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Preface

Fractional calculus (FC) generalizes the operations of differentiation and integration to

non-integer orders. FC has emerged as an important tool for the study of dynamical systems since

fractional order operators are non-local and capture the history of dynamics. Moreover, FC and

fractional processes have become one of the most useful approaches to dealing with the particular

properties of (long) memory effects in a myriad of applied sciences. Linear, nonlinear, and complex

dynamical systems have attracted researchers from many areas of science and technology, involved in

systems modelling and control, with applications to real-world problems. Despite the extraordinary

advances in FC, addressing both systems’ modelling and control, new theoretical developments

and applications are still needed in order to accurately describe or control many systems and

signals characterized by chaos, bifurcations, criticality, symmetry, memory, scale invariance, fractality,

fractionality, and other rich features. This reprint focuses on new and original research results

on fractional calculus in science and engineering. Manuscripts address fractional calculus theory,

methods for fractional differential and integral equations, nonlinear dynamical systems, advanced

control systems, fractals and chaos, complex dynamics, and other topics of interest within FC.

António Lopes, Alireza Alfi, Liping Chen, and Sergio Adriani David

Editors
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Article

Recursive Identification for MIMO Fractional-Order
Hammerstein Model Based on AIAGS

Qibing Jin, Bin Wang * and Zeyu Wang

Institute of Automation, Beijing University of Chemical Technology, Beijing 100020, China;
jinqb@mail.buct.edu.cn (Q.J.); wangzeyu@buct.edu.cn (Z.W.)
* Correspondence: 2019210478@buct.edu.cn

Abstract: In this paper, adaptive immune algorithm based on a global search strategy (AIAGS) and
auxiliary model recursive least square method (AMRLS) are used to identify the multiple-input
multiple-output fractional-order Hammerstein model. The model’s nonlinear parameters, linear
parameters, and fractional order are unknown. The identification step is to use AIAGS to find the
initial values of model coefficients and order at first, then bring the initial values into AMRLS to
identify the coefficients and order of the model in turn. The expression of the linear block is the
transfer function of the differential equation. By changing the stimulation function of the original
algorithm, adopting the global search strategy before the local search strategy in the mutation
operation, and adopting the parallel mechanism, AIAGS further strengthens the original algorithm’s
optimization ability. The experimental results show that the proposed method is effective.

Keywords: adaptive immune algorithm; multiple-input multiple-output; fractional-order model;
Hammerstein model; system identification

1. Introduction

In recent years, with the rapid economic and social development, the complexity of
industry has been increasing. In order to understand and control these industrial pro-
cesses more accurately, it is necessary to study system identification. However, in real
life, nonlinear processes are inevitable and widespread. Nowadays, there is no definite
characterization for nonlinear processes. A block-oriented model is a description of non-
linear model, which is the result of the interaction between the dynamic linear module
and static nonlinear module. These model components can be connected in series, parallel,
or feedback [1]. Hammerstein model is a typical block-oriented model that consists of a
static nonlinear block in cascade with a dynamic linear block [2]. Because the dynamic
behavior of the model is only included in the linear block, and the nonlinear block is static,
this feature is conducive to identifying and controlling the nonlinear system constructed by
the Hammerstein model [3]. Hammerstein model is extensively used to identify nonlinear
systems [4–7]. As the model is widely used, the identification methods are also inten-
sively discussed. These methods include neural networks [8,9], piecewise linear model [6],
least square method [10], support vector machine [11], combined prior information [12],
and so on.

In real life, it is evident that the dynamic linear block based on integer order cannot
fully simulate the real model [13]. The fractional-order model extends the order of the
model from the integer level to the fractional level. Therefore, the study of the fractional-
order nonlinear model is essential [14]. At present, fractional-order models have been
discussed in many fields, such as molecular materials [15,16], the voltage and current of
the drive end impedance [17], industrial battery [18–20], and so on.

With the wide application of the fractional-order model, the problem of model iden-
tification has also been intensively discussed. However, the current methods have some

Mathematics 2022, 10, 212. https://doi.org/10.3390/math10020212 https://www.mdpi.com/journal/mathematics1



Mathematics 2022, 10, 212

limitations. The particle swarm optimization algorithm can be used to identify the pa-
rameters of the fractional Hammerstein model [21]. This method excessively depends on
the optimization ability of the algorithm and does not consider the internal relationship
between system parameters. Once the optimization algorithm has problems, it will signifi-
cantly impact the identification results. The Levenberg–Marquardt algorithm developed by
combining the two decomposition principles [22] can only be applied to the theoretical envi-
ronment. Once the system is affected by noise, the model’s parameters will not be identified
exactly. Reference [23] also requires an ideal environment. Some scholars pay attention to
the fractional-order Hammerstein model with single-input single-output [24–28]. Some pay
attention to the fractional-order Hammerstein model with multiple-input multiple-output,
but most use the state space equation as the linear block of the model [29,30]. However,
fractional-order calculus is a whole concept [31]. Using the transfer function of differential
equation to construct the linear block of the Hammerstein model can better integrate the
two concepts.

Based on the above background, this paper discusses a new method to identify the
nonlinear coefficients, linear coefficients, and fractional order of the MIMO fractional
Hammerstein model. In this method, AIAGS greatly improves the optimization ability by
improving the immune algorithm’s stimulation function and search strategy. Then, the al-
gorithm estimates the initial values of all MIMO fractional Hammerstein model parameters,
including fractional order. The estimated result provides relatively accurate initial values for
the subsequent algorithm. It solves the problem that the two-step method [28], which iden-
tifies coefficient and order, depends on the initial values. Then, using AMRLS, a method for
accurate parameter identification of the MIMO fractional-order model is proposed. Finally,
the effectiveness of the proposed method is verified by numerical simulation.

The main contribution of this paper is to propose an adaptive immune algorithm
with a global search strategy to accurately identify the initial parameters of the fractional
Hammerstein system. Secondly, a new recursive identification method for coefficients
and fractional order of MIMO fractional-order nonlinear system with differential equation
transfer function as linear block model is derived using an auxiliary model. Due to the
different ways of selecting the optimal solution, the AIAGS algorithm proposed in this
paper has higher reliability than the classical immune algorithm. Based on the auxiliary
model, the recursive identification algorithm for the MIMO fractional Hammerstein model
is given using the recursive least square method. The method in this paper solves the
initial value problem of previous methods and provides more accurate initial values. This
initial value cooperates with AMRLS, making the result of parameters identification of
multi-input and multi-output fractional Hammerstein model closer to reality.

In this paper, an improved immune algorithm is proposed in Section 2. In Section 3,
a new recursive identification method for MIMO fractional-order Hammerstein model with
differential equation transfer function as linear block model is derived by using auxiliary
model is discussed. In Section 4, numerical simulations show the effectiveness of the
proposed method. Finally, Section 5 gives some conclusions.

2. Adaptive Immune Algorithm Based on Global Search Strategy

2.1. Review of Immune Algorithms

The immune algorithm is an adaptive intelligent system inspired by immunology and
simulates the functions and principles of the biological immune system to solve complex
problems. It retains several characteristics of the biological immune system, including
global search capability, diversity maintenance mechanism, strong robustness, and parallel
distributed search mechanism. The immune algorithm automatically generates the initial
population by uniform probability distribution. After initialization, the population evolves
and improves by the following steps: calculation of stimulation, selection, cloning, mutation,
clonal inhibition, etc. [32].

2
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2.2. AIAGS
2.2.1. Stimulation Improvement

Individual stimulation is the evaluation result of individual quality, which needs
to be comprehensively considered individual affinity and concentration. The individual
stimulation can usually be obtained by a simple mathematical calculation based on the
evaluation results of individual affinity and concentration. In the traditional immune
algorithm [33], the stimulation is expressed as

fsim(xi) = a· fa f f (xi)− b· fden(xi) (1)

where xi means the ith individual of the population; fa f f (xi) is affinity, which represents the
Euclidean distance between the current individual and the optimal individual; fden(xi) is
the concentration, indicating the number of other individuals whose Euclidean distance be-
tween the current individual and other individuals is within a certain threshold; fsim(xi) is
the stimulation; a and b is the calculation parameter. The algorithm will sort the individuals
according to the stimulation and make the next choice.

This paper made the following changes to the coefficients of affinity and concentration.
Firstly, the minus sign of Equation (1) is changed on the plus sign. Because the concentration
represents the quality of population diversity, and too high concentration means that there
are many very similar individuals in the population, the key point of the immune algorithm
is to suppress the individuals with a high concentration to achieve global optimization.
However, in both the original algorithm and various improved immune algorithms today,
the coefficient b is non-negative, which leads to a minor incentive for individuals with low
affinity and high concentration [34–38]. This improvement conforms to the core concept of
the algorithm.

Secondly, this paper designs a parameter β related to the current population’s max-
imum, minimum, and individual affinity values. In the original algorithm, the a and b
are constants. In various improved algorithms [34–38], the adaptive coefficients are only
related to the number of current iterations. Because the comparison of stimulations be-
tween individuals is carried out in the population of the current iteration, these adaptive
coefficients are not different from constants. They will not affect the stimulation ranking
of the population. In this paper, because β is quadratic when selecting individuals based
on stimulations, individuals with low affinity and individuals with high affinity will be
considered, increasing the global searchability. The parameter is expressed as

β =

(
fa f f (xi)− fa f f a

fa f f max − fa f f a

)2

(2)

where fa f f a is the average of fa f f max and fa f f min
.

Finally, after a certain number of iterations, the population will move closer to the
optimal global individual. If the concentration problem is also considered, it may give
up the found optimal range and select the new random individual when selecting the
individuals. Therefore, a monotone decreasing adaptive operator is designed in this paper.
In the middle and later iteration stages, the concentration effect is negligible.

To sum up, the stimulation for this paper is expressed as

fsim(xi) = (1− β)· fa f f (xi) + [1−
√

2gen
G

−
( gen

G

)2
]·0.5β· fden(xi) (3)

where gen means the current number of iterations and G is the total number of iterations.
After improvement, the approximate trend of individual stimulations is shown in

Figure 1a. The approximate trend of the stimulations of the original or other improved
immune algorithm is shown in Figure 1b. The x-axis is 100 individuals sorted from smallest
to largest according to affinity, and the y-axis is individual stimulation. It can be seen
from Figure 1 that the original algorithm and other improved algorithms generally only

3
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select individuals with low affinity. In contrast, the algorithm in this paper can consider
individuals with high affinity.

 
(a) (b) 

Figure 1. Comparison of stimulations. (a) The stimulations of AIAGS. (b) The stimulations of
other algorithms.

2.2.2. Mutation Strategy Improvement

The original algorithm has a single strategy in the mutation stage. The algorithm
improved by others will enrich the mutation strategy and improve the probability of all
individuals for mutation. However, the mutation strategy is selected only by random
numbers, which makes the algorithm not flexible [38].

The algorithm of this paper has two minor changes in the mutation stage. First,
an adaptive operator pm that changes from algebra is designed, and its value decreases
monotonically between 0 and 0.8. The parameter can be expressed as

pm = 0.8·(1− gen
G

)
(4)

Secondly, when setting the global optimization step, a variable sv is added based on
adaptation, gradually changing the mutation step. The optimal individual is selected for
retention of the individuals after several mutations, which greatly enhances the global
search ability.

To sum up, the mutation strategy for this paper can be expressed as

xi,j =

{
xbest,j + pm·

(
xr1,j − xr2,j

)
, rand > pm

xr1,j + (pm + sv)·
(
xr2,j − xr3,j

)
, otherwise

(5)

where i means the sequence of individuals in the population; j denotes the sequence of
dimensions in the individual; xr1, xr2, and xr3 are different individuals randomly selected
from the population except for the xi.

Obviously, in the early stage of the iteration, the mutation strategy will mostly choose
the second mutation strategy, edge mutation strategy, which will enhance the global
optimization ability of the algorithm. In the middle and later stages of the iteration, the first
mutation strategy, the optimal individual mutation strategy, will be selected for local search.

2.2.3. Simulated Annealing Strategy

The simulated annealing algorithm mimics the annealing process in metallurgy and is
classified as a single-based solution method. After comparing the current optimal solution
with the previous optimal solution, if the fitness of the current optimal solution is greater
than that of the previous one, it may abandon the current result and choose the previous
result [39].

4
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At the end of the improved algorithm, simulated annealing is added to avoid the
algorithm falling into the local optimum. Some people have done similar work, but both
the initial algorithm and others’ improved algorithm use stimulus to evaluate the optimal
solution [33]. This paper uses affinity to evaluate the optimal solution at the end. However,
the stimulation of the optimal individual of the previous generation may be slightly big,
resulting in not being selected during mutation selection, so the affinity of the optimal
individual of the current generation may be greater than that of the previous generation.
At this time, the effect of simulated annealing will likely jump back to the result to optimize
further. The replacement for such a case depends on the probability p as defined as

p = e−ΔFΔF =
fa f f (xi

′)
fa f f (xi)

− 1 (6)

where xi
′ is the current optimal solution; xi denotes the previous optimal solution. This

part will replace the solution if p < rand(0, 1).

2.2.4. Pseudo Code of AIAGS

To sum up, there are some innovations of this paper on the existing immune algorithms.
The pseudo code of AIAGS is explained in detail in Algorithm 1. The flowchart of AIAGS
is explained in detail in Figure 2.

Algorithm 1: AIAGS

Step.1 Define the objective function F(x);
Step.2 Initialize population X;
Step.3 Evaluate all the individuals xi by the objective function F(x);
Step.4 Calculate the affinity fa f f (xi) and concentration fden(xi) of each individual;
Step.5 Initialize the number of iteration m = 1;
Step.6 While m < max number of iterations M;
Step.7 Calculate the stimulation fsim(xi) of each individual by the Equation (3);
Step.8 Select the individuals in the population by stimulation and clone the individuals;
Step.9 Mutate the cloned individuals by the Equation (5);

Step.10
If the generated mutation vector exceeds the boundary, a new mutation vector is

generated randomly until it is within the boundary;
Step.11 Inhibit cloning and calculate the affinity of each new individual;
Step.12 Generate optimal individual by Simulated Annealing by the Equation (6);
Step.13 End;
Step.14 m = m + 1;
Step.15 End while;
Step.16 Return the best solution.

2.3. Benchmark Function

Due to the limitations of intelligent optimization algorithms, unlike the traditional
algorithm, which has a mathematical theoretical basis, it is not strict. After improving
the optimization algorithm, most people use the classical benchmark function to test the
algorithm’s effectiveness. This article uses eight classical and four CEC2017 benchmark
functions to evaluate AIAGS. The u() of F6 and F7 is expressed as

u(xi, a, k, m) =

⎧⎪⎨⎪⎩
K(xi − a)m, if xi > a
0, −a � xi � a
K(−xi − a)m, −a � xi

(7)

These classical functions are divided into three groups: unimodal (F1–F4), multimodal
(F5–F7), and fixed-dimension multimodal (F8). The unimodal benchmark function has only
one optimal solution, which can verify the development and convergence. The multimodal
benchmark function has many optimal solutions. However, there is only one global optimal

5
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solution, and the rest are local optimal solutions. The fixed dimensional multimodal func-
tions can define the desired number of design variables and could provide a different search
space. Therefore, the multimodal functions are responsible for testing exploration and
avoiding the entrapment in the optimal local solution. Hybrid and composition functions
can reflect some problems that are closer to reality [40]. In Table 1, the corresponding prop-
erties of these functions are listed, where dim represents the dimensions of the functions
and range indicates the scope of the search space.

 

Figure 2. AIAGS.

6
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Table 1. Benchmark functions.

Name Formula Range fmin

Sphere F1(x) = ∑D
i=1 x2

i [−20, 20] 0

Schwefel 1.2 F2(x) = ∑D
i=1

(
∑i

j=1 xj

)2 [−100, 100] 0

Rosenbrock F3(x) = ∑D−1
i=1 [100·

(
x2

i − xi+1
)2

+ (xi − 1)2] [−30, 30] 0
Step F4(x) = ∑D

i=1(xi + 0.5)2 [−100, 100] 0

Ackley F5(x) = −20 exp (−0.2
√

1
n ∑D

i=1 x2
i )− exp

[
1
D ∑D

i=1 cos(2πxi)
]
+ 20+ e [−40, 40] 0

Generalized penalized 1
F6(x) = π

n [10 sin(πy1)] + ∑D−1
i=1 (yi − 1)2[1 + 10 sin2(πyi+1)+

∑D
i=1 u(xi, 10, 100, 4)],yi = 1 + xi+1

4
[−50, 50] 0

Generalized penalized 2 F7(x) = 0.1{sin2(3πx1) + ∑D
i=1(xi − 1)2[1 + sin2(3πxi + 1)

]
+

(xD − 1)21 + sin2(2πxD)}+∑n
i=1 u(xi, 5, 100, 4)

[−50, 50] 0

Shekel’s Foxholes F8(x) = [ 1
500 + ∑25

j=1
1

j+∑2
i=1

(
xi − aij

)
]
−1 [−70, 70] 1

Hybrid function 4 (N = 4) F9(x) [−100, 100] 1400
Hybrid function 7 (N = 5) F10(x) [−100, 100] 1700
Composition function 1 (N = 3) F11(x) [−100, 100] 2100
Composition function 4 (N = 4) F12(x) [−100, 100] 2400

2.3.1. Comparison of AIAGS with Other Algorithms

In order to reflect the improvement effect of the immune algorithm in this paper,
this section compares AIAGS with the original immune algorithm two improved immune
algorithms: improved artificial immune algorithm (IAIA) [28] and modified artificial
immune algorithm (MAIA) [29], and two new algorithms: Harris hawks optimization
(HHO) [41] and Aquila optimizer (AO) [42]. The parameter settings of the counterparts’
algorithms are given in Table 2. The comparison results are shown in Table 3. However,
intelligent algorithms are highly accidental. After several tests, this paper calculates
the average value and standard deviation of each test result to avoid misleading the
experimental results and the practical application of the algorithm.

Table 2. Parameter settings.

Algorithm Parameter Settings

AIAGS δ = 0.1, sv = 0.2
AO α = 0.5, δ = 0.5
IA α = 2, β = 1, δ = 0.2, pm = 0.7

IAIA α = 2, β = 1, δ = 0.613, pm = 0.7
MAIA δ = 0.8, pm = 0.8, cr = 0.8
HHO α = 0.5, δ = 0.5

Table 3. Comparison of results obtained for the benchmark functions.

AIAGS AO IA IAIA MAIA HHO

F1
worst 0 2.86 × 10−71 0.000124 0.000145 0.030882 1.98 × 10−46

best 0 7.37 × 10−76 7.65 × 10−5 3.54 × 10−5 0.001683 2.62 × 10−58

Avg 0 5.74 × 10−72 9.86 × 10−5 7.71 × 10−5 0.012509 1.99 × 10−47

Std 0 1 × 10−71 1.46 × 10−5 3.28 × 10−5 0.009914 5.95 × 10−47

F2
worst 0 2.82 × 10−56 0.006578 0.022761 16.07011 1.71 × 10−42

best 0 1.72 × 10−73 0.002606 0.013182 0.812125 1.15 × 10−51
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Table 3. Cont.

AIAGS AO IA IAIA MAIA HHO

Avg 0 2.82 × 10−57 0.003962 0.017273 4.565824 3.78 × 10−43

Std 0 8.93 × 10−57 0.001401 0.003087 4.947259 6.69 × 10−43

F3
worst 6.39 × 10−7 0.001305 433.5283 696.2436 83.41411 0.008889
Best 5.5 × 10−9 5 × 10−6 0.99727 0.762353 4.4702 2.1 × 10−5

Avg 9.99 × 10−8 0.000319 80.76008 143.8289 29.75245 0.002238
Std 1.83 × 10−7 0.000424 143.8194 240.8117 30.68641 0.002581

F4
worst 0 6.97 × 10−5 0.004139 0.00329 0.00329 9.33 × 10−5

Best 0 2.3 × 10−7 0.001612 0.00174 0.00174 7.93 × 10−10

Avg 0 1.87 × 10−5 0.003066 0.002567 0.002567 2.05 × 10−5

Std 0 2.32 × 10−5 0.00077 0.00053 0.00053 2.64 × 10−5

F5
worst 8.88 × 10−16 8.88 × 10−16 4.663342 3.223428 1.019824 8.88 × 10−16

Best 8.88 × 10−16 8.88 × 10−16 0.017455 0.019081 0.137416 8.88 × 10−16

Avg 8.88 × 10−16 8.88 × 10−16 1.139553 0.342006 0.437464 8.88 × 10−16

Std 0 0 1.617355 1.012431 0.323219 0

F6
worst 4.71 × 10−32 3.84 × 10−5 4.772913 6.250579 0.005788 2.07 × 10−5

Best 4.71 × 10−32 7.83 × 10−8 1.16 × 10−5 0.335882 0.000107 1.56 × 10−7

Avg 4.71 × 10−32 7.48 × 10−6 1.984778 3.781554 0.001743 6.34 × 10−6

Std 0 1.16 × 10−5 1.830602 2.512286 0.002048 6.86 × 10−6

F7
worst 1.35 × 10−32 0.000281 0.000101 8.19 × 10−5 0.039677 0.000501
best 1.35 × 10−32 1.31 × 10−6 5.21 × 10−5 3.87 × 10−5 0.002672 1.18 × 10−7

Avg 1.35 × 10−32 4.25 × 10−5 8.01 × 10−5 5.89 × 10−5 0.017996 8.5 × 10−5

Std 2.88 × 10−48 8.69 × 10−5 1.55 × 10−5 1.58 × 10−5 0.01293 0.000143

F8
worst 0.998004 2.982105 1.992031 0.998004 0.999027 1.992031
best 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004
Avg 0.998004 1.593234 1.166875 0.998004 0.998107 1.196819
Std 2.34 × 10−16 0.958412 0.362935 2.01 × 10−15 0.000323 0.397606

F9
worst 1528.366 5142.015 2215.496 2302.871 5755.439 4349.2
best 1472.889 1557.776 1443.205 1428.962 1488.148 1450.039
Avg 1503.786 2462.484 1580.193 1655.434 2510.73 1833.8
Std 19.26844 978.4552 223.2629 287.2931 1264.939 843.7423

F10
worst 1794.68 1838.131 1763.443 1782.14 2200.955 1840.59
Best 1744.138 1731.296 1722.813 1725.397 1766.414 1744.772
Avg 1774.579 1781.842 1738.947 1748.674 1898.936 1781.998
Std 17.10128 32.03933 10.8574 22.15373 122.3724 30.2191

F11
worst 2260.104 2338.993 2264.487 2288.434 2319.733 2388.341
Best 2209.787 2204.09 2200.005 2200.003 2201.822 2205.34
Avg 2236.802 2272.26 2211.444 2211.249 2265.511 2272.888
Std 18.17673 56.04231 18.0651 25.8142 44.29724 71.44948

F12
worst 2717.367 2778.692 2772.984 2762.261 2824.593 2857.503
Best 2521.748 2746.416 2500.074 2500.073 2505.906 2770.847
Avg 2626.946 2767.838 2669.676 2629.372 2710.07 2799.953
Std 61.88762 9.524766 114.739 111.2591 104.6337 28.32715

8
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2.3.2. Convergence

Convergence is the ability of the algorithm to search and converge to an acceptable
solution in a certain time. Convergence is an important index to evaluate the performance
of the algorithm. An algorithm has high convergence, which means fast optimization speed
and high precision. Generally, the convergence speed can be measured by the number of
iterations, and the convergence value can measure the accuracy.

The convergence curves of AIAGS and the other five algorithms in 12 benchmark
functions are shown in Figure 3. It can be seen from Table 2 and Figure 3 that the con-
vergence speed and optimization ability of AIAGS are not the strongest in individual
benchmark functions. On the whole, AIAGS is far better than other immune algorithms
in terms of convergence speed and optimization ability, and it is also better than the other
two algorithms.

2.4. Summary

In this chapter, the immune algorithm’s stimulation function and mutation strategy are
improved, and simulated annealing is added to the final step to select the optimal solution.
The core idea of these improvements is to avoid finding the optimal local solution. After
improving the algorithm, 12 different types of benchmark functions are used to evaluate
the algorithm’s performance. Experiments show that the development and exploration
ability of AIAGS is significantly improved compared with the previous immune algorithm.
These conclusions provide substantial proof for the following system identification work.

 

 

 

Figure 3. Cont.
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Figure 3. The convergence curves of AIAGS and other six algorithms.

3. Identification Method of MIMO Fractional Order Hammerstein Model

3.1. MIMO Fractional Order Hammerstein Model
3.1.1. Fractional Order Differentiation

At present, there are three definitions widely used in the field of fractional calculus:
Grünwald–Letnikov (GL), Riemann–Liouville (RL), and Caputo definitions. Because the
GL is easy to program [43], this paper considers it the research object. The definition of
fractional order calculus can be expressed as

Dα
t f (t) = lim

h→0

1
hα ∑[

t−t0
h ]

j=0 (−1)j
(

α
j

)
f (t− jh) (8)

where α is the fractional order. Because this paper explores differential equations, α > 0. h

is the sampling time; [] means that the integer part is reserved; (−1)j
(

α
j

)
is the binomials

of (1− z)α. By denoting wα
j to replace the binomials, so wα

j can be expressed as

wα
j = (−1)j

(
α
j

)
=

(−1)jΓ(α + 1)
Γ(j + 1)Γ(α− j + 1)

(9)

Finally, when t0 = 0, the definition of fractional order calculus can be expressed as

Dα
t f (t) =

1
hα ∑[ t−a

h ]

j=0 wα
j f (t− jh) (10)

10
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3.1.2. MIMO Fractional-Order Hammerstein System

The MIMO Hammerstein model of this paper can be schematically represented in
Figure 4. Hammerstein model is a typical nonlinear model composed of static nonlinear
block and dynamic linear block. the dynamic linear block can be expressed as⎡⎢⎢⎢⎣

y1(t)
y2(t)

...
yN(t)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
G1,1 G1,2 . . . G1,M
G2,1 G2,2 . . . G2,M

...
GN,1 GN,2 . . . GN,M

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

u′1(t
)

u′2(t)
...

u′M(t
)
⎤⎥⎥⎥⎦ (11)

where yk(t) is the kth system output; u′l(t
)

is generated by the lth system input ul(t)
through the nonlinear block, which can be expressed as

u′l(t
)
= cl,1· fl,1(ul(t)) + cl,2· fl,2(ul(t)) + . . . + cl,nlc

· fl,nlc
(ul(t))

= ∑nlc
m=1 cl,m· fl,m(ul(t))

(12)

where cl,· are coefficients to be identified; fl,·() are a series of basic functions. Gk,l is
a fractional-order transfer function, which can reflect the relationship between u′l(t

)
and

yk(t); it is defined as

Gk,l(s) =
bk,l,msmα + bk,l,m−1s(m−1)α + · · ·+ bk,l,0

ak,l,nsnα + ak,l,n−1s(n−1)α + · · ·+ ak,l,0
(13)

where ak,l,· and bk,l,· are coefficients to be identified; α is the fractional order to be identified.
For the convenience of calculation and programming, in this paper ak,l,0 is assumed to be 1.
According to Equations (11) and (13), the kth system output can be expressed as

yk = Gk,1u′1 + Gk,2u′2 + · · ·+ Gk,Mu′M

=
bk,1,mSmα+bk,1,m−1S(m−1)α+···+bk,1,0

ak,1,nSnα+ak,1,n−1S(n−1)α+···+ak,1,1Sα+1
u′1

+
bk,2,mSmα+bk,2,m−1S(m−1)α+···+bk,2,0

ak,2,nSnα+ak,2,n−1S(n−1)α+···+ak,2,1Sα+1
u′2

+ · · ·+ bk,M,mSmα+bk,M,m−1S(m−1)α+···+bk,M,0

ak,M,nSnα+ak,M,n−1S(n−1)α+···+ak,M,1Sα+1
u′M

(14)

 

Figure 4. MIMO Hammerstein model.

By reduction of fractions to a common denominator and simplifying Equation (14),
we can get an equation described as(

Ak,NA SNAα + Ak,NA−1
S(NA−1)α + · · ·+ Ak,1Sα + 1

)
yk

=
(

Bk,1,NB SNBα + Bk,1,NB−1S(NB−1)α + · · ·+ Bk,1,0

)
u′1+(

Bk,2,NB SNBα + Bk,2,NB−1S(NB−1)α + · · ·+ Bk,2,0

)
u′2 + · · ·+(

Bk,M,NB SNBα + Bk,M,NB−1S(NB−1)α + · · ·+ Bk,M,0

)
u′M

(15)

11
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where A is the polynomial containing a; B is the polynomial containing a and b; the
coefficient of fractional order NA = M ∗ n, NB = (M− 1) ∗ n + m. To sum up, the MIMO
fractional-order Hammerstein system discussed in this paper can be expressed as{

yk(t) + ∑nA
i=1 Ak,iDiαyk(t) = ∑M

l=0 ∑nB
j=0 Bk,l,jDjαu′l(t)

y′k(t) = yk(t) + v(t)
(16)

where v(t) is the Gaussian white noise; y′k(t) is the measured output containing noise.
According to Equations (10) and (16), the MIMO fractional-order Hammerstein system can
be expressed as

y′k(t) =
1(

1+∑
nA
i=1 Ai/hiα

) ·
[

M
∑

l=0

nB
∑

i=0

nlc
∑

m=1

Bk,l,i
hiα cl,m·

[t/h]
∑

j=0
wiα

j fl,m(ul(t− jh))

−
nA
∑

i=1

Ai
hiα

[t/h]
∑

j=1
wiα

j yk(t− jh)

]
+ v(t)

(17)

3.2. Parameter Identification Based on Auxiliary Model Recursive Least Square Method

In the MIMO fractional-order Hammerstein model, all the coefficients and the frac-
tional order are needed to be identified. Previous articles usually considered only part
of coefficients or for the SISO system. The work of this paper is rarely concerned before.
The identification work is divided into coefficient identification and order identification.
However, the two results affect each other, which cannot identify coefficients precisely
without a precise fractional order. This paper will first use a series of input and output data
to obtain the initial values of coefficients and the fractional order by the AIAGS algorithm
mentioned above. The initial value is a little precise. Then, the initial value will be used to
get the parameter identification result of the fractional-order Hammerstein model through
the auxiliary model recursive least squares (AMRLS) algorithm.

3.2.1. Coefficient Identification

According to the basic knowledge of system identification, the input–output relations
can be expressed as

yk
′(t) = yk(t) + v(t) = ∅k(t)·θk

T + v(t) (18)

where ∅k(t) is the variable vector including input–output data, which is expressed as

∅k(t) =
[
∅k,A(t),∅Bk,1,0(t),∅Bk,1,1(t), . . . ,∅Bk,1,nB

(t), . . . ,∅Bk,M,0(t),∅Bk,M,1(t), . . . ,∅Bk,M,nB
(t)

]
∅k,A(t) =

[
−∑

[t/h]
j=1 wα

j yk(t− jh) , . . . ,−∑
[t/h]
j=1 wnAα

j yk(t− jh)
]

∅Bk,l,i (t) =
[
∑
[t/h]
j=0 wiα

j fl,1(ul(t− jh)), . . . , ∑
[t/h]
j=0 wiα

j fl,M(ul(t− jh))
] (19)

According to Equations (16) and (17), the vector θk is found and expressed as

θk =
[
θk,A, θBk,1,0 , . . . , θBk,1,nB

, . . . , θBk,M,0 , . . . , θBk,M,nB

]
θk,A =

[
Qk,1, Qk,2, . . . , Qk,nA

]
θBk,l,i =

[
Wk,1,ic1,1, . . . , Wk,1,ic1,nlc , . . . , Wk,M,icM,1, . . . , Wk,M,icM,nlc

] (20)

where

Qk,i =

Ak,i
hiα

1+∑
nA
i=1

Ak,i
hiα

Wk,l,j =

Bk,l,j
hjα

1+∑
nA
i=1

Ak,i
hiα

(21)

12
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It can be clearly seen that θk contains coefficients that need to be identified. It is worth
mentioning that yk(t− jh) is unknown so that θk,A cannot be identified directly by ∅k,A(t).
According to references [44], an auxiliary model is used to estimate the unknown variable
yk(t− jh). The auxiliary model of this paper can be schematically represented in Figure 5.
The main idea of the auxiliary model is that the real output of the system yk

′(t) is replaced
by the output of the auxiliary model yamk(t). Then, the identification problem has changed
from the relationship between yk

′(t) and ul to the relationship between yamk(t) and ul .

Figure 5. The MIMO Hammerstein model based on the auxiliary model.

According to Figure 5, the input–output relations of the auxiliary model can be writ-
ten as

yamk(t) = ∅amk(t)·θamk
T (22)

where

∅amk(t) =
[
∅amk,A(t),∅Bk,1,0(t),∅Bk,1,2(t), . . . ,∅Bk,1,nB

(t), . . . ,∅Bk,M,0(t),∅Bk,M,2(t), . . . ,∅Bk,M,nB
(t)

]
∅amk,A(t) =

[
−∑

[t/h]
j=1 wα

j yamk(t− jh) , . . . ,−∑
[t/h]
j=1 wnAα

j yamk(t− jh)
]
θamk = θ̂k

(23)

The estimate of ∅k(t) can be used as the value of the auxiliary model information
vector ∅amk(t) and the parameter identification of θk can be used as the value of the
auxiliary model parameter vector θamk. Define the criterion function as

J
(

θ̂k
T
)
=

1
2 ∑t

i=1

[
yk
′(i)−∅amk(i)θ̂k

T
]2

(24)

By finding the minimum value of the criterion function, the value of ∅amk(i)θ̂k
T

can
approach the value of yk

′(i) to identify θ̂k. The minimum value can be obtained by the
following equation.

∂J
(

θ̂k
T
)

∂θ̂k
T = −∑t

i=1 ∅amk
T(i)·[yk

′(i)−∅amk(i)θ̂k
T
] = 0 (25)

When ∑t
i=1 ∅amk

T(i− 1)·∅amk(i− 1) can be inversed, the value of θ̂k can be identified
by the recursive least squares as follows:

13
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θ̂k
T
(t) =

[
∑t

i=1 ∅amk
T(i− 1)·∅amk(i− 1)

]−1·∑t
i=1 ∅amk

T(i)yk
′(i)

θ̂k
T
(t) = θ̂k

T
(t− 1) + L(t)

[
yk
′(t)−∅amk(t)θ̂k

T
(t− 1)

]
L(t) = P(t− 1)∅amk

T(t)
[
1 +∅amk(t)P(t− 1)∅amk

T(t)
]−1

P(t) = [I − L(t)∅amk(t)]P(t− 1)

(26)

where P(0) is a diagonal matrix in which the main diagonal elements are huge and equal.
According to the above equations, the elements of θ̂k are all identified. Without losing

generality, assuming cl,1 as 1 can facilitate calculation and ensure the uniqueness of the
final parameters. Then, the unique values of Wk,l,j and cl,m are calculated; they can be
expressed as

Wk,l,j = θBk,l,i [(l − 1) ∗ nlc + 1
]

cl,m = ∑nlc
i=0

θBk,l,i
(k)

Wk,l,j

(27)

So far, the estimates of A, B, and c have been obtained.

3.2.2. Order Identification

In the previous section, this paper discusses the identification of coefficients. Substi-
tuting the accurate estimated value of the coefficients into Equation (17) can identify the
order accurately. Define the criterion function as

J(α) =
1
2 ∑t

i=1

[
yk
′(i)− ŷk(i)

]2 (28)

By finding the minimum value of the criterion function, the value of ŷk(i) can approach
the value of yk

′(i). The minimum value can be obtained by the following equation:

∂J(α)
∂α

= −∑t
i=1

∂ŷk(i)
∂α

·
[
yk
′(i)− ŷk(i)

]
= 0 (29)

where

∂ŷk(t)
∂α = − ∂

∂α ( ˆGk,1(sα)u′1(t) + ˆGk,2(sα)u′2(t) + · · ·+ ˆGk,M(sα)u′M(t))

=
M
∑

l=0

[(
Bk,l,NB

SNBα+···+Bk,l,0(
Ak,NA

SNAα+···+1
)2

)

·
(

NA·Ak,NA SNAα + · · ·+ Ak,1sα
)
− NB ·Bk,l,NB

SNBα+···+Bk,l,1sα

Ak,NA
SNα

A+···+1

]
· ln(s)·u′l(t)

(30)

According to references [24], ln(s)·u′l(t) can be replaced by sα·(ln(s)/sα)·u′l(t). The in-
verse Laplace transform of ln(s)/sα is a digamma function can be expressed as

L−1
(

ln(s)
sα

)
=

tα−1

Γ(α)

[
1

Γ(α)
dΓ(α)

dα
− ln(t)

]
(31)

Then, ln(s)·u′l(t) can be expressed as

Dα

[
1

Γ(α)
dΓ(α)

dα
Dαu′l(t)−

1
Γ(α)

∫ t

0
(t− τ)α−1 ln(t− τ)u′l(t)dτ

]
(32)

It’s easy to see that α can be calculated by Equations (28)–(32).

14
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3.3. Summary

So far, the estimates of A, B, c, and α have been obtained. Because A are polynomials
about a, B are polynomials about a and b, it is feasible to estimate the value of nA a by the
value of nA A. Then, it is feasible to estimate the value of b by the value of a and B. To sum
up, all estimates work has been completed.

4. Experimental Results

In this section, two numerical examples will demonstrate the validity of the pro-
posed method.

4.1. Example 1

Consider the following model, which is expressed as[
y1(t)
y2(t)

]
=

[
G1,1 G1,2

G2,1 G2,2

][
u′1(t

)
u′2(t)

]
y′(t) = y(t) + v(t) (33)

where
G1,1 = 4

5s0.3+1 , G1,2 = 3
3s0.3+1 ,

G2,1 = 4
6s0.3+1 , G2,2 = 5

2s0.3+1 .

u′1(t
)
= u1(t) + 0.5u1

2(t) + 0.3u1
3(t) + 0.1u1

4(t)
u′2(t) = u2(t) + 0.4u2

2(t) + 0.2u2
3(t) + 0.1u2

4(t)

(34)

The inputs u1 and u2 are persistent excitation signal sequences with unit variance
and zero mean. v(t) is the stochastic Gaussian noise with zero mean and variance is 0.005.
Then, the outputs y(t) are generated by their respective transfer functions of the MIMO
fractional-order Hammerstein model.

According to the model, the θ to be identified are

θ = [a1,1,1, a1,2,1, b1,1,0, b1,2,0, a2,1,1, a2,2,1, b2,1,0, b2,2,0, c1,1, c1,2, c1,3, c2,1, c2,2, c2,3, α]

= [5, 3, 4, 3, 6, 2, 4, 5, 0.5, 0.3, 0.1, 0.4, 0.2, 0.1, 0.3]
(35)

The identification steps are described in Section 3. At first, the intelligent optimization
algorithm identifies the initial value of the model. Then, using AMRLS to identify the model
coefficients, and at this time regarding the initial value of fractional order as the model’s
actual value. When the coefficients are estimated, the estimated values of the coefficients
are considered to be the true value to identify the fractional order. Finally, identifying
coefficients and order is repeated until the iteration’s end or satisfactory results are obtained.
The pseudo-code of the identification process is explained in detail in Algorithm 2.

Algorithm 2: Identification process

Step.1 Collect the dates of all inputs, outputs;
Step.2 Obtain the initial of unknown parameters by using intelligent optimization algorithm;
Step.3 While m < max number of iterations M;
Step.4 Estimate the value of model coefficients according to Equation (25);
Step.5 Estimate the value of fractional order according to Equation (29);
Step.6 If the two criterion function values J within the actual accuracy requirements;
Step.7 Break;
Step.8 End;
Step.9 m = m + 1;
Step.10 End while;
Step.11 Return the best solution.

In order to reflect the importance of the initial value of fractional order, in this section,
the initial value is identified by three different optimization algorithms: AIAGS, HHO,
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and AO. The next identification work is carried out under four initial values. This section
evaluates the final identification results from two aspects: RQE and MSE. They can be
expressed as

RQE =

√
(θ̂−θ)

2

θ2

MSE= ∑i=1
n (yi−ŷi)

2

n

(36)

where θ̂ and ŷi are estimated values; θ and yi are true values.
The final identification results obtained by Algorithm 2 are shown in Table 4, and the

RQE and MSE of the results are shown in Table 5. The outputs of the real model and the
outputs of the model obtained through identification are shown in Figures 6 and 7. Figure 8
shows the estimated fractional-order convergence curve.

Table 4. The final identification results.

Method
(and

AMRLS)
a1,1,1 a1,2,1 b1,1,0 b1,2,0 a2,1,1 a2,2,1 b2,1,0 b2,2,0 c1,1 c1,2 c1,3 c2,1 c2,2 c2,3 α α0

AIAGS 5.127 3.120 3.976 2.959 6.118 2.017 3.996 4.970 0.501 0.289 0.095 0.400 0.200 0.100 0.299 0.333
AO 4.619 3.325 3.887 3.465 5.377 1.760 4.196 5.272 0.509 0.297 0.098 0.404 0.198 0.098 0.275 0.391

HHO 4.641 3.329 3.882 3.448 5.289 1.757 4.152 5.283 0.508 0.296 0.097 0.404 0.198 0.099 0.278 0.382

Table 5. The RQE and MSE of the results.

Method
(and AMRLS)

AIAGS AO HHO

RQE 0.1360 0.2931 0.2987
MSE 0.0144 0.0944 0.1019

Figure 6. The real output 1 and the identified output 1.
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Figure 7. The real output 2 and the identified output 2.

Figure 8. The estimated fractional-order convergence curve.

4.2. Example 2

Consider the following model, which is expressed as[
y1(t)
y2(t)

]
=

[
G1,1 G1,2
G2,1 G2,2

][
u′1(t

)
u′2(t)

]
y′(t) = y(t) + v(t)

(37)

where
G1,1 = 5

2s0.7+1 , G1,2 = 1.7s0.7+1.9
1.5s1.4+1.3s0.7+1 ,

G2,1 = 1.8sα+1.5
2.2s1.4+2.1s0.7+1 , G2,2 = 1

1.6s0.7+1 .

u′1(t
)
= u1(t) + 0.5u1

2(t) + 0.2u1
3(t) + 0.1u1

4(t)
u′2(t) = u2(t) + 0.4u2

2(t) + 0.3u2
3(t) + 0.1u2

4(t)

(38)

The parameter meanings are similar to that of Example 1, so θ can be expressed as

θ = [a1,1,1, a1,2,2, a1,2,1, b1,1,0, b1,2,1, b1,2,0, a2,1,2, a2,1,1, a2,2,1, b2,1,1, b2,1,0, b2,2,0, c1,1, c1,2, c1,3, c2,1, c2,2, c2,3, α]

= [2, 1.5, 1.3, 5, 1.7, 1.9, 2.2, 2.1, 1.6, 1.8, 1.5, 1, 0.5, 0.2, 0.1, 0.4, 0.3, 0.1, 0.7]
(39)

By repeating the identification process similar to Example 1, the final identification
results are shown in Table 6, and the RQE and MSE of the results are shown in Table 7.
The outputs of the real model and the outputs of the model obtained through identification
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are shown in Figures 9 and 10. Figure 11 shows the estimated fractional-order convergence
curve.

Table 6. The final identification results.

Method
(and

AMRLS)
a1,1,1 a1,2,2 a1,2,1 b1,1,0 b1,2,1 b1,2,0 a2,1,2 a2,1,1 a2,2,1 b2,1,1 b2,1,0 b2,2,0 c1,1 c1,2 c1,3 c2,1 c2,2 c2,3 α

AIAGS 2.002 1.501 1.297 5.033 1.703 1.915 2.164 2.215 1.766 1.675 1.564 1.029 0.504 0.191 0.095 0.385 0.293 0.101 0.700
AO 2.946 1.453 1.174 5.642 1.127 1.832 2.459 2.544 0.733 4.680 1.626 1.122 0.483 0.188 0.100 0.347 0.290 0.106 0.582

HHO 3.182 1.42 1.197 5.697 1.004 1.808 2.463 2.605 0.691 4.962 1.631 1.132 0.482 0.188 0.100 0.344 0.288 0.106 0.570

Table 7. The RQE and MSE of the results.

Method
(and AMRLS)

AIAGS AO HHO

RQE 0.1819 0.6579 0.6935
MSE 0.0351 0.5133 0.6626

Figure 9. The real output 1 and the identified output 1.

Figure 10. The real output 2 and the identified output 2.
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Figure 11. The estimated fractional-order convergence curve.

5. Conclusions

This paper discusses a new identification method for MIMO fractional-order Hammer-
stein models. In order to improve the accuracy of identification results, the identification
process needs a heuristic algorithm to provide the initial value. Because the immune algo-
rithm is prone to premature convergence, this paper improves the immune algorithm and
proposes AIAGS. In AIAGS, the immune algorithm’s stimulation function and mutation
strategy are improved, and simulated annealing is added to the final step to select the
optimal solution. The core idea of these improvements is to avoid finding the optimal
local solution. Then, through the obtained initial value, the auxiliary model recursive least
squares method is used to accurately identify all the MIMO fractional-order Hammerstein
model parameters. The experimental results show the effectiveness of the proposed algo-
rithm. The proposed methods in this paper can be applied to other literature [45–47], such
as parameter identification problems of different systems, engineering applications, fault
diagnosis, and so on.
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Abstract: This manuscript investigates the existence, uniqueness and Ulam–Hyers stability (UH) of
solution to fractional differential equations with non-instantaneous impulses on an arbitrary domain.
Using the modern tools of functional analysis, we achieve the required conditions. Finally, we provide
an example of how our results can be applied.
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1. Introduction

The study of differential equations with fractional order has become increasingly
popular in recent decades. The reasons behind it are fractional order derivatives provide
powerful tools for describing inherited or defined properties in a wide range of science and
engineering fields [1–8].

There are several approaches of fractional derivatives, Riemann–Liouville, Caputo,
Hadamard, Hilfer, etc. It is important to cite that the Caputo derivative is useful to affront
problems where initial conditions are done in the function and in the respective derivatives
of integer order. Due to the importance of the Caputo version, there are many versions
established as generalization of it, such as Caputo–Katugampola, Caputo–Hadamard,
Caputo–Fabrizio, etc. Furthermore, it is drown attention of huge number of contributors to
study physical and mathematical modelings contain it and its related versions, see [9–13]
and references cited therein.

Finding exact solutions to the differential equations, whether they are ordinary, partial,
or fractional, is a extremely difficult and complex issue, and that is why mathematicians
have resorted to studying the properties of solutions such as existence, uniqueness, stability,
invariant, controllability and others. The most important of these properties are existence
and uniqueness which attracted the attention of many contributors to their study [14–20].
Furthermore, Ulam–Hyers stability analysis that is necessary for nonlinear problems in
terms of optimization and numerical solutions and plays a key role in numerical solutions
where exact solutions are difficult to get.

The fractional differential equations (FDEs) with instantaneous impulses are increas-
ingly being used to analyze abrupt shifts in the evolution pace of dynamical systems, such
as those brought about by shocks, disturbances, and natural disasters [21,22]. The duration
of instantaneous impulses is relatively short in comparison to the duration of the overall
process. However, certain dynamics of evolution processes have been observed to be
inexplicable by instantaneous impulsive dynamic systems. As an instance, the injection
and absorption of drugs in the blood is a gradual and continuous process. Here, each
spontaneous, the action begins in an arbitrary fixed position and lasts for a finite amount
of time. This type of system is known as a non-instantaneous impulsive system, which
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are more suitable for investigating the dynamics of evolutionary processes [23–25] and the
references cited therein. Hernandaz and O’Regan [26] discussed the evolution equations
involving non-instantaneous impulses of the form:⎧⎪⎨⎪⎩

x′ = Ax(t) + f (t, x(t)), t ∈ (sk, tk+1], k = 0, 1, · · · , m,
y(t) = gk(t, x(t)), t ∈ (tk, sk], k = 1, 2, · · · , m,
x(0) = x0.

Liu et al. [27] explored generalized Ulam–Hyers–Rassias stability for the following
fractional differential equation:{

cDv
0,wz(w) = f (w, z(w)), w ∈ (wk, sk], k = 0, 1, · · · , m, 0 < v < 1,

z(w) = gk(w, z(w)), w ∈ (sk−1, wk], k = 1, · · · , m

where cDv
0,w is a Caputo derivative of fractional order 0 < v < 1 with the lower limit 0.

Ho and Ngo [28] analyzed generalized Ulam–Hyers–Rassias stability for the following
fractional differential equation:⎧⎪⎨⎪⎩

cDα,ρ
a+ x(t) = f (t, x(t)), t ∈ (tk, sk], k = 0, 1, · · · , m, 0 < α < 1,

x(t) = Ik(t, x(t)), t ∈ (sk−1, tk], k = 1, · · · , m,
x(a+) = x0

where cDα,ρ
a+ is a Caputo–Katugampola derivative of fractional order 0 < α < 1. Recently,

Abbas [29] has studied non-instantaneous impulsive fractional integro-differential equa-
tions with proportional fractional derivatives with respect to another function by using the
nonlinear alternative Leray–Schauder type and the Banach contraction mapping principle⎧⎪⎨⎪⎩

aDα,ρ,gy(t) = f (t, y(t), a Iβ,ρ,gy(t)), t ∈ (sk, tk+1], k = 0, 1, · · · , m,
y(t) = Ψk(t, y(t+k )), t ∈ (tk, sk], k = 1, 2, · · · , m,

a Iβ,ρ,gy(a) = y0, y0 ∈ R

where 0 < α ≤ 1, β, ρ > 0, aDα,ρ,g is the proportional fractional derivative of order α with
respect to another function g.

It is remarkable that the most of contributions focus on the case when the order
of fractional derivative lies in the unit interval (0, 1). This observation encourages us to
study these equations when the order of fractional derivative lies in the unit interval
(1, 2). Furthermore, although the Generalized Liouville–Caputo fractional derivative is
considered a generalization of Caputo and Hadamard fractional derivatives, there is a
rareness of the studies with this approach.

Inspire of the above, we investigate the existence of solutions for non-instantaneous
impulsive fractional boundary value problems in this paper. Specifically, we consider the
following problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cDβ,ρ
0+ y(τ) = h(τ, y(τ), τ1−ρy′(τ)), τ ∈ (sr, τr+1], r = 0, 1, · · · , k,

y(τ) = Φr(τ, y(τ), y(τr − 0), τ ∈ (τr, sr], r = 1, 2, · · · , k,
y′(τ) = τρ−1Ψr(τ, y(τ), y(τr − 0), τ ∈ (τr, sr], r = 1, 2, · · · , k,
y(0) = y0, limτ→0 τ1−ρy′(τ) = y1, y0, y1 ∈ R

(1)

where all intervals are subset of J = [0, T], cDβ,ρ is a generalized Caputo–Liouville (Katugam-
pola) derivative of order 1 < β ≤ 2 and type 0 < ρ ≤ 1 and h : J ×R×R → R is a given
continuous function. Here, 0 = s0 < τ1 < s1 < · · · < τk < sk < τk+1 = T, k ∈ N are fixed
real numbers and Φr and Ψr : (τr, sr)→ R, r = 1, · · · , k are non-instantaneous impulses.
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The main objectives of our work are to develope the existence theory and Ulam–Hyers
stability of non-instantaneous impulsive BVPs involving Generalized Liouville–Caputo
derivatives. This work is based on modern functional analysis techniques. Three basic
results introduce: the first two deal with the existence and uniqueness of solutions by
applying a nonlinear Leray–Schauder alternative theorem and the Banach fixed point
theorem, respectively. While the third concerns the Ulam–Hyers stability analysis of
solutions for the given problem by establishing a criterion for ensuring various types of
Ulam–Hyers stability.

For the rest of the paper, it is arranged as follows: Section 2 provides some preliminary
concepts about our work and a key lemma that deals with the linear variant of the given
problem, along with giving a formula for converting the given problem into a fixed point
problem.Using the Banach contraction mapping principle and the Leray–Schauder nonlin-
ear alternative, the existence and uniqueness of problem (1) are presented in Section 3.

Remark 1. For fractional differential equation for non-instantaneous impulsive (1).The inter-
vals (τr, sr], r = 1, · · · , k are known as non-instantaneous impulse intervals, and the functions
Φr(τ, y(τ), y(τr − 0)), r = 1, · · · , k are known as non-instantaneous impulsive functions. The
fractional differential equation with non-instantaneous impulses (1) is reduced to a fractional
differential equation with instantaneous impulses if τr = sr−1, r = 1, · · · , k.

2. Preliminaries

Let the space of continuous real-valued functions on J be denoted by C(J,R) . Consider
the space

PC(J,R) =
{

y : J → R : y ∈ C((τk, τk+1],R)
}

and there exist y(τ−k ) and y(τ+
k ), k = 1, · · · , r with y(τ−k ) = y(τk).

Furthermore, consider the space:

PC1
δ(J,R) =

{
y : J → R : δy ∈ PC(J,R)

}
such that δy(τ+

k ) and δy(τ−k ) exist and δy is left continuous at τk for k = 1, · · · , r and
δ = τ1−ρd/dτ. The space PC1

δ(J,R) equipped with the norm:

||y|| = sup
τ∈J
{|y(τ)|PC + |δy(τ)|PC1

δ
} = ||y(τ)||PC + ||δy(τ)||PC1

δ
.

Furthermore, we recall that:

ACn(J,R) = {h : J → R : h, h′, ..., hn−1 ∈ C(J, R)}

and h(n−1) is absolutely continuous.
For 0 ≤ ε < 1, we define the space:

Cε,ρ(J,R) = { f : J → R : (τρ − aρ)ε f (τ) ∈ C(J,R)}

endowed with the norm
|| f ||Cε ,ρ = ||(τρ − aρ)ε f (τ)||C .

Furthermore, we define a class of functions f that is absolutely continuous δn−1, n ∈ N

derivative, denoted by ACn
δ (J,R) as follows:

ACn
δ (J,R) =

{
f : J → R : δk f ∈ AC(J,R), δ = τ1−ρ d

dτ
, k = 0, 1, · · · , n− 1

}

Equipped with the norm

|| f ||Cn
δ
=

n−1

∑
k=0
||δk f ||C .
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Generally, a space of functions that is endowed with the norm

|| f ||Cn
δ,ε

=
n−1

∑
k=0
||δk f ||C + ||δn f ||Cε,ρ

is defined by

Cn
δ,ε(J,R) =

{
f : J → R : f ∈ ACn

δ (J,R), δn f ∈ Cε,ρ(J,R)
}

.

Note that Cn
δ,0 = Cn

δ .

Definition 1 ([30]). The left-sided and right-sided generalized fractional integrals of order α > 0
and type 0 < ρ ≤ 1 are defined, respectively, by:

Iα,ρ
a+ f (x) =

ρ1−α

Γ(α)

∫ x

a
(xρ − tρ)α−1tρ−1 f (t)dt,

Iα,ρ
b− f (x) =

ρ1−α

Γ(α)

∫ b

x
(xρ − tρ)α−1tρ−1 f (t)dt.

Definition 2 ([31]). Let n = [α] + 1, n ∈ N, 0 ≤ a < b < ∞ and f ∈ ACn
δ [a, b]. The left-sided

and right-sided Generalized Liouville–Caputo-type (Katugampola) fractional derivatives of order
α > 0 and type 0 < ρ ≤ 1 are defined via the above generalized integrals, respectively, as

(cDα,ρ
a+ f )(x) =

(
In−α,ρ
a+

(
x1−ρ d

dx

)n

f

)
(x) =

ρ1−n+α

Γ(n− α)

∫ x

a

tρ−1

(xρ − tρ)1−n+α

(
t1−ρ d

dt

)n

f (t)dt,

(cDα,ρ
b− f )(x) =

(
In−α,ρ
b−

(
−x1−ρ d

dx

)n

f

)
(x) =

ρ1−n+α

Γ(n− α)

∫ b

x

tρ−1

(xρ − tρ)1−n+α

(
−t1−ρ d

dt

)n

f (t)dt.

Lemma 1 ([31]). Let n− 1 < α ≤ n; n ∈ N and f ∈ ACn
δ [a, b] or f ∈ Cn

δ [a, b]. Then,

Iα,ρ
a+

cDα,ρ
a+ f (x) = f (x)−

n−1

∑
k=0

δk f (a)
k!

(
tρ − aρ

ρ

)k

,

Iα,ρ
b−

cDα,ρ
b− f (x) = f (x)−

n−1

∑
k=0

(−1)kδk f (b)
k!

(
bρ − tρ

ρ

)k

.

In particular, for 1 < α ≤ 2, we have:

Iα,ρ
a+

cDα,ρ
a+ f (x) = f (x)− f (a)− tρ − aρ

ρ
δ f (a),

Iα,ρ
b−

cDα,ρ
b− f (x) = f (x)− f (b) +

bρ − tρ

ρ
δ f (b).

Lemma 2. Let 1 < β < 2 and υ : J → R be an integrable function. Then, there is a solution to the
linear problem:

cDβ,ρ
sr y(τ) = υ(τ) τ ∈ (sr, τr+1], r = 0, 1, · · · , k

y(τ) = Φr(τ, y(τ), y(τr − 0), τ ∈ (τr, sr], r = 1, 2, · · · , k

τ1−ρy′(τ) = Ψr(τ, y(τ), y(τr − 0), τ ∈ (τr, sr], r = 1, 2, · · · , k

y(0) = y0, lim
τ→0

τ1−ρy′(τ) = y1, y0, y1 ∈ R

(2)
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given by:

y(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1−β

Γ(β)

∫ τ

0
tρ−1(τρ − tρ)β−1υ(t)dt + y0 +

y1
ρ τρ, τ ∈ [0, τ1],

Φr(τ, y(τ), y(τr − 0)), τ ∈ (τr, sr],
ρ1−β

Γ(β)

∫ τ

sr
tρ−1(τρ − tρ)β−1h(t)dt + Φr(sr, y(sr), y(τr − 0))

+
τρ − sρ

r

ρ
Ψr(sr, y(sr), y(τr − 0)), τ ∈ (sr, τr+1].

(3)

Proof. Applying the operator Iβ,ρ
sr to fractional differential equation in (2) and using

Lemma 1, we have:

y(τ) = Iβ,ρ
sr υ(τ) + c1,r + c2,r

τρ − sρ
r

ρ
and τ1−ρy′(τ) = Iβ−1,ρ

sr υ(τ) + c2,r

where c1,r, c2,r ∈ R, r = 0, 1, · · · , k are constants to be determined.

• For τ ∈ [0, τ1], we obtain:

y(τ) = Iβ,ρ
0 υ(τ) + c1,0 + c2,0

τρ

ρ
and τ1−ρy′(τ) = Iβ−1,ρ

0 υ(τ) + c2,0.

Applying the initial conditions y(0) = y0 and limτ→0 τρ−1y′(τ) = y1 give c1,0 = y0
and c2,0 = y1 which imply that:

y(τ) = Iβ,ρ
0 υ(τ) + y0 + y1

τρ

ρ
and τ1−ρy′(τ) = Iβ−1,ρ

0 υ(τ) + y1.

• For τ ∈ (τ1, s1]. Then,

y(τ) = Φ1(τ, y(τ), y(τ1 − 0)) and y′(τ) = τρ−1Ψ1(τ, y(τ), y(τ1 − 0)).

• For τ ∈ (s1, τ2]. Then,

y(τ) = Iβ,ρ
s1 υ(τ) + c1,1 + c2,1

τρ − sρ
1

ρ
and τ1−ρy′(τ) = Iβ−1,ρ

s1 υ(τ) + c2,1.

Due to the previous impulsive conditions, we get

c1,1 = Φ1(s1, y(s1), y(τ1 − 0)) and c2,1 = Ψ1(s1, y(s1), y(τ1 − 0))

which imply that

y(τ) = Iβ,ρ
s1 υ(τ) + Φ1(s1, y(s1), y(τ1 − 0)) + Ψ1(s1, y(s1), y(τ1 − 0))

τρ − sρ
1

ρ
,

τ1−ρy′(τ) = Iβ−1,ρ
s1 υ(τ) + Ψ1(s1, y(s1), y(τ1 − 0)).

• By similar process. For τ ∈ (sr, τr+1]. Then,

y(τ) = Iβ,ρ
sr υ(τ) + Φr(sr, y(sr), y(τr − 0)) +

τρ − sρ
r

ρ
Ψr(sr, y(sr), y(τr − 0)).

Hence, from the previous, we obtain the solution (3). By direct computation, the
converse follows. The proof is complete.
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Next, we present the concept of Ulam stability for problem (1). First, consider
E = PC1

δ(J,R)∩AC2
δ(J,R) with y ∈ E and ε > 0. Let us introduce the following inequality⎧⎪⎨⎪⎩

‖cDβ,ρ
sr y(τ)− h(τ)‖ ≤ ε, τ ∈ (sr, τr+1], r = 0, 1, · · · , k

‖y(τ)−Φr‖ ≤ ε, τ ∈ (τr, sr], r = 1, · · · , k
‖τ1−ρy′(τ)−Ψr‖ ≤ ε, τ ∈ (τr, sr], r = 1, · · · , k

(4)

Definition 3 ([32]). If there is a constant Λ > 0 and ε > 0 such that for any solution ỹ ∈ E of the
inequality (4), there is a unique solution y ∈ E to the problem (1) fulfilling

‖ỹ(τ)− y(τ)‖ ≤ Λε.

Then the problem (1) is said to be UH stable.

Definition 4 ([32]). If there is a function μ ∈ (R+,R+), μ(0) = 0, for ε > 0 such that for any
solution ỹ ∈ E of the inequality (4), there is a unique solution y ∈ E to the problem (1) fulfilling

‖ỹ(τ)− y(τ)‖ ≤ μ(ε).

Then the problem (1) is said to be GUH stable.

Remark 2. If one has a function 
 ∈ E together with a sequences 
r, r = 0, · · · , r dependent on y.
Then y ∈ E is called a solution of the inequality (4) such that:

(a) |
(τ)| ≤ ε, |
r| ≤ ε, τ ∈ J, r = 0, · · · , k
(b) cDβ,ρ

sr ỹ(τ) = h̃(τ) + 
(τ), τ ∈ (sr, τr+1], r = 0, 1, · · · , k
(c) ỹ(τ) = Φr(τ, ỹ(τ), ỹ(τr − 0) + 
r, τ ∈ (τr, sr], r = 1, 2, · · · , k
(d) τ1−ρỹ′(τ) = Ψr(τ, ỹ(τ), ỹ(τr − 0) + 
r, τ ∈ (τr, sr], r = 1, 2, · · · , k.

3. Existence and Uniqueness Results

Our results for uniqueness and existence for problem (1) are presented in this section.
By using Lemma 2, we convert the non-instantaneous fractional differential Equation (1)
into a fixed point problem. define the operator G : E → E by:

Gy(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1−β

Γ(β)

∫ τ

0
tρ−1(τρ − tρ)β−1h(t)dt + y0 +

y1
ρ τρ, τ ∈ [0, τ1],

Φr(τ, y(τ), y(τr − 0)), τ ∈ (τr, sr],
ρ1−β

Γ(β)

∫ τ

sr
tρ−1(τρ − tρ)β−1h(t)dt + Φr(sr, y(sr), y(τr − 0))

+
τρ − sρ

r

ρ
Ψr(sr, y(sr), y(τr − 0)), τ ∈ (sr, τr+1].

(5)

where h(τ) = h(τ, y(τ), τ1−ρy′(τ)).
To explain and prove our main results, we first introduce these hypotheses. Consider

the following

(H1) The function h : [0, T]×R×R→ R is continuous and Φr, Ψr : [τr, sr]×R×R→ R

are continuous functions ∀r = 1, · · · , k and k ∈ N.

(H2) |ĥ(τ)| = |h(τ, y, τ1−ρy′)| ≤ q(τ)υ(|y|), where q ∈ C([0, T],R+) and υ : R+ → R+ is a
nondecreasing function.

(H3) There exist constants ϑr > 0, ϑ∗r > 0, r = 1, · · · , k; k ∈ N such that

|Φr(τ, y, v)| ≤ ϑr, and |Ψr(τ, y, v)| ≤ ϑ∗r

∀τ ∈ [τr, sr] , y, v ∈ R.
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(H4) There exist A > 0 satisfies ||y||E 
= A for some y ∈ E .

(H5) There exist positive constants κ1r, κ2r, κ∗1r and κ∗2r, r = 1, · · · , k; k ∈ N such that:

|Φr(τ, y1, v1)−Φr(τ, y2, v2)| ≤ κ1r|y1 − y2|+ κ2r|v1 − v2|,
|Ψr(τ, y1, v1)−Ψr(τ, y2, v2)| ≤ κ∗1r|y1 − y2|+ κ∗2r|v1 − v2|

for each τ ∈ [τr, sr] and y1, y2, v1, v2 ∈ R.

(H6) There exists L > 0 satisfies

|h(τ, y, δy)− h(τ, u, δu)| ≤ L(|y− u|+ δ|y− u|)

∀τ ∈ [0, T] and y, u ∈ R.

Below are the short constants that we will use later to simplify handling:

Ω = Ω(β) + Ω(β− 1) (6)

Ωr = Ωr(β) + Ωr(β− 1), (7)

Q =
A

Ω‖q‖υ(A) + |y0|+ |y1|
ρ (ρ + τ

ρ
1 )

, (8)

Q1r =
A

ϑr + ϑ∗r
, (9)

Q2r =
A

Ωr‖q‖υ(A) + ϑr +
ϑ∗r
ρ (ρ + Tρ − sρ

r )
(10)

where r = 1, 2, · · · , k; k ∈ N,

Ω(β) =
τ

ρβ
1

ρβΓ(β + 1)
and Ωr(β) =

(Tρ − sρ
r )

β

ρβΓ(β + 1)
.

Lemma 3 ([33,34]). (Leray–Schauder nonlinear alternative) Assume that E is a Banach space, B
is a convex closed subset of E, and Y ⊂ B is an open subset and 0 ∈ Y. If F : Y → B is continuous
and compact, then either

• In Y, F has a fixed point; or
• For some λ ∈ (0, 1), there exists y ∈ ∂Y and y = λFy.

Theorem 1. Consider Hypotheses (H1)–(H4) satisfied. If

max
r
{Q,Q1r,Q2r} > 1

where Q,Q1r and Q2r are given by Equations (8), (9) and (10), respectively. Then, the problem in
Equation (1) has at least one solution in [0, T].

Proof. Verifying the hypotheses of Leray–Schauder nonlinear alternative involves a num-
ber of steps. The first step is to demonstrate that the operator G : E → E defined by
Equation (5) maps bounded sets into bounded sets in E . In other word, we show that for a
positive number ω, there exists a positive constant I such that ‖Gy‖E ≤ I for any y ∈ Bω

where Bω is a closed bounded set defined as

Bω =
{
(y, δy) : y ∈ E ∧ ‖y‖E = ‖y‖PC + ‖δy‖PC1

δ
� ω

}
with the radius:

ω � max
{

Ω‖q‖υ(ω) + |y0|+
|y1|

ρ
(ρ + τ

ρ
1 ), ϑr + ϑ∗r , Ωr‖q‖υ(ω) + ϑr +

ϑ∗r
ρ
(ρ + Tρ − sρ

r )

}
.
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Then, in light of (H2) and (H3), we have

• Case I. For each τ ∈ [0, τ1] and (y, δy) ∈ Bω. Using (6), we have

‖Gy‖PC ≤ sup
τ∈[0,τ1]

Iβ,ρ
0+

∣∣ĥ(t)∣∣+ |y0|+
∣∣y1

ρ
τρ
∣∣ ≤ Ω(β)||q||υ(ω) + |y0|+

|y1|
ρ

τ
ρ
1 .

Similarly, one can establish that

‖δGy‖PC1
δ
≤ sup

τ∈[0,τ1]

Iβ−1,ρ
0+

∣∣ĥ(t)∣∣+ |y1| ≤ Ω(β− 1)‖q‖υ(ω) + |y1|.

Consequently, we have

‖Gy‖E ≤ Ω‖q‖υ(ω) + |y0|+
|y1|

ρ
(ρ + τ

ρ
1 ) := I1.

• Case II. For each τ ∈ (τr, sr], r = 1, 2, · · · , k and (y, δy) ∈ Bω, we get

‖Gy‖E = ‖Gy‖PC + ‖δG‖PC1
δ
≤ ϑr + ϑ∗r := I2r.

• Case III. For each τ ∈ (sr, τr+1], r = 1, 2, · · · , k and (y, δy) ∈ Bω. Using (7), we have

‖Gy‖PC ≤ sup
τ∈(sr ,τr+1]

Iβ,ρ
sr

∣∣ĥ(t)∣∣+ ∣∣Φr(sr, y(sr), y(τr − 0))
∣∣+ ∣∣τρ − sρ

r

ρ
Ψr(sr, y(sr), y(τr − 0))

∣∣
≤ Ωr(β)‖q‖υ(ω) + ϑr +

ϑ∗r
ρ
(Tρ − sρ

r ).

In a similar manner, one can obtain:

‖δGy‖PC1
δ
≤ Ωr(β− 1)‖q‖υ(ω) + ϑ∗r .

Hence, we deduce that:

‖Gy‖E ≤ Ωr‖q‖υ(ω) + ϑr +
ϑ∗r
ρ
(ρ + Tρ − sρ

r ) := I3r.

From the above three inequalities, we can conclude that ‖Gy‖E ≤ I where
I = maxr

{
I1, I2r, I3r

}
. Thus, the operator G maps bounded sets into bounded sets

of the space E .
In the next step, we check that the operator G maps bounded sets into equicontinuous

sets in E .Considering the condition (H1), G is continuous.

• Case I. For each 0 � ζ1 < ζ2 � τ1 and (y, δy) ∈ Bω, we obtain that

|(Gy)(ζ2)− (Gy)(ζ1)| ≤
ρ1−β

Γ(β)

∫ ζ1

0
tρ−1

[
(ζ

ρ
2 − tρ)β−1 − (ζ

ρ
1 − tρ)β−1

]
|ĥ(t)|dt

+
ρ1−β

Γ(β)

∫ ζ2

ζ1

tρ−1(ζ
ρ
2 − tρ)β−1|ĥ(t)|dt +

|y1|
ρ

(
ζ

ρ
2 − ζ

ρ
1

)
≤ ||q||υ(|y|) 1

ρβΓ(β + 1)

(
ζ

ρβ
2 − ζ

ρβ
1

)
+
|y1|

ρ

(
ζ

ρ
2 − ζ

ρ
1

)
⇒ 0 as ζ2 → ζ1.

Similarly, one can establish that:

29



Mathematics 2022, 10, 291

|(δGy)(ζ2)− (δGy)(ζ1)|

≤ ||q||υ(|y|) ρ2−β

Γ(β− 1)

(∫ ζ1

0
tρ−1

[
(ζ

ρ
1 − tρ)β−2 − (ζ

ρ
2 − tρ)β−2

]
dt +

∫ ζ2

ζ1

tρ−1(ζ
ρ
2 − tρ)β−2dt

)
≤ 2||q||υ(|y|) 1

ρβ−1Γ(β)

(
ζ

ρ
2 − ζ

ρ
1

)β−1

⇒ 0 as ζ2 → ζ1.

• Case II. For eachτr � ζ1 < ζ2 < sr, r = 1, 2, · · · , k and (y, δy) ∈ Bω, we have

|(Gy)(ζ2)− (Gy)(ζ1)| ≤ |Φr(ζ2, y(ζ2), y(τr − 0))| − |Φr(ζ1, y(ζ1), y(τr − 0))|
|(δGy)(ζ2)− (δGy)(ζ1)| ≤ |Ψr(ζ2, y(ζ2), y(τr − 0))| − |Ψr(ζ1, y(ζ1), y(τr − 0))|.

Due to the continuity of both functions. It is clear that the above inequality approaches
zero when letting ζ2 → ζ1.

• Case III. For each sr � ζ1 < ζ2 < τr+1, r = 1, 2, · · · , k, and (y, δy) ∈ Bω, we get

|(Gy)(ζ2)− (Gy)(ζ1)| ≤
ρ1−β

Γ(β)

∫ ζ1

sr
tρ−1

[
(ζ

ρ
2 − tρ)β−1 − (ζ

ρ
1 − tρ)β−1

]∣∣∣ĥ(t)∣∣∣dt

+
ρ1−β

Γ(β)

∫ ζ2

ζ1

tρ−1(ζ
ρ
2 − tρ)β−1

∣∣∣ĥ(t)∣∣∣dt +
ζ

ρ
2 − ζ

ρ
1

ρ
|Ψr(sr, y(sr), y(τr − 0))|

≤ ||q||υ(|y|) 1
ρβΓ(β + 1)

[(
ζ

ρ
2 − sρ

r

)β
−
(

ζ
ρ
1 − sρ

r

)β
]
+

ζ
ρ
2 − ζ

ρ
1

ρ
|Ψr(sr, y(sr), y(τr − 0))|

⇒ 0 as ζ2 → ζ1.

Moreover, we have:

|(δGy)(ζ2)− (δGy)(ζ1)|

≤ ||q||υ(|y|) ρ2−β

Γ(β− 1)

(∫ ζ1

sr
tρ−1

[
(ζ

ρ
1 − tρ)β−2 − (ζ

ρ
2 − tρ)β−2

]
dt +

∫ ζ2

ζ1

tρ−1(ζ
ρ
2 − tρ)β−2dt

)
≤ ||q||υ(|y|) 1

ρβ−1Γ(β)

[
2(ζρ

2 − ζ
ρ
1)

β−1 + (ζ
ρ
1 − sρ

r )
β−1 − (ζ

ρ
2 − sρ

r )
β−1

]
⇒ 0 as ζ2 → ζ1.

As a result of the three inequalities above, we conclude that ‖(Gy)(ζ2)− (Gy)(ζ1)‖E →
0 independently of (y, δy) ∈ Bω as ζ2 → ζ1. Using the preceding arguments and the Arzela-
Ascoli theorem, the operator G : E → E is completely continuous.

Finally, we show that there exist an open set Y ⊂ E with y 
= λGy for λ ∈ (0, 1) and
y ∈ ∂Y. Consider the equation y = λGy for λ ∈ (0, 1). Then based on Step 1 , we have the
following cases:

• Case I. For each τ ∈ [0, τ1], one has

‖y(τ)‖ = ‖λ(Gy)(τ)‖ ≤ Ω‖q‖υ(‖y‖) + |y0|+
|y1|

ρ
(ρ + τ

ρ
1 )

which implies that:

‖y‖E
Ω‖q‖υ(‖y‖E ) + |y0|+ |y1|

ρ (ρ + τ
ρ
1 )
≤ 1. (11)
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• Case II. For each τ ∈ (τr, sr], r = 1, 2, · · · , k, one has

‖y(τ)‖ = ‖λ(Gy)(τ)‖ ≤ ϑr + ϑ∗r

which implies that:
‖y‖E

ϑr + ϑ∗r
≤ 1. (12)

• Case III. For each τ ∈ (sr, τr+1], r = 1, · · · , k, we obtain:

‖y(τ)‖ = ‖λ(Gy)(τ)‖ ≤ Ωr‖q‖υ(‖y‖) + ϑr +
ϑ∗r
ρ
(ρ + Tρ − sρ

r )

which implies that:

‖y‖E
Ωr‖q‖υ(‖y‖E ) + ϑr +

ϑ∗r
ρ (ρ + Tρ − sρ

r )
≤ 1. (13)

If (11)–(13) are combined with (H4) and given condition maxr{Q,Q1r,Q2r} > 1. A
positive numberA such that ‖y‖E 
= A can be found. Create a set Y = {y ∈ E : ‖y‖E < A}
with the operator G : Y → E being continuous and completely continuous. In light of the
choice of Y, there is no y ∈ ∂Y satisfying y = λGy for λ ∈ (0, 1). Thus, it follows from
the nonlinear alternative of Leray–Schauder, the operator G has a fixed point y ∈ Y that
corresponds to a solution to Equation (1).

Using the contraction mapping principle, we ensure the uniqueness of solution to
problem (1).

Theorem 2. Suppose that Hypotheses (H1,H3,H5 and H6) are satisfied. If

Δ = max
r

{
LΩ,Kr +K∗r ,LΩr +Kr +

K∗r
ρ (ρ + Tρ − sρ

r )
}
< 1 (14)

where Kr = κ1r + κ2r and K∗r = κ∗1r + κ∗2r. Thus, the non-instantaneous impulsive fractional
differential Equation (1) has a unique solution on J.

Proof. Let us consider a set:

Br =
{
(y, δy) : y ∈ E ∧ ‖y‖E = ‖y(τ)‖PC + ‖δy(τ)‖PC1

δ
� r

}
with radius

r ≥ max
r

⎧⎨⎩ΩN + |y0|+ |y1|
ρ (ρ + τ

ρ
1 )

1−LΩ
, ϑr + ϑ∗r ,

ΩrN + ϑr +
ϑ∗r
ρ (ρ + Tρ − sρ

r )

1−LΩr

⎫⎬⎭
where sup

τ∈[0,T]
|h(τ, 0, 0)| = N. Clearly, G is well defined and Gy ∈ E for all y ∈ E . All that

remains is to demonstrate that G is a contraction mapping. Thus, three cases are considered:

• Case I. For each τ ∈ [0, τ1] and (y, δy), (v, δv) ∈ E . Using (6), we get

‖Gy− Gv‖PC ≤ sup
τ∈[0,τ1]

ρ1−β

Γ(β)

∫ τ

0
tρ−1(τρ − tρ)β−1

∣∣∣h(t, y, t1−ρy′)− h(t, v, t1−ρv′)
∣∣∣dt

≤ LΩ(β)‖y− v‖.
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Similarly, we can obtain:

‖δGy− δGv‖PC1
δ
≤ LΩ(β− 1)‖y− v‖

which implies that:

‖Gy− Gv‖E ≤ LΩ‖y− v‖.

• Case II. For each τ ∈ (τr, sr], r = 1, 2, · · · , k and (y, δy), (v, δv) ∈ E , we have:

‖Gy− Gv‖PC ≤ (κ1r + κ2r)‖y− v‖.

In addition:

‖δGy− δGv‖PC1
δ
≤ (κ∗1r + κ∗2r)‖y− v‖.

Consequently, we have:

‖Gy− Gv‖E ≤ (Kr +K∗r )‖y− v‖.

• Case III. For each τ ∈ (sr, τr+1], r = 1, 2, · · · , k and (y, δy), (v, δv) ∈ E . Using (7),
we obtain:

‖Gy− Gv‖PC

≤ sup
τ∈(sr ,τr+1]

ρ1−β

Γ(β)

∫ τ

sr
tρ−1(τρ − tρ)β−1

∣∣∣h(t, y, t1−ρy′)− h(t, v, t1−ρv′)
∣∣∣dt

+ |Φr(sr, y(sr), y(τr − 0))−Φr(sr, v(sr), v(τr − 0))|

+

∣∣∣∣∣τρ − sρ
r

ρ

(
Ψr(sr, y(sr), y(τr − 0))−Ψr(sr, v(sr), v(τr − 0))

)∣∣∣∣∣
≤

[
LΩr(β) +Kr +

K∗r
ρ
(Tρ − sρ

r )

]
‖y− v‖.

In a similar manner, it can be shown that:

‖δGy− δGv‖PC1
δ
≤ [LΩr(β− 1) +K∗r ]‖y− v‖

which leads to:

‖Gy− Gv‖E ≤
[
LΩr +Kr +

K∗r
ρ
(ρ + Tρ − sρ

r )

]
‖y− v‖.

From the above, we obtain: ‖Gy − Gv‖E ≤ Δ‖y − v‖ which, in view of the given
condition Δ < 1, shows that the operator G is a contraction. This implies that the prob-
lem in Equation (1) has a unique solution on[0, T], according to the Banach contraction
mapping principle.

4. Stability Analysis

We present results regarding the Ulam–Hyers stability of our problem (1) in this section.

Theorem 3. Suppose that Hypotheses (H1), (H5 and (H6) are satisfied. Then, the non-instantaneous
impulsive fractional differential Equation (1) is Ulam–Hyers stable and Generalized Ulam–Hyers
stable if Δ < 1 where Δ is defined as (14).
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Proof. Assuming a unique solution y ∈ E to the problem (1) corresponds to any solution
ỹ ∈ E of the inequality (4). Then, in light of Lemma 2, we have:

y(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1−β

Γ(β)

∫ τ

0
tρ−1(τρ − tρ)β−1υ(t)dt + y0 +

y1
ρ τρ, τ ∈ [0, τ1],

Φr(τ, y(τ), y(τr − 0)), τ ∈ (τr, sr],
ρ1−β

Γ(β)

∫ τ

sr
tρ−1(τρ − tρ)β−1h(t)dt + Φr(sr, y(sr), y(τr − 0))

+
τρ − sρ

r

ρ
Ψr(sr, y(sr), y(τr − 0)), τ ∈ (sr, τr+1].

Further, if ỹ is the solution of inequality (4) and using Remark 2, we get:

cDβ,ρ
sr ỹ(τ) = h̃(τ) + 
(τ) τ ∈ (sr, τr+1], r = 0, 1, · · · , k

ỹ(τ) = Φr(τ, ỹ(τ), ỹ(τr − 0) + 
r, r = 1, 2, · · · , k

τ1−ρỹ′(τ) = Ψr(τ, ỹ(τ), ỹ(τr − 0) + 
r, r = 1, 2, · · · , k

where h̃(τ) = h(τ, ỹ(τ), τ1−ρỹ′(τ)) and

ỹ(τ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Iβ,ρ
0 h̃(τ) + Iβ,ρ

0 
(τ) + y0 +
y1
ρ τρ, τ ∈ [0, τ1],

Φr(τ, ỹ(τ), ỹ(τr − 0)) + 
r, τ ∈ (τr, sr],

Iβ,ρ
sr h̃(τ) + Iβ,ρ

sr 
(τ) + Φr(sr, ỹ(sr), ỹ(τr − 0))

+
τρ − sρ

r

ρ
Ψr(sr, ỹ(sr), ỹ(τr − 0)) +


r

ρ
(ρ + τρ − sρ

r ), τ ∈ (sr, τr+1].

For each τ ∈ [0, τ1], we consider:

‖ỹ(τ)− y(τ)‖PC ≤
ρ1−β

Γ(β)

∫ τ

0
tρ−1(τρ − tρ)β−1

∣∣∣h̃(t)− h(t)
∣∣∣dt +

ρ1−β

Γ(β)

∫ τ

0
tρ−1(τρ − tρ)β−1|
(t)|dt

≤ LΩ(β)‖ỹ− y‖E + εΩ(β).

Similarly, we can obtain:

‖δỹ(τ)− δy(τ)‖PC1
δ
≤ LΩ(β− 1)‖ỹ− y‖E + εΩ(β− 1)

which implies that:

‖ỹ(τ)− y(τ)‖E ≤ LΩ‖ỹ− y‖E + εΩ.

Or, equivalently,

‖ỹ− y‖E ≤
εΩ

1−LΩ
, LΩ < 1.

For each τ ∈ (τr, sr], r = 1, 2, · · · , k, we consider:

‖ỹ(τ)− y(τ)‖PC ≤ |Φr(τ, ỹ(τ), ỹ(τr − 0))−Φr(τ, y(τ), y(τr − 0))|+ |
r|,
≤ (κ1r + κ2r)‖ỹ− y‖+ ε.

In addition:

‖δỹ(τ)− δy(τ)‖PC1
δ
≤ (κ∗1r + κ∗2r)‖ỹ− y‖E + ε.
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Consequently, we have:

‖ỹ− y‖E ≤ (Kr +K∗r )‖ỹ− y‖E + 2ε.

Or, equivalently:

‖ỹ− y‖E ≤
2ε

1− (Kr +K∗r )
, Kr +K∗r < 1.

For each τ ∈ (sr, τr+1], r = 1, 2, · · · , k, we consider:

‖ỹ(τ)− y(τ)‖PC ≤
ρ1−β

Γ(β)

∫ τ

sr
tρ−1(τρ − tρ)β−1

∣∣∣h̃(t)− h(t)
∣∣∣dt +

ρ1−β

Γ(β)

∫ τ

sr
tρ−1(τρ − tρ)β−1|
(t)|dt

+|Φr(τ, ỹ(τ), ỹ(τr − 0))−Φr(τ, y(τ), y(τr − 0))|+ |
r|

+

∣∣∣∣∣τρ − sρ
r

ρ

∣∣∣∣∣|Ψr(τ, ỹ(τ), ỹ(τr − 0))−Ψr(τ, y(τ), y(τr − 0))|+
∣∣∣∣∣τρ − sρ

r
ρ


r

∣∣∣∣∣
≤

[
LΩr(β) +Kr +

K∗r
ρ
(Tρ − sρ

r )

]
‖ỹ− y‖E + ε(1 +

Tρ − sρ
r

ρ
).

In a similar manner, it can be shown that:

‖δỹ(τ)− δy(τ)‖PC1
δ
≤ [LΩr(β− 1) +K∗r ]‖ỹ− y‖E + ε

which leads to:

‖ỹ(τ)− y(τ)‖E ≤
(2ρ + Tρ − sρ

r )ε

ρ
(

1−LΩr −Kr − K∗r
ρ (ρ + Tρ − sρ

r )
), LΩr +Kr +

K∗r
ρ
(ρ + Tρ − sρ

r ) < 1.

Then, for each τ ∈ J, we obtain:

‖ỹ(τ)− y(τ)‖E ≤ Λε.

where Λ = maxr

{
Ω

1−LΩ , 2
1−(Kr+K∗r ) , 2ρ+Tρ−sρ

r

ρ
(

1−LΩr−Kr−K
∗
r

ρ (ρ+Tρ−sρ
r )
)
}

.

Thus, the solution of (1) is UH stable if Δ < 1. Additionally, by setting μ(ε) = Λ and
μ(0) = 0. Then, the solution of (1) becomes GUH stable.

5. Applications

In this section, we describe an application of our main results to demonstrate how
they can be applied.

Example 1. Consider the following non-instantaneous impulsive fractional differential equations:

cDβ,ρ
sr y(τ) = h(τ, y(τ), δy(τ)) τ ∈ (0, 1

3 ] ∪ ( 2
3 , 1],

y(τ) =
3
4

τ2 +
1
12

sin y(τ) +
1
8

cos y(τr − 0), τ ∈ ( 1
3 , 2

3 ],

δy(τ) =
3
2

τ +
1
14

cos y(τ) +
1

10
sin y(τr − 0), τ ∈ ( 1

3 , 2
3 ],

y(0) = 0, lim
τ→0

δy(τ) = 1

(15)
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where J = [0, 1], 0 = s0 < τ1 =
1
3
< s1 =

2
3
< τ2 = 1, ρ =

1
2
, β =

5
4

and h(τ, y(τ), δy(τ)) will
be determined later. Using the given data, we can find that

Ω(β) ≈ 1.05646621, Ω(β− 1) ≈ 1.14365822, Ω ≈ 2.20012444,
Ωr(β) ≈ 0.25212249, Ωr(β− 1) ≈ 0.85871184, Ωr ≈ 1.11083434.

In our example, we take

Φ1(τ, y, v) =
3
4

τ2 +
1

12
sin y +

1
8

cos v,

Ψ1(τ, y, v) =
3
2

τ +
1

14
cos y +

1
10

sin v.

It is clear that they are continuous on the interval ( 1
3 , 2

3 ] which meets the first assumption
and satisfy

|Φ1(τ, y, v)| ≤
∣∣∣∣3
4

τ2
∣∣∣∣+ ∣∣∣∣ 1

12
sin y

∣∣∣∣+ ∣∣∣∣1
8

cos v
∣∣∣∣ ≤ 3

4

(
2
3

)2
+

1
12

+
1
8
=

13
24

,

|Ψ1(τ, y, v)| ≤
∣∣∣∣3
2

τ

∣∣∣∣+ ∣∣∣∣ 1
14

cos y
∣∣∣∣+ ∣∣∣∣ 1

10
sin v

∣∣∣∣ ≤ 1 +
1

14
+

1
10

=
82
70

for all τ ∈ ( 1
3 , 2

3 ] and y, v ∈ R. These lead to the third assumption is verified with ϑ1 = 13/24 and
ϑ∗1 = 82/70.

Theorem 4 (Application to Theorem 1). The Leray–Schauder nonlinear alternative theorem has
been applied in Theorem 1 with the assumptions (H1)–(H3). To illustrate our investigation, let
us take

h(τ, y(τ), δy(τ)) =
1

2
√

5− τ

[
1

15π
sin(5πy) +

3|δy(τ)|
4(|δy(τ)|+ 1)

]
.

It is obvious that the function h is continuous which meets the first assumption and satisfies

|ĥ(τ)| = |h(τ, y, δy)| ≤ 1
2
√

5− τ

(
1
3
‖y‖+ 3

4

)
:= q(τ)υ(‖y‖)

where

q(τ) =
1

2
√

5− τ
and υ(‖y‖) = 1

3
‖y‖+ 3

4
.

for all τ ∈ (0, 1
3 ] ∪ ( 2

3 , 1]. It is obvious that the function q(τ) is nondecreasing function which
admits the hypothesis (H2) with ||q|| ≤ q(1) = 1/4. The condition (H4) and (11)–(13) imply that

A > max
r

⎧⎨⎩
3‖q‖

4 Ω + 1
ρ (ρ + τ

ρ
1 )

1− ‖q‖
3 Ω

, ϑr + ϑ∗r ,
3‖q‖

4 Ωr + ϑr +
ϑ∗r
ρ (ρ + Tρ − sρ

r )

1− ‖q‖
3 Ωr

⎫⎬⎭
A > max{3.018702359, 1.713095238, 2.539578874}

A > 3.018702359.

Therefore, the conditions of Theorem (1) are satisfied, and consequently,on [0, 1] there exists at
least one solution to the boundary value problem (15).
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Theorem 5 (Application to Theorem 2). To demonstrate Theorem 2, which is based on the Banach
fixed point theorem, we take

h(τ, y(τ), δy(τ)) =
e−2τ(|y(τ)|+ |δy(τ)|)

(1 + 9eτ)(1 + |y(τ)|+ |δy(τ)|)

It is clear that the function h : [0, 1] × R× R → R is continuous and that it fulfills the
hypothesis (H2)

|h(τ, y, δy)− h(τ, u, δu)| ≤ e−2τ |(|y|+ |δy|)− (|u|+ |δu|)|
(1 + 9eτ)|(1 + |y|+ |δy|)(1 + |u|+ |δu|)|

≤ 1
10

∣∣∣∣|y| − |u|∣∣∣∣+ ∣∣∣∣|δy| − |δu|
∣∣∣∣

≤ 1
10

(|y− u|+ |δy− δu|).

with L = 1/10. For all τ ∈ ( 1
3 , 2

3 ] and y1, y2, v1, v2 ∈ R, we get

|Φ1(τ, y1, v1)−Φ1(τ, y2, v2)| ≤
1

12
|y1 − y2|+

1
8
|v1 − v2|,

|Ψ1(τ, y1, v1)−Ψ1(τ, y2, v2)| ≤
1

14
|y1 − y2|+

1
10
|v1 − v2|.

Thus, the condition (H5) of Theorem 2 is satisfied with

κ11 =
1

12
, κ21

1
8
, K1 ≈ 0.20833333,

κ∗11 =
1

14
, κ∗22 =

1
10

, K∗1 ≈ 0.17142857.

In conclusion, we have

Δ = max
r

{
LΩ,Kr +K∗r ,LΩr +Kr +

K∗r
ρ (ρ + Tρ − sρ

r )
}

= max{0.22001244, 0.37976190, 0.55376046} = 0.55376046 < 1.

Hence, the problem in Equations (15) has a unique solution on [0, 1] by Theorem 2.

Theorem 6 (Application to Theorem 3). To demonstrate Theorem 3, we take

h(τ, y(τ), δy(τ)) =
|y(τ)|

2(τ + 8)(1 + |y(τ)|) +
|δy(τ)|
(τ + 16)

It is clear that the function h : [0, 1] × R× R → R is continuous and that it fulfills the
hypothesis (H6)

|h(τ, y, δy)− h(τ, u, δu)| ≤ |(|y| − |u|)|
2(τ + 8)|(1 + |y|)(1 + |u|)|+

|(|δy| − |δu|)|
(τ + 16)

≤ 1
16

∣∣∣∣|y| − |u|∣∣∣∣+ ∣∣∣∣|δy| − |δu|
∣∣∣∣

≤ 1
16

(|y− u|+ |δy− δu|).

Clearly the assumptions of Theorem 3 are fulfilled with

L =
1
16

, K1 ≈ 0.20833333, K∗1 ≈ 0.17142857.
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Δ = max{0.137507777, 0.37976190, 0.55376046} = 0.51210450 < 1.

In conclusion, we have:

‖ỹ− y‖ ≤ Λε, τ ∈ J,

where ε is any positive real constant, and

Λ = max

⎧⎨⎩ Ω
1−LΩ

,
2

1− (Kr +K∗r )
,

2ρ + Tρ − sρ
r

ρ
(

1−LΩr −Kr − K∗r
ρ (ρ + Tρ − sρ

r )
)
⎫⎬⎭,

Λ = max{2.55089191, 3.22456811, 0.24394774},

Λ = 3.22456811 > 0.

Consequently,

‖ỹ− y‖ ≤ (3.22456811)ε,

Thus, problem (15) is UH stable.

Moreover, by putting μ(ε) = (3.22456811)ε with μ(0) = 0, problem (15) becomes
GUH stable.

6. Conclusions

Our work involved the development of the existence theory and Ulam–Hyers stability
of non-instantaneous impulsive BVPs involving Generalized Liouville–Caputo derivatives.
This work is based on modern functional analysis techniques. Three conclusions have
been obtained: the first two deal with the existence and uniqueness of solutions, while the
third concerns the stability analysis of solutions for the given problem. The first existence
result is based on a nonlinear Leray–Schauder alternative, while the second is based on
the Banach fixed point theorem. The third conclusion establishes a criterion for ensuring
various types of Ulam–Hyers stability, that is necessary for nonlinear problems in terms of
optimization and numerical solutions and plays a key role in numerical solutions where
exact solutions are difficult to get.
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Adopting Feynman–Kac Formula in Stochastic Differential
Equations with (Sub-)Fractional Brownian Motion
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Bodo.Herzog@Reutlingen-University.de
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Abstract: The aim of this work is to establish and generalize a relationship between fractional partial
differential equations (fPDEs) and stochastic differential equations (SDEs) to a wider class of stochastic
processes, including fractional Brownian motions {BH

t , t ≥ 0} and sub-fractional Brownian motions
{ξH

t , t ≥ 0} with Hurst parameter H ∈ ( 1
2 , 1). We start by establishing the connection between

a fPDE and SDE via the Feynman–Kac Theorem, which provides a stochastic representation of a
general Cauchy problem. In hindsight, we extend this connection by assuming SDEs with fractional-
and sub-fractional Brownian motions and prove the generalized Feynman–Kac formulas under a
(sub-)fractional Brownian motion. An application of the theorem demonstrates, as a by-product, the
solution of a fractional integral, which has relevance in probability theory.

Keywords: Cauchy problem; fractional-PDE; SDE; fractional Brownian motion; sub-fractional processes;
Feynman–Kac formula; fractional calculus

1. Introduction

Consider the Cauchy problem [1] of the following parabolic partial differential equa-
tion (PDE) on Rd

∂

∂t
u(x, t) = κ

∂2

∂x2 u(x, t) + ηBH(t), t ≥ 0, x ∈ R
d,

u(x, 0) = u0(x),
(1)

where u(x, t) ∈ C2,1, u0(x) is a bounded measurable function and BH(t) is a fractional
Brownian motion (cf. Section 2). Without loss of generality, we assume that the parameter
κ is constant. This second-order PDE has a stochastic representation for η = 0, according to
the Feynman–Kac formula [2,3]. Indeed, we obtain

u(xt, t) = Ex,t[uT(x)], (2)

if xt satisfies Equation (3) and the function σ(xt, t) is sufficiently integrable

dxt = μ(xt, t)dt + σ(xt, t)dBH
t , (3)

where BH
t is a Brownian motion (BM) if the Hurst parameter is of H = 1

2 [4–6]. Additionally,
the problem of (1) has an intimate relationship to the fractional partial differential equation
(fPDE) [7]:

∂1/2

∂t1/2 u(x, t) = − ∂

∂x
u(x, t). (4)

Note that this equation contains a fractional derivative in general or a semi-derivative
in respect of time in special [8–13].
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There is a large amount of the literature devoted to each issue of the Cauchy problem [6,14].
This research closes a gap by considering the linking relationships of (sub-)fractional
Brownian motions as well as fPDEs. The Feynman–Kac formula (2) provides a unique
weak solution to Equation (1). Different versions of the Feynman–Kac formula have been
discovered for a variety of problems [15,16]. Some generalizations of the Feynman–Kac
formula are discovered by Querdiane and Silva [17] and Hu et al. [18,19]. A Feynman–Kac
formula also exists for Lévy processes by Nualart and Schoutens [20].

Advancements in stochastic differential equations and fractional partial differential
equations to analyse complex systems are related to our research [21–24]. Furthermore,
recent developments in fractional calculus contributed to a better understanding and
further studies of the relationships between fractional PDEs and stochastic calculus [25–31].
However, we are concerned about the linkage of the Cauchy problem and the representation
by a fPDE, as well as the Feynman–Kac formula. For the Cauchy problem, we generalize
the stochastic representation of Feynman–Kac by utilizing fractional Brownian motion
(fBM) with Hurst parameter H > 1/2.

In addition, the more recent literature looks at the idea of sub-fractional Brown-
ian motion (sub-fBM). A sub-fBM is an intermediate between a Brownian motion and
fractional Brownian motion. The existence and properties, such as long-range depen-
dence, self-similarity and non-stationarity were introduced by Bojdecki et al. [32] and
Tudor et al. [33,34]. Since the sub-fractional Brownian motion is not a martingale, methods
of stochastic analysis are more sophisticated. However, several authors developed stochas-
tic calculus and integration concepts for an fBM [25] and sub-fBM [35–37]. Recently, for a
sub-fractional Brownian motion with Hurst parameters H > 1

2 , a maximal inequality was
established according to the Burkholder–Davis–Gundy inequality for fractional Brown-
ian motion [38]. It turns out that fBM and sub-fBM are adequate stochastic processes in
scientific applications [13,39].

In this paper, our purpose is to construct and prove a general link of the Cauchy
problem with the Feynman–Kac equation via Itô’s formula for fBM and sub-fBM. Conse-
quently, this paper links the solution of u(x, t) defined by Equation (1) with the stochastic
Feynman–Kac representation to a fractional Brownian motion {BH

t } and sub-fBM {ξH
t }.

We prove the result and show the properties of (sub-)fractional processes in stochastic
analysis. Note that, throughout this paper, we frequently assume 1

2 < H < 1.
The paper is organized as follows. Section 2 contains preliminaries on fractional

calculus, particularly fractional Brownian motion. Thereafter, we examine sub-fractional
stochastic processes and integration rules in Section 3. Here, we list the definitions and
assumptions for the remainder of the article. In Section 4, we link the Cauchy problem
to the Feynman–Kac formula with stochastic differential equations driven by fractional
and sub-fractional Brownian motions. We state our theorems and prove our statements.
In Section 5, we examine the Cauchy problem and the relationship to fractional partial
differential equations (fPDE). Furthermore, we find a new fractional derivative and integral
with relevance in probability theory. The conclusion is in Section 6.

2. Preliminaries

In the following section, we define preliminary concepts on fractional stochastic
processes and fractional calculus.

2.1. Fractional Calculus

Since we deal with the Hurst parameter H, we need to know fractional calculus. Let
a, b ∈ R, a < b. Let f ∈ L1(a, b) and α > 0. The left- and right-sided fractional integral of f
of order α are defined for x ∈ (a, b), respectively, as

aD−α
x f (x) = a Iα

x f (x) =
1

Γ(α)

∫ x

a
(x− u)α−1 f (u)du −∞ ≤ a ≤ x,
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and

xD−α
b f (x) = x Iα

b f (x) =
1

Γ(α)

∫ b

x
(u− x)α−1 f (u)du −∞ ≤ x ≤ b.

This is the fractional integral of Riemann–Liouville type. Similarly, the fractional left-
and right-sided derivative, for f ∈ Iα

a (Lp) and 0 < α < 1, are defined by

a I−α
x f (x) = aDα

x f (x) =
1

Γ(1− α)

(
d

dx

) ∫ x

a
(x− u)−α f (u)du (5)

and

x I−α
b f (x) = xDα

b f (x) =
−1

Γ(1− α)

(
d

dx

) ∫ b

x
(u− x)−α f (u)du, (6)

for all x ∈ (a, b) and Iα
a (Lp) is the image of Lp(a, b). It is easy to see that if f ∈ I1

a (L1),

aDα
x aD1−α

x f (x) = D f (x), bDα
x bD1−α

x f (x) = D f (x). (7)

Note Dα f (x) exists for all f ∈ Cβ([a, b]) if α < β.

2.2. Fractional Stochastic Process

Mandelbrot and van Ness defined a fractional Brownian Motion (fBM), BH
t , as a

Brownian motion, B(t), together with a Hurst parameter (or Hurst index) H ∈ (0, 1) in
1968 [8]. The new feature of fBM’s is that the increments are interdependent. The latter
property is defined as self-similarity. A self-similar process has invariance with respect to
changes in timescale (scaling-invariance). Almost all other stochastic processes, such as the
standard Brownian Motion or Lévy processes, likely have independent increments. They
create the famous class of Markov processes. Empirically, there is ubiquitous evidence in
science that fractional stochastic processes, for instance, spectral densities with a sharp
peak, are related to the phenomena of long-range interdependence over time. Indeed,
the observable presence of interdependence in many real-world applications calls for
fractional stochastic processes.

Definition 1. Let H be 0 < H < 1 and B0 an arbitrary real number. We call BH(t, ω) a fractional
Brownian Motion (fBM) with Hurst parameter H and starting value B0 at time 0, such as

(1) BH(0, ω) = B0, and;

(2) BH(t, ω)− BH(0, ω) = 1
Γ(H+ 1

2 )

[∫ 0
−∞[(t− s)H− 1

2 − (−s)H− 1
2 ]dB(s, ω) +

∫ t
0 (t− s)H− 1

2

dB(s, ω)

]
[Wyle fractional integral];

(3) [Or equivalently by the Riemann-Liouville fractional integral: BH(t, ω) − BH(0, ω) =
1

Γ(H+ 1
2 )

∫ t
0 (t− s)H− 1

2 dB(s, ω)].

We immediately obtain the corollary.

Corollary 1. For H = 1
2 and B0 = 0, we obtain a Brownian Motion B(t, ω) = B

1
2 (t, ω).

Proof. If H = 1
2 , we obtain B

1
2 (t, ω)− B

1
2 (0, ω) = 1

Γ(1)

∫ t
0 dB(s, ω) = B(t, ω).

For values of H, such as 0 < H < 1
2 or 1

2 < H < 1 the fBM BH(t, ω) has different
properties. If 0 < H < 1

2 , we say that it has the property of short memory. Indeed,
Mandelbrot and van Ness [8] shows that this range is associated with negative correlation.
If 1

2 < H < 1, then the fBM has the property of long-memory or long-range dependence
with time-persistence (Mandelbrot and van Ness [8]). Alternatively, we define a fractional
Brownian motion by
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Definition 2. A fractional Brownian Motion (fBM) is a centered Gaussian process BH(t) for t ≥ 0
with the covariance function

R f BM(t, s) = E[BH(t)BH(s)] =
1
2
[|t|2H + |s|2H − |t− s|2H ], (8)

where H ∈ (0, 1) denotes the Hurst parameter.

