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An Efficient Method for Computing the Power Potential of
Bypass Hydropower Installations
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* Correspondence: olivier.cleynen@ovgu.de

Abstract: Small-scale hydropower installations make possible a transition towards decentralized
electrical power production with very low ecological footprint. However, the prediction of their
power potential is difficult, because the incoming flow velocity and the inlet and outlet water heights
are often outside of the control of the operator. This leads to a need for a method capable of calculating
an installation’s power potential and efficiency rapidly, in order to cover for many possible load
cases. In this article, the use of a previously-published theoretical framework is demonstrated with
the case of a mid-scale hydropower device, a 26 m long water vortex power plant. It is shown that
a simplified CFD simulation with a single output (the mass flow rate) is sufficient to obtain values
for the two coefficients in the model. Once this is done, it becomes possible to evaluate the device’s
real-life performance, benchmarking it against reference values anchored in physical principles. The
method can be used to provide design guidance and rapidly compare different load cases, providing
answers that are not easily obtained using intuition or even experiments. These results are obtained
for a computing cost several orders of magnitude smaller than those associated with a full description
of the flow using CFD methods.

Keywords: micro-hydro; pico-hydro; efficiency; computational fluid dynamics

1. Introduction

1.1. Scientific Context

Ecological considerations are driving new interest in the development of small-scale
hydropower devices. These make possible a transition towards electrical power produc-
tion that is not only decentralized, bringing significant socioeconomic benefits [1,2], but
also better able to abide by increasingly constraining ecological regulations regarding
river fauna.

In this way, recent work has gone towards optimizing devices such as Savonius
turbines, Darrieus turbines, water wheels, and water vortex power plants, the last of which
are further described below. In traditional installations, fish passage is often impeded (thus
breaking river continuity [3–5]), there is high risk of lethal fish impact with turbomachine
parts [6–9], as well as high risk of barotrauma [10–12]. All of those problematic aspects add
up to a high ecological footprint, and all are reduced or avoided with these new types of
small-scale machines.

From a turbomachine engineering perspective however, the development of these
devices is challenging because they operate in environments that are much less controlled
than those of typical large-scale hydropower turbines [13,14]. In particular, the incoming
flow velocity, as well as the inlet and outlet water heights, are not under full control and
continuously vary along with the natural discharge over the year [15]. This makes the
prediction of their power potential difficult, since many different cases have to be studied,
as, e.g., in [16].

In this article, the case of a water vortex power plant (WVPP) will be studied. The
WVPP is a device that aims to combine both ecology and hydropower, providing river
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continuity for fish migration while exploiting the discharge of this bypass facility. Here we
show why the quantification of its power potential is so challenging. The practical problem
encountered on a full-scale laboratory installation will be described. A simple theoretical
model will then be applied to the case, demonstrating the use of an efficient method for
computing the power potential of bypass hydropower installations.

1.2. Operation of a Water Vortex Power Plant

Water vortex power plants are hydropower devices which use a type of Francis
turbine (radial inlet, vertical outlet), but without the use of any guide vanes; instead, their
turbine inlet consists of an open-air, spiral-shaped basin. This type of device is suited for
combinations of modest flow rates (in the order of 1 m3 s−1) and modest hydraulic head
(in the order of 1 m). Recent research interest in this type of device has focused on their
geometry [17,18] and their compatibility with fish river migration [19].

As part of the research project Fluss-Strom, the dynamics of a 26 m long WVPP were
investigated. The constructor of the device markets it as the “Fisch-Freundliches Wehr”,
for use as fish migration corridors bypassing dams and large weirs. Work was conducted
towards erecting a full-scale laboratory installation at the Technische Universität Dresden
(Figure 1, for the purpose of carrying out biological investigations with live fish [20–23].
Numerical investigations have also been carried out, as presented further below.

Figure 1. (Left): computer drawing of the device with its main dimensions. In both images, the
flow is from top left to bottom right, with the turbine basin in the center. (Right): photograph of the
WVPP installation in the laboratory of the Technische Universität Dresden. (drawing reproduced from
Powalla et al. 2021 [24], with geometry provided by Ecoligent GmbH).

In the Dresden laboratory, water is picked up by pumps whose discharge goes through
a settling tank before being fed to the WVPP. Water then flows through the free-surface
installation, before overflowing an outlet weir, back into the inlet of the pumps. A casual,
bystander observation of the dynamics of the installation in Dresden during testing reveals
that its behavior is not simple. The system is controlled by prescribing the volume flow
(provided by the pumps) and turbine rotation speed; the water levels in the inlet and outlet
channels are part of the response.

The need for a model by which to analyze the installation’s behavior can be prompted
with the following observation. The powerplant is first operated with a given volume flow
and turbine rotation speed. Then, the turbine speed is reduced. This increased restriction to
the flow causes the water in the upstream channel to “back up”, and within the following
minute, the water level there has increased significantly. As a result, the turbine’s load
increases, which, together with the change in rotation speed, causes the power output to
change. From the point of view of the experimental scientist, and of the device’s future
operator, is this change desirable? Is more hydraulic power now available to the turbine?

1.3. Purpose of Article

The present article answers the question above by providing a framework with which
to analyze the situation. Here, the former power output (which occurred for a higher
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turbine speed and identical volume flow) must be meaningfully compared with the new
one. Is the turbine more efficient in one of the two cases? Should the expression for
efficiency take the increase in inlet cross-sectional area into account?

In the literature, the turbine power of such devices is sometimes non-dimensionalized
as an “efficiency”, formulated as Ẇshaft/(ṁgΔh), as would be done with a high-head cross-
flow installation. In this case, however, the device is intended for use as a bypass to the main
river flow (see Figure 2); the mass flow that is not captured by the WVPP is lost and will pass
through the main river flow instead. The denominator in the expression above (the power
that corresponds to an “efficiency” of 100 %) is therefore a fleeting amount that is affected
by the device’s operation, making comparison of different operating points difficult.

Figure 2. Drawing of the WVPP in the type of installation it has been designed for: as the bypass to
the main flow of a river. The heights h1 and h2, formally described in ref. [25], remain unaffected by
its operation.

These introductory questions prompted by observation of the Dresden laboratory
installation can be addressed by defining a maximum by which the actual measured
performance of the installation can be compared. To this purpose, we must express power
and efficiency in a meaningful way, so they may be compared across different scales and
operating conditions.

First, a review of the key parameters that describe the physical processes at hand
will be carried out. In a second step, a demonstrative computational fluid dynamics (CFD)
simulation will be presented, showing how numerical values for these parameters may
be obtained at a relatively low computational cost. Finally, the questions above will be
answered with a quantitative example.

2. Full Flow Simulations and Their Limitations

An important tool for fluid flow analysis is of course numerical simulation through
computational fluid dynamics (CFD). As part of the same Fluss-Strom research project,
a series of numerical investigations of the Dresden WVPP installation have been carried
out at the University of Magdeburg [24,26–28]. The main focus of those investigations is
the device’s compatibility with fish migration, with further work currently underway in
the laboratory to develop increasingly capable fish behavior models using these simula-
tions [19], but a secondary objective, of concern in the present work, is the quantification of
its hydropower potential.

A family of numerical fluid flow simulations is now available to reproduce the flow in
the WVPP (Figure 3). These simulations are based on a Reynolds-averaged Navier-Stokes
(RANS) approach and have been validated with experimental measurements in the Dresden
laboratory. The properties of the simulations are detailed in [24,28]: an unsteady solver
is used with volume-of-fluid and k-ω SST models on a structured, 4.7-million-cell grid
which accounts for the turbine movement. These are not of concern for the present work;
instead, the emphasis is here placed on the computational costs involved in running those

3
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simulations: obtaining a single reading for the turbine power in [24] uses up 19,000 CPU-
hours. The reasons for this high cost are, firstly, that the inherent physics of the flow are
challenging to describe numerically, and secondly, that the simulations must be run for
long periods of simulated time (of the order of 45 s) in order to account for the device’s
long response times. Indeed, the large open-air channels upstream and downstream of the
turbine basin act as large mass buffers whenever boundary conditions or turbine speed is
changed, while large amounts of momentum are stored in the rotating motion of the water
in the basin itself.

Figure 3. Views from complete simulations of the flow in the WVPP. Top: the device has been
sectioned longitudinally so as to display the water level and turbine position in the WVPP. A few
streamlines colored according to velocity are visible in the outlet of the turbine. Bottom: view of the
mesh structure in the turbine basin, colored according to velocity. Full details of this simulation are
published in Powalla et al. 2021 [24].

It therefore follows that a three-dimensional, two-phase CFD simulation accounting
for the plant’s complete geometry cannot currently be used to map out the behavior of the
WVPP across a large range of volume flows, inlet heights, and outlet heights. Instead, a
simpler model is needed in order to evaluate the potential power available to the plant, by
which its efficiency can be quantified across many conditions.

3. Model for the Energy Budget of a Water Vortex Power Plant

In order to obtain a fast, flexible quantification of the available power across various
regimes, the WVPP is now analyzed with the lens of the model presented in Cleynen et al.
2017 [25]. The underlying hypothesis is that the machine is installed as a bypass to a weir
or traditional hydraulic dam, as depicted in Figure 2; it is assumed that the inlet and outlet
water heights h1 and h2 are unaffected by its operation. The mass flow rate ṁ is a priori
unknown.

In order to quantify and non-dimensionalize power, reference values are chosen.
The cross-section of the WVPP’s inlet is used as a reference area Af = Lwidth inleth1, and a

4
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representative upstream river velocity U∞ is used as a reference velocity. The turbine power
is non-dimensionalized as the power coefficient from [25], becoming:

CP hydraulic =
Ẇhydraulic
1
2 ρAfU3

∞
(1)

CP shaft =
Ẇshaft

1
2 ρAfU3

∞
(2)

In these Equations (1) and (2), the reference power in the denominator, ½ρAfU3
∞, is

a partly arbitrary quantity, so that CP is not expected to reach any value in particular.
Nevertheless, for any given inlet boundary condition, higher power coefficient values
unambiguously indicate higher power. When h1 is increased, the reference power grows in
proportion, reflecting the device’s increased ability to capture mass flow ṁ in the inlet.

The device’s performance is quantified separately, using the load efficiency ηload (the
fraction of available hydraulic power that is actually being provided to the turbine) and
ηhydraulic (the fraction of the hydraulic power provided to the turbine that is actually being
converted to shaft power), as per ref. [25], so that the power coefficients can be rewritten as:

CP hydraulic =
1

1
2 ρAfU3

∞
ηload Ẇhydraulic, max (3)

CP shaft =
1

1
2 ρAfU3

∞
ηhydraulic ηload Ẇhydraulic, max (4)

In [25], a model for the hydraulic power available to the device was developed, based
on the actuator theories from Betz, Lanchester and Zhukovsky, and accounting for the
altitude drop Δ(z + h). This power is quantified using a single, relatively simple equation,
where the only variable is the velocity through the actuator uA:

CP hydraulic =

[
4 +

KD2

R2

](
R

uA

U∞

)3
− 4

(
R

uA

U∞

)2
− KD0

(
R

uA

U∞

)
(5)

In this equation, the size ratio R ≡ AA/Af compares the actuator area with the inlet
area, as per ref. [25]. The two parameters which must be quantified to obtain a power curve
are the static drop coefficient KD0 (determined entirely by the device’s environment), and
the loss coefficient KD2, which quantifies all of the hydraulic losses occurring through the
device. These two parameters are defined as per ref. [25] as:

KD0 ≡ −ρgΔ(z + h)
1
2 ρU2

∞
(6)

KD2 ≡ −Floss
1
2 ρu2

A Af
(7)

In the present case, the static drop coefficient KD0 is already known, since it is deter-
mined entirely by the device’s installation settings. The loss coefficient KD2, however, is the
result of the flow (it is expressed as a function of Floss, the force representing all momentum
losses occurring in the flow): some initial reference measurement or numerical simulation
is needed in order to estimate its value, and thus predict the device’s internal losses during
operation. This is achieved subsequently, using a strongly-reduced CFD model.

4. Low-Resource CFD Model of the Power Plant

For the purpose of rapidly quantifying the drop coefficient of the device, a CFD

simulation is prepared, based on the simulations presented in Powalla et al. 2021 [24].
The full details of the flow, for example the intricacies of the water movement within the
turbine, are not of interest here. Instead, what is needed is only a measure of the device’s
internal energy losses: dissipation incurred through movement of the water in the inlet

5
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and outlet channels, as well as through the rotation occurring in the turbine basin. Those
losses can be correctly evaluated when the turbine is abstracted away, i.e., replaced by a
pair of linked surfaces. To achieve this, the simulation is therefore greatly simplified, as
shown in Figure 4. The global inlet and outlet are set to total pressure boundaries with a
static pressure distribution. The modeling of two-phase flow is abandoned, prescribing
instead a perfectly flat slip wall for each of the upstream and downstream channel ceilings.
The turbine is removed and is replaced with a cylindrical outlet in the upstream channel,
and a disc-shaped inlet in the downstream channel. A coupling of the mass flow and total
pressure between these two surfaces is implemented. Water exits the top part of the weir in
the yellow cylinder-shaped “top outlet”, a surface with a prescribed mass flow boundary
condition. The mass-flow-averaged total pressure is read out from this surface, and in
turn, this value is prescribed as a boundary condition for the “bottom inlet” (purple disc in
Figure 4). The resulting mass flow in this “bottom inlet” is read out and serves to prescribe
the mass flow in the “top outlet”, with some under-relaxation for increased stability.

Figure 4. Main features of a simplified simulation for the WVPP, based on the family of simulations
depicted in Figure 3, but with much of the sophistication removed. (Top): a cross-section of the weir
is shown, with plane sections colored according to velocity. (Bottom): coupling mechanism between
the upper and lower parts of the weir, seen from below the turbine basin.

The resulting, highly-simplified simulation features 2.6 million cells; after a crude
initialization, a stable flow field is obtained after 52 s of simulated time, marching with a
time step of 0.02 s. This is obtained at the expense of only 550 CPU-hours (less than 3 % of
the computational costs of the reference two-phase CFD simulation with moving rotor),
making the computation well within reach of an ordinary desktop computer.

In this simulation, since there is no turbine to obstruct the flow, the mass flow is
governed by the dissipation losses associated with the transit of water through the complete
installation. The mass flow ṁ is the only output from the simulation required to quantify
Flosses, the force representative of all such losses in the model, calculated from the difference
between the fluid’s momentum at inlet and outlet (see [25]). With Flosses, the loss coefficient
KD2 is quantified, and with it, the power curve of the installation can be drawn, quantifying
the hydraulic power available to the turbine as a function of the mass flow.

6
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For the case of the WVPP installed in the laboratory in Dresden, the performance is quan-
tified as follows. The machine features Δz = −0.875 m and Lwidth inlet = Lwidth outlet = 2 m.

The upstream reference velocity is chosen as U∞ = 1.2 m s−1. In the outlet of the
turbine chamber leading to the outlet channel, a cross-section is selected arbitrarily to
represent an actuator surface, with area AA = 0.817 m2. The choice of that “abstracted
turbine” cross-section is a simple matter of convenience and does not affect results. Here, it
is expected that this section will likely remain unaffected by modifications of interest in
later studies, such as changes to the turbine basin geometry or to the diameter of the throat.

The operating boundary conditions are chosen as h1 = 0.825 m and h2 = 0.7 m. These
values result in an inlet area Af = 1.65 m2 and a corresponding actuator-to-inlet area
ratio R = 0.495. The static drop coefficient is then given, before the simulation is run, as
KD0 = 13.625.

The simulation is run until the mass flow has stabilized to a satisfactory level (changing
by less than 1 kg s−2). The mass flow then reaches a value of 953 kg s−1 (this is the sole
output of the simulation).

The effect of all momentum losses in the system is summed up as the single force
Floss = −16.09 kN. In this manner, the loss coefficient (Equation (7)) is finally obtained as
KD2 = 14.329. Using the mass flow, the relative actuator velocity (adjusted for relative area)
is computed as R uA/U∞ = 0.481 (the fastest the water can ever flow through the device
given these boundary conditions). The available power curve, plotted using Equation (5)
with the obtained KD0 and KD2 values, is plotted in Figure 5.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

R uA/U∞

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

−C
P

Available hydraulic power (equation 5)

Simplified cfd simulation

Figure 5. Power coefficient of the WVPP when h1 = 0.83 m & h2 = 0.7 m, as predicted using a single,
simplified CFD simulation. The vertical axis is the power coefficient CP based on the frontal area
Af (Equation (1)), and the horizontal axis is the adjusted actuator velocity (non-dimensional inlet
velocity, directly proportional to the mass flow). The large dot on the zero-y axis stands for the value
read out from the simplified CFD simulation, while the power curve is the solution to Equation (5),
calibrated with the KD2 value obtained from the simulation.

In this Figure 5, a single point is shown for the single simulation used to generate the
curve. A discrepancy between that point and the corresponding prediction according to
the power curve is observed. This difference is attributed to non-uniformities in the flow
(particularly at the outlet), which are neglected in the intentionally simple post-processing
of the simulation. The power curve in Figure 5 features a maximum of CP hydraulic = 2.76 at
an adjusted speed (R uA/U∞)opt = 0.29 (corresponding to ṁCP hydraulic max = 574 kg s−1). This
information, available before any detail about the turbine is specified, already provides
information useful for its design, for example in determining velocity triangles or sizing
mechanical components.
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In order to check the validity of the model, further simplified simulations are run, in
which the coupling between the upper and lower regions of the simulations is modified:
each time, only a specified fraction of the total pressure read out in the top outlet is
prescribed in the bottom outlet. The mass flow is therefore reduced by the (fictive) force
exerted by the actuator. The result of these simulations are displayed in Figure 6 together
with the previously-obtained power curve. Additionally, the turbine shaft power coefficient
obtained from a complete, moving-turbine simulation of a corresponding case is displayed
as a single, orange-colored point.

0.0 0.2 0.4 0.6

R uA/U∞

0

1

2

3

−C
P

Available hydraulic power (equation 5) (CP hydraulic)

Actuator (simplified) cfd simulations (CP hydraulic)

Complete cfd simulation with turbine (CP shaft)

Figure 6. Modeled power curve for the WVPP. The right-most data point and the blue curve are these
from Figure 5. The other green points are generated using further simplified simulations from which
energy is extracted summarily in the main basin. The orange cross indicates the turbine shaft power
coefficient obtained in a complete CFD simulation for conditions very close (h1 = 0.85 m, h2 = 0.74 m)
to those used when plotting the power curve.

In Figure 6, the agreement between the values obtained in the actuator simulations and
the curve prediction built on a single, unobstructed-flow simulation is, for the purposes of
this work, deemed excellent. In the top portion of the power curve, the model underpredicts
power by 6 % on average. The curve plotted by is not a best-fit model, but indeed the
solution of Equation (5), built on the assumption that the losses internal to the WVPP can be
well-described using a single, constant loss coefficient.

In this same figure, the single data point corresponding to a complete simulation
(two-phase CFD with rotating turbine) falls well below the curve, at 71 % of CP hydraulic max.
In this case, the product of the load and hydraulic efficiencies, which account together for
the not-quite-optimal mass flow, free-surface effects in the device, and dissipation losses
within and around the turbine, is ηloadηhydraulic = 71 %.

5. Results

The model presented above can be used to evaluate performance in different situations.
For example, in recent work, a series of four complete simulations of the WVPP was run,
with boundary conditions adjusted so that the inlet and outlet heights would be set to
respectively h1 = 0.64 m and h2 = 0.56 m. Each time, the rotation speed ω of the turbine was
varied, and the power of the turbine was extracted. These two properties are presented
together in Figure 7.
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Figure 7. Four turbine shaft power readings carried out in full CFD calculations of the WVPP (individ-
ual crosses with a trend curve added as a thin line), with h1 = 0.64 m and h2 = 0.56 m. Both axes are
dimensional (power in W and rotation speed in revolutions per minute). In these four simulations,
the mass flow decreased steadily as the turbine speed was increased.

The model presented in this article allows for the non-dimensionalization of these
values, and their comparison to a maximum theoretical reference point. For this, a new,
simplified (single-phase, turbine-less) simulation is run. Compared to the first case studied,
the changed inlet height modifies the value of R to 0.641 and the boundary conditions
to KD0 = 13.03. Using the mass flow obtained in the simulation, the loss coefficient is
quantified as KD2 = 16.23. These results make it possible to transform the Figure 7 into the
two Figures 8 and 9, which present the power coefficient and product of efficiencies for
each of the simulations, together with the theoretical limit for these.
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Figure 8. The turbine shaft power readings from Figure 7, this time non-dimensionalized as per the
model developed in this chapter (orange crosses). In addition, a single simplified simulation has been
run (rightmost circle data point), and the corresponding power curve has been drawn.
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Figure 9. The data from Figure 8, this time presented so that the efficiency of the power extraction
(the product of the load efficiency ηload and hydraulic efficiency ηhydraulic) is quantified; the reference
power for this is the maximum of the power curve.

Finally, the model can be used to answer the questions formulated in the introduction
in a quantitative manner. The simulations in Figure 8 were subjected to an inlet height
of 0.825 m; what happens if this height is raised to 1.2 m? The answer is obtained by
running one additional simplified CFD simulation. Once the property fields have been
initialized with values from the previous case, a converged flow state is obtained after 12 s
of simulated time and an expense of 190 CPU-hours (which is 1 % of the computational cost
of the reference two-phase CFD simulation with moving turbine). The resulting available
power curve is plotted together with that from Figure 8 in Figure 10.

0.0 0.2 0.4 0.6

R uA/U∞

0

1

2

3

−C
P

Reference case

Operation with increased inlet height

Figure 10. Power curves of the WVPP for two cases: the blue curve, already plotted in Figure 8, is for
when h1 = 0.825 m; while the green curve is for the same installation when h1 = 1.2 m. Each curve is
based on a single reading from a simplified CFD simulation.
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Using the information in Figure 10, the answers are summarized as follows:

• The inlet height has been increased by 45 %, and the available power has increased
almost in proportion by 38 % (the maximum power coefficient is decreased by 5 %).

• In order to have access to this additional power, the turbine must operate with a
strongly reduced inlet velocity (from 0.35U∞ down to 0.21U∞).

A quick re-dimensionalization of these results indicates that the maximum available
power Ẇhydraulic max goes from 4.54 to 6.25 kW, while the corresponding mass flow ṁopt

reduces from 571 to 512 kg s−1; these new values become the reference point by which to
quantify the installation’s efficiency.

It is therefore seen that the model developed in the first part of this chapter can be
used to answer questions that, although simple, have no obvious immediate answer. In
this case, increasing the inlet height increases the load on the turbine, but also the internal
dissipative losses in the plant; if the inlet velocity were to be kept constant, these losses
and the increased momentum abandoned in the outlet (where velocity would increase by
virtue of mass conservation) would reduce the power available to the turbine. From the
point of view of the operator, this change in operating conditions is only desirable if the
turbine and generator are able to operate efficiently at a reduced flow rate.

If the power characteristics of the WVPP were of further interest, models better suited
to predicting its losses could naturally be developed, using more sophistication. Here, the
approach was voluntarily kept as simple as possible, focusing on illustrating the capabilities
of a model which was developed to cover a much more general class of devices, including
turbomachines operating in floating installations.

6. Conclusions

This article demonstrates that a theoretical analysis of the achievable performance
in floating or bypass hydropower installations allows designers and operators to answer
questions of practical importance in a computationally-efficient way.

A one-dimensional model describing the fluid flow through hydraulic devices had
formerly been presented: a tool able to characterize the performance of machines operated
in conditions where the mass flow rate is a control variable and the outlet water height
cannot be controlled. This corresponds for instance to machines operating in a cascading
flow alongside a dam. In the model, the device operating speed required to attain full
load efficiency, and the corresponding maximum hydraulic power, can be quantified
independently of the hydraulic efficiency.

Usage of the model was here demonstrated with the case of a mid-scale hydropower
device, a 26 m long water vortex power plant (WVPP). In order to characterize the installa-
tion’s power budget, only two properties need to be quantified: the static drop coefficient
KD0, a function of the boundary conditions only, and the loss coefficient KD2, a measure of
the device’s hydraulic flow resistance. It is shown that a simplified CFD simulation with a
single output (the mass flow rate) is sufficient to obtain a useful value for KD2.

In this manner, the power available to the machine can be quantified given any set of
boundary conditions. It becomes possible to evaluate the device’s real-life performance,
benchmarking it against reference values anchored in physical principles. Our model
can be used to provide design guidance, and compare sets of boundary conditions one
against the other easily, providing answers that are not easily obtained using intuition or
even experiments. These results are obtained with a computing cost reduction of 97–99 %
compared to those associated with a full description of the flow using CFD methods.
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Nomenclature
AA actuator frontal area [m2]
Af device frontal area [m2]
CP power coefficient [—]
g gravitational acceleration [m s−2]
h height from bed to water surface, positive upwards [m]
KD0 static drop coefficient (def. (6) as per ref. [25]) [—]
KD2 loss coefficient (def. (7) as per ref. [25]) [—]
ṁ mass flow [kg s−1]
R size ratio R ≡ AA/Af, as per ref. [25] [—]
uA fluid velocity at the actuator [m s−1]
U∞ free-stream velocity [m s−1]
Ẇ mechanical or electrical power [W]
z altitude of bed, positive upwards [m]
Δ net difference
η efficiency (from 0 to 1) [—]
ρ density [kg m−3]
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Abstract: During the load rejection transient process of the prototype pump turbine units, the
pressure fluctuations of the entire flow passage change drastically due to the rapid closing of guide
vanes. The extremely unsteady pressure distribution in the flow domains including the crown
chamber and the band chamber may cause a strong vibration on the stationary structures of the
unit and result in large dynamic stress on the head cover, stay ring and bottom ring. In this paper,
the numerical fluid dynamic analysis of the entire flow passage of a reversible prototype pump
turbine during load rejection was performed. The flow characteristics in the runner passage, crown
chamber, band chamber, seal labyrinths and balance tubes are analysed. The corresponding unsteady
flow-induced dynamic behaviour of the head cover, stay vanes and bottom ring was investigated
in detail. The analysed results show that the total deformation of the inner edge of the head cover
closed to the main shaft is larger than that of other stationary structures of the unit during the load
rejection. The maximum stress of the stay ring is larger than that of the head cover and the bottom
ring and the maximum equivalent stress is located at the fillet of the stay vane trailing edge. The
fluid–structure coupling calculation method and the analysed results can provide guidance for the
design of stationary components of hydraulic machinery such as pump turbines, Francis turbines
and centrifugal pumps with different heads.

Keywords: pump turbine; head cover; load rejection; fluid–structure coupling; stress concentration

1. Introduction

With the gradual increase in power demand in recent decades, the capacity of tradi-
tional power generation such as thermal power and nuclear power has been increasing and
the peak-to-valley difference of the power grid has been expanding, which has put forward
higher requirements on the regulation capability and flexibility of the grid. As an important
source of clean and renewable energy, hydropower has increasingly been developed for
power generation worldwide because of its flexible features such as fast start/stop and
load adjustment. Hydropower has indeed improved the power grid’s ability to resist
fluctuations in power demand and has gradually occupied an important share of the grid
load. The hydraulic pumped storage power plant (HPSPP) mainly consists of an upstream
reservoir, water diversion pipelines, a pumped storage unit and a downstream reservoir.
The pump turbine (PT) is the core working equipment of an HPSPP, which can freely choose
the direction of energy conversion. When the unit operates under the turbine condition,
water flow enters the unit from the spiral case and generates power through the runner.
When the unit operates under the pump condition, the flow direction is the opposite and
the flow from the draft tube is pumped upstream by the rotating runner. The HPSPP can

Energies 2022, 15, 3764. https://doi.org/10.3390/en15103764 https://www.mdpi.com/journal/energies14
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flexibly select operating conditions according to the demand of the power grid and has
functions of peak shaving, valley shaving, frequency regulation, emergency reserve and
optimal power supply, which has been vigorously developed and widely used.

The high water head of HPSPP will lead to high pressure excitation on the pump
turbine unit and may cause a series of safety problems such as unexpected severe vibration
and even fatigue failure on the PT structures. Several cases of unit failure or damage were
reported in studies [1–4]. The main reasons for the failure and damage revealed in the
reports include the drastic change of hydraulic characteristics under certain operating
conditions, abnormal vibration of the unit caused by unreasonable design and fatigue
failure of stationary parts such as head cover bolts, etc. According to the demand of the
grid, PT units in HPSPPs often experience unstable operation processes such as startup and
shutdown, load increase and decrease and even load rejection. Load rejection is one of the
transient processes with the most drastic changes in the hydraulic excitation of the PT unit
and it has the greatest impact on the safe operation of the unit. Numerous studies [5–9]
have shown that the drastic changes of velocity and flow rate during load rejection generate
an extremely unstable flow in the flow channels of the PT unit and the pressure excitation
on the structural components are much higher than that at rated operation conditions;
therefore, it is of great engineering significance to study the load rejection process of the PT
unit and the vibration of the stationary structures during load rejection.

Due to the high cost or inconvenience of model tests and prototype tests of PT units,
numerical simulations have become an alternative method to study the internal flow char-
acteristics of PT units. The most important issue of numerical calculations is the accuracy
compared to tests. A considerable number of studies [9–13] have verified the reliability
of numerical calculations of hydraulic machinery including PT units by comparing the
calculated results with the ones of field measurements. The comparisons show that the
errors are within the acceptable range for engineering projects.

In recent years, the joint 1D/3D simulation method combining 1D pipeline calculation
with 3D unsteady flow calculation of turbines [14–17] has been mostly used to study
the transient processes of hydraulic turbine units. The 1D/3D joint simulation method
can more accurately calculate key parameters such as rotational speed, flow rate and
guide vane opening of the turbine unit and achieve valuable results for hydropower
engineering applications. The researchers [18–20] have analysed the reliability of 1D
pipeline calculation by comparison with measurement results. Regarding the 3D unsteady
simulation, some studies [15,21,22] have used the dynamic mesh technology to simulate the
transient process of the unit with the time-varying curves of guide vane opening, flow and
head as the boundary conditions. The simulation results are in rather good agreement with
the experimental data and have the advantage of capturing the pressure pulsation of the
whole flow field with high accuracy; however, the computational resource consumption is
enormous and the computation time often exceeds several months, which cannot provide
rapid feedback to the PT designers in a given short time during practical engineering
projects. Some scholars [7,17,23,24] have proposed a new method to calculate the fluid flow
at various critical time points during transient processes and studied the main stress/strain
changes of the PT structures caused by the fluid flow. The error of the pressure between
the simulation results and the experimental results is within 7% in large opening condition
and within 12% in minimum opening [24]. In this study, the same approach was adopted
to investigate a prototype PT head cover during turbine load rejection.

The research on the characteristics of structural components such as head cover
vibration of PT unit is a complex fluid–structure coupling (FSC) problem. One-way FSC and
two-way FSC are two typical methods to solve the FSC problem. The characteristic length of
the entire flow field can be up to ten meters, while the actual head cover deformation of the
PT unit is only several millimetres, so the effect of the head cover deformation on fluid flow
is negligible; therefore, the one-way FSC method is reasonable for this study considering
the computational resources and the accuracy of the results. It is more reasonable to adopt
the one-way FSC method for this study considering the computing resources and accuracy
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of the results. The studies [25,26] have verified the accuracy of the FSC calculation method,
compared the effects of different FSC methods on the calculation results of hydraulic
machinery and confirmed the feasibility of the one-way method. Some researchers [27,28]
have calculated the stresses and strains of the stationary parts of the unit with the one-way
FSC method. The difference between the calculated results and the measured ones is within
the acceptable range. In summary, the previous research achievements and the proven
methodology provide a solid foundation for FSC analysis of the prototype PT head cover
during turbine load rejection.

In this paper, the full 3D fluid domain model of the PT unit and the corresponding 3D
structural model were established first. The 1D pipeline calculations were performed to
select the key time points during the load rejection process for the full 3D fluid simulations.
After that, the pressure of the PT unit at each time point was calculated using the 3D CFD
simulation method. The obtained pressures files were sequentially exported, transferred
and mapped to the corresponding structural components of the PT unit via the one-way
FSC calculation method. Finally, the structural characteristics of stationary components
such as head cover and head cover bolts were analysed and discussed in detail to draw
conclusions. The achievements in this study can provide an important reference for the
optimal design of hydraulic turbine units for power stations.

2. Methods of Numerical Calculation

The numerical calculation methods in this paper include the 1D pressurized pipeline
calculation method, 3D turbulence numerical simulation method and FSC method for 3D
structure analysis.

2.1. Governing Equations of Unsteady Flow in 1D Pipeline Calculation

The calculation models of the water conveyance system of HPSPP include pipelines,
PT unit, upper and lower reservoir, valves and surge shaft, which constitute the mathe-
matical model of the unsteady flow in the pipeline. The basic equations of unsteady flow
in the closed pipeline consist of the equation of motion and the equation of continuity.
The calculation method of pipeline flow can refer to studies [7,29].

g
∂H
∂x

+ v̄
∂v̄
∂x

+
∂v̄
∂t

+
f v̄|v̄|
2D

= 0 (1)

v̄
∂H
∂x

+
∂H
∂t

+
a2

g
∂v̄
∂x

− v̄ sin α = 0 (2)

where h = Z + P/ρg, Z is the elevation of the pipeline axis, p is the pressure, ρ is the
liquid density and g is the local gravity acceleration, v̄ is the average velocity of the fluid in
the pipeline, F is Darcy Westbach friction coefficient, D is the inner diameter of the pipe, X
is the length of the pipeline along the axis, A is the wave velocity in the pipeline, T is the
transient time and α is the angle between the pipe axis and the horizontal plane.

On the characteristic line ∂x/∂t = ±a, the original equation can be transformed into a
differential equation with constant coefficients; therefore, the process of solving the partial
differential equation can be transformed into the discretization of the difference equation
on the characteristic line. The compatibility equations are:

C+ :

{
dx
dt = + a
A2 dH

dt + A a
g

dQ
dt − QA sin α + f aQ|Q|

2gD = 0
(3)

C− :

{
dx
dt = − a
A2 dH

dt − A a
g

dQ
dt − QA sin α − f aQ|Q|

2gD = 0
(4)

Equations (3) and (4) are called the MoC equations and the compatibility equation
established along the characteristic lines. Two characteristic line directions are C+ and C−.

16



Energies 2022, 15, 3764

The equation can be integrated by the variation of flow rate and water head between two
points in the form of difference and then the 1D pipeline calculation can be completed by
iteration solution.

2.2. Governing Equations of the 3D Flow Simulation

The conservative differential form Navier–Stokes Equation for fluid flow is:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (5)

∂

∂t
ρui +

∂

∂xj
(ρuiuj) =

∂τij

∂xj
+ ρ fi (6)

The Reynolds averaging (RANS) method regards turbulent motion as the combination
of time-averaged flow and instantaneous fluctuating flow, ignoring the influence of density
fluctuation, but taking into account the change of average density, averaging the time by
the turbulent control equation. The tensor expressions of the continuity equation and the
momentum equation are as follows:

∂ρ

∂t
+

∂

∂xj

(
ρuj
)
= 0 (7)

∂

∂t
(ρui) +

∂

∂xj

(
ρuiuj

)
= − ∂p

∂xi
+

∂

∂xj

(
μ

∂ui
∂t

− ρu′
iu′

j

)
+ SM (8)

where the underlined symbol of the time averages is removed except for the time averages
of the fluctuation value. In the equation, ρ is density, p is pressure, i and j range of indicators
is (1, 2, 3), ui represents velocity components in the x, y and z directions, μ is dynamic
viscosity and SM is the generalized source term for the momentum conservation equation.
A new unknown quantity appears in the equation, which is defined as Reynolds stress:

τij = − ρu′
iu′

j (9)

In order to set up a closed-form equation system, the Reynolds stress needs to be
treated. Considering the similarities between Reynolds stress and viscous stress, the eddy-
viscous model and the corresponding correction method provide a relatively simple method
to solve Reynolds stress. Based on the eddy viscosity assumption proposed by Boussinesq,
turbulent kinetic energy is introduced:

k =
1
2

u′
iu′

j (10)

The turbulent Reynolds stress is analogous to the physical viscous stress and is consid-
ered to be related to the average velocity gradient and the eddy viscosity:

− u′
iu′

j = νt(
∂ui
∂xj

+
∂uj

∂xi
)− 2

3
kδij (11)

Commonly used two-equation eddy viscosity models mainly include k−ε model, k−ω
model and corresponding improved models. A good coupling model is the SSTk−ω model,
which is standard k−ε model in the near wall area and standard k−ω model in the free
turbulent flow (turbulent core area):

∂k
∂t

+ Uj
∂k
∂xj

= Pk − β∗kω +
∂

∂xj

[
(ν + σkνT)

∂k
∂xj

]
(12)
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∂ω

∂t
+ Uj

∂ω

∂xj
= αS2 − βω2 +

∂

∂xj

[
(ν + σωνT)

∂ω

∂xj

]
+ 2(1 − F1)σω2

1
ω

∂k
∂xi

∂ω

∂xi
(13)

where the closure coefficients and auxiliary relations are:

F2 = tanh

⎡⎣[max

(
2
√

k
β∗ωy

,
500ν

y2ω

)]2
⎤⎦ (14)

Pk = min

(
τij

∂Ui
∂xj

, 10β∗kω

)
(15)

F1 = tanh

⎧⎨⎩
{

min

[
max

( √
k

β∗ωy
,

500ν

y2ω

)
,

4σω2k
CDkωy2

]}4
⎫⎬⎭ (16)

CDkω = max
(

2ρσω2
1
ω

∂k
∂xi

∂ω

∂xi
, 10−10

)
(17)

φ = φ1F1 + φ2(1 − F1) (18)

α1 =
5
9

, α2 = 0.44 (19)

β1 =
3

40
, β2 = 0.0828 (20)

β∗ =
9

100
(21)

σk1 = 0.85, σk2 = 1 (22)

σω1 = 0.5, σω2 = 0.856 (23)

where y is the distance to the nearest wall. Due to the coupling characteristics, the SSTk−ω
model has good predictability of flow separation in the reverse pressure gradient region,
therefore this model will be used for calculation in this paper.

2.3. Governing Equations of the Fluid–Structure Coupling Analysis

Considering the fluid pressure acting on the structures, the governing equation of
structural dynamics based on the finite element method can be described as

[Ms]{ ü} + [Cs]{ u̇} + [Ks]{u} = { Fs(t)} +
{

Ff s(t)
}

(24)

where [Ms], [Cs] and [Ks] represent the mass, damping matrix and stiffness matrices of
the structure, respectively; {u} , { u̇} and { ü} are the node displacement, velocity and
acceleration vectors, respectively; { Fs(t)} refers to the external excitation load vector acting
on structures,

{
Ff s(t)

}
represents to the fluid pressure load vector at the interface and t

is time.
The fluid pressure distribution in the PT unit can be obtained by 3D computational

fluid dynamics (CFD) analysis, as described in Section 2.2. Applying fluid pressure to
the fluid–structure coupling surfaces of the structures, the flow-induced structural stress
{σ} (Equation (25)) of the PT unit can be calculated with the displacement {u} solved by
Equation (24).

{σ} = [D][B]{u} (25)

where [D] and [B] are the elasticity matrix and the strain-displacement matrix, respectively.
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The von Mises stress σvM (Equation (26)) is adopted to evaluate the stress characters
of structures of the PT unit.

σvM =

√
1
2
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2] (26)

where σi (i = 1, 2, 3) are the principal stresses.

3. Numerical Simulation of the Fluid Flow

3.1. 1D Pipeline Calculation

The calculation object in this paper is a prototype pumped storage unit. The model of
1D pipeline calculation is shown in Figure 1, including upper and lower reservoir, diversion
surge shaft and tailrace surge shaft, turbines and tail gate chamber. The basic parameters of
the unit are shown in Table 1. The scope of 1D calculation includes the upstream reservoir
to the downstream reservoir and the scope of 3D CFD calculation is the turbine part of the
system, including flow domains of the spiral case, stay vane, guide vane, runner, draft tube,
upper and lower labyrinth seals and balance tubes. The further FEM calculation includes
the head cover, stay ring and bottom ring of the unit.

Figure 1. The 1D pipeline calculation model with 4 PT units (#1 to #4).

Table 1. Parameters of the unit.

Parameter Unit Value

Unit capacity MW 300
Rated speed Nr rpm 500

Number of stay vanes 20
Number of guide vanes 20

Number of runner blades 7

The relative flow rate, relative rotational speed and relative opening curves with time
are obtained by 1D calculation as shown in Figure 2 (drawn by the Origin software). Since
flow rate and rotational speed are the main factors that affect the intense changes in the flow
field and pressure characteristics during load rejection [5,6], the representative extreme
value points in the curves of flow rate and rotational speed are selected as key time points
for 3D flow field simulations and the study [10] has adopted a similar method to perform
the flow field simulation.
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Figure 2. The operating parameters and 9 key time points of the PT unit during load rejection.

The pressures at the spiral case inlet and the draft tube outlet calculated by 1D simula-
tion are shown in Figure 3. The pressure values at different moments are set as the inlet
and outlet boundary conditions for the 3D flow calculation.

Figure 3. Normalized pressure at the spiral case inlet and draft tube outlet.

3.2. 3D Flow Calculation Model

The 3D model of the PT unit is shown in Figure 4, including spiral case, stay vane,
guide vane, runner, draft tube, upper and lower labyrinth seals and balance tubes. The size
of labyrinth seal clearance is only 1.5 mm, which has a significant impact on the flow of
the unit; therefore, the upper and lower clearances are considered in the model of the
fluid domain.
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Figure 4. The 3D modeling of flow passage of the unit.

The details of the section from the unit spiral case to the draft tube are shown in
Figure 5. Pressure monitoring points (C1, C2, V1, V2, B1, B2) are set at the upper and lower
labyrinth seals and the vaneless area.

Figure 5. Setup of the monitoring points.

3.3. Mesh Independence Analysis of the 3D Flow Calculation

ANSYS CFX was used to carry out the 3D CFD analysis. The analysis type was set
to stable and the discrete format and the solver were set to high resolution. The runner
domain was set to rotate at an angular velocity of 500 rpm. The wall condition was set as
non-slip wall. The interfaces between guide vanes and runner, runner and draft tube were
set to Frozen Rotor and the others are set to General Connection. The turbulence model
was set to shear stress transport, the turbulence model was set to shear stress transfer and
the turbulence mathematical accuracy was set to first order with a convergence residual
of 10−5.

The mesh quality is very important for 3D turbulence calculation. In this paper,
the tetrahedron–hexahedron hybrid mesh was used to discrete the fluid domain. In ANSYS
Workbench, an automatic mesh generating method according to different guide vane
openings was set up to ensure the uniformity of mesh size of guide vane under a given
opening. The fluid domain mesh of the PT unit is shown in Figure 6.

In this paper, four sets of meshes with different element sizes were created to calculate
the steady-state of full-load condition (point (1) in Figure 3). The mesh independence
analysis was carried out by comparing the calculated efficiencies with different set of
meshes (Figure 7). The final adopted mesh (3) of the PT unit for load rejection calculation is
shown in Table 2.
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(a) Overview of the mesh

(b) Mesh of the fluid domains from
spiral case to runner (c) Mesh of the draft tube

(d) Mesh of the crown chamber and balance tubes (e) Mesh of the band chamber

Figure 6. Mesh of the fluid domains.

Figure 7. Mesh independence analysis using four sets of meshes with different element sizes.
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Table 2. Element number of flow domains.

Flow Domain Elements (×106)

Spiral case & Stay vane 3.26
Guide Vane 0.27

Runner 3.63
Draft tube 0.60

Labyrinth seal & Balance tubes 0.40

Total 8.16

3.4. Results and Discussion of the 3D Flow Calculation
3.4.1. Pressure Change at the Monitoring Points

Figure 8 shows the pressure change of the monitoring points in the calculation.
The pressures at various monitoring points fluctuate violently during load rejection, which
is closely related to the flow rate and rotational speed of the unit. High rotational speed
enhances the shear effect of the runner on the non-rotating flow region and increases the
water flow velocities at the runner inlet and the upstream, resulting in more wake cutting
on the guide vane flow domain. It also intensifies rotor–stator interaction phenomena and
increases pressure pulsation in the vaneless area (t = 3.74 s, t = 13.24 s and t = 24.10 s).
In addition, at the moment t = 6.88 s, the opening of the guide vane is large, the rotational
speed is high and the flow rate is low, the flow separation and vortices of the incoming
flow from the guide vane increase and a large number of blade passage vortices appear
in the runner, which are extremely unstable. The irregular flow leads to increased energy
dissipation and increased pressure near the vaneless area. In the case of a high flow rate
and low rotational speed (t = 11.19 s and t = 19.43 s), the direction of the outflow velocity of
the guide vane deviates less from the design operating condition, so the flow inside the
unit is more adequate and uniform and the pressure shows a lower level.

Figure 8. Pressure change at the monitoring points.

3.4.2. Flow Pattern Change in the Runner Passage

In the process of load rejection, the flow from the guide vane to the runner outlet shows
extremely unstable turbulent characteristics. Figure 9 shows the streamline distribution
in the runner in the whole load rejection process. When the load rejection does not begin
(t = 0 s), the flow in the runner is uniform. Afterward, the flow is greatly affected by the
changes in flow rate, head and speed.
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(a) t = 0 s (b) t = 3.74 s (c) t = 6.88 s

(d) t = 11.19 s (e) t = 13.24 s (f) t = 15.40 s

(g) t = 19.43 s (h) t = 24.10 s (i) t = 28.17 s

Figure 9. Flow pattern in the runner passage.

At the moments when the flow rate is high (t = 3.74 s, 11.19 s, 13.24 s, 19.43 s), large-
scale blade duct vortices appear on the suction surface of the blade due to the peak or high
rotational speed. The size of the blade passage vortices corresponds to the size of the flow
duct, which disturbs the flow of the whole unit and makes the hydraulic torque of the
runner fluctuate violently with the pressure of the unit.

At the moments with negative flow (t = 15.40 s and 24.10 s), the unit enters the reverse
pump operating condition. Due to the imbalance of speed and flow, the flow between
blade passages rotates abnormally and separated flow occurs on the pressure surface of
the runner. Both factors cause the wake falling off upstream of the runner blades and a
large number of swirl eddies appear in the vaneless area. At the same time, wake falling
off also occurs at the leading edge of the guide vanes and stay vanes. The unstable flow of
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the unit extends to the spiral case area. It is shown in research [15] that the vortex core in
the vaneless area is impacted instantaneously by a large number of reverse refluxes into
the guide vane area and the stay vane area when the unit experiences the reverse pump
operating condition, which is also in accordance with the calculation results in this paper.

3.4.3. Pressure Change in the Flow Passages

Figure 10 shows the pressure change of head cover during load rejection. At the
starting moment (t = 0 s) and the moments(t = 3.73 s, 11.19 s, 13.24 s, 19.43 s) when the
hydraulic moment is positive or equal to zero, the pressure distribution of the unit is
relatively uniform. The pressure difference between the pressure surface of the runner and
the suction surface is obvious without pressure concentration.

At the time(t = 6.88 s, 15.40 s, 24.10 s) when the hydraulic torque is negative, the pres-
sure difference between the pressure surface and suction surface disappears and obvious
pressure concentration points appear at guide vanes near the flow clearances.

Figure 11 shows the streamline distribution from the runner to the guide vane, with ob-
vious flow separation at the pressure concentration point and strong circulation behind the
guide vane. Pressure concentration is caused by the separation of high-speed annular flow
through a small flow gap, resulting in a sudden drop in velocity and local pressure rise as
the flow energy is converted into impact on the edge of the vanes.

(a) t = 0 s (b) t = 3.74 s (c) t = 6.88 s

(d) t = 11.19 s (e) t = 13.24 s (f) t = 15.40 s

(g) t = 19.43 s (h) t = 24.10 s (i) t = 28.17 s

Figure 10. Pressure distribution in the flow passages at different key time moments.
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(a) t = 6.88 s (b) t = 15.40 s (c) t = 24.10 s

Figure 11. The streamline distribution of the unit at three key time moments.

4. Fluid–Structure Coupling Analysis of the Stationary Structures

4.1. Simulation Model and Boundary Conditions

Figure 12 demonstrates the CAD model and boundary conditions of the stationary
structure of the PT unit. The head cover, the stay ring and the bottom ring were bolted
together as a single structure. The equivalent stiffness coefficient of the turbine guide
bearing was set as 1 × 109 N·m−1 and the standard gravity was taken into consideration.
Since the thrust bearing structure supporting the entire rotating system was directly placed
on the head cover, the equivalent mass of them was applied to the head cover. The upper
and lower surfaces of the stay ring were fixed in concrete and the bottom surface of the
bottom ring was welded to the draft tube cone. ANSYS Mechanical was used to carry out
the fluid–structure coupling analysis.

Figure 12. CAD model and boundary conditions of the stationary structures of the PT unit.

The material and mechanical properties of the research object were configured accord-
ing to Table 3.

Table 3. Material properties of the structures.

Structures

Density [kg·m−3 ] 7850
Elastic modulus [MPa] 2.1 × 105

Poisson’s ratio [-] 0.3
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4.2. Mesh Sensitivity Study

As shown in Figure 13, the structural models were meshed using high-quality tetra-
hedral elements, better suited for complex geometries. The meshes were refined for the
typical stress concentration areas of the head cover, stay ring and bottom ring (P1, P2
and P3).

Figure 13. Structural mesh of the stationary structure of the PT unit.

The element size has a significant effect on the FEA results, so it is reasonable to
conduct a mesh sensitivity study to obtain a set of mesh that provides a good balance
between computational time and the accuracy of the results. Figure 14 presents the sim-
ulation duration and convergence of the simulation results for three sets of meshes with
different sizes of elements. The element numbers of three sets of meshes are 7.86 × 105,
1.13 × 106 and 2.97 × 106, respectively. Compared to the third set mesh where the element
size was significantly reduced, the simulation results of the second set mesh show neg-
ligible changes, but the computational time was only 1/9 of the third one; therefore, we
conclude that the second set mesh has converged and can be used for further analysis to
save calculation time.

Figure 14. Mesh sensitivity study.
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4.3. Fluid Pressure Mapping and Axial Thrust Analysis

To perform the fluid–structure coupling analysis, the pressure distributions acting
on the stationary structures at different time points during load rejection were exported
from the 3D CFD analysis described earlier. Each pressure file includes the 3D coordinates
and the pressure values of the nodes on the fluid–structure coupling interface in the form
of (x, y, z, Pressure). Since the structural mesh is different from the fluid mesh on the
fluid–structure coupling interface, the fluid nodal pressure values need to be interpolated
and mapped onto the nearest nodes of the structures according to the distance between
the fluid and structure nodes. The ANSYS built-in tool can complete this task precisely
and flawlessly.

Figure 15 shows the mapped pressure distribution on the stationary structures of the PT
unit at a given moment in time. By applying the pressure files sequentially to the structural
model during load rejection, the flow-induced deformation and stress of the stationary
components including the head cover, stay ring and bottom ring can be calculated.

Figure 15. Fluid pressure mapping on the structural structures.

The huge hydraulic pressures acting on the stationary structures of the PT unit lifted
the head cover and the upper part of the stay ring and pressed down the bottom ring and
the lower part of the stay ring. In addition, rapidly changing pressure loads during load
rejection generated large stresses on the head cover, stay vanes and bottom ring.

The axial thrust on the head cover during load rejection needs to be carefully inves-
tigated as it causes axial vibration of the head cover, the thrust bearing structure and the
entire rotating system. Figure 16 illustrates the relative axial thrust of the head cover during
load rejection, which was calculated by dividing the head cover axial thrust by the total
mass of the head cover, the thrust bearing structure and the rotating system. The positive
direction of the head cover axial thrust is axially upward and the value of the axial thrust
varies greatly with time during load rejection, reaching a maximum value at t = 13.24 s,
which is more than 10 times the total gravity of the head cover, the thrust bearing structure
and the rotating system.
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Figure 16. Axial thrust of the head cover during load rejection.

4.4. Results and Discussion

Figure 17 shows the total deformation distribution of the stationary structures caused
by the fluid flow in the PT unit during load rejection. The head cover consists of an outer
and an inner cover, 4 connecting flanges and 18 stiffener plates with different shaped
openings. The huge hydraulic pressure of the fluid acting on the inner surface of the head
cover resulted in a large axial thrust, which caused relatively large deformation on the
head cover and the largest deformation appeared on the inner head cover where there is no
support in the axial direction. The bottom ring is reinforced by 18 stiffener plates and its
axial force area is much smaller than that of the head cover, so the total deformation of the
bottom ring is at a low level. The stay ring is shorter and stiffer than the head cover and
the bottom ring and has a much smaller axial force area, so the flow-induced deformation
of the stay ring is also small.

(a) Section view (b) Top view

Figure 17. Total deformation distribution of the stationary structures.

Figure 18 shows the flow-induced stress distribution of the stationary structures.
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Figure 18. The stress distribution of the stationary structures.

The fluid pressure on the inner surface of the stationary structures pushes the head
cover upward and the bottom ring downward. The stay ring between the head cover and
the bottom ring is stretched and the maximum stress occurs on the trailing edge fillet of a
guide vane of the stay ring (Figure 19).

Figure 19. The maximum stress of the stay ring.

The head cover is only supported by the stay ring in the axial direction but has a large
area facing the high pressure water. The stiffener plates are welded between the inner and
outer head cover to increase the stiffness and effectively reduce the deformation of the head
cover caused by the pressure; however, different shaped openings and holes are made in
the stiffener plates for installing various pipes such as pressure balance pipes, cooling water
pipes and pressure measurement pipes. The normalized stress distribution of the head cove
relative to its maximum stress value is shown in Figure 20, which shows that the hot spots
of head cover during load rejection appear on the different shaped openings of the stiffener
plates and the maximum stress occurs on the bottom-right side of the circular opening.
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Figure 20. The stress distribution of the head cover.

Figure 21 illustrates the stress distribution of the bottom ring during load rejection.
The stresses are normalized with reference to the maximum stress value of the bottom ring
and the maximum stress of the bottom ring occurs on the corner of the bottom ring flange.

Figure 21. The stress distribution of the bottom ring.

The von Mises stress distributions of the stationary structures at different time points
during load rejection are similar and the hot spots of the stationary structures appear in the
same locations of the head cover, stay ring and bottom ring, but the maximum stress value
change with time. Figure 22 shows the stress comparison of the normalized stresses of the
stationary structures during load rejection. All stresses are normalized with reference to
the maximum stress of the stay ring, which is larger than the maximum stresses of the head
cover and the bottom ring.

The stresses are normalized with reference to the maximum stress value of the bot-
tom ring.
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Figure 22. Comparison of the maximum stresses of the stationary structures during load rejection.

The comparison of the axial thrust force on the head cover and the normalized maxi-
mum stresses of the stationary structures during load rejection is demonstrated in Figure 23.
The tendency of these there parameters follows the same pattern. The maximum stress
values of the head cover, stay ring and bottom ring change with the axial thrust force on
the head cover and reached the respective maximum value at t = 13.24 s.

Figure 23. Results comparison of the PT unit during load rejection.

5. Conclusions

This study has carried out the fluid dynamic analysis and the flow-induced structural
behaviour analysis of a prototype reversible pump turbine unit during the load rejection
based on the measured data.

During the load rejection, the internal flow of the unit changes drastically and the
impact of the runner on the upstream is intensified due to the rapid increase in the rotational
speed and the flow variation from the design condition leads to more flow separation and
energy dissipation at the guide vane outlet. The high rotational speed and the sudden
change of flow rate are the main reasons for the unstable flow and pressure characteristics
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during the load rejection process and the pressure reaches local peaks at t = 3.74 s, 6.88 s,
13.24 s and 24.10 s.

When the unit enters the reverse pump working condition ( t = 15.40 s and 24.10 s),
the drastic changes in flow rate, speed and guide vane opening lead to a strong circulation
in front of the guide vanes. The water flow through the guide vanes is separated from the
circulating flow, resulting in strong local pressures at the backside of the guide vanes.

The pressure change in the flow domains of the spiral case and guide vane during load
rejection has the same trend as the pressure at the spiral case outlet. The pressure acting
on head cover changed largely during load rejection and reached the maximum value at
t = 13.24 s.

The huge hydraulic forces of the pump turbine unit during load rejection cause large
time-varying stresses on the stationary structures of the pump turbine unit. The maximum
stress of the stationary structures including the head cover, stay ring and bottom ring at
different time points during load rejection are strongly correlated with that of axial thrust
force on the head cover and reached the maximum values at t = 13.24 s.

The maximum deformation of the stationary structures during the load rejection
occurs on the inner edge of the head cover closed to the main shaft and the maximum
equivalent stress is located at the fillet of the stay vane trailing edge.

These findings contribute to an improved physical understanding of the flow char-
acteristics and structural behaviour of the stationary structures of similar pump turbines,
Francis turbines and centrifugal pumps and help engineers to better design the turbine
units that can operate safely and stably.
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Abstract: The role of hydropower has become increasingly essential following the introduction of
intermittent renewable energies. Quickly regulating power is needed, and the transient operations
of hydropower plants have consequently become more frequent. Large pressure fluctuations occur
during transient operations, leading to the premature fatigue and wear of hydraulic turbines. In-
vestigations of the transient flow phenomena developed in small-scale turbine models are useful
and accessible but limited. On the other hand, experimental and numerical studies of full-scale
large turbines are challenging due to production losses, large scales, high Reynolds numbers, and
computational demands. In the present work, the operation of a 10 MW Kaplan prototype turbine
was modelled for two operating points on a propeller curve corresponding to the best efficiency point
and part-load conditions. First, an analysis of the possible means of reducing the model complexity
is presented. The influence of the boundary conditions, runner blade clearance, blade geometry and
mesh size on the numerical results is discussed. Secondly, the results of the numerical simulations
are presented and compared to experimental measurements performed on the prototype in order to
validate the numerical model. The mean torque and pressure values were reasonably predicted at
both operating points with the simplified model. An analysis of the pressure fluctuations at part load
demonstrated that the numerical simulation captured the rotating vortex rope developed in the draft
tube. The frequencies of the rotating and plunging components of the rotating vortex were accurately
captured, but the amplitudes were underestimated compared to the experimental data.

Keywords: hydropower; Kaplan turbine; prototype simulation; CFD; rotating vortex rope

1. Introduction

The introduction of intermittent renewable energy resources such as wind and solar
power requires additional power to regulate grid frequency. Hydropower is often used
to regulate grid frequency because hydraulic turbines can operate in a relatively wide
range of power outputs and load changes and they are able to start and stop in a matter of
seconds and minutes, respectively. Such use of hydropower is relatively new and imposes
constraints on the hydraulic turbines for which they were not initially designed [1,2]. This
may lead to some premature wear and sometimes failures because of large pressure fluctu-
ations mainly arising in the draft tube. A lot of research is now dedicated to minimizing
the effect of operating regimes away from the best efficiency and transient operation. The
flow phenomena leading to large pressure pulsations need to be well-understood to allow
for the development of technology capable of mitigating them. The investigations of such
new operating conditions and mitigation techniques are challenging, as the consequences
may be both hydrodynamic and structural.

Energies 2022, 15, 4121. https://doi.org/10.3390/en15114121 https://www.mdpi.com/journal/energies35



Energies 2022, 15, 4121

Most studies related to the effect of off-design operations and transients have been
performed with model testing and numerical simulations of these model turbines. Model
testing allows for the investigation of turbines in a wide range of precise and repeatable
operating conditions. Detailed pressure, strain and velocity measurements can now be
performed on such turbine models. Extensive measurement campaigns have been carried
out, predominantly focusing on Francis turbine models [3–6] but also a bulb model [7,8]
and a Kaplan turbine model [9,10].

Ideally, the investigation of hydraulic turbines should be performed on the prototype
itself. However, such experiments are challenging because of both the large scales involved
and the costs, mainly because of the production losses. There are only a handful of studies
concerning full-scale turbines available in the literature [11,12]. None of them offer the
same level of detail as experiments performed on models where optical methods may be
used for velocity measurements. Usually, full-scale measurements are limited to pressure
and strain measurements in the stationary domain [13,14]. Performing measurements on a
runner [15,16], presents another level of difficulty available in few studies. Numerical simu-
lations can provide additional information otherwise difficult to obtain from measurements.
Together, both types of investigation can contribute to developing data-driven control
solutions that optimize the operation and diagnosis of hydraulic machine failures [17,18].
However numerical studies concerning full-scale hydraulic turbines are also sparse. Such
simulations are challenging because of the large dimensions, high Reynolds numbers, and
lack of experimental data to validate the results [19,20]. There have been no numerical
studies referring to full-scale Kaplan prototype turbines.

The advancement in computer hardware, hydraulic numerical simulations and tur-
bulence modelling may currently allow for the easier handling of prototype simulations.
Nonetheless, there is a growing need to simplify the numerical models to obtain results in
a reasonable amount of time with a reasonable accuracy.

The present work introduces the numerical simulation of a full-scale 10 MW Kaplan
turbine prototype at two operating points on a propeller curve. The chosen operating
conditions are equivalent to the best efficiency point and part-load operating condition of
a single regulated turbine, such as Francis and propeller types. The potential to decrease
model complexity was addressed by investigating several issues such as boundary con-
ditions, runner blade clearance, blade geometry and mesh size. The different parameters
were systematically investigated to assess their impact on the numerical accuracy of the
simulation. The aim was to optimize the numerical accuracy, computational demands, and
simulation time. The reduced model was validated using experimental data measured with
the corresponding Kaplan prototype.

2. Experimental Measurements

2.1. The Porjus U9 Prototype

An experimental investigation was performed on the Porjus U9 Kaplan turbine pro-
totype by Soltani et al. [1]. This unit is part of the Porjus Hydropower Center, situated in
the north of Sweden, and it is primarily used for educational and research purposes. The
Porjus U9 Kaplan turbine presented in Figure 1 has 6 runner blades, 20 equally spaced
guide vanes, and 18 unequally distributed stay vanes. The runner has a diameter of 1.55 m
and is located approximately 7 m below the tailwater. Table 1 presents the rated parameters
of the turbine.
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Figure 1. The main dimensions of the Porjus U9 Kaplan turbine prototype: (a) complete turbine
geometry; (b) stay vanes, guide vanes, runner and draft tube.

Table 1. Rated parameters of the Porjus U9 prototype Kaplan turbine.

Parameter [Unit] Value

Head [m] 55.5
Power [MW] 10
Discharge

[
m3s−1] 20

Rotational speed [rpm] 600

2.2. Experimental Setup

The operating points investigated in this paper were part of a measurement campaign
performed on the Porjus U9 Kaplan turbine to study different load variations and steady-
state operations. Twelve miniature piezoresistive pressure transducers (Kulite LL-080
series) were mounted on small capsules (3 mm in diameter and 5 mm in height) glued on
the pressure side (from PS1 to PS6) and on the suction side (from SS1 to SS6) of one runner
blade (Figure 2a). An epoxy layer was then added to the blade pressure and suction sides
to create a smooth surface (Figure 2b). A similar epoxy layer was applied to the opposite
blade to avoid the hydraulic and mass unbalance resulting from the weight of the applied
epoxy on the instrumented blade. The pressure transducers were located at the intersection
of imaginary circles that passed through 1/3 and 2/3 of the blade’s span and 1/4, 1/2,
and 3/4 of the blade’s chord lines. The operating range of the pressure transducers was
0–700 kPa, and their natural frequency was 380 kHz. Two torsion strain gages (K-XY41-
6/350-3-2M manufactured by HBM) were installed on the turbine shaft between the turbine
guide bearing and the generator guide bearing to measure the shaft torsional strain. The
resistance and gage factor of the torsional strain gages were 350 ± 0.35% and 2.08 ± 1%,
respectively. A detailed description of the data-acquisition system, additional sensors, and
operating conditions used in this measurement campaign was provided by Soltani et al. [1].

The uncertainty analysis for the pressure transducers and strain gages was conducted
using six nonconsecutive repeated measurements at the best efficiency point. The uncertain-
ties of the pressure transducers and torsion strain gage installed on the shaft are presented
in Soltani et al. [1].
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Figure 2. (a) Pressure transducers mounted on the runner blade; (b) epoxy layer added to the runner
blade. The hydraulic hose was used to protect the cables from the blade to the runner cone.

2.3. Measuring Program

In this study, two experimentally investigated operating points, located on a propeller
curve for a fixed blade angle β = −4.2◦, were selected. The first operating point (OP1) is
located on the left side of the propeller curve. It was characterized by a low discharge and
the presence of a rotating vortex rope (RVR). The second operating point (OP2) was closer
to the best efficiency point and presented a larger discharge. OP1 and OP2 are considered
to be the part-load operating point and best efficiency point, respectively. The operating
parameters are listed in Table 2.

Table 2. Operating condition parameters.

Operating Point Pout (MW) * Torque (kN·m)

OP1 4.9 77.9
OP2 6.9 109.8

* Values recorded in the power plant control room.

The experimental power values recorded during the measurement campaign presented
in [1] were adjusted according to the values recorded in the power plant control room.
Furthermore, the control room recordings were validated by index measurements.

3. Numerical Simulations Setup

Several numerical models were evaluated before performing the final simulations
at OP1 and OP2. The object was to minimize the computational cost associated with
the prototype dimensions and high Reynolds number and to address the uncertainty
associated with the experimental data used as boundary conditions. This chapter follows
the investigations performed in this study to reduce the model complexity instead of the
classical sequence of geometry, mesh, boundary conditions and flow modelling. Therefore,
the flow modelling is firstly presented, followed by a description of the main boundary
conditions, different geometries used, and the mesh sensitivity analysis.

The different issues considered in these numerical models were the boundary condi-
tions, mesh sensitivity, and numerical error and the influence of the runner blade clearance,
epoxy layer added to two blades, and runner blade angle.

The influence of the boundary conditions was proven significant in previous stud-
ies [21–23] showing that specifying a constant total pressure at the inlet of the numerical
domain improved the accuracy of the numerical results. To have a better estimation of the
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total pressure at the inlet of the investigated domain, a steady simulation was first carried
out to evaluate the pressure losses in the upstream geometry comprising the spiral casing
and penstock.

A mesh sensitivity analysis was performed to find a good compromise between the
spatial discretization, the numerical error, and the computational resources. The same
arguments led to the investigation of the runner blade clearance modelling, as the dis-
cretization of a very small volume considerably increases the mesh size and, consequently,
the simulation time.

Another investigation focused on the importance of modelling the epoxy layer added
to two runner blades during the experimental investigation. Re-building the geometry of
the runner blade with an approximation of the epoxy layer is usually time-consuming, and
the potential impact on the numerical results had to be assessed.

Finally, as the experimental uncertainty of the measured runner blade angle could
not be quantified because the runner could not be scanned during the measurements, a
sensitivity analysis was performed on this parameter as well.

Table 3 summarizes the different performed investigations. The following section
presents and discusses the equations, boundary conditions, geometry and mesh used in
the different setups.

Table 3. Numerical studies setup summary. The Rayleigh–Plesset cavitation model was employed in
all unsteady simulations.

Study Simulation Type Numerical Domain
Domains
Interfaces

Blade Clearances Blade Epoxy
Blade Angle
Adjustment [◦]

Boundary
condition

Steady Penstock,
Spiral Casing Stage - - -

Clearance Steady

1 Stay vane,
1 Guide vane,
1 Runner blade,
Draft tube

Stage

No

No +0Yes (constant)

Yes (variable)

Epoxy Steady

1 Stay vane,
1 Guide vane,
1 Runner blade,
Draft tube

Stage No
No

+0
Yes

Runner
blade angle

Steady

1 Stay vane,
1 Guide vane,
1 Runner blade,
Draft tube

Stage No No

+0

+2

+4

+6

+8

Unsteady

1 Stay vane,
1 Guide vane,
1 Runner blade,
Draft tube

Stage No No
+0

+6

Unsteady

1 Stay vane,
1 Guide vane,
6 Runner blades,
Draft tube

Stage,
Transient
Rotor–Stator

No No
+0

+6

Mesh
sensitivity

Steady

1 Stay vane,
1 Guide vane,
1 Runner blade,
Draft tube

Stage No No +0
(β = −4.2◦)

3.1. Flow Modelling

The numerical simulations presented in this paper were carried out using Ansys CFX
Solver v16.2. The unsteady Reynolds-averaged Navier–Stokes equations were solved with
an element-based finite volume method; therefore, the spatial domain was discretized
to build finite volumes. The computational domain was modelled using a hexahedral
mesh built in ICEM v16.2 for the guide vane and draft tube domains. The runner was
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discretized using TurboGrid v16.2, software optimized for the discretization of turbine
blade passages. The software allows for the generation of good-quality hexahedral mesh
for complex blade geometry.

Combining the advantages of the k-epsilon model in the free stream and k-omega
model for the near-wall flow, the k-omega Shear Stress Transport (SST) turbulence model
provides a good prediction of flow separation and has been proven to perform well under
cavitating conditions [24–26]. The k-omega SST model was employed in all numerical
simulations presented in this paper. The k-omega SST models the transport of the turbulent
shear stress by solving two transport equations (Equations (1) and (2)): one for the turbulent
kinetic energy (k) and one for the turbulent frequency (ω). The turbulent viscosity (νt) is
modelled according to Equation (3).

∂(ρk)
∂t

+
∂

∂xj

(
ρkVj

)
=

∂

∂xj

[(
μ +

μt

σk

)
∂k
∂xj

]
+ Pk + Pkb − β′ρkω (1)

∂(ρω)

∂t
+

∂

∂xj

(
ρωVj

)
=

∂

∂xj

[(
μ +

μt

σω1

)
∂ω

∂xj

]
+ (1 − F1)2ρ

1
σω2ω

∂k
∂xj

∂ω

∂xj
+ α

ω

k
Pk − βρω2 + Pωb (2)

νt =
a1ω

max(a1, ω, SF2)
(3)

where Pk is the production rate of turbulence; Pkb and Pωb represent the influence of the
buoyancy forces; β, β’, α, σk, σω1 and σω2 are coefficients of the turbulence model; and F1
and F2 are blending functions that switch from the k-epsilon model to k-omega [27].

The large domain size and high Reynolds number made the resolution of y+ near
the value of 1, impossible. However, the average y+ values were kept under 25 because
the automatic wall function used for the simulations provides reasonable results when
compared to the experimental data [28]. In the unsteady simulations, the advection term
was first discretized using the upwind advection scheme to achieve convergence faster.
These results were provided as initial conditions to an unsteady simulation employing the
high-resolution advection scheme. The high-resolution advection scheme automatically
maintained the order of the discretization scheme as close to second order as possible
to keep the solution robust and bounded. The second-order backward Euler transient
scheme was used in all unsteady simulations. The transient time step was set to correspond
to one degree of the runner rotation. The influence of the time step size was previously
investigated [23], and other studies showed that time steps corresponding to a runner
rotation of 0.5–5◦ is recommended [2]. Finally, the Rayleigh–Plesset cavitation model [24,29]
was employed in consideration of the saturation pressure for a temperature of 12.5 ◦C, as
recorded during the measurement campaign. The numerical modelling of the cavitation
was introduced after obtaining large negative pressure values near the leading edge of the
runner blade and was expected to improve the modelling of the flow [24].

All above-mentioned numerical simulations were validated against experimental data
measured at the best efficiency point, OP2 (see Table 2).

3.2. Boundary Conditions

The constant total pressure was used as the inlet boundary condition of the computa-
tional domain based on previous studies [22,23]. The outlet was modelled as an opening
with specified pressure and direction. The opening boundary condition allows for flow
recirculation when the pressure is imposed. When the flow is leaving the domain, the
pressure is considered as the relative static pressure as opposed to the total pressure that is
considered when the flow enters the domain. Such boundary conditions allow for a shorter
computational domain when the flow direction is not known.

To decrease the computational time, the domain of the turbine included a single stay
vane-guide vane passage, the runner, and the draft tube. For a better approximation of the
total pressure defined at the inlet of the stay vanes, a steady-state simulation of the flow

40



Energies 2022, 15, 4121

inside the penstock and spiral casing was performed. A mass flow rate of 13 m3/s was
specified at the inlet of the penstock (P), and an opening with 0 Pa relative pressure was
defined at the outlet of the spiral casing (SC). A pressure drop of 7874 Pa was obtained
between the inlet and the outlet of the domain (ΔpP−SC), corresponding to an approximate
head difference of 0.8 m.

Henceforward, the gross head of the turbine, Hgross, was adjusted in the simulations to
consider the static pressure difference between the inlet and the outlet of the computational
domain and the pressure losses in the penstock and spiral casing. The total head was
calculated as:

H = Hgross − ΔpP−SC
ρg

− (zinlet − zoutlet) (4)

where z is the elevation.
The boundary conditions for the turbine simulation were defined according to the

experimental measurements performed in [1]. The total pressure of 6.9 bar was fixed at the
inlet of the computational domain, and the outlet pressure was set as 2.2 bar.

3.3. Geometry

The Porjus U9 Kaplan turbine (Figure 1) includes a penstock, spiral casing, 18 stay
vanes, 20 guide vanes, a runner composed of 6 runner blades, and a draft tube. The
geometry was obtained from the scaled model geometry. Several aspects had to be clarified
before building the definitive numerical model, each concerning a different geometry setup.

To define the total pressure at the inlet of the stay vanes, a steady-state simulation of
the flow inside the penstock and spiral casing was first carried out, and the pressure losses
throughout this domain were obtained. The computational domain for this investigation is
presented in Figure 1a. The large inlet pipe corresponds to the penstock of an older turbine
that had a larger flow rate. The smaller pipe was installed with the Porjus U9 turbine.

The modelling of the runner blade clearance required a larger mesh size and, therefore,
higher computational demands because of the very small scales involved. The influence of
the runner blade clearance size on the numerical results was investigated. Table 4 presents
the relative dimensions of the three clearance sizes considered: no clearance, constant
clearance near the hub and shroud, and variable clearance from the leading edge (LE)
towards the trailing edge (TE).

Table 4. Simulated clearance sizes representing percentages of the runner diameter.

Mesh Size [106 Element]
Hub Clearance [%D] Shroud Clearance [%D]

LE TE LE TE

Geometry * - 0.02% 0.55% 0.09% 0.004%

No clearance (NoClr) 1.12 no clearance

Constant clearance (CtClr) 3.25 0.08% 0.05%

Variable clearance (VarClr) 3.96 0.05% ** 0.55% 0.09% 0.05% **

* The geometry was obtained from the scaled model geometry; ** the smallest modelled clearance was 0.05%
because the mesh quality criteria could not be satisfied for lower values.

A steady numerical simulation was performed to verify whether the layers of epoxy
added for the blade instrumentation had a significant impact on the numerical results.
The blade geometry was modified to approximate the real blade covered by the epoxy
layer (Figure 3). Considering the thickness of the epoxy layer, the blade thickness in the
numerical model was accordingly increased by 5 mm with a decreasing thickness toward
the edges of the blade. The estimated average width of the inter-blade channel was 200 mm
at β = −4.2◦. Therefore, the added epoxy narrowed the flow channel by a maximum of
2.5% on each side of the blades.
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Figure 3. (a) Runner blade original geometry; (b) geometrical representation of the epoxy layer added
for blade instrumentation during the measurements.

As the blade angle (Figure 4) used during the measurements contained a certain
amount of uncertainty, a sensitivity analysis was performed to assess its influence on the
numerical results. The obtained results were compared to the measurements.

Figure 4. Runner blade angle variation.

The results of the steady simulations carried out for the different blade angle values
provided the initial conditions for the unsteady simulations performed for the two extreme
runner blade angles, i.e., the unaltered experimental blade angle (β = −4.2◦) and +6◦; see
Table 5. In order to accelerate the convergence of the numerical solutions, the upwind
scheme was first used for the discretization of the advection term before running the un-
steady simulations with the high-resolution advection scheme (CFX Pre Modelling Guide).

Table 5. Simulated runner blade angles. Experimental value β = −4.2◦.

Single Runner Blade Passage Full Runner

Steady Unsteady

Δβ [◦]

Advection Scheme
High

Resolution
Upwind

High
Resolution

High
Resolution

0 yes yes yes yes
+2 yes no no no
+4 yes no no no
+6 yes yes yes yes

Two configurations of the computational domain were used in the numerical studies,
one using a single runner blade passage and the second using the entire turbine runner
with all six blade passages. The three domains (Figure 5)—one stay vane and guide vane
passage, one or six runner blade passages, and the complete draft tube—were connected
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using stage interfaces, except for the case including the full runner domain where a transient
rotor–stator interface was used.

Figure 5. (a) Stay vane and guide vane domain; (b) runner domain, single blade passage (left),
complete runner (right); (c) draft tube domain.

Furthermore, the entire runner domain was modelled, thus allowing for the use of a
transient rotor–stator interface between the runner and draft tube domains. This type of
interface takes the transient behavior of the flow between domains into account.

Twelve pressure monitor points, corresponding to the locations of the pressure sensors
mounted on the blade during the experimental measurements [1], were defined on the
runner blade: from PS1 to PS6 on the pressure side and from PS1 to PS6 on the suction
side (Figure 5b). Additionally, two diametrically opposed monitor points were defined
in the draft tube, DTin and DTout (Figure 5c), to capture the pressure fluctuations due
to the formation of the RVR at the part-load operating point (OP1 in Table 2) in the
numerical studies.

3.4. Mesh Sensitivity Analysis

Figures 6–8 present the meshes created for each computational domain. The hexa-
hedral meshes were built in ICEM v16.2 for all the domains, except for the runner blade
passage domain generated with TurboGrid v16.2. The stay vane and guide vane meshes are
presented in Figure 6, along with a detail of the boundary layer mesh around the trailing
edge of the stay vane and the leading edge of the guide vane.

Figure 6. Stay vane and guide vane mesh (left) and zoom at the trailing edge of the stay vane and
the leading edge of the guide vane (right).
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Figure 7. Runner mesh (left) and zoom at the trailing edge of the stay vane and the leading edge of
the guide vane (right).

Figure 8. Draft tube mesh.

Similarly, the discretization of the runner domain and the boundary layer mesh are
presented in Figure 7. The runner (Figure 7) and draft tube mesh (Figure 8) underwent
mesh sensitivity analyses. The meshes were dimensioned according to the conclusions
presented further in this section.

A synthesis of the mesh quality parameters evaluated in Ansys CFX Solver for each
computational domain mentioned in the previous section is presented in Table 6. The mesh
orthogonality angle represents the minimum angle between two adjacent element faces.
The mesh expansion factor is the ratio of the smallest element volume to the largest element
volume sharing a node. The mesh aspect ratio is the maximum ratio of the largest to the
smallest face area of all the elements sharing a node.

Table 6. Mesh size and quality parameters of the different meshes used in the simulations.

Domain
Element

Type
Size [×106]

Min.
Orthogonality

Angle

Max.
Expansion

Factor
Aspect Ratio

Penstock and spiral casing hexa 3 20 22 2124
Stay vane and guide vane hexa 0.34 18.8 35 629
Runner hexa 1.16 48.7 10 3923
Draft tube hexa 3.18 30.5 9 7393
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Steady-state simulations were performed to estimate the numerical error and evaluate
the sensitivity of the numerical model to the discretization of the runner and draft tube
domains. The investigated model consisted of a single guide vane passage including a stay
vane, one runner blade passage and the draft tube. The guide vane was considered to have
an insignificant influence on the investigated flow; therefore, a mesh sensitivity analysis
was not performed on this domain, as previously employed in a study of the U9 Kaplan
model [23].

In the current study, the runner blade angle was modified to fit the prototype experi-
mental value, and the discretization was entirely redone. No clearances were modelled for
the mesh sensitivity analysis. Four levels of mesh refinement were investigated, and these
are henceforth referred to as R1–R4. The main size and quality parameters of the runner
mesh are presented in Table 7. The global size factor defines the overall mesh size and
controls the resolution of the mesh in the entire domain, and the edge refinement factor
adjusts the resolution of the mesh in the boundary layer.

Table 7. Runner mesh size and quality parameters.

Simulation R1 R2 R3 R4

Mesh size [×106] * 0.16 0.43 1.12 2.36
Global size factor 1.5 2 2.5 3
Edge refinement factor 2.5 3 4 5
Min. orthogonality angle 48.7 48.9 48.7 43.9
Max. expansion factor 13 19 10 13
Aspect ratio 727 1255 3923 11,677
y+(avg/max) 97/2415 51/2234 25/1970 14/1484

* Hexahedral elements.

The torque value obtained with an ‘infinite size’ mesh (T∞) was determined using
the Richardson extrapolation. Figure 9 presents the numerical values obtained from the
simulations with different levels of mesh refinement of the runner domain. The torque
was normalized with the ‘infinite size’ mesh value. The deviation in numerical pressure
values was expected to be less than 4% from coarse to fine discretization [14]. Considering
that there was no significant difference between the torque results obtained with the two
most refined levels of discretization, all the simulations presented following this section
employed runner mesh R3, with 1.12 × 106 elements per blade passage.

Figure 9. Variation of the normalized torque with the runner mesh size.

The discretization level of the draft tube domain could influence the numerical results
obtained in the runner domain, therefore justifying a mesh sensitivity study and the need
to estimate the numerical error induced by the draft tube mesh. Three levels of mesh
refinement were investigated, and there are henceforth referred to as DT1–DT3. The draft
tube’s primary size and quality parameters are presented in Table 8.
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Table 8. Draft tube mesh size and quality parameters.

Simulation DT1 DT2 DT3

Mesh size [×106] * 1.01 1.89 3.18
Min. orthogonality angle 30.8 30.6 30.5
Max. expansion factor 11 10 9
Aspect ratio 10,346 8624 7393

* Hexahedral elements.

Similar to the runner mesh sensitivity study, the torque value obtained with an infinite
mesh (T∞) was determined using the Richardson extrapolation. Figure 10 presents the
numerical values obtained from the simulations with different levels of mesh refinement
of the draft tube domain. The torque was normalized with the infinite mesh value. All
the simulations presented after this section employed the draft tube mesh DT3, with
3.18 × 106 elements per blade passage. A 5% discretization error was assumed to be
reasonable considering the size of the draft tube mesh.

Figure 10. Variation of the normalized torque with the draft tube mesh size.

4. Results and Discussion

4.1. Runner Clearances

Using the selected runner mesh, R3, steady-state simulations were first performed to
investigate the influence of the runner blade clearance.

The values were made dimensionless with the result of the ‘no clearance’ simulation.
Figure 11 presents the variation of the torque obtained from the numerical simulations with
different types of clearances (Table 4). The ‘constant clearance’ simulation underestimated
the torque compared to the other two cases because the ‘constant clearance’ values were the
largest, thus allowing for a larger flow rate. The ‘variable clearance’ simulation provided
very similar results to the ‘no clearance’ simulation because the real and/or approximated
dimensions of the variable clearances were very small and did not impact the torque
results. Modelling the variable clearance did not have enough of a significant impact on
the numerical results to justify the added computation time.

A parameter found to be significantly influenced by modelling the runner blade
clearances was the pressure monitored on the suction side of the blade (SS3), located
closer to the shroud and near the trailing edge. The numerical and experimental pressure
values were scaled with the reference pressure measured by Soltani et al. [1] with an empty
turbine chamber. The results were consistent to the values presented in Table 4. The
shroud clearance at the trailing edge was very small and could not be modelled, so the
smallest modelled clearance was 0.05% D. This clearance size was used in both the ‘constant
clearance’ and the’ variable clearance’ simulation, thus explaining the similar pressure
values obtained from the two simulations at SS3 (Figure 12).
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Figure 11. Variation of the scaled torque and flow rate with the runner blade clearance size.

Figure 12. Variation of the scaled pressure with the runner blade clearance size.

Considering the mesh size, the computational resources required to model the small
variable clearances, and the influence of the runner blade clearance on the numerical results,
the runner blade clearance was not modelled in further simulations.

4.2. Epoxy Study

An epoxy layer was added to one runner blade to hold the pressure sensors and to
a second (opposite) runner blade to balance the runner. The influence of the thickness of
the epoxy layer was analyzed. The adjustment of the geometry did not have a significant
impact on the numerical results. Regarding the pressure values provided by the two
simulations, the change in the geometry was noticeable at the SS3 and SS6 monitor points
located on the suction side closest to the trailing edge (Figure 13). The torque decreased
by 1.8% in the simulation with the modified blade geometry (Figure 14), and the flow rate
decreased by 2.5%. The numerical simulations were continued with the original blade
geometry without considering the epoxy layer.

Figure 13. Numerical pressure on the blade with and without epoxy.
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Figure 14. Numerical scaled mean torque values at different runner blade positions and the exper-
imental value. Results of the simulations at OP2. − experimental results; -x- steady-state simula-
tions results; � added epoxy simulation result; x unsteady upwind simulation results; • unsteady
high-resolution simulation results; and o unsteady high-resolution simulation results (complete
runner domain).

4.3. Runner Blade Angle

The uncertainty of the experimental measurement on the runner blade angle could
not be assessed. Therefore, a sensitivity analysis was performed to quantify the influence
of the angle on the accuracy of the numerical simulations.

Figure 14 presents the variation of the non-dimensionalized torque values as a function
of the runner blade angle increment. The steady simulations showed a linear increase of
the torque as the runner was opened. The blade angle increased (see Figure 4), allowing
for a larger lift and thus torque. The results of the unsteady simulations that included a
single runner blade passage and employed the upwind advection scheme were similar to
the results provided by the steady-state simulations. However, when the high-resolution
advection scheme was used, the simulations showed a poor convergence of the monitored
variables and the numerical torque values were strongly overestimated. The reason for
the poor convergence is unclear but may be attributed to the periodic interfaces defined
between the runner blade passages not accurately modelling the influence of the runner
blade wakes in the turbulent flow. Including the complete runner geometry in the simula-
tions lead to an improvement of the results of the simulation employing the experimental
runner blade angle (Figure 14), and the numerical torque value matched surprisingly well
the experimental value. However, at the larger runner blade angle, 6◦ more than the
experimental value, the convergence of the monitored variables was impossible to achieve.
The use of a very large blade angle while keeping the same total pressure at the inlet led to
incoherent flow structures, large recirculation areas, and a negative flow rate.

Figure 15 presents the non-dimensionalized mean absolute pressure variation function
of the runner blade angle. The pressure was monitored on both the pressure (from PS1 to
PS6) and the suction side (from PS1 to PS6) of the same runner blade. The numerical and
experimental pressure values were scaled with the reference pressure that was measured
by Soltani et al. [1]. As the runner blade angle increased, i.e., the runner was opened, the
absolute pressure monitored on the blade decreased. At the largest blade angle values, +4◦
and +6◦, the pressure was strongly underestimated near the leading edge (PS4) and in the
middle section (PS2) of the blade pressure side. The differences between the numerical
results and the experimental data were reduced towards the trailing edge (PS3 and PS6). On
the other hand, when using the experimental runner blade angle (Δβ = 0◦), the numerical
pressure values were in better agreement with the experimental values. The pressure was
underestimated in the center area of the pressure side and near the leading edge (PS2 and
PS4) but reasonably predicted near the trailing edge (PS3 and PS6). On the suction side
of the blade, at the middle section, and near the trailing edge, the absolute pressure was
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overpredicted as the numerical simulation underestimated the hydraulic energy transferred
to the runner.

Figure 15. Numerical scaled mean absolute pressure values at different runner blade positions for
the steady-state simulations at OP2. The dashed lines represent the experimental values measured at
β = −4.2◦ (Δβ = 0◦).

The experimentally determined runner blade angle, −4.2◦, was employed in the
definitive studies presented in the paper because the pressure measurements and the
torque measurements best matched the experimental results.

4.4. Best Efficiency Point (OP2)

The numerical simulations presented in the following sections were unsteady simula-
tions that included a single stay vane-guide vane passage, the complete runner domain
and the draft tube. The cavitation model was employed. The runner blade angle was set
at the experimental value, −4.2◦, no clearances were considered, and the epoxy layer was
not modelled.

4.4.1. Mean Values

The numerical mean torque value obtained was 109.7 kN·m, only 0.1% smaller than
the experimental mean value of 109.8 kN·m. This result was presented in the previous
section with the sensitivity analysis of the runner blade angle.

Figure 16 presents the experimental mean absolute pressure data measured on the
runner blade and the pressure values obtained from the unsteady numerical simulation.
The results were non-dimensionalized with the pressure value experimentally measured in
the empty turbine chamber. The pressure variation was similar to the results provided by
the steady-state simulations (Figure 15).

Figure 16. Scaled mean absolute pressure values at OP2.
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On the pressure side of the blade, the pressure was underestimated near the leading
edge (PS4) and in the middle area (PS2). Towards the trailing edge, the numerical results
showed a better match to the experimental data (PS3 and PS6), underestimating the pressure
by less than 6%. The simulation overpredicted the pressure on the suction side near the
trailing edge (SS3). Figures 17 and 18 present iso-surfaces of the 20% vapor volume fraction
captured at the end of the unsteady simulation after approximately three runner rotations.
Towards the periphery of the runner blade suction side, the flow was accelerated and
cavitation developed as pressure decreases. The flow was not axisymmetric, leading to
larger cavitation areas near some blades and not others; see Figure 18.

Figure 17. Iso-surface of 20% vapor volume fraction at OP2 in the runner domain.

Figure 18. Liquid water velocity in stationary frame and iso-surface of 20% vapor volume fraction at
OP2 in the runner domain.

Figure 19 presents the wall shear stress variation on the suction side of the runner
blades at OP2. The asymmetric flow was once again confirmed, leading to non-uniform
flow separation on the suction side of the runner blades. The OP2 operating point was
close to but not exactly the best efficiency point; therefore, it is possible that a vortex was
beginning to form in the draft tube cone.
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Figure 19. Wall shear stress on the suction side of the runner blades at OP2.

4.4.2. Amplitude Spectrum Analysis

A fast Fourier transform (FFT) analysis was carried out to identify the frequency
content of the numerical torque and pressure signals and to compare them to the experi-
mental results. A single smooth area of the signal corresponding to one runner rotation
was selected and added to itself to obtain a better resolution of the FFT. The torque was
scaled by the mean torque value recorded at OP2 during the experimental measurements.
The pressure was scaled by the reference pressure that was experimentally measured [1].
The mean values were subtracted from the numerical and the experimental signals. The
lengths of the original signal and the analyzed signal were 0.1 and 110 s, respectively. The
frequencies were non-dimensionalized (f*) using the runner frequency (fr) of 10 Hz.

Figure 20 presents the amplitude spectrum of the scaled torque for the numerical and
experimental data. A factor of 5 was obtained between the amplitudes. The dimensionless
frequency of 1, visible in the experimental data and corresponding to the runner frequency,
was considered to be caused by the wake of the spiral casing lip junction [30]. In the
numerical simulation, the spiral casing was not modelled but the same frequency was
captured due to the multiplication of the signal corresponding to a single runner rotation.
A second frequency peak at f* = 2 was captured in the experimental signal, though with
a larger amplitude than the amplitude of the runner frequency, because two of the six
runner blades were covered in epoxy. However, the peak at f* = 2 was visible in the
simulations despite the epoxy layers not being modelled due to the selection of the signal
to be analyzed (one runner rotation added to itself). The frequency peak at f* = 3.16
found in the experimental signals could represent a shaft torsional natural frequency. This
may explain why the frequency was not present in the pressure measurements or the
numerical torque.

The dimensionless frequency of 2 was also visible in the amplitude spectrum of
the experimental pressure signal (Figure 21). An additional peak was captured in the
experiment at f* = 20, corresponding to the number of guide vanes, and not in the numerical
results because only one guide vane-stay vane passage was modelled (Figure 5) with a
stage interface.

The numerical simulation could not capture all the experimental fluctuations, mainly
because of the axial symmetry of the computational domain that did not include the spiral
casing lip junction and the epoxy on the blade. However, the runner frequency and its
harmonics were visible in the amplitude spectrum of the numerical torque and pressure,
most likely because of the selection of a single runner rotation from the signal.
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Figure 20. Amplitude spectrum of the scaled torque at OP2. Two vertical axis are used, one for the
experiments and one for the numerical results.

Figure 21. Amplitude spectrum of the scaled pressure PS2 (top) and SS4 (bottom) at OP2. Two
vertical axis are used, one for the experiments and one for the numerical results.
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4.5. Part-Load Operation (OP1)
4.5.1. Mean Values

The numerical mean torque value obtained at OP1 was 71.5 kN·m. The numerical
value was 8.3% smaller than the experimental mean value of 77.9 kN·m.

The dimensionless mean absolute pressure values obtained from the part-load (OP1)
unsteady numerical simulation were compared to the experimental values shown in
Figure 22. The numerical results followed the trend of the measured values and pre-
sented a good prediction of the pressure on the pressure side of the runner blade, with from
2.9 to 6.1% discrepancy compared with the experiment. The pressure was overestimated
on the suction side along the blade span (SS4 and SS3) because the numerical simulation
underestimated the fluid angular momentum transformed into torque.

Figure 22. Scaled mean absolute pressure values at OP1.

4.5.2. Amplitude Spectrum Analysis

At the part-load operation (OP1), the flow provided by the guide vanes has a high
swirl. As a consequence, the tangential component of the velocity at the outlet of the
Kaplan runner is larger, while the axial velocity is reduced [31]. The flow is pulled towards
the draft tube walls, creating a low-pressure region below the runner cone in the center of
the draft tube and leading to the formation of the RVR [32]. One complete RVR rotation
corresponded to about six runner rotations in the present case. The dimensionless frequency
of the RVR was found to be 0.17.

The pressure distribution and the velocity vectors in the runner and draft tube do-
mains are presented in Figure 23. Low-pressure regions are visible below the runner cone
(Figure 23a), and the corresponding recirculation zones were captured as the flow was
concentrated near the draft tube walls (Figure 23b).

Figure 23. (a) Mid-section pressure contour at OP1. (b) Velocity vectors.
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Figure 24 presents iso-surfaces of the pressure in the draft tube. A double-helix vortex
rope (left) was initially formed 3 s before the end of the numerical simulation. After 1.5 s,
or 15 runner rotations, a single RVR was captured (middle) and remained so until the last
time step (right).

Figure 24. Iso-surface at a constant pressure of 2 bar at OP1. Evolution of the RVR at 1.5 s intervals.

In the stationary reference frame of the draft tube, the RVR can be decomposed into
two components [33] from two pressure measurements obtained at the same height and
opposite to each other: the plunging and rotating modes. The plunging mode is associated
with synchronous pressure pulsations recorded throughout the turbine. The rotating mode
leads to pressure oscillations with the same frequency as the plunging mode.

Figure 25 presents the frequency spectrum of the numerical and experimental torque
signals. The numerical data analyzed in the following section were obtained from the
last 30 simulated runner rotations (10,800 time steps after convergence, or 3 s), i.e., 6 RVR
rotations. The numerical simulation captured a frequency peak at f* = 0.17 matching the
RVR dimensionless experimental frequency value of 0.17. Similar values were obtained
during the measurement campaign of the Porjus U9 model and numerical studies inves-
tigating the Kaplan turbine model [10,23]. As the experimental and numerical data were
obtained in the rotating domain, the amplitude at this frequency represents the plunging
component. The RVR frequency is expected to show a slight variation at different part-load
operating regimes [1]. The dimensionless frequency value of 0.83 corresponded to the
rotating component of the RVR. It is visible in the experimental data because the blades
were not identical and it was not captured by the numerical simulation.

Figure 25. Amplitude spectrum of the scaled torque at OP1.

On the pressure side of the runner blade, at PS4 near the leading edge and PS3 near
the trailing edge, the plunging mode of the RVR represented by the peak at f* = 0.17 in
the experimental data could also be found in the numerical results at the dimensionless
frequency of 0.17 (Figure 26), similar to the torque FFT analysis. The amplitude was
underestimated by the numerical model, especially closer to the leading edge (PS4). The
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rotating component of the RVR, 0.83 dimensionless frequency in the experiments, was
captured in the numerical simulation at both locations of the pressure monitor points.

Figure 26. Amplitude spectrum of the scaled pressure at OP1: (a) PS4 and (b) PS3.

Despite the overestimation of the mean absolute pressure values in the numerical
studies on the suction side of the blade (Figure 22), the amplitude of the pressure fluctu-
ations was in a better agreement with the experimental data (Figure 27). The numerical
dimensionless frequencies of the plunging and rotating components of the RVR on the
blade suction side were coherent with the values obtained in the experiment.

Figure 27. Amplitude spectrum of the scaled pressure at OP1: (a) SS4 and (b) SS3.

4.6. RVR Decomposition

Two pressure monitor points diametrically opposed (Figure 5), DTin on the inner
radius of the draft tube and DTout on the outer radius of the draft tube defined just below
the runner cone in the numerical model, were selected for the decomposition of the RVR [33].
The amplitude of the plunging (Ppl) and rotating (Prot) modes was calculated as:

Ppl =
(DTin + DTout)

2
(5)

Prot =
(DTin − DTout)

2
(6)

The two peaks were identified at the dimensionless frequency of 0.17, which was
in good agreement with the FFT analysis of the torque and pressure signals (Figure 28).
The amplitude of the pressure fluctuations due to the rotating component of the RVR
was 30% smaller than the amplitude of the plunging mode. In the frequency spectrum
of the plunging component, there were two additional frequency peaks at 0.1 and 0.23 m
while in the frequency spectrum of the rotating component there are two peaks at 0.23 and
0.4 dimensionless frequencies. A possible explanation for these frequency peaks could
be spectral leaking [34]. As the first and last values of the signal chosen for the analysis
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were not identical, high frequencies that were aliased between 0 and half of the sampling
frequency may have “leaked” their energy into the other frequencies.

Figure 28. RVR decomposition: plunging and rotating mode.

5. Conclusions

A numerical study of the Porjus U9 Kaplan prototype was carried out. Two operating
points on a propeller curve, corresponding to the best efficiency point and part-load
operating conditions, were modelled. The effects of the boundary conditions, runner blade
clearance, blade geometry and mesh size on the numerical results were first investigated
at the best efficiency point to minimize the computational efforts. Then, experimental
pressure and torque measurements performed on the prototype were used to validate the
numerical results.

Modelling the runner blade clearances and the epoxy layer added to the instrumented
runner blade had no significant influence on the numerical results considering the increased
mesh size and simulation time, so these parameters could be neglected.

The runner blade angle is a parameter that is challenging to measure on a turbine
prototype. However, a parametric study showed that the runner blade angle strongly
influences both the convergence and accuracy of numerical results.

The simplified model reasonably predicted the mean torque and pressure values at
both operating points.

The steady simulations with a single runner passage and unsteady simulations at
BEP provided similar results. Modelling the complete runner domain and including
the cavitation model improved the convergence of the simulations and the mean torque
prediction. However, the mean unsteady numerical pressure values were similar to the
values obtained from the steady simulations. Therefore, steady single-passage simulations
at BEP are an excellent first approximation.

At part-load operation, the numerical simulations captured the variation in the pres-
sure due to the RVR observed in the experiment. The frequency of the pressure fluctuations
was well-predicted both in the runner and the draft tube considering the simplified, ax-
isymmetric computational domain. In the runner domain, the frequencies of the plunging
and rotating components of the RVR were accurately determined by the simulation, except
for the torque missing the RVR rotating component. The amplitudes of these pressure fluc-
tuations were also reasonably predicted, especially on the suction side of the runner blade.

The spectral analysis of the numerical signals was strongly influenced by the conver-
gence of the monitored numerical values and the signal selection to be analyzed. Due to
the signal selection, the FFT analysis could have been altered by spectral leakage, leading
to pressure peaks with no experimental correspondents.
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Abbreviations

CtClr constant clearance
DTin numerical pressure recorded on the draft tube wall (inner radius)
DTout numerical pressure recorded on the draft tube wall (outer radius)
f* dimensionless frequency
FFT Fast Fourier transform
fr runner frequency
Hgross gross head of the turbine
k kinetic energy
LE leading edge
NoClr no clearance
OP1 and OP2 operating points
Pout power output
Ppl plunging mode pressure
Prot rotating mode pressure
RVR rotating vortex rope
SST Shear Stress Transport
TE trailing edge
VarClr variable clearance
y+ dimensionless distance from the wall
z elevation
β runner blade angle
ΔpP−SC pressure drop obtained between the inlet and the outlet of the numerical domain
νt turbulent viscosity
ω turbulent frequency
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Abstract: Research on water flow in a pump inlet sump is presented. The main effort has been devoted
to the study of the vortical structures’ appearance and their behavior. The study was conducted in
a dedicated model of the pump sump consisting of a rectangular tank 1272 × 542 × 550 mm3 with
a vertical bellmouth inlet 240 mm in diameter and a close-circuit water loop. Both Computational
Fluid Dynamics (CFD) and experimental research methods have been applied. The advanced
unsteady approach has been used for mathematical modeling to capture the flow-field dynamics.
For experiments, the time-resolved Particle Image Velocimetry (PIV) method has been utilized. The
mathematical modeling has been validated against the obtained experimental data; the main vortex
core circulation is captured within 3%, while the overall flow topology is validated qualitatively.
Three types of vortical structures have been detected: surface vortices, wall-attached vortices and
bottom vortex. The most intense and stable is the bottom vortex; the surface and wall-attached
vortices are found to be of random nature, both in their appearance and topology; they appear
intermittently in time with various topologies. The dominant bottom vortex is relatively steady with
weak, low-frequency dynamics; typical frequencies are up to 1 Hz. The origin of the vorticity of all
large vortical structures is identified in the pump propeller rotation.

Keywords: pump sump; suction pipe; vortical structure; particle image velocimetry; mathematical
modeling

1. Introduction

Nowadays, hydropower systems are getting much more important since modern
society feels the need for sustainable and reliable sources of energy. For example, a hy-
droelectric power station generates two orders of magnitude less greenhouse gases in
comparison with classical power sources ([1]). The hydropower share of the global elec-
tricity market is about 17%. On the other hand, the pump, which can be used to maintain
the desirable flood level, should also operate with maximal achievable efficiency. This task
is quite hard to fulfill, especially for off-design operational conditions. The efficiency of
hydraulic machines is very sensitive to the existence of vortex cores entering the propeller.
The free surface vortices are unacceptable phenomena, in particular, their existence is
proportionally dependent on the value of submergence, and they bring many unwanted
aspects, such as rotational flow, cavitation effect and, worse, the air entrainment from the
free surface. Changing the flow rate or increasing the submergence value is the typical
measure to avoid these vortices. The critical value of submergence depends on various
parameters such as intake velocity V, intake diameter D, geometry of the intake bellmouth,
circulation value Γ, gravity acceleration g, density of medium ρ, surface tension σ, viscosity
of medium ν, etc. The submerged vortices occur as a consequence of the pressure drop
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from the pump suction. Unlike the free surface vortices, the presence of the submerged
vortices is not directly related to the submergence value; still, submergence can influence
the cavitation state in the submerged vortex core. Anti Vortex Devices (AVD) could be
utilized as a passive control method [2,3]; they can disrupt the angular momentum of the
flow and thus suppress the vortices.

