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Preface

Fractional calculus (FC) generalizes the operations of differentiation and integration to

non-integer orders. FC has emerged as an important tool for the study of dynamical systems since

fractional order operators are non-local and capture the history of dynamics. Moreover, FC and

fractional processes have become one of the most useful approaches to dealing with the particular

properties of (long) memory effects in a myriad of applied sciences. Linear, nonlinear, and complex

dynamical systems have attracted researchers from many areas of science and technology, involved in

systems modelling and control, with applications to real-world problems. Despite the extraordinary

advances in FC, addressing both systems’ modelling and control, new theoretical developments

and applications are still needed in order to accurately describe or control many systems and

signals characterized by chaos, bifurcations, criticality, symmetry, memory, scale invariance, fractality,

fractionality, and other rich features. This reprint focuses on new and original research results

on fractional calculus in science and engineering. Manuscripts address fractional calculus theory,

methods for fractional differential and integral equations, nonlinear dynamical systems, advanced

control systems, fractals and chaos, complex dynamics, and other topics of interest within FC.

António Lopes, Alireza Alfi, Liping Chen, and Sergio Adriani David

Editors
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Article

Left Riemann–Liouville Fractional Sobolev Space on Time
Scales and Its Application to a Fractional Boundary Value
Problem on Time Scales

Xing Hu and Yongkun Li *

Department of Mathematics, Yunnan University, Kunming 650091, China; huxing@mail.ynu.edu.cn
* Correspondence: yklie@ynu.edu.cn

Abstract: First, we show the equivalence of two definitions of the left Riemann–Liouville fractional
integral on time scales. Then, we establish and characterize fractional Sobolev space with the help
of the notion of left Riemann–Liouville fractional derivative on time scales. At the same time, we
define weak left fractional derivatives and demonstrate that they coincide with the left Riemann–
Liouville ones on time scales. Next, we prove the equivalence of two kinds of norms in the introduced
space and derive its completeness, reflexivity, separability, and some embedding. Finally, as an
application, by constructing an appropriate variational setting, using the mountain pass theorem
and the genus properties, the existence of weak solutions for a class of Kirchhoff-type fractional
p-Laplacian systems on time scales with boundary conditions is studied, and three results of the
existence of weak solutions for this problem is obtained.

Keywords: Riemann–Liouvillederivatives; time scales; left fractional Sobolev’s spaces; boundary
value problems; mountain pass theorem; genus properties

1. Introduction

To unify the discrete analysis and continuous analysis, and allow a simultaneous
treatment of differential and difference equations, Stefan Hilger [1] proposed the time
scale theory and established its related basic theory [2,3]. To date, the study of dynamic
equations on time scales has attracted attention worldwide.

It is well known that Sobolev space theory was established to study modern differential
equation theory and many problems in the field of mathematical analysis. It has become
an integral part of analytical mathematics. In order to study the solvability of boundary
value problems of dynamic equations on time scales, Sobolev space theory on time scales is
studied in [4–7].

On the one hand, the classical derivatives are local in nature; i.e., using classical
derivatives, we can describe changes in the neighborhood of a point, but using fractional
derivatives we can describe changes in an interval. Namely, fractional derivatives are non-
local in nature. Fractional derivatives are non-local, so the 1

2 derivative cannot have a local
meaning such as tangent or curvature but would have to take into account the properties
of the curve to a large extent (boundary conditions). This property makes these derivatives
suitable to simulate more physical phenomena such as earthquake vibrations, polymers, etc.
The geometrical meaning of ordinary derivatives is simple and intuitive: for the smooth
function f , which is differentiable at x, it shows local behavior of f around point x. A simple
definition can be provided directly from the geometrical meaning: one can expect that
the fractional derivative could give a nonlinear (power law) approximation of the local
behavior of non-differentiable functions. Fractional order derivatives are related to memory.
No other physical meaning can be attached to them at present, although the theory is old.
Fractional order derivatives are related to memory and hereditary properties of various
real materials [8–13]. In the past few decades, fractional calculus and fractional differential

Fractal Fract. 2022, 6, 268. https://doi.org/10.3390/fractalfract6050268 https://www.mdpi.com/journal/fractalfract1
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equations have attracted widespread attention in the field of differential equations, as
well as in applied mathematics and science. In addition to true mathematical interest and
curiosity, this trend is also driven by interesting scientific and engineering applications that
have produced fractional differential equation models to better describe (time) memory
effects and (space) non-local phenomena [14–19]. There are various definitions of the
fractional derivative [20–23]. Wang et al. introduced the theory of fractional Sobolev
spaces on time scales by conformable fractional derivatives on time scales in [6]. The rise
in these applications gives new vitality to the field of fractional calculus and fractional
differential equations and calls for further research in this field.

On the other hand, recently, based on the concept of the fractional derivative of
Riemann–Liouville on time scales [24], the authors of [7] established the fractional Sobolev
space on time scales. However, in a recent work, the authors of [25] pointed out that the
definition of fractional integral on time scales proposed in [24] is not the natural one on
time scales. Furthermore, they developed a new notion of Riemann–Liouville fractional
integral on time scales, which can effectively unify the discrete fractional calculus [26,27]
and its continuous counterpart [28].

Motivated by the above discussion, in order to fix this defect in the fractional Sobolev
space on time scales established in [7], in this paper, we want to contribute with the
development of this new area in terms of theories of fractional differential equations on
time scales. More precisely, we first show that the concept of the Riemann–Liouville
fractional integral on time scales from [7] coincides with the ones from [29], which is
significant as it allows us to prove the semigroup properties of the Riemann–Liouville
fractional integral on time scales. Next, the left fractional Sobolev space in the sense of
weak Riemann–Liouville derivatives on time scales was constructed and characterized via
Riemann–Liouville derivatives on time scales. Then, as an application of our new theory,
we study the solvability of a class of Kirchhoff-type fractional p-Laplacian systems on time
scales with boundary conditions by using variational methods and the critical point theory.
As far as we know, no one has studied this problem using other methods.

The rest of present paper is organized as follows: In Section 2, we review some
symbols, basic notions and basic results of time-scale calculus that will be used in this
paper and provide the definitions of fractional integrals and derivatives on time scales.
In Section 3, we study some basic properties of left Riemann–Liouville fractional integral
and differential operators on time scales, including the equivalence between fractional
integrals and fractional derivatives on time scales defined by fractional integrals and
fractional derivatives on time scales defined by the Laplace transform and the inverse
Laplace transform. In Section 4, we provide the definition of left fractional Sobolev spaces
on time scales and study some of their important properties. In Section 5, as an application
of the results of this paper, we study the solvability of Kirchhoff-type fractional p-Laplacian
systems on time scales by using the mountain pass theorem and the genus properties. In
Section 6, we give a concise conclusion.

2. Preliminaries

In this section, we briefly collect some basic known notations, definitions, and results
that will be used later.

A time scale T is an arbitrary nonempty closed subset of the real set R with the topology
and ordering inherited from R. Throughout this paper, we denote by T a time scale.

Definition 1 ([2]). For t ∈ T, we define the forward jump operator σ : T→ T by σ(t) := inf{s ∈
T : s > t}, while the backward jump operator ρ : T→ T is defined by ρ(t) := sup{s ∈ T : s < t}.

We will use the following notations: J0
R
= [a, b), JR = [a, b], J0 = J0

R
∩ T, J = JR ∩ T,

Jk = [a, ρ(b)] ∩T.

2
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Remark 1 ([2]). (1) In Definition 1, we put inf ∅ = supT (i.e., σ(t) = t if T has a maximum
t) and sup ∅ = infT (i.e., ρ(t) = t if T has a minimum t), where ∅ denotes the empty set.

(2) If σ(t) > t, we say that t is right-scattered, while if ρ(t) < t, we say that t is left-scattered.
Points that are right-scattered and left-scattered at the same time are called isolated.

(3) If t < supT and σ(t) = t, we say that t is right-dense, while if t > infT and ρ(t) = t,
we say that t is left-dense. Points that are right-dense and left-dense at the same time are
called dense.

(4) The graininess function μ : T→ [0, ∞) is defined by μ(t) := σ(t)− t.
(5) The derivative makes use of the set Tk, which is derived from the time scale T as follows: If T

has a left-scattered maximum M, then Tk := T\{M}; otherwise, Tk := T.

Definition 2 ([2]). Assume that f : T→ R is a function and let t ∈ Tk. Then we define f Δ(t) to
be the number (provided it exists) with the property that given any ε > 0, there is a neighborhood U
of t (i.e, U = (t− δ, t + δ) ∩T for some δ > 0) such that

| f (σ(t))− f (s)− f Δ(t)(σ(t)− s)| ≤ ε|σ(t)− s|

for all s ∈ U. We call f Δ(t) the delta (or Hilger) derivative of f at t. Moreover, we say that f is delta
(or Hilger) differentiable (or in short, differentiable) on Tk provided f Δ(t) exists for all t ∈ Tk. The
function f Δ : Tk → R is then called the (delta) derivative of f on Tk.

Definition 3 ([2]). A function f : T → R is called rd-continuous provided it is continuous at
right-dense points in T and its left-sided limits exist (finite) at left-dense points in T. The set of
rd-continuous functions f : T → R will be denoted by Crd = Crd(T) = Crd(T,R). The set of
functions f : T → R that are differentiable and whose derivative is rd-continuous is denoted by
C1

rd = C1
rd(T) = C1

rd(T,R).

Theorem 1 ([3]). If a, b ∈ T and f , g ∈ Crd(T), then∫
J0

f σ(t)gΔ(t)Δt = ( f g)(b)− ( f g)(a)−
∫

J0
f Δ(t)g(t)Δt.

Theorem 2 ([3]). If f is Δ-integrable on a, b ∈ T, then so is | f |, and∣∣∣∣∣
∫ b

a
f (t)Δt

∣∣∣∣∣ ≤
∫ b

a
| f (t)|Δt.

Definition 4 ([24]). Let J denote a closed bounded interval in T. A function F : J → R is called a
delta antiderivative of function f : J → R provided F is continuous on J, delta-differentiable at J,
and FΔ(t) = f (t) for all t ∈ J. Then, we define the Δ-integral of f from a to b by

∫ b
a f (t)Δt :=

F(b)− F(a).

Theorem 3 ([30]). The convolution is commutative and associative, that is, for f , g, h ∈ F ,

f ∗ g = g ∗ f , ( f ∗ g) ∗ h = f ∗ (g ∗ h).

Proposition 1 ([31]). f is an increasing continuous function on J. If F is the extension of f to the
real interval JR given by

F(s) :=

{
f (s), i f s ∈ T,

f (t), i f s ∈ (t, σ(t)) /∈ T,

then
∫ b

a f (t)Δt ≤ ∫ b
a F(t)dt.

3
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Theorem 4 ([32]). y(t, s) = hn−1(t, σ(s)) is the Cauchy function of yΔn
= 0, where

h0(t, s) = 1, hn(t, s) =
∫ t

s
hn−1(τ, s)Δτ, n ∈ N.

Theorem 5 ([32]). For all n ∈ N0, we have

LT(hn(x, 0))(z) =
1

zn−1 , x ∈ T0,

for all z ∈ C\{0} such that 1 + zμ(x) �= 0, x ∈ T0, and

lim
x→∞

(hn(x, 0)e�z(x, 0)) = 0.

Definition 5 ([32], shift (delay) of a function). For a given function f : [t0, ∞)→ C, the solu-
tion of the shifting problem

uΔt(t, σ(s)) = −uΔs(t, s), t, s ∈ T, t ≥ t ≥ s ≥ t0,

u(t, t0) = f (t), t ∈ T, t ≥ t0,

is denoted by f̂ and is called the shift or delay of f .

Definition 6 ([32], Δ power function). Suppose that α ∈ R; we define the generalized Δ-power
function hα(t, t0) on T as follows:

hα(t, t0) = L−1
T

(
1

zα+1

)
(t), t ≥ t0,

for all z ∈ C\{0} such that L−1
T

exists, t ≥ t0. The fractional generalized Δ power function hα(t, s)
on T, t ≥ s ≥ t0 is defined as the shift of hα(t, t0), i.e.,

hα(t, s) = ̂hα(·, t0)(t, s), t, s ∈ T, t ≥ s ≥ t0.

Definition 7 ([25,33], fractional integral on time scales). Suppose h is an integrable function
on J. Let 0 < α ≤ 1. Then, the left fractional integral of order α of h is defined by

T
a Iα

t h(t) :=
∫ t

a

(t− σ(s))α−1

Γ(α)
h(s)Δs. (1)

The right fractional integral of order α of h is defined by

T
t Iα

b h(t) :=
∫ b

t

(s− σ(t))α−1

Γ(α)
h(s)Δs,

where Γ is the gamma function.

Definition 8 ([25,33], Riemann–Liouville fractional derivative on time scales). Let t ∈ T,
0 < α ≤ 1, and h : T → R. The left Riemann–Liouville fractional derivative of order α of h is
defined by

T
a Dα

t h(t) :=
(
T
a I1−α

t h(t)
)Δ

=
1

Γ(1− α)

(∫ t

a
(t− σ(s))−αh(s)Δs

)Δ

. (2)

4
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Actually, T
a Dα

t h(t) can be rewritten as Δ ◦ T
a I1−α

t h(t). The right Riemann–Liouville fractional
derivative of order α of h is defined by

T
t Dα

b h(t) := −
(
T
t I1−α

b h(t)
)Δ

=
−1

Γ(1− α)

(∫ b

t
(s− σ(t))−αh(s)Δs

)Δ

.

Definition 9 ([25,33], Caputo fractional derivative on time scales). Let t ∈ T, 0 < α ≤ 1 and
h : T→ R. The left Caputo fractional derivative of order α of h is defined by

TC
a Dα

t h(t) := T
a I1−α

t hΔ(t) =
1

Γ(1− α)

∫ t

a
(t− σ(s))−αhΔ(s)Δs.

The right Caputo fractional derivative of order α of h is defined by

TC
t Dα

b h(t) := −T
t I1−α

b hΔ(t) =
−1

Γ(1− α)

∫ b

t
(s− σ(t))−αhΔ(s)Δs.

Definition 10 ([34]). For f : T→ R, the time scale or generalized Laplace transform of f , denoted
by LT{ f } or F(z), is given by

LT{ f }(z) = F(z) :=
∫ ∞

0
f (t)gσ(t)Δt,

where g(t) = e�z(t, 0).

Theorem 6 ([34], Inversion formula of the Laplace transform). Suppose that F(z) is analytic
in the region Reμ(z) > Reμ(c) and F(z)→ 0 uniformly as |z| → ∞ in this region. Suppose F(z)
has finitely many regressive poles of finite order {z1, z2, . . . , zn} and F̃R(z) is the transform of the
function f̃ (t) on R that corresponds to the transform F(z) = FT(z) of f (t) on T, If∫ c+i∞

c−i∞
|F̃R(z)||dz| < ∞,

then

f (t) =
n∑

i=1

Resz=zi ez(t, 0)F(z),

has transform F(z) for all z with Re(z) > c.

Definition 11 ([29], Riemann–Liouville fractional integral on time scales). Let α > 0, T be a
time scale, and f : T → R. The left Riemann–Liouville fractional integral of f of order α on the
time scale T, denoted by Iα

T f , is defined by

Iα
T f (t) = L−1

T

[
F(z)
zα

]
(t).

Theorem 7 ([25], Cauchy result on time scales). Let n ∈ {1, 2}, T be a time scale with
a, t1, . . . , tn ∈ T, ti > a, i = 1, . . . , n, and f an integrable function on T. Then,∫ tn

a
. . .
∫ t1

a
f (t0)Δt0 . . . Δtn−1 =

1
(n− 1)!

∫ tn

a
(tn − σ(s))n−1Δs.

5
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Theorem 8 ([5]). A function f : J → RN is absolutely continuous on J iff f is Δ-differentiable
Δ− a.e. on J0 and

f (t) = f (a) +
∫
[a,t)T

f Δ(s)Δs, ∀t ∈ J.

Theorem 9 ([35]). A function f : T→ R is absolutely continuous on T iff the following conditions
are satisfied:

(i) f is Δ-differentiable Δ− a.e. on J0 and f Δ ∈ L1(T).
(ii) The equality

f (t) = f (a) +
∫
[a,t)T

f Δ(s)Δs

holds for every t ∈ T.

Theorem 10 ([36]). A function q : JR → Rm is absolutely continuous iff there exist a constant
c ∈ Rm and a function ϕ ∈ L1 such that

q(t) = c + (I1
a+ ϕ)(t), t ∈ JR.

In this case, we have q(a) = c and q′(t) = ϕ(t), t ∈ JR a.e.

Theorem 11 ([5], integral representation). Let α ∈ (0, 1) and q ∈ L1. Then, q has a left-sided
Riemann–Liouville derivative Dα

a+q of order α iff there exist a constant c ∈ Rm and a function
ϕ ∈ L1 such that

q(t) =
1

Γ(α)
c

(t− a)1−α
+ (Iα

a+ ϕ)(t), t ∈ JR a.e..

In this case, we have I1−α
a+ q(a) = c and (Dα

a+q)(t) = ϕ(t), t ∈ JR a.e.

Lemma 1 ([4]). Let f ∈ L1
Δ(J0). Then, the following∫

J0
( f · ϕΔ)(s)Δs = 0, f or every ϕ ∈ C1

0,rd(Jk)

holds iff there exists a constant c ∈ R such that

f ≡ c Δ− a.e. on J0.

Definition 12 ([4]). Let p ∈ R̄ be such that p ≥ 1 and u : J → R̄. Say that u belongs to W1,p
Δ (J)

iff u ∈ Lp
Δ(J0) and there exists g : Jk → R̄ such that g ∈ Lp

Δ(J0) and∫
J0
(u · ϕΔ)(s)Δs = −

∫
J0
(g · ϕσ)(s)Δs, ∀ϕ ∈ C1

0,rd(Jk),

with

C1
0,rd(Jk) :=

{
f : J → R : f ∈ C1

rd(Jk), f (a) = f (b)
}

,

where C1
rd(Jk) is the set of all continuous functions on J such that they are Δ-differential on Jk and

their Δ-derivatives are rd−continuous on Jk.

6
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Theorem 12 ([4]). Let p ∈ R̄ be such that p ≥ 1. Then, the set Lp
Δ(J0) is a Banach space together

with the norm defined for every f ∈ Lp
Δ(J0) as

‖ f ‖Lp
Δ

:=

⎧⎪⎪⎨⎪⎪⎩
[∫

J0
| f |p(s)Δs

] 1
p

, i f p ∈ R,

inf{C ∈ R : | f | ≤ C Δ− a.e. on J0}, i f p = +∞.

Moreover, L2
Δ(J0) is a Hilbert space together with the inner product given for every ( f , g) ∈

L2
Δ(J0)× L2

Δ(J0) by

( f , g)L2
Δ

:=
∫

J0
f (s) · g(s)Δs.

Theorem 13 ([28]). Fractional integration operators are bounded in Lp(JR); i.e., the following
estimate

‖Iα
a+ ϕ‖Lp(a,b) ≤

(b− a)Reα

Reα|Γ(α)| ‖ϕ‖Lp(JR), Reα > 0

holds.

Proposition 2 ([4]). Suppose p ∈ R̄ and p ≥ 1. Let p′ ∈ R̄ be such that 1
p′ +

1
p′ = 1. Then, if

f ∈ Lp
Δ(J0) and g ∈ Lp′

Δ (J0), then f · g ∈ L1
Δ(J0) and

‖ f · g‖L1
Δ
≤ ‖ f ‖Lp

Δ
· ‖g‖

Lp′
Δ

.

This expression is called Hölder’s inequality and Cauchy–Schwarz’s inequality whenever p = 2.

Theorem 14 ([3]). (the first mean value theorem) . Let f and g be bounded and integrable functions
on J, and let g be nonnegative (or nonpositive) on J. Let us set

m = inf{ f (t) : t ∈ J0} and M = sup{ f (t) : t ∈ J0}.

Then, there exists a real number Λ satisfying the inequalities m ≤ Λ ≤ M such that∫
J0

f (t)g(t)Δt = Λ
∫

J0
g(t)Δt.

Corollary 1 ([3]). Let f be an integrable function on J, and let m and M be the infimum and
supremum, respectively, of f on J0. Then, there exists a number Λ between m and M such that∫

J0 f (t)Δt = Λ(b− a).

Theorem 15 ([3]). Let f be a function defined on J and let c ∈ T with a < c < b. If f is
Δ-integrable from a to c and from c to b, then f is Δ-integrable from a to b and∫

J0
f (t)Δt =

∫ c

a
f (t)Δt +

∫ b

c
f (t)Δt.

Lemma 2 ([3]). Assume that a, b ∈ T. Every constant function f : T→ R is Δ-integrable from a
to b and ∫

J0
cΔt = c(b− a).

7
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Lemma 3 ([37], A time-scale version of the Arzela–Ascoli theorem). Let X be a subset of
C(J,R) satisfying the following conditions:

(i) X is bounded;
(ii) For any given ε > 0, there exists δ > 0 such that t1, t2 ∈ J, |t1 − t2| < δ implies | f (t1)−

f (t2)| < ε for all f ∈ X.

Then, X is relatively compact.

3. Some Fundamental Properties of Left Riemann–Liouville Fractional Operators on
Time Scales

Inspired by [38], we can obtain the consistency of Definitions 7 and 11 by using the
above theory of the Laplace transform on time scales and the inverse Laplace transform on
time scales.

Theorem 16. Let α > 0, T be a time scale, J be an interval of T, and f be an integrable function
on J. Then,

(
T
a Iα

t f
)
(t) = Iα

T f (t).

Proof. Using the Laplace transform on time scale T for (1), in view of Definitions 6, 7,
Theorem 5, the proof of Theorem 4.14 in [32], and Definition 10, we have

LT

{(
T
a Iα

t f
)
(t)
}
(z)

= LT

{
1

Γ(α)

∫ t

a
(t− σ(s))α−1 f (s)Δs

}
(z)

= LT(hα−1(·, a) ∗ f )(t)(z) (3)

= LT(hα−1(·, a))(z)LT( f )(t)(z)

=
1
zα
LT{ f }(z)

=
F(z)
zα

(t).

Taking the inverse Laplace transform on time scales for (3), with an eye to Definition 11,
one arrives at (

T
a Iα

t f
)
(t) = L−1

T

[
F(z)
zα

]
(t) = Iα

T f (t).

The proof is complete.

Combining [24,29] with Theorem 16, we see that Propositions 15–17, Corollary 18, and
Theorems 20 and 21 from [24] remain intact under the new Definition 7.

Proposition 3. Let h be Δ-integrable on J and 0 < α ≤ 1. Then T
a Dα

t h(t) = Δ ◦ T
a I1−α

t h(t).

Proof. Let h : T→ R. In view of (1) and (2), we obtain

T
t Dα

b h(t) =
1

Γ(1− α)

(∫ t

a
(t− σ(s))−αh(s)Δs

)Δ

=

(
T
a I1−α

t h(t)
)Δ

=Δ ◦ T
a I1−α

t h(t).

The proof is complete.

Proposition 4. For any function h that is integrable on J, the Riemann–Liouville Δ-fractional
integral satisfies T

a Iα
t ◦ T

a Iβ
t = T

a Iα+β
t = T

a Iβ
t ◦ T

a Iα
t for α > 0 and β > 0.

8
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Proof. Combining with Proposition 3.4 in [29] and Theorem 16, one obtains

T
a Iα

t ◦ T
a Iβ

t = T
a Iα+β

t .

In a similarly way, one arrives at

T
a Iβ

t ◦ T
a Iα

t = T
a Iα+β

t .

Consequently, we obtain that

T
a Iα

t ◦ T
a Iβ

t = T
a Iα+β

t = T
a Iβ

t ◦ T
a Iα

t .

The proof is complete.

Proposition 5. For any function h that is integrable on J one has T
a Dα

t ◦ T
a Iα

t h = h.

Proof. Taking account of Propositions 3 and 4, one can get

T
a Dα

t ◦ T
a Iα

t h(t) =
(
T
a I1−α

t (Ta Iα
t (h(t))

)Δ

=
(
T
a Ith(t)

)Δ
= h.

The proof is complete.

Corollary 2. For 0 < α ≤ 1, we have T
a Dα

t ◦ T
a D−α

t = Id and T
a I−α

t ◦ T
a Iα

t = Id, where Id denotes
the identity operator.

Proof. In view of Proposition 5, we have

T
a Dα

t ◦ T
a D−α

t = T
a Dα

t ◦ T
a Iα

t = Id and T
a I−α

t ◦ T
a Iα

t = T
a Dα

t ◦ T
a Iα

t = Id.

The proof is complete.

Theorem 17. Let f ∈ C(J) and α > 0, then f ∈ T
a Iα

t (J) iff

T
a I1−α

t f ∈ C1(J) (4)

and (
T
a I1−α

t f (t)
)∣∣∣∣

t=a
= 0, (5)

where T
a Iα

t (J) denotes the space of functions that can be represented by the left Riemann–Liouville
Δ-integral of order α of a C(J)−function.

Proof. Suppose f ∈ T
a Iα

t (J), f (t) = T
a Iα

t g(t) for some g ∈ C(J), and

T
a I1−α

t ( f (t)) = T
a I1−α

t (Ta Iα
t g(t)).

In view of Proposition 4, one gets

T
a I1−α

t ( f (t)) = T
a Itg(t) =

∫ t

a
g(s)Δs.

As a result, Ta I1−α
t f ∈ C(J) and(

T
a I1−α

t f (t)
)∣∣∣∣

t=a
=

∫ a

a
g(s)Δs = 0.

9
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Inversely, suppose that f ∈ C(J) satisfies (4) and (5). Then, by applying Taylor’s formula to
function T

a I1−α
t f , we obtain

T
a I1−α

t f (t) =
∫ t

a

Δ
Δs

T
a I1−α

s f (s)Δs, ∀t ∈ J.

Let ϕ(t) = Δ
Δt

T
a I1−α

t f (t). Note that ϕ ∈ C(J) by (4). Now by Proposition 4, one sees that

T
a I1−α

t ( f (t)) = T
a I1

t ϕ(t) = T
a I1−α

t [Ta Iα
t ϕ(t)]

and hence

T
a I1−α

t ( f (t))− T
a I1−α

t [Ta Iα
t ϕ(t)] ≡ 0.

Therefore, we have

T
a I1−α

t [ f (t)− T
a Iα

t ϕ(t)] ≡ 0.

From the uniqueness of the solution to Abel’s integral Equation ([39]), this implies that
f − T

a Iα
t ϕ ≡ 0. Hence, f = T

a Iα
t ϕ and f ∈ T

a Iα
t (J). The proof is complete.

Theorem 18. Let α > 0 and f ∈ C(J) satisfy the condition in Theorem 17. Then,

(Ta Iα
t ◦ T

a Dα
t )( f ) = f .

Proof. Combining Theorem 17 with Proposition 5, we can see that

T
a Iα

t ◦ T
a Dα

t f (t) = T
a Iα

t ◦ T
a Dα

t (
T
a Iα

t ϕ(t)) = T
a Iα

t ϕ(t) = f (t).

The proof is complete.

Theorem 19. Let α > 0, p, q ≥ 1, and 1
p + 1

q ≤ 1 + α, where p �= 1 and q �= 1 in the case when
1
p + 1

q = 1 + α. Moreover, let

T
a Iα

t (Lp) :=
{

f : f = T
a Iα

t g, g ∈ Lp(J)
}

and

T
t Iα

b (Lp) :=
{

f : f = T
t Iα

b g, g ∈ Lp(J)
}

,

then the following integration by part formulas hold.

(a) If ϕ ∈ Lp(J) and ψ ∈ Lq(J), then∫
J0

ϕ(t)
(
T
a Iα

t ψ

)
(t)Δt =

∫
J0

ψ(t)
(
T
t Iα

b ϕ

)
(t)Δt.

(b) If g ∈ T
t Iα

b (Lp) and f ∈ T
a Iα

t (Lq), then∫
J0

g(t)
(
T
a Dα

t f
)
(t)Δt =

∫
J0

f (t)
(
T
t Dα

b g
)
(t)Δt.

10
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(c) For Caputo fractional derivatives, if g ∈ T
t Iα

b (Lp) and f ∈ T
a Iα

t (Lq), then

∫
J0

g(t)
(
TC
a Dα

t f
)
(t)Δt =

[
T
t I1−α

b g(t) · f (t)
]∣∣∣∣b

t=a
+

∫
J0

f (σ(t))
(
T
t Dα

b g
)
(t)Δt.

and∫
J0

g(t)
(
TC
t Dα

b f
)
(t)Δt =

[
T
a I1−α

t g(t) · f (t)
]∣∣∣∣b

t=a
+

∫
J0

f (σ(t))
(
T
a Dα

t g
)
(t)Δt.

Proof. (a) It follows from Definition 7 and Fubini’s theorem on time scales that∫
J0

ϕ(t)
(
T
a Iα

t ψ

)
(t)Δt

=

∫
J0

ϕ(t)
(∫ t

a

(t− σ(s))α−1

Γ(α)
ψ(s)Δs

)
Δt

=

∫
J0

ψ(s)
∫ b

s

(t− σ(s))α−1

Γ(α)
ϕ(t)ΔtΔs

=

∫
J0

ψ(t)
∫ b

t

(s− σ(t))α−1

Γ(α)
ϕ(s)ΔsΔt

=

∫
J0

ψ(t)
(
T
t Iα

b ϕ

)
(t)Δt.

(b) It follows from Definition 8 and Fubini’s theorem on time scales that∫
J0

g(t)
(
T
a Dα

t f
)
(t)Δt

=

∫
J0

g(t)

(
1

Γ(1− α)

(∫ t

a
(t− σ(s))−α f (s)Δs

)Δ
)

Δt

=

∫
J0

f (s)

(
1

Γ(1− α)

(∫ b

s
(t− σ(s))−αg(t)Δt

)Δ
)

Δs

=

∫
J0

f (t)

(
1

Γ(1− α)

(∫ b

t
(s− σ(t))−αg(s)Δs

)Δ
)

Δt

=

∫
J0

g(t)
(
T
t Dα

b f
)
(t)Δt.

11
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(c) It follows from Definition 9, Fubini’s theorem on time scales and Theorem 1 that∫
J0

g(t)
(
TC
a Dα

t f
)
(t)Δt

=

∫
J0

g(t)
(

1
Γ(1− α)

∫ t

a
(t− σ(s))−α f Δ(s)Δs

)
Δt

=

∫
J0

f Δ(s)

(
1

Γ(1− α)

∫ b

s
(t− σ(s))−αg(t)Δt

)
Δs

=

∫
J0

f Δ(t)

(
1

Γ(1− α)

∫ b

t
(s− σ(t))−αg(s)Δs

)
Δt

=
[
T
t I1−α

b g(t) · f (t)
]∣∣∣∣b

t=a
−
∫

J0
f (σ(t))

(
1

Γ(1− α)

∫ b

t
(s− σ(t))−αg(s)Δs

)Δ

=
[
T
t I1−α

b g(t) · f (t)
]∣∣∣∣b

t=a
+

∫
J0

f (σ(t))

(
−1

Γ(1− α)

∫ b

t
(s− σ(t))−αg(s)Δs

)Δ

=
[
T
t I1−α

b g(t) · f (t)
]∣∣∣∣b

t=a
+

∫
J0

f (σ(t))
(
T
t Dα

b g
)
(t)Δt.

The second relation is obtained in a similar way. The proof is complete.

4. Fractional Sobolev Spaces on Time Scales and Their Properties

In this section, we present and prove some lemmas, propositions, and theorems, which
are of utmost significance for our main results.

In the following, let 0 < a < b. Inspired by Theorems 8–11, we give the following
definition.

Definition 13. Let 0 < α ≤ 1. By ACα,1
Δ,a+(J,RN) we denote the set of all functions f : J → RN

that have the representation

f (t) =
1

Γ(α)
c

(t− a)1−α
+ T

a Iα
t ϕ(t), t ∈ J Δ− a.e. (6)

with c ∈ RN and ϕ ∈ L1
Δ.

Then, we have the following result.

Theorem 20. Let 0 < α ≤ 1 and f ∈ L1
Δ. Then, function f has the left Riemann–Liouville deriva-

tive T
a Dα

t f of order α on the interval J iff f ∈ ACα,1
Δ,a+(J,RN); that is, f has the representation (6).

In such a case,

(Ta I1−α
t f )(a) = c, (Ta Dα

t f )(t) = ϕ(t), t ∈ J Δ− a.e.

Proof. Let us assume that f ∈ L1
Δ has a left-sided Riemann–Liouville derivative T

a Dα
t f . This

means that T
a I1−α

t f is (identified to) an absolutely continuous function. From the integral
representation of Theorems 8 and 10, there exists a constant c ∈ RN and a function ϕ ∈ L1

Δ
such that

(Ta I1−α
t f )(t) = c + (Ta I1

t ϕ)(t), t ∈ J, (7)

with (Ta I1−α
t f )(a) = c and

(
(Ta I1−α

t f )(t)
)Δ

= T
a Dα

t f (t) = ϕ(t), t ∈ J Δ− a.e..

12
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By Proposition 4 and applying T
a Iα

t to (7), we obtain

(Ta I1
t f )(t) = (Ta Iα

t c)(t) + (Ta I1
t
T
a Iα

t ϕ)(t), t ∈ J Δ− a.e.. (8)

The result follows from the Δ-differentiability of (8).
Conversely, let us assume that (6) holds true. From Proposition 4 and applying T

a I1−α
t

to (6), we obtain

(Ta I1−α
t f )(t) = c + (Ta I1

t ϕ)(t), t ∈ J Δ− a.e.

and then, Ta I1−α
t f has an absolutely continuous representation. Further, f has a left-sided

Riemann–Liouville derivative T
a Dα

t f . This completes the proof.

Remark 2. (i) By ACα,p
Δ,a+ (1 ≤ p < ∞) we denote the set of all functions f : J → RN

possessing representation (6) with c ∈ RN and ϕ ∈ Lp
Δ.

(ii) It is easy to see that Theorem 20 implies that for any 1 ≤ p < ∞, f has the left Riemann–Liouville
derivative T

a Dα
t f ∈ Lp

Δ iff f ∈ ACα,p
Δ,a+ ; that is, f has the representation (6) with ϕ ∈ Lp

Δ.

Definition 14. Let 0 < α ≤ 1 and let 1 ≤ p < ∞. By left Sobolev space of order α we will mean
the set Wα,p

Δ,a+ = Wα,p
Δ,a+(J,RN) given by

Wα,p
Δ,a+ :=

{
u ∈ Lp

Δ; ∃ g ∈ Lp
Δ, ∀ϕ ∈ C∞

c,rd such that
∫

J0
u(t) · Tt Dα

b ϕ(t)Δt =
∫

J0
g(t) · ϕ(t)Δt

}
.

Remark 3. A function g given in Definition 16 will be called the weak left fractional derivative
of order 0 < α ≤ 1 of u; let us denote it by Tuα

a+ . The uniqueness of this weak derivative follows
from [4].

We have the following characterization of Wα,p
Δ,a+ .

Theorem 21. If 0 < α ≤ 1 and 1 ≤ p < ∞, then Wα,p
Δ,a+ = ACα,p

Δ,a+ ∩ Lp
Δ.

Proof. On the one hand, if u ∈ ACα,p
Δ,a+ ∩ Lp

Δ, then from Theorem 20 it follows that u has

derivative T
a Dα

t u ∈ Lp
Δ. Theorem 19 implies that∫

J0
u(t) Tt Dα

b ϕ(t)Δt =
∫

J0
(Ta Dα

t u)(t) ϕ(t)Δt

for any ϕ ∈ C∞
c,rd. So, u ∈ Wα,p

Δ,a+ with Tuα
a+ = g = T

a Dα
t u ∈ Lp

Δ.

On the other hand, if u ∈ Wα,p
Δ,a+ , then u ∈ Lp

Δ and there exists a function g ∈ Lp
Δ

such that ∫
J0

u(t)Tt Dα
b ϕ(t)Δt =

∫
J0

g(t)ϕ(t)Δt (9)

for any ϕ ∈ C∞
c,rd. To show that u ∈ ACα,p

Δ,a+ ∩ Lp
Δ, it suffices to check (Theorem 20 and

definition of ACα,p
Δ,a+ ) that u possesses the left Riemann–Liouville derivative of order α,

which belongs to Lp
Δ; that is, Ta I1−α

t u is absolutely continuous on J and its delta derivative
of α order (existing Δ− a.e. on J) belongs to Lp

Δ.

13
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In fact, let ϕ ∈ C∞
c,rd, then ϕ ∈ T

t Dα
b (Crd) and T

t Dα
b ϕ = −(Tt I1−α

b )Δ. From Theorem 19, it
follows that ∫

J0
u(t)Tt Dα

b ϕ(t)Δt =
∫

J0
u(t)(−T

t I1−α
b ϕ)Δ(t)Δt

=

∫
J0
(Ta D1−α

t
T
a I1−α

t u)(t)(−T
t I1−α

b ϕ)Δ(t)Δt

=

∫
J0
(Ta I1−α

t u)(t)(−ϕ)Δ(t)Δt

=−
∫

J0
(Ta I1−α

t u)(t)ϕΔ(t)Δt. (10)

In view of (9) and (10), we obtain∫
J0
(Ta I1−α

t u)(t)ϕΔ(t)Δt = −
∫

J0
g(t)ϕ(t)Δt

for any ϕ ∈ C∞
c,rd. So, Ta I1−α

t u ∈ W1,p
Δ,a+ . Consequently, Ta I1−α

t u is absolutely continuous and

its delta derivative is equal Δ− a.e. on [a, b]T to g ∈ Lp
Δ. The proof is complete.

From the proof of Theorem 21 and the uniqueness of the weak fractional derivative,
the following theorem follows.

Theorem 22. If 0 < α ≤ 1 and 1 ≤ p < ∞, then the weak left fractional derivative Tuα
a+ of a

function u ∈ Wα,p
Δ,a+ coincides with its left Riemann–Liouville fractional derivative T

a Dα
t u Δ− a.e.

on J.

Remark 4. (1) If 0 < α ≤ 1 and (1− α)p < 1, then ACα,p
Δ,a+ ⊂ Lp

Δ and, consequently,

Wα,p
Δ,a+ = ACα,p

Δ,a+ ∩ Lp
Δ = ACα,p

Δ,a+ .

(2) If 0 < α ≤ 1 and (1− α)p ≥ 1, then Wα,p
Δ,a+ = ACα,p

Δ,a+ ∩ Lp
Δ is the set of all functions belong

to ACα,p
Δ,a+ that satisfy the condition (Ta I1−α

t f )(a) = 0.

By using the definition of Wα,p
Δ,a+ with 0 < α ≤ 1 and Theorem 22, one can easily prove

the following result.

Theorem 23. Let 0 < α ≤ 1, 1 ≤ p < ∞ and u ∈ Lp
Δ. Then u ∈ Wα,p

Δ,a+ iff there exists a function
g ∈ Lp

Δ such that ∫
J0

u(t)Tt Dα
b ϕ(t)Δt =

∫
J0

g(t)ϕ(t)Δt, ϕ ∈ C∞
c,rd.

In such a case, there exists the left Riemann–Liouville derivative T
a Dα

t u of u and g = T
a Dα

t u.

Remark 5. Function g will be called the weak left fractional derivative of u ∈ Wα,p
Δ,a+ of order

α. Its uniqueness follows from [4]. From the above theorem it follows that it coincides with an
appropriate Riemann–Liouville derivative.

Let us fix 0 < α ≤ 1 and consider in the space Wα,p
Δ,a+ a norm ‖ · ‖Wα,p

Δ,a+
given by

‖u‖p
Wα,p

Δ,a+
= ‖u‖p

Lp
Δ
+ ‖Ta Dα

t u‖p
Lp

Δ
, u ∈ Wα,p

Δ,a+ .

14
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(Here ‖ · ‖p
LΔ

denotes the delta norm in Lp
Δ (Theorem 12)).

Lemma 4. Let 0 < α ≤ 1 and 1 ≤ p < ∞. For any f ∈ Lp
Δ(J,RN), we have

‖Ta Iα
ξ f ‖Lp

Δ([a,t]T)
≤ (t− a)α

Γ(α + 1)
‖ f ‖Lp

Δ([a,t]T)
, for ξ ∈ [a, t]T, t ∈ J. (11)

That is to say, the fractional integration operator is bounded in Lp
Δ.

Proof. Inspired by Theorem 13 and the proof of Lemma 3.1 of [40], we can prove (11).
In fact, if p = 1, in light of Definition 7, Theorem 2, Fubini’s theorem on time scales,

and Proposition 1, we have

‖Ta Iα
ξ f ‖L1

Δ([a,t]T)

=

∫ t

a
|Ta Iα

ξ f |Δξ

=
1

Γ(α)

∫ t

a

∣∣∣∣∣
∫ ξ

a
(ξ − σ(τ))α−1 f (τ)

∣∣∣∣∣ΔτΔξ

≤ 1
Γ(α)

∫ t

a

∫ ξ

a
(ξ − σ(τ))α−1| f (τ)|ΔτΔξ

=
1

Γ(α)

∫ t

a
| f (τ)|Δτ

∫ t

τ
(ξ − σ(τ))α−1Δξ

≤ 1
Γ(α)

∫ t

a
| f (τ)|Δτ

∫ t

τ
(ξ − τ)α−1dξ

=
1

Γ(α)

∫ t

a
| f (τ)|(t− τ)αΔτ

≤ (t− a)α

Γ(α + 1)
‖ f ‖L1

Δ([a,t]T)
, for t ∈ J. (12)

Now, suppose that 1 < p < ∞ and g ∈ Lq
Δ(J,RN), where 1

p + 1
q = 1. In consideration of

Theorems 2 and 3, Fubini’s theorem on time scales, and Propositions 1 and 2, one arrives at∣∣∣∣∣
∫ t

a
g(ξ)

∫ ξ

a
(ξ − σ(τ))α−1 f (τ)ΔτΔξ

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

a
g(ξ)

∫ ξ

a
τα−1 f (ξ − σ(τ))ΔτΔξ

∣∣∣∣∣
≤
∫ t

a
|g(ξ)|

∫ ξ

a
τα−1| f (ξ − σ(τ))|ΔτΔξ

≤
∫ t

a
τα−1Δτ

∫ t

τ
|g(ξ)|| f (ξ − σ(τ))|Δξ

≤
∫ t

a
τα−1Δτ

(∫ t

τ
|g(ξ)|qΔξ

) 1
q
(∫ t

τ
| f (ξ − σ(τ))|pΔξ

) 1
p

≤
∫ t

a
τα−1dτ‖g‖Lq

Δ([a,t]T)
‖ f ‖Lp

Δ([a,t]T)

=
(t− a)α

α
‖ f ‖Lp

Δ([a,t]T)
‖g‖Lq

Δ([a,t]T)
, for t ∈ J. (13)

For any fixed t ∈ J, consider the functional Hξ∗ f : Lq
Δ(J,RN)→ R

15
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Hξ∗ f (g) =
∫ t

a

[∫ ξ

a
(ξ − σ(τ))α−1 f (τ)Δτ

]
g(ξ)Δξ (14)

According to (13), it is obvious that Hξ∗ f ∈
(

Lq
Δ(J,RN)

)∗
, where

(
Lq

Δ(J,RN)
)∗

denotes the

dual space of Lq
Δ(J,RN). Therefore, by (13) and (14) and the Riesz representation theorem,

there exists h ∈ Lp
Δ(J,RN) such that

∫ t

a
h(ξ)g(ξ)Δξ =

∫ t

a

[∫ ξ

a
(ξ − σ(τ))α−1 f (τ)Δτ

]
g(ξ)Δξ (15)

and

‖h‖Lp
Δ([a,t]T)

= ‖Hξ∗ f ‖Lp
Δ([a,t]T)

≤ (t− a)α

α
‖ f ‖Lp

Δ([a,t]T)
(16)

for all g ∈ Lq
Δ(J,RN). Hence, we have by (15) and Definition 7

1
Γ(α)

h(ξ) =
1

Γ(α)

∫ ξ

a
(ξ − σ(τ))α−1 f (τ)Δτ = T

a Iα
ξ f (ξ), for ξ ∈ [a, t]T,

which means that

‖Ta Iα
ξ f ‖Lp

Δ([a,t]T)
=

1
Γ(α)

‖h‖Lp
Δ([a,t]T)

≤ (t− a)α

Γ(α + 1)
‖ f ‖Lp

Δ([a,t]T)
(17)

according to (16). Combining this with (12) and (17), we obtain inequality (11). The proof
is complete.

Theorem 24. If 0 < α ≤ 1, then the norm ‖ · ‖Wα,p
Δ,a+

is equivalent to the norm ‖ · ‖a,Wα,p
Δ,a+

given by

‖u‖p
a,Wα,p

Δ,a+
= |Ta I1−α

t u(a)|p + ‖Ta Dα
t u‖p

Lp
Δ

, u ∈ Wα,p
Δ,a+ .

Proof. (1) Assume that (1− α)p < 1. On the one hand, in view of Remarks 2 and 4, for
u ∈ Wα,p

Δ,a+ , we can write it as

u(t) =
1

Γ(α)
c

(t− a)1−α
+ T

a Iα
t ϕ(t)

with c ∈ RN and ϕ ∈ Lp
Δ. Since (t − a)(α−1)p is an increasing monotone function, by

using Proposition 1, we can write that
∫

J0(t− a)(α−1)pΔt ≤ ∫J0
R
(t− a)(α−1)pdt. Furthermore,

taking into account Lemma 4, we have

‖u‖p
Lp

Δ
=

∫
J0

∣∣∣∣ 1
Γ(α)

c
(t− a)1−α

+T
a Iα

t ϕ(t)
∣∣∣∣pΔt

≤2p−1
( |c|p

Γp(α)

∫
J0
(t− a)(α−1)pΔt + ‖Ta Iα

t ϕ‖p
Lp

Δ

)
≤2p−1

( |c|p
Γp(α)

∫
J0
R

(t− a)(α−1)pdt + ‖Ta Iα
t ϕ‖p

Lp
Δ

)
≤2p−1

( |c|p
Γp(α)

1(α− 1)p + 1(b− a)(α−1)p+1 + Kp‖ϕ‖p
Lp

Δ

)
,

16
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where K = (b−a)α

Γ(α+1) . Noting that c = T
a I1−α

t u(a), ϕ = T
a Dα

t u, one can obtain

‖u‖p
Lp

Δ
≤Lα,0(|c|p + ‖ϕ‖p

Lp
Δ
)

≤Lα,0

(
|Ta I1−α

t u(a)|p + ‖Ta Dα
t u‖p

Lp
Δ

)
=Lα,0‖u‖p

a,Wα,p
Δ,a+

,

where

Lα,0 = 2p−1
(

(b− a)1−(1−α)p

Γp(α)(1− (1− α)p)
+ Kp

)
.

Consequently,

‖u‖p
Wα,p

Δ,a+
=‖u‖P

LP
Δ
+ ‖Ta Dα

t u‖p
Lp

Δ

≤Lα,1‖u‖p
a,Wα,p

Δ,a+
,

where Lα,1 = Lα,0 + 1.
On the other hand, we will prove that there exists a constant Mα,1 such that

‖u‖p
a,Wα,p

Δ,a+
≤ Mα,1‖u‖p

Wα,p
Δ,a+

, u ∈ Wα,p
Δ,a+ . (18)

Indeed, let u ∈ Wα,p
Δ,a+ and consider coordinate functions (Ta I1−α

t u)i of T
a I1−α

t u with
i ∈ {1, . . . , N}. Lemma 4, Theorem 14 and Corollary 1 imply that there exist constants

Λi ∈
[

inf
t∈[a,b)T

(Ta I1−α
t u)i(t), sup

t∈[a,b)T

(Ta I1−α
t u)i(t)

]
, (i = 1, 2, . . . , N)

such that

Λi =
1

b− a

∫ b

a
(Ta I1−α

t u)i(s)Δs.

Hence, for a fixed t0 ∈ J0, if (Ta I1−α
t u)i(t0) �= 0 for all i = 1, 2, . . . , N, then we can take

constants θi such that

θi(
T
a I1−α

t u)i(t0) = Λi =
1

b− a

∫ b

a
(Ta I1−α

t u)i(s)Δs.

Therefore, we have

(Ta I1−α
t u)i(t0) =

θi
b− a

∫ b

a
(Ta I1−α

t u)i(s)Δs.

From the absolute continuity (Theorem 9) of (Ta I1−α
t u)i it follows that

(Ta I1−α
t u)i(t) = (Ta I1−α

t u)i(t0) +

∫
[t0,t)T

[
(Ta I1−α

t u)i(s)
]Δ

Δs

for any t ∈ J. Consequently, combining with Proposition 3 and Lemma 4, we see that

17
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|(Ta I1−α
t u)i(t)| =

∣∣∣∣(Ta I1−α
t u)i(t0) +

∫
[t0,t)T

[
(Ta I1−α

t u)i(s)
]Δ

Δs
∣∣∣∣

≤ |θi|
b− a

‖Ta I1−α
t u‖L1

Δ
+

∫
[t0,t)T

|(Ta Dα
t u)(s)|Δs

≤ |θi|
b− a

‖Ta I1−α
t u‖L1

Δ
+ ‖Ta Dα

t u‖L1
Δ

≤ |θi|
b− a

(b− a)1−α

Γ(2− α)
‖u‖L1

Δ
+ ‖Ta Dα

t u‖L1
Δ

for t ∈ J. In particular,

|(Ta I1−α
t u)i(a)| ≤ |θi|

b− a
(b− a)1−α

Γ(2− α)
‖u‖L1

Δ
+ ‖Ta Dα

t u‖L1
Δ

.

So,

|(Ta I1−α
t u)(a)| ≤N

( |θ|(b− a)−α

Γ(2− α)
+ 1

)(
‖u‖L1

Δ
+ ‖Ta Dα

t u‖L1
Δ

)
≤NMα,0(b− a)

p−1
p
(
‖u‖Lp

Δ
+ ‖Ta Dα

t u‖Lp
Δ

)
,

where |θ| = max
i∈{1,2,...,N}

|θi| and Mα,0 = |θ|(b−a)−α

Γ(2−α)
+ 1. Thus,

|(Ta I1−α
t u)(a)|p ≤Np Mp

α,0(b− a)p−12p−1
(
‖u‖p

Lp
Δ
+ ‖Ta Dα

t u‖p
Lp

Δ

)
,

and, consequently,

‖u‖p
a,Wα,p

Δ,a+
=|Ta I1−α

t u(a)|p + ‖Ta Dα
t u‖p

Lp
Δ

≤
(

Np Mp
α,0(b− a)p−12p−1 + 1

)(
‖u‖p

Lp
Δ
+ ‖Ta Dα

t u‖p
Lp

Δ

)
=Mα,1‖u‖p

Wα,p
Δ,a+

,

where Mα,1 = Np Mp
α,0(b− a)p−12p−1 + 1.

If (Ta I1−α
t u)i(t0) = 0 for i belongs to some subset of {1, 2, . . . , N}, from the above

argument process one can easily see that there exists a constant Mα,1 such that (18) holds.
(2) When (1− α)p ≥ 1, then (Remark 4) Wα,p

Δ,a+ = ACα,p
Δ,a+ ∩ Lp

Δ is the set of all functions

belonging to ACα,p
Δ,a+ that satisfy the condition (Ta I1−α

t u)(a) = 0. Hence, in the same way as
in the case of (1− α)p < 1 (putting c = 0), we obtain the inequality

‖u‖p
Wα,p

Δ,a+
≤ Lα,1‖u‖p

a,Wα,p
Δ,a+

, with some Lα,1 > 0.

The inequality

‖u‖p
a,Wα,p

Δ,a+
≤ Mα,1‖u‖p

Wα,p
Δ,a+

, with some Mα,1 > 0

is obvious (it is sufficient to put Mα,1 = 1 and use the fact that (Ta I1−α
t u)(a) = 0).

The proof is complete.

Now, we are in a position to prove some basic properties of the space Wα,p
Δ,a+ .

18
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Theorem 25. The space Wα,p
Δ,a+ is complete with respect to each of the norms ‖ · ‖Wα,p

Δ,a+
and

‖ · ‖a,Wα,p
Δ,a+

for any 0 < α ≤ 1, 1 ≤ p < ∞.

Proof. In view of Theorem 24, we only need to show that Wα,p
Δ,a+ with the norm ‖ · ‖a,Wα,p

Δ,a+

is complete. Let {uk} ⊂ Wα,p
Δ,a+ be a Cauchy sequence with respect to this norm. The

sequences {Ta I1−α
t uk(a)} and {Ta Dα

t uk} are Cauchy sequences in RN and Lp
Δ, respectively.

Let c ∈ RN and ϕ ∈ Lp
Δ be the limits of the above two sequences in RN and Lp

Δ,
respectively. Then the function

u(t) =
c

Γ(α)
(t− a)α−1 + T

a Iα
t ϕ(t), t ∈ J Δ− a.e.

belongs to Wα,p
Δ,a+ and it is the limit of {uk} in Wα,p

Δ,a+ with respect to ‖ · ‖a,Wα,p
Δ,a+

. The proof

is complete.

The proof method of the following two theorems is inspired by the method used in
the proof of Proposition 8.1 (b), (c) in [41].

Theorem 26. The space Wα,p
Δ,a+ is reflexive with respect to the norm ‖ · ‖Wα,p

Δ,a+
for any 0 < α ≤ 1

and 1 < p < ∞.

Proof. Let us consider Wα,p
Δ,a+ with the norm ‖ · ‖Wα,p

Δ,a+
and define a mapping

λ : Wα,p
Δ,a+ � u �→

(
u, T

a Dα
t u
)
∈ Lp

Δ × Lp
Δ.

It is obvious that

‖u‖Wα,p
Δ,a+

= ‖λu‖Lp
Δ×Lp

Δ
,

where

‖λu‖Lp
Δ×Lp

Δ
=

( 2∑
i=1

‖(λu)i‖p
Lp

Δ

) 1
p

, λu =
(

u, T
a Dα

t u
)
∈ Lp

Δ × Lp
Δ,

which means that the operator λ : u �→ (
u, T

a Dα
t u
)

is a isometric isomorphic mapping and

the space Wα,p
Δ,a+ is isometric isomorphic to the space Ω =

{(
u, T

a Dα
t u
)

: ∀u ∈ Wα,p
Δ,a+

}
,

which is a closed subset of Lp
Δ × Lp

Δ as Wα,p
Δ,a+ is closed.

Since Lp
Δ is reflexive, the Cartesian product space Lp

Δ × Lp
Δ is also a reflexive space with

respect to the norm ‖v‖Lp
Δ×Lp

Δ
=

( 2∑
i=1
‖vi‖p

Lp
Δ

) 1
p

, where v = (v1, v2) ∈ Lp
Δ × Lp

Δ.

Thus, Wα,p
Δ,a+ is reflexive with respect to the norm ‖ · ‖Wα,p

Δ,a+
. The proof is complete.

Theorem 27. The space Wα,p
Δ,a+ is separable with respect to the norm ‖ · ‖Wα,p

Δ,a+
for any 0 < α ≤ 1

and 1 ≤ p < ∞.

Proof. Let us consider Wα,p
Δ,a+ with the norm ‖ · ‖Wα,p

Δ,a+
and the mapping λ defined in the

proof of Theorem 26. Obviously, λ(Wα,p
Δ,a+) is separable as a subset of separable space

Lp
Δ × Lp

Δ. Since λ is the isometry, Wα,p
Δ,a+ is also separable with respect to the norm ‖ · ‖Wα,p

Δ,a+
.

The proof is complete.
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Proposition 6. Let 0 < α ≤ 1 and 1 < p < ∞. For all u ∈ Wα,p
Δ,a+ , if 1− α ≥ 1

p or α > 1
p , then

‖u‖Lp
Δ
≤ bα

Γ(α + 1)

∥∥∥Ta Dα
t u
∥∥∥

Lp
Δ

; (19)

if α > 1
p and 1

p + 1
q = 1, then

‖u‖∞ ≤ bα− 1
p

Γ(α)((α− 1)q + 1)
1
q

∥∥∥Ta Dα
t u
∥∥∥

Lp
Δ

. (20)

Proof. In view of Remark 4 and Theorem 18, in order to prove inequalities (19) and (20),
we only need to prove that∥∥∥Ta Iα

t (
T
a Dα

t u)
∥∥∥

Lp
Δ

≤ bα

Γ(α + 1)

∥∥∥Ta Dα
t u
∥∥∥

Lp
Δ

(21)

for 1− α ≥ 1
p or α > 1

p , and that

∥∥∥Ta Iα
t (

T
a Dα

t u)
∥∥∥

∞
≤ bα− 1

p

Γ(α)((α− 1)q + 1)
1
q

∥∥∥Ta Dα
t u
∥∥∥

Lp
Δ

(22)

for α > 1
p and 1

p + 1
q = 1.

Note that T
a Dα

t u ∈ Lp
Δ(J,RN), and the inequality (21) follows directly from Lemma 4.

We are now in a position to prove (22). For α > 1
p , choose q such that 1

p +
1
q = 1. For all

u ∈ Wα,p
Δ,a+ , since (t− s)(α−1)q is an increasing monotone function, by using Proposition 1,

we find that
∫ t

a (t− σ(s))(α−1)qΔs ≤ ∫ t
a (t− s)(α−1)qds. Taking into account of Proposition 2,

we have ∣∣∣Ta Iα
t (

T
a Dα

t u(t))
∣∣∣ = 1

Γ(α)

∣∣∣∣ ∫ t

a
(t− σ(s))α−1T

a Dα
t u(s)Δs

∣∣∣∣
≤ 1

Γ(α)

(∫ t

a
(t− σ(s))(α−1)qΔs

) 1
q

‖Ta Dα
t u‖Lp

Δ

≤ 1
Γ(α)

(∫ t

a
(t− s)(α−1)qds

) 1
q

‖Ta Dα
t u‖Lp

Δ

≤ b
1
q +α−1

Γ(α)((α− 1)q + 1)
1
q

∥∥∥Ta Dα
t u
∥∥∥

Lp
Δ

=
bα− 1

p

Γ(α)((α− 1)q + 1)
1
q

∥∥∥Ta Dα
t u
∥∥∥

Lp
Δ

.

The proof is complete.

Remark 6. (i) According to (19), we can consider Wα,p
Δ,a+ with respect to the norm

‖u‖p
Wα,p

Δ,a+
= ‖Ta Dα

t u‖p
Lp

Δ
=

(∫
J0

∣∣∣Ta Dα
t u(t)

∣∣∣pΔt
) 1

p

(23)

in the following analysis.
(ii) It follows from (19) and (20) that Wα,p

Δ,a+ is continuously immersed into C(J,RN) with the
natural norm ‖ · ‖∞.

20
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Proposition 7. Let 0 < α ≤ 1 and 1 < p < ∞. Assume that α > 1
p and the sequence

{uk} ⊂ Wα,p
Δ,a+ converges weakly to u in Wα,p

Δ,a+ . Then, uk → u in C(J,RN), i.e., ‖u− uk‖∞ = 0,
as k → ∞.

Proof. If α > 1
p , then by (20) and (30), the injection of Wα,p

Δ,a+ into C(J,RN), with its natural

norm ‖ · ‖∞, is continuous, i.e., uk → u in Wα,p
Δ,a+ , then uk → u in C(J,RN).

Since uk ⇀ u in Wα,p
Δ,a+ , it follows that uk ⇀ u in C(J,RN). In fact, for any h ∈ (C(J,RN)

)∗,
if uk → u in Wα,p

Δ,a+ , then uk → u in C(J,RN), and thus h(uk) → h(u). Therefore,

h ∈
(

Wα,p
Δ,a+

)∗
, which means that

(
C(J,RN)

)∗ ⊂ (Wα,p
Δ,a+

)∗
. Hence, if uk ⇀ u in Wα,p

Δ,a+ , then

for any h ∈ (C(J,RN)
)∗, we have h ∈

(
Wα,p

Δ,a+

)∗
, and thus h(uk) → h(u), i.e., uk ⇀ u in

C(J,RN).
By the Banach–Steinhaus theorem, {uk} is bounded in Wα,p

Δ,a+ and, hence, in C(J,RN).

Now, we prove that the sequence {uk} is equicontinuous. Let 1
p + 1

q = 1 and t1, t2 ∈ J with

t1 ≤ t2, for all f ∈ Lp
Δ(J,RN), by using Proposition 2, Proposition 1, and Theorem 15, and

noting α > 1
p , we have

∣∣∣Ta Iα
t1

f (t1)− T
a Iα

t2
f (t2)

∣∣∣
=

1
Γ(α)

∣∣∣∣
∫ t1

a
(t1 − σ(s))α−1 f (s)Δs−

∫ t2

a
(t2 − σ(s))α−1 f (s)Δs

∣∣∣∣
≤ 1

Γ(α)

∣∣∣∣
∫ t1

a
(t1 − σ(s))α−1 f (s)Δs−

∫ t1

a
(t2 − σ(s))α−1 f (s)Δs

∣∣∣∣
+

1
Γ(α)

∣∣∣∣
∫ t2

t1

(t2 − σ(s))α−1 f (s)Δs
∣∣∣∣

≤ 1
Γ(α)

∫ t1

a

(
(t1 − σ(s))α−1 − (t2 − σ(s))α−1)| f (s)|Δs

+
1

Γ(α)

∫ t2

t1

(t2 − σ(s))α−1| f (s)|Δs

≤ 1
Γ(α)

(∫ t1

a

(
(t1 − σ(s))α−1 − (t2 − σ(s))α−1)q

Δs
) 1

q
‖ f ‖Lp

Δ

+
1

Γ(α)

(∫ t2

t1

(t2 − σ(s))(α−1)qΔs
) 1

q
‖ f ‖Lp

Δ

≤ 1
Γ(α)

(∫ t1

a

(
(t1 − σ(s))(α−1)q − (t2 − σ(s))(α−1)q

)
Δs

) 1
q
‖ f ‖Lp

Δ

+
1

Γ(α)

(∫ t2

t1

(t2 − σ(s))(α−1)qΔs
) 1

q
‖ f ‖Lp

Δ

≤ 1
Γ(α)

(∫ t1

a

(
(t1 − s)(α−1)q − (t2 − s)(α−1)q

)
ds
) 1

q
‖ f ‖Lp

Δ

+
1

Γ(α)

(∫ t2

t1

(t2 − s)(α−1)qds
) 1

q
‖ f ‖Lp

Δ

=

‖ f ‖Lp
Δ

Γ(α)(1 + (α− 1)q)
1
q

(
t(α−1)q+1
1 − t(α−1)q+1

2 + (t2 − t1)
(α−1)q+1

) 1
q

+

‖ f ‖Lp
Δ

Γ(α)(1 + (α− 1)q)
1
q

(
(t2 − t1)

(α−1)q+1
) 1

q

≤
2‖ f ‖Lp

Δ

Γ(α)(1 + (α− 1)q)
1
q
(t2 − t1)

α−1+ 1
q

=

2‖ f ‖Lp
Δ

Γ(α)(1 + (α− 1)q)
1
q
(t2 − t1)

α− 1
p . (24)
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Therefore, the sequence {uk} is equicontinuous since, for t1, t2 ∈ J, t1 ≤ t2, by applying
(24) and (30), we have

|uk(t1)− uk(t2)| =
∣∣∣Ta Iα

t1
(Ta Dα

t1
uk(t1))− T

a Iα
t2
(Ta Dα

t2
uk(t2))

∣∣∣
≤ 2(t2 − t1)

α− 1
p

Γ(α)(1 + (α− 1)q)
1
q
‖Ta Dα

t uk‖Lp
Δ

=
2(t2 − t1)

α− 1
p

Γ(α)(1 + (α− 1)q)
1
q
‖Ta Dα

t uk‖Lp
Δ

≤ 2(t2 − t1)
α− 1

p

Γ(α)((α− 1)q + 1)
1
q

∥∥∥Ta Dα
t u
∥∥∥

Lp
Δ

=
2(t2 − t1)

α− 1
p

Γ(α)((α− 1)q + 1)
1
q
‖uk‖Wα,p

Δ,a+

≤C(t2 − t1)
α− 1

p ,

where 1
p + 1

q = 1 and C ∈ R+ is a constant. By the Ascoli–Arzela theorem on time scales

(Lemma 3), {uk} is relatively compact in C(J,RN). By the uniqueness of the weak limit in
C(J,RN), every uniformly convergent subsequence of {uk} converges uniformly on J to u.
The proof is complete.

Remark 7. It follows from Proposition 7 that Wα,p
Δ,a+ is compactly immersed into C(J,RN) with

the natural norm ‖ · ‖∞.

Theorem 28. Let 1 < p < ∞, 1
p < α ≤ 1, 1

p + 1
q = 1, L : J × RN × RN → R, (t, x, y) �→

L(t, x, y) satisfies

(i) for each (x, y) ∈ RN ×RN, L(t, x, y) is Δ-measurable in t;
(ii) for Δ, almost every t ∈ J, L(t, x, y) is continuously differentiable in (x, y).

If there exist m1 ∈ C(R+,R+), m2 ∈ L1
Δ(J,R+) and m3 ∈ Lq

Δ(J,R+), 1 < q < ∞, such that, for
Δ a.e. t ∈ J and every (x, y) ∈ RN ×RN, one has

|L(t, x, y)| ≤ m1(|x|)(m2(t) + |y|p),
|DxL(t, x, y)| ≤ m1(|x|)(m2(t) + |y|p),
|DyL(t, x, y)| ≤ m1(|x|)(m3(t) + |y|p−1).

Then the functional χ defined by

χ(u) =
∫

J0
L(t, u(t), T

a Dα
t u(t))Δt

is continuously differentiable on Wα,p
Δ,a+ , and ∀ u, v ∈ Wα,p

Δ,a+ , one has

〈χ′(u), v〉 =
∫

J0

[(
DxL(t, u(t), T

a Dα
t u(t), v(t)

)
+
(

DyL(t, u(t), T
a Dα

t u(t), T
a Dα

t v(t)
)]

Δt. (25)

Proof. It suffices to prove that χ has, at every point u, a directional derivative χ′(u) ∈
(Wα,p

Δ,a+)
∗ given by (25) and that the mapping

χ′ : Wα,p
Δ,a+ � u �→ χ′(u) ∈ (Wα,p

Δ,a+)
∗
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is continuous. The rest of proof is similar to the proof of Theorem 1.4 in [42]. We will omit
it here. The proof is complete.

5. An Application

As an application of the concepts we introduced and the results obtained in Section 3,
in this section we will use critical point theory to study the solvability of a class of boundary
value problems on time scales. More precisely, our goal is to study the following Kirchhoff-
type fractional p-Laplacian system on time scales with boundary condition (KFBVPT

for short):⎧⎨⎩
(

β + �
∫

J0 |Ta Dα
t u(t)|pΔt

)p−1
T
t Dα

b φp(Ta Dα
t u(t)) = λ(t)∇G(t, u(t)), Δ− a.e. t ∈ J,

u(a) = u(b) = 0,
(26)

where β, � > 0 and p > 1 are constants, λ ∈ L∞
Δ (J,R+) with ess sup

t∈J
λ(t) := λ0 > λ0 :=

ess inf
t∈J

λ(t) > 0, T
t Dα

b and T
a Dα

t are the right and the left Riemann–Liouville fractional

derivative operators of order α defined on T, respectively, and φp : R → R is the p-
Laplacian ([43]) defined by

φp(y) =

{
|y|p−2y, i f y �= 0,

0, i f y = 0.

Furthermore, ∇G ∈ C(J ×R,R) denotes the gradient of G(t, x) in x. When T = R,
FBVPT (26) reduces to the following Kirchhoff-type fractional p-Laplacian system⎧⎨⎩

(
β + �

∫
JR
|aDα

t u(t)|pdt
)p−1

tDα
b φp(aDα

t u(t)) = λ(t)∇G(t, u(t)), a.e. t ∈ JR,

u(a) = u(b) = 0.

When T = R and λ(t) = λ ∈ (0,+∞), FBVPT (26) reduces to the following Kirchhoff-
type fractional p-Laplacian system⎧⎨⎩

(
β + �

∫
JR
|aDα

t u(t)|pdt
)p−1

tDα
b φp(aDα

t u(t)) = λ∇G(t, u(t)), a.e. t ∈ JR,

u(a) = u(b) = 0.

When T = R, λ(t) = 1, our results further reduce to the following problem⎧⎨⎩
(

β + �
∫

JR
|aDα

t u(t)|pdt
)p−1

tDα
b φp(aDα

t u(t)) = ∇G(t, u(t)), a.e. t ∈ JR,

u(a) = u(b) = 0,

which has been studied by [44]. So, in short, our results are improved and generalized [44].

Definition 15 ([42]). Let E be a real Banach space and ϕ ∈ C1(E,R). If any sequence {uk} ⊂ E
for which ϕ(uk) is bounded and ϕ′(uk)→ 0 as k → ∞ possesses a convergent subsequence in E,
then we say that ϕ satisfies the (PS) condition.

Lemma 5 ([45]). Let E be a real Banach space and ϕ ∈ C1(E,R) satisfying the (PS) condition.
Assume that ϕ(0) = 0 and the following conditions:

(A1) there are constants ρ, σ > 0 such that ϕ|∂Bρ(0) ≥ σ;

(A2) there exists an e ∈ E \ Bρ(0) such that ϕ(e) ≤ 0.
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Then, ϕ possesses a critical value c ≥ σ. Furthermore, c can be characterized as

c = inf
ν∈Γ

max
s∈[0,1]

ϕ(ν(s)),

where

Γ = {ν ∈ C([0, 1], E)|ν(0) = 0, ν(1) = e}.

Lemma 6 ([42]). Let E be a real Banach space and ϕ ∈ C1(E,R) satisfying the (PS) condition. If
ϕ is bounded from below, then c = inf

E
ϕ is a critical value of ϕ.

For the sake of the infinitely many critical points of ϕ, one introduces the genus
properties as follows. First, we let

Ξ = {A ⊂ E− {0}|A is closed in E and symmetric with respect to 0},

Kc = {u ∈ E|ϕ(u) = c, ϕ′(u) = 0},

ϕc = {u ∈ E|ϕ(u) ≤ c}.

Definition 16 ([45]). For A ∈ Ξ, we say that the genus of A is n denoted by γ(A) = n if there is
an odd map P ∈ C(A,RN \ {0}) and n is the smallest integer with this property.

Lemma 7 ([45]). Let ϕ be an even C1 functional on E and satisfy the (PS) condition. For any
n ∈ N, set

Ξn = {A ∈ Ξ|γ(A) ≥ n},

cn = inf
A∈Ξn

sup
u∈A

ϕ(u).

(i) If Ξn �= 0 and cn ∈ R, then cn is a critical value of ϕ.
(ii) If there exists l ∈ N such that cn = cn+1 = · · · = cn+l = c ∈ R and c �= ϕ(0), then

γ(Kc) ≥ l + 1.

Remark 8 ([45]). In view of Remark 7.3 in [45], one sees that if Kc ∈ Ξ and γ(Kc) contains
infinitely many distinct points. In other words, ϕ has infinitely many distinct critical points in E.

There have been many results using critical point theory to study boundary value
problems of fractional differential equations [46–52] and dynamic equations on time
scales [53–57], but results using critical point theory to study boundary value problems of
fractional dynamic equations on time scales are still rare [6]. This section will explain that
critical point theory is an effective way to deal with the existence of solutions of (26) on
time scales.

In this section, we let N = 1. For the purpose of the presence and proof of our main
results, let us first define the functional ϕ : Wα,p

Δ,a+ → R by

ϕ(u) =
1

�p2

(
β + �

∫
J0
|Ta Dα

t u(t)|pΔt
)p
−
∫

J0
λ(t)G(t, u(t))Δt− βp

�p2 . (27)

It is easy to note from (19), condition (G1) (will be stated in Theorem 29) and g ∈
C(J ×R,R), that the functional ϕ is well defined on Wα,p

Δ,a+ and ϕ ∈ C(Wα,p
Δ,a+ ,R). Moreover,

for ∀u, v ∈ Wα,p
Δ,a+ , one obtains

〈ϕ′(u), v〉 = (β + �‖u‖p)p−1
∫

J0
φp(

T
a Dα

t u(t))Ta Dα
t v(t)Δt−

∫
J0

λ(t)∇G(t, u(t))v(t)Δt, (28)
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which yields

〈ϕ′(u), u〉 = (β + �‖u‖p)p−1‖u‖p −
∫

J0
λ(t)∇G(t, u(t))u(t)Δt. (29)

Now, it is time for us to present and prove our main results as follows:

Theorem 29. Let α ∈
(

1
p , 1
]
, and suppose that G satisfies the following conditions:

(G1) G(t, x) is Δ− measurable and continuously differentiable in x for t ∈ J and there exist
a ∈ C(R+,R+), b ∈ L1

Δ(J,R+) such that

|G(t, x)| ≤ a(|x|)b(t), |∇G(t, x)| ≤ a(|x|)b(t) (30)

for all x ∈ R and t ∈ J.
(G2) There are two constants μ > p2, M > 0 such that

0 < μ G(t, x) ≤ x∇G(t, x), ∀t ∈ J and |x| ≥ M.

(G3)∇G(t, x) = o(|x|p−1) as |x| → 0 uniformly for t ∈ J.

Then, KFBVPT (26) has at least one nontrivial weak solution.

Proof. It is clear that ϕ(0) = 0, ϕ ∈ C1(Wα,p
Δ,a+ ,R), where Wα,p

Δ,a+ is a real Banach space from
Theorem 25. Therefore, we are now in a position to prove, using Mountain pass theorem
(Lemma 5), that

step 1. ϕ satisfies the (PS) condition in Wα,p
Δ,a+ . The argument is as follows: Let {uk} ⊂

Wα,p
Δ,a+ be a sequence such that

|ϕ(uk)| ≤ K,

ϕ′(uk)→ 0 as k → ∞, (31)

where K > 0 is a constant. We first prove that {uk} is bounded in Wα,p
Δ,a+ . From the

continuity of μG(t, x)− xg(t, x), we obtain that there is a constant c > 0 such that

G(t, x) ≤ 1
μ

x∇G(t, x) + c, ∀t ∈ J, |x| ≤ M

Combining with (G2), we obtain that

G(t, x) ≤ 1
μ

x∇G(t, x) + c, ∀(t, x) ∈ J ×R. (32)

Hence, taking account of (27), (29)–(32), and Lemma 2, we have

K

≥ ϕ(uk)

=
1

�p2

(
β + �

∫
J0
|Ta Dα

t uk(t)|pΔt
)p
−

∫
J0

λ(t)G(t, uk(t))Δt− βp

�p2

=
1

�p2 (β + �‖uk‖p)p −
∫

J0
λ(t)G(t, uk(t))Δt− βp

�p2

≥ 1
�p2 (β + �‖uk‖p)p −

∫
J0

[
1
μ

uk(t)∇G(t, uk(t)) + c
]

Δt− βp

�p2

=
1

�p2 (β + �‖uk‖p)p +
1
μ
〈ϕ′(uk), uk〉 − 1

μ
(β + �‖uk‖p)p−1 − c(b− a)− βp

�p2

≥ (β + �‖uk‖p)p−1
[(

1
p2 −

1
μ

)
‖uk‖p +

β

�p2

]
− 1

μ
‖ϕ′(uk)‖(Wα,p

Δ,a+
)∗ ‖uk‖

−cb− βp

�p2 , (33)
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which together with ϕ′(uk)→ 0 as k → ∞ yields

K ≥ (β + �‖uk‖p)p−1
[(

1
p2 −

1
μ

)
‖uk‖p +

β

�p2

]
− ‖uk‖ − cb− βp

�p2 . (34)

Then, combining with μ > p2 and proof by contradiction, we know that {uk} is
bounded in Wα,p

Δ,a+ .

Because Wα,p
Δ,a+ is a reflexive Banach space (Theorems 25 and 26), going if neces-

sary to a subsequence, we can assume uk ⇀ u in Wα,p
Δ,a+ . As a result, in view of

ϕ′(uk)→ 0 as k → ∞ and the definition of weak convergence, one sees

〈ϕ′(uk)− ϕ′(u), uk − u〉 =〈ϕ′(uk), uk − u〉 − 〈ϕ′(u), uk − u〉
≤‖ϕ′(uk)‖(Wα,p

Δ,a+
)∗‖uk − u‖ − 〈ϕ′(u), uk − u〉

≤‖ϕ′(uk)‖(Wα,p
Δ,a+

)∗(‖uk‖+ ‖u‖)− 〈ϕ′(u), uk − u〉
→0, as k → ∞. (35)

Furthermore, it follows from (20), (30), and Remark 7 that {uk} is bounded in
C(J,R) and ‖uk − u‖∞ → 0, as k → ∞. Therefore, there is a constant c1 > 0 such
that

|∇G(t, uk(t))−∇G(t, u(t))| ≤ c1, ∀t ∈ J, (36)

which yields ∣∣∣∣∫
J0
(∇G(t, uk(t))−∇G(t, u(t)))(uk(t)− u(t))Δt

∣∣∣∣
≤ c1b‖uk − u‖∞

→ 0, as k → ∞. (37)

Furthermore, it follows from the boundedness of {uk} in Wα,p
Δ,a+ that

[
(β + �‖uk‖p)p−1 − (β + �‖u‖p)p−1

] ∫
J0

φp(
T
a Dα

t u(t))( Ta Dα
t uk(t)− T

a Dα
t u(t))Δt

=
[
(β + �‖uk‖p)p−1 − (β + �‖u‖p)p−1

]〈 1
p

∫
J0
|Ta Dα

t u(t)|pΔt, uk − u
〉

→ 0, as k → ∞. (38)

In consideration of (28), one obtains

〈ϕ′(uk)− ϕ′(u), uk − u〉+
∫

J0
λ(t)(∇G(t, uk(t))−∇G(t, u(t)))(uk(t)− u(t))Δt

= (β + �‖uk‖p)p−1
∫

J0
φp(

T
a Dα

t uk(t))( Ta Dα
t uk(t)− T

a Dα
t u(t))Δt

−(β + �‖u‖p)p−1
∫

J0
φp(

T
a Dα

t u(t))( Ta Dα
t uk(t)− T

a Dα
t u(t))Δt

= (β + �‖uk‖p)p−1
∫

J0
(φp(

T
a Dα

t uk(t))− φp(
T
a Dα

t u(t)))( Ta Dα
t uk(t)− T

a Dα
t u(t))Δt

+
[
(β + �‖uk‖p)p−1 − (β + �‖u‖p)p−1

]
×
∫

J0
(φp(

T
a Dα

t u(t))( Ta Dα
t uk(t)− ( Ta Dα

t u(t))Δt, (39)
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which together with (35)–(39) yields∫
J0
(φp(

T
a Dα

t uk(t))− φp(
T
a Dα

t u(t)))( Ta Dα
t uk(t)− T

a Dα
t u(t))Δt → 0, as k → ∞. (40)

Considering (2.10) in [58], we can find two positive constants c2, c3 such that∫
J0
(φp(

T
a Dα

t uk(t))− φp(
T
a Dα

t u(t)))( Ta Dα
t uk(t)− T

a Dα
t u(t))Δt

≥
⎧⎨⎩c2

∫
J0 |Ta Dα

t uk(t)− T
a Dα

t u(t)|pΔt, p ≥ 2,

c3
∫

J0
|Ta Dα

t uk(t)−T
a Dα

t u(t)|2
(|Ta Dα

t uk(t)|+|Ta Dα
t u(t)|)p−2 Δt, 1 < p < 2.

(41)

When 1 < p < 2, with an eye to Proposition 2 and (|x| + |y|)p ≤ 2p−1(|x|p +
|y|p)( ∀x, y ∈ R, p > 0), one obtains∫

J0
|Ta Dα

t uk(t)− T
a Dα

t u(t)|pΔt

=

∫
J0

|Ta Dα
t uk(t)− T

a Dα
t u(t)|p

(|Ta Dα
t uk(t)|+ |Ta Dα

t u(t)|) p(2−p)
2

(|Ta Dα
t uk(t)|+ |Ta Dα

t u(t)|) p(2−p)
2 Δt

≤

⎧⎪⎨⎪⎩
∫

J0

⎡⎣ |Ta Dα
t uk(t)− T

a Dα
t u(t)|p

(|Ta Dα
t uk(t)|+ |Ta Dα

t u(t)|) p(2−p)
2

⎤⎦ 2
p

Δt

⎫⎪⎬⎪⎭
p
2

×
{∫

J0

[
(|Ta Dα

t uk(t)|+ |Ta Dα
t u(t)|) p(2−p)

2

] 2
2−p

Δt

} 2−p
2

=

[∫
J0

|Ta Dα
t uk(t)− T

a Dα
t u(t)|2

(|Ta Dα
t uk(t)|+ |Ta Dα

t u(t)|)2−p Δt

] p
2

×
[∫

J0
(|Ta Dα

t uk(t)|+ |Ta Dα
t u(t)|)pΔt

] 2−p
2

≤
[∫

J0

|Ta Dα
t uk(t)− T

a Dα
t u(t)|2

(|Ta Dα
t uk(t)|+ |Ta Dα

t u(t)|)2−p Δt

] p
2

×
[∫

J0
2p−1(|Ta Dα

t uk(t)|p + |Ta Dα
t u(t)|p)Δt

] 2−p
2

=

[∫
J0

|Ta Dα
t uk(t)− T

a Dα
t u(t)|2

(|Ta Dα
t uk(t)|+ |Ta Dα

t u(t)|)2−p Δt

] p
2

2
(p−1)(2−p)

2 (‖uk‖p + ‖u‖p)
2−p

2 . (42)

Therefore, we have ∫
J0

|Ta Dα
t uk(t)− T

a Dα
t u(t)|2

(|Ta Dα
t uk(t)|+ |Ta Dα

t u(t)|)2−p Δt

≥
[

1

2
(p−1)(2−p)

2 (‖uk‖p + ‖u‖p)
2−p

2

‖uk − u‖p

] 2
p

= 2
(p−1)(p−2)

p (‖uk‖p + ‖u‖p)
p−2

p ‖uk − u‖2, (43)
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which together with (41) implies∫
J0
(φp(

T
a Dα

t uk(t))− φp(
T
a Dα

t u(t)))( Ta Dα
t uk(t)− T

a Dα
t u(t))Δt

≥ c3

∫
J0

|Ta Dα
t uk(t)− T

a Dα
t u(t)|2

(|Ta Dα
t uk(t)|+ |Ta Dα

t u(t)|)p−2 Δt

≥ c32
(p−1)(p−2)

p (‖uk‖p + ‖u‖p)
p−2

p ‖uk − u‖2, 1 < p < 2. (44)

When p > 2, taking (41) into account, one obtains∫
J0
(φp(

T
a Dα

t uk(t))− φp(
T
a Dα

t u(t)))( Ta Dα
t uk(t)− T

a Dα
t u(t))Δt

≥ c2‖uk − u‖p, p > 2. (45)

As a consequence, combining with (40), (44) and (45), one sees

‖uk − u‖ → 0, as k → ∞. (46)

Therefore, ϕ satisfies the (PS) condition in Wα,p
Δ,a+ .

step 2. ϕ satisfies the (A1) condition in Lemma 5, which can be explained by the following:
Taking (G3) into account, we can find two positive constants ε′ ∈ (0, 1) and δ
such that

G(t, x) ≤ (1− ε′)βp−1

λ0 p bαp

Γp(α+1)

|x|p, ∀ t ∈ J, with |x| ≤ δ. (47)

Let ρ = δ

b
α− 1

p

Γ(α)((α−1)q+1)
1
q

and δ = ε′βp−1ρp

p . Hence, taking (30) into consideration, one

has

‖u‖∞ ≤ bα− 1
p

Γ(α)((α− 1)q + 1)
1
q
‖u‖, ∀ u ∈ Wα,p

Δ,a+ , with ‖u‖ = ρ, (48)

which together with (19), (30), (27), and (47) implies

ϕ(u) =
1

�p2

(
β + �

∫
J0
|Ta Dα

t u(t)|pΔt
)p
−
∫

J0
λ(t)G(t, u(t))Δt− βp

�p2

=
1

�p2 (β + �‖u‖p)p −
∫

J0
λ(t)G(t, u(t))Δt− βp

�p2

≥ βp−1

p
‖u‖p − λ0 (1− ε′)βp−1

λ0 p bαp

Γp(α+1)

∫
J0
|u(t)|pΔt

≥ βp−1

p
‖u‖p − λ0 (1− ε′)βp−1

λ0 p bαp

Γp(α+1)

bαp

Γp(α + 1)
‖Ta Dα

t u‖p
Lp

Δ

=
βp−1

p
‖u‖p − λ0 (1− ε′)βp−1

λ0 p
‖u‖p

=
ε′βp−1

p
‖u‖p

=σ, ∀ u ∈ Wα,p
Δ,a+ , with ‖u‖ = ρ, (49)

which means that the (A1) condition in Lemma 5 is satisfied.
step 3. ϕ satisfies the (A2) condition in Lemma 5. Here are some reasons why:
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For s ∈ R, |x| ≥ M and t ∈ J, let

F(s) = G(t, sx), H(s) = F′(s)− μ

s
F(s). (50)

In view of (G2), when s ≥ M
|x| , one obtains

H(s) =
∇G(t, sx)sx− μG(t, sx)

s
≥ 0.

In addition, taking the expressions of F(·) and H(·) in (50) into account, we can
easily obtain the result that F(s) satisfies

F′(s) = H(s) +
μ

s
F(s).

Therefore, when s ≥ M
|x| , we have

G(t, sx) = sμ

[
G(t, x) +

∫ s

1
τ−μH(τ)dτ

]
.

So, for |x| ≥ M and t ∈ J, together with (G1), one obtains(
M
|x|
)μ

G(t, x) ≤ G
(

t, x
M
|x|
)
≤ max
|x|≤M

a(|x|)b(t),

which implies that

G(t, x) ≤ |x|μ
Mμ max

|x|≤M
a(|x|)b(t).

So, one gets

G(t, x) ≥ |x|μ
Mμ min

|x|≤M
a(|x|)b(t). (51)

Therefore, for any u ∈ Wα,p
Δ,a+ \ {0}, ξ ∈ R+, it follows from (27), (30), (51), and

μ > p2 that

ϕ(ξu) =
1

�p2

(
β + �

∫
J0
|Ta Dα

t (ξu)(t)|pΔt
)p
−
∫

J0
λ(t)G(t, ξu(t))Δt− βp

�p2

=
1

�p2 (β + �‖ξu‖p)p −
∫

J0
λ(t)G(t, ξu(t))Δt− βp

�p2

≤ 1
�p2 (β + �‖ξu‖p)p −

λ0 min
|ξx|≤M

a(|ξx|)
Mμ |ξ|μ‖u‖μ

∞

∫
J0

b(t)Δt− βp

�p2

=
1

�p2 (β + �‖ξu‖p)p −
λ0 min

|ξx|≤M
a(|ξx|)‖b‖L1

Δ
‖u‖μ

∞

Mμ |ξ|μ − βp

�p2

→−∞, as ξ → ∞. (52)

Therefore, taking ξ0 large enough and letting e = ξ0u, we have ϕ(e) ≤ 0. As a
consequence, ϕ also satisfies the (A2) condition in Lemma 5.

As a result, we get a critical point u∗ of ϕ satisfying ϕ(u∗) ≥ σ > 0, and so u∗ is a
nontrivial solution of KFBVPT (26). All in all, Theorem is proved by Step 1–Step 3.
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Theorem 30. Let α ∈
(

1
p , 1
]
, and suppose that G satisfies (G1) and the following conditions:

(G4) There are a constant 1 < r1 < p2 and a function d ∈ L1
Δ(J,R+) such that

|∇G(t, x)| ≤ r1d(t)|x|r1−1, ∀(t, x) ∈ J ×R.

(G5) There is an open interval I ⊂ J and three constants η, δ > 0, 1 < r2 < p2 such that

G(t, x) ≥ η|x|r2 , ∀(t, x) ∈ IT × | − δ, δ|.

Then, KFBVPT (26) has at least one nontrivial weak solution.

Proof. It is obvious that ϕ(0) = 0, ϕ ∈ C1(Wα,p
Δ,a+ ,R), where Wα,p

Δ,a+ is a real Banach space
from Theorem 25. Next, we will finish our proof with the help of Lemma 6.

(1) ϕ is bounded from below in Wα,p
Δ,a+ , which can be explained by the following:

Taking account of (G4), (20) and (30), we get

ϕ(u) =
1

�p2

(
β + �

∫
J0
|Ta Dα

t u(t)|pΔt
)p
−
∫

J0
λ(t)G(t, u(t))Δt− βp

�p2

=
1

�p2 (β + �‖u‖p)p −
∫

J0
λ(t)G(t, u(t))Δt− βp

�p2

≥ 1
�p2 (β + �‖u‖p)p − λ0

∫
J0

d(t)|u(t)|r1 Δt− βp

�p2

≥ 1
�p2 (β + �‖u‖p)p − λ0‖d‖L1

Δ
‖u‖r1

∞ − βp

�p2

≥ 1
�p2 (β + �‖u‖p)p −

λ0‖d‖L1
Δ

br1(α− 1
p )

Γr1(α)((α− 1)q + 1)
r1
q
‖u‖r1 − βp

�p2 . (53)

Since 1 < r1 < p2, (53) yields ϕ(u) → ∞ as ‖u‖ → ∞. Consequently, ϕ is bounded
from below in Wα,p

Δ,a+ .

(2) ϕ satisfies the (PS) condition in Wα,p
Δ,a+ . The argument is as follows:

Let {uk} ⊂ Wα,p
Δ,a+ be a sequence such that (31) holds. So, together with the proof by

contradiction and (53), we can easily see that {uk} ⊂ Wα,p
Δ,a+ is bounded in Wα,p

Δ,a+ . The
remainder of proof is similar to the proof of Step 1 in Proof of Theorem 29. We omit
the details.
Consequently, combining with Lemma 6, (1) and (2) in Proof of Theorem 30, one gets
c = inf

Wα,p
Δ,a+

ϕ(u), which is a critical value of ϕ. In other words, there is a critical point

u∗ ∈ Wα,p
Δ,a+ such that ϕ(u∗) = c.

(3) u∗ �= 0, for the following reasons:
Let u0 ∈ (W1,2

Δ,T(I,R)∩Wα,p
Δ,a+) \ {0} [5], and ‖u0‖∞ = 1, it follows from (27), (30), (G5)

and (19) that

ϕ(ςu0) =
1

�p2

(
β + �

∫
J0
|Ta Dα

t (ςu0)(t)|pΔt
)p
−
∫

J0
λ(t)G(t, ςu0(t))Δt− βp

�p2

≤ 1
�p2 (β + �‖ςu0‖p)p −

∫
I

λ(t)G(t, ςu0(t))Δt− βp

�p2

≤ 1
�p2 (β + �‖ςu0‖p)p − λ0ηςr2

∫
I

|u0(t)|r2 Δt− βp

�p2 , 0 < s ≤ δ. (54)

Because of 1 < r2 < p2, (54) implies ϕ(ςu0) < 0 for s > 0 that is small enough.
Therefore, u∗ �= 0.
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All in all, u∗ ∈ Wα,p
Δ,a+ is a nontrivial critical point of ϕ, and consequently, u∗ is a nontrivial

solution of KFBVPT (26). Hence, we complete the proof of Theorem 30.

Theorem 31. Let α ∈
(

1
p , 1
]
, and suppose that G satisfies (G1), (G4), (G5) and the following

conditions:

(G6) There are a constant 1 < r1 < p2 and a function d ∈ L1
Δ(J,R+) such that

∇G(t, x) = ∇G(t,−x), ∀(t, x) ∈ J ×R.

Then, KFBVPT (26) possesses infinitely many nontrivial weak solutions.

Proof. Lemma 7 is a powerful tool for us to clarify our conclusion.
Considering (1) and (2) in Proof of Theorem 30, we see that ϕ ∈ C1(Wα,p

Δ,a+ ,R) is
bounded from below and satisfies the (PS) condition. Furthermore, it follows from (27)
and (G6) that ϕ is even and ϕ(0) = 0.

Fixing n ∈ N, we take n disjoint open intervals Ii such that
n∪

i=1
Ii ⊂ I.

Let ui ∈ (W1,2
Δ,T(Ii,R) ∩Wα,p

Δ,a+) \ {0} and ‖ui‖ = 1, and

Wn = span{u1, u2, · · · , un},

Dn = {u ∈ Wn|‖u‖ = 1}. (55)

For u ∈ Wn, there are κi ∈ R such that

u(t) =
n∑

i=1

κiui(t), ∀ t ∈ J. (56)

Consequently, one obtains

‖u‖p =

∫
J0
|Ta Dα

t u(t)|pΔt

=
n∑

i=1

|κi|p
∫

J0
|Ta Dα

t ui(t)|pΔt

=
n∑

i=1

|κi|p‖ui‖p

=
n∑

i=1

|κi|p, ∀ u ∈ Wn. (57)

In consideration of (20), (30), (27), and (G5), for 0 < ι ≤ δ

b
α− 1

p

Γ(α)((α−1)q+1)
1
q

max
i=1,2,··· ,n

|κi |
and

u ∈ Dn, we obtain

ϕ(ιu) =
1

�p2

(
β + �

∫
J0
|Ta Dα

t (ιu)(t)|pΔt
)p
−
∫

J0
λ(t)G(t, ιu(t))Δt− βp

�p2

=
1

�p2 (β + �‖ιu‖p)p −
n∑

i=1

∫
Ii

λ(t)G(t, ικiui(t))Δt− βp

�p2

≤ 1
�p2 (β + �‖ιu0‖p)p − λ0ηιr2

n∑
i=1

κr2
i

∫
Ii

|ui(t)|r2 Δt− βp

�p2 . (58)
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Since 1 < r2 < p2, together with (58), there are two positive constants ε, σ such that

ϕ(σu) < −ε, ∀ u ∈ Dn. (59)

Set

Dσ
n = {σu|u ∈ Dn},

Π =

{
(κ1, κ2, · · · , κn) ∈ Rn

∣∣∣∣ n∑
i=1
|κi|p < σp

}
. (60)

Hence, in view of (59), one has

ϕ(u) < −ε, ∀ u ∈ Dσ
n . (61)

Together with the fact of ϕ is even and ϕ(0) = 0, we obtain

Dσ
n ⊂ ϕ−ε ⊂ Ξ. (62)

By (57), we see that the mapping (κ1, κ2, · · · , κn)→
n∑

i=1
κiui(t) from ∂Π to Dσ

n is odd

and homeomorphic. As a result, combining with Propositions 7.5 and 7.7 in [45], one gets

γ(ϕ−ε) ≥ γ(Dσ
n) = n. (63)

Hence, ϕ−ε ∈ Ξn and so Ξn �= 0. Let

cn = inf
A∈Ξn

sup
u∈A

ϕ(u). (64)

It follows from the fact that ϕ is bounded from below that −∞ < cn ≤ −ε < 0. In
other words, for any n ∈ N, cn is a real negative number.

Consequently, considering Lemma 7, we see that ϕ admits infinitely many nontrivial
critical points, and so, KFBVPT (26) possesses infinitely many nontrivial weak solutions.
The proof of Theorem 31 is complete.

6. Conclusions

In present paper, a class of fractional Sobolev spaces on time scales is established with
the help of the weak Riemann–Liouville fractional derivative on time scales, and some
basic properties of them are obtained. As an application, we study a class of Kirchhoff-
type fractional p-Laplace boundary value problems on time scales. The existence and
multiplicity of nontrivial weak solutions are obtained by using the Mountain path theorem
and genus properties. The methods of this paper can also be used to study the solvability
of other boundary value problems on time scales. Nowadays, the notions of fractional
derivative on time scales in different senses are constantly being put forward. Therefore,
our future direction is to study the theory and application of fractional Sobolev spaces on
time scales introduced by fractional derivatives in other senses on time scales such as the
Caputo, Hadamard, and so on.
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Abstract: We apply a new generalized Caputo operator to investigate the dynamical behaviour of
the non-integer food web model (FWM). This dynamical model has three population species and
is nonlinear. Three types of species are considered in this population: prey species, intermediate
predators, and top predators, and the top predators are also divided into mature and immature
predators. We calculated the uniqueness and existence of the solutions applying the fixed-point
hypothesis. Our study examines the possibility of obtaining new dynamical phase portraits with
the new generalized Caputo operator and demonstrates the portraits for several values of fractional
order. A generalized predictor–corrector (P-C) approach is utilized in numerically solving this food
web model. In the case of the nonlinear equations system, the effectiveness of the used scheme
is highly evident and easy to implement. In addition, stability analysis was conducted for this
numerical scheme.

Keywords: food web model (FWM); dynamical behaviour; generalized Caputo operator; uniqueness;
stability; existence; generalized P-C numerical algorithm

MSC: 45D05

1. Introduction

Energy and materials follow one path between species in a food chain model, whereas
food webs are more complex because they connect many food chains. Different trophic
levels are found in a food web. There are various categories of organisms within the trophic
levels, including producers, consumers, and decomposers. The structure of a food web is
typically represented by a lattice arrangement. Using a system of differential equations,
it is possible to design food chains and food webs. Food chains, in ecology, are a chain of
organisms feeding on the organism next to them, while food webs are a collection of food
chains joined together. It has been of interest to several researchers to analyse the dynamical
behaviour of the food chain model and the web model [1–4]. A modular food web theory,
which studies the structural and functional properties of low-species-based food webs,
aims to determine how the structure and interactions mediate ecosystem stability [5,6].
Several species in nature have life cycles that are divided into at least two stages: mature
and immature. These stages have different characteristics. Food web models (FWMs)
depicting a stage structure have been extensively studied [7,8]. The impact of cannibalism
on ecological systems has been studied extensively over the past few decades. Aquatic,
as well as terrestrial food webs have cannibalistic populations. This subject has been
addressed by several studies [9–12]. Stage-structured populations frequently engage in
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cannibalism, whether in the wild or in watery food webs. The cannibalism model was
examined and investigated by Diekmann et al. [13]. A watery food chain in which a
predator cannibalizes was studied by Bhattacharyya and Pal [14]. The dynamics of the
system are therefore influenced by cannibalism in a very significant way. Fishes, birds,
mammals, and others are among the animals that have cannibalistic natures.

There are over 300 years of development behind fractional calculus, and today, this
is still an important concept of studying real-world problems [15–20]. The literature of
fractional calculus has introduced a variety of fractional derivatives, including Caputo [21],
Atangana–Baleanu [22], and Caputo–Fabrizio [23], which are the most widely used deriva-
tives. Fractional differential equations can describe dynamic processes within biological
and ecological systems with a higher degree of accuracy and reliability since most biological
and ecological mathematical models have long-term memories. An understanding of frac-
tional species systems can provide new possibilities for describing the dynamic behaviours
of multi-species food web ecosystems, given the complexity and existence of nonlinear
effects [24]. In addition, fractional-order forms have a number of advantages, such as a
meticulous illustration and an accurate interpretation of operation rules. In order to further
explore the dynamics of systems with competition, predation, and parasitism, classical
integer differential equations of ecosystems are replaced with fractional differential equa-
tions. The literature contains a variety of nonlocal operators, which are used extensively in
applied mathematics. An integral and fractional derivative introduced by Katugampola in
2014 generalizes both Riemann–Liouville and Hadamard integrals and derivatives [25,26].
The generalized Caputo operator was recently constructed by Odibat et al. [27]. In the
literature, the generalized Caputo operator has been applied in various ways. A recent
study by Rubayyi T. Alqahtani et al. [28] utilized a generalized Caputo operator to model
bioethanol production. The new generalized Caputo operator was used to analyse the
COVID-19 model [29]. In the paper [30], the author investigated irregular meshes with
finite difference methods to determine the error estimates when the Caputo operator of
the solution of the FDEs has a low smoothness. The paper [31] developed the asymptotic
expansion formula for the trapezoidal approximation of the fractional integral, and the
author applied the expansion formula to calculate approximations for fractional integrals
of orders α, α + 1, α + 2, α + 3, and α + 4.

In this paper, we extend the classical integer-order food web model (FWM) to a non-
integer food web model through a generalized Caputo operator. Moreover, we discuss
a generalized predictor–corrector numerical solution that is a generalization of the P-C
numerical scheme [32,33] to study the complexity of the food web model’s behaviour,
and we analyse the stability of this scheme. With the generalized Caputo operator, a non-
uniform grid is used in the P-C scheme instead of the uniform grid in the Caputo operator.
ϕ and ρ are the only parameters needed to generalize the Caputo integral operator, which
provides a great deal of theoretical and numerical equipment for fractional mathematical
modelling. There are numerous applications of this P-C technique in various fields of
FDEs. In this study, we analysed the behaviour of the food web model on various different
fractional orders and on another parameter of the derivative, which gives us different
dynamic phase diagrams of this food web model.

Due to Caputo derivatives describing better certain physical problems involving
memory effects, we defined the generalized fractional derivatives in a Caputo form. This
Caputo version of generalized fractional derivatives would prove useful for researchers
interested in describing real-world phenomena using fractional operators. Finally, by
noticing that limρ→0

(
xρ−aρ

ρ

)
= In

( x
a
)

and limρ→0

(
bρ−xρ

ρ

)
= In

(
b
x

)
lead to Hadamard

and Caputo–Hadamard results, we saw that the limiting case as ρ → 0 leads to those
results. Furthermore, when ρ → 1, the fractional derivatives of Riemann–Liouville and of
Caputo were obtained.
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Outline of the Paper

We divided this whole work into the following sections: Section 2 represents the
description of the food web model. The preliminaries of fractional calculus (FC) are covered
in Section 3. The existence of solutions is demonstrated in Section 4. Solution uniqueness is
demonstrated in Section 5. Section 6 presents generalized predictor–corrector numerical
algorithms for fractional-order food web models using the generalized Caputo operator.
Section 7 contains simulations and discussions of the numerical results. A conclusion is
given in Section 8.

2. Description of the Food Web Model

Our study proposes and analyses a three-species FWM that includes cannibalism and
a stage structure within top predator species. Predators at the top are generally divided
into immature and mature stages. Initial stage individuals are unable to hunt or reproduce,
as they are dependent on their mature parents for survival. Additionally, we constructed
an ecological model that includes stage cannibalism and structure in the top predators as
part of a three-species food web model.

A food web model can be constructed using the above considerations [34].

dx(t)
dt

= rx(t)
(

1− x(t)
H
)
− a1x(t)y(t),

dy(t)
dt

= a1e1x(t)y(t)− a2y(t)z(t)− d1y(t), (1)

dz(t)
dt

= a2e2y(t)z(t) + a3e3z(t)u(t) + cu(t)− d2z(t),

du(t)
dt

= bz(t)− cu(t)− a3z(t)u(t)− d3u(t).

Prey density (lower level species) at time t is denoted by x(t); intermediate predator
density (middle-level species) at time t is denoted by y(t); top predator density (mature
and immature of higher-level species) at time t is denoted by z(t), u(t). With an intrinsic
growth rate r and carrying capacity H, the prey grows logistically. Based on the Lotka–
Volterra functional response, the intermediate predator consumes the prey at the lowest
level, with an attack rate a1 and a conversion rate e1. In the absence of their food source,
it continues to decay exponentially as a result of natural mortality rate d1. There are two
kinds of top predators: mature and immature. Immature populations are assumed to grow
exponentially along with their parents denoted by the mature population with growth rate
b, while a part grows up to become a mature population with growth rate c. Additionally,
both the mature and immature populations face natural death with mortality rates of d2
and d3, respectively. With maximum attack rate a3 and conversion rate e2, the mature top
predator attacks the intermediate predator using the Lotka–Volterra response functional.
When the availability of their preferred food becomes rare, they cannibalise the immature
top predator based on the Lotka–Volterra functional response with maximum attack rate a3
and conversion rate e3.

Equilibrium Points of the Food Web Model

In the part of this section, we calculate the equilibrium points corresponding to the
food web model. The steady-state conditions for the model are as follows:

• E0 = (0, 0, 0, 0) is the trivial equilibrium point that always exists.
• E1 = (H, 0, 0, 0) is the axial equilibrium point.

• E2 = (x̌, y̌, 0, 0) =
(

d1
a1e1

, r
a1

(
1− d1

a1e1H
)

, 0, 0
)

is the top predator free equilibrium point.

If the condition H > d1
a1e1

holds, then it exists.
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• E3 = (ẍ, ÿ, z̈, ü) =
(

ẍ, r
a1

(
1− ẍ

H
)
, a1e1 ẍ−d1

a2
, b(a1e1 ẍ−d1)

a2(c+d3)+a3(a1e1 ẍ−d1)

)
is the interior equilib-

rium point. The characteristic equation for ẍ is as follows:

γ1 ẍ3 + γ2 ẍ2 + γ3 ẍ + γ4 = 0. (2)

where

γ1 = −a2
1a2a3e2

1e2r < 0.

γ2 = a1e1[a2e2r(d1a3 − a2(c + d3)) + a2
1a3e1H(be3 − d2) + a2a3r(a1e1e2H+ d1)]

γ3 = a2
2r(c + d3)(a1e1e2H+ 2d1)− 2Ha1a3e1d1(ra2e2 − a1d2)

− He1a2
1a2(d2d3 + c(d2 − b))− bHe1a2

1d1(a3e3 + 1)− ra2a3d1.

γ4 = rHa2e2d1(a3d1 − a2(c + d3)) +Ha1a3d2
1(be3 − d2) +Ha1d1(a2d2(c + d3)− bc).

Thus, a simple computation shows that this exists only if and only if the following
is true:

x̌ < ẍ < H, (3)

with one set condition (γ2 < 0 and γ4 < 0) or (γ3 > 0 and γ4 > 0).

3. Preliminaries

Definition 1. The non-integer-order Riemann–Liouville (RL) integral of a function f(t) is de-
scribed as

RL
a I

ϕ
t [ f (t)] =

1
Γ(ϕ)

∫ t

a
f (ς)(t− ς)ϕ−1dς.

RL
a I0

t [ f (t)] = f (t).
(4)

Definition 2. Consider f (t) ∈ H1 to be a differentiable function in the interval (a, b), a < b, and
ϕ ∈ [0, 1], then we define the Caputo non-classical operator as

C
a D

ϕ
t f (t) =

{
1

Γ(n−ϕ)

∫ t
a f (n)(ς)(t− ς)(n−ϕ−1)dς, if n− 1 < ϕ < n,

dn f (t)
dtn , if ϕ = n,

(5)

Gamma functions are represented by Γ(.). Here is the definition of the gamma function:

Γ(x) =
∫ +∞

0
Ωx−1e−ΩdΩ, (Re(x) > 0). (6)

Definition 3. Here, the order of derivative ϕ > 0 and ρ > 0, and the generalized non-classical
integral GCI

ϕ,ρ
a+ of a function f(t) is defined (assuming it exists) as

GCI
ϕ,ρ
a+ [ f (t)] =

ρ1−ϕ

Γ(ϕ)

∫ t

a
ςρ−1 f (ς)(tρ − ςρ)ϕ−1dς, t > a. (7)

Definition 4. Here, the order of derivative ϕ > 0 (m− 1 < ϕ < m) and ρ > 0. For a function
f(t), the generalized Riemann-type non-classical derivative GRLD

ϕ,ρ
a+ is defined as

GRLD
ϕ,ρ
a+ [ f (t)] =

ρϕ−m+1

Γ(m− ϕ)

(
t1−ρ d

dt

) ∫ t

a
ςρ−1 f (ς)(tρ − ςρ)ϕ−1dς, t > a ≥ 0. (8)

Definition 5. Here, the order of derivative ϕ > 0, ρ > 0 and m = �ϕ�. For a function f(t), the
generalized Caputo-type non-classical derivative GCD

ϕ,ρ
a+ is defined as

GCD
ϕ,ρ
a+ [ f (t)] =

(
GRLD

ϕ,ρ
a+

[
f (x)−

m−1

∑
n=0

f (n)(a)
n!

(x− a)n

])
(t), t > a ≥ 0. (9)
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Definition 6. Here, the order of derivative ϕ > 0 (m− 1 < ϕ < m) and ρ > 0. For a function
f(t), the generalized Caputo-type non-classical derivative GCD

ϕ,ρ
a+ is defined as

GCD
ϕ,ρ
a+ [ f (t)] =

ρϕ−m+1

Γ(m− ϕ)

∫ t

a
ςρ−1 f (ς)(tρ − ςρ)ϕ−1

(
ς1−ρ d

dς

)
dς, t > a ≥ 0. (10)

• The relation between the Riemann–Liouville and the generalized non-classical integral
from the substitution χρ → χ is as follows

GC
a I

ϕ,ρ
t [ f (t)] = ρ−ϕRL

aρ I
ϕ
tρ [ f (t1/ρ)]. (11)

When the lower limit is zero a = 0, the relation is

GC
0 I

ϕ,ρ
t [ f (t)] = ρ−ϕRL

0 I
ϕ
tρ [ f (t1/ρ)]. (12)

4. Existence of Solutions

The fixed-point assumption is used to investigate the existence of a solution for the
fractional food web mathematical model. Now, a non-integer food web mathematical
model can be described as follows.

GCD
ϕ,ρ
0+ [x(t)] = rx(t)

(
1− x(t)

H
)
− a1x(t)y(t),

GCD
ϕ,ρ
0+ [y(t)] = a1e1x(t)y(t)− a2y(t)z(t)− d1y(t), (13)

GCD
ϕ,ρ
0+ [z(t)] = a2e2y(t)z(t) + a3e3z(t)u(t) + cu(t)− d2z(t),

GCD
ϕ,ρ
0+ [u(t)] = bz(t)− cu(t)− a3z(t)u(t)− d3u(t).

The initial conditions of a mathematical model of a food web are as follows:

x(0) = x0, y(0) = y0, z(0) = z0, u(0) = u0. (14)

Using the generalized Caputo-type non-classical integral, we have

x(t) − x(0) =
ρ1−ϕ

Γ(ϕ)

∫ t
0

{
rx(t)

(
1− x(t)

H
)
− a1x(t)y(t)

}
ςρ−1(tρ − ςρ)(ϕ−1)dς,

y(t) − y(0) =
ρ1−ϕ

Γ(ϕ)

∫ t

0
{a1e1x(t)y(t)− a2y(t)z(t)− d1y(t)}ςρ−1(tρ − ςρ)(ϕ−1)dς,

z(t) − z(0) =
ρ1−ϕ

Γ(ϕ)

∫ t

0
{a2e2y(t)z(t) + a3e3z(t)u(t) + cu(t)− d2z(t)}ςρ−1(tρ − ςρ)(ϕ−1)dς,

u(t) − u(0) =
ρ1−ϕ

Γ(ϕ)

∫ t

0
{bz(t)− cu(t)− a3z(t)u(t)− d3u(t)}ςρ−1(tρ − ςρ)(ϕ−1)dς.

(15)

In order to simplify, we determine

�1(t, x) = rx(t)
(

1− x(t)
H
)
− a1x(t)y(t),

�2(t, y) = a1e1x(t)y(t)− a2y(t)z(t)− d1y(t), (16)

�3(t, z) = a2e2y(t)z(t) + a3e3z(t)u(t) + cu(t)− d2z(t),

�4(t, u) = bz(t)− cu(t)− a3z(t)u(t)− d3u(t).

Theorem 1. When 0 ≤ �1,�2,�3,�4 < 1, then the kernels �l ,�2,�3,�4 satisfy the Lips-
chitz condition.
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Proof of Theorem 1. Then, if �1(t, x) = rx(t)
(

1− x(t)
k

)
− a1x(t)y(t) is the kernel and x(t)

and x1(t) are two function, we can find

‖�1(t, x)−�1(t, x1)‖ =

∥∥∥∥rx(t)
(

1− x(t)
H
)
− a1x(t)y(t)−

(
rx(t)

(
1− x(t)

H
)
− a1x(t)y(t)

)∥∥∥∥,

=

∥∥∥∥(r
(

1− x(t) + x1(t)
H

)
− a1y(t)

)
(x(t)− x1(t))

∥∥∥∥,

≤
∥∥∥∥r
(

1− x(t) + x1(t)
H

)
− a1y(t)

∥∥∥∥‖x(t)− x1(t)‖,

≤
(

r
(

1− ‖x(t)‖+ ‖x1(t)‖
k

)
− a1‖y(t)‖

)
‖x(t)− x1(t)‖,

≤
(

r
(

1− 2q1

H
)
− a1q2

)
‖x(t)− x1(t)‖,

≤ �1‖x(t)− x1(t)‖.

(17)

By putting �1 =
(

r
(

1− 2q1
H
)
− a1q2

)
, ‖x(t)‖ ≤ q1, ‖y(t)‖ ≤ q2, ‖z(t)‖ ≤ q3, and

‖u(t)‖ ≤ q4 are the bounded functions; furthermore, we have

‖�1(t, x)−�1(t, x1)‖ ≤ �1‖x(t)− x1(t)‖. (18)

Therefore, the Lipschitz condition holds for �1 if the inequality 0 ≤ �1 < 1 is the
contraction of �1. As we apply the same procedure to kernels �2, �3, and �4, the following
results emerge:

‖�2(t, y)−�2(t, y1)‖ ≤ �2‖y(t)− y1(t)‖,

‖�3(t, z)−�3(t, z1)‖ ≤ �3‖z(t)− z1(t)‖, (19)

‖�4(t, u)−�4(t, u1)‖ ≤ �4‖u(t)− u1(t)‖.

Kernels �1, �2, �3, and �4 are determined by Equation (16). Afterwards, we determine
the associated integrals:

x(t) = x(0) +
ρ1−ϕ

Γ(ϕ)

∫ t

0
�1(ς, x)ςρ−1(tρ − ςρ)(ϕ−1)dς,

y(t) = y(0) +
ρ1−ϕ

Γ(ϕ)

∫ t

0
�2(ς, y)ςρ−1(tρ − ςρ)(ϕ−1)dς,

z(t) = z(0) +
ρ1−ϕ

Γ(ϕ)

∫ t

0
�3(ς, z)ςρ−1(tρ − ςρ)(ϕ−1)dς,

u(t) = u(0) +
ρ1−ϕ

Γ(ϕ)

∫ t

0
�4(ς, u)ςρ−1(tρ − ςρ)(ϕ−1)dς;

(20)

furthermore, we obtain

xn(t) = x(0) +
ρ1−ϕ

Γ(ϕ)

∫ t

0
�1(ς, xn−1)ς

ρ−1(tρ − ςρ)(ϕ−1)dς,

yn(t) = y(0) +
ρ1−ϕ

Γ(ϕ)

∫ t

0
�2(ς, yn−1)ς

ρ−1(tρ − ςρ)(ϕ−1)dς,

zn(t) = z(0) +
ρ1−ϕ

Γ(ϕ)

∫ t

0
�3(ς, zn−1)ς

ρ−1(tρ − ςρ)(ϕ−1)dς,

un(t) = u(0) +
ρ1−ϕ

Γ(ϕ)

∫ t

0
�4(ς, un−1)ς

ρ−1(tρ − ςρ)(ϕ−1)dς,

(21)
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and the initial condition is

x(0) = x0, y(0) = y0, z(0) = z0, u(0) = u0. (22)

When we subtract consecutive terms, we obtain

Ξn(t) = xn(t)− xn−1(t) =
ρ1−ϕ

Γ(ϕ)

∫ t
0 (�1(ς, xn−1)−�1(ς, xn−2))ς

ρ−1(tρ − ςρ)(ϕ−1)dς,

Δn(t) = yn(t)− yn−1(t) =
ρ1−ϕ

Γ(ϕ)

∫ t
0 (�2(ς, yn−1)−�2(ς, yn−2))ς

ρ−1(tρ − ςρ)(ϕ−1)dς,

ℵn(t) = zn(t)− zn−1(t) =
ρ1−ϕ

Γ(ϕ)

∫ t
0 (�3(ς, zn−1)−�3(ς, zn−2))ς

ρ−1(tρ − ςρ)(ϕ−1)dς,

n(t)ג = un(t)− un−1(t) =
ρ1−ϕ

Γ(ϕ)

∫ t
0 (�4(ς, un−1)−�4(ς, un−2))ς

ρ−1(tρ − ςρ)(ϕ−1)dς.

(23)

Take the following

xn(t) =
n

∑
j=1

Ξn(t), yn(t) =
n

∑
j=1

Δn(t), zn(t) =
n

∑
j=1
ℵn(t), un(t) =

n

∑
j=1

.n(t)ג (24)

Equation (23) is found using the triangular and norm properties.

‖Ξn(t)‖ = ‖xn(t)− xn−1(t)‖

≤ ρ1−ϕ

Γ(ϕ)

∥∥∥∫ t
0 (�1(ς, xn−1)−�1(ς, xn−2))ς

ρ−1(tρ − ςρ)(ϕ−1)dς
∥∥∥,

(25)

and under the Lipschitz condition, the Kernels will exhibit the following outcomes:

‖xn(t)− xn−1(t)‖ ≤ ρ1−ϕ

Γ(ϕ)

∫ t
0 ‖�1(ς, xn−1)−�1(ς, xn−2)‖ςρ−1(tρ − ςρ)(ϕ−1)dς,

≤ �1ρ1−ϕ

Γ(ϕ)

∫ t
0 ‖xn−1 − xn−2‖ςρ−1(tρ − ςρ)(ϕ−1)dς.

(26)

Therefore, we obtain the following:

‖Ξn(t)‖ ≤ �1ρ1−ϕ

Γ(ϕ)

∫ t

0
‖Ξn(ς)‖ςρ−1(tρ − ςρ)(ϕ−1)dς. (27)

We obtain the same results for Δn(t), ℵn(t), and n(t)ג when we follow the same procedure:

‖Δn(t)‖ ≤ �2ρ1−ϕ

Γ(ϕ)

∫ t

0
‖Δn(ς)‖ςρ−1(tρ − ςρ)(ϕ−1)dς,

‖ℵn(t)‖ ≤ �3ρ1−ϕ

Γ(ϕ)

∫ t

0
‖ℵn(ς)‖ςρ−1(tρ − ςρ)(ϕ−1)dς, (28)

‖n(t)ג‖ ≤ �4ρ1−ϕ

Γ(ϕ)

∫ t

0
n(ς)‖ςρ−1(tρג‖ − ςρ)(ϕ−1)dς.

Following the above conclusion, we can prove the new theorem.

Theorem 2. The generalized Caputo-type non-classical-order food web mathematical model has a
unique solution if tmax fulfills the following criteria.

�1

Γ(1 + ϕ)

(
tρ
max
ρ

)ϕ

< 1. (29)
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Proof of Theorem 2. By assuming that x(t), y(t), z(t), and u(t) are bounded functions and
considering that we have already shown that the kernels possess the Lipschitz condition,
the following relation is then given:

‖Ξn(t)‖ ≤ ‖x(0)‖
[

�1

Γ(1 + ϕ)

(
tρ
max
ρ

)ϕ]n

,

‖Δn(t)‖ ≤ ‖y(0)‖
[

�2

Γ(1 + ϕ)

(
tρ
max
ρ

)ϕ]n

,

‖ℵn(t)‖ ≤ ‖z(0)‖
[

�3

Γ(1 + ϕ)

(
tρ
max
ρ

)ϕ]n

,

‖n(t)ג‖ ≤ ‖z(0)‖
[

�4

Γ(1 + ϕ)

(
tρ
max
ρ

)ϕ]n

,

(30)

Considering that all the above functions exist and are smooth, we prove that these
functions are the solution to the food web mathematical model. Hence, we assume

x(t)− x(0) = xn(t)−An(t),

y(t)− y(0) = yn(t)−Bn(t),

z(t)− z(0) = zn(t)− Cn(t).

u(t)− u(0) = un(t)−Dn(t).

