonized first-order
radiomics model had a higher efficiency with accuracy and an AUC of 0.771 than the second-order
model in the external test. The deep learning model using the balanced dataset showed an accuracy
of 0.867 in the internal test but an accuracy of 0.557 in the external test. Deep-learning models
using 18F-FDG PET images must be harmonized to demonstrate reproducibility with external data.
Harmonized 18F-FDG PET image features as an element of machine learning could help predict
chemoradiotherapy responses in external tests with reproducibility.

Keywords: harmonized radiomics; machine learning; deep learning; radiochemotherapy; 18F-FDG
PET
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1. Introduction

More than 100,000 individuals worldwide are diagnosed with rectal cancer annu-
ally [1]. Rectal cancer is generally treated with neoadjuvant chemoradiotherapy, and tumor
responses to therapy are diverse, with 54–75% of patients experiencing tumor downstag-
ing [2]. The reasons for these changes in treatment response are poorly understood, and
there is no exact method for predicting the treatment response [3]. Only 15–27% of pa-
tients show no residual viable tumors on pathological examination, pathological complete
response (pCR) to chemoradiotherapy, and surgery [4]. An accurate imaging biomarker
for predicting and evaluating chemotherapy could the early classification of patients into
different prognostic groups and personalized treatment approaches. Early detection of pa-
tients who might respond poorly to chemoradiotherapy can provide them the opportunity
to undergo surgery and receive enhanced treatments to maximize treatment response.

Medical imaging can be used to noninvasively evaluate therapeutic responses to
chemotherapy. Jang et al. developed an MRI-based deep learning model for predicting
chemotherapy response in rectal cancer and reported the area under receiver operating
characteristic curve (AUC) of 0.76 and an accuracy of 0.85. 18F-FDG PET/CT has also been
widely used to monitor treatment response in many types of malignancies, stages, and
diagnoses. 18F-FDG PET can help detect glucose metabolism and reveal tumor characteris-
tics. As the anatomical data obtained from CT in rectal cancer patients can help distinguish
between physiological and pathological intestinal absorption [5], 18F-FDG PET/CT is gener-
ally considered a standard tool for predicting the response to chemotherapy in rectal cancer.
The radiomics features of 18F-FDG PET/CT can also facilitate the prediction of chemoradio-
therapy. Taking this into consideration, researchers are increasingly exploring the potential
of incorporating radiomic features from 18F-FDG PET/CT scans into predictive models to
enhance the accuracy and reliability of forecasting responses to chemoradiotherapy.

Recently, the use of machine learning techniques for large and complex biological data
analysis has increased. Deep learning techniques are considered among the most powerful
tools and are frequently used in bioinformatics because they can allow the analysis of vast
amounts of data. Many radiomics studies utilize features extracted by manual method, and
these methods are significantly influenced by the knowledge and experience of individual
researchers [6]. Consequently, deep learning techniques for computing task-adaptive
feature representations by learning layers of complex features directly from medical images
are considered suitable tools for predicting prognosis. Deep learning techniques that
can automatically learn representative information from raw image data to decode the
radiation expression type of tumors can assist in disease diagnosis, prognostic evaluation,
and treatment sensitivity prediction [7]. The model performance of deeper hidden layers
for pattern recognition has recently begun to surpass that of classical methods in different
fields. One of the most popular deep neural networks is the Convolutional Neural Network
(CNN). Random forest (RF) technology, which includes an ensemble of decision trees and
naturally integrates feature selection and interaction during learning, is a popular choice in
personalized medicine. It is nonparametric, efficient, and has a high predictive accuracy
for many types of data. RF model is increasingly being adopted because of its advantages
in dealing with small sample sizes, high-dimensional feature spaces, and complex data
structures [8].

In oncology research, particularly when assessing rectal cancer responses to therapy,
the role of SUVmax and SUVmean values derived from 18F-FDG PET/CT scans has been
under critical evaluation, as illustrated by several independent studies. Two independent
studies showed that the SUVmax predicted chemotherapy with a specificity and overall ac-
curacy of only 35% and 44%, respectively [9,10]. SUVmean, dissimilarity, and contrast from
the neighborhood intensity-difference matrix (NGTDM contrast) were significantly and
independently associated with OS [11]. A decrease in metabolic tumor volume (MTV) and
total lesion glycolysis (TLG) values was suggested to be an indicator of a positive response
to chemotherapy [12]. Chemotherapy response predictions using 18F-FDG PET/CT are not
sufficiently accurate to distinguish patients showing treatment response from those who
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respond poorly to the treatment [13]. Several studies have reported that radiation features
were scanner or protocol-sensitive, highlighting the importance of harmonizing image
features to reduce multicenter variability before pooling data from multiple sites [14,15].

In the present study, we evaluated the use of machine learning to predict chemoradio-
therapy responses using radiomics harmonization and demonstrated the reproducibility
and repeatability of the findings through rigorous external testing. Our effort is not only to
address the limitations of the current methodologies but also to contribute to the develop-
ment of a more robust and universally applicable predictive model for chemoradiotherapy
responses in cancer treatment.

2. Materials and Methods

2.1. Patient Cohort

All patients were diagnosed with pathologic T-stage III rectal cancer, with tumor
growth into the outer lining of the bowel wall without breaching its integrity. Patients with
a tumor size > 2 cm were treated with neoadjuvant chemoradiotherapy before surgery. The
internal and external cohorts comprised 116 patients from internal institutions (Korea Insti-
tute of Radiological and Medical Sciences) and 40 patients from independent institutions
(Soonchunhyang University Bucheon Hospital). The internal cohort comprised 21 patients
diagnosed with pCR and 95 patients diagnosed with non-pCR. The external cohort con-
sisted of six patients diagnosed with pCR and 31 patients diagnosed with non-pCR. The
rectal cancer region was cropped from an 18F-FDG PET image (Figure 1).

 
Figure 1. The corp process of rectal cancer region from 18F-FDG PET image.

2.2. Image Feature Extraction

We utilized LIFEx (Local Image Features Extraction, version 4.90) software to calculate
image features from 18F-FDG PET/CT images of rectal cancer patients. In total, 55 image
features were extracted. The region of interest (ROI) was marked manually with an
SUV threshold of 2.0 (Figure 2). Tumor lesions were identified in the area of 18F-FDG
uptake, which was pathologically increased and was in contrast to the CT images. To
predict chemotherapy response in rectal cancer, first- and second-order images were used
separately to compare intensity-based and GLCM-based image characteristics. The AUC
was calculated to select the image features from the first- and second-order features using
R (version 4.2.2) software (R Foundation for Statistical Computing, Vienna, Austria).
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Figure 2. Radiomics extracted from 18F-FDG PET/CT.

2.3. Harmonization Methodology

Harmonization of the image features from the internal and external 18F-FDG PET/CT
datasets was performed. Both of training set and test set were harmonized in separate
manner. The harmonization (ComBat) method was used with an online application (https:
//forlhac.shinyapps.io/Shiny_ComBat/, accessed on 28 November 2023). ComBat is a
batch-matching technology initially proposed for gene expression microarrays [16] and has
been widely used in the field of imaging. The ComBat model is given by

yij = α + γi + δiεij

where j indicates the specific measurement of image feature y, i indicates the setting of
the scanner, protocol effect, or even observer effect (called the site effect), α represents the
average value of the image features denoted as y, γi signifies additive batch effect influence
on measurement, δi represents multiplicative batch effect, and εij is an error term. Batch i
represents the experimental settings employed for y measurement, including the possible
scanner effect. Site effects γi and δi can be estimated using conditional posterior means and
subsequently corrected using

yij
ComBat =

yij − α̂ − γ̂i

δ̂i
+ α̂

where α̂, γ̂i and δ̂i are estimators of α, γi and δi. yij
ComBat is the converted yij measured

value devoid of the site i effect.

2.4. Deep Learning and Machine Learning

The CNN structure consisted of input, convolution, batch normalization, ReLU, max
pooling, linear, dropout, and output layers. The CNN parameters comprised the optimizer,
learning rate, and epoch; the values were set to Adam, 0.0002, and 200, respectively. Two
convolutional layers are used. The CNN structure was constructed using two-dimensional
input slices taken from each patient. The chemotherapy prediction performance of the RF
model was internally and externally evaluated using the scikit-learn library (version 1.2.0)
in Python (version 3.10.11).

Augmentation techniques were employed to resolve the data imbalance between pCR
and non-pCR. The “RandomRotation” function of PyTorch livery in Python were used to
randomly rotate input images by a certain angle to increase the diversity of the training
dataset. The “RandomResizedCrop” function of PyTorch livery in Python is employed
to randomly select a portion of the input image and subsequently resize it, serving the
purpose of augmenting the training dataset and enhancing its variety. The Synthetic
minority oversampling technique was implemented on the training dataset for machine
learning to mitigate data imbalance.
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After splitting the internal dataset at a 7:3 ratio, internal test were performed for both
models through evaluating AUC, accuracy, precision, and sensitivity. External test were
proceed using independent institution dataset. Confusion matrix-based evaluation metrics
including accuracy, sensitivity and precision were estimated and the threshold probability
was adjusted to the value that maximizes Youden’s index.

3. Results

3.1. Patients Cohort
18F-FDG PET/CT images from 116 internal and 40 external datasets were used for

model estimation. The average ages of the internal and external datasets were 61.85 years
and 59.88, respectively. The internal cohort comprised 75 males (64.66%) and 41 females
(35.34%). The external cohort comprised 27 males (67.5%) and 13 females (32.5%). A
summary of the demographic characteristics and pathological TNM stages is presented
in Table 1. The patient cohort included patients who developed lymph node- or distant
organ-metastases.

Table 1. Characteristics of the study cohort.