This paper deals with the flow phenomena in a pump sump using experimental and
numerical methods. The three types of vortices that can enter the impeller inlet are under
study: free surface vortices, wall-attached vortices and bottom vortex.

The free surface vortices, also known as air-entrained vortices [4], are studied very
often. A total of 1% air entering the pump impeller can cause a rapid decrease in the
hydraulic efficiency, and even higher amounts of gaseous components can lead to high
bearing loading and could result in serious damage to the pump [5]. There are six levels
of classification of the surface vortices [1]: (1) coherent surface swirl; (2) surface dimple;
(3) dye core to intake; (4) vortex pulling floating trash; (5) vortex pulling air bubbles; (6) full
air core to intake. The higher the level, the more dangerous.

Wall-attached vortices, also known as submerged vortices, are the side vortices and
the bottom vortex. Both wall-attached and bottom vortices enter the impeller hub, the first
one is attached to the side wall, and the second one is connected to the bottom just below
the pump inlet. The connection with the wall can be modeled by a singular point.

It is highly useful to know the operating conditions when these phenomena take place,
and then we could try to prevent their formation. For this reason, the flow topology in
space and time are examined numerically and experimentally. Due to financial costs, CFD
methods predominate, see [6–14]. Experimental studies of suction pumps in a sump can
be found seldom in the literature, and if so, the experimental methods are based on the
visualization technique [5,6] or the measurement of the swirl angle of a pump-approaching
flow [7]. Planar velocity fields can be inspected using the Particle Image Velocimetry (PIV)
method effectively [3,4]. To the best of our knowledge, almost no relevant literature has
been published on the free surface or bottom vortex dynamics; the time-averaged data are
presented as a rule.

Obviously, the published information relative to the intake objects of a pump is
very limited. We are going to use the knowledge gained during the project on discharge
objects [8]. However, there are numerous substantial differences between these two types of
flow. In the intake, vortices are primarily driven due to the presence of the rotating impeller,
which causes the swirl. This driving mechanism is common for the vortical structures
emerging in this case.

The main goal of the presented paper is the investigation of the vortex structures
typical for the pump intake configuration, the surface and bottom vortices, in particular.
The main method to study the flow topology and flow dynamics are PIV in the experimental
part and the CFD solver ANSYS CFX in mathematical modeling. The numerical tool is to be
validated and verified. We will put emphasis on dominant flow structures, their topology
and time characteristics in those processes. Hence, the physical model was designed
and fabricated to allow optical measurement with maximal possible accuracy. To study
the flow-field dynamics, advanced decomposition methods such as Proper Orthogonal
Decomposition (POD) and Oscillation Pattern Decomposition (OPD) are to be used to
extract the dominant dynamic modes and to determine distinct frequencies presented in
the flow. For more details on POD and OPD methods, see [15,16].

2. Test Case Setup

The experiments were carried out in the closed water circuit with a rectangular tank
with the dimensions (L × W × H) 1272 × 542 × 550 mm3. The coordinate system is
introduced so that the x-axis is oriented along the tank, the y-axis is identical to the pump
axis of revolution/rotation and the z-axis is oriented according to the right-hand rule
(Figure 1). The origin is placed on the bottom wall just below the impeller.

60



Water 2022, 14, 2039

(a) 

 
(b) 

 
(c) 

Figure 1. Construction drawings of test stand (a), description of the test section, coordinates defini-
tion (b), top view with dimensions (c).

61



Water 2022, 14, 2039

The water enters the tank by pipe from the right in the inlet, passing through two
screens, S1 and S2, into the rectangular test section T. The water is sucked out from the tank
by a suction bellmouth B and passes out to the outlet pipe. The coordinate system origin is
labeled as O. Some key dimensions are shown in Figure 1c.

Both the front and the bottom sides are equipped with transparent windows, which
enable lighting the space with a laser sheet and simultaneously recording the PIV images.
The axial flow pump is located in the plane of symmetry and 310 mm from the left wall
(see Figure 2).

Figure 2. Experimental stand with rectangular tank and transparent windows. Three-dimensional
model used in CFD simulations.

The impeller has three blades and is 150 mm in diameter (Figure 3).

 

Figure 3. Detail of axial flow pump input with bellmouth.

The impeller revolution was set to 1500 min−1 counter-clockwise. The lower edge
of the suction bellmouth has a diameter of 240 mm and is placed 100 mm above the tank
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bottom. The water circulates from the pump outlet through the piping back to the tank,
which enables the water to be filled easily with seeding particles. On the right-hand side of
the tank, two screens are installed (200 and 400 mm from the right-hand wall). They help to
create sufficiently uniform inlet flow with fine-grained homogeneous turbulence (Figure 4).

Figure 4. Settling chamber. View of the screens and initial water level.

The screen mesh sizes are 10–12 and 5–8 mm, respectively. The flow rate during all
experiments was set to the constant value of 52 L/s. The initial water level has been set to
398 mm above the tank bottom. The volume flow rate was measured with the induction
flowmeter (accuracy 0.05 L/s), and the mean water level was controlled by the ultrasonic
level transmitter (accuracy 1 mm).

Our experimental research included both the visualizations of unsteady flow phe-
nomena with the high-speed camera and the PIV measurements in selected vertical and
horizontal planes.

3. Visualizations

To enable better visualizations of flow phenomena with the high-speed camera, the
water has been seeded with particles with a density only slightly higher than water density
and illuminated with intensive dispersed light. The sedimentation time of particles was in
the order of several hours. These particles followed the water flow and, when lightened,
gave a simple picture of the velocity vector field. At the same time, particles already
sedimented at the test section bottom enabled visualizing the position and movement of
the singular point linked with the bottom vortex. Figure 5 shows three basic vortices below
the pump suction bell. The bottom vortex, which is very stable (in the sense of permanent
presence), can be easily identified because of the vapor trace in the vortex core. Only one
bottom vortex has been identified between the bottom wall and the pump suction. It has
been moving in the range of several centimeters from the pump axis of revolution, as can
be seen in Figure 5. Its singular point moves on the bottom wall at a speed of several
centimeters per second. Much less stable are the vortices rising on the side walls; they
could be observed only part of the time. Only very rarely more than one side vortex could
be identified at the same time. Different types of vortices could be found between the water
level and the pump suction. Both the case with only one free-surface vortex and the case
with two counter-rotating ones could be observed (Figure 6), though most of the time, only
one vortex could be identified. Free-level vortices have been changing their character from
the surface dimples up to the full air core ones.
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(a) 

 
(b) 

Figure 5. View of vortices close to pump suction (a) and singular point movement trail (b).

Figure 6. Pair of free-surface vortices, (a) side view, (b,c) bottom view.
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4. Methods

The results of the application of both experimental methods and numerical simulations
are to be presented. The numerical results were validated.

4.1. Experimental Techniques

For the steady-state regimes and the vortex dynamics, the PIV measurements with
one camera (see Figure 7) have been applied as in the case of siphon performance [8]. The
PIV results are represented by distributions of the two components of velocity vectors
in the plane of the laser sheet, shown in green in Figure 7. The measurement apparatus
consisted of the CMOS camera and the laser by Dantec Company. The laser was New
Wave Pegasus, Nd:YLF, double-head pulse type with the light wavelength of 527 nm,
the maximal frequency is 10 kHz, the single-shot energy is 10 mJ (for 1 kHz). and the
corresponding power is 10 W per one head. The camera Phantom V611, with a resolution
of 1280 × 800 pixels, was able to acquire double snaps with a frequency of up to 3000 Hz
(for full spatial resolution), and it used the internal memory of 8 GB for the data storage
within a single experiment. Hollow glass spheres coated by silver layer HGS-10 were used
as tracking particles. Their typical diameter was 10 microns, and they have a very similar
density to water, so they can follow the flow very faithfully. The data have been acquired
and post-processed using the Dynamic Studio, Matlab and Tecplot software tools. To get a
very complex view of the flow structures, we utilized a combination of measurements in
both vertical and horizontal planes. However, it is possible to combine only data processed
by time-averaging. The vertical planes have been located in the positions z = 0, 70 and
130 mm, where z is the distance from the sump symmetry plane. Horizontal planes have
been located at the distance of y = 50, 70, 105, 125, 155, 205, 255 and 305 mm above
the bottom.

  
(a) (b) (c) 

Figure 7. PIV setup; vertical (a) and horizontal (b) PoMs, Cartesian coordinate system (c).

Calibration was performed in one vertical plane (z = 0 mm) and also for the horizontal
plane at y = 50 mm. Horizontal measurements were performed below the impeller and
also above it. The traversing system enabled the synchronized displacement of the laser
and camera, which allowed the use of a single calibration for more parallel Planes of
Measurements (PoMs). Both approaches resulted in dimensions of Field of View (FoV)
equal to approx. 330 × 210 mm2. The adaptive correlation algorithm using Interrogation
Area (IA) 32 × 32 pixels was utilized, resulting in 79 × 49 valid vectors in each PoM. Thus,
the spatial resolution is about 4 mm.

Two acquisition strategies have been applied. For the time-averaged measurements,
1000 measurements with an acquisition frequency of 10 Hz have been acquired, representing
100 s. However, to study the dynamics of vortical structures, the data were acquired with a
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frequency of 100 Hz using 4000 snapshots covering 40 s in physical time. The accuracy of
PIV velocity measurement is about 2% of the maximal velocity value within the PoM.

4.2. Numerical Simulations

The CFD software ANSYS CFX release 19.2 [17] has been applied to solve the three-
dimensional Unsteady Reynolds-Averaged Navier–Stokes (URANS) equation. Because
of the rotating flow inside and under the pump, the experimental device misses any
symmetry plane, and the computational domain (see Figures 2–4) must represent the full
three-dimensional suction object, including all pump components and piping. Moreover,
full unsteady interactions between the pump impeller and the stationary parts are kept with
the time step representing two degrees of pump impeller revolution. The subdomain of the
pump impeller is rotating with a prescribed rotational speed. All the other subdomains
inside the pump, rectangular test section and piping, are stationary. There are two interfaces
between the stationary and rotating subdomains, as can be seen in Figure 8. Because the
impeller nut and the shaft are rotating in the stationary subdomains, their surfaces are
treated as rotating walls. On the other hand, the impeller shroud, which is, in fact, stationary,
has to be treated as the counter-rotating wall. All the hydraulic surfaces are considered to be
smooth, without prescribed roughness. As the computational domain represents a closed
loop, there are no inlet and outlet boundaries and the mass flow is generated by the impeller
rotation and controlled by the pressure losses in the computational domain, including
screens. The screens have been described as porous layers with the permeability derived
from the numerical tests with small (100 × 100 mm2) parts of the screens modeled in full
detail. This strategy has been adopted to keep a reasonable size for the computational grids.
The computed mass flow rate has been compared with the mass flow rate measured during
the experiments; the detected differences were a few percent. Concerning the boundary
condition on the top of the rectangular test section, the opening boundary has been used to
enable the air to flow both inside and outside the computational domain.

Figure 8. Boundary conditions. CFD.

All simulations are based on constant property fluids. It means that the water, water
vapor and air are considered as incompressible fluids with constant densities and constant
temperature. The free surface flow, including the gravity effects, is based on the Volume of
Fluid (VOF) method evaluating the volume fraction of each fluid. A non-homogeneous
model of multiphase flow has been applied with different velocities for the water, vapor
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and air fractions [17]. The Zwart cavitation model [18] has been employed to describe
the interphase mass transfer during the cavitation effects. To capture all possible factors
acting on the free surface vortices, the Coriolis forces resulting from the earth rotation have
been added into the computational model, though they are much less important than the
geometry and other physical factors [19].

The structured computational grids have been used inside the rotating and stationary
parts of the pump, pipes and screens. To keep the grid inside the tank sufficiently isotropic
with acceptable values of y+ monitored in time (close to 1 on the majority of solid surfaces),
the unstructured computational grid with prismatic elements inside the boundary layers
has been applied. The overall number of computational grid points is approximately
17 million. The maximum distance of the neighboring grid points in the tank is about
3.3 mm, which enables relatively thin vortices to be captured. As it will be described in
the next chapter, the calculated vortices have been very unstable, with the random nature
of their appearance and topology. For that reason, it has not been possible to provide
a standard grid independence test in which the results could be compared and verified
directly by the experimental data. Consequently, the computational grids (especially inside
the rectangular tank) have been tested and optimized in several steps to keep acceptable
values of y+ and to capture sufficiently small flow structures. The resulting computational
grid represents a reasonable compromise between these requirements and the possibility of
using a 16-core-based workstation with 128 GB of memory.

The initial calculations employed the URANS equations with the standard SST turbu-
lence model and then switched to the SAS scale resolving simulations ([20,21]), which are
more suitable for predicting small vortical structures. The high-resolution scheme of the
second order has been used for the momentum equations, and the first-order scheme has
been used for the turbulence modeling. The time discretization is based on the second-order
backward Euler scheme.

5. Results

Now, the results are to be presented in terms of vortices description using both
experiments and CFD.

5.1. Surface Vortices

The surface vortices were found to be very unstable. They were studied by visualiza-
tions (see Section 3) and partly using CFD.

Similar to the visualizations, the CFD simulations also show that the only vortex
that is stable and present permanently is the bottom vortex, which moves around the
pump axis revolution. Further, one side vortex and one or two free-surface vortices have
been kept with the simulations. Unfortunately, they have been very unstable, and the
computational capacities do not allow any rule on their formation or frequency analysis to
be found. Figures 9 and 10 show a complex system of vortices in the testing tank, including
the bottom vortex, one free-surface vortex and one side-wall vortex. The iso-surfaces of
constant air volume fraction of 5% (in cyan) and constant vapor volume fraction of 5%
(in grey) have been used to visualize the vortex cores in Figure 9. The Q criterion has
been applied in Figure 10. A pair of counter-rotating free-surface vortices can be seen in
Figure 11, together with the bottom vortex.
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Figure 9. Complex system of vortices in the testing tank. Iso-surfaces of constant air volume fraction
5% (in cyan) and constant vapor volume fraction 5% (in grey). CFD.

Figure 10. Visualization of vortices in the testing tank. Q criterion (in green). CFD.

Figure 11. Pair of counter-rotating free-surface vortices and bottom vortices. Iso-surfaces of constant
air volume fraction 5% (in cyan) and constant vapor volume fraction 5% (in grey). CFD.

5.2. Bottom Vortex

Because of the unsteady character of flow structures, which have been changing their
position as well as the topology, it has been a little bit problematic to present time-averaged
results of the numerical simulations. That is why the simulations have been averaged just
for a short time when the topology and position of the vortices remained similar (time scale
of order 10−1 s). Figures 12 and 13 show the position and character of the bottom vortex
and one single free-surface vortex in the horizontal planes spaced from 50 to 255 mm from
the tank bottom. Both the vector lines and vorticity distributions are shown for every plane.
The general term “vector lines” is used in the description of results as “streamlines” are
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defined as “vector lines of the instantaneous velocity fields in 3D”, which is not the case for
the time-averaged velocity fields in 2D.

Figure 12. Cont.
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Figure 12. Vector lines (left) and vorticity distribution (right) in horizontal planes y = 50, 70, 105 and
125 mm. CFD.

In section y = 50–105 mm, the bottom vortex could be identified with its center close
to the coordinate system origin. For the planes y = 125 mm and above, the surface vortex
located near position [−200;70 mm] could be detected.

5.3. Intake Flow

Figure 14 shows the vector lines and longitudinal velocity distribution in vertical
planes z = 0, 62 and 130 mm. Here the vector lines and x-velocity component distributions
are shown. The bellmouth section by the projection plane is white, while the object
silhouette is shown in black lines.

It can be seen in the vertical plane z = 62 mm that the flow is influenced by the
free-surface vortex situated left of the bellmouth.

The numerical simulation shows a good agreement of the basic behavior of the flow
phenomena close to the pump suction. Specifically, the bottom vortex is captured in a very
good way. The comparison of free vortices obtained by the experiments and by the CFD
tools is much more difficult, as these phenomena are highly unsteady and unstable. Their
description depends on the way of time averaging, but the most important factor is the fact
that during the experimental research, every horizontal or vertical plane is captured in a
different instant.

The inflow into the bellmouth from both sides of the x-direction could be detected
from the pictures in Figure 14.

The experimental results and velocity fields in vertical planes z = 0, 70 and 130 mm are
shown in Figure 15. The flow enters the sump volume from the right-hand side. The black
vectors represent in-plane velocity components, and the color is a scalar value (horizontal
velocity component); vector lines are added in blue color. The velocity distributions in
the vicinity of the bellmouth show very good agreement with CFD data, especially for
planar data acquired in the plane of symmetry (z = 0). The vector lines below the suction
pipe do not rise up as vertically in comparison with the calculated results. The other two
PoMs reveal the flow topology closer to the side wall of the sump. The flow is attracted
from above, and the flow is bent 180◦ in the vicinity of the bellmouth edges. The singular
point (zero in-plane velocity) is situated 20 mm to the right of the center. The solid black
line indicates the cross-section of the bell. The dashed line is its projection in the other
PoM. Note, the bellmouth is not perfectly oriented perpendicularly with the bottom wall in
Figure 15 as the physical model was inserted with a small deviation, and so the camera
was slightly tilted.
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Figure 13. Vector lines (left) and vorticity distributions (right) in horizontal planes y = 155, 205 and
255 mm. CFD.
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Figure 14. Vector lines (left) and longitudinal velocity distribution (right) in vertical planes z = 0, 62
and 130 mm. CFD.
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Figure 15. Vertical planes, distribution of horizontal velocity component (left) and vector lines
(right). PIV.

The experimental results in Figure 15 show a not-so-regular input flow as the CFD
in Figure 14. While the velocity distribution in the plane of symmetry z = 0 is deflected
towards the left-hand side, in the position z = 70 mm, the situation is opposite for the
experiment. The inflow in the case of CFD for both z = 0 and 62 mm is more or less
symmetrical; compare Figures 14 and 15.

Further, horizontal planes will be introduced. In Figure 16, the positions of various
PoMs are plotted to illustrate the flow under and above the bell edge.

There is an intersection of the bottom vortex at y = 50 mm, shown in Figure 17. The
mean bottom vortex core position is situated close to the coordinate system origin in the
geometrical center. The sense of rotation corresponds to the impeller revolution. The flow
is entering the pipeline in a helix topology from distant surroundings.
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Figure 16. Horizontal plane positions, y = 50, 70, 105, 125 and 155 mm.

 
(a) (b) 

 
(c) (d) 

Figure 17. Bottom vortex, y = 50 mm, (a) mean velocity distribution, (b) vector lines, (c) instantaneous
vorticity, (d) mean vorticity distributions. PIV.
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The bottom vortex topology is developing along the y-axis towards the impeller, as it
is illustrated in Figure 18. The position of the vortex core does not change very much in the
y-direction; however, in position y = 105 mm, the inner flow was not resolved because of
laser light scatter on the bell edge.

 
(a) (b) 

 
(c) (d) 

Figure 18. Bottom vortex evolution towards the impeller in the y-direction, horizonral planes
y = 70 (a), 105 (b), 125 (c) and 155 (d) mm. PIV.

The behavior of the free surface vortex is much more chaotic. This vortex can be
observed on the left-hand side from the pipe inlet. The topology is developing according
to Figure 19. Its center for time-averaged data is reaching the inner corner of the sump as
the vortex approaches the water surface. The vortex is even out of PoM for y = 305 mm.
Nevertheless, its averaged position agrees very well with the computed flow field.

However, the surface vortex behavior is very dynamic with random elements. To
demonstrate this fact, the two examples of instantaneous velocity fields in positions y = 205
and 305 mm are shown in Figure 20.

There are two instantaneous snapshots of the surface vortex for 205 and 305 mm above
the bottom in Figure 20. The left-hand side of this plot reveals standard flow topology,
which is changing its position and strength over time (see the next chapter). There is
also rarely a situation when two vortices can be observed (this time is a pair with the
same orientation).
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(a) (b) 

 
(c) (d) 

Figure 19. The averaged flow topology of the free-surface vortex at y = 155 (a), 205 (b), 255 (c) and
305 (d) mm. PIV.

Figure 20. Instantaneous snapshots of the surface vortex at y = 205 (a) and 305 (b) mm. PIV.
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5.4. Vortex Dynamics

It was found that both the bottom vortex and the free surface vortices behave dynam-
ically with no distinct periodicity in motion. It was proven that the vortex path is quite
chaotic, although the vortex position was always detected inside some circle area. With a
few exceptions, the bottom vortex occurs in the second quadrant. The precise position was
determined from PIV images via image processing, the vortex core path for the horizontal
plane y = 50 mm is given in Figure 21 for the time interval 6 s. The bottom vortex core
motion is limited by the zone of the size of approximately 20 mm in the x and z-directions.
The approximate speed of the core motion was detected up to 10 cm/s.

Figure 21. Bottom vortex core path at z = 50 mm. PIV.

The first POD mode is shown in Figure 22 as an example. It is formed by a pair of
counter-rotating vortices. This mode contains about 16% kinetic energy. Other higher POD
modes consist of more vortices.

Figure 22. 1. POD mode at y = 70 mm, vorticity distribution and vector lines. PIV.
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The behavior of the free-surface vortex was studied at plane y = 205 mm. The path
of its core was also observed using PIV images. The free-surface vortex core was moving
inside the area with a size of more than 100 mm, and the core velocity was about 30 cm/s,
i.e., three times higher than the velocity of the bottom vortex, see Figure 23.

Figure 23. Surface vortex core path at z = 205 mm. PIV.

The POD method has been applied to the time-resolved data. Figure 24 reveals the
three POD modes for this plane. First, the mode topology can be described as a single
vortical structure occupying the space of the time-averaged vortex. The second POD mode
consists of two vortices with opposite orientations, while the third mode topology is formed
by a single vortex of negative vorticity with strong shear. The content of kinetic energy of
the first 10 modes is given in Figure 25.

The dynamics of the bottom vortex have been studied on the horizontal plane at the
position y = 70 mm in more detail. In Figure 26, there are the mean velocity field and
Turbulent Kinetic Energy (TKE) distributions from the PIV measurement.

  
(a) (b) (c) 

Figure 24. POD modes 1 (a), 2 (b)and 3 (c) at y = 205 mm, vorticity distributions and vector lines. PIV.
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Figure 25. Kinetic energy fraction of the first 10 POD modes for both types of vortices.

 
(a) (b) 

Figure 26. Mean fields at y = 70 mm, (a) velocity field, (b) TKE distribution. PIV.

The Oscillation Pattern Decomposition (OPD) analysis has been applied to the velocity
field time-resolved data acquired with a frequency of 100 Hz, and 1000 snapshots. The
analysis results in OPD modes representing cyclostationary components of the topology
dynamics with statistically limited time of life. Each OPD mode is defined by its topology,
real and imaginary parts, frequency and mean lifetime. More information on the OPD
method and results interpretation can be found in [16].

In Figure 27, there is the OPD spectrum shown, representing the nine most important
cyclostationary modes in the plane defined by the frequency and periodicity. The frequency
is the typical frequency of pseudo-periodical behavior, while periodicity is the lifetime
expressed in multiples of the mode period.
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Figure 27. OPD spectrum, the nine cyclostationary OPD modes.

The OPD mode’s importance could be quantified by the periodicity value; the higher
periodicity, the higher importance. However, even in OPD mode 1, the highest periodicity
value is about 0.163; this means that the mode appears randomly and disappears very
quickly. The frequency of the first mode is about 0.124 Hz, the real and imaginary topologies
are in Figure 28. The mode is represented by the counter-rotating vortex pair rotating
around the common center. The color represents vorticity, positive in red and negative
in blue.

 
(a) (b) 

Figure 28. The first OPD mode topology, (a) real part, (b) imaginary part.

In Figure 29, some higher-order OPD modes topologies are shown; the real parts only.
The topology shows a combination of positive and negative vorticity concentrations; the
most complex is OPD mode 5, with the highest frequency of 1.040 Hz.

The higher modes consist of several vortices of positive and negative orientations
rotating in the plane.
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(a) (b) (c) 

Figure 29. Real parts of higher OPD modes topology, (a) OPD 2, (b) OPD 4 and (c) OPD 5.

5.5. Validation

The validation of the numerical simulations is performed with the help of flow in the
neighborhood of the bellmouth intake. The flow topology is governed by the central vortex
touching the bed just below the intake. The vortex is driven by the rotating pump rotor
and is characterized by strong axial movement into the intake pipe. The vortex parameters
were evaluated on the horizontal plane y = 50 mm above the bottom. The (x,z) coordinate
system has its origin on the pump axis.

The topology of the vortex is shown in Figure 30; on the left, the result of the PIV
measurement, and the CFD result is on the right. The result is shown in the form of mean
velocity vector field, and the vector lines are added for better clarity.

Figure 30. Topology of the bottom vortex. (a) PIV, (b) CFD.

The topologies of the PIV result and the CFD are not exactly the same. The vortex
center was detected using the vector lines topology in the spiral focus. The position of the
vortex center was detected [−0.0094;+0.0137] m for the PIV data and [+0.0053;−0.0106] m
for the CFD data. They are denoted by the cross. The vorticity is concentrated close to the
vortex center. The vorticity y-component ω was evaluated:

ω =
∂w
∂x

− ∂u
∂z

. (1)

The vorticity distributions are shown in Figure 31 for the PIV and CFD results.
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Figure 31. Vorticity distribution, (a) PIV, (b) CFD.

Please note that the vorticity is negative everywhere, as the clockwise rotation predominates.
To study the vortex differences, the z = const. sections have been evaluated when the

section intersects the vortex center and the distance from the center r is considered. In
Figure 32, the graphs are shown for both experimental and mathematical modeling.

Figure 32. Vorticity profiles intersecting the vortex, PIV and CFD.

The comparison shows a relatively good coincidence of the vorticity in the vortex core;
however, outside the vortex core, for |r| > 0.04 m, the difference becomes important.

To quantify the difference between the distributions, the integral over the considered
zone (rectangular) was evaluated Iω, which corresponds to the equivalent circulation.
For the PIV data, IωPIV = −0.1783 m2/s, and for the CFD data, IωCFD = −0.0434 m2/s.
The difference is rather important; it is clear that CFD underestimates the vorticity value,
especially outside the vortex core. Within the vortex core, ±0.03 m around the vortex center,
the agreement of the mathematical modeling results with experiments is much better; the
difference is below 3%.

To better estimate the differences between the flow-field topologies, the divergence
D has been evaluated for both PIV and CFD data. The 2D definition of the divergence is
taken into account:

D =
∂u
∂x

+
∂w
∂z

. (2)
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The flow is incompressible, so the divergence in 3D representation should vanish.
Then, the following should hold:

∂v
∂y

= −D (3)

Thus, the evaluated divergence provides information about the out-of-plane velocity
component v derivative in its direction y. The topologies of Divergence D for PIV and CFD
results are shown in Figure 33.

Figure 33. Divergence distribution (a) PIV, (b) CFD.

As the values of divergence are negative everywhere, this result indicates accelerating
flow in the y-direction.

The comparison of divergence in the z = const. section has been evaluated, and the
distance from the center r is considered in Figure 34. The difference in the divergence distri-
butions is rather important and visible both in the distribution topology and central section.

Figure 34. Divergence distribution, PIV (red), CFD (green).
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The integral of divergence over the considered zone was evaluated ID, which corre-
sponds to the equivalent circulation. For the PIV data, IDPIV = −0.3500 m2/s, and for the
CFD data, IDCFD = −0.3034 m2/s. The integral values do not differ very much.

6. Discussion

The main task of this article was to validate the mathematical model adjusted to
perform CFD simulation of inlet objects of the pump. The second goal was to study the
vortex dynamics using both the visualization technique and PIV measurements.

Generally, it can be said that the bottom (submerged) vortex is present throughout
the running of the pump. The detected position of the time-averaged vortex core slightly
differs from the PIV and CFD data. However, the topology and vortex dimension were
determined very much the same for both approaches.

The free-surface vortex is very hard to study quantitatively (and also visualize) as
the existence of such a structure is random both in appearance and behavior, and it is
limited in time. Very often, only the swirl of the flow is present. The vortex with a full
air core is present less than half the time of the device’s operation. Sometimes even two
distinct free-surface vortices were observed. The occurrence of such structures seems to
be completely random. The extent, orientation and location determined from the CFD
data matches very well with the PIV data in terms of the averaged dataset, at least for
time-mean structures.

The path of the vortex core does not show any regular or even pseudo-regular trajec-
tory for the surface vortex and for the submerged one. The free-surface vortex moves with
a velocity about three or four times higher than the bottom vortex.

7. Conclusions

The appearance and behavior study on flow in a pump inlet sump is presented.
The vortical structures were studied in detail, and both mathematical modeling and

experimental research methods were applied. The advanced unsteady approach has been
applied for mathematical modeling to model the flow-field dynamics. For experiments, the
time-resolved PIV method has been used.

Three types of dominant vortical structures have been detected: surface vortices,
wall-attached vortices and the bottom vortex. The most intense and stable is the bottom
vortex. The surface and wall-attached vortices are found to be of random nature as for
their appearance and topology; they appear intermittently in time with various topologies.
The dominant bottom vortex is relatively steady with weak dynamics. The frequencies of
pseudo-periodical behavior were detected up to 1 Hz.

The mathematical modeling has been validated against the experimental data. The
bottom vortex core circulation was modeled with an error below 3%. The rest of the flow
field was validated qualitatively only. The flow patterns, especially the vortices detected in
experiments, are well captured by mathematical modeling.

The origin of the vorticity of all big vortical structures was identified in the pump
propeller rotation.
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Abstract: With the gradual opening of China’s electricity market, it is effective for cascade hy-
dropower plants to simultaneously participate in both the monthly contract market and the day-
ahead spot market to obtain higher power generation benefits. Hence, this paper studies the optimal
decomposition model for the monthly contracted electricity of cascade hydropower plants consid-
ering the bidding space in the day-ahead spot market. The close hydraulic and electric connection
between cascade hydropower plants, the implementation requirements of contracted electricity, and
the uncertainty of the day-ahead market clearing price are all well considered. Several linearization
techniques are proposed to address the nonlinear factors, including the objective function and the
power generation function. A successive approximation (SA) approach, along with a mixed-integer
linear programming (MILP) approach, is then developed to solve the proposed model. The presented
model is verified by taking the decomposition of the monthly contracted electricity of cascade hy-
dropower plants in China as an example. The results indicate that the developed model has high
computational efficiency and can increase the power generation benefits compared with the conven-
tional deterministic model. The effect of the penalty coefficient for imbalanced monthly contracted
electricity is also evaluated, which provides a practical reference for market managers.

Keywords: cascade hydropower plants; decomposition of the monthly contracted electricity; day-
ahead spot market; uncertainty of the clearing price; successive approximation; mixed-integer
linear programming

1. Introduction

Hydropower is a type of renewable energy with flexible operation and mature technol-
ogy, which is clean, low carbon, and has been favored by countries all over the world [1,2].
With more than 9000 hydropower dams registered across all continents, it supplies almost
70% of all renewable energy globally [3–5]. As of the end of 2019, the world’s total in-
stalled hydropower capacity stood at about 1308 GW. Clean electricity generation from
hydropower achieved a record 4306 TWh in 2019, the single greatest contribution from a
renewable energy source in history. Fifty countries added hydropower capacity in 2019.
Those with the highest individual increases in installed capacity were Brazil (4.92 GW),
China (4.17 GW), and Laos (1.89 GW). The 11,233 MW Belo Monte project in Brazil be-
came fully operational in 2019, while other major projects include the 1285 MW Xayaburi
project in Laos, followed by the 990 MW Wunonglong and 920 MW Dahuaqiao projects in
China [6].

China’s total installed hydropower capacity climbed to 300 GW, accounting for 27%
of the world’s installed hydropower capacity and 17% of China’s total installed power
capacity [7]. In 2015, China implemented a new round of power industry reform and
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established a medium- and long-term electricity market [8]. Since 2017, China has orga-
nized and promoted the construction of spot markets in eight regions, including Southern
China (starting from Guangdong Province) and Sichuan Province as the first batch of pilot
projects [9,10]. It has been a developing trend for hydropower plants to participate in both
the contract market and the day-ahead market [11,12]. Medium- and long-term contracts
can lock the electricity price to avoid the risk of price fluctuation, but the price is generally
low. The day-ahead market has created high profit opportunities for hydropower plants
involved in the transaction, but the price volatility and uncertainty are strong, so there is a
large profit risk. Because of the limitations of runoff, storage capacity, installed capacity, and
other factors of hydropower plants, as well as the complex hydraulic and electric coupling
relationship between cascade hydropower plants [13], there is a close internal relationship
between the contract market and the day-ahead market of power distribution. Medium-
and long-term contracts signed by the hydropower generation company (HGenCo) are
required be physically settled, which may affect the total revenue of the HGenCo and
bidding space of the day-ahead market. Hence, how to determine the power generation
of the cascade hydropower plants that participates in the contract market and day-ahead
market to obtain the maximum benefit is an extremely difficult problem for the HGenCo.

Because the power output of hydropower plants is limited by reservoir inflow and
storage capacity [14], it is difficult to directly apply research on the participation of other
types of power plants in the electricity market [15–17] to the present problem. Scholars
have carried out some research on the participation of hydropower plants in the electricity
market, and most of them can be broadly divided into two categories: (1) The first category
is the optimal decomposition of yearly or monthly contracted electricity. For example,
Lu et al. [18] proposed a long-term optimal operation method for cascade hydropower
plants considering the allocation of power generation in multiple markets and the uncer-
tainty of multiple variables. Li et al. [19] developed an information gap decision-making
theory-based method for optimal medium-term stochastic cascade hydropower operation
in a multimarket environment, which considers the hydrological and economic uncer-
tainties. Shrestha et al. [20] studied the optimal management of hydropower resources in
the medium term to maximize the expected revenue of a Nordic hydropower producer.
Luo et al. [21] developed an optimal scheduling model for long-term generation sched-
ules of a cascade hydropower plant, which takes into account the uncertainty of multiple
market prices. Chen et al. [12] proposed an integrated solution methodology based on a
multi-core parallel tabu genetic algorithm to provide the optimal assignment of bilateral
contracts, considering the simulation of a hydro-dominated market. (2) The second cate-
gory is the trading and dispatching strategy of hydropower plants in the day-ahead spot
market. Yuan et al. [22] proposed an efficient method to solve the benefit-based optimal
self-scheduling of several cascaded hydro plants in a pool-based day-ahead electricity
market. Conejo et al. [23] addressed the self-scheduling of a hydro generating company
to maximize the benefit from selling energy in the day-ahead market. Pousinho et al. [24]
established a stochastic mixed-integer linear programming (MILP) model to maximize the
expected total benefit of a HGenCo in the pool-based day-ahead market. Kongelf et al. [25]
proposed a stochastic MILP approach to formulate a coordinated planning problem for a
hydropower producer, considering the uncertainty of portfolio size in multiple electricity
markets. However, there are few studies on the decomposition of monthly contracted
electricity for cascade hydropower plants connected with the bidding in the day-ahead
spot market.

The optimal decomposition of monthly contract electricity is part of the mid- and
long-term optimal operation problem of cascade hydropower plants, which is a typical
nonlinear programming (NLP) problem with multiple variables, high dimensionality, and
complex constraints. At present, the methods of solving such an NLP problem can be
divided into three categories: dynamic programming (DP) and its improved algorithm [26],
intelligent algorithms represented by particle swarm optimization algorithm [27], and the
mathematical programming methods [28,29]. The model constructed in this paper struggles
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to meet the requirement of having no aftereffect because it takes into account the uncertainty
of the day-ahead market clearing price and involves the coupling relationship between
monthly contract electricity and day-ahead market trading electricity. Thus, DP would be
a hindrance in formulating the present problem as a multi-stage optimization problem.
The intelligent algorithms would struggle to effectively handle the complex operation
constraints and cannot guarantee a global optimal solution within finite iterations. The
computational efficiency of NLP algorithm is affected by the initial solution and easily falls
into the local optimal solution, and therefore are also unsuitable for solving the present
problem. Among mathematical programming methods, the MILP approach becomes more
and more mature and has been widely used in in the field of optimal reservoir operation
due to its good performance in addressing complex constraints and producing stable
calculation results [30–32].

Aiming at the above problems, this paper emphasizes on the optimal decomposition
model for the monthly contract electricity of cascade hydropower plants considering the
bidding space in the day-ahead spot market. In this model, the generation benefits of
cascade hydropower plant participating in both the monthly contract market and the day-
ahead spot market are maximized. The uncertainty of the day-ahead market clearing price
is modeled by a scenario analysis technique. An efficient and novel method, coupling a
successive approximation (SA) approach and a MILP approach is then proposed to solve
the proposed model. The rationality and validity of the proposed model and method are
verified by an example of monthly contracted electricity decomposition plan of a cascade
hydropower plant in China. The major contributions of this paper are clarified as follows:
(1) An optimal scheduling model for cascade hydropower plants participating in both
the monthly contract market and the day-ahead spot market is established, considering
the uncertainty of the day-ahead market electricity price. This model mirrors the real-life
situation of cascade hydropower plants participating in China’s electricity market. (2) SA
along with a MILP approach is developed to solve this complex issue, which guarantees an
optimal or near-optimal solution and significantly improves the solving efficiency.

The organization of the remaining parts of this paper is shown as follows. The
mathematical formulation of this problem is established in Section 2. Section 3 provides the
solution technique for the optimization model. The optimization results of the case study
are presented and discussed in Section 3. Finally, conclusions are drawn in Section 4.

2. Mathematical Formulation

2.1. Problem Description

According to the trading rules of the electricity market, each hydropower plant signs
the monthly electricity contract for the next month with the power purchasing user in
the current month, and the contract stipulates the amount of electricity to be traded
and the settlement price. In order to improve the consumption of renewable energy
sources like hydropower, hydropower plants are allowed to participate in the day-ahead
market according to the market situation and their own power generation capacity by
self-scheduling during their operation within a month. In this case, the hydropower plant
only declares the electricity quantity, not the price, and uses the market clearing price as
the settlement price for the electricity quantity traded in the day-ahead market (i.e., as the
price-taker). According to the settlement rules, the trading electricity in the day-ahead
market will be settled the next day, while the monthly contract electricity will be settled at
the beginning of the next month. Therefore, the monthly contracted electricity that has been
agreed in advance by the hydropower plants can still bide in the day-ahead market, but the
imbalanced portion of the monthly contracted electricity will be compensated to the power
purchasing user according to the market rules or the contract agreement. At present, the
medium- and long-term market is the energy market, and the power generation curves of
the power plants are not agreed. Therefore, the power market operation institution or the
power grid dispatching center will require the hydropower plants to report the water level
process for the next month, the daily electricity generation, and the monthly and day-ahead
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market combined transaction electricity at the end of the month. To get more benefits, it
is necessary for cascade hydropower plants to optimize the decomposition scheme for
monthly contract electricity and the trading electricity in the day-ahead market based on
their power generation capacity and predicted day-ahead market clearing price. Due to the
inevitable deviation between the predicted day-ahead market clearing price and the actual
value, it is challenging to develop a decomposition scheme for the monthly contracted
electricity. Therefore, the uncertainty of the day-ahead market clearing price need to be
well considered when the decomposition scheme for the monthly contract electricity of
cascade hydropower plants is formulated.

In this paper, it is assumed that the day-ahead market clearing price is given. Moreover,
cascade hydropower plants belong to the same HGenCo, and each hydropower plant
participates in the market transaction independently. However, in order to give full play to
the compensation and regulation function between cascade plants, all hydropower plants
are uniformly operated by their owners.

2.2. Uncertainty Treatment of Day-Ahead Market Clearing Price

This section uses the scenario analysis technique to generate a series of scenarios
to model and analyze the randomness of day-ahead market clearing price, in order to
transform the stochastic optimization problem into an equivalent deterministic one.

(1) It is assumed that the forecasted error of the clearing price series
{

pd f
1 , pd f

2 , . . . , pd f
T

}
obeys the normal distribution N(μ, σ2) at any time period, where μ and σ are the
mean and standard deviation of the forecasted error, respectively, and they satisfy
that μ = 0, σ = 0.1 × pd f

t .
(2) The Latin Hypercube Sampling (LHS) method [31] is adopted for generating the

scenarios for the forecasted error of the day-ahead market price. In this method, the
sampling probability distribution is stratified first, and then samples are randomly
selected from each layer in turn, which can effectively improve the coverage degree
of sampling samples to the distribution space of random variables.

(3) To adequately reflect the stochastic characteristics of the day-ahead market clearing
price, more price scenarios will be generated through LHS, which mainly aims to
avoid a low calculation accuracy due to a small number of scenarios. In this paper, the
fast backward/forward method [33] is adopted to balance the solving accuracy and
efficiency, that is, to minimize the number of scenarios while maintaining the main
characteristics of price scenarios.

2.3. Objective Function

The goal of optimal monthly contract electricity decomposition is to maximize the
expected monthly income, whilst meeting various operational constraints. The cost of
cascade hydropower plants is mainly construction cost; thus, power generation cost is not
considered in this model. According to the electricity market trading rules, the monthly
contract is a physical contract. This implies that although part of the monthly contracted
electricity quantity of from hydropower plants can participate in the day-ahead market
bidding, it needs to accept a certain penalty. The mathematical expression of the objective
function is presented as follows:

maxF = F1 + F2 − F3 + F4 (1)

F1 =
I

∑
i=1

Pm
i × Emb

i (2)

F2 =
I

∑
i=1

Ppm
i × max(Ema

i − Emb
i , 0) (3)
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F3 =
I

∑
i=1

Pnm
i × max(Emb

i − Ema
i , 0) (4)

F4 =
S

∑
s=1

I

∑
i=1

T

∑
t=1

ps×Ed
i,t × Pd

s,t (5)

where F denotes the target total monthly benefits (in CNY); F1 denotes the basic income
according to the monthly electricity contract (in CNY); F2 denotes the extra income obtained
from the excess settlement of the monthly contracted electricity (in CNY); F3 denotes the
penalty cost for an insufficient amount of monthly contracted electricity (in CNY); F4
denotes the expected benefits of cascade power plants from participating in the day-ahead
market (in CNY); I and i are the total number and index of plants, respectively; T and
t denote the dispatching cycle and dispatching period, respectively; Emb

i and Pm
i are the

monthly contract electricity and electricity price, respectively, of the hydropower plant i (in
MWh and CNY/MWh); Ema

i denotes monthly contract electricity that actually completed
(in MWh); Ppm

i and Pnm
i are the electricity prices corresponding to the excess and deficiency

of monthly contracted electric quantity, respectively (in CNY/MWh). They satisfy that
Ppm

i = (1 − τ)× Pm
i , Pnm

i = (1 + τ)× Pm
i , and τ is the penalty coefficient of imbalanced

contracted electricity; S and s are the total number and index of scenarios for day-ahead
market clearing price; ps denotes the probability of price scenario s; Pd

s,t denotes the day-
ahead market clearing price in scenario s; Ed

i,t denotes the trading electricity of plant i in the
day-ahead market in time period t (in MWh).

2.4. Constraints

(1) Water balance constraints

Vi,t = Vi,t−1 + 3600 · (Qin
i,t − Qi,t)× Δt (6)

where Qin
i,t denote the total inflow of plant i in period t (in m3/s); Qi,t denotes the total

water discharge of plant i in period t (in m3/s); Δt is the duration of period t (in h); Vi,t is
the water storage at the end of period t (in m3).

(2) Hydraulic connection constraints

Qin
i,t = Qi−1,t + Qlin

i,t = Qg
i−1,t + Qs

i−1,t + Qlin
i,t (7)

where Qlin
i,t denote the local inflow of plant i in period t (in m3/s); Qg

i−1,t and Qs
i−1,t denote

the generating water flow and water spillage, respectively (in m3/s). Note that Qs
i,t is set

to 0 in this paper because hydropower curtailment is generally not allowed according to
China’s clean energy consumption policy.

(3) Water level constraints

Zi,min ≤ Zi,t ≤ Zi,max (8)

Zi,0 = Zi,begin (9)

Zi,T = Zi,end (10)

where Zi,max and Zi,min denote the upper and lower bounds of the reservoir water level
(in m); Zi,t is the reservoir water level in period t (in m); Zi,begin is the initial water level and
Zi,end is the target water level at the end of the planning horizon (in m).
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(4) Water discharge constraints

Qi,min ≤ Qi,t ≤ Qi,max (11)

where Qi,min and Qi,max denote the lower and upper bounds of the total water discharge of
plant i, respectively (in m3/s).

(5) Power output constraint

Pi,min ≤ Pi,t ≤ Pi,max (12)

where Pi,max and Pi,min represent the upper and lower bounds of the power output of plant
i, respectively (in MW); Pi,t represents the power output of plant i in period t (in MW),
which satisfies Equation (13).

Pi,t = ki,t · Qg
i,t × Hi,t/1000 (13)

ki,t = fi,kh(Hi,t) (14)

where ki,t is the output factor of plant i, and is related to the water head [34,35]; Hi,t is the
water head of plant i in period t (in m).

(6) Water head constraints

Hi,t = (Zi,t−1 + Zi,t)/2 − zdi,t (15)

where zdi,t denotes the tailwater level in period t (in m).

(7) Forebay water level–water storage relationship

Vi,t = fi,zv(Zi,t) (16)

fi,zv(·) represents the forebay water level–water storage relationship function of plant i.

(8) Tailwater level–water discharge relationship

zdi,t = fi,zq(Qi,t) (17)

fi,zq(·) represents the tailwater level–water discharge relationship function of plant i.

(9) Constraints on trading electricity in the day-ahead market

Ed
i,t ≤ Pi,t × Δt (18)

The above formula indicates that the trading electricity of plant i in the day-ahead
market in time period t shall not exceed the power generation of the day.

(10) Trading electricity constraints

Ema
i +

T

∑
t=1

Ed
i,t =

T

∑
t=1

Pi,t × Δt (19)

The above formula indicates that the sum of the actually completed monthly contracted
electricity and the trading electricity in the day-ahead market of the current month shall be
equal to the total monthly power generation of the power plant.

3. Solving Technique

According to the analysis in Section 1, the optimized model is nonlinear and non-
convex, making it difficult to solve by conventional algorithms. To solve such a complex
problem, a good idea is to approximate each nonlinear function by a series of linear
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functions. Hence, in this model, the nonlinear functions are linearized through several
linearization techniques, so that the original NLP model is transformed into an MILP
formulation. Based on this, a mature optimization solver can be adopted to solve the
MILP model.

In the established model, Equations (3) and (4) contain a max(·) function. The water
head function (i.e., Equation (15)) and power generation function (i.e., Equation (13)) are
also nonlinear functions. Considering that the linear approximation of the water head
constraint has been well established by many studies [29,30], this work aims to study the
linearization of the objective function (Equations (3) and (4)) and the power production
function (Equation (13)).

3.1. Linear Approximation of the Objective Function

We introduce a binary variable μi ∈ {0, 1}, and Equations (3) and (4) can be converted
into the following constraints.

F2 =
I

∑
i=1

μi × Ppm
i × (Ema

i − Emb
i ) (20)

F3 =
I

∑
i=1

(1 − μi)× Pnm
i × (Emb

i − Ema
i ) (21)

Ema
i − Emb

i ≤ M × μi (22)

Emb
i − Ema

i ≤ M × (1 − μi) (23)

where M is a very large number; μi is a binary indicator variable, which is equal to 1 if the
amount of monthly contracted electricity that is actually settled is higher than the amount
signed off, and otherwise, it is equal to 0.

Equations (20) and (21) are still nonlinear because there is still multiplication of integer
variables and continuous variables (i.e., μi × Ema

i ). Hence, we introduce two auxiliary
variables, Xi and Ki, to convert Equations (20) and (21) into the following linear constraints.

F2 =
I

∑
i=1

Ppm
i × (Xi − μi × Emb

i ) (24)

F3 =
I

∑
i=1

Ppm
i ×

[
(1 − μi)× Emb

i − Ki

]
(25)

Xi = Ema
i − Ki (26)

Xi ≤ M × μi (27)

Xi ≥ −M × μi (28)

Ki ≤ M × (1 − μi) (29)

Ki ≥ −M × (1 − μi) (30)

When μi = 1, i.e., the monthly contracted electricity that is actually settled is higher
than the amount signed for in the contract, Ki is equal to 0 because of Equations (29)
and (30). F3 is then equal to 0 according to Equation (25), which is consistent with the
fact that the penalty cost is 0 when then monthly contracted electricity has been settled.
Equations (24) and (20) are equivalent at this time due to the constraint of Equation (32).
Similarly, when μi = 0, F2 is equal to 0 and Equations (25) and (21) are equivalent. To
sum up, the combination of linear constraints in Equations (22)–(30) is the equivalent
transformation of Equations (3) and (4).
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3.2. Linear Approximation of the Power Generation Function

The output factor ki,t is closely related to the water head Hi,t, while Hi,t depends on the
generation water flow [34,35]. Hence, the power generation function is a very complicated
nonlinear function for the generation water flow. If the generation water flow is chosen
as a decision variable and the net water head is fixed, the power generation function will
become a linear one. Based on the above analysis, the successive approximation (SA)
approach is introduced, which is an efficient and practical method to deal with complex
nonlinear optimization problems [36–38]. The basic idea of this method is to solve a
series of fixed water head subproblems using the MILP approach, and the solution for the
original complex problem can be obtained after successive calculations. A flow chart for the
proposed SA approach is illustrated in Figure 1, and the specific procedures are as follows.

(1) Set the convergence precision δ of the SA approach and let the index of iterations
n = 1.

(2) The initial solution has a great influence on the computational efficiency of the SA
approach. Thus, to enhance the convergence speed, the initial water head of all the
hydropower plants from upstream to downstream

{
H0

i,0, H0
i,1, · · · , H0

i,T

}
is gener-

ated using Equations (31)–(33). The initial output factor of each hydropower plant{
k0

i,0, k0
i,1, · · · , k0

i,T

}
is then calculated using Equation (14).

ΔWi = Vi,begin − Vi,end +
T

∑
t=1

Qin
i,t × Δt (31)

Qi = ΔWi/
T

∑
t=1

Δt (32)

Hi,t = (Zi,begin + Zi,end)/2 − fi,zq(Qi)∀t ∈ [1, T] (33)

where ΔWi and Qi denotes the total discharge volume and average water discharge,
respectively, during the scheduling horizon. Hi,t is the average water head of hy-
dropower plant i during the scheduling horizon.

(3) Based on the given water head and the output factor of each hydropower plant, the
MILP based model for the optimal decomposition of monthly contracted electricity
for cascade hydropower plants is established by using the linearization techniques
presented in Section 3.1 and Ref. [30].

(4) An efficient optimization solver is adopted to solve the MILP model, and the dispatch-
ing schemes, including the water discharge, forebay water level, and power output of
each hydropower plant, can be obtained.

(5) Calculate the new water head Hn
i,t and corresponding output factor kn

i,t after the nth

iteration using Equations (14)–(17). Judge if max
∣∣∣Hn

i,t − Hn−1
i,t

∣∣∣/Hn
i,t ≤ δ, ∀i, ∀t. If true,

end the iteration and output the latest solution as the optimal dispatching scheme,
otherwise let n = n + 1 and repeat steps (3)–(5).
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Figure 1. Flow chart of the successive approximation.

4. Case Studies

In this paper, the monthly contracted electricity decomposition for two cascade hy-
dropower plants was taken as an example to test the proposed model and method. The
cascade power plants involved in the calculation include two hydropower plants, upstream
plant A and downstream plant B, whose main operating parameters are shown in Table 1.
The actual operational conditions of the cascade hydropower plants during March 2020,
including local inflow, monthly contract electricity, contract price, water level at the begin-
ning of month, and control water level at the end of month, were considered as references
for the case study. The day-ahead market clearing price is forecast by each hydropower
plant at the end of February 2020. The operational control conditions of each hydropower
plant are shown in Table 2. The local inflow of each plant and the forecasted day-ahead
market clearing price are shown in Figures 2 and 3, respectively. The allowable deviation
of control water level at the end of the month was set to 0.01 m.

Table 1. Characteristic parameters of the cascade hydropower plants.

Plant
Regulation

Perfor-
mance

Normal
Water

Level/m

Dead
Water

Level/m

Installed
Capacity

/MW

Maximum
Generat-

ing Water
Flow/(m3/s)

Minimum
Total Water
Discharge

/(m3/s)

A Seasonal 835 818 2 × 60 260 5
B Weekly 756 740 2 × 65 209 5
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Table 2. Operation control conditions of each plant.

Plant
Monthly
Contract

Electricity/kWh

Contract
Price/(CNY/kWh)

Water Level at the
Beginning of

Month/m

Control Water
Level at the End

of Month/m

A 673 × 104 0.19062 822.29 821.86
B 832 × 104 0.19039 751.04 752.76

 
Figure 2. Local flow of each hydropower plant.

 
Figure 3. Forecasted day-ahead market clearing price.

In total, 300 scenarios were generated using the LHS method, and the fast back-
ward/forward method was used to reduce the number of scenarios to 50. In the calculation,
the scheduling cycle was 1 month, and the dispatching period was 1 day. The penalty
coefficient for imbalanced contracted electricity τ was set as 0.3. A commercial optimiza-
tion software package, LINGO solver, was used for solving the proposed model, and the
computing environment was a ThinkPad PC with quad-core CPU and 16 GB memory.

The total revenue of the cascade hydropower plants is 578.92 × 104 CNY, including
286.62 × 104 CNY from the monthly contracted electricity revenue and 291.3 × 104 CNY
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from the day-ahead market trading electricity revenue. The calculation time of the model is
137 s, which fully meets the timeliness requirements of medium- and long-term scheduling
of cascade hydropower plants, reflecting the high solving efficiency of the optimization
model established in this paper.

The power generation and water level process of each hydropower plant obtained by
the optimized calculation are shown in Figure 4. As can be seen, the upstream plant A can
make full use of its own seasonal regulating storage capacity to realize the temporal and
spatial redistribution of runoff, so as to respond to the change of day-ahead market clearing
price and improve its own income. During periods with high electricity prices, plant A
uses its limited power generation capacity to participate in day-ahead market trading and
increase its power output as much as possible to generate more electricity. Conversely, in
periods with low electricity prices, plant A only generates electricity with the minimum
generating water flow, and almost all the generated electricity goes towards the settlement
of the monthly contracted electricity due to the penalty that can be incurred for an imbalance
from the contracted electricity. Downstream plant B needs the upstream plant for flow
compensation due to its small, regulated storage capacity and almost no local inflow. In
periods with low electricity prices, plant B only generates electricity with the minimum
flow, continuously raises the water level for water storage, and increases the water head.
When electricity prices are high, the highest possible water level is maintained at plant B in
order to participate in day-ahead market trading and maximize power generation before
the water level gradually falls back to the control water level at the end of the month.

 
(a) 

 
(b)

Figure 4. The power generation and water level process of each plant. (a) Plant A; (b) Plant B.
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The benefits of the stochastic scheduling model established in this paper (hereinafter
referred to as Model (1)), are compared with the traditional deterministic scheduling model
based on predicted values (hereinafter referred to as Model (2)). In Model 2, the predicted
value of day-ahead market electricity price is taken as the determined input value for
scheduling. The two models adopt the same control objectives and constraints, and a com-
parison of the results is shown in Table 3. It can be seen that, on the basis of guaranteeing
the monthly contracted electricity, the total power generation and the total generation
revenue of the cascade hydropower plants optimized by Model 1 is 2720 × 104 kWh and
578.92 × 104 CNY, respectively, while under Model 2, the values are 2731 × 104 kWh and
567.49 × 104 CNY, respectively. Compared to the deterministic model, the total revenue of
the proposed model increases by 2% when power generation is reduced. This shows that
when making a monthly contract electricity decomposition plan, taking into account the
uncertainty of the day-ahead market clearing price can significantly increase the expected
benefits of the HGenCo.

Table 3. The comparison results of the Model 1 and Model 2.

Model F1/×104 CNY F2/×104 CNY F3/×104 CNY F4/×104 CNY F/×104 CNY

Model 1 286.62 0 0 292.3 578.92
Model 2 286.62 0 0 280.87 567.49

To verify the impact of penalty coefficient for imbalanced monthly contracted electric-
ity (τ) on the optimal scheduling results, optimization results with different τ values are
compared and analyzed, which are presented in Table 4. When τ is small (τ = 0.1 or 0.2),
the negative deviation penalty price of monthly contracted electricity of plant A and B is
generally lower than the day-ahead market clearing price. In this case, cascade hydropower
plants will choose to violate the monthly electricity transaction contract and compensate
the contract buyer and allow for more generation to participate in the day-ahead market
transaction to obtain higher profits. However, when τ = 0.3 or 0.4, the negative deviation
penalty price of the monthly contracted electricity of plant A and B is relatively high. In
this case, the cascade hydropower plants will fulfill the monthly contract, and only the
remaining generation will participate in the day-ahead market. Therefore, the dispatching
agencies should analyze all possible situations when making power trading rules and for-
mulate reasonable penalty coefficients for imbalances of the monthly contracted electricity
so as to avoid a large number of defaults and ensure the long-term stable operation of the
electricity market.

Table 4. Optimization results with different τ values.

τ
Completed Monthly

Contracted
Electricity/×104 kWh

Day-Ahead Market
Trading

Electricity/×104 kWh

Total Power
Generation
/×104 kWh

Total
Revenue/×104 CNY

0.1 0 2711 2711 609.45
0.2 282 2430 2712 581.90
0.3 1505 1215 2720 578.92
0.4 1505 1215 2720 578.92

5. Discussion

As shown in Figure 3, the periods with the highest forecasted prices are days 7–13.
However, there is always an inevitable deviation between the predicted day-ahead market
clearing price and the actual value. In this paper, 50 scenarios are generated to represent
all possible actual day-ahead market clearing prices. After careful analysis, we found that
in most of the scenarios, the high electricity price is mainly concentrated in days 22–30.
To obtain higher expected power generation benefits, it is recommended to participate in
day-ahead market trading and increase its power output as much as possible to generate
more electricity during days 22–30.
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To the best of our knowledge, there are very few studies on the decomposition of
monthly contracted electricity for cascade hydropower plants connected with the bidding
in the day-ahead spot market. Thus, we cannot find other relevant optimization models and
compare them. The deterministic scheduling model based on predicted values is usually
adopted by the operators of the hydropower plants in practical engineering applications,
and the deterministic scheduling model is compared with the proposed optimization
model as benchmark model in many literatures [39–41]. For deterministic operation, we
considered the day-ahead market clearing prices to be a known input of the operation
model, assuming that the market clearing prices could be forecast accurately. However,
there is always an inevitable deviation between the predicted day-ahead market clearing
price and the actual value. To consider the impact of forecast errors on the decision-making
process, the stochastic model was adopted to produce operational decisions using multiple
day-ahead market clearing price processes to characterize forecast uncertainty. Since the
operational decisions were required to satisfy all the scenarios, the total generation profit of
the stochastic model is inevitably affected and is only 2% higher than those of deterministic
model. However, as the forecast errors of the day-ahead market clearing price are inevitable
in actual operation, the proposed model can avoid solutions that imply small profits or
major costs, hedging against risk and uncertainty.

As a consequence of the market power of some producers, two types of generation
companies can be listed: price-takers [42] and price-makers [39]. Price-takers accept market
clearing prices without being able to affect them. Instead, price-makers have market power,
thus being able to influence market prices to increase profit. In competitive electricity
markets, the profit of the generation companies depends not only on their own decisions,
but also on the decisions of the other companies. Under perfect competition, the market
share of every generation company is small, and no company can affect the market price. In
this case, every company takes market prices for granted when devising its offering strategy,
acting as a price-taker. However, some generation companies may have a relatively high
market share and are capable of exercising their market power, influencing market prices
for their own benefit. It means that a perfect competition model cannot be used, since the
companies act as price-makers. When devising its offering strategy, a price-maker hydro
producer takes into account the fact that it can affect market prices with its offers. Our
focus is to obtain the mid-term scheduling strategy of a price-taker hydropower generation
company (HGenCo). The case studies in this paper include two hydropower plants with a
total installed capacity of 250 MW. The market share of this HGenCo is small and cannot
affect the market price.

The penalty coefficient for imbalanced monthly contracted electricity (τ) is very im-
portant for the smooth settlement of the monthly contracted electricity. When τ is small
(τ = 0.1 or 0.2), cascade hydropower plants will choose to violate the monthly electricity
transaction contract and allow for more generation to participate in the day-ahead market
transaction to obtain higher profits. While when τ = 0.3 or 0.4, the cascade hydropower
plants will fulfill the monthly contract. The value of penalty coefficient depends on the
interest tendency of market managers. If the market managers hope to avoid large defaults
on medium-and long-term contracts, they can set the penalty coefficient to 0.3 or 0.4. If they
want to encourage power plants to participate freely in various markets to reap greater
benefits, they can set the penalty coefficient very low, such as 0.1.

The establishment of an optimal scheduling model is based on the operation mech-
anism of medium- and long-term market and day-ahead spot market. China’s power
supply structure and power consumption characteristics have certain uniqueness, and the
construction of China’s electricity market is still in the initial stage, so China’s electricity
market mechanism has certain differences from other countries. For example, the Nordic
electricity market has developed a model of financial contracts plus spot trading. The
time span of trading in the financial contract market includes weeks, quarters, and years.
Financial contracts do not require physical delivery and are primarily used as a means
of price hedging and risk management. This means that, after signing a medium- and
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long-term contract, the power plants can participate in the spot market without default
penalty. Hence this model cannot be generalized to other countries’ markets in our opinion.
However, it can provide some reference for other countries that are in the initial stage of
electricity market construction, such as India and Brazil.

National and foreign direct investments are needed for economic developments and
national projects, including hydropower works, mainly in relation to less-favored economic
areas where social risk could appear [43]. Such hydropower plants are useful to alleviate
areas with poverty and solve urban and rural issues of electricity for poor communi-
ties [44,45]. However, when more cascade hydropower plants are included in the proposed
model, the computational efficiency will be reduced to some extent, and the calculation
may take several hours due to the consideration of the day-ahead market clearing price
uncertainty and multiple iterations of the SA approach. Hence, model decomposition
techniques and parallel techniques should be integrated into the solution method in the
future research to further improve the solution efficiency and increase the engineering
application value of the proposed model.

6. Conclusions

In view of the coexistence of the medium- and long-term contract markets and the
day-ahead spot market in China’s electricity market, an optimal decomposition model for
the monthly contracted electricity of cascade hydropower plants is established, considering
the bidding space of day-ahead market. The validation of the proposal model is applied to
the decomposition of the monthly contracted electricity of China’s cascade hydropower
plants as an example. The following conclusions are drawn:

(1) A scenario analysis technique and several effective linearization strategies are put
forward to address the uncertain and nonlinear factors in the optimization model,
including the uncertain day-ahead market clearing price, the nonlinear objective
function, and the nonlinear power generation function of each hydropower plant. For
such a complex research problem, the combination of the SA approach and MILP
approach is computationally efficient with a calculation time of 137 s.

(2) The total revenue obtained from the proposed stochastic optimization model is
578.92 × 104 CNY. Compared to the deterministic model, the total revenue of the
proposed model increases by 2% when power generation is reduced. Furthermore,
as the forecast errors of the day-ahead market clearing price are inevitable in actual
operation, the proposed model can avoid solutions that imply small profits or major
costs, hedging against risk and uncertainty.

(3) The penalty coefficient for imbalanced monthly contracted electricity (τ) is very
important for the smooth settlement of the monthly contracted electricity. When τ is
small (τ = 0.1 or 0.2), cascade hydropower plants will choose to violate the monthly
electricity transaction contract and allow for more generation to participate in the
day-ahead market transaction to obtain higher profits. While, when τ = 0.3 or 0.4,
the cascade hydropower plants will fulfill the monthly contract. Therefore, market
managers need to formulate a reasonable penalty coefficient to avoid a large number
of defaults and ensure the long-term stable operation of the electricity market.

At present, China’s electricity market construction is still in the preliminary stage, and
many factors are still to be studied and tested in practice. Due to the complex operation
constraints of cascade hydropower plants and multiple uncertainties, it is challenging
to develop a decomposition scheme for the monthly contracted electricity of cascade
hydropower plants. This paper can provide guidance for China’s hydropower participation
in the electricity market, and also provide reference for other countries that are in the
initial stage of electricity market construction, such as India and Brazil. In addition, the
uncertainty of runoff and the accelerated solution method of the model will be further
considered in the future study.
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5. Creţan, R.; Vesalon, L. The political economy of hydropower in the communist space: Iron Gates revisited. Tijdschr. Econ. Soc.
Geogr. 2017, 108, 688–701. [CrossRef]

6. 2020 Hydropower Status Report. Available online: https://www.hydropower.org/publications/2020-hydropower-status-report
(accessed on 10 May 2022).

7. Statistics of the National Power Industry in 2020. Available online: http://www.nea.gov.cn/2021-01/20/c_139683739.htm
(accessed on 10 May 2022).

8. Zeng, M.; Yang, Y.; Wang, L.; Sun, J. The power industry reform in China 2015: Policies, evaluations and solutions. Renew. Sustain.
Energy Rev. 2016, 57, 94–110. [CrossRef]

9. Guo, H.; Davidson, M.R.; Chen, Q.; Zhang, D.; Jiang, N.; Xia, Q.; Kang, C.; Zhang, X. Power market reform in China: Motivations,
progress, and recommendations. Energy Policy 2020, 145, 111717. [CrossRef]

10. Bao, M.; Guo, C.; Wu, Z.; Wu, J.; Li, X.; Ding, Y. Review of electricity spot market reform in China: Current status and future
development. In Proceedings of the 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China, 21–23
November 2019.

11. Cheng, C.; Chen, F.; Li, G.; Ristic, B.; Mirchi, A.; Qiyu, T.; Madani, K. Reform and renewables in China: The architecture of
Yunnan’s hydropower dominated electricity market. Renew. Sustain. Energy Rev. 2018, 94, 682–693. [CrossRef]

12. Chen, F.; Liu, B.; Cheng, C.; Mirchi, A. Simulation and regulation of market operation in hydro-dominated environment: The
Yunnan case. Water 2017, 9, 623. [CrossRef]

13. Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Garrote, L. Water-energy-ecosystem nexus: Balancing competing interests at a
run-of-river hydropower plant coupling a hydrologic-ecohydraulic approach. Energy Convers. Manag. 2020, 223, 113267.
[CrossRef]

14. Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Garrote, L. Influence of hydrologically based environmental flow methods on flow
alteration and energy production in a run-of-river hydropower plant. J. Clean. Prod. 2019, 232, 1028–1042. [CrossRef]

15. Khaloie, H.; Abdollahi, A.; Shafie-khah, M.; Anvari-Moghaddam, A.; Nojavan, S.; Siano, P.; Catalao, J.P.S. Coordinated wind-
thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model. Appl. Energy 2020,
259, 114168. [CrossRef]

100



Water 2022, 14, 2347

16. Khaloie, H.; Mollahassani-Pour, M.; Anvari-Moghaddam, A. Optimal behavior of a hybrid power producer in day-ahead and
intraday markets: A bi-objective CVaR-based approach. IEEE Trans. Sustain. Energy 2021, 12, 931–943. [CrossRef]

17. Sanchez de la Nieta, A.A.; Paterakis, N.G.; Gibescu, M. Participation of photovoltaic power producers in short-term electricity
markets based on rescheduling and risk-hedging mapping. Appl. Energy 2020, 266, 114741. [CrossRef]

18. Lu, J.; Li, G.; Cheng, C.; Liu, B. A long-term intelligent operation and management model of cascade hydropower stations based
on chance constrained programming under multi-market coupling. Environ. Res. Lett. 2021, 16, 055034. [CrossRef]

19. Li, G.; Lu, J.; Yang, R.; Cheng, C. IGDT-based medium-term optimal cascade hydropower operation in multimarket with
hydrologic and economic uncertainties. J. Water Res. Plan. Manag. 2021, 147, 5021015. [CrossRef]

20. Shrestha, G.B.; Pokharel, B.K.; Lie, T.T.; Fleten, S.E. Medium term power planning with bilateral contracts. IEEE Trans. Power. Syst.
2005, 20, 627–633. [CrossRef]

21. Luo, B.; Miao, S.; Cheng, C.; Lei, Y.; Chen, G.; Gao, L. Long-term generation scheduling for cascade hydropower plants considering
price correlation between multiple markets. Energy 2019, 12, 2239. [CrossRef]

22. Yuan, X.; Wang, Y.; Xie, J.; Qi, X.; Nie, H.; Su, A. Optimal self-scheduling of hydro producer in the electricity market. Energy
Convers. Manag. 2010, 51, 2523–2530. [CrossRef]

23. Conejo, A.; Arroyo, J.; Contreras, J.; Villamor, F. Self-scheduling of a hydro producer in a pool-based electricity market. IEEE
Trans. Power Syst. 2002, 17, 1265–1272. [CrossRef]

24. Pousinho, H.; Contreras, J.; Catalão, J. Short-term optimal scheduling of a price-maker hydro producer in a pool-based day-ahead
market. Iet. Gener. Transm. Dis. 2012, 6, 1243–1251. [CrossRef]

25. Kongelf, H.; Overrein, K.; Klaeboe, G.; Fleten, S. Portfolio size’s effects on gains from coordinated bidding in electricity markets:
A case study of a Norwegian hydropower producer. Energy Syst. 2019, 10, 567–591. [CrossRef]

26. Wu, X.; Cheng, C.; Lund, J.R.; Niu, W.; Miao, S. Stochastic dynamic programming for hydropower reservoir operations with
multiple local optima. J. Hydrol. 2018, 564, 712–722. [CrossRef]

27. Fu, X.; Li, A.; Wang, L.; Ji, C. Short-term scheduling of cascade reservoirs using an immune algorithm-based particle swarm
optimization. Comput. Math. Appl. 2011, 62, 2463–2471. [CrossRef]

28. Wang, J.; Cheng, C.; Shen, J.; Cao, R.; Yeh, W.W.G. Optimization of large-scale daily hydrothermal system operations with
multiple objectives. Water Resour. Res. 2018, 54, 2834–2850. [CrossRef]

29. Catalao, J.P.S.; Mariano, S.J.P.S.; Mendes, V.M.F.; Ferreira, L.A.F.M. Scheduling of head-sensitive cascaded hydro systems: A
nonlinear approach. IEEE Trans. Power Syst. 2009, 24, 337–346. [CrossRef]

30. Borghetti, A.; D’Ambrosio, C.; Lodi, A.; Martello, S. An MILP approach for short-term hydro scheduling and unit commitment
with head-dependent reservoir. IEEE Trans. Power Syst. 2008, 23, 1115–1124. [CrossRef]

31. Su, C.; Cheng, C.; Wang, P.; Shen, J.; Wu, X. Optimization model for long-distance integrated transmission of wind farms and
pumped-storage hydropower plants. Appl. Energy 2019, 242, 285–293. [CrossRef]

32. Su, C.; Yuan, W.; Cheng, C.; Wang, P.; Sun, L.; Zhang, T. Short-term generation scheduling of cascade hydropower plants with
strong hydraulic coupling and head-dependent prohibited operating zones. J. Hydrol. 2020, 591, 125556. [CrossRef]

33. Dupacova, J.; Growe-Kuska, N.; Romisch, W. Scenario reduction in stochastic programming: An approach using probability
metrics. Math. Program 2003, 95, 493–511. [CrossRef]

34. Niu, W.; Feng, Z.; Cheng, C. Optimization of variable-head hydropower system operation considering power shortage aspect
with quadratic programming and successive approximation. Energy 2018, 143, 1020–1028. [CrossRef]

35. Lu, P.; Zhou, J.; Wang, C.; Qiao, Q.; Mo, L. Short-term hydro generation scheduling of Xiluodu and Xiangjiaba cascade hydropower
stations using improved binary-real coded bee colony optimization algorithm. Energy Convers. Manag. 2015, 91, 19–31. [CrossRef]

36. Ge, X.; Xia, S.; Lee, W.; Chung, C.Y. A successive approximation approach for short-term cascaded hydro scheduling with variable
water flow delay. Electr. Power. Syst. Res. 2018, 154, 213–222. [CrossRef]

37. Zhou, Y.; Guo, S.; Chang, F.; Xu, C. Boosting hydropower output of mega cascade reservoirs using an evolutionary algorithm
with successive approximation. Appl. Energy 2018, 228, 1726–1739. [CrossRef]

38. He, Z.; Wang, C.; Wang, Y.; Wei, B.; Zhou, J.; Zhang, H.; Qin, H. Dynamic programming with successive approximation and
relaxation strategy for long-term joint power generation scheduling of large-scale hydropower station group. Energy 2021, 222,
119960. [CrossRef]

39. Pousinho, H.M.I.; Contreras, J.; Bakirtzis, A.G.; Catalão, J.P.S. Risk-constrained scheduling and offering strategies of a price-maker
hydro producer under uncertainty. IEEE Trans. Power Syst. 2013, 28, 1879–1887. [CrossRef]

40. Yuan, W.; Wang, X.; Su, C.; Cheng, C.; Liu, Z.; Wu, Z. Stochastic optimization model for the short-term joint operation of
photovoltaic power and hydropower plants based on chance constrained programming. Energy 2021, 222, 119996. [CrossRef]

41. Ming, B.; Liu, P.; Guo, S.; Cheng, L.; Zhou, Y.; Gao, S.; Li, H. Robust hydroelectric unit commitment considering integration of
large-scale photovoltaic power: A case study in China. Appl. Energy 2018, 228, 1341–1352. [CrossRef]

42. Díaz, F.J.; Contreras, J.; Muñoz, J.I.; Pozo, D. Optimal scheduling of a price-taker cascaded reservoir system in a pool-based
electricity market. IEEE Trans. Power Syst. 2011, 26, 604–615. [CrossRef]

43. Virtanen, M. Foreign direct investment and hydropower in Lao PDR: The Theun-Hinboun hydropower project. Corp. Soc.
Responsib. Environ. Manag. 2006, 13, 183–193. [CrossRef]

101



Water 2022, 14, 2347

44. Fan, J.; Liang, Y.; Tao, A.; Sheng, K.; Ma, H.; Xu, Y.; Wang, C.; Sun, W. Energy policies for sustainable livelihoods and sustainable
development of poor areas in China. Energy Policy 2011, 39, 1200–1212. [CrossRef]
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Abstract: Stall flow patterns occur frequently in pump turbines under off-design operating conditions.
These flow patterns may cause intensive pressure pulsations, sudden increases in the hydraulic forces
of the runner, or other adverse consequences, and are some of the most notable subjects in the study
of pump turbines. Existing methods for identifying stall flow patterns are not, however, sufficiently
objective and accurate. In this study, a convolutional neural network (CNN) is built to identify
and analyze stall flow patterns. The CNN consists of input, convolutional, downsampling, fully
connected, and output layers. The runner flow field data from a model pump–turbine are simulated
with three-dimensional computational fluid dynamics and part of the classifiable data are used to
train and test the CNN. The testing results show that the CNN can predict whether or not a blade
channel is stalled with an accuracy of 100%. Finally, the CNN is used to predict the flow status of the
unclassifiable part of the simulated data, and the correlation between the flow status and the relative
flow rate in the runner blade channel is analyzed and discussed. The results show that the CNN is
more reliable in identifying stall flow patterns than using the existing methods.

Keywords: pump–turbine; stall flow patterns; flow identification; convolutional neural network

1. Introduction

Pumped storage power plants serve several purposes, including peak control, valley
filling, energy storage, frequency regulation, phase regulation, and power backup. They
are not only important complements for existing power systems dominated by thermal
electricity but also fundamental prerequisites for developing power generation from new
energy resources, such as wind and solar power. In the global drive to reduce carbon
emissions, the capacity of pumped storage power plants will certainly increase significantly.
In China, for example, after over 60 years of construction, the total installed capacity of
pumped storage power plants has surpassed 30 million kilowatts (kW), but this figure is
predicted to reach 120 million kW by 2030 [1]. Given this rapid growth, the development of
reliable and efficient pumped storage equipment is increasingly important.

Pump turbines, which can operate in both pumping and generating modes, are one
of the most important pieces of equipment in pumped storage power plants. To properly
capitalize on the benefits of pumped storage power plants, pump turbines must frequently
run among different operating modes. This increases the likelihood of running into unstable
operating regions, such as the S-shaped characteristic region in the generating mode [2]
and the hump instability region of the pumping mode [3]. When running in these regions,
pump turbines may suffer from intensive pressure pulsations, unit vibrations, and even
structural damage [4,5]. These unfavorable phenomena are usually caused by special
flow patterns in the pump-turbine, such as vortex ropes in the draft-tube [6], inter-blade
vortices [7], and rotating stalls in the runner [8].

A rotating stall is caused by flow separations between the runner blades when the flow
rate of the pump-turbine falls. The separating flows then develop into large-scale vortices
(i.e., stall cells) that block the flow of the blade channel and rotate sub-synchronously with
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the runner [9]. This flow structure is always accompanied by violent high-amplitude and
low-frequency pressure pulsations [10], which impose enormous alternating stresses on
the runner and shaft systems of the pump-turbine [11], and is one of the leading causes of
structural failure [12]. Identifying rotating stalls and evaluating the resulting damage is
thus crucial in the research and development of new pump turbines.

Currently, there are three primary ways to identify rotating stalls. The first is to
estimate whether stall cells exist by observing the distribution of streamlines or velocity
vectors in the runner artificially. For example, Widmer et al. [13] and Botero et al. [14]
identify stall cells in the guide-vane channels of pump turbines through visualized flow
fields using three-dimensional numerical simulations and model tests, respectively. This
is a straightforward method based on the flow field features; however, the identification
process is quite subjective and lacks a unified standard.

The second way is to analyze the abnormal pressure pulsations induced by the rotating
stall. According to Hasmatuchi et al. [15], the rotating stall causes significant low-frequency
pressure pulsations in the pump-turbine, and the dominant frequency is at about 70%
of the runner rotational frequency. The propagating stall cells in the runner can thus
be identified by observing the alternations of peaks and troughs in the pressure signals
at various locations around the runner. However, Li et al. [16] note that low-frequency
pressure pulsations can also be caused by the draft-tube vortex of the pump-turbine. This
indicates that identifying rotating stalls by abnormal pressure pulsations may not be very
appropriate but should be used as a complement to other ways, such as flow visualization.
Yang et al. [17], for instance, use high-speed flow visualization to identify stall cells and
spectrum analysis of the pressure signals to determine the frequency of the rotating stall.

The final method requires determining the blade channel flow rates in the runner. The
basic idea is that the flow rates of the stalled blade channels are considerably reduced due
to the blockage created by the stall cells, while the flow rates of the un-stalled channels
are relatively high. Thus, by comparing the flow rates of different runner blade channels,
researchers can determine whether stall cells exist. For example, Cavazzini et al. [18]
simulate the transient flow patterns of a pump-turbine during the load rejection scenario at
a constant guide-vane opening and investigate how the rotating stall forms and develops in
the runner and guide-vane zones. However, although this method looks more persuasive
than the other two, it is merely a semi-quantitative approach because there is not a certain
critical flow rate for determining whether or not there is a stall cell in the blade channel.
Therefore, all current methods are imperfect, and developing a more objective and accurate
method for identifying the stall flow patterns is necessary to more fully understand rotating
stalls in pump turbines.

The convolutional neural network (CNN), an important algorithm in the field of
deep learning, shows satisfactory performance in processing two-dimensional data with
grid-like topology [19]. Now, it has been widely used in pattern identification, such as
face [20] and image [21] identification. Due to its powerful ability to extract features and
its high identification accuracy, it has also been used successfully in other fields, such as
medicine [22] and botany [23]. CNN may thus also be used in identifying special flow
patterns in pump turbines, and there have indeed been studies attempting to apply CNN
to flow pattern identification. Zhang et al. [24] developed a fast-response transient flow
pattern identification algorithm based on a long short-term memory neural network (LSTM)
and CNN, and this model can instantly identify separated flows with an accuracy of 94%.
Strofer et al. [25] proposed a region-CNN algorithm for identifying the recirculation flow
regions and boundary layers in two-dimensional flows. This model can also be used
in identifying horseshoe vortices in three-dimensional flows. Franz et al. [26] identified
and tracked ocean eddies based on an LSTM and CNN; the results demonstrate that the
model is capable of identifying numerous eddies concurrently. Tang et al. [27] proposed a
CNN-based flow field feature identification algorithm that can accurately identify clock-
wise, counterclockwise, and saddle-like vortex structures in two-dimensional flow fields.
Deng et al. [28] developed a vortex identification CNN model that incorporates both local
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and global flow field information, and the identification accuracy of the model can exceed
98%. Nie et al. [29] proposed a flow pattern classification method for gas-liquid two-phase
flow based on the principle of CNN image recognition, which can identify five different
flow patterns and achieve an accuracy of over 90%. Brantson et al. [30] proposed a 4-layer
CNN to identify the flow patterns of simultaneous gas-liquid flow in a pipeline, and the
results indicate that the model has an accuracy of 99.90% used in recognizing bubbly, slug,
and churn flow patterns. Seal et al. [31] combined CNN to develop a visualization tool
for classifying in-tube condensation flow patterns with an accuracy of up to 98%. In the
above applications, CNN can automatically extract and generalize features from flow field
data, which means that the identifications do not require predetermined mathematical
models and are rarely influenced by the researchers’ subjective experience. This precisely
compensates for the shortcomings of the above existing methods for identifying stall flow
patterns. In addition, all of the identifying accuracies of the CNN-based models are high
enough. Therefore, although there are not many related studies, CNN has shown great
potentialities in flow pattern identification.

In this study, we construct a CNN-based rotating stall identification model for pump
turbines using three-dimensional simulated flow field data from a model pump-turbine.
The contribution of the work is to provide an objective and accurate tool for identifying
stall flow patterns in pump–turbine runners. The remainder of this paper is structured as
follows. Section 2 describes the generation of the datasets used for the construction and
evaluation of the CNN. Section 3 demonstrates the architecture of the CNN, as well as
its training and evaluation results. In Section 4, the correlation between the relative flow
rate and the un-stalled probability of the blade channel is analyzed, and the results are
discussed in Section 5. The main conclusions are presented in Section 6.

2. Data Preparation

2.1. Flow Field Data

Stall flow patterns indicate a type of special velocity field with strong flow separations
and large-scale vortices in the blade channels of the runner. The data for velocity vectors in
the runner are thus essential elements for CNN feature extraction. These data are obtained
by numerical simulations through three-dimensional computational fluid dynamics. The
computational domain is the full flow passage of a model pump-turbine, including the
spiral-casing, stay-vane and guide-vane zones, runner, and draft-tube, with a runner
diameter of 0.55 m (Figure 1). The simulations are conducted by the ANSYS FLUENT
18.0 software (ANSYS, Canonsburg, PA, USA) and the flow field data in the pump-turbine
are solved by three-dimensional unsteady Navier–Stokes equations with a time step size
of 0.001 s. To solve the unsteady turbulent flow with strong separations in the pump-
turbine, the scale adaptive turbulence model is used in ANSYS FLUENT software [32]. The
above models are solved by the finite volume method, and the computational domain is
discretized using a hybrid mesh scheme with multiple mesh topologies. The total number
of meshes chosen is 9.54 million based on a series of trial calculations among cases with
different total cell numbers and the meshes were generated using the ANSYS ICEM CFD
18.0 software (ANSYS, Canonsburg, PA, USA); details about the mesh can be found in
previous studies [33].

Figure 2 displays the comparisons between the simulated pump-turbine characteristics
(defined by the unit flow rate Q11 and unit speed n11; see Equations (1) and (2)) and the
measured characteristic curve supplied by the manufacturer. There appears to be a high
degree of agreement between the two curves, indicating that the simulated results are
sufficiently accurate and can be used for further flow analysis.

n11 =
nD√
Hw

(1)

Q11 =
Q(

D2
√

Hw
) (2)
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where n11 is the unit speed, n is the rotational speed, D is the runner inlet diameter, Hw is
the working head of the pump-turbine, Q11 is the unit flow rate, and Q is the flow rate.

Figure 1. Computational domain of the model pump–turbine.

Figure 2. Comparison of simulated and measured pump-turbine characteristics.

2.2. Samples

Following an initial flow field analysis, the runner velocity field data for eight repre-
sentative operating points (P1–P8 in Figure 2) are chosen to create samples for constructing
the CNN. These eight points can be preliminarily classified as the un-stalled condition
(P1–P4 in Figure 2), the partially stalled condition in which partial channels in the runner
are blocked by stall cells (P6 in Figure 2), the fully stalled condition in which all channels
are blocked by stall cells (P8 in Figure 2), and the hybrid condition (P5 and P7 in Figure 2),
based on the flow field features in the runner blade channels. To extract as many samples
as possible from the limited number of simulated operating points, the velocity fields at
different points, different moments, and different blade channels are taken as different
samples in this study because a rotating stall in the pump–turbine runner is a typical
unsteady flow structure that varies with time and space, so stall flow patterns are different
at different moments, as well as at different blade channels, of the same operating point.
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2.3. Classification

For the un-stalled and fully stalled conditions (P1–P4 and P8 in Figure 2), the blade
channel can easily be classified as un-stalled or stalled, respectively. It is difficult to classify
the partially stalled (P6 in Figure 2) and the hybrid conditions (P5, P7 in Figure 2), which is
the motivation for this study. However, the data for these two conditions should be used
in constructing the CNN to improve its generalization. Here, we use the identification
method based on the blade channel flow rate to partially solve this problem.

The basic idea behind this method is that stall cells block the blade channels, resulting
in significant reductions in the flow rates at the corresponding blade channels, while the
flow patterns in the un-stalled blade channels are relatively smooth (i.e., the flow rates of
the corresponding blade channels are relatively high). Although we cannot identify the
flow status of all blade channels, the flow status of channels with significantly high or low
flow rates can easily be identified. To compare the blade channel flow rates at different
operating points, the relative form of this variable is used, as defined in Equation (3):

qir =
qi

QBEP
9

(3)

where qir is the relative flow rate of blade channel i, qi is the absolute flow rate of blade
channel i, QBEP is the total absolute flow rate of the runner in the best efficiency point (i.e.,
P1 in Figure 2), and 9 is the total channel number of the runner.

Figure 3 compares the distributions of relative flow rates and streamlines among
different runner blade channels at a given moment in the partially stalled condition (P6 in
Figure 2). We can see that the relative flow rate of channel 6 (C6) is significantly below the
average level, indicating that C6 is stalled; the relative flow rate of C4 is significantly above
the average level, indicating that C4 is un-stalled. The flow statuses of the other blade
channels are difficult to determine because the relative flow rates of these blade channels
are between the maximum and minimum values. Consequently, only data for two runner
channels at one moment of P6 can be used in constructing the CNN.

For the hybrid condition (P5 and P7 in Figure 2), the runner may present a fully stalled,
partially stalled, or un-stalled status at different moments during the rotation, so only the
most typical blade channel velocity fields are used. For example, P5 is an un-stalled channel
dominating operating point because the general runner flow patterns are smoother than
the partially stalled condition P6. Therefore, only the blade channel with the largest relative
flow rate (i.e., the indubitably un-stalled channel) at every moment is used. For the same
reason, P7 is a stalled channel dominating operating point, and only the blade channel with
the smallest relative flow rate (i.e., the indubitably stalled blade channel) at every moment
is used.

Figure 3. Distributions of the blade channel relative flow rates and streamlines at a given moment in
the partially stalled condition.

107



Energies 2022, 15, 5719

According to the above procedure, 3200 classifiable samples are selected from P1 to
P8, with a total of 1600 each for stalled and un-stalled samples. The samples from P2, P4,
P6, and P8 form the training dataset used to train the CNN. The samples from P1, P3, P5,
and P7 form the testing dataset, which is used to evaluate the generalization of the CNN.
To ensure that the training and testing datasets are completely independent and able to
present the operating range of the pump-turbine as widely as possible, the samples of these
two datasets are taken from cross-distributed operating points along the characteristic
curve, as shown in Figure 2. The detailed compositions of the datasets are shown in Table 1.
It is worth mentioning that, before the initial training process, 20% of the samples from the
training dataset are randomly selected as validation samples for use in cross-validating the
training results and adjusting the structure of the CNN.

Table 1. Compositions of the datasets.

Datasets Conditions Operating Points Un-Stalled Samples Stalled Samples

Training

Un-stalled
P2 450 0
P4 450 0

Fully stalled P8 0 900

Partially stalled P6 600 600

Testing
Un-stalled

P1 34 0
P3 33 0

Hybrid P5 33 0
P7 0 100

Total 1600 1600

2.4. Data Format

The last important treatment regarding the dataset is transforming the runner’s classi-
fied velocity field data to an acceptable input format for the CNN. This treatment can be
divided into two steps: coordinate and data transformation, as shown in Figure 4.

The purpose of coordinate transformation is to transform the three-dimensional and
irregularly shaped runner flow passage into a two-dimensional rectangular area (i.e., into
matrix format). To make the rectangular area representative, the middle span of the runner,
as shown by the blue axisymmetric spatial surface in Figure 4, is chosen as the object of the
transformation. All computational mesh nodes in this spatial surface are projected onto
a rectangular plane, and this plane is then re-meshed according to an appropriate aspect
ratio. This new mesh system represents a matrixed area with 88 rows and 700 columns.

Figure 4. Sample format transformation process.

The purpose of data transformation is to normalize the velocity field data to remove the
impact of data magnitude across samples and enhance the convergence speed and accuracy
of the CNN. First, the absolute velocity vectors are represented by three components, u, v,
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and w, along the x, y, and z axes. These components are then transformed to relative forms,
ur, vr, and wr, to remove the influence of runner rotational speed on the velocity field, as
defined by Equation set (4): ⎧⎨⎩

ur = u − (n × 2π × y)
vr = v + (n × 2π × x)
wr = w

(4)

where u, v and w are the components of the absolute velocity vector along the x, y and z
axes, respectively; ur, vr and wr are the relative forms of u, v and w, respectively.

The standard deviation is used to normalize the three relative velocity components, as
shown in Equation set (5): ⎧⎨⎩

ûr = (ur − umean)/ustd
v̂r = (vr − vmean)/vstd

ŵr = (wr − wmean)/wstd

(5)

where ûr, v̂r, and ŵr are the normalized forms of ur, vr, and wr, respectively; umean, vmean,
and wmean are the mean values of ur, vr, and wr, respectively; and ustd, vstd, and wstd are
the standard deviations of ur, vr, and wr, respectively. The normalized relative velocity
components on the new mesh nodes (i.e., the matrixed area) can thus be interpolations of
the data in the original mesh nodes. If the mesh nodes are located on the blade, the velocity
components are defined as 0.

The blade channels also have to be labeled because we treat different blade channels
at different moments as different samples. That is, although a sample in the input dataset
contains the data for all blade channels in the runner, only the data for one blade channel
are used. To mark the required channel, we must label the nodes of the new mesh system:
all nodes of the required blade channel are assigned a value of 1, whereas all nodes from
other blade channels and the void regions representing the blades are assigned a value of 0.

After processing, each sample can be represented by a matrix with 4 channels, 88 rows,
and 700 columns (size: 4 × 88 × 700). These four channels represent the normalized relative
velocity components ûr, v̂r, ŵr, and the blade channel markers, respectively, as shown by
the color maps on the right side of Figure 4 (the color bar indicates the normalized values
for all the flour channels), and make up the input data for the CNN. The whole data
preparation process can be summarized by Figure 5.

Figure 5. Flow chart of the data preparation.

3. Construction of the CNN

3.1. Architecture

To extract features from the flow field data that are as deep as possible, we design a
multi-layer CNN that consists of an input layer, five convolutional and downsampling
layers, two fully connected layers, and an output layer, as depicted in Figure 6. Among
these layers, the input layer receives samples (i.e., the four-channel matrices mentioned
above), and the output layer provides the probability of whether the received samples are
stalled or not. The functions of the remaining layers are described below.
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Figure 6. CNN architecture.

Following the input layer, the convolutional and downsampling layers alternate. The
convolutional operation, which is essentially the process of extracting different features
from the input matrix using different convolution kernels, is the foundation of the CNN.
After a sufficient number of convolutional layers, underlying features from the shallow to
deep levels of the input matrix can be extracted gradually. The convolution is described by
Equation (6):

Yi =
M

∑
j=0

Xj ∗ Wi
j + bi i ∈ 1, 2, · · · , N, (6)

where X is the input matrix with M channels, and j is the channel index; W is the con-
volution kernel, a matrix with the same number of channels as the input matrix X, and
its superscript i and subscript j indicate the indexes of the convolution kernels and the
channel, respectively; b is the bias vector, and its superscript indicates that the current
convolution is performed using the ith element of the bias vector; Y is the output matrix
with N channels, and its subscript i indicates the channel index. It should be noted that the
total channel number of the convolution kernel corresponds to that of the input matrix; the
total convolution kernel number corresponds to the total channel number of the output
matrix. The more channel numbers the output matrix has, the deeper the underlying
features that can be extracted. Details about the size (channel × row × column) of the
matrix at different layers of the CNN are shown in Figure 6.

Figure 7 depicts the convolutional operation for extracting matrix features from the
convolution kernel, which functions like a filter; the orange box shows the region where the
current convolutional operation is conducted by the convolution kernel, and the black box
shows the region where the next convolutional operation is conducted by the convolution
kernel. First, the ith convolution kernel determines a region in the input matrix, as shown
by the orange box in Figure 7. Then, the elements of each channel in the orange box are
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convolved with the corresponding channel of the present convolution kernel. Finally, the
element of the corresponding bias vector is added, as shown in Equation (6). The result of
the operation is element y11 of the ith channel of the output matrix Y (i.e., Yi). This operation
can be understood as the convolution kernel filtering and linearly superimposing the local
features among different channels of the input matrix and providing a more comprehensive
and deeper underlying local feature than the input matrix does. The next element, y12, of
the output matrix Y can be computed in the same way after changing the operating region,
such as the region indicated by the black box. After computing all the elements of Y i, the
above procedure is repeated with the i + 1th convolution kernel to obtain the elements of
the i + 1th channel of the output matrix Y.

Figure 7. Convolutional operation procedure.

The downsampling layer, or pooling layer, follows each of the convolutional layers
and is used to extract the primary features of the matrix obtained by the convolutional layer
and prevent overfitting. The max-pooling downsampling method is employed in this study,
wherein only the maximum value of the local (2 × 2) area of the input matrix is recovered
as an element of the output matrix, as shown in Figure 8, in which the orange box shows
the region where the current max-pooling operation is conducted. After max-pooling, the
matrix retains the same number of channels, but its length and width are halved, so the
number of elements is decreased to one-fourth of the input matrix.

The purpose of the fully connected layers is to project the features into the label space
of the sample. The fully connected layer can synthesize the extracted features and construct
connections between the features and the labels. There are two fully connected layers in
the present CNN (see Figure 6): the first one transforms the two-dimensional features
passed through the convolutional and downsampling layers into a one-dimensional vector
for synthesizing features; the second one constructs connections between the synthesized
features and the labels indicating the flow status.
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Figure 8. Max-pooling procedure.

All of the above operations are linear transformations, so nonlinear transformations
should be introduced to enable the CNN to deal with complex nonlinear problems. This
operation is also known as activation. Activations in this study are conducted through
two types of nonlinear functions—the LeakyReLu function and the Softmax function—and
the result of every convolution or full connection should be activated by one of these two
functions (see Figure 6). The LeakyReLu function, as defined by Equation (7), can resolve,
to the greatest possible extent, the problem of the occurrence of gradient explosion and
gradient disappearance [34] during CNN training and is used after most operations. The
Softmax function, which is effective at solving multi-classification issues, is only used
before the output layer to transform the classification results into probability values in the
range 0–1 as illustrated by Equation (8):

f (x) =
{

x, x > 0
αx, x ≤ 0

(7)

f (zi) =
ezi

∑N
k=1 ezk

(8)

In Equation (7), x is the element of the convolutional layer output matrix; α is a constant
between 0 and 1; and f (x) is the activation result. In Equation (8), zi is the output value of
the ith node of the fully connected layer, N is number of output nodes (or the number of
classification categories), and e is the base of the natural logarithm.

3.2. Training and Testing

The CNN training process consists of forward and backward propagations. During the
forward propagations, the loss values, which measure the difference between the identified
results of the CNN and the actual classification, are calculated from the input to the output
layers; during the backward propagations, the elements of the convolution kernels and bias
vectors are updated by iteration from the output to input layers to minimize the loss value.
If the loss values remain low enough after several forward and backward propagations, the
training process might be finished. After training, the resulting CNN should be tested with
the test dataset to evaluate its generalization.

Figure 9 illustrates the training results, including the loss values and accuracies. It
can be seen that both of the curves tend to be steady after 20 training epochs, and the loss
values and accuracies then remain lower than 0.02 and higher than 99.5%, respectively. This
indicates that there are minimal divergences between the predicted results of the CNN and
the actual classifications. Finally, the CNN training process is terminated after 30 epochs
and the obtained CNN is tested with the testing dataset, which has no intersections with
the training datasets. The resulting loss value is 0.0193 with a 100% accuracy, suggesting
that the network has excellent generalization and can be used as an accurate and credible
research tool for identifying stall flow patterns.

112



Energies 2022, 15, 5719

Figure 9. CNN training results.

4. Correlation between Flow Status and Flow Rate

As mentioned above, analyzing the flow rate of the channel is an easy way to identify
whether a blade channel is stalled. However, this method can only be used to identify
the flow status of blade channels with relatively larger or smaller flow rates than the
average levels under the operating points with significant flow rate differences among
blade channels of the runner and is invalid for other cases. In this section, we use the CNN
classification results as benchmarks to determine a critical relative flow rate for identifying
blade channel flow status to extend the applications of the flow rate assessment method.

To conduct the study, a new dataset called the predicting dataset is generated. To
ensure the numbers of stalled and un-stalled samples are as equal as possible in this dataset,
we select samples from low flow rate operating points (P4–P8 in Figure 2), which are more
prone to form stall flow patterns than large flow rate points. The predicting dataset consists
of 8550 samples, including 2683 classifiable samples that have been used in the training and
testing process (Table 1), and 5867 uncertain samples. It should be noted that the purpose
of this section is to use the CNN rather than test its accuracy, so the training and testing
samples can be used to collect as many samples as possible.

The stalled probabilities of the samples and the relative flow rates of the corresponding
blade channels predicted by the CNN are depicted in a scatter plot, as shown in Figure 10,
in which a scatter represents a sample in the predicting dataset. The background colors
represent the kernel density reflecting the distribution characteristics of these scatters:
red-colored regions denote densely distributed samples, and blue-colored regions denote
sparsely distributed samples. It can be seen that most of the samples are located in two
distinct regions in the figure. One region is in the upper-left side (shown by the red dashed
curve in Figure 10) and represents un-stalled samples, as the stalled probability of these
samples is significantly less than 50%. There are about 35.5% of the samples gathering in
this region. Another region is at the lower-right side representing stalled samples (shown
by the yellow dashed curve in Figure 10), with a stalled probability much higher than
50%, and possesses about 41.7% of the samples. Obviously, the total percentage of samples
in these two regions (about 77.2%) is much larger than in other regions (about 22.8%),
indicating that most of the samples can be definitely classified by the CNN.

The critical relative flow rate can be sought with the help of the distributing charac-
teristics of the samples in Figure 10. The search process consists of three steps: (1) draw
a vertical line in Figure 10 through the 50% stall probability (as shown by the black dash
line in Figure 10) and divide the samples into stalled and un-stalled; (2) draw a horizontal
line randomly and divide Figure 10 into four sub-regions with the vertical line; and (3)
slide the horizontal line vertically until the total number of samples in sub-region 1 (stalled
region) and sub-region 3 (un-stalled region) is greatest, as shown by the black solid line in
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Figure 10. The ordinate indicated by the horizontal line can be determined as the critical
relative flow rate. This approach is based on the idea that, if the crucial flow rate exists, the
classified results for most of the samples are the same for the critical relative flow rate and
the CNN—that is, the total number of samples in sub-regions 1 and 3, in which the samples
are classified as stalled or un-stalled, respectively, by both methods, is the largest.

Figure 10. Scatter plot of the classified samples.

The critical relative flow rate for identifying stalled or un-stalled blade channels is
found to be 24.8%. Using this value, 92.2% of the classified results are exactly the same as
those determined by the CNN, including 47.6% of stalled samples (in sub-region 1) and 44.6%
of un-stalled ones (in sub-region 3). Only 7.8% of the results differ for classification by the
two methods (relative flow rate and CNN). The critical relative flow rate of 24.8% can thus
be used to identify the stall flow patterns in the pump–turbine runner blade channel with an
accuracy of more than 90% when using CNN classification results as the benchmark.

5. Discussion

This section discusses the reason for the different results identified by the methods
based on the relative flow rate and the CNN. The representative runner flow patterns at
a specific moment of P5 are selected for the discussion. The relative flow rates and the
un-stalled probabilities computed by the CNN for the nine blade channels are illustrated in
Figure 11, in which the x-axis represents the channel index, the left y-axis represents the
relative flow rate, and the right y-axis represents the un-stalled probability. The hollow and
solid scatters represent the relative flow rate and un-stalled probability of the corresponding
blade channels, respectively. The red line in Figure 11 indicates both the relative flow rate
of 24.8% and the un-stalled probability of 50%, and is the line of demarcation between the
stalled and un-stalled status for both methods. As can be seen, although the identified
results (stalled or un-stalled status) for both methods appear nearly identical for all blade
channels, the degree of stalled or un-stalled status obtained by the two methods may differ
for a certain channel. To be specific, the flow patterns in C3 and C4 show similar un-stalled
probabilities, 48.22% and 53.72%, respectively, but the relative flow rate of C4 is nearly four
times larger than that of C3. Additionally, the relative flow rates of C4 and C6 (26.27% and
26.30%, respectively) are nearly equal, but the un-stalled probability of C6 is almost double
that for C4.
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Figure 11. Relative flow and un-stalled probability for a given sample.

