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cpd: An R Package for Complex Pearson Distributions
Reprinted from: Mathematics 2022, 10, 4101, doi:10.3390/math10214101 . . . . . . . . . . . . . . . 116

Sonam Sharma and Surender Singh

A Complementary Dual of Single-Valued Neutrosophic Entropy with Application to MAGDM
Reprinted from: Mathematics 2022, 10, 3726, doi:10.3390/math10203726 . . . . . . . . . . . . . . . 131
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Article

Regularized Mislevy-Wu Model for Handling Nonignorable
Missing Item Responses

Alexander Robitzsch 1,2

1 Department of Educational Measurement and Data Science, IPN—Leibniz Institute for Science and
Mathematics Education, Olshausenstraße 62, 24118 Kiel, Germany; robitzsch@leibniz-ipn.de

2 Centre for International Student Assessment (ZIB), Olshausenstraße 62, 24118 Kiel, Germany

Abstract: Missing item responses are frequently found in educational large-scale assessment studies.
In this article, the Mislevy-Wu item response model is applied for handling nonignorable missing
item responses. This model allows that the missingness of an item depends on the item itself and a
further latent variable. However, with low to moderate amounts of missing item responses, model
parameters for the missingness mechanism are difficult to estimate. Hence, regularized estimation
using a fused ridge penalty is applied to the Mislevy-Wu model to stabilize estimation. The fused
ridge penalty function is separately defined for multiple-choice and constructed response items
because previous research indicated that the missingness mechanisms strongly differed for the two
item types. In a simulation study, it turned out that regularized estimation improves the stability of
item parameter estimation. The method is also illustrated using international data from the progress
in international reading literacy study (PIRLS) 2011 data.

Keywords: Mislevy-Wu model; missing data; nonignorable missingness; missing not at random;
item response model; regularized estimation

1. Introduction

In educational large-scale assessment (LSA) studies [1,2], such as the progress in
international reading literacy study (PIRLS; [3]), the trends in international mathematics
and science study (TIMSS; [4]), or the programme for international student assessment
(PISA; [5]), students’ abilities are assessed using cognitive test items. Often, however,
students do not respond to specific items leading to missing item responses [6]. It is not
obvious how item nonresponse [7] should be treated in the computation of values of
abilities (i.e., values of the latent trait) in item response theory (IRT) models [8–10] that are
used as scaling models.

Researchers frequently argue for applying complex IRT models that model missing
item responses in order to avoid biased item parameters [6,11]. If students omit items,
the most obvious option would be treating them as either wrong or missing, which effec-
tively means removing them from the estimation. In the latter case, missing item responses
are simply ignored. Slightly more complex treatments assume that missing item responses
can be ignored when conditioning on further latent variables (i.e., latent ignorability; [12]).
However, it has been shown that these kinds of models do not adequately fit typical LSA
datasets [13]. Recently, the Mislevy-Wu (MW) model received some attention [7,13–16] that
relaxes the strict assumption that missingness on item responses should either be treated as
wrong or latent ignorable. However, the MW model tends to produce unstable parameter
estimates if the missingness parameters are estimated item-specific. To circumvent this
issue, this paper proposes a regularized estimation approach to the MW model to stabilize
parameter estimation.

The decision of how to score missing item responses in LSA studies is a delicate one.
On the one hand, students might omit item responses because of a lack of motivation.

Information 2023, 14, 368. https://doi.org/10.3390/info14070368 https://www.mdpi.com/journal/information1
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On the other hand, students could simply not know the correct answer and therefore do
not deliver an item response. Even if students have only low motivation to respond to
an item in LSA studies, it could be generally questioned whether item omissions should
not be scored as wrong. Treating item omission as wrong might induce a strategy for
students to only respond to those items that they do know with sufficient confidence.
Introducing different item selection (or solution) strategies would undoubtedly impact the
interpretation of results in an LSA study. Hence, one can conclude that the decision on
how to score item responses is not (mainly) a statistical one [17]. Nevertheless, we use the
regularized MW model in this paper to explore potential causes of missing item responses
and the consequences of different missing data treatments.

The rest of the article is structured as follows. The regularized MW model is introduced
in Section 2. Section 3 presents results from a simulation study that investigates the
performance of regularized estimation of the MW model. In Section 4, an empirical
example involving PIRLS 2011 data is provided. Finally, the article closes with a discussion
in Section 5.

2. Mislevy-Wu Model

In this section, we review missing data terminology and introduce the regularized
MW model for handling nonignorable missing item responses.

A vector of item responses for person p is denoted by Xp. In the presence of missing
values, we decompose Xp into Xp = (Xobs,p, Xmis,p), where Xobs,p denotes the observed
and Xmis,p the missing item responses. Let Rp denote the vector of response indicators
whose values are 1 if an item is observed and 0 if it is missing. We can factorize the joint
distribution of Xp and Rp as

P(Rp, Xobs,p, Xmis,p) = P(Rp|Xobs,p, Xmis,p)P(Xobs,p, Xmis,p) (1)

Missing data literature distinguishes different missingness mechanisms regarding the
assumptions of the conditional distribution P(Rp|Xobs,p, Xmis,p) (see [18,19]). The most
important distinction is between missing at random (MAR; [20]) and missing not at random
(MNAR). MAR holds if

P(Rp|Xobs,p, Xmis,p) = P(Rp|Xobs,p). (2)

If (2) is violated, the missing data are MNAR. Based on the MAR assumption in (2),
we can integrate out the missing data Xmis,p and obtain∫

P(Rp|Xobs,p, Xmis,p)P(Xobs,p, Xmis,p)dXmis,p = P(Rp|Xobs,p)
∫

P(Xobs,p, Xmis,p)dXmis,p (3)

The crucial point is that the factor P(Rp|Xobs,p) does not depend on missing data
Xmis,p, which is the reason why likelihood-based inference can rely on the observed data
by parametrizing the distribution

∫
P(Xobs,p, Xmis,p)dXmis,p. If the model parameters of

the two factors are distinct [18], missing data are denoted as ignorable. Hence, we also
label the MAR assumption (2) as manifest ignorability (MI).

Latent ignorability (LI; [21–27]) is one of the weakest nonignorable missingness
mechanisms. LI weakens the assumption of ignorability for MAR data. In this case,
the existence of a latent variable ηp is assumed. The dimension of ηp is typically much
lower than the dimension of Xp. LI is formally defined as (see [27])

P(Rp|Xobs,p, Xmis,p, ηp) = P(Rp|Xobs,p, ηp). (4)

That is, the probability of missing item responses depends on observed item responses
and the latent variable ηp, but not the unknown missing item responses Xmis,p itself.
By integrating out Xmis,p, we obtain

2
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∫
P(Rp|Xobs,p, Xmis,p, ηp)P(Xobs,p, Xmis,p|ηp)dXmis,p dηp =

∫
P(Rp|Xobs,p, ηp)P(Xobs,p, Xmis,p|ηp)dXmis,p dηp (5)

Specification (4) is also known as a shared-parameter model [28,29]. In most ap-
plications, conditional independence of item responses Xpi and response indicators Rpi
conditional on ηp is assumed [27]. In this case, Equation (5) simplifies to

∫
P(Rp|Xobs,p, Xmis,p, ηp)P(Xobs,p, Xmis,p|ηp)dXmis,p dηp =

∫ I

∏
i=1

[
P(Rpi = rpi|ηp)P(Xpi = xpi|ηp)

rpi
]

dηp . (6)

In the rest of this paper, it is assumed that the latent variable ηp consists of a latent
ability θp and a latent response propensity ξp. The latent response propensity ξp is a
unidimensional latent variable that represents the dimensional structure of the response
indicators Rp.

The IRT model of interest follows a two-parameter logistic (2PL) model [30]:

P(Xpi = 1|θp) = Ψ(ai(θp − bi)) , (7)

where Ψ is the logistic link function, ai represents item discriminations, and bi represents
item difficulties.

Regularized Mislevy-Wu Model

For allowing nonignorable missing item responses, the conditional distribution
P(Rpi = 1|Xpi = x, θp, ξp) must be specified. The conditional probability of a missing
item response in the MW model [13,14,16,31–33] is defined as

P(Rpi = 1, Xpi = x|θp, ξp) = Ψ(ξp − βi − ρix) for x = 0, 1 . (8)

The total probability of a missing item response is given by

P(Rpi = 0|θp, ξp) = P(Rpi = 1, Xpi = NA|θp, ξp) =
1

∑
x=0

P(Rpi = 1, Xpi = x|θp, ξp) . (9)

By combining (8) and (9), we get

P(Xpi = x, Rpi = r|θp, ξp) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[
1−Ψ(ai(θp − bi))

]
Ψ(ξp − βi) if x = 0 and r = 1,

Ψ(ai(θp − bi))Ψ(ξp − βi − ρi) if x = 1 and r = 1,

Ψ(ai(θp − bi)Ψ(ξp − βi − ρi) +
[
1−Ψ(ai(θp − bi))

]
Ψ(ξp − βi) if x = NA and r = 0.

(10)

Note that the model defined in Equation (10) can be interpreted as an IRT model
for a variable Upi that has three categories: Category 0 (observed incorrect): Xpi = 0,
Rpi = 1, Category 1 (observed correct): Xpi = 1, Rpi = 1, and Category 2 (missing item
response): Xpi = NA, Rpi = 0 (see [34,35]). The marginal distribution P(Xpi = x|θp, ξp) in
(10) follows the 2PL model (7). The conditional probabilities for response indicators Rpi
are modeled with parameters βi and δi. The parameter βi parametrizes the item-specific
proportion of missing item responses, while the parameter δi quantifies the dependence of
the responding to item i conditional on the true but possibly unobserved item response
Xpi. It has been pointed out in [13,33] that the MW model (10) contains the special cases
of treating missing item responses as latent ignorable and as wrong as two extreme cases.
Moreover, the simulation studies in [13,14] demonstrated that a common δ parameter that
is constant across items could be consistently estimated.

Figure 1 graphically displays the MW model. Note the dependency of response
indicators Ri from items Xi.

3
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Figure 1. Graphical representation of the Mislevy-Wu model with three items X1, X2, and X3,
and their corresponding response indicators R1, R2, and R3, and latent ability θ and latent response
propensity ξ.

In this article, a bivariate normal distribution for (θp, ξp) is assumed, where SD(θp) is
fixed to one, and SD(ξp), as well as Cor(θp, ξp), are estimated (see [36,37] for more complex
distributions). LI in general and the model of Holman and Glas [12] in particular is obtained
in the MW model by fixing all δi parameters equal to zero. If one fixes all δi parameters in
the MW model at a sufficiently small (negative) value, such as−9.99, students with missing
item responses are scored as incorrect. Moreover, if one fixes all δi parameters to zero and
sets the correlation of θ and ξ to zero, MI (i.e., MAR) is obtained. Hence, LI can be tested
against MI. Moreover, the MW model is more general than the LI model because the latter
model only models the dependence of missingness on item i from ξ, but not the item itself.

The MW model can be estimated with maximum likelihood (ML). By denoting all
item parameters by γ = (γ1, . . . , γI) and distribution parameters by α, the log-likelihood
function is given by

l(γ, α; X, R) =
N

∑
p=1

log
∫ ∞

−∞

I

∏
i=1

[
P(Xpi = xpi, Rpi = rpi|θ, ξ; γi)

]
f (θ, ξ; α)dθ dξ , (11)

where X = (xpi)pi and R = (rpi)pi denote the datasets of item responses and response
indicators. The item-specific parameters are given as γi = (ai, bi, βi, δi). The log-likelihood
function can be numerically maximized to obtain item parameter estimates γ̂ and distribu-
tion parameters α̂. In IRT software, the expectation-maximization algorithm is frequently
utilized [38,39].

In our experience, estimating item-specific δi parameters in the MW model can become
quite unstable. Moreover, it has been shown that average δi parameters typically strongly
differ between constructed response (CR) and multiple-choice (MC) items, because the
omission of CR items is more associated with the true but not fully observed item response,
while omissions of MC items are only weakly associated with true item responses [13].
For stabilizing the estimation of δi parameters in ML, we propose to employ regularized
ML estimation with fused ridge-type penalty functions [40].

Let IMC ⊂ I and ICR ⊂ I be distinct integer sets of multiple-choice and constructed
response items, respectively, where I = {1, . . . , I}. The fused ridge penalty function P for
the MW model is defined by

P(γ; λ) = λ

[
∑

i,j∈ICR

(δi − δj)
2 + ∑

i,j∈IMC

(δi − δj)
2

]
, (12)

4
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where λ is a fixed regularization parameter. In regularized ML estimation, one maximizes
the penalized log-likelihood function lpen defined by

lpen(γ, α; λ, X, R) = l(γ, α; X, R)−P(γ; λ) . (13)

Using the penalty function in (12) implies normal priors for δi with means for CR and
MC items, respectively, and a common variance [40]. Importantly, by only considering
differences in pairs of item parameters δi, the item-type specific means of δi are not explicitly
estimated. The MW model (10) applied with regularized ML estimation using the fitting
function (13) is also called the regularized MW model.

The maximization of lpen involves the unknown regularization parameter λ. The k-fold
cross-validation approach is used for obtaining the optimal regularization parameter λopt.
The dataset is divided into k groups, and the parameters of the regularized MW model are
estimated on k− 1 folds leaving one fold out to evaluate the cross-validation error. This is
performed by leaving one fold out in turn and for each value of the regularization parameter
λ. In this article, the error was evaluated using the negative log-likelihood function
value [40]. The cross-validation error is calculated as ∑k

h=1 l(γ̂(−h), α̂(−h); Xh, Rh), where
γ̂(−u) and α̂(−h) are the vector of item parameter and distribution estimates obtained by
excluding the hth group of data. Moreover, Xh and Rh denote the datasets of item responses
and response indicators in the hth part of the data, respectively. In cross-validation, the log-
likelihood function is predicted on the part of the data that has not been used for parameter
estimation [41]. The smallest cross-validated log-likelihood value determines the optimal
regularization parameter λopt. In practice, k = 5 or k = 10 is frequently chosen.

3. Simulation Study

3.1. Method

In this simulation study that studies the performance of the regularized MW model,
we fixed the number of items to I = 20 and fixed item parameters ai, bi and δi throughout all
replications. To mimic real-data situations, we assumed that the first ten items C01, ..., C10
were CR, while the last ten items M11, ..., M20 were MC. On average, the missing proportion
of CR items was larger than for MC items. The δi parameters were varied according to
two data-generating models DGM1 and DGM2. In DGM1, the missing proportions were
0.112 for MC items and 0.153 for CR items. In DGM2, a higher missing proportion of 0.341
for CR items was assumed while retaining the missing proportion for MC items at 0.112.
The item parameters used in the simulation study can be found in Table A1 in Appendix A
(see also the directory “Simulation Study” https://osf.io/5pd28 (accessed on 21 June 2023)).

We chose sample sizes N = 1000 and N = 2500. We did not opt for smaller sample
sizes because we think that estimating an IRT model for response indicators requires
sufficiently large sample sizes. Hence, the MW model is more suitable for LSA studies than
for small-scale studies.

A bivariate normal distribution was simulated for the ability variable θ and the
response propensity ξ. The standard deviation of θ was set to 1, while the standard
deviation of ξ was fixed at 2. Moreover, the correlation of θ and ξ was fixed at 0.5 when
simulating the data.

The regularized MW model was estimated for a fixed sequence of values for the
regularization parameter λ. A grid of 21 regularization parameters was chosen: 0.000010,
0.000018, 0.000034, 0.000062, 0.000113, 0.000207, 0.000379, 0.000695, 0.001274, 0.002336,
0.004281, 0.007848, 0.014384, 0.026367, 0.048329, 0.088587, 0.162378, 0.297635, 0.545560, 1.0,
and 10,000. Values between 0.000010 and 1.0 were equidistantly chosen on a logarithmic
scale. In k-fold cross-validation, k = 5 folds were used. In the MW model, the estimated
distribution parameters α consisted of the variance of ξ and the covariance of θ and ξ.

In total, 2500 replications were conducted in each simulation condition. We assessed
the performance of parameter estimates by bias and root mean square error (RMSE).
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To provide simple summary statistics, we averaged absolute biases and RMSE values
across items for the same item parameter groups (i.e., the a, b, β, and δ parameters).

The statistical software R [42] was employed for all parts of the simulation. The esti-
mation of the regularized MW model was carried out using the sirt::xxirt() function in
the sirt package [43]. Replication material can be found in the directory “Simulation Study”
at https://osf.io/5pd28 (accessed on 21 June 2023).

3.2. Results

In Figure 2, the average absolute bias (red dashed line) and the average RMSE (solid
black line) for item parameter groups δ, β, a, and b are displayed for the DGM2. It can be
seen that for N = 1000, the minimum average RMSE for δ parameters is obtained for a λ
value that is substantially larger than the optimal regularization parameter λopt obtained
with k-fold cross-validated log-likelihood estimation. Interestingly, biases in all parameters
became relevant for sufficiently large regularization parameters. Hence, the search for an
optimal λ parameter regarding RMSE reflects a bias-variance tradeoff. However, it should
be emphasized that for a broad range of sufficiently small λ values, the bias and RMSE for
item discriminations ai, and item difficulties bi were almost unaffected by the choice of λ.

In Table 1, average absolute bias and average RMSE are displayed for the optimal
regularization parameter λopt, and fixed regularization parameters 10−5, 0.0263665, and 105.
It can be seen that λ = 0.0263665 strongly outperformed the other λ choices in terms of
RMSE for the δi parameters. However, a nonnegligible bias in δi and βi parameters was
introduced by using this regularization parameter. Nevertheless, inducing too much
regularization could stabilize estimated item parameters for the response indicators, while
the target parameters ai and bi were almost unaffected by the choice of λ. Hence, one could
generally conclude that the MW model should be utilized to estimate the missing response
mechanism flexibly. The regularization technique is only applied for stabilizing parameter
estimates without introducing relevant bias in target item parameter estimates.

Table 1. Simulation Study: Average absolute bias (Bias) and average absolute RMSE of estimated
item parameters of the regularized Mislevy-Wu model as a function of sample size N and different
choices of the regularization parameter λ for two data-generating models (DGM) DGM1 and DGM2.

DGM Par N
Bias for λ = RMSE for λ =

10−5 λopt 0.0263665 105 10−5 λopt 0.0263665 105

DGM1

δi
1000 0.123 0.076 0.304 0.754 0.915 0.845 0.638 0.875
2500 0.067 0.045 0.190 0.757 0.563 0.540 0.451 0.812

βi
1000 0.063 0.068 0.092 0.221 0.313 0.309 0.285 0.329
2500 0.028 0.031 0.052 0.221 0.189 0.189 0.186 0.277

ai
1000 0.008 0.008 0.011 0.028 0.154 0.154 0.154 0.156
2500 0.002 0.002 0.005 0.028 0.096 0.096 0.096 0.102

bi
1000 0.016 0.018 0.028 0.064 0.146 0.146 0.144 0.154
2500 0.008 0.010 0.017 0.062 0.089 0.090 0.090 0.109

DGM2

δi
1000 0.063 0.063 0.184 0.750 0.687 0.631 0.518 0.896
2500 0.018 0.028 0.090 0.750 0.382 0.374 0.349 0.822

βi
1000 0.038 0.052 0.080 0.266 0.311 0.299 0.280 0.376
2500 0.017 0.023 0.039 0.267 0.188 0.187 0.183 0.323

ai
1000 0.012 0.012 0.015 0.043 0.172 0.172 0.171 0.178
2500 0.004 0.004 0.006 0.041 0.105 0.105 0.105 0.118

bi
1000 0.013 0.020 0.032 0.108 0.165 0.164 0.161 0.201
2500 0.005 0.008 0.015 0.105 0.100 0.100 0.099 0.155

Note. Par = item parameter group; λopt = optimal regularization parameter selected with cross-validated log-likelihood.
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Figure 2. Average absolute bias and average root mean square error (RMSE) for item parameter
groups of the regularized Mislevy-Wu model for data-generating model DGM2 as a function of sample
size N and the regularization parameter λ. RMSE and bias values for the optimal regularization
parameter λopt selected with cross-validated log-likelihood are displayed with dotted lines.
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4. Empirical Example

4.1. Method

In the following analysis, item responses of booklet 13 in PIRLS 2011 (i.e., the “PIRLS
Reader”) consisting of 35 items (20 CR items and 15 MC items with four response alter-
natives) were used. For this booklet, item responses of 968 Austrian (AUT), 809 German
(DEU), 901 French (FRA), and 802 Dutch (NLD) students were available. The resulting
dataset is used for illustrative purposes in this section. For ease of presentation, all poly-
tomous items were dichotomized, where only the highest scores were recoded as correct.
The dataset has been made available as data.pirlsmissing in the R [42] package sirt [43].

Descriptive analyses showed that the average proportion of missing item responses
varied considerably between items and countries (AUT: 0.112, DEU: 0.079, FRA: 0.136, NLD:
0.027). For MC items, the average rate of missing item responses was 0.023 (SD = 0.016).
For CR items, the average rate of missing item responses was substantially larger (M = 0.141,
SD = 0.070).

We estimated the nonregularized MW model with freely estimated δi parameters and
compared this model to constrained alternatives. In the LI model [12], all δi parameters were
fixed to zero. In the WR model, all missing item responses are treated as incorrect, which
was implemented by fixing all δi parameters to −9.99 setting the response probabilities
effectively to zero for students who do not know the item. Finally, in the MI model,
we fixed all δi parameters to zero and fixed the correlation of θ and ξ to zero. Model
comparisons were conducted based on the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC).

The MW model was also estimated using regularized estimation. The optimal reg-
ularization parameter λopt was selected by minimizing the negative cross-validated log-
likelihood value. The sequence of the regularization parameter λ was selected between
10−8 and 10,000, equidistantly spaced on a logarithmic scale.

The R [42] package sirt [43] using the sirt::xxirt() was employed for fitting the
IRT models. Replication material can be found in the directory “Empirical Example” at
https://osf.io/5pd28 (accessed on 21 June 2023).

4.2. Results

In Table 2, model comparisons of the four nonregularized models are displayed. The
most general MW model turned out to be the best-fitting model in terms of AIC and
BIC. In line with [13], the WR model (i.e., treating missing item responses as incorrect)
outperformed the LI model (i.e., treating missing item responses as missing). The standard
deviation of ξ slightly varies across models, being smallest when treating missing item
responses as wrong in model MW. Also note that the correlation of θ and ξ was practically
identical for the models LI, WR, and MW.

Table 2. PIRLS Reader 2011: Model comparisons.

Model #npars AIC BIC SD(ξ) Cor(θ, ξ) δi

MI 106 162,192 162,844 2.41 0 ‡ 0 ‡

LI 107 161,796 162,454 2.38 0.41 0 ‡

WR 107 161,414 162,073 2.29 0.41 −9.99 ‡

MW 142 161,086 161,960 2.34 0.41 est

Note. #npars = number of estimated model parameters; MI = manifest ignorabiity; LI = latent ignorability;
WR = treating missing item responses as wrong (i.e., 0); MW = Mislevy-Wu model; ‡ = fixed model parameter;
est = estimated model parameters; Entries with the least AIC or BIC are printed in bold font, respectively.

In Table 3, estimated item parameters of the regularized Mislevy-Wu model are
displayed. Notably, the average δ parameters for CR items (M = −2.01, Med = −1.65,
SD = 1.44) were lower than MC items (M = 0.60, Med = 0.03, SD = 2.06). Moreover,
the average βi parameter was larger for CR items (M = −2.70, Med = −2.89, SD = 0.85)
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than for MC items (M = −6.55, Med = −5.75, SD = 1.84), reflecting that the missing
proportions for CR items were larger than for MC items.

Table 3. PIRLS Reader 2011: Estimated item parameters of the regularized Mislevy-Wu model.

ai bi βi δi

Item Type Freq0 Freq1 FreqNA MI LI WR MW MI LI WR MW MW MW

R31G02C CR 0.28 0.64 0.08 0.86 0.85 0.89 0.91 −1.04 −1.04 −0.81 −0.80 −3.03 −4.45
R31G04C CR 0.58 0.21 0.20 1.05 1.04 1.06 1.05 1.23 1.25 1.43 1.36 −2.34 −1.40
R31G08CZ CR 0.41 0.40 0.19 1.27 1.26 1.34 1.23 0.18 0.20 0.48 0.30 −2.01 −0.90
R31G08CA CR 0.40 0.37 0.23 1.76 1.74 1.82 1.74 1.32 1.35 1.44 1.39 −1.99 −0.76
R31G08CB CR 0.61 0.14 0.25 1.45 1.44 1.51 1.41 0.09 0.11 0.31 0.17 −2.41 −0.79
R31G10C CR 0.48 0.40 0.13 1.13 1.13 1.20 1.17 0.28 0.29 0.40 0.35 −3.08 −1.42
R31G12C CR 0.51 0.29 0.20 0.49 0.48 0.63 0.49 1.24 1.26 1.47 1.25 −2.53 −0.04
R31G13CZ CR 0.17 0.66 0.17 2.43 2.46 3.31 3.18 −0.55 −0.53 −0.27 −0.33 −1.55 −2.81
R31G13CA CR 0.23 0.58 0.20 2.11 2.12 2.85 2.72 −0.36 −0.34 −0.11 −0.14 −1.35 −3.40
R31G13CB CR 0.26 0.52 0.22 2.19 2.19 2.75 2.68 −0.12 −0.10 0.07 0.05 −1.54 −3.21
R31G13CC CR 0.32 0.46 0.22 3.58 3.67 4.88 5.07 −0.76 −0.74 −0.51 −0.57 −1.69 −2.69
R31P02C CR 0.23 0.73 0.04 0.81 0.81 0.79 0.81 −1.61 −1.62 −1.52 −1.48 −3.77 −3.88
R31P03C CR 0.16 0.79 0.06 1.26 1.25 1.24 1.29 −1.57 −1.57 −1.42 −1.38 −2.88 −4.36
R31P05C CR 0.45 0.48 0.08 1.08 1.09 1.07 1.02 −0.05 −0.05 0.04 −0.11 −4.51 0.59
R31P06C CR 0.19 0.76 0.04 1.40 1.39 1.34 1.37 −1.28 −1.28 −1.23 −1.24 −3.85 −2.43
R31P07C CR 0.19 0.74 0.07 1.74 1.74 1.67 1.74 −1.08 −1.08 −0.98 −0.98 −2.90 −3.12
R31P09C CR 0.14 0.80 0.06 1.25 1.26 1.37 1.33 −1.71 −1.68 −1.40 −1.55 −3.40 −1.83
R31P14C CR 0.33 0.54 0.13 1.06 1.06 1.15 1.07 −0.48 −0.47 −0.24 −0.39 −2.92 −1.22
R31P15C CR 0.51 0.36 0.13 0.52 0.53 0.63 0.53 0.74 0.75 0.92 0.81 −3.19 −0.55
R31P16C CR 0.49 0.38 0.13 0.76 0.75 0.86 0.80 0.48 0.49 0.62 0.57 −3.03 −1.48
R31G01M MC 0.18 0.81 0.01 1.11 1.15 1.13 1.15 −1.66 −1.63 −1.66 −1.68 −10.51 4.20
R31G03M MC 0.26 0.73 0.01 1.19 1.18 1.04 1.10 −1.11 −1.11 −1.24 −1.23 −7.52 1.24
R31G05M MC 0.42 0.56 0.02 0.84 0.85 0.81 0.80 −0.41 −0.40 −0.42 −0.50 −7.56 2.18
R31G06M MC 0.27 0.72 0.01 0.98 0.97 0.84 0.90 −1.20 −1.22 −1.38 −1.30 −5.72 −2.94
R31G07M MC 0.40 0.58 0.02 1.04 1.04 0.95 0.99 −0.41 −0.41 −0.45 −0.45 −5.64 −0.82
R31G09M MC 0.38 0.60 0.02 0.69 0.69 0.65 0.65 −0.71 −0.71 −0.74 −0.78 −6.06 0.08
R31G11M MC 0.36 0.62 0.02 1.25 1.26 1.23 1.24 −0.54 −0.54 −0.56 −0.58 −5.81 0.03
R31G14M MC 0.33 0.60 0.07 1.16 1.17 1.07 1.09 −0.65 −0.64 −0.53 −0.79 −5.41 1.68
R31P01M MC 0.25 0.74 0.01 1.06 1.06 0.97 0.99 −1.24 −1.24 −1.33 −1.37 −9.84 3.88
R31P04M MC 0.53 0.46 0.01 0.76 0.77 0.75 0.74 0.19 0.19 0.17 0.12 −8.56 3.12
R31P08M MC 0.19 0.79 0.02 1.19 1.21 1.13 1.16 −1.52 −1.51 −1.53 −1.58 −5.75 −0.01
R31P10M MC 0.11 0.87 0.03 1.88 1.89 1.74 1.81 −1.66 −1.65 −1.65 −1.69 −4.80 −1.29
R31P11M MC 0.27 0.70 0.03 1.07 1.07 1.04 1.04 −1.05 −1.05 −1.05 −1.09 −5.18 −0.78
R31P12M MC 0.33 0.64 0.03 1.02 1.03 1.02 1.00 −0.77 −0.76 −0.75 −0.80 −5.33 −0.32
R31P13M MC 0.09 0.88 0.03 1.59 1.60 1.49 1.54 −1.97 −1.96 −1.90 −1.99 −4.53 −1.28

Note. Type = item format; CR = constructed response item; MC = multiple-choice item; MI = manifest ignorabiity;
LI = latent ignorability; WR = treating missing item responses as wrong (i.e., 0); MW = Mislevy-Wu model.

It is also noteworthy that item discriminations ai hardly varied between the MI and
LI model (model MI for CR items: M = 1.41, Med = 1.25, SD = 0.74; model LI for CR
items: M = 1.41, Med = 1.25, SD = 0.75). However, item discriminations ai were larger
for models WR (M = 1.62, Med = 1.29, SD = 1.06) and MW (M = 1.58, Med = 1.26,
SD = 1.09). Similarly, item difficulties bi did not show practical differences between MI
and LI models (model MI for CR items: M = −0.25, Med = −0.24, SD = 0.96; model LI for
CR items: M = −0.24, Med = −0.22, SD = 0.97). In line with expectations, the MW model
(CR items: M = −0.14, Med = −0.12, SD = 0.93) and the WR model resulted in larger item
difficulties (CR items: M = −0.07, Med = −0.03, SD = 0.97). The pattern was similar for
MC items but less pronounced because the missing proportion rates were smaller for MC
items compared to CR items.

In Figure 3, the negative cross-validated log-likelihood value is displayed as a function
of the regularization parameter λ. For sufficiently small λ values, there is almost no
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difference in cross-validated log-likelihood values. The optimal regularization parameter
was estimated as λopt = 0.0004342.

Figure 3. Negative cross-validated log-likelihood value as a function of the regularization parameter
λ. The optimal regularization parameter λopt selected with cross-validated log-likelihood is displayed
with a red triangle.

In Figure 4, estimated δi item parameters are displayed as a function of the regulariza-
tion parameter λ for CR and MC items, respectively. With increasing λ parameters, item
parameters are fused to item-format-specific parameters. The fused values were δi = −3.18
for CR items and δi = −0.79 for MC items. This result indicated that missing item responses
for CR items are more likely associated with a wrong item response than for MC items.
Notably, the fused δi parameters were both negative.

Figure 4. Curves of item parameter estimates δi are shown as a function of the regularization
parameter λ for constructed response (CR) items (left panel) and multiple-choice (MC) items (right
panel). The optimal regularization parameter λopt selected with cross-validated log-likelihood is
displayed with a red dashed line.
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In Figure 5, estimated βi item parameters are displayed as a function of the regular-
ization parameter λ for CR and MC items, respectively. The regularization of the δi also
affected the estimated βi parameters, particularly for MC items.

Figure 5. Curves of item parameter estimates βi as a function of the regularization parameter λ

for constructed response (CR) items (left panel) and multiple-choice (MC) items (right panel). The
optimal regularization parameter λopt selected with cross-validated log-likelihood is displayed with
a red dashed line.

Finally, Figures 6 and 7 display the ai and bi parameters as a function of the regulariza-
tion parameter λ. The target item parameters are hardly affected for small values of the
regularization parameter λ, but show some variation for λ parameters larger than 10−2.

Figure 6. Curves of item parameter estimates ai as a function of the regularization parameter λ

for constructed response (CR) items (left panel) and multiple-choice (MC) items (right panel). The
optimal regularization parameter λopt selected with cross-validated log-likelihood is displayed with
a red dashed line.
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Figure 7. Curves of item parameter estimates bi as a function of the regularization parameter λ

for constructed response (CR) items (left panel) and multiple-choice (MC) items (right panel). The
optimal regularization parameter λopt selected with cross-validated log-likelihood is displayed with
a red dashed line.

5. Discussion

In this article, we proposed a regularization estimation approach to the Mislevy-Wu
model. This approach allows sufficiently complex missingness mechanisms as well as
estimation in moderate sample sizes such as N = 1000. Interestingly, the most stable
item parameter estimates in terms of RMSE were obtained for values of the regularization
parameters that were larger than the one obtained by k-fold cross-validation based on the
log-likelihood function value.

To further stabilize estimation, the fused ridge penalty function could also involve
the βi parameters because they are also difficult to estimate for items with low missing
proportion rates or in moderate sample sizes.

It has been shown in the PIRLS 2011 application that the Mislevy-Wu model outper-
formed all other estimation approaches. Omissions on constructed response items were
strongly associated with true item responses. This implies that students who do not know
an item likely do not respond to it [33]. In contrast, multiple-choice items were only weakly
associated with true but non-fully observed item responses. Given these findings, it seems
plausible in large-scale assessment studies to score omitted constructed response items as
wrong while treating multiple-choice as fractionally correct in a pseudo-likelihood estima-
tion approach [44]. In the latter case, a multiple-choice item with Ki answer alternative is
scored with 1/Ki.

It could be generally argued that constructed response items are omitted more to a
lack of knowledge than multiple-choice items. In this sense, as argued by an anonymous
reviewer, omissions on constructed response items are likely missing not at random data.
In contrast, multiple-choice items could be regarded as missing at random data. In practice,
the tendency to omit items can be associated with person traits [45].

The Mislevy-Wu model can be easily extended to item response models for polytomous
items. For dichotomous items, the dependence of response indicators Ri from true item
responses Xi is modeled by the item parameter δi. For polytomous items scored between
0 and Ki, Ki parameters δi,k (k = 1, . . . , Ki) that differentially weigh the impact of item
category k on the response indicator can be identified from the data.
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The Mislevy-Wu model can be extended to include covariates for predicting the latent
ability θp and the latent response propensity ξp [46]. In a latent regression model [47,48],
the estimated item parameters could be fixed, and IRT packages such as TAM [49] could
be utilized for estimation. Such an approach could also be applied in providing plausible
values [50] in LSA studies as realizations of the latent ability θp that can be used for
secondary analysis. In this sense, the Mislevy-Wu model can be implemented in operational
practice when scaling item responses in LSA studies such as PISA, PIRLS, or TIMSS [51].

Missing item responses are typically classified into omitted and not-reached item
responses [52]. In this article, we only investigated omitted item responses within a test.
For speeded tests, it might be preferable not to score not-reached item responses as wrong.
However, large-scale assessment studies like PIRLS are not strongly speeded such that
there is only a low prevalence of not-reached items.

The Mislevy-Wu model follows a model-based strategy in which the missingness
mechanism for the response indicators is simultaneously modeled with the item response
model (e.g., 2PL model) of interest. It might be beneficial to weaken the assumption of
a unidimensional ability variable θ and unidimensional response propensity variable ξ
and to estimate multidimensional variables with an exploratory loading structure [35]
in an imputation model. In this case, the imputation model is more complex than the
intentionally misspecified analysis model [17,53]. Certainly, such an estimation approach
would need even larger sample sizes, and regularized estimation could also be applied to
the exploratory loading structure.

Although modeling missingness mechanisms in educational studies now receive wide
attention, only in rare cases, the dependence of item omissions from the item itself is
considered a viable alternative (e.g., see [6]). This is unfortunate because we empirically
demonstrated that there are several studies in which treating constructed response items
as wrong [13] instead of latent ignorable (i.e., as missing; [6]) resulted in superior model
fit. The Mislevy-Wu model contains these two extreme scoring treatments as particular
constrained models and also parameterizes processes that are a mixture of both. Hence,
if missing item responses should be modeled in large-scale assessment studies, there is no
excuse for neglecting the Mislevy-Wu model from the preferred psychometrician’s toolkit.
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Abbreviations

The following abbreviations are used in this manuscript:

2PL two-parameter logistic
AIC Akaike information criterion
BIC Bayesian information criterion
CR constructed response
DGM data-generating model
IRT item response theory
LSA large-scale assessment
LI latent ignorability
MAR missing at random
MC multiple-choice
MI manifest ignorability
ML maximum likelihood
MNAR missing not at random
MW Mislevy-Wu
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PIRLS progress in international reading literacy study
RMSE root mean square error

Appendix A. Item Parameters Used in the Simulation Study

In Table A1, data-generating item parameters for the simulation study are displayed.

Table A1. Simulation Study: Data-generating item parameters of the Mislevy-Wu model.

Item Type ai bi
βi

δi
DGM1 DGM2

C01 CR 1.7 1.4 −1.7 0.3 −2.0
C02 CR 1.2 0.4 −2.7 −0.7 −1.7
C03 CR 0.5 1.3 −2.2 −0.2 −3.6
C04 CR 2.2 −0.6 −1.4 0.6 −2.9
C05 CR 2.7 −0.3 −1.3 0.7 −3.1
C06 CR 2.8 −0.1 −1.2 0.8 −3.8
C07 CR 1.3 −1.4 −2.5 −0.5 −4.8
C08 CR 1.3 −1.5 −1.8 0.2 −2.0
C09 CR 1.1 −0.4 −2.5 −0.5 −1.3
C10 CR 0.5 0.8 −2.4 −0.4 −0.6
M11 MC 0.9 −1.3 −3.2 −3.2 0.5
M12 MC 1.0 −0.4 −3.4 −3.4 −0.8
M13 MC 0.7 −0.8 −3.6 −3.6 −0.3
M14 MC 1.2 −0.6 −3.7 −3.7 −0.2
M15 MC 1.1 −0.8 −2.8 −2.8 0.4
M16 MC 1.2 −1.6 −2.8 −2.8 −0.3
M17 MC 1.8 −1.7 −2.8 −2.8 −1.1
M18 MC 1.0 −1.1 −3.4 −3.4 −1.0
M19 MC 1.0 −0.8 −2.8 −2.8 −0.5
M20 MC 1.5 −2.0 −1.8 −1.8 −0.9

Note. DGM = data-generating model; Type = item format; CR = constructed response item; MC = multiple-
choice item.
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Abstract: Power load forecasting plays an important role in power systems, and the accuracy of load
forecasting is of vital importance to power system planning as well as economic efficiency. Power
load data are nonsmooth, nonlinear time-series and “noisy” data. Traditional load forecasting has low
accuracy and curves not fitting the load variation. It is not well predicted by a single forecasting model.
In this paper, we propose a novel model based on the combination of data mining and deep learning
to improve the prediction accuracy. First, data preprocessing is performed. Second, identification
and correction of anomalous data, normalization of continuous sequences, and one-hot encoding of
discrete sequences are performed. The load data are decomposed and denoised using the double
decomposition modal (LVMD) strategy, the load curves are clustered using the double weighted
fuzzy C-means (DBFCM) algorithm, and the typical curves obtained are used as load patterns. In
addition, data feature analysis is performed. A convolutional neural network (CNN) is used to extract
data features. A bidirectional long short-term memory (BLSTM) network is used for prediction,
in which the number of hidden layer neurons, the number of training epochs, the learning rate,
the regularization coefficient, and other relevant parameters in the BLSTM network are optimized
using the influenza virus immunity optimization algorithm (IVIA). Finally, the historical data of
City H from 1 January 2016 to 31 December 2018, are used for load forecasting. The experimental
results show that the novel model based on LVMD-DBFCM load c1urve clustering combined with
CNN-IVIA-BLSTM proposed in this paper has an error of only 2% for electric load forecasting.

Keywords: power load forecasting; LVMD; DBFCM; CNN; BLSTM; IVIA

1. Introduction

As quality of life has improved, the demand for power energy has also risen, and thus,
the requirements for power generation and transmission and the use of electricity have
increased [1]. Power load forecasting applies machine learning methods to mine the key
factors affecting load from historical data, such as weather and time data, to build load
forecasting models [2]. Load forecasting is the basis for ensuring the balance of power
supply and demand. Accurate forecasting results can reduce the pressure on transmis-
sion and distribution links and facilitate the optimal scheduling of power transmission
links. They can effectively reduce power generation costs and improve economic and
social benefits [3,4].

Traditional forecasting methods use the overall historical load numbers as their ba-
sis [5–9]. The trend extrapolation predicts future loads based on the historical trends of the
predictor variables. It predicts near future loads with high accuracy, but error gradually
increases with time. The regression analysis method predicts future load changes by es-
tablishing a functional relationship between variables. It has high fitting ability but has
a large error in predicting future changes. Time series extrapolation (the autoregressive
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moving average model) approximates a nonlinear relationship with a linear equation [10].
The grey forecasting method performs correlation analysis by identifying the degree of
dissimilarity in development trends between system factors. Traditional forecasting models
have a relatively simple structure and require highly accurate historical data, resulting in
forecasting results with poor accuracy.

In recent decades, deep learning has made important breakthroughs in the field of
artificial intelligence. In 1957, Frank Rosenblatt invented an artificial neural network to
solve complex problems by means of a multilayer perceptron (MLP). Deep neural networks
(DNNs) are currently a popular topic in load prediction research, and recurrent neural
networks (RNNs) have advantages in memory parameter sharing and Turing complete-
ness [11]. Long short-term memory (LSTM) networks overcome the problem that RNNs are
prone to gradient disappearance/explosion, but their ability to correct errors is weak [12].
M. Schuster proposed a BLSTM network that can make full use of the hidden layer history
state and has stronger robustness [13]. Yet, BLSTM networks have many parameters, and
without proper optimization, the model may be overfitted or slow to train, resulting in
inefficiency. The number of hidden layer neurons, the number of training epochs, the
learning rate, and the regularization coefficient in the BLSTM network are optimized using
the IVIA. It can improve the model’s efficiency. The challenges of the machine learning
algorithms to load forecasting for power systems, with complex, nonsmooth, nonlinear
time-series and “noisy” data, will decrease the accuracy of the algorithm, and a single
prediction model has difficulty meeting the accuracy requirements. Integrating a hybrid
preprocessing method can significantly improve the prediction accuracy [14–17].

In summary, to improve the accuracy and meet the needs of practical problems, this
paper proposes a new model based on data mining and deep learning. It considers not
only historical load data but also weather information, date types, real-time electricity
prices, etc. Historical data load, weather information, and real-time electricity prices
are normalized, and the date and holiday information are expressed through One-Hot
encoding. The DBFCM algorithm is applied to load curve clustering to overcome the
problems of traditional C-means clustering and fuzzy C-means clustering in which data
are clustered into small classes, inaccurate classification is performed, and the “uniform
effect of the cluster size” degrades performance. First, the LVMD is used to decompose
and denoise the input data to improve the continuity and stability of the data. Second, the
DBFCM algorithm is used to perform load curve clustering. Third, feature fusion extraction
is performed using CNN. In addition, the extracted feature vectors are used as the input
of IVIA-BLSTM. The IVIA is proposed to optimize the parameters in the BLSTM network.
Finally, this paper proposes a new load forecasting model based on the LVMD-DBFCM
algorithm and CNN-IVIA-BLSTM.

The remainder of this article is organized as follows. Section 2 describes the IVIA
algorithm, Section 3 presents the methodology used in this paper, Section 4 is a case study
of this paper, and Section 5 concludes the paper.

2. Influenza Virus Immunity Optimization Algorithm

The IVIA is a new metaheuristic optimization algorithm that is inspired by the way
influenza viruses spread in a population and the process of population immunity. The
process of an individual being infected is divided into three states: uninfected, infected, and
immune, and the population has herd immunity when the number of immune individuals
in the population exceeds 80% of the total population. This section examines the IVIA
with 23 sets of standard test functions and compares it with seven optimization algorithms
proposed in recent years. They are turbulent flow of water-based optimization (TFWO) [18],
golden eagle optimization (GEO) [19], the parasitism–predation algorithm (PPA) [20],
the rat swarm optimizer (RSO) [21], gray wolf optimization (GWO) [22], particle swarm
optimization (PSO) [23], and whale optimization algorithm (WOA) [24]. The results of
the tested functions show that the IVIA converges faster with higher accuracy, optimizes
the function better, and finds the optimal value of the function in fewer iterations. Then,
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the IVIA is applied to the neural network BLSTM training of the power load forecasting
model to optimize the number of hidden layer neurons, the number of training epochs, the
learning rate and the regularization coefficient, and other relevant parameters to improve
the accuracy of the forecasting model.

2.1. Biological Characteristics

The influenza virus is very contagious, spreads quickly, and has many routes of
transmission [25]. The spread of the virus in the population can be achieved through
droplet transmission and physical contact, and the rate of spread is related to the social
distance between people [26]. The vast majority of the population can recover on their
own after infection, and those who recover produce the corresponding antibodies in their
bodies and have immune functions. A small number of people with underlying diseases,
that is, elderly people or those with weak resistance, are at risk. When the number of
immune individuals in the population exceeds 80%, the population has herd immunity,
thus preventing the next round of disease transmission. A schematic diagram of the
transmission process of the influenza virus in a population is shown in Figure 1.

Figure 1. Diagram of the process of influenza virus population transmission.

The population is divided into infected individuals, highly susceptible individuals,
susceptible individuals, safe individuals, and absolutely safe individuals.

Extremely susceptible individuals are direct contacts of infected individuals, who
are socially close to infected individuals and are infected by getting influenza virus from
infected individuals; susceptible individuals are indirect contacts of infected individuals
who are socially distant from the infected individuals, may be infected through third parties
as vectors, and have a higher risk of infection; safe individuals are not in contact with
infected individuals or other individuals, and because the influenza virus is transmitted as
a vector, through a change in social distance, safe individuals may become susceptible indi-
viduals or infected individuals; absolutely safe individuals have immune functions through
vaccination or healing after infection and are not susceptible to infection, regardless of the
contact distance of infected individuals. In this paper, the influenza virus immunization
algorithm is proposed through the transmission of the influenza virus in a population and
the immunization mechanism. To map the spread process of the influenza virus with the
optimization algorithm, the following assumptions are made:
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1. The initial number of infected individuals is small, and they are randomly distributed
in the population. The category to which an individual currently belongs and the
corresponding update formula are determined based on the distance between the
individual and the infected individual;

2. The overall number of the population is kept constant, and absolutely safe individuals
randomly move to different locations in the population. The number and location of
other individuals change dynamically with the number of iterations;

3. Individuals in the population have three states: infected, uninfected, and immune.
Infected individuals have immunity after infecting other individuals and will not be
infected in the following process. A population is immune when 80% or more of the
individuals in the population are immune;

4. Individuals are infected by contracting virus cells from an infected person, and the
process of virus cell exchange is shown in Figure 2. The influenza virus cells and the
diseased cells are taken as the smallest units within an individual to represent the
dimension of the optimization problem.

Figure 2. Diagram of the virus cell exchange process.

Immunized individuals: The individuals who are categorized as immunized are
protected against the virus, and they are not affected by infected individuals.

Figure 3 shows the proportion of immune individuals to the entire population with the
23 sets of standard test functions run by IVIA. From the figure, except for functions F4, F7,
F9, F16, F21, and F23, all the remaining 17 tested functions stop the iterative search process
when the population immunity rate reaches 0.8. In this paper, the minimum population
immunity rate for IVIA is set at 0.8, i.e., the search for optimization stops when the number
of immunized individuals in the population exceeds 80% of the total. It ensures that the
algorithm has high optimization results.

In this paper, we propose the IVIA based on the transmission and immunization
process of the influenza virus. The influenza virus spreads rapidly in a population, and
the growth curve of the cumulative number of infections is shown in Figure 4. Curve 1©
indicates that the number of infected individuals in the population increases rapidly within
2~3 weeks, and curves 2© and 3© indicate that the number of infected individuals peaks
at 7~8 weeks and then gradually starts to decline. Curve 4© indicates that the number
of infected individuals gradually decreases and the number of immunized individuals
increases near the end of this influenza outbreak. The IVIA has a good optimization
capability at the beginning of the iteration. Figure 4 is a schematic diagram summarized
according to the epidemic transmission rules; the website of the epidemic transmission
rules is shown below.
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Figure 3. The proportion of immune individuals in the whole population.
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Figure 4. Growth curve of the number of infected people.

https://www.zhzyw.com/crb/gm/08521151042985F4176E7H4KEC0B47A.html (ac-
cessed on 12 June 2023).

2.2. Mathematical Model

The process of influenza virus transmission in a population is mapped with the
influenza virus immunization algorithm. The population is represented by the matrix X, as
shown in Equation (1), where n is the population size and the number of individuals, and d
is the number of cells invaded by the influenza virus into the human body, corresponding
to the dimensionality of the objective function. The initialization process of the algorithm
randomly generates an n× d dimension matrix X, which sets the initial number of infected
individuals to x.

X =

⎡⎢⎢⎢⎣
x11 x12 · · · x1d
x21 x22 · · · x2d

...
...

. . .
...

xn1 xn2 · · · xnd

⎤⎥⎥⎥⎦ (1)

The fitness values of different individuals in the population are represented by Equa-
tion (2). Each row in the matrix is represented as the fitness value of the current individual.
The individual corresponding to the optimal fitness value is the current optimal solution of
the objective function.

F(x) =

⎡⎢⎢⎢⎣
f (x11, x12, · · · , x1d)
f (x21, x22, · · · , x2d)

...
f (xn1, xn2, · · · , xnd)

⎤⎥⎥⎥⎦ (2)

The distance between individuals is represented by C, as shown in Equation (3).
x = {x1, x2, . . . , xd} is the position of individual x, y = {y1, y2, . . . , yd} is the position of
individual y, and d is the dimension of the optimization problem.

C =

√
(x1 − y1)

2 + (x2 − y2)
2 + . . . + (xd − yd)

2 (3)

L is the maximum safety distance, as shown in Equation (4). (Lmin, Lmax) represents
the range of values for individuals.

L =
1
2

√
L2

min + L2
max (4)

The virus spreading process corresponds to the iterative optimization-seeking process
in the algorithm. It is assumed that the safe distance between other individuals and the
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infected person when the influenza virus spreads in the population is L. The iterative
formulas for individuals in different cases are shown in Equations (5) to (9).

• Infected individuals are updated by Equation (5):

xi,j(t + 1) = xi,j(t)
(

exp
(

Nmax − n
Nmax

− 1
)
× 1

d− 1

)q
(5)

When the contact distance between individuals in the population and infected individ-
uals is C < 0.2L, the individuals are moved into the infected state. The position of infected
individuals is updated by Equation (5). Nmax is the maximum number of iterations, n is
the current number of iterations, d is the dimensionality of the optimization problem, and
q is used to regulate the individual position update rate. The larger the value is of q, the
faster the position update rate and the higher the accuracy of the optimization search.

• Extremely susceptible individuals are updated by Equation (6):

xi,j(t + 1) = xi,j(t) + α
∣∣xi,j(t)− xi,q(t)

∣∣
α = 1

d

d
∑

p=1
rand(−1, 1) (6)

When the contact distance between individuals in the population and infected indi-
viduals is 0.2L < C < 0.5L, the position is updated by Equation (6). xi,q(t) is the random
acquisition of viral cells by highly susceptible individuals; α represents update coefficient
at the contact distance of 0.2L < C < 0.5L. When the number of exchanged cells exceeds a
quarter of the total number of cells, the highly susceptible individuals are transformed into
infected individuals. Cell exchange occurs only once during each iteration, and the number
of exchanges is random.

• Susceptible individuals are updated by Equation (7):

xi,j(t + 1) = xi,j(t) + β
∣∣xi,j(t)− xi,v(t)

∣∣
β = exp

(
C−L

ε×Nmax

)
ε = rand(0, 1)

(7)

When the contact distance between individuals in the population and infected indi-
viduals is 0.5L < C < 0.8L, the position is updated by Equation (7). xi,v(t) is a random
acquisition of viral cells by highly susceptible individuals, β represents update coefficient
at the contact distance of 0.5L < C < 0.8L, ε is a random number in the range 0~1. When
the number of exchanged cells has exceeded one-third of the total number of cells, the
highly susceptible individuals are transformed into infected individuals.

• Secure individuals updated by Equation (8):

xi,j(t + 1) = xi,j(t) + γ
∣∣xi,j(t)− xi,w(t)

∣∣
f (xi,w) = argmin f (xi,j)

γ = rand(−1, 1)
(8)

When the contact distance between individuals in the population and infected indi-
viduals is 0.8L < C < L, the position is updated by Equation (8). γ is a random number
in the range −1~1. There is no cellular exchange between safe individuals and infected
individuals. However, as the number of infected individuals increases, the contact distance
between safe individuals and infected individuals may decrease, and safe individuals may
become susceptible.

• Absolutely safe individuals updated by Equation (9):
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xi,j(t + 1) = λxi,j(t)
λ = γ×

(√
2−1
2

)
L

(9)

Absolutely safe individuals are immune, and the contact distance between individuals
and infected individuals is C > L; λ represents the update coefficient at the contact distance
of C > L. They randomly change their positions during the iterative process and can be
used to escape the current search region when the algorithm falls into local optima.

Stop criterion IVIA: The algorithm terminates when the number of immune individuals
in the population exceeds more than 80% of the population or when the maximum number
of iterations is reached. Therefore, the individual with the highest population immunity
corresponds to the optimal solution of the optimization problem, and the corresponding
function value is the optimal value of the optimization problem. If the problem to be solved
requires higher accuracy, the population immunity rate in the Algorithm 1 can be increased.
The pseudo-code of IVIA is presented below.

Algorithm 1 IVIA pseudo-code

Input:

n: The number of people
Nmax: The maximum number of iterations
m: Initial number of infected individuals (usually set to 1)
L: Maximum safe contact distance
R: Herd immunity ratio
C: The distance between individuals
lb,ub: Search boundary
1: Population initialization
2: Setting parameters
3: while (t < N)
4: Calculate fitness value and sort
5: for i = 1:n
6: if (C < 0.2L) then
7: Using Equation (5) to update the location of the infected individuals
8: Record the current status of the individuals
9: else if (0.2L < C < 0.5L) then
10: Using Equation (6) to update the location of highly susceptible individuals
11: Record the current status of the individuals
12: else if (0.5L < C < 0.8L) then
13: Using Equation (7) to update the location of susceptible individuals
14: Record the current status of the individuals
15: else if (0.8L < C < L) then
16: Using Formula (8) to update the position of a safe individuals
17: Record the current status of the individual
18: else

19: Using Equation (9) to update the position of an absolutely safe individuals
20: end if

21: Recalculate fitness value
22: end for

23: Calculate immunity rate
24: t = t + 1
25: end while

2.3. Algorithm Testing

To test the actual optimization effect of the proposed IVIA, it was evaluated in this
paper on 23 sets of standard test functions. The optimization results were compared with
those of turbulent flow of water-based optimization (TFWO), golden eagle optimization
(GEO), the parasitism–predation algorithm (PPA), the rat swarm optimizer (RSO), gray
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wolf optimization (GWO), particle swarm optimization (PSO), and the whale optimization
algorithm (WOA).

Table 1 shows the expression of the test function, the dimension of the optimization
problem, and the overall search range, and the last column shows the minimum value of
the test function expectation, which is the theoretical optimum. The IVIA population size n
is 30, the maximum number of iterations Nmax is 1000, the maximum safe contact distance
L is 0.5ub, and the population immunity rate R is 80% during the test period. The number
of dimensions of the test function and the parameters, such as search intervals lb and ub,
are set according to Table 1. The overall and iteration numbers of the other optimization
functions are the same as those of the IVIA.

Table 1. Standard test function.

Standard Dimension Search Space Minimum

F1(x) =
n
∑

i=1
x2

i
30 [−100, 100] 0

F2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| 30 [−10, 10] 0

F3(x) =
n
∑

i=1

(
n
∑

j=1
xj

)2
30 [−100, 100] 0

F4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

F5(x) =
n−1
∑

i=1

[
100(xi+1 − x2

i ) + (xi − 1)2
]

30 [−30, 30] 0

F6(x) =
n
∑

i=1
([xi + 0.5])2 30 [−100, 100] 0

F7(x) =
n
∑

i=1
ix4

i + random[0, 1) 30 [−128, 128] 0

F8(x) =
n
∑

i=1
−xi sin

(√|xi|
)

30 [−500, 500] −12,569.5

F9(x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] 30 [−5.12, 5.12] 0

F10(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e 30 [−32, 32] 0

F11(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600, 600] 0

F12(x) = π
n

{
10 sin(πy1) +

n−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+

n
∑

i=1
u(xi, 10, 100, 4)

yi = 1 + xi+1
4 u(xi, a, k, m) =

⎧⎨⎩
k(xi − a)m xi > a
0 −a < xi < a
k(−xi − a)m xi < a

30 [−50, 50] 0

F13(x) = 0.1

{
sin2(3πxi) +

n
∑

i=1

(xi − 1)2[1 + sin2(3πxi + 1)
]
+

(xn − 1)2[1 + sin2(2πxn)
] }

+
n
∑

i=1
u(xi, 5, 100, 4)

30 [−50, 50] 0

F14(x) =

⎡⎣ 1
500 +

25
∑

j=1

1

j+
2
∑

i=1
(xi−aij)

6

⎤⎦−1
2 [−65.56, 65.56] 1

25
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Table 1. Cont.

Standard Dimension Search Space Minimum

F15(x) =
11
∑

i=1

[
ai − x1(b2

i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.0003075

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

F17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 2 [−5, 5] 0.398

F18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)
]
×[

30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)
] 2 [−2, 2] 3

F19(x) = − 4
∑

i=1
ci exp

(
− 3

∑
j=1

aij(xj − pij)
2

)
3 [1, 3] −3.86

F20(x) = − 4
∑

i=1
ci exp

(
− 6

∑
j=1

aij(xj − pij)
2

)
6 [0, 1] −3.32

F21(x) = − 10
∑

i=1

(
5
∑

j=1

(
xj − Cji

)2
+ βi

)−1

β = 1
10 (1, 2, 2, 4, 4, 6, 3, 7, 5, 5)

C =

⎡⎢⎢⎣
4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

⎤⎥⎥⎦

4 [0, 10] −10.1532

F22(x) = − 7
∑

i=1

(
5
∑

j=1

(
xj − Cji

)2
+ βi

)−1
4 [0, 10] −10.4028

F23(x) = − 10
∑

i=1

(
4
∑

j=1

(
xj − Cji

)2
+ βi

)−1
4 [0, 10] −10.5364

The viability of the proposed IVIA is tested using 23 well-known benchmark functions
with different sizes and complexity. Figure 5 shows the three-dimensional graphs of the
standard test functions and their corresponding test results. The convergence of the IVIA is
very good for both single-peaked and multipeaked functions.

From the test results in Table 2, the accuracy of the IVIA for function finding is much
higher than that of several other optimization algorithms, and the theoretical optimal value
can be found for some functions. IVIA has fewer iterations, a shorter running time, and
faster convergence compared to the other seven algorithms.

For comparative evaluation, the proposed IVIA is compared against seven well-
established comparative methods using the same benchmark functions. IVIA optimizes
best in F1, F2, F3, F4, F5, F6, F7, F8, converges fastest in F11, F12, F13, F14, F15, F17, and it
has the same effect as other algorithms in F18, F19, F20, F21, F22, F23. The comparative
results show the effectiveness of IVIA.

In summary, the IVIA is based on the characteristics of fast convergence, better ro-
bustness, and good optimization search. In this paper, the IVIA is selected to optimize the
relevant parameters, such as the number of neurons in the hidden layer, the number of
training times, the learning rate, and the regularization coefficients in the BLSTM network.
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Figure 5. Cont.
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Figure 5. Standard test function optimization result.
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3. Methodology

In this paper, we propose a method for power load forecasting based on LVMD-
DBFCM load curve clustering, and the CNN-IVIA-BLSTM model is shown in Figure 6. First,
data preprocessing is performed, and the influences of load are divided into continuous
and discrete series. After normalizing the continuous sequences, they include load data,
meteorological data (temperature, wind speed, and humidity), and economic factors. One-
hot encoding is applied to discrete sequences, and the discrete sequences include the data
types of workdays, weekends, and holidays. Load data decomposition and denoising with
LVMD are performed on the preprocessed data. Then, the power load curve is clustered
using the DBFCM algorithm. The processed data are extracted with a 1D CNN for feature
extraction and finally, predicted with the IVIA-BLSTM model.

 

Figure 6. The overall structure design of this paper.

3.1. Self-Built Dataset

We expect to study the electrical load of a particular city or region where such datasets
are rare. Data from the internet are collected and organized to produce an HS dataset. The
following cities are replaced by H City because the electricity data relate to the economic
performance of the country. The dataset includes 1096 days of electricity load data from
1 January 2016 to 31 December 2018, in H City. The dataset was divided; 80% is used as the
training set and 20% is used as the test set.