Characteristics
Internal Dataset

(n = 116)
External Dataset

(n = 40)

Chemoradiotherapy response (%)
pCR 21 (18.1) 6 (15)

non-pCR 95 (81.9) 34 (85)

Age (%)
<65 69 (59.48) 23 (57.5)
≥65 47 (40.52) 17 (42.5)

Mean age (y) 61.85 59.88

Sex (%)
Male 75 (64.66) 27 (67.5)

Female 41 (35.34) 13 (32.5)

Clinical T-stage, n (%)
T3 116 (100) 40

Clinical N stage (%)
N0 19 (16.38) 5 (12.5)
N1 31 (26.72) 8 (20)

N1a 2 (1.72)
N1b 13 (11.21) 1 (2.5)
N2 37 (31.9) 6 (15)

N2a 13 (11.21) 12 (30)
N2b 1 (0.86) 8 (20)

Clinical M stage (%)
M0 106 (91.38) 32 (80)
M1 6 (5.17)

M1a 3 (2.59) 8 (50)
M1b 1 (0.86)

Clinical stage (%)
IIA 5 (12.5)
IIB 18 (15.52)
IIC
IIIA 42 (36.21) 21 (52.5)
IIIB 46 (39.66) 6 (15)
IIIC 8 (20)
IVA 10 (8.62)

pCR: pathological complete response.
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3.2. Evaluation of Deep Learning Model

The CNN model for rectal cancer chemoradiotherapy prediction was developed using
18F-FDG PET images. The number of pCR data points from the internal and external data
increased through augmentation to 84 and 24, respectively. To equalize the amount of pCR
and non-pCR data, the pCR data from the internal and external cohorts were decreased
by random sampling. The deep learning model showed a performance, with an accuracy
of 0.867 and 0.789 in the internal test (Table 2). However, in the external test, the deep
learning signature showed an accuracy of 0.557 and 0.355 (Table 3). The deep learning
models showed higher performance in internal test then external test.

Table 2. Internal test of CNN model using 18F-FDG PET images.

Number of Data Efficiency Evaluation

Data Set pCR Non-pCR Accuracy Precision Sensitivity
AUC

(95% CI)

Imbalanced 21 21 0.867 0.871 0.871 0.903
(0.856–0.949)

Balanced 84 95 0.789 0.843 0.677 0.835
(0.804–0.866)

pCR: pathological complete response; AUC: area under receiver operating characteristic curve; CI: Confidence interval.

Table 3. External test of CNN model using 18F-FDG PET images.

Number of Data Efficiency Evaluation

Data Set pCR Non-pCR Accuracy Precision Sensitivity
AUC

(95% CI)

Imbalanced 6 6 0.557 0.542 0.495 0.498
(0.412–0.583)

Balanced 24 25 0.355 0.241 0.475 0.443
(0.378–0.509)

pCR: pathological complete response; AUC: area under receiver operating characteristic curve; CI: Confidence
interval.

3.3. Image Feature Extraction and Harmonization

A total of 55 image featuers were quantitatively calculated from 18F-FDG PET and
CT images. The image features were separated into first-order features, including conven-
tional indices, shapes, and histogram-based intensity values (n = 23). The image texture
features were assigned as second-order features, including a Gray-level co-occurrence ma-
trix (GLCM), neighborhood gray-level difference matrix (NGLDM), Gray-level run-length
matrix (GLRLM), and Gray-level zone length matrix (GLZLM) (n = 22) (Figure 2). AUC was
calculated to determine image features capable of distinguishing between chemotherapy
and non-PCR cases. Subsequently, image features from the internal dataset were selected
and used for machine learning. First-order features extracted from 18F-FDG PET and
CT with AUC over 0.65 and 0.55 were used for machine learning, respectively (Table 4).
Second-order features extracted from 18F-FDG PET and CT with AUC over 0.7 and 0.6 were
used for machine learning, respectively (Table 5). Image feature values from internal and
external institutions were harmonized to reduce multicenter variations. GLZLM GLNU,
which had the largest change in the distribution of values before and after harmonization,
was visualized (Figure 3).
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Table 4. Extraction of first-order image features by AUC cut-off value.

First-Order Image Feature

18F-FDG PET AUC CT AUC

SHAPE Sphericity 0.715 Uniformity 0.663
SUVQ1 0.707 Entropy log10 0.659

SUVmean 0.694 Entropy log2 0.659
SUVQ3 0.692 SHAPE Compacity 0.618
SUVQ2 0.69 SHAPE Volume 0.604

Uniformity 0.681 SUVstd 0.6
Entropy log10 0.677 SUVmax 0.593
Entropy log2 0.677 SUVQ3 0.589

SUVstd 0.667 Kurtosis 0.582
SUVmin 0.65 ExcessKurtosis 0.582

Volume 0.663
Sphericity 0.579
Skewness 0.578

TLG 0.563
Abbreviations: SUVQ, Standardized Uptake Value Quotient; SUV, Standardized Uptake Value; SUVstd, Stan-
dardized Uptake Value Standard Deviation; SUVmin, Standardized Uptake Value Minimum; SHAPE, Sphericity,
Histogram Analysis, and Parametric Evaluation; SUVmax, Standardized Uptake Value Maximum; TLG, Total
Lesion Glycolysis.

Table 5. Extraction of second-order image features by AUC cut-off value.

Second-Order Image Feature

18F-FDG PET AUC CT AUC

GLZLM LZLGE 0.766 NGLDM Contrast 0.704
GLZLM LZE 0.765 GLZLM ZP 0.698

GLRLM GLNU 0.763 GLRLM LRE 0.69
GLRLM SRE 0.756 GLRLM RP 0.69
GLRLM RP 0.755 GLRLM SRE 0.689

GLRLM LRE 0.753 GLZLM LZLGE 0.689
NGLDM Contrast 0.74 GLCM Homogeneity 0.689

GLZLM ZP 0.74 GLZLM LZE 0.685
GLZLM LZHGE 0.74 GLZLM LZHGE 0.683

GLCM Homogeneity 0.734 GLCM Energy 0.683
NGLDM Busyness 0.732 GLCM Entropy log10 0.667

GLRLM LRLGE 0.731 GLCM Entropy log2 0.667
GLCM Dissimilarity 0.71 GLCM Dissimilarity 0.661

GLCM Contrast 0.702 GLRLM GLNU 0.647
GLRLM LGRE 0.701 GLRLM LRHGE 0.633

NGLDM Busyness 0.628
GLRLM SRHGE 0.617
GLCM Contrast 0.613
GLRLM LRLGE 0.613

Abbreviations: GLZLM, Gray-Level Zone Length Matrix; LZLGE, Long Zone Low Gray-level Emphasis; LZE,
Low Gray-level Zone Emphasis; GLRLM, Gray-Level Run Length Matrix; SRE, Short Run Emphasis; RP, Run
Percentage; LRE, Gray-Level Run Length Matrix; NGLDM, Neighborhood Gray-Level Dependence Matrix; ZP,
Zone Percentage; LZHGE, Long-Zone High-Grey level Emphasis; GLCM, Gray-Level Co-occurrence Matrix,
LRLGE, Long Run Low Gray-level Emphasis; LGRE, Low Gray-level Run Emphasis.

3.4. Evaluation of Machine Learning Model

The extracted primary and secondary features were used as variables for the RF model,
and each model was evaluated using internal and external tests. The RF model using
harmonized first-order features showed an accuracy and AUC of 0.771, which is higher
than before harmonization in the external test. The RF model using secondary features
exhibited an accuracy and AUC of 0.675 and 0.603 in the external test after harmonization,
lower than those without harmonization. The first-order features showed higher accuracy
and AUC for the external datasets than the second-order features. In the external test
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set, the 18F-FDG PET image feature as a machine learning signature achieved the highest
accuracy with an AUC value of 0.875 and 0.896 (95% confidence interval 0.562–1) (Table 6).

(a)                                           (b) 

Figure 3. Distribution of GLZLM GLNU value before and after harmonization: (a) Distribution of
GLZLM GLNU extracted from all T-stage patients before harmonization; (b) Distribution of GLZLM
GLNU max extracted from all T-stage patients after harmonization.

Table 6. Internal and external test of RF model.

Image Feature Value

Without Harmonization Without Harmonization With Harmonization

Internal Test External Test External Test

CT PET PET/CT CT PET PET/CT CT PET PET/CT

First order

Accuracy 0.54 0.62 0.56 0.55 0.7 0.525 0.6 0.646 0.771
Precision 0.524 0.575 0.615 0.227 0.2 0.19 0.222 0.769 0.882

Sensitivity 0.88 0.92 0.32 0.833 0.333 0.667 0.667 0.417 0.625
AUC 0.54 0.62 0.56 0.667 0.549 0.583 0.627 0.646 0.771

95% CI for
AUC - - - 0.412–

0.921
0.291–
0.807

0.325–
0.842

0.37–
0.885

0.469–
0.962

0.429–
0.934

Second order

Accuracy 0.52 0.64 0.7 0.425 0.525 0.7 0.65 0.583 0.675
Precision 0.516 0.63 0.727 0.185 0.19 0.25 0.25 0.7 0.632

Sensitivity 0.64 0.68 0.64 0.833 0.667 0.5 0.667 0.292 0.5
AUC 0.52 0.64 0.7 0.593 0.583 0.618 0.657 0.583 0.603

95% CI for
AUC - - - 0.334–

0.852
0.325–
0.842

0.36–
0.876

0.402–
0.912

0.562–
1

0.344–
0.862

All

Accuracy 0.68 0.76 0.7 0.65 0.675 0.775 0.425 0.875 0.725
Precision 0.765 0.81 0.639 0.214 0.267 0.333 0.185 0.952 0.333

Sensitivity 0.52 0.68 0.92 0.5 0.667 0.5 0.833 0.833 0.833
AUC 0.68 0.76 0.7 0.588 0.672 0.662 0.593 0.896 0.77

95% CI for
AUC - - - 0.329–

0.847
0.418–
0.925 0.556–1 0.334–

0.852
0.562–

1 0.536–1

AUC: area under receiver operating characteristic curve; CI: Confidence interval.

4. Discussion

The performance of the machine learning models in predicting chemoradiotherapy
response using imaging features extracted from 18F-FDG PET images was estimated using
an external test. Conducting multicenter studies is one of the main objectives of clinical
applications. However, medical images acquired from different institutions may introduce
biases due to variations in imaging devices, data acquisition methods, and protocols [17,18].
Because radiomics is sensitive, variations in feature values may occur even in cases where
the same feature is extracted from multiple organs. Large-scale radiomic data analysis
is required to verify the reproducibility of radiomics, and radiomic features extracted
from images acquired from different centers must be integrated. In this study, radiomics
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harmonization was performed to reduce batch effects. Our results indicated that the
harmonization of image features extracted from multiple datasets is essential as a predictor.

In several studies related to cancers, the RF model has shown a high potential in
predicting clinical outcomes [19–22]. The RF model demonstrated reproducibility and
repeatability in external tests when utilizing the features extracted from 18F-FDG PET
images. Because the RF model generates predictions by randomly selecting a decision
tree, it mitigates the risk of overfitting. As it traverses the decision tree, it learns the
image features that best encapsulate the discriminatory factors for distinguishing tumor
characteristics. Moreover, it is expected to yield superior outcomes because it employs
an optimal cut-off value for discriminating between pCR and non-pCR patients based
on image features. These attributes of the RF model appear to have further enhanced its
predictive accuracy and AUC in the context of chemoradiotherapy prognosis.