Remark 1. The covariance is trivially derived by starting with a standard Brownian motion and
extending it with the Hurst index H, such as

Var[B(t)− B(s)] = E[(B(t)− B(s))2] = |t− s|
⇔ Var[BH(t)− BH(s)] = E[(BH(t)− BH(s))2] = |t− s|2H ,

where, for H = 1
2 , we obtain the Brownian motion. The covariance is derived by the following steps

Cov[BH(t)BH(s)] = E[(BH(t)−E[BH(t)])(BH(s)−E[BH(s)])] = E[BH(t)BH(s)]

=
1
2

[
E[BH(t)2] +E[BH(s)2]−E[(BH(t)− BH(s))2]

]
=

1
2
[|t|2H + |s|2H − |t− s|2H ].

Corollary 2. The expectation of non-overlapping increments of an fBM is E[BH(t)− BH(s)] 
= 0
and the variance is of E[(BH(t)− BH(s))2] = |t− s|2H for all t, s ∈ R

Proof. Let t > s > 0. The first part is

E[(BH(t)− BH(s))(BH(s)− BH(0))] = E[BH(t)BH(s)]−E[BH(t)BH(0)]−
−E[(BH(s))2] +E[BH(s)BH(0)]

=
1
2
[t2H + s2H − (t− s)2H ]− s2H

=
1
2
[t2H − s2H − (t− s)2H ] 
= 0.

Thus, we can see that the expected increments are non-zero. Indeed, the increments
are interdependent, contrary to Markov processes. The second part of the variance is

E[(BH(t)− BH(s))2] = E[(BH(t)− BH(s))(BH(t)− BH(s))]

= E[(BH(t))2] +E[(BH(s))2]− 2E[BH(t)BH(s)]

= t2H + s2H − 2
[1

2
[|t|2H + |s|2H − |t− s|2H ]

]
= |t− s|2H ∀t, s ∈ R

Proposition 1. A fractional Brownian Motion (fBM) has the following properties:

(1) The fBM has stationary increments: BH
t − BH

s
dis.
= BH

u − BH
s ;

(2) The fBM is H-self-similar, such as BH(at) = aH BH(t);
(3) The fBM has dependence of increments for H 
= 1

2 .
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Proof. Part (1): For t1 < t2 < t3 < t4, the equality of the covariance function implies that
Y := BH(t2)− BH(t1) has the same distribution as X := BH(t4)− BH(t3). From above,
we know

E[(BH(t2)− BH(t1))
2] = (t2 − t1)

2H = (Δt)2H

E[(BH(t4)− BH(t3))
2] = (t4 − t3)

2H = (Δt)2H ,

where t1 < t2 and t3 < t4 with Δt = t2 − t1 = t4 − t3. Hence, the incremental behavior at
any point in the future is the same. Thus, we say that it has stationary increments.

Part (2): We show that BH(at) = aH BH(t). We utilize the definition,

E[(BH(at))2] =
1
2
[(at)2H + (at)2H − (at− at)2H ] = (at)2H = a2Ht2H

= a2H
E[(BH(t))2],

hence, we obtain (BH(at))2 = a2H(BH(t))2 and this equal to BH(at) = aH BH(t). The proof
of part (3) is already in Corollary 2.

2.3. Itô’s Formula for Fractional Brownian Motion

A fractional Brownian motion is continuous but almost certainly not differentiable [8].
Hence, it is inconvenient that an fBM does not have a derivative or integral. Furthermore,
the fBM is neither a martingale nor a semi-martinagle. Therefore, Itô calculus is not
applicable to fractional Brownian Motions if H 
= 1

2 .
However, stochastic calculus was developed with respect to fractional Brownian

motion by [40] and the stochastic integral was introduced by [25]. The theory is a fractional
extension of Itô-calculus, but limited to a Hurst index H ∈ (1/2, 1). If H > 1/2 the fBM
exhibits long-range dependence, which is a fundamental property in physics or finance.

By utilizing Wick calculus that has zero mean and explicit expressions for the second mo-
ment, we define the stochastic fractional integral, satisfying the propertyE[

∫ t
0 f (s)dBH(s)] = 0.

Suppose a filtered probability space (Ω,F ,PH), where the probability measure de-
pends on H. Note that H is fixed by H ∈ (1/2, 1). Let us define a kernel function
φ(s, t) : R+ ×R+ → R+ by

φ f BM(s, t) := φ(s, t) = H(2H − 1)|s− t|2H−2. (9)

Further, the functions f and g belong to the Hilbert space L2
φ if

| f |2φ =
∫ ∞

0

∫ ∞

0
f (s) f (t)φ(s, t)dsdt < ∞, (10)

with the inner product defined by

〈 f , g〉φ := E

[∫ ∞

0
f (s)dBH(s)

∫ ∞

0
g(t)dBH(t)

]
=

∫ ∞

0

∫ ∞

0
f (s)g(t)φ(s, t)dsdt (11)

This machinery leads to an analogue Itô formula for a fractional Brownian process.
Already, Alòs et al. [41] proved this result under certain conditions for Itô’s formula.

Theorem 1. (Alòs et al., 2001). Let f be a function of class C2(R), satisfying the growth condition

max[| f (x)|, | f ′(x)|, | f ′′(x)|] ≤ ce(λ|x|
2),

where c and λ are positive constants and λ < 1
4 T−2H. Suppose that BH = {BH

t , t ∈ [0, T]} is
a zero mean continuous Gaussian process whose covariance function R f BM(t, s) is of the form
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in Equation (8). Then, the process F′(BH
t ) belongs to a Hilbert space and, for each t ∈ [0, T],

the following Itô’s formula holds:

f (BH
T ) = f (0) +

∫ T

0
f ′(BH

s )δBH
s +

1
H

∫ T

0
f ′′(BH

s )s2H−1ds. (12)

However, we utilize a result by Duncan et al. [25], which is more convenient in our
case. Here, is the Itô-Duncan theorem for a fractional Brownian motion:

Theorem 2. (Duncan et al., 2000, Thm 4.1, p. 596). If f : R → R is a twice continuously
differentiable function with bounded derivatives to order two, i.e., f ∈ C2, then

f (BH
T )− f (BH

0 ) =
∫ T

0
f ′(BH

s )dBH
s + H

∫ T

0
s2H−1 f ′′(BH

s )ds a.s.

Remark 2. If H = 1
2 , we obtain, from Theorem 2, the usual Itô formula for a Brownian motion

f (B
1
2 (T)) = f (BT) =

∫ T

0
f ′(B

1
2 (s))dB

1
2 (s) +

1
2

∫ T

0
s0 f ′′(B

1
2 (s))ds

=
∫ T

0
f ′(Bs)dBs +

1
2

∫ T

0
f ′′(Bs)ds

or in differential form

d f (BT) = f ′(Bs)dBs +
1
2

f ′′(Bs)ds. (13)

Similarly, for a function with two parameters f (t, BH
t ), a generalized rule exists ac-

cording to Duncan et al. [25].

Theorem 3. (Duncan et al., 2000, Thm 4.3, p. 596). Let ηt =
∫ t

0 FudBH
u for t ∈ [0, T] and

(Fu, 0 ≤ u ≤ T) is a stochastic process in L(0, T). Let f : R+ × R → R be a function
having the first continuous derivative in its first variable and the second continuous derivative
in its second variable. Assume that these derivatives are bounded. Moreover, it is assumed that
E
∫ T

0 |FsDφ
s ηs|ds < ∞ and ( f ′(s, ηs)Fs, s ∈ [0, T]) is in L(0, T). Then, for 0 ≤ t ≤ T,

f (t, ηt) = f (0, 0) +
∫ t

0

∂ f (s, ηs)

∂s
ds +

∫ t

0

∂ f (s, ηs)

∂x
FsdBH

s

+
∫ t

0

∂2 f (s, ηs)

∂x2 FsDφ
s ηsds a.s.

this is equal to

d f (t, ηt) =
∂ f (t, ηt)

∂t
+

∂ f (t, ηt)

∂x
FtdBH

t +
∂2 f (t, ηt)

∂x2 FtD
φ
t ηtdt,

where Dφ
s ηt =

∫ t
0 Dφ

s FudBH
u +

∫ t
0 Fuφ(s, u)du a.s.

For the proof, we refer to Duncan et al. [25]. If F(s) = a(s) is a deterministic function;
then, the rule simplifies. Let ηt =

∫ t
0 audBH

u , where a ∈ L2
φ; then, we obtain

f (t, ηt) = f (0, 0) +
∫ t

0

∂ f (s, ηs)

∂s
ds +

∫ t

0

∂ f (s, ηs)

∂x
a(s)dBH

s

+
∫ t

0

∂2 f (s, ηs)

∂x2

∫ s

0
φ(s, v)a(v)dvds a.s.

(14)

If as ≡ 1, then we obtain Itô’s formula, such as in Theorem 2 and in Equation (13).
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3. Sub-Fractional Stochastic Process

A sub-fractional Brownian motion (sub-fBM) is an intermediate between a Brownian
motion and fractional Brownian motion. It is a more general, self-similar Gaussian process
or a generalization of a fBM. The sub-fBM has the property of H-self-similarity and long-
range dependence, such as the fBM, yet it does not have stationary increments [32].

It is well-established that a stochastic process is uniquely determined by its covariance
function Cov(ξH

t , ξH
s ). Thus, we define:

Definition 3. A sub-fractional Brownian motion of Hurst parameter H is a centered mean zero
Gaussian process ξH = {ξH

t , t ≥ 0} with covariance function

Rs f BM(t, s) := E[ξH
t ξH

s ] = s2H + t2H − 1
2
[(s + t)2H + |s− t|2H ], (15)

where ξH
0 = 0 and E[ξH

t ] = 0.

If H = 1
2 , it coincides with a Brownian motion on R+ with covariance Cov(ξH

t , ξH
s ) =

s ∧ t := min[s, t]. The process ξH
t has the following integral representation for H > 1

2
(see [41]):

ξH
t =

∫ t

0
KH(t, s)dWs, (16)

KH(t, s) = cH

(
H − 1

2

)
s1/2−H

∫ t

s
(u− s)H−3/2uH−1/2du. (17)

Hence, the sub-fractional Brownian motion has a kernel of

φs f BM(s, t) =
∂2Cov(ξH

t , ξH
s )

∂s∂t
= H(2H − 1)

[
|s− t|2H−2 − (s + t)2H−2

]
. (18)

Note that the kernel has similarities to the fBM, as in Equation (9). Next, we discuss
the main properties of a sub-fBM:

Lemma 1. Let ξH
t be a sub-fBM for all t. It has the following properties:

(1) E[(ξH
t )2] = (2− 22H−1)t2H.

(2) E[(ξH
t − ξH

s )2] = −22H−1(t2H + s2H) + (t + s)2H + (t− s)2H.

(3) If H 
= 1
2 , then ξH

t − ξH
s

dis.

= ξH

u − ξH
s , i.e., the increments are non-stationary.

Proof. Part 1. Let t = s in the covariance function Cov(ξH
t , ξH

s ). We obtain Cov(ξH
t , ξH

t ) =
E[ξ2H

t ] − (E[ξH
t ])2 = Var(ξH

t ) and further we have Var(ξH
t ) = E[(ξH

t )2] because ξH
t is

Gaussian with mean zero. Thus, using the covariance function in Definition 3, we obtain

E[(ξH
t )2] = 2t2H − 1

2
(2t)2H = 2t2H − 1

2
(2t)2H = (2− 22H−1)t2H .

Part 2. Given property 1, one immediately obtains

E[(ξH
t − ξH

s )2] = (2− 22H−1)t2H + (2− 22H−1)s2H

= −22H−1(t2H + s2H) + (t + s)2H + (t− s)2H .

Part 3. Let s = 0 and t = h > 0, then E[(ξH
h − ξH

0 )2] = E[(ξH
h )2] = (2− 22H−1)h2H

and we obtain
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E[(ξH
t+h − ξH

s+h)
2] = E[(ξH

2h − ξH
h )2]

= E[ξ2H
2h ]− 2E[ξH

2h]E[ξ
H
h ] +E[ξ2H

h ]

= (2− 22H−1)(2h)2H + (2− 22H−1)h2H =

= [2− 22H−1](22H + 1)h2H .

The difference in both increments is

Δ(H) = [2− 22H−1]− [2− 22H−1](22H + 1) = −22H [2− 22H−1],

where Δ(H) := E[(ξH
h )2] − E[(ξH

t+h − ξH
s+h)

2]. For Δ(0) = − 3
2 and Δ( 1

2 ) = −2 and
Δ(1) = 0. This implies that E[(ξH

2h − ξH
h )2] > E[(ξH

t )2] for all H ∈ (0, 1). Thus, the in-

crements are non-stationary, such as ξH
t − ξH

s
dis.

= ξH

u − ξH
s .

Finally, we prove two differences of fBM and sub-fBM.

Proposition 2. Let BH
t be a fractional Brownian motion and ξH

t be a sub-fractional Brownian
motion. For H ∈ ( 1

2 , 1) the following holds:

(1) E[(ξH
t )2] < E[(BH

t )2];
(2) RξH

t
(s, t) ≤ RBH

t
(s, t).

Proof. Part 1. For an fBM, we have Var[BH
t ] = |t|2H , and for the sub-fBM, we have

Var[ξH
t ] = (2− 22H−1)|t|2H . Hence, we obtain 0 < (2H − 1) ln 2 for H > 1

2 . For part 2, we
show, under s, t > 0, that

s2H + t2H − 1
2
[(s + t)2H + |t− s|2H ] ≤ 1

2
[|t|2H + |s|2H − |t− s|2H ]

s2H + t2H ≤ (s + t)2H ,

where, only for s = t = 0 or s = 0, t 
= 0, we obtain equality.

Itô’s Formula for Sub-Fractional Brownian Motion

For a Hurst parameter H > 1
2 , the stochastic integral of a sub-fBM

∫ T
0 f (t)dξH

t exists.
The following theorem holds and is proven by [42]:

Theorem 4. Let ξH
t be a sub-fBM defined in Definition 3 with H > 1

2 and a function f ∈
L([0, T]2, φs f BMdλ2), where λ2 is a Lebesgue measure on [0, T]2, where φs f BM(s, t) and (s, t) ∈
[0, T]2. Then, there exists a constant CH > 0 such that

E

[∫ T

0
f (t)dξH

t

]2

≤ CH‖ f ‖2
L1/H([0,T],λ1)

. (19)

According to Yan et al. ([36], Theorem 3.2 on p. 139) Itô’s formula under a sub-fBM
can be computed as follows:

Theorem 5. (Yan et al., 2011) Let f ∈ C2(R) and H ∈ ( 1
2 , 1). Then, we have

f (ξH
t ) = f (0) +

∫ T

0
f ′(ξH

s )dξH
s + H(2− 22H−1)

∫ T

0
f ′′(ξH

s )s2H−1ds. (20)

Details of the proof are given in ([36], pp. 139–140). The authors even extend Itô’s
formula to d−dimensional sub-fBM and convex functions f : ξH

t → R.
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4. Linking Cauchy via Feynman–Kac to SDEs with fBM and Sub-fBM

Next, we derive the link between the Cauchy problem (1) and the stochastic represen-
tation according to Feynman–Kac by Equation (2). Consider a stochastic process xs on the
time interval [t, T] as the solution to the SDE in Equation (3). Next, use the Dynkin operator
or Fokker-Planck operator A defined by

A = μ(x, s)
∂

∂x
+

1
2

σ(x, s)
∂2

∂x2 . (21)

We may write the Cauchy problem (1) as

∂u(x, s)
∂s

+Au(x, s) =0,

u(x, T) =uT(x).
(22)

Cauchy Problem and Feynman–Kac

Applying Itô’s lemma to u(x, s). We obtain

∫ T

t
du(xs, s)ds =

∫ T

t

[
∂u(xs, s)

∂s
+Au(xs, s)

]
ds +

∫ T

t
σ(xs, s)

∂u(xs, s)
∂xs

dBs. (23)

After integration, we obtain

u(xT , T)− u(xt, t) =
∫ T

t

[
∂u(xs, s)

∂s
+Au(xs, s)

]
ds +

∫ T

t
σ(xs, s)

∂u(xs, s)
∂xs

dBs. (24)

Since, by assumption u(x, t) satisfies Equation (22), the time integral ds in the last line of
Equation (23) will vanish. Furthermore, if the process σ(xs, s) ∂u(xs ,s)

∂xs
is sufficiently integrable,

and after taking the expectation, the stochastic integral will vanish. Finally, considering the ini-
tial and boundary condition, such as u(x, T) = uT(x), we obtain the stochastic representation
of the Cauchy problem (1) using the Feynman–Kac Formula (2) [2,3]:

u(xt, t) = Ex,t[uT(x)]. (25)

Theorem 6. The stochastic representation of the Cauchy problem (1) under a generalized fractional
Brownian Motion, BH

t , with H ∈ ( 1
2 , 1), under the assumptions above, follows

u(xt, t) = Ex,t

[
uT(x)−

∫ T

t

∂2u(xt, t)
∂x2

t

[∫ t

0
H f ′′(BH

v )v2H−1dv
]

ds
]

, (26)

and this simplifies under the conditions in Equation (14) to

u(xt, t) = Ex,t

[
uT(x)−

∫ T

t

∂2u(xt, t)
∂x2

t

[∫ t

0
H(2H − 1)|t− v|2H−2a(v)dv

]
ds
]

, (27)

if xt ∈ C2 and σ(xt, s) is independent of xt. Note, for H = 1
2 , we obtain (2).

Proof. Consider u(xt, t) as solution of the Cauchy problem (1) under a generalized frac-
tional Brownian Motion, BH

t , with H ∈ ( 1
2 , 1). Applying Theorem 2 on u(x, s), we obtain

∫ T

t
du(xs, s)ds =

∫ T

t

[
∂u(xs, s)

∂s
+Au(xs, s)

]
ds +

∫ T

t
σ(xs, s)

∂u(xs, s)
∂xs

dBs+

+
∫ T

t

∂2 f (xs, s)
∂x2

s

[∫ t

0
H(2H − 1)|t− v|2H−2a(v)dv

]
ds
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After integration and under the assumption that u(x, t) satisfies Equation (22). The time
integrals will vanish. Given xt ∈ C2 and a deterministic σ, we obtain, after taking the expec-
tation and the property that the stochastic integral vanishes, the stochastic representation
as follows:

u(xt, t) = Ex,t

[
uT(x)−

∫ T

t

∂2u(xt, t)
∂x2

t

[∫ t

0
H(2H − 1)|t− v|2H−2a(v)dv

]
ds
]

. (28)

If H = 1
2 , the stochastic representation simplifies to the well-known Feynman–Kac formula

u(xt, t) = Ex,t[uT(x)].

Next, we state the Feynman–Kac formula for our Cauchy problem (1), given a sub-
fractional Brownian motion.

Theorem 7. The stochastic representation of the Cauchy problem (1) under a sub-fractional Brown-
ian Motion, ξH

t , with H ∈ ( 1
2 , 1) is

u(xt, t) = Ex,t

[
uT(x)−

∫ T

t

∂2u(xt, t)
∂x2

t

[∫ t

0
H(2− 22H−1) f ′′(ξH

v )v2H−1dv
]

ds
]

, (29)

if xt ∈ C2. Note, for H = 1
2 , we obtain the same as in Theorem 6.

The proof follows an equal argument as above in the proof of Theorem 6.

5. Cauchy Problem and Fractional-PDE

Next, we demonstrate the direct linkage for the Cauchy-problem (1) to the fPDE in
Equation (4). In step one, we compute the Laplace transform of the right-hand side of the
heat equation:

L[ut(x, t)] = L

[
∂u(x, t)

∂t

]
=

∫ ∞

0
e−st ∂u(x, t)

∂t
dt

= −u0(x) + sū(x, t)

= sū(x, t),

where ū(x, t) := L[u(x, t)]. Thus, we obtain

L

[
∂

∂x2 u(x, t)
]
= sū(x, t)

∂

∂x2L[u(x, t)] = sū(x, t)

∂

∂x2 ū(x, t) = sū(x, t).

This is a second-order ordinary differential equation in the x−variable. The solution is
ū(x, t) = c ∗ e−

√
sx for some constant c. Determining the constant by the second-derivative

ūxx = c ∗ se−
√

sx shows that c = 1. In step two, we compute the first-derivative of
the solution

∂

∂x
ū(x, t) = −

√
se−

√
sx

∂

∂x
ū(x, t) = −

√
sū(x, t).
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This is a first-order partial differential equation of the Laplace-transform ū(x, t). Fi-
nally, compute the inverse Laplace transform and obtain the fPDE in Equation (4) by

∂

∂x
u(x, t) = − ∂

1
2

∂t
1
2

u(x, t). (30)

Indeed, the inverse Laplace transform of the semi-derivative on the right-hand side is
as follows:

−L
[

∂
1
2

∂t
1
2

u(x, t)
]
= u0(x)− s

1
2 ū(x, t) = −s

1
2 ū(x, t) = −

√
sū(x, t).

From the fractional representation of the Cauchy problem (1), we find the following
fractional derivatives and integrals in relation to the normal distribution:

Proposition 3. Consider that the solution of the Cauchy problem (1) is of u(x, t) = 1√
2πt

e−
x2
2t ,

which represents the normal probability density function N′(x) for a constant t. Thus, the solution
of the fPDE (4) implies the following fractional derivative and integral:

(a) ∂
1
2

∂t
1
2

u(x, t) = D
1
2
t u(x, t) = 1√

2πt
x
t e−

x2
2t .

(b) For α = 1
2 , we find Iαu(x, t) = 1

Γ(α)

∫ x
−∞(x− t)α−1u(x, t)dt = N′(x), where N′(x) is the

density of the normal probability distribution in regard to x, or N′(x) = n(x) = 1√
2πt

e−
x2
2t .

Proof. Part (a): given u(x, t), it follows from Equation (30) that the semi-derivative with
respect to time t is equal to ∂

∂x u(x, t). Computing the partial derivative of u(x, t) with

respect to x is ux(x, t) = ∂u(x,t)
∂x = 1√

2πt
x
t e−

x2
2t .

Part (b): In order to explicitly evaluate the fractional derivative, we utilize the linearity
of both operators. Using operator calculus, we see that

D
1
2
t u(x, t) = D1

t D−
1
2

t u(x, t) = D1
t I

1
2
t u(x, t).

Thus, the first-derivative of the semi-integral of I
1
2
t u(x, t) with respect to t must be

equal to ux(x, t). Hence, the semi-integral

I
1
2
t u(x, t) =

1
Γ( 1

2 )

∫ x

−∞
(x− t)α−1u(x, t)dt = N′(x) =

1√
2πt

e−
x2
2t ,

consequently, the first-derivative of N′(x) is of dN′(x)
dx = N′′(x) = 1√

2πt
x
t e−

x2
2t . The final

term solves the fPDE in Equation (30). Thus, the fractional integral for α = 1
2 must be equal

to the probability density function N′(x) in order to satisfy the fPDE in Equation (30).

6. Conclusions

This article studies the relationships of the Cauchy problem (1) and relates them to
fractional partial-differential equations, as well as to the stochastic representations by the
Feynman–Kac formula with a generalized fractional and sub-fractional Brownian motion
with Hurst parameter H > 1/2. In addition, we find fractional derivatives and integrals
in relation to the Gaussian probability function by utilizing the novel insight into the
linkage of the Cauchy problem and fPDE. This vantage point is of importance in probability
theory, fractional calculus and stochastic theory. In future research, we intend to extend
our theorems to Hurst parameters H < 1/2 and the stochastic Cauchy problem under
a sub-fBM.
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Abstract: This paper concerns with the existence and uniqueness of fuzzy fractional evolution equa-
tion with uncertainty involves function of form cDαx(t) = f (t, x(t), Dβx(t)), Iαx(0) = x0, x′(0) = x1,
where 1 < α < 2, 0 < β < 1. After determining the equivalent integral form of solution we establish
existence and uniqueness by using Rogers conditions, Kooi type conditions and Krasnoselskii-Krein
type conditions. In addition, various numerical solutions have been presented to ensure that the
main result is true and effective. Finally, a few examples which express fuzzy fractional evolution
equations are shown.

Keywords: fractional evolution equations; existence; uniqueness; fixed point theorem; Caputo derivative

MSC: 26A33; 34K37

1. Introduction

A wide variety of physical processes in real-world events exhibit fractional-order
behaviour that can change across time and space. Fractional calculus authorises operations
of differentiation and integration of fractional order. On both imaginary and real numbers,
the fractional-order can be used. The theory of fuzzy sets continues to grab researchers’
attention due to its wide range of applications in a variety of domains including mechanics,
electrical, engineering, processing signals, thermal system, robotics and control, signal
processing and many other fields [1–6]. As a result, it has piqued the curiosity of researchers
over the last few years.

In the context of mathematical modeling, developing a suitable fractional differen-
tial equation is a difficult task. It requires an investigation into the underlying physical
phenomena. Real physical phenomena, on the other hand, are always wrapped in uncer-
tainty. This is true especially when working with “living” resources like soil, water, and
microbial communities.

Fuzzy set theory is a fantastic technique for modelling uncertain problems. As a result,
a wide range of natural events has been modelled using fuzzy notions. The fuzzy fractional
differential equation is a common model in a variety of scientific domains, including
population models, weapon system evaluation, civil engineering, and electro-hydraulic
modelling. As a result, in fuzzy calculus, the concept of the fractional derivative is crucial.
As a result, fuzzy fractional differential equations have received a lot of interest in domains
of mathematics and engineering.

The concept of the fractional differential equation was presented in 2010 by Agar-
wal et al. [7]. However, this concept of Hukuhara differentiability could not provide the large
and varied behaviour of crisp solutions at the time. Allahviranloo and Salahshourcite [8]
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defined Riemann–Liouville H-derivative based on highly generalised Hukuhara differen-
tiability [9,10] later in 2012. They also defined Riemann–Liouville fractional derivative.

Riemann–Liouville for elaboration appears in a natural method for problems such
as transport difficulties from continuum random walks plan or generalises Chapman-
Kohmogorov models [11]. Under the external influences and continuum and statistical
mechanics for elaborating the behaviour of viscoplastic and viscoelastic, it was also applied.

There are some other papers which were related to existence and uniqueness of solu-
tion under Nagumo like conditions [12–16] for fuzzy fractional differential equation. The
uniqueness of the solution under condition 0 < q < 1 for problem Dqx(t) = f (t, x(t)) was
elaborated by Leela and Lakshmikantham [14,15]. With the help of Rogers, Krasnoselskoo–
Krein and Kooi conditions the uniqueness of solution was proved by Yoruk et al. [16], for
1 < q < 2.

On the other way, by the use of uncertainty in order to obtained more realistic modeling
of phenomena are taken; (see [17–19]). In aspect not fuzzy and fractional differential
equations many other scholars have been worked in numerical and theoretical [20–24].

The fuzzy Laplace transform was introduced by Ahmadi and Allahviranloo, which
was used to generalized differentiability. Now, further EIJaoui et al. [25] worked on it. The
fuzzy initial and boundary value problems and fuzzy fractional differential equations are
solved by fuzzy Laplace transform method [26].

Hallaci et al. [27] worked on the existence and uniqueness for delay fractional differen-
tial equations in 2020 by using the Krasnoselskii’s fixed point theorem and the contraction
mapping principle.

In 2021, Niazi et al. [28] worked on the existence, uniqueness, and Eq–Ulam type
stability of Cauchy problem for system of fuzzy fractional differential equation with Caputo
derivative of order q ∈ (1, 2], c

0Dq
0+u(t) = λu(t) ⊕ f (t, u(t)) ⊕ B(t)C(t), t ∈ [0, T] with

initial conditions u(0) = u0, u′(0) = u1.
In 2021, Iqbal et al. [29] worked on the uniqueness and existence of mild solution

for fractional order controlled fuzzy evolution equation with Caputo-derivative of the
controlled fuzzy nonlinear evolution equation which is given below{ c

0Dγ
t x(t) = αx(t) + p(t, x(t)), B(t)C(t), t ∈ [0, T]

x(t0) = x0.

Baleanu et al. [30] worked on the existence results for solutions of a coupled system of
hybrid boundary value problems with hybrid econditions.

The existence and uniqueness of the Laplace transform was proved by Assia Guezane-
Lakoud [31] for below initial value problems of fuzzy fractional differential equation for
arbitrary order q > 1. ⎧⎨⎩

Dqx(t) = f (t, x(t), Dq−1x(t)),
x(0) = y0,
D(q−i)x(0) = 0̃, i = 1, . . . , [q].

By the inspire of above work, we adopted Caputo derivative to prove existence and
uniqueness for below initial value problem of fuzzy fractional evolution equation with
uncertainty for order α ∈ (1, 2).⎧⎨⎩

cDαx(t) = f (t, x(t), Dβx(t)),
Iαx(0) = x0,
x′(0) = x1,

(1)

where
1 < α < 2, 0 < β < 1,

and x0 ∈ E and f : E0 → E is continuous fuzzy-valued function with

E0 = {(t, x) : 1 � t � 2, d(x(t), 0̃) � a}, (2)
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where d is Hausdroff distance.
Our goal is to extend and generalise [16] previous uniqueness results.
This study focuses on proving that consecutive approximations converge to a unique

solutions using the Rogers type uniqueness theorem, Krasnoselskoo–Krein type uniqueness
theory, and Kooi type uniqueness theorem. By using fuzzy Caputo derivative we determine
the equivalent integral problem.

The following is a breakdown of the paper’s structure. Basic definitions of fuzzy
set theory, Riemann–Liouville and Caputo derivative extended H-differentiability can be
found in Section 2. The corresponding integral problem is determined in Section 3 using the
fuzzy Laplace transform. The key findings are discussed in Section 4. Section 5, we prove
that consecutive approximations converge to a unique solutions using the Krasnoselskii-
Krein type of uniqueness theorem, a Kooi type uniqueness theorem, and a Rogers type
uniqueness theory.

2. Preliminaries

Let us throw the light on some basic definitions of fuzzy numbers and fuzzy sets. The
Gamma function is denoted by γ in this and the rest of the paper, while the integral part of
α is denoted by [α].

As expressed in [32] E = {u : R → [0, 1]; u satisfies (A1) − (A4)} is space of a
fuzzy numbers:

(A1) u is a normal; that is, there exist x0 ∈ R such that u(x0) = 2.
(A2) u is a fuzzy convex; that is, u(λy + (1− λ)z) � min{u(x), u(z)} whenever x, z ∈ R

and λ ∈ [1, 2].
(A3) u is a upper semi-continuous; that is, for any x0 ∈ R and ε > 1 there exists ξ(x0, ε) > 1

such that u(y) < u(y0) + ε whenever |x− x0| < ξ, x ∈ R.
(A4) The closure of {x ∈ R; u(x) > 1} is compact.

The set [u]γ = {u ∈ R; u(x) > γ} is called γ-level set of u. It follows from (A1)− (A4)
that α ∈ (1, 2]. The fuzzy zero is defined by

0̄ =

{
1 i f x 
= 1,
2 i f x = 1.

(3)

Definition 1 ([32]). A fuzzy number u in parametric form is pair of functions (u(r), u(r)),
1 � r � 2, that meet following conditions:

(1) u(r) is bounded non-decreasing left continuous function in (1, 2] and right continuous at 1;
(2) u(r) is bounded non-decreasing left continuous function in (1, 2] and right continuous at 1;
(3) u(r) � u(r), 1 � r � 2.

Furthermore, r-cut representation of fuzzy numbers can be shown as

[u]r = [u(r), u(r)] f or all 1 � r � 2.

The features of fuzzy addition and multiplication by scaler on E are as follows, accord-
ing to Zadeh’s extension principle:

(u⊕ v)(x) = sup
y∈R

min{u(x), v(w− x)}, w ∈ R,

(k� u(x)) =

⎧⎨⎩
u( x

k ) i f k � 1,

0̃ i f k = 1.
(4)
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To keep things simple, we write ⊕,� with the standard P +, . . . . The Hausdroff
distance between the fuzzy numbers is denoted by E×E→ [0,+∞[, such that

D(u, v) = sup
r∈[1,2]

max{|u(r)− v(r)|, |u(r)− v(r)|}.

And (d,E) is a complete metric space.

Definition 2. Let x, y ∈ E be the variables. If z ∈ E exists such that x = y + z, then z is known
as H-difference of x and y and is symbolised as x� y.

Remark 1. The sign � denotes the H-difference and x� y 
= x + (−1)y.

CF[1, a] denotes space of all continuous fuzzy-valued functions on [1, a], and LF[1, a]
denotes space of all Lebesgue integrable fuzzy valued functions on [1, a], when a > 1.

AC(n−1)F[1, a] also denotes space of fuzzy-valued functions f with continuous H-
derivatives up to n− 1 on [1, a] such that f (n−1) in ACF[1, a].

Definition 3 ([33]). The Riemann–Liouville fractional derivative is defined as

aDp
t f (t) =

(
d
dt

)n+1 ∫ t

a
(t− τ)n−p f (τ)dτ, n � p � n + 1.

Definition 4 ([33]). The Caputo fractional derivatives C
a Dα

t f (t) of order α ∈ R+ are defined by

C
a Dα

t f (t) = aDα
t ( f (t)−

n−1

∑
k=0

f (k)(a)
k!

(t− a)k),

respectively, where n = [α] + 1 for α /∈ N0; n = α for α ∈ N0.

In this paper, we consider Caputo fractional derivative of order 1 < α � 2, e.g.,

C
a D3/2

t f (t) = aD3/2
t ( f (t)−

n−1

∑
k=0

f (k)(a)
k!

(t− a)k).

Definition 5 ([34]). The Wright function ψα is defined by

ψα(θ) =
∞

∑
n=0

(−θ)n

n!Γ(−αn + 1− α)

=
1
π

∞

∑
n=1

(−θ)n

(n− 1)!
Γ(nα) sin(nπα),

where θ ∈ C with 0 < α < 1.

Lemma 1 ([35]). Let {C(t)}t∈R be a strongly continuous cosine family in X satisfying ‖C(t)‖Lb(X) ≤
Meω|t|, t ∈ R, and let A be the infinitesimal generator of {C(t)}t∈R. then for Reλ > ω, λ2 ∈ ρ(A) and

λR(λ2; A)x =
∫ ∞

0
e−λtC(t)tdt, R(λ2; A)x =

∫ ∞

0
e−λtS(t)xdt, f or x ∈ X.

Let γ > 1 be a real number, we have following results:

Lemma 2 ([3]). The unique solution of linear fractional differential equation

cDαu(t) = 0,
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is given by
u(t) = c1 + c2t + . . . + cntn−1, ci ∈ R, i = 1, 2, . . . , n,

where
n = [α] + 1.

Lemma 3. Equation (1) is equal to integral equation below:

x(t) =
1

Γk

∫ t

0
(t− s)k−1 f (s, x(s), Dβx(s))ds +

1
Γk− 1

∫ t

0
(t− s)k−2 f (s, x(s), Dβx(s))ds + σ(0). (5)

Proof. Using Lemma 2, Equation (1) can be written as

cDαx(t) = I f (t, u(t), Dβ(t)) + c0tα−1.

Using the condition
lim
t→0

t1−kcDβu(t) = 0,

we get c0 = 0. On the other hand, from Lemma 2, one gets

x(t) = Ik f (t, x(t), Dβx(t)) + Ik−1g(t, x(t), Dβx(t)) + c1 + c2t.

Clearly x(0) = σ(0), so we obtain c1 = σ(0) and because u′(0) = 0, we find c2 = 0,
then we get the integral equation

x(t) =
1

Γk

∫ t

0
(t− s)k−1 f (s, x(s), Dβx(s))ds +

1
Γk− 1

∫ t

0
(t− s)k−2 f (s, x(s), Dβx(s))ds + σ(0).

The Krasnoselskii fixed point theorem and contraction mapping concept are used to
achieve our results.

Theorem 1. (Krasnoselskii fixed point theorem [36,37]) If M is nonempty bounded, closed, and
convex subset of E, and A and B are two operators defined on M with values in E, then

(i) Au + Bv ∈ G, for all u, v ∈ G,
(ii) A is continuous and compact,
(iii) Then there exists w ∈ G such that h = Aw + Bw.

Theorem 2. (Contraction mapping principle [36,37]) If E is Banach space, then it is a Banach
space. When H : E→ E is a contraction, H has a single fixed point in E.

Definition 6 ([38]). Let f ∈ CF[1, 2] ∩ LF[1, 2]. The fuzzy fractional integral of fuzzy-valued
function f is defined as

Iγ f (x; r) = [Iγ f (x; r), Iγ f (x; r)], 1 � r � 2, (6)

where
Iγ f (x; r) = 1

Γ(γ)

∫ x
0 (x− s)γ−1 f (s; r)ds,

Iγ f (x; r) = 1
Γ(γ)

∫ x
0 (x− s)γ−1 f (s; r)ds.

(7)

Definition 7 ([38]). Let f ∈ C(n)F[1, 2] ∩ LF[1, 2], x0 ∈ (1, 2), and

ϕ(x) = (
1

Γ(n− γ)
)
∫ t

0

( f (t)dt)
(x− t)γ−n+1 ,

where
n = |γ|+ 1.
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One says that f is a fuzzy Caputo fractional differentiable of order γ at x0, if there exists an
element (Dγ

0 f )(x0) ∈ E, such that, for all h > 1 sufficiently small, one has

(Dγ
0 f )(x0) =

lim
h→0

ϕ(n−1)(x0+h) � ϕ(n−1)(x0)
h

lim
h→0

ϕ(n−1)(x0) � ϕ(n−1)(x0−h)
h

. (8)

or

(Dγ
0 f )(x0) =

lim
h→0

ϕ(n−1)(x0) � ϕ(n−1)(x0+h)
h

lim
h→0

ϕ(n−1)(x0−h) � ϕ(n−1)(x0)
h

. (9)

Denote by C(n−1)F([1, a]) space of fuzzy-valued functions f on bounded interval [1, a] which
have continuous Caputo-derivative up to order n− 2 such that f (n−1) ∈ CF[1, a]. C(n−1)F([1, a])
is a complete metric space endowed by metric D such that for every g, h ∈ C(n−1)F([1, a])

D(g, h) =
n−1

∑
i=0

sup
t∈[1,a]

d(g(i)(t), h(i)(t)). (10)

We say fuzzy-valued function f is c[(i)-γ]-differentiable if it is differentiable as in definition
case (i) and c[(ii)-γ]-differentiable if it is differentiable as in definition case (ii) in the rest of the article.

Definition 8 ([38]). Let f ∈ C(n)F ∩ LF[1, 2], x0 ∈ (1, 2), and

ϕ(x) =
(

1
Γ(β− n)

) ∫ x

0

(
f (t)

dt
(x− t)β−n+1

)
,

where n = γ + 2 such that 1 � r � 2; then

(i) if f is c[(i)-γ]-differentiable fuzzy-valued function, then

(Dγ
0 f )(x0; r) = [(Dγ

0 f )(x0; r), (Dγ
0 f )(x0; r)], (11)

or
(ii) if f is c[(i)-γ]-differentiable fuzzy-valued function, then

(Dγ
0 f )(x0; r) = [(Dγ

0 f )(x0; r), (Dγ
0 f )(x0; r)], (12)

where

(Dγ
0 f )(x0; r) =

[
1

Γ(n−γ)

∫ t
0 (x− t)n−γ−1 f (t; r)dt

]
x=x0

(Dγ
0 f )(x0; r) =

[
1

Γ(n−γ)

∫ t
0 (x− t)n−γ−1 f (t; r)dt

]
x=x0

. (13)

The fuzzy Laplace transforms L of Caputo-derivative for fuzzy-valued functions is proved by
the following theorem.

Theorem 3. Let f ∈ C(n)F[1, ∞) ∩ LF[1, ∞); has the below:

(i) if f is c[(i)-γ]-differentiable fuzzy-valued function,

L
[
(Dγ

0 f )(x0)

]
= pγL[ f (t)]�

( n−1

∑
k=0

pγ−k−1Dk
)
(1), (14)

or
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(ii) if f is c[(i)-γ]-differentiable fuzzy-valued function,

L
[
(Dγ

0 f )(x0)

]
= −

( n−1

∑
k=0

pγ−k−1Dk
)
(1)�

(
− pγL[ f (t)]

)
(15)

3. Fuzzy Fractional Integral Equation

Using well-known fuzzy Laplace transform, we investigate the relationship between
Equation (1) and fuzzy integral form in this section.

In fact, by applying the Laplace transform to both sides of the equation, get a better result.

Dαx(t) = f
(

t, x(t), Dβx(t)
)
� g(t, x), (16)

we obtain

L[Dαx(t)] = L
[

f
(

t, x(t), Dβx(t)
)]

. (17)

We get two situations depending on the nature of Caputo-differentiability.
Case 1.

If Dαx is fuzzy-valued function that is c[(i)-α]-differentiable,

Lr(t, x) = −
( n−1

∑
k=0

pβ−k−1Dk
)
(1)� pαL[x(t)], (18)

and the above equation becomes dependent on the lower and higher functions of Dαx,⎧⎨⎩
L[r(t, x, r)] = pαL[x(t; r)]−∑n−1

k=0 pγ−k−1Dkx(1; r),

L[r(t, x, r)] = pαL[x(t; r)]−∑n−1
k=0 pγ−k−1Dkx(1; r),

(19)

where ⎧⎨⎩
L[r(t, x, r)] = min{r(t, u)|u ∈ [x(t; r), x(t; r)]}, 1 � r � 2,

L[r(t, x, r)] = max{r(t, u)|u ∈ [x(t; r), x(t; r)]}, 1 � r � 2,
(20)

For the purpose of simplicity, we will assume that in order to solve system (19),⎧⎨⎩
L[x(t; r)] = H1(p; r),

L[x(t; r)] = K1(p; r).
(21)

H1(p : r) and K1(p; r) are solutions of the previous system (19); it produces⎧⎨⎩
x(t; r) = L−1[H1(p; r)],

x(t; r) = L−1[K1(p; r)].
(22)

Case 2.
If Dαx is fuzzy-valued function that is c[(ii)-α]-differentiable,

Lr(t, x) = pαL[x(t)]�
( n−1

∑
k=0

pβ−k−1Dk
)
(1), (23)
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and the above equation becomes dependent on the lower and higher functions of Dαx,⎧⎨⎩
L[r(t, x, r)] = pαL[x(t; r)]−∑n−1

k=0 pβ−k−1Dkx(1; r),

L[r(t, x, r)] = pαL[x(t; r)]−∑n−1
k=0 pβ−k−1Dkx(1; r),

(24)

where ⎧⎨⎩
L[r(t, x, r)] = min{r(t, u)|u ∈ [x(t; r), x(t; r)]}, 1 � r � 2,

L[r(t, x, r)] = max{r(t, u)|u ∈ [x(t; r), x(t; r)]}, 1 � r � 2.
(25)

For the purpose of simplicity, we will assume that in order to solve system (24),⎧⎨⎩
L[x(t; r)] = H2(α; r),

L[x(t; r)] = K2(α; r),
(26)

where H2(p; r) and K2(p; r) are solutions of the previous system (24). After that, we get⎧⎨⎩
x(t; r) = L−1[H2(α; r)],

x(t; r) = L−1[K2(α; r)].
(27)

We derive the following for both instances, taking into account the beginning value
and initial conditions of Equation (1), using linearity of inverse Laplace transform on
systems (21) and (27).

If and only if x is solution for following integral equation, x is a solution for Equation (1):

x(t) = Cq(t)x0 ⊕ Kq(t)x1 ⊕
1

Γα

∫ t

0
(t− s)k−1 f (s, x(s), Dβx(s))ds (28)

in respect to c[(i)-α]-differentiability, and

x̂(t) = Cq(t)x0(−1)� Kq(t)x1 � (−1)
1

Γα

∫ t

0
(t− s)k−1 f (s, x(s), Dβx(s))ds (29)

in respect to c[(ii)-α]-differentiability.

4. Main Results

Now, stated Kransnoselskii-Krein type conditions for fuzzy fractional differential
Equation (1).

Theorem 4. Suppose f ∈ C(E0,E) satisfy Kransnoselskii-Krein type requirements as follows:

(H1) d(( f , x, y), f (t, x, y)) � min{Γ(α), 2}( (k+γ(α−[α]))
2t1−γ(α−[α]) )[d(x, x) + d(y, y)], t 
= 1 and

1 < α < 2,
(H2) d( f (t, x, y), f (t, x, y)) � ζd( f (t, x, y), f (t, x, y) � ζd(x, x)γ + tγ(α−[α])d(y, y)γ,

where ζ and k are positive constants and

k(2− γ) < 2 + γ(α− [α]);

then in the sense of c[(i)-γ]-differentiability, solution x is a unique and in sense of c[(i)-γ]-
differentiability, solution x is a unique on [1, κ], where

κ = min
{

2,
(

bΓ(2 + α)

G

) 1
α

,
d
G

}
,
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and G is bound for f on E0 that is,
d( f , 0̃) � G.

Proof. To begin, let us assume that x and y are any two solutions of (1) in c[(i)-γ]-differentiability
and assume

ϕ(t) = d(x(t), y(t))

and
σ(t) = d(Dβx(t), Dβy(t)).

Note that
ϕ(1) = σ(1) = 1.

We define

R(t) =
∫ t

0
[ϕγ(s) + sγ(α−[α])σγ(s)]ds;

clearly R(1) = 1.
Using Equation (28) and condition (H2),

ϕ(t) � ζ
∫ t

0
(t− s)q−1[ϕγ(s) + sγ(α−[α])σγ(s)]ds

� ζtq−1R(t) (30)

σ(t) �
∫ t

0
ζ ϕϕγ(s) + tγ(α−[α])σ(s)γds

� ζR(t). (31)

We use the same symbol C to represent all of the other constants that appear in the
rest of the proof for the purpose of simplicity.

We have

R′(t) = ϕ(t) + tγ(α−[α])σγ(s)

� C[tγβ + tγ(α− [α])]Rγ(t). (32)

Since R(t) > 1 for t > 0, multiplying both sides of (32) by (1− γ)R−γ(t) and then integrate

R(t) < C
(

t

(
( γ
(1−γ)

)α+1

)
+ t

(
γ

(1−γ)

)
α+

(
(1−γ[γ])
(1−γ)

))
(33)

Making use of the fact that

(a + b)t(1−γ) � 1
21−γ − 1

(a(1−γ) + b(1−γ)) (34)

for every a, b ∈ (1, 2), Equation (33) becomes

R(t) < C
(

t

(
γα

1−γ +1

)
+ t

(
γα

1−γ +
1−γ[γ]

1−γ

))
. (35)
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For t ∈ [0, μ], this yields the following estimates for ϕ and σ:

ϕ(t) � C
(

t

(
α

1−γ )

+ t

(
α

1−γ +
γ(1−[α])

1−γ

))
,

σ(t) � C
(

t

(
γ

1−γ α+1)
+ t

(
γ

1−γ α+ 1−γ[α]
1−γ

))
.

(36)

Define function η(t) = t−k max ϕ(t), σ(t) for t ∈ (1, 2]. When either t−k ϕ(t) or t−kσ(t)
is maximum,

1 � η(t) � C
(

t

(
α

1−γ−k

)
+ t

(
α

1−γ +
γ(1−[α])
(1−γ)−k

))
, (37)

or

1 � η(t) � C
(

t

(
γ

1−γ α+1−k

)
+ t

(
αγ

1−γ +
(1−γ[α])
(1−γ)−k

))
. (38)

Since
k(1− γ) < 1 + γ(α− [α])

(by assumption), we have

< 1 + γ(α− [α])

< α

(k− 1)(1− γ) < γα

k(1− γ) < α + γ− γ[α]

< γα + 1− γ[α].

In the above inequalities, all of the t exponents are positive. As a result, lim
t→0+

η(t) = 0.

As a result, the function η is continuous in [0, η] if η(0) = 0 is defined. In fact, because η
is continuous function, if η does not vanish at some points t, i.e., η(t) > 1 on [0, η], then
there exists maximum g > 1 attained when t is equal to some t1. 1 � t1 � η � 2 such that
η(s) < g = η(t1), for s ∈ [0, t1). However, we receive either result from condition (H1).

g = η(t1) = t−k
1 ϕ(t1) � min(Γ(α), 2)gtα−2+γ(α−[α])

1 < g (39)

g = η(t1) = t−k
1 σ(t1) � min(Γ(α), 2)gtγ(α−[α])

1 < g (40)

which is a contradiction. As a result, the solution’s uniqueness is established in terms of
c[(i)-α]-differentiability. We emit the second part of proof because it is nearly identical to
c[(i)-α]-differentiability.

Theorem 5. (Kooi’s type uniqueness theorem). Suppose f satisfies below conditions:

(J1) d(( f , x, y), f (t, x, y) � min{Γ(α), 2}
(

(k+γ(α−[α]))
2t1−γ(α−[α])

)
[d(x, x + d(y, y], t 
= 1 and

1 < α < 2,
(J2) tβd( f (t, x, y), f (t, x, y)) � c[d(x, x)γ + tγ(α−[α])d(y, y)γ,

where c and k are positive constants and

k(2− γ) < 2 + γ(α− [α])− μ,

for (t, x, y), (t, x, y) ∈ R0; then in the sense of c[(i)-γ]-differentiability, solution x is a unique and
in sense of c[(i)-γ]-differentiability, solution x̂ is a unique.
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Lemma 4. For a real number a > 1, consider ϕ and σ, two non-negative continuous functions on
interval [0, μ]. Let

η(t) =
∫ t

0
(ϕ(s) + sα−[α]+2)ds.

Consider the following:

(i) ϕ(t) � tα−[α]η(t);
(ii) σ(t) � η(t);

(iii) ϕ(t) = o(tα−[α]e−
1
t );

(iv) σ(t) = o(e−
1
t ).

Proof. Let

η(t) =
∫ t

0
(ϕ(s) + sα−[α]+2)ds.

After differentiating η and using (ii), we get t > 0,

η′(t) � (
1
t2 )η(t),

so that e
1
t η(t) is decreasing. Now from (iii) and (iv), if ε > 0 then, for small t, we get

e
1
t η(t) � e

1
t

∫ t

0

1
2s2 2e−

1
s ds = ε. (41)

Hence,
lim
t→1

e
1
t η(t) = 1.

This means that η(t) � 1. Finally, because of (i), η is nonnegative, and hence η = 1.

Theorem 6. (Roger’s type uniqueness theorem). Verify following conditions with function f :

(K1) d(( f , x, y), 0̃) � min{Γ(α), 2}o( e
−1
t

t2 ), uniformly for positive and bounded x and y on E,
(K2) d( f (t, x, y), f (t, x, y)) � min{Γ(α)( 1

2tα−[α]+2 )[d(x, x) + t(α−[α])d(y, y)].
The problem then has only one solution.
This theorem’s proof is based mainly on Lemma 4.

Proof. Suppose x and y are any two solutions of (1) in c[(i)-γ]-differentiability, assume

ϕ(t) = d(x(t), y(t))

and
σ(t) = d(Dβx(t), Dβy(t));

we get for t ∈ [0, μ] ⊂ [1, 2].

ϕ(t) � 1
k

∫ t

0
(t− s)k−1d[ f (s, x(s), Dβx(s)), f (s, y(s), Dβy(s))]ds

� (t− s)k−1

2sα−[α]+2
[ϕ(s) + sα−[α]σ(s)]ds

� tα−1
∫ t

0

1
2sα−[α]+2

[ϕ(s) + sβσ(s)]ds
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� tα−[α]
∫ t

0

1
2sα−[α]+2

[ϕ(s) + sβσ(s)]ds

� tα−[α]η(t)

σ(t) �
∫ t

0
d[ f (s, x(s), Dβx(s)), f (s, y(s), Dβy(s))]ds

�
∫ t

0

min{Γ(α), 2}
2sα−[α]+2

[ϕ(s) + sα−[α]σ(s)]ds

�
∫ t

0

1
2sα−[α]+2

[ϕ(s) + sα−[α]σ(s)]ds

� ϕ(t), (42)

where ϕ has the same definition as in Lemma 4.
In addition, if ε > 1, we get condition (K1) for small t,

ϕ(t) � tk−1

Γ(k)

∫ t

0
(t− s)k−1d[ f (s, x(s), Dβx(s)), f (s, y(s), Dβy(s))]ds

� (t− s)k−12(ε)
∫ t

0

e−
1
s

s2 ds

� tk−1e−
1
s 2ε

� tα−[α]e−
1
s 2ε (43)

σ(t) �
∫ t

0
(t− s)k−1d[ f (s, x(s), Dβx(s)), f (s, y(s), Dβy(s))]ds

� 2ε min{2, Γ(k)}
∫ t

0

e−
1
s

s2 ds

� 2εe−
1
s .

We get d(x(t), y(t)) = 1 for every t ∈ [1, 2] by applying Lemma 4, proving uniqueness
of solution of fuzzy fractional evolution Equation (1) in c[(i)-γ]-differentiability. We skip
the second section of the evidence because it is nearly identical to the first.

Theorem 7. Let f ∈ C(E0,E) satisfy above Theorem 4. Then there’s series of approximations.

xn(t) = Cq(t)x0 + Kq(t)x1(t) +
1

Γα

∫ t

0
(t− s)k−1 f (s, x(s), Dβx(s))ds (44)

in sense of c[(i)-γ]-differentiability or

x̂n(t) = Cq(t)x0 � (−1)Kq(t)x1 � (−1)
1

Γα

∫ t

0
(t− s)k−1 f (s, x(s), Dβx(s))ds (45)

converge to unique solution of fuzzy fractional evolution equation in sense of c[(ii)-γ]-differentiability (1).

Proof. Using the Ascoli–Arzela Theorem, we show the Theorem 7 for sequence xn in sense
of c[(i)-γ]-differentiability without losing generality. We omit the sequence {x̂n} because its
convergence in terms of c[(ii)-γ]-differentiability is very comparable.
Step 1: The sequences {xj}j�0 and {Dq−1xj}j�0 are well defined, continuous and uniformly
bounded on [0, μ]; ⎧⎪⎨⎪⎩

d(xj+1(t), x0) �
∫ t

0 d( f (s, xj(s), Dβxj(s)), 0̃)ds

d(Dβxj(t), x0) �
∫ t

0 d(d(s, xj(s), Dβxj(s)), 0̃)ds
. (46)
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For j = 1 and t ∈ [0, μ], we have⎧⎪⎨⎪⎩
d(x1(t), x0) � Gt2

Γ(α+1) � a

d(Dβx1(t), x0) � Gt � g
. (47)

Furthermore, for each i ∈ 0, . . . , β;

d(x(i)1 (t), 0̃) = d(Di Iα f (t, x0(t), Dβx0(t), 0̃)

= d(Iα−i f (t, x0(t), Dβx0(t), 0̃)

= Γ(β)∫ t

0
(t− s)α−i−1d( f (t, x0(s), Dβx0(s)), 0̃)ds � N

Γ(α− i)

∫ t

0
(t− s)α−i−1ds

� Ntα−i

(α− i)Γ(α− i)

� Ntα−1

Γ(α− i + 1)
.

The sequences {xj+1(t)} and {Dβxj+1(t)} are properly defined and uniformly bounded
on [0, μ] by induction.
Step 2: We show that in [0, μ], the functions x and y are continuous, where x and y are
defined by ⎧⎪⎪⎨⎪⎪⎩

x(t) = lim
j→∞

sup ξ0
j (t),

y(t) = lim
j→∞

sup ζ j(t),
(48)

as a result ⎧⎪⎨⎪⎩
ξ1

j (t) = d(xj(t), xj−1(t)),

ζ j(t) = d(Dβxj(t), Dβxj−1(t)).
(49)

Take note of the following:

g(t) = ∑
i�n−1

lim
j→∞

ξ i
j(t), (50)

where
ξ i

j(t) = d(x(i)j (t), x(i)j−1(t)). (51)

For 0 � t1 � t2 and for every i ∈ {0, . . . , n− 1}, we obtain
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d(ξ i
j(t1)− ξ i

j(t2)) = d(x(i)j+1(t1), x(i)j (t1))− d(x(i)j+1(t2), x(i)j (t2))

� d
[ ∫ t1

0
(t1 − s)k−1−id( f (s, xj(s), Dβx(s)), f (s, xj−1(s)Dβ

j−1x(s)))ds

−
∫ t2

0
(t2 − s)k−1−id( f (s, xj(s), Dβx(s)), f (s, xj−1(s)Dβ

j−1x(s)))
]

ds (52)

� 2N
Γ(k− i)

d
[ ∫ t−1

0
(t1 − s)k−1−i − (t2 − s)k−1−ids−

∫ t2

t1

(t2 − s)k−1−ids
]

� 2N
(k− i)Γ(k− i)

[
tk−i
1 − tk−i

2 + 2(t2 − t1)
k−i

]
� 4N

Γ(k− i + 1)
(t2 − t1)

k−i.

In the above inequalities, right-hand side is at the most 4N
Γ(k−i+1) (t2 − t1)

k−i + ε for
large n if ε > 0 provided that

d(t2 − t1) � μ � 4N
Γ(k− i + 1)

(t2 − t1)
k−i, (53)

for each i � n− 1. ε is arbitrary and t1, t2 can be interchangeable, we get

d(n(t1)− n(t2)) � ∑
i�n−1

{
4N

Γ(k− i + 1)
(t2 − t1)

k−i
}

� 4N(n− 1)
Γ(k + 1)

(t2 − t1)
k. (54)

The same goes for y(t), and we obtain

d(y(t1)− y(t2)) � 2Nd(t2 − t1). (55)

These results indicate that x and y are continuous on [0, μ].
Step 3: We check that {Dβ jn+1(t)} family is equi-continuous in CE([0, μ],E) and that the
{xj+1(t)} family is equi-continuous in C(n−1)F([0, μ],E). Using condition (H2) and notion
of successive approximations (45) we can show that we get⎧⎪⎨⎪⎩

ξ0
j+1(t) � c

∫ t
0 (t− s)k−1[ξ0

j (s)
γ + sγ(α−[α])ζ j(s)γ]ds,

ξ i
j+1(t) � c

∫ t
0 (t− s)k−i−1[ξ0

j (s)
γ + sγ(α−[α])ζ j(s)γ]ds.

(56)

As a consequence, we obtain the following estimation:

D(xj+1, xj) � ∑
i�n−1

c
∫ 2

1
(1− s)k−i−1[d(xj(s)− xj−1(s))γ + sγ(α−[α])d(Dβxj(s)− Dβxj−1(s))γ]ds. (57)

There exists a subsequence of integers {jk}, according to the Arzela-Ascoli Theorem,⎧⎪⎨⎪⎩
d(xj p(t), xj−1 p(t))→ y(t) as jl → ∞,

d(Dβxj p(t), Dβxj p−1(t))→ y(t) as jl → ∞.
(58)
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Let us note ⎧⎪⎪⎨⎪⎪⎩
u∗(t) = lim

p→∞
sup d(xj p(t), xj p−1(t)),

v∗(t) = lim
p→∞

sup d(Dβxj p(t), Dβxj p−1(t)).
(59)

Further, if {d(xj, xj−1)} → 0 and {d(Dβxj, Dβxj−1)} → 0 as j → ∞, limit of any
consecutive xn approximation in solution x of (1), which was demonstrated to be unique in
Theorem 4. As a result, a subsequence selection is unnecessary, because entire sequence
{xj} converges evenly to x(t). To do so, simply establish that x = 1 and y = 1, which will
result in u ∗ (t) and v ∗ (t) being same.

R(t) =
∫ t

0
[y(s)γ + sγ(α− [α])v(s)γ]ds (60)

and by defining
η ∗ (t) = t−p max{x(t), y(t)}.

We demonstrate this as
lim

t→0+
η ∗ (t) = 0.

We’ll now show that η ∗ (t) = 0. Assume that η ∗ (t) > 0 at any point in the range
[0, μ]; then t1 exists that is

1 � ḡ = η(t1) = max
0�t�μ

η ∗ (t).

Hence, from condition (H1), we obtain

ḡ = η(t1) = t−p
1 x(t1) � min(Γ(α), 2)ḡtβ−γ(α−[α])

1 < ḡ, (61)

or
ḡ = η(t1) = t−p

1 y(t1) � min(Γ(α), 2)ḡtγ(α−[α])
1 < ḡ. (62)

We end up with a contradiction in both circumstances. As a result, η ∗ (t) = 0. As a
result, iteration (45), on [0, μ], converges evenly to the unique solution x of (1).

5. Examples

Example 1. Consider the initial value problem:

cD
3
5 x = f (t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ft
3γ

5i−γ 1 � t � 2,−∞ � x � 1,

Ft
3γ

5i−γ ⊕ F Fx2

t
3
5

1 � t � 2, 1 � xt
3
5 (1− γ)−1,

0, 1 � t � 2, t
3
5 (1− γ)−1 � x � ∞,

(63)

x(1) = 1,
where

1 � α � 2,

then

F = Γ
(

3
5

)(
3
5

k− 1
2

)
, q =

3
5

, c =
F51−γ

Γ( 3
5 )

,

k > 2 and k(1− γ) < 2.
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In the strip, function f (t, x) is continuous. 1 � t � 2, |x| < ∞, can be proved in each of
the cases.

(i) 1 � x, x̄ � t
3
5 (1− γ)−1,

(ii) t
3
5 (1− γ)−1 < x < ∞,−∞ < x̄ < 1,

(iii) t
3
5 (1− γ)−1 < x < ∞, 0 � x̄ � t

3
5 (1− γ)−1,

(iv) 0 � x � t
3
5 (1− γ)−1,−∞ < x̄ < 1,

that following estimates hold:

| f (t, x)− f (t, x̄| � F

t
3
5
|x− x̄|,

� F21−γ|x− x̄|γ.

Therefore, initial value problem has unique solution for order (1, 2].

Example 2. If we consider initial value problem with Caputo derivative

cDα(x) = f (t, x,c Dβx(t)),
Iαx(0) = x0,
x′(0) = x1,
cDβx(0) = 0,

(64)

where 1 < α < 2, then solution of given equation is equal to

x(t) = Cq(t)x0 + Kq(t)x1 +
1

Γα

∫ t

0
(t− s)α−1 f (s, x(s))ds. (65)

Let the function f in above equation satisfy following Krasnoselskii-Krein type conditions:
(H1) d( f (t, x), f (t, y)) � Γ(q) α(k−1)+1

tα d(x, y), t 
= 0, where k > 1.
(H2) d( f (t, x), f (t, y)) � ζd(x, y)β, where ζ is constant, 0 < β < 1, and k(1− β) < 1, for
(t, x), (t, y) ∈ R.

Then approximations are given by

xn+1(t) = Cq(t)x0 + Kq(t)x1 +
1

Γα

∫ t

0
(t− s)α−1 f (s, xn(s))ds, (66)

converges uniformly to a unique solution x(t) of given equations on {0, μ} where

μ = min
{

c,
(

eΓ(1 + α)

J

) 1
α
}

,

J is bound for f on R.

6. Conclusions

The existence and uniqueness of the class of high-order fuzzy Krasnoselskii-Krein
conditions are investigated in this paper. This is a fruitful field with a wide range of
research projects that can lead to various applications and theories. In future projects,
we hope to learn more about fuzzy fractional evolution problems. Using the Caputo
derivative, we can discover uniqueness and existence with uncertainty. Future work could
include expanding on the concept proposed in this mission, including observability, and
generalizing other activities. This is an interesting area with a lot of study going on that
could lead to a lot of different applications and theories. This is a path to which we want to
invest considerable resources.
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Abstract: One-dimensional continuous functions are important fundament for studying other com-
plex functions. Many theories and methods applied to study one-dimensional continuous functions
can also be accustomed to investigating the properties of multi-dimensional functions. The properties
of one-dimensional continuous functions, such as dimensionality, continuity, and boundedness, have
been discussed from multiple perspectives. Therefore, the existing conclusions will be systematically
sorted out according to the bounded variation, unbounded variation and hölder continuity. At the
same time, unbounded variation points are used to analyze continuous functions and construct
unbounded variation functions innovatively. Possible applications of fractal and fractal dimension in
reinforcement learning are predicted.

Keywords: continuous functions; unbounded variation; fractal dimension; reinforcement learning

1. Introduction

It is a widely held view that dimensionality is an important indicator to describe
functions, but different functions have many disparate internal structures and properties.
Traditional topological dimension had not dealt with some characteristics of the intricate
functions well. In recent years, there is a growing body of literature that recognises the
importance of using fractal dimension instead of topological dimension to describe the
functions. The fractal dimension is an extension of the topological dimension. The fractal
dimension reflects the effectiveness of the space occupied by the complex sets, and it is a
measure of the irregularity of the complex sets. It is cross-combined with the chaos theory
of dynamical systems and complements each other. It admits that the part of the world may
show similarity with the whole in a certain aspect under certain conditions or processes.
The value of the fractal dimension can be not only an integer but also a fraction. So fractal
dimension can measure complex sets like the Cantor ternary set. From the point of view
of the measure theory, the fractal dimension is the jump point that makes the measure of
the set change from infinity to zero. Fractal dimension includes the Hausdorff dimension,
the Box dimension and the Packing dimension. Each dimension has a special definition
and many calculation methods. The tool for studying fractal dimension is no longer just
classic calculus, and a full discussion about the properties of continuous functions lies
beyond the scope of classical calculus. Fractional calculus (FC) has gradually become
the main method [1–3]. Since classical calculus is a special case of fractional calculus [4],
many problems that cannot be measured by classical calculus can be solved by fractional
calculus, such as studying the properties of continuous functions that are continuous but
not differentiable everywhere [5,6]. The most widely used FC is the Riemann-Liuville
fractional calculus and the Weyl-Marchaud fractional calculus.

Recent work has established that one-dimensional continuous functions have signif-
icant and useful properties [7]. For instance, the Box dimension of bounded variation
functions and the functions with Riemann-Liuville fractional calculus are both one. The
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Box dimension of continuous functions is not less than one. Fractional integral does not
increase the dimensionality of the functions, and this special operator makes the fractal
dimension have a special linear relationship.

However, there are still some issues that are worth considering and discussing. For
example, is the Hausdorff dimension of a continuous function with bounded variation equal
to one? What are the Hausdorff dimension and the Box dimension of functions satisfying
the Hölder condition? Is there a one-dimensional unbounded variation function? Can the
function of unbounded variation and bounded variation be mutually converted under
special prerequisites? Are there other ways to better explore unbounded variation functions
effectively? It is these original questions that promote the emergence of new concepts
and many new analytical tools. A few years ago, scholars always used the definition
of bounded variation to define the unbounded variation function. The definition is not
conducive to exploring the nature of the unbounded variation function. As unbounded
variation functions defined by the unbounded variation point directly, a new perspective
for studying unbounded variation functions was gradually discovered. At the same time,
the relevant conclusions about unbounded variation points have also been rigorously
proved. For example, the Box dimension of an unbounded variation function with only
an unbounded variation point is one. If this function has self-similarity at the same time,
its Hausdorff dimension is also one. A more interesting topic is to investigate the changes
between some classic functions and the functions after fractional calculus. These changes
usually include fractal dimension [8–10], continuity [11,12], boundedness [13,14] and types
of fractional calculus [15,16].

After concentrated discussions on some special functions theoretically [17,18], scholars
do not have any visual information of the functions [19,20]. The most obvious evidence is
the Weierstrass function. Researchers not only know about its functional properties, but also
clearly know what its image looks like. Nevertheless, scholars are not very familiar with the
image of any one-dimensional continuous functions with an unbounded variation point.
Therefore, several attempts have been made to construct the special functions [21], such as
one-dimensional continuous functions with finite or infinite unbounded variation points,
and unbounded variation functions that satisfy the Hölder condition. The construction
process of these special functions mainly uses some compression, translation and symmetric
transformations. There are also some special unbounded variation functions that are
obtained by special operations on the basis of the devil function [22].

So far, there existed many research angles and conclusions on one-dimensional con-
tinuous functions and their fractional calculus [23]. In order to have a comprehensive
understanding, this paper will systematically sort out the current research results from
the perspectives of bounded variation, unbounded variation and the Hölder condition. A
more detailed analysis of unbounded variation functions through the unbounded variation
point will also be elaborated. Combined with the very popular reinforcement learning in
machine learning, some very interesting practical applications are predicted. For example,
the evaluation model based on the fractal dimension and the random search method based
on the fractal structure. The advantage of the fractal evaluation model based on the fractal
dimension is that the method based on the local information can evaluate the distance
between any two states to the equilibrium state. The distance can speed up the calculation
process of algorithms. At the same time, evaluating the current state during the training
process can also optimize and improve algorithms reasonably. The fractal random search
method also makes full use of the self-similarity to reduce the search time as much as possi-
ble on the basis of ensuring the probe of the entire space. Finally, the framework to prove
the convergence of reinforcement learning algorithms is introduced using fractal attractors.

The main innovations of this manuscript are as follows. First, the existing conclu-
sions about one-dimensional continuous functions are summarized through three different
classification methods, which is helpful to study other complex functions. The second is
to introduce the concept of the unbounded variation point to directly study unbounded
variation functions. The unbounded variation point can effectively grasp the essence of
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unbounded variation functions. At the same time, some special unbounded variation
functions can be constructed based on the unbounded variation point, and the images of
these complex unbounded variation functions can be easily obtained. Third, by combining
reinforcement learning and fractal theory, some possible application directions are pre-
dicted, and a unique fractal evaluation model is proposed. These results can provide some
new ideas for other researchers.

Section 2 mainly recalled some basic concepts, such as the definition of fractal dimen-
sion, bounded variation functions, unbounded variation points and fractional calculus.
Section 3 mainly discussed the bounded variation function and its fractional calculus.
Section 4 focused on the correlation between the continuity of Hölder and variation func-
tions. Section 5 primarily explored the unbounded variation function through the un-
bounded variation point, and gave the construction process of one-dimensional continuous
unbounded variation functions. Section 6 forecasted some applications of fractal and fractal
functions in reinforcement learning and analyzed the advantages and disadvantages of
these methods. The logical structure of this paper is shown in Figure 1.

Figure 1. The logical structure of the paper.

2. Basic Concepts

Among fractal dimension, the Box dimension is the most widely used. However, some
other dimension is still mentioned in some engineering problems, such as the modified Box
dimension and the Packing dimension. At the same time, the relationship between these
dimension is often analyzed and compared in theoretical research. Most of the definitions
are based on measurement theory, and there are also some interrelationships between
various dimension. Typical definitions of fractal dimension are as follows.
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Definition 1. ([24,25]) Let F be a non-empty bounded subset of Rn and Nδ(F) be the smallest
number of sets of diameter at most δ which can cover F. The lower and upper Box dimension of F
respectively are defined as

dimB(F) = lim
δ→0

log Nδ(F)
− log δ

, (1)

and

dimB(F) = lim
δ→0

log Nδ(F)
− log δ

. (2)

If (1) and (2) are equal, the common value is the Box dimension of F:

dimB(F) = lim
δ→0

log Nδ(F)
− log δ

.

If F can be decomposed into a countable number of pieces F1, F2, · · · in such a way that the
dimension of the largest piece should be as small as possible. This idea leads to the following modified
Box-counting dimension,

dimMB(F) = inf{sup
i

dimBFi : F ⊂
∞⋃

i=1

Fi}, (3)

dimMB(F) = inf{sup
i

dimBFi : F ⊂
∞⋃

i=1

Fi}. (4)

If (3) and (4) are equal, the common value is the modified Box-counting dimension of F. Let

P s(F) = inf{∑
i

P s
0(Fi) : F ⊂

∞⋃
i=1

Fi}.

It may be shown that P s(F) is the s-dimensional Packing measure. The definition of the
Packing dimension [26] in the usual way:

dimP F = sup{s : P s(F) = ∞} = inf{s : P s(F) = 0}.

The above dimension is put forward for some specific problems. In the research
process, the appropriate fractal dimension should be selected according to the needs. For
example, the measurement of the Hausdorff dimension is more accurate and the calculation
of the Box dimension is simpler through programs.

The Jordan decomposition theorem is widely applied in the proof process of various
problems, and the core concept of the theorem is the function with bounded variation. The
definition of the bounded variation function is shown in Definition 2. The unbounded
variation function can be defined by the complementary set of bounded variation func-
tions, but this paper will research unbounded variation functions through the unbounded
variation point that can be found in Definition 3.

Definition 2. ([27]) Let f (x) be defined on I = [0, 1]. A set of points P = {x0, x1, · · · , xn},
satisfying the inequalities 0 = x0 < x1 < · · · < xn−1 < xn = 1, is called a partition. P =
{x0, x1, · · · , xn} is a partition of I and write� fk = f (xk)− f (xk−1), for k = 1, 2, · · · , n. If there
exists a positive number M such that

n

∑
k=1
| � fk| ≤ M,

for all partitions of I, f (x) is said to be of bounded variation on I.
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Bounded variation functions have many important properties [28,29]. Such as, a
monotonic function is a bounded variation function. The sum, difference, and product of a
finite number of bounded variation functions are still the bounded variation function. The
absolutely continuous function must be the function of bounded variation.

Definition 3. (UV point) Let f (x) be a continuous function on I.
(1) For p ∈ (0, 1). There exists a closed subinterval Q = [q1, q2] (0 ≤ q1 < p < q2 ≤ 1)

of I such that the variation of f (x) on Q is finite, then denote (p, 0) as a bounded variation point
of f (x), or (p, 0) as an unbounded variation point of f (x).

(2) For p = 0 or p = 1. There is a closed subinterval Q = [0, q1] (0 < x ≤ 1) or Q = [q1, 1]
(0 ≤ q1 < 1) of I and the variation of f (x) on Q is finite, then denote (p, 0) is a bounded variation
point of f (x), otherwise (p, 0) is an unbounded variation point of f (x).

Due to the complexity of the function structure, the functions of unbounded variation
are often non-differentiable functions in the defined interval. The concept of the UV
point grasps the essence of unbounded variation functions and transforms the complex
structure cleverly. Classical calculus is difficult to analyse the properties of unbounded
variation functions, but the properties of some special unbounded variation functions can
be investigated by fractional calculus [30,31]. This article mainly utilizes the Riemann-
Liouville fractional integral and the Weyl fractional integral [32] to study unbounded
variation functions. Their definitions can be found in Definition 4.

Definition 4. ([33,34]) (1) Let f (x) ∈ CI , ν > 0. D−ν f (0) = 0 and for x ∈ (0, 1],

D−ν f (x) =
1

Γ(ν)

∫ x

0
(x− t)ν−1 f (t)dt

is the Riemann-Liouville fractional integral of f (x) of order ν.
(2) Let f (x) be a continuous function defined on (−∞,+∞) and 0 < ν < 1.

W−ν f (x) =
1

Γ(ν)

∫ ∞

x
(t− x)ν−1 f (t)dt

is called as the Weyl fractional integral of f (x) of order ν.

The abbreviation CI and BVI will be represented for continuous functions and bounded
variation functions defined on I respectively. Denote G( f , I) as the image of f (x) on I.
Denote bounded variation function and unbounded variation function as BVF and UVF
respectively. C0 is the Cantor set.

3. Bounded Variation Functions and Their Fractional Integral

The structure of the bounded variation function is not complex. Simple calculations
show that its Box dimension is one [35,36]. Furthermore, the bounded variation function
after the Weyl fractional integral is still a bounded variation function, so its Box dimension
is still one. The relationship between them can be shown in Figure 2.

The proof process of the above related conclusions will be given in detail. First of all, a
frequently occurring lemma is necessary to be displayed.

Lemma 1. Given a function f (x) and an interval [a, b], R f is the maximum range of f (x)
over [a, b], i.e.,

R f [a, b] = sup
a<x, y<b

| f (x)− f (y)|.

Let f (x) ∈ CI
⋂

BVI. Suppose that 0 < δ < 1 and m be the least integer greater than or
equal to δ−1. If Nδ is the number of squares of the δ−mesh that intersect G( f , I), then
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δ−1
m−1

∑
i=o

R f [iδ, (i + 1)δ] ≤ Nδ ≤ 2m + δ−1
m−1

∑
i=0

R f [iδ, (i + 1)δ].

Figure 2. The properties of bounded variation functions.

Proof of Lemma 1. The number of mesh squares of δ in the column above the inter-
val [iδ, (i + 1)δ] that intersect G( f , I) belongs to [R f [iδ, (i + 1)δ]/δ, 2 + (R f [iδ, (i + 1)δ]/δ)].
By summing all such intervals together, the lemma can be proved.

Theorem 1. (1) If dimBG( f , I) ≥ 1 and f (x) is a continuous function, dimBG( f , I) ≤ 2.
(2) If f (x) ∈ CI

⋂
BVI, dimB G( f , I) = 1.

Proof of Theorem 1. By using Definition 1,

dimBG( f , I) ≥ lim
δ→0

log C
δ

− log δ
= 1, dimBG( f , I) ≤ lim

δ→0

log C
δ2

− log δ
= 2.

Let {xi}n
i=1 be arbitrary points satisfying 0 = x0 < x1 < x2 < · · · < xn = 1, then

sup
(x0,x1,··· ,xn)

n

∑
k=1
| f (xk)− f (xk−1)| < C.

Let m be the least integer greater than or equal to 1
δ . Nδ is the number of squares of the

δ−mesh that intersect G( f , I). Combining Lemma 1,

Nδ ≤ 2m + δ−1
m

∑
i=1

R f [(i− 1)δ, iδ].

For 1 ≤ i ≤ m− 1 and xi, 0 = iδ, xi, 3 = (i + 1)δ, xi, 1, xi, 2 ∈ (iδ, (i + 1)δ),

R f [iδ, (i + 1)δ] ≤ sup
xi, 0<xi, 1<xi, 2<xi, 3

3

∑
k=1
| f (xi, k)− f (xi, k− 1)|.

There exists a positive constant C such that Nδ ≤ Cδ−1 and

dimBG( f , I) ≤ 1, 0 < v < 1.
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Simultaneously, the topolopy dimension of a continuous function f (x) is no less
than 1,

dimBG( f , I) ≥ 1, 0 < v < 1.

Thus, dimB G( f , I) = 1.

If non-negative constants C and α can be found to formula the following inequation

| f (x)− f (y)| ≤ C|x− y|α,

f (x) is a Hölder continuous function [37]. When α = 1, f (x) is a Lipschitz continuous
function. Throughout this paper, the term f (x) ∈ LipC means that f (x) is a Lipschitz
continuous function on I and the Lipschitz constant is C.

Corollary 1. If f (x) ∈ LipC, then dimB G( f , I) = 1.

Proof of Corollary 1. f (x) ∈ LipC, ∀ x, y ∈ I,

| f (x)− f (y) |≤ C | x− y | .

Let {xi}n
i=1 be arbitrary points satisfying 0 = x0 < x1 < x2 < · · · < xn = 1. Since

sup
(x0, x1,..., xn)

n

∑
k=1
| f (xk)− f (xk−1)| ≤ C

n

∑
k=1
|xk − xk−1| ≤ C,

f (x) ∈ BVI and dimB G( f , I) = 1.

Corollary 1 shows that a function that satisfies the Lipschitz condition must be a BVF.
However, a function that satisfies the Hölder condition is not necessarily a BVF [38,39]. The
counter-example is as follows:

f (x) =

{
−1/lnx, 0 < x ≤ 0.5,
0, x = 0.

Obviously, since this function is monotonically increasing in [0, 0.5], it is a BVF. But for
any α > 0, this function does not satisfy the Hölder condition of order α.

Theorem 2. If f (x) ∈ CI
⋂

BVI, dimB G(W−v f , I) = 1.

Proof of Theorem 2. Since f (x) ∈ CI and f (x) is of bounded variation on I, f (x) can be
replaced with the difference of two monotone increasing and continuous functions g1(x)
and g2(x) by the Jordan decomposition theorem, f (x) = g1(x)− g2(x), where g1(x) =
h1(x)− c, g2(x) = h2(x)− c, h1(x) = h2(x) = c on [1,+∞). Then h1(x) and h2(x) are also
monotone increasing and continuous functions.

(1) If f (0) ≥ 0, let g1(0) ≥ 0 and g2(0) = 0. By Definition 4,

G1(x) = W−vg1(x) =
1

Γ(v)

∫ ∞

x

h1(t)− c
(t− x)1−v dt, 0 < v < 1,
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G1(x) still is a continuous function on I when g1(x) is a continuous function. Let
0 ≤ x1 ≤ x2 ≤ 1 and 0 < v < 1,

G1(x2)− G1(x1)

=
1

Γ(v)

∫ ∞

x2

(t− x2)
v−1(h1(t)− c)dt− 1

Γ(v)

∫ ∞

x1

(t− x1)
v−1(h1(t)− c)dt

=
1

Γ(v)

∫ 1

x2

(t− x2)
v−1(h1(t)− c)dt− 1

Γ(v)

∫ 1

x1

(t− x1)
v−1(h1(t)− c)dt

=
1

Γ(v)
(
∫ 1

x2

(t− x2)
v−1h1(t)dt−

∫ 1

x1

(t− x1)
v−1h1(t)dt)

+
1

Γ(v)
(
∫ 1

x1

(t− x1)
v−1cdt−

∫ 1

x2

(t− x2)
v−1cdt)

=
1

Γ(v)

∫ 1−x2+x1

x1

(t− x1)
v−1(h1(t− x1 + x2)− h1(t))dt

+
1

Γ(v)

∫ 1

1+x1−x2

(t− x1)
v−1(c− h1(t))dt

≥0.

Thus, G1(x) still is a monotone increasing and continuous function on I. If

G2(x) = W−vg2(x) =
1

Γ(v)

∫ ∞

x

h2(t)− c
(t− x)1−v dt, 0 < v < 1,

G2(x) is also a monotone increasing and continuous function on I.
(2) If f (0) < 0, let g1(x) = 0 and g2(x) > 0. Using a similar way, both W−vg1(x)

and W−vg2(x) are monotone increasing and continuous functions on I. So W−v f (x) still is
a BVF on I and

dimB G(W−v f , I) = 1.

4. Unbounded Variation Functions (UVFs)

4.1. A Special UVF

The construction process of the devil stair function d(x) will be elaborated firstly. Then,
a peculiar continuous function D(x) of unbounded variation on I will be constructed on
the basis of d(x).

If x ∈ ( 1
3 , 2

3 ), d1(x) = 1
2 . Let d1(0) = 0 and d1(1) = 1. d1(x) can be exhibited on I by

connecting d1(0), d1(
1
3 ), d1(

2
3 ) and d1(1) with line segments.

If x ∈ ( 1
9 , 2

9 ), d2(x) = 1
4 . If x ∈ ( 7

9 , 8
9 ), d2(x) = 3

4 . Connecting d1(0), d2(
1
9 ), d2(

2
9 ), d1(

1
3 ),

d1(
2
3 ), d2(

7
9 ), d2(

8
9 ) and d1(1) with line segments to form d2(x) on I.

By induction, dn(x)(n ≥ 3) can be constructed. Let d(x) = limn→∞ dn(x).
The construction of D1(x) is based on d1(x) with two more line segments whose length

are 1. The line segments and the part of d1(x), x ∈ ( 1
3 , 2

3 ) make up an isosceles triangle.
In D1(x), the triangle is shown without the base line.

The construction of D2(x) is based on d2(x) and D1(x). Simultaneously for x ∈ (0, 1
3 )

or x ∈ ( 1
3 , 2

3 ), using similar ways to construct D2(x) like as d1(x)→ D1(x). However, the
length of line segments added is 1/2

21 .
The construction of D3(x) is based on d3(x) and D2(x). Simultaneously for x ∈ (0, 1

9 ),
x ∈ ( 2

9 , 1
3 ), x ∈ ( 2

3 , 7
9 ), or x ∈ ( 8

9 , 1), using similar steps to construct D3(x) like as d1(x)→
D1(x). The process of constructing is similar, the only difference is the length of line
segments added is 1/3

22 .
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By induction, the construction of Dn(x) is based on dn(x) and Dn−1(x). The length of
line segments is 1/n

2n−1 . Then, D(x) = limn→∞ Dn(x). Images of d(x) and D(x) are given as
follows Figure 3.

Figure 3. The image of d(x) and D(x).

Combining the construction process of D(x), properties of the function will be investigated.

Property 1. The length of G(D, I) is infinite on I. The lebesgue measure of differentiable points on
I is one.

Proof of Property 1. Length of G(D, I) is no less than

1 · 2 · 1 + 2 · 2 · 1/2
2

+ 4 · 2 · 1/3
4

+ · · ·+ 2n−1 · 2 · 1/n
2n−1 + · · · = 2

∞

∑
n=1

1
n
= ∞.

Thus, the length of G(D, I) is infinite on I. Let A be the set of differentiable points
of D(x) on I.

m(A) =
1
3
+ 2 · 1

9
+ 4 · 1

27
+ · · ·+ 2n−1 · 1

3n + · · · = 1.

Denote B as the set of non-differentiable points of D(x) on I, then

m(B) = 1− 1 = 0.

Property 2. The Box dimension of D(x) is one and D(x) has uncountable unbounded variation
points on I.

Proof of Property 2. Since D(x) is a continuous function, dimBG(D, I) ≥ 1. Let 0 < δ < 1,
1
δ ≤ n ≤ 1 + 1

δ . The number of squares of the δ−mesh that intersect G(D, I) are less than

2n +
1
δ

n

∑
i=1

1
i
+ 2

1
δ

.
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Thus,

dimBG(D, I) ≤ lim
δ→0

log[2n + 1
δ

n
∑

i=1

1
i + 2 1

δ ]

− log δ

≤ lim
δ→0

log[2n + 2δ−1(log(n + 1) + 1)]
− log δ

≤ 1.

Further analysis showed that dimB G(D, I) = 1.
If ∀ x ∈ C0, a positive number N0 will be found such that variation of any subinterval Ix

containing x of I is at least

1
2N0

1
N0

+ 2
1

2N0+1
1

N0 + 1
+ 22 1

2N0+2
1

N0 + 2
+ · · ·

=
1

2N0

∞

∑
n=1

1
N0 + n− 1

=
1

2N0
(

∞

∑
n=1

1
n
−

N0−1

∑
n=1

1
n
)

= ∞.

Thus, (x, 0) is an unbounded variation point of D(x) on I. Since the arbitrariness of x,
the number of unbounded variation points of D(x) on I is uncountable.

Now, the construction of H(x) that contains uncountable UV points will be displayed.
Divided I into three equal intervals,

I1,1 = [0,
1
3
], I1,2 = [

1
3

,
2
3
], I1,3 = [

2
3

, 1].

Two line segments are added such that constituting an isosceles triangle with I1,2 and
the length of the segment is 1, Then I1,2 will be removed. I1,1 and I1,3 are divided into three
equal intervals respectively,

I1,1 = I2,1
⋃

I2,2
⋃

I2,3,

I1,3 = I2,4
⋃

I2,5
⋃

I2,6.

Four line segments are added such that constituting an isosceles triangle with I2,2
and I2,5. The length of the segment is 1

4 . Furthermore, delete I2,2 and I2,5. Similar way can
get H3 and H4. Hn can be got From Hn−1. By dividing

In−1,1, In−1,3, In−1,4, In−1,6, · · · , In−1,3·2n−2−1, In−1,3·2n−2

into three equal intervals respectively,

In−1,1 = In,1
⋃

In,2
⋃

In,3,

In−1,3·2n−2 = In,3·2n−1−2

⋃
In,3·2n−1−1

⋃
In,3·2n−1 .

2n line segments are added such that constituting an isosceles triangle with

In−1,2, In−1,5, · · · , In−1,3·2n−2−1.

The length of the segment is 1
n·2n−1 . Then delete In,2, In,5,· · · , In,3·2n−1−1. The image

of H(x) is Figure 4.

80



Fractal Fract. 2022, 6, 69

Figure 4. The image of H(x).

Obviously, H(x) is a continuous function. Firstly, the length of H(x) on I is
∞
∑

n=1

1
n = ∞,

the variation of H(x) on I is infinite. Secondly, the number of δ−mesh squares that

intersect G(H, I) is at most δ−1
∞
∑

n=1

1
n + 2δ−1 and

dimB G(H, I) = lim
δ→0

log(δ−1
∞
∑

n=1

1
n + 2δ−1)

− log δ
= 1.

Finally, ∀x0 ∈ C0∪ [a, b], the variation of H(x) on [a, b] is
∞
∑

n=N0

1
N02N0−1

1
n = ∞, where N0

is a positive integer. So H(x) contains uncountable UV points.

The function that satisfies the Lipschitz condition must be a BVF, but the function that
satisfies the Hölder condition is not necessarily a BVF [40,41]. The following two special
functions are just the best evidence for the above conclusion.

4.2. UVF Satisfying the Hölder Condition of Order α(0 < α < 1)

Let An = a1 + a2 + · · ·+ an + · · · be the convergence series of positive terms and any
of terms is monotonically decreasing. The sum of An is s and the construction process of
the function fα(x) on [0, s] is as follows:

f (x) = 0, x ∈ {0, a1, a1 + a2, a1 + a2 + a3};

f (x) =
1
n

, x ∈ {a1 + a2 + · · ·+ an−1 +
an

2
(n = 1, 2, · · · )};

f (s) = 0.

fα(x) is linear in the following intervals, such as [a1 + · · · + an−1, a1 + · · · + an−1 +
an
2 ],

[a1 + · · ·+ an−1 +
an
2 , a1 + · · ·+ an−1 + an], n = 1, 2, · · · . The specific image of fα(x) is as

follows Figure 5.
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Figure 5. The image of fα(x).

Theorem 3. fα(x) is a continuous function on [0, s](0 < s ≤ 1) and the total variation of fα(x)
in the interval [0, s] is infinite.

Proof of Theorem 3. From the specific construction process of fα(x), fα(x) is a continuous
function on [0, s] obviously. The proof of its total variation is infinite will be given next.
Consider the following partition: 0 < a1

2 < a1 < a1 +
a2
2 < +a1 + a2 < a1 + a2 +

a3
2 <

a1 + a2 + a3 < · · · < a1 + a2 + · · ·+ ak. Then,

Vs
0 ( f (x)) =| f ( a1

2
)− f (0)|+ | f (a1)− f (

a1

2
)|+ | f (a1 +

a1

2
)− f (a1)|

+ · · ·+ | f (a1 + a2 + · · ·+ ak)− f (a1 + a2 + · · ·+ ak−1 +
ak
2
)|

+ | f (s)− f (a1 + a2 + · · ·+ ak)|

=1 + 1 +
1
2
+

1
2
+ · · ·+ 1

k
+

1
k

=+ ∞.

The conclusion is lim
k→+∞

Vs
0 ( f (x)) = +∞. Thus, fα(x) is an UVF on [0, s].

Theorem 4. fα(x) satisfies the Hölder condition of a given order α (0 < α < 1).

Proof of Theorem 4. Case one: two points P1(x1, y1), P2(x2, y2) on the interval are selected
arbitrarily, but the two points are in the same linear interval, a1 + · · ·+ an−1 ≤ x1 < x2 ≤
a1 + · · ·+ an−1 +

an
2 . Then the specific image of Case one is as follows Figure 6.

Figure 6. Case one.
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|y2 − y1| =
2

nan
|x2 − x1| =

2|x2 − x1|1−α

nan
|x2 − x1|α

<
2a1−α

n
nan

|x2 − x1|α

=
2

naα
n
|x2 − x1|α.

Therefore, it is significant to select the appropriate sequence an to make 2
naα

n
bounded.

a sequence that satisfies the above formula can be found easily, such as an = n
−1
α .

Case two: If the two points P1(x1, y1), P2(x2, y2) are not in the same linear interval,
moving P1 to P3(x3, y3) through translation transformation. Then the specific image of
Case two is as follows Figure 7.

Figure 7. Case two.

Combined with the proof of Case one, |y2 − y1| = |y2 − y3| ≤ C|x2 − x3|α.

Since fα(x) is a continuous function, the lower Box dimension of fα(x) is greater than or

equal to 1. The number of δ−mesh squares that intersect G( fα, [0, s]) is at most δ−1
∞
∑

n=1

1
n +

2δ−1,

dimB G( fα, [0, s]) = lim
δ→0

log(δ−1
∞
∑

n=1

1
n + 2δ−1)

− log δ
= 1.

4.3. UVF Not Satisfying the Hölder Condition of Any Order α (α > 0)

An UVF g(x) that does not satisfy the Hölder condition of any order α (α > 0) on the ba-
sis of fα(x) will be constructed. Since fα(x) satisfies the Hölder condition of order α (0 < α < 1)
on [0, s], for α∗ > α, x = a1 + a2 + · · ·+ an−1 +

an
2 , y = a1 + a2 + · · ·+ an−1 + an,

lim
n→+∞

f (y)− f (x)
|y− x|α∗ =

1
n

( an
2 )α∗ =

1
n

( 1
2n

1
α
)α∗

= 2α∗n
α∗
α −1 = +∞.

Thus, fα(x) does not satisfy the Hölder condition of any order α∗(α∗ > α) on [0, s].

Denote σn =
∞
∑

k=1

1
kn and divide the interval I as follows,

0 = β2 < β3 < β4 < · · · < βn < · · · (βn → 1, n → +∞).
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(1) If n is an even number, g(x) can be obtained by compressing f 1
n
(x) by n times on

the ordinate, compressing by σn
βn+1−βn

times on the abscissa and moving βn to the right
along the abscissa,

g(x) =
1
n

f 1
n
[
σn(x− βn)

βn+1 − βn
].

(2) If n an is odd number,

g(x) =
1
n

f 1
n
[
σn(βn+1 − x)

βn+1 − βn
].

In addition to the above construction process, an additional supplementary definition
f (1) = 0 is reasonable. The specific image of g(x) is as follows Figure 8.

Figure 8. The image of g(x).

From the construction process of g(x), g(x) is defined everywhere on the interval I
and g(x) is a continuous function. Through similar calculation, it can be known that the
total variation of this function is also infinite. g(x) is also an UVF.

However, for interval [βn, βn+1], g(x) satisfies the Hölder condition of order 1
n and

does not satisfy the Hölder condition of order 1
n−1 . Therefore, the function g(x) does not

satisfy the Hölder condition of any order α(α > 0). Since g(x) is a continuous function, the
Box dimension of g(x) is more than one.

4.4. UVF Contained Finite UV Points

The introduction of the unbounded variation points gives a new way to study un-
bounded variation functions [42]. Many conclusions about unbounded variation functions
can be obtained by analyzing the number and location of unbounded variation points.
At the same time, if the function has self-similarity, some remarkable conclusions can be
strictly demonstrated, such as Corollary 2 and Theorem 8.

Lemma 2. ([24]) If F ⊂ Rn, then dimP F = dimMBF.

Researchers have established the following relation for F ⊂ Rn:

dimH F ≤ dimMBF ≤ dimMBF = dimP F ≤ dimBF.

Theorem 5. If f (x) is a continuous function on I and (1, 0) is the only UV point of f (x), then

dimH G( f , I) = dimP G( f , I) = dimMB G( f , I) = 1.

Proof of Theorem 5. Since f (x) is a continuous function on I,

1 ≤ dimH G( f , I) ≤ dimBG( f , I).
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∀ δ > 0, I = (
∞⋃

i=1
Ei)

⋃
[1− δ, 1], where Ei are subsets of I.

dimH G( f , [1− δ, 1]) ≤ dimBG( f , [1− δ, 1]) ≤ lim
δ→0

log M
δ

− log δ
= 1,

where M is a positive constant.

dimMBG( f , I) = inf{sup
δ

dimBG( f , (
∞⋃

i=1

Ei)
⋃
[1− δ, 1])} = 1.

Thus,
1 ≤ dimH G( f , I) ≤ dimMBG( f , I) = 1.

It is already becoming apparent that

dimH G( f , I) = dimP G( f , I) = dimMB G( f , I) = 1.

Theorem 6. If f (x) is a continuous function containing at most finite UV points on I, then

dimH G( f , I) = dimP G( f , I) = dimMB G( f , I) = 1.

Proof of Theorem 6. Let x1 < x2 < · · · < xn be UV points of f (x), n disjoint inter-

vals [ai, xi] ⊂ I can be found, where i = 1, 2, · · · , n. Denote A =
n⋃

i=1
[ai, xi]. By Lemma 2,

dimH G( f , [ai, xi]) = dimP G( f , [ai, xi]) = dimMB G( f , [ai, xi]) = 1.

Since the Hausdorff dimension has the property of countable stability,

dimH G( f , I) = dimH G( f , A
⋃
(I\A))

= max{dimH G( f , A), dimH G( f , I\A)}
= 1.

Given ε = min
1≤i<j≤n

|xi − xj|, Ci = [ai − ε
2 , ai +

ε
2 ], Cn+1 = I \ (

n⋃
i=1

Ci).

dimBG( f , Ci) = 1,

where i = 1, 2, · · · , n + 1. Combining the definition of the modified Box-counting dimension,

dimMBG( f , I) = inf{sup
i

dimBCi : I ⊂
n+1⋃
i=1

Ci} = 1.

It is easy to check that

dimH G( f , I) = dimP G( f , I) = dimMB G( f , I) = 1.

Corollary 2. If a continuous function f (x) has the property of self-similar on I and (1, 0) is the
only UV point of, then

dimH G( f , I) = dimB G( f , I) = 1.
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Proof of Corollary 2. Since f (x) is self-similar on I, G( f , I) is compact and

dimB(G( f , I)
⋂

V) = dimBG( f , I)

for all open sets V those intersect G( f , I) and dimBG( f , I) = dimMBG( f , I). Thus,

dimH G( f , I) = dimP G( f , I) = dimMB G( f , I) = dimB G( f , I) = 1.

4.5. UVF Contained Infinite UV Points

Theorem 7. Let f (x) be a continuous function on I. f (x) has infinite and countable UV points
and only one accumulation point, then

dimH G( f , I) = 1.

Proof of Theorem 7. Since f (x) is a continuous function on I,

1 ≤ dimH G( f , I) ≤ dimBG( f , I).

(1) (0, 0) is an accumulation point: denote the above countable UV points as

x1 > x2 > x3 > · · · > xn > · · · .

∀δ > 0, dimH G( f , [0, δ]) = 1, there is not an accumulation point in other positions, Thus,
there exists Ei ⊂ I and Ei only contains one UV point xi, Ei

⋂
Ej = ∅ when i 
= j. f (x) only

has an UV point on Ei and
dimH G( f , Ei) = 1.

Denote E =
∞⋃

i=1
Ei. By the countable stability of the Hausdorff dimension,

dimH G( f , I) = dimH(G( f , E)
⋃

G( f , [0, δ]))

= sup{dimH G( f , E), dimH G( f , [0, δ])} = 1.

Thus,
dimH G( f , I) = 1.

(2) (1, 0) is an accumulation point: denote the above countable UV points as

x1 < x2 < x3 < · · · < xn < · · · .

∀ δ > 0, dimH G( f , [1− δ, 1]) = 1, there is not an accumulation point in other points.
There exists Ei ⊂ I and Ei only contains one UV point xi, Ei

⋂
Ej = ∅ when i 
= j. f (x) only

has an UV point on Ei and
dimH G( f , Ei) = 1.

Denote E =
∞⋃

i=1
Ei.

dimH G( f , I) = dimH(G( f , E)
⋃

G( f , [0, δ]))

= sup{dimH G( f , E), dimH G( f , [0, δ])} = 1.

Thus
dimH G( f , I) = 1.
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(3) xn ∈ (0, 1), (xn, 0) is an accumulation point: ∀ δ > 0, dimH G( f , [xn− δ, xn + δ]) = 1.
By the above discussions,

dimH G( f , I) = 1.

Theorem 8. Let f (x) be a continuous function containing countable UV points and f (x) only
have an accumulation point on I. If f (x) is self-similar, then

dimH G( f , I) = dimB G( f , I) = 1.

Proof. Since f (x) is a continuous function on I,

1 ≤ dimH G( f , I) ≤ dimBG( f , I).

Denote the above uncountable UV points as x1, x2, x3, · · · . There exists [ai, xi] and
[ai, xi]

⋂
[aj, xj] = ∅ when i 
= j. Thus, f (x) only have an UV point on [ai, xi] and

dimB G( f , [ai, xi]) = 1.

Thus,

dimMBG( f , E) = inf{sup
i

dimBG( f , [ai, xi]) : E =
N−1⋃
i=1

[ai, xi]} = 1.

Denote E =
N−1⋃
i=1

[ai, xi], F = [aN , 1] and H =
N−1⋃
i=1

[xi, ai+1] where a1 = 0. Further

inferences show that f (x) is a BVF on H and

dimH G( f , H) = dimB G( f , H) = 1.

It can be seen from the similar calculation process that

dimMBG( f , I) = dimMB(G( f , E)
⋃

G( f , F)
⋃

G( f , H))

= inf{sup{dimH G( f , E), dimH G( f , F), dimH G( f , H)}} = 1.

Since f (x) is self-similar on I, G( f , I) is compact and

dimB(G( f , I)
⋂

V) = dimBG( f , I)

for all open sets V that intersect G( f , I). Thus,

dimBG( f , I) = dimMBG( f , I).

Notice that the conclusion dimBG( f , I) ≥ 1 remains true.

dimH G( f , I) = dimP G( f , I) = dimMB G( f , I) = dimB G( f , I) = 1.

5. Possible Applications in Reinforcement Learning

Since AlphaGo has shown amazing abilities in Go [43,44], reinforcement learning in
machine learning has gradually been paid attention and researched by many scholars [45–48].
The core idea of reinforcement learning is to use the continuous interaction between the
agent and the environment to maximize the long-term cumulative return expectation. The
agent learns the optimal strategy through the mechanism of trial and error. Taking the
expectation of maximizing returns as the goal makes reinforcement learning “foresight”, not
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just focusing on the immediate situation, so the strategies obtained through reinforcement
learning are scientific. Since the optimal strategy can be learned by reinforcement learning,
Reinforcement learning has become an emerging method of researching decision theory. At
the same time, the learning process of the agent in reinforcement learning is dynamic, and
the required data is also generated through interaction with the environment, so a large
amount of original label data is not required.

With the advent of deep neural networks, deep reinforcement learning can solve many
complex problems. The seemingly complex fractal sets also have special regularity (self-
similarity). Therefore, can fractals and fractal dimension be used in the learning process of
the agent to speed up the learning speed of the agent or improve the search efficiency of
algorithms? This section will introduce several possible applications of fractal and fractal
dimension in reinforcement learning.

5.1. The Evaluation Model Based on Fractal Dimension

The main basis of the fractal evaluation model is the fractal dimension. Fractal
dimension is an important indicator of system stability. The multi-dimensional vector
can be formed by utilizing the parameters, such as actions and states of agents. Many
multi-dimensional vectors may establish a special set. The fractal dimension of the set can
determine the distance between the current state and the equilibrated state. The equilibrium
state is that all agents are in a stable state and there is no motivation to change the current
strategy. The main operational flows of the fractal evaluation model are as follows.

Step one: data standardization. The number of states and agents are K, N re-
spectively. State S = (s1, s2, · · · , sN , a1, a2, · · · , aN , r1, r2, · · · , rN). Standardization is to
eliminate the differences caused by the species of each data. Standardized data is S = (yij),
i = 1, 2, · · · , K ∈ Z+, y = 1, 2, · · · , 3N ∈ Z+.