(31)

When n → 0 is taken as the limit in Equation (31), we obtain

‖An(t)‖ ≤ ρ1−ϕ

Γ(ϕ)

∥∥∥∫ t
0 (�1(ς, x)−�1(ς, xn−1))ς

ρ−1(tρ − ςρ)(ϕ−1)dς
∥∥∥,

≤ ρ1−ϕ

Γ(ϕ)

∫ t
0 ‖�1(ς, x)−�1(ς, xn−1)‖ςρ−1(tρ − ςρ)(ϕ−1)dς,

≤ �1ρ1−ϕ

Γ(ϕ)

∫ t
0 ‖x− xn−1‖ςρ−1(tρ − ςρ)(ϕ−1)dς,

≤ �1

Γ(1 + ϕ)

(
tρ

ρ

)ϕ‖x− xn−1‖.

(32)

A recursive process leads to the following equation:

‖An(t)‖ ≤ ‖x(0)‖
[

1
Γ(1 + ϕ)

(
tρ

ρ

)ϕ]n+1

�n
1 F , (33)

then, for tmax, we obtain:

‖An(t)‖ ≤ ‖x(0)‖
[

1
Γ(1 + ϕ)

(
tρ
max
ρ

)ϕ]n+1

�n
1 F . (34)

We can obtain ‖An(t)‖ → 0 at n → ∞ by taking the limits of both sides of the above
equation, and ‖Bn(t)‖ → 0, ‖Cn(t)‖ → 0 and ‖Dn(t)‖ → 0 can also be obtained by taking
the limits of both sides. Therefore, the proof is complete.

5. Find the Uniqueness of the Solution

In this segment of the food web mathematical model, unique solutions are presented.
Consider x1(t), y1(t), z1(t), and u1(t) to be the other solutions of the proposed system, then
we have
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x(t)− x1(t) =
ρ1−ϕ

Γ(ϕ)

∫ t

0
(�1(ς, x)−�1(ς, x1))ς

ρ−1(tρ − ςρ)(ϕ−1)dς. (35)

When the norm is applied to each side of Equation (35), the following result is obtained:

‖x(t)− x1(t)‖ ≤ ρ1−ϕ

Γ(ϕ)

∫ t

0
‖�1(ς, x)−�1(ς, x1)‖ςρ−1(tρ − ςρ)(ϕ−1)dς. (36)

The Lipschitz condition applied to the kernel yields

‖x(t)− x1(t)‖ ≤ �1ρ1−ϕ

Γ(ϕ)

∫ t
0 ‖x− x1‖ςρ−1(tρ − ςρ)(ϕ−1)dς,

≤ �1

Γ(1 + ϕ)

(
tρ

ρ

)ϕ

‖x− xn−1‖.

(37)

In addition, we obtain the following:

‖x(t)− x1(t)‖
(

1− �1

Γ(1 + ϕ)

(
tρ

ρ

)ϕ)
≤ 0, (38)

‖x(t)− x1(t)‖ = 0 ⇒ x(t) = x1(t). (39)

According to the above, the first differential equation of the financial model has a
unique solution. Similarly, we show that y(t), z(t), and u(t) have unique solutions.

6. Generalized Predictor–Corrector Technique

We converted the model into a fractional Volterra type in order to obtain numerical
solutions. We propose a P-C scheme with a generalized Caputo operator to solve the food
web system.

Consider the Volterra integral form of the first equation of the food web system:

x(t) = x(0) +
1

Γ(ϕ)

∫ t

0
A1(ς, x, y, z, u)

(
(tρ − ςρ)

ρ

)(ϕ−1) dς

ς1−ρ
; (40)

we can write the above equation as follows:

x(t) = x(0) +
ρ1−ϕ

Γ(ϕ)

∫ t

0
A1(ς, x, y, z, u)ςρ−1(tρ − ςρ)ϕ−1dς. (41)

In order to simplify, we write A1(ς, x(ς)) instead of A1(ς, x, y, z, u). The interval
[0, T] is divided into N subintervals {[tr, tr+1], r = 0, 1, 2, . . . , N − 1} with the mesh points
as follows: {

t0 = 0,
tn+1 = (tρ

n + h)1/ρ, n = 0, 1, . . . , N − 1,
(42)

Here, h = Tρ

N . The approximate solution xn+1 ≈ x(tn+1) of Equation (41) can be
calculated as follows:

x(tn+1) = x(0) +
ρ1−ϕ

Γ(ϕ)

∫ tn+1

0
A1(ς, x(ς))ςρ−1(tρ

n+1 − ςρ)ϕ−1dς. (43)
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Let k = ςρ; therefore, the above equation becomes:

x(tn+1) = x(0) +
ρ−ϕ

Γ(ϕ)

∫ tρ
n+1

0
A1(k

1
ρ , x(k

1
ρ ))(tρ

n+1 − k)ϕ−1dk. (44)

The integral can now be discretized as follows:

x(tn+1) = x(0) +
ρ−ϕ

Γ(ϕ)

n

∑
r=0

∫ tρ
r+1

tρ
r

A1(k
1
ρ , x(k

1
ρ ))(tρ

n+1 − k)ϕ−1dk. (45)

Using the trapezoidal rule, the right-hand side of (45) is evaluated relative to the

weight function (tρ
n+1 − k)ϕ−1. We can replace A1(k

1
ρ , x(k

1
ρ )) with its piecewise linear

interpolant by choosing nodes at tρ
r (r = 0, 1, 2, . . . , n + 1). Then, we have:

∫ tρ
r+1

tρ
r

A1(k
1
ρ , x(k

1
ρ ))(tρ

n+1 − k)ϕ−1dk =
hϕ−1

ϕΓ(ϕ + 1)
[
((n− r)ϕ+1 − (n− r− ϕ)(n− r + 1)ϕ)

× A1(tr, x(tr)) + (n− r + 1)ϕ− (n− r + 1 + ϕ)(n− r)ϕ

× A1(tr+1, x(tr+1))].

(46)

The corrector expression for x(tn+1), n = 0, 1, 2, . . . , N − 1 is as follows if the above
term is substituted into (45):

x(tn+1) = x(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

Δr,n+1A1(tr, x(tr)) +
ρ−ϕhϕ

Γ(ϕ + 2)
A1(tn+1, x(tn+1)), (47)

where

Δr,n+1 =

{
nϕ+1 − (n− ϕ)(n + 1)ϕ, if r = 0,
(n− r + 2)(ϕ+1) + (n− r)(ϕ+1) − 2(n− r + 1)(ϕ+1), if 1 ≤ r ≤ n.

(48)

Using the Adams–Bashforth method, we determine the predictor value xp(tn+1) for

integral (44). We replace A1(k
1
ρ , x(k

1
ρ )) with A1(tr, x(tr)) at each integral in Equation (45)

to obtain the following:

xp(tn+1) = x(0) +
ρ−ϕ

Γ(ϕ)

n

∑
r=0

∫ tρ
r+1

tρ
r

A1(tr, x(tr))(t
ρ
n+1 − k)ϕ−1dk. (49)

Thus, we can conclude that:

xp(tn+1) = x(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

[(n + 1− r)ϕ − (n− r)ϕ]A1(tr, x(tr)). (50)

We now approximate x(tn+1) ≈ xn+1 to develop the P-C algorithm by replacing
xp(tn+1) with x(tn+1) in Equation (47), as follows:

xn+1 = x(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

Δr,n+1A1(tr, xr) +
ρ−ϕhϕ

Γ(ϕ + 2)
A1(tn+1, xp

n+1). (51)

We developed a P-C scheme specified in (50) and (51). In this case, the P-C algorithm
for the whole model can be written as follows:
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xn+1 = x(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

Δr,n+1A1(tr, xr) +
ρ−ϕhϕ

Γ(ϕ + 2)
A1(tn+1, xp

n+1),

yn+1 = y(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

Δr,n+1A2(tr, yr) +
ρ−ϕhϕ

Γ(ϕ + 2)
A2(tn+1, yp

n+1),

zn+1 = z(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

Δr,n+1A3(tr, zr) +
ρ−ϕhϕ

Γ(ϕ + 2)
A3(tn+1, zp

n+1),

un+1 = u(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

Δr,n+1A4(tr, ur) +
ρ−ϕhϕ

Γ(ϕ + 2)
A4(tn+1, up

n+1);

(52)

here, h = Tρ

N and xp
n+1, yp

n+1, zp
n+1, and up

n+1 are defined as follows:

xp(tn+1) = x(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

[(n + 1− r)ϕ − (n− r)ϕ]A1(tr, xr),

yp(tn+1) = y(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

[(n + 1− r)ϕ − (n− r)ϕ]A2(tr, yr),

zp(tn+1) = z(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

[(n + 1− r)ϕ − (n− r)ϕ]A3(tr, zr),

up(tn+1) = u(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

n

∑
r=0

[(n + 1− r)ϕ − (n− r)ϕ]A4(tr, ur),

(53)

where A1,A2 and A3 are defined as follows:

A1(t, x) = rx(t)
(

1− x(t)
H
)
− a1x(t)y(t),

A2(t, y) = a1e1x(t)y(t)− a2y(t)z(t)− d1y(t), (54)

A3(t, z) = a2e2y(t)z(t) + a3e3z(t)u(t) + cu(t)− d2z(t),

A4(t, u) = bz(t)− cu(t)− a3z(t)u(t)− d3u(t).

Remark 1. The comparison of our adaptive P-C formula with that of [12], based on the product
integration methods described in [30], shows that the error should behave in this way:

max
r=0,1,..N

|x(tr)− xr| = O
((

h
ρ

)p)
. (55)

where p = min{2, 1 + ϕ}.

Theorem 3. (P-C stability) Suppose A1(t, x(t)) fulfills the Lipschitz condition and Se(e =
1, 2, 3, . . . , i + 1) is a solution of Systems (53) and (54). Consequently, the P-C numerical al-
gorithm is conditionally stable.

Proof of Theorem 3. Consider x̂0, x̂e(e = 0, 1, 2, . . . , i + 1), and x̂p
i+1(i = 0, 1, 2, . . . , N − 1)

to be perturbations of x0, xe and xp
i+1. Equations (52) and (53) become

x̂p
i+1 = x̂(0) +

ρ−ϕhϕ

Γ(ϕ + 1)

i

∑
e=0

Θe,i+1[A1(te, xe + x̂e)−A1(te, xe)], (56)

where Θe,i+1 = [(i + 1− e)ϕ − (i− e)ϕ]. Therefore,

x̂i+1 = x̂(0) +
ρ−ϕhϕ

Γ(ϕ + 2)

[
A1(ti+1, xp

i+1 + x̂p
i+1)−A1(ti+1, xp

i+1)
]

+
ρ−ϕhϕ

Γ(ϕ + 2)

i

∑
e=0

Πe,i+1[A1(te, xe + x̂e)−A1(te, xe)],
(57)
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and we use the Lipschitz property of A1(t, x(t)), then we can have

|x̂i+1| ≤ T0 +
ρ−ϕhϕψ1

Γ(ϕ + 2)

{∣∣∣x̂p
i+1

∣∣∣+ i

∑
e=1

Πe,i+1|x̂e|
}

. (58)

where T0 = max0≤i≤N

{
|x̂0|+ ρ−ϕhϕψ1Πi,0

Γ(ϕ+2) |x̂0|
}

. The following equation can also be eas-
ily derived: ∣∣∣x̂p

i+1

∣∣∣ ≤ S0 +
ρ−ϕhϕψ1

Γ(ϕ + 1)

{
i

∑
e=1

Θe,i+1|x̂e|
}

. (59)

where S0 = max0≤i≤N

{
|x̂0|+ ρ−ϕhϕψ1Θi,0

Γ(ϕ+1) |x̂0|
}

. Now, substituting
∣∣∣x̂p

i+1

∣∣∣ from Equation (59)
into (58), we obtain:

|x̂i+1| ≤ R0 +
ρ−ϕhϕψ1

Γ(ϕ + 2)

{
ρ−ϕhϕψ1

Γ(ϕ + 1)

i

∑
e=1

Θe,i+1|x̂e|+
i

∑
e=1

Πe,i+1|x̂e|
}

,

≤ R0 +
ρ−ϕhϕψ1

Γ(ϕ + 2)

i

∑
e=1

{
ρ−ϕhϕψ1

Γ(ϕ + 1)
Θe,i+1 + Πe,i+1

}
|x̂e|,

≤ R0 +
ρ−ϕhϕψ1Dϕ,2

Γ(ϕ + 2)

i

∑
e=1
{i + 1− e}ϕ−1|x̂e|.

(60)

Here, R0 = max
{
T0 +

ρ−ϕhϕψ1Πi+1,i+1
Γ(ϕ+2) S0

}
and a constant Dϕ,2 > 0 is determined by ϕ.

It follows that |x̂i+1| ≤ DR0.

7. Numerical Results and Discussion

For the numerical simulation of the food web mathematical model, we propose a
predictor–corrector (P-C) algorithm involving a generalized Caputo operator. Our nu-
merical solution for the food web generalized Caputo derivative model illustrates the
applicability and efficiency of the proposed algorithm. MATLAB was used to perform the
simulations. The proposed algorithms should be beneficial for the simulation of non-integer
models. The dynamical behaviours of the food web model were examined in our analysis.
We considered the following parameter values and initial values in Table 1.

Table 1. Representation and numerical values of the assumed parameters.

Parameters Numerical Values Description References

r 1 Intrinsic growth rate [34]
H 100 Carrying capacity [34]
a1 1.0 Maximum attack rate [34]
a2 0.25 Maximum attack rate [34]
a3 0.1 Maximum attack rate [34]
d1 0.01 Natural mortality rate [34]
d2 0.2 Natural mortality rate [34]
d3 0.01 Natural mortality rate [34]
c 0.15 Growth rate [34]
b 0.15 Growth rate [34]
e1 0.65 Conversion rate [34]
e2 0.5 Conversion rate [34]
e3 0.5 Conversion rate [34]

Generalized Caputo-type fractional derivatives also possess the same properties as
Caputo-type derivatives. In order to solve the fractional IVP efficiently, consistently, and
accurately, the predictor–corrector (PC) scheme is one of the best available. We solved the
projected model using the modified PC scheme in the current study. According to the
generalized Caputo algorithm, adaptive PC schemes use a nonuniform grid, which differs
from the derivative Caputo PC algorithm. In fractional calculus applications, the generalized
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fractional integral operator is a valuable tool for controlling and building mathematical
models due to the effect of its parameters ϕ and ρ. This new generalized Caputo fractional
derivative has extra features over the other fractional derivatives such as Caputo, Caputo–
Fabrizio, and Atangana–Baleanu. There is another parameter ρ that is very helpful to
graphical simulations when it comes to true data, in addition to the fractional-order parameter
ϕ. Changing the parameter value ρ allows us to see more kinds of graphs.

Figures 1 and 2 illustrate the three-dimensional and two-dimensional dynamic phase
portrait of the fractional food web system with the generalized Caputo derivative, respec-
tively, when ϕ = 1 and ρ = 1.1. Figure 3 exhibits the state variables x(t), y(t) z(t), and u(t) of
the proposed model when ϕ = 1 and ρ = 1.1. It can be seen that the value of ρ strongly
influences the characteristics of the fractional derivative, and this provides a different way
of approaching control applications. Figures 4 and 5 illustrate the three-dimensional and
two-dimensional dynamic phase portrait of the fractional food web system with the gener-
alized Caputo derivative, respectively, when ϕ = 1 and ρ = 1.1. Figure 6 exhibits the state
variables x(t), y(t) z(t), and u(t) of the proposed model when ϕ = 1 and ρ = 1.2. At fixed
ρ, depending on the fractional-order value, our fractional food web system displays the
complexity of the chaotic phase portrait. Hence, Figures 7–9 are the graphical illustrations
of the proposed system at different fractional-order ϕ = 1, 0.95, 0.90 and fixed ρ. Further,
we took the different values of ρ and ϕ to be fixed, then the fractional food web system
exhibits different phase portraits, which are shown in Figures 10–12. During the simulation
of models with two fractional parameters, we observed chaos, and we noticed that the
dynamics became more complex.

(a) (b)

(c) (d)

Figure 1. Three-dimensional phase plot for food web mathematical System (13) with generalized
Caputo fractional operator when ϕ = 1 and ρ = 1.1.
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(a) (b)

(c) (d)

Figure 2. Two-dimensional phase plot for food web mathematical System (13) with generalized
Caputo fractional operator when ϕ = 1 and ρ = 1.1.

(a) (b)

Figure 3. Cont.
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(c) (d)

Figure 3. State variables x(t), y(t) z(t), and u(t) plots of food web mathematical System (13) with
generalized Caputo fractional operator when ϕ = 1 and ρ = 1.1.

(a) (b)

(c) (d)

Figure 4. Three-dimensional chaotic phase plot for food web mathematical System (13) with general-
ized Caputo fractional operator when ϕ = 1 and ρ = 1.2.
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(a) (b)

(c) (d)

Figure 5. Two-dimensional chaotic phase plot for food web mathematical System (13) with general-
ized Caputo fractional operator when ϕ = 1 and ρ = 1.2.

(a) (b)

Figure 6. Cont.
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(c) (d)

Figure 6. State variables x(t), y(t) z(t), and u(t) plots of food web mathematical System (13) with
generalized Caputo fractional operator when ϕ = 1 and ρ = 1.2.

(a) (b)

(c) (d)

Figure 7. Three-dimensional chaotic phase plot for food web mathematical System (13) with general-
ized Caputo fractional operator when ρ = 0.80.

51



Mathematics 2022, 10, 1702

(a) (b)

(c) (d)

Figure 8. Two-dimensional chaotic phase plot for food web mathematical System (13) with general-
ized Caputo fractional operator when ρ = 0.80.

(a) (b)

Figure 9. Cont.
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(c) (d)

Figure 9. Time series graphical representations for food web mathematical System (13) with general-
ized Caputo fractional operator when ρ = 0.80.

(a) (b)

(c) (d)

Figure 10. Three-dimensional chaotic phase plot for food web mathematical System (13) with
generalized Caputo fractional operator when ϕ = 0.90.
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(a) (b)

(c) (d)

Figure 11. Two-dimensional chaotic phase plot for food web mathematical System (13) with general-
ized Caputo fractional operator when ϕ = 0.90.

(a) (b)

Figure 12. Cont.
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(c) (d)

Figure 12. Time series graphical representations for food web mathematical System (13) with general-
ized Caputo fractional operator when ϕ = 0.90.

8. Conclusions

Here, we examined a three-species food web model. According to this model, top
predators are stage-structured, with a mature predator having a cannibalism trait. In the
absence of the predator, the prey grows logistically at the first level. Food consumption
at different levels of the food web is described by Lotka–Volterra functional responses.
The proposed mathematical model of the food web was examined using the generalized
Caputo fractional derivative. Using a fixed-point hypothesis, this study presented an
investigation of the existence and uniqueness of the fractional food web system. The
algorithm described in this study is based on a numerical technique called ‘predictor–
corrector’, which allows the approximate solution of the fractional food web model to be
found. We demonstrated the stability of this numerical method. The fractional food web
model was geometrically presented under the generalized Caputo operator for different
choices of ϕ and ρ. The new dynamical behaviour and phase portrait were demonstrated
for various fractional orders (ϕ) and the value of ρ. This graphical illustration showed
how the order of derivatives and the system parameters greatly affect the system. The new
generalized fractional derivative will be used in future efforts to model other biological
systems with memory or with hereditary properties, as well as to identify other important
properties of this new generalized derivative.
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Abstract: In this paper, we use two new fractional integral operators with exponential kernel about
the midpoint of the interval to construct some Hermite–Hadamard type fractional integral inequal-
ities for h-convex functions. Taking two integral identities about the first and second derivatives
of the function as auxiliary functions, the main results are obtained by using the properties of h-
convexity and the module. In order to illustrate the application of the results, we propose four
examples and plot function images to intuitively present the meaning of the inequalities in the main
results, and we verify the correctness of the conclusion. This study further expands the generaliza-
tion of Hermite–Hadamard-type inequalities and provides some research references for the study
of Hermite–Hadamard-type inequalities.

Keywords: fractional integrals operators; exponential kernel; Hermite–Hadamard-type inequalities;
h-convex function

MSC: 26D15; 26A51; 26A33

1. Introduction

If g : I ⊆ R→ R, and m, n ∈ I with m < n, then

g(
m + n

2
) ≤ g(m) + g(n)

2
, (1)

which is called Jensen’s inequality [1]. Afterward, Hermite and Hadamard insert the in-
tegral mean value of convex function g in inequality (1) to obtain the following classical
Hermite–Hadamard’s inequality [2,3] .

Let g : I ⊆ R→ R be a convex function and m, n ∈ I with m < n, then

g(
m + n

2
) ≤ 1

n−m

∫ n

m
g(x)dx ≤ g(m) + g(n)

2
. (2)

If g is concave, the inequalities (2) hold in the reversed direction. We note that
this inequality can make a bounded estimation of the integral mean on [m, n], so it has
wide applications in numerical integration. For the research on the popularization and
application of the Hermite–Hadamard’s inequality, the readers can refer to [4–10].

The research shows that the fractional-order phenomenon is widespread, and the frac-
tional calculus modeling method is more accurate and reliable than the traditional in-
teger order method. Therefore, the fractional calculus method has been one of the hot
research topics in the academic community. Recently, the research results of fractional
order on the Hermite–Hadamard’s inequality are also numerous. For example, there are
Riemann–Liouville fractional integral inequalities [11–14], conformable fractional integrals
inequalities [15], k-Riemann–CLiouville fractional integrals inequalities [16], and local frac-
tional integrals inequalities [17–19]. Because fractional integral operators have relatively
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convenient applications in some special fields, the research on fractional operator type
integral inequalities is becoming more and more abundant. Set et al. [20] used Raina’s
fractional integral operators to obtain new Hermite–Hadamard-Mercer-type inequalities.
Srivastava et al. [21] introduced the generalized left-side and right-side fractional integral
operators with a certain modified Mittag–CLeffler kernel and utilized this general family
of fractional integral operators to investigate the interesting Chebyshev inequality. In
refs. [18,22], Sun presented two local fractional integral operators with a Mittag–Leffler
kernel to establish some Hermite–Hadamard-type inequalities for generalized h-convex
functions and generalized preinvex functions, respectively; afterward, Xu et al. [23] studied
Hermite–Hadamard–Mercer for generalized h-convex functions with the help of the two
local fractional integral operators.

In [24], Ahmad et al. proposed two new fractional integral operators with exponential
kernels and establish some inequalities related to the right side of the Hermite–Hadamard’s
inequality. Subsequently, Wu et al. [25] studied the bound for the left side of the Hermite–
Hadamard’s inequality involving these integral operators. Budak et al. [26] utilized these
integral operators with exponential kernels to established some Hermite–CHadamard
and Ostrowski type inequalities. On the application of the new integral operators having
exponential kernels in Hermite–Hadamard-type inequalities, Du and Zhou et al. extended
them to interval-valued and interval-valued co-ordinated, see [27,28]. The new fractional
integral operators with exponential kernels are given as follows.

Definition 1 ([24]). Let g ∈ L(m, n). The fractional integrals Iβ
m+ g(ξ) and Iβ

n−g(ξ) of order
β ∈ (0, 1) are, respectively, defined by

Iβ
m+ g(ξ) =

1
β

∫ ξ

m
exp
(
− 1− β

β
(ξ − u)

)
g(u)du, ξ > m, (3)

and

Iβ
n−g(ξ) =

1
β

∫ n

ξ
exp
(
− 1− β

β
(u− ξ)

)
g(u)du, ξ < n. (4)

Some known results about (3) and (4) in refs [24,25] are stated as follows.

Theorem 1 ([24]). Let g : [m, n] → R be a positive function with 0 ≤ m < n and g ∈ L(m, n).
If g is a convex function on [m, n], then the following inequalities about (3) and (4) hold.

g(
m + n

2
) ≤ 1− β

2(1− exp(−ρ))
[Iβ

m+ g(n) + Iβ
n−g(m)] ≤ g(m) + g(n)

2
, (5)

where ρ = 1−β
β (n−m).

Theorem 2 ([24]). Let g : I ⊆ R → R be a differentiable function on I. If |g′| is convex
on [m, n], m, n ∈ I, then the following inequality about (3) and (4) holds.∣∣∣∣∣ g(m) + g(n)

2
− 1− β

2(1− exp(−ρ))

[
Iβ

m+ g(n) + Iβ
n−g(m)

]∣∣∣∣∣ ≤ n−m
2ρ

tanh(
ρ

4
)(|g′(m)|+ |g′(n)|). (6)

Theorem 3 ([25]). Let g : I ⊆ R → R be a differentiable function on I. If |g′| is convex
on [m, n], m, n ∈ I, then the following inequality about (3) and (4) holds:

∣∣∣∣∣ 1− β

2(1− exp(−ρ))

[
Iβ

m+ g(n) + Iβ
n−g(m)

]
− g

(m + n
2

)∣∣∣∣∣ ≤ n−m
2

[
1
2
− tanh( ρ

4 )

ρ

]
(|g′(m)|+ |g′(n)|). (7)
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These Hermite–Hadamard-type integral inequalities involving the fractional inte-
gral operators (3) and (4) are structurally in the form of “Iβ

m+ g(n) + Iβ
n−g(m)” for convex

functions. In this paper, our main purpose is to apply the definition of h-convexity and
the properties of modules to propose some new Hermite–Hadamard-type fractional integral
inequalities about fractional integral operators (3) and (4) for generalized h-convex func-
tion, whose integral operators involving the midpoint of the interval [m, n] is in the form
of “Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)”. Some numerical examples are given to illustrate the correct-

ness of the results.

2. Results

In the subsequent text, we denote ρ = 1−β
β (n−m) for β ∈ (0, 1). In order to obtain

our results, the following definition of h-convex function proposed by Varošanec in [29]
will be used in the subsequent text.

Definition 2 ([29]). Let h : Ω → R be a positive function. We say that g : Ξ → R is an h-convex
function, if g is nonnegative and for all u, v ∈ Ξ and ζ ∈ (0, 1), we have

g(ζu + (1− ζ)v) ≤ h(ζ)g(u) + h(1− ζ)g(v). (8)

If inequality (8) is reversed, then g is said to be h-concave.

Remark 1. Obviously, if h(ζ) = ζ, then h-convex function derives the classical convex function.

Theorem 4. Let g : [m, n]→ R be a positive function with 0 ≤ m < n, and g(x) ∈ L[m, n]. If g is
an h-convex function on [m, n], then the following inequalities for integral operators (3) and (4) hold.

1− exp(− ρ
2 )

ρh( 1
2 )

g
(m + n

2
) ≤ β

n−m

(
Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)
≤ [g(m) + g(n)]

∫ 1
2

0
exp(−ρt)[h(t) + h(1− t)]dt. (9)

Proof. Since g is an h-convex function on [m, n], we obtain

g
( x + y

2

)
≤ h(

1
2
)g(x) + h(

1
2
)g(y). (10)

For x = tm + (1− t)n, y = (1− t)m + tn in (10), t ∈ [0, 1], we have

g
(m + n

2

)
≤ h(

1
2
)g
(
tm + (1− t)n

)
+ h(

1
2
)g
(
(1− t)m + tn

)
.

Multiplying both sides of the above inequality by exp(−ρt), and integrating the re-
sulting inequality with respect to t over [0, 1

2 ], we obtain

g
(m+n

2
)
(1− exp(− ρ

2 ))

ρh( 1
2 )

=
g
(m+n

2
)

h( 1
2 )

∫ 1
2

0
exp(−ρt)dt

≤
∫ 1

2

0
exp(−ρt)g

(
tm + (1− t)n

)
dt +

∫ 1
2

0
exp(−ρt)g

(
(1− t)m + tn

)
dt (11)

=
β

n−m
1
β

∫ n

m+n
2

exp
(
− 1− β

β
(n− x)

)
g(x)dx +

β

n−m
1
β

∫ m+n
2

m
exp

(
− 1− β

β
(y−m)

)
g(y)dy

=
β

n−m

(
Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)
.

60



Fractal Fract. 2022, 6, 309

Thus, the first inequality of (9) holds.
On the other hand, note that g is an h-convex function for t ∈ [0, 1], we get

g
(
tm + (1− t)n

) ≤ h(t)g(m) + h(1− t)g(n)

and
g
(
(1− t)m + tn

) ≤ h(1− t)g(m) + h(t)g(n).

Adding the above two inequalities, we have

g
(
tm + (1− t)n

)
+ g

(
(1− t)m + tn

) ≤ [h(t) + h(1− t)][g(m) + g(n)]. (12)

Multiplying both sides of the inequality (12) by exp(−ρt), and integrating the result
with respect to t over [0, 1

2 ], we obtain

∫ 1
2

0
exp(−ρt)g

(
tm + (1− t)n

)
dt +

∫ 1
2

0
exp(−ρt)g

(
(1− t)m + tn

)
dt

≤[g(m) + g(n)]
∫ 1

2

0
exp(−ρt)[h(t) + h(1− t)]dt. (13)

By (11), the inequality (13) becomes

β

n−m

(
Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)
≤ [g(m) + g(n)]

∫ 1
2

0
exp(−ρt)[h(t) + h(1− t)]dt. (14)

Thus, the second inequality of (9) holds. This completes the proof.

Corollary 1. Under the conditions of Theorem 4, for β → 1, we obtain

g
(m + n

2
) ≤ 2h( 1

2 )

n−m

∫ n

m
g(x)dx ≤ [g(m) + g(n)]2h(

1
2
)
∫ 1

2

0
[h(t) + h(1− t)]dt. (15)

Proof. By (9), that is

g
(m + n

2
) ≤ h( 1

2 )(1− β)

1− exp(− ρ
2 )

(
Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)
≤ [g(m) + g(n)]

ρh( 1
2 )

1− exp(− ρ
2 )

∫ 1
2

0
exp(−ρt)[h(t) + h(1− t)]dt. (16)

By calculating, we have

lim
β→1

1− β

1− exp(− ρ
2 )

=
2

n−m
,

and

lim
β→1

ρ exp(−ρt)
1− exp(− ρ

2 )
= 2.

Thus, from the inequality (16) for β → 1, we obtain the inequality (15).

Remark 2. Taking h(t) = t in (15), we obtain the classical Hermite–Hadamard inequality for con-
vex function (2).
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Corollary 2. If we take h(t) = t in Theorem 4, then the following fractional integral inequality
for the convex function is obtained.

g
(m + n

2
) ≤ 1− β

2
(
1− exp(− ρ

2 )
)(Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)
≤ g(m) + g(n)

2
, (17)

which is Theorem 2 proved by Budak in ref. [26].

In order to obtain our results, according to Lemma 1 in ref. [26], we can obtain
the following identity.

Lemma 1 ([26]). Let g : [m, n] → R be a differentiable function with m < n. If g′ ∈ L[m, n],
then the following identity involving fractional integral operators (3) and (4) holds.

g
(m + n

2
)− 1− β

2
(

1− exp (− ρ
2 )
)(Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)

=
n−m

2
(

1− exp(− ρ
2 )
)[ ∫ 1

2

0

(
exp(−ρt)− 1

)
g′
(

tm + (1− t)n
)

dt (18)

+
∫ 1

1
2

(
1− exp(−ρ(1− t))

)
g′
(

tm + (1− t)n
)

dt

]
.

Theorem 5. Let g : [m, n]→ R be a differentiable function with m < n. If g′(u) ∈ L[m, n], and
|g′| is h-convex on [m, n], then the following fractional integral inequality holds.

∣∣∣∣∣g(m + n
2

)− 1− β

2
(

1− exp (− ρ
2 )
)(Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)∣∣∣∣∣
≤ n−m

2
(

1− exp(− ρ
2 )
) ∫ 1

2

0

(
1− exp(−ρt)

)(
h(t) + h(1− t)

)(
|g′(m)|+ |g′(n)|

)
dt. (19)

Proof. Since |g′| is h-convex on [m, n] and h is a nonnegative function, by Lemma 1,
we obtain
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∣∣∣∣∣g(m + n
2

)− 1− β

2
(

1− exp (− ρ
2 )
)(Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)∣∣∣∣∣
≤ n−m

2
(

1− exp(− ρ
2 )
)[ ∫ 1

2

0

(
1− exp(−ρt)

)∣∣∣g′(tm + (1− t)n
)∣∣∣dt

+
∫ 1

1
2

(
1− exp(−ρ(1− t))

)∣∣∣g′(tm + (1− t)n
)∣∣∣dt

]

=
n−m

2
(

1− exp(− ρ
2 )
)[ ∫ 1

2

0

(
1− exp(−ρt)

)∣∣∣g′(tm + (1− t)n
)∣∣∣dt

+
∫ 1

2

0

(
1− exp(−ρt)

)∣∣∣g′((1− t)m + tn
)∣∣∣dt

]

≤ n−m

2
(

1− exp(− ρ
2 )
)[ ∫ 1

2

0

(
1− exp(−ρt)

)(
h(t)|g′(m)|+ h(1− t)|g′(n)|

)
dt

+
∫ 1

2

0

(
1− exp(−ρt)

)(
h(1− t)|g′(m)|+ h(t)|g′(n)|

)
dt

]

=
n−m

2
(

1− exp(− ρ
2 )
) ∫ 1

2

0

(
1− exp(−ρt)

)(
h(t) + h(1− t)

)(
|g′(m)|+ |g′(n)|

)
dt. (20)

This completes the proof.

Remark 3. For β → 1, by calculating, we obtain

lim
β→1

1− β

2[1− exp(− ρ
2 )]

=
1

n−m
,

and

lim
β→1

1− exp(−ρt)

2
(

1− exp(− ρ
2 )
) = t.

Thus, from the inequality (19) for β → 1, we obtain the following inequality∣∣∣∣∣g(m + n
2

)− 1
n−m

∫ n

m
g(u)du

∣∣∣∣∣ ≤ (n−m)
(
|g′(m)|+ |g′(n)|

) ∫ 1
2

0
t
(

h(t) + h(1− t)
)

dt. (21)

Remark 4. Taking h(t) = t in (21), we obtain the following inequality∣∣∣∣∣g(m + n
2

)− 1
n−m

∫ n

m
g(u)du

∣∣∣∣∣ ≤ n−m
8

(
|g′(m)|+ |g′(n)|

)
,

which is Theorem 2.2 proved by U. Kirmaci in ref. [30].
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Corollary 3. If we take h(t) = t in Theorem 5, then the following fractional integral inequality
for convex function is obtained.∣∣∣∣∣g(m + n

2
)− 1− β

2
(

1− exp (− ρ
2 )
)(Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)∣∣∣∣∣
≤ n−m

2
(

1− exp(− ρ
2 )
)(|g′(m)|+ |g′(n)|

)(1
2
+

exp(− ρ
2 )− 1

ρ

)
. (22)

Proof. If h(t) = t, by (19) we obtain

∫ 1
2

0

(
1− exp(−ρt)

)(
h(t) + h(1− t)

)
dt

=
∫ 1

2

0

(
1− exp(−ρt)

)
dt

=
1
2
+

exp(− ρ
2 )− 1

ρ
.

This completes the proof.

Lemma 2. Let g : [m, n] → R be a twice differentiable function on [m, n] with m < n.
If g′′(x) ∈ L[m, n], then the following identity involving fractional integral operators (3) and (4) holds.

g
(m + n

2
)− 1− β

2
(

1− exp (− ρ
2 )
)(Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)

=
(n−m)2

2
(

1− exp(− ρ
2 )
)[ ∫ 1

2

0

(1− exp(−ρt)
ρ

− t
)

g′′
(

tm + (1− t)n
)

dt (23)

+
∫ 1

1
2

(1− exp(−ρ(1− t))
ρ

− (1− t)
)

g′′
(

tm + (1− t)n
)

dt

]
.

Proof. Using integration by parts, we have∫ 1
2

0

(
exp(−ρt)− 1

)
g′
(

tm + (1− t)n
)

dt

=
∫ 1

2

0
exp(−ρt)g′

(
tm + (1− t)n

)
dt−

∫ 1
2

0
g′
(

tm + (1− t)n
)

dt

=− 1
ρ

[ ∫ 1
2

0
g′
(

tm + (1− t)n
)

d
(

exp(−ρt)
)]− ∫ 1

2

0
g′
(

tm + (1− t)n
)

dt (24)

=− 1
ρ

[
exp(−ρ

2
)g′
(m + n

2
)− g′(n)− (m− n)

∫ 1
2

0
exp(−ρt)g′′

(
tm + (1− t)n

)
dt

]

− 1
2

g′
(m + n

2
)
+ (m− n)

∫ 1
2

0
tg′′
(

tm + (1− t)n
)

dt.

Similarly, one has
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∫ 1

1
2

(
1− exp(−ρ(1− t))

)
g′
(

tm + (1− t)n
)

dt

=
∫ 1

1
2

g′
(

tm + (1− t)n
)

dt−
∫ 1

1
2

exp(−ρ(1− t))g′
(

tm + (1− t)n
)

dt

=
∫ 1

1
2

g′
(

tm + (1− t)n
)

dt− 1
ρ

∫ 1

1
2

g′
(

tm + (1− t)n
)

d
(

exp(−ρ(1− t))
)

(25)

=g′(m)− 1
2

g′
(m + n

2
)− (m− n)

∫ 1

1
2

tg′′
(

tm + (1− t)n
)

dt

− 1
ρ

[
g′(m)− exp(−ρ

2
)g′
(m + n

2
)− (m− n)

∫ 1

1
2

exp(−ρ(1− t))g′′
(

tm + (1− t)n
)

dt

]
.

Adding (24) and (25), we obtain

∫ 1
2

0

(
exp(−ρt)− 1

)
g′
(

tm + (1− t)n
)

dt +
∫ 1

1
2

(
1− exp(−ρ(1− t))

)
g′
(

tm + (1− t)n
)

dt

=g′(m)− g′
(m + n

2
)
+ (m− n)

∫ 1
2

0
tg′′
(

tm + (1− t)n
)

dt− (m− n)
∫ 1

1
2

tg′′
(

tm + (1− t)n
)

dt

− 1
ρ

[
g′(m)− g′(n)− (m− n)

∫ 1
2

0
exp(−ρt)g′′

(
tm + (1− t)n

)
dt

− (m− n)
∫ 1

1
2

exp(−ρ(1− t))g′′
(

tm + (1− t)n
)

dt

]

=(m− n)
∫ 1

1
2

g′′
(

tm + (1− t)n
)

dt + (m− n)
∫ 1

2

0

(
t +

exp(−ρt)
ρ

)
g′′
(

tm + (1− t)n
)

dt (26)

− m− n
ρ

∫ 1

0
g′′
(

tm + (1− t)n
)

dt− (m− n)
∫ 1

1
2

(
t− exp(−ρ(1− t))

ρ

)
g′′
(

tm + (1− t)n
)

dt

=(m− n)
∫ 1

2

0

(
t− 1− exp(−ρt)

ρ

)
g′′
(

tm + (1− t)n
)

dt

+ (m− n)
∫ 1

1
2

(
1− t− 1− exp(−ρ(1− t))

ρ

)
g′′
(

tm + (1− t)n
)

dt

=(n−m)
∫ 1

2

0

(1− exp(−ρt)
ρ

− t
)

g′′
(

tm + (1− t)n
)

dt

+ (n−m)
∫ 1

1
2

(1− exp(−ρ(1− t))
ρ

+ t− 1
)

g′′
(

tm + (1− t)n
)

dt.

Substituting (26) into (18), we have

g
(m + n

2
)− 1− β

2
(

1− exp (− ρ
2 )
)(Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)

=
(n−m)2

2
(

1− exp(− ρ
2 )
)[ ∫ 1

2

0

(1− exp(−ρt)
ρ

− t
)

g′′
(

tm + (1− t)n
)

dt

+
∫ 1

1
2

(1− exp(−ρ(1− t))
ρ

+ t− 1
)

g′′
(

tm + (1− t)n
)

dt

]
.

This completes the proof.
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Theorem 6. Let g : [m, n]→ R be a twice differentiable function with m < n. If g′′(u) ∈ L[m, n],
and |g′′| is h-convex on [m, n], then the following fractional integral inequality holds.∣∣∣∣∣g(m + n

2
)− 1− β

2
(

1− exp (− ρ
2 )
)(Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)∣∣∣∣∣
≤
(n−m)2

(
|g′′(m)|+ |g′′(n)|

)
2
(

1− exp(− ρ
2 )
) ∫ 1

2

0

(1− exp(−ρt)
ρ

+ t
)(

h(t) + h(1− t)
)

dt. (27)

Proof. Since |g′′| is h convex on [m, n], by Lemma 2, we can obtain∣∣∣∣∣g(m + n
2

)− 1− β

2
(

1− exp (− ρ
2 )
)(Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)∣∣∣∣∣
≤ (n−m)2

2
(

1− exp(− ρ
2 )
)[ ∫ 1

2

0

∣∣∣1− exp(−ρt)
ρ

− t
∣∣∣∣∣∣g′′(tm + (1− t)n

)∣∣∣dt

+
∫ 1

1
2

∣∣∣1− exp(−ρ(1− t))
ρ

− (1− t)
∣∣∣∣∣∣g′′(tm + (1− t)n

)∣∣∣dt

]

=
(n−m)2

2
(

1− exp(− ρ
2 )
)[ ∫ 1

2

0

∣∣∣1− exp(−ρt)
ρ

− t
∣∣∣∣∣∣g′′(tm + (1− t)n

)∣∣∣dt

+
∫ 1

2

0

∣∣∣1− exp(−ρt)
ρ

− t
∣∣∣∣∣∣g′′((1− t)m + tn

)∣∣∣dt

]

=
(n−m)2

2
(

1− exp(− ρ
2 )
) ∫ 1

2

0

∣∣∣1− exp(−ρt)
ρ

− t
∣∣∣(∣∣∣g′′(tm + (1− t)n

)∣∣∣+ ∣∣∣g′′((1− t)m + tn
)∣∣∣)dt

≤ (n−m)2

2
(

1− exp(− ρ
2 )
) ∫ 1

2

0

(1− exp(−ρt)
ρ

+ t
)(

h(t) + h(1− t)
)(
|g′′(m)|+ |g′′(n)|

)
dt. (28)

This completes the proof.

Corollary 4. If we take h(t) = t in Theorem 6, then the following fractional integral inequality
for convex function is obtained.∣∣∣∣∣g(m + n

2
)− 1− β

2
(

1− exp (− ρ
2 )
)(Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)∣∣∣∣∣
≤
(n−m)2

(
|g′′(m)|+ |g′′(n)|

)
2
(

1− exp(− ρ
2 )
) ( 1

2ρ
+

exp(− ρ
2 )− 1

ρ2 +
1
8

)
. (29)

Proof. By h(t) = t and the proof of Corollary 3, it is easy to obtain the desired result.

3. Numerical Examples

To illustrate our main conclusions, we will present four examples to show these
conclusions in this section.
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Example 1. From Corollary 2, we get the following inequalities

2
(
1− exp(− ρ

2 )
)

1− β
g
(m + n

2
) ≤ (Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)
≤ 1− exp(− ρ

2 )

1− β
[g(m) + g(n)].

Taking g(ξ) = e2ξ , we know that g is an h-convex function for h(t) = t. It meets
the conditions of Corollary 2 for β ∈ [0, 1]. If we choose m = 1, n = 3, then the following
formulas are drawn.

2(1− exp(− ρ
2 ))

1− β
g
(m + n

2
)
=

1− exp(− ρ
2 )

1− β
2e4,(

Iβ
m+n

2
+ g(n) + Iβ

m+n
2

−g(m)
)
=

1
β

[ ∫ 3

2
exp

(
− 1− β

β
(3− u)

)
e2udu

+
∫ 2

1
exp

(
− 1− β

β
(u− 1)

)
e2udu

]
,

=
e6 − e5− 1

β

β + 1
− e2 − e5− 1

β

3β− 1
,

1− exp(− ρ
2 )

1− β
[g(m) + g(n)] =

1− exp(− ρ
2 )

1− β
(e2 + e6).

We plot the function image of the above three functions for β ∈ [0, 1], as shown
in Figure 1. From the position relationship of the image, we can see that the middle
term of the inequalities is just between the left and right images, and the left image is
at the bottom, and the right image is at the top. These show that the inequalities relationship
in Corollary 2 is tenable.
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Figure 1. The image description of Corollary 2 for h(t) = t and g(ξ) = e2ξ .

Specidically, if we choose β = 1
2 , then we have

2(1− exp(− ρ
2 ))

1− β
g
(m + n

2
)
=138.0505,(

Iβ
m+n

2
+ g(n) + Iβ

m+n
2

−g(m)
)
=280.9551,

1− exp(− ρ
2 )

1− β
[g(m) + g(n)] = = 519.3728.
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This further verifies that the conclusion of Corollary 2 is correct.

Example 2. From Corollary 3, we get the following inequalities

∣∣∣∣∣2
(

1− exp (− ρ
2 )
)

1− β
g
(m + n

2
)− (Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)∣∣∣∣∣
≤n−m

1− β

(
|g′(m)|+ |g′(n)|

)(1
2
+

exp(− ρ
2 )− 1

ρ

)
.

Taking g(ξ) = ξ3, we know that |g′| is an h-convex function for h(t) = t. It meets the conditions
of Corollary 3 for β ∈ [0, 1]. If we choose m = 1, n = 3, then the following formulas are drawn.

∣∣∣∣∣2
(

1− exp (− ρ
2 )
)

1− β
g
(m + n

2
)− (Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)∣∣∣∣∣
=

∣∣∣∣∣2
(

1− exp(− ρ
2 )
)

1− β
g(2)− 1

β

[ ∫ 3

2
exp

(
− 1− β

β
(3− u)

)
u3du +

∫ 2

1
exp

(
− 1− β

β
(u− 1)

)
u3du

]∣∣∣∣∣
=

∣∣∣∣∣16
(

1− exp(− ρ
2 )
)

1− β
− −76β3 + 156β2 − 108β + 28

(β− 1)4 −
exp(1− 1

β )(40β3 − 72β2 + 48β− 16)

(β− 1)4

∣∣∣∣∣,
n−m
1− β

(
|g′(m)|+ |g′(n)|

)(1
2
+

exp(− ρ
2 )− 1

ρ

)
=

60
1− β

(1
2
+

exp(− ρ
2 )− 1

ρ

)
.

We plot the function image of the above two functions for β ∈ [0, 1], as shown
in Figure 2. From the position relationship of the image, we can see that the left image is
at the bottom, and the right image is at the top. These show that the inequality relationship
in Corollary 3 is tenable.
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Figure 2. The image description of Corollary 3 for h(t) = t and g(ξ) = ξ3.
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Specifically, if we choose β = 1
3 , then we have

∣∣∣∣∣2
(

1− exp (− ρ
2 )
)

1− β
g
(m + n

2
)− (Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)∣∣∣∣∣ = 7.7820,

n−m
1− β

(
|g′(m)|+ |g′(n)|

)(1
2
+

exp(− ρ
2 )− 1

ρ

)
= 25.5450.

This further verifies that the conclusion of Corollary 3 is correct.

Example 3. From Corollary 4, we get the following inequalities

∣∣∣∣∣2
(

1− exp (− ρ
2 )
)

1− β
g
(m + n

2
)− (Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)∣∣∣∣∣
≤ (n−m)2

1− β

(
|g′′(m)|+ |g′′(n)|

)( 1
2ρ

+
exp(− ρ

2 )− 1
ρ2 +

1
8

)
.

Taking g(ξ) = e3ξ , we know that |g′′| is an h-convex function for h(t) = t. It meets
the conditions of Corollary 4 for β ∈ [0, 1]. If we choose m = 1, n = 3, then the following
formulas are drawn.

∣∣∣∣∣2
(

1− exp (− ρ
2 )
)

1− β
g
(m + n

2
)− (Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)∣∣∣∣∣
=

∣∣∣∣∣2
(

1− exp(− ρ
2 )
)

1− β
g(2)− 1

β

[ ∫ 3

2
exp

(
− 1− β

β
(3− u)

)
e3udu +

∫ 2

1
exp

(
− 1− β

β
(u− 1)

)
e3udu

]∣∣∣∣∣
=

∣∣∣∣∣ (2e6)
(

1− exp(− ρ
2 )
)

1− β
− e9 − e7− 1

β

2β + 1
+

e3 − e7− 1
β

4β− 1

∣∣∣∣∣,
(n−m)2

1− β

(
|g′′(m)|+ |g′′(n)|

)( 1
2ρ

+
exp(− ρ

2 )− 1
ρ2 +

1
8

)
=

4(9e9 + 9e3)

1− β

( 1
2ρ

+
exp(− ρ

2 )− 1
ρ2 +

1
8

)
.

We only plot the function image of the above two functions for β ∈ [0, 0.5], as shown
in Figure 3. From the position relationship of the image, we can see that the left image is
at the bottom, and the right image is at the top. These show that the inequality relationship
in Corollary 4 is tenable for β ∈ [0, 1], because the growth rate of the right term is much
faster than that of the left term in interval β ∈ [0.5, 1].
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Figure 3. The image description of Corollary 4 for h(t) = t and g(ξ) = e3ξ .

Specifically, if we choose β = 0.01, then we have

∣∣∣∣∣2
(

1− exp (− ρ
2 )
)

1− β
g
(m + n

2
)− (Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)∣∣∣∣∣ = 7150.1,

(n−m)2

1− β

(
|g′′(m)|+ |g′′(n)|

)( 1
2ρ

+
exp(− ρ

2 )− 1
ρ2 +

1
8

)
= 37669.

This further verifies that the conclusion of Corollary 4 is correct.

Example 4. Taking g(ξ) = e2ξ and h(t) = et for t ∈ [0, 1], we know that g is an h-convex
function by Remark 5 in ref. [29]. It meets the conditions of Theorem 4 for β ∈ [0, 1]. If we choose
m = 2, n = 4, then the following formulas are drawn.

1− exp(− ρ
2 )

ρh( 1
2 )

g
(m + n

2
)
=

1− exp(− ρ
2 )

ρe
1
2

e6 =

[
1− exp(− 1−β

β )
]

β

2(1− β)
e

11
2 ,

β

n−m

(
Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)
=

1
2

[ ∫ 4

3
exp

(
− 1− β

β
(4− u)

)
e2udu

+
∫ 3

2
exp

(
− 1− β

β
(u− 2)

)
e2udu

]
,

=
β

2

[ e8 − e7− 1
β

β + 1
− e4 − e7− 1

β

3β− 1

]
,

[g(m) + g(n)]
∫ 1

2

0
exp(−ρt)[h(t) + h(1− t)]dt =[g(2) + g(4)]

∫ 1
2

0
exp(−ρt)[et + e(1−t)]dt

=(e4 + e8)β
[exp( 3

2 − 1
β )− 1

3β− 2
−

e− exp( 3
2 − 1

β )

β− 2

]
.
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We plot the function image of the above three functions for β ∈ [0, 1], as shown
in Figure 4. From the position relationship of the image, we can see that the middle
term of the inequalities is just between the left and right images, and the left image is
at the bottom, and the right image is at the top. These show that the inequalities relationship
in Theorem 4 for h(t) = et is tenable.
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Figure 4. The image description of Theorem 2 for h(t) = et and g(ξ) = e2ξ .

Specifically, if we choose β = 0.001, then we have

1− exp(− ρ
2 )

ρh( 1
2 )

g
(m + n

2
)
= 0.1225,

β

n−m

(
Iβ

m+n
2

+ g(n) + Iβ
m+n

2
−g(m)

)
= 1.5164,

[g(m) + g(n)]
∫ 1

2

0
exp(−ρt)[h(t) + h(1− t)]dt =[g(2) + g(4)]

∫ 1
2

0
exp(−ρt)[et + e(1−t)]dt = 5.6479.

This further verifies that the conclusion of Theorem 4 is correct.

4. Conclusions and Discussion

In this study, using two integral operators with exponential kernel proposed by
Ahmad et al. in ref. [24], we establish the new Hermite–Hadamard’s integral inequality
for h-convex functions. Two midpoint type inequalities are also obtained in which the abso-
lute values of the first derivative and the second derivative of the function are h-convex
functions, respectively. The integral operators (3) and (4) involved in the results obtained
in this paper are integral operators about the same midpoint of the interval, which is
different from the integral operators about the two ends of the interval used in refs [24,25].
For different cases of h(t) = t and h(t) = et, we construct four numerical examples that
intuitively show the size relationship of the function values of the inequalities through
the function image, and verify the correctness of the results.

Because fractional integral operators are widely used in the field of engineering
technology, such as mathematical models, and different integral operators are suitable
for different types of practical problems, our research on the fractional integral operator-
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type integral inequalities will also expand the practical application scope of Hermite–
Hadamard-type inequalities. We know that there are many fractional integral operators
involved in other disciplines, which will also inspire us to use other types of integral
operators to further study these kinds of inequalities, which also provide a direction for our
future research.
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Abstract: In this article, we investigate a sideways problem of the non-homogeneous time-fractional
diffusion equation, which is highly ill-posed. Such a model is obtained from the classical non-
homogeneous sideways heat equation by replacing the first-order time derivative by the Caputo
fractional derivative. We achieve the result of conditional stability under an a priori assumption. Two
regularization strategies, based on the truncation of high frequency components, are constructed for
solving the inverse problem in the presence of noisy data, and the corresponding error estimates
are proved.

Keywords: sideways problem; non-homogeneous fractional diffusion equation; ill-posedness; stability
estimate; regularization method

1. Introduction

Fractional partial differential equations arose from the studies of Lévy motion [1],
continuous random walk [2] and high-frequency financial data [3], which has a wide range
of applications in some scientific fields, such as chemistry, physics, mechanical engineering,
fluid mechanics, signal processing and systems identification, control theory, electron
transportation, viscoelasticity, image processing, and so on [4–13]. Moreover, fractional
derivatives have been found to be more flexible in describing some practical phenomena
than the traditional integer-order derivatives. In particular, fractional diffusion equations
play an extremely important role in the study of some anomalous diffusion processes.
These equations can describe the dynamics of various non-local and complex systems.
Kinds of anomalous diffusion can be modeled by the following time-fractional diffusion
equation: find the temperature u(x, t) from known boundary temperature u(1, t) = ψ(t)
measurements satisfying the following system⎧⎪⎪⎨⎪⎪⎩

∂νu
∂tν − uxx = 0, x > 0, t > 0,
u(x, 0) = 0, x > 0,
u(1, t) = ψ(t), t > 0,
u(x, t) |x→∞ bounded,

(1)

where ψ(t) is given function (usually in L2(R)), ∂νu
∂tν is the Caputo fractional derivative of

order ν (0 < ν ≤ 1) defined by [14]

∂νu
∂tν

=
1

Γ(1− ν)

∫ t

0

∂u(x, s)
∂s

ds
(t− s)ν

, 0 < ν < 1, (2)

∂νu
∂tν

=
∂u(x, t)

∂t
, ν = 1. (3)
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The problem (1) in the case of ν = 1, i.e., the following problem⎧⎪⎪⎨⎪⎪⎩
ut − uxx = 0, x > 0, t > 0,
u(x, 0) = 0, x > 0,
u(1, t) = ϕ(t), t > 0,
u(x, t) |x→∞ bounded,

(4)

has been studied extensively in recent decades by many methods [15–28]. Tuan et al. [29]
and Triet et al. [30] extended this work to the non-linear case.

When 0 < ν < 1, Xiong et al. [31,32] proposed an optimal filtering regularization
method for calculating an approximate solution of the fractional sideways heat equation
where the spatial domain is the interval [0, 1]. Li et al. [33] tackled the inverse problem of
recovering the temperature and flux distribution in the domain 0 ≤ x < 1 for (1) from the
boundary data at x = 1, but the conditional stability result is not given. Zheng et al. [34–36]
obtains a stable estimate of temperature distribution by utilizing the spectral regularization
method, and numerical example shows that the computational effect of their methods
are satisfactory. Zhang [37] applied a Tikhonov-type regularized method to construct an
approximate solution and overcome the ill-posedness of (1). The a-posteriori convergence
estimates of logarithmic and double logarithmic types for the regularized method are
derived. Moreover, the authors verify the effectiveness of their method by doing the
numerical experiments. Furthermore, there are also some articles that discuss the fractional
sideways heat equation in 2-dimensional and higher-dimensions in space (see, e.g., [38–43]
and the references therein).

To the best of our knowledge, few investigations has been performed with respect
to a sideways problem of the non-homogeneous diffusion equation, and estimating the
heat flux at the inaccessible surface is more difficult than estimating temperature. Liu and
Chang in [44] addressed a three-dimensional non-homogeneous sideways heat equation in
a cuboid by a Fourier sine series method, and the analysis of the regularization parameter
and the stability of solution was worked out. According to them, this method is quite
accurate. Luan in [45] discussed the two-dimensional non-homogeneous heat equation
in the presence of a general source term, and proposed a kernel regularization method
to recover the temperature and heat flux distribution from the given data. However, the
above two articles only consider the case of integer order. Hence, in contrast to the previous
work, we consider a sideways problem of the non-homogeneous time-fractional diffusion
equation, which occurs in many applications related to reaction-diffusion⎧⎪⎪⎨⎪⎪⎩

∂αu
∂tα − uxx = f (x, t), x > 0, t > 0,
u(x, 0) = 0, x > 0,
u(1, t) = g(t), t > 0,
u(x, t) |x→∞ bounded,

(5)

where the function f (x, t) is the heat source density. We first obtain an analytical solu-
tion to (5) via Fourier transform, and give the result of conditional stability under an a
priori assumption. Due to the problem considered is severely ill-posed, it is impossible
to solve it using classical numerical methods. Therefore, we propose dynamic spectral
and Fourier regularization method, the goal here consists of recovering not only the tem-
perature but also the heat flux distribution from the given data. Furthermore, for both
regularization strategies, in the presence of noisy data, we establish and prove the stability
and convergence estimates in the whole domain, i.e., including the case 0 < x < 1 and the
case x = 1.

The remainder of the paper is organized as follows: in Section 2, we give an analysis
on the ill-posedness of the non-homogeneous fractional sideways heat equation. The
conditional stability result is then given in Section 3. In Sections 4 and 5, error estimates for
determination of temperature and flux distribute are derived. Finally, we draw a conclusion
to our method.
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2. Mathematical Analysis of the Problem

In order to simplify the discussion, our theoretical analysis will be performed in L2(R)
and define all functions to be zero for t < 0. Let ĝ denote the Fourier transform of g(t)
defined by

ĝ(ξ) =:
1√
2π

∫ ∞

−∞
g(t)e−iξtdt,

and ‖ · ‖p denotes the norm in Sobolev space Hp(R) defined by

‖u(0, ·)‖p :=
( ∫ ∞

−∞
(1 + ξ2)p|û(0, ξ)|2dξ

) 1
2

.

When p = 0, ‖ · ‖p = ‖ · ‖ denotes the L2(R) norm. Furthermore, we introduce the
following norm

‖ f (x, ·)‖L2(0,1;Hp(R))
=

( ∫ 1

0
‖ f (x, ·)‖2

pdx
) 1

2

.

Applying the Fourier transform with respect to t to both sides of (1), we obtain in the
frequency space the following second order ordinary differential equation⎧⎨⎩

ûxx(x, ξ)− (iξ)αû(x, ξ) = − f̂ (x, ξ), ξ ∈ R,
û(1, ξ) = ĝ(ξ), ξ ∈ R,
û(x, ξ) |x→∞ bounded, ξ ∈ R.

(6)

The standard calculation procedure yields the solution of (6) as

û(x, ξ) = eτ(ξ)(1−x) ĝ(ξ) +
∫ 1

x
f̂ (s, ξ)

sinh
(
τ(ξ)(s− x)

)
τ(ξ)

ds, 0 ≤ x < 1, (7)

and equivalently

u(x, t) =
1√
2π

∫ ∞

−∞

(
eτ(ξ)(1−x) ĝ(ξ) +

∫ 1

x
f̂ (s, ξ)

sinh
(
τ(ξ)(s− x)

)
τ(ξ)

ds
)

eiξtdξ, 0 ≤ x < 1, (8)

where
τ(ξ) := (iξ)

α
2 = |ξ| α

2
(

cos(
απ

4
) + isign(ξ) sin(

απ

4
)
)
, ∀ξ ∈ R. (9)

Note that the real part of τ(ξ) is increasing positive function of ξ. Hence, the term
|e(1−x)τ(ξ)| and | sinh

(
τ(ξ)(s− x)

)| increase rather quickly when |ξ| → ∞, small errors in
the data can blow up and ultimately destroy the solution for x ∈ [0, 1). Comparing this with
homogeneous fractional sideways heat equation [31], it is no doubt that the problem (5) is
much more ill-posed, and some regularization methods are in order.

Remark 1. We do not consider the case f (x, t) = 0 in this paper. In fact, if f (x, t) = 0, our
problem is a homogeneous time-fractional sideways heat problem. We only note that, using our
method, we obtain again the results of [33].

Remark 2. By using the Fourier transform, the solution of general problem (5) where the data g is
fixed at an specific point x0 ∈ (0, 1], can be expressed as

û(x, ξ) = eτ(ξ)(x0−x) ĝ(ξ) +
∫ x0

x
f̂ (s, ξ)

sinh
(
τ(ξ)(s− x)

)
τ(ξ)

ds, 0 ≤ x < 1. (10)

If we put x0 = 1 in (10), we will obtain (7). In this context, the similar property can be acquired for
this general problem and it is also an ill-posed problem. Furthermore, the similarity in (10) and (7)
indicates that the methods using in the present paper are also applicable to solve the general problem.
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Lemma 1 ([45]). For arbitrary z ∈ C, x ∈ [0, 1) and η ∈ (x, 1], we have∣∣∣∣ sinh
(
(η − x)z

)
z

∣∣∣∣ ≤ e(η−x)�(z)

|z| , (11)

∣∣∣∣ sinh
(
(η − x)z

)
z

∣∣∣∣ ≤ (η − x)e(η−x)|z|, (12)

| cosh(xz)| ≤ ex�(z) ≤ ex|z|, (13)

where �(z) denotes the real parts of z.

Lemma 2 ([45]). For arbitrary c, d, p > 0, the following inequality holds

(c + d)p ≤
{

cp + dp, 0 < p ≤ 1,
2p−1(cp + dp), p > 1.

Lemma 3. If s �= 0, then the function h(s) = e(1−x)s

s gets its minimum hmin = (1− x)e at
s = 1

1−x .

So as to acquire a more sharp convergence, we use the following a priori condition

‖u(0, ·)‖ ≤ E. (14)

Furthermore, since the sinh(·) function is exponentially increasing, we must find a sharply
decreasing function to suppress its growth. Therefore, we also give the following assumption∫ 1

0
| f̂ (s, ξ)|2ds < e−3|ξ| α

2 , ∀ξ ∈ R. (15)

and the measured data (gδ, fδ) satisfy

‖g− gδ‖+ ‖ f − f δ‖L2(0,1;L2(R)) ≤ δ. (16)

Throughout this paper, we denote the real part and imaginary part of τ(ξ) as follows

a := �(τ(ξ)), b :=  (τ(ξ)). (17)

3. A Conditional Stability Estimate

The object of stability estimates is to describe how much the development of solution
from data magnifies errors, when noise contaminated the data. Next, we give the main
results of this part.

Theorem 1. Suppose that û(x, ξ) given by (7) be the exact solution of problem (5) in the frequency
space, and (16) is satisfied, then the following estimate holds for 0 ≤ x < 1

‖u(x, t)‖ ≤
√

C1(
∥∥ĝ
∥∥2

+
∥∥ f̂
∥∥2

L2(0,1;L2(R))
)

+

√
2x+2

∥∥û(0, ξ)
∥∥2−2x

(
∥∥ĝ
∥∥2x

+
∥∥ f̂
∥∥2x

L2(0,1;L2(R))
) + C2

∥∥ f̂
∥∥2

L2(0,1;L2(R))
.

where C1 and C2 are constants that only depends on x.
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Proof. By the Parseval’s identity, we have∥∥u(x, t)
∥∥2

=
∥∥û(x, ξ)

∥∥2

=
∫
|ξ|≤1

∣∣∣∣eτ(1−x) ĝ +
∫ 1

x
f̂

sinh
(
τ(s− x)

)
τ

ds
∣∣∣∣2dξ︸ ︷︷ ︸

A1

+
∫
|ξ|>1

∣∣∣∣eτ(1−x) ĝ +
∫ 1

x
f̂

sinh
(
τ(s− x)

)
τ

ds
∣∣∣∣2︸ ︷︷ ︸

A2

dξ.

(18)

Next, we divide the argument into two steps.
Step 1. Estimate the term A1 in (18). By Lemma 2, we have

A1 ≤ 2
∫
|ξ|≤1

∣∣eτ(1−x) ĝ
∣∣2dξ︸ ︷︷ ︸

A11

+2
∫
|ξ|≤1

∣∣∣∣ ∫ 1

x
f̂

sinh
(
τ(s− x)

)
τ

ds
∣∣∣∣2dξ︸ ︷︷ ︸

A12

. (19)

Note that
|τ| = |ξ| α

2 ≤ 1, (20)

we obtain

A11 ≤ 2
∫
|ξ|≤1

e2|τ|(1−x)|ĝ|2dξ ≤ 2e2(1−x)∥∥ĝ
∥∥2. (21)

Using Cauchy–Schwarz integral inequality, (12) yields

A12 ≤2
∫
|ξ|≤1

( ∫ 1

x
| f̂ |2ds

)( ∫ 1

x

∣∣∣∣ sinh(τ(s− x))
τ

∣∣∣∣2ds
)

dξ

≤2
∫
|ξ|≤1

( ∫ 1

x
| f̂ |2ds

)( ∫ 1

x
e2|τ|(s−x)ds

)
dξ

≤e2(1−x)∥∥ f̂
∥∥2

L2(0,1;L2(R))
.

(22)

Substituting (21) and (22) into (19), we obtain

A1 ≤ C1(
∥∥ĝ
∥∥2

+
∥∥ f̂
∥∥2

L2(0,1;L2(R))
), (23)

where
C1 = 2e2(1−x). (24)

Step 2. Estimate the term A2 in (18). Again, in view of Lemma 2, we have

A2 ≤ 2
∫
|ξ|>1

∣∣eτ(1−x) ĝ
∣∣2dξ︸ ︷︷ ︸

A21

+ 2
∫
|ξ|>1

∣∣∣∣ ∫ 1

x
f̂

sinh
(
τ(s− x)

)
τ

ds
∣∣∣∣2dξ︸ ︷︷ ︸

A22

. (25)

We first estimate A21. Using (7) and Lemma 2, we have

A21 =2
∫
|ξ|>1

∣∣∣∣e−τx
[

û(0, ξ)−
∫ 1

0
f̂

sinh(τs)
τ

]∣∣∣∣2dξ

≤4
∫
|ξ|>1

|e−τx|2∣∣û(0, ξ)
∣∣2dξ︸ ︷︷ ︸

Ã21

+4
∫
|ξ|>1

|e−τx|2
∣∣∣∣ ∫ 1

0
f̂

sinh(τs)
τ

ds
∣∣∣∣2dξ︸ ︷︷ ︸

Ã22

.
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By (17), Lemma 2, Hölder inequality, we have

Ã21 =
∫
|ξ|>1

(|û(0, ξ)
∣∣2)1−x

[
e−2a

∣∣∣∣û(0, ξ)−
∫ 1

0
f̂

sinh(τs)
τ

ds +
∫ 1

0
f̂

sinh(τs)
τ

ds
∣∣∣∣2]x

dξ

≤
∫
|ξ|>1

(|û(0, ξ)|2)1−x
[(

2e−2a
∣∣∣∣û(0, ξ)−

∫ 1

0
f̂

sinh(τs)
τ

ds
∣∣∣∣2)x

+

(
2e−2a

∣∣∣∣ ∫ 1

0
f̂

sinh(τs)
τ

ds
∣∣∣∣2)x]

dξ

=
∫
|ξ|>1

(|û(0, ξ)|2)1−x
(

2e−2a
∣∣∣∣û(0, ξ)−

∫ 1

0
f̂

sinh(τs)
τ

ds
∣∣∣∣2)x

dξ

+
∫
|ξ|>1

(
∣∣û(0, ξ)

∣∣2)1−x
(

2e−2a
∣∣∣∣ ∫ 1

0
f̂

sinh(τs)
τ

ds
∣∣∣∣2)x

dξ

≤
( ∫

|ξ|>1
|û(0, ξ)|2dξ

)1−x( ∫
|ξ|>1

2e−2a
∣∣∣∣û(0, ξ)−

∫ 1

0
f̂

sinh(τs)
τ

ds
∣∣∣∣2dξ

)x

+

( ∫
|ξ|>1

∣∣û(0, ξ)
∣∣2dξ

)1−x( ∫
|ξ|>1

2e−2a
∣∣∣∣ ∫ 1

0
f̂

sinh(τs)
τ

ds
∣∣∣∣2dξ

)x

.

By. Cauchy–Schwarz integral inequality and (11), we obtain

2e−2a
∣∣∣∣ ∫ 1

0
f̂

sinh(τs)
τ

ds
∣∣∣∣2 ≤2e−2a

( ∫ 1

0
| f̂ |2ds

)( ∫ 1

0
| sinh(τs)

τ
|2ds

)
≤2e−2a

( ∫ 1

0
| f̂ |2ds

)( ∫ 1

0

e2sa

|τ|2 ds
)

≤2
( ∫ 1

0
| f̂ |2ds

)
1

2a|τ|2 .

(26)

Therefore,

Ã21 ≤
( ∫

|ξ|>1

∣∣û(0, ξ)
∣∣2dξ

)1−x( ∫
|ξ|>1

∣∣√2ĝ
∣∣2dξ

)x

+

( ∫
|ξ|>1

∣∣û(0, ξ)
∣∣2dξ

)1−x( ∫
|ξ|>1

2
( ∫ 1

0
| f̂ |2ds

) 1
2a|τ|2 dξ

)x

≤∥∥û(0, ξ)
∥∥2−2x∥∥√2ĝ

∥∥2x
+ 2x∥∥û(0, ξ)

∥∥2−2x∥∥ f̂
∥∥2x

L2(0,1;L2(R))

=2x∥∥û(0, ξ)
∥∥2−2x(∥∥ĝ

∥∥2x
+
∥∥ f̂ ‖2x

L2(0,1;L2(R))

)
.

Likewise, we have

Ã22 ≤
( ∫

|ξ|>1

∣∣∣∣ ∫ 1

0
f̂

sinh(τs)
τ

ds
∣∣∣∣2dξ

)1−x( ∫
|ξ|>1

e−2a
∣∣∣∣ ∫ 1

0
f̂

sinh(τs)
τ

ds
∣∣∣∣2dξ

)x

≤
[ ∫

|ξ|>1

( ∫ 1

0
| f̂ |2ds

)( ∫ 1

0
e2|τ|sds

)]1−x( ∫
|ξ|>1

( ∫ 1

0
| f̂ |2ds

) 1
2a|τ|2 dξ

)x

≤
[ ∫

|ξ|>1

( ∫ 1

0
| f̂ |2ds

)
e2|τ|

2|τ|
]1−x∥∥ f̂

∥∥2x
L2(0,1;L2(R))

≤e1−x∥∥ f̂
∥∥2

L2(0,1;L2(R))
.
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Combining the estimates of Ã21 with Ã22, we obtain

A21 ≤ 2x+2∥∥û(0, ξ)
∥∥2−2x

(
∥∥ĝ
∥∥2x

+
∥∥ f̂
∥∥2x

L2(0,1;L2(R))
) + 4e1−x∥∥ f̂

∥∥2
L2(0,1;L2(R))

. (27)

Next, we estimate A22. By Cauchy–Schwarz integral inequality, (12) and Lemma 3,
we obtain

A22 ≤2
∫
|ξ|>1

( ∫ 1

x

∣∣ f̂ ∣∣2ds
)( ∫ 1

x

∣∣∣∣ sinh(τ(s− x))
τ

∣∣∣∣2ds
)

dξ

≤2
∫
|ξ|>1

( ∫ 1

x
| f̂ |2ds

)( ∫ 1

x
e2|τ|(s−x)ds

)
dξ

≤2
∫
|ξ|>1

( ∫ 1

x
| f̂ |2ds

)
e2|τ|(1−x)

2|τ| dξ

≤2(1− x)e
∥∥ f̂
∥∥2

L2(0,1;L2(R))
.

(28)

Inserting (27) and (28) into (25), we have

A2 ≤ 2x+2∥∥û(0, ξ)
∥∥2−2x

(
∥∥ĝ
∥∥2x

+
∥∥ f̂
∥∥2x

L2(0,1;L2(R))
) + C2

∥∥ f̂
∥∥2

L2(0,1;L2(R))
, (29)

where
C2 = 4e1−x + 2(1− x)e. (30)

Substituting (23) and (29) into (18), and using Lemma 2, we obtain

‖û(x, ξ)‖ ≤
√

A1 +
√

A2

≤
√

C1(‖ĝ‖2 +
∥∥ f̂
∥∥2

L2(0,1;L2(R))
)

+

√
2x+2

∥∥û(0, ξ)
∥∥2−2x

(
∥∥ĝ
∥∥2x

+
∥∥ f̂
∥∥2x

L2(0,1;L2(R))
) + C2

∥∥ f̂
∥∥2

L2(0,1;L2(R))
,

where C1 and C2 is given by (24) and (30), respectively.

4. Determination of the Temperature Distribution

In this part, we use the dynamic spectral method to recover the temperature distri-
bution from the measured data. Since the matter of instability lies in the noise of data
in the high frequency components, naturally a “corrector” is added to these in order to
control their growth. As a result, one may obtain a stable approximation. Suppose β is
the regularization parameter, motivated by [31], we contemplate the following regularized
solutions in the frequency domain:

Method 1

ûδ
β(x, ξ) =

⎧⎨⎩eτ(ξ)(1−x) ĝδ(ξ) +
∫ 1

x f̂ δ(s, ξ) sinh(τ(ξ)(s−x))
τ(ξ)

ds, e−a(1−x) ≥ √β,
e−2a(1−x)

β

[
eτ(ξ)(1−x) ĝδ(ξ) +

∫ 1
x f̂ δ(s, ξ) sinh(τ(ξ)(s−x))

τ(ξ)
ds
]
, e−a(1−x) <

√
β.

(31)

Method 2

v̂δ
β(x, ξ) =

⎧⎨⎩eτ(ξ)(1−x) ĝδ(ξ) +
∫ 1

x f̂ δ(s, ξ) sinh(τ(ξ)(s−x))
τ(ξ)

ds, e−a(1−x) ≥ √β,
e−a(1−x)√

β

[
eτ(ξ)(1−x) ĝδ(ξ) +

∫ 1
x f̂ δ(s, ξ) sinh(τ(ξ)(s−x))

τ(ξ)
ds
]
, e−a(1−x) <

√
β.

(32)

Method 3
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ŵδ
β(x, ξ) =

⎧⎪⎨⎪⎩
eτ(ξ)(1−x) ĝδ(ξ) +

∫ 1
x f̂ δ(s, ξ) sinh(τ(ξ)(s−x))

τ(ξ)
ds, e−a(1−x) ≥ √β,

e−
a
2 (1−x)

β
1
4

[
eτ(ξ)(1−x) ĝδ(ξ) +

∫ 1
x f̂ δ(s, ξ) sinh(τ(ξ)(s−x))

τ(ξ)
ds
]
, e−a(1−x) <

√
β.

(33)

Generally,

μ̂δ
β(x, ξ) =

⎧⎨⎩eτ(ξ)(1−x) ĝδ(ξ) +
∫ 1

x f̂ δ(s, ξ) sinh(τ(ξ)(s−x))
τ(ξ)

ds, e−a(1−x) ≥ √β,
e−γa(1−x)√

β
γ

[
eτ(ξ)(1−x) ĝδ(ξ) +

∫ 1
x f̂ δ(s, ξ) sinh(τ(ξ)(s−x))

τ(ξ)
ds
]
, e−a(1−x) <

√
β,

(34)

where γ > 0 is a real number. Because the three spectral methods are very similar, then we
only give the properties of the first two methods.

Remark 3. It is apparently that the regularization solutions approach the exact solution if β → 0
as δ → 0.

Lemma 4. If condition (14) and (15) hold, B(ξ) = û(0, ξ)− ∫ 1
0 f̂ sinh(τs)

τ ds, then∥∥B(ξ)
∥∥ ≤ E + N1,

where N1 is a constant.

Proof. Successively using the triangle inequality, (14), Cauchy–Schwarz integral inequality,
(12) and (15), we obtain

∥∥B(ξ)
∥∥ ≤∥∥û(0, ξ)

∥∥+ ∥∥∥∥ ∫ 1

0
f̂

sinh(τs)
τ

ds
∥∥∥∥

≤E +

[ ∫ ∞

−∞

( ∫ 1

0

∣∣∣∣ sinh(τs)
τ

∣∣∣∣2ds
∫ 1

0

∣∣ f̂ ∣∣2ds
)

dξ

] 1
2

≤E +

[ ∫ ∞

−∞

( ∫ 1

0
|ses|τ||2ds

∫ 1

0
| f̂ |2ds

)
dξ

] 1
2

≤E +

( ∫ ∞

−∞

1

2|ξ| α
2

e−|ξ|
α
2 dξ

) 1
2

.

It is easy to know that the generalized integral on the right-hand side of the last
inequality converges, here we introduce the notation

N1 :=
( ∫ ∞

−∞

1

2|ξ| α
2

e−|ξ|
α
2 dξ

) 1
2

. (35)

Therefore,
‖B(ξ)‖ ≤ E + N1,

where N1 is a constant.

Theorem 2. Let û(x, ξ) given by (7) be the exact solution of problem (5) in the frequency space,
ûδ

β(x, ξ) given by (31) be the regularized solution, condition (14)–(16) hold. If the regularization
parameter β is selected dynamically

β(x) = 22x−2
(

x
2− x

)x−2(
δ

E + 2N1

)2(1−x)

. (36)
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Then, for a fixed x ∈ (0, 1), we have

∥∥uδ
β(x, ·)− u(x, ·)∥∥ ≤ 21−x

2− x

(
x

2− x

)− x
2

δx(E + 2N1
)1−x

+ δ
√
(1− x)e. (37)

Proof. By the triangle inequality, we have∥∥uδ
β(x, ·)− u(x, ·)∥∥ ≤ ∥∥uδ

β(x, ·)− uβ(x, ·)∥∥︸ ︷︷ ︸
I1

+
∥∥uβ(x, ·)− u(x, ·)∥∥︸ ︷︷ ︸

I2

. (38)

Next , we divide the argument into two steps.
Step 1. Estimate the term I1 in (38). It follows immediately from Parseval’s equality

and the triangle inequality that

I1 =
∥∥ûδ

β(x, ·)− ûβ(x, ·)∥∥
=

∥∥∥∥min
{

1,
e−2a(1−x)

β

}[
eτ(1−x)(ĝδ − ĝ) +

∫ 1

x

(
f̂ δ − f̂

) sinh
(
τ(s− x)

)
τ

ds
]∥∥∥∥

≤
∥∥∥∥min

{
1,

e−2a(1−x)

β

}
eτ(1−x)(ĝδ − ĝ

)∥∥∥∥︸ ︷︷ ︸
Ī1

+

∥∥∥∥min
{

1,
e−2a(1−x)

β

} ∫ 1

x

(
f̂ δ − f̂

) sinh
(
τ(s− x)

)
τ

ds
∥∥∥∥︸ ︷︷ ︸

Ī2

.

By (17) and (16), we obtain

Ī1 ≤
∥∥∥∥ e−2a(1−x)

β
e(a+bi)(1−x)(ĝδ − ĝ

)∥∥∥∥
e−a(1−x)<

√
β

=

∥∥∥∥ e(−a+bi)(1−x)

β

(
ĝδ − ĝ

)∥∥∥∥ ≤ δβ−
1
2 .

Using Cauchy–Schwarz integral inequality, (12), Lemma 3 and (16) yields

Ī2 ≤
∥∥∥∥ ∫ 1

x

(
f̂ δ − f̂

) sinh
(
τ(x− s)

)
τ

ds
∥∥∥∥

≤
∥∥∥∥( ∫ 1

x
| f̂ δ − f̂ |2ds

)( ∫ 1

x
e2(s−x)|τ|ds

)∥∥∥∥
≤
∥∥∥∥( ∫ 1

x
| f̂ δ − f̂ |2ds

)
e2(1−x)|τ|

2|τ|
∥∥∥∥

≤δ
√
(1− x)e.

Hence,

I1 ≤ δβ−
1
2 + δ

√
(1− x)e. (39)
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Step 2. Estimate the term I2 in (38). Again, by the Parseval’s identity and the triangle
inequality,

I2 =
∥∥ûβ(x, ·)− û(x, ·)∥∥

=

∥∥∥∥min
{

1,
e−2a(1−x)

β

}
·
(

eτ(1−x) ĝ +
∫ 1

x
f̂

sinh
(
τ(s− x)

)
τ

ds
)
−
(

eτ(1−x) ĝ +
∫ 1

x
f̂

sinh
(
τ(s− x)

)
τ

ds
)∥∥∥∥

≤
∥∥∥∥(1−min

{
1,

e−2a(1−x)

β

})
eτ(1−x) ĝ

∥∥∥∥︸ ︷︷ ︸
Ĩ1

+

∥∥∥∥(1−min
{

1,
e−2a(1−x)

β

}) ∫ 1

x
f̂

sinh
(
τ(s− x)

)
τ

ds
∥∥∥∥︸ ︷︷ ︸

Ĩ2

.

We start by estimating the first term above. Let

B1(a) =
(

1− e−2a(1−x)

β

)
e−ax.

Using (7) and (17), we obtain

Ĩ1 =

∥∥∥∥(1−min
{

1,
e−2a(1−x)

β

})
e−τx

[
û(0, ξ)−

∫ 1

0
f̂

sinh(τs)
τ

ds
]∥∥∥∥

≤ sup
e−2a(1−x)≤β

B1(a)
∥∥∥∥û(0, ξ)−

∫ 1

0
f̂

sinh(τs)
τ

ds
∥∥∥∥.

By elementary calculations, it is easy to find the zero point a∗ of B′1(a) satisfies

e−2a∗(1−x) =
βx

2− x
,

and a∗ maximize the function B1(a). Thus,

B1(a) ≤ B1(a∗) =
(

1− x
2− x

)(
βx

2− x

) x
2(1−x)

. (40)

Using Lemma 4, we have

Ĩ1 ≤
(

1− x
2− x

)(
βx

2− x

) x
2(1−x) (

E + N1
)
.
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Now we estimate Ĩ2. Using Cauchy–Schwarz integral inequality, (12), (17), (15), (40),
(9) and (10) yields

Ĩ2 ≤
∥∥∥∥(1− e−2a(1−x)

β

)
e−ax

∫ 1

x
f̂

sinh(τ(s− x))
τ

dseax
∥∥∥∥

≤ sup
e−2a(1−x)≤β

B1(a)
[ ∫ ∞

−∞

( ∫ 1

x
| f̂ |2ds

)( ∫ 1

x
e2|τ|(s−x)ds

)
e2axdξ

] 1
2

≤ sup
e−2a(1−x)≤β

B1(a)
[ ∫ ∞

−∞

( ∫ 1

x

∣∣ f̂ ∣∣2ds
)

e2|τ|(1−x)

2|τ| e2|τ|xdξ

] 1
2

≤
(

1− x
2− x

)(
βx

2− x

) x
2(1−x)

N1.

Therefore,

I2 ≤
(

1− x
2− x

)(
βx

2− x

) x
2(1−x) (

E + 2N1
)
. (41)

Substituting (39) and (40) into (38), we obtain

‖uδ
β(x, ·)− u(x, ·)‖ (42)

≤δβ−
1
2 + δ

√
(1− x)e +

(
1− x

2− x

)(
βx

2− x

) x
2(1−x) (

E + 2N1
)

:= h1(β). (43)

Minimizing the right-hand side of (42) with respect to β, we can obtain (36). Hence,
(37) hold.

Theorem 3. Let û(x, ξ) given by (7) be the exact solution of problem (5) in the frequency space,
v̂δ

β(x, ξ) given by (32) be the regularized solution, condition (14)–(16) hold. If the regularization
parameter β is selected dynamically

β(x) = x−2
(

δ

E + 2N1

)2(1−x)

. (44)

Then, for a fixed x ∈ (0, 1), we have

∥∥vδ
β(x, ·)− u(x, ·)∥∥ ≤ δx(E + 2N1

)1−x
+ δ

√
(1− x)e. (45)

Proof. By the triangle inequality, we have∥∥vδ
β(x, ·)− u(x, ·)∥∥ ≤ ∥∥vδ

β(x, ·)− vβ(x, ·)∥∥︸ ︷︷ ︸
I3

+
∥∥vβ(x, ·)− u(x, ·)∥∥︸ ︷︷ ︸

I4

. (46)

Next, we divide the argument into two steps.
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Step 1. Estimate the term I3 in (45). Taking a similar procedure of the estimate of I1,
we have

I3 =
∥∥v̂δ

β(x, ·)− v̂β(x, ·)∥∥
≤
∥∥∥∥min

{
1,

e−a(1−x)√
β

}
eτ(1−x)(ĝδ − ĝ

)∥∥∥∥
+

∥∥∥∥min
{

1,
e−a(1−x)√

β

} ∫ 1

x

(
f̂ δ − f̂

) sinh
(
τ(s− x)

)
τ

ds
∥∥∥∥

≤
∥∥∥∥ e−a(1−x)√

β
e(a+bi)(1−x)(ĝδ − ĝ

)∥∥∥∥
e−a(1−x)<

√
β

+

∥∥∥∥ ∫ 1

x

(
f̂ δ − f̂

) sinh
(
τ(s− x)

)
τ

ds
∥∥∥∥

≤δβ−
1
2 + δ

√
(1− x)e.

(47)

Step 2. Estimate the term I4 in (45). By the Parseval’s identity, we have

I4 =
∥∥v̂β(x, ·)− û(x, ·)∥∥

≤
∥∥∥∥(1−min

{
1,

e−a(1−x)√
β

})
eτ(1−x) ĝ

∥∥∥∥︸ ︷︷ ︸
Ĩ3

+

∥∥∥∥(1−min
{

1,
e−a(1−x)√

β

}) ∫ 1

x
f̂

sinh
(
τ(s− x)

)
τ

ds
∥∥∥∥︸ ︷︷ ︸

Ĩ4

.

We start by estimating the first term above. Let

B2(a) =
(

1− e−a(1−x)√
β

)
e−ax.

Using (7) and (17), we obtain

Ĩ3 =

∥∥∥∥(1−min
{

1,
e−a(1−x)√

β

})
e−τx

[
û(0, ξ)−

∫ 1

0
f̂

sinh(τs)
τ

ds
]∥∥∥∥

≤ sup
e−a(1−x)≤√β

B2(a)
∥∥∥∥û(0, ξ)−

∫ 1

0
f̂

sinh(τs)
τ

ds
∥∥∥∥.

By elementary calculations, it is easy to find the zero point a∗ of B′2(a) satisfies

e−a∗(1−x) =
√

βx,

and a∗ maximize the function B2(a). Thus,

B2(a) ≤ B2(a∗) = (1− x)
(√

βx
) x

1−x . (48)

By Lemma 4, we have

Ĩ3 ≤ (1− x)
(√

βx
) x

1−x
(
E + N1

)
.
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Now we estimate Ĩ4. Using Cauchy–Schwarz integral inequality, (12), (17), (15), (9),
(47) and (35) yields

Ĩ4 ≤
∥∥∥∥(1− e−a(1−x)√

β

)
e−ax

∫ 1

x
f̂

sinh
(
τ(x− s)

)
τ

dseax
∥∥∥∥

≤ sup
e−a(1−x)≤√β

B2(a)
[ ∫ ∞

−∞

( ∫ 1

x
| f̂ |2ds

)( ∫ 1

x
e2|τ|(s−x)ds

)
e2axdξ

] 1
2

≤(1− x)
(√

βx
) x

1−x N1.

Therefore,

I4 ≤ (1− x)
(√

βx
) x

1−x
(
E + 2N1

)
. (49)

Substituting (46) and (48) into (45), we obtain

∥∥vδ
β(x, ·)− u(x, ·)∥∥ ≤ δβ−

1
2 + δ

√
(1− x)e + (1− x)

(√
βx
) x

1−x
(
E + 2N1

)
:= h2(β). (50)

Minimizing the right-hand side of (49) with respect to β, we can obtain (43). Hence,
(44) hold.

Remark 4. In Theorems 2 and 3, we choose the regularization parameter β to depend on the position
of x , which will justify our use of the phrase “dynamic spectral”. Moreover, we can find that the
estimate of Theorem 3 is better than the estimate of Theorem 2.

It is easy to see that two errors in Theorems 2 and 3 are not near to zero, if δ fixed and x
tend to zero. Hence, the convergence of the approximate solution is very slow when x is in
a neighborhood of zero. In addition, considering that the sinh(·) function is exponentially
increasing, to retain the continuous dependence of the solution at x = 0, we have to
introduce some stronger a priori assumptions∥∥u(0, ·)∥∥p ≤ E, p > 0, (51)

(
1 + ξ2)p

∫ 1

0

∣∣ f̂ (s, ξ)
∣∣2ds < e−3|ξ| α

2 , ∀ξ ∈ R. (52)

Next , we only give error estimate at x = 0 for (32).

Lemma 5. Let condition (50) and (51) hold, B̃(ξ) =
(
1 + ξ2) p

2
[
û(0, ξ)− ∫ 1

0 f̂ sinh(τs)
τ ds

]
, then

‖B̃(ξ)‖ ≤ E + N1,

where N1 is a constant.

Theorem 4. Let û(x, ξ) given by (7) be the exact solution of problem (5) in the frequency space,
v̂δ

β(x, ξ) given by (32) be the regularized solution, condition (16), (50), (51) hold. The regularization
parameter β is chosen as

β =
1(

C(a∗
)
δ−r)2

, (53)

where 0 < r < 1, C(a∗) = 2p
a∗α+2p < 1, a∗ is a constant. Then, the following inequality hold

∥∥vδ
β(0, ·)− u(0, ·)∥∥ ≤ C(a∗)δ1−r + δ

√
e +

[
1− C(a∗)

](
r ln

1
δ

)− 2p
α (

E + 2N1
)
, p > 0. (54)
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Proof. By the triangle inequality, we have∥∥vδ
β(0, ·)− u(0, ·)∥∥ ≤ ∥∥vδ

β(0, ·)− vβ(0, ·)∥∥︸ ︷︷ ︸
I5

+
∥∥vβ(0, ·)− u(0, ·)∥∥︸ ︷︷ ︸

I6

. (55)

Next, we divide the argument into two steps.
Step 1. Estimate the term I5 in (54). In view of the Parseval’s equality, the triangle

inequality, Cauchy–Schwarz integral inequality, (12), Lemma 3 and (16), we have

I5 =
∥∥v̂δ

β(0, ·)− v̂β(0, ·)∥∥
≤
∥∥∥∥min{1,

e−a√
β

}
eτ
(

ĝδ − ĝ
)∥∥∥∥+ ∥∥∥∥min

{
1,

e−a√
β

} ∫ 1

0

(
f̂ δ − f̂

) sinh(τs)
τ

ds
∥∥∥∥

≤
∥∥∥∥ e−a√

β
e(a+bi)(ĝδ − ĝ

)∥∥∥∥
e−a<

√
β

+

∥∥∥∥ ∫ 1

0

(
f̂ δ − f̂

) sinh(τs)
τ

ds
∥∥∥∥

≤δβ−
1
2 +

[ ∫ ∞

−∞

( ∫ 1

0
| f̂ δ − f̂ |2ds

)( ∫ 1

0
e2s|τ|ds

)
dξ

] 1
2

≤δβ−
1
2 + δ

√
e.

Step 2. Estimate the term I6 in (54). By the Parseval’s equality and the triangle
inequality, we obtain

I6 =
∥∥v̂β(0, ·)− û(0, ·)∥∥

≤
∥∥∥∥(1−min

{
1,

e−a√
β

})
eτ ĝ
∥∥∥∥︸ ︷︷ ︸

Ĩ5

+

∥∥∥∥(1−min
{

1,
e−a√

β

}) ∫ 1

0
f̂

sinh(τs)
τ

ds
∥∥∥∥︸ ︷︷ ︸

Ĩ6

.

We start by estimating the first term above. Let

B3(a) =
(

1− e−a√
β

)
a−

2p
α .

Using (7), and note that a ≤ |ξ| α
2 , we obtain

Ĩ5 =

∥∥∥∥(1−min
{

1,
e−a√

β

})[
û(0, ξ)−

∫ 1

0
f̂

sinh(τs)
τ

ds
]∥∥∥∥

≤ sup
e−a≤√β

(
1− e−a√

β

)(
1 + ξ2)− p

2

∥∥∥∥[û(0, ξ)−
∫ 1

0
f̂

sinh(τs)
τ

ds
](

1 + ξ2) p
2

∥∥∥∥
≤ sup

e−a≤√β

B3(a)
∥∥∥∥[û(0, ξ)−

∫ 1

0
f̂

sinh(τs)
τ

ds
](

1 + ξ2) p
2

∥∥∥∥.

By elementary calculations, it is easy to find the zero point a∗ of B′3(a) satisfies

e−a∗√
β

= C(a∗),

where
C(a∗) = 2p

a∗α + 2p
< 1, (56)
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and a∗ maximize the function B3(a). Thus,

B3(a) ≤ B3(a∗) =
[
1− C(a∗)

](
ln

1√
βC(a∗)

)− 2p
α

. (57)

By Lemma 5, we obtain

Ĩ5 ≤
[
1− C(a∗)

](
ln

1√
βC(a∗)

)− 2p
α (

E + N1
)
.

Now we estimate Ĩ6. Using (56) and Lemma 5 yields

Ĩ6 ≤
∥∥∥∥(1− e−a√

β

)(
1 + ξ2)− p

2

∫ 1

0
f̂

sinh(τs)
τ

ds
(
1 + ξ2) p

2

∥∥∥∥
≤ sup

e−a(1−x)≤√β

B3(a)
∥∥∥∥ ∫ 1

0
f̂

sinh(τs)
τ

ds
(
1 + ξ2) p

2

∥∥∥∥
≤[1− C(a∗)

](
ln

1√
βC(a∗)

)− 2p
α

N1.

Therefore,

I6 ≤
[
1− C(a∗)

](
ln

1√
βC(a∗)

)− 2p
α (

E + 2N1
)
. (58)

Then, by (54), we have

∥∥vδ
β(x, ·)− u(x, ·)∥∥ ≤δβ−

1
2 + δ

√
e +

[
1− C(a∗)

](
ln

1√
βC(a∗)

)− 2p
α (

E + 2N1
)

=C(a∗)δ1−r + δ
√

e +
[
1− C(a∗)

](
r ln

1
δ

)− 2p
α (

E + 2N1
)
.

where C(a∗) is given by (55).

Remark 5. If we replace the assumption (14) and (15) by (50) and (51), then the convergence
‖uδ

β(x, ·)− u(x, ·)‖p and ‖vδ
β(x, ·)− u(x, ·)‖p is also hold.

Remark 6. From a theoretical point of view, Theorem 4 has obtained the stability estimate for the
endpoint x = 0, since lim

δ→0
‖vδ

β(0, ·)− u(0, ·)‖ = 0.

Remark 7. In 1987, Eldén [19] proved that it is impossible to obtain the error asymptotically better
than logarithmic rate at x = 0. So our estimates is reasonable, although the logarithmic term ln 1

δ
implies the convergence rate is very slow.

5. Determination of Flux Structure and Error Estimate

In this section, we use the Fourier regularization method to recover the flux distribution
from the measure data. Differentiating the variable x on the right-hand side of (7), we
obtain the following formula for the heat flux, denoted by

ûx(x, ξ) = −τ(ξ)e(1−x)τ(ξ) ĝδ −
∫ 1

x
f̂ δ cosh

(
τ(ξ)(s− x)

)
ds, 0 ≤ x < 1.
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The method we adopt is to eliminate all high frequencies from the solution, and
instead consider (5) for |ξ| ≤ ξmax. Then, we obtain a regularized solution

ûδ,ξmax
x (x, ξ) =

[
− τ(ξ)e(1−x)τ(ξ) ĝδ −

∫ 1

x
f̂ δ cosh

(
τ(ξ)(s− x)

)
ds
]

χmax. (59)

where ξmax is the regularization parameter, χmax is the characteristic function of the interval
[−ξmax, ξmax].

Theorem 5. Let û(x, ξ) given by (7) be the exact solution of problem (5) in the frequency space,
ûδ,ξmax

x (x, ξ) given by (58) be the regularized solution, condition (14)–(16) hold. If the regularization
parameter ξmax is selected by

ξmax =

(
ln

E
δ

) 2
α

. (60)

Then for a fixed x ∈ (0, 1), we have∥∥uδ,ξmax
x (x, ·)− ux(x, ·)∥∥

≤
(

2 ln
E
δ
+
(

ln
E
δ

)− 1
2

)
E1−xδx + ε1

√
2E−xδx(E + N1

)
+

(
ln

E
δ

)− 1
2

N2,

where ε1 = max{ 1
x , ln E

δ }, N1 and N2 are some constants.

Proof. By the triangle inequality, we have∥∥uδ,ξmax
x (x, ·)− ux(x, ·)∥∥ ≤ ∥∥uδ,ξmax

x (x, ·)− uξmax
x (x, ·)∥∥︸ ︷︷ ︸

J1

+
∥∥uξmax

x (x, ·)− ux(x, ·)∥∥︸ ︷︷ ︸
J2

. (61)

Next , we divide the argument into two steps.
Step 1. Estimate the term J1 in (60). It follows immediately from Parseval’s equality

and Lemma 2 that

J1 =
∥∥ûδ,ξmax

x (x, ·)− ûξmax
x (x, ·)∥∥

=

[ ∫
|ξ|≤ξmax

∣∣τeτ(1−x)(ĝ− ĝδ
)
+
∫ 1

x

(
f̂ − f̂ δ

)
cosh

(
τ(s− x)

)
ds
∣∣2dξ

] 1
2

≤
[ ∫

|ξ|≤ξmax
2
∣∣τeτ(1−x)(ĝ− ĝδ

)∣∣2dξ

] 1
2

︸ ︷︷ ︸
J̄1

+

[ ∫
|ξ|≤ξmax

2
∣∣ ∫ 1

x

(
f̂ − f̂ δ

)
cosh

(
τ(s− x)

)
ds
∣∣2dξ

] 1
2

︸ ︷︷ ︸
J̄2

.

By (16) and (59), we obtain

J̄1 ≤ 2δ sup
|ξ|≤ξmax

∣∣τeτ(1−x)∣∣ ≤ 2δ|τ|e|τ|(1−x) ≤ 2δξ
α
2
maxeξ

α
2
max(1−x) = 2E1−xδx ln

E
δ

. (62)
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Using Cauchy–Schwarz integral inequality, (13), (59) and (16) yields

J̄2 ≤
[ ∫

|ξ|≤ξmax
2
( ∫ 1

x
e2|τ|(s−x)ds

)( ∫ 1

x

∣∣ f̂ − f̂ δ
∣∣2ds

)
dξ

] 1
2

≤ξ
− α

4
maxe(1−x)ξ

α
2
max
∥∥ f̂ − f̂ δ

∥∥
L2(0,1;L2(R))

≤
(

ln
E
δ

)− 1
2

E1−xδx.

(63)

Thus , by (61) and (62)

J1 ≤
(

2 ln
E
δ
+
(

ln
E
δ

)− 1
2

)
E1−xδx. (64)

Step 2. Estimate the term J2 in (60). Again, using the Parseval’s identity and Lemma 2,
we have

J2 =
∥∥ûξmax

x (x, ·)− ûx(x, ·)∥∥
=

[ ∫
|ξ|>ξmax

∣∣∣∣τeτ(1−x) ĝ +
∫ 1

x
f̂ cosh

(
τ(s− x)

)
ds
∣∣∣∣2dξ

] 1
2

≤
[ ∫

|ξ|>ξmax
2
∣∣τeτ(1−x) ĝ

∣∣2dξ

] 1
2

︸ ︷︷ ︸
J̃1

+

[ ∫
|ξ|>ξmax

2
∣∣∣∣ ∫ 1

x
f̂ cosh

(
τ(s− x)

)
ds
∣∣∣∣2dξ

] 1
2

︸ ︷︷ ︸
J̃2

.

We first estimate J̃1. Let

B4
(|ξ|) = √

2|ξ| α
2 e−x|ξ| α

2 .

By (7), we have

J̃1 =

[ ∫
|ξ|>ξmax

2
∣∣∣∣τe−τx

(
û(0, ξ)−

∫ 1

0
f̂

sinh(τs)
τ

ds
)∣∣∣∣2dξ

] 1
2

≤ sup
|ξ|>ξmax

B4
(|ξ|)∥∥∥∥û(0, ξ)−

∫ 1

0
f̂

sinh(τs)
τ

ds
∥∥∥∥.

By elementary calculations, it is easy to find the unique zero point |ξ∗| of B′4(|ξ|) is

|ξ∗| =
(

1
x

) 2
α

,

and |ξ∗| maximize the function B4
(|ξ|). Thus,

sup
|ξ|>ξmax

B4
(|ξ|) =

⎧⎨⎩
√

2|ξ∗| α
2 e−x|ξ∗| α

2 ≤ √2|ξ∗| α
2 e−xξ

α
2
max , ξmax < |ξ∗|,

√
2ξ

α
2
maxe−xξ

α
2
max , ξmax ≥ |ξ∗|.

By (59), we have

sup
|ξ|>ξmax

B4
(|ξ|) ≤ { 1

x
, ln

E
δ

}√
2e−x ln E

δ := ε1
√

2E−xδx,
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where

ε1 = max
{

1
x

, ln
E
δ

}
. (65)

Therefore , by Lemma 4, we obtain

J̃1 ≤ ε1
√

2E−xδx(E + N1
)
.

Now we estimate J̃2. Using Cauchy–Schwarz integral inequality, (13) and (15) yields

J̃2 ≤
[ ∫

|ξ|>ξmax
2
( ∫ 1

x
e2|τ|(s−x)ds

)( ∫ 1

x
| f̂ |2ds

)
dξ

] 1
2

≤
[ ∫

|ξ|>ξmax

(
1

|ξ| α
2

e2|ξ| α
2 (1−x)

)( ∫ 1

x
| f̂ |2ds

)
dξ

] 1
2

≤ξ
− α

4
max

[ ∫
|ξ|>ξmax

e2|ξ| α
2 (1−x)e−3|ξ| α

2 dξ

] 1
2

.

Since the generalized integral on the right side of the last inequality converges for
0 < x < 1, we introduce the notation

N2 =

[ ∫
|ξ|>ξmax

e−|ξ|
α
2 dξ

] 1
2

. (66)

Using (59), we have

J̃2 ≤
(

ln
E
δ

)− 1
2

N2.

Thus,

J2 ≤ ε1
√

2E−xδx(E + N1
)
+

(
ln

E
δ

)− 1
2

N2. (67)

where ε1 is given by (64). By substituting (63) and (66) into (60), we arrive at the final
conclusion.

Remark 8. If we replace assumptions (14) and (15) by (50) and (51), then the convergence
‖uδ,ξmax

x (x, ·)− ux(x, ·)‖p also holds.

Similarly, the accuracy of the regularized solution becomes progressively lower as
x → 0, and then we use the condition (50) and (51) to give convergence estimate at x = 0.

Theorem 6. Let û(x, ξ) given by (7) be the exact solution of problem (5) in the frequency space,
ûδ,ξmax

x (x, ξ) given by (58) be the regularized solution, condition (16), (50) and (51) hold. If the
regularization parameter ξmax is selected by

ξmax =

(
ln
(E

δ

(
ln

E
δ

)− 2p
α
)) 2

α

. (68)

Then, for p > α
2 , we have

∥∥uδ,ξmax
x (0, ·)− ux(0, ·)∥∥ ≤ (2ε−1

2 + ε
1
2
2
)
E
(

ln
E
δ

)− 2p
α

+
√

2ε
2p
α −1

2
(
E + N1

)
+ ε

1
2+

2p
α

2 N2, (69)

where ε2 =

(
ln
( E

δ

(
ln E

δ

)− 2p
α
))−1

, N1 and N2 are some constants.
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Proof. By the triangle inequality, we have∥∥uδ,ξmax
x (0, ·)− ux(0, ·)∥∥ ≤ ∥∥uδ,ξmax

x (0, ·)− uξmax
x (0, ·)∥∥︸ ︷︷ ︸

J3

+
∥∥uξmax

x (0, ·)− ux(0, ·)∥∥︸ ︷︷ ︸
J4

. (70)

Next , we divide the argument into two steps.
Step 1. Estimate the term J3 in (69). Taking a similar procedure of the estimate of J1,

and by (67), we obtain

J3 =
∥∥ûδ,ξmax

x (0, ·)− ûξmax
x (0, ·)∥∥

≤
[ ∫

|ξ|≤ξmax
2
∣∣τeτ(ĝ− ĝδ)

∣∣2dξ

] 1
2

+

[ ∫
|ξ|≤ξmax

2
∣∣∣∣ ∫ 1

0

(
f̂ − f̂ δ

)
cosh(τs)ds

∣∣∣∣2dξ

] 1
2

≤2δ sup
|ξ|≤ξmax

∣∣τeτ
∣∣+ [ ∫

|ξ|≤ξmax
2
( ∫ 1

0
e2|τ|sds

)( ∫ 1

0
| f̂ − f̂ δ|2ds

)
dξ

] 1
2

≤2δξ
α
2
maxeξ

α
2
max + ξ

− α
4

maxeξ
α
2
max
∥∥ f̂ δ − f̂

∥∥
L2(0,1;Hp(R))

≤(2ε−1
2 + ε

1
2
2
)
E
(

ln
E
δ

)− 2p
α

,

(71)

where

ε2 =

(
ln
(E

δ

(
ln

E
δ

)− 2p
α
))−1

. (72)

Step 2. Estimate the term J4 in (69). By Lemma 2, we have

J4 =
∥∥ûξmax

x (0, ·)− ûx(0, ·)∥∥
≤
[ ∫

|ξ|>ξmax
2
∣∣τeτ ĝ

∣∣2dξ

] 1
2

︸ ︷︷ ︸
J̃3

+

[ ∫
|ξ|>ξmax

2
∣∣∣∣ ∫ 1

0
f̂ cosh(τs)ds

∣∣∣∣2dξ

] 1
2

︸ ︷︷ ︸
J̃4

.

We first estimate J̃3. By (7), (9), (67)and Lemma 5, we have

J̃3 =

[ ∫
|ξ|>ξmax

2
∣∣∣∣(1 + ξ2)−

p
2 τ

(
û(0, ξ)−

∫ 1

0
f̂

sinh(τs)
τ

ds
)(

1 + ξ2) p
2

∣∣∣∣2dξ

] 1
2

≤
√

2ξ
α
2−p
max

∥∥∥∥(1 + ξ2)
p
2

(
û(0, ξ)−

∫ 1

0
f̂

sinh(τs)
τ

ds
)∥∥∥∥

≤
√

2ε
2p
α −1

2
(
E + N1

)
.

Now we estimate J̃4. Using Cauchy–Schwarz integral inequality, (13), (9), (51), (67)
and (65) yields

J̃4 ≤
[ ∫

|ξ|>ξmax
2
(
1 + ξ2)−p

( ∫ 1

0
e2|τ|sds

)( ∫ 1

0
| f̂ |2ds

)(
1 + ξ2)pdξ

] 1
2

≤
[ ∫

|ξ|>ξmax
|ξ|−2p

(
1

|ξ| α
2

e2|ξ| α
2
)( ∫ 1

0
| f̂ |2ds

)(
1 + ξ2)pdξ

] 1
2

≤ξ
−( α

4 +p)
max

[ ∫
|ξ|>ξmax

e−|ξ|
α
2 dξ

] 1
2

=ε
1
2+

2p
α

2 N2.
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Then

J4 ≤
√

2ε
2p
α −1

2
(
E + N1

)
+ ε

1
2+

2p
α

2 N2, (73)

where ε2 is given by (71). The Theorem now follows from equations (69)–(72).

Remark 9. Since the regularization parameter ξmax → ∞ as δ → 0, we can easily find that, for
p > α

2 , ε2 → 0 (δ → 0). In addition, note that for p > α
2 there hold

ln
(

E
δ

(
ln

E
δ

)− 2p
α

)(
ln

E
δ

)− 2p
α

=

(
ln

E
δ

)1− 2p
α

− 2p
α

[
ln
(

ln
E
δ

)](
ln

E
δ

)− 2p
α

→ 0, δ → 0.

Therefore,
lim
δ→0

∥∥uδ,ξmax
x (0, ·)− ux(0, ·)∥∥ = 0, p >

α

2
.

Remark 10. In 2007, Qian [46] proved that it is impossible to obtain the error asymptotically
better than logarithmic rate at x = 0. So our estimates is reasonable.

6. Conclusions

In this paper, we have considered the problem of finding a function u(x, t) satisfying
(5). This is a sideways problem for non-homogeneous fractional heat equation, and the
problem is ill-posed. To regularize the problem, we propose the dynamic spectral method
and Fourier method, which are rather simple and convenient for dealing with some ill-
posed problems. Error estimations between the approximate solution and the exact one,
established from noise data gδ and fδ, are given. In fact, the paper extends the work in [33].
It is worth noting that the obtained estimates are sufficient to prove the results, but most of
them are quite rough and can be improved.

As we all know, the most common regularization methods are the Tikhonov method,
iterative method, quasi-reversibility method, truncation method, quasi-boundary value
method and spectral method. The main difference between these methods is their conver-
gence order. We can compare the convergence rate of errors by using different methods to
discuss the problem. In addition, the dynamic spectral method and Fourier method can
easily be extended to multi-dimensional case, which needs further study.
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Noether and Lie Symmetry for Singular Systems Involving
Mixed Derivatives

Chuan-Jing Song

School of Mathematical Sciences, Suzhou University of Science and Technology, Suzhou 215009, China;
songchuanjingsun@126.com

Abstract: Singular systems play an important role in many fields, and some new fractional operators,
which are general, have been proposed recently. Therefore, singular systems on the basis of the
mixed derivatives including the integer order derivative and the generalized fractional operators
are studied. Firstly, Lagrange equations within mixed derivatives are established, and the primary
constraints are presented for the singular systems. Then the constrained Hamilton equations are
constructed by introducing the Lagrange multipliers. Thirdly, Noether symmetry, Lie symmetry and
the corresponding conserved quantities for the constrained Hamiltonian systems are investigated.
And finally, an example is given to illustrate the methods and results.

Keywords: generalized operator; singular system; primary constraint; constrained Hamilton
equation; Noether symmetry; Lie symmetry; conserved quantity

1. Introduction

Fractional calculus is a hot topic recently. Many results have been obtained in fractional
calculus and its applications [1–7]. Since fractional derivatives were used to deal with
dissipative forces for nonconservative systems by Riewe [8,9] in 1996, fractional variational
problems became popular. For example, Klimek [10] studied Lagrangian and Hamiltonian
fractional sequential mechanics; Muslih and Baleanu [11] established the Hamiltonian
formulation of the systems with linear velocities within the Riemann–Liouville fractional
derivative; Agrawal [12], investigated the fractional variational calculus in terms of the
Riesz fractional derivative; Luo [13] studied the fractional Birkhoffian mechanics in terms of
the combined Riemann-Liouville fractional derivative and the combined Caputo fractional
derivative; Song and Agrawal [14] presented the Euler-Lagrange equations involving
the Caputo fractional derivative for singular systems, and so on [15,16]. Especially, in
2010, Agrawal [17] introduced a new kernel κα(t, τ) (or κα(τ, t)), on which the generalized
fractional derivatives are defined. Only when the parameter set is specified, and the kernel
κα(t, τ) is equal to (t− τ)α−1/Γ(α), can the Riemann-Liouville fractional derivative, the
Caputo fractional derivative, the Riesz-Riemann-Liouville fractional derivative and the
Riesz-Caputo fractional derivative be obtained. Besides, the kernel can also be replaced
with other kernels, and the entire theories of classical and fractional variational calculus
can be redeveloped. Therefore, the generalized fractional derivatives are more general.

Singular system is another keyword of this paper. Singular system plays an important
role in field theory, because many important physical systems in field theory are singular
ones, such as the Yang-Mills field, the gravitational field, the electromagnetic field, super-
symmetry, superstring, supergravity, relativistic moving particles and so on [18]. Singular
system has two forms, one is expressed by a Lagrangian, and the other is expressed by a
Hamiltonian. When a singular system is expressed in the form of the Hamiltonian, there
exist inherent constraints among the canonical variables, and the corresponding system
is called a constrained Hamiltonian system [19,20]. The constrained Hamiltonian system
also has many applications, such as in quantum field theories of anyons and theories of
condensed matter [19,21,22].
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In this paper, we intend to study the fractional calculus of variations for singular
systems on the basis of generalized fractional derivatives. After the fractional differential
equations of motion are established, the next step is to find solutions to them. The symmetry
method in mechanics is one of the most effective methods. The symmetry method mainly
contains three kinds of methods, namely, the Noether symmetry method, the Lie symmetry
method and the Mei symmetry method [23]. This paper focuses on the Noether symmetry
method and the Lie symmetry method. The Noether symmetry method was introduced
by a German female mathematician Noether [24]. Noether symmetry is an invariance
of the Hamilton action under the infinitesimal transformations of time and coordinates,
and can lead to a conserved quantity. Lie symmetry is an invariance of the differential
equations under the infinitesimal transformations of time and coordinates. Lie symmetry
can also lead to a conserved quantity under certain conditions. Many results have been
obtained with Noether symmetry and Lie symmetry, including both integer order calculus
and fractional order calculus [25–46], we only refer to them briefly here.

2. Preliminaries on the Generalized Operators

Generalized operators were introduced by Agrawal [17] in 2010. He defined the
operator Kα

M as

Kα
M f (t) = m

∫ t

t1

κα(t, τ) f (τ)dτ + ω
∫ t2

t
κα(τ, t) f (τ)dτ, α > 0, (1)

where t1 < t < t2, M =< t1, t, t2, m, ω > is a parameter set, m and ω are two real numbers,
κα(t, τ) is a kernel which may depend on a parameter α. It is easy to verify that the operator
Kα

M is a linear operator and satisfies the following integration by parts formula,

∫ t2

t1

g(t)Kα
M f (t)dt =

∫ t2

t1

f (t)Kα
M∗g(t)dt (2)

where M∗ =< t1, t, t2, ω, m >.
The operators Aα

M and Bα
M were defined by Agrawal as

Aα
M f (t) = DnKn−α

M f (t), n− 1 < α < n, (3)

Bα
M f (t) = Kn−α

M Dn f (t), n− 1 < α < n, (4)

where D means the classical integer order derivative d/dt, n is an integer. Both operators
are also linear and they satisfy the following integration by parts formulae,

∫ t2

t1

g(t)Aα
M f (t)dt = (−1)n

∫ t2

t1

f (t)Bα
M∗g(t)dt +

n−1

∑
j=0

(−D)n−1−jg(t)Aα+j−n
M f (t)

∣∣∣∣∣
t=t2

t=t1

(5)

∫ t2

t1

g(t)Bα
M f (t)dt = (−1)n

∫ t2

t1

f (t)Aα
M∗g(t)dt +

n−1

∑
j=0

(−1)j Aα+j−n
M∗ g(t)Dn−1−j f (t)

∣∣∣∣∣
t=t2

t=t1

(6)

where M∗ =< t1, t, t2, ω, m >, n is an integer, n− 1 < α < n.
Specifically, if we let κα(t, τ) = (t− τ)α−1/Γ(α) and let M = M1 =< t1, t, t2, 1, 0 >,

M = M2 =< t1, t, t2, 0, 1 > and M = M3 =< t1, t, t2, 1/2, 1/2 >, then the operator
Aα

M reduces to the left Riemann-Liouville, the right Riemann-Liouville and the Riesz-
Riemann-Liouville fractional derivative operators, respectively. Similarly, the operator Bα

M
reduces to the left Caputo, the right Caputo and the Riesz-Caputo fractional derivative
operators, respectively.

In this text we set 0 < α < 1. We begin with variational problems and the primary
constraints.
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3. Variational Problems and the Primary Constraints

3.1. The Variational Problem and the Primary Constraint with the Operator Aα
M

Hamilton action with the operator Aα
M is defined as

IA[qA(·)] =
∫ t2

t1

LA
(
t, qA,

.
qA, Aα

MqA
)
dt (7)

where qA = (qA1, qA2, · · · , qAn), qAi ∈ C2([t1, t2];R), i = 1, 2, · · · , n,
.
qA =

( .
qA1,

.
qA2, · · · ,

.
qAn

)
, Aα

MqA =
(

Aα
MqA1, Aα

MqA2, · · · , Aα
MqAn

)
, 0 < α < 1 and

LA(·, ·, ·, ·) ∈ C2([t1, t2]×Rn ×Rn ×Rn;R).
Then

δIA = 0 (8)

with

qA(t1) = qA1, qA(t2) = qA2, δ
.
qAi =

d
dt

δqAi, δAα
MqAi = Aα

MδqAi, i = 1, 2, · · · , n (9)

is called the Hamilton principle with the operator Aα
M, where qA1 = (qA11, qA12, · · · , qA1n),

qA2 = (qA21, qA22, · · · , qA2n).
From Equations (5), (8) and (9), we obtain

∂LA
∂qAi

− d
dt

∂LA

∂
.
qAi

− Bα
M∗

∂LA
∂Aα

MqAi
+ mκ1−α(t2, t)

∂LA(t2)

∂Aα
MqAi

−ωκ1−α(t, t1)
∂LA(t1)

∂Aα
MqAi

= 0 (10)

where LA(t1) = LA
(
t1, qA(t1),

.
qA(t1), Aα

MqA(t1)
)
, LA(t2) = LA

(
t2, qA(t2),

.
qA(t2), Aα

MqA(t2)
)
,

i = 1, 2, · · · , n. Equation (10) is called the Lagrange equation with the operator Aα
M.

Define the generalized momenta and the Hamiltonian as

pAi =
∂LA

(
t, qA,

.
qA, Aα

MqA
)

∂
.
qAi

, pα
Ai =

∂LA
(
t, qA,

.
qA, Aα

MqA
)

∂Aα
MqAi

, (11)

HA = pAi
.
qAi + pα

Ai · Aα
MqAi − LA

(
t, qA,

.
qA, Aα

MqA
)
, i = 1, 2, · · · , n. (12)

In this paper, we assume that Aα
MqAi = uAi

(
t, qA,

.
qA, pα

A
)

(or Aα
MqA = uA

(
t, qA,

.
qA, pα

A
)
),

where pα
A =

(
pα

A1, pα
A2, · · · , pα

An
)
, uA = (uA1, uA2, · · · , uAn).

Define the elements HAij, i, j = 1, 2, · · · , n, of the Hessian matrix
[
HAij

]
as

HAij =
∂2LA

∂
.
qAi∂

.
qAj

, i, j = 1, 2, · · · , n, (13)

then the Lagrangian is called regular if det
[
HAij

] �= 0, and if det
[
HAij

]
= 0, then

the Lagrangian LA is called singular. In this text, we assume that det
[
HAij

]
= 0 and

rank
[
HAij

]
= R, 0 ≤ R < n. In the sequel, we will discuss two cases, i.e., 1 ≤ R < n and

R = 0.
Firstly, when 1 ≤ R < n, which means that only

.
qAσ, σ = 1, 2, · · · , R, can be deter-

mined from Equation (11) while
.
qAρ, ρ = R + 1, R + 2, · · · , n, are random. From Equation

(11), we express
.
qAσ, σ = 1, 2, · · · , R, as

.
qAσ = f σ

A
(
t, qA, pα

A, pAE,
.
qAF

)
,
(

or
.
qAE = fE

A
(
t, qA, pα

A, pAE,
.
qAF

))
, (14)

wherepAE = (pA1, pA2, · · · , pAR),
.
qAE =

( .
qA1,

.
qA2, · · · ,

.
qAR

)
,

.
qAF =

( .
qAR+1,

.
qAR+2, · · · ,

.
qAn

)
,

fE
A =

(
f 1
A, f 2

A, · · · , f R
A
)
, 1 ≤ R < n.