These differences can be explained by the real flow patterns in the blade channels.
Figure 12 depicts the runner streamlines (drawn by the relative velocity vectors) of the same
samples shown in Figure 11. The red dashed circles in Figure 12 indicate the vortices and
the arrows indicate the rotational directions of the vortices. There are significant vortices in
C3, C4, and C6, but the sizes and locations of the vortices differ. In C3, there are two large
vortices (vortices A and B) near the leading and tail edges of the blades, respectively; in
C4, there is only one large vortex (vortex C) near the leading edge; and, in C6, there are
two small leading-edge vortices (vortices D and E). First, these vortices reduce the effective
sectional area of the flow passage. As a result, the flow rate of C3, which is fully blocked
by two large vortices, is considerably smaller than that of C4 and C6, both of which are
not fully blocked. The blockage degree for C4, with a large vortex, is similar to that of C6,
with two small vortices, so the flow rates of these two channels are nearly equal. It is also
rational to deduce that the criterion for identifying whether there are stall flow patterns
in a blade channel for the CNN is whether there are large vortices near the leading edge
of the blades. For example, the un-stalled probabilities for C3 and C4, which have similar
leading-edge vortices, are nearly identical. The data for C6 are much larger than those for
C3 and C4 because the leading-edge vortices are smaller than those in C3 and C4. This
CNN criterion agrees with most previous studies about the relationship between rotating
stalls and vortices distribution in pump turbines, as summarized by Zhang et al. [9].

According to the above analysis, the existence of vortices is a sufficient but not nec-
essary condition for flow rate reduction, and a necessary but not sufficient condition for
the existence of stall flow patterns. This is the main reason for the different identified
results between using the relative flow rate and the CNN. Considering that the CNN
is constructed according to the pre-classified flow patterns in the pump–turbine blade
channels and performs excellently in predicting the testing samples, it is more reliable than
using the relative flow rate to identify stall flow patterns.
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Figure 12. Streamline distribution of a given sample.

6. Conclusions

In this study, a CNN is built to identify stall flow patterns in pump–turbine runners
using simulated flow field data, and the correlation between the flow status and the relative
flow rate in the runner blade channel is analyzed. The main conclusions are as follows:

(1) The CNN designed can predict whether or not the runner blade channels are stalled
with an accuracy of 100% for the samples in the testing dataset, indicating that
the CNN has excellent generalization and can be used as a standard tool for the
identification of stall flow patterns in further research.

(2) Using the classifications provided by the CNN as a benchmark, a critical relative
flow rate of 24.8% can be estimated for identifying whether or not the runner blade
channels are stalled, and the probability of giving the same identified results by this
critical value and the CNN is 92.2%.

(3) Through analysis of runner flow patterns, we find that the criterion for the CNN to
identify whether or not a blade channel is stalled is whether there are large vortices
near the leading edge of the blades. This criterion agrees with most previous studies
about the correlation between rotating stalls and vortices, and is further proof of the
reliability of the CNN.

To sum up, this study provides a new tool for investigating rotating stall flow patterns
in pump–turbine runners, and this tool is sufficiently objective and accurate comparing to
the existing methods. One limitation of this study is that the usability and validity of the
proposed CNN model in other types of pump turbines have not been demonstrated. Further
investigations should be emphasized on verifying the model more comprehensively.
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Nomenclature

C Channel index
CNN Convolutional neural network
LSTM Long short-term memory neural network
P Operating point
b Bias vector
D Runner inlet diameter
Hw Working head of the pump-turbine
n Rotational speed
n11 Unit speed
Q Flow rate
Q11 Unit flow rate
QBEP Total absolute flow rate of the runner in the best efficiency point
qi Absolute flow rate of blade channel i
qir Relative flow rate of blade channel i
u, v and w Absolute velocity components on the x-axis, y-axis, and z-axis, respectively
umean, vmean and wmean Mean values of ur, vr and wr, respectively
ur, vr and wr Relative velocity components on the x-axis, y-axis, and z-axis, respectively
ûr, v̂r and ŵr Normalized forms of ur, vr, and wr, respectively
ustd, vstd and wstd Standard deviations of ur, vr, and wr, respectively
W Convolution kernel
X Input matrix
Y Output matrix
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Abstract: Parameter identification is an important method to establish the governing system of a
pumped storage unit. Appropriate parameters will make the governing system obtain better control
performance. Therefore, in this study, an improved artificial hummingbird algorithm (IAHA) is
proposed for the parameter identification of the governing system in a pumped storage unit. The
algorithm integrates two key strategies to improve the optimization ability of the algorithm. First,
the Chebyshev chaotic map is employed to initialize the artificial hummingbirds, which in turn
increases and enhances the global search capability of the initial population. Second, the Levy
flight is introduced in the guided foraging phase to expand the search space and avoid premature
convergence. The performance of the proposed IAHA algorithm is compared with that of four other
algorithms on 23 standard test functions, and the results show that IAHA has higher accuracy and
faster convergence than the other four algorithms. Finally, IAHA was applied to the parameter
identification of the governing system of a pumped storage unit to verify the effectiveness of the
algorithm in tracking real-world problems.

Keywords: artificial hummingbird algorithm; Chebyshev chaotic map; levy flight; pumped storage;
parameter identification; governing system

1. Introduction

A pumped storage power station is an important energy storage technology. It can
effectively alleviate the impact of intermittent fluctuation energy, such as scenery on the
power system, and improve the absorption capacity of clean energy. To solve the security
and stability of clean energy entering the power grid on a large scale [1]. Currently,
the pumped storage power stations built or being built in China are developing in an
intelligent direction. The complex water diversion system of a pumped storage power
station brings great challenges to unit frequency governing and power grid security and
stability. Therefore, it is necessary to carry out parameter identification of the regulation
system of pumped storage units to ensure the safe and stable operation of units.

In modeling studies of governing systems, due to the diversity of unit and governor
characteristics and their operating conditions, it is often difficult to derive accurate model
parameters directly from their basic operating principles [2,3]; it is difficult to establish a
complete system simulation model that can be used practically in power system simulation
software or in the performance evaluation of governing systems. In order to solve this
problem, the system identification method was widely used [4].

System identification is the determination of a mathematical model that describes
the behavior of a system based on its input and output time functions. It consists of two
basic parts: structure identification and parameter identification. The governing system
is a complex dynamic system; the mathematical model structure can be determined by
applying the mechanism analysis method, so the parameters of the model are determined
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by the parameter identification method [5]. In recent decades, the traditional methods
for parameter identification were the least squares method [6], input response method [7],
and maximum likelihood estimation method [8], but these methods have many limitations,
for example, the least squares method requires sufficient system inputs, and the maximum
likelihood estimation method can easily fall into local optimality, etc. In recent years,
identification methods based on meta-heuristic algorithms have been developed that treat
the parameter identification problem as an optimization problem. Since metaheuristic
algorithms are a global optimization method, they can establish an objective function for
parameter identification by optimizing the output error between the original system and
the identification system, comparing with traditional identification methods, metaheuristic
algorithms are more suitable for the parameter identification of complex systems, and the
identification performances of these algorithms depend on optimization capability.

Many metaheuristic algorithms have been presented and successfully applied to dif-
ferent areas: particle swarm optimization algorithm ((PSO) simulates the foraging behavior
of birds in a group [9,10]; the chimpanzee optimization algorithm (ChOA) simulates the
cooperative hunting behaviors of attack, drive, intercept, and chase chimpanzees [11];
the artificial rabbit optimization (ARO) algorithm is inspired by the survival strategies of
rabbits found in nature, including detour foraging and random hiding [12]; the genetic algo-
rithm (GA) simulates biological evolutionary mechanisms in natural environments [13]; the
artificial ecosystem optimization algorithm (AEO) simulates the energy flow process in the
earth ecosystem [14]; the gravitational search algorithm (GSA) involves the optimization
of populations based on the law of gravity and Newton’s second law [15]; the ant colony
optimization (ACO) algorithm is a simulation of the way ants find paths in nature [16]; the
Black Widow algorithm (BWO) simulates its entire life cycle [17]; the Tom search algorithm
(ASO) simulates the displacement of atoms in a molecular system composed of atoms
due to their mutual force and system constraint [18]; the gray wolf optimization (GWA)
algorithm simulates gray wolf prey predation activities [19]; the artificial fish swarming
algorithm (AFSA) simulates the foraging, clustering, and tail-chasing behaviors of fish [20].
The algorithm for the ant lion optimization algorithm (ALO) simulates the hunting mecha-
nism of an ant lion hunting ants [21]; the whale optimization algorithm (WOA) is based
on encircling prey, bubble netting prey, and searching for whale prey [22]; the manta ray
foraging optimization algorithm (MRFO) simulates the foraging process of manta rays
in the ocean [23]. Strong robustness, adaptability, and randomness are characteristics of
these optimization algorithms. Although these metaheuristics outperform conventional
numerical approaches in handling challenging engineering problems, they also have some
drawbacks and nevertheless hold enormous promise for performance in optimization.

Some authors have made improvements to metaheuristic algorithms, for example,
Zhongqiang Wu et al. [24] proposed an improved ant lion optimization algorithm to
identify the parameters of the solar cell model by adding chaotic sequences. M Ali et al.
proposed an algorithm to identify the parameters of a polymer electrolyte membrane fuel
cell model using the gray wolf optimization algorithm [25]. Xiao Zhang et al. applied
an elite backward learning particle swarm algorithm for the identification of PV cell
parameters [26]. The metaheuristic algorithms have some limitations due to local optimum
and premature phenomena, despite the fact that these algorithms have been successfully
used in a variety of fields for parameter identification problems.

In 2022, Weiguo Zhao et al. proposed the artificial hummingbird algorithm (AHA) [27],
which was inspired by simulating hummingbirds, special flight abilities, and their intelli-
gent foraging strategies. The method’s advantages—it has few parameters, a fast speed,
and performs well in solving optimization problems. This paper proposes an improved
metaheuristic algorithm, named the improved artificial hummingbird algorithm (IAHA).
In order to make the initialization more uniform and rich, IAHA added the Chebyshev
chaotic map to initialize the artificial hummingbird and the Levy flight to improve the
search efficiency when guiding foraging.
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2. Artificial Hummingbird Algorithm (AHA)

2.1. Brief Introduction of AHA

AHA is a population-based metaheuristic algorithm that mainly simulates three
foraging behaviors of hummingbirds: guided foraging, territorial foraging, and migratory
foraging. During the foraging process, three flight skills are modeled—omnidirectional,
diagonal, and axial flight. At the same time, an access table simulating the hummingbird’s
extraordinary memory ability is constructed to guide the hummingbird to perform global
optimization in the algorithm.

The three flying skills are defined as follows:
The flight skill simulation is extended to the d-D space with axial flight defined as

follows:

D(i) =

{
1 if i = randi([1, d]) i = 1, · · · , d
0 else

(1)

Diagonal flight is defined as follows:

D(i) =

{
1, if i = p(j) P = randperm(k), k ∈ [2, �r1(d − 2)�+ 1]
0, else.

(2)

Omnidirectional flight is defined as follows:

D(i) = 1 i = 1, · · · , d (3)

where randi([1, d]) generates a random integer from 1 to d, randperm(k) creates a random
permutation of integers from 1 to k, and r1 is a random number in (0, 1]. The diagonal flight
in a d-D space is inside a hyperrectangle.

The AHA first initialization a set of random solutions and a visit table. In each
iteration, guided or territorial foraging is performed 50% of the time. Hummingbirds can
migrate toward their intended food sources using guided foraging, which is based on
nectar filling rates and a visit table. Territorial foraging allows hummingbirds to easily
move to neighboring regions within their own territory and find new food sources as
candidates. Migration foraging is performed every two iterations. Up until the stop rule
is reached, all operations and calculations are performed interactively. Finally, the food
source with the highest rate of nectar-refilling replenishment is returned as an approximate
global optimum.

(1) A population of n hummingbirds are randomly initialized to n food sources as follows:

xi = Low + r × (Up − Low) i = 1, · · · · · · n (4)

where Low and Up are the lower and upper boundaries for a d-dimensional problem, re-
spectively, r is a random vector in [0, 1], and xi represents the position of the ith food source.

VTi,j =
{

0 i f i = j
null i = j

(5)

where i = j, VTi,j = null indicates that a hummingbird is taking food at its specific food
source; i = j, VTi,j = 0 indicates that the jth food source has just been visited by the ith
hummingbird in the current iteration.

(2) Guided foraging: With the aforementioned flight capabilities, the hummingbird
can access its target food source to obtain candidate food sources, so the mathematical
equation for simulating guiding foraging behavior and candidate food sources is as follows:

vi(t + 1) = xi,tar(t) + a × D × (xi(t)− xi,tar(t)) (6)

a ∼ N(0, 1) (7)
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where xi(t) is the position of the ith hummingbird food source in time t, xi,tar(t) is the
position of the ith hummingbird target food source in time t, a is normally distributed,
with mean = 0 and a standard deviation of 1.

The position update of the ith food source is as follows:

xi(t + 1) =
{

xi(t) f (xi(t)) ≤ f (vi(t + 1))
vi(t + 1) f (xi(t)) > f (vi(t + 1))

(8)

where f (·) indicates the function fitness value. Equation (8) shows that if the nectar refilling
rate of the candidate food source is better than that of the current one, the hummingbird
abandons the current food source and stays at the candidate one resulting from Equation (6)
for feeding.

(3) Territorial foraging: After reaching a target food source where nectar is eaten,
hummingbirds may seek new food sources. Therefore, a hummingbird can easily move to
a neighboring region within its territory, where new food sources can be found that may be
better candidate solutions. The mathematical equation for simulating the local search of
hummingbirds in territorial foraging strategies and candidate food sources is as follows:

vi(t + 1) = xi(t) + b × D × xi(t) (9)

b ∼ N(0, 1) (10)

where b is normally distributed, with mean = 0 and a standard deviation of 1.
(4) When food is often scarce in a territory frequented by hummingbirds, the bird

often migrates to more distant food sources to forage. In the AHA algorithm, a migration
coefficient is defined. The hummingbirds in the food source with the weakest filling rate
will, at random, migrate to another new food source throughout the entire search space
when the number of iterations exceeds the predefined value of the migration coefficient.
At this point, the hummingbird will abandon the original source and stay at the new source
foraging, and then the migration foraging of the hummingbird from the source with the
worst nectar-filling rate to the randomly generated new source can be given as follows:

xwor(t + 1) = Low + r × (Up − Low) (11)

where xwor is the food source with the worst nectar refilling rate in the population.

2.2. Improved Artificial Hummingbird Algorithm Based on Chebyshev Chaotic Map and Levy
Flight (IAHA)
2.2.1. Chebyshev Chaotic Map

Chaos is a random state in a deterministic system, a phenomenon of the evolution of
a nonlinear system. It is caused by deterministic rules and is very sensitive to the initial
conditions, which is long-term behavior without a fixed period. Chaos has an ergodic,
and searching using chaotic variables is obviously superior to an unordered search [28].

The Chebyshev chaotic map has a wide and more uniform distribution range, and it
can be distributed in the interval [−1, 1]. When k ≥ 2 (k is the order), no matter how close
the initial value is chosen, the iterated sequence is uncorrelated and chaotic and ergodic
within this range. The equation is shown as follows:

xn+1 = cos (karccosxn) xn ∈ [−1, 1] (12)

This paper uses the equation to generate uniformly distributed points to initialize
the position of artificial hummingbirds, improve the global search ability of the initial
population, and improve the solution accuracy of the algorithm.
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2.2.2. Levy Flight

In the 1930s, the Levy distribution was a probability distribution proposed by Levy,
a French mathematician. After that, many researchers have carried out many studies on the
Levy distribution. So far, it has been proven that the foraging trajectory of many animals
in nature follows the Levy distribution. The Levy flight follows the principle of the Levy
distribution of many random phenomena, such as Brownian motion, random walk, etc. [29]
At present, Levy flight is widely used in intelligent optimization. For example, the Cuckoo
algorithm adopts Levy flight to update the position [30]. Levy flight can expand the search
space, so it is easier to avoid premature convergence by introducing Levy flight into the
AHA algorithm.

Levy flight position updated to:

xi(t + 1) =
{

xi(t) + α ⊕ Levy(λ) f (xi(t)) ≤ f (vi(t + 1))
vi(t + 1) f (xi(t)) > f (vi(t + 1))

(13)

where xt
i is the tth generation position of xi, ⊕ is the dot multiplication, α is the step size

control parameter, and Levy(λ) is the random search path, which satisfies:

Levy ∼ u = t−λ, 1 < λ ≤ 3 (14)

Its step size obeys the Levy distribution, and step size s is calculated as [29]:

s =
μ

|v|1/β
(15)

where μ, v are normally distributed, defined as:

μ ∼ N(0, σ2
μ)

v ∼ N(0, σ2
v )

where

σμ =
(1 + β)(sin

πβ

2
)

1 + β

2
β2 β − 1

2

(16)

σv = 1

where β is usually a constant of 1.5.
According to the above, the flow chart of the IAHA algorithm is shown in Figure 1. Its

basic steps are as follows:
Step 1: Set the parameters: a maximum number of iterations of T, a number of artificial

hummingbirds of Pop, and a dimension of the fitness function of Dim.
Step 2: The Chebyshev chaotic map was used to initialize the food source location of

artificial hummingbirds; the corresponding fitness function was calculated and the optimal
value was recorded.

Step 3: Introducing Levy flight-guided foraging or territorial foraging to update the
food source location of artificial hummingbirds. The probability of both forages was 50%.

Step 4: In the worst-case scenario of a food source, hummingbirds may visit the same
food source as their target source after two repetitions, in which case, migratory foraging
is performed.

Step 5: Determine if the result has reached the maximum number of iterations of the
algorithm, if it has reached the maximum accuracy, then the optimal food source location is
obtained, otherwise, transpose step 3.
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Figure 1. Flowchart of IAHA.

3. Performance Testing and Analysis

In order to verify the effectiveness of the IAHA algorithm. We compare the IAHA
method with four well-established optimizers, including the artificial hummingbird algo-
rithm (AHA), particle swarm optimization algorithm (PSO), ant lion optimization algorithm
(ALO), and gravitational search algorithm (GSA). In addition, the number of iterations of
all test functions in the five algorithms was 500, and the population size was 30. The rest of
the parameters are shown in Table 1.

Table 1. Parameter settings for each algorithm in the test function.

Algorithm Parameter Settings

PSO c1 = 2; c2 = 2; ωmax = 0.8; ωmin = 0.2 ω decreases linearly from 0.8 to 0.2
GSA G0 = 100; a = 20

The metaheuristic algorithm is a kind of random search algorithm. For the same opti-
mization problem, the results are usually not identical if the same algorithm is used many
times. To avoid excessive errors arising from randomness in a single result, the algorithm
was repeated 20 times and the statistical results for each algorithm are shown in Tables 2–4.
The tables include the mean (mean), standard deviation (Std), best (best), and worst (worst)
values of the 23 test functions (see Table A1 in “Appendix A”), in which the bold are the
best values of the mean, standard deviation, best, and worst values of the different test
functions for the five algorithms.

3.1. Unimodal Test Functions

F1–F7 are unimodal functions, which mainly test the capability of the development
stage. Moreover, these types of functions do not have local extrema, but only global optimal
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values, which are easy to optimize. Based on this, the convergence speed may be more
important than the global optimal value of the algorithm. The statistical results of the
IAHA algorithm proposed compared with the other four algorithms are shown in Table 2
and Figure 2. Among the five intelligent optimization algorithms, the IAHA algorithm has
a significant advantage in terms of mean and standard deviation, except for F6, where both
the IAHA algorithm and the AHA algorithm achieve optimal values. As a result, the IAHA
algorithm is superior in development ability, convergence, and stability.
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Figure 2. The average convergence curve of different optimization algorithms on a unimodal test func-
tion.

Table 2. Statistical results of unimodal test functions for each algorithm.

Function Index IAHA AHA PSO ALO GSA

F1

Mean 9.48 × 10−141 1.72 × 10−136 3.05 × 10−2 1.34 × 10−3 2.27 × 10−16

Std 4.08 × 10−140 7.67 × 10−136 7.57 × 10−2 7.96 × 10−4 9.07 × 10−17

Best 8.48 × 10−163 1.19 × 10−158 3.50 × 10−4 2.38 × 10−4 7.15 × 10−17

Worst 1.83 × 10−139 3.43 × 10−135 3.31 × 10−1 3.06 × 10−3 4.85 × 10−16

F2

Mean 9.65 × 10−74 1.85 × 10−72 4.28 × 10−2 38.00 1.83 × 10−4

Std 2.96 × 10−73 8.18 × 10−72 7.35 × 10−2 40.06 4.97 × 10−4

Best 1.36 × 10−83 4.7 × 10−82 3.44 × 10−3 4.77 3.66 × 10−8

Worst 1.07 × 10−72 1.16 × 10−71 2.59 × 10−1 1.19 ×102 1.70 × 10−3

F3

Mean 1.05 × 10−129 6.04 × 10−128 4.10 × 104 4.80 × 104 9.90 × 103

Std 4.70 × 10−129 2.19 × 10−127 1.36 × 103 2.72 × 103 3.37 × 102

Best 2.99 × 10−145 2.26 × 10−148 1.67 × 103 8.02 × 102 4.31 × 102

Worst 2.10 × 10−128 9.63 × 10−127 7.66 × 103 1.05 × 104 1.78 × 103

F4

Mean 7.15 × 10−65 4.80 × 10−63 19.51 17.64 7.13
Std 1.95 × 10−64 1.94 × 10−62 4.18 4.58 1.91
Best 1.31 × 10−73 1.45 × 10−70 12.50 11.90 3.35

Worst 7.98 × 10−64 8.67 × 10−62 31.18 24.64 10.76
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Table 2. Cont.

Function Index IAHA AHA PSO ALO GSA

F5

Mean 26.64 26.80 1.80 × 102 2.93 × 102 62.28
Std 3.17 × 10−1 3.69 × 10−1 1.26 × 102 3.85 × 102 56.67
Best 26.04 26.10 52.86 27.15 27.09

Worst 27.29 27.46 4.91 × 102 1.22 × 103 2.25 × 102

F6

Mean 0 0 1.8 1.84 × 10−3 6.7
Std 0 0 1.77 1.55 × 10−3 8.77
Best 0 0 0 3.80 × 10−4 0

Worst 0 0 6 5.27 × 10−3 30

F7

Mean 1.90 × 10−4 2.48 × 10−4 9.16 × 10−2 2.53 × 10−1 8.68 × 10−2

Std 1.61 × 10−4 1.84 × 10−4 3.21 × 10−2 6.79 × 10−2 3.82 × 10−2

Best 1.27 × 10−5 3.79 × 10−5 2.39 × 10−2 1.15 × 10−1 2.95 × 10−2

Worst 5.23 × 10−4 6.66 × 10−4 1.56 × 10−1 3.51 × 10−1 1.65 × 10−1

3.2. High-Dimensional Multi-Peak Test Functions

F8–F23 are multi-peak functions, which mainly demonstrate the ability of the explo-
ration phase. Among these, F8–F13 are high-dimensional multi-peak functions and F14–F23
are low-dimensional multi-peak functions. The multi-peak test functions have multiple lo-
cal extremes and global optima, which are more difficult to optimize compared to unimodal
functions. As a result, the multi-peak function algorithm’s capability of global optimization
is given additional focus. The statistical results of the high-dimensional multi-peak func-
tion test for each algorithm are shown in Table 3 and Figure 3. In F8, the mean value and
standard deviation of IAHA rank second, second only to AHA. In F9–F11, the mean and
standard deviation of IAHA and AHA are the same. The mean value of IAHA (in F12 and
F13) is the best. Although the standard deviation of F13 is not the smallest, its best value
and the worst value are optimal compared with other algorithms. Thus, it can be seen that
IAHA has a better advantage in the global search.

Table 3. Statistical results of high-dimensional multi-peak test functions for each algorithm.

Function Index IAHA AHA PSO ALO GSA

F8

Mean −1.15 × 104 −1.16 × 104 −5.78 × 103 −5.66 × 103 −2.61 × 103

Std 3.73 × 102 3.50 × 102 9.04 × 102 8.60 × 102 4.75 × 102

Best −1.23 × 104 −1.22 × 104 −7.35 × 103 −9.29 × 103 −4.06 × 103

Worst −1.07 × 104 −1.08 × 104 −4.30 × 103 −5.42 × 103 −1.87 × 103

F9

Mean 0 0 41.99 75.67 31.44
Std 0 0 11.33 21.79 6.73
Best 0 0 25.87 30.84 18.90

Worst 0 0 72.75 1.16 × 102 43.78

F10

Mean 8.88 × 10−16 8.88 × 10−16 1.41 5.68 1.22 × 10−8

Std 0 0 8.32 × 10−1 3.48 3.71 × 10−9

Best 8.88 × 10−16 8.88 × 10−16 1.24 × 10−2 2.32 4.95 × 10−9

Worst 8.88 × 10−16 8.88 × 10−16 2.50 12.67 1.88 × 10−8

F11

Mean 0 0 6.77 × 10−2 6.83 × 10−2 25.62
Std 0 0 1.23 × 10−1 4.03 × 10−2 5.87
Best 0 0 2.37 × 10−3 1.85 × 10−2 15.83

Worst 0 0 5.73 × 10−1 1.87 × 10−1 36.56

F12

Mean 6.78 × 10−4 8.67 × 10−4 2.21 12.36 1.97
Std 1.54 × 10−3 1.99−3 1.42 4.69 1.07
Best 3.71 × 10−5 7.02 × 10−5 1.99 × 10−1 5.59 1.91 × 10−1

Worst 6.67 × 10−3 7.34 × 10−3 5.63 23.23 4.21

F13

Mean 1.82 1.96 3.19 30.74 7.37
Std 5.16 × 10−1 3.39 × 10−1 4.33 17.89 5.53
Best 5.25 × 10−1 1.40 2.74 × 10−1 2.60 × 10−2 1.08 × 10−1

Worst 2.48 2.53 16.02 62.73 22.86
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Figure 3. The average convergence curve of different optimization algorithms on high-dimensional
multi-peak test function.

3.3. Low-Dimensional Multi-Peak Test Functions

F14–F23 are low-dimensional multi-peaked functions, which have fewer local extremes
than higher-dimensional multi-peaked functions and are relatively easier to optimize.
Table 4 and Figure 4 show the statistical results of the low-dimensional multi-peak test
functions of each algorithm. The mean values of the functions in F16–F19 tested by the
IAHA algorithm and other algorithms are the same and reach optimal values. In addition,
the standard deviation of the IAHA algorithm in F16 and F19 is second only to the GSA
algorithm. In F20, the result of the IAHA algorithm is slightly better than that of other
algorithms. The IAHA algorithm has a minimum standard deviation in F15, F18, F19,
F21–F23. However, regarding the mean values of the AHA algorithm and IAHA algorithm,
eight functions are the same and do not show better advantages. Therefore, because of the
particularity of the function, the results obtained by the proposed IAHA algorithm and
other algorithms are basically close to the theoretical global optimum.

Table 4. Statistical results of low-dimensional multi-peak test functions of each algorithm.

Function Index IAHA AHA PSO ALO GSA

F14

Mean 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 3.017 6.38
Std 0 0 5.09 × 10−17 2.76 3.84
Best 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 1.06

Worst 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 10.76 13.32

F15

Mean 3.07 × 10−4 3.07 × 10−4 4.97 × 10−4 2.27 × 10−3 6.03 × 10−3

Std 4.21 × 10−11 1.54 × 10−9 1.32 × 10−4 4.47 × 10−3 4.21 × 10−3

Best 3.07 × 10−4 3.07 × 10−4 3.07 × 10−4 6.14 × 10−4 8.10 × 10−4

Worst 3.07 × 10−4 3.07 × 10−4 6.84 × 10−4 2.06 × 10−2 1.68 × 10−2

F16

Mean −1.03 −1.03 −1.03 −1.03 −1.03
Std 1.76 × 10−16 1.69 × 10−16 2.22 × 10−16 1.04 × 10−13 1.02 × 10−16

Best −1.03 −1.03 −1.03 −1.03 −1.03
Worst −1.03 −1.03 −1.03 −1.03 −1.03

F17

Mean 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

Std 0 0 6.06 × 10−10 5.26 × 10−14 0
Best 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

Worst 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

F18

Mean 3 3 3 3 3
Std 2.04 × 10−16 3.95 × 10−16 1.28 × 10−15 6.49 × 10−13 4.34 × 10−15

Best 3 3 3 3 3
Worst 3 3 3 3 3
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Table 4. Cont.

Function Index IAHA AHA PSO ALO GSA

F19

Mean −3.86 −3.86 −3.86 −3.86 −3.86
Std 2.24 × 10−15 2.26 × 10−15 2.22 × 10−15 1.06 × 10−12 1.87 × 10−15

Best −3.86 −3.86 −3.86 −3.86 −3.86
Worst −3.86 −3.86 −3.86 −3.86 −3.86

F20

Mean −3.32 −3.30 −3.26 −3.27 −3.32
Std 4.20 × 10−12 4.36 × 10−2 6.10 × 10−2 6.02 × 10−2 2.67 × 10−2

Best −3.32 −3.32 −3.32 −3.32 −3.32
Worst −3.32 −3.30 −3.30 −3.30 −3.30

F21

Mean −10.15 −10.15 −7.50 −6.49 −6.37
Std 2.31 × 10−6 6.22 × 10−6 3.19 2.88 3.66
Best −10.15 −10.15 −10.15 −10.15 −10.15

Worst −10.15 −10.15 −2.68 −2.63 −2.68

F22

Mean −10.40 −10.40 −7.54 −6.65 −9.86
Std 1.19 × 10−9 1.55 × 10−5 3.58 3.57 1.82
Best −10.40 −10.40 −10.40 −10.40 −10.40

Worst −10.40 −10.40 −2.75 −2.75 −2.75

F23

Mean −10.54 −10.54 −9.05 −7.07 −10.13
Std 6.20 × 10−9 9.08 × 10−4 3.06 3.62 1.81
Best −10.54 −10.54 −10.54 −10.54 −10.54

Worst −10.54 −10.54 −2.81 −2.42 −2.43
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Figure 4. Average convergence curve of different optimization algorithms on low—dimensional
multi—peak test function.
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4. Analysis of Parameter Identification under Frequency Disturbance Conditions

4.1. Mathematical Model of Governor
4.1.1. PID Controller Model

PID controllers (due to their simple structures, high stability, and convenient adjust-
ments) are the main technologies of industrial control. At present, PID controllers are used
in most hydropower stations in China, and their transfer functions are as follows [31]:

GPID(s) =
Kp +

Ki
s + Kd

(T1vs+1)
bpKi

s + 1
(17)

where Kp is the proportional parameter, Ki is the integral parameter, Kd is the derivative
parameter, T1v is the derivative time constant, bp is the permanent speed droop, and s is the
Laplace operator.

4.1.2. Electrohydraulic Servo System Model

The electrohydraulic servo system is the executive agency of the governor, which
consists of the comprehensive amplification element, electrohydraulic converter, the main
control valve, and the main servomotor [32]. Considering that the time constant of the
main servomotor is much larger than that of the auxiliary servomotor, the time constant
of the auxiliary servomotor is ignored. In order to prevent the guide vane from moving
too fast, the main servomotor usually has a limited amplitude (in regard to achieving the
speed limit of the main servomotor) [33]:

Gy(s) =
1

Tys + 1
(18)

where Ty is the servomotor time constant.

4.2. Mathematical Model of the Pressure Water Diversion System

The pressure diversion system is an important hydraulic construction of the pumped
storage power station; it mainly consists of the upper reservoir, headrace tunnel, upper
surge chamber, penstock, casing, turbine pump, draft tube, downstream surge chamber,
tailwater tunnel, and lower reservoir [34]. The two types of water hammer models for the
water diversion system are elastic and rigid. In this paper, the elastic water hammer model
was chosen, and the hyperbolic tangent function was used as the mathematical model as
follows:

Gh(s) =
H(s)
Q(s)

= −2hw
e

Tr
2 s − e−

Tr
2 s

e
Tr
2 s + e−

Tr
2 s

= −2hw
sh( Tr

2 s)

ch( Tr
2 s)

(19)

where Tr is the water hammer pressure wave time constant, hw is the pipeline characteristic
coefficient, Q is the flow rate, and H is the head.

The rigid water hammer model is unable to accurately represent the dynamic proper-
ties of water flow in the pipe because it ignores the frictional resistance of water flow as
well as the elasticity of the water body and pipe wall. Therefore, this paper makes use of
the fourth-order elastic water hammer model. The transfer function is as follows:

Gh(s) =
H(s)
Q(s)

= −hw
Trs + 1

24 T3
r s3

1 + 1
8 T2

r s2 + 1
384 T4

r s4
(20)
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4.3. Turbine Pump Mathematical Model

Under some operating conditions, the turbine pump operates with small fluctuations
around the specified operating point, and the variation in the nonlinear characteristics of
the turbine pump is not particularly significant within a small range. In this case, the full
characteristic model of the turbine pump is simplified at a certain operating point to obtain
a linear model of the turbine pump, which is calculated as follows [35]:{

mt(t) = exx(t) + eyy(t) + eh h(t)
q(t) = eqxx(t) + eqyy(t) + eqhh(t) (21)

where x is speed, y is guide vane opening, h is working head, ex, ey, eh, eqx, eqy, eqh are
turbine transfer coefficient at a certain operating point.

4.4. Generator and Load Mathematical Model

The first-order model (reflecting the dynamic characteristics and self-regulating perfor-
mance of the generator rotor) is usually used in research on the modeling and optimization
control of the governing system of the pumped storage unit. Considering the balance be-
tween the torque of the turbine pump and the torque of the generator, the transfer function
of the generator and load is [36]:

Gg(s) =
1

Tas + eg
(22)

where Ta is the inertial time constant of the generator and eg is the adjustment coefficient of
the generator.

A six-parameter model was used for the turbine pump in the pumped storage unit,
and the water diversion system adopted the four-order elastic water hammer model, where
the model took into account the nonlinear link of the electrohydraulic follower system with
limiting amplitude; the model structure of the governing system of the pumped storage
unit is shown in Figure 5.

Kp

Kd · s
T1v · s + 1

Ki
s

bp

1
Ty + 1

mt(s) = exx(s) + eyy(s) + ehh(s)
q(s) = eqxx(s) + eqyy(s) + eqhh(s)

1
Tas + eg

Trs + 1
24 T3

r s3

1 + 1
8 T2

r s2 + 1
384 T3

r s4

+–

+–

+++ + – + –
c y

e
mg

Figure 5. Simulation model of the governing system in the pumped storage unit.

4.5. Parameter Identification of the Governing System

The parameter identification with a known model structure is usually transformed
into an optimization problem [37]. The optimization objective function is the deviation
between the system output variable and the identified system output variable, and then the
integration is performed. Under the assumption that the identification system can reflect
the real system, the optimal value can be found through unknown parameters to achieve
the identification effect and make the output consistent with the real system.

4.5.1. Objective Function

In the governing system of the pumped storage units, although the PID controller
parameters can be set on the turbine pump governor to verify the integrity and effectiveness
of the proposed identification strategy, the parameter set to be identified includes the PID
control parameters. Therefore, eight parameters are identified as follows: proportional
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parameter Kp, integral parameter Ki, derivative parameter Kd, servomotor time constant
Ty, pipeline characteristic coefficient hw, time constant of water hammer pressure wave
Tr, generator inertia time constant Ta, and generator regulation coefficient eg. In the
model of the system, the square of the difference between the measurable output selected
for the objective function and the reintegration within 50 s after the disturbance starts.
The objective function is as follows:

C(θ) =
N

∑
i=1

(xi − x̂i)
2 +

N

∑
i=1

(yi − ŷi)
2 +

N

∑
i=1

(mt − m̂t)
2 (23)

where N is the sample capacity, xi, yi, and mt are the speed, guide vane opening, and torque
of the real system output; x̂i, ŷi, and m̂t are the speed, guide vane opening, and torque of
the identification system output; θ = [Kp Ki Kd Ty hw Tr Ta eg] are the parameters to
be identified.

4.5.2. Identification Strategy

The process of identification is illustrated in Figure 6. Firstly, the system is given an
excitation signal to obtain the respective dynamic responses [x, y, mt]. Secondly, the intelli-
gent optimization algorithm is used to initialize the parameters and obtain the dynamic
response of the identification system [x̂, ŷ, m̂t], and then the fitness function is calculated.
Finally, the fitness function is optimized according to the intelligent optimization algorithm
to obtain the minimum value of the fitness function.

Actual system

Fitness function

PID controller Servomechanism
turbine pump
and pressure

diversion system

Generator and
load system

IAHA algorithm

System input
x
y

mt

x̂

m̂t
ŷ

Figure 6. Identification strategy of the governing system.

4.5.3. Analysis of the Simulation Test Results

To verify the accuracy of the improved artificial hummingbird algorithm for iden-
tifying the governing system in the pumped storage unit, this paper compares the fol-
lowing four optimization algorithms—the particle swarm optimization algorithm (PSO),
ant lion optimization algorithm (ALO), gravitational search algorithm (GSA), artificial
hummingbird algorithm (AHA). The governing system in the pumped storage unit es-
tablished in the previous section was used as the object of study and parameter values
[Kp Ki Kd Ty hw Tr Ta eg] were set as the parameter values of the system, as shown in
Table 5. The output state variables for simulation under certain operating conditions were
used as the output variables. In order to evaluate the accuracy of parameter identification,
the parameter error (PE) and average parameter error (APE) were used to measure the
accuracy of the model parameters. The calculation formulas of PE and APE are as follows:

131



Energies 2022, 15, 6966

PE =
|θi − θ̂i|

θi
× 100% i = 1, 2, 3, · · · , m (24)

APE =
1
m

m

∑
i=1

|θi − θ̂i|
θi

× 100% (25)

The experiment was carried out under the condition of frequency disturbance; the
frequency of the unit step was applied in the stable state of the unit. The simulation
duration was 50 s, the sampling period was 0.01 s, and the number of identification tests
was 20. Because the identification of the optimization algorithm was random, the average
value of the results was taken. The six parameters of the hydraulic turbine can be obtained
as follows: ex = −1.925, ey = 0.7133, eh = 1.413, eqx = −0.7, eqy = 0.5833, eqh = 0.8555,
according to the rotational speed–flow characteristic curve and rotational speed–torque
characteristic curve [38].

Tables 5–7 show the results of the parameter identification under 5%, 10%, and 15%
frequency disturbances by different optimization algorithms. From the PE index of the
parameter error of each algorithm, the identification of individual parameters was not
optimal compared to PSO, ALO, GSA, and AHA, but only next to the best. From the APE
index of the average parameter identification accuracy, it can be seen that under the three
frequency disturbance conditions, 15% of the APE was only 1.28%, and the IAHA algorithm
was better than the other four algorithms. IAHA improves the identification accuracy of
the AHA algorithm accordingly. This shows that the proposed Chebyshev chaotic map
and Levy flight improvement strategy effectively improve the search and convergence of
the algorithm.

Table 5. Algorithm identification results of 5% frequency disturbance.

θ Real Value
PSO ALO GSA AHA IAHA

θ̂ PE θ̂ PE θ̂ PE θ̂ PE θ̂ PE

Kp 3.21 3.4725 0.0818 3.4089 0.0620 2.7837 0.1328 3.1871 0.0071 3.1822 0.0087
Ki 2.68 2.7284 0.0181 2.6924 0.0046 2.8566 0.0659 2.7007 0.0077 2.7007 0.0077
Kd 1.24 1.5805 0.2746 1.5197 0.2256 1.6001 0.2904 1.3074 0.0544 1.2964 0.0455
Ty 0.30 0.5283 0.761 0.5040 0.68 0.3615 0.205 0.3152 0.0507 0.3146 0.0487
hw 1.00 1.0480 0.0480 1.0580 0.0580 0.8805 0.1195 0.9518 0.0482 0.9691 0.0309
Tr 1.50 1.5566 0.0377 1.5049 0.0033 1.6834 0.1223 1.5536 0.0357 1.5283 0.0189
Ta 8.86 9.1299 0.0305 8.8038 0.0063 7.7609 0.1241 8.8523 0.0009 8.8335 0.0030
eg 1.50 1.4974 0.0017 1.5004 0.0003 1.5104 0.0069 1.4996 0.0003 1.5001 0.00007

APE 0.1567 0.1300 0.1334 0.0256 0.0204

Table 6. Algorithm identification results of 10% frequency disturbance.

θ Real Value
PSO ALO GSA AHA IAHA

θ̂ PE θ̂ PE θ̂ PE θ̂ PE θ̂ PE

Kp 3.21 3.6584 0.1397 3.3515 0.0441 2.9985 0.0659 3.1554 0.0170 3.2077 0.0007
Ki 2.68 2.6507 0.0109 2.7020 0.0082 2.7975 0.0438 2.7050 0.0093 2.690 0.0049
Kd 1.24 1.3532 0.0913 1.5432 0.2445 1.6201 0.3065 1.3087 0.0554 1.2974 0.0463
Ty 0.30 0.5116 0.7053 0.4603 0.5343 0.3820 0.2733 0.3084 0.0280 0.3155 0.0517
hw 1.00 0.9294 0.0706 0.9430 0.057 0.9297 0.0703 0.9657 0.0343 0.9769 0.0231
Tr 1.50 1.6058 0.0705 1.6508 0.1005 1.7389 0.1593 1.5303 0.0202 1.5269 0.0179
Ta 8.86 9.4549 0.0671 8.8340 0.0029 7.6352 0.1382 8.8043 0.0063 8.8533 0.0008
eg 1.50 1.4962 0.0025 1.5001 0.00007 1.5108 0.0072 1.5009 0.0006 1.5007 0.0005

APE 0.1447 0.1240 0.1330 0.0214 0.0182
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Table 7. Algorithm identification results of 15% frequency disturbance.

θ Real Value
PSO ALO GSA AHA IAHA

θ̂ PE θ̂ PE θ̂ PE θ̂ PE θ̂ PE

Kp 3.21 3.4168 0.0644 3.3238 0.0355 2.8265 0.1195 3.1421 0.0241 3.1651 0.0140
Ki 2.68 2.7092 0.0109 2.7251 0.0168 2.9182 0.0889 2.7138 0.0126 2.7067 0.0100
Kd 1.24 1.7219 0.3886 1.5115 0.2190 1.5179 0.2241 1.3120 0.0581 1.2893 0.0398
Ty 0.30 0.4489 0.4963 0.4500 0.500 0.3286 0.0953 0.3075 0.0250 0.3009 0.0030
hw 1.00 1.1061 0.1061 1.0637 0.0637 0.9323 0.0677 0.9701 0.0299 0.9869 0.0131
Tr 1.50 1.4625 0.025 1.4911 0.0059 1.6037 0.0691 1.5165 0.0110 1.5032 0.0021
Ta 8.86 8.7925 0.0076 8.684 0.0199 7.8136 0.1181 8.7751 0.0096 8.7994 0.0068
eg 1.50 1.4993 0.0005 1.4996 0.0003 1.5038 0.0025 1.5014 0.0009 1.4997 0.0002

APE 0.1406 0.1076 0.0982 0.0211 0.0128

Figures 7a–c, 8a–c, and 9a–c, respectively, show the comparison diagram of the
dynamic response of the unit speed, torque output, and guide vane opening output of the
original parameters and IAHA algorithm optimization identification parameters under
different frequency disturbance conditions, and they were locally amplified. It can be seen
from the figure that the IAHA identification system is consistent with the original system,
with high accuracy. Moreover, d–f are the identification errors of different links. It can be
seen that the error finally approaches zero.

(a) speed (d) identification error of speed

(b) torque (e) identification error of torque

(c) guide vane (f) identification error of guide vane

Figure 7. Comparison between the outputs of the three parts of the original and the identification
systems under 5% frequency disturbance.
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(a) speed (d) identification error of speed

(b) torque (e) identification error of torque

(c) guide vane (f) identification error of guide vane

Figure 8. Comparison between the outputs of the three parts of the original and the identification
systems under a 10% frequency disturbance.
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(a) speed (d) identification error of speed

(b) torque (e) identification error of torque

(c) guide vane (f) identification error of guide vane

Figure 9. Comparison between the outputs of the three parts of the original and the identification
systems under a 15% frequency disturbance.

Figures 10–12 show the convergence curves of fitness functions of different optimiza-
tion algorithms under 5%, 10%, and 15% frequency interferences, respectively. The fitness
function of the PSO is always the largest in the three graphs. It falls into the local opti-
mum when it iterates 100 times and converges ahead of time. When GSA and ALO iterate
120 times, the fitness function value tends to be stable. The fitness function of the AHA algo-
rithm is second only to IAHA. The IAHA algorithm is always the smallest, and has a rapid
downward trend in the end. It reflects that IAHA has the ability of global optimization.

Figures 13–15 show the comparison charts of the dynamic response of speed, torque,
and guide vane opening output of different algorithms under different frequency distur-
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bance conditions. It can be seen intuitively from the figure that the consistency between the
output curve identified by IAHA and the output curve of the real system is higher than
that of the other four algorithms, indicating that the accuracy is also higher.

Figure 10. Comparison of the average iteration process under a 5% frequency disturbance condition.

Figure 11. Comparison of the average iteration process under a 10% frequency disturbance condition.

Figure 12. Comparison of the average iteration process under a 15% frequency disturbance condition.
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(a) speed (b) torque

(c) guide vane

Figure 13. Comparison of the output between different optimization algorithms for 5% frequency
disturbance conditions.

(a) speed (b) torque

(c) guide vane

Figure 14. Comparison of the output between different optimization algorithms for 10% frequency
disturbance conditions.
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(a) speed (b) torque

(c) guide vane

Figure 15. Comparison of the outputs between different optimization algorithms for 15% frequency
disturbance conditions.

5. Conclusions

In this paper, an improved AHA (IAHA) is proposed. Compared with AHA, there
are two improved strategies. First, the population initialization of the Chebyshev chaotic
map was used to expand the search range and improve the accuracy. Second, Levy
flight was added to guide foraging, which gives the algorithm better convergence and
stability. In order to verify the optimization performance of the IAHA algorithm, the 23
standard functions, which include unimodal and multimodal functions, were evaluated.
The calculated values in the statistical analyses were the mean value, standard deviation,
optimal value, and the worst value. IAHA performs best in most functions. The practical
application involves identifying the parameters of the governing system of pumped storage
units and calculating the average value through 20 independent operation algorithms.
The results show that the errors of the IAHA are only 2.04%, 1.82%, and 1.28% under 5%,
10%, and 15% frequency disturbance conditions. Compared with PSO, GSA, ALO, and
AHA, the identification accuracy of the governing system is improved.
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Appendix A

Table A1. Standard test function.

Function D Range

f1(x) = ∑n
i=1 x2

i 30 [−100, 100]D

f2(x) = ∑n
i=1 |xi |+ ∏n

i=1 |xi | 30 [−100, 100]D

f3(x) = ∑n
i=1 (∑

i
j=1 xj)

2 30 [−100, 100]D

f4(x) = maxi{|xi | , 1 ≤ i ≤ n} 30 [−100, 100]D

f5(x) = ∑n−1
i=1 (100(xi+1 − xi)

2) + (xi − 1)2) 30 [−30, 30]D

f6(x) = ∑n
i=1 (xi + 0.5)2 30 [−100, 100]D

f7(x) = ∑n
i=1 ix4

i + random[0, 1) 30 [−1.28, 1.28]D

f8(x) = −∑n
i=1 (xi sin(

√|xi |) 30 [−500, 500]D

f9(x) = ∑n
i=1 (x2

i − 10 cos (2πxi) + 10)2 30 [−5.12, 5.12]D

f10(x) = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp( 1

n ∑n
i=1 cos2πxi) + 20 + e 30 [−32, 32]D

f11(x) = 1
4000 ∑n

i=1 (xi − 100)2−∏n
i=1 cos( xi−100√

i
) + 1 30 [−600, 600]D

f12(x) = π
n

{
10sin2(πy1) + ∑n−1

i=1 (y1 − 1)2
[
1 + 10sin2(πy1 + 1)

]
+ (yn − 1)2

}
+ ∑30

i=1 u(xi , 10, 100, 4) 30 [−50, 50]D

f13(x) = 0.1
{

sin2(3πx1) + ∑29
i=1(xi − 1)2 p[1 + 10sin2(3πxi+1)] + (xn − 1)2[1 + sin2(2πx30)]

}
+ ∑30

i=1 u(xi , 5, 10, 4) 30 [−50, 50]D

f14(x) = [
1

500
+ ∑25

j=1
1

j + ∑2
j=1(xi − ai)6

]−1 2 [−65.536, 65.536]D

f15(x) = ∑11
i=1 |ai − x1(b

2
i +bi x2)

b2
i +bi x3+x4

|
2

4 [−5, 5]D

f16(x) = 4x2
1 + 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5]D

f17(x) = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10(1 − 1

8π cosx1) + 10 2 [−5, 10]× [0, 15]

f18(x) =
[
1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]× [30 + (2x1 + 1 − 3x2)
2(18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)
] 2 [−2, 2]D

f19(x) = −∑4
i=1 exp[−∑3

j=1 aij(xj − pij)
2] 3 [0, 1]D

f20(x) = −∑4
i=1 exp[−∑6

j=1 aij(xj − pij)
2] 6 [0, 1]D

f21(x) = −∑5
i=1 |(xi − ai)(xi − ai)

T + ci |−1 4 [0, 10]D

f22(x) = −∑7
i=1 |(xi − ai)(xi − ai)

T + ci |−1 4 [0, 10]D

f23(x) = −∑10
i=1 |(xi − ai)(xi − ai)

T + ci |−1 4 [0, 10]D
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Abstract: Pumped storage-power plants play an extremely important role in the modern smart grid
due to their irreplaceable advantages in load peak-valley regulation, frequency modulation, and phase
modulation. The number of start-stops per day of pump-turbine units is therefore also increasing.
During the start-up transient process in turbine mode, the complex flow in runner passage, crown
and band chambers, and seal labyrinth is able to induce severe vibration of non-rotating structures
such as head cover, stay-ring, and pose a threat to the safe operation of the pump-turbine unit. In
this article, the flow-induced vibration of the structures of a pump-turbine unit during its start-up
process in turbine mode is studied. In the first place, this investigation establishes a three-dimensional
model of the full flow passage and carries out a full three-dimensional CFD calculation based on
one-dimensional pipeline calculation results for the start-up transient process. In the next place, by
applying the fluid–structure interaction calculation method, the finite element analysis of non-rotating
components of the pump-turbine unit is carried out. The flow-induced stresses and deformations
of head cover, stay-ring, etc., are obtained and analyzed. The results reveal that the maximum
deformation of the non-rotating structures is located at the inner edge of the head cover while the
maximum stress appears at the trailing edge fillet of a stay vane. In summary, the dynamic stress of
the non-rotating structures changes largely during the start-up process. The stress is strongly related
to the axial thrust caused by the fluid flow. The achieved results can provide guidance for further
fatigue life assessment of non-rotating structures and contribute to the structural safety design of
pump-turbine units.

Keywords: pump-turbine; turbine mode; start-up; non-rotating structures; flow-induced vibration

1. Introduction

In recent years, with the increasing requirement for clean and green energies, people
are paying more and more attention to new renewable energies such as wind energy, solar
energy, marine energy, and so on. However, the intermittent output of new renewable
energies provides an unstable supply to the power grid, which brings a great challenge
to the stability of the energy system. On the other hand, conventional power resources
such as coal power are difficult to modify in a short time (several minutes), which is not
able to match the consumption fluctuation of electricity in the power grid. More flexibility
in the power system has to be developed to deal with this new scenario. Energy storage
techniques highlight the importance because of their mature technology and fast response
ability. The pumped storage power is a type of energy that consumes the surplus electricity
of the power grid when there is an excessive supply and converts the potential energy of
water to electricity and supply to the power grid during peak hours [1]. Pumped storage
stations effectively play the role of dynamic balance between the supply and consumption
in the power grid [2]. Therefore, the operation stability of pump-turbines is of paramount
significance to the safety of the power plants and the grid.
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In order to keep the balance of the power grid, the pumped-storage power plant has
to switch its function between pump mode and turbine mode. Because of the entrance of
new renewable energies, pump storage stations have to switch their function more and
more frequently. Some of them have to start-up and close-down more than 10 times in a
single day [3]. Pump-turbine is a pump as turbine by nature, and it can be flexibly switched
between pump and turbine conditions [4]. Under frequent start-up and close-down, load
change, load rejection and other transient processes, pump-turbine units have to face a
series of unsteady hydraulic excitations such as turbulence, rotor–stator interaction (RSI),
vortex rope, etc. The alternate stress induced by the excitations will cause damage to
the structure of the turbine units. Unstable flows such as RSI and vortex under transient
processes may lead to strong vibrations to the non-rotating structures such as the head
cover and stay-ring of the pump-turbine, which may develop stress concentrations [5].
A long-time operation may cause fatigue damage to the non-rotating structures, thus
threatening the operation safety of the unit. Generally, hydraulic excitations mainly induce
the vibration of the head cover while the vibration of the upper and lower brackets are
generated by the rotor [6]. Because of the special design of the pump-turbines, the rotor–
stator interaction is more severe than the regular type of hydraulic turbines [7]. Theoretical
analysis, numerical simulation and experimental research have been done on the analysis
of hydraulic excitation in pump-turbine units [8]. Researchers have carried out numerical
simulations on the fluid domain of hydraulic turbine units in order to obtain their vibration
behavior [9], modal characteristics [10], etc. A lot of experience has been accumulated in the
calculation under steady-state and transient conditions. Valentín, D., et al. [11] researched
the dynamic response of a Francis turbine runner by means of both Experimental Modal
Analysis and Finite Element Method (FEM). The accuracy of the numerical simulation
was proved to be high with the comparison of the experimental results. The behavior
of a Francis turbine at part load condition is studied by Computational Fluid Dynamics
and the vibration and stress show good accuracy compared with the field test results [12].
Egusquiza, E., et al. calculated the natural frequency, modal shape, and damping of a
pump-turbine impeller by means of FEM. The obtained results have been validated with
the field test and can be used on similar machines [13].

The transient process of pump-turbines is one of the most critical conditions that need
to be researched because of its complicated inner flow and strong vibration [14]. Due to the
inconvenience and high-cost of field measurements of hydraulic turbine units, numerical
simulation methods have become a substitute to study the internal flow characteristics of
machines. In a number of previous research, numerical simulations have been verified
to be reliable in the prediction of the inner flow of hydraulic machinery by comparing
the simulation result with the field tests. Tomaž, K. proposed a novel method for the
prediction of water turbine characteristics during transient operating regimes based on
numerical flow simulation with the finite volume method. The method has been validated
by the model test [15]. Song, X. carried out a free surface vortex prediction method by
means of two-phase flow method. The simulation clearly shows that the predicted results
are consistent with the existing problems of the unit on site [16]. Wang, W. established a
numerical model of a pump-turbine unit for pressure pulsation prediction. The prediction
result shows good agreement with the condition monitoring data [17]. The above research
has proven that for engineering problems, the comparisons show that the errors are within
an acceptable range. Lingyan He et al. [18] investigated the resonance phenomenon of a
pump-turbine unit during its start-up process by means of three-dimensional (3-D) full flow
path analysis. The results revealed that the resonance was caused by the matching between
the RSI and natural frequencies of the runner mode. Zhongyu Mao et al. studied the axial
force of the shaft in the pump-turbine unit during the start-up process. The consequences of
axial force during the start-up such as deformation and stress were analyzed in detail [19].
Funan Chen et al. analyzed transient unsteady flow in pump-turbine units and obtained
reliable dynamic stress results during the start-up process. The results show that the RSI
can be a leading factor of dynamic stresses during the transient process [20]. There are
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also some investigations that have investigated the stress level of non-rotation components
by means of stress measurement through numerical simulation [21] or experiments of
stress and strain [22,23]. During the transient process, the flow is mainly influenced by the
critical time points, which are the extrema in the pressure curve [24,25]. The critical points
can be obtained from one-dimensional pipeline calculation. In literature [19,26], scholars
have proposed the simulation method at critical moments during transient processes and
calculated the variation of stress/strain on the structures caused by the fluid flow. The above
studies on the influence of the start-up process on the non-rotating structures in turbine
mode based on the fluid-structure interaction (FSI) method still need to be supplemented.

In this study, the fluid domain of a reversible pump-turbine during the turbine start-up
process has been conducted by means of numerical simulation. In Section 2, the basic theory
of 1-D and 3-D simulation is introduced. In Section 3, the transient flow in the hydraulic
system is calculated by the one-dimensional (1-D) transient flow calculation method. Then,
the 3-D models of the fluid domain and the non-rotating structures are built up. After that,
a full 3-D computational fluid dynamic (CFD) calculation is conducted on the whole fluid
domain, which includes the labyrinth seals of the crown and band for the turbine start-up.
In Section 4, Fluid-Structure Interaction (FSI) is used in order to couple the 1-D calculation
and 3-D calculation. In FSI, the flow and pressure results obtained by 1-D simulation are
transferred to the 3-D model as the boundary conditions. The obtained simulation results
are then used as the excitation force of FSI analysis to calculate the fatigue and vibration
of the non-rotating structures. The flow-induced stresses and deformations of head cover,
stay-ring, etc., are obtained and analyzed. Section 5 gives the main conclusions. The
calculated results have shown that the variation of guide vane opening (GVO) and spiral
casing water level have a great influence on the vibration of the head cover during the
turbine start-up, and the vibration tends to be stable after entering the load-increasing stage.
The achieved results can provide data for further fatigue life assessment of non-rotating
structures and contribute to the structural safety design of pump-turbine units.

2. Methodology of FSI Calculation

The analysis process in this study consists of 1-D pipeline calculation, fluid-structure
interaction calculation and finite element analysis. Firstly, the 1-D pipeline calculation
result provides border conditions for the calculation of FSI. Then the FSI will be used
for the Finite Element Analysis (FEA) on the 3-D structure of the pump-turbine unit and
the result of FEA will be analyzed in detail. The basic governing equations of the above
methodologies are introduced below.

2.1. Governing Equations of 1-D Pipeline Calculation

The mathematical unsteady flow models of the pipeline system of the researched
power plant consist of the penstock, surge shaft, valves, pump-turbine unit, and upper and
lower reservoirs. The basic equations of unsteady flow in the closed pipeline include the
kinematic equation of motion and the continuity equation.

g
∂H
∂X

+ V
∂V
∂X

+
∂V
∂t

+
FdV|V|

2D
= 0 (1)

V
∂H
∂X

+
a2

g
∂V
∂X

+
∂H
∂t

− Vsinα = 0 (2)

H = Z +
p

ρ f g
(3)

where Z, D, and X represent the elevation, diameter, and length of the pipeline, respectively.
ρ f and p are the density and pressure of the fluid. V represents the fluid velocity in the
pipeline. A is the velocity of the wave in the pipeline, t is the transient time, Fd is the Darcy
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Westbach friction coefficient, α represents the angle between the pipeline and the horizontal
plane. By combining Equations (1)–(3), the full differential equation can be obtained:

C+ :

{
dx
dt = +a
A2 dH

dt + A a
g

dQ
dt − QAsinα + FdaQ|Q|

2gD = 0
(4)

C− :

{
dx
dt = −a
A2 dH

dt − A a
g

dQ
dt − QAsinα − FdaQ|Q|

2gD = 0
(5)

Equations (4) and (5) are called the method of characteristic (MoC) equations and the
compatibility equation is established along the characteristic lines. Two characteristic line
directions are C+ and C−. The equation can be integrated by the variation of flow rate and
head of the water in the form of difference, and then the 1-D pipeline calculation can be
completed by iteration solution.

2.2. Governing Equations of 3-D FSI Calculation

The laws of conservation of mass and momentum are the governing equations of the
3-D unsteady turbulent flow in the flow passage:

∂ρ f uj

∂t
+

∂ρ f uuj − τj

∂xj
= f j (6)

where uj represents the velocity (on j direction) of the flow field, respectively, f j is the
volume force vector of the fluid on j direction, and τj is the shear force tensor:

τj = −p + μ∇ · uj + 2μej (7)

where μ and ej are the dynamic viscosity and the velocity stress tensor of the fluid, respectively:

ej = 1/2((∂uj)/(∂xj) + (∂uT
j )/(∂xT

j )) (8)

The fluid pressure at the FSI interface is calculated according to the above theory. The
force applied on the structure f j(t) by the fluid can be calculated by summing the pressure
of fluid pj(t) with the FSI interface Sj.

f j(t) =
∫

pj(t)·dSj (9)

By applying fluid pressure to the fluid-structure coupling surfaces of the structures,
the following equations can be adopted to analyze the flow-induced structural vibration of
the non-rotating components of the pump-turbine unit:

[M]ẍ + [C]{ẋ}+ [K]{x} = {F(t)} (10)

{σ} = [E][S]{x} (11)

where [M] is the mass matrix of the structure, [C] is the damping matrix, and [K] is the
stiffness matrix of the structure. {x}, { u̇} and { ü} are the displacement, velocity, and
acceleration vectors of the structure, F(t) is the external volume force vector applied to
the structure including the pressure load of fluid, [E] is the elasticity matrix, and [S] is the
strain-displacement matrix of the structure, respectively.

3. Set-Up of Flow-Induced Vibration Calculation

3.1. Transient Calculation of 1-D Pipeline

The researched pump-turbine unit is a vertical-shaft machine with a rated power of
300 MW and a rated rotating speed of 500 rpm. The turbine unit has 7 blades and 20 guide

145



Energies 2022, 15, 8743

vanes. The rated head of the researched machine is 520 m. The structure of the flow passage
of the pipeline is shown in Figure 1, which is composed of an upper and a lower reservoir,
an upper and a tailrace surge shaft, four turbine units, and the penstock.

Figure 1. The layout of the pipeline system of the researched pumped storage power plant.

The 1-D pipeline numerical calculation during turbine start-up is carried out on the
pipeline in order to determine the boundary conditions for 3-D CFD simulation for the
turbine channels. The boundary conditions of the 1-D pipeline calculation are the water
level of the reservoirs and the opening angle of the guide vanes. In this study, the water
level between the upper and lower reservoirs is similar to the rated head.

The start-up process in turbine mode starts at 0 s and finishes at 60 s. During this
time period, the guide vane opening increases from 0% to 27% and then decreases slowly
from its peak value to 19% (Figure 2). By applying these boundary conditions on the 1-D
model, the discharge and pressure in the pipeline are calculated, and the results are shown
in Figure 2. The pressure at the spiral casing inlet and draft tube outlet calculated by 1-D
simulation is displayed in Figure 3. A dimensionless parameter pressure coefficient φ
described by Equation (12) is used in order to obtain a general rule of the pressure variation
p during the turbine start-up process.

φ = p/(ρgHr) (12)

where Hr is the rated head of the unit.

Figure 2. Regulation of the guide vane opening during turbine start-up and discharge and rotating
speed calculated.
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Figure 3. Pressure coefficients at spiral casing inlet and draft tube outlet during the turbine start-up.

The pressure coefficient at the spiral casing inlet oscillates (φs) around 1.14 while the
pressure coefficient at the draft tube outlet (φd) oscillates around 0.17. A sudden increase in
pressure at the time of 20 s is induced by the water hammer effect when the guide vane
opening decreases. A total of 14 time points in Figure 3 have been picked according to the
extreme values of φs. The pressure values from the selected points are used as the boundary
conditions of the spiral casing inlet and the draft tube outlet for the 3-D CFD simulation.
The other surfaces in the CFD model were set as no-slip walls. The runner flow channel
was set as the rotation domain with the corresponding rotational speed during turbine
start-up, and the other flow channels were set as the stationary domains.

3.2. Setup of the 3-D CFD Numerical Simulation

Based on the measured parameters shown in Figure 3, 14 time points during the
turbine start-up process were selected to perform the detailed flow field simulation. The 3-D
simulation model of the flow passage of the researched pump-turbine is shown in Figure 4,
including the spiral casing, stay and guide vanes, runner, draft tube, labyrinth seals and
pressure-balance pipelines. For the following CFD numerical simulation, the flow passage in
the labyrinth seal has been taken into consideration since it has a significant impact on the
flow in the unit, although the size of the labyrinth seal clearance is only 1.5 mm.

Figure 4. Fluid domain of the researched pump-turbine.
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The mesh for the fluid domain of the researched machine is constructed by ANSYS
Meshing Tool. The element density on the boundary layers of the flow passage and the
gaps between the adjacent guide vanes have been increased in order to refine the mesh
quality. The hybrid mesh, which includes both tetrahedral and hexahedral elements, can
achieve a good balance between the computational time and simulation quality. By using
the hybrid mesh, which combines two types of elements, a rather good balance between
calculation time and calculation accuracy can be achieved. The meshes of the flow passage
are shown in Figure 5.

(a)

(b) (c)

(d) (e)

(f) (g) (h)

Figure 5. Mesh of different domains of the fluid model. (a) Entire simulation model; (b) Runner;
(c) Draft tube; (d) Lower chamber with its labyrinth seal; (e) Upper chamber with its labyrinth seal;
(f) Pressure balance pipelines; (g) Guide vane flow passage; (h) Spiral casing.

The fluid mesh independence test is performed before the calculation. Four sets of
mesh (as shown in Table 1) with different numbers of elements have been developed in
order to validate the grid of the fluid domain. The efficiency of the machine under the
steady-state of the rated power generation condition is calculated with different sets of
mesh. As shown in Figure 6, mesh set 3, marked with the green square box, is taken to
carry out the CFD analysis.

Table 1. Number of elements of the four sets of meshes.

Fluid Domain Mesh 1 (×106) Mesh 2 (×106) Mesh 3 (×106) Mesh 4 (×106)

Runner 2.94 3.27 3.63 4.25
Guide vane 0.22 0.24 0.27 0.32

Spiral casing and stay vane 2.64 2.93 3.26 3.81
Draft tube 0.49 0.54 0.60 0.70

Labyrinth seals and pressure
balance pipes 0.32 0.36 0.40 0.47

Total model 6.61 7.34 8.16 9.55
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Figure 6. The mesh independence test of the CFD simulation.

3.3. Results of the 3-D CFD Numerical Simulation

The velocity distributions of the flow passage from the spiral casing to the draft tube
during the turbine start-up process are shown in Figure 7. The color of the streamlines
indicates the velocity of the flow. From the figure it can be seen that the flow velocity in the
spiral casing is the lowest (nearly zero) at the beginning of the start-up process. At the start,
the gap between the adjacent guide vanes is small, so the fluid velocity before the guide
vanes is low. Because of the small discharge, the circumferential asymmetry phenomenon
raises the flow passage of the spiral casing. From each figure it can be seen that the red
color, which means a higher velocity, always appears in the guide vane and vaneless region.
The velocity of the fluid in the stay vane region is between the velocity of the guide vane
area and spiral casing. From the spiral casing to the runner, the velocity keeps raising. The
velocity increases dramatically after the guide vanes open. It reaches its highest value at
the time of 17.32 s. At this moment, the streamline before and after the guide vanes gets
more uniform, and the circumference flow in the vaneless region disappears. The velocity
of the flow in the spiral casing increases in the beginning but decreases in the middle of the
start-up process. The highest flow velocity appears in the middle of the start-up process.
At Point 10 (t = 22.48 s), the velocity decreases. According to the Bernoulli principle, the
pressure increases, which can be seen from Figure 3. The discharge keeps decreasing until
t = 26.67 s and then reaches the velocity of no-load condition.
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P1 (t = 1.87 s) P2 (t = 4.18 s) P3 (t = 5.70 s) P4 (t = 8.05 s)

P5 (t = 9.99 s) P6 (t = 12.37 s) P7 (t = 14.32 s) P8 (t = 15.88 s)

P9 (t = 17.32 s) P10 (t = 22.48 s) P11 (t = 26.67 s) P12 (t = 30.00 s)

P13 (t = 32.29 s) P14 (t = 60.00 s)

Figure 7. The flow velocity distributions of the pump-turbine unit during turbine start-up.

The pressure distributions in the upper and lower side of the flow passage from stay
vanes to draft tube at four typical moments (t = 1.87 s, t = 4.18 s, t = 22.48 s, t = 60.00 s) are
displayed in Figure 8. The upper side of the flow passage includes the region of the stay
vanes, guide vanes, upper chamber, and upper labyrinth seal, while the lower side includes
the stay vanes, guide vanes, upper chamber, and upper labyrinth seal. In each subfigure,
the upper side is on the left and the lower side is on the right. From Figure 8 it can be seen
that the upper side at the beginning of the start-up process has the largest pressure. At this
time, the discharge is low so that the pressure applied on the flow passage equals the static
pressure of the water. With the guide vanes open, the flow rate increases. According to the
Bernoulli principle, the pressure decreases with the rise of the flow velocity. However, at
the time of 22.48 s, the pressure increases in the flow passage, which corresponds to the
lowest discharge in the flow passage. The same phenomenon can also be seen in Figure 3.
In Figure 3, the pressure in the spiral casing inlet increases at 20 s, which is caused by the
water hammer. Figure 8 also indicates that the pressure before the guide vanes is much
higher than that in the runner chamber, which is due to the small opening of the guide
vanes. In addition, during turbine start-up, the pressure on the upper side of the flow
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channel is always higher than that on the lower side. The pressure drops sharply from the
runner chamber to the upper and lower labyrinth seals.

P1 (t = 1.87 s) P2 (t = 4.18 s)

P10 (t = 22.48 s) P14 (t = 60.00 s)

Figure 8. Pressure distribution of the pump-turbine unit during turbine start-up.

4. Flow-Induced Vibration Analysis of Non-Rotating Structures

4.1. Setup of the Flow-Induced Vibration Analysis for Non-Rotating Structures

The geometry model and boundary conditions of the non-rotating structures of the
researched pump-turbine unit are demonstrated in Figure 9. The entire non-rotating struc-
ture is assembled by the head cover, bottom ring, stay ring, stay vanes, and high-strength
bolts. The density, elastic modulus, and Poisson’s ratio of the non-rotating structures are
7850 kg · m−3, 2.1 × 1011 Pa, and 0.3, respectively.

Figure 9. Setup of the non-rotating structures for flow-induced vibration simulation.

Since the non-rotating structures of the unit have been embedded in concrete during
construction, the surfaces of the structure connected to the concrete are set as a fixed
constraint boundary condition for the flow-induced vibration simulation. The turbine
journal bearing stiffness is 1 × 106 N · mm−1 and the earth gravity is 9.8 m · s−2. The
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pressure profiles calculated by 3-D CFD are applied to the inner surface of the non-rotating
structures for flow-induced vibration simulation using ANSYS Mechanical.

Three groups of meshes with 0.8, 1.1, and 3.0 million high-quality tetrahedral elements
are created for the non-rotating structures (Figure 10) for the mesh independence study.
The local meshes for the stress concentration locations of the head cover, stay vane, and
bottom ring are also refined.

Figure 10. The meshes of the non-rotating structures of the pump-turbine unit.

Figure 11 compares the stresses at nodes N1, N2, and N3 for non-rotating structures
with different amounts of elements under designed operating conditions, and the corre-
sponding computational time consumption. The mesh independence study shows that the
results of the second group of mesh are similar to those of the third group of mesh, but the
computation time is only about 0.11% of that of the third one. Therefore it is reasonable to
use the second group of mesh for following flow-induced vibration simulations.

Figure 11. The mesh independence study of the flow-induced vibration simulation.
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4.2. Results of the Flow-Induced Vibration Analysis for Non-Rotating Structures

Pressure profile data contains coordinates and pressure values for all nodes of the
CFD mesh. With ANSYS built-in tools, the pressure data can be accurately interpolated
and mapped at the nearest node at the fluid-structure interface of non-rotating structures.
This allows the flow-induced vibration in non-rotating structures of the pump-turbine unit
to be analyzed. The flow-induced deformation distribution of the non-rotating structures
at different time moments during turbine start-up has a similar pattern. The maximum
deformation is located at the same location (Figure 12), but the maximum deformation
value is changing with time (Figure 13).

Figure 12. The deformation distribution of the non-rotating structures (longitudinal section).

Figure 13. The maximum deformation of the non-rotating structures with time.

The head cover outer flange is assembled to the stay ring with high-strength bolts, but
the interior plates are suspended without support in the axial direction. Due to the large
hydraulic pressure loads applied on the inner surfaces of the head cover, the interior plates
of the head cover have larger axial deformation than other plates.

The inner surface area of the stay ring is much smaller than that of the head cover, so
the hydraulic loads applied on the stay ring are consequently lower than the head cover.
Furthermore, the stay vanes of the stay ring are very stiff, so the flow-induced deformation
of the stay ring is very small.
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The height of the bottom ring is larger and stiffener than the head cover. In addition,
the effective area of the inner surface of the bottom ring to bear the axial hydraulic load is
smaller than that of the head cover, so the deformation of the bottom ring is also smaller
than that of the head cover.

For ease of manufacture and installation, the head cover of the investigated pump-
turbine unit is of split structures, which are assembled into an integral structure through
the bolts of the connecting flanges. It can be seen from Figure 14 that the deformation
distribution of the head cover is also symmetrical. Since the thickness of the connecting
flange is thicker than that of the reinforcing plates of the head cover, the deformation of the
head cover near the connecting flanges is smaller than the deformation in other locations of
the head cover.

Figure 14. The deformation distribution of the non-rotating structures (cross-section).

The flow-induced stresses of the non-rotating structures of the pump-turbine unit
at different moments during turbine start-up also present a similar distribution, with the
maximum stresses concentrated at the stay ring. The flow-induced stress distribution
during turbine start-up normalized with the maximum stress value of the stay vanes
(Figure 15).

Figure 15. The flow-induced stress of the non-rotating structures.

The stress distributions of the stay ring, bottom ring and head cover shown in
Figures 16–18 are normalized by their respective maximum stress values.
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Figure 16. The maximum stress of the head cover during turbine start-up.

Figure 17. The maximum stress of the stay ring during turbine start-up.

Figure 18. The maximum stress of the bottom ring during turbine start-up.

During the start-up process in turbine mode, the pressure load applied to the inner
surface of the non-rotating structure lifts the head cover, presses down the bottom ring, and
stretches all the stay vanes of the stay ring, and the maximum stress occurs on the trailing
edge fillet of a stay vane of the stay ring. The maximum stress of the head cover is located
at the round hole of a reinforcing plate, which has a lower stiffness than other reinforcing
plates. and the maximum stress of the bottom ring is on the connecting flange of the bottom
ring. To analyze the variation of the maximum stresses of the non-rotating structures with
time, Figure 19 compares the normalized maximum stresses during turbine startup.
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Figure 19. Comparison of maximum stresses in non-rotating structures during turbine start-up.

It can be seen that the maximum stress of the stay ring is always larger than the
maximum stresses of the bottom ring and head cover during the whole turbine start-up
process. However, the maximum stresses of different components have a similar variation
law with time.

Figure 20 shows the comparison of normalized maximum deformation, maximum
stresses, and axial thrust of the non-rotating structures during turbine start-up. During
turbine start-up, the maximum deformation, maximum stresses, and axial thrust of the
non-rotating structures increase rapidly with increasing hydraulic parameters such as
GVO, discharge, and rotational speed. After t = 25 s, the hydraulic parameters remain
almost constant and the maximum stresses in the non-rotating structures become also
stable. The parameter comparison in Figure 20 also reveals that the variation of the flow-
excited vibration behavior including structural deformation and stress is consistent with
the variation of the axial thrust generated by the pressure load on the structure during
turbine start-up.

Figure 20. Comparison of maximum deformation, maximum stresses, and axial thrust during turbine
start-up.
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5. Conclusions

In this study, the flow-induced vibration of non-rotating structures of a high-head
pump-turbine during start-up in turbine mode has been researched. A 1-D simulation is
carried out in order to obtain the variation of pressure and discharge during the start-up
process. The results are used as the border condition of the fluid-structure interaction
analysis on the 3-D model of the pump-turbine unit.

The numerical simulation results show that at the beginning of the start-up, the
discharge is low and the pressure is the highest. With the guide vane opening increasing,
the pressure decreases with the rise of the flow velocity. At the time of 22 s, the pressure
increases in the flow passage, which is caused by the water hammer. The flow field
calculation results are used as the boundary conditions to calculate the behavior of the
non-rotating structures for further fluid-structure interaction analysis.

The changing hydraulic pressure loads during turbine start-up cause changes in the
distribution of the deformation and stresses on the non-rotating structures of the pump-
turbine unit. However, the deformation distribution and stress distribution at different
moments during the turbine start-up process follow similar patterns, respectively.

The maximum deformation of the non-rotating structures is located at the inner edge
of the head cover, which is without support in the axial direction. The maximum stress
of the non-rotating structures appears at the trailing edge fillet of a stay vane of the stay
ring, which is stretched by the large hydraulic pressure. The flow-induced deformation
and stresses of the non-rotating structures increase rapidly with the increasing hydraulic
parameters at the beginning of the turbine start-up process. When the unit reaches the rated
state, the hydraulic parameters remain almost constant and the stresses of the non-rotating
structures also become stable. The flow-induced stresses of the non-rotating structures
change largely during turbine start-up, and the variation of the deformation and stresses
have a strong relationship with the axial thrust caused by the large pressure caused by the
fluid flow. It is recommended to avoid too many frequent start-stops of the pump-turbine
unit to reduce the risk of structural fatigue damage.
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Abstract: In order to ensure stable grid operatiFon and improve power quality, active or passive
load rejection of pumped storage power stations (PSPS) inevitably occurs from time to time. The
rapid closing of the guide vanes will cause drastic changes in pressure pulsations in the flow channel
of the pump-turbine (PT) unit. The high-level pressure pulsations during load rejection transfer
to the entire flow passage of the PT unit and generate strong vibrations on the head-cover and the
connecting bolts. In this study, the 1D/3D joint simulation of the pipeline in a pumped storage power
station and the turbine flow channels including the flow domains of the runner, crown chamber,
band chamber, upper and lower labyrinths and pressure balance tubes is carried out first. Then, by
applying the calculated pressure loads on the head-cover, stay vanes and bottom ring of the PT unit,
the flow-induced dynamic behavior of the structures including the head-cover bolts is analyzed in
detail. The results demonstrate that pressure loads on head-cover bolts change dramatically during
the load rejection process. The flow-induced deformation of the inner head-cover during the load
rejection is larger than that of other structures, and the flow-induced displacement and stress of
different head-cover bolts are not uniform. The achieved conclusions in this study can be a useful
reference for the design and operation of head-cover bolts for other PT units and high-head Francis
turbine units.

Keywords: pump-turbine; head-cover bolts; load rejection; flow-induced dynamic behavior;
computational fluid dynamics; deformation and stress

1. Introduction

Due to the fast-increasing demand for electricity in recent decades, traditional power
plants such as thermal power and nuclear power have to enlarge their capacity in order to
balance the demand and the supply in the power grid. On the other hand, with the target
of achieving net-zero emission in the middle of this century, more and more countries are
introducing green and clean power, including wind power and solar power to their power
system [1]. The above two factors both bring challenges to the stability of the power grid:
the output of traditional power can hardly be regulated because the heat is difficult to
be dissipated, while the new renewable energies rely on intermittent sunlight and wind,
which depend on the changing weather. A type of huge energy that can be fast-regulated
is required for this new scenario. As an important part of renewable energies, hydraulic
power is being increasingly developed worldwide because of its the large-enough capacity
and great flexibility. Pumped storage power is a type of hydropower that can consume
energy by converting the electricity to the potential energy of water and generating power
with turbine mode when there is a requirement for energy from the grid. It usually consists
of a pumped-storage power station (PSPA), an upper reservoir and a lower reservoir. Pump-
turbine (PT) is the core component of a PSPA, which can switch between turbine mode and
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pump mode according to the demand of the power grid [2]. In turbine mode, the water
flows through the spiral casing into the runner and flows out through the draft tube. In
pump mode, the water flow into the draft tube from the lower reservoir is pumped by the
runner to the upper reservoir. By switching the operation mode and adjusting the output
or input, PT units are able to achieve peak clipping, valley filling, frequency and phase
regulation and emergency reserve, which are becoming more and more necessary to the
power system.

Compared with Francis turbine units, PT units usually have a higher head and less
number of blades. Because of this special design, PT units have to withstand higher
pressure pulsation during the operation [3]. The severe pressure pulsation brings excessive
vibration and higher stress concentration to the structure, which causes fatigue and failure
to the machine. The short remaining useful life will cause economic loss to the PSPAs and
even danger to the operators in the plants. A number of damage or failure cases have been
reported in the previous studies [4–7]. According to the research, the main reasons for
the failure of the structure include drastic changes in hydraulic excitation under certain
operating conditions, excessive vibration induced by the resonance and fatigue failure of the
head-cover bolts. The head-cover bolt is a component that is used to connect the head-cover
and the stay ring. The design of the head-cover bolts is of paramount importance to the
operation safety of PT units. Failures such as loose, fatigued and broken head-cover bolts
will cause serious accidents such as component damage, power outages, and even casualties
to the operators in the power plants [8,9]. Some accidents caused by the failure of head-
cover bolts have been reported in literature [5,6]. A number of researchers have carried out
studies on the head-cover bolts and some conclusions can be used as guidance to different
stages of the installation of bolts. During the design stage, the variation of the relative
stiffness of the bolts and head-cover for PTs have to be considered [10]. In the operation of
the PT unit, the head-cover bolts mainly suffer from axial stress. Because of the uneven
distribution of the hydraulic pressure, the stress distribution along the circumference is also
uneven [11]. The stress and deformation mainly concentrate on the connection positions
between the head-cover and the bolts while the maximum stress appears on the bolt at the
position where the diameter changed [12]. Generally, the first four turns basically bear 30%
of the total load. With the increase in load, the high-stress area extends downward, which
helps decrease the area of high stress [13]. Brekke pays special attention to the maintenance
of the head-cover bolts in his research and discussed the optimization methodologies of
the safety of turbine bolt connections [14]. The previous investigations have discussed
the distribution of stress on different bolts under steady operating conditions as well as
the stress on certain bolts under transient conditions. However, the stress distribution
on different head-cover bolts during the load rejection process of PT units has not been
studied in detail. Because of the asymmetric characteristic of hydraulic pressure in the
runner chamber during the load rejection process, the circumference distribution of the
deformation and stress of head-cover bolts varies greatly. Excessive stress concentration
might appear on certain bolts even though the average stress is within the yield strength.
The load rejection process is a challenging transient condition for turbine units and is a
major fatigue damage contributor for the turbine unit [15,16]. Therefore, a careful stress
investigation on the head-cover bolts during the load rejection process is important for the
safe design of large hydraulic PT units.

The load rejection process causes extremely high pressure in the flow passage of
turbine units, which is harmful to the operation safety of the machine. The field test on the
load rejection process is inconvenient for a prototype PT unit. In recent decades, numerical
simulations have become an alternative and competitive method to study the internal
flow characteristics of PT units. With the development of computer technology, simulation
accuracy keeps increasing. Considerable numbers of research [17–21] have proved the
reliability of computational fluid dynamics (CFD) of PT by comparing the simulation
results with a field test. In literature [22], the simulation error between the CFD results and
the field text is less than 7% and 12% in large opening condition and minimum opening,

161



Machines 2022, 10, 1130

respectively. In this research, numerical simulation is applied to investigate prototype
high-head PT head-cover bolts during the load rejection process.

The coupling between the vibration of structures such as the head-cover of PTs and
the fluid field is a typical Fluid-Structure Interaction (FSI) problem, which is generally
solved by one-way FSI and two-way FSI. In a two-way FSI, the structure is excited by the
hydraulic pressure while the effect of the deformation of the structure has an influence on
the fluid field reversely. For engineering problems, the scale of the whole flow passage
can be more than ten meters, while the scale of the deformation of the PT structure is only
several millimeters. The effect of the structure deformation on the fluid field is neglectable.
Therefore, the one-way FSI is suitable for the numerical simulation in this research with
a reasonable calculation accuracy. The one-way FSI simulation methodology has been
verified in literature [23,24], where the result of different FSI methods has been compared.
By means of one-way FSI, some researchers tried to calculate the deformation and stress of
the structure of a hydraulic machine [25,26]. The difference between the FSI simulation and
field test result is acceptable for engineering problems. The previous research has provided
sufficient foundation for the efficiency of the FSI method on the prototype PT head-cover
during the load rejection process.

The research on the characteristics of structural components such as head-cover vi-
bration of PT units is a complex FSI problem. One-way FSI and two-way FSI are two
typical methods to solve the FSI problem. The characteristic length of the entire flow
field can be up to ten meters, while the actual head-cover deformation of the PT unit
is only several millimeters, so the effect of the head-cover deformation on fluid flow is
negligible; therefore, the one-way FSI method is reasonable for this study considering the
computational resources and the accuracy of the results. It is more reasonable to adopt the
one-way FSI method for this study considering the computing resources and accuracy of
the results. The studies [23,24] have verified the accuracy of the FSI calculation method,
compared the effects of different FSI methods on the calculation results of hydraulic ma-
chinery and confirmed the feasibility of the one-way method. Some researchers [25,26]
have calculated the stresses and strains of the stationary parts of the unit with the one-way
FSI method. The difference between the calculated results and the measured ones is within
the acceptable range.

In this research, the flow-induced dynamic behavior of head-cover bolts in a PT unit
during its load rejection process is investigated by means of the 1D and 3D hybrid numerical
simulation method. In Section 2, the basic theory is introduced by displaying the equations
of 1D and 3D simulation. In Section 3, a 1-dimensional (1D) calculation was performed
on the pipeline in order to obtain the pressure and discharge in the machine during the
load rejection process. The key time points were selected according to the peak and valley
pressure and used as the boundary conditions of the 3-dimensional (3D) calculation. Then,
a physical model of both the fluid domain and structure of the researched unit was built for
the 3D fluid simulation. Computational fluid dynamics (CFD) was applied to the model
to calculate the pressure distribution of each key time point. In Section 4, the obtained
pressure distribution was mapped on the structure model of the unit by the one-way FSI
method. Finally, the dynamic behavior of the head-cover and the head-cover bolts were
investigated and analyzed in detail. The conclusions in Section 5 of this research provide
important guidance for the design of head-cover bolts for the PT units.

2. Numerical Simulation Methodology

The numerical simulation methods in this paper are composed of 1D pipeline simula-
tion, 3D CFD calculation and one-way FSI simulation method.

2.1. 1D Pipeline Calculation Methodology

The 1D pipeline model of the researched unit includes the upper reservoir, penstock,
surge shaft, valves and lower reservoir. In each of the components of the 1D pipeline model,
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the mathematical model of the unsteady flow is used. The basic equations of unsteady flow
in the model include the kinematic equation of motion and the continuity equation.

g
∂H
∂X

+ V
∂V
∂X

+
∂V
∂t

+
f V|V|

2D
= 0 (1)

V
∂H
∂X

+
∂H
∂t

+
a2

g
∂V
∂X

− V sin α = 0 (2)

H = Z + P/ρg (3)

where Z , g and ρ are the axis elevation of the pipeline, local acceleration of gravity and
water density, respectively. V is the average velocity of the water. D is the diameter of the
flow passage in the pipeline. F is the Darcy Westbach friction coefficient. ρ is the liquid
density and g is the local acceleration of gravity and water density, respectively. F is Darcy
Westbach friction coefficient, D and X are the inner diameter and the axis length of the pipe,
respectively. A and p are the wave velocity and the pressure of the water in the pipeline, T
is the transient time and α is the angle between the pipe axis and the horizontal plane.

Equations (1)–(3) can be combined and transformed into method of characteristic
(MoC), which is a differential equation with constant coefficients. On the characteristic line,
∂X/∂t = ±a, the original equation can be transformed into a differential equation with
constant coefficients; therefore, the process of solving the partial differential equation can
be transformed into the discretization of the differential equation on the characteristic line.
The compatibility equations are:

C+ :

{
dX
dt = + a
A2 dH

dt + A a
g

dQ
dt − QA sin α + f aQ|Q|

2gD = 0
(4)

C− :

{
dX
dt = − a
A2 dH

dt − A a
g

dQ
dt − QA sin α − f aQ|Q|

2gD = 0
(5)

where C+ and C− are the two directions of the characteristic line. The compatibility
equation is established along the characteristic line. The equation can be integrated into the
form of a difference through the change in flow and head between two points, and then
solved iteratively to complete the 1D pipeline calculation.

2.2. 3D Flow Simulation Methodology

The 3D flow simulation methodology is based on the Navier–Stokes Equation for fluid
flow in conservative differential form:

∂�u
∂t

+ �u · ∇�u = −1
ρ
∇p + ν∇2�u +�g (6)

∇ · �u = u�i + u�j + u�k = 0 (7)

Equation (6) is the Navier–Stokes Equation and Equestion (7) is the formulas for
incompressible fluids. Where ρ and t represent the fluid density and time, �u is the velocity
vector in 3D space. Based on the equation and finite element method, the pressure pulsation
and distribution in the flow passage can be obtained. The pressure can be applied on the
fluid–structure coupling surfaces of the structures.

2.3. Fluid–Structure Interaction Analysis Methodology

The dynamic characteristics of the structure are influenced by the forces and pressure
acting on the structure. Considering the pressure, the finite element methodology can be
described as:

[M]e
{

δ̈(t)
}e

+ [C]e
{

δ̇(t)
}e

+ [K]e{δ(t)}e = {FS(t)}+
{

Ff S(t)
}

(8)
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where [M]e, [C]e and [K]e represent the mass matrix, damping matrix and stiffness matrices
of the structure, respectively;

{
δ̈(t)

}e,
{

δ̇(t)
}e and {δ(t)}e refers to the acceleration, veloc-

ity and displacement of the structure, respectively; {FS(t)} is the excitation force vector
applies on structures, while

{
Ff S(t)

}
is to the fluid pressure vector acting on the surface of

the structure.
By 3D computational fluid dynamics (CFD) analysis, the fluid pressure distribution in

the PT unit can be obtained. As described in Section 2.2, the fluid pressure can be mapped
to the fluid–structure interference surfaces and the flow-induced structural stress σ of the
machine can be calculated with the displacement {δ(t)}e by Equation (9).

{σ} =
[B]
[S]

{u} (9)

where [B] and [D] are the strain-displacement matrix and stiffness matrix, respectively.
Equation (10) shows the calculation of von Mises stress σvM yield by stress in three

directions, which is used for evaluating the structural stress characters of the turbine unit.

σV =
1√
2

√
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 (10)

where σii (i = 1, 2, 3) are the principal stresses.

3. Numerical Simulation of the Fluid Flow

3.1. 1D Simulation on Pipeline Flow

The researched machine is a PT unit with a rated power of 300 MW and a rated speed
of 500 rpm. The rated head is 520 m. It has 7 blades in the runner and 20 blades on both the
stay vanes and guide vanes. Figure 1 shows the sketch of the water conveyance system of
the researched PT unit. The 1D model of the pipeline system includes the upper and lower
reservoir, turbine unit and surge shafts.

The 3D CFD calculation domain is the turbine part of the system, including the flow
passage of the spiral casing, stay vane, guide vane, runner, draft tube, upper and lower
labyrinth seals and pressure-balance pipelines.

Figure 1. The 1D calculation model of the researched PT unit.

Figure 2 shows the close curve of the relative guide vanes and variation of relative
rotating speed and discharge obtained by the 1D simulation. From the figure, it can be
observed that the guide vanes close monotonously from the maximum opening to zero
after the load rejection. The rotating speed of the runner increases at the beginning of
the load rejection process while vibrating due to the close-down of the guide vanes. The
extremes are selected from both the rotating speed curve and the discharge curve. The
extreme points are used to perform the fluid dynamic calculation [18]; giving the rotating
speed and discharge are the key parameters that affect the flow in the fluid domain during
the load rejection process [27,28]. Figure 3 shows the relative pressure (rate between the
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pressure and rated head of the machine) of spiral casing inlet (pSC) and draft tube outlet
(pDT) calculated by 1D simulation. The pressure values vibrate with the variation of the
discharge and rotating speed. pSC and pDT are used as the boundary conditions of the 3D
flow simulation.

Figure 2. The operating parameters and 9 key time points of the PT unit during load rejection.

Figure 3. Normalized pressure at the spiral casing inlet and draft tube outlet.

3.2. 3D CFD Simulation
3.2.1. 3D Model of Flow Calculation

The 3D fluid domain model includes the flow passage of the spiral casing, stay vanes,
guide vanes, runner and draft tube. As shown in Figure 4 The flow passage of the upper
labyrinth seal and lower labyrinth seal (1.5 mm) between the runner and non-rotational
structure are also included in the fluid model in order to increase the simulation accuracy.
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Figure 4. The 3D modeling of flow passage of the unit.

3.2.2. Mesh Independence Analysis of the 3D Flow Calculation

ANSYS CFX was used to carry out the 3D CFD analysis. The analysis type was set
to stable and the discrete format and the solver were set to high resolution. The runner
domain was set to rotate at an angular velocity of 500 rpm. The wall condition was set as a
non-slip wall. The interfaces between guide vanes and runner, runner and draft tube were
set to Frozen Rotor and the others are set to General Connection. The turbulence model
was set to shear stress transport, the turbulence model was set to shear stress transfer and
the turbulence mathematical accuracy was set to first order with a convergence residual
of 10−5.

The mesh quality is very important for 3D turbulence calculation. In this paper,
the tetrahedron–hexahedron hybrid mesh was used to discrete the fluid domain. In this
study, the mesh in the flow passage of guide vanes was generated automatically according
to different GVOs in order to ensure the mesh quality of the guide vanes under a given
opening. Figure 5 shows the mesh of different fluid domains of the PT unit. Four sets of
mesh have been compared in order to determine the best mesh that achieves a balance
between the simulation time and accuracy. The comparison of the efficiencies of different
sets of mesh and the details about the mesh of each part of the fluid domain is listed in
Figure 5 and Table 1 in literature [16]. The final adopted mesh (3) of the PT unit for load
rejection calculation is shown in Table 1.

166



Machines 2022, 10, 1130

(a) Overview of the mesh.

(b) Spiral casing to stay vane outlet. (c) Draft tube

(d) Guide vanes to runner outlet (e) Crown labyrinth seal & band labyrinth seal.

Figure 5. Mesh of the fluid domains.

Table 1. Element number of flow domains.

Flow Domain Elements (×106)

Spiral casing and Stay vane 3.26
Guide Vane 0.27

Runner 3.63
Draft tube 0.60

Labyrinth seal and Pressure-balance pipelines 0.40

Total 8.16

3.3. 3D Fluid Simulation Results
3.3.1. Pressure Variation at the Monitoring Points

Four pressure monitoring points (PS, PG, PU1, PU2) are set at the stay vanes, guide
vanes, crown gap and upper labyrinth seal. The details of the pressure monitoring points
and fluid domain from the spiral casing to the draft tube are shown in Figure 6. The
variation of pressure at the monitoring points during the load rejection process is shown in
Figure 7. During the load rejection process, the pressure of each monitoring point fluctuates
with great amplitudes, which is closely related to the discharge and rotating speed of
the machine. The high rotating speed enhances the shearing effect of the runner on the
non-rotating flow region, increasing the water flow velocity at the inlet and upstream of
the runner, resulting in more wake cutting on the vane flow domain. It also enhances the
rotor–stator interaction phenomenon and increased the pressure pulsation in the bladeless
region. At t = 6.88 s, the GVO and the rotating speed are high and the flow rate is low.
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At this moment, the turbulence and vortices of the flow from the guide vane increase,
and a large number of blade channel vorticity currents appear in the runner, which is
extremely unstable. The turbulent flow induces increased energy dissipation and pressure
in the vaneless area. At the moment with high discharge and low speed (t = 11.19 s and
t = 19.43 s), the deviation between the outflow speed direction of the guide vane and the
design condition is small, so the internal flow of the unit is sufficient and uniform and the
pressure shows a low level.

Figure 6. Pressure monitoring points’ selection.

Figure 7. Pressure change at the monitoring points.

3.3.2. Flow Pattern Change in the Runner Passage

In the process of load rejection, the flow from the guide vane to the runner outlet shows
extremely unstable turbulent characteristics. Figure 8 shows the streamline distribution
in the runner in the whole load rejection process. When the load rejection does not begin
(t = 0 s), the flow in the runner is uniform. Afterward, the flow is greatly affected by the
changes in flow rate, head and speed.

During the process of load rejection, the fluid in the flow passage shows extremely
unstable turbulent characteristics. Figure 8 shows the streamline distribution in one of the
sections of the runner during the whole load rejection process. Before the load rejection
(t = 0 s), the fluid in the runner flows uniformly. After that, the flow is greatly affected by
the change of flow, head and speed. From each figure during the load rejection process, it
can be observed that the flow in each flow passage between the blades is different from one
another. The flow during load rejection shows apparent asymmetry. At the moments with
large discharge (Figure 8b,d,e,g), large vortices appear on the suction surface of the blades.
The scale of the vortices implies the size of the flow duct, which disturbs the flow in the
machine. The unstable flow induces pressure fluctuation in the runner, which influences
the hydraulic torque of the machine.
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At the moments with the negative flow (t = 15.40 s and 24.10 s), the unit enters the
reverse pump operating condition. Due to the imbalance of speed and flow, the flow
between blade passages rotates abnormally and separated flow occurs on the pressure
surface of the runner. Both factors cause the wake to fall off upstream of the runner blades
and a large number of swirl eddies appear in the vaneless area. At the same time, wake
falling off also occurs at the leading edge of the guide vanes and stay vanes. The unstable
flow of the unit extends to the spiral casing area. It is shown in research [29] that the vortex
core in the vaneless area is impacted instantaneously by a large number of reverse refluxes
into the guide vane area and the stay vane area when the unit experiences the reverse pump
operating condition, which is also in accordance with the calculation results in this paper.

(a) t = 0 s (b) t = 3.74 s (c) t = 6.88 s

(d) t = 11.19 s (e) t = 13.24 s (f) t = 15.40 s

(g) t = 19.43 s (h) t = 24.10 s (i) t = 28.17 s

Figure 8. Flow pattern in the runner passage.
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At t = 15.40 s and 24.10 s, the discharges are negative while the rotating speed is
positive, which means the unit enters the reverse pump condition. Due to the imbalance of
pressure, the flow between the blades rotates abnormally, and the separation flow appears
on the pressure surface of the runner. The separation causes the wake to shed at the trailing
edge of the guide vanes, resulting in a large number of vortices in the bladeless area. At the
same time, wake shedding also occurs at the leading edges of the blades.

3.3.3. Result of Pressure Variation

Figure 9 shows the pressure change of the upper side of the flow passage of stay vanes,
guide vanes, vaneless area, crown seal and upper labyrinth during load rejection. Before
the load rejection (t = 0 s) the distribution of the pressure is uniform on the lower side of
the head-cover. For the moments of t = 3.73 s, t = 11.19 s, t = 13.24 s and t = 19.43 s, the
hydraulic moment is positive or equal to zero, and the pressure distribution of the unit
is relatively uniform, i.e., there is no pressure concentration applied on the head-cover.
For the moments with negative hydraulic torque (t = 6.88 s, 13.24 s, 15.40 s, 24.10 s), there
appears to be circumferential pressure unbalance and pressure concentration in the flow
passage of the guide vanes. The pressure concentration is caused by the separation of
high-speed circumferential flow through the clearance. In the clearance, the flow comes
across a sudden velocity decrease and local pressure rise, which causes strong impacts on
the head-cover.

(a) t = 0 s (b) t = 3.74 s (c) t = 6.88 s

(d) t = 11.19 s (e) t = 13.24 s (f) t = 15.40 s

(g) t = 19.43 s (h) t = 24.10 s (i) t = 28.17 s

Figure 9. Pressure distribution in the flow passages at different key time moments.
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4. Flow-Induced Dynamic Behavior of Structures

4.1. Simulation Setup and Mesh Independence Analysis

The studied stationary structures of the PT unit consist of a head-cover, a stay ring,
a bottom ring and connecting bolts (Figure 10). The head-cover and bottom ring are
assembled to the stay ring by 80 head-cover bolts and 80 bottom ring bolts. The nominal
diameter of the bolts is 110 mm. The material properties of the stationary structures are
listed in Table 2.

Figure 10. CAD model and boundary conditions of the stationary structures of the PT unit.

Table 2. Material properties of the studied structures.

Property Value

Elastic modulus [Pa] 2.1 × 1011

Poisson’s ratio [-] 0.3
Density [kg·m−3 ] 7850

The flow-induced dynamic behavior of the stationary structures of the PT unit is
analyzed in detail with the help of the numerical code ANSYS Mechanical. The finite
element mesh and the boundary conditions are shown in Figure 11. All nodal degrees of
freedom (DOFs) on the stay ring surfaces embedded in concretes are fixed, and the nodal
DOFs of the bottom ring surface welded into the draft tube are also fixed. The calculated
pressure loads (PLoad) are applied on the fluid-structure coupling surfaces and caused large
axial force on the head-cover (Faxial thrust). The stiffness of turbine radial guide bearing
(1.0 × 109 N·m−1) and the gravity (g = 9.8 m · s−2) are considered for the analysis.

After applying a preload force (FPreload) to each bolt, the head-cover, the stay ring and
the bottom ring are bolted together as a single structural assembly. The nut is considered to
be bonded to the bolt shank, and the bolt thread is bonded to the stay ring. In this study, the
bolt thread details are not considered. The connection surfaces between the head-cover and
the stay ring are in frictional contact. The same setting applies to the attachment surfaces
between the bottom ring and the stay ring, the attachment surfaces between the nuts and
the head-cover, and the attachment surfaces between the nuts and the bottom ring. The
friction coefficient of frictional contacts is set to 0.1. The exported pressure files from CFD
simulations at each time point during the load rejection are mapped on the finite element
model of the stationary structures sequentially so that the flow-induced dynamic behavior
of the studied structures can be analyzed.

The geometrically complex head-cover, stay ring and bottom ring are meshed with
high-quality tetrahedral elements, while the bolts are geometrically simple and meshed
with high-quality hexahedral elements. The meshes of the head-cover bolts and bottom
ring bolts, especially at the typical stress concentration areas, are refined (S1 and S2).
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Figure 11. Simulation setup and finite element mesh of the stationary structure of the unit.

To achieve a reasonable balance between the accuracy of the computation results and
the simulation time, a mesh independence analysis shall be carried out. Three groups
of meshes with different element sizes are established for the studied structures. The
node numbers of three sets of meshes are 1.6 × 106, 2.4 × 106 and 5.2 × 106, respectively.
Figure 12 shows that the second group mesh marked by the red box consumes only 0.7% of
the simulation time of the third group, but the results are similar. Therefore, it is logical to
use the second group mesh to complete the investigation.

Figure 12. Mesh independence analysis.

4.2. Results and Discussions

During the turbine load rejection process, the hydraulic pressure load acting on the
stationary structures of the unit changes significantly. Figure 13 shows the normalized
axial thrust on the head-cover. It can be observed that the axial thrust on the head-cover is
time-dependent and the force direction is axially upward during the whole load rejection
process. The axial thrust has three local maxima during load rejection and reaches its
maximum at t = 13.2 s. The maximum axial thrust is more than ten times the overall weight
of the head-cover plus the rotating shaft line.
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Figure 13. Axial thrust of the head-cover during load rejection.