Step two: weight. wj = dj/ ∑N
i=1 dj,

where dj = max1≤i,k≤K | yij − ykj |, j = 1, 2, · · · , N ∈ Z+.
Step three: calculate N(r). The distance used in the algorithm is unified as Euclidean

distance. 3N data of each state can be regarded as points on each coordinate axis in the
3n-dimensional space. These points constitute a subset of the 3n-dimensional Euclidean
space E3N . The distance from each point to the origin is dij and let R = max(dij), i =
1, 2, · · · , K ∈ Z+, j = 1, 2, · · · , 3N ∈ Z+. For a specific state, N(r) is the number of all
points satisfying dij < r and r is the radius of the hypersphere. Keep adjusting the value of
radius r until r = R and N(r) = N. When the radius is r, the number of points contained

in the hypersphere is N(r) =
3N
∑

i=0
sgn(r− dij) and sgn(x) is a symbolic function,

sgn(x) =

{
1, x > 0
0, x ≤ 0

Step four: calculate the fractal dimension. D = log N(r)/ log r.
From the above calculation process, the number of sample points contained in the

hypersphere with r will change continuously as the radius alters. At the same time, the
graph of the function formed by the above standardized data points is usually non-linear.
The fractal dimension D in this step can be fitted by the least square method,

D =

3N
3N
∑

i=1
logN(ri) log ri −

3N
∑

i=1
logN(ri)

3N
∑

i=1
logri

3N
3N
∑

i=1
(log ri)

2 −
(

3N
∑

i=1
log ri

)2 .

At present, most reinforcement learning algorithms are based on global information.
However, due to the limitations of communication and observation, the agent cannot
obtain all the information in practical. Therefore, the MDP(Markov decision process)
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model used to solve basic reinforcement learning problems is not applicable. Researchers
establish the POMDP(Partially observable markov decision process) model [49,50] to solve
partially observable reinforcement learning problems. The main solutions include function
approximation, opponent modeling, and graph theory.

Fractal dimension is another new idea to optimize POMDP. The theoretical foundation
of using fractal dimension to evaluate stability is mainly based on the Lyapunov stability
theory. The larger fractal dimension of the set, the more stable points in the set. Therefore,
the set with lager fractal dimension is more stable than the set with small fractal dimension
under the same disturbance. The advantage of this method is that the agent does not need
to know global information. The strategy selection of agents can be guided by the fractal
dimension, and the correct strategy direction can optimize the algorithm. At the same
time, for a game where there is no pure strategy Nash equilibrium, it is still possible to
compare the distance between any two situations and the equilibrium state by calculating
the fractal dimension.

5.2. The Convergence Model Based on Fractal Attractor

At present, the convergence of most reinforcement learning algorithms lacks rigorous
proofs. However, due to the powerful fitting ability of multiple neural networks [51–53],
the algorithm can converge better in various experimental environments. The convergence
obtained in the experiment cannot effectively understand the essence of the problem and
optimize the existing algorithm. Obviously, the convergence of an algorithm is the fixed
point of a particular function mathematically. Solving the fixed point problem can also be
transformed into an attractor in fractal theory. Therefore, the convergence of the algorithm
can be verified by calculating the existence of attractors. Surprisingly, the calculation of
attractors has theoretical guarantees. Therefore, can the Bellman equation in reinforcement
learning be regarded as an iterative function system, and then its solution is the attractor of
the iterative function system? The idea of the model is shown in Figure 9.

Figure 9. The frame of convergence model.

The advantage of this convergence model lies in its versatility, which can prove the
convergence of a class of similar algorithms. The method of theoretical proof is conducive
to finding the essence of the problem, so as to provide different ideas for the optimiza-
tion algorithm.

5.3. The Random Search Algorithm Based on Fractal

Exploration and utilization is one of the important research directions in deep reinforce-
ment learning. The goal of exploration is to find more information about the environment,
and the purpose of utilization is to use the known environmental information to maximize
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rewards. In short, exploration is to try behaviors that have not yet been tried, while utiliza-
tion is to choose the next action from the knowledge that agents have already mastered.
The balance between exploration and utilization is the basic issue of reinforcement learning.
In deep reinforcement learning tasks, in order to obtain the best strategy, it is often neces-
sary to collect more information. For solving the problem of exploration and utilization,
researchers have proposed many classic methods. The ε-greedy method is a commonly
used strategy for greedy exploration.

However, the exploratory efficiency of this method is not good. Fractals generally have
the following characteristics. One is that both the whole and the part have irregularities,
and the other is that the internal structure has self-similarity and unevenness. The search
method based on the fractal structure can reduce the search time as much as possible on the
basis of ensuring that all spaces are explored. Due to the self-similar structure of the fractal,
the algorithm does not always need to repeat the previous training during the training
process. Thus the way can reduce a lot of unnecessary training time. Therefore, whether
the above-mentioned characteristics of fractal can be used to achieve efficient search is
looking forward to follow-up research and discussion. At present, there has been a lot of
research on using fractals to improve search efficiency [54–56], but these algorithms can
still continue to be optimized.

6. Conclusions

This manuscript systematically sorts out the conclusions about one-dimensional con-
tinuous functions. The Box dimension of bounded variation functions and the functions
with the Weyl fractional integral are both one. The Box dimension of continuous functions
that satisfy the Lipschitz condition is also one. These results also fully show that fractional
calculus does not increase the dimensionality of functions. This conclusion seems simple,
but no one seems to have carried out a rigorous proof. The structure of unbounded varia-
tion function is more complicated. The construction process of several special unbounded
variation functions is displayed firstly, and a lot of general conclusions about unbounded
variation functions are proved by using UV points. Combined with the self-similarity,
the conclusions of the fractal dimension of some special functions are also strictly proved.
These conclusions are very helpful for perfecting the theory of unbounded variation. At
the same time, in order to increase the practical significance of the above conclusions, some
applications of fractal and fractal dimension in reinforcement learning are also introduced.
On the one hand, these works can sort out the current results, and on the other hand,
some useful ideas and research directions can also be shown to other researchers. The
evaluation model based on fractal dimension proposed in this manuscript can effectively
accelerate the convergence speed of many reinforcement learning algorithms by using
fractal dimension to judge the stability of any state. This model is an important result of
the combination of the two theories, and it is believed that more fractal theories will be
applied to reinforcement learning.

However, the research on one-dimensional continuous functions is far from over. In
particular, what are the necessary and sufficient conditions for the conversion between
unbounded variation and bounded variation? Are there other theories and tools that can
be used to study one-dimensional continuous functions? Can existing relevant conclusions
about one-dimensional continuous functions be extended to multi-dimensional continuous
functions? Can the conclusion of the unbounded variation function be used in other fields?
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Abstract: In our work, we derived the fractional order q-integrals and q-derivatives concerning a
basic analogue to the Aleph-function of two variables (AFTV). We discussed a related application and
the q-extension of the corresponding Leibniz rule. Finally, we presented two corollaries concerning
the basic analogue to the I-function of two variables and the basic analogue to the Aleph-function of
one variable.

Keywords: Fractional q-integral; q-derivative operators; basic analogue to the Aleph-function; basic
analogue to the I-function; q-Leibniz rule

1. Introduction

Fractional calculus represents an important part of mathematical analysis. The concept
of fractional calculus was born from a famous correspondence between L’Hopital and
Leibniz in 1695. In the last four decades, it has gained significant recognition and found
many applications in diverse research fields (see [1–6]). The fractional basic (or q−) calculus
is the extension of the ordinary fractional calculus in the q-theory (see [7–10]). We recall
that basic series and basic polynomials, particularly the basic (or q−) hypergeometric
functions and basic (or q−) hypergeometric polynomials, are particularly applicable in
several fields, e.g., Finite Vector Spaces, Lie Theory, Combinatorial Analysis, Particle
Physics, Mechanical Engineering, Theory of Heat Conduction, Non-Linear Electric Circuit
Theory, Cosmology, Quantum Mechanics, and Statistics. In 1952, Al-Salam introduced the
q-analogue to Cauchy’s formula [11] (see also [12]). Agarwal [13] studied certain fractional
q-integral and q-derivative operators. In addition, various researchers reported image
formulas of various q-special functions under fractional q-calculus operators, for example,
Kumar et al. [14], Sahni et al. [15], Yadav and Purohit [16], Yadav et al. [17,18], and maybe
more. The q-extensions of the Saigo’s fractional integral operators were defined by Purohit
and Yadav [19]. Several authors utilised such operators to evaluate a general class of
q-polynomials, the basic analogue to Fox’s H-function, basic analogue to the I-function,
fractional q-calculus formulas for various special functions, etc. The readers can see more
related new details in [16–18,20] on fractional q-calculus.

The purpose of the present manuscript is to discuss expansion formulas, involving the
basic analogue to AFTV [21]. The q-Leibniz formula is also provided.

We recall that q-shifted factorial (a; q)n has the following form [22,23]

(a; q)n =

{
1, (n = 0)

∏n−1
i=0

(
1− aqi), (n ∈ N∪ {∞}) , (1)
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such that a, q ∈ C and it is assumed that a 
= q−m (m ∈ N0).
The expression of the q-shifted factorial for negative subscript is written by

(a; q)−n =
1

(1− aq−1) (1− aq−2) · · · (1− aq−n)
(n ∈ N0). (2)

Additionally, we have

(a; q)∞ =
∞

∏
i=0

(
1− aqi

)
(a, q ∈ C; |q| < 1). (3)

Using (1)–(3), we conclude that

(a; q)n =
(a; q)∞
(aqn; q)∞

(n ∈ Z), (4)

its extension to n = α ∈ C as:

(a; q)α =
(a; q)∞
(aqα; q)∞

(α ∈ C; |q| < 1), (5)

such that the principal value of qα is considered.
We equivalently have a form of (1), given as

(a; q)n =
Γq(a + n)(1− q)n

Γq(a)
(a 
= 0,−1,−2, · · · ), (6)

where the q-gamma function is expressed as [8]:

Γq(a) =
(q; q)∞

(qa; q)∞(1− q)a−1 =
(q; q)a−1

(1− q)a−1 , (a 
= 0,−1,−2, · · · ). (7)

The expression of the q-analogue to the Riemann–Liouville fractional integral operator
(RLI) of f (x) has the following expression [12]:

Iμ
q { f (x)} = 1

Γq(μ)

∫ x

0
(x− tq)μ−1 f (t)dqt, (8)

here, �(μ) > 0, |q| < 1 and

[x− y]υ = xυ
∞

∏
n=0

[
1− (y/x)qn

1− (y/x)qn+υ

]
= xυ

( y
x

; q
)

υ
(x 
= 0). (9)

The basic integral [8] is given by

∫ x

0
f (t)dqt = x(1− q)

∞

∑
k=0

qk f
(

xqk
)

. (10)

Equation (8), in conjunction with (10); then, we have the series representation of (RLI),
as follows

Iμ
q f (x) =

xμ(1− q)
Γq(μ)

∞

∑
k=0

qk
[
1− qk+1

]
μ−1

f
(

xqk
)

. (11)

We mention that for f (x) = xλ−1, the following can be written [16]

Iμ
q

(
xλ−1

)
=

Γq(λ)

Γq(λ + μ)
xλ+μ−1 (�(λ + μ) > 0). (12)
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2. Basic Analogue to Aleph-Function of Two Variables

We recall that AFTV [21] is an extension of the I-function possessing two variables [24].
Here, in the present article, we define a basic analogue to AFTV.

We record

G(qa) =

[
∞

∏
n=0

(
1− qa+n)]−1

=
1

(qa; q)∞
. (13)

Next, we have

ℵ(z1, z2; q)

= ℵ0,n1;m2,n2:m3,n3
Pi ,Qi ,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

⎛⎜⎝ z1

z2

; q

∣∣∣∣∣∣∣
(
aj; αj, Aj

)
1,n1

,
[
τi
(
aji; αji, Aji

)]
n1+1,Pi

;

[
τi
(
bji; β ji, Bji

)]
1,Qi

;(
cj, γj

)
1,n2

,
[
τi′
(

cji′ , γji′
)]

n2+1,Pi′
;
(
ej, Ej

)
1,n3

,
[
τi′′

(
eji′′ , γji′′

)]
n3+1,Pi′′(

dj, δj
)

1,m2
,
[
τi′
(

dji′ , δji′
)]

m2+1,Qi′
;
(

f j, Fj
)

1,m3
,
[
τi′′

(
f ji′′ , Fji′′

)]
m3+1,Qi′′

⎞⎟⎟⎟⎠
=

1

(2πω)2

∫
L1

∫
L2

π2φ(s1, s2; q)zs1
1 zs2

2 dqs1 dqs2, (14)

where ω =
√
−1, and

φ(s1, s2; q) =
∏n1

j=1 G
(

q1−aj+αjs1+Ajs2
)

∑r
i=1 τi

{
∏Qi

j=1 G
(

q1−bji+β ji s1+Bjis2
)

∏Pi
j=n1+1 G

(
qaji−αji s1−Ajis2

)}
×

∏m2
j=1 G

(
qdj−δjs1

)
∏n2

j=1 G
(

q1−cj+γjs1
)

∑r′
i′=1 τi′

{
∏

Qi′
j=m2+1 G

(
q1−dji′+δji′ s1

)
∏

Pi′
j=n2+1 G

(
qcji′−γji′ s1

)}
G(q1−s1) sin πs1

×
∏m3

j=1 G
(

q fj−Fjs2
)

∏n3
j=1 G

(
q1−ej+Ejs2

)
∑r′′

i′′=1 τi′′
{

∏
Qi′′
j=m3+1 G

(
q1− f ji′′+Fji′′ s2

)
∏

Pi′′
j=n3+1 G

(
qeji′′−Eji′′ s2

)}
G(q1−s2) sin πs2

, (15)

where z1, z2 
= 0 and are real or complex. An empty product is elucidated as unity, and
Pi, Pi′ , Pi′′ , Qi, Qi′ , Qi′′ , m1, m2, m3, n1, n2, n3 are non-negative integers, such that Qi, Qi′ , Qi′′ >
0; τi, τi′ , τi′′ > 0(i = 1, · · · , r; i′ = 1, · · · , r′; i′′ = 1, · · · , r′′). All the As, αs, γs, δs, Es, and
Fs are presumed to be positive quantities for standardization intention, the as, bs, cs, ds,
es, and f s are complex numbers. The definition of a basic analogue to AFTV will, how-
ever, make sense, even if some of these quantities are equal to zero. The contour L1 is
in the s1-plane and goes from −ω∞ to +ω∞, with loops where necessary, to make sure
that the poles of G

(
qdj−δjs1

)
(j = 1, · · · , m2) are to the right-hand side and all the poles of

G
(

q1−aj+αjs1+Ajs2
)
(j = 1, · · · , n1), G

(
q1−cj+γs1

)
(j = 1, · · · , n2) lie to the left-hand side

of L1. The contour L2 is in the s2-plane and goes from −ω∞ to +ω∞, with loops where
necessary, to ensure that the poles of G

(
q fj−Fjs2

)
(j = 1, · · · , m3) are to the right-hand

side and all the poles of G
(

q1−aj+αjs1+Ajs2
)
(j = 1, · · · , n1), G

(
q1−ej+Ejs2

)
(j = 1, · · · , n2)

lie to the left-hand side of L2. For values of |s1| and |s2|, the integrals converge, if
�(s1 log(z1)− log sin πs1) < 0 and �(s2 log(z2)− log sin πs2) < 0.
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3. Main Formulas

Here, we obtain fractional q-integral and q-derivative formulas concerning the basic
analogue to AFTV. Here, we have the following notations:

A1 =
(
aj; αj, Aj

)
1,n1

,
[
τi
(
aji; αji, Aji

)]
n1+1,Pi

; B1 =
[
τi
(
bji; β ji, Bji

)]
1,Qi

. (16)

C1 =
(
cj, γj

)
1,n2

,
[
τi′
(

cji′ , γji′
)]

n2+1,Pi′
;
(
ej, Ej

)
1,n3

,
[
τi′′

(
eji′′ , γji′′

)]
n3+1,Pi′′

. (17)

D1 =
(
dj, δj

)
1,m2

,
[
τi′
(

dji′ , δji′
)]

m2+1,Qi′
;
(

f j, Fj
)

1,m3
,
[
τi′′

(
f ji′′ , Fji′′

)]
m3+1,Qi′′

. (18)

Theorem 1. Let �(μ) > 0, ρi ∈ Z+ (i = 1, 2), and |q| < 1; then, the Riemann–Liouville
fractional q-integral of (14) exists and is given as

Iμ
q

⎧⎨⎩xλ−1ℵ0,n1;m2,n2:m3,n3
Pi ,Qi ,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

⎛⎝ z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
A1; C1

B1; D1

⎞⎠⎫⎬⎭ = (1− q)μxλ+μ−1

× ℵ0,n1+1;m2,n2:m3,n3
Pi+1,Qi+1,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

⎛⎝ z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
(1− λ; ρ1, ρ2), A1; C1

B1, (1− λ− μ; ρ1, ρ2); D1

⎞⎠, (19)

where �(si log(zi)− log sin πsi) < 0 (i = 1, 2).

Proof. We apply the definitions (8) and (14) in the left-hand side of (19), we have (say I)

I =
1

Γq(α)

∫ x

0
(x− yq)α−1

{
yλ−1 1

(2πω)2

∫
L1

∫
L2

π2φ(s1, s2; q)
2

∏
i=1

(ziyρi )si dqs1dqs2

}
dqy. (20)

By using standard calculations, we arrive at

I =
yλ−1

Γq(α)

1

(2πω)2

×
∫

L1

∫
L2

π2φ(s1, s2; q)
2

∏
i=1

zsi
i

{∫ x

0
(x− yq)α−1yλ+∑2

i=1 ρi si−1dqy
}

dqs1 dqs2

=
1

(2πω)2

∫
L1

∫
L2

π2φ(s1, s2; q)
2

∏
i=1

zsi
i Iμ

q

{
xλ+∑2

i=1 ρi si−1
}

dqs1 dqs2. (21)

Next, we apply formula (12) to the equation above; then, we get

I =
1

(2πω)2

∫
L1

∫
L2

π2φ(s1, s2; q)
2

∏
i=1

zsi
i

Γq

(
λ + ∑2

i=1 ρisi

)
Γq

(
λ + μ + ∑2

i=1 ρisi

) xλ+μ+∑2
i=1 ρi si−1dqs1dqs2. (22)

Considering the above q-Mellin–Barnes double contour integrals in terms of the basic
analogue to AFTV, we obtain (19).

If we use a fractional q-derivative operator without initial values, defined as

I−μ
q { f (x)} = Dμ

x,q{ f (x)} = 1
Γq(−μ)

∫ x

0
(x− tq)−μ−1 f (t)dqt, (23)

where �(μ) < 0; then, we yield the following result:

96



Fractal Fract. 2022, 6, 71

Theorem 2. For �(μ) > 0, ρi ∈ Z+ (i = 1, 2), and |q| < 1, the Riemann–Liouville fractional
q-derivative of (14) exists and is given by

Dμ
x,q

⎧⎨⎩xλ−1ℵ0,n1;m2,n2:m3,n3
Pi ,Qi ,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

⎛⎝ z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
A1; C1

B1; D1

⎞⎠⎫⎬⎭ = (1− q)−μxλ−μ−1

× ℵ0,n1+1;m2,n2:m3,n3
Pi+1,Qi+1,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

⎛⎝ z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
(1− λ; ρ1, ρ2), A1; C1

B1, (1− λ + μ; ρ1, ρ2); D1

⎞⎠, (24)

where �(si log(zi)− log sin πsi) < 0 (i = 1, 2).

Proof. If we replace μ by −μ in (19), and follow the proof of Theorem 1, then we can easily
obtain (24).

4. Leibniz’s Formula

The q-expression of the Leibniz rule for the fractional q-derivatives [13] is written
below

Lemma 1. For regular functions U(x) and V(x), we have

Dα
x,q{U(x)V(x)} =

∞

∑
n=0

(−1)nq
n(n+1)

2 [q−μ; q]n
(q; q)n

Dμ−n
x,q {U(xqn)}Dn

x,q{V(x)}. (25)

Next, we have the following formula:

Theorem 3. For �(μ) < 0, ρi ∈ Z+ (i = 1, 2), then the Riemann–Liouville fractional q-
derivative of a product of two basic function is written as

ℵ0,n1+1;m2,n2:m3,n3
Pi+1,Qi+1,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

⎛⎝ z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
(1− λ; ρ1, ρ2), A1; C1

B1, (1− λ + μ; ρ1, ρ2); D1

⎞⎠
=

∞

∑
n=0

(−1)nqnλ+
n(n−1)

2 [q−μ; q]n
(q; q)n

(
qλ; q

)
n−μ

× ℵ0,n1+1;m2,n2:m3,n3
Pi+1,Qi+1,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

⎛⎝ z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
(0; ρ1, ρ2), A1; C1

B1, (n; ρ1, ρ2); D1

⎞⎠, (26)

where �(si log(zi)− log sin πsi) < 0 (i = 1, 2).

Proof. To apply the q-Leibniz rule, we take

U(x) = xλ−1 and V(x) = ℵ0,n1;m2,n2:m3,n3
Pi ,Qi ,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

⎛⎝ z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
A1; C1

B1; D1

⎞⎠.

By using Lemma 1, we obtain the following relation:

Dμ
x,q

⎧⎨⎩xλ−1 ℵ0,n1;m2,n2:m3,n3
Pi ,Qi ,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

⎛⎝ z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
A1; C1

B1; D1

⎞⎠⎫⎬⎭
=

∞

∑
n=0

(−1)nq
n(n+1)

2 [q−μ; q]n
(q; q)n

Dμ−n
x,q (xqn)λ−1Dn

x,q{ℵ(z1xρ1 , z2xρ2 ; q)}. (27)
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Next, by using Theorem 2 and setting λ = 1, we obtain

Dn
x,q{ℵ(z1xρ1 , z2xρ2 ; q)}

= (1− q)−nx−n ℵ0,n1+1;m2,n2:m3,n3
Pi+1,Qi+1,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

⎛⎝ z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
(0; ρ1, ρ2), A1; C1

B1, (n; ρ1, ρ2); D1

⎞⎠. (28)

By using the above equation and the following result:

Dμ
x,q

{
xλ−1

}
=

Γq(λ)

Γq(λ− μ)
xλ−μ−1 (λ 
= −1,−2, · · · ), (29)

We can easily obtain the desired result (26) after several algebraic manipulations.

5. Particular Cases

By setting τi, τi′ , τi′′ → 1, the basic analogue to AFTV reduces to the basic analogue to
the I-function of two variables [24].

Let
A′1 =

(
aj; αj, Aj

)
1,n1

,
(
aji; αji, Aji

)
n1+1,Pi

; B′1 =
(
bji; β ji, Bji

)
1,Qi

. (30)

C′1 =
(
cj, γj

)
1,n2

,
(

cji′ , γji′
)

n2+1,Pi′
;
(
ej, Ej

)
1,n3

,
(

eji′′ , γji′′
)

n3+1,Pi′′
. (31)

D′1 =
(
dj, δj

)
1,m2

,
(

dji′ , δji′
)

m2+1,Qi′
;
(

f j, Fj
)

1,m3
,
(

f ji′′ , Fji′′
)

m3+1,Qi′′
. (32)

We have the following result:

Corollary 1.

I0,n1+1;m2,n2:m3,n3
Pi+1,Qi+1;r;Pi′ ,Qi′ ,;r

′ ;Pi′′ ,Qi′′ ,;r
′′

⎛⎝ z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
(1− λ; ρ1, ρ2), A′1; C′1

B′1, (1− λ + μ; ρ1, ρ2); D′1

⎞⎠
=

∞

∑
n=0

(−1)nqnλ+
n(n−1)

2 [q−μ; q]n
(q; q)n

(
qλ; q

)
n−μ

× I0,n1+1;m2,n2:m3,n3
Pi+1,Qi+1;r;Pi′ ,Qi′ ,;r

′ ;Pi′′ ,Qi′′ ;r
′′

⎛⎝ z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
(0; ρ1, ρ2), A′1; C′1

B′1, (n; ρ1, ρ2); D′1

⎞⎠, (33)

where �(si log(zi)− log sin πsi) < 0 (i = 1, 2).

Proof. By setting τi, τi′ , τi′′ → 1 and following the proof of Theorem 3, we can easily obtain
the desired result (33).

Remark 1. If the basic analogue to the I-function of two variables reduces to the basic analogue to
the H-function of two variables [25], then we can obtain the result due to Yadav et al. [18].

The basic analogue to AFTV reduces to the basic analogue to AFTV, defined by
Ahmad et al. [26].

Let
A =

(
aj, Aj

)
1,n, · · · ,

[
τi
(
aji, Aji

)]
n+1,pi

. (34)

B =
(
bj, Bj

)
1,m, · · · ,

[
τi
(
bji, Bji

)]
m+1,qi

. (35)

Then, we have following relation:
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Corollary 2.

ℵm,n+1
pi+1,qi+1,τi ;r

(
zxρ; q

∣∣∣∣ (1− λ; ρ), A
B, (1− λ + μ; ρ)

)

=
∞

∑
n=0

(−1)nqnλ+
n(n−1)

2 [q−μ; q]n
(q; q)n

(
qλ; q

)
n−μ

ℵm,n+1
pi+1,qi+1,τi ;r

(
zxρ; q

∣∣∣∣ (0; ρ), A
B, (n; ρ)

)
. (36)

If we set τi → 1 in (36), then the basic analogue to AFTV reduces to the basic analogue
to the I-function of one variable. We have

Corollary 3.

Im,n+1
pi+1,qi+1;r

⎛⎜⎝zxρ; q

∣∣∣∣∣∣∣
(1− λ; ρ),

(
aj, Aj

)
1,n, · · · ,

(
aji, Aji

)
n+1,pi(

bj, Bj
)

1,m, · · · ,
(
bji, Bji

)
m+1,qi

, (1− λ + μ; ρ)

⎞⎟⎠
=

∞

∑
n=0

(−1)nqnλ+
n(n−1)

2 [q−μ; q]n
(q; q)n

× Im,n+1
pi+1,qi+1;r

⎛⎜⎝zxρ; q

∣∣∣∣∣∣∣
(0; ρ),

(
aj, Aj

)
1,n, · · · ,

(
aji, Aji

)
n+1,pi(

bj, Bj
)

1,m, · · · ,
(
bji, Bji

)
m+1,qi

, (n; ρ)

⎞⎟⎠. (37)

Remark 2. If the basic analogue to AFTV reduces to the basic analogue to the H-function of one
variable (see [27]), then we can report a similar expression.

Remark 3. We can generalize the q-extension of the Leibniz rule for the basic analogue to special
multivariable functions; by this, we can obtain similar formulas by using similar methods.

6. Conclusions

After the famous letter between L’Hopital and Leibniz from 1695, using integral trans-
formations, we obtained a new field in mathematics, called fractional calculus. Among
other things, there are fractional derivative and fractional integrals, as well as fractional
differential equations. It is also well-known that fractional calculus operators and their
basic (or q−) analogues have many applications, such as signal processing, bio-medical
engineering, control systems, radars, sonars, to solve dual integral and series equations
in elasticity, etc. In this article, we have proposed the fractional-order q-integrals and
q-derivatives involving a basic analogue to AFTV [11,12,26,28]. Some remarkable appli-
cations of these integrals and derivatives have also been discussed. By specializing the
various parameters as well as the variables in the basic analogue to AFTV, we can obtain a
large number of q-extensions of the Leibniz rule, involving a large set of basic functions,
that is, the product of such basic functions, which are describable in terms of the basic
analogue to the H-function [25,27], the basic analogue to Meijer’s G-function [27], the basic
analogue to MacRobert’s E-function [29], and the basic analogue to the hypergeometric
function [10,16–18].
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Abstract: This paper studies the containment control problem for a class of fractional order nonlinear
multiagent systems in the presence of arbitrary switchings, unmeasured states, and quantized input
signals by a hysteresis quantizer. Under the framework of the Lyapunov function theory, this
paper proposes an event-triggered adaptive neural network dynamic surface quantized controller,
in which dynamic surface control technology can avoid “explosion of complexity” and obtain
fractional derivatives for virtual control functions continuously. Radial basis function neural networks
(RBFNNs) are used to approximate the unknown nonlinear functions, and an observer is designed to
obtain the unmeasured states. The proposed distributed protocol can ensure all the signals remain
semi-global uniformly ultimately bounded in the closed-loop system, and all followers can converge
to the convex hull spanned by the leaders’ trajectory. Utilizing the combination of an event-triggered
scheme and quantized control technology, the controller is updated aperiodically only at the event-
sampled instants such that transmitting and computational costs are greatly reduced. Simulations
compare the event-triggered scheme without quantization control technology with the control method
proposed in this paper, and the results show that the event-triggered scheme combined with the
quantization mechanism reduces the number of control inputs by 7% to 20%.

Keywords: fractional order multiagent systems; containment control; event-triggered mechanism;
input quantization; switched systems; neural network; observer

1. Introduction

Multiagent systems (MASs) cooperative control technology has been widely used in
many fields [1–4]. As the most basic research content of multiagent cooperative control,
the consensus problem has made much progress [5–11]. Further study of the cooperative
control problem of multiagent systems, extending the consensus control of a single leader,
considers multiagent cooperative control in the case of multiple leaders, and designs a
controller to make the followers converge to a convex hull composed of multiple leaders,
which is called containment control. As a special case of cooperative control, many research
results of MASs containment control have been reported in the field of integer order
control, such as adaptive control [12,13], feedback control [14,15], linear matrix inequalities
(LMIs) [16,17], sliding mode control [18], and so on.

Due to the unique memory properties of fractional calculus and the ability to accu-
rately model the system, fractional calculus is suitable for describing real physical systems
with genetics [19,20]. At present, the Caputo fractional differential definition is widely
used in engineering, and there have been many achievements on the fractional derivative
definition and control research of fractional order nonlinear systems. For example, Ref. [21]
studied the numerical approximation for the spread of the SIQR model with a Caputo
fractional derivative. Ref. [22] expanded the garden equation to the Caputo derivative and
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Atangana-Baleanu fractional derivative in the sense of Caputo. Ref. [23] established the
Caputo fractional derivatives for exponential s-convex functions. Some new k-Caputo frac-
tional derivative inequalities were established in [24] by using Hermite-Hadamard-Mercer
type inequalities for differentiable mapping. Ref. [25] proposed two fractional derivatives
by taking the Caputo fractional derivative and replacing the simple derivative with a
proportional type derivative, which can be expressed as a combination of existing fractional
operators in several different ways. In order to perform reliable and effective numerical
processing of nonlinear singular fractional Lane-Emden differential equations, based on
fractional Meyer wavelet artificial neural network optimization, combined with the com-
prehensive strength of genetic algorithm-assisted active set method, Ref. [26] proposed a
stochastic calculation solver fractional Meyer Wavelet Artificial Neural Network Genetic
Algorithm and Active Sets. In reference [27], the authors studied variable order fractional
order and constant order fractional order systems with uncertain and external disturbance
terms and proposed a variable order fractional control method for tracking control.

At present, the research into the multiagent systems containment control problem has
made some progress in the field of fractional order systems. In reference [28], the authors
applied the matrices singular value decomposition and LMI techniques for obtaining
sufficient conditions to solve the containment problem of fractional order multiagent
systems (FOMASs). In reference [29], the authors considered the distributed containment
control problem for FOMASs with a double-integrator and designed a distributed projection
containment controller for each follower. Due to the general approximation theory of the
neural network (NN) and fuzzy logic system, it is often used to deal with the uncertainty
of nonlinear systems to obtain unknown nonlinear functions [30]. For example, based
on the neural network algorithm, reference [31] designed a distributed control algorithm
to ensure that the follower converged to the leader signal in FOMASs. For the FOMASs
containment control, an adaptive NN containment controller was designed in reference [12],
in which RBFNNs were applied for the unknown functions. In most practical applications,
it is usually necessary to obtain the unmeasurable state of the system through a state
observer. For example, reference [32] designed a state observer to provide an estimate
for unmeasured consensus errors and disturbances of FOMASs. Reference [33] designed
an observer to obtain the state of the agent for FOMASs containment control. It should
be recognized that the abovementioned fractional order nonlinear system is a kind of
non-switched system, and the switched system is another more complex system, which is
composed of multiple subsystems and is formed by signal switching between the systems.
For the switched system, when switching between subsystems, the system parameters will
change greatly, and the nonlinear function of its system will become discontinuous, so
the performance of the system may be affected or even unstable [34]. Therefore, it is well
worth investigating how to obtain conditions that make the switching system stable for all
switching signals. Reference [35] studied the stability and robust stabilization of switched
fractional order systems and provided two stability theorems for switched fractional order
systems under the arbitrary switching. Based on the fractional Lyapunov stability criterion,
reference [36] designed an adaptive fuzzy controller for the uncertain fractional-order
switched nonlinear systems and ensured that the tracking error converged to a small
neighborhood of the origin regardless of arbitrary switching. The switching control method
for strictly feedback switched nonlinear systems was studied by using the average dwell
time method in references [37,38].

The traditional time sampling mechanism will cause unnecessary waste of commu-
nication resources. In modern technology, an event-triggered mechanism and quantized
mechanism can reduce the action frequency of the controller, thus overcoming the problem
of wasting communication resources [39]. For example, reference [40] solved the prob-
lem of event-triggered fuzzy adaptive tracking control for MASs with input quantization
and reduced the communication burden by combining an asymmetric hysteresis quantizer
and event triggering mechanism. Based on quantized feedback control, Reference [41]
studied the problem of adaptive event-triggered tracking for nonlinear systems with ex-
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ternal disturbances. In reference [42], the authors designed an adaptive neural control
scheme for integer order uncertain nonlinear systems by combining an event-triggered
scheme with input quantization technology. For the containment problem of MASs with
unmeasured states, reference [43] developed a quantized control scheme based on the event-
triggered backstepping control technique. To the best of our knowledge, the containment
control problem of switched fractional order multiagent systems (SFOMAS) combining
an event-triggered mechanism and input quantization techniques has not been studied,
which motivates the research presented in this paper. Furthermore, the combination of the
event-triggered mechanism and the input quantification can reduce the operating frequency
of the actuation system and thus reduce energy consumption. Therefore, the research in
this paper has great value in the practical engineering application of MASs and reducing
the fatigue loss in the system.

Based on the previous discussion, this paper designs an observer-based event-triggered
adaptive neural network dynamic surface quantized controller to addresses the contain-
ment control of SFOMASs. Compared with the previous research work, the main contribu-
tions of the control method discussed in this paper are summarized as follows.

(1) Comparison with [34,37,38], an adaptive neural network dynamic surface con-
troller is proposed to address the containment control problem of SFOMASs, in which
the controller combines the event-triggered mechanism and input quantization to reduce
controller action frequency in this paper.

(2) Compared with references [38,40], the state observer is used to estimate system
states, and the RBFNN is developed to estimate uncertain parts. In comparison with
references [41,43], fractional order DSC technology is used to avoid the “explosion of
complexity” that can occur during traditional backstepping design processes and to obtain
fractional derivatives for virtual control continuously.

The rest of the paper is organized as follows. Section 2 introduces basic theory about
fractional calculus and SFOMASs. In Section 3, first, we construct an observer to estimate
the system state, then a controller is proposed based on the adaptive dynamic surface
control method; finally, the stability is proved by the Lyapunov function theory. Section 4
provides the numerical simulations to show the viability and efficiency of the proposed
controller. Section 5 offers conclusions.

2. Preliminaries

2.1. Fractional Calculus

The Caputo fractional derivative [44] is defined as

C
0 Dα

t f (t) =
1

Γ(n− α)

∫ t

0

f (n)(τ)

(t− τ)1+α−n dτ,

where n ∈ N and n− 1 < α ≤ n, Γ(z) =
∫ ∞

0 tz−1e−tdt is the Gamma function.

Lemma 1 ([45]). For a complex number β and two real numbers α, v satisfying α ∈ (0, 1) and

πα

2
< vs. < min{π, πα}

For all integers n ≥ 1, we can obtain

Eα,β(ς) = −
∞

∑
j=1

1
Γ(β− αj)

+ o

(
1

|ς|n+1

)

when |ς| → ∞, v ≤ |arg(ς)| ≤ π.
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Lemma 2 ([45]). If v satisfies the condition of Lemma 1, then the following inequality relation holds∣∣Eα,β(ς)
∣∣ ≤ μ

1 + |ς|

where α ∈ (0, 2) and β is an arbitrary real number, μ > 0, υ ≤ |arg(ς)| ≤ π, and |ς| ≥ 0.

Lemma 3 ([46]). Let x(t) ∈ Rl be a vector of differentiable function. Then, the following inequality holds

Dα
(

xT(t)Px
)
≤ 2xT(t)PDαx(t)

where α ∈ (0, 1) and P is a positive definite diagonal matrix.

Lemma 4 ([47]). (Young’s inequality) For any x, y ∈ Rn, the following inequality relationship holds

xTy ≤ ca

a
‖x‖a +

1
bcb ‖y‖b

where a > 1, b > 1, c > 0, and (a− 1)(b− 1) = 1.

Lemma 5 ([48]). For m ∈ R and n > 0, the following inequality holds

0 ≤ |m| − m2
√

m2 + n2
≤ n

Lemma 6 ([44]). Suppose that the Lyapunov function V(t, x) satisfies DαV(t, x) ≤ −CV(t, x)+D.
Let 0 < α < 1, C > 0 and D ≥ 0, the following inequality holds

V(t, x) ≤ V(0)Eα(−Ctα) +
Dμ
C , t ≥ 0

Then, V(t, x) is bounded on [0, t] and fractional order systems are stable, where μ is defined in
Lemma 2.

2.2. Problem Formulation

In the paper, we consider the following fractional order multiagent system.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Dαxi,1(t) = xi,2 + f σ(t)
i,1 (xi,1)

Dαxi,l(t) = xi,l+1 + f σ(t)
i,l (xi,1, xi,2, . . . , xi,l)

Dαxi,n(t) = ui(t) + f σ(t)
i,n (xi,1, xi,2, . . . , xi,n)

yi = xi,1

(1)

where l = 2, . . . , n− 1, α ∈ (0, 1); Xi,l = (xi,1, xi,2, . . . , xi,l)
T ∈ Rl are the system state vec-

tors, and ui(t) is the control input of the system. It should be noted that the control input
in this paper considers the quantization mechanism and the event-triggered technology.
yi is the system output, and f σ(t)

i,l (xi,1, xi,2, . . . , xi,l) are unknown nonlinear functions. σ(t)
is a piecewise continuous function that is used to describe the triggering conditions for
switching between subsystems. It is called a switching signal, for example, if σ(t) = q, it
means that q− th subsystem is activated.

Rewriting system (1):

DαXi = AiXi + Kiyi +
n

∑
l=1

Bi,l

[
f q
i,l(Xi,l)

]
+ Biui(t) (2)
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where Ai =

⎡⎢⎣ −ki,1
...

−ki,n

In−1
0 . . . 0

⎤⎥⎦, Ki =

⎡⎢⎣ ki,1
...

ki,n

⎤⎥⎦, Bi =

⎡⎢⎣ 0
...
1

⎤⎥⎦, Bi,l = [0 . . . 1 . . . 0]T , and

given a positive matrix QT
i = Qi, there exists a positive matrix PT

i = Pi satisfying

AT
i Pi + Pi Ai = −2Qi (3)

Control objectives: This paper aims to design an observer-based adaptive neural network
dynamic surface controller, so that all the signals remain bounded in the closed-loop system
and enable all followers to converge to the leaders’ convex hull. Meanwhile, we utilize
the combination of an event-triggered scheme and quantized mechanism to reduce the
transmission frequency of the control input.

2.3. Hysteresis Quantizer

In this paper, the hysteresis quantizer is used to reduce chattering. The quantizer
qi(ωi(t)) is shown as the following form [49].

qi(ωi(t))=

⎧⎨⎩
ωissign(ωi),
ωis(1 + d)sign(ωi),
0,

ωis
1+d < |ωi| ≤ ωis

1−d
ωis < |ωi| ≤ ωis(1+d)

1−d
0 ≤ |ωi| < ωmin

(4)

where ωis = n1−sωmin(s = 1, 2, . . .) with parameters ωmin > 0 and 0 < n < 1, d =
1−n
1+n . Meanwhile, qi(ωi(t)) is in the set U = [0,±ωis,±ωis(1 + d)], and s = 1, 2, . . .. ωmin
determines the magnitude of the dead-zone for qi(ωi(t)).

Lemma 7 ([49]). The system inputs qi(ωi(t)) can be described as

qi(ωi(t))=H(ωi)ωi(t) + Li(t) (5)

where 1− d ≤ H(ωi) ≤ 1 + d,|L(t)| ≤ ωmin.

2.4. Graph Theory

Suppose that there exist N followers, labeled as agents 1 to N, and M leaders, labeled
as agents N + 1 to N + M. The information exchange between followers is represented
by a directed graph G = (w, ε, Ā), in which w = {n1, . . . , nN+M}. The set of edge is
exhibited as ε =

{(
ni, nj

)}
∈ w× w, which expresses that follower i and follower j can

exchange information, and Ni =
{

j
∣∣(ni, nj

)
∈ ε

}
means the neighbor set of followers i.

Furthermore, Ā =
{

aij
}
∈ R(N+M)×(N+M) is the Adjacency matrix, aij of Ā is represented

as if
(
ni, nj

)
/∈ ε, aij = 0; if not, aij = 1. It is supposed that aij = 0. A directed graph G has a

spanning tree if there exists at least one node called a root node, which has a directed path
to all the other nodes. Define the Laplacian matrix L = D− Ā ∈ R(N+M)×(N+M) and the
diagonal matrix D = diag(d1, . . . , dN+M), in which di = ∑N+M

j=1 aij.
Suppose that leaders N + 1, . . . , N + M do not receive the information from follow-

ers and other leaders, and the followers 1, . . . , N have at least one neighbor. Therefore,
the Laplacian matrix L related to directed communication graph G is described as follows:

L =

[
L1 L2

0M×N 0M×M

]
where L1 ∈ RN×N is the matrix related to the communication between the N follow-
ers, and L2 ∈ RN×M is the communication from M leaders to N followers. Let r(t) =

[rN+1, rN+2, . . . , rN+M]T , and Co(r(t)) =
{

∑N+M
j=N+1 θjrj

∣∣∣rj ∈ r(t), θj > 0, ∑N+M
j=N+1 θj = 1

}
.

Define the convex hull as rd(t) = [rd,1(t), rd,2(t), . . . , rd,M(t)]T= −L−1
1 L2r(t). The con-
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tainment errors are defined as ei = yi − rd,i. Let e=[e1, e2, . . . , eN ]
T , y=[y1, y2, . . . , yN ]

T ,
then e = y− rd(t).

2.5. Neural Network Approximation

Due to its universal approximation characteristics, neural networks have been widely
used in the identification and control of uncertain nonlinear systems [10]. In this paper, we
employ an RBFNNs to identify the nonlinear functions. The unknown function f (Z) can
be expressed as

fnn(Z) = θT ϕ(Z)

where θ is the weight vector and ϕ(Z) is the basis function vector. In this paper, due to
applying radial basis function neural networks (RBFNNs), Gaussian basis functions are
used. For any unknown function f (Z) defined over a compact set U, there exists the neural
network θ∗T ϕ(Z) and arbitrary accuracy ε(Z) such that

f (Z) = θ∗T ϕ(Z) + ε(Z)

where θ∗ is the vectors of optimal parameters defined by
θ∗ = arg minθ∈Ω

[
supZ∈U

∣∣ f (Z)− θT ϕ(Z)
∣∣], and ε(Z) denotes the minimum approxima-

tion error.

Assumption 1. The optimal approximation errors remain bounded, there exists a positive constant
ε0, satisfying |ε(Z)| ≤ ε0.

3. Main Results

3.1. Observer Design

Assumption 2. In this paper, we employ neural networks to identify the nonlinear functions.
The unknown functions fi(X), i = 1, . . . , n can be expressed as

fi(Xi|θi )=θT
i ϕi(Xi), 1 ≤ i ≤ n. (6)

Furthermore, we assume that the state variables of system (1) are not available. The
state observer is designed as follows:

DαX̂i = AiX̂i + Kiyi +
n

∑
l=1

Bi,l f̂ q
i,l
(
X̂i,l

∣∣θi,l
)
+ Biui(t)

ŷi = CiX̂i

(7)

where Ci = [1 . . . 0 . . . 0], and X̂i,l = (x̂i,1, x̂i,2, . . . , x̂i,l)
T are the estimated values of

Xi,l = (xi,1, xi,2, . . . , xi,l)
T .

We define ei = Xi − X̂i as the observation error, and then, according to Equations (2)
and (6), one has

Dαei = Aiei +
n

∑
l=1

Bi,l

[
f q
i,l
(
X̂i,l

)
− f̂ q

i,l
(
X̂i,l

∣∣θi,l
)
+ Δ f q

i,l

]
(8)

where Δ f q
i,l = f q

i,l(Xi,l)− f q
i,l
(
X̂i,l

)
.

By Assumption 2, we can obtain

f̂ q
i,l
(
X̂i,l

∣∣θi,l
)
= θT

i,l ϕi,l
(
X̂i,l

)
. (9)
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According to the definition of a neural network, the optimal parameter vector is
defined as

θ∗i,l = arg min
θi,l∈Ωi,l

[
supX̂i,l∈Ui,l

∣∣∣ f̂ q
i,l
(
X̂i,l

∣∣θi,l
)
− f q

i,l
(
X̂i,l

)∣∣∣]
where 1 ≤ l ≤ n, Ωi,l and Ui,l are compact regions for θi,l , Xi,l and X̂i,l .
Furthermore, we define that the following equation holds

ε
q
i,l = f q

i,l
(
X̂i,l

)
− f̂ q

i,l

(
X̂i,l

∣∣∣θ∗i,l )
θ̃i,l = θ∗i,l − θi,l , l = 1, 2, . . . , n

where εi,l is the optimal approximation error, and θ̃i,l is the parameters estimation error.

Assumption 3. The optimal approximation errors remain bounded, there exist positive constants
εi0, satisfying

∣∣∣εq
i,l

∣∣∣ ≤ εi0.

Assumption 4. The following relationship holds∣∣ fi(X)− fi
(
X̂
)∣∣ ≤ γi

∥∥X− X̂
∥∥

where γi is a set of known constants.

By Equations (8) and (9), we have

Dαei = Aiei +
n

∑
l=1

Bi,l

[
f q
i,l
(
X̂i,l

)
− f̂i,l

(
X̂i,l

∣∣θi,l
)
+ Δ f q

i,l

]
= Aiei +

n

∑
l=1

Bi,l

[
ε

q
i,l + Δ f q

i,l + θ̃T
i,l ϕi,l

(
X̂i,l

)]
= Aiei + Δ fi + εi +

n

∑
l=1

Bi,l

[
θ̃T

i,l ϕi,l
(
X̂i,l

)]
(10)

where εi =
[
ε

q
i,1, . . . , ε

q
i,n

]T
, Δ fi =

[
Δ f q

i,1, . . . , Δ f q
i,n

]T
.

We construct the first Lyapunov function:

V0 =
N

∑
i=1

Vi,0 =
N

∑
i=1

1
2

eT
i Piei. (11)

According to Lemma 3, we obtain

DαVi,0 ≤ −eT
i Qiei + eT

i Pi(εi + Δ fi) + eT
i Pi

n

∑
l=1

Bi,l θ̃
T
i,l ϕi,l

(
X̂i,l

)
. (12)

By Lemma 4 and Assumption 4, we obtain
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eT
i Pi(εi + Δ fi) + eT

i Pi

n

∑
l=1

Bi,l θ̃
T
i,l ϕi,l

(
X̂i,l

)
≤

∣∣∣eT
i Piεi

∣∣∣+ ∣∣∣eT
i PiΔ f q

i,l

∣∣∣+ 1
2

eT
i PT

i Piei +
1
2

n

∑
l=1

θ̃T
i,l ϕi,l ϕ

T
i,l θ̃

2
i,l

≤ ‖ei‖2 +
1
2
‖Piεi‖2 +

1
2
‖Pi‖2

n

∑
l=1

∣∣∣Δ f q
i,l

∣∣∣2+1
2

λ2
i,max(Pi)‖ei‖2 +

1
2

n

∑
l=1

θ̃T
i,l θ̃i,l

≤ ‖ei‖2

(
1 +

1
2
‖Pi‖2

n

∑
l=1

γ
q
i,l

2
+

1
2

λ2
i,max(Pi)

)
+

1
2
‖Piεi‖2 +

1
2

n

∑
l=1

θ̃T
i,l θ̃i,l .

(13)

By Equations (12) and (13), one has

DαVi,0 ≤ −qi,0‖ei‖2 +
1
2
‖Piε

∗
i ‖2 +

1
2

n

∑
l=1

θ̃T
i,l θ̃i,l (14)

where qi,0 = −
(

1 + 1
2‖Pi‖2 n

∑
l=1

γ
q
i,l

2
+ 1

2 λ2
i,max(Pi)

)
+ λi,min(Qi).

Combining (11) and (14), we can obtain

DαV0 ≤
N

∑
i=1

(
−qi,0‖ei‖2 +

1
2
‖Piεi‖2 +

1
2

n

∑
l=1

θ̃T
i,l θ̃i,l

)

≤ −q0‖e‖2 +
1
2
‖Pε‖2 +

N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l .

(15)

3.2. Controller Design

Theorem 1. For the SFOMASs (1) where Assumptions 1-4 hold, we construct a state observer (7),
by designing an event-triggered adaptive neural network dynamic surface quantized controller (86),
virtual control laws (28), (46) and (62), together with the presented designs, which can ensure that
all the signals remain bounded, and enables all followers to converge to the leader’s convex hull.

Proof. In this section, under the framework of adaptive backstepping design, based on
Lyapunov stability theory, combined with quantized control, event-triggered technology,
and neural network technology, we design virtual control laws and control input.

We define the error surfaces as follows:

si,1 = ∑N
j=1 aij

(
yi − yj

)
+ ∑N+M

j=N+1 aij

(
yi − ydj(t)

)
si,l = x̂i,l − vi,l

wi,l = vi,l − αi,l−1, l = 2, . . . , n− 1

(16)

where wi,l is the error between vi,l obtained by the fractional order filter, and the virtual
control function αi,l−1; si,l denotes error surfaces; x̂i,l is the estimation of xi,l ; yi is the system
output; and ydj(t) represents the leader signal.

Step 1. According to Equations (16) and (1), we have

Dαsi,1=di

(
xi,2 + θT

i,1 ϕ
(
X̂i,1

)
+ θ̃T

i,1 ϕ
(
X̂i,1

)
+ε

q
i,1 + Δ f q

i,1

)
−

N+M

∑
j=N

aijDαyd

−
N

∑
j=1

aij
(
xj,2 + θT

j,1 ϕ
(
X̂j,1

)
+θ̃T

j,1 ϕ
(
X̂j,1

)
+ ε

q
j,1 + Δ f q

j,1

)
.

(17)
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Substituting x∗,2 = e∗,2 + x̂∗,2 and (16) into (17), one has

Dαsi,1=di

(
si,2 + wi,2 + αi,1 + ei,2 + θT

i,1 ϕ
(
X̂i,1

)
+ θ̃T

i,1 ϕ
(
X̂i,1

)
+ε

q
i,1 + Δ fi,1

q
)

−∑N+M
j=N+1 aijDαydi −∑N

j=1 aij
(
x̂j,2 +ej,2 + θT

j,1 ϕ
(
X̂j,1

)
+ θ̃T

j,1 ϕ
(
X̂j,1

)
+ ε

q
j,1 + Δ f q

j,1

) (18)

where θ̃∗,1 = θ∗∗,1 − θ∗,1, di = ∑N+M
j=1 aij, θ∗,1 denotes the estimation of θ∗∗1.

We construct the Lyapunov function:

V1 = V0 +
N

∑
i=1

Vi,1 = V0 +
1
2

N

∑
i=1

(
s2

i,1 +
1

σi,1
θ̃T

i,1θ̃i,1 +
1

ri,1
δ̃2

i,1 +∑N
j=1 aij

(
1

σj,1
θ̃T

j,1θ̃j,1 +
1

rj,1
δ̃2

j,1

))
(19)

where θ̃∗,l = θ∗∗,l − θ∗,l are the parameter estimation errors, δ̃∗,l = δ∗∗,l − δ∗,l are the upper
bound estimation errors, and σ∗,l and r∗,l denote design constant parameters.

Then, we can obtain

DαV1 = Dα

(
V0 +

N

∑
i=1

Vi,1

)

= DαV0 +
N

∑
i=1

{
si,1Dαsi,1 +

1
σi,1

θ̃T
i,1Dαθ̃i,1

+
1

ri,1
δ̃i,1Dαδ̃i,1 + ∑N

j=1 aij

(
1

σj,1
θ̃T

j,1Dαθ̃j,1 +
1

rj,1
δ̃j,1Dαδ̃j,1

)}
.

(20)

Substituting (18) into (20), we arrive at

DαV1 ≤ DαV0 +
N

∑
i=1

{
si,1[di(si,2 + wi,2 + αi,1 + ei,2 +θT

i,1 ϕ
(
X̂i,1

)
+ θ̃T

i,1 ϕ
(
X̂i,1

)
+ ε

q
i,1 + Δ f q

i,1

)
−∑N+M

j=N+1 aijDαydj −∑N
j=1 aij

(
x̂j,2 + ej,2 +θT

j,1 ϕ
(
X̂j,1

)
+ θ̃T

j,1 ϕ
(
X̂j,1

)
+ ε

q
j,1 + Δ f q

j,1

)]
+

1
σi,1

θ̃T
i,1Dαθ̃i,1 +

1
ri,1

δ̃i,1Dαδ̃i,1 +∑N
j=1 aij

(
1

σj,1
θ̃T

j,1Dαθ̃j,1 +
1

rj,1
δ̃j,1Dαδ̃j,1

)}
.

(21)

Following Lemma 4, one has

si,1di(si,2 + wi,2) ≤ s2
i,1 +

di
2

2

(
s2

i,2 + w2
i,2

)
(22)

si,1diei,2 + si,1 ∑N
j=1 aijej,2 ≤ s2

i,1 +
di

2

2

(
‖ei,2‖2 +

∥∥ej,2
∥∥2
)

. (23)

Denoting ε
q
∗,l + Δ f q

∗,l = Δ∗,l and
∣∣Δi,l

∣∣ ≤ δ∗i,l , the following inequalities hold

s∗,1Δ∗,1 ≤ |s∗,1Δ∗,1| ≤ |s∗,1||Δ∗,1| ≤ |s∗,1|δ∗∗,1=|s∗,1|
(
δ̃∗,1 + δ∗,1

)
. (24)

109



Fractal Fract. 2022, 6, 77

Considering (24), one has

DαV1 ≤ DαV0 +
N

∑
i=1

{
si,1

[
di

(
αi,1 + θT

i,1 ϕ
(
X̂i,1

)
+ θ̃T

i,1 ϕ
(
X̂i,1

)
+ε

q
i,1 + Δ f q

i,1

)
−∑N+M

j=N+1 aijDαydj −∑N
j=1 aij

(
x̂j,2 +θT

j,1 ϕ
(
X̂j,1

)
+ θ̃T

j,1 ϕ
(
X̂j,1

)
+ ε

q
j,1 + Δ f q

j,1

)]
+ si,1di(si,2 + wi,2) + si,1diei,2 + si,1

(
−∑N

j=1 aijej,2

)
+

1
σi,1

θ̃T
i,1Dαθ̃i,1

+
1

ri,1
δ̃i,1Dαδ̃i,1 +∑N

j=1 aij

(
1

σj,1
θ̃T

j,1Dαθ̃j,1 +
1

rj,1
δ̃j,1Dαδ̃j,1

)}
.

(25)

Substituting (22) and (23) into (25) produces

DαV1 ≤ DαV0 +
N

∑
i=1

{
si,1

[
di

(
αi,1 + θT

i,1 ϕ
(
X̂i,1

)
+ θ̃T

i,1 ϕ
(
X̂i,1

)
+ε

q
i,1 + Δ f q

i,1

)
−∑N+M

j=N+1 aijDαydj −∑N
j=1 aij

(
x̂j,2 +θT

j,1 ϕ
(
X̂j,1

)
+ θ̃T

j,1 ϕ
(
X̂j,1

)
+ ε

q
j,1 + Δ f q

j,1

)]
+ s2

i,1 +
di

2

2

(
s2

i,2 + w2
i,2

)
+ s2

i,1 +
di

2

2

(
‖ei,2‖2 +

∥∥ej,2
∥∥2
)

+
1

σi,1
θ̃T

i,1Dαθ̃i,1 +
1

ri,1
δ̃i,1Dαδ̃i,1 +∑N

j=1 aij

(
1

σj,1
θ̃T

j,1Dαθ̃j,1 +
1

rj,1
δ̃j,1Dαδ̃j,1

)}
.

(26)

Substituting (15) into (26), one has

DαV1 ≤ −q1‖e‖2 +
1
2
‖Pε‖2 +

N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l +

N

∑
i=1

{
si,1

[
di

(
αi,1 + θT

i,1 ϕ
(
X̂i,1

)
+ε

q
i,1 + Δ f q

i,1

)
−∑N+M

j=N+1 aijDαyd −∑N
j=1 aij

(
x̂j,2 + θT

j,1 ϕ
(
X̂j,1

)
+ θ̃T

j,1 ϕ
(
X̂j,1

)
+ε

q
j,1 + Δ f q

j,1

)]
+ 2s2

i,1 +
di

2

2

(
s2

i,2 + w2
i,2

)
− 1

σi,1
θ̃T

i,1Dαθi,1 −
1

ri,1
δ̃i,1Dαδi,1

+∑N
j=1 aij

(
− 1

σj,1
θ̃T

j,1Dαθj,1 −
1

rj,1
δ̃j,1Dαδj,1

)}
(27)

where q1 = q0 −∑N
i=1 d2

i .
We design the virtual control function αi,1 and parameters adaptive laws

αi,1 =
1
di

(
−ci1si,1 − 2si,1 + ∑N

j=1 aij

(
x̂j,2 + θT

j,1 ϕj,1

)
+∑N+M

j=N+1 aijDαydj

)
− θT

i,1 ϕi,1 − sign(si,1)

(
δi,1 −∑N

j=1

aij

di
δj,1

)
.

(28)

Dαθi,1 = σi,1di ϕi,1
(
X̂i,1

)
si,1 − ρi,1θi,1 (29)

Dαθj,1 = −σj,1 ϕj,1
(
X̂j,1

)
si,1 − ρj,1θj,1 (30)

Dαδi,1 = ri,1di|si,1| − ηi,1δi,1 (31)

Dαδj,1 = −rj,1|si,1| − ηj,1δj,1 (32)

Substituting (29)–(32) into (27) produces
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DαV1

≤ −q1‖e‖2 +
1
2
‖Pε‖2 +

N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l +

N

∑
i=1

{
si,1

[
di

(
αi,1 + θT

i,1 ϕ
(
X̂i,1

)
+ ε

q
i,1 + Δ f q

i,1

)
−∑N+M

j=N+1 aijDαydj −∑N
j=1 aij

(
x̂j,2 + θT

j,1 ϕ
(
X̂j,1

)
+ε

q
j,1 + Δ f q

j,1

)]
+

ρi,1

σi,1
θ̃T

i,1θi,1 − δ̃i,1di|si,1|

+
ηi,1

ri,1
δj,1δi,1 + ∑N

j=1 aij

(
ρj,1

σj,1
θ̃T

j,1θj,1 + δ̃j,1|si,1|+
ηj,1

rj,1
δ̃j,1δj,1

)
+2s2

i,1 +
di

2

2

(
s2

i,2 + w2
i,2

)}
.

(33)

Substituting (28) into (33), we have

DαV1 ≤ −q1‖e‖2 +
1
2
‖Pε‖2 +

N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l

+
N

∑
i=1

{
si,1[−ci1si,1 − sign(si,1)

(
diδi,1 −∑N

j=1 aijδj,1

)
+di

(
ε

q
i,1 + Δ f q

i,1

))
−∑N

j=1 aij

(
ε

q
j,1 + Δ f q

j,1

)]
+

ρi,1

σi,1
θ̃T

i,1θi,1 − δ̃i,1di|si,1|+
ηi,1

ri,1
δ̃i,1δi,1

+ ∑N
j=1 aij

(
ρj,1

σj,1
θ̃T

j,1θj,1 + δ̃j,1|si,1|+
ηj,1

rj,1
δ̃j,1δj,1

)
+

di
2

2

(
s2

i,2 + w2
i,2

)}
.

(34)

Substituting (24) into (34), we have

DαV1 ≤ −q1‖e‖2 +
1
2
‖Pε‖2 +

N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l +

N

∑
i=1

{
−ci1s2

i,1 +
ρi,1

σi,1
θ̃T

i,1θi,1 +
ηi,1

ri,1
δ̃i,1δi,1

+ ∑N
j=1 aij

(
ρj,1

σj,1
θ̃T

j,1θj,1 +
ηj,1

rj,1
δ̃j,1δj,1

)
+

di
2

2

(
s2

i,2 + w2
i,2

)}
.

(35)

By using the DSC technique, the state variable vi,2 can be obtained by the follow-
ing equation:

λi,2Dαvi,2 + vi,2 = αi,1, vi,2(0) = αi,1(0). (36)

According to Equations (16) and (36), we have

Dαwi,2 = Dαvi,2 − Dααi,1 = −vi,2 − αi,1

λi,2
− Dααi,1 = −wi,2

λi,2
+ Bi,2 (37)

where Bi,2 is a continuous function of variables si,1,si,2,wi,2,θi,1,θj,1,δi,1,δj,1,sj,3,wj,3,ydj,Dαydj,

Dα
(

Dαydj

)
, and there may exist an unknown constant Mi2 such that |Bi2| ≤ Mi2 holds.

Step 2. Defining the second surface error si,2 = x̂i,2 − vi,2, we have

Dαsi,2 = Dα x̂i,2 − Dαvi,2 = x̂i,3 + ki,2ei,1 + θ̃T
i,2 ϕi,2 + θT

i,2 ϕi,2 + ε
q
i,2 + Δ f q

i,2 − Dαvi,2. (38)

According to Equation (16), we can obtain

Dαsi,2 = si,3 + wi,3 + αi,2 + ki,2ei,1 + θ̃T
i,2 ϕi,2 + θT

i,2 ϕi,2 + ε
q
i,2 + Δ f q

i,2 − Dαvi,2. (39)

Select the Lyapunov function as follows:

V2 = V1 +
N

∑
i=1

Vi,2 = V1 +
1
2

N

∑
i=1

(
s2

i,2 +
1

σi,2
θ̃T

i,2θ̃i,2 +
1

ri,2
δ̃2

i,2 + w2
i,2

)
. (40)
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Further, we can obtain

DαV2 ≤ DαV1 +
N

∑
i=1

(
si,2(si,3 + wi,3 + αi,2 + ki,2ei,1 + θ̃T

i,2 ϕi,2 + θT
i,2 ϕi,2 + Δi,2

−Dαvi,2) +
1

σi,2
θ̃T

i,2Dαθ̃i,2 +
1

ri,2
δ̃i,2Dαδ̃i,2 +wi,2Dαwi,2).

(41)

Similar to the previous calculation, the following inequalities hold

si,2(si,3 + wi,3) ≤ s2
i,2 +

1
2

(
s2

i,3 + w2
i,3

)
(42)

si,2ki,2ei,1 ≤
1
2

s2
i,2 +

k2
i,2

2
‖ei,1‖2 (43)

si,2Δi,2 ≤ |si,2Δi,2| ≤ |si,2||Δi,2| ≤ |si,2|δ∗i,2=|si,2|
(
δ̃i,2 + δi,2

)
. (44)

Substituting (42)–(44) into (41), we obtain

DαV2 ≤ DαV1 +
N

∑
i=1

(
si,2

(
αi,2 + θ̃T

i,2 ϕi,2 + θT
i,2 ϕi,2 −Dαvi,2) + |si,2|

(
δ̃i,2 + δi,2

)
+

3
2

s2
i,2 +

1
2

(
s2

i,3 + w2
i,3

)
+

k2
i,2

2
‖ei,1‖2− 1

σi,2
θ̃T

i,2Dαθi,2 −
1

ri,2
δ̃i,2Dαδi,2 + wi,2Dαwi,2

)
.

(45)

We select the virtual controller αi,2 and the parameters adaptive laws as follows:

αi,2 = −ci,2si,2 −
3
2

si,2 −
di

2

2
si,2 − θT

i,2 ϕi,2 +
αi,1 − vi,2

λi,2
− sign(si,2)δi,2 (46)

Dαθi,2 = σi,2 ϕi,2
(
X̂i,2

)
si,2 − ρi,2θi,2 (47)

Dαδi,2 = ri,2|si,2| − ηi,2δi,2. (48)

Substituting (35), (38) and (47)–(48) into (45), we have

DαV2 ≤ −q1‖e‖2 +
1
2
‖Pε‖2 +

N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l +

N

∑
i=1

{
−ci1s2

i,1 +
ρi,1

σi,1
θ̃T

i,1θi,1 +
ηi,1

ri,1
δ̃i,1δi,1

+ ∑N
j=1 aij

(
ρj,1

σj,1
θ̃T

j,1θj,1 +
ηj,1

rj,1
δ̃j,1δj,1

)
+

di
2

2

(
s2

i,2 + w2
i,2

)}

+
N

∑
i=1

{
si,2

[
−ci,2si,2 −

3
2

si,2 −
di

2

2
si,2 − θT

i,2 ϕi,2 +
αi,1 − vi,2

λi,2
− sign(si,2)δi,2 + θ̃T

i,2 ϕi,2

+θT
i,2 ϕi,2 − Dαvi,2

]
+ |si,2|

(
δ̃i,2 + δi,2

)
+

3
2

s2
i,2 +

1
2

(
s2

i,3 + w2
i,3

)
+

k2
i,2

2
‖ei,1‖2

− 1
σi,2

θ̃T
i,2
(
σi,2 ϕi,2

(
X̂i,2

)
si,2 − ρi,2θi,2

)
− 1

ri,2
δ̃i,2(ri,2|si,2| − ηi,2δi,2)+wi,2

(
−wi,2

λi,2
+ Bi,2

)}
.

(49)

By Lemma 4, we have

wi,2Bi,2 ≤
1
2

w2
i,2 +

1
2

M2
i,2. (50)
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Then, we have

DαV2 ≤ −q2‖e‖2 +
1
2
‖Pε‖2 +

N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l +

N

∑
i=1

{
−ci1s2

i,1 − ci,2s2
i,2 +

ρi,1

σi,1
θ̃T

i,1θi,1

+
ηi,1

ri,1
δ̃i,1δi,1 +

ρi,2

σi,2
θ̃T

i,2θi,2 +
ηi,2

ri,2
δ̃i,2δi,2 +

N

∑
j=1

aij

(
ρj,1

σj,1
θ̃T

j,1θj,1 +
ηj,1

rj,1
δ̃j,1δj,1

)

−
(

1
λi,2

− 1
2
− di

2

2

)
w2

i,2 +
1
2

(
s2

i,3 + w2
i,3

)
+

1
2

M2
i,2

}
(51)

where q2 = q1 −∑N
i=1 k2

i,2.
Similar to (36) ,we have

λi,3Dαvi,3 + vi,3 = αi,2, vi,3(0) = αi,2(0). (52)

By Equation (52), we can obtain

Dαwi,3 = Dαvi,3 − Dααi,2 = −vi,3 − αi,2

λi,3
− Dααi,2 = −wi,3

λi,3
+ Bi,3 (53)

where Bi,3=−Dααi,2. Furthermore, there exists an unknown constant Mi3 such that |Bi3| ≤
Mi3 holds.

Step m. The Caputo fractional derivatives of si,m are as follows:

Dαsi,m = Dα x̂i,m − Dαvi,m = x̂i,m+1 + ki,mei,1 + θ̃T
i,m ϕi,m + θT

i,m ϕi,m + ε
q
i,m + Δ f q

i,m − Dαvi,m. (54)

Substituting (16) into (54) produces

Dαsi,m = si,m+1 + wi,m+1 + αi,m + ki,mei,1 + θ̃T
i,m ϕi,m + θT

i,m ϕi,m + ε
q
i,m + Δq

i,m − Dαvi,m. (55)

We construct a Lyapunov function candidate as

Vm=Vm−1 +
N

∑
i=1

Vi,m = Vm−1 +
1
2

N

∑
i=1

{
s2

i,m +
1

σi,m
θ̃T

i,m θ̃i,m +
1

ri,m
δ̃2

i,m + w2
i,m

}
. (56)

According to Lemma 3 and (55), we can obtain

DαVm ≤ DαVm−1 +
N

∑
i=1

(
si,mDαsi,m +

1
σi,m

θ̃T
i,mDαθ̃i,m +

1
ri,m

δ̃i,mDαδ̃i,m + wi,mDαwi,m

)

≤ DαVm−1 +
N

∑
i=1

{
si,m[si,m+1 + wi,m+1 + αi,m + ki,mei,1 + θ̃T

i,m ϕi,m + θT
i,m ϕi,m

+ε
q
i,m + Δ f q

i,m − Dαvi,m

]
+

1
σi,m

θ̃T
i,mDαθ̃i,m +

1
ri,m

δ̃i,mDαδ̃i,m + wi,mDαwi,m

}
.

(57)

Similar to (22) and (23), the following inequalities hold

si,mki,mei,1 ≤
1
2

s2
i,m +

1
2

k2
i,m‖ei,1‖2 (58)

si,m(si,m+1 + wi,m+1) ≤ s2
i,m +

1
2

s2
i,m+1 +

1
2

w2
i,m+1 (59)

si,mΔi,m ≤ |si,mΔi,m| ≤ |si,m||Δi,m| ≤ |si,m|δ∗i,m=|si,m|
(
δ̃i,m + δi,m

)
. (60)
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Substituting (58)–(60) into (57) produces

DαVm ≤ DαVm−1 +
N

∑
i=1

{
si,m

(
αi,m + θ̃T

i,m ϕi,m +θT
i,m ϕi,m − Dαvi,m

)
+

3
2

s2
i,m +

1
2

k2
i,m‖ei,1‖2 + |si,m|

(
δ̃i,m + δi,m

)
+

1
2

s2
i,m+1 +

1
2

w2
i,m+1

− 1
σi,m

θ̃T
i,mDαθi,m −

1
ri,m

δ̃i,mDαδi,m + wi,mDαwi,m

}
.

(61)

We design the m-th virtual control function αi,m and parameters adaptive laws

αi,m = −ci,msi,m − 2si,m − θT
i,m ϕi,m +

αi,m−1 − vi,m

λi,m
− sign(si,m)δi,m (62)

Dαθi,m = σi,m ϕi,m
(
X̂i,m

)
si,m − ρi,mθi,m (63)

Dαδi,m = ri,m|si,m| − ηi,mδi,m. (64)

Substituting Equations (62)–(64) into (61), we can obtain

DαVm ≤ DαVm−1 +
N

∑
i=1

{
si,m[−ci,msi,m − 2si,m − θT

i,m ϕi,m +
αi,m−1 − vi,m

λi,m

− sign(si,m)δi,m + θ̃T
i,m ϕi,m +θT

i,m ϕi,m − Dαvi,m

]
+ |si,m|

(
δ̃i,m + δi,m

)
+

3
2

s2
i,m

+
1
2

k2
i,m‖ei,1‖2 +

1
2

s2
i,m+1 +

1
2

w2
i,m+1 −

1
σi,m

θ̃T
i,m
(
σi,m ϕi,m

(
X̂i,m

)
si,m − ρi,mθi,m

)
− 1

ri,m
δ̃i,m(ri,m|si,m| − ηi,mδi,m) + wi,mDαwi,m

}
.

(65)

Similar to (52), vi,m can be obtained as

λi,mDαvi,m + vi,m = αi,m−1, vi,m(0) = αi,m−1(0). (66)

By Equation (66), we have

Dαwi,m = −wi,m

λi,m
+ Bi,m (67)

where |Bim| ≤ Mim, and Mim is an unknown constant.
By employing Young’s inequality, we have

wi,mBi,m ≤
1
2

w2
i,m +

1
2

M2
i,m. (68)

From (65)–(68), we have

DαVm ≤ DαVm−1 +
N

∑
i=1

{
−ci,ms2

i,m +
ρi,m

σi,m
θ̃T

i,mθi,m +
ηi,m

ri,m
δ̃i,mδi,m +

1
2

s2
i,m+1

+
1
2

w2
i,m+1 −

(
1

λi,m
− 1

2

)
w2

i,m +
1
2

M2
i,m −

1
2

s2
i,m +

1
2

k2
i,m‖ei,1‖2

}
.

(69)

Combining (15), (35) and (51) together leads to
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DαVm−1 ≤ −qm−1‖e‖2 +
1
2
‖Pε‖2 +

N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l

+
N

∑
i=1

{
m−1

∑
l=1

(
−ci,l s2

i,l +
ρi,l

σi,l
θ̃T

i,lθi,l +
ηi,l

ri,l
δ̃i,lδi,l

)
+ ∑

j∈Ni

aij

(
ρj,1

σj,1
θ̃T

j,1θj,1 +
ηj,1

rj,1
δ̃j,1δj,1

)

−
(

1
λi,2

− 1
2
− di

2

2

)
w2

i,2 −
m−1

∑
l=3

(
1

λi,l
− 1

)
w2

i,l +
1
2

(
s2

i,m + w2
i,m

)
+

m−1

∑
l=2

1
2

M2
i,l

}
.

(70)

Substituting (70) into (69), we can obtain

DαVm ≤ −qm‖e‖2 +
1
2
‖Pε‖2 +

N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l

+
N

∑
i=1

{
m

∑
l=1

(
−ci,l s2

i,l +
ρi,l

σi,l
θ̃T

i,lθi,l +
ηi,l

ri,l
δ̃i,lδi,l

)
+ ∑N

j=1 aij

(
ρj,1

σj,1
θ̃T

j,1θj,1 +
ηj,1

rj,1
δ̃j,1δj,1

)

−
(

1
λi,2

− 1
2
− d2

i
2

)
w2

i,2 −
m

∑
l=3

(
1

λi,l
− 1

)
w2

i,l +
1
2

(
s2

i,m+1 + w2
i,m+1

)
+

m

∑
l=2

1
2

M2
i,l

} (71)

where qm = qm−1 −∑N
i=1 k2

i,m.

Step n. As in the previous design steps, we define the following equations:

si,n = x̂i,n − vi,n (72)

wi,n = vi,n − αi,n−1. (73)

Similar to (66), we can obtain vi,n as

λi,nDαvi,n + vi,n = αi,n−1, vi,n(0) = αi,n−1(0). (74)

By Equations (73) and (74), we have

Dαwi,n = −wi,n

λi,n
+ Bi,n. (75)

Further, the fractional derivative Dαsi,n is given by

Dαsi,n = Dα x̂i,n − Dαvi,n = ui(t) + ki,nei,1 + θ̃T
i,n ϕi,n + θT

i,n ϕi,n + ε
q
i,n + Δ f q

i,n − Dαvi,n

= qi(ωi(t)) + ki,nei,1 + θ̃T
i,n ϕi,n + θT

i,n ϕi,n + ε
q
i,n + Δ f q

i,n − Dαvi,n.
(76)

We construct the Lyapunov function as follows:

Vn=Vn−1 +
N

∑
i=1

Vi,n = Vn−1 +
1
2

N

∑
i=1

{
s2

i,n +
1

σi,n
θ̃T

i,n θ̃i,n +
1

ri,n
δ̃2

i,n + w2
i,n

}
. (77)

Then, one has

DαVn=DαVn−1 + Dα

(
N

∑
i=1

Vi,n

)

≤ DαVn−1 +
N

∑
i=1

{
si,nDαsi,n −

1
σi,n

θ̃T
i,nDαθi,n −

1
ri,n

δ̃i,nDαδi,n + wi,nDαwi,n

}
.

(78)

Substituting Equation (76) into (78), we have
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DαVn ≤ DαVn−1 +
N

∑
i=1

{
si,n[qi(ωi(t)) + ki,nei,1 + θ̃T

i,n ϕi,n + θT
i,n ϕi,n + ε

q
i,n + Δ f q

i,n − Dαvi,n]

− 1
σi,n

θ̃T
i,nDαθi,n −

1
ri,n

δ̃i,nDαδi,n + wi,nDαwi,n

}
.

(79)

According to (5), we have

DαVn ≤ DαVn−1 +
N

∑
i=1

{
si,n[H(ωi)ωi(t) + Li(t) + ki,nei,1 + θ̃T

i,n ϕi,n−Dαvi,n]

+θT
i,n ϕi,n + ε

q
i,n + Δ f q

i,n −
1

σi,n
θ̃T

i,nDαθi,n −
1

ri,n
δ̃i,nDαδi,n + wi,nDαwi,n

}
.

(80)

The actual controller ωi(t) is designed as

Dαθi,n = σi,n ϕi,n
(
X̂i,n

)
si,n − ρi,nθi,n (81)

Dαδi,n = ri,n|si,n| − ηi,nδi,n (82)

ᾱin = ci,nsi,n +
3
2

si,n + θT
i,n ϕi,n + sign(si,n)δi,n −

αi,n−1 − vi,n

λi,n
(83)

ωi(t) =
1

1− d

⎛⎝−ᾱin −
si,n(κi1ᾱin)

2√
(si,nκi1ᾱin)

2 + κ2
i,2

−
si,n M2

i,1√
(si,n Mi,1)

2 + κ2
i,2

⎞⎠. (84)

Notice that, from (5) and (84), we can obtain

H(ωi)ωi(t) ≤ −ᾱin −
si,n(κi1ᾱin)

2√
(si,nκi1ᾱin)

2 + κ2
i,2

−
si,n M2

i,1√
(si,n Mi,1)

2 + κ2
i,2

. (85)

We define the event-triggered controller ui(t) as follows

ui(t)=qi(ωi(tk))∀ ∈ [tk, tk+1). (86)

The triggering condition for the sampling instants are as follows:

tk+1= inf{ t ∈ R||Δi(t)| ≥ κi1|ui(t)|+ Hi1} (87)

where Δi(t)=qi(ωi(t))− ui(t) is the event sampling error, 0 < κi1 < 1, Hi1 is a positive
constant, and tk, k ∈ z+ is the controller update time.

3.3. Stability Analysis

From Equation (87), we have

Δi(t)=qi(ωi(t))− ui(t)=βi1(t)κi1ui(t) + βi2(t)Hi1 (88)

where βi1(t), βi2(t) are time-varying parameters satisfying |βi1(t)| ≤ 1, |βi2(t)| ≤ 1.
Accordingly, one can obtain

ui(t)=
qi(ωi(t))− βi2(t)Hi1

1 + βi1(t)κi1
. (89)
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Thus, it follows that

DαVn ≤ DαVn−1 +
N

∑
i=1

{
si,n

[
qi(ωi(t))− βi2(t)Hi1

1 + βi1(t)κi1
+ ki,nei,1 + θ̃T

i,n ϕi,n + θT
i,n ϕi,n

+ ε
q
i,n + Δ f q

i,n−Dαvi,n]−
1

σi,n
θ̃T

i,nDαθi,n −
1

ri,n
δ̃i,nDαδi,n +wi,nDαwi,n

}
.

(90)

Substituting Equations (81) and (82) into (90), we can obtain

DαVn ≤ DαVn−1 +
N

∑
i=1

{
si,n[

qi(ωi(t))− βi2(t)Hi1
1 + βi1(t)κi1

+θT
i,n ϕi,n − Dαvi,n] + si,n(ki,nei,1 + θ̃T

i,n ϕi,n

+ε
q
i,n + Δ f q

i,n)−
1

σi,n
θ̃T

i,n(σi,n ϕi,nsi,n − ρi,nθi,n)−
1

ri,n
δ̃i,n(ri,n|si,n| − ηi,nδi,n) + wi,nDαwi,n

}
.

(91)

Then, we can obtain

DαVn ≤ DαVn−1 +
N

∑
i=1

{
si,n

[
qi(ωi(t))− βi2(t)Hi1

1 + βi1(t)κi1
+ ᾱin

]
− cins2

i,n −
3
2

s2
i,n

− |si,n|δi,n + si,n

(
ε

q
i,n + Δ f q

i,n

)
+

ρi,n

σi,n
θ̃T

i,nθi,n + si,nki,nei,1

− 1
ri,n

δ̃i,n(ri,n|si,n| −ηi,nδi,n) + wi,nDαwi,n
}

.

(92)

Similar to the previous calculation, we have

si,nki,nei,1 ≤
1
2

s2
i,n +

1
2

k2
i,n‖ei,1‖2 (93)

si,n

(
ε

q
i,n + Δ f q

i,n

)
≤ |si,n|

(
δ̃i,n + δi,n

)
. (94)

From Equations (92)–(94), we can obtain

DαVn ≤ DαVn−1 +
N

∑
i=1

{
si,n

[
qi(ωi(t))− βi2(t)Hi1

1 + βi1(t)κi1
+ ᾱin

]
− cins2

i,n − s2
i,n

+
ρi,n

σi,n
θ̃T

i,nθi,n +
ηi,n

ri,n
δ̃i,nδi,n +

1
2

k2
i,n‖ei,1‖2 +wi,n

(
−wi,n

λi,n
+ Bi,n

)}
.

(95)

By employing Young’s inequality, we have

wi,nBi,n ≤
1
2

w2
i,n +

1
2

M2
i,n. (96)

Then we have

DαVn ≤ DαVn−1 +
N

∑
i=1

{
si,n

[
qi(ωi(t))− βi2(t)Hi1

1 + βi1(t)κi1
+ ᾱin

]
− cins2

i,n − s2
i,n

+
ρi,n

σi,n
θ̃T

i,nθi,n +
ηi,n

ri,n
δ̃i,nδi,n +

1
2

k2
i,n‖ei,1‖2−

w2
i,n

λi,n
+

1
2

w2
i,n +

1
2

M2
i,n

}
.

(97)

Substituting Equations (5), (84) and (85) into (97), we have
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DαVn ≤ DαVn−1 +
N

∑
i=1

{
−cins2

i,n − s2
i,n +

ρi,n

σi,n
θ̃T

i,nθi,n +
ηi,n

ri,n
δ̃i,nδi,n +

1
2

k2
i,n‖ei,1‖2 −

w2
i,n

λi,n

+
1
2

w2
i,n +

1
2

s2
i,n +

ω2
min

2(1− κi1)
2 +

1
2

M2
i,n +

2κi2
1− κi1

}
.

(98)

From Equation (71), we can obtain

DαVn−1 ≤ −qn−1‖e‖2 +
1
2
‖Pε‖2 +

N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l

+
N

∑
i=1

{
n−1

∑
l=1

(
−ci,,l s2

i,l +
ρi,l

σi,l
θ̃T

i,lθi,l +
ηi,l

ri,l
δ̃i,lδi,l

)

+
N

∑
j=1

aij

(
ρj,1

σj,1
θ̃T

j,1θj,1 +
ηj,1

rj,1
δ̃j,1δj,1

)
−
(

1
λi,2

− 1
2
− d2

i
2

)
w2

i,2

−
n−1

∑
l=3

(
1

λi,l
− 1

)
w2

i,l +
1
2

(
s2

i,n + w2
i,n

)
+

n−1

∑
l=2

1
2

M2
i,l

}
.

(99)

Substituting (99) into (98) yields

DαVn ≤ −qn‖e‖2 +
1
2
‖Pε‖2 +

N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l +

N

∑
i=1

{
n

∑
l=1

(
−ci,,l s2

i,l +
ρi,l

σi,l
θ̃T

i,lθi,l +
ηi,l

ri,l
δ̃i,lδi,l

)

+
N

∑
j=1

aij

(
ρj,1

σj,1
θ̃T

j,1θj,1 +
ηj,1

rj,1
δ̃j,1δj,1

)
−
(

1
λi,2

− 1
2
− d2

i
2

)
w2

i,2

−
n

∑
l=3

(
1

λi,l
− 1

)
w2

i,l +
ω2

min

2(1− κi1)
2 +

n

∑
l=2

1
2

M2
i,l +

2κi2
1− κi1

} (100)

where qn = qn−1 −∑N
i=1 k2

i,n. According to Lemma 4, we have

θ̃T
∗,lθ∗,l ≤ −

1
2

θ̃T
∗,l θ̃∗,l +

1
2

θ∗T
∗,l θ∗∗,l (101)

δ̃∗,lδ∗,l ≤ −
1
2

δ̃2
∗,l +

1
2

δ∗,l
∗2. (102)

From Equations (100)–(102), we can obtain

DαVn ≤ −qn‖e‖2 +
1
2
‖Pε‖2 +

N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l

+
N

∑
i=1

{
n

∑
l=1

(
−ci,,l s2

i,l −
ρi,l

2σi,l
θ̃T

i,l θ̃i,l −
ηi,l

2ri,l
δ̃2

i,l

)
+

N

∑
j=1

aij

(
−

ρj,1

2σj,1
θ̃T

j,1θ̃j,1 −
ηj,1

2rj,1
δ̃2

j,1

)

−
(

1
λi,2

− 1
2
− d2

i
2

)
w2

i,2 −
n

∑
l=3

(
1

λi,l
− 1

)
w2

i,l

+
n

∑
l=1

(
ρi,l

2σi,l
θ∗T

i,l θ∗i,l +
ηi,l

2ri,l
δ∗2

i,l

)
+ ∑

j∈Ni

aij

(
ρj,1

2σj,1
θ∗T

j,1 θ∗j,1 +
ηj,1

2rj,1
δ∗2

j,1

)

+
ω2

min

2(1− κi1)
2 +

n

∑
l=2

1
2

M2
i,l +

2κi2
1− κi1

}
.

(103)
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Denote

ξ =
1
2
‖Pε‖2 +

N

∑
i=1

{
n

∑
l=1

(
ρi,l

2σi,l
θ∗T

i,l θ∗i,l +
ηi,l

2ri,l
δ∗2

i,l

)
+

N

∑
j=1

aij

(
ρj,1

2σj,1
θ∗T

j,1 θ∗j,1 +
ηj,1

2rj,1
δ∗2

j,1

)

+
ω2

min

2(1− κi1)
2 +

n

∑
l=2

1
2

M2
i,l +

2κi2
1− κi1

}
.

(104)

Then Equation (103) can be written as

DαVn ≤ −qn‖e‖2 +
N

∑
i=1

{
n

∑
l=1

(
−ci,,l s2

i,l −
(

ρi,l

2σi,l
− 1

2

)
θ̃T

i,l θ̃i,l

− ηi,l

2ri,l
δ̃2

i,l

)
+

N

∑
j=1

aij

(
−

ρj,1

2σj,1
θ̃T

j,1θ̃j,1 −
ηj,1

2rj,1
δ̃2

j,1

)

−
(

1
λi,2

− 1
2
− d2

i
2

)
w2

i,2 −
n

∑
l=3

(
1

λi,l
− 1

)
w2

i,l

}
+ ξ

(105)

where ci,l > 0, (l = 1, . . . , n),
(

1
λi,2
− 1

2 −
d2

i
2

)
> 0,

(
1

λi,l
− 1

)
> 0, l = 3, . . . , n,

(
ρi,l

2σi,l
− 1

τi

)
>

0, ηi,l
2ri,l

> 0, ρi,l
2σi,l

> 0.

Define

C = min
{

2qn
/

λmin(P), 2ci,l , 2
(

ρi,l

2σi,l
− 1

2

)
,

ηi,l

ri,l
,

ρi,l

σi,l
, 2

(
1

λi,2
− 1

2
− di

2

2

)
, 2
(

1
λi,l

− 1
)}

. (106)

Then Equation (105) becomes

DαVn ≤ −CVn + ξ. (107)

According to Equation (107), we can obtain

DαVn + Q(t) = −CVn + ξ (108)

where Q(t) ≥ 0.
According to Lemma 6, we can obtain

Vn ≤ V(0)Eα(−Ctα) +
ξμ
C . (109)

Then, we have

lim
t→∞

|Vn(t)| ≤
ξμ

C
. (110)

Since 1
2 |si,1|2 ≤ Vn(t), and we can obtain ||si,1|| ≤

√
2ξμ
C , invoking si,1 = ∑N

j=1 aij
(
yi − yj

)
+∑N+M

j=N+1 aij

(
yi − ydj(t)

)
, note the fact that s1 = L1y + L2r(t), where s1 = [s1,1, . . . , sN,1]

T .

Because the convex hull spanned by leaders is defined as rd(t) = −L−1
1 L2r(t), then, the con-

tainment errors satisfy ‖e‖ = ‖y− rd(t)‖ ≤
√

2ξμ/C
‖L1‖F

.
The proof process that the proposed control method can avoid Zeno phenomenon is

as follows:
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By Δi(t)=qi(ωi(t)) − ui(t), we have Dα|Δi|=Dα
(√

Δi · Δi
)

= sign(Δi)Dα(Δi) ≤
|Dα(qi(ωi(t)))| = |Dα(H(ωi)ωi(t))| ≤ (1 + d)|Dα(ωi(t))|. According to Equation (84),
Dα(ωi(t)) is bounded in a closed interval [0, t]. Therefore, there exists a constant ς > 0
such that |Dα(ωi(t))| ≤ ς. From Δ(tk) = 0 and limt→tk+1 Δ(t) = Hi1, thus, there exists t∗

such that t∗ ≥ Hi1
/

ς. Therefore, there exists t∗ ≥ 0 such that ∀k ∈ z+, {tk+1 − tk} ≥ t∗,
the Zeno phenomenon will not occur.

Remark 1. It should be noted that the classical local theories used in this paper do not have the
ability to describe the material heterogeneities and the fluctuations of different scales. In future
research, we will use a more appropriate definition of a fractional differential, such as the Atangana-
Baleanu [50] or Caputo-Fabrizio [51] fractional derivative definition.

4. Simulation

In this section, to verify the effectiveness of the proposed method, the following
fractional Duffing-Holmes chaotic system [52] is considered.⎧⎪⎪⎨⎪⎪⎩

Dαxi,1 = xi,2 + f q
i,1(Xi,1)

Dαxi,2 = ui(t) + f q
i,2(Xi,2)

yi = xi,1

(111)

where the system order is α = 0.98, i = 1, 2, 3, 4. yd1 = 0.2 sin t and yd2 = sin 0.3t
are defined as the leaders. The unknown functions are f q

1,1 = f q
2,1 = f q

3,1 = f q
4,1 = 0,

f 1
1,2 = x1,1− 0.25x1,2− x3

1,1 + 0.3 cos(t), f 2
1,2 = 2x1,1− 0.25x1,2− x3

1,1, f 1
2,2 = x2,1− 0.25x2,2−

x3
2,1 + 0.1

(
x2

2,1 + x2
2,2

)1/2
, f 2

2,2 = x2
2,1, f 1

3,2 = x3,1− 0.25x3,2− x3
3,1 + 0.2 sin(t)

(
x2

3,1 + 2x2
3,2

)1/2
,

f 2
3,2 = x2

3,1 − x3
3,1, f 1

4,2 = x2
4,1, and f 2

4,2 = x4,1 − 0.25x4,2 − x3
4,1 + 0.2 sin(t)

(
2x2

4,1 + 2x2
4,2

)1/2
.

We chose the design parameters as ci,1 = 20, ci,2 = 30, σi,2 = ri,2 = 1, ρi,2 = 40, ηi,2 = 20,
λi,2 = 0.05, κi1 = 0.5, κi2 = 2, Mi,1 = 1, ωmin = 1, and d = 0.4. We chose the initial
conditions of the system as x1(0) = [0.1, 0.1]T , x2(0) = [0.2, 0.2]T , x3(0) = [0.3, 0.3]T , and
x4(0) = [0.4, 0.4]T . The observer initial conditions were chosen as x̂1(0) = [0.2, 0.2]T ,
x̂2(0) = [0.3, 0.3]T , x̂3(0) = [0.4, 0.4]T , and x̂4(0) = [0.5, 0.5]T .

The communication graph of the multiagent system is shown in Figure 1. Figures 2–13
show the simulation results. Figure 2 displays the trajectories of yd1, yd2 and xi,1(i = 1, · · · , 4).
Figure 3 shows the trajectories of the containment tracking errors. Figure 3a shows the
trajectories of the containment tracking errors based on the event-triggered quantized
controller, and Figure 3b shows the trajectories of containment tracking errors based on
the event-triggered controller without input quantization. Figure 4 shows the trajectories
of the xi,1(i = 1, · · · , 4) estimation values. Figure 5 gives the error surfaces si,1 of the two
controllers. Figure 6 gives the trajectories of xi,2 and x̂i,2. We use x1,1 and x1,2 as examples
in Figure 7 to show the results of the neural network observer designed in this paper.
Figures 8–11 show the trajectories of ωi, q(ωi), and ui. Meanwhile, we compared the
event-triggered control input without quantitative control technology with the control
input mentioned in this article. From Figures 8–11, the triggered number of control input
via the quanzited mechanism was reduced by 7% to 20%, among which u1 was reduced by
20% (see Figure 8), and u4 was reduced by 7% (see Figure 11). In order to better highlight
the advantages of the method proposed in this paper, we have compared the triggered
number under different sampling mechanisms. It can be seen from Figure 13 that the
proposed method can significantly reduce the number of control input samples. This means
that the combination of event-triggered control and quantized control mechanisms can
effectively reduce the number of transmissions of control input signals, so it has more
practical significance and potential engineering value. Figure 12 shows the trajectories of
the switching signal σi(t). From the simulation results, the proposed method can ensure all
followers converge to the leaders’ convex hull, and the control performance is satisfactory.
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Figure 1. Communication graph.
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Figure 2. The trajectories of yd1,yd2 and xi,1(i = 1, · · · , 4).
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Figure 3. The trajectories of the containment tracking errors. (a) with quantized control. (b) without
quantized control.
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Figure 4. The trajectories of the xi,1(i = 1, · · · , 4) estimation values.
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Figure 5. The trajectories of the error surfaces si,1(i = 1, · · · , 4). (a) with quantized control. (b) with-
out quantized control.
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Figure 6. The trajectories of the xi,2(i = 1, · · · , 4) and xi,2(i = 1, · · · , 4) estimation values.
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Figure 7. The trajectories of the x1,1, x1,1 estimation and x1,2, x1,2 estimation.
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Figure 8. The trajectories of ω1, q(ω1), and u1. (a) with quantized control. (b) without quantized control.
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Figure 9. The trajectories of ω2, q(ω2), and u2. (a) with quantized control. (b) without quantized control.
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Figure 10. The trajectories of ω3, q(ω3), and u3. (a) with quantized control. (b) without quantized control.
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Figure 11. The trajectories of ω4, q(ω4), and u4. (a) with quantized control. (b) without quantized control.
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Figure 12. The switching signals σi(t) of nonlinear functions.
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5. Conclusions

This paper proposed an event-triggered adaptive neural network dynamic surface
quantized controller for the switched fractional order multiagent systems containment
control problem. The followers considered were fractional order systems and contained
arbitrarily switched nonlinear functions and unmeasured states. The hysteresis quantizer
that we used can effectively avoid the chattering phenomena. An event-triggered scheme
without Zeno behavior was considered, which reduced the utilization of communication
resources. An RBF neural network was used to approximate unknown nonlinear functions
and construct state observers to obtain unmeasurable states. Fractional derivatives of
virtual control laws were obtained by fractional order DSC techniques, while avoiding
“explosion of complexity”. Example and simulation results showed that the proposed
controller can not only ensure that all followers can converge to the leader’s convex hull
but also reduce the sampling frequency of the control input compared with the traditional
event-triggered mechanism. With the consideration of dynamic uncertainties and the
reduction in communication resources, the control algorithm in this study has a significant
practical value, especially in the aspect of network control. Based on the previous work, this
paper extended the adaptive dynamic surface control technology to the switched fractional
order multiagent system and further studied the bipartite containment control problem
under an event-triggered mechanism and control input quantization. Future research
will apply this control scheme to real physical systems, such as wing vibration control of
fixed-wing aircraft, robot formation control, etc.
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Abstract: In this paper, inside the system of uncertainty theory, the valuation of equity warrants is
explored. Different from the strategies of probability theory, the valuation problem of equity warrants
is unraveled by utilizing the strategy of uncertain calculus. Based on the suspicion that the firm price
follows an uncertain differential equation, a valuation formula of equity warrants is proposed for an
uncertain stock model.
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1. Introduction

Warrants give the holder the right but not the obligation to purchase or sell the
underlying assets by a specific date for a certain cost. Be that as it may, this right is not
free. The warrant is one sort of exceptional option and it can be ordered in many types.
Warrants can be partitioned into American warrants and European warrants as indicated
by the distinction of the lapse date. Furthermore, they may be partitioned into call warrants
and put warrants as indicated by the distinction of activity method. They may also be
partitioned into equity warrants and covered warrants, agreeing with the distinction of the
issuer. Covered warrants are as a rule given by sellers, which do not raise the organization’s
capital stock after their lapse dates. Valuing for this sort of warrant is like evaluating for
normal options and, subsequently, numerous specialists use the Black–Scholes model [1]
to value this sort of warrant. Yet, the value warrants are generally given by the recorded
organization and the underlying capital is the given stock of its organization. The value
warrants have a weakening impact and, consequently, valuing for this sort of warrant
is in contrast to estimating for the standard European options in light of the fact that
the organizations’ equity warrants need to give new stock to meet the solicitation of the
warrants’ holder at the maturity date. All in all, the estimation cannot totally apply the
works of art Black–Scholes model.

Uncertainty strategy was established by Liu [2] in 2007, and it has turned into a part of
obvious mathematics for demonstrating belief degrees. As a part of obvious mathematics to
manage belief degrees, the uncertainty hypothesis will assume a significant part in financial
hypothesis and practice. Liu [3] started the pioneering work of uncertain finance in 2009.
Thereafter, numerous analysts applied themselves to an investigation of financial issues
by utilizing uncertainty strategy. For instance, Chen [4] explored the American alternative
estimating issue and determined the evaluating formulae for Liu’s uncertain stock model,
and Chen and Gao [5] presented an uncertain term structure model of interest rate. Plus,
in view of uncertainty strategy, Chen, Liu, and Ralescu [6] proposed an uncertain stock
model with intermittent profits.

Previous studies of pricing equity warrants were mainly carried out with the method
of stochastic finance based on the probability theory, and the firm price was usually
assumed to follow some stochastic differential equation [7–9]. However, many empirical
investigations showed that the firm value does not behave randomly, and it is often
influenced by the belief degrees of investors since investors usually make their decisions
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based on the degrees of belief rather than the probabilities. For example, one of the key
elements in the Nobel Prize-winning theory of Kahneman and Tversky [10,11] is the finding
of probability distortion which showed that decision makers usually make their decisions
based on a nonlinear transformation of the probability scale rather than the probability
itself, and people often overweight small probabilities and underweight large probabilities.
Actually, we know that investors’ belief degrees play an important role in decision making
for financial practice [12–14]. Although a few models have been utilized in an equity
warrant pricing, applying an uncertain stock strategy has not been considered. In this
paper, inside the system of uncertain hypotheses, we examine the pricing issue of equity
warrants. Based on the suspicion that the stock price satisfies an uncertain differential
equation, we derive an uncertain model for estimating equity warrants.

The remainder of the paper is organized as follows: Some fundamental ideas of
uncertain processes are reviewed in Section 2. In Section 3, a short presentation of an
uncertain stock model is given. An uncertain value warrants model is proposed in Section 4.
Finally, a concise rundown is given in Section 5.

2. Preliminary

A uncertain process is basically a sequence of uncertain variables indexed by time or
space. In this segment, we review some essential realities about uncertain processes.

Definition 1 ([15]). Let T be an index set and let (Γ,M,L) be an uncertainty space. An uncertain
process is a measurable function from T× (Γ,M,L) to the set of real numbers, i.e., for each t ∈ T
and any Borel set B of real numbers, the set

{Xt ∈ B} = {γ ∈ Γ|Xt(γ) ∈ B}

is an event.

Definition 2 ([15]). The uncertainty distribution Φ of an uncertain variable ξ is defined by

Φ(x) =M{ξ ≤ x}

for any real number x.

Definition 3 ([15]). An uncertain variable ξ is called normal if it has a normal uncertainty
distribution

Φ(x) =
(

1 + exp
(

π(e− x)√
3σ

))−1

denoted by N (e, σ) where e and σ are real numbers with σ > 0.

Definition 4 ([2]). Let ξ be an uncertain variable. Then, the expected value of ξ is defined by

E[ξ] =
∫ +∞

0
M{ξ ≥ r}dr−

∫ 0

−∞
M{ξ ≤ r}dr,

provided that at least one of the two integrals is finite.

Theorem 1 ([2]). Let ξ be an uncertain variable with uncertainty distribution Φ. If the expected
value exists, then

E[ξ] =
∫ +∞

0
(1−Φ(x))dx−

∫ 0

−∞
Φ(x)dx.
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Theorem 2 ([16]). Let ξ be an uncertain variable with regular uncertainty distribution Φ. Then,

E[ξ] =
∫ 1

0
Φ−1(α)dα.

Definition 5 ([17]). Let Ct be a canonical Liu process and let Zt be an uncertain process. If there
exist uncertain processes μt and σt such that

Zt = Z0 +
∫ t

0
μsds +

∫ t

0
σsdCs,

for any t ≥ 0, then Zt is called a Liu process with drift μt and diffusion σt. Furthermore, Zt has an
uncertain differential

dZt = μtdt + σtdCt.

Definition 6 ([15]). Suppose Ct is a canonical Liu process, and f and g are two functions. Then,

dXt = f (t, Xt)dt + g(t, Xt)dCt

is called an uncertain differential equation.

Definition 7 ([18]). Let α be a number with 0 < α < 1. An uncertain differential equation

dXt = f (t, Xt)dt + g(t, Xt)dCt

is said to have an α-path Xα
t if it solves the corresponding ordinary differential equation

dXα
t = f (t, Xα

t )dt + |g(t, Xα
t )|Φ−1(α)dt,

where Φ−1(α) is the inverse standard normal uncertainty distribution, i.e.,

Φ−1(α) =

√
3

π
ln

α

1− α
.

Theorem 3 ([18]). Let Xt and Xα
t be the solution and α-path of the uncertain differential equation

dXt = f (t, Xt)dt + g(t, Xt)dCt,

respectively. Then,

M{Xt ≤ Xα
t , ∀t} = α

M{Xt > Xα
t , ∀t} = 1− α.

Theorem 4 ([18]). Let Xt and Xα
t be the solution and α-path of the uncertain differential equation

dXt = f (t, Xt)dt + g(t, Xt)dCt,

respectively. Then, the solution Xt has an inverse uncertainty distribution

Ψ−1
t (α) = Xα

t .

Theorem 5 ([18]). Let Xt and Xα
t be the solution and α-path of the uncertain differential equation

dXt = f (t, Xt)dt + g(t, Xt)dCt,
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respectively. Then, for any monotone (increasing or decreasing) function I, we have

E[I(Xt)] =
∫ 1

0
I(Xα

t )dα.

3. Uncertain Stock Model

Since the pioneer papers of Black, Scholes, and Merton on option evaluation were
distributed in the mid-1970s, as a significant instrument, the Black–Scholes model was
broadly utilized for estimating the financial derivatives by numerous specialists in which
the stock value measure was portrayed by a stochastic differential equation as follows:{

dXt = rXtdt
dVt = μVtdt + σVtdBt,

(1)

where Xt is the bond price, Vt is the stock price, r is the riskless interest rate, μ is the
log-drift, σ is the log-diffusion, and Bt is a Wiener process.