From Equations (11) and (14), we have

pAi = gAi

(
t, qA, fE

A
(
t, qA, pα

A, pAE,
.
qAF

)
,

.
qAF, pα

A

)
= gAi

(
t, qA, pα

A, pAE,
.
qAF

)
, i = 1, 2, · · · , n. (15)
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For Equation (15), if i = 1, 2, · · · , R, 1 ≤ R < n, then Equation (15) always holds. If
i = R + 1, R + 2, · · · , n, 1 ≤ R < n, then from the assumption rank

[
HAij

]
= R, 1 ≤ R < n,

we have
pAρ = gAρ(t, qA, pAE, pα

A), (or pAF = gAF(t, qA, pAE, pα
A)), (16)

where ρ = R + 1, R + 2, · · · , n, pAF = (pAR+1, pAR+2, · · · , pAn),
gAF = (gAR+1, gAR+2, · · · , gAn), 1 ≤ R < n. Equation (16) has another form

φA(t, qA, pA, pα
A) = pAF − gAF(t, qA, pAE, pα

A) = 0, (17)

where φA = (φA1, φA2, · · · , φAn−R), 1 ≤ R < n.
Secondly, when R = 0, which means that no

.
qAi, i = 1, 2, · · · , n, can be determined

from Equation (11). Then from Equation (11) and the assumption rank
[
HAij

]
= R, R = 0,

we have
pAi = gAi(t, qA, pα

A), (or pA = gA(t, qA, pα
A)), (18)

where i = 1, 2, · · · , n, pA = (pA1, pA2, · · · , pAn), gA = (gA1, gA2, · · · , gAn). Then
Equation (18) gives

φA(t, qA, pA, pα
A) = pA − gA(t, qA, pα

A) = 0, (19)

where φA = (φA1, φA2, · · · , φAn).
Incorporating Equations (17) and (19), we get

φA(t, qA, pA, pα
A) = 0, (20)

where φA = (φA1, φA2, · · · , φAn−R), 0 ≤ R < n. Equation (20) is called primary constraint
with the operator Aα

M.

Remark 1. Let κα(t, τ) = (t− τ)α−1/Γ(α), when M = M1, M = M2 and M = M3 ,
Equations (10) and (20) give the Lagrange equations and the primary constraints in terms of the
left Riemann-Liouville, the right Riemann-Liouville and the Riesz-Riemann-Liouville fractional
derivatives, respectively.

3.2. The Variational Problem and the Primary Constraint with the Operator Bα
M

Hamilton action with the operator Bα
M is

IB[qB(·)] =
∫ t2

t1

LB
(
t, qB,

.
qB, Bα

MqB
)
dt, (21)

where qB = (qB1, qB2, · · · , qBn), qBi ∈ C2([t1, t2];R), i = 1, 2, · · · , n,
.
qB =

( .
qB1,

.
qB2, · · · ,

.
qBn
)
,

Bα
MqB =

(
Bα

MqB1, Bα
MqB2, · · · , Bα

MqBn
)
, LB(·, ·, ·, ·) ∈ C2([t1, t2]×Rn ×Rn ×Rn;R) and

0 < α < 1. Then
δIB = 0 (22)

with

qB(t1) = qB1, qB(t2) = qB2, δ
.
qBi =

d
dt

δqBi, δBα
MqBi = Bα

MδqBi, i = 1, 2, · · · , n (23)

is called the Hamilton principle with the operator Bα
M, where qB1 = (qB11, qB12, · · · , qB1n),

qB2 = (qB21, qB22, · · · , qB2n).
From Equations (6), (22) and (23), we obtain

∂LB
∂qBi

− d
dt

∂LB

∂
.
qBi

− Aα
M∗

∂LB
∂Bα

MqBi
= 0, i = 1, 2, · · · , n. (24)

Equation (24) is called the Lagrange equation with the operator Bα
M.
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Define the generalized momenta and the Hamiltonian as

pBi =
∂LB

(
t, qB,

.
qB, Bα

MqB
)

∂
.
qBi

, pα
Bi =

∂LB
(
t, qB,

.
qB, Bα

MqB
)

∂Bα
MqBi

, (25)

HB = pBi
.
qBi + pα

Bi · Bα
MqBi − LB

(
t, qB,

.
qB, Bα

MqB
)
, i = 1, 2, · · · , n. (26)

In this paper, we assume that Bα
MqBi = uBi

(
t, qB,

.
qB, pα

B
)

(or Bα
MqB = uB

(
t, qB,

.
qB, pα

B
)
),

where pα
B =

(
pα

B1, pα
B2, · · · , pα

Bn
)
, uB = (uB1, uB2, · · · , uBn).

Define the elements HBij, i, j = 1, 2, · · · , n, of the Hessian matrix
[
HBij

]
as

HBij =
∂2LB

∂
.
qBi∂

.
qBj

, i, j = 1, 2, · · · , n, (27)

then the Lagrangian is called regular if det
[
HBij

] �= 0, and if det
[
HBij

]
= 0, then the La-

grangian LB is called singular. In this text, we assume that det
[
HBij

]
= 0 and rank

[
HBij

]
=

R, 0 ≤ R < n. In the sequel, we will discuss two cases, i.e., 1 ≤ R < n and R = 0.
Firstly, when 1 ≤ R < n, which means that only

.
qBσ, σ = 1, 2, · · · , R, can be deter-

mined from Equation (25) while
.
qBρ, ρ = R + 1, R + 2, · · · , n, are random. From Equation

(25), we express
.
qBσ, σ = 1, 2, · · · , R, 1 ≤ R < n, as

.
qBσ = f σ

B
(
t, qB, pα

B, pBE,
.
qBF

)
,
(

or
.
qBE = fE

B
(
t, qB, pα

B, pBE,
.
qBF

))
, (28)

where pBE = (pB1, pB2, · · · , pBR),
.
qBE =

( .
qB1,

.
qB2, · · · ,

.
qBR

)
,

.
qBF =

( .
qBR+1,

.
qBR+2, · · · ,

.
qBn
)
,

fE
B =

(
f 1
B, f 2

B, · · · , f R
B
)
.

From Equations (25) and (28), we have

pBi = gBi

(
t, qB, fE

B
(
t, qB, pα

B, pBE,
.
qBF

)
,

.
qBF, pα

B

)
= gBi

(
t, qB, pα

B, pBE,
.
qBF

)
, i = 1, 2, · · · , n. (29)

For Equation (29), if i = 1, 2, · · · , R, then Equation (29) always holds. If i = R + 1, R +
2, · · · , n, then from the assumption rank

[
HBij

]
= R, 1 ≤ R < n, we have

pBρ = gBρ(t, qB, pBE, pα
B), (or pBF = gBF(t, qB, pBE, pα

B)), (30)

where ρ = R + 1, R + 2, · · · , n, pBF = (pBR+1, pBR+2, · · · , pBn),
gBF = (gBR+1, gBR+2, · · · , gBn), 1 ≤ R < n. Equation (30) has another form

φB(t, qB, pB, pα
B) = pBF − gBF(t, qB, pBE, pα

B) = 0, (31)

where φB = (φB1, φB2, · · · , φBn−R), 1 ≤ R < n.
Secondly, when R = 0, which means that no

.
qBi, i = 1, 2, · · · , n, can be determined

from Equation (25). Then from Equation (25) and the assumption rank
[
HBij

]
= R, R = 0,

we have
pBi = gBi(t, qB, pα

B), (or pB = gB(t, qB, pα
B)), (32)

where i = 1, 2, · · · , n, pB = (pB1, pB2, · · · , pBn), gB = (gB1, gB2, · · · , gBn). Then
Equation (32) gives

φB(t, qB, pB, pα
B) = pB − gB(t, qB, pα

B) = 0, (33)

where φB = (φB1, φB2, · · · , φBn).
Incorporating Equations (31) and (33), we get

φB(t, qB, pB, pα
B) = 0, (34)

where φB = (φB1, φB2, · · · , φBn−R), 0 ≤ R < n. Equation (34) is called the primary con-
straint with the operator Bα

M.
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Remark 2. Let κα(t, τ) = (t− τ)α−1/Γ(α), when M = M1, M = M2 and M = M3, Equations
(24) and (34) give the Lagrange equations and the primary constraints in terms of the left Caputo,
the right Caputo and the Riesz-Caputo fractional derivatives, respectively.

We intend to transform the singular Lagrangian systems with the mixed derivatives
(Equations (10), (20), (24) and (34)) into the constrained Hamiltonian systems in the follow-
ing section.

4. Constrained Hamiltonian System and Consistency Condition

4.1. Constrained Hamilton Equation with the Operator Aα
M

From Equations (11) and (12), we have

δHA =
.
qAi · δpAi + δpα

Ai · Aα
MqAi − ∂LA

∂qAi
δqAi, i = 1, 2, · · · , n, (35)

where
∂LA
∂qAi

=
.
pAi + Bα

M∗ pα
Ai −mκ1−α(t2, t)pα

Ai(t2) + ωκ1−α(t, t1)pα
Ai(t1) (36)

From the Hamiltonian HA = HA
(
t, qA, pA, pα

A
)

we have,

δHA =
∂HA
∂qAi

· δqAi +
∂HA
∂pAi

· δpAi +
∂HA
∂pα

Ai
· δpα

Ai, i = 1, 2, · · · , n. (37)

Besides, taking isochronous variation of Equation (20), we have

δφAa =
∂φAa
∂qAi

· δqAi +
∂φAa
∂pAi

· δpAi +
∂φAa
∂pα

Ai
· δpα

Ai = 0, i = 1, 2, · · · , n, a = 1, 2, · · · , n− R, 0 ≤ R < n. (38)

Introducing the Lagrange multipliers λAa(t), a = 1, 2, · · · , n− R, 0 ≤ R < n, and from
Equations (35)–(38), we have

.
pAi = −Bα

M∗ pα
Ai − ∂HA

∂qAi
+ mκ1−α(t2, t)pα

Ai(t2)−ωκ1−α(t, t1)pα
Ai(t1)− λAa

∂φAa
∂qAi

,
.
qAi =

∂HA
∂pAi

+ λAa
∂φAa
∂pAi

, Aα
MqAi =

∂HA
∂pα

Ai
+ λAa

∂φAa
∂pα

Ai
, i = 1, 2, · · · , n, a = 1, 2, · · · , n− R, 0 ≤ R < n.

(39)

Equation (39) is called the constrained Hamilton equation with the operator Aα
M.

For simplicity, we introduce HAT = HA + λAaφAa, a = 1, 2, · · · , n − R,
0 ≤ R < n, then Equation (39) can be written as

.
pAi = −Bα

M∗ pα
Ai − ∂HAT

∂qAi
+ mκ1−α(t2, t)pα

Ai(t2)−ωκ1−α(t, t1)pα
Ai(t1),

.
qAi =

∂HAT
∂pAi

, Aα
MqAi =

∂HAT
∂pα

Ai
, i = 1, 2, · · · , n, a = 1, 2, · · · , n− R, 0 ≤ R < n.

(40)

Remark 3. Let κα(t, τ) = (t− τ)α−1/Γ(α) , when M = M1 , M = M2 and M = M3,
Equation (39) (or Equation (40)) gives the constrained Hamilton equations in terms of the left
Riemann-Liouville, the right Riemann-Liouville and the Riesz-Riemann-Liouville fractional deriva-
tives, respectively.

4.2. Constrained Hamilton Equation with the Operator Bα
M

From Equations (25) and (26), we have

δHB =
.
qBi · δpBi + δpα

Bi · Bα
MqBi − ∂LB

∂qBi
δqBi, i = 1, 2, · · · , n, (41)
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where
∂LB
∂qBi

=
.
pBi + Aα

M∗ pα
Bi. (42)

From the Hamiltonian HB = HB
(
t, qB, pB, pα

B
)

we have,

δHB =
∂HB
∂qBi

· δqBi +
∂HB
∂pBi

· δpBi +
∂HB
∂pα

Bi
· δpα

Bi, i = 1, 2, · · · , n. (43)

Besides, taking isochronous variation of Equation (34), we have

δφBa =
∂φBa
∂qBi

· δqBi +
∂φBa
∂pBi

· δpBi +
∂φBa
∂pα

Bi
· δpα

Bi = 0, i = 1, 2, · · · , n, a = 1, 2, · · · , n− R, 0 ≤ R < n. (44)

Introducing the Lagrange multipliers λBa(t), a = 1, 2, · · · , n− R, 0 ≤ R < n, and from
Equations (41)–(44), we have

.
pBi = −Aα

M∗ pα
Bi − ∂HB

∂qBi
− λBa

∂φBa
∂qBi

,
.
qBi =

∂HB
∂pBi

+ λBa
∂φBa
∂pBi

,

Bα
MqBi =

∂HB
∂pα

Bi
+ λBa

∂φBa
∂pα

Bi
, i = 1, 2, · · · , n, a = 1, 2, · · · , n− R, 0 ≤ R < n.

(45)

Equation (45) is called the constrained Hamilton equation with the operator Bα
M.

For simplicity, we introduce HBT = HB + λBaφBa, a = 1, 2, · · · , n− R, 0 ≤ R < n, then
Equation (45) can be written as

.
pBi = −Aα

M∗ pα
Bi − ∂HBT

∂qBi
,

.
qBi =

∂HBT
∂pBi

, Bα
MqBi =

∂HBT
∂pα

Bi
,

i = 1, 2, · · · , n, a = 1, 2, · · · , n− R, 0 ≤ R < n.
(46)

Remark 4. Let κα(t, τ) = (t− τ)α−1/Γ(α), when M = M1 , M = M2 and M = M3
, Equation (45) (or Equation (46)) gives the constrained Hamilton equations in terms of the
left Caputo, the right Caputo and the Riesz-Caputo fractional derivatives, respectively.

4.3. Consistency Conditions with Generalized Operators

Let F = F(t, q, p, pα), G = G(t, q, p, pα), we define the Poisson bracket as

{F, G} = ∂F
∂qi

∂G
∂pi

− ∂F
∂pi

∂G
∂qi

, i = 1, 2, · · · , n, (47)

where q = (q1, q2, · · · , qn), p = (p1, p2, · · · , pn), pα =
(

pα
1, pα

2, · · · , pα
n
)
.

Then using the Poisson bracket and Equation (40), we obtain

{φAa, HA}+ λAb{φAa, φAb}+ ∂φAa
∂t + ∂φAa

∂pα
Ai

.
pα

Ai − ∂φAa
∂pAi

[
Bα

M∗ pα
Ai −mκ1−α(t2, t)pα

Ai(t2)

+ωκ1−α(t, t1)pα
Ai(t1)

]
= 0, i = 1, 2, · · · , n, a, b = 1, 2, · · · , n− R, 0 ≤ R < n.

(48)

Equation (48) is called the consistency condition with the operator Aα
M.

Similarly, the consistency condition with the operator Bα
M has the form

{φBa, HB}+ λBb{φBa, φBb}+ ∂φBa
∂t + ∂φBa

∂pα
Bi

.
pα

Bi − ∂φBa
∂pBi

· Aα
M∗ pα

Bi = 0,

i = 1, 2, · · · , n, a, b = 1, 2, · · · , n− R, 0 ≤ R < n.
(49)

If det[{φAa, φAb}] �= 0(resp. det[{φBa, φBb}] �= 0), a, b = 1, 2, · · · , n− R, 0 ≤ R < n,
then all the Lagrange multipliers λAa (resp. λBa), a = 1, 2, · · · , n− R, 0 ≤ R < n, can be
calculated from Equation (48) (resp. Equation (49)).

If det[{φAa, φAb}] = 0 (resp. det[{φBa, φBb}] = 0), then the Lagrange multipliers λAa
(resp. λBa), a = 1, 2, · · · , n − R, 0 ≤ R < n, cannot be calculated completely, and then
the new constraint, which is called the secondary constraint, will be deduced. Therefore,
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the secondary constraint arises from the consistency condition of the primary constraint.
Similarly, if the consistency condition of the secondary constraint still cannot give all the
Lagrange multipliers, then some new secondary constraints will be established. Anyway,
no new secondary constraint will be produced after a finite number of steps for a system
with finite degrees of freedom.

Remark 5. Let κα(t, τ) = (t− τ)α−1/Γ(α), when M = M1, M = M2 and M = M3
, Equations (48) and (49) give the consistency conditions in terms of the left Riemann-Liouville, the
left Caputo, the right Riemann-Liouville, the right Caputo, the Riesz-Riemann-Liouville and the
Riesz-Caputo fractional derivatives, respectively.

5. Noether Symmetry and Conserved Quantity

Noether symmetry is the invariance of the Hamilton action under the infinitesimal
transformations of time and coordinates. We begin with Noether symmetry with the
operator Aα

M.

5.1. Noether Symmetry with the Operator Aα
M

The Hamilton action with the operator Aα
M is

IA =
∫ t2

t1

[
pAi

.
qAi + pα

Ai · Aα
MqAi − HA(t, qA, pA, pα

A)
]
dt, i = 1, 2, · · · , n. (50)

The infinitesimal transformations are

t = t + Δt, qAi
(
t
)
= qAi(t) + ΔqAi, pAi

(
t
)
= pAi(t) + ΔpAi, pα

Ai
(
t
)
= pα

Ai(t) + Δpα
Ai,(

or t = t + Δt ,
¯
qA
(
t
)
= qA(t) + ΔqA,

¯
pA
(
t
)
= pA(t) + ΔpA ,

¯
p

α

A
(
t
)
= pα

A(t) + Δpα
A

)
,

(51)

and the expanded forms are

t = t + θAξA0
(
t, qA, pA, pα

A
)
+ o(θA),

qAi
(
t
)
= qAi(t) + θAξAi

(
t, qA, pA, pα

A
)
+ o(θA),

pAi
(
t
)
= pAi(t) + θAηAi

(
t, qA, pA, pα

A
)
+ o(θA),

pα
Ai
(
t
)
= pα

Ai(t) + θAηα
Ai
(
t, qA, pA, pα

A
)
+ o(θA),

(52)

where θA is a small parameter, ξA0, ξAi, ηAi and ηα
Ai, i = 1, 2, · · · , n, are the infinitesimal

generators of the infinitesimal transformations, o(θA) is the higher order of θA.
Neglecting the higher order of θA, we have

ΔIA = IA − IA =
∫ t2

t1

[
pAi

.
qAi + pα

Ai · Aα
M

qAi − HA

(
t,

¯
qA,

¯
pA,

¯
p

α

A

)]
dt− IA

= θA
∫ t2

t1

[
λAa

∂φAa
∂pAi

ηAi + λAa
∂φAa
∂pα

Ai
ηα

Ai − ∂HA
∂qAi

ξAi +
(

pα
Ai

d
dt Aα

MqAi − ∂HA
∂t

)
ξA0

+pα
Ai A

α
M
(
ξAi − .

qAiξA0
)
+
(

pα
Ai A

α
MqAi − HA

) .
ξ A0 + ωpα

AiqAi(t2)ξA0(t2)
d
dt κ1−α(t2, t)

−mpα
AiqAi(t1)ξA0(t1)

d
dt κ1−α(t, t1) + pAi

.
ξAi

]
dt,

(53)

where ξA0(t1) = ξA0
(
t1, qA(t1), pA(t1), pα

A(t1)
)
, ξA0(t2) = ξA0

(
t2, qA(t2), pA(t2), pα

A(t2)
)

and M =< t1, t, t2, m, ω >.
Noether symmetry requires that ΔIA = 0, that is,

λAa
∂φAa
∂pAi

ηAi + λAa
∂φAa
∂pα

Ai
ηα

Ai − ∂HA
∂qAi

ξAi +
(

pα
Ai

d
dt Aα

MqAi − ∂HA
∂t

)
ξA0 + pAi

.
ξAi

+pα
Ai A

α
M
(
ξAi − .

qAiξA0
)
+
(

pα
Ai A

α
MqAi − HA

) .
ξ A0 + ωpα

AiqAi(t2)ξA0(t2)
d
dt κ1−α(t2, t)

−mpα
AiqAi(t1)ξA0(t1)

d
dt κ1−α(t, t1) = 0.

(54)

Equation (54) is called the Noether identity with the operator Aα
M.
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If we let ΔIA = −∫ t2
t1

d
dt (ΔGA)dt, where ΔGA = θAGA, GA = GA

(
t, qA, pA, pα

A
)

is
called a gauge function with the operator Aα

M, then we obtain

λAa
∂φAa
∂pAi

ηAi + λAa
∂φAa
∂pα

Ai
ηα

Ai − ∂HA
∂qAi

ξAi +
(

pα
Ai

d
dt Aα

MqAi − ∂HA
∂t

)
ξA0 + pAi

.
ξAi

+pα
Ai A

α
M
(
ξAi − .

qAiξA0
)
+
(

pα
Ai A

α
MqAi − HA

) .
ξ A0 + ωpα

AiqAi(t2)ξA0(t2)
d
dt κ1−α(t2, t)

−mpα
AiqAi(t1)ξA0(t1)

d
dt κ1−α(t, t1) +

.
GA = 0.

(55)

Equation (55) is called the Noether quasi-identity with the operator Aα
M.

Noether symmetry leads to a conserved quantity. We first present the definition of the
conserved quantity.

Definition 1. A quantity C is called a conserved quantity if and only if dC/dt = 0 holds.

Therefore, we have

Theorem 1. For the constrained Hamiltonian system with the operator Aα
M (Equation (39)),

if the infinitesimal generators ξA0, ξAi, ηAi and ηα
Ai satisfy Equation (54), then there exists a

conserved quantity

CA = pAiξAi +
(

pα
Ai A

α
MqAi − HA

)
ξA0 +

∫ t
t1

{
pα

Ai A
α
M
(
ξAi − .

qAiξA0
)
+
(
ξAi − .

qAiξA0
)[

Bα
M∗ pα

Ai −mκ1−α(t2, τ)pα
Ai(t2) + ωκ1−α(τ, t1)pα

Ai(t1)
]}

dτ + ωqAi(t2)ξA0(t2)

·∫ t
t1

pα
Ai(τ)

d
dτ κ1−α(t2, τ)dτ −mqAi(t1)ξA0(t1)

∫ t
t1

pα
Ai(τ)

d
dτ κ1−α(τ, t1)dτ = const.

(56)

Proof of Theorem 1. From Equations (20), (39) and (54), we have

dCA/dt =
.
pAiξAi + pAi

.
ξ Ai +

(
pα

Ai A
α
MqAi − HA

) .
ξA0 + pα

Ai A
α
M
(
ξAi − .

qAiξA0
)

+
( .

pα
Ai A

α
MqAi + pα

Ai · d
dt Aα

MqAi − ∂HA
∂t − ∂HA

∂qAi

.
qAi − ∂HA

∂pAi

.
pAi − ∂HA

∂pα
Ai

.
pα

Ai

)
ξA0

+
(
ξAi − .

qAiξA0
)[

Bα
M∗ pα

Ai −mκ1−α(t2, t)pα
Ai(t2) + ωκ1−α(t, t1)pα

Ai(t1)
]

+ωqAi(t2)ξA0(t2)pα
Ai(t)

d
dt κ1−α(t2, t)−mqAi(t1)ξA0(t1)pα

Ai(t)
d
dt κ1−α(t, t1)

= ∂HA
∂qAi

ξAi − λAa
∂φAa
∂pAi

ηAi +
.
pAiξAi + ξA0

( .
pα

Ai · Aα
MqAi − ∂HA

∂qAi

.
qAi − ∂HA

∂pAi

.
pAi − ∂HA

∂pα
Ai

.
pα

Ai

)
+
(
ξAi − .

qAiξA0
)[

Bα
M∗ pα

Ai −mκ1−α(t2, t)pα
Ai(t2) + ωκ1−α(t, t1)pα

Ai(t1)
]− λAa

∂φAa
∂pα

Ai
ηα

Ai

=
.
pAiξA0λAa

∂φAa
∂pAi

− λAa
∂φAa
∂qAi

(
ξAi − .

qAiξA0
)− λAa

∂φAa
∂pAi

ηAi − λAa
∂φAa
∂pα

Ai
ηα

Ai + λAa
∂φAa
∂pα

Ai

.
pα

AiξA0

= −λAa
∂φAa
∂qAi

· δqAi − λAa
∂φAa
∂pAi

· δpAi − λAa
∂φAa
∂pα

Ai
· δpα

Ai = −λAa · δφAa = 0.

The proof is completed. �

Theorem 2. For the constrained Hamiltonian system with the operator Aα
M (Equation (39)), if

there exists a gauge function GA such that the infinitesimal generators ξA0, ξAi, ηAi and ηα
Ai satisfy

Equation (55), then there exists a conserved quantity

CAG = pAiξAi +
(

pα
Ai A

α
MqAi − HA

)
ξA0 +

∫ t
t1

{
pα

Ai A
α
M
(
ξAi − .

qAiξA0
)
+
(
ξAi − .

qAiξA0
)[

Bα
M∗ pα

Ai −mκ1−α(t2, τ)pα
Ai(t2) + ωκ1−α(τ, t1)pα

Ai(t1)
]}

dτ + ωqAi(t2)ξA0(t2)

·∫ t
t1

pα
Ai(τ)

d
dτ κ1−α(t2, τ)dτ −mqAi(t1)ξA0(t1)

∫ t
t1

pα
Ai(τ)

d
dτ κ1−α(τ, t1)dτ + GA = const.

(57)

Proof of Theorem 2. From Equations (20), (39) and (55), we have dCAG/dt = 0. �

Remark 6. Let κα(t, τ) = (t− τ)α−1/Γ(α), when M = M1, M = M2 and M = M3,
Equation (54), Equation (55), Theorem 1 and Theorem 2 give the Noether identities, Noether
quasi-identities and conserved quantities in terms of the left Riemann-Liouville, the right Riemann-
Liouville and the Riesz-Riemann-Liouville fractional derivatives, respectively.
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5.2. Noether Symmetry with the Operator Bα
M

The Hamilton action with the operator Bα
M is

IB =
∫ t2

t1

[
pBi

.
qBi + pα

Bi · Bα
MqBi − HB(t, qB, pB, pα

B)
]
dt, i = 1, 2, · · · , n. (58)

The infinitesimal transformations are

t = t + Δt, qBi
(
t
)
= qBi(t) + ΔqBi, pBi

(
t
)
= pBi(t) + ΔpBi, pα

Bi
(
t
)
= pα

Bi(t) + Δpα
Bi,(

or t = t + Δt ,
¯
qB
(
t
)
= qB(t) + ΔqB,

¯
pB
(
t
)
= pB(t) + ΔpB ,

¯
p

α

B
(
t
)
= pα

B(t) + Δpα
B

)
,

(59)

and the expanded forms are

t = t + θBξB0
(
t, qB, pB, pα

B
)
+ o(θB), qBi

(
t
)
= qBi(t) + θBξBi

(
t, qB, pB, pα

B
)
+ o(θB),

pBi
(
t
)
= pBi(t) + θBηBi

(
t, qB, pB, pα

B
)
+ o(θB),

pα
Bi
(
t
)
= pα

Bi(t) + θBηα
Bi
(
t, qB, pB, pα

B
)
+ o(θB),

(60)

where θB is a small parameter, ξB0, ξBi, ηBi and ηα
Bi are the infinitesimal generators of the

infinitesimal transformations, o(θB) is the higher order of θB.
Neglecting the higher order of θB, we have

ΔIB = IB − IB =
∫ t2

t1

[
pBi

.
qBi + pα

Bi · Bα
M

qBi − HB

(
t,

¯
qB,

¯
pB,

¯
p

α

B

)]
dt− IB

= θB
∫ t2

t1

[
λBa

∂φBa
∂pBi

ηBi + λBa
∂φBa
∂pα

Bi
ηα

Bi − ∂HB
∂qBi

ξBi +
(

pα
Bi

d
dt Bα

MqBi − ∂HB
∂t

)
ξB0

+pα
BiB

α
M
(
ξBi − .

qBiξB0
)
+
(

pα
BiB

α
MqBi − HB

) .
ξB0 + ωpα

Biκ1−α(t2, t)
.
qBi(t2)ξB0(t2)

−mpα
Biκ1−α(t, t1)

.
qBi(t1)ξB0(t1) + pBi

.
ξBi

]
dt,

(61)

where ξB0(t1) = ξB0
(
t1, qB(t1), pB(t1), pα

B(t1)
)
, ξB0(t2) = ξB0

(
t2, qB(t2), pB(t2), pα

B(t2)
)
.

Noether symmetry requires that ΔIB = 0, that is,

λBa
∂φBa
∂pBi

ηBi + λBa
∂φBa
∂pα

Bi
ηα

Bi − ∂HB
∂qBi

ξBi +
(

pα
Bi

d
dt Bα

MqBi − ∂HB
∂t

)
ξB0 + pBi

.
ξBi

+pα
BiB

α
M
(
ξBi − .

qBiξB0
)
+
(

pα
BiB

α
MqBi − HB

) .
ξB0 + ωpα

Biκ1−α(t2, t)
.
qBi(t2)ξB0(t2)

−mpα
Biκ1−α(t, t1)

.
qBi(t1)ξB0(t1) = 0.

(62)

Equation (62) is called the Noether identity with the operator Bα
M.

If we let ΔIB = −∫ t2
t1

d
dt (ΔGB)dt, where ΔGB = θBGB, GB = GB

(
t, qB, pB, pα

B
)

is called
a gauge function with the operator Bα

M, then we obtain

λBa
∂φBa
∂pBi

ηBi + λBa
∂φBa
∂pα

Bi
ηα

Bi − ∂HB
∂qBi

ξBi +
(

pα
Bi

d
dt Bα

MqBi − ∂HB
∂t

)
ξB0 + pBi

.
ξBi

+pα
BiB

α
M
(
ξBi − .

qBiξB0
)
+
(

pα
BiB

α
MqBi − HB

) .
ξB0 + ωpα

Biκ1−α(t2, t)
.
qBi(t2)ξB0(t2)

−mpα
Biκ1−α(t, t1)

.
qBi(t1)ξB0(t1) +

.
GB = 0.

(63)

Equation (63) is called the Noether quasi-identity with the operator Bα
M. Therefore,

we have

Theorem 3 . For the constrained Hamiltonian system with the operator Bα
M (Equation (45)),

if the infinitesimal generators ξB0, ξBi, ηBi and ηα
Bi satisfy Equation (62), then there exists a

conserved quantity

CB = pBiξBi +
(

pα
BiB

α
MqBi − HB

)
ξB0 +

∫ t
t1

[
pα

BiB
α
M
(
ξBi − .

qBiξB0
)
+
(
ξBi − .

qBiξB0
)

Aα
M∗ pα

Bi
]
dτ

+ω
.
qBi(t2)ξB0(t2) ·

∫ t
t1

pα
Bi(τ)κ1−α(t2, τ)dτ −m

.
qBi(t1)ξB0(t1)

∫ t
t1

pα
Bi(τ)κ1−α(τ, t1)dτ = const.

(64)
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Proof of Theorem 3. From Equations (34), (45) and (62), we have dCB/dt = 0. �

Theorem 4. For the constrained Hamiltonian system with the operator Bα
M (Equation (45)), if

there exists a gauge function GB such that the infinitesimal generators ξB0, ξBi, ηBi and ηα
Bi satisfy

Equation (63), then there exists a conserved quantity

CBG = pBiξBi +
∫ t

t1

[
pα

BiB
α
M
(
ξBi − .

qBiξB0
)
+
(
ξBi − .

qBiξB0
)

Aα
M∗ pα

Bi
]
dτ

+ω
.
qBi(t2)ξB0(t2) ·

∫ t
t1

pα
Bi(τ)κ1−α(t2, τ)dτ +

(
pα

BiB
α
MqBi − HB

)
ξB0

−m
.
qBi(t1)ξB0(t1)

∫ t
t1

pα
Bi(τ)κ1−α(τ, t1)dτ + GB = const.

(65)

Proof of Theorem 4. From Equations (34), (45) and (63), we have dCBG/dt = 0. �

Remark 7. Let κα(t, τ) = (t− τ)α−1/Γ(α), when M = M1, M = M2 and M = M3,
Equation (62), Equation (63), Theorem 3 and Theorem 4 give the Noether identities, the Noether
quasi-identities and the conserved quantities in terms of the left Caputo, the right Caputo and the
Riesz-Caputo fractional derivatives, respectively.

Remark 8. When the gauge function GA = 0 (resp. GB = 0), Theorem 2 (resp. Theorem 4) reduces
to Theorem 1 (resp. Theorem 3). Hence, the Noether-quasi symmetry is more general than the
Noether symmetry.

6. Lie Symmetry and Conserved Quantity

Lie symmetry means an invariance of the differential equations under the infinitesimal
transformations of time and coordinates. Lie symmetry can also lead to a conserved
quantity under certain conditions.

6.1. Lie Symmetry with the Operator Aα
M

We rewrite the constrained Hamilton equation with the operator Aα
M (Equation (39)) as

.
pAi = −Bα

M∗ pα
Ai + fAi

(
t, qA, pA, pα

A
)
,

.
qAi = SAi

(
t, qA, pA, pα

A
)
,

Aα
MqAi = hAi

(
t, qA, pA, pα

A
)
, i = 1, 2, · · · , n.

(66)

Then under the condition κ1−α(t, t) = 0, we have

.
qAi − SAi

(
t,

¯
qA,

¯
pA,

¯
p

α

A

)
=

dqAi
dt − SAi

(
t + Δt, qA + ΔqA, pA + ΔpA, pα

A + Δpα
A
)

= dqAi+dΔqAi
dt+dΔt − SAi

(
t + Δt, qA + ΔqA, pA + ΔpA, pα

A + Δpα
A
)

=

(
dqAi

dt +
dΔqAi

dt

)
(1− dΔt

dt )

(1+ dΔt
dt )(1− dΔt

dt )
− SAi

(
t + Δt, qA + ΔqA, pA + ΔpA, pα

A + Δpα
A
)

=
.
qAi +

dΔqAi
dt − .

qAi
dΔt
dt − SAi

(
t, qA, pA, pα

A
)− ∂SAi

∂t · Δt− ∂SAi
∂qAk

· ΔqAk − ∂SAi
∂pAk

· ΔpAk − ∂SAi
∂pα

Ak
· Δpα

Ak

=
.
qAi − SAi

(
t, qA, pA, pα

A
)
+ θA

[ .
ξAi −

.
qAi

.
ξA0 − X(0)

A (SAi)
]
,

(67)

where X(0)
A = ξA0

∂
∂t + ξAk

∂
∂qAk

+ ηAk
∂

∂pAk
+ ηα

Ak
∂

∂pα
Ak

, k = 1, 2, · · · , n.

Aα
MqAi

(
t
)− hAi

(
t,

¯
qA,

¯
pA,

¯
p

α

A

)
= Aα

MqAi
(
t
)− hAi

(
t + Δt, qA + ΔqA, pA + ΔpA, pα

A + Δpα
A
)

= Aα
MqAi + Aα

MδqAi + Δt · d
dt Aα

MqAi +
d
dt [−mκ1−α(t, t1)Δt1qAi(t1) + ωκ1−α(t2, t)Δt2qAi(t2)]

−hAi
(
t, qA, pA, pα

A
)− ∂hAi

∂t Δt− ∂hAi
∂qAk

ΔqAk − ∂hAi
∂pAk

ΔpAk − ∂hAi
∂pα

Ak
Δpα

Ak

= Aα
MqAi − hAi

(
t, qA, pA, pα

A
)
+ θA

{
Aα

M
(
ξAi − .

qAiξA0
)
+ ξA0 · d

dt Aα
MqAi

+ d
dt [−mκ1−α(t, t1)ξA0(t1)qAi(t1) + ωκ1−α(t2, t)ξA0(t2)qAi(t2)]− X(0)

A (hAi)
}

,

(68)
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where

ξA0(t1) = ξA0
(
t1, qA(t1), pA(t1), pα

A(t1)
)
, ξA0(t2) = ξA0

(
t2, qA(t2), pA(t2), pα

A(t2)
)
,

Aα
MqAi

(
t
)
= Aα

MqAi + Δt · d
dt Aα

MqAi +
d
dt [−mκ1−α(t, t1)Δt1qAi(t1) + ωκ1−α(t2, t)Δt2qAi(t2)]

+Aα
MδqAi.

.
pAi + Bα

M∗ pα
Ai
(
t
)− fAi

(
t,

¯
qA,

¯
pA,

¯
p

α

A

)
= dpAi+dΔpAi

dt+dΔt + Bα
M∗ pα

Ai
(
t
)− fAi

(
t,

¯
qA,

¯
pA,

¯
p

α

A

)
=

(
dpAi

dt +
dΔpAi

dt

)
(1− dΔt

dt )

(1+ dΔt
dt )(1− dΔt

dt )
+ Bα

M∗ pα
Ai − fAi

(
t + Δt, qA + ΔqA, pA + ΔpA, pα

A + Δpα
A
)

=
.
pAi + Bα

M∗ pα
Ai − fAi

(
t, qA, pA, pα

A
)
+ θA

[ .
ηAi −

.
pAi

.
ξA0 + Bα

M∗
(

ηα
Ai −

.
pα

AiξA0

)
+ ξA0 · d

dt Bα
M∗ pα

Ai

−ωκ1−α(t, t1)
.
pα

Ai(t1) · ξA0(t1) + mκ1−α(t2, t)
.
pα

Ai(t2) · ξA0(t2)− X(0)
A ( fAi)

]
,

(69)

where

Bα
M∗ pα

Ai = Bα
M∗ pα

Ai + Bα
M∗δpα

Ai + Δt · d
dt

Bα
M∗ pα

Ai −ωκ1−α(t, t1)
.
pα

Ai(t1) · Δt1 + mκ1−α(t2, t)
.
pα

Ai(t2) · Δt2.

Lie symmetry requires that

.
ξAi −

.
qAi

.
ξA0 − X(0)

A (SAi) = 0,
Aα

M
(
ξAi − .

qAiξA0
)
+ d

dt [−mκ1−α(t, t1)ξA0(t1)qAi(t1) + ωκ1−α(t2, t)ξA0(t2)qAi(t2)]

+ξA0 · d
dt Aα

MqAi − X(0)
A (hAi) = 0,

.
ηAi −

.
pAi

.
ξA0 + Bα

M∗
(

ηα
Ai −

.
pα

AiξA0

)
+ ξA0 · d

dt Bα
M∗ pα

Ai −ωκ1−α(t, t1)
.
pα

Ai(t1)

·ξA0(t1) + mκ1−α(t2, t)
.
pα

Ai(t2) · ξA0(t2)− X(0)
A ( fAi) = 0

(70)

Equation (70) is called the determined equation for the constrained Hamiltonian
system with the operator Aα

M (Equation (39)). Lie symmetry also leads to a conserved
quantity under certain conditions. Therefore, we have

Theorem 5. For the constrained Hamiltonian system with the operator Aα
M (Equation (39)), if the

infinitesimal generators ξA0, ξAi, ηAi and ηα
Ai satisfy Equation (54) and the determined equation

(Equation (70)), then there exists a conserved quantity Equation (56).

Proof of Theorem 5. From Equations (20), (39) and (54), we can get the intended result. �

6.2. Lie Symmetry with the Operator Bα
M

We rewrite the constrained Hamilton equation with the operator Bα
M (Equation (45)) as

.
pBi = −Aα

M∗ pα
Bi + fBi

(
t, qB, pB, pα

B
)
,

.
qBi = SBi

(
t, qB, pB, pα

B
)
,

Bα
MqBi = hBi

(
t, qB, pB, pα

B
)
, i = 1, 2, · · · , n

(71)

Then under the condition κ1−α(t, t) = 0, we have

.
qBi − SBi

(
t,

¯
qB,

¯
pB,

¯
p

α

B

)
=

dqBi
dt − SBi

(
t + Δt, qB + ΔqB, pB + ΔpB, pα

B + Δpα
B
)

= dqBi+dΔqBi
dt+dΔt − SBi

(
t + Δt, qB + ΔqB, pB + ΔpB, pα

B + Δpα
B
)

=
.
qBi − SBi

(
t, qB, pB, pα

B
)
+ θB

[ .
ξBi −

.
qBi

.
ξB0 − X(0)

B (SBi)
]
,

(72)
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where

X(0)
B = ξB0

∂
∂t + ξBk

∂
∂qBk

+ ηBk
∂

∂pBk
+ ηα

Bk
∂

∂pα
Bk

, k = 1, 2, · · · , n.

Bα
MqBi

(
t
)− hBi

(
t,

¯
qB,

¯
pB,

¯
p

α

B

)
= Bα

MqBi
(
t
)− hBi

(
t + Δt, qB + ΔqB, pB + ΔpB, pα

B + Δpα
B
)

= Bα
MqBi − hBi

(
t, qB, pB, pα

B
)
+ θB

[
Bα

M
(
ξBi − .

qBiξB0
)
+ ξB0 · d

dt Bα
MqBi

−mκ1−α(t, t1)ξB0(t1)
.
qBi(t1) + ωκ1−α(t2, t)ξB0(t2)

.
qBi(t2)− X(0)

B (hBi)
]
,

(73)

where

ξB0(t1) = ξB0
(
t1, qB(t1), pB(t1), pα

B(t1)
)
,

ξB0(t2) = ξB0
(
t2, qB(t2), pB(t2), pα

B(t2)
)
.

.
pBi + Aα

M∗ pα
Bi
(
t
)− fBi

(
t,

¯
qB,

¯
pB,

¯
p

α

B

)
= dpBi+dΔpBi

dt+dΔt + Aα
M∗ pα

Bi
(
t
)− fBi

(
t,

¯
qB,

¯
pB,

¯
p

α

B

)
=

.
pBi + Aα

M∗ pα
Bi − fBi

(
t, qB, pB, pα

B
)
+ θB

{ .
ηBi −

.
pBi

.
ξB0 + Aα

M∗
(

ηα
Bi −

.
pα

BiξB0

)
+ ξB0 · d

dt Aα
M∗ pα

Bi

+ d
dt
[−ωκ1−α(t, t1)pα

Bi(t1) · ξB0(t1) + mκ1−α(t2, t)pα
Bi(t2) · ξB0(t2)

]− X(0)( fBi)
}

.

(74)

Lie symmetry requires that

.
ξBi −

.
qBi

.
ξB0 − X(0)

B (SBi) = 0,
Bα

M
(
ξBi − .

qBiξB0
)
+ ξB0 · d

dt Bα
MqBi −mκ1−α(t, t1)ξB0(t1)

.
qBi(t1)

+ωκ1−α(t2, t)ξB0(t2)
.
qBi(t2)− X(0)

B (hBi) = 0,
.
ηBi −

.
pBi

.
ξB0 + Aα

M∗
(

ηα
Bi −

.
pα

BiξB0

)
+ ξB0 · d

dt Aα
M∗ pα

Bi − X(0)( fBi)

+ d
dt
[−ωκ1−α(t, t1)pα

Bi(t1) · ξB0(t1) + mκ1−α(t2, t)pα
Bi(t2) · ξB0(t2)

]
= 0.

(75)

Equation (75) is called the determined equation for the constrained Hamiltonian
system with the operator Bα

M (Equation (45)). Lie symmetry also leads to a conserved
quantity under certain conditions. Therefore, we have

Theorem 6. For the constrained Hamiltonian system with the operator Bα
M (Equation (45)), if the

infinitesimal generators ξB0, ξBi, ηBi and ηα
Bi satisfy Equation (62) and the determined equation

(Equation (75), then there exists a conserved quantity Equation (64).

Proof of Theorem 6. From Equations (34), (45) and (62), we can get the intended result. �

7. An Example

Try to find the conserved quantity for the following singular system with the operator
Aα

M, whose Lagrangian is

LA =
.
qA1qA2 − qA1

.
qA2 + (qA1)

2 + (qA2)
2 +

1
2

[
(Aα

MqA1)
2 + (Aα

MqA2)
2
]
. (76)

From Equations (11) and (12), we have

pA1 = ∂LA
∂

.
qA1

= qA2, pA2 = ∂LA
∂

.
qA2

= −qA1, pα
A1 = ∂LA

∂Aα
MqA1

= Aα
MqA1, pα

A2 = ∂LA
∂Aα

MqA2
= Aα

MqA2,

HA = pA1
.
qA1 + pA2

.
qA2 + pα

A1 Aα
MqA1 + pα

A2 Aα
MqA2 − LA = 1

2

[(
Aα

MqA1
)2

+
(

Aα
MqA2

)2
]

−(qA1)
2 − (qA2)

2 = 1
2

[(
pα

A1
)2

+
(

pα
A2
)2
]
− (qA1)

2 − (qA2)
2.

(77)

Therefore, the Hamiltonian and the two primary constraints have the form

HA =
1
2

[
(pα

A1)
2 + (pα

A2)
2
]
− q2

A1 − q2
A2, (78)

φA1 = pA1 − qA2 = 0, φA2 = pA2 + qA1 = 0. (79)
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Then from Equation (48), the two Lagrange multipliers λA1 and λA2 can be calcu-
lated as

λA1 = −qA2 +
1
2
[
Bα

M∗ pα
A2 −mpα

A2(t2)κ1−α(t2, t) + ωpα
A2(t1)κ1−α(t, t1)

]
,

λA2 = qA1 − 1
2
[
Bα

M∗ pα
A1 −mpα

A1(t2)κ1−α(t2, t) + ωpα
A1(t1)κ1−α(t, t1)

]
.

(80)

Therefore, the constrained Hamilton equation with the operator Aα
M can be obtained.

And we can also verify that under the condition d
dt κα(t, τ) = − d

dτ κα(t, τ),

ξA0 = 1, ξA1 = ξA2 = 0, ηA1 = ηA2 = 0, ηα
A1 = ηα

A2 = 0,
GA = 0

(81)

is a solution to the Noether quasi-identity (Equation (55)). Then Theorem 2 gives

CAG = 1
2

[(
pα

A1
)2

+
(

pα
A2
)2
]
+ q2

A1 + q2
A2 −

∫ t
t1

{
pα

A1
d
dt Aα

MqA1 + pα
A2

d
dt Aα

MqA2

+
.
qA1

[
Bα

M∗ pα
A1 −mκ1−α(t2, τ)pα

A1(t2) + ωκ1−α(τ, t1)pα
A1(t1)

]
+

.
qA2

[
Bα

M∗ pα
A2 −mκ1−α(t2, τ)pα

A2(t2) + ωκ1−α(τ, t1)pα
A2(t1)

]}
dτ = const.

(82)

Specially, let κα(t, τ) = (t− τ)α−1/Γ(α), when M = M1 (or M = M2 or M = M3) and
α → 1 , we have CAG = −HA = const.

8. Results and Discussion

Based on the mixed integer order derivative and generalized operators, the singular
Lagrange equations, primary constraints, constrained Hamilton equations, consistency
conditions and conserved quantities were investigated. All are new works. In fact, Lie
symmetry can lead to the Noether type conserved quantity as well as the Hojman conserved
quantity. Here, we only presented the Noether type conserved quantity simply. Next, Lie
symmetry and the Hojman conserved quantity, Mei symmetry and the Mei type conserved
quantity and the relationships among the three symmetry methods will be studied. Singular
systems on time scales is also a hot topic that needs to be investigated further.
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Abstract: In this paper, the Hilfer type generalized proportional nabla fractional differences are
defined. A few important properties in the left case are derived and the properties in the right case
are proved by Q-operator. The discrete Laplace transform in the sense of the left Hilfer generalized
proportional fractional difference is explored. Furthermore, An initial value problem with the new
operator and its generalized solution are considered.
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1. Introduction

Fractional Calculus (FC), which can be traced back to the 17th century, is derived from
integral calculus. A wide variety of concepts for fractional operators in the continuous
setting have been defined in the literature so far, such as Riemann–Liouville, Hadamard,
Caputo, proportional, Hilfer fractional operators, and so on; the reader can refer to [1–4]
and the references therein. Fractional models are of great theoretical significance and
practical value, compared to integer models, in real world problems. Therefore, FC has
been widely used in mathematics, physics, engineering, etc. For more recent developments
on fractional calculus, see the monographs [5–12].

It is generally known that Discrete Fractional Calculus (DFC) is the extension of FC.
The models for DFC play an important role in modeling complex problems of discontinuous
systems, which are far superior to their counterparts in continuous settings. Unlike FC
of the continuous system, whose history is more than hundreds of years old, the idea of
DFC is very recent. The theory of DFC has been investigated extensively since the 20th
century, when Chapman [13] presented the definitions of the fractional delta sequential
differences, in 1911. Similarly to the case of FC, there are many forms of definitions, such as
Riemann–Liouville, Caputo, Hilfer, proportional discrete fractional operators, and so on
(see [14–17]).

In addition to the study of fractional operators in FC or DFC, there have also been
many directions to develop, for instance, fractional inequalities, fractional equations, etc.
In particular, initial value problems with fractional differential or difference operators have
been extensively studied. In 2020, Jonnalagadda and Gopal [18] defined the nabla αth-order
and βth-type Hilfer fractional difference of f

∇α,β
a f (t) = ∇−β(n−α)

a+n ∇n∇−(1−β)(n−α)
a f (t), t ∈ Na+n,

where 0 ≤ β ≤ 1, n− 1 < α ≤ n with n ∈ N+, and ∇−α
a f (t) = ∑t

k=a
(t−k+1)α

Γ(α) f (k) is the
nabla Riemann–Liouville fractional sum defined in [19]. Furthermore, they explored the
solution of the following initial value problem
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{
∇α,β

a y(t) = f (t, y(t)), t ∈ Na+1,

∇−(1−γ)
a y(t)|t=a = y(a),

where 0 < α ≤ 1, 0 ≤ β ≤ 1 and γ = α + β− αβ. Recently, motivated by the generalized
proportional and Hilfer fractional continuous operators, which are defined in [20,21],
respectively, Ahmed et al. [22] introduced the Hilfer generalized proportional fractional
derivative of order α and type β of a function f

Dα,β,ρ
a f (x) = Iβ(n−α),ρ

a

[
Dρ
(
I (1−β)(n−α),ρ

a f
)]

(x),

where n − 1 < α < n, ρ ∈ (0, 1], 0 ≤ β ≤ 1 with n ∈ N1, Dρ f (x) = (1 − ρ) f (x) +
ρ f ′(x), and I is the generalized proportional fractional integral operator defined in [21].
Furthermore, they discussed the existence and uniqueness of the solution for the following
nonlinear differential equation with a nonlocal initial condition{

Dα,β,ρ
a+ y(t) = f (t, y(t)), t ∈ [a, T], T > a ≥ 0,

I1−γ,ρ
a+ y(t)|t=a = ∑m

i=1 cix(τi), γ = α + β− αβ, τi ∈ (a, T),

where 0 < α < 1, ci ∈ R, f : [a, T] × R → R is a continuous function and τi ∈ (a, T)
satisfying a < τi < · · · < τm < T for i = 1, . . . , m. For more studies that investigate
and extend the fractional differential or fractional difference equation, we refer the reader
to [16,17,23,24].

The goal of this paper is to introduce the Hilfer-type generalized proportional frac-
tional difference, which is a discrete counterpart of the fractional derivative defined in [22].
Moreover, we shall study the following initial value problem⎧⎨⎩ a∇α,β,ρ

h y(t) = f (t, y(t)), t ∈ Na+h,h,

a∇−(1−γ),ρ
h y(t)|t=a+h = h1−γ

(ρ−(ρ−1)h)1−γ y(a + h),
(1)

where 0 < α < 1, 0 ≤ β ≤ 1, 0 < ρ ≤ 1, γ = α + β− αβ, a∇α,β,ρ
h (·) is the new difference

operator of order α and type β (see Definition 7), and a∇−(1−γ),ρ
h (·) is the proportional

fractional sum operator of order (1− γ) (see Definition 4). The new operator can reduce to
some known operators. Additionally, our results can provide a powerful tool for studying
the qualitative properties for the solution of (1), such as existence, uniqueness, oscillation,
and so on.

The structure of this article is as follows: In Section 2, we review some basic definitions
and results of discrete calculus. In Section 3, two new fractional difference operators are
introduced, and some corresponding properties for the left case are proved based on the
definitions. We also prove the properties of the right case by Q-operator. Moreover, the h-
Laplace transform for the left Hilfer generalized proportional fractional difference operator
is developed. Additionally, the general solution of an initial value problem (1) with the
new operator is discussed. Finally, the conclusion of the paper is given in Section 4.

2. Preliminaries

In this section, some definitions and results are given for later use in the following sec-
tions. The sets considered in this paper are Na = {a, a + 1, a + 2, . . . },
bN = {. . . b− 2, b− 1, b}, Na,h = {a, a + h, a + 2h, . . . } and b,hN = {. . . b− 2h, b− h, b}
with the step h > 0.

For convenience, we give some of the notations to be used here. The h-backward
operator is given by ρh(t) = t− h for t ∈ Na,h. The nabla and delta h-difference operators
are given as

∇h f (t) =
f (t)− f (t− h)

h
, t ∈ Na+h,h,
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Δh f (t) =
f (t + h)− f (t)

h
, t ∈ b−h,hN.

For h = 1, we get the following nabla and delta difference operators

∇ f (t) = f (t)− f (t− 1), Δ f (t) = f (t + 1)− f (t).

They are also called the backward and the forward difference operator, respectively.
The nabla and delta h-sums are given as

(
∇−1

h f
)
(t) =

∫ t

a
f (s)∇hs =

t
h

∑
k= a

h +1
f (kh)h, t ∈ Na+h,h,

(
Δ−1

h f
)
(t) =

∫ b

t
f (s)Δhs =

b
h−1

∑
k= t

h

f (kh)h, t ∈ b−h,hN,

where ∇h and Δh are derivative operators on the time scales {a, a + h, . . . , t} and
{t, . . . , b− h, b}, respectively.

For arbitrary t, α ∈ R, the generalized rising and falling h-factorial functions are
defined by

tα
h = hα Γ

( t
h + α

)
Γ
( t

h
) ,

t
h

,
t
h
+ α /∈ {· · · ,−2,−1, 0},

t(α)h = hα Γ
( t

h + 1
)

Γ
( t

h + 1− α
) ,

t
h
+ 1,

t
h
+ 1− α /∈ {· · · ,−2,−1, 0},

where Γ(·) is the Gamma function given as Γ(x) =
∫ ∞

0 ξx−1e−ξdξ. When h = 1, we obtain

the rising and falling factorial function: tα = Γ(t+α)
Γ(t) , t(α) = Γ(t+1)

Γ(t−α+1) . It is clear that

∇htα
h = α tα−1

h .

For ρ ∈ (0, 1] \ h
1−h , we introduce the h-proportional differences of order ρ defined

in [16]

(∇ρ
h f )(t) = (1− ρ) f (t) + ρ(∇h f )(t), t ∈ Na+h,h,

(�Δρ
h f )(t) = (1− ρ) f (t)− ρ(Δh f )(t), t ∈ b−h,hN,

and

(∇n,ρ
h f )(t) =

(∇ρ
h ∇

ρ
h · · · ∇

ρ
h f )︸ ︷︷ ︸(t)

n times
, (�Δn,ρ

h f )(t) =
(�Δρ

h �Δρ
h · · · �Δρ

h f )︸ ︷︷ ︸(t)
n times

.

When h = 1, we denote (∇ρ
1 f )(t) = f (t)− ρ f (t− 1) and (�Δρ

1 f )(t) = f (t)− ρ f (t+ 1).
Next, we recall some definitions and properties of discrete fractional operators as follows.

Definition 1 ([25]). For α > 0, the nabla left and right h-Riemann–Liouville fractional sums of f
are given by

(
a∇−α

h f
)
(t) =

1
Γ(α)

∫ t

a
(t− ρh(s))α−1

h f (s)∇hs, t ∈ Na+h,h, (2)

(h∇−α
b f )(t) =

1
Γ(α)

∫ b

t
(s− ρh(t))α−1

h f (s)Δhs, t ∈ b−h,hN. (3)
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Definition 2 ([25]). For α > 0, the nabla left and right h-Riemann–Liouville fractional differences
of f are given by

(a∇α
h f )(t) = ∇n

h

(
a∇−(n−α)

h f
)
(t), t ∈ Na+h,h, (4)

(h∇α
b f )(t) = (−1)nΔn

h

(
h∇−(n−α)

b f
)
(t), t ∈ b−h,hN, (5)

where n− 1 < α < n, n := [α] + 1, and [α] is the greatest integer that is less than or equal to α.

Definition 3 ([26]). For α > 0, the nabla left and right h-Caputo fractional differences are
defined by

(C
a∇α

h f )(t) = ah(α)
∇−(n−α)

h (∇n
h f )(t), t ∈ Na+nh,h, (6)

(C
h∇α

b f )(t) = (−1)n
h∇−(n−α)

bh(α)
(Δn

h f )(t), t ∈ b−nh,hN, (7)

where n = [α] + 1, and ah(α) = a + (n− 1)h, bh(α) = b− (n− 1)h.

Definition 4 ([16]). For α ∈ C, Re(α) > 0, the left and right generalized proportional fractional
sums are defined by

(a∇−α,ρ
h f )(t) =

1
ραΓ(α)

∫ t

a
hêp(t− τ + αh, 0)(t− ρh(τ))

α−1
h f (τ)∇hτ

=
h

ραΓ(α)

t
h

∑
k= a

h +1
hêp(t− kh + αh, 0)(t− ρh(kh))α−1

h f (kh), t ∈ Na+h,h,
(8)

(h∇−α,ρ
b f )(t) =

1
ραΓ(α)

∫ b

t
hêp(τ − t + αh, 0)(τ − ρh(t))α−1

h f (τ)Δhτ

=
h

ραΓ(α)

b
h−1

∑
k= t

h

hêp(kh− t + αh, 0)(kh− ρh(t))α−1
h f (kh), t ∈ b−h,hN,

(9)

where the proportionality index ρ ∈ (0, 1], and the exponential function is given as

hêp(t, a) =
(

1
1− ph

) t−a
h

=

(
ρ

ρ− (ρ− 1)h

) t−a
h

, for p =
ρ− 1

ρ
.

Some properties of the exponential function that will be important in the development of this
article are described in the following remark.

Remark 1 ([16]). For t ∈ Na,h, α > 0, β > 0 and 0 < ρ ≤ 1, the following identities hold,

(i) hêp(t, a) = hêp(t− a, 0) = hêp(0, a− t).
(ii) ∇ρ

h
(
c · hêp(t, a)

)
= 0, for c is a constant.

(iii) ∇ρ
h(g(t) · hêp(t, 0)) = ρ(∇hg)(t) · hêp(t− h, 0).

(iv) a∇−α,ρ
h

(
hêp(t, 0)(t− a)β−1

h

)
= Γ(β)

Γ(β+α)ρα hêp(t + αh, 0)(t− a)α+β−1
h .

Definition 5 ([16]). For ρ ∈ (0, 1] and α ∈ C, Re(α) > 0, the left and right generalized
proportional fractional differences are defined by

(a∇α,ρ
h f )(t) = ∇n,ρ

h

(
a∇−(n−α),ρ

h f
)
(t), t ∈ Na+h,h, (10)

(h∇α,ρ
b f )(t) = �Δn,ρ

h

(
h∇−(n−α),ρ

b f
)
(t), t ∈ b−h,hN, (11)
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where n = [Re(α)] + 1.

Remark 2 ([16]). Clearly, lim
α→0

(a∇α,ρ
h f )(t) = f (t), lim

α→1
(a∇α,ρ

h f )(t) = (∇ρ
h f )(t).

Definition 6 ([16]). For ρ ∈ (0, 1] and α ∈ C, Re(α) > 0, the left and right Caputo generalized
proportional fractional differences are defined by(

C
a∇α,ρ

h f
)
(t) = ah(α)

∇−(n−α),ρ
h (∇n,ρ

h f )(t), (12)(
C
h∇α,ρ

b f
)
(t) = h∇−(n−α),ρ

bh(α)
(�Δn,ρ

h f )(t). (13)

where n = [Re(α)] + 1.

Theorem 1 (Composition Rule [16]). Assume α > 0, n = [α] + 1 and β > 0. Then for any
0 < ρ ≤ 1, we have

(i) a∇α,ρ
h

(
a∇−α,ρ

h f
)
(t) = f (t).

(ii) a∇−α,ρ
h

(
∇ρ

h f
)
(t) = ∇ρ

h

(
a∇−α,ρ

h f
)
(t)− (t−a)α−1

h hêp(t,a)
ρα−1Γ(α)

(
ρ

ρ−(ρ−1)h

)α−1
f (a).

(iii) a∇−α,ρ
h (a∇−β,ρ

h f )(t) = a∇−β,ρ
h (a∇−α,ρ

h f )(t) = (a∇−(α+β),ρ
h f )(t).

(iv)
(

ah(α)
∇−α,ρ

h ah(α)
∇α,ρ

h f
)
(t) = f (t)− hêp(t− (n− 1)h, a)

·∑n
j=1

(
ρ

ρ−(ρ−1)h

)α−1 (t−ah(α))
α−j
h

ρα−jΓ(α+1−j)

(
ah(α)

∇−(j−α),ρ
h f

)
(a + (n− 1)h).

3. Main Results

In this section, we define the left and right generalized proportional fractional differ-
ence operators in the Hilfer sense and discuss some of their properties. In addition, we
demonstrate a general solution of problem (1).

3.1. The Hilfer Generalized Proportional Fractional Difference and Some Related Operators

(1) First, like the nabla Hilfer-type fractional difference that is defined by the composition
of the nabla Riemann–Liouville fractional sum and nabla integral difference ([18]), the
Hilfer generalized proportional fractional difference operators are introduced as follows,
based on the generalized proportional fractional sum and h-proportional difference.

Definition 7. Let n− 1 < α < n with n ∈ N1, ρ ∈ (0, 1] and 0 ≤ β ≤ 1. Then the left and
right Hilfer generalized proportional fractional difference of order α and type β of a function f are
defined by (

a∇α,β,ρ
h f

)
(t) = a∇−β(n−α),ρ

h · ∇ρ
h · a∇−(n−α)(1−β),ρ

h f (t), t ∈ Na+h,h, (14)(
h∇α,β,ρ

b f
)
(t) = h∇−β(n−α),ρ

b · �Δρ
h · h∇−(n−α)(1−β),ρ

b f (t), t ∈ b−h,hN, (15)

where a∇−β(n−α),ρ
h (·), h∇−β(n−α),ρ

b (·) are generalized proportional fractional sum operators de-
fined in (8) and (9), respectively.

In particular, when n = 1, Definition 7 is equivalent with(
a∇α,β,ρ

h f
)
(t) = a∇−β(1−α),ρ

h · ∇ρ
h · a∇−(1−α)(1−β),ρ

h f (t), (16)(
h∇α,β,ρ

b f
)
(t) = h∇−β(1−α),ρ

b · �Δρ
h · h∇−(1−α)(1−β),ρ

b f (t). (17)
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When n = 1 and h = 1, Definition 7 is equivalent with(
a∇α,β,ρ

1 f
)
(t) = a∇−β(1−α),ρ

1 · ∇ρ
1 · a∇−(1−α)(1−β),ρ

1 f (t), (18)(
1∇α,β,ρ

b f
)
(t) = 1∇−β(1−α),ρ

b · �Δρ
1 · 1∇−(1−α)(1−β),ρ

b f (t). (19)

Remark 3. It is worth noting that:

(i) For the special value of β, (14) coincides with the generalized Riemann–Liouville and Caputo
type proportional fractional difference, respectively (see Definitions 5 and 6 with n = 1)⎧⎨⎩

(
a∇α,β,ρ

h f
)
(t) =∇ρ

h · a∇−(1−α),ρ
h f (t) =

(
a∇α,ρ

h f
)
(t), β = 0,

a∇−(1−α),ρ
h · ∇ρ

h f (t) =
(

C
a∇α,ρ

h f
)
(t), β = 1.

In addition, when β = 0, ρ = 1, we recover the h-Riemann–Liouville fractional difference
(see Definition 2), and when β = 1, ρ = 1, we get the h-Caputo fractional difference (see
Definition 3)⎧⎨⎩

(
a∇α,β,ρ

h f
)
(t) =∇ρ

h · a∇−(1−α),ρ
h f (t) =

(
a∇α

h f
)
(t), β = 0, ρ = 1,

a∇−(1−α),ρ
h · ∇ρ

h f (t) =
(C

a∇α
h f
)
(t), β = 1, ρ = 1.

The corresponding results for the right case h∇α,β,ρ
b are similar.

(ii) Clearly,

lim
α→0

(
a∇α,β,ρ

h f
)
(t) = f (t), lim

α→1

(
a∇α,β,ρ

h f
)
(t) =

(
∇ρ

h f
)
(t),

lim
α→0

(
h∇α,β,ρ

b f
)
(t) = f (t), lim

α→1

(
h∇α,β,ρ

b f
)
(t) =

(
�Δρ

h f
)
(t).

Here are some properties for the left Hilfer generalized proportional fractional difference operator.

Theorem 2 (Composition Rule). Assume 0 < α < 1, 0 ≤ β ≤ 1, ρ ∈ (0, 1] and f is defined on
Na+h,h. Let γ = α + β− αβ. Then we obtain

(i)
(

a∇α,β,ρ
h f

)
(t) = a∇−β(1−α),ρ

h

(
a∇γ,ρ

h f
)
(t).

(ii) a∇−α,ρ
h

(
a∇α,β,ρ

h f
)
(t) = a∇−γ,ρ

h

(
a∇γ,ρ

h f
)
(t).

(iii) a∇α,β,ρ
h

(
a∇−α,ρ

h f
)
(t) = a∇−β(1−α),ρ

h

(
a∇β(1−α),ρ

h f
)
(t).

(iv) a∇α,β,ρ
h

(
a∇−α,ρ

h f
)
(t) = f (t) − hêp(t, a)

(
1

ρ−(ρ−1)h

)β−αβ−1 (t−a)β−αβ−1
h

Γ(β−αβ)(
a∇−(1−β+αβ),ρ

h f
)
(a).

Proof. According to (16), we have(
a∇α,β,ρ

h f
)
(t) = a∇−β(1−α),ρ

h · ∇ρ
h · a∇−(1−α)(1−β),ρ

h f (t)

= a∇−β(1−α),ρ
h

(
a∇γ,ρ

h f
)
(t).

The proof of (i) is completed.
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Using (iii) of Theorem 1 and Definition 5, we have

a∇−α,ρ
h

(
a∇α,β,ρ

h f
)
(t) = a∇−α,ρ

h

(
a∇−β(1−α),ρ

h · ∇ρ
h · a∇−(1−α)(1−β),ρ

h

)
f (t)

= a∇−α−β+αβ,ρ
h · ∇ρ

h

(
a∇−(1−α)(1−β),ρ

h f
)
(t)

= a∇−γ,ρ
h · ∇ρ

h

(
a∇−1+γ,ρ

h f
)
(t)

= a∇−γ,ρ
h

(
a∇γ,ρ

h f
)
(t).

The proof of (ii) is completed.
We use Theorem 1 (iii) and Definition 5 to prove (iii). Consider

a∇α,β,ρ
h

(
a∇−α,ρ

h f
)
(t) = a∇−β(1−α),ρ

h · ∇ρ
h · a∇−(1−β)(1−α),ρ

h

(
a∇−α,ρ

h f
)
(t)

= a∇−β(1−α),ρ
h · ∇ρ

h

(
a∇−[1−β(1−α)],ρ

h f
)
(t)

= a∇−β(1−α),ρ
h

(
a∇β(1−α),ρ

h f
)
(t).

The proof of (iii) is completed.
Consider the left-hand side of (iv). Using (iii) and Theorem 1 (iv) with n = 1, we have

a∇α,β,ρ
h

(
a∇−α,ρ

h f
)
(t)

= a∇−β(1−α),ρ
h

(
a∇β(1−α),ρ

h f
)
(t)

= f (t)− hêp(t, a)
(

ρ

ρ− (ρ− 1)h

)β−αβ−1 (t− a)β−αβ−1
h

ρβ−αβ−1Γ(β− αβ)

(
a∇−(1−β+αβ),ρ

h f
)
(a)

= f (t)− hêp(t, a)
(

1
ρ− (ρ− 1)h

)β−αβ−1 (t− a)β−αβ−1
h

Γ(β− αβ)

(
a∇−(1−β+αβ),ρ

h f
)
(a).

The proof of (iv) is completed.

(2) Now, we will consider the Q-operator, which is used to demonstrate the results corre-
sponding to Theorem 2 (i)–(iii) for the right case.

The Q-operator is defined as follows: Suppose a ≡ b mod 1 and f (t) is defined on
Na ∩ bN, then

(Q f )(t) = f (a + b− t),

which is used to connect the left and right fractional discrete operators.

Lemma 1 ([16]). Assume n− 1 < α < n with n ∈ N1, a ≡ b mod h and function f is defined
on Na+h,h ∩ b−h,hN. Then we have

(i) Q(∇ρ
h f )(t) = �Δρ

h(Q f )(t).
(ii) Q(a∇−α,ρ

h f )(t) = h∇−α,ρ
b (Q f )(t).

(iii) Q(a∇α,ρ
h f )(t) = h∇α,ρ

b (Q f )(t).

Theorem 3. Let n− 1 < α < n with n ∈ N1, 0 ≤ β ≤ 1, ρ ∈ (0, 1] and a ≡ b mod h. Suppose
f is defined on Na+h,h ∩ b−h,hN. Then,

Q(a∇α,β,ρ
h f )(t) = h∇α,β,ρ

b (Q f )(t). (20)
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Proof. With the help of Lemma 1, we arrive at

Q(a∇α,β,ρ
h f )(t) = Q(a∇−β(n−α),ρ

h · ∇ρ
h · a∇−(n−α)(1−β),ρ

h f )(t)

= h∇−β(n−α),ρ
b Q(∇ρ

h · a∇−(n−α)(1−β),ρ
h f )(t)

=
(

h∇−β(n−α),ρ
b · �Δρ

h

)
Q(a∇−(n−α)(1−β),ρ

h f )(t)

=
(

h∇−β(n−α),ρ
b · �Δρ

h · h∇−(n−α)(1−β),ρ
b

)
(Q f )(t) = h∇α,β,ρ

b (Q f )(t).

The proof is completed.

Theorem 4. Assume 0 < α < 1, 0 ≤ β ≤ 1, ρ ∈ (0, 1] and a ≡ b mod h. Let f be defined on
Na+h,h ∩ b−h,hN and γ = α + β− αβ. Then we obtain

(i)
(

h∇α,β,ρ
b f

)
(t) = h∇−β(1−α),ρ

b

(
h∇γ,ρ

b f
)
(t).

(ii) h∇α,β,ρ
b

(
h∇−α,ρ

b f
)
(t) = h∇−β(1−α),ρ

b

(
h∇β(1−α),ρ

b f
)
(t).

(iii) h∇−α,ρ
b

(
h∇α,β,ρ

b f
)
(t) = h∇−γ,ρ

b

(
h∇γ,ρ

b f
)
(t).

Proof. Let t ∈ Na+h,h ∩ b−h,h. Then a + b− t ∈ Na+h,h ∩ b−h,h. If we apply Q-operator to
equations of Theorem 2 (i)–(iii), then we can get the following identities

h∇α,β,ρ
b (Q f )(t) = h∇−β(1−α),ρ

b · h∇γ,ρ
b (Q f )(t),

h∇α,β,ρ
b · h∇−α,ρ

b (Q f )(t) = h∇−β(1−α),ρ
b · h∇β(1−α),ρ

b (Q f )(t),

h∇−α,ρ
b · h∇α,β,ρ

b (Q f )(t) = h∇−γ,ρ
b · h∇γ,ρ

b (Q f )(t),

which are equal to the desired equations. Thus we complete the proof.

(3) We review two types of the discrete Laplace transform to obtain the h-Laplace transform
for a∇α,β,ρ

h .

Definition 8 ([19]). Assume f : Na → R and s ∈ C \ {1}, then the Laplace transform of f is
defined by

F(s) = Na{ f (t)}(s) =
∞

∑
t=1

(1− s)t−1 f (t + a) =
∞

∑
t=a+1

(1− s)t−a−1 f (t). (21)

Definition 9 ([16]). Assume f : Na,h → R, then the h-Laplace transform of f is defined by

F(s) = Na,h{ f (t)}(s) = h
∞

∑
t= a

h +1
(1− hs)t− a

h−1 f (ht). (22)

Note that (22) is consistent with (21) when h = 1, and when a = 0, (22) is reduced to

N0,h{ f (t)}(s) = h
∞

∑
t=1

(1− hs)t−1 f (ht).

Lemma 2 ([16]). Let ρ ∈ (0, 1], α ∈ C, Re(α) > 0, and n = [Re(α)] + 1. Then the h-discrete
Laplace transforms for fractional proportional difference and sum are given by

Na,h

{(
a∇α,ρ

h f
)
(t)
}
(s) =

(
ρ

ρ− (ρ− 1)h

)n−α−1 Na,h{ f (t)}(s)
(ρs + 1− ρ)−α

,
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and

Na,h

{(
a∇−α,ρ

h f
)
(t)
}
(s) =

(
ρ

ρ− (ρ− 1)h

)α−1Na,h{ f (t)}(s)
(ρs + 1− ρ)α

.

After carefully checking, it is worth noting that there is a typing mistake in [16], Remark

3.2:
(

ρ
ρ−(ρ−1)h

)h(α−1)
, which should be

(
ρ

ρ−(ρ−1)h

)α−1
. By calculating, we find that the same

problem occurs in [16], Lemma 3.1, Theorems 4.1 and 4.3. We have revised it in Theorem 1 (ii) and
Lemma 2.

Theorem 5 (The h-Laplace transform for a∇α,β,ρ
h ). Assume 0 < α < 1, 0 ≤ β ≤ 1, ρ ∈ (0, 1],

and let f : Na+h,h → R. Then, we have the h-Laplace transform for the Hilfer generalized
proportional fractional difference operator given as

Na,h

{(
a∇α,β,ρ

h f
)
(t)
}
(s) =

(
ρ

ρ− (ρ− 1)h

)−α−1
(ρs + 1− ρ)αNa,h{ f (t)}(s). (23)

Proof. Set γ = α + β− αβ, then 0 < γ < 1. Using Lemma 2, we obtain

Na,h

{(
a∇α,β,ρ

h f
)
(t)
}
(s) =Na,h

{
a∇−β(1−α),ρ

h

(
a∇γ,ρ

h f
)
(t)
}
(s)

=

(
ρ

ρ− (ρ− 1)h

)β(1−α)−1Na,h

{(
a∇γ,ρ

h f
)
(t)
}
(s)

(ρs + 1− ρ)β(1−α)

=

(
ρ

ρ− (ρ− 1)h

)β(1−α)−1−γ

· (ρs + 1− ρ)γ−β(1−α)Na,h{ f (t)}(s)

=

(
ρ

ρ− (ρ− 1)h

)−α−1
(ρs + 1− ρ)αNa,h{ f (t)}(s).

Thus, we complete the proof.

3.2. The Initial Value Problem for the New Fractional Difference

Here, we give a general solution of an initial value problem for the new fractional
difference.

According to the generalized proportional fractional sum given in Definition 4, we
have the following identity

a∇−(1−γ),ρ
h y(t)|t=a+h =

h1−γ

(ρ− (ρ− 1)h)1−γ
y(a + h).

Hence, consider the following initial value problem for a nonlinear fractional differ-
ence equation,⎧⎪⎨⎪⎩

a∇α,β,ρ
h y(t) = f (t, y(t)), t ∈ Na+2h,h, (24)

a∇−(1−γ),ρ
h y(t)|t=a+h =

h1−γ

(ρ− (ρ− 1)h)1−γ
y(a + h) � m, (25)

where 0 < α < 1, 0 ≤ β ≤ 1, 0 < ρ ≤ 1, γ = α + β− αβ, and m is a constant.

Theorem 6. Let f : Na+h,h → R be given and α ∈ (0, 1), β ∈ [0, 1], ρ ∈ (0, 1], γ = α + β− αβ.
Then the initial value problem (24) and (25) has a general solution

y(t) = a+h∇−γ,ρ
h · a∇β(1−α),ρ

h f (t, y(t)) +
(t− a− h)γ−1

h
ργ−1Γ(γ) hêp(t, a + h)η(h, ρ, γ)m

+
h2−γ(γ− 1)(t− a)γ−2

h
Γ(γ) hêp(t, a + h)y(a + h),

(26)
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where η(h, ρ, γ) =
(

ρ
ρ−(ρ−1)h

)γ−1
.

Proof. Applying the operator a∇β(1−α),ρ
h to the both sides of (24), we have for t ∈ Na+2h,h,

a∇β(1−α),ρ
h · a∇α,β,ρ

h y(t) = a∇β(1−α),ρ
h f (t, y(t)). (27)

Let F(t, y(t)) = a∇β(1−α)ρ
h f (t, y(t)). Then using (16), we get

a∇β(1−α),ρ
h · a∇−β(1−α),ρ

h · ∇ρ
h · a∇−(1−α)(1−β),ρ

h y(t) = F(t, y(t)). (28)

Besides, with the help of Theorem 1 (i), we have

∇ρ
h · a∇−(1−γ),ρ

h y(t) = F(t, y(t)). (29)

where 0 < 1− γ < 1.

From the definition of the generalized proportional fraction sum given as (8), we get

(
a∇−(1−γ),ρ

h y
)
(t) =

h
ρ1−γΓ(1− γ)

t
h

∑
k= a

h +1
hêp(t− kh + (1− γ)h, 0)(t− ρh(kh))−γ

h y(kh)

=
h

ρ1−γΓ(1− γ)

t
h

∑
k= a+h

h +1
hêp(t− kh + (1− γ)h, 0)(t− ρh(kh))−γ

h y(kh)

+
h · (t− ρh(a + h))−γ

h
ρ1−γΓ(1− γ) hêp(t− a− h + (1− γ)h, 0)y(a + h)

=
(

a+h∇−(1−γ),ρ
h y

)
(t)

+
h · (t− a)−γ

h
ρ1−γΓ(1− γ) hêp(t− a− h + (1− γ)h, 0)y(a + h),

(30)

where the properties for hêp(·, ·) are in Remark 1. Then, applying both sides of (29) by the
operator a+h∇−γ,ρ

h , we obtain

a+h∇−γ,ρ
h · ∇ρ

h

⎧⎨⎩a+h∇−(1−γ),ρ
h y(t) +

h · (t− a)−γ
h

ρ1−γΓ(1− γ) hêp(t− a− h + (1− γ)h, 0)y(a + h)

⎫⎬⎭
=G(t, y(t)),

(31)

with G(t, y(t)) = a+h∇−γ,ρ
h F(t, y(t)). That is

a+h∇−γ,ρ
h · ∇ρ

h · a+h∇−(1−γ),ρ
h y(t)

+ a+h∇−γ,ρ
h · ∇ρ

h

{
h · (t− a)−γ

h
ρ1−γΓ(1− γ) hêp(t− a− h + (1− γ)h, 0)y(a + h)

}
(32)

= G(t, y(t)).

For the convenience of calculations, we rewrite the above equation as

I + J = G(t, y(t)),
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where

I = a+h∇−γ,ρ
h · ∇ρ

h · a+h∇−(1−γ),ρ
h y(t),

J = a+h∇−γ,ρ
h · ∇ρ

h

{
h · (t− a)−γ

h
ρ1−γΓ(1− γ) hêp(t− a− h + (1− γ)h, 0)y(a + h)

}
.

In the following, we come to deal with the above two terms one by one.
First, we consider I. It follows from (30) and the fact (h)−γ

h = h−γΓ(1− γ) that(
a+h∇−(1−γ),ρ

h y
)
(t)|t=a+h

=

(
a∇−(1−γ),ρ

h y(t)− h · (t− a)−γ
h

ρ1−γΓ(1− γ) hêp(t− a− h + (1− γ)h, 0)y(a + h)

)
t=a+h

= m− h1−γ

ρ1−γ hêp((1− γ)h, 0)y(a + h).

(33)

In addition, from lim
α→0

(a∇α,ρ
h f )(t) = f (t) (see Remark 2) and Definition 5, we have

∇ρ
h a+h∇−1,ρ

h y(t) = lim
α→1−

∇ρ
h a+h∇−α,ρ

h y(t) = lim
α→1−

a+h∇1−α,ρ
h y(t) = y(t).

Therefore, with the help of Theorem 1 (ii)–(iii), we get

I = a+h∇−γ,ρ
h · ∇ρ

h

(
a+h∇−(1−γ),ρ

h y
)
(t)

= ∇ρ
h · a+h∇−γ,ρ

h

(
a+h∇−(1−γ),ρ

h y
)
(t)

− (t−a−h)γ−1
h

ργ−1Γ(γ) hêp(t, a + h)
(

ρ
ρ−(ρ−1)h

)γ−1{(
a+h∇−(1−γ),ρ

h y
)
(t)|t=a+h

}
= ∇ρ

h · a+h∇−1,ρ
h y(t)− (t−a−h)γ−1

h
ργ−1Γ(γ) hêp(t− a− h, 0)η(h, ρ, γ)

·
(

m− h1−γ

ρ1−γ hêp((1− γ)h, 0)y(a + h)
)

= y(t)− (t−a−h)γ−1
h

ργ−1Γ(γ) hêp(t− a− h, 0)η(h, ρ, γ)
(

m− h1−γ

ρ1−γ hêp((1− γ)h, 0)y(a + h)
)

.

(34)

Using the fact that

hêp(t− a− h, 0) · hêp((1− γ)h, 0) = hêp(t− a− γh, 0),

where we use the definition of the exponential function, then

I = y(t)− (t− a− h)γ−1
h

ργ−1Γ(γ) hêp(t− a− h, 0)η(h, ρ, γ)m

+
h1−γ(t− a− h)γ−1

h
Γ(γ) hêp(t− a− γh, 0)η(h, ρ, γ)y(a + h).

(35)

Define the last term of the above equation as

Ψ(t, h, ρ, γ) =
h1−γ(t− a− h)γ−1

h
Γ(γ) hêp(t− a− γh, 0)η(h, ρ, γ)y(a + h),

hence, (35) becomes

I = y(t)− (t− a− h)γ−1
h

ργ−1Γ(γ) hêp(t− a− h, 0)η(h, ρ, γ)m + Ψ(t, h, ρ, γ). (36)

122



Mathematics 2022, 10, 2654

Now, consider the second term J in (32). Define

Φ(t, h, ρ, γ) = ∇ρ
h · a+h∇−γ,ρ

h

{
h · (t− a)−γ

h
ρ1−γΓ(1− γ) hêp(t− a− h + (1− γ)h, 0)y(a + h)

}
.

Then, using Theorem 1 (ii) and Remark 1, we get

J = a+h∇−γ,ρ
h · ∇ρ

h

⎧⎨⎩ h · (t− a)−γ
h

ρ1−γΓ(1− γ) hêp(t− a− h + (1− γ)h, 0)y(a + h)

⎫⎬⎭
= ∇ρ

h · a+h∇−γ,ρ
h

⎧⎨⎩ h · (t− a)−γ
h

ρ1−γΓ(1− γ) hêp(t− a− h + (1− γ)h, 0)y(a + h)

⎫⎬⎭
− (t− a− h)γ−1

h
ργ−1Γ(γ) hêp(t− a− h, 0)η(h, ρ, γ)

⎛⎝ h · (h)−γ
h

ρ1−γΓ(1− γ) hêp((1− γ)h, 0)y(a + h)

⎞⎠ (37)

= Φ(t, h, ρ, γ)− h1−γ(t− a− h)γ−1
h

Γ(γ) hêp(t− a− γh, 0)η(h, ρ, γ)y(a + h)

= Φ(t, h, ρ, γ)−Ψ(t, h, ρ, γ).

Similar to (30), we have

a+h∇−γ,ρ
h

{
h · (t− a)−γ

h
ρ1−γΓ(1− γ) hêp(t− a− h + (1− γ)h, 0)y(a + h)

}

= a∇−γ,ρ
h

{
h · (t− a)−γ

h
ρ1−γΓ(1− γ) hêp(t− a− h + (1− γ)h, 0)y(a + h)

}

− h · (t− a)γ−1
h

ργΓ(γ) hêp(t− a− h + γh, 0)

(
h · (h)−γ

h
ρ1−γΓ(1− γ) hêp((1− γ)h, 0)y(a + h)

)

= a∇−γ,ρ
h

{
h · (t− a)−γ

h
ρ1−γΓ(1− γ) hêp(t− a− h + (1− γ)h, 0)y(a + h)

}

− h2−γ

ρΓ(γ)
(t− a)γ−1

h hêp(t− a, 0)y(a + h).

(38)

Using Remark 1 and ∇h(t− a)γ−1
h = (γ− 1)(t− a)γ−2

h N, it follows that

Φ(t, h, ρ, γ) = ∇ρ
h · a∇−γ,ρ

h

⎧⎨⎩ h · (t− a)−γ
h

ρ1−γΓ(1− γ) hêp(t− a− h + (1− γ)h, 0)y(a + h)

⎫⎬⎭
−∇ρ

h

(
h2−γ

ρΓ(γ)
(t− a)γ−1

h hêp(t− a, 0)y(a + h)
)

=
h

ρ1−γΓ(1− γ) hêp(−a− h + (1− γ)h, 0)y(a + h)

· ∇ρ
h · a∇−γ,ρ

h

{
hêp(t, 0)(t− a)−γ

h

}
(39)

− h2−γ

ρΓ(γ) hêp(−a, 0)y(a + h) · ∇ρ
h

{
hêp(t, 0)(t− a)γ−1

h

}
=

h
ρ

y(a + h) · ∇ρ
h hêp(t− a, 0)− h2−γ

Γ(γ) hêp(t− a− h, 0)y(a + h) · ∇h(t− a)γ−1
h

= − h2−γ(γ− 1)(t− a)γ−2
h

Γ(γ) hêp(t− a− h, 0)y(a + h).
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Thus,

J = − h2−γ(γ− 1)(t− a)γ−2
h

Γ(γ) hêp(t− a− h, 0)y(a + h)−Ψ(t, h, ρ, γ). (40)

Finally, substituting (36) and (40) back in (32) and arranging, we can obtain the general
solution representation

y(t) = G(t, y(t)) +
(t− a− h)γ−1

h
ργ−1Γ(γ) hêp(t− a− h, 0)η(h, ρ, γ)m−Ψ(t, h, ρ, γ)

+
h2−γ(γ− 1)(t− a)γ−2

h
Γ(γ) hêp(t− a− h, 0)y(a + h) + Ψ(t, h, ρ, γ).

(41)

That is,

y(t) = a+h∇−γ,ρ
h · a∇β(1−α),ρ

h f (t, y(t)) +
(t− a− h)γ−1

h
ργ−1Γ(γ) hêp(t, a + h)η(h, ρ, γ)m

+
h2−γ(γ− 1)(t− a)γ−2

h
Γ(γ) hêp(t, a + h)y(a + h).

(42)

The proof of Theorem 6 is complete.

Example 1. For a given function g(t) : Na+2h,h → R and a constant λ �= 0, we give two examples
to illustrate Theorem 6.

(i) Consider the initial value problem{
a∇α,β,ρ

h y(t) = g(t), t ∈ Na+2h,h,

a∇−(1−γ),ρ
h y(t)|t=a+h � m.

(43)

Then we deduce from Theorem 6 that the general solution of the above initial value problem is
given by

y(t) = a+h∇−γ,ρ
h · a∇β(1−α),ρ

h g(t) +
(t− a− h)γ−1

h
ργ−1Γ(γ) hêp(t, a + h)η(h, ρ, γ)m

+
h2−γ(γ− 1)(t− a)γ−2

h
Γ(γ) hêp(t, a + h)y(a + h).

(44)

(ii) Consider the initial value problem{
a∇α,β,ρ

h y(t) = λy(t), t ∈ Na+2h,h,

a∇−(1−γ),ρ
h y(t)|t=a+h � m.

(45)

From Theorem 6, the general solution is given by

y(t) =λ a+h∇−γ,ρ
h · a∇β(1−α),ρ

h y(t) +
(t− a− h)γ−1

h
ργ−1Γ(γ) hêp(t, a + h)η(h, ρ, γ)m

+
h2−γ(γ− 1)(t− a)γ−2

h
Γ(γ) hêp(t, a + h)y(a + h).

(46)

With a similar proof to Theorem 6, we obtain the following corollary.
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Corollary 1. Consider the initial value problem⎧⎨⎩ a−h∇α,β,ρ
h y(t) = f (t, y(t)), t ∈ Na+h,h,

a−h∇−(1−γ),ρ
h y(t)|t=a =

h1−γ

(ρ−(ρ−1)h)1−γ y(a) � c,
(47)

where 0 < α < 1, 0 ≤ β ≤ 1, 0 < ρ ≤ 1, γ = α + β− αβ and c is a constant. We can get the
general solution representation

y(t) = a∇−γ,ρ
h · a−h∇β(1−α),ρ

h f (t, y(t)) +
(t− a)γ−1

h
ργ−1Γ(γ) hêp(t, a)η(h, ρ, γ)c

+
h2−γ(γ− 1)(t− a + h)γ−2

h
Γ(γ) hêp(t, a)y(a).

(48)

where η(h, ρ, γ) =
(

ρ
ρ−(ρ−1)h

)γ−1
.

Remark 4. Corollary 1 is more general compared with corresponding results of the initial value
problem with existing difference operators.

(i) Let β = 0 in the initial problem (47). Then the initial value problem{
a−h∇α,ρ

h y(t) = f (t, y(t)), t ∈ Na+h,h,

a−h∇−(1−α),ρ
h y(t)|t=a =

h1−α

(ρ−(ρ−1)h)1−α y(a) � c,
(49)

has the following general solution representation

y(t) = a∇−α,ρ
h f (t, y(t)) +

(t− a)α−1
h

ρα−1Γ(α) hêp(t, a)η(h, ρ, α)c

+
h2−α(α− 1)(t− a + h)α−2

h
Γ(α) hêp(t, a)y(a).

(50)

where 0 < α < 1, η(h, ρ, α) =
(

ρ
ρ−(ρ−1)h

)α−1
and c is a constant.

(ii) Let β = 0, ρ = 1, and h = 1 in (48). Then we obtain

y(t) =
(t− a + 1)α−1

Γ(α)
y(a) + a∇−α f (t, y(t)), (51)

which is the general solution representation of the following initial value problem [24]{
a−1∇αy(t) = f (t, y(t)), t ∈ Na+1,

a−1∇−(1−α)y(t)|t=a = y(a),
(52)

where 0 < α < 1. a−1∇−(1−α)(·) and a−1∇α(·) are defined by Definition 1 and 2 for h = 1,
respectively.

Remark 5. Here we only discuss the case of the left Hilfer generalized proportional fractional
operator. The corresponding results for the right one can be obtained similarly.

4. Conclusions

In this paper, we proposed the generalized proportional fractional difference in the
sense of Hilfer, which is considered to be the analogy of the Hilfer generalized proportional
fractional derivative. Also, our definition can reduce to some known operators, such as
h-Riemann–Liouville, h-Caputo and generalized proportional fractional differences that
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are defined in [16,25,26] respectively. We derived some important properties of the left
Hilfer proportional fractional difference. We also employed the Q-operator that enables us
to prove properties for the right Hilfer proportional fractional difference based on the left
one and considered the h-Laplace transform. Finally, following the newly left difference,
we obtained a general solution of an initial value problem for 0 < α < 1. In the future,
high-order case for α ≥ 1 can be considered. Furthermore, the general solution is one of
most important ways to studying the qualitative properties of the solutions of difference
equations, such as existence, uniqueness, oscillation, and so on.
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Abstract: Motivated by the recent interest in generalized fractional order operators and their applica-
tions, we consider some classes of integro-differential initial value problems based on derivatives of
the Riemann–Liouville and Caputo form, but with non-singular kernels. We show that, in general, the
solutions to these initial value problems possess discontinuities at the origin. We also show how these
initial value problems can be re-formulated to provide solutions that are continuous at the origin
but this imposes further constraints on the system. Consideration of the intrinsic discontinuities, or
constraints, in these initial value problems is important if they are to be employed in mathematical
modelling applications.
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1. Introduction

In recent years there has been a great deal of interest in generalisations of derivatives
defined through operators, involving convolutions, of the form

0Dt f (t) =
d
dt

∫ t

0
K(t− τ) f (τ) dτ (1)

and
∗
0Dt f (t) =

∫ t

0
K(t− τ) f ′(τ) dτ, (2)

where K(t) is a suitably defined kernel, see for example [1] and references therein. If the
kernel is given by

K(t) =
t−α

Γ(1− α)
, 0 < α < 1 (3)

then Equation (1) defines the Riemann–Liouville fractional derivative of order α and
Equation (2) defines the Caputo fractional derivative of order α (see for example [2]). Here,
f ′(t) = d f (t)

dt , although we may also consider this to be the distributional derivative of a
generalized function below. The kernel in Equation (3) is singular at t = 0, viz τ = t in
Equations (1) and (2), so that the integral in these definitions is an improper integral in this
case, but it is bounded whenever f (t) is bounded on [0, t], since K(t) is locally integrable
on (0, t). Some researchers define

K(t) =
t−α

Γ(1− α)
H(t), (4)

Fractal Fract. 2022, 6, 436. https://doi.org/10.3390/fractalfract6080436 https://www.mdpi.com/journal/fractalfract128
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where

H(t) =
{

1 if t > 0,
0 otherwise,

(5)

and some also take the lower limit in the integral as 0+ [3].
There has been a growing interest in defining new operators along the lines of

Equations (1) and (2) with K(t) non-singular in [0, t]. For example, if

K(t) =
1

1− α
exp

(
− αt

1− α

)
, 0 < α < 1, (6)

then Equation (2) defines a Caputo–Fabrizio (CF) operator of order α [4,5]. If

K(t) =
1

1− α
Eα

(
− αtα

1− α

)
, 0 < α < 1, (7)

where

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
(8)

is the Mittag–Leffler function, then Equation (2) defines an Atangana–Baleanu–Caputo
(ABC) operator of order α [6]; and Equation (1) defines an Atangana–Baleanu–Riemann
(ABR) operator of order α [6]. These operators with non-singular kernels have found
widespread use in modelling applications, typically with integer order derivatives replaced
with the fractional order operators. The main argument for their introduction has been
that it provides a memory affect without possible problems from a singularity at the origin.
However, the memory aspect and the fractional calculus aspect of these operators, with
these non-singular kernels, has been challenged [7–9].

In modelling applications, there is interest in initial value problems (IVPs) of the form

0Dt f (t) =
d
dt

∫ t

0
K(t− τ) f (τ) dτ = G(t), f (0) = f0, (9)

and
∗
0Dt f (t) =

∫ t

0
K(t− τ) f ′(τ) dτ = G(t), f (0) = f0, (10)

where K(t) and G(t) are right-continuous for t ≥ 0 and differentiable for t > 0. Here, K(t)
and G(t) are expected to be known functions and we solve for f (t), which is specified at
t = 0. We refer to IVPs of the form Equation (10) as generalized Caputo type IVPs and
those of the form Equation (9) as generalized Riemann–Liouville type IVPs.

In recent work, we considered IVPs of the form of Equation (10) with ∗
0Dt given by

the CF operator, or the ABC operator, and we showed that, in general, these problems
have solutions that are discontinuous at t = 0 [10]. Here, we have extended this work to
show that the problems formulated in Equations (9) and (10), with non-singular kernels, in
general, have solutions that are discontinuous at the origin. This includes the case with
0Dt given by the ABR operator. As a corollary, we showed that it is possible to re-formulate
these IVPs with non-singular kernels to provide solutions that are continuous for t ≥ 0,
but this introduces additional constraints on the system. Consideration of these results is
important for modelling applications that would seek to employ these IVPs.

We note that the IVPs in Equations (9) and (10) can be formulated as Volterra integral
equations of the first kind and there has been a series of papers written on the existence of
generalized solutions for these problems in cases where continuous solutions cannot be
obtained (see, for example, [11,12]). The results that we have provided are related to this
work. Note especially that the Volterra integral equation∫ t

0
K(t− τ)F(τ) dτ = G(t) (11)
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must have G(0) = 0 if K(t) and F(t) are classical functions. However, solutions for F(t) are
possible with G(0) �= 0 if F(t) is a generalized function and if the integral is also interpreted
in a generalized sense. It is important to include such generalized function solutions in
modelling applications with Equation (11) because, while F(t) is defined by Equation (11),
G(t) is not, so that G(0) may be non-zero. For a useful reference on generalized functions
and distributional derivatives see, for example, [13], and references there-in.

The remainder of this paper is organized as follows. In Section 2, we consider general-
ized Caputo type IVPs with non-singular kernels, and K(0) �= 0, and we prove that these
problems have solutions that are discontinuous at the origin if G(0) �= 0 but continuous
at the origin if G(0) = 0. In Section 3, we consider generalized Riemann–Liouville type
IVPs, with non-singular kernels, and K(0) �= 0, and we prove that these problems have so-
lutions that are discontinuous at the origin if G(0) �= f0K(0) but continuous at the origin if
G(0) = f0K(0). In this section, we also consider a different generalized Riemann–Liouville
type IVP, with non-singular kernels, and K(0), K′(0) �= 0, where the initial value f (0) is
replaced by the right-hand limit, limt→0+ f (t) = f0. The solutions to this problem are
discontinuous at the origin if G(0) �= K(0) f0 but continuous at the origin if G(0) = K(0) f0.
However, the form of the solution is very different to that which would be obtained by
simply replacing f (0) with f0 in the generalized Riemann–Liouville type IVP considered
earlier. In Section 4, we provide examples that illustrate each of the theorems. We conclude
with a Discussion and Summary in Section 5.

Many of our results are framed in terms of Laplace transforms with the following
notation: ŷ(s) or L[y(t)](s) is used to denote the Laplace transform of a function y(t) with
respect to t, with Laplace transform variable s; L−1[ŷ(s)](t) is used to denote the inverse
Laplace transform of a function ŷ(s). The Laplace transform

ŷ(s) =
∫ ∞

0
e−sty(t) dt (12)

exists if y(t) is bounded of exponential order, i.e., there exists real valued parameters
α, M, T > 0 such that

e−αt|y(t)| ≤ M ∀t > T,

and is piecewise continuous with, at most, a finite number of discontinuities. The in-
verse Laplace transform F(t) = L−1[F̂(s)](t) exists if lims→∞ F̂(s) = 0, and lims→∞ sF̂(s)
is finite.

2. Caputo Type IVPs with Non-Singular Kernels

We begin with a consideration of Caputo type IVPs.

Definition 1. Suppose that; K(t) and G(t) are real-valued and bounded functions, continuous for
t ≥ 0 and differentiable for t > 0; and f (t) is a real-valued differentiable function, or generalized
function that is differentiable in a distributional sense. Then a Caputo type IVP (C-IVP) is defined
by the integro-differential equation

∗
0Dt f (t) =

∫ t

0
K(t− τ) f ′(τ) dτ = G(t) (13)

and the initial value f (0) = f0 with f0 ∈ R.

Before considering the construction of the solution to the general IVP, it is enlightening
to show the special case where the solution is right-continuous. This lemma will be useful
to the proof of the later theorem.
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Lemma 1. The solution of a C-IVP (Definition 1), with K(0) �= 0 and G(0) = 0, is given by

f (t) = L−1

[
Ĝ(s)
sK̂(s)

]
(t) + f0 (14)

and is right-continuous at t = 0.

Proof. We first note that the Laplace transforms K̂(s) and Ĝ(s) both exist and

lim
s→∞

sK̂(s) = lim
t→0

K(t) = K(0) (15)

and
lim
s→∞

sĜ(s) = lim
t→0

G(t) = G(0). (16)

We now take the Laplace transform of Equation (13) to write

K̂(s)(s f̂ (s)− f0) = Ĝ(s). (17)

Thus,

f̂ (s) =
Ĝ(s)
sK̂(s)

+
f0

s
(18)

and

lim
s→∞

s f̂ (s) = lim
s→∞

sĜ(s)
sK̂(s)

+ f0 (19)

= lim
t→0

G(0)
K(0)

+ f0 (20)

= f0. (21)

It now also follows that
lim
s→∞

f̂ (s) = 0. (22)

The results in Equations (21) and (22) ensure that f (t) = L−1
[

f̂ (s)
]
(t) exists and is

right-continuous at t = 0.

Considering the more general case where G(0) �= 0 we can find solutions of the IVP
that are not right-continuous at the origin.

Theorem 1. The solution of a C-IVP (Definition 1), with K(0) �= 0, is given by

f (t) = L−1

[
Ĝ(s)
sK̂(s)

]
(t) + f0 +

G(0)
K(0)

(H(t)− 1), (23)

where H(t) is the Heaviside function defined in Equation (5).

Proof. The proof follows by assuming the solution exists in the form of an ansatz, which is
shown to be consistent via direct substitution into the IVP. We begin by taking an ansatz
solution of the form

f (t) = fc(t) + aH(t), (24)

where fc(t) is right-continuous at t = 0 and differentiable for t > 0 and a is a real-valued
constant. We then note

fc(0) = f0 (25)

and
f ′(t) = f ′c(t) + aδ(t), (26)
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where δ(t) is the Dirac delta generalized function. Substitution of the ansatz solution into
Equation (13) now yields ∫ t

0
K(t− τ) f ′c(τ) dτ = G(t)− aK(t). (27)

To find an explicit expression for the constant a we consider t = 0 where the integral
over classical functions vanishes. Thus, we require

a =
G(0)
K(0)

. (28)

Substituting this expression for a into Equation (27) gives∫ t

0
K(t− τ) f ′c(τ) dτ = L(t), (29)

where

L(t) = G(t)− G(0)
K(0)

K(t). (30)

It is noticed that Equation (29) is of the same form as Equation (13) with G(t) replaced
by L(t) and L(0) = 0. Hence, we can utilize Lemma 1 to find

fc(t) = L−1

[
Ĝ(s)
sK̂(s)

]
(t) + f0 − G(0)

K(0)
. (31)

Thus, the final result, given by Equation (23), is then obtained by substituting
Equations (28) and (31) into Equation (24).

As an interesting exercise, an alternate proof of this theorem is given in Appendix A.
It is interesting to note that the solution to the IVP with two different initial conditions will
only differ by a constant. Another interesting special case occurs when the right-hand side
of the equation and the kernel are equal.

Corollary 1. The solution of a C-IVP (Definition 1) for the special case in which G(t) = K(t) is
given by

f (t) = f0 + H(t), (32)

where H(t) is the Heaviside function defined in Equation (5).

We should note that it is always possible to obtain continuous solutions by the addition
of a function on the right-hand side of the IVP that is equal to −G(0) when t = 0. As an
example, we could consider the case below.

Corollary 2. Suppose that; K(t) and G(t) are real-valued and bounded functions, continuous for
t ≥ 0 and differentiable for t > 0; K(0) �= 0; and f (0) = f0. Then

∗
0Dt f (t) =

∫ t

0
K(t− τ) f ′(τ) dτ = G(t)− G(0)

K(0)
K(t) (33)

has a continuous and bounded solution for t ≥ 0 given by

f (t) = L−1

[
Ĝ(s)
sK̂(s)

]
(t) + f0 − G(0)

K(0)
. (34)

Examples of Caputo type IVPs and their solutions are given in Section 4. In general,
we see that the non-singular kernel necessitates that the solution be discontinuous at t = 0.
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This needs to be kept in mind for any application of these type of IVPs in modelling
situations and otherwise.

3. Riemann–Liouville Type IVPs with Non-Singular Kernels

Next, we will consider the solutions to Riemann–Liouville type IVPs. We again begin
with a definition.

Definition 2. Suppose that; K(t) and G(t) are real-valued and bounded functions, continuous for
t ≥ 0 and differentiable for t > 0; and f (t) is a real-valued differentiable function, or generalized
function that is differentiable in a distributional sense. Then a Riemann–Liouville type IVP of the
first kind (RLI-IVP) is defined by the integro-differential equation

0Dt f (t) =
d
dt

∫ t

0
K(t− τ) f (τ) dτ = G(t) (35)

and the initial condition f (0) = f0 with f0 ∈ R.

It is helpful to first consider the special case where the IVP gives right-continuous
solutions at the origin. Note that the condition here differs from the required condition on
the right-hand side used in Lemma 1.

Lemma 2. The solution of a RLI-IVP (Definition 2), with K(0) �= 0 and G(0) = K(0) f0, is
given by

f (t) = L−1

[
Ĝ(s)
sK̂(s)

]
(t) (36)

and is right-continuous at t = 0.

Proof. We first take the Laplace transform of Equation (35) to write

sK̂(s) f̂ (s) = Ĝ(s). (37)

Thus,

f̂ (s) =
Ĝ(s)
sK̂(s)

(38)

and

lim
s→∞

s f̂ (s) = lim
s→∞

sĜ(s)
sK̂(s)

(39)

= lim
t→0

G(0)
K(0)

(40)

=
K(0) f0

K(0)
(41)

= f0. (42)

It now also follows that
lim
s→∞

f̂ (s) = 0. (43)

The results in Equations (42) and (43) ensure that f (t) = L−1
[

f̂ (s)
]
(t) exists and is

right-continuous at t = 0.

The general case again will display a discontinuity at the origin. It is interesting to
note that as f0 is varied the solution only shifts at t = 0.
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Theorem 2. The solution of a RLI-IVP (Definition 2), with K(0) �= 0, is given by

f (t) = L−1

[
Ĝ(s)
sK̂(s)

]
(t) +

(
G(0)
K(0)

− f0

)
(H(t)− 1), (44)

where H(t) is the Heaviside function defined in Equation (5).

Proof. The proof relies on establishing a relationship between Equations (13) and (35) and
then utilizing Theorem 1. By interchanging the order of functions in the convolution and
applying Leibniz rule for differentiation under the integral sign, we can write

d
dt

∫ t

0
K(t− τ) f (τ) dτ =

d
dt

∫ t

0
K(τ) f (t− τ) dτ (45)

= K(t) f0 +
∫ t

0
K(τ) f ′(t− τ) dτ (46)

= K(t) f0 +
∫ t

0
K(t− τ) f ′(τ) dτ. (47)

We now use the result of Equation (47) in Equation (35) and rearrange terms to re-write
this as ∫ t

0
K(t− τ) f ′(τ) dτ = M(t), (48)

where M(t) = G(t) − K(t) f0. It is noticed that this equation is of the same form as
Equation (13) but with G(t) replaced by M(t). The final result, given by Equation (44), is
then obtained by applying Theorem 1 to Equation (48).

As an interesting exercise, an alternate proof of this theorem is given in Appendix A.
The initial condition of the IVP only changes the solution at t = 0. For t > 0, with given
functions K and G, the solutions are identical for all values of f0. Similarly to the Caputo
type case the special case where the kernel and right-hand side of the IVP are equal gives
an interesting solution.

Corollary 3. The solution of a RLI-IVP (Definition 2) for the special case in which G(t) = K(t) is
given by

f (t) = f0 + (1− f0)H(t), (49)

where H(t) is the Heaviside function defined in Equation (5).

It is always possible to obtain continuous solutions to the IVP by the addition of a
function on the right-hand side of the IVP that is equal to f0K(0)− G(0) when t = 0. An
example is given below.

Corollary 4. Suppose that; K(t) and G(t) are real-valued and bounded functions, continuous at
t = 0 and differentiable for t > 0; K(0) �= 0; and f (0) = f0. Then

0Dt f (t) =
d
dt

∫ t

0
K(t− τ) f (τ) dτ = G(t)−

(
G(0)
K(0)

− f0

)
K(t) (50)

has a continuous and bounded solution for t ≥ 0 given by

f (t) = L−1

[
Ĝ(s)
sK̂(s)

]
(t) + f0 − G(0)

K(0)
. (51)

In IVPs with continuous solutions, giving the initial condition as either f (0) or
limt→0 f (t) will be equivalent. This is not the case for either the Caputo or Riemann–
Liouville type IVPs in general. Most interestingly, we find that the solution to Riemann–
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Liouville IVPs will propagate as a functional form of t. To find the solutions with this
alternate form of initial condition, we will first define an alternate form to the IVP.

Definition 3. Suppose that; K(t) and G(t) are real-valued and bounded functions, continuous for
t ≥ 0 and differentiable for t > 0; and f (t) is a real-valued differentiable function, or generalized
function that is differentiable in a distributional sense. Then a Riemann–Liouville type IVP of the
second kind (RLII-IVP) is defined by the integro-differential equation

0Dt f (t) =
d
dt

∫ t

0
K(t− τ) f (τ) dτ = G(t) (52)

and the limiting condition limt→0+ f (t) = f0 with f0 ∈ R.

Similar to the previous theorems, we see that the general case will display a disconti-
nuity at the origin.

Theorem 3. The solution of a RLII-IVP (Definition 3), with K(0), K′(0) �= 0, is given by

f (t) = L−1

[
Ĝ(s)
sK̂(s)

−
(

1− K(0)
sK̂(s)

)(
G(0)− f0K(0)

K′(0)

)]
(t) +

G(0)− f0K(0)
K′(0) δ(t), (53)

where δ(t) is the Dirac delta generalized function.

Proof. The proof follows in a similar manner to that for Theorem 1. We begin by taking an
ansatz solution of the form

f (t) = fc(t) + bδ(t), (54)

where fc(t) is right-continuous at t = 0 and differentiable for t > 0 and b is a real-valued
constant. We then note limt→0+ f (t) = fc(0), or equivalently, fc(0) = f0. Substitution of
the ansatz solution into Equation (52) gives

d
dt

∫ t

0
K(t− τ) fc(τ) dτ = G(t)− bK′(t). (55)

To find an explicit expression for the constant b we consider the limit t → 0 and
employ the initial value theorem to find that the integral over classical functions gives

lim
t→0

d
dt

∫ t

0
K(t− τ) fc(τ) dτ = lim

s→∞

(
sK̂(s) · s f̂c(s)

)
= K(0) f0. (56)

Thus, we require

b =
G(0)− f0K(0)

K′(0) . (57)

Substituting this expression for b into Equation (55) yields

d
dt

∫ t

0
K(t− τ) fc(τ) dτ = N(t), (58)

where

N(t) = G(t)−
(

G(0)− f0K(0)
K′(0)

)
K′(t). (59)

It is noticed that Equation (58) is of the same form as Equation (35) with G(t) replaced
by N(t) and N(0) = f0K(0). Since fc(t) is is right-continuous at t = 0, we know that the
initial and limiting condition are equal. Hence, we can utilize Lemma 2 to find

fc(t) = L−1

[
Ĝ(s)
sK̂(s)

−
(

1− K(0)
sK̂(s)

)(
G(0)− f0K(0)

K′(0)

)]
(t). (60)
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Thus, the final result, given by Equation (53), is then obtained by substituting
Equations (57) and (60) into Equation (54).

As an interesting exercise, an alternate proof of this theorem is given in Appendix A.
Again we can modify the IVP to ensure that solutions are continuous by the addition of a
function on the right-hand side that is equal to f0K(0)− G(0) when t = 0. An example of
this is given below.

Corollary 5. Suppose that; K(t) and G(t) are real-valued and bounded functions, continuous for
t ≥ 0 and differentiable for t > 0; K(0), K′(0) �= 0; and limt→0+ f (t) = f0. Then

0Dt f (t) =
d
dt

∫ t

0
K(t− τ) f (τ) dτ = G(t)−

(
G(0)− f0K(0)

K′(0)

)
K′(t). (61)

has a continuous and bounded solution for t ≥ 0 given by

f (t) = L−1

[
Ĝ(s)
sK̂(s)

−
(

1− K(0)
sK̂(s)

)(
G(0)− f0K(0)

K′(0)

)]
(t). (62)

4. Examples

In this section we present some examples of solutions to generalized Caputo and
Riemann–Liouville type IVPs with non-singular kernels. In general, the solutions to
RLI-IVPs and RLII-IVPs are equivalent for the special case in which the solution is right-
continuous at t = 0. This can be seen from the initial condition, since limt→0+ f (t) = f (0)
by the right-continuity of f . The solution to each example can be easily verified via direct
substitution into the respective IVP.

4.1. C-IVP with K(t) = 1− t2

Consider the C-IVP with∫ t

0

(
1− (t− τ)2

)
f ′(τ) dτ = cos(t) exp(−t) and f (0) = f0 (63)

with f0 ∈ R. The solution of this IVP is given by

f (t) = f0 − 1 +
1
2

(
cosh

(√
2t
)
+ exp(t)(cos(t) + sin(t))

)
+ H(t). (64)

Notice that the solution has a discontinuity at t = 0.

4.2. C-IVP with K(t) = 1 + t exp(−t)

Consider the C-IVP∫ t

0
(1 + (t− τ) exp(τ − t)) f ′(τ) dτ = sin(t) and f (0) = f0, (65)

with f0 ∈ R. The solution of this IVP is given by

f (t) = f0 +
2
3

sin(t) +
2
√

5
15

exp
(−3t

2

)
sinh

(√
5t

2

)
. (66)

This solution is continuous for all t ∈ R, which is expected as G(t) = sin(t) vanishes
at t = 0.
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4.3. RLI-IVP with K(t) = cos(t) + sin(t)

Consider the RLI-IVP with

d
dt

∫ t

0
(cos(t− τ) + sin(t− τ)) f (τ) dτ = g and f (0) = f0 (67)

with g, f0 ∈ R. The solution of this IVP is given by

f (t) = f0 + (t− 2 + 2 exp(−t))g + (g− f0)H(t). (68)

Notice that the solution has a discontinuity at t = 0 unless g = f0.

4.4. RLI-IVP with K(t) = 1 + t exp(−t)

Consider the RLI-IVP with

d
dt

∫ t

0
(1 + (t− τ) exp(τ − t)) f (τ) dτ = sin(t) and f (0) = f0 (69)

with f0 ∈ R. The solution of this IVP is given by

f (t) = f0 +
2
3

sin(t) +
2
√

5
15

exp
(−3t

2

)
sinh

(√
5t

2

)
− f0H(t). (70)

This solution has a discontinuity at t = 0 unless f0 = 0. When t > 0, we see
that Equation (70) is independent of the initial value f0 and the difference between
Equations (66) and (70) is equal to the precise value of f0. This is illustrated in Figure 1,
where there is a vertical shift of f0 = 1 for the curve representing Equation (66) from the
curve representing Equation (70). For the special case in which f0 = 0, then Equation (66)
is equivalent to Equation (70). This is true in general, where Equation (23) is equivalent to
Equation (44) when f0 = 0.

0 5 10 15 20
-1.0
-0.5
0.0

0.5

1.0

1.5

2.0

t

f(t)

Figure 1. The black and red curves represent the IVP solutions given by Equations (66) and (70)
respectively with f0 = 1. The open circle on each curve indicates that both solutions are valid for
t > 0.

4.5. RLII-IVP with K(t) = exp
(

β
β−1 t

)
Consider the RLII-IVP

d
dt

∫ t

0
exp

(
β

β− 1
(t− τ)

)
f (τ) dτ = g and lim

t→0+
f (t) = f0 (71)
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with g, f0 ∈ R and β > 1. The solution of this IVP is given by

f (t) = f0 − βgt
β− 1

+
(g− f0)(β− 1)

β
δ(t). (72)

Notice that we have limt→0+ f (t) = f0 but due to the Dirac delta f (0) �= f0 unless
f0 = g.

4.6. RLII-IVP with K(t) = cos(t) + sin(t)

Consider the RLII-IVP with

d
dt

∫ t

0
(cos(t− τ) + sin(t− τ)) f (τ) dτ = g and lim

t→0+
f (t) = f0 (73)

with g, f0 ∈ R. The solution of this IVP is given by

f (t) = gt + (2 exp(−t)− 1) f0 + (g− f0)δ(t). (74)

In contrast to Equation (68), we see that Equation (74) is dependent on the initial value
f0. Consequently, varying f0 will affect the form of Equation (74). This is illustrated in
Figure 2, where the curves representing Equation (74) vary according to the specific value
of f0 and the curve representing Equation (68) remains unchanged. For the special case in
which g = f0, Equation (68) is equivalent to Equation (74).

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-4
-2
0

2

4

6

8

10

t

f(t)

Figure 2. The black and red curves represent the IVP solutions given by Equations (68) and (74)
respectively for varying values of f0 with g = 2. The open circle on each curve indicates that both
solutions are valid for t > 0.

5. Summary and Discussion

Here we have considered IVPs for integro-differential equations of the form
Dt f (t) = G(t) where the operator Dt is either similar to the Riemann–Liouville derivative,
or similar to the Caputo derivative, but with the singular kernel in those operators replaced
by a non-singular kernel K(t), and K(0) �= 0. We have not attempted to motivate this
replacement by modelling considerations; rather, we have sought to understand what the
implications of such replacements would be in modelling applications. Our motivation
in this pursuit has been guided by the plethora of integro-differential operators that have
been introduced in recent years. In modelling applications, it would be expected that G(t)
and K(t) are prescribed functions, and f (t) is unknown except at the origin. We find that
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the IVPs for these integro-differential equations with non-singular kernels, in general, have
solutions that have intrinsic discontinuities at the origin. We also show that it is possible
to re-formulate these IVPs so that solutions are guaranteed to be continuous at the origin
but this comes at the cost of effectively constraining the right-hand side of the equations so
that they are no longer just dependent on the prescribed function G(t). These results are
problematic for modelling applications which would seek to employ Riemann–Liouville
type, or Caputo type, differential operators but with the singular kernel replaced by a
non-singular kernel.

Author Contributions: Conceptualization, C.N.A., S.-J.M.B., B.I.H. and B.A.J.; formal analysis,
C.N.A., S.-J.M.B., B.I.H. and B.A.J.; writing—original draft preparation, C.N.A., S.-J.M.B., B.I.H.
and B.A.J.; writing—review and editing, C.N.A., S.-J.M.B., B.I.H. and B.A.J. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by Australian Research Council grant number DP200100345.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Here we present an alternative proof for Theorems 1–3. While each proof continues
to rely on the assumption that the solutions take the form of an ansatz, the integrals
are initially taken to be Riemann–Stieltjes integrals. These integrals can subsequently be
reduced to standard Riemann integrals where traditional Laplace transform techniques can
be employed. We begin with a proof of Theorem 1.