The maximum deformation of the structures induced by unsteady flow during load
rejection is also changing with time, but the deformation distribution at the different
moments keeps the same pattern, as shown in Figure 14.

Flange beams and bolt flanges are used to strengthen the connections between the stay
ring and the head-cover and the bottom ring. The adjacent head-cover bolts (bolt couple)
between the flange beams are deformed close to each other, resulting from the hydraulic
forces induced by the unsteady flow. The same deformation characteristics are also present
on the bottom ring bolts.

Figure 14. Deformation distribution of the stationary structures in section view.

The vibration behavior of the head-cover and head-cover bolts during load rejection
are strongly related to the axial thrust on the head-cover. Since the inner head-cover has
no support in the axial direction, the maximum deformation of the structures appears at
the inner plate of the head-cover lifted by the large axial thrust. During the load rejection
process, the maximum deformation of the head-cover with time follows the variation of
the axial thrust and reaches its maximum at t = 13.2 s (Figure 15).
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Figure 15. The maximum deformation of the head-cover during load rejection.

In order to facilitate production processing, transportation and installation, the head-
cover is usually manufactured as two symmetrical halves, which are assembled into a
single structure during the installation in the power plant. As can be seen from Figure 16,
the flow-induced deformation of the head-cover is also symmetrical. Since the connecting
flanges of the head-cover are thicker than the stiffener plates, the deformation of the head-
cover inner plate near the connecting flanges is smaller than the deformation of the inner
plate at other locations. Therefore, increasing the thickness of the stiffener plates inside the
head-cover can increase the local stiffness and effectively reduce the deformation of the
inner plate of the head-cover.

Figure 16. Deformation distribution of the stationary structures in top view.

The flow-induced stress distribution during turbine load rejection in the large station-
ary structures of the unit including the head-cover, stay ring and bottom ring is shown
in Figure 17. The large hydraulic pressure acts on the stationary structures of the unit,
pressing the bottom ring downward and lifting the head-cover. As a result, the guide vanes
between them are stretched. Since the trailing edge of the stay vane is much thinner than
the leading edge, the maximum flow-induced stress is concentrated at the rounded corner
of the trailing edge of the stay vane.
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Figure 17. The stress distribution of the large stationary structures.

Since the connecting bolts bear the large pressure from the flow channel and tighten
the stationary structures of the unit together, high stresses during the turbine load rejection
appear also on the head-cover bolts, bottom ring bolts, the flange beams, and the bolt
flanges (Figure 17). The bolt couples are evenly distributed along the circumference in the
large stationary structures so that the stress distribution in each bolt couple shows a similar
distribution (Figure 18).

Figure 18. The stress distribution of the large stationary structures and the connection bolts.

The stress distributions of the head-cover bolts and the bottom ring bolts during the
process of turbine load rejection are demonstrated in Figure 19. The analysis shows that
the stress distribution of the connection bolts is similar in general. The maximum stress of
the head-cover bolt is located at the bolt fillet close to the head-cover bolt flange, while the
maximum stress of the bottom ring bolt is concentrated at the bolt fillet near the bottom
ring bolt flange.
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Figure 19. The stress distribution of head-cover bolts and bottom ring bolts.

The stress distribution of the large stationary structures, head-cover bolts and bottom
ring bolts during turbine load rejection varies with time and keeps the same pattern at
different moments. Figure 20 compares the maximum stresses of the stay ring, head-cover
bolts, and bottom ring bolts during turbine load rejection. The stresses are normalized with
reference to the maximum stress of the head-cover bolts.

The axial effective area of the head-cover is much larger than that of the bottom ring,
so the axial force on the head-cover is larger than that on the bottom ring. In addition, the
bottom ring with sold reinforced plates is more rigid than the head-cover. So the maximum
stress of head-cover bolts is higher than the maximum stress of bottom ring bolts during
turbine load rejection, and the peak-peak value of head-cover bolts is also larger than that
of the bottom ring bolts. Figure 20 also shows that the peak-peak value of the stay ring is
larger than the connection bolts, but the absolute stress values are much lower than the
connection bolts.

Figure 20. Comparison of the maximum stresses of the stationary structures during load rejection.

In order to study the relation between the axial thrust and the structural dynamic
behavior, Figure 21 compares the axial thrust and the maximum deformation and stresses
of the structures during the load rejection process. All values are normalized with reference
to their maximum values, respectively. The maximum deformation and stresses of the

176



Machines 2022, 10, 1130

structures follow the same trend of axial thrust with time during the turbine load rejection
and reach their respective maximum values at t = 13.24 s. However, the variation ranges of
these parameters are significantly different.

Figure 21 shows the variation range of the axial thrust, maximum structural defor-
mation and maximum stress of the stay ring. It can be observed that the range is between
0.7 to 1, which is larger than the variation range of the maximum stress of the connection
bolts, between 0.9 to 1. For the connection bolts, the variation range of the head-cover
bolts (0.93–1) is larger than that of the bottom ring bolts (0.98–1), and the absolute stress
value of the head-cover bolts is higher than that of the bottom ring bolts, so under the same
operation condition, the head-cover bolts are more prone to fatigue failure with enough
alternative load cycles.

For the connection bolts, the variation range of the head-cover bolts (0.93–1) is greater
than that of the bottom ring bolts 0.98–1, and the absolute stress value of the head-cover
bolts is higher than that of the bottom ring bolts, as shown in Figure 20. Therefore, under
the same operating conditions, the head-cover bolts are more prone to fatigue failure than
bottom ring bolts under sufficient cycles of alternating loads.

Figure 21. Results’ comparison of the PT unit during load rejection.

5. Conclusions

The flow-induced dynamic behavior of the stationary structures including head-cover
bolts in a prototype pump-turbine unit during turbine load rejection has been studied in
detail.

Firstly, the variation of the inlet and outlet pressures during the load rejection process
has been calculated by 1D pipeline simulation. Then, the 3D model of the researched
PT unit is built from the spiral casing to the draft tube. The pressure-balance pipelines
and labyrinth seals are included in the model. After that, the pressure obtained by 1D
simulation is used as the boundary conditions of the CFD simulation carried out on the
3D model. The calculation results show that large-scale vortices appear in the runner
during the load rejection process. The pressure distribution analysis shows the pressure
concentration on the head-cover.

By applying the pressure loads calculated by CFD simulations, the flow-induced de-
formation and stress of the structures have been analyzed. The maximum deformation and
stresses of the structures during load rejection are changing with time, but the distributions
of deformation and stress at the different moments keep the same pattern.

The maximum deformation during turbine load rejection is located on the inner plate
of the head-cover. Increasing the thickness of the stiffener plates of the head-cover can
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improve the local rigidity of the head-cover, thereby effectively reducing the deformation
of the inner plate of the head-cover.

The maximum stress of the large stationary structures appears at the rounded corner
of the trailing edge of the stretched stay vane, and the maximum stress of the bolts in the
head-cover and bottom ring is concentrated at the bolt fillet close to the bolt flange.

The maximum deformation and stresses in the structures during turbine load rejection
follow the tendency of axial thrust variation with time and reach their respective maximum
values at t = 13.24 s.

During turbine load rejection, the variation ranges of axial thrust, maximum deforma-
tion, and maximum stress are significantly different. The normalized variation range of the
axial thrust, maximum structural deformation, and maximum stress of the stay ring (0.7
to 1) is larger than that of the maximum stress of the connection bolts (0.9 to 1). Both the
absolute stress value and the peak-peak value of head-cover bolts are larger than those of
the bottom ring bolts, therefore the head-cover bolts are more prone to fatigue failure with
enough alternative load cycles than the bottom ring bolts. It is recommended to strengthen
the online monitoring and on-site inspection of head-cover bolts and bottom ring bolts and
replace the bolts after a long service time.
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Abstract: Tidal power generation technology has advanced quickly in recent years. In this study, the
Hilbert-Huang transform (HHT) was used to examine the electrical energy distribution law of tidal
power generation according to the time periods of days, months, and years based on observed data
for tidal power generation. Our analysis summarized the tidal power generation law as follows: in
the span of one day, the motor ran for 14 h before shutting off for 10 h. The frequency was 28 Hz, and
the maximum voltage was 259 V. The tidal power generation swung twice a month, reaching its peak
in the middle of the month and its trough at the beginning. The tidal power output fluctuated twice a
year, reaching its peak in August, September, and October and its trough in February, March, and
April. In the investigation of tidal power generation patterns, the HHT transformation’s precision
and potency were confirmed.

Keywords: tidal power generation; the law of electrical energy distribution; Hilbert-Huang Transform
(HHT); empirical mode decomposition (EMD); intrinsic mode functions (IMF)

1. Introduction

The widespread use of coal, oil, and natural gas in recent years has resulted in numer-
ous issues, including the greenhouse effect, environmental degradation, and ecological
devastation, which have presented severe dangers to the existence and advancement of
humans worldwide [1,2]. The aforementioned environmental issues can be resolved by
substituting renewable energy for fossil energy. Ocean energy, wind energy, and solar
energy are currently the three main new energy sources accessible to humans. Wave energy,
tidal power, salinity gradient energy, and offshore wind energy are some of them. Ocean
energy is currently the focus of new energy research.

Tidal power generation has always been a popular area of research both domestically
and internationally as a type of innovative marine energy generation. We can only more
effectively direct the development and usage of tidal power generation by explaining
the electric energy distribution legislation of its generation. The analysis approach of the
tidal power electric energy distribution law is investigated with a focus on the unique
electric-energy-generation features of the tidal power generation system. By concentrating
on the periodic features of tidal power generation, it is possible to more accurately forecast
and analyze the tidal quality and give correct data references to direct the application of
tidal power generation equipment testing.

In the contemporary study and analysis of electrical energy laws, the Fourier transform,
the Wavelet transform, and the Stockwell transform (ST) are frequently utilized. When
analyzing steady signals, the Fourier transform is typically used, and both its fast Fourier
transform and extended discrete Fourier transform create phase-detection errors [3,4]. The
window function of the ST cannot be a root function. It is adjusted to the actual needs
of specific projects, lacking generality. Additionally, it is computationally intensive [5,6].
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Although the Wavelet transform is suitable for the analysis of nonstationary signals, the
selection of wavelet bases is complicated [7]. The Hilbert-Huang transform (HHT), a novel
nonlinear non-smooth signal analysis technique, is adaptive, and its basic function does not
need to be predetermined, which provides good data-processing flexibility and circumvents
the drawback of the Wavelet transform’s preset basis function [8].

HHT has been extensively used in numerous fields as a mature analysis algorithm. In
preliminary research, researchers in [9] investigated the application of a novel automatic
segmented HHT (SHHT) method for evaluating the SEC of the voltage sag caused by
different types of symmetrical and unsymmetrical faults in both transmission and dis-
tribution networks. Reference [10] proposes the application of the HHT method for the
decomposition of the PQ data into their individual frequency components to separate the
nonstationary voltage sag waveform containing the fundamental frequency component. In
reference [11], the feasibility of HHT for fault detection in VSC-based high-voltage direct
current systems is analyzed. Reference [12] proposes the use of HHT and CNN for the
classification of PS alterations. The HHT is used to obtain the time-frequency spectrum
of the PSs that are signals characterized by a time-varying trend. Reference [13] proposes
a fault-diagnosis method based on the combination of the Hilbert-Huang transform and
convolutional neural network for the fault identification of transmission lines in distribu-
tion networks containing distributed power sources. It was discovered that HHT is very
suitable for the nonlinear and non-smooth stochastic characteristics of the output electric
energy of tidal power generation, even though both domestic and foreign scholars have
largely ignored its use in the analysis of the electric energy law of tidal power generation.

In this article, we introduce a novel concept for employing HHT to study the distribu-
tion law of tidal power generation. Based on the measured tidal power data, the analysis
first examines the start-stop, sharp acceleration, and sharp deceleration of the tidal gener-
ation system over the course of one day and then summarizes the transformation law of
tidal generation over the course of 24 h. To determine the monthly and yearly distribution
rules, the Hilbert spectra of the tidal power generation after 30 days and 12 months are then
calculated using HHT. The Hilbert spectra shows the trend of the tidal power generating
system over one month and one year. Finally, to confirm the precision and efficiency of
HHT analysis in the investigation of tidal power generation patterns, the monthly and
annual distribution curves are compared with the observed data.

2. Materials and Methods

Tidal power is the kinetic energy created by the seawater’s regular flow due to the
Sun and Moon’s changing gravitational pull on the water. As seen in Figure 1a, when the
Sun, Moon, and Earth are in a straight line, the gravitational pulls of the Moon and Sun
are overlaid, causing greater tides known as spring tides. A neap tide is generated when
the Sun, Moon, and Earth are at an angle, canceling out the gravitational forces that would
otherwise result in higher tides Figure 1b. On days with spring tides, the tidal current
velocity is higher, and the captured and output power of the system generating tidal power
are greater; on days with neap tides, the tidal current velocity is lower, and the system’s
captured and output power are consequently lower [14].

Figure 1. Relative position of the Earth, Moon and Sun at high and low tides.
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The tidal power generation platform “Zhongke Hydropower No. 1” built by the Insti-
tute of Electrical Engineering of the Chinese Academy of Sciences in Zhoushan, Zhejiang
Province, is shown in Figure 2. A maximum of 20 kW of electricity can be generated by
the platform, which uses two tidal power generation devices to harness the tidal power of
nearby seas in real-time. The platform for generating tidal power is also outfitted with a
full tidal current detection system, which can track and record characteristics, including
tidal current speed, flow direction, output voltage, current, and power in real-time.

Figure 2. “Zhongke Hydropower No. 1” tidal power generation platform.

The platform, which costs roughly 200,000 RMB, underwent a yearlong test in the
water off Zhoushan, Zhejiang Province, China, between 2016 and 2017. The generated
electricity was cleaned and delivered to the islands’ electrically dependent machinery.
According to estimates, power costs roughly RMB 2 per unit on average.

On spring tide days, the platform records the more typical daily tidal energy generation
data obtained, as shown in Figure 3.

Figure 3. Daily variation pattern of tidal power generation electricity.

It is clear in Figure 3 that over the 24 h of a high-tide day, the output power of tidal
power encounters four peak power-generation processes: high tide, low tide, high tide,
and low tide. Different seawater flow rate circumstances also cause proportional changes
in the motor’s output voltage and power. Seawater moves through the tidal power plant
at roughly 0.4 m/s. When the seawater velocity reaches its first peak, the motor’s highest
output voltage is roughly 250 V; when it falls below a particular point, the motor shuts off.
After that, the direction of the seawater flow shifts, the tidal velocity steadily increases, and
the tidal power generator set also resumes operating from a halt.

In conclusion, the output power of tidal power generation systems similarly exhibits
regular periodic fluctuations along with the periodic changes in the seawater flow rate.
The efficiency of tidal power generation at the load side or the grid connection are both
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directly impacted by this transition, which occurs with some regularity. Studying the power
distribution law of tidal power generation is crucial for this reason.

3. Hilbert-Huang Transform

On nonlinear and nonstationary data, Hilbert-Huang transform (HHT) is used to
perform analysis and processing more effectively [15]. To obtain the intrinsic mode function
(IMF) and the Hilbert spectrum and time-frequency energy spectrum of the signal for signal
analysis, HHT first applies empirical mode decomposition (EMD) to the signal to generate
the IMF.

3.1. Empirical Mode Decomposition (EMD)

Empirical mode decomposition adaptively decomposes any complex signal into a
series of intrinsic mode functions (IMF) based on the signal characteristics. It satisfies the
following two conditions:

• The number of extreme value points of the signal is equal to zero points or differs
by one;

• The local mean of the upper envelope defined by the extreme value and the lower
envelope defined by the extreme minima of the signal is zero.

The EMD process is as follows:

• For the input signal x(t), find the maximum value point x(ti) and the minimum value
point x(tj);

• Construct the upper and lower envelopes of the signal by interpolating the third
spline function for the maximum and minimum points, and calculate the mean value
function xl(t) for the upper and lower envelopes;

• Examine whether xl(t) satisfies the IMF condition, if it does, go to the next step,
otherwise perform the first two steps on xl until the kth step satisfies the IMF condition,
and obtain the first IMF component, noted as c1;

• Get the first residual r1 = x − c1, operate on r1 as in the above three steps to get c2, and
so on;

• Until rn is a monotonic signal or there is only one pole.

Eventually, the original signal [16] is expressed as:

x = ∑n
i=1 ci + rn (1)

3.2. Hilbert Spectrum Analysis

Suppose x(t) is an arbitrary signal and the Hilbert transform of x(t) is:

y(t) =
1
π

∫ +∞

−∞

x(τ)
t − τ

dτ (2)

Its Hilbert inverse transform is:

x(t) =
1
π

∫ +∞

−∞

y(τ)
τ − t

dτ (3)

Obtain the resolved signal:

z(t) = x(t) + iy(t) = a(t)ej∅(t) (4)

where: a(t) is the instantaneous amplitude and ∅(t) is the phase.

a(t) =
√

x2(t) + y2(t) (5)

∅(t) = arctan
y(t)
x(t)

(6)
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The instantaneous frequency is:

f (t) =
1

2π

d∅(t)
dt

(7)

Equations (5) and (7) are expressions for instantaneous amplitude and instantaneous
frequency, which are obtained from a simple modulation and demodulation process.

The voltage and frequency of the power generation fluctuate from moment to moment
due to the energy source’s waveform nature. The HHT’s measurements of instantaneous
voltage and frequency clearly show the variable features.

4. Analysis of Tidal Power Generation Data

4.1. Analysis of Daily Distribution Pattern of Electricity Generated by Tidal Power

The output power data of the tidal energy generator set throughout the day are shown
in Figure 3. The output voltage of the motor changes throughout the day in Figure 3. Voltage
surges and drops occur throughout the generator operation, and voltage interruptions
occur during motor stalls. Next, the EMD decomposition of the signal in Figure 3 is
shown. The first three IMFs were taken for analysis, as shown in Figure 4. It can be
seen in Figure 4 that the signal’s symmetry causes the signal’s primary modes to be
concentrated in IMF1. A residual function that is monotonically decreasing is the outcome
of the EMD decomposition.

Figure 4. The EMD decomposition of the daily generation waveform of tidal power.

The Hilbert spectrum of the all-day tidal energy generation data is shown in Figure 5.

Figure 5. Hilbert spectrum of the daily generation waveform of tidal power.
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In the Hilbert spectrum, it can be seen that:

• There is no curve from 0:00–4:30, indicating that the voltage and frequency are zero.
The motor is at a standstill, with a standstill time of 4.5 h;

• From 4:30 to 5:00, the curve appears in dark blue color. Compared with the color bar
on the right side, the amplitude is small. The curve of the spectrogram is wider, and
the middle value is taken as its frequency, which is lower at this time. After that, the
curve in the spectrogram of the signal shows an upward trend, indicating that the
frequency increases. The color changes from dark blue to light blue, compared with
the right color bar, indicating that the amplitude increases;

• From 7:00 to 7:30, the amplitude and frequency reach the first peak of 248.9 V and
26.6 Hz, after which the curve in the spectrum begins to decrease, which indicates
a decrease in frequency. The color began to deepen from light blue to dark blue,
suggesting a decrease in amplitude;

• From 9:30–10:30, the curve disappears, and the voltage decreases to zero at 9:30, and
the motor stops for 1 h;

• From 10:30 to 11:30, the curve reappears and the motor starts again and runs for
an hour;

• From 11:30–15:30, the curve disappears, and the voltage decreases to zero at 11:30.
Moreover, the motor stops for 4 h;

• From 15:30, the curve appears again in dark blue, with a smaller amplitude and lower
frequency. After, the curve height rises rapidly and the color changes from dark blue
to light blue again, suggesting that the signal amplitude and frequency increase. The
motor speed speeds up, and the output voltage increases;

• From 18:00 to 18:30, the amplitude and frequency reach the second peak with an
amplitude of 258.7 V and a frequency of 27.7 Hz. After, the curve in the spectrum
is maintained at a high level for a while and then begins to decline, with the color
gradually changing from light blue to dark blue and the output voltage gradually
decreasing until 22:00, when the voltage reduces to zero and the motor stops;

• From 22:00–22:30, the motor stops for half an hour, and the spectrum curve reappears
at 22:30, indicating that the motor starts;

• From 22:30 to 24:00, the curve rises and falls, and the color changes from dark to light,
then light to dark. The voltage and frequency rise and then fall.

In conclusion, the motor ran for 14 h and then idled for 10 h. The highest voltage was
259 V, and the frequency was 28 Hz, as can be seen in the Hilbert spectrum, which shows
that the duration of the motor operating for a day, the duration of halting, and the duration
of the maximum voltage appearing are consistent with Figure 3.

4.2. Analysis of Monthly Tidal Power Generation Electricity-Distribution Pattern

The distribution of electrical energy measured by the tidal energy generation system
in September 2016 is shown in Figure 6.

Figure 6. Monthly distribution of tidal power generation.
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The maximum power-generating point occurred on 16 September, the big tidal day,
when the daily power generation was above 2 kW·h for more than half the month. Power
generation increased over a five-day span from 16 September to 20 September, and it also
increased at the start and end of the month. Power generation decreased from 8 September
to 10 September and on 24–25 September, respectively.

With the results in Figure 6, we generated the graph of the monthly variation of
tidal power generation electricity by calculating the daily average voltage of tidal power
generation, as shown in Figure 7.

Figure 7. Monthly variation pattern of tidal power generation electricity.

The EMD decomposition waveform of the tidal power monthly generation waveform
is shown in Figure 8. The first three IMF signals are taken for analysis. Due to the symmetry
of the signal, most of its modes are in IMF1, and the decomposition of the signal’s abrupt
moments is also mirrored in IMF2 and IMF3.

Figure 8. EMD decomposition of the monthly generation waveform of tidal power.

The Hilbert spectrum of the monthly generation waveform of tidal energy is shown
in Figure 9.
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Figure 9. Hilbert spectrum of the monthly generation waveform of tidal power.

After normalizing it, it can be seen that:

• From 1 September to 10 September, the curve gradually moves from light green to
yellow to red as it oscillates downward, showing a decline in energy and a subsequent
decline in daily power generation;

• From 10 September to 16 September, the color gradually shifts from red to yellow
to light green as the curve climbs quickly, signifying an increase in energy and a
quickening of daily power generation;

• On 16 September, the energy of the curve reaches its highest point. With a daily power
generation of 5.69 kW·h, the 16th is the month’s highest power-generating day;

• From 16 September to 24 September, the color gradually shifts from light green to
yellow and then from yellow to red as the curve steadily declines, showing a gradual
decline in energy before a sudden decline in daily power generation;

• From 24 September to 30 September, the curve rises rapidly, with the color gradually
changing from red to yellow and then from yellow to light green, indicating a rise in
energy and a rapid increase in power generation.

In summary, the HHT transformation’s distribution pattern of tidal power generation
is compatible with the observed data shown in Figure 6.

4.3. Analysis of the Annual Distribution Pattern of Tidal Power Generation Electricity

The yearly distribution pattern of the system is shown in Figure 10 based on the
measured power generation data of the tidal power generating system in 2016–2017, where
the horizontal coordinate corresponds to the current month, and the vertical coordinate
represents the system’s monthly power generation.

Figure 10. Monthly distribution of tidal power generation (2016–2017).
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According to Figure 10, the power generated by tidal current energy generators is
higher in September, October, and November, with monthly power generation of over
70 kW·h; it is lower in April, May, and June, with monthly power generation of less than
50 kW·h; and it is essentially between 35 kW·h and 50 kW·h in the remaining months.

The Hilbert-Huang transform and EMD decomposition were then applied to the signal
in Figure 11 to generate the corresponding results shown in Figures 12 and 13. The average
voltage of tidal power generation was used as the input for this HHT process to obtain its
annual voltage distribution pattern (as shown in Figure 11).

Figure 11. Annual variation pattern of electricity generated by tidal power.

Figure 12. EMD decomposition of the annual generation waveform of tidal power.

Figure 13. Hilbert spectrum of the annual generation waveform of tidal power.
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According to Figure 13:

• From July 2016 to September 2016, the curve oscillates upward and gradually changes
color from dark blue to light blue, indicating a sharp increase in energy and a sharp
increase in power generation. The curve reaches its highest point in September, indi-
cating the maximum energy and the most power generation in that month;

• From September 2016 to December 2016, the curve decreases slowly and then rapidly,
and the color changes from light blue to dark blue, indicating that the energy decreases
slowly and then rapidly;

• From January 2017 to March 2017, the curve increases slowly with a dark blue color
and gradually becomes lighter, demonstrating an increase in energy and a gradual
increase in power generation;

• From March 2017 to June 2017, the curve decreases with a dark blue and gradually deep-
ening color, indicating a decrease in energy and a gradual decrease in power generation.

In conclusion, the distribution law of tidal power generation discovered by the HHT
is also compatible with the observed data shown in Figure 10, demonstrating the viability
and efficiency of the HHT for studying the distribution law of tidal power generation.

5. Conclusions

This paper proposes a concept for analyzing the electric energy distribution law of tidal
power generation by using HHT transformation to process and analyze the measured data
of tidal power generation. This study eventually obtained the electric energy distribution
law of tidal power generation in 24 h, 30 days, and 12 months as follows:

1. Within 24 h, the tidal power generation started and stopped more rapidly, and the
voltage varied greatly within a short period of time. The tidal power generation time
was mainly divided into four time periods, corresponding to two high tide and two
low tide processes;

2. There were two fluctuations in tidal energy generation within 30 days, with the peak
position located in the middle of the month and the trough position at the beginning
of the month;

3. There were also two fluctuations in tidal power output during the 12-month pe-
riod, with peaks in August, September and October and troughs in February, March
and April.

A full verification of the accuracy and efficacy of the application of HHT analysis in
the study of tidal power generation law was provided by the fact that the distribution law
of tidal power generation electricity obtained using the HHT in this paper was essentially
consistent with the measured tidal power generation data of the offshore platform. In
addition, the following issues were considered in this report and require more study in
follow-up work:

1. The spectrum maps obtained in this paper sometimes show curve oscillations. In
further studies, the image can be deeply optimized by optimizing data selection by
selecting the sampling frequency;

2. This paper focuses on verifying the accuracy and effectiveness of applying HHT
analysis in studying the law of tidal power generation. A future step can be to consider
the effectiveness and feasibility of other algorithms, such as wavelet and Fourier
applied in this field and compare and analyze the results with those of this paper;

3. Additionally, further studies also can apply the ideas of this paper to the analysis of the
electrical energy law or power quality of other ocean energy power generation systems,
such as wave energy, and summarize the characteristics of different forms of ocean
energy power generation to guide the application of ocean energy power generation.
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Abstract: Taking into account both market benefits and power grid demand is one of the main
challenges for cascade hydropower stations trading on electricity markets and secluding operation
plan. This study develops a multi-objective optimal operation model for the long-term operation of
cascade hydropower in different markets. Two objectives were formulated for economics benefits and
carryover energy storage. One was to maximize the market utility value based on portfolio theory,
for which conditional value at risk (CVaR) was applied to measure the risk of multi-markets. Another
was the maximization of energy storage at the end of a year. The model was solved efficiently through
a multi-objective particle swarm optimization (MOPSO). Under the framework of the MOPSO, the
chaotic mutation search mechanism and elite individual retention mechanism were introduced
to diversify and accelerate the non-inferior solution sets. Lastly, a dynamic updating of archives
was established to collect the non-inferior solution. The proposed model was implemented on the
hydropower plants on the Lancang River, which traded on the Yunnan Electricity Market (YEM).
The results demonstrated non-inferior solution sets in wet, normal and dry years. A comparison in
solution sets revealed an imbalanced mutual restriction between objectives, such that a 2.65 billion
CNY increase in market utility costs a 13.96 billion kWh decrease in energy storage. In addition,
the non-inferior solution provided various schemes for actual demands based on other evaluating
indexes such as the minimum output, power generation and spillage.

Keywords: electricity market; mean-CVaR; cascade dispatching; MOPSO

1. Introduction

Since the new round of electricity from China in 2015, lots of regions and provinces
have established electricity markets and exchange centers. At the end of 2021, the market
trading of electricity included 3778.74 billion kWh, accounting for 45.5% of the total social
electricity consumption. With the gradual liberalization of the power market, a way
to promote power generation consumption through market trading was provided for
hydropower stations. Especially in Southwest China, the hydropower-rich provinces, such
as Yunnan, Sichuan, Guizhou, etc., have successively carried out electric power reform
pilot projects. As the main sending sources for the West-to-East Electricity Transmission
(WEET) project, these hydropower plants face multi-party demands besides their own
market benefits need: flood control, river navigation and water spillage [1–3]. These
demands require large carryover storage of cascades. The carryover energy storage at the
end of a year is an important state to reflect these demands in the long-term operation
of cascade hydropower [4,5]. Under such circumstances, considering both the overall
benefits in different markets and the cascade carryover storage in optimizing the generation
scheduling for cascades is a practical problem to be solved by the hydropower enterprises.
However, this problem becomes much more complicated due to the uncertainty of electricity
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prices, while market risks should be taken into account. In addition, the hydraulic and
market constraints of the cascade hydropower plants increase the complexity further [6].

Despite the benefits of efficiency improvements for power system deregulation, the
introduction of electricity markets can also bring about many risks in power trading. Many
studies have focused on risk management of the electricity market due to the volatility of
market prices. Early studies mainly combined the future market with the node market,
and used forward contract with the short-term market to avoid market risks caused by
price fluctuations [7,8]. Decision analysis and Monte Carlo simulation have been used to
find the optimal combination between markets under economic returns [9,10]. In recent
years, with the participation of new energy and increase in power market categories, meth-
ods of considering multi-market portfolio optimization have gradually received lots of
research attention using two different methods: the mean-variance (MV)-based method,
using, for example, the modern portfolio model (MPT) [11–13]; and the conditional value
at risk (CVaR)-based method [14–17]. Mean-variance models penalize risk in the objec-
tive function, where the measure of risk is the variance of profit, and CVaR models use
their own risk definition based on the probability of reaching a minimum profit [12]. Yan
et al. [11] a novel portfolio theory-based approach is proposed for optimally managing
ES in various markets to maximize benefits and reduce the risk for ES owners. Garcia
et al. [12] proposed MPT models which were combined with a generalized autoregressive
conditional heteroscedastic (GARCH) prediction technique for a generation company to
optimally diversify their energy portfolio. Liu and Wu [13] provided an optimization
strategy for power generation companies’ energy allocation based on an MPT quantitative
analysis and mathematical derivation of risk-free and risky transactions in the PJM market.
Zhao et al. [14] proposed a dynamic multi-stage optimization configuration model for
electricity assets based on the conditional value at risk (CVaR) and the impacts of different
asset reallocation strategies on the electricity assets configuration effect were analyzed.
Zhang et al. [15] designed a risk prevention linkage mechanism of credit evaluation and
risk measurement for retailers, including a credit risk measurement model based on the
CvaR method for accurately describing the retailers’ credit risk. Hang developed a decision
model based on a CVaR methodology, whose object was to maximize the power supplier’s
utilities of electricity purchasing and selling. There are other techniques based on the value
at risk (VaR) model [18] that have already been implemented in electricity markets [19,20].
However, VaR is not as consistent a risk measurement tool as the CvaR because VaR is nei-
ther convex nor sub-additive. The Mean-variance-based and CvaR-based methods mostly
focus on risk measurement and management of a single period, and become extremely
complicated in multiple periods.

Meanwhile, the operation scheduling for hydropower plants is a typical multi-variable
and non-linear problem [21–24], especially for cascade hydropower plants. The most
common main objective of hydropower plants’ optimal operation is to maximize the
economic benefits in the electricity market [24], maximize the power generation during
conventional scheduling [21–23] or maximize the carryover energy storage [5], so it is
difficult to take into account both the demand of the power grid and hydropower stations
at the same time, and it is not suitable for the actual operation demand of the large cascaded
stations. Under these circumstances, optimizing the generation scheduling for cascades in
multiple markets, improving the overall benefits and avoiding price risks for the market
portfolio, and maximizing the carryover energy storage at the end of the year should be
among the vital multi-objective problems to be solved. There is an extensive literature
which explores the multi-objectives optimization scheduling of reservoirs, which remains
a research hotpot [25–28]. There are two kinds of method used to solve multi-objective
optimization problems, one is the traditional mathematical analytic method, and the other
is the evolutionary algorithm. An evolutionary algorithm is a kind of population-based
method with a random search method, which has the ability to approach the real Pareto
front through continuous evolution. Therefore, it is widely used in solving multi-objective
problems, for example, using the Non-dominated Sorting Genetic Algorithm-II (NSGA-II)
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and population-based algorithms. Among the population-based algorithms, the multi-
objective particle swarm optimization algorithm (MOPSO) has the characteristic of fast
convergence.

To our knowledge, few studies have considered both the market benefit and power
grid demand, especially in the circumstances of China’s electricity market, in which power
exchange centers take charge of trading while the power grid takes charge of operations. A
recent paper by Lu et al. [29] established a risk analysis method for cascade hydropower
to participate in the market, which was coupled with the monthly market and day-ahead
market. Different from the work of Liu, we focus on a multi-objective model for a one year
operation schedule which suits both the power grid and power exchange center trading,
and we use price scenarios to characterize the possible situations of the actual clear price in
multiple markets on the premise of knowing the mean and variance of historical price data,
which gives the optimal market portfolio with a confidence level. In addition, we analyze
the model’s performance under different inflow situations, including flood, normal and
dry conditions.

In this paper, a multi-objective optimization model for the long-term operation of
hydropower plants were developed, in which one objective was the maximization of
market benefits considering the price risk and the other was the maximization of carryover
energy storage. The model aimed to give non-inferior sets under typical runoff conditions
according to historical runoff data. To fully consider the volatility of multi-market prices, a
mean-CvaR-based utility function was constructed to calculate the multi-market revenues
and risks in whole schedule periods for the market portfolio. A MOPSO-based framework
was proposed to solve the model and several mechanisms, including a chaotic mutation
search, elite individual retention and dynamic updating archives, were introduced to
accelerate convergence. The developed model was evaluated by optimizing the monthly
generation schedules of China’s Xiaowan-Nuozhadu hydropower system during a one-year
period. The methodological framework used to investigate this relationship is illustrated in
Figure 1.

The contributions of this paper are threefold. (1) We proposed a utility function for
a multi-market portfolio which measured the benefits and risk based on the mean-CVaR
method in relation to long-term hydropower scheduling. (2) A multi-objective particle
swarm optimization algorithm was established with a chaotic mutation search mechanism,
elite individual retention mechanism and dynamic updating of archives to accelerate
algorithm convergence. (3) The effectiveness of the proposed model was validated by
applying it to perform the long-term scheduling of the Xiaowan-Nuozhadu hydropower
system in China. Combined with other operation indicators, the non-inferior frontier
solution could provide optimal schemes which were adapted to different demands.

The remainder of this study is organized as follows. Section 2 introduces the objectives
and constraints. Section 3 explains the methods used to solve the model including the
market relative and multi-objective particle swarm optimization algorithm. Section 4
provides a detailed information of the case study. Section 5 includes an analysis and
discussion of the case study results. The conclusions are summarized in Section 6.
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Inputs

Inertia variables and acceleration constants
Population size and iterations
Initial population
Initial and final reservoir levels
Nature inflow for reservoir
Basic operation characteristics of 
hydropower plants, i.e., power output 
limit, storage boundary, generation inflow 
limit, and so on

Solving the multi-objective optimization model

Chaotic mutation search mechanism

Elite individual retention mechanism

Inputs:
Individual, fitness value ,variation control factor ,chaotic sequence
Outputs:
Mutated individual and corresponding fitness value

Inputs:
Fitness value set 
Outputs:
Non-dominated fitness value and index 

Inputs:
Individual, multi  market price scenarios
Outputs:
Fitness value of Mean-CVaR utility function, cascade minus output

Objective function fitness value calculation 

Acquire last generation and global optimal individual
Update the individual code and velocity vector
Generate new generation population

Yes

No
Has the maximum number 
of iterations been reached?

Dynamic updating of archives mechanism

Inputs:
Selected individuals, non-dominated fitness
Outputs:
Global best individuals and Pareto set 

Stop Iteration and output results

Price scenarios generation

Inputs:
Average and standard deviation of multi-
market  price per month
Outputs:
Price scenarios

Outputs

Non-inferior solution sets
Global population of water level and 
generation distribution  

Figure 1. Methodological framework of the proposed optimization model.

2. Objectives and Constraints

2.1. Obejctieve

This paper considers two optimization objectives: the maximum market utility func-
tion value and maximum carryover storage of cascade stations.

The former expects that the maximum market benefits of cascade hydropower under
a minimum risk of loss, which is represented by the utility function value; the latter
expects maximize carryover storage of cascade stations which meets the demand of peak
regulation and frequency regulation in the scheduling period. This model is a multi-
objective optimization problem, which can be expressed as

maxF(x) = [ f1, f2] (1)
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where f1 is the utility function of the cascade stations’ multi-market benefits and can be
expressed as

f1 =
T

∑
t=1

U(t) =
T

∑
t=1

(E(t) + CVaR(Lost(t), β)) (2)

where f2 is the carryover energy storage at the end of the period and can be expressed as

f2 = EST (3)

where N refers to the total number of cascade hydropower stations, and n refers to the
index number of hydropower stations; T is the total number of scheduling periods, and t
is the index number period which is on monthly scale; E(t) is the expected multi-market
return in period t; Lost(t) is the lost function in period t; CVaR(Lost(t), β) is the conditional
value at risk under the probability of 1 − β in period t; and EST is the energy storage of
hydropower stations at the end of period T.

2.2. Station Constraint

To solve the objective function, the following constraints must be met:

1. Water balance constraint: ensure the water balance of upstream and downstream
power stations and adjacent periods, as follows:

Vt+1
n = Vt

n +
(

It
n − qt

n − rt
n
) · Δt · 3600 (4)

where Vt
n and Vt+1

n are the storage capacity of hydropower station n in the period
t and t + 1, measured in m3; It

n represents the inflow of hydropower station n in
the period t, measured in m3/s; qt

n represents the generation flow of hydropower
station n in the period t, measured in m3/s; rt

n represents the spillage water flow of
hydropower station n during the period t, measured in m3/s; and Δt is the number
of hours for the period.

2. Water level restriction: the water level restriction of hydropower station dispatching
ensures that the reservoir operates within a safe and reasonable water level range:

Zt
n ≤ Zt

n ≤ Zt
n (5)

where Zt
n represents the water level of hydropower station n in the period t; Zt

n and

Zt
n are the lower limit and upper limit of the water level of hydropower station n in

the period t, respectively, measured in m.

3. Output constraint: the upper and lower output limits of the hydropower station are
determined according to the nameplate output, maintenance plan, minimum technical
output limit, etc., of the hydropower unit:

Pt
n ≤ Pt

n ≤ Pt
n (6)

where Pt
n represents the output of hydropower station n in the period t, measured

in W; Pt
n and Pt

n are the lower and upper output limits of hydropower station n in

period, respectively, measured in W.
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4. The turbine flow constraint mainly depends on the overflow capacity of all water
turbine units of the hydropower station:

qt
n ≤ qt

n ≤ qt
n (7)

where qt
n represents the turbine flow of hydropower station n in the period t, mea-

sured in m3/s; qt
n and qt

n are the lower limit and upper limit of the turbine flow of

hydropower station n in period t, respectively, measured in m3/s.

5. Water discharges constraint: the discharge limit of a hydropower station is related
to the discharge capacity of the hydropower units and the discharge capacity of the
spillway:

St
n ≤ St

n ≤ St
n (8)

where St
n represents the discharge of hydropower station n in period t, measured in

m3/s; St
n, St

n represent the lower limit and upper limit of the discharge of hydropower

station n in period t, respectively, measured in m3/s.

6. Power generation function:
Pt

n = qt
n · wrn[ht

n] (9)

ht
n =

Zt−1
n + Zt

n
2

− Zdt
n (10)

where ht
n represents the average gross water head of station n in period t; Zdt

n is
the average tailrace level of station n in period t; and wrn[·] represents the water
released-energy conversion function of station n.

7. Carryover energy constraint, based on the expression in [4]:

vun = vn,T − vn,min + vun−1 (11)

EST =
N

∑
n=1

vun

ηn
(12)

ηn = T−1 ·
T

∑
t=1

wrn[ht
n] (13)

where vi,T represents the storage of station n in period T; vn,min is the minimum
storage of station; vun is the sum of the storage of station n and its upstream station,
measured in m3; and ηi is the average water consumption rate of station n, measured
in m3/kWh.

8. The relationship between the water level and reservoir storage:

Vt
n = f zv

n
[
Zt

n
]

(14)

where f zv
n [·] represents the water level as a function of station storage for station n.
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9. Relationship between the tailrace water level and reservoir discharge:

Zdt
n = f zq

n
[
qt

n
]

(15)

where f zq
n [·] represents the tailrace water level as a function of reservoir discharge for

station n.

10. The market electricity of a station is calculated as follows:

Qt
n = 3.6 · Pt

n · Δt (16)

where Qt
n represents the total market electricity of station n in period t, measured in

kWh.

3. Model Solving Method

3.1. Mean-CVaR Market Model
3.1.1. CVaR Model

Let Lost(x, y) denote the loss associated with decision variables vector x and random
variables vector y. x can be represented as a market portfolio, and vector y stands for the
uncertainties affecting the loss. If the probability density function of y is given as p(y), the
distribution function of loss function will be determined for x, which is given by:

ϕ(x, a) =
∫

Lost(x,y)<a
p(y)dy (17)

Given the confidence level β(0 < β < 1), the VaR of the portfolio is given by the
following expression:

VaR = min{a ∈ R : ϕ(x, α) > β} (18)

It is assumed that a is the VaR for the specified portfolio under confidence level β.
Nevertheless, even though regulators and fund managers have widely used VaR, it has
some drawbacks. The VaR approach has the undesirable property of a lack of sub-additivity,
making it difficult to calculate when using scenarios and, if that is the case, it is a non-
convex and non-smooth function with multiple local extreme values [30,31]. Therefore,
an alternative measure of losses for VaR with more attractive properties is the conditional
value at risk (CVaR) measure [32]. Given confidence level β, the CVaR of the portfolio is
given by the following expression:

CVaR = E(Lost(x, y) > VaR) = (1 − β)−1
∫

L(x,y)>VaR
f (x, y)p(y)dy (19)

The Monte Carlo method is generally used to solve the definite integral of a function.
Its basic idea is to obtain a large number of experimental solutions of the problem through
a large number of random variable samples. On this basis, the statistical characteristics
(usually the mean value) of the optimization variables are taken as the solution of the
problem [33]. The Monte Carlo method is applied to simulate the cumulative distribution
function by taking the L sample scene vector

{
P1(t), P2(t), . . . , PL(t)

}
, in which the vector

Pl(t) =
{

pl
m,t

}
, pl

m,t represents the possible price value of the market m in period t.

Then, the total market value Rl(t) = Pl(t) · W(t), W(t) == {wm,t}, wm,t represents the
distribution proportion of market m in period t. We consider Lost(l, t) = P(t) ·W(t)−Rl(t),
which means the loss benefits of the forecast and actual possible price in the market,
where P(t) represents the average electricity price in period t. We denote FCVaR as an
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approximation of the CVaR obtained by sampling the probability distribution in Lost(l, t).
FCVaR is obtained using the following expression:

Fcvar = a + (L · (1 − β))−1
L

∑
l=1

(Lost(l, t)− a)+ (20)

where a is the VaR when the CVaR is minimized, c represents the cost of the hydropower
station, Fcvar represents the expected loss of market benefits in the period under confidence
level β.

Then, the total market profit of scene l in period t is given with the following expres-
sion:

pro f il
t =

N

∑
n

(
(

M

∑
m

pl
m,t · wm,t − c) · Qn,t

)
(21)

where Qn,t is the power generation of station n in period t, measured in kWh, and the cost
of hydropower stations is 0 in this paper.

3.1.2. Mean-CVaR Utility Function

Previous modern portfolio theory (MPT) models based on the portfolio theory of
Markowitz [34] have allocated energy between spot and contract markets in real markets.
Liu and Wu [35] used MPT to allocate energy of risky and non-risky assets in the PJM
market. Although MPT has been a rather popular measure of risk in portfolio selection, it
has its limitations. One distinguished limitation is that analysis based on variance considers
high returns as equally undesirable as low returns because high returns will also contribute
to the extreme of variance. Due to the variance limitation, the CvaR can be used to replace
variance for measuring risk. Then, the mean-CVaR utility function can be given with the
following expression:

E(t) = L−1 ·
L

∑
l=1

pro f itl
t (22)

Lost(l, t) =
N

∑
n=1

(
Qn,t ·

(
M

∑
m=1

wm,t · (pm,t − pl
m,t)

))
(23)

a = quan(Lost(l, t), 1 − β) (24)

U(t) = E(t) + CVaR(t, β) = L−1 ·
L

∑
l=1

pro f il
t + Fcvar (25)

where quan(seq, γ) represents the quantile of the seq sequence at confidence level γ, which
is the same meaning as the expression of VaR. However, it is hard to consider the risk
of whole scheduling periods, as it is much more complicated than calculating the risk
of one period. For the sake of simplifying the calculation, we take the minimization of
CvaR in period t as the risk measure based on a random price scenario set and take the
average value of multi-market profit returns as the expected return. The mean-CVaR utility
function obtains the final value by participating in market proportion decision variables
and generating a capacity decision.
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3.2. Solution of Cascade Multi-Objective Optimization Problem
3.2.1. Standard Particle Swarm Optimization

The particle swarm optimization algorithm is a swarm intelligence optimization
algorithm. In the algorithm, particles update their speed and position in the solution space
according to the best position of the population and the best position in their history. The
speed and position expression formula is as follows:

xk+1
i,j = xk

i,j + vk+1
i,j (26)

vk+1
i,j = ωvk

i,j + c1r1

(
pk

i,j − xk
i,j

)
+ c2r2

(
gk

i,j − xk
i,j

)
(27)

where, i is the individual number, i= 1, 2, 3, . . . , m; j is the dimension number, j = 1, 2, 3, . . . , n;
k is the number of iterations; xk+1

i,j and xk
i,j are the individual codes; vk

i,j and vk+1
i,j are the

velocity vectors; pk
i,j is the single generation optimal individual; gk

i,j is the global optimal
individual; ω is the inertial variable; c1 and c2 are acceleration constants respectively; r1
and r2 are the random number subject to a [0, 1] uniform distribution.

3.2.2. Multi-Objective Particle Swarm Optimization Algorithm

At present, the multi-objective particle swarm optimization has been widely used in
multi-objective problem solving [36,37]. For the multi-objective model proposed in this
paper, a multi-objective particle swarm optimization (MOPSO) algorithm was constructed.
In order to obtain a better Pareto efficient frontier solution set, the local search ability was
improved through the use of a chaotic mutation search mechanism. The file mechanism
based on an elite retention strategy dynamically updates the globally and historically
optimal set of non-dominated solutions. The congestion distance selection mechanism was
used to determine the globally and historically optimal individuals of each generation to
improve the PSO algorithm. Finally, according to the characteristics of the proposed model,
an individual coding method based on mapping mechanism was proposed.

• Chaotic mutation search mechanism

The particle swarm optimization algorithm has a strong global search ability and weak
local search ability. Considering that with the increase of the number of iterations, the
quality of individuals is greatly improved, and the probability of better individuals nearby
is improved, the local search for historical optimal files and global files becomes relatively
important. For this reason, the standard uses a relatively mature chaotic cubic map to
perform mutation operations on individuals in the file in order to expect to obtain other
better solutions or non-inferior solutions. The calculation formula is as follows:

X′
i = Xi · (1+φ · Zn

)
(28)

Zn = 4(Zn−1)
3 − 3Zn−1 (29)

φ = 1−(k − 1)/kmax (30)

where φ is the variation control factor; Zn is a chaotic sequence, Zn ∈ [−1, 1]; and k and
kmax are the iteration number and maximum iteration number, respectively. If the fitness
value of the variant individual is the dominant solution of the original individual it will
be replaced, the dominated solution will not be replaced and the non-dominated solution
will be replaced according to a certain probability. At the same time, the whole chaotic
mutation search mechanism also occurs randomly under a given probability.

199



Energies 2023, 16, 604

• Elite individual retention mechanism and dynamic updating of archives

For the individuals of the population in the algorithm, the corresponding individual
file is established according to the literature to save the non-dominated solution set of
individuals in the historical process and provide choices for the next generation of historical
optimal individuals. Similarly, the global file includes the storage of non-dominated
individuals obtained in the iterative process. The update mechanism of individual files
and global files is as follows:

P(k + 1) =

⎧⎨⎩
P(k) ∪ x(k + 1)\{p}, ∃p, f (x) ≺ f (p)
P(k), ∃p, f (p) ≺ f (x)
P(k) ∪ x(k + 1), f (p) ∼ f (x)

(31)

where P(k + 1), P(k) represents the individual files or global files of the k and k+1 gener-
ation; the individual is p in the file; and x(k + 1) is the individual corresponding to the
individual file in the generation k+1. If individual x(k + 1) in the file is controlled, the
controlled individual in the file will be deleted and x(k + 1) will be added to the file. If it
is controlled by an individual in the file, the file will remain unchanged. If x(k + 1) is not
controlled by individual archives, it will be directly added to the archives.

As the number of iterations increases, the number of individuals in the file increases
gradually. To ensure the speed of iterative calculation, we set the number of individuals
contained in the file. The strategy of the file update was to perform a non-inferior hierarchi-
cal sorting of individuals in the file, and by calculating the individual crowding degree,
when the number of files exceeded the limit, the individuals with low crowding degree
would be deleted from the file. The crowding degree calculation formula is as follows:⎧⎨⎩

I(d1) = I(dN) = ∞

I(di) =
O
∑

o=1

I(i+1)· fo−I(i−1)· fo
f max
o − f min

o

(32)

where I(d1) and I(dN) are the first and last individuals after sorting, respectively, and N
is the total number of current individuals in the file; f max

o and f min
o are the maximum and

minimum values of the file individual, respectively, in the o objective function o, and O
is the total number of objective functions in the fitness function; I(i) · fo is the value of
objective function o corresponding to individual i; and I(di) is the crowding degree value
of the individual in the sorted file.

At the same time, based on the crowding degree value, the mechanism of global opti-
mization for each generation selection history and the mechanism of historical optimization
for each individual are given. The selection probability for any individual in the file is as
follows:

prob(l) =

⎧⎪⎨⎪⎩
rs
2 , l = 1, N
(1 − rs)

I(dl)
N−1
∑

i=2
I(di)

, i = 2, 3, . . . , N − 1 (33)

where rs is a larger value, which was set to 0.7 in our model.

3.3. Overall Solution Framework

Coupled with the above sections, the overall solution framework of the multi-objective
optimal scheduling problem of cascade hydropower stations is shown in Figure 2.
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Figure 2. Multi-objective Particle Swarm Optimization Solution Framework.

4. Case Study

4.1. Basin Cascade Data

The proposed model was applied to the cascade hydropower plants of the Lan-
cangjiang River in Yunnan Province, China. Seven hydropower plants have been built on
the middle and lower Lancangjiang River, with a total installed capacity of 15,915 MW.
Figure 3 shows the distribution chart of the middle and lower Lancangjiang River cascade,
with reservoir characteristics in Table 1. From May to October the maximum water level of
stations is at flood level, while for the rest of the year it is a normal level. Two hydropower
plants have long-term regulation abilities in the studied cascade, and they are Xiaowan and
Nuozhadu. The storage capacities of the other five reservoirs were much smaller and three
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of them did not trade on the Yunnan Electricity Market. The cascade power decisions were
distributed through the operation of these two large reservoirs.

Figure 3. The distribution chart of Xiaowan and Nuozhadu.

Table 1. Characteristics of hydropower plants.

Plant Name
Installed

Capacity (MW)
Normal Level

(m)
Flood Control

Level (m)
Dead Level (m)

Maximum
Discharge

(m3/s)

Maximum
Generation
Flow (m3/s)

Xiaowan 4200.00 1240.00 1236.00 1166.00 20,683.00 2202.00
Nuozhadu 5850.00 812.00 804.00 765.00 27,418.00 3240.00

4.2. Electricity Market Information

The studied Yunnan Electricity Market (YEM) has three majority trading markets: a
year-bilateral trading market, a matchmaking trading market and a month-bilateral trading
market in long-term market. Based on the public price information of Kunming Power
Exchange Center (KPEC), which was the power exchange center of the YEM, the average
and the standard deviation of the market price were treated as known and are given in
Table 2. The price scenarios were parameterized using the statistical characteristic value in
Table 2. The total number of scenarios was 100.

Table 2. The parameters of market clear price for multi-markets in a different month (CNY/MWh).

Month
Centralized Market Bilateral Market Day Ahead Market

Avg. Std. Avg. Std. Avg. Std.

Jan. 239.82 12.19 234.88 8.53 244.15 3.27
Feb. 242.29 14.3 233.95 2.56 246.3 5.88
Mar. 240.11 13.02 234.85 2.46 237.77 10.25
Apr. 240.07 12.56 246.34 6.52 240.16 12.17
May 236.01 13.01 231.23 2.67 238.81 9.42
Jun. 174.58 16.79 172.04 1.83 186.58 23.12
Jul. 123.61 17.21 120.01 1.86 131.25 29.59

Aug. 114.71 18.26 112.69 1.79 123.54 34.29
Sep. 114.66 18.8 104.57 9.97 126.4 40.79
Oct. 125.64 16.05 132.27 6.46 148.09 32.64
Nov 236.75 15.62 249.27 2.38 250.25 14.23
Dec. 244.96 19.92 275.03 15.67 270.17 18.38

Note: Avg. indicates the average value of the market clear price; Std. indicates the standard deviation of the
market clear price.

4.3. Inflow Information

In order to verify the effectiveness of the model method in this paper, three different
inflow years were selected: a wet year, normal year and dry year. Figure 4 shows the
interval inflow of each cascade hydropower station in three typical years.
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Figure 4. The monthly local inflow of each reservoir in wet, normal and dry years.

5. Results and Discussion Case Study

This analysis involves the following parts: (1) A non-inferior frontier solution set
analysis under different incoming water conditions, (2) a solution set for water level and
market proportion analysis and (3) a frontier solution set selection strategy.

5.1. Non-Inferior Frontier Solution Set under Different Incoming Water Conditions

In this paper, the population number was 100, the number of iterations was 500 and
the inertia variable was adaptively changed with the iteration process. The purpose was to
have a better global search capability in the early stage of the iteration, and focus on a local
search at the end of the iteration. Therefore, the maximum inertia variable was set to 0.9
and the minimum inertia variable was set to 0.2, resulting in:

ωk = ωmax − k
K
(ωmax − ωmin) (34)

where ωk is the inertia variable of the time, and k and K are the current iteration number
and the maximum iteration number, respectively. The local speed factor was 1.2 and
the global speed factor was 0.8. The individual contained two kinds of chromosomes,
both of which used floating point coding: One was a water level chromosome; the initial
water levels were set to 1230 m for Xiaowan and 805 m for Nuozhadu. The other was the
proportion chromosome of risk market participation in the period, which was composed of
a multi-dimensional array of reservoirs, which generates constraint satisfaction. Figure 5
shows the non-inferior set in a dry, normal and wet year. It can be seen that:
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Figure 5. The non-inferior set result under different inflow years: (a) wet year, (b) normal year, (c) dry
year.

1. Under the different inflow conditions, the trend of the non-inferior set was similar,
and the distribution of the overall points was relatively uniform. Figure 5 obviously
demonstrated that the maximum and minimum values of the cascade utility function
values changed significantly depending on the inflow conditions, i.e., the maximum
market utility values in wet and dry years were 10.73 billion CNY and 9.07 billion
CNY, respectively, which represents a reduction of 1.66 billion CNY, while the mini-
mum values were 8.07 billion CNY and 5.67 billion CNY, respectively, representing
a reduction of 2.40 billion CNY. It was found that the nature inflow has an obvious
influence on market benefits but has little impact on the range of carryover energy
storage.

2. The two objectives of market utility function value and carryover energy storage were
obviously inversely proportional under the three different inflow conditions. With
the increase of market utility value, the rate of decreasing carryover energy storage at
the end of year increased, which means that it will take more cost of energy storage
reduction to improve the market benefits when the benefits increase to a certain level.
On the one hand, when the energy storage at the end of year is kept at a high level,
the market benefits can be increased at a small cost.

3. The non-inferior set can cover a wider space. Under the three types of water inflow
(flood, normal and dry), the range of market utility function was 2.65 billion CNY,
2.73 billion CNY and 3.39 billion CNY, respectively, while the range of carryover en-
ergy storage at end of year was 13.95 billion kWh, 13.36 billion kWh and 14.34 billion
kWh, respectively.

5.2. Operation Analysis in Solution Sets

In this sub-section we take five schemes of points from the leftmost, rightmost and
middle of the non-inferior solutions sets under the wet year. These fifteen schemes of
solution sets are listed in Table 3, ordered by market utility function value. Corresponding
to solution groups in Table 3, the water level of cascade stations are shown in Figure 5, in
which the more blue colors represent a greater market utility value of the cascade stations,
and the more green colors represent a smaller market utility value of the cascade stations.
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Table 3. Non-inferior set of two objective functions.

Non-Inferior Set
Scheme Number

f1/Billion CNY f2/Billion kWh

1 8.08 15.43
2 8.25 15.42
3 8.26 15.41
4 8.27 15.27
5 8.30 15.27
6 9.72 11.71
7 9.72 11.58
8 9.73 11.00
9 9.77 10.64
10 9.80 10.6
11 10.58 4.59
12 10.61 3.50
13 10.62 2.98
14 10.68 2.45
15 10.73 1.47

It can be seen that the average market utility values was 8.23 billion CNY and the aver-
age carryover energy storage was 15.36 billion kWh in schemes 1–5, while in schemes 11–15
the average was 10.64 and 2.99, respectively. It is obvious that the amplitude of market
utility values was smaller than that of carryover energy storage. From the perspective
of objective values, it was found that the increase in the rate of market benefits was far
lower than the decrease in the rate of energy storage, as the increment of market bene-
fits between schemes 5 and 6 was 1.42 billion CNY and the decrement of energy storage
was 3.56 billion kWh, while the same values were 0.78 billion CNY and 6.01 billion kWh
between schemes 10 and 11. This further explains that the two objectives are in conflict
and restrict each other, which indicates that how an operator balances between them will
directly affect the overall operation efficiency of the cascade stations now and in the future.

Generally, as shown in Figure 6a, the trend of Xiaowan’s water level curves in different
schemes were similar from January to April: in the dry season the water level fell and
water vacated the reservoir, while from June to September, in the flood season, the water
level rose and water was stored in the reservoir. Under the two objectives of market utility
value and energy storage, the water level at the end of year decreased in the schemes which
pursued more market benefits. However, the trend of Nuozhadu’s water level curves were
quite different in these schemes, and they are shown in Figure 6b. Take schemes 8–15,
which pursued the market utility value, as examples: the water levels in the dry season
(February to March) fell rapidly to increase the power generation, while the water levels
in the flood season (January to October) increased slowly, to take advantage of the large
amount of inflow to increase the power generation. On the other hand, the water level
of schemes which pursued energy storage at the end of the year were at higher positions
relatively to achieve a lower consumption rate to ensure the market utility value.
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Figure 6. The optimization process of regulating reservoirs in schemes 1 to 15. (a) Xiaowan;
(b) Nuozhadu.

Figure 7 shows the portfolio proportion and generation in whole scheduling periods
and Figure 8 shows the expected benefits and CVaR in whole scheduling periods. In terms
of the types of markets hydropower stations choose to participate in, most of the months
include two or more types which have considered market portfolios to reduce the value at
risk under confidence levels. Combined with Figure 8, although the generation of stations
in the flood season (June to October) is larger than in the other seasons (dry and normal), the
expected benefits are not greater than the others in terms of the growth of utility function
value, which is affected by a low average price. On the other hand, the CVaR increased
due to the high power generation during the flood season. Thus, this indicates that the
accuracy of the market price forecast is more important in the flood season. It is significant
that, in November and December in schemes 11–15, the cascade lowered the water level to
gain huge benefits instead of maintaining a high level for storage, which, combined with
Figure 6, further explained the mutual constraints between objectives.
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Figure 7. Market portfolio and generation of regulating reservoirs in schemes 1 to 15. (a) Schemes 1–5;
(b) Schemes 6–10; (c) Schemes 11–15.
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Figure 8. Expected benefits and CVaR of cascade reservoirs in schemes 1 to 15.

5.3. Selection Strategy of Non-Inferior Solution Set

In order to better screen the non-inferior solution for station operators, in this section
we selected the power generation, minimum output and spillage energy as the evaluation
indexes based on the actual scheduling demand, combined with a non-inferior solution
set proposed in Table 3, and analyzed the performance of these schemes according to the
previous evaluation indicators, and provided selection suggestions. The evaluation index
of the non-inferior solution set is shown in Table 4.

Table 4. Evaluation index of non-inferior solution set.

Non-Inferior Set
Number

Evaluation Index

Minimum Output
/MW

Power Generation
/Billion kWh

Spillage Energy
/Billion kWh

1 459.29 51.26 0.00
2 670.15 51.31 0.00
3 875.40 51.29 0.00
4 1587.29 51.42 0.04
5 1259.84 53.27 0.00
6 5264.10 55.34 0.62
7 6078.05 55.00 0.57
8 4386.56 55.97 0.43
9 5632.49 55.92 0.77
10 4639.70 56.09 0.55
11 5369.64 58.96 1.20
12 5583.61 59.12 1.60
13 5074.72 59.77 1.02
14 5520.08 59.36 1.84
15 5394.72 59.56 2.15

It can be seen from Table 3 that the maximum market utility value was achieved in
scheme 15, which was 10.73 billion CNY; the maximum carryover energy storage was
achieved by scheme 1, which was 15.43 billion kWh; the maximum power generation was
achieved by scheme 13, which was 59.77 billion kWh; the minimum output was achieved
by scheme 8, which was 6078.05 MW; and the minimum spillage of energy was achieved
by schemes 1, 2, 3 and 5, which had spillage of 0 billion kWh. According to the actual
dispatching and market demand, the following suggestions can be given: (1) Considering
the stable operation of the power grid, scheme 7 can be suggested, and the minimum
system output values were higher than 6000 MW. (2) Taking into account the reduction of
water spillage, schemes 1, 2, 3 and 5 can be suggested. (3) Considering the consumption of
cascade power generation, schemes 13–15 schemes can be suggested.
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6. Conclusions

In this study, we proposed a multi-objective optimization model considering both
market benefits and energy storage at the end of the year for cascades in long-term operation
schedules. Based on the mean-CVaR model, a utility function was established to measure
the market portfolio benefits and risks in monthly trading. A chaotic mutation search
mechanism, elite individual retention mechanism and dynamic updating of archives were
incorporated into the MOPSO to guarantee the convergence efficiency of the algorithm
and improve the diversity of solutions. To evaluate the proposed model, simulations
with different inflow years were conducted to evaluate the rationality of the model. The
following conclusions were drawn from the analysis:

1. The proposed multi-objective model can give a reasonable non-inferior solution set
which considers both the market benefits and energy storage.

2. The optimal solution set reflected the mutual restriction of the objectives (that as
market benefits of cascade stations increased, less energy storage for the cascade
stations could be maintained at the end of scheduling).

3. The operation analysis revealed an internal relationship between benefits and risk. In
a flood season, the benefits were not great, which was affected by low average prices,
while the risk was relatively large due to the high power generation.

4. Based on the non-inferior solution, various schemes can be provided according to the
different actual needs.

It should be mentioned that the market reform in China is still at an early stage
and the number of available samples is relatively small. This paper was based on price
distribution assumptions and the price scenarios were generated stochastically instead of
using real historical data from markets. Due to the electricity market reform policy, more
and more information might be available to the public in the future, so that the interaction
characteristics between the markets could be analyzed in detail. The practical application
of the proposed methodology can be extended to other objectives demanding detail such
as flood control, irrigation and navigation. It is also recommended that further research be
extended to cascade stations crossing provinces and regions.
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Abstract: Utilization of unharnessed hydro-power necessitates designing fish-friendly hydraulic
machinery. Towards this effort, the present work investigates various methods for tracking fish
motion, ranging from particle tracking methods to accurate, but computationally expensive, body
tracking methods, such as immersed boundaries and overset meshes. Moreover, a novel uncoupled
6-Degree of Freedom tracking technique is proposed, based on an approximated pressure field around
the tracked body of interest, using steady-state flow field data, and including collision detection to
walls. The proposed method shows promising results in terms of accuracy, being comparable to the
more computationally expensive fully coupled methods at a tiny fraction of the execution time. The
new method reveals location of fish–blade impact, as well as statistics of forces, pressure and flow
shear that a passing fish is subjected to, both in the normal and reverse operation of the turbine. The
low computational cost of the proposed method renders it attractive for optimization studies.

Keywords: fish-friendly hydropower; body tracking; fluid–structure interaction; collision detection

1. Introduction

Hydropower is the largest contributor to the renewable energy market, making up
almost 16% of the total produced electrical energy worldwide [1]. Compared to other
renewables, it has an estimated contribution in the energy production of almost 60%, based
on 2021 data [2]. The role of hydropower is expected to increase dramatically in the future
for two main reasons:

1. It can greatly contribute as an energy storage solution, along with batteries, allowing
the increased penetration of other renewable sources [3], such as wind and solar, the latter
being inherently less predictable due to weather patterns. Estimates indicate that the
installed capacity of reversible hydro/pumped storage will increase by 56% till 2026 [4].

2. There is a substantial amount of unharnessed hydropower potential, with estimates
indicating that, roughly, 25% of the technically achievable and 50% of the economically
feasible (for the current technologies) potential is currently being utilized [5]. Indicatively,
significant potential can also be found in existing infrastructure that currently lacks gener-
ating units (e.g., existing barrages, weirs, dams, canal fall structures, water supply schemes)
by adding new hydropower facilities. To this purpose, the installed hydropower capacity
is expected to increase steadily [6], with projections showing a steady 3% increase annually
of hydropower contribution to the global energy market until the year 2030, assuming a
Net Zero Emissions scenario [7].

As outlined above, the increasing penetration of hydropower, both as a means of
electric grid stabilization/energy storage solution and flexible energy production, through
the use of new and existing infrastructures, is expected to have an impact on aquatic
life [8,9]. In recent years, there has been a steadily increasing interest in fish-friendly
turbine design concepts, that, aside from efficiency objectives, also examine aquatic life
survivability indicators.

Despite the increasing interest in hydropower, the concept of fish-friendly hydropower
and fish-friendly turbines is not new. Since early 2000s there have been efforts to design
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novel turbine concepts with minimum effects on passing fish. In particular, several critical
damage mechanisms have been identified [10,11], namely:

1. The possibility of impact of the fish on the rotating runner and/or stator vanes, due
to the surrounding flow. The aspect of mechanical trauma could also involve grinding of
fish in small passages/gaps.

2. The local pressure variation over time and in particular sudden pressure decrease,
as pressure increase was found to have little effect on passing fish [11]. More extreme
pressure drops could even lead to barotrauma [12] and/or cavitation inside the fish tissue,
even though these are in general limited, as there are guidelines on minimum pressure for
turbine operation.

3. The intensity of shear stresses, vorticity and turbulence which mechanically lead
to strain of the fish tissues and/or disorient them. Abrasion can also occur as the fish is
forced to the circumference of turbine pipelines due to imparted whirl [11], e.g., inside the
draft tube.

Many studies have been conducted with experimental means to understand the mech-
anisms of fish damage and to extrapolate these findings to fish-friendly turbine concepts.
Indicatively, investigations with X-rays and high-resolution photography on simulated
decompression of fish tissues have illustrated that the main mechanism of barotrauma
is large pressure drops [12], potentially rupturing fish bladders. Similar experimental
investigations with water jets revealed shear stress thresholds that fish can experience
without sustaining tissue damage (descaling) [13]. More recent experimental investigations
involve autonomous sensor devices that replicate fish trajectories through a turbine, at the
same time collecting data on local accelerations [14] and even pressure [15].

In an effort to actually predict the mortality and injury of fish passing through hy-
draulic machinery, correlations for blade strike probability and the resulting mortality or
injury have been derived using live fish [16]. More recent works actually involve entirely
computational methods, modeling the passing fish with various assumptions. Early ap-
proaches involved the simplification of treating a fish trajectory as a flow streamline [13]
and deriving pressure or shear stress variation along this path. Newer works involve
Lagrangian approaches where the fish is approximated as a particle [17] or a linear ar-
rangement of particles with the Discrete Element Method (DEM) [18]. However, these
methods have their shortcomings, mainly related to the simplifications for estimating the
fluid-induced forces on the tracked fish. Whereas more accurate methods exist (e.g., overset
meshes, immersed boundaries), only recently (see [19]) have they been employed in fish
tracking studies and still were associated with severe limitations (lack of collision detec-
tion, enormous computational cost), prohibitive for practical application and extraction of
statistical data.

The present work aims to contribute towards the goal of predicting fish motion through
a hydraulic machine with simulation methods, while also collecting statistical information
that could correlate with fish injury. Novel elements of the present work involve:

1. A new method for tracking the motion of rigid, immersed bodies in flow is pro-
posed. The method aims to be placed in between fast, Lagrangian, particle methods which
use empirical laws for fluid interaction and computationally expensive, fully coupled,
6-DoF methods. An additional and critical element of the present method is inclusion
of wall collisions; it is highlighted that the latter is not a standard option in most CFD
tools available.

2. A comparison of the performance of several methods used in the literature for
tracking immersed bodies, along with the more accurate fully coupled 6-DoF tracking and
the newly proposed method, assessing the importance of the aforementioned assumptions
of each method.

3. The study of a reversible, diagonal-type (Deriaz) turbine in both turbine and
pumping modes. The model under consideration is a five-bladed turbine previously
optimized in its energy recovery characteristics [20]. Diagonal turbines could be considered
an advantageous solution compared to relatively low-head Francis turbines in sites with
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significant flow rate variation or when variable operation and flexibility are desired, thanks
to their double regulation feature, as well as when the survivability of the passing fish is
an important environmental issue, thanks to the mixed flow design and the smaller blade
numbers of the runner.

In the frame of the present work, hydrodynamic forces acting on the body due to
pressure are calculated and recorded, as are any collisions of the body on the rotating blades
or on the hub/shroud surfaces. These data are then used to quantify the probability and
the severity of injuries to passing fish. The new tool is also used to assess the behavior of
the same diagonal turbine in reverse operation as a pump, due to the increasing interest in
pumped storage plants at lower static head sites, within the range of this turbine type.

2. Numerical Methods

In this section, a brief overview of popular existing methodologies on body tracking
in computational fluid dynamics will be provided, with emphasis on the newly proposed
algorithm for uncoupled body tracking, which demonstrates promising results.

2.1. Particle-Based Methods

Particle-based methods, in the form of Discrete Particle Method, Dense Discrete Parti-
cle Method or Discrete Element Method, are very popular in computational mechanics and
have also been investigated for fish tracking in hydraulic turbines; see particularly [17,18].
The common aspect of all these methods is that the interaction of the tracked body with
the surrounding fluid is performed using Newton’s Law of motion, by taking into account
various forces. A set of equations commonly resolved in a Lagrangian approach for particle
tracking are as follows:

Equation Formulation

Momentum equation m · du
dt = Fd + Fp + Fvm + FL (1)

Drag force Fd = 1
2 Cd · ρ · A · |ur|ur (2)

Pressure gradient force Fp = −Vp · ∇p (3)
Virtual mass force Fcm = Cvm · Vp · ρ ·

(
Du
Dt − dup

dt

)
(4)

where: Cd stands for the drag coefficient, ρ density of the fluid, A the surface area of the
particle, ur for the relative velocity vector, i.e., flow velocity minus the particle velocity,
u-up, Vp the particle volume, p pressure, and Cvm the virtual mass coefficient. Additional
forces can be included, as lift forces (both Saffman and Magnus), rotationally induced drag,
as well as collision forces and non-spherical modifications of drag coefficient. A detailed
description of such models is provided in [21].

A basic limitation of this family of methods is that the fluid–body interaction is done
assuming particle-derived force laws, which, although they may feature corrections for non-
spherical particles, in their core do not take into account body orientation. Even in the case
of particle-to-particle or particle-to-boundary interactions it is assumed that the particle
shape is point-like, with the only exception being the Discrete Element Method, which can
take into account simple approximations of general shapes (e.g., ellipse, cylinder, etc).

2.2. Overset Meshes

Overset meshes are a technique of mesh generation and manipulation that allows
relatively easy handling of complex motions/deformations [22]. In its core, it features a
background mesh and one or more component meshes, which are attached to, e.g., moving
bodies. Interpolations are performed from the component meshes to the background
mesh to define connectivity between the otherwise disconnected regions and to form the
computational domain. In general, it is a well-established, accurate and versatile method
to handle 6-DoF body tracking, following a very similar methodology as the one outlined
in Section 2.4. Its main drawbacks are: (a) very computationally expensive, (b) cannot take
into account collisions (at least not by default), (c) the method has special requirements on
mesh sizing at the overlap region and may require a per-case adjustment of schemes for

214



Energies 2023, 16, 810

cell-cutting and grid priorities, to minimize the presence of cells without suitable neighbors
to interpolate to and from (also called orphan cells).

2.3. Immersed Boundaries

Immersed boundaries are a technique for mapping the geometry of solid bodies on a
background mesh [23]; this is commonly achieved either by introducing appropriate source
terms in the momentum equation, or by cell-cutting to conform to the body geometry.
Similar to overset meshes, it is an accurate technique, hence it is quite computationally
expensive (although less expensive than overset meshes). However, a main requirement is
that the mesh resolution cannot be coarser than the smallest dimension of the body to be
tracked, or else the solid mapping to the fluid domain will not be accurate (non-smooth
surface, artificial gaps/holes).

2.4. Uncoupled 6-DoF Tracking
2.4.1. Fluid Coupling and 6-DoF

The body to be described is represented using a triangular tessellation, forming a
surface grid. This grid can be further simplified to a set of points, each located at the
barycenter of the respective triangular element, and a surface area dS, together with the
local normal vector, n; see also Figure 1a. At each point of the body’s surface, the nearest
neighbors (cell centers) of the solved flow field are found using a knn-search algorithm [24].
Then, once the closest neighbors are found, the flow variables are interpolated. Various
interpolation methods have been tested in the scope of this work; in particular Inverse
Distance (ID), Radial Basis Functions (RBF), Nearest Neighbor (NN), Least Squares/Linear
Regression (LS) and, as a baseline, the scatteredInterpolant function in Matlab, using
localized Delaunay tessellation; all aforementioned methods give similar results, as will be
presented in Section 4. A brief formulation of the interpolation methods is presented below
in Table 1, apart from the scatteredInterpolant function for which the interested reader is
addressed to Matlab documentation and the relevant reference [25].

Table 1. Formulations of the different interpolation methods used in the scope of the present work.
The symbol ϕ is a placeholder that stands for any interpolated quantity, e.g., velocities (u, v, w),
or pressure, p. The symbol, d, denotes the Euclidean norm, or distance, of the location where
interpolation is to be carried out from the nearby, i.e., neighboring, sampling points.

Interpolation Method Formulation

Nearest Neighbor (NN) φ = φi if di = min(d, ∀neighbors) (5)

Inverse Distance (ID)
φ =

∑
Neighbors

φ
d

∑
Neighbors

1
d

(6)

Radial Basis Functions (RBF)

φ = ∑
Neighbors

f (di) · wi

where f (di) = e−cRBF ·di and weights are:⎡⎢⎢⎣
f (d11) f (d12) . . . f (d1n)
f (d21) f (d22) . . . f (d2n)

. . . . . . . . . . . .
f (dn1) f (dn2) . . . f (dnn)

⎤⎥⎥⎦
⎡⎢⎢⎣

w1
w2
. . .
wn

⎤⎥⎥⎦ =

⎡⎢⎢⎣
φ1
φ2
. . .
φn

⎤⎥⎥⎦
(7)

Linear Regression (Least
Squares)

φ = ∑
Neighbors

wi · xi

where the weight vector is calculated as:

W =
(
XT X

)−1XTY

X =

⎡⎢⎢⎣
x1
x2
. . .
xn

⎤⎥⎥⎦Y =

⎡⎢⎢⎣
φ1
φ2
. . .
φn

⎤⎥⎥⎦
(8)
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Figure 1. (a) Tessellated surface representation, (b) definition of the slip velocity, projected to the wall
normal (c) Torque calculation, in respect to the center of gravity (CG).

Local pressure at each face element is calculated applying the Bernoulli equation, as
the sum of interpolated flow pressure, pflow, plus dynamic pressure due to slip velocity,
pdyn; (see also Figure 1b), i.e.,:

plocal = p f low + pdyn (9)

pdyn =
1
2

ρ ·
(

un, f low − un,sur f

)2 · sign
(

un,sur f − un, f low

)
(10)

where n index implies the projection on the local surface normal vector, and � is the
flow density (taken the same as water here). Moreover, uflow implies the velocity of the
interpolated flow field, whereas usurf implies the velocity of the surface element, calculated
by the body kinematics. Once local pressure is calculated, then the total force, F, and torque,
T, on the body can be calculated by integrating along the body surface of the contributions
on each infinitesimal surface element dS, associated with a normal vector n:

dF = −p · n · dS (11)

dT = r × dF (12)

Center of gravity motion can be integrated through Newton’s law of motion, i.e.,:

F = m · ..
x (13)

However, body rotation is more complicated, as it needs to be expressed in a body–
local coordinate system, where the moment of inertia tensor, I, is naturally expressed. For
this, it is necessary to introduce the Euler angles, [ϕ, θ, ψ], which express a sequence of
rotations to convert the global coordinate system to the body-local coordinate system,
by first rotating around the global Z-axis (ψ), then the transformed Y-axis (θ) and finally
around the transformed X-axis (ϕ) [26]. With these angles, torques expressed in the global
coordinate system are transformed to a local coordinate system, using the R-transformation
matrix, shown below:

R =

⎡⎣ cos θ · cos ψ cos θ · sin ψ − sin θ
sin ϕ · sin θ · cos ψ − cos ϕ · sin ψ sin ϕ · sin θ · sin ψ + cos ϕ · cos ψ sin ϕ · cos θ
cos ϕ · sin θ · cos ψ + sin ϕ · sin ψ cos ϕ · sin θ · sin ψ − sin ϕ · cos ψ cos ϕ · cos θ

⎤⎦ (14)

For more details on derivation the reader is addressed to [26]. The transformation
matrix is applied to convert global (indicated with the index G) torque vector to the body–
local (indicated with index B), as TB = R.TG. Then, the body–local torque vector is used
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to calculate the angular acceleration at the body frame, keeping in mind that the body–
coordinate system is rotating. Hence, the following formula applies:

.
ωB = I−1 · (TB −ωB × IωB) (15)

Then, body frame angular acceleration can be integrated to update the body-frame
angular velocities and then transformed back to the global frame, using the inverse R
transformation. At the same time, angular velocities of the Euler angles, ωE, can be
calculated from the body–coordinate angular velocities, ωB, through a similar transform,
denoted with G:

ωE = G ·ωB (16)

G =

⎡⎣1 sin ϕ · tan θ cos ϕ · tan θ
0 cos ϕ − sin ϕ
0 sin ϕ · sec θ cos ϕ · sec θ

⎤⎦ (17)

Integration of linear/rotational motion and Euler angles is implemented using an
explicit Euler, corrected Euler (Heun) or implicit Euler method [27], depending on the
number of corrections applied. Sub-cycling can also be applied, that is, advancing angles
and angular velocities at smaller intervals than linear displacements and velocities; this
option greatly helps to conserve the angular momentum, as will be shown later on in
Section 4. An indicative calculation process of the algorithm is shown in Figure 2. In any
case, tracking is performed until the body exits the outlet boundary of the turbine/pump
configuration.

Figure 2. The algorithm used for 6-DoF body tracking.

The fish model is a simplification of a more complex fish shape, obtained from a CAD
repository [28]. The fish is approximated as an ellipsoid with dimensions of 0.173 × 0.04
× 0.017 (L × H × D), mass of 63.6 g, assuming neutral buoyancy, and moments of inertia
of: I1 = 1.012 × 10−4 kg·m2, I2 = 9.71 × 10−5 kg·m2, I3 = 6.099 × 10−6 kg·m2 (off-diagonal
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moment of inertia terms are zero). While the more accurate methods discussed here can
handle the complexity of actual fish geometry, it was preferred to resort to a simpler
geometric shape, in the form of an ellipsoid, for replicability and easier reference.

2.4.2. Collision Detection

An important aspect of the uncoupled 6-DoF approach proposed here is the inclusion
of a collision detection algorithm that prevents the tracked body from penetrating solid
boundaries. The algorithm is based on the application of an external spring type force from
each boundary (wall) element, generally represented as:

F = kspring · abs(min(0, dproj)) · n (18)

where kspring is the spring constant (tested values in the range of 100–1000 N/m), n is the
local wall normal vector and dproj is the projected distance of each tracked body surface
element to the closest wall element. The process for identifying collisions is as follows
(see also Figure 3); for each surface element (highlighted with dark blue in Figure 3) of the
tracked body,

− use knn-search to find the closest (i.e., min distance, dmin) wall boundary element
(indicated with red highlight in Figure 3)

− project the minimum distance vector at the local wall normal, n, to calculate dproj

− if the projection is positive, do nothing (no penetration)
− if the projection is negative, apply Equation (18).

Figure 3. A schematic showing the identification of collisions and the annotations used in
Equation (3).

The aforementioned methodology assumes that the surface is represented at an ade-
quate resolution and that curvature is resolved well enough so that large changes in wall
normal direction are captured. In the opposite case, no-penetration for all impact angles
cannot be ensured. As an indicative demonstration, the collisions of the tracked object are
presented in Figure 4, as it passes from the stator blades of the simulated turbine; for a
detailed description, see the next section. The point of this demonstration is that the method
presented here is capable of tracking efficiently collisions with complex, curved bodies.
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Figure 4. A schematic showing the path of the tracked object through the turbine, colored according
to trajectory timing. The magnified inset shows instances before and after the collision at stator blades.

3. Case Description

An optimized reversible diagonal turbine has been the focus of the present investiga-
tion. The design has been a result of optimization, as discussed in previous publications by
the authors [20]. The design features a five-bladed rotor and two series of stator blades,
an outer one with 17 blades and an inner one with 20 blades. The main dimensions of
the hydraulic machine are: casing inlet surface area 2.26 m2, draft tube outlet surface
area 4.99 m2, max. radius of casing 3 m, runner diameter 2 m. An indicative view of the
geometry is shown in Figure 5.

Figure 5. Views of the reversible diagonal turbine, showing details of the design such as the two
rows of stator blades, the five-bladed runner and the draft tube.

The conditions of operation of the reversible turbine are for (1) turbine mode: flow
rate 12.9 m3/s, total head 45 m, rotation speed 300 rpm, efficiency 89%, (2) pump mode:
flow rate 10.3 m3/s, total head 28 m, rotation speed 300 rpm, efficiency 86%. An indicative
view of the turbine operation, as well as the computational mesh, is shown in Figure 6.
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Figure 6. Top row: the regions of the computational domain, (a,d) the spiral casing, (b,e) the rotor,
(c,f) the draft tube. Bottom row: details of the computational mesh. All images correspond to
configurations for the sliding mesh approach.

Design performance, in both normal and reversed operation, has been examined using
a sliding mesh approach; in this approach, non-conformal interfaces are defined at surfaces
separating rotating from stationary regions. These interfaces act as interpolation zones
over which information passes from one mesh region to the other. The structuring of the
computational domain is shown in Figure 6a–c, indicating the different parts involved
(casing volume, rotor and duct), along with non-conformal interfaces (indicated in yellow).
Views of the mesh are included in Figure 6d–e, showing details of mesh structure; the
computational mesh is hybrid, poly-hex core, with refinement towards wall boundaries
and especially rotor/stator blades, ensuring a maximum y+ of ~300. Three layers of prism-
type cells are included at all wall boundaries to capture near-wall gradients. The total
computational mesh consists of 2.3 million cells, as demonstrated by a mesh-independence
study conducted through prior work of the authors [20].

Each investigated configuration is adapted to the particularities of the modeling
method:

− Particle tracking or the uncoupled 6-DoF tracking are performed with sliding meshes.
In this case, the rotor consists of a moving (rotating) mesh in the case of particle
tracking, or rotating reference frame in the case of the uncoupled 6-DoF tracking.
Particle tracking was done in a transient analysis in ANSYS Fluent v2021, whereas the
uncoupled 6-DoF was performed using a steady state flow field, also from ANSYS
Fluent v2021. In the frame of the present investigation, particles emulating the fish
are approximated as equivalent spheres of radius 24.7 mm, considering drag, lift,
added mass force and rotation. Non-spherical effects are taken into account using a
non-spherical factor of 0.66 corresponding to the surface area ratio of the fish model
and a sphere of the same equivalent volume.

− Overset mesh body tracking was performed using similar meshing methods and
resolution as the sliding mesh approach, but with a different structure to accommodate
for overset domains; an indicative view of the mesh structure, showing overlapping
regions, is in Figure 7. The set-up can be summarized as follows: a rotating mesh
was used for the rotor, which was considered as component mesh with the lowest
grid priority. The fish was introduced in another component mesh, enclosed within a
sphere of diameter 0.74 m, or 4.35 fish lengths; it had intermediate grid priority. The
fish domain 6-DoF properties (mass, moments of inertia) are the same as the uncoupled
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6-DoF approach (see Section 2.4.1). Finally, the background mesh consisting of the
complete flow path (including casing, stator blades and duct) had the highest grid
priority. Overset simulation was performed using ANSYS Fluent v2021. The body
was tracked with an implicit scheme, to maintain stability while using large time steps,
in the order of 1 ms.

− Immersed boundary was set up using CFX v2021, by introducing the flow passage
through the turbine and modeling the rotor blades and the fish as immersed bodies.
However, due to the large aspect ratio of the fish and blades (effectively very thin bod-
ies) it was impossible to obtain a good representation for reasonable mesh resolutions
and a tractable computational cost.

Figure 7. Indicative views of the overset mesh: (a) near the region of the tracked body (ellipsoid)
(b) at the rotor blades. The overlap of the mesh zones is visible.

4. Validation

To test the validity of the uncoupled 6-DoF method proposed here, several tests have
been performed.

4.1. Influence of the Interpolation Method

Here a comparison of the interpolation methods that can be used to reconstruct the
flow field on the surface of the tracked body is presented. The results are shown in Figure 8a,
showing a similar trend up to the rotor.

Figure 8. Body trajectories in turbine mode (a) Effect of interpolation method: Inverse distance
(continuous line), scatteredInterpolant (filled circles), linear regression (dashed line), nearest neigh-
bor (dotted line), radial basis functions (dashed-dotted line). (b) Effect of resolution: dashed line
500 elements, solid line 1000 elements, dotted line 2000 elements.
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When comparing the methods it is notable that the localized Delaunay tessellation
is the most computationally intensive, which is reasonable given the cost of constructing
tetrahedral elements from the localized point cloud to perform interpolations. The Radial
Basis Function interpolation has the drawback of a user-defined term, cRBF (see Table 1),
which is case-dependent and can lead to ill-conditioned matrices, potentially causing
instabilities due to inaccurate interpolation after inversion. A similar issue, although to a
lesser extent, has been observed with the Least Squares/Linear Regression method; even
if lacking tuned coefficients, instabilities may arise due to inversion, depending on the
number and positions of neighboring sampling points identified. The most robust method
tended to be the Inverse Distance interpolation, which is rather stable and comparable
to all other methods. The fastest method is the Nearest Neighbor search, which however
tends to be sensitive in areas of sparse sampling points (i.e., coarse background mesh).

4.2. Resolution of the Body

Different resolutions were tested for the ellipsoid fish model, ranging from 0.5–2 k
surface elements (triangles). All gave a very similar trajectory and body rotations up to
the point of the interaction with the runner, as shown in Figure 8b; hence, a resolution
of 1 k elements was deemed enough for the remaining investigations. Beyond that point,
differences are observed, which are due to the strongly non-linear driving force from the
flow field, which effectively represents a swirling flow. Hence, small variations of the
position of the body can lead to detrimental changes in the trajectory.

The discrepancies after the rotor interaction, both due to interpolation method and
resolution, are intrinsic to the tracking of bodies immersed in fluids. In fact, the motion of a
body through a fluid has been proven to be very sensitive to small variations of the exact
flow conditions, leading to different results in both the orientation and the exact trajectory
of a fixed point on the body; see [29–31]. Furthermore, such chaotic motions have been
identified in the case of tumbling ellipsoid objects, such as the one examined in the scope of
the present work [32]. Hence, flow velocity variations, generated due to error accumulation
from interpolation or resolution, are expected to lead to different trajectories after a point.
Nevertheless, the relative convergence of flow paths up to the point of the turbine rotor
demonstrates that the fast-tracking method proposed is capable of providing a reasonable
estimation of the trajectory of a fish-like object until the interaction with the rotor.

4.3. Prediction of Free Rotation of the Fish Model

Here we test the evolution of angular velocities of the body, without any torques/forces,
to assess conservation of angular momentum, comparing against a reference solution
from SIMULINK 6-DoF solver, with initial conditions ωx = 10 rad/s, ωy = 50 rad/s, and
ωz = 100 rad/s. As shown in Figure 9, reproduction of the reference results is perfect when
sub-cycling is used. Note that this case poses an extreme configuration, as any rotation in
the simulations to be further examined will effectively be dampened by the surrounding
fluid. However, this idealized case serves as validation for testing the numerical integration
scheme proposed in Section 2.4.1.
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Figure 9. Validation of the 6-DoF solver: (a) angular velocities, (b) Euler angles. Points are SIMULINK,
dashed lines is the present solver without sub-cycling and continuous lines with sub-cycling.

4.4. Prediction of a Fish Track in the Diagonal Turbine Model/Comparison of Different Techniques

Here we test the different methods discussed in Section 2. As shown in Figure 10, the
developed method is effectively equivalent to the much more computationally demanding
overset 6-DoF technique, whereas also takes into account boundary collisions. Unsteady
particle tracking tends to follow the same path as the two other methods, but can deviate
substantially; see for example Figure 10, the Turbine mode. This is justified given that both
the particle tracking and streamlines effectively perform a point-like interpolation of flow
variables at the center of the equivalent sphere.

Figure 10. Comparison of fish tracks predicted with different models. Continuous colored line
corresponds to the uncoupled 6-DoF. Spheres are positions predicted with overset 6-DoF (spheres are
markers, not the body shape). Squares are positions predicted with unsteady particle tracking. Black
line with vectors is a streamline for reference. The bottom row shows the position and orientation
predicted by the fast-tracking 6-DoF approach (grey spheres), compared with the surface from overset
6-DoF.
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To give an indication of the computational cost:

− the uncoupled 6-DoF requires ~1–2 h for a single track using a single processor
(indicatively Intel i7-3632), while limiting the body motion to 2.5–10% of the max.
body dimension per time step for stability, depending on the location in the turbine
(lower near the blades, or in vortices, e.g., draft tube in turbine mode).

− the unsteady particle tracking requires 1–2 days on a 6-core machine (indicatively
Intel i7-8850), depending on the time step used; higher time steps are faster but more
prone to no-clipping.

− the overset method has an immense computational cost, requiring 3–4 days to reach
the runner on a 16-core machine (indicatively Intel Xeon Gold 6140). The simulation
was not pursued further, due to lack of the boundary collision algorithm implemented
in Fluent v2021, which caused the body to effectively pass through the stator blades
and rotor wall, resulting in an unrealistic configuration.

− the streamline is trivial to complete, requiring mere seconds; however, it does not
consider body motion or rotor rotation.

5. Statistics of Trajectories

The relatively low computational cost of the uncoupled 6-DoF approach allows the
observation of multiple tracks, including any boundary collisions. In Figure 11 indicative
trajectories of fish at different starting positions are shown, both for turbine and pump
operation; the most aggressive collisions are shown, above a threshold force of 100 N (for a
reference, hydrodynamic forces are at least 10 times smaller, depending on the location).
By analyzing the locations of impact, it was found that:

− in turbine mode, 18.75% of tracked fish undergo a rotor blade impact and 43% undergo
a stator blade impact, although this is much milder than the rotor impact. Indicatively,
stator blade impact is in the order of 100 N, whereas rotor blade impact may be in
excess of 400 N.

− in pumping mode, 10% of tracked fish undergo a rotor blade impact and 40% a stator
blade impact. Here however, the magnitude of impacts is rather comparable, in the
order of 100 N, most likely due to the fact that at the inlet section of the runner at pump
mode the circumferential velocity is smaller than the turbine mode. As a measure
of comparison, the hydrodynamic forces are much smaller, in the order of 1–10 N,
depending on the location (higher near/at the runner).

Figure 11. Trajectories and observed collisions of fish for different starting positions, at turbine mode
(left) and pumping mode (right).

An alternative way to illustrate the above is through a histogram comparing the forces
that a passing fish is subjected to, as shown in Figure 12. In this histogram, a comparison of
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turbine mode and pumping mode operation is shown. Forces between [20, 400] N are much
more probable in pumping mode, whereas forces between [400, 1000] N are somewhat
more pronounced in turbine mode. However, in the latter case they represent a tiny fraction
of samples, nearly 0.5%.

Figure 12. Histogram of force probability for the turbine (blue color) and pump (red color) modes;
note forces below 20 N have been clipped, as they represent around 70% probability.

It is also notable that after the interaction with the runner, in the draft tube (in turbine
mode) or the casing (in pump mode) the fish is subjected to swirl, often being sheared along
the walls. This is on par with previous observations (see, e.g., [11]) stating the necessity to
use smooth surfaces to avoid fish descaling and injury.

Potential design modifications could explore the reduction of stator number blades or
smoothing thin edges so that the probability of collision, or at least the impact force, with a
passing fish is reduced.

Apart from the collision statistics, other information that can be extracted is of the
pressure rate of change, which can be an indication of barotrauma. Effectively, in all cases,
the pressure change takes place mainly at the rotor part, within 0.2–0.3 s, even if the exact
time interval is shifted forward/backward due to variations of the path taken. From the
tracks observed (see Figure 13), no path was found to experience low pressures that could
potentially justify internal cavitation.

Figure 13. Gauge pressure history for different tracks at turbine mode (left) and pump mode (right).
Cavitation threshold is at −98,985 Pa, shown with a dashed line.

Furthermore, aside from pressure and impact force, it is possible to evaluate localized
shear stresses, at least from the flow. Shear stresses can be calculated as [33]:

τij = μe f f ·
(

∂ui
∂xj

+
∂uj

∂xi

)
(19)
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where μeff stands for the effective viscosity, i.e., both the laminar and turbulent contributions,
whereas velocity gradients can be calculated over the tracked body surface from the
interpolated flow field using the Gauss theorem:

∇φ =
1
V ∑

n
φ · n · dS (20)

where ϕ is a placeholder that can be any velocity component. It is highlighted here that
this gradient is based solely on the flow field and not the interaction with the body, as the
estimation using fast tracking cannot reproduce boundary layer effects. Nevertheless, it
is an indication of the local flow conditions that affect fish passage when considering the
maximum of the absolute value of all shear stress components.

An indicative comparison of the maximum shear stresses experienced by the body
as it passes through the turbine/pump is shown in Figure 14. Shear stresses are notably
smaller than pressure, with their maximum value being in the order of 5000 Pa at pump
mode and 2500 Pa in turbine mode. However, shear damage thresholds are substantially
lower; experiments determined a damage threshold at around 1600 Pa for minor injuries
(descaling) [13]. Hence, 16% of the fish tracks exceed the minor damage threshold in pump
mode, whereas 5% of the fish tracks exceed the minor damage threshold in turbine mode.

Figure 14. Maximum shear stress history for different tracks at turbine mode (left) and pump mode
(right). The dotted horizontal line represents the minor injury threshold of 1600 Pa.

6. Conclusions

Given the trend towards increased utilization of unharnessed/unexploited hydraulic
potential of water streams, it is expected that hydraulic turbine design should accommodate
harmless interaction with aquatic life. Hence, the accurate estimation of the probability of
fish passage in hydraulic machines of future hydropower will become another objective
along with the efficiency requirements. Consequently, tools that can provide fast and
accurate estimations for the design optimization of new fish-friendly pumps and turbines
will be of great importance. The present work contributes towards this goal by proposing
a method that is fast, flexible and considers the physical dimensions of the tracked body,
instead of the simpler point-like perspective commonly used. At the same time it also
incorporates collision detection that most commercial CFD software lacks, or such software
relies on external coupling with other dedicated software. The proposed uncoupled 6-DoF
method has a computational cost reduced by almost two orders of magnitude, while it also
offers accuracy comparable to that of more detailed, fully-coupled methods, such as overset
or Immersed Boundary 6-DoF. The fast execution of the proposed methodology enabled cal-
culation of statistics, revealing problematic locations where fish collisions take place, while
also making predictions of forces and potential damage or lethality. Hence, the present tool
can be used alongside optimization methods for designing fish-friendly turbines.
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Nomenclature

m Mass [kg]
F Force [N]
Cd Drag coefficient [-]
ρ Density [kg/m3]
A Surface area [m2]
u Velocity [m/s]
V Volume [m3]
p Pressure [Pa]
CVm Virtual mass coefficient [-]
ϕ Generic interpolated quantity (pressure or velocity here, [m/s] or [Pa])
d, d Distance [m]
w Radial basis function/Linear regression weight (unit dependent on

interpolated quantity)
x, r Coordinate vector [m]
n Normal vector [-]
T Torque [N.m]
dS Infinitesimal surface area [m2]
..
x Acceleration [m/s2]
R Transformation tensor [-]
ϕ, θ, ψ Euler angles [rad]
ω Angular velocity [rad/s]

.
ω Angular acceleration [rad/s2]
I Moment of inertia tensor [kg.m2]
G Euler angular velocity transformation tensor [-]
kspring Spring constant [N/m]
τij Shear stress [Pa]
μeff Effective dynamic viscosity [Pa.s]
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Abstract: Lubricant oil is used in hydropower units to minimize friction, improving the turbine
efficiency and reducing the wear. However, oil production is a pollutant process, while eventual
spills may affect water quality and damage freshwater ecosystems. In this study, the lubricant oil
consumption of the European hydropower fleet was estimated (considering its installed capacity of
254 GW). The energy required to extract and process the oil was also estimated based on available
literature data. The oil consumption was estimated to be 22 × 103 tons/year, and the associated CO2

emissions are 105 tons/year. The lubricant oil costs EUR 116 million per year. Although this is only
0.0022% of the oil consumed as a primary energy source in the European context, and less than 0.4%
of the European industry consumption of lubricant oil, results show that new bearing types and
oil-free turbines (e.g., self-lubricating or water-lubricated turbines) can improve the sustainability of
the hydropower sector, minimizing the risks and impacts associated with incidental oil spills and
leakages. The provided data can also be used for Life Cycle Assessment analyses.

Keywords: bearing; hydropower; lubricant; oil-free; turbine

1. Introduction

Hydropower accounts for 1360 GW of installed power worldwide and 254 GW in
Europe, and globally generates 4250 TWh/year [1]. Hydropower is a renewable energy
technology and it provides flexibility to the electric grid and ancillary services. Multipur-
pose reservoirs provide several additional benefits, e.g., water storage and flood control.
On the other hand, the alteration of aquatic ecosystems is perceived to be the main cause
of hydropower-related impacts, with risks imposed on migrating fish and biodiversity.
Therefore, hydropower needs to achieve a good balance between electricity generation,
social benefits and impacts on the ecosystem and biodiversity, limiting the conflict with
the environmental objectives of water policies. Within this context, novel emerging tech-
nologies are discussed in [2–4], where their benefits in a European context are estimated.
The implementation of these technologies can mitigate the impacts of hydropower on the
environment, while generating renewable energy and providing flexibility.

The impacts associated with turbine operation may be relevant in certain contexts.
The turbine may affect water quality (e.g., oxygen deficit and oil spills) and may damage
migrating fish which pass through it. With the aim of reducing these impacts, environ-
mentally enhanced turbines (EETs), e.g., auto-venting turbines, self-aerated draft tubes,
oil-free turbines and the so-called “fish-friendly” turbines, have gained attention in the
past two decades [5]. However, although the benefits of these turbines (e.g., the reduced
fish mortality of fish-friendly turbines), and the risks of traditional turbines, are clear and
evident, the quantitative estimation of some of them is challenging on a large scale.

Among other things, the impacts of lubricant oil have not been quantitatively estimated
yet on a large scale, e.g., in Europe. Oil lubricates the runner blade trunnion bearing and
sliding parts of the operating mechanism in the hub [6], e.g., in the case of adjustable
turbines (Kaplan and Deriaz turbines). Oil is also used in the gearbox, if present. The
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production of lubricant oil is highly pollutant and requires energy for extraction, production,
maintenance and transport. González-Reyes et al. (2020) [7] discussed the different types
of oil, distinguishing between mineral, biodegradable and synthetic. Biodegradable oil is a
better option in terms of energy and CO2 equivalent emissions than mineral or synthetic
oils. However, biodegradable oil may pose potential risks in contact with water. Oil needs
to be changed regularly, which entails a break in generation, causing economic losses.
Furthermore, lubricant oil must be managed as a dangerous waste, with inherent risks
of spillage during handling, that can generate negative impacts on the environment, and
has some operational and maintenance problems [7–9]. In Francis turbines, the hydraulic
oil system does not come into contact with the open water cycle, hence oil spills from the
turbine directly to the open water are avoided. Oil spills may instead occur in the hydraulic
cylinders of the intake gates. In Kaplan turbines, oil spills are more common, especially
in the runner, because the blades are adjustable and the seals are not 100% tight. In older
turbines, the whole runner is filled with hydraulic oil, whereas, in new runners, only parts
of the runner are filled with oil [8].

Since most hydropower units use lubricant oil, the estimation of the annual amount
of oil used is of high interest. This is especially valid for Europe, where the target of 100%
renewables has been set by 2050 in the European Union (EU). Therefore, in this study, the
lubricant oil consumption of the turbines installed in the European hydropower fleet is
quantified, and the benefits that oil-free turbines can entail are quantified as well. Section 2
describes the implemented method to estimate oil consumption and impacts. Section 3
describes the results and Section 4 discusses the related implications. The European Union
(EU) includes Austria, Belgium, Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg,
Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden. Europe
also includes: Albania, Andorra, Belarus, Bosnia and Herzegovina, Faroe Islands, Gibraltar,
Greenland, Iceland, Kosovo, Liechtenstein, Macedonia, Moldova, Monaco, Montenegro,
Norway, San Marino, Serbia, Switzerland, Turkey, Ukraine, United Kingdom.