The effects of the three factors of temperature, humidity, and wind speed on the power
load are as follows. In summer, the temperature is high, and as air-conditioners usage
increases, the power load increases. When the relative humidity is in the sensitive range
40~95%, the meteorological sensitive load varies significantly with the relative humidity.
The load decreases with the increase of relative humidity. When the wind speed is in the
sensitive range 2~6 m/s, the weather sensitive load changes significantly with the wind
speed. The load increases with the increase of wind speed [27].

3.1.1. Dataset Visualization

The overall power load data from 2016–2018 are presented in Figure 7. From the
box-whisker plot, the difficulty of prediction is reflected by the high number of data outliers
in the morning from 6:00 to 8:00 and in the afternoon from 17:00 to 18:00 and 19:45 to
22:00. In summary, the importance of the data preprocessing and clustering and prediction
models that follow in this paper is illustrated.
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(a) (b) 

Figure 7. Distribution of whole load data in the dataset for 15 min. (a) Data from 00:00 to 12:00;
(b) Data from 12:00 to 23:45. Box-whisker plot, the dots replace the abnormal value, the middle line
of the box is he median of the data, which represents the average level of the sample data.

3.1.2. Data Preprocessing

• Abnormal data recognition and correction

Data preprocessing is first performed to resolve data outliers before clustering and
prediction is performed [28].

Missing data: Lagrange interpolation is used to handle missing values.
Data duplication: Remove duplicate datasets by similarity.
Data mutation: 3 criteria.

• Data normalization

Normalized values for the clustering process can reduce the adverse effect on the
clustering effect in the data domain due to the weight of the distance occupied between
different attributes of the initial values. Normalization can eliminate the influence of
the size of the load data volume on the distance in the clustering analysis, and thus, the
information on the load pattern is highlighted [29].

Data normalization: Uniform metrics on data. Z Score normalization is shown in
Equation (10). After normalization, the load data are normalized to the interval [−1, 1].

ZX =
xi − X

σ
(10)

Data preprocessing: The equation for normalizing continuous data is given in Equa-
tion (11). Using One Hot encoding for discrete sequences, each state has unique register
bits; only one bit is 1, and the rest are 0.

MinMaxx =
xi − xmin

xmax − xmin
(11)

3.2. LVMD-DBFCM Imbalanced Data Clustering

The goal of load clustering is to mine the typical daily load model [30].

Step 1. De-noising. The load data are decomposed and denoised using the LVMD (in
Section 3.2.1).
Step 2. Clustering. The load data are clustered using the DBFCM (in Section 3.2.2).
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Step 3. Clustering evaluation. The load data clustering effect are analyzed using the SSE
evaluation index (in Section 3.2.3).

3.2.1. LVMD Double Decomposition Modal Strategy

• VMD Variational Mode Decomposition

VMD [31] is an iterative process that is used to search for the optimal solution of a
variational model and to determine the mode uk(t) and its corresponding central frequency
wk and bandwidth. VMD has good denoising capabilities. VMD denoising are as follows:

1. Initialize parameters û1
k , w1

k , λ̂1, and let n = 0.
2. n = n + 1, update wk and uk.
3. k = k + 1, repeat the previous step until k = K.
4. Update λ, and the equation is shown in Equation (12).
5. Repeat steps 2–5 until the end, when the condition of Equation (13) is satisfied.
6. The component that contains the minimum time information after decomposition

is judged and considered to be random noise that is eliminated. Then, the data are
reconstructed by the remaining modal component pairs, and the reconstructed data
are the load data that do not contain noise.

λ̂n+1(ω) = λ̂n(ω) + τ

[
f̂ (ω)−∑

k
ûn+1

k (ω)

]
(12)

∑
k

∥∥∥ûn+1
k − ûn

k

∥∥∥2

2

/‖ûn
k ‖2

2 < e (13)

• LMD Local Mean Decomposition

LMD is a new time–frequency analysis method that adaptively decomposes complex
signals into a finite sum of product function (PF) components. Each of these PF compo-
nents is actually a single component of the AM-FM information. LMD has good feature
decomposition abilities [32,33]. The LMD principle is as follows.

1. First, find all the extreme points contained in the data series x(t), assuming that the
distribution of extreme points is {n1, n2, n3, · · · }, and then calculate the mean mi and
envelope ai of the adjacent extreme points according to Equations (14) and (15).

mi =
ni + ni+1

2
(14)

ai =
|ni − ni+1|

2
(15)

The local mean function curve m11(t) and the envelope function curve a11(t) are
obtained by connecting mi and ai with line segments and smoothing, respectively, and the
sliding average formula is given in Equation (16):

Ys(i) =
1

2R + 1
(Y(i + R) + Y(i + R− 1) + · · ·+ Y(i− R)) (16)

where Y(i) is the sequence to be smoothed, 2R + 1 is the sliding span, and R is the distance
from Y(i) to the starting point of the sliding process.

2. m11(t) is removed from the original signal x(t) to obtain h11(t), and s11(t) is obtained
by demodulating h11(t) using Equations (17) and (18):

h11(t) = x(t)−m11(t) (17)
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s11(t) =
h11(t)
a11(t)

(18)

When a12(t) = 1, s11(t) decomposes into a pure FM function; if a12(t) �= 1, repeat the
above process until a1n(t) = 1 and s1(n−1)(t) is the corresponding pure FM function; see
Equation (19) for details:

h1n(t) = s1(n−1)(t)−m1n(t) (19)

3. The PF component of the envelope signal is the product of the envelope signal and the
pure FM signal, and the above steps are repeated after stripping the PF component
from the original signal to obtain the new signal until the residual component is a
monotonic function. The final result of LMD is shown in Equation (20):

x(t) =
k

∑
p=1

PFp(t) (20)

where the last component is a monotonic function.
LMD decomposes the original signal into multiple high-frequency and low-frequency

components without distorting the original signal in the decomposition process. If the
sliding step of the sliding average algorithm is not chosen properly in the first step, the
decomposition result will be greatly affected. In this paper, the original sliding average
process is replaced by the three-time Hermite interpolation method to improve the decom-
position accuracy of the LMD algorithm while reducing the overshoot and undershoot of
the envelope. That is, after obtaining the extreme value points, the Hermite interpolation
method is used to form the upper and lower envelopes, and then the other steps continue
to apply the LMD without changes.

3.2.2. DBFCM Double Weights Fuzzy C-Means Algorithm

• FCM Fuzzy C-means Algorithm

FCM is a soft clustering algorithm and is unlike traditional hard clustering (HCM)
algorithms, which allows the same object to belong to the same cluster [34]. By optimizing
the objective function to obtain the affiliation of each sample point to all class centers, the
affiliation range is [0, 1] to determine the class of the sample points to achieve the purpose
of automatic classification of sample data [35].

The objective function and constraints s.t. of the FCM algorithm are given in
Equation (21):

min
uij ,ci

J(uij, ci) =
K
∑

i=1

N
∑

j=1
um

ij

∥∥xj − ci
∥∥2

s.t.
K
∑

i=1
uij = 1, j = 1, 2, . . . , N

(21)

where uij denotes that the sample belongs to the cluster affiliation value, m represents the

fuzziness, K is the number of clusters, ci is the i-th clustering center, and
∥∥xj − ci

∥∥2 is the
2 parity of the Euclidean distance from each data point to the cluster center.

The clustering center and affiliation update equations are shown in Equations (22) to (23):

uij =
1

K
∑

l=1
(
‖xj−ci‖
‖xj−cl‖ )

2
m−1

(22)

ci =

N
∑

j=1
um

ij xj

N
∑

j=1
um

ij

(23)

34



Appl. Sci. 2023, 13, 7332

• DBFCM Double Weights Fuzzy C-means Algorithm

Traditional FCM clustering is inaccurate in classification for holidays in small cate-
gories. From the date type, the power load data are unbalanced data. FCM has a “uniform
effect of cluster size” issue, which affects the recognition effect and causes the algorithm to
not recognize the holiday load model implied in the historical dataset [36,37]. In this paper,
the DBFCM algorithm is proposed to improve the clustering performance of imbalanced
data. The objective function of DBFCM utilizes the clustering volume as the weight and
the weighted Euclidean distance as the metric distance.

1. The affiliation matrix defines the class volume, which is then introduced as a constraint
s.t. into the traditional FCM algorithm objective function, as shown in Equation (24):

JDBFCM =
K

∑
i=1

N

∑
j=1

um
ij

∥∥xj − ci
∥∥2

vj
(24)

where vj is the volume of the j-th class; see Equation (25). Constraint s.t. is shown in
Equation (26):

vj =

N
∑

i=1
uij

N
(25)

s.t.
K

∑
i=1

uij = 1, j = 1, 2, . . . , N (26)

The objective function of DBFCM uses the clustering volume as weights, which can
balance the volume of each class in the clustering process. Thus, it can compensate for the
unequal interactions between classes and improve the clustering performance of traditional
algorithms for unbalanced data.

∂JDBFCM
∂ci

=

∂
N
∑

i=1
um

ij

∥∥xj − ci
∥∥2

/vj

∂ci
(27)

The derivative of Equation (27) with respect to the affiliation degree is constantly
positive. Therefore, the Lagrange multiplier method is used to solve the affiliation degree
and clustering center by using a greedy strategy and introducing constraint variables. The
Lagrangian equation is given in Equation (28):

L =
K

∑
j=1

N

∑
i=1

um
ij
∥∥xj − ci

∥∥2

/vj −
N

∑
i=1

λi(
K

∑
i=1

uij − 1) (28)

The partial derivative of Equation (28) is found by setting the partial derivative = 0;
see Equation (29):

∂L
∂uij

= mum−1
ij

∥∥xj − ci
∥∥2/vj − λj = 0 (29)

The updated equations for the affiliation uij as well as the clustering center ci are given
in Equations (30) to (31):

uij =

vj

‖xj−ci‖ 2
m−1

K
∑

q=1

vq

‖xj−ci‖ 2
m−1

(30)
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ci =

N
∑

j=1
um

ij xj

N
∑

j=1
um

ij

(31)

The DBFCM algorithm is more biased towards small classes and avoids the problem
of the FCM uniformity effect when dealing with the same sample Euclidean clustering.

2. The load curve is characteristically weighted by introducing a weighting factor w to
the traditional Euclidean distance dij. The DBFCM is used to perform cluster analysis
on the decomposed and reconstructed load curves of LVMD to improve the optimal
number of clusters.

The degree of influence of each dimensional feature of the analyzed sample on the
classification result is assumed to be w. The feature weight coefficients of each dimension
w = {w1, w2, · · · , wn} are introduced to the Euclidean distance to form a weighted
Euclidean distance, which controls the weights of each dimensional feature vector. The
traditional Euclidean distance dij and the Euclidean distance d∗ij with the addition of weight
w are expressed in Equations (32) to (33):

dij =

√∣∣xi1 − xj1
∣∣2 + ∣∣xi2 − xj2

∣∣2 + · · ·+ ∣∣∣xik − xjk

∣∣∣2 (32)

d∗ij =
√

w1
∣∣xi1 − xj1

∣∣2 + w2
∣∣xi2 − xj2

∣∣2 + · · ·+ wn

∣∣∣xik − xjk

∣∣∣2 (33)

After DBFCM adds weight w, the clustering center ci does not change, but the objective
function JDBFCM, the affiliation uij, and the Euclidean distance from sample xj to the
clustering center ci are all affected by the weighted Euclidean distance d∗ij.

In summary, the objective function and affiliation of DBFCM are shown in Equa-
tions (32) to (33):

JDBFCM =
K

∑
i=1

N

∑
j=1

um
ij
∥∥xj − ci

∥∥2

∗
/vj (34)

uij
∗ =

vj

‖xj−ci‖∗
2

m−1

K
∑

q=1

vq

‖xj−ci‖∗
2

m−1

(35)

3.2.3. Clustering Validity Quality Evaluation

The clustering criterion used in the clustering process is usually the sum of squared
error (SSE). The analytical formula of SSE is shown in the Equation (36):

SSE(q) =
q

∑
i=1

∑
x∈pi

‖ci − x‖
2

2

(36)

In the formula, ci is the i-th cluster center, and pi represents the aggregation of data
points in the i-th cluster. As the number of clusters q increases, the samples are classified
more accurately, and the SSE decreases. Theoretically, the smaller the SSE, the better the
clustering effect. As the value of q increases to a certain level, the rate of the decline in SSE
slows down. As shown in Figure 8, when q = 5, it is the inflection point of the curve. The
most suitable cluster number is 5.

36



Appl. Sci. 2023, 13, 7332

Figure 8. The gradient graph of SSE with increasing cluster number q from 1 to 10.

In this paper, two clustering validity indicators are used to assess the quality of
clustering: the Calinski–Harabasz indicator (CHI) and the Davies–Bouldi indicator (DBI).
The CHI is obtained by the ratio of the compactness to the separation [38]. Thus, the larger
the index is, the more compact the result is. The DBI metric estimates intraclass closeness by
the distance from the sample point within a class to the center of the class to which it belongs,
and the distance between class centers indicates the interclass dispersion [39]. Thus, the
smaller the index is, the better the effect. Equations (37) to (38) describe these metrics:

CHI =
Tr(Bk)

Tr(Wk)
× n− k

k− 1
(37)

DBI =
1
k

k

∑
i=1

max
j=1...k,i �=j

si + sj∥∥ci − cj
∥∥2

2

(38)

3.3. The Proposed CNN-IVIA-BLSTM Forecasting Model

Using the CNN-IVIA-BLSTM model to forecast the power load data:
Step 1. Feature fusion extraction. CNN is used to extract the data feature.
Step 2. Forecasting. IVIA optimizes the parameters related to the BLSTM network,

then uses the optimized BLSTM to predict.
Step 3. Power load forecast evaluation. The load data forecasting effect analyzed using

RMSE, MAE, and MAPE.

3.3.1. CNN: Convolutional Neural Network

A CNN can automatically extract potential features between massive loads of continu-
ous and discontinuous data to build a compressed complete feature vector for the top fully
connected layer [40]. It is a hierarchical neural feedforward network and consists of a series
of network layers with different functions. It mainly comprises the input layer, implied
layer, and output layer. Among these, the implied layer takes the convolutional layer as the
core, and the main function of the convolution layer is to extract the feature fusion of the
input data as an arithmetic of the convolution layer. In addition, the CNN includes pooling
layers (to reduce the number of parameters of the neural network) and the Dropout layer
(to prevent data overfitting). The 1D convolutional kernel is two-dimensional and has a
length and width; however, there is a sliding window in the width or height direction,
and multiplication is transformed into addition. In this paper, a 1D CNN is used, with a
convolutional kernel size of 3× 3, a sliding window of 10, and a step size of 1. The overall
structure of the convolutional network is shown in Figure 9. A convolutional block is a
combination of M convolutional layers and b convergence layers. It can be stacked with N
consecutive convolutional blocks followed by K fully connected layers.
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Figure 9. Overall structure of a CNN.

3.3.2. BLSTM Bidirectional Long Short-Term Memory Network

BLSTM can remember a sequence well, can solve the dependency problem of longer
time spans, and has a strong advantage in improving time series correlation. Based on the
LSTM (long short-term memory) network, the forward and reverse network structures
form a closed loop of information, which can better verify and correct the process error
information while maintaining the bidirectional data information, which has stronger
robustness [41]. The LSTM network structure is shown in Figure 10, and the relevant
calculation equations are shown in (39)–(44).

Input gate : it = σ(Wixt + Uiht−1 + bi) (39)

Forget gate : ft = σ
(

Wf xt + Uf ht−1 + b f

)
(40)

Output gate : ot = σ(W0xt + Uoht−1 + bo) (41)

New memory unit : ct′ = tanh(Wcxt + Ucht−1 + bc) (42)

Final memory unit : ct = ft ⊗ ct−1 + it ⊗ ct′ (43)

Output : ht = ot ⊗ tanh(ct) (44)

where Wi, Wf , and Wo represent input weight vectors; Ui, Uf , and Uo represent upper
output weight vectors; and bi, b f , bo, and bc are bias vectors. Sigmoid is generally selected
as the excitation function for σ, which mainly plays a role of gating. It has an output
between 0 and 1, which matches the physical definition of gating and is very close to 1 or 0
when the input is large or small, thus ensuring that the gate is open or closed. The tanh
is an option to generate the new memory unit ct

′ due to a faster convergence rate with an
output between −1 and 1, which coincides with the center of the feature distribution being
0 in most scenarios. The related formulas are given in Equations (45) and (46):

sigmoid(x) =
1

1 + e−x (45)

tanh(x) =
ex − e−x

ex + e−x (46)
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Figure 10. LSTM network structure diagram.

LSTM can only be passed in one direction, and the unit computation of the bidirectional
neural network is connected with the unidirectional one. BLSTM consists of an input layer,
forward LSTM layer, reverse LSTM layer, and output layer. However, the hidden layer of
the bidirectional neural network must save two values, i.e., A, which is involved in the
forward calculation, and A′, which is involved in the reverse calculation. The final output
value depends on the sum. The BLSTM network structure is shown in Figure 11.

 
Figure 11. BLSTM network structure diagram.

However, a common problem is that BLSTM networks have many parameters, and
without proper optimization, the model may be overfitted or slow to train, resulting in
inefficiency. Too few nodes in the hidden layer will cause the model to not have the
necessary learning ability and information processing capability, and too many nodes will
increase the complexity of the network structure and make the learning process easily fall
into local minima, which makes the network slow. When the learning rate is too high, the
cost function is not easy to reduce to the lowest point, it is not easy to converge at the
lowest point, and the convergence effect is poor. When too much training is performed,
the gradient descent process may cross the nadir, which causes the training rate to be too
low. In the case of reasonable tuning parameters, the more layers and neurons there are,
the higher the accuracy rate; however, this can also lead to the overfitting phenomenon,
and a regularization process can be used to solve the overfitting problem. In this paper,
the number of implicit layer neurons, training times, learning rates, and regularization
coefficients in BLSTM are optimized using the IVIA to improve the performance of the
sequence modelling task.

3.3.3. Hybrid Forecasting Model

The CNN-IVIA-BLSTM model is a combined prediction model consisting of a CNN
and BLSTM. BLSTM is a commonly used model architecture of deep learning models for
sequence modelling tasks, and it has achieved good performance in many tasks. The CNN
is first used to extract the feature vectors consisting of load influencing factors, which can
be considered a “feature extractor”, then the extracted feature vectors are used for load
prediction with the BLSTM model optimized by the IVIA. The hybrid prediction model
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structure is shown in Figure 12, which takes full advantage of both the CNN and BLSTM
network to ensure the accuracy of the power load.

 
Figure 12. Hybrid forecasting model structure diagram.

The forecasting steps are as follows:

1. Selected information as model input.
2. LVMD decomposes and denoises the original sequence, and DBFCM performs clustering.
3. The IVIA population size N, the maximum number of iterations M, and the initial

search range of the parameters (the number of neurons in the hidden layer H, training
number E, learning rate η, and regularization factor L2) are set. The root mean square
error (yRMSE) is used as the objective function in the optimization algorithm, and
finally, the model of the influenza virus immunization algorithm coupled with the
bidirectional long and short-term memory network is developed.

4. The 1D CNN reads the load sequence with a sliding time window of 10 and a step
size of 1 for feature extraction.

5. m prediction models are obtained by inputting the CNN-IVIA-BLSTM prediction
models for each component separately.

6. Finally, the predicted values of the m prediction models are combined to obtain the
predicted values of the load.

3.3.4. Power Load Forecast Evaluation Indicator

Three evaluation indexes are set as yMAPE (mean absolute percentage error, MAPE),
yRMSE (root mean square error, RMSE), and yMAE (mean absolute error, MAE). The equa-
tions are shown in (47) to (49):

yMAPE =
1
n

n

∑
i=1
|Xact(i)− Xpred(i)

Xact(i)
| (47)

yRMSE =

√√√√√ n
∑

i=1
(Xact(i)− Xpred(i))

2

n
(48)
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yMAE =
1
n

n

∑
i=1

∣∣∣Xact(i)− Xpred(i)
∣∣∣ (49)

In the above equation, n is the total number of predictions, Xact(i) is the real value of
the load at moment i, and Xpred(i) is the predicted value of the load at moment i.

4. Case Analysis

In this paper, historical power load data from 2016 to 2018 in H city were used for
prediction with a sampling interval of 15 min. LSTM, BLSTM, CNN-BLSTM, LVMD-
DBFCM-CNN-BLSTM, and the proposed model in this paper are selected to compare the
prediction results.

4.1. Analysis of Data Processing Results
4.1.1. Data Denoising and Decomposition

The original load data are decomposed and denoised using VMD, as shown in
Figure 13, and the original load data sequence is decomposed into 8 IMF components.
From the figure, we can see that the IMF7–IMF8 values are small and contain more noisy
data, which are removed from the original data, then the first six IMF components are used
to reconstruct the data to achieve data denoising.

Figure 13. Result of VMD decomposition.

The second step of LVMD is to redecompose the denoised data with LMD. The
denoised data are decomposed into a total of six PF components, and the decomposition
results are shown in Figure 14. The values of PF1 are larger and maintain the same trend as
the original data, containing the main valid information of the data. The values of PF2–PF6
are smaller, among which the periodic changes of PF2–PF4 are more obvious and PF6 is
monotonically increasing, which is convenient for the prediction of each component. The
randomness of the F5 sequence volatility is strong and the prediction accuracy of the F5
component is not high when making predictions.
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Figure 14. Result of LMD decomposition.

4.1.2. Analysis of the Clustering Results

The daily load curve after LVMD-DBFCM clustering is shown in Figure 15.

 
(a) (b) 

 
(c) (d) 

 

 

(e)  

Figure 15. (a–e) Daily load curve after LVMD-DBFCM clustering when the number of clusters is
determined to be 5.
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The clustering algorithm proposed in this paper is compared with k-means [42],
FCM [43], and DBFCM. Their comparison is displayed in Table 3 and Figure 16. From
the results, it can be seen that the maximum value of the CHI metric is 1142.509 and the
minimum value of the DBI metric is 1.083. The clustering validity of the method proposed
in this paper is better than that of the other three methods.

Table 3. The comparative table displaying the clustering validity indicators, CHI and DBI, of the
K-means, FCM, DBFCM, and LVMD-DBFCM methods.

Methods CHI DBI

K-means 721.201 1.549
FCM 814.014 1.401

DBFCM 1024.743 1.216
LVMD-DBFCM 1142.509 1.083

Figure 16. Comparative graph displaying the clustering validity indicators, CHI and DBI, of the
K-means, FCM, DBFCM, and LVMD-DBFCM methods.

4.2. Analysis of the Prediction Results

The comparison between the prediction model proposed in this paper and the four
models LSTM, BLSTM, CNN-BLSTM, and LVMD-DBFCM+CNN-BLSTM using three load
evaluation indices, RMSE, MAE, and MAPE, is shown in Table 4 and Figure 17. From the
results, we can see that the prediction models proposed in this paper have better prediction
results than the other four models in all evaluation indices.

Table 4. The comparative table displaying the clustering validity indicators, CHI and DBI, of the
K-means, FCM, DBFCM, and LVMD-DBFCM methods.

Models RMSE MAE MAPE

LSTM 101.4817 80.0980 5.7087%
BLSTM 83.1498 61.4826 4.4460%

CNN-BLSTM 79.3340 58.0245 4.1782%
LVMD-DBFCM+CNN-

BLSTM 57.7316 42.3669 2.9946%

Proposed 31.9942 23.3691 1.6421%
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Figure 17. Comparison of the RMSE, MAE, and MAPE results for 5 models’ predictions.

Figure 18 shows the prediction graphs of the five prediction models. From the figure,
it can be clearly seen that the pink line, representing the model proposed in this paper,
fits so closely to the target curve represented by the black line, which can better reflect
the trend of the target, indicating that the model proposed in this paper has the better
prediction effect than addressed models. Figure 19 shows the prediction error comparison
of the 5 models, from which it can be clearly seen that the model proposed in this paper,
represented by yellow, has the lowest error.

Figure 18. Comparison chart of the prediction results of 5 models.

Figure 19. Comparison of prediction errors of the 5 models.
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5. Conclusions

In this paper, a new model based on LVMD-DBFCM load curve clustering and a CNN-
IVIA-BLSTM hybrid model for power load forecasting is proposed. This comprehensive
technique takes historical load data and influencing factors (meteorology, economy, and
data type) into account, where historical load data, meteorological factors, and economic
factors are normalized, and the data types are uniquely heat coded.

The novel LVMD-DBFCM algorithm improves the continuity and stability of the data,
and the values of the CHI and DBI quality assessment indicators are 1142.509 and 1.083,
respectively, both of which reflect the good validity of the clustering method used in this
paper. In the new CNN-IVIA-BLSTM model, a CNN is used for feature extraction, BLSTM
is used for load forecasting, and the IVIA is used to optimize the relevant parameters in
the BLSTM network. The results of the three electric load forecasting evaluation metrics of
the hybrid forecasting model show that the RMSE is 31.9942, the MAE is 23.3691, and the
MAPE is 1.6421%. The prediction effect of the electric load fits well with the target, and the
prediction error is minimized.
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1. Introduction

Sugeno investigated the theory of fuzzy measures and fuzzy integrals as a tool for mod-
eling non-deterministic issues. The fuzzy integral (also known as the Sugeno integral) has
profoundly amazing mathematical characteristics that have been noted by several authors.
Sugeno pioneered the study of the theory of nonadditive measures and integrals, frequently
referred to as fuzzy measures and fuzzy integrals [1]. Ralescu and Adams [2] investigated
numerous equivalent definitions of fuzzy integral, whereas Wang and Klir [3–5] offered an
outline of fuzzy measure theory and generalized fuzzy measure theory, respectively. Fuzzy
measures and the Sugeno integral have also been successfully employed in a variety of
domains, including decision-making [6] and artificial intelligence [7]. Integral inequalities
are useful tools in a variety of theoretical and practical applications. The investigation of
inequalities for the Sugeno integral was started by Román-Flores et al. in [8–13], and was
subsequently expanded upon by Ouyang et al. in [14–16].

Many researchers studied celebrated inequalities using the Sugeno integral; for exam-
ple, Hu [17] proved the following Chebyshev-type inequalities for a Sugeno-like integral
by using a binary operation called g-seminorm.

Theorem 1 ([17]). Let H : Bn → B be a left continuous and non-decreasing n-place function. Let
u : B → B be any strictly monotone increasing bijection, and suppose that f1, . . . , fn : X → B is
any comonotone system. If the g-seminorm G satisfies

G(ϕ(H(x1, . . . , xn)), c) ≥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

H(G(ϕ(x1), c), ϕ(x2), . . . , ϕ(xn))

H(ϕ(x1), G(ϕ(x2), c), . . . , ϕ(xn))

· · ·
H(ϕ(x1), ϕ(x2), . . . , G(ϕ(xn), c))

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
for all (x1, . . . , xn) ∈ B, then for any A ⊆ Σ we have∫

GA
ϕ(H( f1, . . . , fn))dμ ≥ H

(∫
GA

ϕ( f1)dμ, . . . ,
∫

GA
ϕ( fn)dμ

)
.
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Caballero and Sadarangani [18] developed a Cauchy–Schwarz-type inequality for the
Sugeno integral.

Theorem 2 ([18]). Let (X, Σ, μ) be a fuzzy measure space, f , g ∈ F+(X), (F+(X) is the set of all
non-negative measurable functions with respect to Σ) and f and g comonotone functions, A ∈ Σ
with

∫
A f · gdμ ≤ 1. Then,(∫

A
f · gdμ

)2
≤
(∫

A
f 2dμ ∨

∫
A

g2dμ

)
.

Agahi et al. [19] shown a generalization of the Stolarsky inequality for a Sugeno
integral as follows:

Theorem 3 ([19]). Let f : [0, 1] → [0, 1] be a nonincreasing function, ([0, 1],B([0, 1]), m)
a fuzzy measure space, and define h : [0, 1] → [0, 1] by h(a) = m([0, m]) for a ∈ [0, 1].
Let β, γ be automorphisms on [0, 1] (i.e., β, γ : [0, 1] → [0, 1] are increasing bijections) and
α =

(
β−1�α−1)−1 is a continuous aggregation function that is jointly strictly increasing and

bounded from above by min, and which is dominated by h, i.e., for all x, y from [0, 1], it holds

h(x�y) ≥ h(x)�h(y),

then

(S)
∫ 1

0
f (α)dm ≥ (S)

∫ 1

0
f (β)dm�(S)

∫ 1

0
f (γ)dm,

where f (α) means the composite function defined on [0, 1] and given by f (α)(x) = f (α(x)).

We also refer the reader to Ouyang et al. [16], which contains the study of the
Minkowski type for the Sugeno integral on abstract spaces.

Theorem 4 ([16]). Let μ be an arbitrary fuzzy measure on [0, a] and f , g : [0, a] → R be
two real-valued measurable functions such that (S)

∫ a
0 f dμ ≤ 1 and (S)

∫ a
0 gdμ ≤ 1. If f , g

are both non-decreasing, then the inequality

(S)
∫ a

0
f gdμ ≥

(
(S)

∫ a

0
f dμ

)(
(S)

∫ a

0
gdμ

)
holds.

Caballero and Sadarangani [20] have shown that the classical Hermite–Hadamard
inequalities [21,22] do not hold true for fuzzy integrals in general and established some
Hermite–Hadamard-type inequalities for the Sugeno integral with peculiar examples to
validate their results.

The main results from [20] are stated in the following theorems.

Theorem 5 ([20]). Let f : [a, b]→ [0, ∞) be a convex function and μ the Lebesgue measure on R.

(a) If f (a) < f (b), then

∫ b

a
f dμ ≤ min

{
(b− a) f (b)

f (b)− f (a) + b− a
, b− a

}
.

(b) If f (a) = f (b), then ∫ b

a
f dμ ≤ min{ f (a), b− a}.
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(c) If f (a) > f (b), then

∫ b

a
f dμ ≤ min

{
(b− a) f (a)

f (a)− f (b) + b− a
, b− a

}
.

Recently, the integral inequalities for Sugeno integrals using different kinds of con-
vexities and other results on several other types of inequalities based on Sugeno integrals
are a thought-provoking topic to many authors in the field of fuzzy integrals, see for
instance [20,23–37] and the references cited therein.

The integral inequalities for coordinated convex functions in the context of Sugeno
integrals have not been investigated in any study so far. Hence, motivated by the ongoing
research about the integral inequalities for the Sugeno integrals involving the different kinds
of convex functions, it is the main objective of this paper to obtain Hermite–Hadamard-type
inequalities for Sugeno double integrals by using coordinated convex functions.

2. Main Results

In order to proceed to our results, we first give some basic notations and properties of
Sugeno integral.

Definition 1 ([20]). Suppose that Σ is σ-algebra of subsets of R and that μ : Σ → [0, ∞) is
non-negative extended real valued set function, then μ is said to be fuzzy measure if and only if:

1. μ(∅) = 0,
2. E, F ∈ Σ and E ⊆ F imply that μ(E) ≤ μ(F) (monotonicity),

3. {En} ⊆ Σ, E1 ⊆ E2 ⊆ . . . , imply lim
n→∞

μ(En) = μ

(
∞∪

n=1
En

)
(continuity from below),

4. {En} ⊆ Σ, E1 ⊆ E2 ⊆ . . . , μ(E1) < ∞, imply lim
n→∞

μ(En) = μ

(
∞∩

n=1
En

)
(continuity

from above).

If f is a non-negative real-valued function defined on R, we will denote by Lα f =

{x ∈ R : f (x) ≥ α} = { f ≥ α} the α-level of f , for α > 0 and L0 f = {x ∈ R : f (x) > 0}
=supp f , the support of f . It may be noted that if α ≤ β, then { f ≤ α} ⊆ { f ≤ β}. If μ is
fuzzy measure on (R, Σ), by Fμ(R), we mean all μ-measurable functions from R to [0, ∞).

Definition 2 ([20]). Suppose that μ is a fuzzy measure on (R, Σ). If f ∈ Fμ(R) and A ∈ Σ then
the Sugeno integral (or fuzzy integral) of f on A with respect to the fuzzy measure μ is defined as:∫

A
f dμ =

∨
α≥0

[α ∧ μ(A ∩ { f ≥ α})],

where ∨ and ∧ denote the supremum and infimum on [0, ∞), respectively. In particular, if A = X, then∫
X

f dμ =
∫

f dμ =
∨

α≥0
[α ∧ μ({ f ≥ α})].

The following properties of the Sugeno integral are well known and can be found
in [5].

Proposition 1 ([5]). If μ is a fuzzy measure on (R, Σ), A ∈ Σ and f , g ∈ Fμ(R), then

1.
∫

A f dμ ≤ μ(A).
2.

∫
A k dμ = k ∧ μ(A).

3. If g ≤ f on A, then
∫

A gdμ ≤ ∫A f dμ.
4. μ(A ∩ { f ≥ α}) ≥ α ⇒ ∫

A f dμ ≥ α.
5. μ(A ∩ { f ≥ α}) ≤ α ⇒ ∫

A f dμ ≤ α.
6.

∫
A f dμ < α if and only if there exists γ < α such that μ(A ∩ { f ≥ γ}) < α.
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7.
∫

A f dμ > α if and only if there exists γ > α such that μ(A ∩ { f ≥ γ}) > α.

Definition 3 ([20]). If μ is a fuzzy measure on (R, Σ), A ∈ Σ and f ∈ Fμ(R), then the survival
function F associated to f on A is defined by

F(α) = μ(A ∩ { f ≥ α}),

where α ≥ 0.

Remark 1 ([20]). Consider the survival function F associated to f on A, that is, F(α) =
μ(A ∩ { f ≥ α}). If μ(A ∩ { f ≥ α}) ≥ α and μ(A ∩ { f ≥ α}) ≤ α, from (4) and (5) of
Proposition 1, we obtain

F(α) = α ⇒
∫

A
f dμ = α.

The above equation implies that any fuzzy integral can be calculated by solving the equation
F(α) = α.

Theorem 6 ([38]). Let (X,X , μ) and (Y,Y , ν) be two fuzzy measure spaces and f be a X × Y-
measurable function. Then, there exists a fuzzy measure m on X×Y such that∫

Y

(∫
X

f (x, y)dμ

)
dν =

∫
X

(∫
Y

f (x, y)dν

)
dμ =

∫
X×Y

f (x, y)dm

Considering the characteristic function of A× B ∈ X × Y , we have m = μ ∧ ν.

Remark 2 ([13]). In the sequel, μ will denote the Lebesgue measure on R and μ× μ will denote
the Lebesgue measure on R×R. We recall that if A, B are two μ-measurable subsets of R, then

(μ× μ)(A× B) = μ(A)μ(B).

For more details on Sugeno integral we refer the interested readers to [1,5].
The classical Hermite–Hadamard inequalities provide estimates of the mean value of

a convex function f : [a, b]→ R

f
(

a + b
2

)
≤ 1

b− a

∫ b

a
f (x)dx ≤ f (a) + f (b)

2
. (1)

The inequalities (1) were first discovered by C. Hermite [22] in 1893 and J. Hadamard
proved it independently again in [21]. The inequalities (1) have numerous generalizations
and extensions, we the refer the reader to [20,35,37,39–47] and the references cited therein.

We recall some definitions and Hermite–Hadamard-type integral inequalities for
coordinated convex functions on [a, b]× [c, d] in R

2.

Definition 4 ([39]). Let Δ =: [a, b] × [c, d] in R
2 with a < b and c < d be a bidimensional

interval. A mapping f : Δ → R is said to be convex on Δ if the inequality

f (λx + (1− λ)z, λy + (1− λ)w) ≤ λ f (x, y) + (1− λ) f (z, w)

holds for all (x, y), (z, w) ∈ Δ and λ ∈ [0, 1].

Dragomir [39] modified Definition 4 of convex functions on Δ, known as coordinated
convex functions as follows.

Definition 5 ([39]). A function f : Δ → R is said to be convex on the coordinates on Δ if the
partial mappings fy : [a, b] → R, fy(u) = f (u, y) and fx : [c, d] → R, fx(v) = f (x, v) are
convex where defined for all x ∈ [a, b], y ∈ [c, d].
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Remark 3 ([41]). It is clear that if a function f : Δ → R is convex on the coordinates on Δ, then

f (tx + (1− t)z, sy + (1− s)w)

≤ ts f (x, y) + t(1− s) f (x, w) + s(1− t) f (z, y) + (1− t)(1− s) f (z, w),

holds for all (t, s) ∈ [0, 1]× [0, 1] and x, z ∈ [a, b], y, w ∈ [c, d].

The following Hermite–Hadamard-type for coordinated convex functions on the
rectangle from the plane R

2 were proved in ([39], Theorem 1, page 778):

Theorem 7 ([39]). If f : Δ → R is coordinated convex on Δ, then

f
(

a + b
2

,
c + d

2

)
≤ 1

2

[
1

b− a

∫ b

a
f
(

x,
c + d

2

)
dx +

1
d− c

∫ d

c
f
(

a + b
2

, y
)

dy
]

≤ 1
(b− a)(d− c)

∫ b

a

∫ d

c
f (x, y)dydx

≤ 1
4

[
1

b− a

∫ b

a
[ f (x, c) + f (x, d)]dx +

1
d− c

∫ d

c
[ f (a, y) + f (b, y)]dy

]
≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
. (2)

The above inequalities are sharp.

We will see that this inequality does not hold true for fuzzy integrals in general.

Example 1. Take X × Y = [0, 1]× [0, 1] and let μ be the Lebesgue measure on X and Y. Then,
μ × μ will denote the Lebesgue measure on X × Y. Let f (x, y) : X × Y → [0, ∞) be defined
as f (x, y) = 1

4 xy, then the function is convex on the coordinates on X × Y. Now, we calculate
the Sugeno integral

∫
[0,1]2

1
4 xyd(μ× μ). By using the Fubini theorem for fuzzy integrals, we

observe that ∫
[0,1]2

1
4

xyd(μ× μ) =
∫
[0,1]

(∫
[0,1]

1
4

xydμ

)
dμ

Let F be the survival function associated to f (x, y) = 1
4 xy on [0, 1], then

α = F(α) = μ

(
[0, 1] ∩

{
1
4

xy ≥ α

})
= μ

(
[0, 1] ∩

{
y ≥ 4α

x

})
= 1− 4α

x
.

Thus,
α =

x
x + 4

According to Remark 1, we obtain ∫
[0,1]

1
4

xydμ =
x

x + 4
.

Hence ∫
[0,1]2

1
4

xyd(μ× μ) =
∫
[0,1]

x
x + 4

dμ = 3− 2
√

2 ≈ 0.1716.

1
4

[∫
[0,1]

1
4

xdμ +
∫
[0,1]

1
4

ydμ

]
=

1
4

[
1
5
+

1
5

]
= 0.1.
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Finally,
f (0, 0) + f (0, 1) + f (1, 0) + f (1, 1)

4
= 0.0625.

We can see that the third and the fourth inequalities in (2) are not satisfied in the fuzzy context.

Example 2. Take X × Y = [0, 1]× [0, 1] and let μ be the Lebesgue measure on X and Y. Then,
μ× μ will denote the Lebesgue measure on X × Y. Let f (x, y) : X × Y → [0, ∞) be defined as
f (x, y) = 4xy, then the function is convex on the coordinates on X × Y. Now, we calculate the
Sugeno integral

∫
[0,1]2 4xyd(μ× μ). By using the Fubini theorem for fuzzy integrals and Remark 1,

we observe that f
(

1
2 , 1

2

)
= 1 and

∫
[0,1]2

4xyd(μ× μ) =
∫
[0,1]

(∫
[0,1]

4xydμ

)
dμ.

Suppose that F is the survival function associated to f (x, y) = 4xy on [0, 1]. Then,

α = F(α) = μ([0, 1] ∩ {4xy ≥ α}) = μ
(
[0, 1] ∩

{
y ≥ α

4x

})
= 1− α

4x
.

Thus,

α =
4x

4x + 1

According to Remark 1, we obtain ∫
[0,1]

4xydμ =
4x

4x + 1
.

Hence, ∫
[0,1]2

4xyd(μ× μ) =
∫
[0,1]

4x
4x + 1

dμ =
9−√17

8
≈ 0.6096.

Lastly,

1
2

[∫
[0,1]

f
(

x,
1
2

)
dμ +

∫
[0,1]

f
(

1
2

, y
)

dμ

]
=

1
2

[∫
[0,1]

2xdμ +
∫
[0,1]

2ydμ

]
=

1
3
≈ 0.3333,

which shows that the first and the second inequalities in (2) are also not satisfied in the fuzzy framework.

Now we prove estimates for the third and the fourth inequalities in (2) but for the
Sugeno integral. In order to obtain our main results, we will use a non-additivity assump-
tion of integrals together with the Lebesgue measure, that is, we use the fuzzy context to
prove the results.

Our first result gives estimates of the integrals involved in the fourth inequality in (2)
for fuzzy integrals over the interval [0, 1].

Theorem 8. Let g : [0, 1]× [0, 1]→ [0, ∞) be a convex function on the coordinates on [0, 1]× [0, 1].
Let μ× μ be the Lebesgue measure on [0, 1]× [0, 1].

1. If g(1, 1) + g(1, 0) > g(0, 1) + g(0, 0), then

∫
[0,1]

[g(x, 0) + g(x, 1)]dμ ≤ min
{

1,
g(1, 1) + g(1, 0)

1 + g(1, 1) + g(1, 0)− g(0, 1)− g(0, 0)

}
. (3)
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2. If g(1, 1) + g(0, 1) > g(1, 0) + g(0, 0), then

∫
[0,1]

[g(0, y) + g(1, y)]dμ ≤ min
{

1,
g(1, 1) + g(0, 1)

1 + g(1, 1) + g(0, 1)− g(1, 0)− g(0, 0)

}
. (4)

Proof. By the coordinated convexity of g on [0, 1]× [0, 1] that

g(x, 0) + g(x, 1) = g((1− x) · 0 + x · 1, 1) + g((1− x) · 0 + x · 1, 0)

≤ (1− x)g(0, 1) + xg(1, 1) + (1− x)g(0, 0) + xg(1, 0)

= g(0, 1) + g(0, 0) + x[g(1, 1) + g(1, 0)− g(0, 1)− g(0, 0)]

and hence by 3. of Proposition 1, we obtain∫
[0,1]

[g(x, 0) + g(x, 1)]dμ

≤
∫
[0,1]
{g(0, 1) + g(0, 0) + x[g(1, 1) + g(1, 0)− g(0, 1)− g(0, 0)]}dμ

=
∫
[0,1]

h1(x)dμ.

If we consider the survival function F together with the assumption g(1, 1) + g(1, 0) >
g(0, 1) + g(0, 0). Then, according to Remark 1, we obtain

α = μ

(
[0, 1] ∩

{
g(0, 1) + g(0, 0)

+x[g(1, 1) + g(1, 0)− g(0, 1)− g(0, 0)] ≥ α

})
= 1− α− g(0, 1)− g(0, 0)

g(1, 1) + g(1, 0)− g(0, 1)− g(0, 0)
. (5)

The solution of the Equation (5) is α = g(1,1)+g(1,0)
1+g(1,1)+g(1,0)−g(0,1)−g(0,0) .

Applying 1. of Proposition 1, we obtain∫
[0,1]

[g(x, 0) + g(x, 1)]dμ ≤
∫
[0,1]

h1(x)dμ ≤ μ([0, 1]) = 1. (6)

The solution α = g(1,1)+g(1,0)
1+g(1,1)+g(1,0)−g(0,1)−g(0,0) of the Equation (5) together with (6) prove

the inequality (3).
Since g is convex on the coordinates on [0, 1]× [0, 1], we find that

g(0, y) + g(1, y) = g(0, (1− y) · 0 + y · 1) + g(1, (1− y) · 0 + y · 1)
≤ (1− y)g(0, 0) + yg(0, 1) + (1− y)g(1, 0) + yg(1, 1)

= g(1, 0) + g(0, 0) + y[g(1, 1) + g(0, 1)− g(1, 0)− g(0, 0)]

and hence by 3. of Proposition 1, we obtain∫
[0,1]

[g(0, y) + g(1, y)]dμ

≤
∫
[0,1]
{g(1, 0) + g(0, 0) + y[g(1, 1) + g(0, 1)− g(1, 0)− g(0, 0)]}dμ

=
∫
[0,1]

h2(y)dμ.
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Suppose F is the survival function and g(1, 1) + g(0, 1) > g(1, 0) + g(0, 0), then ac-
cording to Remark 1, we obtain

β = μ

(
[0, 1] ∩

{
g(1, 0) + g(0, 0)

+y[g(1, 1) + g(0, 1)− g(1, 0)− g(0, 0)] ≥ β

})
= 1− β− g(1, 0)− g(0, 0)

g(1, 1) + g(0, 1)− g(1, 0)− g(0, 0)
. (7)

The solution of the Equation (7) is β = g(1,1)+g(0,1)
1+g(1,1)+g(0,1)−g(1,0)−g(0,0) .

Applying 1. of Proposition 1, we obtain∫
[0,1]

[g(0, y) + g(1, y)]dμ ≤
∫
[0,1]

h2(y)dμ ≤ μ([0, 1]) = 1. (8)

The solution β = g(1,1)+g(0,1)
1+g(1,1)+g(0,1)−g(1,0)−g(0,0) of the Equation (7) together with (8) prove

the inequality (4).

Remark 4. If g(1, 1) + g(1, 0) = g(0, 1) + g(0, 0), then∫
[0,1]

[g(x, 0) + g(x, 1)]dμ ≤ 1∧ [g(1, 1) + g(1, 0)]. (9)

If g(1, 1) + g(0, 1) = g(1, 0) + g(0, 0), then∫
[0,1]

[g(0, y) + g(1, y)]dμ ≤ 1∧ [g(1, 1) + g(0, 1)]. (10)

The second result provides an estimate of the first integral of the third inequality in (2)
for fuzzy integrals over the interval [0, 1].

Theorem 9. Let g : [0, 1]× [0, 1] → [0, ∞) be a convex function on the coordinates on [0, 1]×
[0, 1] such that g(0, 1) > g(0, 0) and g(0, 0) + g(1, 1) > g(1, 0) + g(0, 1). Let μ × μ be the
Lebesgue measure on [0, 1]× [0, 1], then∫

[0,1]2
g(x, y)d(μ× μ) ≤ min{1, α}, (11)

where α is a positive solution of the equation

(g(0, 0)− g(1, 0)− g(0, 1) + g(1, 1))α2

+ (g(1, 0) + g(0, 1)− 2g(1, 1)− 1)α + g(1, 1) = 0. (12)

Proof. Since g is a convex function on the coordinates on [0, 1] × [0, 1]. Therefore, for
(x, y) ∈ [0, 1]× [0, 1], we obtain

g(x, y) = g((1− x) · 0 + x · 1, (1− y) · 0 + y · 1)
≤ (1− x)(1− y)g(0, 0) + (1− x)yg(0, 1)

+ x(1− y)g(1, 0) + xyg(1, 1) = h(x, y).

Suppose F is the survival function with respect to the variable x together with g(0, 1) > g(0, 0)
and g(0, 0) + g(1, 1) > g(1, 0) + g(0, 1). By 3. of Proposition 1 and by using the Fubini
theorem for fuzzy integrals and Remark 1, we have
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∫
[0,1]2

g(x, y)d(μ× μ) ≤
∫
[0,1]2

[(1− x)(1− y)g(0, 0) + (1− x)yg(0, 1)

+x(1− y)g(1, 0) + xyg(1, 1)]d(μ× μ) =
∫
[0,1]

(∫
[0,1]

h(x, y)dμ

)
dμ.

=
∫
[0,1]

g(0, 1) + [g(1, 1)− g(0, 1)]x
1 + g(0, 1)− g(0, 0) + [g(0, 0) + g(1, 1)− g(1, 0)− g(0, 1)]x

dμ = α, (13)

where α is a positive solution of the equation

(g(0, 0)− g(1, 0)− g(0, 1) + g(1, 1))α2

+ (g(1, 0) + g(0, 1)− 2g(1, 1)− 1)α + g(1, 1) = 0. (14)

However, according to 1. of Proposition 1, we obtain∫
[0,1]2

g(x, y)d(μ× μ) ≤ μ× μ([0, 1]× [0, 1]) = μ([0, 1])μ([0, 1]) = 1. (15)

A positive solution of (14) and (15), we obtain (11).

Remark 5. If g(0, 0) + g(1, 1) = g(1, 0) + g(0, 1), g(1, 1) = g(0, 1) and g(0, 1) > g(0, 0) in
Theorem 9, then from (13) we obtain∫

[0,1]2
g(x, y)d(μ× μ) ≤ 1∧ g(0, 1)

1 + g(0, 1)− g(0, 0)
. (16)

Another estimate of the first integral of the third inequality in (2) for fuzzy integrals
over the interval [0, 1] can be determined as given in the following remark.

Remark 6. Since g is a convex function on the coordinates on [0, 1]× [0, 1], we obtain

g(x, y) = g((1− x) · 0 + x · 1, y) ≤ (1− x)g(0, y) + xg(1, y) ≤ g(0, y) + g(1, y)

and

g(x, y) = g(x, (1− y) · 0 + y · 1) ≤ (1− y)g(x, 0) + yg(x, 1) ≤ g(x, 0) + g(x, 1).

Hence, by 1., 3. of Proposition 1 and Fubini theorem for fuzzy integrals, we obtain∫
[0,1]2

g(x, y)d(μ× μ) ≤
∫
[0,1]

[g(0, y) + g(1, y)]dμ (17)

and ∫
[0,1]2

g(x, y)d(μ× μ) ≤
∫
[0,1]

[g(x, 0) + g(x, 1)]dμ. (18)

Thus, from (3), (4), (17) and (18), we find that

∫
[0,1]2

g(x, y)d(μ× μ) ≤ min
{

1,
g(1, 1) + g(1, 0)

1 + g(1, 1) + g(1, 0)− g(0, 1)− g(0, 0)
,

g(1, 1) + g(0, 1)
1 + g(1, 1) + g(0, 1)− g(1, 0)− g(0, 0)

}
. (19)
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It is clear that from (11) and (19) that the inequality

∫
[0,1]2

g(x, y)d(μ× μ) ≤ min
{

1, α,
g(1, 1) + g(1, 0)

1 + g(1, 1) + g(1, 0)− g(0, 1)− g(0, 0)
,

g(1, 1) + g(0, 1)
1 + g(1, 1) + g(0, 1)− g(1, 0)− g(0, 0)

}
(20)

holds, where α is a positive solution of the Equation (12).

The following example illustrates how to obtain an estimate for the first integral of the
third inequality in (2) using fuzzy integrals.

Example 3. Take X = [0, 1], Y = [0, 1] and let μ be the Lebesgue measure on X and Y. Suppose
that g : [0, 1]× [0, 1]→ [0, ∞) is defined as g(x, y) = x2ey and μ× μ is the Lebesgue measure on
X×Y.
Since g(1, 1) + g(1, 0) > g(0, 1) + g(0, 0), hence by 1. of Theorem 8, we have∫

[0,1]
(1 + e)x2dμ ≤ min

{
1,

e + 1
2 + e

}
=

e + 1
2 + e

≈ 0.78806.

We observe that g(1, 1) + g(0, 1) > g(1, 0) + g(0, 0), hence by 2. of Theorem 8, we obtain∫
[0,1]

eydμ ≤ 1.

Finally, (20) gives ∫
[0,1]2

x2eyd(μ× μ) ≤ min
{

1, α,
e + 1
2 + e

}
,

where α is a positive root of the equation

(e− 1)α2 − 2eα + e = 0.

The solution of this equation is

α1 =
e + e

1
2

e− 1
≈ 2. 5415

and

α2 =
e− e

1
2

e− 1
≈ 0.62246.

Thus, ∫
[0,1]2

x2eyd(μ× μ) ≤ e− e
1
2

e− 1
≈ 0.62246.

The next result gives different estimates of the integral involved in the fourth inequality
in (2) for fuzzy integrals over the interval [0, 1].

Theorem 10. Let g : [0, 1] × [0, 1] → [0, ∞) be a convex function on the coordinates on
[0, 1]× [0, 1]. Let μ× μ be the Lebesgue measure on [0, 1]× [0, 1].

1. If g(0, 0) + g(0, 1) < g(1, 0) + g(1, 1), then

∫
[0,1]

[g(x, 0) + g(x, 1)]dμ≤ min
{

1,
g(0, 0) + g(0, 1)

1 + g(0, 0) + g(0, 1)− g(1, 0)− g(1, 1)

}
. (21)
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2. If g(1, 0) + g(0, 0) < g(1, 1) + g(0, 1), then

∫
[0,1]

[g(0, y) + g(1, y)]dμ≤ min
{

1,
g(0, 0) + g(1, 0)

1 + g(1, 0) + g(0, 0)− g(1, 1)− g(0, 1)

}
. (22)

Proof. By the coordinated convexity of g on [0, 1]× [0, 1], we find that

g(x, 0) + g(x, 1) = g((1− x) · 0 + x · 1, 1) + g((1− x) · 0 + x · 1, 0)

≤ (1− x)g(0, 1) + xg(1, 1) + (1− x)g(0, 0) + xg(1, 0)

= g(0, 1) + g(0, 0) + x[g(1, 1) + g(1, 0)− g(0, 1)− g(0, 0)]

and hence by 3. of Proposition 1, we obtain∫
[0,1]

[g(x, 0) + g(x, 1)]dμ

≤
∫
[0,1]
{g(0, 1) + g(0, 0) + x[g(1, 1) + g(1, 0)− g(0, 1)− g(0, 0)]}dμ

=
∫
[0,1]

h1(x)dμ.

If we consider the survival function F together with the condition g(0, 0) + g(0, 1) <
g(1, 0) + g(1, 1), then according to Remark 1, we obtain

α = μ

(
[0, 1] ∩

{
g(0, 1) + g(0, 0)

+x[g(1, 1) + g(1, 0)− g(0, 1)− g(0, 0)] ≥ α

})
=

α− g(0, 1)− g(0, 0)
g(1, 1) + g(1, 0)− g(0, 1)− g(0, 0)

. (23)

The solution of the Equation (23) is α = g(0,0)+g(0,1)
1+g(0,0)+g(0,1)−g(1,0)−g(1,1) .

Applying 1. of Proposition 1, we obtain∫
[0,1]

[g(x, 0) + g(x, 1)]dμ ≤
∫
[0,1]

h1(x)dμ ≤ μ([0, 1]) = 1. (24)

The solution of Equation (23) together with (24) give us the required inequality (21).
Since g is convex on the coordinates on [0, 1]× [0, 1], we find that

g(0, y) + g(1, y) = g(0, (1− y) · 0 + y · 1) + g(1, (1− y) · 0 + y · 1)
≤ (1− y)g(0, 0) + yg(0, 1) + (1− y)g(1, 0) + yg(1, 1)

= g(1, 0) + g(0, 0) + y[g(1, 1) + g(0, 1)− g(1, 0)− g(0, 0)]

and hence by 3. of Proposition 1, we obtain∫
[0,1]

[g(0, y) + g(1, y)]dμ

≤
∫
[0,1]
{g(1, 0) + g(0, 0) + y[g(1, 1) + g(0, 1)− g(1, 0)− g(0, 0)]}dμ

=
∫
[0,1]

h2(y)dμ.
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Suppose F is the survival function and g(1, 0) + g(0, 0) < g(1, 1) + g(0, 1), then ac-
cording to Remark 1, we obtain

β = μ

(
[0, 1] ∩

{
g(1, 0) + g(0, 0)

+y[g(1, 1) + g(0, 1)− g(1, 0)− g(0, 0)] ≥ β

})
=

β− g(1, 0)− g(0, 0)
g(1, 1) + g(0, 1)− g(1, 0)− g(0, 0)

. (25)

The solution of Equation (25) is β = g(0,0)+g(1,0)
1+g(1,0)+g(0,0)−g(1,1)−g(0,1) .

Applying 1. of Proposition 1, we obtain∫
[0,1]

[g(0, y) + g(1, y)]dμ ≤
∫
[0,1]

h2(y)dμ ≤ μ([0, 1]) = 1. (26)

The solutions of Equation (25) and inequality (26) give us inequality (22).

Remark 7. If g(1, 1) + g(1, 0) = g(0, 1) + g(0, 0) in Theorem 8, then g(0, 0) + g(0, 1) =
g(1, 0) + g(1, 1) ∫

[0,1]
[g(x, 0) + g(x, 1)]dμ ≤ 1∧ [g(0, 1) + g(0, 0)] (27)

and if g(1, 1) + g(0, 1) = g(1, 0) + g(0, 0), then∫
[0,1]

[g(0, y) + g(1, y)]dμ ≤ 1∧ [g(1, 0) + g(0, 0)]. (28)

We can obtain some different estimates of the integral involved in the fourth inequal-
ity in (2) for fuzzy integrals over the interval [0, 1] if we replace “>” with “<” in the
assumptions of Theorem 10.

Theorem 11. Let g : [0, 1]× [0, 1]→ [0, ∞) be a convex function on the coordinates on [0, 1]×
[0, 1] such that g(0, 0) < g(0, 1) and g(0, 0) + g(1, 1) < g(1, 0) + g(0, 1). Let μ × μ be the
Lebesgue measure on [0, 1]× [0, 1], then∫

[0,1]2
g(x, y)d(μ× μ) ≤ min{1, α}, (29)

where α is a positive solution of the equation

(g(0, 0)− g(1, 0)− g(0, 1) + g(1, 1))α2

+ (g(1, 0) + g(0, 1)− 2g(0, 0)− 1)α + g(0, 0) = 0. (30)

Proof. Since g is a convex function on the coordinates on [0, 1]× [0, 1]. Hence, for (x, y) ∈
[0, 1]× [0, 1], we have the inequality

g(x, y) = g((1− x) · 0 + x · 1, (1− y) · 0 + y · 1)
≤ (1− x)(1− y)g(0, 0) + (1− x)yg(0, 1)

+ x(1− y)g(1, 0) + xyg(1, 1) = h(x, y).

Suppose F is the survival function with respect to the variable x together with g(0, 0) <
g(0, 1) and G is the survival function with respect to the variable y together with g(1, 0) +
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g(0, 1) < g(0, 0) + g(1, 1). By 3. of Proposition 1 and by using the Fubini theorem for fuzzy
integrals and Remark 1, we have

∫
[0,1]2

g(x, y)d(μ× μ) ≤
∫
[0,1]2

[(1− x)(1− y)g(0, 0) + (1− x)yg(0, 1)

+x(1− y)g(1, 0) + xyg(1, 1)]d(μ× μ) =
∫
[0,1]

(∫
[0,1]

h(x, y)dμ

)
dμ.

=
∫
[0,1]

g(0, 0) + [g(1, 0)− g(0, 0)]x
1 + g(0, 0)− g(0, 1) + [g(1, 0) + g(0, 1)− g(0, 0)− g(1, 1)]x

dμ = α, (31)

where α is a positive solution of the equation

(g(0, 0)− g(1, 0)− g(0, 1) + g(1, 1))α2

+ (g(1, 0) + g(0, 1)− 2g(0, 0)− 1)α + g(0, 0) = 0. (32)

However, according to 1. of Proposition 1, we obtain∫
[0,1]2

g(x, y)d(μ× μ) ≤ μ× μ([0, 1]× [0, 1]) = μ([0, 1])μ([0, 1]) = 1. (33)

A positive solution of (32) and inequality (33) give us the desired inequality (29).

Remark 8. If g(0, 0) + g(1, 1) = g(1, 0) + g(0, 1), g(0, 0) = g(1, 0) and g(0, 0) < g(0, 1) in
Theorem 11, then from (31) we obtain∫

[0,1]2
g(x, y)d(μ× μ) ≤ 1∧ g(0, 0)

1 + g(0, 0)− g(0, 1)
. (34)

A complementary estimate of the first integral of the third inequality in (2) for fuzzy
integrals over the interval [0, 1] is given in the remark below.

Remark 9. Since g is a convex function on the coordinates on [0, 1]× [0, 1], we obtain

g(x, y) = g((1− x) · 0 + x · 1, y) ≤ (1− x)g(0, y) + xg(1, y) ≤ g(0, y) + g(1, y)

and

g(x, y) = g(x, (1− y) · 0 + y · 1) ≤ (1− y)g(x, 0) + yg(x, 1) ≤ g(x, 0) + g(x, 1).

Hence by 1., 3. of Proposition 1 and Fubini theorem for fuzzy integrals, we obtain∫
[0,1]2

g(x, y)d(μ× μ) ≤
∫
[0,1]

[g(0, y) + g(1, y)]dμ (35)

and ∫
[0,1]2

g(x, y)d(μ× μ) ≤
∫
[0,1]

[g(x, 0) + g(x, 1)]dμ. (36)

Thus, from (21), (22), (35) and (36), we obtain

∫
[0,1]2

g(x, y)d(μ× μ) ≤ min
{

1,
g(0, 0) + g(0, 1)

1 + g(0, 0) + g(0, 1)− g(1, 0)− g(1, 1)
,

g(0, 0) + g(1, 0)
1 + g(1, 0) + g(0, 0)− g(1, 1)− g(0, 1)

}
. (37)
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It is clear from (29) and (37) that the inequality

∫
[0,1]2

g(x, y)d(μ× μ) ≤ min
{

1, α,
g(0, 0) + g(0, 1)

1 + g(0, 0) + g(0, 1)− g(1, 0)− g(1, 1)
,

g(0, 0) + g(1, 0)
1 + g(1, 0) + g(0, 0)− g(1, 1)− g(0, 1)

}
(38)

holds, where α is a positive solution of the Equation (30).