Medical imaging offers vital insights into the progress of patients with rectal cancer,
and AI holds promise for developing quantitative treatment decision support tools. Some
studies have shown that tumor metabolic changes on 18F-FDG PET were more predictive
than tumor morphological modifications on CT [23–25]. In our study, image features
extracted from 18F-FDG PET images showed higher machine learning performance than
those extracted from CT images. The imaging features of CT in the external tests showed
an accuracy and AUC of 0.425 and 0.593, whereas those extracted from 18F-FDG PET
showed an accuracy and AUC of 0.875 and 0.896. Our study indicate that the radiomics of
18F-FDG PET have a more complementary effect then CT in predicting the pCR of rectal
cancer. 18F-FDG PET imaging is crucial for monitoring alterations in tumor metabolic
activity, playing a vital role in prognostic predictions for patients undergoing concurrent
chemoradiotherapy. Although CT imaging provides comprehensive details pertaining to
the tumor’s size and shape, excelling in anatomical delineation, it falls short in effectively
predicting tumor responses to chemoradiotherapy. This discrepancy highlights a potential
limitation in its prognostic utility for this specific therapeutic context. It has been observed
that the integration of radiomic features extracted from both 18F-FDG PET and CT into
predictive models can lead to a decrement in performance, suggesting a paradoxical
reduction in the model’s efficacy despite the amalgamation of data from both imaging
techniques. This underscores the need for careful consideration when combining features
from different modalities to enhance the accuracy of treatment response predictions.

The first and second selected features for AUC values encompassed those previously
identified as having prognostic significance in other investigations. The significance of
SUVmax, SUVmean, and Uniformity, which are image feature values, has been demon-
strated in previous studies. The secondary features based on GLRLM, NGLDM, and GLRM
were incorporated as important variables in the radiochemotherapy prediction model.
These feature values have demonstrated their predictive utility in various cancers. When
the chemoradiotherapy response was predicted using harmonized first-order features, it
showed a higher performance than second-order features. The first-order features were
derived from histograms, whereas the second-order features were based on the GLCM. As
the first-order values exhibited significant alterations following harmonization, the impact
of harmonization is noteworthy. Conversely, the second-order values displayed negligi-
ble changes after harmonization. Consequently, the model utilizing first-order features
exhibited superior performance in predicting rectal cancer chemotherapy outcomes.

There are several 18F-FDG PET/CT predictive radiomics for pCR to chemotherapy,
including visual response, maximum standardized uptake value (SUVmax), percentage
SUVmax reduction, TLG, and MTV [26–29]. Lovinfosse et al. revealed that SUVmean,
dissimilarity, and contrast from contrast NGTDM were significantly and independently
associated with OS in patients with rectal cancer. Jean-Emmanuel et al. predicted a complete
response using a deep neural network after rectal chemoradiotherapy with 80% accuracy in
a multicenter cohort using radiomics extracted from CT. Xiaolu M et al. The RF model for
the degree of differentiation, T-stage, and N-stage were obtained using radiomics from MRI
(AUC, 0.746; 95% CI, 0.622–0.872; sensitivity, 79.3%; and specificity, 72.2%). Giannini et al.
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evaluated a logistic regression model using six texture features (five from PET and one
from T2w MRI) to determine the chemotherapy outcomes (AUC = 0.86; sensitivity = 86%,
and specificity = 83%).

We estimated the performance of the deep learning model in predicting the outcomes
of neoadjuvant responses using multicenter 18F-FDG PET images. However, the model per-
formance proved insignificant in external tests conducted with datasets from independent
institutions. Deep learning demonstrated subpar performance in external tests owing to
the omission of dataset harmonization, which failed to account for potential biases between
the internal and external datasets. In the case of machine learning, the difference between
the internal and external datasets was drastically reduced through the harmonization of
the image feature values shown in the ROI; thus, reproducibility as a predictor of machine
learning was confirmed. Batch effects can be mitigated by preprocessing the images em-
ployed in deep learning, involving techniques such as slope distortion correction, bias
slope distortion correction, bias field correction, and intensity normalization, which help
standardize the data [30,31]. Reducing batch effects through harmonization at the image
level is expected to show high performance in sufficiently predicting chemotherapy, even
in external tests.

Our study has some limitations. Deep learning exhibited a lower performance in
external tests than in internal tests. This outcome may be attributed to the absence of
harmonization between internal and external datasets. Because the CNN model makes
predictions using the image itself, it is necessary to harmonize the image. The number of
patients within the presently registered external data may be relatively limited, leading
to suboptimal performance in external tests. Deep learning techniques in the realm of
medical image analysis are challenged by their black-box characteristics, which pose issues
for interpretability. Additionally, given the extensive discussion in this article about how
chemotherapy and radiotherapy can significantly increase the risk of infertility for women
wishing to conceive in the future, we propose a more proactive approach. Women should
be given greater autonomy over their reproductive timelines, particularly through the
strategic use of oocyte vitrification prior to undergoing such medical interventions [32].

5. Conclusions

Our research underscores the critical significance of image harmonization in multi-
center studies for accurate chemotherapy response prediction in pancreatic cancer while
also highlighting the potential of noninvasive radiomics-based machine learning mod-
els in predicting neoadjuvant chemoradiotherapy response in rectal cancer. A machine
learning model predicting radiochemotherapy outcomes for pancreatic cancer using har-
monized 18F-FDG PET imaging features was confirmed to be reproducible and repeatable
in external testing using multicenter data. A deep model using 18F-FDG PET images
without the harmonization process performed poorly in predicting neoadjuvant chemora-
diotherapy response, demonstrating the importance of image harmonization in multicenter
studies. We confirmed the possibility of using a machine learning model to predict the
chemoradiotherapy response of rectal cancer before treatment using radiomics, which can
be obtained noninvasively.
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Abstract: Real-world evidence for patients with advanced EGFR-mutated non-small cell lung cancer
(NSCLC) in Canada is limited. This study’s objective was to use previously validated DARWENTM

artificial intelligence (AI) to extract data from electronic heath records of patients with non-squamous
NSCLC at University Health Network (UHN) to describe EGFR mutation prevalence, treatment
patterns, and outcomes. Of 2154 patients with NSCLC, 613 had advanced disease. Of these, 136 (22%)
had common sensitizing EGFR mutations (cEGFRm; ex19del, L858R), 8 (1%) had exon 20 insertions
(ex20ins), and 338 (55%) had EGFR wild type. One-year overall survival (OS) (95% CI) for patients
with cEGFRm, ex20ins, and EGFR wild type tumours was 88% (83, 94), 100% (100, 100), and 59%
(53, 65), respectively. In total, 38% patients with ex20ins received experimental ex20ins targeting
treatment as their first-line therapy. A total of 57 patients (36%) with cEGFRm received osimertinib
as their first-line treatment, and 61 (39%) received it as their second-line treatment. One-year OS
(95% CI) following the discontinuation of osimertinib was 35% (17, 75) post-first-line and 20% (9,
44) post-second-line. In this real-world AI-generated dataset, survival post-osimertinib was poor in
patients with cEGFR mutations. Patients with ex20ins in this cohort had improved outcomes, possibly
due to ex20ins targeting treatment, highlighting the need for more effective treatments for patients
with advanced EGFRm NSCLC.

Keywords: real-world evidence; artificial intelligence; non-small cell lung cancer

1. Introduction

Lung cancer is the most common cancer diagnosis in Canada, with an estimated
1 in 15 Canadians receiving a diagnosis in their lifetime [1]. While the prognosis and
outcomes of lung cancer have improved in recent decades, largely as a result of novel,
innovative therapies and increased awareness of the risk factors, this disease remains
the deadliest cancer in Canada [1,2]. Approximately 85% of patients with lung cancer
present with NSCLC, with up to two-thirds harbouring actionable driver mutations, most
commonly occurring in the epidermal growth factor receptor (EGFR) [3–5]. EGFR mutations
can be categorized based on the type of mutation and the exon in which they occur. Exon
19 deletions (ex19del) and exon 21 L858R point mutations account for up to 90% of all EGFR
mutations and are often referred to as common sensitizing EGFR mutations (cEGFRm) [6].
The third most frequently occurring mutations are exon 20 insertion mutations (ex20ins)
and represent approximately 1–12% of all EGFR mutations, and 0.1–4% of all NSCLC
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mutations [7]. However, uncertainty in the real-world estimates of these mutations exist,
partly due to the evolution of testing methods, with recent guidelines recommending
next-generation sequencing (NGS) for identifying actionable driver alterations, such as
EGFR [8,9]. This technique has improved sensitivity, can detect mutations using a smaller
amount of DNA, and sequences a greater part of the gene compared with the historical
standard, polymerase chain reaction (PCR), which is limited to specific loci and can miss
up to 50% of ex20ins mutations, but it requires a smaller tissue sample than NGS [10–12].

The treatment of patients with EGFR mutations has been revolutionized by tyro-
sine kinase inhibitor (TKI) targeted therapy. The recommended first-line therapy for
advanced-stage patients with cEGFRm in Canada is the third-generation kinase inhibitor,
osimertinib [13,14]. However, the long-term benefit of this therapy is limited by the devel-
opment of acquired resistance via multiple mechanisms [15]. Recently, multiple new options
for overcoming osimertinib resistance have emerged, including amivantamab + lazertinib,
chemotherapy, local therapy (surgery or radiation), chemotherapy + amivantamab/lazertinib,
antibody-drug conjugates (ADCs), including patritumab deruxtecan and datopotamab
deruxtecan, and combined targeted therapies against emergent targetable alterations (e.g.,
for MET amplification: osimertinib + savolitinib and tepotinib + osimertinib) [16]. These
emerging treatment options are particularly important as many patients with cEGFRm
who are treated with a first-line TKI die before receiving a second-line one [17]; thus, there
remains a high unmet need for effective and safe therapies early in patients’ treatment
journeys, and there is currently a lack of real-world evidence (RWE), specifically in the
Canadian setting, on patients with cEGFRm who may benefit from these therapies.

Independent of acquired resistance, ex20ins are associated with limited response to
TKIs [18]. Compared with other EGFR mutations, patients with ex20ins have especially poor
prognosis, with markedly reduced sensitivity to approved EGFR kinase inhibitors [18–20].
Until recently, there have been limited treatment options for patients with ex20ins, with the
recommended first-line treatment being either platinum-based chemotherapy or clinical
trial [13]. However, the Canadian treatment landscape is evolving, as the results from
the phase III PAPILLON study have established amivantamab + chemotherapy as a new
first-line standard for this patient population [21]. As the treatment landscape changes,
there is a need to gain a better understanding of the patients who may benefit from these
newer therapies.