2. Materials and Methods

The open source JRC (Joint Research Centre) hydropower database, including
4030 European hydropower plants, 2429 of which are located in the European Union,
was used in this study to carry out the calculations. The database mainly includes
hydropower plants with installed power above 1 MW and from hereinafter called hy-
dropower database. The hydropower database specifies, for each plant, the country,
the type (run of river—ROR-, reservoir hydropower plant—RHP-, pumped hydropower
storage—PHS), the installed power (P, kW), the gross head (Hgross, m) (in most cases, but
not for all), the annual energy generation (E, kWh) and, for some of them, the reservoir
volume (V, Mm3). In this database, 194 GW are included, with respect to the total Euro-
pean installed power of 254 GW; therefore, although the database is not complete and
was completed in 2019, it is a statistically representative sample of the hydropower fleet
(the missing data are mainly related to small hydropower plants and to some countries
where data are not available). This database was used in [3] to assess the potential of
modernization strategies and in [10] to assess the energy potential associated with the
recovery of the wasted energy (hydrokinetic energy at the tailrace, heat from the generators
and degassing methane).

The number of units (to calculate the flow and power per unit) and the turbine type
were estimated as described in [10], mostly considering indications and collected data
from the hydropower company Voith Hydro (Figure 1 and Table 1). Therefore, we suggest
referring to [10] for more information, where the methodology was validated and proved
to adequately estimate these technical characteristics.
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Figure 1. Range of Kaplan, Francis and Pelton turbines in the EU, based on flow rate Q and head H
([10], based on Voith Hydro), but without indication of the location.

Table 1. Average number of units (No.) per power class (K = Kaplan, F = Francis, P = Pelton) (Source:
Voith Hydro).

Power Class P (MW) (Overall Installed Power per Plant)

P 1–10 10–20 20–50 50–100 100–200 200–500 500–750 750–1000 1000–1500

No. of units 1 (K, P), 2 (F) 1.8 2.1 2.3 2.5 3.2 3 (K, P), 5 (F) 3.7 6.0

The required oil in each unit was estimated considering the power per unit, the
number of units and the turbine type, according to Table 2 (RD 34.10.559 [11]) RD is a
regulatory document that establishes rules and procedures for actions in a particular field
of activity and is approved in accordance with the procedure established in the industry.
This guidance document was developed by the production association for the adjustment,
improvement of technology and operation of power plants and networks. RD 34.10.559 are
designed to determine the annual oil consumption during the operation of hydraulic units
for turbines of different types and capacities. The annual oil consumption is made up of its
consumption for topping up during the operation of the hydraulic unit, for replacement
and for compensation of losses during the overhaul.

Table 2. Oil consumption in hydropower units [11].

Turbine Type Power, MW
Turbine Oil Consumption Rates (Tons per Year)

Topping Up Replacement Compensation of Losses Total Annual Collection Amount

Francis turbine
Propeller hydraulic
turbine
Pelton turbine

from 1 to 5 (incl.) 0.63 0.34 0.13 1.1 0.28
from 5 to 16 (incl.) 0.74 0.47 0.29 1.5 0.39

from 16 to 85 (incl.) 0.84 1.09 0.39 2.32 0.92
from 85 to 650 (incl.) 0.96 2.06 0.80 3.82 1.75

Kaplan turbine
(Vertical)

from 1 to 5 (incl.) 0.7 0.23 0.3 1.23 0.19
from 5 to 20 (incl.) 1.58 0.79 0.4 2.77 0.67

from 20 to 40 (incl.) 1.99 1.42 0.5 3.91 1.20
from 40 to 85 (incl.) 2.38 3.14 0.58 6.10 2.66
from 85 to 220 (incl.) 2.67 4.92 0.9 8.49 4.18

Kaplan turbine
(Horizontal) from 19 to 48 (incl.) 1.4 1.42 0.5 3.32 1.20

Topping-up oil compensates for losses due to cleaning, evaporation, foam formation,
leakage through leaks in the oil system and through the seals of the runners of Kaplan
turbines, and when sampling for analysis. Oil consumption rates for topping up and
compensation for irretrievable losses during the operation of hydraulic units are estimated
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by a statistical method. Oil consumption rates for replacement are estimated by an analytical
method, taking into account the capacity of the oil system and the service life of the oil.
Based on the results of a survey of hydroelectric power plants, the average oil service life
for low-capacity oil systems is 8–10 years; for large ones it is 15 years. Oil losses during the
overhaul of hydraulic units consist of losses in the form of an oily residue and emulsion at
the bottom of the oil pans of the guide and thrust bearings of the turbine and generator
when draining oil, as well as oil consumption for flushing the baths of the lubrication
system and control units. Oil losses during overhauls are included in the oil consumption
rates, taking into account the overhaul period of the hydraulic unit. When oil is replaced
in the equipment, waste oil is collected. The collection of oil per unit during periodic
replacement is determined by taking into account that the collected waste oil is about 0.85
of the volume of oil for replacement (from the normative RD 34.10.559 [11]).

The energy (MWh) used to manufacture and transport the oil was quantified accord-
ing to [8]. The former was estimated as 8.26 kWh/L and the latter as 1.37 kWh/L, as
average among mineral, synthetic and biodegradable oils. The associated emissions are
3.18 kgCO2/L for the manufacturing, and 0.53 kgCO2/L for the transport (the conversion
factor from kWh to kgCO2 is 0.385). The transport is very site-specific, and in this study, an
average distance of 87 km was assumed. The average cost is estimated 4.3 EUR/L and a
density of 0.8 kg/L was assumed. The emissions resulting from extraction and transport
are insignificant compared with those related to the energy used in the manufacturing of
the oil.

3. Results

Data of Table 2 were used to perform the assessment, implementing them to the
European hydropower fleet data. Table 3 depicts the cumulative power per power class
and the estimated turbine type (Figure 1) of the European hydropower fleet. Table 4
shows the oil consumption for each power class and turbine type. The composition
of the European fleet has proven to be adequate for large-scale assessments, as already
discussed in [3,10]. The Francis turbine is the most widely used in the European context,
thanks to its wide operating range. It is the most suitable turbine for the typical European
topographic/hydrologic context.

Table 3. Cumulative power P (MW) for each power range and turbine type.

<5 MW 5 < P < 16 16 < P < 20 20 < P < 40 40 < P < 85 85 < P < 220 220 < P < 500

Pelton 1115 1550 194 2282 5244 9669 1269
Francis 3665 13,527 5466 26,820 37,436 48,219 11,176

Bulb 14 0 0 0 0 0 0
Kaplan 45 900 676 3361 9547 9969 2879

Table 4. Cumulative oil consumption (tons/year) for each power range and turbine type.

<5 MW 5 < P < 16 16 < P < 20 20 < P < 40 40 < P < 85 85 < P < 220 220 < P < 500

Pelton 574 260 26 172 223 298 11
Francis 4028 2091 691 2069 1559 1413 168

Bulb 4 0 0 0 0 0 0
Kaplan 29 230 108 439 1043 662 93

The aggregated results at the European scale show that the amount of oil used in the
European context is 16,200 tons/year with a required energy of 0.19 TWh/y and CO2 emis-
sions of 75,075 tons/year. The total cost is estimated to be EUR 87 million per year. These
results refer to 195 GW, and can be extrapolated linearly to the whole 254 GW of European
installed capacity. For the whole European context, the consumed oil is 21,665 tons per
year and the required energy is 0.26 TWh/y, which represents 0.04% of the hydropower
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generation in Europe, roughly corresponding to one third of the maximum potential of hy-
drokinetic turbines in EU rivers estimated in [4]. The CO2 emissions are 100,473 tons/year.
The investment cost per year to satisfy the oil requirement becomes EUR 116 million per
year. In the EU, the annual consumed oil is estimated to be 12,575 tons/year, corresponding
to 0.0022% of the oil consumed as a primary energy source (582 Mtons per year).

Topping-up oil compensates for losses due to cleaning, evaporation, foam formation,
leakage through leakages in the oil system and through the seals of the runners of Kaplan
turbines, and when sampling for analysis. These losses and compensation for irretrievable
losses represent 59% of the total amount of used oil. The collection amount is 85% of
the replaced oil, which ranges between 15% and 49% (average, 34%) of the annual oil
consumption of each unit.

4. Discussion

The impact of oil consumption in the European hydropower sector was assessed,
identifying impacts in terms of CO2 emissions, energy and costs. According to Mordor
Intelligence (2022), in the most contributory European countries (France, Germany, Italy,
Russia, Spain, United Kingdom), the lubricants market stood at 5.83 billion liters in 2021
and is projected to reach 6.53 billion liters in 2026. The automotive industry is the largest
segment by end-user industry, accounting for around 49% of the total lubricant consump-
tion in the region. Power generation is likely to be the fastest-growing end-user industry
in the market, with a compound annual growth rate (CAGR) of 2.54% over the period
2021–2026, followed by automotive (2.49%). In Europe, the expanding power generation
capacity, especially that of renewables, is likely to drive the consumption of lubricants in
the power generation industry. The hydropower sector counts for less than 0.42% of the
European lubricant oil consumption in the industrial sector [12].

The estimated values include the oil that is spilled into the environment (part of
topping up item and losses, Table 1), that generally occurs as a consequence of incidents
or in the form of oil droplets and oil mist leakage due to the centrifugal force and high
temperatures [6]. However, the problem of oil mist leakage from bearings is complex, and
it is difficult to assess exactly how much of this oil is spilled into the environment. Data
collected in [7] show that this amount can reach 68 l/y/MW for a Kaplan turbine, with
negative effects on the environment downstream, for example on fish, birds, mammals
and plants. Spilled oil can contaminate the fish respiratory organs. Eggs and fish larvae
can absorb toxic components from the oil. Spilled oil may stick to bird feathers; hence
they may lose thermal insulation and waterproofing. The fur of mammals may become
contaminated with oil, and it may also lose thermal insulation. In vegetation, a reduction
in transpiration may occur, with a consequent reduction in photosynthesis. However, it
must be noted that, according to [13], oil presence in aquatic ecosystems may not solely
and mainly be attributed to the hydropower sector. Furthermore, other sectors, in addition
to wind turbines, involve rotating components and desalination plants require oil [8,14].

The main solutions for minimizing the use of oil are (1) using oil free solutions, such as
oil free bearings and oil free hubs, or water-lubricated turbines, and (2) implementing more
environmental friendly solutions, such as an ester-based oil or other biodegradable oils,
oil/water-based enhanced nano-lubricants, oil/greases and additives [15–17]. Sun et al.
(2022) [6] discussed further conventional engineering measures to deal with oil mist leakage:
reduction in the operating pad and oil temperature, optimization of the oil circulation loop
in the oil tank, improvement of the sealing performance, and design of the oil mist emission
device. Self or water-lubricated turbines can help in minimizing impacts, minimizing even-
tual environmental damages due to unexpected oil leakages and spills. Water-lubricated
guide bearings also contribute to increasing the overall plant efficiency by reducing friction
losses by about 50% and limiting maintenance in comparison to oil-lubricated ones [17].
To date, several Kaplan bulb and Francis turbines have been upgraded so as to make
them work free from oil [5], but this technology can also be extended to Deriaz and Pelton
turbines [5]. New materials and lubricants are being developed [18,19]. These technologies
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are developing more and more, especially in the European context. Some examples of
their implementation are described in [20,21]. We suggest referring to the abovementioned
references for further details.

However, some challenges exist. Given the low viscosity of water, bearings lubricated
with water tend to operate in a boundary or mixed lubrication regime for relatively longer
periods [5], especially when considering low sliding speeds and start/stop cycles. This can
significantly increase friction while shortening the effective wear life of bearing components.
Therefore, the use of water-based lubrication introduces several engineering challenges,
foremost of which is the material choice for bearing surfaces. New materials are mainly
at the development and R & D stage and have not fully met the operation and endurance
targets set by the hydropower industry [19]. Oil-free rotor support systems have also
enabled a broad range of high-speed machineries outside the hydropower sector, from air
cycle machines, compressors and blowers to turbochargers, microturbines and small gas
turbine engines [22].

Although, in this study, the impacts associated with oil consumption in hydropower
plants was assessed, hydropower should not be regarded only in terms of impacts, espe-
cially when compared with the solar photovoltaic (PV) and wind sectors. For example,
hydropower equipment does not contain critical materials such as lithium and cobalt (used
in electric vehicles), or neodymium, praseodymium, and dysprosium (used in electric vehi-
cles and wind power plants), or silver and silicon (used for photovoltaics). Hydropower is
the best renewable energy for reducing pressure on mineral resources. The Extraction of
Mineral Resources indicator is measured in kilograms of antimony equivalent (kgeq.Sb)
per kilogram extracted to take into account existing reserves, the rate of extraction and
the “depletion” of each mineral substance; the value for hydropower is 0.017, whereas it
is 0.04 for coal, 0.3 for wind and 14 for solar PV [23]. Therefore, any energy technology
should be comprehensively considered with regard to its impacts and benefits. Tables with
sustainability indicators for each clean energy technology, benefits and impacts, with focus
on the European Union, can be found in [24], and in [25] for the hydropower sector.

5. Conclusions

Hydropower benefits and impacts are at the center of major discussions. In order to
mitigate the impacts, mitigation measures have to be developed and implemented.

In this study, a European assessment was carried out to estimate the oil consump-
tion, and related impact, associated with hydropower operation. The aggregated re-
sults at the European scale show that the amount of oil used in the European context
is 21,665 tons/year with a required energy of 0.26 TWh/year and CO2 emissions of
100,473 tons/y. The total cost was estimated to be EUR 116 million per year. The re-
quired energy to satisfy the oil demand corresponds to 0.05% of the hydropower generation
in Europe, roughly corresponding to one third of the maximum potential of hydrokinetic
turbines in the EU rivers. In the EU, results reveal 12,575 tons/year of oil used, which is
0.0022% of oil consumption as a primary energy source and less than 0.42% of the lubricant
oil production in the European industry.

This figure indicates that the pollution associated with the use of oil in the hydropower
sector is marginal if compared with other sectors. Anyway, oil-free hydropower units could
have positive impacts on the ecological status of rivers, supporting the clean and renewable
energy targets set by the European Commission, and making hydropower further amend-
able, especially in light of the modernization needs of the European hydropower fleet.

Large-scale impact assessments should be also performed for the other sectors (e.g.,
wind and solar), whose impacts on the environment have been less studied, especially the
impact of critical materials extraction and use.
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Abstract: This study approaches cyber security in industrial environments focusing on hydro power
plants, since they are part of the critical infrastructure and are the main source of renewable energy in
some countries. The theoretical study case follows the standard IEC 62443-2-1 to implement a cyber
security management system (CSMS) in a hydro power plant with two generation units. The CSMS
is composed of six steps: (1) initiate CSMS, (2) high level risk assessment, (3) detailed risk assessment,
(4) establish policies, procedures, and awareness, (5) select and implement countermeasures, and
(6) maintain the CSMS. To perform the high-level risk assessment, an overview of the most common
activities and vulnerabilities in hydro power plants systems is presented. After defining the priorities,
the detailed risk assessment is performed based on a HAZOP risk analysis methodology focusing on
hackable digital assets (cyber-HAZOP). The analysis of the cyber-HAZOP assessment leads to mitiga-
tions of the cyber risks that are addressed proposing modifications in the automation architecture,
and this also involves checking lists to be used by the stakeholders during the implementation of the
solution, emphasizing security configurations in digital assets groups.

Keywords: HPPs cybersecurity; cyber-HAZOP; IEC 62443; CSMS; smart grid

1. Introduction

The energy sector is a potential target for cyber-attacks given its role as critical infras-
tructure of a nation, which makes necessary the implementation of security strategies that
hamper attacks such as ransomware, man-in-the-middle (MITM), denial-of-service (DoS),
cross-site scripting (XXS), phishing, replay, false data insertion, jamming eavesdropping,
spoofing, among others.

To facilitate the terminology understanding, in this paper, the common language
established by the last release of NIST Framework and Roadmap of Smart Grid and
Interoperability Standards (V4.0) [1] was adopted, where smart grids are conceptualized
in a model with seven main domains: system transmission operators (TSOs); system
distribution operators (DSOs); generation (including distributed energy resources (DERs);
customer; markets; operations and service providers. Within each domain, actors and
equipment have their respective roles and responsibilities in the electrical grid.

In countries where a considerable percentage of the produced energy comes from
hydro power plants, it becomes very relevant to develop solutions and apply cybersecu-
rity standards to this specific actor within the generation domain. The present paper is
organized as follows: in Section 1, the motivation and the literature review are presented,
justifying the purpose of this study and its contribution for the energy sector. In Section 2,
some basic concepts are explained to give an overview of the steps that compose the study
methodology, which involves the establishment of a cyber security management system
(CSMS), which is detailed at Section 3. Then, a theoretical case study is developed in
Section 4, and final considerations are discussed in Section 5.
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1.1. Motivation

In recent discussions of cyber security in the energy world, considerable research
attention has been directed toward smart grids. NIST conceptualization model makes clear
that the term “smart grids” is broad and could be referring to any of the seven domains. On
one hand, the high number of papers approaching cyber security in smart grids highlight
the relevance of the topic. On the other hand, however, the broadness may hamper the
applicability of such studies to specific actors within each of the seven domains. For
this reason, attempting to collaborate by narrowing the topic in one of the domains, and
this study focuses on generation, specifically hydro generation due to the background of
the authors.

1.2. Literature Review

After identifying the energy market need for cyber security recommendations from
practical experience, a brief review of the academic literature was conducted to better
understand how the topic is being addressed and to acknowledge if there is a gap for
the generation domain. Scopus was chosen as the database due to its broader range of
publication sources. Filtering the field by “energy”, format by “papers/articles”, and
running the query ((energy OR *grid) AND (cyber AND security)) in the title, 92 papers
were collected for further screening.

Surprisingly, the first publications date from 2007, even before cyber-attacks rose in
quantity and media attention. However, given that the aim of this study is to comprehend
current approaches to smart grids, two exclusion criteria were applied to the set of papers:
publication year was chosen from 2017 to 2022, and the content should be specific to any
domain of smart grids, excluding end users of the “customers” domain, and other broad
topics such as smart cities, smart homes, and electrical vehicles. This screening step resulted
in 25 papers that were skimmed, resulting in 10 papers selected for detailed analysis.

In Table 1, the use case domain was identified and mapped against NIST domains
together with the identified cyber security approach: risk vs. mitigation, attack vs. defence,
network security, people management, and security management system. In some cases,
the use case domain and the NIST domain coincide, while in others, the paper use case
is referring to multiple NIST domains. It is interesting to note that, except for [2], the
selected papers did not address an end actor within a domain, showing that there is a gap
in the literature for narrower studies regarding cyber security in smart grid actors within
each domain.

Table 1. Use case domain identified in analysed papers against NIST domains.

Paper title Use Case Domain NIST Domain Cyber Security Approach

A microgrid ontology for the analysis of cyber-physical
security Microgrid Generation; Distribution; Attack vs. Defence

A novel actual time cyber security approach to smart
grids Substation Distribution Network security

Cyber security for multi-station integrated smart energy
stations: Architecture and solutions Smart Energy Stations (SESs) Generation; Distribution; Security management system

Cyber Security impact on energy systems Virtual Power Plant (VPP) Generation; Risk vs. Mitigation; People
management;

Cyber Security in the smart grid: challenges
and solutions Smart Grid All Risk vs. Mitigation

Cyber security in the energy world Smart Grid All Network security

Grid cyber security strategy in an attacker–defender
model Power grid infrastructure Distribution; Attack vs. Défense

Improvement of cyber-security measures in national grid
SA substation process control Substation Distribution; Risk vs. Mitigation

Research on cyber security defence technology of power
generation acquisition terminal in new energy plant

Power generation acquisition
terminal Generation; Attack vs. defence

Smart grid cyber security enhancement: Challenges and
solutions: a review Smart Grid All Risk vs. Mitigation
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Synthesizingpapers with a more generic smart grids security approach, refs. [3,4]
report challenges and solutions using different perspectives. In [3], they conceptualize
the smart grid and summarize the NIST security requirements regarding confidentiality,
integrity, and availability to form the basis of the discussion about common risks and
their corresponding mitigations according to the OSI layer. The following components are
analysed: PMU (power metering unit), AMI (advanced metering infrastructure), smart
meter, gateway, routing protocol, and control system. The risks mitigations recommended
include input validation, DNSSEC, firewall, locking down ports, ICMP packet filtering,
ARP inspection, disabling unused ports, and securing the physical infrastructure. Similarly,
in [4], cyber attacks are mapped against confidentiality, integrity, and availability, but
instead of suggesting techniques to overcome the security challenges according to the OSI
layer, the countermeasures are classified according to an attack timeline divided into three
steps: pre attack, under attack, and post attack. In addition to the mitigations listed in [3],
this paper also explores more recent technologies, recommending IDS (intrusion detection
system), blockchain, 5G, and AI (artificial intelligence). Both papers have an important
role on demonstrating how vulnerable smart grids are and exemplifying some strategies to
mitigate risks, but, at the same time, they emphasize that, besides the benefits brought by
digital transformation, this also brings the need for a more robust security strategy.

In article [5], the authors mention diverse equipment that could be the target of
cyber attacks, such as dispatch generators, electrical transformers, and circuit breakers.
Moreover, one of the possible consequences cited, malfunction of a controller response,
could lead to dangerous situations in terms of safety and security. Despite the use case is
a microgrid, this equipment is also present in hydro power plants. The proposed solution,
a combination of CIM (common interface model) and IEC 61850 for the development of an
ontology, including AEGs (attack execution graphs), would allow the evaluation of cyber
security issues through the generation of ADIVSE (ADVersary view security evaluation)
models. Additionally, approaching network communication, ref. [6] examined standards
and protocols most used in the power industry, highlighting IEC 60870-5 and DNP3 for
SCADA systems and IEC 61850 for substations. In terms of substations security, in [7],
the proposed solution is the implementation of homomorphic encryption in smart meters
using MPI (message passing interface) with the Floyd-Warshall algorithm.

When it comes to the generation domain, ref. [8] recognized similar cyber attacks to
the ones discussed so far, but also pointed that natural factors and human error/behaviour
can lead to disruption in the energy supply. From a defence point of view, the authors claim
that the responsibility of securing devices “is attached to the person” when, for example,
applying patches or improving the company’s personnel skills to manage incidents. For
new power plants, ref. [9] applied an algorithm based on the Spark platform developed
by AMP Laboratory of UCBerkeley to generate frequent item sets and extract association
rules that were used to develop an anti-penetration strategy according to the results of the
risk assessment. For lower impact systems, the strategy consisted of the packet filtering
rule, while, for high-risk terminals with serious impact, the authors instantiated the anti-
penetration strategy as address or port filtering rules.

Considering all these studies, but changing the perspective from risk vs. mitigation [2–4,8],
attack-defence [5,9,10], or network security [6,7] to a security management view, only [11]
proposed a holistic approach similar to the aim of this study. However, their focus is
broader than generation, with the design a system architecture for smart energy stations
composed of five entities: substation, photovoltaic station, energy storage station, electric
vehicle charging station, and data centre station. Based on the data exchanges, they
proposed cyber security protection solutions according to the principle of “security zoning,
enhanced borders; dedicated network, multilayer protection; horizontal isolation, vertical
authentication; classified storage, controlled sharing”. Different zones are suggested, and
the isolation devices range from industrial firewalls, forward/reverse isolators, and vertical
encryption devices. Additionally, VLANs and service prioritization are addressed to
guarantee real-time and no real-time communications.
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1.3. Contribution

As observed in the literature review, there is limited research investigating cyber
security in specific actors of smart grid domains. Nonetheless, given that knowledge
building is complimentary, the previous studies analysed can be aggregated to transform
approaches such as risk vs. mitigation or attack vs. defence into a holistic continuous
security management approach, as suggested by IEC 62443-2-1 [12] with a cyber security
management system (CSMS).

In the next topics, some basic concepts of safety, security, and risk analysis will be
introduced to form the basis for the application of the IEC 62443-2-1 standard to a typical
hydroelectric power plant, involving collaboration to cover the gap of domain/actor-
focused studies. Systems and sub-systems of a two-generator hydro power plant will be
evaluated considering the risk involved and the risk tolerance to make recommendations
that are compliant with the IEC 62443-2-1 standard.

2. Conceptualization

2.1. Safety vs. Security

In the begging of the industrial revolution, plant safety was fundamental to strategic
plans. The concern with injury or damage to the health of personnel, physical damage due to
equipment incorrect operation according to input data, hardware failure, or error in operation
were all taken into consideration to define the most appropriate technical solutions.

In industry 4.0, one of the main characteristics of the market solutions is the use of the
internet to connect not only people, but systems themselves, being called IIoT (industrial
internet of things). This technological evolution increases the cyber-attack surface. In this
scenario besides safety, it is also important to focus on plant security, as well as investing in
defence strategies of digital assets.

2.2. Risk Analysis

As defined at IEC 62443-1-1, risk is the “expectation of loss expressed as the prob-
ability that a particular threat will exploit a particular vulnerability with a particular
consequence” [13]. Risk origins can be either physical or digital. Risk analysis methodolo-
gies can be focused on these origins, what enables the reutilization of a safety analysis to a
security analysis through the classification of assets into hackable or non-hackable.

2.3. HAZOP vs. Cyber-HAZOP

The HAZOP (hazard and operability) analysis is a highly systematic methodology.
The facility is divided into systems (nodes) for which many scenarios are evaluated through
the selection of parameters and guidewords. The objective is to identify the qualitative
potential of hazards and operating problems associated with a system or piece of equipment
caused by deviations [14].

Following the method proposed by [15], it is possible to turn the HAZOP into a
cyber-HAZOP risk analysis by selecting hackable scenarios. In this case, the step-by-step
equivalent procedure can be observed below:

1. Define premises about the plant;
2. Define parameters to be considered;
3. Select a system to be evaluated;
4. Briefly explain the process;
4.1. Specify a parameter;
4.1.1. Specify a guideword;
4.1.1.1. Undertake a threat analysis;
4.1.1.2. For each threat, identify if the system is vulnerable to an incident (scenarios);
4.1.1.3. Identify the worst consequences associated to each scenario without safeguards;
4.1.1.4. Specify existing safeguards for each consequence;
4.1.1.5. Determine the probability and severity of each consequence;
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4.1.1.6. Make recommendations to mitigate consequences if the probability or severity
of occurrence are inacceptable according to the level of risk acceptance stablished by
the company;

4.1.2. Repeat step 4.1.1 for each guideword;
4.2. Repeat step 4.1 for each parameter;
5. Repeat step 4 for all plant nodes.

2.4. Hydro Power Plants Systems and Its Vulnerabilities

Usually, the scope of supply for a hydroelectric power plant (HPP) involves more than
one company. Table 2 contains a typical case for an automation project.

Table 2. Main activities in HPPs automation projects and its typical suppliers.

Activity Supplier

Engineering, tests, and commissioning of field network, process
network, and supervisory system Suppliers of automation and control systems

Communication between process data and office network
Suppliers of automation and control systems or information technology

with customer participation, possibly involving IT and OT teams to
support the activity

Communication link for remote access
Suppliers of automation and control systems or information technology

with customer participation, possibly involving IT and OT teams to
support the activity

Communication link with regulation agent
Automation and control systems suppliers generally subcontract

telecommunications companies for this scope. Customer participation
can involve IT and OT teams to support the activity.

In order to ease the implementation of defence in depth strategies, each activity can be
associated to one or more configuration group of devices. To exemplify the vulnerabilities,
Table 3 contains six group categories and its main vulnerabilities, highlighting that some of
them are common to more than one group.

Table 3. Configuration categories and its potential vulnerabilities. Based on [16].

Category Potential Vulnerabilities

Supervisory System

Poor physical security; lack of system hardening; inadequate security
awareness; poor password policies; poor account management; social

engineering susceptibility; lack of patch management; lack of
authentication; zero-day vulnerabilities; ineffective

anti-virus/application whitelisting; insufficient access control; use of
vulnerable ICS protocols; untested third-party applications; insecure

embedded applications;

Communication link with operation centre or regulation agent

Poor physical security; lack of system hardening; inadequate port
security; lack of authentication; unnecessary firewall rules; lack of
patch/firmware management; poor configuration management;

configuration errors;

Communication between process data and office network

Poor physical security; lack of system hardening; inadequate port
security; lack of authentication; unnecessary firewall rules; poor

configuration management; lack of patch/firmware management;
configuration errors; uncontrolled file sharing;

Network equipment

Poor physical security; configuration errors; poor configuration
management; inadequate port security; lack of firmware management;
unnecessary firewall rules; lack of intrusion detection capabilities; use of

vulnerable ICS protocols;

Electrical protection system
Poor physical security; lack of firmware management; configuration

errors; poor configuration management; lack of authentication; use of
vulnerable ICS protocols;

Controllers

Poor physical security; lack of system hardening; lack of firmware
management; untested application integration; configuration errors;

poor configuration management; lack of authentication; use of
vulnerable ICS protocols;
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This rearrangement of vulnerabilities is deeply related in the modus operandi of HPPs
automation project once this separation proposal enables one to address risk mitigation for
specific suppliers.

3. CSMS Application Guide for HPP’s According to IEC 62443

The IEC 62443 standard is organized in four groups: General, policies and procedures,
system, and component. Together, they provide a vast amount of information for the
implementation of a cyber security management system (CSMS) in industrial control
systems (ICS). In the following sessions, a series of questions are suggested as a starting
point for the implementation of a CSMS in a hydro power plant.

3.1. Initiate CSMS Program

It is necessary to develop a business plan, determine the desired scope and obtain
support from the organization. Suggested concerns:

• What is the expected result taking into consideration that a CSMS does not generate
ROI (return of investment)?

• Are there financial resources in short term to enable the application of resulting
countermeasures?

• Are there financial resources available in short, medium, and long term for the mainte-
nance of the CSMS?

• Are there specialists available for each HPP system that can participate in the detailed
risk assessment?

• Is it possible to initiate the CSMS only by reallocation of personnel activities or is it
necessary to contract new personnel?

• Will the program be applied only by internal efforts, or will there be third-part suppliers?
• Will the CSMS be developed for a single HPP or for a group of them? Will reference

automation architecture be developed?
• What is the timeline expectation? Is it feasible?

3.2. High Level Risk Assessment

The high-level risk assessment should be performed to indicate priorities and support
the strategy definition regarding personnel and financial resources. Suggested concerns:

• Which HPP’s systems can cause personnel injury in case of inadequate operation?
• Which HPP’s systems can cause environmental damage in case of inadequate operation?
• Which HPP’s systems can cause equipment damage in case of inadequate operation?
• What is the impact on company’s reputation due to a well succeeded cyberattack?
• What is the financial and social impact if one or more generator unities stop working

due to a successful cyber attack?
• What is the actual and pretended risk tolerance?
• How is the IT × OT integration? Which team acts in case of incidents?
• What does the governments agents require regarding cyber security in critical infrastructures?

3.3. Detailed Risk Assessment

The detailed risk assessment should be performed in accordance with the priorities
and resources defined in the high-level risk assessment. It is important to determine a
methodology and apply it for the specified systems. Suggested concerns:

• Is there an incident database to guide systems prioritization?
• Is there a safety risk analysis that can be adapted to a security risk analysis?
• How many defence layers will be applied for priority systems?
• What is the impact of the countermeasures on the systems?
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3.4. Establish Policies, Procedures and Awareness

It is necessary to create policies, procedures, and awareness trainings that mitigate the
risks evaluated. Suggested concerns:

• What kind of trainings will be created: theoretical, practical or both?
• Which personnel should be involved: IT, OT, or both? From which specialty?
• Will an external company be hired for specific trainings?
• Will there be mandatory trainings? What will be the frequency?
• How will be the means of divulgation of the new policies and procedures inside the HPP?
• How will the integration between IT and OT departments be approached in the

policies, procedures, and awareness program?
• What will be the frequency of policies and procedures revision?
• Will there be mandatory policies and procedures?

3.5. Select and Implement Countermeasures

Once the risk tolerance, priorities, probabilities, and severities are known, they must
be carefully evaluated for the selection of the most adequate countermeasures, and it is im-
portant to take into consideration the concept of defence in depth for the countermeasure’s
definition. Suggested concerns:

• Will it be given emphasis for internal or externa attacks for the HPP under considera-
tion (intentional or unintentional)?

• Can the selected countermeasures be implemented in a single step or is it necessary to
divide the implementation in more steps due to financial restrictions?

• Recent cyber attack cases in similar plants occurred due to what kind of lack of security?
• What are the existing safeguards for the worst-case consequences? Is it possible to

improve by applying more defence layers?

3.6. Maintain the CSMS

As can be observed in Figure 1, the activity of maintaining the CSMS can go back to any
other activity, highlighting the cyclic nature of security management. It is necessary to monitor
the CSMS results and the real adherence to the policies and procedures, check changes in
government regulations, look for best practices continuously, and revise the activities according
to lessons learned during the implementation and maintenance of the program.

Figure 1. Top level activities for establishing a CSMS [12].

4. Study Case for a Typical HPP

4.1. Methodology and Contextualization

As detailed in the Section 2.3, ref. [15] proposed a generic method to turn a HAZOP
into a cyber-HAZOP risk analysis by selecting hackable scenarios. In this paper, some basic
concepts involving hydro power plants systems and CSMS were introduced to contextualize
the theorical application of this method based on a real HPP with two Pelton generator
unities that produce approximately 300 MW.
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Some simple modifications were applied to the automation architecture shown in Figure 2
in order to represent a more typical solution of distributed automation and control system.

The devices are based on Siemens solutions, where the main controllers are from S7
400 family configured with hot stand-by redundancy. The field I/O devices are based on ET
200M and ET 200S solutions, and subsystems have S7 300 as the controller. The protection
system is based on SIPROTEC equipment.

It is a client/server architecture where the operation network contains a historian,
two operation stations, and tow engineering stations all communicating through pro-
prietary protocol. The process network has double ring topology and optical fiber as
physical mean for proprietary and non-proprietary communication protocols. The sys-
tems connected to the process network are: generator units, auxiliary systems (mechani-
cal and electrical), and substation and electrical protection communicating through IEC
61850 protocol. Lastly, the field network is based on RS 485 as physical mean and Profibus
DP as communication protocol. Moreover, there are two external connections: one with the
office network and a gateway for the connection with the government regulation agent.

 

Figure 2. Study case automation architecture based on real HPP with two generator units.

4.2. Initiate CSMS Program

The company assumed that cyber security should be considered in all levels with a
top-down strategy. Table 4 shows the topics selected and the decisions made regarding
each one.
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Table 4. Company decisions to initiate the CSMS.

Topic Decision

Business plan Enough investment for a dedicated team and for the
implementation of a CSMS in this pilot plant.

CSMS scope
Complete automation architecture with selection of priority

countermeasures according to the established risk
tolerance and detailed risk analysis to be performed.

Stakeholders Head office of the electrical company, regional unities,
services, and product providers.

Organization support Full support of all organization, given that cyber security has
become a priority in the company’s strategy.

Given that the business plan allows a dedicated team, the following departments
are considered:

• Electrical maintenance and operation;
• Mechanical maintenance and operation;
• Electrical engineering;
• Mechanical engineering;
• Automation engineering;
• Information technology;

4.3. High Level Risk Assessment

Given the period of this study, the high frequency of ransomware attacks led to the
conclusion that they have medium probability of occurrence in the supervisory system
and should be considered in the program. Besides, there is also a medium probability of
non-authorized remote access focusing on turning down the HPP more than aiming to
destroy it, once it would require a deeper knowledge of the systems and existing solutions
in the HPP.

Regarding regulations, although, in some countries, there is no mandatory govern-
ment regulation on cyber security for critical infrastructures, the loss of revenue due to a
non-operating unity generator, costs to restore the system, or possible taxes due to non-
availability justify the investment in more defence layers. Given this context, the company
also changed its risk tolerance from high to medium.

4.4. Detailed Risk Assessment

The following premises were adopted:

• Plant personnel would not attack or pass information to outside attackers inten-
tionally because besides it is easier to detect, and, in the case of a dangerous inci-
dent, they would be exposed to possible injuries, so it is assumed that the leak of
internal information is due to social engineering, reinforcing the need of trainings
and awareness.

• Differently from process data that contains industrial secrets, it is assumed that data
from a HPP is not the focus, reducing the need of defence layers related to data itself.
Before applying solutions such as deep packet inspection (DPI), other defence layers
would be priority.

• Taking the previous premises into consideration, it is presumed that the focus of a
cyber attack on a HPP is to take control of the substation and/or generator unities to
turn the system down, in other words, it is assumed that it would be an attack more
similar to Blackenergy than to Stuxnet.

This plant already had a HAZOP analysis available, so it was decided to turn it into a
cyber-HAZOP by filtering the hackable scenarios.
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Table 5 exemplifies cases of the excitation system for two parameters: isolation and
control system. If the isolation is inadequate and this event is not alarmed in the SCADA,
the machine can be damaged. This is a hackable scenario because a cyber-attack can block
alarms to the SCADA letting the excitation system under risk. The complete analysis can
be found on [17].

Table 5. Company decisions to initiate the CSMS.

Subsystem Guideword Param. Deviation Possible Causes Conseq. P S R
Existing

Safeguards

Excitation
system No/Low Isolation

Low or
inexistent
isolation

Dust on the generator brushes.
Damage in the internal

equipment of the excitation
system that are connected to

the power electronics circuits.

Unity
stops 0.1 5.0 0.5

SCADA alarm.
Protection relay

64R

Excitation
system No Control

System

Control
system out

of work

CLP damage.
Cabling failure.

Failure on the 125Vcc
powering system

Unity
stops 0.1 3.0 0.3 Control system

redundancy

4.5. Establish Policies, Procedures and Awareness

The IEC 62443 standard does not specify trainings frequency, so the suggestions are
open to adaptations according to each plant needs and level of knowledge of personnel.

4.5.1. Awareness Trainings

Table 6 shows the trainings content that HPPs personnel must attend with 3 h of
duration each 12 months.

Table 6. Training’s content.

Topic Content

Risks, threats and vulnerabilities Conceptual definitions and approach of
risks associated to the HPP’s cyber assets.

Risk analysis Conceptual definitions of the risk analysis utilized in the HPP (cyberHAZOP) to prepare the
team for continuous documentation revision.

Standards General view of the main international standards used as base for the HPP’s policies: NERC
CIP, IEC 62443 and NIST 800-82.

Social Engineering
Focus on behaviour issues exemplifying well succeeded social engineering attacks to promote

awareness and
improve the level of responsibility when dealing with internal data

4.5.2. Policies and Procedures

Once the HPP may have legacy systems, the policies and procedures are mandatory
for all applicable systems. Table 7 shows the contents for each topic.

4.6. Select and Implement Countermeasures

Given that the cyber-HAZOP did not result in high-risk scenarios, the medium risk
cases were filtered and commented with recommendations:

Discharge channel: The discharge channel level is measured through a sensor. If
the level is very high, it can lower the turbine efficiency, damage it, and, in the worst
case, inundate the powerhouse. Once this sensor can be physically targeted to send a
wrong value to the system, it is recommended to be installed in a restricted area under
access control.

Stator: if an overvoltage occurs and is not detected, the isolation system can be
damaged. Besides project considerations that take this risk into consideration, some devices
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are also responsible to detect this situation: excitation digital control and protection relay,
so it is recommended to control physical and configuration access to these assets.

Table 7. Policies and procedures content.

Topic Content

Use of removable media
Policy describing allowed and forbidden attitudes and its respective procedures. If the utilization

of removable media is absolutely necessary, before being connected to the system, it must be
verified and sanitized

Backup All applicable systems must have an associated document with the backup procedure, which must
be conducted every three months or when some change is applied

Restore
The restore procedure must be tested every 12 months for all applicable systems. Examples: PLCs
multi-project, servers’ images, historian data, operation station images, devices configuration (e.g.,

firewall and protection relays), among others

Incidents Incident report policy containing a procedure to be followed in case of compromised systems

Change Change management policy with examples and templates to keep the documentation always in the
last revision.

Inventory Inventory policy containing a template document. The inventory procedure must be revised each
12 months or in case of change for both physical and cyber assets.

Patches

Patch management policy and related procedures focusing relevant systems to keep the plant safe.
Only security patches should be applied for whatever system: Windows platforms, firmware, or
automation software. The CSMS responsible must verify available patches every week and filter

the applicable ones to include in the updates planning

Access
control

Access control policy for both physical and cyber assets according to minimum privilege
philosophy. Access levels must be documented with responsible names and the document must be

revised every six months or in case of change

Logs Policy describing which logs should be monitored for each system

Spherical valve: Inadequate pressure conditions during valve opening and closing
can collapse the penstock. Theses sensors should be in a restricted area under access
control with regards to the speed governor controller to avoid wrong configurations
and commands.

Hydraulic governor: High pressure can cause pipes rupture. In addition to the existing
SCADA alarm, the pressure sensor should be in a restrict area under access control.

Speed governor: If the PLC is unavailable or if there are failures for sending and
receiving data, the unity must be stopped. A common safeguard is the system redundancy,
but it is also recommended to control physical, configuration, and command access to
this asset.

Electrical protection system: If there is a problem with input data, unknown devices
status requires stopping the system, and the non-actuation of electrical protection can cause
serious damages. It is recommended to apply many defence layer restriction for physical
and configuration access, separate network, and constant security firmware updates.

Supervisory and control system: If this system is unavailable or if there are failures
for sending and receiving data, the HPP must be stopped. It is recommended to control
physical and configuration/operation access, follow the policies and procedures, and
update Windows security patches and antivirus signatures.

Open cooling system: If the cooling system presents low flow or pressure, the circuit
temperature can increase and/or the supply of services water can decrease. These sensors
should be in a restricted area under access control.

Drainage: The HPPs drainage is performed through pumps whose commands are
from a PLC or local operation. If this system does not work when needed, the powerhouse
can inundate, so it is recommended to control physical, configuration, and command access
to this system.
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Services water: If there is no services water flow, many systems are affected, justifying
restricting physical and operation access to this system.

Ventilation: If there is no ventilation flow, it is impossible to regulate the environment
temperature and air quality, which can inhibit the permanency of the operators inside the
powerhouse. It is recommended to control physical and command access to these assets.

As can be observed in the medium risk cases, most risks can be mitigated through
physical access control, minimum privilege philosophy for configuration and operation,
security patch updates, security firmware updates, antivirus, trainings, and personnel
awareness.

Regarding the automation architecture, the following measures are suggested:

• Division into security cells protected through firewall to control activities that occur
within and between then.

• Inclusion of a server with security functionalities: antivirus and Windows patches.
• Inclusion of a centralized log management system.
• Configuration of a DMZ (demilitarized zone) to limit data flow from process to office

network containing the historian server, antivirus, Windows patch update server, and
log management server.

Cell 1 contains the operation and engineering stations, while Cell 2 contains the real
time data servers. The process and operation networks are physically distinct and, by
separating them into different security cells, it is necessary to configure firewall rules to be
compliant with IEC 62443 requirements. As a result, the modular switches must provide
technical features that enable security configurations, or the PCs must have embedded
security options such as firewall and VPN.

The communication gateway with the Operation Centre or Government Agent is
extremely relevant, and it is an external connection. To be IEC 62443-compliant, another
DMZ should be configured, but given that it involves a government agent and some
countries still do not have a national mandatory standard, it is considered in Cell 3 without
DMZ characteristics, but configured according to the government agent rules requirements.

As cited in the high-level risk assessment, it is admitted that external ransomware
attacks and non-authorized remote access probability is higher than intentional internal
attacks probability. For this reason, all systems connected to the process network (generator
unities, auxiliary services, and substation) are considered in Cell 4.

In addition to the modifications suggested for the automation architecture, in order to
keep a minimum security level, it is suggested to develop check lists for the six groups of
devices configuration stated in Table 2:

• Supervisory system;
• Communication link with operation centre or regulation agent;
• Communication between process data and office network;
• Network equipment;
• Electrical protection system;
• Controllers.

The check lists should approach measures to mitigate identified vulnerabilities. Al-
though Table 8 refers only to controllers, similar check lists should be developed for
the other devices groups, taking into consideration Table 3 contents regarding common
ICS vulnerabilities.

It can be said that the architecture suggest in Figure 3 is an intermediate solution. The
architecture division into security cells can follow many criteria, and it impacts the amount
and costs of security devices, and there must be at least one firewall for each cell. Figure 4
is an example of a lower level of security with only two security cells and a DMZ, while
Figure 5 considers seven security cells and a DMZ.
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Table 8. Controllers check list.

Controllers

Item Description Yes No Comments

1 Physical security: allocation of controllers inside cabinets with access control

2 Hardening: disable non-utilized functionalities

3 Hardening: disable logical and physical (USB and others) nonutilized ports.

4 Firmware: guarantee that the device is running with the last homologated
firmware version

5
Configuration: keep the controllers configuration tool
with physical access control and restrict users able to

change configurations

 
Figure 3. Architecture containing a DMZ and four security cells.
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Figure 4. Architecture containing a DMZ and two security cells.

 

Figure 5. Architecture containing a DMZ and seven security cells.

5. Conclusions and Future Work

This study proposes the application of IEC 62443 concepts for hydro electrical power
plants. As discussed in the literature review session, it adds value to the energy market
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given the gap for more domain/actor-based studies, and, in this case, the contribution is fo-
cused on hydropower owners and network operations. It is expected that the methodology
developed in this paper can contribute to a better understanding of how to start a security
management program, what are the implications of the chosen risk tolerance, and how it
may change technical solutions and network equipment and configuration.

Before analysing the study case, common ICS vulnerabilities were considered in
groups of devices according to a typical modus operandi of suppliers in an HPP automation
project. To illustrate the application guide, a theoretical study case based on a real HPP
was developed, and some premises were adopted to develop the CSMS. Once the HPP had
a HAZOP risk analysis available, it was filtered for hackable cases exemplifying how to
transform a safety risk analysis into a security risk analysis: cyber-HAZOP.

The medium risk cases were detailed, showing that most of them can be mitigated
through physical access control, minimum privilege philosophy for configuration and
operation access, security patch updates, security firmware updates, antivirus, trainings,
and personnel awareness.

Regarding the automation architecture, it was suggested to implement a DMZ and
divide the devices into four security cells. The DMZ was considered with the historian
and servers for antivirus, Windows security patches, and log management. The external
communication gateway was not considered in a DMZ because it would involve the
government agent and, in many countries, there are no mandatory regulations regarding
cyber security in critical infrastructures.

To exemplify other solutions, two more architectures were designed considering lower
and higher risk tolerances. The lower the risk tolerance, more security cells should be
implemented, thus increasing the solution costs and maintenance efforts.

Future studies on the energy generation domain could further investigate the cost—
benefit relation resulting of the risk tolerance that each company is committed and how it
impacts the cyber risks countermeasures implementation. For example, some mitigations
from the literature review, such as IDS (intrusion detection system), blockchain, 5G, and AI
(artificial intelligence) were not considered in this study due to the high implementation
cost. Besides, limited budgets are common in smaller power plants, and more relevant
plants may have a different scenario, being able to apply more security layers and invest in
more expensive solutions. Furthermore, the literature review also shows little research on
real case applications, where the results could be evaluated and improved according to this
or other methodologies, deepening the analysis of different technical solutions and their
efficacy to meet the challenge that the energy sector faces regarding cyber security.
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Abstract: This study aimed to present the experimental results of two types of turbines and attach-
ments used in a hydro-compact generator. Two Horizontal Spiral Turbines (HSTs) with blade angles
of eighteen and twenty-one degrees, respectively, and a three-blade turbine were tested and experi-
mented in a laboratory at five levels of water flow rate ranging from 1–2 m/s. After the efficiency
and torque values of each turbine were identified, they were installed in two 200 W power generator
systems: (1) with a “diffuser” attachment; and (2) with an “in-line+diffuser+nozzle chamber” attach-
ment, and tested in a local irrigation canal with 1.2 m/s. The results from the laboratory indicated that
the HST with a twenty-one degree blade angle had 38.10% efficiency at the water flow rate of 2 m/s.
It could reach 120.0 rpm and produced 212 Nm of torque. The results from the field experiment
revealed that the combination of the power generator with the twenty-one degree blade angle HST
and the in-line + diffuser + nozzle chamber attachment was the most efficient, with 284 Nm of torque
at 108 rpm and could generate 67.63 W of electrical power. When the water flow rate of the irrigation
canal reached 1.5 m/s, it could reach 114 rpm and generate 129.2 W. This hydro-compact generator
set is suitable for irrigation canals with a water flow rate ranging from 1–1.5 m/s.

Keywords: spiral turbine; electrical power; torque

1. Introduction

Climate change causes incidents that challenge humankind to endure. The United
Nation Office for Disaster Risk Reduction (UNDRR) states that some human activities
have caused these drastic global disasters [1]. Global warming is one of the most serious
problems faced by humankind, responsible for drastic weather changes caused by burning
fossil fuels and population expansions. In the near future, there is expected to be a trend of
power shortages that will lead to the increased usage of clean and renewable energy by
every country in the world [2,3]. Clean and renewable energy usage is expected to have
fewer effects on the environment than fossil fuels. However, clean and renewable energy
from hydro-power plants can still harm the ecosystem, because their establishment requires
immense areas of land [4,5].

In Thailand today, the capability of electrical power production from hydro-power
plants throughout the country is 3107.51 megawatts (MW.), which accounts for 23.01%
of Alternative Energy Consumption. Thailand aims to gather 3228 MW. from hydro-
power plants by the year 2037 [6]. Although geographical limitations obstruct further
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establishment of large hydro-power plants, Thailand has other potential sources of hydro-
kinetic power, such as local irrigation reservoirs, irrigation canals, or local administration
sectors, that can provide aid for villages and communities to produce electrical power from
water sources [7].

Many studies indicate that there are plenty of irrigation canals in Thailand. However,
most of them have the low water flow speed rate of about 0.52–2.0 m/s [8]. Thus, extracting
electrical power from these canals requires a special hydro-power generator that is designed
to operate under low water flow speed (less than 2.0 m/s) or low head pressure (less than
0.3 m). For ultimate performance, the generator requires an effective small-size turbine
within the system. This kind of turbine must be eco-friendly, and must be well-accepted
by the majority of people [9–11]. However, leaves, waste, or debris in the canals must
be considered because, as they flow along, they might clog up the generator’s water
inlets [12,13]. Some living creatures in the water may also be trapped inside and injured [14].
Despite these concerns, this Pico power generator system can benefit houses or small
villages [15,16]. The output wattage can be predicted if there is sufficient water in the
system [17]. Moreover, this kind of generator has a positive environmental impact [18,19].

River Current Energy Conversion Systems (RCECS) is a system that was proven to
be able to convert the kinetic energy of water flow in rivers into other forms of useful
power effectively. One key factor that makes RCECS successful is the cost of power
production, including operation and maintenance costs. Moreover, the design, applications,
capability, and practicality of RCECS have created accountability [20]. Thus, the adaptation
of RCECS in this study will strengthen the proof of the system to be a powerful and effective
alternative of gathering renewable energy.

The principle of water current power indicates that most of the water volume flowing
horizontally in any natural source must have direction and speed. This can be a source
of electrical power harvest [21,22] when a turbine hydro-power generator is installed [23].
The electricity is generated from a transformation of water flow power into kinetic power
at the axle of the generator’s turbine; still, there is a power loss in the system [24]. There
are many types of water turbines in hydro-power generator systems, largely divided into
two groups according to their axle configurations (vertical and horizontal). Horizontal-axle
turbines are further divided into two types according to their applications; vertical and
horizontal installations [25]. Turbines in whirlpool hydro-generator systems, as well as
Induced Vibration (VIV) turbines [26], have also been developed. Therefore, to achieve
the most practical and effective goal of extracting renewable energy from local irrigations
requires choosing the right applications that suits the water flow characteristics and the
size of the power generator. Betz’s law indicates that the extracted peak power coefficient
value from a turbine is 59 percent. However, in reality, the extracted power values are lower
because of the loss from the turbine’s characteristics. Therefore, the power loss value in the
system must be included in the experiments [27]. A proper turbine type selection for this
circumstance must be carefully selected for the highest potential and the lowest eco-impact,
as well as for low production cost. Moreover, there are studies concerning different types
of turbines used in hydro-generator systems in irrigation canals with water flow rates from
0.6–3 m/s, as shown in Table 1 [28].

253



Energies 2023, 16, 2267

Table 1. Turbine specifications [28].

Manufacturers Device Name Turbine Type Min./Max. Speed Power Output

Lucid Energy Pty., Ltd.
(Dallas, TX, USA) [29] Gorlov Helical turbine Helical Darrieus

cross-axis (0.6 m/s)/no limit Up to 20 kW, depends on
size

Thropton Energy Services
(Northumberland, UK)

[30,31]
Water current turbine Axis flow

propeller
(0.6 m/s)/depends on

diameter
Up to 2 kW

at 240 V

Tidal EnergyPty., Ltd.
(Canberra, Australia) [32]

Davidson–HillVenturi
(DHV) Turbine

Cross-flow
turbine Min. 2 m/s From 4.6 kW

Seabell Int.Co., Ltd.
(Tokyo, Japan) [33] Steam Dual, cross-

axis (0.6 m/s)/no limit 0.5–10 kW
models

New Energy Corporation
Inc. (Calgary, AB,

Canada) [34]

En Current
Hydro Turbine Cross-axis Max. 3 m/s for maximum

power
5 kW

(and 10 kW)

Eclectic Energy Ltd.
(Nottinghamshire,

UK) [35]
DuoGen-3 Axial flow

propeller
Min. (0.93 m/s)/(4.63

m/s) max.
8 amps

at 3.09 m/s

Alternative Hydro
Solutions Ltd. (Toronto,

ON, Canada) [31]

Free-stream
Darrieus water turbine Cross-axis (0.5 m/s)/depends on

diameter Up to 2–3 kW

Energy Alliance Ltd.
(Ural region, Russia) [30]

Sub-merged
hydro unit Cross-axis Min 3 m/s 1–5 kW

(and 410 kW)

A properly designed Horizontal Spiral Turbine (HST) can achieve the highest efficiency.
Its key feature is the ability to reduce the turbulence generated by the impact of high-
pressure water flow with the surface of the blade. This is obviously a benefit to the
generator’s efficiency and performance. Another obvious unique feature is that HST can
be applied to wind and water generators with low-speed flow. HST’s advantages are
the low cost of production, compactness, and an ability to operate effectively under low
pressure head. A hydro-generator system with an HST application can be properly used in
rivers, canals, and irrigation canals without doing serious harm to living creatures in the
water. It can be harmlessly blended with ecosystems; moreover, the construction materials
are not expensive [36]. HSTs have been designed based on Fibonacci functions [37] and
the golden ratio [38]. They are an arithmetic series of natural phenomena according to
Fibonacci sequence principles. One round of rotation (360 degree) of an HST axle is equal
to a length. Thus, the angle of the blades alters the length. The last characteristic of efficient
HST relates to the number of blades. If the number of blades is insufficient, the surface area
for converting force will cause the HST to generate low torque. On the other hand, if the
number of blades is too high, the HST will create a solid wall state. Too many blades also
increase the HST mass and inertia that reduce the overall torque [39]. Ratchapol et al. (2016)
discovered that, under low water velocity and with between two and six blades, an HST
with three blades could achieve the maximum torque and most optimal performance [40].

Yasukuni Nishi Okubo and Norio Kikuchi designed a new hydro-compact generator
system that had “a runner” and “a collection device” including “a diffuser section” to
enhance the water flow through the turbine. This increased power extracting ability and
flow rate by 2.76% in a hydroelectric power generator with a three-blade turbine. At 456 rpm
and a water flow rate of 1.72 m/s, 156.4 watts of electric power could be generated [41,42].
Hidayat et al. (2020) proved that a hydro-spiral turbine could spin faster (90 rpm) than
other types at the same water volume [43]. Ratchapol et al. (2016) used the golden ratio
function to enhance the efficiency of spiral turbines by extending the blade’s radius and
adjusting the diameter/length (D/L) ratio to 2/3. They proved that a spiral turbine had
proper efficiency when compared with the a three-blade turbine. A hydro-generator with a
proper spiral turbine could effectively generate electrical power at water flow rate ranging
from 0.5 to 2 m/s [40]. Wiroon and Ratchapol (2017) also proved that a horizontal spiral
turbine in a hydro-generator system with a nozzle chamber inlet was more efficient than
one with a free flow inlet. Moreover, the blade angle also significantly affected the system’s
performance and efficiency [44]. Uday Y. Bhenede (2015) had designed and developed
a turbine in a hydro-generator system that could effectively operate under low water
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pressure. It was a small-size turbine in a generator system that could operate under variant
head pressure [45].

Today, HST research and development is focused on identifying the best values of
different blade angles, length/axis radius ratio, blade number, or torque. Therefore, in this
study, two Horizontal Spiral Turbines (HSTs) with blade angles of eighteen and twenty-one
degrees, respectively, and a three-blade turbine, were tested in a laboratory at five levels
of water flow rate ranging from 1–2 m/s. After the efficiency and torque values of each
turbine were identified, they were installed in two 200 W power generator systems: (1) with
a “diffuser” attachment; and (2) with an “in-line+diffuser+nozzle chamber” attachment,
and tested in a local irrigation canal with a water flow rate of 1.2 m/s.

2. Materials and Methods

Laboratory experiments and related equations

This study aimed to design 3-blade Horizontal Spiral Turbines with blade angles of 18
and 21 degrees used in a hydro-generator system [40]. The simulation was set as displayed
in Figures 1 and 2 and was simulated in a laboratory. The generator was fitted with 6
inches of spiral turbine. It was attached with 6 inches of PVC pipes and its body was a clear
acrylic for better performance observations. The simulator system could generate 5 levels
of water flow speed ranging from 1–2 m/s, which represented the actual current in local
irrigation canals with a flow speed rate of 0.5–2.0 m/s throughout the region [8]. The initial
torque power and torque power was identified using Equation (1) [46–48]. Later, in the
field experiments, the turbine size was increased to 15 inches.

Pt,out =
2πτN

60
(1)

Pt,out = Power Output (kW)

τ = Torque (Nm)

N = Revolutions per minute (RPM)

 
(a) 

 
(b) 

Figure 1. Sketch of the experimental setup. (a) Isometric view; (b) top view.
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Figure 2. Simulation set.

Value measurements in the laboratory were operated by using: (1) an Ultrasonic
Liquid Flow Meter; Micronics Portaflow PF300 for water flow rate (m/s), (2) a Tachometer
Light Sensor Module for RPM, and (3) a Local Cell Module for torque at turbine axles.
These values were processed by Lab View NATIONAL INSTRUMENTS NI cDAQ-9178 to
identify the generated power and turbine efficiency. This laboratory simulation was carried
out according to Gianluca Zitti et al. (2002) [49]. Torque values from each turbine model
were studied and evaluated for appropriate uses in real contexts.

Power and efficiency of turbines at different water volumes and flow speeds were
identified using Equations (2) and (3). The peak power of turbines was identified using
Equation (4) [50,51].

Pt,in = ρgQHn (2)

η =
Pt,in

Pt,out
(3)

Pt,out =

[
16
27

][
1
2

]
ρAv3 (4)

Pt,in = Power input (kW)

ρ = Water Density
(

kg/m3
)

g = Gravitational of mass
(

m/s2
)

Q = Water Volume
(

m3/s
)

Hn = Head Pressure (m)

η = Efficiency

16
27

= Max Power Coefficient (CPmax)

A = Turbine Surface
(

m2
)

v = Water Flow Speed (m/s)

One rotation of the HST axle (360 degree) determined the width and the length of the
turbine. The fixed pitch (L) and fixed diameter (D) are displayed in Table 2. HSTs with 18
and 21 degree blade angles, and the three-blade turbine, are displayed in Figures 3 and 4.
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Table 2. Turbine specifications.

Turbine
Blade Area

(mm2)
Pitch (mm) Length (mm) Width (mm)

18-degree 12,653.72 49 233 150
21-degree 10,587.91 49 197 150

3-blade 754.96 - - 10

Figure 3. Horizontal spiral turbine design.

Figure 4. Turbines to be tested in the simulations. (a) 18-degree, (b) 21-degree, (c) 3-blade.
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“L” represents the height at one round of rotation. “s” represents the peripheral length
of the HST. “R” represents the HST radius. “N” represents the number of rounds of rotation.
All the variables were used in Equations (5) and (6) for the design.

r′(t) = −2πNR
L

sin
(

2πNt
L

)
i +

2πNR
L

cos
(

2πNt
L

)
j + k (5)

s =
√

4π2N2R2 + L2 (6)

The collective chamber (see Figure 5) was designed according to Yasuyuki [41] to
regulate the inlet fluid pressure of the system [52]. It was also attached with a rudder to
enhance the water flow rate.

  
(a) (b) 

Figure 5. Diffuser/collective chamber. (a) Three-dimensional representation; (b) drawing view.

Power Output (η)

The power output was identified using Equations (7) and (8) [53].

η =
Pe

Pm
(7)

Pe = EI (8)

E = Voltage (V)

I = Current (A)

Pe = Power Output (W)

Pm = Power Output from Water Power (W)

3. The Field Experiment

A diffuser was attached to the turbine housing of a 200 W electrical power generator
(Table 3) as displayed in Figure 6. A 15-inch-diameter HST with an 18-degree blade angle,
a 15-inch-diameter HST with a 21-degree blade angle, and a three-blade turbine 15 inches
in diameter were tested in this generator system. There were two generator systems used
in the experiment: (1) a generator system with a diffuser as a trumpet-shaped collective
chamber attachment (see Figure 7a), and (2) a generator system with an in-line pipe +
diffuser + nozzle chamber attachment (see Figure 7b). They were tested in an irrigation
canal in Baan Kota, Tambol Sila, Amphoe Muang, Khon Kaen Province (see Figure 8) with
water velocity ranging from 0.8 to 1.2 m/s and a water volume of 2.10–3.15 m3/s. They
were planted using a rigid structure as a scaffold to set them in the middle and along the
canal. The data of (1) water velocity, (2) the turbines’ RPM, (3) the turbines’ torque, and (4)
the power output were analyzed using measuring devices, and this data reading process
was carried out exactly as in the laboratory.
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Table 3. Axial flux generator specification.

Rated Power 0.2 kW
Rated Rotation Speed 200 rpm

Rated Voltage 12VAC
Efficiency 90%

Start Torque <0.05 Nm
Phase Type 3 Phase

Figure 6. The prototype and its components.

(a) (b) 

Figure 7. Two generator systems. (a) The generator system with a diffuser as a trumpet-shaped
collective chamber. (b) The generator system with an in-line pipe + diffuser + nozzle chamber.

 
(a) (b) 

Figure 8. Field experiments. (a) The generator system with a diffuser as a trumpet-shaped collective
chamber. (b) The generator system with an in-line pipe + diffuser + nozzle chamber.
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4. Results and Discussions

Turbines’ efficiency and torque from laboratory simulator

The comparison results of efficiency of the three turbine types with 6-inch diameters
at different water velocities from the laboratory simulation are displayed in Figure 9. As
shown below, the HST with the 21-degree blade angle reached the highest efficiency at all
water flow speeds. The HST with the 18-degree blade angle’s efficiency was lower than
that of the 21-degree HST. However, the efficiency of the three-blade turbine could not
be determined under water velocities ranging from 1 to 2 m/s. It needed higher water
flow speed to be practical, so it had the lowest efficiency in this experiment. The HST with
the 21-degree blade angle had 38.10% efficiency at 120.00 rpm of 2 m/s water velocity.
It reached 39.05% at 156.63 rpm of 1.5 m/s water velocity. The results revealed that the
operations of the HST with 21-degree blade angle at 1, 1.25, 1.50, 1.75, and 2.0 m/s indicated
1100, 1300, 1630, 1850, and 2100 L/s of water, respectively. Figure 10 displays the torque
values generated from the HSTs and the three-blade turbine. All torque values were altered
by water flow speed. The 21-degree HST generated the most torque at 212 Nm at 2 m/s
water flow speed. This created data that can be used as a reference in enhancing systems
for practical field applications.

Figure 9. Comparison results of efficiency of the three turbine types in laboratory simulation at water
flow speed of 1, 1.25, 1.50, 1.75, and 2.00 m/s.

 

Figure 10. Comparison results of torque values of the three turbine types in laboratory simulation at
water flow speed of 1, 1.25, 1.50, 1.75, and 2.00 m/s.
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Field Experiments

The torque values of the three turbine types with 15-inch diameters are shown in
Table 4. From the field experiments in an actual irrigation canal with the average water
velocity of 1.2 m/s, the best turbine type was the HST with the 21-degree blade angle in a
generator system with an in-line + collective chamber + inlet nozzle. It had a peak torque
of 284 Nm. The HST with the 21-degree blade angle in a generator system with only the
diffuser/collective chamber could only generate a torque value of 217.2 Nm.

Table 4. Torque results.

Turbine
Speed of Turbine

(rpm)
Torque

(Nm × 100)

Water velocity (m/s) 1.2 1.2

Spiral turbine +
collective chamber

18-degree 28 13.65
21-degree 41 21.72

3-blade 26 4.56

Spiral turbine + inline
+ collective chamber +

inlet nozzle 100 cm

18-degree 102 20.06
21-degree 108 28.40

3-blade 58 7.04

When torque values generated from the 6-inch-diameter turbines used in the labo-
ratory simulation and the 15-inch-diameter turbines used in the field experiments from
both generator systems were compared, it was obvious that the generator system with the
additional modifications of collective chamber + inlet nozzle 100 cm could generate more
torque. In the laboratory simulation, at a water flow speed of 1.2 m/s, the 21-degree HST
with 6-inch diameter produced about 49 Nm of torque, but when the turbine diameter was
increased to 15 inches, the torque values increased to 217.2 and 284.0 Nm in both generators.
Obviously, the generator with higher torque could generate more power.

Power output

From the field experiments in an actual irrigation canal with the average water velocity
of 1.2 m/s, the best turbine type among the rest that could generate the most power output
(67.63 watts) was the HST with the 21-degree blade angle in a 200 W generator system with
an in-line + collective chamber + inlet nozzle (as shown in Table 5). After the long-run
operations at different water flow speeds, the results were as shown in Figures 11 and 12.
These results were analyzed and compared with related studies as displayed in Table 6.

Table 5. Power output results.

Turbine Electric Power (Watt)

Water velocity (m/s) 1.2

Spiral turbine + collective
chamber

18-degree 21.90
21-degree 28.43

3-blade 6.92

Spiral turbine + inline +
collective chamber + inlet

nozzle 100 cm

18-degree 26.85
21-degree 67.63
3- blade 7.15
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Figure 11. Comparison results of rpm generated by HST with 21-degree angle blade in the generator
system with diffuser/collective chamber and the generator system with in-line + diffuser + nozzle
chamber at water velocities of 1.0, 1.2, and 1.45 m/s.

Figure 12. Comparison results of power output generated by HST with 21-degree angle blade in the
generator system with diffuser/collective chamber and the generator system with in-line + diffuser +
nozzle chamber at water velocities of 1.0, 1.2, and 1.45 m/s.

Table 6. Comparing results with related studies.

Ref. Turbine Water Velocity (V) Section Inlet Area (A) Work Output (Watt)

Wiroon 21 deg spiral Turbine +
diffuser 1.45 m/s 0.16 m2 67.63

Yasukuni Nishi et al. [41] 3-blades + diffuser 1.72 m/s 0.16 m2 154.00
Erinofiardi [54] Screw Turbine 0.077 m/s 0.0088 m2 0.28

Tomomi Uchiyama [12] Guide vane 0.159 m3/s 0.005 m2 222.00
Joel Titus [55] Turbine blades 0.009 m3/s 0.005 m2 212.00
Budiarso [56] Turgo turbine n.d. 0.038 m2 5.34

C.H. Achebe [57] Crossflow turbine 0.0015 m3/s 0.015 m2 35.00
Gianluce Zitti et al. [49] Screw turbine 1–2 m/s 0.003 m2 500.00

5. Summary and Conclusions

The golden ratio function had the most important role in this study in order to verify
the proper HST’s blade angles. There were three turbines (an HST with an 18-degree blade
angle, an HST with a 21-degree blade angle, and a three-blade turbine) designed to be
tested in two generator systems in this study. Firstly, all turbines were tested in a simulation
set in the laboratory. The simulator revealed that the HST with the 21-degree blade angle
had the highest efficiency (38.10%) at all water flow speeds. When the two sets of generator
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systems (one with a diffuser/collective chamber attachment and another one with an in-line
+ diffuser + nozzle chamber) were tested in an actual irrigation canal at the average natural
water flow speed of 1.2 m/s, the results revealed that the HST with the 21-degree blade
angle in a generator system with an in-line + diffuser + nozzle chamber could generate the
highest power input of 67.63 watts. In the long-run operation experiment, when the water
velocity reached 1.5 m/s, it could generate electrical power up to 129.2 watts.

The turbines used the in laboratory and field experiments were different in size because
the bigger turbine size employed in the actual irrigation canal had more inertia. Thus, the
transmission set attached to the generator system had to be properly designed to fulfill the
turbine’s performance.

This study showed that a Horizontal Spiral Turbine (HST) in a hydro-compact gener-
ator system could effectively operate under low water flow speed. The HST blade angle
could also generate high torque from low water flow speed. In conclusion, an HST in a
generator system with an in-line + diffuser + nozzle chamber could significantly generate
high torque and high power output in any actual irrigation canal with low water flow rate
at the average of 1.5 m/s throughout the country.

6. Break-Even Point and Investments

From this study, the conditions that must be considered in order to meet the break-even
point for investors are:

- 1.5 m/s average water flow speed;
- 24 h operation;
- 365 days production length;
- 0.8 (9.6 months) plant factor value;
- USD 0.13 per one power unit selling price.

The maximum cost of production of a 200-watt hydro-compact generator with an
HST and attachments is USD 2434.83 and the break-even point is 22.86 years. Details are
displayed in Table 7.

In conclusion, it is obvious that the main issue of applying this kind of technology
is the correlation between the cost of production and the break-even point. However, the
production cost of this compact hydro-generator system is still high, whereas the low-speed
water flow rate of local irrigation canals provides “not much” renewable energy. Nicolas
D et al. (2016) stated that the main concerns of using HSTs were lowering the production
costs, enhancing the turbines’ efficiency, environmental awareness, and public relations
campaigns [58].

Table 7. A 200-watt hydro-compact generator with HST cost of production.

Inventory USD per Unit

1. Turbine Cost of Production 429.31

2. Materials Cost 572.41

3. Generator Cost of Production 857.67

4. Labor Cost 572.41

Remark: There will be variations in production cost since the cost has been converted from THB to USD (updated
15 December 2020).
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Abstract: Many issues with water quality and water ecology are caused by the Xinghai Lake’s
enormous catchment, significant evaporation rates, and one additional water supply. To quantitatively
study Xinghai Lake’s water displacement characteristics, a two-dimensional hydrodynamic-tracer
coupling model based on MIKE21 was developed. The findings indicate that: (1) Xinghai Lake’s
water replacement cycle exhibits spatial heterogeneity, with a general characteristic of fast water
renewal in the southern lake area and slow renewal in the northern lake area, and the gradient change
of the water replacement cycle from south to north is influenced by a variety of factors, including the
lake’s flow field, flow, topography, and wind field. (2) The throughput flow has an impact on the
majority of the waters in Xinghai Lake. When there is a high water flow, the lake region has a high
flow velocity, rapid water transport, and a large capacity for water exchange; when there is a low
water flow, the lake area has a slow flow velocity, poor water flow, and a lengthy water exchange
period. (3) The flow field of Xinghai Lake is complicated, the flow velocity is low, and it is a lake
system where quick water exchange and slow water exchange coexist. This flow field is influenced
by the interplay of wind-generated flow and throughput flow. (4) To speed up the water body’s
rejuvenation, the Xinghai Lake wetland needs more inlets and exits to introduce new water sources.

Keywords: Xinghai Lake wetland; landscape water; MIKE21 two-dimensional hydrodynamic-tracer
coupling; water displacement cycle; water demand

1. Introduction

Landscape water bodies are typically found in the city’s center, surrounded by other
buildings such as homes and businesses, which have significant value for the city’s eco-
logical environment and economic growth. Urban landscape water bodies, on the other
hand, are typically closed, slow-moving, static water bodies that are poorly mobile, easy to
pollute, have little water environment capacities, and have poor self-cleaning [1,2]. The
conflict between relatively poor environmental management and the growth of the urban
population is becoming more and more obvious as urbanization progresses, and numerous
urban lakes have experienced varying degrees of pollution. To avoid a decline in lake water
quality, regulate pollution, and support the healthy growth of the urban water environment,
it is important to clarify the flow field characteristics and water displacement capacity
of artificial lakes. Ecological recharge, or the addition of comparatively clean water to
polluted water bodies, is a technique for ecosystem restoration [3,4]. It can help the ecology
of the water bodies by diluting the contaminants there. Research on hydrodynamics and
water displacement characteristics can be used to create practical lake and wetland water
environment regulatory policies, enhance lake water quality, and address other issues,
including wetland degradation. The scientific basis for safeguarding and reestablishing the
biological environment of lakes and wetlands can be found in a thorough understanding
of the hydrodynamic and water body exchange features of lakes and the elements that
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influence them. To preserve the healthy and sustainable operation of the wetland water
ecological environment, it is crucial to establish a hydrodynamic-tracer coupling model
to realistically conduct recharge scheduling to satisfy the water quality and quantity of
lakes and wetlands [5,6]. Jizhang Tang et al. [6] investigated water exchange capacity using
the MIKE21 coupled hydrodynamic-staining agent model simulation and discovered that
enhancing water exchange capacity is critical to maintaining the health of water ecosystems.
Cucco et al. [7] created a two-dimensional hydrodynamic model of the Venice Lagoon to
calculate the residence duration of the water column using the residual function of a passive
tracer injected into the lagoon. Liping Xu et al. [5] employed computational methods to
create hydrodynamic and convective diffusion models to investigate the renewal time
and water exchange rate of manmade lakes. Delhezé et al. [8] created a two-dimensional
estuary model and a one-dimensional river model to examine convective dispersion in
the Skelt River estuary, obtaining the retention, transit, and influence time of estuarine
water bodies. The majority of landscape water body research is focused on water quality
prediction and water restoration approaches. Qingbin Meng et al. [9] used scenario analysis
to simulate Daming Lake’s flow rate and COD distribution under five different water
diversion scenarios, in addition to the coupled water quality-quantity simulation method
to simulate Daming Lake’s current flow rate and COD distribution. These simulations
provided a scientific basis for the reasonable water diversion scheduling of Daming Lake
in Jinan City. Wenjie Xu et al. [10] developed a model to determine the optimal water
diversion volume of Dongchang Lake after taking into account the water quality and quan-
tity requirements for Dongchang Lake’s main functions, such as landscape tourism and
ecological environment. This model served as the foundation for the scientific diversion of
water from the Yellow River.

Xinghai Lake is a significant lake in northern Ningxia, China. It has a huge surface
area, high evaporation and water consumption in the lake region, and minimal water
loss and waste. Since 2004, Xinghai Lake’s primary source of water replenishment has
been the Yellow River, due to the lake’s limited capacity for self-purification and reliance
on a single source of water recharge. The wetland ecology has a single structure and an
unsound system, failing to create a healthy water ecosystem. The ecology is fragile, with
low biodiversity and insufficient biological richness of microbes, plants, and fish. There are
currently fewer studies on water demand computation and the water replacement cycle
from the perspective of the water quality-volume balance of landscape water bodies than
there are studies on Xinghai Lake’s evaluation of water environment quality and analysis
of pollution sources [11].

Many issues with the water environment and water ecology are caused by the poor
mobility of lake water in its natural form, the low frequency of lake water replacement, the
lengthy cycle of water replacement, and the declining quality of the lake water environment
and water ecology. Welch [12] diverted water from the Columbia River into Moses Lake in
1992 and replaced 20% of the lake’s water, greatly reducing the concentration of pollutants,
such as total phosphorus, total nitrogen, and chlorophyll A, in the lake and increasing
the lake’s transparency, which made the water in the lake clearer and better. In various
European nations, the water quality of polluted water bodies is frequently enhanced
by adding clean water from the outside, diluting the pollutants already present in the
waters, and then releasing the pollutants from the existing waters by scouring and water
transportation. Water environment issues, including eutrophication in the ancient Danube
Lake, were extensively managed and improved in 1999 by Donabaum et al. [13], using
water diversion and replacement technologies.

The Xinghai Lake wetland is researched using the MIKE21 FM model (MIKE21 FM
model, which was developed by the Hydraulic Research Institute of Denmark) created by
the Danish Institute of Water Resources in this work. To guide the management of Xinghai
Lake, numerical simulations are used to quantitatively examine the recharge cycle of the
landscape water body of the Xinghai Lake wetland and to logically develop the water
quality assurance and purification plan. This study aims to properly develop the water
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quality guarantee and purification plan, to research the recharging cycle of the Xinghai
Lake wetland’s landscape water body, and to serve as a guide for managing the lake’s
water quality and water ecology.

2. Data Source and Methods

2.1. Study Area

The geographic coordinates of Xinghai Lake (Dawukou flood control reservoir) are
105◦58′–106◦59′ E and 38◦22′–39◦23′ N. It has a total area of 43 km2 and a lake area of around
23.38 km2, of which 10.55 km2 is the study area (Figure 1). It is situated in Dawukou District,
Shizuishan City, Ningxia Hui Autonomous Region, China. It is also a crucial component of
the “72 lakes” water system in the Yinchuan Plain, which primarily performs the tasks of
flood control, drainage, improving the water environment, regulating microclimate, and
maintaining the ecological balance of the region. It is also a significant protected wetland
for the entire area. Xinghai Lake receives 200 to 400 mm of precipitation on average every
year, with the amount rising from south to north. Water evaporates at a rate of, on average,
between 800 and 1600 mm per year, which is four times more than it rains. As Xinghai
Lake has grown and been used more recently, it has used an excessive amount of water; the
water environment has become somewhat contaminated, and the water quality is declining.

 

Figure 1. Study area. (a) Location of the project; (b) Scope of the study.

2.2. Data Source

The data for wind speed and wind direction is taken from the China Ground Cu-
mulative Daily Value Dataset (1981–2010) of the National Meteorological Science Data
Center; the data for water level and flow are all taken from the Feasibility Study Report on
the Remediation of Ecological and Environmental Problems of Xinghai Lake; the data for
precipitation are taken from the average measured data from December 1965 to December
2019 at Pingluo Rainfall Repr.

2.3. Methods

The Xinghai Lake wetland’s landscape water needs should satisfy both the water
requirements for wetland operation and the requirements for the tour’s water quality. This
is because the wetland’s ecological and environmental functions must be protected as well
as its public viewing, leisure entertainment, and aesthetic functions. Placement should take
into account the following:

(1) The water requirements of the actual Xinghai Lake wetland, including those for the
plants that grow there, for irrigation in the shoreline zone, and landscape water levels.

(2) The daily water replenishment of the Xinghai Lake wetland, including precipitation,
seepage, and evaporation.
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(3) Starfish Lake wetland replacement water: maintains the landscape water body’s
water quality standards, preventing eutrophication and meets the needs of the water
environment capacity, protecting the wetland’s functions from being harmed by
routine replacement water.

2.3.1. Water Demand Model of Xinghai Lake Landscape Water

In addition to surface water, groundwater and soil water are important sources of
water for the landscape. The following factors should be given special attention when
determining the water demand for the landscape water bodies in Xinghai Lake [14]:

(1) Water requirement for evaporation WW:

Since Xinghai Lake is situated in a dry and semi-arid region of northwest interior
China, one of the main ways that water is lost from the lake is through substantial re-
gional evaporation. The accounting average for evaporation during a multi-year period is
1107.3 mm, according to observation result data from a meteorological station’s evapora-
tion dish.

(2) Water demand of wetland vegetation WP:

To sustain their life and ability to reproduce, plants require a lot of water during their
growth and development. Plant transpiration accounts for the majority of this water con-
sumption, but soil evaporation also uses up a lot of water. The fundamental physiological
water demand of plants in general is only a tiny component and is typically overlooked
in the calculation procedure, whereas the ecological water demand of vegetation can be
directly estimated by calculating the evapotranspiration of vegetation. The modified Pen-
man formula technique and the Hargreaves algorithm [15] are typically employed in the
computation of plant evapotranspiration. The equations can be expressed as:

WP = A(t)ET (1)

In the formula: WP is the water requirements of wetland plants, A(t) is the wetland
area, E is plant cover, and T is evapotranspiration–emissions.

(3) Leakage volume WS:

When the water level of the wetland is higher than the groundwater level, infiltration
will occur, and the seepage recharge of Xinghai Lake can be determined according to
Darcy’s law. The formula for calculating the amount of seepage is:

WS = KAJ (2)

In the formula: WS is leakage: K is permeability coefficient, m/d; A is infiltration area,
m2; J is hydraulic slope, dimensionless.

(4) Precipitation WR:

The findings of a lengthy series of meteorological observations show that Shizuishan
City experiences relatively little precipitation, with an annual average of 179.8 mm.

2.3.2. A Two-Dimensional Hydrodynamic-Water Quality Model Based on the MIKE 21
Water System Connectivity

(1) Hydrodynamic model

The model is based on the three-way incompressible Reynolds-valued homogeneous
Navier–Stokes equations and obeys the Boussinesq assumption and the assumption of
hydrostatic pressure. The two-dimensional non-constant shallow water equation set is [16]:

∂h
∂t

+
∂hu
∂x

+
∂hv
∂y

= hS (3)
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∂hu
∂t + ∂hu2

∂x + ∂huv
∂y = f vh − gh ∂η
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+ ∂
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(
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(5)

In the formula: t is time; x, y are Cartesian coordinate system coordinates; η is the
water level; d is the resting water depth; h = η + d is the total water depth; u, v is the velocity
components in x, y directions, respectively; f is the Gauche force coefficient, f = 2ωsinϕ;
ω is the angular velocity of the Earth’s rotation; ϕ is the local latitude; g is the acceleration
of gravity; ρ is the density of water; Sss, Sxy, Syy, are the radiation stress components; S is
the source term; (us, vs) is the source term current flow rate.

The letters with a crossbar are the average values. For example, is the average flow
rate along the water depth, defined by:

hu =
∫ η

−d
udz, hv =

∫ η

−d
vdz (6)

Tij is the horizontal viscous stress terms, including viscous forces, turbulent stresses,
and horizontal convection, and these quantities are derived from the velocity gradient
averaged along the water depth using the eddy viscosity equation [17].

Txx = 2A
∂u
∂x

,Txy = A
(

∂u
∂y

+
∂v
∂x

)
,Tyy = 2A

∂v
∂y

(7)

(2) Water quality model

Convective diffusion is used in the water quality model, which has the following form
in a Cartesian coordinate system [18]:

∂C
∂t

+
∂uC
∂x

+
∂wC
∂y

+
∂wC
∂z

= Fc +
∂

∂z

(
Dv

∂C
∂z

)
− kpC + CsS (8)

Among them:

Fc =

[
∂

∂x

(
Dh

∂

∂x

)
+

∂

∂y

(
Dh

∂

∂y

)]
C (9)

The integral form of the transport equation can be derived ∂U
∂t +∇·F(U) = S(U)

as follows:
U = hC

F1 =
[
huC, hvC

]
FV =

[
hDh

∂C
∂x , hDh

∂C
∂y

]
S = −hkpC + hCsS

(10)

The discrete finite volume form of the transport equation is given by ∂Ui
∂t + 1

Ai

NS
∑
j

F·nΔΓj = Si.

The numerical format is the same as for the hydrodynamic discrete part.
The MIKE21 FM model employs the finite volume method for the discrete solution of

the study area, which is discretized into several irregular triangular meshes, and the mesh is
encrypted in the local area to better reflect the complex boundary. The finite volume method
ensures the conservation of water volume and momentum in the calculation area [19].
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The MIKE21 hydrodynamic module is the foundation of the model simulation, pri-
marily through the study area of the topographic grid processing, control of wet and dry
grid conditions, selection of appropriate solution method, and consideration of the model
input and output role to calculate the simulation of the study area water depth and flow
field distribution law. The hydrodynamic module is built on top of the convective diffusion
module, and the two are dynamically related. The convective diffusion module simulates
the characteristics of diffusion phenomena occurring in the water body through convection
and diffusion processes by setting different types of diffusion coefficients, which has the
advantages of ignoring the complex physical, chemical, biological, and ecological processes
that occur when pollutants are transported in the water and highlighting the role of the
regional water body flow field. The hydrodynamic module and the convective diffusion
module were chosen as research methods for this simulation based on the lake’s water
environment and the purpose of the study.

2.3.3. Water Displacement Cycle Coupled Hydrodynamic-Tracer Model

The convective diffusion equation in MIKE21 is used to compute the water replacement
cycle, and an exponential decay function based on the change in concentration is used to
calculate the tracer concentration decay rate (11).

Ct = C0e−t/Tt (11)

In the formula: C0 is the initial tracer concentration value; Ct is the remaining tracer
concentration value at the time t.

From equation (11), the concentration has decayed to e−1, or 37% of the initial concen-
tration, when t = Tf(V/Q); therefore, the water change cycle is defined as the time required
for the remaining concentration to decrease to 37% of the initial concentration [6].

2.4. Study on the Water Balance of the Water Bodies in Xinghai Lake Wetland

The Xinghai Lake Wetland’s water requirement is the amount and quality of water
necessary to maintain the wetland’s ecological and environmental functions at a given stage
of development and under various ecological and environmental preservation objectives.
The following should be included in the water use positioning:

Wetland vegetation and landscape water level are the two main factors that contribute
to the Xinghai Lake wetland’s water requirement.

Wetland evaporation water demand and wetland seepage water demand are the two
main components of wetland daily water replenishment.

Wetland water body replacement water: maintain the water quality standards of the
landscape water body, to ensure that the water body does not experience eutrophication,
and the capacity of the water environment to fulfill the periodic replacement water needs.

2.4.1. Water Demand of Xinghai Lake Wetland

Referring to the water balance principle proposed by Liu Jingling [20] and others, and
combined with the current characteristics of Xinghai Lake, its ecological water demand can
be expressed by the following equation:

WL=WW+WP+WS−WR (12)

In the formula: WL is the ecological water demand of the lake wetland, WW is the
evaporation water demand of the water surface, Wp is the vegetation water demand of the
wetland, WS is the seepage water demand, and WR is the precipitation.

(1) Evaporation water demand

Xinghai Lake is located in the arid and semi-arid region, and evaporation has emerged
as one of the major means of water loss. According to the weather station data, the average
annual evaporation of Xinghai Lake is 10,513,800 m3.
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(2) Wetland vegetation water demand

As the reed community makes up the majority of the flora around Xinghai Lake,
it is best to split the water demand level according to these fundamental reed features.
Calculated from Equation (1), the water demand of Xinghai Lake vegetation is 5,968,800 m3.

(3) Seepage water demand

The foundation soil layer of the planned water body in this area is mainly vegetation
fill, powder clay, sandy loam, fine sand, etc. The permeability coefficient of this study is
0.0001 m/d, and the hydraulic slope is 1. The annual seepage of Xinghai Lake is calculated
by Equation (2) as 385,100 m3.

(4) Precipitation

One of the key sources of replenishment for the water of Xinghai Lake is natural
precipitation. The Xinghai Lake region experiences an average of 179.8 mm of precipitation
annually, as determined by data collected from meteorological stations in Shizuishan City
between 1988 and 2019. According to calculations, the natural precipitation volume in
Xinghai Lake’s water is 1,896,900 m3, based on the lake’s 10.55 km2 water surface area.

According to the above calculation results, the annual water demand of Xinghai Lake
wetland is about 14,970,800 m3.

2.4.2. The Water Requirement of Landscape Water Level in Xinghai Lake Wetland

There is not yet a standardized calculating technique or water need for landscape
water level. This study primarily relies on the fundamental characteristics of Xinghai Lake
as a flood control reservoir in the former plain of Helen Mountain and combines them with
the ground elevation of the river bottom to establish the Xinghai Lake landscape water
level. The five domains of Xinghai Lake are as follows: south, middle, north, east, and new
domains. Three water levels are selected based on the wetland park’s landscape purpose.

(1) Minimum wetland water level

According to Table 1, the minimum water level in the south domain is 0.2 m, the
minimum water level in the middle and north domains is 1.3 m, and the minimum water
level in the east domain is 0.1 m. The one-time water demand for filling the reservoir =
water surface area × water level = 982.29 million m3.

Table 1. The domain and water level of Xinghai Lake.

Domain
Water Surface

(km2)
Minimum

Water Level (m)
Standard Water

Level (m)
Maximum

Water Level (m)

South domain 1.54 0.2 0.3 0.4
Central domain 5.07 1.3 1.4 1.5
North domain 1.94 1.3 1.4 1.5
East domain 0.7 0.1 0.2 0.3
New domain 1 - - -

(2) Standard wetland water level

Table 1 shows that the typical water level in the south domain is 0.3 m, the center and
north domains are 1.4 m, the east domain is 0.2 m, and the total amount of water needed to
fill the reservoir is 1081.79 million m3.

(3) Maximum wetland water level

Table 1 shows that the south domain’s maximum water level is 0.4 m, the center and
north domains’ maximum water levels are 1.5 m, and the east domain’s maximum water
level is 0.3 m. A total of 1174.29 million m3 of water will be needed to fill the reservoir all
at once.

Calculating the water demand can be directly performed using water increment = wa-
ter surface precipitation—water evaporation—water leakage = −9.002 million m3. The
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investigation found that, after evaporation and seepage loss of the water, the quantity of
natural precipitation entering Xinghai Lake’s water could not satisfy the minimal demand
for water needs. When the reservoir is filled all at once, 11,742,900 m3 of water—considering
the usual situation of water availability—is stored to sustain the wetland’s functional land-
scape. The lake should be permitted to sink into other water sources when the water level
reaches the minimal water level during operation.

2.5. Hydrodynamic Water Quality Modeling
2.5.1. Calculation Area and Grid

ArcGIS technology is used to vectorize the Xinghai Lake lake border, convert it to an
XYZ file, create the lake boundary using MIKE ZERO, and then utilize a grid generator
to create an unstructured grid representing the interior topography of the Xinghai Lake
region, as shown in Figure 2a. The model uses a triangular mesh to adapt to the complex
lake bottom topography and shoreline of Xinghai Lake, and the overall encryption of the
mesh for part of the river is shown in Figure 2b. The topographic interpolation is carried
out using the natural neighboring point interpolation method in the natural cell method,
and the topographic data file of Xinghai Lake is obtained, and the elevation is shown in
Figure 2c. A total of 41,341 grids and 24,447 nodes are generated for Xinghai Lake.

  
(a) Grid (b) Grid Encryption 

 
(c) Topography 

Figure 2. Modeling the hydrodynamics and water quality of Xinghai Lake.

2.5.2. Boundary Conditions and Output

With the specified flow boundary conditions, the north domain C1 serves as the inlet
boundary, and the north domain C2 serves as the outlet boundary. According to different
water quality conditions (Figure 3), the model sets up eight source sinks from the east
domain outflow S6 to the south domain inlet S1, from the east domain outflow S8 to the
middle domain inlet S7, from the south domain outflow S2 to the middle domain inlet
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S3, and from the north domain outflow S4 to the east domain inlet. This is performed to
account for the impact of wind on the local lake flow.

 
Figure 3. Boundary conditions and sources.

2.5.3. Simulation Scheme and Model

To simulate the water exchange cycle distribution of Xinghai Lake, the hydrodynamic
module and convective diffusion module of MIKE21 FM are used and linked with:

(1) Initializing the concentration of the tracer material in Xinghai Lake’s water column at
100 and its inflow concentration at 0.

(2) The simulation duration was chosen as 1st April 2020–1st November 2020, comprising
214 d, taking into account Xinghai Lake’s chilly winter and the lengthy freezing period
of the water body.

(3) For the simulation, six distinct flow conditions are chosen, as shown in Table 2, with
the water quality in Xinghai Lake’s middle domain serving as the study object.

Table 2. Diversion scheduling scheme of Xinghai Lake.

Condition1/(m3/s) Condition2/(m3/s) Condition3/(m3/s) Condition4/(m3/s) Condition5/(m3/s)

Code 0.8 0.55 0.8 0.55 0.8
1 0.7 0.7 0.7 0.7 0.7
2 −0.7 −0.7 −0.35 −0.35 −0.7
3 0.7 0.7 0.35 0.35 0.7
4 −1.39 −1.39 −1.39 −1.39 −1.39
5 1.39 1.39 1.39 1.39 1.39
6 −0.7 −0.7 0.7 −0.7 −0.7
7 0.7 0.7 0.7 0.7 0
8 −0.7 −0.7 −0.7 −0.7 0

3. Results and Discussion

3.1. Flow Field Analysis

The MIKE21 Flow Model was used to execute the hydrodynamic simulation of the
Xinghai Lake diversion scheduling scheme, and the results of the simulation of the Xinghai
Lake water’s flow field were obtained. Table 3 and Figure 4 shows that the wind field,
throughput flow, and lake shape all influence the Xinghai Lake flow field’s structure, which,
in turn, has a significant bearing on the pollution transport process and the vast shallow
lake’s capacity for water regeneration [21].
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Table 3. Hydrodynamic simulation for each working condition.

Condition

Average Water Level/m
Average Flow

Rate (m/s)
Maximum

Flow Rate (m/s)
South

Domain
Central
Domain

North
Domain

East
Domain

1 1096.97 1098.66 1098.71 1095.71 0.0126 0.69
2 1096.97 1098.3 1098.41 1095.71 0.0130 0.69
3 1098.28 1098.24 1098.34 1095.71 0.0112 0.69
4 1098.65 1098.24 1098.33 1095.71 0.0112 0.65
5 1096.98 1098.26 1098.38 1100.13 0.0059 0.65

 
(a) Condition1 (b) Condition2 

 
(c) Condition3 (d) Condition4 

Figure 4. Cont.

276



Water 2023, 15, 1374

(e) Condition5 

Figure 4. Flow field distribution.

The average water level in the south domain is lower when the S2 outflow flow is
0.7 m/s, the average value is 1096.97m, and the flow velocity is higher in the area with
lower topography, which is 1.6 times higher than that when the outflow flow is 0.35 m/s,
essentially forming a “river form.” The flow field of Xinghai Lake is primarily influenced
by the inlet flow, as seen in Figure 4. The water area increased 1.2 times and 1.3 times in
comparison to the outflow of S2 at 0.7 m/s, resulting in a water level in the south region of
1098.28 m and an area covered by water accounting for 83.18%. This suggests that when the
water level is lower, the water flow is quicker, increasing the dilution of pollutants, lowering
the danger of local eutrophication, and enhancing the water’s ability to interchange water.

The water flow may have been introduced into the middle domain at S3 and S7,
and the collision between the artificial islands and the water flow in the path of water
movement may have caused the water flow to be disturbed and change direction to form
the circulation, as can be seen in Figure 4. Several obvious circulation areas are formed
close to the artificial islands in the middle domain. The near-shore lake region is affected by
the wind field under the wind velocity of 1.8 m/s, which causes the overall circulation to
be strengthened and a smaller circulation to emerge. This causes positive circulation in the
northeastern section of the middle domain with a flow velocity of 0.002~0.3 m/s. Because
of the tiny diversion flow, sluggish flow velocity, and limited effect of the throughput flow,
which is mostly driven by the wind field, the area of the stagnant region in the middle
domain in Condition 3 grows by 4.7% compared to Condition 1, and by 35.7% compared
to Condition 2. In Condition 4, the diversion volume in the middle domain S3 is less, the
lake’s water flow condition is more steady than it was in Condition 1, and less gyratory
area is generated. A positive gyratory zone with a flow velocity of around 0.003–0.02 m/s
forms in the northeastern nearshore area of the lake in the northern portion of the middle
domain as a result of the wind field’s influence. The hydrodynamic force of the water at
the entrance and outflow, as well as at the artificial island, is stronger, the water area in
the central domain of Xinghai Lake is bigger, the flow velocity in the central region of the
water body is lower, and the flow of the water body is more visible.
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When the water is abundant in Condition 1 and scarce in Condition 2, the average flow
velocity in the north of Xinghai Lake is 0.0043 m/s, which is virtually stagnant, and 56% less
than the average flow velocity of 0.0098 m/s in the outgoing lake region. Several clockwise
circulation vortices are seen along the beach underneath the wind field, indicating that a
portion of the north domain is primarily driven by the wind-generated flow. The north
domain’s stagnant area is higher than that of the other domains due to the slower flow
velocity (Table 4), which suggests that the influence of external input pollution load on
changes in the north domain’s water quality is less pronounced. At the same time, under
the hydrodynamic conditions of slow flow velocity, the pollutants in the water body are
easily accumulated, increasing the risk of water wars in the water body.

Table 4. Area of the water retention zone.

Condition
Stagnant Water Zone Area Ratio (%)

South Domain Central Domain North Domain East Domain

1 9.40 16.63 19.57 6.37
2 9.30 12.83 19.80 6.04
3 20.52 17.41 21.95 7.04
4 18.32 12.20 23.99 6.04
5 9.38 13.46 21.51 73.47

According to the findings of the previous calculations, the east domain’s highest water
level is 0.3 m. Table 3 displays the simulated water level in the east domain for each
operational scenario. According to Table 4, when the outflow water volume of condition
5 is cut in half compared to other conditions, and the average flow velocity is 0.003 m/s,
which is roughly 88% lower than that of condition 1’s 0.025 m/s, the stagnant area in the
east domain exceeds 10 times the area of other conditions. It shows that when the east
domain’s water volume is smaller and the water level is lower, throughput flow has a
greater influence and the flow velocity is faster, but when the east domain’s water volume
is larger and the water level is higher, the wind-generated flow has a greater influence and
the flow velocity is slower. The nitrogen and phosphorus nutrients in the water body are
primarily present in a dissolved state and under conditions of high concentration and slow
water flow.

The average flow velocity is greater than 0.01m/s in all conditions (except Condition 5),
and the flow field distribution is similar, but the flow velocity is slower in the near-shore
and lake island areas of the central domain, and small eddies appear. This indicates that, in
large landscape lakes, the flow velocity of the water body in some areas does not change
much with increasing diversion flow, and the main driving force for pollutant transport in
these areas is wind-generated flow, which is consistent with Tang et al. [22] conclusion’s
that wind is the main force affecting water flow when there is no water input. As a result,
when determining the diversion flow rate, the average flow rate cannot be considered, as
in the case of a flat landscape channel, but rather the flow rate distribution of the entire
water body. Increasing the diversion flow rate will only result in a waste of energy in local
stagnant areas. Managers can consider increasing the number of diversion points to more
effectively promote the flow of water bodies, or they can implement ecological water quality
treatment methods such as ecological berms and the addition of ecological floating islands
to reduce the risk of eutrophication in the stagnant water area. The flow field analysis
model can be combined with other physical, chemical, and ecological methods in future
studies to provide a reference for the application of other water quality treatment measures.

3.2. Water Replacement Cycle Analysis

The number of days of water replacement in each domain of Xinghai Lake under
six conditions was calculated by simulating 214 d of the water replacement cycle. The
water exchange cycle of Xinghai Lake is spatially heterogeneous, as can be observed in
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Figures 5 and 6. The general features of the water body renewal period in the southern
lake region are quick, and those in the northern lake area are sluggish.
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Figure 5. Average water change interval of each domain of Xinghai Lake.

  
(a) Condition1 (b) Condition2 

Figure 6. Cont.
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(c) Condition3 (d) Condition4 

 
(e) Condition5 

Figure 6. The water transfer process of Xinghai Lake.
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The water exchange capacity of Xinghai Lake benefits from the high flow rate, and the
throughput flow might encourage the transit and dispersion of contaminants. Generally,
the mean value of the lake’s water exchange cycle decreases as the flow increases, as shown
in Figure 5. In Condition 1 and 2, the lake’s whole water exchange period’s geographical
distribution is comparable. The middle domain exhibits increasing characteristics from the
southern inlet to the northern outlet area, with average water exchange periods of 14 d and
74 d, respectively, and there is no discernible difference between the observation points in
the middle domain. The south and east domains have a stronger water exchange capacity,
with water exchange periods of 6 d and 4 d, respectively, as shown in Figure 5. The northern
region has the longest average water exchange times, between 114 and 118 days. While
the water flow in other regions is slow and the water exchange capacity is poor, with an
average value of 200 d, the local water exchange near the lake’s mouth is quicker, within
100 d. The average water exchange periods of the whole lake in Condition 2 and Condition
1 are 52 d and 32 d, respectively, and the diversion flow in Condition 2 is 46% smaller than
that in Condition 1, which increases the water exchange period by 38%.

The diversion flow at S3 in the middle domain in Condition 3 is reduced by 50% com-
pared with Condition 1, resulting in a weakened renewal capacity of the water body in
the whole lake, and the mean value of the water exchange cycle is 62 d, an increase of 94%
compared with Condition 1. Among them, the average value of the water exchange cycle
in the northern lake area of the middle domain is 97 d, an increase of 31% compared with
Condition 1, indicating that the flow accelerates the water flow in the middle domain of
Xinghai Lake and enhances the dilution capacity of pollutants in this area, which is an
important driving force affecting the transport of pollutants in Xinghai Lake. The average
water exchange period in the outgoing area of the northern domain is 155 d, which is
55% higher than that of working condition 1, and the water exchange period in other areas
is 210 d, which is 5% higher than that of working condition 1. The water exchange capacity
of the outgoing lake area is significantly weakened, indicating that the throughput flow is
the most important factor affecting the water renewal in this area.

The average water exchange duration increased by 16% while the average water
diversion in condition 4 reduced by 46% compared to condition 3, showing a positive
correlation between the two variables. The average water exchange duration in the middle
domain is 43 days, which is 31% and 20% greater than that of Condition 3. The average
value in the southern lake region is 17 days, while the average value in the northern lake
area is 83 days. As seen in Figure 6d, the lake area of the active line of water flow in
the northern part of the middle domain has a higher water exchange capacity than the
near-shore circulation area, and the average water exchange period is about 21% longer.
The lake area out of the northern domain also has a significantly longer water exchange
period than the non-outflow area, and the average value is about 99 d less.

The average water exchange period in Condition 5 is 80 d, which is 1.5 times higher
than that in Condition 1. Among them, the water exchange period in the middle domain is
86 d, and that in the north domain is 156 d, which are 79% and 37% higher than that in Con-
dition 1, respectively. It indicates that the reduction of the inlet flow will significantly affect
the regional water exchange capacity and cause the water exchange cycle to be prolonged.