The following example illustrates the method for the calculation of the estimates of
the first integral of the third inequality in (2).

Example 4. Take X = [0, 1], Y = [0, 1] and let μ be the Lebesgue measure on X and Y. Suppose
that g : [0, 1]× [0, 1]→ [0, ∞) is defined as g(x, y) = (1 + x− ln(x + 1))e−y and μ× μ be the
Lebesgue measure on X×Y.
Since g(0, 0) + g(0, 1) < g(1, 0) + g(1, 1), hence by 1. of Theorem 9, we have

∫
[0,1]

(
1 + e−1

)
(1 + x− ln(x + 1))dμ ≤ 1 + e−1

(1 + e−1) ln 2− e−1 ≈ 2. 3573.

We observe that g(1, 0) + g(0, 0) < g(1, 1) + g(0, 1), hence by 2. of Theorem 9, we obtain∫
[0,1]

(3− ln 2)e−ydμ ≤ 3− ln 2
(e−1 − 1) ln 2− 3e−1 + 4

≈ 0.93843.

Finally, (30) gives (
1− e−1

)
(ln 2− 1)α2 +

(
e−1 − ln 2− 1

)
α + 1 = 0.

The solutions of this equation are

α1 =
e−1
(

e−
√

5e2 − 6e + e2 ln2 2 + 2e ln 2− 2e2 ln 2 + 1− 1 + e ln 2
)

2(1− e−1)(ln 2− 1)

≈ 0.68574

and

α2 =
e−1
(

e +
√

5e2 − 6e + e2 ln2 2 + 2e ln 2− 2e2 ln 2 + 1− 1 + e ln 2
)

2(1− e−1)(ln 2− 1)

≈ −7. 5181

Thus, ∫
[0,1]2

[x + 1− ln(1 + x)]e−yd(μ× μ)

≤
e−1
(

e−
√

5e2 − 6e + e2 ln2 2 + 2e ln 2− 2e2 ln 2 + 1− 1 + e ln 2
)

2(1− e−1)(ln 2− 1)

≈ 0.68574.

In the sequel, we will prove the general case of Theorems 8–11 and examples related
to these theorems.

Theorem 12. Let g : [a, b]× [c, d] → [0, ∞) be a convex function on the coordinates on [a, b]×
[c, d]. Let μ× μ be the Lebesgue measure on [a, b]× [c, d].

60



Mathematics 2023, 11, 2432

1. If g(b, d) + g(b, c) > g(a, d) + g(a, c), then

∫
[a,b]

[g(x, c) + g(x, d)]dμ

≤ min
{

b− a,
(b− a)(g(b, d) + g(b, c))

b− a + g(b, d) + g(b, c)− g(a, d)− g(a, c)

}
. (39)

2. If g(a, d) + g(b, d) > g(a, c) + g(b, c), then

∫
[c,d]

[g(a, y) + g(b, y)]dμ

≤ min
{

d− c,
(d− c)(g(a, d) + g(b, d))

d− c + g(a, d) + g(b, d)− g(a, c)− g(b, c)

}
. (40)

Proof. By the coordinated convexity of g on [a, b]× [c, d], we find that

g(x, c) + g(x, d)

= g
((

1− x− a
b− a

)
· a +

x− a
b− a

· b, d
)
+ g
((

1− x− a
b− a

)
· a +

x− a
b− a

· b, c
)

≤
(

b− x
b− a

)
g(a, d) +

(
x− a
b− a

)
g(b, d) +

(
b− x
b− a

)
g(a, c) +

(
x− a
b− a

)
g(b, c).

and hence by 3. of Proposition 1, we obtain

∫
[a,b]

[g(x, c) + g(x, d)]dμ

≤
∫
[a,b]

{(
b− x
b− a

)
g(a, d) +

(
x− a
b− a

)
g(b, d)

+

(
b− x
b− a

)
g(a, c) +

(
x− a
b− a

)
g(b, c)

}
dμ =

∫
[a,b]

h1(x)dμ.

If we consider the survival function F and g(b, d) + g(b, c) > g(a, d) + g(a, c), then
according to Remark 1, we obtain

α = μ

⎛⎝[a, b] ∩
⎧⎨⎩

(
b−x
b−a

)
g(a, d) +

(
x−a
b−a

)
g(b, d)

+
(

b−x
b−a

)
g(a, c) +

(
x−a
b−a

)
g(b, c) ≥ α

⎫⎬⎭
⎞⎠

= b− α(b− a) + ag(b, d)− bg(a, d) + ag(b, c)− bg(a, c)
g(a, d) + g(b, c)− g(b, d)− g(a, c)

. (41)

The solution of Equation (41) is α = (b−a)(g(b,d)+g(b,c))
b−a+g(b,d)+g(b,c)−g(a,d)−g(a,c) .

Applying 1. of Proposition 1, we obtain∫
[a,b]

[g(x, c) + g(x, d)]dμ ≤
∫
[a,b]

h1(x)dμ ≤ μ([a, b]) = b− a. (42)

The solutions of Equations (41) and (42) give us (39).
Since g is convex on the coordinates on [a, b]× [c, d], we find that

g(a, y) + g(b, y)

= g
(

a,
(

1− y− c
d− c

)
· c +

(
y− c
d− c

)
· d
)
+ g
(

b,
(

1− y− c
d− c

)
· c + y− c

d− c
· d
)

≤
(

d− y
d− c

)
g(a, c) +

(
y− c
d− c

)
g(a, d) +

(
d− y
d− c

)
g(b, c) +

(
y− c
d− c

)
g(b, d).
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and hence by 3. of Proposition 1, we obtain

∫
[c,d]

[g(a, y) + g(b, y)]dμ ≤
∫
[c,d]

{(
d− y
d− c

)
g(a, c) +

(
y− c
d− c

)
g(a, d)

+

(
d− y
d− c

)
g(b, c) +

(
y− c
d− c

)
g(b, d)

}
dμ =

∫
[c,d]

h2(y)dμ.

Suppose F is the survival function and g(a, d) + g(b, d) > g(a, c) + g(b, c), then ac-
cording to Remark 1, we obtain

β = μ

⎛⎝[c, d] ∩
⎧⎨⎩

(
d−y
d−c

)
g(a, c) +

(
y−c
d−c

)
g(a, d)

+
(

d−y
d−c

)
g(b, c) +

(
y−c
d−c

)
g(b, d) ≥ β

⎫⎬⎭
⎞⎠

= d− (d− c)β + cg(a, d) + cg(b, d)− dg(a, c)− dg(b, c)
g(a, d) + g(b, d)− g(a, c)− g(b, c)

. (43)

The solution of Equation (43) is β = (d−c)(g(a,d)+g(b,d))
d−c+g(a,d)+g(b,d)−g(a,c)−g(b,c) .

Applying 1. of Proposition 1, we obtain∫
[c,d]

[g(c, y) + g(d, y)]dμ ≤
∫
[c,d]

h2(y)dμ ≤ μ([c, d]) = d− c. (44)

The solution of Equation (43) and the inequality (44) give us the inequality (40).

Remark 10. If g(b, d) + g(b, c) = g(a, d) + g(a, c) in Theorem 12, then∫
[a,b]

[g(x, c) + g(x, d)]dμ ≤ (b− a) ∧ (g(b, d) + g(b, c)) (45)

and if g(a, d) + g(b, d) = g(a, c) + g(b, c), then∫
[c,d]

[g(a, y) + g(b, y)]dμ ≤ (d− c) ∧ (g(a, d) + g(b, d)). (46)

Theorem 13. Let g : [a, b]× [c, d] → [0, ∞) be a convex function on the coordinates on [a, b]×
[c, d] such that bg(a, d)+ ag(b, c) > bg(a, c)+ ag(b, d) and g(b, d)+ g(a, c) > g(a, d)+ g(b, c).
Let μ× μ be the Lebesgue measure on [a, b]× [c, d], then∫

[a,b]×[c,d]
g(x, y)d(μ× μ) ≤ min{(b− a)(d− c), α}, (47)

where α is a positive solution of the equation

(g(b, d)− g(a, d)− g(b, c) + g(a, c))α2 + (bc + ad− ac− bd

+(d− c)g(a, d) + (a− b + c− d)g(b, d) + (b− a)g(b, c))α

+ (ac− bc− ad + bd)g(b, d) = 0. (48)
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Proof. Since g is a convex function on the coordinates on [a, b] × [c, d]. Therefore, for
(x, y) ∈ [a, b]× [c, d], we obtain

g(x, y) = g
((

1− x− a
b− a

)
· a +

(
x− a
b− a

)
· b,
(

1− y− c
d− c

)
· c +

(
y− c
d− c

)
· d
)

≤
(

b− x
b− a

)(
d− y
d− c

)
g(a, c) +

(
b− x
b− a

)(
y− c
d− c

)
g(a, d)

+

(
x− a
b− a

)(
d− y
d− c

)
g(b, c) +

(
x− a
b− a

)(
y− c
d− c

)
g(b, d) = h(x, y).

Suppose F is the survival function with respect to the variable x together with bg(a, d)+
ag(b, c) > bg(a, c) + ag(b, d) and g(b, d) + g(a, c) > g(a, d) + g(b, c). By 3. of Proposition 1
and by using the Fubini theorem for fuzzy integrals and Remark 1, we have

∫
[a,b]×[c,d]

g(x, y)d(μ× μ) ≤
∫
[a,b]×[c,d]

[(
b− x
b− a

)(
d− y
d− c

)
g(a, c)

+

(
x− a
b− a

)(
d− y
d− c

)
g(b, c) +

(
b− x
b− a

)(
y− c
d− c

)
g(a, d)

+

(
x− a
b− a

)(
y− c
d− c

)
g(b, d)

]
d(μ× μ) =

∫
[a,b]

(∫
[c,d]

h(x, y)dμ

)
dμ.

=
∫
[a,b]

(d− c)(bg(a, d)− ag(b, d) + (g(b, d)− g(a, d))x)
(b− a)(d− c) + b(g(a, d)− g(a, c)) + a(g(b, c)− g(b, d))

+(g(b, d) + g(a, c)− g(a, d)− g(b, c))x

dμ = α, (49)

where α is a positive solution of the equation

(g(b, d)− g(a, d)− g(b, c) + g(a, c))α2 + (bc + ad− ac− bd

+(d− c)g(a, d) + (a− b + c− d)g(b, d) + (b− a)g(b, c))α

+ (ac− bc− ad + bd)g(b, d) = 0. (50)

However, according to 1. of Proposition 1, we obtain

∫
[a,b]×[c,d]

g(x, y)d(μ× μ) ≤ μ× μ([a, b]× [c, d])

= μ([a, b])μ([c, d]) = (b− a)(d− c). (51)

A positive solution of (50) and the inequality (51) give us the desired inequality (47).

Remark 11. If in Theorem 13 the conditions bg(a, d) + ag(b, c) > bg(a, c) + ag(b, d), g(b, d) +
g(a, c) = g(a, d) + g(b, c) and g(b, d) = g(a, d) hold, then

∫
[a,b]×[c,d]

g(x, y)d(μ× μ)

≤ (b− a)(d− c)(bg(a, d)− ag(b, d))
(b− a)(d− c) + b(g(a, d)− g(a, c)) + a(g(b, c)− g(b, d))

. (52)

Remark 12. Since g is a convex function on the coordinates on [a, b]× [c, d], we obtain

g(x, y) = g
((

1− x− a
b− a

)
· a +

(
x− a
b− a

)
· b,

y− c
d− c

)
≤
(

1− x− a
b− a

)
g(a, y) +

(
x− a
b− a

)
g(b, y) ≤ g(a, y) + g(b, y)
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and

g(x, y) = g
(

x,
(

1− y− c
d− c

)
· c + y · d

)
≤
(

1− y− c
d− c

)
g(x, c) +

y− c
d− c

g(x, d) ≤ g(x, c) + g(x, d).

Hence, by 1., and 3. of Proposition 1 and the Fubini theorem for fuzzy integrals, we obtain∫
[a,b]×[c,d]

g(x, y)d(μ× μ) ≤ (b− a) ∧
∫
[c,d]

[g(a, y) + g(b, y)]dμ (53)

and ∫
[a,b]×[c,d]

g(x, y)d(μ× μ) ≤ (d− c) ∧
∫
[a,b]

[g(x, c) + g(x, d)]dμ. (54)

Thus, from (39), (40), (53) and (54), we observe that the inequality

∫
[a,b]×[c,d]

g(x, y)d(μ× μ) ≤ min{b− a, d− c,

(b− a)(g(b, d) + g(b, c))
b− a + g(b, d) + g(b, c)− g(a, d)− g(a, c)

,
(d− c)(g(a, d) + g(b, d))

d− c + g(a, d) + g(b, d)− g(a, c)− g(b, c)

}
(55)

holds.
It is clear from (54) and (55) that the inequality

∫
[a,b]×[c,d]

g(x, y)d(μ× μ) ≤ min{(b− a)(d− c), b− a, d− c, α,

(b− a)(g(b, d) + g(b, c))
b− a + g(b, d) + g(b, c)− g(a, d)− g(a, c)

,
(d− c)(g(a, d) + g(b, d))

d− c + g(a, d) + g(b, d)− g(a, c)− g(b, c)
(56)

holds, where α is a positive solution of the Equation (48).

Theorem 14. Let g : [a, b]× [c, d] → [0, ∞) be a convex function on the coordinates on [a, b]×
[c, d]. Let μ× μ be the Lebesgue measure on [a, b]× [c, d].

1. If g(b, d) + g(b, c) < g(a, d) + g(a, c), then

∫
[a,b]

[g(x, c) + g(x, d)]dμ

≤ min
{

b− a,
(b− a)(g(a, d) + bg(a, c))

b− a + g(a, d) + g(a, c)− g(b, c)− g(b, d)

}
. (57)

2. If g(a, d) + g(b, d) < g(a, c) + g(b, c), then

∫
[c,d]

[g(a, y) + g(b, y)]dμ

≤ min
{

d− c,
(d− c)(g(a, c) + g(b, c))

d− c + g(a, c) + g(b, c)− g(a, d)− g(b, d)

}
. (58)
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Proof. By the coordinated convexity of g on [a, b]× [c, d] that

g(x, c) + g(x, d)

= g
((

1− x− a
b− a

)
· a +

x− a
b− a

· b, d
)
+ g
((

1− x− a
b− a

)
· a +

x− a
b− a

· b, c
)

≤
(

b− x
b− a

)
g(a, d) +

(
x− a
b− a

)
g(b, d) +

(
b− x
b− a

)
g(a, c) +

(
x− a
b− a

)
g(b, c).

and hence by 3. of Proposition 1, we obtain

∫
[a,b]

[g(x, c) + g(x, d)]dμ

≤
∫
[a,b]

{(
b− x
b− a

)
g(a, d) +

(
x− a
b− a

)
g(b, d)

+

(
b− x
b− a

)
g(a, c) +

(
x− a
b− a

)
g(b, c)

}
dμ =

∫
[a,b]

h1(x)dμ.

If we consider the survival function F and g(b, d) + g(b, c) < g(a, d) + g(a, c), then
according to Remark 1, we obtain that

α = μ

⎛⎝[a, b] ∩
⎧⎨⎩

(
b−x
b−a

)
g(a, d) +

(
x−a
b−a

)
g(b, d)

+
(

b−x
b−a

)
g(a, c) +

(
x−a
b−a

)
g(b, c) ≥ α

⎫⎬⎭
⎞⎠

=
(b− a)α + ag(b, d)− bg(a, d)− bg(a, c) + ag(b, c)

g(a, d) + g(a, c)− g(b, d)− g(b, c)
− a. (59)

The solution of Equation (59) is α = (b−a)(g(a,d)+g(a,c))
b−a+g(a,d)+g(a,c)−g(b,c)−g(b,d) .

Applying 1. of Proposition 1, we obtain∫
[a,b]

[g(x, c) + g(x, d)]dμ ≤
∫
[a,b]

h1(x)dμ ≤ μ([a, b]) = b− a. (60)

The solution of Equation (59) and the inequality (60) give the inequality (57).
Since g is convex on the coordinates on [a, b]× [c, d], we find that

g(a, y) + g(b, y)

= g
(

a,
(

1− y− c
d− c

)
· c +

(
y− c
d− c

)
· d
)
+ g
(

b,
(

1− y− c
d− c

)
· c + y− c

d− c
· d
)

≤
(

d− y
d− c

)
g(a, c) +

(
y− c
d− c

)
g(a, d) +

(
d− y
d− c

)
g(b, c) +

(
y− c
d− c

)
g(b, d).

and hence by 3. of Proposition 1, we obtain

∫
[c,d]

[g(a, y) + g(b, y)]dμ

≤
∫
[c,d]

{(
d− y
d− c

)
g(a, c) +

(
y− c
d− c

)
g(a, d)

+

(
d− y
d− c

)
g(b, c) +

(
y− c
d− c

)
g(b, d)

}
dμ =

∫
[c,d]

h2(y)dμ.
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Suppose F is the survival function and if g(a, d) + g(b, d) < g(a, c) + g(b, c), then
according to Remark 1, we obtain

β = μ

⎛⎝[c, d] ∩
⎧⎨⎩

(
d−y
d−c

)
g(a, c) +

(
y−c
d−c

)
g(a, d)

+
(

d−y
d−c

)
g(b, c) +

(
y−c
d−c

)
g(b, d) ≥ β

⎫⎬⎭
⎞⎠

=
β(d− c) + cg(a, d) + cg(b, d)− dg(a, c)− dg(b, c)

g(a, d) + g(b, d)− g(a, c)− g(b, c)
− c. (61)

The solution of Equation (61) is β = (d−c)(g(a,c)+g(b,c))
d−c+g(a,c)+g(b,c)−g(a,d)−g(b,d) .

Applying 1. of Proposition 1, we obtain∫
[c,d]

[g(c, y) + g(d, y)]dμ ≤
∫
[c,d]

h2(y)dμ ≤ μ([c, d]) = d− c. (62)

The solution of Equation (61) and inequality (62) yield the inequality (58).

Remark 13. If g(b, d) + g(b, c) = g(a, d) + g(a, c) in Theorem 14, then∫
[a,b]

[g(x, c) + g(x, d)]dμ ≤ (b− a) ∧ (g(a, d) + bg(a, c)) (63)

and if g(a, d) + g(b, d) = g(a, c) + g(b, c), then∫
[c,d]

[g(a, y) + g(b, y)]dμ ≤ (d− c) ∧ (g(a, c) + g(b, c)). (64)

Theorem 15. Let g : [a, b]× [c, d] → [0, ∞) be a convex function on the coordinates on [a, b]×
[c, d] such that bg(a, c)+ ag(b, d) < bg(a, d)+ ag(b, c) and g(a, d)+ g(b, c) < g(b, d)+ g(a, c).
Let μ× μ be the Lebesgue measure on [a, b]× [c, d], then∫

[a,b]×[c,d]
g(x, y)d(μ× μ) ≤ min{(b− a)(d− c), α}, (65)

where α is a positive solution of the equation

(g(a, d)− g(b, d)− g(a, c) + g(b, c))α2 + (ac + bd− bc− ad

+(c− d)g(b, c) + (b− a + d− c)g(a, c) + (a− b)g(a, d))α

+ (bc− ac− bd + ad)g(a, c) = 0. (66)

Proof. Since g is a convex function on the coordinates on [a, b] × [c, d]. Therefore, for
(x, y) ∈ [a, b]× [c, d], we obtain

g(x, y) = g
((

1− x− a
b− a

)
· a +

(
x− a
b− a

)
· b,
(

1− y− c
d− c

)
· c + y− c

d− c
· d
)

≤
(

b− x
b− a

)(
d− y
d− c

)
g(a, c) +

(
b− x
b− a

)(
y− c
d− c

)
g(a, d)

+

(
x− a
b− a

)(
d− y
d− c

)
g(b, c) +

(
x− a
b− a

)(
y− c
d− c

)
g(b, d) = h(x, y).

Suppose F is the survival function with respect to the variable x together with the
assumptions bg(a, c)+ ag(b, d) < bg(a, d)+ ag(b, c) and g(a, d)+ g(b, c) < g(b, d)+ g(a, c).
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By 3. of Proposition 1 and by using the Fubini theorem for fuzzy integrals and Remark 1,
we have

∫
[a,b]×[c,d]

g(x, y)d(μ× μ) ≤
∫
[a,b]×[c,d]

[(
b− x
b− a

)(
d− y
d− c

)
g(a, c)

+

(
b− x
b− a

)(
y− c
d− c

)
g(a, d) +

(
x− a
b− a

)(
d− y
d− c

)
g(b, c)

+

(
x− a
b− a

)(
y− c
d− c

)
g(b, d)

]
d(μ× μ) =

∫
[a,b]

(∫
[c,d]

h(x, y)dμ

)
dμ.

=
∫
[a,b]

(d− c)(bg(a, c)− ag(b, c) + (g(b, c)− g(a, c))x)
(b− a)(d− c) + b(g(a, c)− g(a, d)) + a(g(b, d)
−g(b, c)) + (g(a, d) + g(b, c)− g(b, d)− g(a, c))x

dμ = α, (67)

where α is a positive solution of the equation

(g(a, d)− g(b, d)− g(a, c) + g(b, c))α2 + (ac + bd− bc− ad

+(c− d)g(b, c) + (b− a + d− c)g(a, c) + (a− b)g(a, d))α

+ (bc− ac− bd + ad)g(a, c) = 0. (68)

However, according to 1. of Proposition 1, we obtain

∫
[a,b]×[c,d]

g(x, y)d(μ× μ) ≤ μ× μ([a, b]× [c, d])

= μ([a, b])μ([c, d]) = (b− a)(d− c). (69)

A positive solution of (68) and the inequality (69) prove the desired inequality (66).

Remark 14. Suppose that bg(a, c) + ag(b, d) < bg(a, d) + ag(b, c), g(b, c) = g(a, c) and
g(a, d) + g(b, c) = g(b, d) + g(a, c) in Theorem 15, then

∫
[a,b]×[c,d]

g(x, y)d(μ× μ)

≤ (b− a)(d− c)(bg(a, c)− ag(b, c))
(b− a)(d− c) + b(g(a, c)− g(a, d)) + a(g(b, d)− g(b, c))

. (70)

Remark 15. Since g is a convex function on the coordinates on [a, b]× [c, d], we obtain

g(x, y) = g
((

1− x− a
b− a

)
· a +

(
x− a
b− a

)
· b,

y− c
d− c

)
≤
(

1− x− a
b− a

)
g(a, y) +

(
x− a
b− a

)
g(b, y) ≤ g(a, y) + g(b, y)

and

g(x, y) = g
(

x,
(

1− y− c
d− c

)
· c + y · d

)
≤
(

1− y− c
d− c

)
g(x, c) +

(
y− c
d− c

)
g(x, d) ≤ g(x, c) + g(x, d).

Hence, by 1. and 3. of Proposition 1 and the Fubini theorem for fuzzy integrals, we obtain∫
[a,b]×[c,d]

g(x, y)d(μ× μ) ≤ (b− a) ∧
∫
[c,d]

[g(a, y) + g(b, y)]dμ (71)
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and ∫
[a,b]×[c,d]

g(x, y)d(μ× μ) ≤ (d− c) ∧
∫
[a,b]

[g(x, c) + g(x, d)]dμ. (72)

Thus, from (57), (58), (71) and (72), we find that

∫
[a,b]×[c,d]

g(x, y)d(μ× μ)

≤ min
{

b− a, d− c,
(b− a)(g(b, d) + g(b, c))

b− a + g(b, d) + g(b, c)− g(a, d)− g(a, c)
,

(d− c)(g(a, d) + g(b, d))
d− c + g(a, d) + g(b, d)− g(a, c)− g(b, c)

}
. (73)

It is clear from (72) and (73), that the inequality

∫
[a,b]×[c,d]

g(x, y)d(μ× μ) ≤ min{(b− a)(d− c), b− a, d− c, α,

(b− a)(g(b, d) + g(b, c))
b− a + g(b, d) + g(b, c)− g(a, d)− g(a, c)

,

(d− c)(g(a, d) + g(b, d))
d− c + g(a, d) + g(b, d)− g(a, c)− g(b, c)

}
, (74)

holds, where α is a positive solution of the Equation (66).

Example 5. Take X = [0, 1], Y = [0, 1] and let μ be the Lebesgue measure on X and Y. Suppose
that g : [0, 1]× [0, 1]→ [0, ∞) is defined as g(x, y) = (x− arctan x)ey and μ× μ be the Lebesgue
measure on X×Y.
Since g(b, d) + g(b, c) > g(a, d) + g(a, c), hence by 1. of Theorem 12, we have∫

[0,1]
(1 + e)(x− arctan x)dμ ≤ min

{
1,

4e− π − πe + 4
4e− π − πe + 8

}
.

We observe that g(a, d) + g(b, d) > g(a, c) + g(b, c), hence by 2. of Theorem 12, we obtain∫
[0,1]

(
1− π

4

)
eydμ ≤ min

{
1,

(4− π)e
π + 4e− πe

}
.

Finally, (56) gives

∫
[0,1]2

(x− arctan x)eyd(μ× μ) ≤ min
{

1, α,
4e− π − πe + 4
4e− π − πe + 8

,
(4− π)e

π + 4e− πe

}
,

where α is a positive root of the equation

(4− π)(e− 1)α2 − (2(4− π)e + π)α + (4− π)e = 0.

The solution of this equation is

α1 =

√
64e− 16πe + π2 − 8e− π + 2πe

2(π − 4)(e− 1)
≈ 0.31793

and

α2 = −π + 8e +
√

64e− 16πe + π2 − 2πe
2(π − 4)(e− 1)

≈ 4. 9759.

68



Mathematics 2023, 11, 2432

Thus, ∫
[0,1]2

(x− arctan x)eyd(μ× μ)

≤
√

64e− 16πe + π2 − 8e− π + 2πe
2(π − 4)(e− 1)

≈ 0.31793.

Example 6. Take X = [0, 1], Y = [1, 2] and let μ be the Lebesgue measure on X and Y. Suppose
that g : [0, 1] × [1, 2] → [0, ∞) is defined as g(x, y) =

(
x2 − 3x + 5

2
)
e−
√

y and μ × μ be the
Lebesgue measure on X×Y.
Since g(b, d) + g(b, c) < g(a, d) + g(a, c), hence by 1. of Theorem 14, we have, then

∫
[0,1]

(
e−1 + e−

√
2
)(

x2 − 3x +
5
2

)
dμ ≤

5
(

e−
√

2 + e−1
)

2
(

1 + 2e−
√

2 + 2e−1
) .

We observe that g(a, d) + g(b, d) < g(a, c) + g(b, c), hence by 2. of Theorem 14, we obtain

∫
[1,2]

2e−
√

ydμ ≤ 2e−1

1 + 2e−1 − 2e−
√

2
.

Finally, (74) gives

∫
[0,1]×[1,2]

(
x2 − 3x +

5
2

)
e−
√

yd(μ× μ)

≤ min

⎧⎨⎩1, α,
5
(

e−
√

2 + e−1
)

2
(

1 + 2e−
√

2 + 2e−1
) ,

e−1

1 + 2e−1 − 2e−
√

2

⎫⎬⎭,

where α is a positive root of the equation

4
(

e−
√

2 − e−1
)

α2 +
(

2 + 9e−1 − 5e−
√

2
)

α− 5e−1 = 0.

The solution of this equation is
α1 ≈ 0.476 85

and
α2 ≈ 7. 729 4.

Thus, ∫
[0,1]×[1,2]

(
x2 − 3x +

5
2

)
e−
√

yd(μ× μ) ≤ e−1

1 + 2e−1 − 2e−
√

2
.

3. Conclusions

In this study, we discussed the theory of fuzzy integrals, also known as Sugeno inte-
grals, and their properties. Since integral inequalities are useful tools in several theoretical
and applied fields, this is why mathematicians have developed analogues of a number of
integral inequalities such as Cauchy–Schwarz-type inequality, Stolarsky inequality and
Minkowski inequality using fuzzy integrals. It has been shown that classical Hermite–
Hadamard inequalities do not hold true for fuzzy integrals in general. In this research, we
prove that the Hermite–Hadamard-type integral inequalities (2) established for coordinated
convex functions do not hold for the Sugeno integral. We also prove some estimates of
some inequalities involved in (2) using the Sugeno integral and Fubini theorem of fuzzy
integrals and support our study by providing peculiar examples. This study could have the
potential to encourage the researchers already working in this field to further explore the
topic of mathematical inequalities in the fuzzy context of functions of two or more variables.
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The research conducted in this paper can also be extended for other generalizations of
coordinated convex functions and not limited to the Hermite–Hadamard-type inequalities
for coordinated convex functions, but also for coordinated Jensen’s type inequalities.
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13. Román-Flores, H.; Flores-Franulič, A.; Chalco-Cano, Y. A two-dimensional Hardy type inequality for fuzzy integrals. Int. J.

Uncertain. Fuzziness Knowl.-Based Syst. 2013, 21, 165–173. [CrossRef]
14. Li, D.-Q.; Cheng, Y.-H.; Wang, X.-S.; Qiao, X. Berwald-type inequalities for Sugeno integral with respect to (α, m, r)g-concave

functions. J. Inequal. Appl. 2016, 25, 17. [CrossRef]
15. Ouyang, Y.; Fang, J. Sugeno integral of monotone functions based on Lebesgue measure. Comput. Math. Appl. 2008, 56, 367–374.

[CrossRef]
16. Ouyang, Y.; Fang, J.; Wang, L. Fuzzy Chebyshev type inequality. Int. J. Approx. Reason. 2008, 48, 829–835. [CrossRef]
17. Hu, Y. Chebyshev type inequalities for general fuzzy integrals. Inf. Sci. 2014, 278, 822–825. [CrossRef]
18. Caballero, J.; Sadarangani, K. A Cauchy-Schwarz type inerquality for fuzzy integrals. Nonlinear Anal. 2010, 73, 3329–3335.

[CrossRef]
19. Agahi, H.; Mesiar, R., Ouyang, Y. Pap, E.; Štrboja, M. On Stolarsky inequality for Sugeno and Choquet integrals. Inf. Sci. 2014,

266, 134–139. [CrossRef]
20. Caballero, J.; Sadarangani, K. Hermite-Hadamard inequality for fuzzy integrals. Appl. Math. Comput. 2009, 215, 2134–2138.

[CrossRef]
21. Hadamard, J. Étude sur les propietés des functions entiéres et en particulies d’une function considerée par Riemann. J. Math.

Pure. Appl. 1893, 58, 175–215.
22. Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 82.
23. Abbaszadeh, S.; Eshaghi, M.; de la Sen, M. The Sugeno fuzzy integral of log-convex functions. J. Inequal. Appl. 2015, 362, 12.

[CrossRef]
24. Abbaszadeh, S; Eshaghi, M. A Hadamard-type inequality for fuzzy integrals based on r-convex functions. Soft Comput. 2016, 20,

3117–3124. [CrossRef]
25. Abbaszadeh, S; Eshaghi, M. Nonlinear integrals and Hadamard-type inequalities. Soft Comput. 2018, 22, 2843–2849. [CrossRef]
26. Agahi, H.; Mohammadpour, A.; Mesiar, R.; Vaezpour, S. M. Liapunov-type inequality for universal integral. Int. J. Intell. Syst.

2012, 27, 908–925. [CrossRef]
27. Agahi, H.; Mesiar, R.; Ouyang, Y. Further development of Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators.

Kybernetika 2010, 46, 83–95.

70



Mathematics 2023, 11, 2432

28. Babakhani, A.; Agahi, H.; Mesiar, R. A (�,∗)-based Minkowski’s inequality for Sugeno fractional integral of order α > 0. Fract.
Calc. Appl. Anal. 2015, 18, 862–874. [CrossRef]

29. Boczek, M.; Kaluszka, M. On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application.
Kybernetika 2016, 52, 329–347. [CrossRef]

30. Caballero, J.; Sadarangani, K. Sandor’s inequality for Sugeno integrals. Appl. Math. Comput. 2011, 218, 1617–1622. [CrossRef]
31. Caballero, J.; Sadarangani, K. A Markov-type inequality for seminormed fuzzy integrals. Appl. Math. Comput. 2013, 219,

10746–10752. [CrossRef]
32. Caballero, J.; Sadarangani, K. Chebyshev inequality for Sugeno integrals. Fuzzy Sets Syst. 2010, 161, 1480–1487. [CrossRef]
33. Hong, D.H. Berwald and Favard type inequalities for fuzzy integrals. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2016, 24, 47–58.

[CrossRef]
34. Kaluszka, M.; Okolewski, A.; Boczek, M. On Chebyshev type inequalities for generalized Sugeno integrals. Fuzzy Sets Syst. 2014,

244, 51–62. [CrossRef]
35. Liao, J.; Wub, S.; Dua, T. -S. The Sugeno integral with respect to α-preinvex functions. Fuzzy Sets Syst. 2020, 379, 102–114.

[CrossRef]
36. Li, D.-Q.; Cheng, Y.-H.; Wang, X.-S. Sandor type inequalities for Sugeno integral with respect to general (α, m, r)-convex functions.

J. Funct. Spaces 2015, 460–520, 13. [CrossRef]
37. Li, D.-Q.; Song, X.-Q.; Yue, T. Hermite-Hadamard type inequality for Sugeno integrals. Appl. Math. Comput. 2014, 237, 632–638.

[CrossRef]
38. Narukawa, Y.; Torra, V. Multidimensional generalized fuzzy integral. Fuzzy Sets Syst. 2009, 160, 802–815. [CrossRef]
39. Dragomir, S.S. On Hadamard’s inequality for convex functions on the coordinates in a rectangle from the plane. Taiwan. J. Math.

2001, 4, 775–788.
40. Hwang, D.Y.; Tseng, K.L.; Yang, G.S. Some Hadamard’s inequalities for coordinated convex functions in a rectangle from the

plane. Taiwan. J. Math. 2007, 11, 63–73. [CrossRef]
41. Latif, M.A.; Alomari, M. Hadamard-type inequalities for product two convex functions on the coordinates. Int. Math. Forum 2009,

4, 2327–2338.
42. Latif, M.A.; Alomari, M. On the Hadamard-type inequalities for h-convex functions on the coordinates. Int. J. Math. Anal. 2009, 3,

1645–1656.
43. Latif, M.A.; Dragomir, S.S. On Some New inequalities for differentiable coordinated convex functions. J. Inequal. Appl. 2012, 2012,

28. [CrossRef]
44. Özdemir, M.E.; Latif M.A.; Akdemir, A.O. On some Hadamard-type inequalities for product of two s-convex functions on the

coordinates. J. Inequal. Appl. 2012, 2012, 21. [CrossRef]
45. Budak, H.; Tunç, T.; Sarilaya, M. Z. Fractional Hermite-Hadamard-type inequalities for interval-valued functions. Proc. Amer.

Math. Soc. 2020, 148, 705–718. [CrossRef]
46. Khan, M.B.; Treant, S.; Budak, H. Generalized p-convex fuzzy-interval-valued functions and inequalities based upon the

fuzzy-order relation. Fractal Fract. 2022, 6, 63. [CrossRef]
47. Wang, Z.; Klir, G. Fuzzy Measure Theory; Plenum: New York, NY, USA, 1992.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

71



Citation: Shohaimay, F.; Ismail, E.S.

Improved and Provably Secure

ECC-Based Two-Factor Remote

Authentication Scheme with Session

Key Agreement. Mathematics 2023, 11,

5. https://doi.org/10.3390/

math11010005

Academic Editor: Antanas Cenys

Received: 1 October 2022

Revised: 5 December 2022

Accepted: 13 December 2022

Published: 20 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Improved and Provably Secure ECC-Based Two-Factor Remote
Authentication Scheme with Session Key Agreement

Fairuz Shohaimay 1,2 and Eddie Shahril Ismail 1,*

1 Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
(UKM), Bangi 43600, Selangor, Malaysia

2 Mathematical Sciences Studies, College of Computing, Informatics and Media, Universiti Teknologi MARA
(UiTM) Pahang Branch, Raub Campus, Raub 27600, Pahang, Malaysia

* Correspondence: esbi@ukm.edu.my

Abstract: The remote authentication scheme is a cryptographic protocol incorporated by user–server
applications to prevent unauthorized access and security attacks. Recently, a two-factor authentica-
tion scheme using hard problems in elliptic curve cryptography (ECC)—the elliptic curve discrete
logarithm problem (ECDLP), elliptic curve computational Diffie–Hellman problem (ECCDHP), and
elliptic curve factorization problem (ECFP)—was developed, but was unable to address several
infeasibility issues while incurring high communication costs. Moreover, previous schemes were
shown to be vulnerable to privileged insider attacks. Therefore, this research proposes an improved
ECC-based authentication scheme with a session key agreement to rectify the infeasible computations
and provide a mechanism for the password change/update phase. The formal security analysis
proves that the scheme is provably secure under the random oracle model (ROM) and achieves mu-
tual authentication using BAN logic. Based on the performance analysis, the proposed scheme resists
the privileged insider attack and attains all of the security goals while keeping the computational
costs lower than other schemes based on the three hard problems. Therefore, the findings suggest
the potential applicability of the three hard problems in designing identification and authentication
schemes in distributed computer networks.

Keywords: elliptic curve cryptography; key agreement; provable security; password authentication;
smart card

MSC: 94A60

1. Introduction

Currently, more Internet users depend on user–server-based applications for
e-commerce, banking services, and operational networks because of their convenience and
efficiency. These applications allow users to obtain numerous services remotely at any
time, anywhere. This type of communication between the user and server usually involves
data transmission and financial transactions over a public channel, such as the Internet.
Unfortunately, sharing sensitive information over the public channel is insecure, exposing
both parties to greater security risks and attacks. Therefore, a remote authentication scheme
is imperative for verifying legal users and defending against unauthorized usage.

The first password authentication scheme by Lamport [1] is called a single-factor-
based scheme because the user only needs to present a password to be verified by the
server. However, studies have shown that single-factor-based schemes are subjected to
security pitfalls. Since then, remote authentication schemes were designed based on two or
more factors to increase the systems’ security. For example, in addition to a password, the
user is required to possess a registered smart card or a mobile device. For a multi-factor
scheme, the user may also need to present a biometric trait such as a fingerprint.

Mathematics 2023, 11, 5. https://doi.org/10.3390/math11010005 https://www.mdpi.com/journal/mathematics72



Mathematics 2023, 11, 5

Many two-factor smart-card-based remote authentication schemes have been pro-
posed. Figure 1 depicts the general architecture of the two-factor authentication scheme,
which consists of multiple users and a single server. In this system, the remote user must
register with a valid identity and secret password with the server. Next, the server issues a
legal smart card to the first-time registered user to access the required services. The smart
card is employed to store the registered user’s secret credentials for future login requests
and perform cryptographic computations during the authentication process.

Figure 1. Architecture of two-factor remote authentication with multiple users and a single server.

Like other cryptographic schemes and protocols, the two-factor-based authentication
schemes rely on the security primitives of one-way hash functions (e.g., SHA-2 [2]) and
number-theoretic computational hard problems in public-key cryptography. For instance,
the works by [3–5] were developed based on only one-way hash functions. Other schemes
were built based on the intractability of hard problems, including the integer factorization
problem in RSA [6], discrete logarithm problem [7], and elliptic curve discrete logarithm
problem [8,9] in elliptic curve cryptography (ECC). ECC-based schemes are more prevalent
than RSA-based schemes due to the smaller key size requirement [10].

In 2008, Juang et al. [11] first proposed an ECC-based remote password authentication
scheme with a session key agreement for the client–server environment. The security of
their scheme depended on two hard problems in ECC: the elliptic curve discrete logarithm
problem (ECDLP) and elliptic curve computational Diffie–Hellman problem (ECCDHP). They
claimed that their scheme preserved all of the security merits of the scheme by Fan et al. [12]
and reduced the computational cost. Subsequently, Sun et al. [13] and Li et al. [14] found
weaknesses in the design of the scheme by Juang et al. [11] in terms of the password-change
phase and session key distribution, the inefficiency of using two secret keys, and user
anonymity. Hence, both suggested enhancements to fix the design flaws.

Several improvements by [15–17] were presented to overcome the problems in the
Sun et al. [13] scheme to resist offline password-guessing attacks, denial-of-service attacks,
smart card loss attacks, and key compromise impersonation attacks. Later, Liu and Ma [18]
found that the scheme by Sun et al. [13] still lacked user untraceability and resolved the
issue with an improved efficiency. Then, the scheme by Li et al. [14] was found to suffer
from desynchronization attacks [17,19]. Hence, Tsai et al. [19] and Byun [20] proposed
new schemes with formal security model proofs to strengthen the scheme’s security. Both
schemes maintained the security of their schemes based on the hard problems of ECDLP
and ECCDHP.
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Wang et al. [21] proposed a two-factor authentication scheme for a ubiquitous com-
puting environment based on ECDLP. Their scheme was shown to provide better security
features and a lower computational cost. Subsequently, Wu et al. [22] showed that the
scheme by Wang et al. [21] could not resist offline dictionary attacks, known session key
attacks, denial-of-service attacks, and impersonation attacks using a compromised smart
card. Meanwhile, Chang et al. [23] pointed out that the scheme by Wang et al. [21] did not
satisfy mutual authentication and could not be incorporated using a multipurpose smart
card. Hence, both [22,23] proposed new improved schemes to overcome these weaknesses.

In another study, Wang [24] found some security flaws in the design of the single-factor
scheme by Islam and Biswas [25]. They developed a new scheme using smart cards with the
security foundation of ECDLP, ECCDHP, and a one-way hash function. They claimed that
their scheme offered resistance to impersonation attacks and improved the computational
efficiency by removing the expensive bilinear pairing operation. Later, Odelu et al. [26]
presented further improvements to resist the offline password attack and provide user
anonymity. They proved that their scheme could withstand various security attacks and
showed that it was provably secure under the random oracle model (ROM).

Other recent works have also proposed ECC-based two-factor schemes with added
security features. Madhusudhan et al. [27] suggested a new scheme based on ECC and a
fuzzy verifier for quick password verification. They showed that their scheme could resist
replay attacks and provide security of the secret key, user untraceability, and perfect forward
secrecy. Finally, Kumari et al. [28] designed a novel scheme that provides resistance against
offline password-guessing attacks, lost smart card attacks, replay attacks, impersonation
attacks, desynchronization attacks, and insider attacks.

1.1. Motivations and Contributions

In 2014, Qu and Tan [29] proposed a two-factor scheme based on the security of a
collision-resistant one-way hash function, ECDLP, ECCDHP, and the elliptic curve fac-
torization problem (ECFP). Later, Huang et al. [30] suggested security enhancements to
overcome the offline password-guessing attack and user impersonation attack. However, in
2016, Maitra et al. [31] showed that the scheme by Huang et al. [30] was vulnerable to a new
forgery attack. They also pointed out that the scheme by [30] could not be implemented
in real-world problems because of some computational infeasibility issues. Later, both
Chaudhry et al. [32] and Mehmood et al. [33] also suggested improvements to repel the
user impersonation attack.

Although Maitra et al. [31] suggested security enhancements to the scheme by Huang
et al. [30], their scheme exacted a higher computational cost compared to schemes
by [29,30,32,33]. Even though the schemes designed by Chaudhry et al. [32] and Mehmood
et al. [33] improved the efficiency of the scheme by Huang et al. [30], their schemes over-
looked the computational infeasibility issues. In addition, their schemes did not provide a
mechanism for the password change phase and were unable to withstand the privileged
insider attack. Moreover, previously improved schemes by Maitra et al. [31] and Mehmood
et al. [33] did not maintain all three hard problems in ECC: ECDLP, ECCDHP, and ECFP.

Therefore, this study proposes a new ECC-based two-factor remote authentication
scheme based on Chaudhry et al. [32] to resolve these shortcomings. The scheme retains
all of the security attributes of the scheme by Maitra et al. [31], including user traceability
and efficient local password changeability. In addition, the proposed scheme is proven
to withstand offline password-guessing attacks, replay attacks, privileged insider attacks,
stolen-verifier attacks, and key-compromise impersonation attacks. Based on the formal
security analysis, the proposed scheme is provably secure under ROM against adversary
threats. Furthermore, the analysis showed that the proposed scheme is more efficient than
the scheme by Maitra et al. [31].
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1.2. Structure of the Article

Section 2 briefly describes the security fundamentals, adversary model, a review of
Chaudhry et al. [32], and the drawbacks that are considered when developing the pro-
posed scheme. Next, Section 3 explains the new proposed scheme. The formal security
proof, informal security analysis, and formal verification using BAN logic are presented in
Section 4. The proposed scheme is compared with other chosen schemes in the perfor-
mance analysis according to the security and efficiency aspects given in Section 5. Then,
Section 6 discusses the potential applications of the proposed scheme and future research
considerations. Finally, Section 7 presents the conclusion.

2. Preliminaries

This section provides a brief overview of the mathematical concepts, formal definitions,
adversary model, security goals, and BAN logic that served as the foundation in the design
of the proposed scheme. Table 1 shows the notations and descriptions used in this paper.

Table 1. Notations and descriptions.

Notation Description Notation Description

S Server P Base point on Gp of order n such that [n]P = O
and n is the smallest integer > 0

Ui User i Z
∗
n Multiplicative group mod n

A Adversary s Secret key, random integer such that s ∈ Z
∗
n

IDi Ui’s identity Ppub Public key, Ppub = [s]P ∈ Gp
pwi Ui’s password h(·) One-way hash function, h : {0, 1}∗ → Z

∗
n

SCi Ui’s smart card =⇒ Secure channel
p k-bit prime number, k is at least 512 bits −→ Public channel

E(Fp)
The set of points on an elliptic curve over a finite
field Fp

‖ String concatenation operation

Gp
Additive cyclic subgroup of E(Fp), where Gp =
E(Fp) ∪ {O} ⊕ Bitwise XOR operation

O The point at infinity that is an identity element of
E(Fp)

2.1. Hash Function

A cryptographic one-way function h : {0, 1}∗ → {0, 1}l has the following properties:

• The function h takes an arbitrary length input x ∈ {0, 1}∗ and returns a fixed l-bit
length message digest y ∈ {0, 1}l .

• The function h is one-way; it is trivial to compute y = h(x), but computationally
infeasible to find the inverse x = h−1(y).

• The function h is collision-resistant; it is computationally infeasible to find two inputs
x1 �= x2 such that h(x1) = h(x2).

Examples of secure hash algorithms, such as the SHA-2 family of hash functions [2],
can be adopted in the proposed scheme.

Definition 1. An adversary A’s advantage in finding a collision is the probability of A selecting
the pair (x1, x2) at random within polynomial time t1 so that x1 �= x2 and h(x1) = h(x2), defined
formally as

AdvHash
A (t1) = Pr[(x1, x2)⇐R A : x1 �= x2 ∧ h(x1) = h(x2)]. (1)

If AdvHash
A (t1) ≤ ε1, for any sufficiently small negligible function ε1 > 0, the one-way hash

function h(·) is collision-resistant.

2.2. Elliptic Curve over Finite Fields

The elliptic curve over a finite field Fp is defined as Ep(a, b) : y2 = x3 + ax + b (mod p),
where p is prime and satisfies the condition 4a3 + 27b2 �= 0 (mod p). If point P ∈ E(Fp) and
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k ∈ Z
∗
p, then the elliptic point multiplication operation [k]P is the repeated point addition k

times on point P.

[k]P =

k times︷ ︸︸ ︷
P + P + · · ·+ P

The security of the elliptic curve cryptosystem is based on the following computational
hard problems.

Definition 2. Given two points P, Q(= [s]P) ∈ E(Fp), the elliptic curve discrete logarithm
problem (ECDLP) is to find the integer s ∈ Z

∗
p. The advantage of an adversary A in solving the

ECDLP within execution time t2 is defined as

AdvECDLP
A (t2) = Pr[s ∈ Z

∗
p : P, Q = [s]P ∈ E(Fp)]. (2)

For any probabilistic polynomial time-bounded algorithm A and for any sufficiently small
negligible function ε2 > 0, if AdvECDLP

A (t2) ≤ ε2, then the ECDLP is intractable.

Definition 3. Given three points P, Q(= [s]P), R(= [t]P) ∈ E(Fp), the elliptic curve computa-
tional Diffie–Hellman problem (ECCDHP) is to find the point [s · t]P ∈ E(Fp) where s, t ∈ Z

∗
p.

The advantage of an adversary A in solving the ECCDHP within execution time t3 is defined as

AdvECCDHP
A (t3) = Pr[[s · t]P ∈ E(Fp) : P, Q = [s]P, R = [t]P ∈ E(Fp) ∧ s, t ∈ Z

∗
p]. (3)

For any probabilistic polynomial time-bounded algorithm A and for any sufficiently small
negligible function ε3 > 0, if AdvECCDHP

A (t3) ≤ ε3, then the ECCDHP is intractable.

Definition 4. Given two points P, Q(= [s + t]P) ∈ E(Fp), the elliptic curve factorization
problem (ECFP) is to find two points [s]P, [t]P ∈ E(Fp), where s, t ∈ Z

∗
p. The advantage of an

adversary A in solving the ECFP within execution time t4 is defined as

AdvECFP
A (t4) = Pr[[s]P, [t]P ∈ E(Fp) : P, Q = [s]P + [t]P ∈ E(Fp) ∧ s, t ∈ Z

∗
p]. (4)

For any probabilistic polynomial time-bounded algorithm A and for any sufficiently small
negligible function ε4 > 0, if AdvECFP

A (t4) ≤ ε4, then the ECFP is intractable.

2.3. Adversary Model

The adversary model by Dolev and Yao [34] was considered for communications over
an insecure public channel, and the following assumptions were made.

• A1: An adversary A can trap, delete, or alter the messages transmitted over the public
channel.

• A2: An adversary A can retrieve the information stored in the smart card using power
monitoring techniques as explained in [35,36].

• A3: An adversary A can guess the identity or password using a dictionary attack.
However, A cannot guess both the identity and password simultaneously within
polynomial time [37].

• A4: An adversaryA can be a non-registered user who tries to attack the authentication
system [31].

• A5: The server is considered a trusted authority, and the adversary A, as a privileged
insider, cannot extract the server’s secret key s.

2.4. Security Goals

The following goals are defined for an ideal authentication scheme, as listed in [31,38].

• Mutual authentication: Both the server and the user can authenticate each other. No
adversary can impersonate a legal user or server.
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• Session key agreement: A session key should be created as the final step in the mutual
authentication phase. Afterward, the communication between both parties can be
encrypted using the shared session key.

• Forward secrecy: Even if the long-term private keys are compromised, the previous
session keys cannot be used by any adversary to forge other session keys.

• User anonymity: A user’s identity should not be transmitted explicitly over an insecure
channel. This ensures that the user’s sensitive information is protected from an
adversary A, even with the knowledge of login information or access to the server.

• User traceability: The server should be able to trace the sender of the login request
message to avoid the denial-of-service attack. A database of registered users should
be maintained by the server.

• Local password verification: A smart card can verify the user identity and password
in the login phase before generating the login request message. This way, the smart
card can reduce computational overhead by avoiding unnecessary calculations.

• Local password changeability: Users can update/change their passwords indepen-
dently without the server’s assistance. The smart card must be able to detect unau-
thorized password update requests through the wrong input of the user identity and
old password.

2.5. BAN Logic

Burrows–Abadi–Needham (BAN) logic [39] is a set of rules based on belief modal
logic for analyzing authentication protocols. The notations used in BAN logic and their
descriptions are provided in Table 2. Table 3 lists the BAN logic rules, descriptions, and
symbolic forms that are used in proving the mutual authentication property of the proposed
scheme.

Table 2. BAN logic notations and descriptions.

Notation Description

P |≡ X P believes X
P � X P sees X
P |∼ X P once said X
#(X) Message X is fresh
〈X〉Y Formula X is combined with secret Y
(X)Y Formula X hashed with secret Y

P K←→ Q P and Q communicate with a shared secret key K

P
X−⇀↽− Q Only P and Q share the formula X which is a secret

Table 3. BAN logic rules, descriptions, and symbolic forms.

Rule Description Symbolic Form

Message-meaning rule If P sees 〈X〉K and P believes secret K is shared with Q, then
P believes Q once said X.

P � 〈X〉K , P |≡ (P K←→ Q)

P |≡ Q |∼ X

Freshness-conjuncatenation rule If P believes X is fresh, then P believes (X, Y) is fresh.
P |≡ #(X)

P |≡ #(X, Y)

Nonce-verification rule If P believes X is fresh and P believes Q once said X, then P
believes Q believes X.

P |≡ #(X), P |≡ Q |∼ X
P |≡ Q |≡ X

Belief rule If P believes X and P believes Y, then P believes (X, Y).
P |≡ X, P |≡ Y

P |≡ (X, Y)
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Table 3. Cont.

Rule Description Symbolic Form

Session-key rule
If P believes Q believes a necessary parameter X of the ses-
sion key K and P believes X is fresh, then P believes session
key K is shared with Q.

P |≡ Q |≡ X, P |≡ #(X)

P |≡ (P K←→ Q)

Session-key verification rule [40]
If P believes that X is fresh and P believes Q believes X and
P believes session key K is shared with Q, then P believes Q
believes session key K is shared between P and Q.

P |≡ #(X), P |≡ Q |≡ X, P |≡ (P K←→ Q)

P |≡ Q |≡ (P K←→ Q)

2.6. Review of the Scheme by Chaudhry et al.

In this section, a brief description of the scheme by Chaudhry et al. [32] is presented.
The authentication scheme by Chaudhry et al. [32] is an improvement of the scheme
proposed by Huang et al. [30]. Their scheme consists of four phases: (1) system initialization,
(2) user registration, (3) user login, and (4) mutual authentication. Figure 2 summarizes the
authentication scheme by Chaudhry et al. [32]. Each of the phases is reviewed as follows.

User Registration Phase
User Ui Server S
Choose IDi , pwi , and bi
hpwi = h1(IDi‖pwi‖bi) {IDi , hpwi}

=⇒ CIDi = h1(IDi ⊕ s)
AIDi = [CIDi + hpwi ]P
BIDi = h2(h1(IDi) · hpwi)

SCi Store SCi ← {AIDi , BIDi}
Store SCi ← {bi} ⇐=
SCi = {AIDi , BIDi , bi}

User Login and Mutual Authentication Phase
User Ui and Smart Card SCi Server S
Enter IDi and pwi
hpwi = h1(IDi‖pwi‖bi)
BID′i = h2(h1(IDi) · hpwi)

Check BID′i
?
= BIDi

Select ri
Ri = [ri ]P
Mi = [ri ]Ppub
TIDi = AIDi − [hpwi ]P
DIDi = IDi ⊕Mi
EIDi = h3(h4(TIDi‖Mi)‖Ri‖Mi) {DIDi , EIDi , Ri}

−→ M′
i = [s]Ri

ID′i = DIDi ⊕M′
i

CID′i = h1(ID′i ⊕ s)
TID′i = [CID′i ]P
EID′i = h3(h4(TID′i‖M′

i)‖Ri‖M′
i)

Check EID′i
?
= EIDi

Select rs
Rs = [rs]Ri
Zs = Rs ⊕M′

i{Zs, Hs} Hs = h3(EID′i‖Rs‖TID′i)
R′s = Zs ⊕Mi ←−
H′

s = h3(EIDi‖R′s‖TIDi)

Check H′
s

?
= Hs

Hi = h2(Mi‖R′s) {Hi}
−→ H′

i = h2(M′
i‖Rs)

Check H′
i

?
= Hi

Sk = h5(Mi‖Rs‖Ri‖TIDi)
←→

Figure 2. Scheme by Chaudhry et al. [32] based on ECC.
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(1) System initialization phase

The Server S selects an elliptic curve Ep(a, b) over Fp, where p is k-bit prime, and
a base point P of order n from Gp of Ep(a, b), where n is a large number for security
purposes. Then, S computes the secret key and public key pair (s, Ppub) such that Ppub =
[s]P, where s is a random integer s ∈ Z

∗
n. The Server S also chooses five distinct one-way

hash functions hi : {0, 1}∗ → Z
∗
p, where i = 1, 2, . . . , 5. Finally, the Server S publishes

{Ep(a, b), P, Ppub, h(·)} and keeps s secret.

(2) User registration phase

In this phase, the user Ui chooses an identity IDi, a password pwi, and a random
integer bi. Then, the user Ui computes hpwi = h1(IDi‖pwi‖bi) and sends {IDi, hpwi} to S
through a secure channel. Next, the Server S computes CIDi = h1(IDi ⊕ s),
AIDi = [CIDi + hpwi]P, and BIDi = h2(h1(IDi) · hpwi). The Server S stores {AIDi, BIDi}
into the smart card SCi and issues the card securely to Ui. Once the user Ui receives
the smart card SCi, the user will update the value bi into SCi. Hence, the smart card
SCi = {AIDi, BIDi, bi}.

(3) User login phase

In the login phase, the registered user Ui inserts the smart card SCi into a remote
terminal and enters the identity and password, {IDi, pwi}. Next, the smart card SCi com-
putes hpwi = h1(IDi‖pwi‖bi) and BID′i = h2(h1(IDi) · hpwi), and checks if the equation
BID′i = BIDi holds. Otherwise, the login phase is aborted. Then, the smart card SCi selects
a random integer ri and computes Ri = [ri]P, Mi = [ri]Ppub, TIDi = AIDi − [hpwi]P,
DIDi = IDi ⊕ Mi, and EIDi = h3(h4(TIDi‖Mi)‖Ri‖Mi). The smart card SCi submits the
login request message {DIDi, EIDi, Ri} to S through a public channel.

(4) Mutual authentication phase

Once the Server S receives the login request message, it computes M′
i = [s]Ri, ID′i = DIDi ⊕

M′
i, CID′i = h1(ID′i ⊕ s), TID′i = [CID′i]P, and EID′i = h3(h4(TID′i‖M′

i)Ri‖M′
i), and checks

if the equation EID′i = EIDi holds. If the equation does not hold, the login request is
rejected. Otherwise, the Server S generates a random integer rs and computes Rs = [rs]Ri,
Zs = Rs ⊕ M′

i , and Hs = h3(EID′i‖Rs‖TIDi), and sends the response message = {Zs, Hs}
to Ui through the public channel.

After receiving the response message, the user Ui computes R′s = Zs ⊕ Mi, and
H′s = h3(EIDi‖R′s‖TIDi), and checks if H′s = Hs holds. If the equation does not hold, the
user Ui disconnects from S. Otherwise, the user Ui computes Hi = h2(Mi‖R′s) and sends the
message = {Hi} to S. Next, the Server S computes H′i = h2(M′

i‖Rs) and checks if H′i = Hi.
If the equation holds, the user Ui and the Server S achieve mutual authentication and agree
on the session key Sk = h5(Mi‖Rs‖Ri‖TIDi). Otherwise, the session is terminated.

2.7. Drawbacks of Scheme by Chaudhry et al.

This section highlights the security drawbacks of the scheme by Chaudhry et al. [32].

(1) Computational infeasibility

During the mutual authentication phase, once the Server S has verified the equation
EID′i = EIDi, it then computes the value Zs = Rs ⊕ M′

i = [rs]Ri ⊕ [s]Ri. Then, the user
retrieves the value of R′S as R′s = Zs ⊕ Mi = ([rs]Ri ⊕ [s]Ri) ⊕ [ri]Ppub. However, the
XOR operation is undefined on the elliptic curve since it is not a closed operation under
the elliptic curve group. The undefined XOR operation on two elliptic curve points was
highlighted by Maitra et al. [31] as a drawback of the scheme by Huang et al. [30]. However,
Chaudhry et al. [32] did not address the issue in the modification of their scheme. Hence,
their scheme maintained the infeasible computations of the scheme by Huang et al. [30].

(2) Weakness to privileged insider attack

79



Mathematics 2023, 11, 5

Consider an adversaryA being a privileged insider who can monitor data transmission
over a secure channel. In the registration phase of the scheme by Chaudhry et al. [32], the
user Ui submits {IDi, hpwi} to the Server through a secure channel. Hence, A has access to
IDi and hpwi. IfA possesses a lost/stolen smart card SCi, then it is possible forA to launch
an offline password-guessing attack. For example, assume that A has the values IDi, hpwi,
and {AIDi, BIDi, bi} retrieved from SCi by Assumption A2. Then, A can obtain the correct
password pwi by checking the equation hpwi = h(IDi‖pwi‖bi) = h(IDi‖ p̃wi‖bi), where
p̃wi is the guessed password. Therefore, the scheme by Chaudhry et al. [32] cannot resist
the privileged insider attack.

(3) Unable to trace user

After receiving the login request message {DIDi, EIDi, Ri}, the Server computes all of
the values M′

i , ID′i, CID′i, and TID′i straight away before verifying the value EID′i. Based
on discussions in [31], the Server was shown to be vulnerable to forgery attacks because
it is unable to check if the login request comes from a registered user. Maitra et al. [31]
also highlighted that the user untraceability feature is undesirable since the Server cannot
provide user-specific services. In the scheme by Chaudhry et al. [32], the Server did not
save any information about the registered users; therefore, it cannot trace the sender of the
login request message.