Nonetheless, this assumption was tested among others by Liu [17] who proposed a
contradiction showing that utilizing stochastic differential equations to depict stock value
processes is not sensible. As an alternate tenet, Liu [3] generalized an uncertain differential
equation to portray the fundamental stock value process and derived an uncertain stock
model in which the bond value Xt and the stock cost Vt are described by{

dXt = rXtdt
dVt = μVtdt + σVtdCt,

(2)

where Ct is a Liu process.
It follows from Equation (2) that the stock price is

Vt = V0eμt+σCt , 0 ≤ t ≤ T, (3)

whose inverse uncertainty distribution is

Φ−1(α) = V0 exp

{
μt +

σt
√

3
π

ln
α

1− α

}
.

4. The Pricing Model

Given an uncertainty space (Γ,M,L), we will suppose ideal conditions in the market
for the firm’s value and for the equity warrants:

(i) There are no transaction costs or taxes and all securities are perfectly divisible.
(ii) Dividends are not paid during the lifetime of the outstanding warrants, and the

sequential exercise of the warrants is not optimal for warrant holders.
(iii) The warrant-issuing firm is an equity firm with no outstanding debt.
(iv) The total equity value of the firm, during the lifetime of the outstanding warrants, Vt,

satisfies Equation (2).

In the case of equity warrants, the firm has N shares of common stock and M shares
of equity warrants outstanding. Each warrant entitles the owner to receive k shares of stock
at time T upon payment of J, the payoff of equity warrants is given by 1

N+Mk [kVT − NJ]+,
where VT is the value of the firm’s assets at time T. Considering the time value of money
resulting from the bond, the present value of this payoff is

e−r(T−t)

N + Mk
[kVT − NJ]+.
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Let fw represent the price of the equity warrant. Then, the time-zero net return of the
warrant holder is

− fw +
e−r(T−t)

N + Mk
[kVT − NJ]+.

On the other hand, the time-zero net return of the issuer is

fw −
e−r(T−t)

N + Mk
[kVT − NJ]+.

The fair price of this contract should make the holder of the equity warrant and the
bank have an identical expected return, i.e.,

fw − E

[
e−r(T−t)

N + Mk
[kVT − NJ]+

]

= − fw + E

[
e−r(T−t)

N + Mk
[kVT − NJ]+

]
.

Thus, the price of an equity warrant can be defined as follows.

Definition 8. Assume that there is a firm financed by N shares of stock and M shares of equity
warrants. Each warrant gives the holder the right to buy k shares of stock at time t = T in exchange
for payment of an amount J. Let Vt be the asset value of the firm at time t. Then, the equity warrant
price is

fw =
e−r(T−t)

N + Mk
E
[
(kVT − NJ)+

]
.

Theorem 6. Based on all information from Definition (8), the price of an equity warrant at time t is
given by

fw =
e−r(T−t)

N + Mk

∫ 1

0

[
kVt exp

{
μ(T − t)

+
σ
√

3(T − t)
π

ln
α

1− α

}
− NJ

]+
dα,

where the optimal solutions σ∗ and V∗t satisfy the following system of nonlinear equations:{
NSt = Vt −M fw

σs =
σVt
St

(
1
N − M

N
∂ fw
∂Vt

)
.

(4)

Proof. Solving the ordinary differential equation

dVα
t = μVα

t dt + σVα
t Φ−1(α)dt,

where 0 < α < 1 and Φ−1(α) is the inverse standard normal uncertainty distribution,
we have

Vα
t = V0 exp

{
μt + σΦ−1(α)t

}
.
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That means that the uncertain differential equation dVt = μVtdt + σVtdCt has an
α-path

Vα
t = V0 exp

{
μt + σΦ−1(α)t

}
= V0 exp

{
μt +

σ
√

3
π

ln
α

1− α

}
.

Since I(x) = e−r(T−t)

N+Mk [kVT − NJ]+ is an increasing function, it follows from Theorem 5
and Definition (8) that the equity warrant price is

fw = E[I(VT)] =
∫ 1

0
I(Vα

T )dα

=
e−r(T−t)

N + Mk

∫ 1

0
[kVα

T − NJ]+dα

=
e−r(T−t)

N + Mk

∫ 1

0

[
kVt exp

{
μ(T − t)

+
σ
√

3(T − t)
π

ln
α

1− α

}
− NJ

]+
dα.

It is shown that the warrant pricing formula mentioned above depends on Vt and σ,
which are unobservable. To obtain a pricing formula using observable values, we will make
use of the following result.

Let β be the stock’s elasticity, which gives the percentage change in the stock’s value
for a percentage change in the firm’s value. Then, from a standard result in option pricing
theory, we have

β =
σs

σ
=

Vt∂St

St∂Vt
. (5)

From assumption (iii), we obtain Vt = NSt + M fw. Consequently, we have

∂St

∂Vt
=

1
N
− M

N
∂ fw

∂Vt
. (6)

Now, from (5) and (6), it follows that

σs =
σVt

St

[
1
N
− M

N
∂ fw

∂Vt

]
. (7)

Theorem 7. If 0 < α < 1
2 . Then, the nonlinear system (4) has a solution (σ∗, V∗t ) ∈ (0,+∞)×

(0,+∞).
Proof. First, it is clear that for any σ ∈ (0,+∞), there exists a unique Vt ∈ (0,+∞)
which satisfies

NSt = Vt −M fw.

Define a map g : σ → Vt, which is given by an implicit function

G(σ, Vt) = Vt −M fw − NSt.
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The function g : σ �→ Vt is increasing when 0 < α < 1
2 since the following inequality

holds:

dVt

dσ
= − ∂G/∂σ

∂G/∂Vt
=

M ∂ fw
∂σ

1−M ∂ fw
∂Vt

> 0.

The inequality holds true because the function fw is an increasing function of σ.
Second, it is obvious that for any σ ∈ (0,+∞), there exists a unique Vt(σ) ∈ (0,+∞),

which satisfies

σs =
σVt

St

[
1
N
− M

N
∂ fw

∂Vt

]
.

Define a map h : σ �→ Vt, which is given by an implicit function

H(σ, Vt) =
σVt

St

[
1
N
− M

N
∂ fw

∂Vt

]
− σs.

Function h is strictly continuous in Vt for all positive σ. Moreover, for all σ > 0,
limVt→0 h(σ, Vt) = 0 and limVt→+∞ h(σ, Vt) = +∞. Thus, we have

(1) g is one to one, continuous, and strictly increasing;
(2) h is continuous and attains any value in (0,+∞).

Hence, the intersection of g and h exists. This completes the proof.

Different from a stochastic differential equation, an uncertain differential equation is
driven by a Liu process. As a type of differential equation involving an uncertain process,
it is very useful to deal with a dynamical process with uncertainty.

Figure 1 indicates that the equity warrant value is an increasing function with respect
to the time T when other parameters remain unchanged. This is because the longer the
time, the more likely it is to be executed and the higher the price of the equity warrant. This
law is common sense in the financial markets.

Example 1. Let N = 50, T − t = 3, M = 100, k = 1, St = 100, σs = 0.04, J = 50, r = 0.04,
μ = 0.02. Then, based on approximations Vt ≈ NSt and σ ≈ σs, the value of the equity warrant is

fw = 16.83.
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Figure 1. Equity warrant price fw with respect to time.
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5. Conclusions

The value of an equity warrant was examined within the structure of uncertainty
probability in this paper. In light of the supposition that the firm’s worth follows an
uncertain differential equation, the model of equity warrants for an uncertain stock model
was inferred with the strategy for uncertain analysis.
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Abstract: This paper researches the issue of the finite-time combination-combination (C-C) synchro-
nization (FTCCS) of fractional order (FO) chaotic systems under multiple stochastic disturbances
(SD) utilizing the nonsingular terminal sliding mode control (NTSMC) technique. The systems we
considered have different characteristics of the structures and the parameters are unknown. The
stochastic disturbances are considered parameter uncertainties, nonlinear uncertainties and external
disturbances. The bounds of the uncertainties and disturbances are unknown. Firstly, we are going to
put forward a new FO sliding surface in terms of fractional calculus. Secondly, some suitable adaptive
control laws (ACL) are found to assess the unknown parameters and examine the upper bound of
stochastic disturbances. Finally, combining the finite-time Lyapunov stability theory and the sliding
mode control (SMC) technique, we propose a fractional-order adaptive combination controller that
can achieve the finite-time synchronization of drive-response (D-R) systems. In this paper, some of
the synchronization methods, such as chaos control, complete synchronization, projection synchro-
nization, anti-synchronization, and so forth, have become special cases of combination-combination
synchronization. Examples are presented to verify the usefulness and validity of the proposed scheme
via MATLAB.

Keywords: fractional-order chaotic system; finite-time synchronization; adaptive sliding mode
control; stochastic disturbance

MSC: 34A08; 34D06

1. Introduction

Chaos is not an accidental or individual event, but a universal existence in various
macro and micro systems in the universe. It promotes and relies on other sciences, which
derive many interdisciplinary subjects, such as chaotic meteorology, chaotic economics,
chaotic mathematics, and so forth. Because chaos is ubiquitous in many systems, the re-
search on chaotic systems has drawn widespread attention of scholars. Thanks to the
nonlinear nature of the chaotic system and the sensitivity to the initial value, the control
and synchronization to the chaotic system has become a very difficult problem. Up to now,
many valid synchronization methods were researched, such as drive-response synchro-
nization [1], projective synchronization [2,3], adaptive fuzzy control [4–6], neural network
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synchronization [7,8], feedback synchronization [9] and pulse synchronization [10,11],
sliding mode control [12,13] and so forth.

Some scholars have taken the above methods into consideration for the synchroniza-
tion problem of FO chaotic systems [14–19]. However, the above research content does
not consider the uncertainties of the system and external disturbances. Since the chaotic
system is sensitive to the initial values; in practical applications, it is inevitable that the
orbit of the system will change dramatically due to some small disturbances. One has
adopted the active nonlinear control method to address the issue of modified projective
synchronization for the FO chaotic systems with noise disturbance in Ref. [20]. Qin et al.
established the system with the unknown nonlinear functions and uncertainties which
are addressed by fuzzy logic method [4]. Meanwhile, replacing the FO chaotic systems
in Ref. [4] with non-identical complex FO chaotic systems, the adaptive sliding mode
synchronization has developed in Ref. [21]. Luo et al. derived some novel sufficient con-
ditions for chaos synchronization of FO chaotic systems with nonlinear uncertainties and
external disturbances [22]. In Ref. [23], the authors researched the multi-state uncertain
synchronization of chaotic systems in which the structure is non-identical, parameters are
unknown, and systems have a time-varying delay. This means the synchronization of the
single master system with multiple slave systems which have more potential applications
in real life. However, the master–slave system they considered was an integer order system
and the synchronization of both systems is asymptotic and takes place in infinite time. This
is also the case in Ref. [24]. It is generally found that fractional derivatives are better suited
to describe memory and hereditary characteristics of different materials and processes
than integer derivatives [25]. Mirrezapour et al. [26] used the sliding mode control to
synchronize fractional-order chaotic systems with uncertainties and affected by distur-
bance. In Ref. [26], a new fractional sliding mode controller according to nonlinear FO
controllers is proposed. However, there are some disadvantages here. Firstly, the author
did not consider the effect of unknown parameters on the system. Then, from the numerical
simulation results (synchronization errors converges to zero at t = 10 (approx)), it can be
seen that the controller is not very effective in overcoming uncertainty and disturbance.
On the contrary, the nonsingular terminal sliding mode control in our paper has a bet-
ter transient performance, easy realization, rapid response, and insensitivity to external
disturbances and so on. Of course, there are some studies on uncertain parameters of
systems [27–29]. However, it can be seen from the above that for the uncertainties of the
system, that is, parameter uncertainties and nonlinear uncertainties, and the influence of
external disturbances on the system, most authors study some of the situations while a few
authors have considered the three of them at the same time [30–32]. Furthermore, the above
mentioned papers reveal that the convergence of the ideal dynamics is promised without
time limit. We know that the finite time convergence with even existing disturbances has
merits in strengthening the robustness, getting over the disturbance [33] and improving
the security of information transmission in the field of chaotic communication [34]. Some
more theoretical results about the synchronization of FO chaotic systems with uncertainties
and external disturbances in finite-time can be seen in [35–42]. At present, with full consid-
eration of system uncertainties and external disturbances in the given time as well as the
unknown system parameters, no researchers have considered this situation.

There is another fact that we must note that the aforementioned papers focused on
the single D-R system for the synchronization scheme. There are relatively few studies on
multi-drive systems and multi-response systems, as well as the combination synchroniza-
tion of each system. Actually, in engineering, communication theory, physics, electrical
and many other fields, the combination–combination synchronization has more potential
applications [43,44]. Just take the secure communication, for example, the transmitting
signals can be understood as two basic ways. The first is to divide the transmission signals
into multiple parts, each loaded with different drive systems. For example, assume the
transmitted signal is cost, the signal cost can be broken down into two parts: 1

3 cost and
2
3 cost. The signal 1

3 cost can be delivered to the first drive system, while 2
3 cost can be de-
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livered to the second drive system. The second way is to break down time into different
intervals. Let the signals in different intervals load in different drive systems. It is clear to
observe that the traditional master–slave synchronization schemes (one to one system) do
not satisfy the above communication signals but can be transferred in our model. Thus,
it is imperative to pay more attention to the synchronization research of multi-systems.
Sun et al. [42] realized the parameter identification and C-C synchronization in a finite
time. In [24], the authors handle a hybrid projective C-C synchronization scheme between
four specific hyper-chaotic systems utilizing SMC. The idea of dual C-C multi switching
synchronization adopted the eight chaotic systems was addressed in [45]. The global
exponential multi switching combination synchronization was introduced in terms of three
different chaotic systems, in [46]. There are also some papers here that also mention the
issue of C-C synchronization [47–50]. However, the systems they consider are all integer
order chaotic systems and some of them do not consider the SD.

In response to this situation, we are going to consider the finite-time combination–
combination (C-C) synchronization (FTCCS) of FO chaotic systems with different structures
and unknown parameters under multiple SD via the NTSMC technique. The multiple SD
are explained as parameter uncertainties, nonlinear uncertainties and external disturbances.
In the light of finite-time Lyapunov stability theory and the SMC technique, we propose an
FO adaptive combination controller and some appropriate ACL.

Compared with other references, there are four advantages of the proposed method:
(1) The finite-time control theory is different from the traditional stability theory and its
control structure can be regarded as closed-loop feedback control. The complexity of the
finite-time controller is relatively high, which is reflected in the anti-interference ability to
the outside world and the robustness to the uncertainty of the system itself; (2) This paper
extends the traditional drive-response synchronization schemes (single drive-response
system) to combination–combination synchronization schemes. Thus, when the specific
parameter values are gained to the D-R systems, the corresponding system or systems’
combination are chose. The controller does not need to be redesigned for two systems or
systems’ combinations for every application. This not only has a wider range of applications
but also saves too much time and effort. This advantage is reflected in Corollaries 1–3 in
the paper; (3) In communication theory, comparing the traditional transmission model with
the combination-combination synchronization model, our method has stronger anti-attack
ability and anti-translated capability; (4) The nonsingular terminal sliding mode control
avoids the singularity problem effectively that terminal sliding mode control (TSMC)
would have and retains the characteristic of the finite-time convergence. Besides, the
NTSMC has higher control accuracy than linear sliding mode control (SMC); (5) Based
on the nonsingular terminal sliding mode control (NTSMC) and adaptive control, the
combination–combination drive-response systems with unknown parameters and multiple
stochastic disturbances is considered. The controller and parameter updating laws are
designed to make the state of drive-response system gradually stable within a finite time.
Our controller has good robustness and anti-interference performance.

This article is organized as follows. In Section 2, some definitions, lemmas and
stability theories that need to be used are introduced. In Section 3, problem statements and
assumptions are given. In Section 4, sliding mode synchronization controller and adaptive
control laws are designed. In Section 5, the numerical simulations proved that our method
is effective. In Section 6, there is a conclusion.

2. Preliminaries

2.1. Definitions and Lemmas of Fractional Derivative

Next, let us present the Riemann–Liouville (R-L) derivative and the Caputo derivative,
which are equivalent if and only if the order α is a negative real number and a positive
integer. The R–L definition is best suited for theoretical analysis and can simplify the
computation of FO derivatives. The Caputo is more relevant to modern engineering and
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makes Laplace’s transformation more concise. Thus, we only display the mathematical
expression of the Caputo derivative with order α.

Definition 1 ([51]). The mathematical expression of the fractional integral of the function f (t)
is following:

Iα
t f (t) =

1
Γ(α)

∫ t

a

f (υ)
(t− υ)1−α

dυ, (1)

where Γ(α) indicates the Gamma function.

Definition 2 ([51]). The mathematical expression of Caputo derivative with order α is given as:

C
a Dα

t f (t) =
1

Γ(p− α)

∫ t

a
(t− υ)p−α−1 f (p)(υ)dυ, (2)

where p− 1 < α < p, p ∈ Z+.

Lemma 1 ([18]). When x(t) ∈ Rn has a continuous first derivative, then

aDα
t (

1
2

xT(t)Qx(t)) ≤ xTQaDα
t x(t), (3)

where α ∈ (0, 1) and Q ∈ Rn × Rn indicate a positive definite matrix.

Lemma 2 ([52]). For any real constants ai, i = 1, 2, · · · , n and σ ∈ (0, 1), the following inequal-
ity exists:

(|a1|+ |a2|+ · · ·+ |an|)σ ≤ |a1|σ + |a2|σ + · · ·+ |an|σ. (4)

2.2. Stability Theories of Fractional Order System

It follows that, if most things around us are nonlinear, we write the FO nonlinear
system to be:

0Dα
t x(t) = f (t, x(t)), (5)

where α ∈ (0, 1), f = ( f1, f2, · · · , fn)T , x(t) ∈ Rn and f : [t0, ∞]×Ω → Rn satisfies the
requirements of Lipschitz conditions; the initial value is x(t0) = x0, t0 ≥ 0. The equilibrium
point x∗ of (5) can be calculated from f (x∗) = 0.

Theorem 1 ([53]). Suppose that D ∈ Rn is a domain that contains the origin. If there exists a
locally bounded Lyapunov function V(t, x) : [t0, ∞]× D → R which meets the local Lipschitz
condition about x adapting to

η1(‖x‖a) ≤ V(t, x) ≤ η2(‖x‖ab), (6)

0Dα
t V(t, x) ≤ −η3(‖x‖ab), (7)

where α ∈ (0, 1), a > 0, b > 0, ηi(i = 1, 2, 3) > 0, then the system (5) is called Mittag-
Leffler stable.

Theorem 2. Suppose that D ⊂ Rn is a domain that contains the origin. If there is a locally bounded
Lyapunov function V(t, x) : [t0, ∞]× D → R that meets the local Lipschitz condition about x
adapting to
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(1)η1(‖x‖a) ≤ V(t, x) ≤ η2(‖x‖ab),

(2)0Dα
t V(t, x) ≤ −η3(‖x‖ab), (8)

(3)0Dα
t V(t, x) ≤ −kV1/β(t, x),

where α ∈ (0, 1), a > 0, b > 0, k > 0, β > 1, α > 1/β, ηi(i = 1, 2, 3) > 0, then the system (5) is
called finite-time stable. The system (5) will be stabilized in time T given by:

T ≤
[

Vα− 1
β (0, x)

Γ(1− 1
β )Γ(1 + α)

Γ(α− 1
β + 1)k

] 1
α

. (9)

Proof. It is clear that the conditions (1) and (2) in Theorem 2 satisfy Theorem 1. Thus,
the system (5) is Mittag–Leffler stable. Then, there is an equilibrium point x(t0) for sys-
tem (5). According to condition (3), one obtained

V−1/β(t, x)[t0 Dα
t V(t, x)] ≤ −k. (10)

For convenience, let ν = 1/β. Based on the property of Caputo fractional derivatives
Dα

t xμ = Γ(μ+1)
Γ(μ+1−α)

xμ−αDα
t x [54], we get

aDα
t Vα−ν(t, x) =

Γ(α− ν + 1)
Γ(1− ν)

V−ν(t, x)aDα
t V(t, x) (11)

V−ν(t, x)aDα
t V(t, x) =

Γ(1− ν)

Γ(α− ν + 1) aDα
t Vα−ν(t, x). (12)

Then,

Γ(1− ν)

Γ(α− ν + 1) aDα
t Vα−ν(t, x) ≤ −k, (13)

aDα
t Vα−ν(t, x) ≤ −k

Γ(α− ν + 1)
Γ(1− ν)

. (14)

Integrating (14) from 0 to T gives:

Vα−ν(T, x)−Vα−ν(0, x) ≤ −k
Γ(α− ν + 1)

Γ(1− ν)Γ(1 + α)
Tα. (15)

Time T can be expressed as:

T ≤
[

Vα−ν(0, x)
Γ(1− ν)Γ(1 + α)

Γ(α− ν + 1)k

] 1
α

. (16)

Namely,

T ≤
[

Vα− 1
β (0, x)

Γ(1− 1
β )Γ(1 + α)

Γ(α− 1
β + 1)k

] 1
α

. (17)

3. Problem Description and Assumptions

In this chapter, since the the initial values have a great influence on the initial values,
in practical application, it is inevitable that the orbit of the system will change dramatically
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due to some small disturbances. Therefore, it is reasonable to treat them as bounded. This
will also make our theory easier to understand.

The FO D-R systems with uncertainties and external disturbance are demonstrated as:
The two drive systems

0Dα
t x1(t)=F1(x1(t))(θ1+Δθ1)+ f1(x1(t))+Δ f1(x1(t))+d1(x1, t), (18)

0Dα
t x2(t)=F2(x2(t))(θ2+Δθ2)+ f2(x2(t))+Δ f2(x2(t))+d2(x2, t). (19)

and the two response systems

0Dα
t y1(t)=G1(y1(t))(ϑ1+Δϑ1)+g1(y1(t))+Δg1(y1(t))+μ1(y1, t)+u1(t), (20)

0Dα
t y2(t)=G2(y2(t))(ϑ2+Δϑ2)+g2(y2(t))+Δg2(y2(t))+μ2(y2, t)+u2(t), (21)

where θi = (θ1i, θ2i, · · · , θni)
T and ϑi = (ϑ1i, ϑ2i, · · · , ϑni)

T are the vectors of system param-
eters; xi(t) = (x1i, x2i, · · · , xni)

T and yi(t) = (y1i, y2i, · · · , yni)
T ; Fi(xi(t)) = (F1i, F2i, · · · ,

Fni)
T , Gi(yi(t)) = (G1i, G2i, · · · , Gni)

T , Fji, Gji ∈ R1×n, j = 1, 2, · · · , n, fi(xi(t)) = ( f1i, f2i,
· · · , fni)

T , gi(yi(t)) = (g1i, g2i, · · · , gni)
T are the nonlinear continuous functions; di(xi) =

(d1i, d2i, · · · , dni)
T and μi(yi) = (u1i, u2i, · · · , uni)

T are the external disturbances; αi ∈ (0, 1)
represents the fractional order; Δθi and Δϑi, Δ fi(xi(t)) and Δgi(yi(t)), are the parameter
uncertainties and the nonlinear uncertainties. ui(t) = (u1i, u2i, · · · , uni)

T are the controllers.
Then all of above satisfy i = 1, 2.

Definition 3. Suppose that A, B, C, D ∈ Rn ×Rn, C 
= 0, or D 
= 0 are four constant matrices,
then for T > 0, we have

lim
t→T

‖e(t)‖ = lim
t→T

‖Cy1(t) + Dy2(t)− Ax1(t)− Bx2(t)‖ = 0, t < T, (22)

‖e(t)‖ = 0, t ≥ T.

Then the FO error system, between a combination of drive systems (18), (19) and combination of
response systems (20), (21) , can reach FTCCS.

Remark 1. The matrices A, B, C, D ∈ Rn ×Rn C 
= 0, or D 
= 0 indicating in (22) are named
as the scaling matrices. They can also have different meanings, either as constant matrices or as
functions of state variables x1, x2, y1 and y2.

Remark 2. If C = D = I, A = B = λI, then it will be transformed into finite-time C-C complete
synchronization with multiple SD for λ = 1; It will be transformed into finite-time C-C anti-
synchronization with multiple SD for λ = −1; What’s more, if A = C = 0, D = I, B = λI, then
it will be transformed into finite-time combination complete synchronization with multiple SD for
λ = 1, the finite-time combination anti-synchronization with multiple SD for λ = −1.

Remark 3. If C = 0, A = 0 or C = 0, B = 0 or D = 0, A = 0 or D = 0, B = 0, then the issue of
finite-time C-C synchronization with multiple SD will be transformed into the issue of finite-time
synchronization with multiple SD.

Remark 4. If A = 0, D = 0, C = I or A = 0, C = 0, D = I or B = 0, D = 0, C = I
or B = 0, C = 0, D = I, then it will be transformed into finite-time combination projective
synchronization.

143



Mathematics 2022, 10, 712

Remark 5. It is supposed that A = 0, B = 0, C = 0 or A = 0, B = 0, D = 0, then finite-time
C-C synchronization with multiple SD will be transformed into the issue of chaos control with
multiple SD in the finite time .

Remark 6. Based on all the above synchronization methods, we can also consider Δθi = 0, Δϑi = 0,
or Δ fi(xi(t)) = 0, Δgi(yi(t)) = 0, or di(xi, t) = 0, μi(yi, t) = 0 or Δθi = 0, Δϑi =
0, Δ fi(xi(t)) = 0, Δgi(yi(t)) = 0 or Δθi = 0, Δϑi = 0, di(xi, t) = 0, μi(yi, t) = 0, or di(xi, t) =
0, μi(yi, t) = 0, Δ fi(xi(t)) = 0, Δgi(yi(t)) = 0, or all of the uncertainties and external distur-
bance equal to zero for i = 1, 2.

Remark 7. Starting from Definition 3, the number of D-R systems can be extended to three or
more equations. Furthermore, D-R systems of the C-C synchronization scheme can be the same
structure where Fi(xi(t)) = Gi(yi(t)) and fi(xi(t)) = gi(yi(t)) for i = 1, 2.

It follows from the Equation (22) that the error system is rewritten as:

0Dα
t e(t) = H(x1, x2, y1, y2) + Q(x1, x2, y1, y2) + R(x1, x2, y1, y2)

+ ΔR(x1, x2, y1, y2) + V(x1, x2, y1, y2) + Cu1(t) + Du2(t), (23)

where

H(x1, x2, y1, y2)=CG1(y1(t))ϑ1+DG2(y2(t))ϑ2−AF1(x1(t))θ1−BF2(x2(t))θ2,

Q(x1, x2, y1, y2) = CG1(y1(t))(Δϑ1) + DG2(y2(t))(Δϑ2)− AF1(x1(t))(Δθ1)

− BF2(x2(t))(Δθ2),

R(x1, x2, y1, y2) = Cg1(y1(t)) + Dg2(y2(t))− A f1(x1(t))− B f2(x2(t)),

ΔR(x1, x2, y1, y2) = CΔg1(y1(t)) + DΔg2(y2(t))− AΔ f1(x1(t))− BΔ f2(x2(t)),

V(x1, x2, y1, y2) = Cμ1(y1, t) + Dμ2(y2, t)− Ad1(x1, t)− Bd2(x2, t).

From the above discussion, we make the following assumptions to ensure that our
conclusions are more realistic.

Assumption 1. Assume that uncertain nonlinear vectors Δ fi(xi(t)), Δgi(yi(t)), the external
disturbances di(xi, t), μi(xi, t) and the parameter uncertainties Δθi , Δϑi for (i = 1, 2) all have a
bounded norm. Namely, there are suitable positive constants h, l, q that satisfy:

‖CΔg1(y1(t)) + DΔg2(y2(t))− AΔ f1(x1(t))− BΔ f2(x2(t))‖ ≤ h,

‖Cμ1(y1, t) + Dμ2(y2, t)− Ad1(x1, t)− Bd2(x2, t)‖ ≤ l,

‖CG1(y1(t))(Δϑ1) + DG2(y2(t))(Δϑ2)− AF1(x1(t))(Δθ1)

− BF2(x2(t))(Δθ2)‖ ≤ q.

(24)

Remark 8. The parameter vectors of D-R systems θi, ϑi, (i = 1, 2) and the three constants h, l, q
are all unknown. Later, the parameters adaptive laws will be selected to identify them.

Assumption 2. Assume that the unknown vector parameters θi, ϑi, (i = 1, 2) and the three
unknown constants h, l, q satisfy:

‖θ1‖ ≤ δ1, ‖θ2‖ ≤ δ2, ‖ϑ1‖ ≤ δ3, ‖ϑ2‖ ≤ δ4, |h| ≤ h∗, |l| ≤ l∗, |q| ≤ q∗,

where δ1, δ2, δ3, δ4, h∗, l∗, q∗ is selected as a larger constant generally.

4. Sliding Mode Synchronization Controller Design within Finite Time

The main feature of the sliding mode control is that it directs the system states from
their initial states towards the appropriate sliding surface which is specified and then it
keeps the states in the corresponding sliding surface for all subsequent times. Designing a
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sliding mode controller consists of the following two steps : (1) To select a sliding mode
surface; (2) To design a controller to make sure that the system’s state converges to the
sliding surface.

The nonsingular terminal FO sliding mode surfaces are designed as:

s(t) = γe(t) + Iα
t sgn(e(τ))‖e(τ)‖ξdτ, (25)

where γ > 0, 0 < α < 1 and 0 < ξ < 1 and its FO derivative with α satisfies:

0Dα
t s(t) = γ[0Dα

t e(t)] + sgn(e(t))‖e(t)‖ξ . (26)

When the system is in the sliding mode surface, the following conditions should be
satisfied:

s(t) = 0, 0Dα
t s(t) = 0. (27)

Thus,

0Dα
t e(t) = − 1

γ
sgn(e(t))‖e(t)‖ξ . (28)

Remark 9. Now, the nonsingular terminal sliding mode control (NTSMC) technique is very
popular in the study of stochastic disturbances of chaotic systems. This is a new technique. In ad-
dition, some the state-of-the-art methods have appeared in the study of the synchronization of
chaotic systems, such as: based on the state decoupling strategy and the Lyapunov-based ap-
proach, the minimum-energy synchronization control for interconnected networks is addressed
by Li et al. [55]. The synchronization of Henon maps using adaptive symmetry control has re-
cently been proposed [56]. The finite-time and fixed-time synchronization analysis of shunting
inhibitory memristive neural networks with time-varying delays is introduced via constructing
Lyapunov functions and feedback control schemes [57]. Combining adaptive control theory with
Lyapunov–Krasovskii theory, Yuan et al. [58] solved the problem of finite-time synchronization
(FTS) for complex dynamical networks with time-varying delays and unknown internal coupling
matrices. Furthermore, a novel decentralized non-integer order controller applied on nonlinear
fractional-order composite system is addressed in [59]. Li et al. [60] explored the issue of network
synchronization for an FO chaotic system based on an event-triggered mechanism for the first time.

Theorem 3. When Assumptions 1 and 2 are satisfied and assume that the error system (23) is
controlled by following combination controller (30) and adaptive laws (31), then the state trajectory
of the error systems (23) will arrive the sliding surface s(t) in the finite time given by:

T1 ≤
[

Vα− 1
2 (0, x)

Γ( 1
2 )Γ(1 + α)√
2ςΓ(α + 1

2 )

] 1
α

. (29)

Cu1(t) + Du2(t) = −R(x1, x2, y1, y2) + AF1(x1(t))θ̂1 + BF2(x2(t))θ̂2

− CG1(y1(t))ϑ̂1 − DG2(y2(t))ϑ̂2 −
1
γ

sgn(e(t))‖e(t)‖ξ − ς(‖θ̂1‖

+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|+ δ1 + δ2 + δ3 + δ4

+ ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s)− k
γ

, (30)

where k > ς > 0 and ρ1, ρ2, ρ3 ∈ (0, 1). θ̂i, ϑ̂i and ĥ, l̂, q̂ represent the estimations of θi, ϑi and
h, l, q. Their errors defined as θ̃i = θ̂i − θi, ϑ̃i = ϑ̂i − ϑi, h̃ = ĥ− h, l̃ = l̂ − l, q̃ = q̂− q where
i = 1, 2.
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0Dα
t θ̃1 = −γFT

1 (x1(t))ATs(t),

0Dα
t θ̃2 = −γFT

2 (x2(t))BTs(t),

0Dα
t ϑ̃1 = γGT

1 (y1(t))CTs(t), (31)

0Dα
t ϑ̃2 = γGT

2 (y2(t))DTs(t)

0Dα
t h̃ = γρ1‖s(t)‖,

0Dα
t l̃ = γρ2‖s(t)‖,

0Dα
t q̃ = γρ3‖s(t)‖.

Proof. Adopting the Lyapunov function:

V(t) =
1
2

sT(t)s(t) +
1
2

θ̃T
1 θ̃1 +

1
2

θ̃T
2 θ̃2 +

1
2

ϑ̃T
1 ϑ̃1 +

1
2

ϑ̃T
2 ϑ̃2 +

1
2ρ1

h̃T h̃ +
1

2ρ2
l̃T l̃

+
1

2ρ3
q̃T q̃. (32)

The FO derivative is expressed as:

0Dα
t V(t, x(t)) ≤ sT

0Dα
t s + θ̃T

1 0Dα
t θ̃1 + θ̃T

2 0Dα
t θ̃2 + ϑ̃T

1 0Dα
t ϑ̃1 + ϑ̃T

2 0Dα
t ϑ̃2

+
1
ρ1

h̃T
0Dα

t h̃ +
1
ρ2

l̃T
0Dα

t l̃ +
1
ρ3

q̃T
0Dα

t q̃

= sT(γ0Dα
t e(t) + sgn(e(t))‖e(t)‖ξ) + θ̃T

1 (−γFT
1 (x1(t))ATs(t))

+ θ̃T
2 (−γFT

2 (x2(t))BTs(t)) + ϑ̃T
1 (γGT

1 (y1(t))CTs(t))

+ ϑ̃T
2 (γGT

2 (y2(t))DTs(t)) + h̃T(γ‖s(t)‖) + l̃T(γ‖s(t)‖) (33)

+ q̃T(γ‖s(t)‖).

Substituting (30) into Equation (23), we obtain:

0Dα
t e(t) = −CG1(y1(t))ϑ̃1 − DG2(y2(t))ϑ̃2 + AF1(x1(t))θ̃1 + BF2(x2(t))θ̃2

+ Q(x1, x2, y1, y2) + ΔR(x1, x2, y1, y2) + V(x1, x2, y1, y2)

− 1
γ

sgn(e(t))‖e(t)‖ξ−ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|

+ δ1 + δ2 + δ3 + δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )

− (ĥ + l̂ + q̂)sgn(s)− k
γ

. (34)

Substituting (34) into Equation (33), we obtain:

0Dα
t V(t, x(t)) ≤ sT[γQ(x1, x2, y1, y2) + γΔR(x1, x2, y1, y2) + γV(x1, x2, y1, y2)

− ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|+ δ1 + δ2 + δ3

+ δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s
‖s‖2 )− γ(ĥ + l̂ + q̂)sgn(s)− k]

+ h̃T(γ‖s(t)‖) + l̃T(γ‖s(t)‖) + q̃T(γ‖s(t)‖). (35)
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It follows from Assumption 1 that we get:

0Dα
t V(t, x(t)) ≤ γ‖s‖(q + h + l − (ĥ + l̂ + q̂)) + h̃T(γ‖s(t)‖)

+ l̃T(γ‖s(t)‖) + q̃T(γ‖s(t)‖)− k‖s‖ − sT(ς(‖θ̂1‖
+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|+ δ1 + δ2 + δ3

+ δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s
‖s‖2 ))

= −ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|+ δ1

+ δ2 + δ3 + δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)− k‖s‖. (36)

It follows from Assumption 2 that we get:

‖θ̂1 − θ1‖ ≤ ‖θ̂1‖+ ‖θ1‖ ≤ ‖θ̂1‖+ δ1, ‖θ̂2 − θ2‖ ≤ ‖θ̂2‖+ ‖θ2‖ ≤ ‖θ̂2‖+ δ2,
‖ϑ̂1 − ϑ1‖ ≤ ‖ϑ̂1‖+ ‖ϑ1‖ ≤ ‖ϑ̂1‖+ δ4, ‖ϑ̂2 − ϑ2‖ ≤ ‖ϑ̂2‖+ ‖ϑ2‖ ≤ ‖ϑ̂2‖+ δ4,
|ĥ− h| ≤ |ĥ|+ |h| ≤ |ĥ|+ h∗, |l̂ − l| ≤ |l̂|+ |l| ≤ |l̂|+ l∗,
|q̂− q| ≤ |q̂|+ |q| ≤ |q̂|+ q∗.

Finally,

0Dα
t V(t, x(t)) < −ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖+ ĥ + l̂ + q̂ + δ1

+ δ2 + δ3 + δ4 + h∗ + l∗ + q∗)− k‖s‖
≤ −ς‖s‖ − ς(‖θ̂1 − θ1‖+ ‖θ̂2 − θ2‖+ ‖ϑ̂1 − ϑ1‖
+ ‖ϑ̂2 − ϑ2‖+ ρ1|ĥ− h|+ ρ2|l̂ − l|+ ρ3|q̂− q|). (37)

According to the Lemma 2:

0Dα
t V(t, x(t)) < −

√
2ςV1/2. (38)

Motivated by the Theorem 1, it is clear that the system (5) is Mittag–Leffler stable. Then,
we can obtain that the combination drive-response systems (18)–(21) achieve finite-time
synchronization. Additionally,

T1 ≤
[

Vα− 1
2 (0, x)

Γ( 1
2 )Γ(1 + α)√
2ςΓ(α + 1

2 )

] 1
α

, (39)

where 0 < α < 1.

Theorem 4. The dynamic of the sliding mode (28) is finite-time stable and the trajectories and state
variables of the FO error system (23) converge to the equilibrium point in finite-time T2.

Proof. Adopting the Lyapunov function:

V(t) =
1
2

eT(t)e(t). (40)

The FO derivative is illustrated as:

0Dα
t V(t, x(t)) ≤ eT

0Dα
t e

= eT(− 1
γ

sgn(e(t))‖e(t)‖ξ)

≤ − 1
γ
‖e(t)‖ξ+1

= − 1
γ

2(ξ+1)/2V(ξ+1)/2. (41)
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Thus, the error system (23) is Mittag–Leffler stable in finite-time T1 under the sliding
mode dynamics (28), described by:

T2 ≤

⎡⎣Vα− ξ+1
2 (0, x)

Γ(1− ξ+1
2 )Γ(1 + α)

1
γ 2

ξ+1
2 Γ(α− ξ+1

2 + 1)

⎤⎦ 1
α

. (42)

Remark 10. According to Theorem 3, the FO error systems (23) can be driven to the sliding surface
s(t) via the controller (30) in finite time T1, that is, the sliding mode surface has accessibility; when
it is on the sliding mode surface, according to Theorem 4, the FO error system (23) converges to the
equilibrium point in finite time T2. So Theorem 3 and Theorem 4 achieve combination–combination
synchronization within time T ≤ T1 + T2.

The following corollaries are successfully analyzed from Theorem 4 and their proofs
are omitted here.

Corollary 1.

(i) Assume the matrix C = 0, then the drive systems (18), (19) achieve the finite-time combination
synchronization (FTCS) with the response system (21) provided the following controller:

Du2(t) = −R(x1, x2, y2) + AF1(x1(t))θ̂1 + BF2(x2(t))θ̂2 − DG2(y2(t))ϑ̂2

− 1
γ

sgn(e(t))‖e(t)‖ξ − ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|

+ δ1 + δ2 + δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s)− k
γ

,

and the adaptive updating laws,

0Dα
t θ̃1 = −γFT

1 (x1(t))ATs(t),

0Dα
t θ̃2 = −γFT

2 (x2(t))BTs(t),

0Dα
t ϑ̃2 = γGT

2 (y2(t))DTs(t), (43)

0Dα
t h̃ = γρ1‖s(t)‖,

0Dα
t l̃ = γρ2‖s(t)‖,

0Dα
t q̃ = γρ3‖s(t)‖.

(ii) Assume the matrix D = 0, then the drive systems (18), (19) achieve the FTCS with the
response system (20) provided the following controller:

Cu1(t) = −R(x1, x2, y1) + AF1(x1(t))θ̂1 + BF2(x2(t))θ̂2 − CG1(y1(t))ϑ̂1

− 1
γ

sgn(e(t))‖e(t)‖ξ − ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂1‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|

+ δ1 + δ2 + δ3 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s)− k
γ

,
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and the adaptive updating laws,

0Dα
t θ̃1 = −γFT

1 (x1(t))ATs(t),

0Dα
t θ̃2 = −γFT

2 (x2(t))BTs(t),

0Dα
t ϑ̃1 = γGT

1 (y1(t))CTs(t), (44)

0Dα
t h̃ = γρ1‖s(t)‖,

0Dα
t l̃ = γρ2‖s(t)‖,

0Dα
t q̃ = γρ3‖s(t)‖.

Corollary 2.

(i) Assume the matrices A = C = 0, D = I then the drive system (19) achieve the FTCS with
the response system (21) provided the following controller:

u2(t) = −R(x2, y2) + BF2(x2(t))θ̂2 −G2(y2(t))ϑ̂2

− 1
γ

sgn(e(t))‖e(t)‖ξ − ς(‖θ̂2‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|

+ δ2 + δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s)− k
γ

,

and the adaptive updating laws,

0Dα
t θ̃2 = −γFT

2 (x2(t))BTs(t),

0Dα
t ϑ̃2 = γGT

2 (y2(t))s(t),

0Dα
t h̃ = γρ1‖s(t)‖, (45)

0Dα
t l̃ = γρ2‖s(t)‖,

0Dα
t q̃ = γρ3‖s(t)‖.

(ii) Assume the matrices A = D = 0, C = I then the drive system (19) achieve the FTCS with
the response system (20) provided the following controller:

u1(t) = −R(x2, y1) + BF2(x2(t))θ̂2 −G1(y1(t))ϑ̂1

− 1
γ

sgn(e(t))‖e(t)‖ξ − ς(‖θ̂2‖+ ‖ϑ̂1‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|

+ δ2 + δ3 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s)− k
γ

,

and the adaptive updating laws,

0Dα
t θ̃2 = −γFT

2 (x2(t))BTs(t),

0Dα
t ϑ̃1 = γGT

1 (y1(t))s(t), (46)

0Dα
t h̃ = γρ1‖s(t)‖,

0Dα
t l̃ = γρ2‖s(t)‖,

0Dα
t q̃ = γρ3‖s(t)‖.

149



Mathematics 2022, 10, 712

(iii) Assume the matrices B = D = 0, C = I then the drive system (18) achieve the FTCS with
the response system (20) provided the following controller:

u1(t) = −R(x1, y1) + AF1(x1(t))θ̂1 −G1(y1(t))ϑ̂1

− 1
γ

sgn(e(t))‖e(t)‖ξ − ς(‖θ̂1‖+ ‖ϑ̂1‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|

+ δ1 + δ3 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s)− k
γ

,

and the adaptive updating laws,

0Dα
t θ̃1 = −γFT

1 (x1(t))ATs(t),

0Dα
t ϑ̃1 = γGT

1 (y1(t))s(t), (47)

0Dα
t h̃ = γρ1‖s(t)‖,

0Dα
t l̃ = γρ2‖s(t)‖,

0Dα
t q̃ = γρ3‖s(t)‖.

(iv) Assume the matrices B = C = 0, D = I then the drive system (18) achieve the FTCS with
the response system (21) provided the following controller:

u2(t) = −R(x1, y2) + AF1(x1(t))θ̂1 −G2(y2(t))ϑ̂2

− 1
γ

sgn(e(t))‖e(t)‖ξ − ς(‖θ̂1‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|

+ δ1 + δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s)− k
γ

,

and the adaptive updating laws,

0Dα
t θ̃1 = −γFT

1 (x1(t))ATs(t),

0Dα
t ϑ̃2 = γGT

2 (y2(t))s(t), (48)

0Dα
t h̃ = γρ1‖s(t)‖,

0Dα
t l̃ = γρ2‖s(t)‖,

0Dα
t q̃ = γρ3‖s(t)‖.

Corollary 3.

(i) Assume the matrices A = B = C = 0, D = I, then the equilibrium point (0, 0, 0, 0) of
response system (21) is asymptotically stable provided the following controller:

u2(t) = −R(y2)−G2(y2(t))ϑ̂2 −
1
γ

sgn(e(t))‖e(t)‖ξ − ς(‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|

+ ρ3|q̂|+ δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s)− k
γ

,

and the adaptive updating laws,

0Dα
t ϑ̃2 = γGT

2 (y2(t))s(t)

0Dα
t h̃ = γρ1‖s(t)‖, (49)

0Dα
t l̃ = γρ2‖s(t)‖,

0Dα
t q̃ = γρ3‖s(t)‖.
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(ii) Assume the matrices A = B = D = 0, C = I, then the equilibrium point (0, 0, 0, 0) of
response system (20) is asymptotically stable provided the following controller:

u1(t) = −R(y1)−G1(y1(t))ϑ̂1 −
1
γ

sgn(e(t))‖e(t)‖ξ − ς(‖ϑ̂1‖+ ρ1|ĥ|+ ρ2|l̂|

+ ρ3|q̂|+ δ3 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s)− k
γ

,

and the adaptive updating laws,

0Dα
t ϑ̃1 = γGT

1 (y1(t))s(t),

0Dα
t h̃ = γρ1‖s(t)‖, (50)

0Dα
t l̃ = γρ2‖s(t)‖,

0Dα
t q̃ = γρ3‖s(t)‖.

Remark 11. The scaling matrices A, B, C, D ∈ Rn ×Rn could be the diagonal matrices or the
identity matrices, or some of them are zero. As described in Remark 2, when A = B = C = D =
I ∈ Rn ×Rn, then the topic will be transformed into finite-time C-C complete synchronization with
multiple SD; the numerical simulation results are displayed in Section 5.

5. Numerical Simulation

Let the FO hyperchaotic Lorenz and Chen system under multiple SD be the drive
systems ⎛⎜⎜⎝

0Dα
t x11

0Dα
t x21

0Dα
t x31

0Dα
t x41

⎞⎟⎟⎠ =

⎛⎜⎜⎝
x21 − x11 0 0 0

0 x11 0 0
0 0 −x31 0
0 0 0 x41

⎞⎟⎟⎠
⎛⎜⎜⎝

a1 + Δa1
b1 + Δb1
c1 + Δc1
d1 + Δd1

⎞⎟⎟⎠ (51)

+

⎛⎜⎜⎝
x41 + Δ f11

−x11x31 − x21 + Δ f21
x11x21 + Δ f31
−x21x31 + Δ f41

⎞⎟⎟⎠+

⎛⎜⎜⎝
d11
d21
d31
d41

⎞⎟⎟⎠.

⎛⎜⎜⎝
0Dα

t x12

0Dα
t x22

0Dα
t x32

0Dα
t x42

⎞⎟⎟⎠ =

⎛⎜⎜⎝
x22 − x12 0 0 0 0

0 0 x22 x12 0
0 −x32 0 0 0
0 0 0 0 x42

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎝

a2 + Δa2
b2 + Δb2
c2 + Δc2
d2 + Δd2

r + Δr

⎞⎟⎟⎟⎟⎠ (52)

+

⎛⎜⎜⎝
x42 + Δ f12

−x11x32 + Δ f22
x12x22 + Δ f32
x22x32 + Δ f42

⎞⎟⎟⎠+

⎛⎜⎜⎝
d12
d22
d32
d42

⎞⎟⎟⎠.

Let the FO hyper-chaotic Lü and Liu chaotic system under multiple SD and controller
be the response systems
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⎛⎜⎜⎝
0Dα

t y11

0Dα
t y21

0Dα
t y31

0Dα
t y41

⎞⎟⎟⎠ =

⎛⎜⎜⎝
y21 − y11 0 0 0

0 y21 0 0
0 0 −y31 0
0 0 0 y41

⎞⎟⎟⎠
⎛⎜⎜⎝

a3 + Δa3
b3 + Δb3
c3 + Δc3
d3 + Δd3

⎞⎟⎟⎠ (53)

+

⎛⎜⎜⎝
y41 + Δg11

−y11y31 + Δg21
y11y21 + Δg31
y11y31 + Δg41

⎞⎟⎟⎠+

⎛⎜⎜⎝
μ11 + u11
μ21 + u21
μ31 + u31
μ41 + u41

⎞⎟⎟⎠.

⎛⎜⎜⎝
0Dα

t y12

0Dα
t y22

0Dα
t y32

0Dα
t y42

⎞⎟⎟⎠ =

⎛⎜⎜⎝
y22 − y12 0 0 0 0

0 y12 0 0 0
0 0 −y32 0 y2

12
0 0 0 −y12 0

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎝

a4 + Δa4
b4 + Δb4
c4 + Δc4
d4 + Δd4
m + Δm

⎞⎟⎟⎟⎟⎠ (54)

+

⎛⎜⎜⎝
Δg12

−y12y32 + y42 + Δg22
Δg32
Δg42

⎞⎟⎟⎠+

⎛⎜⎜⎝
μ12 + u12
μ22 + u22
μ32 + u32
μ42 + u42

⎞⎟⎟⎠.

The chosen parameters are a1 = 10, b1 = 28, c1 = 8/3, d1 = − 1, a2 = 35, b2 = 3,
c2 = 12, d2 = 7, r = 0.5, a3 = 36, b3 = 20, c3 = 3, d3 = 0.5, a4 = 10, b4 = 40, c4 = 2.5,
d4 = 10, m = 4. The initial values take as x1(0) = (2,−2, 1,−1), x2(0) = (1, 1, 2, 2),
y1(0) = (−1, 3, 1, 3), y2(0) = (2, 1, 2, 1). The orders take as α = 0.99. The combination
D-R systems are in hyper-chaotic state which are presented in Figure 1.

0
40

10

20

20

30

x 3

40

x
2

0
30

50

20
10

x
1

-20 0
-10

-20-40 -30

(a)

0
40

10

20

20

x 3

30

x
2

0

40

30
-20 20

x
1

10
0

-10-40 -20

(b)

0
40

10

20

20

x 3

30

x
2

0

40

30
20

50

10-20

x
1

0
-10

-20-40 -30

(c)

0
40

20

40

20 20

60x 3

80

10

x
2

0

100

x
1

120

0
-20 -10

-40 -20

(d)
Figure 1. The attractors with respect to the FO hyper-chaotic Lorenz, Chen, Lü, Liu system indicating
in sub-pictures (a–d) respectively for α = 0.99.
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Remark 12. The ranges of fractional order that make the FO hyper-chaotic Chen, Lorenz, L and
Liu chaotic system appear hyper-chaotic are chose as 0.8 ≤ α < 1, 0.97 ≤ α < 1, 0.94 ≤ α ≤ 1,
0.96 ≤ α ≤ 1 respectively. If the drive-response systems are in hyper-chaotic, the influence of
stochastic disturbances on the system can be better studied, and the effectiveness and robustness of
the controller can be proved. It follows that the dynamic error has the same fractional-order as the
drive and response systems that the fractional order α is chose as 0.97 ≤ α < 1 which can ensure
that the all drive-response systems are hyper-chaotic. Thus, in the numerical simulation section, we
also consider the α = 0.97 to validate the proposed method.

According to the above equations, we consider:

θ̂1 = (â1, b̂1, ĉ1, d̂1)
T , θ̂2 = (â2, b̂2, ĉ2, d̂2, r̂)T ,

ϑ̂1 = (â3, b̂3, ĉ3, d̂3)
T , ϑ̂2 = (â4, b̂4, ĉ4, d̂4, m̂)T ,

The uncertain terms Δθi, Δϑi, Δ fi(xi(t)), Δgi(yi(t)) and external disturbance di(xi(t)),
μi(yi(t)) for i = 1, 2 are demonstrated as:

Δθ1 = (0.2sin(t), 0.2sin(0.2t), 0.2sin(3t), 0.2sin(0.4t))T ,

Δθ2 = (0.2sin(5t), 0.2sin(0.6t), 0.2sin(0.8t), 0.2sin(2t), 0.2sin(10t))T ,

Δϑ1 = (0.2sin(t), 0.2sin(2t), 0.2sin(3t), 0.2sin(4t))T ,

Δϑ2 = (0.2sin(0.5t), 0.2sin(6t), 0.2sin(t), 0.2sin(0.2t), 0.2sin(3t))T ,

d1(x1(t)) = (−0.1cos(t),−0.2cos(2t), 0.3sin(3t), 0.4sin(4t))T , (55)

d2(x2(t)) = (−0.1sin(t),−0.2sin(2t), 0.3cos(3t), 0.4cos(4t))T ,

μ1(y1(t)) = (0.1cos(5t), 0.2cos(6t), 0.3sin(7t), 0.4sin(8t))T ,

μ2(y2(t)) = (0.1sin(5t), 0.2sin(6t), 0.3cos(7t), 0.4cos(8t))T ,

Δ fi(xi(t)) = (0.1cos(x1i), 0.2cos(x2i), 0.3cos(x3i), 0.4cos(x4i))
T ,

Δgi(yi(t)) = (0.1sin(y1i), 0.2sin(y2i), 0.3sin(y3i), 0.4sin(y4i))
T ,

where i = 1, 2. It follows from (30), (31) and (34) that the error dynamics and the updating
rules of unknown parameters are expressed as:

0Dα
t e1(t)= [−(â3−a3)− 0.2sin(t)](y21−y11)−[(â4−a4) + 0.2sin(0.5t)](y22−y12)

+ [(â1 − a1)− 0.2sin(t)](x21 − x11) + [(â2 − a2)− 0.2sin(5t)](x22 − x12)

+ [0.1sin(y11) + 0.1sin(y12)− 0.1cos(x11)− 0.1cos(x12)]

+ [0.1cos(5t) + 0.1sin(5t) + 0.1cos(t) + 0.1sin(t)]− 1
γ

sgn(e1(t))‖e(t)‖ξ

− ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|+ δ1 + δ2 + δ3

+ δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s1

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s1)−
k
γ

.

0Dα
t e2(t) =

[
−(b̂3 − b3) + 0.2sin(2t)

]
y21 −

[
(b̂4 − b4)− 0.2sin(6t)

]
y12

+
[
(b̂1 − b1)− 0.2sin(0.2t)

]
x11 + [(ĉ2 − c2)− 0.2sin(0.6)]x22

+
[
(d̂2 − d2)− 0.2sin(0.8)

]
x12 + [0.2sin(y21) + 0.2sin(y22)]

[−0.2cos(x21)−0.2cos(x22)] + [0.2cos(6t)+0.2sin(6t)+0.2cos(2t)+0.2sin(2t)]

− 1
γ

sgn(e2(t))‖e(t)‖ξ − ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|+ δ1

+ δ2 + δ3 + δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s2

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s2)−
k
γ

.
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0Dα
t e3(t) = [(ĉ3 − c3)− 0.2sin(3t)]y31 + [(ĉ4 − c4)− 0.2sin(t)]y32

− [(m̂−m)− 0.2sin(3t)]y2
12 − [(ĉ1 − c1)− 0.2sin(3t)]x31

−
[
(b̂2−b2)−0.2sin(0.6t)

]
x32+[0.3sin(y31)+0.3sin(y32)−0.3cos(x31)−0.3cos(x32)]

+ [0.3cos(7t) + 0.3sin(7t)− 0.3cos(3t)− 0.3sin(3t)]− 1
γ

sgn(e3(t))‖e(t)‖ξ

− ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|+ δ1 + δ2

+ δ3 + δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s3

γ‖s‖2 )− (ĥ + l̂ + q̂)sgn(s3)−
k
γ

.

0Dα
t e4(t) =

[
−(d̂3 − d3) + 0.2sin(4t)

]
y41 +

[
(d̂4 − d4) + 0.2sin(0.2t)

]
y12

+
[
(d̂1 − d1)− 0.2sin(0.4t)

]
x41 + [(r̂− r)− 0.2sin(10t)]x42

+ [0.4sin(y41) + 0.4sin(y42)− 0.4cos(x41)− 0.4cos(x42)]

+ [0.4cos(8t) + 0.4sin(8t)− 0.4cos(4t)− 0.4sin(4t)]

− 1
γ

sgn(e4(t))‖e(t)‖ξ − ς(‖θ̂1‖+ ‖θ̂2‖+ ‖ϑ̂1‖+ ‖ϑ̂2‖

+ ρ1|ĥ|+ ρ2|l̂|+ ρ3|q̂|+ δ1 + δ2 + δ3 + δ4 + ρ1h∗ + ρ2l∗ + ρ3q∗)(
s4

γ‖s‖2 )

− (ĥ + l̂ + q̂)sgn(s4)−
k
γ

.

0Dα
t θ̃1 = γ

[
((x11 − x21)s1,−x11s2, x31s3,−x41s4)

T
]
,

0Dα
t θ̃2 = γ

[
((x12 − x22)s1, x32s3,−x22s2,−x12s2,−x42s4)

T
]
,

0Dα
t ϑ̃1 = γ

[
((y21 − y11)s1, y21s2,−y31s3, y41s4)

T
]
,

0Dα
t ϑ̃2 = γ

[
((y22 − y12)s1, y12s2,−y32s3,−y12s4, y2

12s3)
T
]
,

0Dα
t h̃ = γρ1

√
(s2

1 + s2
2 + s2

3 + s2
4),

0Dα
t l̃ = γρ2

√
(s2

1 + s2
2 + s2

3 + s2
4),

0Dα
t q̃ = γρ3

√
(s2

1 + s2
2 + s2

3 + s2
4),

In the numerical simulation section, the method we adopted for the fractional order
chaotic system is the Adams–Bashforth–Moulton type predictor-corrector scheme [25]. We use
the Matlab software (R2016a) to solve them. For the simulation procedure, The initial values of
D-R systems take as x1(0) = (2,−2, 1,−1), x2(0) = (1, 1, 2, 2), y1(0) = (−1, 3, 1, 3), y2(0) =
(2, 1, 2, 1). The orders take as α = 0.99. The time step is 0.003. The number of iterations is 3000.
The initial conditions of parameters estimation are (a1(0), b1(0), c1(0), d1(0)) = (1, 1, 1, 1),
(a2(0), b2(0), c2(0), d2(0), r(0)) = (1, 1, 1, 1, 1), (a3(0), b3(0), c3(0), d3(0)) = (1, 1, 1, 1), h(0),
l(0), q(0) = (1, 1, 1), (a4(0), b4(0), c4(0), d4(0), m(0)) = (1, 1, 1, 1, 1). The constants are
chosen as γ = 1, δ1 = 100, δ2 = 100, δ3 = 100, δ4 = 100, h∗ = 50, l∗ = 50, q∗ = 50, ρ1 =
0.1, ρ2 = 0.2, ρ3 = 0.3, ξ = 0.5, ς = 3, k = 4. For α = 0.99, the trajectories about the error
variables ei(t), (i = 1, 2, 3, 4) are depicted in Figure 2 and the synchronization for the state
trajectories of drive systems (18), (19) and response system (20), (21) are drawn in Figures 3.
The trajectories of estimations θ̂i, ϑ̂i, (i = 1, 2), ĥ, l̂, q̂ are depicted in Figure 4. Finally, in order
to prove that the error variables converge completely to zero for α = 0.99, the sum of squares
of all errors (e2

1 + e2
2 + e2

3 + e2
4) is conducted as shown in Figure 5. For α = 0.97, the trajectories
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about the error variables ei(t), (i = 1, 2, 3, 4) are drawn in Figure 6 and the trajectories of
estimations θ̂i, ϑ̂i, (i = 1, 2), ĥ, l̂, q̂ are drawn in Figure 7. Finally, in order to prove that the
error variables converge completely to zero for α = 0.97, the sum of squares of all errors
(e2

1 + e2
2 + e2

3 + e2
4) is conducted as shown in Figure 8. It all demonstrates that the the error

does converge completely to zero. Therefore, this controller and the updated rules of the
parameters are effective.
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Figure 2. The C-C synchronization errors e1, e2, e3, e4 change with time t for α = 0.99.
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Figure 3. The synchronization for state variable x11 + x12 and y11 + y12, x21 + x22 and y21 + y22,
x31 + x32 and y31 + y32, x41 + x42 and y41 + y42 of drive systems (51), (52) and response systems (53),
(54) indicating in sub-pictures (a–d) respectively for α = 0.99.
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Figure 4. The estimation of parameters â1, b̂1, ĉ1, d̂1, â2, b̂2, ĉ2, d̂2, r̂ of drive systems (51) (a) and (52)
(b), â3, b̂3, ĉ3, d̂3, â4, b̂4, ĉ4, d̂4, m̂ of response systems (53) (c) and (54) (d), ĥ, l̂, q̂ (e) for α = 0.99.
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Figure 6. The C-C synchronization errors e1, e2, e3, e4 change with time t for α = 0.97.
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â1

b̂1

ĉ1
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ĥ

l̂

q̂

(e)
Figure 7. The estimation of parameters â1, b̂1, ĉ1, d̂1, â2, b̂2, ĉ2, d̂2, r̂ of drive systems (51) (a) and (52)
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Remark 13. In the numerical simulation section, the fractional order (FO) hyper-chaotic Lorenz and
Chen system are the drive systems. The fractional order hyper-chaotic Lü and Liu chaotic system are the
response systems. The equilibrium positions of drive-response systems are as follows. The FO hyper-chaotic
Lorenz system E1 = (0, 0, 0, 0), E2 = (−1.17,−21.63, 9.46, 204.60), E3 = (1.17, 21.63, 9.46,−204.60).
The FO hyper-chaotic Chen system E1 = (0, 0, 0, 0). The FO hyper-chaotic Lü system E1 = (0, 0, 0, 0),
E2 = (7.75, 9.30, 3.60, 55.77), E3 = (−7.75,−9.30, 3.60,−55.77) The FO hyper-chaotic Liu system
E1 = (0, 0, 0, 0). Now, there is a question worth thinking about, which is whether the proposed method is
still valid for systems with a large number of equilibria. Thus, the numerical simulation for the systems
with three equilibrium positions are conducted. They are the FO Lorenz system, the FO Lü system, the
FO Genesio–Tesi system and the FO Arneodo system. The results are also valid. In fact, the adaptive
combination controller has nothing to do with the number of equilibrium positions. In addition to the
numerical simulation results we have obtained, there are also some references [45,46,49,61]. From the
numerical simulation section of this literature, the choice of the drive-response system is arbitrary. Thus,
the proposed method is still valid for systems with a large number of equilibria.

A comparison analysis between the proposed finite-time combination–combination
(C-C) synchronization (FTCCS) scheme and the earlier published work is as follows. In
Ref. [62], the author applied the adaptive control method to achieve C-C synchronization
among four identical hyper-chaotic systems where it noted that the synchronization states
happened at t = 5 (approx). In Ref. [61], the author used the sliding mode control scheme
to address multiple chaotic systems with unknown parameters and disturbances in which
the synchronization happened at t = 5 (approx). Besides, in Ref. [63], the author solved a
new type of C-C synchronization for four identical or different chaotic systems via adaptive
control, where the desired synchronization happened at t = 5.5 (approx). The combination
synchronization of FO non-autonomous chaotic systems with different dimensions adopt-
ing a scaling matrix is studied in Ref. [64], where the error synchronization happened at
t = 6 (approx). Furthermore, the phase synchronization of FO complex chaotic systems
with different structures is discussed in Ref. [65]; in the process of C-C synchronization,
the desired synchronization happened at t = 4.5 (approx). The nonsingular terminal sliding
mode control to achieve the finite-time synchronization between two complex-variable
chaotic systems with unknown parameters is adopted in Ref. [66]; here it has been found
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that the synchronization error converges to zero at t = 10 (approx). In addition to the
above studies, we have investigated the FTCCS scheme among fractional order (FO) chaotic
systems under multiple stochastic disturbances (SD), utilizing the nonsingular terminal
sliding mode control (NTSMC) technique in which it has been recorded that the synchro-
nization occurs at t = 3.1 (approx) as depicted in Figure 5. Therefore, comparing the
synchronization times discussed above with those obtained by our proposed scheme, our
method is dominant. This also illustrates the vitality and effectivity of the considered
methodology.

Remark 14. After calculation, the finite synchronization time satisfies T1 ≤ 5.71, T2 ≤ 7.34
theoretically. Thus, we have T ≤ T1 + T2 = 13.05. Comparing the numerical simulation results,
we can see that our control scheme is effective.

Remark 15. The dynamic error has the same fractional-order as the D-R systems in our paper. It
is worth considering that the non-integer order in the derivative of error is different from the D-R.
If we only consider this situation, there are many papers that have discussed it. In Ref. [67], the
author proposed a modified adaptive sliding-mode control technique to investigate the reduced-order
and increased-order synchronization. Ouannas et al. [68] investigated the inverse full state hybrid
function projective synchronization (IFSHFPS) of non-identical systems characterized by different
dimensions and different orders. Furthermore, the hybrid projective synchronization of different
dimensional fractional order chaotic systems with time delay and different orders is discussed by [69].
More research results can be found in Ref. [70–72]. All the above literature about the non-integer
order in the derivative of error is different from the drive-response systems. Our next step will
consider this situation.

6. Conclusions

In this article, the FTCCS of FO chaotic systems among four systems with different
structures and unknown parameters is solved. The most important point is that the condi-
tions we consider are under multiple stochastic disturbances. Our thought for this topic
is that under the action of the finite-time Lyapunov theory and the nonsingular terminal
sliding mode control technique, we deduced a new FO sliding surface, adaptive combina-
tion controller and some parameter updating laws, which can achieve the combination–
combination synchronization of systems under multiple stochastic disturbances in finite
time. The unknown parameters are identified precisely. Moreover, the combination drive
systems and combination response systems that we introduced are very general. The ex-
pression of the synchronization error system makes many synchronization methods, such as
chaos control, complete synchronization, projection synchronization, anti-synchronization
and so forth, become special cases of combination–combination synchronization. From the
numerical simulation results, it is obvious that the error variables of the D-R systems
quickly converge to the origin point in the given time. Therefore, this controller and the
updated parameter laws are effective. Next, for the multiple stochastic disturbances, we
will study the fractional order multi switching synchronization of eight chaotic systems
with time-delay in which the systems’ parameters are still unknown.
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Abstract: The theme of this study is to present the impacts and importance of the fractional order
derivatives of the susceptible, infected and quarantine (SIQ) model based on the coronavirus with
the lockdown effects. The purpose of these investigations is to achieve more accuracy with the use
of fractional derivatives in the SIQ model. The integer, nonlinear mathematical SIQ system with
the lockdown effects is also provided in this study. The lockdown effects are categorized into the
dynamics of the susceptible, infective and quarantine, generally known as SIQ mathematical system.
The fractional order SIQ mathematical system has never been presented before, nor solved by using
the strength of the stochastic solvers. The stochastic solvers based on the Levenberg-Marquardt
backpropagation scheme (LMBS) along with the neural networks (NNs), i.e., LMBS-NNs have been
implemented to solve the fractional order SIQ mathematical system. Three cases using different
values of the fractional order have been provided to solve the fractional order SIQ mathematical
model. The data to present the numerical solutions of the fractional order SIQ mathematical model
is selected as 80% for training and 10% for both testing and validation. For the correctness of the
LMBS-NNs, the obtained numerical results have been compared with the reference solutions through
the Adams–Bashforth–Moulton based numerical solver. In order to authenticate the competence,
consistency, validity, capability and exactness of the LMB-NNs, the numerical performances using
the state transitions (STs), regression, correlation, mean square error (MSE) and error histograms
(EHs) are also provided.

Keywords: SIQ mathematical model; fractional order; coronavirus; Levenberg-Marquardt backprop-
agation scheme; neural networks; Adams–Bashforth–Moulton

1. Introduction

There are a number of dangerous and transmitted diseases like dengue, HIV and
Ebola [1–3]. The coronavirus is a transmitted disease and has played a significant role
in human lives for the last two years. It badly affected the economies, industries, sports,
social activities, education sectors and each part of life [4,5]. The coronavirus disease
spread quickly, and a number of casualties happened in a short time. The basic role of
the coronavirus spreading is due to travel or transportations of individuals from defective
countries to different areas [6,7]. The vaccination process was started as a hope to control
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this series viral disease. It is stated in the literature that the individual’s migration has
a vital role in the spreading of the infection. It has also been noted that immigration is
not only an issue of the infections, but the other reasons may also affect the spread of the
virus [8].

A number of the approaches have been used to solve the mathematical form of the
coronavirus along with different features. Rhodes et al. [9] proposed the mathematical
ODEs for the communal distresses due to coronavirus. Benvenuto et al. [10] implemented
the ARIMA system for the coronavirus. Mustafa et al. [11] presented a mathematical
system to forecast and analyze the coronavirus transmission. Sivakumar [12] analyzed
the predictive control for the coronavirus in India. Nesteruk [13] assessed the dynam-
ics of the coronavirus pandemic in Ukraine using the double data sets. Thompson [14]
studied the epidemiologic system with the use of significant apparatus using the coron-
avirus interferences. Libotte [15] presented an administration plan for the coronavirus
vaccine. Sadiq et al. [16] investigated the impacts of nanomaterial to handle the coron-
avirus disease. Gumel et al. [17] discovered a mathematical system for the coronavirus
disease. Ortenzi et al. [18] presented a transdisciplinary discipline study of coronavirus in
Italy. Sánchez et al. [19] designed a susceptible, infected, treatment and recovered (SITR)
mathematical model using the sense of corona virus. In other studies, Sabir et al. [20] pro-
vided the stochastic performances of the SITR model-based coronavirus. Moore et al. [21]
designed a mathematical coronavirus system to investigate a vaccination impact and a
non-pharmaceutical intervention. Umar [22] studied theoretical performances to treat
coronavirus. Anirudh [23] provided the transmission dynamics prediction based on the
coronavirus. Chen et al. [24] provided the social distance effects using the mathematical
form of the dynamics of coronavirus. Zhang et al. [25] expressed the coronavirus dynam-
ics using the stochastic perturbation behavior. Soumia et al. [26] described the possible
inhibitors of coronavirus.

In this study, the fractional order derivatives of susceptible, infected and quarantine
(SIQ) model based on the coronavirus with the lockdown effects are presented using the
stochastic numerical performances of the Levenberg–Marquardt backpropagation scheme
(LMBS) along with the neural networks (NNs), i.e., LMBS-NNs.

The design of the fractional order SIQ model is presented in Section 2. The details of
the stochastic applications are provided in Section 3. The LMBS-NNs structure is explained
in Section 4. The simulations of the fractional order SIQ model are provided in Section 5.
Finally, the conclusion is drawn in the Section 6.

2. Mathematical Design of the Fractional Order SIQ System

In this section, the lockdown impacts as protective measures have been provided in
the SIQ model. The lockdown effects are categorized into the dynamics of the susceptible,
infective and quarantine classes-based system of differential equations. The mathematical
form of the SIQ model is provided as [27]:⎧⎪⎪⎨⎪⎪⎩

dS(x)
dx = a− βS(x)I(x)

α+η I(x) − μS(x) + (1− θ)m, S0 = c1,
dI(x)

dx = mθ − (α1 + δ1 + μ + σ)I(x) + β(1−k)S(x)I(x)
η I(x)+α

, I0 = c2,
dQ(x)

dx = σI(x) + βkS(x)I(x)
η I(x)+α

− (α2 + μ + δ2)Q(x), Q0 = c3.

(1)

The necessary and exhaustive detail of the SIQ mathematical model together with the
description of each parameter is given in Table 1. Moreover, the selection of the appropriate
values given in the system (1) provided in [27] along with the theoretical details of optimal
control, global and local stabilities.
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Table 1. Description of each comprehensive detail of each specification of the SIQ mathematical
model.

Parameters Details

a Recruitment rate
α Half saturation constant
η Positive value
m Migrants number
β Transmission infection rate
μ Natural death rate
δ1 Recovery of infective population
k Contact tracing rate
θ Infected migrants’ rate
σ 0.59 per day
α2 Disease associated quarantine’s population death rate
α1 Disease related infective population’s death rate
δ2 Quarantined population recovered rate

c1, c2 and c3 Contents: Initial conditions (ICs)

In the current study, the numerical investigations of the fractional order derivatives
of SIQ model based on the coronavirus with the lockdown effects (1) have been provided
by using the artificial intelligence (AI) with the design of LMBS-NNs. The design of the
fractional order derivatives of SIQ model is formulated for the in-depth analysis of the
super slow evolution as well as superfast transitions by replacing the ordinary integer
order derivation in set of Equation (1) by fractional orders. The modified system (1) is given
as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

d(υ)S(x)
dx(υ)

= a− βS(x)I(x)
α+η I(x) − μS(x) + (1− θ)m, S0 = c1,

d(υ) I(x)
dx(υ)

= mθ − (α1 + δ1 + μ + σ)I(x) + β(1−k)S(x)I(x)
η I(x)+α

, I0 = c2,
d(υ)Q(x)

dx(υ)
= σI(x) + βkS(x)I(x)

η I(x)+α
− (α2 + μ + δ2)Q(x), Q0 = c3.

(2)

where υ shows the FO derivative in the above system.

3. Novel Topographies and Outline of the Stochastic Solvers

The numerical stochastic operators through the LMBS-NNs are provided to solve the
fractional order derivatives of SIQ model based on the coronavirus with the lockdown
effects. The local and global operator performances through the stochastic computing
solvers have been exploited to solve the numerous nonlinear, complex, stiff and singular
systems [28].

The aim of this study is to perform the numerical representations of the fractional
order derivatives of SIQ model based on the coronavirus with the lockdown effects using
the stochastic procedures of the LMBS-NNs. It is observed that the time-fractional order
derivatives have a number of applications to define the system conditions. The derivative
order form represents the remembrance, but the memory function represents the derivative
of fractional order. These fractional derivatives indicate the real-world applications [29,30].
Some novel features of the LMBS-NNs for the mathematical fractional order system using
the SIQ model are presented as:

• A novel design of the fractional order SIQ model based on the coronavirus with the
lockdown effects is presented;

• The stochastic measures have not been applied before to solve the fractional order SIQ
model based on the coronavirus with the lockdown effects;

• The numerical investigations through the stochastic paradigms are successfully pre-
sented using the fractional order SIQ mathematical model;

• AI with the design of LMBS-NNs is presented to solve the nonlinear fractional order
SIQ mathematical model;
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• Three different fractional order variations based on the SIQ model have been numeri-
cally solved to authenticate the reliability of the proposed scheme;

• The brilliance of the stochastic computing solver based LMBS-NNs is provided using
the comparison of the obtained and reference (Adams–Bashforth–Moulton) solutions;

• The accuracy of the scheme is observed through the absolute error (AE) performances
that is achieved in good order to solve the fractional order SIQ mathematical model;

• The regression, STs, MSE and EHs and correlation performances approve the depend-
ability and constancy of the designed LMBS-NNs to solve the fractional order SIQ
mathematical model.

4. Proposed Procedures: LMBS-NNs

The proposed LMBS-NNs structure for solving the fractional order SIQ mathematical
model is explained in this section. The methodology is designed in two parts. First, the
essential performances of the LMB-NNs operator are provided. Next, the execution method
via LMBS-NNs is implemented to solve the fractional order SIQ mathematical model. The
proposed LMBS-NN are executed with analysis on the similar pattern as given in reported
studies [31,32].

Figure 1 presents the multi-layer optimization procedures using the numerical stochas-
tic LMBS-NNs, while the single layer neuron structure is plotted in Figure 2. The LMBS-
NNs procedures are provided using ‘nftool’ command in Matlab with the selection of data
as 80% for training and 10% for both testing and authorization.

Figure 1. Cont.
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Figure 1. Workflow structure of LMBS-NNs to solve the fractional order SIQ model.

Figure 2. Construction of a single neuron.

5. Results through the Designed Method

This section shows the numerical performances of three different fractional order
variations to solve the nonlinear SIQ mathematical system using the proposed LMBS-NNs.
The mathematical representation of each variation is presented in the below cases as:

Case 1: Consider a fractional order coronavirus based SIQ mathematical model by taking
the appropriate values υ = 0.5, a = 2.6, β = 2.1, α = 5, σ = 0.59, η = 1, α1 = 1.78, δ1 = 0.4,
μ = 5.2, α2 = 1.78, δ2 = 0.4, θ = 0.9, k = 0.1, m = 14, c1 = 1.32, c2 = 2.29 and c3 = 3.5 is
provided as: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

d(0.5)S(x)
dx(0.5) = 4− 5.2S(x)− 2.1S(x)I(x)

5+I(x) , S0 = 1.32,
d(0.5) I(x)

dx(0.5) = 12.6− 7.97I(x) + 1.89I(x)S(x)
I(x)+5 , I0 = 2.29,

d(0.5)Q(x)
dx(0.5) = 0.59I(x) + 0.21S(x)I(x)

5+I(x) − 7.38Q(x), Q0 = 3.5.

(3)

Case 2: Consider a fractional order coronavirus based SIQ mathematical model by taking
the appropriate values υ = 0.7, a = 2.6, β = 2.1, α = 5, σ = 0.59, η = 1, α1 = 1.78, δ1 = 0.4,
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μ = 5.2, α2 = 1.78, δ2 = 0.4, θ = 0.9, k = 0.1, m = 14, c1 = 1.32, c2 = 2.29 and c3 = 3.5 is
provided as: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

d(0.7)S(x)
dx(0.7) = 4− 5.2S(x)− 2.1S(x)I(x)

5+I(x) , S0 = 1.32,
d(0.7) I(x)

dx(0.7) = 12.6− 7.97I(x) + 1.89I(x)S(x)
I(x)+5 , I0 = 2.29,

d(0.7)Q(x)
dx(0.7) = 0.59I(x) + 0.21S(x)I(x)

5+I(x) − 7.38Q(x), Q0 = 3.5.

(4)

Case 3: Consider a fractional order coronavirus based SIQ mathematical model by taking
the appropriate values υ = 0.9, a = 2.6, β = 2.1, α = 5, σ = 0.59, η = 1, α1 = 1.78, δ1 = 0.4,
μ = 5.2, α2 = 1.78, δ2 = 0.4, θ = 0.9, k = 0.1, m = 14, c1 = 1.32, c2 = 2.29 and c3 = 3.5 is
provided as: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

d(0.9)S(x)
dx(0.9) = 4− 5.2S(x)− 2.1S(x)I(x)

5+I(x) , S0 = 1.32,
d(0.9) I(x)

dx(0.9) = 12.6− 7.97I(x) + 1.89I(x)S(x)
I(x)+5 , I0 = 2.29,

d(0.9)Q(x)
dx(0.9) = 0.59I(x) + 0.21S(x)I(x)

5+I(x) − 7.38Q(x), Q0 = 3.5.

(5)

The numerical presentations through the simulations of coronavirus based SIQ mathe-
matical model is presented by using the stochastic LMBS-NNs procedures with 8 numbers
of neurons along with the selection of data as 80% for training and 10% for both testing
and authorization. The hidden, output and input neuron’s structure is given in Figure 3.

Figure 3. Proposed LMBS-NNs for the fractional order coronavirus based SIQ model.

The graphical representations are plotted in Figures 4–6 to solve the fractional order
coronavirus based SIQ mathematical model by using the LMBS-NNs procedures. In
order to check the best performances and STs, the graphical illustrations are provided
in Figures 4 and 5. The MSE and STs values for training, best curves and authentication
are derived in Figure 4 to solve the fractional order coronavirus based SIQ mathematical
model. The obtained values of MSE based on the best performances of the fractional
order coronavirus based SIQ mathematical model have been calculated at epochs 294,
1000 and 155 that are calculated as 1.2309 × 10−8, 5.17679 × 10−9 and 1.9259 × 10−7,
respectively. The gradient measures are also plotted in Figure 4 to solve the fractional
order coronavirus based SIQ mathematical model using the LMBS-NNs. These gradient
performances have been calculated as 5.1656 × 10−6, 1.9123 × 10−6 and 2.0104 × 10−5

for case 1, 2 and 3. These graphical representations indicate the convergence of proposed
LMBS-NNs to solve the fractional order coronavirus based SIQ mathematical model using
the LMBS-NNs. Figures 5–8 represents the values of the fitting curves to solve each case
of fractional order coronavirus based SIQ mathematical model. These plots represent the
comparative performances of the reference and obtained results. The error plots from
the substantiation, testing and training to solve each case of fractional order coronavirus
based SIQ mathematical model are provided in Figure 5 (a to c) while, the EHs are plotted
in Figure 5d–f. The EHs are calculated as 2.38 × 10−4, 7.10 × 10−5 and 4.29 × 10−4 for
case 1, 2 and 3, respectively. The regression measures are provided in Figure 6a–c based
on the fractional order coronavirus based SIQ mathematical model. The correlation is
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provided to validate the regression performance in Figure 6. It is clear in understanding
that the correlation plots are calculated as 1 for the fractional order coronavirus based SIQ
mathematical model. The training, testing and authentication representations denote the
correctness of the stochastic LMBS-NNs procedure to solve the fractional order coronavirus
based SIQ mathematical model. The convergence through MSE using the complexity,
training, authentication, iterations, testing and backpropagation is provided in Table 2
Figure to solve the fractional order coronavirus based SIQ mathematical model. The brief
description of the parameters tabulated is provided as follows; the validation performance
means that the value of fitness, i.e., MSE, for the data samples used for the validation,
i.e., 10% of total samples, validation checks being the controlling paper for the networks
to stop further learning of the weights, Mu being the adaptive Levenberg–Marquardt
parameter for convergence controlling coefficient of the algorithm, gradient being the first
order optimality parameter, performance means fitness on MSE and time in seconds being
the time complexity of adaption of the networks.

Figure 4. STs and MSE performances to solve the fractional order coronavirus based SIQ mathematical
model. (a) Case 1 analysis on MSE. (b) Case 2: analysis on MSE. (c) Case 3: analysis on MSE. (d) Case I:
algorithm parameter. (e) Case 2: algorithm parameter. (f) Case 3: algorithm parameter.
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Figure 5. Valuations of the results and EHs for the STs to solve the fractional order coronavirus based
SIQ mathematical model. (a) Case 1: Result assessments. (b) Case 2: Result assessments. (c) Case 3:
Result assessments. (d) Case I: EH. (e) Case 2: EHs. (f) Case 3: EHs.

Table 2. LMBS-NNs procedure to solve the fractional order coronavirus based SIQ mathematical
model.

Case
MSE

Gradient Performance Epoch Mu Time
Training Testing Validation

1 2.01 × 10−8 4.14 × 10−6 1.23 × 10−8 5.17 × 10−6 1.98 × 10−8 300 1 × 10−8 06
2 2.37 × 10−9 1.64 × 10−7 5.17 × 10−9 1.91 × 10−6 2.38 × 10−9 1000 1 × 10−8 06
3 1.45 × 10−7 5.21 × 10−6 1.92 × 10−7 2.01 × 10−5 1.37 × 10−7 161 1 × 10−7 03
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Figure 6. Regression plots STs to solve the fractional order coronavirus based SIQ mathematical
model. (a) Regression plots: Case 1. (b) Regression plots: Case 2. (c) Regression plots: Case 3.
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The plots of the result comparisons and AE values are provided in Figures 7 and 8.
The numerical representations are provided to solve the fractional order coronavirus based
SIQ mathematical model using the stochastic LMBS-NNs. The reference and obtained
numerical performances are plotted in Figure 7 through the overlapping of the results. The
result overlapping authenticates the exactness of the LMBS-NNs to solve the fractional
order coronavirus based SIQ mathematical model. The AE values to solve the SIQ model
are performed in Figure 8. The AE for the susceptible individuals S(x) calculated as 10−4 to
10−7, 10−4 to 10−6 and 10−4 to 10−5 for case 1 to 3. The AE for the infected individuals I(x)
calculated as 10−4 to 10−6, 10−4 to 10−7 and 10−4 to 10−6 for case 1 to 3. Similarly, the AE
for the quarantine individuals Q(x) calculated as 10−4 to 10−6, 10−4 to 10−5 and 10−3 to
10−5 for case 1 to 3. These AE values represent the exactness of the proposed LMBS-NNs to
solve the fractional order coronavirus based SIQ mathematical model.

Figure 7. Results based on the fractional order coronavirus based SIQ mathematical model. (a) Results
for S(x). (b) Results for I(x). (c) Results for Q(x).

173



Fractal Fract. 2022, 6, 139

Figure 8. AE based on the fractional order coronavirus based SIQ mathematical model. (a) AE for
S(x). (b) AE for I(x). (c) AE for Q(x).

6. Concluding Remarks

In this work, the numerical presentations of the coronavirus based SIQ mathematical
model are presented. The aim of this study is to provide the fractional order study using the
dynamics of coronavirus based SIQ mathematical model to get more accurate performances
of the system. The integer nonlinear mathematical SIQ system with the lockdown effects
was also provided in this study. The fractional order coronavirus based SIQ mathematical
model is classified into three dynamics, susceptible, infective and quarantine, generally
known as the SIQ mathematical system. The numerical performances of the fractional order
coronavirus based SIQ mathematical model have never been presented nor solved by using
the stochastic Levenberg-Marquardt backpropagation neural networks. Three cases using
different values of the fractional order have been provided to solve the fractional order SIQ
mathematical model. The data to present the numerical solutions of the fractional order
SIQ mathematical model were selected as 80% for training and 10% for both testing and
authorization. Eight numbers of neurons were used to present the numerical performances
of the fractional order SIQ mathematical system. The numerical results of the fractional
order SIQ mathematical system have been compared with the Adams–Bashforth–Moulton
solver. To reduce the MSE, the obtained numerical results have been performed by using the
LMBS-NNs. The reliability and competence of LMBS-NNs and the numerical performances
have been illustrated using the STs, regression, correlation, EHs and MSE. The correctness
of the LMBS-NNs based on the fractional order SIQ mathematical model is observed via
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the matching of reference and obtained results. The performance of the scheme is verified
based on the consistency and dependability of the proposed LMBS-NNs.

In future work, the LMBS-NNs can be implemented to present the numerical mea-
sures of the lonngren-wave, fluid mechanics systems, bioinformatics studies as well as
information security models.
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Abstract: In this paper we initiate the study of boundary value problems for fractional differential
equations and inclusions involving (k, φ)-Hilfer fractional derivative of order in (1, 2]. In the single-
valued case the existence and uniqueness results are established by using classical fixed-point theorems,
such as Banach, Krasnoselskiĭ and Leray-Schauder. In the multivalued case we consider both cases,
when the right-hand side has convex or non-convex values. In the first case, we apply the Leray–
Schauder nonlinear alternative for multivalued maps, and in the second, the Covit–Nadler fixed-point
theorem for multivalued contractions. All results are well illustrated by numerical examples.

Keywords: (k, φ)-Hilfer fractional derivative; Riemann-Liouville fractional derivative; Caputo
fractional derivative; existence; uniqueness; fixed point theorems

MSC: 26A33; 34A08; 34A60; 34B15

1. Introduction and Preliminaries

Fractional calculus and fractional differential equations have cashed substantial con-
sideration owing to the broad applications of fractional derivative operators in the mathe-
matical modelling, describing many real world processes more accurately than the classical-
order differential equations. For a systematic development of the topic, see the mono-
graphs [1–9]. Fractional derivative operators are usually defined via fractional integral
operators. In the literature, many fractional derivative operators have been proposed, such
as Riemann–Liouville, Caputo, Hadamard, Erdélyi–Kober and Hilfer fractional operators,
to name a few. The Riemann–Liouville fractional integral operator of order α > 0 is one of
the most used and studied operators, defined by

Iα
a+f(w) =

1
Γ(α)

∫ w

a
(w− u)α−1f(u)du, w > a. (1)

The Riemann–Liouvile and Caputo fractional derivative operators of order α > 0 are
defined in light of the above definition by

RLDα
a+f(w) = DnIn−α

a+ f(w) =
1

Γ(n− α)

dn

dwn

∫ w

a
(w− u)n−α−1f(u)du, w > a, (2)

and

CDα
a+f(w) = In−α

a+ Dnf(w) =
1

Γ(n− α)

∫ w

a
(w− u)n−α−1f(n)(u)du, w > a, (3)
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respectively, where n− 1 < α ≤ n and n ∈ N. In [10], the Riemann–Liouville fractional
integral operator was extended to k-Riemann–Liouville fractional integral of order α > 0
(α ∈ R) as

kIα
a+h(w) =

1
kΓk(α)

∫ w

a
(w− u)

α
k−1h(u)du, (4)

where h ∈ L1([a, b],R), k > 0 and Γk is the k-Gamma function for w ∈ C with �(w) > 0
and k ∈ R, k > 0 which is defined in [11] by

Γk(w) =
∫ ∞

0
sw−1e−

sk
k ds.

The following relations are well known.

Γ(θ) = lim
k→1

Γk(θ), Γk(θ) = k
θ
k−1Γ

(
θ

k

)
and Γk(θ + k) = θΓk(θ).

In [12] the k-Riemann–Liouville fractional derivative was introduced as

k,RLDα
a+h(w) =

(
k

d
dw

)n
kInk−α

a+ h(w), n =
⌈α

k

⌉
, (5)

where h ∈ L1([a, b],R), k, α ∈ R+ and
⌈

α
k

⌉
is the ceiling function of α

k .
On the other hand in [2] the φ-Riemann–Liouville fractional integral of the function

h ∈ L1([a, b],R) and an increasing function φ : [a, b]→ R with φ′(w) 
= 0 for all w ∈ [a, b],
was given by

Iα;φh(w) =
1

Γk(α)

∫ w

a
φ′(u)(φ(w)− φ(u))α−1h(u)du. (6)

Let n − 1 < α ≤ n, φ ∈ Cn([a, b],R), φ′(w) 
= 0, w ∈ [a, b], and h ∈ C([a, b],R).
Then the φ-Riemann–Liouville fractional derivative of the function h of order α was defined
in [2] by

RLDα;φh(w) =
( 1

φ′(w)

d
dw

)n
I

n−α;φ
a+ h(w), (7)

and the φ-Caputo fractional derivative of the function h of order α was defined in [13] by

CDα;φh(w) = I
n−α;φ
a+

( 1
φ′(w)

d
dw

)n
h(w), (8)

respectively. In [14] the φ-Hilfer fractional derivative of the function h ∈ C([a, b],R) of
order α ∈ (n− 1, n] and type β ∈ [0, 1] and φ ∈ Cn([a, b],R), φ′(w) 
= 0, w ∈ [a, b], was
defined by

HDα,β;φh(w) = I
β(n−α);φ
a+

( 1
φ′(w)

d
dw

)n
I
(1−β)(n−α);φ
a+ h(w). (9)

In [15] was defined the (k, φ)-Riemann–Liouville fractional integral of order α > 0
(α ∈ R) of the function h ∈ L1([a, b],R), k > 0, as

kI
α;φ
a+h(w) =

1
kΓk(α)

∫ w

a
φ′(u)(φ(w)− φ(u))

α
k−1h(u)du. (10)

Recently, in [16] introduced (k, φ)-Hilfer fractional derivative of the function h ∈
Cn([a, b],R) of order α > 0, k > 0 and type β ∈ [0, 1], φ ∈ Cn([a, b],R), φ′(w) 
= 0, w ∈ [a, b]
as

k,HDα,β;φh(w) = kI
β(nk−α);φ
a+

( k
φ′(w)

d
dw

)n
kI

(1−β)(nk−α);φ
a+ h(w), n =

⌈α

k

⌉
. (11)

Note that:
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1. For β = 0, (11) reduces to (k, φ)-Riemann–Liouville fractional derivative operator

k,RLDα;φh(w) =
( k

φ′(w)

d
dw

)n
kI

(1−β)(nk−α);φ
a+ h(w). (12)

If we take in (12), φ(w) = w, then we obtain k-Riemann–Liouville fractional derivative
operator defined in [12];

2. For β = 1, (11) reduces to (k, φ)-Caputo fractional derivative operator [16]

k,CDα;φh(w) = kI
nk−α;φ
a+

( k
φ′(w)

d
dw

)n
h(w). (13)

If we take φ(w) = w in (13), then we obtain k-Caputo fractional derivative opera-
tor [16]

k,CDα;φh(w) = kI
nk−α;φ
a+

(
k

d
dw

)n
h(w). (14)

3. If φ(w) = wρ, then (11) reduces to k-Hilfer–Katugampola fractional derivative operator:

(a) If φ(w) = wρ, β = 0, then (11) reduces to k-Katugampola fractional derivative
operator [17];

(b) If φ(w) = wρ, β = 1, then (11) reduces to k-Caputo–Katugampola fractional
derivative operator [17];

4. If φ(w) = log w, then (11) reduces to k-Hilfer–Hadamard fractional derivative operator:

(a) If φ(w) = log w, β = 0, then (11) reduces to k-Hadamard fractional derivative
operator [16];

(b) If φ(w) = log w, β = 1, then (11) reduces to k-Caputo–Hadamard fractional
derivative operator [16].

Remark 1. If θk = α+ β(nk− α), then β(nk− α) = θk− α and (1− β)(nk− α) = nk− θk and
hence the (k, φ)-Hilfer fractional derivative has been defined in the form of (k, φ)-Riemann-Liouville
fractional derivative as follows

k,HDα,β;φh(w) = kI
θk−α;φ
a+

( k
φ′(w)

d
dw

)n
kI

nk−θk ;φ
a+ h(w)

= kI
θk−α;φ
a+

(
k,RLDθk ;φh

)
(w).

Note for β ∈ [0, 1] and n− 1 < α
k ≤ n, we have n− 1 < θk

k ≤ n.

For some results on k-Riemann–Liouville fractional derivatives, we refer to [18–23]
and the therein-cited references.

In [16] the authors proved several properties of (k, φ)-Hilfer fractional derivative
operator. Moreover they studied the following nonlinear initial value problem involving
(k, φ)-Hilfer fractional derivative of the form{

k,HD
α,β;φ
a+ ϑ(w) = f(w, ϑ(w)), w ∈ (a, b], 0 < α < k, 0 ≤ β ≤ 1,

kIk−θk ;φϑ(a) = xa ∈ R, θk = α + β(k− α),
(15)

where k,HDα,β;φ denotes the (k, φ)-Hilfer fractional derivative operator of order α, 0 < α ≤ 1
and parameter β, 0 ≤ β ≤ 1, and f : [a, b]×R → R is a continuous function. By apply-
ing Banach’s fixed point theorem they proved the existence of a unique solution for the
problem (15).

In the present work, motivated by the paper [16], we study boundary value problems
involving (k, φ)-Hilfer fractional derivative operator of order α and parameter β, where 1 <
α ≤ 2 and 0 ≤ β ≤ 1. To be more precisely, we consider in this paper the following (k, φ)-
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Hilfer fractional boundary value problem with nonlocal multipoint boundary conditions of
the form ⎧⎪⎨⎪⎩

k,HDα,β;φϑ(w) = f(w, ϑ(w)), w ∈ (a, b],

ϑ(a) = 0, ϑ(b) =
m

∑
i=1

λiϑ(ξi),
(16)

where k,HDα,β;φ denotes the (k, φ)-Hilfer fractional derivative operator of order α, 1 < α < 2
and parameter β, 0 ≤ β ≤ 1, k > 0, f : [a, b]×R→ R is a continuous function, λi ∈ R, and
a < ξi < b, i = 1, 2, . . . , m. Our aim in this paper is to establish results concerning existence
and uniqueness, by using Banach’s and Krasnoselskiĭ’s fixed point theorems, as well as a
Leray–Schauder nonlinear alternative.

Next, we also study the multivalued problem⎧⎪⎨⎪⎩
k,HDα,β;φϑ(w) ∈ F(w, ϑ(w)), w ∈ (a, b],

ϑ(a) = 0, ϑ(b) =
m

∑
i=1

λiϑ(ξi),
(17)

in which F : [a, b]×R → P(R) is a multivalued map and the other parameters are as in
problem (16). Here, P(R) denotes the family of all nonempty subsets of R. We will study
both cases, when the right-hand side is convex or nonconvex valued, and we will establish
existence results by using Leray–Schauder nonlinear alternative for multivalued maps and
the Covitz–Nadler fixed-point theorem for multivalued contractions, respectively.

Numerical examples are constructed illustrating the applicability of our obtained
theoretical results.

The rest of our paper is organized as follows. In Section 2, we prove an ancillary result
toward a linear variant of the (k, φ)-Hilfer fractional nonlocal boundary value problem (16).
This lemma is important to transform the nonlinear boundary value problem (16) into
an equivalent fixed-point problem. The main results for the single valued (k, φ)-Hilfer
fractional nonlocal boundary value problem (16) are included in Section 3, while the results
for the multivalued (k, φ)-Hilfer fractional nonlocal boundary value problem (17) are
presented in Section 4. Finally, Section 5 is dedicated to illustrative examples.

2. An Auxiliary Result

In this section an auxiliary result is proved, which is the basic tool in transforming the
nonlinear problem (16) into a fixed-point problem, and dealing with a linear variant of the
problem (16). First we recall two useful lemmas.

Lemma 1 ([16]). Let μ, k ∈ R+ = (0, ∞) and n =
⌈

μ
k

⌉
. Assume that h ∈ Cn([a, b],R) and

kI
nk−μ;φ
a+ h ∈ Cn([a, b],R). Then

kIμ;φ
(

k,RLDμ;φh(w)
)
= h(w)−

n

∑
j=1

(φ(w)− φ(a))
μ
k−j

Γk(μ− jk + k)

[(
k

φ′(w)

d
dw

)n−j
kI

nk−μ;φ
a+ h(w)

]
z=a

.

Lemma 2 ([16]). Let α, k ∈ R+ = (0, ∞) with α < k, β ∈ [0, 1] and θk = α + β(k− α). Then

kIθk ;φ
(

k,RLDθk ;φh
)
(w) = kIα;φ

(
k,HDα,β;φh

)
(w), h ∈ Cn([a, b],R).

Lemma 3. Let a < b, k > 0, 1 < α ≤ 2, β ∈ [0, 1], θk = α + β(2k− α), g ∈ C2([a, b],R) and

H :=
1

Γk(θk)

[
(φ(b)− φ(a))

θk
k −1 −

m

∑
i=1

λi(φ(ξi)− φ(a))
θk
k −1

]

= 0. (18)
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Then the function ϑ ∈ C([a, b],R) is a solution of the boundary value problem⎧⎪⎨⎪⎩
k,HDα,β;φϑ(w) = g(w), w ∈ (a, b],

ϑ(a) = 0, ϑ(b) =
m

∑
i=1

λiϑ(ξi),
(19)

if and only if

ϑ(w) = kIα;φg(w) +
(φ(w)− φ(a))

θk
k −1

HΓk(θk)

[
m

∑
i=1

λi
kIα;φg(ξi)− kIα;φg(b)

]
. (20)

Proof. Assume that ϑ is a solution of the boundary value problem (19). Operating fractional
integral kIα;φ on both sides of equation in (19) and using Lemmas 1 and 2, we obtain

kIα;φ
(

k,HDα,β;φϑ
)
(w) = kIθk ;φ

(
k,RLDθk ;φϑ

)
(w)

= ϑ(w)− (φ(w)− φ(a))
θk
k −1

Γk(θk)

[( k
φ′(w)

d
dw

)
kI2k−θk ;φϑ(w)

]
w=a

− (φ(w)− φ(a))
θk
k −2

Γk(θk − k)

[
kI2k−θk ;φϑ(w)

]
w=a

.

Consequently

ϑ(w) = kIα;φg(w) + c0
(φ(w)− φ(a))

θk
k −1

Γk(θk)
+ c1

(φ(w)− φ(a))
θk
k −2

Γk(θk − k)
, (21)

where
c0 =

[( k
φ′(w)

d
dw

)
kI2k−θk ;φϑ(w)

]
w=a

, c1 =
[

kI2k−θk ;φϑ(w)
]

w=a
.

From the boundary condition ϑ(a) = 0 we get c2 = 0, since θk
k − 2 < 0 by Remark 1.

From the second boundary condition ϑ(b) = ∑m
i=1 λiϑ(ξi) we found

c0 =
1
H
[ m

∑
i=1

λi
kIα;φg(ξi)− kIα;φg(b)

]
.

Replacing the values of c0 and c1 in (21), we get the solution (20). We can prove easily
the converse by direct computation. The proof is finished.

3. The Single Valued Problem

Let C([a, b],R) be the Banach space of all continuous functions from [a, b] toR endowed
with the sup-norm ‖ϑ‖ = supw∈[a,b] |ϑ(w)|. In view of Lemma 3, we define an operator
A : C([a, b],R)→ C([a, b],R) by

(Aϑ)(w) =
(φ(w)− φ(a))

θk
k −1

HΓk(θk)

[ m

∑
i=1

λi
kIα;φf(ξi, ϑ(ξi))− kIα;φf(b, ϑ(b))

]
+kIα;φf(w, ϑ(w)), w ∈ [a, b]. (22)

It should be noticed that the solutions of the nonlocal (k, φ)-Hilfer fractional boundary
value problem (16) will be fixed points of A.
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For convenience we put:

G =
(φ(b)− φ(a))

α
k

Γk(α + k)
+

(φ(b)− φ(a))
θk
k −1

|H|Γk(θk)

[
m

∑
i=1
|λi|

(φ(ξi)− φ(a))
α
k

Γk(α + k)

+
(φ(b)− φ(a))

α
k

Γk(α + k)

]
. (23)

3.1. Existence of a Unique Solution

In our first result we will prove the existence of a unique solution of the problem (16).
The basic tool is the Banach’s contraction mapping principle [24].

Theorem 1. Assume that:

(H1) |f(w, ϑ)− f(w, y)| ≤ L|ϑ− y|,L > 0 for each w ∈ [a, b] and ϑ, y ∈ R.

Then the (k, φ)-Hilfer nonlocal multi-point fractional boundary value problem (16) has a
unique solution on [a, b], provided that

LG < 1, (24)

where G is defined by (23).

Proof. We transform the (k, φ)-Hilfer nonlocal multipoint fractional boundary value prob-
lem (16) into a fixed-point problem, with the help of the operator A defined in (22). Then,
we shall show that the operator A has a unique fixed point.

We let supw∈[a,b] |f(w, 0)| = M < ∞, and choose

r ≥ MG

1− LG
. (25)

Let Br = {ϑ ∈ C([a, b],R) : ‖ϑ‖ ≤ r}. In the first step we will show that ABr ⊂ Br.
We have, for ϑ ∈ Br, using (H1), that

|f(w, ϑ(w))| ≤ |f(w, ϑ(w))− f(w, 0)|+ |f(w, 0)|
≤ L|ϑ(w)|+M ≤ L‖ϑ‖+M ≤ Lr +M.