Under the aforementioned circumstances, Xinghai Lake’s water renewal period is
simulated. Figure 7 shows the concentration–time curve for the middle domain observation
point. According to the findings, the residual mass of preserved material in the lake is a
time-dependent function. The residual conservative material in the lake steadily diminishes
with time and goes to zero, but its value is never zero, indicating that residual un-excluded
material exists in the lake at all times. Because the observation point is closest to the
active water flow line and has the shortest water flow path among them, the water flow
diffusion to this location collides with the artificial island and changes direction, impeding
the diffusion to the north and resulting in the oscillation of water body exchange. The water
renewal time of the observation points for Condition 3 and 5 slows down significantly when
the diversion flow of S3 decreases. This is because the lake area in which the observation
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point in the middle domain is located is affected by the throughput flow, and when the
incoming water flow is low, there is not a significant difference in the water renewal period
between the observation points for Condition 1 and 2, as can be seen from Figure 7.

Figure 7. Concentration curves with time at the observation sites in the central domain of Xing-
hai Lake.

There is a clear regional variation in the Xinghai Lake’s water renewal time. The water
exchange cycle is shorter the closer the water is to the inlet and outlet because the water
flow is higher and the flow path is the shortest; next comes the artificial island close to
the main flow path because the water flow collides with the artificial island to create a
larger circulation; and, finally, the near-shore area is the slowest, because the water flow
is less influenced by the throughput flow, the hydrodynamic force is insufficient, and the
water body is closer to the shore. According to the simulation study of the water body
renewal cycle, the main driving force of Xinghai Lake is the clean water source introduced
from outside, while the driving force of surrounding rainfall and wind is very limited.
If the external water source carries pollutants into the lake, it will pose a serious threat
to the water quality of Xinghai Lake. As a result, other engineering measures, such as
increasing the purification capacity of the east domain wetland, introducing the water
body from the north domain outlet to the east domain wetland via a pumping station, and
then introducing the purified water body via the pumping station after the wetland has
dissipated pollutants and improved water quality must be considered to order to provide a
stable water body for Xinghai Lake.

4. Conclusions

(1) Xinghai Lake’s water exchange cycle is spatially heterogeneous, exhibiting general
characteristics of rapid water renewal in the southern lake area and slow renewal in
the northern lake area. The gradient of the water exchange cycle from south to north
is closely related to Xinghai Lake’s hydrological situation.

(2) The flow rate, terrain, and wind field all have an impact on the Xinghai Lake flow
field. The topography and flow velocity have an impact on the development of
many complicated circulations close to the artificial island. The wind field affects the
near-shore region, which creates a tiny circulation with a modest flow velocity.

(3) Xinghai Lake is influenced by throughput flow; under high flow conditions, the flow
velocity in the lake area is larger, the water body transport speed is faster, and the
water exchange capacity is strong; under low flow conditions, the flow velocity in the
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lake area is slower, the water body mobility is poor, and the water exchange period
is longer. Xinghai Lake has a large water area, a complex flow field, and a low flow
velocity, and it is a lake system.

(4) Without new water inlets and outlets, the center and northern domain of Xinghai Lake
will create a significant area of stagnant water, which does not fulfill the requirements
for the water quality of the landscape water body. To optimize the renewal time of
the water body, it is recommended to enhance the inlet and outlet and incorporate
additional alternative water sources.

(5) The numerical model can be used to determine the flow velocity distribution and
hydraulic residence time in the water body, which can be used as an important tool
for future water environment management in urban landscape lakes.
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Abstract: Streamflow forecasts from continental to global scale hydrological models have gained
attention, but their performance against operational forecasts at local to regional scales must be
evaluated. This study assesses the skill of medium-range, weekly streamflow forecasts for 147 large
Brazilian hydropower plants (HPPs) and compares their performance with forecasts issued opera-
tionally by the National Electric System Operator (ONS). A continental-scale hydrological model was
forced with ECMWF medium-range forecasts, and outputs were corrected using quantile mapping
(QM) and autoregressive model approaches. By using both corrections, the percentage of HPPs with
skillful forecasts against climatology and persistence for 1–7 days ahead increased substantially for
low to moderate (9% to 56%) and high (72% to 94%) flows, while using only the QM correction
allowed positive skill mainly for low to moderate flows and for 8–15 days ahead (29% to 64%).
Compared with the ONS, the corrected continental-scale forecasts issued for the first week exhibited
equal or better performance in 60% of the HPPs, especially for the North and Southeast subsystems,
the DJF and MAM months, and for HPPs with less installed capacity. The findings suggest that
using simple corrections on streamflow forecasts issued by continental-scale models can result in
competitive forecasts even for regional-scale applications.

Keywords: ensemble forecasting; post-processing; bias correction; South America

1. Introduction

Hydropower is an important source of renewable and clean energy. Brazil is the
country with the second-largest installed capacity of hydropower globally [1], hosting six
out of the twenty largest hydropower plants in the world [2]. While hydropower contributes
approximately 60% of the total power capacity in the country [1], the largest percentage of
the energy produced by this source comes from the large hydropower plants (HPPs), which
are part of a very extensive and complex hydrothermal system called the Brazilian National
Interconnected System (SIN). The SIN is optimized by a chain of models addressing
long-range (5 years), seasonal (12 months), and monthly operational planning, as well as
short-range for making operational decisions in the coming weeks [3]. The planning and
coordination of the SIN are conducted by the Brazilian National Electric System Operator
(ONS), which routinely issues natural inflow forecasts for the SIN reservoirs required as
input to the optimization models [4].

Natural inflow forecasts play a crucial role in planning the operation of the SIN, which
aims to meet energy demand and maximize overall efficiency by minimizing spillover
losses and reducing additional fuel costs [5–7]. Methodologies to produce streamflow
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forecasts for the few weeks ahead have long been based on statistical methods based
on observed discharge [8]. In recent years, operational forecasting methods have been
gradually changing by incorporating precipitation forecasts up to 14 days ahead into
rainfall-runoff models [9], although natural inflow forecasts used in the optimization
models of the SIN are still deterministic.

On the other hand, progress in the field of catchment-scale streamflow forecasting
has been toward the use of multiple future streamflow scenarios in the form of ensem-
bles (e.g., [10–18]). Ensemble methods can account for uncertainties in the forecast chain
that arise from multiple sources, such as errors in meteorological forcing, the inability
of models to adequately represent hydrological processes, and deficiencies in parameter
estimation [19–24]. While ensemble hydrological forecasts have shown advantages over
single-value ones for hydropower purposes, for instance, by improving operational deci-
sions and leveraging economic benefits (e.g., [17,25–29]), the development of studies on
this topic is still slow in South America compared to other regions of the world, especially
in the northern hemisphere [30–32]. In parallel, the scientific community has dedicated
substantial efforts to developing ensemble streamflow forecasting methods also at conti-
nental and global scales [33–41], and analyses of streamflow forecasts produced with such
techniques have been possible for Brazil as a whole [42].

Less attention has been given to how competitive continental (or global) scale forecasts
are compared with those made operationally at the regional scale. It is intuitive that stream-
flow forecasts generated by large-scale hydrological models are less accurate than locally
calibrated ones [43], which reflect limitations in the forcing data used, parameterization,
and level of detail. However, there are currently several techniques that can improve the
accuracy of flow prediction from local information, ranging from simple bias correction
methods (e.g., [44]) to more complex methods such as ensemble calibration, statistical
postprocessing (e.g., [14,18,45]), and data assimilation (e.g., [13,28,46]), although simple
methods are generally more attractive because of their efficiency and ease of operational
application [47]. In this sense, Lozano et al. [48] showed that a simple bias correction on the
outputs of a global-scale system was able to effectively transform historical runoff simula-
tions and forecasts for local-scale use in Brazil, while Wang et al. [49] found that a global
forecast system (GloFAS) outperformed a regional system in predicting high runoff and
even performed reasonably well in predicting low to moderate runoff after bias correction
on forecast runoff. Combining simple bias correction with autoregressive models that can
use newly available local information [50,51] also proved suitable for hydrological forecast-
ing. It is therefore of interest to know the extent to which it is possible to produce accurate
natural inflow forecasts for the SIN reservoirs using continental-scale modeling techniques
and whether these forecasts can be used as additional information to the forecasts currently
produced on an operational basis.

The objective of this study is twofold: (i) To assess the skill of medium-range, weekly
streamflow forecasts issued for 147 SIN HPPs by a continental-scale hydrological model
and (ii) to compare these forecasts with those being generated by ONS to support operation
at the HPP sites. The next sections are organized in the following order: Section 2 presents
the study area of the SIN, while Section 3 presents the methods used to generate and correct
the streamflow forecasts, as well as the ONS forecasts used for comparison and the metrics
adopted for the analysis. The results, discussion, and final conclusions are presented in
Sections 4–6, respectively.

2. Materials and Methods

The overview of the main methodological steps is shown in Figure 1. A continental-
scale hydrologic model was forced by ECMWF precipitation forecasts to produce stream-
flow forecasts at the sites of the SIN HPPs. The raw forecasting performance was initially
evaluated against observed (naturalized) flows at these locations, and the performance gain
obtained by applying bias correction and autoregressive model output correction was also
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evaluated. Next, the corrected streamflow forecasts were compared with the operational
forecasts issued by ONS.

Figure 1. Flowchart of the methodology used in this study, highlighting the two experiments, which
are demarcated by the dashed lines in red and light blue.

3. Study Area

The study encompasses 147 HPPs of the Brazilian National Interconnected System
(SIN) in the domain between latitudes 5◦ N–30◦ S and longitudes 65◦ W–35◦ W. These
HPPs were selected based on the availability of natural streamflow data, as some HPPs
receive most of the inflows from other rivers through artificial channels and pumping
stations. Currently, the SIN has an installed capacity of more than 179,366 MW, and
hydroelectric plants account for 109,190 MW (60.9%) and are located in river basins with
different hydrological characteristics and climate variability [52].

The SIN is a large hydro-thermoelectric system for the production and transmission
of electricity, composed of four subsystems: the South, the Southeast/Central West, the
Northeast, and most of the North. The installed generation capacity of the SIN is composed
mainly of hydroelectric plants distributed in sixteen hydrographic basins in the different
regions of the country [53]. Figure 2 shows a map of the locations of the SIN HPPs and
their respective subsystems.

Until 2006, ONS flow forecasts were produced only by stochastic approaches such
as the Periodic Auto-Regressive or Auto-Regressive Moving Average models [8]. From
2006 onwards, other forecasting methods in addition to stochastic models have been rec-
ommended, including lumpedand distributed conceptual models, artificial intelligence
techniques, as well as the incorporation of future rainfall from Numerical Weather Predic-
tion [6]. During 2018, the ONS formally adopted the Soil Moisture Accounting Procedure
model as the only rainfall-runoff model for the first week of the forecast horizon at several
SIN sites, and the use of stochastic models has declined in recent years [54,55].
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Figure 2. Locations of the 147 Hydroelectric power plants of the SIN for which forecasts were evaluated.

3.1. Observed Streamflow Data

Daily time series of naturalized streamflow spanning from January 1980 to December
2020 were obtained for the selected 147 SIN HPPs through the SINtegre portal (https:
//sintegre.ons.org.br, accessed on 1 August 2022). Naturalized streamflow at dam locations
is computed by routing downstream natural incremental reservoir inflows, which are
reconstructed through water balance using evapotranspiration estimates and operation
data from SIN reservoirs such as water levels, volumes, and outflows, as well as water
withdrawals across the basin [56]. Natural flows can be used to evaluate the effects of
human interventions in rivers, such as the implementation of reservoirs, but for the ONS,
they are relevant information for the planning and operation of the SIN.

3.2. Streamflow Forecasts
3.2.1. Forecast Input Data and Hydrological Model

Daily ensemble precipitation forecasts from the European Center for Medium-Range
Weather Forecasting (ECMWF) were achieved for the period between May 2015 and Decem-
ber 2020 (initialization of 00 UTC) through the Thorpex Interactive Grand Global Ensemble
(TIGGE) platform (http://tigge.ecmwf.int/, accessed on 12 March 2021). These ensemble
forecasts consist of 50 perturbed members with a forecast time horizon of 15 days, and their
spatial resolution depends on the ECMWF model cycle, for instance, it was changed from
36 km (in 2015) to 18 km (from Mar 2016 onwards).

To obtain streamflow forecasts at SIN reservoir locations, the ECMWF predicted pre-
cipitation data were used as inputs to the continental-scale hydrologic-hydrodynamic MGB
model for South America (MGB-SA) [57]. The MGB-SA is a conceptual, semi-distributed
model that discretizes the domain into unit-catchments, each containing a ~15 km-long
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river segment, and further into Hydrological Response Units (HRU), which are subdivi-
sions according to combinations of land cover and soil type. Evapotranspiration (based
on Penman-Monteith) and runoff generation (based on the ARNO model) are computed
at a daily time step at the HRU level. Surface, subsurface, and groundwater runoff are
routed to the main channel through linear reservoirs, and the propagation in river channels
is computed by using an explicit 1D inertial approximation of the Saint-Venant equations.
The MGB-SA has been calibrated with more than 600 in situ gauges and validated with
remote sensing-based datasets [57]. Details on MGB-SA model performance at each HPP
location can be found in the Supplementary Material (Table S1). For further information on
general MGB equations regarding water balance and river routing, the reader is referred
to [58,59].

For model initialization along the forecast period (2015–2020), we used daily precipita-
tion data from the Integrated Multi-satellite Retrievals for GPM (IMERG) v06 final run [60].
Herein, IMERG data is further bias-corrected to match the climatological distribution of
the Multi-Source Weighted Ensemble Precipitation (MSWEP) v1.1 [61], as the MSWEP was
used to calibrate the MGB-SA model [57]. Other climate variables used to compute evap-
otranspiration in the forecast period are assumed to be equal to their long-term monthly
means computed with CRU v.2 data, according to previous applications (e.g., [42]). For
historical MGB-SA simulations, which are required for streamflow correction approaches
(i.e., before 2015; see Section 3.2), the model was forced to use MSWEP v1.1 data to maintain
coherence with its original configuration.

3.2.2. Quantile Mapping Applied to Streamflow Forecasts

To correct biases in the streamflow forecasts, a quantile mapping (QM) procedure was
applied in a similar way to Wood and Schaake [62] and Hashino et al. [44]. This is a simple
correction method that matches both the mean and variance (including higher moments)
of the hydrological model outputs to those of the observed climatology. Thus, cumulative
distribution functions (CDF) are obtained from the observed and simulated discharges,
and for each forecast ensemble trace, the QM replaces the predicted discharge with the
observed value that has the same no exceedance probability, according to:

Ẑi = F−1
o [FS(Zi)] (1)

where Ẑi is the bias-corrected forecast ensemble trace I, Fo is the inverse of the CDF of the
observed discharge, Fs is the CDF of the simulated discharge, and Zi is the raw forecast
ensemble trace.

Before applying QM to the forecasts, we first analyzed the performance of empirical
and gamma distributions to construct/fit the CDF curves over a historical, independent
period (1980 to 2014). For that, we applied a leave-one-year-out cross-validation by con-
structing/fitting CDF curves of observed and simulated flows using data from the entire
historical period except the target year and then applying QM to correct the simulated
flows for this same year. For each HPP, the Nash-Sutcliffe (NSE) and logarithm of NSE
were computed for the cross-validated, bias-corrected simulated flows, and the distribution
that resulted in the best performance was then selected to correct the ensemble traces in the
forecast verification period (2015–2020).

In our initial assessment (see the Supplementary Material), we noted that both gamma
and empirical distributions frequently result in improved simulated discharges with only
minor variations in performance. As such, we prioritized the gamma distribution (para-
metric), as it allows for extrapolation to values outside the range of historical observations.
For certain SIN gauges, we either applied empirical distribution-based corrections to dis-
charges or no correction was made. The final CDFs employed for QM correction in the
forecast verification period were derived from data spanning the entire historical period
(i.e., without cross-validation).
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3.2.3. Autoregressive Model (AR)

After applying QM to the streamflow forecasts, these were further corrected by using
a simple AR model. The autoregressive model uses error updating to anticipate the errors
in a forecast period as a linear function of the known errors in previous steps [26,50]. In
this way, according to Liu et al. [63], error updating is based on using data to generate
predictions of future differences between the model prediction and future observations, so
it is not restricted to the goal of producing improved predictions in the hydrologic model.

In this method, the current value of the time series (Qt) is defined as a combination of
past values of the time series itself plus a random noise (εt), where t is the time index. Thus,
in the AR(p) model, where p is the order of the model, one has as input the past values
Qt−1, Qt−2, . . . , Qt−p, multiplied by optimized parameters α to predict the next value Qt.
In Equation (2), an example is given of what an AR-only model would look like:

Qprev(t)
′ = Qprev(t) − αt

1 ∗
(

Qprev(t0)− QObs(t0)
)

(2)

where Qprev(t)
′ is the forecast streamflow corrected with a lag-1 autoregressive model;

QObs(t0) and Qprev(t0) are observed streamflow and model simulated streamflow, respec-
tively, at initial time t0. For example, εt is an identically and independently distributed
Gaussian deviation with a mean of zero and a constant standard deviation.

In the autoregressive model, one can consider the autocorrelation function of the
process, (pt = αt

1 ∗ t), where t is the number of observations to be included in the correction;
in this case, t is equal to 1 [64]. The parameter αt

1 can be determined by calculating the
autocorrelation function between the lead times of the forecast data. The value of αt

1 for each
HPP was assumed as the lag-1 autocorrelation of the time series of observed natural flows.

3.3. Operational Forecasts from the Brazilian National Electric Service Operator (ONS)

ONS routinely produces streamflow forecasts to support the Monthly Operation
Programs (PMO—Programação Mensal de Operação in Portuguese). The PMO allows
the establishment of energy production policies and regional exchanges between SIN
subsystems, providing directives on which hydropower plants will be dispatched as well
as information on energy pricing in the short-term market. The PMO is conducted monthly
and is revised every week [55].

Operational streamflow forecasts produced for PMOs along May/2015–December/2020 were
obtained from the SINtegre data portal (https://sintegre.ons.org.br/sites/9/13/79/Produtos/245,
accessed on 5 September 2022). These forecasts are given in weekly average discharges with a
maximum lead time of 6 weeks (also called “operation weeks”), each one starting at 00:00 on
Saturday and ending at 24:00 on the following Friday. The first operation week of a given month
is the one that includes the first day of that month. Streamflow forecasts are issued on a weekly
basis, always on the day immediately preceding the PMO or one of its revisions [65]. As a rule,
forecasts are officially issued on Thursdays; in the event of a holiday occurring on the forecasting
day (Thursday) or on the PMO/revision day (Friday), forecasts are issued earlier on Tuesday and
Wednesday, respectively. Figure 3 shows an example of the forecast generation schedule.

A preliminary review of the forecast dates was conducted to identify potential changes
due to holidays. Since forecast calendars were not available for all years analyzed in the
official reports, we chose to use the file creation date as an indication of the forecast issue
date, both for the PMO and its weekly revisions, after consulting with ONS technicians.
Additionally, as forecasts must be produced one day before the PMO (which takes place on
Friday), any forecast issue date listed in the files as Friday was adjusted to the previous day
(Thursday). A total of 268, 18, and 6 weekly forecasts were issued on Thursday, Wednesday,
and Tuesday, respectively.
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Figure 3. Typical schedule of forecast generation for Monthly Operation Programs (PMO) and their
weekly revisions. Forecast issue dates for a given PMO/revision are indicated by the corresponding-
colored boxes. Source: adapted from [55].

3.4. Forecast Assessment

Firstly, the impact of the correction schemes on raw streamflow forecasts produced
by MGB-SA using ECMWF data as input (hereafter referred to as MGB-ECMWF) was
analyzed. The assessment was performed considering weekly average discharges for 1–7
and 8–15 days in advance, and raw streamflow forecasts were compared to those corrected
by using the QM individually and both corrections (QM+AR). In addition, the potential
performance gains by applying QM and QM+AR on streamflow forecasts at SIN locations
were further investigated in terms of high (>Q75 of non-exceedance flows) and moderate to
low discharges (<Q50), as well as in terms of characteristics such as streamflow seasonality
and flashiness (Appendix A).

To assess the raw, QM, and QM+AR configuration strategies for MGB-ECMWF stream-
flow forecasts, we used the percent bias (PBIAS) and the Continuous Ranked Probability
Score (CRPS) [66]. PBIAS measures the tendency of forecast values to overestimate or
underestimate the observed ones, and it is computed for the ensemble mean:

PBIAS = 100
∑N

i=1(Fcsti − Obsi)

∑N
i=1(Obsi)

(3)

where Obsi and Fcsti are the observed and predicted discharges, respectively, and i and N
are the current and total number of forecasts.

The CRPS summarizes the overall performance of a probabilistic forecast. It is defined
by the quadratic difference between the cumulative distribution function (CDF) of the
forecast and the empirical CDF of the observation and is typically averaged over a set
of forecasts:

CRPS =
1
N

N

∑
i=1

∫ ∞

−∞
[Fi(x)− 1(x ≥ yi)]

2dx (4)

where Fi(x) is the CDF of the forecast ensemble x and forecast day i, 1(x ≥ yi) is a Heaviside
step function that equals one when forecast values are greater than the observed value yi
and zero otherwise, and N is the total number of forecasts.

Following Siqueira et al. [42], CRPS was transformed into an overall skill score
(CRPSS = 1 − CRPSfcst/CRPSbenchmark) using both daily streamflow climatology and per-
sistence as benchmarks. Streamflow climatology was computed for each calendar day by
sampling 50 equally distanced quantiles (1/51, 2/51, 3/51, . . . , 50/51) from the empirically
observed CDF, that is, the same number of ensemble members as the MGB-ECMWF, since
the number of ensemble members is known to affect the CRPS value [67]. In turn, for the
persistence, it is assumed that all forecast lead times have the same predicted value equal
to the last observed discharge (i.e., a deterministic forecast), so the CRPS reduces to the

291



Water 2023, 15, 1693

mean absolute error [66]. Maximum skill is achieved when CRPSS = 1, and values below 0
indicate no skill.

In a second experiment, the corrected streamflow forecasts (QM+AR) produced by the
Continental-Scale Hydrological model were compared with the Operational model issued
by the ONS. The forecast assessment was carried out only for the lead time of 1 week ahead,
and it was performed in such a way to keep coherence with the evaluations presented in
the official ONS reports [65]. By taking the calendar in Figure 3 as an example, the 1-week
lead time forecast issued on day 3 for revision 1 of month m corresponds to the average of
discharges predicted for days 5–11. Similarly, the 1-week lead time forecast issued on day
29 for the PMO of month m+2 corresponds to the average of discharges predicted for days
1–7. No distinctions are made for streamflow forecasts issued for PMOs or revisions, so
that both are equally treated in a single verification set (May 2015–December 2020). Note
that there is always a gap of at least 2 days between the forecast issue date and the start
of the operation week, which can be larger due to the possible occurrence of holidays as
mentioned in Section 3.3.

For this assessment, we adopted standard metrics that are routinely used for forecast
evaluation by ONS, namely the Mean Absolute Percent Error (MAPE) and the Nash-
Sutcliffe Efficiency (NSE) [68]:

MAPE =
1
N

N

∑
i =1

∣∣∣∣ Fcsti − Obsi
Obsi

∣∣∣∣ (5)

NSE = 1 − ∑N
i =1(Fcsti − Obsi)

2

∑N
i=1
(
Obsi − Obsi

)2 (6)

where Obsi and Fcsti are the observed and predicted discharges, respectively; i and N are
the current and total number of forecasts, and Obsi is the mean of observed values.

In addition, ONS [69] developed an overall performance index called Multicriteria
Distance (MD), which uses the above metrics as an ordered pair (1—NSE, MAPE) and
calculates its Euclidean distance to the origin of a cartesian coordinate system:

MD =

√
(1 − NSE)2 + (MAPE)2 (7)

The MD ranges from 0 to ∞ and values close to zero indicate better performance.
The implementation of prediction correction methods and statistical metrics analysis

were carried out using Matlab software.

4. Results

4.1. Skill Assessment of Raw and Corrected Continental-Scale Streamflow Forecasts

Examples of hydrographs with raw and corrected weekly averaged streamflow fore-
casts from the continental-scale hydrological model are presented in Figure 4. Results are
shown considering a fixed lead time of 1–7 days, and the HPPs used as examples were
chosen based on different characteristics of seasonality and day-to-day discharge variations.
Figure 4a shows the hydrographs for Pedra do Cavalo HPP, which has high seasonality
and flashiness, and Figure 4b shows the hydrographs for Itaipu HPP, where both indexes
are low. Figure 4c,d display hydrographs for Itá and Tucuruí HPPs, respectively, where the
former is characterized by high daily variation of discharges and low seasonality, and the
latter by low flashiness and a high seasonal index. Finally, in Figure 4e,f, the Euclides da
Cunha and Furnas HPP exhibit average values for these streamflow indexes.
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Figure 4. Forecasts of average weekly flow (ensemble mean) for the lead time of 1–7 days at (a) Pedra
do Cavalo, (b) Itaipu, (c) Itá, (d) Tucuruí, (e) Euclides da Cunha, and (f) Furnas hydropower plant.

The corrections with the QM method show variable performances. For instance, there
is a notably positive effect on the rise and recession of hydrographs at Tucuruí and Furnas
HPPs (and to a minor extent on the recession at Itaipu), while at Pedra do Cavalo and Itá
HPPs there is apparently no benefit from this correction. In some cases, as in Euclides da
Cunha HPP, the application of QM apparently causes a reduction in the accuracy of the
forecasts, which can be explained by the very low performance of the hydrological model at
this location (see Table S1 in Supplementary Materials). On the other hand, the application
of QM+AR resulted in substantial performance gains in all the analyzed cases.

The performance of MGB-ECMWF forecasts was verified from May 2015 to December
2020, considering average weekly predicted discharges and lead times of 1–7 and 8–15 days.
The biases of raw and corrected (QM and QM+AR) forecasts were categorized into bins,
and the relative frequency of HPPs with forecasts falling in each category is shown in
Figure 5. In general, the MGB-ECMWF raw forecasts have a predominantly positive bias.
The QM contributes to reducing the percentage of HPPs for which predicted flows are
overestimated by 20–40% and >40%, although it increases the frequency of underestimation
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in the bias range of −20 to −10%. For the QM+AR configuration and lead time of 1–7 days,
bias is mostly concentrated between -10 and 10% (~70% of the HPPs), while for 8–15 days
in advance, values tend to be closer to those observed for QM but still exhibit lower biases
than the latter. Moreover, for longer lead times, a larger number of HPPs show (high)
positive PBIAS values when bias correction is applied, probably due to the miscorrection
of runoff response biases from predicted precipitation.

Figure 5. Percent bias of MGB-ECMWF streamflow forecasts for raw, bias correction (QM), and bias
correction + updating (QM+AR) configurations. The relative frequency refers to the number of SIN
hydropower plants falling into each category. The graphs show results for the lead times of (a) 1–7
and (b) 8–15 days.

The assessment of MGB-ECMWF forecast skill at each HPP was carried out using
climatology (CRPSSclim) and persistence (CRPSSpers) as benchmarks, and the results were
conditioned on high (>Q75 of non-exceedance) (Figure 6) and low to moderate (<Q50) flows
(Figure 7). For high flows and a lead time of 1–7 days, both the raw forecasts and the QM
exhibit positive skill relative to persistence in 72% of the HPPs, which increases to 94% after
applying the QM+AR corrections. For the 8–15-day lead time, raw MGB-ECMWF forecasts
already show significant positive CRPSSpers for the majority of SIN locations (>90%), and
the overall skill improvement by using QM or QM+AR correction is relatively small. When
compared to climatology (8–15 days ahead), the raw forecasts exhibit positive skill in 70%
of the HPPs, and performance increases slightly for the QM (77%) and QM+AR (87%)
configurations, while for the lead time of 1–7 days, the patterns of skill are similar to those
observed against persistence.
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Figure 6. CRPS skill of MGB-ECMWF forecasts for the raw, bias correction (QM), and bias correction
+ updating (QM+AR) configurations, considering only high flows (>Q75 of non-exceedance flows).
The gray dashed horizontal line denotes skill = 0.

Figure 7. CRPS skill of MGB-ECMWF forecasts for the raw, bias correction (QM), and bias correction
+ updating (QM+AR) configurations, considering only low to moderate flows (<Q50, non-exceedance
flows). The gray dashed horizontal line denotes skill = 0.
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In general, the MGB-ECMWF forecast skill for low to moderate flows (Figure 7) tends
to be lower than that observed for the higher flows. For the lead time of 1–7 days, the
raw MGB-ECMWF forecasts exhibit virtually no positive skill, and a few HPPs (9%) show
CRPSSpers > 0 after applying the QM method, despite the substantial performance gain over
the no correction configuration. Even when both correction approaches (QM+AR) are used,
MGB-ECMWF forecasts exhibit positive skill in only 56% of the HPPs, which indicates
difficulty in overcoming a naive forecast. For 8–15 days in advance, the percentage of HPPs
where forecasts exhibit positive skill relative to persistence (climatology) improves from 29%
(69%) to 64% (91%) and 76% (96%) for the QM and QM+AR configurations, respectively.

Figure 8 presents the relative skill improvement (ΔCRPSS) between the raw MGB-
ECMWF forecasts and those corrected with the QM+AR methods, plotted against seasonal-
ity and flashiness indices that were calculated from the observed naturalized discharges at
each SIN HPP. Results are also separated by low to moderate (<Q50) and high (>Q75, no
exceedance) flows. In general, the results relative to climatology and persistence are similar.
For higher flows, skill improvements are larger (ΔCRPSS > 1) for flashiness usually lower
than 0.1 (i.e., rapid day-to-day discharge variations) regardless of seasonality, but in some
HPPs, larger skill gains can be observed for flashiness values closer to 0.2 and a seasonality
index around 5 (moderate seasonality). For flashiness larger than 0.2, smaller performance
gains are obtained (ΔCRPSS < 0.3). For low to moderate flows, ΔCRPSS > 1 is observed
even in locations where rapid flow variations may occur (flashiness ~0.5), but with some
degree of seasonality.

Figure 8. Difference in CRPS skill between raw and corrected forecasts with bias correction + updating
(QM+AR) MGB-ECMWF forecasts according to streamflow seasonality and flashiness. Results are
shown for low to moderate (<Q50) and high (>Q75 of non-exceedance) flows and lead times of 1–7
and 8–15 days.

4.2. Comparison between Continental-Scale and ONS Operational Streamflow Forecasts

A comparison between the MGB-ECMWF and ONS forecasts according to season is
shown in Figure 9. The box plots include the performance of the 147 HPPs. Overall, the
largest differences in global accuracy (as measured by MD) are found mainly in DJF and
MAM, where there is a positive performance for the MGB-ECMWF forecasts. Percentual
errors tend to be larger during the austral spring (SON) and smaller during the austral win-
ter (JJA), and in both seasons MGB-ECMWF forecasts have lower performance compared
with ONS forecasts.
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Figure 9. Comparison of forecast performance (MGB-ECMWF × ONS) for 1 week in advance,
according to season.

Figure 10 shows the differences in performance (ΔMD) between ONS and MGB-
ECMWF forecasts according to the installed capacity of the SIN HPPs. The installed
capacity ranges were assigned in such a way to encompass a similar number of HPPs
in each class. Better performances of the MGB-ECMWF forecasts are observed for HPPs
with smaller installed capacity, where the median values of ΔMD are close to 0.1 and the
75th percentile reaches 0.15, 0.3, and 0.37 for the <85, 85–150, and 150–350 MW ranges,
respectively. For the larger HPPs, with installed capacity larger than 350 MW, the differences
are smaller (median close to zero), and there is a generally better performance of the ONS
forecasts (a larger spread of ΔMD for negative values).

Figure 10. Multicriteria Distance (MD) differences between ONS and MGB-ECMWF forecasts (May
2015–December 2020) for 1 week in advance, according to the installed capacity of the SIN hydropower
plants. Positive differences represent better overall performance of the continental-scale forecasts.

To spatially evaluate the relative performance between MGB-ECMWF and ONS stream-
flow forecasts, Figure 11 shows the ΔMD values geographically distributed over the SIN.
Forecast performances are quite variable in space, with hotspots of ΔMD usually alternating
(between negative and positive values) over southern and southeastern Brazil, although the
corrected (QM+AR) continental-scale forecasts exhibit higher relative accuracy (ΔMD > 0)
in most of the analyzed locations (~60% of all HPPs). MGB-ECMWF forecasts mostly
outperform those of ONS in the North and Midwest/Southeast subsystems, where positive
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ΔMD values are observed in 100% and 69% of the HPPs, respectively. On the other hand,
MGB-ECMWF forecasts exhibit lower accuracy in the Northeast and South subsystems,
with positive ΔMD in only 28% and 38% of the HPPs, respectively.

Figure 11. Spatial patterns of Multicriteria Distance differences (ΔMD between ONS and MGB-
ECMWF forecasts (May 2015–December 2020) over SIN locations. Positive differences represent
better overall performance of the continental-scale forecasts.

The performance metrics were also calculated for each year individually between
2015 and 2020 (Figure 12). The median accuracy (NSE) of the MGB-ECMWF forecasts is
generally higher than that of the ONS, and the 25–75% range of the former is considerably
higher for the first years of analysis. On the other hand, in later years (2019 and 2020),
the accuracy of the MGB-ECMWF and ONS tends to become closer. The median MAPE
values between the two forecasting approaches are quite similar (~20%), although the
interquartile range for the MGB-ECMWF encompasses higher percentual errors (35–40%)
compared to that of the ONS (25–30%), especially from the year 2019 onward. In terms of
MD, a very similar pattern to NSE is observed, where the overall performance is higher for
MGB-ECMWF before 2019 and similar for later years.
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Figure 12. Year-to-year performance comparison between MGB-ECMWF and ONS streamflow
forecasts for 1 week ahead over the verification period. The graphs show the median and the 25–75%
range of performance considering the 147 SIN hydropower plants and are presented for (a) NSE,
(b) MAPE, and (c) Multicriteria Distance (MD) metrics.

5. Discussion

The analysis showed that there are important challenges regarding the use of continental-
scale streamflow forecasts for operational purposes in large Brazilian HPPs. Applying QM on
the predicted flows allowed improvements generally for low to moderate discharges, although
forecasts often exhibited lower skill when compared to simple benchmarks (e.g., persistence)
for such conditions. Nevertheless, the application of QM on predicted discharges can lead to
reductions in accuracy relative to that of raw forecasts if the performance of the hydrologic
model is too low, as noted in Euclides da Cunha HPP. On the other hand, correcting the predicted
discharges with both QM and AR updating using the observed natural flows led to substantial
improvement in forecast skill, and this correction was more effective for locations with less
day-to-day discharge variability. Seasonality affected the QM+AR correction performance only
to a minor extent; we observed improvements in forecast skill in a few HPPs with some degree
of seasonality but only for low to moderate flow conditions. This means that the ability to correct
predicted discharges produced by continental-scale hydrological models will depend more
on the time lag between rainfall and runoff than the existence (or absence) of a well-defined,
wet-dry hydrological behavior.

Regarding the comparison between forecast performance and installed capacity, it is
possible that the ONS models are more focused on HPPs with higher installed capacity,
which play a more important role in setting energy prices and meeting demand. This
could be one of the reasons that explain the higher accuracy of ONS predictions relative
to continental-scale forecasts for such HPPs. Continental-scale predictions also showed
relatively lower performance during the JJA months, which is the dry season in much of
the SIN. During the dry season, the benefit of one-week ahead flow predictions is typically
less than that of forecasts issued during the wet period, as predictability is higher due to
the long hydrograph recession and consequent high persistence of flows. On the other
hand, there seems to be room for improvement in flow predictions for HPPs with lower
installed capacity, especially for the wet season (DJF).

The regional performance differences between ONS and MGB-ECMWF forecasts are
possibly explained by the type of model used by ONS for a given location or even the
quality of the model adjustment. Although the MGB-ECMWF forecasts exhibit higher
overall accuracy over the entire verification period (2015–2020) at several SIN locations
(Figure 12), it is worth mentioning that the performance of ONS forecasts has increased over
those years. Possible reasons for this improvement may include the gradual replacement of
ONS forecast models (including a stochastic one with a lumped rainfall-runoff hydrological
model that uses precipitation forecasts from numerical weather prediction) [54,70] and the
potential calibration of the hydrological models using data from more recent years, which
were characterized by a drier than normal period in many regions of Brazil [71].
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It should be noted that the naturalized flow estimated at the time that the ONS
forecasts are updated, that is, in (near) real time, may differ slightly from that used in
the AR model to update the MGB-SA streamflow forecasts. Near real-time naturalized
flows are further quality checked before being made available on the SINtegre portal,
so the corrected MGB-SA forecasts may have benefited positively since the consistent
naturalized streamflow data (used in the AR model) are the same as those used here for
forecast performance evaluation. Therefore, access to the naturalized streamflow estimated
at the time of the forecast would be necessary to approximate the performance of the AR
correction to that which could be obtained in (near) real time.

The bias correction on the streamflow forecasts was based on the assumption of
stationarity, which is a limiting factor since the analyzed period was a critical one in most
of the SIN HPPs. Moreover, some studies have already pointed out the non-stationarity of
the streamflow time series at several SIN locations [72]. Nevertheless, the use of QM as
the only bias correction method is justified by the focus on the ensemble mean, especially
in the comparison with ONS forecasts. On the other hand, studies have shown that the
QM approach alone is not able to improve the reliability of the forecasts when the focus
is on the predicted probabilities [62,73], and in this case the inclusion of post-processing
techniques designed for ensemble calibration would be more appropriate (e.g., [18,42,45]).

No bias correction was performed on the predicted precipitation. It is worth men-
tioning that freely available ECMWF reforecasts, i.e., forecasts for multiple years in the
past produced with the same version of the operational numeric weather model—which
could be used for bias correction—are archived at a coarser resolution (1.5◦) than that of
real-time forecasts, which makes it difficult to preprocess the predicted precipitation before
it is propagated through the hydrological model.

6. Conclusions

Streamflow forecasts produced by continental and global scale hydrological models
have gained increasing attention in the scientific community, and there is a need to evaluate
the quality of these forecasts and the (potential) performance gains through the use of
correction approaches, as well as to assess how such forecasts compare with those issued
by institutions operating at the local to regional scales. These analyses are particularly
relevant for the Brazilian context, where streamflow forecasting plays a key role due to the
high dependence on water resources for energy production. In this study, we evaluated the
performance of medium-range, weekly average streamflow forecasts (up to 15 days ahead)
for 147 hydropower plants (HPPs) of the Brazilian National Interconnected System (SIN).
The streamflow forecasts were generated by a continental-scale hydrologic-hydrodynamic
model (MGB-SA) forced with ECMWF precipitation forecasts (referred to as MGB-ECMWF),
while bias correction and updating procedures were applied to the model outputs by using
quantile mapping (QM) and autoregressive models (AR), respectively.

The results showed that the MGB-ECMWF streamflow forecasts issued for the SIN
HPPs are mostly affected by positive bias, and their skill is generally low. However, with
the introduction of both output correction methods (QM+AR), the percentage of HPPs
exhibiting skillful forecasts for the lead time of 1–7 days increased substantially for both low
to moderate flows and high flows, whereas using only the QM correction allowed positive
skill mainly for low to moderate flows and for 8–15 days ahead. Although differences in
forecast skill (between correction and no correction) were less dependent on streamflow
seasonality, for high discharges the skill improvements were larger at locations with slow
day-to-day variations in river discharge (i.e., lower flashiness), while for low to moderate
flows the improvements in skill were obtained even for locations characterized by relatively
high daily discharge variability.

The forecasts generated by the continental scale model were subjected to a compar-
ative analysis with the operational forecasts released by the Brazilian National Electric
Service Operator (ONS). The evaluation encompassed the first week in advance, with due
consideration given to the ONS-provided data on the forecast production dates and the
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operating weeks. Considering the verification period from 2015 to 2020, we observed that
the relative performance between ONS and MGB-ECMWF was quite variable (exhibiting
positive and negative values) over the geographical extent of the SIN, but in most loca-
tions the MGB-ECMWF forecasts performed equal to or even better than those issued by
ONS, especially in HPPs with lower installed capacity (typically < 350 MW) and during
the months of DJF and MAM. In addition, better performances of the continental-scale
forecasts were observed for the North and Midwest/Southeast SIN subsystems. On the
other hand, the results indicated that the overall performance of ONS forecasts produced
for SIN locations has improved over time, and in the final years of the assessment, the
overall performance of ONS forecasts was similar to that observed for MGB-ECMWF.

In future studies, especially regarding comparisons with ONS forecasts, we recom-
mend evaluating longer lead times (e.g., subseasonal forecasts up to week 6) and exploring
the probabilistic information of the ensemble. With respect to the continental hydrological-
hydrodynamic model, some improvements in the accuracy of the streamflow forecasts
could be achieved through better calibration as well as by ensuring consistency of rainfall
data between the verification period and the historical one used as the baseline for the QM
and AR corrections. Future model calibration could take advantage of datasets with precip-
itation data available from decades in the past to the present, for example, MERGE [74] or
MSWX [75].

Finally, the findings suggest that the use of local data to correct outputs from continental-
scale models can result in forecasts with competitive accuracy for regional-scale applications. In
addition, there are opportunities for improvement in the performance of operational streamflow
forecasts issued for the SIN HPP locations, even for forecasts produced with the current ONS
models. This would be possible as the methods used in this study can be directly applied to
other rainfall-runoff models (e.g., lumped or semi-distributed) developed to operate at smaller
spatial scales (local or regional).
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Appendix A

Appendix A.1. Seasonality Index (SI)

In order to verify the influence of seasonality on the performance of the flow forecast
corrections, the Seasonality Index has been used [76]. This index can be defined as the sum
of the absolute deviations of monthly average flows from the overall monthly average,
divided by the annual average of flows:

SI =
1

∑
i=12

∣∣Q − Qhist
∣∣

Qhist
(A1)

where, Q is the mean monthly streamflow and Qhist is the long-term mean streamflow.

Appendix A.2. Richard-Baker Flashiness Index (RBI Index)

The Richard-Baker Flashiness Index (R-BI Index) was used to measure the degree of
variability of flow (day-to-day) relative to total flow, i.e., it reports changes in short-term
daily flows relative to average yearly flows. The resulting index is dimensionless, and its
value is independent of the units chosen to represent flow [77].

R − BI Index =
∑n

i=1|qi − qi−1|
∑n

i=1 qi
(A2)
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Abstract: Hydropower has grown to play an important role in power systems including increasing
clean and low-carbon energies, and the effect of electric loads should be basically evaluated for the
reliable operation of these systems. For the hydraulic–mechanical–electrical system of the hydropower
station, the state equation model for stability evaluation was derived with typical electric load models
and elastic models for pipe flow, and after experimental confirmation with a built single-unit setup
for a system, the effects of different electrical loads and pipe flow models on typical hydropower
systems stability were investigated in detail. The results indicate that for the built single-unit system
with different load characteristics, the numerical results were basically consistent with experimental
research, and the unit’s regulation performance for the dynamic load was superior to that of the
static load. Evident differences existed in the effects of different electric loads on the operational
stability, mainly depending on the pipe length and the corresponding models, and an optimum-order
elastic model of pipe flow was preferred to reveal the dynamic interactions between different systems.
Furthermore, for a typical two-unit system, the potential coupling resonance hydraulic–mechanical–
electrical system is pointed out with the preferred-order elastic model of pipe flow.

Keywords: hydropower; stability; elastic model; experimental research

1. Introduction

With the gradually growing energy demand, renewable and low-carbon energy
sources have become a considerable part of the global energy mix [1]. Among them, for
the utilization of water energy, many hydropower stations were successively constructed
and brought into service, including the power transmission projects from west to east in
China [2,3]. These hydropower stations are well suited to provide scheduling flexibility
and play an important role in the normal operation of the power system after the grid
connection [4–8]. Then, the stable operation of hydropower systems not only is beneficial
to improve its power supply quality but also ensures reliable service of the parallel power
system [9,10].

For the hydropower system, its normal operation and regulation is a dynamic process
in which the governor turbine hydraulic system and the parallel power system inevitably
have a dynamic interaction. During the generation condition of the hydropower system,
as a consumer for water energy utilization, because the power system includes different
electric loads, the effect of the power system on the operational stability of the governor
turbine hydraulic system in the hydropower stations basically depends on the electric
loads with different characteristics. Therefore, the assessment of different electric loads is
indispensable to analyze the operational stability of the hydropower system [11]. Typically,
two typical electric loads in power systems are often concerned, namely, the static load
with basically unchanged impedance [12] and the dynamic load with quick response to
frequency changes in dynamic studies [13]. Recently, the increasing complexity of new
generation units and water systems has caused the load instability to become a new problem

Energies 2023, 16, 4459. https://doi.org/10.3390/en16114459 https://www.mdpi.com/journal/energies306



Energies 2023, 16, 4459

in many countries [14–17], mainly because of the complex interactions of hydro-mechanical
power subsystems in the hydropower stations.

Hence, proper models of the electrical loads are the premise to understand their
dynamic behaviors in different systems, and their importance in power system stability
studies has been emphasized over the long term [18–20]. Relevant achievements have
been obtained by numerical analysis in recent years. It has enabled researchers to further
present the effect of load characteristic on the damping for low-frequency oscillation in the
power system [21]. Similarly, the influence of different loads on the damping analysis of the
power system was studied by numerical analysis [22]. In fact, the main motivation for the
implementation of these load models is that static load models cannot predict instability
in different subsystems. For instance, Nomikos analyzed the impact of a dynamic load,
that is, an induction motor, on a mechanical–electrical oscillation in the power system and
emphasized that the dynamic load had an evident impact on inter-area modes of power
systems [23]. Hiskens and Milanović also studied the impact of these load models on the
stability and analytical damping of the power system [24,25]. Their research shows that the
recovery time constant of the dynamic load has a major effect on the eigenvalue analysis of
the system.

Furthermore, alternative approaches are adopted based on the experimental setup
and laboratory measurements instead of numerical simulation of the electrical loads. To
investigate the dynamic stability of the governor turbine hydraulic system at a large
hydropower station, Yang et al. carried out experimental research with simulated units [26].
Zeng et al. performed a full-load rejection test to confirm the effect of the S-shaped property
on the water hammer calculation, which provided important experimental data to ensure
the stable operation of the pumped storage station [27]. In addition, based on the physical
model experiment, an analysis method considering the theoretical model was provided by
Yang et al. [28], and the sustained ultra-low-frequency oscillations and frequency instability
of hydropower units were revealed.

Worth noting is that the integration of pipe flow models and various electrical loads
in hydropower systems remains a relatively unexplored research field. The effect analysis
of load characteristics on operational stability has been preliminarily discussed in detail
before [29], but it is still insufficient to meet the present demand or provide a comprehensive
analysis of the influence mechanisms of different-order elastic models of pipe flow together
with various electrical loads on typical hydropower systems. Most importantly, the load-
influencing mechanism on the power system stability should be clarified in detail, in
the case of complex load characteristics after the integration of the hydraulic–mechanical
system with the power system. Therefore, further analysis with different load characteristics
is urgent to ensure the system’s stable operation in different operating boundaries. After the
mathematical model of the hydraulic–mechanical system is derived and organized, with
further introduction of load models with different characteristics, the simulation model
presented by state equations is derived to reveal the effects of different load characteristics
on the system’s stability. Then, a built experiment setup of the hydraulic–mechanical–
electrical system for a hydropower station [30] is also introduced for further confirmation
analysis with numerical analysis. Finally, the effects of elastic models with different orders
of pipe flow with different load characteristics on the system’s stability are investigated in
detail based on two case analyses.

The rest of this paper is organized as follows. In Section 2, the mathematical models of
static and dynamic loads are established in the form of state equations, together with the
derived mathematical models of the governor turbine hydraulic system. In Section 3, the
experimental-based stability study and confirmation of the numerical model are carried out
through the experimental setup of hydro-mechanical power systems. In Section 4, based on
a single-unit system and a two-unit system, the sensitivity analysis of the model order of
pipe flow together with different load characteristics was conducted, followed by further
numerical analysis. Finally, the conclusions are presented in Section 5.
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2. Mathematical Models

For the hydropower station paralleled in the power system, its dynamic characteristics
were mainly concerned with the hydraulic pipelines, the turbine generator, the governor,
the exciter, and the electric loads. Therefore, in order to clarify the inherent dynamic
interaction of the governor turbine hydraulic system and the power system and accurately
reveal the effect of different pipe flow models and different electrical loads on the system’s
operational stability, their mathematical models should be accurately established with the
inter-variables.

2.1. Hydraulic System

For a simple hydropower system with a water diversion pipe and a hydraulic unit at
the downstream end, different linear models, including rigid models and elastic models, can
be deduced for the pipe flow provided in [31]. Then, as a single-unit system is considered,
the state equations for state variables at the pipe’s outlet section are⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dTi
dt = qi

dqi
dt = − f Q0

DA qi − (iπa)2

l2 Ti − 2gAH0(−1)i

l ξ

dq
dt = − f Q0

DA q + 1
Q0

n
∑

i=1

(iπa)2(−1)i

l2 Ti − H0
Q0

(2n+1)gA
l ξ

, (1)

where qi and Ti are the ith-order oscillatory flow rate and introduced conversion variable;
l is the pipe length; f, D, A, and a are the pipe’s friction coefficient, diameter, sectional
area, and wave speed, respectively; H0 and Q0 are the initial pressure and flow rate at the
pipe’s end section of pressurized pipe; q and ξ are unit’s relative variation of flow rate and
operating head; and n is the model order.

Here, based on the linearization of the turbine’s flow equations at a given opera-
tion condition [32], the unit’s relative variation of operating head in Equation (1) can be
described by

ξ = C1q + C2 ϕ + C3μ, (2)

where ϕ and μ are unit’s relative variation of rotational speed and wicket opening, and
Ci (i = 1, 2, 3) are parameters obtained from the model hill charts of the hydraulic turbine
according to a given operating condition.

By the introduction of Equation (2), Equation (1) can be rewritten as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dTi
dt = qi

dqi
dt = − f Q0

DA qi − (iπa)2

l2 Ti − 2gAH0(−1)iC1
l q − 2gAH0(−1)iC2

l ϕ − 2gAH0(−1)iC3
l μ

dq
dt = 1

Q0

n
∑

i=1

(iπa)2(−1)i

l2 Ti −
(

f Q0
DA + H0

Q0

(2n+1)gAC1
l

)
q − H0

Q0

(2n+1)gAC2
l ϕ − H0

Q0

(2n+1)gAC3
l μ

(3)

Equation (3) is a typical state equation group mainly involving a different-order elastic
model of pipe flow, which provides the dynamic interaction between the hydraulic system
and the mechanical system with some inter-variables.

Similarly, for different hydropower systems, the elastic model can also be derived with
state variables at the outlet section for the long water diversion pipelines connected to an
upstream surge tank or bifurcation or with state variables at the inlet section for the tail
pipelines introduced from a downstream surge tank or bifurcation.

2.2. Turbine Generator

For the turbine generator unit, as a typical salient pole generator, the commonly used
stability computation model is the five order equations recommended by IEEE [33], which
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can exactly simulate its transient characteristics and dynamic responses and conveniently
introduce the interaction of hydraulic–mechanical system. Its basic equations include

dE′
q

dt
=

1
T′

d0

[
Ef d − E′

q −
(
xd − x′d

)
id
]
, (4)

dE′′
q

dt
=

(
1

T′′
d0

− 1
T′

d0

)
E′

q −
1

T′′
d0

E′′
q −

(
xd − x′d

T′
d0

+
xd

′ − x′′d
T′′

d0

)
id +

1
T′

d0
Ef d, (5)

dE′′
d

dt
=

1
T′′

q0

[
−E′′

d +
(

xq − x′′q
)

iq

]
, (6)

dω

dt
=

1
M

[Pm − Pe], (7)

dδ

dt
= ωω0, (8)

where Td0
′, Td0

′′, and Tq0
′′ are all time constants corresponding to the d-axis and the q-axis;

M is the unit’s inertia time constant; ω and δ are the rotor’s angular speed and power
angle; Eq

′, Eq
′′, and Efd are the q-axis transient potential and sub-transient potential and

excitation potential respectively; Ed
′′ is the d-axis sub-transient potential; xd, xd

′, xd
′′, and

xq, xq
′′ are all known parameters corresponding to the d-axis and q-axis; id and iq are

the d-axis and q-axis current; Vd and Vq are d-axis and q-axis voltage, Vq = E′′
q − x′′

d id,
Vd = E′′

d + x′′
q iq; Vt is the terminal voltage, V2

t = V2
q +V2

d ; and Pm and Pe are the mechanical
and electromagnetic power.

For the hydraulic turbine at a certain operating condition, based on the linearized equa-
tion of the unit’s output [32] and further introduction of Equation (2), the relative power
variation corresponding to the mechanical power Pm in Equation (7) can be obtained as

pm = C4q + C5 ϕ + C6μ, (9)

where Pm is the relative power variation, and Ci (i = 4, 5, 6) are parameters obtained from
the model hill charts of the hydraulic turbine according to a given operating condition.
Similarly, the relative power variation corresponding to the electromagnetic power Pe in
Equation (7) can be derived according to electric loads with different characteristics.

2.3. Electric Load in Power System

The electric loads mainly include the static load, dynamic load, and integrated load.
Because the integrated load has the dynamic characteristics combined with the static load
and dynamic load, and in most cases, it is difficult to introduce an exact simulation model
with defined transient parameters, for their effect analysis on the system’s operational
stability, the static load and dynamic load model is typically emphasized. Further, the
induction motor is the commonly used dynamic load in a power system, and its dynamic
characteristics are basically represented by the transient of the induction motor.

Static Load. The description form for the static load model can be rewritten by simplification.

Pl = Pl0

⎡⎣ap

(
E′′

q

E′′
q0

)2

+ bp

(
E′′

q

E′′
q0

)
+ cp

⎤⎦, (10)

where coefficients ap, bp, and cp meet ap + bp + cp = 1; Pl and Pl0 are the transient and
rated active power, respectively; and Eq0

′′ is the q-axis initial sub-transient potential. The
specified characteristics of the static load can be described by different combinations of ap,
bp, and cp.
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Then, with the introduction of the static load model and by the Newton–Raphson
linearization, the relative power variation corresponding to electromagnetic power Pe in
Equation (7) can also be derived and reorganized as below [29]:

pe = kee′′q + ksθ, (11)

where eq
′′ is the q-axis relative sub-transient potential an θ is the generator’s rotor angle.

The derived coefficients are defined as below:

ke =
Vt

x′′
d

sin θ0 +
Pl0

E′′
q0
(2ap + bp), ks =

E′′
q0Vt

x′′
d

cos θ0 +
V2

t (x′′
d − x′′

q )

x′′
d x′′

q
cos(2θ0).

With the substitution of the mechanical power Pm, Equation (9), and the electromag-
netic power Pe, Equation (11), and further linearization, the unit’s motion Equation (7) is
rewritten into

dϕ

dt
=

1
Ta

(
C4q + C5 ϕ + C6μ − kee′′q − ksθ

)
, (12)

where Ta is inertia time constant of the turbine generator.
Dynamic Load. In order to clearly reveal the effect of the dynamic load on the system’s

operational stability with a simplified simulation model, considering an induction motor
with absolutely symmetrical d- and q-axes, after ignoring its transient process and defining
positive inflow of current, the obtained state equations for the dynamic load are as follows:

dE′
qe

dt
= − 1

T′ E′
qe +

1
T′ (x − x′)ide (13)

dE′
de

dt
= − 1

T′ E′
de −

1
T′ (x − x′)iqe (14)

ds
dt

=
1

2M′ (Tm − Te), (15)

where T′ is the time constant; Eqe
′ and Ede

′ are the transient potentials of the q- and d-
axes, respectively; x and x′ are the reactance and transient reactance; ide and iqe are the
q- and d-axis currents; s is the slip of the motor; M′ is the inertia time constant; Te is the
electromagnetic torque; and Tm is the mechanical torque. Then, based on the voltage
equations, the electromagnetic power formula, and the interface models for the generator
and the electric load, the relative power variation corresponding to electromagnetic power
Pe can also be derived for the dynamic load [12].

2.4. Stability Analysis Based on State Equations

Therefore, for a simple hydropower system with a water diversion pipe and a hy-
draulic unit at the downstream end, by further introduction of the mathematical models
for the exciter and speed governor provided in [33,34], the whole state equations group
can be organized to directly describe the dynamic characteristic of the governor turbine
hydraulic system and power system, and the corresponding matrix form is

dX
dt

= AX + BU, (16)

where A is the coefficient matrix, X is the state vector, B is the input matrix, and U is the
disturbance vector.

For this single-unit system, the derived state vector X with the static load in
Equation (16) is

X = [T1, q1, · · · , Tn, qn, q, ϕ, y, μ, xI , xD, ua, u f , e f d, e′q, e′′q , e′′d , θ]
T , (17)
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where y, xI, and xD are the governor’s state variables; ua and uf are the output voltage and
exciting feedback voltage of the voltage regulator; efd is relative the exciting potential for
the exciter; eq

′ is the q-axis relative transient potential; and ed
′′ is the d-axis relative sub-

transient potential.
Similarly, for this single-unit system, the derived state vector with the dynamic load

in Equation (16) is

X = [T1, q1, · · · , Tn, qn, q, ϕ, y, μ, xI , xD, ua, u f , e f d, e′q, e′′q , e′′d , e′qe, e′de, s, θ12, θ1]
T , (18)

where eqe
′ and ede

′ are the q- and d-axis relative transient potentials; θ12 meets θ1-θ2; and θ1
and θ2 are the generator’s and the induction motor’s rotor angles respectively.

In particular, if the dynamic characteristics of the generator, exciter, and electrical load
are not considered, the simplified state vector in Equation (16), which is commonly used in
stability analysis on the governor turbine hydraulic system, is

X = [T1, q1, · · · , Tn, qn, q, ϕ, y, μ, xI , xD]
T , (19)

With the obtained state vectors for different considerations, the corresponding linear
state equations can be built to describe the dynamic characteristics of the hydropower
system, and then the system’s operational stability with dynamic responses will be investi-
gated under small disturbance. If different electric loads are involved with the state vectors
presented in Equations (17) and (18), with further eigenvalue and sensitivity analysis, the
influence of different-order elastic models of pipe flow and different load characteristics on
the system’s operational stability can be revealed.

3. Experimental Research on System Stability

3.1. Experimental Setup

Considering the detailed layout of a given simple hydropower system, a small-scale
experimental setup focusing on operating stability of the hydro-mechanical–electrical sys-
tem was designed and established [30]. This equipment mainly consisted of an upstream
reservoir, a pressure conduit, turbine generator, a tail tube, a governor, an exciter, a simpli-
fied electrical system, and so on, shown in Figure 1, and a short open channel was used
to induce water flow from unit’s draft tube to the tail water. The total length of the water
diversion conduit was 18.0 m with a 22.5 cm diameter, and the other experimental equip-
ment parameters are shown in Appendix A. An electromagnetic flowmeter was set close to
the inlet of the unit’s spiral case for the measurement of the unit’s operating flow rate.

Figure 1. Longitudinal section of the simulated hydro-mechanical system.

The simulated hydropower system can be completely monitored under stable opera-
tion, normal starting and stopping, emergency load rejection, and small disturbances. The
pressure sensors are preset at the corresponding sections to collect the real-time data of the
simulated hydraulic system. With the equipped speed governor, exciter, and synchroniza-
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tion system, the simulated hydropower system can be synchronized and paralleled into the
external power system or be put into isolated operation with different electric loads.

3.2. Electric Load Design

Considering to the research achievements on electric loads’ models in recent years [25],
by comparing with the static load and dynamic load, there is still a bottleneck on how to
ascertain the integrated loads and their parameters in the stability analysis.

Therefore, in order to clearly reveal the influence of the electric loads with different
characteristics on the system’s stability, the static load and dynamic load were preferred
instead of the integrated loads to realize the system’s stability evaluation. As an additional
and indispensable part for the simulated hydropower system, the physical models were
designed and established for the static load (electric resistance) and the dynamic load,
which is a water pumping system with a three-phase induction motor [30] shown in
Figure 2.

Figure 2. Longitudinal plan of the pumping system.

3.3. Computational Verification Based on the Simulated System

Based on the simulated hydropower system in Figure 1 running with rated head
Hr = 3.2 m, rated flow rate Qr = 0.045 m3/s, and rated rotational speed nr = 600 rpm and
then serving for different loads in Figure 2 paralleled into the external power system,
considering electrical loads with different characteristics under grid-connected operation or
isolated operation, the effect of power system and different load characteristics on system’s
operational stability was experimentally studied. Then, for the simulated hydropower
system, further numerical simulation was investigated on the system’s operational stability,
and verification analysis for the numerical simulation was also conducted by comparative
analysis with the experimental results [29].

For the simulated hydropower system in Figures 1 and 2, under grid-connected opera-
tion or isolated operation with the static load or dynamic load, according to its relatively
short pipe length, the rigid model was preferred to simulate the dynamic characteristics
of pipe flow [31] instead of the elastic model, derived from Equation (3). Based on the
derived state equations for the hydropower system with a state vector (17) for the static
load and a state vector (18) for the dynamic load, respectively, with eigenvalue analysis
and load disturbance computation, the effects of different load characteristics on the sys-
tem’s stability and regulation performance could be numerically analyzed, including a
comparative analysis with experimental results. For the simulated hydropower system, in
order to be basically consistent with the experimental boundaries, for the static load, only
resistance with ap = 1 and bp = 0 was concerned for the numerical computation, so based
on the eigenvalue computation and further correlation analysis, the computed oscillation
mode strongly related with the low-frequency oscillation was −0.0761 ± j2.041 for the
static load (resistance), and it was −0.2492 ± j0.724 for the dynamic load. By a comparative
analysis on the attenuation factor (real part of low-frequency oscillation mode) for different
loads, it was revealed that the unit serving for a water pumping system (dynamic load)
was more stable.
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Considering the unit under grid interconnection operation and isolated operation and
then with −10% step load disturbance, time histories of the unit’s relative speed variation
considering the dynamic load for further comparative analysis with the experimental
results are provided in Figure 3.

Figure 3. Time histories of the unit’s relative speed variation considering dynamic load.

From the dynamic characteristics of the unit’s rotational frequency in Figure 3 un-
der −10% step load disturbance considering grid-connected operation, it was obviously
confirmed that the power system was beneficial to the unit’s stable operation. Because
the simulated unit’s capacity had a very small proportion of the external power system,
the electric load with different characteristics had a negligible influence on the system’s
stability. As far as isolated operation was concerned, Figure 3 shows the similar oscillation
trend and approximately equal peak values for numerical simulation and experimental
research, and there was also some difference in the oscillation period and the attenuation
trend, which was basically originated from the calibration error of the dynamic load’s
technical parameters, such as the time constant, besides the experimental error.

Similarly, under a −10% step load disturbance, considering the unit under isolated
operation, time histories of the unit’s relative speed variation considering the static load for
further comparative analysis with the experimental results are shown in Figure 4.

Figure 4. Time histories of unit’s relative speed variation considering static load.

From Figures 3 and 4 and further unit regulation performance analysis, it can be
drawn that, with setting parameters, under load disturbance, the unit serving for different
loads under isolated operation was stable. For the unit serving for a water pumping system
(dynamic load), the system’s stability and regulation performance were better than those
of resistance (static load), including an obviously shorter regulating time, less oscillation,
and a larger attenuation degree, which was 84.8% greater than that of the static load, 24.8%,
well in agreement with the above experimental results.

Furthermore, Figures 3 and 4 also clarify that the numerical computed curves were
basically identical to the experimental results, which confirms that the established mathe-
matical models can accurately reveal the system’s dynamic characteristics and the effects of
different loads on the hydropower system stability performance.
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4. Numerical Analysis

4.1. Case Description for a Simple Hydropower System

Considering that the unit’s speed was an important inter-variable for the governor
turbine hydraulic system and the power system, for further numerical simulation anal-
ysis, it was preferable to investigate the effect of different electric loads on the dynamic
characteristics of the unit’s speed in detail.

Figure 5 shows a simple hydropower system with a pressurized pipe 250 m in length
and 5.0 m in diameter, and the unit’s rotational inertia is 11,000 t·m2 with rated speed of
150.0 rpm. It was running with an operating head of 73.0 m and a flow rate of 116.0 m3/s.

Figure 5. Sketch of a single-pipe and single-unit system.

4.2. Further Numerical Analysis with Different Loads

For the hydropower system shown in Figure 5, the first-order elastic model derived
from Equation (3) was introduced to simulate the water flow in the diversion pipe according
to its relatively short length. In order to reveal the effects of the dynamic characteristics of
the generator, the exciter, and the electrical load on system’s stability, first, based on the state
vector, Equation (19), without the consideration of their effects, the stable region is shown
in Figure 6a with the governor parameters, including the dashpot time constant Td and the
temporary speed drop bt. In Figure 6a, a critical combination of the governor parameters
(Td, bt) is also provided for further comparative analysis, and then its corresponding
computational curve of the relative speed variation under a −10% step load disturbance is
yielded in Figure 6b.

(a) (b)

Figure 6. Stability analysis without the effect of electrical system: (a) Stable region. (b) Relative
speed variation.

Figure 6 illustrates that if the effect of the dynamic characteristic of the generator,
excitor, and electrical loads on the system’s stability was not considered, the Td-bt plane
was divided into a stable region and an unstable region with a critical curve; if the combi-
nation of the governor’s parameters (Td, bt) was just located along the critical curve, the
system’s dynamic variables, mainly including relative speed variation, tended to equal-
amplitude oscillation.

Furthermore, the effect analysis of the load characteristics on low-frequency oscillation
was conducted based on the dynamic characteristics of the unit’s speed considering the
static load or the dynamic load. Table 1 provides various groups of ap and bp values to

314



Energies 2023, 16, 4459

describe different computational cases considering the static load in addition to the dynamic
load and the computed corresponding low-frequency oscillation modes. In Table 1, based
on the sensitivity analysis of the governor’s parameters, the effects of governor parameters
on the low-frequency oscillation mode is also analyzed, including the obtained critical
combination of the governor parameters (Td, bt) in Figure 6.

Table 1. Low-frequency oscillation mode of different load characteristics.

Load Model ap bp 2 ap + bp
Low-Frequency Oscillation Mode

Td = 5.0 s, bt = 0.50 Td = 5.0 s, bt = 0.32

Static load

Constant resistance 1.0 0.0 2.0 −0.4316 ± j12.94 −0.4017 ± j12.94
Constant current 0.0 1.0 1.0 −0.4005 ± j13.02 −0.3723 ± j13.01
Constant output 0.0 0.0 0.0 −0.3697 ± j13.09 −0.3431 ± j13.08

0.6 0.2 1.4 −0.4129 ± j12.99 −0.3840 ± j12.98
Dynamic load −0.5599 ± j12.50 −0.5198 ± j12.54

It can be drawn from Table 1 that if the first-order elastic model of the pipe flow was
introduced, the absolute value of the attenuation factor considering the dynamic load was
obviously greater than that considering the static load. The absolute value of the attenuation
factor increased, and the system’s stability became better as the value of 2 ap + bp for the
static load was larger; considering the decreasing of bt with the same Td, the absolute value
of the attenuation factor was slightly reduced, and its stability became a bit worse.

As the hydropower station was running and serving for the dynamic load or the
static load (constant resistance), respectively, then by introducing a −10% step disturbance
from the governor side, the time histories of the relative speed variations under isolated
operation are shown in Figure 7 with Td = 5.0 s and bt = 0.50. Meanwhile, Figure 8 shows
the time histories of the relative speed variation under a −10% step load disturbance with
Td = 5.0 s and bt = 0.32 for further comparative analysis.

Figure 7. Computational curves of unit’s relative speed variation under isolated operation.

Figure 8. Computational curves of relative speed variation under −10% step load disturbance.
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From Figures 7 and 8, the dynamic process of the hydraulic–mechanical system was
significantly different considering the influence of the static load or the dynamic load.
At the same time, considering the dynamic load, the system’s operational stability was
better with the faster speed fluctuation attenuation and relatively short regulation time as
compared with the static load, which was consistent with the results in Table 1. From further
comprehensive analysis with Figures 7 and 8, there were obviously different behaviors for
different disturbances from the governor side or the load disturbance, including different
oscillation processed and attenuation rates. By comparative analysis with Figures 7 and 8,
with the same combination of the governor’s parameters (Td, bt), that is, Td = 5.0 s and
bt = 0.32, the system was stable with better regulation performance considering the effects
of the dynamic characteristics of the generator, exciter, and electrical loads, while it was
in a critical state with equal-amplitude oscillation without their effects; therefore, it was
concluded that the dynamic characteristics of the generator, exciter, and electrical loads
could improve the system’s stability and regulation performance.

4.3. Effect of Pipe Flow Models on Low-Frequency Oscillation with Different Loads

In the above numerical analysis, the first-order elastic model for pipe flow was in-
troduced to evaluate the effect of load characteristics on low-frequency oscillation and
further the system’s stability. Furthermore, for the simple unit system shown in Figure 5,
considering the detailed hydraulic characteristics of the pipe flow illustrated by different-
order elastic models, that is, the stiff model, the first-order model, the second-order model,
and the third-order model, which can be derived from Equation (1) with n = 0, 1, 2, and 3,
respectively, the eigenvalue computation and the analysis of further dynamic characteristics
was carried out to reveal the effects of different models of pipe flow on low-frequency
oscillation and the system’s stability, together with the effect analysis of different load
characteristics. The corresponding modes for low-frequency oscillation with different-order
elastic models for pipe flow and different load characteristics are provided in Table 2, and
considering the static load, under a −10% step load disturbance, the dynamic curves of the
relative speed variation are shown in Figure 9.

Table 2. Low-frequency oscillation modes of different-order elastic models for pipe flow.

Flow Model Static Load Dynamic Load

Stiff model (zeroth-order) −0.5411 ± j12.80 −0.5036 ± j12.31
First-order elastic model −0.4316 ± j12.94 −0.5599 ± j12.50

Second-order elastic model −0.4278 ± j12.95 −0.5695 ± j12.50
Third-order elastic model −0.4264 ± j12.95 −0.5735 ± j12.49

Figure 9. Dynamic curves of unit’s relative speed variation of different elastic models for pipe flow
with static load.

From Table 2 and Figure 9, it can be seen that for the static load, with the increasing
of the model order for the pipe flow, the absolute value of the attenuation factor of the
low-frequency oscillation mode gradually reduced and then tended to be a constant, which
was illustrated by the different attenuation ratios for the relative speed variation. Compared
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with the static load (constant resistance), for dynamic loads, with the increasing of the model
order for the pipe flow, the absolute value of the attenuation factor of the low-frequency
oscillation mode gradually increased and then tended to be a constant. Therefore, for
both the static load and the dynamic load, instead of a higher-order elastic model, an
optimum-order elastic model, a three-order elastic model, of the pipe flow was preferred to
exactly evaluate the effects of different load characteristics on the low-frequency oscillation
mode and the system’s regulation performance.

4.4. Sensitivity Analysis of Pipe Length on Low-Frequency Oscillation with Different Loads

Based on the effect analysis of the pipe flow models on low-frequency oscillation with
different loads, it was also necessary to conduct further sensitivity analyses of the pipe
length on low-frequency oscillation. For the simple unit system in Figure 5, considering the
reasonable change of the pipe length from 150 to 400 m, further sensitivity analysis was
implemented focusing on the effect of the pipe length on low-frequency oscillation and
further the system’s stability, along with different models of the pipe flow and different
load characteristics. Based on detailed eigenvalue computation with different pipe lengths,
the corresponding modes for low-frequency oscillation with different-order elastic models
for the pipe flow and the static load (constant resistance) are provided in Table 3, and the
changing trends for the real part of the low-frequency oscillation mode of different pipe
lengths with the dynamic load are shown in Figure 10.

Table 3. Low-frequency oscillation mode of different pipe length with static load.

Flow Model 150 m Pipe 250 m Pipe 400 m Pipe

Stiff model (zeroth-order) −0.5347 ± j12.80 −0.5411 ± j12.80 −0.5447 ± j12.80
First-order elastic model −0.5537 ± j12.79 −0.4316 ± j12.94 −0.5258 ± j12.80

Second-order elastic model −0.5571 ± j12.80 −0.4278 ± j12.95 −0.5483 ± j12.79
Third-order elastic model −0.5585 ± j12.80 −0.4264 ± j12.95 −0.5539 ± j12.79

Figure 10. Changing trends for real part of low-frequency oscillation mode of different pipe lengths
with dynamic load.

It can be analyzed from Table 3 and Figure 10 that for both the static load and the
dynamic load, if the stiff model of the pipe flow was introduced, the absolute value of the
real part of the low-frequency oscillation mode slightly increased with the increasing pipe
length. With the increasing model order for the pipe flow, considering different pipe lengths,
the absolute value of the real part of the low-frequency oscillation mode followed a different
variation tendency, and then all tended to be a constant. Therefore, in order to completely
evaluate the effects of different load characteristics on the low-frequency oscillation mode,
an optimum-order elastic model of the pipe flow was preferred according to different pipe
lengths, and in this case, the first- to second-order elastic model would exactly reveal the
effects of the pipe flow characteristics on the system’s regulation performance.
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4.5. Discussion on Stability for Two-Unit System with Different Static Loads

In recent years, many hydropower stations have been successively constructed, paral-
leled into different power systems, and served for local power supply, which has strongly
advanced the clean, low-carbon energy utilization and development in the world. Besides
the simple unit hydropower systems, some typical and relatively complex hydropower
systems play an important role in these hydropower systems, including the two-unit sys-
tem sharing a common water diversion pipeline or tail tunnel with the necessary surge
chambers. Therefore, Figure 11 shows a two-unit system sharing a downstream surge
chamber and tail tunnel, with a water level in the reservoir of 150 m, a tail water level of
29.0 m, a sectional area of downstream surge tank of 233.4 m2, a unit output of 122.6 MW, a
unit rotational inertia of 8900 t·m2, and a rated speed of 230.8 rpm. For the pipe parameters,
the water diversion pipes were 466.3 m and 450.3 m in length with 5.7 m in diameter, the
tail branches were 101.1 m and 111.1 m in length with 6.2 m in diameter, and the tail tunnel
was 945.9 m in length and 8.8 m in diameter.

Figure 11. Sketch of a typical two-unit system.

Considering two units in Figure 11 serving for the static load and by introducing
different-order models for the tail tunnel flow and stiff models for the branch pipes, a de-
tailed eigenvalue computation and analysis of further dynamic characteristics was carried
out to discuss the effects of different models of pipe flow on low-frequency oscillation and
the system’s stability, together with the effect analysis of different load characteristics. The
corresponding modes for low-frequency oscillation and hydraulic oscillation with third-
order elastic models for tail tunnel flow and different load characteristics are provided in
Table 4. Based on constant resistance, considering a −10% step load disturbance with a
1# unit, the dynamic curves of the relative state variables are shown in Figure 12, including
the unit’s relative speed variation, the relative water level variation in the surge tank, and
the oscillating flow rates in the tail tunnel.

Table 4. Oscillation mode analysis with third-order elastic models for tail tunnel flow.

Oscillation Modes Static Load (Constant Output) Static Load (Constant Resistance)

Low-frequency oscillation
−0.9480 ± j6.834 −0.9569 ± j6.838
−0.8839 ± j6.693 −1.1060 ± j5.471

Hydraulic oscillation
−0.005636 ± j3.322 −0.005365 ± j3.322
−0.005635 ± j6.643 −0.005632 ± j6.643
−0.005627 ± j9.964 −0.005637 ± j9.964

Water level oscillation −0.008115 ± j0.5201 −0.008112 ± j0.5202
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(a) (b)

(c)

Figure 12. Dynamic curves of state variables of third-order elastic models for tail tunnel flow:
(a) Relative speed variation. (b) Water level in downstream surge tank. (c) Different-order oscillating
flow rate in tail tunnel.

From Table 4 and Figure 12, it can be concluded that for the two-unit system sharing a
downstream surge tank and tail tunnel, if the third-order elastic model for the tail tunnel
flow was introduced, the system’s oscillation modes mainly included two low-frequency
oscillations modes strongly related with the two units, three hydraulic oscillation modes
illustrating the dynamic characteristics of three oscillating flow rates, and one water level
oscillation mode directly representing the downstream surge tank’s surge characteristics.
The two low-frequency oscillation modes were not changed with the different model
orders for the tail tunnel flow, mainly because of the reflection of the downstream surge
tank, which was obviously different from that of the simple unit system. By comparative
analysis, one of the low-frequency oscillation modes was basically consistent with one of
the hydraulic oscillation modes, which may have resulted in coupling resonance in this
hydropower system, which should be exactly evaluated with the premise of considering a
reasonable model order for the tail tunnel flow.

Under a −10% load disturbance on a 1# unit, the detailed computation shows that
the relative speed variation of the 1# unit decayed accompanied by obvious oscillation,
while that of the 2# unit had less oscillation. The water level in the downstream surge
tank also tended to a steady state gradually. Especially in Figure 12c, three oscillating flow
rates qi (i = 1, 2, and 3) showed an attenuated oscillation close to the water level oscillation
period in the surge tank, combined with a high-frequency oscillation with an oscillation
period decided by the ith-order hydraulic oscillation.

Further, considering static loads with different characteristics, from constant output
to constant resistance, the absolute value of the real part of the low-frequency oscillation
mode increased, and the relative speed variation decayed faster, while there was less effect
on the hydraulic oscillation mode and the water level oscillation.

Therefore, similar to the single-unit system, for the typical two-unit system, the differ-
ent characteristics of the electric loads also had obvious effects on the system’s operational
stability, especially low-frequency oscillation, while the higher-order elastic model of the tail
tunnel flow had no effect on low-frequency oscillation but revealed the potential coupling
resonance between the hydraulic system and the power system.
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5. Conclusions

After introducing the elastic model with a reasonable order for the pipe flow and the
linear models of the hydro-mechanical–electrical system of the hydropower stations, the
analytical model considering the electric loads with different characteristics was compre-
hensively derived with state equations. Further, based on the numerical simulation model
confirmed by an experimental setup of a single-unit hydropower system, the effects of load
characteristics and pipe flow models on the operational stability were investigated in detail,
and the following can be concluded.

For a given single-unit hydropower system running with different electrical loads,
if a first-order elastic model of the pipe flow is introduced, the system’s stability and the
regulation performance of the unit running with the dynamic load under isolated operation
was superior to that of the unit running with different static loads. Based on the stable
region and sensitivity analysis of the governor’s parameters, it was confirmed that the
dynamic characteristics of the generator, excitor, and electrical loads could improve the
system’s stability and regulation performance.

Based on the influence analysis of different load characteristics on the single-unit
hydropower system, it was pointed out that a relatively higher-order elastic model could
exactly represent the dynamic characteristics of the pipe flow, while an optimum-order
elastic model of the pipe flow according to different pipe lengths was preferred to evaluate
the effects of different load characteristics on the low-frequency oscillation mode and the
system’s regulation performance.

For a typical two-unit system, the load characteristics also had obvious effects on
low-frequency oscillation, the low-frequency oscillation modes were not changed with
the different model orders for the tail tunnel flow mainly because of the reflection of
the downstream surge tank compared with the single-unit system, and considering the
preferred-order model of the pipe flow, the possible coupling resonance between the
hydraulic system and the power system could be exactly evaluated.
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Appendix A Data of Experimental Setup

Table A1. Main parameters of the generator and exciter in Figure 1.

Rated Speed
nr/(r/min)

Rated Output
Pr/KW

Rated Voltage
Ur/V

Rated Current
ir/A

Rated Frequency
fr/Hz

Power Factor
Cos ϕ

Rotary Inertia
GD2/(t·m2)

600 1.0 400 1.8 50 0.8 0.0056

Exciting Voltage
uf/V

Reactance
xd (d-Axis)

Transient
Reactance xd

′
Sub-Transient
Reactance xd

′′
Reactance
xq (q-Axis)

Transient
Reactance xq

′
Sub-Transient
Reactance xq

′′

21 1.0222 0.2505 0.1336 0.6074 0.6074 0.1306

Transient Open-Circuit Time Constant
Td0

′/s (d-Axis)
Sub-Transient Open-Circuit Time Constant

Td0
′′/s (d-Axis)

Sub-Transient Open-Circuit Time Constant
Tq0

′′/s (q-Axis)

1.5~9.0 0.01~0.05 0.01~0.09
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Table A2. Basic parameters of the turbine in Figure 1.

Rated Head
Hr/m

Rated Flow
Qr/(m

3/ s)
Rated Speed

nr/(r/min)
Diameter

D1/cm
Designed Output

Psr/KW
Runaway Speed

nf/(r/min)
Design Efficiency

η/%

3.2 0.045 600 20 cm 1.15 1120 78.2
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Abstract: The optimal scheduling of cascade reservoirs is an important water resource management
and regulation method. In the actual operation process, its nonlinear, high-dimensional, and coupled
characteristics become increasingly apparent under the influence of multiple constraints. In this
study, an integrated multistrategy particle swarm optimization (IMPSO) algorithm is proposed to
realize the optimal operation of mid- and long-term power generation in cascade reservoirs according
to the solution problem in the scheduling process of cascade reservoirs. In IMPSO, a variety of
effective improvement strategies are used, which are combined with the standard PSO algorithm in
different steps, among which beta distribution initialization improves population diversity, parameter
adaptive adjustment accelerates convergence speed, and the Lévy flight mechanism and adaptive
variable spiral search strategy balance the global and local search capabilities of the algorithm. To
handle complex constraints effectively, an explicit–implicit coupled constraint handling technique
based on constraint normalization is designed to guide the update process into the feasible domain of
the search space. The feasibility of the proposed method is verified in the mid- and long-term power
generation optimization scheduling of the lower reaches of the Jinsha River–Three Gorges cascade
hydropower reservoirs. The results show that the proposed method outperforms the other methods
in terms of search accuracy and has the potential to improve hydropower resource utilization and
power generation efficiency significantly.

Keywords: optimal scheduling; cascade reservoirs; particle swarm algorithm; constraint handling
technique

1. Introduction

Hydropower energy, which is a source of renewable energy, exhibits the qualities of
being environmentally friendly, cost-effective, flexible, and reliable. These properties effec-
tively contribute towards reducing carbon emissions while simultaneously promoting the
harmonious development of economic and environmental benefits [1,2]. With the reorgani-
zation of the global energy system and the restructuring of energy sources, the advantages
of hydraulic power have become increasingly apparent. Therefore, to facilitate the efficient
allocation of resources, rational utilization and the development of hydropower energy are
crucial. In this context, the optimal operation of cascade reservoirs has emerged as a major
research area in recent years [3], with research efforts mainly focused on deriving reservoir
scheduling regulations [4–6], identifying targets for reservoir scheduling models [7–10],
and revising and utilizing optimization techniques for reservoir scheduling [11–13].

The connections of hydraulic and electrical systems among cascade reservoirs are
closely related, and the topological relationships are extremely complicated. The optimal
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operation of cascade reservoirs is a type of nonlinear, multidimensional, multistage, mul-
tivariable, and multiconstrained complex optimization decision problem. To solve these
problems effectively, scientists have conducted extensive research using traditional mathe-
matical methods such as linear programming [14], nonlinear programming [15,16], dynamic
programming [17,18], and other methods to solve the overall nonlinear problematic release
of reservoirs. They also designed a set of metaheuristic algorithms [19–21] that combine
physical mechanisms, natural inspiration, social laws, and evolutionary technology in
order to improve the poor accuracy and vulnerability of traditional mathematical methods
relative to the dimensionality problem and obtained a better solution. In addition, the
optimal operation of cascade reservoirs also requires complex constraint treatment [22], and
the relevant constraint processing methods are mainly the penalty function method [23],
the ranking method [24], the variable repair method [25], and the boundary limitation
method [26], which effectively improves the solution’s quality in practical engineering
problems. However, using these methods results in greater computation or reduced pop-
ulation diversity, and the global optimal solution of the problem cannot be reached in a
given period of time, falling to balance algorithmic robustness [27] with effectiveness in
complex scenarios.

The particle swarm optimization (PSO) algorithm is a type of metaheuristic algorithm.
Because of its simple structure, easy implementation, and fast convergence speed, it is
widely used in practical engineering. However, due to its evolution mechanism and imple-
mentation style, this algorithm is prone to early maturation and delayed convergence in
later stages, and easily falls into local optimal solutions. Numerous studies have imple-
mented improvements relative to the PSO, such as the introduction of linear or nonlinear
inertia weights and learning factors [28,29], the integration of mathematical probability
distribution functions [30], and the integration with other optimization approaches [31].
These interventions have obviously increased the precision of the algorithm and enhanced
its global exploration capabilities. Although the PSO algorithm has achieved some success
in many aspects, the overall optimization effect of the algorithm is poor and lacks stability
because of the stochasticity of the initial process and the flaw in the exploration ability.
Therefore, it is necessary to study the defects of the PSO algorithm in order to improve its
performance and better apply it to practical engineering cases. Based on this, a series of
enhancements to the PSO method have been created to overcome the algorithm’s inade-
quacies in addressing high-dimensional difficult optimization issues. In particular, a beta
distribution strategy is adopted to improve the monotonicity of the stochastic initialization
of the PSO algorithm, a parametric nonlinear adaptive strategy is used to cope with the at-
traction of locally optimal neighbors in the iterative process, and a combination of the Lévy
flight mechanism and a variable spiral search strategy is used to improve the algorithm
exploration and exploitation performance. Meanwhile, an implicit constraint processing
method is introduced to deal with the reservoir operation problem. It is combined with
the explicit constraint processing technique of the static penalty function by restricting the
feasible space of variables to solve the multidimensional constraint problem of cascade
reservoir operation. Simulation results in practice show that the proposed method is robust
and effective.

In IMPSO, the populations are first selected by beta distribution. The evolutionary
process is then split into two updates. The first update employs a parameter adaptive
change approach to update population velocity and location; the second employs a random
number and either a Lévy flying mechanism or a variable helix search strategy to optimize
population position based on the size of the random number. Finally, the answers to the
two evolutions are compared, and the better option is chosen to maintain the population’s
ability to explore and diversity.

The proposed scheme is experimentally evaluated by combining IMPSO with the
explicit–implicit coupled constraint treatment technique and applying it to the problem of
graded reservoir generation and scheduling under different runoff conditions based on
various experiments. First, statistical results such as box plots, Friedman test, convergence
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analysis, and population diversity evaluation are used to verify the validity of the proposed
scheme; second, the applicability of the proposed scheme is evaluated by analyzing the
results of water abandonment, reservoir level fluctuation and output, and power gener-
ation of the step system generated during the practical application. The acquired results
are compared with many other regularly used algorithms to demonstrate the suggested
scheme’s superior performance in the field of reservoir scheduling.

In summary, the main contributions of this research are outlined as follows:

1. An IMPSO method is proposed that uses initialization, adaptive parameters, Lévy
flight, and variable spiral search strategies to efficiently maximize performance.

2. In conjunction with the proposed IMPSO algorithm, an explicit–implicit coupled
constraint handling technique is introduced to solve the generation scheduling model
of cascaded hydropower systems.

3. The proposed scheme provides an effective tool for solving the complex problem of
reservoir operation. Compared with several other schemes, it has the advantages of
strong searching ability and robustness, which also can better utilize the collaborative
generation effect of cascade hydropower units.

The remainder of this paper is organized as follows: Section 2 presents the optimization
model for the operation of cascade reservoirs. Section 3 describes the IMPSO method.
Section 4 briefly introduces the techniques used to process constraints. Section 5 testifies the
proposed scheme’s performances in a real cascade hydropower system. Finally, Section 6
summarizes the study and outlines future research directions.

2. Operation Model of Cascade Reservoirs

2.1. Objective Function

Taking the maximum annual power generation of cascade reservoirs as the objective
function, the objective function can be expressed mathematically as follows:

E= max
I

∑
i=1

T

∑
t=1

Ni,tΔt (1)

Ni,t = AiQi,t Hi,t (2)

where E is all the power generation of the cascade reservoirs. The cascade reservoirs are
numbered from upstream to downstream in a sequence like 1, 2, 3 · ··, and I is the number
of reservoirs. t is the subperiod of the scheduling period, and T is the total number of
stages over all scheduling periods. Ni,t is the output at the tth stage of the ith hydropower
reservoir. Ai is the comprehensive output coefficient of the ith hydropower station. Qi,t
and Hi,t are the generation flow and the corresponding water head at the tth stage of the
ith hydropower reservoir, respectively. In the reservoir scheduling field, power generation
scheduling takes the maximum power generation as the objective function, and the final
power generation result is obtained by calculating the output of each subdispatch period of
the reservoir and multiplying it with the length of the subdispatch period. Therefore, Δt is
the length of each subperiod of the operation, and it is a constant value, taking different
values according to different scheduling periods. In this paper, its duration is one decade.

2.2. Constraints

(1) Water balance constraints

Vi,t+1 = Vi,t + (Ii,t − Ri,t) · Δt (3)

Ri,t = Qi,t + Si,t (4)

where Vi,t, Ii,t, Ri,t, Qi,t, and Si,t denote the storage capacity, inflow, outflow, generation flow,
and abandoned water flow of the ith hydropower reservoir in the tth stage, respectively.
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(2) Storage capacity constraint

Vmin
i,t ≤ Vi,t ≤ Vmax

i,t (5)

where Vmin
i,t and Vmax

i,t denote the maximum and minimum storage capacity of the ith
hydropower reservoir in the tth stage, respectively.

(3) Hydraulic constraints

Ii,t = Ri−1,t−τ + qi,t (6)

where qi,t denotes the interval inflow of the ith hydropower reservoir in the tth stage. τ
denotes the lagging periods of water flow.

(4) Outflow constraints

Rmin
i,t ≤ Ri,t ≤ Rmax

i,t (7)

where Rmax
i,t and Rmin

i,t denote the maximum and minimum outflow of the ith hydropower
reservoir in the tth stage.

(5) Generation flow constraints

Qmin
i,t ≤ Qi,t ≤ Qmax

i,t (8)

where Qmax
i,t and Qmin

i,t denote the upper and lower limits of the generation flow of the ith
hydropower reservoir in the tth stage, respectively.

(6) Water level constraints

Zmin
i,t ≤ Zi,t ≤ Zmax

i,t (9)

ΔZdown
i ≤ Zi,t+1 − Zi,t ≤ ΔZup

i (10)

Zi,t+1 = f ZV(Ii,t − Ri,t, Zi,t) (11)

where Zi,t denotes the forebay water level of the ith hydropower reservoir in the tth
stage. Zmax

i,t and Zmin
i,t are the upper and lower limits of forebay water levels of the ith

hydropower reservoir in the tth stage, respectively. ΔZup
i and ΔZdown

i are the upper and
lower limits of the forebay water level variation of the ith hydropower reservoir in the tth
stage, respectively. f ZV(·) denotes the characteristic curve of the reservoir forebay water
level and storage.

(7) Water level head constraints

Hi,t =
Zi,t + Zi,t+1

2
− Zdown

i,t (12)

Zdown
i,t = f ZR(Ri,t) (13)

where Hi,t and Zdown
i,t denote the water level head and downstream water level of the ith

hydropower reservoir in the tth stage. f ZR(·) denotes the function of downstream water
level and outflow.

(8) Output constraints

Nmin
i,t ≤ Ni,t ≤ Nmax

i,t (14)
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where Nmin
i,t and Nmax

i,t denote the upper and lower limits of the output of the ith hy-
dropower reservoir in the tth stage, respectively.

(9) Initial and final water level control constraints

Zi,0 = Zi,start (15)

Zi,T = Zi,end (16)

where Zi,start and Zi,end denote the water levels at the beginning and end of the opera-
tion period required by the corresponding regulation of the ith hydropower reservoir,
respectively.

3. Integrated Multistrategy Particle Swarm Optimization Algorithm (IMPSO)

3.1. Introduction of the Particle Swarm Optimization Algorithm (PSO)

The PSO algorithm [32] is a metaheuristic algorithm based on population evolution
that simulates the natural foraging behavior of birds to try to achieve global optimiza-
tion [33] in the search zone. Therefore, by analogy with the foraging behavior of a flock of
birds, in the PSO algorithm, the particles usually represent the birds, and the solution in
space, i.e., the location of the particles, is the location where each bird is located; moreover,
the globally optimal solution is the location with the most amount of food. The PSO algo-
rithm consists of three phases: random population initialization, particle velocity update,
and particle position update. Figure 1 shows the basic structure of the PSO algorithm.

–

–

Figure 1. Flowchart of the PSO algorithm.

(1) Random population initialization

First, the initial population is generated at random by specifying the number of
particles, the range of velocities, and positions and restricting the search space to the upper
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and lower bounds of velocity and position constraints. The initial particle velocity and
position of the PSO algorithm are as follows:

v0
i = vi,min + rand(vi,max − vi,min) (17)

x0
i = xi,min + rand(xi,max − xi,min) (18)

The initial population of the PSO algorithm can be represented as follows:

X0 =
[

x0
1, x0

2, . . . , x0
N

]
(19)

where v0
i and x0

i denote the initial velocity and position of the particle, respectively. vi,min
and vi,max denote the lower and upper limits of the velocity of the particle, respectively.
xi,min and xi,max are the bottom and upper boundaries of the position, respectively. rand is
the random number of the interval of [0, 1], and N represents the number of particles in
the population.

(2) Particle velocity update

After the population is initialized, the global and personal optimal positions are
recorded, and the velocities are updated. The particle velocity update process of the PSO
algorithm can be formally stated as follows:

vk+1
i = ωvk

i + c1r1(xp
i − xk

i ) + c2r2(xg − xk
i ) (20)

where vk
i denotes the velocity of the kth iteration of the ith particle. ω stands for the inertia

weight for the population iteration, and its general values fall between 0.4 and 0.9. c1 and
c2 represent the self-learning factor and social learning factor of particles, respectively;
they commonly take a value of 2. r1 and r2 are two randomly selected numbers within the
range of 0 and 1. xk

i denotes the position in the kth iteration of the ith particle. xp
i and xg

represent the personal optimal position of the ith particle and the global optimal position,
respectively.

(3) Particle location update

The particle position is updated according to the updated particle velocity. The formula
for updating the PSO particle position is as follows:

xk+1
i = vk+1

i + xk
i (21)

where xk+1
i represents the position in k + 1th iteration of the ith particle.

3.2. Integrated Multistrategy Particle Swarm Optimization Algorithm (IMPSO)

The PSO algorithm moves fast in the early phase but moves slowly in the late phase,
which facilitates convergence to the local optimal solution in the early phase and cannot
precisely converge to the global optimal solution. To solve this problem, an integrated
multistrategy particle swarm optimization algorithm is developed that integrates the beta
distribution, nonlinear adaptive parameter fitting strategy, Lévy flight mechanism, and
adaptive spiral search strategy in the optimization process of PSO.

3.2.1. Population Initialization Based on the Beta Distribution

The initial population of PSO is randomly generated as Equation (18) in the search
space, and the initial population generated by this method does not have small differences,
so it cannot effectively cover the entire search space, the diversity of the population opti-
mization is reduced, and the algorithm easily falls into the local optimal solution. The beta
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distribution is a set of continuous probability distributions defined on intervals, and the
distribution [34] function is described as follows:

P(x; α, β) =
Γ(α + β)

Γ(α) + Γ(β)
xα−1(1 − x)β−1 (22)

where Γ(·) is the standard gamma function. The two important parameters—α, β(α > 0,
β > 0)—of the beta distribution are parameters that control the shape of the distribu-
tion. In general, the beta distribution function’s representation can also be described as
X ∼ Be(α, β).

Figure 2 shows the structure of various beta distributions. The shape of the beta distri-
bution produced by different parameters may be observed in the image; when α = β = 1,
its shape is comparable to a uniform distribution; if α > β, its distribution is left skewed;
and if α < β, its distribution is right skewed. Many studies [34–36] have shown that the
beta distribution is more competitive than the random sequence and uniform distribution.
Therefore, we used the beta distribution to initialize the population. The initial particle
distribution of the population is more even. The initial population sequence of the beta
distribution is presented as follows:

x0
i = xi,min + Be(α, β)(xi,max − xi,min) (23)

 

Figure 2. The structure of the different beta distributions.

3.2.2. Nonlinear Adaptive Parameter Fitting Strategy

To optimize the performance of PSO, the parameters of inertia weight ω, self-learning
factor c1, and social learning factor c2 are adjusted adaptively. Inertia weight ω keeps
particles moving with inertia and tends to expand the search space. When the ω value
is large, the algorithm’s global optimization ability is greater, but its local optimization
ability is weak, which means that the convergence speed is high but the search accuracy
is low. Although a more accurate global optimal solution can be found while the ω value
is low, the convergence ability of the algorithm is weak. The self-learning factor and the
social learning factor guide the particles in the iteration through the optimal position of
the particles themselves and the optimal position of the population. In this study, we
nonlinearly and dynamically adjust the inertia weight, self-learning factor, and social
learning factor according to the number of iterations. This measure can prevent particles
from falling into the local optimal solution, realize the fast convergence of particles to the
global optimal solution, and effectively improve the convergence ability and optimization
ability of the algorithm. The adjustment process is expressed using the following formulas:

ωk = ωmax + k(ωmax − ωmin)
(k − 2K)

K2 (24)
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ck
1 = cmax

1 + k(cmax
1 − cmin

1 )
(k − 2K)

K2 (25)

ck
2 = cmin

2 − k(cmax
2 − cmin

2 )
(k − 2K)

K2 (26)

where ωk, ck
1, and ck

2 denote the inertia weight, self-learning factor, and social learning
factor of the kth iteration, respectively. ωmax and ωmin are the upper and lower limits of
inertia weight, respectively. cmax

1 and cmin
1 are the maximum and minimum values of the

self-learning factor, respectively. cmax
2 and cmin

2 are the maximum and minimum values of
the social learning factor, respectively. K stands for the maximum value of the iteration.

Figure 3 depicts the nonlinear variation patterns of the three PSO algorithm parameters
after improvement. The figure shows that the change patterns for all three parameters
are steep at first and thereafter flat, with ω and c1 nonlinearly falling and c2 nonlinearly
increasing. This dynamic tendency may cause the algorithm to have good exploitation
ability early in the optimization search and good global exploration ability later in the
search to reach a balance of individual exploitation and global exploration.

 
Figure 3. The nonlinear trend of parameters.

The particle’s velocity and position are updated using the updated parameters. The
position formula is shown in Equation (21), and the velocity formula is updated as follows:

vk+1
i = ωkvk

i + ck
1r1(xp

i − xk
i ) + ck

2r2(xg − xk
i ) (27)

3.2.3. Lévy Flight Mechanism

As demonstrated in Figure 4a, Lévy flight [37] is a random wandering mechanism
with a heavy-tailed distribution of step sizes. It has two characteristics: (1) small step
length tracking, which can assist the algorithm in performing local neighborhood search,
and (2) long distance spanning, which can jump at local locations with high probability
and impose perturbation on the algorithm, allowing it to escape the local optimal solution.
Therefore, we introduce the Lévy flight strategy to accelerate the particles to the global
optimal position, shorten the iteration time, improve the algorithm’s convergence speed,
and prevent the algorithm from stagnating in the local optimal solution. The improved
position update formula is as follows:

xk+1
i,new = xk

i +(xg − xk
i )⊕ Levy(β) (28)
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where xk+1
i,new denotes the position of the ith particle in the kth iterative Lévy flight. ⊕

denotes point-to-point multiplication. Levy(β) is a random search path for particles that
follow the Lévy distribution with parameter β. The formulas of the Lévy distribution [37]
are satisfied as follows:

Levy(β) ∼ μ

|ν| 1
β

(29)

μ ∼ N
(

0, σ2
μ

)
(30)

ν ∼ N
(

0, σ2
ν

)
(31)

σμ =

⎧⎨⎩Γ(1 + β) + sin(π × β
2 )

Γ(1 + β
2 )× β × 2

β−1
2

⎫⎬⎭ (32)

σν = 1 (33)

where μ and ν represent the standard normal distribution. β is usually valued at a constant
of 1.5.

−
− − − − − − −

−

−

−

−

 

Figure 4. The Lévy flight mechanism and adaptive variable spiral policy of the IMPSO algorithm
illustrated. Lévy flight trajectory is shown, where the different colored lines represent the direction
and distance of each flight movement.

Because the Lévy flight mechanism is widely employed in particle swarm optimization,
the algorithm’s temporal complexity increases, causing the particle search strategy to be
shifted by the size of the random number r of the interval of (0, 1]. For r > 0.5, we update
the position using the Lévy flight mechanism; otherwise, the following search strategy
is added.

3.2.4. Adaptive Variable Spiral Policy

To develop more diverse search paths for particle position updates, variable spiral
search [38] is recommended, as shown in Figure 4b. It can be seen that this policy can
explore and develop globally in the form of a large spiral shape in the early stage and focus
on the optimal solution neighborhoods in the form of a small spiral in the later stage by
adjusting the adaptive spiral coefficient. It also improves the ability of particles to explore
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unknown search domains. The variable spiral search position update formula designed in
this study is as follows: {

xk+1
i,new = xk

i +ezl
(

xg − xk
i ) cos(2πl)

z = es cos(π(1− k
K ))

(34)

where z is a variable that changes the shape of the spiral from large to small as the number
of iterations increases. l is a uniformly distributed random number between [−1,1]. s is
the coefficient of variation, which takes a constant number of 5. In the adaptive variable
spiral policy, the scope of the spiral decreases with an increase in the number of iterations.
The particle swarm can search for food using a large-scale spiral pattern early in the
search, which effectively increases its diversity; later in the search, the bounding circle is
gradually reduced to approximate the optimal solution, which can improve the program’s
optimization performance.

3.3. Framework of IMPSO

The technological process of the integrated multistrategy particle swarm algorithm
designed in Section 3.2 is shown in Figure 5, which represents the overall framework of the
algorithm. The execution steps of IMPSO for the optimization problems are listed below:

– 

Figure 5. Flowchart of the IMPSO algorithm.
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Step 1: The initial parameters of the population are set, and the population’s velocities
are initialized.

Step 2: The beta distribution in Section 3.2.1 is used to generate the initial positions of
the population, as shown in Equation (23).

Step 3: The fitness value of each individual in the initial population is calculated and
recorded, and the global optimal value for storage is found.

Step 4: The first update is performed. The inertial weights, self-learning factors, and
social learning factors are updated according to Equations (24)–(26) in Section 3.2.2, and
individual velocities and positions are updated according to Equations (21) and (27).

Step 5: The second update is performed. A random number, r, is selected with interval
[0, 1]; if r > 0.5, the original particle position should be updated using Equation (28) in
Section 3.2.3. If r ≤ 0.5, the original particle position should be updated using Equation
(34) in Section 3.2.4.