(4) No mechanism for password change/update

In the scheme by Chaudhry et al. [32], they rectified the computation of AIDi during
the user registration phase to overcome the user impersonation attack. Specifically, the value
AIDi was computed as AIDi = [CIDi + hpwi]P = [h1(IDi ⊕ s) + h1(IDi‖pwi‖bi)]P. Note
that the value of AIDi is stored in the memory of the smart card SCi and its value depends
on the password pwi and random integer bi. Consequently, the corresponding computation
for the new value of AID∗i should also be rectified when a user changes/updates a new
password pw∗i and new random integer b∗i . However, the password change/update phase
was not discussed. Therefore, their scheme did not provide a mechanism for the password
change/update.

3. Proposed Scheme

This section presents the proposed ECC-based two-factor remote authentication
scheme. Following the scheme by [32], the Server acts as a trusted authority that is respon-
sible for preparing the global parameters and public and secret keys, as well as issuing
smart cards to newly registered users. The proposed scheme also incorporates timestamps
to verify the freshness of transmitted messages, similar to the design by [31]. Generally,
the scheme consists of five phases: (1) system initialization, (2) user registration, (3) user
login, (4) mutual authentication, and (5) password change/update. Figure 3 presents an
overview of the proposed scheme.
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User Registration Phase
User Ui Server S
Choose IDi and pwi
Generate bi ∈R Z

∗
n

hpwi = h(pwi‖bi) {IDi , hpwi}
=⇒ CIDi = h(IDi ⊕ s)

Check CIDi in Database
Store Database← {CIDi}
AIDi = [CIDi + hpwi ]P
BIDi = h(h(IDi)⊕ hpwi)

SCi Store SCi ← {AIDi , BIDi}
b̂i = h(IDi‖pwi)⊕ bi ⇐=

Store SCi ← {b̂i}
SCi = {AIDi , BIDi , b̂i}

User Login and Mutual Authentication Phase
User Ui and Smart Card SCi Server S
Enter ID′i and pw′i
b′i = b̂i ⊕ h(ID′i‖pw′i)
hpw′i = h(pw′i‖b′i)
BID′i = h(h(ID′i)⊕ hpw′i)
Check BID′i

?
= BIDi

Select ri ∈R Z
∗
n

Ri = [ri ]P = (xRi , yRi)
Mi = [ri ]Ppub = (xMi , yMi)
TIDi = AIDi − [hpwi ]P = (xTi , yTi)
DIDi = IDi ⊕ yMi
EIDi = h(xTi‖xMi‖Ti1) {DIDi , EIDi , Ri , Ti1}

−→ Check (Ts1 − Ti1) ≤ ΔT
M′

i = [s]Ri = (x′Mi , y′Mi)
ID′i = DIDi ⊕ y′Mi
Check CID′i = h(ID′i ⊕ s) in Database
TID′i = [CID′i ]P = (x′Ti , y′Ti)
EID′i = h(x′Ti‖x′Mi‖Ti1)

Check EID′i
?
= EIDi

Select rs ∈R Z
∗
n

Rs = [rs]Ri = (xRs, yRs)
Zs = Rs + M′

i{Zs, Hs, Ts1} Hs = h(EID′i‖xRs‖Ts1‖x′Ti)
Check (Ti2 − Ts1) ≤ ΔT ←−
R′s = Zs −Mi = (x′Rs, y′Rs)
H′

s = h(EIDi‖x′Rs‖Ts1‖xTi)

Check H′
s

?
= Hs

Hi = h(xMi‖xRs) {Hi , Ti2}
−→ Check (Ts2 − Ti2) ≤ ΔT

H′
i = h(x′Mi‖xRs)

Check H′
i

?
= Hi

Skus = h(yRi‖y′Rs‖yMi‖yTi‖Ti2‖Ts1) ←→ Sksu = h(yRi‖yRs‖y′Mi‖y′Ti‖Ti2‖Ts1)

Password-Change/Update Phase
User Ui Smart card SCi
Enter ID′i and pw′i {ID′i , pw′i}

=⇒ b′i = b̂i ⊕ h(ID′i‖pw′i)
hpw′i = h(pw′i‖b′i)
BID′i = h(h(ID′i)⊕ hpw′i)
Check BID′i

?
= BIDi

Enter new password pw∗i {pw∗i }
=⇒ Generate b∗i ∈R Z

∗
n

b̂∗i = h(ID′i‖pw∗i )⊕ b∗i
hpw∗i = h(pw∗i ‖b∗i )
AID∗i = AIDi + [hpw∗i − hpw′i ]P
BID∗i = h(h(ID′i)⊕ hpw∗i )
Update SCi = {AID∗i , BID∗i , b̂∗i }

Figure 3. The proposed ECC-based remote user password authentication scheme.
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3.1. System Initialization Phase

1. The Server S selects an elliptic curve Ep(a, b) over Fp, where p is k-bit prime and a
base point P of order n from Gp of Ep(a, b), where n is a large number for security
purposes.

2. The Server S computes the secret key and public key pair (s, Ppub) such that
Ppub = [s]P, where s is a random integer s ∈ Z

∗
n.

3. The Server S chooses a cryptographic one-way hash function h : {0, 1}∗ → Z
∗
n.

4. The Server S publishes {Ep(a, b), P, Ppub, h(·)} and keeps s secret.

3.2. User Registration Phase

A new user must register with the Server S before requesting access to the services.
The registration phase is detailed as follows:

1. The user Ui chooses an identity IDi and password pwi, and generates a random
integer bi ∈ Z

∗
n. Then, the user Ui computes hpwi = h(pwi‖bi) and sends {IDi, hpwi}

to S through a secure channel.
2. The Server S computes CIDi = h(IDi ⊕ s) and checks the availability of CIDi. If the

value CIDi is in the database of registered users, the user Ui will be asked to input a
new IDi. Otherwise, the Server stores CIDi into the database. Following the approach
taken by [31], this step is added to allow S to trace the user during the login phase.

3. The Server S computes AIDi = [CIDi + hpwi]P, BIDi = h(h(IDi)⊕ hpwi), stores
{AIDi, BIDi} into the smart card SCi, and issues the card securely to Ui.

4. Once the user Ui receives the smart card SCi, the user computes b̂i = h(IDi‖pwi)⊕ bi

and stores the value b̂i into SCi. Hence, the smart card SCi = {AIDi, BIDi, b̂i}.

3.3. User Login Phase

In the login phase, a user Ui submits a login request message to the Server S for access
to the system. First, the user Ui inserts the smart card SCi into a remote terminal and enters
the identity and password, {ID′i, pw′i}. The SCi executes the following steps.

1. The smart card SCi computes b′i = b̂i ⊕ h(ID′i‖pw′i), hpw′i = h(pw′i‖b′i), and
BID′i = h(h(ID′i)⊕ hpw′i), and checks if BID′i = BIDi holds. If the equation holds,
then Ui has entered the correct identity and password, ID′i = IDi and pw′i = pwi,
respectively. Otherwise, the login phase is aborted.

2. The smart card SCi selects a random integer ri ∈ Z
∗
n and computes

Ri = [ri]P = (xRi, yRi) ∈ Gp, where xRi and yRi are the x-component and y-component
of the point Ri, respectively.

3. The smart card SCi computes Mi = [ri]Ppub = (xMi, yMi) ∈ Gp, TIDi = AIDi −
[hpwi]P = (xTi, yTi) ∈ Gp, DIDi = IDi ⊕ yMi, and EIDi = h(xTi‖xMi‖Ti1), where Ti1
is the timestamp of Ui’s login request submission.

4. The smart card SCi submits the login request message = {DIDi, EIDi, Ri, Ti1} to S
through a public channel.

3.4. Mutual Authentication Phase

Once the Server S receives the login request message at time Ts1, it proceeds with the
following steps.

1. The Server S checks if (Ts1 − Ti1) ≤ ΔT, where ΔT is the allowed time transmission
delay. If the time difference does not hold, the login request is rejected.

2. The Server S computes M′
i = [s]Ri = (x′Mi, y′Mi) ∈ Gp in order to retrieve the identity

ID′i = DIDi ⊕ y′Mi and CID′i = h(ID′i ⊕ s). Then, the Server S checks the validity of
ID′i by searching the value of CID′i in the registered users’ database. If CID′i is not in
the database, the login request is rejected.
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3. The Server S computes TID′i = [CID′i]P = (x′Ti, y′Ti) ∈ Gp and EID′i = h(x′Ti‖x′Mi‖Ti1),
and checks if EID′i = EIDi holds. If the equation does not hold, the login request is
rejected.

4. The Server S generates a random integer rs ∈ Z
∗
n, computes Rs = [rs]Ri = (xRs, yRs) ∈

Gp, Zs = Rs + M′
i , and Hs = h(EID′i‖xRs‖Ts1‖x′Ti), and sends the response message

= {Zs, Hs, Ts1} to Ui through the public channel.
5. Once the user Ui receives the response message at time Ti2, the user Ui checks if

(Ti2 − Ts1) ≤ ΔT. If the time difference does not hold, the user Ui disconnects from
the Server S.

6. The user Ui computes R′s = Zs−Mi = (x′Rs, y′Rs) ∈ Gp, and H′s = h(EIDi‖x′Rs‖Ts1‖xTi),
and checks if H′s = Hs holds. If the equation does not hold, the user Ui disconnects
from S.

7. The user Ui computes Hi = h(xMi‖xRs) and sends the message = {Hi, Ti2} to S.
8. The Server S checks if (Ts2 − Ti2) ≤ ΔT. If the time difference does not hold, the

session is terminated.
9. The Server S computes H′i = h(x′Mi‖xRs) and checks if H′i = Hi. If it holds, the user Ui

and the Server S achieve mutual authentication and agree on the session key Skus =
h(yRi‖y′Rs‖yMi‖yTi‖Ti2‖Ts1) = h(yRi‖yRs‖y′Mi‖y′Ti‖Ti2‖Ts1) = Sksu. Otherwise, the
session is terminated.

3.5. Password Change/Update Phase

The user Ui can change or update the password during this phase by initially inserting
the smart card SCi into a remote terminal with the identity and password {ID′i, pw′i}. Then,
the smart card performs the following steps.

1. The smart card SCi computes b′i = b̂i ⊕ h(ID′i‖pw′i), hpw′i = h(pw′i‖b′i), and
BID′i = h(h(ID′i)⊕ hpw′i), and checks if BID′i = BIDi. If the equation is true, the
smart card SCi asks the user Ui to submit a new password pw∗i . Otherwise, the request
is rejected.

2. Once the user Ui enters the new password pw∗i , the smart card SCi generates a new
random integer b∗i ∈ Z

∗
n and computes the new values b̂∗i = h(IDi‖pw∗i )⊕ b∗i , hpw∗i =

h(pw∗i ‖b∗i ), AID∗i = AIDi + [hpw∗i − hpwi]P, and BID∗i = h(h(IDi)⊕ hpw∗i ).
3. Finally, the smart card SCi updates the values as SCi = {AID∗i , BID∗i , b̂∗i }.

3.6. Proof of Correctness

The propositions and proof of correctness are presented below for the sake of com-
pleteness.

Proposition 1. If the user Ui enters the identity and password {IDi, pwi} correctly, and the user
login phase and Steps 1-2 of the mutual authentication phase run smoothly, then the Server S will
obtain the correct TID′i = TIDi, which is shown as follows.

TIDi = AIDi − [hpwi]P

= [CIDi + hpwi]P− [hpwi]P

= [CIDi]P + [hpwi]P− [hpwi]P

= [CIDi]P

= [CID′i]P, CIDi = CID′i in Database

= TID′i

83



Mathematics 2023, 11, 5

Proposition 2. Assume that the user Ui receives the response message from the Server S and
passes the timestamp check in Step 5 of the mutual authentication phase. The equation in Step 6
will retrieve the correct R′s value as follows.

R′s = Zs −Mi

= (Rs + M′
i)− [ri]Ppub

= (Rs + [s]Ri)− [ri]Ppub

= Rs + [s][ri]P− [ri][s]P

= Rs

Proposition 3. If the user Ui enters the correct identity and password {IDi, pwi}, and the equation
BID′i = BIDi holds, the smart card SCi can compute the new value AID∗i without the knowledge
of CIDi, which is shown as follows.

AID∗i = AIDi + [hpw∗i − hpwi]P

= [CIDi + hpwi]P + [hpw∗i − hpwi]P

= [CIDi]P + [hpwi]P + [hpw∗i ]P− [hpwi]P

= [CIDi + hpw∗i ]P

4. Security Analysis of the Proposed Scheme

This section analyzes the security aspect of the proposed scheme. First, the formal
security proof is presented based on the ROM using the proof by contradiction technique,
which is similar to [26,32,33]. Next, the attainment of security goals is discussed. Then,
the proposed scheme is shown to withstand several identified security attacks. Finally,
the formal verification of the scheme using BAN logic is provided to prove the mutual
authentication property.

4.1. Formal Security Analysis

The formal proof demonstrates that the proposed scheme is provably secure against
an adversary A from obtaining the identity IDi, secret key s, and shared session key
Skus(= Sksu). In this approach, a mathematical proof is presented to show that the security
of the proposed scheme is reduced to the ability of the adversary to break four computation-
ally intractable problems: the collision-resistant one-way hash function, ECDLP, ECCDHP,
and ECFP.

The formal proof begins by assuming the adversary A knows the values for the pa-
rameters {AIDi, BIDi, b̂i} stored in the smart card, and the messages {DIDi, EIDi, Ri, Ti1},
{Zs, Hs, Ts1}, and {Hi, Ti2} transmitted in the public channel, as described in the adver-
sary model in Section 2.3. In addition, the adversary A is assumed to have access to the
following oracles.

• OHash: Given the input h(x), the oracle yields the output x.
• OECDLP: Given the input P and Q = [a]P, the oracle yields the output a.
• OECCDHP: Given the input P, Q = [a]P, and R = [b]P, the oracle yields the output

[a · b]P.
• OECFP: Given the input P and Q = [a]P + [b]P = [a + b]P, the oracle yields the output

[a]P and [b]P.

Theorem 1. Assuming that the cryptographic one-way hash function h(·) acts like a true random
oracle, and ECDLP, ECCDHP, and ECFP are computationally intractable problems, then the
proposed ECC-based authentication scheme is provably secure against an adversary A for deriving
the identity IDi, secret key s, and session key Skus(= Sksu).
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Proof. Suppose an adversary A is constructed to derive the identity IDi, secret key
s, and session key Skus(= Sksu) by running the algorithm ALGOracle

A,ECPAS, as shown in
Algorithm 1 for the proposed ECC-based scheme. Based on Assumptions A1 and A2
in Section 2.3, the adversary A can obtain the transmitted messages {DIDi, EIDi, Ri, Ti1},
{Zs, Hs, Ts1}, and {Hi, Ti2}, and the parameters {AIDi, BIDi, b̂i} stored in the smart card.
Then, the success probability of ALGOracle

A,ECPAS is given as SuccOracle
A,ECPAS = 2 Pr[AdvOracle

A,ECPAS =

1]− 1. The advantage for the ALGOracle
A,ECPAS is the maximum of the success probability taken

over allAwith execution time t, AdvOracle
A,ECPAS(t, q1, q2, q3, q4) = maxA{SuccOracle

A,ECPAS}, where
q1, q2, q3, and q4 denote the number of queries made to oracles OHash, OECDLP, OECCDHP,
and OECFP, respectively.

Algorithm 1 ALGOracle
A,ECPAS for deriving identity IDi, secret key s, and session key Skus(=

Sksu).
1: Eavesdrop the login message {DIDi , (EID)i , Ri , Ti1}
2: Call OHash on input EIDi = h(xTi‖xMi‖Ti1) to obtain (x�Ti‖x�Mi‖T�

i1)← OHash(EIDi)
3: Call OECCDHP on input Ppub, Ri , and P to obtain M��

i as (M��
i = (x��Mi , y��Mi))← OECCDHP(Ppub, Ri , P)

4: if x�Mi = x��Mi then
5: Call OECFP on input AIDi and P to obtain TID��

i and ([hpwi ]P)
� as (TID��

i = (x��Ti , y��Ti ), ([hpwi ]P)
�)←

OECFP(AIDi , P)
6: if x�Ti = x��Ti then
7: Compute ID�

i = DIDi ⊕ y�Mi
8: Compute EID�

i = h(x�Ti‖x�Mi‖Ti1)
9: if EID�

i = EIDi then
10: Accept ID�

i as the correct user’s identity
11: Call OECDLP on input TID�

i and P to obtain CID�
i as (CID�

i )← OECDLP(TID�
i , P)

12: Call OHash on input CID�
i = h(IDi ⊕ s) to obtain (IDi ⊕ s)� as (IDi ⊕ s)� ← OHash(CID�

i )
13: Compute s� = (IDi ⊕ s)� ⊕ ID�

i
14: Eavesdrop the message {Zs, Hs, Ts1}
15: Compute R�

s = Zs −M�
i = (x�Rs, y�Rs)

16: Compute H�
s = h(EID�

i ‖x�Rs‖Ts1‖x�Ti)
17: if H�

s = Hs then
18: Accept s� as the correct secret key
19: Eavesdrop the message {Hi , Ti2}
20: Compute H�

i = h(x�Mi‖x�Rs)
21: if H�

i = Hi then
22: Compute Skus = h(yRi‖y�Rs‖y�Mi‖y�Ti‖Ti2‖Ts1) = Sksu as the correct shared session key
23: return 1 (Success)
24: else
25: return 0 (Fail)
26: end if
27: else
28: return 0 (Fail)
29: end if
30: else
31: return 0 (Fail)
32: end if
33: else
34: return 0 (Fail)
35: end if
36: else
37: return 0 (Fail)
38: end if

Based on algorithm ALGOracle
A,ECPAS, suppose the adversary A can compute the inverse

of a cryptographic one-way hash functions, and solve ECDLP, ECCDHP, and ECFP by
using the oracles OHash, OECDLP, OECCDHP, and OECFP. Then, the adversary A wins the
game and successfully obtains IDi, s, and Skus(= Sksu). However, according to Definitions
1–4, the advantages AdvHash

A (t1) ≤ ε1, AdvECDLP
A (t2) ≤ ε2, AdvECCDHP

A (t3) ≤ ε3, and
AdvECFP

A (t4) ≤ ε4, for any sufficiently small negligible functions ε1, ε2, ε3, ε4 > 0. Hence, it
must be that AdvOracle

A,ECPAS(t, q1, q2, q3, q4) ≤ ε for any sufficiently small ε > 0. Therefore, the
theorem is proven.

85



Mathematics 2023, 11, 5

4.2. Attainment of Security Goals

This section analyzes the proposed scheme’s attainment of security goals as explained
in Section 2.4.

(1) Mutual authentication

The proposed scheme includes mutual authentication steps for verifying the legal-
ity of the user and the Server. The Server authenticates the user by checking the value
CIDi = h(ID′i ⊕ s) in the registered users’ database. Next, the user authenticates the Server
by checking the value of H′s = h(EIDi‖x′Rs‖Ts1‖xTi). Although an adversary may obtain
the value of EIDi, Zs and AIDi by Assumptions A1 and A2, the adversary needs to com-
pute the values of R′s = Zs − Mi and TIDi = AIDi − [hpwi]P, which are not transmitted
in the public channel. Furthermore, R′s and TIDi are secured by the ECDLP and ECFP.
Therefore, the proposed scheme provides mutual authentication.

(2) Session key agreement

After completing the mutual authentication steps, both the user and Server compute
a shared session key Skus = h(yRi‖y′Rs‖yMi‖yTi‖Ti2‖Ts1) = h(yRi‖yRs‖y′Mi‖y′Ti‖Ti2‖Ts1) =
Sksu. Since the adversary does not know Rs, Mi, and TIDi, the session key cannot be
computed directly due to the cryptographic one-way hash function. Hence, the shared
session key is protected in the proposed scheme.

(3) Forward secrecy

In the proposed scheme, the session keys are computed using the values Ri = [ri]P
and Rs = [rs]P, which are calculated based on random numbers ri and rs. Even if an
adversary obtains the secret key s, the adversary still cannot obtain any information from
the previous session keys. Thus, the proposed scheme provides forward secrecy.

(4) User anonymity

According to Assumption A2, an adversary may extract all of the values {AIDi, BIDi, b̂i}
in the smart card. The IDi is contained in the parameters AIDi and BIDi. However, the
adversary needs to invert a one-way hash output, which is impossible in polynomial time,
as shown in Theorem 1. As a result, the proposed scheme provides user anonymity.

(5) User traceability

Following Maitra et al. [31], the server should be able to trace the sender of the login
request message by confirming that the sender is indeed a user registered in the database.
The proposed scheme still maintains user anonymity because the user’s IDi is hidden and
secured by the secret key s in the parameter CIDi = h(IDi ⊕ s). Therefore, the proposed
scheme allows the Server to trace the user.

(6) Local password verification

The proposed scheme provides wrong password input detection by the smart card
during the login phase by checking the value BID′i = h(h(ID′i) ⊕ hpw′i) = BIDi. The
incorrect combination of ID′i and pw′i will be detected before preparing the login request
message. Hence, the proposed scheme provides local password verification.

(7) Local password changeability

The password change/update phase permits the user to modify the password without
contacting the Server. Since the smart card can verify the password and identity locally
through a remote terminal, it can compute and update the parameters {AID∗i , BID∗i , b̂∗i }.
Therefore, the proposed scheme provides efficient local password changeability.

4.3. Resistance to Security Attacks

This section presents the proposed scheme’s ability to withstand several security
attacks.
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(1) Offline password-guessing attack

Suppose that an adversary A obtains a lost/stolen smart card SCi and retrieves
{AIDi, BIDi, b̂i}. The adversary A must guess the user Ui’s identity IDi and password
pwi to compute bi, hpwi, and BID′i = BIDi = h(h(IDi)⊕ hpwi). However, according to
Assumption A3, it is impossible to guess both IDi and pwi within polynomial time. Hence,
the proposed scheme can withstand the offline password-guessing attack.

(2) Replay attack

By Assumption A1, an adversary A can intercept all of the messages transmitted
through the public channel. Since the messages are generated using the random numbers (ri,
rs) and timestamps (Ti1, Ti2, Ts1), the Server S will notice the repeated message submissions.
Hence, it is impossible for A to replay intercepted messages. Therefore, the proposed
scheme can resist replay attacks.

(3) Privileged insider attack

In this attack, suppose a privileged insider A as an active adversary who obtains the
identity IDi by monitoring data transmitted over a secure channel during the registration
phase. In addition, assume that A extracts the values AIDi, BIDi, and b̂i from a lost/stolen
smart card SCi, as in Assumption A2. In the proposed scheme, A cannot launch the
password-guessing attack because the password pwi is secured by hpwi = h(pwi‖bi). The
adversaryA can try to retrieve the random number bi from b̂i = h(IDi‖pwi)⊕ bi. However,
A has to guess both pwi and bi simultaneously within polynomial time, which contradicts
Assumption A3. Thus, the proposed scheme can withstand the privileged insider attack.

(4) Stolen-verifier attack

If an adversary A gains access to the database of registered users, the adversary A can
try to extract the IDi of a legal user Ui. However, the Server’s database stores the value IDi
in CIDi = h(IDi ⊕ s) secured by the collision-resistant one-way hash function. In addition,
A also cannot obtain the secret key s since it is protected by ECDLP. It is impossible for A
to retrieve IDi. Therefore, the proposed scheme can resist stolen-verifier attacks.

(5) Key-compromised impersonation attack

Assume an adversary A obtains a compromised or stolen secret key s. Then, the
adversary A can try to impersonate a legal user Ui to cheat the Server S. Still, the A
must first pass the verification check BID′i = BIDi. Furthermore, the A cannot create the
login message {DIDi, EIDi, Ri, Ti1} because it is not possible to compute hpwi. Thus, the
proposed scheme can withstand the key-compromised impersonation attack.

4.4. Formal Verification Using BAN Logic

This section provides the verification of the mutual authentication property for the pro-
posed scheme using BAN logic [39]. The BAN logic analysis consists of four main steps: (1)
defining the verification goals, (2) transforming the proposed scheme to its idealized form,
(3) expressing the initial state assumptions, and (4) proving the security goals by using the
BAN logic rules as in Table 3.

(1) Verification goals

First, the BAN logic goals for the proposed scheme are defined and listed as follows.

• Goal 1: Ui |≡ (Ui
Sk←→ S)

• Goal 2: Ui |≡ S |≡ (Ui
Sk←→ S)

• Goal 3: S |≡ (Ui
Sk←→ S)

• Goal 4: S |≡ Ui |≡ (Ui
Sk←→ S)

(2) Idealization of the proposed scheme
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Next, the proposed scheme is transformed into the idealized form as follows.

• Message 1: Ui → S : 〈IDi〉Mi , (Mi, Ti1)TIDi , Ri, Ti1
• Message 2: S → Ui : 〈Rs〉Mi , (EIDi, Rs, Ts1)TIDi , Ts1
• Message 3: Ui → S : (Rs)Mi , Ti2

(3) Initial state assumptions

The assumptions made on the initial state of the proposed scheme are listed below.

• A1: S |≡ (Ui
Mi−⇀↽− S);

• A2: Ui |≡ (Ui
TIDi−−⇀↽−− S);

• A3: S |≡ (Ui
TIDi−−⇀↽−− S);

• A4: Ui |≡ #(Ts1);
• A5: S |≡ #(Ti1, Ti2).

(4) Proof using BAN logic

The security proof analysis is presented based on the goals, initial state assumptions,
and BAN logic rules.

• Step 1: From Message 1, S � (〈IDi〉Mi , (Mi, Ti1)TIDi , Ri, Ti1).
• Step 2: According to Step 1, A3, and applying the message-meaning rule, the statement

S |≡ Ui |∼ (Mi, Ri, Ti1) is deduced.
• Step 3: By the freshness-conjuncatenation rule and A5 yields, S |≡ #(Mi, Ri, Ti1).
• Step 4: From Step 2, Step 3, and the nonce-verification rule, then S |≡ Ui |≡

(Mi, Ri, Ti1).
• Step 5: From Message 3, S � ((Rs)Mi , Ti2).
• Step 6: Applying the message-meaning rule to Step 5 and A1, then S |≡ Ui |∼ (Rs, Ti2).
• Step 7: By the freshness-conjuncatenation rule and A5 yields, S | #(Rs, Ti2).
• Step 8: From Steps 6 and 7 using the nonce-verification rule, then S |≡ Ui |≡ (Rs, Ti2).
• Step 9: By the belief rule, Step 4, and Step 8, S |≡ Ui |≡ (Mi, Ri, Rs, Ti1, Ti2).

• Step 10: From Step 9, A5, and the session key rule, then S |≡ (Ui
Sk←→ S) (Goal 3).

• Step 11: From A5, Step 9, Step 10, and the session-key verification rule, then S |≡
Ui |≡ (Ui

Sk←→ S) (Goal 4).
• Step 12: From Message 2, Ui � (〈Rs〉Mi , (EIDi, Rs, Ts1)TIDi , Ts1).
• Step 13: Applying the message-meaning rule, from Step 12 and A2, then the statement

Ui |≡ S |∼ (EIDi, Rs, Ts1) is obtained.
• Step 14: By the freshness conjuncatenation rule and A4 yields, Ui |≡ #(EIDi, Rs, Ts1).
• Step 15: According to Step 13, Step 14, and applying the nonce verification rule, then

Ui |≡ S |≡ (EIDi, Rs, Ts1).

• Step 16: By the session-key rule, Step 14, and Step 15, then Ui |≡ (Ui
Sk←→ S) (Goal 1).

• Step 17: Finally, from A4, Step 15, Step 16, and the session-key verification rule,

Ui |≡ S |≡ (Ui
Sk←→ S) (Goal 2).

Based on BAN logic analysis, all of the defined goals are achieved. Therefore, the
proposed scheme is demonstrated to provide mutual authentication using the shared
session key between Ui and S.

5. Performance Analysis

This section explains the performance of the proposed scheme compared to similar
schemes and improvements by [29–33]. Since this study focuses on the schemes that have
been improved based on Qu and Tan [29], the compared schemes are chosen based on
the underlying security of three hard problems in ECC (i.e., ECDLP, ECCDHP, and ECFP)
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in the general user–server application. Based on the literature search, to the best of the
authors’ knowledge, only the works by Huang et al. [30] and Chaudhry et al. [32] fit this
scope. The schemes by Maitra et al. [31] and Mehmood et al. [33] are also included in the
performance comparison since they proposed enhancements based on Huang et al. [30].

Table 4 summarizes the security goals attainment and resistance to security attacks of
every scheme based on the discussions in Section 4. The proposed scheme has been shown
to achieve all of the security goals as given in Maitra et al. [31], which are formal security
proof, mutual authentication, session key agreement, forward secrecy, user anonymity, user
traceability, local password verification, and local password changeability. The proposed
scheme has also been shown to withstand replay attacks, offline password-guessing attacks,
privileged insider attacks, stolen-verifier attacks, insider attacks, and key-compromised
impersonation attacks. Overall, the proposed scheme and Maitra et al. [31] outperformed
other considered schemes in terms of security goals attainment. The proposed scheme
performs better than all considered schemes based on the resistance to security attacks.

Table 4. Attainment of security goals and resistance to security attacks of the proposed scheme and
other similar schemes.

Schemes

Proposed
Qu and Tan Huang et al. Maitra et al. Chaudhry et al. Mehmood et al.

[29] [30] [31] [32] [33]

Attainment of security goals
Formal security proof � � � � � �

Mutual authentication � � � � � �

Session key agreement � � � � � �

Forward secrecy � � � � � �

User anonymity � � � � � �

User traceability � � � � � �

Local password verification � � � � � �

Local password changeability � � � � � �

Resistance to security attacks
Replay attack � � � � � �

Offline password-
� � � � � �guessing attack

Privileged insider attack � � � � � �

Stolen-verifier attack � � � � � �

Key-compromised
� � � � � �impersonation attack

(�): Yes, (�): Not discussed.

For the computational cost analysis, the approximate running time is based on the
performance evaluation by Kilinc and Yanik [41] using the PBC Library [42]. The running
times of arithmetic and cryptographic operations were measured using the experimental
platform, which is the Ubuntu 12.04.1 LTS 32bit operating system with Intel Pentium Dual
CPU E2200 2.20 GHz processor and 2048 MB of RAM. Based on their findings, the order
of the time complexity for the elliptic curve point multiplication operation (Tem), elliptic
curve point addition operation (Tea), symmetric encryption/decryption operation (Tsym),
and hash operation (Th) is stated as Tem � Tea > Tsym > Th. The estimated running times
for Tem, Tea, Tsym, and Th are 2.226 ms, 0.0288 ms, 0.0046 ms, and 0.00023 ms, respectively.
The modular multiplication/division operation (Tm) and the bitwise XOR (⊕) operation
recorded negligible running times and are hence ignored.

The computational cost is the total time complexity of operations executed in the
user registration, user login, and mutual authentication phases. As shown in Table 5,
the proposed scheme requires the computational cost of 7 Tem + 3 Tea + 18 Th and a
running time of approximately 15.710 ms. In terms of the number of Tem operations
executed, the proposed scheme maintains 7 Tem operations as in Huang et al. [30] and
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Chaudhry et al. [32], which is four Tem operations less than Maitra et al. [31]. The running
times for Qu and Tan [29], Huang et al. [30], Maitra et al. [31], Chaudhry et al. [32], and
Mehmood et al. [33] are approximately 20.215 ms, 15.767 ms, 24.521 ms, 15.708 ms, and
9.003 ms, respectively. As seen in Figure 4a, the proposed scheme requires only a 0.02 ms
higher running time than Chaudhry et al. [32]. This slight increase in running time is
insignificant given that the proposed scheme is more secure than Chaudhry et al. [32] based
on Table 4. Furthermore, the proposed scheme’s running time is 8.811 ms less than that
of Maitra et al. [31], which is noteworthy considering that both schemes attain the same
security goals.

Table 5. Computational cost for executed operations in the proposed scheme and other similar
schemes.

Schemes Computational Cost Running Time

Proposed 7 Tem + 3 Tea + 18 Th ≈ 15.710 ms
Qu and Tan [29] 9 Tem + 5 Tea + 16 Th ≈ 20.215 ms
Huang et al. [30] 7 Tem + 5 Tea + Tm + 18 Th ≈ 15.767 ms
Maitra et al. [31] 11 Tem + 2 Tm + 15 Th ≈ 24.521 ms
Chaudhry et al. [32] 7 Tem + 3 Tea + 2 Tm + 17 Th ≈ 15.708 ms
Mehmood et al. [33] 4 Tem + 2 Tea + 3 Tm + 2 Tsym + 14 Th ≈ 9.003 ms
Tem: Elliptic curve multiplication operation, Tea: Elliptic curve point addition operation, Tm: Modular
multiplication/division operation, Tsym: Symmetric encryption/decryption operation, Th: Hash operation.

(a)

(b) (c)

Figure 4. Comparisons of ECC-based schemes’ performance in terms of (a) running time; (b) smart
card storage cost; (c) message transmission cost.

For the smart card storage and message transmission costs analysis, the following
assumptions are made. The sizes for the identity IDi, password pwi, and random numbers
{bi, ri, rs} are 160 bits each. The hash function outputs {BIDi, b̂i, EIDi, Hs, Hi} are 256 bits,
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assuming the use of the SHA-256 [2] algorithm. The elliptic curve points {AIDi, Ri, Zs}
are 512 bits each, whereas the x/y-coordinate is 256 bits. The timestamps {Ti1, Ts1, Ti2} are
128 bits.

In the proposed scheme, the parameters {AIDi, BIDi, b̂i} are stored in the smart card
SCi. The storage cost required for the smart card is 512 + 256 + 256 = 1024 bits, which is
the highest among other schemes as shown in Figure 4b. The proposed scheme’s storage
cost incurs 96 more bits than schemes by [29,30,32,33] since the parameter b̂i is stored as a
hash output to mask the random number bi. Furthermore, the proposed scheme requires a
296-bit higher storage cost than the scheme by Maitra et al. [31] because the parameter AIDi
is stored as an elliptic curve point instead of a hash output. Nevertheless, the proposed
scheme’s higher storage cost is justified given that the proposed scheme provides better
security features than other schemes.

The message transmission cost is the total bit size of the messages {DIDi, EIDi, Ri, Ti},
{Zs, Hs, Ts1}, and {Hi, Ti2}, which are exchanged during the user login phase and mu-
tual authentication phase. For the proposed scheme, the transmission cost is (4× 256) +
(2× 512) + (3× 128) = 2432 bits, which is comparable to that of Maitra et al. [31] and
128 bits lower than [29,30]. However, the proposed scheme’s transmission cost is
384 bits and 512 bits higher than Chaudhry et al. [32] and Mehmood et al. [33], respectively.
Note that the proposed scheme and Maitra et al. [31] require clock synchronization, unlike
other schemes. Hence, the transmission of timestamps during the login and authentication
phases explains the message transmission cost being higher than [32,33], as shown in
Figure 4c. Even with timestamps, the proposed scheme and Maitra et al. [31] managed to
keep their transmission cost lower than [29,30].

Overall, the computational cost and running time of the proposed scheme are lower
than [29–31]. In terms of the message transmission cost, the proposed scheme performs
the same as Maitra et al. [31]. As the proposed scheme maintains all of the hard problems
(ECDLP, ECCDHP, and ECFP) of Qu and Tan [29] and attains all of the security goals of
Maitra et al. [31] as shown in Table 5, the higher smart card storage cost is an acceptable
trade-off. In conclusion, the proposed scheme is better than all considered schemes.

6. Applications

In the future, it is suggested to investigate the applicability of adopting the three
hard problems, i.e., ECDLP, ECCDHP, and ECFP, in developing user/client identifica-
tion and authentication cryptographic schemes in distributed computer networks [43–45].
The integration of distributed computer networks with physical and social systems has
evolved tremendously to many applications in cyber–physical systems and cyber–physical
social systems. These systems connect many low-powered devices, such as smart mobile
applications and wireless sensor nodes, that are deployed in unsupervised environments.
The communication and data sharing between the physical components and cyber compo-
nents demand attention toward security requirements and privacy issues [46,47]. ECC is
favored in many public-key-based cryptographic schemes due to its efficiency; hence, it is
important to study the feasibility of implementing three hard problems (ECDLP, ECCDHP,
and ECFP) in designing secure and efficient schemes.

7. Conclusions

This study highlighted several drawbacks of the scheme by Chaudry et al. The aim of
this study was to propose an ECC-based two-factor remote authentication scheme with a
session key agreement based on Chaudhry et al.’s scheme to solve these drawbacks. The
proposed scheme is provably secure under the ROM using the formal definitions of ECDLP,
ECCDHP, and ECFP. Based on the security and performance analyses with other previous
schemes, the proposed scheme offers better security attributes and is more efficient in
terms of the computational cost and running time. Future work is suggested to build
better identification and authentication schemes based on the same hard problems (ECDLP,
ECCDHP, and ECFP) for applications in cyber–physical systems.
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Abstract: This paper addresses an integrated scheduling problem of batch manufacturing and
delivery processes with a single batch machine and direct-shipping trucks. In the manufacturing
process, some jobs in the same family are simultaneously processed as a production batch in a single
machine. The batch production time depends only on the family type assigned to the production
batch and it is dynamically adjusted by batch deterioration and rate-modifying activities. Each job
after the batch manufacturing is reassigned to delivery batches. In the delivery process, each delivery
batch is directly shipped to the corresponding customer. The delivery time of delivery batches is
determined by the distance between the manufacturing site and customer location. The total volume
of jobs in each production or delivery batch must not exceed the machine or truck capacity. The
objective function is to minimize the total tardiness of jobs delivered to customers with different due
dates. To solve the problem, a mixed-integer linear programming model to find the optimal solution
for small problem instances is formulated and meta-heuristic algorithms to find effective solutions
for large problem instances are presented. Sensitivity analyses are conducted to find the effect of
problem parameters on the manufacturing and delivery time.

Keywords: scheduling; supply chain management; meta-heuristic algorithms; mixed-integer linear
programming; batch production; batch delivery

MSC: 90B06

1. Introduction

Recently, many studies have been conducted on individual manufacturing and deliv-
ery problems, both of which are an important part of supply chain management (SCM).
The methodologies for an integrated scheduling problem (ISP) generally provide better
performance to improve the efficiency of the entire supply chain than individual manu-
facturing and delivery problems [1]. The study on ISPs is difficult even if ISPs provide
better performance because of the complexity of the supply chain and the conflict of stake-
holders in the supply chain. Nevertheless, ISPs are required for many sectors of industry
such as ceramics, food, port cargo handling, and freight logistics [2]. In this study, we
confine our study to ISPs regarding the manufacturing and delivery process. We apply the
batch loading and scheduling problem (BLSP) in the manufacturing process [3] and the
direct-shipping problem in the delivery process [1,4].

In the manufacturing process, jobs can be processed simultaneously on a batch pro-
cessing machine, and a set of jobs that are processed simultaneously is called a production
batch. The volumes of jobs are different. The total volume in a production batch must
not exceed the machine capacity. Jobs with different families must not be assigned to the
same production batch. The batch production time depends only on the family type as-
signed to the production batch. Furthermore, we consider deterioration and rate-modifying
activities. In collaborative works between operators and machines, such as machining,
assembling, and maintenance, the batch production time can increase due to operator
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fatigue or machine failure, where the increased portion of this batch production time is
called deterioration. The recovery process from the deteriorated state to the original state is
called rate-modifying activity (RMA) [5]. In this study, the batch production time increases
in proportion to the interval between the recent RMA and the start time of the batch because
we assume that the deterioration effect occurs linearly.

In the delivery process, each job after batch manufacturing is reassigned to delivery
batches. The delivery batches are directly shipped by fixed numbers of homogeneous
trucks. In this study, we consider that the delivery batch is independent of the production
batch. The total volume in a delivery batch must not exceed the truck capacity. Jobs from
different customers must not be assigned to the same delivery batch. The truck can deliver
only one delivery batch at a time. The truck leaving the factory returns immediately after
shipping the delivery batch to the customer. The delivery time including return time
depends only on the customer of that particular delivery batch. The objective function is
minimizing the total tardiness of jobs delivered to customers with different due dates.

Figure 1 describes a Gantt chart example for the presented ISP. The number of jobs,
families, and customers are 5, 2, and 2, respectively. Jobs 1 and 2 belong to Family 1 and
Jobs 3, 4, and 5 belong to Family 2. Jobs 1, 3, and 5 are requested from Customer 1, and
Jobs 2 and 4 are requested from Customer 2. The production time for the family and the
delivery time for the customer are (50, 100) and (229, 161), respectively. The due date and
volume of jobs are (264, 235, 401, 477, 459) and (5, 10, 7, 14, 10), respectively. The machine
capacity, truck capacity, deterioration rate, and RMA processing time are 20, 20, 0.3, and 20,
respectively. The jobs are assigned to production batches (BM) while keeping the constraints
on the family compatibility and machine capacity. The production batches are sequenced
with RMAs inserted between them. The production time of Batch 2 increases in proportion
to the interval between the start time of Batches 2 and 1 due to deterioration. The original
production time of Batch 2 is 100. The interval between the start time of Batches 2 and 1 is
50. The deterioration rate is 20. Thus, the production time of Batch 2 is 115 (=100 + 50× 0.3).
Assuming the RMA was performed before Batch 3 is processed, the deterioration for Batch
3 is restored and the batch production time is not increased. The manufacturing completion
time of jobs is (50, 50, 165, 285, 165). Jobs that have been processed are assigned to delivery
batches (BD) while keeping the constraints on the customer compatibility and the truck
capacity. Truck 1 transports Batch 2 at time 279, but the manufacturing completion time of
Job 4 is 285. Therefore, the waiting time is 6 (= 285 – 279) between Batches 2 and 3 in Truck
1. The completion time of jobs in the batches for the corresponding customer is (279, 211,
440, 446, 440). By comparing the due dates of each job, the total tardiness of each job is 54
(=15 + 0 + 39 + 0 + 0).

Figure 1. A Gantt chart example of schedules for the presented ISP.
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2. Literature Review

In this section, we survey studies on ISPs, including batch processing. For ISPs
including deterioration or RMA, we focus on their scheme.

For ISPs with a direct-shipping method, Liu [6] dealt with a two-stage delivery prob-
lem. The first stage of delivery is to deliver jobs from the warehouse to the batching
machine by crane. The second stage of delivery is to deliver the processed jobs to the
customer by only one vehicle. He proposed genetic algorithms to minimize the sum of
makespan and the total setup cost. Jia et al. [2] studied a problem with parallel batch
processing machines with different capacities. They proposed several heuristic algorithms
for minimizing the total weighted delivery time of jobs. Selvarajah and Steiner [7] assumed
that only items with the same customer and product belong to one batch. They presented
a polynomial algorithm for minimizing the sum of total inventory holding cost and the
batch delivery cost. Gao et al. [8] studied a problem with limited vehicle capacity. The
jobs are batched without breaking the vehicle capacity constraints before being processed.
They presented polynomial-time algorithms for two special cases with the same production
time and delivery time of order, respectively. Furthermore, they provided a heuristic to
solve a general problem. Cheng et al. [9], Cheng et al. [10], and Jia et al. [11] assumed
that the vehicle capacity is an integer multiple of the machine capacity. Cheng et al. [9]
and Cheng et al. [10] assumed that the batches are packaged in the same size of boxes or
pallets and propose each O(nlogn) time algorithm for identical and arbitrary job sizes. Jia
et al. [11] dealt with a problem with parallel batch machines. They present two hybrid
meta-heuristic algorithms based on ant colony optimization and a deterministic heuristic
for minimizing total weighted delivery time. In addition, they proposed a lower bound
for evaluating the presented algorithms. Li et al. [12] studied a problem with unbounded
parallel-batch and job families. They defined the family as the customer who requested
the job. They assumed that jobs with the same family have identical sizes in a vehicle, and
jobs with different families are not delivered together. They showed that the problem is
NP-hard and proposed a heuristic algorithm for minimizing completion time. Li et al. [13]
studied a problem with both machine and vehicle capacity. Jobs have different sizes and
the total volume of jobs in each batch does not exceed the machine capacity. Likewise,
the total volume of jobs in the delivery batch does not exceed the vehicle capacity. They
proposed a polynomial algorithm for identical job sizes and heuristics for different job
sizes to maximize the total profit. Zhang et al. [14] dealt with a problem including the
order-picking process. The orders are batched without breaking the capacity constraint of
picking devices. They proposed an on-line algorithm for minimizing the makespan and
total delivery cost. Nogueira et al. [15] and Feng and Xu [16] studied ISPs with parallel
batching machines. Nogueira [15] assumed that job size and production time are generic.
They presented a mathematical formulation model and several heuristic algorithms to
maximize the total profits. Feng and Xu [16] developed a 0–1 mixed-integer programming
(MIP) model. Jia et al. [17] further considered parallel non-identical batch machines. He
et al. [18] proposed an enhanced branch-and-price algorithm for integrated 3D printing
with JIT delivery systems. Li et al. [19] developed a MIP formulation and proposed a
column generation-based approach for an ISP with dual delivery modes.

For ISPs with vehicle routing problems (VRP), Karaoğlan and Kesen [20] dealt with
the problem of distributing products with a limited shelf life to customers in a vehicle. They
proposed a branch-and-cut (B&C) algorithm to minimize lead time. Low et al. [21] and Low
et al. [22] studied the problem of delivering the product to the customer after processing it
in the distribution center. They provided adaptive genetic algorithms (AGAs) to minimize
total cost, including delivery cost, vehicle cost, and penalty cost. Li [23] considered the
bi-objective problem minimizing both customer waiting time and vehicle delivery cost.

For ISPs with deterioration or RMA, Kong et al. [24] considered the integrated problem
of CCHR and delivery scheduling in steel production. They assumed that the rolling time
is linearly proportional to the starting time of slabs. Liu et al. [25] dealt with the integrated
problem with parallel batching machines and deteriorating jobs. The production time of a
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job increases non-linearly concerning the starting time, and the production time of a batch
is assumed to be the maximum value of jobs belonging to that batch. Yin et al. [26] studied
batch delivery scheduling on a single machine with RMA. They assumed that processing a
job after RMA would reduce the original production time by modifying rate times.

Table 1 shows the classification for studies on ISPs with batch processing. The studies
are categorized according to compatibility in a production batch, vehicle number, deterio-
ration, RMA, and shipping method.

Table 1. Classification for Studies on ISP with batch processing.

Compatibility in Production Batches
Vehicles
Number

Deterioration RMA
Shipping Method

Incompatible
Product

Incompatible
Family

Incompatible
Customer

Direct-
Shipping VRP

Liu [6] 1 �
Jia et al. [2] Limited �
Selvarajah and Steiner [7] � � 1 �
Gao et al. [8] 1 �
Cheng et al. [9] 1 �
Cheng et al. [10] 1 �
Jia et al. [11] Limited �
Li et al. [12] � 1 �
Li et al. [13] Limited �
Zhang et al. [14] 1 �
Nogueira et al. [15] Limited �
Feng and Xu [16] Unlimited �
Jia et al. [17] Limited �
He et al. [18] � Limited �
Li et al. [19] � Limited �
Karaoğlan and Kesen [20] 1 �
Low et al. [21] Unlimited �
Low et al. [22] Limited �
Li et al. [23] Limited �
Kong et al. [24] Unlimited � �
Liu et al. [25] 1 � �
Yin et al. [26] Unlimited � �
This study � Limited � � �

To the best of our knowledge, an ISP simultaneously considering the family compati-
bility, batch deterioration with multiple RMAs, and direct-shipping method has received
very limited attention; however, several ISP scheduling problems with batch manufacturing
and delivery processes are often dealt with (See Table 1).

3. Mixed-Integer Linear Programming Model

In this section, the proposed mixed-integer linear programming (MILP) model is
formulated; the notation of the formulation that follows is shown below:

Indices
i, j jobs
f families

k, l production batches
m, n delivery batches

u buckets
t trucks
c customers

Parameters
J set of jobs
F set of families

BM set of production batches
U set of buckets
BD set of delivery batches
T set of trucks
C set of customers
p f production time of family f ∈ F
FJ

j
family of job j ∈ J

FB
k family of production batches k ∈ BM

hc delivery time for customer c ∈ C
RC

jc 1 if job j ∈ J is required by customer c ∈ C; 0 otherwise
vj volume of job j ∈ J
dj due time of job j ∈ J
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DR deterioration rate
VM machine capacity
Q RMA processing time

VT truck capacity
M a large number

Continuous variables
xk production starting time of production batch k

Ik
time interval between starting time of production batch k and completion time of the most
recent RMA before production batch k

cu completion time of bucket u
rm shipping starting time of delivery batch m
τj tardiness of job j

Binary variables
yBM

ik
1 if production batch k assigns job i; 0 otherwise

yU
ku 1 if bucket u assigns production batch k; 0 otherwise

zU
klu 1 if production batch k immediately precedes production batch l at bucket u; 0 otherwise

yBD
im

1 if delivery batch m assigns job i; 0 otherwise
yT

mt 1 if truck t assigns delivery batch m; 0 otherwise
yC

mc 1 if customer c assigns delivery batch m; 0 otherwise
zT

mnt 1 if delivery batch m immediately precedes delivery batch n in truck t; 0 otherwise

The MILP formulation using the above notation is as follows:

Minimize z = ∑
i∈J

τi (1)

Subject to

∑
k∈BM

FB
k =FJ

i

yBM

ik = 1 ∀i ∈ J (2)

∑
i∈J

vi ·yBM

ik ≤ VM ∀k ∈ BM (3)

∑
i∈J

yBM

ik ≤ M· ∑
u∈U

yU
ku ∀k ∈ BM (4)

∑
u∈U

yU
ku ≤ 1 ∀k ∈ BM (5)

∑
l∈BM

zU
lku = yU

ku ∀k ∈ BM ; u ∈ U (6)

∑
l∈BM
l �=k

zU
klu ≤ yU

ku ∀k ∈ BM ; u ∈ U (7)

∑
k∈BM

zU
kku ≤ 1 ∀u ∈ U (8)

Ik ·(1 + DR) + pFB
k
≤ Il + M·

(
1− ∑

u∈U
zU

klu

)
∀k, l ∈ BM ; k �= l (9)
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Ik ·(1 + DR) + pFB
k
≤ cu + M·

(
1− yU

ku

)
∀k ∈ BM ; u ∈ U (10)

Ik + ∑
v∈U
v<u

cv + Q· ∑
w∈U
w<u

∑
l∈BM

zU
llw

≤ xk + M·(1− yU
ku
) ∀k ∈ BM ; u ∈ U (11)

∑
m∈BD

yBD
im = 1 ∀i ∈ J (12)

∑
i∈J

vi ·yBD
im ≤ VT ∀m ∈ BD (13)

yBD
im + yBD

jm ≤ 1 + ∑
c∈C

RC
ic·RC

jc ∀m ∈ BD ; i, j ∈ J; i < j (14)

rm ≥ xk + Ik ·DR + pFB
k
−M·

(
2− yBD

im − yBM

ik

)
∀i ∈ J; m ∈ BD ; k ∈ BM (15)

∑
c∈C

yC
mc ≤ 1 ∀m ∈ BD (16)

yC
mc ≥ RC

ic·yBD
im ∀i ∈ J; m ∈ BD ; c ∈ C (17)

rm + ∑
c∈C

hc·yC
mc ≤ rn + M·

(
1− ∑

t∈T
zT

mnt

)
∀m, n ∈ BD ; m �= n (18)

∑
t∈T

yT
mt = 1 ∀m ∈ BD (19)

∑
n∈BD

zT
nmt = yT

mt ∀m ∈ BD ; t ∈ T (20)

∑
n∈BD
n �=m

zT
mnt ≤ yT

mt ∀m ∈ BD ; t ∈ T (21)

∑
m∈BD

zT
mmt ≤ 1 ∀t ∈ T (22)
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rm + ∑
c∈C

hc·yC
mc − di ≤ τi + M·

(
1− yBD

im

)
∀i ∈ J; m ∈ BD (23)

xk , Ik , cu, rm, τi ≥ 0 ∀k ∈ BM ; u ∈ U; m ∈ BD ; t ∈ T; c ∈ C (24)

yBM

ik , yU
ku, yBD

im , yT
mt, yC

mc = 0 or 1 ∀i ∈ J; k ∈ BM ; u ∈ U; m ∈ BD ; t ∈ T; c ∈ C (25)

zU
klu, zT

mnt = 0 or 1 ∀k, l ∈ BM ; u ∈ U; m, n ∈ BD ; t ∈ T (26)

Constraint (2) denotes a restriction wherein each job must be assigned to one of the
production batches. Constraint (3) confirms that the total volumes of jobs in each production
batch must not exceed machine capacity. Constraints (4) and (5) guarantee that non-empty
production batches are assigned to one bucket. The bucket is defined as a set of batches
processed between RMAs [27]. Constraints (6–8) ensure that production batches assigned to
the same bucket are processed once in a specific sequence. zU

kku = 1 means that production
batch k is in the first position in each bucket.

Constraint (9) determines the precedence relation of production batches within the
same bucket and calculates the interval between their starting time and the completion time
of the recent RMA. Constraint (10) calculates the completion time of buckets. Constraint (11)
calculates the starting time of production batches. Constraint (12) guarantees that each
job is assigned to one delivery batch. Constraint (13) confirms that the total volumes
of jobs in each delivery batch must not exceed truck capacity. Constraint (14) ensures
that jobs in the same delivery batch are shipped to the same customer. Constraint (15)
guarantees that the shipping starting time of delivery batches is larger than the completion
time for all jobs in that delivery batch. The completion time of each job is defined as
the completion time of production batches to which that job is assigned. Constraint (16)
denotes a restriction wherein each delivery batch is shipped to at most one customer.
Constraint (17) enforces a customer–delivery batch relationship through job–customer and
job–delivery batch relationships. Constraint (18) determines the precedence relation of
delivery batches within a truck and calculates the shipping starting time of each delivery
batch. Constraint (19) denotes a restriction wherein delivery batch must be assigned to one
truck. Constraints (20)–(22) guarantee that delivery batches assigned to the same truck are
shipped once in a specific sequence. zT

mmt = 1 means that delivery batch m is in the first
position in each truck. Constraint (23) calculates the tardiness of jobs.

4. Meta-Heuristic Algorithms

An ISP is generally an NP-hard problem, and since the proposed problem is an ISP
with batch processing, it is NP-hard. Therefore, other efficient algorithms that can solve
large problem instances quickly are required instead of the proposed MILP model. In
many scheduling problem papers, the problem is effectively and efficiently solved through
meta-heuristic algorithms [28–30]. Due to this reason, three meta-heuristic algorithms,
namely particle swarm optimization (PSO), the imperialist competitive algorithm (ICA),
and the genetic algorithm (GA), are presented. The three meta-heuristic algorithms have
the same decoding process.
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4.1. Solution Representation and Decoding Method

The solution is divided into two parts: manufacturing and delivery. Thus, there are
two one-dimensional arrays; one represents batching and scheduling for the manufacturing
process, and the other represents truck assignment and scheduling for the delivery process.
Figures 2 and 3 show an illustrative example of the decoding process for an encoded
manufacturing and delivery solution using the meta-heuristic algorithms proposed in
Sections 4.2–4.4. In all the presented meta-heuristic algorithms, the two one-dimensional
encoded arrays are formed independently.

Figure 2. An example of decoding procedure for manufacturing.
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Figure 3. An example of decoding procedure for delivery.

In Figure 2, Figure 2a is converted to Figure 2b by the random-key method [31]. The
main idea of random keys is that real numbers in the range [0, 1] represent the sequence of
integers. In Figure 2a, the smallest number, 0.07, is in the 10th position. So, the first number
in Figure 2b is 10. In Figure 2a, the smallest number after 0.07, 0.15, exists in the first
position. So, the second number in Figure 2b is 1. In the same way, Figure 2a is converted to
Figure 2b. Each element in Figure 2b represents a job or RMA. Suppose that the number of
jobs is n. Then, the maximum number of RMAs is n− 1, assigned to the position between
the jobs. Thus, 2n− 1 elements are required for Figure 2c. Since the number of jobs is 8
in Figure 2b, the number of elements becomes 15 (= 8 + 7). Odd numbers are converted
to (original number + 1)/2, indicating the job index. All even numbers are converted to
RMAs. Figure 2c contains information about the job index and RMA, which is converted
into the manufacturing solution in several steps. Suppose that Jobs 1, 2, 3, and 4 belong
to Family 1, and Jobs 5, 6, 7, and 8 belong to Family 2. The volume of jobs is (10, 9, 3, 7, 8,
6, 15, 11). The machine capacity is 20. The orders of jobs in Families 1 and 2 are (1,3,2,4)
and (7,6,5,8) from Figure 2c, respectively. For each family, jobs belonging to the family are
assigned to batches in the corresponding order of Figure 2c and satisfy the machine capacity
constraint. According to Figure 2d, Figure 2c is converted to Figure 2e. The position of
batches in Figure 2e is the same as the position of each job index located at the front of
Figure 2c among jobs belonging to the batch. Finally, the first and last RMAs are removed
and consecutive RMAs are considered as one.
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In Figure 3, Figure 3a is converted to a job array using the random-key method. Each
element in Figure 3b represents a job. Since the number of jobs is eight, the number
of elements in Figure 3b is eight. Jobs are assigned to delivery batches in the order of
Figure 3b while simultaneously satisfying the truck capacity constraint and the customer
compatibility constraint. If jobs requested from different customers between two jobs
requested from the same customer exist in the job array, they must not be assigned to the
same delivery batch. Suppose that Jobs 1, 3, 5, and 7 are requested from Customer 1, and
Jobs 2, 4, 6, and 8 are requested from Customer 2. The volume of each job is (8, 7, 5, 13,
6, 6, 9, 10). The truck capacity is 20. The manufacturing completion time of each job is
(200, 350, 300, 65, 220, 70, 55, 160). The delivery time for the customer is (100, 150). The
orders of jobs for Customers 1 and 2 are (7,1,5,3) and (6,4,8,2) from Figure 3b, respectively.
Jobs 7 and 1 must not be assigned to the same batch. Although the total volume of Jobs 7
and 1 does not exceed the truck capacity, there are Jobs 6 and 4 between them. According
to Figure 3c, Figure 3b is converted to Figure 3d. The manufacturing completion time of
delivery batches is equal to the maximum value of manufacturing completion times in each
job assigned in the delivery batch. Thus, the manufacturing completion time of delivery
batches is (55, 70, 200, 160, 300, 350). Batches are assigned to a truck with the smallest
value of differences between the manufacturing completion time of delivery batches and
the available time of trucks according to their order in Figure 3d. If multiple trucks are
assigned to a batch, the delivery batch is arbitrarily assigned to one of these trucks.

An encoded solution of three meta-heuristic algorithms is introduced using the
decoding process presented in Figures 2 and 3. PSO, ICA, and GA are presented in
Sections 4.2–4.4.

4.2. Particle Swarm Optimization (PSO)

The position and velocity consist of two one-dimensional arrays representing the man-
ufacturing and delivery process, respectively. The position and velocity are independently
initialized by the uniform distribution of real numbers between 0 and 1 (U(0, 1)). After that,
the best solution for specific particles (Pi) and the global best solution (Pg) are updated. The
velocity (vi) and position (Xi) of each particle are updated using Equations (27) and (28)
based on Pi and Pg, respectively.

vi ← vi + c1·U(0, 1)·(Pi − Xi) + c2·U(0, 1)·(Pg − Xi
)
, (27)

Xi
t ← Xi

t−1 + vi
t. (28)

The PSO procedure is shown in Algorithm 1.

Algorithm 1: The PSO procedure

1 Input iteration (Iter), population size (Sp), and acceleration weight (c1) and (c2).
2 Randomly generate initial positions and velocities through U(0, 1).
3 While (g ≤ Iter)
4 g ← g + 1
5 For (i = 1 to Sp)
6 If (Xi < Pi)
7 Pi ← Xi
8 End if
9 If (Xi < Pg)
10 Pg ← Xi
11 End if
12 End for
13 For (i = 1 to Sp)
14 vi ← vi + c1·U(0, 1)·(Pi − Xi) + c2·U(0, 1)·(Pg − Xi

)
15 Xi ← Xi + vi
16 End for
17 End while
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4.3. Imperialist Competitive Algorithm (ICA)

The countries consist of two one-dimensional arrays representing the manufacturing
and delivery process, respectively. The countries are independently initialized following the
distribution U(0, 1). Afterward, Nimp powerful countries become imperialist. Any country
that is not imperialist becomes a colony. Colonies are assigned to imperialist countries, and
many colonies are assigned to powerful imperialist countries. To measure the power of
imperialist countries, the normalized objective function value of nth imperialist country is
calculated as follows:

fn = zmax − zn, (29)

where zn and zmax are objective function values for nth imperialist country and maximum
objective function values for all the imperialist countries, respectively. The power of nth
imperialist country is defined as follows:

pn =
fn

∑
Nimp
k=1 fk

(30)

The initial number of colonies of the nth imperialist country (NCn) is calculated as
follows:

NCn = round(pn·Ncol) (31)

Colonies (Xc) move toward the direction of their imperialist
(
Xc

I
)
. The degree of

approach is determined by β and a random number from the distribution U(0, 1).