Appendix A.1. Theorem 1

Proof. We consider the problem∫ t

0
K(t− τ) d f (τ) = G(t), (A1)

where the integral is a Riemann–Stieltjes integral. Then Equation (13) can be recovered by
identifying f ′(t) = d f

dt , as a classical derivative, or a distributional derivative. This can be
evaluated as ∫ t

0
K(t− τ) d f (τ) =

m−1

∑
k=0

K(t− ck)( f (tk+1)− f (tk)) (A2)

with 0 = t0 < t1 < . . . < tn = t and ck ∈ [tk, tk+1]. We seek a solution of the form

f (t) = aH(t) + fc(t), (A3)

where fc(t) is right-continuous at t = 0 and differentiable for t > 0. Note that, by
construction, f (0) = fc(0). Without loss of generality, for the partition in Equation (A2),
we consider t1 = ε then

∫ t

0
K(t− τ) d f (τ) = K(t− c0)( f (ε)− f (0)) +

∫ t

ε
K(t− τ) d f (τ) (A4)

= K(t− c0)(a + fc(ε)− fc(0)) +
∫ t

ε
K(t− τ) d fc(τ) (A5)
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where c0 ∈ [0, ε]. By taking the limit ε → 0+ we can now write∫ t

0
K(t− τ) d f (τ) = aK(t) +

∫ t

0+
K(t− τ ) d fc(τ). (A6)

Given that fc(t) is a classical function that is right-continuous for t ≥ 0 and differen-
tiable for t > 0 we can now write∫ t

0
K(t− τ) d f (τ) = aK(t) +

∫ t

0
K(t− τ) f ′c(τ), (A7)

where the integral of the right-hand side is a standard Riemann integral. The original
problem, with a solution of the form of Equation (A3), can thus be written as∫ t

0
K(t− τ) f ′c(τ) dτ = G(t)− aK(t), fc(0) = f0, (A8)

but note that we now require, for consistency,

a =
G(0)
K(0)

, (A9)

which defines an explicit a. Thus, Equation (A8), together with the consistency condition,
Equation (A9), can be solved readily using Laplace transform methods to arrive at

f (t) = f0 +
G(0)
K(0)

(H(t)− 1) + L−1

[
Ĝ(s)
sK̂(s)

]
(t). (A10)

Appendix A.2. Theorem 2

Proof. We consider the problem

d
dt

∫ t

0
K(t− τ) dF(τ) = G(t) (A11)

where the integral is a Riemann–Stieltjes integral. Then Equation (35) can be recovered by
identifying dF

dt = f (t), as a classical derivative, or a distributional derivative, of F(t). We
now seek a solution of the form

F(t) = atH(t) + Fc(t) (A12)

where Fc(t) is right-continuous at t = 0 and differentiable for t > 0. Note that we identify

f (t) = aH(t) + atδ(t) + F′c(t) (A13)

= aH(t) + F′c(t) (A14)

= aH(t) + fc(t) (A15)

and then f (0) = fc(0) = f0.
We begin by writing Equation (35) as

lim
ε→0

1
ε

(∫ t+ε

0
K(t + ε− τ) dF(τ)−

∫ t

0
K(t− τ) dF(τ)

)
= G(t), (A16)
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and then

lim
ε→0

1
ε

(
(K(t + ε− c0)− K(t− c0))(F(ε0)− F(0))

+
∫ t+ε

ε0

K(t + ε− τ) dF(τ)−
∫ t

ε0

K(t− τ) dF(τ)
)
= G(t) (A17)

where c0 ∈ (0, ε0). The remaining Riemann–Stieltjes integrals, with lower limit ε0 > 0, can
now be written as Riemann integrals so that

lim
ε→0

1
ε

(
(K(t + ε− c0)− K(t− c0))(F(ε0)− F(0))

+
∫ t+ε

ε0

K(t + ε− τ) F′(τ) dτ −
∫ t

ε0

K(t− τ) F′(τ) dτ

)
= G(t) (A18)

or equivalently, using Equation (A12),

lim
ε→0

1
ε

(
(K(t + ε− c0)− K(t− c0))(aε0 + Fc(ε0)− F(0))

+
∫ t+ε

ε0

K(t + ε− τ) (a + F′c(τ)) dτ −
∫ t

ε0

K(t− τ) (a + F′c(τ)) dτ

)
= G(t) (A19)

After taking the limit ε0 → 0, and identifying F′c(τ) = fc(t), we now have

1
ε

(∫ t+ε

0
K(t + ε− τ) (a + fc(τ)) dτ −

∫ t

0
K(t− τ) (a + fc(τ)) dτ

)
= G(t). (A20)

After taking the limit ε → 0 this yields

d
dt

∫ t

0
K(t− τ) (a + fc(τ)) dτ = G(t), (A21)

or equivalently
d
dt

∫ t

0
K(t− τ) fc(τ) dτ = G(t)− aK(t). (A22)

We now take Laplace transforms to write

s f̂c(s) =
Ĝ(s)
K̂(s)

− a. (A23)

Considering the limit s → 0 we have

fc(0) =
G(0)
K(0)

− a, (A24)

which defines

a =
G(0)
K(0)

− f0. (A25)

Using this in Equation (A23) and taking the inverse Laplace transform now yields

fc(t) = f (0)− G(0)
K(0)

+ L−1

[
Ĝ(s)
sK̂(s)

]
(t). (A26)

Thus, the solution, given by Equation (44), is then obtained by substituting
Equations (A25) and (A26) into Equation (A15).
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Appendix A.3. Theorem 3

Proof. We consider the problem

d
dt

∫ t

0
K(t− τ) dF(τ) = G(t) (A27)

where the integral is a Riemann–Stieltjes integral. Then Equation (52) can be recovered by
identifying dF

dt = f (t), as a classical derivative, or a distributional derivative, of F(t). Here
we consider the possibility

F(t) = aH(t) + Fc(t) (A28)

where a > 0, H(t) is the Heaviside function and Fc(t) is right-continuous at t = 0 and
differentiable for t ≥ 0. We then define

f (t) = F′(t) = aδ(t) + F′c(t) = aδ(t) + fc(t) (A29)

where fc(t) is continuous for t > 0. Note that in this case we cannot consider the initial
condition f (0) = f0 but we can consider limt→0+ f (0) = f0 or equivalently fc(0) = f0.
Hence, Equation (A27) can be written as

lim
ε→0

1
ε

(∫ t+ε

0
K(t + ε− τ) dF(τ)−

∫ t

0
K(t− τ) dF(τ)

)
= G(t), (A30)

and then

lim
ε→0

1
ε

(
(K(t + ε− c0)− K(t− c0))(F(ε0)− F(0))

+
∫ t+ε

ε0

K(t + ε− τ) dF(τ)−
∫ t

ε0

K(t− τ) dF(τ)
)
= G(t) (A31)

where c0 ∈ (0, ε0). The remaining Riemann–Stieltjes integrals can now be written as
Riemann integrals with

lim
ε→0

1
ε

(
(K(t + ε− c0)− K(t− c0))(a + Fc(ε0)− F(0))

+
∫ t+ε

ε0

K(t + ε− τ) fc(τ) dτ −
∫ t

ε0

K(t− τ) fc(τ) dτ

)
= G(t) (A32)

We can now consider the limit ε0 → 0 to formally write

lim
ε0→0

lim
ε→0

1
ε
(K(t + ε− c0)− K(t− c0))(a + Fc(ε0)− Fc(0))

+ lim
ε0→0

lim
ε→0

1
ε

(∫ t+ε

ε0

K(t + ε− τ) fc(τ) dτ −
∫ t

ε0

K(t− τ) fc(τ) dτ

)
= G(t) (A33)

and then taking the limit ε0 → 0

lim
ε→0

1
ε
(K(t + ε)− K(t))a

+ lim
ε→0

1
ε

(∫ t+ε

0
K(t + ε− τ) fc(τ) dτ −

∫ t

0
K(t− τ) fc(τ) dτ

)
= G(t) (A34)

Finally, taking the limit ε → 0 we have

d
dt

∫ t

0
K(t− τ) fc(τ) dτ = G(t)− aK′(t). (A35)
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We can now take the Laplace transform of this equation to write

sK̂(s) f̂c(s) = Ĝ(s)− a(sK̂(s)− K(0)). (A36)

We now solve for

f̂c(s) =
Ĝ(s)
sK̂(s)

− sK̂(s)− K(0)
sK̂(s)

a. (A37)

We can now find the initial condition fc(0) from

lim
s→∞

s f̂c(s) =
lims→∞ sĜ(s)
lims→∞ sK̂(s)

− lims→∞ s(sK̂(s)− K(0))
lims→∞ sK̂(s)

a (A38)

=
G(0)
K(0)

− K′(0)
K(0)

a. (A39)

We can solve for

a =
G(0)
K′(0) −

fc(0)K(0)
K′(0) . (A40)

We now take the Laplace transform of Equation (A37) to write

fc(t) = L−1

[
Ĝ(s)
sK̂(s)

− sK̂(s)− K(0)
sK̂(s)

a

]
(t) (A41)

The solution, given by Equation (53), is now obtained by substituting the result for
Equations (A40) and (A41) into Equation (A28).
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Abstract: In this paper, we study a class of nonlinear space-time fractional stochastic kinetic equations
in Rd with Gaussian noise which is white in time and homogeneous in space. This type of equation
constitutes an extension of the nonlinear stochastic heat equation involving fractional derivatives in
time and fractional Laplacian in space. We firstly give a necessary condition on the spatial covariance
for the existence and uniqueness of the solution. Furthermore, we also study various properties of
the solution, such as Hölder regularity, the upper bound of second moment, and the stationarity with
respect to the spatial variable in the case of linear additive noise.

Keywords: space-time fractional stochastic kinetic equations; caputo derivatives; gaussian index;
hölder continuity
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1. Introduction

Fractional stochastic partial differential equations (SPDEs for short) constitute a sub-
class of stochastic partial differential equations. The main characteristic of this class of
stochastic equations is that they involve fractional derivatives and integrals, which replace
the usual derivatives and integrals. The fractional stochastic partial differential equations
received particular attention in the last several decades because they emerge in anomalous
diffusion models in physics, among other areas of applications (see, for example, [1–8] and
references therein).

The aim of the present article is to study the following space-time fractional stochastic
kinetic equations, for any (t, x) ∈ R+ ×Rd⎧⎪⎨⎪⎩

(
∂β

∂tβ
+ ν(I− Δ)γ/2(−Δ)α/2

)
u(t, x) = I1−β

t
(
λσ(u(t, x))Ẇ(t, x)

)
,

u(0, x) = u0(x), x ∈ Rd,
(1)

where β ∈ (0, 1], γ ≥ 0, α > 0 are some fractional parameters and ν and λ are two
positive parameters, with λ being called the intensity of the noise. The coefficient σ(·)
is a measurable function, and Ẇ is a Gaussian noise, white in time and correlated in
space. Here, Δ is the d-dimensional Laplace operator and the operators (I − Δ)γ/2, γ ≥ 0
and (−Δ)α/2, α > 0 are interpreted as the inverses of the Bessel and Riesz potentials,
respectively. They are defined as follows. For a function f which is sufficiently smooth and
small at infinity, the Riesz potential (−Δ)−α/2( f ), 0 < α < d is defined by

(−Δ)−α/2( f )(x) :=
1

ν(α)

∫
Rd
|x− y|−d+α f (y)dy,

with ν(α) = πd/22α Γ(α/2)
Γ( d−α

2 )
. The Bessel potential (I − Δ)−γ/2, γ ≥ 0 on Rd can be repre-

sented by

(I − Δ)−γ/2( f )(x) :=
∫
Rd

Hs(x− y) f (y)dy,

Fractal Fract. 2022, 6, 450. https://doi.org/10.3390/fractalfract6080450 https://www.mdpi.com/journal/fractalfract144
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where Hs(·) is defined for x ∈ Rd/{0} by the formula Hs(x) = 1
(4π)γ/2Γ(γ/2)

∫ ∞
0

1

y1+ d−γ
2

e−
π|x|2

y − y
4π dy. For more details, one can consult Chapter V in [9] for the definitions about the

Bessel and Riesz potentials. Furthermore, the composition of the Bessel and Riesz potentials
plays an important role in describing the behaviour of the process at the spatial macro
and microscales. These integral operators and their inverses can be defined as bounded
operators on the fractional Sobolev spaces {Hθ(Rd); θ ∈ R}.

We will specify later the required conditions on the function σ(·) and the Gaussian
noise Ẇ. In Equarion (1), the time derivative operator ∂β

∂tβ with order β ∈ (0, 1] is defined in
the Caputo-Djrbashian sense (for example, Caputo [3], Anh, and Leonenko [2]):

∂β

∂tβ
u(t, x) =

⎧⎪⎪⎨⎪⎪⎩
1

Γ(1− β)

[
∂

∂t

∫ t

0

u(s, x)
(t− s)β

ds− u(0, x)
tβ

]
, if β ∈ (0, 1),

∂

∂t
u(t, x), if β = 1.

(2)

The deterministic counterparts of Equation (1) have received a lot of attention. This
is because they appear to be very useful for modeling, being introduced to describe phys-
ical phenomena such as diffusion in porous media with fractal geometry, kinematics in
viscoelastic media, relaxation processes in complex systems (including viscoelastic mate-
rials, glassy materials, synthetic polymers, biopolymers), propagation of seismic waves,
anomalous diffusion and turbulence (see, for example, Anh and Leonenko [2], Caputo [3],
Chen [10], Chen [11], Chen et al. [12], Meerschaert et al. [13], Nane [14], and references
therein). Such equations are obtained from the classical diffusion equation by replacing the
first or second-order derivative by a fractional derivative.

In this work, we mainly follow the studies in [1,2,15,16] and references therein, In
particular, in [1], the authors showed a connection between the solution to the deterministic
counterparts of Equation (1) and the theory of continuous-time random walks (CTRWs for
short). In fact, they showed the existence of the stochastic processes which are the limits,
in the weak sense, of sequences of CTRWs whose probability density function p(t, x) are
governed by general equations of the form

An
∂βn

∂tβn
p(t, x) + · · ·+ A0

∂β0

∂tβ0
p(t, x) = Ap(t, x),

where βn, . . . , β0 ∈ (0, 1] and A is the infinitesimal generator of a Lévy process. The Riesz–
Bessel operator (I − Δ)

γ
2 (−Δ)

α
2 is a special case of A. Hence, this motivates us considering

equations of the form (1) containing the Caputo–Djrbashian derivative in this work. On the
other hand, it might come natural to add just a additive Gaussian space-time white noise
Ẇ(t, x) to the deterministic counterparts of Equation (1) and study the equation⎧⎪⎨⎪⎩

(
∂β

∂tβ
+ ν(I− Δ)γ/2(−Δ)α/2

)
u(t, x) = Ẇ(t, x),

u(0, x) = u0(x), x ∈ Rd,
(3)

Hence, if we use time fractional Duhamel’s principle (see, for example, [17]), we will
get the mild (integral) solution of (1) to be of the form (informally):

u(t, x) = (Gu0)t(x) +
∫ t

0

∫
Rd

Gt−s(x− y)
∂1−β

∂s1−β

(
Ẇ(s, y)

)
dydr, (4)

where
(Gu0)t(x) =

∫
Rd

Gt(x− y)u0(y)dy.
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It is not clear what the fractional derivative ∂1−β

∂s1−β

(
Ẇ(s, y)

)
means. As explained

in [18,19] and etc., one can remove the fractional derivative of the noise term in (4) in the
following way. For β ∈ (0, 1), define the fractional integral operator I1−β

t as follows:

I1−β
t u(t, x) :=

1
Γ(1− β)

∫ t

0

u(s, x)
(t− r)β

ds, β ∈ (0, 1).

Note that (see, for example, [18] and etc.), for every β ∈ (0, 1) and g ∈ L∞(R+) or
g ∈ C(R+), ∂

β
t Iβ

t g(t) = g(t). Then, by using the fractional Duhamel’s principle, mentioned
above, the mild (integral) solution of Equation (3) will be (informally)

u(t, x) = (Gu0)t(x) +
∫ t

0

∫
Rd

Gt−s(x− y)W(ds, dy). (5)

The time-fractional SPDEs (1) studied in this paper with γ = 0 may arise naturally
by considering the heat equation in a material with thermal memory; see, for example,
[12,18,19], etc.

The fractional SPDEs represent a combination of the deterministic fractional equations
and the stochastic integration theory developped by Walsh (see [20], see also Dalang’s
seminal paper [21]). Several types of fractional SPDEs have been considered in Chen [10],
Chen et al. [11], Chen et al. [22], Kim and Kim [12], Chen et al. [23], Foondun and Nane [24],
Hu and Hu [25], Liu and Yan [26], Márquez-Carreras [15,16], Mijena and Nane [18,19], and
references therein.

In this work, we are interested in space-time fractional SPDEs (1). It includes some widely
studied particular cases. We refer, for example, to the classical stochastic heat equation with
β = 1, γ = 0 and α = 2 (see, e.g., Dalang [21], Khoshnevisan [27]), the fractional stochastic
heat equation with β = 1, γ = 0 and α > 0 (see examples Chen and Dalang [28,29], Foondun
and Nane [24], Márquez-Carreras [16], Tudor [30]), the generalized fractional kinetic equation
with β = 0, γ ≥ 0 and α > 0 (see [15]), the space-time fractional stochastic partial differential
equation with 0 < β < 1, γ = 0 and 0 < α ≤ 2 (see [18,19]).

Our paper is motivated by the works of Anh and Leonenko [2], Márquez-Carreras [16],
and Mijena and Nane [18,19]. We generalize the results of Márquez-Carreras [16] to the
fractional-in-time diffusion equation and of Mijena and Nane [18] to fractional operator
including Bessel operator (I − Δ)γ/2, which is essential for a study of (asymptotically)
stationary solutions of Equation (1) (see Anh and Leonenko [2] for some details).

To be more precise, the novelty of this paper is that we extend the result in [15,18,31]
by including in the model the Bessel operator (I − Δ)

γ
2 with γ ≥ 0 and by generalizing the

stochastic noise, in the sense that we allow a more general structure for the spatial covariance
of the Gaussian noise W in (1) (which is taken to be space-time white noise in [18] and
colored by a Riesz kernel in space in [31]). The presence of this Bessel operator brings more
flexibility to the model, by including for γ = 0 the situation treated in [15,18,31]. From the
technical point of view, the appearance of the Bessel operator leads to a new expression of the
fundamental solution associated with Equation (1). Indeed, we need new technical estimates
for this kernel, which are obtained in Section 2.2. The Bessel operator is also essential in
order to get an asymptotically stationary solution, as discussed in Section 4 of our work.
Concretely, we study the existence and uniqueness of the solution to Equation (1) under
global Lipschitz conditions on diffusion coefficient σ by using the random field approach of
Walsh [20] and time fractional Duhamel’s principle (see, e.g., [17,18]). Moreover, we study
some new properties for the solution to time-space fractional SPDE (1), including an upper
bound of the second moment, the Hölder regularity in time and space variables, and the
(asymptotically) stationarity of the solution with respect to time and space variables in some
particular case.

We organize this paper as follows: In Section 2, we introduce the Gaussian noise
Ẇ(t, x), and we prove some properties of Green function Gt(x) associated with the frac-
tional heat type Equation (13). In Section 3, we give our main result about existence and
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uniqueness of the solution and some properties of the solution, including the Hölder regu-
larity and the behavior of the second moment. In Section 4, we study the linear additive
case, with zero initial condition, i.e., u0(x) ≡ 0 and σ(x) ≡ 1. We see that the solution
of (1) is a Gaussian field with zero mean, with stationary increments, and a continuous
covariance function in space, while it is not stationary in time but tends to a stationary
process when the time goes to infinity.

2. Preliminaries

In this section, we recall some basic properties of the stochastic integral with respect
to the Gaussian noise Ẇ appearing in Equation (1) and some basic facts on the solution to
the fractional heat Equation (13).

2.1. Gaussian Noise

We denote by C∞
0 (R+ ×Rd) the space of infinitely differentiable functions on R+ ×Rd

with compact support and by S(Rd) the Schwartz space of rapidly decreasing C∞ functions
in Rd and let S′(Rd) denote its dual space of rapidly decreasing infinitely differentiable
functions on Rd. For ϕ ∈ L1(Rd), we let F ϕ be the Fourier transform of ϕ defined by

F ϕ(ξ) =
∫
Rd

e−iξ·x ϕ(x)dx, ξ ∈ Rd. (6)

We begin by introducing the framework in [21]. Let μ be a non-negative tempered
measure on Rd, i.e., a non-negative measure which satisfies:

∫
Rd

(
1

1 + |ξ|2
)m

μ(dξ) < ∞, (7)

for some m > 0. Since the integrand is non-increasing in m, we may assume that m ≥ 1
is an integer. Note that 1 + |ξ|2 behaves like a constant around 0, and like |ξ|2 at ∞, and
hence (7) is equivalent to∫

|ξ|≤1
μ(dξ) < ∞ and

∫
|ξ|≥1

1
|ξ|2m μ(dξ) < ∞,

for some integer m ≥ 1.
Let f : Rd → R+ be the Fourier transform of a non-negative tempered measure μ in

S′(Rd), which is ∫
Rd

f (x)ϕ(x)dx =
∫
Rd
F ϕ(ξ)μ(dξ), ∀ϕ ∈ S(Rd),

where F denotes the Fourier transform given by (6). Simple properties of the Fourier
transform yield that, for any φ, ϕ ∈ S(Rd)∫

Rd

∫
Rd

ϕ(x) f (x− y)φ(y)dxdy =
∫
Rd
F ϕ(ξ)Fφ(ξ)μ(dξ), ∀ϕ, φ ∈ S(Rd). (8)

An approximation argument shows that the previous equality also holds for indicator
functions ϕ = 1A and φ = 1B with A, B ∈ Bb(R

d), where Bb(R
d) denotes the class of

bounded Borel sets of Rd, which is∫
A

∫
B

f (x− y)dxdy =
∫
Rd
F1A(ξ)F1B(ξ)μ(dξ). (9)

In this article, we consider a zero-mean Gaussian process W = {W(t, A); t ∈ [0, T],
A ∈ Bb(R

d)} with covariance

E(W(t, A)W(s, B)) = (t ∧ s)
∫

A

∫
B

f (x− y)dxdy,
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on a complete probability space (Ω,F , P).
Let E be the set of linear combinations of elementary functions {1[0,t]×A, t ≥ 0,

A ∈ Bb(R
d)}. With the Gaussian process W, we can associate a canoncial Hilbert space H

which is defined as the closure of E with respect to the inner product 〈·, ·〉H defined by

〈ϕ, φ〉H =
∫
R+

∫
Rd

∫
Rd

ϕ(t, x) f (x− y)φ(t, y)dxdydt.

Alternatively, H can be defined as the completion of C∞
0 (R+ ×Rd) with respect to the

inner product 〈·, ·〉H.
We denote by W(ϕ) the random field indexed by functions ϕ ∈ L2(R+ ×Rd) and for

all ϕ, φ ∈ L2(R+ ×Rd), we have

E(W(ϕ)W(φ)) =
∫
R+

∫
Rd

∫
Rd

ϕ(t, x) f (x− y)φ(t, y)dxdydt

=
∫
R+

∫
Rd
F ϕ(t, ·)(ξ)Fφ(t, ·)(ξ)μ(dξ)dt,

(10)

where F ϕ(t, ·)(ξ) denotes the Fourier transform with respect to the space variable of ϕ(t, x)
only. Hence, W(ϕ) can be represented as

W(ϕ) =
∫
R+

∫
Rd

ϕ(t, x)W(dx, dt).

Note that W(ϕ) is Ft-measurable whenever ϕ is supported on [0, t]×Rd.

Remark 1. Since the spectral measure μ is non-trivial positive tempered measure, we can ensure
that there exist positive constants c1, c2 and k such that

c1 <
∫
{|ξ|<k}

μ(dξ) < c2. (11)

As usual, the Gaussian process W can be extended to a worthy martingale measure, in
the sense given by Walsh [20]. Dalang [21] presented an extension of Walsh’s stochastic
integral that requires the following integrability condition in terms of the Fourier transform
of G ∫ T

0
dt
∫
Rd

μ(dξ)|FGt(·)(ξ)|2 < ∞, (12)

where G is the fundamental solution of(
∂β

∂tβ
+ ν(I − Δ)γ/2(−Δ)α/2

)
Gt(x) = 0. (13)

Provided that (12) is satisfied and assuming conditions on σ(·) that will be described
later, following Walsh [20], we will understand a solution of (1) to be a jointly measurable
adapted process {u(t, x), (t, x) ∈ [0, T]×Rd} satisfying the integral equation

u(t, x) = (Gu0)t(x) + λ
∫ t

0

∫
Rd

Gt−s(x− y)σ(u(s, y))W(ds, dy), (14)

where
(Gu0)t(x) =

∫
Rd

Gt(x− y)u0(y)dy,

and the stochastic integral in (14) is defined with respect to the F -martingale measure
W(t, A). Next, we give the meaning of Walsh–Dalang integrals that is used in (14). (For the
details, we refer the readers to Dalang [21]).
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1. We say that (t, x)→ Φt(x) is an elementary random field when there exist 0 ≤ a < b, a
Fa-measurable random variable X ∈ L2(Ω) and a deterministioc function φ ∈ L2(Rd)
such that

Φt(x) = X1[a,b)(t)φ(x), t > 0, x ∈ Rd.

2. If h = ht(x) is non-random and Φ is elementary as above, then we set∫
hΦdW := X

∫
[a,b)×Rd

ht(x)φ(x)W(dt, dx). (15)

3. The stochastic integral in (15) is a Wiener integral, and it is well defined if and only if
ht(x)φ(x) ∈ L2([a, b)×Rd).

4. Under the above notation, we have the Walsh isometry

E

(∣∣∣∣∫ hΦdW
∣∣∣∣2
)

=
∫ T

0
ds
∫
Rd

dyhs(y)2E(|Φs(y)|2).

2.2. Some Properties of the Fundamental Solution

We will give some estimates for the fundamental solution associated with Equation (1).
The properties of this fundamental solution will play an important role in the sequel.

Let Gt(x) be the fundamental solution of the fractional kinetic Equation (13) with
β ∈ (0, 1], ν > 0, and γ ≥ 0, α > 0. Anh and Leonenko [2] showed that Equation (13) is
equivalent to the Cauchy problem:

(D
β
t FGt(·))(ξ) + ν|ξ|α(1 + |ξ|2)γ/2FGt(·)(ξ) = 0, FG0(·))(ξ) = 1 (16)

and they also have proved that Equation (16) has a unique solution given by

FGt(·)(ξ) = Eβ(−νtβ|ξ|α(1 + |ξ|2)γ/2), β > 0, (17)

where

Eβ(x) =
∞

∑
j=0

xj

Γ(1 + βj)
, x > 0, (18)

is the Mittag–Leffler function of order β. The inverse Fourier transform yields that

Gt(x) = (2π)−d
∫
Rd

ei〈ξ,x〉Eβ(−νtβ|ξ|α(1 + |ξ|2)γ/2)dξ. (19)

We know that
Eβ(−νtβ|ξ|α(1 + |ξ|2)γ/2) ∈ L1(Rd), (20)

for every 0 < β ≤ 1 if α + γ > d. From this range, we see the role played by the parameter
γ in Equation (17).

Moreover, one has the uniform estimates of the Mittag–Leffler function (e.g., Theorem 4
in Simon [32])

1
1 + Γ(1− β)x

≤ Eβ(−x) ≤ 1
1 + Γ(1 + β)−1x

, for x > 0. (21)

The following lemma gives a sharp estimate for the L2-norm (in time) of the Green
kernel. It extends Lemma 1 in [18] and Lemma 2.1 in [31].

Lemma 1. For 0 < β < 1 and d < 2(α + γ), we have the following∫
Rd

Gt(x)2dx ≤ C2t−
βd

α+γ . (22)
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where B
(

d
α+γ , 2− d

α+γ

)
is a Beta function. The (strictly) positive constant is given by

C2 =
B
(

d
α+γ ,2− d

α+γ

)
α+γ

(
Γ(1−β)

ν

) d
α+γ 2πd/2

Γ(d/2)
1

(2π)d .

Proof. Using the Plancherel’s identity and the equality (17), we can write∫
Rd

Gt(x)2dx =
1

(2π)d

∫
Rd
|FGt(·)(ξ)|2dξ

=
1

(2π)d

∫
Rd

∣∣∣Eβ

(
−νtβ|ξ|α(1 + |ξ|2)γ/2

)∣∣∣2dξ

=
2πd/2

Γ(d/2)
1

(2π)d

∫ +∞

0
rd−1

(
Eβ

(
−νtβrα(1 + r2)γ/2

))2
dr,

where we have used the integration in polar coordinates in the last equation above and
the positive constant resulting from the integration over the angular spherical coordinates.
Now using the upper bound in (21) and the fact rα(1+ r2)γ/2 ≥ rα+γ with r > 0, we obtain,
with the change of variable formula z = Γ(1 + β)−1νtβrα+γ,

∫ +∞

0
rd−1

(
Eβ

(
−νtβrα(1 + r2)γ/2

))2
dr ≤

∫ +∞

0
rd−1 1

(1 + Γ(1 + β)−1νtβrα+γ)2 dr

=
1

α + γ

(
Γ(1 + β)

ν

) d
α+γ

t−
βd

α+γ

∫ ∞

0
z

d
α+γ−1(1 + z)−2dz.

Hence,
∫ ∞

0 z
d

α+γ (1 + z)−2dz < ∞ if and only if d < 2(α + γ). In this case, we have

∫ ∞

0
z

d
α+γ−1(1 + z)−2dz = B

(
d

α + γ
, 2− d

α + γ

)
,

where B
(

d
α+γ , 2− d

α+γ

)
is a Beta function. Then, we can conclude the proof of upper bound

in (22).

We now prove (12) under an integrability condition on the spectral measure μ given
as follows, which is also known as the Dalang’s condition (see, for example, [21]).

Hypothesis 1. Assume that the spectral measure μ associated with the Gaussian noise Ẇ satisfies

∫
Rd

(
1

1 + |ξ|2
)�

μ(dξ) < ∞, (23)

with the parameter � satisfying

� =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α + γ, if 0 < β <
1
2

,

α + γ

2
, if β =

1
2

,

α + γ

2β
, if

1
2
< β < 1.

(24)

Remark 2. If the parameter β = 1, Equation (1) reduces to the SPDE (1.1) studied in Márquez-
Carreras [15], in which it is assumed (23) with � = α+γ

2 . Thus, when β is close to one, the exponent
� in (24) coincides with the exponent studied in Lemma 2.1 in Márquez-Carreras [15]. On the other
hand, our assumption (23) is weaker when β is close to zero.
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Let us now recall some of the main examples of spatial covariances for the noise which
will be our guiding examples in the remainder of the present paper. Below, we denote by
|x| the Euclidean norm of x ∈ Rd.

Example 1. Let f (x) =
d

∏
i=1

Hi(2Hi − 1)|xi|2Hi−2 with 1/2 < Hi < 1 for i = 1, . . . , d. Then,

μ(dξ) = ∏d
i=1 Hi(2Hi − 1)|ξi|−2Hi+1dξ. Thus, (23) is equivalent to

d
∑

i=1
(2Hi − 1) > d− 2(α +

γ) if 0 < β < 1/2, it is equivalent to
d
∑

i=1
(2Hi − 1) > d − (α + γ) if β = 1/2 and when

1/2 < β < 1, the condition (23) is equivalent to
d
∑

i=1
(2Hi − 1) > d− α+γ

β .

Example 2. Let f (x) = γδ,d = |x|−(d−δ) be the Riesz kernel of order δ ∈ (0, d), then μ(dξ) =
|ξ|−δdξ and (23) is equivalent to 2(α + γ) + δ > d if 0 < β < 1/2, (23) is equivalent to
(α + γ) + δ > d if β = 1/2 and (23) is equivalent to α+γ

β + δ > d if 1/2 < β < 1. This example
is also considered in [31]. Their condition (used in Theorem 1.3 in this reference) reads α

β + δ > d.
Our assumption (23) gives more flexibility when β is close to zero but as well as for β close to 1
(because of the new parameter γ in the expression of the Bessel operator (I − Δ)

γ
2 .

Example 3. For the Bessel kernel of order τ > 0 given by f (x) = γτ

∫ ∞
0 ω

τ−d
2 −1e−ωe−

|x|2
4ω dω.

Then, μ(dξ) = (1 + |ξ|2)− τ
2 dξ. Thus, (23) is equivalent to 2(α + γ) + τ > d if 0 < β < 1/2,

(23) is equivalent to (α + γ) + τ > d if β = 1/2 and condition (23) is equivalent to α+γ
β + τ > d

if 1/2 < β < 1.

Example 4. Let f (0) < ∞ (i.e., μ is a finite measure). It corresponds to a spatially smooth noise Ẇ.

Example 5. Suppose d = 1 and f = δ0 (i.e., μ is the Lebesgue measure). This corresponds to a
(rougher) noise Ẇ, which is white in the spatial variable.

For any t ∈ R+, denote by

Nt(ξ) =
∫ t

0
|FGu(·)(ξ)|2du. (25)

Then, we have the following

Proposition 1. Assuming that t ∈ R+ and ξ ∈ Rd, there exist (strictly) positive constants
C2.i(t), i = 1, 2, 3, 4 (depending on t) such that

Nt(ξ) ≤ C2.2(t)
(

1
1 + |ξ|2

)α+γ

, if 0 < β < 1/2, (26)

Nt(ξ) ≤ C2.3(t)
(

1
1 + |ξ|2

) α+γ
2

, if β = 1/2, (27)

and

Nt(ξ) ≤ C2.4(t)
(

1
1 + |ξ|2

) α+γ
2β

, if 1/2 < β < 1. (28)
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The “constants” are defined as follows:

C2.2(t) = t +
2α+γΓ(1 + β)2

ν2(1− 2β)
t1−2β,

C2.3(t) = t + 2ν−1Γ(3/2)2
α+γ

2 t1/2,

C2.4(t) = t +
1

2β− 1
Γ(1 + β)1/βν−1/β2

α+γ
2β .

Proof. For any t ∈ R+, from Equations (17) and (25), we can rewrite Nt(ξ) defined by (25) as

Nt(ξ) =
∫ t

0

∣∣∣Eβ(−νuβ|ξ|α(1 + |ξ|2)γ/2)
∣∣∣2du.

We firstly prove the upper bound for Nt(ξ). By using the upper bound in (21) and
change of variable x = νuβ|ξ|α(1 + |ξ|2)γ/2, one obtains

Nt(ξ) =
1
β

(
1

ν|ξ|α(1 + |ξ|2)γ/2

) 1
β
∫ νtβ |ξ|α(1+|ξ|2)γ/2

0
x

1
β−1E2

β(−x)dx.

We will divide into two cases to estimate it according to the value of |ξ|. If |ξ| ≤ 1, and
we claim that

Nt(ξ)1|ξ|≤1 ≤
1
β

(
1

ν|ξ|α(1 + |ξ|2)γ/2

) 1
β
∫ νtβ |ξ|α(1+|ξ|2)γ/2

0
x

1
β−1

(
1

1 + Γ(1 + β)−1x

)2
dx

= t.

If |ξ| > 1 and 1/2 < β < 1, we have

Nt(ξ)1|ξ|>1 ≤
1
β

(
1

ν|ξ|α(1 + |ξ|2)γ/2

) 1
β
∫ νtβ |ξ|α(1+|ξ|2)γ/2

0
x

1
β−1

(
1

1 + Γ(1 + β)−1x

)2
dx

=
1
β

(
Γ(1 + β)

ν|ξ|α(1 + |ξ|2)γ/2

) 1
β
∫ νΓ(1+β)−1tβ |ξ|α(1+|ξ|2)γ/2

0
x

1
β−1

(1 + x)−2dx

≤ 1
β

(
Γ(1 + β)

ν|ξ|α(1 + |ξ|2)γ/2

) 1
β
∫ νΓ(1+β)−1tβ |ξ|α(1+|ξ|2)γ/2

0
(1 + x)

1
β−3dx

≤ 1
2β− 1

(
Γ(1 + β)

ν

) 1
β
(

1
|ξ|α(1 + |ξ|2)γ/2

) 1
β

≤ 1
2β− 1

(
Γ(1 + β)

ν

) 1
β

2
α+γ
2β

(
1

1 + |ξ|2
) α+γ

2β

.

On the other hand, with |ξ| > 1 and 0 < β < 1/2, one obtains

Nt(ξ)1|ξ|>1 ≤
1
β

(
Γ(1 + β)

ν|ξ|α(1 + |ξ|2)γ/2

) 1
β
∫ νΓ(1+β)−1tβ |ξ|α(1+|ξ|2)γ/2

0
x

1
β−3dx

=
Γ(1 + β)2

ν2(1− 2β)
t1−2β

(
1

ν|ξ|α(1 + |ξ|2)γ/2

)2

≤ 2α+γΓ(1 + β)2

ν2(1− 2β)
t1−2β

(
1

1 + |ξ|2
)α+γ

.
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For the critical case β = 1/2, one obtains that

Nt(ξ)1|ξ|>1 ≤ 2
(

Γ(3/2)
ν|ξ|α(1 + |ξ|2)γ/2

)2 ∫ νΓ(3/2)−1t1/2|ξ|α(1+|ξ|2)γ/2

0
x(1 + x)−2dx

≤ 2
(

Γ(3/2)
ν|ξ|α(1 + |ξ|2)γ/2

)2 ∫ νΓ(3/2)−1t1/2|ξ|α(1+|ξ|2)γ/2

0
(1 + x)−1dx

= 2
(

Γ(3/2)
ν|ξ|α(1 + |ξ|2)γ/2

)2

ln
(

1 + νΓ(3/2)−1t1/2|ξ|α(1 + |ξ|2)γ/2
)

≤ 2ν−1Γ(3/2)t1/22
α+γ

2

(
1

1 + |ξ|2
) α+γ

2
.

Then, combining the above estimates for Nt(ξ) with |ξ| ≤ 1 and |ξ| > 1, respectively,
we can conclude the proof of bounds (26)–(28).

Remark 3. From the above result, we see that Hypothesis 1 implies condition (12). In particular,
the estimates (26)–(28) give the existence of the solution in the linear additive noise cas (σ = 1).

3. Existence and Uniqueness

In this section, we will prove the existence and uniqueness of the mild solution to
Equation (14). We first introduce a stronger integrability condition on the spectral measure
μ than Hypothesis 1. While the existence and uniqueness of the solution can be obtained
under Hypothesis 1, the new assumption presented below will be needed in order to prove
certain properties of the solution.

Hypothesis 2. Assume that the spectral measure μ associated with Ẇ satisfies

∫
Rd

(
1

1 + |ξ|2
)η

μ(dξ) < ∞, (29)

with some parameter η satisfying

η ∈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(0, α + γ), if 0 < β <
1
2

,(
0,

α + γ

2

)
, if β =

1
2

,(
0,

α + γ

2β

)
, if

1
2
< β < 1.

(30)

We will need the following estimates for the Green function given by (19) (their proof
is given in Appendix A.

Proposition 2. Supposing β ∈ (0, 1), then we have the following estimates for the temporal and
spatial increments of the Green function Gt(x) given by (19).

1. Under Hypothesis 1, for any t, t′ ∈ R+ such that t′ < t and x ∈ Rd, we have

∫ t′

0
ds
∫
Rd

μ(dξ)|FGt−s(x− ·)(ξ)−FGt′−s(x− ·)(ξ)|2 ≤ C3.1|t− t′|2β, (31)

with C3.1 = t1−2β
∫
|ξ|≤1 μ(dξ) + t−2β

∫
|ξ|>1 Nt′(ξ)μ(dξ).

153



Fractal Fract. 2022, 6, 450

2. Under Hypothesis 2, for any t, t′ ∈ R+ such that t′ < t and x ∈ Rd, we have

∫ t

t′
ds
∫
Rd

μ(dξ)|FGt−s(x− ·)(ξ)|2 ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
C3.2|t− t′|1−2β, if 0 < β <

1
2

,

C3.3|t− t′| 1
2 , if β =

1
2

,

C3.4|t− t′|, if
1
2
< β < 1.

(32)

with

C3.2 = |t− t′|2β
∫
|ξ|≤1

μ(dξ) +
Γ(1 + β)22α+γ

ν2(1− 2β)

∫
|ξ|>1

(
1

1 + |ξ|2
)α+γ

μ(dξ),

C3.3 =
∫
|ξ|≤1

μ(dξ)|t− t′| 1
2 + 21+ α+γ

2
Γ(3/2)

ν

∫
|ξ|>1

(
1

1 + |ξ|2
) α+γ

2
μ(dξ),

C3.4 =
∫
|ξ|≤1

μ(dξ) +
c

2β− 1

(
Γ(1 + β)

ν

) 1
β

2
α+γ
2β

∫
|ξ|>1

(
1

1 + |ξ|2
) α+γ

2β

μ(dξ).

3. Under Hypothesis 2, for any t ∈ R+ and x, x′ ∈ Rd, ρ1 ∈ (0, α+γ− η), ρ2 ∈
(

0, α+γ
2 − η

)
and ρ3 ∈

(
0, α+γ

2β − η
)

, we have

∫ t

0
ds
∫
Rd

μ(dξ)
∣∣FGt−s(x− ·)(ξ)−FGt−s(x′ − ·)(ξ)∣∣2

≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
C3.5|x′ − x|2ρ1 , if 0 < β <

1
2

,

C3.6|x′ − x|2ρ2 , if β =
1
2

,

C3.7|x′ − x|2ρ3 , if
1
2
< β < 1.

(33)

with

C3.5 = Ct
∫
|ξ|≤1

μ(dξ) + C
t1−2β

1− 2β

(
Γ(1 + β)

ν

)2

2α+γ−ρ1

∫
|ξ|>1

(
1

1 + |ξ|2
)α+γ−ρ1

μ(dξ),

C3.6 = Ct
∫
|ξ|≤1

μ(dξ) + C21+ α
2−ρ2 t

1
2

Γ(3/2)
ν

∫
|ξ|>1

(
1

1 + |ξ|2
) α+γ

2 −ρ2

μ(dξ),

C3.7 = Ct
∫
|ξ|≤1

μ(dξ) + C
1

2β− 1

(
Γ(1 + β)

ν

) 1
β

2
α+γ
2β −ρ3

∫
|ξ|>1

(
1

1 + |ξ|2
) α+γ

2β −ρ3

μ(dξ).

Notice that all the constants depend on t although we omit it in the notation.

Remark 4.

1. Our results of Proposition 2 extend the results in Mijena and Nane [18] to the space-time
fractional SPDE with colored Gaussian noises and Khoshnevisan [27] to space-time fractional
SPDE, respectively.

2. The above Proposition 2 also extends the results in Márquez-Carreras [15,16] to space-time
fractional kinetic equation with spatially homogeneous Gaussian noise.

Let us introduce some additional conditions that we need in order to prove our main
results. The first condition is required for the existence-uniqueness result as well as for the
upper bound on the second moment of the solution.
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Assumption 1.

1. We assume that the initial condition is a non-random bounded non-negative function u0 :
Rd → R.

2. We assume that σ : Rd → Rd is Lipschitz continuous satisfying |σ(x)| ≤ Lσ|x| with Lσ

being a positive constant. Moreover, for all x, y ∈ Rd,

|σ(x)− σ(y)| ≤ Lσ|x− y|. (34)

We may assume, with loss of generality, that Lσ is also greater than σ(0). Since |σ(x)| ≤
|σ(0)|+ Lσ|x|, it follows that |σ(x)| ≤ Lσ(1 + |x|) for all x ∈ Rd.

Now, we can prove the existence and uniqueness of mild solution of Equation (1)
given by (14).

Theorem 1. Under Assumption 1 and assuming that the spectral measure μ satisfies Hypothesis 1,
then Equation (14) has a unique adapted solution and for any t ∈ R+ and p ≥ 1,

sup
(t,x)∈R+×Rd

E(|u(t, x)|p) < ∞.

Moreover, this unique solution is mean-square continuous.

Proof. The proof of existence and uniqueness is standard based on Picard’s iterations. For
more information, see, e.g., Walsh [20], Dalang [21]. We give a sketch of the proof. Define

u(0)(t, x) = (Gu0)t(x),

u(n+1)(t, x) = (Gu0)t(x) + λ
∫ t

0

∫
Rd

Gt−s(x− y)σ(u(n)(s, y))W(ds, dy), n ≥ 0.
(35)

We could easily prove that the sequence {u(n+1)(t, x), n ≥ 0} is well-defined and then
using Burkholder’s inequality, we can show that, for any n ≥ 0 and t ∈ R+,

sup
(t,x)∈R+×Rd

E(|u(n+1)(t, x)|2) < ∞. (36)

Moreover, by using an extension of Gronwall’s lemma (for example, see Lemma 15 in
Dalang [21]),

sup
n≥0

sup
(t,x)∈R+×Rd

E(|u(n+1)(t, x)|2) < ∞. (37)

The same kind of arguments allow us to check (36) and (37), changing the power 2 for
p > 2. Moreover, we can also prove that {u(n+1)(t, x), n ≥ 0} converges uniformly in Lp,
denoting this limit by u(t, x). We can check that u(t, x) satisfies Equation (14). Then, it is
adapted and satisfies

sup
(t,x)∈R+×Rd

E(|u(t, x)|p) < ∞.

The uniqueness can be accomplished by a similar argument.
The key to the continuity is to show that these Picard iterations are mean-square

continuous. Then, it can be easily extended to u(t, x). In order to show the ideas of the
mean-square continuity, we give some steps of the proof for {u(n+1)(t, x), n ≥ 0}. As for
the time increments, we have, for any (t, x) ∈ R+ ×Rd and δ > 0 such that t + δ ∈ R+,
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E
[
|u(n+1)(t + δ, x)− u(n+1)(t, x)|2

]
≤ λ2E

[∣∣∣∣∫ t

0

∫
Rd
[Gt+δ−u(x− y)− Gt−u(x− y)]σ(u(n)(u, y))W(ds, dy)

∣∣∣∣2
]

+ λ2E

[∣∣∣∣∫ t+δ

t

∫
Rd

Gt+δ−u(x− y)σ(u(n)(u, y))W(ds, dy)
∣∣∣∣2
]

.

(38)

Using the conditions imposed on σ and (36), we can bound the first term in (38) by

C
∫ t

0
du
∫
Rd

μ(dξ)|FGt+δ−u(·)(ξ)−FGt−u(·)(ξ)|2,

which converges to zero as δ ↓ 0 according to (31). The second term in (38) can be proved
by using the similar arguments by using (32). This proves the right continuity. The left
continuity can be proved in the same way.

Concerning the spatial increment, we have, for any (t, x), (t, z) ∈ R+ ×Rd,

E
[
|u(n+1)(t, x)− u(n+1)(t, z)|2

]
≤ Cλ2

∫ t

0
du
∫
Rd

μ(dξ)|FGt−u(x− ·)(ξ)−FGt−u(z− ·)(ξ)|2

≤ Cλ2
∫ t

0
du
∫
Rd

μ(dξ)|ei〈x−z,ξ〉 − 1|2|FGt−u(z− ·)(ξ)|2.

(39)

Then, thanks to (33), we can prove that the right hand of (39) converges to zero as
|x− z| ↓ 0.

Remark 5. Let us recall that Equation (1) with β = 1 (fractional in space stochastic kinetic
equation with factorization of the Laplacian) has been studied by Márquez-Carreras [15]. In this
case, the Mittag–Leffler function reduces to E1(−x) = e−x, x ≥ 0.

When γ = 0 and spatial kernel f (·) is the Riesz kernel, then the Equation (1) reduces to the
SPDEs studied in Mijena and Nane [18,19]. In this reference, the authors studied the existence,
uniqueness, and intermittence of the mild solution for the space-time fractional stochastic partial
differential Equations (1).

For γ = 0 and α = 2, the SPDE (1) reduces to the classical stochastic heat equation studied
by many authors; see, for example, Dalang [21] and references therein.

Now, let us make the following assumption on the spectral measure μ in order to
obtain a precise estimate for the upper bound of the second moment of the mild solution
of (1).

Assumption 2. We assume that the spectral measure μ satisfies

μ(dξ) # |ξ|−δdξ, with 0 < δ < d. (40)

The symbol “ # ” means that, for every non-negative function h such that the integral in (41)
are finite, there exist two positive and finite constants C and C′ which may depend on h such that

C′
∫
Rd

h(ξ)|ξ|−δdξ ≤
∫
Rd

h(ξ)μ(dξ) ≤ C
∫
Rd

h(ξ)|ξ|−δdξ. (41)

Remark 6. The Riesz kernel of order δ ∈ (0, d) given in Example 2 obviously satisfies (40). The
Bessel kernel given in Example 3 satisfies (40) and the constants in (41) are C = 1 and C′ > 0
depending on δ and d (see [33]).

We have the following results concerning the upper bound on the second moment of
the mild solution to Equation (1).
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Theorem 2. Suppose 0 < d− δ < (α + γ) and 0 < β < 1, if the spectral measure μ associated
with the noise Ẇ satisfies Assumption 2, then, under the Assumption 1, there exist two positive and
finite constants c and c′ such that

sup
x∈Rd

E
(
|u(t, x)|2

)
≤ c exp

{
c′λ

2(α+γ)
(α+γ)−β(d−δ) t

}
, (42)

for all t > 0.

Remark 7. This theorem implies that, under some conditions, there exists some positive constant
C such that

lim sup
t→∞

1
t

log E|u(t, x)|2 ≤ Cλ
2(α+γ)

(α+γ)−β(d−δ) ,

for any fixed x ∈ Rd.

Before giving the proof of Theorem 2, we state an important lemma needed in the
proof of this theorem.

Lemma 2. Supposing 0 < d− δ < (α + γ) and 0 < β < 1, then there exists a positive constant
C such that, for all x, y ∈ Rd, we have∫

Rd

∫
Rd

Gt(x− z1)Gt(y− z2) f (z1 − z2)dz1dz2 ≤ Ct−
β(d−δ)

α+γ .

Proof. If we fix t ∈ R+, for any x, y ∈ Rd, then, by using (8), we have∫
Rd

∫
Rd

Gt(x− z1)Gt(y− z2) f (z1 − z2)dz1dz2 =
∫
Rd
FGt(x− ·)(ξ)FGt(y− ·)(ξ)μ(dξ).

Recall that the spectral measure μ satisfies (40) (i.e., (41)) in Assumption 2. Thus,
according to (17), we have

∫
Rd

∫
Rd

Gt(x− z1)Gt(y− z2) f (z1 − z2)dz1dz2 ≤ Cδ,d

∫
Rd

E2
β(−νtβ|ξ|α(1 + |ξ|2)γ/2)|ξ|−δdξ. (43)

Then, by the similar arguments in the proof of Lemma 1, based on the estimate on the
Mittag–Leffler Function (21), we can conclude the proof.

Now, we are ready to give the proof of Theorem 2. The idea used here is essentially
due to [24].

Proof of Theorem 2. Recall the iterated sequences {u(n)(t, x), n ≥ 0, (t, x) ∈ [0, T]×Rd}
given by (35). Define

Dn(t, x) := E
∣∣∣u(n+1)(t, x)− u(n)(t, x)

∣∣∣2,

Hn(t) = sup
x∈Rd

Dn(t, x),

Ξ(t, y, n) =
∣∣∣σ(u(n)(t, y))− σ(u(n−1)(t, y))

∣∣∣.
We will prove the result for t ∈ [0, T], where T > 0 is some fixed number. We now use

this notation together with the covariance formula (10) and the Assumption 1 on σ to write

Dn(t, x) = λ2
∫ t

0

∫
Rd

∫
Rd

Gt−s(x− y)Gt−s(x− z)E(Ξ(s, y, n)Ξ(s, z, n)) f (y− z)dydzds.
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Now, we estimate the expectation on the right hand side using Cauchy–Schwartz inequality:

E(Ξ(s, y, n)Ξ(s, z, n)) ≤ LσE
(
|u(n)(s, y)− u(n−1)(s, y)||u(n)(s, z)− u(n−1)(s, z)|

)
≤ L2

σ

(
E|u(n)(s, y)− u(n−1)(s, y)|2

) 1
2
(

E|u(n)(s, z)− u(n−1)(s, z)|2
) 1

2

≤ L2
σ(Dn−1(s, y)Dn−1(s, z))

1
2

≤ L2
σ Hn−1(s).

Hence, we have for 0 < d− δ < α + γ by using Lemma 2

Dn(t, x) ≤ λ2L2
σ

∫ t

0
Hn−1(s)

∫
Rd

∫
Rd

Gt−s(x− y)Gt−s(x− z) f (y− z)dydzds

≤ Cλ2L2
σ

∫ t

0
Hn−1(s)(t− s)−

β(d−δ)
α+γ ds.

We therefore have

Hn(t) ≤ Cλ2L2
σ

∫ t

0
Hn−1(s)(t− s)−

β(d−δ)
α+γ ds.

We now note that the integral appearing on the right-hand side of the above inequality

is finite when d − δ < α+γ
β . Hence, by Lemma 3.3 in Walsh [20], the series ∑∞

n=0 H
1
2
n (t)

converges uniformly on [0, T]. Therefore, the sequence {u(n)(t, x), n ≥ 0} converges in L2

and uniformly on [0, T]× Rd and the limit satisfies (14). We can prove uniqueness in a
similar way.

We now turn to the proof of the exponential bound. Set

A(t) := sup
x∈Rd

E|u(t, x)|2.

We claim that there exist constants c and c′ such that, for all t > 0, we have

A(t) ≤ c + c′λ2L2
σ

∫ t

0
A(s)(t− s)−

β(d−δ)
α+γ ds.

Recall the renewal inequality in Proposition 2.5 in Foondun, Liu, and Omaba [34] with
ρ = 1− β(d−δ)

α+γ ; then, one can prove the exponential upper bound. To prove this claim, we start
with the mild formulation given by (14); then, take the second moment to obtain the following

E|u(t, x)|2 = |(Gu0)t(x)|2

+ λ2
∫ t

0

∫
Rd

∫
Rd

Gt−s(x− y)Gt−s(x− z) f (y− z)E(σ(u(s, y))σ(u(s, z)))dydzds

:= I1 + I2.

(44)

Since u0 is bounded, we have I1 ≤ c with some positive constant c. Next, we use the
Assumption 1 on the coefficient σ together with Hölder’s inequality to see that

E(σ(u(s, y))σ(u(s, z))) ≤ L2
σE(u(s, y)u(s, z))

≤ L2
σ[E|u(s, y)|2] 1

2 [E|u(s, z)|2] 1
2

≤ L2
σ sup

x∈Rd
E(|u(s, x)|2).

(45)

158



Fractal Fract. 2022, 6, 450

Therefore, using Lemma 2, the second term I2 is thus bounded as follows:

I2 ≤ cλ2L2
σ

∫ t

0
A(s)(t− s)−

β(d−δ)
α+γ ds.

Combining the above estimates, we obtain the desired result.

Next, we analyze the Hölder regularity of the solution with respect to time and space
variables. The next Theorem 3 extends and improves similar results known for (fractional)
stochastic heat equation (e.g., Mijena and Nane [18] with γ = 0 in Equation (1), Chen and
Dalang [28], corresponding to the case 0 < α ≤ 2, γ = 0 and β = 1, Márquez-Carreras [15]
with β = 1 in Equation (1)), and also extends some results for (1) with Gaussian white noise
(e.g., Dalang [21]). We use a direct method to prove our regularity results in which the
Fourier transform and the representation of the Green function (i.e., (17) and (19)) play a
crucial role. We state the result as follows.

Theorem 3. Under Assumption 1, assuming that the spectral measure μ satisfies Hypothesis 2,
then, for every t, s ∈ [0, T], T > 0, x, y ∈ Rd, p ≥ 2, the solution u(t, x) to Equation (1) satisfies

E(|u(t, x)− u(s, y)|p) ≤ C(|t− s|pχ1 + |x− y|pχ2), (46)

with 0 < χ1 < min(β, 1
2 − β) and 0 < χ2 < α + γ − η if 0 < β < 1

2 , 0 < χ1 <
1
4 and

0 < χ2 <
α+γ

2 − η if β = 1
2 , and 0 < χ1 < β− 1

2 and 0 < χ2 <
α+γ
2β − η if 1

2 < β < 1.
In particular, the random field u is (χ1, χ2)-Hölder continuous with respect to the time and

space variables.

Proof. Since the function (Gu0)t(x) =
∫
Rd Gt(x− y)u0(y)dy is smooth for any t > 0, then,

by Proposition 2, (38) and (39), we see that, for every p ≥ 2 and any 0 < T < ∞, there exists
a finite constant Ap,T such that

E
(
|u(n)(t, x)− u(n)(s, y)|p

)
≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ap,T

(
|t− s|min(2β,1−2β)

p
2 + |x− y|pχ2

)
, if 0 < β <

1
2

,

Ap,T

(
|t− s| p

4 + |x− y|pχ2
)

, if β =
1
2

Ap,T

(
|t− s|(2β−1) p

2 + |x− y|pχ2
)

, if
1
2
< β < 1.

(47)

with χ2 ∈ (0, α + γ− η) if 0 < β < 1
2 , χ2 ∈ (0, α+γ

2 − η) if β = 1
2 and χ2 ∈ (0, α+γ

2β − η) if
1
2 < β < 1 simultaneously for all t, s ∈ [0, T] and x, y ∈ Rd. The right-hand side of this
inequality does not depend on n. Hence, using Fatou’s lemma, as n tends to infinity, we ob-
tain the similar estimates for u, which also satisfies (47). Then, the conclusion of Theorem 3
is a consequence of the Kolmogorov continuity criterion for stochastic processes.

Let us also make some discussion about the above regularity results.

Remark 8. For β close to 1, the order of Hölder regularity of u(t, x) in space is (α + γ)-times the
order of Hölder continuity to in time. This is coherent with the case in Márquez-Carreras [15].
When γ = 0 and α ∈ (0, 2], this happens always in the case of the solution of the (fractional) heat
equation (with white noise), see Walsh [20].

Remark 9. If d = 1, α = 2 and γ = 0 (so, somehow, the operator (I − Δ)
γ
2 (−Δ)

α
2 reduces to the

Laplacian operator Δ and, moreover, we assume that η is close to one-half and β is close to 1, we
obtain the well-known regularity of the solution to the heat equation with time-space white noise
(which is Hölder continuous of order 1

4 in time and of order 1
2 in space).
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4. The Linear Additive Noise

In the last part of this work, we focus on the solution of (14) with u0(x) = 0 and σ = 1.
This is the additive noise case and in this situation the solution is Gaussian. We will study
the stationarity of the solution, both in time and in space. The solution is stationary in
space, but not in time.

In the following, we consider

U(t, x) =
∫ t

0

∫
Rd

Gt−s(x− y)W(ds, dy), (48)

which is the mild solution of (1) when the initial condition u0(x) = 0, x ∈ Rd and σ(x) ≡ 1,
x ∈ R.

Remark 10.

1. As mentioned in the introduction, Anh and Leonenko [2] showed that the presence of the Bessel
operator −(I − Δ)γ/2 with γ ≥ 0 is essential to have an (asymptotically) stationary solution
of SPDE (1). In fact, the linnear case requires the condition 0 < α < d/2 and α + γ > d/2
that is to say the parameter γ > 0 is necessary.

2. On the other hand, the parameter γ > 0 of the Bessel operator is also useful in determining
suitable conditions for the spectral density of the solutions of fractional kinetic equations
belonging to L1(Rd).

Theorem 4. Under Hypothesis 2 on the spectral measure μ associated with Ẇ, then, for fixed
t ∈ R+, the spatial covariance function of U(t, x) given by (48) is

Rt(x− z) =
∫
Rd

μ(dξ)ei〈x−z,ξ〉
∫ t

0
dsE2

β(−ν(t− s)β|ξ|α(1 + |ξ|2)γ/2).

In particular, for every t ∈ R+, the process
{

U(t, x), x ∈ Rd
}

is stationary.

Proof. We first calculate the spatial covariance for a fixed t ∈ R+. By means of the definition
of Fourier transform, change of variable and Fubini’s theorem, we obtain, for any x, z ∈ Rd,

E(U(t, x)U(t, z)) =
∫ t

0

∫
Rd
FGt−s(x− ·)(ξ)FGt−s(z− ·)(ξ)μ(dξ)ds

=
∫ t

0

∫
Rd

e−i〈x−z,ξ〉|FGt−s(·)(ξ)|2μ(dξ)ds

=
∫
Rd

e−i〈x−z,ξ〉
∫ t

0
E2

β(−ν(t− s)β|ξ|α(1 + |ξ|2)γ/2)dsμ(dξ)

= Rt(x− z),

where we have used the fact that∫ t

0
E2

β(−ν(t− s)β|ξ|α(1 + |ξ|2)γ/2)ds

≤
∫ t

0

1
(1 + Γ(1 + β)−1(t− s)β|ξ|α(1 + |ξ|2)γ/2)2 ds

≤ t.

Hence, for any fixed t ∈ R+, the process {U(t, x), x ∈ Rd} is a Gaussian field that has
zero mean, stationary increments, and a continuous covariance function.
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Remark 11. From the above result, one can obtain the spectral density of the process x → U(t, x).
Indeeed, its spectral density ft(ξ) is given by

ft(ξ) =
∫ t

0
dsE2

β(−ν(t− s)β|ξ|α(1 + |ξ|2)γ/2)g(ξ).

where g(·) is the density of μ(·) with respect to the Lebesgue measure.

The next result shows that the process (48) is not stationary in time, but, when t tends
to infinity, it converges to a stationary process.

Theorem 5. Under Hypothesis 2 on the spectral measure μ associated with Ẇ, assuming 1/2 <
β < 1, then, for t ∈ R+, τ ∈ R such that t + τ ∈ R+, x, z ∈ Rd, the asymptotic homogeneous
spatial-temporal covariance function of U(t + τ, x) and U(t, z) is

R(τ, x− z) =
∫
Rd

ei〈x−z,ξ〉

β(ν|ξ|α(1 + |ξ|2)γ/2)1/β

∫ ∞

ντβ |ξ|α(1+|ξ|2)γ/2
x1/β−1Eβ(−x)

· Eβ

⎛⎝−ν

((
x

ν|ξ|α(1 + |ξ|2)γ/2

)1/β

− τ

)β

|ξ|α(1 + |ξ|2)γ/2

⎞⎠dxμ(dξ).

Moreover, U(·, x) is asymptotically in time an index-
(

β− 1
2

)
Gaussian field.

Proof. For t, τ ∈ R+ (for τ ∈ R− such that t + τ ∈ R+, we argue similarly), and x, z ∈ Rd,
we have

E
(

U(t + τ, x)U(t, z)
)

=
∫ t

0
ds
∫
Rd

μ(dξ)FGt+τ−s(x− ·)(ξ)FGt−s(z− ·)(ξ)

=
∫ t

0
ds
∫
Rd

μ(dξ)ei〈x−z,ξ〉FGt+τ−s(x− ·)(ξ)FGt−s(z− ·)(ξ)

=
∫ t

0
ds
∫
Rd

μ(dξ)ei〈x−z,ξ〉Eβ(−ν(t + τ − s)β|ξ|α(1 + |ξ|2)γ/2)Eβ(−ν(t− s)β|ξ|α(1 + |ξ|2)γ/2)

=
∫
Rd

ei〈x−z,ξ〉
∫ t

0
Eβ(−ν(t + τ − s)β|ξ|α(1 + |ξ|2)γ/2)Eβ(−ν(t− s)β|ξ|α(1 + |ξ|2)γ/2)dsμ(dξ).

Next, let us calculate the above integral with respect to s. In fact, with the change of
variable x = ν(t + τ − s)β|ξ|α(1 + |ξ|2)γ/2, we have∫ t

0
Eβ(−ν(t + τ − s)β|ξ|α(1 + |ξ|2)γ/2)Eβ(−ν(t− s)β|ξ|α(1 + |ξ|2)γ/2)ds

=
1

β(ν|ξ|α(1 + |ξ|2)γ/2)1/β

∫ ν(t+τ)β |ξ|α(1+|ξ|2)γ/2

ντβ |ξ|α(1+|ξ|2)γ/2
Eβ(−x)x1/β−1

· Eβ

⎛⎝−ν

((
x

ν|ξ|α(1 + |ξ|2)γ/2

)1/β

− τ

)β

|ξ|α(1 + |ξ|2)γ/2

⎞⎠dx.

161



Fractal Fract. 2022, 6, 450

Moreover, as t → ∞, we obtain

lim
t→∞

∫ t

0
Eβ(−ν(t + τ − s)β|ξ|α(1 + |ξ|2)γ/2)Eβ(−ν(t− s)β|ξ|α(1 + |ξ|2)γ/2)ds

=
1

β(ν|ξ|α(1 + |ξ|2)γ/2)1/β

∫ ∞

ντβ |ξ|α(1+|ξ|2)γ/2
x1/β−1Eβ(−x)

· Eβ

⎛⎝−ν

((
x

ν|ξ|α(1 + |ξ|2)γ/2

)1/β

− τ

)β

|ξ|α(1 + |ξ|2)γ/2

⎞⎠dx,

which is finite because we have

∫ ∞

ντβ |ξ|α(1+|ξ|2)γ/2
x1/β−1Eβ(−x)Eβ

⎛⎝−ν

((
x

ν|ξ|α(1 + |ξ|2)γ/2

)1/β

− τ

)β

|ξ|α(1 + |ξ|2)γ/2

⎞⎠dx

≤ Cξ,ν,β,α,γ,τ

∫ ∞

ντβ |ξ|α(1+|ξ|2)
x1/β−3dx,

which is finite when 1/2 < β < 1 (i.e., 1
β − 2 < 0).

We now tackle the second part of this theorem. We assume that x ∈ Rd, t ∈ R+ and
τ ∈ R+ are small (the negative case is similar). Then, from (31) and (32), when 1/2 < β < 1,
we have

E
(
|U(t + τ, x)−U(t, x)|2

)
=
∫ t

0
ds
∫
Rd

μ(dξ)|FGt+τ−s(x− ·)(ξ)−FGt−s(x− ·)(ξ)|2

+
∫ t+τ

t
ds
∫
Rd

μ(dξ)|FGt+τ−s(x− ·)(ξ)|2

≤ C
(
|τ|2β + |τ|2β−1

)
.

Then, we can complete the proof of the second part.

5. Conclusions

In this article, we have studied the space-time fractional stochastic kinetic Equation (1)
driven by spatially homogeneous Gaussian noise. The time fractional derivative ∂β

∂tβ , 0 < β ≤ 1
is defined in the Caputo–Djrbashian sense given by (2). The inverses of the Bessel and Riesz
potentials are also included in Equation (1). First, the existence and uniqueness of solutions
for the proposed fractional SPDEs (1) were obtained. In particular, when the covariance
function of the Gaussian noise is given by the Riesz kernel, we have proved the upper bound
for the second moment of the mild solution to Equation (1). Moreover, the main results have
been proven based on the classical Picard’s iterations and some estimates about the Fourier
transform of the Green function given by (17). Next, we analyze the Hölder regularity of the
mild solution to Equation (1) with respect to the time and space variables. Finally, in some
special cases (i.e., u0(x) ≡ 0 and σ(u) ≡ 1), we have studied the stationarity of the mild
solution, both in time and space variables. We proved that the mild solution is stationary in
space, but not in time.
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Appendix A

We will prove Proposition 2 in this appendix.

Proof of Proposition 2. For any t, t′ ∈ R+ such that t′ < t and x ∈ Rd, by using the fact

FGt−s(x− ·)(ξ)−FGt′−s(x− ·)(ξ) = ei〈ξ,x〉(FGt−s(·)(ξ)−FGt′−s(·)(ξ)),

then from (17) and the absolute convergence of the series in (18), one obtains

FGt−s(·)(ξ)−FGt′−s(·)(ξ) =
∞

∑
k=0

(−ν|ξ|α(1 + |ξ|2)γ/2)k

Γ(1 + kβ)

(
|t− s|kβ − |t′ − s|kβ

)
≤

∞

∑
k=0

(−ν|ξ|α(1 + |ξ|2)γ/2)k

Γ(1 + kβ)

(
|t− s|k − |t′ − s|k

)β

≤ |t− t′|β
∞

∑
k=1

kβ(−ν|ξ|α(1 + |ξ|2)γ/2)k

Γ(1 + kβ)
t(k−1)β,

(A1)

for all t, t′ ∈ R+, where the last inequality follows from the mean value theorem. Further-
more, since the series in (18) is absolutely convergent, then the series in the last inequality
in (A1) can be bounded as follows with 0 < β < 1:

∞

∑
k=1

kβ(−ν|ξ|α(1 + |ξ|2)γ/2)k

Γ(1 + kβ)
t(k−1)β = t−β

∞

∑
k=1

kβ(−ν|ξ|α(1 + |ξ|2)γ/2tβ)k

Γ(1 + kβ)

≤ −νt−β|ξ|α(1 + |ξ|2)γ/2
∞

∑
k=1

k(−ν|ξ|α(1 + |ξ|2)γ/2tβ)k−1

Γ(1 + kβ)

≤ −νt−β|ξ|α(1 + |ξ|2)γ/2
∞

∑
k=1

(−ν|ξ|α(1 + |ξ|2)γ/2tβ)k−1

Γ(1 + kβ)

≤ t−β

1 + Γ(1 + β)−1νtβ|ξ|α(1 + |ξ|2)γ/2 .

(A2)

Then, we have∫ t′

0
ds
∫
Rd

μ(dξ)|FGt−s(x− ·)(ξ)−FGt′−s(x− ·)(ξ)|2

≤ |t− t′|2β
∫ t′

0
ds
∫
Rd

μ(dξ)
t−2β

(1 + Γ(1 + β)−1νtβ|ξ|α(1 + |ξ|2)γ/2)2

:= A1 + A2,

(A3)

with

A1 = |t− t′|2β
∫ t′

0
ds
∫
|ξ|≤1

μ(dξ)
t−2β

(1 + Γ(1 + β)−1νtβ|ξ|α(1 + |ξ|2)γ/2)2 ,

and

A2 = |t− t′|2β
∫ t′

0
ds
∫
|ξ|>1

μ(dξ)
t−2β

(1 + Γ(1 + β)−1νtβ|ξ|α(1 + |ξ|2)γ/2)2 .
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Thus, with (11), we have

A1 ≤ t1−2β
∫
|ξ|≤1

μ(dξ)|t− t′|2β,

and

A2 ≤ t−2β
∫
|ξ|>1

Nt′(ξ)μ(dξ)|t− t′|2β.

Then, combining the above estimates for A1, A2 and Proposition 1, we can conclude
the proof of (31).

Next, we can follow the similar arguments to prove (32) which will be divided into
three cases. Firstly, with 0 < β < 1

2 , we have

∫ t

t′
ds
∫
Rd

μ(dξ)|FGt−s(x− ·)(ξ)|2

=
∫ t

t′
ds
∫
Rd

μ(dξ)|ei〈ξ,x〉|2
∣∣∣Eβ(−ν(t− s)β|ξ|α(1 + |ξ|2)γ/2)

∣∣∣2
≤
∫
Rd

μ(dξ)
∫ t

t′
ds
(

1
1 + Γ(1 + β)−1ν(t− s)β|ξ|α(1 + |ξ|2)γ/2

)2

≤
∫
|ξ|≤1

μ(dξ)|t− t′|

+
Γ(1 + β)22α+γ

ν2(1− 2β)

∫
|ξ|>1

(
1

1 + |ξ|2
)α+γ

μ(dξ)|t− t′|1−2β

= C3.2|t− t′|1−2β.

If 1
2 < β < 1, one obtains with Fubini’s theorem

∫ t

t′
ds
∫
Rd

μ(dξ)|FGt−s(x− ·)(ξ)|2

=
∫
Rd

μ(dξ)
∫ t

t′

∣∣∣Eβ(−ν(t− s)β|ξ|α(1 + |ξ|2)γ/2)
∣∣∣2ds

≤
∫
Rd

μ(dξ)
∫ t

t′

(
1

1 + Γ(1 + β)−1ν(t− s)β|ξ|α(1 + |ξ|2)γ/2

)2
ds.

Denote by

Mt,t′(ξ) :=
∫ t

t′

(
1

1 + Γ(1 + β)−1ν(t− s)β|ξ|α(1 + |ξ|2)γ/2

)2
ds

=
∫ t−t′

0

(
1

1 + Γ(1 + β)−1νuβ|ξ|α(1 + |ξ|2)γ/2

)2
du.

Then, with the change of variable x = Γ(1 + β)−1νuβ|ξ|α(1 + |ξ|2)γ/2, we have

Mt,t′(ξ) =
1
β

(
Γ(1 + β)

ν|ξ|α(1 + |ξ|2)γ/2

) 1
β
∫ Γ(1+β)−1ν(t−t′)β |ξ|α(1+|ξ|2)γ/2

0
x

1
β−1

(1 + x)−2dx.

For |ξ| ≤ 1, we have the following:

Mt,t′(ξ)1{|ξ|≤1} ≤
1
β

(
Γ(1 + β)

ν|ξ|α(1 + |ξ|2)γ/2

) 1
β
∫ ν|ξ|α(1+|ξ|2)γ/2

Γ(1+β)
(t−t′)β

0
x

1
β−1dx

= |t− t′|.
(A4)
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Now we will estimate Mt,t′(ξ) when |ξ| > 1. In fact, with 0 < η < α+γ
2β , we have

Mt,t′(ξ)1{|ξ|>1} ≤
1
β

(
Γ(1 + β)

ν|ξ|α(1 + |ξ|2)γ/2

) 1
β
∫ ν|ξ|α(1+|ξ|2)γ/2

Γ(1+β)
(t−t′)β

0
(1 + x)

1
β−3dx

≤ 1
2β− 1

(
Γ(1 + β)

ν|ξ|α(1 + |ξ|2)γ/2

) 1
β

≤ 1
2β− 1

(
Γ(1 + β)

ν

) 1
β

2
α+γ
2β

(
1

1 + |ξ|2
) α+γ

2β

.

(A5)

Then, combining the estimates (A4) and (A5), we can obtain (32).
If β = 1

2 , by using the similar argument above, we have

∫ t

t′
ds
∫
Rd

μ(dξ)|FGt−s(x− ·)(ξ)|2

=
∫
Rd

μ(dξ)
∫ t

t′

∣∣∣Eβ(−ν(t− s)β|ξ|α(1 + |ξ|2)γ/2)
∣∣∣2ds

≤
∫
|ξ|≤1

μ(dξ)|t− t′|

+ 2
(

Γ(3/2)
ν|ξ|α(1 + |ξ|2)γ/2

)2 ∫
|ξ|>1

μ(dξ)
∫ Γ(3/2)−1ν|t−t′ | 1

2 |ξ|α(1+|ξ|2)γ/2

0
x(1 + x)−2dx.

and we have

2
(

Γ(3/2)
ν|ξ|α(1 + |ξ|2)γ/2

)2 ∫ Γ(3/2)−1ν|t−t′ | 1
2 |ξ|α(1+|ξ|2)γ/2

0
x(1 + x)−2dx

≤ 2
(

Γ(3/2)
ν|ξ|α(1 + |ξ|2)γ/2

)2 ∫ Γ(3/2)−1ν|t−t′ | 1
2 |ξ|α(1+|ξ|2)γ/2

0
(1 + x)−1dx

= 2
(

Γ(3/2)
ν|ξ|α(1 + |ξ|2)γ/2

)2

ln
(

1 + Γ(3/2)−1ν|t− t′| 1
2 |ξ|α(1 + |ξ|2)γ/2

)
≤ 21+ α+γ

2
Γ(3/2)

ν

(
1

1 + |ξ|2
) α+γ

2 |t− t′| 1
2 .

Then, we have that∫ t

t′
ds
∫
Rd

μ(dξ)|FGt−s(x− ·)(ξ)|2

≤
(∫

|ξ|≤1
μ(dξ)|t− t′| 1

2 + 21+ α+γ
2

Γ(3/2)
ν

∫
|ξ|>1

(
1

1 + |ξ|2
) α+γ

2
μ(dξ)

)
|t− t′| 1

2 .

Since

FGt−s(x− ·)(ξ)−FGt−s(x′ − ·)(ξ) = (ei〈ξ,x〉 − ei〈ξ,x′〉)FGt−s(·)(ξ),

then we have that∫ t

0
ds
∫
Rd

μ(dξ)
∣∣FGt−s(x− ·)(ξ)−FGt−s(x′ − ·)(ξ)∣∣2

=
∫ t

0
ds
∫
Rd

μ(dξ)
∣∣∣ei〈ξ,x〉 − ei〈ξ,x′〉

∣∣∣2|FGt−s(·)(ξ)|2

:= B1 + B2,
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with

B1 =
∫ t

0
ds
∫
|ξ|≤1

μ(dξ)
∣∣∣ei〈ξ,x〉 − ei〈ξ,x′〉

∣∣∣2|FGt−s(·)(ξ)|2,

B2 =
∫ t

0
ds
∫
|ξ|>1

μ(dξ)
∣∣∣ei〈ξ,x〉 − ei〈ξ,x′〉

∣∣∣2|FGt−s(·)(ξ)|2.

The first term B1 is easy and can be studied in the same way for any 0 < β < 1. Indeed,
the fact that the Fourier transform of Green function G given by (17) is bounded by 1, the
mean value theorem, and property (11) imply that

B1 ≤ C
∫ t

0
ds
∫
|ξ|≤1

μ(dξ)|〈x− x′, ξ〉|2

≤ Ct
∫
|ξ|≤1

μ(dξ)|x− x′|2.
(A6)

The other term B2 is a little involved. We distinguish three cases depending on the values
of β. We first study the case 0 < β < 1

2 . Let 0 < ρ1 < α + γ− η. Applying the mean theorem,
Fubini’s theorem, the fact 1− e−x ≤ 1 for all x > 0 and Hypothesis 2, then we have

B2 =
∫ t

0
ds
∫
|ξ|>1

μ(dξ)
∣∣∣ei〈ξ,x〉 − ei〈ξ,x′〉

∣∣∣2|FGt−s(·)(ξ)|2

≤ 4
∫ t

0
ds
∫
|ξ|>1

μ(dξ)

∣∣∣∣12 (ei〈ξ,x〉 − ei〈ξ,x′〉)
∣∣∣∣2ρ3

|FGt−s(·)(ξ)|2

≤ C
∫ t

0
ds
∫
|ξ|>1

μ(dξ)|ξ|2ρ1 |x− x′|2ρ1 |Eβ(−ν(t− s)β|ξ|α(1 + |ξ|2)γ/2)|2

≤ Ct1−2β Γ(1 + β)2

(1− 2β)ν2 2α+γ−ρ1

∫
|ξ|>1

(
1

1 + |ξ|2
)α+γ−ρ1

μ(dξ)|x− x′|2ρ1 .

(A7)

For the critical case β = 1
2 , by choosing 0 < ρ2 <

α+γ
2 − η, then we have that

B2 ≤ C|x− x′|2ρ2

∫
|ξ|>1

μ(dξ)|ξ|2ρ2

∫ t

0
|Eβ(−ν(t− s)β|ξ|α(1 + |ξ|2)γ/2)|2ds

≤ 2Ct
1
2 |x− x′|2ρ2 Γ(3/2)ν−1

∫
|ξ|>1

μ(dξ)
|ξ|2ρ2

|ξ|α(1 + |ξ|2)γ/2)

≤ C21+ α+γ
2 −ρ2 t

1
2 |x− x′|2ρ2 Γ(3/2)ν−1

∫
|ξ|>1

(
1

1 + |ξ|2
) α+γ

2 −ρ2

μ(dξ).

(A8)

On the other hand, when 1
2 < β < 1, let 0 < ρ3 <

α+γ
2β − η, then the similar arguments

yield that

B2 ≤ C
∫ t

0
ds
∫
|ξ|>1

μ(dξ)|ξ|2ρ3 |x− x′|2ρ3 |Eβ(−ν(t− s)β|ξ|α(1 + |ξ|2)γ/2)|2

≤ C
(2β− 1)

(
Γ(1 + β)

ν

) 1
β

2
α+γ
2β −ρ3

∫
|ξ|>1

(
1

1 + |ξ|2
) α+γ

2β −ρ3

μ(dξ) · |x− x′|2ρ3 .

(A9)

Then, we can conclude the proof of (33) by combining (A6)–(A9).
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Abstract: Fractional integrals and inequalities have recently become quite popular and have been the
prime consideration for many studies. The results of many different types of inequalities have been
studied by launching innovative analytical techniques and applications. These Hermite–Hadamard
inequalities are discovered in this study using Atangana–Baleanu integral operators, which provide
both practical and powerful results. In this paper, a symmetric study of integral inequalities of
Hermite–Hadamard type is provided based on an identity proved for Atangana–Baleanu integral
operators and using functions whose absolute value of the second derivative is harmonic convex.
The proven Hermite–Hadamard-type inequalities have been observed to be valid for a choice of any
harmonic convex function with the help of examples. Moreover, fractional inequalities and their
solutions are applied in many symmetrical domains.

Keywords: harmonic convex functions; Hermite–Hadamard-type inequalities; Atangana–Baleanu
fractional integral operator; power-mean inequality; Hölder inequality

1. Introduction

Integral inequalities are fundamental to our comprehension of the cosmos, and there
are a great deal of straightforward methods available for determining the uniqueness and
existence of linear and nonlinear differential equations in which symmetry is a significant
factor. Convex functions are of great interest to researchers in many applied fields, such as
convex programming, because they are extremely important for the theory of inequality in
a wide range of applications. Convex functions are also of great interest to researchers in
many theoretical fields, such as probability theory. It is good to start by recognizing this
class of function.

Definition 1. A function f : I ⊆ R→ R is convex if for all �1, �2 ∈ I, the inequality

f (t�1 + (1− t)�2) ≤ t f (�1) + (1− t) f (�2) (1)

holds. A function f : I → R is concave in which the inequality (1) holds in the opposite direction.

In this case, convex functions play an important role in many areas of mathematics.
They are especially important in the study of optimization problems where they are dis-
tinguished by a number of convenient properties. Moreover, convex functions are used
to create a historical inequality, which is a kind of beautiful inequality in which one has
the ability to express the lower and higher limits as arithmetic means. It is critical in
numerical integration to understand the inequality described here because it is used in
error estimation formulas such as the trapezoidal and midpoint formulas (for more details,
see [1–7]):
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f
(

�1 + �2

2

)
≤ 1

�2 −�1

∫ �2

�1

f (x)dx ≤ f (�1) + f (�2)

2
, (2)

where the function f : I → R is convex on I and f ∈ L1([�1, �2]).
One of the generalizations of the convex functions is the harmonic convex functions,

which are defined as follows:

Definition 2 ([7]). A function f : I ⊂ R\{0} → R is harmonic convex if for all �1, �2 ∈ I, the
inequality

f
(

�1�2

t�2 + (1− t)�1

)
≤ t f (�1) + (1− t) f (�2) (3)

holds. A function f : I ⊂ R\{0} → R is harmonic concave in which the inequality (3) holds in the
opposite direction. For more details about harmonic convex functions, please see [8–11].

A variant of the Hermite–Hadamard inequality (2) for harmonic convex functions was
proved by İşcan [7].

Theorem 1 ([7]). Let f : I ⊂ R\{0} → R be a harmonically convex function and �1, �2 ∈ I
with �1 < �2. If f ∈ L[�1, �2]; then, the following inequalities hold:

f
(

2�1�2

�1 + �2

)
≤ �1�2

�2 −�1

∫ �2

�1

f (x)
x2 dx ≤ f (�1) + f (�2)

2
.

Convexity and integral inequality are topics that are explored in several works. This
type of research is oriented on examining the properties of Hadamard, Bullen, Ostrowski,
and Simpson-type inequalities, which can be discovered in the results of Static Neural Net-
works, as well as the properties of other types of inequalities. Every study introduced a new
strategy and opened new application opportunities for the literature. The articles [12–18]
offer additional information on convexity and integral inequalities in various directions:

Fractional integral inequalities benefit from the properties and definition of convexity,
and it has recently become an immensely important topic of research. A newly emerged
field in applied mathematics, called fractional analysis, is concerned with finding answers
to open problems involving fractional-order derivatives. After discovering this solution,
mathematicians have found themselves embarking on brand-new lines of inquiry due
to how much research interest there has been in the field for decades. In addition to the
Riemann–Liouville fractional integrals, fractional integral operators and fractional deriva-
tives have become major parts of applied mathematics and applied sciences. Solutions to
real-world problems are proposed by fractional integral and derivative operators, which
also improve the relationship between mathematics and other disciplines when it comes to
applications. Those interested in learning more about fractional integral and derivative
operators should begin with the articles [19–46]. An important concept, not long ago, that
has emerged is the Caputo–Fabrizio integral operator, which was established in the last
few years. This is how it is defined:

Definition 3 ([47]). Let f ∈ H1(0, �2), �1 < �2, α ∈ [0, 1]; then, the definition of the new
Caputo fractional derivative is:

CFDα f (x) =
M(α)

1− α

∫ x

�1

f
′
(t) exp

[
−α(x− t)

1− α

]
dt, (4)

such that M(α) is a normalization function.

The Caputo–Fabrizio fractional integral formula is:

169



Symmetry 2022, 14, 1774

Definition 4 ([21]). Let f ∈ H1(0, �2), �1 < �2, α ∈ [0, 1] So, the left and right sides of the
Caputo–Fabrizio fractional integral are:(

CF
�1

Iα
)

f (x) =
1− α

B(α)
f (x) +

α

B(α)

∫ x

�1

f (t)dt (5)

and (
CF Iα

�2

)
f (x) =

1− α

B(α)
f (x) +

α

B(α)

∫ �2

x
f (t)dt, (6)

where B(α) is normalization function.

Atangana–Baleanu [5] has found a solution to the problem of the Caputo–Fabrizio
operator not being reduced to the original function in a special case, despite the fact that
the operator is an effective tool in the solution of many systems of differential equations.
The features of the Caputo–Fabrizio operator are present in the normalization function.

The power law is included in the kernel of some fractional order derivative and integral
operators as well as some integral operators. Nature does not usually exhibit power law
behavior. This novel derivative and integral operator incorporates the Mittag–Leffler
function [48]. The Mittag–Leffler function is required to model nature. This improved
the Atangana–Baleanu operator and piqued researchers’ interest. That the work uses
the Atangana–Baleanu operator for Hermite–Hadamard inequalities is unusual. When
the parameter is set to zero, the Atangana–Baleanu original function can be derived and
compared to the Caputo–Fabrizio results.

Definition 5 ([5]). Let f ∈ H1(0, �2), �1 < �2, α ∈ [0, 1]; then, the definition of the new
fractional derivative is given below

ABC
�1

Dα
x [ f (x)] =

B(α)
1− α

∫ x

�1

f
′
(t)Eα

[
−α(x− t)α

1− α

]
dt. (7)

Definition 6 ([5]). Let f ∈ H1(0, �2), �1 < �2, α ∈ [0, 1]; then, the definition of the new
fractional derivative is given below:

ABC
�1

Dα
x [ f (x)] =

B(α)
1− α

d
dx

∫ x

�1

f (t)Eα

[
−α(x− t)α

1− α

]
dt. (8)

Equations (7) and (8) have a non-local kernel. In addition, in (8), as a result, the
constant function returns to zero. The following is the definition of the associated integral
operator for the Atangana–Baleanu fractional derivative:

Definition 7 ([5]). The new fractional derivative with a non-local kernel of a function is associated
with the fractional integral f ∈ H1(0, �2) as defined:(

AB
�1

Iα
)
{ f (x)} = 1− α

B(α)
f (x) +

α

B(α)Γ(α)

∫ x

�1

f (t)(x− t)α−1dt, (9)

where �1 < �2, α ∈ [0, 1].

The authors of [22] described the integral operator’s right-hand side as follows:

AB Iα
�2
{ f (x)} = 1− α

B(α)
f (x) +

α

B(α)Γ(α)

∫ �2

x
f (t)(t− x)α−1dt, (10)

where �1 < �2, α ∈ [0, 1].
Mathematical concepts can be thought of as having practical and theoretical signifi-

cance. Furthermore, among the qualities that make the concepts strong are that they solve
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a deficiency, provide a new workplace orientation and are more functional than existing
concepts. The significance and power of fractional analysis investigations can be better
understood when seen from this perspective. The literature acknowledges an operator
whose definition and properties are expressed because it is popular in the domain of usage
and invention. The Atangana–Baleanu derivative and related integral operator have proven
particularly useful. Although many investigations on this unusual operator have been
completed in a short time, the results demonstrate that the operator is efficient and valuable.
We advise academics to undertake their own independent research to learn more about
new directions and trends in fractional calculus.

In [37], Set et al. proved new Hermite–Hadamard-type inequalities, which are for
functions whose absolute value of the second derivatives are convex, using Atangana–
Baleanu integral operators. Set et al. [37] used Atangana–Baleanu operators to generate
new and general Hermite–Hadamard-type inequalities and to make discoveries that better
explain physical phenomena in terms of the kernel structure and characteristics of the
operator. Selecting α equal to 1 will give a different classical Hermite–Hadamard inequality.
In the first place, an identity using Atangana–Baleanu was obtained by various integration
techniques, and on the other hand, a modification is made in this identity, and hence, a new
set of integral inequalities was proved.

During the course of the last three decades, the study of mathematical inequalities that
make use of convex functions has been recognized as a prominent field of research. The
researchers are looking for new generalizations of convex functions, and as a consequence,
new findings are being added to the theory of inequality as a result of their efforts. Within
the scope of the present investigation, we have made use of harmonic convex functions
in order to generalize a number of findings that are valid for convex functions. The study
initiated by Set et al. [37] provided a sound motivation for us to conduct similar research
toward harmonic convex functions. We first set up an identity using an Atangana–Baleanu
integral operator as well as the properties of harmonic convexity and the use of several
integration techniques to obtain new results of Hermite–Hadamard type. We also try to
make amendments in the main identity and applications of a number of known famous
integral inequalities to prove a new variety of integral inequalities of Hermite–Hadamard
type in the next section, with the property that the derivative of the function in absolute
value having certain powers is harmonic convex. The proven Hermite–Hadamard-type
inequalities have been observed to be valid for a choice of any harmonic convex function
with the help of examples. Moreover, the Figure 1 shows the validity of Theorem 7 and
Figure 2 shows the validity of Theorem 3.

Figure 1. The graph shows the validity of Theorem 2.
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Figure 2. The graph shows the validity of Theorem 3.

2. Main Results

The following lemma will be used to show the Hermite–Hadamard-type integral
inequalities for the first time in the literature of inequalities theory. The following result
is actually a consequence of the sum of two symmetric integrals and is useful to obtain
our results.

Lemma 1. Let f : I ⊆ (0, ∞) → R be differentiable mapping on I◦ (the interior of I) and
�1, �2 ∈ I◦ with �1 < �2. Then, the Atangana–Baleanu identity holds for fractional integral operators

Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)
:= −

(
x−�1
x�1

)α+1

B(α)Γ(α)

⎡⎣ (α− 1)x f (�1) + �1(x−�1)
(

2 f (�1)− f
′
(�1)

)
�1x2(x−�1)

⎤⎦
−
(

�2−x
�2x

)α+1

B(α)Γ(α)

⎡⎣ (α− 1)x f (�2) + �2(�2 − x)
(

2 f (�2)− f
′
(�2)

)
�2x2(�2 − x)

⎤⎦
+
(α− 1)
�2

1x2

[
AB

1
�1

Iα
1
x
{( f ◦ h)(x)} − 1− α

B(α)
( f ◦ h)(x)

]
− 2αB(α + 1)

�2
1x3(α + 1)B(α)

×
[

AB
1

�1

Iα+1
1
x

{
(h(x))2( f ◦ h)(x)

}
+

α

B(α + 1)
(h(x))2( f ◦ h)(x)

]

+
(α− 1)
�2

2x2

[
AB

1
�2

Iα
1
x
{( f ◦ h)(x)} − 1− α

B(α)
( f ◦ h)(x)

]
+

2αB(α + 1)
�2

2x3(α + 1)B(α)
(11)
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×
[

AB
1

�2

Iα+1
1
x

{
(h(x))2( f ◦ h)(x)

}
+

α

B(α + 1)
(h(x))2( f ◦ h)(x)

]
− 2

�2
1x3

[
AB

1
�1

Iα
1
x
{h(x)( f ◦ h)(x)} − 1− α

B(α)
h(x)( f ◦ h)(x)

]
+

2
�2

2x3

[
AB

1
�2

Iα
1
x
{h(x)( f ◦ h)(x)} − 1− α

B(α)
h(x)( f ◦ h)(x)

]
=

�2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1 ∫ 1

0

tα+1

(tx + (1− t)�2)
4 f

′′
(

�2x
tx + (1− t)�2

)
dt

+
�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1 ∫ 1

0

(1− t)α+1

(t�1 + (1− t)x)4 f
′′
(

�1x
t�1 + (1− t)x

)
dt.

where h(w) = 1
w , w ∈

[
1

�2
, 1

�1

]
, x ∈ [�1, �2] and α ∈ [0, 1].

Proof. We observe by integration by parts that

1
B(α)Γ(α)

∫ 1

0

(1− t)α

(t�1 + (1− t)x)2 f
′
(

�1x
t�1 + (1− t)x

)
dt =

1
B(α)Γ(α)

×
[

1
α + 1

f
′
(�1)

x2 +
∫ 1

0

(1− t)α+1

α + 1
�1x(x−�1)

(t�1 + (1− t)x)4 f
′′
(

�1x
t�1 + (1− t)x

)
dt (12)

+
∫ 1

0

(1− t)α+1

α + 1
2(x−�1)

(t�1 + (1− t)x)3 f
′
(

�1x
t�1 + (1− t)x

)
dt

]
.

From (12), we obtain

α− 1
B(α)Γ(α)

∫ 1

0

(1− t)α

(t�1 + (1− t)x)2 f
′
(

�1x
t�1 + (1− t)x

)
dt

+
2�1

B(α)Γ(α)

∫ 1

0

(1− t)α

(t�1 + (1− t)x)3 f
′
(

�1x
tx + (1− t)�1

)
dt =

1
B(α)Γ(α)

×
[

f
′
(�1)

x2 + �1x(x−�1)
∫ 1

0

(1− t)α+1

(t�1 + (1− t)x)4 f
′′
(

�1x
t�1 + (1− t)x

)
dt

]
.

(13)

By using the definition of Atangana–Baleanu fractional derivative, we observe that the
following equalities hold

α−1
B(α)Γ(α)

∫ 1
0

(1−t)α

(t�1+(1−t)x)2 f
′( �1x

t�1+(1−t)x

)
dt

= α−1
B(α)Γ(α)�1x(x−�1)

∫ 1
0 (1− t)αd

[
f
(

�1x
t�1+(1−t)x

)]
= − (α−1) f (�1)

B(α)Γ(α)�1x(x−�1)
+ (α−1)

�1x(x−�1)

(
�1x

x−�1

)α
α

B(α)Γ(α)

∫ 1
�1

1
x

(
w− 1

x

)α−1
f
(

1
w

)
dw

= − (α−1) f (�1)
B(α)Γ(α)�1x(x−�1)

+ (α−1)
�1x(x−�1)

(
�1x

x−�1

)α

×
[

AB
1

�1

Iα
1
x
{( f ◦ h)(x)} − 1−α

B(α) ( f ◦ h)(x)
]

(14)

and
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2�1

B(α)Γ(α)

∫ 1

0

(1− t)α

(t�1 + (1− t)x)3 f
′
(

�1x
t�1 + (1− t)x

)
dt

=
2

x(x−�1)B(α)Γ(α)

∫ 1

0

(1− t)α

t�1 + (1− t)x
d
[

f
(

�1x
t�1 + (1− t)x

)]
= − 2 f (�1)

x2(x−�1)B(α)Γ(α)
− 2α

αxB(α)Γ(α)

∫ 1

0

(1− t)α

(t�1 + (1− t)x)2 f
(

�1x
t�1 + (1− t)x

)
dt

+
2α

x2(x−�1)B(α)Γ(α)

∫ 1

0

(1− t)α−1

t�1 + (1− t)x
f
(

�1x
t�1 + (1− t)x

)
dt (15)

= − 2 f (�1)

x2(x−�1)B(α)Γ(α)
−

2
(

�1x
x−�1

)α+1
B(α + 1)

�2
1x3(α + 1)B(α)

×
[

AB
1

�1

Iα+1
1
x

{
(h(x))2( f ◦ h)(x)

}
+

α

B(α + 1)
(h(x))2( f ◦ h)(x)

]

+
2
(

�1x
x−�1

)α

�1x2(x−�1)

[
AB

1
�1

Iα
1
x
{h(x)( f ◦ h)(x)} − 1− α

B(α)
h(x)( f ◦ h)(x)

]
.

By applying (14) and (15) in (13), we obtain

−
(

x−�1
x�1

)α+1

B(α)Γ(α)

[
(α− 1)x f (�1) + 2�1(x−�1) f (�1)−�1(x−�1) f

′
(�1)

�1x2(x−�1)

]

+
(α− 1)
�2

1x2

[
AB

1
�1

Iα
1
x
{( f ◦ h)(x)} − 1− α

B(α)
( f ◦ h)(x)

]
− 2B(α + 1)

�2
1x3(α + 1)B(α)

×
[

AB
1

�1

Iα+1
1
x

{
(h(x))2( f ◦ h)(x)

}
+

α

B(α + 1)
(h(x))2( f ◦ h)(x)

]
(16)

+
2

�2
1x3

[
AB

1
�1

Iα
1
x
{h(x)( f ◦ h)(x)} − 1− α

B(α)
h(x)( f ◦ h)(x)

]
=

�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1 ∫ 1

0

(1− t)α+1

(t�1 + (1− t)x)4 f
′′
(

�1x
t�1 + (1− t)x

)
dt.

Now, we consider the integral

1
B(α)Γ(α)

∫ 1
0

tα

(tx+(1−t)�2)
2 f

′( �2x
tx+(1−t)�2

)
dt

= f
′
(�2)

x2(α+1)B(α)Γ(α) − 1
B(α)Γ(α)

∫ 1
0

tα+1

α+1
�2x(�2−x)

(tx+(1−t)�2)
4 f

′′( �2x
tx+(1−t)�2

)
dt

− 1
B(α)Γ(α)

∫ 1
0

tα+1

α+1
2(�2−x)

(tx+(1−t)�2)
3 f

′( �2x
tx+(1−t)�2

)
dt.

(17)

which gives

α− 1
B(α)Γ(α)

∫ 1

0

tα

(tx + (1− t)�2)
2 f

′
(

�2x
tx + (1− t)�2

)
dt

+
2�2

B(α)Γ(α)

∫ 1

0

tα

(tx + (1− t)�2)
3 f

′
(

�2x
tx + (1− t)�2

)
dt (18)

=
f
′
(�2)

x2B(α)Γ(α)
− �2x(�2 − x)

B(α)Γ(α)

∫ 1

0

tα+1

(tx + (1− t)�2)
4 f

′′
(

�2x
tx + (1− t)�2

)
dt.
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It is easy to see that

α− 1
B(α)Γ(α)

∫ 1

0

tα

(tx + (1− t)�2)
2 f

′
(

�2x
tx + (1− t)�2

)
dt

=
(α− 1) f (�2)

�2x(�2 − x)B(α)Γ(α)
−

(α− 1)
(

�2x
�2−x

)α

�2x(�2 − x)
(19)

×
[

AB
1

�2

Iα
1
x
{( f ◦ h)(x)} − 1− α

B(α)
( f ◦ h)(x)

]
and

2�2

B(α)Γ(α)

∫ 1

0

tα

(tx + (1− t)�2)
3 f

′
(

�2x
tx + (1− t)�2

)
dt

=
2 f (�2)

x2B(α)Γ(α)
−

2
(

�2x
�2−x

)α

�2x2(�2 − x)

[
AB

1
�2

Iα
1
x
{h(x)( f ◦ h)(x)} − 1− α

B(α)
h(x)( f ◦ h)(x)

]
(20)

−
2
(

�2x
�2−x

)α+1
αB(α + 1)

�2
2x3(α + 1)B(α)

×
[

AB
1

�2

Iα
1
x

{
(h(x))2( f ◦ h)(x)

}
+

α

B(α + 1)
(h(x))2( f ◦ h)(x)

]
.

A combination of (18)–(20) gives us

−
(

�2−x
�2x

)α+1

B(α)Γ(α)

[
(α− 1)x f (�2) + 2�2(�2 − x) f (�2)−�2(�2 − x) f

′
(�2)

�2x2(�2 − x)

]

+
(α− 1)
�2

2x2

[
AB

1
�2

Iα
1
x
{( f ◦ h)(x)} − 1− α

B(α)
( f ◦ h)(x)

]
+

2αB(α + 1)
�2

2x3(α + 1)B(α)

×
[

AB
1

�2

Iα
1
x

{
(h(x))2( f ◦ h)(x)

}
+

α

B(α + 1)
(h(x))2( f ◦ h)(x)

]
(21)

+
2

�2
2x3

[
AB

1
�2

Iα
1
x
{h(x)( f ◦ h)(x)} − 1− α

B(α)
h(x)( f ◦ h)(x)

]
=

�2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1 ∫ 1

0

tα+1

(tx + (1− t)�2)
4 f

′′
(

�2x
tx + (1− t)�2

)
dt.

The addition of (16) and (21) gives the required result.

We also recall some special functions which we use to give our estimates.
The Beta or the Euler integral of the first kind and hypergeometric functions are

defined as

B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt, α, β > 0.

2F1(α, β; γ, z) =
1

B(β, γ− β)

∫ 1

0
tβ−1(1− t)γ−β−1(1− zt)−αdt, γ > β > 0, |z| < 1,

respectively, (see [35]). The regularized hypergeometric function is defined as

2 F̃1(α, β; γ, z) = 2F1(α, β; γ, z)
Γ(γ)

,

where Γ(γ) is the gamma function.
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We will now be able to generalize the Hermite–Hadamard-type inequalities using the
harmonic convexity. One can easily observe that there is symmetry even in the estimates

of
∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣.
Theorem 2. Let f : I ⊆ (0, ∞) → R be differentiable mapping on I◦ (the interior of I) and
�1, �2 ∈ I◦ with �1 < �2. If f

′′ ∈ L1[�1, �2] and
∣∣∣ f ′′ ∣∣∣ is a harmonic convex mapping on

[�1, �2], then the following inequality for Atangana–Baleanu fractional integral operators holds∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣
≤ �2x(�2−x)

B(α)Γ(α)

(
�2−x
�2x

)α+1[
φ1(�1, �2, α; x)

∣∣∣ f ′′(x)
∣∣∣+ φ2(�1, �2, α; x)

∣∣∣ f ′′(�2)
∣∣∣]

+�1x(x−�1)
B(α)Γ(α)

(
x−�1
x�1

)α+1[
φ3(�1, �2, α; x)

∣∣∣ f ′′(�1)
∣∣∣+ φ4(�1, �2, α; x)

∣∣∣ f ′′(x)
∣∣∣],

(22)

where

φ1(�1, �2, α; x) =
�2(�2 − 2αx)

6�4
2x2

+
α
(
α2 + 3α + 2

)
2F1

(
1, α + 3; α + 4; 1− x

�2

)
6�4

2(α + 3)

−
α
(
α2 − 1

)
2F1

(
1, α + 2; α + 3; 1− x

�2

)
6�4

2(α + 2)
,

φ2(�1, �2, α; x) =
�2
(
2�2

2 − α�2x + α(α + 1)x2)
6�4

2x3

−
α(α + 1)(α + 2)Γ(α + 3) 2 F̃1

(
1, α + 3; α + 4; 1− x

�2

)
6�4

2
,

φ3(�1, �2, α; x) =
2�2

1 + α(α + 1)x2 − α�1x
6�3

1x3

− α(α + 1)(α + 2)Γ(α + 3) 2 F̃1
(
1, 1; α + 4; 1− �1

x
)

6�3
1x

,

φ4(�1, �2, α; x) =
(
�2

1 − 2α�1x
)
(α + 2)− α

(
α2 − 1

)
x2

6(α + 2)�4
1x2

+
α(α + 1)Γ(α + 3)(3�1 + (α− 1)x) 2 F̃1

(
1, 1; α + 4; 1− �1

x
)

6�4
1x

,

x ∈ [�1, �2] , α ∈ [0, 1], q > 1, B(α) and Γ(α) are the normalization and gamma function,
respectively.

Proof. According to (11) of Lemma 1, we obtain∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣
≤ �2x(�2−x)

B(α)Γ(α)

(
�2−x
�2x

)α+1 ∫ 1
0

tα+1

(tx+(1−t)�2)
4

∣∣∣ f ′′( �2x
tx+(1−t)�2

)∣∣∣dt

+�1x(x−�1)
B(α)Γ(α)

(
x−�1
x�1

)α+1 ∫ 1
0

(1−t)α+1

(t�1+(1−t)x)4

∣∣∣ f ′′( �1x
t�1+(1−t)x

)∣∣∣dt.

(23)
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Since
∣∣∣ f ′′ ∣∣∣ is a harmonic convex mapping on [�1, �2], we obtain

∫ 1

0

tα+1

(tx + (1− t)�2)
4

∣∣∣∣ f ′′( �2x
tx + (1− t)�2

)∣∣∣∣dt

≤
∣∣∣ f ′′(x)

∣∣∣ ∫ 1

0

tα+1(1− t)

(tx + (1− t)�2)
4 dt +

∣∣∣ f ′′(�2)
∣∣∣ ∫ 1

0

tα+2

(tx + (1− t)�2)
4 dt

=

⎡⎣�2(�2 − 2αx)
6�4

2x2
+

α
(
α2 + 3α + 2

)
2F1

(
1, α + 3; α + 4; 1− x

�2

)
6�4

2(α + 3)
(24)

−
α
(
α2 − 1

)
2F1

(
1, α + 2; α + 3; 1− x

�2

)
6�4

2(α + 2)

⎤⎦∣∣∣ f ′′(x)
∣∣∣+ [�2

(
2�2

2 − α�2x + α(α + 1)x2)
6�4

2x3

−
α(α + 1)(α + 2)Γ(α + 3) 2 F̃1

(
1, α + 3; α + 4; 1− x

�2

)
6�4

2

⎤⎦∣∣∣ f ′′(�2)
∣∣∣

and ∫ 1

0

(1− t)α+1

(t�1 + (1− t)x)4

∣∣∣∣ f ′′( �1x
t�1 + (1− t)x

)∣∣∣∣dt

≤
∣∣∣ f ′′(�1)

∣∣∣[2�2
1 + α(α + 1)x2 − α�1x

6�3
1x3

−α(α + 1)(α + 2)x2Γ(α + 3) 2 F̃1
(
1, 1; α + 4; 1− �1

x
)

6�3
1x3

]
(25)

+
∣∣∣ f ′′(x)

∣∣∣[ (�2
1 − 2α�1x

)
(α + 2)− α

(
α2 − 1

)
x2

6(α + 2)�4
1x2

+
α(α + 1)xΓ(α + 3)(3�1 + (α− 1)x) 2 F̃1

(
1, 1; α + 4; 1− �1

x
)

6�4
1x2

]
.

Applying (24) and (25) together in (23), we obtain the desired result.

Corollary 1. The substitution of x = 2�1�2
�1+�2

in Theorem 2 produces the following result∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
�1+�2
2�1�2

,AB
1

�2

Iα
�1+�2
2�1�2

)∣∣∣∣ ≤ 2�1�2(�2 −�1)

(�1 + �2)
2B(α)Γ(α)

(
�2 −�1

2�1�2

)α+1

×
{

�2
2

[
φ1

(
�1, �2, α;

2�1�2

�1 + �2

)∣∣∣∣ f ′′( 2�1�2

�1 + �2

)∣∣∣∣+ φ1

(
�1, �2, α;

2�1�2

�1 + �2

)∣∣∣ f ′′(�2)
∣∣∣] (26)

+�2
1

[
φ3

(
�1, �2, α;

2�1�2

�1 + �2

)∣∣∣ f ′′(�1)
∣∣∣+ φ4

(
�1, �2, α;

2�1�2

�1 + �2

)∣∣∣∣ f ′′( 2�1�2

�1 + �2

)∣∣∣∣]},

where

φ1

(
�1, �2, α;

2�1�2

�1 + �2

)
=

α
(
α2 + 3α + 2

)
2F1

(
1, α + 3; α + 4; �2−�1

�1+�2

)
6�4

2(α + 3)

−
α
(
α2 − 1

)
2F1

(
1, α + 2; α + 3; �2−�1

�1+�2

)
6�4

2(α + 2)
− (�1 + �2)(�1(4α− 1)−�2)

24�2
1�4

2
,
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φ2

(
�1, �2, α;

2�1�2

�1 + �2

)
=

(�1 + �2)(�1α(�1 −�2 + 2�1α) + (�1 + �2))

24�3
1�4

2

−
α(α + 1)(α + 2)Γ(α + 3) 2 F̃1

(
1, α + 3; α + 4; �2−�1

�1+�2

)
6�4

2
,

φ3

(
�1, �2, α;

2�1�2

�1 + �2

)
=

(�1 + �2)
(
α�2(�2 −�1) + (�1 + �2)

2 + 2α2�2
2
)

24�4
1�3

2

−
α(α + 1)(α + 2)(�1 + �2)Γ(α + 3) 2 F̃1

(
1, 1; α + 4; �2−�1

2�2

)
12�4

1�2
,

φ4

(
�1, �2, α;

2�1�2

�1 + �2

)
=

(
�2

1 + 2(1− 2α)�1�2
)
(α + 2)− (α(4α(α + 1) + 3)− 2)�2

2

24�4
1�2

2(α + 2)

+
α(α + 1)Γ(α + 3)(3�1 + 2α�2 + �2) 2 F̃1

(
1, 1; α + 4; �2−�1

2�2

)
12�4

1�2
,

α ∈ [0, 1], B(α) and Γ(α) are the normalization and gamma function, respectively.

Theorem 3. Let f : I ⊆ (0, ∞) → R be differentiable mapping on I◦ (the interior of I) and

�1, �2 ∈ I◦ with �1 < �2. If f
′′ ∈ L1[�1, �2] and

∣∣∣ f ′′ ∣∣∣q is a harmonic convex mapping on
[�1, �2]; then, the following inequality for Atangana–Baleanu fractional integral operators holds∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ ≤ ( 1
αp + p + 1

) 1
p
{

�2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1

×
[

ϕ1(�1, �2, q; x)
∣∣∣ f ′′(x)

∣∣∣q + ϕ2(�1, �2, q; x)
∣∣∣ f ′′(�2)

∣∣∣q] 1
q
+

�1x(x−�1)

B(α)Γ(α)
(27)

×
(

x−�1

x�1

)α+1[
ϕ3(�1, �2, q; x)

∣∣∣ f ′′(�1)
∣∣∣q + ϕ4(�1, �2, q; x)

∣∣∣ f ′′(x)
∣∣∣q] 1

q

}
,

where

ϕ1(�1, �2, q; x) =
�

2−4q
2 − 2�

1−4q
2 x− 4�

2−4q
2 q + x2−4q + 4�

1−4q
2 qx

2(�2 − x)2(8q2 − 6q + 1)
,

ϕ2(�1, �2, q; x) =
�
−4q
2 x−4q

(
x�

4q
2 (�2(4q− 2)− 4qx + x) + �2

2x4q
)

2(8q2 − 6q + 1)(�2 − x)2 ,

ϕ3(�1, �2, q; x) =
�
−4q
1 x−4q

(
x�

4q
1 (�1(4q− 2)− 4qx + x) + �2

1x4q
)

2(8q2 − 6q + 1)(�1 − x)2 ,

ϕ4(�1, �2, q; x) =
�
−4q
1 x−4q

(
x2�

4q
1 −�1x4q(�1(4q− 1) + (2− 4q)x)

)
2(8q2 − 6q + 1)(�1 − x)2 ,

p−1 + q−1 = 1, x ∈ [�1, �2] , α ∈ [0, 1], q > 1, B(α) and Γ(α) are the normalization and gamma
function, respectively.
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Proof. Taking the absolute value on both sides of Lemma 1, applying Hölder’s inequality

and using the fact that
∣∣∣ f ′′ ∣∣∣q is a harmonic convex mapping on [�1, �2], we obtain

∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ ≤ �2x(�2−x)
B(α)Γ(α)

(
�2−x
�2x

)α+1(∫ 1
0 tp(α+1)dt

) 1
p

×
(∫ 1

0
1

(tx+(1−t)�2)
4q

∣∣∣ f ′′( �2x
tx+(1−t)�2

)∣∣∣qdt
) 1

q

+�1x(x−�1)
B(α)Γ(α)

(
x−�1
x�1

)α+1(∫ 1
0 (1− t)p(α+1)dt

) 1
p

×
(∫ 1

0
1

(t�1+(1−t)x)4q

∣∣∣ f ′′( �1x
t�1+(1−t)x

)∣∣∣qdt
) 1

q
.

(28)

It is easy to observe that

∫ 1

0
tp(α+1)dt =

∫ 1

0
(1− t)p(α+1)dt =

1
αp + p + 1

. (29)

Since
∣∣∣ f ′′ ∣∣∣q is harmonic convex on [�1, �2], we obtain

∫ 1

0

1

(tx + (1− t)�2)
4q

∣∣∣∣ f ′′( �2x
tx + (1− t)�2

)∣∣∣∣qdt

≤
∫ 1

0

[
(1− t)

∣∣∣ f ′′(x)
∣∣∣q + t

∣∣∣ f ′′(�2)
∣∣∣q]

(tx + (1− t)�2)
4q dt

=

[
�

2−4q
2 − 2�

1−4q
2 x− 4�

2−4q
2 q + x2−4q + 4�

1−4q
2 qx

2(�2 − x)2(8q2 − 6q + 1)

]∣∣∣ f ′′(x)
∣∣∣q (30)

+

⎡⎣�
−4q
2 x−4q

(
x�

4q
2 (�2(4q− 2)− 4qx + x) + �2

2x4q
)

2(8q2 − 6q + 1)(�2 − x)2

⎤⎦∣∣∣ f ′′(�2)
∣∣∣q

and similarly, we obtain∫ 1

0

1

(t�1 + (1− t)x)4q

∣∣∣∣ f ′′( �1x
t�1 + (1− t)x

)∣∣∣∣qdt

≤
⎡⎣�

−4q
1 x−4q

(
x�

4q
1 (�1(4q− 2)− 4qx + x) + �2

1x4q
)

2(8q2 − 6q + 1)(�1 − x)2

⎤⎦∣∣∣ f ′′(�1)
∣∣∣q (31)

+

⎡⎣�
−4q
1 x−4q

(
x2�

4q
1 −�1x4q(�1(4q− 1) + (2− 4q)x)

)
2(8q2 − 6q + 1)(�1 − x)2

⎤⎦∣∣∣ f ′′(x)
∣∣∣q.

Applying (29)–(31) in (28), we obtain (27).

Corollary 2. In Theorem 3, especially when we take x = 2�1�2
�1+�2

, we obtain∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
�1+�2
2�1�2

,AB
1

�2

Iα
�1+�2
2�1�2

)∣∣∣∣ ≤ 2�1�2(�2 −�1)

(�1 + �2)
2B(α)Γ(α)

(
1

αp + p + 1

) 1
p
(

�2 −�1

2�1�2

)α+1

×
⎧⎨⎩�2

2

[
ϕ1

(
�1, �2, q;

2�1�2

�1 + �2

)∣∣∣∣ f ′′( 2�1�2

�1 + �2

)∣∣∣∣q + ϕ2

(
�1, �2, q;

2�1�2

�1 + �2

)∣∣∣ f ′′(�2)
∣∣∣q] 1

q

(32)

+�2
1

[
ϕ3

(
�1, �2, q;

2�1�2

�1 + �2

)∣∣∣ f ′′(�1)
∣∣∣q + ϕ4

(
�1, �2, q;

2�1�2

�1 + �2

)∣∣∣∣ f ′′( 2�1�2

�1 + �2

)∣∣∣∣q]
1
q

⎫⎬⎭,
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where

ϕ1

(
�1, �2, q;

2�1�2

�1 + �2

)
=

4�2
1

(
2�1�2
�1+�2

)−4q
+ (�1 + �2)�

−4q
2 (�1(4q− 3)− 4�2q + �2)

2(8q2 − 6q + 1)(�1 −�2)2 ,

ϕ2

(
�1, �2, q;

2�1�2

�1 + �2

)
=

(�1 + �2)
2�

−4q
2

2(8q2 − 6q + 1)(�1 −�2)2 −
2�1

(
2�1�2
�1+�2

)−4q
(2�1q− 2�2q + �2)

(8q2 − 6q + 1)(�1 −�2)2 ,

ϕ3

(
�1, �2, q;

2�1�2

�1 + �2

)
=

(�1 + �2)
2�

−4q
1

2(8q2 − 6q + 1)(�1 −�2)2 −
�2

(
2�1�2
�1+�2

)−4q
(�1(2− 4q) + 4�2q)

(8q2 − 6q + 1)(�1 −�2)2 ,

ϕ4

(
�1, �2, q;

2�1�2

�1 + �2

)
=

2�2
2

(
2�1�2
�1+�2

)−4q

(8q2 − 6q + 1)(�1 −�2)2 −
(�1 + �2)�

−4q
1 ((4q− 1)(�1 −�2) + 2�2)

2(8q2 − 6q + 1)(�1 −�2)2 ,

p−1 + q−1 = 1, x ∈ [�1, �2] , α ∈ [0, 1], q > 1, B(α) and Γ(α) are the normalization and gamma
function, respectively.

Theorem 4. Let f : I ⊆ (0, ∞) → R be differentiable mapping on I◦ (the interior of I) and

�1, �2 ∈ I◦ with �1 < �2. If f
′′ ∈ L1[�1, �2] and

∣∣∣ f ′′ ∣∣∣q is a harmonic convex mapping on
[�1, �2], then the following inequality for Atangana–Baleanu fractional integral operators holds∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ ≤ �2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1[
L−4p
−4p(�2, x)

] 1
p

×

⎡⎢⎣
∣∣∣ f ′′(x)

∣∣∣q + (αq + q + 1)
∣∣∣ f ′′(�2)

∣∣∣q
(αq + q + 1)(αq + q + 2)

⎤⎥⎦
1
q

+
�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1
(33)

×
[

L−4p
−4p(x, �1)

] 1
p

⎡⎢⎣ (αq + q + 1)
∣∣∣ f ′′(�1)

∣∣∣q + ∣∣∣ f ′′(x)
∣∣∣q

(αq + q + 1)(αq + q + 2)

⎤⎥⎦
1
q

,

where p−1 + q−1 = 1, x ∈ [�1, �2] , α ∈ [0, 1], q > 1, B(α) and Γ(α) are the normalization and
gamma function, respectively.

Proof. Taking the absolute value on both sides of Lemma 1, applying Hölder’s inequality

and using the fact that
∣∣∣ f ′′ ∣∣∣q is a harmonic convex mapping on [�1, �2], we obtain

∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ ≤ �2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1
(∫ 1

0

1

(tx + (1− t)�2)
4p dt

) 1
p

×
(∫ 1

0
tq(α+1)

[
(1− t)

∣∣∣ f ′′(x)
∣∣∣q + t

∣∣∣ f ′′(�2)
∣∣∣q]dt

) 1
q

+
�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1
(∫ 1

0

1

(t�1 + (1− t)x)4p dt

) 1
p

(34)

×
(∫ 1

0
(1− t)q(α+1)

[
(1− t)

∣∣∣ f ′′(�1)
∣∣∣q + t

∣∣∣ f ′′(x)
∣∣∣q]dt

) 1
q
.

It is easy to observe that

∫ 1

0

1

(tx + (1− t)�2)
4p dt =

x1−4p −�
1−4p
2

(4p− 1)(�2 − x)
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and ∫ 1

0

1

(t�1 + (1− t)x)4p dt =
�

1−4p
1 − x1−4p

(4p− 1)(x−�1)
.

It is not difficult to notice that∫ 1

0
tq(α+1)(1− t)dt =

∫ 1

0
t(1− t)q(α+1)dt =

1
(αq + q + 1)(αq + q + 2)

and ∫ 1

0
tq(α+1)+1dt =

∫ 1

0
(1− t)q(α+1)+1dt =

1
αq + q + 2

Hence, (34) leads to the proof of the inequality (33).

Corollary 3. In Theorem 4, especially when we take x = 2�1�2
�1+�2

, we obtain∣∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
�1+�2
2�1�2

,AB
1

�2

Iα
�1+�2
2�1�2

)∣∣∣∣∣
≤ 2�1�2(�2−�1)

(�1+�2)
2B(α)Γ(α)

(
�2−�1
2�1�2

)α+1
{

�2
2

[
L−4p
−4p

(
�2, 2�1�2

�1+�2

)] 1
p

×
[ ∣∣∣ f ′′( 2�1�2

�1+�2

)∣∣∣q+(αq+q+1)
∣∣∣ f ′′ (�2)

∣∣∣q
(αq+q+1)(αq+q+2)

] 1
q

+ �2
1

[
L−4p
−4p

(
2�1�2
�1+�2

, �1

)] 1
p

×
[
(αq+q+1)

∣∣∣ f ′′ (�1)
∣∣∣q+∣∣∣ f ′′( 2�1�2

�1+�2

)∣∣∣q
(αq+q+1)(αq+q+2)

] 1
q
⎫⎬⎭,

(35)

where p−1 + q−1 = 1, x ∈ [�1, �2], α ∈ [0, 1], q > 1, B(α) and Γ(α) are the normalization and
gamma function, respectively.