Step 6: Each individual fit value derived from the two updates is calculated separately,
and the better values are chosen for storage. Then, the individual optimal values and global
optimal values are recorded for each iteration.

Step 7: Whether the iteration termination condition is met is determined. If the
condition is met, the procedure ends and the optimization result is exported. Otherwise,
return to Step 4 to proceed with the update.

4. Constraint Handling Methods

4.1. Review of Constraint Handling Methods

The optimal operation of cascade reservoirs involves complex nonlinear constraints
due to the complex system and numerous coupling connections among reservoirs. The
general solution to these constraints is to enforce control over the search space, explicitly
discard the solution that violates the constraint, and select only the workable solution. In
the case of the metaheuristic algorithm, the abandonment of the infeasible solution limits
the exploration and exploitation of the search domain, resulting in a loss of population
diversity. Additionally, it is simple to settle for the local optimal value, and the global
optimal solution cannot be found. As a result, solutions that exceed constraints must be
properly processed to increase the precision of the solution.

Different methods of constraint processing have different effects. There are numerous
techniques [39,40] that have been developed to solve constraint optimization problems,
including the penalty function, feasibility rule, stochastic ranking, repair factors, and ε-
constraint methods. In order to approach the optimal solution, the penalty function method
converts the constrained optimization problem into an unconstrained one, and the variable
violating the constraint is penalized by introducing a penalty factor. The feasibility rule is
used in the evolution process to select the better solution between feasible and nonfeasible
options. Due to its fundamental and flexible properties, it is suitable for use with any
optimization algorithm. The stochastic ranking method sorts all solutions in the population
in a manner similar to bubble sort in order to balance the target value and the penalty value
for the constraint violation. The ε-constraint method changes the search bias dynamically,
allowing the system to explore unfeasible domains. To solve the complex constrained
optimization problem of cascade reservoirs, the static penalty function is combined with a
new implicit constraint processing method [41] to update the constraint variable’s boundary
and reduce the probability of the unfeasible solution.

4.2. Explicit–Implicit Coupled Constraint Handling Technique

In general, the constrained optimization problem can be mathematically described as
a minimization or maximization problem as follows:

Min f (X) or Max f (X), X = (x1, x2, . . . , xn) (35)
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⎧⎨⎩
gl(X) ≤ 0, l = 1, 2, . . . , L
hk(X) = 0, k = 1, 2, . . . , K
lbi ≤ xi ≤ ubi

(36)

where X is the set of decision variables. gl(X) and hk(X) are the inequality constraints
and equations, respectively. ubi and lbi are the upper and lower bounds of the decision
variables xi, respectively.

The implicit constraint handling method presented in this study further limits the
search space by turning each inequality constraint into an upper and lower bound with
respect to decision variables and restricts the search space via the intersection as follows:{

lbu
i = min(max[li,1(x =i), . . . , li,ki

(x =i), lbi], ubi)
ubu

i = max(min[ui,1(x =i), . . . , ui,ki
(x =i), ubi], lbi)

(37)

where ui,ki
and li,ki

are the upper and lower bounds of the decision variables xi under the
inequality constraint ki, respectively, and ki ≤ L. ubu

i and lbu
i are the upper and lower

bounds of the update process of the decision variables xi, respectively. ubi and lbi are the
original upper and lower bounds of the decision variables xi, respectively.

The boundary update formula is modified as follows in practical applications to
prevent the upper bounds of the decision variable update process from being smaller than
the lower bounds.{

lbu
i = min(max[li,1(x =i), . . . , li,ki

(x =i), lbi], ubi)
ubu

i = max(min[ui,1(x =i), . . . , ui,ki
(x =i), ubi], lbu

i )
(38)

Following the boundary update on decision variables, they are assigned to the search
domain to ensure continuity across iterations, as shown below:

xi = lbu
i + pi(ubu

i − lbu
i ) (39)

where pi denotes a random number between [0, 1].
In this study, a static penalty function is presented that can be combined with the

above implicit constraint processing approach to penalize the solution that exceeds the
bounds of the decision variables during operations in order to achieve a more suitable
result. The static penalty function can be expressed as follows:

F(X) = f (X) + θ ×
N

∑
i=1

violationi (40)

where F(X) and f (X) are the objective values after increasing the penalty function and the

original function. θ is the static penalty factor, according to the specific choice;
N
∑

i=1
violationi

denotes the total constraint violation.

5. Case Study

5.1. Study Area

The lower reaches of the Jinsha River–Three Gorges cascade hydropower system is
selected as the study area in this section. With its abundant water resources and favorable
development environment, the lower reaches of the Jinsha River have become one of the
country’s largest hydropower bases and the hub of China’s “West-to-East power trans-
mission”, providing an important contribution to local economic and social sustainability.
The lower reaches of the Jinsha River–Three Gorges cascade reservoir group perform a
series of social functions, including power generation, flood control, navigation, water
supply, ecology, etc., providing substantial social and economic benefits for the Yangtze
River basin. However, in order to maximize the economic benefits of these cascade reser-
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voirs, establishing a joint dispatch management model of the lower reaches of the Jinsha
River–Three Gorges cascade reservoirs is necessary. As a result, in order to maximize the
benefits of power generation in the lower reaches of the Jinsha River–Three Gorges cascade
reservoirs, this section examines the joint optimal operation of the cascade hydropower
system, which provides technical support and theoretical foundations for the cascade
economic operation of the system. In this paper, the Xiluodu, Xiangjiaba, Three Gorges,
and Gezhouba reservoirs are mainly tested as the objects of investigation. These reservoirs
are located in the lower reaches of the Jinsha River and have a total installed capacity of
44,410 MW. They are the largest reservoirs in the Yangtze River basin, and hold the top
position in the hydroelectric power industry in terms of annual electricity generation and
installed capacity. The topological structure of the four reservoirs in the study area is shown
in Figure 6, and the main characteristic parameters are shown in Table 1.

Figure 6. Topology map of the reservoir group in the lower reaches of the Jinsha River–Three Gorges
basin.

Table 1. Main characteristic parameters of the lower reaches of Jinsha River–Three Gorges cascade
reservoirs.

Reservoir Feature Xiluodu Xiangjiaba Three Gorges Gezhouba

Regulation performance Annually Seasonally Annually Daily
Generation coefficient 8.5 8.35 8.8 8.5

Normal water level (m) 600 380 175 66
Dead water level (m) 540 370 145 63

Guaranteed capacity (MW) 3795 2009 4990 1040
Installed capacity (MW) 12,600 6400 22,500 2910

Minimum outflow (m3/s) 1700 1700 6000 5500

5.2. Detailed Technical Procedures
5.2.1. Solution Structure and Population Initialization

It was mentioned in Section 3 that particles in the PSO algorithm usually refer to
birds; however, the meaning of the referent can vary in specific problems. For the cascaded
hydropower system of a river basin, taking the water level as the particle, i.e., the decision
variable X of the optimization problem, the variable matrix is defined as follows:

X =

⎡⎢⎢⎢⎣
Z1,1, Z1,2, · · · , Z1,T
Z2,1, Z2,2, · · · , Z2,T
...

...
. . .

...
ZN,1, ZN,2, · · · , ZN,T

⎤⎥⎥⎥⎦
N×T

(41)

where Zi,t(i = 1, 2, . . . , N; t = 1, 2, . . . , T) denotes the water level of the ith particle in the
tth dim and the variables are continuous.

For the initial population of the optimization problem, Equation (23) of Section 3.2.1 is
used to initialize the water level. The formula is expressed as follows:

Zi,0 = Zmin
i,0 + Be(α, β)(Zmax

i,0 − Zmin
i,0 ) (42)

where the parameters α and β of the beta distribution function are both 2.5 [34], which is
obtained from some probability distribution initialization experiments.
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5.2.2. Explicit–Implicit Coupled Constraint Handling Method Based on Constraint
Normalization

In this article, the output-related constraints and flow boundary constraints are trans-
formed into water level limit constraints using the relationship of the water level–capacity
curve, ensuring the upper and lower limits of the output, installed capacity, and water
level fluctuation. The feedback constraint processing method is referred to as the applied
mathematical model in Section 2.1:⎧⎨⎩ lbu

i,t = min(max[Z f Z∼R

i,t,min, Z f Z∼N

i,t,min, Z f ΔZ∼Z

i,t,min , Z f Z∼Q

i,t,min, Z f Z∼V

i,t,min, lbi,t], ubi,t)

ubu
i,t = max(min[Z f Z∼R

i,t,max, Z f Z∼N

i,t,max, Z f ΔZ∼Z

i,t,max, Z f Z∼Q

i,t,max, Z f Z∼V

i,t,max, ubi,t], lbu
i,t)

(43)

E= max
I

∑
i=1

T

∑
t=1

AiQi,t Hi,tΔt + θ ×
N

∑
i=1

violationi (44)

violationi =

⎧⎨⎩
0, othervise
Zi,t − lbu

i,t , i f Zi,t < lbu
i,t

ubu
i,t − Zi,t, i f Zi,t > ubu

i,t

(45)

where Z f Z∼R

i,t,min, Z f Z∼N

i,t,min, Z f ΔZ∼Z

i,t,min , Z f Z∼Q

i,t,min, Z f Z∼V

i,t,min denote the lower boundary of the water
level after the conversion of the level–outflow function, level–output function, level–range
of the water level function, level–generation flow function, and level–capacity function of

hydropower station i in the tth stage, respectively. Z f Z∼R

i,t,max, Z f Z∼N

i,t,max, Z f ΔZ∼Z

i,t,max, Z f Z∼Q

i,t,max, Z f Z∼V

i,t,max
denote the upper boundary of the water level after the conversion of the level–outflow func-
tion, level–output function, level–range of the water level function, level–generation flow
function, and level–capacity function of hydropower station i in the tth stage, respectively.
The penalty coefficient θ in this study is taken as a constant of 0.01, and it is determined by
repeated trial calculation.

Figure 7 depicts a graphical depiction of the decision variable for this research issue,
namely, water level. As can be observed, the feasible range of water level is [lbi,t, ubi,t], a
vast range of the search for the best is not favorable to the solution in the actual engineering
problem, and the probability of an infeasible solution is higher. Following the improve-
ment of the constraints, the feasible range of water level is gradually lowered under the
management of different constraints, and eventually, the intersection of the constraints is
taken to achieve the final viable range of water level, reducing the likelihood of infeasible
solutions.

Figure 7. Graphical representation of decision variables (water level). Each color line is an upper
and lower limit of a constraint corresponding to the water level, respectively. The solid gray line
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represents the water level range under the water level variation constraint; the red dashed line
represents the water level range under the outflow constraint; the green dashed line represents the
water level range under the outflow constraint; and the blue shaded area is the final water level
feasible range. In addition, the yellow shaded area is the feasible solution that exists outside the
feasible range, and the arrows represent the search agent jumping out of the feasible range to find the
feasible solution.

5.3. Overall Implementation Framework

The ideal operating method and process for maximizing the power generation benefit
of the river basin cascade hydropower system is summarized as follows:

Step 1: The basic parameters of the optimization problem are defined, and the initial-
ization method in Section 5.2.1 is used to generate initial groups in the problem space, i.e.,
the process of generating the initial water level of the cascade reservoir group.

Step 2: The fitness of all solutions in the current group is evaluated using the explicit–
implicit coupled constraint handling method in Section 5.2.2.

Step 3: The individual best position and the global best position for each solution are
updated. Then, the location of all solutions using the IMPSO approach in Section 3.2 is
updated.

Step 4: If the terminal condition of the algorithm is not satisfied, return to Step 2 for
the next cycle; otherwise, the iteration is stopped. Then, the optimal solution is taken as the
final solution for the optimal scheduling of cascade reservoirs.

The procedure for solving the problem of the optimal operation strategy using the
IMPSO algorithm is shown in Figure 8.

5.4. Results and Analysis

In order to verify the technical feasibility and efficiency of the proposed method in
cascade reservoir power generation dispatching, three different typical runoff scenarios
(wet, normal, and dry) were studied. In this paper, six methods were selected for the
calculation to compare and analyze the application effect of the proposed method in
cascade reservoir power generation dispatching, namely, IMPSO and the explicit–implicit
coupled constraint handling technique (IMPSO+CHT), such as IMPSO, PSO, SAPSO [42],
LFPSO [43], and DE [44].

5.4.1. Statistical analysis

For all parameter settings of the algorithms, the maximum number of iterations for
each algorithm is K = 500, and the population size is N = 50. In addition, we set the
mutation probability of DE to be 0.5 and the crossover probability to be 0.8; the inertia
weight ω of the PSO algorithm decreases linearly from 0.9 to 0.4, and the self-learning
factor c1 and social learning factor c2 are both 2; the SAPSO and LFPSO parameters were
established by referring to Harrison H R et al. [43] and Haklı H et al. [44]; the inertia weight
ω in IMPSO declined nonlinearly from 0.9 to 0.4, and the self-learning factor c1 decreased
nonlinearly from 2 to 0.2, while the social learning factor c2 increased nonlinearly from
0.5 to 2.5. Considering the variation in the results of the intelligent optimization algorithm,
each algorithm runs 10 times independently using different input data, and the average,
median, best value, worst value, and standard deviation are counted. The detailed results
are shown in Table 2.

337



Water 2023, 15, 2593

nonlinear adaptive parameter 
fitting strategy to 

–

 

Figure 8. Flowchart of the procedure for solving the problem of the optimal operation strategy using
the IMPSO algorithm.

Table 2. Statistical results of 10 independent operations for each year.

Runoff
Scenarios

Objective Value (108 kW·h)

Methods Average Median Best Worst
Standard
Deviation

Wet year

IMPSO+CHT 2244.86 2244.41 2267.39 2224.81 15.95
IMPSO 2229.94 2240.86 2254.41 2173.14 25.12
SAPSO 1927.66 1941.31 2003.24 1839.86 54.99
LFPSO 1944.84 1933.59 2042.93 1867.86 56.08

PSO 1942.49 1963.76 2028.84 1845.59 55.88
DE 1942.35 1944.82 2001.02 1894.85 34.07
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Table 2. Cont.

Runoff
Scenarios

Objective Value (108 kW·h)

Methods Average Median Best Worst
Standard
Deviation

Normal
year

IMPSO+CHT 2091.76 2091.57 2105.61 2075.34 8.59
IMPSO 2086.25 2089.53 2101.46 2045.12 16.08
SAPSO 1847.68 1820.32 1987.33 1697.08 103.22
LFPSO 1899.35 1899.90 2015.22 1745.75 90.79

PSO 1830.97 1801.22 2023.52 1699.34 102.77
DE 1842.75 1846.89 1916.32 1781.71 41.10

Dry year

IMPSO+CHT 1859.84 1860.77 1864.86 1853.50 3.14
IMPSO 1856.33 1859.99 1864.10 1840.60 7.91
SAPSO 1706.79 1690.30 1860.61 1556.13 83.64
LFPSO 1766.92 1766.00 1875.46 1652.74 64.51

PSO 1717.39 1712.80 1859.58 1572.45 100.16
DE 1707.64 1722.54 1771.95 1626.00 49.92

It can be observed from Table 2 that under three runoff scenarios, the statistical data
of the proposed IMPSO algorithm combined with the constraint processing method are
mostly better than other algorithms. Taking the average power generation of 10 indepen-
dent runs as an example, compared with IMPSO, SAPSO, LFPSO, PSO, and DE algorithms,
the proposed scheme increased by 1.49, 31.72, 30.00, 30.24, and 30.25 billion, respectively,
in the year of abundant water. Compared with IMPSO, SAPSO, LFPSO, PSO, and DE
algorithms, the proposed program has increased by 0.55, 24.41, 19.24, 26.07, and 24.90 bil-
lion, respectively. Compared with IMPSO, SAPSO, LFPSO, PSO, and DE algorithms, the
proposed scheme adds 0.35, 15.31, 9.29, 14.25, and 15.22 billion, respectively, in the dry year.
The data shown above demonstrate that the proposed technique has excellent iterative
performance and optimization capacity, and that it can significantly increase the economic
benefits of cascade reservoirs aimed at generating electricity.

Figure 9 shows the distribution of the annual power generation results for each of the
six methods under three typical runoff scenarios. First, it can be observed in the graph
that the outcomes of the IMPSO+CHT and IMPSO algorithms are very stable compared
with the other four algorithms in three runoff scenarios. The IMPSO+CHT and IMPSO
algorithms are shown to be superior to the other four methods. Second, compared with
IMPSO alone, the volatility of IMPSO+CHT was lower in the three runoff scenarios and
the upper and lower quartile shadow area was smaller, and no outliers appeared. This
indicates that IMPSO, when used in conjunction with the proposed constraint processing
mechanism, is more centralized and robust in the three runoff situations. The SAPSO,
LFPSO, PSO, and DE schemes all have average performance in the three runoff scenarios,
with the LFPSO scheme having more outliers in the dry year scenario, and the maximum
values of SAPSO and PSO are close to the two IMPSO-related schemes, but the minimum
value is also lower than the other schemes, indicating that the SAPSO and PSO algorithms
are less stable. The box plots along with the statistical information in Table 2 show that the
IMPSO+CHT scheme is more robust and optimal compared with the IMPSO scheme.
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Figure 9. Box diagram of power generation operation in each typical runoff scenario.

Table 3 displays the Friedman test results for several scheduling methods under
various runoff scenarios. The Friedman test ranking findings compare the overall per-
formance of the six methods in the reservoir power generation scheduling problem. In
dry and normal year scenarios, the IMPSO+CHT scheme and the IMPSO scheme rank
significantly better than the rest of the schemes, and the IMPSO+CHT scheme is better than
the IMPSO scheme. In the wet year, the IMPSO+CHT scheme and the IMPSO scheme have
the same ranking results. Furthermore, by integrating the final ranking results, we can
see that LFPSO outperforms SAPSO, LFPSO, PSO, and DE schemes, whereas PSO and DE
optimization results are low overall.

Table 3. Mean ranking results in different runoff scenarios using the Friedman test.

Runoff
Scenarios

Methods

IMPSO+CHT IMPSO SAPSO LFPSO PSO DE

Wet year 1.5 1.5 4.4 4.5 4.4 4.8
Normal

year 1.4 1.6 4.4 3.8 5.3 4.5

Dry year 1.7 1.8 4.6 3.7 4.5 4.7
Mean rank 1.53(1) 1.63(2) 4.67(4) 4(3) 4.73(5) 4.67(4)

Figure 10 depicts the convergence process of the six schemes when the power genera-
tion scheduling model is solved using inflow data from various runoff scenarios as model
inputs. It is clear that the IMPSO+CHT scheme and the IMPSO scheme not only have high
initial values but also have the highest growth rate at the start of the iterations, allowing
the objective function values to converge to near-optimal values within 200 iterations.
SAPSO, LFPSO, and DE schemes, on the other hand, have slower growth rates and poorer
optimization results, while the PSO algorithm has the slowest growth rate and readily falls
into a local optimum solution. The numbers (1), (2), etc. are a general ranking according to
the mean rank.

 
Figure 10. Convergence process of power generation operation in each typical runoff scenario.

In addition, population diversity analysis is an important component of the algorithm’s
optimization search process. In general, a higher population diversity number reflects a
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more dispersed population, indicating that the algorithm is capable of global exploration
and less likely to fall into the trap of the local optimal solutions [45]. Equation (46) can be
used to express population diversity:

Diversity(t) =

√√√√ N

∑
i=1

D

∑
d=1

(xid(t)− xd(t))
2 (46)

where Diversity(t) is the value of population diversity at the tth iteration, the parameter N
is the number of population size, D is the dimension of the problem, xid(t) is the position
of the ith agent in the dth dimension at the tth iteration, and xd(t) implies the average
position of the population in the dth dimension at the tth iteration.

Figure 11 depicts the population diversity study results for all scenarios under various
typical runoff conditions. The figure shows that the overall results of the IMPSO+CHT
scheme and the IMPSO scheme are better than the other algorithms in the three scenarios,
with the IMPSO scheme outperforming the IMPSO+CHT scheme due to the use of the
constraint treatment method, which weakens the algorithm performance to some extent.
The outcomes displayed in different circumstances for the other four systems are not exactly
the same. In the dry year, the DE scheme is the worst, the LFPSO scheme is better; in the
wet year, the DE, PSO, and LFPSO schemes have similar results, and the SAPSO scheme
is the best; in the wet year, the LFPSO and PSO schemes are better, then the SAPSO, and
finally the DE scheme. Overall, the IMPSO scheme produced the best population diversity
analysis results, followed by the IMPSO+CHT scheme, and the DE scheme produced the
worst.

 

Figure 11. Population diversity analysis of six schemes in each typical runoff scenario.

Based on the statistical results discussed above, it is shown that the four improvement
strategies comprising beta distribution initialization, nonlinear parameter change, Lévy
flight, and adaptive spiral update are feasible, and that the algorithm can effectively
improve the ability of local disturbance optimization, avoid individual extreme values
falling into local optimization too early, and extend the global search range scope of the
algorithm. This shows that the IMPSO algorithm has broad engineering applicability
in cascade reservoir optimal scheduling, which can increase the efficiency of cascade
reservoir power generation and attain optimal hydropower resource assignment. At the
same time, the constraint handling technique combining a variable boundary update
and a penalty function is introduced, which can effectively reduce the out-of-bounds
behavior of particles in the optimization process and improve the algorithm’s solution
accuracy, thereby achieving the unity of robustness and exploring performance in the
optimization mechanism.

5.4.2. Analysis of Optimization Scheduling Results

In this section, the disparities in water abandonment of cascade reservoirs under
three typical runoff situations, the optimization results of the IMPSO+CHT scenario, and
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the generation rules are carefully studied based on the optimization outcomes of the
six schemes.

Table 4 compares the average volume of abandoned water generated by all methods
for each typical runoff scenario in the results of 10 independent operations. It can be seen
that under various runoff scenarios, the IMPSO+CHT scheme and the IMPSO scheme both
generate significantly less abandoned water than the other schemes, with the IMPSO+CHT
plan producing the least amount of waste water. Furthermore, the LFPSO scheme performs
rather well, whereas the PSO and DE schemes dispose of the most water and have the
lowest usage rate for water resources. Figures 12–14 show the hydrological processes of the
four reservoirs of the lower reaches of the Jinsha River–Three Gorges cascade hydropower
system in typical runoff scenarios. It can be observed that in the flood scenario, due to
the abundant flow of water, the peak value of the reservoir is large; except for the Three
Gorges reservoir, the other three reservoirs have abandoned water. Due to the limited
installed capacity and storage capacity, there are more water discharges in Xiangjiaba and
Gezhouba, especially Gezhouba, which is a daily regulated reservoir. Under the scenario of
the normal year, there is no abandoned water in Xiluodu and Three Gorges reservoirs, the
water stock of Xiangjiaba consists of a small amount of abandoned water, and Gezhouba
has more abandoned water, especially when the water rises sharply during the flood season,
and the unit overflow of the has reached the limit, which is consistent with the trend of
the inflow process. In the dry year, only Gezhouba has abandoned water in the cascade
reservoirs, because the selected year has a large amount of water in the flood season, which
is similar to the normal year, and the Gezhouba units, which have a low flow capacity,
cannot bear a large amount of water during the flood season. Given their high regulating
capacity, the Xiluodu, Xiangjiaba, and Three Gorges reservoirs can release the equivalent
amount of water through reasonable operation throughout the nonflood season, lowering
the quantity of water released during the regulation period. According to the findings of
the preceding research, cascade reservoirs may effectively minimize water abandonment,
improve hydropower utilization, and promote energy upgrading and transformation after
IMPSO+CHT optimization.

Table 4. Average abandoned water flow from 10 operations carried out each year (m3/s).

Methods
Runoff Scenarios

Wet Year Normal Year Dry Year

IMPSO+CHT 102,496.94 58,496.09 46,525.09
IMPSO 10,9926.80 58,995.86 53,199.21
SAPSO 150,642.80 98,511.19 69,218.02
LFPSO 111,575.85 94,364.46 69,667.44

PSO 155,965.26 139,110.53 69,218.02
DE 159,466.37 134,618.88 71,089.28
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Figure 12. The hydrological process of reservoirs in the wet year.

 

Figure 13. The hydrological process of reservoirs in the normal year.
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Figure 14. The hydrological process of reservoirs in the dry year.

Figures 15–17 depict the water level–output process of four reservoirs in the lower
reaches of the Jinsha River–Three Gorges cascade hydropower system in each typical runoff
scenario. It can be observed that in the case of a rainy year, the overall production degree
of cascade reservoirs is rather high due to there being sufficient water resources. In the
scenario of a dry year, the peak output of each hydropower station is from mid- and late
June to the end of September, and the remainder of the period essentially ensures operation
with the guaranteed output, with significant differences in performance between the two
flood and drought years. In conjunction with the three runoff scenarios, it can be observed
that the hydropower station produces less electricity in the early phase of dispatching, and
the water level drops to its lowest point in mid- to late June. The production in the later
period also increases, and the water level necessarily increases to almost normal water
storage level from the end of October to the beginning of November. Figure 18 shows the
power generation process of the lower reaches of the Jinsha River–Three Gorges cascade
hydropower system under different runoff scenarios. It can be observed that the power
generation process of four hydropower stations is consistent with the output process, with
increased power generation during the flood period and decreased power generation
during the nonflood period, and the power generation capacity of the reservoir in the
nonflood period is also higher than that of other runoff scenarios under the influence of
inflow in the wet year. In addition, the power generation trend of Xiluodu and Xiangjiaba
is relatively close, and the power generation trend of Three Gorges and Gezhouba is
relatively similar, which is caused by the different inflow situations in different regions. The
modification process of the above study indicates that the output and power generation
level of different reservoirs are limited by their own capacities, and the output and power
generation level also change under different runoff conditions, but the overall trend and
water level change are consistent with the scheduled regulations of the hydropower system
in the river basin.
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Figure 15. Water level–output process of reservoirs in the wet year.

 

Figure 16. Water level–output process of reservoirs in the normal year.
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Figure 17. Water level–output process of reservoirs in the dry year.

 

Figure 18. Power generation process of reservoirs in different runoff scenarios.

6. Conclusions

In this study, an integrated multistrategy particle swarm algorithm (IMPSO) is de-
veloped, and a joint explicit–implicit coupled constraint handling technique is applied to
build a mathematical model of joint power generation scheduling to maximize the total
power generation of a cascade hydropower station, and the operating water level, output
capacity, outgoing flow, and generation flow are used as constraints. Using the example of
four reservoirs in the lower reaches of the Jinsha River—Three Gorges cascade hydropower
system, the model was solved by applying IMPSO+CHT, IMPSO, SAPSO, LFPSO, PSO,
and DE methods according to three runoff scenarios. By carrying out the statistical analysis
of the optimization results, the following conclusions are drawn.
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(1) Using beta distribution initialization to generate candidate solutions and adaptive
nonlinear variation of the speed update-related parameters improves the proposed
algorithm’s population diversity, resulting in faster convergence to the global optimal
solution than the comparison schemes. Meanwhile, introducing the Lévy flight
mechanism and variable helix search strategy, the optimization search is performed
in a diverse exploration manner, which effectively enhances the local exploration
capability and global exploitation capability of the algorithm.

(2) The combined statistic results in Tables 2 and 3 and Figures 9–11 show that using the
IMPSO algorithm in reservoir power generation scheduling engineering can achieve
more robust and accurate results, increased population diversity, and algorithmic ex-
ploration than the comparison algorithms. Meanwhile, the IMPSO method combined
with the explicit–implicit coupled constraint processing technique achieves superior
results but falls short in terms of population variety when compared with the IMPSO
scheme.

(3) The combined results in Table 4 and Figures 12–14 show that both IMPSO scenarios
outperform the comparison scenario under various runoff situations, allowing for a
more efficient use of and increased water energy utilization.

(4) The water level and treatment results from Figures 15–17 obtained using the IMPSO+CHT
method can not only meet the boundary conditions of cascade hydropower reservoirs,
but also make better use of the abundant water resources in the catchment area and
take full advantage of the regulatory and balancing functions of cascade reservoirs;
moreover, these results produce a more efficient and reasonable regulation process for
the operations.

In three typical runoff scenarios, IMPSO+CHT and IMPSO are superior to the other
algorithms and have absolute benefits. The IMPSO algorithm can lead to more robust
benefits in power generation when a new constraint processing approach is introduced,
demonstrating the advantages of the suggested method in terms of solution capacity and
engineering application. Despite the fact that the optimization approach proposed in this
study enhances the utilization share of hydropower resources, there are certain issues. It
should be noted that the proposed method has advantages in terms of optimization capa-
bility and performance, and it can meet the operational demands of hydropower systems.
However, its structure is relatively complex, and the consideration of ecological river flow
restriction is required in order to satisfy the coordinated operation of basin ecology and
power generation demand. Therefore, future research can concentrate on the following
aspects: (1) the performance of the algorithm—developing more efficient strategies can
reduce the structural complexity and improve the robustness [27] and experimental ac-
curacy of the algorithm while optimizing its goal and taking into account learning and
comparison with more advanced algorithms [45,46]; (2) model construction—carrying out
model construction according to actual demands and considering the multiple constraints
in order to achieve the further integration of theoretical research and practical production.
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Abstract: The Alaska Railbelt transmission system runs from Fairbanks to Anchorage to Homer and
supplies 75% of the state’s population with power. In the near future, this system will experience
significant increases in load due to electrification of the transportation and heating sectors. To account
for this, several state organizations are working towards the creation of an integrated resource plan
and reliability standards.This work encompasses the efforts of researching the operations, cost, and
locations of desirable hydropower and pumped storage hydropower (PSH) resources in the areas
surrounding the Railbelt transmission system. The aspects of conventional hydropower and PSH
as well as adjustable-speed and ternary PSH were analyzed. With Alaska’s diverse and rugged
landscape, QGIS was utilized to delineate the positions of energy resources within a reasonable
distance from the Railbelt. By incorporating Digital Terrain Models and the QGIS processing toolbox,
a least cost path analysis was completed to filter out resources within the designated distance of
the Railbelt. Applying existing cost models to the data in this work helped to decide the energy
resources that would be studied further. The future of this project includes modeling the selected
energy sources in the PSS/e Railbelt model to examine their effects on the reliability and stability.

Keywords: hydropower; pumped storage hydro; resource assessment; power system planning

1. Introduction

In the United States, the federal government has set a net zero carbon emissions
goal for 2050 [1]. Hydropower currently provides 38% of the renewable generation in the
United States, and pumped storage hydro (PSH) currently provides 93% of grid storage [2].
Hydropower and PSH are currently key components of the net zero carbon emission
goal for the United States. The state of Alaska does not currently have any state carbon
emission goals; however, individual electric utilities do have carbon reduction goals, and
hydropower plays in an important role in energy generation in the state.

Conventional hydropower first began its United States utility-scale journey in the
early 1880s [3]. In 2019, there was a hydropower installed capacity of 80.25 gigawatts in
the United States, which accounted for 6.7% of the installed generation capacity and 6.6%
of all electricity generated in the United States [4]. In Alaska, hydroelectricity has been a
cornerstone of powering communities and advancements since the early 1900s. Alaska’s
energy portfolio is composed of about 25% hydropower with a capacity of about 483 MW
across 50 power plants [5], and it accounts for 90% of the renewable energy generated in
Alaska [6].

There is no history of pumped storage hydro methods, such as conventional hy-
dropower, in Alaska; however, it has played a larger role in the contiguous United States
since 1930. PSH accounts for 93% of utility-scale storage across 43 PSH plants. This amounts
to a generation capacity of about 23 GW [7]. PSH was originally developed in the 1960s
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to assist with new nuclear generation with limited ramping capabilities being built at the
time [8]. The US has not brought any new plants online since 2000. Most plants were
brought online in the 1970s [9]. PSH is traditionally used to shift energy between day
and night electricity rates; however, in scenarios with high renewables, particularly those
with high wind generation, PSH could provide cost savings and reduce wind curtail-
ment [10–12].

This paper explores the feasibility of an increased renewable energy capacity in Alaska,
specifically in the regional transmission system called the Railbelt outlined in Section 2.
Hydropower and PSH were researched in particular because of the large resources available
in Alaska. Hydropower has also been a staple for power on the Railbelt and in more
remote areas. The hydropower and pumped storage hydro (PSH) resource availability and
resource costs were assessed for this region in this paper. Impoundment hydro facilities
and three types of PSH are included: conventional, adjustable-speed, and ternary. Multiple
characteristics of the resources were collected and calculated, including the operation
behavior, location, capacity, and cost.

The purpose of this work is to gather information on these resources that can be used to
help make informed decisions on these technologies’ usefulness in Alaska. The contribution
of this paper is (1) to provide a review of hydropower and PSH technologies, including
how they operate and resource locations in Alaska’s Railbelt, and (2) to provide updated
cost estimates for identified PSH sites in Alaska’s Railbelt and outline these technologies’
advantages and disadvantages for the purpose of power system planning and decision
making on Alaska’s Railbelt transmission system.

This paper is organized into the following sections: Section 2 details the study area
used in this paper, Alaska’s Railbelt transmission system. Section 3 provides a review of
the technical operation of hydropower and PSH. Section 4 details the methodologies used
to perform the resource assessment and availability and cost assessments in the region.
Section 5 provides the resulting hydropower and PSH site locations and costs. Section 6
provides a discussion of other considerations for the development of hydropower and PSH.
Section 7 concludes the paper and details future work.

2. Study Area

Alaska’s Railbelt Transmission system, referred to as the Railbelt, is the largest elec-
trical grid in Alaska, serving about 900 MW of the peak winter load from Homer, AK
to Fairbanks, AK. The Alaska Railbelt transmission system supplies 75% of the state’s
population with power. Figure 1 illustrates the approximate location and layout of the
Railbelt in Alaska.

The Railbelt has four electric cooperatives: the Golden Valley Electric Association, the
Matanuska Electric Association, the Chugach Electric Association, and the Homer Electric
Association. These utilities are grouped into three main load regions: northern, central, and
southern.

Three hydropower plants on the Railbelt account for 18% of the total generation [13].
These three power plants are Bradley Lake, Cooper Lake, and Eklutna Lake. Bradley Lake
began its operation in 1991 and currently supplies the Railbelt with a generation capacity
of 120 MW. Cooper Lake went online in 1960 and generates 16.7 MW. Eklutna Lake came
online in 1955 and currently generates 30 MW [14].
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Figure 1. Alaska’s Railbelt transmission system spanning Fairbanks to Homer, AK.

3. Technology Review

Conventional hydropower generates power by converting the gravitational potential
energy of raised water to kinetic energy, which flows through a turbine connected to a gener-
ator. Hydropower uses one “reservoir” that is usually situated above the powerhouse. The
reservoir can change based on the type of hydropower plant. Three types of hydropower
exist: impoundment, diversion, and run-of-river [15]. Impoundment is the most common
of the three. A dam is created to impound the water and create a reservoir with a much
higher head pressure. Diversion does not create a reservoir; it diverts a portion of the river
or stream into a penstock or another channel that flows into the powerhouse. Run-of-river
hydro creates a low-profile solution that does not require a large impoundment of water, as
opposed to full impoundment dams.

Conventional hydropower uses several types of turbines as well as accessory systems
to harness the kinetic energy of water and efficiently control it. Hydroelectric turbines are
separated into two categories, impulse and reaction. These categories separate the turbines
by characterizing the method of water delivery. Each one also has a unique combination of
flow and head. Impulse turbines utilize the velocity of the water to discharge into a bucket
to transfer the energy to the turbine. Pelton and cross-flow turbines are the most common
types of impulse turbines.

Reaction turbines use the pressure generated by the water to turn the turbine. This wa-
ter flows through a curved penstock called a scroll case. This case directs the water into the
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turbine. This water is discharged perpendicular to its angle of entry. Two common reaction
turbines are Francis and Kaplan, Francis being one of the most common models [15].

Each type of turbine has its own method for controlling the flow of water. For the
Pelton turbine, an adjustable “spear” controls the amount of water moving through the
nozzle; there is also a deflector that will move in front of the nozzle to control the flow. For
the Francis turbine, wicket gates are aligned around the edge of the turbine. The gates are
rotated to control the flow, ranging from fully closed to fully open, and are located parallel
to the water flow. These controls allow the hydropower plant to regulate its power output
and respond to the load demand. Hydropower has the ability to ramp to full generation on
a scale of 12–50 MW/s [16].

PSH can be described as a gravity-driven water battery. PSH installations involve two
or more reservoirs of water with a substantial amount of elevation difference. Often, this
can be conducted by utilizing lakes, existing reservoirs, or even oceans and seas. Another
method consists of creating reservoirs using geographic features, such as large “bowl-
shaped” features separated by elevation. Depending on the reservoir type, a PSH plant can
be characterized as closed- or open-loop [7]. Closed-loop systems are systems that are not
connected to any natural water source i.e., lakes, rivers, and oceans. Open-loop systems are
systems that utilize a natural reservoir, for example, pumping between two lakes [17].

PSH moves volumes of water between the two reservoirs to follow the demand. When
the power demand is high, water flows from the upper reservoir to the lower reservoir to
generate power. When the demand is low, water is pumped from the lower reservoir to the
upper reservoir using cheap or excess power. The water is transported, via penstocks, to
and from the powerhouse at the lower reservoir using pump–turbines.

The configuration of the pump/turbine depends on the type of turbine used. The
setups researched for this study included conventional (C-PSH), adjustable-speed (AS-PSH),
ternary (T-PSH) [18], and quaternary (Q-PSH) [19]. Conventional and adjustable-speed
units utilize a reversible pump–turbine, sometimes referred to as pump-as-turbines. Due
to the similarity in the design of pumps and turbines, slight modifications can be made to
enable the turbine to reverse its direction and pump the water, instead of allowing it to flow
through. This also means that the generator, when reversed, acts as a motor. C-PSH most
often uses a synchronous machine for its operation. Configurations using synchronous
machines are restricted to operating at one rated speed for maximum efficiency, limiting
their capability to “Full Off” or “Full On”. AS-PSH can be configured with a Doubly
Fed Induction Machine, an asynchronous machine, or a synchronous machine, with the
only item changing being the location and size of its power converter. The asynchronous
machine is similar to a Type 3 Wind Turbine, while the synchronous machine is similar to a
Type 4.

The asynchronous machine has a wider operating range with a high efficiency. Being
able to change the speed at which the reversible pump-turbine generates or pumps enables
a stronger ability to regulate the frequency or respond to the load. T-PSH can also respond
effectively due to its unique setup. T-PSH utilizes a pump and turbine separately on a
single shaft connected to a synchronous machine. The separate machines allow the system
to pump and generate without reversing the rotation of the shaft. The pump and turbine
are fed by the same penstock split in two. C-PSH and AS-PSH are limited to two modes,
pump and turbine, allowing only one direction for water flow in the system. Ternary has
three modes, pump, turbine, and hydraulic short circuit. This third mode is enabled due
to the split penstock and single direction rotation of the shaft. A hydraulic short circuit
operates the pump and the turbine at the same time while also supplying the pump with
energy from the grid. Volumes of water being moved are segmented into blocks of power,
as shown in the Figure 2. This short-circuit mode enables T-PSH to have a very competitive
advantage over C-PSH and AS-PSH due to decreased mode switching times and increased
frequency regulation capabilities.
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Figure 2. Control diagram of the ternary PSH.

Q-PSH has two shafts compared to the one shaft that is available in the other three
types of PSH. The two shafts allow for a pump–motor combination and a turbine–generation
combination; with a full sized converter between the pump and motor and a direct grid
connection with the turbine–generator combination. This two-shaft structure, with the
combinations of the pump–motor and turbine–generator, combines the benefits of the AS-
and T-PSH and allows faster mode change times. Therefore, it provides the best frequency
regulation of the types of PSH available, particularly with high penetration of renewable
energy resources [19].

When selecting a PSH configuration, system demand and cost are the primary factors.
Depending on the demand, the ability to transition between modes can also quickly
become an important factor in the decision-making process. C-PSH is the most basic of the
technologies. It also has the slowest switching time with averages in the range of minutes.
AS-PSH is slightly faster, ranging from 1 to 4 min for a transition between pumping and
generating. T-PSH has a transition time of 30 s to 1.5 min [20]. Q-PSH has the fastest
switching times and provides the greatest frequency support [19].

4. Data and Research Methodology

4.1. Resource Assessment and Availability

For conventional hydropower, a database from the Alaska Energy Authority dis-
tributed through the State of Alaska Open Data Geoportal [21] was used to map proposed
hydroelectric sites in Alaska. For PSH, datasets from the National Renewable Energy
Laboratory (NREL) were used [22]. This dataset was created using a GIS-based analysis
of potential closed-loop systems in the United States. The PSH sites were filtered in an
assessment performed by NREL [22,23], and the number of sites was narrowed down to
1819 sites. The goal of the generated resource maps was to estimate the possible size and
number of PSH and hydro resources potentially usable for the Railbelt. The following
criteria were used to select sites:

• Cost ($/kW);
• Distance from Railbelt (miles);
• Capacity (MW);
• Land ownership;
• Previously researched potential sites.

To apply these criteria, publicly available infrastructure data for Alaska’s high-voltage
transmission lines were imported from the Alaska Energy Authority’s database hosted on
the State of Alaska Geoportal. This public transmission data were selected to exclusively
show the Railbelt transmission lines. The potential resources were filtered based on their
straight-line proximity to the transmission line; for this study, 20 miles was selected as the
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maximum distance from a Railbelt transmission line. However, due to Alaska’s topography,
if a spur line cost was to be estimated, the straight-line distance would not be correct.

To estimate the cost of a spur line, a possible path for this line must be created. To
avoid mountains and rapid elevation changes, it was assumed that the spur line would
follow a path with the least amount of slope. To simulate this path in QGIS, a least cost path
analysis was completed with the cost being the slope. A Digital Terrain Model of the area
of interest surrounding the Railbelt was imported from the State of Alaska’s Geoportal. The
Digital Terrain Model held elevation data about the area of interest’s terrain. This excluded
trees and buildings that would be included in a Digital Surface Model. Using the slope
tool in QGIS, a slope map was created. To keep the paths reasonable, all bodies of water
were excluded from the slope map using the intrinsic slope of water, 0, and converting
all 0 values to NULL values, leading them to be ignored by the least cost path tool. The
least cost path tool assessed the values held in each pixel of the slope map. This assessment
was used to draw a path from the resource site to the nearest point on the Railbelt whilst
collecting the least amount of cost (slope).

The Railbelt-wide hydro and PSH sites with the least cost paths are shown in Figure 3.
A close-up view of Figure 3 is shown in Figure 4 to illustrate this method.

Figure 3. Least cost path of the hydro and PSH sites to the Railbelt transmission system.

Alaska’s land ownership was the next factor considered for resource location. Alaska
has native, federal, state, and borough lands, protected wildlife, national parks, military
bases, etc. To visualize the land ownership, a map of Administered Lands, courtesy of the
Alaska division of the US Bureau of Land Management, was used [24]. This map specifies
the owner of each parcel of land in Alaska, allowing potential resource sites to be removed
if they are on non-buildable land, such as National Parks, military installations, and other
protected areas. Locations that exist on public lands were selected as these are more likely
to be used for potential development. The map of Administered Lands was also used for
potential resource sites from the Alaska Energy Authority.
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Figure 4. Close-up view of the least cost path of the hydro and PSH sites to the Railbelt transmission
system. The purple lines and dots represent PSH least cost paths and location, and the blue lines and
dots represent hydropower least cost paths and locations.

4.2. Resource Cost

Water-based energy resources are commonly expensive to construct due to their low
energy density (dams, reservoirs, etc.) and environmental impact. The conventional hy-
dropower initial capital cost (ICC) is dependent on several factors. Hydropower projects
are often filtered based on their generation capacity, which contributes to other cost factors,
such as the head and reservoir size. Capital costs of hydropower include electromechani-
cal systems, C&I, environmental impact studies, permitting, and environmental impact
mitigation procedures. A cost analysis of hydropower by the International Renewable
Energy Agency identified the largest contributors to capital costs for large- and small-scale
hydropower projects [25]. Large-scale hydropower projects have capital costs consisting
mainly of C&I, such as the impoundment, tunneling, and powerhouse costs associated
with moving large volumes of water. Capital costs of small-scale hydropower projects are
dominated by electromechanical systems, such as generators, turbines, control systems, etc.
Multiple models and studies have shown a general relationship between the generation
capacity and cost. Head also has an effect on this relationship [25]. For most projects, the
ICC ($/kW) will increase as the capacity decreases. For small hydro projects, 5–100 MW,
the cost can range from $1300 to $8000/kW ($2010 USD). Large hydro projects, greater
than 100 MW, have a slightly lower range of $1050–7650/kW [25]. The Oak Ridge National
Laboratory (ORNL) completed their own analysis of hydropower costs and created a model
to estimate new project costs [26]. The ORNL analyzed 84 New-Stream Development
projects, meaning situations where no dam existed prior to the project. The ORNL assessed
this database using project characteristics and a confidence score system to develop an ICC
model equation, Equation (1), where P is the capacity in MW, and H is the head in feet. The
ICC is measured in USD for 2012.

ICC = 8717830 P0.975H−0.12 (1)

Using this model, the ORNL estimated that, on average, new-stream development
projects cost 3882 $/kW. This cost was verified against 17 constructed projects with an
average cost of 3885 $/kW [26].
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The pumped storage hydropower capital cost is dependent on multiple factors. Those
with the greatest effect include the head height, flow rate, and storage/generation capacity.
The NREL modified the simplified PSH cost model from the Australian National Univer-
sity [27], which was adapted from a detailed model created in a report from Entura [28].
Equation (2) is the total cost model, and seven equations from [22] go into this equation.

CT = (CP + Ct + Cu + Cl)
1.33
1.2

+ Cs (2)

where CT is the total cost in 2018$, CP is the cost of the powerhouse in 2018$, Ct is the cost of
the tunnel in 2018$, Cu is the cost of the upper reservoir in 2018$, Cl is the cost of the lower
reservoir in 2018$, the ratio 1.33/1.2 is the contingency cost adjustment factor used to adjust
the contingency cost of 20% used in the ANU model to the contingency cost of 33% used
for other NREL technologies, and Cs is the cost of the spur line in 2018$. The NREL made
two adjustments in Equation (2): Cs was added, as the ANU’s model did not include spur
line costs, and a cost correction factor of 1.51 was added to this simplified model for plants
with a capacity of 900–1100 MW. This cost correction factor was arrived at by comparing
the median cost of 900–1100 MW plants, created by the ANU’s cost model, to the average
cost of a 1000 MW plant modeled as a result of the Energy Storage Grand Challenge. The
final range of costs for PSH plants from the NREL [28] was 1407–2137$/kW. The Energy
Storage Grand Challenge created a comprehensive table outlining the costs and lifetime
performance for a 100 MW, 1000 MWh system [16]. This table includes the powerhouse
C&I, reservoir, contingency, O&M, electromechanical powertrain, and performance metrics
based on the lifespan, efficiency, and ramp rates. It does not include O&M, which was
modeled using a function of the plant capacity (P) in MW and the annual energy throughput
(AE) in MWh, as shown in Equation (3).

CO&M = 34730 P0.32 AE0.33 (3)

Alaska’s construction costs were calculated based on the cost assessments from the
NREL [28]. Alaska’s construction costs included an adjustment for inflation from 2018 to
2023. An estimated increased cost of construction in Alaska was determined by comparing
average new-stream development costs from the United States, 4800 $/kW (2015$) [26]
adjusted to 6144 $/kW (2023$), to the most recently proposed hydro development in Alaska.
The most recently proposed Alaskan hydro project is Grant Lake, which has a capacity
of 5 MW. Grant Lake’s estimated construction costs total $53,878,050 (2018$), adjusted
to $65,192,441 (2023$) [29], which equates to 13,038 $/kW. Therefore, the an Alaskan
construction cost factor of 2.12 was used to calculate the increased cost of construction
in Alaska.

5. Results

5.1. Pumped Storage Hydro

Resource locations for each type of technology were narrowed down from the locations
identified by the Alaska Energy Authority for hydro and the NREL locations for PSH as well
as the Eklutna and Right Mountain locations identified by the Alaska Institute for Climate
and Energy, which are located on the Railbelt [30]. Cost was the ultimate deciding factor for
the sites selected. The PSH site locations were narrowed down to the top ten lowest-cost
sites by $/kW using the Alaska construction costs. The capital costs of the Eklutna and
Right Mountain sites reported in the Alaska Institute for Climate and Energy report were
increased to adjust to 2023$, and no additional Alaska construction cost multiplier was
added; however, it should be noted that these costs were calculated differently and may
not be suited for direct comparison to the other site costs. The details of each of the top ten
lowest-cost sites within 3 miles of the Railbelt are listed in Table 1, where the first site is the
Eklutna PSH site.
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Table 1. Top ten lowest-cost ($/kW) PSH sites within 3 miles of the Railbelt.

Site Nearest Water Body
Power Capacity

(MW)
Energy Storage

(GWh)

Capital Cost
Estimate (2023

$/kW)

1 Eklutna Lake 426 507 2328
2 Sustina River 744 7.44 2979
3 Lewis River 707 7.07 3400
4 Nellie Juan River 461 4.61 3540
5 Ship Creek 542 5.42 3645
6 Jakolof Creek 432 4.32 3753
7 Yanert Fork 502 5.02 3963
8 Pierce Creek 407 4.08 3997
9 Willow Creek 296 2.96 4146
10 Little Willow Creek 445 4.45 4176

5.2. Hydropower

Hydropower locations were identified based solely on previously studied sites as
well as some upgrades to current hydropower sites. The largest site identified was the
Susitna–Watana Hydro Project. This project has an annual energy budget of 2.8 million
MWh with an installed generation capacity of 459 MW [14]. The Dixon Diversion was also
included. This is a project to divert glacial meltwater from the Dixon Glacier, increasing
the annual energy budget of Bradley hydro by 150 GWh. This additional capacity would
require the Bradley Lake dam to be raised; however, the total nameplate capacity of the
Bradley Lake power plant would stay the same. The Grant Lake hydro project on the Kenai
Peninsula was also identified. This project is scheduled to begin construction in 2023 and
has a 5 MW generation capacity and an annual energy production of 18,600 MWh. The
selected hydro sites along with the top ten lowest-cost PSH sites are shown in Figure 5.

Figure 5. Top ten lowest-cost PSH sites within 3 miles of the Railbelt transmission system and selected
hydro sites.
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6. Other Considerations

Hydropower can also provide additional services to electric grids beyond energy.
There are also negative consequences associated with both hydropower and PSH. These
other considerations are further outlined here and classified as either a strength or weakness
of hydropower or PSH.

6.1. Strengths

Hydropower generators are capable of providing frequency regulation and reserves,
and their hourly ramping flexibility is the most extensively used out of any other type
of resource in the United States [2]. This flexibility and frequency regulation and reserve
capability are key grid services, especially when integrating variable renewable energy
resources. Hydropower generators can also be black-start capable, meaning that they can
be used to restart the electrical grid after a system-wide blackout [2]. Black-start capability
is not found with all types of resources and is a critical component of grid resilience.

Hydropower also has non-energy-related benefits including food security through
providing a source of water for irrigation, water quality and quantity through the control
of water release, high-paying jobs, flood protection through capturing floodwaters, and
recreation and tourism [31].

6.2. Weaknesses

Energy resources that use water as the generation medium can have ecological and
environmental (flora, fauna, landscape, and historical remains [32]) impacts. Water must
be diverted or stored to create power. This often creates reservoirs that can span hundreds
of miles. In Alaska, there are several factors that come into consideration when deciding
where to build a PSH or hydropower plant. For hydropower, much of Alaska’s most energy
dense river systems are considered anadromous streams [33]. These streams are used by
salmon for spawning, meaning that interference would impact salmon runs, which is a
subsistence resource and a cornerstone of Alaska’s economy. Other issues include the
obstruction of natural views, which is also important for tourism.

PSH can have a similar effect to conventional hydropower, depending on how it
is configured. Closed-loop systems have the potential to impact habitats and species,
depending on where the reservoirs are placed. This, for example, could be a concern for
caribou habitats in much of Alaska. Open-loop systems pose the same threat as hydropower
due to constantly changing water levels disabling the ability for the reservoirs to be used
by wildlife.

Studies have identified that the water bodies of dams of hydropower facilities release
CO2 and CH4 emissions due to both human-made and natural processes [34,35]. Therefore,
hydropower generation is not a completely carbon-free resource. However, it has been
found that hydropower generation facilities do have lower emissions in comparison to
thermo-based generation methods, such as coal, oil, diesel, and natural gas generation
facilities [35].

7. Conclusions

This paper covered how PSH and hydropower operate on a technical basis as well
as the cost, and potential locations of these resources. PSH and hydropower generate
and store power using the potential energy of elevated water sources. Hydropower uses
conventional turbine generators for operation and can ramp up to full generation on a scale
of 12–50 MW/s [16]. PSH is similar to hydropower; however, it utilizes two reservoirs of
water separated by an elevation difference to create a large water battery. The water is
pumped to the upper reservoir when the demand is low and generated down to the lower
reservoir when the demand is high. PSH powerhouses use reversible pump–turbines to
pump and generate between the two reservoirs. The transition time between pumping and
generating changes depending on the PSH configuration: conventional, adjustable-speed,
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ternary, and quaternary. Quaternary has the fastest switching times and greatest frequency
regulation capabilities.

PSH and hydropower have comparable ICC categories: C&I, electromechanical sys-
tems, environmental protection procedures, and permitting. Cost models for hydropower
plants created by ORNL showed that new-stream development hydropower has an average
ICC of around 3882 $/kW. PSH cost models from the NREL HydroWIRES report resulted
in a ICC range of 1407–2137 $/kW. The construction costs accounting for inflation and
Alaskan construction costs resulted in a range of 2090–2931 $/KW.

The potential locations of hydropower and PSH were analyzed from several sets of
data. Ultimately, two hydropower sites were identified: the Susitna–Watana Hydro and
Grant Lake. Ten potential PSH sites were also identified based on cost.
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Abstract: With the rapid development of artificial intelligence, machine vision and other information
technologies in the construction of smart power plants, the requirements of power plants for the state
monitoring of hydro-generator units (HGU) are becoming higher and higher. Based on this, this
paper applies YOLOv5 to the state monitoring scenario of HGU, and proposes a method for rotor
speed measurement (RSM) and operating state identification (OSI) of HGUs based on the YOLOv5.
The proposed method is applied to the actual RSM and OSI of HGUs. The experimental results show
that the Precision and Recall of the proposed method for rotor image are 99.5% and 100%, respectively.
Compared with the traditional methods, the online image monitoring based on machine vision not
only realizes high-precision RSM and the real-time and accurate determination of operating states,
but also realizes video image monitoring of the rotor, the operation trend prediction of the rotor and
the early warning of abnormal operating states, so that staff can find the hidden dangers in time and
ensure the safe operation of the HGU.

Keywords: artificial intelligence; hydro-generator unit; YOLOv5; rotor speed measurement; online
monitoring

1. Introduction

An HGU is a complex coupling system of hydraulic, mechanical, and electrical systems.
As the service life of the units increases, the issues of structural fatigue and deterioration
become increasingly prominent. At present, large and medium-sized hydropower plants
are developing an unmanned management mode and one with few personnel on duty, and
the equipment maintenance method is gradually transitioning from regular preventive
maintenance based on time to predictive maintenance based on state monitoring [1–3]. How
to accurately monitor the unit, judge its operation state, and detect unit operation problems
on time is an important issue in the state maintenance of HGU. The monitoring parameters
(nonelectrical quantity) of HGUs can generally be vibration, noise signals, temperature,
and rotor speed [4–6]. The rotor speed of the HGU can reflect both the state and frequency
of the HGU, which is a very important detection quantity in HGU monitoring. Therefore,
accurately calculating the rotor speed of the HGU is of great significance for monitoring
and judging the state of HGU [7,8].

At home and abroad, the methods of RSM for HGUs include direct method and
indirect method. The indirect method mainly converts mechanical rotation into other
physical quantities, and converts physical quantities into velocity quantities according to the
corresponding calculation formula. The mainstream indirect method is PT residual pressure
velocimetry. As the name implies, the direct method measures the mechanical rotation of
the object directly through the corresponding sensor. The mainstream method installs a
toothed disc on the main shaft of the HGU, so that the toothed disc is connected with the
main shaft of the HGU. The rotation of the main shaft of the HGU will drive the toothed
disc to rotate synchronously. The toothed disc sensor will collect the corresponding pulse
signal, and the current speed value of the HGU will be calculated through the processing
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of the signal by the single-chip microcomputer in the later stage [9]. The above methods all
have certain drawbacks. On the one hand, they cannot achieve visual monitoring of speed
and cannot reproduce the accident development process afterwards. On the other hand,
different speed measurement methods have varying degrees of coupling with the rotor,
reducing the robustness of the measurement. The advantages and disadvantages of the
commonly used classical rotor speed measurement methods are shown in Table 1.

Table 1. Comparison of advantages and disadvantages of rotor speed measurement methods.

RSM Method Advantages Disadvantages

Toothed disc [10]
High measurement accuracy,
Strong real-time performance,
Strong anti-interference ability

The need to fix the processed
toothed disc will change the

spindle structure

PT residual pressure [11]

Able to obtain the voltage of
the generator outlet PT,

commonly used for
electromagnetic measurement

Electrical faults and abnormal
residual voltage of the

primary equipment can
cause inaccurate

speed measurement

Photoelectric encoder [12] High measurement accuracy,
fast response

Susceptible to signal noise,
contact type speed

measurement requires
coaxial installation

Laser Doppler [13]
Noncontact speed

measurement without
changing the spindle structure

High price, poor immunity

Machine Vision [14]

Noncontact speed
measurement without
changing the spindle

structure, visualization of
accident process

Limited usage scenarios

In recent years, machine vision, as a hot technology, has provided effective techni-
cal support for promoting the construction of smart grids. Research based on machine
vision is constantly emerging and has been validated in practical power engineering
applications [15–17]. Ref. [18] adopts an intelligent detection method for transmission line
defects based on reparameterized YOLOv5, which solves the problem of slow edge reason-
ing caused by low computing power and low memory of power patrol edge equipment.
Ref. [19] applies YOLOv5, which combines the weighted bidirectional feature pyramid
(BiFPN) structure to the identification of power switch cabinet state lights, assigns different
weights to the feature layer to transmit more effective feature information, and solves
the problem of small target recognition caused by the high-density layout of state lights.
Ref. [20] proposes a method of fan blade detection and spatial positioning based on the
lightweight YOLOv5. ShuffleNetv2 is used as the feature extraction backbone network
to achieve accurate positioning of fan blade tip. Ref. [21] uses a method of making fused
image data set to solve the problem of the small number of defective insulator samples
in the insulator image data set taken by UAV aerial photography. To sum up, machine
vision has been widely used in power systems, but there is relatively little research on it in
hydropower plants [22,23].

The RSM method for HGUs based on image processing is a type of indirect RSM
method. This method mainly tracks the target in the measured structure video captured
by the camera to obtain the motion trajectory of the measurement point in the image, and
then determines the motion information of the structure through the geometric relationship
between the image and the real world. Unlike the contact displacement monitoring method,
which requires the installation of fixed support points on the structure, the camera is
installed at a fixed point far from the measured object and does not have a coupling
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relationship with other electrical equipment, contributing to the non-interference of the
RSM process and unit operation, greatly improving the anti-interference ability of RSM.

This paper applies the YOLOv5 algorithm to the state monitoring scenario of HGU,
and proposes a method for rotor speed measurement and operation state recognition of
HGU based on YOLOv5 combined with the period measurement method. A monitoring
system for the rotor speed of HGU is also developed. This system not only achieves
precise measurement of rotor speed, makes accurate judgments on the operating state of
HGU, predicts rotor operating trends and alerts abnormal operating states, but also records
real-time operating images of HGU, providing data sources for post analysis. The system
developed in this paper can effectively ensure the safe and stable operation of HGUs, laying
a theoretical foundation for the future development of more functional monitoring systems.

2. YOLOv5 Model Analysis

Object detection is a machine vision technology that can recognize semantic objects in
images and provide their positions and categories. Traditional object detection methods
typically include three steps: region selection, feature extraction, and feature classification.
After the emergence of deep learning, object detection methods have enhanced the accuracy
of feature classification and improved the efficiency of region selection, becoming a common
method at present. There are two types of object detection methods: single-stage etection
and two-stage detection. Single-stage detection integrates target classification, boundary
localization, and feature extraction into a network, constructs end-to-end training methods,
and uses regression to obtain the position of the target, reducing the repetitive calculation
of image feature extraction steps. The main algorithms include SSD, YOLO, etc. Two-stage
detection is based on constructing a deep convolutional neural network to extract target
features, and then achieving target detection through image segmentation and positioning.
The main algorithms include Faster RCNN, Fast R-CNN, SIFT, etc. [24].

The YOLO series algorithm is a target detection method based on regression thinking,
which can directly predict the category and position of the target from the image without
the need for candidate boxes or other intermediate steps. The advantage of this series of
algorithms is its fast speed, which is suitable for real-time scenes. The YOLOv5 model has
the advantages of fast reasoning speed, high precision and small model size, which makes
it highly popular in the field of target detection. Figure 1 shows the overall block diagram
of the YOLOv5 target detection algorithm. For a target detection algorithm, we can usually
divide it into four general modules, specifically including Input, Backbone, Neck and Head,
corresponding to the four red modules in Figure 1.

Figure 1. YOLOv5 model architecture diagram.
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The Input represents the input image, which typically includes an image preprocess-
ing stage, which scales the input image to the input size of the network and performs
operations such as normalization. In the network training phase, YOLOv5 uses Mosaic
data enhancement operations to improve the training speed of the model and the accuracy
of the network. An adaptive anchor frame calculation and adaptive image zooming method
are proposed. The Backbone is usually a network of classifiers with excellent performance,
and this module is used to extract some common feature representations. YOLOv5 not
only uses the CSPMarket53 structure, but also uses the Focus structure as the Backbone.
The Neck network is usually located in the middle of the reference network and the header
network, and it can be used to further enhance the diversity and robustness of features.
Although YOLOv5 also uses the SPP module and FPN + PAN module, the implementation
details are somewhat different. The Head is used to complete the output of target detection
results. For different detection algorithms, the number of branches at the output end varies,
usually including a classification branch and a regression branch. YOLOv5 leverages
GIOU_Loss replaces the Smooth L1 Loss function to further improve the detection accuracy
of the algorithm.

In order to evaluate the effectiveness and feasibility of the YOLOv5 model test results,
in practical applications, Precision, Recall, Average Precision (AP) and mean Average
Precision (mAP) are usually used as evaluation indicators [25]. The formula of the above
indicators is as follows. The Precision represents the true correct proportion in the correct
classification, and the Recall represents the proportion of the correct samples in the given
correct samples.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

AP[Class] = ∑
i∈confidence

Precisioni[Recall, Class, IOU] (3)

mAP =
1
N∑ APi (4)

In the formula, TP represents the number of tags that are positive samples and
classified as positive samples. FP indicates the number of negative samples but clas-
sified as positive samples. FN indicates the number of positive samples but classified as
negative samples.

Under a fixed Intersection Over Union (IOU), a given target will obtain different
Precision and Recall values according to different confidence levels. Through interpolation
of Precision and Recall, the continuous curve generated is the Precision–Recall (PR) curve.
The AP represents the comprehensive performance of the model under different confidence
levels by the area enclosed by the PR curve of a given target category and the horizontal
and vertical coordinates [26]. The higher the AP value, the better the detection performance
of the model. Each IOU corresponds to a different AP. The AP@.5 represents the AP when
the IOU is taken as 0.5, and the AP@.5:.95 represents the average AP when the IOU is taken
as 0.5 to 0.95, in steps of 0.05.

3. Analysis of RSM Principle

3.1. RSM by Period Method

The RSM principle based on image recognition technology is similar to that of digital
circuit speed measurement. The digital circuit speed measurement is to count the known
frequency high-frequency clock pulse with a counter within the interval of two adjacent
output pulses, and then calculate the speed, which is called T-method speed measure-
ment [27]. The schematic diagram of the period measurement method based on image
recognition technology is shown in Figure 2. The time of one revolution of the HGU can
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be obtained by multiplying the frame rate of the camera by the number of frames taken
during one revolution of the HGU. The key is to calculate the time difference of one revo-
lution. In the continuous frames with markers (that is, within the irradiable range of the
camera), the appearance and disappearance of markers are the two time points we focus
on (the judgment of key frames in the program is shown in Figure 3). The time difference
corresponding to the adjacent frames that appear or disappear is the time required for the
rotor to rotate for one cycle, that is, the speed of the unit. Therefore, when the unit rotates
for one and a half periods, we can obtain the real-time rotor speed of the two units.

n =
60

f0 × M
=

60
fp

=
60
fq

(5)

Figure 2. Waveform of velocity measurement principle of video measurement period method.

Figure 3. The judgment of the appearance and disappearance of markers.

In the formula, n is the rotor speed, rpm. f 0 is the camera frame rate, fps. M is the
number of pictures collected by the camera in one rotation, frame. fp is the frequency of the
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first frame of the marker in the field of vision, fps. fq is the frequency of the last frame of
the marker in the field of vision, fps.

The judgment process for key frames is shown in Figure 3. Firstly, by determining
whether the current frame has captured the marker, it is determined whether the current
frame is within the visible range of the camera. Secondly, if the current frame captures
the marker and the previous frame also captures the marker, then the current frame is a
continuous frame within the field of view. If the marker was not captured in the previous
frame, the current frame is the first frame where the marker was captured. Finally, if the
marker is not captured in the current frame and was captured in the previous frame, then
the current frame is the first frame where the marker disappears. If the marker is not
captured in the previous frame, then the current frame is a continuous frame outside the
field of view.

The period measurement method calculates the time of adjacent pulses, but this part
of the time calculated by video speed measurement is easily affected by the frame rate.
Only when the time of HGU rotor rotation is a multiple of the camera sampling period
(the reciprocal of frame rate), can it be ensured that the time corresponding to the frame of
adjacent markers appearing (or disappearing) is exactly the time required for rotor rotation.
In order to reduce such errors, an improvement link is set up: when calculating the time
corresponding to the adjacent frame of the marker, plus the time difference corresponding
to the adjacent frame of the marker disappearing, the two calculation results are put into
the speed list, which is helpful to reduce the calculation error caused by accidental factors.

In order to avoid the impact of random noise or camera frame leakage on the real-time
rotor speed, the data will be further digitally filtered after the speed measurement by the
period measurement method. In this paper, the median average filtering method is adopted,
that is, the maximum and minimum values are removed from a set of numerical lists and
the average value is taken, which is equivalent to “median filtering method” + “arithmetic
average filtering method”.

The speed measurement method based on image recognition technology is similar
to the digital circuit speed measurement method, which is applicable to low speed mea-
surement. Since the rotor speed for HGU under normal or abnormal states is not more
than 150 r/min, it belongs to low-speed rotation, so the speed measurement method of the
period measurement is more suitable for the RSM of HGU software.

3.2. Algorithm Steps and Processes

The process of rotor speed calculation in this paper can be divided into five parts:
obtaining the HGU rotor video, dynamic capture of markers, rotor speed calculation, HGU
operation state analysis, and returning the data to the background. The four parts are the
main algorithms, and the principle is shown in Figure 4.

(1) HGU rotor video: the real-time video of the HGU operation site is collected by the ip
camera set around the water turbine. After the collection, the video is uploaded to the
server for the next RSM preparation.

(2) Dynamic capture of markers: the RSM of HGU depends on the setting of the markers.
The real-time rotor speed of HGU can be calculated by dynamically capturing the
markers in each frame of the video captured in step (1).

(3) The rotor speed calculation of HGU: through the markers captured in step (2), find
the key nodes, and the nodes where the markers appear and disappear, and measure
the rotor speed by the period method.

(4) Judge the operation state of the HGU: through step (3), the two final speed values
of the two cameras are obtained, and the mean value of the two values is calculated,
which is the real-time rotor speed of the HGU calculated by the program, so that the
operation state of the HGU can be judged.

(5) Return the data to the background: the server obtains the rotor speed of HGU, and
finally sends the rotor speed information to the database according to the TCP com-
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munication protocol and the video information according to the DUP communication
protocol for storage.

 
Figure 4. Speed measurement process.

4. YOLOv5 Test Result Analysis

4.1. Experimental Environment and Training Process

The parameters in the deep neural network mainly include the parameters that are
automatically adjusted through learning and the hyperparameter that needs to be manually
set. The adjustment of the hyperparameter is an important link between the theoretical
knowledge of deep learning and the actual situation at present. The hyperparameter config-
uration of this training is as follows: the initial learning rate is 1 × 10−4, the momentum is
0.0005, the batch size is 16, and the epoch is 200. The specific configuration of the computer
is shown in Table 2.

Table 2. Computer configuration table.

Device GPU NVIDIA GeForce GTX 2080

Operating system
Operating system Windows10

Computer language Python3.6.12
Deep learning framework Pytorch1.7.1

4.2. Data Set

YOLOv5, as a supervised learning algorithm, cannot be separated from the support
of a large amount of data. The quality and distribution of data sets are important factors
affecting the performance of the algorithm. The dataset used in this article originated
from an actual hydropower plant and ultimately collected 2500 image data with a size of
640 × 480 in jpg format. The image data are divided into training set, validation set, and
testing set in a ratio of 8:1:1.

In order to create a PASCAL VOC format dataset, LabelImg software was used to
visually annotate each image. When annotating, the mouse was used to accurately and
meticulously draw the border of the target as much as possible, which helps with the
training and segmentation effect of the model. At the same time, the category name of the
target is written on the border. As shown in Figure 5, it is the detection category “Mark”
where the marker appears.

The result of image annotation is a Json format file, which is converted into a structured
XML language based document, namely an xml format label file, which can better describe
the target category, position, size and other attributes in the image.
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Figure 5. YOLOv5 picture annotation diagram.

4.3. Evaluating Indicator

This paper uses labeled turbine rotor images as training and validation sets and
conducts 200 epochs of training in the YOLOv5s model to obtain the optimal model weight
file. Figure 6 shows the training results of the turbine rotor markers in this model.

 
(a) (b) 

 
(c) (d) 

Figure 6. Cont.
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(e) (f) 

Figure 6. Analysis chart of training results. (a) Precision. (b) Recall. (c) Classified loss. (d) Confidence
loss. (e) IOU = 0.5, mAP. (f) IOU ∈ [0.5:0.05:0.95], mAP.

From the figure, it can be seen that the detection Precision and Recall of YOLOv5
for rotor images have reached 99.5% and 100%, respectively, indicating that the model
has strong generalization ability and robustness, can adapt to various complex scenes
and environments, and can accurately locate and recognize markers for rotor images. At
the same time, observing the changes in Classified loss and Confidence loss with the
training process, it was found that after approximately 100 epochs, both tended to stabilize,
indicating that the model had converged to a better state. From the fact that the Classified
loss in the training set and the test set is zero, it can be concluded that the model can identify
all target categories in the training set without classification errors, and the Classified loss
of the model in the test set is also zero, indicating that the model has no overfitting or under
fitting problems.

In addition, through the mAP indicators under different IOU thresholds, it was found
that when IOU is 0.5, mAP approaches one, and when mAP@.5:.95, it is also close to
80%, indicating that the model maintains high detection performance even for smaller or
more difficult to recognize targets. These indicators all demonstrate that the model has
good detection performance for markers and meets the precision requirements for target
recognition in RSM.

4.4. Training Result Analysis

In order to verify the effectiveness of the YOLOv5 algorithm for marker capture,
YOLOv5 algorithm was compared with the traditional object capture algorithm based on
histogram reverse projection. The detection results are shown in Figure 7. As can be seen
from the left column of Figure 7, when using histogram reverse projection, due to the
single projection sample that can be selected, it is difficult to regularly frame and select
markers during the operation of the HGU. Moreover, when the color of the surrounding
environment is similar to the color of the marker, noise is prone to occur, as shown in
the red box selected area in the last group of comparison images, and cannot be used for
subsequent RSM of HGU.

The comparison of object capture results based on YOLOv5 is shown in the right
column of Figure 7. During the operation of the HGU, the rotor markers have undergone a
certain degree of deformation, but since the markers with different degrees of deformation
have been labeled during the labeling phase, the model can still accurately identify various
forms of markers during the detection phase, that is, the Recall of the model for the markers
is 100%. As the marker area decreases, the confidence level of target detection decreases
slightly, laying a good foundation for subsequent velocity measurement.
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Figure 7. Comparison of YOLOv5 and histogram back projection detection results.

5. Field Measurement and Analysis

5.1. HGU State Definition

The test site is a hydropower plant in China, which is equipped with four units with a
unit capacity of 200 MW and a total installed capacity of 850 MW. Based on the installed
capacity and actual operation of the water turbine, different states of the HGU can be
identified based on the RSM, as shown in Figure 8.

Firstly, the speed can be divided into a normal operating state and abnormal operating
state. Secondly, during the startup state in normal operation, if the speed is greater than
95% of the rated speed, it is in the excitation state. During the shutdown state in normal
operation, if the speed is less than 2% of the rated speed, it is considered a creeping state,
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and if the speed is less than 25% of the rated speed, it is considered an air brake state.
Finally, abnormal operating states include electrical overspeed when the speed exceeds
1.15% of the rated speed, and mechanical overspeed when the speed exceeds 1.35% of the
rated speed.

Figure 8. State of the HGU.

5.2. HGU State Judgment

The judgment of HGU state is an important content of HGU state monitoring. The
HGU state not only depends on the numerical value obtained from the speed calculation,
but also on the trend of the speed over time. For example, during the shutdown state,
the unit may experience creep, and at this time, an air brake needs to be added to control
the speed. During the startup state, the unit needs to input excitation to increase output
power. In order to accurately determine the trend of rotational speed, a time window based
method was adopted in the program. Specifically, a thread has been added to the program
to record the speed Vq one second ago. When calculating the real-time speed Vp at the
current moment, first compare it with Vq. If Vp is smaller than Vq and less than a preset
fixed value (set to avoid data fluctuations causing misjudgment), then it can be considered
that the unit is in a shutdown process, that is, the speed is gradually decreasing. On the
contrary, if Vp is greater or equal than Vq, then it can be considered that the unit is in the
start-up process, that is, the speed is gradually increasing or maintaining stability.

The method proposed in this paper determines whether the HGU has stopped opera-
tion by measuring the area changes of the markers in consecutive frames of the video. As
shown in Figure 9, firstly, a certain marker on the HGU is captured and tracked in real-time,
and each video image is processed to extract the contour of the marker and calculate its
pixel area S. Then, compare the area difference of the markers in two adjacent video images
(ΔS = |S1 − S2|). If ΔS is less than a given threshold, it is considered that the HGU is in a
stationary state. Finally, when using binocular cameras, it is necessary to synchronize the
video images collected by the two cameras and use an “OR” statement to perform logical
operations on the static state collected by the two cameras. As long as one camera detects
that the water turbine has stopped running, it is considered that the speed is zero.

The on-site test is carried out during the startup and shutdown test after the unit
maintenance, which is helpful for the judgment of multiple states in a short time. Since
there are no two states of overspeed in the field test, this test only records the following
state judgments (both of them have been judged in the laboratory), as shown in Figure 10
below. It can be seen from the figure that when the HGU transits from the shutdown state
to the speed-up phase, the rotor speed increases from 0 rpm to 104.778 rpm, and the unit
is in the excitation stage. The rotor speed continues to rise until the rotor speed reaches
the rated rotor speed of 107.067 rpm. After maintaining operation for a period of time, the
HGU starts to decelerate, and the rotor speed drops to 68.873 rpm. The unit entered the
stage of air brake to speed-up the shutdown process, and finally the rotor speed continued
to drop to zero. However, due to the large number of guide vanes, it is impossible for the
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guide vanes to be completely sealed under the closed state, and the water leakage of guide
vanes is objective. When the water leakage increases to a certain extent, the water will
impact the HGU runner, causing the rotating parts of the unit to produce slow rotating
motion, and the rotor speed will reach 1.58 rpm from zero, which means the unit will
appear in peristalsis.

Figure 9. Flow chart of turbine shutdown state judgment.

  
(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 10. Unit state judgment diagram. (a) Shutdown state. (b) Excitation state. (c) Rated rotor
speed state. (d) Air brake state. (e) Creeping state.
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5.3. Analysis of the Change of HGU Start and Stop Rotor Speed

The rotor speed increased from 0 rpm to 107.1 rpm in the process of starting, and the
starting time of this field test was about 180 s. In order to test the precision and tracking of
the algorithm proposed in this paper, the real value of the rotor speed is recorded every
five seconds and compared with the calculated rotor speed at the same time.

The overall change trend of rotor speed is shown in Figure 11a, with an average relative
error of 2.45%. It can be seen from the figure that the overall following and precision of
the calculated rotor speed are relatively high, but because the relative error is small, it is
not convenient to analyze the error at different stages, so the low-speed stage, speed-up
stage and stable stage of the rotor speed in Figure 11a are enlarged. It can be seen from the
figure that, as shown in Figure 11c, due to the stable acceleration, the rotor speed in the
speed-up stage is approximately linear, and the corresponding curve of the real value and
the calculated value almost coincide, with high speed precision. In the low-speed stage
(Figure 11b) and stable stage (Figure 11d), the calculated values are relatively small due to
the slow speed change and the rotor speed is easily affected by historical data. It can be
seen from the figure that the calculated value curve is below the true value curve. Finally,
when the rotor speed is stabilized to the rated rotor speed, the calculated rotor speed will
also tend to be stable.

 
(a) (b) 

 
(c) (d) 

Figure 11. Rotor speed change diagram of HGU startup process. (a) Rotor speed change trend during
startup process. (b) Rotor speed at low-speed stage. (c) Rotor speed at speed-up stage. (d) Rotor
speed at stable stage.

During the shutdown process of the HGU, the rotor speed decreased from 107.1 rpm
to 0 rpm. The shutdown test time was about 410 s, and the recording method was the same
as that of the appeal startup process, which was recorded every 10 s. The overall trend
diagram of the shutdown process is shown in Figure 12a. It can be seen from the figure
that the precision of the calculated rotor speed is high and the tracking is good, with an
average relative error of 2.44%. After the HGU is shut down, the guide vane is fully closed
and the rotor speed decreases. However, because the HGU will damage the oil film of the
bearing at low speed, resulting in excessive bearing friction, temperature rise and burning
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loss, the air brake must be put into operation to shorten the time of the unit at low speed,
quickly stop rotating, and protect the HGU. From the Figure 12b–d, it can be seen that the
calculated rotor speed are mostly above the true value, that is, slightly higher than the true
value. This is mainly because the historical rotor speed during the shutdown process is
relatively large, which affects the true value in the digital filtering stage. This law is just
opposite to the startup process.

 
(a) (b) 

 
(c) (d) 

Figure 12. Rotor speed change diagram of HGU shutdown process. (a) Rotor speed change trend
during shutdown process. (b) Rotor speed at low-speed stage. (c) Rotor speed at speed-up stage.
(d) Rotor speed at stable stage.

5.4. Display of Monitoring System

This paper unifies the deployment of hardware devices and detection algorithms, and
develops a monitoring system for the rotor speed of HGU based on mobile applications. The
application of the HGU rotor speed monitoring system for continuous operation monitoring
of a HGU rotor in operation, and the experimental results are shown in Figure 13.

The main functions of the HGU rotor speed monitoring system include calling a camera
for real-time state monitoring, outputting algorithm recognition results for each stage of the
rotor, judging the current state of the rotor, and summarizing and recording dimensional
information such as time, state, and unit number, for users to view the historical state of the
unit at any time. Based on the algorithm proposed in this paper, the system can effectively
determine the rotor speed and current state of HGU, and the specific detection results are
shown in Figure 14.

Figure 14 shows the judgment results of the system, where Figure 14a–f show the six
operating states of the HGU, namely normal state, excitation state, acceleration state, air
brake state, deceleration state, and shutdown state. After testing, the monitoring system
can accurately identify the different operating states of the HGU.

The judgment results of the HGU rotor speed monitoring system are shown in Table 3.
From the table, it can be seen that the speed accuracy measured by the system is relatively
high, and the judgment of the unit’s operating status is accurate.
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Figure 13. The experimental results of HGU rotor speed monitoring system.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 14. State determination results. (a) Normal state. (b) Excitation state. (c) Acceleration state.
(d) Air brake state. (e) Deceleration state. (f) Shutdown state.
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Table 3. Judgment results of the rotor speed monitoring system for HGU.

Rotor Speed Judged State Actual State Is It Accurate?

107.230 Normal state Normal state Yes
102.300 Excitation state Excitation state Yes
16.509 Acceleration state Acceleration state Yes
67.825 Air brake state Air brake state Yes

104.498 Deceleration state Deceleration state Yes
0.000 Shutdown state Shutdown state Yes

The monitoring system can export the rotor speed change curve of the HGU starting
and stopping, as shown in Figure 15. The horizontal axis represents time, and the vertical
axis represents the rotor speed measured by the system.

 

(a) 

 

(b) 

Figure 15. Startup and shutdown process curve of HGU. (a) startup process curve of HGU.
(b) shutdown process curve of HGU.

378



Machines 2023, 11, 758

The monitoring system can store daily data in detail and accurately and display the
weekly or monthly data change trend in the data analysis module through the line chart.

The early warning module in the monitoring system can obtain abnormal data and
establish a dataset to be transmitted to the database. The fault diagnosis module can
identify abnormal data and diagnose faults with an accuracy rate of over 98%, and can
provide accurate diagnostic reports. The effectiveness of the system has been verified
through the application of the HGU rotor speed monitoring system for hydropower plants.

The performance comparison between the proposed method and the classical method
in this article is shown in Table 4. From the table, it can be seen that the method proposed in
this paper can achieve low-cost, noncontact, and high anti-interference RSM while ensuring
accuracy, which has greatly improved performance compared to classical RSM methods.

Table 4. Performance comparison of different rotor speed measurement methods.

RSM Method Precision
Additional Equipment

Configuration
Contact Measurement

Anti-
Interference

Toothed disc 0.001 Yes Yes High
PT residual pressure 0.01 Yes Yes Low
Photoelectric encoder 0.001 Yes Yes Low

Laser Doppler 0.01 Yes No Low
The method proposed

in this paper 0.001 No No High

6. Conclusions

This paper proposes a method for RSM and OSI of HGU based on the YOLOv5. First,
the YOLOv5 model is used to accurately capture the HGU rotor, then the period method
is used to calculate the speed, and finally the operation state of the HGU is judged by the
calculated speed. The method in this paper used to measure the speed of the HGU, which
realizes the long-distance, noncontact and high-precision RSM of HGU, helps the staff
better grasp the real-time operation of the HGU and makes the hydropower plant more
intelligent and efficient. The specific performance is as follows:

(1) Using binocular camera to photograph the rotor can ensure real-time monitoring of
the rotor.

(2) Accurately judging several different states of the HGU can help the staff find potential
safety hazards quickly and on time according to the alarm prompt information,
improve work efficiency and reduce labor costs.

(3) When the unit speed changes, the software can quickly follow its changing trend
while maintaining the precision.

Author Contributions: Conceptualization, J.S. and J.L.; methodology, L.X., H.L. and J.L.; software,
Python; validation, J.S., Y.L., R.Z. and J.L.; formal analysis, J.S. and L.X.; data curation, J.S., Y.L., R.Z.
and L.X.; writing—original draft preparation, J.S., L.X., R.Z. and J.L.; writing—review and editing, J.S.
and J.L.; project administration, J.L.; funding acquisition, J.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Key R & D Program of State Grid Shaanxi Electric Power
Company (SGTYHT/21-JS-223) and National Natural Science Foundation of China (52077176).

Data Availability Statement: Not applicable.

Acknowledgments: At the point of finishing this paper, I’d like to express my sincere thanks to all
those who have lent me hands in the course of my writing this paper. First and foremost, I would
like to thank my mentor Liu for his careful guidance at every stage of thesis writing. Secondly, I
would like to thank my research group, which not only gives me economic support, but also gives
me a perfect simulation platform. Last but not the least, I’d like to thank those leaders, teachers and
working staff especially those in the Xi’an University of Technology. Without their help, it would be
much harder for me to finish my study and this paper.

379



Machines 2023, 11, 758

Conflicts of Interest: We would like to submit the enclosed manuscript titled “A Method for Rotor
Speed Measurement and Operating State Identification of Hydro-generator Unit Based on YOLOv5”,
which we wish to be considered for publication in Machines. No conflicts of interest exit in the
submission of this manuscript, and manuscript is approved by all authors for publication. I would
like to declare on behalf of my co-authors that the work described was original research that has
not been published previously, and not under consideration for publication elsewhere, in whole or
in part.

References

1. De Santis, R.B.; Gontijo, T.S.; Costa, M.A. A Data-Driven Framework for Small Hydroelectric Plant Prognosis Using Tsfresh and
Machine Learning Survival Models. Sensors 2023, 23, 12. [CrossRef] [PubMed]

2. Geng, Q.; Liang, C. Turbine health evaluation based on degradation degree. Energy Rep. 2022, 8, 435–444. [CrossRef]
3. Duan, R.; Liu, J.; Zhou, J.; Wang, P.; Liu, W. An Ensemble Prognostic Method of Francis Turbine Units Using Low-Quality Data

under Variable Operating Conditions. Sensors 2022, 22, 525. [CrossRef] [PubMed]
4. Trojan, M.; Taler, J.; Smaza, K.; Wróbel, W.; Dzierwa, P.; Taler, D.; Kaczmarski, K. A new software program for monitoring the

energy distribution in a thermal waste treatment plant system. Renew. Energy 2022, 184, 1055–1073. [CrossRef]
5. Vashishtha, G.; Kumar, R. Autocorrelation energy and aquila optimizer for MED filtering of sound signal to detect bearing defect

in Francis turbine. Meas. Sci. Technol. 2022, 33, 015006. [CrossRef]
6. Zemouri, R.; Ibrahim, R.; Tahan, A. Hydrogenerator early fault detection: Sparse Dictionary Learning jointly with the Variational

Autoencoder. Eng. Appl. Artif. Intell. 2023, 120, 105859. [CrossRef]
7. Guerrero, J.M.; Lumbreras, C.; Reigosa, D.; Fernandez, D.; Briz, F.; Charro, C.B. Accurate Rotor Speed Estimation for Low-Power

Wind Turbines. IEEE Trans. Power Electron. 2020, 35, 373–381. [CrossRef]
8. Shang, L.; Cao, J.; Jia, X.; Yang, S.; Li, S.; Wang, L.; Wang, Z.; Liu, X. Effect of Rotational Speed on Pressure Pulsation Characteristics

of Variable-Speed Pump Turbine Unit in Turbine Mode. Water 2023, 15, 609. [CrossRef]
9. Fang, H.Q.; Chen, L.; Li, X.M. Comparisons of Optimal Tuning Hydro Turbine Governor PID Gains Based on Linear and

Nonlinear Mathematical Models. Proc. CSEE 2010, 30, 100–106.
10. Zhang, F.; Geng, Z.; Fu, J.; Pan, L. Flywheel Moment On-Line Determination Method and Application in Hydraulic-Turbine Unit.

J. Vib. Meas. Diagn. 2015, 35, 927–931, 994.
11. Li, X.; Wang, X.; Zhang, Z.; Wang, L. Three redundant intelligent speed measuring devices improve the safety of hydroelectric

power generation. Mech. Electr. Tech. Hydropower Stn. 2011, 34, 30+56.
12. Jia, X.; Wan, Q.; Zhao, C.; Du, Y.; Yu, H. Status and Prospect of Velocity Measurement Method with Optical Encoder. Instrum. Tech.

Sens. 2018, 3, 102–107.
13. Zhou, J.; Wei, G.; Long, X. Research on direction discrimination and low-speed measurement for laser Doppler velocimeter.

Infrared Laser Eng. 2012, 41, 632–638.
14. Xu, Z.; Shao, J.; Zhao, C.; Cao, S.; Xu, Z.; Jiang, Q. Intelligent Calibration System for Motor Vehicle Engine Speed Measuring

Instrument Based on LabVIEW and Machine Vision. Instrum. Tech. Sens. 2022, 6, 71–74+79.
15. Basmaji, T.; Yaghi, M.; Alhalabi, M.; Rashed, A.; Zia, H.; Mahmoud, M.; Palavar, P.; Alkhadhar, S.; Alhmoudi, H.; Alkhedher, M.;

et al. AI-powered health monitoring of anode baking furnace pits in aluminum production using autonomous drones. Eng. Appl.
Artif. Intell. 2023, 122, 106143. [CrossRef]

16. Fang, J.; Liu, C.; Zheng, L.; Su, C. A data-driven method for online transient stability monitoring with vision-transformer
networks. Int. J. Electr. Power Energy Syst. 2023, 149, 109020. [CrossRef]

17. Kong, Y.; Liu, Y.; Geng, J.; Huang, Z. Pixel-Level Assessment Model of Contamination Conditions of Composite Insulators Based
on Hyperspectral Imaging Technology and a Semi-Supervised Ladder Network. IEEE Trans. Dielectr. Electr. Insul. 2023, 30,
326–335. [CrossRef]

18. Liu, M.; Li, Z.; Li, Y.C.; Liu, Y.D.; Jiang, X.C. A Method for Transmission Line Defect Edge Intelligent Inspection Based on
Re-parameterized YOLOv5. High Volt. Eng. 2023, 1–11. [CrossRef]

19. Cui, H.Y.; Yang, K.X.; Ge, H.H.; Xu, Y.P.; Wang, H.R.; Yang, C.; Dai, Y.Y. Lightweight GB-YOLOv5m State Detection Method for
Power Switchgear. J. Electron. Inf. Technol. 2022, 44, 3777–3787.

20. Bai, J.P.; Wang, W.; Chen, Y.X.; Jiao, S.M. Detection and spatial location of wind turbine blades based on lightweight YOLOv5.
CAAI Trans. Intell. Syst. 2022, 17, 1173–1181.

21. Wang, N.T.; Wang, S.Q.; Huang, J.F.; Yao, R.T.; Liu, Y.F. Insulator defect detection method based on improved YOLOv5 neural
network. Laser J. 2022, 43, 60–65.

22. Duan, R.; Liu, J.; Zhou, J.; Liu, Y.; Wang, P.; Niu, X. Study on Performance Evaluation and Prediction of Francis Turbine Units
Considering Low-Quality Data and Variable Operating Conditions. Appl. Sci 2022, 12, 4866. [CrossRef]

23. Wang, H.; Hou, Y.C.; Ma, G.F.; Wu, G.K.; Wang, D.; Huang, B.; Wu, P.; Wu, D.Z. Identification on Vortex Rope in Francis Turbine
Draft Tube Based on Convkurgram. IEEE Trans. Instrum. Meas. 2022, 71, 7504014. [CrossRef]

24. Hao, S.; Yang, L.; Ma, X.; Ma, R.Z.; Wen, H. YOLOv5 Transmission Line Fault Detection Based on Attention Mechanism and
Cross-scale Feature Fusion. Proc. CSEE 2023, 43, 2319–2331.

380



Machines 2023, 11, 758

25. Li, X.B.; Li, Y.G.; Guo, N.; Fan, Z. Mask detection algorithm based on YOLOv5 integrating attention mechanism. J. Graph. 2023,
44, 16–25.

26. Pi, J.; Liu, Y.H.; Li, J.H. Research on lightweight forest fire detection algorithm based on YOLOv5. J. Graph. 2023, 44, 26–32.
27. Zhang, H.H.; Jia, Z.F.; Zuo, Y.D. Research on Range and Velocity Measurement Technology Based on Digital Processing. Inf.

Technol. Informatiz. 2019, 232, 215–217.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

381



Citation: Butt, A.Q.; Shangguan, D.;

Waseem, M.; Haq, F.u.; Ding, Y.;

Mukhtar, M.A.; Afzal, M.;

Muhammad, A. Ascertainment of

Hydropower Potential Sites Using

Location Search Algorithm in Hunza

River Basin, Pakistan. Water 2023, 15,

2929. https://doi.org/10.3390/

w15162929

Academic Editors: Zhengwei Wang

and Yongguang Cheng

Received: 30 May 2023

Revised: 29 July 2023

Accepted: 7 August 2023

Published: 14 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Ascertainment of Hydropower Potential Sites Using Location
Search Algorithm in Hunza River Basin, Pakistan

Asim Qayyum Butt 1,2,3, Donghui Shangguan 1,2,3,*, Muhammad Waseem 4, Faraz ul Haq 4, Yongjian Ding 1,2,3,

Muhammad Ahsan Mukhtar 1,2,3, Muhammad Afzal 2,5 and Ali Muhammad 1,2,3

1 Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences,
Lanzhou 730000, China; asimbutt7891@mails.ucas.ac.cn (A.Q.B.); dyj@lzb.ac.cn (Y.D.);
amscewre@gmail.com (M.A.M.); unahar.shigri@gmail.com (A.M.)

2 University of Chinese Academy of Sciences, Beijing 100049, China; iamafzal49@gmail.com
3 China-Pakistan Joint Research Center on Earth Sciences, CAS-HEC, Islamabad 45320, Pakistan
4 Centre of Excellence in Water Resources Engineering, University of Engineering and Technology Lahore,

Lahore 54890, Pakistan; dr.waseem@uet.edu.pk (M.W.); engraraz@uet.edu.pk (F.u.H.)
5 Xinjiang Institute of Ecology and Geography, University of Chinese Academy of Sciences,

Urumqi 830000, China
* Correspondence: dhguan@izb.ac.cn

Abstract: The recent energy shortfall in Pakistan has prompted the need for the development of
hydropower projects to cope with the energy and monetary crisis. Hydropower in the northern
areas is available yet has not been explored too much. Focusing on the sustainable development
goal (SDG) “Ensure access to affordable, reliable, sustainable and modern energy”, thirteen proposed
sites were selected from upstream to downstream of the Hunza River for analysis. The head on
all the proposed sites was determined by taking the elevation difference between the proposed
turbine and the intake at all sites. The discharge on all proposed ungauged sites was determined
using ArcGIS for watershed delineation and the area ratio method along with Soil Conservation
Service–Curve Number (SCS-CN) by using gauged data of Hunza River provided by Water and
Power Development Authority (WAPDA) Pakistan at Daniyor bridge Gilgit, Shimshal and the Passo
tributaries of Hunza River. The Location Search Algorithm (LSA) approach used a multi-criteria
decision-making tool (MDM) to make a decision matrix considering the location and constraint
criteria and then normalizing the decision matrix using benefit and cost criteria, the relative weights
were assigned to all criteria using a rank sum weighted method and the sites were ranked on the
basis of the final score. The results revealed that Hunza River has a significant hydropower potential
and based on the final score in the LSA approach, proposed site 13, site 4 and site 9 were concluded
as the most promising sites among proposed alternatives. The proposed methodology could be an
encouraging step for decision makers for future hydropower development in Pakistan.

Keywords: Hunza River Basin; hydropower; GIS; watershed delineation; MDM; location search algorithm

1. Introduction

As a renewable energy source, hydropower is a versatile, dependable, and economical
source of electricity generation and sustainable water-resource management [1]. Modern
and advanced hydropower plants are accelerating our transition to clean energy, providing
adequate power, and storage for irrigation purposes, and helping in climate-mitigation
services. Hydropower is the most environmentally clean kind of renewable energy, with its
emissions of greenhouse gases among the minimum. It contributes 16% of the world’s total
energy consumption [2]. In the near future, the installed energy capacity of hydropower
could reach more than 1064 GW, which would still be far less than the projected economi-
cally feasible hydropower generation. Economic constraints, urbanization, a revolution
in hydrological regimes, and less available resources are the main issues affecting the
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exploitation and allocation of potential hydropower sites in different parts of the world,
especially in developing countries, and about 70% of economically feasible hydroelectric
energy is yet to be developed due to these constraints. Hence, sustainable hydropower
could help us to meet the Paris agreement on climate change and the United Nations (UN)
agenda of sustainable development [3].

Pakistan, the sixth largest population in the world, is one of the developing countries
with an abundant potential for renewable energy resources; however, it is still facing a crisis
of power production and there is a shortfall of the energy of about 5000 MW to 8000 MW [4].
I should be noted that the Ministry of Water and Power in Pakistan documented the first-
ever energy policy in 2006 to mainstream hydropower development into the economic
plan of the country. The policy consisted of three main phases: long-term, medium-term,
and short-term plans. The short-term plans were designed to embellish the scheme to
provide an attractive incentive for renewable energy development; however, the objectives
could not be met due to financial and political constraints. A similar kind of situation was
observed in other phases of energy policy in Pakistan. In energy policy, the exploration of
different possible sites was also emphasized to put Pakistan on the renewable energy map
of the world, especially the northern areas of Pakistan, which have significant hydropower
potential which had still not been explored, mainly because of underinvestment by the
government in the energy sector, partly implemented policies along with structural reforms,
and a lack of proper identification of the hydropower potential of different rivers [5]. For
example, only the Indus River has a potential of 60 GW; however, only 19% of it has
been identified or used [6]. Moreover, despite a severe energy shortfall in the country,
the progress in sustainable energy development has been too slow to meet the demand
for energy in Pakistan, whereas hydropower installation has hastily increased worldwide.
Today, the recent energy crises have provoked the Ministry to identify the hydropower
potential of different rivers in-country and explore cheap, sustainable potential hydropower
sites to meet the country’s energy demands.

In the past, significant numbers of studies have been conducted for the estimation of
the hydropower potential of the river and suitable sites using different approaches and
tools. Most of these studies have used the classical approach or field investigation (one
of the traditional methods for hydropower potential), whereas recently, advanced tools
(e.g., Geographic Information Systems (GIS) and remote sensing (RS)) have been used
in many research studies [7–13]. The conventional method (paper mapping) consumes a
significant amount of money and time, which limits the scope of these methods, especially
in remote regions with complex terrains. Moreover, rational approximation simply uses the
river flow and elevation for power potential approximation through site survey at a single
point, or two points, or at a very small area [14]. However, high power potentials can be
found in inaccessible remote regions with rough terrain, making this technique impossible
for the reliable assessment of power potential and significant sites. In addition to that, the
chances of human error and the effect of subjective judgment hinder the reliability of these
methods [15].

To overcome these difficulties, GIS and RS techniques and Geo-Spatial Information
Systems (GSIS) have recently been adopted for location analysis because of their time- and
cost-effectiveness. For example, [14] used GIS for assessing hydropower potential using the
spatial decision support system. Other than this, numerous studies have been conducted
to analyze GIS data and search for suitable locations [16,17], also recommended a location-
analysis method for searching hydropower potential sites using GSIS. In addition, several
studies have also used the spatial process-based development of location analysis systems
by managing and analyzing RS data using GIS [18]. The mentioned studies comprehensibly
considered various aspects of location analysis (e.g., environmental, economic, and social);
however, they did not utilize precise methodology for the selection of a site based on
multivariable, rather than the single-head, difference between the powerhouse and the
weir of the site.
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For location search analysis, techniques based on the multivariate, multi-criteria
decision-making tool (MDM) are convenient methods that allow us to rank other options
and to choose a suitable one among them by assessing up to a few measures. These
methods are considered a useful technique to analyze the issues related to decision-making
processes. More specifically, MDM is a process to find the optimum alternative from all the
available practicable options [19,20]. In recent years, the use of MDM approaches (e.g., a
technique for order preference by the simulation of the ideal solution (TOPSIS), the analytic
hierarchy process (AHP) and analytic network process (ANP) method) for the complicated
problem have increased, especially in water resource engineering and management [21–24].
Similarly, a study by [25] focused on the review of reservoir operation optimizations using
a Metaheuristic Algorithm.

Hence, focusing on the sustainable development goal (SDG) “Ensure access to afford-
able, reliable, sustainable and modern energy” [26], and keeping in view the utilization of
MDM and GIS, a location-analysis methodology was adopted to search for hydropower
potential sites in the Hunza River basin and select the most promising hydel potential site
at Hunza River. Details about the study area, methodology, results, and conclusion are
represented in the following sections, respectively.

2. Materials and Methods

The methodology was adopted in this study to identify the best suitable location for
hydropower generation using GIS and MDM approaches as represented in the flowchart
(Figure 1). The detailed description is provided below.
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Figure 1. Flow chart of the adopted methodology.
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2.1. Study Area

The study area, i.e., Hunza River basin (36.31◦ N, 74.64◦ E), as shown in Figure 2, is
located in the mountainous valley in Gilgit-Baltistan, Pakistan, and has a basin area of
13,733 km2 with a 231.76 km total length of the river. Several medium- and small-sized
perennials as well as non-perennial tributaries cum rivers, and streams, such as Chalt,
Daniyor, Chupurson, Khyber, Khuda_abad, Khunjeraab, Hisper, Hassanabad, Misgar,
Hoper, Nalter, Rakaaposhi, Verjerab and Shimmshal, contribute to the flow of Hunza River,
making its mean annual flow 323 m3/s. The Hunza River basin joins the Nalter River and
the Gilgit River before it falls into the mighty Indus River [4].

Figure 2. Study Area, i.e., Hunza River Basin.

Hence, keeping in mind the possibility of hydropower potential in the Hunza river
basin, the current study focuses on the identification of suitable sites in Hunza district,
Gilgit-Baltistan, Pakistan. To conduct the identification of potential sites, the flow data
were collected from the Surface-water Hydrology Project of Water and Power Development
Authority (SWHP-WAPDA) of Pakistan for a period of 55 years (1960–2015) at Daniyor
Bridge and for a period of 20 years (1995–2015) at Shimshal and Passo tributaries. The
meteorological data of four available stations, i.e., Khunjerab, Naltar, Passo, and Khunjerab
were obtained for the assessment of flow at different sub-basins. Moreover, the open-
access Advanced Spaceborne Thermal Emission (ASTER)’s 30 m Digital Elevation Model
(http://srtm.csi.cgiar.org) (accessed on 28 July 2018) was used for GIS-based DEM process-
ing and the estimation of elevation, area and available head and different proposed sites.

2.2. Multi-Criteria Decision Making (MDM)

Multi-criteria decision-making (MDM) is used for screening, prioritizing, selecting,
or ranking the alternatives, and relies on the human assessment of a finite number of
options according to a number of competing standards. The steps involved in MDM follow
the sequence of (1) the selection of criteria; (2) the estimation of location criteria; (3) the
normalization of location and constraint criteria; (4) assigning the weights to individual
criteria; (5) the final Ranking of suitable sites based on the weighted average score; and
(6) the estimation of hydropower potential and plant factor and conclusion.
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Step 1: Selection of Criteria.