Xc ← U(0, 1)·β·(Xc
I − Xc) (32)

Each element of countries probabilistically reset the value to U(0, 1). This probability is
called the revolution rate and is set in parameter calibration. After performing the moving
and revolution process, the imperialist countries of each empire are updated. Among all
the countries including the existing imperialist countries, the country with the smallest
objective function value becomes the new imperialist country. Afterward, the weakest
colony in the weakest empire is taken away by other empires. This is called imperialistic
competition. The total power of an empire is a measure of imperialistic competition. It
is determined by the imperialist and colony power of each empire. The total objective
function value of the nth empire (T fn) is calculated as follows:

T fn = zn + ξ·mean(zc), (33)

where ξ is the weight for the colony power and zc is the objective function value for colonies
belonging to empire n. Based on the T fn, the normalized total objective function value of
the nth empire (NT fn) is calculated as follows:

NT fn = T fn −max(T fn), (34)

where max(T fn) is the maximum total objective function value for all empires. The posses-
sion probability (pempn) is calculated as follows:

pempn =

∣∣∣∣∣∣ NT fn

∑
Nimp
k=1 NT fk

∣∣∣∣∣∣ (35)

The ICA procedure is shown in Algorithm 2.
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Algorithm 2: The ICA procedure

1
Input iteration (Iter), population size (Sp), the number of imperialist countries (Nimp), revolution rate (pr),
assimilation constant (β), and coefficient of colonies’ power (ξ).
ith country and nth imperialist country denoted by Xi and XI

n, respectively.

2 Generate initial countries and determine the imperialist countries and colonies.
3 While (g ≤ Iter)
4 g ← g + 1
5 For (i = 1 to Sp)
6 Move to the colony toward its imperialist.
7 If (U(0, 1) < pr)
8 Conduct revolution.
9 End if
10 If f

(
Xi) ≤ f

(
XI

n
)

11 XI
n ← Xi

12 End if
13 End for
14 Calculate the total cost of empires.
15 Conduct imperialistic competition.
16 End while

4.4. Genetic Algorithm (GA)

The chromosomes consist of two one-dimensional arrays representing the manufactur-
ing and delivery process, respectively. The chromosomes are independently initialized by
U(0, 1). The one-cut point crossover and uniform mutation are used as genetic operators.
Crossover and mutation also proceed independent of two chromosomes. The uniform
mutation operator is to replace the numeric value of a gene with a random number that
follows U(0, 1), The roulette wheel selection is used as a selection method. The fitness
function for chromosome i (Fi) used in the roulette wheel method is as follows:

Fi = zmax − zi, (36)

where zi and zmax are objective function values for the ith chromosome and maximum
objective function values for all the chromosomes, respectively. The objective function value
for the ith chromosome is calculated as the aggregate solution of the ith manufacturing and
delivery chromosomes. The GA procedure is shown in Algorithm 3.

Algorithm 3: The GA procedure

1 Input generation size (Sg), population size (Sp), crossover rate (pc), and mutation rate (pm).

2
Randomly generate initial population through U(0, 1).
g ← 1

3 While (g ≤ Sg)
4 For (i = 1 to Sp)
5 If (U(0, 1) < pc)
6 Perform the crossover operator for two different randomly selected chromosomes.
7 End if
8 End for
9 For (i = 1 to Sp)
10 For (n = 1 to N)
11 If (U(0, 1) < pm)
12 Perform the mutation operation.
13 End if
14 End for
15 End for
16 Perform the roulette wheel selection.
17 g ← g + 1
18 End while

5. Computational Results

Problem instances for evaluating the performance of the proposed meta-heuristic
algorithms are divided into large and small problem instances. In the experiment of small
problem instances, the performances of PSO, ICA, and GA are validated by comparing
them with the performance of the MILP model. The MILP is solved by CPLEX solver 12.7
using IBM ILOG CPLEX Optimization Studio. In the experiment of large problem instances,
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the performance of GA is relatively measured by comparing with performances of PSO
and ICA. All meta-heuristic algorithms are implemented in C# and all computational
experiments are performed by PCs with 3.60 GHz Intel Core i7-7700 CPUs.

5.1. Calibration of the Algorithm Parameters

Calibrating meta-heuristic algorithm parameters can significantly affect the perfor-
mance of algorithms. The Taguchi method was used to find the best parameter combina-
tions for PSO, ICA, and GA. The algorithm parameters are set at five levels. Tables 2 and 3
show values for each level and an orthogonal array L25

(
54) of GA parameters, respectively.

Table 2. The value of each level of GA parameters.

Parameters
Levels

1 2 3 4 5

Gs 200 400 600 800 1000
Ps 20 40 60 80 100
pc 0.1 0.3 0.5 0.7 0.9
pm 0.001 0.002 0.003 0.004 0.004

Table 3. Orthogonal arrays for GA parameters.

Run Gs Ps pc pm

1 Gs(1) Ps(1) pc(1) pm(1)
2 Gs(1) Ps(2) pc(2) pm(2)
3 Gs(1) Ps(3) pc(3) pm(3)
4 Gs(1) Ps(4) pc(4) pm(4)
5 Gs(1) Ps(5) pc(5) pm(5)
6 Gs(2) Ps(1) pc(2) pm(3)
7 Gs(2) Ps(2) pc(3) pm(4)
8 Gs(2) Ps(3) pc(4) pm(5)
9 Gs(2) Ps(4) pc(5) pm(1)

10 Gs(2) Ps(5) pc(1) pm(2)
11 Gs(3) Ps(1) pc(3) pm(5)
12 Gs(3) Ps(2) pc(4) pm(1)
13 Gs(3) Ps(3) pc(5) pm(2)
14 Gs(3) Ps(4) pc(1) pm(3)
15 Gs(3) Ps(5) pc(2) pm(4)
16 Gs(4) Ps(1) pc(4) pm(2)
17 Gs(4) Ps(2) pc(5) pm(3)
18 Gs(4) Ps(3) pc(1) pm(4)
19 Gs(4) Ps(4) pc(2) pm(5)
20 Gs(4) Ps(5) pc(3) pm(1)
21 Gs(5) Ps(1) pc(5) pm(4)
22 Gs(5) Ps(2) pc(1) pm(5)
23 Gs(5) Ps(3) pc(2) pm(1)
24 Gs(5) Ps(4) pc(3) pm(2)
25 Gs(5) Ps(5) pc(4) pm(3)

For each run, six problem instances are randomly generated and repeated five times
in each instance. The number of combinations for the algorithm parameters is 25, set by the
Taguchi method. The smaller-the-better approach is used because the objective function
is minimizing the total tardiness. Since various instances are used, the relative deviation
index (RDI) is used instead of the objective function for the S/N ratio. RDI and the S/N
ratio are represented by Equations (37) and (38), respectively.

RDI =
Objsol − Best
Worst− Best

(37)
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S/N ratiok = −10· log

(
6

∑
i=1

5

∑
j=1

RDI2
ijk

)
f or k = 1, 2, . . . , 25 (38)

where Best and Worst are the objective function values from the best and worst of the three
algorithms (PSO, ICA, and GA) for each problem instance, respectively.

Figure 4a shows the mean plots of the S/N ratio for GA parameters. To find out
parameters that significantly affect the difference among the S/N ratios, an analysis of
variance (ANOVA) for the S/N ratio is tested. Table 4 shows the results of ANOVA for the
S/N ratio. A parameter with the smallest sum square (SS) pm is considered an error [32].

 
(a) 

 
(b) 

Figure 4. The mean S/N ratio and RDI plot for each GA parameter. (a) S/N ratio, (b) RDI.

Table 4. ANOVA result for S/N ratio of GA parameters.

Parameters SS df V F0 p-Value

Gs 4.0983 4 1.0246 3.6219 0.1202
Ps 5.1190 4 1.2797 4.5239 0.0865
pc 2.3853 4 0.5963 2.1080 0.2439
pm(error) 1.1315 4 0.2829 - -

Total 12.7342 16 - - -

The significance level is set to 15%, and Gs and Ps with a p-value less than 15% are
judged to be significant. Gs and Ps are set to Gs(5) and Ps(5), respectively. Pc and Pm, which
are parameters for which the difference in the S/N ratio between levels is not significant,
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are selected as the level with the smallest RDI. Figure 4b shows the mean RDI ratio plot
for each GA parameter. Pc and Pm are set to Gs(5) and Ps(3), respectively. Parameter
calibration for PSO and ICA is also executed in the same way as for GA. For PSO, the best
Gs, Ps, c1, and c2 are 1000, 100, 0.1, and 0.8, respectively. For the ICA, the best Gs, Ps, Nimp,
pr, β, and CPW are 1000, 60, 3, 0.05, 2.5, and 0.25, respectively.

5.2. Setting of the Problem Parameters

Two problem instance groups are generated based on the number of |J|, |T|, |C|, and
the expected ratio of tardy jobs (δ) that determine the complexity of problems. The planning
horizons (PH) of small and large problem instances are one day (= 8 h = 480 min) and five
days (= 8×5 h = 2400 min), respectively. The expected lead time of the last job (E[Leadmax])
for each instance should be approximately equal to PH. The expected lead time of the last
job is calculated as:

E[Leadmax] =
|J| × E[v]

VM × E[p]× DC +
|J| × E[v]

VM × RFC×Q + E[h] (39)

where DC and RFC are the deterioration coefficient and RMA frequency coefficient, respec-
tively.

The first term is the expected total batch production time including the deterioration.
The second term is the expected value of total RMA processing time. The third term is the
expected delivery time of the last job. Through preliminary experiments, DC and RFC are
set to 1.25 and 0.4. The generating conditions of each instance are summarized in Table 5.
dj is generated from the discrete distribution of U[(1− 0.75)× μ, (1 + 0.75)× μ], where
μ = (1− δ)× PH. p f is generated from the range given in the table. hc and vj are generated
from the discrete distributions of U [2× pmin, 2× pmax] and U[5, 10], respectively. VM, VT ,
DR, and Q are set to 50, 20, 0.3, and (2× E[p]), respectively. For the small problem instances,
|T|, |C|, and |F| are fixed as 1 and 2. For the large problem instances, |T| and |C| are fixed
as 10, 15, and 20, and |F| is generated from U[5, 10].

Table 5. Problem parameter setting.

Group PH |J| pf hc vj VM VT DR Q
dj

τ = 0.6 τ = 0.3

Small problem
instances

480 5 [65,100] [130,200] [5,10] 20 20 0.3 165
[48,336] NA6 [55,90] [110,180] [5,10] 20 20 0.3 145

Large problem
instances

2400
200 [30,45] [60,90] [5,10] 50 20 0.3 75

[240,1680] [420,2940]250 [25,35] [50,70] [5,10] 50 20 0.3 60
300 [20,30] [40,60] [5,10] 50 20 0.3 50

For example, if |J| = 200,

E[Leadmax] =
200× 7.5

50
× 37.5× 1.25 +

200× 7.5
50

× 0.4× 75 + 75 = 2381.25 ∼= 2400

5.3. Experimental Results in the Small Problem Instances

For small problem instances, to validate the performances of PSO, ICA, and GA, these
are compared to the optimal solution. The performance of meta-heuristic algorithms is
represented by the objective function value (Objsol) and the CPU time. All meta-heuristic
algorithms are tested with 30 replications for each instance. Table 6 shows the performance
of the MILP model, PSO, ICA, and GA for instances with τ = 0.6. If the MILP model is not
able to find the optimal solution within 2 h, CPU time and Opt. are expressed as 7200.00++
and NA, respectively.
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Table 6. Computational results for small problem instances (τ = 0.6).

|J| |T| |C| |F| CPLEX PSO ICA GA

Opt. Time Objsol Time Objsol Time Objsol Time

5 1 1 1 584.00 1.05 584.00 0.26 584.00 0.11 584.00 0.27
2 844.00 2.03 844.00 0.26 844.83 0.11 846.66 0.28

2 1 484.00 0.77 484.00 0.25 484.00 0.11 484.00 0.27
2 980.00 0.34 980.00 0.25 980.00 0.11 980.00 0.28

2 1 1 675.80 4.57 675.80 0.24 675.80 0.11 675.80 0.26
2 949.40 25.03 949.40 0.24 949.40 0.11 949.40 0.26

2 1 365.00 27.30 365.00 0.26 365.00 0.11 365.00 0.28
2 437.00 11.60 437.00 0.25 437.00 0.11 437.00 0.28

6 1 1 1 633.00 4.13 633.00 0.31 639.72 0.14 633.00 0.33
2 770.00 11.83 770.00 0.31 771.47 0.14 770.00 0.33

2 1 629.00 1.62 629.00 0.32 629.43 0.14 629.00 0.34
2 821.00 2.67 821.00 0.30 821.00 0.13 821.00 0.32

2 1 1 NA 7200.00++ 1031.33 0.32 1031.33 0.14 1031.33 0.33
2 671.03 104.65 671.03 0.31 671.03 0.14 671.03 0.34

2 1 NA 7200.00++ 886.98 0.35 887.83 0.14 886.98 0.34
2 NA 7200.00++ 608.70 0.35 618.07 0.15 599.32 0.36

Average 710.64 0.29 711.87 0.13 710.22 0.30

The sample means of Objsols for PSO, ICA, and GA are 710.64, 711.87, and 710.22,
respectively. The sample means of CPU times for PSO, ICA, and GA are 0.29, 0.13, and 0.30,
respectively. PSO, ICA, and GA all found near-optimal solutions.

5.4. Experimental Results in the Large Problem Instances

For large problem instances, the performance of PSO, ICA, and GA is measured by
comparison with each other. The performance of algorithms is represented by the RDI for
large problem instances and the CPU time.

All the algorithms are tested with 30 replications for each instance. Table 7 shows the
performance of GA, ICA, and PSO for instances. At δ = 0.6, the sample means of RDIs
for PSO, ICA, and GA for each instance are 0.91, 0.42, and 0.08, respectively. The sample
means of CPU times for PSO, ICA, and GA for each instance are 95.10, 56.42, and 95.54,
respectively. At δ = 0.3, the sample means of RDIs for PSO, ICA, and GA are 0.93, 0.58, and
0.08, respectively. The sample means of CPU times for PSO, ICA, and GA are 95.62, 56.50,
and 95.70, respectively. The ranking of meta-heuristic algorithms from the best to the worst
performance is GA, ICA, and PSO. PSO and GA with the same population size show similar
CPU time, and ICA with a relatively smaller population size than PSO and GA shows
less CPU time. We execute an additional experiment for ICA with extended CPU time.
However, no significant improvement in the RDI of ICA is shown. Therefore, GA shows
the best RDI among PSO, ICA, and GA under similar CPU time in large problem instances.

For analysis reasons regarding the performance differences for PSO, ICA, and GA, a
convergence test is performed. An instance with |J| = 300, |T| = 20, |C| = 20 is used for
the test and repeated 10 times. Figure 5 shows the convergence graph for PSO, ICA, and
GA. The objective function values of the initial solution are similar for all three algorithms,
but PSO and ICA converge faster to a value with a higher objective function than GA.
Therefore, GA shows better performance in terms of objective function than PSO and ICA.

To verify the significant difference in RDI between algorithms, the Tukey HSD test
was performed. Figure 6 shows the mean plots and Tukey HSD intervals (α = 0.05) for all
instances in Table 7. Figure 6 shows that the confidence intervals between all the algorithms
do not overlap. In the other words, the difference in RDI between PSO, ICA, and GA is
statistically significant.

Figure 7 shows the mean plots and Tukey HSD intervals (α = 0.05) for |J|, |T|, |C|,
and δ groups. For |J|, |T|, |C|, and δ groups, the performance is ranked in the order of
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GA, ICA, and PSO, and the difference in RDI between PSO, ICA, and GA is statistically
significant. In particular, GA provides the best RDI and robustness among all algorithms.

Table 7. Computational results for large problem instances.

|J| |T| |C| τ = 0.6 τ = 0.3

PSO ICA GA PSO ICA GA

RDI Time RDI Time RDI Time RDI Time RDI Time RDI Time

200 10 10 0.90 61.01 0.43 35.95 0.09 61.41 0.90 61.44 0.60 36.22 0.08 61.52
15 0.91 61.32 0.43 36.30 0.06 61.30 0.91 61.78 0.56 36.19 0.07 61.63
20 0.89 61.58 0.44 36.37 0.05 61.88 0.93 61.87 0.60 36.15 0.06 61.87

15 10 0.89 61.66 0.46 36.51 0.12 62.42 0.92 62.08 0.58 36.75 0.07 62.57
15 0.90 62.15 0.41 37.11 0.07 62.59 0.93 62.44 0.61 36.95 0.06 62.66
20 0.87 62.23 0.46 37.01 0.08 62.36 0.91 62.60 0.65 36.97 0.08 63.47

20 10 0.90 62.35 0.45 36.84 0.07 62.79 0.92 62.48 0.58 36.94 0.08 62.55
15 0.93 62.59 0.44 37.01 0.11 63.25 0.93 63.07 0.65 37.06 0.08 62.69
20 0.91 62.91 0.50 37.28 0.10 63.29 0.93 63.05 0.64 37.24 0.11 62.78

250 10 10 0.92 92.04 0.48 54.58 0.09 92.22 0.92 92.22 0.56 54.31 0.09 91.90
15 0.91 92.29 0.46 54.80 0.05 92.04 0.91 92.84 0.59 54.65 0.08 92.39
20 0.93 92.56 0.44 54.71 0.06 92.71 0.94 93.15 0.54 54.82 0.09 92.60

15 10 0.92 92.71 0.38 55.46 0.10 93.34 0.95 93.12 0.59 55.23 0.09 93.55
15 0.89 92.86 0.43 54.99 0.08 93.40 0.92 93.69 0.61 55.57 0.11 93.55
20 0.93 94.02 0.42 55.56 0.10 93.64 0.94 94.12 0.62 55.64 0.10 93.10

20 10 0.88 92.97 0.39 55.52 0.11 93.88 0.91 93.72 0.55 55.59 0.04 93.50
15 0.93 93.95 0.43 56.12 0.11 94.18 0.93 94.67 0.57 56.05 0.09 94.78
20 0.88 94.15 0.42 56.08 0.05 94.42 0.93 94.51 0.58 56.00 0.07 94.28

300 10 10 0.92 128.67 0.42 76.30 0.07 129.12 0.94 129.57 0.54 76.79 0.07 129.18
15 0.90 129.55 0.44 76.98 0.06 129.14 0.89 130.33 0.47 76.68 0.05 130.27
20 0.94 130.14 0.39 77.45 0.10 130.51 0.93 130.49 0.53 76.80 0.07 130.07

15 10 0.91 129.47 0.39 77.02 0.08 129.98 0.94 130.03 0.58 77.43 0.07 130.23
15 0.95 130.62 0.37 78.09 0.10 132.10 0.93 131.17 0.59 77.20 0.08 130.83
20 0.92 130.78 0.38 78.12 0.06 131.46 0.93 131.81 0.55 77.85 0.08 131.70

20 10 0.92 130.49 0.39 77.74 0.08 131.14 0.95 131.34 0.54 78.01 0.07 132.78
15 0.91 131.13 0.35 78.68 0.09 132.44 0.93 131.89 0.57 77.93 0.11 133.99
20 0.92 131.58 0.36 78.08 0.10 132.49 0.94 132.35 0.58 78.51 0.08 133.41

Average 0.91 95.10 0.42 56.42 0.08 95.54 0.93 95.62 0.58 56.50 0.08 95.70

 

Figure 5. The convergence graph for PSO, ICA, and GA.
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Figure 6. The mean plots and Tukey HSD intervals (α = 0.05) for PSO, ICA, and GA.

  
(a)  (b)  

  
(c) (d) 

Figure 7. The mean plots and Tukey HSD intervals (α = 0.05) for |J|, |T|, |C|, and δ groups. (a) |J|
group. (b) |T| group. (c) |C| group. (d) δ group.
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6. Sensitivity Analysis

To reduce total tardiness for the ISP, scheduling problems of the manufacturing and
delivery process are important. It is difficult to find whether manufacturing or delivery
scheduling impacts the proposed total tardiness. To find this impact, the total manufactur-
ing completion time (tM) and the total delivery time (tT) are presented as a performance
measure. tM and tT are defined as follows:

tM =
|J|
∑
j=1

cj (40)

tT =
|J|
∑
j=1

(
Leadj − cj

)
(41)

where cj and Leadj are the manufacturing completion time and lead time of job j, respectively.
Several problem parameters affect the scheduling of ISPs. Each problem parameter

related to the manufacturing and delivery process affects tM and tT , respectively. For
example, obviously, tM decreases when VM increases, or p f decreases and tT decreases
when |T| or VT increases or hc decreases. However, the effects of parameters related to the
manufacturing process on tT and the effects of parameters related to the delivery process
on tM are not obvious. To find these effects, an additional experiment is conducted by only
using GA with the best performance shown.

Graphs (a), (b), and (c) in Figure 8 show the change in tM according to the change in
the parameters |T|, VT , and hc, respectively. In graphs (a), (b), and (c), tM decreases when
|T| or VT increases or hc decreases. Meanwhile, the graphs (d) and (e) in Figure 8 show the
change in tT according to the change in the parameters p f and VM. According to the graphs
(d) and (e), tt decreases when VM increases or p f decreases. In summary, the parameters
related to the delivery affect tM, and the parameters related to manufacturing affect tT .
This is because if the time on one side decreases, the flexibility of decision making on the
other side increases. One of the reasons is that the difference in manufacturing completion
time between jobs decreases and various decisions in the delivery process become possible
as p f decreases.

 
(a) 

Figure 8. Cont.
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(b) (c) 

  
(d) (e) 

Figure 8. Total manufacturing and delivery time under different |T|, hc, VT , p f , and VM. (a) Total
manufacturing time under different |T|. (b) Total manufacturing time under different hc. (c) Total
manufacturing time under different VT . (d) Total delivery time under different p f . (e) Total delivery
time under different VM.

7. Conclusions

In this research, the ISP with a batching machine, time-dependent batch deterioration,
and RMAs is considered. A MILP model was formulated to solve small problem instances.
Meta-heuristic algorithms were proposed to solve the large problem instances. The solution
structure of meta-heuristics consists of two one-dimensional arrays for manufacturing and
delivery. For small problem instances, we found the optimal solution using the developed
MILP model. Additionally, we verified the performance of meta-heuristic algorithms by
showing the near-optimal solution and comparing it with the MILP model in small problem
instances. Three meta-heuristic algorithms, GA, ICA, and PSO, are proposed and relatively
compared by using the relative deviation index (RDI) in large problem instances. The
ranking of meta-heuristic algorithms from the best to the worst performance was GA, ICA,
and PSO. Sensitivity analysis was conducted for GA with the best performance shown. We
found that as the time for either manufacturing or delivery was reduced, the time for the
other also decreased in this analysis.

However, this study has several limitations. For example, the real enterprise data
considered for solving real industry problems are not used, and the objective function is
simply set to total tardiness. The objective function can be modeled as a cost including
setup, inventory, and tardiness costs. As for further work to extend this study, the problem
could apply VRP to our delivery method. In addition, the problem can be extended
to optimization problems resolving the conflict of stakeholders between manufacturing
and third-party logistics (3PL). Finally, matheuristic and simheuristic approaches can
be considered.
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Abstract: The complex Pearson (CP) distributions are a family of probability models for count
data generated by the Gaussian hypergeometric function with complex arguments. The complex
triparametric Pearson (CTP) distribution and its biparametric versions, the complex biparametric
Pearson (CBP) and the extended biparametric Waring (EBW) distributions, belong to this family. They
all have explicit expressions of the probability mass function (pmf), probability generating function
and moments, so they are easy to handle from a computational point of view. Moreover, the CTP and
EBW distributions can model over- and underdispersed count data, whereas the CBP can only handle
overdispersed data, but unlike other well-known overdispersed distributions, the overdispersion
is not due to an excess of zeros but other low values of the variable. Finally, the EBW distribution
allows the variance to be split into three uniquely identifiable components: randomness, liability
and proneness. These properties make the CP distributions of interest in the modeling of a great
variety of data. For this reason, and for trying to spread their use, we have implemented an R package
called cpd that contains the pmf, distribution function, quantile function and random generation for
these distributions. In addition, the package contains fitting functions according to the maximum
likelihood. This package is available from the Comprehensive R Archive Network (CRAN). In this
work, we describe all the functions included in the cpd package, and we illustrate their usage with
several examples. Moreover, the release of a plugin in order to use the package from the interface R
Commander tries to contribute to the spreading of these models among non-advanced users.

Keywords: count data models; overdispersion; underdispersion; R package

MSC: 60-04

1. Introduction

The use of discrete distributions to model count data is widely illustrated in the lit-
erature. The first model, which describes the pure random case for an infinite range, is
the Poisson distribution. This is a uniparametric model which assumes that data have
equidispersion; that is to say, the variance is equal to the mean. Nevertheless, in real studies,
data often exhibit overdispersion (i.e., the variance is greater than the mean) and less often
exhibit underdispersion (i.e., the variance is less than the mean). For these situations, a great
variety of models has been developed, with many of them obtained from the Poisson distri-
bution. Among them, we find well-known models, such as the negative binomial (NB) [1],
univariate generalized Waring (UGW) [2,3], generalized Poisson (GP) [4], zero-inflated [5]
or hurdle models [6], as well as many other new models (see, for instance, [7–10]). One
of these new models is the complex triparametric Pearson distribution with parameters
a, b and γ, which are denoted by CTP(a, b, γ). This distribution belongs to the family of
discrete distributions generated by the Gaussian hypergeometric function when the two
first parameters are complex conjugated numbers (i.e., 2F1(a + ib, a− ib; γ; 1), where i is the
imaginary unit), and it has been widely studied in [11,12]. Two particular cases with two
parameters have also been developed: the complex biparametric Pearson (CBP) distribu-
tion [13,14] and the extended bivariate Waring (EBW) distribution [15,16]. It is interesting
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to take into account the fact that the CTP and EBW models can handle both over- and
underdispersion, whereas the CBP model can only handle overdispersion. Nevertheless,
the overdispersion of these three models, unlike other well-known overdispersed models,
is not due to an excess of zeros but other low values of the variable. Specifically, the CBP
model is useful when there is overdispersion, and the probability of zero is similar to that
of a Poisson distribution [14]. In addition to the fact that the CTP and EBW models can be
underdispersed, another advantage is that they do not have computational problems since
there are explicit expresions of the pmf, pgf and moments, as they do occur in other models
such as the CMP, HP or GP models [12]. All these properties make the CP distributions of
interest in the modeling of a great variety of data.

For these reasons, it is essential to facilitate their use, which is accomplished through
their implementation in different statistical software. In this sense, R, the free software
environment for statistical computing and graphics [17], not only allows for using the
most common distributions to compute the probabilities and quantiles or generate random
numbers but also model the data. Thus, for example, the stats package contains functions
for handling many standard univariate probability distributions, and the extraDistr package
adds more univariate and multivariate distributions to the list. In the MASS package, the
maximum likelihood modeling of several models is available via the fitdistr functions,
and the fitdistrplus package implements several methods for fitting univariate parametric
distributions. In addition, there are also specific built-in functions related to these aspects
in other R packages. To sum up, this allows us to propose different models for a given
data set, estimating the corresponding parameters and, in addition, comparing them to
choose the more adequate one. However, all of these packages include the CP distributions,
making their use inaccessible to most researchers.

In trying to solve this problem, we implemented an R package called cpd for the CP
distributions. Thus, in this work, we present and describe a package which allows for
obtaining the pmf, distribution function, quantile function and random number generation
for the three distributions. Moreover, this package offers the possibility of estimating the
parameters by the maximum likelihood method and also provides several goodness-of-
fit tests and graphics as well as additional fit criteria. The package is available from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=
cpd (accessed on 1 September 2022). In addition, we implemented a plugin for the R
Commander GUI that allows non-advanced R users to work with these models without
using R code. The plugin is also a package called RcmdrPlugin.cpd available from CRAN at
https://CRAN.R-project.org/package=RcmdrPlugin.cpd (accessed on 1 September 2022).

The remainder of this paper is organized as follows. Section 2 reviews the definitions
and properties of the CTP, CBP and EBW distributions. In Section 3, the functions of
the cpd package are detailed, including several examples to illustrate their use. In the
final section, this paper concludes with a summary of the main characteristics of the
package implemented.

2. Complex Pearson Distributions

2.1. Brief Description and Properties

The complex triparametric Pearson (CTP) distribution was first developed in [11].
It is a triparametric discrete distribution of an infinite range generated by the Gaussian
hypergeometric function 2F1 with complex parameters, so it belongs to the Gaussian
hypergeometric distributions (GHD) family [1]. Specifically, X follows a CTP(a, b, γ)
distribution when its pmf has the following expression:

f (x) = f0
(a + ib)x(a− ib)x

(γ)x

1
x!

, x = 0, 1, . . . (1)
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where i is the imaginary unit, a, b ∈ R and γ > max{0, 2a}. (α)r is the Pochhammer symbol
(also known as a rising factorial) defined as Γ(α+ r)/Γ(α), with Γ(·) as the gamma function
and f0 as the normalizing constant given by

2F1(a + ib, a− ib; γ; 1)−1 =
Γ(γ− a− ib)Γ(γ− a + ib)

Γ(γ)Γ(γ− 2a)
.

An alternative expression of Equation (1) in terms of the gamma function is

f (x) = C · Γ(a + ib + x)Γ(a− ib + x)
Γ(γ + x)

1
x!

, x = 0, 1, . . . (2)

where C is the normalizing constant

C =
Γ(γ− a− ib)Γ(γ− a + ib)

Γ(γ− 2a)Γ(a + ib)Γ(a− ib)
.

The probability generating function (pgf) is given by

G(t) =
Γ(γ− a− ib)Γ(γ− a + ib)

Γ(γ)Γ(γ− 2a) 2F1(a + ib, a− ib; γ; t), t ∈ R. (3)

Aside from its pmf, the model also has explicit expressions of the mean μ and the
variance σ2:

μ =
a2 + b2

γ− 2a− 1
, σ2 = μ

μ + γ− 1
γ− 2a− 2

,

which exist if γ > 2a + 1 and γ > 2a + 2, respectively.

This is unimodal with the mode in
[
(a−1)2+b2

γ−2a+1

]
when (a−1)2+b2

γ−2a+1 /∈ Z, where [·] is the
integer part; otherwise, the distribution has two consecutive modes in the values:

(a− 1)2 + b2

γ− 2a + 1
− 1 and

(a− 1)2 + b2

γ− 2a + 1
.

Then, if a2 + b2 < γ, then there is only one mode in zero. As a consequence, the pmf is
J-shaped or bell-shaped. Moreover, the CTP is skewed to the right since its third central
moment is always positive. For further details about the model, see [11,12].

One of the main properties of the CTP distribution is that it can be underdispersed,
equidispersed or overdispersed. In particular, if a ≥ 0, then the CTP is always overdis-
persed. Thus, the model has a great versatility in the modeling of count data, especially
when the overdispersion of the data is due to a higher frequency of non-zero values. In ad-
dition, the fact is that having explicit expressions of the pmf, mean and variance prevents
the computational problems of other well-known models that cope with over- and under-
dispersion, such as the Conway–Maxwell–Poisson [18] (CMP) and the hyper-Poisson [19]
(HP) models.

The CTP model is a generalization of the complex biparametric Pearson (CBP(b, γ))
distribution, since the latter appears when a = 0 [13]. This model has the advantage of
having one less parameter, but it is always overdispersed. It can be compared to an NB
distribution, except for the fact that the probability of zero is less than that provided by an
NB model and similar to that of a Poisson distribution.

The EBW distribution has two parameterizations: EBW(α, ρ) with α, ρ = γ− 2α > 0
and EBW(α, γ) with α < 0 and γ > 0. This model can also be seen as a particular case
of the CTP(a, b, γ) distribution when b = 0 and as a particular case of the UGW(a, k, ρ)
distribution when a = k = α > 0. In fact, given a UGW distribution, there exists an EBW
distribution that is very close to the former with the benefit of having one less parameter.
In addition, the EBW distribution allows the variance to be split into three uniquely
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identifiable components: randomness, liability and proneness (see more details in [16]),
solving the existing indeterminacy in the UGW model. Specifically, if X ∼ EBW(α, ρ), then
these components are

σ2 =
α2

ρ− 1
+

α2(α + 1)
(ρ− 1)(ρ− 2)

+
α3(α + ρ− 1)
(ρ− 1)2(ρ− 2)

. (4)

2.2. Maximum Likelihood Estimation

Under the i.i.d. sample assumption, the parameters a, b and γ are by default estimated
by maximizing the log-likelihood function, defined as

ln Lx1,...,xn(a, b, γ) =
n

∑
j=1

ln f (xj|a, b, γ) = 2Re[ln Γ(γ− a + ib)]− 2Re[Γ(a + ib)] (5)

+ 2Re[Γ(a + ib + x)]− ln Γ(γ− 2a)− ln Γ(γ + x)− ln x!

with x1, . . . , xn, where n is the number of observations of the variable X ∼ CTP(a, b, γ). It
should be noticed that Γ(z) = Γ(z), where z and z are conjugate complex numbers.

The log-likelihood for the CBP distribution is obtained when a = 0, and that for the
EBW distribution is obtained when b = 0.

3. Using the cpd Package

3.1. Overview

The cpd package provides the functions to compute the probability mass function,
distribution function, quantile function and random generation for the complex tripara-
metric Pearson (CTP), complex biparametric Pearson (CBP) and extended biparametric
Waring (EBW) distributions. In addition, the package contains maximum-likelihood fitting
functions for these models.

The source code is available from the Comprehensive R Archive Network (CRAN)
repository (https://CRAN.R-project.org/package=cpd, accessed on 1 September 2022),
with all the information about its functions and parameters in the package’s help file. It
can be installed and loaded by typing the following commands in R:

R> install.packages(‘‘cpd’’)

R> library(cpd)

The package is open-source, so it is also available from GitHub (https://github.com/
ujaen-statistics/cpd, accessed on 1 September 2022), where updates and comments can
be submitted.

Specifically, the cpd package allows for computing the probability mass, distribution
and quantile funtions of a CBP distribution through the following respective code:

dcbp(x, b, gamma)

pcbp(q, b, gamma, lower.tail = TRUE)

qcbp(p, b, gamma, lower.tail = TRUE)

where x is a vector of the non-negative integer values, q is a vector of the quantiles, p is a
vector of the probabilities and b and gamma are the parameters of the distribution. In the
pcbp and qcbp functions, the argument lower.tail has to be specified to consider P(X ≤ x)
(if it is TRUE) or P(X ≥ x) (if it is FALSE). It is also possible to generate n random numbers
from a CBP distribution with parameters b and gamma using the rcbp function, whose
sentence is rcbp(n, b, gamma).

For the CTP distribution, the probability mass, distribution and quantile functions,
as well as the random generation, are analogous:

dctp(x, a, b, gamma)
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pctp(q, a, b, gamma, lower.tail = TRUE)

qctp(p, a, b, gamma, lower.tail = TRUE)

rctp(n, b, gamma)

In the case of the EBW distribution, there are two possible parameterizations depend-
ing on the sign of its first parameter α. Thus, if α < 0, then the usual parametrization is
EBW(α, γ) with γ > 0, whereas if α > 0, then the usual parametrization is EBW(α, ρ) with
ρ = γ− 2α > 0. (This constraint guarantees the existence of the probability distribution.)
Then, the corresponding probability mass, distribution and quantile functions, together
with the random generation, take into account these two parameterizations:

debw(x, alpha, gamma, rho)

pebw(q, alpha, gamma, rho, lower.tail = TRUE)

qebw(p, alpha, gamma, rho, lower.tail = TRUE)

rebw(n, alpha, gamma, rho)

Moreover, the cpd package provides functions for fitting the CTP, CBP and EBW
distributions to count data by the maximum likelihood method. These functions are fitctp,
fitcbp and fitebw, respectively. Thus, the usage for the fitcbp function is

fitcbp(x, bstart = NULL, gammastart = NULL, method = ‘‘L-BFGS-B’’,

+ control = list(), ...),

for the CTP distribution

fitctp(x, astart = NULL, bstart = NULL, gammastart = NULL,

+ method = ‘‘L-BFGS-B’’, control = list(), ...)

as well as for the EBW distribution

fitebw(x, alphastart = NULL, gammastart = NULL, rhostart = NULL,

+ method = ‘‘L-BFGS-B’’, control = list(), ...)

These fitting functions estimate the distribution parameters by maximizing the log-
likelihood function given in Equation (5) using the optim function of the stats package
with “L-BFGS-B” [20] as the default fitting method, which allows box constraints. Other
alternative methods of the optim function include “Nelder–Mead”, “BFGS”, “CG” and
“SANN” (see the function help information for more details). Nonlinear minimization using
a Newton-type algorithm is also possible (see the nlm function of the stats package). If
the fitting method is not “L-BFGS-B”, then the parameters have to be reparameterized as
α = eα0 and ρ = eρ0 or α = −eα0 and γ = eγ0 with α0, ρ0 and γ0 ∈ R, in order to satisfy
the corresponding constraints in each model. In this case, the standard errors provided
by the fitting function are for the estimates of α0 and ρ0 or γ0. The starting values for the
optimization process are the estimates obtained by the method of the moments, unless
the user introduces other values. These estimates are obtained by solving the system of
equations:⎛⎝ m′1 −m′1 −1

m′2 −m′2 −m′21 −m′1 + 1
m′3 −m′3 − 2m′2 −m′1 −m′2 − 2m′1 − 1

⎞⎠⎛⎝ θ1
θ2
θ3

⎞⎠ =

⎛⎝ 0
m2

2m3 + m2

⎞⎠ (6)

where m′r is the rth sample raw moment, θ1 = γ̂− 1, θ2 = 2â and θ3 = â2 + b̂2.
In the case of the EBW distribution, the method of moments could provide two sets of

starting values. In such a case, the optimization process would be carried out twice (one
with each set of starting values), and the solution with less AIC will be shown. These fitting
functions return S3 objects of the classes fitCBP, fitCTP and fitEBW for which the print,
summary and plot methods are provided.

The summary of an object of the classes fitCBP, fitCTP and fitEBW provides the ML
parameter estimates, their standard errors and the statistic and p values of the Wald test to
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check if the parameters are significant. This summary also shows the loglikelihood, AIC
and BIC values, as well as the results for the χ2 goodness of fit test and the Kolmogorov–
Smirnov test for discrete variables [21,22]. Finally, the correlation matrix of the parameter
estimates also appears.

In addition, when the ML estimate of α is positive, the function varcomp—applied
to an object of the class fitEBW—allows us to obtain the decomposition of the variance in
the fitted EBW model (see the components in Equation (4)). This fact is useful to know the
origin of the data variability.

The plot of an object of class fitCBP, fitCTP or fitEBW provides, by default, the observed
and theoretical frequencies against the values of the variable, the CDF plot of both the
empirical distribution and the fitted distribution or a PP plot representing the empirical
distribution function evaluated at each data point (y axis) against the fitted distribution
function (x axis).

3.2. Examples
3.2.1. Probability Mass, Distribution, Quantile and Random Generation Functions

We illustrate the use of the probability mass, distribution and quantile functions and
how to generate random numbers from the CP distributions.

First, we consider X ∼ CBP(3, 2.5), and we compute P(X = 0), P(X = 1) and
P(X = 2):

R> library(cpd)

R> cpd::dcbp(c(0, 1, 2), 3, 2.5)

[1] 0.02985882 0.10749176 0.15355965

The following sentences allow for computing P(X ≤ 3), P(X ≤ 5) and P(X > 2):

R> cpd::pcbp(c(3, 5), 3, 2.5)

[1] 0.4387825 0.6528353

R> cpd::pcbp(c(2), 3, 2.5, lower.tail = FALSE)

[1] 0.7090898

To obtain the quartiles of X and the 95th percentile, the sentence and the R output are

R> cpd::qcbp(c(0.25, 0.5, 0.75, 0.95), 3, 2.5)

[1] 2 4 7 17

Finally, to generate 300 numbers from X, we type

R> set.seed(123)

R> x <- cpd::rcbp(300, 3, 2.5)

R> table(x)

x

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 26

5 28 54 48 35 27 24 14 14 6 4 9 6 4 1 2 1 2 4 1 2 2 1 1

28 29 30 45

1 1 2 1

Figure 1a shows the bar plot of the random generated data which is obtained with the code

R> barplot(table(x), xlab = ‘‘values’’, ylab = ‘‘frequencies’’)

We can observe that the mode of these data is at a value of two, and they exhibit
overdispersion (x = 5.676667 < s2 = 32.21952).

Next we consider Y ∼ CTP(−1.5, 2, 2), which is underdispersed, and we compute
P(X = 0), P(X = 1), P(X = 2), P(X = 3):

R> cpd::dctp(c(0:3),-1.5, 2, 2)

[1] 0.1331089 0.4159654 0.2946422 0.1043524
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Now, the cumulative probabilities P(X ≤ 1), P(X ≤ 3) and P(X > 1) are

R> cpd::pctp(c(1,3), −1.5, 2, 2)

[1] 0.5490744 0.9480690

R> cpd::pctp(1, −1.5, 2, 2, lower.tail = FALSE)

[1] 0.4509256

The quartiles and 95th percentile are obtained as follows:

R> cpd::qctp(c(0.25, 0.5, 0.75, 0.95), −1.5, 2, 2)

[1] 1 1 2 4

To generate 500 random values from Y, we use the code

R> set.seed(123)

R> y <- cpd::rctp(500, −1.5, 2, 2)

The frequency table is

R> table(y)

y

0 1 2 3 4 5 6 7 10

57 227 142 41 21 8 2 1 1

Additionally, Figure 1b shows a bar plot of the random generated data. The mode
of these data is at a value of one, and they exhibit underdispersion (y = 1.574 > s2 =
1.367259).

Finally, to conclude this section, let us consider X1 ∼ EBW(α = 2, ρ = 5) and
X2 ∼ EBW(α = −1.2, γ = 0.75), with the first being overdispersed and the second being
underdispersed, and let us compute P(Xi = 0), P(Xi = 1), P(Xi = 2), P(Xi = 3) and
P(Xi = 4), i = 1, 2:

R> cpd::debw(c(0:4), 2, rho = 5)

[1] 0.53571429 0.23809524 0.10714286 0.05194805 0.02705628

R> cpd::debw(c(0:4), −1.2, gamma = 0.75)

[1] 0.3396452713 0.6521189210 0.0074527877 0.0005781556 0.0001248816

The cumulative probabilities P(Xi ≤ 2), P(Xi ≤ 4) and P(Xi > 2), i = 1, 2 are obtained as
follows:

R> cpd::pebw(c(2,4), 2, rho = 5)

[1] 0.8809524 0.9599567

R> cpd::pebw(2, 2, rho = 5, lower.tail = FALSE)

[1] 0.1190476

R> cpd::pebw(c(2,4), −1.2, gamma = 0.75)

[1] 0.9981288 0.9998974

R> cpd::pebw(3, −1.2, gamma = 0.75, lower.tail = FALSE)

[1] 0.0002048643

The corresponding quartiles and 99th percentile are given by

R> cpd::qebw(c(0.25, 0.5, 0.75, 0.99), 2, rho = 5)

[1] 0 0 1 8

R> cpd::qebw(c(0.25, 0.5, 0.75, 0.99), −1.2, gamma = 0.75)

[1] 0 1 1 1

To generate 1000 random values of X1 and X2, we type the code

R> set.seed(123)

R> x1 <- cpd::rebw(1000, 2, rho = 5)

R> x2 <- cpd::rebw(1000, −1.2, gamma = 0.75)
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The respective frequency tables are

R> table(x1)

x1

0 1 2 3 4 5 6 7 8 9 10 11 18

542 236 105 51 25 16 8 6 5 3 1 1 1

R> table(x2)

x2

0 1 2 3

332 657 10 1

In addition, the bar plots of these two datasets may be seen in Figure 1c,d. The modes
of these data were zero and one, respectively. The first dataset was overdispersed (x1 =
0.975 < s2

1 = 2.657032), and the second one was underdispersed (x2 = 0.68 > s2
2 =

0.2438438).
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Figure 1. Bar plots of the random generated data from (a) CBP(3, 2.5), (b) CTP(−1.5, 2, 2),
(c) EBW(2, 5) and (d) EBW(−1.2, 0.75).

3.2.2. Fitting Functions

To illustrate the use of the fitting functions, we provide three examples: two overdis-
persed and one underdispersed.

The first data set refers to the number of fire outbreaks by municipality in the region
of Andalusia (Spain). Data were obtained from the Nature Databank of the Ministry of the
Environment (Spain) and counting the number of fire outbreaks from 2001 to 2014. A fire
outbreak was defined as a wildfire whose total area was less than one hectare. Moreover,
municipalities whose forest land was zero were removed from the data. A description of
these data appears in Table 1, which contains the mean, variance, quartiles, minimum and
maximum of the data. It is clear that these data exhibit overdispersion since s2 > x.
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Table 1. Descriptive summary of data.

x s2 Q1 Q2 Q3 Min Max

Fire outbreaks 3.528 28.964 1 2 4.75 0 56
Schools 1.431 10.3807 0 1 1 0 48

Syllables-1 1.889 0.910 1 2 2 0 4

We fit a CBP model to the data, considering as the initial values the estimates by the
method of moments:

R> fireoutbreaks.cbp <- cpd::fitcbp(fireoutbreaks)

The output shows the ML estimates and their standard errors in parentheses:

b gamma

1.486206 1.494944

(0.08849089) (0.12183708)

Using the summary method, the output is more complete. The argument grouping = TRUE
is the setting for grouping in classes with an expected frequency greater than or equal to
five in the χ2 goodness of fit test, since the default value is FALSE:

R> summary(fireoutbreaks.cbp, grouping = TRUE)

Parameters:

Estimate Std. Error z-value Pr(>|z|)

b 1.486206 0.08849089 16.79502 2.654186 × 10−63

gamma 1.494944 0.12183708 12.27003~1.312062 × 10−34

Loglikelihood: −1637.21 AIC: 3278.43 BIC: 3287.5

Goodness-of-fit tests:

Chi-2: 60.05902 (p-value: 5.11525627536094 × 10−7)

Kolmogorov-Smirnov: 0.04732388 (p-value: 0.033)

Correlation Matrix:

b gamma

b 1.0000000 0.9296264

gamma 0.9296264 1.0000000

The AIC for the CBP fit is lower than the AIC related to an usual NB fit for these data:
R> library(MASS)

R> fireoutbreaks.nb <- MASS::fitdistr(fireoutbreaks, ‘‘negative binomial’’)

R> fireoutbreaks.nb

size mu

0.80061445 3.52752644

(0.05537946) (0.16624492)

R> AIC(fireoutbreaks.nb)

[1] 3292.707

Next we model the data using the CTP distribution. However, the method of moments
does not provide any estimates, so we introduce starting values for these parameters:
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R> fireoutbreaks.ctp <- cpd::fitctp(fireoutbreaks)

Error in fitctp(fireoutbreaks) :

The method of moments does not provide any estimates. Enter

initial values for the~parameters.

R> fireoutbreaks.ctp <- cpd::fitctp(fireoutbreaks, astart = 0, bstart = 1,

+ gammastart = 2.1)

R> summary(fireoutbreaks.ctp, grouping = TRUE)

Parameters:

Estimate Std. Error z-value Pr(>|z|)

a 1.880214 0.8151401 2.306615 0.021076319

b 1.579993 0.5102531 3.096489 0.001958269

gamma 6.441561 2.1065484 3.057874~0.002229130

Loglikelihood: −1623.73 AIC: 3253.45 BIC: 3260.53

Goodness-of-fit tests:

Chi-2: 23.21167 (p-value: 0.0569114065884523)

Kolmogorov-Smirnov: 0.01796262 (p-value: 0.746)

Correlation Matrix:

a b gamma

a 1.0000000 −0.9502083 0.9952855

b −0.9502083 1.0000000 −0.9193242
gamma 0.9952855 −0.9193242 1.0000000

Once again, the fitted model was improved compared with the previous ones.
Finally, we carry out an EBW fit:

R> fireoutbreaks.ebw <- cpd::fitctp(fireoutbreaks)

R> summary(fireoutbreaks.ebw, grouping = TRUE)

Parameters:

Estimate Std. Error z-value Pr(>|z|)

alpha 2.749528 0.1621672 16.954903 1.770541 × 10−64

rho 3.139183 0.3171861 9.896977 4.290494 × 10−23

gamma 8.638240 0.6293458 13.725746~7.119262 × 10−43

Loglikelihood: −1624.12 AIC: 3252.25 BIC: 3261.32

Goodness-of-fit tests:

Chi-2: 24.05791 (p-value: 0.0641165517298056)

Kolmogorov-Smirnov: 0.01778027 (p-value: 0.773)

Correlation Matrix:

alpha rho

alpha 1.0000000 0.9247998

rho 0.9247998 1.0000000

This is the most accurate of the four fits using the AIC. Moreover, the goodness-of-fit tests
show that the EBW distribution is a reasonable model for the fire outbreak data. Figure 2
includes the observed and expected frequencies, CDFs and PP plots for this fit obtained
with the following sentences:
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R> plot(fireoutbreaks.ebw)

R> plot(fireoutbreaks.ebw, plty = ‘‘CDF’’)

R> plot(fireoutbreaks.ebw, plty = ‘‘PP’’)
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Figure 2. Observed and expected frequencies, CDFs and PP plots for the EBW fit of fire outbreak data.

As α̂ = 2.7495 > 0, the absolute value and the ratio of the variance components of the EBW
fit can be obtained by typing the command

R> cpd::varcomp(fireoutbreaks.ebw)

Value Ratio

Randomness 3.534015 0.1019654

Liability 11.631922 0.3356107

Proneness 19.493035 0.5624239

The results indicate that 10.1965% of the variability in fire outbreaks was due to ramdom-
ness, 33.5611% was due to liability (which refers to the general and external conditions of
the municipality), and 56.2424% was due to proneness (related to the specific and internal
characteristics of the municipality).

The second data set refers to the number of compulsory secondary schools by mu-
nicipality in Andalusia (Spain) in the academic year 2020–2021. Data have been obtained
through the Multiterritorial Information System of Andalusia (SIMA). The main descriptive
statistics for these data appear in Table 1. These data reveal severe overdispersion caused
by a value of one, as can be seen from the table of frequencies:

R> table(cs_schools)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 18 20

201 437 67 31 17 6 6 2 3 2 2 1 2 1 1 1~1

26 28 47 48

1 1 1 1

First, we fit an NB model:

R> schools.nb <- MASS::fitdistr(cs_schools, ‘‘negative binomial’’)

R> schools.nb

size mu

1.19336385 1.43057377

(0.10212557) (0.06330097)

R> AIC(schools.nb)

2584.456

As expected, the results for the CTP fit (with initial values a = 0, b = 1 and γ = 0.5)
improved remarkably with respect to the previous ones:
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R> schools.ctp <- cpd::fitctp(schools, astart = 0, bstart = 1,

+ gammastart = 0.5)

R> summary(schools.ctp)

Parameters:

Estimate Std. Error z-value Pr(>|z|)

a −0.5141782 0.03519091 −14.611108 2.386050 × 10−48

b 0.4165253 0.09994774 4.167431 3.080518 × 10−5

gamma 0.2020829 0.05620251 3.595620~3.236198 × 10−4

Loglikelihood: −1058.91 AIC: 2123.81 BIC: 2131.14

Goodness-of-fit tests:

Chi-2: 40.81333 (p-value: 0.649840570375861

Kolmogorov-Smirnov: 0.007734697 (p-value: 0.932)

Correlation Matrix:

a b gamma

a 1.0000000 −0.8066776 −0.7935876
b −0.8066776 1.0000000 0.9637505

gamma −0.7935876 0.9637505 1.0000000

The goodness-of-fit tests also support the adequacy of the model fitted. Figure 3 includes
the observed and expected frequencies, CDFs and PP plots for the CTP fit obtained with
the code sentences

R> plot(schools.ctp)

R> plot(schools.ctp, plty = ‘‘CDF’’)

R> plot(schools.ctp, plty = ‘‘PP’’)
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Figure 3. Observed and expected frequencies, CDFs and PP plots for the EBW fit of compulsory
secondary school data.

In this example, it makes no sense to fit a CBP or a EBW model, since the parameters a
and b in the CTP are statistically significant.

The third data set contained lengths of words (numbers of syllables) in a Slovak
poem [23]. A description of these data appears in Table 1, where we considered the response
variable X− 1, as though the data were generated by adding one to the distribution. These
types of data related to word length often exhibit underdispersion [24].

As the CBP model is always overdispersed, it made no sense to fit it to these data,
so we fitted a CTP model, considering as the initial values the estimates by the method
of moments. In this example, the argument grouping is missing, so it is set to FALSE
by default, since there are not enough degrees of freedom to group the classes with an
expected frequency greater than or equal to five. Thus, the code is

R> syllables.ctp <- cpd::fitctp(syllables)

R> summary(syllables.ctp)
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and the output

Parameters:

Estimate Std. Error z-value Pr(>|z|)

a −5.7319721810 0.8127761 −7.0523387550 1.759352 × 10−12

b 0.0008637403 6.0264402 0.0001433251 9.998856 × 10−1

gamma 6.9298746437 3.3472112 2.0703428298~3.842025 × 10−2

Loglikelihood: −159.33 AIC: 324.67 BIC: 328.19

Goodness-of-fit tests:

Chi-2: 0.6018625 (p-value: 0.437868271837147)

Kolmogorov-Smirnov: 0.01181905 (p-value: 0.994)

Correlation Matrix:

a b gamma

a 1.000000000 0.002883042 −0.970588862
b 0.002883042 1.000000000 −0.001203176
gamma −0.970588862 −0.001203176 1.000000000

Now, we model these data using EBW distribution by typing

R> syllables.ebw <- cpd::fitebw(syllables)

R> summary(syllables.ebw)

Parameters:

Estimate Std. Error z-value Pr(>|z|)

alpha −5.731882 0.812740 −7.052541 1.756792 × 10−12

gamma 6.929558 3.347026 2.070363~3.841840 × 10−2

Loglikelihood: −159.33 AIC: 322.67 BIC: 328.19

Goodness-of-fit tests:

Chi-2: 0.6019236 (p-value: 0.74010605961245)

Kolmogorov-Smirnov: 0.01181588 (p-value: 0.994)

Correlation Matrix:

alpha gamma

alpha 1.0000000 −0.9705887
gamma −0.9705887 1.0000000

Let us notice that the EBW fit was the best one according to the AIC and goodness-of-
fit tests.

In addition, we used the sentences

R> plot(syllables.ebw)

R> plot(syllables.ebw, plty = ‘‘CDF’’)

R> plot(syllables.ebw, plty = ‘‘PP’’)

to obtain the plots in Figure 4.
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Figure 4. Observed and expected frequencies, CDFs and PP plots for the CTP fit of Slovak poem data.

4. Conclusions

The cpd package has been designed for computing probabilities and quantiles as
well as for generating random numbers from the CBP, CTP and EBW distributions. These
functions have also been included in a plugin for the GUI R Commander with the aim of
facilitating their use by non-advanced R users. In addition, the package contains fitting
functions to obtain the ML estimates of their parameters. In this way, we give more
visibility to these models, which allows for modeling overdispersed data in which the
overdispersion is not due to a value of zero but to low values of the variable (1, 2, . . . ) and
also underdispersed data. Thus, the probability of zero in the CBP is lower than in the
corresponding Poisson with the same mean, so the CBP can be seen as an adequate model
for overdispersed data without too many zeros. Regarding the CTP and EBW models, they
do not have the computational problems of other well-known models for both over- and
underdispered data such as the GP, the CMP or the HP.

Author Contributions: Data curation, J.R.-A.; Formal analysis, M.J.O.-J. and S.V.-L.; Investigation,
M.J.O.-J., S.V.-L. and J.R.-A.; Methodology, M.J.O.-J., S.V.-L. and J.R.-A.; Software, M.J.O.-J. and S.V.-L.;
Supervision, M.J.O.-J., S.V.-L. and J.R.-A.; Writing—original draft, M.J.O.-J. and J.R.-A.; Writing—
review & editing, M.J.O.-J., S.V.-L. and J.R.-A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data in Section 3.2.2 have been obtained from https://www.miteco.gob.
es/es/biodiversidad/servicios/banco-datos-naturaleza/ (accessed on 1 September 2022) (Example
1) and https://www.juntadeandalucia.es/institutodeestadisticaycartografia/sima/index2-en.htm
(accessed on 1 September 2022) (Example 2).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Johnson, N.L.; Kemp, A.W.; Kotz, S. Univariate Discrete Distributions, 3rd ed.; Wiley: New York, NY, USA, 2005.
2. Irwin, J.O. The generalized Waring distribution. Part I. J. R. Stat. Soc. Ser. A 1975, 138, 18–31. [CrossRef]
3. Rodríguez-Avi, J.; Conde-Sánchez, A.; Sáez-Castillo, A.J.; Olmo-Jiménez, M.J. A new generalization of the Waring distribution.

Comput. Stat. Data Anal. 2007, 51, 6138–6150. [CrossRef]
4. Joe, H.; Zhu, R. Generalized Poisson Distribution: The Property of Mixture of Poisson and Comparison with Negative Binomial

Distribution. Biom. J. 2005, 45, 219–229. [CrossRef] [PubMed]
5. Vieira, A.M.C.; Hinde, J.P.; Demetrio, C.G.B. Zero-inflated proportion data models applied to a biological control assay. J. Appl.

Stat. 2000, 27, 373–389. [CrossRef]
6. Conceição, K.S.; Louzada, F.; Andrade, M.G.; Helou, E.S. Zero-modified power series distribution and its Hurdle distribution

version. J. Stat. Comput. Simul. 2017, 87, 1842–1862. [CrossRef]
7. Sáez-Castillo, A.J.; Conde-Sánchez, A. Detecting over- and under-dispersion in zero inflated data with the hyper-Poisson

regression model. Stat. Pap. 2017, 58, 19–33. [CrossRef]
8. da Silva, W.B.; Ribeiro, A.M.T.; Conceição, K.S.; Andrade, M.G.; Neto, F.L. On Zero-Modified Poisson-Sujatha Distribution to

Model Overdispersed Count Data. Austrian J. Stat. 2018, 47, 1–19. [CrossRef]

129



Mathematics 2022, 10, 4101

9. Bonat, W.H.; Jørgensen, B.; Kokonendji, C.C.; Hinde, J.; Demétrio, C.G.B. Extended Poisson–Tweedie: Properties and regression
models for count data. Stat. Model. 2018, 18, 24–49. [CrossRef]

10. Satheesh Kumar, C.; Harisankar, S. On some aspects of a general class of Yule distribution and its applications. Commun.
Stat.-Theory Methods 2019, 49, 1–11. [CrossRef]

11. Rodríguez-Avi, J.; Conde-Sánchez, A.; Sáez-Castillo, A.J.; Olmo-Jiménez, M.J. A triparametric discrete distribution with complex
parameters. Stat. Pap. 2004, 45, 81–95. [CrossRef]

12. Olmo-Jiménez, M.J.; Rodríguez-Avi, J.; Cueva-López, V. A review of the CTP distribution: A comparison with other over- and
underdispersed count data models. J. Stat. Comput. Simul. 2018, 88, 2684–2706. [CrossRef]

13. Rodríguez-Avi, J.; Conde-Sánchez, A.; Sáez-Castillo, A.J. A new class of discrete distributions with complex parameters. Stat.
Pap. 2003, 44, 67–88. [CrossRef]

14. Rodríguez-Avi, J.; Olmo-Jiménez, M.J. A regression model for overdispersed data without too many zeros. Stat. Pap. 2017,
58, 749–773. [CrossRef]

15. Cueva-López, V.; Olmo-Jiménez, M.J.; Rodríguez-Avi, J. EM algorithm for an extension of the Waring distribution. Comput. Math.
Methods 2019, 1, e1046. [CrossRef]

16. Cueva-López, V.; Olmo-Jiménez, M.J.; Rodríguez-Avi, J. An over- and underdispersed biparametric extension of the Waring
distribution. Mathematics 2021, 9, 170. [CrossRef]

17. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2019.

18. Sellers, K.F.; Borle, S.; Shmueli, G. The COM-Poisson model for count data: A survey of methods and applications. Appl. Stoch.
Model. Bus. Ind. 2012, 28, 104–116. [CrossRef]

19. Sáez-Castillo, A.J.; Conde-Sánchez, A. A hyper-Poisson regression model for overdispersed and underdispersed count data.
Comput. Stat. Data Anal. 2013, 61, 148–157. [CrossRef]

20. Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput.
1995, 16, 1190–1208. [CrossRef]

21. Conover, W.J. A Kolmogorov goodness-of-fit test for discontinuous distributions. J. Am. Stat. Assoc. 1972, 67, 591–596. [CrossRef]
22. Gleser, L.J. Exact power of goodness-of-fit tests of Kolmogorov type for discontinuous distributions. J. Am. Stat. Assoc. 1985,

80, 954–958. [CrossRef]
23. Wimmer, G.; Kohler, R.; Grotjahn, R.; Altmann, G. Toward a theory of word length distributions. J. Quant. Ling. 1994, 1, 98–106.

[CrossRef]
24. DjurasErnst, G.; Stadlober, S. Text and Language: Structures Function Interrelations Quantitative Perspectives; Chapter Modeling Word

Length Frequencies by the Singh-Poisson Distribution; Praesens Verlag: Wien, Austria, 2010; pp. 37–46.

130



Citation: Sharma, S.; Singh, S. A

Complementary Dual of

Single-Valued Neutrosophic Entropy

with Application to MAGDM.