Theorem 5. Let f : I ⊆ (0, ∞) → R be differentiable mapping on I◦ (the interior of I) and

�1, �2 ∈ I◦ with �1 < �2. If f
′′ ∈ L1[�1, �2] and

∣∣∣ f ′′ ∣∣∣q is a harmonic convex mapping on
[�1, �2]; then, the following inequality for Atangana–Baleanu fractional integral operators holds∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ ≤ {�2x(�2−x)
B(α)Γ(α)

(
�2−x
�2x

)α+1

×
[

1
p(αp+p+1) +

ϕ1(�1,�2,q;x)
∣∣∣ f ′′ (x)

∣∣∣q+ϕ2(�1,�2,q;x)
∣∣∣ f ′′ (�2)

∣∣∣q
q

]
+�1x(x−�1)

B(α)Γ(α)

(
x−�1
x�1

)α+1[ 1
p(αp+p+1)

+
ϕ3(�1,�2,q;x)

∣∣∣ f ′′ (�1)
∣∣∣q+ϕ4(�1,�2,q;x)

∣∣∣ f ′′ (x)
∣∣∣q

q

]}
,

(36)

where ϕ1(�1, �2, q; x), ϕ1(�1, �2, q; x), ϕ1(�1, �2, q; x), and ϕ1(�1, �2, q; x) are defined in
Theorem 3, p−1 + q−1 = 1, x ∈ [�1, �2], α ∈ [0, 1], q > 1, B(α) and Γ(α) are normalization and
gamma function, respectively.

Proof. Taking the absolute value on both sides of Lemma 1, applying Young inequality

xy ≤ xp

p + yq

q and using the harmonic convexity of
∣∣∣ f ′′ ∣∣∣q on [�1, �2], we obtain
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∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ ≤ �2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1 ∫ 1

0

tα+1

(tx + (1− t)�2)
4

∣∣∣∣ f ′′( �2x
tx + (1− t)�2

)∣∣∣∣dt

+
�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1 ∫ 1

0

(1− t)α+1

(t�1 + (1− t)x)4

∣∣∣∣ f ′′( �1x
t�1 + (1− t)x

)∣∣∣∣dt

≤ �2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1[ 1
p

∫ 1

0
tp(α+1)dt (37)

+
1
q

∫ 1

0

1

(tx + (1− t)�2)
4q

∣∣∣∣ f ′′( �2x
tx + (1− t)�2

)∣∣∣∣qdt

]
+

�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1

×
[

1
p

∫ 1

0
(1− t)p(α+1)dt +

1
q

∫ 1

0

1

(t�1 + (1− t)x)4q

∣∣∣∣ f ′′( �1x
t�1 + (1− t)x

)∣∣∣∣qdt

]
.

The integrals involved in (37) have already been evaluated in the proof of Theorem 3. This
proves the proof of the result.

Corollary 4. In Theorem 3, especially when we take x = 2�1�2
�1+�2

, we obtain∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
�1+�2
2�1�2

,AB
1

�2

Iα
�1+�2
2�1�2

)∣∣∣∣ ≤ 2�1�2

(�1 + �2)
2B(α)Γ(α)

(
�2 −�1

2�1�2

)α+1{
�2

2

[
1

p(αp + p + 1)

+
ϕ1

(
�1, �2, q; 2�1�2

�1+�2

)∣∣∣ f ′′( 2�1�2
�1+�2

)∣∣∣q + ϕ2

(
�1, �2, q; 2�1�2

�1+�2

)∣∣∣ f ′′(�2)
∣∣∣q

q

⎤⎥⎦+ �2
1

[
1

p(αp + p + 1)
(38)

+
ϕ3

(
�1, �2, q; 2�1�2

�1+�2

)∣∣∣ f ′′(�1)
∣∣∣q + ϕ4

(
�1, �2, q; 2�1�2

�1+�2

)∣∣∣ f ′′( 2�1�2
�1+�2

)∣∣∣q
q

⎤⎥⎦
⎫⎪⎬⎪⎭,

where ϕ1

(
�1, �2, q; 2�1�2

�1+�2

)
, ϕ1

(
�1, �2, q; 2�1�2

�1+�2

)
, ϕ1

(
�1, �2, q; 2�1�2

�1+�2

)
,

and ϕ1

(
�1, �2, q; 2�1�2

�1+�2

)
are defined in Theorem 3, p−1 + q−1 = 1, x ∈ [�1, �2] , α ∈ [0, 1],

q > 1, B(α) is the normalization function and Γ(α) is the gamma function.

Theorem 6. Let f : I ⊆ (0, ∞) → R be differentiable mapping on I◦ (the interior of I) and

�1, �2 ∈ I◦ with �1 < �2. If f
′′ ∈ L1[�1, �2] and

∣∣∣ f ′′ ∣∣∣q is a harmonic convex mapping on
[�1, �2], then the following inequality for Atangana–Baleanu fractional integral operators holds∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ ≤ ( 1
αp + p + 1

) 1
p
{

�2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1

×

⎡⎢⎣ x1−4p −�
1−4p
2

p(4p− 1)(�2 − x)
+

∣∣∣ f ′′(x)
∣∣∣q + (αq + q + 1)

∣∣∣ f ′′(�2)
∣∣∣q

q(αq + q + 1)(αq + q + 2)

⎤⎥⎦+
�1x(x−�1)

B(α)Γ(α)
(39)

×
(

x−�1

x�1

)α+1
⎡⎢⎣ �

1−4p
1 − x1−4p

p(4p− 1)(x−�1)

(αq + q + 1)
∣∣∣ f ′′(�1)

∣∣∣q + ∣∣∣ f ′′(x)
∣∣∣q

q(αq + q + 1)(αq + q + 2)

⎤⎥⎦
⎫⎪⎬⎪⎭,

where p−1 + q−1 = 1, x ∈ [�1, �2], α ∈ [0, 1], q > 1, B(α) and Γ(α) are the normalization and
gamma function, respectively.
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Proof. Taking the absolute value on both sides of Lemma 1, applying Young inequality

xy ≤ xp

p + yq

q and using the harmonic convexity of
∣∣∣ f ′′ ∣∣∣q on [�1, �2], we obtain∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣
≤ �2x(�2 − x)

B(α)Γ(α)

(
�2 − x

�2x

)α+1 ∫ 1

0

tα+1

(tx + (1− t)�2)
4

∣∣∣∣ f ′′( �2x
tx + (1− t)�2

)∣∣∣∣dt

+
�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1 ∫ 1

0

(1− t)α+1

(t�1 + (1− t)x)4

∣∣∣∣ f ′′( �1x
t�1 + (1− t)x

)∣∣∣∣dt

≤ �2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1
[

1
p

∫ 1

0

1

(tx + (1− t)�2)
4p dt (40)

+
1
q

∫ 1

0
tq(α+1)

∣∣∣∣ f ′′( �2x
tx + (1− t)�2

)∣∣∣∣qdt
]

+
�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1
[

1
p

∫ 1

0

1

(t�1 + (1− t)x)4p dt

+
1
q

∫ 1

0
(1− t)q(α+1)

∣∣∣∣ f ′′( �1x
t�1 + (1− t)x

)∣∣∣∣qdt
]

.

After solving the integrals involved in (40), we obtain (39).

Corollary 5. In Theorem 3, especially when we take x = 2�1�2
�1+�2

, we obtain

∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ ≤ ( 1
αp + p + 1

) 1
p
{

�2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1

×

⎡⎢⎣ x1−4p −�
1−4p
2

p(4p− 1)(�2 − x)
+

∣∣∣ f ′′(x)
∣∣∣q + (αq + q + 1)

∣∣∣ f ′′(�2)
∣∣∣q

q(αq + q + 1)(αq + q + 2)

⎤⎥⎦+
�1x(x−�1)

B(α)Γ(α)
(41)

×
(

x−�1

x�1

)α+1
⎡⎢⎣ �

1−4p
1 − x1−4p

p(4p− 1)(x−�1)

(αq + q + 1)
∣∣∣ f ′′(�1)

∣∣∣q + ∣∣∣ f ′′(x)
∣∣∣q

q(αq + q + 1)(αq + q + 2)

⎤⎥⎦
⎫⎪⎬⎪⎭,

where p−1 + q−1 = 1, x ∈ [�1, �2] , α ∈ [0, 1], q > 1, B(α) and Γ(α) are the normalization and
gamma function, respectively.

Theorem 7. Let f : I ⊆ (0, ∞) → R be differentiable mapping on I◦ (the interior of I) and

�1, �2 ∈ I◦ with �1 < �2. If f
′′ ∈ L1[�1, �2] and

∣∣∣ f ′′ ∣∣∣q is a harmonic convex mapping on
[�1, �2], then the following inequality for Atangana–Baleanu fractional integral operators holds∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ ≤ �2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1

[ψ1(�1, �2, q; x)]1−
1
q

×
[
ψ2(�1, �2, q; x)

∣∣∣ f ′′(x)
∣∣∣q + ψ3(�1, �2, q; x)

∣∣∣ f ′′(�2)
∣∣∣q] 1

q
+

�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1
(42)

×[ψ4(�1, �2, q; x)]1−
1
q
[
ψ5(�1, �2, q; x)

∣∣∣ f ′′(�1)
∣∣∣q + ψ6(�1, �2, q; x)

∣∣∣ f ′′(x)
∣∣∣q] 1

q

}
,
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where

ψ1(�1, �2, q; x) =
�2
(−αx(�2 + x) + �2(2�2 + x) + α2x2)

6�4
2x3

−
α
(
α2 − 1

)
Γ(α + 2) 2 F̃1

(
1, α + 2; α + 3; 1− x

�2

)
6�4

2
,

ψ2(�1, �2, q; x) =
α
(
α2 + 3α + 2

)
2F1

(
1, α + 3; α + 4; 1− x

�2

)
6(α + 3)�4

2

−
α
(
α2 − 1

)
2F1

(
1, α + 2; α + 3; 1− x

�2

)
6(α + 2)�4

2
+

�2(�2 − 2αx)
6�4

2x2
,

ψ3(�1, �2, q; x) =
�2
(
2�2

2 − α�2x + α(α + 1)x2)
6�4

2x3

−
α(α + 1)(α + 2)Γ(α + 3) 2 F̃1

(
1, α + 3; α + 4; 1− x

�2

)
6�4

2
,

ψ4(�1, �2, q; x) =
�1(2�1 + x) + α2x2 − αx(�1 + x)

6�3
1x3

− α
(
α2 − 1

)
x2Γ(α + 2) 2 F̃1

(
1, 1; α + 3; 1− �1

x
)

6�3
1x3

,

ψ5(�1, �2, q; x) =
2�2

1 − α�1x + α(α + 1)x2

6�3
1x3

− α(α + 1)(α + 2)x2Γ(α + 3) 2 F̃1
(
1, 1; α + 4; 1− �1

x
)

6�3
1x3

,

ψ5(�1, �2, q; x) =
(
�2

1 − 2α�1x
)
(α + 2)− α

(
α2 − 1

)
x2

α + 2

+
α(α + 1)xΓ(α + 3)(3�1 + (α− 1)x) 2 F̃1

(
1, 1; α + 4; 1− �1

x
)

6�4
1x2

,

q ≥ 1, x ∈ [�1, �2] , α ∈ [0, 1], B(α) and Γ(α) are the normalization and gamma function,
respectively.

Proof. Taking the absolute value on both sides of Lemma 1, applying power-mean inequal-

ity and using the fact that
∣∣∣ f ′′ ∣∣∣q is a harmonic convex mapping on [�1, �2], we obtain

∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ ≤ �2x(�2−x)
B(α)Γ(α)

(
�2−x
�2x

)α+1
(∫ 1

0
tα+1

(tx+(1−t)�2)
4 dt
)1− 1

q

×
(∫ 1

0

tα+1
[
(1−t)

∣∣∣ f ′′ (x)
∣∣∣q+t

∣∣∣ f ′′ (�2)
∣∣∣q]

(tx+(1−t)�2)
4 dt

) 1
q

+�1x(x−�1)
B(α)Γ(α)

(
x−�1
x�1

)α+1
(∫ 1

0
(1−t)α+1

(t�1+(1−t)x)4 dt
)1− 1

q

×
(∫ 1

0
(1−t)α+1

[
(1−t)

∣∣∣ f ′′ (�1)
∣∣∣q+t

∣∣∣ f ′′ (x)
∣∣∣q]

(t�1+(1−t)x)4 dt

) 1
q

.

(43)

Evaluating the integrals involved in (43), we obtain (42).
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Corollary 6. In Theorem 7, especially when we take x = 2�1�2
�1+�2

, we obtain∣∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
�1+�2
2�1�2

,AB
1

�2

Iα
�1+�2
2�1�2

)∣∣∣∣∣ ≤ 2�1�2(�2−�1)

(�1+�2)
2B(α)Γ(α)

(
�2−�1
2�1�2

)α+1

×
{

�2
2

[
ψ1

(
�1, �2, q; 2�1�2

�1+�2

)]1− 1
q
[
ψ2

(
�1, �2, q; 2�1�2

�1+�2

)∣∣∣ f ′′( 2�1�2
�1+�2

)∣∣∣q
+ψ3

(
�1, �2, q; 2�1�2

�1+�2

)∣∣∣ f ′′(�2)
∣∣∣q] 1

q
+ �2

1

[
ψ4

(
�1, �2, q; 2�1�2

�1+�2

)]1− 1
q

+
[
ψ5

(
�1, �2, q; 2�1�2

�1+�2

)∣∣∣ f ′′(�1)
∣∣∣q + ψ6

(
�1, �2, q; 2�1�2

�1+�2

)∣∣∣ f ′′( 2�1�2
�1+�2

)∣∣∣q] 1
q

}
,

(44)

where

ψ1

(
�1, �2, q;

2�1�2

�1 + �2

)
=

(�1 + �2)
(
(α(2α− 3) + 2)�2

1 − (α− 3)�1�2 + �2
2
)

24�3
1�4

2

−
4α
(
α2 − 1

)
Γ(α + 2) 2 F̃1

(
1, α + 2; α + 3; 1− 2�1

�1+�2

)
24�4

2
,

ψ2

(
�1, �2, q;

2�1�2

�1 + �2

)
=

(�1 + �2)(�1(4α− 1)−�2)

24�2
1�4

2

+
α
(
α2 − 1

)
2F1

(
1, α + 2; α + 3; �2−�1

�1+�2

)
6(α + 2)�4

2

−
α
(
α2 + 3α + 2

)
2F1

(
1, α + 3; α + 4; �2−�1

�1+�2

)
6(α + 3)�4

2
,

ψ3

(
�1, �2, q;

2�1�2

�1 + �2

)
=

(�1 + �2)
(
2�2

1α2 + �1α(�1 −�2) + (�1 + �2)
2)

24�3
1�4

2

−
4α(α + 1)(α + 2)Γ(α + 3) 2 F̃1

(
1, α + 3; α + 4; 1− 2�1

�1+�2

)
24�4

2
,

ψ4

(
�1, �2, q;

2�1�2

�1 + �2

)
=

(�1 + �2)
(
�2

1 + (α(2α− 3) + 2)�2
2 − (α− 3)�1�2

)
24�4

1�3
2

−
2α
(
α2 − 1

)
(�1 + �2)�

2
2Γ(α + 2) 2 F̃1

(
1, 1; α + 3; �2−�1

2�2

)
24�4

1�3
2

,

ψ5

(
�1, �2, q;

2�1�2

�1 + �2

)
=

α�2(�2 −�1) + (�1 + �2)
2 + 2α2�2

2
24�4

1�3
2

−
2α(α + 1)(α + 2)(�1 + �2)�

2
2Γ(α + 3) 2 F̃1

(
1, 1; α + 4; �2−�1

2�2

)
24�4

1�3
2

,

ψ6

(
�1, �2, q;

2�1�2

�1 + �2

)
=

(α + 2)
(
�2

1 + 2(1− 2α)�1�2
)− (α(4α(α + 1) + 3)− 2)�2

2
α + 2

+
2α(α + 1)�2Γ(α + 3)(3�1 + 2α�2 + �2) 2 F̃1

(
1, 1; α + 4; �2−�1

2�2

)
24�4

1�2
2

,

q ≥ 1, x ∈ [�1, �2] , α ∈ [0, 1], q > 1, B(α) and Γ(α) are the normalization and gamma function,
respectively.
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We mention here an important result to prove our next results for concave functions.

Theorem 8. Let h : I ⊂ (0, ∞)→ R be an HA convex function and [�1, �2] ⊂ I◦ (the interior
of I). Assume also that w(t) ≥ 0 a.e. on [�1, �2] with

∫ �2
�1

w(t)dt > 0, then

h

⎛⎝∫ �2
�1

w(t)dt∫ �2
�1

w(t)
t dt

⎞⎠ ≤
∫ �2

�1
h(t)w(t)dt∫ �2

�1
w(t)dt

.

Theorem 9. Let f : I ⊆ (0, ∞) → R be differentiable mapping on I◦ (the interior of I) and

�1, �2 ∈ I◦ with �1 < �2. If f
′′ ∈ L1[�1, �2] and

∣∣∣ f ′′ ∣∣∣q is a harmonic-concave mapping on
[�1, �2]; then, the following inequality for Atangana–Baleanu fractional integral operators holds∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣
≤ �2x(�2 − x)

B(α)Γ(α)

(
�2 − x

�2x

)α+1∣∣∣ f ′′(κ1(�1, �2, q; x))
∣∣∣ (45)

+
�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1∣∣∣ f ′′(κ2(�1, �2, q; x))
∣∣∣,

where

κ1(�1, �2, q; x) =
α(α + 1)x2Γ(α + 2) 2 F̃1

(
1, α + 2; α + 3; 1− x

�2

)
+ �2(�2 − αx)

2�2
2x2

,

κ2(�1, �2, q; x) =
α(α + 1)xΓ(α + 2) 2 F̃1

(
1, 1; α + 3; 1− �1

x
)
+ �1 − αx

2�1x
,

x ∈ [�1, �2] , α ∈ [0, 1], B(α) and Γ(α) are the normalization and gamma function, respectively.

Proof. Taking the absolute value on both sides of Lemma 1, applying Jensen’s inequality for

harmonic convex mappings and using the fact that if
∣∣∣ f ′′ ∣∣∣q is a harmonic-concave mapping

on [�1, �2] then
∣∣∣ f ′′ ∣∣∣ is a also a harmonic-concave mapping on [�1, �2], we obtain∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣
≤ �2x(�2 − x)

B(α)Γ(α)

(
�2 − x

�2x

)α+1 ∫ 1

0

tα+1

(tx + (1− t)�2)
4

∣∣∣∣ f ′′( �2x
tx + (1− t)�2

)∣∣∣∣dt

+
�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1 ∫ 1

0

(1− t)α+1

(t�1 + (1− t)x)4

∣∣∣∣ f ′′( �1x
t�1 + (1− t)x

)∣∣∣∣dt (46)

≤ �2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1
∣∣∣∣∣∣ f ′′
⎛⎝ �2x∫ 1

0
tα+1

(tx+(1−t)�2)
3

⎞⎠∣∣∣∣∣∣dt

+
�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1
∣∣∣∣∣∣ f ′′
⎛⎝ �1x∫ 1

0
tα+1

(t�1+(1−t)x)3

⎞⎠∣∣∣∣∣∣dt.

Evaluating the integrals involved in (46), we obtain (45).
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Corollary 7. In Theorem 7, especially when we take x = 2�1�2
�1+�2

, we obtain∣∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
�1+�2
2�1�2

,AB
1

�2

Iα
�1+�2
2�1�2

)∣∣∣∣∣ ≤ 2�1�2(�2−�1)

(�1+�2)
2B(α)Γ(α)

(
�2−�1
2�1�2

)α+1

×
{

�2
2

∣∣∣ f ′′(κ1

(
�1, �2, q; 2�1�2

�1+�2

))∣∣∣+ �2
1

∣∣∣ f ′′(κ2

(
�1, �2, q; 2�1�2

�1+�2

))∣∣∣},
(47)

where

κ1

(
�1, �2, q;

2�1�2

�1 + �2

)

=
(�1 + �2)(�1 + �2 − 2α�1) + 4�1α(α + 1)Γ(α + 2) 2 F̃1

(
1, α + 2; α + 3; 1− 2�1

�1+�2

)
4�1�2(�1 + �2)

,

κ2

(
�1, �2, q;

2�1�2

�1 + �2

)
=

2α(α + 1)�2Γ(α + 2) 2 F̃1

(
1, 1; α + 3; �2−�1

2�2

)
+ �1 − 2α�2 + �2

4�1�2
,

x ∈ [�1, �2] , α ∈ [0, 1], q > 1, B(α) and Γ(α) are the normalization and gamma function,
respectively.

Theorem 10. Let f : I ⊆ (0, ∞) → R be differentiable mapping on I◦ (the interior of I) and

�1, �2 ∈ I◦ with �1 < �2. If f
′′ ∈ L1[�1, �2] and

∣∣∣ f ′′ ∣∣∣q is a harmonic-concave mapping on
[�1, �2], then the following inequality for Atangana–Baleanu fractional integral operators holds∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣
≤ �2x(�2 − x)

B(α)Γ(α)

(
�2 − x

�2x

)α+1

[υ1(�1, �2, q; x)]
1
p

∣∣∣∣∣ f ′′
(

2�2
2x2

�2 + x

)∣∣∣∣∣ (48)

+
�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1

[υ2(�1, �2, q; x)]
1
p

∣∣∣∣∣ f ′′
(

2�2
1x2

x + �1

)∣∣∣∣∣,
where

υ1(�1, �2, q; x) =
�
−4p
2 2F1

(
4p, αp + p + 1; αp + p + 2; 1− x

�2

)
αp + p + 1

,

υ2(�1, �2, q; x) =
x−4p

2F1
(
1, 4p; αp + p + 2; 1− �1

x
)

αp + p + 1
,

x ∈ [�1, �2] , α ∈ [0, 1], B(α) and Γ(α) are the normalization and gamma function, respectively.

Proof. Taking the absolute value on both sides of Lemma 1, applying Hölder’s inequality,

using Jensen’s inequality for harmonic convex mappings and using the fact that if
∣∣∣ f ′′ ∣∣∣q is a

harmonic-concave mapping on [�1, �2], we obtain∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ ≤ �2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1

×
(∫ 1

0

tp(α+1)

(tx + (1− t)�2)
4p dt

) 1
p(∫ 1

0

∣∣∣∣ f ′′( �2x
tx + (1− t)�2

)∣∣∣∣qdt
) 1

q

+
�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1
(∫ 1

0

(1− t)p(α+1)

(t�1 + (1− t)x)4p dt

) 1
p

(49)
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×
(∫ 1

0

∣∣∣∣ f ′′( �2x
t�1 + (1− t)x

)∣∣∣∣qdt
) 1

q

≤ �2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1

×
(∫ 1

0

tp(α+1)

(tx + (1− t)�2)
4p dt

) 1
p
∣∣∣∣∣ f ′′
(

�2x∫ 1
0 tx + (1− t)�2dt

)∣∣∣∣∣
q

+
�1x(x−�1)

B(α)Γ(α)

×
(

x−�1

x�1

)α+1
(∫ 1

0

(1− t)p(α+1)

(t�1 + (1− t)x)4p dt

) 1
p
∣∣∣∣∣ f ′′
(

�1x∫ 1
0 t�1 + (1− t)xdt

)∣∣∣∣∣
q

.

Evaluating the integrals involved in (49), we obtain (48).

Corollary 8. In Theorem 7, especially when we take x = 2�1�2
�1+�2

, we obtain

∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
�1+�2
2�1�2

,AB
1

�2

Iα
�1+�2
2�1�2

)∣∣∣∣ ≤ 2�1�2(�2 −�1)

(�1 + �2)
2B(α)Γ(α)

(
�2 −�1

2�1�2

)α+1

×
{

�2
2

[
υ1

(
�1, �2, q;

2�1�2

�1 + �2

)] 1
p
∣∣∣∣∣ f ′′
(

8�2
1�3

2
(3�1 + �2)(�1 + �2)

)∣∣∣∣∣ (50)

+�2
1

[
υ1

(
�1, �2, q;

2�1�2

�1 + �2

)] 1
p
∣∣∣∣∣ f ′′
(

8�3
1�2

2
(�1 + �2)(�1 + 3�2)

)∣∣∣∣∣
}

,

where

υ1

(
�1, �2, q;

2�1�2

�1 + �2

)
=

�
−4p
2 2F1

(
4p, αp + p + 1; αp + p + 2; �2−�1

�1+�2

)
αp + p + 1

,

υ2

(
�1, �2, q;

2�1�2

�1 + �2

)
=

2−4p
(

�1�2
�1+�2

)−4p
2F1

(
1, 4p; αp + p + 2; �2−�1

2�2

)
αp + p + 1

,

x ∈ [�1, �2] , α ∈ [0, 1], q > 1, B(α) and Γ(α) are the normalization and gamma function,
respectively.

Theorem 11. Let f : I ⊆ (0, ∞) → R be differentiable mapping on I◦ (the interior of I) and

�1, �2 ∈ I◦ with �1 < �2. If f
′′ ∈ L1[�1, �2] and

∣∣∣ f ′′ ∣∣∣q is a harmonic-concave mapping on
[�1, �2], then the following inequality for Atangana–Baleanu fractional integral operators holds∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ ≤ ( 1
αp + p + 1

) 1
p

×
{

�2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1
∣∣∣∣∣ f ′′
(

2�2x(1− 2q)(�2 − x)

�
2−4q
2 − x2−4q

)∣∣∣∣∣
q

(51)

+
�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1
∣∣∣∣∣ f ′′
(

2�1x(1− 2q)(�1 − x)

�
2−4q
1 − x2−4q

)∣∣∣∣∣
q}

,

where x ∈ [�1, �2] , α ∈ [0, 1], B(α) and Γ(α) are the normalization and gamma function,
respectively.

Proof. Taking the absolute value on both sides of Lemma 1, applying Hölder’s inequality,

using Jensen’s inequality for harmonic convex mappings and using the fact that if
∣∣∣ f ′′ ∣∣∣q is a

harmonic-concave mapping on [�1, �2], we obtain
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∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ ≤ �2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1

×
(∫ 1

0
tp(α+1)dt

) 1
p
(∫ 1

0

1

(tx + (1− t)�2)
4q

∣∣∣∣ f ′′( �2x
tx + (1− t)�2

)∣∣∣∣qdt

) 1
q

+
�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1(∫ 1

0
(1− t)p(α+1)dt

) 1
p

×
(∫ 1

0

1

(t�1 + (1− t)x)4q

∣∣∣∣ f ′′( �1x
t�1 + (1− t)x

)∣∣∣∣qdt

) 1
q

≤ �2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1
(52)

×
(∫ 1

0
tp(α+1)dt

) 1
p
∣∣∣∣∣ f ′′
(

�2x∫ 1
0 (tx + (1− t)�2)

1−4qdt

)∣∣∣∣∣
q

+
�1x(x−�1)

B(α)Γ(α)

×
(

x−�1

x�1

)α+1(∫ 1

0
(1− t)p(α+1)dt

) 1
p
∣∣∣∣∣ f ′′
(

�1x∫ 1
0 (t�1 + (1− t)x)1−4qdt

)∣∣∣∣∣
q

.

Evaluating the integrals involved in (52), we obtain (51).

Corollary 9. In Theorem 7, especially when we take x = 2�1�2
�1+�2

, we obtain

∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
�1+�2
2�1�2

,AB
1

�2

Iα
�1+�2
2�1�2

)∣∣∣∣ ≤ 2�1�2(�2 −�1)

B(α)Γ(α)(�1 + �2)
2

(
�2 −�1

�1�2

)α+1

×
(

1
αp + p + 1

) 1
p
{

�2
2

∣∣∣∣∣ f ′′
(

4(1− 2q)�1�3
2(�1 + �2)

4q(�2 −�1)

�
2−4q
2 (�1 + �2)

2−4q − (2�1�2)
2−4q

)∣∣∣∣∣ (53)

+�2
1

∣∣∣∣∣ f ′′
(

4(1− 2q)�3
1�2(�1 + �2)

4q(�2 −�1)

(2�1�2)
2−4q −�

2−4q
1 (�1 + �2)

2−4q

)∣∣∣∣∣
}

,

where x ∈ [�1, �2], α ∈ [0, 1], q > 1, B(α) and Γ(α) are the normalization and gamma
function, respectively.

Theorem 12. Let f : I ⊆ (0, ∞) → R be differentiable mapping on I◦ (the interior of I) and

�1, �2 ∈ I◦ with �1 < �2. If f
′′ ∈ L1[�1, �2] and

∣∣∣ f ′′ ∣∣∣q is a harmonic-concave mapping on
[�1, �2], then the following inequality for Atangana–Baleanu fractional integral operators holds∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ ≤ ( 1
αp + p + 1

) 1
p

×
{

�2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1
∣∣∣∣∣ f ′′
(

2�2x(1− 2q)(�2 − x)

�
2−4q
2 − x2−4q

)∣∣∣∣∣
q

(54)

+
�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1
∣∣∣∣∣ f ′′
(

2�1x(1− 2q)(�1 − x)

�
2−4q
1 − x2−4q

)∣∣∣∣∣
q}

,

where x ∈ [�1, �2] , α ∈ [0, 1], B(α) and Γ(α) are the normalization and gamma function,
respectively.

Proof. Taking the absolute value on both sides of Lemma 1, applying Hölder’s inequality,

using Jensen’s inequality for harmonic concave mappings and using the fact that if
∣∣∣ f ′′ ∣∣∣q is

a harmonic-concave mapping on [�1, �2], we obtain
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∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ ≤ �2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1

×
(∫ 1

0
tp(α+1)dt

) 1
p
(∫ 1

0

1

(tx + (1− t)�2)
4q

∣∣∣∣ f ′′( �2x
tx + (1− t)�2

)∣∣∣∣qdt

) 1
q

+
�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1(∫ 1

0
(1− t)p(α+1)dt

) 1
p

×
(∫ 1

0

1

(t�1 + (1− t)x)4q

∣∣∣∣ f ′′( �1x
t�1 + (1− t)x

)∣∣∣∣qdt

) 1
q

≤ �2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1
(55)

×
(∫ 1

0
tp(α+1)dt

) 1
p
∣∣∣∣∣ f ′′
(

�2x∫ 1
0 (tx + (1− t)�2)

1−4qdt

)∣∣∣∣∣
q

+
�1x(x−�1)

B(α)Γ(α)

×
(

x−�1

x�1

)α+1(∫ 1

0
(1− t)p(α+1)dt

) 1
p
∣∣∣∣∣ f ′′
(

�1x∫ 1
0 (t�1 + (1− t)x)1−4qdt

)∣∣∣∣∣
q

.

Evaluating the integrals involved in (52), we obtain (51).

Corollary 10. In Theorem 12, especially when we take x = 2�1�2
�1+�2

, we obtain

∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
�1+�2
2�1�2

,AB
1

�2

Iα
�1+�2
2�1�2

)∣∣∣∣ ≤ 2�1�2(�2 −�1)

B(α)Γ(α)(�1 + �2)
2

(
�2 −�1

�1�2

)α+1

×
(

1
αp + p + 1

) 1
p
{

�2
2

∣∣∣∣∣ f ′′
(

4(1− 2q)�1�3
2(�1 + �2)

4q(�2 −�1)

�
2−4q
2 (�1 + �2)

2−4q − (2�1�2)
2−4q

)∣∣∣∣∣ (56)

+�2
1

∣∣∣∣∣ f ′′
(

4(1− 2q)�3
1�2(�1 + �2)

4q(�2 −�1)

(2�1�2)
2−4q −�

2−4q
1 (�1 + �2)

2−4q

)∣∣∣∣∣
}

,

where x ∈ [�1, �2] , α ∈ [0, 1], q > 1, B(α) and Γ(α) are the normalization and gamma
function, respectively.

Theorem 13. Let f : I ⊆ (0, ∞) → R be differentiable mapping on I◦ (the interior of I) and

�1, �2 ∈ I◦ with �1 < �2. If f
′′ ∈ L1[�1, �2] and

∣∣∣ f ′′ ∣∣∣q is a harmonic-concave mapping on
[�1, �2], then the following inequality for Atangana–Baleanu fractional integral operators holds

∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ ≤
(

�
1−4p
2 − x1−4p

(1− 4p)(�2 − x)

) 1
p

�2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1

×
∣∣∣∣ f ′′(�2x(q + qα + 1)(q + qα + 2)

�2 + x + qx + qxα

)∣∣∣∣q +
(

�
1−4p
1 − x1−4p

(1− 4p− 1)(�1 − x)

) 1
p

(57)

×�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1∣∣∣∣ f ′′(�1x(q + qα + 1)(q + qα + 2)
�1 + x + qx + qxα

)∣∣∣∣q
}

,

where x ∈ [�1, �2] , α ∈ [0, 1], B(α) and Γ(α) are the normalization and gamma function,
respectively.
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Proof. Taking the absolute value on both sides of Lemma 1, applying Hölder’s inequality,

using Jensen’s inequality for harmonic concave mappings and using the fact that if
∣∣∣ f ′′ ∣∣∣q is

a harmonic-concave mapping on [�1, �2], we obtain∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ ≤ �2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1

×
(∫ 1

0

1

(tx + (1− t)�2)
4p dt

) 1
p(∫ 1

0
tq(α+1)

∣∣∣∣ f ′′( �2x
tx + (1− t)�2

)∣∣∣∣qdt
) 1

q

+
�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1
(∫ 1

0

1

(t�1 + (1− t)x)4p dt

) 1
p

×
(∫ 1

0
(1− t)q(α+1)

∣∣∣∣ f ′′( �1x
t�1 + (1− t)x

)∣∣∣∣qdt
) 1

q

(58)

≤ �2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1
(∫ 1

0

1

(tx + (1− t)�2)
4p dt

) 1
p

×
∣∣∣∣∣ f ′′
(

�2x∫ 1
0 tq(α+1)(tx + (1− t)�2)dt

)∣∣∣∣∣
q

+
�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1

(∫ 1

0
(1− t)p(α+1)dt

) 1
p
∣∣∣∣∣ f ′′
(

�1x∫ 1
0 (1− t)q(α+1)(t�1 + (1− t)x)dt

)∣∣∣∣∣
q

.

Evaluating the integrals involved in (52), we obtain (51).

Corollary 11. In Theorem 7, especially when we take x = 2�1�2
�1+�2

, we obtain

∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
�1+�2
2�1�2

,AB
1

�2

Iα
�1+�2
2�1�2

)∣∣∣∣ ≤ 2�1�2(�2 −�1)

B(α)Γ(α)(�1 + �2)
2

(
�2 −�1

�1�2

)α+1

×
(

1
αp + p + 1

) 1
p
{

�2
2

∣∣∣∣∣ f ′′
(

4(1− 2q)�1�3
2(�1 + �2)

4q(�2 −�1)

�
2−4q
2 (�1 + �2)

2−4q − (2�1�2)
2−4q

)∣∣∣∣∣ (59)

+�2
1

∣∣∣∣∣ f ′′
(

4(1− 2q)�3
1�2(�1 + �2)

4q(�2 −�1)

(2�1�2)
2−4q −�

2−4q
1 (�1 + �2)

2−4q

)∣∣∣∣∣
}

,

where x ∈ [�1, �2], α ∈ [0, 1], q > 1, B(α) and Γ(α) are the normalization and gamma
function, respectively.

Now, we provide some examples to show the validity of the results that have been
proved so far.

Example 1. By using the all conditions of Theorem 2 and f : [�1, �2] ⊂ (0, ∞)→ R be defined
as f (t) = t2. Then, f is a harmonically convex on [�1, �2]. Suppose that α = 1, B(α) = B(1) = 1
and x = 2�1�2

�1+�2
; then

∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ = − (u− v)2(u2(24v + 1) + uv(24v + 29) + 18v2)
48u3v4 . (60)
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And

�2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1[
φ1(�1, �2, α; x)

∣∣∣ f ′′(x)
∣∣∣+ φ2(�1, �2, α; x)

∣∣∣ f ′′(�2)
∣∣∣]

+
�1x(x−�1)

B(α)Γ(α)

(
x−�1

x�1

)α+1[
φ3(�1, �2, α; x)

∣∣∣ f ′′(�1)
∣∣∣+ φ4(�1, �2, α; x)

∣∣∣ f ′′(x)
∣∣∣]

=
4�1�2(�2 −�1)

(�1 + �2)
2

(
�2 −�1

2�1�2

)2

×
[

�2
2

{
φ1

(
�1, �2, 1;

2�1�2

�1 + �2

)
+ φ2

(
�1, �2, 1;

2�1�2

�1 + �2

)}
(61)

+�2
1

{
φ3

(
�1, �2, 1;

2�1�2

�1 + �2

)
+ φ4

(
�1, �2, 1;

2�1�2

�1 + �2

)}]
,

where

φ1

(
�1, �2, 1;

2�1�2

�1 + �2

)
=

(�2 − 3�1)

24�4
2�2

1
+

6 2F1

(
1, 4; 5; �2−�1

�1+�2

)
24�4

2
,

φ2

(
�1, �2, 1;

2�1�2

�1 + �2

)
=

2
(
4�2

1 + �1�2 + �2
2
)

48�4
2�3

1
−

6 2 F̃1

(
1, 4; 5; �2−�1

�1+�2

)
�4

2
,

φ3

(
�1, �2, 1;

2�1�2

�1 + �2

)
=

2�2
1
(
�2

1 + �1�2 + 4�2
2
)

6�6
1�3

2
−

6 2 F̃1

(
1, 1; 5; �2−�1

2�2

)
�3

1
,

φ4

(
�1, �2, 1;

2�1�2

�1 + �2

)
=

(�1 − 3�2)(�1 + �2)

72�4
1�2

2

+
3(�1 + �2) 2 F̃1

(
1, 1; 5; �2−�1

2�2

)
2�4

1�2
.

Thus

=
4�1�3

2(�2 −�1)

(�1 + �2)
2

(
�2 −�1

2�1�2

)2[
φ1

(
�1, �2, 1;

2�1�2

�1 + �2

)
+ φ2

(
�1, �2, 1;

2�1�2

�1 + �2

)]

+
4�2�3

1(�2 −�1)

(�1 + �2)
2

[
φ3

(
�1, �2, 1;

2�1�2

�1 + �2

)
+ φ4

(
�1, �2, 1;

2�1�2

�1 + �2

)]
=

1
72�6

1�3
2(�1 −�2)(�1 + �2)2

[
−�9

1 + �8
1(6�2 − 3) + �7

1�2

(
−264�2

2 + 55�2 + 6
)

(62)

+�6
1�2

2

(
72�2

2 + 52�2 − 21
)
+ 3�5

1�3
2

(
24�2

2 − 9�2 + 20
)

+�4
1�4

2

(
120�2

2 − 58�2 − 141
)
− 507�2

1�6
2 + 360�1�7

2 − 96�8
2

−9�3
1�5

2(3�2 − 38) + 36�3
1�2

2(�1 + �2)
3(�1(4�2 − 1)−�2) ln

(
�1 + �2

2�2

)]
.

If we choose 1 ≤ �1 ≤ 8 and 9 ≤ �2 ≤ 18, then the graph below validates the result of Theorem 2.
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Example 2. By using all the conditions of Theorem 3 and f : [�1, �2] ⊂ (0, ∞)→ R be defined as
f (t) = t2. Then, f is a harmonically convex on [�1, �2]. Suppose that α = 1, B(α) = B(1) = 1,
x = 2�1�2

�1+�2
and q = 4

3 , then∣∣∣∣Φ f ◦h

(
AB

1
�1

Iα
1
x
,AB

1
�2

Iα
1
x

)∣∣∣∣ = − (u− v)2(u2(24v + 1) + uv(24v + 29) + 18v2)
48u3v4 . (63)

And
(

1
αp + p + 1

) 1
p
{

�2x(�2 − x)
B(α)Γ(α)

(
�2 − x

�2x

)α+1

×
[

ϕ1(�1, �2, q; x)
∣∣∣ f ′′(x)

∣∣∣q + ϕ2(�1, �2, q; x)
∣∣∣ f ′′(�2)

∣∣∣q] 1
q
+

�1x(x−�1)

B(α)Γ(α)

×
(

x−�1

x�1

)α+1[
ϕ3(�1, �2, q; x)

∣∣∣ f ′′(�1)
∣∣∣q + ϕ4(�1, �2, q; x)

∣∣∣ f ′′(x)
∣∣∣q] 1

q

}
,

= 2
(

1
αp + p + 1

) 1
p
{

2�1�3
2

�1 + �2

(
�2 −�1

�1 + �2

)(
�2 −�1

2�1�2

)2

×
[

ϕ1

(
�1, �2, q;

2�1�2

�1 + �2

)
+ ϕ2

(
�1, �2, q;

2�1�2

�1 + �2

)] 1
q
+

2�3
1�2

�1 + �2

(
�2 −�1

�1 + �2

)

×
(

�2 −�1

2�1�2

)2[
ϕ3

(
�1, �2, q;

2�1�2

�1 + �2

)
+ ϕ4

(
�1, �2, q;

2�1�2

�1 + �2

)] 1
q
}

.

=
v2
(

q−1
3q−1

) q−1
q

(v−u)3

uv(u+v)2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2−8qv−4q( uv
u+v )

−8q

⎛⎜⎜⎜⎜⎜⎜⎜⎝
u2

(
v4q
(

24q+2q
( uv

u+v
)4q

+ 2
)

+256q(2q− 1)
( uv

u+v
)8q

)
+24q+1(2q− 1)uv4q+1( uv

u+v
)4q

−256q(2q− 1)v2( uv
u+v

)8q

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(8q2−6q+1)(u−v)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/q

+
u2
(

q−1
3q−1

) q−1
q

(v−u)3

uv(u+v)2

(
vu−4q+u1−4q−21−4qv( uv

u+v )
−4q

−4qu+4qv+u−v

)1/q

,

(64)

where

ϕ1(�1, �2, q; x) =
(�1 + �2)

2

2�2
2(�2 −�1)

2(8q2 − 6q + 1)

×
(
(1− 4q)�2−4q

2 − 4�1�
2−4q
2

�1 + �2
+

(
2�1�2

�1 + �2

)2−4q
+

8q�1�
2−4q
2

�1 + �2

)
,

ϕ2

(
�1, �2, q;

2�1�2

�1 + �2

)
=

�
−4q
2

(
2�1�2
�1+�2

)−4q+1

2(8q2 − 6q + 1)(�2(�2−�1)
�1+�2

)2

×
(

�
4q
2

(
�2(4q− 2) +

2�1�2

�1 + �2
(1− 4q)

)
+ �2

2

(
2�1�2

�1 + �2

)4q−1
)

,
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ϕ3

(
�1, �2, q;

2�1�2

�1 + �2

)
=

�
−4q
1

(
2�1�2
�1+�2

)−4q

2(8q2 − 6q + 1)(�1(�2−�1)
�1+�2

)2

×
(

2�1�2

�1 + �2
�

4q
1 (�1(4q− 2) +

2(1− 4q)�1�2

�1 + �2
) + �2

1

(
2�1�2

�1 + �2

)4q
)

,

ϕ4

(
�1, �2, q;

2�1�2

�1 + �2

)
=

�
−4q
1

(
2�1�2
�1+�2

)−4q

2(8q2 − 6q + 1)(�1(�2−�1)
�1+�2

)2

×
((

2�1�2

�1 + �2

)2
�

4q
1 −�1

(
2�1�2

�1 + �2

)4q(
�1(4q− 1) +

4(1− 2q)�1�2

�1 + �2

))
.

If we choose 1 ≤ �1 ≤ 8 and 9 ≤ �2 ≤ 18, then the graph below validates the result of Theorem 3.
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37. Set, E.; Butt, S.I.; Akdemir, A.O.; Karaoğlan, A.; Abdeljawad, T. New integral inequalities for differentiable convex functions via

Atangana-Baleanu fractional integral operators. Chaos Solitons Fractals 2021, 143, 110554. [CrossRef]
38. Sarikaya, M.Z.; Yaldiz, H. On generalization integral inequalities for fractional integrals. Nihonkai Math. J. 2014, 25, 93–104.
39. Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional

inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [CrossRef]
40. Mohammed, P.O.; Brevik, I. A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals.

Symmetry 2020, 12, 610. [CrossRef]
41. Mohammed, P.O.; Sarikaya, M.Z. Hermite-Hadamard type inequalities for F-convex function involving fractional integrals. J.

Inequal. Appl. 2018, 2018, 359. [CrossRef]
42. Mohammed, P.O.; Abdeljawad, T. Modification of certain fractional integral inequalities for convex functions. Adv. Differ. Equ.

2020, 2020, 69. [CrossRef]
43. Mohammed, P.O.; Sarikaya, M.Z. On generalized fractional integral inequalities for twice differentiable convex functions. J.

Comput. Appl. Math. 2020, 372, 112740. [CrossRef]
44. Mohammed, P.O.; Abdeljawad, T. Integral inequalities for a fractional operator of a function with respect to another function

with nonsingular kernel. Adv. Differ. Equ. 2020, 2020, 363. [CrossRef]

195



Symmetry 2022, 14, 1774

45. Mohammed, P.O. Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to
a monotone function. Math. Methods Appl. Sci. 2019, 44, 2314–2324. [CrossRef]

46. Macdonald, I.G. Symmetric Functions and Orthogonal Polynomials; American Mathematical Soc.: Providence, RI, USA, 1997.
47. Caputo, M.; Fabrizio, M.A. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1,

73–85.
48. Atangana, A.; Baleanu, D. New fractional derivatives with non-local and non-singular kernel, theory and application to heat

transfer model. Therm. Sci. 2016, 20, 763–769. [CrossRef]

196



Citation: Cleland, J.; Williams,

M.A.K. Analytical Investigations into

Anomalous Diffusion Driven by

Stress Redistribution Events:

Consequences of Lévy Flights.

Mathematics 2022, 10, 3235. https://

doi.org/10.3390/math10183235

Academic Editors: António M. Lopes,

Alireza Alfi, Liping Chen and Sergio

A. David

Received: 15 August 2022

Accepted: 3 September 2022

Published: 6 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Analytical Investigations into Anomalous Diffusion Driven by
Stress Redistribution Events: Consequences of Lévy Flights

Josiah D. Cleland 1,2,* and Martin A. K. Williams 1,2,3

1 School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand
2 Riddet Institute, Palmerston North 4474, New Zealand
3 The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
* Correspondence: j.cleland2@massey.ac.nz

Abstract: This research is concerned with developing a generalised diffusion equation capable of
describing diffusion processes driven by underlying stress-redistributing type events. The work
utilises the development of an appropriate continuous time random walk framework as a foundation
to consider a new generalised diffusion equation. While previous work has explored the resulting
generalised diffusion equation for jump-timings motivated by stick-slip physics, here non-Gaussian
probability distributions of the jump displacements are also considered, specifically Lévy flights. This
work illuminates several features of the analytic solution to such a generalised diffusion equation
using several known properties of the Fox H function. Specifically demonstrated are the temporal
behaviour of the resulting position probability density function, and its normalisation. The reduction
of the proposed form to expected known solutions upon the insertion of simplifying parameter
values, as well as a demonstration of asymptotic behaviours, is undertaken to add confidence to the
validity of this equation. This work describes the analytical solution of such a generalised diffusion
equation for the first time, and additionally demonstrates the capacity of the Fox H function and its
properties in solving and studying generalised Fokker–Planck equations.

Keywords: generalized; fractional; diffusion; Fokker–Planck

MSC: 60G65

1. Introduction

Diffusion is a widespread phenomena, occurring across a vast array of physical
systems. The study of diffusive systems in a physical and mathematical sense may be
divided into those exhibiting Gaussian or non-Gaussian behaviours. These two classes
of diffusive process are also often referred to as normal (Gaussian) and anomalous (non-
Gaussian) diffusion, although there have been more recent works to suggest some overlap
between these classes [1,2]. Classification of a process into one of the two categories is
based on the value of the characteristic exponent of the time dependence of the second
moment of the probability density function (PDF). In the instance where the process occurs
in a spatially symmetric manner, the second moment and mean squared displacement are
equivalent and thus,

μ2(t) = 〈x2〉(t) = tγ. (1)

In Equation (1), γ plays the role of the characteristic exponent. Normal diffusion is
said to occur for γ = 1 and when γ �= 1 the process is described as anomalous. Anomalous
diffusion is abundant amongst the natural world, and as a consequence of this prevalence
it has been the subject of widespread study, of which there is a rich history. As specific
examples, it has been observed in charge carrier transport in amorphous semiconduc-
tors [3,4], in flow in porous systems [5], in quantum optics [6,7], as well as many other
systems [8,9]. In a mathematical context, two predominant branches of study exist, one
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extends from the works of Langevin, aiming to produce a stochastic description of a single
trajectory. The second branch is concerned with the time evolution of the entire ensemble
of a process, with early works in this vain formulated by the likes of Fokker, Planck, and
Smoluchowski [10].

In prior work by the authors, a generalized diffusion equation was derived from an
underlying continuous time random walk (CTRW) [11] that possessed a timing distribution
associated with stress redistributing systems. The intention of that work was to explore
the ability of fractional or non-Markovian models to describe dynamics within physical
systems with stress redistributing features (such as those found in earthquake dynamics,
physical gels, and many stick-slip models). It could be said that the mentioned work
focused on the temporal implications of stress redistribution for resulting diffusive processes.
The present research explores the spatial implications which follow from stress re-distributing
processes driving anomalous diffusion. In order to capture these spatial features, we employ
non-Gaussian distributions of the displacements in the underlying CTRW framework.
Specifically the class of probability density functions known as stable Lévy distributions are
inserted for the displacement probability densities in the underlying CTRW.

This article will be structured as follows, Section 2 will give a brief overview of the
underlying CTRW framework, Section 3 outlines the consequences of incorporating Lévy
stable probability densities in the CTRW in terms of the resulting generalised diffusion
equation, the probability density current, and the displacement PDF. Section 3 finishes with
the demonstration of the normalisation and reduction properties of the obtained solution to
the generalised diffusion equation. Finally, Section 4 covers the key findings and provides
some concluding remarks.

2. CTRW

The CTRW framework was first described by Weiss and Montroll, and has been em-
ployed in the studies of a number of stochastic processes [12]. The CTRW is built up from
the stochastic exploration of a walker through space, where the displacements x are inter-
rupted by waiting times t. These variables are drawn from a continuous probability density
function (PDF) Ψ(x, t). In the instance that there exists no correlations between the size of
the displacement and the waiting time (decoupled CTRW), the following expressions hold

λ(x) =
∫ ∞

0
Ψ(x, t)dt (2)

ω(t) =
∫ ∞

−∞
Ψ(x, t)dx, (3)

where λ(x) and ω(t) are the step-length and waiting time PDFs, respectively. The decou-
pled framework allows Ψ(x, t) to be factored into the independent distributions λ(x) and
ω(t). From these distributions, an arrival PDF, η(x, t) describing the probability density of
a walker arriving at various positions x in time t, may be constructed. The PDF η(x, t) is
defined as,

η(x, t) =
∫ ∞

−∞

∫ t

0
η(x′, t′)λ(x− x′)ω(t− t′)dt′dx′ + δ(x)δ(t). (4)

The first term of Equation (4) describes the probability associated with a walker at x′
at time, t′ having made a jump of length x− x′ in the remaining time t− t′, summed over
all x and all causally relevant t. Whilst the second term represents the initial conditions,
here at time t = 0 the walker is localized at a position defined by δ(x). The position PDF,
P(x, t) is then defined as the probability density of arriving and remaining at a position x
at time t, defined as

P(x, t) =
∫ t

0
η(x, t′)Φ(t− t′)dt′, (5)
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where Φ(t) is referred to as the survival PDF which provides the probability density for a
waiting time longer than t, defined as

Φ(t) = 1−
∫ t

0
ω(t′)dt′. (6)

The typical progress from this point is to pass into the Fourier–Laplace space. This
simplifies the expressions through the known transform properties of convolutions [13].
Transforming Equations (4) and (6), then substituting them into the Fourier–Laplace equiv-
alent of Equation (5), provides the following form for P(k, u) [14],

P(k, u) =
1− ω̂(u)

u
1

1− λ̂(k)ω̂(u)
. (7)

3. Lévy Flight

If the CTRW contains a Lévy stable distribution for the displacements, then such
behaviour corresponds to the following Fourier space, small k approximation,

λ̂(k) ∼ 1− σμ|k|μ, (8)

with μ ∈ [1, 2] [15]. The waiting time PDF, ω(t) utilised in this work is the gamma
distribution, which takes the following functional form,

ω(t) =
tγ−1

τγΓ(γ)
exp

(−t
τ

)
. (9)

Equation (9) has been connected with the timing of stress-redistribution events, moti-
vating its use in the present study [11,16,17]. The PDF ω(t) appears in the Laplace space as,

ω̂(u) =
1

τγ
(

1
τ + u

)γ (10)

Inserting Equations (10) and (8) into Equation (7) yields the following expression for
the PDF in the Fourier–Laplace space

P(k, u) =
1
u
· 1

1 + Dγ,μ |k|μ
(( 1

τ +u)γ− 1
τγ )

, (11)

where Dα,μ = σμ

τα is the generalised space-time diffusion coefficient.

3.1. Generalised Diffusion Equation

From Equation (11) we can outline a generalised diffusion equation [18]. The gener-
alised diffusion equation appears as,

∂

∂t
P(x, t) = Dα,μ

∂

∂t

∫ t

0
exp

(
− (t− t′)

τ

)
(t− t′)γ−1Eγ,γ

(
(t− t′)γ

τγ

)
∂μ

∂|x|μ P(x, t′)dt′, (12)

where, ∂μ

∂|x|μ is the Riesz space-fractional derivative [19,20]. The Riesz space-fractional
derivative is defined as

∂μ

∂|x|μ f (x) = F−1
[
|k|μ f (k)

]
(x), (13)

which in the x space is (for 1 < μ ≤ 2),

∂μ

∂|x|μ f (x) =
−1

2 cos(πμ/2)
1

Γ(2− μ)

∂2

∂x2

(∫ x

−∞

f (x′)
(x− x′)μ−1 dx′ +

∫ ∞

x

f (x′)
(x′ − x)μ−1 dx′

)
. (14)
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Equation (12) therefore represents the extension of non-locality to include both tempo-
ral and spatial domains.

3.1.1. Probability Density Current

There exists a well known connection between the diffusion equation and the conti-
nuity equation. The continuity equation states that the total change in concentration at a
particular location (the change in probability density in this case) and the divergence of the
concentration current at the same location (probability density current in this case) must be
zero, in the instance of a conserved quantity. Another way of expressing this is simply to
state that in the instance of a conserved quantity the change in this quantity in a defined
region must balance the flow of this quantity into and out of the region, or, more succinctly

Pt(x, t) = − ∂

∂x
J(x, t). (15)

where in Equation (15) J(x, t) is the probability density current (PDC). This provides a
useful starting point for investigations into how a given generalised diffusion equation
varies from the standard or normal case. Writing the PDC in a generalised form consistent
with fractional calculus

J(x, t) = −0G1−γ
t

∂μ−1

∂|x|μ−1 P(x, t). (16)

where in Equation (16) the operator 0G1−γ
t is defined as,

0G1−γ
t f (t) =

∂

∂t

∫ t

0
exp

(
− (t− t′)

τ

)
(t− t′)γ−1Eγ,γ

(
(t− t′)γ

τγ

)
f (t′)dt′. (17)

It is no longer accurate to describe the PDC, J(x, t), as moving down the gradient of
the PDF. In order to establish precisely to what this generalised PDC is sensitive to, we
outline its mathematical relationship connection with the position PDF:

J(x, t) = −0G1−γ
t

⎡⎣ −1

cos
(

π(μ−1)
2

)( −∞Dμ−1
x P(x, t) + xDμ−1

∞ P(x, t)
)⎤⎦. (18)

where the operators −∞Dμ−1
x and xDμ−1

∞ in Equation (18) are the left and right Riemann–
Liouville fractional derivatives (with 0 < μ− 1 ≤ 1) [21], respectively,

J(x, t) =0 G1−γ
t

⎡⎣ 1

cos
(

π(μ−1)
2

) 1
Γ(2− μ)

∂

∂x

(∫ x

−∞

P(x′, t)

(x− x′)μ−1 dx′ −
∫ ∞

x

P(x′, t)

(x′ − x)μ−1 dx′
)⎤⎦. (19)

Thus, there is still a gradient that the PDC will be directed down, which is intuitive in
the case of normal diffusion. However, the gradient is the now, rather than simply being
the slope of the PDF, the gradient in question is the derivative of the factor(∫ x

−∞

P(x′, t)

(x− x′)μ−1 dx′ −
∫ ∞

x

P(x′, t)

(x′ − x)μ−1 dx′
)

. (20)

This object is positive or negative depending on the position x being considered, which
follows from the symmetry of P(x, t). Equally, Equation (19) outlines a measure of the
non-local allocation of probability density. It constructs a difference from the weighted sum
of probability above and below the point of interest x. It is the gradient of this non-local
description that guides the flow of probability density. The presence of the generalised
time derivative captures the non-local behaviour in time, which persists over a regime
whose extent is governed by τ. The origins of the occurrence of non-local behaviour in
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time has been discussed in previous work [11], while the appearance of spatially non-local
behaviour, can result from the inclusion of a power law distribution of the displacements
such as those originating in systems exhibiting stress driven phenomena [22].

3.2. Displacement PDF

Beginning with Equation (11), the first modification made here is to express it as a Fox
H function [23] (for further details, and a summary of useful properties see Appendix A),

P(k, u) =
1
u

H1,1
1,1

[
Dγ,μ|k|μ

(( 1
τ + u)γ − 1

τγ )

∣∣∣∣(0,1)

(0,1)

]
. (21)

Taking the inverse Fourier (cosine) transform, and following up with the inverse
Laplace transform yields,

P(x, t) =
1

2
√

π

∫ t

0
exp

(
− t

τ

)
L−1

{
1
|x|H

2,1
1,3

[
(uγ − 1

τγ )|x|μ
2μDγ,μ

∣∣∣∣(1,1)

( 1
2 , μ

2 )(1,1)(1, μ
2 )

]}
(t′)dt′. (22)

As a brief aside, here it is pointed out that if only the Fourier inversion is evaluated, it
is possible to construct an integral decomposition precisely as described by Chechin et al.
and Sokolov [24,25], however, rather than the decomposition involving the Gaussian
propagator, it would would now involve the Lévy propagator (using the same Laplace-type
transform structure). To our knowledge this has not been described in the literature.

3.2.1. Subordinator Form

It will now be illustrated briefly how a connection of the kind outlined by Sokolov [25],
may be defined in this case in relation to the standard Lévy position PDF. Beginning with
Equation (21) the first step is to make the following substitution,

u
K(u)

=

((
1
τ
+ u

)γ

− 1
τγ

)
. (23)

In this instance K(u) is the Laplace transform of the memory kernel as defined in
Sokolov’s work, which is the time derivative of the memory kernels as defined by Tateishi [26].
After the evaluation of the inverse Fourier transform, Equation (21) becomes,

P(x,
u

K(u)
) =

1√
πu|x|H

2,1
1,3

[ |x|μ u
K(u)

Dγ,μ2μ

∣∣∣∣(1,1)

( 1
2 , μ

2 ),(1,1)(1, μ
2 )

]
. (24)

Using the Laplace transform properties of the H function allows the following repre-
sentation,

P
(

x,
u

K(u)

)
=
∫ ∞

0

1√
π|x|μ H2,1

2,3

[ |x|
Dγ,μ2τ

1
μ

∣∣∣∣(1, 1
μ ),(1, 1

μ )

( 1
2 , 1

2 )(1, 1
μ ),(1, 1

2 )

]
1

K(u)
exp

(
−τ

u
K(u)

)
dτ. (25)

Cancelling out the coefficients of the H function, then introducing a new pair (1, 1
2 )

symmetrically and using the Legendre duplication formula yields,

P
(

x,
u

K(u)

)
=
∫ ∞

0

1
|x|μ H1,1

2,2

[ |x|
Dγ,μτ

1
μ

∣∣∣∣(1, 1
μ )(1, 1

2 )

(1,1),(1, 1
2 )

]
1

K(u)
exp

(
−τ

u
K(u)

)
dτ. (26)

This form describes the connection between the standard Lévy solution and the
generalised form studied within this work. The form of the connection is the subordinator
type structure, as described by Sokolov.
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Returning now to Equation (22) we continue to work on revealing P(x, t). Prior to the
full inversion of the Laplace transform in Equation (22), we first prepare the H function.
This is achieved by first expressing the H - function in its series form as described in the
text by Mathai and Saxena [27]. This gives the following result,

L−1
{

1
|x|H

2,1
1,3

[
(uγ − 1

τγ )|x|μ
2μDγ,μ

∣∣∣∣(1,1)

( 1
2 , μ

2 )(1,1)(1, μ
2 )

]}
(t) =

1
|x|L

−1
{ ∞

∑
n=0

(Γ
(

1− 2
μ (

1
2 + n)

)
Γ
(

2
μ (

1
2 + n)

)
Γ
(

1
2 + n

)
Γ(n + 1)

(−1)n

μ
2

(
τγ|x|μ(uγ − 1

τ

γ
)2

2μσμμ

) 2
μ (

1
2+n))

+
∞

∑
n=0

(Γ
(

1
2 − μ

2 (1 + n)
)

Γ(1 + n)

Γ
( μ

2 (1 + n)
)
Γ(1 + n)

× (−1)n
(

τγ|x|μ(uγ − 1
τ

γ
)

2μσμ

)1+n)}
(t). (27)

Now the binomial theorem is used to expand the (uγ − 1
τ

γ
) terms,

(uγ − 1
τ

γ

)A = uγA(1− 1
uγτγ

)A = uγA
∞

∑
m=0

(
A
m

)(
− 1

uγτγ

)m

, (28)

where
(

A
m

)
are the binomial coefficients. Thus,

L−1
{

1
u|x|H

2,1
1,3

[
(uγ − 1

τγ )|x|μ
2μDγ,μ

∣∣∣∣(1,1)

( 1
2 , μ

2 )(1,1)(1, μ
2 )

]}
(t) = L−1

{ ∞

∑
n=0

∞

∑
m=0

(Γ
(

1− 2
μ (

1
2 + n)

)
Γ
(

1
2 + n

)
Γ
(

2
μ (

1
2 + n)

)
Γ
(

2
μ (

1
2 + n) + 1

)
Γ(n + 1)Γ(m + 1)Γ

(
μ
2
( 1

2 + n
)
+ 1−m

) (−1)n

μ
2

(
τγ|x|μuγ2

2μσμμ

) 2
μ (

1
2 +n))(

− 1
uγτγ

)m

+
∞

∑
n=0

∞

∑
m=0

( Γ
(

1
2 − μ

2 (1 + n)
)

Γ(1 + n)Γ(2 + n)

Γ
( μ

2 (1 + n)
)
Γ(1 + n)Γ(m + 1)Γ(2 + n−m)

(−1)n
(

τγ|x|μuγ

2μσμ

)1+n)(
− 1

uγτγ

)m}
(t).

Which, when put back into a Fox H-function form, and Laplace inverted appears as

P(x, t) =
1√
π

∫ t

0
exp

(
− t′

τ

) ∞

∑
m=0

1
Γ(m + 1)

(
− t′γ

τγ

)m 1
t′|x|H

2,2
3,4

[
τγ|x|μ
2μσμt′γ

∣∣∣∣(1,1)(0,1)(γm,γ)

( 1
2 , μ

2 )(1,1)(1, μ
2 )(m,1)

]
dt′. (29)

An equivalent form may be found by first using the shift theorem for the Laplace
inversion, rather than removing the 1/u factor as an integral from 0 → t. Keeping it in the
u-space, it becomes 1

u− 1
τ

and inverting the Laplace transform in its entirety

P(x, t) =
1√
π

exp
(
− t

τ

) ∞

∑
m=0

∞

∑
j=0

1
Γ(m + 1)

(
− tγ

τγ

)m( t
τ

)j 1
t|x|H

2,2
3,4

[
τγ|x|μ
σμtγ

∣∣∣∣(1,1)(0,1)(1+j+γm,γ)

( 1
2 , μ

2 )(1,1)(1, μ
2 )(m,1)

]
. (30)

The solution P(x, t) is contained within Figure 1 for a range of values of μ and γ. It is
of note that, through the methods of solution adopted in this article, the spatial parameter
μ may have its range of values extended to μ ∈ (0, 2], however the additional constraint
that μ �= γ is present if μ ∈ (0, 1].

3.2.2. Normalisation

The normalisation of Equation (29) can be demonstrated using the Mellin transform,
as shown before in the work of Sandev et al. [28]. After the evaluation of the Mellin
transform, Equation (29) becomes,

∫ t

0
exp

(
− t′

τ

) ∞

∑
m=0

1
Γ(m + 1)

(
t′γ

τγ

)m 1
t′

1
Γ(γm)Γ(1−m)

dt′. (31)
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Equation (31) has an equivalent form in terms of the Fox H function, after expressing
it in this manner and taking the Laplace transform reveals

1
u

H1,1
2,2

[
− 1

(u + τ)γτγ

∣∣∣∣(1,γ)(1,1)

(0,1),(1,γ)

]
=

1
u

(
1 +

1
(u + τ)γτγ

)0
=

1
u

(32)
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Figure 1. Position probability density functions corresponding to increasing values of γ and μ in
Equation (29), where X is dimensionless, X = x/σ. The value of γ ranges from γ = 1/4 (first row),
to γ = 3/4 (third row), in increments of 1/4 and μ ranges from 3/2 (first column) to 5/2 (third
column) in increments of 1/2. The colours correspond to units of time, t/τ, within the open range
(0, 5) (light blue to dark blue). These figures have used the values of τ and σ to be τ = σ = 1.

3.2.3. Reduction γ → 1

If γ → 1, Equation (29) should reduce to the standard Lévy solution. The first step
is to remove the factor (−1)m from the Fox H function followed by taking the factor (−1)
into the Fox H function, both via the relations discussed in Skibinski et al. [29]

P(x, t) =
1√
π

∫ t

0

(−1)
t′|x| H1,1

1,2

[
τγ|x|μ
2μσμt′

∣∣∣∣(0,1)

( 1
2 , μ

2 )(1, μ
2 )

]
. (33)

Laplace transforming this to resolve the integral, provides the following expression
for P(x, u)

P(x, u) =
1√
π

(−1)
u|x| H2,1

1,3

[
τγ|x|μu

2μσμ

∣∣∣∣(0,1)

(0,1)( 1
2 , μ

2 )(1, μ
2 )

]
. (34)

203



Mathematics 2022, 10, 3235

The inversion of this followed by bringing the factor (−1) back into the H function,
enables the cancellation of the coefficient pair (0, 1).

P(x, t) =
1√
π

1
|x|H

1,1
1,2

[
τγ|x|μ
2μσμt

∣∣∣∣(1,1)

( 1
2 , μ

2 )(1, μ
2 )

]
. (35)

From this expression you may simply remove μ from the Fox H function (see known
properties [30]), insert a symmetric coefficient pair (1, 1

2 ) followed by the employment of
the Legendre duplication formula on the coefficient pairs (1, 1

2 ) and ( 1
2 , 1

2 ) to complete the
extraction of the standard Lévy form, as required [11].

P(x, t) =
1
|x|μ H1,1

2,2

[
τ|x|
σt

1
μ

∣∣∣∣(1, 1
μ )(1, 1

2 )

(1,1)(1, 1
2 )

]
. (36)

3.2.4. Reduction μ → 2

If μ → 2 the Gaussian propagator should be recovered and that is now demonstrated.
Starting from Equation (29) we set μ → 2, which gives,

P(x, t) =
1√
π

∫ t

0
exp

(
− t′

τ

) ∞

∑
m=0

1
Γ(m + 1)

(
− t′γ

τγ

)m 1
t′|x|H

2,2
3,4

[
τγx2

4σ2t′γ

∣∣∣∣(1,1)(0,1)(γm,γ)

( 1
2 ,1)(1,1)(1,1)(m,1)

]
dt′. (37)

We then combine coefficients by way of the Legendre duplication relation, and then
reduce the H function to give,

P(x, t) =
1
2

∫ t

0
exp

(
− t′

τ

) ∞

∑
m=0

1
Γ(m + 1)

(
t′γ

τγ

)m 1
t′|x|H

1,1
2,2

[
τ

γ
2 |x|

σt′
γ
2

∣∣∣∣(0, 1
2 )(γm, γ

2 )

(1,1)(m, 1
2 )

]
dt′. (38)

This is the integral form identified for the Gaussian CTRW case, as required.

3.2.5. Short Timescale Asymptotics

In the very small t regime, such that exp
(− t

τ

) ≈ 1, and the dominant term of the
series over m is m = 0, in which case the solution to Equation (29) reduces to the following
integral form,

P(x, t) =
1√
π

∫ t

0

1
t′|x|H

2,1
2,3

[
τγ|x|μ
2μσμt′γ

∣∣∣∣(1,1)(0,γ)

( 1
2 , μ

2 )(1,1)(1, μ
2 )

]
dt′

=
1√
π

1
|x|H

2,1
2,3

[
τγ|x|μ
2μσμtγ

∣∣∣∣(1,1)(1,γ)

( 1
2 , μ

2 )(1,1)(1, μ
2 )

]
. (39)

Which is the solution to the Riemann–Liouville space-time fractional diffusion equation.

3.2.6. Long Timescale Asymptotics

In order to explore the long timescale asymptotic behaviour, the first step is to remove
the factor (−1)m by way of property 3.5 of the work of Skibinski [29]. Following this, the
Fox H function may be expressed in the series form as described in brief in the article of
Metzler et al. [31] and in detail in the landmark text by Saxena and Mathai [27]. The series
form contains a nested pair of summations, one between 0 and ∞ and the other from 1 to 3.
The latter has only one non-zero component (corresponding to the coefficient pair ( 1

2 , μ
2 ))

which we now outline,
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1
t|x|H

2,2
3,4

[
τγ|x|μ
2μσμtγ

∣∣∣∣(1,1)(0,1)(γm,γ)

( 1
2 , μ

2 )(1,1)(1, μ
2 )(m,1)

]
=

1
t|x|

∞

∑
n=0

(
τγ|x|μ
2μσμtγ

)( 1
2+n) 2

μ 2
μ

Γ
(

m− 2
μ

(
1
2 + n

))
Γ
(

1− 2
μ

(
1
2 + n

))
Γ
(

2
μ

(
1
2 + n

))
Γ
(
− 2γ

μ

(
1
2 + n

))
Γ
(

γm− 2γ
μ

(
1
2 + n

))
Γ
(

1
2 + n

)
Γ(n + 1)

. (40)

Reinserting Equation (40) into Equation (29), then collecting the series over m and
expressing this as an H function, yields

P(x, t) =
1√
π

∫ t

0
exp

(
− t′

τ

)
1

t|x|
∞

∑
n=0

(
τγ|x|μ
2μσμtγ

)( 1
2+n) 2

μ 2
μ

Γ
(

2
μ

(
1
2 + n

))
Γ
(

1− 2
μ

(
1
2 + n

))
Γ
(
− 2γ

μ

(
1
2 + n

))
Γ
(

1
2 + n

)
Γ(n + 1)

H1,1
1,2

[
− tγ

τγ

∣∣∣∣(1+
2
μ (

1
2+n),1)

(0,1)(1+ 2γ
μ (

1
2+n),γ)

]
dt′. (41)

The Fox H function contained in Equation (41) is able to be connected with the Wright
function and this allows asymptotic behaviour to be readily extracted via the work of
Wright [32]. Using the relationships identified by Wright, the following form can be
extracted (using theorem 1 within, and the integer M = 1)

P(x, t) =
1√
π

∫ t

0
exp

(
− t′

τ

)
1

t|x|
∞

∑
n=0

(
τγ|x|μ
2μσμtγ

)( 1
2+n) 2

μ 2
μ

Γ
(

2
μ

(
1
2 + n

))
Γ
(

1− 2
μ

(
1
2 + n

))
Γ
(
− 2γ

μ

(
1
2 + n

))
Γ
(

1
2 + n

)
Γ(n + 1)

(
t
τ

)(γ−1) 2
μ (

1
2+n)

γ
2
μ (

1
2+n) exp

(
t
τ

)
dt′. (42)

After simplifying Equation (42) it may be recombined into the following H function
expression

P(x, t) =
1√
π

∫ t

0

1
t′|x|H

2,1
2,3

[
τ|x|μ

2μσμt′

∣∣∣∣(1,1)(0,1)

( 1
2 , μ

2 )(1,1)(1, μ
2 )

]
dt′

=
1√
π

1
|x|H

2,0
1,2

[
γτ|x|μ
2μσμt

∣∣∣∣(1,1)

( 1
2 , μ

2 )(1, μ
2 )

]

=
1√
π

1
|x|H

2,1
2,3

[
γτ|x|μ
2μσμt

∣∣∣∣(1,1)(1, μ
2 )

(1, μ
2 )(

1
2 , μ

2 )(1, μ
2 )

]

=
1√
π

1
|x|H

1,1
2,2

[
γτ|x|μ

σμt

∣∣∣∣(1,1)(1, μ
2 )

(1,μ)(1, μ
2 )

]
. (43)

To summarise the steps involved in Equation (43), the integral is first evaluated after a
reduction is afforded due to the symmetry of the coefficients. The symmetric coefficients
(1, μ

2 ) are then inserted to allow the Legendre duplication formula to be used to combine
the coefficient pair (1, μ

2 )(
1
2 , μ

2 ). Thus it can be seen that for sufficiently large timescales the
standard Lévy form is recovered. It is of note, however, that the anomalous exponent γ
remains present. It represents a lingering signature of the subdiffusive behaviour that was
present on shorter timescales, which is analogous to the observations made in the work of
Cleland and Williams [11] for long timescales.
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4. Discussion and Conclusions

This research is concerned with developing a generalised diffusion equation capable of
describing diffusion processes driven by underlying stress-redistributing (SR) type events.
Previous work [11] has explored the resulting diffusion equation in the instance that only
the timing of these SR jump-inducing events is considered. However, the present research
incorporates spatial implications as well, encoded within the chosen displacement PDF
in the underlying CTRW. The encoding was introduced via a Lévy stable PDF exhibiting
the inverse power law tails also observed in SR models [22]. The resulting generalised
diffusion equation was found in the so called hydrodynamic limit, which corresponds to the
small k regime in the Fourier space, and its memory kernel was extracted. Its structure
is different from that which was studied in Ref. [11] with regard to the spatial derivative,
which is now fractional. The implications of a fractional derivative were explored in
Section 3.1.1, within the context of the flow of probability current. The non-local nature of
these derivatives was also demonstrated in Section 3.1.1, as the flow of PDC was determined
to be directed down a non-local gradient. Section 3.2 then delved into the solution to the
generalised diffusion equation discussed within this article. In obtaining the solution to
Equation (12) via its Fourier and Laplace form, a small detour was taken to highlight a
new subordinator connection to the standard Lévy PDF. This subordinator form mirrored
extremely closely the form highlighted by Checkin et al. and Sokolov [24,25], however,
differing slightly in the inclusion of the standard Lévy PDF. After this brief detour, the
derivation of the solution to Equation (12) continued. Several relations closely connected
with the Fox H function were exploited in the determination of the final PDF form, which
is given in Equation (29) and shown in Figure 1. The employment of these Fox H function
properties is something that has become an important tool in the study of fractional
derivative equations in recent years [11,28,33,34]. Sections 3.2.2–3.2.4 deal with important
behaviours that any solution of Equation (12) would be expected to have, confirming its
validity. Specifically, in Section 3.2.2 the normalisation condition was confirmed, ensuring
that P(x, t) is a PDF. Section 3.2.3 demonstrated that in the instance γ → 1 P(x, t) relaxed
back to the standard Lévy PDF. Finally, Section 3.2.4 outlined the nature of the reduction
back to the PDF described in the work of Cleland and Williams [11], upon the occurrence
of μ → 2. This work represents the first time both spatial and temporal features of stress-
redistribution driven diffusion have been encoded within a generalised diffusion equation.
It is hoped that the analytic features outlined within this work will be of great use in the
modelling of systems demonstrating diffusion driven by these stick-slip dynamics.

Author Contributions: Conceptualization, J.D.C.; methodology, J.D.C.; formal analysis, J.D.C.; inves-
tigation, J.D.C.; writing—original draft preparation, J.D.C.; writing—review and editing, J.D.C. and
M.A.K.W.; supervision, M.A.K.W.; project administration, M.A.K.W.; funding acquisition, M.A.K.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Riddet Institute.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Fox H-Function

The definition of the Fox H-function appears in terms of the Mellin–Barnes type
integral as follows [27,30],

Hm,n
p,q (z) = Hm,n

p,q

[
z
∣∣∣∣(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bp, Bp)

]

=
1

2πi

∫
Ω

θ(s)zs ds, (A1)
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where θ(s) is the ratio of products of gamma functions, hence the mention of Barnes in the
integral name. Specifically we have

θ(s) =
∏m

j=1 Γ(bj − Bjs)∏n
j=1 Γ(1− aj + Ajs)

∏
q
j=m+1 Γ(1− bj + Bjs)∏

p
j=n+1 Γ(aj − Ajs)

. (A2)

With the parameters defined such that, 0 ≤ n ≤ p, 1 ≤ m ≤ q, ai, bj ∈ C, Ai, Bj ∈
R+, i = 1, . . . , p, j = 1, . . . , q. The integration contour, Ω is chosen to run from c− i∞ →
c + i∞ such that it avoids the poles of θ(s). There is a very useful expansion for the Fox
H-function given in Ref. [28], it appears as

Hm,n
p,q (z) = Hm,n

p,q

[
z
∣∣∣∣(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bp, Bp)

]

=
m

∑
h=1

∞

∑
k=0

∏m
j=1,j �=h Γ(bj − Bj

bh+k
Bh

)∏n
j=1 Γ(1− aj + Aj

bh+k
Bh

)

∏
q
j=m+1 Γ(1− bj + Bj

bh+k
Bh

)∏
p
j=n+1 Γ(aj − Aj

bh+k
Bh

)

(−1)kz
bh+k

Bh

k!Bh
. (A3)

These functions are of great importance to anomalous diffusion as they provide a
closed form in which to represent the non-Gaussian distributions that occur [35].

Appendix A.1. Expansion Formulae

Let m, n, p, and q be non-negative integers such that 1 ≤ m ≤ q, 0 ≤ n ≤ p. Fur-
ther, let Aj, j = 1, . . . , p and Bj, j = 1, . . . , q be positive numbers and aj, j = 1, . . . , p and
bj, j = 1, . . . , q be complex numbers and μ > 0 where

μ =
p

∑
j=1

Bj −
p

∑
j=1

Aj. (A4)

Then, if ω and η are complex numbers such that ω �= 0 and η �= 0, then the following
results hold:

Formula I

Hm,n
p,q

[
ηω

∣∣∣∣(a1,A1),...,(ap ,Ap)

(b1,B1),...,(bq ,Bq)

]
= η

b1
B1

∞

∑
r=0

(
1− η

1
Bq

)r

r!
Hm,n

p,q

[
ω

∣∣∣∣(a1,A1),...,(ap ,Ap)

(b1+r,B1),...,(bq ,Bq)

]
(A5)

where η is arbitrary for m = 1, and for m > 1 |η 1
B1 − 1| < 1, arg(ηω) = B1, arg(η

1
B1 ) +

arg(ω), and | arg(η
1

B1 )| < π
2 .

Formula II

Hm,n
p,q

[
ηω

∣∣∣∣(a1,A1),...,(ap ,Ap)

(b1,B1),...,(bq ,Bq)

]
= η

bq
Bq

∞

∑
r=0

(
η

1
Bq − 1

)r

r!
Hm,n

p,q

[
ω

∣∣∣∣(a1,A1),...,(ap ,Ap)

(b1,B1),...,(bq+r,Bq)

]
(A6)

where q > m, |η
1

Bq − 1| < 1 arg(ηω) = Bq arg(η
1

Bq ) + arg(ω), and | arg(η
1

Bq )| < π
2 .

Formula III

Hm,n
p,q

[
ηω

∣∣∣∣(a1,A1),...,(ap ,Ap)

(b1,B1),...,(bq ,Bq)

]
= η

a1−1
A1

∞

∑
r=0

(
1− η

− 1
A1

)r

r!
Hm,n

p,q

[
ω

∣∣∣∣(a1−r,A1),...,(ap ,Ap)

(b1,B1),...,(bq ,Bq)

]
(A7)

where n > 0,�
(

η
1

A1

)
> 1

2 , arg(ηω) = A1 arg(η
1

A1 ) + arg(ω), and | arg(η
1

A1 )| < π
2 .

207



Mathematics 2022, 10, 3235

Formula IV

Hm,n
p,q

[
ηω

∣∣∣∣(a1,A1),...,(ap ,Ap)

(b1,B1),...,(bq ,Bq)

]
= η

aq−1
Aq

∞

∑
r=0

(
η
− 1

Ap − 1
)r

r!
Hm,n

p,q

[
ω

∣∣∣∣(a1,A1),...,(ap−r,Ap)

(b1,B1),...,(bq ,Bq)

]
(A8)

where p > n,�
(

η
1

Ap

)
> 1

2 , arg(ηω) = Ap arg(η
1

Ap ) + arg(ω), and | arg(η
1

Aq )| < π
2 .

Appendix A.2. Transformation Properties

Laplace Transform

Let either α > 0,| arg a| < 1
2 πα or α = 0 and �(δ) < −1. Further assume that

α > 0; ρ, α, u ∈ C, σ > 0, satisfy the condition: �(ρ) + σ min1≤j≤m

[�(bj)
Bj

]
> 0 for α > 0

or α = 0, μ ≥ 0; and �(ρ) + σ min1≤j≤m

[
bj
Bj
+

�(δ)+ 1
2

μ

]
> 0 for α = 0 and μ < 0. Then for

�(u) > 0, there holds the formula,

L
[

tρ−1Hm,n
p,q+1

[
atσ

∣∣∣∣(ap ,Ap)

(bq ,Bq)

]]
(u) = u−ρHm,n

p,q

[
au−σ

∣∣∣∣(ap ,Ap)

(bq ,Bq),(1−ρ,σ)

]
(A9)

for �(u) > 0, u ∈ C.
With the inverse given by

L−1

[
u−ρHm,n

p,q

[
au−σ

∣∣∣∣(ap ,Ap)

(bq ,Bq)

]]
(t) = tρ−1Hm,n

p+1,q

[
atσ

∣∣∣∣(ap ,Ap)

(bq ,Bq),(1−ρ,σ)

]
(A10)

where ρ, a, u ∈ C,�(u) > 0, σ > 0,�(ρ) + σ max1≤i≤n

[
1
Ai
− �(ai)

Ai

]
> 0, | arg(a)| <

1
2 πθ, θ = −σ.

Fourier Cosine Transform

∫ ∞

0
xρ−1 cos(ax)Hm,n

p,q+1

[
bxσ

∣∣∣∣(ap ,Ap)

(bq ,Bq),(1−ρ,σ)

]
dx =

2ρ−1√π

aρ Hm,n+1
p+2,q

⎡⎣ba−σ2σ

∣∣∣∣(
(2−ρ)

2 , σ
2 )(ap ,Ap)(

(1−ρ)
2 , σ

2 )

(bq ,Bq),(1−ρ,σ)

⎤⎦ (A11)

where a, α, σ > 0, ρ, b ∈ C; | arg b| < 1
2 πα;

�(ρ) + σ min
1≤j≤m

�
(

bj

Bj

)
> 0;�(ρ) + σ max

1≤j≤n

[
(aj − 1)

Aj

]
< 1
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Abstract: In recent years, we found that some multiscale methods applied to fractional differential
problems, are easy and efficient to implement, when we use some fractional refinable functions
introduced in the literature. In fact, these functions not only generate a multiresolution on R, but
also have fractional (non-integer) derivative satisfying a very convenient recursive relation. For this
reason, in this paper, we describe this class of refinable functions and focus our attention on their
approximating properties.

Keywords: fractional refinable functions; fractional differential problems; collocation method

1. Introduction

In the last decades, fractional calculus has increased in popularity, owing to the
awareness that many physical problems, such as viscoelasticity, Brownian motion, medical
issues and so forth, require fractional derivatives to be modeled appropriately. For a better
understanding, please see [1,2].

Analytical solutions for certain problems have been found. They are expressed through
the Mittag–Leffler function [3], which is a series expansion, and thus require numerical
tools to be computed. For this issue and for the other unsolved problems, the literature
provides many ways to numerically solve fractional differential problems. Most of the
methods employ the quadrature rule to compute the fractional derivatives [4]; others use
spectral or Galerkin methods [5].

In recent papers [5–7], the authors proved that the multiscale collocation methods
are easy and efficient to implement, when using certain fractional refinable functions
introduced in [6,8]. In fact, these functions not only generate a multiresolution on R, but
also satisfy a fractional derivative convenient formula. Moreover, the collocation technique
allows one to obtain an algebraic system from a differential problem.

The coefficient matrix is given by the collocation of basis functions into the collocation
nodes. In this way, the result is given by the solution (often in a least-squares sense) of a
linear algebraic system. The goal of this paper is to prove further approximating properties
of this class of fractional refinable functions with respect to [6,8], suitable to the solution of
fractional differential problems.

More precisely, in [6,8], we proved the basis properties of the class ϕα,h, for α > 2. The
novelty of this paper, is that here we prove that these properties are also valid for α > 1
and that other important approximating and smoothing properties can be proved, e.g., the
order of polynomial reproducibility. In this way, we enlarge the class of fractional refinable
functions from α > 2 to α > 1 and thus, also its applicability to a wider class of fractional
differential problems . Furthermore, we prove that all the properties derive from a suitable
convolution formula. Note that when we apply these functions to a differential problem
with fractional derivative γ, we have to choose refinable functions of approximation order
α such that α− γ > 1.

Fractal Fract. 2022, 6, 521. https://doi.org/10.3390/fractalfract6090521 https://www.mdpi.com/journal/fractalfract210
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The paper is organized as folllows. Section 3 introduces some fractional derivative
definitions, that can be computed by numerical quadrature rules. We choose the Ca-
puto derivative for several reasons: computational efficiency, minor regularity required,
stability [2]. Section 4 explains Multiresolution Analysis (MRA) properties on R and on the
interval. Section 5 describes the collocation and the Galerkin methods constructed with
MRA. Section 6 lists the main properties of the fractional B-splines, introduced in [9,10],
emphasizing the fractional derivative properties. Section 7 describes the new class of frac-
tional refinable functions constructed introduced by [6,8], through a convolution formula
involving the functions in [11] and with a continuos dependence from a parameter h. We
prove that these functions satisfy new properties that are similar to those of the fractional
B-splines, such as, for example, the polynomial reproducibility. Furthermore, we prove a
differentiation formula that makes them particularly interesting in the fractional derivative
context. In the conclusions, we explain all the advantages of this new class of fractional
refinable functions, including an example on polynomial reproducibility.

2. Fractional Derivatives

The fractional derivative can be defined in many ways: for example, in the Caputo
sense or in the Riemann Liouville way.

The Caputo definition of the fractional derivative is:

cDγ
t y(t) :=

(J (k−γ)y(k)
)
(t) , k− 1 < γ < k , k ∈ N , t > 0 , (1)

where J (β) is the Riemann–Liouville integral operator

(J (β)y
)
(t) :=

1
Γ(β)

∫ t

0
y(τ) (t− τ)β−1 dτ β ∈ R, (2)

and Γ denotes Euler’s gamma function

Γ(β) :=
∫ ∞

0
τβ−1 e−τ dτ . (3)

Hence,

cDγ
t y(t) :=

1
Γ(k− γ)

∫ t

0
y(k)(τ) (t− τ)k−γ−1 dτ, k = �γ�. (4)

For example, if γ = 0.5 then k = 1 and:

cD0.5
t y(t) :=

1
Γ(0.5)

∫ t

0

y′(τ)√
(t− τ)

dτ . (5)

If, for example, y(t) = tn then

cDγ
t y(t) :=

Γ(n + 1− γ)

Γ(n + 1)
tn−γ. (6)

Riemann–Liouville definition is instead

RLDγ y(t) :=
dk

dtk

(J (γ)y
)
(t) , t > 0 . (7)

They both reduce to the usual differential operator when γ ∈ N. In the general case,
we have the following relation between the Caputo and the Riemann derivatives

cDγ y(t) =RL Dγ

(
y(t)−

k

∑
l=0

tl

l!
y(l)(0+)

)
. (8)
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The definitions coincide for homogenous boundary initial conditions.
In the Fourier domain one has

F(Dγ , y(t)
)
= (iω)γF (y(t)) , γ ∈ R+ , ω ∈ C (9)

where F (y) is the Fourier transform of the function y.

3. MRA and Refinable Spaces

A sequence of functional spaces {Vj, j ∈ Z} ⊂ L2(R), forms a multiresolution analysis
(MRA) of L2(R) if

1. Vj ⊂ Vj+1, j ∈ Z,
2. ∪j∈ZVj = L2(R);
3.

⋂
j∈Z Vj = {0};

4. f (t) ∈ Vj ↔ f (2t) ∈ Vj+1, j ∈ Z;
5. there exists a L2(R)-stable basis in V0.

MRA Based on Refinable Functions

An MRA can be generated by a refinable function φ, i.e., a function that satisfies a
refinement functional equation

φ(t) = ∑
k∈Z

ak φ(2 t− k) , t ∈ R . (10)

It is known that if the mask coefficients {ak, k ∈ Z} form a finite sequence and have
some particular properties, then the existence of a unique solution to (10) in L2(R), can be
proved [12]. Moreover, the shifted refinable functions {φ(t− k), k ∈ Z} give rise to a stable
basis in V0, i.e., the space they span.

It is important to associate (10) with its symbol

bn(z) = ∑
k

ak zk

When the mask is an infinity sequence, under suitable conditions the solution exists
as proved in [8].

Now, we can define the spaces Vj of the multiresolution:

Vj := span {φjk(t) := φ(2j t− k) , k ∈ Z} , j ∈ Z , t ∈ R . (11)

Since we are taking into account differential problems of order n with initial conditions,
it is also important to define an MRA on an interval [0, T], belonging to Ł2([0, T]).

Let us suppose that the support of φ is compact, i.e., supp φ = [0, σ]. Then, we can
define an MRA on the interval.

V0
j [0, T] = span {φ0

jk(t) , k ∈ Nj} , j ≥ j0 , t ∈ [0, T] , (12)

where
φ0

jk(t) := {φjk|[0,T] : φjk(0) = φ′jk(0) = · · · = φ
(n−1)
jk (0) = 0};

Nj ⊂ Z, with #Nj = Nj = 2j + σ− 1, is the set of admissible index k and j0 is the
initial multiresolution scale, i.e., the minimal index such that supp φ0

j00 ⊂ [0, σ].
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4. The Collocation Method and the Galerkin Method

We use the MRA to approximate each fractional differential problem by the collo-
cation method and Galerkin method. For both methods, we pose the solution in the
following form:

yj(t) = ∑
k∈Nj

cjk ζ jk(t) (13)

where ζ jk is a refinable function generating an MRA.

• In the collocation method, we substitute (13) in the differential problem and we
collocate it in the dyadic nodes {tp = p/2s, p = 0, . . . , Ns, s ≥ j}. So, we obtain a

linear algebraic system in Ns equations and Nj unknowns {cjk}Nj
k=1. Usually, we solve

the system by least-squares method.
• In the Galerkin method, we rewrite the differential problem in a weak form, and we

substitute (13), using ζ jk as trial and test functions. In this way, the resulting linear
algebraic system, will contain as the coefficient matrix, the integrals between u and
the test (trial) functions ζ jk (Stiffness matrix).

In this way, the differential problem is converted into a system of algebraic equations that
is suitable for computer programming.

Note.
If u also depends on x, i.e., u(t, x), then the coefficients are cjk = cjk(x) [5,6].

5. Fractional B-Splines

A particular class of refinable functions is provided by the cardinal B-Splines of degree
n, i.e., functions that are positive and compactly supported in [0, n + 1], in each interval
of the partition are polynomials of degree at most n and in R have regularity Cn−1(R).
The Fourier transform of the classical B-Splines is:

B̂n(ω) =

(
1− e−iω

iω

)n+1

, n = 0, 1, · · · (14)

We can define a fractional B-Spline starting with its Fourier transform obtained intro-
ducing a fractional (non-integer) exponent in (14):

B̂α(ω) =

(
1− e−iω

iω

)α+1

, α > −1 (15)

It is proven that for α > −1, the antitransform Bα is in L1(R), while Bα is in L2(R) for
α > −1/2 [9].

In the time domain, the cardinal B-Splines Bn, are defined in the following way. Let
t+ := max(0, t) be the usual truncated power function and the finite difference operator

Δn v(t) := ∑
k∈N0

(−1)k
(

n
k

)
v(t− k) , n ∈ N (16)

Then, Bn(t) can be defined as:

Bn(t) :=
Δn+1 tn

+

(n + 1)!
, (17)

whose symbol is

bn(z) =
1
2n (1 + z)n+1
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In the non-integer case, we define the generalized finite difference operator

Δγ v(t) := ∑
k∈N0

(−1)k
(

γ

k

)
v(t− k) , γ ∈ R+. (18)

When γ ∈ N, {(γ
k)}k is a compactly supported sequence and we get the usual finite

difference operator.
On the other hand, when γ ∈ R+\N, then(

γ

k

)
:=

Γ(γ + 1)
k! Γ(γ− k + 1)

= O(k−γ−1) , k ∈ N0, γ ∈ R+

and thus the sequence {(γ
k)}k is absolutely summable and the limit of the series (18) exists

under suitable hypothesis on v. [9]
The fractional B-spline, i.e., the B-spline of non-integer order, in the time domain is

defined as:

Bα(t) :=
Δα+1 tα

+

Γ(α + 1)
, α > −1

2
, (19)

The following theorem writes, with a different proof with respect to [9].

Theorem 1. The fractional derivative of a B-Spline is a fractional B-Spline. More precisely,

DγBn(x) =
Δn+1tn−γ

+ (x)
Γ(n + 1− γ)

= ΔγBn−γ(x) (20)

In fact, one has

DγBn(x) = Dγ Δn+1tn
+(x)

(n + 1)!
= Δn+1 Dγtn

+(x)
(n + 1)!

=

Γ(n + 1)
Γ(n + 1− γ)

Δn+1tn−γ
+ (x)

(n + 1)!
=

Δn+1tn−γ
+ (x)

Γ(n + 1− γ)

Proof. Now, for the rule of the difference finite operator composition

ΔγΔn−γ+1 = Δn+1,

it is easy to verify that

Δn+1tn−γ
+ (x)

Γ(n + 1− γ)
=

ΔγΔn−γ+1tn−γ
+ (x)

Γ(n + 1− γ)
= ΔγBn−γ(x).

The theorem is proved.

It is also worthwhile to define the symbol bα of Bα, i.e.,

bα(z) =
1
2α

(1 + z)α+1

5.1. Main Properties of Fractional B-Splines

In the study by [9], fractional B-splines are introduced for the first time and their
main properties are proved. We summarize these properties in the following propositions
avoiding the proof.
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Proposition 1. The fractional B-Splines Bα belong to L1(R), for α > −1 and to the Sobolev space
Wr

2(R), 0 ≤ r < α + 1
2 , for α > − 1

2 ; where Wr
2(R), represents the Banach subspace of L2(R),

equipped with the norm
|| f ||r = || f ||2 + ||Dr f ||2

Proposition 2. When α > −1/2, the fractional B-Splines are α-order continuous, i.e., they can be
derived up to the order α but ∂α is in general only bounded.

Moreover, they generate an MRA of L2(R)

Proposition 3. The fractional B-splines reproduce polynomials up to degree �α�, but they do not
satisfy Strang and Fix theory. In fact, they have fractional approximation order α + 1, instead of
�α�+ 1.

For the CAGD and isogeometric context, it is important to know that they form a
partition of unity for α > −1.

Proposition 4. It is also important to consider the following fractional derivation rule that is a
generalization of the Formula (20)

Dγ (Bα) = Δγ Bα−γ (21)

where Dγ is the usual derivative of order γ.

There is also a formula that allows us to assume that a fractional B-spline preserves
the order of approximation of any refinable function of order α.

Proposition 5. Let φα be a refinable function generating an MRA in L2(R), of order of approxi-
mation α. Then, φα can be factorized as

φα = Bα ∗ φ0, (22)

α ≥ 0 and φ0 is a distribution such that
∫

φ0 = 1 [10].

Let us observe that all the previous propositions can be proved by starting from
Proposition 5.

5.2. Fractional Derivative of Refinable Functions

If we consider a generic function φα of order α, it is possible to generalize the differen-
tiation rule (21).

In fact, let it be that φ0 ∈ C0(R), then φα ∈ C�α�(R) and

Dγ φα = Dγ (Bα ∗ φ0) = Δγ (Bα−γ ∗ φ0) = Δγφα−γ , 0 < γ ≤ α . (23)

The claim follows from some results in [10].
For shifted functions φα,k(t), we obtain a similar result.

Proposition 6. Let φα,k(t) := φα(t− k). Then,

Dγ
t φα,k = Δγ φα−γ,k , 0 < γ ≤ α . (24)

Let us note that since φ ∈ L2(R) and the generalized binomial coefficients decay similar
to k−γ−1 as k → +∞, thus the series in (24) converges. Thus, in practical computation,
Δγφα−γ,k is a finite sum.
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6. Fractional GP Refinable Functions

We present here the main results regarding a new class of refinable functions of frac-
tional order α, obtained starting by a suitable refinable function (of support [0, 2]) introduced
in [11]. We consider

φα,h =
1
2

Bα−2∗φ1,ĥ , 0 ≤ α ≤ h , (25)

where φĥ ∈ L2(R) is the elementary refinable function, solution of the refinement equation

φ1,ĥ(t) =
2

∑
k=0

aĥ,k φh(2t− k) , t ∈ R , (26)

with mask coefficients in [11] and ĥ = h− α + 1. h is a real shape parameter that controls the
shape of φα,h. The symbol of φn,h in general is

bn
h (z) =

1
2h [(1 + z)n+1 + 4(2h−n − 1)z(1 + z)n−1].

that, for n = 1 reduces to

b1
h(z) =

1
2h [(1 + z)2 + 4(2h−1 − 1)z].

In the Fourier domain, the definition of φα,h becomes:

F (φα,h)(ω) =

(
1− e−iω

iω

)α−1

φ̂ĥ(ω)

We observe that when α ∈ N, α ≥ 0, then φα,h is compactly supported, belongs to
∈ Cα−1(R) and is a GP function as in [11]; in particular for h = α it reduces to a cardinal
B-Spline. Instead, when α is not an integer but h = α, then φα,α is a fractional B-spline
in [9].

It is easy to show that φα,h can be also obtained by placing a fractional index in the

mask of φn,h, i.e., aα,h,k =
1
h

[
(α+1

k ) + 4(2h−α − 1)(α−1
k−1)

]
and, in this case φα,h becomes:

bα
h(z) =

1
2h [(1 + z)α+1 + 4(2h−α − 1)z(1 + z)α−1]

Therefore, it is not difficult to prove that:

bα
h(z) =

1
2

bα−2(z) b1
ĥ(z) (27)

where
bα−2(z) =

1
2α−2 (1 + z)α−1 and ĥ = h− α + 1

In fact,

bα
h(z) =

1
2h (1 + z)α−1[(1 + z)2 + (2h−α+2)− 22)z] =

=
1

2α−2
1

2h−α+2 (1 + z)α−1[(z2 + (2h−α+2)− 2)z + 1].

Observe that from (29), we deduce that Bα−2 carries all the approximation properties
of ϕα,h. In fact, since φĥ is summable, the convolution preserves all the properties of Bα−2.
So, we have the following theorem,

216



Fractal Fract. 2022, 6, 521

Theorem 2. For any admissible α and h, φα,h belongs to C&α'−2(R) (and decays to the infinity
rather rapidly so that in practice it can be assumed compactly supported).

Moreover, it has derivative ∂α−1, but it is only bounded, not necessary continuous; one says
that it is α- continous. As for the order of approximation, φα,h has order of approximation α− 1
and order of polynomial reproducibility �α� − 1; so it does not verify the Strang and Fix theory.

Finally, the differentiation rule is specified in

Dγ
t φα,h(t) = Δγ φα−γ,h−α+2(t) =

∑k∈N0
(−1)k (α

k) φα−γ,h−α+2(t− k), 0 < γ ≤ α .

Proof. The properties of φα,h are the same properties of Bα−2 [9] that are preserved through
the convolution Formula (27) since φ1,ĥ is summable.

7. Conclusions

Since, as in the classical B-spline case, the fractional derivative of a GP refinable
function is a GP fractional refinable function, we deal in this paper with fractional GP
functions stemming from the fractional derivative of GP refinable functions. In this way,
we obtain a class of refinable functions, closed with respect to the fractional derivative.

Another advantage of these fractional GP refinable functions φα
h with respect to the GP

refinable function, is that, in practice, due to the rapid decay of φα
h , their supports appear

strictly contained in the supports [0, n + 1] of φn,h, but the order of exactness is the same,
i.e., n− 1. This property, in addition to derivative Formulas (23) and (24), renders them
highly suitable for solving fractional differential problems, as shown in [5,6].

More precisely, if, for example, we consider φα
h , with α = 1.5, then the order of

polynomial reproducibility is �α� − 1 = 1, that is the straight line can be reproduced, in the
same manner as classical GP refinable, when n = 1, and support [0, 2].
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Abstract: Using the Laplace transform method and the convolution theorem, we introduce new and
more general definitions for fractional operators with non-singular kernels, extending well-known
concepts existing in the literature. The new operators are based on a generalization of the Mittag–
Leffler function, characterized by the presence of a key parameter p. This power parameter p is
important to enable researchers to choose an adequate notion of the derivative that properly represents
the reality under study, to provide good mathematical models, and to predict future dynamic
behaviors. The fundamental properties of the new operators are investigated and rigorously proved.
As an application, we solve a Caputo and a Riemann–Liouville fractional differential equation.

Keywords: generalized Mittag–Leffler function; fractional calculus; non-singular kernels; integro-
differential equations

MSC: 26A33; 33E12; 34A08; 44A10

1. Introduction

Fractional calculus theory plays a crucial role in bridging the gap on the modeling of
many neglected phenomena with memory effects. Unlike Markov-chain processes, where
the current value of the function under consideration depends only on that of the recent
past, long-range memory is naturally included under fractional modeling [1,2].

An in-depth examination of the literature of fractional calculus confirms that the
modeling of memory effects has undergone several transformations in recent years, namely
by considering the exponential effect under the Caputo–Fabrizio derivative [3], the Mittag–
Leffler effect with Atangana–Baleanu and Al-Refai operators [4,5], and the new generalized
fractional operator of Hattaf [6]. Here, we propose new, and more general, fractional
operators based on a generalized Mittag–Leffler function, which we call the “power Mittag–
Leffler function”. Our new mathematical concept allows us to unify and extend the
fractional literature by developing a family of power fractional operators (PFOs) that
expand the existing generalized fractional operators and their many consequences [3–6].
Broadly speaking, the exponential function is converted to the expanded power function,
and the generalized Mittag–Leffler function is transformed into the power Mittag–Leffler
counterpart that we propose here.

Advanced mathematical results have recently been proved in the framework of frac-
tional calculus: see, e.g., [7–11] and the references therein. However, to effectively describe
realistic phenomena, all available definitions suffer from some limitations, depending on
the application at hand, which has motivated us to propose here new, more general, notions,
containing the key power parameter p. The currently introduced power fractional calculus
enables the generalization and unification of many of the cited results, allowing engineers,
researchers, and scientists to select the appropriate fractional derivative with respect to
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the phenomenon under study in a natural way via the presence of the parameter p in our
new definitions.

The action of the parameter p on a system is illustrated in the numerical simulation
phase, where it is essential to find the appropriate value of p to describe real data with
the adopted model, to describe the current trajectories to correctly predict the asymptotic
behavior in the future: see our section devoted to the resolution of some power fractional
differential equations (PFDEs). Furthermore, the defined power fractional derivative
derives its legitimacy from the construction of its inverse power fractional integral operator
(PFIO), using the Laplace transform and the convolution theorem. Finally, we claim that
our PFOs have considerable potential, both for the development of mathematical modeling,
in various fields, and in the mathematics discipline itself. All these reasons support the
originality, importance, relevance and robustness of our definitions and results.

The paper is organized as follows. Section 2 is devoted to the introduction of the
new power Mittag–Leffler function (Definition 1) accompanied with its convergence
(Theorem 1). Section 3 contains novel definitions of the PFOs in both Caputo (Definition 2)
and Riemann–Liouville senses (Definition 3), as well as establishing the connection be-
tween them (Theorem 3). Section 4 is dedicated to the discovery of the corresponding
PFIO (Definition 4). To show the significance and usefulness of our PFOs, the resolution of
two PFDEs is performed in Section 5. Section 6 concludes the paper and highlights some
directions for future research.

2. The Power Mittag–Leffler Function

In this section, we introduce a new generalization of the Mittag–Leffler function, which
we call the power Mittag–Leffler function.

Definition 1 (The Power Mittag–Leffler function). The Power Mittag-Leffler function is de-
fined as

pEα,β(z) :=
∞

∑
n=0

(z ln p)n

Γ(αn + β)
, z ∈ C, (1)

where p ∈ R∗+, and min
(
α, β

)
> 0.

Remark 1. Note that our power Mittag–Leffler function (1) generalizes many important Mittag–
Leffler functions that exist in the literature:

1. if α = β = 1 and p = e, then we immediately obtain the classical exponential function,

eE1,1(z) =
∞

∑
n=0

zn

Γ(n + 1)
=

∞

∑
n=0

zn

n!
= exp(z);

2. if β = 1 and p = e, then we obtain the celebrated Mittag–Leffler function, as defined in
1902 [12]:

eEα,1(z) =
∞

∑
n=0

zn

Γ(αn + 1)
;

3. if p = 1, then we obtain the generalization defined in 1905 by Wiman [13],

eEα,β(z) =
∞

∑
n=0

zn

Γ(αn + β)
.

Similarly, further generalizations introduced by various authors, e.g., Prabhakar [14], Shukla
and Prajapati [15], Salim [16], Salim and Faraj [17], and Khan and Ahmed [18], can also be
obtained as particular cases of our power Mittag–Leffler function. Readers interested in such
generalizations are referred to [19].
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Theorem 1. The power Mittag–Leffler function pEα,β(z) is absolutely convergent for all values of
z ∈ C.

Proof. We rewrite pEα,β(z) in the power series form:

pEα,β(z) :=
∞

∑
n=0

anzn, z ∈ C, (2)

where an =
(ln p) n

Γ(αn + β)
. Using Stirling’s formula, we get

Γ(αn + β) =

(
αn + β− 1

e

)αn+β−1√
2π(αn + β− 1)(1 + o(1)).

Then,

an = (ln p) n ·
[(

e
αn + β− 1

)αn+β−1

(2π(αn + β− 1))−1/2

]
(1 + o(1)).

It follows, from Cauchy’s criterion, that

a1/n
n = (ln p).

[(
e

αn + β− 1

)α+
β
n− 1

n (
2π(αn + β− 1)

)−1/2n
](

1 + o(1)
) −→ 0

as n −→ ∞ when α > 0, which leads to the absolute convergence for all values of z ∈ C

with the radius of convergence of the power series being infinite.

3. The Power Fractional Derivatives

In this section, we present a new fractional derivative. Along the text, f ∈ H1(a, b) is
a sufficiently smooth function on [a, b] with a, b ∈ R, where H1(a, b) is the Sobolev space
W1,2(a, b), which is a Hilbert space. In addition, we adopt the following notations:

φ(α) :=
1− α

N(α)
, ψ(α) :=

α

N(α)
,

where 0 ≤ α < 1 and N(α) is a normalization function obeying N(0) = N(1−) = 1, with
N(1−) = limα→1− N(α). In applications, the choice of a suitable and concrete normalization
function N may depend on the phenomenon under study. Along the paper, we denote

μα :=
α

1− α
.

Definition 2 (The power fractional derivative of order α in the Caputo sense). Let 0 ≤ α < 1
and min(β, p) > 0. The power fractional derivative of order α in the Caputo sense, of a function
f ∈ H1(a, b) with respect to the weight function w(t), is defined as

pC Dα,β,p
a,t,w f (t) =

1
φ(α)

1
w(t)

∫ t

a

pEβ,1

[
−μα

(
t− s

)β
]
(w f )

′
(s)ds, (3)

where w ∈ C1([a, b]) with w > 0 on [a, b].

We note that “pC” in the operator pC Dα,β,p
a,t,w stands for “power Caputo”.

Remark 2. Our power fractional derivative in the Caputo sense given by Definition 2 generalizes
many existing notions found in the literature:
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1. if w(t) ≡ 1, p = e, and β = 1, then we obtain the Caputo–Fabrizio fractional derivative [3]
given by

pC Dα,1,e
a,t,1 f (t) =

1
φ(α)

∫ t

a
exp[−μα(t− s)] f ′(s)ds;

2. if w(t) ≡ 1, p = e, and β = α, then we get the Atangana–Baleanu fractional derivative [4]
given by

pC Dα,α,e
a,t,1 f (t) =

1
φ(α)

∫ t

a

eEα,1[−μα(t− s)α] f ′(s)ds;

3. if p = e and β = α, then we obtain the weighted Atangana–Baleanu fractional derivative
defined by Al-Refai in [5], given by

pC Dα,α,e
a,t,w f (t) =

1
φ(α)

1
w(t)

∫ t

a

eEα,1[−μα(t− s)α](w f )
′
(s)ds;

4. if p = e, then we obtain the weighted generalized fractional derivative introduced by Hattaf [6],
which is given by

pC Dα,β,e
a,t,w f (t) =

1
φ(α)

1
w(t)

∫ t

a

eEβ,1[−μα(t− s)β](w f )
′
(s)ds.

Remark 3. It is worth observing that the power fractional derivative in the Caputo sense satisfies
the following two properties:

pC D0,β,p
a,t,w f (t) = f (t)− w(a)

w(t)
f (a) (4)

and
pC Dα,β,p

a,t,1 f (t) = 0 for any constant function f (t). (5)

Definition 3 (The power fractional derivative of order α in the Riemann–Liouville sense).
Let 0 ≤ α < 1 and min(p, β) > 0. The power fractional derivative of order α in the Riemann–
Liouville sense, of a function f ∈ H1(a, b) with respect to the weight function w(t), is defined as

pRL Dα,β,p
a,t,w f (t) =

1
φ(α)

1
w(t)

d
dt

∫ t

a
(w f )(s) pEβ,1

[
−μα

(
t− s

)β
]
ds, (6)

where w ∈ C1([a, b]) with w > 0 on [a, b].

Remark 4. The statements of Remark 2 are also verified in the Riemann–Liouville sense.

Remark 5. The following property of the power fractional derivative in the Riemann–Liouville
sense is satisfied:

pRL D0,β,p
a,t,w f (t) = f (t). (7)

Theorem 2. The power fractional derivatives in the Caputo and Riemann–Liouville senses are
linear operators.

Proof. We easily see that

pC Dα,β,p
a,t,w (c1 f (t) + c2g(t)) = c1

pC Dα,β,p
a,t,w f (t) + c2

pC Dα,β,p
a,t,w g(t), (8)

and
pRL Dα,β,p

a,t,w (c1 f (t) + c2g(t)) = c1
pRL Dα,β,p

a,t,w f (t) + c2
pRL Dα,β,p

a,t,w g(t), (9)

for all scalars c1 and c2 and all functions f , g ∈ H1(a, b).
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Theorem 3. Let w f be an analytic function. Then,

pRL Dα,β,p
a,t,w f (t) = pC Dα,β,p

a,t,w f (t) +
1

φ(α)

1
w(t)

pEβ,1

[
−μα(t− a)β

]
(w f )(a). (10)

Proof. Because of the analyticity of the function w f , we get

(w f )(x) =
+∞

∑
n=0

(w f )(n)(t)
n!

(x− t)n

and

pRL Dα,β,p
a,t,w f (t) =

1
φ(α)

1
w(t)

d
dt

∫ t

a

∞

∑
k=0

(−μα(t− s)β ln p)k

Γ(βk + 1)

+∞

∑
n=0

(w f )(n)(t)
n!

(s− t)nds

=
1

φ(α)

1
w(t)

d
dt

+∞

∑
n=0

+∞

∑
k=0

(−1)n(−μα ln p)k(w f )(n)(t)
n!Γ(βk + 1)

∫ t

a
(t− s)βk+nds

=
1

φ(α)

1
w(t)

d
dt

+∞

∑
n=0

+∞

∑
k=0

(−1)n(−μα ln p)k(w f )(n)(t)(t− a)βk+n+1

n!Γ(βk + 1)(βk + n + 1)

=
1

φ(α)w(t)

[
+∞

∑
n=0

+∞

∑
k=0

(−1)n(−μα ln p)k

n!Γ(βk + 1)(βk + n + 1)
(w f )(n+1)(t)(t− a)βk+n+1

+
+∞

∑
n=0

+∞

∑
k=0

(−1)n(−μα ln p)k

n!Γ(βk + 1)
(w f )(n)(t)(t− a)βk+n

]

=
1

φ(α)w(t)

[ +∞

∑
n=0

+∞

∑
k=0

(−1)n(−μα ln p)k

n!Γ(βk + 1)
(w f )(n+1)(t)

∫ t

a
(t− x)βk+ndx

+
+∞

∑
n=0

(−1)n

n!
(w f )(n)(t)(t− a)n

+∞

∑
k=0

(−μα ln p)k

Γ(βk + 1)
(t− a)βk

]
= pC Dα,β,p

a,t,w f (t) +
1

φ(α)

1
w(t)

pEβ,1[−μα(t− a)β](w f )(a).

The proof is complete.

4. The Power Fractional Integral

With the intention of establishing the associated power fractional integral, we begin
this section by computing the Laplace transform of the power fractional derivatives in
Caputo and Riemann–Liouville senses multiplied by w(t).

Lemma 1. Let f ∈ H1(a, b) and w ∈ C1([a, b]) with w > 0 on [a, b]. The following equali-
ties hold:

L
{

w(t) pC Dα,β,p
0,t,w f (t)

}
(s) =

1
φ(α)

sβL{w(t) f (t)}(s)− sβ−1w(0) f (0)
sβ + μα ln p

; (11)

and

L
{

w(t) pRL Dα,β,p
0,t,w f (t)

}
(s) =

1
φ(α)

sβL{w(t) f (t)}(s)
sβ + μα ln p

. (12)
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Proof. We begin by proving the first statement of Lemma 1:

L{w(t) pC Dα,β,p
0,t,w f (t)}(s) =

1
φ(α)

L
{

pEβ,1

[
−μαtβ

]
∗ (w f )′(t)

}
(s)

=
1

φ(α)
L
{

pEβ,1

[
−μαtβ

]}
(s) · L{(w f )′(t)

}
(s).

=
1

φ(α)

+∞

∑
n=0

(ln p)n

Γ(βn + 1)
L
{
(−μαtβ)n

}
(s) · L{(w f )′(t)

}
(s)

=
1

φ(α)

sβ−1

sβ + μα ln p
L{(w f )′(t)

}
(s),

∣∣∣∣μα ln p
sβ

∣∣∣∣ < 1

=
1

φ(α)

sβL{(w f )(t)}(s)− sβ−1(w f )(0)
sβ + μα ln p

.

To prove the second statement, we get:

L{w(t) pRL Dα,β,p
0,t,w f (t)}(s) =

1
φ(α)

L
{

d
dt
( pEβ,1[−μαtβ] ∗ (w f )(t)

)}
(s)

=
s

φ(α)
L
{( pEβ,1[−μαtβ] ∗ (w f )(t)

)}
(s)

=
s

φ(α)
L
{( pEβ,1[−μαtβ]

}
(s).L

{
(w f )(t)

)}
(s)

=
1

φ(α)

sβL{w(t) f (t)}(s)
sβ + μα ln p

.

The result is proved.

Theorem 4. The fractional differential equation

pRL Dα,β,p
0,t,w y(t) = f (t) (13)

has a unique solution given by

y(t) = φ(α) f (t) + ln p · ψ(α)RL Iβ
0,w f (t), (14)

where RL Iβ
0,w is the standard weighted Riemann–Liouville fractional integral of order β given by

RL Iβ
0,w f (t) =

1
Γ(β)

1
w(t)

∫ t

0
(t− x)β−1w(x) f (x)dx. (15)

Proof. The equality (13) is equivalent to

L
{

w(t) pRL Dα,β,p
0,t,w y(t)

}
(s) = L

{
w(t) f (t)

}
(s).

Using Lemma 1, we conclude that

L{w(t) pRL Dα,β,p
0,t,w f (t)}(s) = φ(α)L

{
w(t) f (t)

}
(s) + ψ(α)

ln p
sβ
L
{

w(t) f (t)
}
(s)

= φ(α)L
{

w(t) f (t)
}
(s) + ψ(α)

ln p
Γ(β)

L
{

tβ−1 ∗ w(t) f (t)
}
(s)

= L
{

φ(α)w(t) f (t) + ψ(α)
ln p
Γ(β)

tβ−1 ∗ w(t) f (t)
}
(s).
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Moreover, the action of the inverse Laplace transform yields

y(t) = φ(α) f (t) + ln p.ψ(α)RL Iβ
0,w f (t), (16)

which completes the proof.

Our Theorem 4 allows us to define an appropriate inverse operator for power frac-
tional differentiation.

Definition 4 (The power fractional integral of order α). Let 0 ≤ α < 1 and min(p, β) > 0.
The power fractional integral of order α, of a function f ∈ H1(a, b) with respect to the weight
function w(t), is defined by

p Iα,β,p
a,t,w f (t) = φ(α) f (t) + ln p · ψ(α)RL Iβ

a,w f (t), (17)

where w ∈ C1([a, b]) with w > 0 on [a, b].

5. Examples of Power Fractional Differential Equations

In this section, we treat two examples of power fractional differential equations (PFDEs).
Our first example considers a non-autonomous PFDE in the Riemann–Liouville sense.

Example 1. Consider the following non-autonomous PFDE on [0, 100]:

pRL Dα,β,p
0,t, 1

t2
x(t) = t2, x(0) = 0. (18)

Using Theorem 4, we obtain that

x(t) = φ(α)t2 + ln p · ψ(α) · p Iα,β,p
0,t, 1

t2
t2

= φ(α)t2 + ln p · ψ(α)
tβ+2

Γ(β + 1)
.

(19)

The action of the parameter p on the obtained solution is shown in Figure 1.
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Figure 1. Impact of the power parameter p on the solution x(t) (19) of problem (18) of Example 1
with different values of orders α and β.

We now consider an autonomous PFDE in the Caputo sense.
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Example 2. Consider the following autonomous PFDE:

pC Dα,β,p
0,t,w x(t) = Ax(t) + B, x(0) = x0. (20)

The action of the Laplace transform on both sides of Equation (20) yields:

L
{

w(t) pC Dα,β,p
0,t,w x(t)

}
(s) = AL{w(t)x(t)}(s) + BL{w(t)}(s).

Using Lemma 1, we obtain that

L{w(t)x(t)}(s) =
B(1− α)sβ + αA ln p

[N(α)− (1− α)A]sβ − αA ln p
L{w(t)}(s)

+
N(α)w(0)x(0)sβ−1

[N(α)− (1− α)A]sβ − αA ln p

=
N(α)w(0)x(0)

[N(α)− (1− α)A]

sβ−1

sβ − αA ln p
[N(α)−(1−α)A]

+
B(1− α)

[N(α)− (1− α)A]

sβ−1

sβ − αA ln p
[N(α)−(1−α)A]

sL{w(t)}(s)

+
αB ln p

[N(α)− (1− α)A]

1

sβ − αA ln p
[N(α)−(1−α)A]

L{w(t)}(s)

=
N(α)w(0)x0

[N(α)− (1− α)A]
L
{

pEβ,1

(
αA

[N(α)− (1− α)A]
tβ

)}
(s)

+
(1− α)B

[N(α)− (1− α)A]
L
{

pEβ,1

(
αA

[N(α)− (1− α)A]
tβ

)}
(s)

×(L{w′(t)}(s) + w(0)
)

+
B
A
L
{

d
dt

pEβ,1

(
αA

[N(α)− (1− α)A]
tβ

)}
(s)L{w(t)}(s).