Over the past two decades, the generation of RWE from electronic health record (EHR)
systems has contributed new insights into the prevalence of lung cancer subtypes and
the disease characteristics and clinical outcomes for these patients. Through the routine
collection of clinical evidence, real-world data (RWD) from EHRs can be harnessed to
study disease progression, treatment patterns, and measure survival outcomes over time.
Recent advances in artificial intelligence (AI) and Natural Language Processing (NLP) have
enabled the extraction and analysis of RWD from clinical documentation and unstructured
text (such as clinical notes and lab results) housed within EHR systems, with higher
accuracy and at a significantly greater scale than manual abstraction, the current standard
practice for extracting RWD from EHRs [22,23]. It is increasingly being recognized that
these technologies play an important role in clinical medicine by allowing clinician’s and
researchers access to previously inaccessible data, which can be used to inform clinical
decision making and enhance clinical care [24].

The aim of this study was to leverage the previously validated, commercially available
AI technology, Pentavere’s DARWENTM, to identify patients and extract RWD from EHRs
at the University Health Network Princess Margaret Cancer Centre (UHN-PMCC), the
largest cancer-treating centre in Canada, to understand the prevalence, treatment patterns,
and clinical outcomes of patients diagnosed with advanced cEGFRm (ex19del and exon 21
L858R) and ex20ins mutations.
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2. Materials and Methods

2.1. Study Design

This was a retrospective cohort study of data elements from EHRs stored at the
UHN-PMCC using AI technology. The AI engine combines large language models and an
ensemble of other techniques that have previously been evaluated and validated against
manual abstraction across multiple disease domains, including lung cancer [22,25], breast
cancer [26], dermatology [27], and infectious diseases [28] at multiple Canadian institutions,
including the UHN-PMCC.

The study period extended from 1 January 2017 to 1 March 2022 and used the institu-
tional Cancer Registry. All adult patients who were ≥18 years of age with non-squamous
NSCLC and seen at the UHN-PMCC during the study period were included in the study.
Follow-up data from EHRs were included up to the extent that they were available within
the study period. The initial list of patients was provided from the UHN-PMCC’s Molecular
Testing Database.

2.2. Data Extraction

Clinical features extracted included mutation status, clinical and demographic charac-
teristics, treatment information, and clinical outcomes. Data were extracted directly from
the EHRs of all patients with non-squamous NSCLC seen at the UHN-PMCC between
1 January 2017 and 1 March 2022. The AI engine was installed on the UHN-PMCC’s
infrastructure and used to extract relevant data variables directly from the source systems
where available. Clinical outcomes were derived using the extracted data, including time
to treatment discontinuation (TTD) and overall survival (OS). All features were extracted
following a set of pre-defined rules and definitions developed by the UHN-PMCC Principal
Investigator. DARWENTM AI has previously been validated against the manual chart re-
view for the same clinical features at the UHN-PMCC, the process for which has previously
been described [22].

2.3. Outcomes

The primary outcome of interest was mutation prevalence. Other outcomes of interest
included the frequency of patients receiving each type of therapy by line of therapy (LoT),
time from diagnosis to treatment initiation per LoT, and clinical outcomes, including TTD,
OS, and OS post-osimertinib. TTD was measured from the date of the treatment initiation
of one line of therapy to the last known date of the treatment of the same line of therapy.
TTD was derived for first-line, second-line, and third-line therapies. OS was measured from
date of diagnosis to date of death, and from date of treatment initiation to date of death
for first-line and second-line therapies. Patients who did not experience the event before
the study’s end period were censored at their date of last follow-up or the study’s end
date, whichever came first. Overall survival, specifically for patients who had discontinued
osimertinib, was explored and measured from the stop date of osimertinib to date of death.
Patients who did not experience the event before the study’s end period were censored at
their date of last follow-up or the study’s end date, whichever came first. OS was derived
from the end of first-line osimertinib and the end of second-line osimertinib.

2.4. Statistical Analyses

Descriptive analyses were performed to summarize the patients’ demographics, dis-
ease characteristics, treatment patterns, and outcomes of interest across the study cohort.
Continuous variables were described using mean and standard deviation (SD) and the
median and range. Categorical variables were described by frequencies and related per-
centages. The number of missing observations was reported for all variables. Time to
event(s) was described using Kaplan–Meier curves that visually estimated the distribution
of times to some events (e.g., OS) and accounted for patients for whom the event had not
yet occurred, i.e., following standard censoring rules. Numbers at risk and the cumulative
number of events were reported for each curve.
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3. Results

3.1. Patients

Between 1 January 2017 and 1 March 2022, 2154 patients were identified with non-
squamous NSCLC and were seen at the UHN-PMCC. Of these patients, 613 patients had
advanced-stage disease, of which 136 (22%) patients had cEGFRm at diagnosis, 8 (1%) had
ex20ins at diagnosis, 338 (55%) had EGFR wild type tumours at diagnosis, and 131 (21%)
did not have mutation testing at diagnosis conducted at the UHN-PMCC. A flow diagram
of the included patients is presented in Supplementary Figure S1.

Across all 613 patients with advanced-stage disease, median (range) age at advanced
diagnosis was 67 years (27–96); 51% of patients were male, 84% had adenocarcinoma, and
38% had never been smokers. At advanced diagnosis, 30% of patients presented with bone
metastases, and 14% had brain metastases (Table 1). The majority of patients (81%) were
diagnosed at the UHN-PMCC. Of the 131 patients who did not have mutation testing at
the UHN-PMCC, 56% were also not diagnosed at the UHN-PMCC, and all 131 were not
included in the clinical outcome analyses. The median (range) duration of the follow-up
from diagnosis for all patients was 12.3 months (0.0–61.8) (Table 1). AI validation metrics
for the AI-extracted clinical features are presented in Supplementary Table S1.

Table 1. Clinical, demographic, and disease characteristics of advanced-stage NSCLC patients
stratified by EGFR mutation status at diagnosis.

Common
Sensitizing EGFR

(N = 136)

EGFR Wild Type b

(N = 338)

Exon 20
Insertion

(N = 8)

EGFR Test Not
Conducted at

UHN
(N = 131)

Total
(N = 613)

Age at diagnosis
Mean (SD) 65.1 (11.6) 67.6 (11.6) 59.9 (19.3) 65.3 (10.6) 66.5 (11.6)

Median (range) 65.0
(34.0, 91.0)

68.0
(27.0, 96.0)

59.0
(38.0, 88.0)

66.0
(32.0, 88.0)

67.0
(27.0, 96.0)

Sex
Female 89 (65.4%) 146 (43.2%) 4 (50.0%) 64 (48.9%) 303 (49.4%)
Male 47 (34.6%) 192 (56.8%) 4 (50.0%) 67 (51.1%) 310 (50.6%)

Histology
Adenocarcinoma 129 (94.9%) 276 (81.7%) 7 (87.5%) 102 (77.9%) 514 (83.8%)
Adenosquamous 0 (0.0%) 2 (0.6%) 1 (12.5%) 0 (0.0%) 3 (0.5%)
Large cell 2 (1.5%) 21 (6.2%) 0 (0.0%) 16 (12.2%) 39 (6.4%)
Sarcomatoid 0 (0.0%) 5 (1.5%) 0 (0.0%) 6 (4.6%) 11 (1.8%)
Non-small cell
(unspecified) 5 (3.7%) 34 (10.1%) 0 (0.0%) 7 (5.3%) 46 (7.5%)

Smoking status
Smoker 8 (5.9%) 101 (29.9%) 0 (0.0%) 30 (22.9%) 139 (22.7%)
Former smoker 29 (21.3%) 152 (45.0%) 2 (25.0%) 50 (38.2%) 233 (38.0%)
Never smoked 98 (72.1%) 83 (24.6%) 6 (75.0%) 48 (36.6%) 235 (38.3%)
Missing 1 (0.7%) 2 (0.6%) 0 (0.0%) 3 (2.3%) 6 (1.0%)

Weight Category
<80 kg 105 (77.2%) 241 (71.3%) 6 (75.0%) 98 (74.8%) 450 (73.4%)
≥80 kg 17 (12.5%) 59 (17.5%) 0 (0.0%) 21 (16.0%) 97 (15.8%)
Missing 14 (10.3%) 38 (11.2%) 2 (25.0%) 12 (9.2%) 66 (10.8%)
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Table 1. Cont.

Common
Sensitizing EGFR

(N = 136)

EGFR Wild Type b

(N = 338)

Exon 20
Insertion

(N = 8)

EGFR Test Not
Conducted at

UHN
(N = 131)

Total
(N = 613)

ECOG at diagnosis
0 23 (16.9%) 34 (10.1%) 1 (12.5%) 17 (13.0%) 75 (12.2%)
1 84 (61.8%) 180 (53.3%) 5 (62.5%) 64 (48.9%) 333 (54.3%)
2 15 (11.0%) 59 (17.5%) 1 (12.5%) 20 (15.3%) 95 (15.5%)
3 9 (6.6%) 28 (8.3%) 1 (12.5%) 13 (9.9%) 51 (8.3%)
4 1 (0.7%) 5 (1.5%) 0 (0.0%) 2 (1.5%) 8 (1.3%)
Missing 4 (2.9%) 32 (9.5%) 0 (0.0%) 15 (11.5%) 51 (8.3%)

Organ level metastatic
sites at diagnosis a

Bone 46 (33.8%) 119 (35.2%) 3 (37.5%) 18 (13.7%) 186 (30.3%)
Brain 21 (15.4%) 46 (13.6%) 1 (12.5%) 16 (12.2%) 84 (13.7%)
Lung 22 (16.2%) 55 (16.3%) 0 (0.0%) 14 (10.7%) 91 (14.8%)
Liver 19 (14.0%) 42 (12.4%) 2 (25.0%) 17 (13.0%) 80 (13.1%)

Diagnosed at UHN
True 120 (88.2%) 314 (92.9%) 5 (62.5%) 58 (44.3%) 497 (81.1%)
False 16 (11.8%) 24 (7.1%) 3 (37.5%) 73 (55.7%) 116 (18.9%)

Follow-up time since
diagnosis (months)
Mean (SD) 21.4 (14.1) 13.6 (14.0) 24.0 (19.8) 19.0 (16.0) 16.6 (14.9)

Median (range) 19.2
(0.4, 58.9)

8.0
(0.3, 59.4)

20.2
(0.4, 61.0)

14.7
(0.0, 61.8)

12.3
(0.0, 61.8)

a Patients could have had multiple metastatic sites at diagnosis, and therefore percentages may not add up to
100%. Further, patients may have had metastases to body parts other than the bone, brain, lung, and liver, which
also explains why percentages may not add up to 100%. b Includes patients with a negative EGFR test within
3 months of NSCLC diagnosis but does not exclude the possibility of other mutations. ECOG: Eastern Cooperative
Oncology Group; NSCLC: non-small-cell lung cancer; SD: standard deviation; UHN: University Health Network.