Mathematics 2022, 10, 3726. https://

doi.org/10.3390/math10203726

Academic Editor: Gia Sirbiladze

Received: 8 September 2022

Accepted: 2 October 2022

Published: 11 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Complementary Dual of Single-Valued Neutrosophic Entropy
with Application to MAGDM

Sonam Sharma and Surender Singh *

School of Mathematics, Shri Mata Vaishno Devi University, Katra 182320, India
* Correspondence: surender1976@gmail.com or surender.singh@smvdu.ac.in

Abstract: A single-valued neutrosophic set (SVNS) is a subcategory of neutrosophic set that is used
to represent uncertainty and fuzziness in three tiers, namely truthfulness, indeterminacy, and falsity.
The measure of entropy of a SVNS plays an important role to determine the ambiguity in a variety of
situations. The knowledge measure is a dual form of entropy and is helpful in certain counterintuitive
situations. In this paper, we introduce a knowledge measure for the SVNS and contrast the same
with existing measures. The comparative study reveals that the proposed knowledge measure
is more effective in modeling the structured linguistic variables. We provide the relations of the
proposed knowledge measure with single valued neutrosophic similarity and distance measures. We
also investigate the application of the proposed measure in multi-attribute group decision making
(MAGDM). The proposed MAGDM model is helpful when the decision makers in the group have
varied background and the hiring organization is unable to assign the level of importance or weight
to a decision-maker.

Keywords: single valued neutrosophic set; knowledge measure; MAGDM; correlation coefficient;
neutrosophic similarity

MSC: 03E72; 90B50; 03E75

1. Introduction

The first successful attempt to model the imprecision or ambiguity of human reasoning
in a mathematical framework was put forward by Zadeh [1]. The quantitative representa-
tion of the linguistic knowledge of the human observations or cognition was investigated
under the notion of fuzzy theory. Atanassov [2] further extended the theory and introduced
‘Intuitionistic Fuzzy Set’ in which an element of the universal set belongs or does not belong
to a set to a certain extent. In both these concepts, we get a set single-valued and 2-tuple
quantitative representation of the vagueness associated with an element of the universal set.
However, there are some complex situations in real life where these two representations
are not sufficient to handle such situations. Smarandache [3] brings out the notion of a
neutrosophic set (NS) from a philosophical point of view to investigate the indeterminate or
inconsistent information that commonly occurs in real-life circumstances. The neutrosophic
set is based on three tiers—belongingness, indeterminacy, and non-belongingness. In
short, the neutrosophic set is beyond the fuzzy set and intuitionistic fuzzy set. Most of
the attributes in a complex situation where decision-makers use linguistic variables can
be easily expressed with the help of a neutrosophic value. Wang et al. [4] introduced a
subclass of neutrosophic set and termed it as a single-valued neutrosophic set. Various
operations (union, intersection, complement) have been studied. Since the advent of the
neutrosophic set, major work especially in the field of multi-attribute decision-making
and pattern-recognition played a vital role. Ma et al. [5] studied Archimedean t-norm or t-
conorom using intuitionistic fuzzy aggregation operator for multi-criteria decision making.
Symmetric intuitionistic fuzzy weighted mean operators concerning extensive weighted
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Archimedean t-norm and t-conorom put forward for dealing with membership and non-
membership information. Wu et al. [6] discussed the entropy, similarity measure, and
cross-entropy of information measure in SVNSs. The given information measure was used
to handle MADM problems to check the effectiveness. Similarity measures and entropy
of single-valued neutrosophic sets was proposed by Qin and Wang [7]. Smarandache [8]
proposed a neutrosophic hedge algebra. Different operations in neutrosophic hedge algebra
were also studied to aggregate the neutrosophic linguistic value. Hanafy [9] proposed a cor-
relation coefficient formula for neutrosophic data. Singh et al. [10] studied the correlation
coefficient in an intuitionistic fuzzy set. In the application part, a generalized correlation
coefficient was used to solve MADM. Normalized correlation efficiency was considered as
the weight of decision-makers. Biswas et al. [11] proposed a new technique concerning the
TOPSIS method in the single-valued neutrosophic environment. Jin et al. [12] proposed an
information measure for SVN entropy and similarity measure based on sine and cosine
function. Comparative analysis was studied to check the effectiveness and rationality of the
given method. Knowledge measure in a fuzzy set was given by Singh et al. [13] to check
the effectiveness of the proposed method. In a hesitant fuzzy set, knowledge measure was
computed by Lalotra and Singh [14]. The knowledge concerning the attributes in context
with some available alternatives can be represented in various frameworks. A neutrosophic
theory equips us with a kind of representation of the knowledge base that removes certain
pitfalls of the fuzzy and intuitionistic fuzzy representation. The neutrosophic entropy pro-
vides a valuation of the uncertainty or ambiguity entailed in a given neutrosophic set. In
the MADM problems, the neutrosophic entropy is utilized to compute the objective weights
of the attribute. Sometimes, the entropy measures suffer from certain counterintuitive
situations and render inappropriate results. The counterintuitive situations arise when an
entropy/knowledge measure cannot distinguish two different neutrosophic sets. Moreover,
the problems of multi-attribute group decision making if the higher organization is not
aware of the expertise and knowledge base of decision-makers. Then how to assign the
weightage to the decision experts. These two reasons motivated us to derive an alternative
entropy-like measure for objective weight computation and to propose some mechanism
for the weight assigned to the decision-makers. The main contribution of this paper is
as follows:

• We propose an entropy-like measure in the neutrosophic settings and termed it a
single-valued neutrosophic knowledge measure.

• We also discuss certain properties of the neutrosophic knowledge measure and estab-
lish its connection with the single-valued neutrosophic similarity and dissimilarity
measure.

• An algorithm of MAGDM is proposed and implemented with the help of a numerical
example.

• Comparative analysis to check the effectiveness of the proposed knowledge measure
has also been presented.

The remaining part of the paper is organized is as follows: Section 2 presents the
fundamental concepts regarding this paper. In Section 3, we propose a knowledge measure
in the single-valued neutrosophic environment. Section 4 presents the relation of single
valued neutrosophic similarity and distance measure with the single-valued neutrosophic
knowledge measure. In Section 5, we consider an algorithm for the MAGDM problem.
Section 6 deals with the comparative studies. Finally, concluding remarks are given in
Section 7.

2. Preliminaries

In this section, we present some definitions and concepts concerning single-valued
neutrosophic sets.
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Definition 1. ([1]). Let Y = {y1, y2, y3 . . . . . . yn} be the universal set then a fuzzy set in Y is
defined as

B = {(y, TB(y)) : y ∈ Y}.

where TB(y) : Y → [0, 1] determines the truth membership of y in B. The value of TB(y) gives
the degree of belongingness of y in B.

Definition 2. ([2]). Intuitionistic fuzzy set B on a universal set Y is defined

B = {(y, TB(y), FB(y) ) : y ∈ Y}.

where TB(y) : Y → [0, 1] and FB(y) : Y → [0, 1] determines the degree of membership and
degree of non—membership respectively with the condition 0 ≤ TB(y) + FB(y) ≤ 1 and the value
of TB(y) and FB(y) gives the value of membership and non-membership of y in B, respectively.

Definition 3. ([3,4]). A single-valued neutrosophic set on a universal set B is defined as

B = {(y, TB(y), IB(y), FB(y) ) : y ∈ Y},

where TB(y) : Y → [0, 1] , IB(y) : Y → [0, 1] and FB(y) : Y → [0, 1] assigns the degree of
membership, degree of indeterminacy and degree of non—membership respectively with the condition
0 ≤ TB(y) + IB(y) + FB(y) ≤ 3. TB(y), IB(y), and FB(y) gives the degree of truth membership,
degree of indeterminacy, and degree of false membership respectively in [0, 1].

Remark 1: Further in this paper, for a particular element x ∈ B, the 3-tuple (TB(x), IB(x), FB(x))
will be termed as a single–valued neutrosophic element (SVNE) or single-valued neutrosophic value
(SVNV).

Operations on single-valued neutrosophic values (SVNVs) [4]:
Let B = {(y, TB(y), IB(y), FB(y) ) : y ∈ Y}and C = {(y, TC(y), IC(y), FC(y) ) : y ∈ Y}

be two SVNVs then, we have the following operations.

Union: B ∪ C =

(
max(TB(y), TC(y)), max(IB(y), IC(y)),

min (FB(y), FC(y)) : y ∈ Y

)
.

Intersection: B ∩ C =

(
min(TB(y), TC(y)), min(IB(y), IC(y)),

max (FB(y), FC(y)) : y ∈ Y

)
.

Complement: BC = (1− TB(y), 1− IB(y), 1− FB(y)).

Definition 4. Let N(Y) be the set of all single-valued neutrosophic elements on a universal set
Y. Let B = (TB(y), IB(y), FB(y)) and C = (TC(y), IC(y), FC(y)) be two member of N(Y) s.t
B ⊆ C iff TB(y) ≤ TC(y), IB(y) ≤ IC(y), FB(y) ≥ FC(y).

Then ⊆ is a partially ordered set also, if

B ∨ C = Sup {B, C} = {max(TB(y), TC(y)), max(IB(y), IC(y)), min(FB(y), FC(y))}

and B∧C = In f {B, C} = {min (TB(y), TC(y)), min (IB(y), IC(y)), max (FB(y), FC(y))}
then B ∨ C and B ∧ C are Sup {B, C} and In f {B, C}, respectively. Therefore, N(Y) is a
lattice.

This lattice is used to describe the valuation of the single-valued neutrosophic knowl-
edge measure.

Definition 5. ([9]). The correlation coefficient ρ between two neutrosophic sets B and C is defined as

ρ(B, C) =
α (B, C)

(LB·LC)
1/2
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where α (B, C) is a correlation measure between B and C given as follows.

α(B, C) =
n

∑
i=1

[TB(yi)·TC(yi) + IB(yi)·IC(yi) + FB(yi)·FC(yi)]

and LB = ∑n
i=1
[
T2

B(yi) + I2
B(yi) + F2

B(yi)
]
,

LC =
n

∑
i=1

[
T2

C(yi) + I2
C(yi) + F2

C(yi)
]
.

Now we define correlation efficiency and normalized correlation efficiency for the
determination of objective weights of decision makers in the MAGDM problem.

Definition 6. The correlation efficiency of a SVNV Bk with respect to SVNVs Bm, m, k = 1, 2, 3,
. . . , n is defined as

γNS(Bk) =
∑n

m=1 ρ(Bk, Bm)

n− 1

Definition 7. Normalized correlation efficiency of Bnis defined as

Nγ(Bk) =
γNS(Bk)

∑n
m=1 γNS(Bm)

Definition 8. ([12]). The similarity measure S between two neutrosophic sets B and C is a function
S : B× C → [0, 1] which satisfies the given condition:

NSM1: 0 ≤ S (B, C) ≤ 1;
NSM2: S (B, C) = 1 if B = C;
NSM3: S (B, C) = S (C, B);
NSM4: S (A, C) ≤ S (A, B); S (A, C) ≤ S (B, C), if A ⊆ B ⊆ C.

Definition 9. ([6]). An entropy E on a single-valued neutrosophic element, ψ = (ψ1, ψ2, ψ3) is a
function E : N → [0, 1] which satisfies the following condition:

NSE1: ENS (ψ) = 0 if ψ is a crisp set i.e., ψ = (1, 0, 0) or (0, 0, 1);
NSE2: ENS (ψ)= 1 if (ψ1, ψ2, ψ3) = (0.5, 0.5, 0.5);
NSE3: ENS (θ) ≥ ENS (ψ) if θ is more uncertain;
NSE4: E (ψ) = E (ψC), where ψC = (1− ψ1, 1− ψ2, 1− ψ3).

Remark 2: Let ψ = (ψ1, ψ2, ψ3) and θ = (θ1, θ2, θ3) be two single-valued neutrosophic
elements in N(Y) then ψi and θi (i = 1, 2, 3) independently assumes their values in [0, 1].

In fuzzy theory, a fuzzy set A∗ is said to be a sharpened (less uncertain) version of a
fuzzy set A with membership function μA : Y → [0, 1] if

μA
∗(x) ≤ μA(x) for μA(x) ≤ 1

2 i.e., μA(x)− μc
A(x) ≤ 0

and μA
∗(x) ≥ μA(x) for μA(x) ≥ 1

2 i.e., μA(x)− μc
A(x) ≥ 0.

Based on similar logic, a single-valued neutrosophic elements θ is more uncertain than
ψ if ψt ≤ θt for θt − θc

t ≤ 0 and ψt ≥ θt for θt − θc
t ≥ 0 where t = 1, 2, 3.

3. A Knowledge Measure on Single-Valued Neutrosophic Set

We provide the following axiomatic framework for defining a knowledge measure
of SVNV. Let N(Y) be the set of all single-valued neutrosophic values, then a knowledge
measure on a single-valued neutrosophic value/element ψ = (ψ1, ψ2, ψ3) is a function K:
N(Y)→ [0, 1] that satisfies the following conditions:

NSK1: K (ψ) = 1 if and only if ψt = 0 or ψt = 1; t = 1, 2, 3;
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NSK2: K (ψ) = 0 if and only if (ψ1, ψ2, ψ3) = (0.5, 0.5, 0.5);
NSK3: K (ψ) = K (ψc);
NSK4: K (ψ) ≥ K (θ) if θ = (θ1, θ2, θ3) is more uncertain than ψ i.e., θt ≥ ψt when θt − θc

t
≤ 0; t = 1, 2, 3 or θt ≤ ψt when θt − θc

t ≥ 0.

We propose a knowledge measure for SVNV ψ as

K (ψ) = −1
3

3

∑
t=1

[
cos
(
(ψt − ψt

c )

2

)
π − 1

]
. (1)

The following theorem establishes the validity of the proposed knowledge measure.

Theorem 1. K (ψ) given in Equation (1) is a valid knowledge measure for SVNV ψ.

Proof. For this, it is sufficient to show that K (ψ) satisfies the axiomatic requirements
NSK1—NSK4.

NSK1: We have ψ = (ψ1, ψ2, ψ3). Let us suppose that ψt = 0 or ψt = 1 then ψt − ψc
t = 1 or

ψt − ψc
t = −1 for t = 1, 2, 3.

Using (1), we have K (ψ) = 1.
On the other hand, we assume that K (ψ) = 1
then, ψt − ψc

t = (ψt − (1− ψt) = 2ψt − 1.
⇒ ψt − ψc

t ε [−1, 1].
Therefore, every term in the summation of (1) is positive. As K (ψ) =1, then every term

in this summation should be equal to one, i.e.,

− 1
3

[
cos
(
(ψt − ψt

c )

2

)
π − 1

]
= 1. (2)

and Equation (2) holds if and only if ψt − ψc
t = −1 or ψt − ψc

t = 1 for t =1, 2, 3.
Hence, K (ψ) = 1 if and only if ψt = 0 or ψt = 1 for t = 1, 2, 3.

NSK2: If (ψ1, ψ2, ψ3) = (0.5, 0.5, 0.5), we have ψt − ψc
t = 0. Then, from Equation (1),

K (ψ) = 0. On the other hand, from the above analysis, we have ψt − ψc
t ε [−1, 1], it is

obvious that 0 ≤ K (ψ) ≤ 1.
If K (ψ) = 0 then ψt − ψc

t = 0 for t = 1, 2, 3.
It follows that ψt = 0.5, t = 1, 2, 3 i.e., (ψ1, ψ2, ψ3) = (0.5, 0.5, 0.5).

NSK3: Since ψc = (1 − ψ1, 1− ψ2, 1− ψ3) then (ψc)c = ψ. Thus,

K (ψc)= − 1
3

[
cos
(
(ψc

t−(ψt
c)c )

2

)
π − 1

]
= − 1

3

[
cos
(
(ψc

t−ψt )
2

)
π − 1

]
= − 1

3

[
cos
(
( ψt −ψc

t )
2

)
π − 1

]
.

Therefore, K (ψc) = K (ψ).
NSK4: Assume that θ is more uncertain than ψ. Therefore, in view of Remark 2, we have
two cases: ψt ≤ θt for θt − θc

t ≤ 0 and ψt ≥ θt, when θt − θc
t ≥ 0; t = 1, 2, 3.

Case 1: Let ψt ≤ θt for θt − θc
t ≤ 0; t = 1, 2, 3.

Since θt − θc
t ≤ 0⇒ θt ≤ θc

t .

Moreover, ψt ≤ θt (3)

⇒ θc
t ≤ ψc

t (4)

Using (3) and (4), we have

ψt − ψt
c ≤θt − θt

c

⇒ ψt − ψt
c ≤θt − θt

c ≤ 0.
(A)
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Further, ψt − ψc
t ∈ [−1, 0] ∀ t = 1, 2, 3.

∴ −1 ≤ ψt − ψc
t (B)

Using (A) and (B), we have

−1 ≤ ψt − ψt
c ≤ θt − θt

c ≤ 0. (C)

Note that, the generating function f (x) = −(cos
(

πx
2
)− 1

)
of the knowledge measure

defined in Equation (1) is a decreasing function of x in [−1, 0].
Therefore, in view of Equations (1) and (C), we have

K (ψ) ≥ K (θ).

Case II: Let ψt ≥ θt for θt – θc
t ≥ 0; t = 1, 2, 3.

On the same lines as that of Case I, we can obtain

K (θ) ≥ K (ψ).

This shows that whenever θ is more uncertain than ψ, we have
K (θ) ≥ K (ψ) and hence the proof of axiom NSK4. �

Theorem 2. Let K (ψ) and K (θ) be a knowledge measure of single-valued neutrosophic element
ψ = (ψ1, ψ2, ψ3) and θ = (θ1, θ2, θ3) in the lattice N(Y) (Definition 4) then

K( ψ ∪ θ ) + K(ψ ∩ θ) = K(ψ) + K(θ).

Proof. Here, we have two cases:
Case 1: when ψ ⊇ θ. Then, from Equation (1), we have

K(ψ ∪ θ) = − 1
3

3
∑

t=1

[
cos
(
( ψt −ψc

t ) ∪ (θt −θc
t )

2

)
π − 1

]
= − 1

3 ∑3
t=1

[
cos
(

max.( ( ψt −ψt
c ), ( θt −θt

c))
2

)
π − 1

]
= − 1

3 ∑3
t=1

[
cos
(

(θt−θc
t )

2

)
π − 1

]
.

⇒ K (ψ ∪ θ) = K (θ).

(5)

K(ψ ∩ θ) = − 1
3 ∑3

t=1

[
cos
(
( ψt −ψc

t ) ∩ ( θt −θc
t )

2

)
π − 1

]
= − 1

3 ∑3
t=1

[
cos
(

min. ( ψt −ψc
t ), ( θt −θc

t )
2

)
π − 1

]
= − 1

3 ∑3
t=1

[
cos
(

( ψt −ψc
t )

2

)
π − 1

]
.

⇒ K(ψ ∩ θ) = K(ψ). (6)

From (5) and (6) we get,

K(ψ ∪ θ) + K(ψ ∩ θ) = K(ψ)+K(θ).

Case 2: when ψ ⊆ θ, then Equation (1) gives the similar results as that of Case I, i.e.,

K(ψ ∪ θ) + K(ψ ∩ θ) = K(ψ)+K(θ).

�

In the next section, we establish the connections between similarity/distance mea-
sure for single-valued neutrosophic sets and the single-valued neutrosophic knowledge
measure.
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4. Single-Valued Neutrosophic Similarity Measure and Distance Measure

4.1. Single-Valued Neutrosophic Similarity Measure

Suppose ψ = (ψ1, ψ2, ψ3) and θ = (θ1, θ2, θ3) are two single-valued neutrosophic
sets. The similarity S (ψ, θ) between ψ and θ should satisfy the following requirements [15].

NS1: S ( ψ, θ) = 0 if and only if ψt − θt = 1 or ψt − θt. = −1, t = 1, 2, 3;
NS2: S (ψ, θ) = 1 if and only if (ψ1, ψ2, ψ3) = (θ1, θ2, θ3); t = 1, 2, 3;
NS3: S (ψ, θ) = S (θ, ψ);
NS4: S (ψ, ϕ) ≤ S (ψ, θ), S (ψ, ϕ) ≤ S (θ, ϕ) if ψt ≤ θt ≤ ϕt or ψt ≥ θt ≥ ϕt, t = 1, 2, 3.

Theorem 3. Let ψ = (ψ1, ψ2, ψ3) be a SVNE, then 1 − S (ψ, ψc) is a single—valued neutro-
sophic knowledge measure i.e.,

K(ψ) = 1− S(ψ, ψc) is a knowledge measure.

Proof. It is sufficient to show that 1 − S (ψ, ψc) satisfies the requirement NSK1–NSK4.

(a) K (ψ) = 1 if and only if 1 − S (ψ, ψc) = 1 which implies S (ψ, ψc) = 0 if and only if
ψt,−ψt

c = 1 or ψt− ψt
c = −1 i.e., K (ψ) = 1 if and only if ψt− ψt

c = 1 or ψt,−ψt
c = −1.

(b) K ((ψ) = 0 which implies that 1 − S (ψ, ψc) = 0 if and only if S (ψ, ψc) = 1 and S (ψ, ψc)
= 1 if and only ψt = ψt

c i.e., K (ψ) = 0 if and only if (ψ1, ψ2, ψ3) = (ψc
1, ψc

2, ψc
3) i.e., K

((ψ) = 0 if and only if (ψ1, ψ2, ψ3) = (0.5, 0.5, 0.5).
(c) K (ψc) = 1 − S ( ψc,( ψc)c) which implies K (ψc) = 1 − S ( ψc, ψ) = K (ψ).
(d) Let ψ = (ψ1, ψ2, ψ3) and θ = (θ1, θ2, θ3) be two SVNEs. Suppose that ψt ≤ θt when

θt − θt
c ≤ 0 then θt ≤ 1 − θt ≤ 0 i.e., θt ≤ 1 − θt and we have

ψt ≤θt ≤ 1− θt ≤ 1− ψt

i.e., ψt ≤ θt ≤ θt
c ≤ ψt

c.

Therefore, by definition of the similarity measure of SVNE (NS4), it is deduced that
S (ψ, ψc) ≤ S(θ, ψc) ≤ S (θ, θc)
or 1 − S (ψ, ψc) ≥ 1− S(θ, ψc) ≥1 − S (θ, θc)
or 1 − S (ψ, ψc) ≥1 − S (θ, θc).
which implies, K (ψ) ≥ K (θ).
Similarly, K (ψ) ≥ K (θ) when θt − θt

c ≥0. �

4.2. Single-Valued Neutrosophic Distance Measure

If ψ and θ are two SVNVs then the distance measure between ψ and θ should satisfy
the given conditions [16]:

NSD1: d (ψ, θ) = d (θ, ψ);
NSD2: d (ψ, θ) = 1 if and only if ψt = 0 or ψt = 1 for t = 1, 2, 3;
NSD3: d (ψ, θ) = 0 if and only if (ψ1, ψ2, ψ3) = (θ1, θ2, θ3) ;
NSD4: d (ψ, ϕ) ≥ d (ψ, θ); d(ψ, ϕ) ≥ d(θ, ϕ) if ψt ≤ θt ≤ ϕt or ψt ≥ θt ≥ ϕt.

Theorem 4. Let ψ = ψ1, ψ2, ψ3 be a SVNV, then d (ψ, ψc) is a single-valued neutrosophic
knowledge measure i.e., K (ψ) = d (ψ, ψc) is a single-valued neutrosophic knowledge measure.

Proof. It is sufficient to show that d (ψ, ψc) satisfies the requirement NSD1–NSD4.
NSD1: As we know K((ψ) = 1 which implies d (ψ, ψc) = 1 if and only if ψt − ψt

c = 1 or
ψt. − ψt

c = −1 i.e., ψt − (1− ψt) = 1 or ψt − (1− ψt) = −1 and this equation holds if and
only ψt = 0 or ψt = 1.

NSD 2: K (ψ) = 0 which implies that d (ψ, ψc) = 0 if and only if (ψ1, ψ2, ψ3) =
(ψ1

c, ψ2
c, ψ3

c) or (ψ1, ψ2, ψ3) = (1− ψ1, 1− ψ2, 1− ψ3) or ψt = 1 − ψt which implies ψt
= 0.5 for t = 1, 2, 3 i.e., (ψ1, ψ2, ψ3) = (0.5, 0.5, 0.5).

NSD 3: K (ψc) = d ( ψc, ψc)c) which implies d (ψc, ψ,) = K (ψc) = K (ψ).
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NSD 4: Let ψ = (ψ1, ψ2, ψ3) and θ = (θ1, θ2, θ3) be two SVNEs. Suppose that ψt ≤
θt when θt − θt

c ≤ 0 then θt − (1− θt) ≤ 0 or θt ≤ 1 − θt and we have, ψt ≤ θt ≤.
1− θt ≤ 1− ψt or ψt ≤ θt ≤ θt

c ≤ ψt
c. Therefore, by NSD4

d (ψ, ψc)≥d (θ, ψc)≥d (θ, θc)
i.e., d (ψ, vc)≥d (θ, θc).
⇒ K (ψ) ≥ K(θ).

Consequently, K (ψ) ≥ K (θ) for θt − θt
c ≥ 0. �

In the next section, we investigate the application of the proposed knowledge measure
in MAGDM problem.

5. The MAGDM Problem

Suppose we are given m attributes of each of the n available alternatives and a person or
an organization seeks the best alternative with the help of k decision-makers. Let C1, C2, C3,
. . . , Cm attributes be the attributes pertaining to the alternatives A1, A2, A3 . . . , An and
D1, D2, D3 . . . , Dk be the decision-makers. Then, each decision-maker gives neutrosophic
ratings based on satisfaction level to the attribute in context of the available alternative.
Objective weights of attributes are computed using entropy/knowledge measure.

This problem can be considered as multiple attribute group decision-making (MAGDM).
The theory of neutrosophy provides an alternative and an efficient tool to design decision-
making models with vague information. Such a mechanism is more practical and sophisti-
cated for obtaining the reasonable and appropriate solution of MAGDM problem.

A framework based on cognitive logic to solve an MAGDM problem requires the
following information.

(1) Decision matrices/table based on the neutrosophic knowledge-base of each decision
maker.

(2) A unified decision table aggregating the opinion of the decision makers with differ-
ent knowledge and background. The procedure of opinion aggregation essentially
needs to consider the level of expertise of each of the decision-makers. Therefore,
some level of importance or weight should be assigned to each decision expert. The
weight computed in this manner may be considered as the level of expertise. Now
question arises how to compute this weight. In such a scenario, the objective weights
of decision-makers can be obtained using some mathematical procedure connecting
the information base of the decision-makers. The correlation coefficient among the
neutrosophic knowledge base of experts gives the linear association or degree of
agreement in the opinion of the experts. The normalized correlation efficiency com-
putes the relative agreement level of each of the expert at normalized scale. Thus,
normalized correlation efficiency can be perceived as the weight to the expertise of a
decision-maker.

(3) The weights of the decision-makers are utilized to obtain the collective decision matrix.
The fusion of decision matrices also requires a suitable aggregation operator. In the
present scenario, we use a single-valued neutrosophic weighted averaging operator.

(4) Finally, the rating of alternatives can be obtained.

On the basis of this discussion, we developed the flowchart given in Figure 1 and the
following algorithm.
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Figure 1. Flowchart for algorithm following in the MADM problem.

5.1. Algorithm for MADM Problem in Neutrosophic Set

Step 1: There may be lots of attributes in a decision-making problem. Among them,
only some of the attributes are appropriate and technically sound. Therefore, appropriate
attributes are identified with the help of the domain experts.
Step 2: Different alternatives may be good in different attributes. On the basis of their
performance level, some ratings are given to each alternative with regard to each attribute by
decision-makers and these scores are given in the form of linguistic terms. The alternatives
with neutrosophic ratings of attributes are shown in the following decision matrix D:

C1 C2 . . . Cn

A1
A2

...

An

⎡⎣(T11, I11, F11) (T12, I12, F12) . . . (T1m, I1m, F1m)
(T21, I21, F21) (T22, I22, F22) . . . (T2m, I2m, F2m)
(Tn1, In1, Fn1) (Tn2, In2, Fn2) . . . (Tnm, Inm, Fnm)

⎤⎦
In the given matrix dij =

(
Tij, Iij, Fij

)
represent degree of truthness, indeterminacy,

and falsity respectively.
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Step 3: In the next step, we construct decision matrices for k decision-maker with the help
of linguistic term. It is necessary to find out the weights of each decision-makers because
each decision-maker has their own significance. For this, the linguistic terms for each
decision-maker are rated with the help of neutrosophic number

(
Tij, Iij, Fij

)
. Using the

correlation coefficient formula given in Definition 5 between each decision-maker helps us
to find the correlation measure and correlation coefficient between linguistic opinions of
the decision-makers. The correlation efficiency of each decision-maker can be considered
as a more realistic weight of the decision-maker as it computes the objective and subjective
assessments.
Step 4: Correlation efficiency concerning the intuitionistic fuzzy sets was computed by
Singh et al. [10]. Analogously, we compute the correlation efficiency γ and normalized
correlation efficiency Nγ in the neutrosophic environment in Definition 6 and Definition 7.
The normalized correlation efficiency of each decision maker was considered as the weights
of the decision-maker.
Step 5: With the help of the decision-maker’s assessment, construct the aggregated single-
valued neutrosophic decision matrix was constructed with the help of SVNWA (single-
valued neutrosophic weighted averaging) operator (Biswas et al. [11])

(
dij
)

m×n =

⎧⎪⎪⎨⎪⎪⎩
(

1− n
∏

k=1

(
1− Tij

p)λk
)

,
n
∏

k=1

(
Iij

p)λk,
n
∏

k=1

(
Fij

p)λk

⎫⎪⎪⎬⎪⎪⎭. (7)

where p is no. of decision-makers and λk is the weight of a decision-maker.
Step 6: The knowledge measure of the selected attribute is calculated using Equation (1).
From the knowledge measure of attributes, we can find the weight of an attribute as follows.

wi=
K(Ci)

∑ K(Ci)
, where i = 1, 2, 3, . . . , n. (8)

Step 7: Aggregation-weighted neutrosophic decision matrix is constructed for each alterna-
tive with respect to each attribute with the help of the given formula:(

Tij, Iij, Fij
)→ (

wiTij, wi Iij, wiFij
)
. (9)

Step 8: Obtain relative neutrosophic positive ideal (RNPIS) and relative neutrosophic
negative ideal solution (RNNIS) for each attribute from aggregated single neutrosophic
decision matrix as follows.

Qi+ =
{

max.
(
Tij
)
, min.

(
Iij
)
, min.

(
Fij
)}

. (10)

Qi− =
{

min.
(
Tij
)
, max.

(
Iij
)
, max.

(
Fij
)}

. (11)

Step 9: The distance measure of each alternative from RNPIS (Qi+) and RNNIS (Qi−) is
determined with the help of the given formula:

di+ =

√√√√√√ 1
3n

n

∑
i=1

(
Tij

wi(xi)− Ti
w+(xi)

)2
+(

Iij
wi(xi)− Ii

w+(xi)
)2
+(

Fij
wi(xi)− Fi

w+(xi)
)2.

(12)

di− =

√√√√√√ 1
3n

n

∑
i=1

(
Tij

wi(xi)− Ti
w−(xi)

)2
+(

Iij
wi(xi)− Ii

w−(xi)
)2
+(

Fij
wi(xi)− Fi

w−(xi)
)2.

(13)
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where Ti
w+ and Ti

w− are the max. and min. value of truth membership, Ii
w+ and Ii

w− are
the max. and min. value of indeterminacy, and Fi

w+and Fi
w− are the max. and min. value

of falsity membership.
Step 10: Finally, the relative closeness coefficient to the neutrosophic ideal solution is
obtained which is defined as follows:

Ci
∗ = di−

di+ + di− . (14)

The larger relative closeness coefficient value depicts the most suitable and appropriate
alternative.

5.2. Numerical Example Based on MADM (Multiple Attribute Decision-Making)

Suppose there are four decision-makers in a selection committee and they want
to select the most suitable and deserving candidate for the managerial position in an
organization. Let there be four candidates (alternatives) A1, A2, A3, A4 for the post. The
candidates have been selected based on four attributes C1, C2, C3, C4 where C1: Hardworker,
C2 : Leadership, C3: Domain knowledge, and C4: Visionary. Based on these attribute
decision-makers DM1, DM2, DM3, and DM4 select the most suitable candidate. Now, we
implement the proposed algorithm with the help of the numerical example:

Step 1: Each attribute attains its own significance. Some are very major and some are not.
Similarly, each decision-maker has their own importance according to their background
knowledge base, power, and position in an organization. The importance of attributes
is expressed by linguistic term and these terms are rated as single-valued neutrosophic
numbers as shown below in Table 1:

Table 1. Ranking of attributes and decision makers with linguistic terms.

Linguistic Term SVNNs

Extremely good (1.0, 0.0, 0.0)
Very good (0.95, 0.15, 0.05)

Good (0.75, 0.25, 0.10)
Medium (0.50, 0.40, 0.30)

Bad (0.20, 0.60, 0.60)
Very bad (0.10, 0.80, 0.95)

Step 2: The linguistic term taken from Table 2 can be expressed as single-valued neutro-
sophic number using Table 1 for rating the opinion of each decision-maker. We present
these ratings in the form of four decision matrices which subsequently helps to assess the
objective weights of the decision-makers. The correlation measures of the neutrosophic
values were calculated between each possible pair of decision-makers as shown in Table 3.
In Table 4, the correlation coefficient between each pair of decision-makers is obtained
with the help of the formula given in Definition 5. Further, we determine the correlation
efficiency and normalized correlation efficiency as shown in Tables 5 and 6 by using the
formula given in Definition 6 and Definition 7. We consider the normalize correlation
efficiency of each decision-maker as the weights of decision-makers.
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Table 2. Linguistic rating for four attributes for the four available alternatives by decision-makers.

Alternative Decision-Maker C1 C2 C3 C4

A1

DM1
DM2
DM3
DM4

G
VG
G

VG

G
G

VG
G

G
A

VG
A

G
G
A

VG

A2

DM1
DM2
DM3
DM4

VG
VG
VG
VG

G
A

VG
A

A
G
G
G

A
G
G
G

A3

DM1
DM2
DM3
DM4

VG
G
A
G

VG
G
A

VG

VG
G
A

VG

VG
G
A
G

A4

DM1
DM2
DM3
DM4

G
A

VG
G

G
A
G
G

G
G
G
G

G
G
G
G

For decision-maker DM1, DM2, DM3, DM4 linguistic term are given as below:
For decision-maker DM1

A1
A2
A3
A4

⎛⎜⎜⎝
< G G G G >
< VG G A A >
< VG VG VG VG >
< G G G G >

⎞⎟⎟⎠
For decision-maker DM2

A1
A2
A3
A4

⎛⎜⎜⎝
< VG G A G >
< VG A G A >
< G G G G >
< A G G G >

⎞⎟⎟⎠
For decision-maker DM3

A1
A2
A3
A4

⎛⎜⎜⎝
< G VG VG A >
< VG VG G G >
< A A A A >
< VG G G G >

⎞⎟⎟⎠
For decision-maker DM4

A1
A2
A3
A4

⎛⎜⎜⎝
< VG G A VG >
< VG A G G >
< G VG VG G >
< G G G G >

⎞⎟⎟⎠
For decision-maker DM1, DM2, DM3, DM4 single-valued neutrosophic values corre-

sponding to linguistic terms are⎛⎜⎜⎝
< (0.75, 0.25, 0.10) (0.75, 0.25, 0.10) (0.75, 0.25, 0.10) (0.75, 0.25, 0.10) >
< (0.95, 0.15, 0.05) (0.75, 0.25, 0.10) (0.50, 0.40, 0.30) (0.50, 0.40, 0.30) >
< (0.95, 0.15, 0.05) (0.95, 0.15, 0.05) (0.95, 0.15, 0.05) (0.95, 0.15, 0.05) >
< (0.75, 0.25, 0.10) (0.75, 0.25, 0.10) (0.75, 0.25, 0.10) (0.75, 0.25, 0.10) >

⎞⎟⎟⎠
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For decision maker DM2, the single-valued neutrosophic value corresponding to
linguistic terms is⎛⎜⎜⎝

< (0.95, 0.15, 0.05) (0.75, 0.25, 0.10) (0.50, 0.40, 0.30) (0.75, 0.25, 0.10) >
< (0.95, 0.15, 0.05) (0.50, 0.40, 0.30) (0.75, 0.25, 0.10) (0.50, 0.40, 0.30) >
< (0.75, 0.25, 0.10) (0.75, 0.25, 0.10) (0.75, 0.25, 0.10) (0.75, 0.25, 0.10) >
< (0.50, 0.40, 0.30) (0.50, 0.40, 0.30) (0.75, 0.25, 0.10) (0.75, 0.25, 0.10) >

⎞⎟⎟⎠
For decision maker DM3, the single-valued neutrosophic value corresponding to

linguistic terms is⎛⎜⎜⎝
< (0.75, 0.25, 0.10) (0.95, 0.15, 0.05) (0.95, 0.15, 0.05) (0.50, 0.40, 0.30) >
< (0.95, 0.15, 0.05) (0.95, 0.15, 0.05) (0.75, 0.25, 0.10) (0.75, 0.25, 0.10) >
< (0.50, 0.40, 0.30) (0.50, 0.40, 0.30) (0.50, 0.40, 0.30) (0.50, 0.40, 0.30) >
< (0.95, 0.15, 0.05) (0.75, 0.25, 0.10) (0.75, 0.25, 0.10) (0.75, 0.25, 0.10) >

⎞⎟⎟⎠
For decision maker DM4, the single-valued neutrosophic value corresponding to

linguistic terms is⎛⎜⎜⎝
< (0.95, 0.15, 0.05) (0.75, 0.25, 0.10) (0.50, 0.40, 0.30) (0.95, 0.15, 0.05) >
< (0.95, 0.15, 0.05) (0.50, 0.40, 0.30) (0.75, 0.25, 0.10) (0.75, 0.25, 0.10) >
< (0.50, 0.40, 0.30) (0.95, 0.15, 0.05) (0.95, 0.15, 0.05) (0.75, 0.25, 0.10) >
< (0.75, 0.25, 0.10) (0.75, 0.25, 0.10) (0.75, 0.25, 0.10) (0.75, 0.25, 0.10) >

⎞⎟⎟⎠
Table 3. Correlation measures of neutrosophic pair for each decision-maker.

DM1 DM2 DM3 DM4

DM1 11.336 10.262 10.193 10.984
DM2 10.262 10.194 9.65 10.562
DM3 10.193 9.65 10.939 10.118
DM4 10.984 10.562 10.118 11.341

Table 4. Correlation coefficient of single-valued neutrosophic sets.

DM1 DM2 DM3 DM4

DM1 1 0.954 0.915 0.968
DM2 0.954 1 0.914 0.982
DM3 0.915 0.914 1 0.908
DM4 0.968 0.982 0.908 1

Table 5. Correlation efficiency of decision-makers.

Decision-Maker Correlation Efficiency

DM1 0.945
DM2 0.95
DM3 0.912
DM4 0.952

Table 6. Normalized correlation efficiency of decision-makers.

Decision-Maker Normalized Correlation Efficiency

DM1 0.251
DM2 0.252
DM3 0.242
DM4 0.253
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Where 0.251, 0.252, 0.242, and 0.253 are weights of decision-makers. Take λ1 = 0.251, λ2 =
0.252, λ3 = 0.242, and λ4 = 0.253.
Step 3: We construct aggregated neutrosophic decision matrix as given in Table 7 with the
help of SVNWA (single-valued neutrosophic weighted averaging aggregation operator).

Table 7. Aggregated neutrosophic decision matrix.

C1 C2 C3 C4

A1 (0.889, 0.192, 0.070) (0.830, 0.221, 0.084) (0.759, 0.280, 0.147) (0.803, 0.246, 0.109)
A2 (0.949, 0.149, 0.050) (0.759, 0.280, 0.147) (0.702, 0.281, 0.131) (0.702, 0.281, 0.131)
A3 (0.802, 0.246, 0.109) (0.868, 0.216, 0.092) (0.764, 0.278, 0.144) (0.803, 0.246, 0.109)
A4 (0.798, 0.248, 0.111) (0.702, 0.281, 0.132) (0.750, 0.250, 0.100) (0.750, 0.250, 0.100)

The weights of the attributes are determined with the help of Equation (8), i.e., w1 = 0.313,
w2 = 0.246, w3 = 0.207, and w4 = 0.232.
Step 4: We construct an aggregated weighted neutrosophic decision matrix using Equa-
tion (9) and present in Table 8.

Table 8. Aggregated weighted neutrosophic decision matrix.

C1 C2 C3 C4

A1 (0.278, 0.060, 0.021) (0.204, 0.054, 0.020) (0.157, 0.057, 0.030) (0.186, 0.057, 0.025)
A2 (0.297, 0.046, 0.015) (0.186, 0.068, 0.036) (0.145, 0.058, 0.027) (0.162, 0.065, 0.030)
A3 (0.251, 0.076, 0.034) (0.213, 0.053, 0.022) (0.158, 0.057, 0.029) (0.186, 0.057, 0.025)
A4 (0.249, 0.077, 0.034) (0.172, 0.069, 0.032) (0.155, 0.051, 0.020) (0.174, 0.058, 0.023)

Step 5: The neutrosophic relative positive ideal solution and relative negative solution is
obtained from aggregated weighted neutrosophic decision matrix given in Equations (10)
and (11).

Neutrosophic relative positive ideal solution (Qi+):

Qi+ =

⎧⎪⎪⎨⎪⎪⎩
< 0.297, 0.046, 0.015 >,
< 0.213, 0.053, 0.020 >,
< 0.158, 0.051, 0.020 >,
< 0.186, 0.057, 0.023 >,

⎫⎪⎪⎬⎪⎪⎭.

Neutrosophic relative positive ideal solution (Qi−):

Qi− =

⎧⎪⎪⎨⎪⎪⎩
< 0.249, 0.077, 0.034 >,
< 0.172, 0.069, 0.036 >,
< 0.145, 0.058, 0.030 >,
< 0.162, 0.065, 0.030 >,

⎫⎪⎪⎬⎪⎪⎭.

Step 6: The distance measures (di+and di−) of each alternative from RNPIS and RNNIS are
determined with the help of normalized Euclidean distance measure given in Equations (12)
and (13). Finally, we obtain the relative closeness coefficient (Ci

*) with the help of formula
given in Equation (14).

The largest relative closeness value indicates the most suitable and appropriate alterna-
tive. From Table 9, it can be seen that the largest value of relative closeness coefficient is
corresponding to A1. Hence, A1 is the most suitable alternative.
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Table 9. Closeness coefficients of the alternatives.

Alternatives di+ di− Ci
*

A1 0.0079 0.0173 0.6865
A2 0.0134 0.0178 0.5705
A3 0.0170 0.0157 0.4801
A4 0.0220 0.0065 0.2280

Using the VIKOR method (Kamal et al. [17]) to the data of the numerical problem
considered in this section, the ranking results are A1 > A3 > A4 > A2. We observe that
the best alternative due to the VIKOR Method and proposed method remains the same.
Therefore, the proposed method is consistent with VIKOR method for finding the best
alternative.

6. Comparative Study

In this section, we investigate the effectiveness of the proposed knowledge measure in
MCDM problems and comparative study of proposed similarity measure.

6.1. Effectiveness of the Proposed Knowledge Measure against Different Existing Entropies

To check the usefulness of our proposed knowledge measure in MCDM problems,
we consider the numerical example given in Section 5.2. We calculate the weight of the
attribute with the help of the proposed single-valued neutrosophic knowledge measure. We
use a same numerical problem and calculate the weight of the attributes by using different
existing entropies as shown in Table 10.

Table 10. Ranking result using existing entropies and the proposed knowledge measure.

Existing Entropies Ranking

EY1 = 1
3(
√

2−1)

3
∑

t=1

((√
2 cos αt−αt

c

4 × π
)
− 1
)

(Wu et al. [6])
A1 > A3 > A2 > A4

EY2= 1
3(
√

2)−1

3

∑
t=1

( sinπ(αt−αt
c+1)

4 )+

( cos π(αt−αt
c+1)

4 )−1
(Jin et al. [12])

A1>A3>A2>A4

EY3 = 1− 1
n

m
∑

t=1
(αt + γt )|2 βt − 1 |

(Elshabshery and Fattouh [18])
A1 > A3 > A2 > A4

EY4 = 1
n ∑

(
1− 1

b−a

b∫
a
|αt − γt||βt − βt

c|
)

dx

(Aydogdu [15])
A1 > A3 > A2 > A4

K (Proposed Knowledge measure) A1 > A2 > A3 > A4

From Table 10, we observe that the best alternative using the existing single valued
entropy measures and our proposed knowledge measure remains same, i.e., A1. However,
overall ranking of the alternatives is different due to our proposed measure. Moreover, as
pointed out in the Section 5, the ranking of alternatives using VIKOR method is A1 > A3 >
A2 > A4 which is consistent with the ranking due to single-valued neutrosophic entropy
measures EYi (i = 1, 2, 3, 4), since the VIKOR method is suitable for the problems with
conflicting criteria as it gives the compromise-type solutions. Thus, in view of these facts,
we can say that the existing entropy measures are more suitable to MAGDM problems
with conflicting criteria and our proposed measure is suitable to the problems with non-
conflicting criteria.
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6.2. Comparison between the Existing Entropies of the Neutrosophic Sets and the Proposed
Knowledge Measure of Neutrosophic Sets on the Basis of Linguistic Hedges

In this subsection, we compare the existing entropies of single-valued neutrosophic
sets and proposed knowledge measure on the basis of linguistic hedges.

Zadeh [19] introduced the notion of the linguistic hedge in two parts: 1. Very, much,
more, or less which are used in direct situations; 2. hedges essentially, practically, techniques
are used in complex situations. Zadeh gave different types of operations, two of which are
concentration and dilation. The concentration is defined as

CON(A) = A2.

and dilation is the somehow opposite of concentration and is defined as

DIL (A) = A0.5.

Singh et al. [13] also investigated the superiority of the fuzzy knowledge measure
using structured linguistic framework.

The entropy for a fuzzy set A on the basis of mathematical operation should follow
the order as

E
(

A
1
2

)
> E(A) > E

(
A2
)
> E

(
A3
)

. (15)

Because of this, knowledge measure of fuzzy set, should follow the order

K
(

A
1
2

)
< K(A) < K

(
A2
)
< K

(
A3
)

. (16)

Neutrosophy is a broader sense of capturing the vagueness, so, the inequality order
given in Equations (15) and (16) must also be followed by an entropy and a knowledge mea-
sure, respectively, in the single-valued neutrosophic framework. To analyze the practicality
of the proposed measure, we consider the following empirical scenario.

Let NS(A) = (x1, (0.1, 0.2, 0)) (x2, (0.6, 0.1, 0.3)), (x3, (0.6, 0.3, 0.1)), (x4, (0,
0.2, 0.2)) be a SVNS in which x1, x2, x3, x4 assumes three values, each of which can
be regarded as membership value, indeterminacy, and non-membership value. Here, we
consider A as linguistic hedge good, A1/2 as average, A2 as very good, and A3 as extremely
good. The modifier for the NS(A) is given as

K(An) =
(
x, (TA(x))n, (IA(x))n, (FA(x))n )

EY1=
1

3
(√

2− 1
) 3

∑
t=1

((√
2 cos

αt − αt
c

4
× π

)
− 1
)

.

(Wu et al. [6])

EY2 =
1

3
(√

2
)
− 1

3

∑
t=1

(
sin π(αt − αt

c + 1)
4

)
+

(
cos π(αt − αt

c + 1)
4

)
− 1.

(Jin et al. [12])

EY3 = 1− 1
n

m

∑
t=1

(αt + γt )|2 βt − 1 |.

(Elshabshery and Fattouh [18])

EY4 =
1
n ∑

(
1− 1

b− a

∫ b

a
|αt − γt||βt− − βt

c|
)

dx.
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(Aydogdu [15])

EY5 =

{
1− |2βt−1|

2 i f αt = γt = 0.5
2−|2αt−1|−|2γt−1|

4 otherwise.

(Qin and Wang [7])

EY6 = 1− 1
n

m

∑
t=1

(αt + γt)|βt− − βt
c|

(Majumdar and Samanta [20])

EY7 = 1− 1
n

m

∑
t=1

|αt − 0.5|+ |γt − 0.5|+ |βt− − 0.5|+ |βt
c − 0.5|

2
.

(Thao and Smarandache [21])

EY8 =
1
n

m

∑
t=1

2− |αt − γt| − βt− − βt
c|

2 + |αt − γt|+ βt− − βt
c|

(Aydogdu and Sahin [22])
The comparative results for the following entropies of SVNS are given in Table 11.

Table 11. Computed entropies/knowledge measures of SVNSs.

NS EY1 EY2 EY3 EY4 EY5 EY6 EY7 EY8 K(A)

A1/2 0.948 2.966 0.884 2.965 0.247 0.833 0.663 0.581 0.270
A 0.845 2.171 0.705 2.169 0.187 0.825 0.387 0.394 0.482
A2 0.850 1.009 0.802 1.006 0.108 0.802 0.153 0.301 0.762
A3 0.899 0.547 0.885 0.544 0.058 0.885 0.069 0.299 0.873

Now, from Table 11, we observed that

EY1(A1/2) > EY1(A) < EY1(A2) < EY1(A3)

EY2(A1/2) > EY2(A) > EY2(A2) > EY2 (A3)

EY3(A1/2) > EY3(A) < EY3(A2) < EY3 (A3)

EY4(A1/2) > EY4(A) > EY4(A2) > EY4 (A3)

EY5(A1/2) > EY5(A) > EY5(A2) > EY5 (A3)

EY6(A1/2) > EY6(A) > EY6(A2) < EY6 (A3)

EY7(A1/2) > EY7(A) > EY7(A2) > EY7 (A3)

EY8(A1/2) > EY8(A) > EY8(A2) > EY8 (A3)

K(A1/2) < K(A) < K(A2) < K(A3).

From the above result, it has been observed that entropies EY2, EY4, EY7, and EY8
follow the pattern given in Equation (15). The knowledge measure of the neutrosophic set
is also shown above, which satisfies the order given in Equation (16). Now, we consider
another example of a NS.

NS(A) = ((x1, (0.1, 0.3, 0.7)), (x2, (0, 0.1, 0.9)), (x3, (0.8, 0.2, 0.3)), (x4, (0.8, 0.1, 0.4))

The entropies and knowledge measure table of the given NSs is shown below
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From the Tables 11 and 12, it was observed that our proposed knowledge measure
produces theoretical valid results, i.e., K(A1/2) < K(A) < K(A2) < K(A3), while SVN entropies
produce unreasonable results in different instances. Therefore, the performance of our
knowledge measure is better than the conventional entropy measures in the neutrosophic
settings.

Table 12. Computed entropies/knowledge measures of SVNSs.

NS EY1 EY4 EY5 EY8 K(A)

A1/2 0.660 0.660 0.195 0.471 0.358
A 0.697 0.561 0.2 0.405 0.468
A2 0.455 0.365 0.207 0.143 0.613
A3 0.430 0.345 0.2102 0.148 0.663

7. Conclusions

In this paper, we have proposed a knowledge measure in the single-valued neutro-
sophic framework. The single-valued neutrosophic knowledge measure has been found
to have a general relationship with the similarity and distance measures. Comparative
studies demonstrated that the given knowledge measure is more effective and suitable
than the existing entropy measure while dealing with the linguistic hedges and in MADM
problems. We have also developed a mechanism to handle a MAGDM problem incorpo-
rating the proposed single-valued knowledge measure, an existing correlation measure,
and an aggregation operator. This algorithm is found novel in sense that it identifies the
level of expertise of each decision maker in the group even if the hiring organization has
no information about their domain knowledge. The investigation of a problem related to
MAGDM using the proposed method improves upon the existing methods in two ways. It
offers independent choice of truthiness, falsity, and indeterminacy to the decision-makers
for creating numerical data from the vague knowledge base and derives the weightage
to decision-makers from the model itself. However, the current study demonstrates the
practical applications using artificially generated data; the creation of real single-valued
neutrosophic database seems to make this study more pragmatic. Our future studies will
focus on some other areas of applications such as pattern recognition, image processing,
etc., where the single-valued neutrosophic information seems to play a significant role.
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Abstract: The efficiency of sampling is a critical concern in Monte Carlo analysis, which is frequently
used to assess the effect of the uncertainty of the input variables on the uncertainty of the model
outputs. The projection pursuit multivariate transform is proposed as an easily applicable tool for
improving the efficiency and quality of a sampling design in Monte Carlo analysis. The superiority
of the projection pursuit multivariate transform, as a sampling technique, is demonstrated in two
synthetic case studies, where the random variables are considered to be uncorrelated and correlated in
low (bivariate) and high (five-variate) dimensional sampling spaces. Five sampling techniques includ-
ing Monte Carlo simulation, classic Latin hypercube sampling, maximin Latin hypercube sampling,
Latin hypercube sampling with multidimensional uniformity, and projection pursuit multivariate
transform are employed in the simulation studies, considering cases where the sample sizes (n) are
small (i.e., 10 ≤ n ≤ 100), medium (i.e., 100 < n ≤ 1000), and large (i.e., 1000 < n ≤ 10,000). The
results of the case studies show that the projection pursuit multivariate transform appears to yield
the fewest sampling errors and the best sampling space coverage (or multidimensional uniformity),
and that a significant amount of computer effort could be saved by using this technique.

Keywords: Monte Carlo analysis; Latin hypercube sampling; projection pursuit multivariate transform;
multidimensional uniformity

1. Introduction

Mathematical models are frequently used in many disciplines (i.e., natural sciences,
social sciences, engineering) in order to realistically estimate the physical processes in
question. To construct such models (or outputs), in most cases, one must use a number of
input variables. For example, to calculate the original oil in place (OOIP) for a reservoir,
five input variables including the thickness of the deposit, deposit area, net oil to gross
volume, net porosity, and water saturation should be considered [1]. However, due to
the physical and financial constraints related to the sampling scheme, there are generally
a limited number of measurements (or observations) of the input variables available for
modeling. Therefore, it is imperative that the effect of uncertainty associated with the input
variables of the model output be taken into account [2].

There are many sampling techniques that are used to assess the uncertainty associated
with the parameters of the models. For example, Monte Carlo simulation (MCS), which
relies on a repeated random sampling and statistical analysis, is generally used for this
purpose [3,4]. In MCS, the population is assumed to be independent and identically dis-
tributed, and the realizations of a sample are randomly chosen from the population with an
equal probability. A pseudo-random number generator, which satisfies a series of statistical
tests for randomness [5,6], is used to generate a sequence of independent numbers (or
random variates) from a uniform distribution U(0, 1) [7]. A major drawback of MCS is
that the realizations that are chosen completely at random tend to form clusters, which
leaves gaps that are not investigated in the sampling space. If one takes a large sample
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of realizations, the accuracy of the predicted model output increases and the sampling
errors become negligible. However, this is only achievable provided that the run time of
MCS is reasonably short. If the MCS run is computationally expensive, then the sampling
techniques with better sampling efficiency such as Latin hypercube sampling (LHS) (or
stratified random sampling) [8,9] and its variants should be employed.

The original and most simple form of LHS is referred to as classic Latin hypercube
sampling (CLHS). In CLHS, the population is divided into a number of non-overlapping
strata and MCS is used to generate a realization from each stratum. Because the population
is stratified, the heterogeneity in each stratum becomes less, which results in realizations
that are more uniform and representative. The stratification is maximized when the number
of strata n is equal to the sample size (n), i.e., [0, 1/n], [1/n, 2/n], . . . , [(n− 1)/n, 1] [10]. In
CLHS, as mentioned earlier, the population is marginally stratified, that is, it accounts for
only the univariate uniformity of the realizations and does not enforce any multivariate
uniformity. To improve the space-filling properties of CLHS designs, many studies in the
literature make use of mainly two performance criteria: (1) minimizing the pairwise corre-
lation between the realizations, and (2) maximizing the minimum distance between the
realizations [11–16]. Considering the correlated (or dependent) random variables, several
studies [17–20] propose various methodologies to generate a sample whose correlation
matrix is approximately equal to the given (or target) correlation matrix, that is, the joint
distribution is reproduced.

The two important variants of LHS that can be used to generate realizations that
have improved space-filling characteristics are (1) maximin Latin hypercube sampling
(maximin LHS) [21] and (2) Latin hypercube sampling with multidimensional uniformity
(LHSMDU) [1]. In the former approach, the aim is to generate a sample that maximizes
the minimum Euclidean distance between any pair of realizations, which is achieved by
generating a large number (i.e., thousands) of sampling designs and choosing the one that
has a maximized distance between any pair of realizations. Due to the maximization of the
distance between any pair, the realizations of the sample tend to spread out across the sam-
pling space, resulting in a better multidimensional uniformity. The latter approach expands
the univariate uniformity obtained by CLHS to the multivariate context. The algorithm
first generates more realizations than are required, and the realizations that are close to
each other (or redundant realizations) are sequentially eliminated in the multidimensional
space. The post-processing of the realizations is then carried out to enforce the uniformity
in the high-dimensional space.

Considering both maximin LHS and LHSMDU, it is important to note two things:
(1) the realizations generated by both techniques are still based on CLHS, and (2) both
techniques initially require a large number of sampling designs to be generated, which
significantly increases the central processing unit (CPU) run time. A better approach
for enforcing the sparsity in the sampling designs, however, would be to use projection
pursuit [22,23] iterations. The idea of projection pursuit is that the projected data is expected
to have a univariate Gaussian distribution if the original data is multivariate Gaussian. The
original data is, therefore, generally first transformed to normal scores and then sphered so
that the projection index only measures the deviation of the distribution of any projected
data from the standard Gaussian distribution N(0, 1). The projection pursuit multivariate
transform (PPMT) proposed by [24] makes use of this idea and applies a normal score
transformation along a projection vector in an iterative fashion so that the original data will
be eventually transformed to the uncorrelated and multivariate Gaussian scores. In fact,
this amounts to saying that the multidimensional uniformity of the sampling design can be
ensured through this technique.

We demonstrate the applicability of PPMT as an efficient sampling technique in two
synthetic case studies using the low (bivariate) and high (five-variate) dimensional sam-
pling spaces. The results of the simulation studies indicate that considering the various
sample sizes, PPMT yields much fewer sampling errors and exhibits better space-filling
characteristics than the other sampling techniques.
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2. Sampling Techniques

2.1. Monte Carlo Simulation

MCS (or simple random sampling) is a technique through which a sample of the pop-
ulation is constructed using a random sequence of numbers. The deterministic parameters
of the population can then be estimated from each sample [25]. The inverse transform
method (or inversion sampling) is used to generate a realization through MCS [4]. Let Z be
a random variable whose cumulative distribution function (CDF), which is monotonically
non-decreasing, is denoted by {F(z), a ≤ z ≤ b}, and the inverse CDF (or a quantile
function) of Z is defined by F−1(u) = inf{z ∈ [a, b] : F(z) ≥ u}, 0 < u < 1. Considering
that U ∼ U(0, 1) is also a random variable that has a standard uniform distribution, then
z = F−1(u), which can also be observed from Pr(Z ≤ z) = Pr(F−1(u) ≤ z) = Pr(u ≤
F(z)) = F(z).

For example, consider that n = 5 is the required number of realizations and k = 2
is the number of independent Gaussian random variables, X1 ⊥ X2 ∼ N(0, 1), that is,
the sampling space is two-dimensional and orthogonal. Independent random numbers
from a uniform distribution U(0, 1) (i.e., the pairs exhibit a uniform distribution in the unit
square, and similarly, the triplets also have a uniform distribution in the unit cube) are
generated, that is, pi = [p1i p2i . . . pni]

T , i = 1, . . . , k = 2 and n = 5. These numbers are
then established in a matrix P where (pij) ∈ R

5x2:

P =

⎡⎢⎢⎢⎢⎣
0.06 0.09
0.93 0.51
0.82 0.66
0.99 0.40
0.14 0.76

⎤⎥⎥⎥⎥⎦
Each element of the matrix P is mapped according to a target CDF, which yields the

independent realizations in the Gaussian unit xi = [x1i x2i . . . xni]
T , i = 1, . . . , k = 2 and

n = 5. For instance, considering a probability of p42 = 0.40 associated with the variable X2,
the corresponding realization can be obtained as x42 = F−1(0.40) = −0.24, where F−1(·)
denotes the inverse of the Gaussian CDF for the variable X2. The MCS sampling design
indicating the realizations given in matrix P and mapping these probabilities according to
the given CDF are presented in Figure 1a,b, respectively.

Figure 1. (a) A sampling design with n = 5 realizations generated by MCS in a two-dimensional
sampling space where the random variables are independent, (b) Mapping the quantiles according to
the standard Gaussian distribution using the inverse transform method.
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The matrix X, (xij) ∈ R
5x2 whose elements are the realizations of X1 and X2 is then

defined by

X =

⎡⎢⎢⎢⎢⎣
−1.54 −1.32
1.44 0.03
0.90 0.41
2.31 −0.24
−1.08 0.72

⎤⎥⎥⎥⎥⎦
In the case where X1 and X2 are correlated according to a given target correlation

matrix C where (cij) ∈ R
2x2, the linear dependency between X1 and X2, can be added via

Cholesky decompsition [26,27] of C, that is,

C = L · LT , (1)

where L is the lower triangular matrix and LT (where the superscript T denotes transposi-
tion) is the upper triangular matrix. The correlated realizations of X1 and X2 are computed
by multiplying the matrix L by the matrix XT :

X∗ = L · XT , (2)

The resulting matrix X∗ where (x∗ij) ∈ R
2x5 contains the realizations of X1 and X2 that

have a correlation matrix, which is close to the target correlation matrix C. The correspond-
ing dependent quantiles (or probabilities) 0 ≤ pij ≤ 1; i = 1, . . . , n = 5 and j = 1, . . . ,
k = 2 can be drawn from the standard Gaussian CDF as pij = F(x∗ij).