For any ϑ ∈ Br, we have

|(Aϑ)(w)| ≤ sup
w∈[a,b]

{
(φ(w)− φ(a))

θk
k −1

|H|Γk(θk)

[ m

∑
i=1
|λi|kIα;φ|f(ξi, ϑ(ξi))|+ kIα;φ|f(b, ϑ(b))|

]

+kIα;φ|f(w, ϑ(w))|
}

≤ kIα;φ(|f(w, ϑ(w))− f(w, 0)|+ |f(w, 0)|)

+
(φ(b)− φ(a))

θk
k −1

|H|Γk(θk)

( m

∑
i=1
|λi|kIα;φ|f(ξi, ϑ(ξi))− f(ξi, 0)|+ |f(ξi, 0)|)

+kIα;φ(|f(b, ϑ(b))− f(b, 0)|+ |f(b, 0)|)
)

≤
{
(φ(b)− φ(a))

α
k

Γk(α + k)
+

(φ(b)− φ(a))
θk
k −1

|H|Γk(θk)

[
m

∑
i=1
|λi|

(φ(ξi)− φ(a))
α
k

Γk(α + k)

+
(φ(b)− φ(a))

α
k

Γk(α + k)

]}
(L‖ϑ‖+M)

≤ (Lr +M)G ≤ r.
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Consequently ‖Aϑ‖ ≤ r and thus ABr ⊂ Br.
Now we will show that A is a contraction. For w ∈ [a, b] and ϑ, y ∈ C([a, b],R),

we have

|(Aϑ)(w)− (Ay)(w)|
≤ kIα;φ|f(w, ϑ(w))− f(w, y(w))|

+
(φ(b)− φ(a))

θk
k −1

|H|Γk(θk)

( m

∑
i=1
|λi|kIα;φ|f(ξi, ϑ(ξi))− f(ξi, y(ξi)|

+kIα;φ(|f(b, ϑ(b))− f(b, y(b))|
)

≤
{
(φ(b)− φ(a))

α
k

Γk(α + k)
+

(φ(b)− φ(a))
θk
k −1

|H|Γk(θk)

[
m

∑
i=1
|λi|

(φ(ξi)− φ(a))
α
k

Γk(α + k)

+
(φ(b)− φ(a))

α
k

Γk(α + k)

]}
L‖x− y‖

= LG‖x− y‖.

Hence ‖Ax−Ay‖ ≤ LG‖x− y‖ which implies that A is a contraction, since LG < 1.
By the Banach’s contraction-mapping principle, the operator A has a unique fixed point,
which is the unique solution of (k, φ)-Hilfer nonlocal multipoint fractional boundary value
problem (16). The proof is finished.

3.2. Existence Results

In the forthcoming theorems we will prove existence results for the (k, φ)-Hilfer
nonlocal multipoint fractional boundary value problem (16), utilizing Krasnoselskiĭ’s fixed
point theorem [25] and nonlinear alternative of Leray–Schauder type [26].

Theorem 2. Let f : [a, b] × R → R be a continuous function satisfying (H1). In addition we
assume that:

(H2) |f(w, ϑ)| ≤ �(w), ∀(w, ϑ) ∈ [a, b]×R, and � ∈ C([a, b],R+).

Then the (k, φ)-Hilfer nonlocal multi-point fractional boundary value problem (16) has at least
one solution on [a, b], if G1L < 1, where

G1 :=
(φ(b)− φ(a))

θk
k −1

|H|Γk(θk)

[
m

∑
i=1
|λi|

(φ(ξi)− φ(a))
α
k

Γk(α + k)
+

(φ(b)− φ(a))
α
k

Γk(α + k)

]
. (26)

Proof. Set supw∈[a,b] �(w) = ‖�‖ and Bρ = {ϑ ∈ C([a, b],R) : ‖ϑ‖ ≤ ρ}, with ρ ≥ ‖�‖G.
We define on Bρ two operators A1, A2 by

A1ϑ(w) = kIα;φf(w, ϑ(w)), w ∈ [a, b],

and

A2ϑ(w) =
(φ(w)− φ(a))

θk
k −1

HΓk(θk)

[ m

∑
i=1

λi
kIα;φf(ξi, ϑ(ξi))− kIα;φf(b, ϑ(b))

]
, w ∈ [a, b].

For any ϑ, y ∈ Bρ, we have
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|(A1ϑ)(w) + (A2y)(w)|

≤ sup
w∈[a,b]

{
(φ(w)− φ(a))

θk
k −1

|H|Γk(θk)

[ m

∑
i=1
|λi|kIα;φ|f(ξi, y(ξi))|+ kIα;φ|f(b, y(b))|

]

+kIα;φ|f(w, ϑ(w))|
}

≤
{
(φ(b)− φ(a))

α
k

Γk(α + k)
+

(φ(b)− φ(a))
θk
k −1

|H|Γk(θk)

[
m

∑
i=1
|λi|

(φ(ξi)− φ(a))
α
k

Γk(α + k)

+
(φ(b)− φ(a))

α
k

Γk(α + k)

]}
‖�‖

= G‖�‖ ≤ ρ.

Therefore ‖(A1ϑ) + (A2y)‖ ≤ ρ, which shows that A1ϑ +A2y ∈ Bρ. Next we show
that A2 is a contraction mapping. We omit the details since it is easy by using (26).

The operator A1 is continuous, since f is continuous. Moreover, A1 is uniformly
bounded on Bρ as

‖A1ϑ‖ ≤ (φ(b)− φ(a))
α
k

Γk(α + k)
‖�‖.

To prove the compactness of the operatorA1, we consider w1, w2 ∈ [a, b] with w1 < w2.
Then we have

|(A1ϑ)(w2)− (A1ϑ)(w1)|

≤ 1
Γk(α)

∣∣∣∣∣
∫ w1

a
φ′(s)[(φ(w2)− φ(s))

α
k−1 − (φ(w1)− φ(s))

α
k−1]f(s, ϑ(s))ds

+
∫ w2

w1

φ′(s)(φ(w2)− φ(s))
α
k−1f(s, ϑ(s))ds

∣∣∣∣∣
≤ ‖�‖

Γk(α + k)
[2(φ(w2)− φ(w1))

α
k + |(φ(w2)− φ(a))

α
k − (φ(w1)− φ(a))

α
k |],

which tends to zero as w2 − w1 → 0, independently of ϑ. Thus, A1 is equicontinuous. By
the Arzelá–Ascoli theorem, A1 is completely continuous. By Krasnoselskiĭ’s fixed-point
theorem the (k, φ)-Hilfer nonlocal multipoint fractional boundary value problem (16) has
at least one solution on [a, b]. The proof is finished.

Theorem 3. Let f : [a, b]×R→ R be a continuous function. Assume that:

(H3) there exist χ : [0, ∞)→ (0, ∞) which is continuous, nondecreasing function and a continuous
positive function σ such that

|f(w, u)| ≤ σ(w)χ(|u|) for each (w, u) ∈ [a, b]×R;

(H4) there exists a constant K > 0 such that

K

χ(K)‖σ‖G > 1.

Then the (k, φ)-Hilfer nonlocal multipoint fractional boundary value problem (16) has at least
one solution on [a, b].
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Proof. In the first step we will show that the operator A maps bounded sets into bounded
set in C([a, b],R), where A is defined by (22). For r > 0, let Br = {ϑ ∈ C([a, b],R) :
‖ϑ‖ ≤ r}. Then for w ∈ [a, b] we have

|(Aϑ)(w)|

≤ sup
w∈[a,b]

{
(φ(w)− φ(a))

θk
k −1

|H|Γk(θk)

[ m

∑
i=1
|λi|kIα;φ|f(ξi, ϑ(ξi))|+ kIα;φ|f(b, ϑ(b))|

]

+kIα;φ|f(w, ϑ(w))|
}

≤
{
(φ(b)− φ(a))

α
k

Γk(α + k)
+

(φ(b)− φ(a))
θk
k −1

|H|Γk(θk)

[
m

∑
i=1
|λi|

(φ(ξi)− φ(a))
α
k

Γk(α + k)

+
(φ(b)− φ(a))

α
k

Γk(α + k)

]}
‖σ‖χ(‖ϑ‖),

and consequently,
‖Ax‖ ≤ χ(r)‖σ‖G.

Now we will show that A maps bounded sets into equicontinuous sets of C([a, b], R).
Let w1, w2 ∈ [a, b] with w1 < w2 and ϑ ∈ Br. Then we have

|(Aϑ)(w2)− (Aϑ)(w1)|

≤ 1
Γk(α)

∣∣∣∣∣
∫ w1

a
φ′(s)[(φ(w2)− φ(s))

α
k−1 − (φ(w1)− φ(s))

α
k−1]f(s, ϑ(s))ds

+
∫ w2

w1

φ′(s)(φ(w2)− φ(s))
α
k−1f(s, ϑ(s))ds

∣∣∣∣∣
+
(φ(w2)− φ(a))

θk
k −1 − (φ(w1)− φ(a))

θk
k −1

|H|Γk(θk)

[ m

∑
i=1
|λi|kIα;φ|f(ξi, ϑ(ξi))|

+kIα;φ|f(b, ϑ(b))|
]

≤ ‖σ‖χ(r)
Γk(α + k)

[2(φ(w2)− φ(w1))
α
k + |(φ(w2)− φ(a))

α
k − (φ(w1)− φ(a))

α
k |],

+
(φ(w2)− φ(a))

θk
k −1 − (φ(w1)− φ(a))

θk
k −1

|H|Γk(θk)

[
m

∑
i=1
|λi|

(φ(ξi)− φ(a))
α
k

Γk(α + k)

+
(φ(b)− φ(a))

α
k

Γk(α + k)

]
‖σ‖χ(r).

As w2 − w1 → 0 the right-hand side of the above inequality tends to zero inde-
pendently of ϑ ∈ Br. Hence, the operator A : C([a, b],R) → C([a, b],R) is completely
continuous, by the Arzelá–Ascoli theorem.

Finally we will show the boundedness of the set of all solutions to equations ϑ = λAϑ
for λ ∈ (0, 1).

Let ϑ be a solution. Then, for w ∈ [a, b], and working as in the first step, we have

|ϑ(w)| ≤ χ(‖ϑ‖)‖σ‖G,

or
‖ϑ‖

χ(‖ϑ‖)‖σ‖G ≤ 1.
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In view of (H4), there exists K such that ‖ϑ‖ 
= K. Let us set

U = {ϑ ∈ C([a, b],R) : ‖ϑ‖ < K}.

We see that the operatorA : Ū → C([a, b],R) is continuous and completely continuous.
There is no ϑ ∈ ∂U such that ϑ = λAϑ for some λ ∈ (0, 1), from the choice of U. By the
nonlinear alternative of Leray–Schauder type, we deduce that A has a fixed point ϑ ∈ Ū,
which is a solution of the (k, φ)-Hilfer nonlocal multipoint fractional boundary value
problem (16). This completes the proof.

4. The Multivalued Problem

For a normed space (X, ‖ · ‖), we define:
Pcl(X) = {R ∈ P(X) : R is closed}, Pcp(X) = {R ∈ P(X) : R is compact}, and

Pcp,c(X) = {R ∈ P(X) : R is compact and convex}.
For details of multivalued analysis we refer the reader to [27,28]. See also [7].
The set of selections of F, for each ϑ ∈ C([a, b],R), is defined by

SF,ϑ := {v ∈ L1([a, b],R) : v(w) ∈ F(w, ϑ(w)) on [a, b]}.

Definition 1. A function ϑ ∈ C([a, b],R) is said to be a solution of the (k, φ)-Hilfer nonlocal
multipoint fractional boundary value problem (17) if there exists a function v ∈ L1([a, b],R) with
v(w) ∈ F(w, ϑ) for a.e. w ∈ [a, b] such that ϑ satisfies the differential equation k,HDα,β;φϑ(w) =
v(w) on [a, b] and the boundary conditions ϑ(a) = 0, ϑ(b) = ∑m

i=1 λiϑ(ξi).

In the first existence result, which concern the case when F has convex values, we
apply nonlinear alternative of Leray–Schauder type [26] with the assumption that F is
L1-Carathéodory, that is, (i) w → F(w, u) is measurable for each u ∈ R; (ii) u → F(w, u)
is upper semicontinuous for almost all w ∈ [a, b] and (iii) for each r > 0, there exists a
function mr ∈ L1([a, b],R+) such that

‖F(w, u)‖ = sup{|v| : v ∈ F(w, u)} < mr(w),

for each u ∈ R with |u| ≤ r and for almost every w ∈ [a, b].

Theorem 4. Assume that:

(G1) F : [a, b]×R→ Pcp,c(R) is L1-Carathéodory;
(G2) there exists z : [0, ∞) → (0, ∞) a continuous nondecreasing function and a continuous

positive function q such that

‖F(w, ϑ)‖P := sup{|v| : v ∈ F(w, ϑ)} ≤ q(w)z(‖ϑ‖) for each (w, ϑ) ∈ [a, b]×R;

(G3) there exists a constant K > 0 such that

K

‖q‖z(K)G
> 1.

Then the (k, φ)-Hilfer nonlocal multi-point fractional boundary value problem (17) has at least
one solution on [a, b].

Proof. We define an operator F : C([a, b],R) −→ P(C([a, b],R)) by

F (ϑ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h ∈ C([a, b],R) :

h(w) =

⎧⎪⎨⎪⎩
(φ(w)− φ(a))

θk
k −1

HΓk(θk)

[ m

∑
i=1

λi
kIα;φv(ξi, )− kIα;φv(b)

]
+kIα;φv(w), w ∈ [a, b]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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and v ∈ SF,ϑ. It is obvious that the solutions of the (k, φ)-Hilfer nonlocal multipoint
fractional boundary value problem (17) are the fixed points of F .

We will give the proof in several steps.

Step 1. For each ϑ ∈ C([a, b],R), the operator F (ϑ) is convex.

We omit the proof, because it is obvious, since F has convex values and thus SF,ϑ
is convex.

Step 2. F maps the bounded sets into bounded sets in C([a, b],R).

Let Br = {ϑ ∈ C([a, b],R) : ‖ϑ‖ ≤ r}, r > 0. Then, for each h ∈ F (ϑ), ϑ ∈ Br, there
exists v ∈ SF,x such that

h(w) =
(φ(w)− φ(a))

θk
k −1

HΓk(θk)

[ m

∑
i=1

λi
kIα;φv(ξi, )− kIα;φv(b)

]
+ kIα;φv(w).

Then, for w ∈ [a, b], we have

|h(w)| ≤ sup
w∈[a,b]

{
(φ(w)− φ(a))

θk
k −1

|H|Γk(θk)

[ m

∑
i=1
|λi|kIα;φ|v(ξi)|+ kIα;φ|v(b)|

]

+kIα;φ|v(w)|
}

≤
{
(φ(b)− φ(a))

α
k

Γk(α + k)
+

(φ(b)− φ(a))
θk
k −1

|H|Γk(θk)

[
m

∑
i=1
|λi|

(φ(ξi)− φ(a))
α
k

Γk(α + k)

+
(φ(b)− φ(a))

α
k

Γk(α + k)

]}
‖q‖z(‖ϑ‖),

and consequently,
‖h‖ ≤ z(r)‖q‖G.

Step 3. F maps bounded sets into equicontinuous sets of C([a, b],R).

Let w1, w2 ∈ [a, b] with w1 < w2 and ϑ ∈ Br. Then, for each h ∈ F (ϑ), we obtain

|h(w2)− h(w1)|

≤ 1
Γk(α)

∣∣∣∣∣
∫ w1

a
φ′(s)[(φ(w2)− φ(s))

α
k−1 − (φ(w1)− φ(s))

α
k−1]v(s)ds

+
∫ w2

w1

φ′(s)(φ(w2)− φ(s))
α
k−1v(s)ds

∣∣∣∣∣
+
(φ(w2)− φ(a))

θk
k −1 − (φ(w1)− φ(a))

θk
k −1

|H|Γk(θk)

[ m

∑
i=1
|λi|kIα;φ|v(ξi)|

+kIα;φ|v(b)|
]

≤ ‖q‖z(r)
Γk(α + k)

[2(φ(w2)− φ(w1))
α
k + |(φ(w2)− φ(a))

α
k − (φ(w1)− φ(a))

α
k |],

+
(φ(w2)− φ(a))

θk
k −1 − (φ(w1)− φ(a))

θk
k −1

|H|Γk(θk)

[
m

∑
i=1
|λi|

(φ(ξi)− φ(a))
α
k

Γk(α + k)

+
(φ(b)− φ(a))

α
k

Γk(α + k)

]
‖q‖z(r).
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Hence, independently of ϑ ∈ Br we have |h(w2)− h(w1)| → 0 as w2 − w1 → 0. By the
Arzelá–Ascoli theorem that F : C([a, b],R)→ P(C([a, b],R)) is completely continuous.

By virtue of the Proposition 1.2 of [24], it is enough to prove that the F has a closed
graph, which will imply that F is upper semicontinuous multivalued mapping.

Step 4. F has a closed graph.

Let ϑn → ϑ∗, hn ∈ F (ϑn) and hn → h∗. Then we need to show that h∗ ∈ F (ϑ∗).
Associated with hn ∈ F (ϑn), there exists vn ∈ SF,ϑn such that for each w ∈ [a, b],

hn(w) =
(φ(w)− φ(a))

θk
k −1

HΓk(θk)

[ m

∑
i=1

λi
kIα;φvn(ξi, )− kIα;φvn(b)

]
+ kIα;φvn(w).

Thus it suffices to show that there exists v∗ ∈ SF,ϑ∗ such that for each w ∈ [a, b],

h∗(w) =
(φ(w)− φ(a))

θk
k −1

HΓk(θk)

[ m

∑
i=1

λi
kIα;φv∗(ξi)− kIα;φv∗(b)

]
+ kIα;φv∗(w).

Let us consider the linear operator Θ : L1([a, b],R)→ C([a, b],R) given by

v �→ Θ(v)(w)
(φ(w)− φ(a))

θk
k −1

HΓk(θk)

[ m

∑
i=1

λi
kIα;φv(ξi)− kIα;φv(b)

]
+ kIα;φv(w).

Observe that ‖hn − h∗‖ → 0, as n → ∞. Therefore, it follows by a Lazota–Opial
result [29], that Θ ◦ SF is a closed-graph operator. Further, we have hn(w) ∈ Θ(SF,ϑn).
Since ϑn → ϑ∗, we have

h∗(w) =
(φ(w)− φ(a))

θk
k −1

HΓk(θk)

[ m

∑
i=1

λi
kIα;φv∗(ξi)− kIα;φv∗(b)

]
+ kIα;φv∗(w),

for some v∗ ∈ SF,ϑ∗ .

Step 5. There exists an open set U ⊆ C([a, b],R) with ϑ /∈ νF (ϑ) for any ν ∈ (0, 1) and all
ϑ ∈ ∂U .

Let ν ∈ (0, 1) and ϑ ∈ νF (ϑ). Then there exists v ∈ L1([a, b],R) with v ∈ SF,ϑ such
that, for w ∈ [a, b], we have

ϑ(w) = ν
(φ(w)− φ(a))

θk
k −1

HΓk(θk)

[ m

∑
i=1

λi
kIα;φv(ξi)− kIα;φv(b)

]
+ ν kIα;φv(w).

Working as in second step, we have

|ϑ(w)| ≤ ‖p‖ω(‖ϑ‖)G.

Consequently

‖ϑ‖ ≤ ‖p‖ω(‖ϑ‖)G,

or
‖ϑ‖

‖q‖z(‖ϑ‖)G ≤ 1.

In view of (H3), there exists K such that ‖ϑ‖ 
= K. Let us set

U = {ϑ ∈ C([a, b],R) : ‖ϑ‖ < K}.
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The operator F : U → P(C([a, b],R)) is a compact multivalued map, upper semi-
continuous with convex closed values. There is no ϑ ∈ ∂U such that ϑ ∈ νF (ϑ) for some
ν ∈ (0, 1), from the choice of U .

By the nonlinear alternative of Leray–Schauder type F has a fixed point ϑ ∈ U which
is a solution of the (k, φ)-Hilfer nonlocal multi-point fractional boundary value problem
(17). This ends the proof.

In our second result, the existence of solutions for the (k, φ)-Hilfer nonlocal multipoint
fractional boundary value problem (17) is showed when F is not necessarily nonconvex
valued by using a fixed-point theorem for multivalued contractive maps due to Covitz and
Nadler [30].

Theorem 5. Assume that the following conditions hold:

(A1)F : [a, b]×R→ Pcp(R) is such that f(·, ϑ) : [a, b]→ Pcp(R) is measurable for each ϑ ∈ R.
(A2)Hd(F(w, ϑ),F(w, ϑ̄)) ≤ m(w)|ϑ − ϑ̄| for almost all w ∈ [a, b] and ϑ, ϑ̄ ∈ R with m ∈

C([a, b],R+) and d(0, f(w, 0)) ≤ m(w) for almost all w ∈ [a, b].

Then the (k, φ)-Hilfer nonlocal multipoint fractional boundary value problem (17) has at least
one solution on [a, b] if

δ := G‖m‖ < 1. (27)

Proof. By the assumption (A1), the set SF,ϑ is nonempty for each ϑ ∈ C([a, b],R). Hence F

has a measurable selection (see Theorem III.6 [31]). We show that F (ϑ) ∈ Pcl(C([a, b],R))
for each ϑ ∈ C([a, b],R). Let {un}n≥0 ∈ F (ϑ) be such that un → u (n → ∞) in C([a, b],R).
Then u ∈ C([a, b],R) and there exists vn ∈ SF,ϑn such that, for each w ∈ [a, b],

un(w) =
(φ(w)− φ(a))

θk
k −1

HΓk(θk)

[ m

∑
i=1

λi
kIα;φvn(ξi)− kIα;φvn(b)

]
+ kIα;φvn(w).

As F has compact values, we pass onto a subsequence (if necessary) to obtain that vn
converges to v in L1([a, b],R). Thus, v ∈ SF,ϑ and for each w ∈ [a, b], we have

un(w)→ u(w) =
(φ(w)− φ(a))

θk
k −1

HΓk(θk)

[ m

∑
i=1

λi
kIα;φvn(ξi)− kIαφvn(b)

]
+ kIα;φvn(w).

Hence, u ∈ F (ϑ).
Next we show that

Hd(F (ϑ),F (ϑ̄)) ≤ δ‖ϑ− ϑ̄‖, δ < 1, for each ϑ, ϑ̄ ∈ C2([a, b],R).

Let ϑ, ϑ̄ ∈ C2([a, b],R) and h1 ∈ F (x). Then there exists v1(w) ∈ F(w, ϑ(w)) such that,
for each w ∈ [a, b],

h1(w) =
(φ(w)− φ(a))

θk
k −1

HΓk(θk)

[ m

∑
i=1

λi
kIα;φv1(ξi)− kIα;φv1(b)

]
+ kIα;φv1(w).

By (A2), we have

Hd(F(w, ϑ),F(w, ϑ̄)) ≤ m(w)|ϑ(w)− ϑ̄(w)|.

So, there exists ω ∈ f(w, x̄(w)) such that

|v1(w)−ω| ≤ m(w)|ϑ(w)− ϑ̄(w)|, w ∈ [a, b].
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Define U : [a, b]→ P(R) by

U(w) = {w ∈ R : |v1(w)−ω| ≤ m(w)|ϑ(w)− ϑ̄(w)|}.

Since the multivalued operator U(w)∩F(w, ϑ̄(w)) is measurable (Proposition III.4 [31]),
there exists a function v2(w) which is a measurable selection for U. So v2(w) ∈ F(w, ϑ̄(w))
and for each w ∈ [a, b], we have |v1(w)− v2(w)| ≤ m(w)|ϑ(w)− ϑ̄(w)|.

For each w ∈ [a, b], let us define

h2(w) =
(φ(w)− φ(a))

θk
k −1

HΓk(θk)

[ m

∑
i=1

λi
kIα;φv2(ξi)− kIα;φv2(b)

]
+ kIα;φv2(w).

Thus,

|h1(w)− h2(w)|

≤ (φ(w)− φ(a))
θk
k −1

HΓk(θk)

[ m

∑
i=1

λi
kIα;φ(|v1(s)− v2(s)|)(ξi) +

kIα;φ(|v1(s)− v2(s)|)(b)
]

+kIα;φ(|v1(s)− v2(s)|)(w)

≤
{
(φ(b)− φ(a))

α
k

Γk(α + k)
+

(φ(b)− φ(a))
θk
k −1

|H|Γk(θk)

[
m

∑
i=1
|λi|

(φ(ξi)− φ(a))
α
k

Γk(α + k)

+
(φ(b)− φ(a))

α
k

Γk(α + k)

]}
‖m‖‖ϑ− ϑ̄‖

= G‖m‖‖ϑ− ϑ̄‖.

Hence
‖h1 − h2‖ ≤ G‖m‖‖ϑ− ϑ̄‖.

Analogously, interchanging the roles of x and x̄, we obtain

Hd(F (ϑ),F (ϑ̄)) ≤ G‖m‖‖ϑ− v̄‖.

So F is a contraction and by Covitz and Nadler theorem F has a fixed point ϑ which
is a solution of the (k, φ)-Hilfer nonlocal multipoint fractional boundary value problem (17).
This completes the proof.

5. Examples

Now, we present some examples to show the applicability of our results.

Example 1. Consider the following multipoint boundary value problems for (k, φ)-Hilfer fractional
derivative of the form⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
6 ,HD

3
2 , 4

5 ;w7e−2w
ϑ(w) = f(w, ϑ(w)),

1
5
< w <

8
5

,

ϑ

(
1
5

)
= 0, ϑ

(
8
5

)
=

1
11

ϑ

(
2
5

)
+

3
22

ϑ

(
3
5

)
+

5
33

ϑ

(
4
5

)
+

7
44

ϑ

(
6
5

)
+

9
55

ϑ

(
7
5

)
.

(28)

Here α = 3/2, β = 4/5, φ(w) = w7e−2w, k = 1/6, a = 1/5, b = 8/5, m = 5,
λ1 = 1/11, λ2 = 3/22, λ3 = 5/33, λ4 = 7/44, λ5 = 9/55, ξ1 = 2/5, ξ2 = 3/5, ξ3 = 4/5,
ξ4 = 6/5, ξ5 = 7/5. By direct computation, we get θ 1

6
= 17/30, Γ 1

6
(θ 1

6
) ≈ 0.04044166691,

H ≈ 29.03126784, G ≈ 128.5303681, G1 ≈ 66.09288339.

190



Axioms 2022, 11, 110

(i) Let a nonlinear unbounded f(w, ϑ) be given by

f(w, ϑ) =
e−(5w−1)2

40(5w + 6)

(
ϑ2 + |ϑ|
1 + |ϑ|

)
+

1
3

w +
1
2

. (29)

Then we can show that,

|f(w, ϑ1)− f(w, ϑ2)| ≤
1

140
|ϑ1 − ϑ2|,

for w ∈ [1/5, 8/5] and ϑ1, ϑ2 ∈ R. Therefore, for L = 1/140, we haveLG ≈ 0.9180740579 < 1.
Thus by Theorem 1 the multipoint boundary value problem for (k, φ)-Hilfer fractional derivative
(28) with (29) has a unique solution on the interval [1/5, 8/5].

(ii) Let a nonlinear bounded f(w, ϑ) be defined as

f(w, ϑ) =
e−(5w−1)2

10(5w + 6)

( |ϑ|
1 + |ϑ|

)
+

1
3

w +
1
2

. (30)

Now, we observe that

|f(w, ϑ)| ≤ e−(5w−1)2

10(5w + 6)
+

1
3

w +
1
2

:= �(w),

which is bounded by the known function �(w), w ∈ [1/5, 8/5]. In addition, f satisfies the
Lipschitz condition (H1) with Lipschitz constant L = 1/70. But we can not conclude the
uniqueness result, because Theorem 1 can not be applied since LG ≈ 1.836148116 > 1.
However, since LG1 ≈ 0.9441840484 < 1, we deduce that the boundary value problem (28),
with f given by (30), has at least one solution on [1/5, 8/5] by Theorem 2.

(iii) Let now a nonlinear f(w, ϑ) be presented by

f(w, ϑ) =
1

2(5w + 7)

(
ϑ182

15(1 + ϑ180)
+

1
18

)
. (31)

Note that the nonlinear function can be bounded by quadratic term as

|f(w, ϑ)| ≤ 1
2(5w + 7)

(
1

15
ϑ2 +

1
18

)
.

By setting σ(w) = 1/(2(5w+ 7)) and χ(u) = (1/15)u2 +(1/18), we have ‖σ‖ = 1/16
and, then, there exists K ∈ (0.7378396700, 1.129423324) satisfying condition (H4) in The-
orem 3. By application of Theorem 3, we conclude that the multipoint boundary value
problem via (k, φ)-Hilfer fractional calculus (28), with f given by (30), has at least one
solution on [1/5, 8/5].

(iv) Let the first equation of (28) be replaced by

1
6 ,HD

3
2 , 4

5 ;w7e−2w
ϑ(w) ∈ F(w, ϑ(w)),

1
5
< w <

8
5

, (32)

where

F(w, ϑ) =

[
0,

1
20(5w + 12)

( |ϑ|
1 + |ϑ| + sin ϑ + 1

)]
.

Now, we see that F(w, ϑ) is a measurable set. In addition, we have

Hd
(
F(w, ϑ),F(w, ϑ)

)
≤ 1

10(5w + 12)
|ϑ− ϑ|.

We set m(w) = 1/(10(5w + 12)). Therefore, we can check that d(0,F(w, 0)) ≤
1/(20(5w + 12)) ≤ 1/(10(5w + 12)) = m(w) for almost all w ∈ [1/5, 8/5]. As δ =
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G‖m‖ ≈ 0.9886951392 < 1, we get that (k, φ)-Hilfer fractional inclusion (32) with boundary
conditions given in (28), has at least one solution on [1/5, 8/5].

6. Conclusions

In the present research, we have investigated fractional boundary value problems
consisting of (k, φ)-Hilfer fractional differential equations and inclusions, supplemented
by nonlocal multipoint boundary conditions. First we considered the single valued case.
After transforming the given problem into a fixed-point problem, we applied the Ba-
nach contraction-mapping principle, the Krasnoselskiĭ fixed-point theorem and the Leray–
Schauder nonlinear alternative and established existence and uniqueness results. Af-
ter that, we studied the multivalued case. We considered both cases, convex-valued and
nonconvex-valued multivalued maps. In the first case, we established an existence result
via a Leray–Schauder nonlinear alternative for multivalued maps, while in the second
case the Covitz–Nadler fixed-point theorem for contractive multivalued maps was applied.
Numerical examples illustrating the theoretical results are also presented. The used meth-
ods are standard, but their configuration in (k, φ)-Hilfer nonlocal multipoint fractional
boundary value problems is new. To the best of our knowledge, our results in this paper are
the only concerning boundary value problems involving (k, φ)-Hilfer fractional differential
equations and inclusions of order in (1, 2]. Hence our results will enrich the literature on
this new research area.
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1. Introduction

In the past two decades, fractional differential equations are widely used in the mathe-
matical modeling of real-world phenomena. These applications have motivated many re-
searchers in the field of differential equations to investigate fractional differential equations
with different fractional derivatives, see the monographs [1–4] and the recent references.

The main motivation of studying fractional evolution equation comes from two as-
pects. Firstly, many mathematical models in physics and fluid mechanics are characterized
by fractional partial differential equations. Secondly, many types of fractional partial dif-
ferential equations, such as fractional diffusion equations, wave equations, Navier–Stokes
equations, Rayleigh–Stokes equations, Fokker–Planck equations, Schrödinger equations,
and so on, can be abstracted as fractional evolution equations, for example, see [5–7].
Therefore, the study of fractional evolution equations is very valuable in both theory and
application. Indeed, the well-posedness of fractional evolution equations has become an
important research topic of evolution equations (see [8–18]).

In this paper, we consider the Cauchy problem of fractional evolution equations with
an almost sectorial operator⎧⎨⎩

HDλ,ν
0+ y(t) = Ay(t) + g(t, y(t)), t ∈ (0, T],

I(1−λ)(1−ν)
0+ y(0) = y0,

(1)

where HDλ,ν
0+ is the Hilfer fractional derivative of order 0 < λ < 1 and type 0 ≤ ν ≤ 1,

I(1−λ)(1−ν)
0+ is Riemann–Liouville fractional integral of order (1− λ)(1− ν), A is an almost

sectorial operator in Banach space X, g : [0, T]× X → X is a function to be defined later,
y0 ∈ X, T ∈ (0, ∞).

The Hilfer fractional derivative is a natural generalization of Riemann–Liouville
derivative and Caputo derivative, see [1]. It is obvious that fractional differential equations
with Hilfer derivatives include fractional differential equations with Riemann–Liouville
derivative or Caputo derivative as special cases. In the past few years, fractional differential
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equations with Hilfer fractional derivative received great attention from many researchers
(see [8–18]).

In this paper, we will prove new existence theorems of mild solutions for (1) in the
cases that the semigroup associated with the almost sectorial operator is compact as well
as noncompact. In particular, our results obtained in this paper essentially improve and
extend the known results in [4,9,10]. The rest of this paper is organized as follows: in
Section 2, we will introduce almost sectorial operators, fractional calculus and the measure
of noncompactness which will be used in this paper. In Section 3, we will give some useful
lemmas before proving the main results. In Section 4, we will show some new existence
results of mild solutions for Cauchy problem (1). In Section 5, we will point out that the
definitions of the operators in [10,16–18] are inappropriate.

2. Preliminaries

We first introduce some notations and definitions about almost sectorial operators, frac-
tional calculus and the Kuratowski’s measure of noncompactness. For more details, we refer
to [1,2,19,20].

Assume that X is a Banach space with the norm | · |. Let R = (−∞, ∞), R+ = (0, ∞)
and J be a finite interval of R. By C(J, X) we denote the Banach space of all continuous
functions from J to X with the norm ‖u‖ = supt∈J |u(t)| < ∞. We denote by L(X) the
space of all bounded linear operators from X to X with the usual operator norm ‖ · ‖L(X).

Let A be a linear operator from X to itself. Denote by D(A) the domain of A, by
σ(A) its spectrum, while ρ(A) := C − σ(A) is the resolvent set of A. Let S0

μ = {z ∈
C\{0} : | arg z| < μ} be the open sector for 0 < μ < π, and Sμ be its closure, i.e.,
Sμ = {z ∈ C\{0} : | arg z| ≤ μ} ∪ {0}.

Definition 1. Let 0 < k < 1 and 0 < ω < π
2 . We denote Θ−k

ω (X) as a family of all closed linear
operators A : D(A) ⊂ X → X such that

(i) σ(A) ⊂ Sω = {z ∈ C \ {0} : | arg z| ≤ ω} ∪ {0} and
(ii) for any μ ∈ (ω, π), there exists Cμ such that

‖R(z; A)‖L(X) ≤ Cμ|z|−k, for all z ∈ C \ Sμ,

where R(z; A) = (zI − A)−1, z ∈ ρ(A) is the resolvent operator of A. The linear operator A will
be called an almost sectorial operator on X if A ∈ Θ−k

ω (X).

Define the power of A as

Aβ =
1

2πi

∫
Γρ

zβR(z; A)dz, β > 1− k,

where Γρ = {R+eiρ}⋃{R+e−iρ} is an appropriate path oriented counterclockwise and
ω < ρ < μ. Then, the linear power space Xβ := D(Aβ) can be defined and Xβ is a Banach
space with the graph norm ‖y‖β = |Aβy|, y ∈ D(Aβ).

Next, let us introduce the semigroup associated with A. We denote the semigroup
associated with A by {Q(t)}t≥0. For t ∈ S0

π
2 −ω

Q(t) = e−tz(A) =
1

2πi

∫
Γρ

e−tzR(z; A)dz,

where the integral contour Γρ = {R+eiρ}⋃{R+e−iρ} is oriented counter-clockwise and
ω < ρ < μ < π

2 − | arg t|, forms an analytic semigroup of growth order 1− k.

Lemma 1 (see [19]). Assume that 0 < k < 1 and 0 < ω < π
2 . Set A ∈ Θ−k

ω (X). Then

(i) Q(s + t) = Q(s)Q(t), for any s, t ∈ S0
π
2 −ω

;

(ii) there exists a constant C0 > 0 such that ‖Q(t)‖L(X) ≤ C0tk−1, for any t > 0;
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(iii) The range R(Q(t)) of Q(t), t ∈ S0
π
2 −ω

is contained in D(A∞). Particularly, R(Q(t)) ⊂
D(Aβ) for all β ∈ C with Re(β) > 0,

AβQ(t)y =
1

2πi

∫
Γθ

zβe−tzR(z; A)ydz, for all y ∈ X,

and hence there exists a constant C′ = C′(γ, β) > 0 such that

‖AβQ(t)‖B(X) ≤ C′t−γ−Re(β)−1, for all t > 0;

(iv) If β > 1− k, then D(Aβ) ⊂ ΣQ = {y ∈ X : limt→0+ Q(t)y = y};
(v) R(λ, A) =

∫ ∞
0 e−λtQ(t)dt, for every λ ∈ C with Re(λ) > 0.

Definition 2 (Riemann-Liouville fractional integral, see [2]). The fractional integral of order λ
for a function y : [0, ∞)→ R is defined as

Iλ
0+y(t) =

1
Γ(λ)

∫ t

0
(t− s)λ−1y(s)ds, λ > 0, t > 0,

provided the right side is point-wise defined on [0, ∞), where Γ(·) is the gamma function.

Definition 3 (Hilfer fractional derivative, see [1]). Let 0 < λ < 1 and 0 ≤ ν ≤ 1. The Hilfer
fractional derivative of order λ and type ν for a function y : [0, ∞)→ R is defined as

HDλ,ν
0+ y(t) = Iν(1−λ)

0+
d
dt

I(1−λ)(1−ν)
0+ y(t).

In particular, when ν = 0, 0 < λ < 1, then

HDλ,0
0+y(t) =

d
dt

I1−λ
0+ y(t) =: LD

λ
0+y(t),

where LDλ
0+ is Riemann–Liouville derivative.

If ν = 1, 0 < λ < 1, then

HDλ,1
0+y(t) = I1−λ

0+
d
dt

y(t) =: CDλ
0+y(t),

where CDλ
0+ is Caputo derivative.

Let D be a nonempty subset of X. The Kuratowski’s measure of noncompactness α is
defined as follows:

α(D) = inf
{

d > 0 : D ⊂
n⋃

j=1

Mj and diam(Mj) ≤ d
}

,

where the diameter of Mj is given by diam(Mj) = sup{|x− y| : x, y ∈ Mj}, j = 1, . . . , n.

Lemma 2 ([21]). Let X be a Banach space, and let {un(t)}∞
n=1 : [0, T] → X be a continuous

function family. If there exists ξ ∈ L[0, T] such that

|un(t)| ≤ ξ(t), t ∈ [0, T], n = 1, 2, . . . .

Then α({un(t)}∞
n=1) is integrable on [0, T], and

α

({ ∫ t

0
un(s)ds

}∞

n=1

)
≤ 2

∫ t

0
α({un(s)}∞

n=1)ds.
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Definition 4 ([22]). Define the wright function Mλ(θ) by

Mλ(θ) =
∞

∑
n=1

(−θ)n−1

(n− 1)!Γ(1− λn)
, 0 < λ < 1, θ ∈ C,

with the following property∫ ∞

0
θδ Mλ(θ)dθ =

Γ(1 + δ)

Γ(1 + λδ)
, for δ ≥ 0.

Lemma 3 ([9]). The problem (1) is equivalent to the integral equation

y(t) =
y0

Γ(ν(1− λ) + λ)
t−(1−λ)(1−ν)

+
1

Γ(λ)

∫ t

0
(t− s)λ−1[Ay(s) + g(s, y(s))]ds, t ∈ (0, T].

(2)

Lemma 4. Assume that y(t) satisfies integral Equation (2). Then

y(t) = Sλ,ν(t)y0 +
∫ t

0
Kλ(t− s)g(s, y(s))ds, t ∈ (0, T],

where

Sλ,ν(t) = Iν(1−λ)
0+ Kλ(t), Kλ(t) = tλ−1Qλ(t), and Qλ(t) =

∫ ∞

0
λθMλ(θ)Q(tλθ)dθ.

Proof. This proof is similar to [9], so we omit it.

In view of Lemma 4, we have the following definition.

Definition 5. If y ∈ C((0, T], X) satisfies

y(t) = Sλ,ν(t)y0 +
∫ t

0
Kλ(t− s)g(s, y(s))ds, t ∈ (0, T],

then y(t) is called a mild solution of the Cauchy problem (1).

Lemma 5 ([10]). If {Q(t)}t>0 is a compact operator, then {Sλ,ν(t)}t>0 and {Qλ(t)}t>0 are also
compact operators.

Lemma 6 ([4]). Let β > 1− k. For all y ∈ D(Aβ), we have limt→0+Qλ(t)y = y
Γ(λ) .

Lemma 7. Assume that {Q(t)}t>0 is a compact operator. Then {Q(t)}t>0 is equicontinuous.

Lemma 8 (See also [10]). For any fixed t > 0, Qλ(t), Kλ(t) and Sλ,ν(t) are linear operators,
and for any y ∈ X,

|Qλ(t)y| ≤ L1tλ(k−1)|y|, |Kλ(t)y| ≤ L1tλk−1|y|, and |Sλ,ν(t)y| ≤ L2t−1+ν−λν+λk|y|,

where

L1 =
C0Γ(k)
Γ(λk)

, L2 =
C0Γ(k)

Γ(ν(1− λ) + λk)
.

Proof. By ∫ ∞

0
θδ Mλ(θ)dθ =

Γ(1 + δ)

Γ(1 + λδ)
, for δ ≥ 0,
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we have

|Qλ(t)y| =
∣∣∣∣ ∫ ∞

0
λθMλ(θ)Q(tλθ)ydθ

∣∣∣∣
≤λC0

∫ ∞

0
Mλ(θ)θ

ktλ(k−1)|y|dθ

≤L1tλ(k−1)|y|, for t ∈ (0, T] and y ∈ X.

Moreover, for t ∈ (0, T] and y ∈ X,

|Kλ(t)y| = |tλ−1Qλ(t)y| ≤ L1tλk−1|y|,

and

|Sλ,ν(t)y| = |Iν(1−λ)
0+ Kλ(t)y| =

∣∣∣∣ 1
Γ(ν(1− λ))

∫ t

0
(t− s)ν(1−λ)−1Kλ(s)yds

∣∣∣∣
≤ C0Γ(k)

Γ(λk)Γ(ν(1− λ))

∫ t

0
(t− s)ν(1−λ)−1sλk−1|y|ds

≤L2t−1+ν−λν+λk|y|.

This completes the proof.

Lemma 9 ([10]). Assume that {Q(t)}t>0 is equicontinuous. Then {Qλ(t)}t>0, {Kλ(t)}t>0 and
{Sλ,ν(t)}t>0 are strongly continuous, that is, for any y ∈ X and t′′ > t′ > 0,

|Qλ(t′)y−Qλ(t′′)y| → 0, |Kλ(t′)y−Kλ(t′′)y| → 0,

|Sλ,ν(t′)y− Sλ,ν(t′′)y| → 0, as t′′ → t′.

3. Some Lemmas

Throughout this paper, we assume that A ∈ Θ−k
ω (X), 0 < k < 1 and 0 < ω < π

2 .
Furthermore, we suppose that y0 ∈ D(Aβ) with β > 1− k.

We introduce the following hypotheses:

(H1) Q(t) is continuous in the uniform operator topology for t > 0, i.e., {Q(t)}t>0 is
equicontinuous.

(H2) the map t → g(t, y) is measurable for all y ∈ X and the map y → g(t, y) is continuous
for a.e. t ∈ [0, T].

(H3) there exists a function m ∈ L((0, T],R+) satisfying

Iλk
0+m ∈ C((0, T],R+), lim

t→0+
t1−ν+λν−λk Iλk

0+m(t) = 0

and |g(t, y)| ≤ m(t), for a.e. t ∈ (0, T] and any y ∈ X.
(H4) there exists a constant r > 0 such that

L2|y0|+ L1 sup
t∈[0,T]

{
t1−ν+λν−λk

∫ t

0
(t− s)λk−1m(s)ds

}
≤ r,

where

L1 =
C0Γ(k)
Γ(λk)

, L2 =
C0Γ(k)

Γ(ν(1− λ) + λk)
.

Let

Cλ((0, T], X) =
{

y ∈ C((0, T], X) : lim
t→0+

t1−ν+λν−λk|y(t)| exists and is finite
}

,
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with the norm
‖y‖λ = sup

t∈(0,T]
{t1−ν+λν−λk|y(t)|}.

Then (Cλ((0, T], X), ‖ · ‖λ) is a Banach space (see Lemma 3.2 of [23]).
For any y ∈ Cλ((0, T], X), define an operator T as follows

(T y)(t) = (T1y)(t) + (T2y)(t),

where

(T1y)(t) = Sλ,ν(t)y0, (T2y)(t) =
∫ t

0
Kλ(t− s)g(s, y(s))ds, for t ∈ (0, T].

Clearly, the problem (1) has a mild solution y∗ ∈ Cλ((0, T], X) if and only if T has a
fixed point y∗ ∈ Cλ((0, T], X).

It is easy to show that

lim
t→0+

t1−ν+λν−λkSλ,ν(t)y0 = 0. (3)

In fact,

t1−ν+λν−λkSλ,ν(t)y0 =
t1−ν+λν−λk

Γ(ν(1− λ))

∫ t

0
(t− s)ν(1−λ)−1sλ−1Qλ(s)y0ds

=
1

Γ(ν(1− λ))

∫ 1

0
(1− z)ν(1−λ)−1zλ−1tλ(1−k)Qλ(tz)y0dz.

By lemma 6, limt→0+ tλ(1−k)Qλ(tz)y0 = 0 and
∫ 1

0 (1− z)ν(1−λ)−1zλ−1dz exists, so (3)
holds.

In addition, from Lemma 8 and (H3), we have∣∣∣t1−ν+λν−λk
∫ t

0
Kλ(t− s)g(s, y(s))ds

∣∣∣ ≤L1t1−ν+λν−λk
∫ t

0
(t− s)λk−1m(s)ds

→0, as t → 0.
(4)

For any u ∈ C([0, T], X), set

y(t) = t−(1−ν+λν−λk)u(t), t ∈ (0, T].

Clearly, y ∈ Cλ((0, T], X). Define an operator F as follows

(Fu)(t) = (F1u)(t) + (F2u)(t),

where

(F1u)(t) =

{
t1−ν+λν−λk(T1y)(t), for t ∈ (0, T],

0, for t = 0,

(F2u)(t) =

{
t1−ν+λν−λk(T2y)(t), for t ∈ (0, T],

0, for t = 0.

Let
Ωr = {u ∈ C([0, T], X) : ‖u‖ ≤ r}.

and
Ω̃r = {y ∈ Cλ((0, T], X) : ‖y‖λ ≤ r}.
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Clearly, Ωr and Ω̃r are nonempty, convex and closed subsets of C([0, T], X) and
Cλ((0, T], X), respectively.

Before giving the main results, we first prove the following lemmas.

Lemma 10. Assume that (H1)–(H4) hold. Then, the set
{
Fu : u ∈ Ωr

}
is equicontinuous.

Proof. Step I. We first prove that
{
F1u : u ∈ Ωr

}
is equicontinuous.

For t1 = 0, t2 ∈ (0, T], by (3), we obtain∣∣∣(F1u)(t2)− (F1u)(0)
∣∣∣ ≤∣∣∣t2

1−ν+λν−λkSλ,ν(t2)y0 − 0
∣∣∣→ 0, as t2 → 0.

For any t1, t2 ∈ (0, T] and t1 < t2, we have∣∣∣(F1u)(t2)− (F1u)(t1)
∣∣∣ ≤∣∣∣t2

1−ν+λν−λkSλ,ν(t2)y0 − t1
1−ν+λν−λkSλ,ν(t1)y0

∣∣∣
≤|t2

1−ν+λν−λk||Sλ,ν(t2)y0 − Sλ,ν(t1)y0|
+ |t2

1−ν+λν−λk − t1
1−ν+λν−λk||Sλ,ν(t1)y0|

→0, as t2 → t1.

Hence,
{
F1u : u ∈ Ωr

}
is equicontinuous.

Step II. We prove that
{
F2u : u ∈ Ωr

}
is equicontinuous.

Let y(t) = t−(1−ν+λν−λk)u(t), for any u ∈ Ωr, t ∈ (0, T]. Then y ∈ Ω̃r.
For t1 = 0, 0 < t2 < T, by (4), we have∣∣∣(F2u)(t2)− (F2u)(0)

∣∣∣ =∣∣∣t2
1−ν+λν−λk

∫ t2

0
Kλ(t2 − s)g(s, y(s))ds

∣∣∣
→0, as t2 → 0.

For 0 < t1 < t2 ≤ T, we get

|(F2u)(t2)− (F2u)(t1)|

≤
∣∣∣t1

1−ν+λν−λk
∫ t2

t1

(t2 − s)λ−1Qλ(t2 − s)g(s, y(s))ds
∣∣∣

+
∣∣∣t1

1−ν+λν−λk
∫ t1

0

(
(t2 − s)λ−1 − (t1 − s)λ−1)Qλ(t2 − s)g(s, y(s))ds

∣∣∣
+
∣∣∣t1

1−ν+λν−λk
∫ t1

0
(t1 − s)λ−1(Qλ(t2 − s)−Qλ(t1 − s)

)
g(s, y(s))ds

∣∣∣
+
∣∣∣t2

1−ν+λν−λk − t1
1−ν+λν−λk

∣∣∣∣∣∣ ∫ t2

0
(t2 − s)λ−1Qλ(t2 − s)g(s, y(s))ds

∣∣∣
≤I1 + I2 + I3 + I4,

where

I1 =L1t1
1−ν+λν−λk

∣∣∣ ∫ t2

0
(t2 − s)λk−1m(s)ds−

∫ t1

0
(t1 − s)λk−1m(s)ds

∣∣∣,
I2 =2L1t1

1−ν+λν−λk
∫ t1

0

(
(t1 − s)λ−1 − (t2 − s)λ−1)(t2 − s)λ(k−1)m(s)ds,

I3 =t1
1−ν+λν−λk

∣∣∣ ∫ t1

0
(t1 − s)λ−1(Qλ(t2 − s)−Qλ(t1 − s)

)
g(s, y(s))ds

∣∣∣,
I4 =

∣∣∣t2
1−ν+λν−λk − t1

1−ν+λν−λk
∣∣∣∣∣∣L1

∫ t2

0
(t2 − s)λk−1m(s)ds

∣∣∣.
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One can deduce that limt2→t1 I1 = 0, since Iλk
0+m ∈ C((0, T],R+). Noting that

((t1 − s)λ−1 − (t2 − s)λ−1)(t2 − s)λ(k−1)m(s) ≤ (t1 − s)λk−1m(s), for s ∈ [0, t1),

then by Lebesgue dominated convergence theorem, we have∫ t1

0

(
(t1 − s)λ−1 − (t2 − s)λ−1)(t2 − s)λ(k−1)m(s)ds → 0, as t2 → t1,

which implies I2 → 0 as t2 → t1.
By (H3), for ε > 0, we have

I3 ≤t1
1−ν+λν−λk

∫ t1−ε

0
(t1 − s)λ−1∥∥Qλ(t2 − s)−Qλ(t1 − s)

∥∥
L(X)

∣∣g(s, y(s))
∣∣ds

+ t1
1−ν+λν−λk

∣∣∣ ∫ t1

t1−ε
(t1 − s)λ−1(Qλ(t2 − s)−Qλ(t1 − s)

)
g(s, y(s))ds

∣∣∣
≤t1

1−ν+λν−λk
∫ t1

0
(t1 − s)λ−1m(s)ds sup

s∈[0,t1−ε]

‖Qλ(t2 − s)−Qλ(t1 − s)‖L(X)

+ 2L1t1
1−ν+λν−λk

∫ t1

t1−ε
(t1 − s)λk−1m(s)ds

≤I31 + I32 + I33,

where

I31 =t1
1−ν+λν−λk

∫ t1

0
(t1 − s)λ−1m(s)ds sup

s∈[0,t1−ε]

‖Qλ(t2 − s)−Qλ(t1 − s)‖L(X),

I32 =2L1t1
1−ν+λν−λk

∣∣∣ ∫ t1

0
(t1 − s)λk−1m(s)ds−

∫ t1−ε

0
(t1 − ε− s)λk−1m(s)ds

∣∣∣,
I33 =2L1t1

1−ν+λν−λk
∫ t1−ε

0
((t1 − ε− s)λk−1 − (t1 − s)λk−1)m(s)ds.

By (H1) and Lemma 9, it is easy to see that I31 → 0 as t2 → t1. Similar to the proof that
I1, I2 tend to zero, we get I32 → 0 and I33 → 0 as ε → 0. Thus, I3 tends to zero as t2 → t1.
Clearly, I4 → 0 as t2 → t1.

Therefore,
{
F2u : u ∈ Ωr

}
is equicontinuous. Furthermore,

{
Fu : u ∈ Ωr

}
is

equicontinuous.

Lemma 11. Assume that (H2)–(H4) hold. Then FΩr ⊂ Ωr.

Proof. Let y(t) = t−(1−ν+λν−λk)u(t), for u ∈ Ωr, t ∈ (0, T]. Then y ∈ Ω̃r.
From Lemmas 10, we know that FΩr ⊂ C([0, T], X). For t > 0 and any u ∈ Ωr,

by (H4), we have

|(Fu)(t)| ≤
∣∣∣t1−ν+λν−λkSλ,ν(t)y0

∣∣∣+ ∣∣∣t1−ν+λν−λk
∫ t

0
Kλ(t− s)g(s, y(s))ds

∣∣∣
≤L2|y0|+ L1t1−ν+λν−λk

∫ t

0
(t− s)λk−1m(s)ds ≤ r.

For t = 0, we have |(Fu)(0)| = 0 < r. Therefore, FΩr ⊂ Ωr.

Lemma 12. Assume that (H2)–(H4) hold. Then F is continuous.

Proof. Let {un}∞
n=1 be a sequence in Ωr which is convergent to u ∈ Ωr. Consequently,

lim
n→∞

un(t) = u(t), and lim
n→∞

t−(1−ν+λν−λk)un(t) = t−(1−ν+λν−λk)u(t), for t ∈ (0, T].
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Let y(t) = t−(1−ν+λν−λk)u(t), yn(t) = t−(1−ν+λν−λk)un(t), t ∈ (0, T]. Then y, yn ∈ Ω̃r.
In view of (H2), we have

lim
n→∞

g(t, yn(t)) = lim
n→∞

g(t, t−(1−ν+λν−λk)un(t)) = g(t, t−(1−ν+λν−λk)u(t)) = g(t, y(t)).

For each t ∈ (0, T], (t− s)λk−1|g(s, yn(s))− g(s, y(s))| ≤ 2(t− s)λk−1m(s). By Lebesgue
dominated convergence theorem, we obtain∫ t

0
(t− s)λk−1|g(s, yn(s))− g(s, y(s))|ds → 0, as n → ∞.

Thus, for t ∈ [0, T],∣∣∣(Fun)(t)− (Fu)(t)
∣∣∣

≤t1−ν+λν−λk
∫ t

0
|Kλ(t− s)(g(s, yn(s))− g(s, y(s)))|ds

≤L1t1−ν+λν−λk
∫ t

0
(t− s)λk−1|g(s, yn(s))− g(s, y(s))|ds → 0, as n → ∞.

Therefore, ‖Fun − Fu‖ → 0 as n → ∞. Hence, F is continuous. The proof is
completed.

4. Main Results

Theorem 1. Assume that Q(t)(t > 0) is compact. Furthermore suppose that (H2)–(H4) hold.
Then the Cauchy problem (1) has at least one mild solution in Ω̃r.

Proof. Clearly, the problem (1) exists a mild solution y ∈ Ω̃r if and only if the operator F
has a fixed point u ∈ Ωr, where u(t) = t1−ν+λν−λky(t). Hence, we only need to prove that
the operator F has a fixed point in Ωr. From Lemmas 11 and 12, we know that FΩr ⊂ Ωr
and F is continuous. In view of Lemma 10, the set

{
Fu : u ∈ Ωr

}
is equicontinuous.

It remains to prove that for t ∈ [0, T],
{
(Fu)(t) : u ∈ Ωr

}
is relatively compact in X.

Clearly,
{
(Fu)(0) : u ∈ Ωr

}
is relatively compact in X. We only consider the case t > 0.

For any ε ∈ (0, t) and δ > 0, define Fε,δ on Ωr as follows

(Fε,δu)(t) :=t1−ν+λν−λk(Tε,δy)(t)

:=t1−ν+λν−λk

(
Sλ,ν(t)y0 +

∫ t−ε

0

∫ ∞

δ
λθ(t− s)λ−1Mλ(θ)

×Q((t− s)λθ)g(s, y(s))dθds

)
.

Thus,

(Fε,δu)(t) =t1−ν+λν−λk

(
Sλ,ν(t)y0 + Q(ελδ)

∫ t−ε

0

∫ ∞

δ
λθ(t− s)λ−1Mλ(θ)

×Q((t− s)λθ − ελδ)g(s, y(s))dθds

)
.

By Lemma 5, we know that Sλ,ν(t) is compact because Q(t) is compact for t > 0.
Furthermore, Q(ελδ) is compact, then the set {(Fε,δu)(t), u ∈ Ωr} is relatively compact in
X for any ε ∈ (0, t) and for any δ > 0. Moreover, for every u ∈ Ωr, we find
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∣∣(Fu)(t)− (Fε,δu)(t)
∣∣

≤t1−ν+λν−λk
∣∣∣ ∫ t

0

∫ δ

0
λθ(t− s)λ−1Mλ(θ)Q((t− s)λθ)g(s, y(s))dθds

∣∣∣
+ t1−ν+λν−λk

∣∣∣ ∫ t

t−ε

∫ ∞

δ
λθ(t− s)λ−1Mλ(θ)Q((t− s)λθ)g(s, y(s))dθds

∣∣∣
≤λC0t1−ν+λν−λk

∫ t

0
(t− s)λk−1|g(s, y(s))|ds

∫ δ

0
θk Mλ(θ)dθ

+ λC0t1−ν+λν−λk
∫ t

t−ε
(t− s)λk−1|g(s, y(s))|ds

∫ ∞

0
θk Mλ(θ)dθ

≤λC0t1−ν+λν−λk
∫ t

0
(t− s)λk−1m(s)ds

∫ δ

0
θk Mλ(θ)dθ

+ λC0t1−ν+λν−λk
∫ t

t−ε
(t− s)λk−1m(s)ds

∫ ∞

0
θk Mλ(θ)dθ

→0, as ε → 0, δ → 0.

Therefore,
{
(Fu)(t) : u ∈ Ωr

}
is also a relatively compact set in X for t ∈ [0, T]. Thus,{

Fu : u ∈ Ωr
}

is relatively compact by Ascoli–Arzela Theorem. Hence, F is a completely
continuous operator. Schauder’s fixed point theorem shows that F has at least a fixed point
u∗ ∈ Ωr. Let y∗(t) = t−(1−ν+λν−λk)u∗(t). Thus,

y∗(t) = Sλ,ν(t)y0 +
∫ t

0
Kλ(t− s)g(s, y∗(s))ds, t ∈ (0, T],

which implies that y∗ is a mild solution of (1) in Ω̃r. The proof is completed.

In the case that Q(t) is noncompact for t > 0, we give an assumption as follows:

(H5) there exists a constant K > 0 such that for any bounded D ⊆ X,

α(g(t, D)) ≤ Kt1−ν+λν−λkα(D), for a.e. t ∈ [0, T],

where α is the Kuratowski’s measure of noncompactness.

Theorem 2. Assume that (H1)–(H5) hold. Then the Cauchy problem (1) has at least one mild
solution in Ω̃r.

Proof. Let u0(t) = t1−ν+λν−λkSλ,ν(t)y0 for all t ∈ [0, T] and un+1 = Fun, n = 0, 1, 2, · · · .
By Lemma 11, Fun ∈ Ωr, for un ∈ Ωr. Consider set V =

{
Fun) : un ∈ Ωr}∞

n=0, and we
will prove set V is relatively compact. In view of Lemmas 10, the set V is equicontinuous.
We only need to prove V(t) =

{
(Fun)(t), un ∈ Ωr}∞

n=0 is relatively compact in X for
t ∈ [0, T].

By the properties of measure of noncompactness, for any t ∈ [0, T] we have

α
({

un(t)
}∞

n=0

)
= α

({
u0(t)

}
∪
{

un(t)
}∞

n=1

)
= α

({
un(t)

}∞

n=1

)
= α(V(t)). (5)

Let yn(t) = t−1+ν−λν+λkun(t), t ∈ (0, T], n = 0, 1, 2, · · · . By the condition (H5) and
Lemma 2, we have

203



Axioms 2022, 11, 144

α(V(t)) =α
({

(Fun)(t)
}∞

n=0

)
=α

({
t1−ν+λν−λkSλ,ν(t)y0 + t1−ν+λν−λk

∫ t

0
Kλ(t− s)g(s, yn(s))ds

}∞

n=0

)
=α

({
t1−ν+λν−λk

∫ t

0
Kλ(t− s)g(s, yn(s))ds

}∞

n=0

)
≤2L1t1−ν+λν−λk

∫ t

0
(t− s)λk−1α

(
g(s, {s−1+ν−λν+λkun(s)}∞

n=0)
)

ds

≤2L1KT1−ν+λν−λk
∫ t

0
(t− s)λk−1s1−ν+λν−λkα

(
{s−1+ν−λν+λkun(s)}∞

n=0

)
ds

≤2L1KT1−ν+λν−λk
∫ t

0
(t− s)λk−1α

({
un(s)

}∞

n=0

)
ds.

In view of (5), we obtain

α(V(t)) ≤ 2L1KT1−ν+λν−λk
∫ t

0
(t− s)λk−1α(V(s))ds.

Therefore, by the inequality in ([24], p.188), we obtain that α(V(t)) = 0, then V(t)
is relatively compact. Consequently, it follows from Ascoli–Arzela Theorem that set V
is relatively compact, i.e., there exists a convergent subsequence of {un}∞

n=0. With no
confusion, let limn→∞ un = u∗ ∈ Ωr.

Thus, by continuity of the operator F , we have

u∗ = lim
n→∞

un = lim
n→∞

Fun−1 = F
(

lim
n→∞

un−1

)
= Fu∗.

Let y∗(t) = t−1+ν−λν+λku∗(t). Thus, y∗ is a mild solution of (1) in Ω̃r. The proof is
completed.

In the following, we prove the existence and uniqueness of a mild solution of the
Cauchy problem (1).

(H6) There exists a function L ∈ C([0, T],R+) such that Iλk
0+L ∈ C([0, T],R+),

|g(t, y1(t))− g(t, y2(t))| ≤ L(t)‖y1 − y2‖λ, for any y1, y2 ∈ Ω̃r,

and

sup
t∈[0,T]

{
L1T1−ν+λν−λk

∫ t

0
(t− s)λk−1L(s)ds

}
≤ l0 < 1.

Theorem 3. Assume that the conditions (H2)–(H4) and (H6) hold. Then the Cauchy problem (1)
has a unique mild solution in Ω̃r.

Proof. From Lemmas 11, we know that FΩr ⊂ Ωr. For any u1, u2 ∈ Ωr, t ∈ [0, T], we have∣∣∣(Fu1)(t)− (Fu2)(t)
∣∣∣

≤T1−ν+λν−λk
∫ t

0
|Kλ(t− s)(g(s, y1(s))− g(s, y2(s)))|ds

≤L1T1−ν+λν−λk
∫ t

0
(t− s)λk−1|g(s, y1(s))− g(s, y2(s))|ds

≤L1T1−ν+λν−λk
∫ t

0
(t− s)λk−1L(s)‖y1 − y2‖λds

≤l0‖u1 − u2‖.
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Thus
‖(Fu1)− (Fu2)‖ ≤ l0‖u1 − u2‖,

which implies that F is a contraction mapping. In view of the contraction mapping
principle, F has the unique fixed point u∗ ∈ Ωr. Let y∗(t) = t−(1−ν+λν−λk)u∗(t). Thus, y∗

is a unique mild solution of (1) in Ω̃r. The proof is completed.

5. Remarks

In recent paper [10], the authors studied the problem (1) and obtained the following
result by Schauder’s fixed point theorem.

Theorem 4 (see Theorem 3 in [10]). Let 0 < k < 1, 0 < ω < π
2 and A ∈ Θ−k

ω (X). If we
assume, Q(t)(t > 0) is compact and the following hypotheses hold:

(h1) for each fixed t ∈ (0, T], g(t, ·) : X → X is continuous function and for each y ∈ C((0, T], X),
g(·, y) : (0, T]→ X is strongly measurable.

(h2) there exists a function l ∈ L1((0, T],R+) satisfying

Iλk
0+l ∈ C((0, T],R+), lim

t→0+
t(1−λk)(1−ν) Iλk

0+l(t) = 0

and |g(t, u)| ≤ l(t) for all u ∈ BYr ((0, T]) and almost all t ∈ [0, T].

(h3)

sup
t∈[0,T]

(
t(1−λk)(1−ν)|Sλ,ν(t)y0|+ t(1−λk)(1−ν)

∫ t

0
(t− s)λk−1l(s)ds

)
≤ r,

for a constant r > 0 and y0 ∈ D(Aθ), θ > 1− k, where Sλ,ν(t) = Iν(1−λ)
0+ tλ−1Qλ(t).

Then there exist a mild solution of the Cauchy problem (1) in BYr ((0, T]) for every y0 ∈ D(Aβ)
with β > 1− k.

Remark 1. In [10], the authors claimed that limt→0+ t(1−λk)(1−ν)Sλ,ν(t)y0 = 0 (see, (12)
in [10]). However, this claim is incorrect.

In fact, when ν = 1 and y0 
= 0, from Lemma 6, we know that limt→0+Qλ(t)y0 = y0/Γ(λ).
Furthermore, we have

lim
t→0+

Sλ,1(t)y0 =
1

Γ(1− λ)
lim

t→0+

∫ t

0
(t− s)−λsλ−1Qλ(s)y0ds

=
1

Γ(1− λ)
lim

t→0+

∫ 1

0
(1− z)−λzλ−1Qλ(tz)y0dz

=y0 
= 0.

Therefore, the definition of the operator E in (14) of [10] is incorrect. Because there is the same
shortcoming in the papers [16–18], the definitions of the operator P in [16], the operator Φ in the
proof of Theorem 3.1 in [17] and the operator F in the proof of Theorem 3 in [18] are inappropriate.

Remark 2. The condition (h3) contains the abstract operator Sλ,ν(t). It is difficult to verify whether
the condition (h3) is satisfied for one fractional evolution equation.

Remark 3. The results obtained in this paper essentially improve and correct Theorem 3 in [10], and
extend Theorem 2.1 in [4] and the known results in [9]. It is worth mentioning that all conditions of
our theorems do not contain the abstract operator Sλ,ν(t).
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Abstract: This paper is devoted to investigating one type of nonlinear two-term fractional order
delayed differential equations involving Caputo fractional derivatives. The Leray–Schauder alterna-
tive fixed-point theorem and Banach contraction principle are applied to analyze the existence and
uniqueness of solutions to the problem with infinite delay. Additionally, the Hyers–Ulam stability of
fractional differential equations is considered for the delay conditions.
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1. Introduction

In recent decades, relevant theories and applications of fractional differential equa-
tions [1–6] have developed rapidly. Generally, fractional differential equations are derived
from the research of solid mechanics [7], chemistry [8], physics [9,10], electromechanics [11],
finance [12], and so on. Abundant theoretical achievements have been made in the study
of the existence and uniqueness of fractional differential equations by applying the fixed-
pointed theorem, such as [12–16]. However, there are few articles in the research and
application of fractional differential equations with time delay. The delay factor has an
important influence on the solution to the fractional differential system. The change of
the system solution not only depends on the present state but also is constrained by the
past state. Therefore, it is of great significance to consider the delay effect on a fractional
differential system. In [17], the authors discussed the stability of fractional differential
equations with delay evolution inclusion. Li et al. [18] derived a comparison principle for
functional differential equations with infinite delays. Additionally, note that the Hyers–
Ulam stability property of delay differential equations can be mainly considered by the
Gronwall inequality. It is worth mentioning that the mentioned method can be applied
for the stability study of Caputo fractional delay differential equations (see, for example,
in [19–21]).

In [22], Qixiang Dong et al. investigated a kind of weighted fractional differential
equations with infinite delay, which can be expressed by{

Dαy(t) = f (t, ỹt), t ∈ (0, b],
ỹ0 = φ ∈ B,

where α ∈ (0, 1], ỹ(t) = t1−αy(t), Dα represents the Riemann–Liouville fractional derivative,
f : (0, b]×B → B is a given function satisfying some assumptions, and B is the phase
space. A method named weighted delay is applied by the authors to study the properties
of solutions to fractional differential equations whose initial value is not zero.

On the basis of these contents, we study the related properties of solutions to a class of
nonlinear fractional differential equations with infinite delay, namely
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{
cDαy(t)− acDβy(t) = f (t, yt), t ∈ J = [0, b],
y(t) = φ(t), t ∈ (−∞, 0],

(1)

where cDα and cDβ are Caputo fractional derivatives with 0 < β < α � 1, a is a certain
constant, f : J ×B → R is a given function satisfying some assumptions that will be
specified later, function φ ∈ B, and B is called a phase space, as defined later. Function yt,
which is an element B, is defined as any function y on (−∞, b] as follows:

yt(s) = y(t + s), s ∈ (−∞, 0], t ∈ J. (2)

Here, yt(·) represents the preoperational state from time−∞ up to time t. The notion of
the phase space B plays an important role in the study of both qualitative and quantitative
theories for functional differential equations. A common choice is the seminormed space
satisfying suitable axioms, which was introduced by Hale and Kato [23].

Our approach is largely based on the alternative of Leray–Schauder and Banach fixed-
point theorem. Due to the characteristic of delay equations, we need to give the proper
form of the solutions when discussing the existence and uniqueness, which is one of the
key and difficult points to solve the problem. Generally, delay differential equations can be
transformed into integral equations. Under the definition of phase space, the solutions of
the integral equations can be appropriately extended, and the constructed equations are
still continuous at the point x = 0. Additionally, we study the Hyers–Ulam stability of
fractional differential Equation (1) with infinite delay y(t) = φ(t). Due to the limitation of
delay conditions, the research of the Hyers–Ulam stability becomes more complicated. In
this paper, we verify the Hyers–Ulam stability of delay differential Equation (1) by using
the related properties of phase space and obtain the stability conclusion by means of a class
of Gronwall inequalities.

This paper is organized as follows. In Section 2, some basic mathematical tools
are introduced that are used throughout the article. Section 3 is devoted to our main
conclusions. The stability analysis is discussed in Section 4. Two examples are given at the
end of the article to illustrate the conclusions.

2. Preliminaries and Lemmas

In order to facilitate readers in reading the following contents, we introduce some
basic definitions and lemmas which are used throughout this paper in this section. First and
foremost, we denote C([a, b],R) the Banach space of all continuous functions y : [a, b]→ R

with the norm ‖y‖ = sup{|y(t)|, t ∈ [a, b]}. Additionally, we denote by Cm([0, b];R) the
Banach space of all continuously differentiable functions, with the norm defined as usual.

Definition 1 ([24]). The Riemann–Liouville integral with order α > 0 of the given function
h : [a, b]→ R is defined as

Jα
a h(t) =

1
Γ(α)

∫ t

a
(t− s)α−1h(s)ds, t ∈ [a, b],

provided the other side is point-wisely defined, where Γ(·) is the Euler’s gamma function; i.e,
Γ(z) =

∫ ∞
0 e−ttz−1dt.

Definition 2 ([24]). The Caputo derivative with order α > 0 of the given function h : [a, b]→ R

is defined as

cDα
a h(t) =

1
Γ(m− α)

∫ t

a
(t− s)m−α−1h(m)(s)ds, t ∈ [a, b],

provided the other side is point-wisely defined, where m is a positive integer satisfying m− 1 <
α � m. Incidentally, cDα

a is called the Caputo fractional differential operator as well.
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Lemma 1 ([24]). Let α > 0 and m = [α] + 1. Then, the general solution to the fractional differential
equation cDαu(t) = 0 is given by

u(t) = c0 + c1t + c2t2 + · · ·+ cm−1tm−1,

where ci ∈ R, i = 0, 1, 2, · · · , m− 1 are some constants. Further, assuming that u ∈ Cm([0, b];R),
we can get

Jα
cDαu(t) = u(t) + c0 + c1t + c2t2 + · · ·+ cm−1tm−1,

for some ci ∈ R, i = 0, 1, 2, · · · , m− 1.

Definition 3 ([25]). Let X be a Banach space; a linear topological space of functions from (−∞, 0]
into X, with the seminorm ‖ · ‖B , is called an admissible phase space if B has the following
properties:

(A1) There exists a positive constant H and functions K(·), M(·) : [0,+∞)→ [0,+∞), with K
continuous and M locally bounded, such that for any constant a, b ∈ R and b > a, if the
function x : (−∞, b]→ X, xa ∈ B and function x(·) is continuous on [a, b], then for every
t ∈ [a, b], the following conditions (i)–(iii) hold:

(i) xt ∈ B;
(ii) ‖x(t)‖ � H‖xt‖B for some H > 0;
(iii) ‖xt‖B � K(t− a) supa�s�t ‖x(s)‖+ M(t− a)‖xa‖B .
(A2) For the function x(·) in (A1), t �→ xt is a B-valued continuous function for t ∈ [a, b].
(B1) The space B is complete.

Lemma 2 ([26] Leray-Schauder alternative). Let X be a Banach space, C ⊂ X be a closed, convex
subset of X, U is an open subset of C and 0 ∈ U . Suppose T : U → C is a continuous, compact (in
other words, T (U ) is a relatively compact subset of C) map. Then, either

(i) T has a fixed point in U , or
(ii) there is a u ∈ ∂U and λ ∈ (0, 1) with u = λT (u).

In general, Gronwall inequality plays a vital role in the study of Hyers–Ulam stability
of differential equations. Next, we introduce an integral inequality which can be considered
as a generalization of the Gronwall inequality.

Lemma 3 ([27]). Suppose α > 0, a > 0, g(t, s) is a nonnegative continuous function defined
on [0, T] × [0, T] with g(t, s) � M, and g(t, s) is nondecreasing w.r.t. the first variable and
nonincreasing w.r.t. the second variable. Assume that function u(t) is nonnegative and integrable
on [0, T] with

u(t) � a +
∫ t

0
g(t, s)(t− s)α−1u(s)ds, t ∈ [0, T].

Then, we have

u(t) � a + a
∫ t

0

∞

∑
n=1

(g(t, s)Γ(α))n

Γ(nα)
(t− s)nα−1ds,

where the notion ”w.r.t.” means “with respect to”.

Lemma 4 ([22]). Suppose α > 0 and function f ∈ C[0, b] is nonnegative and nondecreasing.
Then, function F(t) = Jα

0 f (t) = 1
Γ(α)

∫ t
0 (t− s)α−1 f (s)ds is nondecreasing on [0, b].

Based on the Lemma 4 introduced above, the following inequality is proved to verify
the Hyers–Ulam stability in Section 4.
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Lemma 5. For any nonnegative function ω ∈ C[a, b] and any t ∈ [a, b], we have the following
integral inequality

sup
0�τ�t

∫ τ

0
(τ − s)α−1ω(s)ds �

∫ t

0
(t− s)α−1 sup

0�σ�s
ω(σ)ds.

Proof of Lemma 5. Since function ω(·) is nonnegative, sup0�σ�s ω(σ) is nondecreasing ,

which implies that the function
∫ t

0 (t− s)α−1 sup0�σ�s ω(σ)ds is also nondecreasing , by
Lemma 4. Now, fix t ∈ [a, b]. Then, for any τ ∈ [0, t], we have∫ τ

0
(τ − s)α−1ω(s)ds �

∫ τ

0
(τ − s)α−1 sup

0�σ�s
ω(s)ds

�
∫ t

0
(t− s)α−1 sup

0�σ�s
ω(s)ds,

which indicates that

sup
0�τ�t

∫ τ

0
(τ − s)α−1ω(s)ds �

∫ t

0
(t− s)α−1 sup

0�σ�s
ω(σ)ds.

Thus, the Lemma is proved.

3. Existence Results

In this section, we prove the existence results for problem (1) by using the alternative
of Leray–Schauder theorem. Further, our results for the unique solution are based on
the Banach contraction principle. Let us start by defining what we mean by a solution of
problem (1). Define the space:

Ω
′
= {y : (−∞, b]→ R : y |(−∞,0]∈ B and y |[0,b] is contiunous}. (3)

It can be easily verified that a function y ∈ Ω
′

is said to be a solution of (1) if y
satisfies (1). For the existence results on (1), we need the following Lemma.

Lemma 6. The solution y of the fractional differential Equation (1) has the following form:

y(t) = aJα−βy(t) + Jα f (t, yt) + θ(t), t ∈ J = [0, b],

where θ(t) = c0

(
atα−β

Γ(α−β+1) − 1
)

is a polynomial type function, and c0 is a certain constant.

Proof of Lemma 6. The proof is an immediate consequence of the Lemma 1.

The following assumptions are essential to the results of existence.

Assumption 1. f : [0, b]×B → R is continuous, and there exists a bounded set W0 ⊂ B such
that f : [0, b]×W0 uniformly continuous.

Assumption 2. There exist function g, l ∈ C(J,R+) such that | f (t, u)| � g(t) + l(t)‖u‖B for
t ∈ J and every u ∈ B.

Assumption 3. There exists a nonnegative function η ∈ Lp[0, b] with p > 1
α and a continuously

non-decreasing function Ω : [0,+∞) → [0,+∞) such that | f (t, u)| � η(t)Ω(‖u‖B) for t ∈ J
and every u ∈ B.

Assumption 4. There exists a constant L such that | f (t, u)− f (t, v)| � L‖u− v‖B for t ∈ J
and every u, v ∈ B.
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Theorem 1. Suppose that Assumptions 1 and 2 hold. Additionally, assume that

|a|bα−β

Γ(α− β + 1)
+

bαKb
Γ(α + 1)

‖l‖ < 1 (4)

holds. Then, the Equation (1) has at least one solution on (−∞, b].

Proof of Theorem 1. According to the content discussed above, we know that y is a solu-
tion to (1) if and only if y satisfies

y(t) =
{

aJα−βy(t) + Jα f (t, yt) + θ(t), t ∈ [0, b],
φ(t), t ∈ (−∞, 0].

For any given function φ : (−∞, 0] that belongs to B, let φ̃ be a function defined by

φ̃(t) =
{

φ(0), t ∈ [0, b],
φ(t), t ∈ (−∞, 0].

For each z ∈ C([0, b],R), we denote by z̃ the function defined by

z̃(t) =
{

z(t)− φ(0), t ∈ [0, b],
0, t ∈ (−∞, 0].

It can be easily seen that if y(·) satisfies the following integral equation

y(t) = aJα−βy(t) + Jα f (t, yt) + θ(t),

we can decompose y(·) as y(t) = φ̃(t) + z̃(t), t ∈ [0, b], which implies that yt = φ̃t + z̃t, for
every t ∈ [0, b], and the function z(·) satisfies

z(t) = aJα−βz(t) + Jα f (t, z̃t + φ̃t) + θ(t).

Set C0 = {z ∈ C
(
[0, b],R

)
: z(0) = φ(0)}. Then C0 is closed, and hence completed.

Define an operator P : C0 → C0 by

(Pz)(t) = aJα−βz(t) + Jα f (t, z̃t + φ̃t) + θ(t). (5)

where t ∈ [0, b]. According to the Schauder’s fixed point theorem, we show that the
operator P is continuous and completely continuous in the following four steps.

Step 1. P is continuous.

Let {zn} be a sequence such that zn → z in C0. Then, we have for each t ∈ [0, b]

|Pzn(t)− Pz(t)| � |a|
Γ(α− β)

∫ t

0
(t− s)α−β−1|zn(s)− z(s)|ds

+
1

Γ(α)

∫ t

0
(t− s)α−1| f (s, (̃zn)s + φ̃s)− f (s, z̃s + φ̃s)|ds.

Set W0 = {(zn)s : s ∈ [0, b], n � 1} ⊂ B. It can be easily known from Assumption 1
that function f is uniformly continuous in s ∈ [0, t], which implies that ∀ε > 0, ∃δ >
0, s.t ∀z1, z2 ∈ W0, |z1 − z2| < δ, we have | f (s, z1) − f (s, z2)| < ε. Since zn → z, then
∃N > 0, s.t ∀n > N, we have |zn − z| < δ. Hence, for any s ∈ [0, t], we can claim that
| f (s, zn)− f (s, z)| < ε. According to the definition z(t) = z̃(t) + φ̃(t) introduced above, it
follows that | f (s, (̃zn)s + φ̃s)− f (s, z̃s + φ̃s)| < ε, so we get

|Pzn(t)− Pz(t)| � |a|bα−β

Γ(α− β + 1)
‖zn − z‖+ bα

Γ(α + 1)
‖ f (s, (̃zn)s + φ̃s)− f (s, z̃s + φ̃s)‖.
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Hence, |Pzn(t)− Pz(t)| → 0 as zn → z, and P is continuous.

Step 2. P maps bounded sets into bounded sets in C0.

Indeed, it is enough to show that for any r > 0 there exists a positive constant ξ such
that for each z ∈ Br = {z ∈ C0 : ‖z‖ � r} one has ‖Pz(t)‖ � ξ. Let z ∈ Br. Since f is a
continuous function, we have for each t ∈ [0, b]

|Pz(t)| � |a|
Γ(α− β)

∫ t

0
(t− s)α−β−1|z(s)|ds +

1
Γ(α)

∫ t

0
(t− s)α−1| f (s, z̃s + φ̃s)|ds + |θ(b)|

� |a|bα−β

Γ(α− β + 1)
‖z‖+ 1

Γ(α)

∫ t

0
(t− s)α−1(g(s) + l(s)‖z̃s + φ̃s‖B

)
ds + |θ(b)|.

According to Definition 3, we can conclude that

‖z̃s + φ̃s‖B � ‖z̃s‖B + ‖φ̃s‖B
� K(s) sup

0�τ�s
‖z̃(τ)‖+ M(s)‖z̃0‖B + K(s) sup

0�τ�s
‖φ̃(τ)‖+ M(s)‖φ̃0‖B

� Kb sup
0�τ�s

‖z(τ)− φ(0)‖+ Kb‖φ(0)‖+ Mb‖φ‖B

� Kbr + Kb‖φ(0)‖+ Kb‖φ(0)‖+ Mb‖φ‖B
� Kbr + 2Kb H‖φ‖B + Mb‖φ‖B
= Kbr +

(
2KbH + Mb

)
‖φ‖B

:= r0,

where Mb = sup{|M(t)|: t ∈ [a, b]}, Kb = sup{|K(t)|: t ∈ [a, b]} and H is a positive constant.
So we have

|Pz(t)| � |a|bα−β

Γ(α− β + 1)
r +

bα‖g‖
Γ(α + 1)

+
bα‖l‖

Γ(α + 1)

(
Kbr +

(
2KbH + Mb

)
‖φ‖B

)
+ |θ(b)| := ξ.

Hence, |Pz(t)| � ξ, which implies P maps bounded subsets into bounded subsets
in C0.

Step 3. P maps bounded sets into equicontinuous sets of C0.

Let t1, t2 ∈ [0, b], t1 < t2, and Br be a bounded set of C0 as in Step 2. Let z ∈ Br. Then,
for each t ∈ [0, b], we have

|(Pz)(t2)− (Pz)(t1)|

� |a|‖z‖
Γ(α− β)

∣∣∣∣∫ t1

0

(
(t2 − s)α−β−1 − (t1 − s)α−β−1

)
ds +

∫ t2

t1

(t− s)α−β−1ds
∣∣∣∣

+
1

Γ(α)

∣∣∣∣ ∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
f (s, z̃s + φ̃s)ds

+
∫ t2

t1

(t− s)α−β−1 f (s, z̃s + φ̃s)ds
∣∣∣∣+ |θ(t2)− θ(t1)|

� |a|‖z‖
Γ(α− β + 1)

(
t2

α−β − t1
α−β + 2(t2 − t1)

α−β
)

+
‖g‖+ ‖l‖r0

Γ(α + 1)
(t2

α − t1
α + 2(t2 − t1)

α) + |θ(t2)− θ(t1)|.

As t1 → t2, the right-hand side of the above inequality tends to zero, and the equicon-
tinuity for the cases that t1 < t2 � 0 and t1 � 0 � t2 is obvious.

As a consequence of Steps 1–3, together with the Arzela–Ascoli theorem, we can
conclude that P : C0 → C0 is a completely continuous mapping.
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Step 4. (A priori bounds). There exists an open set U ⊆ C0 with z 
= λP(z) for λ ∈ (0, 1)
and z ∈ ∂U.

According to the condition |a|bα−β

Γ(α−β+1) +
bαKb

Γ(α+1)‖l‖ < 1, we can deduce that there exists
a constant N > 0 such that

|a|bα−β

Γ(α− β + 1)
N +

bαKb
Γ(α + 1)

‖l‖N +
bα

Γ(α + 1)

(
‖g‖+ ‖l‖

(
2KbH + Mb

)
‖φ‖B

)
+ |θ(b)| < N.

Define the set E = {z ∈ C0 : ‖z‖ < N}. Thus, the operator P : E → C0 satisfies the
complete continuity. Assume the equation

z = λPz

holds for some z ∈ E and λ ∈ (0, 1). Then, we obtain

|z(t)| = |λPz(t)| � |Pz(t)|

� |a|bα−β‖z‖
Γ(α− β + 1)

+
bα‖g‖

Γ(α + 1)
+

bα‖l‖
Γ(α + 1)

(
Kb‖z‖+

(
2KbH + Mb

)
‖φ‖B

)
+ |θ(b)|.

Hence, the following inequality

‖z‖ � |a|bα−β‖z‖
Γ(α− β + 1)

+
bαKb‖l‖‖z‖

Γ(α + 1)
+

bα

Γ(α + 1)

(
‖g‖+ ‖l‖

(
2Kb H + Mb

)
‖φ‖B

)
+ |θ(b)|

< N

holds, which contradicts to N = ‖z‖. Thus, we get

z 
= λPz

for any z ∈ E and λ. By the Leray–Schauder alternative, we infer that there exists at
least one fixed point z of P, and y = z̃ + φ̃ is a solution to problem (1). The proof is thus
complete.

Remark 1. In infinite dimensional space, continuous functions are not uniformly continuous in
a bounded closed region. In order to verify the continuity of the operator P in the step 1, we give
Assumption 1. The conclusion of continuity of the map P can be directly obtained by using the
Lebesgue Dominated Convergence Theorem.

Theorem 2. Suppose that Assumptions 1 and 3 hold. Additionally, assume that

|a|bα−β

Γ(α− β + 1)
+

b(α−1)q+1‖η‖p

Γ(α)(1 + (α− 1)q)
1
q

lim
r→∞

sup
Ω(r)

r
< 1 (6)

holds. Then, the Equation (1) has at least one solution on (−∞, b].

Proof of Theorem 2. Let P : C0 → C0 be defined as in (5). The conclusion can be verified
analogously in the following four steps as well.

Step 1. P is continuous.

Similar to the proof of Theorem 1, it is not difficult to verify that P is continuous by
Assumption 3 and the Lebesgue dominated convergence theorem.

Step 2. P maps bounded sets into bounded sets in C0.
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Let Br = {z ∈ C0 : ‖z‖ � r}. Then, for any z ∈ Br and t ∈ [0, b], we have

|Pz(t)| � |a|
Γ(α− β)

∫ t

0
(t− s)α−β−1|z(s)|ds +

1
Γ(α)

∫ t

0
(t− s)α−1| f (s, z̃s + φ̃s)|ds + |θ(b)|

� |a|bα−β

Γ(α− β + 1)
‖z‖+ 1

Γ(α)

∫ t

0
(t− s)α−1η(s)Ω(‖z̃s + φ̃s‖B)ds + |θ(b)|.

Since

‖z̃s + φ̃s‖B � ‖z̃s‖B + ‖φ̃s‖B � Kbr +
(
2KbH + Mb

)
‖φ‖B := r0,

where Mb = sup{|M(t)|: t ∈ [a, b]}, Kb = sup{|K(t)|: t ∈ [a, b]} and H is a positive constant.
It follows from Holder’s inequality and Assumption 3 that

|Pz(t)| � |θ(b)|+ |a|bα−β

Γ(α− β + 1)
‖z‖

+
1

Γ(α)

∫ t

0
(t− s)α−1η(s)dsΩ

(
Kbr +

(
2KbH + Mb

)
‖φ‖B

)
� |θ(b)|+ |a|bα−β

Γ(α− β + 1)
‖z‖

+
1

Γ(α)
Ω
(

Kbr +
(
2Kb H + Mb

)
‖φ‖B

)(∫ t

0
(t− s)(α−1)q

) 1
q
‖η‖p

� |θ(b)|+ |a|bα−β

Γ(α− β + 1)
‖z‖

+ Ω
(

Kbr +
(
2KbH + Mb

)
‖φ‖B

) b(α−1)q+1

Γ(α)(1 + (α− 1)q)
1
q
‖η‖p

:= ξ,

where ‖η‖p = (
∫ b

0 |η(s)|
pds)

1
p and 1

p + 1
q = 1, (α− 1) > −1. Therefore, ‖Pz‖ � ξ for every

z ∈ Br, which implies that P maps bounded subsets into bounded subsets in C0.

Step 3. P maps bounded sets into equicontinuous sets of C0.

Let t1, t2 ∈ [0, b], t1 < t2, and let Br be a bounded set of C0 as in the Step 2. Let z ∈ Br.
Then for each t ∈ [0, b], we have

|(Pz)(t2)− (Pz)(t1)|

� |a|‖z‖
Γ(α− β)

∣∣∣∣∫ t1

0

(
(t2 − s)α−β−1 − (t1 − s)α−β−1

)
ds +

∫ t2

t1

(t− s)α−β−1ds
∣∣∣∣

+
1

Γ(α)

∣∣∣∣ ∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
f (s, z̃s + φ̃s)ds

+
∫ t2

t1

(t− s)α−β−1 f (s, z̃s + φ̃s)ds
∣∣∣∣+ |θ(t2)− θ(t1)|

� |a|‖z‖
Γ(α− β + 1)

(
t2

α−β − t1
α−β + 2(t2 − t1)

α−β
)

+
1

Γ(α)

∣∣∣ ∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
η(s)Ω(‖z̃s + φ̃s‖B)ds

+
∫ t2

t1

(t− s)α−β−1η(s)Ω(‖z̃s + φ̃s‖B)ds
∣∣∣+ |θ(t2)− θ(t1)|

� |a|‖z‖
Γ(α− β + 1)

(
t2

α−β − t1
α−β + 2(t2 − t1)

α−β
)
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+
Ω(r0)

Γ(α)

(∫ t1

0
((t2 − s)α−1 − (t1 − s)α−1)qds

) 1
q
(∫ t1

0
ηp(s)ds

) 1
p

+
Ω(r0)

Γ(α)

(∫ t2

t1

(t2 − s)(α−1)qds
) 1

q
(∫ t2

t1

ηp(s)ds
) 1

p
+ |θ(t2)− θ(t1)|

� |a|‖z‖
Γ(α− β + 1)

(
t2

α−β − t1
α−β + 2(t2 − t1)

α−β
)

+
Ω(r0)‖η‖p

Γ(α)r1

(
t2

r2 − t1
r2 + 2(t2 − t1)

r2
)
+ |θ(t2)− θ(t1)|,

where r0 = Kbr +
(
2Kb H + Mb

)
‖φ‖B , r1 = (1 + (α− 1)q)

1
q , r2 = [(α− 1)q + 1]/q > 0.

As t1 → t2 the right-hand side of the above inequality tends to zero, and the equicontinuity
for the cases that t1 < t2 � 0 and t1 � 0 � t2 is obvious.

As a consequence of Steps 1–3, together with the Arzela–Ascoli theorem, we can
conclude that P : C0 → C0 is a completely continuous mapping.

Step 4. (A priori bounds). There exists an open set U ⊆ C0 with z 
= λP(z) for λ ∈ (0, 1)
and z ∈ ∂U.

According to the condition |a|bα−β

Γ(α−β+1) +
b(α−1)q+1‖η‖p

Γ(α)(1+(α−1)q)
1
q

limr→∞ sup Ω(r)
r < 1, we can

deduce that there exists a constant N > 0 such that

|a|bα−β

Γ(α− β + 1)
N +

b(α−1)q+1‖η‖p

Γ(α)(1 + (α− 1)q)
1
q

Ω(N) + |θ(b)| < N.

Define the set E = {z ∈ C0 : ‖z‖ < N}. So the operator P : E → C0 satisfies the
complete continuity. Assume the equation

z = λPz

holds for some z ∈ E and λ ∈ (0, 1). Then we obtain

|z(t)| = |λPz(t)| � |Pz(t)|

� |a|bα−β‖z‖
Γ(α− β + 1)

+
b(α−1)q+1‖η‖p

Γ(α)(1 + (α− 1)q)
1
q

Ω
(

Kb‖z‖+
(
2KbH + Mb

)
‖φ‖B

)
+ |θ(b)|

< N.

Hence, the following inequality

‖z‖ < N

holds, which contradicts N = ‖z‖. Thus, we get

z 
= λPz

for any z ∈ E and λ. By the Leray–Schauder alternative, we infer that there exists at
least one fixed point z of P, and y = z̃ + φ̃ is a solution to problem (1). The proof is thus
complete.

Theorem 3. Suppose that Assumptions 1 and 4 hold. Additionally, assume that

0 <
|a|bα−β

Γ(α− β + 1)
+

LbαKb
Γ(α + 1)

< 1 (7)

holds, Then, Equation (1) has a unique solution on (−∞, b].
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Proof of Theorem 3. Let P : C0 → C0 be defined as in (5). The operator P has a fixed point.
which is equivalent to Equation (1) having a unique solution, and we turn to proving that
P has a fixed point. We shall show that P : C0 → C0 is a contraction map. Indeed, consider
any u, v ∈ C0. Then for each t ∈ [0, b], we have

|(Pu)(t)− (Pv)(t)| � |a|
Γ(α− β)

∫ t

0
(t− s)α−β−1|u(s)− v(s)|ds

+
1

Γ(α)

∫ t

0
(t− s)α−1| f (s, ũs + φ̃s)− f (s, ṽs + φ̃s)|ds

� |a|bα−β

Γ(α− β + 1)
‖u− v‖+ L

Γ(α)

∫ t

0
(t− s)α−1‖ũ(s)− ṽ(s)‖Bds.

Since

‖ũ(s)− ṽ(s)‖B � K(s) sup
0�τ�s

‖ũ(τ)− ṽ(τ)‖+ M(s)‖ũ0 − ṽ0‖B

� Kb sup
0�τ�s

‖u(τ)− φ(0)− v(τ) + φ(0)‖

� Kb‖u− v‖,

where Kb = sup{|K(t)|: t ∈ [a, b]}, we get

‖Pu− Pv‖ �
( |a|bα−β

Γ(α− β + 1)
+

LbαKb
Γ(α + 1)

)
‖u− v‖,

and P is a contraction. Therefore, P has a unique fixed point by applying the Banach
contraction principle.

4. Stability Analysis

In this section, the analysis of Hyers–Ulam stability of the fractional differential
Equation (1) with infinite delay is presented. First and foremost, the definition given below
is crucial to the proof of Hyers–Ulam stability.

Definition 4. The problem (1) is said to be Hyers–Ulam stable if there exists a positive real number
c such that for each ε > 0 and for each solution u(·) of the inequalities{ ∣∣cDαu(t)− acDβu(t) = f (t, ut)

∣∣ � ε, t ∈ J = [0, b],
u(t) = φ(t), t ∈ (−∞, 0],

(8)

there exists a solution v(·) of the problem (1) with

|u(t)− v(t)| � cε, t ∈ J = [0, b].

Theorem 4. Further, assume that the conditions of Theorem 3 are satisfied and the inequality (8)
has at least one solution. Then, the problem (1) is Hyers–Ulam stable.

Proof of Theorem 4. For each ε > 0, and each function u that satisfies the following
inequalities ∣∣cDαu(t)− acDβu(t)− f (t, ut)

∣∣ � ε, t ∈ [0, b],

a function g(t) = cDαu(t)− acDβu(t)− f (t, ut) can be found; then, we have |g(t)| � ε,
which implies that

u(t) = θ(t) + aJα−βu(t) + Jα f (t, ut) + Jαg(t),
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where θ(t) is a polynomial function which is given in Lemma 6. According to Theorem 3, it
has been verified that there is a unique solution v(t) of problem (1), then function v can be
expressed as

v(t) = θ(t) + aJα−βv(t) + Jα f (t, vt),

so we have

|u(t)− v(t)| � |a|
Γ(α− β)

∫ t

0
(t− s)α−β−1|u(s)− v(s)|ds

+
1

Γ(α)

∫ t

0
(t− s)α−1| f (s, us)− f (s, vs)|ds +

1
Γ(α)

∫ t

0
(t− s)α−1|g(s)|ds.

Since
| f (s, us)− f (s, vs)| � L‖us − vs‖B ,

together with Definition 3, we get

‖us − vs‖B = ‖(ũs + φ̃s)− (ṽs + φ̃s)‖B = ‖ũs − ṽs‖B
� K(s) sup

0�τ�s
‖ũ(τ)− ṽ(τ)‖+ M(s)‖ũ0 − ṽ0‖B

� Kb sup
0�τ�s

‖u(τ)− φ(0)− v(τ) + φ(0)‖

= Kb sup
0�τ�s

|u(τ)− v(τ)|,

where Kb = sup{|K(t)|: t ∈ [a, b]}, it indicates that

|u(t)− v(t)| � |a|
Γ(α− β)

∫ t

0
(t− s)α−β−1|u(s)− v(s)|ds

+
LKb
Γ(α)

∫ t

0
(t− s)α−1 sup

0�σ�s
|u(σ)− v(σ)|ds +

bα

Γ(α + 1)
ε.

According to Lemma 5, it immediately follows that

sup
0�τ�t

|u(τ)− v(τ)| � |a|
Γ(α− β)

∫ t

0
(t− s)α−β−1 sup

0�σ�s
|u(σ)− v(σ)|ds

+
LKb
Γ(α)

∫ t

0
(t− s)α−1 sup

0�σ�s
|u(σ)− v(σ)|ds +

bα

Γ(α + 1)
ε

=
∫ t

0

[
|a| (t− s)α−β−1

Γ(α− β)
+ LKb

(t− s)α−1

Γ(α)

]
sup

0�σ�s
|u(σ)− v(σ)|ds

+
bα

Γ(α + 1)
ε,

let ϕ(t) := sup0�τ�t |u(τ)− v(τ)|, M := bα

Γ(α+1) , and g(t, s) := |a| 1
Γ(α−β)

+ LKb
(t−s)β

Γ(α) , we
can get

ϕ(t) � Mε +
∫ t

0
g(t, s)(t− s)α−β−1 ϕ(s)ds.

It is not difficult to note that g(t, s) � |a| 1
Γ(α−β)

+ LKb
bβ

Γ(α) (:= M0). Hence, in view of
Lemma 3,

ϕ(t) � Mε + Mε
∫ t

0

∞

∑
n=1

(g(t, s)Γ(α− β))n

Γ(n(α− β))
(t− s)n(α−β)−1ds

� Mε + Mε
∫ t

0

∞

∑
n=1

(M0Γ(α− β))n

Γ(n(α− β))
(t− s)n(α−β)−1ds
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� Mε + Mε
∞

∑
n=1

(M0Γ(α− β))n

Γ(n(α− β) + 1)
bn(α−β)

� MεEα−β

(
M0b(α−β)Γ(α− β)

)
,

let c := MEα−β

(
M0b(α−β)Γ(α− β)

)
, then the inequality

ϕ(t) � cε

holds, which implies that Hyers-Ulam stability of problem (1) is proved.

5. Examples

Two examples are presented in this section to illustrate the conclusions. To begin with,
let γ > 0 be a real constant and

Eγ = {y ∈ C
(
(−∞, 0],R

)
: lim

θ→−∞
eγθy(θ) exists in R}.

Accordingly, the norm of Eγ is given by

|y|γ = sup
−∞<θ�0

eγθ |y(θ)|.

By [28], Eγ satisfies the conditions in Definition 3 with K = M = H = 1. It can be
easily claimed that Eγ is a phase space.

Example 1. Consider the following nonlinear Caputo-type fractional differential equation with
infinite delay of the form

cD0.8y(t)− 1
2 cD0.4y(t) =

e−γt

10
(|yt|+

1
2

cost), t ∈ J = [0, 1], (9)

y(t) = φ(t) ∈ Eγ, t ∈ (−∞, 0]. (10)

According to the given data, it can be easily found that Assumptions 1 and 2 are satisfied

with function l(t) = e−γt

10 . Furthermore, we have |a|bα−β

Γ(α−β+1) +
bαKb

Γ(α+1)‖l‖ < 1
2Γ(1.4) +

1
10Γ(1.8) ≈

0.6707 < 1. Therefore, all the conditions of Theorem 1 hold true, and consequently the problems (9)
and (10) with f (t, yt) given by the equation f (t, yt) =

e−γt

10 (|yt|+ 1
2 cost) have at least one solution

on (−∞, 1].

Example 2. We can investigate the following nonlinear delayed fractional differential equation

cD0.7y(t)− 1
3 cD0.5y(t) =

c̃e−γt+t|y|γ
(et + e−t)(1 + |y|γ)

, t ∈ J = [0, 1], (11)

y(t) = φ(t) ∈ Eγ, t ∈ (−∞, 0], (12)

where c̃ is a given positive constant. Set

f (t, x) =
e−γt+tx

c̃(et + e−t)(1 + x)
, (t, x) ∈ [0, 1]×R

+.

Then, for any x, y ∈ Eγ, we have

| f (t, x)− f (t, y)| = e−γt+t

c̃(et + e−t)

∣∣∣ x
1 + x

− y
1 + y

∣∣∣
� e−γt+t|x− y|

c̃(et + e−t)(1 + x)(1 + y)
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� et|x− y|
c̃(et + e−t)

� 1
c̃
|x− y|.

Hence, the condition Assumption 4 holds. Since K = 1, assume that c̃ > 3Γ(1.2)
Γ(1.7)(3Γ(1.2)−1) ≈

1.7269, and Equation (7) holds. Thus, it can be verified that problems (11) and (12) have a unique
solution on (−∞, 1] by applying Theorem 3.

On the basis of the conclusions, we further discuss the Hyers–Ulam stability of problem (11)
and (12). For any ε > 0 and each function y that satisfies the following inequalities

∣∣∣cD0.7y(t)− 1
3 cD0.5y(t)−

c̃e−γt+t|y|γ
(et + e−t)(1 + |y|γ)

∣∣∣ � ε, t ∈ J = [0, 1],

let g(t) represent the right side of the inequality above. Additionally, let x(t) be the unique solution
of problem (11) and (12); then, we have

sup
0�τ�t

|y(τ)− x(τ)| �
∫ t

0

( (t− s)−0.8

3Γ(0.2)
+

(t− s)−0.3

c̃Γ(0.7)

)
sup

0�σ�s
|y(σ)− x(σ)|ds +

1
Γ(1.7)

ε,

let ϕ(t) := sup0�τ�t |y(τ)− x(τ)|, g(t, s) := 1
3Γ(0.2) +

(t−s)0.5

c̃Γ(0.7) and M := 1
Γ(1.7) , then it is easy

to get that g(t, s) � 1
3Γ(0.2) +

1
c̃Γ(0.7) (:= M0), and in view of Lemma 3,

ϕ(t) � Mε +
∫ t

0
g(t, s)(t− s)−0.8 ϕ(s)ds

� Mε + Mε
∫ t

0

∞

∑
n=1

(g(t, s)Γ(0.2))n

Γ(0.2n)
(t− s)0.2n−1ds

� Mε + Mε
∫ t

0

∞

∑
n=1

(M0Γ(α− β))n

Γ(0.2n)
(t− s)0.2n−1ds

� Mε + Mε
∞

∑
n=1

(M0Γ(0.2))n

Γ(0.2n + 1)

� MεE0.2
(

M0Γ(0.2)
)
,

let c := ME0.2
(

M0Γ(0.2)
)
= 1

Γ(1.7)E0.2

(
1
3 + Γ(0.2)

c̃Γ(0.7)

)
, it follows that ϕ(t) � cε, which implies

that the problem (11) and (12) is Hyers-Ulam stable.