3.2. Treatment Patterns

Treatment patterns were assessed from the date of diagnosis until date of death, date
of last follow-up, or the end of the study period, whichever came first. For advanced-stage
patients with cEGFRm at diagnosis, 129/136 (95%) received first-line therapy, of which
124/129 (96%) received an EGFR TKI in their first-line treatment (Figure 1A; Supplementary
Table S2). Of patients with cEGFRm, 62/136 (46%) did not go on to receive second-line
treatment during the study period (Figure 1A) (34 of which received osimertinib in their
first-line therapy and 19 of which received gefitinib in their first-line therapy), and 21/62
(34%) of these patients died. Of patients who did go on to receive second-line (74/136 [54%])
and third-line therapies (27/136 [20%]), the most common treatment type was also EGFR
TKIs in those lines (Figure 1A). Between 2017 and 2019, gefitinib was the most common
first-line EGFR TKI administered for patients with cEGFRm, with 81% of patients who
initiated an EGFR TKI in 2017–2019 receiving gefitinib (Table 2). Coincident with provincial
funding as of January 2020, osimertinib was the most frequently used first-line EGFR TKI
from 2020 to 2022, with 93% of patients who initiated an EGFR TKI in this period receiving
osimertinib (Table 2).
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(A) 

(B) 

Figure 1. Overall treatment patterns in advanced-stage NSCLC patients by mutation status at
diagnosis. Line of therapy is denoted by the number followed by the treatment regimen, with first-
line on the left and subsequent lines to the right. “Other” includes capmatinib, savolitinib, poziotinib,
mobocertinib, lazertinib, and telisotuzumab. EGFR: epidermal growth factor receptor; NSCLC: non-
small-cell lung cancer; TKI: tyrosine kinase inhibitor. (A) Common sensitizing EGFR mutations.
(B) Exon 20 insertion mutations.
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For advanced-stage patients with ex20ins at diagnosis, 7/8 (88%) received first-line
therapy (Figure 1B), and 3/8 (38%) received the experimental ex20ins targeting TKI, pozi-
otinib (Supplementary Table S1). Second-line therapy was received by 5/8 (63%) pa-
tients (4/8 received chemotherapy), and 1/8 (13%) went on to receive third-line therapy
(Figure 1B). For advanced-stage patients with EGFR wild type tumours at diagnosis, treat-
ment patterns were generally heterogeneous across all lines of therapy (Supplementary
Table S1).

Table 2. First-line EGFR TKI treatment patterns in advanced-stage NSCLC patients stratified by year
of initiating treatment and mutation status at diagnosis.

Common Sensitizing EGFR EGFR Wild Type
Exon 20

Insertion

2017
(N = 17)

2018
(N = 36)

2019
(N = 28)

2020
(N = 17)

2021
(N = 24)

2022
(N = 2)

2017
(N = 1)

2019
(N = 3)

2021
(N = 5)

2018
(N = 1)

Afatinib 1
(5.9%)

6
(16.7%)

2
(7.1%)

1
(5.9%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

1
(33.3%) 4 (80.0%) 1

(100.0%)

Erlotinib 1
(5.9%)

0
(0.0%)

0
(0.0%)

1
(5.9%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

Gefitinib 15
(88.2%)

30
(83.3%)

21
(75.0%)

1
(5.9%)

0
(0.0%)

0
(0.0%)

1
(100.0%)

2
(66.7%)

0
(0.0%)

0
(0.0%)

Osimertinib 0
(0.0%)

0
(0.0%)

5
(17.9%)

14
(82.4%)

24
(100.0%)

2
(100.0%)

0
(0.0%)

0
(0.0%)

1
(20.0%)

0
(0.0%)

Bolded N includes patients who initiated a first-line EGFR TKI in the specified year. EGFR: epidermal growth factor
receptor; NSCLC: non-small-cell lung cancer; TKI: tyrosine kinase inhibitor.

The median time from advanced diagnosis to first-line treatment initiation for patients
with cEGFRm, ex20ins, and EGFR wild type tumours was 0.8 months, 2.5 months, and
1.5 months, respectively (Supplementary Table S1). Longer time from advanced diagnosis
to first-line treatment initiation was observed for patients with ex20ins, likely due to a lack
of clear treatment options for these patients, and time required for clinical trial enrolment.

3.3. Clinical Outcomes

For patients with cEGFRm, median TTD1 (95% CI), TTD2, and TTD3 was 9.0 months
(7.0, 10.3), 6.7 months (4.8, 10.7), and 2.9 months (1.6, 6.8), respectively (Table 3, Figure 2).
For patients with ex20ins median, TTD1 (95% CI) and TTD2 were 5.0 months (3.5, NA) and
7.9 months (5.7, NA), respectively (Table 3, Figure 2). For patients with EGFR wild type
tumours, treatment duration was generally shorter, with median TTD1 (95% CI), TTD2, and
TTD3 of 4.0 months (3.3, 4.6), 2.8 months (1.9, 4.8), and 2.1 months (1.3, 5.8), respectively
(Table 3, Figure 2).

Table 3. Time to event analyses for patients stratified by mutation status at diagnosis.

Clinical Outcome 12 Months (95% CI) 24 Months (95% CI) Median (95% CI)

TTD1
Exon 20 insertion 14% (2, 88) 14% (2, 88) 5 months (3.5, NA)

Common sensitizing EGFR 34% (27, 43) 12% (7, 19) 9 months (7, 10.3)
EGFR wild type 20% (15, 26) 7% (4, 11) 4 months (3.3, 4.6)

TTD2
Exon 20 insertion NA NA 7.9 months (5.7, NA)

Common sensitizing EGFR 34% (25, 46) 8% (4, 17) 6.7 months (4.8, 10.7)
EGFR wild type 15% (10, 24) 4% (1, 10) 2.8 months (1.9, 4.8)
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Table 3. Cont.

Clinical Outcome 12 Months (95% CI) 24 Months (95% CI) Median (95% CI)

TTD3
Exon 20 insertion NA NA 2.8 months (NA, NA)

Common sensitizing EGFR 11% (4, 32) 4% (1, 25) 2.9 months (1.6, 6.8)
EGFR wild type 11% (4, 27) 3% (0, 19) 2.1 months (1.3, 5.8)

OS from diagnosis
Exon 20 insertion 100% (100, 100) 80% (52, 100) NA months (32.1, NA)

Common sensitizing EGFR 88% (83, 94) 63% (54, 73) 30.1 months (25.2, 38.9)
EGFR wild type 59% (53, 65) 38% (32, 44) 16.2 months (13.2, 20.5)

OS from first-line
Exon 20 insertion 100% (100, 100) 60% (29, 100) NA months (18.4, NA)

Common sensitizing EGFR 85% (78, 92) 57% (48, 69) 26.4 months (23.2, 36.8)
EGFR wild type 62% (56, 69) 38% (32, 46) 19.3 months (14.2, 22.6)

OS from second-line
Exon 20 insertion 75% (43, 100) NA 13.1 months (11, NA)

Common sensitizing EGFR 56% (45, 69) 42% (31, 58) 20.3 months (11, 40.2)
EGFR wild type 48% (39, 59) 26% (17, 38) 10.6 months (7.6, 15.3)

OS from end of first-line osimertinib
Common sensitizing EGFR 35% (17, 75) - 5.6 months (3.2, NA)

OS from end of second-line osimertinib
Common sensitizing EGFR 20% (9, 44) - 3.3 months (2, 10.4)

CI: confidence interval; EGFR: epidermal growth factor receptor; NA: Not applicable either due to small sample size
or confidence interval not reached; OS: overall survival; TTD: time to treatment discontinuation.

The 1-year OS from diagnosis for patients with cEGFRm, ex20ins, and EGFR wild type
was 88% (83, 94), 100% (100, 100), and 59% (53, 65), respectively (Table 3). OS from first-line
and second-line therapies can be found in Table 3.

Of advanced-stage patients with cEGFRm, 57 (36%) received first-line osimertinib, and
61 (39%) received second-line osimertinib. After discontinuing osimertinib treatment, OS
was low: 1-year OS (95% CI) was 35% (17, 75) post-first-line osimertinib and 20% (9, 44)
post-second-line. Median OS was 5.6 months (3.2, NA) post-first-line osimertinib and 3.3
months (2.0, 10.4) post-second-line (Table 3, Figure 3).
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(A) (B) 

 
(C) 

Figure 2. TTD in advanced-stage NSCLC patients stratified by mutation status. a Probability of
staying on the line treatment. EGFR: epidermal growth factor receptor; NSCLC: non-small-cell lung
cancer; TTD: time to treatment discontinuation. (A) TTD1. (B) TTD2. (C) TTD3.
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(A) (B) 

Figure 3. OS from end of first-line or second-line in patients with common sensitizing EGFR mutations
who received osimertinib. (A): OS from end of first-line osimertinib; (B): OS from end of second-line
osimertinib. EGFR: epidermal growth factor receptor; OS: overall survival.

4. Discussion

This study identified Canadian patients with non-squamous NSCLC at the largest
cancer treatment centre in Canada and described the real-world characteristics, treatment
patterns, and clinical outcomes for patients with advanced ex19del, exon 21 L858R, and
ex20ins EGFR mutations using AI-extracted data. It was found that, as expected, patients
with cEGFRm were primarily treated with EGFR TKIs. TKI treatment use changed over
time with the approval of novel therapies. From 2020, osimertinib emerged as the most
frequently administered EGFR TKI, in line with the treatment guidelines. Importantly, it
was found that patients with cEGFRm treated with osimertinib progressed on therapy and
exhibited poor survival rates after discontinuing treatment, emphasizing the need for more
efficacious therapies earlier in patients’ treatment journeys. It was also found that several
patients with ex20ins were treated with the experimental ex20ins TKI, poziotinib, and may
have had better survival as a result.

Among 2154 patients with non-squamous NSCLC and seen at the UHN-PMCC during
the study period, 613 had advanced disease, of which 1% had ex20ins at diagnosis, consis-
tent with other real-world estimates in Canada, and at the UHN-PMCC [29–31], median
time from advanced diagnosis to initiating first-line therapy was longer for patients with
ex20ins in comparison to patients with cEGFRm (2.5 months versus 0.8 months, respec-
tively), likely due to the absence of a clear first-line targeted treatment option for these
patients, coupled with the time required for clinical trial enrolment.