2.2. Latin Hypercube Sampling

CLHS, which was proposed by McKay et al. [8], partitions each CDF of the sample of
size (n) from k variables into n contiguous intervals. An independent random number from
the uniform distribution pi ∈ [0, 1], i = 1, . . . , n is then selected from each interval, resulting
in n random numbers for each of the k variables. The aforementioned n random numbers
are then randomly combined without replacements to generate the ordered quantiles.

For example, consider that the sampling space is two-dimensional (k = 2) and the
required number of realizations is five (n = 5). The elements of the following matrix P

consist of the random numbers [0, 1] selected from each interval of the CDFs of two random
variables. The matrix R contains the random permutations.

P =

⎡⎢⎢⎢⎢⎣
0.53 0.53
0.51 0.71
0.26 0.75
0.88 0.15
0.67 0.64

⎤⎥⎥⎥⎥⎦ R =

⎡⎢⎢⎢⎢⎣
4 5
2 4
3 1
5 2
1 3

⎤⎥⎥⎥⎥⎦
The ordered quantiles are then generated by

H =
1
n
(R− P), (3)

The pairwise elements of the following matrix H indicate a stratigraphic sampling
design, that is, one realization from each row and each column is generated from the
sampling space, as shown in Figure 2a.

H =

⎡⎢⎢⎢⎢⎣
0.69 0.89
0.30 0.66
0.55 0.05
0.82 0.37
0.06 0.47

⎤⎥⎥⎥⎥⎦
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Each element of the matrix H can then be mapped according to a target CDF as
xij = F−1(hij); i = 1, . . . , n = 5 and j = 1, . . . , k = 2, as shown in Figure 2b.

Figure 2. (a) A sampling design with n = 5 realizations generated by CLHS in a two-dimensional
sampling space where the random variables are independent, (b) Mapping the quantiles according to
the standard Gaussian distribution using the inverse transform method.

In the case of correlated random variables, the linear dependency can be added to the
realizations using the Cholesky decomposition (Equation (1)).

As for maximin LHS, which is based on the distance-based criterion proposed by
Johnson et al. [21], the realizations are generated by CLHS so that the minimum Euclidean
distance between all of the realizations is maximized. Let w be the variable indicating the
minimum distance between all of the realizations. The optimization problem can then be
defined by

maximize w

subject to w ≤ ∥∥hi − hj
∥∥, (i, j) ∈ J

hi ∈ F , i = 1, . . . , n,

(4)

where J = {(i, j) | 1 ≤ i < j ≤ n}, h = (hT
1 , . . . , hT

n ) and hi is the vector of coordinates
for realization i in R

d with d = 2. Considering a large number of iterations, the realizations
tend to be separated from each other, allowing for a more uniform space coverage. The
algorithm steps of the maximin LHS are given as follows:

1. Set the initial value of the minimum Euclidean distance to zero, winitial = 0.
2. Generate a sampling design Dl , l = 1, . . . , L using CLHS.
3. Calculate the minimum Euclidean distance wl from the CLHS design Dl generated in

step 2.
4. If wl > winitial , with l = 1, . . . , L, set the new initial minimum Euclidean distance

value as wl , that is, winitial = wl .
5. Return to step 2 and repeat the steps L times.
6. End.

The algorithm steps given above are used to generate a maximin LHS design which
takes into account a multidimensional uniformity through the maximization of the mini-
mum Euclidean distance calculated from the predefined number of CLHS designs. In step
1, the initial value of the minimum Euclidean distance is equal to zero. In step 2, a CLHS
design is generated. In step 3, the minimum Euclidean distance is calculated from that
CLHS design, and step 4 checks if the minimum Euclidean distance calculated from the
CLHS design is greater than the initial value of the Euclidean distance, which is zero. If so,
the calculated minimum Euclidean distance is set as the new initial value. In step 5, the
iteration is carried out a predefined number of times, and in step 6, the algorithm completes
all of the iterations. A maximin LHS design where the minimum Euclidean distance is
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maximized considering 1000 iterations is shown in Figure 3a.
The LHSMDU algorithm proposed by Deutsch and Deutsch [1] combines CLHS with a

realization elimination algorithm [28] in order to increase the multidimensional uniformity
of the sampling matrix. Consider that n = 5 represents the required number of realizations
and k = 2 is the number of random variables that are uncorrelated (or orthogonal to one
another). A sampling design is generated by LHSMDU using the following steps for the
algorithms:

1. Generate k · (m · n) random numbers from a uniform distribution U(0, 1), where m is
an integer greater than one and the common value of m is 5 (readers are referred to
Section 3 in [1] on how an appropriate m value is selected.).

2. For each realization i = 1, . . . , (m · n), calculate the Euclidean distance to other real-
izations and average the two smallest calculated distances.

3. For the realization i, save the average distance and return step 2 until all of the average
distances are calculated for all of the realizations i = 1, . . . , (m · n).

4. Remove the realization (m · n) = (m · n)− 1 for which the smallest Euclidean distance
is calculated in step 2.

5. Return to step 2 and repeat the steps until the remaining number of realizations is
equal to the number of realizations n that is selected initially, that is, (m · n) = n.

6. For variable j, j = 1, . . . , k, rank the n realizations and use these rankings as random
permutations (or a stratum).

7. Generate random numbers U(0, 1) for the n number of strata.
8. Sample the CDF of the variable j using the random numbers generated in step 7.
9. Increment j, (j = j + 1) and return to step 6 until the ranking and sampling are carried

out for all k variables.
10. End.

In the case of correlated random variables, the linear dependency can be added to
the realizations using the Cholesky decomposition (Equation (1)). A sampling design
generated by LHSMDU with the m value equal to 5 is shown in Figure 3b.

Figure 3. A sampling design with n = 5 realizations generated by (a) maximin LHS and (b) LHSMDU
in a two-dimensional sampling space where the random variables are independent.

2.3. Projection Pursuit Multivariate Transform

Considering a two-dimensional sampling space (Rd where d = 2), a pattern (or a
structure), such as clusters, outliers, and skewness, can be instantaneously discovered by
simply observing the scatterplot. However, it is not possible to detect the aforementioned
patterns when the sampling space is greater than three (Rd where d > 3). Projection
pursuit, which was first proposed by [22] and first implemented by [23], can be used to
detect these structures in the datasets defined in a high-dimensional sampling space. It
makes use of a projection index I(u, v) that measures the degree of ‘interestingness’ of the
data projected onto the plane spanned by the orthogonal vectors (u, v). The plane that
maximizes the projection index is determined by numerical optimization. The dataset is
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generally transformed to normal scores and sphered in advance, that is, the transformed
data has a mean of zero, a variance of one, and an identity correlation matrix. The projection
index then measures the discrepancy between the distribution of the projected data and the
standard Gaussian distribution N(0, 1).

For example, if the data is multivariate Gaussian, all of the projections are expected to
be Gaussian and no ‘interestingness’ will be found. Also, as proved by [29], most projections
of the multivariate data appear to be approximately Gaussian under appropriate conditions.
If one considers that I(u, v) = 0 is the perfectly Gaussian case, any projected data that
has a non-Gaussian distribution will increase the value of I(u, v), which indicates the
‘interestingness’ (or non-Gaussianity). One can also consider many other projection indices
that measure the deviation from the standard Gaussian distribution [30–32]. We use the
Fortran program called PPMT.EXE, which was proposed by [24] and is publicly available
through the link http://www.ccgalberta.com/resources/select-software/, accessed on 20
September 2022, in order to demonstrate the generation of a sampling design by the PPMT
technique. Let us consider again that the sampling space is two-dimensional, that is, k = 2
represents the number of random variables, and n = 5 is the number of realizations. The
steps of the PPMT procedure for generating the required number of realizations (k · n) are
summarized as follows:

1. Generate (k · n) random numbers from a uniform distribution U(0, 1) using MCS and
establish these random numbers in a (5× 2) matrix P.

2. Transform the elements of matrix P to the standard Gaussian values, that is, Y =

G−1[F(P)], where G−1[F(·)] is the normal score transform.
3. Compute the variance–covariance matrix of Y, that is, ΣΣΣ = (1/n)[YYT ].
4. Diagonalize ΣΣΣ, that is, ΣΣΣ = Q1 ∧∧∧ 1QT

1 , where Q1 denotes an orthogonal matrix of the
eigenvectors and ∧∧∧1 denotes the diagonal matrix of the eigenvalues.

5. Sphere the elements of matrix Y; that is, Y′ = S−1/2Y, where S−1/2 = Q1 ∧∧∧ −1/2
1 QT

1 .
6. Project Y′ onto k-dimensional unit length vector θθθ, that is, p = θθθY′.
7. Determine θθθ maximizing the projection index I(θθθ) that measures the univariate non-

Gaussianity.
8. Transform Y′ to the standard Gaussian values Ŷ so that the projection p̂ = θθθŶ is

univariate Gaussian. The steps for Gaussian transformation along a projection vector
of Y′ can be found in Barnett et al. [33].

9. Return to step 7 until the projection index I(θθθ) reaches convergence. The stopping
criteria for the optimization can be found in [24].

10. Establish the final PPMT scores as a matrix Ŷ where (ŷij) ∈ R
5x2.

11. Draw the probabilities from the standard Gaussian distribution and establish them
in a matrix D = F−1[G(Ŷ)], where (dij) ∈ R

5x2, where D indicates a PPMT sampling
design.

12. End.

The steps given above generate a sampling design through the projection pursuit
iterations. In step 1, the random realizations are generated using MCS. In steps 2–4, the
realizations are transformed into the standard Gaussian values and its variance–covariance
matrix is diagonalized. In step 5, the normalized realizations are sphered. The projection
pursuit iterations are carried out in steps 6–9. In step 10, the final PPMT scores are generated,
and in step 11, the probabilities pi ∈ [0, 1], i = 1, . . . , n are drawn from the standard
Gaussian distribution. The Cholesky decomposition (Equation (1)) can be used to impose
the linear correlations (or target correlation matrix) among the independent variables. A
flowchart indicating the steps of the aforementioned algorithm is presented in Figure 4.
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Figure 4. A flowchart indicating the steps for generating a sampling design using PPMT.

Considering the two-dimensional sampling space (k = 2) and (n = 5) realizations,
a sampling design generated by PPMT mapping the probabilities according to the given
CDF are shown in Figure 5a,b, respectively.

Figure 5. (a) A sampling design with n = 5 realizations generated by PPMT in a two-dimensional
sampling space where the random variables are independent, (b) Mapping the quantiles according to
the standard Gaussian distribution using the inverse transform method.
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3. Case Studies

3.1. Synthetic Bivariate Case

In the first case study, we consider that the sampling space is two-dimensional (k = 2)
and that 20 realizations (n = 20) of each random variable are generated using MCS,
CLHS, maximin LHS, LHSMDU, and PPMT, considering the cases where the random
variables are uncorrelated and correlated. It is noted that the values of the realizations
that are generated are only in the range of [0, 1], that is, [0, 1] bounds are interpreted as the
probability. To stabilize the distance measures between all of the realizations, 500 sets of
the sample of n = 20 are generated using each sampling technique. To assess the quality
of the sampling designs yielded by each technique, we use the Wraparound L2 (WL2)
statistics [34] that measure the discrepancy between the number of design realizations per
subvolume in comparison to the same number of uniformly distributed realizations across
the sampling space.

WL2 = −
(

4
3

)p

+
1
n2

n

∑
i=1

n

∑
j=1

p

∏
k=1

(
3
2
−
∣∣∣zk

i − zk
j

∣∣∣(1−
∣∣∣zk

i − zk
j

∣∣∣)), (5)

where zk
i and zk

j are the elements of the vectors z1, . . . , zn; i, j = 1, . . . , n denotes the number
of realizations, and k = 1, . . . , p denotes the number of random variables.

We first consider the case where the two random variables are uncorrelated. The
realizations are straightforwardly generated by MCS and CLHS. Considering maximin
LHS and LHSMDU, the additional parameters required by the procedures include the
number of iterations in maximin LHS and m value in LHSMDU, as explained in Section 2.2.
We select the number of iterations as 1000 in the maximin LHS procedure and consider the
m value to be equal to 5 in the LHSMDU procedure. As for PPMT, the entire procedure,
as explained in Section 2.3, consists of generating realizations by MCS, mapping these
realizations according to a standard Gaussian CDF, using these realizations to generate
PPMT scores, and back-transforming the PPMT scores to the uniform distribution. Figure 6
shows four sets of sample with n = 20 realizations generated by MCS, CLHS, maximin
LHS, LHSMDU, and PPMT.

The contours shown in Figure 6 are the probability contours of the multivariate Gaus-
sian distribution. Because the random variables are independent, their covariance matrix is
an identity matrix. Therefore, the probability contours, as shown in Figure 6, represent a
circle shape.

We now consider the case where the random variables are positively correlated ac-
cording to the following covariance matrix C:

C =

[
1 0.85

0.85 1

]
As can be seen from the elements of the matrix C, the variances of both random

variables are one and the strength of the linear relation between the random variables, as
determined by the covariance (or correlation coefficient), is 0.85. The target correlation is
imposed to the realizations of the independent random variables through the Cholesky
decomposition (Equation (1)). Figure 7 shows the four sets of samples with n = 20
correlated realizations generated by each sampling technique.
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Figure 6. Four sets of samples with n = 20 realizations generated by each sampling technique in a
two-dimensional sampling space where the random variables are independent.

The contours shown in Figure 7 represent the probability contours of the multivariate
Gaussian distribution. Considering the target correlation matrix C, the probability contours
exhibit an elliptical shape.

3.2. Synthetic Five-Variate Case

To further investigate the efficiency of each sampling technique, we present another
case study where the sampling space is considered to be five-dimensional. We use the
petroleum reservoir’s OOIP as a variable to be sampled. The formula for calculating the
OOIP is given as follows:

OOIP = CAT ·NTG · φnet(1− Sw), (6)

where C is the constant that accounts for units and is considered to be one; A represents
the area of the deposit; T is the thickness of the deposit; NTG is the net oil to gross volume;
φnet is the net porosity and Sw is the water saturation. As given in Equation (6), the
value of OOIP is calculated as a function of five variables. To assess the quality of the
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sampling designs generated by each technique, the underlying (or truth) distribution of
each OOIP variable is simulated using 10 million realizations generated by MCS. The
selected distributions and their parameters for each variable are contained in Table 1.

Figure 7. Four sets of samples with n = 20 realizations generated by each sampling technique in a
two-dimensional sampling space where the random variables are positively correlated.

Table 1. The parametric distributions and their parameters used for each OOIP variable.

Variable Distribution Parameters

A Triangular a = 2, b = 4, c = 6
T Gaussian m = 10, σ = 1

NTG Uniform a = 0.6, b = 0.8
φnet Triangular a = 0.15, b = 0.25, c = 0.35
Sw Triangular a = 0.15, b = 0.2, c = 0.3

To make the results comparable to the ones shown in the study presented by Deutsch
and Deutsch [1], we use the same distribution types and their parameters given in that
paper. In the first part of this case study, we consider that all of the OOIP variables are
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uncorrelated. Given the nature of sampling, it is clear that if one takes a larger sample
of realizations, the accuracy of the parameter estimation will increase. Therefore, we
consider several scenarios where the sample sizes (n) are relatively small (10 ≤ n ≤ 100),
medium (100 < n ≤ 1000), and large (1000 < n ≤ 10,000). For each case, 100 sets of the
predetermined sample size are generated using MCS, CLHS, maximin LHS, LHSMDU,
and PPMT, that is, each of the OOIP variables is sampled from their underlying CDFs and
the empirical OOIP CDF is then constructed for every sample size and every sampling
technique. The efficiency of the sampling designs generated by each technique is assessed
based on a criterion that is similar to the Kolmogorov–Smirnov D statistics [35], which is
given as follows:

e = max|F−1
re f (p)− F−1

emp(p)|, (7)

where e is the error value indicating the maximum discrepancy between the empirical
CDF generated by the particular sampling technique and the underlying CDF; F−1

re f (p);

p = 0.1, 0.2, . . . , 0.9 are the quantile values read from the underlying CDF; and F−1
emp(p);

p = 0.1, 0.2, . . . , 0.9 are the quantile values read from the empirical CDF. Figure 8 shows the
underlying OOIP CDF and the randomly selected empirical CDFs of the OOIP generated
by each sampling technique.

Figure 8. The underlying CDF of the OOIP in the case where the OOIP variables are uncorrelated and
the empirical CDFs are generated by each sampling technique considering the small sample sizes.

It can be seen in Figure 8 that only the empirical CDFs of the OOIP generated based
on the small sample sizes are shown; this is because the greatest discrepancy between
the sampling techniques should be observed in cases where the sample size is small. As
the sample size increases, one should expect that the average e values calculated for each
sampling technique tend to get close to one another, which can be observed in Figure 9.

161



Appl. Sci. 2022, 12, 9668

Figure 9. The averages of the e values versus the number of realizations generated by each sampling
technique considering that the OOIP variables are uncorrelated.

The power law functions can be seen in Figure 9, which are in the form of the following
equation:

emean = a · Lb, (8)

(where L denotes the number of realizations) are fitted to the pairwise points of the average
e values and the number of realizations. It is noted that the logarithmic scale is used for the
x-axis shown in Figure 9. The coefficients (a and b) of the power law functions, which are
contained in Table 2, are calculated through the ordinary least squares regression.

Table 2. The coefficients of the power law functions in the case where the OOIP variables
are uncorrelated.

Coefficients MCS CLHS Maximin LHS LHSMDU PPMT

a 1.267 1.056 0.980 0.803 0.717
b −0.488 −0.504 −0.484 −0.449 −0.477

It can be seen in Table 2 that the value of the coefficient b is approximately equal to
−0.5 for all of the sampling techniques, the largest value of the coefficient a is obtained from
the model fitted to the MCS case, and the smallest value of the coefficient a is computed
from the model fitted to the PPMT case.

In the second part of this case study, we consider that the OOIP variables are somewhat
correlated with one another through the following target correlation matrix C:

C =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0.3 0.25 −0.4
0 0.3 1 0.4 −0.5
0 0.25 0.4 1 −0.6
0 −0.4 −0.5 −0.6 1

⎤⎥⎥⎥⎥⎦
It is clear from the elements of the matrix C that the first variable (thickness, T) does

not have any linear correlations with any of the remaining OOIP variables. The rest of
the variables appear to be either positively or negatively correlated with one another. The
Cholesky decomposition of the target correlation matrix C is carried out, and the indepen-
dent realizations of the OOIP variables are correlated. Figure 10 shows the underlying
OOIP CDF and the randomly selected empirical CDFs of the OOIP generated by each
sampling technique.
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Figure 10. The underlying CDF of the OOIP in the case where the OOIP variables are correlated and
the empirical CDFs are generated by each sampling technique considering the small sample sizes.

The quality of the sampling designs generated by each technique is again assessed
according to the criterion given in Equation (7). Figure 11 shows the plot of the averages of
the e values versus the number of realizations along with the fitted power law functions.

Figure 11. The averages of the e values versus the number of realizations generated by each sampling
technique considering that the OOIP variables are correlated.

The coefficients of the fitted models for each sampling technique are given in Table 3.

Table 3. The coefficients of the power law functions in the case where the OOIP variables are correlated.

Coefficients MCS CLHS Maximin LHS LHSMDU PPMT

a 1.577 1.297 1.244 1.118 1.028
b −0.504 −0.492 −0.513 −0.466 −0.497
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One can see in Table 3 that the values of the coefficient b are approximately equal to
−0.5 for all sampling techniques, and the values of the coefficient a appear to be systemati-
cally higher than those estimated for the uncorrelated case shown in Table 2.

3.3. Quality Assessments of Sampling Designs

The quality of each design generated by the sampling techniques is visually inspected
and numerically assessed according to the magnitude of the values of each criterion given
in Equations (5) and (7). Considering the first case study where the sampling space is two-
dimensional, one can see in Figures 6 and 7 that given the realizations generated by MCS, a
large area of the sampling space is not investigated. This is mainly because MCS generates
realizations completely at random; therefore, it is expected that a cluster of realizations
is formed in the sampling space. The sampling designs generated by CLHS appear to
be better than the ones generated by MCS. This is due to the fact that CLHS enforces
the univariate uniformity of the realizations, that is, the realizations are drawn from each
stratum, which guarantees that there is only one realization from each row and each column
of the sampling space. However, no multidimensional uniformity is considered in CLHS.
As for maximin LHS, LHSMDU, and PPMT through which one can take into account
the multidimensional uniformity, the sampling designs shown in Figures 6 and 7 clearly
indicate significant improvements in terms of the space-filling properties of the realizations.

In addition to the visual inspection of the designs, we also numerically assess the
quality of each sampling design using WL2 statistics (Equation (5)). The box plots indicating
the distribution of the aforementioned statistic considering the cases where the random
variables are uncorrelated and correlated are presented in Figure 12.

Figure 12. The box plots of the WL2 statistics: (a) uncorrelated case, and (b) correlated case.

It can clearly be seen in Figure 12a,b that MCS yields the largest discrepancy values
according to the WL2 statistic, and PPMT, on the other hand, appears to outperform CLHS,
maximin LHS, and LHSMDU. This is mainly due to the fact that the sampling designs
generated by PPMT have no restrictions due to the Latin hypercube design. The median
value of the discrepancy generated by MCS is approximately twice as much as the those
generated by CLHS and its variants. The medians of the discrepancy values generated
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by maximin LHS and LHSMDU are rather close and slightly lower than that generated
by CLHS.

Considering the second case study, one can see in Figures 8 and 10 that the empirical
CDFs of the samples of varying sizes generated by PPMT appear to be closer to the
underlying OOIP CDF than those generated by the other sampling techniques. It is again
clear in the same figures that the most noticeable discrepancy between the empirical CDFs
and the underlying OOIP CDF is in the MCS case. Similarly, Figures 9 and 11 clearly show
that the fewest errors indicating the discrepancy between each empirical OOIP CDF and
the underlying OOIP CDF are generated by PPMT. Considering the case where the random
variables are correlated, the magnitudes of the error values appear to be greater for all of
the sampling techniques than the uncorrelated case; however, PPMT outperforms the other
sampling techniques in the correlated case as well.

In addition to the aforementioned comparisons, one should also know how many
realizations should be generated by MCS to ensure a specified statistical accuracy. This
can be calculated using the error values generated by each sampling technique in the
power law function (Equation (8)) that is fitted to the MCS error values versus the number
of realizations. Table 4 contains the approximate number of realizations that should be
generated by MCS to ensure the same statistical accuracy achieved by the other sampling
techniques.

Table 4. The equivalent number of realizations to be generated by MCS ensuring the specified
sampling accuracy.

MCS Equivalent Number of Realizations

Reals # CLHS Maximin LHS LHSMDU PPMT

10 20 24 22 25 26 30 30 32
100 195 200 199 204 202 208 281 312

1000 1631 1657 1690 1703 1699 1715 3398 3401
10,000 15,948 16,144 17,055 17,899 17,064 17,956 21,034 21,945

The approximate number of realizations that should be generated by MCS is calculated
using the coefficients (Tables 2 and 3) of the power law functions fitted to the MCS case
considering the cases where the random variables are deemed to be uncorrelated and
correlated. For example, considering the uncorrelated case, the estimated coefficients
(a = 1.267 and b ≈ −0.5) of the power law function fitted to the MCS case are used along
with the error value yielded by each sampling technique for each sample size. In other
words, if we want to generate 10 realizations using CLHS, the corresponding error value
is used in the power law function with the coefficients estimated for the MCS case and
the equivalent number of realizations to be generated by MCS is calculated. The columns
where the number of realizations are given in bold in Table 4 represent the case where the
random variables are correlated. For example, considering 100 realizations, in order to
maintain the same statistical accuracy observed in the PPMT case, one should generate 281
and 312 realizations using MCS in the uncorrelated and correlated cases, respectively.

4. Conclusions

The main objective of this paper was to introduce PPMT as an efficient and easily
applicable tool for the assessment of parameter uncertainty of the models defined in the
multidimensional sampling spaces. The study considered four other sampling techniques
for comparison including MCS, which is a general technique for random sampling from a
given distribution, CLHS, which is a stratified random sampling technique, and two vari-
ants, the (maximin LHS and LHSMDU) of the LHS technique. Two synthetic case studies
where various sample sizes (ranging from n = 10 to n = 10,000) were used considering
two- and five-dimensional sampling spaces were conducted in order to assess the sampling
performance of PPMT.
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In the first case study, the sampling space was considered to be two-dimensional
and n = 20 realizations of two random variables were generated 500 times. The visual
and numerical results shown in Figures 6, 7, and 12 clearly indicated that in comparison
to the other sampling techniques, PPMT appeared to be the best technique that enforces
the multidimensional uniformity among the realizations defined in a two-dimensional
sampling space. When the two random variables were correlated according to the target
correlation matrix, PPMT again outperformed the other sampling techniques by yielding
the fewest discrepancy values.

As for the second case study where the sampling space was considered to be five-
dimensional, the results of the simulation study presented in Figures 8–11 clearly indicated
that PPMT yielded the fewest sampling errors in comparison to all other sampling tech-
niques in question and generated realizations whose empirical CDFs were rather close to
the underlying CDF of the variable of interest (OOIP). The other important outcome of
the simulation study, which is worth mentioning, is that the CPU capacity (or run time)
required for the PPMT procedure was a lot less than those required for maximin LHS and
LHSMDU. Therefore, PPMT can be considered an easily applicable technique that can be
used for random sampling in Monte Carlo analysis. The Python code demonstrating the
implementation of the PPMT as a sampling technique in the case of correlated random vari-
ables is available through https://github.com/Oktay-Erten/ppmt_parameter_uncertainty,
accessed on 20 September 2022.
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Abbreviations

CDF cumulative distribution function
CLHS classic Latin hypercube sampling
CPU central processing unit
LHS Latin hypercube sampling
LHSMDU Latin hypercube sampling with multidimensional uniformity
Maximin LHS maximin Latin hypercube sampling
MCS Monte Carlo simulation
OOIP original oil in place
PPMT projection pursuit multivariate transform
WL2 Wraparound L2
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Abstract: Ant Colony Optimization (ACO) is a practical and well-studied bio-inspired algorithm to
generate feasible solutions for combinatorial optimization problems such as the Traveling Salesman
Problem (TSP). ACO is inspired by the foraging behavior of ants, where an ant selects the next city to
visit according to the pheromone on the trail and the visibility heuristic (inverse of distance). ACO
assigns higher heuristic desirability to the nearest city without considering the issue of returning
to the initial city or starting point once all the cities are visited. This study proposes an improved
ACO-based method, called ACO with Adaptive Visibility (ACOAV), which intelligently adopts a
generalized formula of the visibility heuristic associated with the final destination city. ACOAV uses a
new distance metric that includes proximity and eventual destination to select the next city. Including
the destination in the metric reduces the tour cost because such adaptation helps to avoid using
longer links while returning to the starting city. In addition, partial updates of individual solutions
and 3-Opt local search operations are incorporated in the proposed ACOAV. ACOAV is evaluated
on a suite of 35 benchmark TSP instances and rigorously compared with ACO. ACOAV generates
better solutions for TSPs than ACO, while taking less computational time; such twofold achievements
indicate the proficiency of the individual adoption techniques in ACOAV, especially in AV and partial
solution update. The performance of ACOAV is also compared with the other ten state-of-the-art
bio-inspired methods, including several ACO-based methods. From these evaluations, ACOAV is
found as the best one for 29 TSP instances out of 35 instances; among those, optimal solutions have
been achieved in 22 instances. Moreover, statistical tests comparing the performance revealed the
significance of the proposed ACOAV over the considered bio-inspired methods.

Keywords: ant colony optimization; adaptive visibility; traveling salesman problem; partial solution
update; 3-opt local search

MSC: 68Q07; 68R05; 68T20; 68W50

1. Introduction

The Traveling Salesman Problem (TSP) is one of the challenging combinatorial op-
timization problems that attracted the bio-inspired research community. TSP falls in the
class of combinatorial optimization problems with various practical applications [1]. In
TSP, a traveler visits a set of cities and finally returns to the initial city, making a closed-loop
tour [2]. A TSP instance contains a list of cities having geographical coordinates (i.e., x and
y) of individual ones. The distance between two cities is generally the Euclidean distance,
and tour cost is the total distance to be passed by the traveler for visiting all the cities [3,4].
The problem is to complete the tour with minimum cost. Due to the importance of optimal
route generation issues in many real-life applications (e.g., vehicle routing problem, task
scheduling, and logistics), TSP is the most studied optimization task.

Various techniques and methods have been investigated to solve TSP in the last few
decades; among those, bio-inspired swarm intelligence (SI) based methods are the most
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popular ones. In SI, Ant Colony Optimization (ACO) is the pioneer method to solve
TSP [5,6]. Later, Artificial Bee Colony (ABC) [7], Particle Swarm Optimization (PSO) [8],
Cuckoo Search (CS) [9], and other SIs are used to solve TSP. An SI algorithm starts with an
initial population, and then knowledge from different agents (i.e., members) is utilized to
build a better solution. Recently, several ACO-based improved methods with modifications
in individual ACO components have been investigated to solve TSP [10–13]. In [11], a
parallel cooperative ACO (PACO) is proposed by splitting the ants into several groups to
form multiple independent ant colonies. Each colony shares its best solution with the others
to generate the overall best solution. The heterogeneous adaptive ACO (HAACO) [10]
initializes the control parameters and employs the elitism method to replace the worst ant
with the child of the best ant. In [13], a dynamic evaporation strategy of pheromone is
adopted to enhance ACO, called DEACO, which clusters the cities and intelligently chooses
the first city to find the shortest path. In addition, several hybrid methods by integrating
ACO with other SI methods have also been proposed recently [14–16].

This study investigates an efficient bio-inspired ACO method, incorporating a new
heuristic function and solution updating strategy with the conventional ACO for solving
TSPs. In ACO, an ant selects the next city to visit according to the pheromone trail and the
visibility heuristic [17]. ACO assigns a higher visibility heuristic to the nearest city without
considering returning to the initial city or destination. Few studies identified that choosing
the nearest city is not always a good decision [18,19]. A common scenario of ACO is that it
got stuck to local optima, and its convergence speed is low [20]. Considering the above-
mentioned issues regarding conventional ACO, a new ACO-based method is proposed in
this study, adopting transition rules emphasizing distance to the returning city. Notably,
recent ACO-based studies [10–12,14], focused on various issues without considering such
an important feature that the ants have to return to the initial city. In the proposed ACO
with adaptive visibility (ACOAV) method, partial updates of individual solutions and the
3-Opt algorithm are adopted to achieve better performance. The proposed method is tested
on a set of benchmark TSPs, and it outperformed ACO and some other recent methods. The
research contributions of adaptive visibility formulation and partial updating of individual
solutions made the proposed ACOAV an effective TSP solving method.

The remaining paper is organized into four sections. Section 2 presents TSP basics and
reviews recent methods to solve it. Section 3 describes the proposed method, including
the formulation of the visibility heuristic function. Experimental results and performance
comparison are provided in Section 4. Section 5 discusses major contributions and main
achievements briefly. Finally, Section 6 gives a brief conclusion of the present study and
directions for further work.

2. TSP and Recent Methods to Solve It

This section describes the traveling salesman problem (TSP) with its mathematical
formulation and its importance. Next, a brief review of recent prominent TSP solving
methods, including ACO-based techniques and other bio-inspired methods, is provided.

2.1. TSP and Its Importance

TSP is the problem of visiting a set of cities and returning to the initial city with the
minimum cost. TSP can be represented by a complete weighted graph, G = (V, E); vertex
set V = {v1, v2, v3, . . . , vN . }, here vertex vi represents the ith city; edge set E = {(vi, vj) |
1 ≤ i, j ≤ N and i �= j}, where N is the number of vertices, and each edge represents the
direct link between the cities vi and vj. Distance between two cities s and l is calculated
using the following Euclidean distance formula.

dsl =

√
(xs − xl)

2 + (ys − yl)
2 (1)

Suppose, C = {c1, c2, c3, . . . , cN , c1} is a complete solution for a TSP of N cities, where
ci ∈ V, 1 ≤ i ≤ N. C is the order the traveler visits cities. Visiting each city exactly once
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and returning to the starting city makes a Hamiltonian loop in the graph. The sum of the
distance of the edges used by the traveler is the total cost of the tour:

f (c) = ∑N−1
i=1 dcici+1 + dcN c1 . (2)

TSP aims to complete the tour with minimum cost (i.e., the lowest value of Equation (2)).
Therefore, the main task of TSP is to choose the city order to visit that gives a minimum tour
length. In other words, TSP belongs to the class of combinatorial optimization problems to
select N appropriate edges from N(N − 1)/2 edges to complete the tour optimally with the
minimum cost [2].

The significance of TSP is that it represents many practical applications [1]; a method
for TSP may also be applied for solving other optimization problems [2]. It has practical
applications in the traveling purchaser problem, vehicle routing problem [21], cellular man-
ufacturing, frequency assignment problem, circuit wiring, clustering, job-shop scheduling,
etc. [1,22]. The TSP model is also applicable in different cases such as X-ray crystallogra-
phy, overhauling gas turbine engines, warehouse order-picking problems, data analysis in
psychology, and wallpaper cutting [22]. TSP is intensively studied in theoretical computer
science, operations research, and engineering [13,22]. TSPs are NP-hard and cannot be
solved in polynomial time [2]. However, several metaheuristic methods, including SI
methods, have been developed to handle TSP effectively.

2.2. Solving TSP with ACO and Its Updated Models

Ant colony optimization (ACO) is a pioneer SI method to solve TSP. ACO is developed
based on the natural ants foraging for food interacting through deposited pheromone
on the paths. In ACO, an ant selects the order of the cities according to a probability
function considering pheromone level and distances between individual cities. Two control
parameters α and β in ACO regulate the pheromone and visibility, respectively, to select an
edge. A brief description of ACO is available in the coming section before presenting the
proposed model. However, at a glance, the intensity of pheromone increases on the edges
that are visited mostly by the ants, and finally, tours of individual ants converge to a single
tour path. Though ACO discovers good solutions rapidly, it can easily be trapped into local
optima [13]. Several studies investigated to increase searching diversity and overcome
other limitations of ACO [23]. Some recently proposed modified ACO on solving TSP are
discussed below.

The heterogeneous adaptive ACO (HAACO) method [10] adaptively initializes the
control parameters (i.e., α and β) of the conventional ACO, resulting in homogenous
behavior for early iterations and heterogeneous behavior at later iterations exhibited by
ants. Ants give a higher preference towards the heuristic value (e.g., β = 10) over the
pheromone trail (e.g., α = 0) at the initial phase. HAACO ensures retaining the fittest
individual in the population through an elitism mechanism where the best ant undergoes
mutation, and the offspring replaces the worst ant. Both uniform and Gaussian mutation
operators are investigated and Gaussian mutation showed better performance than uniform
mutation. It also considered the 3-Opt local search method to improve individual solutions.
These mechanisms explore the search space and prevent converging to local optima.

The dynamic pheromone evaporation (DPE) strategy is adopted with ACO in [13] to
propose DEACO. Dynamic pheromone effectiveness and dynamic pheromone convergence
speed parameters are introduced for DPE; thus, the evaporation rate changes dynamically
over iterations. Such a dynamic evaporation rate prevents premature convergence and
reinforces search space discovery. DEACO considers a new objective function to determine
the worth of the solutions, which can also be used for heuristic value calculation when
the tour is incomplete. It also chooses the first city to find the better solution using a
clustering method.

The parallel cooperative ACO (PACO) [11] operates multiple ant colonies in parallel
and shares the local best and global best tours with other colonies to determine the globally
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optimum tour. PACO fragments the population of ants into subpopulations to mitigate
the premature stagnation problem of the conventional single colony in the ACO algorithm.
Every colony exchanges information in a master-slave paradigm, and the greedy informa-
tion swap shows better performance over the other strategies. A best-fit mitigation interval
is chosen through experiments to specify how often colonies exchange information. Each
colony employs the 3-Opt algorithm after a fixed number of iterations to improve itself.
This process stops on a pre-specified termination condition and returns the global best tour.

In the hybrid PSO-ACO method [14], PSO is used to optimize the control parameters.
Initially, a small amount of pheromone is deposited on every edge, considering the number
of ants and the number of cities. Ants complete their first tours considering only the
visibility heuristic value. PSO considers ACO parameters to encode particles, and param-
eter values of individual ants are used to initialize the particles. After PSO operations,
optimal parameters are sent to ACO for further actions, i.e., update pheromone. After the
termination of hybrid operations of ACO and PSO, the 3-Opt algorithm is used to update
the individual solutions. Some other recent hybrid methods integrating ACO with other
metaheuristic methods are Slime Mold-Ant Colony Fusion Algorithm [24], ACO with Levy
Flight [15], Density Peaks Clustering and ACO with K-Opt algorithm [16], Coordinating
PSO, ACO, and K-Opt [25], ACO-based Memetic Algorithm with local search [26], and
ACO with Immigrants Schemes [23].

2.3. Solving TSP with Other Prominent Bio-Inspired Methods

Similar to ACO, several bio-inspired algorithms are found efficient in solving TSP. Indi-
vidual bio-inspired optimization algorithms are developed mimicking actions, interactions,
or survivals of natural or living organisms. Among those, group behavior of swarm or
natural organisms (such as bees, lions, spider monkeys, fish, cuckoos, etc.) is well studied
to develop different Swarm Intelligent (SI) algorithms for different optimization tasks,
including TSP [7,9,27–29]. This section briefly describes several prominent bio-inspired
algorithms for solving TSP.

The Artificial Bee Colony (ABC) algorithm [30] is a well-known method for continuous
optimization (e.g., function optimization), and Swap Sequence-based ABC (SSABC) [31]
incorporates different types of swap operations and a 3-Opt algorithm to tackle TSP
efficiently. The SSABC considered a group of eight different rules, and one is chosen
based on the proposed probability mechanism to perform a swap operation for interaction
among individual bees. There are three different functional bee types (i.e., employed,
onlooker, and scout bees). Bees use the roulette wheel technique to select a rule and update
the solution. 3-Opt algorithm is applied on stagnant solution i.e., not improved for a
number of iterations.

Lion Swarm Optimization (LSO) is inspired by lion hunting behavior and its discrete
version, called discrete LSO (DLSO) [32], is a recent algorithm for TSP. In DSLO, each lion
represents an individual solution by discrete coding of TSP, and it uses a proposed order
crossover mechanism for movement. DLSO divides the swarm into three categories (i.e.,
lion king, lioness, and lion cubs) and operates in parallel. A ring topology is used in DLSO
to transfer relevant information. A complete 2-Opt (C2-Opt) local search is incorporated in
DLSO to improve individual solutions.

Spider Monkey Optimization (SMO) is based on the Fission-Fusion style movement
of spider monkeys during their food searching, and the Discrete SMO (DSMO) [33] is the
modified one for TSP. Every spider monkey is assigned an initial random solution, and
monkeys do different types of interactions to upgrade the solution quality. The monkey
population is split into subgroups, and the monkey with the best solutions in the group
is known as the local leader, and the monkey containing the overall best solution is the
global leader. In six stages, spider monkeys continue to search for better food sources, i.e.,
TSP solutions.

Discrete Symbiotic Organisms Search (DSOS) [34] algorithm extends the continuous
SOS algorithm for TSP. The SOS algorithm is a population-based metaheuristic inspired
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by the symbiotic interactions among different organisms in nature. In the initial phase,
random organisms (i.e., solutions) are created in the ecosystem, and these organisms are
adapted through different symbiosis strategies to increase fitness and chances of survival.
Symbiosis is performed in three phases: mutualism, commensalism, and parasitism phases.
A transformation methodology is proposed to generate a neighbor state by randomly
swapping, inserting, and inverting the order of two cities.

A hybrid algorithm combining genetic algorithm (GA), multiagent reinforcement
learning (MARL) heuristic, and nearest insertion into the convex hull (NICH) local search
is investigated for TSP in [35]. The primary tour is constructed using the MARL algo-
rithm, and some of the best solutions are given to the GA. GA improves the solutions
by using varieties of crossover and mutation operators. Then the tours further improved
using 2-Opt and NICH local search algorithms. Creating a convex hull for a partial tour,
NICH manipulates the cities of the partial tour and the rest of the tour by the nearest
insertion method.

Some other recent bio-inspired algorithms for TSP are Velocity Tentative PSO (VTPSO) [8],
Discrete Cat Swarm Optimization (DCSO) [36], Discrete Grey Wolf Optimizer (DGWO) [37],
Discrete Cuckoo Search (DCS) algorithm [9], ABC algorithm with variable degree of pertur-
bation [38], and Whale Optimization Algorithm (WOA) [39].

3. ACO with Adaptive Visibility (ACOAV) for TSP

This section first discusses conventional ACO [5,17] and draws attention to its visibility
heuristic to update it for solving TSP more efficiently. Next, the proposed ACOAV with a
new solution updating strategy is explained in detail.

3.1. Review of Conventional ACO

An ant colony consists of a group of ants where each ant uses a metaheuristic-based
approach to build a solution for TSP individually. Ants maintain indirect interaction among
themselves through the deposited pheromone on the accessed routes [40]. An ant selects
the order of the cities according to a probability function based on the pheromone on the
path and visibility heuristic value. All the ants continue this process until converging to a
single path. The rules of transition (ants’ movement) and pheromone update are the key
points in ACO.

In ACO, an ant on city s moves to city l according to the following probability function

Psl =
τsl

α × η
β
sl

∑m∈CitiesToOrder τα
sm × η

β
sm

, (3)

where CitiesToOrder is the list of the remaining cities to visit, τsl is the pheromone value
over the (s, l) edge, and nsl is visibility heuristic value between the nodes; parameters α and
β are empirical variables for controlling importance toward pheromone trail and visibility
heuristic values, respectively. The visibility between the nodes is the inverse of the distance.

nsl =
1

dsl
, (4)

where dsl is the distance between city s and city l.
At every iteration, the pheromone trail is updated, considering individual solutions

developed by the ants. Pheromone is deposited on the edges that the ant traveled. A
part of the pheromone is ao considered to evaporate at a constant rate. The well-known
pheromone trail updating formula [17] over the (s, l) edge is

τsl = (1− ρ) τsl + ∑PopSize
i=1 Δτsl

i, (5)
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where ρ (0 < ρ < 1) is the pheromone trail evaporation rate, Δτsl
i is the amount of the

deposited pheromone by ant i, which is calculated as of Equation (6).

Δτsl
i =

{
1
Li , if edge (s, l) is used by ant i
0, otherwise.

(6)

Here, Li is the tour cost of ant i using Equation (2).
In ACO, the visibility heuristic (nsl) used in Equation (3), simply inversing the distance

(dsl) using Equation (4), has limitations in solving TSP. ACO assigns higher heuristic
desirability to the nearest city without considering the issue of returning to the initial city
or the origin of the tour. Once the last city is visited, it completes the TSP tour returning to
the initial city. Pheromone updates on the most visited paths converge individual solutions
into a single solution. However, an initial fixed amount of pheromone on all the paths
motivates the individual ants to choose the nearest city, which might be different (divert)
from the optimal tour. Thus, a common scenario of ACO is that it got stuck to local optima,
and its convergence speed is low [20]. Therefore, a different visibility heuristic considering
the target city might be more realistic to solve TSP by generating a better solution, which is
the main motivation of this study.

3.2. Adaptive Visibility Integration to ACO for TSP

This section proposes a new visibility heuristic to alter the visibility heuristic in
conventional ACO (i.e., Equation (4)). A partial solution updating strategy with the
new heuristic is explained for better solution development. The 3-Opt algorithm is also
explained briefly, which is employed to overcome the stagnation problem. The proposed
method is a population-based method, and initialization is the first common issue in it,
similarly to conventional ACO and other bio-inspired algorithms. The major steps of the
proposed method are explained first, and then the complete process is summarized in
an algorithm.

3.2.1. Population Initialization

ACOAV starts with an initial population similarly to conventional ACO. A small
amount of pheromone is deposited on each link at this initialization stage. Values of other
parameters (e.g., evaporation rate) are also assigned in this stage. Each ant is initialized
by a random tour taking cities to visit randomly, each city exactly once, and returns to
the starting city. Ants are assigned constant relative importance towards pheromone and
visibility heuristic value. These initial tours are updated over the iterations.

3.2.2. Adaptive Visibility (AV) Heuristic and Formulation

The motivation for developing a new AV technique is easily understandable for a case
of optimal path selection from the start/source to the destination. Suppose there are four
cities (C1, C2, C3, and C4) in Figure 1, and an ant is in city C1 and its destination C4 visiting
C2, C3. Distances between the cities for path options are assigned with city indexes. As an
example, d12 (=d21) is the distance between C1 and C2. The tour cost will be different on
the visiting priority between C2 and C3. There are two tour options: C1-C2-C3-C4 having
the tour cost (d12 + d23 + d34) and C1-C3-C2-C4 having tour costs (d13 + d23 + d24), which
are shown in Figure 1b,c, respectively. Their tour cost difference is

ΔTC = (d12 + d23 + d34)− (d13 + d23 + d24) = (d12 − d24)− (d13 − d34). (7)

The above formulation can be generalized based on the distances of the intended
city, l from the current city, s and destination city, e by the following equation of adaptive
distance (ad)

adaptive distance, adsle = dsl − dle (8)
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Equation (7) can be rewritten using the adaptive distance of Equation (8) as

ΔTC = ad124 − ad134, (9)

where ad124, ad134 are the adaptive distances of C2 and C3, considering C1 as the current
city and C4 as the destination city. According to Equation (9), ΔTC < 0, i.e., ad124 < ad134
means the tour choosing C2 first (i.e., C1-C2-C3-C4) is better than the second one choosing
C3 first (i.e., C1-C3-C2-C4). On the other hand, the second tour (choosing C3 first) is better
than the first one if ΔTC > 0, i.e., ad124 > ad134. It concludes that choosing the city first with a
lesser adaptive distance may lead to a shorter path. It is evident for producing the optimal
tour that the next city should be selected considering an overall path distance regardless
of the nearest issue. Thus, Equation (8) depicts an interesting hypothesis for choosing the
next city, emphasizing the distance between the intended city and the destination city:
prioritizing the city with a long distance from the destination city.

 
(a) Distances between the cities for path options are assigned with city indexes. 

  
(b) Tour option C1-C2-C3-C4 having the tour cost (d12 + d23 + d34) (c) Tour option C1-C3-C2-C4 having tour cost (d13 + d23 + d24) 

Figure 1. Adaptive visibility demonstration for optimal path selection from start city (C1) to destination
city (C4) visiting C2 and C3. Tour option C1-C2-C3-C4 will be optimal when (d12 − d24) < (d13 − d34);
otherwise, tour option C1-C3-C2-C4 will be optimal having (d12 − d24) > (d12 − d34).

Figure 2 illustrates the proposed AV technique in solving a sample small-sized TSP
problem compared with conventional ACO. Suppose there are five cities (C1, C2, C3, C4,
and C5), and the distances between the cities are mentioned in the graph in Figure 2a.
An ant in city C1 will visit C2, C3, C4, C5 and return to city C1. The tour cost will
be different depending on the visiting priority between the cities. If the ant chooses
the nearest city first, the path will be C1-C2-C5-C4-C3-C1; the total route distance is
2000 = (100 + 300 + 500 + 400 + 700) with ACO visibility without considering the destina-
tion (Figure 2b). Considering C1 is both the current and destination city at the beginning
and with AV (Equation (8)), the adaptive distances for all the cities are zero, and we are
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taking C2 as the next city same as ACO, to understand further effects of AV. After traveling
from C1, C2 becomes the current city, and the destination city C1 remains the same for all
the stages. Now the adaptive distances for cities C3, C4, and C5 are−200, 0, and 100, respec-
tively. So, AV selects city C3 to visit next for its less adaptive distance (Equation (8)) and C3
becomes the current city. At the next stage, the adaptive distances for the remaining cities
C4 and C5 are −200 and 500, respectively. Therefore, C4 is the next city to be visited, and
finally, C5 will be visited as the only unvisited one. Thus, the AV technique chooses cities
C3, C4, and C5 successively, and the final tour path becomes C1-C2-C3-C4-C5-C1. Figure 2c
shows the tour path with AV having the tour cost of 1700 (=100 + 500 + 400 + 500 + 200),
which holds a lower cost than the previous path.

 

Figure 2. Demonstration of TSP solving with the proposed adaptive visibility compared with ACO
visibility. Tour cost emphasizing nearest city for ACO is 2000 and tour cost with proposed adaptive
visibility is 1700.

Based on the above demonstration in Figure 2, a generalized formula is developed
for adaptive visibility. The AV formulation considers both the distances to the current city
(s) and destination city (e) from the intended city (l). Based on distances dsl and dle, the
weighted adaptive distance fsle based on Equation (8) is

fsle = w1× dsl − w2× dle −mink∈CitiesToOrder(w1× dsk − w2× dke) + 1, (10)

where w1 and w2 are weighting factors, denoting the respective importance of the dis-
tances on the scale from 0 to 1. Increasing w1 prioritizes the cities close to the current
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city, while increasing w2 prioritizes the cities far from the destination city. The first por-
tion of Equation (10) is the simple extended version of Equation (8) employing weights
w1 and w2, and it may produce a negative value that is not appropriate to place as
a distance factor in calculating transition probability. The last portion of the equation
(−mink∈CitiesToOrder(w1× dsk − w2× dke) + 1) is added to map the values into a positive
form while maintaining rationality and a 1 for the lowest value for any case, even though
the first portion gives a negative value. Suppose, from the current location, three values
of the first portion for their intended cities (i.e., CitiesToOrder) are −200, 0, and 100. Thus,
mink∈CitiesToOrder(w1× dsk − w2× dke) returns the minimum value among the three values,
and it is −200. Therefore, outcomes of Equation (10) for the three intended cases are 1, 201,
and 301, those are appropriate as well as distinguishable for distance measure. Finally, the
adaptive visibility (AV) value nsle is calculated by inversing fsle as

nsle =
1

fsle
. (11)

Notably, the proposed weighted adaptive distance (Equation (10)) is a generalized
case for distance calculation; for w1 = 1 and w2 = 0, AV is the same as ACO. In the proposed
ACO with AV (ACOAV), transition probability, Psle is calculated using the same probability
function of ACO (Equation (3)) by putting deposited pheromone and adaptive visibility.

Psle =
τsl

α × η
β
sle

∑m∈CitiesToOrder τα
sm × η

β
sme

(12)

Finally, the ant chooses the next city to visit that gets the highest probability value
from Equation (12) as

nextcity = argmaxl:l∈CitiesToOrderPsle. (13)

3.2.3. Partial Solution Update with AV

In each iteration, an ant in ACO updates its complete solution following Equation (13).
ACOAV may also update the complete solution of individual ants, considering the starting
city as the destination city. However, a portion of the tour is also possible to update; such a
partial update is identified as an effective approach. In the partial update, the transition
rule is applied for a selected portion of a tour by choosing two random numbers, r1 and
r2 (1 ≤ r1, r2 ≤ NoOfCities), where cities at indexes r1 and r2 are considered as start and
destination cities, respectively. For the transition rule with AV, an ant considers the start
city as the current city CitiesToOrder contains the cities between r1 and r2 indexes. The
current city is updated every time after visiting a city, CitiesToOrder is reduced by one
until the ant reaches the destination city. In the case of r1 > r2, updating is performed
considering a solution circularly, i.e., the update starts from r1, continues up to the end, and
next continues from the starting to r2. The updated tour portion is deployed in the ant’s
solution to ensure improvement with the partial update if an improvement is observed in
the selected portion through the AV-based operation. For such a partial update, ACOAV
keeps a copy of the last tour of the previous iteration to update a random portion of it.
In contrast, conventional ACO does not use the last tour since it generates a complete
tour [18].

3.2.4. 3-Opt Algorithm Adaptation

The K-Opt algorithm is one of the best local search algorithms and has been considered
in several recent TSP studies [10,11,14]. The 3-Opt algorithm, a special case of the K-Opt
algorithm where K = 3 [41], has been adopted in the proposed ACOAV. It removes three
edges of a tour and makes three sub-tours. These sub-tours are reversed and positionally
changed to generate a new tour. Three sub-tours can be reconnected in eight different
combinations. Suppose a complete tour is divided into three segments A, B, C. A-B-C is the
original tour, and the other 3-Opt movements are A-Br-C, A-B-Cr, A-Br-Cr, A-C-B, A-Cr-B,
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A-C-Br, A-Cr-Br, where Br and Cr are the reversed tours of B and C segments. The tour
is updated according to the combination, which has the lowest cost [12]. Embedding the
3-Opt algorithm helps to overcome stagnation problems and increase searching capability.

3.3. ACOAV Algorithm

Figure 3 shows the flowchart for the proposed algorithm with major operational steps
already explained in the previous section. Algorithm 1 shows the complete pseudocode of
the proposed ACOAV for solving TSP as described above. In the algorithm, solution update
(Line 6) is the most crucial step and is described separately in Algorithm 2. Specifically, the
notable difference between ACOAV and ACO is the implication of the proposed AV in the
partial solution update mode. The 3-OptOperation (Line 8) on the individual solution is
also an additional operation with respect to ACO.

Figure 3. The flowchart of the proposed method.
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Algorithm 1 ACOAV

1. t  1 
2. Sol  InitializePopulation(PopSize) 
3. InitializePheromoneTrails( ) 
4. While (t < MaxIt) do 
5.  for i:1 to PopSize 
6.    UpdateSolution( ) // Algorithm 2 
7.   UpdatePheromone( ) // Equation (5) 
8.    3-OptOperation( ) 
9.  end for 
10.  t  t +1 
 end while 
11. BestSol  FindBest (Sol) 
12. End 

Algorithm 2 UpdateSolution(Soli)//Partial Solution Update

1. TempSol ← Soli

2. r1← RandInt(1, NoOfCities), r2← RandInt(1, NoOfCities)
3. r← r1 + 1
4. CitiesToOrder← Ø
5. while (r != r2) do
6. CitiesToOrder← CitiesToOrder ∪ {TempSol.city[r]}
7. if (r < NoOfCities)
8. r← r + 1 // Increase the index number by one
9. else
10. r← 1//Reset the index number to start from the first visited city
11. end if
12. end while
13. r← r1 + 1
14. s← TempSol.city[r1]
15. e←TempSol.city[r2]
16. while (CitiesToOrder �= Ø or Null)
17. TempSol.city[r] ← argmaxl:l∈CitiesToOrderPsle //Equation (13)
18. s← TempSol.city[r]
19. CitiesToOrder← CitiesToOrder − {s}
20. if (r < NoOfCities)
21. r← r + 1
22. else
23. r← 1
24. end if
25. end while
26. if (TempSol.Cost < Soli.Cost)
27. Soli ← TempSol
28. end if
29. return Soli

4. Experimental Studies

This section describes the implementation details and verification of the effectiveness
of ACOAV by comparing its performance with conventional ACO and several state-of-the-
art methods, including the latest ACO-based methods.

4.1. Experimental Setup

For the proposed ACOAV, every edge is assigned an initial pheromone value (τ0 = 1),
and control parameters are set as α = 1, β = 4, ρ = 0.1, w1 = 1 and w2 = 0.5. The parameter
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values were set based on several trial runs. The algorithm is run for a maximum iteration
(MaxIt) 1000, and results are taken from 20 independent trials. A suite of 35 TSP instances
is taken from TSPLIB, which is a well-known TSP benchmark repository [3]. The size of the
selected problems varies from 51 (i.e., eil51) to 2392 (i.e., pr2392), which brings a diverse test
set. The tour length (TL) obtained from the solutions is compared to evaluate the quality
of the solution. Note that a lower value of the TL indicates a better quality of the solution.
Moreover, the error rate is calculated by comparing the tour length with the known optimal
solution according to Equation (14).

Error rate =
Achieved Best Solution TL−Optimal Solution TL

Optimal Solution TL
× 100%. (14)

A PC equipped with Intel(R) Core (TM) i5-4210U CPU (1.70–2.40 GHz) with 8.00 GB
RAM and Windows 10 OS is used to conduct the experiments and analysis. The algorithm
is implemented using C++ language in Visual Studio 2019 program.

4.2. Experimental Results and Performance Comparison

Performance comparisons of the ACOAV algorithm are presented on the benchmark
TSP instances in two steps. At first, performance is compared with conventional ACO,
and then the same is compared with several latest ACO-based methods and prominent
bio-inspired methods. It is already mentioned that ACOAV transforms to conventional
ACO when w1 = 1 and w2 = 0 and considers only full solution updates.

Figure 4 presents tour costs improvement through iterations for conventional ACO
and proposed ACOAV on four selected problems: berlin52, eil76, kroA200, and pr439. In
the experiments, ACOAV without 3-Opt on full solution update (FSU) and partial solution
update (PSU) is also included to realize the effect of AV and PSU in solving TSPs. At a
glance, ACOAV (FSU) is the implication of AV on conventional ACO, and ACOAV (PSU) is
the implication of AV in PSU mode on conventional ACO. It is shown from Figure 4 that
AV employment (on FSU or PSU) improves conventional ACO and the proposed ACOAV
with 3-Opt significantly better than ACO for all four problems. As an example, for the
berlin52 problem with 500 iterations, ACO and ACOAV achieved tour costs of 7989 and
7542, respectively. For the same problem, ACOAV (FSU) and ACOAV (PSU) show tour
costs of 7777 and 7664, respectively. These outcomes reflect the performance improvement
with PSU instead of FSU. The notion of performance for other problems is also similar.

The graphs in Figure 4 give an outline of the performance improvement over itera-
tions. When comparing the graphs between ACO and ACOAV (FSU), it shows that the
introduction of the proposed AV leads to faster convergence with lower tour costs than con-
ventional ACO, for all four problems. An interesting observation is that FSU shows better
performance than PSU at early iterations, and PSU leads to a better solution than FSU with
iterations increasing. Such a phenomenon is understandable, as partial updates usually
require several iterations to develop a complete solution sequence. A small improvement
due to the 3-Opt operation in the proposed ACOAV is also visualized while comparing
with ACOAV (PSU) for the problems. More importantly, the significant performance of the
proposed method is realized by the graphs that proposed ACOAV and ACOAV (PSU or
FSU) without 3-Opt converge faster and generate better quality solutions than ACO.
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Figure 4. Tour cost improvement over iterations for conventional ACO, with different methods with
adaptive visibility in different modes. ACOAV (FSU) is ACO + AV with full solution update mode,
ACOAV (PSU) is ACO + AV with partial solution update mode, and ACOAV is the proposed model
as ACOAV (PSU) + 3-Opt.

It might be interesting to observe the cost-effectiveness of the new features, i.e., AV
with PSU and 3-Opt operation, which is introduced in ACOAV. Figure 5 shows the training
time of the experiments on the four selected problems for the achieved tour costs pre-
sented in Figure 4. It is observed that ACOAV (FSU) took a little longer time than ACO
as AV employment holds additional operations using Equation (10). As an example, for
500 iterations on the pr439 problem, ACO and ACOAV (FSU) took 647 and 763 s, respec-
tively. Most interestingly, ACOAV (PSU) took much less time than ACO since updating a
portion (in PSU mode) takes less time than updating the full solution as in ACO. For the
same pr439 problem, ACOAV (PSU) took 254 s for 500 iterations, which is less than half of
ACO. Finally, the 3-Opt operation in the proposed ACOAV is a computational overhead on
ACOAV (PSU), and ACOAV took 366 s for 500 iterations on the pr439 problem. At a glance,
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the proposed ACOAV is more cost-effective than conventional ACO for any problem, and
its efficiency for the larger problem is remarkable. For 500 iterations on the eil76 problem,
ACO and ACOAV took 21 and 9 s, respectively. On the other hand, for 500 iterations on
the kroA200 problem, ACO and ACOAV took 135 and 69 s, respectively. Such analysis
though experimental outcomes, reveals the cost-effectiveness of individual components in
the proposed ACOAV, especially AV and PSU.

 
(a) berlin52 (b) eil76 

(c) kroA200 (d) pr439 

Figure 5. Process time (in the second) comparison over iterations for conventional ACO, with different
methods with adaptive visibility in different modes. ACOAV (FSU) is ACO + AV with full solution
update mode, ACOAV (PSU) is ACO + AV with partial solution update mode, and ACOAV is the
proposed model as ACOAV (PSU) + 3-Opt.