6. Conclusions

This paper mainly discusses and investigates a class of nonlinear fractional differential
equations with infinite time delay. Based on the properties of Green’s function, we give
the form of a solution to the differential equations. In addition to applying the fixed point
theorem and Gronwall inequality, the related properties of the phase space are explored
to investigate the nature and Hyers–Ulam stability of the solutions of fractional order
differential equations under time delay conditions. Generally, various types of Gronwall
inequalities can be utilized to explore the stability of fractional differential equations.
However, we have found that only applying Gronwall inequalities is not enough to get
stability conclusions in this paper. Therefore, we prove a comparative property of fractional
calculus as an auxiliary tool to verify the stability of solutions. Furthermore, two examples
are listed to confirm the conclusions.
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Abstract: Alumina nanoparticles (Al2O3) are one of the essential metal oxides and have a wide range
of applications and unique physio-chemical features. Most notably, alumina has been shown to
have thermal properties such as high thermal conductivity and a convective heat transfer coefficient.
Therefore, this study is conducted to integrate the adsorption of Al2O3 in mineral oil-based Maxwell
fluid. The ambitious goal of this study is to intensify the mechanical and thermal properties of
a Maxwell fluid under heat flux boundary conditions. The novelty of the research is increased by
introducing fractional derivatives to the Maxwell model. There are various distinct types of fractional
derivative definitions, with the Caputo fractional derivative being one of the most predominantly ap-
plied. Therefore, the fractoinal-order derivatives are evaluated using the fractional Caputo derivative,
and the integer-order derivatives are evaluated using the Crank–Nicolson method. The obtained
results are graphically displayed to demonstrate how all governing parameters, such as nanoparticle
volume fraction, relaxation time, fractional derivative, magnetic field, thermal radiation, and viscous
dissipation, have a significant impact on fluid flow and temperature distribution.

Keywords: Maxwell fluid; fractional derivative; nanofluid; Crank–Nicolson method

1. Introduction

Nanotechnology has been a well-known subject of study since the last century. There
have been numerous groundbreaking developments in the field of nanotechnology since
Nobel laureate Richard P. Feynman introduced the term in their well-known 1959 lecture
“There’s Plenty of Room at the Bottom” [1]. Nanotechnology can generate a wide variety of
new materials and devices with applications in nanomedicine, nanoelectronics, biomateri-
als, energy production, and consumer products. A decade ago, nanoparticles were studied
because of their size-dependent physical and chemical properties. Now they have entered
a period of commercial exploration [2]. In 1993, when industries and science needed bet-
ter thermal capacities in fluids used daily for multiple jobs, Masuda et al. [3] proposed
using ultra-fine particles in ordinary fluids. Later, Choi and Eastman [4] introduced the
groundbreaking concept of nanofluid, which involves incorporating metallic nanoparticles
with an average size of 100 nm into traditional fluids to improve thermal conductivity;
this concept has modernized the worlds of engineering and industry. A nanofluid is
an effective and practical approach to enhance heat transfer in a thermal system. How-
ever, research has shown that heat transfer efficiency varies between nanoparticles. Islam
et al. [5] discussed the natural convection flow and heat transfer of Cu–water nanofluid
into a square enclosure with the dominance of periodic magnetic effects. They observed
that the heat transfer rate rises by 18.71% for Cu–water nanofluid with 1% nanoparticle
volume. Wakif et al. [6] numerically investigated Couette flow with heat transfer for a
Cu–water nanofluid in the presence of a magnetic field and thermal radiation with variable
thermo-physical properties. Their results showed that heat transfer rates could enhance by
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increasing the nanoparticle volume fraction and the value of the radiation parameter. Xia
et al. [7] discussed the dynamics of an unsteady reactive flow of a viscous nanomaterial
subjected to Ohmic heating, heat source, and viscous dissipation. Their findings indicate
that the temperature increases for the Eckert number, whereas the magnetic parameter
shows the opposite pattern. Precisely, nanoparticle type, shape, and size have proven to
play an important role [8–10].

Alumina (Al2O3), often known as aluminum oxide, is an amphoteric oxide found
in nature in the minerals corundum and gibbsite. Alumina nanoparticles offer several
desirable qualities, including high thermal conductivity, thermal stability, oxidation, high
strength and stiffness, mechanical strength, high adsorption capacity, and electrical insu-
lation. Most importantly, it is a low-cost, non-toxic, and pretty abrasive nanoparticle [11].
Haridas et al. [12] have experimentally evaluated the performance of Al2O3 and SiO2 in de-
ionized water-based nanofluids for their ability to influence heat transfer phenomena
in small channels. They found an increase of ≈41% in the average heat transfer coefficient
for the 0.02 Vol.% of Al2O3 at Re = 342, In contrast, the corresponding enhancement for SiO2
nanoparticles was limited to 6% in the lower Reynolds number range. Animasaun [13] used
a modified version of the buoyancy-induced model to study the flow of 47 nm alumina–
water nanofluid along a horizontal paraboloid of revolution under the effects of Lorentz
force, non-linear radiation, and chemical reaction. He concluded that the heat capacity and
other features of 47 nm alumina–water nanofluid considerably create more heat energy
at large values of volume fraction, which accounts for the overshoot in temperature and
velocity curves. Kabeel and Abdelgaied [14] have numerically explored the impact of
Al2O3–water concentration on sharp-edge orifice flow characteristics in cavitation and
non-cavitation turbulent flow regimes. According to their findings, when the nanofluid
concentration increases from 0.0% to 2%, the turbulent kinetic energy and turbulent in-
tensity increase by 160% and 74%, respectively, in the separation zone downstream of
the orifice. Hawwash et al. [15] looked into the effectiveness of employing alumina nanoflu-
ids as a working fluid for solar water heaters. Sheikholeslami and Ebrahimpour [16] used
Al2O3/water together with multi-way twisted tape for thermal improvement of a linear
Fresnel solar system. Bahari et al. [17] presented research on the synthesis of Al2O3 to
SiO2/water hybrid nanofluid and effects of anionic (SDS), cationic (CTAB), and nonionic
(PVP) surfactants toward dispersion and stability. They concluded that SDS could positively
affect the dispersion and stability of the nanofluids, and the best ratio of Al2O3:SiO2 was
at 30:70. Moreover, the electrical conductivity increased with temperature, and nanofluid
containing CTAB and SDS had a higher increment in conductivity. Recently, Ho et al. [18]
investigated the cooling efficiency and entropy generation of Al2O3–water flow and heat
transfer in a circular tube with wall conduction effects. They stated that the irreversibility
of a system could reduce using nanofluid.

In the late nineteenth and early twentieth centuries, it had recognized that the stress
in a fluid could have a nonlinear or temporal dependency on the rate of deformation or both;
we now refer to such materials as non-Newtonian fluids [19]. Non–Newtonian fluids are
usually considered more suitable and sufficient in industrial processes due to their diverse
range of uses, including exotic lubricants, polymer fluid extrusion, colloidal and suspension
solutions, slurry fuels, and more. Unlike Newtonian fluids, it is not easy to imagine
a single mathematical model that encompasses all of the properties of non-Newtonian fluids.
Therefore, several mathematical models for non-Newtonian fluids have been proposed.
The Maxwell fluid model, which can predict stress relaxation, has received much attention
among these models. In 1867, James Clerk Maxwell proposed the concept of Maxwell fluid,
and a few years later, James G. Oldroyd popularized the idea [20,21]. Researchers have
drawn to the Maxwell fluid model because of its simplicity. Megahed [22] has theoretically
analyzed the steady flow of Maxwell fluid along a permeable stretching sheet subject to
convective boundary conditions. The consequences of the inclined magnetohydrodynamic
flow of a Maxwell fluid through a penetrable stretched plate had discussed by Shafiq and
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Khalique [23]. Specifically, the heat generation and absorption effects are investigated
in the heat transfer phenomenon using Lie group methods.

Fractional calculus is not a new concept; its history is nearly identical to classical calcu-
lus. However, it has become more popular in the constitutive modeling of non-Newtonian
fluids over the last two decades. The fundamental reason for this development is that
a fractional model could express the complex properties of viscoelastic material simply
and elegantly. For example, many materials have an algebraic decay during the relaxation
process, which cannot be adequately characterized by the exponential relaxation moduli of
conventional ordinary models [24]. However, experiments indicate that fractional models
can accurately capture and link these behaviors [25,26]. According to Heymans [27], com-
plex module expressions can result in fractional derivative constitutive models that can
numerically integrate the overall loading history. Liu et al. [28] introduced a unique con-
stitution equation comprising relaxation time parameters and distributed-order fractional
operators to analyze flow and heat transfer of an incompressible Maxwell fluid over a mov-
ing plate. Yang et al. [29] explored heat transfer characteristics of a double-fraction Maxwell
fluid flow subject to slip boundary conditions. Their findings showed that the fractional
Maxwell fluid has a higher viscosity against fractional parameters and that the oscilla-
tion phenomenon would gradually decrease as slip parameters grow. Razzaq et al. [30]
addressed the heat transfer of fractional Maxwell fluid in a circular cylinder using Laplace
and Hankel transformations. Hanif [31] studied two-dimensional boundary layer flow
and heat transfer of fractional Maxwell fluid with constant heating. Asjad et al. [32] in-
vestigated the effects of clay nanoparticles on an unsteady natural convection flow of
Maxwell nanofluids over an infinite vertical surface. They found that oil-based nanofluid
had minimal velocity compared to water-based nanofluid. Saqib et al. [33] discussed the
heat-transfer properties of a Maxwell fluid in the presence of a magnetic field using the
fractional Cattaneo–Friedrich Model. Bayones et al. [34] studied the peristaltic flow of
fractional Maxwell fluid in a circular cylinder tube in the presence of a magnetic filed.

In this research, the physical model is based on fractional Maxwell fluid flow with
accompanying heat transport over a horizontal plate with significant physical assumptions.
This research is motivated by improved cooling processes caused by the interaction of
Al2O3 nanoparticles in mineral oil. The applied magnetic field and viscous dissipation
contribute to the novelty of the fractional fluid model. Moreover, there are a few instances
where exact analytic solutions to the Navier–Stokes equations can be found. Therefore,
the inspiring goal of this research is to introduce the Crank–Nicolson-based L1 algorithm to
solve the fractional Maxwell fluid flow model. There are various distinct types of fractional
derivative definitions, with the Riemann–Liouville fractional derivative and the Caputo
fractional derivative being two of the most prominent in applications. Therefore, the Caputo
fractional derivative has been used to integrate the fractional-order derivatives, whereas
integer-order derivatives are evaluated using the Crank–Nicolson finite difference method.

2. Mathematical Formulation

This section is devoted to the detailed mathematical modeling of the fractional
Maxwell nanofluid. In this regard, the following definitions will be helpful.

Definition 1. Let Γ(·) denote the Gamma function defined by the integral (see for instance Pod-
lubny [35])

Γ(η) =
∫
R

e−ψψη−1dψ, ∀η ∈ C such that �(η) > 0. (1)

Definition 2. Let n ∈ N and α ∈ C with �(α) > 0 such that n− 1 < α < n. Then for a function
f in Cn(R), the Caputo fractional derivative of order α is given by:

∂α f (t)
∂tα

= ∂α
t f (t) :=

1
Γ(n− α)

∫ t

0
(t− τ)n−α−1 ∂n

∂tn f (τ)dτ, (2)
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where Γ(·) is the gamma function; refer to the book [35] for detailed analysis of fractional derivatives.

2.1. Flow Configuration and Governing Equations

Assume that the Maxwell nanofluid is in the space above an infinite plate parallel to
the xz-plane and is confined by two parallel sidewalls perpendicular to the plate. A pressure
gradient is applied to the fluid along the x-axis at time t > 0, which initiates the mainstream
flow. As a result, flow velocity takes the following form

V =
(
u(y, z, t), 0, 0

)
, (3)

along with the extra stress tensor

T = T (y, z, t), (4)

in the absence of a cross flow. The graphical representation of the flow model is presented
in Figure 1.

Figure 1. Graphical representation of the flow model.

If a fluid with the density ρ is moving with the velocity V, then the continuity equation is
defined as [31]

∂ρ

∂t
+∇ ·

(
ρV

)
= 0. (5)

For an incompressible fluid, Equation (5) reduces to the following form

∇ ·V = 0. (6)

It is simple to verify that the velocity field of the form (3) automatically meets the in-
compressibility condition. The non-relativistic momentum transport in any continuum is
predicted by Cauchy momentum equation, defined by [36]:

ρ

(
∂V
∂t

+ V · ∇V
)
= −∇P +∇ · T , (7)

where P is the pressure. The extra stress tensor T is represented by the following relation-
ship [34]:

T + λα

(
∂α

t T + V · ∇T −
(
∇V

)
T − T

(
∇V

)†
)
= μA. (8)

225



Fractal Fract. 2022, 6, 180

Here A = ∇V +
(
∇V

)† is the first Rivlin–Erickson tensor, μ is the dynamic viscosity
of Maxwell fluid, λ is the relaxation time parameter, and the subscript † is the transpose of
a matrix. In the presence of magnetic field B = B0 + B1, Equation (7) can be modified as

ρ

(
∂V
∂t

+ V · ∇V
)
= −∇P +∇ · T + J × B. (9)

Ohm’s law describes the current density J as [37]

J = σEr, (10)

where σ is the electrical conductivity of the fluid and Er is the electric field experienced
by the fluid. Applying the Lorentz transformation to the fluid traveling at velocity V
concerning the external magnetic field gives us

Er = E + V × B. (11)

The electric field vector E = 0 because no applied or polarization voltage is imposed
on the flow field. Further, the magnetic Reynolds number is considered to be too small
for the induced magnetic field B1 to be negligible, and therefore the current density J is
reduced to

J = σ
(
V × B

)
, (12)

and the cross product
(
V × B

)
can be obtained as

(
V × B

)
=

∣∣∣∣∣∣∣
i j k
u 0 0

0 B0 0

∣∣∣∣∣∣∣ =
(
0, 0, B0u

)
. (13)

With Equations (12) and (13),
(

J × B
)

is given as

(
J × B

)
=

∣∣∣∣∣∣∣
i j k
0 0 B0u

0 B0 0

∣∣∣∣∣∣∣ =
(
− B2

0u, 0, 0
)
. (14)

In reference with the velocity field (3), extra stress tensor (4) and Lorentz force (14),
the momentum Equation (9) reduces to the following form

ρn f
∂u
∂t

= −∂P
∂x

+
∂τxy

∂y
+

∂τxz

∂z
− B2

0u, (15)

where τxy and τxz are nonzero components of T . Introducing Equation (3) into the extra
stress tensor relation (8) gives us(

1 + λα
1∂α

t

)
τxy = μ

∂u
∂y

,
(

1 + λα
1∂α

t

)
τxz = μ

∂u
∂z

. (16)

Now, operating the differential operator
(

1 + λα
1∂α

t

)
to Equation (15) and utilizing

Equation (16) results in

ρ

(
1 + λα

1∂α
t

)
∂u
∂t

= −
(

1 + λα
1∂α

t

)
∂P
∂x

+ μ

(
∂2u
∂y2 +

∂2u
∂z2

)
− B2

0σ

(
1 + λα

1∂α
t

)
u. (17)
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The applied pressure in the x-direction is

∂P
∂x

= p0H(t), (18)

with the Heaviside function

H(t) =

⎧⎪⎨⎪⎩
1, t > 0,

0, t < 0.

(19)

Next, the internal (heat) energy balance law can be stated in terms of T as [31]

ρCp

(
∂T
∂t

+ V · ∇T
)
= k∇T + T : ∇V. (20)

Here k is the thermal conductivity and Cp is the specific heat at constant pressure.
In the presence of thermal radiation and Ohmic heating, the energy Equation (20) can be
modified as

ρCp

(
∂T
∂t

+ V · ∇T
)
= k∇T − ∂qr

∂y
+

1
σ

J · J + T : ∇V. (21)

Using the Roseland approximation, the radiative heat flux qr in Equation (21) is
expressed as

qr = −
4σb
3kb

∂T4

∂y
. (22)

Let us consider that the temperature difference T − T∞ within the flow domain to
be small enough that T4 can be reasonably expanded about T∞ using the Taylor series
as follows:

T4
� T4

∞ + 4T3
∞(T − T∞) + 6T2

∞(T − T∞)2 + . . . (23)

The higher-order terms are ignored because the temperature gradient is believed to be
small enough, resulting in

T4
� T4

∞ + 4T3
∞(T − T∞). (24)

In Equation (22), the simplified version of T4 is employed and differentiated w.r.t
y, yielding

∂qr

∂y
= −16σbT3

∞
3kb

∂T2

∂y2 . (25)

Invoking Equations (3), (12) and (25) for the energy Equation (21) leads us to

ρCp
∂T
∂t

= k
(

∂2T
∂y2 +

∂2T
∂z2

)
+

∂2T
∂y2 + B2

0σu2 + τxy
∂u
∂y

+ τxz
∂u
∂z

. (26)

Furthermore, the governing equation for a nanofluid flow can be obtained by replacing
the properties of a regular fluid with the corresponding properties of a nanofluid. Hence
Equations (17) and (26) can be revised as

ρn f

(
1 + λα

1∂α
t

)
∂u
∂t

= −
(

1 + λα
1∂α

t

)
∂P
∂x

+ μn f

(
∂2u
∂y2 ++

∂2u
∂z2

)
− B2

0σn f

(
1 + λα

1∂α
t

)
u. (27)

(ρCp)n f
∂T
∂t

= kn f

(
∂2T
∂y2 +

∂2T
∂z2

)
+

∂2T
∂y2 + B2

0σn f u2 + τxy
∂u
∂y

+ τxz
∂u
∂z

. (28)

The mathematical expressions for nanofluid properties, μn f , ρn f , σn f , (ρCp)n f , and kn f
are presented in Table 1, and thermo-physical properties of mineral oil and Al2O3 are
provided in Table 2.
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Initially, the fluid is at rest. Therefore, the zero initial conditions are considered:

u(y, z, t) = 0 =
∂u(y, z, t)

∂t
, T(y, z, t), t ≤ 0, (y, z) ∈ [0, ∞)× [0, zmax]. (29)

We impose a no-slip velocity condition along the plate and the walls so that:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u(0, z, t) = 0, kn f

∂T(0, z, t)
∂y

= −qw, t > 0, z ∈ [0, zmax],

u(y, 0, t) = 0 = u(y, zmax, t), t > 0, y ∈ [0, ∞),

T(y, 0, t) = T∞ = T(y, zmax, t), t > 0, y ∈ [0, ∞).

(30)

The natural far field conditions are:

u(y, z, t)→ 0, T(y, z, t)→ T∞ as y → ∞. (31)

Table 1. Mathematical expression of nanofluid properties [5].

Properties Mathematical Expressions

Viscosity μn f = μ f (1− ϕ)−2.5

Density ρn f = (1− ϕ)ρ f + ϕρs

Heat capacitance (ρCp)n f = (1− ϕ)(ρCp) f + ϕ(ρCp)s

Thermal conductivity
kn f

k f
=

(ks + 2k f ) + 2ϕ(ks − k f )

(ks + 2k f )− ϕ(ks − k f )

Electrical conductivity
σn f

σf
=

(σs + 2σf ) + 2ϕ(σs − σf )

(σs + 2σf )− ϕ(σs − σf )

Table 2. Thermo-physical properties of mineral oil and nanoparticles [38,39].

Materials Mineral Oil Al2O3

ρ (kg/m3) 861 3970
k (W/mK) 0.157 40
Cp (J/kgK) 1860 765

σ (S/m) ≈0.3310−9 35 × 106

μ (Pa.s) 0.01335 –

2.2. Non-Dimensional Modeling

Non-dimensional representation is imperative to highlight the physics of the stated
problem. Therefore, the following non-dimensional parameters are introduced:

y∗ =
y

zmax
, z∗ =

z
zmax

, t∗ =
ν f t

z2
max

, u∗ =
uzmax

ν f
,

T∗ =
T − T∞

qwzmax/k f
, λ∗ =

λν f

z2
max

, τ∗xy =
z2

maxτxy

μ f ν f
, τ∗xz =

z2
maxτxz

μ f ν f
.

(32)

Using the set of non-dimensional parameters (32) in Equations (27)–(31), we arrived at

φ1

(
1 + λα ∂α

∂tα

)
∂u
∂t

= p
(
H(t) + λα t−α

Γ(1− α)

)
+ φ2

(
∂2u
∂y2 +

∂2u
∂z2

)
− φ3M

(
1 + λα ∂α

∂tα

)
u, (33)

Prφ4
∂T
∂t

=

(
φ5 + Rd

)
∂2T
∂y2 + φ5

∂2T
∂z2 + φ3Mu2 + E

{
τxy

∂u
∂y

+ τxz
∂u
∂z

}
, (34)
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subject to the initial and boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(y, z, t) = 0 =
∂u(y, z, t)

∂t
, T(y, z, t) = 0, t < 0, (y, z) ∈ [0, ∞)× [0, zmax],

u(0, z, t) = 0, φ4
∂T(0, z, t)

∂y
= −1, t > 0, z ∈ [0, zmax],

u(y, 0, t) = 0 = u(y, zmax, t), T(y, 0, t) = 0 = T(y, zmax, t), t > 0, y ∈ [0, ∞),

u(y, z, t)→ 0, T(y, z, t)→ 0 as y → ∞.

(35)

Provided that

φ1 = (1− ϕ) + ϕρs/ρ f , φ2 =
(
1− ϕ

)−2.5, φ3 =
σn f

σf
, φ4 = (1− ϕ) + ϕ

(
ρCp

)
s/
(
ρCp

)
f ,

φ5 =
kn f

k f
, p =

p0z3
max

ν2
f

, M =
σf B2

0zmax

μ f
, Rd =

16σb
3kbk f

, E =
μ f ν2

f

qwz3
maz

, Pr =
μ f Cp f

k f
.

(36)

3. Numerical Scheme

The aim of this section is to devise a scheme for approximating Equations (33)–(35)
over a finite time interval.

Define tk = kh̄, k = 0, 1, · · · , n, yi = ip, i = 1, 2, · · · , r, zj = jq, j = 1, 2, · · · , s, where
h̄ = tf/n, is the time step, p = ymax/r, and q = zmax/s are the mesh size in (y, z) direction.
The integer-order derivatives are approximated using the Crank–Nicolson finite difference
method as follows:

∂u
∂t

∣∣
tk
=

uk
i,j − uk−1

i,j

h̄
,

∂T
∂t

∣∣
tk
=

Tk
i,j − Tk−1

i,j

h̄
. (37)

∂2u
∂y2

∣∣
tk
=

uk
i−1,j − 2uk

i,j + uk
i+1,j + uk−1

i−1,j − 2uk−1
i,j + uk−1

i+1,j

2p2 . (38)

∂2u
∂z2

∣∣
tk
=

uk
i,j−1 − 2uk

i,j + uk
i,j+1 + uk−1

i,j−1 − 2uk−1
i,j + uk−1

i,j+1

2q2 . (39)

∂2T
∂y2

∣∣
tk
=

Tk
i−1,j − 2Tk

i,j + Tk
i+1,j + Tk−1

i−1,j − 2Tk−1
i,j + Tk−1

i+1,j

2p2 . (40)

∂2T
∂z2

∣∣
tk
=

Tk
i,j−1 − 2Tk

i,j + Tk
i,j+1 + Tk−1

i,j−1 − 2Tk−1
i,j + Tk−1

i,j+1

2q2 . (41)

The L1 algorithm of Caputo fractional derivative (2) is given as

∂α f (tk)

∂tα
=

h̄−α

Γ(2− α)
∑k−1

m=0 bm
[

f (tk−m − f (tk−m−1)
]
,

=
h̄−α

Γ(2− α)

[
b0 f (tk)− bk−1 f (t0)−∑k−1

m=1(bm−1 − bm) f (tk−m)
]
,

(42)

where bm = (m + 1)1−α − m1−α,m = 0, 1, 2, · · · , n. Now, the fractional derivatives in
Equation (33) can be approximated using the L1 algorithm (42) as follows:

∂αu
∂tα

∣∣
tk
=

h̄−α

Γ(2− α)

[
u(tk)−

k−1

∑
m=1

amu(tk−m)

]
, (43)

∂α+1u
∂tα+1

∣∣
tk
=

h̄−α−1

Γ(2− α)

[
u(tk)−u(tk−1)−

k−1

∑
m=1

am
(u(tk−m)−u(tk−m−1)

)]
, (44)

229



Fractal Fract. 2022, 6, 180

where am = (bm−1 − bm).

φ1

h̄

(
1 +

λα h̄−α

Γ(2− α)

)[
uk

i,j − uk−1
i,j

]
=

φ1 p0

2

[
H(tk) +H(tk+1) + λα

t−α
k + t−α

k+1
Γ(1− α)

]

+
φ2

2p2

[
uk

i−1,j − 2uk
i,j + uk

i+1,j + uk−1
i−1,j

−2uk−1
i,j + uk−1

i+1,j

]
+

φ2

2q2

[
uk

i,j−1 − 2uk
i,j

+uk
i,j+1 + uk−1

i,j−1 − 2uk−1
i,j + uk−1

i,j+1

]

−
(

φ3M + φ3Mλα h̄−α

Γ(2− α)

)[
uk

i,j + uk−1
i,j

]

+φ3Mλα h̄−α

Γ(2− α)
∑k−1

m=1 bm

[
uk−m

i,j + uk−m−1
i,j

]

+φ1λα h̄−(α+1)

Γ(2− α)
∑k−1

m=1 bm

[
uk−m

i,j − uk−m−1
i,j

]
.

(45)

φ3Pr
h̄

[
Tk

i,j − Tk−1
i,j

]
=

(
φ4 + Rd

)
2p2

[
Tk

i−1,j − 2Tk
i,j + Tk

i+1,j + Tk−1
i,j+1 − 2Tk−1

i,j + Tk−1
i,j

]

+
φ4

2q2

[
Tk

i,j−1 − 2Tk
i,j + Tk

i,j+1 + Tk−1
i,j−1 − 2Tk−1

i,j + Tk−1
i,j+1

]

+
φ3M

4

(
uk

i,j + uk−1
i,j

)2

+
E
4p

(
τk

xy + τk−1
xy

)[
uk

i+1,j − uk
i,j + uk−1

i+1,j

−uk−1
i,j

]
+
E
8q

(
τk

xz + τk−1
xz

)[
uk

i,j+1 − uk
i,j−1 + uk−1

i,j+1 − uk−1
i,j−1

]
.

(46)

u0
i,j = 0 = T0

i,j, uk
0,j = uk

i,0 = uk
i,s = uk

r,j = 0,

Tk
−1,j + Tk−1

−1,j = 4p+ Tk
1,j + Tk−1

1,j , Tk
i,0 = Tk

i,s = Tk
r,j = 0.

(47)

4. Results and Discussion

Using the framework of an unsteady two-dimensional fluid flow, the purpose of this
section is to help the reader understand the explanation of the graphical illustrations of
Maxwell nanofluid flow over a horizontal plate. The theoretical aspects of nanoparticles,
magnetic fields, thermal radiation, viscous dissipation, and Joule heating concerning fluid
flow and heat transfer are also discussed in this section. Figures 2–13 are presented to
investigate the impact of regulating parameters on the velocity and the temperature profiles
of Maxwell nanofluid. The following numerical values for the parameters are assumed
to be fixed unless stated otherwise: α = 0.5 [32], λ = 0.1 [32], ϕ = 0.01 [32], M = 2 [6],
Rd = 0.1 [7], and E = 0.1 [7].
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Figure 2. Velocity profile for different values of nanoparticle volume fraction ϕ.
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Figure 3. Velocity profile for different values of magnetic parameter M.
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Figure 4. Velocity profile for different values of fractional derivative parameter α.
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Figure 5. Velocity profile for different values of relaxation time parameter λ.
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Figure 6. Temperature profile for different values of nanoparticle volume fraction ϕ.
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Figure 7. Temperature profile for different values of magnetic parameter M.
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Figure 8. Temperature profile for different values of thermal radiation parameter Rd.
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Figure 9. Temperature profile for different values of dissipation parameter E .
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The effects are ϕ, M, α, λ are elucidated in Figures 2–5. The suspension of Al2O3
nanoparticles in the fluid decreased the velocity flow; see Figure 2. Physically, this was
expected because increasing the volume concentration of nanomaterials inside the fluid
makes the fluid more viscous; as a result, velocity flow decreases. By drawing Figure 3,
an attempt has been made to evoke the influence of a magnetic field on the Maxwell fluid
velocity. The result shows that the velocity field reaches a maximum without a magnetic
field (M = 0) but slows down as M increases. Physically, when the magnetic number
increases, the Lorentz force increases and gives rise to magnetic resistance; as a result,
the velocity is slowed. The impact of fractional derivative α on velocity is depicted in
Figure 4, and it is worth noticing that as α grows higher, the amplitude of velocity decreases.
On the other hand, an increase in fluid velocity is visible for more significant estimations of
the relaxation time parameter λ; see Figure 5. Moreover, it deserves to mention that λ = 0
refers to Newtonian fluid flow.

Next, Figures 6–9 are provided to show the variations in the temperature distribution
for several governing parameters, including nanoparticle volume fraction ϕ, magnetic field
parameter M, thermal radiation Rd, and viscous dissipation factor E . Figure 6 is shown to
analyze the variations in the temperature of the fluid when Al2O3 nanoparticles are added.
In Figure 7, the fluctuations in the temperature distribution due to the magnetic field are
sketched. Unlike the velocity profile, the fluid temperature significantly increases when
M increases. This might be because high resistance produces more heat due to increased
friction force. Figure 8 depicts the aspects of the radiation parameter Rd on the temperature
profile. As one might expect, increasing the value of Rd causes the material particles to
have more kinetic energy, which increases the temperature distribution. The effects of
viscous dissipation on temperature distribution are shown with the help of surface and
contour plots, provided in Figure 9. Physically, if there is a lot of friction between the fluid
layers, viscous dissipation solely influences the fluid temperature. As seen from the results,
viscous dissipation causes both the surface temperature and the temperature of the fluid
layers to rise.

By fixing the y-coordinate, the one-dimensional velocity profile of Al2O3/mineral oil is
drawn; see Figures 10 and 11. The same conclusions as the surface plots are drawn; however,
the Maxwell fluid had a high-velocity profile than the Newtonian fluid. On the other hand,
the Newtonian fluid temperature is higher than that of the Maxwell fluid, as shown
in Figures 12 and 13.

(a) (b)

Figure 10. One-dimensional velocity profile for various values of ϕ. (a) Maxwell fluid,
(b) Newtonian fluid.
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(a) (b)

Figure 11. One-dimensional velocity profile for various values of M. (a) Maxwell fluid,
(b) Newtonian fluid.

(a) (b)

Figure 12. One-dimensional temperature profile for various values of ϕ. (a) Maxwell fluid,
(b) Newtonian fluid.

(a) (b)

Figure 13. One-dimensional temperature profile for various values of E . (a) Maxwell fluid,
(b) Newtonian fluid.

5. Conclusions

The numerical simulation of mineral oil-based nanofluid flow with Al2O3 nanoparti-
cles across a horizontal plate, accompanied by an external magnetic field, thermal radiation,
viscous dissipation, and heat flux boundary conditions, is addressed. The following are
the most affirmative outcomes:

• Small values of the nanoparticle volume fraction and the magnetic parameter may
often predict Maxwell fluid flow augmentation.
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• The relaxation time parameter increases the amplitude of the velocity.
• To manifest a surface heat enhancement, the nanoparticle volume fraction, magnetic

number, thermal radiation, and viscous dissipation parameters must all be substantial.
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Abstract: The development of the world cannot be separated from energy: the energy crisis has
become a major challenge in this era, and nuclear energy has been applied to many fields. This paper
mainly studies the stress change of reaction pressure vessels (RPV). We established several different
physical models to solve the same mechanical problem. Numerical methods range from 1D to 3D;
the 1D model is mainly based on the mechanical equilibrium equations established by the internal
pressure of RPV, the hoop stress, and the axial stress. We found that the hoop stress is twice the
axial stress; this model is a rough estimate. For 2D RPV mechanical simulation, we proposed a new
method, which combined the continuum damage dynamic model with the transient cross-section
finite element method (CDDM-TCFEM). The advantage is that the temperature and shear strain
can be linked by the damage factor effect on the elastic model and Poission ratio. The results show
that with the increase of temperature (damage factor μ̂, d̂), the Young’s modulus decreases point
by point, and the Poisson’s ratio increases with the increase of temperature (damage factor μ̂, Et).
The advantage of the CDDM-TCFEM is that the calculation efficiency is high. However, it is unable
to obtain the overall mechanical cloud map. In order to solve this problem, we established the
axisymmetric finite element model, and the results show that the stress value at both ends of RPV
is significantly greater than that in the middle of the container. Meanwhile, the shape changes of
2D and 3D RPV are calculated and visualized. Finally, a 3D thermal–mechanical coupling model is
established, and the cloud map of strain and displacement are also visualized. We found that the
stress of the vessel wall near the nozzle decreases gradually from the inside surface to the outside,
and the hoop stress is slightly larger than the axial stress. The main contribution of this paper is
to establish a CDDM-TCFEM model considering the influence of temperature on elastic modulus
and Poission ratio. It can dynamically describe the stress change of RPV; we have given the fitting
formula of the internal temperature and pressure of RPV changing with time. We also establish a
3D coupling model and use the adaptive mesh to discretize the pipe. The numerical discrete theory
of FDM-FEM is given, and the numerical results are visualized well. In addition, we have given
error estimation for h-type and p-type adaptive meshes. So, our research can provide mechanical
theoretical support for nuclear energy safety applications and RPV design.

Keywords: RPV; FDM-FEM; damage model; adaptive mesh; axisymmetric method; stress cloud map;
multi-physics model

1. Introduction

1.1. Research Motivation and Significance

Nuclear energy plays an important role in today’s energy system, especially nuclear
power generation. Nuclear energy is a safe, clean, and economical energy source [1].
Meanwhile, it has many advantages, such as the small size of reaction equipment, slowing
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down the greenhouse effect, and releasing huge energy in a short time. The main negative
impact is that nuclear accidents are prone to nuclear radiation and nuclear pollution.
Therefore, the quality of nuclear pressure vessels must be up to standard before they
can be used, including operating specifications, regular security inspections, etc. The
design of pressure vessels and safety performance evaluation is also an important research
topic [2,3]. The force analysis of RPV will also use some knowledge of extreme mechanics,
especially for the welding joints of nuclear reactor nozzles. Due to the limited load, stress
concentration and various cracks are prone to occur here. The ultimate load is mainly
determined by the overall plastic yield of the shell material [4,5]. When the yield strength
is low, it has almost no effect on the crack size. As yields increase, cracks will also increase.
Since the pressure vessel is operated in a high-temperature environment, many physical
parameters will change, such as the density, Young modulus, Poisson ratio, and so on. In
fact, during normal operation, nuclear pressure vessels are in a multi-physics environment,
such as operating under the combined effects of high temperature, thermal shock, coolant,
nuclear radiation, etc. In addition, temperature and thermal shock may cause corrosion and
damage to the RPV cladding. These factors are essential in the design of RPV and in the
later stage of quality inspection. However, there are few theories and models in this field
that need to be improved urgently, which is the purpose and significance of our research.

1.2. Related Work

In addition, pressure vessel is the core component of the design and operation of
next-generation reactors. Fatigue damage analysis, crack propagation simulation, and pipe
opening stress calculation are usually required for RPV. However, many models belong
to static mechanical analysis, and the Young’s modulus and Poisson’s ratio of the model
are calculated according to fixed values. A damage model was established to describe
the dynamic changes of Young’s modulus and Poisson’s ratio. The reliability of RPV also
includes some uncertain factors, including the existence of the coupling of internal pressure
and inertial force, combined with probabilistic fracture mechanics, estimation of stress
intensity factors, and in turn, these works can help to analyze the pressure vessel’s fracture
and reliability analysis [6,7]. The mechanical properties and electromagnetic properties
are the external performance under irradiation [8]. These advantages are beneficial to
establish the nondestructive evaluation technology of embrittlement. Numerical calculation
combined with the local nonlinear dynamics method and this criterion based on the
critical splitting stress have greatly improved the global static method to describe the
crack propagation.

The structural damage dynamic model is usually used in combination with the fatigue
analysis model. In continuum mechanics, the damage is calculated as a post-processing
of elastic or elastoplastic macroscopic analysis. However, this important work has not
been cited in the mechanical research of RPV, which also reflects the uniqueness of our
work. The damage is considered to be isotropic, and there is a micro-defect closure effect
on both macro and micro scales [9]. Secondly, the damage evolution equation can explain
different damage mechanisms when forging alloy materials. The numerical results show
that the damage evolution equation can reflect the anisotropic accelerated creep and creep
fracture time under different stress levels and loading directions [10]. Through the numeri-
cal simulation of the representative volume element (RVE) of quasi-brittle materials, an
anisotropic damage model with the least internal variables can be constructed [11]. The
orientation distribution function of the two elastic modulus is numerically determined, and
the influence of the nucleation and propagation of microcracks is considered by the phase
field method. In reference [12], an energy-based damage model is proposed to simulate
the crack propagation of very low cycle fatigue (VLCF). This model can be used to predict
the failure period, and the comparison of fracture surfaces also shows good consistency.
The above model is only applicable to the damage model of a mechanical single field
independent of temperature change, which also reflects that the research work in this paper
is different from the current model. We consider the influence of physical information
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such as temperature and shear strain on the material. The fatigue damage analysis of RPV
requires a variety of theories to solve, including prediction of the crack growth of steel
RPV based on the maximum main stress propagation standard and combination with the
probability direction standard to predict the unstable crack path [13–15].

The cross-section FEM has the characteristics of fast calculation, stratification, and
local mechanics, and it has been widely used to solve various engineering problems [16–18].
However, they are all numerical theories of the static cross-section FEM, and there are few
transient cross-section FEM methods. Transient energy studies the mechanical changes
in each time period, which is wider than the static practical range. This is also the reason
why this paper uses the transient cross-section FEM to study the nuclear pressure vessel.
Changsik provides a simple method to estimate the cross-section stress distribution of
the nozzle designed according to Section 3 of the ASME code. This method requires the
geometric information of pressure vessels and nozzles. The limitation of this method is
that the stress distribution in the cross-section needs to use accurate stress concentration
factors, and the method discussed is only effective under internal pressure [19]. The error
of the RPV stress theoretical analysis method for 2D cross-section FEM analysis is relatively
large at the edge. Reference [20] derived the accurate theoretical formulas of radial and
axial displacement of cylindrical vessels and pipelines under thermal stress through the
fourth-order differential equation. The edge effect has an important influence on the
geometric deformation of pressure vessels and pipelines under thermal mechanical load.
The maximum relative error of radial displacement at the edge reaches 42.2%, and the
maximum relative error of axial displacement reaches 28.5%. Sectional FEM is also used to
study the influence of buckling and post-buckling behavior of composite laminates [21].
The results are compared with those of two finite element models. Residual stresses
have a significant influence on the buckling and post-buckling behavior of closed-section
thin-walled laminated structures.

Recently, there have been some simulation models of RPV. The study of stress intensity
of the RPV pipe mouth is generally controlled by parameters such as size, shape, inner
radius and thickness of the nozzle, etc. It is concluded that the optimal design of the nozzle
can minimize the stress intensity (Tresca yield criterion) and conflict between the quality of
RPV [22]. However, the working environment of RPV belongs to multi-physics and needs to
consider the interaction of temperature and stress, which is also the difference of the nozzle
model established in our paper. In addition, we also compare the axial stress and hoop
stress. What is more, through simulation, three-dimensional thermal hydraulic parameter
distributions can be obtained; with the increase of the injection rate, the disturbance of the
temperature field and the velocity field becomes more intense, and it is more likely to cause
thermal fatigue [23,24].

Pressurized thermal shock (PTS) also affects the structural integrity of the pressurized
water RPV. The literature [25,26] studies the pressurization–thermal shock phenomenon in
pressure vessels (RPV). The results show that the assessment of crack initiation, stopping,
and tearing instability in thermal shock (PTS) events (of RPV) is studied. According
to the new results, the tearing process of RPV is still stable even for large initial cracks
larger than the maximum assumed crack size in the code [27,28]. The most important
performance factor is mainly the application of fluid and probabilistic fracture mechanics to
comprehensively evaluate the structural integrity of RPV under hypothetical PTS accidents.
When the emergency nuclear cooling (ECC) water is injected, a large temperature gradient
will be generated, which will lead to a large thermal stress in the RPV wall. Predicting the
thermo-mechanical behavior of the pressure vessel can also improve the safe coefficient,
optimizing the ECCS performance [29,30]. Other literature work thermal shock force is
generally in the form of a graph. In this paper, the fitting formula of thermal shock force and
temperature is given, which is convenient for outputting the function value corresponding
to any moment during the simulation process.

In addition, regarding the issue of stress prediction, synchronization accelerator X-ray
diffraction measures the stress generated by the clad pressure vessel steel during thermal
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shock. Experimental measurements show that the peak stress intensity factor occurs during
thermal shock, rather than in a steady state [31]. The internal structure of the pressure
vessel is more complicated and accompanied by robust radiation, so the experimental mea-
surement is relatively difficult. At present, ultrasonic technology can be used to measure
the stress of the pressure vessel, and ultrasonic transducers with different frequency ranges
are used to evaluate the hoop and axial residual stress [32]. The experiment indicates that
it is limited, the calculated stress and ultrasonic measurement results have a high degree
of consistency. In addition, the elements added in RPV steel will affect the toughness and
crack resistance of the material. Figure 1 below shows the evolution of the main chemical
elements of RPV in China in the last 40 years. The key properties of nuclear RPV are high
strength, good toughness, corrosion resistance, good compatibility with coolant, stable
microstructure, good welding, hot and cold processing performance, and developing to an
ultra-high strength direction.

&U�1L�0R�9 0Q�1L�0R 0Q�1L�0R 1L�&U�0R
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Figure 1. Development history of main metal elements of RPV in China.

Furthermore, there are also many numerical methods for pressure vessel stress eval-
uation, such as the extended 3D finite element method (XFEM) to calculate the stress
field of the reactor pressure vessel (RPV). The sub-model contains three types of cracks:
axial, circumferential, and inclined directions [33]. However, there are a few coupling field
simulation models with time term for RPV. In this paper, the transient thermal–mechanical
coupling model is studied, which is different from other research work. We use FDM-FEM
to discrete the 3D pipeline port area. In addition, there are also multi-scale coupled numeri-
cal methods for force analysis of pressure vessels [34], and simulation of thermo-hydraulic
phenomena (such as heat, mass, and dissolution transmission in nuclear pressure vessels
(RPV)). Four subsystems have been solved; the parameter correlation of RPV can more
realistically react the heat transfer simulation of the pressure vessel. Reference [35] FVM
is reliable for solving the neutron diffusion equation, and it can obtain an accurate three-
dimensional distribution of neutron flux and power of the core. For a metal pressure vessel,
generally, corrosion-resistant materials are used to prevent the material from becoming
fragile due to rust and chemical attack, and the tensile strength will be reduced. Eventually,
it will cause bursting under high internal pressure. Actual nuclear pressure vessels are
composite materials. There are many finite element methods for pressure vessel struc-
tures/components and pipelines [36]. They even include linear and nonlinear, static and
dynamic, stress and deflection analysis, thermal problems, fracture mechanics problems,
and solid coupling [37,38]. COMSOL, ANSYS, ABAQUES, etc. are commonly used in the
finite element analysis software of pressure vessels and pipelines.

1.3. Contributions

The main contributions of this article are four points. Firstly, this paper proposed a sim-
plified one-dimensional RPV estimation formulas for axial and hoop stress and introduces
the working principle of RPV. The second contribution is that we proposed the continuous
damage dynamics model combined with the transient cross-section FEM Method (CDDM-
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TCFEM), which can adapt to the variable parameter mechanical calculation model in the
high-temperature environment. The change trend of Young’s modulus and Poisson ratio
is calculated and visualized. The third contribution is that we use axisymmetric FEM to
analyze the nuclear pressure vessel, which not only improves the calculation speed but
also obtains the overall mechanical change cloud map. A variable parameter model is more
accurate than traditional fixed parameter calculation. In addition, we found that the stress
at both ends of the RPV was significantly greater than that in the middle. The fourth contri-
bution is that we build the physical model of the mechanical and thermal coupling, analyze
the mechanical change of the RPV pipe mouth, and calculate the difference between the
pipe mouth axial stress and loop stress, and finally the specific temperature and mechanical
change cloud diagrams are given. In a word, our work is beneficial to the structural design
and the RPV’s security assessment.

1.4. Structure and Framework of This Paper

The structural arrangement and design of this paper consists of five sections. Section 2
mainly consists of two parts. Part one is a one-dimensional simplified mechanical equilib-
rium problem, which describes the internal pressure and axial stress, and the equilibrium
problem of hoop stress. Part two mainly introduces the continuous damage dynamic model
and the numerical theory of cross-section finite element (DDM-TSFEM). We convert it
into a two-dimensional section to solve. Section 3 mainly introduces the axisymmetric
finite element method. We obtained the three-dimensional stress–strain cloud map of the
pressure vessel through thermal shock force, which is more intuitive than the section finite
element method. Another feature of this model is the addition of deformation. Section 4 is
mainly about the thermal field–force field coupling of the RPV pipe mouth physical model.
By establishing three-dimensional transient solid heat transfer and elastic mechanics equa-
tions, the axial and radial stress variation trends are finally obtained at different times. The
biggest feature of this example is that the stress change at the RPV nozzle is considered.
Section 5 is mainly a summary and outlook and provides the relevant research conclusions
of this paper and the problems that need to be studied subsequently.

2. RPV Working Principle and Internal Structure of Nuclear Power

2.1. RPV Working Principle of Nuclear Power

Nuclear power plants can convert nuclear energy into electrical energy for life and
industrial use. The core component of nuclear power plants is nuclear pressure vessels.
Common nuclear power plants can be divided into pressurized water reactor nuclear power
plants, heavy water reactor nuclear power plants, boiling water reactor nuclear power
plants, and fast reactor nuclear power plants according to different reactor principles. At
present, China’s main nuclear power plants are composed of pressurized water reactor
nuclear power plants and heavy water reactor nuclear power plants. More than 60% of the
world ’s nuclear power plants are PWR nuclear power plants, which are mainly composed
of reactors, steam generators, steam turbines, generators, and related system equipment.

At present, in nuclear power plants, the role of reactors is to conduct nuclear fission
and convert nuclear energy into heat energy from water. Water as a coolant absorbs the
heat generated by nuclear fission in the reactor, and water at high temperature and high
pressure becomes saturated steam. The steam pressure promotes the rotation of the steam
turbine, and the heat energy is converted into mechanical energy. Then, the steam turbine
drives the generator to rotate and converts mechanical energy into electrical energy. The
cooled water is pumped back to the reactor by the main pump and heated again. Thus, the
cycle is repeated to form a closed cycle of heat absorption and heat release. The pressure
of the loop is controlled by the regulator. Usually, the primary circuit and its auxiliary
systems and plants are collectively referred to as nuclear islands (NIs). In summary, the
PWR nuclear power plant converts nuclear energy into electrical energy in four steps,
which are implemented by four main devices:

(a) Reactor—converting nuclear energy into water heat.

247



Fractal Fract. 2022, 6, 215

(b) Steam generator—transferring the heat from the high-temperature and high-pressure
water in the first loop to the water in the second loop, so that it becomes saturated steam.

(c) Steam turbine—converting the heat energy of saturated steam into the mechanical
energy of high-speed rotation of a steam turbine rotor.

(d) Generator—converting mechanical energy from the steam turbine into electrical
energy. To use power generation, they need to go through multiple complex processes.
The working principle diagram of the pressurized water reactor nuclear power plant
is shown in Figure 2.

Figure 2. Working principle diagram of the pressurized water reactor nuclear power plant.

2.2. RPV Classification and Internal Structure

The nuclear pressure vessel is an important device of nuclear power plants. High-
strength alloy steel (Fe, Mn, C, Zn, and other elements) is generally used in the vessel. The
internal material of the nuclear pressure vessel will encounter thermal impact force, high
temperature, strong radiation, crack propagation, chemical corrosion, and other factors
when working. It is difficult to measure the internal force by a direct experiment method.
Therefore, the finite element method can be used to solve the numerical solution according
to the elastic equation and boundary information. Example 1 mainly introduces the
geometric two-dimensional transient elastic equation of the continuum damage dynamic
model to solve the internal force of the nuclear pressure vessel. Common pressure vessels
can be divided into four grades according to temperature and internal pressure. The
classification results and scope standards are shown in Table 1.

Table 1. Classification of nuclear pressure vessels by temperature and pressure.

Pressure Classification Pressure Range Temperature Classification Temperature Range

Low-pressure vessel (L) 0.1 Mpa ≤ P < 1.6 Mpa Cryogenic container t < −20 ◦C
Medium-pressure vessel (M) 1.6 Mpa ≤ P < 10 Mpa Normal-temperature vessel −20 ◦C ≤ t < 150 ◦C

High-pressure vessel (H) 10 Mpa ≤ P < 100 Mpa Medium-temperature vessel 150 ◦C ≤ t < 450 ◦C
Super-high-pressure vessels (U) P ≥ 100 Mpa High-temperature vessels t ≥ 450 ◦C

The geometric dimensions of common nuclear reactor pressure vessels are generally
ellipsoidal spherical vessels. The inner shell of the pressure vessel is made of harder
steel materials such as austenitic stainless steel. Pressure vessels are commonly used key
equipment in the nuclear power plant, petrochemical, metallurgical, power generation and
aerospace sectors. They generally work in high temperature, high pressure, corrosion and
radiation environments. Especially nuclear pressure vessels, strong neutron radiation will
also cause continuous damage to the material and cause brittle fracture. In severe cases,
there is a risk of explosion. Therefore, pressure vessel design and internal load control
must be strictly implemented in accordance with the regulations. Currently, nuclear power

248



Fractal Fract. 2022, 6, 215

plants mainly use nuclear fission to release energy. The internal structure of the nuclear
pressure vessel is shown in Figure 3.
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Figure 3. Ilustration of the internal structure and important parts of the pressure vessel.

2.3. Four Model Assumptions of RPV

Before establishing the RPV model in this article, we need to give the assumptions of
each model, which will help the model to describe the scope of use more accurately.

Model 1: This model assumes that the material is isotropic, the internal pressure is
uniform, and the thickness of the container wall is greater than dm ≥ 0.05 m.

Model 2: The CDDM-TCFEM method assumes that the obtained cross-sections are all
continuous and uniform, isotropic materials. It satisfies the six assumptions of linear elastic-
ity theory, including continuity, complete elasticity, uniformity, isotropy, slight deformation,
and no initial stress. It is assumed that the continuous damage is a small defect, no obvious
crack is formed, and the temperature will not cause the creep of the RPV vessel wall.

Model 3: The axisymmetric model assumes that the RPV shell is a symmetrical
geometry, and the interior is subjected to a uniform outward pressure P.

Model 4: The thermal–mechanical coupling model of the pipe mouth assumes that the
RPV material is isotropic; the process we study only emits hot steam and does not release
the cooling liquid, because the release of the cooling liquid requires the addition of the
hydrodynamic Navier–Stokes equation. We assume that at each moment, the temperature
and pressure values remain relatively stable, and there is no sudden increase or decrease.

3. RPV Stress by the Simple Mechnical Balance

Model 1: Considering a simplified pressure vessel force analysis model, this vessel
with radius r and wall thickness d is subjected to an internal gage pressure or thermal
shock p along the longitudinal direction and hoop direction of the vessel to analyze the
longitudinal stress σl and hoop stress σθ . This model has axisymmetric coordinates; there
is no shear stress. When the working condition of the nuclear pressure vessel is stable,
we make a cut across the section of the RPV to analyze the longitudinal stress σl of the
spherical pressure vessel.
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Although the derivation process of the problem borrows the area to represent the axial
stress σl and the surface pressure F generated by the internal pressure P, the final formula
shows that the radius R and the thickness dm of the vessel are constant, and the final change
of the axial stress depends only on the internal pressure of the RPV. Therefore, the axial
stress obtained by the model belongs to a simplified one-dimensional approximation.

σl · dm · 2πr = p · πr2, σl =
pr

2dm
. (1)

Similarly, the circumferential stress is also symmetrical. We cut the vessel along
any axis. The tangential direction of the cylinder is the circumferential stress σθ , and the
equilibrium equation is established along the z direction. D is the diameter of the RPV, the
pressure P acts on the projection of the half section, and S = D

2 l sin α is balanced with the
circumferential stress σθ acting on the two sections. We can finally get:∫ π

0
pl

D
2

sin αdα = p · 2r · dm = 2dmlσθ , σθ =
pr
dm

. (2)

The above model is only a one-dimensional static analysis on the cross section, and the
calculated stress results are rough estimates. In fact, the three-dimensional force analysis of
the nuclear RPV cannot be obtained by this method. We also want to get the local stress
defects of the pressure vessel and the overall stress changes. When the nuclear vessel reacts,
the inside is affected by thermal shock. The following sections will introduce the other two
nuclear pressure vessel force analysis methods in detail. They are the cross-section method
and the axisymmetric method. The hoop stress and axial stress in static equilibrium are
illustrated in Figure 4.

核反应推热冲击力评估

p

l�a� �b�

Figure 4. Stress estimation of capsule shaped nuclear pressure vessel. (a) Hoop stress of RPV. (b)
Axial stress of RPV.

4. Continuum Damage Dynamics Model with Transient Cross-Section FEM

4.1. Continuum Damage Dynamics Model

This section will introduce our proposed method continuum damage dynamics model
with transient cross-section FEM in detail, which is referred to as the CDDM-TCFEM
method. This model mainly assumes that the nuclear pressure vessel is an isotropic
material. A large amount of heat will be released instantaneously during the nuclear
fission reaction. The surrounding gas will form thermal shock, long-term erosion, high-
temperature effects, and microscopic cracks formed on the inner surface of the pressure
vessel. Residual stress cannot be ignored and will have a certain impact on the container
itself. In order to accurately describe the magnitude of the impact, we established a
continuum dynamic damage model [39,40]. First, the degree of damage of the material
needs to be defined, that is, the volume fraction of the part containing microscopic defects
on the surface of the material, which can be marked as w(t); then, the effective area of the
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material is Ã = A(1− w(t)). Through the stress definition, it is not difficult to obtain the
effective stress expression:

σ̃ =
F

A(1− w(t))
=

σ

1− w(t)
. (3)

This model introduces a symmetric fourth-order damage effect tensor M, that can
connect Cauchy stress σ with real stress σ̃. Their relationship is shown in Equation (4).{

σ̃ = Mσ σ̃ = Mijklσkl .

Mijkl =
1

1−d̂

(
(1− û)δikδjl + uδijδkl

) (4)

Considering the symmetry of the stress tensor, the Cauchy stress vector and real stress
vector are expressed as:

σT =
[

σ11 σ22 σ33 σ12 σ23 σ31
]
. (5)

σ̃T =
[

σ̃11 σ̃22 σ̃33 σ̃12 σ̃23 σ̃31
]
. (6)

In the matrix form of the damage effect tensor M, the variables û and d̂ represent
the two damage parameters. The variable û represents the damage effect of the Poisson-
dependent transverse shear deformation. The variable d̂ is a loss parameter related to the
internal temperature of the RPV [41–43]. Of course, we can refer to some of the work of
Lemaitre and Chaboche for related damage models. The damage effect tensor M is shown
in Equation (7).

M =
1

1− d̂

⎡⎢⎢⎢⎢⎣
1 û û
û 1 û
û û 1 1− û

1− û
1− û

⎤⎥⎥⎥⎥⎦ (7)

In Equation (8), û and d̂ are two damage parameters; û represents the Poisson ratio
and transverse shear strain-related damage effect in the initial state. E0 and v0 are the
undamaged elastic modulus and Poisson’s ratio, and the corresponding initial values are
E0 = 206 Gpa and v0 = 0.3. After the material is damaged, the real elastic modulus and
the Poisson ratio are nonlinear functions as follows:⎧⎨⎩ E(û, d̂) = E0(1−d̂)2

1−4v0û+2(1−v0)û2

v(û, εt) = − v0−2(1−v0)û−(1−3v0)û2

1−4v0û+2(1−v0)û2 + Δεt
(8)

The internal temperature T of the nuclear pressure vessel is generally controlled at
20–300 ◦C. This numerical experiment simulates the temperature change of [20, 600]. The
change of temperature will affect some physical parameters in the material, including the
Young’s modulus, yield strength, thermal conductivity, and thermal expansion coefficient.
In this model, the influence factor d of the damage dynamics model is modified to a function
that is positively correlated with temperature. This model only studies the part of the
internal temperature of the pressure vessel that is linearly increased, and it is in a periodic
high-temperature state for a long time in the later period. It belongs to a nonlinear change,
and the deformation will creep. This change can be described by the nonlinear relationship
between strain and time:

û = α ln(γT(t) + 1). (9)
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The damage caused by temperature to the container material is a nonlinear change
process. The functional relationship between the nonlinear part damage factor d̂ and
temperature is:

d̂ = κe1− Ti−Tmin
Tmax−Tmin . (10)

In Equation (8), where εt is a weak white noise, then εt obeys the standard normal
distribution, which can be denoted as εt ∼ N

(
ξ, σ2), and it satisfies the relationship

E(εt) = ξ, E
(
ε2

t
)
= σ2; the probability density function is shown in Equation (11):

f (εt) =
1√
2πσ

exp
(
− εt

2σ2

)
. (11)

In addition, the random disturbance sequence is added, which is equivalent to a
correction of Poisson’ s v value, making it closer to the actual real value. The model
assumes that the range of random disturbance is Δεt = εt − εt−1 = 10−4. The sources of
uncertainty include the increase of martensite integral as well as the influence of uncertain
factors such as thermal shock force and crack propagation on the material. The value of
this model is to dynamically characterize the changes of Young’s modulus E and Poisson’s
ratio v with temperature T and shear strain γ. The nuclear pressure vessel works in a
high-temperature and high-pressure environment for a long time, and it is easy for the
material inside the vessel to encounter thermal shock and chemical corrosion as well as
the radiation of nuclear fuel and many other effects. Hence, it is essential to establish a
dynamic damage model to describe this physical damage.

The traditional method considers that the elastic modulus E and Poisson’s ratio v
change very little or as a constant value to calculate the stress of RPV. However, in practice,
these parameters change with temperature. Based on the continuous damage model,
some more appropriate parameter values can be obtained from our proposed model. The
influence of temperature on the material structure parameters is primarily considered. The
parameters

(
û, d̂, εt

)
represent a temperature-dependent variable. The temperature and

pressure inside the nuclear pressure vessel indicate a dynamic nonlinear change trend. In
the initial stage, the pressure vessel will instantly release a large amount of heat, but with
the addition of the coolant system, the temperature will gradually decrease.

4.2. Transient Cross-Section FEM Method

In this section, we will introduce a two-dimensional transient cross-section FEM
method. In other words, we use the CTFEM method to solve a two-dimensional linear
elastic equation with finite difference approximation for the time term and finite element
approximation for the space term. The pressure vessel can be divided into different sections
according to the radial and axial direction. So, this problem has been simplified to many
thin rings and rectangular slices: that is, turning a three-dimensional problem into a two-
dimensional problem [44,45]. The advantage of this method is that local details can be
observed and the solution time is relatively fast. If FEM combined with ARIMA method
can also be applied to the variable force prediction of RPV [46]. The time term T > 0 of
linear elasticity equation is discretized by the finite difference method, and the spatial term
Ω ⊂ R2 is discretized by the finite element method. The boundary area is denoted as
∂Ω. Partial parameters of the elasticity equation need to be combined with the model of
continuum damage dynamics. For the displacement of two-dimensional transient elastic
mechanics, there are two degrees of freedom on each mesh node, and the displacement
components along the x and y directions can be written in the form of vectors as follows
Equation (12).

u(x, y, t) = (u1(x, y, t), u2(x, y, t)). (12)
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Here, we use displacement u to represent the two-dimensional strain tensor matrix ε(u).

ε(u) =
(

εxx(u) εxy(u)
εyx(u) εyy(u)

)
=

⎛⎝ ∂u1
∂x

1
2

(
∂u1
∂y + ∂u2

∂x

)
1
2

(
∂u2
∂x + ∂u1

∂y

)
∂u2
∂y

⎞⎠ (13)

In the same way, we can use variable displacement u to represent the stress tensor
matrix σ(u).

σ(u) =
(

σxx(u) σxy(u)
σyx(u) σyy(u)

)
= λ tr(ε(u))I + 2με(u)

=

(
λ
(
εxx(u) + εyy(u)

)
+ 2μεxx(u) 2μεxy(u)

2μεyx(u) λ
(
εxx(u) + εyy(u)

)
+ 2μεyy(u)

) (14)

The λ and μ are the Lame coefficients, and the elastic modulus Ê and the possion rate
v̂ represent the parameters solved in the structural damage model.

λ =
v̂Ê

(1− 2v̂)(1 + v̂)
, μ =

Ê
2(1 + v̂)

. (15)

The two-dimensional transient elastic equation can be simplified as:

ρutt −∇σ = f . (16)

Then, the solution space of the transient elasticity equation exists in u ∈ [0, T]×Ω;
differential Equation (16) can also be written in the form of a component equation.⎧⎨⎩ ρ̂(t) ∂2u

∂t2 −
(

∂σxx(u)
∂x +

∂σyx(u)
∂y

)
= fx

ρ̂(t) ∂2u
∂t2 −

(
∂σxy(u)

∂x +
∂σyy(u)

∂y

)
= fy

(17)

Boundary conditions include displacement boundary and force boundary conditions;
they are shown in Equations (18) and (19). The effect of the two boundary conditions can
indicate the initial state of the pressure vessel, and it clearly describes the boundary force
position and constraint conditions:

ui(x, y, t) = bi(x, y, t), (x, y, t) ∈ ΓD × [0, T], i = 1, 2. (18)(
σxx(u) σxy(u)
σyx(u) σyy(u)

)(
nx
ny

)
=

(
px
py

)
ΓN × [0, T]. (19)

The initial conditions corresponding to the displacement and velocity are as follows:

u1(x, y, 0) = g1(x, y), u2(x, y, 0) = g2(x, y) (x, y) ∈ ΓD = ∂Ω. (20)

∂u1

∂t
(x, y, 0) = vb1(x, y), (x, y) in Γ1. (21)

∂u2

∂t
(x, y, 0) = vb2(x, y), (x, y) in Γ2. (22)

In Equation (17), ρ̂(t) > 0 is the density of the pressure vessel, and the density
decreases slightly with the increase of temperature [47,48]. The right end function can be
denoted as f =

(
fx, fy

)T , Ω × [0, T] → R2, and the displacement function in the initial
boundary condition can be expressed as b = (b1, b2) : ΓD × [0, T]→ R2; the force boundary
condition is p =

(
px, py

)T , ΓN × [0, T]→ R2. Under the initial condition, when t = 0, the
corresponding displacement term function is g = (g1, g2)

T . The corresponding boundary
initial velocity is vb = (vb1, vb2)

T .
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Then, when combined with the variational principle, the transient elastic equation
is discretized. For any u = (u1, u2), v = (v1, v2) , and it satisfies the spatial relationship
ui ∈ V i = 1, 2, V is a Hilbert space; for any vi ∈ V i = 1, 2, (u, v) ∈ V ×V → B(u, v) ∈
R is a bilinear functional. F(v) =< f , v > is a continuous functional, and the following
relationship satisfies Equation (23).

B(u, v) = 〈 f , v〉 ∀v ∈ V. (23)

B(u, v) =
∫

Ω
ρ̂(t)

(
∂2u1

∂t2 v1 +
∂2u2

∂t2 v2

)
dxdy + a(u, v)

=
∫

Ω
f1v1dxdy +

∫
2

f2v2dxdy +
∫

ΓN

h1v1ds + h2v2ds.
(24)

Among them, B(u, v) and a(u, v) are bilinear functions, and the specific expressions
of u = (u1, u2) : Ω̄× [0, T]. ∀v1 : Ω̄ → R2, v1|ΓD

= 0 and ∀v2 : Ω̄ → R2, v2|ΓD
= 0, a(u, v)

are as follows in Equation (25).

a(u, v) =
∫

Ω
σ(symbolu) : ∇vdxdy =

∫
Ω

σ(u) : ε(v)dxdy

=
∫

Ω
λ(∇ · u)(∇ · v)dxdy +

∫
Ω

2με(u) : ε(v)dxdy

=
∫

Ω
λ

(
∂u1

∂x
+

∂u2

∂y

)(
∂v1

∂x
+

∂v2

∂y

)
dxdy

+ 2μ
∫

Ω

(
∂u1

∂x
∂v1

∂x
+

1
2

(
∂u1

∂y
+

∂u2

∂x

)(
∂v1

∂y
+

∂v2

∂x

)
+

∂u2

∂y
∂v2

∂y

)
dxdy.

(25)

Of course, it can also be calculated directly, and the results obtained in the two forms
of Equations (25) and (26) are equivalent.

σ(u) : ∇v =

(
σ11(u) σ12(u)
σ21(u) σ22(u)

)
:

(
∂v1
∂x

∂v1
∂y

∂v2
∂x

∂v2
∂y

)
(26)

After finishing, we can get Equation (27)∫
Ω

σ(u) : ∇vdxdy

=
∫

Ω

(
λ

∂u1

∂x
∂v1

∂x
+ 2μ

∂u1

∂x
∂v1

∂x
+ λ

∂u2

∂y
∂v1

∂x
+ μ

∂u1

∂y
∂v1

∂y

)
+ μ

∂u2

∂x
∂v1

∂y
+ μ

∂u1

∂y
∂v2

∂x
+ μ

∂u2

∂x
∂v2

∂x
+ λ

∂u1

∂x
∂v2

∂y
+

λ
∂u2

∂y
∂v2

∂y
+ 2μ

∂u2

∂y
∂v2

∂y

)
dxdy

(27)

The right-hand function of variational Equation (23) can be written as Equation (28).

< f , v >=
∫

Ω
f1v1 + f2v2dxdy. (28)

The backward Euler scheme is used to discrete the time term. As for the time step
Δτ = T

N , N ∈ N+, the time used in step n is tn = nΔt, and the corresponding function
value is f n+1, u ∈ C0([0, T], V)

⋂
C2([0, T], H).(

d2u(t)
dt2 , v

)
+ α(u(t), v) = ( f (t), v) ∀v ∈ V, t ∈ [0, T]. (29)
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The initial conditions of the transient linear elastic equation are divided into displace-
ment and velocity.

u(0) = u0, u0 ∈ V. vb1 =
du(0)

dt
= u1, u1 ∈ H. (30)

The time term is discreted by the central difference scheme, and the terms un+1 ∈
V, 1 ≤ n ≤ N − 1 are to be solved such that we can get a semi-discrete variational
equation as follows in Equation (31).(

ρ̂(t)
un+1

h − 2un
h + un−1

h
Δt2 , v

)
+ a(un

h , v) = ( f n, v) ∀v ∈ Vh. (31)

u(0) = u0, u0 ∈ V. vb1 = u0 + Δtu1, u1 ∈ H. (32)

The basis function of elastic plate displacement constitutes the finite element solution
space un

h =
(
un

1h, un
2h
)T, which satisfies the relationship u1h, u2h ∈ Uh = span

{
ϕj
}NF

j=1. NF
is expressed as the number of displacement components; then, the finite element solution
of the displacement component can be written as shown in Equation (33).

un
1h =

NF

∑
j=1

un
1j ϕj, un

2h =
NF

∑
j=1

un
2j ϕj. (33)

We choose the text function vh = (ϕi, 0)T, (i = 1, 2, . . . , NF); this is equivalent to
v1h = ϕi, v2h = 0. By moving terms and sorting equations, ∀v1h ∈ Vh, i = 1, 2, we can
obtain the form of the discrete function as follows in Equation (34).(

ρ̂(t)
(

un+1
1h − 2un

1h + un−1
1h

)
, v1h

)
+ Δt2a(un

ih, v1h) = Δt2( f n, v1h). (34)

Then, we bring Equation (33) into Equation (34), and we can get a displacement
component Equation (35).

∫
Ω

ρ̂(t)

(
NF

∑
j=1

un+1
1h ϕj ϕi − 2

NF

∑
j=1

un
1h ϕj ϕi +

NF

∑
j=1

un−1
1h ϕj ϕi

)
dxdy+

Δt2

[(
λ

(
NF

∑
j=1

un
1j

∂ϕj

∂x

)
∂ϕi
∂x

dxdy+ 2
∫

Ω
μ

(
NF

∑
j=1

un
1j

∂ϕj

∂x

)
∂ϕi
∂x

dxdy+

∫
Ω

λ

(
NF

∑
j=1

un
2j

∂ϕj

∂y

)
∂ϕi
∂x

dxdy +
∫

Ω
μ

(
NF

∑
j=1

un
1j

∂ϕj

∂y

)
∂ϕi
∂y

dxdy+

∫
Ω

μ

(
NF

∑
j=1

un
2j

∂ϕj

∂x

)
∂ϕi
∂y

dxdy

]
= Δt2

∫
Ω

f n
1 ϕidxdy.

(35)

Similarly, we choose the test function vh = (0, ϕi)
T, (i = 1, 2, . . . , NF); this is equiv-

alent to v1h = 0, v2h = ϕi. ∀v2h ∈ Vh, i = 1, 2. The numerical discretization results of the
FDM-FEM method are as follows in Equation (36).(

ρ̂(t)
(

un+1
2h − 2un

2h + un−1
2h

)
, v2h

)
+ Δt2a(un

ih, v2h) = Δt2( f n, v2h). (36)

Bring Equation (33) into Equation (36), and we can get another displacement compo-
nent, as shown in Equation (37).
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∫
Ω

ρ̂(t)

(
NF

∑
j=1

un+1
2h ϕj ϕi − 2

NF

∑
j=1

un
2h ϕj ϕi +

NF

∑
j=1

un−1
2h ϕj ϕi

)
dxdy+

Δt2

[(
μ

(
NF

∑
j=1

un
1j

∂ϕj

∂y

)
∂ϕi
∂x

dxdy +
∫

Ω
μ

(
NF

∑
j=1

un
2j

∂ϕj

∂x

)
∂ϕi
∂x

dxdy+

∫
Ω

λ

(
NF

∑
j=1

un
1j

∂ϕj

∂x

)
∂ϕi
∂y

dxdy +
∫

Ω
λ

(
NF

∑
j=1

un
2j

∂ϕj

∂y

)
∂ϕi
∂y

dxdy+

2
∫

Ω
μ

(
NF

∑
j=1

un
2j

∂ϕj

∂y

)
∂ϕi
∂y

dxdy

]
= Δt2

∫
Ω

f n
2 ϕidxdy.

(37)

Then, we can integrate Equations (35) and (36), so it is easily to obtain the vector
iteration formulas.

Xn+1 =

([
un+1

1j

]NF

j=1
,
[
un+1

2j

]NF

j=1

)T
, Xn =

([
un

1j

]NF

j=1
,
[
un

2j

]NF

j=1

)T
. (38)

Xn−1 =

([
un−1

1j

]NF

j=1
,
[
un−1

2j

]NF

j=1

)T
, b =

(∫
Ω

f n
1 ϕidxdy,

∫
Ω

f n
2 ϕidxdy

)T
. (39)

Using the same method, we can get the sparse matrices A, B, and C. Finally, we
transform the elastic differential equation into an algebraic iterative equation.

AXn+1 + BXn + CXn−1 = b. (40)

Further sorting out Equation (40), we can get vector Xn−1.

Xn+1 = −A−1BXn − A−1CXn−1 + A−1b. (41)

The initial iteration value can be obtained according to the boundary conditions, such as X0 =(
u0

11, u0
12, . . . , u0

1NF, u0
21, u0

22, . . . , u0
2NF

)T. Similarly, X1 = (u1
11, u1

12, . . . , u1
1NF, u1

21, u1
22, . . . , u1

2NF)
T. Fi-

nally, we can obtain the N-1 group transient displacement solutions by iteration, which can be
denoted as Xk, (k = 1,2, . . . N− 1).

4.3. Numerical Simulation with CDDM-TCFEM Method
4.3.1. RPV Axial Section Solved by CDDM-TCFEM Method

The middle part and both ends of the vessel are the key positions of mechanical
analysis. The nuclear pressure vessel cuts n equal parts along the longitudinal direction,
and each section is actually a rectangular slice. The inner side is subjected to thermal
shock, and the outer side is a free end. The upper and lower sides of the rectangle are
fixed. Then, the transient linear elastic equation is discretized according to the FEM-FDM
theory [49,50]. According to the material parameters, size, and boundary information of
the nuclear pressure vessel, the structural mechanics problem is solved according to the
principle of minimum potential energy or the variational method. In this example, the
ring area and the axial direction are considered. The rectangular regions are all discretized
by triangular elements of the upgraded spectrum. The two-dimensional transient elastic
equations can be written as shown in Equation (42).⎧⎨⎩ ρ̂(t) ∂2u

∂t2 −
(

∂σxx(u)
∂x +

∂σyx(u)
∂y

)
= fx

ρ̂(t) ∂2u
∂t2 −

(
∂σxy(u)

∂x +
∂σyy(u)

∂y

)
= fy

(42)

The displacement boundary conditions and the force boundary conditions correspond-
ing to the numerical examples are as follows:

(1) The displacement boundary conditions.
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u(x, y, t)|x=x0,y=y0,t = ut(x, y, t)|x=x0,y=y0,t = ū = 0 (x, y, t) ∈ Γup. (43)

v(x, y, t)|x=x0,y=y0,t = vt(x, y, t)|x=x0,y=y0,t = v̄ = 0, (x, y, t) ∈ Γdown . (44)

v|x=x0,y=y0,t = u|x=x0,y=y0,t = 0, (x, y, t) ∈ Γouter . (45)

Γup =

{
(x, y, t) | xi =

d
n

i, yi =
H
n

i, i = 0, 1, 2, . . . n, t > 0
}

. (46)

Γdown =

{
(x, y, t) | xi = 0, yi =

H
n

i, i = 0, 1, 2, . . . n, t > 0
}

. (47)

Γouter =

{
(x, y, t) | xi = a, yi =

H
n

i, i = 0, 1, 2, ..n, t > 0
}

. (48)

Among them, Γup and Γdown represent the upper and lower boundaries of the rectan-
gle. d is the thickness, and H is the height of the longitudinal section of the pressure vessel.

(2) The force boundary conditions.

The thermal shock force (the exterior force per unit volume) on the inside of the
rectangular section is f =

(
fx, fy

)T ; since the problem is a transient equation, f is a
function of t, and the corresponding force boundary conditions are:

nxσxx(xb, yb, t) + nyτxy(xb, yb, t) = p̄x, (xb, yb, t) ∈ Γinner . (49)

nxτxy(xb, yb, t) + nyσxx(xb, yb, t) = p̄y, (xb, yb, t) ∈ Γinner . (50)

Γinner =

{
(xb, yb, t) | xbi = d, ybi =

H
n

i, i = 1, 2, . . . n, t > 0
}

. (51)

nx = −1, ny = 0, p̄x = fx(t), p̄y = 0N. (52)

4.3.2. Radial Section Solved by CDDM-TCFEM Method

The radial section of the nuclear pressure vessel is a circle, the outer boundary belongs
to the free end, and the inner side is subjected to the thermal shock force f , which also
satisfies the two-dimensional transient elastic equation.

(1) The displacement boundary conditions.

The outer side of the circular section is a fixed end, the two components of the
displacement are zero, and the corresponding displacement boundary conditions are:

u(x, y, t)|x=x0,y=y0,t = ū = 0 (x, y, t) ∈ Γ1. (53)

v(x, y, t)|x=x0,y=y0
= v̄ = 0, (x, y, t) ∈ Γ1. (54)

Γ1 =

{
(x, y) | xi = R cos θi, yi = R sin θi, θi =

2πi
n

, i = 0, 1, 2, . . . n
}

. (55)

(2) The force boundary condition.

We denoted R as the outer radius and r as the inner radius; then, the thickness of the
pressure vessel can be written as d = R− r. The thermal shock force on the inside of the
pressure vessel is uniformly variable force of outward extrusion. For the thermal shock
force f =

(
fx, fy

)T acting on the inner side of the radial cross-section of pressure vessel, the
force boundary condition is as follows:

nxσxx(xb, yb, t) + nyτxy(xb, yb, t) = p̄x, (xb, yb, t) ∈ Γ2. (56)

nxτxy(xb, yb, t) + nyσxx(xb, yb, t) = p̄y, (xb, yb, t) ∈ Γ2. (57)

p̄x = fx
(
tj
)

cos θi, p̄y = fy
(
tj
)

sin θi. (58)
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Γ2 =

{
(x, y) | xi = r cos θi, yi = r sin θi, θi =

2πi
n

, i = 0, 1, 2, . . . n
}

. (59)

For the two-dimensional transient elastic mechanics problem, the numerical solution
can be solved according to the FDM-FEM theory; the time term is approximated by the
second-order central difference, and the space term is discretized by a finite element. Items
are discretized by triangular elements. For rectangular areas, they are finally divided into
380 domain elements, 58 edge elements, and 220 mesh vertices. As for the circular sections,
they are divided into 344 elements and 256 mesh vertices. For rectangular areas and circles,
all ring sections use LST elements, and the displacement field function can be expressed in
the following Equation (60).

u =
6

∑
i=1

ui Ni(ξ, η) , v =
6

∑
i=1

vi Ni(ξ, η). (60)

The six-node isoparametric LST element is composed of three vertices of a triangle
and the midpoints of three sides, and its shape function is as follows:

N1 = (2L1 − 1)L1 N2 = 4(1− L1 − L2)L1. (61)

N3 = [2(1− L1 − L2)− 1](1− L1 − L2) N4 = 4L2(1− L1 − L2). (62)

N5 = (2L1 − 1)L2. (63)

Among them, L1, L2 are area coordinates, which can be solved according to the rela-
tionship between area coordinates and rectangular coordinates.⎛⎝ Li

Lj
Lk

⎞⎠ =
1

2A

⎛⎝ ai bi ci
aj bj cj
ak bk ck

⎞⎠. (64)

ai, bi, ci are replaced by the vertex coordinates of the triangular element.

ai = xjyk − xkyj, bi = yj − yk, ci = xk − xj. (65)

Then, according to Section 4.2, the transient linear elasticity theory of this paper can
be solved. This numerical experiment is mainly a dimensionality reduction processing
method, which simplifies the three-dimensional problem into a two-dimensional plane
problem, which makes the original problem easier to solve and improves the calculation
speed. At the same time, the rectangular section and circular section use the LST quadratic
element ratio. The accuracy of the approximation of the CST linear element is higher, and
some preprocessing of the parameters is required before the numerical solution. The outer
radius R = 3 of this numerical experiment, the inner radius r = 2.75 m, and the thickness
of the pressure vessel is d = R− r = 0.25 m. The material selected for the pressure vessel
is A508 metal, and its density will decrease with the increase of temperature. We fit the
density ρ̂(t) of the material with respect to the temperature T and find that it satisfies the
following functional relationship shown in Equation (66).

ρ̂(T) =
3

∑
i=1

αiTi = α0 + α1T + α2T2 + ... + α3T3. (66)

The fitting coefficient is α0 = 7865, α1 = −0.522, α2 = 4.69 × 10−4,
α3 = −2.78 × 10−7. The Root Mean Square Error (RMSE) is Ermse = 13.64, and the
goodness-of-fit R2 = 0.991. The fitting error is very small, which also shows that the vari-
able density function relationship established by us is reliable. In fact, the density ρ̂(t) of
our model is a function of change with time t, the varying density values can be obtained
from Table 2. Equation (67) obtains the functional relationship expression of temperature.
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According to the test data of the change of temperature inside the pressure vessel with
time, we found the fitting function of temperature with time t, which is in the form of a
piecewise function.

T(t) =

{
−29.3t2+45.14t+162.9

t+1.185 0 < t ≤ 6000
31.32t + 83.33 6000 < t ≤ 15000

(67)

The variation trend of the internal parameters of the pressure vessel under the struc-
tural damage model is shown in Figure 5 below. Figure 5a shows the relationship between
the internal temperature and thermal shock force of the pressure vessel with time. The
function relationship of temperature change with time can be used. Equation (67) describes
that the internal pressure of the pressure vessel is mainly generated by thermal shock, and
we use a nonlinear function to approximate the change of the thermal shock f (t) inside the
pressure vessel within 7250–7350s.

f (t) =
15

1 + e−
1
5 (x−7300)

+ 3, 7250 ≤ t ≤ 7350. (68)

Figure 5b contains the graph of the Young’s modulus of the cladding and the parent
material as a function of temperature obtained through experimental tests. According to the
data trend, the Young’s modulus E will decrease with the increase of temperature. Figure 5c
shows (under the continuous damage model) the three-dimensional variation of the elastic
modulus with the influencing variables u and d; while u and d are both temperature-related
functions, the change of u has a significant effect. The numerical results show that the elastic
modulus of the model with damage will decrease with the increase of u. For Figure 5d, it is
the change trend of Poisson rate under the model with damage.

In traditional linear elasticity theory, Young’s modulus and the Poisson rate are con-
stant. However, in the high-temperature and high-pressure environment, these physical
parameters usually change. This paper not only considers the influence of temperature but
also combines the damage factor. Therefore, the improved continuous structural damage
model satisfies this change rule. Figure 5d can observe that with the increase of u, the
Poisson rate increases, and u has a proportional relationship with the temperature function.
In other words, when the temperature range is 20–600, the Poisson rate will increase with
the increase of temperature. It exists in the range of v ∈ [0.305, 0.357]; from the definition of
Poisson rate, it can also show that the change value of transverse strain with the increase of
temperature is greater than that of longitudinal strain.

�b��a�

Figure 5. Cont.
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�c� �d�

Figure 5. Variation of internal parameters of pressure vessel with temperature in structural dam-
age dynamic model. (a) Variation trend of internal temperature and pressure of RPV with time t.
(b) Variation diagram of Young’s modulus and temperature. (c) Young’s modulus for solving damage
dynamic model of continuous structure. (d) Comparing the Possion rate v of the traditional model
with the damage model.

4.4. Numerical Example 1 Result Display

When the temperature is from 20 to 600 ◦C, the specific heat coefficient, heat transfer
coefficient, thermal expansion coefficient, and density inside the nuclear pressure vessel
will change dynamically [49–51]. The experimental data are shown in Table 2. From the
table, we can see that the coefficient of thermal expansion α increases with the increase of
temperature, and the density, thermal conductivity, and specific heat capacity all increase
with temperature. The experimental data are shown in Table 2.

Table 2. Statistical table of changes in relevant material parameters of nuclear pressure vessels with
temperature.

Temperature T
(◦C)

Specific Heat
Capacity C
(J/kg/◦C)

Heat
Conduction K

(J/kg/◦C)

Thermal
Expansion α(

10−6 1/k
) Density(

g/cm3
)

20 63.5 454 13.1 7846
100 68.6 485 13.4 7817
200 52.7 528 13.8 7788
300 46.7 592 14.0 7753
400 40.8 680 14.5 7717
500 37.4 703 14.8 7681
600 34.0 880 11.9 7643

For the two-dimensional transient linear elastic equation, through the continuous dam-
age variable parameter model established above combined with the FDM-FEM numerical
theory, we can obtain the stress analysis of the two-dimensional section of the pressure
vessel along the radial and axial direction [52,53]. The second-order central difference is
used in the time term, and the finite element is used in the space term. The mesh generation
and the application of boundary load can be referred to Figure 6a,b. The force F1(t) and
F2(t) loaded by the boundary are uniform transient forces, and the force increases gradually
with the increase of time. The time step τ = T

N , where T = 100s, N = 50 s.
Figure 6c shows that when t3 = 7254 s, the rectangular section is subjected to the

horizontal right transient thermal shock force F1(t3) = 3 × 106 N/m2, and the stress
variation diagram is generated under this force. Figure 6d shows that when t36 = 7320 s,
the rectangular section is subjected to the horizontal right transient thermal shock force
F1(t36) = 1.77× 107 N/m2, and the stress diagram is generated by the right boundary
of the rectangular section. In addition, the loading strain of the ring section is different
from that of the rectangular section, which is subjected to uniform radiation transient force
F2. In the actual solution process, it needs to be decomposed F2 into two horizontal and
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vertical components: that is,
(

f2x, f2y
)
= (F2(t) cos θ2, F2(t) sin θ2). Figure 6e is the strain

of the circular section under the boundary force of F2(t3) = 3× 106 N/m2, respectively.
Similarly, when t36 = 7320 s, the variable force F2(t36) = 1.77× 107 N/m2 is the boundary
force loaded on the inner side of the circular section and Figure 6f shows the strain εxx of
the circumferential section of RPV.

A B

CD

�F
xF2

2FyF2

�b��a�

�d��c�

�f��e�

Figure 6. The axial stress and radial stress of RPV are solved by FEM combined with the damage
dynamic model. (a) The diagram of inner load on a axial section. (b) The diagram of inner load on a
radial section. (c) The axial section stress τxy diagram of RPV. (d) The axial section stress σxx diagram
of RPV. (e) The Von Mises stress of radial section of RPV. (f) The strain εxx of radial section of RPV.

In this example, we mainly use the CMMD-TCFEM method to solve the axial and
radial stress of RPV. The solution idea belongs to the dimensionality reduction method,
and the three-dimensional RPV is divided into a section in the radial and axial directions
for mechanical modeling. Then, through the continuous structural dynamic model with
damage, we can obtain a more accurate Young modulus and Poisson rate. This numerical
solution conclusion is that the elastic modulus E will decrease with the increase of tempera-
ture T, while the Poisson ratio will increase with the increase of temperature. At the same
time, the fitting function of density with temperature is given in this numerical experiment.
The real density corresponding to each time step can be accurately solved. Finally, through
numerical comparison, it is found that the stress and strain of the pressure vessel wall ma-
terial will increase with the increase of the internal thermal shock force, and the position of
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the boundary fixed connection has the phenomenon of stress concentration. The advantage
of this numerical experiment is that it can quickly analyze how the stress of the pressure
vessel changes under the transient force. This example transforms the three-dimensional
problem into a two-dimensional problem. The calculation speed is improved. The defect is
that only the change of local force can obtain the overall stress. In order to make up for the
analysis defect, the axisymmetric finite element method is considered in Example 2, and
the detailed theoretical and simulation results are in Section 5.

5. Axisymmetric FEM Method to Solve RPV Stress

5.1. The Theories Axisymmetric FEM Method of RPV

Pressure vessels are similar to capsule vessels, which have the characteristics of
geometric symmetry. Therefore, in addition to the section method mentioned above, the
axisymmetric finite element method can also be used to solve this problem [54,55]. The
stress of three-dimensional pressure vessels can be quickly obtained, since the calculation
amount of the axisymmetric method is relatively small, which is more intuitive than the
section method to reflect the change of internal mechanical properties of pressure vessels.
The displacement function of the axisymmetric problem can be expressed as:{

u = α1 + α2r + α3z
w = α4 + α5r + α6z

(69)

Similar to the plane problem, for axisymmetric problems, we take one arbitrary
element, and the numbers of three nodes are i, j, m, and the coordinates of nodes are respec-
tively (ri, zi),

(
rj, zj

)
, (rm, zm). Let the corresponding node displacements be (ui, wi),

(
uj, wj

)
,

(um, wm). Bring the node coordinates and displacements into Equation (69), respectively.{
u = Niui + Njuj + Nmum
w = Niwi + Njwj + Nmwm

(70)

The shape function matrix N and the node displacement vector {q}e can be written as
Equations (71) and (72).

N =

(
Ni 0 Nj 0 Nm 0
0 Ni 0 Nj 0 Nm

)
(71)

{q}e =
{

ui wi uj wj um wm
}T (72)

Then, the matrix form of the nodal displacements on the final axisymmetric element
is {u}e = [N]{q}e. In Equation (71), Ni, Nj, Nm is the shape function. As for the ax-
isymmetric problem, there are four stress components {σ} = {σr, σθ , σz, τrz}T . Similarly,
the corresponding strain is still a function of u and w, so the strain vector can be written
as {ε} = {εrr, εzz, εθ , γrz}, and radial deformation causes circumferential strain, which is
εθ = 2π(r+u)−2πr

2πr = u
r . Therefore, the element strain can be expressed by displacement.

{ε} = {εr, εθ , εz, γrz}T =

{
∂u
∂r

u
r

∂w
∂z

∂u
∂r

+
∂u
∂r

}T
= Bqe. (73)

Among them, B =
[

Bi Bj Bm
]
, and each node satisfies the relationships shown

in Equations (74) and (75).

Bl =
1

2A

⎡⎢⎢⎣
bl 0
fl 0
0 cl
cl bl

⎤⎥⎥⎦ (l = i, j, m). (74)
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fl(r, z) =
al + blr + clz

r
(l = i, j, m). (75)

We need to emphasize that the constitutive equation is written as σ = D(ε− ε0) + σ0;
This formula takes into account the initial stress σ0 and initial strain ε0, but our model
considers the values of initial stress and initial strain is zero. At the same time, it is assumed
that the RPV material in the axisymmetric model is isotropic. According to the relationship
between stresses and strains, we can bring Equation (73) into {σ} = Dε; then, the element
stress matrix can be written as:

{σ} = Dε = DBqe = Sqe =
[

Si Sj Sm
]
qe. (76)

In Equation (76), S is a stress matrix, and Ê and û are the Young’s modulus and
Poisson’s ratio, which can be calculated from the damage model, respectively.

Sk =
Ê(1− û)

2A(1 + û)(1− 2û)

⎡⎢⎢⎣
bl + A1 fl A1cl
A1bl + fl A1cl

A1(cl + f ) cl
A2cl A2bl

⎤⎥⎥⎦ (k = i, j, m). (77)

A1 =
û

1− û
A2 =

1− 2û
2(1− û)

. (78)

The axisymmetric single element stiffness matrix can be obtained by the principle of
virtual work.

{F}e{δqe} =
∫∫∫

Ve
{δε}T{σ}rdrdθdz. (79)

The virtual work expression for 3D elasticity includes the volume integrals terms,
which can be written as dV = rdθ(drdz) = rdθdA.

Then, the virtual strain of the element becomes Equation (80).

{δε}e = [B]{δq}e. (80)

The mechanical equilibrium equation is established based on virtual work principle,
and then, we can obtain Equation (81).∫∫

A

∫ 2π

0
δεTσrdθdA =

∫∫
A

∫ 2π

0
δuTbrdθdA+

∮
l

∫ 2π

0
δuTTdθds+∑

i

∫ 2π

0
δuT piridθ. (81)

In Equation (81), A is the bounary and area of the region of integration.

b =

(
br
bz

)
T =

(
tr
tz

)
P =

(
Pri
Pzi

)
(82)

The sum of the above three vectors represents the external forces {F}, which consists
of body forces, surface tractions, and point loads, respectively [56,57]. The equivalent nodal
force of the triangular element is denoted as {F} and the virtual displacement is {δqe};
then, the virtual strain of the element can be written as {δεe} = B{δq}e. At the same time,
the virtual displacement {δue} = N{δqe} is eliminated on both sides, and we can obtain
Equation (83).∫∫∫

Ve
[B]T{σ}rdrdθdz{qe} = 2π

∫∫
Ae
[B]T [D][B]rdrdz{qe} = [Ke]{qe}. (83)

Among them, the stiffness matrix of the triangular element is:

{Ke} = 2π
∫∫

Ae
[B]T [D][B]rdrdz =

⎛⎝ k11 k12 k13
k21 k22 k23
k31 k32 k33

⎞⎠. (84)
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The elements stiffness matrix satisfies the relationship shown in Equation (85).

krs = 2π
∫

A
BT

r DBsrdA = 2πBT
r DBsr̄A, (r, s = 1, 2, 3), r̄ =

1
3
(r1 + r2 + r3). (85)

Then, the shape function N includes the external force terms of the element. After
finishing, we can get Equation (86).

{Fe} = 2π
∫∫

Ae
BTσrdA− 2π

∫∫
Ae

NTbrdA− 2π
∮

le
NTTrds. (86)

Finally, each element matrix is assembled into a total stiffness matrix. Thus, we can
get the final algebraic equation Kq = F.

5.2. Axisymmetric Numerical Simulation Example

This section will give examples of three-dimensional pressure vessels. The advantages
of the axisymmetric method can make up for the defect of the poor overall evaluation effect
of the section method, and it is more intuitive to show the stress state of three-dimensional
vessels. The advantages of the axisymmetric method can make up for the defects of the poor
overall evaluation effect of the section method, and it is more intuitive to show the stress
state of three-dimensional vessels. The axisymmetric problem has distinct characteristics:
the geometric structure and the boundary constraint condition are symmetrical about
the central axis. The axisymmetric problem has different characteristics: the geometric
structure and the boundary constraint condition are symmetrical about the central axis.

The thickness d = 25 mm of the wall of the nuclear pressure vessel in this numerical
experiment, and Young’s modulus of continuous structural damage model is Ê. Similarly,
Poisson’s ratio of the continuous structural damage model is v̂. The material density of the
pressure vessel changes with the increase in temperature. The specific function expression
is shown in Equations (67) and (68), and the variable density function is denoted as ρ̂(t). As
for the geometric parameter of the nuclear pressure vessel, the simplified nuclear pressure
vessel can be considered a combination of a hollow cylinder and a semi-ellipsoid. The
geometric parameters and dimensions are as follows: the thickness t = 0.25 m of the vessel
wall, the radius of the bottom of the vessel is RA

1 = D1
2 = 5m, the radius of the inner wall

is RA
2 = D2

2 = 4.75m, and the dome height formula with a curved radian that satisfies the
following relation is:

hi = Rc −
√(

Rc − RA
2
)(

Rc + RA
2 − 2Rk

)
= 1.997m (87)

Among them, Rk = 0.1D1 = 1m, Rc = 0.9D2 = 8.55m, the maximum angle between
the tangent of the dome and the vertical direction of the container wall is α.

α = arctan

(
RA

2 − Rk

Rc − hi

)
(88)

After calculation α = 0.519 rad, the height of the container wall is HA = 10 m. For
a pressure vessel, the axisymmetric method is mainly used to solve the problem. The
displacement boundary conditions can also be called boundary constraints.

u(r, θ, z)|r=r0,θ=θ0,z=z0
= ū = 0 (89)

v(r, θ, z)|r=r0,θ=θ0,z=z0
= v̄ = 0 (90)

w(r, θ, z)|r=r0,θ=θ0,z=z0
= w̄ = 0 (91)

Γ1 = {(r, θ, z) | 0 ≤ θ ≤ 2π, r = R1, 0 ≤ z ≤ HA} (92)

Γ2 = {(r, θ, z) | 0 ≤ θ ≤ 2π, r = ra, 0 ≤ z ≤ hi} (93)
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The impact force generated during the reaction of the pressure vessel is assumed to be
uniformly acting on the inner wall of the vessel, and this mode of action is generated along
the normal direction of the vessel wall surface. The forces received by the three-dimensional
nuclear pressure vessel are all face forces, which are different in actual applications. The
impact force on the inner wall of the nuclear pressure vessel is different. At a certain
moment, the impact force on the inner wall of the nuclear pressure vessel by gas is a
constant force P. The surface force is the force on the surface of the object. Motion is an
internal force, and only boundary elements may have surface forces. The two components
of surface force P̄ = {Pr, Pz}; if the surface force on the edge of the element is q, the
equivalent nodal load of the element is:

P̄e = 2π
∫

L
NTqrds (94)

In this example, the face force is linearly distributed perpendicular to the surface of
the object. This face force is very common, such as dams hitting a flood, the air flow of the
aircraft engine hitting the outer wall, and the wheel pressing the ground. The effect placed
on the edge of the unit ij is perpendicular to the linearly distributed surface force on the
surface of the object, the force at node i is qi, the force at node j is qj, and the surface force
at any point on the ij side of the element is decomposed into hoop and axial components.

qe =

{
qr
qz

}
=

{ (
Niqi + Njqj

) bm
lij(

Niqi + Njqj
) cm

lij

}
(95)

Then, we determine the linearly distributed surface force perpendicular to the surface
of the object, and the equivalent nodal load of node i is:

P̄ei =

{
P̄ri
P̄zi

}
=

1
6

π
[(

3ri + rj
)
qi +

(
ri + rj

)
qj
]{ zi − zj

rj − ri

}
(96)

The equivalent nodal load of the linearly distributed surface force node j perpendicular
to the surface of the object is:

P̄ej =

{
P̄rj
P̄zj

}
=

1
6

π
[(

ri + rj
)
qi +

(
ri + 3rj

)
qj
]{ zi − zj

rj − ri

}
(97)

Finally, the axisymmetric stress tensor can be calculated according to the following
equation:

{σ} = Dε = DBqe = Sqe =
[

Si Sj Sm
]
qe (98)

The axisymmetric finite element method is used to solve the pressure vessel. The
solution steps are carried out according to the following points: material parameter defi-
nition, geometric region construction, mesh division, and physical field selection. Then,
load conditions and fixed constraints are added. Finally, it is transformed into algebraic
equations and output stress cloud diagrams. The geometric cross-section is divided into el-
ements on the rz plane, and quadrilateral elements are used for distillation. The discretized
area contains 575 domain elements and 250 boundary elements, the number of degrees
of freedom is 2541, the total time is t = 10 s, and the symmetric axis is r = 0. As for the
fixed constraint condition of the vessel, the outer boundary displacement is 0, and the load
boundary load conditions are that the inner side is subjected to uniform outward pressure;
the range is from P̄ = 3× 106pa to P̄ = 1.68× 107pa.

Figure 7a shows the stress and deformation of the 2D symmetry plane of the pressure
vessel. The output result contains two physical quantities: stress and deformation. The
deformation is mainly the displacement change, and its amplification factor is α = 128.6.
The purpose is to observe the largest displacement change position more clearly. Similarly,
the greater value of stress is also concentrated in the middle part. Figure 7b shows the radial
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strain εrr cloud diagram of the pressure vessel at F = 13 Mpa, which can also reflect that
the 2D section stress results are consistent with the 3D results. The center of the cylinder
is larger, and the surrounding forces are relatively large, stable, and uniform. Figure 7c
shows the von Mises stress figure of the pressure vessel at F = 3 Mpa. Figure 7d shows the
von Mises stress of the pressure vessel at F = 16.8 Mpa. The solution process is also to first
calculate the single stiffness matrix, including the application of boundary conditions, and
then assemble the total stiffness matrix to form a large sparse matrix and finally solve the
linear system.

三维单场应力分析模型

�b��a�

三维单场应力分析模型

�d��c�

Figure 7. Numerical results of mechanical change of RPV solved by axisymmetric FEM. (a) Deforma-
tion diagram of the symmetrical half-section of the pressure vessel at F = 15.2 Mpa. (b) The radial
strain εrr cloud diagram of the pressure vessel at F = 13 Mpa. (c) von Mises stress nephogram of the
pressure vessel at F = 3 Mpa. (d) von Mises stress nephogram of the pressure vessel at F = 16.8 Mpa.

6. Three-Dimensional (3D) Multi-Physics Field Model of RPV

The working environment of the real pressure vessel is relatively complex. After
nuclear fission, a large amount of heat is released in a short time. Generally speaking,
there are four exhaust pipes on the wall of the pressure vessel, two pipes are the inlet and
outlet of the coolant, and the other two pipes are the hot steam inlet and outlet. In the
initial state, the temperature inside the pressure vessel is very high. With the addition of a
cooling system (ECC), the temperature gradually drops from 350 to about 100 ◦C. The first
two examples only consider pressure related to the force condition of the container, the
established geometric model does not consider the temperature change around the exhaust
pipe and the state of stress distribution, and the stress change of the pipe port is more
important for the sealing of the entire container and the pressure distribution. Therefore, it
is very important that it is necessary to study the state of stress and temperature changes
at the pipe mouth of RPV. Example 3 established an coupled model of three-dimensional
temperature field and stress field [58–60]. The FDM-FEM numerical method is used to
solve the problem, and the output is the corresponding temperature and stress.

6.1. Three-Dimensional Transient Elastic Equation

In fact, the three-dimensional nuclear pressure vessel internal force analysis is a rather
complicated analysis process. Due to some uncertainty of the impact force inside the vessel,
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the geometric structure is not completely symmetrical, and there are multiple pipes near the
top of the nuclear pressure vessel. These interfaces are mainly responsible for the discharge
of exhaust steam, the input of coolant, etc. The stress change analysis near the interface has
always been the focus of scholars. Due to the relatively high surface temperature of the
interface, the final force analysis is not simply a mechanical problem. It is more scientific
to use the knowledge of multi-physics coupling to solve the problem. This example is
mainly responsible for the coupled modeling of the thermal field and the force field, and it
analyzes the force situation near the pipe mouth of the pressure vessel.

The solution of nuclear pressure vessels in the thermal–mechanical coupling field
contains two important equations: namely, the convective–diffusion equation and the
equilibrium equation of solid mechanics. When the reaction of the pressure vessel is stable,
the overall internal temperature tends to be balanced, but the local temperature changes
are quite different due to the action of the coolant and the position very close to the core.
Since the nuclear reactor reaction is a continuous process and is closely related to time, the
analysis of temperature change should consider the transient 3D heat conduction equation
and the 3D transient mechanical equilibrium equation. The following will give the 3D
transient heat conduction equation.

First, we establish the force field balance equation of the nuclear pressure vessel
under the action of thermal shock. Among them, u = (u, v, w)T is the displacement
field function. Since this model belongs to the multi-physics coupling model, the RPV
material ρ(t) is a nonlinear function of time t, which will decrease with the increase of
temperature, σ is the three-dimensional stress tensor matrix, F =

(
fx(t), fy(t), fz(t)

)T is
the corresponding thermal shock force. The three-dimensional gradient operator can be
expressed as ∇ =

(
∂

∂x , ∂
∂y , ∂

∂z

)
; then, the three-dimensional transient mechanical equation

is expressed as shown in Equaiton (99):

ρ(t)
∂2u
∂t2 = ∇ · σ + F, u ∈ Ω× [0, Tm] (99)

The Cauchy stress tensor introduced by a three-dimensional deformable solid is
expressed as:

σ =

⎛⎝ σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

⎞⎠ (100)

For the 3D stress tensor and strain, the relationship satisfies Equation (101).