A recent European RWE registry study investigated the use of different treatment types
and their impact on survival rates among patients with EGFR ex20ins mutations. Novel
targeted agents, including amivantamab, mobocertinib, and poziotinib, were associated
with improved survival rates in the first-line setting. As well, in the multivariate analysis,
type of treatment (novel targeted therapy versus chemotherapy) had a significant effect on
OS (p = 0.03) [32]. In this study, of patients with ex20ins, 38% received the experimental
exon 20 targeting TKI, poziotinib, in their first-line therapy and achieved better survival
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than patients with cEGFRm or EGFR wild type, emphasizing the benefit of novel, targeted
therapies; although, it is important to acknowledge the limitation of the survival analyses
for the ex20ins patient group in this study due to the small sample size associated with
this rare mutation. However, in the phase II trial of poziotinib, serious adverse events
were observed, including grade ≥3 diarrhoea and rash, leading to treatment interruptions,
which could explain the shorter TTD1 for patients with ex20ins in this study compared
with cEGFRm. Further, the recent phase III trial of mobocertinib in first-line therapy for
ex20ins patients was terminated early due to futility. These results highlight the need for
efficacious and safe exon 20 targeting therapies to improve survival outcomes for these
patients, in alignment with the evolving treatment landscape.

Over the study period, treatment patterns for patients with cEGFRm evolved with
the introduction of novel third-generation EGFR TKIs. From 2017 to 2019, gefitinib was
the predominant first-line EGFR TKI, followed by osimertinib in 2020–2022. However, it is
noteworthy that 62/136 (46%) of patients with cEGFRm (34 of which received osimertinib
in their first-line treatment) did not go on to receive second-line therapy during the study
period, and of these patients, 21/62 (34%) died. For patients with cEGFRm who received os-
imertinib either in their first-line or second-line therapies, OS following the discontinuation
of osimertinib was poor (1-year OS [95% CI] was 35% (17, 75) post-first-line osimertinib),
aligning with findings observed in the RWE study of US databases conducted by Girard
et al. (2023) [33]. These observations highlight the importance of effective novel treatment
options early in patients’ treatment journeys. Further studies may wish to investigate the
specific risk factors associated with the mortality of patients prior to receiving second-line
therapy.

As this study was a retrospective study of data extracted from EHRs, limitations due
to the availability and accuracy of data captured in the EHR were observed. For example,
many patient deaths occurred in the community setting rather than the hospital, and dates
of death are only collected when hospitals are notified of a patient’s death, which may have
resulted in missing mortality data. This could have led to higher levels of data censoring in
Kaplan–Meier curves and survival analyses. Additionally, at the UHN-PMCC, oral therapy
prescription data are only dictated into the clinical notes and, therefore, these records
are susceptible to incompleteness and human dictation error. Further, as this study was
conducted at one urban treatment site in Toronto, Ontario, the cohort may not accurately
represent the wider provincial or national population and may not be directly reproducible;
however, the prevalence rates observed in this study do align with previous studies in
Canada and at the UHN-PMCC [29–31].

5. Conclusions

This study identified patients with non-squamous NSCLC at one of Canada’s largest
cancer treatment centres using previously validated AI technology. Using these types of
technologies allows for the extraction of previously unavailable data in a more consistent,
efficient, and scalable way compared to manual chart review [22]. The results from this
study highlight the importance of effective novel targeted therapies for improving survival
outcomes in patients with ex20ins EGFR mutations, in alignment with the evolving treat-
ment landscape for first-line therapy. The findings also emphasize the need for optimal
therapies early in the treatment of patients with cEGFRm.
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Abstract: Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) are widely used in patients with hor-
mone receptor-positive (HR+)/human epidermal growth factor receptor 2 negative (HER2−) ad-
vanced/metastatic breast cancer (ABC/MBC) in first line (1L), but little is known about their real-
world use and clinical outcomes long-term, in Canada. This study used Pentavere’s previously
validated artificial intelligence (AI) to extract real-world data on the treatment patterns and outcomes
of patients receiving CDK4/6i+endocrine therapy (ET) for HR+/HER2− ABC/MBC at Sinai Health
in Toronto, Canada. Between 1 January 2016 and 1 July 2021, 48 patients were diagnosed with
HR+/HER2− ABC/MBC and received CDK4/6i + ET. A total of 38 out of 48 patients received
CDK4/6i + ET in 1L, of which 34 of the 38 (89.5%) received palbociclib + ET. In 2L, 12 of the 21 (57.1%)
patients received CDK4/6i + ET, of which 58.3% received abemaciclib. In 3L, most patients received
chemotherapy (10/12, 83.3%). For the patients receiving CDK4/6i in 1L, the median (95% CI) time
to the next treatment was 42.3 (41.2, NA) months. The median (95% CI) time to chemotherapy was
46.5 (41.4, NA) months. The two-year overall survival (95% CI) was 97.4% (92.4, 100.0), and the
median (range) follow-up was 28.7 (3.4–67.6) months. Despite the limitations inherent in real-world
studies and a limited number of patients, these AI-extracted data complement previous studies,
demonstrating the effectiveness of CDK4/6i + ET in the Canadian real-world 1L, with most patients
receiving palbociclib as CDK4/6i in 1L.

Keywords: real-world evidence; CDK4/6 inhibitors; AI; HR+; HER2−; metastatic breast cancer

1. Introduction

Breast cancer is the most common global cancer diagnosis and accounts for one out
of four cancer cases and one out of six cancer deaths in females [1]. In Canada, the age-
standardized mortality rate for breast cancer has declined by 48% since the 1980s due to
improved screening and more effective targeted systemic therapies [2]. However, despite
this trend, 5-year survival differs between stage 0–I (100%), stage II (93%), stage III (72%),
and stage IV advanced/metastatic breast cancer (ABC/MBC) (22%) [3]. Following the
introduction of cyclin-dependent kinase 4/6 inhibitors (CDK4/6i), palbociclib, ribociclib,
and abemaciclib, over the last 8 years, CDK4/6i with endocrine therapy (ET) have become
the standard of care for patients with hormone receptor-positive (HR+)/human epidermal
growth factor receptor 2 negative (HER2-) ABC/MBC in first line (1L). The combination is
recommended by all treatment guidelines, including the National Comprehensive Cancer
Network (NCCN), the Canadian Cancer Society, and Canadian oncologists, and is sup-
ported by several phase III trials and RWE studies in the US [4–14]. However, there remains
a lack of evidence on longer-term treatment patterns and clinical outcomes in patients with
HR+/HER2− ABC/MBC in the Canadian real-world setting.
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Real-world evidence (RWE) is increasingly being used to understand treatment use
and outcomes in clinical practice and can complement the findings from randomized
clinical trials (RCTs) [15–17]. For example, in the multicenter, heterogenous US cohort
study by Rugo et al., (2022), palbociclib plus the aromatase inhibitor demonstrated greater
median real-world progression-free survival (rwPFS) versus the aromatase inhibitor alone
(19.3 [17.5–20.7] versus 13.9 [12.5–15.2] months; hazard ratio, 0.70 [95% CI, 0.62–0.78];
p < 0.0001), complementing PFS from the phase III PALOMA-2 study of palbociclib and
letrozole versus letrozole and placebo (24.8 months [95% CI, 22.1–NA] versus 14.5 [95% CI,
12.9–17.1] months; hazard ratio, 0.58; [95% CI, 0.46 to 0.72]; p < 0.001) [7,12].

Recently, electronic health records (EHRs) have been leveraged as a rich source of real-
world data (RWD), as they can provide a comprehensive overview of patients’ disease in a
centralized location, allowing researchers to study disease progression, treatment patterns,
and clinical outcomes over time. Still, complexities exist in harnessing data from the EHR.
Basic patient information, such as demographics, is typically easier to collect, as it is held
within structured fields of the EHR, but it may be incomplete or incorrect. Other valuable
features, such as evidence of metastases, are often found within the unstructured fields,
which are less easy to collect. A manual chart review is commonly used for extracting
RWD from the EHR [18]. However, due to the complexities of the EHR, this is time-
consuming, prone to human error, lacks scalability, and can result in inconsistent data.
These challenges have contributed to the limited translation of EHR adoption into enhanced
clinical care [19–21].

To overcome these limitations, artificial intelligence (AI) has proven its ability to extract
data from structured and unstructured fields of the EHR to produce reliable, structured
clinical data in a more consistent, efficient, and scalable manner compared to manual ab-
straction [18,22,23]. This technology allows clinicians and researchers to access previously
unavailable RWD and is being used for patient and disease identification, pharmacovigi-
lance, and the development of learning health systems [23–28].

Complexities also exist for the AI extraction of RWD from the EHR as a result of
inconsistencies in the sections of the EHR where information is stored, variations and com-
plexity in the narrative used within clinical text, and the need to coordinate multiple pieces
of evidence temporally. This can result in uncertainty regarding the validity and trans-
ferability of such technologies [29]. The commercially available AI engine, DARWENTM

(Darwen, UK), has been evaluated against manual abstraction for the same clinical features
in multiple disease areas, including breast cancer [25], lung cancer [18,30–34], ambulatory
care diseases [23], and dermatology [28] at multiple Canadian institutions, validating its
use to extract RWD more accurately and efficiently than a manual chart review. Sinai
Health is a leading Canadian cancer center and has been using EHR systems since 2006
with the goal of leveraging technology to harness data from the EHRs to inform clinician
decision-making.

In this study, we describe how the AI extraction of RWD was used to describe and
better understand the treatment patterns and clinical outcomes of Canadian patients re-
ceiving CDK4/6i + ET for HR+/HER2− ABC/MBC in a real-world setting, with a longer
follow-up. RWE is necessary to understand these trends to inform targeted sequencing and
future treatment decisions in this population.

2. Materials and Methods

2.1. Study Design

This was a retrospective chart review of the data from the EHRs of patients diag-
nosed with HR+/HER2− ABC/MBC between 1 January 2016 and 1 July 2021, receiving
CDK4/6i treatment at Sinai Health, Toronto. Included patients were as follows: women
aged ≥ 18 years old, diagnosed with HR+/HER2− ABC/MBC between 1 January 2016
and 1 July 2021, and treated with CDK4/6i. The study period encompassed 1 January 2016
to 1 October 2021 to capture all patients treated with CDK4/6i since their approval and
allowed for a minimum three-month follow-up period.
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2.2. Clinical Feature Extraction

The clinical features extracted from Sinai Health’s EHRs included patient demo-
graphics, clinical characteristics, treatment information, and clinical outcomes. Data were
extracted from the patient EHRs using DARWENTM AI technology, or for three specific
features (radiation treatment, date of ABC/MBC diagnosis, and treatment start/stop date),
the data were extracted manually. Finally, some features were derived using the extracted
data, such as age at ABC/MBC diagnosis and clinical outcomes, including the time to the
next treatment (TTNT), time to chemotherapy (TTC), and overall survival (OS).