Considering conditions of the study area, different topographic, hydrologic, wa-
ter resource-related, and socioeconomic criteria were used based on extensive litera-
ture, i.e., Refs [12,15,27,28], etc. The criteria were subdivided into location and constraint
criteria, as represented in Table 1. For power calculations, head and discharge were used.
Head and discharge were included in the location criteria and were estimated using GIS
and a mathematical equation, respectively. The constraint criteria (as used by [11]) consist
of criteria which can affect the sustainability of hydropower sites rather than the discharge
and head. Furthermore, these constraint criteria were also divided based on the benefit
(higher value represents positive aspect) or cost (higher value represents negative) aspect.
Table 1 depicts the power criteria and constraint criteria along with their order number for
MDM processing.

Table 1. Criteria for selection of best alternative.

Criterion
Location Criteria Constraint Criteria

(Power) (Environmental)

Definition Head Discharge Site
Access

Agriculture
Area

Residential
Area

Interaction with
other HPP *

Benefit or Cost aspect Benefit Benefit Benefit Cost Cost Cost

Note(s): * HPP = Hydropower Project.

Based on benefit and cost criteria analysis, the intangible criteria were converted to
numerical values (from zero to ten) to create a decision matrix for each site, as shown in
Table 2. If the proposed site contains a large agriculture area, the environmental impact
assessment is considered, and resettlement issues would occur in case of construction of a
hydropower project at that location. So, a value of 1 will be assigned to it according to the
scale. Similarly, if the selected proposed location has a much smaller agriculture area, it
means that no issues of environmental impact assessment would rise. So, a value of 9 is
assigned to it. Similarly, a site with a particularly good access gets a value 9 on the scale
while a site with difficult or no access is assigned a value up to 1.

Table 2. Values have been arbitrarily assigned to the constraint criteria. (Benefit criteria and cost criteria).

Benefit Criteria Values Cost Criteria

00
Very Low 01 Very High

Low 03 High
Average 05 Average

High 07 Low
Very High 09 Very Low

10

Step 2: Estimation of Location Criteria.

(a) Head Determination at Proposed Sites

Thirteen search points were proposed as hydropower potential sites along the cen-
terline of the river for marking the proposed locations of the plant. These search points
were taken as locations of the powerhouse where turbines were to be installed. It was
known that the Hunza River is completely supported by glacier-fed tributaries. So, from
upstream to downstream, all thirteen recommended locations were chosen by selecting
search points right before a new tributary to receive a varied discharge at each site to
further examine its appropriateness. At all these search points, the longitude and latitude
were marked on the map, as shown in Figure 3. Sites were selected on a GIS map along the
river centerline to mark proposed plant/turbine locations and intake locations. Proposed
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sites were marked using ArcGIS Editor Toolbar. The elevation at each proposed site was
extracted from DEM using a spatial analyst tool. Then, head was calculated for all thirteen
search points/sites using the difference between the elevation head and tail water level.
The head was calculated using the difference in elevation of the intake point and the turbine
position. Three factors were examined while determining the natural head at each search
site. First, upstream of each search location, a suitable thin cross-section of the river was
discovered. Second, there was a curve to achieve a better fall or head at the powerhouse
locations, and third, there was a cup-shaped valley behind the sites where a reservoir could
be built.

Figure 3. Proposed Alternatives/Sites in Hunza River Basin.

(b) Estimation of Flow Duration Curve at Ungauged Sites

The data were obtained using the Soil Conservation Service Curve Number (SCS-CN)
approach and the area ratio method for ungauged stations due to the lack of discharge data
at various places. To estimate the discharge of sub-basins with meteorological stations, the
SCS-CN approach was used, while the area ratio method was used to synthesize the data
of remaining points. Moreover, watershed delineation at all thirteen points was carried
out to divide the Hunza basin into thirteen sub-basins and the catchment characteristics
(e.g., area, length, and CN) were estimated using GIS. Details of the SCS-CN method and
area ratio method are given below.
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The SCS-CN is the most widely used method for runoff estimation at the ungauged
basin. SCS-CN is developed by the United States Department of Agriculture, keeping
in view the hydrologic abstraction and land represented by CN. The curve number (CN)
mainly depends on land use, soil type, and antecedent moisture conditions (AMCs) [29–31].
The SCS-CN is the most popular method for the hydrology of small catchment due to its
simplicity, the incorporation of many factors, and well [30]. Using the SCS-CN method, the
runoff (Q) is estimated using rainfall (P), curve number (CN), and initial abstraction (Ia),
as given below:

P − Ia − Q
S

=
Q

P − Ia
(1)

Q =
(P − λS)2

P + (1 − λ)S
P � λS else Q = 0 (2)

where S is maximum potential retention and calculated S =
(

1000
CN − 10

)
if P in inches and

S =
(

2540
CN − 25.4

)
if P in cm, λ = 0.2, and CN is the tabulated dimensionless index and

ranges from 0–100. For the current study, CN was taken as 80 for the area of Hunza, as
Hunza is very vegetative and grassy.

In cases where no flow data are available, then the area ratio method can be used for
the estimation of flow for sites using existing data from one or more nearby homogenous
streamflow-gauging stations [32]. In the area ratio method, it is assumed that the runoff
per unit area in the target ungauged basin is equal to that in the donor basin. To estimate
the runoff of the target ungauged basin (Qu), this method is quite simple and requires the
runoff of the donor (Qg), area of the donor (Ag), and area of the target ungauged basin (Au).
Several studies have used the area ratio method and found it quite effective in the region
with a scarce gauging network [33–35]. Moreover, it is widely used in the region, where
still no rainfall–runoff relation has been developed.

Qu = K
(

Au

Ag

)φ

× Qg (3)

where φ is an exponent parameter estimated by the regression analysis of flow and area of
the gauged basin, and K is a bias correction factor = 1.0 [32,35].

Following the estimation and collecting of flow data at each of the thirteen locations,
the flow duration curve (FDC) for each of the points that were chosen was generated. To
produce FDC, the runoff from each suggested site was separately arranged in descending
order. Following this step, the associated percentiles were determined using the Weibull
plotting algorithm. Furthermore, for the current study, Q100, Q90, Q80, Q70, Q60, and Q50,
were extracted from the FDC of each proposed location.

Q100 represents the flow that is equaled or exceeded 100% of the time. Q50 represents
the flow that is equaled or exceeded 50% of the time.

Step 3: Normalization of location and constraint criteria.

After the estimation of location criteria and conversion of constraint criteria into numer-
ical values, a combined decision matrix for each proposed site was developed. The decision
matrix was then normalized based on benefit and cost criteria using Equations (4) and (5),
respectively.

For Benefit Criteria nij =
bij − bmax

bminmax
(4)

For Cost Criteria nij =
cijmax

cminmax
(5)

where bij represents the ith value of jth benefit criteria, and cij indicating the ith value of jth
cost criteria, max, and min in subscript represents the respective maximum and minimum
value of cost and benefit criteria, and nij is the normalized value.
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Step 4: Assigning the weights to individual criterion.

The rank-sum weighted approach was used after the decision matrix was normalized
and weights were assigned to each criterion. The weights in the rank-sum (RS) method
are the normalized rankings of the individuals, which are determined by dividing their
combined ranks by the sum of all ranks [36].

Wj =
2
(
n + 1 − rj

)
n(n + 1)

(6)

where rj is the jth criterion’s ranking and j = 1, 2, 3. . .. . .n.

Step 5: Final Ranking of suitable sites based on the weighted average score.

After the determination of relative weights for each criterion, each relative weight was
multiplied by its associated criterion, and the sum of these six weights was used to rank
the recommended sites.

Step 6: Estimation of hydropower potential and plant factor.

After evaluating the feasible locations using the MDM approach, the available hy-
dropower potential was calculated for all recommended sites in the Hunza river basin
using a worldwide efficiency of 81% [27].

P =
ηρgHQ

1000
(7)

where η = global efficiency, typically from 75 to 88 (%), g = gravitational acceleration,
9.81 (m/s2), ρ = density of water 1000 (kg/m3), P = mean annual electric power (kW),
H = head (m), Q = discharge (m3/s), i.e., Q50 is used for the discharge for the calculation
of power as Q50 represents the flow that is equaled or exceeded 50% of the time [37].
According to [38], the flow rate in Q50 is almost constant throughout the year, despite being
lower than in Q75 and Q90. As a result, this discharge has been used in this study’s Q50
estimation of rivers’ potential for producing power.

Furthermore, for the calculation of the plant factor, using the average discharge
equation, Qavg, the energy (E) in GWh was calculated using Equations (8) and (9) and then
the plant factor using Equation (10).

Qavg =
[Q100 + Q90 + Q80 + Q70 + Q60 + (5 ∗ Q50)]

10
(8)

where Q100, Q90, Q80, Q70, Q60 and Q50 are the percentage exceedances of discharges for
each site from flow duration curves at 100%, 90%, 80%, 70%, 60% and 50% probability.

E =
8.76 ∗ η ∗ Qavg ∗ g ∗ H

1000
(9)

where E is energy in GWh, H = head (m), g = gravitational acceleration, 9.81 (m/s2),
η = global efficiency, typically from 75 to 88 (%) and Qavg is derived from Equation (7).

Plant factor =
E

8.76P
× 100 (10)

where E is energy in GWh, and P is power in MW.

3. Results

3.1. Head Determination

For assessment of the head at the marked thirteen sites, the elevations of both the
proposed dam/weir and powerhouse locations were derived using DEM processing with
the spatial analyst tools of GIS. The derived profile of the Hunza River is graphically
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represented in Figure 4 by using the derived elevation of each site against the reduced
distance (RD) along with the derived river profile of Hunza River with respect to the
elevation of the intake point of the proposed sites. The RD was taken from the upstream to
downstream of the river in such a way that site one (1) was considered RD 0 km and so on.
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Figure 4. The derived elevation profile of the Hunza river.

For the purpose of head determination, locations were chosen on a GIS map of the
Hunza River basin along the river’s centerline to indicate potential plant/turbine locations
and intake locations. ArcGIS Editor Toolbar was used to mark proposed locations. Using
the spatial analyst tool, the elevation at each proposed site was extracted from the DEM.
The difference between the elevations of the head and tail waters is then used to calculate
the head for each of the thirteen search points/sites. The first point was used as the
intake point and the second as the powerhouse/turbine position to calculate the elevation
difference/head, as shown in Table 3. Based on the results, it was observed that sites 5, 4,
and 1 have the top three highest heads, i.e., 117, 94.5 and 80.79, respectively.

Table 3. Sites/alternatives in Hunza River basin along with their heads.

Site No. 1 2 3 4 5 6 7 8 9 10 11 12 13

Head
(m) 80.79 75.23 38.41 94.5 117.0 80.48 46.34 0.91 30.18 21.0 29.80 28.0 81.70

3.2. Watershed Delineation for All Sites

The catchment characteristics, including the watershed area of each site and CN, were
calculated using GIS and CN-Tables to carry out the estimation of discharge with SCS-CN
and AR methods. Figure 5 shows the watershed delineation from upstream to downstream
using the arc hydro tool in GIS.
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Figure 5. Watershed delineation of Hunza River at all 13 proposed alternatives.

3.3. Estimation of Flow Duration Curve at Each Site

As the accumulation of flow increases from upstream to downstream, site 13 has the
highest value of discharge, while site one (1) has the lowest value of discharge. Furthermore,
the discharge values at each site were used to develop flow-duration curves, as shown
in Figure 6.
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Site 4 Site 5 Site 6 

Figure 6. Cont.
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Figure 6. Flow-duration curves for discharges at all 13 proposed alternatives/sites.

3.4. Hydropower Potential

Calculated using Equation (6), the hydropower availability for all thirteen proposed
sites is depicted in Table 4.

Table 4. Hydropower availability for all thirteen proposed sites.

Site No. Q50 (Cumecs) H (meters) g (m/s2) η Density (kg/m3) P (MW)

1 7.512 80.79 9.81 0.81 1000 04.82
2 16.210 75.23 9.81 0.81 1000 09.69
3 22.967 38.41 9.81 0.81 1000 07.01
4 32.566 94.50 9.81 0.81 1000 24.45
5 34.409 117.0 9.81 0.81 1000 31.99
6 38.124 80.48 9.81 0.81 1000 24.38
7 58.687 46.34 9.81 0.81 1000 21.61
8 60.648 0.91 9.81 0.81 1000 0.44
9 75.091 30.18 9.81 0.81 1000 18.00
10 78.383 21.0 9.81 0.81 1000 13.08
11 79.804 29.80 9.81 0.81 1000 18.90
12 88.079 28.0 9.81 0.81 1000 19.60
13 92.805 81.70 9.81 0.81 1000 60.25
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3.5. Selection of Suitable Sites Using MDM Method

The numerical values were assigned to constraint criteria, as shown in Table 5, based
on expert opinions and field analysis. Table 5 also shows the complete decision matrix,
having both location and constraint criteria in numerical form for each proposed site.
This decision matrix was further normalized based on benefit and cost criteria using
Equations (3) and (4).

Table 5. Decision matrix with numerical values assigned to intangible criteria (Cost-wise and benefit-wise).

Site
No.

Power
(MW)

Site
Access

Agriculture
Area

Residential
Area

Interaction
with Other HPP

1 04.82 5 9 9 9
2 09.69 7 9 9 9
3 07.01 5 9 9 9
4 24.45 7 3 3 9
5 31.99 7 9 9 9
6 24.38 7 9 9 9
7 21.61 5 5 3 9
8 0.44 7 5 3 9
9 18.00 7 3 3 9
10 13.08 7 3 3 9
11 18.90 5 5 5 9
12 19.60 7 5 3 9
13 60.25 7 5 3 9

After the decision matrix was obtained in a numerical valued form, it was normalized
on the basis of the benefit and cost criteria. As shown in Table 6, for the benefit criteria, the
largest value is 60.25 for site 13. Then, all values of power were divided by 60.25., i.e., for
site 13, 60.25/60.25 = 1.0. Similarly, for site 1, 4.823/60.25 = 0.08005.

Table 6. Normalized decision matrix after using the numerical scale on intangible criteria (benefit
and cost wise).

Site No.
Power
(MW)

Site Access
Agriculture

Area
Residential

Area
Interaction with

Other HPP

1 0.080 1.0 0.33 0.33 1.0
2 0.161 1.0 0.33 0.33 1.0
3 0.116 1.0 0.33 0.33 1.0
4 0.406 1.0 1.0 1.0 1.0
5 0.531 1.0 0.33 0.33 1.0
6 0.405 1.0 0.33 0.33 1.0
7 0.359 1.0 0.60 1.0 1.0
8 0.007 1.0 0.60 1.0 1.0
9 0.299 1.0 1.0 1.0 1.0
10 0.217 1.0 1.0 1.0 1.0
11 0.314 1.0 0.60 0.60 1.0
12 0.325 1.0 0.60 1.0 1.0
13 1.0 1.0 0.60 1.0 1.0

For the cost criteria, the smallest value is 3 in the case of the agriculture area, then for
all values of this, criterion 3 was divided by all the values of the proposed sites., i.e., for site
13, agriculture area would be 3/5 = 0.6, and the least value, i.e., 3/3, would obtain a value
of 1.0.

Furthermore, the relative weights were estimated based on Equation (6) as depicted
in Table 7.
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Table 7. Relative weights of all criteria by their preferences.

Criterion Preference
Relative
Weight

Power 1 0.333
Site Access 2 0.267

Agriculture Area 3 0.200
Residential Area 4 0.133

Interaction with other HPP 5 0.067

As indicated in Table 8, the relative weights were multiplied by each appropriate
criteria for each site, and the sum of all criteria was used as the final score for the recom-
mended sites.

Table 8. Weighted decision matrix (normalized decision matrix * relative weights).

Site No.

Results Obtained by Multiplying Criteria with Relative Weights
Sum of All Criteria

WeightagePower Site Access
Agriculture

Area
Residential

Area
Interaction with

Other HPP

1 0.0173 0.2667 0.0667 0.0444 0.0667 0.4618
2 0.0348 0.2667 0.0667 0.0444 0.0667 0.4793
3 0.0251 0.2667 0.0667 0.0444 0.0667 0.4696
4 0.0877 0.2667 0.20 0.1333 0.0667 0.7544
5 0.1148 0.2667 0.0667 0.0444 0.0667 0.5593
6 0.0875 0.2667 0.0667 0.0444 0.0667 0.5319
7 0.0775 0.2667 0.120 0.1333 0.0667 0.6642
8 0.0016 0.2667 0.120 0.1333 0.0667 0.5883
9 0.0646 0.2667 0.20 0.1333 0.0667 0.7313
10 0.0469 0.2667 0.20 0.1333 0.0667 0.7136
11 0.0678 0.2667 0.120 0.0799 0.0667 0.6012
12 0.0703 0.2667 0.120 0.1333 0.0667 0.6570
13 0.2162 0.2667 0.120 0.1333 0.0667 0.8029

Table 9 shows the final rankings of the proposed sites based on sum of all criteria
weightages and Table 10 depicts the energy and plant factors for the proposed sites along
with their hydropower potentials.

Table 9. Ranking of each proposed site based on the final score.

Site No. Longitude Latitude
Sum of All Criteria Weightage

(from Table 8)
Final Rankings

1 74.95 E 36.79 N 0.4618 13
2 74.82 E 36.74 N 0.4793 11
3 74.81 E 36.69 N 0.4696 12
4 74.85 E 36.61 N 0.7544 2
5 74.86 E 36.52 N 0.5593 9
6 74.87 E 36.51 N 0.5319 10
7 74.90 E 36.46 N 0.6642 5
8 74.86 E 36.37 N 0.5883 8
9 74.66 E 36.30 N 0.7313 3
10 74.61 E 36.28 N 0.7136 4
11 74.35 E 36.25 N 0.6012 7
12 74.35 E 36.25 N 0.6570 6
13 74.29 E 36.08 N 0.8029 1
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Table 10. Hydropower potential of the proposed sites in Hunza River basin.

Site No. 1 2 3 4 5 6 7 8 9 10 11 12 13

Power (MW) 4.82 9.69 7.01 24.45 31.99 24.38 21.61 0.44 18.00 13.08 18.90 19.60 60.25
Energy (GWh) 31.41 63.13 45.66 159.3 208.4 158.9 140.8 02.85 117.3 85.22 123.1 127.7 392.6
Plant factor (%) 74.39 74.37 74.39 74.39 74.39 74.39 74.39 74.39 74.39 74.39 74.39 74.39 74.39

4. Discussion

Based on the analysis and final score in the LSA approach, proposed Site 13 (36 05′05′′ N,
74 17′34′′ E), Site 4 (36 37′02′′ N, 74 51′10′′ E), and Site 9 (36 18′28′′ N, 74 39′57′′ E) were
concluded as the best locations among all proposed thirteen alternatives (Table 9).

Hydropower potential assessment of Hunza River basin resulted that this basin has
huge potentials (Table 10) for development of hydropower. Moreover, analysis based on
individual site resulted that the most suitable site, i.e., site 13 have 392.6 GWh energy
potential, whereas site 4 have 159.3 and Site 9 has 117.3 GWh energy potential. On the other
hand, site 5 has a comparatively high energy potential of 208.4 GWh but ranked 6 based
on the MDM approach. It was mainly because of comparatively low benefit and high-cost
constraints. Therefore, it was concluded that the only availability of significant favorable
location criteria does not rank the site as the most suitable location, whereas other factors
like constraint criteria also play a vital role in overall suitability. Hence, this study will
provide an initial assessment and thorough analysis for the development of hydropower
projects in the study area.

5. Conclusions

Hydropower is one of the clean, abundant, and renewable sources of energy that
could help the country to meet the increasing energy demand and integrate intermittent
renewables into the energy grid. Hunza River basin, situated in northern area Pakistan,
was taken as the study area, and suitable hydropower locations were marked using GIS,
Multi-Criteria Decision Making (MDM), and final score. Based on the location search
algorithm and final scores, it is concluded that the Hunza River basin has an enormous
potential for hydropower and that site 13, site 4, and site 9 could be considered as the
three top probable sites among all alternatives, with potential hydropower availability
estimations of 60.25 MW, 24.25 MW, and 18.01 MW, respectively.

It is important to note that the proposed methodology cannot replace fieldwork, but
it can save time and give an accurate initial idea of potential sites. As a result, this study
will help policymakers in the energy sector analyze current energy resources and locate
areas with the potential for hydropower. Additionally, creating indices for those elements
that could be used as constraint and location criteria will be necessary in the future to
strengthen and improve the discriminating ability between searching spots, even in tiny
regions. Therefore, results can be repeated in scenarios where sizable amounts of water and
potential heads are present in Pakistan’s northern regions, including Azad Kashmir. This
study could not cover the geological studies, tectonic movements, sliding and riverbed
investigations in the study area. All the understudy sites were conceived with a dam
and powerhouse at the toe without any headrace tunnel. Future work can be carried out
covering other aspects of ascertainment.
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Abstract: China has a vast scale of hydropower, and the small hydropower stations account for
a large proportion. In flood season, the excessive inflow keeps these stations at a high reservoir
level, leading to a worse condition of hindered power output and a great error in the calculation
of power generation. Therefore, this paper proposes a mid-term optimal scheduling model for
low-head cascaded hydropower stations considering inflow unevenness, in which the power output
is controlled by the expected power output curve and daily inflow–maximum power output curve.
A case study of nine hydropower stations on the Guangxi power grid shows that, regardless of
considering the fitted curve or not, there are different degrees of error between the planned and
actual situations. However, the error and power generation are decreased when considering the fitted
curve, which reflects the impact of hindered power output. Meanwhile, according to the comparison,
the weekly plan is more in line with the real condition when using this model to solve the problem.
The results indicate that this model improves the accuracy of power output calculation for low-head
hydropower stations with uneven inflow, playing a key role in the process of scheduling.

Keywords: inflow unevenness; low-head hydropower stations; hindered power output; mid-term
optimal scheduling

1. Introduction

In recent years, more and more studies have focused on the mid-term optimal schedul-
ing of hydropower stations for its comprehensive function [1]. On the one hand, it has the
ability to meet the needs of the power market in time and maintain the balance between
supply and demand [2]. Therefore, in power market transactions and dispatching, it can
optimize the economic benefits and improve the market competitiveness of hydropower
stations based on market prices and competition conditions [3]. On the other hand, mid-
term scheduling considers future water inflow, seasonal changes in hydropower’s power
output, and the probable trend of the power market’s development. Over a long period, it
can reasonably dispatch water resources to make full use of water inflow and reduce spilled
water. Thus, it appears to be significant to derive the best plan for mid-term scheduling.

For cascade hydropower stations, there are commonly three methods for addressing
hydropower scheduling problems [4]—linear programming (LP), heuristic algorithms, and
dynamic programming (DP)—and each method has its advantages and shortcomings. The
biggest advantage of linear programming is that it is a feasible solution that is easier to
derive compared with other methods [5], but the restrictions are equally obvious because
this method is only suitable for the condition that the constraints and the objective func-
tion are all linear. When it comes to nonlinear problems, there is no solution using this
method [6], and the other two methods appear to be functional. Heuristic algorithms,
such as genetic algorithms (GA) [7], particle swarm optimization (PSO) [8], ant colony
optimization (ACO) [9], and simulated annealing (SA) [10], are more suitable to solve the
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problem of large-scale cascaded hydropower stations on account of their powerful comput-
ing ability. However, what hinders their development is that heuristic algorithms easily
prematurely converge to a locally optimal solution. As for dynamic programming [11],
it is widely adopted in cascaded hydropower station scheduling. It divides a complex
problem into several easier subproblems and obtains the globally optimal solution by
solving the subproblems. Nevertheless, the curse of dimensionality appears as the scale of
the problem increases, making it difficult to figure out a high-dimensional problem. On this
issue, a great deal of improved dynamic programming algorithms [12], like progressive
optimality algorithms (POA) [13,14], dynamic programming with successive approxi-
mation (DPSA) [15,16], and discrete differential dynamic programming (DDDP) [17,18],
come into use. For example, Shen et al. [19] proposed a method combined with random
sampling and a progressive optimality algorithm to address the problem of the curse of
dimensionality caused by the large scale of cascaded hydropower stations, and the results
proved that the amount of computation is greatly reduced. Li et al. [20] proposed an
improved decomposition–coordination and discrete differential dynamic programming
(IDC-DDDP) method to solve the problem of optimizing large-scale hydropower systems.
He et al. [21] proposed an improved DPSA with a relaxation strategy (named DPSARS)
based on the above mathematical derivations to solve the long-term joint power generation
scheduling (LJPGS) of a large-scale hydropower station group (LHSG) and improved the
calculation accuracy.

However, there is a large error for low-head hydropower stations if we derive solu-
tions through these methods directly. Compared with high-head hydropower stations with
robust adjustment ability, like the Three Gorges hydropower station, which plays a vital role
in the optimal scheduling of reservoirs [22], the practical plan of low-head hydropower sta-
tions is more difficult to derive [23]. On the one hand, these low-head hydropower stations
have small storage capacity, making it hard for them to change the power output in time
based on inflow, especially when it comes to extreme rainfall. Meanwhile, due to the inflow
being uneven every day, if we ignore the variation in inflow within a day and calculate
power output with mean daily inflow, there is much error for power generation and water
spillage. Although in many studies inflow unevenness is not considered—for example,
Fredo et al. [24] related output with head, turbine outflow, and efficiency of the generating
units to derive the operation rules in long-term optimal scheduling without considering
inflow unevenness—in reality, inflow unevenness seriously affects the accuracy of optimal
scheduling. Over the past 30 years, optimal scheduling considering inflow unevenness has
gradually been studied. Ge et al. [25] proposed a novel stochastic optimization algorithm
using Latin hypercube sampling and Cholesky decomposition combined with scenario
bundling and sensitivity analysis (LC-SB-SA) to address the problem of inflow unevenness.
Akbari et al. [26] integrated fuzzy-state SDP and multicriteria decision making to address
inflow unevenness for a single reservoir. Zhang et al. [27] estimated the unevenness of
reservoir operating rules through the Bayesian model averaging model, which combined
three popular operating rules to reduce the unevenness of operating rules. Wang et al. [28]
developed a hedging model for hydropower operation, which determined more rational
carryover storage decisions when considering inflow unevenness. On the other hand, these
low-head hydropower stations have small storage capacity, so it is possible for them to
experience significant fluctuations in water level. In flood season, the inflow surges, and if
the reservoir is already near or at its water level limit, measures including flood discharge
and water release should be taken to control the reservoir’s water level to prevent safety
issues. As a result, frequent fluctuations in water level can result in unstable generating
flow, which reduces the efficiency of the turbine, and, finally, leads to hindered power
output. This is why, with the increase in inflow, low-head hydropower stations’ power
output increases first and then decreases. Additionally, when it comes to extreme rainfall,
the tailwater level of hydropower stations continues to rise and the water head for generat-
ing becomes lower, leading to the result that power output is seriously hindered [29] and
estimating low-head hydropower stations’ power output becomes more difficult. In the
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past, the expected output curve was used to compute power output, but the results were
quite different from the actual ones for the reason that hindered power output was not
considered. Consequently, optimal scheduling of low-head hydropower stations is more
complex, especially in the mid-term scheduling with a day as the time interval and a week
or month as the scheduling period.

This paper puts forward a mid-term optimal operation model for low-head cascaded
hydropower stations considering inflow unevenness. In this model, the power output is
controlled by the expected power output curve and inflow–maximum power output curve
which reflects the influence of daily inflow on the maximum power output. Compared
to the traditional method that only uses the expected power output curve to limit power
output, this model considers the influence of water head and daily inflow on power output
simultaneously to reduce the error brought by hindered output and inflow unevenness.
The characteristic of this model is that it first calculates the maximum power output
corresponding to the two curves, and then takes the minimum value as the maximum
power output limit. Therefore, we can use the most suitable curve to limit power output
in different conditions. In flood season, inflow unevenness has a greater impact on the
power output due to a surge in inflow, so the inflow–maximum power output curve
is mainly used to control the power output. In the dry season, the impact of inflow is
small, so the calculation of power output is mainly based on the expected power output
curve. In order to solve this mid-term optimal scheduling model of low-head cascaded
hydropower stations, it is necessary to consider the relationship between upstream and
downstream inflow and then compute the hindered output. Through the process, this
model significantly improves the accuracy of optimal scheduling of low-head hydropower
stations and overcomes the difficulty of model solution caused by the dual factors—uneven
inflow and hindered power output. Meanwhile, it enhances the practicability of low-head
cascaded hydropower stations’ mid-term optimal scheduling, enabling us to allocate water
resources rationally and improving low-head hydropower stations’ utilization efficiency.

The remainder of this paper is organized as follows. Section 2 provides details of
the methodology, including optimization model construction and its solution method.
Section 3 describes a case study of nine hydropower stations on the Guangxi power grid
and presents the results and analysis. Finally, Section 4 states the conclusion of the study.

2. Materials and Methods

As Figure 1 shows, in flood season, the inflow seriously fluctuates in a day. The most
significant impact of uneven inflow is the frequent fluctuation of reservoir level, which
prevents the hydropower stations from running at a stable generating head. Hydropower
stations’ units thereby require constant adjustments to keep them functioning reasonably.
This not only results in increased equipment wear and tear but also reduces the efficiency
and stability of power generation. Furthermore, most small hydropower stations are con-
sidered runoff hydropower stations for lacking stability [30]. On this occasion, neglecting
the intra-day variation of inflow and calculating power output based on the average daily
inflow may lead to great errors. This can result in unnecessary water spilling while meeting
the constantly changing demands of the power grid. Therefore, the drastic fluctuations in a
short time caused by uneven inflow lead to longer system response times and complicate
the scheduling optimization.

In view of the particular situation, the constraints of inflow and generating heads are
considered simultaneously in this model to restrict power output, making the calculation
more accurate. First, fit the relationship between daily inflow and the maximum power output
of each hydropower station in each month. Second, build the mid-term optimal operation
model of low-head cascaded hydropower stations. In this model, the power output of the
hydropower stations in each period is controlled by the curve of head–expected power output
and the curve of inflow–maximum power output. At last, solve this optimal model in
the condition that the relationship between upstream and downstream is considered, and
meanwhile, calculate the hindered power output.
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Figure 1. Inflow process on a day in July at Jinjitan and Jinniuping hydropower station.

2.1. Optimal Model
2.1.1. Daily Inflow–Maximum Power Output Curve

The steps to obtain the daily inflow–maximum power output curve are as follows.
First, record the data of daily inflow Qi,j,k

m and the corresponding power output Pi,j,k
m in

month j and store them in sets Uj
m and Vj

m, respectively, where i, j, k, m represents year,
month, day, and the sequence number of hydropower station, respectively; KI,j is the total
number of days in month j of the year i, and i ranges from 1 to N which is the number of
years the hydropower station has been in operation. Then, draw the upper envelope of the
scatterplot of Pi,j,k

m and Qi,j,k
m , and fit the upper envelope into a piecewise linear function

ppj
m = f j

m

(
qqj

m

)
, where ppj

m and qqj
m represents daily inflow and the maximum power

output of hydropower station m in month j, respectively. The fitted curve ppj
m = f j

m

(
qqj

m

)
is the daily inflow–maximum power output curve of hydropower station m in month j.
According to these steps, the fitted curve, also called the daily inflow–maximum power
output curve, can be obtained for different hydropower stations in different periods.

Uj
m =

(
Q1,j,1

m , Q1,j,2
m , . . . ,Q

1,j,K1,j
m , Q2,j,1

m , Q2,j,2
m , . . . ,Q

2,j,K2,j
m , . . . ,QN,j,1

m QN,j,2
m , . . . ,Q

N,j,KN,j
m

)
Vj

m =
(

P1,j,1
m , P1,j,2

m , ···,P1,j,K1,j
m , P2,j,1

m , P2,j,2
m , ···,P2,j,K2,j

m , ···,PN,j,1
m , PN,j,2

m , ···,PN,j,KN,j
m

)
2.1.2. Objective Function

For hydropower stations, under the condition of ensuring enough water supply, how
to maximize their power generation income is the priority issue. Therefore, in this paper,
we choose the most power generation as the objective function.

MaxF =
T

∑
t=1

M

∑
m=1

pt
mΔt (1)

where F is the power generation objective function; T is the number of periods; M is the
number of hydropower stations; pt

m is the average power output of hydropower station m
in period t; Δt is the period hour number.

2.1.3. Constraints

Constraints in the model include water balance (Equation (2)), maximum and mini-
mum storage constraints (Equation (3)), maximum and minimum power output constraints,
and minimum outflow constraints. In particular, the maximum power output is controlled
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by the expected power output curve (Equation (4)) and inflow–maximum output curve
(Equation (5)). For low-head hydropower stations with poor adjusting ability, in flood
season their power output is primarily decided by inflow. So, in this condition Equation (5)
plays the major role compared to Equation (4). Conversely, in the dry season, their power
output is mainly decided by Equation (4).

st
m + Qt

m − rt
m = st+1

m (2)

st
m ≤ st

m ≤ st
m (3)

pt
m ≤ g

(
Ht

m
)

(4)

pt
m ≤ f j(t)

m
(
Qt

m
)

(5)

Ht
m =

(
Zt

m + Zt+1
m

2

)
− zdt

m − Hl(qt
m) (6)

where m, t are sequence numbers of hydropower stations and periods; st
m is initial reservoir

storage; st
m and st

m are lower and upper reservoir storage bounds; Ht
m is mean water head,

and it is equal to the mean reservoir water level in the period t minus the downstream water
level and the head loss; Zt

m and Zt+1
m are average water level upstream of hydropower

station m in period t and t + 1, respectively; zdt
m is average water level downstream, qt

m is
average generating flow; Hl

(
qt

m
)

is head loss; g
(

Ht
m
)

is the maximum power output of
hydropower station m when the mean water head is Ht

m; Qt
m is inflow; j(t) is the month in

which period t is located; f j(i)
m is the maximum power output determined by inflow.

As mentioned above, the relationship between the inflow upstream and downstream
should be considered to solve this model, so there are different ways to compute the mean
water head when hydropower stations downstream exist or not.

If there are no hydropower stations downstream:

zdt
m = ϕ

(
rt

m
)

(7)

where rt
m is average outflow; ϕ

(
rt

m
)

is the function of outflow and downstream reser-
voir level.

If there are some hydropower stations downstream:

zdt
m= max

[
ϕ
(
rt

m
)
,

Zt
Lm

+ Zt+1
Lm

2

]
(8)

where Zt
Lm

is the average reservoir water level of the downstream hydropower station of
hydropower station m in period t.

For minimum outflow constraints and minimum output constraints, we use a penalty
function to describe:

F′ =
T

∑
t=1

M

∑
m=1

pt
mΔt + a

T

∑
t=1

M

∑
m=1

[
min(pt

m − pt
m , 0)

]2
+ b

T

∑
t=1

M

∑
m=1

[
min(rt

m − rt
m , 0)

]2
+c

T

∑
t=1

M

∑
m=1

[
min(rt

m , 0)
]2 (9)

where pt
m, rt

m are the minimum power output and outflow offline; a, b, and c are
penalty coefficients. The values of a and b are determined based on experience, with a
relatively wide range of possible values. In this case, a value of 10 is suitable. The value of
c is effectively positive infinity, and in this case, it is represented as 1015.
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2.2. Solution Method

Considering that there are a lot of hydropower stations in a cascade, traditional
dynamic programming (DP) is not suitable for solving this kind of problem with high
dimensions. Therefore, a method combined with a progressive optimality algorithm (POA)
and successive approximation method of dynamic programming (DPSA) is used to address
this problem.

2.2.1. POA and DPSA

POA reduces dimensionality by dividing the optimization problem of T periods into
T-1 two-stage problems and then figures out these two-stage problems when a feasible
solution is already known. DPSA reduces dimensionality by controlling the number of
variables. Each time only one variable is considered in the model, greatly decreasing the
difficulty of deriving the solution. As a consequence, in this method, what is needed to
address are these subproblems which consider two periods and one variable every time.
The solution of these subproblems only concludes the optimal value of the variable in the
middle period, which is easy enough that the traditional DP can work out.

2.2.2. Detailed Solution Process

For low-head hydropower stations whose upstream and downstream have a close
connection, it is necessary to optimize the hydropower station’s power output’s change
process in the condition that all the upstream and downstream stations next to it fix their
reservoir levels because the water storage of the downstream reservoir has a supporting
effect on the upstream. First, obtain the initial solution for the reservoirs by following
the rules that the generating flow is the same for each period. Second, for hydropower
station m, the search step and search direction are determined to get Z1, Z2, and Z3. Third,
one of the water levels is selected as the initial water level of hydropower station m in
the t + 1 period, equal to the final water level in the t period. If there are hydropower
stations upstream of hydropower station m, the initial and final water levels of one of the
upstream hydropower stations at time t and t + 1 are fixed to calculate its power output
and outflow. After completing the calculation for the upstream hydropower stations in
sequence, the power output and outflow of hydropower station m and its downstream
hydropower stations are calculated according to the same method. Then, the value of F′ of
the whole cascade can be derived, which is the criteria to judge the quality of optimization
results. Similarly, the final results when the water level of hydropower station m in the
t + 1 period is Z2 or Z3 can be obtained by the same method. Therefore, we can choose
the best results among Z1, Z2, and Z3 and the corresponding water level is the optimized
water level of hydropower station m in the t + 1 period. This is the process of hydropower
station m to find the optimal water level in the t + 1 period. The steps for other hydropower
stations to optimize their water levels in different periods are the same. At last, if the water
level of all hydropower stations is equal to the initial water level at the beginning of this
optimization cycle, and the search step is less than the specified value, the cycle ends. The
flowchart of the calculation process is shown in Figure 2:
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Figure 2. Flowchart of the calculation process.

3. Case Study

This paper uses the weekly plan formulation of the Guangxi power grid with many
low-head hydropower stations as the research object. The installed capacity of hydropower
dispatched by the Guangxi power grid is about 9000 MW, among which there are more than
30 hydropower stations in provincial scheduling, with an installed capacity of more than
7000 MW. What is more, the region has over 800 small hydropower stations whose total
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installed capacity is more than 1800 MW. Under the current situation, how to coordinate
the operating rules between adjustable hydropower stations, large and small hydropower
stations, and hydropower and wind power stations, so as to obtain the maximum benefit of
the power grid is a very challenging issue. However, among the hydropower stations with
provincial scheduling, only the Youjiang hydropower station (with an installed capacity
of 540 MW) has annual adjustment capability. The Yantan hydropower station (with an
installed capacity of 1800 MW) with the largest installed capacity on the power grid only has
seasonal adjustment capability. Hence, in the flood season, other small installed capacity
stations are equal to runoff hydropower stations. When the inflow comes concentratedly
from various river basins, due to the insufficient overall regulation capacity of hydropower
stations, it is very difficult to adjust the peak of the power grid in low valleys. For example,
the installed capacity of cascaded hydropower stations below Yantan, the mainstream of
the Hongshui River, accounts for more than half of the installed capacity of the provincial
dispatched hydropower stations, but their inflow is controlled by Longtan hydropower
station which has poor adjusting ability. In this situation, their optimal scheduling must
be coordinated with the upstream hydropower stations in order to regulate the daily peak
value of power output and seasonal adjustment, definitely increasing the difficulty of
decisions. Therefore, the problem that it needs to discard water for the balance between
demand and supply in the low valleys matters for Guangxi’s hydropower scheduling.
Unlike other hydropower stations on China Southern Power Grid (CSG), which have high
water heads of more than 100 m or even more than 200 m, the water head for generating in
Guangxi is generally below 50 m, and the Youjiang Power Station with the highest designed
water head is less than 90 m. Due to the low water head, the power output is severely
hindered when extreme rainfall appears in the flood season, so the condition that although
the inflow increases significantly, the power output decreases instead often occurs. In actual
operation, it is important to decrease the hindered output and precisely calculate power
generation according to the inflow.

This paper takes the weekly plan of 34 cascaded hydropower stations under the
jurisdiction of the Guangxi power grid as an example. Figure 3 shows the relation of the
studied hydropower stations. A week in July during the flood season was selected to
study, and the maximum power generation model was used to make the weekly plan.
Most of the cascaded hydropower stations in Yujiang River, Liujiang River, and Guijiang
River on the Guangxi power grid are low-head hydropower stations. After calculation
and analysis, we found that apart from Naji, Jinjitan, Yemao, Luodong, Mashi, Guding,
Dabu, Honghua, and Jinniuping Hydropower Stations, the differences in power output
are relatively insignificant for the other hydropower stations regardless of considering the
fitted curve or not. Excluding these nine hydropower stations, the remaining ones have a
total power generation ranging from 56,400 MWh to 62,448 MWh over the course of these
seven days. Therefore, in order to study the impact of fitted curves on power output, a
total of 9 low-head hydropower stations including Naji, Jinjitan, Yemao, Luodong, Mashi,
Guding, Dabu, Honghua, and Jinniuping were selected for analysis.

The daily inflow–maximum power output curve is obtained by fitting the historical
data according to the method in Section 2, so it is also called the fitted curve. According to
the inflow–maximum power out curve demonstrated in Figure 4, which perfectly reflects
the serious impact of hindered power output, it can be easily seen that they have the same
variation trend. With the increase in inflow, their maximum power output increases first
and then decreases. What is more, when a hydropower station’s inflow is more than others,
its decline is even greater. Considering this factor, the final results are shown in Figures 5–7:
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Figure 3. The structure diagram of the studied hydropower stations.

 

Figure 4. The inflow–maximum power output curve of the nine studied hydropower stations.
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Figure 5. Comparison of the weekly plan in the three conditions: (a) Naji; (b) Jinjitan; (c) Yemao;
(d) Luodong; (e) Mashi; (f) Guding; (g) Dabu; (h) Honghua; (i) Jinniuping.

Figure 6. Comparison of the daily total power generation of the nine hydropower stations in the
three conditions.
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Figure 7. Comparison of the total power generation of each station in the three conditions.

Figure 5 shows the comparison of the weekly plan of the above nine power stations
considering the fitted curve, the weekly plan without considering the fitted curve, and the
actual results. Considering the fitted curve is to consider the daily inflow–maximum power
output curve, then use the expected power output curve and the daily inflow–maximum
power output curve to limit the power output according to the method in Section 2. Since
the selected time period for the case study falls within the flood season, the fitted curve
plays a major role compared to the expected power output curve. Not considering the fitted
curve means directly using the expected power output curve as the constraint of the power
output. Therefore, according to Figure 5, through comparative analysis of the power output
process of hydropower stations in various river basins, it can be concluded that whether
or not the fitted curve is considered in the optimal scheduling, there are different degrees
of error between the planned and actual results. The main reason for the error is that the
weekly plan is usually made this Thursday for the next week, so the actual inflow and
the network loads may have a huge error from the prediction. This leads to a continuous
adjustment of power output decisions in the actual process for the scheduling plan may
greatly differ from the previous plan. However, the errors between considering the fitted
curve and not considering the fitted curve are different. It can be easily seen that on most
days, the power output when considering the fitted curve is 2–8 MW less than that when
not considering the fitted curve, which is closer to the real power output and has less error.
So, when considering the fitted curve and the expected power output curve simultaneously,
the scheduling plan we derived is more similar to the real ones and more feasible than the
results under the circumstance that only the expected power output curve is considered.
Especially for Dabu and Jinniuping hydropower stations, the maximum value of error is
5 MW and 4 MW, respectively, when considering the fitted curve while that reaches up to
11 MW and 8 MW without considering the fitted curve. Meanwhile, the larger the power
output, the greater the error. The actual power output of Honghua hydropower station
on the first day is 8 MW less than that considering the fitted curve, and 16 MW less than
that not considering the fitted curve. The cause of these phenomena is the uneven inflow,
leading to power output hindered. In some periods of these stations, the expected power
output curve is used to calculate power output, so in flood season they can work with the
maximum power output. In fact, there is power output hindered when calculating the
daily average flow because inflow in a day is uneven, so the power output of some stations
like Naji and Dabu cannot reach the maximum value all the time.

Figures 6 and 7 also effectively illustrate the same phenomenon since the total power
generation is derived from the power output, so the results are similar to what Figure 5
reflects. Figure 6 shows the comparison of daily total power generation in three conditions
of all nine hydropower stations. It can be seen that the average error when considering the
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fitted curve is 236.57 MW, while that is 610.29 MW when not considering the fitted curve.
What is more, when we kick off the relation between inflow and maximum power output,
the power generation in six of seven days is more, reflecting the impact of hindered power
output and proving that this model is practical. Figure 7 shows the comparison between the
total power generation in three conditions of each station. By comparing, it can be observed
that the total power generation of the nine hydropower stations when considering the fitted
curve is smaller than that when not considering the fitted curve. Except for the Honghua
hydropower station, the total power generation of the other eight hydropower stations is
much closer to the actual situation when considering the fitted curve. A possible reason for
this may be that on the fifth day, the inflow of Honghua hydropower station is even enough
that the fitted curve on that day is unsuitable. Therefore, considering the limitations of the
fitted curve on power output may result in the theoretically total power generation being
smaller than the actual results. These reasons may have caused the planned power output
of the Honghua hydropower station to be smaller than the actual power output on that
day, resulting in a smaller total power generation than the real situation. In conclusion, the
proposed model in this paper can decrease the impact of hindered power output, making
the weekly plan more similar to real conditions.

4. Conclusions

In this paper, a mid-term optimization scheduling model is proposed for low-head cas-
caded hydropower stations considering the unevenness of water inflow and the hindered
power output. This model controls power output by using the expected power output
curve and the daily inflow–maximum power output curve together. Nine hydropower
stations on the Guangxi power grid are studied, and the results whether the fitted curve is
considered or not are compared with the actual results. The results show that (1) consider-
ing the fitted curve, the scheduling plan is more in line with the actual conditions, resulting
in an error reduction of 2–8 MW compared to that when not considering the fitted curve.
(2) When considering the fitted curve, the total daily power output of the nine studied
stations has a smaller error of 61% compared to that when not considering it, and the total
power output for each station over seven days is also smaller.

It can be observed that the unevenness of inflow has a significant impact on the optimal
scheduling of hydropower stations, especially for stations with small installed capacities.
In addition, the hindered power output further reduces the accuracy of calculations and
complicates the optimal scheduling problem. Therefore, the model proposed in this paper
partially addresses this problem and improves the accuracy of power output calculation
for low-head hydropower stations with uneven inflow.
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Abstract: During the flood season, Francis turbines often operate under low-head and full-load
conditions, frequently experiencing significant pressure pulsations, posing potential threats to the
safe and stable operation of the units. However, the factors contributing to substantial pressure
pulsations in Francis turbines are multifaceted. This paper focuses on a mixed-flow hydroelectric
generating unit at a specific hydropower station. Field tests were conducted to investigate abnormal
vibrations and hydraulic pressure pulsations under low-head and full-load conditions. Utilizing
the Navier–Stokes equations and the RNG k-ε turbulence model, the unsteady flow field within
the turbine under these conditions was calculated. The results indicate that the abnormal pressure
pulsations detected in the bladeless zone between the wicket gates and the turbine inlet are due to
operational points deviating from the normal operating range of the turbine. When water flows
at a large inflow angle, striking the turbine blade heads, it leads to significant flow separation and
vortex formation at the back of the blade inlet edges, causing severe vibrations in the hydroelectric
generating unit. These findings provide a basis and assurance for the safe and stable operation of the
power station.

Keywords: Francis turbines; turbine vibration; stability test; pressure pulsation; numerical analysis;
separation vortex

1. Introduction

Stability has always been a key research focus in the operation of hydroelectric gener-
ating units, particularly the stability of large hydropower stations, which draws significant
attention from researchers. In China, hydropower stations are often required to operate at
full or even overload capacity during the flood season, in accordance with grid regulation
demands, especially those equipped with Francis turbines. However, many of these stations
experience abnormal pressure pulsations during full-load operation. For instance, domestic
projects such as the Yantan and Xiaolangdi Hydropower Stations have exhibited abnormal
vibrations under full-load conditions, with some stations even unable to sustain long-term
operation under these conditions [1–3]. Prolonged self-excited or excessive vibrations
in hydroelectric units can lead to component deformation, loosening, or even fracturing,
thereby posing a threat to the safety of the entire unit and the power station [4–6].

Recently, the occurrence of abnormal vibrations during the operation of Francis tur-
bines has become increasingly frequent, and the stability of these units has turned into
a pressing concern in the industry. However, the factors inducing abnormal hydraulic
vibrations in turbines are diverse [7,8]. Tian Shutang, based on the low-head operation
experience of the Longyangxia Hydropower Station, conducted a series of model and
prototype turbine tests and analyzed the impact of head variations on different types of
hydraulic vibrations [9]. Qiao Liangliang and others studied the pressure pulsations in
the cover area caused by flow separation and the formation of Karman vortices and blade
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passage vortices, which is due to the worsening flow conditions around the blades when
the operation area of Francis turbine units deviates from the optimal operating range [10].
Feng Jinhai and others, aiming to study the stability of Francis turbines under off-design
conditions, performed static and modal analyses on turbines under three typical off-design
conditions [11]. Furthermore, Feng Yanmin and others researched the stability characteris-
tics of units with large head variations, suggesting that stability tests should be conducted
under multiple characteristic heads to further determine the vibration zones of the units at
different heads, thereby improving the safety and stability of unit operations [12]. Addi-
tionally, Wu Daoping analyzed the problem of large vibrations under certain conditions.
To ensure the stable operation of the units, the Francis turbine units at the Youshui River
Hydropower Station were taken as the test subjects, and field tests on the vibration, noise,
and hydraulic pressure pulsation of these units were conducted [13].

While the above research outcomes have provided some explanation for the causes
of abnormal vibrations in turbines, the factors leading to these vibrations are complex.
The results of on-site tests of turbines often result from a combination of multiple factors,
and relying solely on field test methods to investigate the root causes of abnormal turbine
vibrations clearly has its limitations.

In the past decade or so, fruitful research outcomes have been achieved in analyzing the
internal flow field of turbines using CFD software 2021. Numerical simulations enable the
dissection of local details in the turbine flow field, further revealing the causes of abnormal
vibrations. Lu Lei and others applied numerical simulation methods to analyze the intense
vibrations and noise emitted by turbines under full and overload conditions, concluding
that the hydraulic instability at the station was caused by blade passage vortices in the
turbine [14]. Dekterev et al. further investigated the evolution of vortex cores in turbine
blade passages based on hydrodynamic models of hydraulic units [15]. Luo Xingqi and
others summarized that the root cause of turbine vibrations lies in the vortex structures of
unsteady flows within the turbine, which can lead to large pressure fluctuations, significant
unit vibrations, and fatigue of turbine components [16]. Sun L and others conducted
unsteady numerical calculations and visualization experiments of turbine flow fields,
researching the evolution and pressure pulsation characteristics of blade passage cavitation
vortices under partial-load conditions. The results indicated that changes in the volume of
cavitation vortices primarily occur near the junction of the trailing edge of the turbine blade
back and the lower ring, subsequently inducing local amplification of pressure pulsation
magnitudes [17].

The phenomenon of abnormal vibrations in Francis turbines during full-load operation
is a widespread issue in the industry. However, the factors causing abnormal hydraulic
vibrations in turbines are complex, and particularly, the relationship between the unsteady
flow field structure and unstable pressure pulsations under low-head, full-load conditions
is still unclear.

At a specific hydropower station in Guizhou, Unit 4 operated at the historically
lowest gross head of 110.19 m due to the rise in downstream water levels during the flood
season. The turbine of this station was stable and operated normally with the wicket
gates at a relative opening of 78% and an active power of 215.57 MW. However, when the
relative opening of the wicket gates further increased to 80.449% and the active power rose
to 218.863 MW, operating at full load, the unit experienced severe abnormal vibrations
accompanied by noticeable noise.

This paper systematically investigates the full-load abnormal vibrations of Unit 4’s
turbine at a specific hydropower station. Using numerical simulation methods, the unsteady
internal flow field of the turbine was calculated for the full-load operating conditions (a
wicket gate relative opening of 80.449%, an active power of 218.863 MW, and a gross head of
110.19 m). The study initially involved solving three-dimensional turbulent flow equations
to perform unsteady calculations of the flow field in the bladeless zone between the wicket
gates and the turbine inlet, obtaining the pressure pulsation curves at computational
monitoring points. Additionally, by combining field test data, the root causes of the unit’s
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severe vibrations were analyzed, providing references to improve the operating conditions
with abnormal pressure pulsations and to ensure the stable operation of the unit.

2. Unsteady Calculation and Testing of the Internal Flow Field in the Turbine

To dissect the flow conditions within the internal flow field of Unit 4’s turbine at a
specific hydropower station under full-load conditions, this paper established a geomet-
ric model of the turbine’s internal flow passages using the three-dimensional geometric
modeling software Unigraphics (UG) 2021. This was followed by mesh division, and then,
numerical analysis and the calculation of the unsteady flow within the turbine unit were
conducted using numerical simulation software.

2.1. Control Equations [18–20]

When applying the principle of mass conservation to incompressible fluids, the conti-
nuity equation is:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (1)

In the equation: t—time, s; u, v, w—components of fluid velocity in different directions;
ρ—fluid density.

Motion Equation (Navier–Stokes Equation) [21]:

∇ · →u = 0
∂
→
u

∂t +
(→

u · ∇
)→

u = −∇p
ρ +∇2 · →u +

→
F

(2)

where
→
u is the flow velocity, a vector field; ρ is the fluid density, p is the pressure, v is the

kinematic viscosity, and
→
F represents external force (per unit of mass in a volume) acting

on the fluid. Let us also choose the Ox axis that coincides with the main direction of flow
propagation. Moreover, we assume here the external force

→
F above to be the force, which

has a potential Φ represented by
→
F = −∇Φ.

The Re-Normalization Group (RNG) k-ε turbulence model is an advanced version
of the standard k-ε model used in computational fluid dynamics (CFD) for simulating
turbulence. The RNG model modifies the standard k-ε model by including additional terms
derived from statistical mechanics. These modifications enhance the model’s accuracy for a
wider range of flows, especially those involving rapid strain rates, swirling, and complex
flows. The equations for the RNG k-ε model are as follows [22]:

Turbulent Kinetic Energy (k) Equation:

∂(ρk)
∂t

+
∂(ρuik)

∂xi
=

∂

∂xj
[(μ +

μt

σk
)

∂k
∂xj

] + Pk + Pb − ρε − YM + Sk (3)

where Pk is the production of turbulence kinetic energy due to mean velocity gradients, Pb
is the production of turbulence kinetic energy due to buoyancy, YM is the contribution of
the fluctuating dilatation in compressible turbulence to the overall dissipation rate, and Sk
is a user-defined source term.

Turbulent Dissipation Rate (ε) Equation:

∂(ρε)

∂t
+

∂(ρuiε)

∂xi
=

∂

∂xj
[(μ +

μt

σε
)

∂ε

∂xj
] + C1ε

ε

k
(Pk + C3εPb)− C2ερ

ε2

k
+ Sε (4)

where C1ε, C2ε, and C3ε are constants; σk and σε are the turbulent Prandtl numbers for k and
ε, respectively; and Sε is a user-defined source term.

The RNG k-ε model introduces additional terms and constants into the ε equation that
improve its accuracy for complex flows. The model also uses an analytical formula for
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turbulent Prandtl numbers, which enhances its performance over the standard k-ε model
under certain flow conditions.

2.2. Hydroelectric Turbine 3D Modeling and Grid Generation
2.2.1. 3D Modeling

After making the corresponding spatial adjustments in the 3D modeling software UG,
the guide vanes of the hydroelectric turbine were reconstructed using the spline surface
method, and a mathematical model for surface fitting of the Francis turbine blades was
provided. Geometric models for other flow components, such as the volute casing and
tailpipe, were also established. The geometric modeling of the entire flow passage of the
hydroelectric turbine, as shown in Figure 1, is divided into four parts: the volute casing,
guide vanes (including fixed guide vanes and adjustable guide vanes), runner, and tailpipe.
Figure 1a represents the overall 3D model of the hydroelectric turbine, and Figure 1b shows
an exploded view of the complete 3D model.

 

(a) (b) 

Figure 1. Overall 3D schematic of the hydroelectric turbine. (a) Overall 3D model of the hydroelectric
turbine. (b) Exploded 3D model of the hydroelectric turbine.

2.2.2. Grid Partitioning

In CFD simulations, to achieve higher accuracy, it often becomes necessary to refine
the computational grid and, thus, determine the appropriate size of the near-wall mesh.
For rapid solutions near the wall, it is essential to use a turbulence model in conjunction
with wall function methods that incorporate accurate empirical data. For example, when
using the standard k-ε turbulence model with wall function modeling, the closest internal
node to the wall must be within the logarithmic layer of turbulence, meaning y+ must be
greater than 11.63 (ideally between 30 and 500). This sets a range for the distance from the
closest grid to the wall and the grid size. Using NUMECA’s IGG software 2021 [23], the
geometric model was partitioned into grids. After grid independence testing, a final grid
partitioning scheme was selected, with a total number of grid elements of approximately
150 million. The grid model is shown in Figure 2.

2.3. Boundary Conditions

We set the volume flow rate as the inlet boundary condition and absolute static
pressure at the tailrace outlet as the outlet boundary condition, and choose the no-slip wall
condition for the wall. The specific numerical values are given in Table 1.
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(a) 

(b) 

 
(c) 

Figure 2. Grid Diagram of the Hydraulic Turbine. (a) Grid diagram of the fluid domain for the guide
vanes, runner, draft tube cone vanes, runner, and draft tube cone. (b) Leading edge of the impeller
blades. (c) Trailing edge of the runner blades.

Table 1. Boundary condition parameters.

Boundary Conditions for Calculation Parameters

Flow rate (m3/s) 232.77
Outlet absolute pressure

At the tailrace (kPa) 307.26

Rotation speed (r/min) 166.7

2.4. Configuration of Monitoring Points for Pressure Pulsation Calculation

To facilitate comparison with measured data, three computational monitoring points
(A1, A2, and A3) were strategically placed within the bladeless region between the active
guide vane and the runner inlet of the turbine. Point A3 was positioned at the top cover
of the stay ring, which coincided with the sensor location. Additionally, two more com-
putational monitoring points, A1 and A2, were introduced to further monitor pressure
pulsations in the central region of the bladeless area. These points were located at 50% of
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the blade height and near the lower stay ring, as illustrated in Figure 3. This configuration
allows us to observe and compare pressure variations within the entire bladeless region
with greater precision, enabling a more accurate assessment of the turbine’s operational
state. Additionally, this level of attention to detail and careful setup underscores our high
standards and expertise in equipment monitoring and maintenance.

Figure 3. Illustration of the arrangement of computational monitoring points for pressure pulsations
in the turbine’s flow components.

2.5. Field Testing
2.5.1. Test Methodology

The vibration monitoring system consists of three main components, including sensors,
a signal acquisition unit, and a data processing unit. The signal acquisition unit is composed
of intelligent data acquisition devices and DC power supply devices, responsible for
collecting sensor signals and other data inputs. The data processing unit is managed by the
main control workstation, which handles the real-time monitoring, analysis, and diagnostic
applications of the system. Vibration sensors installed at designated locations convert
vibration signals generated during the turbine’s operation into electrical signals. These
signals are then transmitted to the intelligent data acquisition devices. The main control
workstation retrieves the acquisition data from the intelligent data acquisition devices
via Ethernet. After processing through software algorithms and data processing, various
characteristic parameters reflecting the turbine’s operational status are obtained.

2.5.2. Sensor Measurement Point Arrangement

The selection and arrangement of sensor measurement points during on-site testing
are presented in Table 2.

Table 2. Selection and arrangement of sensor measurement point serial.

Serial Number Signal Type Measurement Point Name Sensor Type

1

Vibration

Upper frame X-axis horizontal vibration Low-frequency velocity vibration sensor
2 Upper frame Y-axis horizontal vibration Low-frequency velocity vibration sensor
3 Upper frame vertical vibration Low-frequency velocity vibration sensor
4 Lower frame X-axis horizontal vibration Low-frequency velocity vibration sensor
5 Lower frame Y-axis horizontal vibration Low-frequency velocity vibration sensor
6 Lower frame vertical vibration Low-frequency velocity vibration sensor
7 Top cover X-axis horizontal vibration Low-frequency velocity vibration sensor
8 Top cover Y-axis horizontal vibration Low-frequency velocity vibration sensor
8 Top cover vertical vibration Low-frequency velocity vibration sensor
10 Pressure

pulsation
Guide vane outlet pressure pulsation Pressure pulsation sensor

11 Top cover bottom pressure pulsation Pressure pulsation sensor
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3. Results and Analysis

3.1. Numerical Calculation Results

The flow distribution within the runner and guide vanes at three different blade
heights under the operating conditions of relative opening at 80.449%, an active power of
218.863 MW, and a gross head of 110.19 m was obtained through numerical simulations,
as shown in Figures 4–6. At different time instants, the flow patterns within the flow field
vary, and flow separation occurs as the water flows through the active guide vanes. From
the figures, it can be observed that a Karman vortex appears at the rear of the active guide
vanes, leading to turbine vibrations.

Under these operating conditions, the kinetic energy at the inlet region of the fixed
guide vanes remains stable. However, significant flow separation occurs from the runner
inlet to the outlet region. This is because the water jet impacts the leading edge of the
runner blades at a large angle of attack, causing a noticeable flow separation vortex to
form as the water flows from the runner blade inlet edge toward the blade’s backside. This
results in an increase in vortex energy between the blades, generating significant turbulence.
It is this flow separation that induces unstable flow within the turbine, leading to severe
vibrations in the hydroelectric generator unit.

   
T0 = 0.06 s T1 = 0.12 s T2 = 0.18 s 

   
T3 = 0.24 s T4 = 0.30 s T5 = 0.36 s 

   
T6 = 0.42 s T7 = 0.48 s T8 = 0.54 s 

   
T9 = 0.60 s T10 = 0.66 s T11 = 0.72 s 

Figure 4. Flow distribution on the near upper crown flow surface (90% blade height) of the turbine.

420



Energies 2024, 17, 237

3.2. Field Test Results

The specific test data for severe abnormal vibrations of the unit under this operating
condition are shown in Table 3. From Table 3, it can be observed that during the abnormal
operation of the unit, both the vertical vibration amplitude of the top cover and the vertical
vibration amplitude of the lower frame have significantly exceeded the standard values.
According to the standards [24], the vertical vibration displacement of the top cover should
not exceed 90 μm, and the vertical vibration displacement of the lower frame should not
exceed 70 μm.

Figures 7 and 8 show the waveform and order ratio plots of some monitoring points
obtained from the on-site online monitoring system during the abnormal vibration of the
unit. It can be seen from the figures that the reason for the excessive vibration of the unit
is the very clear 0.56250× low-frequency component present in both the unit’s vibration
and pressure pulsation signals. Regarding the frequency components causing the excessive
vibration amplitude, this frequency is mainly generated by hydraulic factors. Its source
mainly originates from the instability of water flow in the bladeless area at the outlet of
the unit’s guide vane, leading to a significant increase in pressure pulsation. This, in turn,
generates a huge hydraulic force in the axial direction of the unit, resulting in excessive
vertical vibrations of the top cover and lower frame.

   
T0 = 0.06 s T1 = 0.12 s T2 = 0.18 s 

   
T3 = 0.24 s T4 = 0.30 s T5 = 0.36 s 

   
T6 = 0.42 s T7 = 0.48 s T8 = 0.54 s 

   
T9 = 0.60 s T10 = 0.66 s T11 = 0.72 s 

Figure 5. Flow distribution at the middle flow surface (50% blade height) of the turbine.
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T0 = 0.06 s T1 = 0.12 s T2 = 0.18 s 

   
T3 = 0.24 s T4 = 0.30 s T5 = 0.36 s 

   
T6 = 0.42 s T7 = 0.48 s T8 = 0.54 s 

   
T9 = 0.60 s T10 = 0.66 s T11 = 0.72 s 

Figure 6. Flow distribution on the near lower circumferential flow surface (10% blade height) of
the turbine.

Table 3. Comparison table between unit swinging alarms and normal data.

Serial Number
Guide Vane
Opening (%)

Active Power
(MW)

Top Cover
Vertical

Vibration (μm)

Lower Frame
Vertical

Vibration (μm)

Spiral Casing
Inlet Pressure

Pulsation (kPa)

Guide Vane
Outlet Pressure
Pulsation (kPa)

Remarks

1 80.449 218.863 378 139 93.2 131.04 Alarm value

2 78 215.57 19 18 6.0 9.3 Normal
Operating value

3.3. Verification Calculation of Working Head under Operating Conditions

After calculating the working head of the No.4 unit of Dongqing Hydropower Station
operating at a relative openness of 80.449%, with an active power of 218.863 MW, and a
gross head of 110.19 m, it was found that the operating condition points of severe vibration
in the hydro-turbine generator set deviate from the safe operating range specified by the
turbine manufacturer. The following details the specific calculation process [25–27].
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Figure 7. Vibration measurement pressure waveform curves for the unit operating at
80.449% openness.

 

Figure 8. Harmonic ratio graph of vibration measurement pressure during unit operation at
80.449% openness.

Based on the field test data, including upstream and downstream water levels, gross
head, active power, and generator efficiency, the output calculation formula for the hydro-
turbine can be established as:

N = ρ · g · Q · H · ηw · ηe (5)

In the formula, ρ represents the density of water; g is the acceleration due to gravity,
a variable parameter; Q is the flow rate of water in the pipeline; H is the working head
of the hydropower station; ηe is the efficiency of the generator; and ηw is the efficiency of
the turbine.

Using the trial calculation method, and initially assuming the working efficiency of
the turbine at this condition based on the turbine test report, with ηw = 92.3% and ηe = 98%,
the flow rate of the turbine is calculated as:

Q =
P

ρ · g · H · ηw · ηe
(6)

From this, the total head loss in the water diversion system of the hydropower station
can be calculated as:

ΔH =
(
∑ S0L + ∑ T0

)
Q2 (7)
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In the formula, T0 = 8ζ
π2gd4 represents the local specific resistance, S0 is the pipe-specific

resistance, L is the length of the pipe section, ζ is the coefficient of local head loss, and d is
the hydraulic diameter.

Finally, H = Hg − ΔH is calculated as the working head of the turbine, where Hg
represents the gross head.

Based on the pressure pipeline layout diagram of the power station, the working head
for the No.4 unit of the hydropower station operating at a relative openness of 80.449%,
with an active power of 218.863 MW, and a gross head of 110.19 m, was calculated. The
results are presented in Table 4.

Table 4. Parameters of the turbine under full-load operating conditions.

Parameter Name Parameter Values

Relative guide vane opening (%) 80.449
Flow rate (m3/s) 232.77
Gross head (m) 110.19
Head loss (m) 4.00

Working head (m) 106.19
Active power (MW) 218.863

The operating condition values from Table 4 are marked on the comprehensive charac-
teristic curve diagram of the turbine operation for the station, as shown by the red circle
in Figure 9. It was observed that the operating condition point (a relative openness of
80.449%, an active power of 218.863 MW, and a gross head of 110.19 m, corresponding to a
working head of 106.19 m) has deviated from the normal operating range provided by the
turbine manufacturer.

3.4. Calculation Results of Pressure Pulsation and Frequency at Monitoring Points

Through unsteady numerical simulations of the flow field, pressure pulsation curves
and frequency curves at monitoring points were obtained. The results are presented
in Figures 10 and 11, which show the time-domain and frequency-domain diagrams of
pressure pulsations at three computational monitoring points located at the exit of the
movable guide vanes of the turbine under this abnormal operating condition. As shown
in Figure 10, although there are minor differences in the pressure fluctuation amplitudes
at the three different blade height positions at the monitoring points near the exit of the
movable guide vanes, the pattern of pressure pulsation is essentially the same across these
points, with similar main frequencies and amplitudes of pressure pulsation. Moreover, the
amplitude of fluctuations is very large, exceeding 10 m of the water column, with the results
at point A3 closely matching the field-measured data (as shown in Figure 7). Applying
Fast Fourier Transform (FFT) spectral analysis, the frequency of pressure pulsations at the
monitoring points was found to be 0.56250X (as shown in Figure 8), which is consistent
with the calculated and measured values, as shown in Figure 11. This indicates that
the numerical simulation method used in this paper can accurately predict the hydraulic
performance of the turbine, with the amplitude and frequency of the main vibration sources
obtained through numerical simulation corresponding well with the actual flow field test
data under this operating condition.

Figure 12 shows the pressure distribution inside the turbine and guide vanes at a 50%
blade height under 80% operating conditions of the hydro-turbine. The diagram reveals
that under 80% operating conditions, the water pressure is relatively high around the guide
vanes and lower in the turbine area. The pressure is stable at the inlet of the guide vanes
but fluctuates significantly at the outlet. Additionally, the pressure inside the guide vanes
exhibits good circumferential symmetry. At the turbine inlet, due to the impact of the water
flow, the pressure increases noticeably compared to the surrounding water, and within the
turbine flow field, the pressure first decreases, then increases, and decreases again from top
to bottom. Due to the influence of the Karman vortex, significant flow separation occurs at
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the exit of the movable guide vanes, resulting in the boundary layer that was originally
adhering to the wall at the front of the blade separating from the wall.

Figure 9. Position of the turbine operating point on the comprehensive operating characteristic curve.

  
(a) (b) (c) 

Figure 10. Time-domain diagram of pressure pulsation numerical simulation in the vaneless space.
(a) Point A1 at the exit of the movable guide vane. (b) Point A2 at the exit of the movable guide vane.
(c) Point A3 at the exit of the movable guide vane.
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Figure 11. Frequency-domain diagram of pressure pulsation numerical simulation in the vane-
less space.

   

T0 = 0.06 s T1 = 0.12 s T2 = 0.18 s 

   

T3 = 0.24 s T4 = 0.30 s T5 = 0.36 s 

   
T6 = 0.42 s T7 = 0.48 s T8 = 0.54 s 

   
T9 = 0.60 s T10 = 0.66 s T11 = 0.72 s 

Figure 12. Pressure distribution on the flow surface inside the turbine and guide vanes at 50% blade
height under 80% operating conditions of the hydro-turbine.
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At a relative openness of 80%, the pattern of pressure pulsation amplitude changes at
the three measurement points at the exit of the movable guide vanes is similar, with the
pressure pulsation amplitudes being essentially the same and several times higher than the
pressure pulsation values at the same points under normal operating conditions. With the
increase in load, the flow rate of the unit increases, leading to higher head losses, resulting
in a mismatch between the water flow characteristics and the guide vane profiles. This
results in increased pressure pulsation at the exit of the movable guide vanes as the water
flows around them, ultimately reducing the efficiency of the turbine.

3.5. Analysis of Abnormal Pressure Pulsation Formation

The experimental tests and computational results indicate that the high-amplitude
pressure pulsations occurring under full-load conditions in the power station are directly
related to the deviation of the turbine operating point from the operating region. The
calculations and simulations have demonstrated that the hydraulic vibrations occurring
in the Dongjing Hydropower Station’s turbine under the condition of a 222.8 MW load,
a gross head of 110.19 m, and a relative opening of 80.449% are due to the operating
point being outside the turbine output limit line on the comprehensive characteristic curve
provided by the manufacturer. This deviation of the operating point leads to a detached
flow in the moving guide vanes within the internal flow field, resulting in the generation of
low-frequency Kármán vortex streets.

The coupling of the Kármán vortices at the exit of the moving guide vanes with the
detached vortices occurring in the backside region of the turbine blade inlet leads to an
abnormal increase in the amplitude of pressure pulsations in the vaneless space.

4. Conclusions

This paper, utilizing CFD software, conducted unsteady flow computations for the
internal flow field of the No.4 unit of a hydropower station in Guizhou, and compared
these with on-site experimental test data. Applying FFT spectrum analysis, the study
investigated the pressure pulsation frequencies at monitoring points and arrived at the
following conclusions:

1. The generation of low-frequency, large-amplitude pressure pulsations at 0.56250X
in the vaneless space of the turbine at the Guizhou Hydropower Station is due to
the operating point deviating from the operational range. This deviation led to
significant detached vortices in the backside area of the turbine blade inlets, caus-
ing low-frequency vibrations in the vaneless space and inducing unstable flows in
the turbine.

2. The coupling of the detached vortices from the trailing edge of the moving guide
vanes with those formed in the backside area of the turbine blade inlets led to a
dramatic increase in pressure pulsation amplitudes in the vaneless space, reaching
1.29 MPa, thus causing excessive vertical vibration amplitudes in the top cover and
lower frame.

3. These findings suggest that employing fluid simulation technology combined with ex-
perimental testing to analyze hydraulic vibrations in turbines is an effective approach.
Simultaneously, by reducing the opening of the movable guide vanes and lowering
the load, the abnormal vibrations of the turbine were eliminated.
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Abbreviations

RNG Re-normalization group
CFD Computational fluid dynamics
UG Unigraphics
t Time variable (s)
v Viscosity (kg m−1 s−1)
g Gravitational acceleration (m s−2)
DC Direct current
ηe Engine efficiency
ηw Hydro turbine efficiency
FFT Fast Fourier transform
Greek letters

∂ The differentiation of a function
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Abstract: Water system management models represent different purposes, such as water supply,
flood control, recreation, and hydropower. When building large-scale system models to represent
these diverse objectives, their most appropriate time steps for each purpose often do not coincide.
A monthly time step is usually sufficient for water supply modeling, but it can be too coarse for
flood control, hydropower, and energy operations, where hourly time steps are preferred. Large-scale
water management and planning models mostly employ monthly time steps, but using monthly
average energy prices underestimates hydropower revenue and overestimates pumping energy cost
because these plants tend to operate during times with above- or below-average energy prices within
any month. The approach developed here uses hourly varying prices depending on the percent
of monthly operating hours. This paper examines an approach that approximately incorporates
hourly energy price variations for hydropower and pumping into large-scale monthly time-step
water system model operations without affecting water delivery results. Results from including
hourly varying energy prices in a large-scale monthly water supply model of California (CALVIN) are
presented. CALVIN is a hydroeconomic linear programming optimization model that allocates water
to agricultural and urban users with an objective to minimize total scarcity costs, operating costs, and
hydropower revenue loss. Thirteen hydropower plants are modeled with hourly varying prices, and
their revenue increased by 25 to 58% compared to revenue calculated with monthly average constant
energy prices. Hydropower revenue improvements are greater in critically dry years. For pumping
plants modeled with hourly varying prices, the energy use cost decreased by 10 to 59%. This study
improves system representation and results for large-scale modeling.

Keywords: energy prices; hydropower; pumping cost; revenue; system models

1. Introduction

Computer models help operators and policymakers explore and compare manage-
ment alternatives, better operate complex water resources systems, and predict the future
performance of existing or proposed decisions and conditions [1]. Model use can increase
the benefits or decrease the costs of managing water for wide-ranging purposes, such
as agricultural, urban, and wildlife water supply; hydropower; flood control; recreation;
and navigation [2–4]. Yeh [5], Wurbs [6], and Labadie [7] reviewed water resource system
models, including simulation and optimization models, ranging from small- to large-scale.
Integrated river basin management models provide a framework for more efficiently man-
aging scarce water among users, at different locations and times, considering economic and
hydrologic variables [8,9]. Davis [10] defines integrated water management as a facilitated
stakeholder process to promote coordinated activities in pursuit of common objectives for
better development and management. Marques and Tilmant [11] point out that operational
coordination is critical to maintain and increase system-wide benefits under uncertain con-
ditions in multireservoir water systems. Li et al. [12] reviewed uncertainties in integrated
simulation–optimization modeling.
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Many methods are available in water resource modeling. However, energy prices are
often omitted or greatly simplified compared to other parameters. Several studies explicitly
address energy price representation [13–15], which is especially important for hydropower
and pumping operations. Models exist for simulating energy market operations [16–19],
but they often are not integrated with water system models, or their integration with
complex water models is computationally difficult, isolating market price models from
water system models. Additionally, the availability of hourly input data often limits the
explicit representation of energy prices in many places.

Water resource system models use different time scales, varying from fractions of
an hour to annual. Short-term models have hourly to daily time steps. Time steps for
long-term models range from weekly to annual. Long-term models can be useful for
short-term models by providing preliminary promising solution regions [20,21]. Hourly
or shorter-peak and off-peak times and energy value rates are important for hydropower
decisions and pumping plant operations. Short-term models, with hourly time steps
and time horizons of a few days, can directly represent hourly price variations in their
operations. Long-term models rarely use hourly time steps due to computational demands;
instead, monthly time steps are preferred. However, using monthly average energy prices
for long-term planning and management often underestimates hydropower values [15]
and overestimates pumping costs. This is because, with economically optimal operations,
reservoirs with an afterbay operate during the most economically advantageous hours [13],
the so-called peak hours. Similarly, pumping plants with a forebay or afterbay operate
during off-peak hours, when energy prices are lower.

Hourly price variations can be represented with an implicit method that uses different
prices depending on capacity use [15]. The method assumes that to maximize revenue, a
hydropower plant with reservoir storage and an afterbay allocates hydropower releases
preferentially to peak price times, when energy demand and prices are highest [22]. The
reservoir operator is assumed to have good short-term foresight of energy prices, allowing
revenue-maximizing releases during peak times. Energy prices are exogenous, so the
operator cannot influence them. Tejada-Giubert et al. [13] used such a method to maximize
the Central Valley Project energy revenue. A monthly capacity factor for each plant is
assigned to the price duration curve factors, assuming each plant can be dispatched and
operated during the most economically valued hours in a month.

Using variable energy prices, rather than constant prices, increases overall hydropower
revenue. Olivares and Lund [15] studied the representation of energy prices in long-
and medium-term hydropower operations. Their model, focusing on a single reservoir,
relates hourly energy prices with the proportion of monthly hours available for energy
generation. Hourly varying prices are estimated with a moving average method, a function
of the percentage volume allocation. Madani and Lund [14] used energy prices that vary
with the number of hours of operation in a suite of optimization models for California’s
high-elevation hydropower plants. The model assumes that a power plant will prioritize
releasing water during high-valued times of the month. It only releases water during lower-
valued times when water is abundant, if the objective is solely hydropower operation.
These studies concluded that there is a great benefit of incorporating hourly energy price
variations in long-term models. Former studies focused on regional hydropower modeling
with small reservoir storage capacities or with a limited number of large-scale reservoirs
with hourly price variations. The effects of hourly price variations on pumping operations
have not been studied.

This study presents an implicit incorporation of hourly energy price variations in a
large-scale long-term model of California’s extensive water supply system, CALVIN, that
uses monthly time steps over an 82-year hydrologic record. CALVIN is useful for planning,
management, and policy studies [23,24]. It integrates and economically optimizes reservoir,
power plant, pumping plant, and other water supply operations. The method used here is
similar to earlier hydropower studies, except at a much larger scale. Also, hourly varying
energy prices are applied to pumping operations with a few modifications to the method.
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CALVIN is operated with both constant and hourly varying energy prices. Generation,
revenue, and agricultural and urban water scarcity results are compared to assess the most
effective representation of prices for long-term, multi-purpose modeling.

2. Materials and Methods

2.1. CALVIN Hydroeconomic Model

CALVIN (CALifornia Value Integrated Network) is a hydro-economic determinis-
tic optimization model for California’s inter-tied water supply and delivery system [23].
CALVIN represents California’s water infrastructure with 49 surface reservoirs, 38 ground-
water reservoirs, 600+ conveyance links, 1250+ nodes, and 36 agricultural, 41 urban and
8 wildlife refuge water demand areas, where the full-size model has more than 5 million
decision variables. The CALVIN model covers about 88 percent of California’s irrigated
acreage and 92 percent of the state’s urban population. Prescribed CALVIN operations
are based on 82 years of historical data to represent hydrologic variability. CALVIN is a
linear programming model that uses a generalized network-flow optimization, where oper-
ations are driven by convex cost-based piecewise linear penalty functions (for hydropower
plants and agricultural and urban demands) or operating cost curves (for pumping and
treatment plants). CALVIN operates and allocates surface and groundwater resources
with deterministic hydrologic inflows under demand conditions of the year 2050, within
physical and environmental constraints [23]. CALVIN is modeled with Pyomo, a high-
level optimization modeling library in Python, and can connect to freely available solvers
that provide a solution for the network-flow optimization problem [24]. CALVIN has an
economics-driven objective, shown in Equation (1), to minimize system-wide operating
costs (such as pumping and treatment) and scarcity costs to water users. Scarcity volume
is defined as the amount of water that the user is willing to pay for but did not receive.
Whenever a user’s target demand is not met, scarcity occurs with a cost derived from the
user’s willingness to pay. The physical system is represented by a set of nodes (N) and
links (or arcs) ( A) in network-flow optimization, shown in Figure 1. Links are defined
by (i, j, k) ∈ A, where i is the origin node, j is the terminal node, and k is the index of the
piecewise linear component for links [24].

 

Figure 1. Network representation of California’s water supply system in CALVIN [24].
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CALVIN’s objective function and constraints are

minz = ∑
i

∑
j

∑
k

cijkXijk (1)

subject to
Xijk ≤ uijk, ∀(i, j, k) ∈ A (2)

Xijk ≥ lijk, ∀(i, j, k) ∈ A (3)

∑
i

∑
k

Xjik = ∑
i

∑
k

aijkXijk, ∀j ∈ N (4)

where z is a summation over all links (i, j, k) and represents total scarcity and operating
costs. Xijk is the decision variable and represents the flow conveyed in a link. uijk and lijk
are upper- and lower-bound constraints, respectively. aijk is the amplitude and represents
losses (<1) or reuse (>1) within the system. Equations (2)–(4) enforce upper and lower
bounds on each link and mass balance on each node, respectively.

CALVIN assumes a decentralized energy market in California with hydropower
as a price-taker. Each facility allocates hydropower releases during the most valuable
hours while considering water scarcity costs for agricultural and urban users, as well
as downstream minimum in-stream flow requirements. Hydropower and water scarcity
penalty curves dictate the economically optimal release time and volume. Seasonally, it
is fortunate that California’s energy and water use peaks generally coincide, reducing
conflicts across these purposes.

CALVIN’s limitations include its perfect hydrologic foresight (except for Arnold [25]);
the linearization of nonlinear operations, such as hydropower; and simplified environmen-
tal regulations, water quality, and stream–aquifer interaction behavior. CALVIN currently
provides a minimal representation of flood control and recreation operations [23]. De-
spite its limitations, CALVIN can simulate various water management scenarios and offer
insights for statewide and regional water policy and planning decisions.

2.2. Representing Hourly Varying Energy Prices in Monthly Models

CALVIN operates explicitly to minimize statewide operating and scarcity costs. Hy-
dropower in CALVIN is modeled using economic penalty curves, which represent the
benefits lost from not generating hydropower. Hourly wholesale energy prices for the
year of 2010 are obtained from the California Independent System Operator [26]. The
moving average method proposed by Olivares and Lund [15] is used to represent hourly
varying energy prices in the monthly model. This method relates the monthly percentage
of hours of generation at turbine capacity with a price duration curve (Figure 2). Prices are
averaged up to percent use. As seen in Figure 3, marginal variable energy prices decrease
with increased hours of generation. This trend represents electricity market operations.
Small releases have greater marginal benefits (energy prices), and as the hours of operation
increase, the marginal hydropower revenue decreases, whereas the marginal revenue does
not change with constant average monthly prices. For economically optimal hydropower
operations with hourly varying prices, CALVIN makes small releases when the marginal
energy price is high, and the lowest average price occurs when energy is generated at the
monthly turbine capacity [14]. CALVIN is a deterministic model with fixed monthly price
fluctuations, allocating water for maximum profitability. The total hydropower generation
(G) in month i can be calculated as follows:

G(Qi, hi) = μ·γ·Qi·hi·Δt (5)
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where Q is the release obtained from CALVIN; h is the head, which is dynamically calcu-
lated from a polynomial function depending on reservoir storage; μ is efficiency; γ is the
specific weight of water; and Δt is the time period.

Figure 2. Price duration curves of hourly energy prices for months of March and May. Each month
has a different hourly price variation pattern.

Figure 3. Moving average curves for months of March and May. The marginal variable energy price
slope of the continuous and dashed price curves above decrease with increased hours of generation.
Constant prices oversimplify plants that operate based on the marginal value.

Defining Qcap as the plant’s turbine release capacity and Gcap = μ·γ·Qcap·hi·Δt as the
plant’s generation capacity, the percentage of hours of generation at full capacity ( f ) can be
obtained as

f =
Gi

Gcap
(6)

Multiplying generation (G) with energy prices ( Pi) yields the hydropower revenue
(B ) in month i, which can be written as

Bi = PG( f )i·Gi (7)

Ci = PP( f )i·Ei (8)

where PG( f )i is the average of all prices exceeding P( f ), with the price obtained from the
moving average price curve (Figure 3). For the energy cost of pumping plants (Ci), the unit
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energy price ( PP( f )i
)
, the average of all prices not exceeding P( f ), is multiplied with the

total energy use ( Ei).
Afterbays provide operational flexibility to large-scale reservoir operations. Several

California hydropower facilities effectively use afterbays to regulate reservoir releases.
These large-storage power plants are used to meet peak-time electricity demand. A total
of 13 out of 33 CALVIN facilities with a large storage capacity and an afterbay are mod-
eled with hourly varying energy prices. The remaining facilities, including run-of-river
hydropower plants, use monthly constant average energy prices. Run-of-river plants are
not modeled with hourly varying energy prices because they are operated continuously,
depending on stream conditions. Meanwhile, pumping plants with a forebay or afterbay
can also optimize pumping hours to minimize pumping costs. Six of twenty-four CALVIN
pumping facilities have forebays and are modeled with hourly varying energy prices.
CALVIN’s hydropower and pumping plants are listed in Table 1 and Table 2, respectively.

Table 1. Modeled CALVIN hydropower facilities and plant characteristics.

Hydropower Facility
Power Plant

Capacity (MW)
Reservoir Storage
Capacity (106 m3)

Turbine Release
Capacity (m3/s)

Shasta a 629 5612 561
Spring Creek a 180 296 143
Carr 154 296 97
Trinity a 140 3019 132
Keswick 117 29 494
Hyatt a 644 4367 523
Colgate a 325 1147 107
Folsom a 199 1205 245
New Narrows 49 86 121
Thermalito Fore/Afterbay 115 70 503
New Melones a 300 2953 270
Don Pedro a 203 2504 260
Holm a 157 372 23
Kirkwood a 122 444 21
New Exchequer 95 1263 89
Gianelli a 424 2518 376
Moccasin a 104 1 19
O’Neill a 25 70 42
Pine Flat 190 1233 231
Castaic 1247 401 123
Devil Canyon 280 90 46
Warne 78 7 47
San Francisquito 1 and 2 123 - 22
Gorges 112 - 23
Mojave 32 - 56
Others 92 - 359

Note: a Modeled with hourly varying prices.
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Table 2. Modeled CALVIN pumping facilities and plant characteristics.

Pumping Facility Pumping Plant Capacity (MW) Flow Capacity (m3/s)

Badger Hill 6 270
Banks a 212 245
Buena Vista 90 146
Contra Costa 1 3 9
Dos Amigos 99 340
Del Valle a 0 3
Eagle 72 52
Edmonston 622 127
Gianelli a,b 151 317
Iron 72 52
Julian Hinds 72 52
Los Vaqueros 23 6
Las Perillas 2 270
Mallard Slough 5 1
Old River 36 7
O’Neill a,b 19 121

Table 2. Cont.

Pumping Facility Pumping Plant Capacity (MW) Flow Capacity (m3/s)

Oso a 37 90
Pearlblossom 95 83
South Bay a 4 9
Tracy 92 133
Walnut Creek 61 14
Wheeler Ridge 107 127
Chrisman 233 127

Notes: a Modeled with hourly varying prices; b operated for both pumping and power generation.

Figure 4 illustrates the run procedure of CALVIN with conventional constant average
and proposed hourly varying energy prices. First, the input data are organized. These
data include unit costs for moving water, economic demands for users (agricultural, urban,
and hydropower), and hydrological time series, such as reservoir inflow, local inflow,
and groundwater recharge. In the conventional model run, hydropower and pumping
plant operating curves are modeled based on monthly constant average prices. CALVIN’s
objective is to minimize total costs. Therefore, a hydropower penalty curve, which is the
inverse of its benefit curve, represents the loss for not generating hydropower, depending on
the turbine discharge rate. For a model run with the proposed method to incorporate hourly
energy price variations, moving average energy prices are used to generate piecewise
linear operating curves. Third, the CALVIN model is run with defined energy prices,
and optimized flow and reservoir storage decisions are obtained. Finally, hydropower
generation and revenue, as well as pumping costs, are postprocessed and compared, as
presented in Section 3.
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Figure 4. Modeling procedure with conventional constant and proposed hourly varying en-
ergy prices.

3. Results

3.1. Power Generation and Revenue

CALVIN is run with both monthly constant average prices and hourly varying prices.
With hourly varying prices, the model tends to allocate small releases with higher hy-
dropower benefits. As the operating time at turbine capacity increases, the marginal
benefits decrease. With hourly varying prices, statewide total hydropower generation is
slightly less than with constant monthly prices, but the energy revenue is significantly
greater (Table 3). With constant monthly average prices, the annual total modeled hy-
dropower revenue is about USD 550 million per year, which increases by 24% to USD
681 million per year when modeled with hourly variable prices. The hydropower genera-
tion of plants modeled with variable prices does not notably change, except for Holm and
O’Neill, where annual average hydropower generation and revenue decrease. Holm is up-
stream of Don Pedro and O’Neill is between the California Aqueduct and Delta–Mendota
Canal. California’s intertied water system allows other supply routes to be utilized in
the model using hourly varying prices, without impacting overall agricultural and urban
deliveries. With hourly varying prices, less water is pumped from O’Neill (discussed
later), reducing the hydropower generation of this pumped-storage plant. For other plants
modeled with variable prices, the average annual revenues increase by 25 to 58%.
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Table 3. Modeled annual average hydropower operations with constant and hourly varying prices.
Facilities modeled with variable energy prices show a greater change (mostly positive) in the revenue
reported from the model.

Facility
Turbine Release (m3/s) Generation (GWh/Year) Revenue (USD M/Year) Revenue
Constant

Price
Variable

Price
Constant

Price
Variable

Price
Constant

Price
Variable

Price
Change (%)

Shasta a 217 216 2286 2285 75.5 110.6 46.5
Spring Creek a 32 31 381 381 13.5 19.4 43.4
Carr 25 25 354 354 12.2 12.4 1.5
Trinity a 48 48 408 409 13.0 19.0 46.7
Keswick 244 243 465 464 15.5 15.4 −0.8
Hyatt a 154 152 2190 2183 76.7 111.6 45.5
Colgate a 47 46 1356 1361 45.8 64.0 39.9
Folsom a 100 99 655 653 22.1 32.0 44.6
New Narrows 60 60 277 277 9.5 9.4 −1.0
Thermalito 137 136 293 290 10.3 10.2 −0.9
New Melones a 40 40 495 496 15.9 25.2 58.5
Don Pedro a 56 55 611 610 18.6 29.5 58.2
Holm a 17 13 869 673 30.6 27.8 −9.2
Kirkwood a 13 13 364 355 12.6 15.8 25.1
New Exchequer 36 36 275 277 8.5 8.6 1.0
Gianelli a 0 0 0 0 0 0 0
Moccasin a 13 13 167 167 5.8 7.4 27.4
O’Neill a 37 10 33 9 1.2 0.4 −68.0
Pine Flat 60 60 445 444 13.2 13.2 −0.1
Castaic 35 35 872 872 33.2 33.2 0.0
Devil’s Canyon 37 37 1051 1051 37.2 37.2 0.0
Warne 36 36 522 522 19.2 19.2 0.0
San Francisquito 1 and 2 14 14 629 629 23.1 23.1 0.1
Gorges 7 7 366 366 12.5 12.5 0.0
Mojave 37 37 90 90 3.2 3.2 0.0
Others 244 242 642 642 20.5 20.5 −0.3

Statewide 1745 1704 16,094 15,857 550 681 24

Note: a Modeled with hourly varying prices.

Figure 5 shows the monthly statewide modeled hydropower generation and revenue
with constant and variable prices. Overall, the monthly generation and revenue patterns do
not differ greatly. Generation and revenue have a similar monthly trend, higher in the sum-
mer. Hydropower revenue with variable prices (VPs) is greater than with constant prices
(CPs) in all months. Hydropower generation is greater with variable prices in the spring
(April–June) when average energy prices are the lowest, but the hourly price fluctuations
are the highest. In these months, with price fluctuations, the differences between constant
and variable price revenues are much greater. In other months, constant prices lead to
higher hydropower generation but lower revenue (underestimating with constant prices).
As the hourly price fluctuations decrease, the moving average of variable prices gradually
approaches constant average prices. Months with identical power generation or revenue
can be compared for analysis. For example, for March, the power generation in both price
schemes is quite close (1.38 TWh and 1.39 TWh for constant and variable prices, respec-
tively) but with a big difference in revenue. In March, with constant prices, the revenue is
about USD 52 million, while the revenue with variable prices is USD 62 million. In October,
January, and February, the revenue difference between variable and constant prices is fairly
small, although generation with constant prices is higher. Using constant monthly average
prices rather than hourly varying prices underestimates hydropower revenue.
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Figure 5. Modeled statewide monthly hydropower generation and power revenue with constant
and variable energy prices. Revenues tend to diverge more in the months with greater energy price
variations between the two methods.

Figure 6 shows monthly revenue from the 82-year (October 1921 to September 2003)
modeling period by the percent of hours of generation at turbine capacity for selected
CALVIN hydropower facilities with integrated hydropower and water supply operations.
The proposed hourly varying energy price scheme increases the revenue per capacity use,
as indicated by the slopes of the linear regression lines. The divergent regression lines also
imply that these hydropower plants are mostly operated for shorter durations in a given
month. Hyatt is operated more at turbine capacity compared to other modeled plants.
When water availability is greater, such as in wet months and years, plants are operated
during most hours and generate more revenue.

CALVIN covers Sacramento, the San Joaquin Valley, and southern California. Water
year types (WYTs) are runoff indices used in Sacramento and the San Joaquin Valley, the
northern and southern parts of the Central Valley [27]. Since a WYT index is unavailable for
the much drier southern California region, plants in this area are excluded from the WYT
analysis. Hydropower generation increases during wetter years. The average hydropower
generation in the Central Valley CALVIN facilities differs by water year types, as shown in
Table 4. In wet and above-normal years, generation with constant monthly prices is higher,
whereas generation in other year types is fairly similar. During periods of abundant water,
hydropower operations become more prominent. As water becomes scarce, water supply
operations for agricultural and urban users dominate over hydropower operations, so more
hydropower production becomes incidental. As water availability decreases from wet to
critically dry years, discrepancies in generation and revenue between the two pricing types
increase. In wet years, revenues are highest, while the average annual generation with
constant prices, 16.3 TWh per year, exceeds generation with variable prices, 15.7 TWh per
year. When the WYT is below normal, the average annual generations are equal, although
revenue with variable prices, USD 501 million per year, exceeds the annual average revenue
of USD 367 million per year with constant prices. Only in dry years does variable price
generation exceed constant price generation. Because water year types are not evenly
distributed, the overall average generation and revenue with constant and variable prices
do not align with historical averages. Hydropower revenue is underestimated for all year
types with constant average prices. With hourly varying prices, hydropower revenue
increases by 28% in wet years to 40% in critically dry years, with an overall average increase
of 33% for all Central Valley facilities.
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Monthly Revenue (M$) - Shasta Monthly Revenue (M$) - Hyatt

Monthly Revenue (M$) - Trinity Monthly Revenue (M$) - Don Pedro

Figure 6. Modeled monthly generation and percent hours of generation in a given month for selected
hydropower plants. Variable energy prices increase revenue by percent of generation hours.

Table 4. Modeled generation and power revenue in different water year types for the Central Valley
facilities. The drier the year, the more the revenue changes and the more impactful having variable
pricing schemes are.

Year Type
Average Generation (TWh/Year) Average Revenue (USD M/Year)

Revenue Change (%)
Constant Price Variable Price Constant Price Variable Price

Wet 16.3 15.7 548 701 28
Above Normal 12.8 12.4 436 569 31
Below Normal 10.9 10.9 367 501 36
Dry 9.4 9.5 313 435 39
Critical 7.3 7.2 242 338 40

Central Valley Average 12.0 11.8 403 535 33

3.2. Water Supply Operations

Scarcity occurs when a user’s demand is not completely fulfilled (when scarcity
costs are positive). CALVIN has water delivery targets for development, land use, and
population estimates, for each agricultural and urban demand area, for the year 2050. Water
is allocated from the statewide water system to agricultural, urban, and environmental
users to meet these target demands. The difference between target demand and actual
delivery is defined as the water shortage or scarcity amount. The objective of CALVIN is to
minimize statewide scarcity and operating costs.

The proposed hourly varying price scheme has little overall effect on water supply
operations from surface reservoirs (Figure 7). Shasta’s storage is slightly greater in March
and Don Pedro’s storage is greater in June through November with hourly variable energy
prices. Consistent water supply operations alongside higher hydropower revenue suggest
an improved representation of hydropower with hourly varying energy prices.
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Figure 7. Modeled monthly average reservoir storage of selected facilities. Reservoir operations are
little affected when variable energy prices are used.

3.3. Pumping Plant Operations

A similar variable energy pricing method is also applied to CALVIN’s pumping plant
operations. However, in this case, moving average curves of hourly energy prices are
calculated in descending order of prices, meaning that for economically optimal pump-
ing operations, plants should operate when prices are lowest (Figure 3). This is easier
achieved when pumping plants have forebays and afterbays. Plants with a forebay can
store water during high-energy-price periods (peak times) and commence operations dur-
ing low-energy-price periods (off-peak times). Six of twenty-four pumping plants have
major afterbays and are modeled with variable average prices in CALVIN. The remaining
pumping plants use constant monthly average energy prices.

When hourly varying prices are used, the annual average pumping energy costs
decrease by 10 to 59% (Table 5). The Banks pumping plant’s energy use increases by
30 GWh, while O’Neill’s energy use decreases by 6 GWh per year with variable prices.
However, the total statewide energy usage remains constant. With constant monthly
average energy prices, CALVIN’s pumping plants use 12,574 GWh of energy with an
annual cost of USD 442 million per year. However, without causing significant changes
to agricultural and urban deliveries, the statewide optimized annual average pumping
cost was reduced to USD 430 million by simply using hourly varying energy prices in
modeling pumping operations, resulting in a savings of about USD 12 million per year
(a 3% reduction). The difference in pumping costs between constant and hourly varying
price schemes may be small compared to the annual total pumping cost. This could be
partly because either the plants modeled with hourly varying prices have small capacities
or their pumping capacity is not fully utilized. Additionally, only 6 of 24 pumping plants
are modeled with varying energy prices due to data availability and the applicability of the
method. However, this shows that plants with a forebay have more flexibility for operations
and reduced operating costs.

Figure 8 shows the monthly energy cost by percent of hours of operation for the Banks
and Oso pumping plants. Overall, the energy costs are lower with hourly varying prices
for both plants. But the Banks pumping plant is operated in most hours of a given month,
so its regression line has greater slope with variable prices. As discussed earlier, when a
plant operates during most hours, the constant average and hourly varying energy price
schemes converge. Operations at the Oso pumping plant do not exceed 50% of hours in a
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given month. So, using constant average monthly prices greatly overestimates pumping
energy costs.

Table 5. Modeled annual average pumping plant operations with constant and hourly varying energy
prices. Variable energy price scheme results in less pumping costs.

Facility
Discharge Rate (m3/s) Energy Use (GWh/Year) Energy Cost (USD M/Year)

Energy Cost
Change (%)

Constant
Price

Variable
Price

Constant
Price

Variable
Price

Constant
Price

Variable
Price

Banks a 148.71 152.69 1130 1160 39 36 −10
Del Valle a 0.06 0.06 0.10 0.10 0.0044 0.0018 −59
Gianelli a,b 31.83 31.81 198 198 9 5 −41
O’Neill a,b 24.49 20.54 37 31 2 1 −40
Oso a 31.37 31.37 225 225 8 5 −41
South Bay a 0.06 0.06 1.28 1.28 0.0555 0.0242 −56
Others 845.95 841.90 10,983 10,959 384 383 0

Statewide 1928 1920 12,574 12,574 442 430 −3

Notes: a Modeled with hourly varying prices; b operated for both pumping and power generation.

Figure 8. Modeled monthly energy and percent of hours of operation in a given month for pumping
selected facilities. Pumping energy costs are smaller with variable energy prices, but as hours of
operation increase, cost calculations from two methods become closer.

4. Discussion

Hydropower plants with large water storage capacities are operated mostly to meet
peak energy demands, especially when they have afterbays, while run-of-river plants run
continuously, depending on water availability. For plants with large storage capabilities,
energy releases in peak hours have greater profits because energy prices during these
hours are much higher. So, in a given month, these peak hours are targeted to maximize
hydropower revenue. For plants with small storage capacities or run-of-river plants, the
effectiveness of the proposed hourly varying energy prices method is limited, as they
operate continuously throughout most of a given month. In addition, when there is
less energy price variation, constant monthly average and variable prices converge and
variable energy prices does not improve revenue estimates. However, in energy markets
with significant variations, assuming constant energy prices for monthly models greatly
underestimates hydropower revenue and overestimates pumping energy costs.

5. Conclusions

A simple method was used to implicitly represent hourly varying energy prices in
monthly time-step, large-scale model operations, without affecting model runtime and
water supply operations. Instead of having to run in hourly time steps, the method
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uses price duration curves and estimates hourly varying prices as a function of hours of
operation at turbine or pumping plant capacity to capture hourly price variations in models
with large time steps and better represent hydropower and pumping plant operations.
The proposed method was applied to CALVIN, a hydroeconomic optimization model for
California’s intertied water supply system. Thirteen of thirty-three hydropower plants
with afterbays and 6 of 24 pumping plants with forebays are modeled with hourly varying
prices in CALVIN.

The model results were improved with variable prices, leading to increased hy-
dropower revenue with a slight reduction in generation and decreased pumping costs.
Overall, the use of constant energy prices tends to underestimate hydropower benefits and
overestimate pumping costs.

The representation of hourly energy price variability had only a small, but sometimes
significant, impact on overall water operations, particularly in drier years when water avail-
ability is limited. The proposed method did not increase water shortages, and water supply
operations from reservoirs remained unchanged. The existence of afterbays and forebays
in hydropower and pumping facilities provides operational flexibility and supports the
utilization of hourly energy price variability to increase benefits and reduce costs. Forebays
and afterbays also facilitate the implicit representation of variable energy prices in monthly
models. This technique and its application demonstrate that it is sometimes possible to
adequately represent short-period (hourly) phenomena and performance in long-period
(monthly) models. This method can be applied to any model representing a hydropower
facility with an effective afterbay or a pumping facility with a forebay, thereby improving
the integration of hydropower and pumping operations into longer-term water resource
system models.
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