σij = δijλ∇ · u + 2μεij =
∂uk
∂xk

λδij + μ

(
∂ui
∂xj

+
∂uj

∂xi

)
(101)

where E is the Young’s modulus of the elastomer, u is the Poisson ratio, and the Lamé
constant formula is:

λ =
Ev

(1 + v)(1− 2v)
(102)

The relationship between the three-dimensional stress tensor and strain is σ = Dε,
where D is the elastic matrix, and the final stress can be expressed in the form of displacement:

⎛⎜⎜⎜⎜⎜⎜⎝

σxx
σyy
σzz
σxy
σxz
σyz

⎞⎟⎟⎟⎟⎟⎟⎠ =
E

1 + v

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1−v
2v−1

−v
2v−1

−v
2v−1 0 0 0

−v
2v−1

1−v
2v−1

−v
2v−1 0 0 0

−v
2v−1

−v
2v−1

1−v
2v−1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

εxx
εyy
εzz
εxy
εxz
εyx

⎞⎟⎟⎟⎟⎟⎟⎠ =
D
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 ∂u
∂x

2 ∂v
∂y

2 ∂w
∂z

∂u
∂x + ∂v

∂y
∂u
∂x + ∂w

∂z
∂v
∂y + ∂w

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(103)
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Then, by substituting Equation (103) into Equation (104), we can convert the three-
dimensional linear elastic stress equation into three displacement classification equations.
Then, using the linear weighted form of the displacement basis function in place of the
displacement in the equation, the weak form of the Galerkin finite element is obtained. The
scalar equations along the x, y, and z directions are:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ(t) ∂2u
∂t2 −

(
∂σxx
∂x +

∂σyx
∂y + ∂σzx

∂z

)
− fx(t) = 0

ρ(t) ∂2v
∂t2 −

(
∂σxy
∂x +

∂σyy
∂y +

∂σzy
∂z

)
− fy(t) = 0

ρ(t) ∂2w
∂t2 −

(
∂σxz
∂x +

∂σyz
∂y + ∂σzz

∂z

)
− fz(t) = 0

(104)

For the boundary conditions of the exhaust pipe of the RPV, there are two cases of
displacement boundary conditions and force boundary conditions. The displacement
boundary of the outer side of the pipe and the outer wall of the RPV can be assumed to
have an initial value of 0, which can be expressed as:

u|(x,y,z,t) = 0 (x, y, z, t) ∈ Γout × [0, Tm] (105)

The wall of the RPV container is mainly subjected to radial impact force, and there
is also a small shear force in the z direction. The inner side of the pipe wall will also be
subjected to thermal shock force. If there is cooling liquid inside the pipe, gravity must
also be considered, which belongs to fluid–solid coupled heating conduction model. This
example only considers the force and temperature changes at the nozzle of the RPV exhaust
steam, which satisfies the following mechanical boundary conditions:⎧⎨⎩

σxxnx + σxyny + σxynz = fx(t)
σyxnx + σyyny + σyznz = fy(t) (x, y, z, t) ∈ ΓRPV × [0, Tm]
σzxnx + σzyny + σzznz = fz(t)

(106)

As for Equation (106), the time term is discreted by the central difference scheme, the
terms un+1 ∈ V, 1 ≤ n ≤ N − 1 are to be solved such that we can get a semi-discrete
variational equation as follows in Equation (107).(

ρ̂(t)
un+1

h − 2un
h + un−1

h
Δt2 , v

)
+ a(un

h , v) = ( f n, v) ∀v ∈ Vh. (107)

The basis function of elastic plate displacement constitutes the finite element so-
lution space un

h =
(
un

1h, un
2h, un

3h
)T, which satisfies the relationship u1h, u2h, u3h ∈ Uh =

span
{

ϕj
}NF

j=1. NF is expressed as the number of displacement components.
The discrete form of the space term of the 3D linear elastic equation is similar to the

two-dimensional term, and there are two differences. The first point, The 3D linear elastic
equation has one more equation about the displacement w component than the 2D linear
elastic equation when the equation is discretized. The second point, When the space term of
the 3D linear elastic equation is discretized by FEM, the basis function selected is different
from that of the 2D. The 3D lowest-order basis function is a tetrahedral element, while the
2D discretization is a linear CST element. Then, according to the variational principle, the
variational form is obtained, and then the basis function is brought in to obtain the Galerkin
weak form. This continuous differential equation is transformed into a discrete algebraic
equation. Finally, we can obtain a matrix iterative equation, and each iteration needs to
solve a linear equation.

6.2. Three-Dimensional Stress Analysis Model of RPV

The 3D elastic force analysis model is similar to the 2D model. For spatial dispersion
of the 3D pressure vessel, we can use the tetrahedral element to discretize it. When
the asymmetric 3D structure is discrete, the axisymmetric method is not feasible, and
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a Cartesian coordinate system needs to be established, using the general finite element
discrete model, the displacement linear function of the tetrahedral element can be expressed
as the following form: ⎧⎨⎩

u = α1 + α2x + α3y + α4z
v = α5 + α6x + α7y + α8z
w = α9 + α10x + α11y + α12z

(108)

Then, we combined with the four nodal coordinates of the tetrahedral element, and
we use the shape function to represent the element displacement

u =
4

∑
i=1

Niui, v =
4

∑
i=1

Nivi, w =
4

∑
i=1

Niwi (109)

The matrix form of the element displacement can be expressed as
{de} =

{
u v w

}T
= Nqe, and the element stress matrix is

{σ} = D{ε} = DB{qe} = S{qe} =
[

Si Sj Sm Sp
]
{qe} (110)

The value of the matrix S is mainly related to the tetrahedral node coordinates

Sl = DBl =
6A3

V

⎡⎣ bl A1bl A1bl A2cl 0 A2dl
A1cl cl A2cl A2bl A2dl 0
A1dl A1dl dl 0 A2cl A2bl

⎤⎦T

(l = i, j, m, p) (111)

In Equation (111), the following relational expression is satisfied

A1 =
μ

1− μ
A2 =

1− 2μ

2(1− μ)
A3 =

E(1− μ)

36(1 + μ)(1− 2μ)
(112)

Similarly, the expression form of the stiffness matrix can be obtained according to the
principle of virtual work:

Ke =
∫∫∫

V
BT DBdxdydz = BT DBV (113)

The total equivalent nodal load array of the element due to body force, surface force,
and concentrated force is:

{Fe} = {Fe
v}+ {Fe

s}+ {Fe
c} =

∫∫∫
V

N lPvdv +
∫∫

S
N lPsdA +

4

∑
l

N lPc (l = i, j, m, p) (114)

After obtaining the stiffness matrix of the element, it is necessary to synthesize the total
stiffness matrix, the stiffness matrix of the Ne tetrahedral elements on the three-dimensional
solution area, and the node load according to the element node coding rules from the total
stiffness matrix. Then, finally, we get a large sparse system of linear equations Kq = F.

K =
Ne

∑
i=1

Ke
i , F =

Ne

∑
i=1

Fe
i , i = 1, 2, . . . , Ne (115)

The above is the stress solution of 3D RPV from the perspective of a virtual work
principle. It is convenient to solve the steady-state problem, for the transient problem,
we need to change the force F(t) of the integral term in each calculation. In Section 4.3.2,
we will introduce another method to solve the stress at different times according to the
transient elastic equation.
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6.3. Three-Dimensional Transient Heat Conduction Equation

The temperature variable T(x, y, z, t) is a multivariate function of coordinates and
time. When T(x, y, z, t), it indicates that Q does not change with time, and it indicates that
the temperature of the thermally conductive object does not change with time after heat
exchange. This process is called the steady-state temperature field. When ∂T

∂t 
= 0 is the
transient temperature field, the difference between the transient temperature field and the
steady-state temperature field is time variable t. According to the Fourier heat transfer law
and the energy conservation law, the energy balance differential equation in the rectangular
coordinate system satisfies the following relationship:

The heat transfer equation [61–63] satisfied by the heat transfer inside the RVP material,
its equation, and related parameters are as follows:

ρc
∂T
∂t

+ ρcu · ∇T +∇ · (−k∇T)−Q = 0 (116)

For Equation (116), ρ is the material density, the unit is kg/m3, and c is the specific
heat capacity at constant pressure of the RPV material J /(kg · k). The internal nuclear
reaction of RPV produces enormous heat; Q is the heat generated by the internal heat
source. k =

(
kx, ky, kz

)
is the thermal conductivity vector along different directions x, y, z.

Furthermore, ∂T
∂x , ∂T

∂y , ∂T
∂z respectively represent the heat that flows in the x, y, z direction,

uc =
(
ux, uy, uz

)
is the convection velocity terms. Furthermore, we can get that the

equivalent form of Equation (116) is the differential Equation (117).

ρc
[

∂T
∂t

+

(
ux

∂T
∂x

+ uy
∂T
∂y

+ uz
∂T
∂z

)]
=

(
∂

∂x

(
kx

∂T
∂x

)
+

∂

∂y

(
ky

∂T
∂y

)
+

∂

∂z

(
kz

∂T
∂z

))
+ Q (117)

In addition, the temperature field distribution in the solution domain Ω needs to meet
certain boundary conditions.

(1) Class I boundary conditions: The solid surface temperature is a known function of
the time t.

T1(x, y, z, t) = T̄(x, y, z, t), T1(x, y, z, t) ∈ Γ (118)

(2) Class II boundary conditions: The thermal flow density of the solid surface is equal
to the change value of the temperature T in the direction of each component.

kx
∂T2

∂x
nx + ky

∂T2

∂y
ny + kz

∂T2

∂z
nz = kn · ∇T = q(x) T2 ∈ Γ2 (119)

(3) Class III boundary conditions: The difference between the heat flow density of
the solid surface is proportional to the surface temperature T and the fluid surface
temperature Tc.

kx
∂T3

∂x
nx + ky

∂T3

∂y
ny + kz

∂T3

∂z
nz = h(Ta − T3) T3 ∈ Γ3 (120)

nx, ny, nz is the direction cosine of the normal line outside the boundary, T̄(x, y, z, t)
is a given temperature, ∇T3 is the heat flow density vector on the boundary Γ3, h is
the thermal conductivity coefficient W/

(
m2 · K

)
on the boundary, Ta is the insulating

temperature of the boundary layer under natural convection conditions, and the
combination of all boundaries can be expressed as Γ = Γ1 + Γ2 + Γ3.

Then, it is assumed that the three-dimensional RPV is a homogeneous material;
that is, the thermal conductivity along different directions is the same [64], and there
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is kx = ky = kz. So, the convection–diffusion equation can also be written as (117), which is
equivalent to Equation (121).

∂T
∂t

+ u · ∇T = ∇ · (k∇T) +
Q
ρc

(121)

Perform Galerkin integration, multiply both sides of Equation (120) by the test function
ϕ(x, y, z), obtain the corresponding discrete equation according to the variational principle,
and consider the right-hand term of Equation (120).

Df =
∫∫∫

Ω
ϕi

[
∇ · (k∇T) +

Q
ρc

]
dV =

∫∫∫
Ω

k(ϕi∇ · (k∇T)) + ϕi
Q
ρc

dxdydz (122)

Using the Gauss divergence theorem to further simplify the equation, we can get

Df = k
∮

S
ϕin · (∇T)dS +

∫∫∫
Ω
−k(∇ϕi · ∇T) + ϕi

Q
ρc

dxdydz (123)

After considering the left-hand term of Equation (124), the discrete form of Galerkin
can be finally obtained:

T̂(x, y, z, t) =
N

∑
j=1

Tj(t)ϕj(x, y, z) (124)

The tetrahedral element (4-NQ) is used to discrete the RPV, and the discrete equation
in the whole region is obtained.

N

∑
j=1

Aij
dT j

dt
+

N

∑
j=1

CijT j = −k
N

∑
j=1

BijT j +
1
ρc

∮
S

ϕiqdS +
1
ρc

N

∑
j=1

Mij ϕiQj (125)

Then, we abbreviate the diffusion matrix of Equation (126) as:

Bij =
∫∫∫

Ω
∇ϕi · ∇ϕjdv =

∫∫∫
Ω
∇ϕi · ∇ϕjdxdydz (126)

Meanwhile, Mij of Equation (127) is called the mass matrix

Mij =
∫∫∫

Ω
ϕi · ϕjdv =

∫∫∫
Ω

ϕi · ϕjdxdydz (127)

The matrix Cij is the convection matrix:

Cij =
∫∫∫

Ω
ϕiu · ∇ϕjdv =

∫∫∫
Ω

ϕiu · ∇ϕjdxdydz (128)

Finally, the partial differential Equation (129) is transformed into a system of ordinary
differential equations, and the specific form is as follows:

M · dT
dt

+ CT = k(−B · T + b) (129)

Neumann boundary conditions are imposed on the right-hand term components of
Equation (130); its components are of the form:

bi =
1
k

(∮
S

ϕiqdS +
N

∑
j=1

MijQj

)
(130)

The boundary temperature of the outer surface of the RPV belongs to the Drichlet
boundary condition, and the substitution method can be used. If there is a known function
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T = Ti(xb, yb, zb, tb), the i − th equation of the overall discrete Equation (129) can be
replaced by the Drichlet boundary function Ti and the corresponding mass matrix M. The
i− th row diagonal element of the convection matrix C and matrix B is i.

6.4. h-p Method Error Estimate

(1) p-type adaptive error analysis

The finite element cluster is denoted as {e, pe, Σe}, the continuous function space can
be written as Ω, and the adaptive mesh discretization of the region is denoted as T̃h; for
any element in the region T̃h, it satisfies ∀e ∈ T̃h, he → 0, he > 0, he

pe
≤ const [65,66]. If πe

is a higher-order approximation operator on the element, πh is a higher-order approxi-
mation operator on the overall region, then there is a constant C such that the following
interpolation error estimation holds:

|v− πev|m,q,e ≤ C(T̃h)h
k+1−m+n

(
1
q +

1
p

)
e |v|k+1,p,e v ∈ Hk+1,p(e) (131)

When p = q, Hk+1,p(Ω) and Hm,p(Ω) are two Sobolev spaces, and we have the
following relation established:

|v− πhv|m,p,Ω ≤ C(T̃h)hk+1−m|v|k+1,p,Ω v ∈ Hk+1,p(Ω) (132)

Among them, the constant C is related to m, n and the reference element ê, σn is the
unit sphere volume in the space Rn; then, the C(T̃h) range satisfies the following expression:

σnC1 pn ≤ C(T̃h) ≤ σnC2hn (133)

(2) h-type adaptive error.

h - type finite element, where h represents the maximum size of the element. In the
calculation process, the method does not change the type of element but improves the
calculation results by continuously reducing the geometric size of the element, that is,
refinement mesh. Because the order of elements in this method is generally low, it is also
called low-order finite element method.

If v ∈ Hk+1(Ω)
⋂

V, ∀e ∈ T̃h, he → 0, he > 0, he
pe
≤ const. Then, the following

estimation formula is established.

‖u− uh‖1,Ω ≤ Ch̄k|u|k+1,Ω (134)

Among them, h̄ is the average side length of the cells of the adaptive mesh, and NA
represents the total number of cells in the adaptive mesh region Ω̃.

h̄ =
1

NA

NA

∑
i=1

max(le
1, le

2, le
3) (135)

When the order of the basis function is p-order, the numerical error of adaptive FEM
generally has a relationship with the quality of the adaptive mesh [67]. If the size of the
element side length of the adaptive mesh varies from the edge to the center point O where
the mesh size is the smallest, and decreases exponentially, the mathematical formula is
written as:

hi = e−ξ hi−1, ξ > 0, i = 2, ..NA. (136)

Then, the newly formed adaptive grid error also has the characteristics of exponential
change. The specific error estimation expression is:

‖e‖1,Ω = ‖u− uh‖1,Ω ≤ C0N−β|u|k+1,Ω, β > 0, β ∈ R (137)
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6.5. Numerical Result Display

The RPV parameters are divided into geometric parameters and basic material prop-
erty parameters. For the RPV radius R = 5 m we simulated, the wall thickness d = 15 cm,
the radius of the pipe mouth rpip = 10 cm, the thickness of the pipe wall dpip = 4 cm, and
the height of the RPV calculation area H = 0.6 m. This example uses tetrahedral elements,
and we perform discretization. Figure 8 below shows the mesh quality evaluation diagram.
This example simulates an RPV with four nozzles. The structure contains 58,910 domain
elements, 30,345 boundary elements, and 3985 edge elements. The green mesh in Figure 8a
indicates that the mesh quality is relatively good, and the yellow part belongs to the part
with poor mesh quality. The overall quality of the mesh divided in this example is relatively
good. Due to the symmetry of RPV, we only need to study the stress and temperature
changes of a nozzle. Figure 8b is the result of meshing the tetrahedral element of one
nozzle. The vicinity of the nozzle is the focus of our research, so the adaptive meshing
method is adopted. It has a total of 9735 domain elements, 3297 boundary elements, and
471 edge elements, and the mesh has the characteristics of self-adaptation, which can not
only ensure the advantages of fast calculation speed but also ensure the accurate description
of the details of stress changes at the interface of the pipe wall. It can smoothly transition
the numerical results of positions with large stress gradient changes, which makes the
visualization effect better. The mesh quality evaluation chart shows that the mesh effect
near the exhaust pipe is relatively poor, and the geometric change of the RPV container
wall is gentle, so the mesh quality of the element is better.

Regarding other numerical results, Figure 8c shows the inner temperature variation
diagram of the RPV nozzle at the calculation time t = 420 s, which reflects that the tem-
perature of the nozzle is relatively lower than that of other positions. The reason is that
the coolant added at the nozzle can reduce the temperature near the nozzle. Figure 8d is
the isothermal line diagram of the three-dimensional nozzle. The outer side of the RPV is
shown in the figure, and different colors represent different temperatures. Similarly, it can
be seen from the figure that the temperature near the nozzle is relatively low, and there is a
cooling effect caused by the combined action of air cooling and coolant. Figure 8e is the
displacement cloud map of an RPV nozzle at t = 7200 s, which reflects the initial starting
time; the force generated by the internal pressure is large, and the temporary change of the
cooling system is not very obvious. Figure 8f is the strain εxx of RPV, and the change range
near the nozzle is significantly larger than the change of the internal value of the nozzle.
The change of strain and displacement is mainly affected by the thickness of the material,
the external load, the elastic modulus of the material, the Poisson ratio, and other basic
properties. The results show a comprehensive response; not only the embodiment of the
load change but also the change of the displacement is significantly larger than the strain.
This can also be reflected from the geometric constitutive equation.

The symmetrical geometric appearance is helpful for element calculation, and the
numerical results show that the stress change is relatively large at the intersection of the
pipe of the RPV. In the actual application process, the RPV is accompanied by multiple
exhaust pipes, which can exhaust gas, add coolant, etc. Therefore, the third numerical
model of this paper is mainly to analyze the stress change near the pipe mouth, and we
have established a three-dimensional finite element model of thermal–mechanical coupling.
The adaptive mesh is used to discretize the pipe mouth area. Finally, the numerical solution
cloud map of the stress, strain, and displacement of the RPV pipe mouth is obtained. Then,
we compared the radial and hoop stress changes of RPV at different times. The physical
model established in this paper and the new numerical method proposed in this paper
have important reference values for the stress analysis of RPV, and the method can also be
transferred to other coupled physical models. The safe control of nuclear energy production
is a meaningful research topic.
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Figure 8. Numerical simulation of RPV by 3D thermal-mechanics coupled model. (a) Mesh quality
assessment of all pipe outlets. (b) 4-NQ element grid division of RPV single pipe outlet and adjacent
area. (c) Temperature T nephogram of RPV pipe mouth. (d) Isothermal line diagram of RPV pipe
mouth. (e) Displacement of RPV nozzle U. (f) Strain εxx nephogram near RPV nozzle. (g) Von Mises
stress of RPV pipe. (h) Stress nephogram of σyy.

Figure 9a is the circumferential stress of the RPV vessel wall. We choose four time
points: t = 1200 s, t = 2400 s, t = 3600 s, and t = 7200 s. From the curve trend, it can be seen
in the initial t = 1200 s and subsequent t = 7200 s, the hoop stress is larger, mainly because
the internal pressure is larger. Of course, the thermal stress formed by temperature will
also have a partial influence. It should be noted that the distance from the outer surface of
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the RPV (d = 150 mm) will produce reverse stress on the vessel wall, which is formed by the
interaction between internal stresses. Similarly, Figure 9a,b form a set of stress comparison
diagrams. Figure 9b is the axial stress above the pipe mouth. The trend is basically similar
to that in Figure 9a, and the stress gradually decreases. The difference is that the stress
near the pipe mouth changes obviously, the gradient value is relatively large, and the other
positions decrease slowly, which is mainly due to the stress concentration at the pipe mouth.
This also shows that the numerical results are in good agreement with the actual situation.

�a� �b�

Figure 9. Variation trend of radial stress and circumferential stress of RPV with calculation distance.
(a) Hoop stress on the RPV wall. (b) Axial stress above the nozzle.

7. Conclusions

The purpose of this paper is to study the stress variation of nuclear pressure ves-
sels. The mechanical models of pressure vessels established in this paper are from one-
dimensional to three-dimensional. The theory of each model and three numerical examples
are given. For a one-dimensional model, the equilibrium equation is mainly established
according to the internal pressure, axial stress, and circumferential stress of RPV. The model
belongs to the rough estimation of stress, and the error is too large. The conclusion of
the theoretical model is that the circumferential stress is twice the axial stress. In this
paper, the continuous damage dynamic model with cross-section finite element method
(CMMD-TCFEM) is proposed. The advantage of this model is that it can dynamically
describe the change of physical parameters of RPV under the action of the loss factor. The
model has the characteristics of fast calculation, layered, and localized display. The model
can obtain the stress distribution cloud map of axial and radial 2D sections. The numerical
conclusion is that the Poisson’s ratio increases with the increase of temperature (û,Et), and
the Young’s modulus decreases with the increase of temperature (û, d̂).

In the second numerical example, axisymmetric theory is mainly given. After giving
the geometric parameters and material parameters, the model can output the stress and
strain nephogram of RPV under different internal pressures. The other contribution is
to compare the initial state of RPV and the deformation of RPV after internal pressure.
Compared with the CMMD-TCFEM method, the 3D axisymmetric method can obtain the
overall stress and strain cloud map, which is more complete and intuitive. The numerical
results show that the stress change at both ends of RPV is significantly greater than that
of the middle vessel wall, and the reinforcement method should be adopted at both ends
of the RPV. In practical application, RPV is accompanied by multiple exhaust pipes to
release steam and add coolant, and stress modeling and solution near the exhaust pipe are
also very important. Therefore, in example 3, a three-dimensional finite element model of
thermal–mechanical coupling is established, and the adaptive mesh is used to discrete the
solution area. Finally, the stress, strain, displacement, and other information of the RPV
pipe mouth are obtained. We also compare the changes of radial stress and circumferential
stress near the RPV pipe mouth. The numerical results show that the distance d from the
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inner surface is from inside to outside, and the radial stress and circumferential stress near
the RPV pipe mouth gradually decrease.

In short, the new numerical method proposed in this paper corresponds to a number
of different models, from one-dimensional to three-dimensional, from a single physical
field to a multi-physical field. The continuous damage dynamic model is successfully
combined with the finite element method, which can better characterize the elastic modulus
and Poisson ratio with the change of the damage factor. The axisymmetric model and
the coupling model of the nozzle can provide theoretical and simulation experience for
RPV design and stress simulation. Our method reflects the multidisciplinary intersection
and can solve the same problem from different angles. Our future work will focus on
the intelligent application of nuclear energy. It includes optimizing fuel metering and
periodically automatically detecting the performance of RPV materials. Machine learning is
used to predict the internal temperature of RPV in real time, and multi-scale theory is used
to analyze the defects and crack propagation of RPV materials. The application of these
problems will contribute to the effective improvement of nuclear technology and provide a
good theoretical basis for the application and design of a new generation of nuclear energy,
so that nuclear energy can better benefit mankind and create more energy value for society.
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Abstract: With outbreaks of epidemics, an enormous loss of life and property has been caused. Based
on the influence of disease transmission and information propagation on the transmission charac-
teristics of infectious diseases, in this paper, a fractional-order SIR epidemic model is put forward
on a two-layer weighted network. The local stability of the disease-free equilibrium is investigated.
Moreover, a conclusion is obtained that there is no endemic equilibrium. Since the elderly and the
children have fewer social tiers, a targeted immunity control that is based on age structure is proposed.
Finally, an example is presented to demonstrate the effectiveness of the theoretical results. These
studies contribute to a more comprehensive understanding of the epidemic transmission mechanism
and play a positive guiding role in the prevention and control of some epidemics.

Keywords: fractional-order; weighted networks; SIR network models; targeted immunity; epidemic
dynamics

1. Introduction

Infectious diseases, especially the outbreak and pandemic of emerging infectious
diseases, have become a major public health problem around the world. Neither modern
science nor technology can predict when and where a new infection will occur. However,
once this occurs, it is often not possible to respond in a timely and effective manner due to a
lack of understanding of the epidemic. For example, COVID-19, at the end of 2019, with its
high infection rate and rapid onset of the cycle, has posed a huge threat to human lives and
caused immeasurable losses to the economy of China and even the entire world. Therefore,
the study of pathogenesis, the law of transmission, as well as strategies for the prevention
and treatment of infectious diseases are of great practical importance and perspective.

The network model is one of the most widely studied models in recent years. Individu-
als in a crowd are treated as nodes in the network, and the relationship between individuals
is described by edges between the nodes. The most influential research was carried out by
Pastor-Satorras and Vespignani in [1], where SIS (susceptible-infected-susceptible) and SIR
(susceptible-infected-recovered) models were studied using mean field theory. Moreover,
in order to better analyze the characteristics of disease transmission in the population,
not only the evolution of the population network was taken into account but also the
transmission of information about the disease. Recently, some researchers [2–5] have
extended the dynamics of transmission of infectious disease to a multi-layer network,
which led to a deeper study of mathematical epidemiology. Kan et al. [6] introduced a
self-consciousness variable and found that the infection threshold and the infected density
are influenced by the consciousness network, the topology of the disease network, and the
effective transmission rate. In addition, some scientists proposed a transmission model
of infectious diseases in a multi-layer coupling network from a new perspective in [7–9].
The transmission probability among the set of possible node states and the influence of
network topology on the transmission threshold were analyzed in a multi-layer network.
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In [10], the awareness of infection risk was incorporated into the Volz–Miller SIR epidemic
model, to study the effect of awareness on disease dynamics.

As the above research progressed, it became clear that the strength of the relationship
between people can seriously affect the transmission of the epidemic. Edge weights
indicate the familiarity or intimacy of interactive individuals. The larger the weight of
the edge between two nodes is, the easier the susceptible can be infected and the quicker
the unknown individual can acquire the disease message. In [11–14], some methods for
estimating disease transmission along the edges in weighted networks were presented. A
modified epidemic SIS model with a birth–death process and nonlinear infectivity in an
adaptive and weighted contact network was proposed in [15]. The model indicated that
the intimacy or familiarity between two related individuals would decrease as the disease
progresses. To estimate the epidemic threshold and epidemic size on networks with general
degree and weight distributions, a new edge-weight-based compartmental approach was
developed in [16]. It was found in [17] that the weight exponent can contribute to the
transmission of the epidemic by increasing the basic reproduction number, and the effect of
the internal rate of infectiousness on the prevalence of the epidemic was greater than the
effect of the rate of cross-infection for various network structures.

It can be found that the weight of the network has a great influence on the spread
of disease. However, these studies did not put forward a control strategy to control the
disease from the perspective of network weights. Therefore, in order for the transmission
process to represent a realistic system, in this paper, we build a model of the epidemic
on a weighted two-layer network and evaluate the impact of network weights on disease
transmission, and try to propose an effective control method based on the network weights.

Since the fractional-order epidemic model is an extension of the integer-order epidemic
model and it is more advantageous to describe processes that have memory and heritability,
many scientists [18–20] have used fractional order differential equations to analyze the
dynamics of transmission of infectious diseases. Based on the basic reproduction number
and Lyapunov’s theory of stability, Zafar et al. [21] analyzed the stability of the equilibrium
point of a fractional-order HIV/AIDS model and the control of its spread. Rostamy et al. [22]
discussed the existence of multiple equilibrium points in the SIR model and showed that
choosing appropriate fractional order parameters can extend the stable region of the
equilibrium points. In [23], a mathematical model consisting of a system of nonlinear
fractional order differential equations was presented, in which bats were considered as the
origin of the virus that spread the disease into the human population. A fractional-order
SIR model, which employs the Caputo fractional derivative and incorporates infectious and
noninfectious abandonment dynamics, was discussed in [24]. Furthermore, fractional-order
SIR systems in the context of COVID-19 were built [25,26], especially, a novel modified
predictor-corrector method was proposed to capture the nature of the obtained solution
for a suitable nonlinear fractional dynamical system with different arbitrary orders [27].
However, few studies [28,29] have analyzed the specific influence of fractional order
on transmission dynamics. Therefore, quantifying the effect of fractional order on the
transmission threshold for a specific model is a significant supplement to the dynamics of
infectious diseases.

In addition, for fractional-order infectious disease models, some researchers have
proposed vaccination control strategies to prevent the spread of the disease. If the im-
munity control objects are different, the control effect will be different. Age-targeted
immunity [30,31], internet-information-driven immunity [32–34], and dynamic immunity
of human behavior [35] are common control methods. A few studies [36–38] have shown
that people with low immunity are more likely to be infected and are less treatable. From
the perspective of a complex network, people with low immunity are the nodes with
low weights in the network. Therefore, the implementation of vaccination control for the
nodes whose weight is less than a certain threshold can play a great role in controlling the
spread of infectious diseases. Based on the fractional-order epidemic model on a two-layer
weighted network, a targeted immunity control strategy is proposed for nodes whose
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weight is less than a certain value, which can not only suppress the spread of the epidemics
but also save the cost of control.

The paper is organized as follows. In Section 2, we propose a fractional-order SIR
model for two-layer weighted networks. In Section 3, the stability of the disease-free
equilibrium and endemic equilibrium on weighted networks are analyzed separately. In
Section 4, a linear vaccine control based on age structure is presented to inoculate the nodes
whose weights are less than a certain value. Numerical confirmation of the theoretical
predictions is provided in Section 5. Some conclusions are made in Section 6.

2. Model Description

The nodes of the disease network can be divided into three categories: susceptible
nodes S, infected nodes I, and recovery nodes R. The law of transmission is shown in
Figure 1. Social network nodes can also be divided into three categories: A represents the
nodes that know the disease message and spread it out, C represents the nodes that know
the disease message but do not spread it; U represents the nodes that do not know the
disease message. The law of transmission between them is shown in Figure 2.

Figure 1. State transmission diagram between nodes of a disease network.

Figure 2. State transmission diagram between nodes of a social network.

In a social network for a node i with the degree k, its connection weight with node j is
ωij. If node i is connected with node j, then ωij 
= 0; on the contrary, then ωij = 0. Here, we
will only focus on undirected networks, namely ωij = ωji. According to previous research,
the weight of nodes has a strong influence on disease transmission.

By combining the states of nodes in a social-disease network, all nodes can be divided
into the following states: US, UR, AS, AI, AR, CS, CI, and CR. The law of transmission
between states is shown in Figure 3.

From Figure 3, we can find that for a susceptible node i, the probability of its infection
by the neighboring infected nodes is equal to λI(ωij) = 1− (1− α)ωij , based on the weight
(the weight is determined by the social network). If there are p infected nodes with degree

k, then the overall probability of infection is 1−
p
Π
j=1

(1− λI(ωij)). Likewise, for a node i,

which does not know the disease message, the probability that it will receive a disease
message from a neighboring node is λA(ωij) = 1− (1− qγ)ωij . If the degree of the node
is k, where there are l nodes that know and transmit a message about the disease to other

people, then the total probability of receiving information is 1−
l

Π
j=1

(1− λA(ωij)). Thus,

the law of transmission between the eight states is shown in Figure 4.
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(a) All possible evolution of state US 

 
 

 
(b) Possible evolution of state AI (c) Possible evolution of state CI (d) Possible evolution of state UR 

  
(e) Possible evolution of state AS (f) Possible evolution of state CS 

Figure 3. Propagation possibilities between states in a two-layer network.

Figure 4. The law of transmission between eight states under a weighted network.

According to the relationship between disease transmission and information propaga-
tion, a fractional-order SIR network model in a two-layer network is established as follows:

DmρUS = −ρI
[

1−
p
Π
j=1

(1− λI)

]
ρUS − ρA

[
1−

l
Π
j=1

(1− λA)

]
ρUS, (1a)

DmρUR = −ρA
[

1−
l

Π
j=1

(1− λA)

]
ρUR, (1b)

DmρAS = ρA
[

1−
l

Π
j=1

(1− λA)

]
ρUSγ− ρI

[
1−

p
Π
j=1

(1− λI)

]
ρAS, (1c)
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DmρAI = ρI
[

1−
p
Π
j=1

(1− λI)

]
ρAS − ρAI β, (1d)

DmρAR = ρA
[

1−
l

Π
j=1

(1− λA)

]
ρURγ + ρAI β, (1e)

DmρCS = ρA
[

1−
l

Π
j=1

(1− λA)

]
ρUS(1− γ)− ρI

[
1−

p
Π
j=1

(1− λI)

]
ρCS, (1f)

DmρCI = ρI
[

1−
p
Π
j=1

(1− λI)

]
ρCS − ρCI β, (1g)

DmρCR = ρA
[

1−
l

Π
j=1

(1− λA)

]
ρUR(1− γ) + ρCI β. (1h)

where Dm(•) is the Caputo differential with 0 < m < 1, ρ(t) is the density of the corre-
sponding state at the time t. For example, ρI(t) represents an infectious density at time
t. The factor λI = 1− (1− α)wij , j = 1, · · · , p represents the probability of infection of a
node i in the disease network, p is the number of infected nodes in the neighboring nodes
of a node i in the disease network. The factor λA = 1− (1− qγ)wij , j = 1, · · · , l represents
the probability of node i in the social network receiving a message, l is the number of nodes
that know and distribute messages to the neighboring nodes of a node i in a social network.

Remark 1. If m = 1, then system (1) changes to an integer order system, which is the further
generalization of the models proposed in [2,7] since it contains more possibilities for node states.
Compared with the fractional-order models in [21–24], it not only considers the transmission of
information between people but also considers the impact of the closeness of the connection between
people on the transmission of information, e.g., the network weight. Therefore, the proposed model
in this paper is more realistic and has practical significance.

3. Stability Analysis

Let λA = 1−
l

Π
j=1

(1− λA) and λI = 1−
p
Π
j=1

(1− λI), then system (1) can be rewritten

as follows:
DmρUS = −ρIλIρ

US − ρAλAρUS,
DmρUR = −ρAλAρUR,
DmρAS = ρAλAρUSγ− ρIλIρ

AS,
DmρAI = ρIλIρ

AS − ρAI β,
DmρAR = ρAλAρURγ + ρAI β,
DmρCS = ρAλAρUS(1− γ)− ρIλIρ

CS,
DmρCI = ρIλIρ

CS − ρCI β,
DmρCR = ρAλAρUR(1− γ) + ρCI β.

(2)

For system (2), the Jacobian matrix J at equilibrium has the form

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λI ρI − λAρA 0 −λAρUS −λI ρUS − λAρUS −λAρUS 0 −λI ρUS 0
0 −λAρA −λAρUR −λAρUR −λAρUR 0 0 0

λAρAγ 0 −λI ρI + λAρUSγ −λI ρAS + λAρUSγ λAρUSγ 0 −λI ρAS 0
0 0 λI ρI λI ρAS − β 0 0 λI ρAS 0
0 λAρAγ λAρURγ λAρURγ + β λAρURγ 0 0 0
0 λAρA(1− γ) λAρUS(1− γ) λAρUS(1− γ)− λI ρCS λAρUS(1− γ) −λI ρI −λI ρCS 0
0 0 0 λI ρCS 0 λI ρI −β 0
0 λAρA(1− γ) λAρUR(1− γ) λAρUR(1− γ) λAρUR(1− γ) 0 β 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with ρI = ρAI + ρCI , ρA = ρAS + ρAI + ρAR.
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3.1. The Disease-Free Equilibrium

Let the right side of Equation (1) be equal to zero, then from (1a) and (1b) we can
obtain that

(ρAR + ρAS)ρUS = 0,
(ρAR + ρAS)ρUR = 0.

(3)

From Equation (3), if ρAR + ρAS 
= 0, then ρUS = 0 and ρUR = 0, and the disease-free
equilibrium is E01 = (0, 0, ρAS, 0, ρAR, ρCS, 0, ρCR).

If ρAR + ρAS = 0, then ρAS = 0 and ρAR = 0, and the disease-free equilibrium is

E02 = (ρUS, ρUR, 0, 0, 0, ρCS, 0, ρCR).

Firstly, we will analyze the stability of disease-free equilibrium E01.
When the disease-free equilibrium is E01 = (0, 0, ρAS, 0, ρAR, ρCS, 0, ρCR), the Jaco-

bian matrix J is simplified to

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λAρA 0 0 0 0 0 0 0
0 −λAρA 0 0 0 0 0 0

λAρAγ 0 0 −λIρ
AS 0 0 −λIρ

AS 0
0 0 0 λIρ

AS − β 0 0 λIρ
AS 0

0 λAρAγ 0 β 0 0 0 0
0 λAρA(1− γ) 0 −λIρ

CS 0 0 −λIρ
CS 0

0 0 0 λIρ
CS 0 0 −β 0

0 λAρA(1− γ) 0 0 0 0 β 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The eigenvalues λj(j = 1, 2, · · · , 8) of the matrix J can be calculated as follows:

λ1 = λ2 = λ3 = 0,

λ4 = λ5 = −ρAλA,

λ6 = 0,

λ7 =
λIρ

AS

2
− β− λI

√
ρAS(ρAS + 4ρCS)

2
,

λ8 =
λIρ

AS

2
− β +

λI
√

ρAS(ρAS + 4ρCS)

2
.

It is easy to judge that λ4, λ5 and λ7 are all negative. If

λ8 =
λIρ

AS

2
− β +

λI
√

ρAS(ρAS + 4ρCS)

2
> 0,

then the system is unstable at equilibrium E01.

Suppose λ8 = λI ρAS

2 − β +
λI
√

ρAS(ρAS+4ρCS)
2 = 0, for matrix J, the minimal polynomial

of f (λ) = −λ(λ + λAρA)(−λ2 + λIρ
ASλ − 2βλ − β2 + λI

2ρASρCS + βλIρ
AS) could be

simplified to
f (λ) = −λ(λ + λAρA)(−λ2 + λIρ

ASλ − 2βλ + 3β2 − 3βλIρ
AS). Since ρA = ρAR +

ρAS 
= 0, then f (λ) = −λ(λ + λAρA)(−λ2 + λIρ
ASλ− 2βλ + 3β2 − 3βλIρ

AS) = 0, only
has one zero root, that is to say, the system is locally stable at E01.

Suppose λ8 = λI ρAS

2 − β +
λI
√

ρAS(ρAS+4ρCS)
2 < 0, similarly, we can deduce that the

minimal polynomial f (λ) = −λ(λ + λAρA)(−λ2 + λIρ
ASλ − 2βλ − β2 + λI

2ρASρCS +
βλIρ

AS) only has one zero root, and the system is locally stable at E01.
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Thus, when:

λ8 =
λIρ

AS

2
− β +

√
λIρAS(λIρAS + λIρCS)

2
≤ 0,

then
λI

2ρASρCS + 4βλI
2ρAS ≤ 4β2.

Since ρAS < 1 and ρCS < 1, if

λI
2 + 4βλI

2 < 4β2, (4)

then inequality λI
2ρASρCS + 4βλI

2ρAS < 4β2 holds.
From inequality (4), we can obtain:

λI <
2β√

1 + 4β

Since λI = 1−
p
Π
j=1

(1− λI), λI = 1− (1− α)wij , j = 1, · · · , p , therefore, if

1−
p
Π
j=1

(1− α)wij <
2β√

1 + 4β
.

holds, all eigenvalues in the disease-free equilibrium E01 are no more than zero and we can
conclude that the system is locally stable at E01.

Based on the above analysis, we can obtain the following theorem.

Theorem 1. For node i, if 1−
p
Π
j=1

(1− α)wij < 2β√
1+4β

is satisfied, while wij is the weight between

node i and node j(j = 1, 2, · · · , p) , and p is the number of infectious neighboring nodes of node i,
then system (1) is locally stable on disease-free equilibrium E01 = (0, 0, ρAS, 0, ρAR, ρCS, 0, ρCR).

Secondly, we will analyze the stability of disease-free equilibrium E02.
When the disease-free equilibrium is E02 = (ρUS, ρUR, 0, 0, 0, ρCS, 0, ρCR), the Jaco-

bian matrix J′ is

J′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −λAρUS −λIρ
US − λAρUS −λAρUS 0 −λIρ

US 0
0 0 −λAρUR −λAρUR −λAρUR 0 0 0
0 0 λAρUSγ λAρUSγ λAρUSγ 0 0 0
0 0 0 −β 0 0 0 0
0 0 λAρURγ λAρURγ + β λAρURγ 0 0 0
0 0 λAρUS(1− γ) λAρUS(1− γ)− λIρ

CS λAρUS(1− γ) 0 −λIρ
CS 0

0 0 0 λIρ
CS 0 0 −β 0

0 0 λAρUR(1− γ) λAρUR(1− γ) λAρUR(1− γ) 0 β 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

At this point, the eigenvalues λ′j(j = 1, 2, · · · , 8) of the matrix J′ can be calculated
as follows:

λ′1 = λ′2 = λ′3 = λ′4 = λ′5 = 0,

λ′6 = (λI + λA)ρ
USγ,

λ′7 = λ′8 = −β.

Obviously, if ρUS = 0, by the same method, all the eigenvalues at disease-free equilib-
rium E02 are not more than zero, and the system (1) is locally stable.

However, if ρUS > 0, then λ′6 > 0, then the system (1) at disease-free equilibrium E02

is unstable.
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3.2. The Endemic Equilibrium

Suppose there is an endemic equilibrium, then ρCI 
= 0 should be satisfied. From (1a),
(1c), (1d) and (1g), we can obtain that ρUS = 0, ρAS = 0, ρAI = 0 and

ρCS =

1−
p
Π
j=1

(1− λI)

β
.

In addition, from (1b) and (1e), we have ρUR = 0 or ρAR = 0. If ρUR = 0, then
substituting it into equation (1h) we have ρCI = 0, which contradicts the hypothesis. If
ρAR = 0, then substituting it into (1c) and (1d), we also have ρCI = 0, which contradicts
the hypothesis.

Thus, for system (1) there is no endemic equilibrium, and there is only a disease-free
equilibrium.

4. Targeted Immunity Based on Age Structure

For the infants and the elderly, their immunity is relatively poor and their influence
on their surroundings is relatively small, which is reflected in complex networks that these
special nodes have a relatively small weight. Taking targeted immunization against these
special nodes with a small weight is a very effective control method to suppress the spread
of infectious diseases in a wide range. Based on this, we propose a step function δ(ω)
related to the node weight, which is described as follows:

δ(ωi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0,

k
∑

j=1
ωij > Ω;

1,
k
∑

j=1
ωij ≤ Ω.

where ωi =
k
∑

j=1
ωij is the sum of weights of node i, k is the degree of node i, Ω is the given

threshold value of weight. When the weight of a node in the network is less than or equal to
Ω, the node is vaccinated with probability σ. At this time, the transformation relationship
among states of the network node is shown in Figure 5.

Figure 5. The transition law between different states of network nodes under control.

Thus, the fractional-order SIR network model (1) can be rewritten as follows:
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DmρUS = −ρI
[

1−
p
Π
j=1

(1− λI)

]
ρUS − ρA

[
1−

l
Π
j=1

(1− λA)

]
ρUS − δ(ω)σρUS,

DmρUR = −ρA
[

1−
l

Π
j=1

(1− λA)

]
ρUR,

DmρAS = ρA
[

1−
l

Π
j=1

(1− λA)

]
ρUSγ− ρI

[
1−

p
Π
j=1

(1− λI)

]
ρAS − δ(ω)σρAS,

DmρAI = ρI
[

1−
p
Π
j=1

(1− λI)

]
ρAS − ρAI β,

DmρAR = ρA
[

1−
l

Π
j=1

(1− λA)

]
ρURγ + ρAI β + δ(ω)σρAS + δ(ω)σγρUS,

DmρCS = ρA
[

1−
l

Π
j=1

(1− λA)

]
ρUS(1− γ)− ρI

[
1−

p
Π
j=1

(1− λI)

]
ρCS − δ(ω)σρCS,

DmρCI = ρI
[

1−
p
Π
j=1

(1− λI)

]
ρCS − ρCI β,

DmρCR = ρA
[

1−
l

Π
j=1

(1− λA)

]
ρUR(1− γ) + ρCI β + δ(ω)σρCS + δ(ω)σ(1− γ)ρUS.

(5)

Similarly, for model (5), the disease-free equilibrium is E01 = (0, 0, 0, 0, ρAR, 0, 0, ρCR)
and E02 = (0, ρUR, 0, 0, 0, 0, 0, ρCR).

For E01 = (0, 0, 0, 0, ρAR, 0, 0, ρCR), the Jacobian matrix J is

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λAρAR − δ(ω)σ 0 0 0 0 0 0 0
0 −λAρAR 0 0 0 0 0 0

λAρARγ 0 −δ(ω)σ 0 0 0 0 0
0 0 0 −β 0 0 0 0

δ(ω)σγ λAρARγ δ(ω)σ β 0 0 0 0
λAρAR(1− γ) 0 0 0 0 −δ(ω)σ 0 0

0 0 0 0 0 0 −β 0
δ(ω)σ(1− γ) λAρAR(1− γ) 0 0 0 δ(ω)σ β 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For node i, when
k
∑

j=1
ωij > Ω and δ(ωi) = 0, the Jacobian matrix J at E01 =

(0, 0, 0, 0, ρAR, 0, 0, ρCR) can be written as

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λAρAR 0 0 0 0 0 0 0
0 −λAρAR 0 0 0 0 0 0

λAρARγ 0 0 0 0 0 0 0
0 0 0 −β 0 0 0 0
0 λAρARγ 0 β 0 0 0 0

λAρAR(1− γ) 0 0 0 0 0 0 0
0 0 0 0 0 0 −β 0
0 λAρAR(1− γ) 0 0 0 0 β 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the eigenvalues λj(j = 1, 2, · · · , 8) of the matrix J can be calculated as follows:

λ1 = λ2 = λ3 = λ4 = 0,

λ5 = λ6 = −λAρAR,

λ7 = λ8 = −β.
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When
k
∑

j=1
ωij ≤ Ω and δ(ωi) = 1, the Jacobian matrix J can be rewritten as

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λAρAR − σ 0 0 0 0 0 0 0
0 −λAρAR 0 0 0 0 0 0

λAρARγ 0 −σ 0 0 0 0 0
0 0 0 −β 0 0 0 0

σγ λAρARγ σ β 0 0 0 0
λAρAR(1− γ) 0 0 0 0 −σ 0 0

0 0 0 0 0 0 −β 0
σ(1− γ) λAρAR(1− γ) 0 0 0 σ β 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the eigenvalues λj(j = 1, 2, · · · , 8) of the matrix J can be calculated as follows:

λ1 = λ2 = λ3 = 0,
λ4 = −λAρAR, λ5 = −σ,

λ7 = λ8 = −β, λ6 = −λAρAR − σ.

Therefore, applying the same method, system (2) is always locally stable at E01 =
(0, 0, 0, 0, ρAR, 0, 0, ρCR).

Moreover, for E02 = (0, ρUR, 0, 0, 0, 0, 0, ρCR), the Jacobian matrix J is

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−δ(ω)σ 0 0 0 0 0 0 0
0 0 −λAρUR −λAρUR −λAρUR 0 0 0
0 0 −δ(ω)σ 0 0 0 0 0
0 0 0 −β 0 0 0 0

δ(ω)σγ 0 λAρURγ λAρURγ + β λAρURγ 0 0 0
0 0 0 0 0 −δ(ω)σ 0 0
0 0 0 0 0 0 −β 0

δ(ω)σ(1− γ) 0 λAρUR(1− γ) λAρUR(1− γ) λAρUR(1− γ) δ(ω)σ β 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus, system (2) is also locally stable at E02 = (0, ρUR, 0, 0, 0, 0, 0, ρCR).
In the same way, we can deduce that there is also no endemic equilibrium under

targeted immunity based on age structure, either.

λ6 = −λAρURγ, λ7 = λ8 = −β.

When
k
∑

j=1
ωij ≤ Ω, we can obtain the eigenvalues of the Jacobian matrix

λ1 = λ2 = 0, λ3 = −λAρURγ,

λ4 = λ5 = λ6 = −σ,

λ7 = λ8 = −β.

Thus, system (2) is also locally stable at E02 = (0, ρUR, 0, 0, 0, 0, 0, ρCR).

Corollary 1. If the network weight ωij = ω is a constant, then system (2) is always local stable at
the disease-free equilibrium point.

Remark 2. Compared with the theoretical results in [16,17], the results present that the infected
density is affected by the network weights and the node degree. In this paper, if the basic reproduction
number is less than 1, we can conclude that the degree of decay is also influenced by the network
weights, and even more, the infectious density is gradually truncated to zero, eventually. This result
further simplifies the propagation law of infectious disease under-weighted networks.
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5. Examples and Simulations

In this section, numerical simulations are presented to illustrate the theoretical results
mentioned above.

Example 1. Without loss of generality, for a node i, suppose that α = 0.04, β = 0.35, q = 0.4,
γ = 0.88. The number of infectious neighboring nodes is equal l = 10, and the number of nodes
that know and distribute messages is p = 13. The weights ωij are valued as a random number
between 0 and 1. The initial condition is [0.122, 0.1, 0.038, 0.019, 0.432, 0.231, 0.010, 0.038].

We can calculate that λ1 = 0.2010 and 2β√
1+4β

= 0.4516, which satisfies Theorem 1,

thus there is only a disease-free equilibrium, and system (1) is locally stable. From Figure 6,
we can find that the disease-free equilibrium point is globally asymptotically stable. To be
clear, Figure 7 shows that the infectious states AI and CI converge to zero when m = 0.98,
which means that the disease will eventually disappear. From the above, we can conclude
that the theoretical results are correct and the simulation results are effective.

 
Figure 6. The simulation results for all the states of model (1) at m = 0.98.

Figure 7. The graphical results for the infectious states at m = 0.98.
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Remark 3. Compared with the results in [16,17], the simulation in Figure 6 not only presents that
the infectious will disappear in the future but also shows how all the states evolve over time. We also
find that all people know the information about the disease, which signifies that they will voluntarily
take measures to prevent the epidemic.

In addition, we also simulate the effect of the fractional order parameter on disease
transmission. When we choose m = 0.6, from Figure 8, we can also find that the disease-
free equilibrium point is globally asymptotically stable. However, Figure 9 shows that the
infectious states AI and CI converge much slower compared with Figure 7. Moreover, we
can conclude that the smaller the fractional order parameter, the slower the infective rate
converges, as can be seen from Figure 10.

Figure 8. The simulation results for all the states of the model (1) at m = 0.6.

Figure 9. The graphical results for the infectious states at m = 0.6.
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Figure 10. Effect of the fractional order parameter on infectious density.

Figure 11 indicates that under targeted immunity control, not only will the disease
disappear, but everyone will know about the outbreak of the disease.

Figure 11. The simulation results for all the states under targeted immunity control.

Remark 4. Comparing Figures 6 and 11, it is obvious that the disease dies out much more quickly
under control than no control, although it is roughly specified about the control node weight and
control proportion. In the next step, we will build a real network to seek the optimal control nodes
and control proportion, according to the actual situation of node weight.

Example 2. For node i, suppose that α = 0.25, β = 0.2, q = 0.4, γ = 0.88. Other parameters are
the same as Example 1, that is to say, m = 0.98, l = 10, p = 13 weights ωij are valued as a random
number from 0 to 1, and the initial condition is also [0.122, 0.1, 0.038, 0.019, 0.432, 0.231, 0.010,
0.038]. In this case, we can calculate that λ1 = 0.8451 and 2β√

1+4β
= 0.2985, which did not satisfy

Theorem 1. From Figures 12 and 13, we observe that without control, the infectious states do not
decline to zero, and even have a trend of rising for a period of time.
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Figure 12. The simulation results for all the states without targeted immunity control.

Figure 13. The infectious simulation results without targeted immunity control.

Remark 5. Comparing Figures 7 and 13, it is easy to see that as the disease propagation rates α and
β are different, then for the infectious density, one is obviously stable, the other may be unstable in a
period. In a word, the disease network topology has a great influence on the epidemic transmission
dynamics.

Similarly, for the purpose of suppressing the spread of the disease among the elderly
and young, targeted immunity control with Ω = 1, σ = 0.8 is still taken. At this moment,
the simulation result is shown in Figure 14, which indicates that the disease will disappear
ultimately and the control method is effective. Moreover, with different control rates,
from Figure 15, we can observe that the larger the control rate, the more quickly the
infectious state decreases. The best control effect happens when σ = 1, but the control cost
is the highest.
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Figure 14. The simulation results for infectious states under targeted immunity control.

Figure 15. The infectious simulation results under different targeted immunity control rates.

6. Conclusions

The connection between individuals has a significant impact on the spread of disease.
In order to quantitatively investigate the effect of edge weight on the spread of an epidemic,
this article presents a fractional SIR model with a two-layer weighted network. On the basis
of the Jacobian matrix, the stability of disease-free equilibrium is analyzed in detail. Under
certain conditions, the disease-free equilibrium is locally stable, which means that the
disease will eventually die out, regardless of the initial density of the infected individuals.
Furthermore, we conclude that there exists no endemic equilibrium. Since the elderly and
the children have lower immunity, a targeted immunity controller based on age structure is
proposed. In addition, its transmission dynamics are analyzed in detail. Finally, numerical
simulations are presented to illustrate the theoretical results, and the effect of the fractional
order parameter on the infection rate is simulated.

Note, that since the weight has a large influence on the propagation dynamics, it may
be necessary to further build a specific model and develop control strategies for certain
specific infectious diseases. Many scientific disciplines are currently investigating and
forecasting the spread of COVID-19. They found that older people and young children are
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more susceptible to COVID-19. Susceptible people have a relatively small weight in the
population network. In this case, the idea is to prioritize vaccination to the nodes with less
weight to prevent widespread COVID-19 infection. This strategy has worked in Zhejiang
Province, China, and after a period of observation, it will be extended to the entire country.
Therefore, the next research work is to analyze the critical weight parameter and calculate
the optimal inoculation ratio in a real environment, although a little work has been done in
this paper.
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Abstract: In this article, we investigate the analytical and approximate solutions for a fractional
quadratic integral equation in the frame of the generalized Riemann–Liouville fractional integral
operator with respect to another function. The existence and uniqueness results obtained. Moreover,
some new special results corresponding to suitable values of the parameters ζ and q are given. The
main results are proved by applying Banach’s fixed point theorem, the Adomian decomposition
method, and Picard’s method. In the end, we present a numerical example to justify our results.

Keywords: fractional differential equations; fixed point theorems; ζ-fractional derivative; monotone
operator

1. Introduction

Fractional differential equations (FDEs) with initial/boundary conditions arise from
a set of applications included in different fields of science and engineering, e.g., practical
problems, conservative systems, concerning mechanics, physics, harmonic oscillator, bi-
ology, economy, control systems, chemistry, atomic energy, medicine, information theory,
nonlinear oscillations, the engineering technique fields; this is because FDEs characterize
many real-world processes linked to memory and hereditary properties of different ma-
terials more carefully as compared to classical order differential equations. For further
details [1–5].

In [6], Hilfer was given a generalization of fractional derivatives (FDs) of Riemann–
Liouville (RL) and Caputo, with the so-called Hilfer FD of order q and a type p, 0 <
p < 1. More specifics on this FD mentioned above can be found in [7,8]. In Ref. [9], the
researchers introduced the FD with another function in the frame of Hilfer FD, with the
so-called ζ−Hilfer FD. For some new results of ζ-Hilfer type initial value problems (IVPs),
see [10–13] and, for boundary value problems (BVPs), see [14–16].

In recent decades, there has been a lot of enthusiasm for the Adomian decomposition
method (ADM), which is an analytical technique for solving broad types of functional
equations. The method was successfully applied to a lot of employments in applied
sciences. Here, we also refer to some recent works [17–20] dealing with the technique and
its application.

In [21], Picard’s Method (PM) creates a sequence of increasingly specific algebraic
approximations of the curtained precise solution of the first-order differential equation
with an initial value.
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First, they compare the PM method with the ADM by [20,22] on a group of ex-
amples. In [23], the researchers contrasted the two techniques for a quadratic integral
equation (QIE).

The QIEs can be widely applicable in more applications like the dynamic theory of
gases, the theory of radiative exchange, the traffic theory, etc. The QIEs have been the focus
of several papers and monographs, see [23–28].

For example, the researchers in [23] proved the existence and uniqueness of the
solution for

κ(ϑ) = h(ϑ) + g(ϑ,κ(ϑ))
∫ ϑ

0
F (υ,κ(υ))dυ,

by using the Adomian method and Picard method. In [29], the investigators discussed the
analytical and approximate solutions for the fractional quadratic integral equation (FQIE)

x(ϑ) = h(ϑ) + g(ϑ, x(ϑ)) Iq;ρ
0+F (ϑ, x(ϑ)), ϑ ∈ J = [0, 1], q > 0,

where I
q;ρ
0+ is the Katugampola fractional integral.

In this article, we give the analytical and approximate solutions for the following
fractional quadratic integral equation (FQIE)

κ(ϑ) = h(ϑ) + g(ϑ,κ(ϑ))Iq;ζ
0+ F (ϑ,κ(ϑ)), ϑ ∈ J = [0, 1], q > 0, (1)

where I
q;ζ
0+ is the left sided ζ-RL fractional integral of order q defined by

I
q;ζ
0+ F (ϑ,κ(ϑ)) =

1
Γ(q)

∫ ϑ

0
ζ ′(υ)(ζ(ϑ)− ζ(υ))q−1F (υ,κ(υ))dυ.

Observe that the considered equation is investigated under the Riemann–Liouville
integral of fractional order and with respect to another function. In fact, for problem
(1), the existence and uniqueness of solutions can be proved readily by using fixed point
theorems. However, in general, it is difficult to obtain the exact solutions of (1) directly,
due to the Riemann–Liouville operator not having good regularities. Relying on this
motivation, recently Kilbas et al. [1] and Almeida [30] provided generalized definitions of
fractional calculus involving another function. In this regard, we first give recent results on
existence and uniqueness of (1) based on Banach’s fixed point theorem and then apply the
Adomian decomposition method and Picard method to obtain an approximate solution for
(1). Particularly, if ζ(ϑ) = ϑ , ζ(ϑ) = log(ϑ), and ζ(ϑ) = ϑρ, then our results will reduce to
the classical Riemann–Liouville, Hadamard, and Katugampola fractional quadratic integral
equation, respectively.

The article is formed as follows. In Section 2, we present some notations and definitions
used all through the article. Our main results for the generalized FQIE (1) are addressed in
Section 3. An example to explain the acquired results is constructed in Section 4.

2. Preliminaries

In this section, we set some notations and introductory facts that will be applied in the
proofs of the subsequent results.

Let C(J ,R) be the Banach space of continuous functions and L(J ,R) are Lebesgue
integrable functions from J into R with the norms

‖z‖∞ = sup{|z(ϑ)| : ϑ ∈ J },

and

‖z‖L =
∫ b

a
|z(ϑ)|dϑ,

respectively.
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For ς = q+ 2p− qp, where 1 < q < 2, and 0 ≤ p ≤ 1, then 1 < ς ≤ 2. Let ζ ∈ C1(J ,R)
be an increasing function with ζ ′(ϑ) 
= 0, for all ϑ ∈ J .

Definition 1 ([1]). Let q > 0 and F ∈ L1(J ,R). The ζ-RL fractional integral of order q of a
function F is given by

I
q;ζF (ϑ,κ(ϑ)) =

1
Γ(q)

∫ ϑ

a
ζ ′(υ)(ζ(ϑ)− ζ(υ))q−1F (ϑ,κ(ϑ))dυ,

where Γ(·) denotes the Gamma function.

Lemma 1 ([1,9]). Let q, η, δ > 0. Then,

1. Iq;ζIη;ζF (ϑ,κ(ϑ)) = Iq+η;ζF (ϑ,κ(ϑ)).

2. Iq;ζ(ζ(ϑ)− ζ(a))δ−1 = Γ(δ)
Γ(q+δ)

(ζ(ϑ)− ζ(a))q+δ−1.

Here, we can suffice to refer to Banach’s fixed point theorem [31] and Krasnoselskii’s
fixed point theorem [31].

3. Main Results

Let us introduce the following hypotheses which are used to investigate the FQDE (1).

1. h : J → R is a continuous function on J .
2. F , g : J×R→ R are a bounded and continuous function with μ1 = sup(ϑ,κ)∈J×R|g(ϑ,κ)|,

and μ2 = sup(ϑ,κ)∈J×R|F (ϑ,κ)|.
3. There exist two constants h̄1,h̄2 > 0 such that

|g(ϑ,κ)− g(ϑ, y)| ≤ h̄1|κ − y|,
|F (ϑ,κ)−F (ϑ, y)| ≤ h̄2|κ − y|,

for all ϑ ∈ J and κ, y ∈ R.

Our first result is based on Banach’s fixed point theorem to obtain the uniqueness
solution of the nonlinear FQIE (1).

3.1. Existence and Uniqueness of Solutions

Theorem 1. Suppose (1), (2) and (3) hold. If

Υ :=
(

h̄1μ2 + h̄2μ1

Γ(q + 1)

)
< 1,

then the nonlinear FQIE (1) has a unique solution κ ∈ C(J ).

Proof. It is easy to see that Π : C(J )→ C(J ), where

(Πκ)(ϑ) = h(ϑ) + g(ϑ,κ(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ,κ(υ))dυ, ϑ ∈ J , q > 0.

Now, let Br ⊂ C(J ) where Br is defined as

Br = {κ(ϑ) ∈ C(J ) : |κ(ϑ)− h(ϑ)| ≤ r, for ϑ ∈ J }.
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If we choose r = μ1μ2
Γ(q+1) , then the operator Π : Br → Br. Indeed, for κ ∈ Br, we have

|κ(ϑ)− h(ϑ)| ≤ |g(ϑ,κ(ϑ))|
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1|F (υ,κ(υ))|dυ

≤ μ1μ2

∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1dυ

≤ μ1μ2

Γ(q + 1)
(ζ(ϑ))q

≤ μ1μ2

Γ(q + 1)
= r.

In addition, Br is a closed subset of C(J ). In order to prove that Π is a contraction, we have

(Πκ)(ϑ)− (Πy)(ϑ) = g(ϑ,κ(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ,κ(υ))dυ

−g(ϑ, y(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ, y(υ))dυ

+g(ϑ,κ(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ, y(υ))dυ

−g(ϑ,κ(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ, y(υ))dυ

= [g(ϑ,κ(ϑ)− g(ϑ, y(ϑ)]
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ, y(υ))dυ

+g(ϑ,κ(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1[F (υ,κ(υ))−F (υ,κ(υ)]dυ.

Then,

|(Πκ)(ϑ)− (Πy)(ϑ)|

≤ |g(ϑ,κ(ϑ)− g(ϑ, y(ϑ)|
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1|F (υ, y(υ))|dυ

+|g(ϑ,κ(ϑ))|
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1|F (υ,κ(υ))−F (υ,κ(υ)|dυ

≤ h̄1μ2

Γ(q + 1)
(ζ(ϑ))q|κ(ϑ)− y(ϑ)|+ h̄2μ1

∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1|κ(υ)− y(υ)|dυ

≤ h̄1μ2

Γ(q + 1)
|κ(ϑ)− y(ϑ)|+ h̄2μ1

∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1|κ(υ)− y(υ)|dυ,

which implies

‖(Πκ)(ϑ)− (Πy)(ϑ)‖ = sup
ϑ∈J

|(Πκ)(ϑ)− (Πy)(ϑ)|

≤ h̄1μ2

Γ(q + 1)
‖κ − y‖+ h̄2μ1‖κ − y‖

∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1dυ

≤ h̄1μ2

Γ(q + 1)
‖κ − y‖+ h̄2μ1

Γ(q + 1)
‖κ − y‖

= Υ‖κ − y‖.

Since Υ < 1, the operator Π is a contraction mapping. Hence, as a consequence of Banach’s
fixed point theorem, the FQIE (1) has a unique solution κ ∈ C(J ). This complete the proof.
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3.2. Picard Method (PM)

By applying the PM to the FQEI (1), the solution is framed by the sequence{
κn(ϑ) = h(ϑ) + g(ϑ,κn−1(ϑ))

∫ ϑ
0

ζ ′(υ)
Γ(q) (ζ(ϑ)− ζ(υ))q−1F (υ,κn−1(υ))dυ, n = 1, 2, ...
κ0(ϑ) = h(ϑ)

. (2)

The functions κn can be written as

κn = κ0 +
n

∑
j=1

[
κj −κj−1

]
,

where the functions {κn(ϑ)}n≥1 are continuous.
If the infinite series ∑

[
κj −κj−1

]
converges, then the sequence functions κn(ϑ) will

converge to κ(ϑ). Consequently, the solution will be

κ(ϑ) = lim
n→∞

κn(ϑ).

Now, we show that {κn(ϑ)}n≥1 has uniform convergence. Consider the infinite series

∞

∑
n=1

[κn(ϑ)−κn−1(ϑ)].

From (2) for n = 1, we achieve

κ1(ϑ)−κ0(ϑ) = g(ϑ,κ0(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ,κ0(υ))dυ.

Consequently,

|κ1(ϑ)−κ0(ϑ)| ≤ μ1μ2

∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1dυ ≤ μ1μ2

Γ(q + 1)
(ζ(ϑ))q. (3)

Here, we find the expression κn(ϑ) −κn−1(ϑ), for n ≥ 2 as

κn(ϑ)−κn−1(ϑ)

= g(ϑ,κn−1(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ,κn−1(υ))dυ

−g(ϑ,κn−2(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ,κn−2(υ))dυ

+g(ϑ,κn−1(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ,κn−2(υ))dυ

−g(ϑ,κn−1(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ,κn−2(υ))dυ

= g(ϑ,κn−1(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1[F (υ,κn−1(υ))−F (υ,κn−2(υ)]dυ

+[g(ϑ,κn−1(ϑ)− g(ϑ,κn−2(ϑ)]
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ,κn−2(υ))dυ.
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Using Hypotheses (2) and (3), we attain

|κn(ϑ)−κn−1(ϑ)|

≤ |g(ϑ,κn−1(ϑ))|
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1|F (υ,κn−1(υ))−F (υ,κn−2(υ)|dυ

+|g(ϑ,κn−1(ϑ))− g(ϑ,κn−2(ϑ))|
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1|F (υ,κn−2(υ))|dυ

≤ h̄2μ1

∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1|κn−1(υ)−κn−2(υ)|dυ

+h̄1μ2|κn−1(ϑ)−κn−2(ϑ)|
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1dυ.

By taking n = 2, and using (3), we obtain

|κ2(ϑ)−κ1(ϑ)| ≤ h̄2μ1

∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1|κ1(υ)−κ0(υ)|dυ

+h̄1μ2|κ1(ϑ)−κ0(ϑ)|
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1dυ

≤ h̄2μ2
1μ2

Γ(q + 1)

∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1(ζ(υ))qdυ

+
h̄1μ2

2μ1

Γ(q + 1)
(ζ(ϑ))q (ζ(ϑ))q

Γ(q + 1)

≤ h̄2μ2
1μ2

Γ(q + 1)
Γ(q + 1)

Γ(2q + 1)
(ζ(ϑ))2q

+
h̄1μ2

2μ1

Γ(q + 1)Γ(q + 1)
(ζ(ϑ))2q

≤ μ1μ2

Γ(q + 1)

[
h̄2μ1

Γ(q + 1)
Γ(2q + 1)

+
h̄1μ2

Γ(q + 1)

]
(ζ(ϑ))2q.

Similarly, for n = 3,

|κ3(ϑ)−κ2(ϑ)| ≤ h̄2μ1

∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1|κ2(ϑ)−κ1(ϑ)|dυ

+h̄1μ2|κ2(ϑ)−κ1(ϑ)|
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1dυ

≤ μ1μ2

Γ(q + 1)

(
h̄2μ1

Γ(q + 1)
Γ(2q + 1)

+
h̄1μ2

Γ(q + 1)

)
×
(

h̄2μ1
Γ(2q + 1)
Γ(3q + 1)

+
h̄1μ2

Γ(q + 1)

)
(ζ(ϑ))3q.
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Repeating this process, we obtain

|κn(ϑ)−κn−1(ϑ)| ≤ μ1μ2

Γ(q + 1)

(
h̄2μ1

Γ(q + 1)
Γ(2q + 1)

+
h̄1μ2

Γ(q + 1)

)
×
(

h̄2μ1
Γ(2q + 1)
Γ(3q + 1)

+
h̄1μ2

Γ(q + 1)

)
× . . .

×
(

h̄2μ1
Γ((n− 1)q + 1)

Γ(nq + 1)
+

h̄1μ2

Γ(q + 1)

)
(ζ(ϑ))nq

≤ μ1μ2

Γ(q + 1)

(
h̄2μ1

Γ(q + 1)
Γ(q + 1)

+
h̄1μ2

Γ(q + 1)

)
×
(

h̄2μ1
Γ(2q + 1)
Γ(q + 1)

+
h̄1μ2

Γ(q + 1)

)
× . . .

×
(

h̄2μ1
Γ((n− 1)q + 1)
Γ((n− 1)q + 1)

+
h̄1μ2

Γ(q + 1)

)
≤ μ1μ2

Γ(q + 1)
((h̄2μ1 + h̄1μ2))× ((h̄2μ1 + h̄1μ2))× . . .

×((h̄2μ1 + h̄1μ2))

≤ μ1μ2

Γ(q + 1)
((h̄2μ1 + h̄1μ2))

n.

Since
(

h̄1μ2+h̄2μ1
Γ(q+1)

)
< 1, then the series ∑∞

n=1[κn(ϑ)−κn−1(ϑ)] and the sequence {κn(ϑ)}
are uniformly convergent.

Because F (ϑ,κ) and g(ϑ,κ) are continuous in κ, it follows that

κ(ϑ) = lim
n→∞

g(ϑ,κn(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ,κn(υ))dυ

= g(ϑ,κ(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ,κ(υ))dυ.

This shows the existence of a solution. Here, we need to show that this solution is unique;
let y(ϑ) be a continuous solution of the FQEI (1) that is

y(ϑ) = h(ϑ) + g(ϑ, y(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ, y(υ))dυ, ϑ ∈ [0, 1], q > 0.

Hence,

y(ϑ)−κn(ϑ) = g(ϑ, y(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ, y(υ))dυ

−g(ϑ,κn−1(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ,κn−1(υ))dυ

+g(ϑ, y(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ,κn−1(υ))dυ

−g(ϑ, y(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ,κn−1(υ))dυ

= g(ϑ, y(ϑ))
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1[F (υ, y(υ))−F (υ,κn−1(υ)]dυ

+[g(ϑ, y(ϑ)− g(ϑ,κn−1(ϑ)]
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1F (υ,κn−1(υ))dυ.

By using assumptions (2) and (3), we obtain
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|y(ϑ)−κn(ϑ)| ≤ |g(ϑ, y(ϑ))|
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1|F (υ, y(υ))−F (υ,κn−1(υ)|dυ

+|g(ϑ, y(ϑ)− g(ϑ,κn−1(ϑ)|
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1|F (υ,κn−1(υ))|dυ

≤ h̄2μ1

∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1|y(υ)−κn−1(υ)|dυ

+h̄1μ2|y(ϑ)−κn−1(ϑ)|
∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1dυ. (4)

However, we have
|y(ϑ)− h(ϑ)| ≤ μ1μ2

Γ(q + 1)
ζ(ϑ)q.

Hence, using (4), we obtain

|y(ϑ)−κn(ϑ)| ≤
μ1μ2

Γ(q + 1)
[(h̄2μ1 + h̄1μ2)]

n.

Consequently,
lim

n→∞
κn(ϑ) = y(ϑ) = κ(ϑ).

This ends the proof.

Corollary 1. Under the assumptions of Theorem 1, if ζ(ϑ) = ϑρ, then the FQEI (1) reduces to

κ(ϑ) = h(ϑ) + g(ϑ,κ(ϑ))
∫ ϑ

0

υρ−1

Γ(q)

(
ϑρ − υρ

ρ

)q−1
F (υ,κ(υ))dυ,

which has a unique solution; see [29].

3.3. AD Method (ADM)

In this section, we will analyze ADM for the FQEI (1). The solution algorithm of the
FQEI (1) by applying ADM is

κ0(ϑ) = h(ϑ), (5)

κ�(ϑ) = �(�−1)(ϑ) I
q;ζ
0+ ω(�−1)(ϑ), (6)

where �� and ω� are Adomian polynomials of the nonlinear terms g(ϑ,κ) and F (υ,κ),
respectively, which forms as follows:

�n =
1
n!

[
dn

dλn

(
g

(
ϑ,

∞

∑
�=0

λ�
κ�

))]
λ=0

, (7)

ωn =
1
n!

[
dn

dλn

(
F
(

ϑ,
∞

∑
�=0

λ�
κ�

))]
λ=0

. (8)

Now, we will show the solution as

κ(ϑ) =
∞

∑
�=0

κ�. (9)

3.4. Convergence Analysis

Theorem 2. Let κ(ϑ) be a solution of the FQIE (1) and there exists a positive constant M satisfying
|κ1(ϑ)| < M. Then, solution (9) of the FQIE (1) applying ADM converges.
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Proof. Let {S
1} be a sequence such that {S
1} = ∑

1
�=0 κ� is a sequence of partial sums

from the series (9) and we have

g(ϑ,κ) =
∞

∑
�=0

��,

F (ϑ,κ) =
∞

∑
�=0

ω�.

Set S
1 and let S
2 be two partial sums with 
1 > 
2. Now, we show that S
1 is a
Cauchy sequence in C(J ).

S
1 − S
2 =

1

∑
�=0

κ� −

2

∑
�=0

κ�

=

1

∑
�=0

�(�−1)(ϑ)

(
I

q;ζ
0+


1

∑
�=0

ω(�−1)(ϑ)

)
−


2

∑
�=0

�(�−1)(ϑ)

(
I

q;ζ
0+


2

∑
�=0

ω(�−1)(ϑ)

)

=

1

∑
�=0

�(�−1)(ϑ)

(
I

q;ζ
0+


1

∑
�=0

ω(�−1)(ϑ)

)
−


2

∑
�=0

�(�−1)(ϑ)

(
I

q;ζ
0+


1

∑
�=0

ω(�−1)(ϑ)

)

+

2

∑
�=0

�(�−1)(ϑ)

(
I

q;ζ
0+


1

∑
�=0

ω(�−1)(ϑ)

)
−


2

∑
�=0

�(�−1)(ϑ)

(
I

q;ζ
0+


2

∑
�=0

ω(�−1)(ϑ)

)

=

[

1

∑
�=0

�(�−1)(ϑ)−

2

∑
�=0

�(�−1)(ϑ)

](
I

q;ζ
0+


1

∑
�=0

ω(�−1)(ϑ)

)

+

2

∑
�=0

�(�−1)(ϑ)

(
I

q;ζ
0+

[

1

∑
�=0

ω(�−1)(ϑ)−

2

∑
�=0

ω(�−1)(ϑ)

])

However,

∥∥S
1 − S
2

∥∥ ≤ max
ϑ∈J

∣∣∣∣∣ 
1

∑
�=
2+1

�(�−1)(ϑ)

(
I

q;ζ
0+


1

∑
�=0

ω(�−1)(ϑ)

)∣∣∣∣∣
+max

ϑ∈J

∣∣∣∣∣ 
2

∑
�=0

�(�−1)(ϑ)

(
I

q;ζ
0+


1

∑
�=
2+1

ω(�−1)(ϑ)

)∣∣∣∣∣
≤ max

ϑ∈J

∣∣∣∣∣
1−1

∑
�=
2

��(ϑ)

∣∣∣∣∣
∣∣∣∣∣Iq;ζ

0+


1

∑
�=0

ω(�−1)(ϑ)

∣∣∣∣∣+ max
ϑ∈J

∣∣∣∣∣ 
2

∑
�=0

�(�−1)(ϑ)

∣∣∣∣∣
∣∣∣∣∣
1−1

∑
�=
2

ω�(ϑ)

∣∣∣∣∣
≤ max

ϑ∈J

∣∣g(ϑ,S
1−1)− g(ϑ,S
2−1)
∣∣ ∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1∣∣F (υ,S
1)
∣∣dυ

+max
ϑ∈J

∣∣g(ϑ,S
2)
∣∣ ∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1∣∣F (υ,S
1−1)−F (υ,S
2−1)
∣∣dυ

≤ h̄1μ2 max
ϑ∈J

∣∣S
1−1 − S
2−1
∣∣ ∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1dυ

+h̄2μ1 max
ϑ∈J

∣∣S
1−1 − S
2−1
∣∣ ∫ ϑ

0

ζ ′(υ)
Γ(q)

(ζ(ϑ)− ζ(υ))q−1dυ

≤ 1
Γ(q + 1)

[(h̄2μ1 + h̄1μ2)]max
ϑ∈J

∣∣S
1−1 − S
2−1
∣∣

≤ Υ
∥∥S
1−1 − S
2−1

∥∥.

Let 
1 = 
2 + 1; then,∥∥S
2+1 − S
2

∥∥ ≤ Υ
∥∥S
2 − S
2−1

∥∥ ≤ Υ2∥∥S
2−1 − S
2−2
∥∥ ≤ · · · ≤ Υ
2‖S1 − S0‖.
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In addition, we have∥∥S
1 − S
2

∥∥ ≤
∥∥S
2+1 − S
2

∥∥+ ∥∥S
2+2 − S
2+1
∥∥+ · · ·+ ∥∥S
1 − S
1−1

∥∥
≤

[
Υ
2 + Υ
2+1 + · · ·+ Υ
1−1

]
‖S1 − S0‖

≤ Υ
2
[
1 + Υ + · · ·+ Υ
1−
2−1

]
‖S1 − S0‖

≤ Υ
2

[
1− Υ
1−
2

1− Υ

]
‖κ1‖.

The assumptions 0 < Υ < 1, and 
1 > 
2 lead to (1− Υ
1−
2) ≤ 1. Hence,

∥∥S
1 − S
2

∥∥ ≤ Υ
2

1− Υ
‖κ1‖

≤ Υ
2

1− Υ
max
ϑ∈J

|κ1(ϑ)|.

However, |κ1(ϑ)| < M and as 
2 → ∞, then
∥∥S
1 − S
2

∥∥→ 0 and hence {S
1} is a Cauchy
sequence in C(J ), and the series ∑∞

�=0 κ�(ϑ) converges.

4. Numerical Example

In this part, we will study numerical example via Picard and ADM methods.

Example 1. Consider the following nonlinear FQIE:

κ(ϑ) =

(
ϑ3 − 104ϑ

17
2

750

)
+

1
4
κ(ϑ)I

1
2 ;ζ
0+ κ

4(ϑ). (10)

Here, the κ(ϑ) = ϑ3 is the exact solution for (10).
Taking ζ = 1

2 , and applying PM to (10), we obtain

κn(ϑ) =

(
ϑ3 − 104ϑ

17
2

750

)
+

1
4
κn−1(ϑ)I

1
2 ; 1

2
0+ κ

4
n−1(ϑ), n = 1, 2, · · ·,

κ0(ϑ) =

(
ϑ3 − 104ϑ

17
2

750

)
.

and the solution will be in the form
κ(ϑ) = κn(ϑ).

Again, applying ADM to (10), we obtain

κ0(ϑ) =

(
ϑ3 − 104ϑ

17
2

750

)
,

κi(ϑ) =
1
4
κi−1(ϑ)I

1
2 ; 1

2
0+ �i−1(ϑ), i = 1, 2, . . . . . . . . .

where �i are Adomian polynomials of the nonlinear term κ4, and the solution will be

κ(ϑ) =
p

∑
i=0

κi(ϑ).

5. Conclusions

In this article, we have considered the FQIE (1) in the frame of the generalized Rie-
mann–Liouville fractional integral operator. First, the existence and uniqueness of solutions
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for the proposed equations were obtained. Next, we have given some special results
corresponding to suitable values of the parameters ζ and q. Moreover, the main results
have been proven based on Banach’s fixed point theorem, the Adomian decomposition
method, and Picard’s method. Finally, we have presented an example. The present results
are new for some special cases. The proposed techniques can be extended to other ζ-Hilfer
fractional quadratic integral equations [32].
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Abstract: The fractional massive Thirring model is a coupled system of nonlinear PDEs emerging in
the study of the complex ultrashort pulse propagation analysis of nonlinear wave functions. This
article considers the NFMT model in terms of a modified Riemann–Liouville fractional derivative.
The novel travelling wave solutions of the considered model are investigated by employing an
effective analytic approach based on a complex fractional transformation and Jacobi elliptic functions.
The extended Jacobi elliptic function method is a systematic tool for restoring many of the well-known
results of complex fractional systems by identifying suitable options for arbitrary elliptic functions.
To understand the physical characteristics of NFMT, the 3D graphical representations of the obtained
propagation wave solutions for some free physical parameters are randomly drawn for a different
order of the fractional derivatives. The results indicate that the proposed method is reliable, simple,
and powerful enough to handle more complicated nonlinear fractional partial differential equations
in quantum mechanics.

Keywords: fractional massive Thirring model; Jacobi expansion method; nonlinear partial differential
equation; travelling wave solution; quantum field theory

1. Introduction

Physics can be typically classified into two branches: classical and modern physics.
Modern physics can be distinguished by considering spatiotemporal requirements for joint
interaction, whereas, in classical physics, we can consider time and space separately because
they are independent and absolute. Furthermore, classical physics usually deals with
the macroscopic scale, while modern physics deals with microscopic or sub-microscopic
scales. Although classical physics has different applications in science and engineering,
modern physics can be considered a revolution in applied physics, as it can elucidate
many essential phenomena, such as black body radiation, photoelectric effect, Compton’s
effect and stability of atoms that cannot be explained from a classical physics point of view.
However, modern physics focuses on quantum mechanics and the theory of relativity;
quantum mechanics considers the physical quantities restricted to be discrete values, where
the thinking of the probability is dominant instead of certain measurements, which is
represented mathematically by the Schrödinger wave equation. The theory of relativity
studies the physical quantities moving at a speed near the speed of light, the time dilation,
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and the dimensions contraction started to be important concepts, and Einstein’s mass-
energy equation makes a revolution in the science [1–4].

The contemporary revolution in theoretical and applied physics combines quantum
mechanics with the theory of relativity in a multi-body system, which establishes quantum
field theory. Quantum field equations represent a general form of the Schrödinger wave
equation, where the wavefunction is generalized to an infinite-dimensional space of field
configurations [2]. Motivated by this, in this work, we consider the massive Thirring
model (MTM) as an important application of the quantum field theory, which was derived
by W. Thirring in 1958 [3]. Thereafter, many theoretical and applied studies of such a
complex system were conducted. For example, but not limited to, Kondo 1995 studied the
bosonization and duality of the MTM with a four-fermion interaction of the current type [4],
and the Thirring model was also considered in a separate work as a gauge theory [5]. In
2018, Joshi et al. introduced an integrable semi-discretization of the MTM for the first time
in laboratory coordinates [6].

Nevertheless, to find out an alternative methodology for the Schrodinger equation,
Dirac discovered the integral path approach, similar to Lagrangian’s least-action principle
technique in classical mechanics; this approach was developed by Feynman to create
Feynman diagrams. Feynman diagrams were modified to Wiener’s path integral, which
is equivalent to the Brownian path integral in classical mechanics. Recently, the Levy
flight random process has been introduced to understand difficult classical and quantum
physics phenomena, where the Levy index α is introduced. Now, the consequences of the
path integral for the Levy flight paths’ studies are an essential issue in fractional quantum
mechanics and consequently in fractional quantum field theory [7]. Examining research
to obtain novel and additional exact traveling-wave solutions for fractional models is
prospering. Indeed, this is not an easy task and is one of the pivotal challenging problems in
mathematics and physics. Hence, resorting to sophisticated analytical and digital methods
is inevitable. In this direction, many effective and accurate analytical methods for solving
these equations have been considered thus far, for example, the Bäcklund transformation
method, the Riccati sub-equation method, the extended tanh-function method, the G’/G-
expansion method, the Kudryashov method [8–11] and so forth.

The analysis in this paper highlights the complex behavior of nonlinear wavefunction,
which is notably dependent on the genetic properties and temporal memory that can be
explored with great skill using fractional calculus.

In this direction, consider the following semi-discrete nonlinear massive Thirring model
(MTM) that can be typically provided by a complex triple system of difference equations:

4i dχn
dt +φn+1 + φn +

2i
ν (ψn+1 − ψn) + χ2

n
(
ψ̌n + ψ̌n+1

)
− χn

(
|φn+1|2 + |φn|2 + |ψn+1|2 + |ψn|2

)
− iν

2 χ2
n
(
φ̌n + φ̌n+1

)
= 0,

2i
ν (φn+1 − φn)− 2χn + |χn|2(φn+1 + φn) = 0,

ψn+1 + ψn − 2χn +
iν
2 (ψn+1 − ψn) = 0,

(1)

where n denotes the discrete lattice to index iterates, ν denotes the lattice-spacing parameter
of aspace discretization, and the symbol i is an imaginary unit. The complex-conjugates
of ψn and φn are denoted respectively by ψ̌n and φ̌n. The first equation refers to the case
of temporal evolution, while the last two difference equations refer to the semi-discrete
massive Thirring equations constrained with the components of {ψn}n∈Z and {φn}n∈Z,
which can be defined in terms of {χn}n∈Z in the temporal and spatial coordinates [6]. With
the continuity of ν → 0 , the slowly changing solutions between the lattice nodes can be
written as:

χn(t) = χ(x = νn, t), ψn(t) = ψ(x = νn, t), φn(t) = φ(x = νn, t), (2)
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where continuous variables fulfill the following system of partial equations:

2i ∂χ
∂t + i ∂ψ

∂x + φ + χ2ψ̌− χ
(
|φ|2 + |ψ|2

)
= 0,

i ∂φ
∂x − χ + |χ|2φ = 0,

ψ− χ = 0,

(3)

which leads to an MTM system of two semi-linear equations for (F, G) ∈ C2 in terms of the
variables ψ(x, t) = F(x, t− x) and φ(x, t) = G(x, t− x) in the normalized form:

i
(

∂F
∂t +

∂F
∂x

)
+ G = |G|2F,

i
(

∂G
∂t − ∂G

∂x

)
+ F = |F|2G.

(4)

This paper deals with the fractional version of such a system. Therefore, we consider
the following nonlinear space–time fractional MTM system:

i
(

Dα
t F + ∂F

∂x

)
+ G = |G|2F,

i
(

Dα
t G− ∂G

∂x

)
+ F = |F|2G.

(5)

Considerable analytical and numerical investigations of the MTM have been made in
the literature using various techniques. The construction of the MTM using the functional
integral scheme within quantum field theory was discussed in [12]. The physical states, as
well as a solution of the MTM, by means of many-body wave functions, are presented in [13].
In [14], Bethe ansatz solutions of the MTM were tested numerically by solving periodic
boundary value problems. Delepine et al. [15] demonstrated that the MTM is equivalent
to the quantum sine-Gordon model in quantum field theories at a finite temperature.
The white noise of the oscillator MTM was examined in [16] in terms of the phase–space
displays. In [17], the non-thermal phase structure of the MTM was studied using ansatz
matrix-product states. Using the N-fold Darboux transform, the rogue wave solutions
of the MTM equations were derived in [18]. On the other side as well, the fractional
versions of the nonlinear complex MTM were numerically solved using advanced semi-
analytical and approximate methods; for example, the q-HAM was applied in [19] to solve
the fractional massive Thirring model in Caputo sense. In [20], the fractional residual power
series method was implemented to solve a class of the fractional MTM with conformable
derivatives. For more details regarding the numerical and analytical solutions of different
fractional models, we refer to [21–31].

Almost all scientific problems can be solved using different fractional calculus tech-
niques, where one or many suitable methods can be chosen for each problem; some
problems that are solved using modified Riemann–Liouville fractional calculus techniques
were noted as incorrect conditions [32–35]. Although these cases are not related to this
work, this note must be mentioned here. These cases do not affect the Riemann–Liouville
fractional calculus technique, which solves a huge number of problems successfully, as
do other methods, such as the Mittag–Leffler function, the fractional Riccati method, the
fractional double function method, and the fractional Y-function expansion method [36,37].

The novelty of this paper is to explore new travelling wave solutions for fractional
MTM equations (5) by employing an effective analytic approach based on a complex
fractional transformation and Jacobi elliptic functions. It is worth noting that the previous
study of soliton for the fractional MTM equations was performed to provide an approximate
solution for or study a special case of the MTM equations [4–6]. This paper introduces
a general case exact solution for MTM equations for the first time; this study can be
considered as a strong motivation to provide the obtained results.

The outline of this analysis has the following sections: In Section 2, some basic defini-
tions and characteristics of the considered fractional operator are presented. In Section 3,
the key idea of the proposed method is described. Then, in Section 4, we apply this method
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to create new sets of exact traveling wave solutions to the fractional massive Thirring model.
Finally, a brief conclusion is also provided.

2. Preliminaries

Recently, many researchers have used various fractional operators to study several
models associated with the functions of complex variables, and they proved that these
fractional operators are more influential than the classical ones while analyzing the natural
behavior of those models. Herein, we introduce the basic definition and some properties
of Jumarie’s modification of Riemann–Liouville derivative [38–41] that are very useful for
displaying this work in a standardized way.

Definition 1. Let ω : R→ R be a continuous function. Then, the modified Riemann–Liouville
derivative of the order α is as follows

Dα
t ω(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Γ(−α)
d
dt

∫ t
0 (t− ξ)−α−1(ω(ξ)−ω(0))dξ, α < 0,

1
Γ(1−α)

d
dt

∫ t
0 (t− ξ)−α(ω(ξ)−ω(0))dξ, 0 < α < 1,[

ω(α−n)(t)
](n)

, n ≤ α < n + 1, n ≥ 1.

In this work, if ω(t) has a modified Riemann–Liouville derivative of the order α, it
will be defined as Dα

t -differentiable. Further, it is obvious that the operator Dα
t of Jumarie’s

modification satisfies the following interesting properties:

Theorem 1. Let ω1 : R→ R be Dα
t -differentiable function at a point t > 0 and ω2 : R→ R

be Dα
t -differentiable and defined in the range of ω1. Then, we have:

(I) If ω1(t) = tγ, then Dα
t tγ = Γ(γ+1)

Γ(γ+1−α)
tγ−α for γ > 0.

(II) Dα
t (ω1(t)ω2(t)) = ω2(t)Dα

t ω1(t) + ω1(t)Dα
t ω2(t).

(III) Dα
t ω1(ω2(t)) = d

dω2
ω1(ω2(t))Dα

t ω2(t) = Dα
ω2

ω1(ω2(t))
(

d
dt ω2(t)

)α
.

3. The Extended Jacobi Elliptic Equation Method

This section presents the definition of Jacobi elliptic functions and reviews some
important properties that we will use within the framework of this paper. Then, we
introduce the algorithm of the proposed method.

3.1. The Jacobi Elliptic Functions

The Jacobi elliptic functions are the standard forms of elliptic functions. There are
three double periodic functions, namely the Jacobian elliptic sine function, Jacobian elliptic
cosine function, and Jacobian elliptic function of a third kind denoted by sn(u, δ) = sn(u),
cn(u, δ) = cn(u) and dn(u, δ) = dn(u), respectively, where δ is the elliptic modulus. In the
next segment, we provide the details of the derivation of these functions. To this end, we
consider the following nonlinear partial differential equation (PDE):

∂2 ϕ

∂x∂t
= λ sin(ϕ). (6)

By substituting the linear transformation η = θ(x− μt) into PDE (6), we get the
following nonlinear ordinary differential equation (NODE):

d2 ϕ

dη2 =
−λ

θ2μ
sin(ϕ). (7)
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Then, some simplifications lead to the following equivalent NODE:(
1
2

dϕ

dη

)2
=
−λ

θ2μ
sin2 1

2
(ϕ) + c. (8)

Letting c = 1,−λ/θ2μ = −δ2 and ω = ϕ/2, then Equation (8) takes the form

dω

dη
=

√
1− δ2 sin2 ω, (9)

which is equivalent to ∫ 1√
1− δ2 sin2 ω

dω =
∫

dη, (10)

where the integral in Equation (10) is called the Legendre elliptic integral of the first kind.
Now, we define

u =
∫ ϕ

0

1√
1− δ2 sin2 y

dy =
∫ t ≡sin ξ

0

1√
(1− x2)(1− δ2x2)

dx. (11)

Provided that u = f (t) so that t = f−1(u) = sn(u), which is the Jacobi elliptic sine
function. Nevertheless, the Jacobi elliptic cosine function can be defined by letting

u =
∫ ϕ

0

1√
1− δ2 cos2 y

dy =
∫ √

1−t2 ≡cos y

0

1√
(1− x2)(1− δ2x2)

dx. (12)

Provided that u = f
(√

1− t2
)

so that
√

1− t2 = f−1(u) = cn(u). Consequently, one
can write the following argument

t = sn(u),
√

1− t2 = cn(u),
√

1− δ2t2 = dn(u). (13)

On the other side as well, Jacobi elliptic functions sn(u), cn(u) and dn(u) can be
defined respectively as solutions to

y′′ =
(
2− δ2)y− 2y3,

y′′ = −
(
1− 2δ2)y− 2δ2y3,

y′′ = −
(
1 + δ2)y + 2δ2y3,

(14)

and possess the following properties in terms of their singular points:

sc(u) = sn(u)
cn(u) , sd(u) = sn(u)

dn(u) , cd(u) = cn(u )
dn(u) ,

cs(u) = 1
sc(u) ,ds(u) = 1

sd(u) ,dc(u) = 1
cd(u) ,

ns(u) = 1
sn(u) , nc(u) = 1

cn(u) ,nd(u) = 1
dn(u) .

(15)

when δ → 1 , the Jacobi elliptic functions turn into hyperbolic functions as follows
sn(u)→ tanhu , cn(u)→ sec hu , dn(u)→ sec hu ,
ns(u)→ cothu, nc(u)→ cosh u, nd(u)→ cosh u,
sc(u)→ sinhu, sd(u)→ sinhu, cd(u)→ 1 ,
cs(u)→ cschu, ds(u)→ cschu , dc(u)→ 1 .

when δ → 0 , they turn into trigonometric functions as follows
sn(u)→ sin u , cn(u)→ cos u , dn(u)→ 1 ,
ns(u)→ csc u, nc(u)→ sec u, nd(u)→ 1,
sc(u)→ tan u, sd(u)→ sin u, cd(u)→ cos u ,
cs(u)→ cot u, ds(u)→ csc u , dc(u)→ sec u .
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Furthermore, one can obtain the following identities:
cn2(u) + sn2(u) = 1, dn2(u) = 1− δ2sn2(u),
ns2(u)− cs2(u) = 1, nd2(u) = 1 + δ2sd2(u),
nc2(u)− sc2(u) = 1, cd2(u) +

(
1− δ2)sd2(u) = 1,

ns2(u)− ds2(u) = δ2, dc2(u)−
(
1− δ2)sc2(u) = 1,

ds2(u)− cs2(u) = 1− δ2, dc2(u)−
(
1− δ2)nc2(u) = δ2,

δ2(cn2(u)− 1
)
− dn2(u) = 1, δ2cd2(u) +

(
1− δ2)nd2(u) = 1.

The derivatives of the Jacobi elliptic functions are as follows
(sn u)′ = cn(u)dn(u), (cn u)′ = −sn(u)dn(u), (dn u)′ = −δ2sn(u)cn(u),
(ns u)′ = −cs(u)ds(u), (nc u)′ = sc(u)dc(u), (nd u)′ = δ2cd(u)sd(u),
(sc u)′ = nc(u)dc(u), (sd u)′ = nd(u)cd(u), (cd u)′ =

(
δ2 − 1

)
sd(u)nd(u),

(cs u)′ = −ns(u)ds(u), (ds u)′ = −ns(u)cs(u), (dc u)′ =
(
1− δ2)nc(u)sc(u).

3.2. Extended Jacobi Elliptic Function Expansion Method

Herein, the algorithm of the extended Jacobi elliptic function expansion method will
be illustrated to obtain the exact travelling wave solutions of NFPDEs. To this end, let us
consider FPDE in the the following form

P
(

u, Dα
t u, Dβ

x u, Dγ
y u, D2α

t u, D2β
x u, . . .

)
= 0, t ≥ 0, 0 < α, β, γ < 1, (16)

where u = u(t, x, y), P is a polynomial in u, and its partial derivatives, including fractional
derivatives, Dα

t , Dβ
x and Dγ

y , are a modified Riemann–Liouville derivative of u with respect
to the independent variables t, x and y. In the following, the main steps of the proposed
algorithm are presented to find out the exact travelling wave solutions of FPDE (16):

Step 1. Use the fractional wave transformation

u(t, x, y) = U(ξ), ξ =
xβ

Γ(β + 1)
+

yγ

Γ(γ + 1)
+

vtα

Γ(α + 1)
, (17)

where v is the wave velocity that will later be determined. This permits us to reduce FPDE
(16) into the following ODE of integer order in terms of ξ:

P̃
(

U, dU/dξ, d2U/dξ2, d3U/dξ3, . . .
)
= 0, (18)

Step 2. Propose that Equation (18) has a solution in the following form

U(ξ) = b0 + b1Q𝒿(ξ) + b2R𝒿(ξ) + b3S𝒿(ξ) +
L

∑
𝒽=2

Q𝒽−2
𝒿 (ξ)

[
p𝒽Q2

𝒿(ξ) + r𝒽R𝒿(ξ)S𝒿(ξ)
]
, (19)

where 𝒿 = 1, 2, . . . , 12, in which L is a positive integer,b0, b1, b2, b3, and p𝒽, r𝒽,
𝒽 = 2 , 3, . . . , L and are constants to be determined afterwards. The functions Q𝒿(ξ), R𝒿(ξ)
and S𝒿(ξ), 𝒿 = 1, 2, . . . , 12 can be expressed in terms of Jacobi elliptic functions (15)
as follows
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Q1(ξ) =
1

ρ+dn(ξ) ,R1(ξ) =
sn(ξ)

ρ+dn(ξ) ,S1(ξ) =
cn(ξ)

ρ+dn(ξ) ,

Q2(ξ) =
1

ρ+sd(ξ) ,R2(ξ) =
cd(ξ)

ρ+sd(ξ) ,S2(ξ) =
nd(ξ)

ρ+sd(ξ) ,

Q3(ξ) =
1

ρ+cd(ξ) ,R3(ξ) =
sd(ξ)

ρ+cd(ξ) ,S3(ξ) =
nd(ξ)

ρ+cd(ξ) ,

Q4(ξ) =
1

ρ+ns(ξ) ,R4(ξ) =
cs(ξ)

ρ+ns(ξ) ,S4(ξ) =
ds(ξ)

ρ+ns(ξ) ,

Q5(ξ) =
1

ρ+nd(ξ) ,R5(ξ) =
sd(ξ)

ρ+nd(ξ) ,S5(ξ) =
cd(ξ)

ρ+nd(ξ) ,

Q6(ξ) =
1

ρ+sc(ξ) ,R6(ξ) =
nc(ξ)

ρ+sc(ξ) ,S6(ξ) =
dc(ξ)

ρ+sc(ξ) ,

Q7(ξ) =
1

ρ+cn(ξ) , R7(ξ) =
sn(ξ)

ρ+cn(ξ) ,S7(ξ) =
dn(ξ)

ρ+cn(ξ) ,

Q8(ξ) =
1

ρ+dc(ξ) ,R8(ξ) =
sc(ξ)

ρ+dc(ξ) ,S8(ξ) =
nc(ξ)

ρ+dc(ξ) ,

Q9(ξ) =
1

ρ+nc(ξ) ,R9(ξ) =
sc(ξ)

ρ+nc(ξ) ,S9(ξ) =
dc(ξ)

ρ+nc(ξ) ,

Q10(ξ) =
1

ρ+sn(ξ) ,R10(ξ) =
cn(ξ)

ρ+sn(ξ) ,S10(ξ) =
dn(ξ)

ρ+sn(ξ) ,

Q11(ξ) =
1

ρ+cs(ξ) ,R11(ξ) =
ds(ξ)

ρ+cs(ξ) ,S11(ξ) =
ns(ξ)

ρ+cs(ξ) ,

Q12(ξ) =
1

ρ+ds(ξ) ,R12(ξ) =
cs(ξ)

ρ+ds(ξ) ,S12(ξ) =
ns(ξ)

ρ+ds(ξ) ,

(20)

where ρ is an arbitrary constant.
Step 3. Determine the integer L in the predicted solution (19) by balancing the highest

order nonlinear terms

O

(
Ul1 dl2

dξr U

)
= (l1 + 1)L + l2 for l1, l2 = 0, 1, 2, . . . , (21)

and the highest-order derivatives

O

(
dl2

dξ l2
U

)
= L + l2for l2 = 0, 1, 2, . . . . (22)

Step 4. Substitute the predicted solution (19) back into ODE (18) to obtain an expression
in terms of snσ1(ξ)cnσ2(ξ)dnσ3(ξ)(σ1, σ2, σ3 = 0, 1, 2, . . .) by means of reducing to a com-
mon denominator and setting the numerator to zero. Then, collect all terms with the same
powers and put all the coefficients to zero leading to an over-determined system of nonlin-
ear algebraic equations with respect to the unknown parameters ρ, k, b0, b1, b2, b3, and
p𝒽, r𝒽,𝒽 = 2 , 3, . . . , L.

Step 5. Solve the resulting algebraic system in Step 4 with the aid of Mathematica
software to find out the values of ρ, k, b0, b1, b2, b3, and p𝒽, r𝒽, 𝒽 = 2 , 3, . . . , L.

Step 6. Substitute the obtained values in terms of ρ, k, b0, b1, b2, b3, and p𝒽, r𝒽 for
𝒽 = 2, 3, . . . , L in the predicted solution (19); new types of abundant traveling wave
solutions are provided to FPDEs (16) involving the Jacobi elliptic functions.

4. Solving the Space–Time Fractional MTM

This section is designed to perform the steps of the extended Jacobi elliptic function
expansion algorithm to construct wave solutions for the space–time fractional MTM system
(5). To perform this, we propose a complex wave transformation in the following form

F(x, t)→ ℱ(ξ)ei𝒽, g(x, t)→ 𝒢(ξ)ei𝒽, which ξ = k1x + k2
tα

Γ(α + 1)
, 𝒽 = r1x + r2

tα

Γ(α + 1)
, (23)

where k1, k2, r1 and r2 are constants to be determined afterwards.
This transformation leads to the following results

Dα
t F =

(
k2

dℱ
dξ

+ ir2ℱ
)

ei𝒽,
∂F
∂x

=

(
k1

dℱ
dξ

+ ir1ℱ
)

ei𝒽, |F|2 = ℱ2(ξ), (24)
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Dα
t G =

(
k2

d𝒢
dξ

+ ir2𝒢
)

ei𝒽,
∂G
∂x

=

(
k1

d𝒢
dξ

+ ir1𝒢
)

ei𝒽, |G|2 = 𝒢2(ξ). (25)

By substituting assumption (23) with relations (24) and (25) together into the space–
time fractional MTM system (5), we obtain the corresponding system of nonlinear ODEs in
the form,

i(k1 + k2)
dℱ
dξ − (r1 + r2)ℱ +𝒢 −𝒢2ℱ = 0,

i(k2 − k1)
d𝒢
dξ − (r2 − r1)𝒢 +ℱ −ℱ2𝒢 = 0.