DARWENTM—which has been previously described and validated in detail—combines
multiple state-of-the-art approaches to extract relevant data from structured and unstruc-
tured EHR fields [18,23]. DARWENTM uses a “twin-engine design”, which allows model
training to begin on one task while learnings and adjustments can be made quickly and
easily for adjacent tasks. This provides knowledge transfer between tasks, flexibility, and
adaptability, reducing the overall number of models required and hence the compound
error, thus achieving high accuracy with the results that are aligned with clinician expertise.

All features were extracted following pre-defined rules and definitions developed by
the Sinai Health Principal Investigator (PI). Based on the reality of the available data at
Sinai Health, the definitions and rules were updated in an iterative process until a finalized
set of rules was agreed upon with the PI. A full list of the features extracted, as well as the
feature definitions and data sources, can be found in Supplementary Table S1.

For the features extracted from the unstructured EHR field, DARWENTM algorithms
were pre-trained on general medical and other ABC/MBC datasets and then fine-tuned
and validated on the Sinai Health data, as detailed below.

Using the initial data provisioned by Sinai Health (which included all patients at Sinai
Health who received a CDK4/6i and were aged ≥ 18 years), one subset of patient data
was used for the fine-tuning and testing of the algorithms based on the finalized feature
definitions and extraction rules, until accuracy, precision (positive predictive value), recall
(sensitivity), and F1 (the harmonic mean of precision and recall) score targets were achieved.
The AI training and tuning methods have previously been reported [18]. Subsequently, the
models were applied to a second subset of data (distinct from the first one) to generate
validation metrics against data unseen by the model. The steps were repeated if necessary
until the results on both subsets met the target scores and were sufficiently stable. Finally,
the models were run on all the remaining data, which had not been part of either the first or
second subset, to produce the final dataset. See Figure 1 for the workflow and methodology
used throughout this study. All extracted data (irrespective of the extraction method) was
reviewed by the PI to confirm that the findings aligned with their clinical expectations.

2.3. Outcomes

The primary outcome was to characterize real-world treatment patterns among pa-
tients with HR+/HER2− ABC/MBC receiving CDK4/6i. Other outcomes of interest
included clinical outcomes: TTNT for 1L, TTC from diagnosis, and OS. TTNT was mea-
sured from the date of the initiation (first dose) of treatment to the date of the initiation
of the subsequent line of therapy. Patients who did not progress on to a subsequent line
of therapy were censored at their last known date of treatment. TTC was measured from
the date of ABC/MBC diagnosis to the date of chemotherapy initiation. Patients still on
treatment and who did not start chemotherapy were censored at the date of their last
follow-up or death, whichever came first. Patients who died before starting their next line
of therapy were also censored. OS was measured from the date of ABC/MBC diagnosis
to the date of death. For patients where no death event was found, the date of the last
follow-up was used, and these patients were censored in the survival analyses.
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Figure 1. Workflow and methodology used to refine, test, and validate models. ABC/MBC: Ad-
vanced/metastatic breast cancer.

2.4. Statistical Analyses

Descriptive analyses summarized patients’ demographics, clinical characteristics, and
outcomes of interest across the study cohort. Continuous variables were described using
mean and standard deviation (SD), median, and the first and third quartiles. Categorical
variables were described by frequencies and percentages. Kaplan–Meier (KM) curves were
used to describe the time to event(s) and followed standard censoring rules.

3. Results

DARWENTM was used to extract nine features found within the unstructured fields
of the EHR. AI performance for the extracted features is shown in Supplementary Table
S2. An F1 score (the harmonic mean of precision and recall) of 1.00 was achieved for three
features: histology, ER receptor status, and PR receptor status, and an overall accuracy (the
number of correctly identified predictions) of above 90% was achieved for all AI-extracted
features. These results are consistent with the previous validations of DARWENTM [18,23].
Radiation treatment, the date of ABC/MBC diagnosis, and treatment (start/stop date)
were extracted manually due to the limitations imposed by the data captured in the EHR.
Radiation treatment is administered at sites outside of Sinai Health; therefore, information
on a patient’s radiation therapy was not consistently captured in the Sinai Health patient
EHR. The date of the ABC/MBC diagnosis is also often inconsistently reported in the
patient’s EHR, with the ABC/MBC diagnosis often being reported as suspicious but not
confirmed. Additionally, patients were often diagnosed with ABC/MBC at other sites
and referred to Sinai Health. Prescription information is not stored electronically in the
EHR system at Sinai Health but rather in paper format, dictated into clinical notes. Before
data extraction using either method, the pre-defined rules and definitions for each clinical
feature were finalized with the Sinai Health PI (Supplementary Table S1).

3.1. Patients

In total, DARWENTM ingested a total of 5052 patient reports, including clinical, pathol-
ogy, and radiology reports for 87 patients at Sinai Health who received a CDK4/6i and were
aged ≥ 18 years. A total of 48 patients were identified as having HR+/HER2− ABC/MBC
diagnosed between 1 January 2016 and 1 July 2021 and were treated with a CDK4/6i during
the study period.

The baseline characteristics for the 48 included patients can be found in Table 1. In
this cohort, the median age was 60.5 years. The majority of patients (70.8%) had recurrent
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ABC/MBC, and 29.2% had de novo disease; 66.7% of the patients had ductal carcinoma,
and 18.8% were pre-menopausal. A total of 31.2% of patients presented with bone-only
metastases at their ABC/MBC diagnosis. A total of 39.6% of patients had lung metastases
during the study period, and 37.5% had liver metastases during the study period. A total
of 45.8% of patients had one metastatic site during the study period. Of the patients with
reported Eastern Cooperative Oncology Group (ECOG) performance scores at diagnosis
(22/48), the majority had an ECOG score of 0/1 (18/22 [81.8%]). At ABC/MBC diagnosis,
the most common comorbidity was hypertension (37.5%), followed by diabetes (14.6%).
The tumor grade at ABC/MBC diagnosis was not consistently reported across the patients,
with 29 out of 48 (60.4%) missing tumor grades at the time of their ABC/MBC diagnosis.
Of the 48 patients, 38 received a CDK4/6i in the 1L setting. Baseline demographics for the
38 patients who received a CDK4/6i in 1L were similar to the full patient cohort (Table 1).
Of the full cohort, 21 out of 48 (43.8%) patients went on to receive a second line (2L) therapy
during the study, and 12 of the 48 (25.0%) went on to receive a third line (3L) therapy during
the study.

Table 1. Demographics and baseline characteristics of all patients and patients who received a
CDK4/6i in 1L.

All Patients
(N = 48)

Patients Receiving CDK4/6i in 1L
(N = 38)

Age at ABC/MBC diagnosis

Mean (SD) 57.9 (14.0) 58.4 (13.0)

Median 60.5 61.0

Q1, Q3 48.8, 67.0 50.0, 65.5

Range 23.0–89.0 23.0–84.0

Year of ABC/MBC diagnosis a

2016–2018 20 (41.7%) 16 (42.1%)

2019–2021 28 (58.3%) 22 (57.9%)

Sex

Female 48 (100.0%) 38 (100.0%)

Tumor histology

Ductal 32 (66.7%) 25 (65.8%)

Lobular 7 (14.6%) ≤5 (NR)

Mixed ≤5 (NR) ≤5 (NR)

Other 8 (16.7%) 8 (21.1%)

De novo/recurrent at initial BC diagnosis

De novo 14 (29.2%) 10 (26.3%)

Recurrent 34 (70.8%) 28 (73.7%)

HER2 status at ABC/MBC diagnosis

Negative 48 (100.0%) 38 (100.0%)

ER status at ABC/MBC diagnosis

Positive 48 (100.0%) 38 (100.0%)

PR status at ABC/MBC diagnosis

Negative 13 (27.1%) 11 (28.9%)

Positive 30 (62.5%) 23 (60.5%)

Unknown ≤5 (NR) ≤5 (NR)
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Table 1. Cont.

All Patients
(N = 48)

Patients Receiving CDK4/6i in 1L
(N = 38)

ECOG at ABC/MBC diagnosis

0 6 (12.5%) ≤5 (NR)

1 12 (25.0%) 10 (26.3%)

2 ≤5 (NR) ≤5 (NR)

3 ≤5 (NR) ≤5 (NR)

Unknown 26 (54.2%) 21 (55.3%)

Tumor grade at ABC/MBC diagnosis

1 ≤5 (NR) ≤5 (NR)

2 11 (22.9%) 8 (21.1%)

3 ≤5 (NR) ≤5 (NR)

Unknown 29 (60.4%) 24 (63.2%)

Organ-level metastatic sites b

Bone 35 (72.9%) 26 (68.4%)

Bone-only metastases 15 (31.2%) 12 (31.6%)

Brain ≤5 (NR) ≤5 (NR)

Lung 19 (39.6%) 16 (42.1%)

Liver 18 (37.5%) 12 (31.6%)

Number of metastatic sites during study period

0 ≤5 (NR) ≤5 (NR)

1 22 (45.8%) 19 (50.0%)

2 14 (29.2%) 9 (23.7%)

3 ≤5 (NR) ≤5 (NR)

4 ≤5 (NR) ≤5 (NR)

Comorbidities at ABC/MBC diagnosis b

Atrial Fibrillation ≤5 (NR) ≤5 (NR)

Hypertension 18 (37.5%) 12 (31.6%)

Diabetes 7 (14.6%) ≤5 (NR)

Coronary Artery Disease ≤5 (NR) ≤5 (NR)

Radiotherapy for ABC/MBC b

Any radiotherapy 18 (37.5%) 13 (34.2%)

Follow-up since diagnosis (months)

Mean (SD) 28.8 (16.7) 28.7 (16.9)

Median 29.3 28.7

Q1, Q3 17.5, 37.2 17.8, 39.3

Range 3.4–67.6 3.4–67.6
a 2016–2018 represents the first half of the study period, and 2019–2021 represents the second half of the study
period. b Denominator for the table is the patient population number. Percentages will not add up to 100%,
as some patients may have multiple values. Pre-menopausal was defined as patients who are 50 years old or
younger and are on an LHRH antagonist at any point. ABC/MBC: advanced/metastatic breast cancer; CDK4/6i:
cyclin-dependent kinase 4 and 6 inhibitors; ECOG: Eastern Cooperative Oncology Group; LHRH: luteinizing
hormone-releasing hormone; NR: not reported (data are suppressed to protect privacy, as per site’s requirement);
SD: standard deviation.
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3.2. Treatment Patterns

Treatment patterns were assessed from the date of ABC/MBC until the date of death,
date of last follow-up, or the end of the study period, whichever came first (the median
duration of follow-up for all patients was 28.7 months). Throughout the study period,
across all patients, CDK4/6i included abemaciclib, palbociclib, and ribociclib. ET included
tamoxifen, anastrozole, letrozole, exemestane, and fulvestrant. Chemotherapy included
the following agents (either a single agent or in combination): capecitabine, cisplatin,
cyclophosphamide, paclitaxel, docetaxel, doxorubicin, eribulin, and/or gemcitabine.