The effect of the inverse Laplace transform operator yields

w(t)x(t) =
N(α)w(0)x0

[N(α)− (1− α)A]
pEβ,1

(
αA

[N(α)− (1− α)A]
tβ

)
+

(1− α)B
[N(α)− (1− α)A]

pEβ,1

(
αA

[N(α)− (1− α)A]
tβ

)
∗ w′(t)

+
(1− α)Bw(0)

[N(α)− (1− α)A]
pEβ,1

(
αA

[N(α)− (1− α)A]
tβ

)
+

B
A

(
d
dt

pEβ,1

(
αA

[N(α)− (1− α)A]
tβ

))
∗ w(t).

Applying the integration by parts formula on
(

d
dt

pEβ,1
(

αA
[N(α)−(1−α)A]

tβ
)) ∗ w(t), we can

state that the solution to problem (20) is given by

x(t) =
−B
A

+
N(α)w(0)

[N(α)− (1− α)A]w(t)

(
x0 +

B
A

)
pEβ,1

(
αA

[N(α)− (1− α)A]
tβ

)
− AN(α)

A[N(α)− (1− α)A]w(t)
pEβ,1

( αA
[N(α)− (1− α)A]

tβ
) ∗ w′(t).

6. Conclusions

In this paper, some new mathematical concepts, enabling the introduction of a new
extended fractional calculus, are provided. The new approach allows choice of the most
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appropriate notion of differentiation to suitably describe real dynamic phenomena under
study, describing the observed trajectories and correctly predicting future behaviors. More
precisely, we introduce the “power Mittag–Leffler function” pEα,β(·) that extends several
important functions: the Mittag–Leffler function eEα,1(·), first introduced by Mittag–Leffler
in [12]; the function eEα,β(·) of Wiman [13]; and those introduced by Prabhakar [14] and
Salim [16]. With the help of the new power Mittag–Leffler function, we then introduce
the new power fractional derivatives pC Dα,β,p

a,t,w (·) and pRL Dα,β,p
a,t,w (·), which generalize those

available in the literature, namely the Caputo–Fabrizio [3], Atangana–Baleanu [4], weighted
Atangana–Baleanu [5], and weighted generalized fractional derivatives [6]. Moreover,
an appropriate power fractional integral operator (PFIO) p Iα,β,p

a,t,w (·) is introduced, which
is an important tool for the solution of power fractional differential equations (PFDEs).
As examples, we investigated two PFDEs. The first is a non-autonomous PFDE: using our
PFIO, we compute its solution and illustrate, numerically, the impact of the parameter p on
the solution. The second example considered is an autonomous PFDE and its solution is
obtained using the Laplace transform operator.

Here, we have only introduced the power fractional calculus and provided the most
fundamental results with some applications to power fractional differential equations. In
future work, several investigations may be designed to develop the new fractional calculus,
which will enable the setting up of numerous applications on many parallel domains, e.g.,
in the fractional neural networks framework, analogously to what is done in [20–22].
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Abstract: The small size and clever design of nanoparticles can result in large surface areas. This gives
nanoparticles enhanced properties such as greater sensitivity, strength, surface area, responsiveness,
and stability. This research delves into the phenomenon of a nanobeam vibrating under the influence
of a time-varying heat flow. The nanobeam is hypothesized to have material properties that vary
throughout its thickness according to a unique exponential distribution law based on the volume
fractions of metal and ceramic components. The top of the FG nanobeam is made entirely of
ceramic, while the bottom is made of metal. To address this issue, we employ a nonlocal modified
thermoelasticity theory based on a Moore–Gibson–Thompson (MGT) thermoelastic framework. By
combining the Euler–Bernoulli beam idea with nonlocal Eringen’s theory, the fundamental equations
that govern the proposed model have been constructed based on the extended variation principle. The
fractional integral form, utilizing Atangana–Baleanu fractional operators, is also used to formulate
the heat transfer equation in the suggested model. The strength of a thermoelastic nanobeam is
improved by performing detailed parametric studies to determine the effect of many physical factors,
such as the fractional order, the small-scale parameter, the volume fraction indicator, and the periodic
frequency of the heat flow.

Keywords: non-homogeneous beams; nonlocal kernels; fractional thermoelasticity; MGT model;
heat flow

MSC: 35B40; 35Q79; 35J55; 45F15; 73B30

1. Introduction

Many areas of cutting-edge engineering focus on understanding and manipulating the
processes that lead to pore development in nanostructures. Technological advancements in
lithography and solid-state synthesis have opened up a wide range of options for building
nanoscale mechanical devices with a tunable distribution of material characteristics along
several axes. These mechanical nano-devices may exhibit the properties of functionally
graded materials (FGMs), materials with a varied porosity variation, or both, depending
on the production method. The characteristics of FGMs and the many ways porosity is dis-
persed in FGM structures significantly impact the mechanical response of nanostructured
materials and should be investigated in detail [1]. Based on adaptable design concepts of
component characteristics and mechanical qualities, FGM structures are created to suit the
functional requirements of various engineering issues.

FGMs are innovative composite materials pioneered by Japanese researchers. Because
FGMs’ mechanical characteristics vary consistently and smoothly in the directions they
are applied, they are not susceptible to the delamination problem that plagues laminated
composites [2]. Both the metal and ceramic components are extremely durable and resistant
to heat and corrosion. They are used in several industries, such as aerospace, nuclear,
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automotive, civil engineering, etc., because of their superior features and benefits [3].
In addition, they are used in solar cells, MEMS and NEMS, micro- and nano-witches,
transistors, actuators, sensor systems, AFM, and conversion devices [4].

Amiri Delouei et al. [5] obtained an exact general analytical solution to the heat
conduction issue in an axisymmetric cylinder using a functionally graded material with
bidirectionally varying thermal conductivity. It is presumed that the radial and longitudinal
thermal conductivity factors are power functions of the radius. They also, in [6], found
an analytical solution to the problem of steady-state heat transmission in a hollow sphere
of functionally graded material. They treated the temperature distribution as a two-
dimensional problem with a radial and tangential component because the conductivity
factors in both directions are functions of radius. The shear deformation model (ST)
was utilized by Avey et al. [7] to create a mathematical and computational model of the
thermoelastic stability problem of composite cylinders reinforced with carbon nanotubes
(CNTs) during uniform temperature loading. The basic partial differential equations (PDEs)
for CNT-patterned cylindrical shells are developed inside a modified version of the Donnell-
type shell concept, which accounts for the impact of transverse shear elastic deformation.
Kaur et al. [8] proposed new applications for one-dimensional Euler–Bernoulli magneto-
electro-piezo-thermoelastic (MEPT) nanoscale beams. The two-temperature heat transfer
equation has also been taken into account. Pinola et al. [9] investigated the bending
problems of micro- and nanobeams by proposing a nonlocal stress–strain relationship
that changes over time. They did this by using a stress-driven integral framework and
fractional-order operators.

Due to their increased performance and wide range of applications in fields such
as nano/microelectromechanical systems (NEMS/MEMS) and flexible electronics, nanos-
tructured materials and nanoparticles have recently garnered the interest of the global
scientific community. Nano-switches, nanosensors, nanoactuators, and nanogenerators are
only a few examples of the many potential uses of these technologies [10]. The nanoscale
significantly affects the mechanical properties of micro and soft structures due to the small
size influence. On the other hand, classical continuum mechanics’ constitutive equation
does not consider size effects. This makes it hard to accurately describe nanomaterials’
thermal and mechanical engineering properties [11,12].

When studying the mechanical properties of nanostructures, it is crucial to account for
their size and the magnitude of the impact they have. Continuum mechanics has been used
to address this issue as an alternative to small-scale investigations and molecular dynamics
(MD) simulations. It is evident that conventional elasticity theories cannot account for the
size effect, and numerous nonclassical models have been developed to do so. The most
widely used of these approaches is Eringen’s nonlocal elasticity theory [13–15], which has
been effectively implemented in the dynamic and static studies of nanostructured materials.
To explain mechanical phenomena that depend on size, nonlocal continuum notions have
been proposed, along with the appropriate scale parameters. High-order strain gradient
concepts [16–18], rotation gradient models [19], and couple-stress theories [20,21] are all
examples of this type of framework. This paper examines the nonlocal Eringen elasticity
concept, a common tool for analyzing nanostructures’ static and dynamic properties [13,14].
In place of a straight linear relationship between stress state and strains, the constitutive
equation in nonlocal systems uses a convolutional integral.

Fractional calculus analyzes differential and integral operators of either real or com-
plex order. A correspondence between Leibniz and de l’Hôpital in 1695 provides the
earliest known explanation of fractional-order differentials, focusing on the interpretation
of dα

dtα ( f (t)) when t is not an integer. Liouville, Riemann, Laurent, Abel, Riesz, Weyl, Hardy
and Littlewood, and Caputo are a few brilliant mathematicians who built upon and ad-
vanced fractional calculus. There are benefits and drawbacks to using several definitions of
fractional derivatives [22].

The fractional-order analogy to integral calculus began practically concurrently, but
the mathematics and, notably, the applications are much further along. This finding has
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arisen due to several variables, one of which is the absence of techniques to connect a
system’s geometric and physical aspects with the fractional operator’s associated order.
Fractional calculus has recently played a significant role in several disciplines, including
mechanics, Brownian motion, electrical, chemistry, biology, fluid dynamics, economics,
and viscoelasticity, most notably in control theory, non-Fourier heat conduction, and signal
and image processing. The inherent multiscale character of these operators is fascinating.
Memory effects, in which a system’s response depends on what it has done in the past, are
made possible by time-fractional operators. In contrast, space-fractional operators make it
possible for effects that are not local and do not depend on the scale [23].

To address the demand for real-world modeling problems in various domains, such
as computational fluid dynamics, viscoelasticity, biology, physics, and engineering, several
academics have discovered that developing new fractional derivatives with various singular
or non-singular kernels is important. Two fractional derivatives based on the extended
Mittag–Leffler function were presented, one in the Liouville–Caputo sense and the other in
the Riemann–Liouville concept. Caputo and Fabrizio [24] offered an exponential-function-
based solution to the single-kernel issue inherent in the standard definitions of fractional
derivatives, including the Liouville–Caputo and Riemann–Liouville fractional derivatives.
Unfortunately, this player has certain problems, such as the fact that it is not local. Not
only that, but the matching integral in the fractional derivative is not a fractional integral.
Atangana and Baleanu [25,26] successfully overcame these challenges.

Zhang and Li [27] devised the fundamental architecture of the Caputo–Fabrizio
fractional-order differential equations (CF-FODEs) with multiple delays and an expo-
nential Euler difference form. A fractional PECE approach is then suggested to resolve
this implicit difference after research demonstrates that the acquired difference form (i.e.,
time-discrete CF-FODEs) falls within the range of implicit Euler differences. One category
of fast ONNs (FONNs), which has Caputo derivatives (IPFONNs) piecewise, was de-
scribed by Zhang et al. [28]. The differential inclusion concept is used to probe the existence
of Filippov solutions for discontinuous IPFONNs. Several decision theorems have also
been developed for IPFONNs, including those concerning the existence and uniqueness
of the periodic solution, global exponential stability, and impulsively controlling global
stabilization. Several systems have been defined using these terms [29–39].

A more extended dynamical theory of thermoelasticity was developed by Lord and
Shulman [38], utilizing a variant of the thermal transfer equation that accounts for the
time required for acceleration of the heat flow. The theory accounts for the impact of the
coupling between temperature and strain rate; however, the coupled equations that follow
are both hyperbolic. This resolves the seeming conundrum of unlimited propagation speed
in the current coupled theory of thermoelasticity. By employing the extended theory, we
can achieve a competitive solution with a solution found using the standard coupled theory.
Green and Naghdi [39] used Fourier’s law and the displacement-temperature-flux rate to
propose a replacement model without considering energy dissipation. The most noticeable
feature of this theory is that the thermal stream disregards energy waste compared to
the classical theory linked to heat transfer and Fourier’s equation. Three distinct types
of constitutive response functions were used in the Green–Naghdi (GN) theory, which
relied on Fourier’s law for the displacement-temperature-flux rate. The most noticeable
feature of this model is that the thermal stream disregards energy waste compared to
the classical model linked to heat transfer and Fourier’s equation. The Green–Naghdi
(GN) theory makes use of three distinct forms (types I, II, and III) of constitutive response
functions [39–41].

Recently, Quintanilla [42] introduced the MGT model of associated thermoelasticity
based on the Moore–Gibson–Thompson (MGT) heat transmission equation. It is possi-
ble to see the energy balance equation (heat conduction equation) as a unified formula-
tion incorporating LS theory, the GN model, and energy dissipation. Some investigators
have recently focused on expanding MGT thermoelasticity investigation in various ar-
eas; some of these developments are discussed below. Based on the MGT heat transfer
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equation for two temperatures, Quintanilla [43] created the MGT thermoelasticity study.
Abouelregal et al. [44–49] have analyzed several papers using the MGT thermoelastic model
to learn more about the spread of thermal and mechanical waves.

It is important to remember that most of the sources mentioned above and studies on
micro- and nanobeam modeling assume the material is homogeneous and does not account
for temperature variation’s impact. According to the literature, most relevant research has
ignored the effect of temperature change, and a few studies have considered the fractional
differential thermal conductivity equation, including non-singular kernels. There is little
literature on functionally gradient materials and extended thermoelastic theory in micro-
and nanostructures. According to the authors, fractional calculus with nonlocal and non-
singular kernels of conventional and nonlocal elasticity theory is explored for the first time.
Using a generalized heat equation with fractional differential operators, we can analyze the
nonlinear response of functionally graded nonlocal nanobeams.

This paper proposes a thermomechanical model that contributes to theoretical and
practical guidance for the field of thermoelasticity, which may include some problems of
energy, physics, engineering, and biotechnology. The governing equations are derived
from generalized Hamilton’s principle and nonlocal theory, Euler–Bernoulli theory, and the
MGT-heat transfer equation, including the fractional-order differential operator. Although
the classical fractional derivative has many desirable qualities, the singularity of its kernel
is a major drawback of this operator. Different definitions of fractional derivatives, such as
the Caputo–Fabrizio [2] and the Atangana–Baleanu [3], have been suggested to address
this issue. Because the proposed model is based on the nonlocal Eringen theory, it can be
used to study and create nanosensors and nanoactuators by taking into account the effects
of the nanoscale.

The vibration sensitivity of the functionally graded nanobeams was investigated using
the model that has been proposed. This means metal-like materials’ characteristics may be
continuously modified across their thickness. As a result, the FGM microbeam undergoes
a continual transformation in its elastic-plastic, thermo-mechanical behavior from one
surface to the next. In addition to being exposed to non-uniform heat flow, the nanobeam
is made of isotropic material. The governing differential equations were transformed into
dimensionless form, and then the Laplace transform method was applied as a solution
strategy. A well-proven approximation algorithm was used to find the reflection of the
Laplace transforms. Graphical representations are presented to investigate the effect
of nonlocal factors, fractional derivatives, heat flux pulses, and relaxation time on the
nanobeam resonator. In addition, comparisons were made with previous studies, which
are considered special cases of the current work. These results could be used in many areas,
such as biology, electronics, accelerometers, sensors, resonators, etc. This research has
practical implications for the development of NEMS/MEMS-based sensors, actuators, and
devices used in fields as diverse as marine, aeronautical, navigation, and other applications.

2. Formulation and Mathematical Model

2.1. Linear Theory of Nonlocal Elasticity

In the case of isotropic materials, the local stress, τij, local strain, eij, and temperature
change, θ, at a point, x, in the local elasticity theory are governed by classical linear
constitutive relations [40]:

τij = 2μeij + λekk − γθδij (1)

where local strain, eij, is given by

ekl = 0.5(uk,l + ul,k) (2)

In Equations (1) and (2), λ and μ are Lamé’s, γ = αt(3λ + 2μ) = Eαt/(1− 2ν) is the
coupling parameter, αt is the coefficient of thermal expansion, E denotes Young modulus, ν
is Poisson’s ratio, uk are the displacement vector components, θ = T− T0 is the variation of
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temperature, T is the temperature distribution, T0 is the environmental temperature, and
δij denotes Kronecker’s delta function.

The reaction of structures can be predicted using classical continuum models, but only
up to a certain size threshold, below which they fail to produce accurate predictions. The
small-scale effect has been taken into account by nonlocal continuum models. Continuum
modeling is complicated by including a size parameter in nonlocal concepts. Using a
nonlocal stress model, the dynamic behavior of the nanostructure is investigated. Using
spatial integrals that are weighted averages of the contributions of corresponding strain
tensors at the relevant place, Eringen’s nonlocal elasticity model [13–15] derives its funda-
mental equations. Therefore, the theory uses a spatially integral constitutive relationship to
account for the impact at small scales. The constitutive relationship that is predicated by
the nonlocal theory of elasticity is given by the following [50,51]:

σkl(x) =
∫

τkl
(
x′
)Kξ

(∣∣x− x′
∣∣, ξ
)
dV
(
x′
)
, ∀ x ∈ V (3)

where the nonlocal stress tensor at every position x is denoted by the symbol σkl .
Moreover, Kξ(|x− x′|, ξ) signifies the nonlocal kernel function and |x− x′| indicates

the Euclidean distance. In addition, ξ = e0li/le is a material constant in which li and le
are the internal and exterior characteristic lengths of the nanobeam, respectively, and e0
is a dimensionless quantity that may be measured experimentally. Classical theories can
be applied in the region where li/le ( 1. If li/le ∼ 1, classical theories cannot accurately
predict the results; instead, atomistic or nonlocal theories should be used.

The literature typically employs the differential form of constitutive equations rather
than the integral form because of the difficulty in addressing the integral constitutive
equations. Using the proper kernel function, Kξ , in the aforementioned integral form of
the equation, a differential version of the constitutive equations was supplied by Erin-
gen [17–19] and can be constructed as

σkl − ξ2 ∂2σkl
∂x2 = τkl = 2μekl + λemm − γθδkl (4)

2.2. Fractional Heat Conduction with Non-Singular Kernels

The process of transferring thermal energy between two bodies occurs when they are
at different temperatures. To illustrate the basic idea behind heat transfer, Fourier’s law is
applied. Fourier’s law shows the relationship between heat flow and temperature gradient,
as in the following relationship:

qi = −Kijθ,j (5)

The equation that describes energy can be written as follows [45,46]:

ρCE
∂θ

∂t
+ γT0

∂uk,k

∂t
= −qi,i + Q (6)

In Equations (5) and (6), qi denotes the heat flux components, Kij = Kiδij indicates the
thermal conductivity tensor, CE symbolizes the specific heat, ρ is the density of the material;
and Q signifies the internal energy supply.

Applying Fourier’s law (1) in conjunction with the energy Equation (3) produces a
parabola for heat transfer. This allows heat waves and turbulence to travel unlimitedly
within the medium. This indicates that any thermal disturbance at the boundary is instantly
sensed anywhere within the material, regardless of the location’s distance from the heat
source. This phenomenon is not recognized in the physical world because it is in direct
conflict with the principle of causation.

Green and Naghdi suggested three alternative models of thermoelasticity, each with its
own set of modifications to the constitutive requirements that make it possible to deal with
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a broader category of heat problems. It is shown that the Green–Naghdi heat conduction
equation (GN-III) can be changed in the following way [40]:

qi = −Kijθ,j + K∗ijϑ,j (7)

where K∗ij = K∗i δij are material constants, and the function ϑ denotes the gradient of thermal

displacement and satisfies
.
ϑ = θ.

By introducing the concept of phase lag, τ0 (relaxation time), of the heat flux, Equation (7)
was modified based on the Moore–Gibson–Thompson equation concept as [42,43](

1 + τ0
∂

∂t

)
.
qi = −Kij

.
θ,j − K∗ijθ,j (8)

Fractional derivatives are a part of fractional calculus that play a crucial role in real-
world modeling phenomena within different branches of engineering and science. With
the help of fractional calculus, many mathematical models of real problems were pro-
duced in various fields of engineering and science. Models in physics, engineering, and
other disciplines frequently use the following Riemann–Liouville fractional derivative
formula [52]

Dα
t f (t) =

1
Γ(1− α)

d
dt

∫ t

0
(t− ξ)−α f (ξ)dξ, 0 < α ≤ 1 (9)

The single kernel problem in the current fractional-order derivatives models, such
as the Liouville–Caputo and Riemann–Liouville fractional derivatives, was overcome by
Caputo and Fabrizio [24] by introducing an exponential function. The basic definitions in
the Riemann–Liouville and Caputo concepts deal with singular kernels. Several criticisms
of Caputo and Fabrizio’s fractional derivatives operator have been discussed, as the integral
kernel was shown to be non-singular but still non-local. The derivative operators of Caputo
and Fabrizio also lack the concept of a fractional integral. That is why Atangana and
Baleanu (AB) [25,26] used the extended Mittag–Leffler function to create two fractional
derivatives based on the Caputo and Riemann–Liouville concepts to address the problem
of non-singularity and non-localization of the kernels.

The Atangana–Baleanu derivative of fractional order α, (0 < α ≤ 1) of function f (t)
and m involving the Mittag–Leffler function is defined as [25,26]:

Dα
t f (t) =

1
1− α

∫ t

0

∂ f (ξ)
∂ξ

Eα

[
−α(t− ξ)α

1− α

]
dξ, 0 < α ≤ 1 (10)

The Laplace transform to Atangana–Baleanu fractional derivative is given by [53]:

L
[

D(α)
t f (t)

]
=

1
1− α

sαL[ f (t)]− sα−1 f (0)
sα + α

1−α

, s > 0 (11)

To better understand the development and behavior of the dynamical system, the AB
factor has seen extensive application over the past six years. The two fields in which AB
operators were most used were physical sciences and engineering. In this context, we may
derive a modified model of fractional heat transfer with a one-phase lag and MGT equation
by inserting the fractional Atangana–Baleanu derivative operator into Equation (5), which
can be expressed as follows [36,47]:

(1 + τ0Dα
t )

.
qi = −Kij

.
θ,j −K*

ijθ,j (12)
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When Equations (3) and (10) are put together, we obtain the fractional-order MGT
heat transfer equation with a phase delay, which looks like this:

(
Kij

.
θ,j

)
,i
+
(

K∗ijθ,j

)
,i
= (1 + τ0Dα

t )

(
ρCE

∂2θ

∂t2 + βij T0
∂2uk,k

∂t2

)
(13)

2.3. Material Properties

There has been a rise in interest in functionally graded materials (FGMs) for various
uses. The qualities of the two raw materials that go into making FGMs are preserved, and
the components are distributed on a continuous grade scale. One of the FGMs made by
combining ceramic and metal, for instance, has the strength of metal but the heat resistance
and corrosion resistance of ceramic. It is also an excellent material for withstanding high
temperatures. Unlike traditional composites, which often have discrete phases, FGMs
exhibit continually variable material characteristics, meaning that many analytical methods
may not be immediately relevant to FGMs [54]. Properties such as thermal conductivity,
corrosion resistance, specific heat, hardness, and stiffness ratio are continuously graded
due to slow variations in the volume fraction of constituents and nonidentical structure
in the preferred direction [55]. With these benefits, FGMs are superior to homogeneous
composites in various contexts. As a result of their unique qualities, FGMs have been
the subject of several attempts at improvement. Different sizes and structures have led to
the introduction of many classes of FGMs thus far. In addition, several other fabrication
procedures, including a gas-based approach, a liquid process method, and a solid process
method, can be used to create FGMs.

Heterogeneous composite nanobeams consist of different materials at different scales,
starting with ceramic and ending with metal via an uninterrupted structural transition
through the thickness of the beam. Along with the beam thickness trend, the modulus of
elasticity, material density, thermal conductivity modulus, and coupling parameters are
expected to vary due to the nature of FGMs. Except for the Poisson ratio, the current model
displays the effective material gradient property P(z) along the thickness axis, as in the
following relationship [56,57]:

P(z) = Pme−np(h−2z)/h (14)

where the intermediate value of the graded parameter np is determined by the left and
right bounds of the physical characteristic, i.e.,

np = ln

√
Pm

Pc
(15)

where c and m represent the two primary components, ceramic and metal, respectively.
According to its material properties (full metal), the studied beam has a metal-rich

bottom plane (z = h/2) and a ceramic-rich (full-ceramic) top plane (z = −h/2). By setting
the power index constants to zero (np = 0 or Pm = Pc), we may simplify the solution
method and the results to that of a thick beam of isotropic materials (pure metal-like
nanobeams).

3. Problem Formulation

As shown in Figure 1, a functionally graded nanobeam will be considered with di-
mensions of length (L), width (b), and height (h), and its cross-section is regular rectangular
with area A = bh. The coordinate system (x, y, z) will be used, with the xy plane positioned
at the neutral surface of the microbial beam and the origin x axis located at the centroid
of the left end. The x-axis, y-axis for width, and z-axis for depth are all shown here. It
will be assumed that the variables u, v, and w represent the offsets of the x, y, and z axis,
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respectively. The nanobeam under consideration is described with the Euler–Bernoulli
beam hypothesis.

 
Figure 1. Configuration of FG thermoelastic nanobeam.

The cross sections continue to be planar and normal to the longitudinal axis in the
Euler–Bernoulli beam theory. In this case, the displacements may be provided by

u = −z
∂w
∂x

, v = 0, w(x, y, z, t) = w(x, t) (16)

By combining Equations (14) and (16), the following forms of the nonlocal differential
constitutive Equation (4) can be found:

σx − ξ2 ∂2σx

∂x2 = −Em

[
ze

nEα(2z−h)
h

∂2w
∂x2 + αTmθe

nEα(2z−h)
h

]
(17)

where αTm = αm
1−2νm

, σx is the axial nonlocal thermal stress, and the quantity
nEα = ln

√
Emαm/Ecαc, αc and Ec, respectively, are the thermal expansion factor of ce-

ramics and Young’s modulus.
The bending moment, M(x, t), of the thermoelastic FG nanobeams can be calculated

as follows [58]:

M = b
∫ h/2

−h/2
zσxdz (18)

The bending moment can be calculated when the nonlocal constitutive Equation (17)
is included in Equation (18). Multiplying Equation (17) by 12

h3 and integrating with respect
to the variable z from −h/2 to h/2, the bending moment may be expressed as

M− ξ2 ∂2M
∂x2 = −bh2Em

[
hμE

∂2w
∂x2 + αTmμK MT

]
(19)

where MT is the thermal moment, which is defined by the formula:

MT =
12
h3

∫ h/2

−h/2
θzdz (20)

with
μE =

(−2nEα cosh(nEα)+(2+n2
Eα)shin(nEα))

4n3
Eα

√
Ecαc

Emαm
,

μK = (nEα cosh(nEα)−shin(nEα))

2n2
Eα

√
Ecαc

Emαm
.

The Hamiltonian notion was used to develop the equation of motion that describes
motion. The equation below, which is based on Newton’s second law of motion, may be
used to describe the beam’s oscillation in a transverse direction [59]:

∂2M
∂x2 = μρ A

∂2w
∂t2 (21)
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where μρ =
(1−e−2nρ)ρm

2nρ
.

When Equation (19) is plugged into Equation (21), the differential motion Equation (21)
can be expressed as:

∂4w
∂x4 +

μρ

EmhAμE

(
∂2w
∂t2 − ξ2 ∂4w

∂t2∂x2

)
+

αmμK

Em A2μE

∂2MT

∂x2 = 0 (22)

In addition, Equations (19) and (21) can be used to figure out the flexure moment, M,
in the following way:

M(x, t) = ξ2 Aμρ
∂2w
∂t2 − bh2Em

[
hμE

∂2w
∂x2 + αTmμK MT

]
(23)

The fractional MGT heat transfer equation without singular kernels may be repre-
sented using Equations (13) and (14) as

(1 + τ0Dα
t )
[
ρmCEmenρCE (2z−h)/h ∂2θ

∂t2 − zγmenγ(2z−h)/hT0
∂2

∂t2

(
∂2w
∂x2

)]
= enK(2z−h)/h

(
Km

∂
∂t + K∗m

)[
∂2θ
∂x2 +

∂2θ
∂z2 +

2nK
h

∂θ
∂z

] (24)

Equation (14) is used to compute the parameters nK, nγ, and nρCE for the ceramic and
metal content properties. Furthermore, the definitions for the parameters γm and ρmCEm are

γm =
Emαm

1− 2νm
, χm =

Km

ρmCEm

The investigated nanobeam is assumed to have no heat conduction along its surfaces
at the planes z = ±h/2. In addition, if the nanobeam is tiny enough, the temperature
gradient across the plate’s thickness should follow a sinusoidal pattern as

θ(x, z, t) = Θ(x, t) sin
(πz

h

)
(25)

By substituting Equation (25) into the heat Equation (24) and then integrating it
throughout the width of the beam, we can derive the following equation:(

∂

∂t
+

K∗m
Km

)[
∂2

∂x2 −
(π

h

)2
]

Θ = (1 + τ0Dα
t )

[
μρCE

χm

∂2Θ
∂t2 −

μγγmhT0

Km

∂2

∂t2

(
∂2w
∂x2

)]
(26)

where

μρCE
=

μρCE
μK

, μγ =
μγ

μK
, μρCE =

2nρCE

(
1+e

−2nρCE
)

π2+4(nρCE)
2 ,

μK =
2nK(1+e−2nK )

π2+4(nK)
2 , μγ =

nγ(1+e−2nγ)+e−2nγ−1

4(nγ)
2 .

To obtain a more relevant result, the nondimensional variables described below can be
regarded:

{x′, z′, u′, w′, L′, h′, ξ ′} = c0η0{x, z, u, w, L, h, ξ}, Θ′ = Θ
T0

,
σ′x = σx

Em
, {t′, τ′0} = c2

0η0{t, τ0}, M′ = M
bh3EmμEηε

. (27)

With the help of Equation (27) and the elimination of primes, the fundamental govern-
ing equations may be written in a form that is free of dimensions, as follows:

∂4w
∂x4 + A1

(
∂2w
∂t2 − ξ2 ∂4w

∂t2∂x2

)
= −A2

∂2Θ
∂x2 (28)

(
∂

∂t
+

K∗m
c2

0η0Km

)[
∂2

∂x2 −
(π

h

)2
]

Θ = (1 + τ0Dα
t )

[
A3

∂2Θ
∂t2 − A4

∂2

∂t2

(
∂2w
∂x2

)]
(29)
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M(x, t) = A1

(
ξ

∂2w
∂t2 −

∂2w
∂x2

)
− A2Θ (30)

where

A1 =
μρ

h2μE
, A2 =

T0αmμEα

h
, A3 = μρCE

, A4 =
μγγmh

η0Km

4. Solution of the Transformed Domain

To solve this problem, we will use the Laplace transform technique in the system of
partial differential Equations (31)–(33). It is assumed here that the starting circumstances of
the problem are

Θ(x, 0) = 0 =
∂Θ(x, 0)

∂t
, w(x, 0) = 0 =

∂w(x, 0)
∂t

(31)

The following versions of governing Equations (28)–(30) result from applying the
Laplace transformation method:(

d4

dx4 − ξ2 A1s2 d2

dx2 + A1s2
)

w = −A2
d2Θ
dx2 (32)

(
d2

dx2 − φ2

)
Θ = −φA4

d2w
dx2 (33)

M(x, t) = A1

(
ξ2s2w− d2w

dx2

)
− A2Θ (34)

where
φ1 = 1 +

τ0sα

sα(1− α) + α
, φ =

φ1(
s + K∗m

c2
0η0Km

) , φ2 =
(π

h

)2
+ φA3

By first deleting either w or Θ from Equations (32) and (33), we can derive the following
differential equation: (

D6 − AD4 + BD2 − C
){

Θ, w
}
(x) = 0 (35)

where

A = ξ2 A1s2 + φ2 + φA2 A4, B = A1s2 + φξ2 A1 A3s2, C = φ2 A1s2, D =
d

dx
.

When the following equation is satisfied by the parameters m2
n, n = 1, 2, 3,

m6 − Am4 + Bm2 − C = 0 (36)

The following is a factorization that may be performed on Equation (35):(
D2 −m2

1

)(
D2 −m2

2

)(
D2 −m2

3

){
Θ, w

}
(x) = 0 (37)

Equation (37) has a general solution that can be expressed as{
w, Θ

}
(x) = ∑3

n=1{1, βn}
(

Hne−mnx + Rnemnx) (38)

where the parameters Hn and Rn stand in for the integration constants, and βn = − φA4m2
n

m2
n−φ2

.
The displacement u can be determined by incorporating Equation (38) into Equation (16)

as follows:
u(x) = −z

dw
dx

= z ∑3
n=1 mn

(
Hne−mnx − Rnemnx) (39)
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Equations (34) and (38) can be used to calculate the solution of the bending moment,
M, as

M(x) = ∑3
n=1

(
ξ2s2 A1 −m2

n A1 − A2βn

)(
Hne−mnx + Rnemnx) (40)

In addition, the strain, e, can be calculated as follows:

e(x) =
du
dx

= −z ∑3
n=1 m2

n
(

Hne−mnx + Rnemnx) (41)

5. Application

The boundary conditions will be responsible for determining the integration constants
Hn and Rn, where n = 1, 2, and 3. In the present work, the nanobeam is assumed to be
simply supported at both ends. Therefore, the mechanical boundary conditions can be
represented as follows:

w(0, t) = 0 = w(L, t),
∂2w(0, t)

∂x2 = 0 =
∂2w(L, t)

∂x2 (42)

In addition to this, we will assume that the beginning of the nanobeam (x = 0) is
subjected to a dimensionless and time-dependent heat transfer rate denoted by q(t). In this
particular scenario, we take into account the heat flow, q(t), which varies periodically, and
e is represented mathematically as

q(t) = q0 cos(Ωt) , Ω > 0 on x = 0 (43)

where Ω is the thermal oscillation frequency and q0 is the heat flow intensity.
Using the modified model of fractional MGT heat transfer (12), then we have

(1 + τ0Dα
t )

∂q(t)
∂t

= −enK(2z−h)/h
(

Km
∂

∂t
+ K∗m

)
∂θ

∂x
(44)

With the help of the nondimensional quantitates given in Equation (25) and using (44),
we get

(1 + τ0Dα
t )Q0 sin(Ωt) = −enK(2z−h)/h

(
∂

∂t
+

K∗m
c2

0η0Km

)
∂θ

∂x
(45)

where Q0 is a constant parameter.
It is possible to obtain the following equation by inserting (27) into the heat Equation (45)

and integrating along the beam’s thickness with respect to z:

(1 + τ0Dα
t ) sin(Ωt) = ψ

(
∂

∂t
+

K∗m
c2

0η0Km

)
∂Θ
∂x

(46)

where ψ =
2nK(1+e−2nK )
Q0(4nK2+π2)

.
In addition, it is assumed that the opposite end of the nanobeam is thermally isolated.

We can express this boundary condition mathematically as

∂Θ
∂x

= 0 on x = L (47)
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When the Laplace transform is applied to the boundary conditions (42), (46), and (47),
we get

w(0, s) = 0 = w(L, s)
d2w(0,s)

dx2 = 0 = d2w(L,s)
dx2 = 0

dΘ(0,s)
dx = φ1Ωφ

ψ(s2+Ω2)
= G(s)

dΘ(L,s)
dx = 0

(48)

Six linear equations may be obtained by substituting Equation (38) into the boundary
conditions mentioned above:

∑3
n=1(Cn + Cn+1) = 0 (49)

∑3
n=1

(
Cne−mn L + Cn+1emn L

)
= 0 (50)

∑3
n=1 m2

n(Cn + Cn+1) = 0 (51)

∑3
n=1 m2

n

(
Cne−mn L + Cn+1emn L

)
= 0 (52)

∑3
n=1 mn(βnCn − βn+1Cn+1) = G(s) (53)

∑3
n=1 mn

(
βnCne−mn L − βn+1Cn+1emn L

)
= 0 (54)

The unknowns in this system of linear equations are Hn and Rn, where n = 1, 2, 3.

6. Inversion of the Laplace Transforms

Numerical calculations using Mathematica have been used to determine the research
formulas for fields obtained in the physical field of silicon nanobeams. The Riemann sum
approximation method is used to generate numerical results for evaluating the areas of
the physical domain under study. Honig and Hirdes [60] give some thought to cataloging
these methods. By using residue calculus, the original solution might be inverted.

7. Validation of the Numerical Scheme

The finite element method (FEM) is widely accepted as the method of choice for
modeling linear and nonlinear systems across many application areas. To obtain the
numerical solution to a difficult issue, this method is often employed. The finite element
approach was utilized by Abbas et al. [61–63] in order to study a variety of extended
thermoelastic diffusion problems. In this section, the finite element method is briefly
introduced to validate the Honig and Hirdes approach [60]. Equations (28) and (29) may
be converted to a finite element formulation by using the conventional process suggested
by Abbas et al. [61–63], and the time derivatives of the unknown studied field variables
can be computed using implicit methods. To validate the method and the numerical
results, a comparison of the numerical results was performed using the Honig and Hirdes
technique [60] and the finite element method [61–63] (see Table 1).

The finite element method is better than the integrative transformation method in
the case of applications with irregular shapes and complex boundary conditions. It is
mentioned that in the case of the finite element method, the price of the calculations is
expensive and requires a large memory and also that its standards are strict and guarantee
stability and non-volatility. In contrast, the general method of Laplace transforms is easier
to use in the case of regular geometric shapes and simple boundary conditions, as in the
case of the present problem.
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Table 1. Comparison between Honig and Hirdes technique and finite element method.

x Temperature θ Deflection w

Honig and
Hirdes

Finite Element
Honig and

Hirdes
Finite Element

0 0.0350153 0.0346686 0 0

0.1 0.0060144 0.00595485 0.0603709 0.0597732

0.2 0.00376662 0.00372933 0.0315896 0.0312768

0.3 0.00185514 0.00183677 −0.00144551 −0.0014312

0.4 0.000452097 0.000447621 −0.00675736 −0.00669046

0.5 0.000568924 0.000563291 −0.00139024 −0.00137648

0.6 0.0000632165 0.0000625906 0.00116959 0.00115801

0.7 0.000109421 0.000108337 0.000647093 0.000640686

0.8 0.0000444636 0.0000440233 −0.0000806691 −0.0000798704

0.9 0.0000122177 0.0000120968 −0.000167537 −0.000165878

1 0.0000133683 0.000013236 0 0

8. Numerical Outcomes and Analysis

The resulting equations are used in this part to characterize the thermo-mechanical
resonance responses of FGM nanoscale beams as a function of size through the use of
several numerical case studies. In the case studies, aluminum and alumina (aluminum
oxide) are used to represent the metal and ceramic phases of the nanoscale beam. Here are
some details of each of them [64,65]:

Ceramic (alumina):

Ec = 393 GPa, νc = 0.33, ρc = 3960 Kg/m3, T0 = 293K,
αc = 8.7× 10−6K−1, χc = 1.06× 10−6m2/s, Kc = 1.78 W/(m K).

Metal (aluminum):

Em = 70 GPa, νm = 0.35, ρm = 2700 Kg/m3, T0 = 293K,
αm = 23.1× 10−6K−1, χm = 84.18× 10−6m2/s, Km = 237 W/(m K).

The beam size ratios used in the equations are as follows: L/h = 20 and b/h = 0.5. If
h is different, then so must be b. We will choose a beam length range of L(1 : 100)× 10−9,
stipulating that this is suitable for nanoscale beams. The instantaneous time, t, will be
expressed in picoseconds (1 : 100)× 10−12 s, while the phase-delay value, τ0, will also be
interpreted as having a precision of 1 picosecond (1 : 100)× 10−12 s. When L = 1, z = h/6,
and t = 0.12, the numerical calculations and figures were created for the nondimensional
physical variables (θ, w, u, and M) with various nanobeam lengths (0 ≤ x ≤ 1).

In the discussion and analysis, the influence of the nonlocal parameter ξ, the periodic
frequency Ω of the applied heat flow, and the fractional differentiation parameter α will be
considered. In addition, to verify the proposed thermoelasticity model, a comparison will
be made between it and the previous corresponding models.

8.1. Validation of the Proposed Thermal Model

The analytical solutions for deflection, w, and temperature, θ, were verified in the
case of the present developed thermal model by comparing the results obtained with the
corresponding results available in some of the literature. For validation, we compared the
present numerical results in the presence of fractional differentiation with those reported
in the literature [56,66] in the absence of fractional differentiation. The findings of this
study provide insight into the instability of nano-beam-based microdevices and can direct

241



Mathematics 2022, 10, 4718

researchers toward optimizing their overall performance. Furthermore, the results of this
study provide an explanation for the differences found in the literature when comparing
the nanosystem’s responses without considering modified models, such as nonclassical
concepts, small-scale influences, and external force modifications to the results obtained.

Despite the difference in quantities, Table 2 displays data showing good agreement
between those obtained and those published in [56,66]. As a result, the excellent accuracy
of our model is demonstrated by the strong correlation between our results and those
from investigations. As for the fractional case, it is noted that the different distributions
in the case of using the fractional derivatives of AB are affected by the past more than the
traditional derivative. The findings of the completed study are in good accord with data
found in the open literature, as shown by the theoretical results, which are supplied in
Table 2.

Table 2. Comparison of the temperature, θ, and deflection, w and with Refs. [56,66].

x Temperature θ Deflection w

Present Ref. [56] Ref. [66] Present Ref. [56] Ref. [66]

0 0.033902 0.052003 0.0624035 0 0 0

0.1 0.006218 0.00893227 0.0107187 0.057221 0.0717278 0.0896598

0.2 0.003576 0.0055940 0.00671279 0.031654 0.0375322 0.0469152

0.3 0.001987 0.00275515 0.00330618 −0.00028 −0.00171744 −0.0021468

0.4 0.000346 0.000671431 0.000805718 −0.00665 −0.00802855 −0.0100357

0.5 0.000593 0.000844937 0.00101392 −0.00180 −0.00165178 −0.00206472

0.6 0.000109 0.000093886 0.000112663 0.001030 0.00138961 0.00173702

0.7 0.000103 0.000162506 0.000195007 0.000742 0.00076882 0.00096103

0.8 0.00005645 0.00006604 0.000079242 −0.000009 −0.00009584 −0.0001198

0.9 0.00000662 0.000018145 0.00002177 −0.00017 −0.0001991 −0.0002488

1 0.00000151 0.000019854 0.00002382 0 0 0

8.2. Impact of Fractional Derivative Parameter

In this work, we suggest an approximation to the solution of the fractional heat
transfer equation defined by a non-singular fractional derivative. Our research employs
the fractional derivative introduced by Atangana–Baleanu (AB) and Caputo. Fractional
versions have a tremendous advantage over their conventional counterparts by having
unlimited degrees of freedom for orders of derivatives and fully explaining the memory
effect. To accomplish this, graphical illustrations have been developed to physically assess
the consequences and compare the outcomes of the fractional derivatives for FGM nanoscale
beams as compared to those of the classical approaches.

Due to the influence of fractional order, α, in this subsection we will examine how the
FG material reacts when subjected to a varying heat flux at regular intervals and how the
reactions are distributed. The numerical solutions are computed for the situation when
Ω = 3, τ0 = 0.02, and ξ = 0.002. The AB fractional derivative operator was used to
graphically illustrate the temperature increment, θ, the bending moment, M, the transverse
vibration deviation, w, and the longitudinal displacement, u, in fractional thermoelastic
for different fractional order values (see Figures 2–5). When α = 0.9, 0.8, and 0.7, the
Atangana–Baleanu fractional derivative operator is utilized, and when α = 1, the classical
nonfractional derivative is employed.
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Figure 2. Effect of fractional order, α, on the deflection, w.

Figure 3. Effect of fractional order, α, on the temperature, θ.

Figure 4. Effect of fractional order, α, on the displacement, u.

For various values of the fractional order parameter, α, the relationship between the
thermal deflection, w, and the distance, x, is shown in Figure 2. Figure 2 shows that the
boundary requirements of the problem (48) are always satisfied by the zero values of
the dispersed deflection, w, at the endpoints of the nanobeam. The nanobeam’s highest
deflection occurs towards the first edge of the nanobeam due to the heat flow to which it is
exposed, as opposed to other areas on the axial axis.

243



Mathematics 2022, 10, 4718

Figure 5. Effect of fractional order, α, on the bending moment, M.

In Figure 3, we see how the fractional-order, α, choices affect the temperature fluctu-
ation, θ, with distance, x, when subjected to an irregular thermal flow. Figure 3 demon-
strates that as x increases, the temperature, θ, drops. Additionally, it is apparent from the
nanobeam’s heat diffusion distribution curves that the most significant values of thermal
diffusion are acquired near the beginning of the beam. The heat wave then weakens in its
ability to reach the other side as x is increased, and eventually, after a certain threshold
has been passed, it vanishes altogether. In contrast to predictions based on traditional heat
transfer models, the speed with which heat waves travel through the material is limited.

In comparison with the work of previous authors [67,68], these results are found to be
compatible, and the conclusions are valid. In addition, this paper claims that theoretical
models utilizing the Atangana–Baleanu fractional operator are superior at elucidating the
true features of observed occurrences. To better explain complex situations in the real
world, Atangana and Baleanu introduced the derivative using the Mittag–Leffler function.
Thus, this new model of thermal conduction will definitely lead to understanding the new
behavior of heat flow in nanobeams.

Figure 4 depicts the effect of the fractional-order parameter, α, on a heterogeneous
nanobeam to produce a range of displacement values, u, as a function of distance, x. We can
see from the figure that the distortion, u, anisotropy increases as we move right on the beam
axis. The magnitude of the displacement, u, gradually changes from positive to negative
x values. As the value of the fractional order parameter increases, the figure displays
a more significant displacement away from the plane x = 0. This is because the heat
source experiences periodic and transient fluctuations. The axial displacement, u, of the
nanobeam is reduced as the fractional parameters increase. Hence, it can be considered that
the fractional derivative’s order affects the dynamics of thermal deformation in nanobeams
at least in this present problem. By applying fractional-order derivatives in modeling
techniques, a dynamic system aids in describing memory’s characteristics and efficacy
(effectiveness, utility) as crucial elements in many nanostructured systems.

In Figure 5, we see how the fractional parameter affects the relationship between the
thermal bending moment, M, and the distance, x. This image shows how the modulus
can affect the bending moment of the nanobeam, M. It has also been shown that the
peak bending moment grows under all conditions as the fractional parameter grows. The
bending moments, M, calculated using the fractional derivative are offered as more minor
in Figure 5 compared to those computed using the thermoelastic model with integer
derivatives. The outcome of this investigation has shown that as the fractional order falls,
the bending moment reduces. The fractional operator with the bending property developed
by Atangana and Băleanu is responsible for this significant result.

The figures demonstrate how the rate at which waves travel can be affected by varying
the value of the fractional-order parameter, α. Therefore, it could be crucial to think about
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it while creating new materials for practical applications. In other words, when the values
of the fractional order rise, it is possible to see the reduction of all curves in the different
physical fields. This figure illustrates that when the current results are compared to those
of [32], there is good agreement between the two data sets. As for the fractional case, it is
noted that the different distributions in the case of using the fractional derivatives of AB
are affected by the past more than the traditional derivative.

More practical recommendations are included in the current publication. It generally
provides robust answers that converge rapidly on issues with an actual physical world
component. The results can be helpful in cases where a perfect solution is not required and
unnecessary complications must be avoided. However, it must be admitted that additional
research on the topic may reveal hitherto unexplored possibilities, allowing for the develop-
ment of more nuanced conclusions and extremely fruitful outcomes. As well as providing
closed-form solutions to the specified issues, the detailed analysis has demonstrated the
convergence of approximation results to precise answers. The convergence phenomena
have proven that the suggested method is reliable. As a result, the fractional derivative
of the Atangana–Baleanu in the Caputo concept can be used to describe fractional heat
transfer equations.

8.3. The Effect of Nonlocal Parameter

Nonlocal elasticity concepts have received much interest from researchers interested
in designing or analyzing micro- or nanostructures. The models serve as models with
bridging scales in the investigation of issues involving several scales because they extend
the fundamental ideas in the classical theory of elasticity to approximate the behavior of
particles as tiny as molecules or atoms. It is clear from the governing equations that these
theories portray that they include one or more parameters in addition to the conventional
constants. Because of these characteristics, also known as small-scale parameters, it is
possible to investigate the size impact.

In contrast to earlier studies, the current study focuses on the extent to which nonlocal
parameters affect the dynamic response of a functionally graded nanostructure in the
context of physical and geometrical characteristics coupled with thermoelasticity theory
involving differential operators of fractional orders. The nanostructure’s length is also
considered because nonlocal events significantly affect how the nanostructure responds to
vibrations. This study shows the variations in outcomes depending on conventional and
non-conventional assumptions, in line with its intended purpose.

In this category, through Figures 6–9, we have investigated how small-scale ξ charac-
teristics affect the fluctuations of several field variables (w, θ, u, and M). The remaining
effective parameters (Ω = 3, τ0 = 0.02, and α = 0.8) are assumed to remain unchanged in
this case. When the value ξ = 0 was present, the prior scenario (conventional beam theory)
was suggested, but when ξ = 0.001, ξ = 0.003, and ξ = 0.005 were present, the nonlocal
elasticity theory (Eringen’s theory) was indicated. We show that the thermal deflection,
temperature increment, bending moment, and axial displacement are very sensitive to the
nonlocal parameter. The nonlocal parameter enhances the mechanical waves in all the
fields examined. It can be explored that the influence of the nonlocal parameter on the axial
changes of the nanobeam in different modes is prominent and, therefore, more significant.
As shown in Figures 6–9, as the value of the nonlocal parameter ξ at given x increases, the
temperature curves decrease, and the amount of other physical fields increases. A softening
impact was seen as the nonlocal parameter was increased. After the non-locality impact
was introduced, the values of the major field variables under study decreased for both the
mechanical and thermal systems.
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Figure 6. The thermal deflection, w, under various nonlocal parameter ξ values.

Figure 7. The dimensionless temperature, θ, under various nonlocal parameter ξ values.

Figure 8. The axial displacement, u, under various nonlocal parameter ξ values.

In addition, it is clear from Figure 8 that throughout the axial direction of the beam,
the axial displacement, u, increases with the nonlocal parameter at specific periods and
decreases with it at others. Figure 6 shows that at ξ = 0.005, the size of the deflection, w, is
at its maximum. In Figure 9, it can be seen that the bending moment, M, profile grows in
size when the nonlocal parameter values are raised. In addition, the displacement amount
in the case of the local heat transfer model is less than the equivalent displacement curve for
the nonlocal version (see Figure 8). As a result, to obtain trustworthy results, the nonlocal
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component of the motion equation must be taken into account, as it can change the results
significantly. For this reason, future studies examining the mechanical behavior of micro-
and nanostructures composed of FG materials may use the results of the proposed nonlocal
theory as a valuable size-dependent framework. When the length-scale characteristics are
considered, the curves demonstrate that we have a Stiffer nanosystem. So, considering
nonclassical models will increase the system deflection and dynamic deformation. In
addition, there are larger discrepancies between the nonlocal thermoelastic concept and
traditional elasticity theory.

Figure 9. The bending moment, M, under various nonlocal parameter ξ values.

Researchers can use the results of this study to learn more about the instability of
nanobeam-based tiny devices and make adjustments to their designs to boost their overall
performance. As an added extra, this study’s results provide a rationale for why non-
classical frameworks, small-scale influences, and external dynamic and thermal force
improvements to theoretical and experimental data provide different results when analyz-
ing the reactions of the nano-system. Small-scale parameters are shown to be sensitive to
the structure’s geometry, the qualities of the material it is made of, and the loads placed on
it by means of the nonlocal interaction range factor. For this reason, ultra-small electronics
based on nanostructures can only be modeled using nonlocal models.

8.4. The Effect of the Gradient Index

This subsection investigates the thermoelastic interaction of a functionally graded
(FG) nanobeam using the nonlocal Euler–Bernoulli beam theory and the MGT heat transfer
model. It is assumed that the FG nanobeam has material properties that change throughout
its thickness. The length scale parameter (nonlocal parameter) is incorporated into this
nonclassical (nonlocal) nanobeam framework to account for the small-scale effect.

It is investigated in Figures 10–13 how the variability of the physically analyzed fields
of the FG nanobeam is affected by the impact of the graded parameter np. Here, it is
assumed that other parameters that often play a role remain unchanged (α = 0.8, τ0 = 0.02
and ξ = 0.003).
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Figure 10. Effect of the gradient indicator on the dimensionless deflection, w.

Figure 11. Effect of the gradient indicator on the dimensionless temperature, θ.

Figure 12. Effect of the gradient indicator on the dimensionless displacement, u.
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Figure 13. Effect of the gradient indicator on the dimensionless bending moment, M.

For three separate values of the graded parameter np, two values for the effective
varying material properties (np > 0 and np < 0), and zero value np = 0 for isotropic
materials, the studied physical variables were calculated and investigated. The amplitudes
of the nondimensional field variables examined are also shown to grow when the graded
index np > 0 (see Figures 10–13). Once np is specified, the nondimensional variables have
their minimum values at np = 0.

Increasing the gradient coefficient leads to an increase in the nondimensional deflec-
tions and a decrease in the dimensionless temperature. This is because the stiffness of the
FG nanobeam increases as the gradient coefficient increases. When the gradient indicator
is changed, there is a sudden shift in the responses, but once np = 0 is reached, all the
curves flatten out. In fact, FGMs are favored over conventional laminates because they offer
uniformly smooth property variations throughout the whole surface, something that was
not possible before when taking the interface between laminate plies into account [69]. In
addition, while the individual plies of a composite laminate often behave in an anisotropic
way, FGMs behave the same everywhere, even though they are made of different materials.
The authors feel that the analyzed results will serve as a reference for other investigators to
compare their findings because they are unaware of any previous work on the thermoelastic
interactions in FG nanobeams.

9. Conclusions

This paper thoroughly studies a mathematical fractional thermoelastic framework
for a functionally graded Euler–Bernoulli nanobeam subjected to a periodic heat flow.
Variations in through-thickness features range from purely ceramic to purely metallic.
The model employs both nonlocal elasticity theory and generalized MGT thermoelasticity
with fractional derivative operators. The Atangana–Baleanu (AB) fractional derivative
operator without singular kernels is a novel definition introduced by the revised heat
conduction equation. Both analytical and numerical studies show that the nonhomogeneity
parameter (gradient indicator), the nonlocal parameter, and the fractional differential
operators significantly impact field variables. According to the results of the previous
research:

• Thermomechanical responses of the FG nanobeam are shown to be significantly
impacted by nonlocal effects, as demonstrated by numerical data.

• Magnitudes are bigger in the novel nonlocal beam model compared to the traditional
(local) beam model. Therefore, the small-scale effects (also called nonlocal effects)
must be considered when figuring out how nanostructures behave mechanically.

• The success of nonlocal beam models depends heavily on carefully selecting the
nonlocal parameter’s value.

• The FG nanobeam’s responses can be adjusted by selecting appropriate values for the
gradient indicator, which significantly impacts the responses.

249



Mathematics 2022, 10, 4718

• There were significant discrepancies between the variances of the thermoelastic mod-
els and the fractional thermoelastic models. Changes in the rate of change of the
temperature variation depend strongly on the value of the fractional parameter of the
Atangana–Baleanu fractional derivative operator. Therefore, the fractional parameter
is becoming more effective as a measure of heat conduction.

• With fractional derivatives, the values of the fields under study are less than those
predicted by standard thermoelastic models. Therefore, the fractional parameter
should be chosen to reduce the medium’s effect on the elastic wave.

• Composite materials with FGM characteristics are superior to traditional homogenous
materials in various contexts. The biomedical and defense industries also extensively
use FGMs, most notably as medical implants and bulletproof vests. The automotive
sector, the steel sector, the energy sector, etc., are just a few more areas where FGM has
been found useful.

• With this new perspective on investigating thermal deformations in solid mechanics,
we can understand the Atangana–Baleanu fractional derivative operator in heat and
mass transfer systems. Application of the method and concepts given herein to other
thermoelasticity and thermodynamic problems is possible.

Author Contributions: Conceptualization, D.A.; Methodology, D.A.; Software, A.E.A. and F.A.; Valida-
tion, F.A.; Formal analysis, F.A.; Investigation, A.E.A.; Resources, D.A. and F.A.; Data curation, A.E.A.;
Writing—original draft, A.E.A. and F.A.; Writing—review & editing, A.E.A.; Visualization, F.A.; Funding
acquisition, F.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Qassim University grant number [QU-IF-4-5-1-29618].

Data Availability Statement: The numerical data used to support the findings of this study are
included in the article.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research and
Innovation, Ministry of Education, Saudi Arabia, for funding this research work through project
number (QU-IF-4-5-1-29618). The authors also thank Qassim University for technical support.

Conflicts of Interest: The authors declared no potential conflict of interest concerning the research,
authorship, and publication of this article.

References
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Abstract: Based on a quantum logistic map and a Caputo-like delta difference operator, a fractional-
order improved quantum logistic map, which has hidden attractors, was constructed. Its dynamical
behaviors are investigated by employing phase portraits, bifurcation diagrams, Lyapunov spectra,
dynamical mapping, and 0-1 testing. It is shown that the proposed fractional-order map is influenced
by both the parameters and the fractional order. Then, the complexity of the map is explored through
spectral entropy and approximate entropy. The results show that the fractional-order improved
quantum logistic map has stronger robustness within chaos and higher complexity, so it is more
suitable for engineering applications. In addition, the fractional-order chaotic map can be controlled
for different periodic orbits by the improved nonlinear mapping on the wavelet function.

Keywords: improved quantum logistic map; discrete fractional calculus; hidden attractor; chaos control
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1. Introduction

Since May presented the logistic map in 1976, and as a well-known chaotic map, the lo-
gistic map and its generalizations have gained more and more attention in academic circles,
especially regarding chaos and fractals [1–3]. A quantum logistic map that is associated
with the logistic map is proposed in [4]. As a three-dimensional map, it was found that the
quantum logistic map owns richer dynamical behaviors, and thus it has greater potential
application in the field of information security. However, when compared to the logistic
map, there has been relatively less research into quantum logistic maps. The generalization
of quantum logistic maps has never been analyzed, so we have investigated it.

In recent years, the theory of the fractional differential equation has become a new
research focus. The author of [5] introduced fractional LTI systems, and [6] investigated
the existence of a mild-solution Hilfer fractional-neutral-integro-differential inclusion with
almost sectorial operators. The authors of [7] studied the existence, uniqueness, Hyer–
Ulam stability, and controllability of a fractional dynamic system using time scales, and [8]
analyzed the existence, uniqueness, and stability of a nonlinear fractional differential
equation with impulsive conditions on time scales. The dynamics of a fractional–order
model with different strains of COVID-19 were explored in [9]. The new field of fractional
differential equations emerged via the discretized definitions of continuous fractional
derivatives and integrals [10–13]. With the rapid development of the fractional difference
equations theory, the definition of fractional-order difference was introduced into discrete
chaotic maps based on the Caputo operator, and the fractional standard map and the
fractional logistic map were proposed [14,15]. Since then, researchers have diverted their
interest to fractional-order chaotic maps. The authors of [16–18] presented fractional-order
logistic maps and fractional-order delayed logistic maps and analyzed their nonlinear
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Axioms 2023, 12, 94

behaviors by using phase portraits, bifurcation diagrams, and Lyapunov exponents. The
authors of [19] designed an efficient image encryption scheme based on the fractional-
order logistic map, while those of [20] put forward a fractional-order Hénon-Lozi map
and then studied its dynamical properties. A two-dimensional fractional-order map was
designed and applied to image encryption [21]. A fractional-order higher-dimensional
multicavity chaotic map was studied in [22]. Fractional-order chaotic maps are sensitive to
their fractional order apart from their initial values and parameters, thereby having richer
nonlinear behaviors than the integer-order versions. Hence, a generalized quantum logistic
map with fractional order is presented in the paper.

On the other hand, the chaotic system with hidden attractors is a new research hotspot.
Some chaotic systems with hidden attractors were presented in the literature [23–25]. If
a chaotic system possesses no equilibrium or stable equilibrium, i.e., its attraction basin
does not connect with the neighborhood of the equilibrium, the chaotic system is regarded
as a chaotic system with hidden attractors [26,27]. The hidden attractor is considerably
important in science and engineering due to the occurrence of unexpected behaviors. The
term “hidden attractors” originates from the research of continuous chaotic systems [28,29].
When compared with continuous chaotic systems, the investigation of chaotic maps with
hidden attractors has seen a lack of investigation, especially for fractional-order maps with
hidden attractors; they are rarely introduced in the literature. However, the fractional-order
map owns more complex dynamical behaviors than the integer counterpart. In order to
enrich the theory of hidden attractors, we propose a fractional-order improved quantum
logistic map without equilibrium, i.e., a fractional-order map with hidden attractors. For
future applications, its behaviors are explored by nonlinear tools, such as bifurcation
diagrams and Lyapunov exponents. Moreover, the chaos control of this fractional-order
map is also studied.

The remainder of this paper is outlined as follows. Section 2 gives a fractional-order
improved quantum logistic map. Section 3 shows the dynamical analysis of the fractional-
order map by exploiting bifurcation analysis, Lyapunov exponent spectrums, dynamical
maps, and 0-1 tests. Section 4 focuses on the complexity of this map. Section 5 investigates
the chaos control of the system. We draw conclusions in Section 6.

2. A Fractional-Order Improved Quantum Logistic Map

A quantum logistic map is a logistic map with quantum corrections [4]. In order to
investigate the effects of these quantum corrections, researchers set â = 〈â〉+ δâ, where δâ
is a quantum fluctuation about 〈â〉, and 〈â〉 is the mean value of â. The quantum logistic
map is described as⎧⎨⎩

xn = r(xn−1 − |xn−1|2)− ryn−1,
yn = −yn−1e−2β + e−βr[(2− xn−1 − x∗n−1)yn−1 − xn−1z∗n−1 − x∗n−1zn−1],
zn = −zn−1e−2β + e−βr[2(1− x∗n−1)zn−1 − 2xn−1yn−1 − xn−1],

(1)

where x = 〈â〉, y = 〈δâ+δâ〉, z = 〈δâδâ〉, and x*, z* are the complex conjugate of x, z,
respectively. Besides, β and r denote the dissipation and control parameters, respectively.
However, if we let the initial values x0, y0, and z0 be real numbers, the successive values xn,
yn, and zn remain real. Therefore, Equation (1) is expressed as⎧⎨⎩

xn = r(xn−1 − |xn−1|2)− ryn−1,
yn = −yn−1e−2β + e−βr[(2− 2xn−1)yn−1 − 2xn−1zn−1],
zn = −zn−1e−2β + e−βr[2(1− xn−1)zn−1 − 2xn−1yn−1 − xn−1],

(2)
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For the quantum logistic map, the map has one fixed-point: (0, 0, 0). In order to design
a chaotic system with hidden attractors, Equation (2) is rewritten as⎧⎨⎩

xn = f (xn−1)− r1yn−1,
yn = −yn−1e−2β + e−βr[(2− 2xn−1)yn−1 − 2xn−1zn−1],
zn = −zn−1e−2β + e−βr[2(1− xn−1)zn−1 − 2xn−1yn−1 − xn−1],

(3)

where r1 is a parameter, and the function f (xn−1) is defined as

f (xn−1) =

⎧⎪⎪⎨⎪⎪⎩
0.8 + rxn−1(0.2− xn−1)

i f 0 < xn−1 < 0.2,
r(xn−1 − 0.8)(1− xn−1)

i f 0.8 < xn−1 < 1.

(4)

For solving the fixed-point of system (3), we have xn = xn−1, yn = yn−1, and zn = zn−1,
that is ⎧⎨⎩

xn = f (xn)− r1yn,
yn = −yne−2β + e−βr[(2− 2xn)yn − 2xnzn],
zn = −zne−2β + e−βr[2(1− xn)zn − 2xnyn − xn],

(5)

where the function f (x) is described as

f (xn) =

{
0.8 + rxn(0.2− xn) i f 0 < xn < 0.2,
r(xn − 0.8)(1− xn) i f 0.8 < xn < 1.

(6)

The solution of Equation (5) has two cases. When 0 < 0.8 + rxn(0.2− xn)− r1yn < 0.2
or 0.8 < r(xn − 0.8)(1− xn)− r1yn < 1, the first equation can be solved, i.e., the fractional-
order map has a fixed-point. If not, there is no solution to the first equation. In other
words, the improved map is a system without equilibrium. The second case will be
considered below.

Regarding the second and third equations as fractional order, we can obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xn= f (xn−1)− r1yn−1,
CΔν

ay(t)= −y(t + ν− 1)e−2β + e−βr[(2− 2x(t + ν− 1))y(t + ν− 1)

−2x(t + ν− 1)z(t + ν− 1)]− y(t + ν− 1),
CΔν

az(t)= −z(t + ν− 1)e−2β + e−βr[2(1− x(t + ν− 1))z(t + ν− 1)

−2x(t + ν− 1)y(t + ν− 1)− x(t + ν− 1)]− z(t + ν− 1),

(7)

where CΔν
a is the ν-th Caputo-like delta difference operator, ν is the fractional order, and a

is the starting point. Set Na is the isolated time scale, Na = {a, a + 1, a + 2,...} (a ∈ R fixed).
For ν > 0, ν /∈ N, and u(t) define on Na, the Caputo-like delta difference [30] is defined by

CΔ−ν
a u(t) = Δ−(m−ν)

a Δmu(t), t ∈ Na+m−ν, m = �ν�+ 1, (8)

where ν is the difference order and Δ−(m−ν)
a is the fractional sum of m-ν order. Let u: Na →

R and ν > 0, the fractional sum of ν order [10] is defined by

Δ−ν
a u(t) =

1
Γ(ν)

t=ν

∑
s=a

(t− σ(s))(ν−1)u(s), t ∈ Na+ν, (9)

where σ(s) = s + 1, Γ(ν) is the Gamma function, and t(ν) is the falling function defined by
the Gamma function as

t(ν) =
Γ(t + 1)

Γ(t + 1− ν)
. (10)
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Therefore, the Caputo-like delta difference can be expressed as

CΔ−ν
a u(t) =

1
Γ(m− ν)

t−(m−ν)

∑
s=a

(t− σ(s))(m−ν−1)Δmu(s), t ∈ Na+m−ν, = �ν�+ 1. (11)

According to the theorem in [31], for the difference equation:

CΔν
au(t) = f (t + ν− 1, u(t + ν− 1)),Δku(a) = uk, m = �ν�+ 1, k = 0, . . . , m− 1. (12)

The equivalent discrete integral equation is described as

u(n) = u0(t) +
1

Γ(ν)

t−ν

∑
s=a+m−ν

(t− σ(s))(ν−1) × f (s + ν− 1, u(s + ν− 1)), t ∈ Na+m, (13)

where the initial iteration is

u0(t) =
m−1

∑
k=0

(t− a)(k)

k!
Δku(a). (14)

By setting m = 1, a = 0, and substituting σ(s) = s + 1 into Equation (13), the following
can be obtained as

u(n) = u0(t) +
1

Γ(ν)

t−ν

∑
s=1−ν

(t− s− 1)(ν−1) × f (s + ν− 1, u(s + ν− 1)) (15)

By using Equation (10), and setting j = s + ν, Equation (15) is rewritten as

u(n) = u0(t) +
1

Γ(ν)

n

∑
j=1

Γ(n− j + ν)

Γ(n− j + 1)
× f (j− 1, u(j− 1)) (16)

According to Equation (16), the explicit numerical formula of Equation (7) is ex-
pressed as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xn = f (xn−1)− r1yn−1,

yn = y0 +
1

Γ(ν)

n
∑

j=1

Γ(n−j−ν)
Γ(n−j−1)

{−yj−1e−2β + e−βr[(2− 2xj−1)yj−1 − 2xj−1zj−1]− yj−1
}

,

zn = z0 +
1

Γ(ν)

n
∑

j=1

Γ(n−j−ν)
Γ(n−j−1)

{−zj−1e−2β + e−βr[2(1− xj−1)zj−1 − 2xj−1yj−1 − xj−1]− zj−1
}

,

(17)

where the function f (xn−1) is the same as Equation (4).
For System (17), set the parameters as r = 19.8, r1 = 0.05, β = 4.5, and ν = 0.90, and the

initial conditions as (0.05, 0.02, and 0.05); the chaotic attractors are depicted in Figure 1,
which are hidden attractors (see Appendix A for the code of the simulation). In this case,
we obtain the largest Lyapunov exponent LLE = 0.5426 via the wolf algorithm.
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Figure 1. Chaotic attractors of the fractional-order improved quantum logistic map. (a) x-y phase
portrait; (b) y-z phase portrait; (c) z-x phase portrait.

3. Dynamical Analysis

3.1. Bifurcation Analysis, Lyapunov Exponent Spectrum, and Dynamical Map

Chaotic maps have sensitivity to the parameters. In order to investigate the sensitivity
of the parameters, we fixed the initial conditions as (0.05, 0.02, and 0.05). The bifurcation
portrait with respect to the control parameter r and the corresponding largest Lyapunov
spectrum is depicted in Figure 2, where the parameter r is in the interval [16,21], and the
others are r1 = 0.05, β = 4.5, and ν = 0.9. It is clear to see that the bifurcation portrait is
divided into two parts. With an increase in the parameter r, the system goes through
period-2, period-4, a quasi-periodic, and a chaotic state. The system generates periodic
windows of different sizes after the system appears in a chaotic state. In the region of
19.2 ≤ r ≤ 20, the system keeps a chaotic state.

Figure 2. Bifurcation portrait and Lyapunov exponent spectrum with regard to r; (a) bifurcation
portrait with regard to r; (b) Lyapunov exponent spectrum with regard to r.
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For the dissipation parameter β, the bifurcation portrait and largest Lyapunov spec-
trum are plotted in Figure 3 with r = 19.8, r1 = 0.05, and ν = 0.9. Although the bifurcation
portrait shows the phenomenon of bifurcation, the map is mainly in chaotic oscillation. Its
chaotic regions are wider than those of the quantum logistic map. When the parameter
β is greater than 3.75, the largest Lyapunov exponent is positive, which illustrates that the
fractional-order map goes into chaos. When β ∈ (3.75, 8.35], the largest Lyapunov roughly
increases with the increasing parameter β. In the range of 8.35 to 15, the largest Lyapunov
varies around 5.5. Some of the largest Lyapunov exponents exceed 6, indicating that the
map has good nonlinearity and is suitable for information encryption.

Figure 3. Bifurcation portrait and Lyapunov exponent spectrum with regard to β. (a) Bifurcation
portrait with regard to β; (b) Lyapunov exponent spectrum with regard to β.

Next, we analyze how the fractional order ν influences the map. Figure 4 presents
the bifurcation portrait and Lyapunov spectrum versus ν, where the parameters are set
as r1 = 0.05, β = 4.5, r = 1.98, and 0.326 ≤ ν ≤ 1. As can be seen from Figure 4, the largest
Lyapunov exponent is always greater than zero, which means that the map remains chaotic.
Unlike some other fractional-order chaotic maps [32,33], there are no periodic windows
in the chaotic region. Further, the magnitude of the variable x(n) hardly changes with
the varying of the fractional order ν. This map demonstrates stronger robustness during
chaos than the fractional-order logistic map, the fractional-order Hénon map, and the other
fractional-order chaotic maps in [32,33]. When the fractional order is ν < 0.326, the iteration
value may not be in the domain of definition. If the iterative value is not in the domain
of definition, the iteration will stop. In particular, the phase portrait shows finite points
under the condition of ν = 0.2, as shown in Figure 5a, which implies that the iteration
stops. On the contrary, Figure 5b exhibits the chaotic attractors with ν = 0.5. However,
these chaotic attractors are different from the chaotic attractors shown in Figure 1. The
analysis illustrates that the fractional-order map owns richer dynamical behaviors than the
integer counterpart.

In order to investigate the influence of the parameters and fractional order on the
fractional-order map simultaneously, the dynamical maps are depicted in Figure 6, where
the color represents the value of the largest Lyapunov exponent. Figure 6a illustrates the
impacts of the control parameters and fractional orders when r1 = 0.05, β = 10, and (x0, y0,
z0) = (0.05, 0.02, 0.05). It is clear to see that the fractional-order map undergoes a change
from periodic oscillation to chaos with increasing fractional order. Figure 6b visualizes the
influences of the dissipation parameters and fractional orders, where the parameters are
set as r = 5 and r1 = 0.05, and the initial condition is chosen as (x0, y0, z0) = (0.05, 0.02, 0.05).
The effects of the dissipation parameters and fractional orders are different from those of
the control parameters and fractional orders. The largest Lyapunov exponent in most of
the areas is greater than zero, i.e., the system is mainly in a chaotic state.
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Figure 4. Bifurcation portrait and Lyapunov exponent spectrum with regard to ν. (a) Bifurcation
portrait with regard to ν; (b) Lyapunov exponent spectrum with regard to ν.

Figure 5. Phase portrait. (a) Phase portrait with ν = 0.2; (b) phase portrait with ν = 0.5.

Figure 6. Dynamical maps. (a) Dynamical map with regard to ν and r; (b) dynamical map with
regard to ν and β.

3.2. 0-1 Test

The 0-1 test is another approach to verify the existence of chaos, which can be utilized
directly to a series of data without any phase space reconstruction [34]. Based on the state
{x(j)} of System (17), the translation components pc (n) and qc (n) are defined as

pc(n) =
n

∑
j=1

x(j) cos(jc), qc(n) =
n

∑
j=1

x(j) sin(jc) (18)
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where c is an arbitrary constant in the interval (0, π). By plotting the dynamics of the trans-
lation components pc–qc, it is easy to determine the state of the system. If p–q trajectories
are Brownian-like, the state of the system is chaotic, whereas if the trajectories are bounded,
the state is periodic.

Next, the mean square displacement Mc on pc (n) and qc (n) is defined as

Mc = lim
N→∞

1
N

N

∑
j=1
{[pc(j + n)− pc(j)]2 + [qc(j + n)− qc(j)]2}, n << N, (19)

where N is the length of time sequences. In practice, n is chosen as N/10, and the superscript
of ∑ is N−n.

Finally, the asymptotic growth rate Kc is calculated by

Kc = lim
n→+∞

log Mc

log n
. (20)

We get 100 values for Kc and then let K = median (Kc). When the value of K approaches
0, the system is in a periodic state, and when this value approaches 1, the system is chaotic.

The 0-1 test is performed, and the asymptotic growth rate, K, against r is depicted in
Figure 7 under the conditions of r1 = 0.05, β = 4.5, ν = 0.9, and (x0, y0, z0) = (0.05, 0.02, 0.05).
The asymptotic growth rate K is consistent with the bifurcation portrait and the largest
Lyapunov spectrum shown in Figure 2. In order to further illustrate the nonlinear behaviors,
the p–q trajectories are demonstrated in Figure 8. When r = 17, the bounded trajectory of the
p−q plane is shown in Figure 8a, and the asymptotic growth rate is K = 0.0001, implying
that the system state is periodic. On the contrary, as r = 19.8, the Brownian-like trajectory is
presented in Figure 8b, and the asymptotic growth rate is obtained as K = 0.9958, illustrating
that the state is chaotic. Furthermore, the chaotic sequences of r = 19.8 are divided into two
sequences according to the value of xn. The trajectories of 0 < xn < 0.2 and 0.8 < xn < 1 are
plotted in Figure 8c,d, respectively. The trajectories demonstrate that two sequences keep a
chaotic state, so the map can produce multiple chaotic sequences.

Figure 7. Asymptotic growth rate K of the fractional-order map with regard to r.
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Figure 8. The p–q trajectories of the fractional-order map. (a) p–q trajectories of r = 17; (b) the p–q
trajectories of r = 19.8; (c) p–q trajectories of 0 < xn < 0.2; (d) p–q trajectories of 0.8 < xn < 1.

4. Complexity and Entropy

4.1. Spectral Entropy

Complexity is an index that is used to measure how well a chaotic system generates
random sequences, and larger complexity implies more randomness for the generated
sequences. The complexity of the fractional-order map is evaluated by means of spectral
entropy (SE). The spectral entropy algorithm [35] is defined as follows; consider a set of
time sequences {xn, n = 0, 1, 2, ..., N − 1} with a length of N, and obtain a new discrete
number of length N by subtracting the mean of this dataset, which is expressed as

xn = xn −

N−1
∑

n=0
xn

N
, (21)

The Fourier transformation is calculated by

Xk =
N−1

∑
n=0

xne−j2nπk/N , (22)

where k = 0, 1, 2, ..., N − 1 and j is the unit imaginary. The probability of the power spectrum
is given as

Pk =
|Xk|2

N/2−1
∑

k=0
|Xk|2

, (23)
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Then, the normalization spectral entropy is defined as

SE =

N/2−1
∑

k=0
|Pk ln(Pk)|

ln(N/2)
(24)

We utilize spectral entropy to measure the complexity of the fractional-order map, and
the result of SE complexity is presented in Figure 9. The SE complexity surpasses 0.85 in
the highest range, so this fractional-order map can generate better random sequences.

Figure 9. SE of the fractional-order map with regard to ν and β.

4.2. Approximate Entropy

The approximate entropy (ApEn) [36] is the other means to measure the complexity of
the fractional-order map, which is described as follows. Consider a set of time sequences
x1, x2,..., xn obtained from System (17) and determine n − m +1 vectors as follows:

Xi = [xi, xi+1 · · · · · · xi+m−1]. (25)

These vectors denote m consecutive x values, which start from the ith data. Giving
tolerance, r, and for each i ∈ [1, n−m + 1], we define the following equation:

Cm
i (r) =

K
n−m + 1

, (26)

in which K is the number of Xi with d(Xi, Xj) ≤ r. In this case, d(Xi, Xj) represents the
largest absolute difference between Xi, and Xj. We calculate the approximate entropy by

APEn = φm(r)− φm+1(r), (27)

where φm(r) is described as

φm(r) =
1

n−m− 1

n−m+1

∑
i=1

log Cm
i (r), (28)

The result of ApEn complexity is shown in Figure 10, which agrees well with SE
complexity. Therefore, this fractional-order map has a more complex structure. It has higher
complexity than the fractional-order logistic map and the fractional-order Hénon map.
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Figure 10. ApEn of the fractional-order map with regard to ν and β.

5. Chaos Control

As the fractional-order chaotic map is raised, the chaos control for the fractional-order
map becomes a new topic. The occurrence of chaotic behaviors may cause instability in
engineering applications, so chaos control has been widely studied. However, researchers
have paid little attention to the topic of controlling fractional-order chaotic maps. In the
section, the scheme of chaos control is proposed, which is based on improved nonlinear
mapping on wavelet functions [37]. System (17) is controlled by it. This control method
of fractional-order systems is of importance not only for control theory, but also for the
application of fractional-order chaotic maps. A Marr wavelet function is employed to
construct the improved nonlinear mapping. This chaos control algorithm is described as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn= ke−
x2

n−1
2 (1− x2

n−1)[ f (xn−1)− r1yn−1],
CΔν

ay(t)= −y(t + ν− 1)e−2β + e−βr[(2− 2x(t + ν− 1))y(t + ν− 1)

−2x(t + ν− 1)z(t + ν− 1)]− y(t + ν− 1),
CΔν

az(t)= −z(t + ν− 1)e−2β + e−βr[2(1− x(t + ν− 1))z(t + ν− 1)

−2x(t + ν− 1)y(t + ν− 1)− x(t + ν− 1)]− z(t + ν− 1),

(29)

where k is a control parameter.
If System (17) is controlled when n = 1000, then the control results are presented in

Figure 11. The fractional-order chaotic map is controlled to a period-1 orbit with k = 0.2; it is
controlled to a period-2 orbit with k = 0.5, and it is controlled to period-4 orbit with k = 0.65,
while it is controlled to quasiperiodic orbit with k = 0.7. As can be seen, the fractional-order
chaotic map endures period-1, period-2, period-4, and quasiperiodic states with an increase
in the control parameter k.
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Figure 11. Chaotic controls. (a) Chaotic control with k = 0.2; (b) chaotic control with k = 0.5; (c) chaotic
control with k = 0.65; (d) chaotic control with k = 0.70.

6. Conclusions

We build an improved quantum logistic map without equilibrium by reforming the
classic quantum logistic map. The improved quantum logistic map with hidden attractors
is generalized to the fractional case by introducing the Caputo-like delta difference operator.
Through a phase portrait, the largest Lyapunov exponent, dynamical mapping, and 0-1
testing, the dynamical characteristics were studied. Both the parameters and fractional
orders impact the system. With varying control parameters, the system shows periodic
windows. However, for the dissipation parameter and the fractional order, there are no
periodic windows in the chaotic region. This means that this chaotic map possesses stronger
robustness in chaos, so the system could be applied to generate stable chaotic sequences
for secure communication. The 0-1 test shows that this fractional-order map can generate
several chaotic sequences. Then, the complexity of the fractional-order map was described
by spectral entropy and approximate entropy, which shows that this fractional-order map
can generate better random sequences. In addition, improved nonlinear mapping on a
wavelet function for the fractional-order map was proposed. This map is controlled to
different periodic orbits under different control parameters. The fractional-order map gains
more degrees of freedom compared to the integer counterpart, so the fractional-order map
has greater potential applications in the engineering field. Due to its higher complexity
and stronger robustness in chaos, this fractional-order chaotic map can be employed in
information encryptions, such as secret communications and image encryptions. In order
to apply the fractional-order improved quantum logistic map, we will focus on designing
the image encryption scheme based on this map in the future.
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Appendix A

The code generating chaotic attractors in MATLAB:

ν=0.9;β=4.5;r=19.8;r1=0.05;
x(1)=0.05;y(1)=0.02;z(1)=0.05;
for i=2:1:3000
temp4=0;temp7=0;
for j=2:1:i temp5=temp4+exp(gammaln(i−j+ν)−gammaln(i−j+1))*((−y(j−1)*exp(−2*β))+
exp(−β)*r*((2−2*x(j−1))*y(j−1)−2*x(j−1)*z(j−1))−y(j−1)); temp8=temp7+exp(gammaln
(i−j+ν)−gammaln(i−j+1))*((−z(j−1)*exp(−2*β))+exp(−β)*r*(2*(1−x(j−1))*z(j−1)−
(2*x(j−1)*y(j−1))−x(j−1))−z(j−1));
temp4=temp5;temp7=temp8;
temp6=(1/gamma(ν))*temp5; temp9=(1/gamma(ν))*temp8;
end
if (0<x(i−1))&&(x(i−1)<0.2)
x(i)=0.8+r*(x(i−1)−0)*(0.2−x(i−1))−r1*y(i−1);
elseif (0.8<x(i−1))&&(x(i−1)<1)
x(i)=0+r*(x(i−1)−0.8)*(1−x(i−1))−r1*y(i−1);
end
y(i)=y(1)+temp6; z(i)=z(1)+temp9;
end
figure;
plot(x(100:3000),y(100:3000),’b.’,’markersize’,2);
xlabel(‘x’);ylabel(‘y’);
set(gca,’fontsize’,12,’FontName’,’Times new Roman’);
set(get(gca,’XLabel’),’FontName’,’Times new Roman’,’FontSize’,16);
set(get(gca,’YLabel’),’FontName’,’Times new Roman’,’FontSize’,16);
figure;
plot(y(100:3000),z(100:3000),’b.’,’markersize’,2);
xlabel(‘y’);ylabel(‘z’);
set(gca,’fontsize’,12,’FontName’,’Times new Roman’);
set(get(gca,’XLabel’),’FontName’,’Times new Roman’,’FontSize’,16);
set(get(gca,’YLabel’),’FontName’,’Times new Roman’,’FontSize’,16);
figure;
plot(z(100:3000),x(100:3000),’b.’,’markersize’,2);
xlabel(‘z’);ylabel(‘x’);
set(gca,’fontsize’,12,’FontName’,’Times new Roman’);
set(get(gca,’XLabel’),’FontName’,’Times new Roman’,’FontSize’,16);
set(get(gca,’YLabel’),’FontName’,’Times new Roman’,’FontSize’,16);
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Abstract: The objective of this paper is to examine the augmentation of the heat transfer rate utilizing
graphene (Gr) and multi-walled carbon nanotubes (MWCNTs) as nanoparticles, and water as a
host fluid in magnetohydrodynamics (MHD) flow through an upright plate using Caputo fractional
derivatives with a Brinkman model on the convective Casson hybrid nanofluid flow. The performance
of hybrid nanofluids is examined with various shapes of nanoparticles. The Caputo fractional
derivative is utilized to describe the governing fractional partial differential equations with initial and
boundary conditions on the flow model. Exact solutions are obtained for flow transport, temperature
distribution besides that heat transfer rate and friction drag in terms of Mittag-Leffler function by
using Fourier sine and Laplace techniques as hybrid methods. Further, we provided the limiting
case solutions for classic partial differential equations on obtained governing fluid flow models. The
influence of various physical parameters with different fractional orders are investigated on hybrid
nanofluid’s fractional momentum and energy by plotting velocity and energy curves. Few of the
findings suggest that fractional parameters have significant effect on flow parameters and that blade-
shaped nanoparticles have a high heat transfer rate. The graphical results reveal that the Grashof
number shows a symmetry effect in the case of cooling and heating the plate. Furthermore, the
performance of hybrid nanofluid is considerably more effective with the Caputo-fractional derivatives
rather than in the classic derivative approach.

Keywords: Casson Fluid; Fourier Sine Transform; Laplace Transform; fractional heat equation; shape
factor; Mittag-Leffler function

1. Introduction

Nanotechnology has significantly advanced in heat transfer studies, which has en-
hanced the thermal characteristics of energy-transmitting fluids. Producing nanoparticles
with great heat conductivity is one of the most trending uses of nanotechnology. To increase
the thermal conductivity of fluids, nanofluids have great importance. They are prepared in
laboratories by using nanoparticles with an average diameter of less than 100 nm which
are suspended in typical heat transfer fluids such as oil, water, and ethylene glycol. First,
Maxwell [1] proposed nanofluids after an attempt to optimize the heat transfer rate of regu-
lar fluids by suspending micro-sized particles failed owing to sedimentation and clogging
of the flow patterns. Based on these issues, Choi [2] suggested in 1995 that the dispersion of
nanoparticles into the host fluid might improve the thermal performance of the base fluid.
Subsequently, a diverse range of devices have been developed for a variety of practical
purposes and functions in various fields such as electrical engineering [3], helping to im-
prove the thermal efficiency of horizontal spiral coils used in solar ponds [4], as a coolant
in double pipe heat exchangers [5], stenotic artery [6] and drug agent [7]. Later research
by Imran Siddique et al. [8], Maryam Aleem et al. [9], as well as Anum Shafiq et al. [10]
broadened the literature on nanofluids. The discovery of nanofluids has achieved the major
part of industry’s requirements, but the suspension of single nanoparticles is inadequate

Symmetry 2023, 15, 399. https://doi.org/10.3390/sym15020399 https://www.mdpi.com/journal/symmetry268



Symmetry 2023, 15, 399

for the required thermal performance. Therefore, researchers have been attempting to
develop a better and more efficient fluid. Yamada et al. [11] defined an upgraded kind of
nanofluid in 1989 by combining two or more nanoparticles of distinct characteristics with
common fluids. This advanced categorization of nanofluid, known as a hybrid nanofluid,
shows potential improvements in heat transfer rate, which can be applied in many domains
such as biomedicine [12–14], heat exchangers [15], solar energy [16] and so on. Some of
the modern advances in the literature of hybrid nanofluids are observed in the studies
carried by Hafeez et al. [17]; their study provides a numerical modelling of MHD rotational
flow of hybrid nanomaterial by applying a bvp4c technique between two parallel porous
sheets. Iskandar Waini et al. [18] examined the stable mixed convection flow along a vertical
surface immersed in a porous medium using hybrid nanoparticles. Talha Anwar et al. [19]
established two independent fractional models, Caputo–Fabrizio and Atangana–Baleanu,
to analyze the flow patterns and thermal characteristics of a NaAlg/SA-based hybrid
nanofluid. Their study revealed that the CF fractional operator improves the thermal rate
more efficiently than the AB fractional operator.

Heat transmission is crucial for temperature controls in many industrial applications.
Even with increased demand for energy-efficient equipment, achieving good heat trans-
mission of a fluid remains a challenge. As a result, nanoparticles, nanofluids, and hybrid
nanofluids exploration are some of the most significant topics of research. Consequently,
heat transfer becomes more robust. Nepal T. Balaji et al. [20] investigated the micro channel
heat sink, which is used to check the convective heat transfer properties of water-based hy-
brid nanofluids including graphene nanoplatelets and MWCNTs. Mumtaz Khan et al. [21]
examined FDM combined with L1-technique utilization to perform the heat transfer of
fractional transient MHD flow of viscoelastic hybrid nanofluids through an inclined surface
fixed in a Darcy porous medium. Unsteady natural convection and heat transmission
of hybrid nanofluid for two upright parallel plates were analyzed by Chandra Roy and
Ioan Pop [22]. In the fields of biomechanics, aerospace, and chemical engineering, mag-
netohydrodynamics (MHD) free convection flow is extremely important. MHD primarily
focuses on the study of the magnetic characteristics and behavior of electrically conducting
fluids, including magneto fluids such as electrolytes, liquid metals, plasmas and salt water.
Ndolane Sene [23] examined the heat transmission analysis of Brinkmantype fluid with
Caputo derivative. Zar Ali Khan et al. [24] found the analytic solution of the transient
flow of a generalized Brinkman-type fluid in a channel under the influences of MHD with
Caputo–Fabrizio fractional derivative. Ridhwan Reyaz et al. [25] explored the effects of
heat radiation on the MHD Casson Fluid as well as the Caputo fractional derivative on an
oscillating upright plate.

The investigation of non-Newtonian materials is another intriguing research issue due
to its interdisciplinary character and interesting rheological dynamics. Non-Newtonian
fluids are flexible due to their applicability in numerous sectors and production processes.
The relevance of non-Newtonian fluids may be seen in the oil packing, cooling/heating
processes, hydraulics, lubricant industry and opto-electronics. In the literature, scientists
have researched many non-Newtonian models, among which is included the Casson Fluid
model [26], made known in 1959 by Casson, while inspecting the rheological data of pig-
ment ink in a printer. Casson Fluid is a shear-thinning liquid with infinite viscosity at zero
shear stress. When the yield stress is higher than the shear stress, the fluid acts like a solid.
Toothpaste, slurries, blood, paint, molten polymers, honey, jelly, tomato sauce and chocolate
are examples of Casson Fluid. This fluid model has been beneficial to polymer processing in-
dustries, food manufacturers, cosmetics, textiles, biomechanics, pharmaceuticals and many
more. Ali Raza et al. [27] investigated the flow of Casson nanoparticles by applying Laplace
Transform across a vertical moving plate using the Atangana–Baleanu time-fractional
derivative and studies have shown that the fractional, ordinary velocity fields of Casson
Fluid decreases when compared to viscous fluid. Muhammad Nazirul Shahrim et al. [28]
were using the Laplace Transform to study the precise solution of fractional convective
Casson Fluid over an accelerated plate. M. Veera Krishna et al. [29] explored the radiative
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MHD flow of Casson hybrid nanofluid through an infinite exponentially accelerated verti-
cal porous surface using the Laplace methodology, and the temperature of Casson hybrid
nanofluid is considerably superior to that of Casson nanofluid.

In present times, fractional calculus [30] is essential in engineering and applied scien-
tific disciplines such as physics, electronics, mechanics, population modelling, biosciences,
economics and signal processing. Fractional calculus contains two categories singular oper-
ators and nonsingular operators. (1) Caputo derivative (2) Riemann–Liouville derivative
are singular operators. The Caputo–Fabrizio derivative and the Atangana–Baleanu deriva-
tive are non-singular operators. They arose as a result of the application of conventional
differentiation to the concept of non-local derivatives. As per several subject specialists,
the findings obtained through the use of fractional operators are more precise and realistic
than those obtained using classic differentiation. When it comes to understanding fluid
performance, fractional operators are extremely important because of their self-similar
qualities and memory-capturing capabilities. The Caputo derivative is the most commonly
encountered derivative in the fractional calculus literature. The rationale stems from the
fact that this derivative is consistent with the initial conditions utilized in modelling real-
world issues. Michele Caputo proposed the Caputo fractional derivative in his study in the
year 1967 [31]. Talha Anwar et al. [32] analyzed different shape effects of fractal fractional
model for thermal analysis of hybrid nanofluid with a power-law kernel and noticed that
the heat transfer rate was most effective for blade-shaped nanoparticles when graphene
nanoparticles and graphite oxide were equally dispersed. Muhammad Saqib et al. [33]
used the Atangana–Baleanu fractional derivative to examine the time fractional model of
the convective flow of carboxy–methyl–cellulose (CMC)-based CNTs nanofluid through a
porous media in a microchannel and observed that MWCNTs are more efficient than SWC-
NTs in improving the thermal conductivity of the nanofluids. Marjan Mohd Daud et al. [34]
implemented the Caputo fractional derivative principle to Casson Fluid convective flow
in a microchannel with radiant heat flux. M Ahmad et al. [35] described a generalization
for natural convection flow of Maxwell nanofluid in two upright parallel plates adopting
Caputo–Fabrizio utility of fractional order derivatives. Sidra Aman et al. [36] derived
precise estimates for MHD flow of Casson nanofluid with hybrid nanoparticles using the
Caputo time fractional derivatives.

Being motivated by Ndolane Sene [37], who analyzed the exact solution for a class
of fluids model with the Caputo derivative by using Laplace and Fourier Sine Transform
method, it is noticed that there has been no attempt in the prior literature to investigate
MHD and hybrid nanofluids with Caputo fractional derivatives by using Fourier Sine
Transform and Laplace Transform. Hence, the current study proposes to expand on the
work of Ndolane Sene by adopting MHD with different shapes of hybrid nano fluid model
using graphene (Gr), multiwall carbon nanotubes (MWCNTs) as nanoparticles and water
as host fluid to analyze the heat transmission rate. The implementation of the Caputo
derivative and its approach to obtaining the analytical results by employing the Laplace and
Fourier transforms will be novel. The Caputo fractional derivative is used to fractionalize
the MHD free convection Casson hybrid Brinkman-type fluid model. The Fourier sine
and Laplace Transformation is used to transform non-linear governing PDEs into ordinary
differential equations. These exact solutions are shown for temperature and flow fields
of hybrid nanofluid. Eventually, by making α → 1, β → ∞ the classic non-Newtonian
solutions are recovered for velocity field. Further, the influence of several parameters on
the fluid flow and thermal characteristics were discussed and shown in graphical and
tabular form. The practical applications of employing these nanoparticles are in wastewater
treatment, 3D printing, solar cell (dye-sensitized solar cells) industries.

The contents of the present paper are outlined as follows. Section 2 describes the
fractional mathematical model using Caputo fractional derivatives. Section 3 gives the
approaches to obtain analytical solutions using Fourier sine and Laplace Transform meth-
ods for temperature and velocity fields. Further discussed are the limiting cases, heat
transmission rate and shearing stress. Discussion and the interpretations of the influences
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of the parameters utilized in the modelling have been provided in Section 4. We conclude
the paper with findings which are discussed in Section 5.

2. Fractional Mathematical Model with Caputo Derivative

Consider an unsteady MHD free convective Casson hybrid flow of water with graphene
and MWCNTs nanoparticles over an infinite upright plate. The system rectilinear coordi-
nate is implemented for the analysis, and the fluid flow is taken in the y-direction, whereas
the x-axis is picked perpendicular to the plate. Magnetic field of strength B0 is applied
normal to the fluid flow direction. The fluid is viscous, incompressible, conducting and
not electrified. The fluid is assumed to be gray, absorbing and emitting radiation but as a
non-scattered medium. Different forms of nanoparticles (cylinder, blade, brick, platelet and
spherical) are disseminated into the host fluid to obtain hybrid nanofluid. At time τ = 0,
the plate and hybrid nanofluid are both in equilibrium state with temperature T∞. As time
progresses, τ > 0, the fluid is driven by the velocity U and at the same time, temperature
of the fluid raised to TW and then far away from the plate its ambient temperature is T∞,
causing free convection to occur, as presented in Figure 1. Body force emerges as buoyancy
force in this circumstance because of the temperature difference. Further, for analyzing the
flow phenomena of the hybrid nanofluid, the Brinkman-type fluid model is being used.

Figure 1. Flow geometry.

The following forms can be used to depict the rheological equation for an incompress-
ible Casson Fluid (Nakamura et al. [38]).

πi,j = 2(μγ +
py√
2π

)eij when π > πc

πi,j = 2(μγ +
py√
2πc

)eij when π < πc

⎫⎬⎭ (1)

Here, π = eijeij where eij represents the (i, j)th component of the deformation rate, π
is the product of the component of deformation rate with itself, πc is the critical value of
this product based on the non-Newtonian model, py symbolizes the yields stress, and μγ

denotes the plastic dynamic viscosity of the non-Newtonian flow.
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The mathematical structure of the corresponding conventional flow of Casson hy-
brid nanofluid (graphene–MWCNTs–H2O) can be concise by Boussinesq’s approximation
(Nehad Ali Shah and Ilyas Khan [39]) with the following partial differential governing
equations given under the aforementioned assumptions.

∂u
∂x

+
∂v
∂y

= 0 (2)

ρhn f
∂u
∂t

= μhn f (1 +
1
β
)

∂2u
∂x2 + ρhn f γhn f g(T − T∞)− σhn f B2

0u (3)

(ρCp)hn f
∂T
∂t

= κhn f
∂2T
∂x2 (4)

The dimensional initial and boundary conditions employed in this study are detailed below.

t ≤ 0 : u = 0, T = T∞∀x

t > 0 :
u = U, T = Tw : x = 0

u → 0, T → T∞ : x → ∞
(5)

Table 1 lists the thermo-physical attributes of hybrid nanofluids and nanofluids.
Table 2 portrays the thermophysical properties of the host fluid (H2O) and nanoparti-
cles (graphene and MWCNT). Table 3 displays the sphericity and shape factor for various
shapes of nanoparticles.

Table 1. Hybrid nanofluid thermophysical description (Talha Anwar et al. [32]).

Properties Hybrid Nanofluid

Viscosity, μ μhn f =
μ f

(1−φGr)
2.5(1−φMWCNT)

2.5 (Brinkman model)

Density, ρ ρhn f =
[
ρ f (1− φ1) + φ1ρp1

]
(1− φ2) + ρp2 φ2

Specific heat capacity, Cρ (ρCp)hn f =
[
φGr(ρCp)Gr + (1− φGr)(ρCp) f

]
(1− φMWCNT) + (ρCp)MWCNTφMWCNT

Thermal conductivity, κ
κhn f = κn f

[
κMWCNT+(n−1)κn f−(n−1)(κn f−κMWCNT)φMWCNT

κMWCNT+(n−1)κn f +(κn f−κMWCNT)φMWCNT

]
(Maxwell model)

where κn f = κ f

[
κnp1+κ f (n−1)−(κ f−κnp1 )(n−1)φnp1

κnp1+κ f (n−1)+(κ f−κnp1 )φnp1

]
Electrical conductivity, σ

σhn f = σn f

[
σp2+(n−1)σn f−(n−1)(σn f−σp2 )φ2

σp2+(n−1)σn f +(σn f−σp2 )φ2

]
where σn f = σf

[
σp1+(n−1)σf−(n−1)(σf−σp1 )φ1

σp1+(n−1)σf +(σf−σp1 )φ1

]
Thermal expansion coefficient, γ (ργ)hn f =

[
(1− φGr)(ργ) f + φGr(ργ)Gr

]
(1− φMWCNT) + (ργ)MWCNTφMWCNT

Table 2. Thermophysical characteristics of the host fluid and nanoparticles (Mumtaz Khan et al. [21],
Reddy SR and Reddy PB [40]).

Physical Properties Water (H2O) Graphene (Gr)
Multiwall Carbon

Nanotube (MWCNT)

ρ/Kgm−3 997.1 2250 1600

Cρ/JKg−1K−1 4179 2100 796

κ/Wm−1K−1 0.613 2500 3000

σ/Sm−1 5.5× 10−6 107 107

γ/K−1 210× 10−6 −7× 10−6 2.1× 10−5

The following non-dimensional parameters are constructed using Buckingham’s pi-
theorem (W.D.Curtis [41]).
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Table 3. Sphericity and shape factor of nanoparticles of various shapes (Muhammad Saqib et al. [33]).

Models a b ψ p= 3
ψ

Blade 14.6 123.3 0.36 8.3

Brick 1.9 471.4 0.81 3.7

Platelet 37.1 612.6 0.52 5.7

Cylinder 13.5 909.4 0.62 4.9

Spherical - - 1 3

u∗ = u
U , x∗ = x U

v , τ∗ = U2

v t, v = T−T∞
Tw−T∞

Pr =
(μCp) f

κ f
, Gr =

gv f γ f (Tw−T∞)

U3 , M =
σf ν f B2

0
ρ f U2

(6)

When transforming the Equations (2)–(5) using the dimensionless variables specified
in Equation (6) and further dropping * sign, a more simplified form of the non-dimensional
fluid model is obtained as:

∂u
∂τ

= a7(1 +
1
β
)

∂2u
∂x2 − a10M + a12Grv (7)

∂v
∂τ

=
a4

Pr
∂2v
∂x2 (8)

Fractional calculus is an effective tool for describing real-world phenomena with the so-
called memory effect. The Caputo derivative is used because the memory effect and a constant
function’s derivatives yield zero. Equations (9) and (10) are obtained by replacing the integer
order derivative with the Caputo derivative in Equations (7) and (8) and generalizing the
integer-order derivative to non-integer partial differential equations. They are:

Dα
τu = a7(1 +

1
β
)

∂2u
∂x2 − a10M + a12Grv (9)

Dα
τv =

a4

Pr
∂2v
∂x2 (10)

We treat the following relationships as dimensional initial and boundary conditions
that momentum and temperature satisfy.

τ ≤ 0 : u = 0, v = 0∀x

τ > 0 :
u = 1, v = 1 : x = 0

u → 0, v → 0 : x → ∞
(11)

where

a1 =
κp2+(n−1)κn f−(n−1)(κn f−κp2 )φ2

κp2+(n−1)κn f +(κn f−κp2 )φ2
,

a2 =
kp1+(n−1)k f−(n−1)(k f−kp1 )φ1

kp1+(n−1)k f−(k f−kp1 )φ1
,

a3 = (1− φ2)

[
(1− φ1) + φ1

(ρCp)p1
(ρCp) f

]
+

[
(ρCp)p2
(ρCp) f

]
φ2, a4 = a1a2

a3
,

a5 = (1− φ1)
2.5(1− φ2)

2.5, a6 = (1− φ2)
[
(1− φ1) + φ1

ρp1
ρ f

]
+
[

ρp2
ρ f

]
φ2, a7 = 1

a5a6
,

a8 =
σp2+(n−1)σn f−(n−1)(σn f−σp2 )φ2

σp2+(n−1)σn f +(σn f−σp2 )φ2
,

a9 =
σp1+(n−1)σf−(n−1)(σf−σp1 )φ1

σp1+(n−1)σf +(σf−σp1 )φ1
,

a10 = a8a9
a6

, a11 = (1− φ2)

[
(1− φ1) + φ1

(ργ)p1
(ργ) f

]
+

(ργ)p2
(ργ) f

φ2, a12 = a11
a6
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3. Procedure for Solution

There are numerous approaches for solving the fractional differential equations pro-
vided in Equations (9) and (10). This section explains how to use analytical approaches
to find solutions. In this work, Laplace and Fourier Sine Transformation are used to find
exact results for our present model. This approach is mentioned in the following litera-
tures [42,43]. The benefit of this method in this study is that it allows for the development
of linear fractional differential equations. Figure 2 shows a flowchart that summarizes the
solution method used in this study.

 

Figure 2. Flow chart for Fourier sine and Laplace Transform.

3.1. Integral Transform for Fractional Order Caputo Derivative

The Laplace Transform method is employed for obtaining accurate analytical solutions
in this study, the Laplace Transformation of the Caputo derivative in the following lines
are defined.

The Caputo fractional derivative of f (t) is defined as:

Dα f (t) =
1

Γ1− α

t∫
0

(t− s)−α d f (s)
ds

; 0 < α < 1 (12)

where α is a fractional order, Γ is a gamma Euler function.
In Equation (12), the Laplace Transform and the Convolution theorem is utilized

to obtain:

L

⎡⎣ t∫
0

f ′(u)(t− u)−αdu

⎤⎦ =
(

s f (s)− f (0)
)Γ1− α

s1−α
(13)
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Then, using the Laplace Transform definition, the following is obtained:

L[Dc
α f (t)] = sαL[ f (t)]− sα−1 f (0) (14)

According to the present study Equation (15) is written as:

L[Dc
αv(q, τ)] = sαL[v(q, τ)]− sα−1v(q, 0) (15)

The Laplace Transform in Equation (15) will be significant in the current investigation.

3.2. Hybrid Fractional Temperature Field Calculation

For solving the fractional temperature equation in Equation (10), initial and boundary
conditions given in Equation (11) have been used.

Fourier Sine Transform is applied to Equation (10) as first step in this approach and
the RHS and LHS are obtained as follows:

Fs[Dα
τv(x, τ)] = Dα

τv(q, τ) (16)

Fs

[
∂2v(x, τ)

∂x2

]
= qv(0, τ)− q2v(q, τ) (17)

where the Fourier Sine Transformation is denoted by Fs and the Fourier sine variable is q.
By replacing Equations (16) and (17) in the Fourier Sine Transform of Equation (10),

the below Equation (18) is obtained,

Dα
τv(q, τ) =

a4

Pr
[qv(0, τ)− q2v(q, τ)] (18)

Now proceeding to the second part of the approach, which is to apply the Laplace
Transformation to Equation (18) and use Equation (11) to obtain,

v(q, s) =
qa4

sPr
(

sα + a4q2

Pr

) (19)

After some rearrangement, the Equation (20) is as below.

v(q, s) =
a4q
Pr

[(
1
s
− sα−1

sα + a4q2

Pr

)
Pr

a4q2

]
(20)

To solve Equation (20), the inverse Laplace Transform is used, which generates the
following relationship.

v(q, τ) =
1
q

[
1− L−1

[
sα−1

sα + a4q2

Pr

]]
(21)

In order to obtain the analytical solution for Equation (21), the Mittag-Leffler func-
tion [44] is used. That is:

Let α > 0, β ∈ R and z ∈ C. The Mittag-Leffler function is defined by the series:

Eα,β(z) =
∞

∑
k=0

zk

Γαk + β
when α > 0 and β > 0, the series is convergent. (22)

By doing so, β = 1, z = −λτα and λ = a4q2

Pr in Equation (22) and compare Equations (21)
and (22), which after simplification acquire the following form:

Eα(− a4q2

Pr
τα) = L−1

[
sα−1

sα + a4q2

Pr

]
(23)
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By replacing Equation (23) in Equation (21),

v(q, τ) =

[
1− Eα

(
− q2a4

Pr
τα

)]
1
q

(24)

This technique is completed by employing the inverse Fourier Sine Transformation to

Equation (24) and use the fact of integration
∞∫
0

sin qx
q dq = π

2 , resulting in:

v(x, τ) =
2
π

∞∫
0

v(q, τ) sin qxdq

v(x, τ) = 1− 2
π

∞∫
0

sin qx
q

Eα(− a4q2τα

Pr
)dq (25)

3.3. Hybrid Fractional Velocity Field Calculation

For solving the fractional momentum equation, the Fourier Sine Transformation is
applied to Equation (9) and considering μ = 1 + 1

β the simplified equation is

Dα
τu(q, τ) = a7μqu(0, τ)− a7μq2u(q, τ)− a10Mu(q, τ) + a12Grv(q, τ) (26)

and utilizing the Laplace Transform to Equation (26) with the use of Equation (11) yields that,

sαu(q, s) = a7μq
1
s
− a7μq2u(q, s)− a10Mu(q, s) + a12Grv(q, s) (27)

With further simplifications Equation (27), reduces to:

u(q, s) =
μqa7

s(sα + μq2a7 + a10M)
+

Grqa4a12

sPr(sα + μq2a7 + a10M)(sα + a4q2

Pr )
(28)

where,
a(q, s) = μqa7

s(sα+μq2a7+Ma10)
,

b(q, s) = Grqa4a12

sPr(sα+μq2a7+a10 M)(sα+
a4q2

Pr )

The inverse of the function b(q, s) is rewritten as below.

b(q, s) =
Grqa4a12

Pr

[
sα−(1+α)

sα + a4q2

Pr

− sα−(1+α)

sα + μa7q2 + Ma10

]
(29)

b(q, s) =
Gra4a12

Prq(μa7 − a4
Pr +

Ma10
q2 )

[
sα−(1+α)

sα + a4q2

Pr

− sα−(1+α)

sα + μa7q2 + Ma10

]
(30)

The inverse of Laplace Transformation is used to Equation (30) to obtain:

b(q, τ) =
Gra4a12

Prq(μa7 − a4
Pr +

Ma10
q2 )

[
L−1

(
sα−β

sα + a4q2

Pr

)
− L−1

(
sα−β

sα + μa7q2 + Ma10

)]
(31)

where β = 1 + α.
Using the Mittag-Leffler function as described in Equation (22) and further simplifying,

it reduces to:

τα
[
Eα,β(−λtα)

]
= L−1

(
sα−β

sα + λ

)
(32)
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By comparing Equations (31) and (32) and substituting λ = a4q2

Pr , λ = μa7q2 + Ma10
the following form is obtained:

b(q, τ) =
Gra4a12τα

Prq(μa7 − a4
Pr +

Ma10
q2 )

[
Eα,β(− q2a4

Pr
τα)− Eα,β(−μq2a7 − Ma10)τ

α

]
(33)

Using the inverse Fourier Sine Transform formula:

b(x, τ) =
2
π

∞∫
0

b(q, τ) sin qxdq

b(x, τ) =
2Gra4a12

πPr

∞∫
0

sin qx

q(μa7 − a4
Pr +

Ma10
q2 )

[
Eα,β(− q2a4

Pr
)τα − Eα,β(−μq2a7 − Ma10)τ

α

]
dq (34)

Again, the function a(q, s) is rewritten as:

a(q, s) =
μa7

q(μa7 +
Ma10

q2 )

[
1
s
− sα−1

sα + μq2a7 + Ma10

]

and employing the inverse Laplace Transformation, solution is written in terms of Mittag-
Leffler function as follows:

a(q, τ) =
μa7

q(μa7 +
Ma10

q2

[
1− L−1

[
sa−1

sα + μq2a7 + Ma10

]]
(35)

Eα,1(−λτα) = L−1
[

sa−1

sα + λ

]
(36)

Using the inverse Fourier Sine Transform, it implies that,

a(q, τ) =
μa7

q(μa7 +
Ma10

q2 )

[
1− Eα(−q2μa7 − Ma10)τ

α
]

where λ = μa7q2 + Ma10

a(x, τ) =
2
π

⎡⎣ ∞∫
0

μa7 sin qx

q(μa7 +
Ma10

q2 )
dq−

∞∫
0

μa7 sin qx

q(μa7 +
Ma10

q2 )
Eα(−q2μa7 − Ma10)τ

αdq

⎤⎦ (37)

The exact solution is,
u(x, τ) = a(x, τ) + b(x, τ) (38)

where,

a(x, τ) =
2
π

⎡⎣ ∞∫
0

μa7 sin qx

q(μa7 +
Ma10

q2 )
dq−

∞∫
0

μa7 sin qx

q(μa7 +
Ma10

q2 )
Eα(−q2μa7 − Ma10)τ

αdq

⎤⎦

b(x, τ) =
2Gra4a12

πPr

∞∫
0

sin qx

q(μa7 − a4
Pr +

Ma10
q2 )

[
Eα,β(− q2a4

Pr
)τα − Eα,β(−μq2a7 − Ma10)τ

α

]
dq
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3.4. Limiting Cases
3.4.1. Temperature Field for Classic Case with Hybrid Nanoparticles

The temperature expression corresponding to α → 1 in Equation (10) reduces to the
following expression,

v(x, τ) = er f c(
x
√

Pr
2
√

τa4
)

where er f c is a Gaussian error function.

3.4.2. Velocity Field for Classical Case with Hybrid Nanoparticles

The velocity expression corresponding to α → 1 in Equation (9) reduces to the follow-
ing expression.

u(x, τ) = 1
2

[
ex
√

a15 er f c
(

x
2
√

a7τB +
√

a15a7τB
)
+ e−x

√
a15 er f c

(
x

2
√

a7τB −
√

a15a7τB
)]

+ a13
2a14

[
ex
√

a15 er f c
(

x
2
√

a7τB +
√

a15a7τB
)
+ e−x

√
a15 er f c

(
x

2
√

a7τB −
√

a15a7τB
)]

− a13e
√a14τ

2a14

[
ex
√

a16 er f c
(

x
2
√

a7τB +
√

a16a7τB
)
+ e−x

√
a16 er f c

(
x

2
√

a7τB −
√

a16a7τB
)]

− a13
a14

er f c( x
√

Pr
2
√

τa4
)

+ a13e
√a14τ

2a14

⎡⎣e
x
√

a14Pr
a4 er f c

(
x
√

Pr
2
√

a4τ +
√

a14τ
)
+ e

−x
√

a14Pr
a4 er f c

(
x
√

Pr
2
√

a4τ −
√

a14τ
)⎤⎦

where,

B = 1 +
1
β

, a13 = − Gra4a12

Pra7B− a4
, a14 =

Ma4a10

a7BPr− a4
, a15 =

Ma10

a7B
,a16 =

a14

a7B
+

Ma10

a7B

3.4.3. Velocity Field for Classic Newtonian Fluid with Hybrid Nanoparticles

In the case of velocity for classical Newtonian fluid, the following expression is
obtained by making β → ∞ , α → 1 in Equation (9):

u(x, τ) = 1
2

[
ex
√

a19 er f c
(

x
2
√

a7τ +
√

a19a7τ
)
+ e−x

√
a19 er f c

(
x

2
√

a7τ −
√

a19a7τ
)]

+ a18
2a17

[
ex
√

a19 er f c
(

x
2
√

a7τ +
√

a19a7τ
)
+ e−x

√
a19 er f c

(
x

2
√

a7τ −
√

a19a7τ
)]

− a18eτa17
2a17

[
ex
√

a20 er f c
(

x
2
√

a7τ +
√

a20a7τ
)
+ e−x

√
a20 er f c

(
x

2
√

a7τ −
√

a20a7τ
)]

− a18
a17

er f c( x
√

Pr
2
√

τa4
)

+ a18e
√a17τ

2a17

⎡⎣e
x
√

a17Pr
a4 er f c

(
x
√

Pr
2
√

a4τ +
√

a17τ
)
+ e

−x
√

a17Pr
a4 er f c

(
x
√

Pr
2
√

a4τ −
√

a17τ
)⎤⎦

where,

a17 =
Ma4a10

a7Pr− a4
, a18 = − Gra4a12

a7Pr− a4
, a19 =

Ma10

a7
, a20 =

a17

a7
+

Ma10

a7
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3.5. Analytical Expressions for the Heat Transfer and Shear Stress

Heat transmission rate along with shear stress are two important physical quantities
that are analyzed to gain access to a wide range of information, such as efficacy of hybrid
nanofluids, elements that improve or deteriorate hybrid nanofluid thermal efficiency,
the role of accompanying development in deriving hybrid nanofluid flow patterns, and
various others. Utilizing the importance of these values, the following mathematical
relationships are predicted, which are mentioned as skin friction coefficient (Cf ) and
Nusselt number (Nu).

Nusselt number from Equation (25), an analytical expression of the dimensionless rate
of heat transfer (Nu) is:

Nu = − ∂v
∂x |x=0 = −L−1

[
lim
x→0

∂v
∂x

]
Nu =

√
Pr
a4

τ−
α
2

Γ1− α
2

Skin friction from Equation (38), an analytical expression of the dimensionless skin
friction is given by:

Cf = −∂u
∂x
|x=0 = −L−1

[
lim
x→0

∂u
∂x

]

Cf =
1√
Aa7

[
t−

α
2

Γ− α
2 +1 −

∞
∑

k=1

(2k−2)!(−1)k A1
ktα(k− 1

2 )

22k−1(k)!(k−1)!Γα(k− 1
2 )+1

]

− A4√
Aa7

[
1

Γ− α
2 +1

t∫
0

uα−1Eα,α(A3uα)(t− u)−
α
2 du

]

− A4√
Aa7

[
∞
∑

k=1

(2k−2)!(−1)k A1
k

22k−1(k)!(k−1)!Γα(k− 1
2 )+1

t∫
0

uα−1Eα,α(A3uα)(t− u)α(k− 1
2 )du

]

+ A4√
Aa7

√
Pr
a4

[
1

Γ− α
2 +1

t∫
0

uα−1Eα,α(A3uα)(t− u)−
α
2 du

]
where,

A1 = Ma10, A2 = BPra7, A3 =
A1a4

A2 − a4
, A4 = −Gra4a12

A1 − a4

4. Graphical Findings and Outcomes

This section goes through graphical examination of temperature, flow field domains
obtained for fractional order PDEs and flow parameters appearing in the problem. The frac-
tional fluid model is determined analytically using the Laplace and Fourier Sine Transform
methods. The Prandtl number, time, thermal Grashof number, Casson parameter, magnetic
field, volume fraction parameters φ1 and φ2 are investigated and justified with a physical
perspective. Recognizing the significance of shape effects, nanoparticles are thought to have
five distinct shapes (brick, blade, cylinder, spherical and platelet). The impact of various
flow characteristics is examined by using plotted curves in Figures 3–20 to illustrate various
impacts on flow field, temperature, heat flow rate and friction drag, also illustrated with
tables, bar graphs to analyze different elements of the topic under study. These graphical,
tabular representations aid in understanding the effects of additional processes such as
heat flow and energy fields. This section also includes a pictorial comparison of fractional
and classical model-based solutions to emphasize their importance. A complete tabular
analysis is also used to analyze the Nusselt number and skin friction.
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Figure 3. Fluid temperature for varied values of order α.

 

Figure 4. Fluid temperature for varied values of τ.

 

Figure 5. Fluid temperature for varied values of φ1.
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Figure 6. Fluid temperature for varied values of φ2.

 

Figure 7. Fluid temperature for distinct shapes.

 

Figure 8. Fluid flow curve for varied values of fractional order α.
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Figure 9. Fluid flow curve for varied values of M.

 

Figure 10. Fluid flow curve for varied values of τ.

 

Figure 11. Fluid flow curve for varied values of β.
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Figure 12. Fluid flow curve for varied values of Gr.

 

Figure 13. Fluid flow curve for varied values of φ1.

 

Figure 14. Fluid flow curve for varied values of φ2.
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Figure 15. Fluid temperature for distinct nanofluids.

 

Figure 16. Fluid flow curve for distinct nanofluids.

 

Figure 17. Fluid temperature for different fractional and classical approach.
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Figure 18. Fluid flow curve for different fractional and non-Newtonian approach.

 

Figure 19. Heat transfer enhancement in different nano particle shape.

Figure 20. 3D graph for Nusselt number.
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4.1. Impact of Physical Parameters on Temperature Field

The energy of Equation (11), whose solution is obtained as presented in Equation (25),
has been used for the figures in this section. The temperature profile for fractional order,
α = 0.4 is considered for various flow parameters.