(26)

Now, by balancing the highest order nonlinear term and highest order derivatives, we
have L = 1. Then, the formal solutions of system (26) can be expressed as

ℱ(ξ) = p0 + p1Q𝒿(ξ) + p2R𝒿(ξ) + p3S𝒿(ξ), 𝒿 = 1, 2, . . . , 12,
𝒢(ξ) = q0 + q1Q𝒿(ξ) + q2R𝒿(ξ) + q3S𝒿(ξ), 𝒿 = 1, 2, . . . , 12.

(27)

where p𝒽, q𝒽, 𝒽 = 0, 1, 2, 3 are constants to be determined. Let 𝒿 = 1. Then, the formal
solutions (27) becomes

ℱ(ξ) = p0 + p1
1

ρ+dn(ξ) + p2
sn(ξ)

ρ+dn(ξ) + p3
cn(ξ)

ρ+dn(ξ) ,

𝒢(ξ) = q0 + q1
1

ρ+dn(ξ) + q2
sn(ξ)

ρ+dn(ξ) + q3
cn(ξ)

ρ+dn(ξ) .
(28)

Substitute the solutions from (28) into the system from (26), and separate the real and
imaginary parts so that the denominators are canceled in both parts. Then, collect the
coefficients of snd1(η)cnd2(η)dnd3(η)(d1, d2, d3 = 0, 1, 2, 3), and set each coefficient to zero.
Consequently, two sets of over-determined algebraic equations are constructed in terms
of ρ, k1, k2, r1, r2, p 𝒿 , q 𝒿 ,𝒿 = 0, 1, 2, 3. The obtained sets of these algebraic equations
are solved via the computer software of Mathematica, so that the resulting form of the
imaginary part yields

k1 = k2 or k1 = −k2. (29)

and the resulting form of the real part yields the following solution families:
Family I: When p1 = q1 = 0, let q0, p2, q3, r1 and r2 be arbitrary constants. Then, we

get the following cases for and :
Case 1:

p0 =
−q0

q2
0 − (r1 + r2)

, q2 =
p2
(
q2

0 − (r1 + r2)
)

q2
0 + (r1 + r2)

, p3 =
−2q3(r1 + r2)(
q2

0 − (r1 + r2)
)2 . (30)

Case 2:

p0 =
−q0

q2
0 − (r1 + r2)

, q2 = 2p2

(
q2

0 − (r1 + r2)
)

, p3 =
q3(

q2
0 − (r1 + r2)

) . (31)

Case 3:

p0 =
−q0

q2
0 − (r1 + r2)

, q2 = −p2

(
q2

0 − (r1 + r2)
)

, p3 =
−2q3(

q2
0 − (r1 + r2)

) . (32)

Case 4:

p0 =
−q0

q2
0 − (r1 + r2)

, q2 =
p2
(
q2

0 − (r1 + r2)
)2

2(r1 + r2)
, p3 =

q3
(
q2

0 + (r1 + r2)
)(

q2
0 − (r1 + r2)

)2 . (33)

By substituting the results above into (28) and combining with (23), we can obtain
four exact solutions F𝒿(x, t) and G𝒿(x, t), 𝒿 = 1, 2, 3, 4, for the space–time fractional
MTM system (5) in the forms of Jacobi elliptic functions. For example, some graphical
representations of these solutions are presented in the following figures. Figure 1 shows
the 3D plots of |F1(x, t)|2 and |G1(x, t)|2 at some parameters that were chosen randomly,
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r1 = r2 = 1, k1 = k2 = 1, q0 = 0.6, p2 = −2, q3 = 0.8, ρ = 1 and τ = 0, in the
intervals 0 ≤ x ≤ 20 and 0 ≤ t ≤ 10 at different values of the fractional derivative such
that α = 1 and α = 0.75. While Figure 2 presents 3D plots of the real and imaginary
parts of the periodic wave solutions F2(x, t) and G2(x, t) in (x, t) ∈ [0, 20]× [0, 10] with
r1 = r2 = 1, k1 = k2 = 1, q0 = 0.2, p2 = −1, q3 = 0.5 and ρ = τ = 1 for the fractional order
α = 0.85. From these figures, it is observed that the propagation of the periodic wave forms
propagation along the space direction over time by maintaining its shape and amplitude.
The fractional order affects only the velocity of propagation.

  
(a) (b) 

  
(c) (d) 

Figure 1. The 3D plots of |F1(x, t)|2 and |G1(x, t)|2 with the parameters r1 = r2 = 1, k1 = k2 = 1,
q0 = 0.6, p2 = −2, q3 = 0.8, ρ = 1 and τ = 0 for various α values: (a) |F1|2, α = 1, (b) |G1|2, α = 1,
(c) |F1|2, α = 0.75 and (d) |G1|2, α = 0.75.

Family II: When p2 = q2 = 0, let q0, p3, q1, r1 and r2 be arbitrary constants. Then, we
get the following cases for p0, p1 and q3:

Case 1:

p0 =
−q0

q2
0 − (r1 + r2)

, p1 =
−q1(

q2
0 − (r1 + r2)

) , q3 = 2p3

(
q2

0 − (r1 + r2)
)

. (34)

Case 2:

p0 = −q0
q2

0−(r1+r2)
, p1 =

−2q1(q2
0+(r1+r2))−ρq0(q2

0+3(r1+r2))

(q2
0−(r1+r2))

2 ,

q3 =
p3(q2

0−(r1+r2))
2

(q2
0+(r1+r2))

.
(35)

Case 3:

p0 = −q0
q2

0−(r1+r2)
, p1 =

ρ2q0(q2
0+3(r1+r2))+2q0q2

1+ρq1(3q2
0+2(r1+r2))

(q2
0−(r1+r2))(q0q1+ρ(q2

0+(r1+r2)))
,

q3 =
−p3(q2

0−(r1+r2))(q0q1+ρ(q2
0+(r1+r2)))

q0q1+ρ(r1+r2)
.

(36)

317



Fractal Fract. 2022, 6, 252

Case 4:

p0 = −q0
q2

0−(r1+r2)
,

p1 =
−q1(q0q2

1+ρq1(q2
0+(r1+r2))+2ρ2q0(r1+r2))

(q2
0−(r1+r2))(q0q2

1+2ρq1(q2
0−(r1+r2))+ρ2q0(q2

0−(r1+r2)))
,

q3 =
p3(q2

0−(r1+r2))(q0q12+2q1ρ(q02−(r1+r2)))+ρ2q0(q2
0−(r1+r2))

2q1(q0q1+ρ(q2
0+(r1+r2)))+ρ2q0(q2

0+(r1+r2))
.

(37)

Case 5:

p0 =
−q0

q2
0 − (r1 + r2)

, p1 =
2q1(r1 + r2)(

q2
0 − (r1 + r2)

)2 , q3 =
p3
(
q2

0 − (r1 + r2)
)(

q2
0 + (r1 + r2)

) . (38)

  
(a) (b) 

  
(c) (d) 

Figure 2. The 3D plots of the real and imaginary parts of F2(x, t) and with the parameters
r1 = r2 = 1, k1 = k2 = 1, q0 = 0.2, p2 = −1, q3 = 0.5 and ρ = τ = 1 for the fractional order
α = 0.85: (a) Re[F2(x, t)], (b) Im[F2(x, t)], (c) Re[G2(x, t)] and (d) Im[G2(x, t)].

By substituting the results above into (28) and combining with (23), we can obtain
five exact solutions F𝒿(x, t) and G𝒿(x, t), 𝒿 = 5, 6, 7, 8, 9, for the space–time fractional
MTM system (5) in the forms of Jacobi elliptic functions. For physical illustration, some
graphical representations of these solutions are drawn and introduced in the following
figures. Figure 3 reveals the 3D plots of |F5(x, t)|2 and |G5(x, t)|2 with some selected
parameters r1 = r2 = −1, k1 = k2 = 1, q0 = 0.05, p3 = −0.3, q1 = 2, ρ = 1, and τ = 0
over the intervals 0 ≤ x ≤ 20 and 0 ≤ t ≤ 10 for various values of α ∈ {0.75, 1}.

Figures 4 and 5 show 3D plots of the real and imaginary parts of the periodic wave
solutions F6(x, t), F7(x, t), G6(x, t), and G7(x, t) in (x, t) ∈ [0, 20]× [0, 10] with some selected
physical free parameters and different fractional orders. The regularity, harmony and
compatibility of the periodic wave solutions can be observed for different α values in
all cases.
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(a) (b) 

  
(c) (d) 

Figure 3. The 3D plots of |F5(x, t)|2 and |G5(x, t)|2 with the parameters r1 = r2 = −1, k1 = k2 = 1,
q0 = 0.05, p3 = −0.3, q1 = 2, ρ = 1 and τ = 0 for various α values: (a) |F5|2, α = 1, (b) |G5|2, α = 1,
(c) |F5|2, α = 0.75 and (d) |G5|2, α = 0.75.

  
(a) (b) 

  
(c) (d) 

Figure 4. The 3D plots of the real and imaginary parts of F6(x, t) and G6(x, t) with the parameters
r1 = r2 = −1, k1 = k2 = 1, q0 = −2.5, p3 = 0, q1 = −1, ρ = 1 and τ = 0 for the fractional order
α = 1: (a) Re[F6(x, t)], (b) Re[G6(x, t)], (c) Im[F6(x, t)] and (d) Im[G6(x, t)].
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(a) (b) 

  
(c) (d) 

Figure 5. The 3D plots of the real and imaginary parts of F7(x, t) and G7(x, t) with the parameters
r1 = r2 = 0.3, k1 = k2 = 1, q0 = 0.9, p3 = 4, q1 = 5/7, ρ = 1 and τ = 0 for the fractional order
α = 0.65: (a) Re[F7(x, t)], (b) Re[G7(x, t)], (c) Im[F7(x, t)] and (d) Im[G7(x, t)].

Family III: When p3 = q3 = 0, let q0, p2, q1, r1 and r2 be arbitrary constants. Then,
we get the following cases for p0, p1 and q2:

Case 1:
p0 = −q0

q2
0−(r1+r2)

,

p1 =
2q0q2

1+ρq1(3q2
0+2(r1+r2))+ρ2q0(q2

0+3(r1+r2))
(q2

0−(r1+r2))(q0q1+ρ(q2
0+(r1+r2)))

,

q2 =
−p2(q2

0−(r1+r2))(q0q1+ρ(q2
0+(r1+r2))

q0q1+ρ(r1+r2) .

(39)

Case 2:

p0 = −q0
q2

0−(r1+r2)
,

p1 =
−q1(q0q2

1+ρq1(q2
0+(r1+r2))+2ρ2q0(r1+r2))

(q2
0−(r1+r2))(q0q2

1+2ρq1(q2
0−(r1+r2))+ρ2q0(q2

0−(r1+r2)))
,

q2 =
p2(q2

0−(r1+r2))(q0q2
1+2ρq1(q2

0−(r1+r2))+ρ2q0(q2
0−(r1+r2)))

2q0q2
1+2ρq1(q2

0+(r1+r2))+ρ2q0(q2
0+(r1+r2))

(40)

Case 3:
p0 = −q0

q2
0−(r1+r2)

,

p1 =
ρ(3q0q2

1+2ρq1(2q2
0+(r1+r2))+ρ2q0(3q2

0+(r1+r2)))
(q2

0−(r1+r2))(3q2
1+6ρq0q1+ρ2(3q2

0+(r1+r2)))
,

q2 =
p2(3q2

1+6q0q1ρ+ρ2(3q2
0+(r1+r2))

ρ2 .

(41)

Case 4:

p0 =
−q0

q2
0 − (r1 + r2)

, p1 =
−q1(

q2
0 − (r1 + r2)

) , q2 = 2p2

(
q2

0 − (r1 + r2)
)

. (42)

Case 5:
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p0 = −q0
q2

0−(r1+r2)
, p1 =

−2q1(q2
0−(r1+r2))−ρq0(q2

0+3(r1+r2))

(q2
0−(r1+r2))

2 ,

q2 =
q1(q2

0−(r1+r2))
2

(q2
0+(r1+r2))

.
(43)

By substituting the results above into (28) and combining with (23), we can obtain
five exact solutions F𝒿(x, t) and G𝒿(x, t), 𝒿 = 10, . . . , 14, of the fractional MTM system (5)
in the forms of Jacobi elliptic functions. The illustrations of these acquired solutions, for
various values of α, are depicted in Figures 6–9.

  
(a) (b) 

  
(c) (d) 

Figure 6. The 3D plots of the real and imaginary parts of F10(x, t) and G10(x, t) with the parameters
r1 = r2 = 0.3, k1 = k2 = 1, q0 = 0.9, p2 = 1, q1 = −0.2, ρ = 0.5 and τ = 0 for the fractional order
α = 0.9: (a) Re[F10(x, t)], (b) Re[G10(x, t)], (c) Im[F10(x, t)] and (d) Im[G10(x, t)].

  
(a) (b) 

  
(c) (d) 

Figure 7. The 3D plots of |F12(x, t)|2 and |G12(x, t)|2 with the parameters r1 = r2 = −3,
k1 = k2 = 1, q0 = 7, p2 = 2, q1 = −5, ρ = 0.5 and τ = 0 for various α values: (a) |F12|2, α = 0.95,
(b) |G12|2, α = 0.95, (c) |F12|2, α = 0.75 and (d) |G12|2, α = 0.75.
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(a) (b) 

  
(c) (d) 

Figure 8. The 3D plots of the real and imaginary parts of F13(x, t) and G13(x, t) with the parameters
r1 = r2 = −3, k1 = k2 = 1, q0 = 7, p2 = 2, q1 = −5, ρ = 0.5, and τ = 0.1 for the fractional order
α = 0.8: (a) Re[F13(x, t)], (b) Re[G13(x, t)], (c) Im[F13(x, t)], (d) Im[G13(x, t)].

  
(a) (b) 

  
(c) (d) 

Figure 9. The 3D plots of the real and imaginary parts of F14(x, t) and G14(x, t) with the parameters
r1 = r2 = 0.5, k1 = k2 = 1, q0 = 10, p2 = 0.2, q1 = 1, ρ = 1 and τ = 0.1 for the fractional order
α = 0.75: (a) Re[F14(x, t)], (b) Re[G14(x, t)], (c) Im[F14(x, t)] and (d) Im[G14(x, t)].

5. Conclusions

In this paper, the fractional massive Thirring model has been considered in the sense
of the modified Riemann–Liouville fractional derivative. Based on the nonlinear fractional
complex transformation, a series of exact traveling wave solutions for this model has been
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successfully obtained in terms of Jacobi elliptic functions. With the aid of the Mathematica
wolfram computation package, the resulting algebraic system of free parameters was solved
and graphical representations of some acquired solutions were performed in 3D plots.
The proposed method provides a powerful and systematic tool for obtaining novel exact
solutions and can be applied to deal with other governing nonlinear fractional evolution
equations emerging in mathematical physics.
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Abstract: This study is the first to use Laplace transform methods to solve a system of Caputo
fractional Volterra integro-differential equations with variable coefficients and a constant multi-time
delay. This technique is based on different types of kernels, which we will explain in this paper.
Symmetry kernels, which have properties of difference kernels or simple degenerate kernels, are able
to compute analytical work. These are demonstrated by solving certain examples and analyzing the
effectiveness and precision of cause techniques.

Keywords: system fractional-integro differential equation; Laplace transform; Caputo fractional
derivative; delay differential equations; difference and simple degenerate kernels

1. Introduction

The purpose of this paper is to solve linear system integro-fractional differential
equations of the Volterra type (LS-VIFDEs) with variable coefficients and multi-time delay
of the retarded type (RD):

C
a Dα

t ur(t) +
n−1
∑

i=1
Pri(t) C

a D
αr(n−i)
t ur(t) + Prn(t)ur(g(t, τr))

= fr(t) +
m
∑

j=0
λrj

∫ t
a Krj (t, x)uj

(
g
(
x, τrj

))
dx, a ≤ t ≤ b.

(1)

All r = 0, 1, 2, · · · , m, as well as the fractional orders, have the basic ordering property
αrn > αr(n−1) > αr(n−2) > . . . > αr1 > αr0 = 0, and are given together with the initial condi-

tions. For all r = 0, 1, . . . , m;
[
u(kr)

r (t)
]

t=a
= ur,kr and historical functions, u(kr)

r (t) = ϕ
(kr)
r (t)

for all t ∈ [a, a], as well as a = a −max
{

τr, τrj : j = 0, 1, . . . , m
}

, kr = 0, 1, . . . , μr − 1,
μr = max{dr�| � = 0, 1, 2, . . . , n}, dr� = !αr�", where ur(t) are (m + 1). This function
is unknown and is the solution of LS-VIFDE’s multi-time RD, Equation (1), with con-
ditions and functions: Krj : S×R→ R. (S = {(t, x) : a ≤ x ≤ t ≤ b}), r, j = 0, 1, 2, . . . , m
and fr; Pri : [a, b]→ R for all i = 1, 2, . . . , n; r = 0, 1, . . . , m for all real bounded contin-
uous functions. In addition, for all r = 0, 1, . . . , m , where ur(t) ∈ R, C

a Dαr�
t ur(t) is

the αr�-fractional Caputo-derivative order of the functions ur on [a, b] and all αr�, ∈ R+,
dr� − 1 > αr� ≤ dr�, dr� = !αr�" for all r = 0, 1, . . . , m ; � = 1, 2, . . . , n. Moreover, the
value of τrj, τr ∈ R+ for all j = 0, 1, . . . , m are called positive constant time lags or time
delays. Because the problem of LS-delayed VIFDE’s time delay is a relatively new topic in
mathematics, there are only one or two ways of solving it, and since the specific analytic
solution no longer exists, an approximation method must be used. In this paper, we use the
Laplace transform to provide an explanation for how to solve Equation (1) with conditions.
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The Laplace transform is a very useful method for solving various types of equations,
such as integro-differential equations, integral equations, fractional equations, and delay
differential equations. It can also be used to solve initial and boundary value problems re-
lated to differential equations and partial differentials with constant coefficients [1–6]. This
transform method is also used for solving linear Caputo fractional-integro differential equa-
tions with multi-time retarded delays [7] and for solving linear system integro-fractional
differential equation of Volterra-type equations [8]. When using this technique, it is impor-
tant and necessary to explain and define several properties of the Laplace transform that
are important for driving this transformation of delay functions and the Caputo fractional
derivative, which is expressed in Equation (1).

This work is classified into these sections as follows: some definitions and important
properties are shown in Section 2. In Section 3, a system of integro-fractional differential
equations of the Volterra type with variable coefficients and multi-time delay technique
is presented. In Section 4, the results are illustrated with all of the examples. Finally, a
discussion of this method is included in Section 5.

2. Definitions with Important Properties

2.1. Fractional Calculus

In this subsection, we recall the most common definitions and results of fractional
calculus that will be useful for this research. First, we start from the definition of function
space Cγ, γ ∈ R, which is the basic definition that operational calculus needs for the
differential operator:

Definition 1. [4,7]. A real valued function u defined on[a, b] is in the space of γ-functions Cγ[a, b],
γ ∈ R if there exists a real number r > γ, such that u(t) = (t− a)rû(t), where û ∈ C[a, b], and
it is said to be in the spaceCn

γ[a, b] if and only if u(n) ∈ Cγ[a, b], n ∈ N0.

Definition 2. [4,8]. For a function u ∈ Cγ[a, b], δ ≥ −1, the Reimann–Liouville fractional
integral operator a Jα

t of fractional order α ∈ R+ and origin point a is defined as:

a Jα
t u(t) = 1

Γ(α)

∫ t
a (t− x)α−1u(x)dx.

a J0
t u(t) = u(t), a ≤ t ≤ b.

where Γ is the gamma function. a Jα
t has an important (or semigroup) property, that is:a Jα

t a Jβ
t u(t) =

a Jβ
t a Jα

t u(t) = a Jα+β
t u(t) for arbitrary α > 0 and β > 0. Additionally, it has the following properties

a Jα
t (t− a) δ =

Г(δ)
Г(δ + α + 1)

(t− a) δ+α, δ > −1.

Definition 3. [7,8]. Let α > 0, m = α and a ∈ R. The Reimann–Liouville fractional derivative of
order α and starting pointa of a function u(t) ∈ Cm

−1[a, b] is given as:

R
a Dα

t u(t) = Dm[
a Jm−α

t u(t)
]
.

R
a D0

t u(t) = u(t), a ≤ t ≤ b.

If α = m(∈ Z+) and u ∈ Cm[a, b], thus R
a Dm

t u(t) = dm

dtm u(t).

Definition 4. [8,9]. Let α > 0, m = α, then the Caputo fractional derivative of order α and
starting pointa of a function u(t) ∈ Cm

−1[a, b] is given as:

C
a Dα

t u(t) = a Jm−α
t u(m)(t) = 1

Γ(m−α)

∫ t
a (t− s)m−α−1u(m)(s)ds.

C
a D0

t u(t) = u(t), a ≤ t ≤ b.

Additionally, if α = m(∈ Z+) and u ∈ Cm[a, b], thus C
a Dm

t u(t) = dm

dtm u(t).
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2.2. Some Important Properties

In this subsection, we are interested some important properties which are used later
on this paper [4,7–9].

i. R
a Dα

tA = A (t−a)−α

Γ(1−α)
; where A is any constant; (α ≥ 0, α /∈ N).

ii. If the Caputo fractional derivative of a constant function is equal to zero, it means
C
a Dα

tA = 0, for any constant A and all α > 0.
iii. The relationship between the R-L integral and Caputo derivatives are shown here:

Let α ≥ 0, m = α and u ∈ Cm[a, b], then:

C
a Dα

t [a Jα
t u(t)] = u(t) ; a ≤ t ≤ b

a Jα
t

[
C
a Dα

t u(t)
]
= u(t)−

m−1

∑
k=0

u(k)(a)
k!

(t− a)k .

iv. Let Tm−1[γ; a] be the Taylor polynomial of degree (m− 1) for the function γ, then:

C
a Dα

t γ(t) = R
a Dα

t [γ(t)− Tm−1[γ; a]],

where (m− 1 < α ≤ m).
v. Let u(t) = (t− a)β and α > 0 ; m = α for some β ≥ 0, then:

C
a Dα

t u(t) =

⎧⎪⎨⎪⎩
0 if β ∈ {0, 1, 2, · · · , m− 1}

Γ(β+1)
Γ(β+1−α) (t− a)β−α if β ∈ N and β ≥ m

or β /∈ N and β > m− 1

Definition 5. [1,10]. The Laplace transform (LT) for the suitable function, u(t), of real vari-
able t ≥ 0, is the function U(s), which is defined by the integral form:

U(s) = L{u(t)} =
∫ ∞

0
e−stu(t)dt (2)

with U(s) the LT of u(t), and inverse Laplace transform of U(s), denoted by L−1 {U(s); t},
being the function u defined on [0, ∞), which has the fewest number of discontinuities and satisfies
L{u(t); s} = U(s). Laplace transform has various properties with some lemmas, which are the key
for our work, as shown below [1,6,11–13]:

i. If u(t) and q(t) have well-defined Laplace transforms, then U(s) = L{u(t)} and Q(s) =
L{q(t)}, respectively. Now, the Laplace transform of the convolution integral is defined by
the form:

L{(u ∗ q)(t)} = L
{∫ t

0
u(t− x) q(x)dx

}
= U(s)Q(s) (3)

If u = 1, then:

L
{∫ t

0
q(x)dx; s

}
=

1
s

Q(s) (4)

ii. Put the power function tm of order m ∈ Z+, then:

L{tmu(t)} = (−1) m dm

dsm L{u(t)} = (−1)m dm

dsm U(s) (5)

iii. From (ii and iii), we obtain:

L
{∫ t

0 t u(x)dx; s
}
= − d

ds

(
1
s U(s)

)
and L

{∫ t
0 x u(x)dx ; s

}
= − 1

s
d
ds U(s) . (6)
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The following shows the important lemma for the Laplace transform of a constant
delay function:

Lemma 1. [7]. Let u(t)be a continuous differentiable function on a closed bounded interval [0, b],
b ∈ R+, and let τ be a constant delay such that:

u(t) = ϕ(t), for− τ ≤ t < 0. (7)

Then, the Laplace transform of a τ − delay function is given by:

L{u(t− τ); s } = e−sτ [U(s) + Q(s, τ)]. (8)

where Q(s, τ) =
∫ 0
−τ e−st ϕ(t)dt and L{u(t) } = U(s). If the historical function ϕ(t) is defined

by power function tn(n ∈ Z+), we obtain:

L{u(t− τ); s} = e−sτ U(s) +
n

∑
p=0

(−1)n−p p!
(

n
p

)
τn−p

sp+1 −
n!

sn+1 e−sτ (9)

Lemma 2. [4,9]. Laplace transform of Caputo fractional of order α (m− 1 < α ≤ m), m = α can
be obtained as:

L{c
aDα

t u(t); s} = L
{

Jm−α
t Dm

t u(t); s
}
= s−(m−α) L

{
u(m)(t); s

}
= s−(m−α)

[
sm U(s)−

m−1
∑

k=0
sm−k−1 u(k)(0)

]
= sα U(s)−

m−1
∑

k=0
sα−k−1 u(k)(0) .

(10)

3. Solving LS-VIFDE’s Multi-Time RD Using the Laplace Transform Technique

In this section, we try to find a general analytical solution to a linear system of integro-
differential equations of the arbitrary orders with variable coefficients and multi-time
delays using the Laplace transform method in various types of kernels.

3.1. First Type (Difference Kernel)

We use Equation (1) with different kernels and a = 0 as the starting point. Further-
more, we consider Pri(t) as a power function, with difference kernels form Krj (t, x) =
Krj (t− x), where Crit�ri , Cri ∈ R are constants and �ri are arbitrary non-negative integers
for all r and i, and the Laplace transformation is taken for all r = 0, 1, . . . , m, which is:

L
{C

a Dαrn
t ur(t); s

}
+ L

{
n−1
∑

i=1
Pri(t) C

a D
αr(n−i)
t ur(t); s

}
+ L{Prn(t)ur(g(t, τr)); s}

= L{ fr(t); s}+
m
∑

j=0
λrjL

{ ∫ t
0 Krj (t− x)uj

(
g
(
x, τrj

))
dx; s

}
.

(11)

After applying the Laplace transformation in Equation (11), using Lemma 2 with the
initial condition for the first part, where mαrn − 1 < αrn ≤ mαrn for all r = 0, 1, . . . , m, and
also using Definition (5; part (ii)) and Lemma 2 for second parts, where mαr(n−i) − 1 <
αr(n−i) ≤ mαr(n−i) , for all r = 0, 1, . . . , m, we obtain:

L
{C

a Dαrn
t ur(t); s

}
= sαrn Ur(s)−

mαrn−1
∑

kr=0
sαrn−kr−1 u(kr)

r (0)

= sαrn Ur(s)−
mαrn−1

∑
kr=0

sαrn−kr−1 ur,kr .
(12)
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where ur,kr are given for all r from the conditions. For all r = 0, 1, . . . , m using Equations (5)
and (10) and conditions, for each i = 1, 2, . . . , n− 1, we obtain:

L
{

Pri(t) C
a D

αr(n−i)
t ur(t); s

}
= Cri(−1)�ri d�ri

ds�ri

[
sαr(n−i) Ur(s)

]
−Cri(−1)�ri d�ri

ds�ri

⎡⎣mαr(n−i)
−1

∑
kr=0

sαr(n−i)−kr−1ur,kr

⎤⎦.

(13)

where �ri is the order of Pri(t) for each i = 1, 2, . . . , n− 1 and r = 0, 1, . . . , m. Consequently,
we use Equation (5) and then apply the Lemma (1, Equations (8) and (9)), respectively, with
the defined g(t, τr) = t− τr, thus obtaining for each r:

L{Prn(t)ur(g(t, τr)); s} = Crn(−1)�rn d�rn

ds�rn

[
e−sτr (Ur(s) + Qr(s, τr))

]
.

where:

Qr(s, τr) =
∫ 0

−τr
e−st ϕr(t)dt.

If the historical function ϕr(t) is tqr , qr ∈ Z+ for all r = 0, 1, . . . , m, in this special case,
we obtain:

L{Prn(t)ur(g(t, τr)); s}

= Crn (−1)�rn

{
d�rn

ds�rn [e
−sτr Ur(s)] + d�rn

ds�rn

[
qr

∑
p=0

(−1)qr−p p!
(

qr
p

)
τr

qr−p

sp+1

]
− d�rn

ds�rn

[
qr !

sqr+1 e−sτr
]}

.
(14)

the Laplace transform of the homogenous part is simply written as:

L{ fr(t); s} = Fr(s), r = 0, 1, . . . , m. (15)

By applying Equation (3) from Definition 4 with Lemma (1, Equations (8) and (11))
with defined g

(
x, τrj

)
= x− τrj for all r; j = 0, 1, . . . , m, the last part of Equation (11) will

become:

L
{ ∫ t

0
Krj (t− x)uj

(
g
(
x, τrj

))
dx; s

}
= Krj(s) e−sτrj

[
Uj(s) + Qj

(
s, τrj

)]
.

where:

Qj
(
s, τrj

)
=

∫ 0

−τrj

e−st ϕj(t)dt.

The symbolic Krj(s) is the Laplace transform of the difference kernel Krj (t− x) for
each r and j. If the historical function ϕj(t) is tqr , qr ∈ Z+ for all r = 0, 1, . . . , m, in this
special case, we obtain:

L
{ ∫ t

0 Krj (t− x)uj
(

g
(
x, τrj

))
dx; s

}
= Krj(s)

[
e−sτrj Uj(s) +

qr

∑
p=0

(−1)qr−p p!
(

qr
p

)
τrj

qr−p

sp+1 − qr !
sqr+1 e−sτrj

]
.

(16)

After putting Equations (12)–(16) into Equation (11), they become:
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sαrn Ur(s)−
mαrn−1

∑
kr=0

sαrn−kr−1 ur,kr+
n−1
∑

i=1
Cri(−1)�ri d�ri

ds�ri

[
sαr(n−i) Ur(s)

]
−

n−1
∑

i=1
Cri(−1)�ri d�ri

ds�ri

⎡⎣mαr(n−i)
−1

∑
kr=0

sαr(n−i)−kr−1ur,kr

⎤⎦+Crn (−1)�rn
{

d�rn

ds�rn [e
−sτr (Ur(s) + Qr(s, τr))]

= Fr(s) +
m
∑

j=0
λrjKrj(s) e−sτrj

[
Uj(s) + Qj

(
s, τrj

)]
.

If tqr , qr ∈ Z+ for each r = 0, 1, . . . , m is a power function, which is also a historical
function, using part two of Lemma 1 above the equation means it becomes:

sαrn Ur(s)−
mαrn−1

∑
kr=0

sαrn−kr−1 ur,kr

+
n−1
∑

i=1
Cri(−1)�ri d�ri

ds�ri

[
sαr(n−i) Ur(s)

]
−

n−1
∑

i=1
Cri(−1)�ri d�ri

ds�ri

⎡⎣mαr(n−i)
−1

∑
kr=0

sαr(n−i)−kr−1ur,kr

⎤⎦
+Crn (−1)�rn

{
d�rn

ds�rn [e
−sτr Ur(s)] + d�rn

ds�rn

[
qr

∑
p=0

(−1)qr−p p!
(

qr
p

)
τr

qr−p

sp+1

]
− d�rn

ds�rn

[
qr !

sqr+1 e−sτr
]}

= Fr(s) +
m
∑

j=0
λrj Krj(s)

[
e−sτrj Uj(s) +

qr

∑
p=0

(−1)qr−p p!
(

qr
p

)
τrj

qr−p

sp+1 − qr !
sqr+1 e−sτrj

]
.

(17)

Consequently, the system of ordinary differential equation of components
{Ur(s) : r = 0, 1, . . . , m} is solved to find Ur(s). In the end, the inverse of the Laplace
transform on Ur(s) is used to obtain the solution ur(t) of LS-VIFDEs for multi-time RD (1).
After some simple manipulations, from Equation (17), we obtain:[

sαrn +
n−1
∑

i=1
Cri(−1)�ri d�ri

ds�ri
sαr(n−i) + Crn (−1)�rn d�rn

ds�rn e−sτr − λrr Krr(s)e−sτrr

]
Ur(s)

−
m
∑

j = 0
j 
= r

λrj Krj(s)e
−sτrj Uj(s) +

n−1
∑

i=1
Cri(−1)�ri sαr(n−i) d�ri

ds�ri
Ur(s)

+Crn (−1)�rn e−sτr d�rn

ds�rn Ur(s) = Fr(s). r = 0, 1, . . . , m

where

Fr(s) = Fr(s) +
mαrn−1

∑
kr=0

sαrn−kr−1 ur,kr +
n−1
∑

i=1
Cri(−1)�ri d�ri

ds�ri

⎡⎣mαr(n−i)
−1

∑
kr=0

sαr(n−i)−kr−1ur,kr

⎤⎦
−Crn(−1)�rn

{
d�rn

ds�rn

[
qr

∑
p=0

(−1)qr−p p!
(

qr
p

)
τr

qr−p

sp+1

]
− d�rn

ds�rn

[
qr !

sqr+1 e−sτr
]}

+
m
∑

j=0
λrj Krj(s)

[
qr

∑
p=0

(−1)qr−p p!
(

qr
p

)
τrj

qr−p

sp+1 − qr !
sqr+1 e−sτrj

]
.

As a special case, if the Pri(t) and Prn(t) are only constants, this means that �ri and
�rn are equal to zero. Thus, after some simple manipulations, from Equation (17), we obtain
the following system for all r = 0, 1, . . . , m:

Hr(s)Ur(s)−
m

∑
j = 0
j 
= r

λrj Krj(s)e
−sτrj Uj(s) = Fr(s). (18)
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where:

Hr(s) = sαrn +
n−1

∑
i=1

Cri(−1)�ri d�ri

ds�ri
sαr(n−i) + Crn (−1)�rn d�rn

ds�rn
e−sτr − λrr Krr(s)e−sτrr .

Finally, the system of ordinary differential equation of components
{Ur(s) : r = 0, 1, . . . , m} is solved to find Ur(s). In the end, the inverse of the Laplace
transform on Ur(s) is used to obtain the solution ur(t) of LS-VIFDEs for multi-time RD (1).

3.2. Second Type (Simple Degenerate Kernel)

Some types of linear-system VIFDEs of consistent multi-time can be solved using
the Laplace transform approach. We take the same conditions as Equation (12) with all
conditions by changing the kernel from difference kernel to a simple degenerate kernel.

Define the kernel: Krj (t, x) = crjt
k1

rj + drjx
k2

rj , where crj, drj ∈ R for all r, j = 0, 1, . . . , m and
k1

rj, k2
rj ∈ Z+; then:

L
{C

a Dαrn
t ur(t); s

}
+ L

{
n−1
∑

i=1
Pri(t) C

a D
αr(n−i)
t ur(t); s

}
+ L{Prn(t)ur(g(t, τr)); s}

= L{ fr(t); s}+
m
∑

j=0
λrjL

{ ∫ t
0

[
crjt

k1
rj + drjx

k2
rj
]
uj
(

g
(
x, τrj

))
dx; s

}
.

(19)

The left hands in all parts of Equation (19) are the same as Equation (11) in Section 3.1,
while for the integral part, it is different. We apply the important property of Equation (6)
part (iii) in Section 2.2 using Equations (8) and (9), respectively, and for higher derivative of
multiplication functions using Leibniz’s formula [7,14], with the property g

(
x, τrj

)
= x− τrj;

then, after some manipulating, we obtain:

L
{ ∫ t

0

[
crjt

k1
rj + drjx

k2
rj
]
uj
(

g
(
x, τrj

))
dx; s

}
= e−sτrj

s

{⎡⎣crj

⎛⎝ k1
rj

∑
b=0

b!

(
k1

rj
b

)
1
sb τrj

k1
rj−b

⎞⎠+ drjτrj
k2

rj

⎤⎦+

⎡⎣drj

k2
rj−1

∑
b=0

(−1)b+k2
rj τrj

b

(
k2

rj
b

)
d

k2
rj−b

ds
k2
rj−b

⎤⎦
+

⎡⎣crj

k1
rj−1

∑
b=0

(−1)b+k1
rj b!

(
k1

rj
b

)
1
sb

⎛⎝k1
rj−b−1

∑
p=0

(−1)pτrj
p

(
k1

rj − b
p

)
d

k1
rj−b−p

ds
k1
rj−b−p

⎞⎠⎤⎦}Uj(s)

+ 1
s

⎧⎨⎩crj

⎡⎣ k1
rj

∑
b=0

(−1)b+k1
rj b!

(
k1

rj
b

)
1
sb

d
k1
rj−b

ds
k1
rj−b

⎤⎦+ drj

[
(−1)k2

rj d
k2
rj

ds
k2
rj

]⎫⎬⎭Hq
rj(s).

(20)

for all r, j = 0, 1, . . . , m, where:

Hq
rj(s) =

⎧⎪⎨⎪⎩
e−sτrj Qj

(
s, τrj

)
; if the historical function be any countinous differential function.

qr

∑
p=0

(−1)qr−p p!
(

qr
p

)
τrj

qr−p

sp+1 − qr!
sqr+1 e−sτrj ; i f ϕr(t) = tqr .

and:

Qj
(
s, τrj

)
=

∫ 0

−τrj

e−st ϕj(t)dt.

After some simple manipulations, and using Equation (20), we obtain the general
solution for Equation (19):
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sαrn Ur(s)−
mαrn−1

∑
k=0

sαrn−k−1 ur,kr

+
n−1
∑

i=1
Cri(−1)�ri d�ri

ds�ri

[
sαr(n−i) Ur(s)

]
+

n−1
∑

i=1
Cri(−1)�ri d�ri

ds�ri

⎡⎣mαr(n−i)−1

∑
k=0

sαr(n−i)−k−1ur,kr

⎤⎦
+Crn (−1)�rn

{
d�rn

ds�rn [e
−sτr Ur(s)] + d�rn

ds�rn

[
qr

∑
p=0

(−1)qr−p p!

(
qr

p

)
τr qr−p

sp+1

]
− d�rn

ds�rn

[
qr !

sqr+1 e−sτr
]}

= Fr(s)

+
m
∑

j=0
λrj

e
−sτrj

s

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎣crj

⎛⎝ k1
rj

∑
b=0

b!

(
k1

rj

b

)
1
sb τrj

k1
rj−b

⎞⎠+ drjτrj
k2

rj

⎤⎦+

⎡⎣drj

k2
rj−1

∑
b=0

(−1)b+k2
rj τrj

b

(
k2

rj

b

)
d

k2
rj−b

ds
k2
rj−b

⎤⎦
+

⎡⎣crj

k2
rj−1

∑
b=0

(−1)b+k1
rj b!

(
k1

rj

b

)
1
sb

⎛⎝k2
rj−b−1

∑
p=0

(−1)pτrj p

(
k1

rj − b

p

)
d

k1
rj−b−p

ds
k1
rj−b−p

⎞⎠⎤⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Uj(s)

+ 1
s

⎧⎨⎩crj

⎡⎣ k1
rj

∑
b=0

(−1)b+k1
rj b!

(
k1

rj

b

)
1
sb

d
k1
rj−b

ds
k1
rj−b

⎤⎦+ drj

[
(−1)k2

rj d
k2
rj

ds
k2
rj

]⎫⎬⎭Hq
rj(s)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(21)

Equation (21) becomes:

Fr(s) = Fr(s) +
mαrn−1

∑
kr=0

sαrn−kr−1 ur,kr +
n−1
∑

i=1
Cri(−1)�ri d�ri

ds�ri

⎡⎣mαr(n−i)
−1

∑
kr=0

sαr(n−i)−kr−1ur,kr

⎤⎦
−Crn(−1)�rn

{
d�rn

ds�rn

[
qr

∑
p=0

(−1)qr−p p!
(

qr
p

)
τr

qr−p

sp+1

]
− d�rn

ds�rn

[
qr !

sqr+1 e−sτr
]}

+
m
∑

j=0
λrj

1
s

{
crj

⎡⎣ k1
rj

∑
b=0

(−1)b+k1
rj b!

(
k1

rj
b

)
1
sb

d
k1
rj−b

ds
k1
rj−b

⎤⎦+ drj

[
(−1)k2

rj d
k2
rj

ds
k2
rj

]}
Hq

rj(s).

As a special case, if the Pri(t) and Prn(t) are the only constants, this means that �ri and
�rn are equal to zero. Thus, after some simple manipulations, system Equation (21) was
formed, and we obtained the following system, for all r = 0, 1, . . . , m:

Hr(s)Ur(s)−
m

∑
j = 0
j 
= r

λrj Krj(s)e
−sτrj Uj(s) = Fr(s). (22)

where:

Hr(s) = sαrn +
n−1

∑
i=1

Cri(−1)�ri d�ri

ds�ri
sαr(n−i) + Crn (−1)�rn d�rn

ds�rn
e−sτr − λrr Krr(s)e−sτrr .

and:

Krj(s) =

⎡⎣crj

⎛⎝ k1
rj

∑
b=0

b!

(
k1

rj
b

)
1
sb τrj

k1
rj−b

⎞⎠+ drjτrj
k2

rj

⎤⎦+

⎡⎣drj

k2
rj−1

∑
b=0

(−1)b+k2
rj τrj

b

(
k2

rj
b

)
d

k2
rj−b

ds
k2
rj−b

⎤⎦
+

⎡⎣crj

k1
rj−1

∑
b=0

(−1)b+k1
rj b!

(
k1

rj
b

)
1
sb

⎛⎝k1
rj−b−1

∑
p=0

(−1)pτrj
p

(
k1

rj − b
p

)
d

k1
rj−b−p

ds
k1
rj−b−p

⎞⎠⎤⎦.

If the (HF) is any continuously differentiable function ϕr(t). Consequently, there
is an ordinary differential equation in Ur(s), Uj(s), which is solved to find Ur(s), Uj(s).
Finally, the inverse of the Laplace transform is used on Ur(s), Uj(s) to obtain the solu-
tion ur(t), uj(t) for the system of integro-fractional differential equations with variable
coefficients and multi-delays.
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4. Analytic Examples

Here are some examples of the system of integro-fractional differential equations with
variable coefficients and multi-delays, which were solved by Laplace transform method:

Example 1. Consider the linear SIFDEs of the Volterra type with the constant multi-time delay
and variable coefficients of retarded delay on [0, 1] :

C
0 D1.5

t u0(t)− t C
0 D0.5

t u0(t)− 3t u0(t− 1)
= f0(t) +

∫ t
0

[
(t− x)u0(x− 2)− et−xu1(x− 1)

]
dx.

(23)

C
0 D0.9

t u1(t)− 1
2

C
0 D0.5

t u1(t) + 1
2 u1(t− 0.2)

= f1(t) +
∫ t

0

[
(t− x)u0(x− 0.3) + (t− x)2u1(x− 0.5)

]
dx.

(24)

where:
f0(t) =

2
Γ(1.5)

t0.5 +
2

Γ(2.5)
t2.5 + et − 1

12
t4 − 7

3
t3 + 4t2 − 5t− 1.

f1(t) =
2

Γ(1.1)
t0.1 − 1

Γ(1.5)
t0.5 − 1

4
t4 + 0.1 t3 − 0.045 t2 + t + 0.3.

with historical function (HF) and initial condition u0(0) = 0; u′0(0) = 0; ϕ0(t) = t2;u1(0) =
1; u′1(0) = 2; ϕ1(t) = 2t + 1, so we have:K0,1(t, x) = (t− x) ;K0,2(t, x) = et−x,K1,1(t, x) =
(t− x);K1,2(t, x) = (t− x)2 and τ0 = 1,τ0,1 = 2, τ0,2 = 1, τ1 = 0.2, τ1,1 = 0.3 ; τ1,2 = 0.5 ,
which are constant different time delays, and P0,1(t) = t, P0,2(t) = −3t, P1,1(t) = −1

2 , P1,2(t) =
1
2 are variable coefficients.

The Laplace transform is taken to the above equation and Equations (17) and (18) are used
to obtain:

H0(s)U0(s) +
e−s

(s− 1)
U1(s) = F0(s). (25)

H1(s)U1(s)−
e−0.3s

s2 U0(s) = F1(s). (26)

where:
H0(s) = s1.5 − d

ds
s0.5 + 3

d
ds

e−s − 1
s2 e−2s.

H1(s) = s0.9 − 1
2

s0.5 +
1
2

e−0.2s − 2
s3 e−0.5s.

and:

F0(s) =
2

s1.5 +
5

s3.5 −
6 e−s

s3 − 18 e−s

s4 − 2 e−2s

s5 +
2e−s

s2(s− 1)
+

e−s

s(s− 1)
.

F1(s) =
2

s1.1 −
1

s1.5 +
1

s0.1 −
1

2s0.5 +
e−0.2s

s2 +
e−0.2s

2s
− 2e−0.3s

s5 − 4e−0.5s

s5 − 2e−0.5s

s4 .

After substituting Equation (25) into Equation (26) and solving this with U(∞) = 0,
which is ODE of the first order, the following is obtained: U0(s) = 2

s3 .
By substituting U0(s) into one of either Equation (25) or Equation (26), we obtain:

U1(s) = 2
s2 +

1
s .

By taking the inverse of the Laplace transform of U0(s) and U1(s), the exact solutions,
u0(t) and u1(t), are obtained from Equations (22) and (23): u0(t) = L−1

{
2
s3

}
= t2; u1(t) =

L−1
{

2
s2 +

1
s

}
= 2t + 1, which is the exact solution for our given system.

Example 2. Consider linear SIFDEs of a constant multi-time retarded delay with variable coeffi-
cients on [0, 1] :
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C
0 D1.3

t u0(t) + 2 u0(t− 0.4) = f0(t) +
∫ t

0
(t + x)u1(x− 1) dx. (27)

C
0 D0.8

t u1(t)−
1
2

C
0 D0.5

t u1(t) = f1(t) +
∫ t

0

(
2t + 2x2

)
u1(x− 0.2) dx. (28)

where : f0(t) =
1

Γ(1.7)
t0.7 − 5t

6
t3 + t2 − 0.8 t + 0.16.

f1(t) =
1

Γ(1.2)
t0.2 − 1

2 Γ(1.5)
t0.5 − 1

5
t5 − 0.7

3
t4 +

0.64
3

t3 + 0.04 t2.

With initial conditions and historical functions:
u0(0) = 0; u′0(0) = 0; ϕ0(t) = 1

2 t2 ; u1(0) = 1; u′1(0) = 2; ϕ1(t) = t + 1, since here we
have: K0,1(t, x) = (t + x) ; K1,1(t, x) =

(
2t + 2x2) ; τ0 = 0.4, τ0,1 = 1, τ1,1 = 0.2, which are

constant different time delays, and P0,2(t) = 2, P1,1(t) = −1
2 ; are variable coefficients.

Taking the Laplace transform for the above equation and using Equations (21) and
(22), we obtain:

H0(s)U0(s) +
m

∑
j = 0
j 
= r

λ01 K01(s)e−sτ01U1(s) = F0(s). (29)

H1(s)U1(s) +
m

∑
j = 0
j 
= r

λ10 K10(s)e−sτ10U0(s) = F1(s). (30)

where:

K01(s) =
1
s

{
2 +

1
s
− 2

d
ds

}
.

K10(s) =
1
s

{
0.48 +

2
s
+ 2

d2

ds2 − 2.8
d
ds

}
.

H0(s) = s1.3 + 2e−0.4s.

H1(s) = s0.8 − 1
2

s0.5.

and:

F0(s) =
1

s1.7 +
2e−0.4s

s3 − 5 e−s

s3 − 5 e−s

s4 − 2 e−s

s2 .

F1(s) =
1

s1.2 −
1

2s1.5 +
1

s0.2 −
1

2s0.5 −
10.4 e−0.2s

s5 − 0.48 e−0.2s

s4 − 24 e−0.2s

s6 .

After substituting Equation (29) into Equation (30) and with U(∞) = 0, which is
ODE of the first order, after solving it, the following is obtained:U0(s) = 1

s3 . Next, by
substituting U0(s) in either one of Equation (29) or Equation (30), we obtain: U1(s) = 2

s +
1
s .

By taking the inverse of the Laplace transform of U0(s) and U1(s), the exact solutions,
u0(t) and u1(t), are obtained from Equations (27) and (28): u0(t) = L−1

{
2
s3

}
= 1

2 t2;

u1(t) = L−1
{

2
s2 +

1
s

}
= t + 1, which are the exact solutions for our given system.

5. Discussion

In this work, after using the Laplace transform to solve a linear system of integro-
fractional differential equations of the Volterra type with variable coefficients and multi-
time retarded delay using some illustrating examples, we found the following:
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1. Generally, this method which was amended here, provided good results and valida-
tion.

2. Here: we successfully applied the Laplace transform method for two different types
of kernels, which were difference and simple degenerate kernels.
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Abstract: As a follow-up to the inherent nature of Hadamard-Type Fractional Integro-differential
problem, little is known about some asymptotic behaviors of solutions. In this paper, an integro-
differential problem involving Hadamard fractional derivatives is investigated. The leading deriva-
tive is of an order between one and two whereas the nonlinearities may contain fractional derivatives
of an order between zero and one as well as some non-local terms. Under some reasonable condi-
tions, we prove that solutions are asymptotic to logarithmic functions. Our approach is based on a
generalized version of Bihari–LaSalle inequality, which we prove. In addition, several manipulations
and crucial estimates have been used. An example supporting our findings is provided.

Keywords: asymptotic behavior; fractional differential equation; Hadamard fractional derivative

1. Introduction

Of concern is the following general class of initial value problems modelled by:⎧⎪⎪⎨⎪⎪⎩
(

HDα
t0

u
)′
(t) = f

(
t,
(

HDα1
t0

u
)
(t),

∫ t
t0

h
(

t, s,
(

HDα2
t0

u
)
(s)

)
ds
)

, t > t0 > 0,

(
HI1−α

t0
u
)
(t+0 ) = u1,

(
HDα

t0
u
)
(t+0 ) = u2, u1, u2 ∈ R,

(1)

where HDα
t0

, HDα1
t0

and HDα2
t0

are the Hadamard fractional derivatives of orders α, α1 and
α2, respectively, 0 ≤ α1 < α < 1 and 0 ≤ α2 < α < 1. The operator HIρ

t0
is the Hadamard

fractional integral of order ρ ≥ 0. The definitions of these operators are given in Section 2.
We shall investigate the asymptotic behavior of solutions for Problem (1). Sufficient

conditions on the nonlinear source term guaranteeing the convergence of solutions to
logarithmic functions, for large values of time, are established. The importance of using
analytical techniques to study the asymptotic behavior of solutions for Problem (1) arises
from the lack of explicit solutions.

It is known that solutions for many kinds of (integer-order) ordinary differential
equations may approach a certain function as time goes to infinity; in particular they may
decay to zero, oscillate, or blow up in finite time. Many results in this regard exist in the
literature. For example, we refer the reader to the papers [1–6], in which various classes of
linear and nonlinear ordinary differential equations have been studied. Generalizing the
existing results from integer orders to non-integer fractional orders is of great importance
due to their numerous applications; see for instance, [7–10]. Unfortunately, imitating the
techniques verbatim is not straightforward. Many difficulties arise when trying to do so.
Some of these difficulties are due to the nature of the fractional derivatives themselves as
they involve by definition all the past memory of solutions as well as nonregular kernels.
In addition, many fundamental properties of integer-order derivatives are not valid for
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fractional-order derivatives. The chain rule is an example of such invalid properties. We will
go around these difficulties by utilizing some adequate estimations, like desingularization
methods, to deal with singular terms and by modifying and/or generalizing some versions
of Bihari–LaSalle inequality.

The study of the asymptotic behavior of solutions for fractional differential equations,
with Riemann–Liouville or Caputo fractional derivatives, has been investigated by many
researchers, see e.g., [11–20]. The authors of [15] considered the fractional differential equation:(

Dα
0+u′

)
(t) + f (t, u) = 0, t > 0,

under the condition

| f (t, u)| ≤ φ

(
t,

|u|
(1 + t)α

)
, t ≥ 0, u ∈ R,

where Dα
0+ is the Riemann–Liouville fractional derivative of order α, 0 < α < 1. The

function f : [0, ∞)×R→ R is continuous and the function φ : [0, ∞)× [0, ∞)→ [0, ∞) is
continuous in each argument and nondecreasing in the second one. They proved that the
solutions can be represented asymptotically as a1 + a2tα + O(tα−1), a1, a2 ∈ R.

In [20], the case when the source function f depends on the solution and its sub-first-
order fractional derivative has been considered, namely,⎧⎪⎪⎨⎪⎪⎩

(
CDα

t+0
u
)
(t) = f

(
t, u(t),

(
CDα1

t+0
u
)
(t)

)
, t > t0 > 0,

u(t0) = u0,

(2)

where CDα
t+0

is the Caputo fractional derivative of order α, 0 < α1 < α < 1. The authors

showed that any global solution of Problem (2) is asymptotic to ctα1 for some real number c.
The present authors investigated the boundedness, power-type decay and asymptotic

behavior of solutions for the initial value problems:⎧⎪⎨⎪⎩
(CDα

0+u
)
(t) = f

(
t, u(t),

∫ t
0 h(t, s, u(s))ds

)
, t > 0, 0 < α ≤ 1

u(0) = u0, u0 ∈ R,

and⎧⎪⎪⎨⎪⎪⎩
(

Dα+1
0+ u

)
(t) = f

(
t, (Dα1

0+u)(t),
∫ t

0 h
(
t, s,

(
Dα2

0+u
)
(s)

)
ds
)

, t > 0, 0 ≤ α1, α2 ≤ α < 1

(
I1−α
0+ u

)
(0+) = u0,

(
Dα

0+u
)
(0+) = u1, u0, u1 ∈ R.

Several different classes of source functions f such as

| f (t, u, υ)| ≤ k(t)P(|u|) + l(t)Q(|υ|), | f (t, u, υ)| ≤ k(t)P(tα2 |u|)Q(|υ|),
or | f (t, u, υ)| ≤ k(t)P

(
t1−α+α1 |u|

)
+ l(t)Q(|υ|),

and on the kernel h such as:

|h(t, s, u)| ≤ w(s)K(|u|), |h(t, s, u)| ≤ w(s)K(sα2 |u|), |h(t, s, u)| ≤ w(t, s)K(|u|),
or |h(t, s, u)| ≤ w(s)K

(
t1−α+α2 |u|

)
,

for some functions k, l, P, Q, w and K have been treated, see [11,12,21–23].
For fractional differential equations with Hadamard-type fractional derivatives, we

found relatively few results in the literature tackling the long-time behavior of solutions of
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fractional initial value problems, see, [24–28]. The authors of [28] studied the stability and
decay rate of the zero solution of the fractional differential problem:⎧⎪⎪⎨⎪⎪⎩

(
HDα

t0
u
)
(t) = f (u(t)), t > t0 > 0, 0 < α < 1

(
HI1−α

t0
u
)
(t+0 ) = u0, u0 ∈ R.

(3)

They considered first the linear case, f (u) = cu, c ∈ R, and established a criteria for
the decay rate of solutions and the Lyapunov stability of the zero equilibrium. For the
nonlinear case, they obtained the stability and decay rate of the hyperbolic zero equilibrium.
They used a modified Laplace transform to express solutions by Mittag–Leffler functions
and then used the asymptotic expansions of these functions to discuss the stability and
logarithmic decay of the solutions. In [25], the authors discussed the stability of logarithmic
type for the initial value problem:⎧⎪⎪⎨⎪⎪⎩

(
HDα

t0
u
)
(t) = f

(
t, u(t),

(
HDα1

t0
u
)
(t)

)
, t > t0 > 0, 0 < α1 < α < 1,

(
HDα−1

t0
u
)
(t+0 ) = u0, u0 ∈ R.

(4)

Under some sufficient growth conditions of f , it has been shown that the solutions decay

to zero as the logarithmic function
(

ln t
t0

)α−1
. Recently, the same authors considered

Problem (4) in [26] with d
dt

(
HDα

t0
u
)
(t) on the left hand side and the additional initial

condition
(

HDα
t0

u
)
(t+0 ) = u1 ∈ R. They showed that solutions approach a logarithmic

function as time goes to infinity.
To the best of our knowledge, the long-time behavior of solutions for the class of

fractional integrodifferential equations with Hadamard fractional derivatives (1) has not
been investigated so far. In this paper, we prove that solutions of (1) are asymptotic to the

logarithmic function
(

ln t
t0

)α
where α is the order of the involved fractional derivative.

Under sufficient growth conditions, we show that there exist a real number r such that
any solution for (1) in the space u ∈ Cα+1

1−α,ln[t0, ∞), see (16), has the following property

lim
t→∞

u(t)(
ln t

t0

)α = r.

The rest of this paper is organized as follows. In the next section, Section 2, we give
some notations from fractional calculus and present some preliminary results. In Section 3,
we introduce and prove our main results. Section 4 is devoted to an example that supports
our results. A brief conclusion is presented at the end of the study in Section 5.

2. Preliminaries

This section is devoted to briefly introduce some basic definitions, notions, and prop-
erties from fractional calculus and fractional differential equations theory which will be
used in further considerations.

Definition 1 ([7]). We denote by Cγ,ln[t0, T], 0 ≤ γ < 1, the following weighted space of
continuous functions:

Cγ,ln[t0, T] =
{

ξ : (t0, T]→ R :
(

ln
t
t0

)γ

ξ(t) ∈ C[t0, T]
}

, (5)

with the norm

‖ξ‖Cγ,ln
=

∥∥∥∥(ln
t
t0

)γ

ξ(t)
∥∥∥∥

C0,ln

,
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where C[t0, T] = C0,ln[t0, T] is the space of continuous functions on [t0, T].

Definition 2 ([7]). Let δ = t d
dt be the δ-derivative. For n ∈ N and 0 ≤ γ < 1, the weighted space

of continuously δ-differentiable functions up to order n− 1 with nth δ-derivative in Cγ,ln[t0, T], is
denoted by Cn

δ,γ[t0, T] and defined by:

Cn
δ,γ[t0, T] =

{
ξ : (t0, T]→ R | δiξ ∈ C[t0, T], i = 0, 1, 2, . . . , n− 1, δnξ ∈ Cγ,ln[t0, T]

}
,
(6)

with the norm

‖ξ‖Cn
δ,γ

=
n−1

∑
i=0

∥∥∥δiξ
∥∥∥

C
+ ‖ δnξ‖Cγ,ln

.

In particular, C0
δ,γ[t0, T] = Cγ,ln[t0, T].

A characterization of the space Cn
δ,γ[t0, T] is given as follows [7]: The functions ξ in

the space Cn
δ,γ[t0, T], n ∈ N and 0 ≤ γ < 1, can be represented as:

ξ(t) =
1

(n− 1)!

∫ t

t0

(
ln

t
s

)n−1 h(s)
s

ds +
n−1

∑
i=0

bi

(
ln

t
t0

)i
,

where h ∈ Cγ,ln[t0, T] and bi , i = 0, 1, 2, . . . , n − 1, are arbitrary constants. In fact,

h(t) = (δnξ)(t) and bi =
(δiξ)(t0)

i! .

Definition 3 ([7]). The Hadamard left-sided fractional integral of order α > 0 is defined by:

(
HIα

t0
w
)
(t) =

1
Γ(α)

∫ t

t0

(
ln

t
s

)α−1 w(s)
s

ds, t > t0, (7)

provided the right-hand side exists. We define HI0
t0

w = w. The function Γ is the Euler gamma
function defined by Γ(α) =

∫ ∞
0 tα−1e−tdt, α > 0, where tα−1 = e(α−1) ln t.

Definition 4 ([7]). The Hadamard left-sided fractional derivative of order α > 0, is defined by:

(
HDα

t0
w
)
(t) =

1
Γ(n− α)

δn
∫ t

t0

(
ln

t
s

)n−α−1 w(s)
s

ds, t > t0,

that is, (
HDα

t0
w
)
(t) = δn

(
HIn−α

t0
w
)
(t), t > t0, (8)

where δn =
(

t d
dt

)n
, n = −[−α]. In particular, when α = m ∈ N0, we have HDm

t0
w = δmw.

The next lemma shows that the Hadamard fractional derivative (or integral) of a
logarithmic function results in a multiple of the same logarithmic function with the order
of the fractional derivative (or integral) subtracted from (or added to) its power.

Lemma 1 ([7]). If α > 0, β > 0, then:(
HIα

t0

(
ln

s
t0

)β−1
)
(t) =

Γ(β)

Γ(β + α)

(
ln

t
t0

)β+α−1
, t > t0,

(
HDα

t0

(
ln

s
t0

)β−1
)
(t) =

Γ(β)

Γ(β− α)

(
ln

t
t0

)β−α−1
, t > t0.
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In particular, when 0 < α < 1, β = 1, then:

(
HIα

t0
1
)
(t) =

1
Γ(1 + α)

(
ln

t
t0

)α

, t > t0,

(
HDα

t0
1
)
(t) =

1
Γ(1− α)

(
ln

t
t0

)−α

, t > t0.

The last property shows that the Hadamard-type derivative of a constant is not zero.

The composite of the Hadamard operators of fractional differentiation and integration
with different orders is given next.

Lemma 2 ([7]). Let 0 < β < α and 0 ≤ γ < 1, then:

HDβ
t0 HIα

t0
w = HIα−β

t0
w

at every point in (t0, T] if w ∈ Cγ,ln[t0, T] and at every point in [t0, T] if w ∈ C[t0, T]. In
particular, when α > β = m ∈ N, we obtain:

HDm
t0 HIα

t0
w = HIα−m

t0
w.

The Hadamard differentiation operator is the left inverse to the associated Hadamard
integration operator [7]. That is, HDα

t0 HIα
t0

w = w at every point in (t0, T] if w ∈ Cγ,ln[t0, T].
This property is not valid when the Hadamard fractional derivative and the Hadamard
fractional integral are inverted as shown in the lemma below.

Lemma 3 ([7]). Let α ≥ 0 and n = −[−α]. If w ∈ Cγ,ln[t0, T], 0 ≤ γ < 1 and HIn−α
t0

w ∈
Cn

δ,γ[t0, T], then:

(
HIα

t0 HDα
t0

w
)
(t) = w(t)−

n

∑
i=1

(
δn−i

(
HIn−α

t0
w
))

(t+0 )

Γ(α− i + 1)

(
ln

t
t0

)α−i
, (9)

for all t ∈ (t0, T]. In particular, for 0 ≤ α < 1, we have:

(
HIα

t0 HDα
t0

w
)
(t) = w(t)−

(
HI1−α

t0
w
)(

t+0
)

Γ(α)

(
ln

t
t0

)α−1
(10)

at every point in (t0, T] if w ∈ Cγ,ln[t0, T] and at every point in [t0, T] if w ∈ C[t0, T] and

HI1−α
t0

w ∈ C1
δ,γ[t0, T].

For more about Hadamard fractional integral and derivative, we refer to the
books [7,29,30].

The limit of the ratio of the Hadamard fractional integral
(

HIα+1
t0

s f (s, u(s), v(s))
)
(t)

and the power function 1
Γ(α+1)

(
ln t

t0

)α
as t → ∞ is treated in the lemma below.

Lemma 4. Let f ∈ L1(t0, ∞), t0 > 0. Suppose that u and v are real-valued functions defined on
[t0, ∞), then:

lim
t→∞

(
HIα+1

t0
s f (s, u(s), v(s))

)
(t)

1
Γ(α+1)

(
ln t

t0

)α = lim
t→∞

1(
ln t

t0

)α

∫ t

t0

(
ln

t
s

)α

f (s, u(s), v(s))ds

=
∫ ∞

t0

f (s, u(s), v(s))ds, α > 0.
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Proof. It is easy to see that:∣∣∣∣∣∣∣
(

HIα+1
t0

s f (s, u(s), v(s))
)
(t)

1
Γ(α+1)

(
ln t

t0

)α −
∫ ∞

t0

f (s, u(s), v(s))ds

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1(

ln t
t0

)α

∫ t

t0

(
ln

t
s

)α

f (s, u(s), v(s))ds−
∫ ∞

t0

f (s, u(s), v(s))ds

∣∣∣∣∣∣∣
=

∣∣∣∣∣
∫ t

t0

(
ln t

t0
− ln s

t0

ln t
t0

)α

f (s, u(s), v(s))ds−
∫ ∞

t0

f (s, u(s), v(s))ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ ∞

t0

[(
1−

ln s
t0

ln t
t0

)α

χ[t0,t](s)− 1

]
f (s, u(s), v(s))ds

∣∣∣∣∣
≤

∫ ∞

t0

∣∣∣∣∣
(

1−
ln s

t0

ln t
t0

)α

χ[t0,t](s)− 1

∣∣∣∣∣| f (s, u(s), v(s))|ds,

where

χ[t0,t](s) =
{

1 if t0 ≤ s ≤ t,
0, otherwise.

.

As f ∈ L1(t0, ∞) and

lim
t→∞

(
1−

ln s
t0

ln t
t0

)α

χ[t0,t](s) = 1, for s < t,

we get from the Dominated Convergence Theorem [31],

lim
t→∞

∣∣∣∣∣∣∣
(

HIα+1
t0

s f (s, u(s), v(s))
)
(t)

1
Γ(α+1)

(
ln t

t0

)α −
∫ ∞

t0

f (s, u(s), v(s))ds

∣∣∣∣∣∣∣
≤ lim

t→∞

∫ ∞

t0

∣∣∣∣∣
(

1−
ln s

t0

ln t
t0

)α

χ[t0,t](s)− 1

∣∣∣∣∣| f (s, u(s), v(s))|ds

=
∫ ∞

t0

lim
t→∞

∣∣∣∣∣
(

1−
ln s

t0

ln t
t0

)α

χ[t0,t](s)− 1

∣∣∣∣∣| f (s, u(s), v(s))|ds = 0.

This completes the proof.

The next lemma can be considered as a Hadamard fractional version of L’Hôpital’s
rule when applied to the solution of problem (1).

Lemma 5. Let u be a solution of problem (1) with f ∈ L1(0, ∞). Then,

lim
t→∞

u(t)(
ln t

t0

)α = lim
t→∞

(
HDα

t0
u
)
(t)

Γ(α + 1)

=
1

Γ(α + 1)

(
u2 +

∫ ∞

t0

f
(

s,
(

HDα1
t0

u
)
(s),

∫ s

t0

h(s, τ,
(

HDα2
t0

u
)
(τ))dτ

)
ds
)

.

Proof. Integrating both sides of the equation in (1) over the interval [t0, t], we obtain:

(
HDα

t0
u
)
(t) = u2 +

∫ t

t0

f
(

s,
(

HDα1
t0

u
)
(s),

∫ s

t0

h(s, τ,
(

HDα2
t0

u
)
(τ))dτ

)
ds. (11)
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Apply HIα
t0

to (11) and use Lemmas 1 and 3, to find that:

u(t)−
u1

(
ln t

t0

)α−1

Γ(α)
=

u2

(
ln t

t0

)α

Γ(α + 1)
+

1
Γ(α)

∫ t

t0

(
ln

t
s

)α−1

×
∫ s

t0

f
(

τ,
(

HDα1
t0

u
)
(τ),

∫ τ

t0

h(τ, σ,
(

HDα2
t0

u
)
(σ))dσ

)
dτ

ds
s

, (12)

for all t > t0 > 0. Reorder the double integral on the right-hand side and integrate by
substitution to have:

u(t) =
u1

(
ln t

t0

)α−1

Γ(α)
+

u2

(
ln t

t0

)α

Γ(α + 1)
+

1
Γ(α)

∫ t

t0

∫ t

τ

(
ln

t
s

)α−1

× f
(

τ,
(

HDα1
t0

u
)
(τ),

∫ τ

t0

h(τ, σ,
(

HDα2
t0

u
)
(σ))dσ

)
ds
s

dτ

=
u1

(
ln t

t0

)α−1

Γ(α)
+

u2

(
ln t

t0

)α

Γ(α + 1)
+

1
Γ(α + 1)

∫ t

t0

(
ln

t
τ

)α

× f
(

τ,
(

HDα1
t0

u
)
(τ),

∫ τ

t0

h(τ, σ,
(

HDα2
t0

u
)
(σ))dσ

)
dτ. (13)

Dividing both sides of (13) by
(

ln t
t0

)α
gives:

u(t)(
ln t

t0

)α =
u1

Γ(α) ln t
t0

+
u2

Γ(α + 1)
+

1

Γ(α + 1)
(

ln t
t0

)α

∫ t

t0

(
ln

t
τ

)α

× f
(

τ,
(

HDα1
t0

u
)
(τ),

∫ τ

t0

h(τ, σ,
(

HDα2
t0

u
)
(σ))dσ

)
dτ, (14)

for all t > t0 > 0. Taking the limit of the resulting ratio at infinity and applying Lemma 4
leads to the desired result.

In the next lemma, we recall Bihari–LaSalle inequality which is a nonlinear generaliza-
tion of the well-known Grönwall–Bellman inequality.

Lemma 6 ([32,33]). Suppose that w and g are nonnegative continuous functions on [t0, ∞) and ϕ
is a positive function on (0, ∞), continuous and nondecreasing on [0, ∞). If

w(t) ≤ c +
∫ t

t0

g(τ)ϕ(w(τ))dτ, t ∈ [t0, ∞),

where c > 0, then

w(t) ≤ Φ−1
(

Φ(c) +
∫ t

t0

g(τ)dτ

)
, t ∈ [t0, T1],

where Φ−1 is the inverse function of Φ,

Φ(x) =
∫ x

x0

ds
ϕ(s)

, x > 0, x0 > 0,

and T1 is chosen so that Φ(c) +
∫ t

t0
g(τ)dτ is in the domain of Φ−1 for all t ∈ [t0, T1].

The next nonlinear integral inequality can be considered a generalization of Bihari–
LaSalle inequality that has been recalled in Lemma 6.
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Lemma 7 ([34]). Assume that w and ηj, j = 1, . . . , n are nonnegative continuous functions on
[t0, T] and ϕj, j = 1, . . . , n are nonnegative, continuous and nondecreasing on [0, ∞) such that
ϕ1 ∝ ϕ2 ∝ · · · ∝ ϕn (that is, ϕn/ϕn−1, . . . , ϕ2/ϕ1 are nondecreasing functions). Assume further
that c is a positive constant and

w(t) ≤ c +
n

∑
j=1

∫ t

t0

ηj(s)ϕj(w(s))ds, t ∈ [t0, T],

then, for all t ∈ [t0, T1],

w(t) ≤ Φ−1
n

(
Φn(cn−1) +

∫ t

t0

ηn(s)ds
)

,

where

1. Φ−1
j is the inverse function of Φj and Φj(x) =

∫ x
xj

ds
ϕj(s)

, x > 0, xj > 0, , j = 1, . . . , n .

2. The constants cj are given by c0 = c and cj = Φ−1
j

(
Φj(cj−1) +

∫ T1
t0

ηj(τ)dτ
)

, j = 1, . . . , n−
1.

3. The number T1 ∈ [t0, T] is the largest number such that:

∫ T1

t0

ηj(τ)dτ ≤
∫ ∞

cj−1

dτ

ϕj(τ)
, j = 1, . . . , n.

Lemma 8 ([34]). Suppose that w and ηj, j = 1, 2, 3 are nonnegative continuous functions on
[t0, T] and ϕj, j = 1, 2, 3 are nonnegative, continuous and nondecreasing on [0, ∞) such that
ϕ1 ∝ ϕ2 ∝ ϕ3, (that is, ϕ3/ϕ2 and ϕ2/ϕ1 are nondecreasing functions). Assume further that c is
a positive constant. If

w(t) ≤ c +
∫ t

t0

η1(τ)ϕ1(w(τ))dτ +
∫ t

t0

η2(τ)ϕ2

(∫ τ

t0

η3(s)ϕ3(w(s))ds
)

dτ,

then, for all t ∈ [t0, T1],

w(t) ≤ Φ−1
3

(
Φ3(c2) +

∫ t

t0

η3(τ)dτ

)
,

where the functions Φ−1
j , Φj, j = 1, 2, 3 and the constants c0, c1, c2 are the same as those given in

Lemma 7.

Remark 1. By considering the following functions,

�1(t) := max
τ∈[0,t]

{ϕ1(τ)},

�j(t) := max
τ∈[0,t]

{
ϕj(τ)

�j−1(τ)

}
�j−1(t), j = 2, 3,

(15)

we can drop the ordering and monotonicity requirements in Lemma 8. It is clear that ϕj(t) ≤ �j(t),
�j are nonnegative and nondecreasing functions on [0, ∞) for all t ∈ [0, ∞), j = 1, 2, 3 and
�1 ∝ �2 ∝ �3.

3. Main Results

In this section, we study the asymptotic behavior of continuable solutions for the
problem (1) in the space Cα+1

1−α,ln[t0, T], 0 < t0 < T ≤ ∞, defined by:

Cα+1
1−α,ln[t0, T] =

⎧⎨⎩u : (0, T]→ R | u ∈ C1−α,ln[t0, T],
d
(

HDα
t0

u(t)
)

dt
∈ C1−α,ln[t0, T]

⎫⎬⎭, (16)
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where the space C1−α,ln[t0, T] is defined in (5).
The following two types of functions are used repeatedly in the rest of this paper.

Definition 5. A function g is said to be Ωκ-type function if it is continuous, nonnegative on
(t0, ∞) and ∫ ∞

t0

(
ln

t
t0

)κ

g(t)dt < ∞, κ = 0 or 1.

Definition 6. A function ψ is said to be Ψ-type function if it is continuous, positive, nondecreasing
on (0, ∞),

ψ(a) ≤ bψ
( a

b

)
for all ≥ 1, b ≥ 1,

and ∫ t

ρ

ds
ψ(s)

→ ∞ as t → ∞ for any ρ > 0.

The two classes of functions introduced above are not empty, see the example provided
in Section 4.

Consider the following nonlinear inequality:

w(t) ≤ a1 +

(
ln

t
t0

)(
a2 + a3

∫ t

t0

[
g1(s)ϕ1(w(s)) + g2(s)ϕ2

(∫ s

t0

g3(τ)ϕ3(w(τ))dτ

)]
ds
)

, (17)

for all t > t0, where a1, a2 and a3 are positive constants, g1, g3 are Ω1-type functions, g2 is
Ω0-type function and ϕj, j = 1, 2, 3 are Ψ-type functions with ϕ1 ∝ ϕ2 ∝ ϕ3.

Let

K := Φ3(b3) +
∫ t0e

t0

g3(s)ds, (18)

and

K1 := Φ3(c2) +
∫ ∞

t0e

(
ln

t
t0

)
g3(t)dt, (19)

where

b3 = Φ−1
2

(
Φ2(b2) + a3

∫ t0e

t0

g2(s)ds
)

, b2 = Φ−1
1

(
Φ1(a1 + a2) + a3

∫ t0e

t0

g1(s)ds
)

,

c2 = Φ−1
2

(
Φ2(c1) + a3

∫ ∞

t0e
g2(t)dt

)
, c1 = Φ−1

1

(
Φ1(K2) + a3

∫ ∞

t0e

(
ln

t
t0

)
g1(t)dt

)
,

K2 = a1 + a2 + a3 ϕ1

(
Φ−1

3 (K)
) ∫ t0e

t0

g1(s)ds + a3 ϕ2

(
ϕ3

(
Φ−1

3 (K)
) ∫ t0e

t0

g3(τ)dτ

) ∫ t0e

t0

g2(s)ds, (20)

and Φ−1
j is the inverse functions of Φj(x) =

∫ x
ρ

ds
ϕj(s)

, j = 1, 2, 3, x > ρ > 0.

A generalized version of Lemma 8 is introduced below. We shall provide an estimate
for an integral term that arises later in our present problem. Although this estimate is not
the best possible, it ensures that such an integral is bounded, which is exactly what we will
need to prove our results below.

Theorem 1. Suppose that w(t) is a continuous nonnegative function on (t0, ∞) satisfying In-
equality (17) for all t > t0, a1, a2 and a3 are positive constants, g1, g3 are Ω1-type functions, g2 is
Ω0-type function and ϕj, j = 1, 2, 3, are Ψ-type functions with ϕ1 ∝ ϕ2 ∝ ϕ3. Then,

w(t) ≤ Φ−1
3 (K) for all t0 < t < t0e, (21)

and

w(t) ≤ Φ−1
3 (K1)

(
ln

t
t0

)
for all t ≥ t0e, (22)
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where K and K1 are given in (18) and (19), respectively.

Proof. For t0 < t < t0e, the inequality (17) becomes:

w(t) ≤ a1 + a2 + a3

∫ t

t0

[
g1(s)ϕ1(w(s)) + g2(s)ϕ2

(∫ s

t0

g3(τ)ϕ3(w(τ))dτ

)]
ds, t0 < t < t0e, (23)

and Lemma 8 is applicable. The relation (21) follows immediately.
For the case t ≥ t0e, we have ln t

t0
≥ 1 and (17) may be rewritten as:

w(t)
ln t

t0

≤ a1 + a2 + a3

∫ t

t0

[
g1(s)ϕ1(w(s)) + g2(s)ϕ2

(∫ s

t0

g3(τ)ϕ3(w(τ))dτ

)]
ds

≤ a1 + a2 + a3

∫ t0e

t0

[
g1(s)ϕ1(w(s)) + g2(s)ϕ2

(∫ s

t0

g3(τ)ϕ3(w(τ))dτ

)]
ds

+a3

∫ t

t0e

[
g1(s)ϕ1(w(s)) + g2(s)ϕ2

(∫ s

t0

g3(τ)ϕ3(w(τ))dτ

)]
ds. (24)

In virtue of the estimate (21) together with the continuity and monotonicity of the
functions ϕi, i = 1, 2, 3, we get:

w(t)
ln t

t0

≤ K2 + a3

∫ t

t0e

[
g1(s)ϕ1(w(s)) + g2(s)ϕ2

(∫ s

t0

g3(τ)ϕ3(w(τ))dτ

)]
ds, (25)

where K2 is the constant given in (20).
Let

z := z1 + z2 + z3, (26)

where

z1(t) : = K2 + a3

∫ t

t0e
g1(s)ϕ1(w(s))ds, t ≥ t0e,

z2(t) : = a3

∫ t

t0e
g2(s)ϕ2(z3(s))ds, t ≥ t0e,

z3(t) : =
∫ t

t0

g3(s)ϕ3(w(s))ds, t > t0. (27)

It is clear that
w(t)
ln t

t0

< z(t) for all t ≥ t0e. (28)

In light of the types of the functions gi, and ϕi, i = 1, 2, 3, see Definitions 5 and 6,
differentiating z yields:

z′(t) = a3g1(t)ϕ1(w(t)) + a3g2(t)ϕ2(z3(t)) + g3(t)ϕ3(w(t))

≤ a3g1(t)
(

ln
t
t0

)
ϕ1

(
w(t)
ln t

t0

)
+ a3g2(t)ϕ2(z(t)) + g3(t)

(
ln

t
t0

)
ϕ3

(
w(t)
ln t

t0

)

≤ a3

(
ln

t
t0

)
g1(t)ϕ1(z(t)) + a3g2(t)ϕ2(z(t)) +

(
ln

t
t0

)
g3(t)ϕ3(z(t)), t ≥ t0e. (29)

Now, we integrate both sides of (29) over the interval [t0e, t] to find:

z(t) ≤ z(t0e) + a3

∫ t

t0e

(
ln

s
t0

)
g1(s)ϕ1(z(s))ds + a3

∫ t

t0e
g2(s)ϕ2(z(s))ds

+
∫ t

t0e

(
ln

s
t0

)
g3(s)ϕ3(z(s))ds. (30)
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Applying Lemma 7 with η1(t) = a3

(
ln t

t0

)
g1(t), η2(t) = a3g2(t), η3(t) =

(
ln t

t0

)
g3(t)

and T1 = ∞ (by assumption
∫ ∞

ρ
dτ

ϕi(τ)
= ∞, i = 1, 2, 3 for any ρ > 0), the inequality (30)

leads to:
z(t) ≤ Φ−1

3 (K1), for all t ≥ t0e,

as desired.

From now on, we assume that the functions f and h on the right hand-side of (1),
satisfy the conditions below:

(A1) f (t, u, υ) : (t0, ∞)×R2 → R is a C1−α,ln[t0, ∞) function in E1 = {(t, u, υ) : t > t0 > 0,
u, υ ∈ C1−α,ln[t0, ∞)}.

(A2) h(t, s, u) is a continuous function in E2 = {(t, s, u) : t0 ≤ s < t < ∞, u ∈ C1−α,ln[t0, ∞)}.

(A3) There are Ω1-type functions g1, g3, an Ω0-type function g2 and Ψ-type functions ϕi,
i = 1, 2, 3 with ϕ1 ∝ ϕ2 ∝ ϕ3 such that:

| f (t, u, υ)| ≤ g1(t)ϕ1

((
ln

t
t0

)1−α+α1

|u|
)
+ g2(t)ϕ2(|υ|), (t, u, υ) ∈ E1,

|h(t, s, u)| ≤ g3(s)ϕ3

((
ln

s
t0

)1−α+α2

|u|
)

, (t, s, u) ∈ E2,

0 ≤ α1 < α < 1 and 0 ≤ α2 < α < 1.

Functions satisfying the above hypotheses are given in Section 4.

In the next result, we shall show that the solution for Problem (1) satisfies the useful
nonlinear inequality below.

Lemma 9. Suppose that u(t) is a Cα+1
1−α,ln[t0, ∞)-solution for Problem (1) and the functions f and

h satisfy (A1), (A2) and (A3). Then,(
ln

t
t0

)1−α

|u(t)| ≤ v(t), t > t0, (31)

and (
ln

t
t0

)1−α+αj ∣∣∣(HD
αj
t0

u
)
(t)

∣∣∣ ≤ vj(t), t > t0, (32)

where

v(t) =
|u1|
Γ(α)

+
ln t

t0

Γ(α + 1)

{
|u2|+

∫ t

t0

[
g1(s)ϕ1

((
ln

s
t0

)1−α+α1 ∣∣∣(HDα1
t0

u
)
(s)

∣∣∣)

+ g2(s)ϕ2

(∫ τ

t0

g3(τ)ϕ3

((
ln

τ

t0

)1−α+α2 ∣∣∣(HDα2
t0

u
)
(τ)

∣∣∣)dτ

)]
ds

}
, (33)

and

vj(t) =
|u1|

Γ
(
α− αj

) +
ln t

t0

Γ
(
α− αj + 1

){|u2|+
∫ t

t0

[
g1(s)ϕ1

((
ln

s
t0

)1−α+α1 ∣∣∣(HDα1
t0

u
)
(s)

∣∣∣)

+ g2(s)ϕ2

(∫ τ

t0

g3(τ)ϕ3

((
ln

τ

t0

)1−α+α2 ∣∣∣(HDα2
t0

u
)
(τ)

∣∣∣)dτ

)]
ds

}
, (34)

for all t > t0 and j = 1, 2.
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Proof. Firstly, we recall the relations (12) and (13) from the proof of Lemma 5,

u(t) =
u1

(
ln t

t0

)α−1

Γ(α)
+

u2

(
ln t

t0

)α

Γ(α + 1)
+

1
Γ(α)

∫ t

t0

(
ln

t
s

)α−1

×
∫ s

t0

f
(

τ,
(

HDα1
t0

u
)
(τ),

∫ τ

t0

h(τ, σ,
(

HDα2
t0

u
)
(σ))dσ

)
dτ

ds
s

, t > t0, (35)

u(t) =
u1

(
ln t

t0

)α−1

Γ(α)
+

u2

(
ln t

t0

)α

Γ(α + 1)
+

1
Γ(α + 1)

∫ t

t0

(
ln

t
τ

)α

× f
(

τ,
(

HDα1
t0

u
)
(τ),

∫ τ

t0

h(τ, σ,
(

HDα2
t0

u
)
(σ))dσ

)
dτ, t > t0. (36)

Equation (36) leads to the following bound on |u(t)|,

|u(t)| ≤
|u1|

(
ln t

t0

)α−1

Γ(α)
+
|u2|

(
ln t

t0

)α

Γ(α + 1)
+

(
ln t

t0

)α

Γ(α + 1)

×
∫ t

t0

∣∣∣∣ f
(

τ,
(

HDα1
t0

u
)
(τ),

∫ τ

t0

h(τ, σ,
(

HDα2
t0

u
)
(σ))dσ

)∣∣∣∣dτ, t > t0, (37)

or (
ln

t
t0

)1−α

|u(t)| ≤ |u1|
Γ(α)

+
|u2| ln t

t0

Γ(α + 1)
+

ln t
t0

Γ(α + 1)

×
∫ t

t0

∣∣∣∣ f
(

τ,
(

HDα1
t0

u
)
(τ),

∫ τ

t0

h(τ, σ,
(

HDα2
t0

u
)
(σ))dσ

)∣∣∣∣dτ, (38)

for all t > t0, which, in the light of the hypothesis (A3), leads to (31) as desired.
Now, apply the Hadamard differentiation operator HD

αj
t0

, j = 1, 2 to (35), then employ
Lemmas 1 and 2 (with β = αj and γ = 1− α, see (16)) to get:

(
HD

αj
t0

u
)
(t) =

u1

(
ln t

t0

)α−αj−1

Γ
(
α− αj

) +
u2

(
ln t

t0

)α−αj

Γ
(
α− αj + 1

) +
1

Γ
(
α− αj

) ∫ t

t0

(
ln

t
s

)α−αj−1

×
∫ s

t0

f
(

τ,
(

HDα1
t0

u
)
(τ),

∫ τ

t0

h(τ, σ,
(

HDα2
t0

u
)
(σ))dσ

)
dτ

ds
s

, t > t0. (39)

In a similar way to that used to obtain (36), the relation (39) reduces to:

(
HD

αj
t0

u
)
(t) =

u1

(
ln t

t0

)α−αj−1

Γ
(
α− αj

) +
u2

(
ln t

t0

)α−αj

Γ
(
α− αj + 1

) +
1

Γ
(
α− αj + 1

) ∫ t

t0

(
ln

t
τ

)α−αj

× f
(

τ,
(

HDα1
t0

u
)
(τ),

∫ τ

t0

h(τ, σ,
(

HDα2
t0

u
)
(σ))dσ

)
dτ, t > t0 , (40)

and consequently,

347



Fractal Fract. 2022, 6, 267

∣∣∣(HD
αj
t0

u
)
(t)

∣∣∣ ≤
|u1|

(
ln t

t0

)α−αj−1

Γ
(
α− αj

) +
|u2|

(
ln t

t0

)α−αj

Γ
(
α− αj + 1

) +
1

Γ
(
α− αj + 1

) ∫ t

t0

(
ln

t
τ

)α−αj

×
∣∣∣∣ f
(

τ,
(

HDα1
t0

u
)
(τ),

∫ τ

t0

h(τ, σ,
(

HDα2
t0

u
)
(σ))dσ

)∣∣∣∣dτ

≤
|u1|

(
ln t

t0

)α−αj−1

Γ
(
α− αj

) +

(
ln t

t0

)α−αj

Γ
(
α− αj + 1

) [ |u2|+∫ t

t0

∣∣∣∣ f
(

τ,
(

HDα1
t0

u
)
(τ),

∫ τ

t0

h(τ, σ,
(

HDα2
t0

u
)
(σ))dσ

)∣∣∣∣dτ

]
, t > t0 , (41)

which yields, in light of the hypothesis (A3), the desired result in (32) and completes the
proof.

The main result of this section is given below.

Theorem 2. Suppose that the hypotheses (A1), (A2) and (A3) are satisfied, then there exists a real
number r such that any solution u ∈ Cα+1

1−α,ln[t0, ∞) of Problem (1), has the following asymptotic

property lim
t→∞

u(t)(
ln t

t0

)α = r.

Proof. Let us start by recalling the relations (31) and (32) in Lemma 9,(
ln

t
t0

)1−α

|u(t)| ≤ v(t), t > t0, (42)

and (
ln

t
t0

)1−α+αj ∣∣∣(HD
αj
t0

u
)
(t)

∣∣∣ ≤ vj(t), t > t0, j = 1, 2, (43)

where u is a Cα+1
1−α,ln[t0, ∞)-solution for Problem (1), v(t) and vj(t), j = 1, 2 are given in (33)

and (34), respectively.
Let

a1 = |u1|max
j=1,2

{
1

Γ(α)
,

1
Γ
(
α− αj

)}, a2 = |u2|max
j=1,2

{
1

Γ(α + 1)
,

1
Γ
(
α− αj + 1

)},

a3 = max
j=1,2

{
1

Γ(α + 1)
,

1
Γ
(
α− αj + 1

)}, (44)

and

w(t) = a1 +

(
ln

t
t0

){
a2 + a3

∫ t

t0

[
g1(s)ϕ1

((
ln

s
t0

)1−α+α1 ∣∣∣(HDα1
t0

u
)
(s)

∣∣∣)

+ g2(s)ϕ2

(∫ τ

t0

g3(τ)ϕ3

((
ln

τ

t0

)1−α+α2 ∣∣∣(HDα2
t0

u
)
(τ)

∣∣∣)dτ

)]
ds

}
, t > t0, (45)

then,
v(t) ≤ w(t) and vj(t) ≤ w(t) for all t > t0, j = 1, 2. (46)

From the nondecreasingness property of the functions ϕi, i = 1, 2, 3, we have:
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w(t) = a1 +

(
ln

t
t0

){
a2 + a3

∫ t

t0

[
g1(s)ϕ1(v1(s)) + g2(s)ϕ2

(∫ τ

t0

g3(τ)ϕ3(v2(τ))dτ

)]
ds
}

≤ a1 +

(
ln

t
t0

){
a2 + a3

∫ t

t0

[
g1(s)ϕ1(w(s)) + g2(s)ϕ2

(∫ τ

t0

g3(τ)ϕ3(w(τ))dτ

)]
ds
}

,

for all t > t0, which is Inequality (17). Therefore, we get from Theorem 1 that:

w(t) ≤
(

ln
t
t0

)
Φ−1

3 (K1) for all t ≥ t0e, (47)

and as a consequence of the estimates (42) and (46), we find:(
ln

t
t0

)1−α

|u(t)| ≤
(

ln
t
t0

)
Φ−1

3 (K1) for all t > t0e, (48)

or
|u(t)|(
ln t

t0

)α ≤ K3 := Φ−1
3 (K1) for all t > t0e, (49)

where K1 is as in (19).
Now, in the light of Hypothesis (A3), and the inequalities (43) and (46), we deduce that:

J : =

∣∣∣∣∫ t

t0

f
(

s,
(

HDα1
t0

u
)
(s),

∫ s

t0

h(s, τ,
(

HDα2
t0

u
)
(τ))dτ

)
ds
∣∣∣∣

≤
∫ t

t0

∣∣∣∣ f
(

s,
(

HDα1
t0

u
)
(s),

∫ s

t0

h(s, τ,
(

HDα2
t0

u
)
(τ))dτ

)∣∣∣∣ds

≤
∫ t

t0

g1(s)ϕ1

((
ln

s
t0

)1−α+α1 ∣∣∣(HDα1
t0

u
)
(s)

∣∣∣)ds +
∫ t

t0

g2(s)

×ϕ2

(∫ s

t0

g3(τ)ϕ3

((
ln

τ

t0

)1−α+α2 ∣∣∣(HDα2
t0

u
)
(τ)

∣∣∣)dτ

)
ds

≤
∫ t0e

t0

g1(s)ϕ1(w(s))ds +
∫ t0e

t0

g2(s)ϕ2

(∫ s

t0

g3(τ)ϕ3(w(τ))dτ

)
ds

+
∫ t

t0e
g1(s)ϕ1(w(s))ds +

∫ t

t0e
g2(s)ϕ2

(∫ s

t0

g3(τ)ϕ3(w(τ))dτ

)
ds

= J1 + J2. (50)

The first integral,

J1 : =
∫ t0e

t0

g1(s)ϕ1(w(s))ds +
∫ t0e

t0

g2(s)ϕ2

(∫ s

t0

g3(τ)ϕ3(w(τ))dτ

)
ds

≤
∫ t0e

t0

g1(s)ϕ1

(
Φ−1

3 (K)
)

ds +
∫ t0e

t0

g2(s)ϕ2

(∫ s

t0

g3(τ)ϕ3

(
Φ−1

3 (K)
)

dτ

)
ds

≤ ϕ1(K4)
∫ t0e

t0

g1(s)ds +
∫ t0e

t0

g2(s)ϕ2

(
ϕ3(K4)

∫ s

t0

g3(τ)dτ

)
ds (51)

is finite by (21) from Theorem 1, K4 := Φ−1
3 (K) and K is given in (18).

The second integral,

J2 :=
∫ t

t0e
g1(s)ϕ1(w(s))ds +

∫ t

t0e
g2(s)ϕ2

(∫ s

t0

g3(τ)ϕ3(w(τ))dτ

)
ds, t ≥ t0e, (52)
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can be estimated in view of (47), Theorem 1 and the type of the functions ϕi, i = 1, 2, 3
as follows:

J2 ≤
∫ t

t0e

(
ln

s
t0

)
g1(s)ϕ1(K3)ds +

∫ t

t0e
g2(s)ϕ2

(∫ t0e

t0

g3(τ)ϕ3(K4)dτ

+
∫ s

t0e

(
ln

τ

t0

)
g3(τ)ϕ3(K3)dτ

)
ds

≤ ϕ1(K3)
∫ t

t0e

(
ln

s
t0

)
g1(s)ds +

∫ t

t0e
g2(s)ϕ2

(
ϕ3(K4)

∫ t0e

t0

g3(τ)dτ

+ϕ3(K3)
∫ s

t0e

(
ln

τ

t0

)
g3(τ)dτ

)
ds, for all t ≥ t0e. (53)

Since g1 and g3 are Ω1-type functions and g2 is an Ω0-type function, we see that the
integral J2 is uniformly bounded and so is the integral J .

Therefore, the integral
∫ t

t0
f
(

s,
(

HDα1
t0

u
)
(s),

∫ s
t0

h(s, τ,
(

HDα2
t0

u
)
(τ))dτ

)
ds absolutely

convergent and, consequently,

lim
t→∞

∫ t

t0

f
(

s,
(

HDα1
t0

u
)
(s),

∫ s

t0

h(s, τ,
(

HDα2
t0

u
)
(τ))dτ

)
ds < ∞, (54)

Using Lemma 5, there exits a finite real number r such that:

lim
t→∞

u(t)(
ln t

t0

)α =
1

Γ(α + 1)

(
u2 + lim

t→∞

∫ t

t0

f
(

s,
(

HDα1
t0

u
)
(s),

∫ s

t0

h(s, τ,
(

HDα2
t0

u
)
(τ))dτ

)
ds
)
= r, (55)

as wanted.

Remark 2. If the condition (A3) is replaced by the condition:

(A4) There are Ω1-type functions ξ1, ξ2 and Ψ-type functions φi, i = 1, 2, 3 with φ1φ2 ∝ φ3 such
that

| f (t, u, υ)| ≤ ξ1(t)φ1

((
ln

t
t0

)1−α+α1

|u|
)

φ2(|υ|), (t, u, υ) ∈ E1, 0 ≤ α1 < α < 1,

and

|h(t, s, u)| ≤ ξ2(s)φ3

((
ln

s
t0

)1−α+α2

|u|
)

, (t, s, u) ∈ E2, 0 ≤ α2 < α < 1,

then the conclusion of Theorem 2 is still valid. We state this fact below.

Theorem 3. Suppose that the functions f and h satisfy the conditions (A1), (A2) and (A4). Then,
there exists a real number r such that any solution u ∈ Cα+1

1−α,ln[t0, ∞) for Problem (1) satisfies

lim
t→∞

u(t)(
ln t

t0

)α = r.

The proof is skipped as it can be shown in a similar manner to that used in the proof
of Theorem 2.
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Remark 3. The problem,⎧⎪⎪⎨⎪⎪⎩
(

HDα
t0

u
)′
(t) = f

(
t, u(t),

∫ t
t0

h(t, s, u(s))ds
)

, t > t0 > 0, 0 < α < 1,

(
HI1−α

t0
u
)
(t+0 ) = u1,

(
HDα

t0
u
)
(t+0 ) = u2, u1, u2 ∈ R.

(56)

is a special case of Problem (1) when α1 = α2 = 0. Therefore, we can conclude that there
exists a constant r ∈ R such that any solution u ∈ Cα+1

1−α,ln[t0, ∞) for Problem (56) satisfies

lim
t→∞

u(t)(
ln t

t0

)α = r.

4. Example

Consider the initial value problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
HDα

t0
u
)′
(t) = t−σ1

(
ln t

t0

)β1
(

HDα1
t0

u(t)
)γ1

+ t−σ2
(

ln t
t0

)β2
[∫ t

t0
(t + s)−σ3

×
(

ln s
t0

)β3
(

HDα2
t0

u(s)
)γ3

ds
]γ2

, t > t0 > 0,

(
HI1−α

t0
u
)
(t+0 ) = u1,

(
HDα

t0
u
)
(t+0 ) = u2, u1, u2 ∈ R,

(57)

where 0 ≤ α1 < α < 1, 0 ≤ α2 < α < 1, σj > 1, j = 1, 2, 3, β1 > (1− α + α1)γ1 − 1,
β2 > −1, β3 > (1− α + α2)γ3 − 1 and 0 < γ1 ≤ γ2 ≤ γ3 < 1.

The source function,

f (t, u, v) = t−σ1

(
ln

t
t0

)β1

uγ1 + t−σ2

(
ln

t
t0

)β2

vγ2 , t > t0 > 0, (58)

satisfies ∣∣∣∣ f
(

t,H Dα1
t0

u(t),
∫ t

t0

h
(

t, s,HDα2
t0

u(s)
)

ds
)∣∣∣∣

=

∣∣∣∣∣t−σ1

(
ln

t
t0

)β1(
HDα1

t0
u(t)

)γ1
+ t−σ2

(
ln

t
t0

)β2
(∫ t

t0

(t + s)−σ3

×
(

ln
s
t0

)β3(
HDα2

t0
u(s)

)γ3
ds

)γ2
∣∣∣∣∣

≤ g1(t)ϕ1

((
ln

t
t0

)1−α+α1 ∣∣∣HDα1
t0

u(t)
∣∣∣)+ g2(t)ϕ2

(∫ t

t0

g3(s)

×ϕ3

((
ln

s
t0

)1−α+α2 ∣∣∣HDα2
t0

u(s)
∣∣∣)ds

)
,

with

h(t, s, u) = (t + s)−σ3

(
ln

s
t0

)β3

uγ3 , g1(t) = t−σ1

(
ln

t
t0

)β1+(α−α1−1)γ1

,

g2(t) = t−σ2

(
ln

t
t0

)β2

, g3(t) = t−σ3

(
ln

t
t0

)β3+(α−α2−1)γ3

, ϕj(t) = tγj , t > t0 > 0,

where β1 > (1− α + α1)γ1 − 1, β2 > −1, β3 > (1− α + α2)γ3 − 1, σj > 1, j = 1, 2, 3 and
0 < γ1 ≤ γ2 ≤ γ3 ≤ 1.
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The functions gj, j = 1, 2, 3 are continuous, nonnegative on (t0, ∞),

∫ t0e

t0

g1(t)dt =
∫ t0e

t0

(
ln

t
t0

)β1+(α−α1−1)γ1 dt
tσ1
≤ 1

tσ1−1
0

∫ t0e

t0

(
ln

t
t0

)β1+(α−α1−1)γ1 dt
t

=
1

tσ1−1
0

∫ 1

0
sβ1+(α−α1−1)γ1 ds =

1

(β1 + (α− α1 − 1)γ1 + 1)tσ1−1
0

< ∞,

∫ t0e

t0

g3(t)dt =
∫ t0e

t0

(
ln

t
t0

)β3+(α−α2−1)γ1 dt
tσ3 ≤

1

(β3 + (α− α3 − 1)γ3 + 1)tσ3−1
0

< ∞,

and ∫ t0e

t0

g2(t)dt =
∫ t0e

t0

(
ln

t
t0

)β2 dt
tσ2
≤ 1

tσ2−1
0

∫ t0e

t0

(
ln

t
t0

)β2 dt
t
=

1

(β2 + 1)tσ2−1
0

< ∞.

The function g2 is an Ω0-type because:

∫ ∞

t0e
g2(t)dt =

∫ ∞

t0e

(
ln

t
t0

)β2 dt
tσ2

=
1

tσ2−1
0

∫ ∞

t0e

(
ln

t
t0

)β2
(

t0

t

)σ2−1 dt
t

≤ 1

tσ2−1
0

∫ ∞

t0

(
ln

t
t0

)β2

e−(σ2−1) ln t
t0

dt
t
=

1

tσ2−1
0

∫ ∞

0
sβ2 e−(σ2−1)sds

=
1

(σ2 − 1)β2+1tσ2−1
0

∫ ∞

0
τβ2 e−τdτ =

Γ(β2 + 1)

(σ2 − 1)β2+1tσ2−1
0

< ∞,

whereas the functions g1 and g3 are Ω1-type functions since

∫ ∞

t0e

(
ln

t
t0

)
g1(t)dt =

∫ ∞

t0e

(
ln

t
t0

)β1+(α−α1−1)γ1+1 dt
tσ1

≤ 1

tσ1−1
0

∫ ∞

t0

(
ln

t
t0

)β1+(α−α1−1)γ1+1
e−(σ1−1) ln t

t0
dt
t

=
1

tσ1−1
0

∫ ∞

0
sβ1+(α−α1−1)γ1+1e−(σ1−1)sds

=
Γ(β1 + (α− α1 − 1)γ1 + 2)

(σ1 − 1)β1+(α−α1−1)γ1+2tσ1−1
0

< ∞,

and

∫ ∞

t0e

(
ln

t
t0

)
g3(t)dt =

∫ ∞

t0e

(
ln

t
t0

)β3+(α−α2−1)γ3+1 dt
tσ3
≤ Γ(β3 + (α− α2 − 1)γ3 + 2)

(σ3 − 1)β3+(α−α2−1)γ3+2tσ3−1
0

< ∞.

The functions ϕj(t) = tγj , j = 1, 2, 3, 0 < γ1 ≤ γ2 ≤ γ3 ≤ 1, are Ψ-type functions with
ϕ1 ∝ ϕ2 ∝ ϕ3. These three functions are continuous, positive, nondecreasing on (0, ∞),

ϕj(a) = aγj ≤ b
( a

b

)γj
= bϕj

( a
b

)
for all a ≥ 1, b ≥ 1, 0 < γj ≤ 1,

and ∫ x

ρ

dt
ϕj(t)

=
∫ x

ρ

dt
tγj
→ ∞ as x → ∞ for any ρ > 0.

As 0 < γ1 ≤ γ2 ≤ γ3 ≤ 1, then ϕ3/ϕ2 and ϕ2/ϕ1 are nondecreasing functions and so
ϕ1 ∝ ϕ2 ∝ ϕ3.
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Obviously, Conditions (A1), (A2) and (A3) are fulfilled with these functions and the
hypotheses of Theorem 2 as well. Therefore, there exists a real constant r ∈ R such that
solutions of Problem (57) satisfy lim

t→∞

u(t)(
ln t

t0

)α = r.

5. Conclusions

In this article, we considered a fractional integro-differential problem with Hadamard-
Type fractional derivatives. The nonlinear source function depends on a lower-order
Hadamard fractional derivative of the state and an integral involving another lower-order
Hadamard fractional derivative of the state. We assumed the boundedness of the nonlin-
earities in question by some special kinds of functions in some appropriate spaces. Under
these nonlinear growth conditions, we demonstrated that solutions of the initial value
fractional problem under consideration are not only bounded by logarithmic functions but
actually they converge asymptotically to logarithmic functions.
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