Of 38 out of 48 patients who received a CDK4/6i in 1L, 34 of 38 (89.5%) received
palbociclib + ET (Table 2; Supplementary Figure S1). Letrozole was the most common
ET given with CDK4/6i in 1L (30/38 [78.9%]). A total of 27 out of 48 (56%) patients did
not go on to receive a 2L during the study period (for reasons including that the patient
remained on 1L, the patient died, or the patient was lost to follow-up). Of the 21 patients
who went on to 2L treatment during the study period, 12 out of 21 (58.3%) of these patients
received a CDK4/6i, of which 7 out of 12 received abemaciclib + ET (Table 2; Supplementary
Figure S1). Fulvestrant was the most commonly prescribed ET with CDK4/6i in 2L (9/12
[75.0%]). The majority of patients who progressed to a 3L therapy received chemotherapy
(10/12 [83.3%]) (Table 2; Supplementary Figure S1).

Table 2. Treatment patterns for all patients across 1L, 2L, and 3L of treatment.

1L Treatment Regimen All Patients (N = 48)

Palbociclib + ET 30 (62.5%)

Palbociclib + ET + goserelin ≤5 (NR)

Other CDK4/6i + ET ≤5 (NR)

Other CDK4/6i + ET + goserelin ≤5 (NR)

ET ≤5 (NR)

Chemotherapy 7 (14.6%)

2L treatment regimen All patients (N = 21)

Palbociclib + ET ≤5 (NR)

Palbociclib + ET + goserelin ≤5 (NR)

Other CDK4/6i + ET 7 (33.3%)

Other CDK4/6i + ET + goserelin ≤5 (NR)

Alpelisib + ET ≤5 (NR)

ET ≤5 (NR)

Chemotherapy 6 (28.6%)

3L treatment regimen All patients (N = 12)

Palbociclib + ET + goserelin ≤5 (NR)

Other CDK4/6i ≤5 (NR)

Chemotherapy 10 (83.3%)
CDK4/6i: cyclin-dependent kinase 4 and 6 inhibitors; ET: endocrine therapy; NR: not reported (data are sup-
pressed to protect privacy, as per site’s requirement).

3.3. Clinical Outcomes

For the patients who received a CDK4/6i in 1L, the median (95% confidence interval
[CI]) time to the next treatment for 1L (TTNT1) was 42.3 (41.2, NA) months (Figure 2). The
median (95% CI) TTC for these patients was 45.1 months (41.2, NA; Figure 3). A median
(95%) OS was not reached, and the 2-year OS rate (95% CI) was 97% (92%, 100%; Figure 4).
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Figure 2. TTNT1 in patients who received a CDK4/6i in 1L. Median TTNT (95% CI): 42.3 (41.2,
NA) months. CDK4/6i: cyclin-dependent kinase 4/6 inhibitors; CI: confidence interval; NA: not
applicable; TTNT1: the time to next treatment was calculated by subtracting the start date of 1L from
the start date of 2L. Patients who did not go on to receive 2L were censored at their last known date
of treatment.

Figure 3. TTC in patients who received a CDK4/6i in 1L. Median (95% CI) TTC: 46.5 (41.4, NA)
months. CDK4/6i: cyclin-dependent kinase 4/6 inhibitors; CI: confidence interval; NA: not applicable;
TTC: the time to chemotherapy was calculated by subtracting the start date of chemotherapy from
the date of ABC/MBC diagnosis. Patients who did not receive chemotherapy were censored at their
date of last follow-up or death. Patients who experienced death before starting their next treatment
were also censored.
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Figure 4. OS in patients who received a CDK4/6i in 1L. Median OS (95% CI): NA (NA, NA) months.
Two-year OS (95% CI) was 97.4% (92.4, 100.0). CDK4/6i: cyclin-dependent kinase 4/6 inhibitors; CI:
confidence interval; NA: not applicable; OS: the overall survival was calculated by subtracting the
date of starting 1L from the date of death. Patients who did not die were censored at their last date of
follow-up or the study’s end date.

4. Discussion

This study illustrates the validity of using AI technologies for identifying patients
with HR+/HER2− ABC/MBC and generating RWE, including the treatment patterns
and clinical outcomes for patients. AI was used to extract nine crucial features from the
patient EHR, which were validated and reviewed by a breast cancer expert. The results
from this study complement the findings from previous RWE studies and demonstrate the
effectiveness of CDK4/6i in the Canadian real-world 1L setting (particularly palbociclib, as
most patients in this study received 1L palbociclib) over a longer follow-up period than
previous real-world Canadian studies (up to 69 months versus 62 and 24) [35,36].

Recently, much progress has been made in the implementation of AI tools in healthcare,
including assisting radiologists in detecting abnormalities and disease from X-rays, MRIs,
and CT scans, personalized medicine and predicting which treatments are likely to benefit
a patient, clinical decision support systems and AI-remote monitoring and telemedicine
platforms [37–39]. Additionally, AI tools used for the extraction of clinical text can make
sense of and analyze vast amounts of unstructured clinical text from pathology reports,
clinical notes, and radiology reports. These tools, such as DARWENTM, are being used for
patient and disease identification, pharmacovigilance, and the development of learning
health systems [23–28]. However, many tools, such as ClinicalBERT, rely on open-source
datasets, such as the MIMIC-III dataset of de-identified hospital records from intensive care
units [40,41]. These datasets have limited insight into the entirety of the patient journey and
may not be appropriate for investigating diseases such as breast cancer, for which care is
provided in many different settings outside of the intensive care unit and over long periods
of time. Further, many of these tools only focus on a single clinical feature, e.g., a diagnosis
of a certain condition or the development of metastases, with few investigating multiple
distinct medical features [42–44]. In comparison, this study investigated multiple complex
features throughout the patient’s journey, which are critical for determining knowledge
gaps and unmet needs for patients with breast cancer.

While AI holds immense promise in improving cancer diagnosis, treatment, and
outcomes, it is important to recognize the challenges and limitations of the technology,
specifically related to accuracy and precision. AI algorithms are only as reliable as the data
they are trained on, and biases in training data can lead to inaccurate outcomes, particularly
in underrepresented populations. In the context of this study, limitations imposed by the
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data captured in the EHR were observed, which hindered the ability to extract certain
features using a completely AI approach. For example, the administration of radiation
treatment outside of Sinai Health resulted in inconsistent reporting of such treatment within
the clinical notes. This inconsistency posed challenges for AI in capturing all instances of
when the patients received radiation therapy. However, the incomplete documentation
presented similar difficulties for manual abstractors. Additionally, prescription information
is not stored electronically in the EHR system at Sinai Health, but rather in paper format,
dictated into clinical notes. Consequently, these records are susceptible to missingness,
incompleteness, and human error. Notably, it was found that clinicians tended to document
the initiation of treatment more consistently than its termination. Limited use of imputation
methods was used for missing treatment dates; however, if only the month and year were
present for a date, then “15” was input as the date to create a complete observation. The
date of death was also not consistently reported in the EHR, as these data are only collected
when hospitals are notified of a patient’s death and are provided with the exact date.
These limitations are consistent with previous applications of AI tools for the extraction
of oncology EHR data, but it is important to note that these limitations also impact the
manual curation of data, highlighting a broader limitation in generating RWE from EHR
systems [18,45].

Currently, at Sinai Health and other Canadian institutions, more sophisticated and
universal EHR systems are being implemented (e.g., EPIC and Cerner Solutions), which will
likely improve the ability of AI to extract data efficiently and accurately for generating RWE.
AI data extraction from EHRs could allow institutions such as Sinai Health to more quickly
and easily understand how they are performing compared to the currently published
metrics, enabling them to perform meaningful QA projects and enhance patient care.

As this study was conducted at a single institution, there was a limited number of
eligible patients, and in accordance with the hospital data privacy regulations in place at
Sinai Health, observations that included less than or equal to five patients were suppressed.
Future studies may hope to include additional sites to increase the number of patients
included and potentially increase the diversity of patient cases represented in the results.
Future work at Sinai Health may also hope to expand the use of AI technologies to harness
data from the EHR system across breast cancer cohorts and disease domains and for further
applications, such as patient and disease identification and the development of learning
health systems, for ongoing prospective data collection.

Despite the limitations inherent to RWE studies using EHR data and the limited
sample size, the real-world clinical outcomes observed in this study complemented those
previously reported in the US and Canada. For Canadian patients receiving a C DK4/6i in
1L (97.8% of whom received palbociclib + ET), the 1-year OS was 97% (92%, 100%). This is
similar to the 1-year survival rate reported in the Ibrance® Real World Insights Study (IRIS)
(the 1-year survival rate was 95.6% for palbociclib + AI and 100% for palbociclib and fulves-
trant) [35]. Further, the median (95% CI) for TTNT1 was 42.3 (41.2, NA) months for patients
receiving a CDK4/6i in 1L, which is longer than the median rwPFS for palbociclib combina-
tion treatment from the US DeMichele et al. (2022) study (20.0 months [95% CI, 17.5–21.9])
for 1L [11]. Additionally, the validation metrics for AI-extracted data are consistent with the
previous validations of DARWENTM, which has been evaluated against a manual abstrac-
tion for the same clinical features in breast cancer [25], lung cancer [18,30–34], ambulatory
care diseases [23], and dermatology [28] at multiple Canadian institutions.

5. Conclusions

This study highlights the validity of AI technology in identifying patients with
HR+/HER2− ABC/MBC and generating RWE, including treatment patterns and clin-
ical outcomes for patients. This type of technology allows for a more efficient, consistent,
and scalable extraction of data from EHR systems. AI was used to extract nine crucial
features from the patient EHR, which were validated and reviewed by a breast cancer
expert, and the accuracy metrics were consistent with the previous validations of the AI
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technology. The results from this study demonstrate the effectiveness of CDK4/6i + ET in
the Canadian real-world 1L, with most patients receiving palbociclib as the CDK4/6i in 1L
over a longer follow-up period than in previous real-world Canadian studies.
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