The impact of fractional parameters against temperature distribution is seen in Figure 3.
When τ = 1.5, the temperature field rises with a growing α. Physically, this is explained by
the fact that as α increases, the thickness of the thermal boundary layer also increases, which
becomes thickest as α approaches 1. The novelty arises from explaining how temperature
rises as the order of the fractional operator advances. Because of the memory effect
inherent in fractional operators, increases in order have a considerable impact on time
value, resulting in a large accumulation. When the order of the fractional operator is raised,
it is seen that an increase in time causes a rise in fluid temperature. A sub-diffusion in the
range of (0, 1) is also noticed. When the order is modified, the literature’s results corroborate
Caputo’s fractional derivative sub-diffusion (0, 1).

Figure 4 represents the impact of time on the temperature field. In the above fractional
case, the temperature rises gradually as the value of time increases. This suggests that
when the time under consideration exceeds one, the Caputo derivative has a slower impact
on the diffusion process.

The temperature field is considerably impacted by the volume fraction of the hybrid
nanofluid, as seen in Figures 5 and 6. The temperature field is noted to grow with increasing
volume fraction values, i.e., φ1 and φ2. The physical factors of the hybrid nanofluid clearly
show that a rise in φ1 and φ2 leads to an increase in the heat transfer of the hybrid nanofluid,
thus resulting in the increase of temperature profile. This is due to the fact that when
density of nanoparticles is enhanced, heat conductivity is improved.

The temperature field for different shapes of nanoparticles is represented in Figure 7.
Due to the shape factor p included in Table 3, it is seen that the temperature of the blade-
shaped nanoparticle is the highest, preceded by the platelet, cylinder, brick, and spherical.
It is critical to remember that viscosity decreases as temperature rises. It is obvious that
the shapes of platelets, cylinders, and bricks have more viscosity, resulting in lower tem-
peratures, whereas blades and spherical ones have the greatest temperature due to the
lowest viscosity. The figure also shows that the spherical form of the nanoparticle has a low
viscosity. This is due to the temperature-dependent shear thinning behavior.

4.2. Impact of Physical Parameters on Flow Field

In this section Equation (10), whose solution is obtained as shown in Equation (39)
has been taken into account to plot all the figures. Velocity dynamics for distinct flow
parameters is illustrated for fractional order situation, α = 0.4.

Figure 8 exhibits the impact of fractional order in relation to time. The velocity falls as
the order of the Caputo derivative rises. Meaning to say, as order α accelerates the velocity
decreases to zero, which also means increasing time causes an increase in the flow field,
thus resulting in this outcome.

Figure 9 demonstrates the velocity curve of the magnetic field M parameter. The graph
shows that as the magnetic field levels increased, the velocity decreased. This resulted from
the application of the transverse magnetic field, which produces the resistive Lorentz force.
The Lorentz force, which tends to oppose the flow of hybrid nanofluid, causes the velocity
to decrease. When M is raised, the Lorentz force becomes more intense, enabling the hybrid
nanofluid to gently come to a halt.

Figure 10 captures the time τ effect on the velocity field, the velocity increases gradu-
ally with time growth. This demonstrates that the Caputo derivative has a lesser influence
on the diffusion process when the time under consideration reaches one.

Figure 11 shows the consequences of the Casson parameter when the other values are
held constant. It illustrates that higher values of β tend to a reduction in fluid velocity. This
is due to the physical impact of β, where a larger value of β will increase viscous forces
while decreasing thermal forces. Thus, fluid velocity will tend to decrease.
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Figure 12 represents the impact of the thermal Grashof number in cooling and heating
scenarios. The Grashof number is defined as the ratio of buoyancy force to viscous force
acting on a fluid, with fluid motion being linearly dependent on buoyancy force. In
convection problems, the thermal Grashof number is responsible for heat transmission.
This graph shows how the velocity field rises as the Grashof number increases in case
of cooling of the plate (Gr > 0) and the symmetry phenomenon is noted in the heating
scenario (Gr < 0). In addition, the symmetry effect is observed from the figure. The
Grashof number represents the buoyancy force proportional strength to viscous force;
hence, increase in Grashof number corresponds to increase in thermal buoyancy force. As a
result, the velocity field tends to expand.

Figures 13 and 14 indicate the effect of hybrid nanofluid volume fraction on flow field.
It is noted that the flow field of the hybrid nanofluid decelerates as the values of either φ1 or
φ2 increases. The physical explanation for this phenomenon is that as the volume fraction
φ1 and φ2 of the hybrid nanoparticle increases, fluid becomes more viscous, resulting in
decrement of the nanofluid’s flow field. Adding nanomaterials to a fluid raises its density,
which decreases both boundary layer thickness and nanofluid velocity; velocity decelerates
as time exceeds.

Figures 15 and 16 describe the comparison between the flow field and temperature
distribution of the graphene–H2O–MWCNT hybrid nanofluid to those of the equivalent
nanofluids graphene–H2O and MWCNT–H2O and the base fluid H2O. The profiles of the
afore stated nanofluids are displayed by employing either φGr = 0 or φMWCNT = 0 in the
solutions obtained for hybrid nanofluids. Temperature has been found to be the highest
for graphene–H2O–MWCNT hybrid nanofluid, further observing the trend in temperature
profiles followed by MWCNT–H2O nanofluid, graphene–H2O nanofluid and base fluid
H2O, in that order. MWCNT nanoparticles have a considerably superior heat-conduction
capacity than graphene nanoparticles and water. When MWCNT nanoparticles are dissem-
inated in the host fluid, the resulting MWCNTs–H2O nanofluid has a higher temperature
than graphene–H2O nanofluid temperature, due to improved thermal and physical fea-
tures such as heat capacitance and thermal conductivity. Moreover, the even dispersion of
considered nanoparticles (φGr = 0.05 = φMWCNT) improves the thermal conductivity of H2O
in such a way that the heat transfer capacity of the resulting hybrid nanofluid exceeds the
heat transfer capacity of H2O, graphene–H2O nanofluid and MWCNT–H2O nanofluid. The
performance of the temperature curve is mostly determined by the thermal properties and
volume percentage of the nanoparticles under consideration. This temperature fluctuation
caused by various nanoparticles emphasizes the importance of nanofluids and hybrid
nanofluids in heat control systems. Moreover, H2O has the higher fluid flow velocity in
comparison to other nanoparticles, which is followed by MWCNT–H2O, graphene–H2O
and H2O–graphene–MWCNT. The primary cause of these flow patterns is the disparity
in nanoparticle density. According to Table 2, the density of host fluid is substantially
lower than that of nanoparticles, making it less viscid for everyone. Greater the den-
sity of nanoparticles, the more viscid the resulting nanofluid. According to the figure,
evenly spreading both nanoparticles in host fluid, results in an increase in the density of
hybrid nanofluid.

In Figures 17 and 18, the curves are plotted in order to reveal a comparison between
fractional and classical derivative calculus for both cases of hybrid and non-hybrid nanoflu-
ids. In the case of temperature, the figure reveals that the temperature of fractional hybrid
nanofluid is faster followed by fractional non-hybrid than regular fluids. The fractional
derivative model with hybrid nanofluid reveals a better heat transfer enhancement than the
classical approach. In the velocity case the fractional hybrid fluid shows the high velocity
followed by fractional non- hybrid, Newtonian fluid (α → 1, β → ∞) with hybrid while it
has lower velocity for the classical fluid in limiting case.

Figure 19 was plotted to determine the applicability of fractional models for attain-
ing a quicker temperature reduction. In the bar graph shown, numerical values of heat
transmission rate (Nu) for fractional derivatives are in comparison with nanofluids and
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hybrid nanofluids. Moreover, notable emphasis is given to the shape constituent, which
resembles certain shapes of disseminated nanoparticles. Heat transmission from vertical
plate to hybrid nanofluid happens faster when graphene and MWCNT nanoparticles have
a blade form. When spherical-shaped nanoparticles are disseminated in water, the cooling
rate of the plate is slower. This disparity in numerical results of Nusselt’s number empha-
sizes the significance of the shape component. Based on these arguments, it is possible to
conclude that the morphologies of nanoparticles play a critical part in improving the poor
thermal properties of conventional fluids. As a result, evaluating shape factor qualities is
an important aspect of such investigations.

The plotting shown in Figure 20 represents the 3D curves for the Nusselt number.
The impact of flow parameters on the Nusselt number is presented in Table 4. Ac-

cording to the table, increasing fractional parameter α, time τ, φMWCNT and φGr leads to
an decrement in the heat transfer rate, whereas increasing Prandtl number Pr, results in
heat transfer increasing. The Nusselt number is defined as the ratio of convective heat
transfer coefficient to fluid conduction heat transfer; a high Nusselt number value will
almost certainly raise the fluid’s temperature as heat is transferred at a faster pace, as seen
in Figures 3–6.

Table 4. The influence of the various parameters on the Nusselt Number.

φGr φMWCNT Pr α τ Nu

0.02 0.02 6.2 0.6 1.5 1.591572294587753

0.03 - - - - 1.569480227825062

0.04 - - - - 1.547886513587993

- 0.03 - - - 1.562898376223181

- 0.04 - - - 1.534893820304120

- - 8 - - 1.807904639541740

- - 9 - - 1.917572445537878

- - - 0.8 - 1.332170104172774

- - - 0.9 - 1.202904460764115

- - - - 1.7 1.532918522253240

- - - - 1.8 1.506856850036236

Table 5 demonstrates the percent improvement in Nusselt number vs. different volume
fraction values of φGr and φMWCNT . The heat transmission rate of water-based hybrid
nanofluid is shown in table for graphene and MWCNT utilized in this investigation,
because they have a high heat transfer rate in the base fluid water. It is remarkable that
for graphene and multiwall carbon nanotubes in water, the heat flow rate increases by
17.7 percent. This increase in heat transfer rate indicates that radiators used in engines or
machines for cooling might be useful for mechanical engineers. Graphene and MWCNT
are used as a photoanode and counter electrode in industries for manufacturing solar cells
(dye-sensitized solar cells) to increase the efficiency.

Table 6 compares the heat transmission rates for distinct constituents of graphene
and MWCNT nanoparticles as well as changes in their ratio in the base fluid. This table
shows that, as the shape components values are increased from 3.0 to 8.3, Nu increases.
In addition, it is recognized that, of all the investigated combinations, hybrid nanofluid
achieves the best heat transmission rate when it is made of spherical-shaped graphene
nanoparticles and blade-shaped MWCNT nanoparticles, as well as brick-shaped graphene
nanoparticles and spherical-shaped MWCNTs.
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Table 5. The effect of volume fraction on Nusselt number and increased percent.

φGr φMWCNT Pr α τ Nu % Increased

0.00 0.00 6.2 0.4 1.5 1.9721 -

0.01 0.01 6.2 0.4 1.5 1.8751 4.9

0.02 0.02 6.2 0.4 1.5 1.7850 9.5

0.03 0.03 6.2 0.4 1.5 1.7011 13.7

0.04 0.04 6.2 0.4 1.5 1.6229 17.7

Table 6. Nusselt number varies for various combinations of shape components (p1 and p2 ).

φGr φMWCNT
p1 = 3.0 p2 = 3.0

p2 = 3.7 p2 = 4.9 p2 = 5.7 p2 = 8.3 p1 = 3.7 p1 = 4.9 p1 = 5.7 p1 = 8.3

0.01 0.01 1.9506 1.9545 1.9562 1.9594 1.9421 1.9341 1.9301 1.9139

0.02 0.02 1.9291 1.9368 1.9402 1.9467 1.9122 1.8965 1.8888 1.8577

0.03 0.03 1.9076 1.9190 1.9241 1.9338 1.8826 1.8596 1.8482 1.8034

0.04 0.04 1.8860 1.9012 1.9079 1.9208 1.8532 1.8231 1.8085 1.7509

Table 7 portrays the impact of flow parameters on skin friction near the vertical plate.
As observed here, increasing Prandtl number, φMWCNT , M, α, β and time leads to increase
in shear stress whereas increasing φGr and Gr results in decrement of shear stress.

Table 7. The influence of the various parameters on the skin friction.

φGr φMWCNT Pr α τ β Gr M Cf

0.03 0.03 6.2 0.45 0.5 1.5 2 2 0.959525615427890

0.04 - - - - - - - 0.952001945188767

0.05 - - - - - - - 0.944169083022009

- 0.04 - - - - - - 0.966946221691135

- 0.05 - - - - - - 0.974469891930258

- - 12 - - - - - 0.942932315311468

- - 15 - - - - - 0.944117551034069

- - - 0.65 - - - - 1.094127167925078

- - - 0.9 - - - - 1.246661852225108

- - - - 0.7 - - - 1.091373887426613

- - - - 0.9 - - - 1.206821899771669

- - - - - 2.5 - - 1.061352823595748

- - - - - 4.5 - - 1.151739930441103

- - - - - - 4 - 0.877486690628685

- - - - - - 6 - 0.796478405588264

- - - - - - - 3 1.131848583096572

- - - - - - - 5 1.422179803146021

Table 8 shows the comparison of the classic and fractional approaches for various
values of the Prandtl number and t = 0.5 in the temperature field. The two approaches
demonstrate a high level of agreement.
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Table 8. Comparison of classic and fractional approach when φ = 0.

Pr Classic Approach (α = 1)
(Soundalgekar V.M [45])

Fractional Approach
(α = 0.95)

Difference

0.71 0.3994 0.4029 0.0035

1.0 0.0082 0.0117 0.0035

1.5 0.3173 0.3234 0.0061

7.0 0.2207 0.2295 0.0088

5. Conclusions

A model for the natural convection MHD flow of generalized non-Newtonian fluid
containing graphene and MWCNT nanoparticles was derived using the Caputo fractional
derivatives. The outcomes of the investigated flow characteristics exhibit several remark-
able behaviours that allow for further research of the various flow models. The following
conclusions are brought up:

• The order of fractional derivatives can induce an increment or decrement in flow field
and temperature depending on the time factor.

• In the case of cooling the plate, the fluid flow trend accelerates as the value of the
Grashof number rises, whereas in the scenario of heating the plate, the reverse trend
is observed.

• Heat transmission rate of water-based hybrid nanofluid with cylindrical shaped
nanoparticles are 4.9%, 9.5%, 13.7% and 17.7% greater as compared to regular fluid for
volume fraction φ = 0.01 to 0.04, respectively.

• The blade-shaped hybrid nanoparticles are the most effective at increasing the heat
transfer rate, whereas spherical nanoparticles perform at a lesser rate. These findings
are significant in the long term because they help us plan for the improvement of heat
transfer in cooling and heating applications.

• When compared to fluids with hybrid and non-hybrid nanofluids, fractional hybrid
nanofluid shows the highest rate of heat transfer, whereas ordinary fluid shows
minimum heat transmission rate. This demonstrates the fractional parameter improves
fluid flow in a benchmark.
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Nomenclature

u Velocity
v Temperature
a, b Shape constants
Pr Prandtl number
Gr Grashof number
Gr Graphene nanoparticle
MWCNT Multi wall carbon nanotube
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MHD Magnetohydrodynamics
x, y Cartesian coordinates
Eα Mittag-Leffler function
Nu Nusselt number
Cf Skin friction coefficient
Greek symbols
ρn f Density of nanofluid (Kgm−3)

(Cp)n f Specific heat capacity of nanofluid (JKg−1K−1)

(γ)n f Thermal expansion coefficient of nanofluid (K−1)

κn f Thermal conductivity of nanofluid (Wm−1K−1)

μn f Dynamic viscosity of nanofluid (Kgm−1s−1)

σn f Electrical conductivity of nanofluid (Sm−1)
ρhn f Density of hybrid nanofluid (Kgm−3)

(Cp)hn f Specific heat capacity of hybrid nanofluid (JKg−1K−1)

(γ)hn f Thermal expansion coefficient of hybrid nanofluid (K−1)

κhn f Thermal conductivity of hybrid nanofluid (Wm−1K−1)

μhn f Dynamic viscosity of hybrid nanofluid (Kgm−1s−1)

σhn f Electrical conductivity of hybrid nanofluid (Sm−1)
g Specific gravity (Kgm−3)

B0 Magnetic field strength (Wbm−1)
α Fractional parameter
β Casson parameter
τ Time
γ Volumetric coefficient of thermal expansion
ψ Sphericity of nanoparticles
φ1 Volume fraction of Graphene
φ2 Volume fraction of MWCNTs
Subscripts
f Fluid
nf Nanofluid
hnf Hybrid nanofluid
np Nanoparticle
w Wall
∞ Ambient condition
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Abstract: This paper studies the bifurcations of the exact solutions for the time–space fractional
complex Ginzburg–Landau equation with parabolic law nonlinearity. Interestingly, for different
parameters, there are different kinds of first integrals for the corresponding traveling wave systems.
Using the method of dynamical systems, which is different from the previous works, we obtain the
phase portraits of the the corresponding traveling wave systems. In addition, we derive the exact
parametric representations of solitary wave solutions, periodic wave solutions, kink and anti-kink
wave solutions, peakon solutions, periodic peakon solutions and compacton solutions under different
parameter conditions.

Keywords: bifurcations; phase portraits; exact solutions

1. Introduction

The fractional complex Ginzburg–Landau (FCGL for short in the following) equation
was first proposed by Weitzner and Zaslavsky [1]. It describes the dynamical processes in
fractal media [2,3]. Various methods have been used to study the FCGL equation, including
the semigroup method, the Galerkin method, the exp−ϕ(χ)-expansion method, Jacobian
elliptic function expansion method, the improved tan(ψ(ξ/2))-expansion method and so
on [4–14]. For example, by employing the extended Jacobi’s elliptic function expansion
method, Abdou et al. [4] obtained the dark-singular combo optical solitons of the FCGL
equation. Arshed [5] researched the soliton solutions of the FCGL equation with Kerr law
and non-Kerr law nonlinearity. Using the modified Jacobian elliptic function expansion
method, Fang et al. [6] derived the discrete fractional soliton solutions of the FCGL equa-
tion. Li et al. [7] establish the existence and uniqueness of weak solutions to the FCGL
equation under the Galerkin method and a priori estimates. Lu et al. [8] studied the initial
boundary value problem of the FCGL equation in three spatial dimensions. Milovanov
and Rasmussen [9] discussed the fractional modifications of the free energy functional at
criticality and of the widely known Ginzburg–Landau equation central to the classical Lan-
dau theory of second-type phase transitions. Mvogo et al. [10] proposed both the semi and
the linearly implicit Riesz fractional finite-difference schemes to solve the FCGL equation
efficiently. Pu and Guo [11] studied the global well-posedness and long-time dynamics
of the FCGL equation. Qiu et al. [12] studied the soliton dynamics of an FCGL equa-
tion. Raza [13] investigated the exact periodic and explicit solutions of an FCGL equation.
Sadaf et al. [14] considered the exact solutions of an FCGL equation by using the improved
tan(ψ(ξ/2))-expansion method.

Different from the above methods, we apply the theory of dynamical systems to
research the exact solutions of the following FCGL equation with parabolic law nonlinearity:
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where x denotes distance along the fiber, t > 0 denotes time in dimensionless form, a, b, c, α,
β and γ are valued constants, and 0 < δ ≤ 1 denotes the order of the fractional derivative.
The fractional derivative in Equation (1) is the conformable fractional derivative, defined as

∂δ

∂tδ
f (t) = lim

ε→0

f (t + εt1−δ)− f (t)
ε

, 0 < δ ≤ 1,

where f : (0, ∞) → R, and t > 0. For the conformable fractional derivative, we have
following conclusions [15]:

∂δ

∂tδ
tk = ktk−δ, Dδ

t u(t) = t1−δ du(t)
dt

, k ∈ R, 0 < δ ≤ 1.

The dynamical system theory is a useful tool to obtain the traveling wave solutions of
the nonlinear partial differential equations. Via studying the number of zeros of Abelian,
Chen et al. [16] obtained the periodic solutions of the Friedmann–Robertson–Walker
model (also see [17,18]). Sun et al. [19] proved the existence of the periodic waves by
constructing the Melnikov functions. Employing the geometric singular perturbation theory,
Ge and Du [20] studied the solitary wave solutions of the perturbed shallow water wave
model (also see [21–23]). Based on abstract bifurcation theory, Song and Tang [24] discussed
the nonconstant solutions (also see [25]). Chen et al. [26] analyzed the global dynamics
of a mechanical system (also, see [27–29]). Applying the first integral method, Deng [30]
considered the solitary wave solutions of the generalized Burgers–Huxley equation. Li [31]
introduced the “three-step” method to investigate the singular traveling wave equations
(also see [32]). Under the “three-step” method, many results for exact solutions have been
produced [15,33–43].

How do the traveling wave solutions of Equation (1) depend on the parameters of the
system? Are there peakon solutions and periodic peakon solutions as well as compactons
of Equation (1)? As far as we know, no one has considered these problems. In this paper,
by using the method of dynamical systems, we shall consider the dynamical behavior of
the bounded traveling wave solutions of Equation (1) in different parameter domains.

To achieve the research purpose, in Equation (1), we apply the traveling wave transform

u(x, t) = φ(ξ)eiη(x,t), ξ =
xδ

δ
− v

tδ

δ
, η(x, t) = −κ

xδ

δ
+ ω

tδ

δ
+ θ, (2)

where φ(ξ) represents the shape of the pulse, and v is the wave velocity. The function η(x, t)
is the phase component of the soliton, κ is the soliton frequency, ω is the wave number, and
θ is the phase constant.

Then, separating the real part and the imaginary part, Equation (1) reduces to the
following equations:

(v + 2aκ)φξ = 0, (3)

which implies v + 2aκ = 0, and

(a− 2α)φξξ = (2α− 4β)
φ2

ξ

φ
+ (ω + γ + aκ2)φ− bφ3 − cφ5, (4)

that is,
dφ

dξ
= y,

dy
dξ

=
(2α− 4β)y2 + (ω + γ + aκ2)φ2 − bφ4 − cφ6

(a− 2α)φ
. (5)
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As defined in Li’s book [31], system (5) is the first class of the singular traveling wave
system when α �= 2β, and its singular line is φ = 0. However, when α = 2β, system (5) is a
regular system:

dφ

dξ
= y,

dy
dξ

=
1

(a− 2α)

(
(ω + γ + aκ2)φ− bφ3 − cφ5

)
. (6)

The first integral of system (5) is

H(φ, y) = φ
4(2β−α)
(a−2α)

(
y2 − (ω + γ + aκ2)

(a− 4α + 4β)
φ2 +

b
(2a− 6α + 4β)

φ4 +
c

(3a− 8α + 4β)
φ6
)
= h, (7)

if a− 4α + 4β �= 0, a− 3α + 2β �= 0 and 3a− 8α + 4β �= 0;

H(φ, y) =
y2

φ2 −
2(ω + γ + aκ2)

(a− 2α)
ln |φ|+ b

(a− 2α)
φ2 +

c
2(a− 2α)

φ4 = h, (8)

if a− 4α + 4β = 0;

H(φ, y) =
y2

φ4 +
(ω + γ + aκ2)

(a− 2α)φ2 +
2b

(a− 2α)
ln |φ|+ c

(a− 2α)
φ2 = h, (9)

if a− 3α + 2β = 0;

H(φ, y) =
y2

φ6 +
(ω + γ + aκ2)

2(a− 2α)φ4 − b
(a− 2α)φ2 +

2c
(a− 2α)

ln |φ| = h, (10)

if 3a− 8α + 4β = 0.
In Section 2, through qualitative analysis, we give the phase portraits of system (5)

in various parameter domains. In Sections 3–5, we figure out the exact solutions of
Equation (1) in some special parameter domains. In Section 6, we give the main theory and
the conclusion.

2. Bifurcations of Phase Portraits of System (5)

The associated regular system of (5) is

dφ

dζ
= (a− 2α)φy,

dy
dζ

= (2α− 4β)y2 + (ω + γ + aκ2)φ2 − bφ4 − cφ6, (11)

where dξ = (a− 2α)φdζ. Systems (5) and (11) have the same first integral. However, they
have different time scales near the straight line φ = 0 (see [31]).

Firstly, we analyze the number of equilibrium points and their parametric regions. Obviously,
when Δ = b2 + 4c(ω + γ + aκ2) > 0, φ2 = −b±√Δ

2c make cφ4 + bφ2 − (ω + γ + aκ2) = 0.
Then, we have the following conclusions:

1. System (11) has only one equilibrium point E0(0, 0) in the φ-axis if Δ < 0; or
Δ > 0, c > 0, b > 0, ω + γ + aκ2 ≤ 0; or Δ > 0, c < 0, b < 0, ω + γ + aκ2 ≥ 0; or
Δ = 0, bc > 0.

2. System (11) has three equilibrium points E0(0, 0), E1

(√
−b+

√
Δ

2c , 0
)

and

E2

(
−
√
−b+

√
Δ

2c , 0
)

in the φ-axis if Δ > 0, c > 0, ω + γ + aκ2 > 0; System (11) has

three equilibrium points E0(0, 0), E3

(√
−b−√Δ

2c , 0
)

and E4

(
−
√
−b−√Δ

2c , 0
)

in the φ-axis

if Δ > 0, c < 0, ω + γ + aκ2 < 0; System (11) has three equilibrium points E0(0, 0),

E5

(√
− b

2c , 0
)

and E6

(
−
√
− b

2c , 0
)

in the φ-axis if Δ = 0, bc < 0.
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3. System (11) has five equilibrium points E0(0, 0), E1

(√
−b+

√
Δ

2c , 0
)

, E2

(
−
√
−b+

√
Δ

2c , 0
)

E3

(√
−b−√Δ

2c , 0
)

and E4

(
−
√
−b−√Δ

2c , 0
)

inthe φ-axis if Δ > 0, c > 0, b < 0, ω + γ + aκ2 < 0;

or Δ > 0, c < 0, b > 0, ω + γ + aκ2 > 0.
Secondly, in order to judge the type of an equilibrium point Ej(φj, yj), we should know

the sign of J(φj, yj) = detM(φj, yj), where M is the coefficient matrix of the corresponding
linear system of (11). When α = 2β, we have

J(0, 0) = −ω + γ + aκ2

a− 2α
, J

⎛⎝±
√
−b +

√
Δ

2c
, 0

⎞⎠ =

√
Δ(
√

Δ− b)
c(a− 2α)

,

J

⎛⎝±
√
−b−√Δ

2c
, 0

⎞⎠ =

√
Δ(
√

Δ + b)
c(a− 2α)

, J

(
±
√
− b

2c
, 0

)
= 0.

when α �= 2β, we have

J(0, 0) = 0, J

⎛⎝±
√
−b +

√
Δ

2c
, 0

⎞⎠ =
(a− 2α)

√
Δ(
√

Δ− b)2

2c2 ,

J

⎛⎝±
√
−b−√Δ

2c
, 0

⎞⎠ = − (a− 2α)
√

Δ(
√

Δ + b)2

2c2 , J

(
±
√
− b

2c
, 0

)
= 0.

If J < 0, then the equilibrium point Ej(φj, yj) is a saddle; if J > 0, then it is a center; if
J = 0 and the index of the equilibrium point is zero, then it is a cusp.

Next, we write that

h0 = H(0, 0) = 0(∞) for
4(2β− α)

(a− 2α)
≥ 0(< 0),

h1 = H

⎛⎝√−b +
√

Δ
2c

, 0

⎞⎠, h2 = H

⎛⎝−
√
−b +

√
Δ

2c
, 0

⎞⎠, h3 = H

⎛⎝√−b−√Δ
2c

, 0

⎞⎠,

h4 = H

⎛⎝−
√
−b−√Δ

2c
, 0

⎞⎠, h5 = H

(√
− b

2c
, 0

)
, h6 = H

(
−
√
− b

2c
, 0

)
,

where H is given by (7). We have h1 = h2, h3 = h4, h5 = h6, if 4(2β−α)
(a−2α)

= 2n, n ∈ N; and

h1 = −h2, h3 = −h4, h5 = −h6, if 4(2β−α)
(a−2α)

= 2n + 1, n ∈ N.
In the following, we only discuss the case of c > 0, because there is a similar conclusion

when c < 0. Using the aforementioned data, the bifurcations of the phase portraits of (5)
are given in Figures 1–6.
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(1) (2) (3) (4)

(5) (6) (7)

Figure 1. Phase portraits corresponding to system (5) under c > 0, α−2β = 0, a−2α > 0. (1) Δ < 0 or
Δ = 0, b > 0 or Δ > 0,b > 0, ω + γ + aκ2 ≥ 0. (2) Δ = 0, b < 0. (3) Δ > 0, ω + γ+ aκ2 > 0. (4) Δ > 0,
b < 0, ω + γ + aκ2 = 0. (5) Δ > 0, 3b2

16c < b < 0, ω + γ + aκ2 < 0. (6) Δ > 0, b = 3b2

16c , ω + γ + aκ2 < 0.
(7) Δ > 0, b < 3b2

16c , ω + γ+ aκ2 < 0.

(1) (2) (3) (4)

(5) (6)

Figure 2. Phase portraits corresponding to system (5) under c > 0, α−2β = 0, a−2α < 0. (1) Δ < 0
or Δ = 0, b > 0 or Δ > 0, b > 0, ω + γ + aκ2 ≥ 0. (2) Δ = 0, b < 0. (3) Δ > 0, ω + γ + aκ2 > 0 or
Δ > 0, b < 0, ω + γ + aκ2 = 0. (4) Δ > 0, 3b2

16c < b < 0, ω + γ + aκ2 < 0. (5) Δ > 0, b = 3b2

16c , ω + γ +

aκ2 < 0. (6) Δ > 0, b < 3b2

16c , ω + γ + aκ2 < 0.
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(1) (2) (3) (4)

(5) (6) (7)

Figure 3. Phase portraits corresponding to system (5) under c > 0, (2β−α)(a−2α) > 0, a−2α > 0.
(1) Δ < 0 or Δ = 0, b > 0 or Δ > 0, b > 0, ω + γ + aκ2 ≥ 0. (2) Δ = 0, b < 0. (3) Δ > 0, ω + γ +

aκ2 > 0. (4) Δ > 0, b < 0, ω + γ + aκ2 = 0. (5) Δ > 0, b < 0, ω + γ + aκ2 < 0, h1 = h2 < h0 < h3 =

h4. (6) Δ > 0, b < 0, ω + γ + aκ2 < 0, h1 = h2 = h0 < h3 = h4. (7) Δ > 0, b < 0, ω + γ + aκ2 < 0,
h0 < h1 = h2 < h3 = h4.

(1) (2) (3) (4)

(5) (6)

Figure 4. Phase portraits corresponding to system (5) under c > 0, (2β−α)(a−2α) > 0, a−2α < 0.
(1) Δ < 0 or Δ = 0, b > 0 or Δ > 0, b > 0, ω + γ + aκ2 ≥ 0. (2) Δ = 0, b < 0. (3) Δ > 0,
ω + γ + aκ2 > 0 or Δ > 0, b < 0, ω + γ + aκ2 = 0. (4) Δ > 0, b < 0, ω + γ + aκ2 < 0, h3 = h4 <

h0 < h1 = h2. (5) Δ > 0, b < 0, ω + γ + aκ2 < 0, h3 = h4 < h0 = h1 = h2. (6) Δ > 0, b < 0,
ω + γ + aκ2 < 0, h3 = h4 < h1 = h2 < h0.
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(1) (2) (3) (4)

(5) (6)

Figure 5. Phase portraits corresponding to system (5) under c > 0, (2β−α)(a−2α) < 0, a−2α > 0.
(1) Δ < 0 or Δ = 0, b > 0 or Δ > 0, b > 0, ω + γ + aκ2 ≥ 0. (2) Δ = 0, b < 0. (3) Δ > 0,
ω + γ + aκ2 > 0 or Δ > 0, b < 0, ω + γ + aκ2 = 0. (4) Δ > 0, b < 0, ω + γ + aκ2 < 0, h1 =−h2 <

h0 < h3 =−h4. (5) Δ > 0, b < 0, ω + γ + aκ2 < 0, h1 = h2 = h0 < h3 =−h4. (6) Δ > 0,
b < 0, ω + γ + aκ2 < 0, h0 < h1 =−h2 < h3 =−h4.

(1) (2) (3) (4)

(5) (6) (7)

Figure 6. Phase portraits corresponding to system (5) under c > 0, (2β−α)(a−2α) < 0, a−2α < 0.
(1) Δ < 0 or Δ = 0, b > 0 or Δ > 0, b > 0, ω + γ + aκ2 ≥ 0.(2) Δ = 0, b < 0. (3) Δ >

0, ω + γ + aκ2 > 0. (4) Δ > 0, b < 0, ω + γ + aκ2 = 0. (5) Δ > 0, b < 0, ω + γ + aκ2 < 0, h3 =−h4 <

h0 < h1 =−h2. (6) Δ > 0, b < 0, ω + γ + aκ2 < 0, h3 =−h4 < h0 = h1 = h2. (7) Δ > 0,
b < 0, ω + γ + aκ2 < 0, h3 =−h4 < h1 =−h2 < h0.

3. Expressions of the Traveling Wave Solutions of System (5) if C > 0, α = 2β

Currently, through integral calculation, we compute the exact parametric expressions
of the traveling wave solutions if c > 0, α = 2β. According to Equation (7) and the first
equation of system (5), we derive the following expression:

ξ =
∫ φ

φ0

dφ

y(φ)
=
∫ φ

φ0

±dφ√
c

3(2α−a)φ6 + b
2(2α−a)φ4 + ω+γ+aκ2

a−2α φ2 + h
. (12)

3.1. The Parameter Condition of A− 2α > 0, Δ = 0, B < 0 (See Figure 1(2))

In formula (7), if H(φ, y) = h5, there are two heteroclinic orbits, which encircle
the equilibrium point E0 and link the saddle points E5 and E6. These two heteroclinic
orbits correspond to kink and anti-kink wave solutions, respectively. Here, we have
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y2 = c
3(a−2α)

(√
− b

2c − φ

)3(
φ +

√
− b

2c

)3
. Combined with the integral formula (12), we

get the expressions of the kink wave solution as (see Figure 7a)

φ(ξ) =

⎧⎪⎪⎨⎪⎪⎩
−
√

b3ξ2

24c2(2α−a)−2cb2ξ2 , ξ ∈ (−∞, 0],√
b3ξ2

24c2(2α−a)−2cb2ξ2 , ξ ∈ [0,+∞),
(13)

and the anti-kink wave solutions as (see Figure 7b):

φ(ξ) =

⎧⎪⎪⎨⎪⎪⎩
√

b3ξ2

24c2(2α−a)−2cb2ξ2 , ξ ∈ (−∞, 0],

−
√

b3ξ2

24c2(2α−a)−2cb2ξ2 , ξ ∈ [0,+∞).
(14)

From Equations (13) and (14), we deduce the expressions of two exact solutions of
Equation (1) as

u(x, t) =

⎧⎪⎪⎨⎪⎪⎩
−
√

b3(xδ−vtδ)2

24c2δ2(2α−a)−2cb2(xδ−vtδ)2 eiη(x,t), 1
δ (xδ − vtδ) ∈ (−∞, 0],√

b3(xδ−vtδ)2

24c2δ2(2α−a)−2cb2(xδ−vtδ)2 eiη(x,t), 1
δ (xδ − vtδ) ∈ [0,+∞),

(15)

and

u(x, t) =

⎧⎪⎪⎨⎪⎪⎩
√

b3(xδ−vtδ)2

24c2δ2(2α−a)−2cb2(xδ−vtδ)2 eiη(x,t), 1
δ (xδ − vtδ) ∈ (−∞, 0],

−
√

b3(xδ−vtδ)2

24c2δ2(2α−a)−2cb2(xδ−vtδ)2 eiη(x,t), 1
δ (xδ − vtδ) ∈ [0,+∞).

(16)

(a) (b)

Figure 7. Kink and anti-kink wave forms of system (5). (a) Kink wave. (b) Anti-kink wave.

3.2. The Parameter Condition of A− 2α > 0, Δ > 0, ω + γ + aκ2 > 0 (See Figure 1(3))

(i) In formula (7), if H(φ, y) = h, h ∈ (h1, h0), there are two families of periodic
orbits, which respectively encircle the equilibrium points E1 and E2. These two families
of periodic orbits correspond to two periodic wave solutions of system (5). At present,
y2 = 4c

3(a−2α)
(r1 − φ2)(φ2 − r2)(φ

2 − r3), where r1 > r2 > 0 > r3. After calculation, we get
the expressions of the two periodic wave solutions as (see Figure 8)

φ(ξ) = ±
√

r1(r2 − r3) + r3(r1 − r2)sn2(g1ξ, k1)

r2 − r3 + (r1 − r2)sn2(g1ξ, k1)
, (17)

where g1 =
√

cr1(r2−r3)
3(a−2α)

, k2
1 = r3(r2−r1)

r1(r2−r3)
.
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Thus, the two exact solutions of Equation (1) are given as

u(x, t) = ±
√√√√ r1(r2 − r3) + r3(r1 − r2)sn2(g1

1
δ (xδ − vtδ), k1)

r2 − r3 + (r1 − r2)sn2(g1
1
δ (xδ − vtδ), k1)

eiη(x,t). (18)

(ii) In formula (7), if H(φ, y) = h0, there are two homoclinic orbits, which respec-
tively encircle the equilibrium points E1 and E2. The traveling wave solutions of the two
homoclinic orbits are two solitary wave solutions of system (5). And, y2 = 4c

3(a−2α)
(r1 −

φ2)φ2(φ2 − r2), where r1 > 0 > r2.
Thus, we obtain the parametric representations of the solitary wave solutions (see

Figure 9)

φ(ξ) = ±
√

2r1r2

r1 + r2 + (r2 − r1) cosh(g2ξ)
, (19)

where g2 =
√

4cr1r2
3(2α−a) .

So, the two exact solutions of Equation (1) are given as

u(x, t) = ±
√

2r1r2

r1 + r2 + (r2 − r1) cosh(g2
1
δ (xδ − vtδ))

eiη(x,t). (20)

(a) (b)

Figure 8. Periodic wave forms of system (5). (a) Defined by (17)+. (b) Defined by (17)−.

(a) (b)

Figure 9. Solitary wave forms of system (5). (a) Bright solitary wave derived by (19)+. (b) Dark
solitary wave derived by (19)−.

3.3. The Parameter Condition of A− 2α > 0, Δ > 0, B < 0, ω + γ + aκ2 = 0 (See Figure 1(4))

(i) There exist two families of periodic orbits when H(φ, y) = h, h ∈ (h1, h0), which
correspond to two periodic wave solutions of system (5). They have the same expressions
as Equation (17).

(ii) In formula (7), if H(φ, y) = h0, there are two homoclinic orbits, which respectively
encircle the equilibrium points E1 and E2. The traveling wave solutions of the two homo-
clinic orbits are two solitary wave solutions of system (5). And, y2 = 4c

3(a−2α)
(r1 − φ2)φ4,
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where r1 > 0. Thus, we obtain the parametric representations of the solitary wave solutions
(see Figure 10):

φ(ξ) = ±
√

3r1(a− 2α)

3(a− 2α) + cr2
1ξ2

. (21)

(a) (b)

Figure 10. Solitarywave forms of system (5). (a) Bright solitary wave derived by (21)+. (b) Dark
solitary wave derived by (21)−.

So, the two exact solutions of Equation (1) are given as

u(x, t) = ±
√

3r1(a− 2α)

3(a− 2α) + cr2
1

1
δ2 (xδ − vtδ)2

eiη(x,t). (22)

3.4. The Parameter Condition of A− 2α > 0, Δ > 0, 3b2

16c < b < 0, ω + γ + aκ2 < 0
(See Figure 1(5))

(i) There exist two families of periodic orbits when H(φ, y) = h, h ∈ (h1, h0], which
correspond to two periodic wave solutions of system (5). Their expressions are identical to
Equation (17).

(ii) In formula (7), if H(φ, y) = h, h ∈ (h0, h3), there are three families of periodic
orbits, which respectively encircle the equilibrium points E0, E1 and E2. For the periodic orbits
surrounding the equilibrium point E0, we have y2 = 4c

3(a−2α)
(r1 − φ2)(r2 − φ2)(r3 − φ2). Then,

we compute the representation of the periodic wave solution of system (5) (see Figure 11a)

φ(ξ) =

⎧⎪⎪⎨⎪⎪⎩
−
√

r2r3−r2r3sn2(g3ξ,k2)
r2−r3sn2(g3ξ,k2)

, ξ ∈ [(4n + 1)ξ1, (4n + 3)ξ1
]
,√

r2r3−r2r3sn2(g3ξ,k2)
r2−r3sn2(g3ξ,k2)

, ξ ∈ [4nξ1, (4n + 1)ξ1
] ∪ [(4n + 3)ξ1, (4n + 4)ξ1

]
,

(23)

where g3 =
√

cr2(r1−r3)
3(a−2α)

, k2
2 = r3(r1−r2)

r2(r1−r3)
, ξ1 = 1

g3
sn−1(1, k2), n ∈ Z.

For the periodic orbits surrounding the equilibrium points E1 and E2, we have
y2 = 4c

3(a−2α)
(r1 − φ2)(φ2 − r2)(φ

2 − r3), where r1 > r2 > r3 > 0. Then, the expressions of
the two periodic wave solutions are derived as (see Figure 11b,c)

φ(ξ) = ±
√

r1r2

r2 + (r1 − r2)sn2(g3ξ, k2)
. (24)
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(a) (b) (c)

Figure 11. Periodic wave forms of system (5). (a) Defined by (23). (b) Defined by (24)+. (c) Defined
by (24)−.

Subsequently, the three exact periodic wave solutions of Equation (1) are given as

u(x, t) =

⎧⎪⎪⎨⎪⎪⎩
−
√

r2r3−r2r3sn2(g3
1
δ (xδ−vtδ),k2)

r2−r3sn2(g3
1
δ (xδ−vtδ),k2)

eiη(x,t), 1
δ (xδ − vtδ) ∈ [(4n + 1)ξ1, (4n + 3)ξ1

]
,√

r2r3−r2r3sn2(g3
1
δ (xδ−vtδ),k2)

r2−r3sn2(g3
1
δ (xδ−vtδ),k2)

eiη(x,t), 1
δ (xδ − vtδ) ∈ [4nξ1, (4n + 1)ξ1

] ∪ [(4n + 3)ξ1, (4n + 4)ξ1
]
,

(25)

and

u(x, t) = ±
√

r1r2

r2 + (r1 − r2)sn2(g3
1
δ (xδ − vtδ), k2)

eiη(x,t). (26)

(iii) In formula (7), if H(φ, y) = h3, there are two homoclinic orbits encircling the
equilibrium points E1 and E2, and two heteroclinic orbits linking two saddle points E3 and

E4. For the two homoclinic orbits, we have y2 = 4c
3(a−2α)

(r1 − φ2)
(

φ2 − −b−√Δ
2c

)2
. Then,

the expressions of the traveling wave solutions are derived as (see Figure 12)

φ(ξ) = ±
√

r1(b +
√

Δ)(1 + cosh(g4ξ))

2(b +
√

Δ) + 2cr1(1− cosh(g4ξ))
, (27)

where g4 =

√
(b+

√
Δ)(2cr1+b+

√
Δ)

3c(2α−a) .

(a) (b)

Figure 12. Solitarywave forms of system (5). (a) Bright solitary wave derived by (27)+. (b) Dark
solitary wave derived by (27)−.

For the two heteroclinic orbits, we have y2 = 4c
3(a−2α)

(r1 − φ2)
(
−b−√Δ

2c − φ2
)2

, where

r1 > −b−√Δ
2c > 0. Then, the the expression of the kink wave solution is given as

(see Figure 13a)

φ(ξ) =

⎧⎪⎪⎨⎪⎪⎩
−
√

r1(b+
√

Δ)(1−cosh(g4ξ))

2(b+
√

Δ)+2cr1(1+cosh(g4ξ))
, ξ ∈ (−∞, 0],√

r1(b+
√

Δ)(1−cosh(g4ξ))

2(b+
√

Δ)+2cr1(1+cosh(g4ξ))
, ξ ∈ [0,+∞),

(28)
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and the the expression of the anti-kink wave solution is given as (see Figure 13b)

φ(ξ) =

⎧⎪⎪⎨⎪⎪⎩
√

r1(b+
√

Δ)(1−cosh(g4ξ))

2(b+
√

Δ)+2cr1(1+cosh(g4ξ))
, ξ ∈ (−∞, 0],

−
√

r1(b+
√

Δ)(1−cosh(g4ξ))

2(b+
√

Δ)+2cr1(1+cosh(g4ξ))
, ξ ∈ [0,+∞).

(29)

(a) (b)

Figure 13. Kink and anti-kink wave forms of system (5). (a) Kink wave given by Equation (28).
(b) Anti-kink wave given by Equation (29).

So, Equation (1) has the following four exact solutions:

u(x, t) = ±
√√√√ r1(b +

√
Δ)(1 + cosh(g4

1
δ (xδ − vtδ)))

2(b +
√

Δ) + 2cr1(1− cosh(g4
1
δ (xδ − vtδ)))

eiη(x,t), (30)

u(x, t) =

⎧⎪⎪⎨⎪⎪⎩
−
√

r1(b+
√

Δ)(1−cosh(g4
1
δ (xδ−vtδ)))

2(b+
√

Δ)+2cr1(1+cosh(g4
1
δ (xδ−vtδ)))

eiη(x,t), 1
δ (xδ − vtδ) ∈ (−∞, 0],√

r1(b+
√

Δ)(1−cosh(g4
1
δ (xδ−vtδ)))

2(b+
√

Δ)+2cr1(1+cosh(g4
1
δ (xδ−vtδ)))

eiη(x,t), 1
δ (xδ − vtδ) ∈ [0,+∞),

(31)

and

u(x, t) =

⎧⎪⎪⎨⎪⎪⎩
√

r1(b+
√

Δ)(1−cosh(g4
1
δ (xδ−vtδ)))

2(b+
√

Δ)+2cr1(1+cosh(g4
1
δ (xδ−vtδ)))

eiη(x,t), 1
δ (xδ − vtδ) ∈ (−∞, 0],

−
√

r1(b+
√

Δ)(1−cosh(g4
1
δ (xδ−vtδ)))

2(b+
√

Δ)+2cr1(1+cosh(g4
1
δ (xδ−vtδ)))

eiη(x,t), 1
δ (xδ − vtδ) ∈ [0,+∞).

(32)

3.5. The Parameter Condition of A− 2α > 0, Δ > 0, B = 3b2

16c , ω + γ + aκ2 < 0
(See Figure 1(6))

(i) In formula (7), if H(φ, y) = h, h ∈ (h0, h3), there are three families of periodic
orbits. The expressions of the traveling wave solutions of these curves are identical to
Equations (23) and (24).

(ii) In formula (7), if H(φ, y) = h3, there are two homoclinic orbits encircling the
equilibrium points E1 and E2, and two heteroclinic orbits linking two saddle points E3
and E4. The expressions of the traveling wave solutions of these curves are identical to
Equations (27)–(29).

3.6. The Parameter Condition of A− 2α > 0, Δ > 0, B < 3b2

16c , ω + γ + aκ2 < 0
(See Figure 1(7))

(i) In formula (7), if H(φ, y) = h, h ∈ (h1, h3), there are three families of periodic
orbits. The expressions of the traveling wave solutions of these curves are are identical to
Equations (23) and (24).
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(ii) In formula (7), if H(φ, y) = h3, there are two homoclinic orbits encircling the
equilibrium points E1 and E2 and two heteroclinic orbits linking two saddle points E3
and E4. The expressions of the traveling wave solutions of these curves are identical to
Equations (27)–(29).

3.7. The Parameter Condition of Δ > 0, ω + γ + aκ2 > 0 or Δ > 0, B < 0, ω + γ + aκ2 = 0
(See Figure 2(3))

(i) In formula (7), if H(φ, y) = h, h ∈ (h0, h1), there is a family of periodic orbits, which
encircle the equilibrium point E0. We have y2 = 4c

3(2α−a) (r1 − φ2)(r2 − φ2)(φ2 − r3), where
r1 > r2 > 0 > r3. Then, the parametric representation of the periodic wave solution is
given as follows (see Figure 14):

φ(ξ) =

⎧⎪⎪⎨⎪⎪⎩
−
√

r1r2−r1r2sn2(g5ξ,k3)
r1−r2sn2(g5ξ,k3)

, ξ ∈ [(4n + 1)ξ2, (4n + 3)ξ2
]
,√

r1r2−r1r2sn2(g5ξ,k3)
r1−r2sn2(g5ξ,k3)

, ξ ∈ [4nξ2, (4n + 1)ξ2
] ∪ [(4n + 3)ξ2, (4n + 4)ξ2

]
,

(33)

where g5 =
√

cr1(r3−r2)
3(a−2α)

, k2
3 = r2(r1−r3)

r1(r2−r3)
, ξ2 = 1

g5
sn−1(1, k3), n ∈ Z.

Figure 14. Periodicwave forms of system (5).

Therefore, the exact solution of Equation (1) is given as follows:

u(x, t) =

⎧⎪⎪⎨⎪⎪⎩
−
√

r1r2−r1r2sn2(g5
1
δ (xδ−vtδ),k3)

r1−r2sn2(g5
1
δ (xδ−vtδ),k3)

eiη(x,t), 1
δ (xδ − vtδ) ∈ [(4n + 1)ξ2, (4n + 3)ξ2

]
,√

r1r2−r1r2sn2(g5
1
δ (xδ−vtδ),k3)

r1−r2sn2(g5
1
δ (xδ−vtδ),k3)

eiη(x,t), 1
δ (xδ − vtδ) ∈ [4nξ2, (4n + 1)ξ2

] ∪ [(4n + 3)ξ2, (4n + 4)ξ2
]
.

(34)

(ii) In formula (7), if H(φ, y) = h1, there are two heteroclinic orbits, which
encircle the equilibrium point E0 and link the saddle points E1 and E2. We have

y2 = 4c
3(2α−a)

(
−b+

√
Δ

2c − φ2
)2

(φ2 − r1), where −b+
√

Δ
2c > 0 > r1. Then, the parametric repre-

sentations of the kink and anti-kink wave solutions are given as (see Figure 15)

φ(ξ) =

⎧⎪⎪⎨⎪⎪⎩
−
√

r1(
√

Δ−b)(1−cosh(g6ξ))

2(
√

Δ−b)−2cr1(1+cosh(g6ξ))
, ξ ∈ (−∞, 0],√

r1(
√

Δ−b)(1−cosh(g6ξ))

2(
√

Δ−b)−2cr1(1+cosh(g6ξ))
, ξ ∈ [0,+∞),

(35)

and

φ(ξ) =

⎧⎪⎪⎨⎪⎪⎩
√

r1(
√

Δ−b)(1−cosh(g6ξ))

2(
√

Δ−b)−2cr1(1+cosh(g6ξ))
, ξ ∈ (−∞, 0],

−
√

r1(
√

Δ−b)(1−cosh(g6ξ))

2(
√

Δ−b)−2cr1(1+cosh(g6ξ))
, ξ ∈ [0,+∞),

(36)

where g6 =

√
2(
√

Δ−b)
3(a−2α)

(
r1 − −b+

√
Δ

2c

)
.
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(a) (b)

Figure 15. Kinkand anti-kink wave forms of system (5). (a) Kink wave given by (35). (b) Anti-kink
wave given by (36).

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) =

⎧⎪⎪⎨⎪⎪⎩
−
√

r1(
√

Δ−b)(1−cosh(g6
1
δ (xδ−vtδ)))

2(
√

Δ−b)−2cr1(1+cosh(g6
1
δ (xδ−vtδ)))

eiη(x,t), 1
δ (xδ − vtδ) ∈ (−∞, 0],√

r1(
√

Δ−b)(1−cosh(g6
1
δ (xδ−vtδ)))

2(
√

Δ−b)−2cr1(1+cosh(g6
1
δ (xδ−vtδ)))

eiη(x,t), 1
δ (xδ − vtδ) ∈ [0,+∞),

(37)

and

u(x, t) =

⎧⎪⎪⎨⎪⎪⎩
√

r1(
√

Δ−b)(1−cosh(g6
1
δ (xδ−vtδ)))

2(
√

Δ−b)−2cr1(1+cosh(g6
1
δ (xδ−vtδ)))

eiη(x,t), 1
δ (xδ − vtδ) ∈ (−∞, 0],

−
√

r1(
√

Δ−b)(1−cosh(g6
1
δ (xδ−vtδ)))

2(
√

Δ−b)−2cr1(1+cosh(g6
1
δ (xδ−vtδ)))

eiη(x,t), 1
δ (xδ − vtδ) ∈ [0,+∞).

(38)

3.8. The Parameter Condition of A− 2α < 0, Δ > 0, 3b2

16c < b < 0, ω + γ + aκ2 < 0
(See Figure 2(4))

(i) In formula (7), if H(φ, y) = h, h ∈ (h3, h0), there are two families of peri-
odic orbits, which respectively encircle the equilibrium points E3 and E4. We have
y2 = 4c

3(2α−a) (r3 − φ2)(r1 − φ2)(φ2 − r2), where r3 > r1 > r2 > 0. Then, we derive the
parametric representations of the periodic wave solutions are given as (see Figure 16)

φ(ξ) = ±
√

r1(r2 − r3) + r3(r1 − r2)sn2(g7ξ, k4)

r2 − r3 + (r1 − r2)sn2(g7ξ, k4)
, (39)

where g7 =
√

cr1(r2−r3)
3(a−2α)

, k2
4 = r3(r1−r2)

r1(r3−r2)
.

(a) (b)

Figure 16. Periodic wave forms of system (5). (a) Defined by (39)+. (b) Defined by (39)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±
√√√√ r1(r2 − r3) + r3(r1 − r2)sn2(g7

1
δ (xδ − vtδ), k4)

r2 − r3 + (r1 − r2)sn2(g7
1
δ (xδ − vtδ), k4)

eiη(x,t). (40)
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(ii) In formula (7), if H(φ, y) = h0, there are two homoclinic orbits, which respec-
tively encircle the equilibrium points E3 and E4. We have y2 = 4c

3(2α−a) (r1 − φ2)(r2 − φ2)φ2,
where r1 > r2 > 0. Then, we derive the parametric expressions of the solitary wave solu-
tions as (see Figure 17)

φ(ξ) = ±
√

2r1r2

r1 + r2 + (r1 − r2) cosh(g8ξ)
, (41)

where g8 =
√

4cr1r2
3(2α−a) .

(a) (b)

Figure 17. Solitary wave forms of system (5). (a) Bright solitary wave derived by Equation (41)+.
(b) Dark solitary wave derived by Equation (41)−.

Thus, the exact expressions of two solitary wave solutions to Equation (1) are presented as

u(x, t) = ±
√

2r1r2

r1 + r2 + (r1 − r2) cosh(g8
1
δ (xδ − vtδ))

eiη(x,t). (42)

(iii) In formula (7), if H(φ, y) = h, h ∈ (h0, h1), there is a family of periodic orbits. The
expressions of the traveling wave solutions of these curves are identical to Equation (33).

(iv) The curves H(φ, y) = h1 correspond to two heteroclinic orbits. The parametric ex-
pressions of the traveling wave solutions of these curves are the same as
Equations (35) and (36).

3.9. The Parameter Condition of A− 2α < 0, Δ > 0, B = 3b2

16c , ω + γ + aκ2 < 0(see Figure 2(5))

(i) In formula (7), if H(φ, y) = h, h ∈ (h3, h0), there are two families of periodic
orbits. The expressions of the traveling wave solutions of these curves are identical to
Equation (39).

(ii) In formula (7), if H(φ, y) = h0, there are four heteroclinic orbits, which encircle
the equilibrium points E3 and E4 and link the saddle points E0, E1 and E2. We have

y2 = 4c
3(2α−a)

(
−b+

√
Δ

2c − φ2
)2

φ2. The heteroclinic orbit in the first quadrant corresponds to
a kink wave solution, and the parametric expression of the kink wave solution is given as
(see Figure 18a)

φ(ξ) =

√√√√−b +
√

Δ
4c

− −b +
√

Δ
4c

tanh

(
ln
√

3− −b +
√

Δ
4c

g9ξ

)
, (43)

where g9 =
√

4c
3(2α−a) . The heteroclinic orbit in the forth quadrant corresponds to an
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anti-kink wave solution, and the parametric representation of the anti-kink wave solution
is given as (see Figure 18b)

φ(ξ) =

√√√√−b +
√

Δ
4c

− −b +
√

Δ
4c

tanh

(
ln
√

3 +
−b +

√
Δ

4c
g9ξ

)
. (44)

The heteroclinic orbit in the second quadrant corresponds to a kink wave solution, and the
parametric representation of the kink wave solution is given as (see Figure 18c)

φ(ξ) = −
√√√√−b +

√
Δ

4c
− −b +

√
Δ

4c
tanh

(
ln
√

3 +
−b +

√
Δ

4c
g9ξ

)
. (45)

The heteroclinic orbit in the third quadrant corresponds to a anti-kink wave solution, and
the parametric representation of the anti-kink wave solution is given as (see Figure 18d)

φ(ξ) = −
√√√√−b +

√
Δ

4c
− −b +

√
Δ

4c
tanh

(
ln
√

3− −b +
√

Δ
4c

g9ξ

)
. (46)

(a) (b) (c) (d)

Figure 18. Kink and anti-kink wave forms of system (5). (a) Kink wave given by (43). (b) Anti-kink
wave given by (44). (c) Kink wave given by (45). (d) Anti-kink wave given by (46).

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) =

√√√√−b +
√

Δ
4c

− −b +
√

Δ
4c

tanh

(
ln
√

3− −b +
√

Δ
4c

g9
1
δ
(xδ − vtδ)

)
eiη(x,t), (47)

u(x, t) =

√√√√−b +
√

Δ
4c

− −b +
√

Δ
4c

tanh

(
ln
√

3 +
−b +

√
Δ

4c
g9

1
δ
(xδ − vtδ)

)
eiη(x,t), (48)

u(x, t) = −
√√√√−b +

√
Δ

4c
− −b +

√
Δ

4c
tanh

(
ln
√

3 +
−b +

√
Δ

4c
g9

1
δ
(xδ − vtδ)

)
eiη(x,t), (49)

and

u(x, t) = −
√√√√−b +

√
Δ

4c
− −b +

√
Δ

4c
tanh

(
ln
√

3− −b +
√

Δ
4c

g9
1
δ
(xδ − vtδ)

)
eiη(x,t). (50)

3.10. The Parameter Condition of
A− 2α < 0, Δ > 0, B < 3b2

16c , ω + γ + aκ2 < 0 (see Figure 2(6))

(i) In formula (7), if H(φ, y) = h, h ∈ (h3, h1), there are two families of periodic
orbits. The expressions of the traveling wave solutions of these curves are identical to
Equation (39).
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(ii) In formula (7), if H(φ, y) = h1, there are two homoclinic orbits, which respectively

encircle the equilibrium points E3 and E4. We have y2 = 4c
3(2α−a)

(
−b+

√
Δ

2c − φ2
)2

(φ2 − r1),

where −b+
√

Δ
2c > r1 > 0. Then, the parametric representations of the solitary wave solutions

are given as (see Figure 19)

φ(ξ) = ±
√

r1(
√

Δ− b)(1 + cosh(g10ξ))

2(
√

Δ− b) + 2cr1(cosh(g10ξ)− 1)
, (51)

where g10 =

√
2(
√

Δ−b)
3(a−2α)

(
r1 − −b+

√
Δ

2c

)
.

(a) (b)

Figure 19. Solitary waves forms of system (5). (a) Bright solitary wave derived by (51)+. (b) Dark
solitary wave derived by (51)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±
√√√√ r1(

√
Δ− b)(1 + cosh(g10

1
δ (xδ − vtδ)))

2(
√

Δ− b) + 2cr1(cosh(g10
1
δ (xδ − vtδ))− 1)

eiη(x,t). (52)

4. Expressions of the Traveling Wave Solutions of System Equation (5) under
C > 0, A = 4β

Currently, through integral calculation, we compute the exact parametric expressions
of the traveling wave solutions under c > 0, a = 4β. It follows from Equation (7) and the
first equation of system (5) that

ξ =
∫ φ

φ0

±|φ|dφ√
c

4(2α−a)φ8 + b
3(2α−a)φ6 + ω+γ+aκ2

2(a−2α)
φ4 + h

≡
∫ φ

φ0

±|φ|dφ√
G(φ)

. (53)

4.1. The Parameter Condition of A− 2α > 0, Δ > 0, ω + γ + aκ2 > 0 (see Figure 3(3))

(i) In formula (7), if H(φ, y) = h, h ∈ (h1, h0), there are two families of peri-
odic orbits, which respectively encircle the equilibrium points E1 and E2. We have
G(φ) = c

4(a−2α)
(r1 − φ2)(φ2 − r2)(φ

2 − r3)(φ
2 − r4), where r1 > r2 > 0 > r3 > r4. Then,

the expressions of the periodic wave solutions are derived as (see Figure 20)

φ(ξ) = ±
√

r1(r2 − r4) + r4(r1 − r2)sn2(g11ξ, k5)

r2 − r4 + (r1 − r2)sn2(g11ξ, k5)
, (54)

where g11 =
√

c(r1−r3)(r2−r4)
4(a−2α)

, k2
5 = (r1−r2)(r3−r4)

(r1−r3)(r2−r4)
.
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(a) (b)

Figure 20. Periodicwave forms of system (5). (a) Defined by (54)+. (b) Defined by (54)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±
√√√√ r1(r2 − r4) + r4(r1 − r2)sn2(g11

1
δ (xδ − vtδ), k5)

r2 − r4 + (r1 − r2)sn2(g11
1
δ (xδ − vtδ), k5)

eiη(x,t). (55)

(ii) In formula (7), if H(φ, y) = h0, there are two homoclinic orbits, which respectively
encircle the equilibrium points E1 and E2. We have G(φ) = c

a−2α (r1 − φ2)φ4(φ2 − r2),
where r1 > 0 > r2. Then, the parametric representations of the solitary wave solutions are
given as (see Figure 21)

φ(ξ) = ±
√

2r1r2

r1 + r2 + (r2 − r1) cosh(g12ξ)
, (56)

where g12 =
√

cr1r2
2α−a .

(a) (b)

Figure 21. Solitarywave forms of system (5). (a) Bright solitary wave derived by (56)+. (b) Dark
solitary wave derived by (56)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±
√

2r1r2

r1 + r2 + (r2 − r1) cosh(g12
1
δ (xδ − vtδ))

eiη(x,t). (57)

4.2. The Parameter Condition of A− 2α > 0, Δ > 0, B < 0, ω + γ + aκ2 = 0 (See Figure 3(4))

(i) In formula (7), if H(φ, y) = h, h ∈ (h1, h0), there are two families of peri-
odic orbits, which respectively encircle the equilibrium points E1 and E2. We have
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G(φ) = c
4(a−2α)

(r1 − φ2)(φ2 − r2)(φ
2 − r3)(φ

2 − r̄3), where r1 > r2, r3 and r̄3 are complex.
Then, the parametric representation of the periodic wave solution are given as (see Figure 22)

φ(ξ) = ±
√

r1B1 + r2 A1 + (r2 A1 − r1B1)cn(g13ξ, k6)

A1 + B1 + (A1 − B1)cn(g13ξ, k6)
, (58)

where A2
1 = (r1− r3)(r1− r̄3), B2

1 = (r2− r3)(r2− r̄3), g13 =
√

cA1B1
a−2α , k2

6 = (r1−r2)
2−(A1−B1)

2

4A1B1
.

(a) (b)

Figure 22. Periodicwave forms of system (5). (a) Defined by (58)+. (b) Defined by (58)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±
√√√√ r1B1 + r2 A1 + (r2 A1 − r1B1)cn(g13

1
δ (xδ − vtδ), k6)

A1 + B1 + (A1 − B1)cn(g13
1
δ (xδ − vtδ), k6)

eiη(x,t). (59)

(ii) In formula (7), if H(φ, y) = h0, there are two homoclinic orbits, which respectively
encircle the equilibrium points E1 and E2. We have G(φ) = c

a−2α (r1 − φ2)φ6, where
r1 > 0. Then, the parametric representations of the solitary wave solutions are given as
(see Figure 23)

φ(ξ) = ±
√

4r1(a− 2α)

4(a− 2α) + cr2
1ξ2

. (60)

(a) (b)

Figure 23. Solitary wave forms of system (5). (a) Bright solitary wave derived by (60)+. (b) Dark
solitary wave derived by (60)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±
√

4r1(a− 2α)

4(a− 2α) + cr2
1

1
δ2 (xδ − vtδ)2

eiη(x,t). (61)
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4.3. The Parameter Condition of A− 2α > 0, Δ>0, B<0, ω + γ + aκ2<0,
H1=h2<h0<h3=h4 (See Figure 3(5))

(i) In formula (7), if H(φ, y) = h, h ∈ (h1, h0), there are two families of periodic
orbits. The expressions of the traveling wave solutions of these curves are identical
to Equations (56) and (58)

(ii) In formula (7), if H(φ, y) = h0, there are two families of periodic orbits, which
respectively encircle the equilibrium points E1 and E2. We have G(φ) = c

4(a−2α)
(r1 −

φ2)(φ2 − r2)φ
4, where r1 > r2 > 0. Then, the expressions of the periodic wave solutions

are derived as (see Figure 24)

φ(ξ) = ±
√

2r1r2

r1 + r2 − (r1 − r2) cos(g14ξ)
, (62)

where g14 =
√

cr1r2
a−2α .

(a) (b)

Figure 24. Periodic wave forms of system (5). (a) Defined by (62)+. (b) Defined by (62)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±
√

2r1r2

r1 + r2 − (r1 − r2) cos(g14
1
δ (xδ − vtδ))

eiη(x,t). (63)

(iii) In formula (7), if H(φ, y) = h, h ∈ (h0, h3), there are two families of periodic
orbits respectively surrounding the equilibrium points E1 and E2, and two families of open
curves, which tend to the singular line φ = 0 under |y| → ∞. G(φ) = c

4(a−2α)
(r1− φ2)(φ2−

r2)(φ
2 − r3)(φ

2 − r4) applies to the two families of periodic orbits. Then, the expressions of
the periodic wave solutions are derived as (see Figure 25)

φ(ξ) = ±
√

r1(r2 − r4) + r4(r1 − r2)sn2(g15ξ, k7)

r2 − r4 + (r1 − r2)sn2(g15ξ, k7)
, (64)

where g15 =
√

c(r1−r3)(r2−r4)
4(a−2α)

, k2
7 = (r1−r2)(r3−r4)

(r1−r3)(r2−r4)
.
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(a) (b)

Figure 25. Periodic wave forms of system (5). (a) Defined by (64)+. (b) Defined by (64)−.

G(φ) = c
4(a−2α)

(r1 − φ2)(r2 − φ2)(r3 − φ2)(φ2 − r4) applies to the two families of
open curves, where r1 > r2 > r3 > 0 > r4. Then, the parametric representations of the
compacton solutions are given as (see Figure 26)

φ(ξ) = ±
√

r3(r4 − r2) + r2(r3 − r4)sn2(g15ξ, k7)

r4 − r2 + (r3 − r4)sn2(g15ξ, k7)
, ξ ∈ (−ξ3, ξ3), (65)

where ξ3 = 1
g15

sn−1
(√

r3(r2−r4)
r2(r3−r4)

, k7

)
.

(a) (b)

Figure 26. Compactonsolution forms of system (5). (a) Compacton solution given by (65)+.
(b) Compacton solution given by (65)−.

So, Equation (1) has the following four exact solutions:

u(x, t) = ±
√√√√ r1(r2 − r4) + r4(r1 − r2)sn2(g15

1
δ (xδ − vtδ), k7)

r2 − r4 + (r1 − r2)sn2(g15
1
δ (xδ − vtδ), k7)

eiη(x,t), (66)

and

u(x, t) = ±
√√√√ r3(r4 − r2) + r2(r3 − r4)sn2(g15

1
δ (xδ − vtδ), k7)

r4 − r2 + (r3 − r4)sn2(g15
1
δ (xδ − vtδ), k7)

eiη(x,t),
1
δ
(xδ − vtδ) ∈ (−ξ3, ξ3). (67)

(iv) In formula (7), if H(φ, y) = h3, there are two homoclinic orbits, which respec-
tively encircle the equilibrium points E1 and E2. We have G(φ) = c

4(a−2α)
(r1 − φ2)(

φ2 − −b−√Δ
2c

)2
(φ2 − r2), where r1 > −b−√Δ

2c > 0 > r2. Then, the parametric repre-
sentations of the solitary wave solutions are given as (see Figure 27)

φ(ξ) = ±
√

4cr1r2 + (r1 + r2)(b +
√

Δ) + (r1 − r2)(b +
√

Δ) cosh(g16ξ)

2c(r1 + r2) + 2(b +
√

Δ) + 2c(r2 − r1) cosh(g16ξ)
, (68)
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where g16 =

√
(2cr1+b+

√
Δ)(2cr2+b+

√
Δ)

4c(2α−a) .

(a) (b)

Figure 27. Solitary wave forms of system (5). (a) Bright solitary wave derived by (68)+. (b) Dark
solitary wave derived by (68)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±
√√√√4cr1r2 + (r1 + r2)(b +

√
Δ) + (r1 − r2)(b +

√
Δ) cosh(g16

1
δ (xδ − vtδ))

2c(r1 + r2) + 2(b +
√

Δ) + 2c(r2 − r1) cosh(g16
1
δ (xδ − vtδ))

eiη(x,t). (69)

4.4. The Parameter Condition of A− 2α > 0, Δ>0, B<0, ω + γ + aκ2<0,
H1=h2=h0<h3=h4 (See Figure 3(6))

(i) In formula (7), if H(φ, y) = h, h ∈ (h0, h3), there are two families of periodic orbits
and two families of open curves. The parametric representations of the traveling wave
solutions of these curves are same as Equations (64) and (65).

(ii) The curves H(φ, y) = h3 correspond to two homoclinic orbits. The parametric
expressions of the traveling wave solutions of these curves are the same as Equations (68).

4.5. the Parameter Condition of A− 2α > 0, Δ>0, B<0, ω + γ + aκ2<0,
H0<h1=h2<h3=h4 (See Figure 3(7))

(i) In formula (7), if H(φ, y) = h, h ∈ (h2, h3), there are two families of periodic orbits
and two families of open curves. The parametric representations of the traveling wave
solutions of these curves are the same as Equations (64) and (65).

(ii) The curves H(φ, y) = h3 correspond to two homoclinic orbits. The parametric
expressions of the traveling wave solutions of these curves are the same as Equations (68).

4.6. The Parameter Condition of A− 2α < 0, Δ > 0, ω + γ + aκ2 > 0 or Δ > 0,
B < 0, ω + γ + aκ2 = 0 (See Figure 4(3))

In formula (7), if H(φ, y) = h, h ∈ (h0, h1), there are two families of open curves, which
tend to the singular line φ = 0 when |y| → ∞. We have G(φ) = c

4(2α−a) (r1 − φ2)(r2 −
φ2)(φ2 − r3)(φ

2 − r4), where r1 > r2 > 0 > r3 > r4. Then, the parametric representations
of the compacton solutions are given as (see Figure 28)

φ(ξ) = ±
√

r2(r3 − r1) + r1(r2 − r3)sn2(g17ξ, k8)

r3 − r1 + (r2 − r3)sn2(g17ξ, k8)
, ξ ∈ (−ξ4, ξ4), (70)

where g17 =
√

c(r3−r1)(r2−r4)
4(a−2α)

, k2
8 = (r2−r3)(r1−r4)

(r1−r3)(r2−r4)
, ξ4 = 1

g17
sn−1

(√
r2(r1−r3)
r1(r2−r3)

, k8

)
.
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(a) (b)

Figure 28. Compactonsolution forms of system (5). (a) Compacton solution given by Equation (70)+.
(b) Compacton solution given by Equation (70)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±
√√√√ r2(r3 − r1) + r1(r2 − r3)sn2(g17

1
δ (xδ − vtδ), k8)

r3 − r1 + (r2 − r3)sn2(g17
1
δ (xδ − vtδ), k8)

eiη(x,t),
1
δ
(xδ − vtδ) ∈ (−ξ4, ξ4). (71)

4.7. The Parameter Condition of A− 2α < 0, Δ>0, B<0, ω + γ + aκ2<0,
H3=h4<h0<h1=h2 (see Figure 4(4))

(i) In formula (7), if H(φ, y) = h, h ∈ (h3, h0), there are two families of peri-
odic orbits, which respectively encircle the equilibrium points E3 and E4. We have
G(φ) = c

4(2α−a) (r1 − φ2)(r2 − φ2)(φ2 − r3)(φ
2 − r4), where r1 > r2 > r3 > 0 > r4. Then,

the expressions of the periodic wave solutions are derived as (see Figure 29)

φ(ξ) = ±
√

r2(r3 − r1) + r1(r2 − r3)sn2(g18ξ, k9)

r3 − r1 + (r2 − r3)sn2(g18ξ, k9)
, (72)

where g18 =
√

c(r3−r1)(r2−r4)
4(a−2α)

, k2
9 = (r2−r3)(r1−r4)

(r1−r3)(r2−r4)
.

(a) (b)

Figure 29. Periodic wave forms of system (5). (a) Defined by (72)+. (b) Defined by (72)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±
√√√√ r2(r3 − r1) + r1(r2 − r3)sn2(g18

1
δ (xδ − vtδ), k9)

r3 − r1 + (r2 − r3)sn2(g18
1
δ (xδ − vtδ), k9)

eiη(x,t). (73)

(ii) In formula (7), if H(φ, y) = h0, there are two homoclinic orbits, which respectively
encircle the equilibrium points E3 and E4. We have G(φ) = c

2α−a (r1 − φ2)(r2 − φ2)φ4,
where r1 > r2 > 0. Then, the parametric representations of the solitary wave solutions are
given as (see Figure 30)

φ(ξ) = ±
√

2r1r2

r1 + r2 + (r1 − r2) cosh(g19ξ)
, (74)
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where g19 =
√

cr1r2
2α−a .

(a) (b)

Figure 30. Solitary wave forms of system (5). (a) Bright solitary wave derived by (74)+. (b) Dark
solitary wave derived by (74)−.

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) = ±
√

2r1r2

r1 + r2 + (r1 − r2) cosh(g19
1
δ (xδ − vtδ))

eiη(x,t). (75)

(iii) In formula (7), if H(φ, y) = h, h ∈ (h0, h1), there are two families of open curves,
which tend to the singular line φ = 0 under |y| → ∞. The traveling wave solutions of these
curves are as (70).

4.8. The Parameter Condition of A− 2α < 0, Δ>0, B<0, ω + γ + aκ2<0,
H3=h4<h0=h1=h2 (See Figure 4(5))

(i) In formula (7), if H(φ, y) = h, h ∈ (h3, h0), there are two families of periodic
orbits. The expressions of the traveling wave solutions of these curves are identical
to Equation (72).

(ii) In formula (7), if H(φ, y) = h0, there are four heteroclinic orbits, which encircle
the equilibrium points E3 and E4 and link the saddle points E0, E1 and E2. Now, we have

G(φ) = c
2α−a

(
−b+

√
Δ

2c − φ2
)2

φ4. The heteroclinic orbit in the first quadrant corresponds to
a kink wave solution, and the parametric expression of the kink wave solution is given as
(see Figure 31a)

φ(ξ) =

√√√√−b +
√

Δ
4c

− −b +
√

Δ
4c

tanh

(
ln
√

3− −b +
√

Δ
4c

g20ξ

)
, (76)

where g20 =
√

c
2α−a .

The heteroclinic orbit in the forth quadrant corresponds to an anti-kink wave solution,
and the parametric representation of the anti-kink wave solution is given
as (see Figure 31b)

φ(ξ) =

√√√√−b +
√

Δ
4c

− −b +
√

Δ
4c

tanh

(
ln
√

3 +
−b +

√
Δ

4c
g20ξ

)
. (77)

The heteroclinic orbit in the second quadrant corresponds to a kink wave solution,
and the parametric representation of the kink wave solution is given as (see Figure 31c)

φ(ξ) = −
√√√√−b +

√
Δ

4c
− −b +

√
Δ

4c
tanh

(
ln
√

3 +
−b +

√
Δ

4c
g20ξ

)
. (78)
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The heteroclinic orbit in the third quadrant corresponds to an anti-kink wave solution,
and the parametric representation of the anti-kink wave solution is given as (see Figure 31d)

φ(ξ) = −
√√√√−b +

√
Δ

4c
− −b +

√
Δ

4c
tanh

(
ln
√

3− −b +
√

Δ
4c

g20ξ

)
. (79)

(a) (b) (c) (d)

Figure 31. Kink and anti-kink wave forms of system (5). (a) Kink wave given by (76). (b) Anti-kink
wave given by (77). (c) Kink wave given by (78). (d) Anti-kink wave given by (79).

Thus, the exact expressions of solutions to Equation (1) are presented as

u(x, t) =

√√√√−b +
√

Δ
4c

− −b +
√

Δ
4c

tanh

(
ln
√

3− −b +
√

Δ
4c

g20
1
δ
(xδ − vtδ)

)
eiη(x,t), (80)

u(x, t) =

√√√√−b +
√

Δ
4c

− −b +
√

Δ
4c

tanh

(
ln
√

3 +
−b +

√
Δ

4c
g20

1
δ
(xδ − vtδ)

)
eiη(x,t), (81)

u(x, t) = −
√√√√−b +

√
Δ

4c
− −b +

√
Δ

4c
tanh

(
ln
√

3 +
−b +

√
Δ

4c
g20

1
δ
(xδ − vtδ)

)
eiη(x,t), (82)

and

u(x, t) = −
√√√√−b +

√
Δ

4c
− −b +

√
Δ

4c
tanh

(
ln
√

3− −b +
√

Δ
4c

g20
1
δ
(xδ − vtδ)

)
eiη(x,t). (83)

4.9. The Parameter Condition of A− 2α < 0, Δ>0, B<0, ω + γ + aκ2<0,
H3=h4<h1=h2<h0 (See Figure 4(6))

(i) In formula (7), if H(φ, y) = h, h ∈ (h3, h1), there are two families of periodic
orbits. The expressions of the traveling wave solutions of these curves are identical to
Equation (72).

(ii) In formula (7), if H(φ, y) = h1, there are two homoclinic orbits, which respectively

encircle the equilibrium points E3 and E4. We have G(φ) = c
4(2α−a)

(
−b+

√
Δ

2c − φ2
)2

(φ2 −
r1)(φ

2 − r2), where −b+
√

Δ
2c > r1 > 0 > r2. Then, the parametric representations of the

solitary wave solutions are given as (see Figure 32)

φ(ξ) = ±
√

(r1 + r2)(
√

Δ− b)− 4cr1r2 + (r1 − r2)(
√

Δ− b) cosh(g21ξ)

2(
√

Δ− b)− 2c(r1 + r2) + 2c(r1 − r2) cosh(g21ξ)
, (84)

where g21 =

√
(
√

Δ−b−2cr1)(
√

Δ−b−2cr2)
4c(2α−a) .
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(a) (b)

Figure 32. Solitary wave forms of system (5). (a) Dark solitary wave derived by (84)+. (b) Bright
solitary wave derived by (84)−.

Thus, the exact solutions of Equation (1) are

u(x, t) = ±
√√√√ (r1 + r2)(

√
Δ− b)− 4cr1r2 + (r1 − r2)(

√
Δ− b) cosh(g21

1
δ (xδ − vtδ))

2(
√

Δ− b)− 2c(r1 + r2) + 2c(r1 − r2) cosh(g21
1
δ (xδ − vtδ))

eiη(x,t). (85)

5. Expressions of the Traveling Wave Solutions of System Equation (5) under
C > 0, A = 6α − 8β

Currently, through integral calculation, we compute the exact parametric expressions
of the traveling wave solutions under c > 0, a = 6α− 8β. However, in many cases, we
cannot find the corresponding solution formulation; here, we only analyze the part where
the solution formulation can be found. Because the solution of system (5) in this part
is given in the form of a parametric expression, and the calculation process of the exact
solution of Equation (1) obtained after the traveling wave transformation is substituted
back is too complicated, the exact solution of Equation (1) is not given here. The solution
follows from Equation (7) and the first equation of system (5):

ξ =
∫ φ

φ0

dφ

y(φ)
=
∫ φ

φ0

±dφ√
2c

5(2α−a)φ6 + 2b
3(2α−a)φ4 + 2(ω+γ+aκ2)

a−2α φ2 + hφ

. (86)

5.1. The Parameter Condition of A− 2α > 0, Δ>0, B<0, ω + γ + aκ2<0,
H1=−h2<h0<h3=−h4 (See Figure 5(4))

(i) In formula (7), if H(φ, y) = h4, there are two homoclinic orbits and a periodic orbit.
For one of the homoclinic orbits that tangents the singular line φ = 0 to E0(0, 0), we have

y2 = 2c
5(a−2α)

(r1 − φ)(r2 − φ)(0− φ)

(
φ +

√
−b−√Δ

2c

)2
(φ− r3). For the other homoclinic

orbit, we have y2 = 2c
5(a−2α)

(r1 − φ)(r2 − φ)(0− φ)

(
−
√
−b−√Δ

2c − φ

)2
(φ − r3). For the

periodic orbit, we have y2 = 2c
5(a−2α)

(r1 − φ)(φ − r2)φ

(
φ +

√
−b−√Δ

2c

)2
(φ − r3), where

r1 > r2 > 0 > −
√
−b−√Δ

2c > r3. Then, the parametric representations of the traveling wave
solution for the homoclinic orbit that contacts the singular line φ = 0 at E0 are given as

φ(χ) =
r2r3sn2(χ, k10)

r2 − r3 + r3sn2(χ, k10)
,

ξ(χ) =
β2

1 − α2
1

g22
Π(χ, β2

1) +
α2

1
g22

χ,
(87)
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where α2
1 = r3

r3−r2
, β2

1 =
r3

(
r2+

√
−b−√Δ

2c

)
(r3−r2)

√
−b−√Δ

2c

, k2
10 = r3(r2−r1)

r1(r2−r3)
, g22 = 1

2 β2
1

√
−b−√Δ

2c

√
2cr1(r2−r3)

5(a−2α)
.

The parametric representations of the traveling wave solution for the other homoclinic
orbit are given as

φ(χ) =
r1r3(1− sn2(χ, k11))

r1 − r3sn2(χ, k11)
,

ξ(χ) =
β2

2 − α2
2

g23
Π(χ, β2

2) +
α2

2
g23

χ,
(88)

where β2
2 = α2

2

(
r1 +

√
−b−√Δ

2c

)(
r3 +

√
−b−√Δ

2c

)
, g23 = − 1

2 β2
2

(
r3 +

√
−b−√Δ

2c

)
√

2cr1(r2−r3)
5(a−2α)

, α2
2 = r3

r1
, k2

11 = r3(r2−r1)
r1(r2−r3)

.
The parametric expressions of the traveling wave solution for the periodic orbit are

given as

φ(χ) =
r1(r2 − r3) + r3(r1 − r2)sn2(χ, k12)

r2 − r3 + (r1 − r2)sn2(χ, k12)
,

ξ(χ) =
β2

3 − α2
3

g24
Π(χ, β2

3) +
α2

3
g24

χ,
(89)

where β2
3 =

(r2−r1)

(
r3+

√
−b−√Δ

2c

)
(r2−r3)

(
r1+

√
−b−√Δ

2c

) , g24 = 1
2 β2

3

(
r1 +

√
−b−√Δ

2c

)√
2cr1(r2−r3)

5(a−2α)
, α2

3 = r2−r1
r2−r3

,

k2
12 = r3(r2−r1)

r1(r2−r3)
.

(ii) For the curves H(φ, y) = h3, there exist a periodic orbit and two homoclinic

orbits. For the periodic orbit, we have y2 = 2c
5(a−2α)

(r1 − φ)

(√
−b−√Δ

2c − φ

)2
(0− φ)(r2 −

φ)(φ − r3). For one of the homoclinic orbits that contacts the singular line φ = 0 at

E0(0, 0), we have y2 = 2c
5(a−2α)

(r1 − φ)

(√
−b−√Δ

2c − φ

)2
φ(φ− r2)(φ− r3). For the other

homoclinic orbit, we have y2 = 2c
5(a−2α)

(r1 − φ)

(
φ−

√
−b−√Δ

2c

)2
φ(φ− r2)(φ− r3), where

r1 >
√
−b−√Δ

2c > 0 > r2 > r3. Then, the parametric representations of the traveling wave
solution for the periodic orbit are given as

φ(χ) =
r2r3

r3 + (r2 − r3)sn2(χ, k13)
,

ξ(χ) =
β2

4 − α2
4

g25
Π(χ, β2

4) +
α2

4
g25

χ,
(90)

where β2
4 =

(r2−r3)

√
−b−√Δ

2c

r3

(
r2−

√
−b−√Δ

2c

) , g25 = 1
2 β2

4

(√
−b−√Δ

2c − r2

)√
2cr3(r2−r1)

5(a−2α)
, α2

4 = r3−r2
r3

, k2
13 =

r1(r2−r3)
r3(r2−r1)

.
The parametric representations of the traveling wave solution for the homoclinic orbit

that contacts the singular line φ = 0 at E0 are given as

φ(χ) =
r1r2sn2(χ, k14)

r2 − r1 + r1sn2(χ, k14)
,

ξ(χ) =
β2

5 − α2
5

g26
Π(χ, β2

5) +
α2

5
g26

χ,
(91)
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where α2
5 = r1

r1−r2
, β2

5 =
r1

(√
−b−√Δ

2c −r2

)
(r1−r2)

√
−b−√Δ

2c

, k2
14 = r1(r2−r3)

r3(r2−r1)
, g26 = 1

2 β2
5

√
−b−√Δ

2c

√
2cr3(r2−r1)

5(a−2α)
.

The parametric representations of the traveling wave solution for the other homoclinic
orbit are given as

φ(χ) =
r1r3(sn2(χ, k15)− 1)

r1sn2(χ, k15)− r3
,

ξ(χ) =
β2

6 − α2
6

g27
Π(χ, β2

6) +
α2

6
g27

χ,
(92)

where β2
6 =

r1

(√
−b−√Δ

2c −r3

)
r3

(√
−b−√Δ

2c −r1

) , g27 = 1
2 β2

6

(
r1 −

√
−b−√Δ

2c

)√
2cr3(r2−r1)

5(a−2α)
, α2

6 = r1
r3

,

k2
15 = r1(r2−r3)

r3(r2−r1)
.

5.2. The Parameter Condition of A− 2α > 0, Δ>0, B<0, ω + γ + aκ2<0,
H1=h2=h0<h3=−h4 (See Figure 5(5))

(i) In formula (7), if H(φ, y) = h4, there are two homoclinic orbits. For one of the homo-
clinic orbits that tangents the singular line φ = 0 to E0(0, 0), we have

y2 = 2c
5(a−2α)

(0− φ)

(
φ +

√
−b−√Δ

2c

)2
(φ− r1)(φ− r2)(φ− r̄2), but we do not find a corre-

sponding formulation for solving it.

For the other homoclinic orbit, we have y2 = 2c
5(a−2α)

(0− φ)

(
−
√
−b−√Δ

2c − φ

)2
(φ−

r1)(φ− r2)(φ− r̄2), where −
√
−b−√Δ

2c > r1, r2 and r̄2 are complex. Then, we derive the
parametric representations of the traveling wave solution for the homoclinic orbit as follows:

φ(χ) =
r1 A2(1 + cn(χ, k16))

A2 + B2 + (B2 − A2)cn(χ, k16)
,

ξ(χ) =g28

(
β7χ +

α7 − β7

1− α2
7

Π

(
χ,

α2
7

α2
7 − 1

)
− α7(α7 − β7)

2(1− α2
7)

√
α2

7 − 1
k2

16 + (1− k2
16)α

2
7

ln

⎛⎝
√

k2
16 + (1− k2

16)α
2
7dnχ +

√
α2

7 − 1snχ√
k2

16 + (1− k2
16)α

2
7dnχ−

√
α2

7 − 1snχ

⎞⎠⎞⎠,

(93)

where A2
2 = r2r̄2, B2

2 = (r1 − r2)(r1 − r̄2), g28 = A2+B2√
A2B2

(
(B2−A2)

√
−b−√Δ

2c −r1 A2

)√ 5(a−2α)
2c ,

k2
16 =

r2
1−(A2−B2)

2

4A2B2
, α7 =

r1 A2+(A2−B2)

√
−b−√Δ

2c

r1 A2+(A2+B2)

√
−b−√Δ

2c

, β7 = A2−B2
A2+B2

, α2
7

α2
7−1

> k2
16.

(ii) In formula (7), if H(φ, y) = h3, there are two homoclinic orbits. For one of the homo-
clinic orbits that tangents the singular line φ = 0 to E0(0, 0), we have

y2 = 2c
5(a−2α)

(r1 − φ)

(√
−b−√Δ

2c − φ

)2
φ(φ − r2)(φ − r̄2), where r1 >

√
−b−√Δ

2c > 0,

r2 and r̄2 are complex. Then, we derive the expressions of the traveling wave solution for
the homoclinic orbit as follows:
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φ(χ) =
r1B3(1− cn(χ, k17))

A3 + B3 + (A3 − B3)cn(χ, k17)
,

ξ(χ) =g29

(
β8χ +

α8 − β8

1− α2
8

Π

(
χ,

α2
8

α2
8 − 1

)
− α8(α8 − β8)

2(1− α2
8)

√
α2

8 − 1
k2

17 + (1− k2
17)α

2
8

ln

⎛⎝
√

k2
17 + (1− k2

17)α
2
8dnχ +

√
α2

8 − 1snχ√
k2

17 + (1− k2
17)α

2
8dnχ−

√
α2

8 − 1snχ

⎞⎠⎞⎠,

(94)

where A2
3 = (r1 − r2)(r1 − r̄2), B2

3 = r2r̄2, g29 = A3+B3√
A3B3

(
r1B3+(A3−B3)

√
−b−√Δ

2c

)√ 5(a−2α)
2c ,

k2
17 =

r2
1−(A3−B3)

2

4A3B3
, α8 =

(B3−A3)

√
−b−√Δ

2c −r1B3

r1B3−(A3+B3)

√
−b−√Δ

2c

, β8 = A3−B3
A3+B3

, α2
8

α2
8−1

> k2
17.

For the other homoclinic orbit, we have y2 = 2c
5(a−2α)

(r1 − φ)

(
φ−

√
−b−√Δ

2c

)2
φ(φ−

r2)(φ− r̄2), but we do not find a corresponding formulation for solving it.

5.3. The Parameter Condition of A− 2α > 0, Δ>0, B<0, ω + γ + aκ2<0,
H0<h1=−h2<h3=−h4 (See Figure 5(6))

(i) In formula (7), if H(φ, y) = h4, there are one homoclinic orbit and two heteroclinic
orbits that contact the singular line φ = 0 at E0(0, 0). The traveling wave solutions of these
curves are the same as (93).

(ii) In formula (7), if H(φ, y) = h3, there are one homoclinic orbit and two heteroclinic
orbits that contact the singular line φ = 0 at E0(0, 0). The traveling wave solutions of these
curves are same as (94).

5.4. The Case of Δ > 0, ω + γ + aκ2 > 0 (See Figure 6(3))

For the curves H(φ, y) = h1, there exists a homoclinic orbit, which contacts the singular

line φ = 0 at E0(0, 0). We have y2 = 2c
5(2α−a)

(√
−b+

√
Δ

2c − φ

)2
φ(φ− r1)(φ− r2)(φ− r̄2),

where
√
−b+

√
Δ

2c > 0 > r1 , r2 and r̄2 are complex. Then, we derive the expressions of the
traveling wave solution for the homoclinic orbit as follows:

φ(χ) =
r1 A4(1− cn(χ, k18))

A4 − B4 − (A4 + B4)cn(χ, k18)
,

ξ(χ) =g30

(
β9χ +

α9 − β9

1− α2
9

Π

(
χ,

α2
9

α2
9 − 1

)
− α9(α9 − β9)

2(1− α2
9)

√
α2

9 − 1
k2

18 + (1− k2
18)α

2
9

ln

⎛⎝
√

k2
18 + (1− k2

18)α
2
9dnχ +

√
α2

9 − 1snχ√
k2

18 + (1− k2
18)α

2
9dnχ−

√
α2

9 − 1snχ

⎞⎠⎞⎠,

(95)

where A2
4 = r2r̄2, B2

4 = (r1 − r2)(r1 − r̄2), g30 = A4−B4√
A4B4

(
r1 A4−(A4+B4)

√
−b+

√
Δ

2c

)√ 5(2α−a)
2c ,

k2
18 =

(A4+B4)
2−r2

1
4A4B4

, α9 =
r1 A4−(A4+B4)

√
−b+

√
Δ

2c

(A4−B4)

√
−b+

√
Δ

2c −r1 A4

, β9 = B4+A4
B4−A4

, α2
9

α2
9−1

> k2
18.

5.5. The Parameter Condition of A− 2α < 0, Δ>0, B<0, ω + γ + aκ2<0,
H3=−h4<h0<h1=−h2 (See Figure 6(5))

(i) For the curves H(φ, y) = h2, there exist a periodic orbit and a homoclinic orbit that
contacts the singular line φ = 0 at E0. For the periodic orbit, we have y2 = 2c

5(2α−a) (r1 −
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φ)(r2− φ)(φ− r3)φ

(
φ +

√
−b+

√
Δ

2c

)2
. For the homoclinic orbit, we have y2 = 2c

5(2α−a) (r1−

φ)(r2 − φ)(r3 − φ)(0− φ)

(
φ +

√
−b+

√
Δ

2c

)2
, where r1 > r2 > r3 > 0 > −

√
−b+

√
Δ

2c . Then,

the parametric representations of the traveling wave solutions for the periodic orbit are
given as

φ(χ) =
r2(r1 − r3)− r1(r2 − r3)sn2(χ, k19)

r1 − r3 − (r2 − r3)sn2(χ, k19)
,

ξ(χ) =
β2

10 − α2
10

g31
Π(χ, β2

10) +
α2

10
g31

χ,

(96)

where β2
10 =

(r2−r3)

(
r1+

√
−b+

√
Δ

2c

)
(r1−r3)

(
r2+

√
−b+

√
Δ

2c

) , g31 = 1
2 β2

10

(
r2 +

√
−b+

√
Δ

2c

)√
2cr2(r3−r1)

5(a−2α)
, α2

10 = r2−r3
r1−r3

,

k2
19 = r1(r2−r3)

r2(r1−r3)
. The expressions of the traveling wave solution for the homoclinic orbit are

presented as

φ(χ) =
r1r3sn2(χ, k20)

r3 − r1 + r1sn2(χ, k20)
,

ξ(χ) =
β2

11 − α2
11

g32
Π(χ, β2

11) +
α2

11
g32

χ,
(97)

where α2
11 = r1

r1−r3
, β2

11 =
r1

(
r3+

√
−b+

√
Δ

2c

)
(r1−r3)

√
−b+

√
Δ

2c

, k2
20 = r1(r2−r3)

r2(r1−r3)
, g32 = 1

2 β2
11

√
−b+

√
Δ

2c

√
2cr2(r3−r1)

5(a−2α)
.

(ii) For the curves H(φ, y) = h1, there exist a periodic orbit and a homoclinic orbit that
contacts the singular line φ = 0 at E0. For the periodic orbit, we have

y2 = 2c
5(2α−a)

(√
−b+

√
Δ

2c − φ

)2
(0− φ)(r1 − φ)(φ− r2)(φ− r3). For the homoclinic orbit,

we have y2 = 2c
5(2α−a)

(√
−b+

√
Δ

2c − φ

)2
φ(φ− r1)(φ− r2)(φ− r3), where

√
−b+

√
Δ

2c > 0 >

r1 > r2 > r3. The parametric expressions of the traveling wave solution for the periodic
orbit are given as

φ(χ) =
r1r2

r2 + (r1 − r2)sn2(χ, k21)
,

ξ(χ) =
β2

12 − α2
12

g33
Π(χ, β2

12) +
α2

12
g33

χ,
(98)

where β2
12 =

(r1−r2)

√
−b+

√
Δ

2c

r2

(
r1−

√
−b+

√
Δ

2c

) , g33 = 1
2 β2

12

(√
−b+

√
Δ

2c − r1

)√
2cr2(r1−r3)

5(a−2α)
, α2

12 = r2−r1
r2

,

k2
21 = r3(r1−r2)

r2(r1−r3)
. The implicit parametric expression of the traveling wave solution for

the homoclinic orbit is given as follows:

φ(χ) =
r1r3sn2(χ, k22)

r1 − r3 + r3sn2(χ, k22)
,

ξ(χ) =
β2

13 − α2
13

g34
Π(χ, β2

13) +
α2

13
g34

χ,

(99)

where α2
13 = r3

r3−r1
, β2

13 =
r3

(
r1−

√
−b+

√
Δ

2c

)
(r1−r3)

√
−b+

√
Δ

2c

, k2
22 = r3(r1−r2)

r2(r1−r3)
, g34 = 1

2 β2
13

√
−b+

√
Δ

2c

√
2cr2(r1−r3)

5(a−2α)
.
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5.6. The Parameter Condition of A− 2α < 0, Δ>0, B<0, ω + γ + aκ2<0,
H3=−h4<h1=−h2<h0 (See Figure 6(7))

For the level curves H(φ, y) = h1, there exists a homoclinic orbit to E1. We have

y2 = 2c
5(2α−a)

(√
−b+

√
Δ

2c − φ

)2
(φ− r1)φ(φ− r2)(φ− r̄2), where

√
−b+

√
Δ

2c > r1 > 0, r2 and

r̄2 are complex. Then, the parametric representations of the traveling wave solution for the
homoclinic orbit are given as

φ(χ) =
r1B5(1 + cn(χ, k23))

B5 − A5 + (A5 + B5)cn(χ, k23)
,

ξ(χ) =g35

(
β14χ +

α14 − β14

1− α2
14

Π

(
χ,

α2
14

α2
14 − 1

)
− α14(α14 − β14)

2(1− α2
14)

√
α2

14 − 1
k2

23 + (1− k2
23)α

2
14

ln

⎛⎝
√

k2
23 + (1− k2

23)α
2
14dnχ +

√
α2

14 − 1snχ√
k2

23 + (1− k2
23)α

2
14dnχ−

√
α2

14 − 1snχ

⎞⎠⎞⎠,

(100)

where A2
5 = (r1 − r2)(r1 − r̄2), B2

5 = r2r̄2, g35 = A5−B5√
A5B5

(
r1B5−(A5+B5)

√
−b+

√
Δ

2c

)√ 5(2α−a)
2c ,

k2
23 =

(A5+B5)
2−r2

1
4A5B5

, α14 =
r1B5−(A5+B5)

√
−b+

√
Δ

2c

r1B5+(A5−B5)

√
−b+

√
Δ

2c

, β14 = B5+A5
B5−A5

, α2
14

α2
14−1

> k2
23.

6. Main Results

Based on the above analysis and calculation, we obtain the exact expressions of wave
solutions of the FCGL equation. We list them all in the following theorem.

Theorem 1. The exact expressions of wave solutions of the FCGL equation are as below:
(B1) Corresponding to some periodic orbits, there exist exact periodic wave solutions determined

by (17), (23), (24), (33), (39), (54), (58), (62), (64), (72), (89), (90), (96) and (98).
(B2) Corresponding to some homoclinic orbits, there exist exact solitary wave solutions deter-

mined by (19), (21), (27), (41), (51), (56), (60), (68), (74), (84), (87), (88), (91)–(95), (97), (99)
and (100).

(B3) Corresponding to some heteroclinic orbits, there exist exact kink and anti-kink wave
solutions determined by (13), (14), (28), (29), (35), (36), (43)–(46) and (76)–(79).

(B4) Corresponding to some open orbits, there exist exact compacton solutions determined by
(65) and (70).

7. Conclusions

In this paper, we investigate the bifurcations and the exact solutions of the time–space
fractional complex Ginzburg–Landau equation with parabolic law nonlinearity (F(|q|2) =
c1|q|2 + c2|q|4). All possible explicit representations of traveling wave solutions are given
for the time-space FCGL equation under different parameter domains, including peakon
solutions, periodic peakon solutions, compacton solutions, kink and anti-kink wave solu-
tions, solitary wave solutions, periodic wave solutions and so on. Our method is different
from the previous works on the exact solutions of the time-space FCGL equation and is
based on the applying bifurcation theory of planar dynamical systems.
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Abstract: This paper studies a new class of instantaneous and non-instantaneous impulsive boundary
value problem involving the generalized ψ-Caputo fractional derivative with a weight. Depend-
ing on critical point theorems and some properties of ψ-Caputo-type fractional integration and
differentiation, the variational construction and multiplicity result of solutions are established.

Keywords: instantaneous impulse; non-instantaneous impulse; ψ-Caputo fractional operator;
variational construction

MSC: 26A33; 34B15; 34A08

1. Introduction

Fractional calculus is an expansion of Newton Leibniz’s integer order differential
and integral. In recent decades, a large number of definitions of fractional calculus op-
erators are generated with practical problem modeling requirements, such as the well
known Riemann-Liouville, Caputo, Erdelyi-Kober, and Hadamard versions [1–3], and
those forms play important roles in various interdisciplinary disciplines, like viscoelastic
mechanics, anomalous diffusion, control theory, bioengineering, etc. [4–6]. However,
many scholars discovered that some existing fractional operators may not well to describe
many phenomena in the real world. Hence, a whole newly general definition is proposed
recently, so-called ψ-Caputo-type fractional operator [7–9], which could combine the maxi-
mum number of definitions of fractional derivatives to a single one by depending upon
a nonsingular kernel. The kernel function can provide free arguments to better calibrate
a system [10–12]. Taking all these into account, we think that it is a promising topic for
further investigation to study fractional differential equations (FDEs for short) with the
generalized ψ-Caputo-type fractional operator.

Furthermore, the impulsive FDE can reflect the phenomenon that the state of a thing
changes suddenly after being disturbed instantaneously, which is an effective means to
depict the changing laws of objects. According to the duration of the change process,
the impulse can be divided into the instantaneous (the definition of classical one) and
non-instantaneous impulses. Most of the research on FDEs with instantaneous impulse
are studied [13–15]. In 2013, Hernádez and O’Regan first proposed the non-instantaneous
impulse concept based on pharmacokinetics [16], which refers to the behavior that the state
is disturbed at a certain time and produces sudden changes, and it maintains the active state
for a limited time interval. This work showed that the non-instantaneous impulse has more
advantages in describing the human body’s absorption, diffusion, and metabolism of drugs.
Since then, non-instantaneous impulsive FDEs received great attention [17–20]. In [18],
depending on the Weierstrass theorem, the existence of solutions was obtained for a class
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of instantaneous and non-instantaneous impulsive fractional Dirichlet boundary value
problems with perturbation. In view of the well known three critical points theorem due
to B. Ricceri, the existence of at least three solutions for the non-instantaneous impulsive
FDE was obtained in [19]. Because of the late development of non-instantaneous impulse
comparing with the instantaneous impulse, many theoretical results need to be enriched
and improved, so it has great potential research space and theoretical significance.

Motivated by above works, in this paper, we are concerned with a new class of instan-
taneous and non-instantaneous impulsive FDEs involving a ψ-Caputo fractional derivative⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

CDα,ψ
T− (

CDα,ψ
0+ x(t)) = λ fi(t, x(t)), t ∈ (si, ti+1], i = 0, 1, . . . , n,

Δ(CDα,ψ
T− (I1−α,ψ

0+ x))(ti) = Ii(x(ti)), i = 1, 2, . . . , n,
CDα,ψ

T− (I1−α,ψ
0+ x)(t) = CDα,ψ

T− (I1−α,ψ
0+ x)(t+i ), t ∈ (ti, si], i = 1, 2, . . . , n,

CDα,ψ
T− (I1−α,ψ

0+ x)(s−i ) =
CDα,ψ

T− (I1−α,ψ
0+ x)(s+i ), i = 1, 2, . . . , n,

x(0) = x(T) = 0,

(1)

where λ > 0, 0 < α ≤ 1, CDα,ψ
T− and CDα,ψ

0+ denote the right and left ψ-Caputo fractional

derivatives, I1−α,ψ
0+ is the left ψ-Riemann-Liouville type fractional integral with order 1− α.

ψ(t) ∈ C1[0, T] is an increasing function with ψ′(t) �= 0 for all t ∈ [0, T]. Ii ∈ C(R,R),
fi ∈ C((si, ti+1] × R,R), 0 = s0 < t1 < s1 < · · · < sn < tn+1 = T, the instantaneous
impulse begins suddenly at the point ti, and the non-instantaneous impulse continues
during a finite interval (ti, si],

Δ(CDα,ψ
T− (I1−α,ψ

0+ x))(ti) =
CDα,ψ

T− (I1−α,ψ
0+ x)(t+i )− CDα,ψ

T− (I1−α,ψ
0+ x)(t−i ),

CDα,ψ
T− (I1−α,ψ

0+ x)(t+i ) = lim
t→t+i

CDα,ψ
T− (I1−α,ψ

0+ x)(t),

CDα,ψ
T− (I1−α,ψ

0+ x)(t−i ) = lim
t→t−i

CDα,ψ
T− (I1−α,ψ

0+ x)(t).

It is a new issue that has not been touched yet. Some existing results, which focus on
the classical fractional operators, such as [19,21,22], are improved and supplemented by
choosing special kernel functions in the derivative.

2. Fractional Integrals and Derivatives

This section introduces some essential definitions of fractional integrals and deriva-
tives, as well as relevant lemmas and theorems, whose involvements assist us to establish
variational construction and multiplicity results for impulsive FDE (1) successfully.

We deal mainly with the ψ-Riemann-Liouville and ψ-Caputo fractional integrals and
derivatives in this paper, and the reader can refer to Res. [7–9] for more information. Let
α > 0, −∞ ≤ a < b ≤ +∞, f (t) is an integrable function and ψ(t) ∈ C1[0, T] is an
increasing function, with ψ′(t) �= 0 for all t ∈ [a, b]. The left ψ-Riemann-Liouville type
fractional integral and derivative of a function f with respect to another function ψ are,
respectively, defined as:

Iα,ψ
a+ f (t) =

1
Γ(α)

∫ t

a
ψ′(ξ)(ψ(t)− ψ(ξ))α−1 f (ξ)dξ, (2)

Dα,ψ
a+ f (t) =

(
1

ψ′(t)
d
dt

)n

In−α,ψ
a+ f (t) =

1
Γ(n− α)

(
1

ψ′(t)
d
dt

)n ∫ t

a
ψ′(ξ)(ψ(t)− ψ(ξ))n−α−1 f (ξ)dξ,

where n = [α] + 1 for α /∈ N, n = α for α ∈ N.
Similar definitions can be given for the right ψ-Riemann-Liouville fractional integral

and derivative:
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Iα,ψ
b− f (t) =

1
Γ(α)

∫ b

t
ψ′(ξ)(ψ(ξ)− ψ(t))α−1 f (ξ)dξ, (3)

Dα,ψ
b− f (t) =

( −1
ψ′(t)

d
dt

)n

In−α,ψ
b− f (t) =

1
Γ(n− α)

(
− 1

ψ′(t)
d
dt

)n ∫ b

t
ψ′(ξ)(ψ(ξ)− ψ(t))n−α−1 f (ξ)dξ.

In particular, if 0 < α < 1, one has:

Dα,ψ
a+ f (t) =

(
1

ψ′(t)
d
dt

)
I1−α,ψ
a+ f (t) =

1
Γ(1− α)

(
1

ψ′(t)
d
dt

) ∫ t

a
ψ′(ξ)(ψ(t)− ψ(ξ))−α f (ξ)dξ, (4)

Dα,ψ
b− f (t) =

( −1
ψ′(t)

d
dt

)
I1−α,ψ
b− f (t) =

1
Γ(1− α)

( −1
ψ′(t)

d
dt

) ∫ b

t
ψ′(ξ)(ψ(ξ)− ψ(t))−α f (ξ)dξ. (5)

It is worth noting that, if we choose the kernel ψ(t) = ln t or ψ(t) = t, the ψ-Riemann-
Liouville fractional integral and derivative can reduce into the well known Hadamard type
or Riemann-Liouville type fractional integral and derivative.

Definition 1 ([9]). Let n ∈ N, −∞ ≤ a < b ≤ +∞, α > 0, f (t), ψ(t) ∈ C1[0, T] are two
functions, such that ψ(t) is an increasing function with ψ′(t) �= 0 for all t ∈ [a, b]. Then,
the left and right ψ-Caputo type fractional derivatives of f with respect to another function ψ are,
respectively, defined as:

CDα,ψ
a+ f (t) = In−α,ψ

a+

(
1

ψ′(t)
d
dt

)n

f (t) =
1

Γ(n− α)

∫ t

a
ψ′(ξ)(ψ(t)− ψ(ξ))n−α−1

(
1

ψ′(ξ)
d

dξ

)n

f (ξ)dξ,

CDα,ψ
b− f (t) = In−α,ψ

b−

(
− 1

ψ′(t)
d
dt

)n

f (t) =
(−1)n

Γ(n− α)

∫ b

t
ψ′(ξ)(ψ(ξ)− ψ(t))n−α−1

(
1

ψ′(ξ)
d

dξ

)n

f (ξ)dξ.

In particular, if 0 < α < 1, one has:

CDα,ψ
a+ f (t) = I1−α,ψ

a+

(
1

ψ′(t)
d
dt

)
f (t) =

1
Γ(1− α)

∫ t

a
(ψ(t)− ψ(ξ))−α f ′(ξ)dξ, (6)

CDα,ψ
b− f (t) = I1−α,ψ

b−

(
− 1

ψ′(t)
d
dt

)
f (t) =

−1
Γ(1− α)

∫ b

t
(ψ(ξ)− ψ(t))−α f ′(ξ)dξ. (7)

Notice that the ψ-Caputo fractional derivative can reduce to the classical Caputo fractional derivative
by choosing the kernel ψ(t) = t.

Definition 2 ([9]). If f (t) ∈ Cn[a, b], −∞ ≤ a < b ≤ +∞, α > 0, n = [α] + 1 for α /∈ N,
n = α for α ∈ N, then

CDα,ψ
a+ f (t) = Dα,ψ

a+

[
f (t)− Σn−1

k=0
1
k!
(ψ(t)− ψ(a))k

(
1

ψ′(t)
d
dt

)k

f (a)
]

,

CDα,ψ
b− f (t) = Dα,ψ

b−

[
f (t)− Σn−1

k=0
(−1)k

k!
(ψ(b)− ψ(t))k

(
1

ψ′(t)
d
dt

)k

f (b)
]

.

In what follows, we will begin the process of building an appropriate variational structure for
the impulsive FDE (1). Before that, a fractional derivative space needs to be established.

Definition 3. Define the ψ-Caputo fractional derivative space Eα,ψ
0 by the closure of C∞

0 ([0, T],R)
with weighted norm:

‖x‖α,ψ :=
( ∫ T

0
| x(t) |2 dt +

∫ T

0
ψ′(t) | CDα,ψ

0+ x(t) |2 dt
) 1

2

. (8)
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Obviously, the space Eα,ψ
0 implies that x(t) ∈ L2[0, T] with CDα,ψ

0+ x(t) ∈ L2[0, T], and x(0) =
x(T) = 0.

Lemma 1 ([11]). The space Eα,ψ
0 is a reflexive and separable Banach space.

Lemma 2. For any x(t) ∈ Eα,ψ
0 , 1

2 < α ≤ 1, we have

‖x‖∞ ≤ M
( ∫ T

0
ψ′(t) | Dα,ψ

0+ x(t) |2 dt
) 1

2

, (9)

‖x‖L2 ≤ M̂‖Dα,ψ
0+ x‖L2 , (10)

where

M =
(ψ(T)− ψ(0))α− 1

2

Γ(α)(2(α− 1) + 1)
1
2

, M̂ =
maxt∈[0,T]{ψ′(t)}(ψ(T))α

Γ(α + 1)
.

Proof. Based on Theorem 4 in [9] and the Hölder inequality, we deduce:

|x(t)| =|Iα,ψ
0+ Dα,ψ

0+ x(t)| = 1
Γ(α)

∣∣∣∣ ∫ t

0
ψ′(ξ)(ψ(t)− ψ(ξ))α−1Dα,ψ

0+ x(ξ)dξ

∣∣∣∣
≤ 1

Γ(α)

( ∫ T

0

[
(ψ′(ξ))

1
2 (ψ(t)− ψ(ξ))α−1

]2

dξ

) 1
2
( ∫ T

0

[
(ψ′(ξ))

1
2 Dα,ψ

0+ x(ξ)
]2

dξ

) 1
2

≤ (ψ(T)− ψ(0))α− 1
2

Γ(α)(2(α− 1) + 1)
1
2

( ∫ T

0
ψ′(t)|Dα,ψ

0+ x(t)|2dt
) 1

2

.

The inequality (10) is immediately available according to [11]. The proof is completed.

Lemma 3. Based on Definition 2 and x(0) = x(T) = 0, one obtains:

CDα,ψ
0+ x(t) = Dα,ψ

0+ x(t), CDα,ψ
T− x(t) = Dα,ψ

T− x(t), ∀0 < α < 1.

From (10) and Lemma 3, we confirm that the norm defined by (8) is equivalent to:

‖x‖α,ψ :=
( ∫ T

0
ψ′(t) | CDα,ψ

0+ x(t) |2 dt
) 1

2

, ∀ x(t) ∈ Eα,ψ
0 . (11)

Lemma 4 ([11]). Let 1
2 < α ≤ 1. If any sequence {xk} converges to x in Eα,ψ

0 weakly, then xk → x
in C[0, T] as k → ∞, i.e., ‖xk − x‖∞ → 0 as k → ∞.

Based on the relevant definitions and lemmas introduced above, the definition of the weak
solution of FDE (1) can be given as follows.

Lemma 5. We say that x(t) ∈ Eα,ψ
0 is a weak solution of FDE (1) if the following relationship holds:

∫ T

0
ψ′(t)CDα,ψ

0+ x(t)CDα,ψ
0+ y(t)dt−

n

∑
i=1

Ii(x(ti))y(ti) = λ
n

∑
i=0

∫ ti+1

si

fi(t, x(t))ψ′(t)y(t)dt, ∀y(t) ∈ Eα,ψ
0 . (12)

Proof. In view of (6), Dirichlet’s formula and Lemma 3 yields:
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∫ T

0
ψ′(t)CDα,ψ

0+ x(t)CDα,ψ
0+ y(t)dt =

1
Γ(1− α)

∫ T

0

∫ t

0
ψ′(t)CDα,ψ

0+ x(t)(ψ(t)− ψ(ξ))−αy′(ξ)dξdt

=
1

Γ(1− α)

∫ T

0

[ ∫ T

t
ψ′(ξ)CDα,ψ

0+ x(ξ)(ψ(ξ)− ψ(t))−αdξ

]
y′(t)dt

=
1

Γ(1− α)

n

∑
i=0

∫ ti+1

si

[ ∫ T

t
ψ′(ξ)Dα,ψ

0+ x(ξ)(ψ(ξ)− ψ(t))−αdξ

]
y′(t)dt

+
1

Γ(1− α)

n

∑
i=1

∫ si

ti

[ ∫ T

t
ψ′(ξ)Dα,ψ

0+ x(ξ)(ψ(ξ)− ψ(t))−αdξ

]
y′(t)dt. (13)

Due to (4), (5) and (7) yields

1
Γ(1− α)

n

∑
i=0

∫ ti+1

si

[ ∫ T

t
ψ′(ξ)Dα,ψ

0+ x(ξ)(ψ(ξ)− ψ(t))−αdξ

]
y′(t)dt (14)

=
1

Γ(1− α)

n

∑
i=0

[ ∫ T

t
ψ′(ξ)Dα,ψ

0+ x(ξ)(ψ(ξ)− ψ(t))−αdξ

]
y(t) |t=t−i+1

t=s+i

− 1
Γ(1− α)

n

∑
i=0

∫ ti+1

si

d
dt

[ ∫ T

t
ψ′(ξ)Dα,ψ

0+ x(ξ)(ψ(ξ)− ψ(t))−αdξ

]
· y(t)dt

=
n

∑
i=0

1
Γ(1− α)

∫ T

t
ψ′(ξ)(ψ(ξ)− ψ(t))−α

(
1

ψ′(ξ)
d

dξ

)
I1−α,ψ
0+ x(ξ)dξ · y(t) |t=t−i+1

t=s+i

+
n

∑
i=0

∫ ti+1

si

−1
Γ(1− α)

(
1

ψ′(t)
d
dt

)[ ∫ T

t
ψ′(ξ)(ψ(ξ)− ψ(t))−αDα,ψ

0+ x(ξ)dξ

]
· ψ′(t)y(t)dt

=
n

∑
i=0
−CDα,ψ

T− (I1−α,ψ
0+ x(t))y(t) |t=t−i+1

t=s+i
+

n

∑
i=0

∫ ti+1

si

Dα,ψ
T− (Dα,ψ

0+ x(t))ψ′(t)y(t)dt,

and

1
Γ(1− α)

n

∑
i=1

∫ si

ti

[ ∫ T

t
ψ′(ξ)Dα,ψ

0+ x(ξ)(ψ(ξ)− ψ(t))−αdξ

]
y′(t)dt (15)

=
1

Γ(1− α)

n

∑
i=1

[ ∫ T

t
ψ′(ξ)Dα,ψ

0+ x(ξ)(ψ(ξ)− ψ(t))−αdξ

]
y(t) |t=s−i

t=t+i

− 1
Γ(1− α)

n

∑
i=1

∫ si

ti

d
dt

[ ∫ T

t
ψ′(ξ)Dα,ψ

0+ x(ξ)(ψ(ξ)− ψ(t))−αdξ

]
· y(t)dt

=
n

∑
i=1

1
Γ(1− α)

∫ T

t
ψ′(ξ)(ψ(ξ)− ψ(t))−α

(
1

ψ′(ξ)
d

dξ

)
I1−α,ψ
0+ x(ξ)dξ · y(t) |t=s−i

t=t+i

+
n

∑
i=1

∫ si

ti

d
dt

[ −1
Γ(1− α)

∫ T

t
ψ′(ξ)(ψ(ξ)− ψ(t))−α

(
1

ψ′(ξ)
d

dξ

)
I1−α,ψ
0+ x(ξ)dξ

]
· y(t)dt

=
n

∑
i=1
−CDα,ψ

T− (I1−α,ψ
0+ x(t))y(t) |t=s−i

t=t+i
+

n

∑
i=1

∫ si

ti

d
dt

[
CDα,ψ

T− (I1−α,ψ
0+ x(t))

]
· y(t)dt.

Consequently, combining (13), (14), (15), and the impulsive conditions in FDE (1), one has:
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∫ T

0
ψ′(t)CDα,ψ

0+ x(t)CDα,ψ
0+ y(t)dt

=
n

∑
i=0
−CDα,ψ

T− (I1−α,ψ
0+ x(t))y(t) |t=t−i+1

t=s+i
+

n

∑
i=1
−CDα,ψ

T− (I1−α,ψ
0+ x(t))y(t) |t=s−i

t=t+i
+

n

∑
i=0

∫ ti+1

si

Dα,ψ
T− (Dα,ψ

0+ x(t))ψ′(t)y(t)dt

=
n

∑
i=1

CDα,ψ
T− (I1−α,ψ

0+ x(t+i ))y(t+i )− CDα,ψ
T− (I1−α,ψ

0+ x(t−i ))y(t−i ) +
n

∑
i=1

CDα,ψ
T− (I1−α,ψ

0+ x(s+i ))y(s+i )− CDα,ψ
T− (I1−α,ψ

0+ x(s−i ))y(s−i ) (16)

+ CDα,ψ
T− (I1−α,ψ

0+ x(0))y(0)− CDα,ψ
T− (I1−α,ψ

0+ x(T))y(T) +
n

∑
i=0

∫ ti+1

si

Dα,ψ
T− (Dα,ψ

0+ x(t))ψ′(t)y(t)dt

=
n

∑
i=1

Ii(x(ti))y(ti) +
n

∑
i=0

∫ ti+1

si

Dα,ψ
T− (Dα,ψ

0+ x(t))ψ′(t)y(t)dt.

An equivalent form for FDE (1) can be derived by multiplying the first equation of (1)
with ψ′(t)y(t), and integrating on both sides from si to ti+1, then summing from i = 0 to
i = n, according to (16), one has:

∫ T

0
ψ′(t)CDα,ψ

0+ x(t)CDα,ψ
0+ y(t)dt−

n

∑
i=1

Ii(x(ti))y(ti) = λ
n

∑
i=0

∫ ti+1

si

fi(t, x(t))ψ′(t)y(t)dt.

The proof is completed.

Definition 4. A function

x ∈
{

x ∈ AC[0, T] :
∫ ti+1

si

| x(t) |2 +ψ′(t) | CDα,ψ
0+ x(t) |2 dt < +∞, i = 1, 2, . . . , n

}
is called a classical solution of FDE (1) if x satisfies the first equation of FDE (1), the limits
CDα,ψ

T− (I1−α,ψ
0+ x)(t±i ) and CDα,ψ

T− (I1−α,ψ
0+ x)(s±i ) exist and satisfy the impulsive conditions in (1),

and boundary condition x(0) = x(T) = 0 holds.

Lemma 6 ([23]). Let E be a real reflexive Banach space, let J1 : E → R be a sequentially weakly
lower semi-continuous, coercive and continuously Gâteaux differentiable functional whose Gâteaux
derivative admits a continuous inverse on E∗, and let J2 : E → R be a sequentially weakly upper
semi-continuous and continuously Gâteaux differentiable functional whose Gâteaux derivative is
compact. Suppose that there exist ρ ∈ R and x1 ∈ E with 0 < ρ < J1(x1), such that
(i) supx∈J−1

1 (]−∞,ρ]) J2(x) < ρ
J2(x1)
J1(x1)

.

(ii) For all λ ∈ B :=
]

J1(x1)
J2(x1)

, ρ
sup

x∈J−1
1 (]−∞,ρ])

J2(x)

[
, the functional J1 − λJ2 is coercive.

Then, for each λ ∈ B, the functional J1 − λJ2 possesses at least three distinct critical points
on E.

3. Proof of Theorems

In this section, the multiplicity of at least three distinct classical solutions for impulsive
FDE (1) is discussed depending on Lemma 6 and Definition 4.

For any x(t) ∈ Eα,ψ
0 , define the functional Jλ := J1 − λJ2, where

J1(x) =
1
2

∫ T

0
ψ′(t)|CDα,ψ

0+ x(t)|2dt−
n

∑
i=1

∫ x(ti)

0
Ii(ξ)dξ,

J2(x) =
n

∑
i=0

∫ ti+1

si

Fi(t, x(t))ψ′(t)dt, (17)
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where Fi(t, x) =
∫ x

0 fi(t, ξ)dξ. Owing to the continuity of fi and Ii, we can obtain J1, J2 ∈
C1(Eα,ψ

0 ,R) and

J′1(x)(y) =
∫ T

0
ψ′(t)CDα,ψ

0+ x(t)CDα,ψ
0+ y(t)dt−

n

∑
i=1

Ii(x(ti))y(ti),

J′2(x)(y) =
n

∑
i=0

∫ ti+1

si

fi(t, x(t))ψ′(t)y(t)dt. (18)

Apparently, the critical point of Jλ is the weak solution of impulsive FDE (1).

Theorem 1. Assume that
(A1) Ii(0) = 0 and there exist di, Li > 0 with max{M2 ∑n

i=1 Li, M2 ∑n
i=1 di} < 1, such that

|Ii(ξ)| ≤ di|ξ| and | Ii(ξ1)− Ii(ξ2) |≤ Li | ξ1 − ξ2 |, ∀ξ, ξ1, ξ2 ∈ R.

(A2) There exist a constant ρ > 0 and a function ς(t), such that
(

1
2 −

M2 ∑n
i=1 di

2

)
‖ς‖2

α,ψ > ρ,

and
∑n

i=0
∫ ti+1

si
supx∈Ωρ

Fi(t, x(t))ψ′(t)dt

ρ
<

2 ∑n
i=0
∫ ti+1

si
Fi(t, ς(t))ψ′(t)dt

‖ς‖2
α,ψ − 2 ∑n

i=1
∫ ς(ti)

0 Ii(ξ)dξ
, (19)

where Ωρ = {x ∈ R :
(

1
2M2 − ∑n

i=1 di
2

)
| x |2≤ ρ}.

(A3) there exist bi, ci > 0, θi ∈ [0, 1), such that | fi(t, x)| ≤ bi + ci|x|θi , ∀t ∈ [0, T], x ∈ R,
i = 0, 1, . . . , n.

Then, for each λ ∈
]
‖ς‖2

α,ψ−2 ∑n
i=1
∫ ς(ti)

0 Ii(ξ)dξ

2 ∑n
i=0
∫ ti+1

si Fi(t,ς(t))ψ′(t)dt
, ρ

∑n
i=0
∫ ti+1

si supx∈Ωρ
Fi(t,x(t))ψ′(t)dt

[
, the impulsive

FDE (1) possesses at least three distinct weak solutions on Eα,ψ
0 .

Proof. First, we are concerned with functionals J1 and J2. Let {xk}∞
k=1 be a weakly con-

vergent sequence to x in Eα,ψ
0 , then ‖x‖α,ψ ≤ lim infk→∞ ‖xk‖α,ψ. In view of Lemma 4 that

{xk} converges to x in C([0, T],R) uniformly. That is:

lim inf
k→∞

J1(xk) = lim inf
k→∞

{
1
2
‖xk‖2

α,ψ −
n

∑
i=1

∫ xk(ti)

0
Ii(ξ)dξ

}
≥ 1

2
‖x‖2

α,ψ −
n

∑
i=1

∫ x(ti)

0
Ii(ξ)dξ = J1(x),

which means that J1 is weakly lower semi-continuous. In what follows, we assert that J1

possesses a continuous inverse on (Eα,ψ
0 )∗. By means of (18), (9) and (A1) yield:

(J′1(x)− J′1(y))(x− y) =
∫ T

0
ψ′(t) | CDα,ψ

0+ (x(t)− y(t)) |2 dt−
n

∑
i=1

(Ii(x(ti))− Ii(y(ti)))(x(ti)− y(ti))

≥‖x− y‖2
α,ψ −

n

∑
i=1

| Ii(x(ti))− Ii(y(ti)) || x(ti)− y(ti) |

≥‖x− y‖2
α,ψ −

n

∑
i=1

Li | x(ti)− y(ti) |2

≥‖x− y‖2
α,ψ − ‖x− y‖2

∞

n

∑
i=1

Li

≥(1− M2
n

∑
i=1

Li)‖x− y‖2
α,ψ > 0, ∀ x �= y,

333



Fractal Fract. 2023, 7, 206

which shows that J′1 is strictly monotone. Based on the Theorem 26.A(d) in [24], we can
obtain that there exists an inverse of J′1 on (Eα,ψ

0 )∗, and the inverse is continuous. Obviously,
J1 is coercive. On the other hand, suppose that {xk} ⊂ Eα,ψ

0 , xk ⇀ x in Eα,ψ
0 as k → ∞. Then,

xk → x uniformly on [0, T], and

lim sup
k→∞

J2(xk) ≤
n

∑
i=0

∫ ti+1

si

lim sup
k→∞

Fi(t, xk(t))ψ′(t)dt =
n

∑
i=0

∫ ti+1

si

Fi(t, x(t))ψ′(t)dt = J2(x),

hence, J2 is sequentially weakly upper semi-continuous. Considering Fi ∈ C1((si, ti+1]×
R,R), then Fi(t, xk(t)) → Fi(t, x(t)) as k → ∞. According to the Lebesgue control con-
vergence theorem, J′2(xk) → J′2(x), i.e., J′2 is continuous strongly on Eα,ψ

0 . So, J′2 is a
compact operator.

Take x0 = 0, x1 = ς. Due to (A1) and (A2), we have J1(x1) ≥
(

1
2 −

M2 ∑n
i=1 di

2

)
‖x1‖2

α,ψ >

ρ > 0 and J1(x0) = 0. In view of (17), (9), and (A1), we have:

J−1
1 (]−∞, ρ]) = {x ∈ Eα,ψ

0 : J1(x) ≤ ρ} = {x ∈ Eα,ψ
0 :

1
2

∫ T

0
ψ′(t)|CDα,ψ

0+ x(t)|2dt−
n

∑
i=1

∫ x(ti)

0
Ii(ξ))dξ ≤ ρ}

⊆ {x ∈ Eα,ψ
0 :

1
2
‖x‖2

α,ψ −
n

∑
i=1

∫ x(ti)

0
di|ξ|dξ ≤ ρ}

⊆ {x ∈ Eα,ψ
0 :

(
1

2M2 −
∑n

i=1 di

2

)
| x(t) |2≤ ρ, t ∈ [0, T]},

then

sup
x∈J−1

1 (]−∞,ρ])

J2(x) = sup
x∈J−1

1 (]−∞,ρ])

n

∑
i=0

∫ ti+1

si

Fi(t, x(t))ψ′(t)dt ≤
n

∑
i=0

∫ ti+1

si

sup
x∈Ωρ

Fi(t, x(t))ψ′(t)dt,

that is

supx∈J−1
1 (]−∞,ρ]) J2(x)

ρ
≤

∑n
i=0
∫ ti+1

si
supx∈Ωρ

Fi(t, x(t))ψ′(t)dt

ρ
<

2 ∑n
i=0
∫ ti+1

si
Fi(t, ς(t))ψ′(t)dt

‖ς‖2
α,ψ − 2 ∑n

i=1
∫ ς(ti)

0 Ii(ξ)dξ
=

J2(x1)

J1(x1)
,

where (27) is used. Thus, the assumption (i) of Lemma 6 is satisfied.
In addition, for any fixed λ ∈ B, by means of (17), (A1), (A3), and (9), we obtain:

J1(x)− λJ2(x) ≥1
2
‖x‖2

α,ψ −
n

∑
i=1

( ∫ x(ti)

0
di|ξ|dξ

)
− λ

n

∑
i=0

∫ ti+1

si

ψ′(t)
∫ x

0
bi + ci|s|θi dsdt

≥1
2
‖x‖2

α,ψ −
(

1
2
‖x‖2

∞

n

∑
i=1

di

)
− λ(ψ(T)− ψ(0))

( n

∑
i=0

bi‖x‖∞ +
ci

θi + 1
‖x‖θi+1

∞

)
≥
(

1
2
− M2 ∑n

i=1 di

2

)
‖x‖2

α,ψ − λ(ψ(T)− ψ(0))M‖x‖α,ψ

( n

∑
i=0

bi

)
− λ(ψ(T)− ψ(0))

n

∑
i=0

ci Mθi+1

θi + 1
‖x‖θi+1

α,ψ .

Since θi ∈ [0, 1) and M2 ∑n
i=1 di < 1, we assert that lim

‖x‖α,ψ→∞
J1(x)− λJ2(x) = +∞, which

implies that J1 − λJ2 is coercive. The condition (ii) in Lemma 6 holds. Consequently, the
impulsive FDE (1) possesses at least three distinct weak solutions on Eα,ψ

0 using Lemma
6.
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Theorem 2. x(t) is a weak solution of impulsive FDE (1), if and only if x(t) is a classical solution
of FDE (1).

Proof. If x(t) is a classical solution of impulsive FDE (1), then x(t) also is a weak solu-
tion obviously. On the other hand, if x(t) ∈ Eα,ψ

0 is a weak solution of FDE (1), then
x(0) = x(T) = 0 and the Equation (12) holds. Without loss of generality, choose a test func-
tion vi(t) ∈ C∞

0 (si, ti+1] and vi(t) ≡ 0 for t ∈ [0, si]
⋃
(ti+1, T], i = 0, 2, . . . , n. Substituting

vi(t) into (12), from (16), we have:∫ ti+1

si

Dα,ψ
T− (Dα,ψ

0+ x(t))ψ′(t)vi(t)dt =
∫ ti+1

si

ψ′(t)CDα,ψ
0+ x(t)CDα,ψ

0+ vi(t)dt,∫ ti+1

si

ψ′(t)CDα,ψ
0+ x(t)CDα,ψ

0+ vi(t)dt = λ
∫ ti+1

si

fi(t, x(t))ψ′(t)vi(t)dt,

which shows that

CDα,ψ
T− (

CDα,ψ
0+ x(t)) = λ fi(t, x(t)), ∀t ∈ [si, ti+1], i = 0, 1, . . . , n. (20)

Because x ∈ Eα,ψ
0 ⊂ C[0, T] and ψ(t) ∈ C1[0, T], then

∫ ti+1

si

| x(t) |2 +ψ′(t) | CDα,ψ
0+ x(t) |2 dt < +∞.

Based on Lemma 3, (4) and (7) yield:

CDα,ψ
T− (

CDα,ψ
0+ x(t)) =Dα,ψ

T− (Dα,ψ
0+ x(t)) = Dα,ψ

T−

[
1

ψ′(t)
d
dt

I1−α,ψ
0+ x(t)

]
=

−1
Γ(1− α)

(
1

ψ′(t)
d
dt

) ∫ T

t
ψ′(ξ)(ψ(ξ)− ψ(t))−α

(
1

ψ′(ξ)
d

dξ

)
I1−α,ψ
0+ x(ξ)dξ (21)

=
1

ψ′(t)
d
dt

[
CDα,ψ

T− I1−α,ψ
0+ x(t)

]
.

Since ψ(t) ∈ C1[0, T], fi ∈ C((si, ti+1] × R,R), according to (20) and (21), one obtains
CDα,ψ

T− I1−α,ψ
0+ x(t) ∈ AC[si, ti+1], which implies that the following limits exist:

CDα,ψ
T− (I1−α,ψ

0+ x)(s+i ) = lim
t→s+i

CDα,ψ
T− (I1−α,ψ

0+ x)(t),

CDα,ψ
T− (I1−α,ψ

0+ x)(t−i+1) = lim
t→t−i+1

CDα,ψ
T− (I1−α,ψ

0+ x)(t).

Substituting (20) into (12), one obtains:

∫ T

0
ψ′(t)CDα,ψ

0+ x(t)CDα,ψ
0+ y(t)dt−

n

∑
i=1

Ii(x(ti))y(ti)−
n

∑
i=0

∫ ti+1

si

CDα,ψ
T− (

CDα,ψ
0+ x(t))ψ′(t)y(t)dt = 0. (22)

Uniting (13) with (14), we have:
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∫ T

0
ψ′(t)CDα,ψ

0+ x(t)CDα,ψ
0+ y(t)dt

=
n

∑
i=0

∫ ti+1

si

ψ′(t)CDα,ψ
0+ x(t)CDα,ψ

0+ y(t)dt +
n

∑
i=1

∫ si

ti

ψ′(t)CDα,ψ
0+ x(t)CDα,ψ

0+ y(t)dt

=
n

∑
i=0

CDα,ψ
T− (I1−α,ψ

0+ x(s+i ))y(s
+
i )−

n

∑
i=0

CDα,ψ
T− (I1−α,ψ

0+ x(t−i+1))y(t
−
i+1) (23)

+
n

∑
i=0

∫ ti+1

si

Dα,ψ
T− (Dα,ψ

0+ x(t))ψ′(t)y(t)dt +
n

∑
i=1

∫ si

ti

ψ′(t)CDα,ψ
0+ x(t)CDα,ψ

0+ y(t)dt.

Then, from (22) and (23), we obtain:

n

∑
i=0

CDα,ψ
T− (I1−α,ψ

0+ x(s+i ))y(s
+
i )−

n

∑
i=0

CDα,ψ
T− (I1−α,ψ

0+ x(t−i+1))y(t
−
i+1)

+
n

∑
i=1

∫ si

ti

ψ′(t)CDα,ψ
0+ x(t)CDα,ψ

0+ y(t)dt−
n

∑
i=1

Ii(x(ti))y(ti) = 0. (24)

Without loss of generality, assume vi(t) ∈ C∞
0 (ti, si] and vi(t) ≡ 0 for t ∈ [0, ti]

⋃
(si, T],

i = 1, 2, . . . , n. Substituting vi(t) into (24), from (15) we deduce:

n

∑
i=1

∫ si

ti

d
dt

[
CDα,ψ

T− (I1−α,ψ
0+ x(t))

]
vi(t)dt = 0,

because of the arbitrariness of vi(t), for t ∈ (ti, si], i = 1, 2, . . . , n, we can obtain
CDα,ψ

T− (I1−α,ψ
0+ x(t)) = Constant. That is:

CDα,ψ
T− (I1−α,ψ

0+ x)(t) = CDα,ψ
T− (I1−α,ψ

0+ x)(t+i ) =
CDα,ψ

T− (I1−α,ψ
0+ x)(s−i ), t ∈ (ti, si], i = 1, 2, . . . , n. (25)

Substituting (25) back into (24) yields:

n

∑
i=0

CDα,ψ
T− (I1−α,ψ

0+ x(s+i ))y(s
+
i )−

n

∑
i=0

CDα,ψ
T− (I1−α,ψ

0+ x(t−i+1))y(t
−
i+1)−

n

∑
i=1

Ii(x(ti))y(ti)

+
n

∑
i=1

CDα,ψ
T− (I1−α,ψ

0+ x(t+i ))y(ti)−
n

∑
i=1

CDα,ψ
T− (I1−α,ψ

0+ x(t+i ))y(si) = 0,

then

n

∑
i=1

[
CDα,ψ

T− (I1−α,ψ
0+ x(t+i ))− CDα,ψ

T− (I1−α,ψ
0+ x(t−i ))− Ii(x(ti))

]
y(ti)

+
n

∑
i=1

[
CDα,ψ

T− (I1−α,ψ
0+ x(s+i ))− CDα,ψ

T− (I1−α,ψ
0+ x(t+i ))

]
y(si) = 0,

which implies that

CDα,ψ
T− (I1−α,ψ

0+ x(t+i ))− CDα,ψ
T− (I1−α,ψ

0+ x(t−i )) = Ii(x(ti)), CDα,ψ
T− (I1−α,ψ

0+ x(s+i )) =
CDα,ψ

T− (I1−α,ψ
0+ x(t+i )).

Combining with (25), we can obtain CDα,ψ
T− (I1−α,ψ

0+ x(s+i )) = CDα,ψ
T− (I1−α,ψ

0+ x(s−i )) for i =
1, 2, . . . , n. Consequently, boundary conditions and impulsive conditions, as well as the first
equation in FDE (1), are all satisfied by x(t), which shows that x(t) is a classical solution of
FDE (1).
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Example 1. Let α = 0.6, ψ(t) = et, t ∈ [0, 1]. Concern with the following system is as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

CD0.6,et

1− (CD0.6,et

0+ x(t)) = λx
1
5 (t), t ∈ (0, t1]

⋃
(s1, 1],

Δ(CD0.6,et

1− (I0.4,et

0+ x))(t1) = I1(x(t1)),
CD0.6,et

1− (I0.4,et

0+ x)(t) = CD0.6,et

1− (I0.4,et

0+ x)(t+1 ), t ∈ (t1, s1],
CD0.6,et

1− (I0.4,et

0+ x)(s−1 ) =
CD0.6,et

1− (I0.4,et

0+ x)(s+1 ),
x(0) = x(1) = 0.

(26)

Put I1(x) = 1
100 x. Clearly, d1 = L1 = 1

100 . By direct calculation, we have M ≈ 1.585,
M2L1 = M2d1 ≈ 0.025, the condition (A1) in Theorem 1 holds. Choose ς(t) = Γ(1.2)et, ρ = 1

10 ,
a direct calculation yields

CD0.6,et

0+ ς(t) =
Γ(1.2)
Γ(0.4)

(−5
2
)(et − 1)0.4, ‖ς‖2

α,ψ ≈ 1.576,
(

1
2
− M2d1

2

)
‖ς‖2

α,ψ ≈ 0.8 > ρ,

then

∑n
i=0
∫ ti+1

si
supx∈Ω(ρ) Fi(t, x(t))ψ′(t)dt

ρ
=

(
∫ t1

0 +
∫ 1

s1
) 5

6 et supx∈Ω(ρ) x
6
5 (t)dt

0.1
≈ 0.55

( ∫ t1

0
+
∫ 1

s1

)
etdt < 0.9,

and

2 ∑n
i=0
∫ ti+1

si
Fi(t, ς(t))ψ′(t)dt

‖ς‖2
α,ψ − 2 ∑n

i=1
∫ ς(ti)

0 Ii(s))ds
=

5
3 (
∫ t1

0 +
∫ 1

s1
)et(Γ(1.2)et)

6
5 dt

‖ς‖2
α,ψ − 1

100 (ς(t1))2

>

5
3 (
∫ t1

0 +
∫ 1

s1
)et(Γ(1.2)et)

6
5 dt

‖ς‖2
α,ψ − 1

100 (Γ(1.2))2
≈ 1.2

( ∫ t1

0
+
∫ 1

s1

)
(et)

11
5 dt > 1.2,

which shows that the condition (A2) holds. From Theorem 1, the system (26) possesses at least three
distinct classical solutions for each λ ∈]0.8, 1.1[.

Example 2. Let α = 0.75, ψ(t) = ctσ with σ > 0 and c ≥ 1, t ∈ [0, 1]. Concern with the
following system is as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

CD0.75,ctσ

1− (CD0.75,ctσ

0+ x(t)) = λ f (t, x(t)), t ∈ (0, t1]
⋃
(s1, 1],

Δ(CD0.75,ctσ

1− (I0.25,ctσ

0+ x))(t1) = I1(x(t1)),
CD0.75,ctσ

1− (I0.25,ctσ

0+ x)(t) = CD0.75,ctσ

1− (I0.25,ctσ

0+ x)(t+1 ), t ∈ (t1, s1],
CD0.75,ctσ

1− (I0.25,ctσ

0+ x)(s−1 ) =
CD0.75,ctσ

1− (I0.25,ctσ

0+ x)(s+1 ),
x(0) = x(1) = 0.

(27)

Obviously, if one chooses c = 1, i.e., ψ(t) = tσ, the system (27) can reduce into the well known
Caputo-Erdélyi-Kober type fractional differential system. Define f (t, x) = 5

3
11
6

c− 5
4 x

2
3 ln(t + 1),

I1(x) = 1
10 c− 1

2 x. Then d1 = L1 = 1

10c
1
2

. By direct calculation, we have M ≈ 1.15c
1
4 , M2L1 =

M2d1 ≈ 0.132 < 1. Choosing ς(t) = Γ(0.25)c
3
4 tσ, ρ = c, a direct calculation yields:

CD0.75,ctσ

0+ ς(t) = 4t
1
4 σ, ‖ς‖2

α,ψ =
32
3

c,
(

1
2
− M2d1

2

)
‖ς‖2

α,ψ ≈ 4.6c > ρ,

then

337



Fractal Fract. 2023, 7, 206

∑n
i=0
∫ ti+1

si
supx∈Ω(ρ) Fi(t, x(t))ψ′(t)dt

ρ
=

(
∫ t1

0 +
∫ 1

s1
)cσtσ supx∈Ω(ρ) 3− 5

6 c− 5
4 x

5
3 ln(t + 1)dt

c
<

1
50σ

,

and

2 ∑n
i=0
∫ ti+1

si
Fi(t, ς(t))ψ′(t)dt

‖ς‖2
α,ψ − 2 ∑n

i=1
∫ ς(ti)

0 Ii(s))ds
=

2

3
5
6

Γ2(0.25)c(
∫ t1

0 +
∫ 1

s1
)σt2σ−1 ln(t + 1)dt

‖ς‖2
α,ψ − 1

10 c
−1
2 (ς(t1))2

>
1

10σ
,

so that the condition (A2) holds. From Theorem 1, for each λ ∈]10σ, 50σ[, the system (27) possesses
at least three distinct classical solutions.

4. Conclusions

In this paper, we have investigated a new class of instantaneous and non-instantaneous
impulsive boundary value problem involving the generalized ψ-Caputo fractional deriva-
tive. Based on properties of ψ-Caputo-type fractional operators and the three critical
points theorem, the multiplicity results have been established. This problem is novel and
hasn’t been touched yet. By choosing special kernel functions in the ψ-Caputo fractional
derivative, some existing results which focus on the classical fractional operators have been
improved and supplemented.
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Abstract: The Caputo fractional α-derivative, 0 < α < 1, for non-smooth functions with 1 + α

regularity is calculated by numerical computation. Let I be an interval and Dα(I) be the set of all
functions f (x) which satisfy f (x) = f (c) + f ′(c)(x− a) + gc(x)(x− c)|(x− c)|α, where x, c ∈ I and
gc(x) is a continuous function for each c. We first extend the trapezoidal method on the set Dα(I) and
rewrite the integrand of the Caputo fractional integral as a product of two differentiable functions. In
this approach, the non-smooth function and the singular kernel could have the same impact. The
trapezoidal method using the Riemann–Stieltjes integral (TRSI) depends on the regularity of the two
functions in the integrand. Numerical simulations demonstrated that the order of accuracy cannot be
increased as the number of zones increases using the uniform discretization. However, for a fixed
coarsest grid discretization, a refinable mesh approach was employed; the corresponding results
show that the order of accuracy is kα, where k is a refinable scale. Meanwhile, the application of the
product of two differentiable functions can also be applied to some Riemann–Liouville fractional
differential equations. Finally, the stable numerical scheme is shown.

Keywords: fractional derivative; Caputo derivative; trapezoidal method; Riemann–Stieltjes integral

1. Introduction

Fractional calculus [1–3] has attracted increased interest over the last decade and has
been applied in several fields including finance, control theory, electronic circuit theory,
mechanics, physics, and signal processing [4–11]. There are two popular definitions of the
fractional differentiation: the Riemann–Liouville derivative and the Caputo derivative. Let
0 < α < 1, n be a positive integer with n− 1 ≤ α < n, and a ∈ R.

Riemann–Liouville derivative: The Riemann–Liouville derivative of a function f (x)
starting at the point a is

aDα
t f (t) =

1
Γ(n− α)

dn

dtn

∫ t

a

f (τ)
(t− τ)α−n+1 dτ.

Caputo derivative: The Caputo derivative of a function f (x) starting at the point a is

C
a Dα

t f (t) =
1

Γ(n− α)

∫ t

a

f (n)(τ)
(t− τ)α−n+1 dτ. (1)

The comparison of these two definitions can be found in [12] and the definitions of
fractional derivatives are also revised in some studies [11–14].

The trapezoidal rule was used for integration or differential equations in the following
papers [15–17]. However, the functions of the integrand are assumed to be regular. This
paper is devoted to the computation of the Caputo fractional derivative on financial
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derivatives [18–21]. In some of them, the functions of the stock or option prices are only of
Lipschitz continuity. Our goal is to calculate the Caputo fractional integral for non-smooth
functions. This calculation will also encounter the difficulty induced by the singular kernel.
In [18], an implicit numerical discretization is used for the Riemann–Liouville integral to
calculate the chaotic behavior for financial models. In [22], the treatment for a singular
kernel involves the linear expansion of the smooth functions and direct integration of the
product of the linear polynomial and the singular kernel. In our approach, we consider the
function non-smooth. The function could be also singular, and the impact of the function
for the integral is similar to the kernel.

Let n be a positive integer and [a, b] be an interval. Define h = (b − a)/n and
xi = a + ih, where i = 0, 1, 2, . . . , n. To explore the niche of this research, let us explain the
following examples. The set of Ck([a, b]) represents the collection of all functions whose
domain on [a, b] and they are of a continuous k-th derivative. If f ∈ C2([a, b]), it is well
known in the textbook of numerical analysis, and the approximation is

∫ b

a
f (x) dx =

h
2

[
f (a) + f (b) + 2

n−1

∑
j=1

f (xj)

]
− (b− a)

12
h2 f ′′(ξ),

where ξ is in (a, b). For the particular case, f (x) =
√

x− a, the order of accuracy of
the trapezoidal rule method is reduced because the function f (x) belongs exclusively to
C0([a, b]).

Definition 1. Let I be an interval and the set

Dα(I) ≡ { f : f (x) = f (c) + f ′(c)(x− c) + gc(x)(x− c)|x− c|α}, (2)

where gc(x) is a continuous function for each c ∈ I.

For example, I = [0, 1], α = 1/2, and f (x) = x3/2. Then,

x3/2 = c3/2 +
3
2

c1/2(x− c) + gc(x)(x− c)|x− c|1/2

with

gc(x) =

{
x3/2−c3/2− 3

2 c1/2(x−c)
(x−c)|x−c|1/2 , x �= c,

0, x = c �= 0.

If c = 0, then g0(0) = 1 and gc(x) is continuous on [0, 1] for each c ∈ [0, 1]. Hence,
x3/2 ∈ D1/2([0, 1]). Moreover, for a fixed x, the function h(c) = gc(x) may not be continu-
ous on c since g0(0) = 1 and gc(0) = −1/2 for all c > 0.

This paper is organized as follows. The order of accuracy for the trapezoidal method
on the set Dα(I) is derived in Section 2. The proposed method for calculation of Caputo
fractional derivative is described in Section 3, using three examples. Smooth, regular and
non-regular functions are used in numerical simulations in Section 4. Section 5 shows the
analysis of the method to explain the obtained results and Section 6 demonstrates two
applications of the proposed method. The conclusion is given in the last section.

2. Order of Accuracy for Trapezoidal Method on Dα

In this section, we extend the analysis of the order of accuracy for the trapezoidal
method on the set Dα(I). Let us begin to consider the interpolation on the set Dα(I).

Lemma 1. Let f ∈ Dα(I). The linear interpolation of f on [a, b] ⊂ I has the property

f (x) = f (a)
b− x
b− a

+ f (b)
x− a
b− a

+
h(x)
b− a

(x− a)(b− x),
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where h(x) is a continuous function and x ∈ [a, b].

Proof. Since

f (x) = f (a) + f ′(a)(x− a) + ga(x)(x− a)|x− a|α,

f (x) = f (b) + f ′(b)(x− b) + gb(x)(x− b)|x− b|α,

we obtain

f (x) = f (a)
b− x
b− a

+ f (b)
x− a
b− a

+
1

(b− a)
( f ′(a)− f ′(b))(x− a)(b− x)

+
1

b− a
(ga(x)|x− a|α − gb(x)|b− x|α)(x− a)(b− x)

≡ f (a)
b− x
b− a

+ f (b)
x− a
b− a

+
h(x)
b− a

(x− a)(b− x).

Here, h(x) = f ′(a)− f ′(b) + ga(x)|x− a|α − gb(x)|b− x|α.

Lemma 2. Let f ∈ Dα(I) and [a, b] ⊂ I. Then,

∫ b

a
f (x)dx =

1
2
( f (a) + f (b))(b− a) +

h(ξ)
6

(b− a)2,

where h(ξ) is a continuous function.

Proof. This lemma holds. It is followed by Lemma 1 and

∫ b

a
f (x)dx =

∫ b

a

[
f (a)

b− x
b− a

+ f (b)
x− a
b− a

+
h(x)
b− a

(x− a)(b− x)
]

dx

=
1
2
( f (a) + f (b))(b− a) +

h(ξ)
b− a

∫ b

a
(x− a)(b− x)dx

=
1
2
( f (a) + f (b))(b− a) +

h(ξ)
6

(b− a)2,

where ξ in (a, b), and the second equality is followed by the weighted mean value theorem.

Lemma 3. Let f ∈ Dα(I) and [a, b] ⊂ I. Then,

f ′(b)− f ′(a) = (gb(a)− ga(b))|b− a|α.

Proof. From the following,

f (b)− f (a)
b− a

= f ′(a) + ga(b)|b− a|α,

f (a)− f (b)
a− b

= f ′(b) + gb(a)|b− a|α,

and taking the subtraction of the above two equations, it yields

f ′(b)− f ′(a) = (gb(a)− ga(b))|b− a|α. (3)

Moreover, |ga(x)|x− a|α − gb(x)|b− x|α| ≤ (|ga(x)|+ |gb(x)|)|b− a|α for x ∈ [a, b]
and |h(x)| ≤ (|gb(a) − ga(b)| + |ga(x)| + |gb(x)|)|b − a|α. Since h is continuous and
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bounded by the extremum theorem of continuous functions on a closed interval, Lemma 2
can be re-estimated to be Theorem 1 below.

Theorem 1. Let f ∈ Dα(I) and [a, b] ⊂ I. Then,

∫ b

a
f (x)dx =

1
2
( f (a) + f (b))(b− a) + O((b− a)2+α).

Remark. If f ∈ C2(I) then gc =
1
2 f ′′(ξ), where ξ between c and x, then α = 1.

Theorem 2. Let f ∈ Dα(I) and [a, b] ⊂ I. If

f (x) = f (c) + f ′(c)(x− c) + gc(x)(x− c)|x− c|α

and |gc(a)| is uniformly bounded for all c ∈ [a, b], then

∫ b

a
f ′(x)dx =

1
2
( f ′(a) + f ′(b))(b− a) + O((b− a)1+α).

Proof. Using (3) as

f ′(x)− f ′(a) = (gx(a)− ga(x))|x− a|α,

taking the integration of the above equation on [a, b], we have

∫ b

a
[ f ′(x)− f ′(a)] dx =

∫ b

a
(gx(a)− ga(x))|x− a|α dx.

Since |gx(a)| is uniformly bounded for all x ∈ [a, b] and ga(x) is continuous on
x ∈ [a, b], it implies that |gx(a)− ga(x)| is uniformly bounded for x ∈ [a, b] and

∫ b

a
(gx(a)− ga(x))|x− a|α dx = O(

∫ b

a
(x− a)α dx) = O((b− a)1+α). (4)

Then, ∫ b

a
f ′(x) dx = f ′(a)(b− a) +

∫ b

a
[ f ′(x)− f ′(a)] dx

=
1
2
( f ′(a) + f ′(b))(b− a)− 1

2
( f ′(b)− f ′(a))(b− a)

+
∫ b

a
(gx(a)− ga(x))|x− a|α dx

=
1
2
( f ′(a) + f ′(b))(b− a) + O((b− a)1+α).

The last equality is followed by 1
2 ( f ′(b)− f ′(a))(b− a) = 1

2 (gb(a)− ga(b))(b− a)1+α

and (4). Therefore, this theorem holds.

3. Method

For the sake of simplicity and without loss generality, the case of n = 1 is considered
in the whole paper. Equation (1) is equal to

C
a Dα

t f (t) =
1

Γ(1− α)

∫ t

a
f ′(τ)(t− τ)−α dτ, (5)
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or

C
a Dα

t f (t) =
1

Γ(1− α)

∫ t

a
f ′(τ)ϕ′(t− τ) dτ, (6)

here, ϕ(t) = − 1
1−α t1−α.

Let the interval I = [0, 1] and N be a positive integer. The interval I is divided into
N-subintervals [t�−1, t�] with the sample points t�, � = 1, 2, . . . , N.

C
0 Dα

t f (tk) =
1

Γ(1− α)

k

∑
�=1

∫ t�

t�−1

f ′(τ)ϕ′(tk − τ)dτ.

Since ϕ is monotonic whenever 0 < α < 1, the inverse of ϕ exists. Using the substitu-
tion rule, y = ϕ(t− τ) for fixed t, the integral∫ t�

t�−1

f ′(τ)ϕ′(tk − τ)dτ

can be rewritten into ∫ y�

y�−1

f ′(tk − ϕ−1(y))dy, (7)

where y�−1 = ϕ(tk − t�−1) and y� = ϕ(tk − t�). The linear interpolation of f ′(y) on the
interval I with the endpoints ϕ(tk − t�) and ϕ(tk − t�−1) is

f ′(y) = f ′(t�−1)
y� − y

y� − y�−1
+ f ′(t�)

y− y�−1
y� − y�−1

. (8)

Substituting (8) into (7), it yields∫ y�

y�−1

f ′(tk − ϕ−1(y))dy ≈ 1
2
( f ′(t�−1) + f ′(t�))(y� − y�−1)

=
1
2
( f ′(t�−1) + f ′(t�))(ϕ(tk − t�)− ϕ(tk − t�−1)). (9)

The approximation in the last equation listed above represents the trapezoidal method
but uses the Riemann–Stieltjes integral. The roles of f and g may be interchanged.
Equation (9) is modified to

∫ y�

y�−1

f ′(tk − ϕ−1(y))dy ≈ H
1
2
( f ′(t�−1) + f ′(t�))(ϕ(tk − t�)− ϕ(tk − t�−1))

+(1− H)
1
2
( f (t�)− f (t�−1))(ϕ′(tk − t�) + ϕ′(tk − t�−1)), (10)

where H = H(|ϕ(tk − t�)− ϕ(tk − t�−1)| − | f (t�)− f (t�)|) is the Heaviside step function.
We refer to the approach in (10) as the TRSI method. If the function f is smooth and ϕ is
non-smooth, then TRSI in (10) may only use H = 1. On the other hand, the function ϕ is
smooth and f is non-smooth, then TRSI in (10) may only use H = 0. For Caputo fractional
derivatives, ϕ is described as the form − 1

1−α t1−α and its derivative is singular at its origin.
Therefore, if the function f is smooth, then H = 0 only occurs at the singularity of ϕ′.
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The stability of the TRSI method to use Equation (6) is to estimate the following:

|Ca Dα
t f (tk)| ≤

∣∣∣∣∣ 1
Γ(1− α)

k

∑
�=1

∫ t�

t�−1

f ′(τ)ϕ′(tk − τ) dτ

∣∣∣∣∣
≤

∣∣∣∣∣ 1
Γ(1− α)

k

∑
�=1

min{|ϕ(tk − t�)− ϕ(tk − t�−1))|, | f (t�)− f (t�−1)|}×

1
2
(| f ′(t�−1) + f ′(t�)|+ |ϕ′(tk − t�) + ϕ′(tk − t�−1)|)

∣∣∣∣.
If 1

Δt min{|ϕ(tk − t�)− ϕ(tk − t�−1))|, | f (t�)− f (t�−1)|} is uniformly bounded for Δt,∫ t
0 | f ′(s)|ds and

∫ t
0 |ϕ′(s)|ds are bounded, M, then

|Ca Dα
t f (tk)| ≤ M

Γ(1− α)

(∫ tk

0
| f ′(s)| ds +

∫ tk

0
|ϕ′(s)|ds

)
and it follows that TRSI is stable. The condition 1

Δt min{|ϕ(tk− t�)− ϕ(tk− t�−1))|, | f (t�)−
f (t�−1)|} is uniformly bounded. It also indicates the existence of the Riemann–Stieltjes
integral. It is identical to the existence of the Riemann–Stieltjes integral

∫ b

a
f ′(s)dϕ(s),

requires the condition that the discontinuity of f ′ and ϕ cannot occur coincidentally, and
vice versa. Therefore, the stability theorem of the TRSI method is stated in the follow-
ing theorem.

Theorem 3. The TRSI method is stable if the condition that the discontinuity of f ′ and ϕ cannot
occur coincidentally is held.

4. Simulations

Let us consider the interval I = [0, 1] and there are N uniform cells; that is, each
subinterval [t�−1, t�] has the length Δt = 1

N with the sample points t� = �
N . We will vary

N = 2K from K = 5 to K = 12. To probe the behavior of the TRSI method, let us define the
1-norm, 2-norm and ∞-norm in vectors of numerical solutions by

‖ f (·)‖1 =
N

∑
�=1

| f (t�)|Δt, ‖ f (·)‖2 = (
N

∑
�=1

| f (t�)|2)1/2Δt, ‖ f (·)‖∞ = max
1≤�≤N

| f (t�)|.

Furthermore, the order of accuracy is defined as

Oq,K = log2(
‖eK‖q

‖eK+1‖q
),

where q = 1, 2, ∞ and eK is the error between the numerical and exact solutions at the size of
zones 2K. In the following subsection, we adopt three examples as model examples which
represent the smooth, regular and non-smooth functions from Example 1 to Example 3
below, respectively.
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4.1. Model Examples

Example 1 . Let us consider f (t) = 1
4 t4 and g(t) = 2t

1
2 . The polynomial is smooth because

f (n) exists for any n, which is a non-negative integer. The Caputo fractional derivative of
f (t) for α = 1

2 is

C
0 Dα

t f (t) =
1

Γ(1− α)

∫ t

0
f ′(τ)(t− τ)−α dτ =

1
Γ( 1

2 )

∫ t

0
τ3(t− τ)−

1
2 dτ. (11)

The analytic solution is C
0 Dα

t f (t) = 32
35
√

π
t

7
2 . The errors between the exact and numeri-

cal solutions are shown in Table 1, which demonstrates that the order of accuracy is near
1.5 for 1-norm, 2-norm and ∞-norm.

Table 1. The errors between numerical and analytic solutions for f (t) = 1
4 t4 and the order of accuracy.

The order of accuracy is near 1.5 for 1-norm, 2-norm and ∞-norm.

N� E1 E2 E∞ N�/N�+1 O1 O2 O∞

32 1.038× 10−3 1.415× 10−3 3.124× 10−3 32/64 1.41 1.41 1.40

64 3.915× 10−4 5.312× 10−4 1.186× 10−3 64/128 1.43 1.44 1.43

128 1.449× 10−4 1.960× 10−4 4.391× 10−4 128/256 1.45 1.46 1.46

256 5.291× 10−5 7.140× 10−5 1.602× 10−4 256/512 1.47 1.47 1.47

512 1.914× 10−5 2.579× 10−5 5.784× 10−5 512/1024 1.48 1.48 1.48

1024 6.880× 10−6 9.256× 10−6 2.075× 10−5 1024/2048 1.48 1.48 1.49

2048 2.461× 10−6 3.308× 10−6 7.413× 10−6 2048/4096 1.49 1.49 1.49

4096 8.771× 10−7 1.179× 10−6 2.639× 10−6 - - - -

Example 2. Let us consider f (t) = 3
2 t3/2 and g(t) = 2t

1
2 . The power function f ′ only can

take the first derivate because f ′′ is singular at the origin. The Caputo fractional derivative
of f (t) for α = 1

2 is

C
0 Dα

t f (t) =
1

Γ(1− α)

∫ t

0
f ′(τ)(t− τ)−α dτ =

1
Γ( 1

2 )
,
∫ t

0
τ

1
2 (t− τ)−

1
2 dτ. (12)

The analytic solution is C
0 Dα

t f (t) =
√

π
2 t. The errors are shown in Table 2. The results

demonstrate that the order of accuracy is near 1.5, 1.45 and 1 for 1-norm, 2-norm and
∞-norm, respectively.

Table 2. The errors between numerical and analytic solutions for f (t) = 2
3 t3/2 and the order of accu-

racy. The order of accuracy is near 0.52, 0.54 and 0.16 for 1-norm, 2-norm and ∞-norm, respectively.

N� E1 E2 E∞ N�/N�+1 O1 O2 O∞

32 2.390× 10−3 2.920× 10−3 1.006× 10−2 32/64 1.47 1.41 1.00

64 8.649× 10−4 1.100× 10−3 5.032× 10−3 64/128 1.48 1.42 1.00

128 3.109× 10−4 4.115× 10−4 2.516× 10−3 128/256 1.48 1.42 1.00

256 1.112× 10−4 1.531× 10−4 1.258× 10−3 256/512 1.49 1.43 1.00

512 3.967× 10−5 5.668× 10−5 6.290× 10−4 512/1024 1.49 1.44 1.00

1024 1.411× 10−5 2.091× 10−5 3.145× 10−4 1024/2048 1.49 1.44 1.00

2048 5.001× 10−6 7.686× 10−6 1.572× 10−4 2048/4096 1.50 1.45 1.00

4096 1.777× 10−6 2.818× 10−6 7.862× 10−4 - - - -
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Example 3. Let us consider f (t) = 2t1/2 and g(t) = 3
2 t

2
3 . The power function f does not

have the first derivative because f ′(0) does not exist. The Caputo fractional derivative of
f (t) for α = 1

3 is

C
0 Dα

t f (t) =
1

Γ(1− α)

∫ t

0
f ′(τ)(t− τ)−α dτ =

1
Γ( 2

3 )

∫ t

0
τ−

1
2 (t− τ)−

1
3 dτ. (13)

The analytic solution is C
0 Dα

t f (t) =
Γ( 1

2 )

Γ( 7
6 )

t
1
6 . The errors are shown in Table 3. The

order of accuracy is near 0.52, 0.54 and 0.16 for 1-norm, 2-norm and ∞-norm, respectively.
In Figure 1, the top-left panel shows the exact solution (red dot line) and the numerical
solution (blue solid line). The errors between the numerical and exact solutions are shown
in the top-right panel. The zoom-in profiles on [0, 0.2] are shown in the corresponding
panels below.
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Figure 1. The profiles of the simulations of Example 3. The analytic (ua) and the numerical uN

solutions are shown in the top-left panel. The absolute value of the error |ua − uN | is shown in the
top-right panel. The zoom-in profiles on [0, 0.2] are shown in the corresponding panels below.

The approximation of the non-smooth or continuous function may improve the accu-
racy by refining the meshes. However, it is not equivalent to a finer mesh refinement in this
case, as the kernel function ϕ(tk − s) is not only non-smooth, but it is singular for fixed tk.
Therefore, we divide the subinterval by K-zones again. More precisely,

∫ t�

t�−1

f ′(s)(tk − s)−α ds =
K
∑

m=1

∫ t�,m

t�,m−1

f ′(s)ϕ′(tk − s) ds,

where t�,m = t�−1 + mΔK, m = 0, 1, 2, . . . ,K, with ΔK =
t�−t�−1
K . The results of fixed

N = 128 for K = 2p, p = 2, 3, . . . , 6 are shown in Table 4 and the corresponding pro-
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files are shown in Figure 2. The errors were reduced from 2.8× 10−2 to 4.7× 10−5; see
Tables 3 and 4, respectively.

Table 3. The errors between numerical and analytic solutions for f (t) = 2t1/2 and the order of
accuracy. It shows that the order of accuracy is near 0.52, 0.54 and 0.16 for 1-norm, 2-norm and
∞-norm, respectively.

N� E1 E2 E∞ N�/N�+1 O1 O2 O∞

32 1.565× 10−2 1.967× 10−2 6.281× 10−2 32/64 0.63 0.58 0.16

64 1.009× 10−2 1.315× 10−2 5.596× 10−2 64/128 0.61 0.58 0.16

128 6.635× 10−3 8.825× 10−3 4.985× 10−2 128/256 0.58 0.57 0.16

256 4.445× 10−3 5.948× 10−3 4.441× 10−2 256/512 0.55 0.56 0.16

512 3.029× 10−3 4.031× 10−3 3.957× 10−2 512/1024 0.54 0.55 0.16

1024 2.087× 10−3 2.746× 10−3 3.525× 10−2 1024/2048 0.52 0.55 0.16

2048 1.451× 10−3 1.881× 10−3 3.140× 10−2 2048/4096 0.52 0.54 0.16

4096 1.014× 10−3 1.294× 10−3 2.780× 10−2 - - - -

Table 4. The errors between numerical and analytic solutions for f (t) = 2t1/2 and the order of
accuracy using TRSI with refining mesh. The order of accuracy is near 1.76, 1.61 and 1.59 for 1-norm,
2-norm and ∞-norm, respectively.

K(N = 128) E1 E2 E∞ Kp−1/Kp O1 O2 O∞

4 9.393× 10−4 1.651× 10−3 1.399× 10−2 4/8 1.88 1.76 1.72

8 2.548× 10−4 4.860× 10−4 4.260× 10−3 8/16 1.86 1.72 1.67

16 7.013× 10−5 1.480× 10−4 1.343× 10−3 16/32 1.83 1.67 1.63

32 1.973× 10−5 4.636× 10−5 4.328× 10−4 32/64 1.80 1.64 1.60

64 5.690× 10−6 1.487× 10−5 1.418× 10−4 64/128 1.76 1.61 1.59

128 1.685× 10−6 4.861× 10−6 4.708× 10−5 - - - -

4.2. A Comparison Study

The modified trapezoidal rule (MTR) [22] uses the linear interpolation on f ′(s) rather
than f ′(s)(tk − s)−α in the traditional sense for the following integral, and we rewrite it as
shown below. The integral can be approximated by∫ t�

t�−1

f ′(s)(tk − s)−α ds ≈ f ′(t�−1)

t� − t�−1
Wk

L,� +
f ′(t�)

t� − t�−1
Wk

R,�,

where

Wk
L,� =

(tk − t�)2−α

1− α
− (tk − t�)(tk − t�−1)

1−α

1− α
− (tk − t�)2−α

2− α
+

(tk − t�−1)
2−α

2− α
,

Wk
R,� =

(tk − t�)2−α

2− α
− (tk − t�−1)

2−α

2− α
− (tk − t�−1)(tk − t�)1−α

1− α
+

(tk − t�−1)(tk − t�−1)
1−α

1− α
.

The errors are shown in Tables 5 and ?? for model example 1 and 2, respectively.
However, Example 3 cannot be simulated by the MTR method because the derivative of
the exact function does not exist at the origin.
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Figure 2. The profiles of the simulations of Example 3 with a refinable approach. The analytic (ua)
and the numerical uN solutions are in the top-left panel. The absolute value of the error |ua − uN | is
in the top-right panel. The zoom-in profiles on [0, 0.2] are shown in the corresponding panels below.

Table 5. The errors between numerical and analytic solutions for f (t) = 1
4 t4 and the order of accuracy

using the MTR method. It shows that the order of accuracy is 2.0 for 1-norm, 2-norm and ∞-norm.

N� E1 E2 E∞ N�/N�+1 O1 O2 O∞

32 1.423× 10−4 1.776× 10−4 3.473× 10−4 32/64 2.00 1.99 1.98

64 3.565× 10−5 4.459× 10−5 8.830× 10−5 64/128 1.99 1.99 1.98

128 8.958× 10−6 1.121× 10−5 2.233× 10−5 128/256 1.99 1.99 1.98

256 2.252× 10−6 2.818× 10−6 5.629× 10−6 256/512 1.99 1.99 1.99

512 5.656× 10−7 7.077× 10−7 1.415× 10−6 512/1024 1.99 1.99 1.99

1024 1.419× 10−7 1.776× 10−7 3.553× 10−7 1024/2048 2.00 2.00 2.00

2048 3.559× 10−8 4.451× 10−8 8.907× 10−8 2048/4096 2.00 2.00 2.00

4096 8.917× 10−9 1.115× 10−8 2.231× 10−8 - - - -

Table 6. The errors between numerical and analytic solutions for f (t) = 2
3 t3/2 and the order of

accuracy. It shows that the order of accuracy is near 1.49, 1.44 and 1.0 for 1-norm, 2-norm and
∞-norm, respectively.

N� E1 E2 E∞ N�/N�+1 O1 O2 O∞

32 1.161× 10−3 1.362× 10−3 4.187× 10−3 32/64 1.45 1.40 1.00

64 4.237× 10−4 5.176× 10−4 2.093× 10−3 64/128 1.47 1.41 1.00

128 1.533× 10−4 1.950× 10−4 1.047× 10−3 128/256 1.48 1.42 1.00
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Table 6. Cont.

N� E1 E2 E∞ N�/N�+1 O1 O2 O∞

256 5.507× 10−5 7.293× 10−5 5.233× 10−4 256/512 1.48 1.43 1.00

512 1.969× 10−5 2.713× 10−5 2.617× 10−4 512/1024 1.49 1.43 1.00

1024 7.019× 10−6 1.004× 10−5 1.308× 10−4 1024/2048 1.49 1.44 1.00

2048 2.496× 10−6 3.703× 10−6 6.542× 10−5 2048/4096 1.49 1.44 1.00

4096 8.861× 10−6 1.361× 10−6 3.271× 10−5 - - - -

5. Error Analysis

Let us start to observe the approximation of the function y =
√

t by the linear interpo-
lation L(t) on [t�−1, t�],

L(t) =
√

t� −
√

t�−1
t� − t�−1

(t− t�−1) +
√

t�−1.

The error e(t) = y(t)−L(t) on [t�−1 − t�] has the maximum error

|e(t∗)| = | (t� − t�−1)
2

4(
√

t� +
√

t�−1)2 |,

where t∗ = 1
4 (
√

t� +
√

t�−1)
2. Let t� = �Δt, � = 0, 1, . . . , N; the error for � = 1 is 1

4 Δt.
This explains that the reason for Example 2 using the trapezoidal method is only of first-
order accuracy.

Theorem 4. Let the function L�(t) be the linear interpolation of the function f ′(t) on each
subinterval [t�−1, t�], � = 1, 2, . . . , N and

∫ t
0 |ϕ′(t− τ)| dτ is uniformly bounded for 0 ≤ t ≤ 1.

The modified trapezoidal rule for calculation

C
0 Dα

t f (t) =
1

Γ(1− α)

∫ t

0
f ′(τ)(t− τ)−α dτ

has the error bounded by C max�{|L�(t)− f ′(t)|} and

C =
1

Γ(1− α)

∫ t

0
|t− τ| dτ.

Proof. The error is given by

| 1
Γ(1− α)

∫ t

0
f ′(τ)(t− τ)−α dτ − 1

Γ(1− α)

∫ t

0
L�(τ)(t− τ)−α dτ|.

It follows that the error is less than

1
Γ(1− α)

∫ t

0
| f ′(τ)−L�(τ)|(t− τ)−α dτ ≤ 1

Γ(1− α)

∫ t

0
max
�
| f ′(τ)−L�(τ)(t− τ)|−α dτ

= max
�
| f ′(τ)−L�(τ)| 1

Γ(1− α)

∫ t

0
|t− τ|−α dτ

Theorem 4 can be applied to explain the results (Tables 5 and ??) for Example 1 and
Example 2 obtained using MTR. Next, we will analyze the TRSI method. Let us first
recall the error analysis for smooth functions as Theorem 5 below for the trapezoidal
method in comparison with the estimation of the errors for the functions in Dα(I) shown
in Theorem 6 below.
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Let

H(t) =
∫ t

t�−1

f ′(s)g′(tk − s) ds

and Δt = (t� − t�−1). Then,

H(t�) = H(t�−1) +H′(t�−1)(Δt) +
1
2
H′′(t�−1)(Δt)2 + O((Δt)3)

if H has the third continuous derivative. Furthermore, if f ′′′ and g′′′ are continuous
whenever � < N, then

f ′(t�) = f ′(t�−1) +
1
2

f ′′(t�−1)(Δt) + O((Δt)2),

g′(tk − t�) = g′(tk − t�−1)− 1
2

g′′(tk − t�−1)(Δt) + O((Δt)2).

It follows that∫ t�

t�−1

f ′(s)g′(tk − s) ds =
1
2
( f ′(t�−1) + f ′(t�))(g(tk − t�)− g(tk − t�−1)) + O((Δt)3).

The above approximation leads to the theorem below.

Theorem 5. If f ′′′ exists and is continuous and g(t) = − t1−α

1−α , 0 < α < 1 then

∫ t�

t�−1

f ′(s)g′(tk − s) ds =
1
2
( f ′(t�−1) + f ′(t�))(g(tk − t�)− g(tk − t�−1)) + O((Δt)3)

for � < k. Furthermore,

k−1

∑
�=1

∫ t�

t�−1

f ′(s)g′(tk − s) ds =
k−1

∑
�=1

1
2
( f ′(t�−1) + f ′(t�))(g(tk − t�)− g(tk − t�−1)) + O((Δt)2)

and for � = k, the following approximation is reduced to∫ tk

tk−1

f ′(s)g′(tk − s) ds =
1
2
( f ′(tk) + f ′(tk−1))(g(tk − tk)− g(tk − tk−1)) + O(Δt).

From (7) and Theorem 2, if f ∈ Dα(I), then we have∫ y�

y�−1

f ′(tk − ϕ−1(y))dy =
1
2
(

f ′(t�−1) + f ′(t�)
)
(y� − y�−1) + O((y� − y�−1)

1+α)

for � < k and for � = k, it is reduced to∫ y�

y�−1

f ′(tk − ϕ−1(y))dy =
1
2
(

f ′(t�−1) + f ′(t�)
)
(y� − y�−1) + O((y� − y�−1)

α).

Furthermore, the term O((y� − y�−1)
1+α) = O((t� − t�−1)

1+α). On the other hand,

∫ y�

y�−1

f ′(tk − ϕ−1(y))dy =
1
2
( f (t�)− f (t�−1))(ϕ′(tk − t�) + ϕ′(tk − t�−1))

+O(( f (t�)− f (t�−1))
3)

=
1
2
( f (t�)− f (t�−1))(ϕ′(tk − t�) + ϕ′(tk − t�−1)) + O((t� − t�−1)

3)
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Theorem 6. If f ∈ Dα(I) and g(t) = − t1−α

1−α , 0 < α < 1 then

∫ t�

t�−1

f ′(s)g′(tk − s) ds =
1
2
( f ′(t�−1) + f ′(t�))(g(tk − t�)− g(tk − t�−1)) + O((Δt)1+α)

for � < k. Furthermore,

k−1

∑
�=1

∫ t�

t�−1

f ′(s)g′(tk − s) ds =
k−1

∑
�=1

1
2
( f ′(t�−1) + f ′(t�))(g(tk − t�)− g(tk − t�−1)) + O((Δt)α)

and for � = k, the following approximation is reduced to∫ tk

tk−1

f ′(s)g′(tk − s) ds =
1
2
( f ′(tk) + f ′(tk−1))(g(tk − tk)− g(tk − tk−1)) + O((Δt)α).

Let k be a positive integer and 0 < α < 1. If an integration scheme has the order of
accuracy α,

∫ b

a
f ′(s)g′(b− s) ds = N (hj) + O(hα

j ),

where hj = (b− a)/2j and N for some numerical method, then the refinable approach
using the mesh hj+k is read as

∫ b

a
f ′(s)g′(b− s) ds = N (hj+k) + O(hα

k+j).

This implies that the order of accuracy is log2(h
α
j /hα

k+j) = log2(2
kα) = kα.

6. Applications

We are going to demonstrate the applications of the integrand in (10) rewritten as a
product of two derivatives of functions on fractional differential equations with Caputo
and Riemann–Liouville derivatives.

6.1. Fractional Differential Equation with Caputo Derivatives

We first solve the fractional differential equation to evaluate the TRSI method

IVP:
{ C

0 Dα
t y + y = 3

4 t
√

π + t3/2

y(0) = y′(0) = 0

The exact solution for (14) is y(t) = t3/2.
The discretization approach at the zone [t�−1, t�] is

1
Γ(1− α)

�

∑
m=1

∫ tm

tm−1

y′(s)(t� − s)−αds + y(t�) =
3
4

t�
√

π + (t�)3/2. (14)

If y(tm) and y′(tm) for m = 0, 1, . . . , �− 1 are given, then we have to solve y(t�) and
y′(t�). There are two unknowns, y(t�) and y′(t�), in Equation (14) but only one equation.
We further impose the condition

y(t�)− y(t�−1)

Δt
=

y′(t�) + y′(t�−1)

2
,
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which means that the central difference at the midpoint of t� and t� approximation. It
gives us

Δt
2

y′(t�)− y(t�) =
Δt
2

y′(t�−1)− y(t�−1). (15)

Coupling (14) and (15), the linear system for y′(t�) and y(t�) is obtained[
a11 a12
a21 a22

][
y′(t�)
y(t�)

]
=

[
b1
b2

]
,

where a12 = 1, a22 = −1, a21 = Δt
2 ,

a11 =
1

Γ(1− α)
(−ϕ(Δt)),

b1 =
3
4

t�
√

π + (t�)3/2 +
ϕ(Δt)

2Γ(1− α)

− 1
Γ(1− α)

�−1

∑
m=1

1
2
(y′(tm) + y′(tm−1))(ϕ(t� − tm)− ϕ(t� − tm−1)).

The errors between the analytic and numerical solutions for the IVP problem are
shown in Table 7. It shows the order of accuracy is 1.49 for the 1-norm and 2-norm and
1.46 for the ∞-norm.

Table 7. The errors between the analytic and numerical solutions for the IVP problem are shown in
this table. The order of accuracy is 1.49 for 1-norm and 2-norm and 1.46 for ∞-norm.

N� E1 E2 E∞ N�/N�+1 O1 O2 O∞

32 8.440× 10−4 8.490× 10−4 1.000× 10−3 32/64 1.45 1.44 1.38

64 3.094× 10−4 3.121× 10−4 3.847× 10−4 64/128 1.46 1.46 1.40

128 1.123× 10−4 1.135× 10−4 1.461× 10−4 128/256 1.47 1.47 1.41

256 4.045× 10−5 4.097× 10−5 5.486× 10−5 256/512 1.48 1.48 1.43

512 1.449× 10−5 1.470× 10−5 2.041× 10−5 512/1024 1.49 1.48 1.44

1024 5.172× 10−6 5.254× 10−6 7.536× 10−6 1024/2048 1.49 1.49 1.45

2048 1.841× 10−6 1.872× 10−6 2.764× 10−6 2048/4096 1.49 1.49 1.46

4096 6.538× 10−7 6.656× 10−7 1.008× 10−6 - - - -

6.2. Fractional Differential Equation with Riemann–Liouville Derivatives

In this subsection, we consider the fractional ordinary equation [23]:

IVP2:

{
d
dt

1
Γ(1−α)

∫ t
0 y′(s)(t− s)−α + y(t) = 3

4
√

π + t3/2

y(0) = y′(0) = 0

The exact solution is the same as the previous case, y(t) = t3/2. Taking the integration
from t0 = 0 to t�, we obtain

1
Γ(1− α)

∫ t�

0
y′(s)(t� − s)−αds +

∫ t�

0
y(t) dt =

3
4

t�
√

π +
2
5
(t�)5/2

or
1

Γ(1− α)

�

∑
m=1

∫ tm

tm−1

y′(s)(t� − s)−αds +
∫ t�

0
y(t) dt =

3
4

t�
√

π +
2
5
(t�)5/2.
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We use the traditional trapezoidal method for the second integral on the left-hand
side as the same approach in [23]. Meanwhile, people can define the coefficients ã11 = a11,
ã21 = a21, b̃2 = b2 and

ã12 =
1
2

Δt, b̃1 = b1 − 1
2

�−1

∑
m=1

(y(tm) + y(tm−1))Δt,

where a11, a12, a21, a22, b1, and b2 are defined in the (6.1). The numerical solution is obtained
by solving the following linear system:[

ã11 ã12
ã21 ã22

][
y′(t�)
y(t�)

]
=

[
˜b1
b̃2

]
.

The errors between the exact and numerical solutions are shown in Table 8, which
demonstrates that the order of accuracy is near 1.49 for 1-norm and 2-norm and 1.48
for ∞-norm.

Table 8. The errors between the analytic and numerical solutions for the IVP2 problem are shown in
this table. It shows the order of accuracy is 1.49 for 1-norm and 2-norm and 1.48 for ∞-norm.

N� E1 E2 E∞ N�/N�+1 O1 O2 O∞

32 1.082× 10−3 1.105× 10−3 1.349× 10−3 32/64 1.43 1.43 1.41

64 4.015× 10−4 4.107× 10−4 5.069× 10−4 64/128 1.45 1.45 1.44

128 1.468× 10−4 1.504× 10−4 1.873× 10−4 128/256 1.47 1.46 1.45

256 5.311× 10−5 5.449× 10−5 6.846× 10−5 256/512 1.48 1.47 1.46

512 1.909× 10−5 1.961× 10−5 2.482× 10−5 512/1024 1.48 1.48 1.47

1024 6.826× 10−6 7.018× 10−6 8.942× 10−6 1024/2048 1.49 1.49 1.48

2048 2.433× 10−6 2.503× 10−6 3.207× 10−6 2048/4096 1.49 1.49 1.48

4096 8.652× 10−7 8.907× 10−7 1.147× 10−6 - - - -

7. Conclusions

The analysis of the trapezoidal method was extended from C2 to Dα(I) and, for each
f ∈ Dα(I), has the order of accuracy 1 + α. The trapezoidal method using the Riemann–
Stieltjes integral on Caputo fractional derivatives for non-smooth functions was proposed,
and the approximation ability was also investigated using three models of examples
of smoothness, regularity and non-smoothness. The product of the integrand reveals
that, if f ∈ Dα(I) and the integration is approximated by using the differential d f , then
the trapezoidal method has the second order of accuracy compared to the traditional
one. On the other hand, if the integration is approximated by using the differential
dϕ, ϕ(x) = − 1

1−α x1−α, then the order of accuracy for the trapezoidal method is of the α
fractional order of accuracy. The novelty of this method can be addressed to automatically
choose the non-smooth functions or the singular kernel for linear interpolation.

The errors in Table 3 show that increasing the number of zones cannot significantly
improve the accuracy, and the order of accuracy is 0.16 for ∞-norm. Therefore, a refining
mesh shown in Table 4 demonstrated that the order of accuracy is 1.59 for the ∞-norm. To
confirm this point, we further apply the refinable approach to MTR. The result for the MTR
method using a refinable approach is shown in Table 9; the order of accuracy improves
from 1.0 to 1.50 for the ∞-norm, see Tables ?? and 9.
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Table 9. The errors between numerical and analytic solutions for f (t) = 2t1/2 and the order of
accuracy using MTR with refining mesh. The order of accuracy is near 1.5 for 1-norm, 2-norm and
∞-norm.

K(N = 128) E1 E2 E∞ Kp−1/Kp O1 O2 O∞

4 1.900× 10−5 2.366× 10−5 1.156× 10−4 4/8 1.50 1.50 1.51

8 6.713× 10−6 8.352× 10−6 4.064× 10−5 8/16 1.50 1.51 1.50

16 2.373× 10−6 2.951× 10−6 1.434× 10−5 16/32 1.50 1.50 1.50

32 8.389× 10−7 1.043× 10−6 5.066× 10−6 32/64 1.50 1.50 1.50

64 2.966× 10−7 3.688× 10−7 1.790× 10−6 64/128 1.50 1.50 1.50

128 1.049× 10−7 1.304× 10−7 6.328× 10−7 - - - -
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1. Introduction

The Lyapunov inequality provides a necessary condition for the existence of a non-
trivial positive solution to the certain ordinary second-order differential equation. Since
it was proved in 1907 by A. M. Lyapunov, it has been generalized in many ways and
found to play a remarkable role in the analysis of differential equations- available results
concern, e.g., bounds for eigenvalues [1], estimates for intervals of disconjugacy [2], or
criteria for stability of periodic differential equations [3]. Most results, however, refer to
the single time case. Results for multitime are scarce and are considered, e.g., in [4], where
the partial differential equation involving Grushin operator was investigated, or in [5,6],
where problems with Laplace and p-Laplace operators were studied, respectively. For more
details of Lyapunov and other type inequalities, we refer to the papers [7–11].

In the references cited above, the authors consider integer order derivatives. Neverthe-
less, in recent years, a lot of papers studied Lyapunov inequalities for the boundary-value
problems involving fractional differential operators [12]. In contrary to the classical ap-
proach, fractional derivatives are operators with memory, i.e., they are defined non-locally
and because of that they model time-dependent processes more accurately [13–18]. The
first work on Lyapunov inequality for fractional boundary-value problems has been written
by R. Ferreira and concerns a problem with a derivative of order in the interval (1, 2] [19].
In this paper, however, we find a class of fractional differential equations with mixed right
and left fractional derivatives to be more interesting [15,20]. Mixed fractional differential
operators have a significant property, specifically, they are symmetric in agreement with
the fractional integration by parts formulas and because of that they naturally arise in the
theory of fractional calculus of variations [13,15,16,21]. The following theorems, concerning
Lyapunov inequality for boundary-value problems with mixed fractional derivatives, can
be found in the literature and will be used further in the work.

Theorem 1 (Theorem 4 in [22]). If the following boundary-value problem:

cDα
b−
(

Dβ
a+v(t)

)
+ f (t)v(t) = 0, t ∈ (a, b), α, β ∈ (0, 1], α + β ∈ (1, 2],

v(a) = Dβ
a+v(b) = 0,

Axioms 2023, 12, 301. https://doi.org/10.3390/axioms12030301 https://www.mdpi.com/journal/axioms357
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where f : [a, b]→ R+, f ∈ C[a, b] has a continuous solution, which is nontrivial, then

b∫
a

| f (s)|ds ≥ (α + β− 1)Γ(α)Γ(β)

(b− a)α+β−1 . (1)

Theorem 2 ([23]). Suppose that α ∈
(

1
2 , 1
)

and v ∈ C1[0, 1] is such that I1−α
0+

cDα
1−v ∈ AC[0, 1].

If v is a nonzero solution to the following boundary-value problem:

Dα
0+
(cDα

1−v(t)
)− f (t)v(t) = 0, t ∈ (0, 1),

v(0) = v(1) = 0,

where f : [0, 1]→ R is continuous. Then,

1∫
0

| f (s)|ds >
(2α− 1)Γ2(α)

h
, (2)

where
h = sup

0<x<1

[
(1− x)2α−1 − (1− x2α−1)2

]
.

The interest of this article lies in the derivation of the Lyapunov-type inequalities for
two different types of fractional partial differential equations involving mixed fractional
derivatives. Like in [4,24], our method is based first on reducing the analysis of considered
fractional partial differential equations to the study of fractional ordinary differential equa-
tions and next to applying above theorems in the proofs of the Lyapunov–type inequalities.
Summing up, the contributions of this paper are as follows:

• We obtain the Lyapunov-type inequalities, which provide the necessary conditions for
the existence of nonzero positive solutions. Thanks to this, we can indicate when the
nontrivial positive solution to the problem does not exist.

• Mixed fractional derivatives are considered, and because of that we can establish a
connection to the fractional calculus of variations.

The rest of the paper is organized as follows. In Section 2, we present preliminary
definitions and properties of fractional calculus. Then, in Sections 3 and 4, we analyze two
different types of problems involving mixed fractional derivatives—we prove Lyapunov-
type inequalities in two dimensions and illustrate our results through some examples.

2. Preliminaries

In this section, we recall definitions and some elementary properties of the Riemann–
Liouville and the Caputo fractional oprators. Throughout the work, we suppose that
a, b ∈ R, a < b and by Γ we understand the Euler’s gamma function.

Definition 1. Let α ∈ R (α > 0) and f ∈ L1[a, b]. The left Riemann–Liouville fractional integral
Iα
a+ of order α of function f is defined by

Iα
a+ f (x) :=

1
Γ(α)

∫ x

a

f (t)dt
(x− t)1−α

, x ∈ (a, b],

while the right Riemann–Liouville fractional integral Iα
b− of order α (α > 0) of function f is given by

Iα
b− f (x) :=

1
Γ(α)

∫ b

x

f (x)dt
(t− x)1−α

, x ∈ [a, b).

With definitions of fractional integrals in hand, we are able to formulate the notions of
the Riemann–Liouville and the Caputo fractional differential operators.
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Definition 2. Let α ∈ R+ (n − 1 < α ≤ n, n ∈ N) and function f ∈ L1[a, b] be such that
functions In−α

a+ f and In−α
b− f are in ACn[a, b]. The left Riemann–Liouville fractional derivative of

order α of function f is given by

∀x ∈ (a, b], Dα
a+ f (x) :=

(
d

dx

)n
In−α
a+ f (x),

while the right Riemann–Liouville fractional derivative of order α of function f is defined by

∀x ∈ [a, b), Dα
b− f (x) :=

(
− d

dx

)n
In−α
b− f (x).

Definition 3. Suppose that α ∈ R+ (n− 1 < α ≤ n, n ∈ N) and f ∈ Cn[a, b]. The left Caputo
fractional derivative of order α of function f is given by

∀x ∈ (a, b], cDα
a+ f (x) := Dα

a+

[
f (x)−

n−1

∑
k=0

f (k)(a)
k!

(x− a)k

]
,

while the right Caputo fractional derivative of order α of function f is defined by

∀x ∈ [a, b), cDα
b− f (x) := Dα

b−

[
f (x)−

n−1

∑
k=0

f (k)(b)
k!

(b− x)k

]
.

The next theorem presents a fractional counterpart of the integration by parts formula
for the Riemann–Liouville-type and the Caputo-type differential operators.

Theorem 3 (cf. Lemma 2.19 [15]). Let α ∈ (0, 1), f ∈ AC[a, b] and g ∈ Lp[a, b], (1 ≤ p ≤ ∞).
Then, the following integration by parts formulas are satisfied

∫ b

a
f (x)Dα

a+g(x) dx =
∫ b

a
g(x)cDα

b− f (x) dx + f (x)I1−α
a+ g(x)

∣∣∣x=b

x=a
, (3)

∫ b

a
f (x)Dα

b−g(x) dx =
∫ b

a
g(x)cDα

a+ f (x) dx− f (x)I1−α
b− g(x)

∣∣∣x=b

x=a
. (4)

Remark 1. In the Formula (3), through integration by parts, left-sided Riemann–Liouville frac-
tional derivative is changed to the right-sided Caputo fractional derivative, while in the Formula (4)
we do the opposite. Observe that, in both Formulas (3) and (4), we apply Riemmann–Liouville-type
differentiation to the function g and the Caputo-type differentation to the function f . Assumptions
on functions f and g correspond to the type of differentiation (not the side of the derivative) and
because of that they can be the same for (3) and (4). In the book [15], only Formula (3) is given;
however, the derivation of (4) is analogous.

Note that definitions of the partial fractional integrals and derivatives, for functions
of many variables, can be formulated in the similar manner when the order is integer.
Precisely, we bring derivation of the partial fractional derivatives and integrals to the
computation of a single-variable fractional operators (for more details see e.g., Section 24 of
the book [17]).

3. Partial Differential Equation of the First Type

In this section, our goal is to prove the Lyapunov-type inequality for problems involving
partial fractional derivatives. In contrast to the work [24], the derivative with respect to time
is a composition of the right Caputo and the left Riemann–Liouville differential operators.
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Suppose that α, β ∈ (0, 1], α + β ∈ (1, 2], γ = δ/2 ∈ (0, 1], δ ∈ (0, 2], K ∈ R+ and
w ∈ C[a, b]. We are concerned with the following equation:

cDα
b−,t

(
Dβ

a+,tu(t, x)
)
− (1− x)γ(1 + x)γDγ

1−,x(K
cDγ

−1+,xu(t, x))

= w(t)u(t, x) for (t, x) ∈ (a, b)× (−1, 1), (5)

under the boundary conditions

u(t,−1) = 0, I1−γ
1−,x(K

cDγ
−1+,xu(t, x))

∣∣∣
x=1

= 0, t ∈ (a, b), (6)

u(a, x) = Dβ
a+,tu(b, x) = 0, x ∈ (−1, 1). (7)

By solution to the problem (5)–(7), we understand function u ∈ C([a, b] × [−1, 1])
satisfying conditions (5)–(7) such that the derivative Dβ

a+,t of u exists and is continuously
differentiable for any x ∈ [−1, 1].

Lemma 1. Let us consider the following boundary-value problem with mixed fractional derivatives:

cDα
b−
(

Dβ
a+v(t)

)
+ f (t)v(t) = 0 f or t ∈ (a, b), α, β ∈ (0, 1), α + β ∈ (1, 2], (8)

v(a) = Dβ
a+v(b) = 0, (9)

where

f (t) = −
(

w(t) +
KΓ(1 + γ)

Γ(1− γ)

)
, t ∈ [a, b]. (10)

If u is a positive solution to (5)–(7), which is not identically equal to zero, then function

v(t) =
1∫

−1

(1− x)−γu(t, x) dx, t ∈ [a, b] (11)

is a nonzero solution to the problem (8) and (9).

Proof. Let u be a positive solution to (5)–(7) such that u �≡ 0. If we multiply (5) by

y(x) =
1

(1− x)γ
and integrate over (−1,1), then

1∫
−1

(1− x)−γcDα
b−,t

(
Dβ

a+,tu(t, x)
)

dx−
1∫

−1

(1 + x)γDγ
1−,x(K

cDγ
−1+,xu(t, x)) dx

=

1∫
−1

(1− x)−γw(t)u(t, x) dx, t ∈ (a, b).

Since we integrate over x, we can exclude partial fractional derivatives with respect to
t and obtain

cDα
b−,t

⎛⎝Dβ
a+,t

1∫
−1

(1− x)−γu(t, x) dx

⎞⎠− 1∫
−1

(1 + x)γDγ
1−,x(K

cDγ
−1+,xu(t, x)) dx

= w(t)
1∫

−1

(1− x)−γu(t, x) dx, t ∈ (a, b).
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Now, by applying (3) and (4) as well as the boundary conditions (6), we obtain

1∫
−1

(1 + x)γDγ
1−,x(K

cDγ
−1+,xu(t, x)) dx =

1∫
−1

Dγ
1−,x(K

cDγ
−1+,x(1 + x)γ)u(t, x) dx

Moreover, applying Theorem 3.4 from [20], because y(x) = (1 + x)γ is an eigenfunc-
tion that corresponds to the eigenvalue λ = KΓ(1+γ)

Γ(1−γ)
, we obtain

1∫
−1

Dγ
1−,x(K

cDγ
−1+,x(1 + x)γ)u(t, x) dx =

KΓ(1 + γ)

Γ(1− γ)

1∫
−1

(1− x)−γu(t, x) dx.

Therefore, for v being given by (11) and f being defined by (10), we have

cDα
b−
(

Dβ
a+v(t)

)
+ f (t)v(t) = 0 for t ∈ (a, b), α, β ∈ (0, 1], α + β ∈ (1, 2].

Note that, because of the boundary conditions (7), we have v(a) = v(b) = 0. Conse-
quently, v is a solution to (8). Finally, since u(t, x) > 0 for all (t, x) ∈ (a, b)× (−1, 1) is a
solution to (5)–(7) and because (1− x)−γ is positive for all x ∈ (−1, 1), we conclude that v
is nonzero.

Theorem 4. If u is a positive solution to (5)–(7), which is not identically equal to zero, then the
following Lyapunov-type inequality is satisfied

b∫
a

∣∣∣∣w(s) +
KΓ(1 + γ)

Γ(1− γ)

∣∣∣∣ ds ≥ (α + β− 1)Γ(α)Γ(β)

(b− a)α+β−1 . (12)

Proof. If u is positive solution to (5)–(7), which is not identically equal to zero, then
by Lemma 1, the function v given by (11) is a nontrivial solution to (8). Consequently,
Theorem 1 implies (12).

Example 1. Now, let us analyze problem (5)–(7) with a = 0, b = 1, K ∈ R+, and w(t) ≡ 0.
Precisely, we consider the following homogeneous partial differential equation:

cDα
1−,t

(
Dβ

0+,tu(t, x)
)
− (1− x)γ(1 + x)γDγ

1−,x(K
cDγ

−1+,xu(t, x)) = 0, (t, x) ∈ (0, 1)× (−1, 1), (13)

with given boundary conditions

u(t,−1) = 0, I1−γ
1−,x(K

cDγ
−1+,xu(t, x))

∣∣∣
x=1

= 0 for t ∈ (0, 1), (14)

u(0, x) = Dβ
0+,tu(1, x) = 0 for x ∈ (−1, 1). (15)

Observe that, in this case, we deal with the finite-time fractional superdiffusion equation, where
both the derivative with respect to time and the derivative with respect to space are compositions of
the left-sided and the right-sided fractional derivatives.

The Lyapunov–type inequality for problem (13)–(15) is given by

KΓ(1 + γ)

Γ(1− γ)
≥ (α + β− 1)Γ(α)Γ(β). (16)

Moreover, if we take α = 1
2 , β = 3

4 and γ = 1
2 , then (16) is satisfied if and only if

K > 1
2
√

πΓ
( 3

4
)
, which means that for K ≤ 1

2
√

πΓ
( 3

4
)

nonzero positive solution to (5)–(7) does
not exist.
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4. Partial Differential Equation of the Second Type

This section is dedicated to the following partial differential equation with mixed
partial fractional derivatives defined on the set (0, 1)× (−1, 1)

Dα
0+,t

(cDα
1−,tu(t, x)

)− (1− x)β(1 + x)βDβ
1−,x(K

cDβ
−1+,xu(t, x)) = w(t)u(t, x), (17)

with boundary conditions

u(t,−1) = 0, I1−β
1−,x(K

cDβ
−1+,xu(t, x))

∣∣∣
x=1

= 0, t ∈ (0, 1), (18)

u(0, x) = u(1, x) = 0, x ∈ (−1, 1), (19)

where α ∈ ( 1
2 , 1), β = δ/2 ∈ (0, 1], δ ∈ (0, 2], K ∈ R+, and w ∈ C[0, 1].

By solution to the problem (17)–(19) we mean function u ∈ C1([0, 1]× [−1, 1]) such
that I1−α

0+
cDα

1−u(·, x) ∈ AC[0, 1] for any x ∈ [−1, 1].
Note that, using a similar method as in Theorem 4 proved in the work [25], we can

deduce that Equation (17) is an Euler–Lagrange equation associated with some fractional
variational problem. Precisely, let us note that Euler–Lagrange equation for the problem of
minimizing the functional

J(u) =
∫∫

(a,b)×(c,d)

F(t, x, u(t, x), cDα
b−,tu(t, x), cDβ

c+,xu(t, x)) dt dx,

where F ∈ C1([a, b] × [c, d] × R3), (t, x, u, v, z) �→ F(t, x, u, v, z), subject to the boundary
conditions

u(t, c) = 0, I1−β
d−,x

(
∂F
∂z

)∣∣∣∣
x=d

= 0, t ∈ (a, b),

u(a, x) = u(b, x) = 0, x ∈ (c, d),

is given by
∂F
∂u

+ Dα
a+,t

(
∂F
∂v

)
− Dβ

d−,x

(
∂F
∂z

)
= 0. (20)

In particular, for problem of minimizing the functional

J(u) =
∫∫

(0,1)×(−1,1)

((cDα
1−,tu(t, x)

)2
+ K

(
cDβ

−1+,xu(t, x)
)2 − (1− x)−β(1 + x)−βw(t)(u(t, x))2

)
dt dx

subject to

u(t,−1) = 0, I1−β
d−,x(K

cDβ
c+,xu(t, x))

∣∣∣
x=1

= 0, t ∈ (0, 1),

u(1, x) = u(1, x) = 0, x ∈ (−1, 1),

We have F(t, x, u, v, z) = v2 +Kz2− (1− x)−β(1+ x)−βw(t)u2, and from Equation (20)
we deduce (17).

Lemma 2. Let us consider the following boundary-value problem with mixed fractional derivatives:

Dα
0+
(cDα

1−v(t)
)− f (t)v(t) = 0, t ∈ (0, 1), (21)

v(0) = v(1) = 0, (22)

where

f (t) = −
(

w(t) +
KΓ(1 + β)

Γ(1− β)

)
, t ∈ [0, 1]. (23)
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If u is a positive solution to (17)–(19), such that u �= 0, then function

v(t) =
1∫

−1

(1− x)−βu(t, x) dx, t ∈ [0, 1] (24)

is a nontrivial solution to (21)–(22).

Proof. Let u be a positive solution to (17)–(19) such that u �= 0. If we multiply (17) by
y(x) = (1− x)−β and integrate with respect to x over (−1,1), then we obtain

Dα
0+,t

⎛⎝cDα
1−,t

1∫
−1

(1− x)−βu(t, x) dx

⎞⎠− 1∫
−1

(1 + x)βDβ
1−,x(K

cDβ
−1+,xu(t, x)) dx

= w(t)
1∫

−1

(1− x)−βu(t, x) dx,

for all t ∈ (0, 1). Following arguments analogous to the ones used in the proof of Lemma 1,
for v being given by (24) and f being given by (23), applying integration by parts formula
stated in Theorem 3, and boundary conditions (18) and Theorem 3.4 from [20], we have

Dα
0+
(cDα

1−v(t)
)− f (t)v(t) = 0, t ∈ (0, 1).

In addition, bearing in mind boundary conditions (19), we have v(a) = v(b) = 0.
Therefore, we deduce that v is a solution to (21)–(22). Finally, because u is a positive solution
to (17)–(19) such that u �= 0 and

(1− x)−β > 0, x ∈ (−1, 1),

We see that v is nontrivial.

The following theorem provides the Lyapunov–type inequality to problem (17)–(19).

Theorem 5. Let α ∈ ( 1
2 , 1), β = δ/2 ∈ (0, 1], δ ∈ (0, 2] and w be continuous on [0, 1]. If u is a

positive solution to (17)–(19) such that u �= 0, then

1∫
0

|w(s) +
KΓ(1 + β)

Γ(1− β)
|ds >

(2α− 1)Γ2(α)

h
, (25)

where
h = sup

0<x<1

[
(1− x)2α−1 − (1− x2α−1)2

]
.

Proof. Inequality (25) can be easily proved using Lemma 2 and Theorem 2.

Example 2. In this example, we analyze (17)–(19) with w(t) = μ, μ ∈ R, K = 1. Precisely, we
study the following eigenvalue problem:

Dα
0+,t

(cDα
1−,tu(t, x)

)− (1− x)β(1 + x)βDβ
1−,x(

cDβ
−1+,xu(t, x)) = μu(t, x), (t, x) ∈ (0, 1)× (−1, 1), (26)

u(t,−1) = 0, I1−β
1−,x(

cDβ
−1+,xu(t, x))

∣∣∣
x=1

= 0, t ∈ (0, 1), (27)

u(0, x) = u(1, x) = 0, x ∈ (−1, 1). (28)
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Theorem 5 implies that, if μ ∈ R is an eigenvalue of problem (26)–(28), then∣∣∣∣μ +
Γ(1 + β)

Γ(1− β)

∣∣∣∣ > (2α− 1)Γ2(α)

h
,

where
h = sup

0<x<1

[
(1− x)2α−1 − (1− x2α−1)2

]
.

Note that, using similar method as in the proof of Theorem 3.4 from [26], one can deduce that
Equation (26) is an Euler–Lagrange equation for the following fractional isoperimetric problem:

J(u) =
∫∫

(0,1)×(−1,1)

((cDα
1−,tu(t, x)

)2
+
(

cDβ
−1+,xu(t, x)

)2
)

dt dx

subject to the boundary conditions

u(t,−1) = 0, I1−β
1−,x(

cDβ
−1+,xu(t, x))

∣∣∣
x=1

= 0, t ∈ (0, 1),

u(0, x) = u(1, x) = 0, x ∈ (−1, 1),

and an isoperimetric constraint

I(u) =
∫∫

(0,1)×(−1,1)

(u(t, x))2(1− x)−β(1 + x)−β dt dx = 1.

5. Conclusions

In this work, two types of partial differential equations involving mixed fractional
derivatives are studied. We provide simple conditions (Lyapunov-type inequlities) to
allow one to check whether these highly complicated nonlocal problems possess positive
nontrivial solutions. Furthermore, contrary to the previous works, we link our boundary-
value problems with the fractional calculus of variations theory. Our results are illustrated
through two examples: in Example 1, we study the equation that could be interpreted as
the fractional counterpart of the finite-time superdiffusion equation, while in Example 2,
our results allow us to give bounds on eigenvalues for some eigenvalue problems. Note
that, unfortunately, the Lyapunov-type inequalities are necessary conditions, which means
that if they fail we can say that the solution does not exist, but if they are satisfied, the
solution may or may not exist. This is an important issue, and in the forthcoming works
we will study this problem.
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Abstract: In this paper, we investigate a practical numerical method for solving a one-dimensional
two-sided space-fractional diffusion equation with variable coefficients in a finite domain, which
is based on the classical Crank-Nicolson (CN) method combined with Richardson extrapolation.
Second-order exact numerical estimates in time and space are obtained. The unconditional stability
and convergence of the method are tested. Two numerical examples are also presented and compared
with the exact solution.

Keywords: variable coefficients; crank-nicolson method; stability and convergence; richardson
extrapolation

MSC: 65M60; 65N12

1. Introduction

In recent years, fractional differential equations have been of great interest for their
use in modelling problems in physics (for an excellent review, see [1]), biology [2], chem-
istry [3] and even finance [4]. Numerical methods have become the main way to solve
fractional-order equations, since we cannot easily obtain explicit analytical solutions to
fractional-order equations. Several authors have proposed some effective numerical meth-
ods. Liu et al. [5] proposed a novel spatial second-order exact semi-implicit alternating
direction method for the two-dimensional fractional FitzHugh-Nagumo single-domain
model. Li et al. [6] proposed a spectral method for solving a fractional diffusion-absorption-
reaction equation. She et al. [7] studied and analysed the Crank-Nicolson time discretisation
of one- and two-dimensional spatial fractional diffusion equations. Hao et al. [8] studied
the regularity of two-sided fractional diffusion equations with reaction terms and spectral
methods. Li et al. [9] studied the fractional spectral localisation discretization of optimal
control problems governed by spatial fractional diffusion equations. Gunzburger et al. [10]
proposed a stable finite volume element method to approximate the coupled Stokes-Darcy
problem. Ozbilge et al. [11] considered a finite difference scheme for the inverse problem
of time-fractional parabolic partial differential equations with non-local boundary con-
ditions. Feng et al. [12] developed a new fractional finite volume method based on the
nodal basis functions for a two-sided space-fractional diffusion equation. Liu et al. [13]
considered the problem of minimising a non-convex integral function in control, which
is a solution to a control system described by fractional differential equations with mixed
non-convex constraints on the control. Jia et al. [14] considered a fast finite difference
method for a spatial fractional diffusion equation with fractional derivative boundary
conditions. Lai et al. [15] considered the numerical solution of a Riesz spatial fractional
partial differential equation with second order time derivatives. Chen et al. [16] considered
a compact difference scheme for a second-order backward differential formulation of the
fractional-order Volterra equation with a truncation error of order 4 in time and order 4
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in space. Ma et al. [17] proposed a new signal smoothing equations, and they introduced
generalized filters by use of memory effects of fractional derivatives. Shiri et al. [18] pro-
posed an interesting Neural Network method for solving diffusion equations. Qu et al. [19]
proposed a weight finite difference scheme for space fractional diffusion equations. There
are some new papers in the fractional differential equations (see [20,21]). Based on the
fractional-order Fick’s law, a fractional-order diffusion model is derived for the space of
variable coefficients with two-sided derivatives in the conserved form. The continuum
equation in one-dimensional form can be written according to the mass conservation law as

∂p(x, t)
∂t

+
∂Q(x, t)

∂x
= f (x, t), (1)

where p(x, t) is the distribution function of the diffusing quantity, Q(x, t) is the diffusion
flux and f (x, t) is the source term. The classical Fick’s law can be extended as follows:

Q(x, t) = −C(x)
∂

∂x

∫ x

a
K+(x, ξ)p(ξ, t)dξ − D(x)

∂

∂x

∫ b

x
K−(x, ξ)p(ξ, t)dξ, (2)

where C(x) and D(x) are non-negative diffusion coefficients. On the interval [a, b], C(x) is
a monotonically decreasing function of x and D(x) is a monotonically increasing function
of x. The kernel functions K+(x, ξ) and K−(x, ξ) are defined as follows{

K+(x, ξ) = 1
Γ(1−α)

(x− ξ)−α a ≤ ξ ≤ x,

K−(x, ξ) = 1
Γ(1−α)

(ξ − x)−α x ≤ ξ ≤ b,
(3)

where 0 < α < 1. Combination of Equations (1) and (2), Chen et al. [22] have derived the
following nonlinear two-sided space fractional diffusion equation with variable coefficients.

∂p(x, t)
∂t

=
∂

∂x
(C(x)

∂α p(x, t)
∂xα

− D(x)
∂α p(x, t)
∂(−x)α

) + f (x, t),

a ≤ x ≤ b, 0 < α < 1, 0 < t ≤ T,
(4)

where ∂α p(x,t)
∂α(−x) is the right Riemman-Liouville fractional derivatives, ∂α p(x,t)

∂αx is the left
Riemman-Liouville fractional derivatives (see [23,24] for details) defined by

∂α p(x, t)
∂(−x)α

=
−1

Γ(1− α)

∂

∂x

∫ b

x

p(s, t)
(s− x)α

ds, (5)

∂α p(x, t)
∂xα

=
1

Γ(1− α)

∂

∂x

∫ x

a

p(s, t)
(x− s)α

ds. (6)

In this paper, we consider the above one-dimensional fractional two-sided space-fractional
diffusion Equation (4) with the following initial value conditions and Dirichlet boundary
conditions:

p(x, 0) = φ(x), a ≤ x ≤ b, (7)

p(a, t) = p(b, t) = 0, 0 ≤ t ≤ T. (8)

For this new one-dimensional two-sided spatial fractional diffusion equation, Chen et al. [22]
gave a fast semi-implicit difference method. However, the method is only first order accuracy.
To the best of our knowledge, there is limited research on the numerical computation of this
equation with high accuracy based on the classical Crank-Nicolson scheme. This motivates us to
propose in this paper an approach to this equation based on the classical Crank-Nicolson scheme
and combined with a Richard space extrapolation. Our method is second order accuracy in time
and space.
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The remaining work is structured as follows. In Section 2, we present the classical
Crank-Nicolson difference method for the one-dimensional two-sided spatial fractional
diffusion equation and analyse its consistency. In Section 3, we prove the stability and
convergence of the method. The method is then combined with spatial extrapolation.
The convergence accuracy is improved to second order accuracy in time and space. In
Section 4, two numerical experiments are given in order to verify the theoretical analysis of
the method.

2. The Classical CN Difference Scheme for the One-Dimensional Two-Sided
Space-Fractional Diffusion Equation and Its Consistency

For the numerical approximation, define tn = n)t, 0 ≤ tn ≤ T, for n = 0, 1, 2, . . . , N
and xi = a + ih for i = 0, 1, . . . , M, where )t, h are the mesh-width in the time and space
respectively, )t = T/N, h = (b− a)/M, Ci = C(xi), Di = D(xi), and f n

i = f (xi, tn). Let
Pn

i , pn
i denote the exact and numerical solutions at the grid point (xi, tn) respectively. The

initial conditions are given by p0
i = φi = φ(xi). Similarly, the Dirichlet zero boundary

conditions are given by pn
0 = pn

M = 0, for n = 0, 1, . . . , N.

To approximate ∂α p(x,t)
∂α(−x) and ∂α p(x,t)

∂αx , we use shifted left and standard right Grünwald

formulas [25], respectively, at time tn+1/2 = 1
2 (tn + tn+1). The formulas are as follows:

∂α p(xi, tn+1/2)

∂α(−x)
=

1
(h)α

M−i

∑
s=0

g(α)s Pn+1/2
i+s + O(h),

∂α p(xi, tn+1/2)

∂αx
=

1
(h)α

i+1

∑
s=0

g(α)s Pn+1/2
i+1−s + O(h),

where g(α)s = (−1)s(α
s) is the normalized Grünwald weights. Its properties meet the

following Lemma 1.

Lemma 1 (see [26]). Let 0 < α < 1, the Grünwald weights g(α)s satisfy the properties:

(i)
∞
∑

s=0
g(α)0 = 0 .

(ii) g(α)0 = 1, g(α)s < 0 for s ≥ 1.

(iii)
n
∑

s=0
g(α)s > 0 for any n ≥ 1.

(iv) g(α)s+1 − g(α)s = g(α+1)
s+1 , for s ≥ 1.

(v)
n
∑

s=0
g(α+1)

s < 0 for any n ≥ 1.

Thus, we obtain a CN difference scheme for the one-dimensional two-sided space-fractional
diffusion equation at the point (xi, tn+1/2).
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pn+1
i − pn

i
)t

≈ 1
h
(C(x)

∂α p(x, tn+1/2)

∂xα
− D(x)

∂α p(x, tn+1/2)

∂(−x)α
)|xi

xi−1 + f n+1/2
i

=
1
h
(Ci

∂α p(xi, tn+1/2)

∂xα
− Di

∂α p(xi, tn+1/2)

∂(−x)α
)

− 1
h
(Ci−1

∂α p(xi−1, tn+1/2)

∂xα
− Di−1

∂α p(xi−1, tn+1/2)

∂(−x)α
) + f n+1/2

i

≈ 1
2hα+1 [(Ci

i+1

∑
s=0

g(α)s pn+1
i+1−s + Ci

i+1

∑
s=0

g(α)s pn
i+1−s)− (Ci−1

i

∑
s=0

g(α)s pn+1
i−s + Ci−1

i

∑
s=0

g(α)s pn
i−s)]

− 1
2hα+1 [(Di

M−i

∑
s=0

g(α)s pn+1
i+s + Di

M−i

∑
s=0

g(α)s pn
i+s)

− (Di−1

M−i+1

∑
s=0

g(α)s pn+1
i+s−1 + Di−1

M−i+1

∑
s=0

g(α)s pn
i+s−1)]

=
1

2hα+1 [(
i+1

∑
s=0

(Cig
(α+1)
i+1−s − Ci−1g(α+1)

i−s )pn+1
s + Cig

(α)
0 pn+1

i+1 )

+ (
i+1

∑
s=0

(Cig
(α+1)
i+1−s − Ci−1g(α+1)

i−s )pn
s + Cig

(α)
0 pn

i+1)] + pn
i+1

− 1
2hα+1 [

M

∑
s=i

(Di−1g(α)s+1−i − Dig
(α)
s−i)pn+1

s + Di−1g(α)0 pn+1
s )

+ (
M

∑
s=i

(Di−1g(α)s+1−i − Dig
(α)
s−i)pn

s + Di−1g(α)0 pi−1
s )].

After some rearrangements, we can get CN scheme

pn+1
i − pn

i
)t

=
1

2hα+1 [(
i+1

∑
s=0

Cig
(α+1)
i+1−s pn+1

s +
i+1

∑
s=0

Cig
(α)
i−s pn

s )

+ (
i

∑
s=0

(Ci − Ci−1)g(α)i−s pn+1
s +

i

∑
s=0

(Ci − Ci−1)g(α)i−s pn
s )]

− 1
2hα+1 [(

M

∑
s=i−1

Di−1g(α+1)
s+1−i p

n+1
s +

M

∑
s=i−1

Di−1g(α+1)
s+1−i p

n
s )

+ (
M

∑
s=i

(Di−1 − Di)g(α)s−i p
n+1
s +

M

∑
s=i

(Di−1 − Di)g(α)s−i p
n
s )].

(9)

Organize the above equation and write it in the following operators form

(1− δα,x)pn+1
i = (1 + δα,x)pn

i +)t f n+1/2
i , (10)

where the difference operators as

δα,x pn
i =

Δt
2hα+1 [(

i

∑
s=0

(Cig
(α)
i+1−s − Ci−1g(α)i−s)pn

s ) + Cig
(α)
0 pn

i+1]

+
Δt

2hα+1 [(
M

∑
s=i

(Di−1g(α)s+1−i − Dig
(α)
s−i)pn

s ) + Di−1g(α)0 pn
i−1].

It can be further written in the matrix form as follows:

(I − A)Pn+1 = (I + A)Pn +)tFn+1/2, (11)
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where I is (M − 1)× (M − 1) identity matrix; Pn = (pn
1 , pn

2 , ..., pn
M−1) ; Fn+1/2 = ( f n+1/2

1 ,
f n+1/2
2 , ..., f n+1/2

M−1 ); and the matric A = (Ai,s), i, s = 1, 2, . . . , M− 1, is defined by

Ai,s =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

η(Di−1g(α)s−i+1 − Dig
(α)
s−i) when s > i + 1,

η(Cig
(α)
0 + Di−1g(α)2 − Dig

(α)
1 ) when s = i + 1,

η(Cig
(α)
1 − Ci−1g(α)0 + Di−1g(α)1 − Dig

(α)
0 ) when s = i,

η(Cig
(α)
2 − Ci−1g(α)0 + Di−1g(α)0 ) when s = i− 1,

η(Cig
(α)
i+1−s − Ci−1g(α)i−s) when s < i− 1,

(12)

where η = Δt
2hα+1 .

Theorem 1. The classical CN method defined by Equation (9) is consistent with Equation (4) of
order O((Δt)2 + h).

Proof. The Equation (4) can be rewritten as

∂p(x, t)
∂t

=
dC(x)

dx
∂α p(x, t)

∂xα
+ C(x)

∂α+1 p(x, t)
∂xα+1

− dD(x)
dx

∂α p(x, t)
∂(−x)α

+ D(x)
∂α+1 p(x, t)
∂(−x)α+1 + f (x, t).

(13)

We define the local truncation error term as Rn
i , using Equations (9) and (13), we get

Rn
i =

Pn+1
i − Pn

i
Δt

− 1
2hα+1 [(

i+1

∑
s=0

Cig
(α+1)
i+1−sPn+1

s +
i+1

∑
s=0

Cig
(α)
i−sPn

s )

+ (
i

∑
s=0

(Ci − Ci−1)g(α)i−sPn+1
s +

i

∑
s=0

(Ci − Ci−1)g(α)i−sPn
s )]

− 1
2hα+1 [(

M

∑
s=i−1

Di−1g(α+1)
s+1−iP

n+1
s +

M

∑
s=i−1

Di−1g(α+1)
s+1−iP

n
s )

+ (
M

∑
s=i

(Di−1 − Di)g(α)s−iP
n+1
s +

M

∑
s=i

(Di−1 − Di)g(α)s−iP
n
s )]− f n+1/2

i

=
Pn+1

i − Pn
i

Δt
− ∂p(x, t)

∂t
|n+1/2
i

− 1
2hα

[
i

∑
s=0

(Ci − Ci−1)

h
g(α)i−s(Pn+1

s + Pn
s )−

dC(x)
dx

∂α p(x, t)
∂xα

|n+1/2
i ]

− [
1

2hα+1

i+1

∑
s=0

Cig
(α+1)
i+1−s(Pn+1

s + Pn
s )− (C(x)

∂α+1 p(x, t)
∂xα+1 )|n+1/2

i ]

+
1

2hα
[

M

∑
s=i

(Di − Di−1)

h
g(α)s−i(Pn+1

s + Pn
s )−

dD(x)
dx

∂α p(x, t)
∂(−x)α

|n+1/2
i ]

− [
1

2hα+1

M

∑
s=i−1

Di−1g(α+1)
i+1−s(Pn+1

s + Pn
s )− (D(x)

∂α+1 p(x, t)
∂(−x)α+1 )|n+1/2

i ]

= O((Δt)2 + h).

Thus, the classical CN method is consistent.
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3. Stability and Convergence of the Classical Fractional CN Method

Let p̃n
i (i = 1, 2, . . . , M− 1) be an approximate solution of pn

i with initial conditions p̃0
i

in order to discuss the stability and convergence of the numerical method. Let εn
i = pn

i − p̃n
i ,

en
i = Pn

i − pn
i be defined with the corresponding vectors

εn = (εn
1, εn

2, . . . , εn
M−1), (14)

en = (en
1 , en

2 , . . . , en
M−1). (15)

Theorem 2. On the interval [a, b], if C(x) ≥ 0 monotonically decreases, and D(x) ≥ 0 monotoni-
cally increases, the CN difference scheme defined by Equation (10) is uniquely solvable.

Proof. Since C(x) and D(x) are both non-negative, C(x) is monotonically decreasing,
and D(x) is monotonically increasing, we have Ci−1 ≥ Ci ≥ 0 , Di ≥ Di−1 ≥ 0,
i = 1, 2, . . . , M− 1.

According to Lemma 1, then we have Cigα
j+1 ≥ Cig

(α)
j ≥ Ci−1g(α)j , Di−1g(α)j+1 ≥

Di−1g(α)j ≥ Dig
(α)
j , for j ≥ 2. Let ri be the sum of the absolute values of all the elements of

row i of the matrix A excluding the diagonal elements, then we have

ri =
M−1

∑
s=1,s �=i

|Ai,s|

= η[
i−2

∑
s=1
|Cig

(α)
i+1−s − Ci−1g(α)i−s|+ |Cig

(α)
2 − Ci−1g(α)0 + Di−1g(α)0 |

+ |Cig
(α)
0 + Di−1g(α)2 + Dig

(α)
1 |+

M−1

∑
s=i+2

|Di−1g(α)s−i+1 − Dig
(α)
s−i|]

= η[
i−2

∑
s=1

(Cig
(α)
i+1−s − Ci−1g(α)i−s) + (Cig

(α)
2 − Ci−1g(α)0 + Di−1g(α)0 )

+ (Cig
(α)
0 + Di−1g(α)2 + Dig

(α)
1 ) +

M−1

∑
s=i+2

(Di−1g(α)s−i+1 − Dig
(α)
s−i)]

= η[Ci(
i

∑
s=0

g(α)s − g(α)1 )− Ci−1(
i−1

∑
s=0

g(α)s − g(α)0 )

+ Di−1(
M−i

∑
s=0

g(α)s − g(α)1 )− Di(
M−i

∑
s=0

g(α)s − g(α)0 )]

= η[(Ci − Ci−1)
i−1

∑
s=0

g(α)s + Cig
(α)
i − Cig

(α)
i + Ci−1g(α)i

− (Di − Di−1)
M−1

∑
s=0

g(α)s + Di−1g(α)M−i − Di−1g(α)1 + Dig
(α)
0

− Cig
(α)
i + Ci−1g(α)i − Di−1g(α)1 + Dig

(α)
0 ] = −Ai,i.

(16)

It follows from the above that the eigenvalues of a matrix A have negative real parts
according to Gerschgorin’s theorem [27], when λ is an eigenvalue of A only when 1− λ is
an eigenvalue of the matrix I − A. Thus, the eigenvalue of the matrix A all contain negative
real parts, which implicitly means that every eigenvalue of the matrix I − A has a modulus
large than 1. In addition, we can see that the spectral radius of the matrix I− A is large than
1, so the matrix I − A is reversible [28]. The difference scheme is unique and solvable.
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Theorem 3. On the interval [a, b], if C(x) ≥ 0 monotonically decreases, and D(x) ≥ 0 monotoni-
cally increases, then the CN difference scheme defined by Equation (10) is unconditionally stable
and convergent and exists in a positive constant C > 0 such that ‖en‖∞ ≤ C(()t)2 + h).

Proof. λ is an eigenvalue of the matrix A, if and only if 1− λ is an eigenvalue of the matrix
I − A, if and only if (1 + λ)/(1− λ) is an eigenvalue of the matrix (I − A)−1(I + A). We
know that the eigenvalues of the matrix A all have negative real parts from Theorem 2,
This implicity means that |(1 + λ)/(1− λ)| < 1, and therefore the spectral radius of the
matrix (I − A)−1(I + A) can be obtained to be less than 1. In addition, according to the
relationship between the two-norm of the matrix and the spectral radius of the matrix,
we obtain

‖(I − A)−1(I − A)‖2 = ρ((I − A)−1(I − A)) < 1. (17)

By Equation (10) and the definition of εn, I − A is invertible, we have

εn+1 = (I − A)−1(I − A)εn, (18)

Further, we obtain

‖εn+1‖2 = ‖(I − A)−1(I − A)εn‖2 ≤ ‖(I − A)−1(I + A)‖2‖εn‖2 < ‖εn‖2. (19)

If we repeat the above equation n + 1 times, we obtain the following equation

‖εn+1‖2 < ‖ε0‖2. (20)

Thus, the CN difference scheme defined by Equation (10) is unconditionally stable.
We then consider the convergence of the CN difference scheme. From Equation (10)

and the definition of en, we have

(I − A)en+1 = (I + A)en + ΔtRn, (21)

and
e0 = 0, (22)

where Rn = (Rn
1 , Rn

2 , . . . , Rn
M−1)

T , ‖Rn‖2 ≤ C1((Δt)2 + h) and C1 is a positive constant.
Similarly, we have also developed

‖en+1‖2 < ‖en‖2 + ‖ΔtRn‖2. (23)

Repeating the above equation n + 1 times, we have ‖en‖2 < n(Δt)C1((Δt)2 + h). Since
n(Δt) ≤ T, ‖en‖∞ ≤ C((Δt)2 + h).

Remark 1. ptn
x is the Richardson extrapolated solution (see [27,28]), then can be computed from

ptn
x = 2ptn

x,h/2 − ptn
x,h, where x is a common grid point on both the fine and the coarse meshes, and

ptn
x,h, ptn

x,h/2 are the CN solutions at the point x using the coarse grid (grid with h) and the fine
grid (grid size h/2), respectively. In this way, we can obtain second-order accuracy both in space
and time.

Proof. The error in the right-shifted and left standard Grunwald formulas are K1h +
K2(h)2 + O((h)3) (see [25]), where K1 and K2 are positive constant independent of h. Ac-
cording to Richardson extrapolation method (see [27]), at a grid size h and h/2,we apply
the CN method, we can get the Richardson extrapolated solution ptn

x = 2ptn
x,h/2 − ptn

x,h, and
Richardson extrapolated solution has local truncation error C((Δt)2 + h2), according to
Lax’s Equivalence Theorem (see [29]), we obtain second-order accuracy both in time and
space. The detailed steps to get Richardson’s extrapolated solution are as follows:
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Step 1: On the spatially coarse grid h, solve using this CN difference format method
to obtain the numerical solution ptn

x,h on the coarse grid.

Step 2: On the spatially fine grid h/2 with the same Δt, solve again using this CN
difference format method to obtain the numerical solution ptn

x,h/2 on the fine grid.

Step 3: The Richard extrapolation solution, which can be written in the following form
ptn

x = 2ptn
x,h/2 − ptn

x,h.

4. Numerical Example

In this section, we carry out two numerical experiments to demonstrate the effective-
ness of the second-order accurate finite difference method. ‖eN

h ‖∞ the maximum error of
the Crank-Nicolson numerical solution, ‖eN−ex

h ‖∞ the maximum error of the corresponding
extrapolated Crank-Nicolson numerical solution.

Example 1 (Parabolic case [22]). The following two-sided space-fractional diffusion equation was
considered

∂p(x, t)
∂t

=
∂

∂x
(C(x)

∂α p(x, t)
∂xα

− D(x)
∂α p(x, t)
∂(−x)α

) + f (x, t),

a ≤ x ≤ b, 0 < α < 1, 0 ≤ t ≤ T.
(24)

The finite domain is [0, 1]. The nonnegative diffusion coefficient C(x) = 1−x2

2 , D(x) = 1+x2

2 . The
source term f (x, t) is given by

f (x, t) = −e−t[x2(1− x)2 − xq(x, α) +
1− x2

2
q(x, 1 + α)− xq(1− x, α) +

1 + x2

2
q(1− x, 1 + α)], (25)

here

q(x, t) =
Γ(5)

Γ(5− α)
x4−α − 2Γ(4)

Γ(4− α)
x3−α +

Γ(3)
Γ(3− α)

x2−α. (26)

The exact solution to this problem is

p(x, t) = e−tx2(1− x)2, (27)

which satisfies the initial function

φ(x) = x2(1− x)2, (28)

and the Dirichlet boundary conditions are

p(0, t) = p(1, t) = 0. (29)

In the numerical experiments, we consider four different α in the case, respectively.

Table 1 shows the convergence rates of the numerical solutions of Example 1 with
α = 0.2, 0.4, 0.6 at the time T = 1. The numerical solution matches the exact analytical
solution of the fractional differential equation. It shows stability and a convergence order
of O((Δt)2 + h) . Figure 1 shows the numerical solution in Crank-Nicolson format and the
exact solution of Example 1, where α = 0.2, Δt = h = 2−7 at time T = 1. Figure 2 shows
the numerical solution in Crank-Nicolson format and the exact solution of Example 1,
where α = 0.4, Δt = h = 2−7 at time T = 1. Figure 3 shows the numerical solution in
Crank-Nicolson format and the exact solution of Example 1, where α = 0.6, Δt = h = 2−7

at time T = 1. The numerical solution compares well with the exact analytic solution to the
fractional partial differential equation in this test case.
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Table 1. Error behaviors and rate with α = 0.2, 0.4, 0.6 at time T = 1 for Example 1.

α = 0.2 α = 0.4 α = 0.6

Δt = h ‖eN
h ‖∞ Rate ‖eN

h ‖∞ Rate ‖eN
h ‖∞ Rate

2−3 7.5340 × 10−3 - 4.2000 × 10−3 - 1.9000 × 10−3 -
2−4 4.2214 × 10−3 1.78 2.4000 × 10−3 1.75 1.2000 × 10−3 1.83
2−5 2.2199 × 10−3 1.90 1.3000 × 10−3 1.85 6.565 × 10−4 1.58
2−6 1.1356 × 10−3 1.95 6.4325 × 10−4 2.02 3.4039 × 10−4 1.93
2−7 5.7351 × 10−4 1.98 3.2425 × 10−4 1.98 1.7301 × 10−4 1.97

Figure 1. The numerical solution for the Crank-Nicolson scheme and exact solution for Example 1
with α = 0.2, Δt = h = 2−7 at time T = 1.

Figure 2. The numerical solution for the Crank-Nicolson scheme and exact solution for Example 1
with α = 0.4, Δt = h = 2−7 at time T = 1.
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Figure 3. The numerical solution for the Crank-Nicolson scheme and exact solution for Example 1
with α = 0.6, Δt = h = 2−7 at time T = 1.

To check the speed of convergence of this method, we start with Δt = h = 2−3. To
obtain an extrapolated CN solution on this grid size, in the first step the problem is solved
numerically ptn

x,h on a coarse grid with Δt = h = 2−3 and in the second step a finer grid
size is created using the same and in the second step a finer grid size is created using the
same Δt but halving h (Δt = 2−3,h = 2−4). The third step is to calculate the extrapolation
solution for the points on the coarse grid as ptn

x = 2ptn
x,h/2 − ptn

x,h.
For Example 1 with T = 1 and α = 0.8, Table 2 shows the absolute error in the

numerical solution. The second column shows the absolute value of the maximum error in
the numerical solution. The third column shows the rate of reduction of the error as the
mesh is refined. It shows the order of convergence as O((Δt)2 + h). The fourth column
shows the maximum absolute error for the Crank-Nicholson extrapolation. The last column
shows the error rate of these extrapolated solutions. We note that the order of convergence is
second order O((Δt)2 + h2). Figure 4 shows the numerical solution for the Crank-Nicolson
scheme and the extrapolated Crank-Nicolson scheme and rate for Example 1 with α = 0.8,
Δt = h = 2−6 at time T = 1.

Table 2. Error behaviors and rate for the Crank-Nicolson scheme and exact solution for Example 1
with α = 0.8 at time T = 1.

Δt = h ‖eN
h ‖∞ Rate ‖eN−ex

h ‖∞ Rate

2−3 7.7198 × 10−4 - 7.4596 × 10−4 -
2−4 4.0338 × 10−4 1.91 1.7406 × 10−4 4.29
2−5 2.4992 × 10−4 1.61 4.1151 × 10−5 4.23
2−6 1.3734 × 10−4 1.82 9.7767 × 10−6 4.21
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Figure 4. The numerical solution for the Crank-Nicolson scheme and the extrapolated Crank-Nicolson
scheme and rate for Example 1 with α = 0.8, Δt = h = 2−6 at time T = 1.

Example 2 (Linear case [22]). The following two-sided space-fractional diffusion equation was
considered

∂p(x, t)
∂t

=
∂

∂x
(C(x)

∂α p(x, t)
∂xα

− D(x)
∂α p(x, t)
∂(−x)α

) + f (x, t),

a ≤ x ≤ b, 0 < α < 1, 0 ≤ t ≤ T.
(30)

The finite domain is [0, 1]. The nonnegative diffusion coefficient C(x) = 2− x, D(x) = 2 + x. The
source term f (x, t) is given by

f (x, t) = −e−t[x2(1− x)2 − q(x, α) + (2− x)q(x, 1 + α)− q(1− x, α) + (2 + x)q(1− x, 1 + α)], (31)

here

q(x, t) =
Γ(5)

Γ(5− α)
x4−α − 2Γ(4)

Γ(4− α)
x3−α +

Γ(3)
Γ(3− α)

x2−α. (32)

The exact solution to this problem is

p(x, t) = e−tx2(1− x)2, (33)

which satisfies the initial function

φ(x) = x2(1− x)2, (34)

and the Dirichlet boundary conditions are

p(0, t) = p(1, t) = 0. (35)

In the numerical experiments, we consider four different α values in the case, respectively.

Table 3 shows the convergence rates for the numerical solutions of Example 2 with
α = 0.2, 0.4, 0.6 at the time T = 1. In this test case the numerical solution agrees well with
the exact analytical solution of the fractional order partial differential equation. It shows
stability and a convergence order of O((Δt)2 + h). Figure 5 shows the numerical solution
in Crank-Nicolson format and the exact solution of Example 2 with α = 0.2, Δt = h = 2−7

at time T = 1. Figure 6 shows the numerical solution in Crank-Nicolson format and the
exact solution of Example 4.2 with α = 0.4, Δt = h = 2−7 at time T = 1. Figure 7 shows
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the numerical solution in Crank-Nicolson format and the exact solution of Example 2 with
α = 0.6, Δt = h = 2−7 at time T = 1. The numerical solution compares well with the exact
analytic solution to the fractional partial differential equation in this test case.

Table 4 shows the absolute error in the numerical solution for Example 2 at time T = 1
and α = 0.8. The second column shows the absolute value of the maximum error in the
numerical solution. The third column shows the rate of reduction of the error as the mesh
is refined. It shows the order of convergence as O((Δt)2 + h). The fourth column shows the
maximum absolute error for the Crank-Nicholson extrapolation. The last column shows
the error rate of these extrapolated solutions. We note that the order of convergence is
second order O((Δt)2 + h2). Figure 8 shows the numerical solution for the Crank-Nicolson
scheme and the extrapolated Crank-Nicolson scheme and rate for Example 2 with α = 0.8,
Δt = h = 2−6 at time T = 1.

Table 3. Error behaviors and rate with α = 0.2, 0.4, 0.6 at time T = 1 for Example 2.

α = 0.2 α = 0.4 α = 0.6

Δt = h ‖eN
h ‖∞ Rate ‖eN

h ‖∞ Rate ‖eN
h ‖∞ Rate

2−3 8.3000 × 10−3 - 3.8000 × 10−3 - 1.3000 × 10−3 -
2−4 5.0000 × 10−3 1.66 2.3000 × 10−3 1.75 9.1101 × 10−4 1.43
2−5 2.7000 × 10−3 1.85 1.2000 × 10−3 1.85 5.1674 × 10−4 1.76
2−6 1.4000 × 10−3 1.93 6.4069 × 10−4 2.02 2.7250 × 10−4 1.90
2−7 7.1602 × 10−4 1.96 3.2564 × 10−4 1.98 1.3953 × 10−4 1.95

Table 4. Error behaviors and rate for the Crank-Nicolson scheme and exact solution for Example 2
with α = 0.8 at time T = 1.

Δt = h ‖eN
h ‖∞ Rate ‖eN−ex

h ‖∞ Rate

2−3 7.1922 × 10−4 - 6.5386 × 10−4 -
2−4 1.8018 × 10−4 3.99 1.5769 × 10−4 4.15
2−5 1.3921 × 10−4 1.29 3.7662 × 10−5 4.19
2−6 8.2345 × 10−5 1.69 8.2345 × 10−5 4.57

Figure 5. The numerical solution for the Crank-Nicolson scheme and exact solution for Example 2
with α = 0.2, Δt = h = 2−7 at time T = 1.
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Figure 6. The numerical solution for the Crank-Nicolson scheme and exact solution for Example 2
with α = 0.4, Δt = h = 2−7 at time T = 1.

Figure 7. The numerical solution for the Crank-Nicolson scheme and exact solution for Example 2
with α = 0.6, Δt = h = 2−7 at time T = 1.
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Figure 8. The numerical solution for the Crank-Nicolson scheme and the extrapolated Crank-Nicolson
scheme and exact solution for Example 2 with α = 0.8, Δt = h = 2−6 at time T = 1.

5. Conclusions

In this paper, we have considered a two-sided spatial fractional order diffusion equa-
tion with variable diffusion coefficients from a fractional Fick’s law. Although finite
difference estimates for the fractional order derivatives have been elusive, a high precision
convergence method for the superdiffusion equation is feasible by applying the extrapola-
tion to the Crank-Nicolson method and the Richardson method, in combination with the
Grünwald estimates using shifts. We can obtain second-order accurate numerical estimates
in time and space using the CN and Richardson extrapolation methods. We then consider
more general cases, such as the case where C(x) and D(x) are not monotonic, or higher
accuracy differential methods. We also look at numerical solutions of this equation for
different boundary conditions, such as fractional boundary conditions.
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