Table 1 illustrates the detailed performance comparison among ACO, ACOAV (FSU),
ACOAV (PSU), and proposed ACOAV. For a fair comparison, all four methods were run for
the same number of iterations and trials. Comparison is performed based on achieved best
and average tour costs among 20 independent runs. The table also contains the optimal
tour length of individual problems, and the ER is presented following Equation (14). The
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comparison between ACO and ACOAV (FSU) illustrates that AV adaptation significantly
improves the solution quality for TSP instances; ACOAV (FSU) is better than ACO for
30 TSP cases on best tour length, and it also achieved an average best TL for 33 TSP cases
out of 35. FSU has a lesser standard deviation because of the first converging. Results
comparison between ACOAV (FSU) and ACOAV (PSU) shows the effect of PSU in solving
TSP instances. For all TSP instances, ACOAV (PSU) outperformed ACOAV (FSU) for all the
cases based on the best and average TLs. The table shows that employing 3-Opt on ACOAV
(PSU) leads ACOAV towards the optimal tour. The achieved optimal count and best
count (among four methods) are given at the bottom of the table for overall performance
comparison. ACO and ACOAV (FSU) cannot reach optimal or best tours for both best and
average TLs. ACOAV (PSU) generates the optimal and best tour for only eil51 (the smallest
problem). Whereas ACOAV generates the overall best solution for all TSP instances, and
for 22 cases of TSP instances, it achieved optimal tour. Moreover, ACOAV has a lesser
standard deviation in general which indicates better global optimization ability.

Table 2 compares the proposed ACOAV with several state-of-the-art bio-inspired
methods based on the achieved best tour length and error rate respecting the optimal
tour length. Among the considered methods, PSO-ACO [14], PACO [11], DEACO [13],
and HAACO [10] are the recent ACO-based methods. At the same time, the other five
methods are the prominent bio-inspired ones for TSP. Results presented for ACOAV are
collected from Table 1, and outcomes of the compared methods are collected from the
respective articles. Several case outcomes are not available for a particular method, which
are marked in ‘-’. The optimal and best tour count is placed at the end of the table
to understand the performance of the methods. Among the methods, DSMO [33] and
DLSO [32] show the worst performance and cannot generate any optimal or overall best
tour. PSO-ACO and PACO could generate the optimal and best tours for 4 and 6 TSP
instances, respectively. SSABC [31] and HAACO show good performance, but tour cost for
larger TSP instances is not available. Both of the algorithms generate optimal and best tours
for 7 TSP instances. DSOS [34] shows optimal and best tours for 6 and 7 TSP instances.
Among the compared methods, GA-MARL + NICH-LS [35] and DEACO are comparatively
better than others and show optimal tours for 15 and 14 TSP instances, respectively. On the
other hand, the proposed ACOAV shows the optimal solution for 22 cases. Among the ten
methods in the table, ACOAV generates the overall best solution for 30 TSP instances while
GA-MARL + NICH-LS and DEACO for 16 instances, respectively. At a glance, ACOAV
reaches optimal tours for up to 200 city TSP problems and several larger problems, such as
fl417 and pcb442.

Table 3 compares ACOAV with other state-of-the-art bio-inspired methods in terms
of the average tour cost. The table also contains the optimal tour length of individual
problems. Among the 35 TSP instances, DSMO, DLSO, and PSO-ACO failed to get the
best tour for any TSP instances. SSABC, PACO, and HAACO generate the best tour for a
small-sized TSP instance, berlin52. Among the compared methods, DEACO showed the
highest number of the best tours in 16 cases and achieved the average TLs equal to the
optimal TLs with zero standard deviation (SD) (i.e., all individual solutions reached the
same optimal TLs) in 13 cases. On the other hand, ACOAV showed optimal values for
19 cases with zero SD for small-sized TSP instances. In the case of larger TSP instances,
ACOAV also has lower SD values than other methods, which indicates better stability of
the solutions generated by ACOAV. The comparison claims that the proposed ACOAV
performs the best as it can show the best average tour costs for 31 TSP cases. Finally, the
result compared in Tables 2 and 3 revealed ACOAV as a promising method for solving
TSP instances.
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4.3. Statistical Analysis of Presented Results

Statistical tests are used to detect the significance of performance differences among
a group of methods. Two well-known tests were conducted in this study. At first, the
Friedman test is conducted to compare the identicalness of the algorithms. Then Post-hoc
test is performed to compare the performance of the algorithms pairwise.

4.3.1. Friedman Test

The Friedman test [42] is a nonparametric statistical test that can detect if there exists
any significant difference among several samples or not. The following statements are the
two assumptions for this test:

• Observations are mutually independent. That is, the results within one row do not
affect the results of other rows.

• For each row, results can be ranked based on their performance.

H0 and H1 are two hypotheses for the Friedman test. The null hypothesis, H0 states
that results came from the algorithms are similar. The alternative hypothesis, H1 states that
results are different for at least one of the algorithms.

In Table 4, a rank is given to every algorithm based on its average cost for each TSP
instance from Table 3. In the case of ties in performance, an average rank is assigned to
the algorithms [43,44]. Here, we considered seven popular TSP instances for the Friedman
test because the tour costs (i.e., lengths) for other TSP instances are not available. Here, the
number of algorithms, k = 10, and the number of TSP instances, n = 7. The Friedman test
statistics, TF is

TF = 12
nk(k+1) ∑k

j=1 R2
.j − 3n(k + 1)

= 12
7 × 10 × (10 + 1)

(
452 + 552 + 242 + 702 + 572 + 432 + 302 + 122 + 372 + 122)− 3× 7× (10 + 1)

= 52.34

(15)

Table 4. Ranking of the Friedman Test among proposed ACOAV and Existing State-of-the-Art
Bio-inspired Methods.

n Method
GA-MARL
+ NICH-LS

[35]
DSOS [34]

SSABC
[31]

DSMO
[33] DLSO [32]

PSO-ACO
[14] PACO [11]

DEACO
[13]

HAACO
[10]

Proposed
ACOAV

Rank(R) Ri1 Ri2 Ri3 Ri4 Ri5 Ri6 Ri7 Ri8 Ri9 Ri10

1 eil51 6 8 5 10 9 4 3 1.5 7 1.5

2 berlin52 9 6 3 10 8 7 3 3 3 3

3 st70 9 8 3 10 7 6 5 1.5 4 1.5

4 kroA100 5 8 3 10 7 9 4 1.5 6 1.5

5 eil101 7 9 4 10 8 6 3 1.5 5 1.5

6 lin105 5 8 3 10 9 4 6 1.5 7 1.5

7 kroA200 4 8 3 10 9 7 6 1.5 5 1.5

R.j = ∑n
i=1Rij for i = 1,2,3 . . . , n R.1 = 45 R.2 = 55 R.3 = 24 R.4 = 70 R.5 = 57 R.6 = 43 R.7 = 30 R.8 = 12 R.9 = 37 R.10 = 12

Average rank (
R.j
n ) 6.43 7.86 3.43 10 8.14 6.14 4.29 1.71 5.29 1.71

However, the test statistic TF is a Chi-square-based approximation that is poor and
conservative when the number of algorithms increases. Therefore, the test statistic TID
proposed by Iman and Davenport [42] is also measured.

TID =
(n− 1)× TF
n(k− 1)− TF

=
(7− 1)× 52.34

7× (9− 1)− 52.34
= 29.46 (16)

The null hypothesis H0 is rejected if TID > Fk−1; (k−1)(n−1); 1−α where Fk−1; (k−1)(n−1); 1−α
is the critical value of F distribution with significance level α and degrees of freedom
df1 = k − 1, df2 = (k − 1) × (n − 1).
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From the F distribution table at α = 0.01, the critical value of Fk−1; (k−1)(n−1); 1−α =
F9; 54; 0.99  2.75.

Since TID > F9; 54; 0.99, according to the Friedman test, the performances of some
algorithms are significantly different from others. As of Table 4, ACOAV and DEACO hold
the same average rank value 1.71. Therefore, the proposed ACOAV is significantly better
than all the methods except DEACO.

4.3.2. Post-Hoc Test

The post-hoc test can be performed to find out the comparative difference between
the algorithms when Friedman’s test rejects the null hypothesis. Fisher’s LSD test [42]
is considered in this study from several post-hoc test methods. When R.i and R.j are the
summation of ranks for two algorithms, then the algorithms are considered significantly
different if

|R.i − R.j| > t(n−1)(K−1);1−α
2

√√√√2
n ∑n

i=1 ∑k
j=1 R2

ij −∑k
j=1 R2

.j

(n− 1)(k− 1)
, (17)

where t(n−1)(K−1); 1−α
2

is the critical value from t distribution table with significance level α
and degrees of freedom (n − 1)(k − 1). Again, the number of algorithms, k = 10, and the
number of TSP instances, n = 7. Thus,

t(n−1)(K−1);1−α
2
×

√√√√2×
n ∑n

i=1 ∑k
j=1 R2

ij −∑k
j=1 R2

.j

(n− 1)(k− 1)
= 2.67×

√
2× 7× 2682− 18181

(7− 1)× (10− 1)
= 12.51

Table 5 contains the absolute difference in the summation of ranks of other algorithms
with ACOAV. Notably, the statistical tests were performed for only seven TSP instances
as outcomes for those problems are available for all the compared methods. The post-
hoc test concludes that ACOAV significantly outperforms seven methods (showing a test
value greater than the critical value 12.51) and is competitive with DEACO/SSABC. At a
glance, ACOAV outperformed all the compared methods considering results presented in
Tables 2 and 3; and, the outperformance is significant with respect to most of the methods
as on the basis of statistical test measures are shown in Tables 4 and 5.

Table 5. Post-hoc Test of proposed ACOAV with Existing State-of-the-Art Bio-inspired Methods.

|R.i−R.j|
GA-MARL +

NICH-LS [35] (R.1)
DSOS [34]

(R.2)
SSABC [31]

(R.3)
DSMO [33]

(R.4)
DLSO [32]

(R.5)
PSO-ACO [14]

(R.6)
PACO [11]

(R.7)
DEACO [13]

(R.8)
HAACO [10]

(R.9)

ACOAV (R.10) 33 43 12 58 45 31 18 0 25

5. Discussion

For a particular TSP problem, visibility values among different cities remain fixed as
distance based on coordinates are constant. Therefore, the nearest city gets the highest
visibility heuristic desirability in the conventional ACO regardless of the destination city or
return to the originating city. Such a constraint does not reflect the issue of destination or
returning to the starting city of TSP solution development. Adaptive visibility (AV), the
different better approach, is the main contribution of the study to cop the destination city
issue in solving TSP.

Through the concept and step-by-step processes to formulate AV, the development of
the generalized formula of Equation (10) is an interesting technical contribution to devising
an efficient ACO-based method for TSP, called ACOAV. Equation (12) only modifies the
heuristic desirability and applies to ACO instead of the distance between cities, while
other factors remain unchanged. Conventional ACO feature is also achieved from AV for
setting w1 = 1 and w2 = 0 in Equation (10). Although Equation (10) seems computationally
heavy, the overall computational proficiency of an algorithm depends on its adaptation
technique. Another innovative idea of partial solution update (PSU) is adopted in the
proposed ACOAV to minimize the computational cost. In the PSU mode, only a portion
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of a TSP solution is considered to update, i.e., reorder the nodes of the selected portion
for a better TSP solution. The proficiency of AV and PSU is rigorously investigated with
experimental outcomes on TSP instances.

The proposed ACOAV is an effective updated model of ACO and efficient concerning
the recent ACO-based methods. Several ACO-based methods adapt the control parameters
using different techniques. HAACO [10] uses different parameter settings for initial phases
with heterogeneous ants. DEACO [13] uses a dynamic pheromone evaporation strategy,
and PSO-ACO [14] uses PSO to adjust the control parameters of ACO. On the other
hand, PACO runs multiple ant colonies in parallel to increase search diversity. In short,
recent ACO-based methods only focused on increasing the searching diversity of the ants.
Nevertheless, none of these methods focused on improving the visibility heuristic that plays
an indispensable role in ant movements. Ants perform intelligent movement using AV,
and that makes ACOAV superior to other existing ACO-based methods. Moreover, other
methods employ complex strategies, such as multiple ant colonies or other algorithms, to
improve ACO performance. On the other hand, ACOAV skillfully updates the visibility
heuristic, which enhances the performance significantly.

6. Conclusions

In this study, ant colony optimization with adaptive visibility (ACOAV) is proposed
as a better method than the conventional ACO to solve TSP. The visibility heuristic value in
conventional ACO is given by the simple inverse of the distance between nodes without
considering the necessity of returning to the tour originating city at the last step. In contrast,
the proposed ACOAV intelligently managed the issue of returning to the originating city
(the final destination) by introducing a generalized AV formula. In addition, partial updates
of individual solutions are adopted in the proposed ACOAV to accelerate convergence.
The proposed ACOAV is tested on several benchmark TSP instances, and rigorously
compared with ACO. At first, the new functionalities introduced in ACOAV are evaluated
individually to justify their incorporation. Specifically, it is found from the simulation that
the AV enables ACOAV to have a better-converging speed showing relatively better results
with fewer iterations. Furthermore, it is found that partial updates effectively push the
solution towards the best tour eventually. In such a way, both functionalities (i.e., AV and
partial update) play an essential role indirectly in achieving faster convergence towards the
best tour, and therefore, they eventually make the ACOAV the best solution for TSP. It is
remarkable that ACOAV significantly outperformed ACO in twofold achievements, i.e.,
yielding better TSP solutions and requiring less computational time. The performance of
the proposed ACOAV is also compared with ten state-of-the-art methods, including several
recent ACO-based methods. The proposed ACOAV can be stated as the best method for
generating optimal solutions for several cases. Furthermore, the statistical test also justifies
the significance of the performance of ACOAV over recent bio-inspired methods.

Different future research scopes have emerged from the present study. Proposed
ACOAV is shown to achieve optimal tours for the small-sized TSPs, especially for the
problem size of fewer than 200 cities. Further experiments while varying parameter values
might generate optimal tours for larger TSP instances. The present study considered a 3-Opt
local search; the effects of other local search algorithms might improve the performance
of ACOAV. An exciting but challenging future research topic might be to develop a more
efficient and robust visibility function for ACO to solve TSP and other combinatorial
optimization problems, such as job shop scheduling, the vehicle routing problem, etc.

Author Contributions: Conceptualization, M.A.H.A.; Data curation, A.S.B.S.; Methodology, A.S.B.S.
and M.A.H.A.; Software, A.S.B.S.; Supervision, M.A.H.A.; Visualization, A.S.B.S., M.A.H.A. and
M.A.S.K.; Writing—original draft, A.S.B.S. and M.A.H.A.; Writing—review & editing, M.A.H.A. and
M.A.S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

189



Mathematics 2022, 10, 2448

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lenstra, J.K.; Kan, A.H.G.R. Some Simple Applications of the Travelling Salesman Problem. J. Oper. Res. Soc. 1975, 26, 717–733.
[CrossRef]

2. Hoffman, K.L.; Padberg, M.; Rinaldi, G. Encyclopedia of Operations Research and Management Science; Springer: Boston, MA,
USA, 2013.

3. Reinelt, G. Tsplib 95. Interdiszip. Zent. Für Wiss. Rechn. (IWR) Heidelb. 1995, 338, 1–16.
4. Reinelt, G. TSPLIB—A Traveling Salesman Problem Library. ORSA J. Comput. 1991, 3, 376–384. [CrossRef]
5. Dorigo, M.; Gambardella, L. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans.

Evol. Comput. 1997, 1, 53–66. [CrossRef]
6. Selvi, V.; Umarani, R. Comparative Analysis of Ant Colony and Particle Swarm Optimization Techniques. Int. J. Comput. Appl.

2010, 5, 1–6. [CrossRef]
7. Li, W.H.; Yang, Y.; Liao, H.Q.; Li, J.L.; Zheng, X.P. Artificial Bee Colony Algorithm for Traveling Salesman Problem. Adv. Mater.

Res. 2011, 314–316, 2191–2196. [CrossRef]
8. Akhand, M.A.H.; Akter, S.; Rashid, M.A.; Yaakob, S.B. Velocity tentative PSO: An optimal velocity implementation based particle

swarm optimization to solve traveling salesman problem. IAENG Int. J. Comput. Sci. 2015, 42, 221–232.
9. Ouaarab, A.; Ahiod, B.; Yang, X.-S. Discrete cuckoo search algorithm for the travelling salesman problem. Neural Comput. Appl.

2013, 24, 1659–1669. [CrossRef]
10. Tuani, A.F.; Keedwell, E.; Collett, M. Heterogenous Adaptive Ant Colony Optimization with 3-opt local search for the Travelling

Salesman Problem. Appl. Soft Comput. 2020, 97, 106720. [CrossRef]
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Abstract: In recent years, the vigorous rise in computational intelligence has opened up new re-
search ideas for solving chemical dynamic optimization problems, making the application of swarm-
intelligence optimization techniques more and more widespread. However, the potential for algo-
rithms with different performances still needs to be further investigated in this context. On this
premise, this paper puts forward a universal swarm-intelligence dynamic optimization framework,
which transforms the infinite-dimensional dynamic optimization problem into the finite-dimensional
nonlinear programming problem through control variable parameterization. In order to improve
the efficiency and accuracy of dynamic optimization, an improved version of the multi-strategy
enhanced sparrow search algorithm is proposed from the application side, including good-point set
initialization, hybrid algorithm strategy, Lévy flight mechanism, and Student’s t-distribution model.
The resulting augmented algorithm is theoretically tested on ten benchmark functions, and compared
with the whale optimization algorithm, marine predators algorithm, harris hawks optimization,
social group optimization, and the basic sparrow search algorithm, statistical results verify that the
improved algorithm has advantages in most tests. Finally, the six algorithms are further applied
to three typical dynamic optimization problems under a universal swarm-intelligence dynamic
optimization framework. The proposed algorithm achieves optimal results and has higher accuracy
than methods in other references.

Keywords: dynamic optimization; swarm intelligence; control variable parameterization; nonlinear
programming problem; sparrow search algorithm

MSC: 49M37; 68T20

1. Introduction

Dynamic optimization, also known as optimal control, a core part of industrial process
design, directly affects the approval of multiple performance indicators such as the overall
output, material loss, and efficiency improvement of the control system. It has long been
an important means to maximize the value in process control of the chemical industry [1,2].
Affected by the upgrading of industry and the expansion of system scale, the established
mathematical model is often full of high-dimensional, strongly nonlinear, and other com-
plex characteristics that are difficult to deal with. Therefore, how to achieve an effective
solution to this kind of dynamic optimization problem is not only a challenging but also an
urgent and practical research topic. With the continuous development and deepening of
optimization technology, the swarm-intelligence optimization technique, as an emerging
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branch, is becoming an attractive alternative to solve dynamic optimization problems [3],
which is increasingly favored by academia and industry.

The earliest method applied to dynamic optimization is the indirect method [4],
which has rigorous and accurate results. However, the mathematical process is often
complex and difficult to implement, and there is no analytical solution [5], so it is very
limited in practical application. Different from the indirect method, the direct method [6]
discretizes the variables of the dynamic optimization problem into a form that can be
solved by numerical methods. Among them, the CVP method [7] only discretizes the
control variables. It has higher efficiency when solving the system and has become the
mainstream direct method. Furthermore, the CVP method provides an effective time-
domain discretization strategy, which transforms the dynamic optimization problem into
a finite-dimensional NLP problem, so that the swarm-intelligence algorithm, a practical
parameter optimization technique [8,9], can be used. At present, swarm-intelligence
optimization techniques have attracted extensive attention in the application of various
optimization problems [10,11], and have the advantages of low dependence on prior
knowledge, high robustness based on population search, and no need to calculate the
gradient information of the objective function.

In recent years, scholars have used swarm-intelligence algorithms to solve dynamic
optimization problems, and proposed solutions including particle swarm optimization
(PSO) [12], beetle antennae search (BAS) [13], ant colony optimization (ACO) [14], seagull
optimization algorithm (SOA) [15], sailfish optimizer (SFO) [16], and cultural algorithm
(CA) [17]. In this context, these successful application cases confirm the effectiveness
of swarm-intelligence algorithms for dynamic optimization. However, in the current
literature description, a universal framework of swarm-intelligence algorithms for dynamic
optimization is generally ignored, which is not conducive to the further research of various
algorithms with different performances, thus limiting the long-term development of swarm-
intelligence dynamic optimization methods. Therefore, it is very necessary to establish a
universal framework of the swarm-intelligence dynamic optimization method, which is a
core topic to be solved in this paper. Furthermore, the efficiency and accuracy of solving
specific problems in the existing research still need to be improved, which often requires an
approach with better performance. Therefore, this paper introduces an improved version
of the sparrow search algorithm (SSA) applied to dynamic optimization problems, and uses
other well-known swarm-intelligence algorithms, including whale optimization algorithm
(WOA) [18], marine predators algorithm (MPA) [19], harris hawks optimization (HHO) [20],
and social group optimization (SGO) [21] compared under a universal swarm-intelligence
dynamic optimization framework. The boosted abilities of the proposed algorithm for
typical dynamic optimization problems is successfully verified.

The SSA was chosen as the base for augmentation as it has been validated as having a
better optimization performance and solving ability [22–26] compared to PSO, grey wolf
optimizer (GWO) [27], gravitational search algorithm (GSA) [28], and sine cosine algorithm
(SCA) [29]. It has been successfully applied in various domains, including UAV track
planning [30], density peak clustering [31], BP neural network optimization [32], robot
path planning [33], and micro-grid operation [34], showing great potential. However, it is
also established that the basic SSA suffers from insufficient search scope, weak resistance
to local extremum, and a slow convergence rate, which needs to be further enhanced.
Hybridization is a popular algorithm design approach [35], by integrating the advantages
of different algorithms, a hybrid algorithm with better performance can be constructed.
In this paper, SGO is introduced into the SSA optimization framework. On this basis, the
good-point set, inertia weight factor, and Lévy flight are used to modify the details, and the
structure of the optimization algorithm is modified by using the Student’s t-distribution
model. Then, a cooperative-mutation hybrid-swarm-intelligence algorithm (CM-HSSA) is
proposed to solve the dynamic optimization problem.

The main objective behind the universal swarm-intelligence dynamic optimization
framework proposed in this study is to further improve the SSA from the application
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side, and increase the efficiency and accuracy of solving specific dynamic optimization
problems. Furthermore, since the potential for algorithms with different performances
under a universal swarm-intelligence dynamic optimization framework has not been
investigated enough, five other well-known swarm-intelligence techniques were also
implemented and tested for three typical cases. In a nutshell, the significant characteristics
of our paper are listed as:

• A universal swarm-intelligence dynamic optimization method is summarized and
proposed, which lays a theoretical foundation for subsequent research on using the
swarm-intelligence technique to solve dynamic optimization problems.

• A novel modified SSA is implemented from the application side and utilized to
improve the efficiency and accuracy of typical dynamic optimization problems.

• Other well-known swarm-intelligence techniques for dynamic optimization are further
investigated under a universal optimization framework.

The rest of the paper is organized in the following manner. Section 2 describes the
fundamental methods used (the CVP method and a universal swarm-intelligence dynamic
optimization method). Section 3 introduces the modified version of the algorithm as
well as the original one and tests other algorithms on benchmark functions. Section 4
deals with the optimization of typical dynamic optimization problems with six algorithms
under a universal swarm-intelligence dynamic optimization framework. Finally, Section 5
summarizes some conclusions and prospects for future work.

2. Preliminaries

In this section, firstly, the standard mathematical model of the dynamic optimization
problem is introduced. Secondly, the basic principle of the CVP strategy is introduced, and
then a universal swarm-intelligence dynamic optimization framework is summarized and
proposed. In particular, the general implementation scheme and flow chart of this method
are given.

2.1. Dynamic Optimization Problem Description

Generally, dynamic optimization problems are common in the control systems of
industrial processes and widely exist in the chemical industry. The research object is mainly
aimed at dynamic time-varying systems [36]. The established mathematical model is often
described in the form of a differential–algebraic equation (DAE), which contains constraints
and an objective function. Therefore, the essence of solving the dynamic optimization
problem is to apply the control effect to the variables in the model and then select the
appropriate optimization scheme to make the performance index in the process reach the
best state. The mathematical model of a typical dynamic optimization problem can be
described as follows:

minJ = Φ[x(t f )] +
∫ t f

t0
L[x(t), u(t), t]dt

s.t.

⎧⎪⎪⎨⎪⎪⎩
dx
dt = f [x(t), u(t), t]
x(t0) = x0
ulb ≤ u(t) ≤ uub
t ∈ [t0, t f ]

(1)

where J is the objective function, also known as the performance index, which is composed
of the final value term Φ[x(t f )] at the process termination time t f and the integral term∫ t f

t0
L[x(t), u(t), t]dt existing on the whole time period [t0, t f ], u(t) = [u1(t), u2(t), · · · , um(t)]

T

is the m-dimensional control variable, and constrained by the upper boundary uub and the
lower boundary ulb, x(t) = [x1(t), x2(t), · · · , xn(t)]

T is the n-dimensional state variable.
Therefore, Equation (1) can be briefly described as looking for the control variable u(t)
that makes the target J obtain the optimal value under the condition of the initial state
x(t0) = x0, and the value of u(t) should meet the requirements of the feasible region.
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2.2. CVP Strategy

As the mainstream numerical calculation method in the direct solution, the principle
of the CVP method is to use the basic function with finite parameters to approach the
control effect. Specifically, the strategy first discretizes the time domain ([t0, t f ]) into NE
sub-interval ([tk−1, tk] (k = 1, 2, · · · , NE)), that is, t0 ≤ t1 ≤ · · · ≤ tN−1 ≤ tNE = t f , and
further uses the basis function to approximate the components on each sub-interval, then
u(t) can be expressed as the cumulative sum of each component on the whole [t0, t f ]:

u(t) =
NE

∑
k=1

σk
j (t) j = 1, 2, · · · , m k = 1, 2, · · · , NE (2)

where σk
j (t) is the linear combination of the basic function of the known structure of

each component (uj(t)) in the time interval ([tk−1, tk]), which is determined by limited
parameters. The mathematical model of the optimization problem transformed by the CVP
method can be described as:

min J̃ = ϕ[σ(t)]

s.t.ulb ≤
NE
∑

k=1
σk(t) ≤ uub

(3)

where σ(t) = [σ1(t), σ2(t), · · · , σNE(t)]T is the parameter vector to be optimized. Therefore,
the CVP method provides an effective transformation method, and an infinite-dimensional
dynamic optimization problem is transformed into a finite-dimensional static optimization
problem with a finite number of parameters.

2.3. Swarm-Intelligence Dynamic Optimization Method Based on CVP Strategy

For dynamic optimization problems, after CVP processing, the control variables, state
variables, objective functions, and constraints of the system are all determined by the param-
eter vector, thus forming the NLP problem which can be solved by the swarm-intelligent
optimization algorithm. Depending on the type of basis function, the approximation effect
is also different. As the most important type of basis function, the piecewise constant
approximation strategy is the most reasonable choice from theoretical analysis to practical
calculation, and has the characteristics of simplicity and effectiveness. Figure 1 shows the
control curve approximated by piecewise constant when NE = 7.

Figure 1. Piecewise constant approximation of CVP method.
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In particular, different from the traditional deterministic optimization algorithm based
on gradient, the swarm-intelligence optimization algorithm established by randomness
generally does not need to calculate the gradient information about the objective function,
so the relevant gradient calculation process is not included in the solution structure. The
calculation steps of the swarm-intelligence dynamic optimization method based on the
CVP strategy are as follows. Figure 2 shows the calculation framework of this method.

Figure 2. Swarm-Intelligence Dynamic Optimization Method Based on CVP Strategy.

(1) Through the CVP strategy, u(t) is transformed into σ(t), and the dynamic optimization
problem shown in Equation (1) is transformed into the static optimization problem
form shown in Equation (3).

(2) Set relevant parameters, such as population size, the maximum number of iterations,
and algorithm parameters.

(3) Initialize the population.
(4) Evaluate and sort the fitness values of individuals in the population and record the

current optimal value.
(5) According to the evolution strategy of the algorithm, a new population is generated.
(6) Compare the fitness value of the new solution and replace it if it is better than the

current value.
(7) Determine whether the current condition meets the stop criterion; if so, terminate the

algorithm and output the optimal solution. Otherwise, return to (4) and continue to
execute, and set t = t + 1.
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3. Mathematical Models and Algorithms

This beginning of the section introduces the basic implementation of the SSA algorithm,
followed by a discussion about the known and observed flaws and drawbacks of the
original version, and a detailed description of the proposed modified algorithm that is
devised to specifically overcome these flaws of the original algorithm is provided. In the
end, ten groups of benchmark functions are used to test the performance of the proposed
algorithm, WOA, MPA, HHO, SSA, and SGO.

3.1. Sparrow Search Algorithm

The mathematical model of SSA mainly refers to the foraging habits of sparrows,
idealizes the individual behavior in the population, formulates the corresponding iterative
rules, and divides the individual into two roles of producers and scroungers in each
generation according to the fitness value. In addition, SSA also designed an early warning
process, which is to randomly select some individuals in the population called scouters, and
update their locations in each iteration. Finally, it searches for the global optimal solution
through a certain number of iterations.

The locations of producers are updated as follows:

Xt+1
i =

{
Xt

i · exp
(
− i

α·Itermax

)
, R2 < ST

Xt
i + Q · L, R2 ≥ ST

(4)

where t represents the current iteration, Itermax is the maximum number of iterations, α is a
random number in the range of (0, 1], Q is a random number subject to normal distribution,
L is a 1× D matrix with each element value of 1, R2(R2 ∈ [0, 1]) and ST(ST ∈ [0.5, 1])
represent the alarm value and safety threshold, respectively. It can be seen from Equation (4)
that their values determine the update mode of producers

The locations of scroungers are updated as follows:

Xt+1
i =

⎧⎪⎨⎪⎩ Q · exp
(

Xt
worst−Xt

i
i2

)
, i > n/2

Xt
p +

∣∣∣Xt
i − Xt

p

∣∣∣ · A+ · L, otherwise
(5)

where n represents the number of sparrows, Xp is the best foraging location occupied by
the current producers, Xt

worst is the current worst foraging location, is a A matrix with
element values of 1 or −1, and A+ = AT(AAT)

−1. Q and L are the same as in Equation (4).
The locations of scouters are updated as follows:

Xt+1
i =

⎧⎨⎩ Xt
best + β · ∣∣Xt

i − Xt
best

∣∣, fi > fg

Xt
i + K ·

( |Xt
i−Xt

worst|
( fi− fw)+ε

)
, fi = fg

(6)

where fi is the individual fitness value of scouters, fg represents the global optimal fitness
value, Xt

best is the global optimal foraging location, β is K are step control parameters, and ε
is a minimal constant to avoid the denominator being zero.

The flowchart of SSA is shown in Figure 3.
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Figure 3. The flowchart of SSA.

3.2. Multi-Strategy Improved Hybrid Swarm-Intelligence Optimization Algorithm
3.2.1. Good-Point Set Theory

Previous studies have shown that the impact of the distribution of the initial population
on swarm-intelligence algorithms cannot be ignored [9]. To improve the uniformity of
the initial population search in solution space, scholars mostly use a chaotic map strategy
to solve this problem. At present, the commonly used chaotic map models include circle
map [37], tent map [38], piecewise map [39], cat map [40], logistic map [41], and Gauss
map [42]. However, although this initialization method based on chaotic mapping has
achieved some results, it still has considerable randomness, so it cannot effectively ensure
the search breadth of the initial population.

To solve the above problems, this paper applies the good-point set theory [43] to the
initial population stage. Its construction principle is: set Gs be the unit cube in s-dimensional
Euclidean space, and if r ∈ Gs, the shape is as follows:

Pn(k) =
{({

r(n)1 · k
}

,
{

r(n)2 · k
}

, · · · ,
{

r(n)s · k
})

, 1 ≤ k ≤ n
}

(7)

If the deviation ϕ(n) = C(r, ε)n−1+ε is satisfied, where C(r, ε) is the constant only related
to r and ε(ε > 0), then Pn(k) is the good-point set and r is the good point.

{
r(n)s · k

}
indicates

the decimal part, n is the number of samples, and we set r = {2 cos(2πk/p), 1 ≤ k ≤ s} and
p as the minimum prime number satisfying (p− 3) ≥ s. Mapping the good points of Gs to
the search space is:

Xi,j =
{

r(i)j · k
}
· (ubj − lbj) + lbj (8)

with the same number of points, a consistent distribution effect can be obtained each time
using the good-point set to initialize the population. Because the construction of the good-
point set is independent of the dimension of the sample, it plays a better role in solving
high-dimensional problems. Through calculation and analysis, the deviation of the good-
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point set is O(n−1+ε), while the deviation of the random method is O(n−1/2(log log n)1/2).
Compared with the random method, the deviation of the good-point set is reduced to
the square-root level. Therefore, the good-point set theory provides a stable and effective
uniform point selection strategy for population initialization.

To intuitively compare the two initialization methods, the population distribution
generated by the random method and good-point set method when N = 100 on [0, 1] is
provided in Figure 4. In addition, we further compared the six commonly used chaotic
maps mentioned above with the good-point set method. Considering the randomness of
chaotic maps, we carried out 10 experiments, and the average value distributions of each
method when N = 100 are shown in Figure 5.

Figure 4. Comparison of two different initialization strategies.

Figure 5. Average value distributions of seven different initialization strategies.

3.2.2. Hybrid Algorithm Strategy

In SSA, the producers represent the sparrows with better fitness in the population,
and have the function of guiding other individuals to move to the best foraging location.
Therefore, the location update process of the producers will closely affect the optimization
ability of SSA. According to Equation (4), the producers have two ways of updating their
locations. When R2 ≥ ST, the individuals will move randomly near the current locations
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according to the normal distribution; when R2 < ST, the update of the locations is affected
by Equation (9):

f (x) = exp(− x
α · Itermax

) (9)

when Itermax = 1000, N = 1000, D = 1 and α = 1, the value distribution of the producers
is shown in Figure 6. It can be seen that the search scope of producers shows an obvious
reduction trend with iterations, and finally decreases to less than half of the initial range, all
concentrated in the range of 0 to 0.4. The reduction of the search range is bound to reduce
the population diversity in the optimization process, resulting in a search blind area, which
increases the risk of SSA falling into the local extremum in the later stages of the iteration.

Figure 6. Producers’ location update trends (R2 < ST).

To improve the deficiency of the location update strategy of the producers, we decided
to introduce the improvement phase of SGO to replace Equation (4). The mathematical
model of the improvement phase of SGO is as follows:

Xt+1
i = c · Xt

i + r · (Xt
best − Xt

i ) (10)

where t represents the current number of iterations, Xt
i and Xt

best are the current individual
location and the global optimal individual location, respectively, c ∈ (0, 1) is the self-
reflection parameter, which is 0.2 in the original reference [15], and r is a random number
satisfying uniform distribution from [0, 1]. It can be seen that the location update will be
guided by the current optimal individual, which is conducive to improving the global
exploration ability and the convergence rate of the algorithm in the initial stage. However,
as the self-reflection parameter, the constant attribute of c leads to an invariance dependence
on the location information with iterations. We change c into an inertia weight factor whose
value changes dynamically [44], as shown in Equation (11):

ct =
cs(cs − ce)(Itermax − t)

Itermax
(11)

where ct represents the inertia weight factor, cs and ce represent the adjustment parameters,
cs = 0.9. and cs = 0.4 are set, respectively. Therefore, by introducing ct, the adaptive
regulation of the participation degree of its location information is achieved. The decreasing
characteristic of ct makes the algorithm maintain a good global exploration ability at the
early stage of iteration and helps the algorithm have a more effective local development
ability at the later stage of iteration. Figure 7 describes the changing trend of ct with
iterations. The new producers’ update strategy is shown in Equation (12):

Xt+1
i = ct · Xt

i + r · (Xt
best − Xt

i ) (12)
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where ct is the inertia weight factor, Xt+1
i , Xt

i and Xt
best are the next-generation location,

current location, and current optimal location of the producer, respectively.

Figure 7. The changing trend of the inertia weight factor.

3.2.3. Stagnation Disturbance Strategy Based on Lévy Flight

When the iteration proceeds to a certain extent, affected by the local extremum, the
update range of the producers will become smaller or move only near the current region.
At this time, more and more producers will change into scroungers, which indicates that
there is no solution in the nearby region, causing the algorithm to stagnate.

Lévy flight is a random walk. Studies have shown that the movement patterns of
many animals can be described by it [45]. Since the generation of its step is affected by the
heavy-tailed distribution, there will be a jump performance with a large span during the
random walk. Therefore, Lévy flight is applied to the update of individuals as a disturbance,
which will enable the search of the algorithm to enter a broader area and improve the
ability of global exploration. Furthermore, to further illustrate that Lévy flight can adapt to
larger-scale search, Brownian motion trajectory and Lévy flight trajectory simulated by the
Mantegna method [46] are revealed in Figure 8.

Figure 8. Lévy flight and Brownian motion.
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The calculation method of Lévy flight in this paper is as follows [47]:

Levy(x) = 0.01× θ1 · σ
|θ2|

1
β

(13)

where θ1 and θ2 are parameters subject to normal distribution, β is a constant, which is
taken as 1.5 in this paper, and σ is calculated as follows:

σ =

[
Γ(1 + β) · sin(π · β/2)

Γ((1 + β)/2) · β · 2(β−1)/2

] 1
β

(14)

where Γ(x) is the gamma function and Γ(x) = (x − 1)! and x belongs to the set of natu-
ral numbers.

The new scroungers’ update strategy is shown in Equation (16):

Xt+1
i =

{
Xt

i + Xt
i · Levy(d), i > n/2

Xt
p +

∣∣∣Xt
i − Xt

p

∣∣∣ · A+ · L, otherwise
(15)

where Xt+1
i , Xt

i and Xt
p are the next-generation location, current location, and current

optimal location of the scrounger, respectively, and d represents the dimension of the
location vector.

3.2.4. Early Warning Process Based on Student’s t-Distribution Mutation Factor

According to Equation (6), the update of the early warning process is related to the
fitness value of the individual. When fi > fg, the individual will move towards the
current optimal location, When fi = fg, the individual will move randomly in the area near
itself, and the distance is related to the current worst location and the worst fitness value.
Therefore, the early warning process of SSA is essentially the furthest disturbance to the
population location after the iteration of producers and scroungers.

Student’s t-distribution is an important distribution type. Its curved shape is related
to the change in degrees of freedom n. When n = 1, t-distribution is Cauchy distribution;
when n → ∞ , t-distribution is Gaussian distribution, that is, Cauchy distribution and
Gaussian distribution are two special cases of Student’s t-distribution.

In this paper, the degrees of freedom for t-distribution are taken from the current
iteration, and a mutation factor based on the Student’s t-distribution that changes with
iterations can be obtained. This is applied to scouters in the early warning process as a
random disturbance. The mathematical model of the new early warning process is shown
in Equation (16).

Xt+1
i = Xt

p + Xt
p · trnd(t) (16)

where trnd(t) is the t-distribution mutation factor with the current iteration as the degree
of freedom, and Xt+1

i and Xt
p are the next-generation location and current optimal location

of the scouter, respectively. Moreover, the mutation factor combines the advantages of
Cauchy distribution and Gaussian distribution and generates different disturbance ranges
through changing degrees of freedom, which can effectively balance the global exploration
ability and local development ability of the algorithm. The improved algorithm based on
the t-distribution mutation factor is defined as the collaborative-mutation hybrid sparrow
search algorithm (CM-HSSA). The pseudo-code of CM-HSSA is shown in Algorithm 1:
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Algorithm 1: The framework of CM-HSSA

Input: Max_Iter: the maximum iteration; N: the population size; PD: the proportion of producers;
SD: the proportion of early warning sparrows; cs, ce: the inertia weight adjustment parameters.
Output: Xbest: the optimal individual location; fg: the fitness value of the optimal individual.
/* Initialization*/

1. for i = 1 to N do
2. for j = 1 to d do
3. Initialize the location of N sparrows using equation (8);
4. end for

5. end for

/*Iterative search*/

6. Calculate the fitness value and record the current optimal individual;
7. for (t < Max_iter)
8. for i = 1 to PD*N do
9. Update the location of producers according to equation (12);
10. end for

11. for i = PD*N + 1 to N do
12. Update the location of scroungers according to equation (15);
13. end for

14. for i = 1 to SD*N do
15. Update the location of early warning sparrows according to equation (16);
16. end for

17. Evaluate the fitness value of the new location and update if it is better;
18. end for

/*Algorithm terminated*/

19. Return Xbest, fg

3.3. Benchmark Function Experiments

This section provides ten groups of classical benchmark functions to test the optimiza-
tion performance of six algorithms, including four unimodal functions with only one global
optimal value and five multimodal functions with multiple local extremums. F1–F8 are
30 dimensions and F9–F10 are 2 dimensions. Table 1 gives the relevant information on these
benchmark functions. The range represents the search scope, Opt represents the theoretical
optimal value and D represents the dimension of the problem. Among them, F1–F4 can
test the convergence rate, accuracy, and local development ability, while F5–F10 can test the
anti-local extremum ability and global exploration ability.

3.3.1. Parameter Settings

To verify the significance of the improvement, we compared the optimization effects
of WOA, MPA, HHO, SSA, SGO, and CM-HSSA on benchmark functions. To ensure the
objectivity of the experiments, the population is set to 30 and the maximum iteration is 100.
The specific parameter settings of each algorithm are as follows. For WOA, the logarithmic
spiral shape parameter b = 1. For MPA, the fish aggregating device FADs = 0.2. For HHO,
the prey energy factor E is a random number between (−1, 1). For SSA, the safety threshold
ST = 0.8, the proportion of producers PD = 0.2, and the proportion of scouters SD = 0.1.
For SGO, the self-reflection parameter c = 0.2. For CM-HSSA, the proportion of producers
PD = 0.2, the proportion of scouters SD = 0.1, and weight adjustment parameters cs = 0.9
and ce = 0.4. It is worth noting that the above parameters are taken from the original
references. The values of these artificially set parameters are obtained based on experience,
which can maximize the optimization performance of the algorithms.
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Table 1. Information on benchmark functions.

Benchmark Function Formula Range Opt

Sphere Model F1(x) =
n
∑

i=1
xi

2 [−100, 100] 0

Schwefel’s problem 2.22 F2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| [−10, 10] 0

Schwefel’s problem 1.2 F3(x) =
n
∑

i=1

(
i

∑
j=1

xj

)2
[−100, 100] 0

Schwefel’s problem 2.21 F4(x) = maxi{|xi|, 1 ≤ i ≤ n} [−100, 100] 0
Generalized Schwefel’s

problem 2.26 F5(x) =
n
∑

i=1
−xi sin

√|xi| [−500, 500] −4.18.9829D

Generalized Rastrigin’s
Function F6(x) =

n
∑

i=1
[x2

i − 10 cos(2πxi) + 10]
[−5.12,
5.12] 0

Ackley’s Function F7(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
xi

2

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e [−32, 32] 0

Generalized Griewank
Function F8(x) = 1

4000

n
∑

i=1
x2

i −
n
∏
i=1

cos xi√
i
+ 1 [−600, 600] 0

Branin Function F9(x) =
(

x2 − 5.1
4π2 x2 + 5

π x1 − 6
)2

+ 10
(

1− 1
8π

)
cos x1 + 10 [−5, 5] 0.398

Goldstein–Price
Function

F10(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]×
[30 + (2x1 − 3x2)

2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]
[−2, 2] 3

3.3.2. Statistical Result Comparison

To ensure the fairness of the experiments, each algorithm runs 20 times independently,
and the mean value, standard deviation, and average calculation time are recorded. Among
them, the mean value reflects the optimization accuracy, the standard deviation reflects
the robustness, and TIC/TOC is used to calculate the running time of each algorithm.
Through the experimental results listed in Table 2, we can see the different optimization
performances of the algorithms.

Table 2. Experimental results of six algorithms.

Function Result WOA MPA HHO SSA SGO CM-HSSA

F1

Mean 3.5706 × 10−10 1.9437 1.3052 × 10−20 2.9595 × 10−33 4.3773 × 10−135 0

Std. 7.1180 × 10−10 1.0336 5.8268 × 10−20 1.3235 × 10−33 2.9367 × 10−136 0

TIC/TOC 0.075297 0.260806 0.122167 0.098561 0.121907 0.102957

F2

Mean 9.7066 × 10−9 9.6357 × 10−2 4.3809 × 10−13 2.0208 × 10−21 1.5103 × 10−68 0

Std. 2.1815 × 10−8 3.3799 × 10−2 1.0991 × 10−12 8.9306 × 10−21 1.6423 × 10−69 0

TIC/TOC 0.060907 0.197253 0.121605 0.090216 0.127647 0.096940

F3

Mean 9.8067 × 104 2.1566 × 102 1.8472 × 10−13 4.1637 × 10−33 2.2632 × 10−135 0

Std. 2.8622 × 104 1.8756 × 102 8.2479 × 10−13 1.8621 × 10−32 9.9703 × 10−136 0

TIC/TOC 0.098011 0.306055 0.232791 0.116329 0.246341 0.148943

F4

Mean 5.6341 × 101 4.5856 × 10−1 3.6428 × 10−13 3.9747 × 10−21 1.0950 × 10−68 0

Std. 2.8796 × 101 1.0924 × 10−1 6.1075 × 10−13 1.7745 × 10−20 5.3688 × 10−70 0

TIC/TOC 0.060370 0.203315 0.113611 0.106351 0.126110 0.117772

F5

Mean −8.6688 × 103 −7.2695 × 103 −1.2356 × 104 −6.2868 × 103 −6.9435 × 103 −1.06 × 104

Std. 1.0522 × 103 4.7419 × 102 7.9240 × 102 1.6650 × 103 6.5873 × 102 7.8299 × 102

TIC/TOC 0.067170 0.251228 0.157786 0.079425 0.111361 0.098025
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Table 2. Cont.

Function Result WOA MPA HHO SSA SGO CM-HSSA

F6

Mean 1.2998 × 10−8 8.6017 0 0 0 0

Std. 5.3053 × 10−8 7.2342 0 0 0 0

TIC/TOC 0.060027 0.217248 0.177083 0.076583 0.130681 0.106733

F7

Mean 3.7669 × 10−7 8.9223 × 10−2 7.3576 × 10−12 1.0658 × 10−15 8.8818 × 10−16 8.8818 × 10−16

Std. 5.5884 × 10−7 2.8663 × 10−2 2.2196 × 10−12 7.9441 × 10−16 0 0

TIC/TOC 0.071849 0.177886 0.127309 0.079305 0.122893 0.098612

F8

Mean 9.1942 × 10−1 2.7695 × 10−1 0 0 0 0

Std. 2.8307 × 10−1 1.4355 × 10−1 0 0 0 0

TIC/TOC 0.073628 0.198219 0.159379 0.077422 0.131028 0.115157

F9

Mean 4.0011 × 10−1 3.9789 × 10−1 3.9853 × 10−1 3.9789 × 10−1 3.9789 × 10−1 3.9789 × 10−1

Std. 3.7678 × 10−3 5.0943 × 10−11 1.1419 × 10−3 6.3089 × 10−7 2.3781 × 10−8 0

TIC/TOC 0.051275 0.173310 0.137616 0.098129 0.096289 0.083473

F10

Mean 8.4292 3.0201 3.0231 3.0023 3.0001 3.0000

Std. 1.1139 × 101 1.8833 × 10−10 1.4497 × 10−4 2.7527 × 10−7 1.9782 × 10−7 2.2017 × 10−15

TIC/TOC 0.056070 0.183948 0.155738 0.071500 0.107347 0.081171

The simulation software used in experiments was MATLAB R2018b. It is worth
mentioning that iterations are generally positively correlated with the accuracy, while the
maximum iteration set in this paper is 100, which can better reflect the optimization perfor-
mance of the algorithms in short iterations. According to Table 2, CM-HSSA can obtain the
stable optimal convergence accuracy for unimodal functions F1 − F4, and the optimization
performance is better than other algorithms. For multimodal functions, HHO has the
highest accuracy on F5, followed by CM-HSSA. The mean value of the two algorithms
has reached the level of −1 × 104, which is higher than other algorithms. For F6 and F8,
CM-HSSA, HHO, SSA, and SGO can obtain the best optimization accuracy. Although their
convergence behavior is different, they all successfully find the global optimal solution in
the limited iteration. For F7, F9, and F10, CM-HSSA has the highest accuracy and the small-
est standard deviation, which is better than other algorithms, indicating that CM-HSSA has
stronger local development ability and the ability to jump out of the local extremum. In
terms of calculation time, WOA is the fastest, CM-HSSA is close to that of SSA, faster than
HHO and SGO, and MPA takes the longest time. To improve the visualization of results
and the significance of CM-HSSA, we selected the boxplot and Wilcoxon test [48] to further
analyze the data in Table 3.

Table 3. The p-value test results over benchmark functions.

Function
CM-HSSA vs.

WOA
CM-HSSA vs.

MPA
CM-HSSA vs.

HHO
CM-HSSA vs.

SSA
CM-HSSA vs.

SGO

F1 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9

F2 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9

F3 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9 2.992 × 10−8 8.0065 × 10−9

F4 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9 8.0065 × 10−9

F5 2.6609 × 10−6 6.7004 × 10−8 6.1833 × 10−4 6.8341 × 10−7 6.7004 × 10−8

F6 2.9868 × 10−8 8.0065 × 10−9 N/A N/A N/A
F7 8.0065 × 10−9 8.0065 × 10−9 1.0433 × 10−7 3.4211 × 10−4 N/A
F8 8.0065 × 10−9 8.0065 × 10−9 N/A N/A N/A
F9 1.1597 × 10−4 6.7956 × 10−8 1.0581 × 10−4 8.0065 × 10−9 5.0209 × 10−5

F10 8.0065 × 10−9 8.0065 × 10−9 2.1025 × 10−7 4.0137 × 10−8 1.9299 × 10−3
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The boxplot in Figure 9 shows the characteristic information of the results of six
algorithms, including maximum, minimum, and median. Table 3 shows the difference
between the results of CM-HSSA and other algorithms through p-value comparison with
the Wilcoxon test. When the p-value is less than 5%, there is an obvious difference between
the two algorithms; otherwise, it means that the difference is not obvious, and N/A means
that the two algorithms have the same performance and cannot be compared. According to
the data recorded in Table 3, in most tests (42/50), the p-value is less than 5%, indicating
that the optimization performance of CM-HSSA is significantly different from that of
other algorithms, and the optimization ability is much higher than that of SSA. To further
analyze the differences in convergence modes of each algorithm, Figures 10–19 show the
convergence trajectories of the six algorithms, and plot y-coordinates using a base-10
logarithmic scale on the y-axis.

 

Figure 9. Boxplot of six algorithms for benchmark functions.
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Figure 10. Sphere Model.

Figure 11. Schwefel’s problem 2.22.

 

Figure 12. Schwefel’s problem 1.2.
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Figure 13. Schwefel’s problem 2.21.

 

Figure 14. Generalized Schwefel’s problem 2.26.

Figure 15. Generalized Rastrigin’s Function.
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Figure 16. Ackley’s Function.

Figure 17. Generalized Griewank Function.

Figure 18. Branin Function.
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Figure 19. Goldstein−Price Function.

According to the iterative trajectories of the above six algorithms, the convergence
behavior of the algorithms can be summarized into the following three types. The first
type is that the convergence rate is significantly accelerated with iterations, which is mainly
reflected in f1 ∼ f4 of CM-HSSA. It shows that the adaptive mechanism of CM-HSSA
effectively finds a meaningful search space in the initial iteration, and finds the global
optimal solution more quickly. The second convergence behavior is to converge to the
optimal only at the end of the iteration, which is mainly reflected in the optimization of
other algorithms except for CM-HSSA. Compared with the first convergence behavior,
the convergence rate of this type is significantly slower. The third type of convergence
behavior is to accelerate the convergence from the initial iteration, which is reflected in the
optimization of all multimodal functions of the four algorithms, and this ability of CM-
HSSA is more obvious. For f6 ∼ f8, based on the good-point set population distribution,
CM-HSSA only needs 10 iterations to search for the optimal solution, which has a faster
convergence rate compared with other algorithms. When CM-HSSA determines the search
direction, it can quickly converge to the optimal accuracy, which is also reflected in the
optimization of f9 ∼ f10.

In summary, through the performance test of the benchmark functions, it is prelimi-
narily verified that the improved strategy is effective. Compared with other algorithms,
the results of CM-HSSA have significant advantages in most tests (42/50), improved the
convergence rate and accuracy of the original SSA, and also obtain a stable enhancement
in robustness. In the next section, the performance of six algorithms for dynamic opti-
mization problems is further investigated under a universal swarm-intelligence dynamic
optimization framework.

4. Case Studies in Dynamic Optimization

In this section, three typical dynamic optimization problems are selected as the re-
search targets. A universal swarm-intelligence dynamic optimization framework is used
to further analyze the performance of WOA, MPA, HHO, SSA, SGO, and the proposed
CM-HSSA for dynamic optimization problems, and the results are compared with existing
references. Specifically, the piecewise constant based on the equal division method is used
to approximate the control variable, and an infinite-dimensional dynamic optimization
problem is transformed into a finite-dimensional static optimization problem, which can be
solved by six algorithms. To calculate the values of state variables and objective functions,
the fourth-order Runge–Kutta method is used to solve the initial value problem of differen-
tial equations in each interval to obtain high-precision numerical solutions. In addition, the
three cases are calculated by segments NE = 100. All algorithms set the population to 200
and the maximum iteration to 1000. The specific parameters of each algorithm are the same
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as those in 3.3.1. Each case is tested 20 times independently and the mean value, standard
deviation, and calculation time (s) of the results are recorded.

4.1. Problem 1: Batch Reactor Consecutive Reaction

The batch reactor consecutive reaction is a classic dynamic optimization problem that
has been widely cited as a research object. For a batch reactor with a constructive chemical
reaction, temperature control plays a key role in the formation of products. In the initial
stage, it is necessary to provide a higher temperature to meet the conditions of reaction start-
up. With the progress of the reaction, the temperature needs to be continuously reduced
to ensure the maximum concentration of the target product. Therefore, the optimization
goal of this problem is to determine an optimal temperature control trajectory to optimize
the concentration of target product B generated by reactant A within 1 h of reaction.
The mathematical model of batch reactor constructive reaction problem is described as
follows [49]:

maxJ(t f ) = CB(t f )

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dCA
dt = −k1C2

A
dCB
dt = k1C2

A − k2CB
t f = 1
k1 = 4× 103 × e−2500/T

k2 = 6.2× 105 × e−5000/T

298 ≤ T ≤ 398, CA(0) = 1, CB(0) = 0

(17)

where CA is the reactant concentration, CB is the target product concentration, T is the
reaction temperature, and t f is the reaction termination time. Figure 20 shows the iterative
trajectories of six algorithms to solve problem 1 when NE = 100. Table 4 records the mean
value (mol/L), standard deviation, and mean calculation time (t/s) in 20 experiments. From
the experimental results, we can see the difference between CM-HSSA and other algorithms.

Figure 20. Iterative trajectories of six algorithms for Problem 1.

Table 4. Comparison of optimization results for Problem 1.

Method Mean Std. TIC/TOC

WOA 0.60718532 5.9120 × 10−4 359.5657
MPA 0.61070726 7.8608 × 10−4 344.6441
HHO 0.61047035 1.9521 × 10−3 1092.0483
SSA 0.61077333 2.4912 × 10−7 351.2811
SGO 0.60584429 9.7315 × 10−4 767.8168

CM-HSSA 0.61079200 2.9799 × 10−7 347.2429
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By comparing the results in Table 4, CM-HSSA has the highest accuracy, and the
small standard deviation shows that the result is stable. Ranking of other algorithms:
SSA > MPA > HHO > WOA > SGO. In terms of calculation time, the difference between
WOA, MPA, SSA, and CM-HSSA is within 15 s, while SGO and HHO are much longer.
According to the literature [3], 99.95% of the highest average accuracy of the six algorithms
is defined as a satisfactory solution, and their performance of the convergence rate is
evaluated according to the iterations of reaching the satisfactory solution. For problem 1,
the satisfactory solution is 0.6104866. WOA, HHO, and SGO failed to reach the satisfactory
solution. CM-HSSA takes 346 iterations to reach the satisfactory solution, while MPA and
SSA take 706 iterations and 573 iterations. That is to say, compared with MPA and SSA,
iterations are reduced by 50.99% and 39.61%, respectively, with CM-HSSA. Figure 21 shows
the optimal control trajectory and optimal state variable trajectory of CM-HSSA solving
problem 1. To further illustrate the advantages of the obtained results, the data in different
references are recorded and compared with CM-HSSA, as shown in Table 5.

Figure 21. CM-HSSA for Problem 1.

Table 5. Comparison of optimization results for Problem 1.

Method NE J/(mol/L)

OC [50] - 0.61
SQP [51] 80 0.610775
IDP [52] 80 0.610775

PSO-CVP [12] - 0.6105359

IKEA [53]
10 0.6101
20 0.610426
100 0.610781–0.610789

HIGA [54]
10 0.61007
20 0.61046

IKBCA [17]
10 0.6101
20 0.610454
100 0.610779–0.610787

EBSO [13]
10 0.610558922
20 0.61064758
80 0.61078114

MSFO [16] 50 0.610771–0.610785
ISOA [15] 30 0.61059223

CVP-PSO [3] - 0.6107847
CVP-APSO [3] - 0.6107850

This work (CM-HSSA) 100 0.61079200

According to Table 5: Renfro et al. [50] obtained a result of 0.61 using the orthogonal
collocation (OC) method, Logsdon et al. [51] obtained 0.610775 by using the SQP strategy,
while the iterative dynamic programming (IDP) method used in reference [52] obtained the
same result, Shi et al. [12] used PSO to solve the problem under the CVP framework and
obtained 0.6105359, Peng et al. [53] obtained 0.610781 to 0.610789 by using the proposed
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IKEA, and the accuracy is slightly better than HIGA [54], which is generally consistent
with the results of IKBCK [17]. The EBSO proposed by Lyu et al. [13] is better than the
three algorithms mentioned above when the number of segments is small, but the accuracy
improved by the algorithm is not obvious through the increased segments, The MSFO used
by Zhang et al. [16] best obtained 0.610785. The ISOA proposed by Xu et al. [15] obtained
0.61059223 in the case of equal division of 30 segments. The results are poor compared
with EBSO [13], and the accuracy is limited due to the small number of segments. In this
paper, CM-HSSA is used to solve problem 1, and 0.61079200 is obtained in the case of equal
division of 100 segments. By comparing the above references, it can be seen that the result
obtained by CM-HSSA is the best, reaching the level of 0.61079, which is slightly better
than the best value of 0.6107850 in reference [3], which shows that CM-HSSA is feasible
and effective to solve the batch reactor consecutive reaction problem.

4.2. Problem 2: Catalyst Mixing Reaction in Tubular Reactor

The problem of the catalyst mixing reaction in the tubular reactor was first proposed
by Gunn et al. [55] in 1965. This problem can be briefly described as: in a tubular reactor
with a certain length, the two catalysts A and B are mixed to produce the target product C.
Therefore, the dynamic optimization involved in this problem is to optimize the output of
target product C in a fixed-length tubular reactor by regulating the catalyst concentration
in the mixture. It is worth noting that the reaction process takes place in an isothermal
tubular reactor by default. The mathematical model of catalyst mixing reaction in the
tubular reactor is as follows:

maxJ(z f ) = 1− xA(z f )− xB(z f )

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dxA
dz = −u(z)[10× xB(z)− xA(z)]

dxB
dz = u(z)[10× xB(z)− xA(z)]− [1− u(z)]× xB(z)

z f = 12
0 ≤ u(z) ≤ 1, xA(0) = 1, xB(0) = 0

(18)

where xA and xB are the mole fractions of A and B in the mixture, z f is the length of the
tubular reactor, and u(z) is the mixing fraction of catalyst A. Figure 22 shows the iterative
trajectories of six algorithms to solve problem 2 when NE = 100. Table 6 records the mean
value (mol/L), standard deviation, and mean calculation time (t/s) in 20 experiments.

Figure 22. Iterative trajectories of six algorithms for Problem 2.
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Table 6. Comparison of optimization results for Problem 2.

Method Mean Std. TIC/TOC

WOA 0.47625678 5.8233 × 10−4 426.7259
MPA 0.47742011 6.4257 × 10−4 1034.2457
HHO 0.47478338 1.7305 × 10−3 1213.1210
SSA 0.47744034 9.2403 × 10−4 503.7366
SGO 0.47530289 3.8821 × 10−4 1161.0388

CM-HSSA 0.47770179 2.7368 × 10−5 457.1058

It can be seen from the results in Table 6 that CM-HSSA has the most stable and highest
solution accuracy. In terms of optimization accuracy, ranking of other algorithms is as
follows: SSA > MPA > WOA > SGO > HHO. In terms of calculation time, the difference
between WOA, SSA, and CM-HSSA is within 78 s, while MPA, SGO, and HHO are much
longer. In terms of convergence rate, only CM-HSSA reaches a satisfactory solution and
takes 103 iterations. MPA and SSA are close to the satisfactory solution of 0.47746294,
but they have not achieved this value with 1000 iterations. Figure 23 shows the optimal
control trajectory and optimal state variable trajectory of CM-HSSA solving problem 2. To
further illustrate the advantages of the obtained results, the data in different references are
recorded and compared with CM-HSSA, as shown in Table 7.

Figure 23. CM-HSSA for Problem 2.

Table 7. Comparison of optimization results for Problem 2.

Methods NE J/(mol/L)

IDP [52]
20 0.47527
40 0.47695

ACO [14] - 0.47615

IKEA [53]
10 0.475
20 0.4757

100 0.47761–0.47768

IKBCA [17]
20 0.4753

100 0.47768–0.47770

EBSO [13]
10 0.47502183
20 0.47627191
40 0.47697288

MSFO [16]
20 0.47562
70 0.477544–0.47760

ISOA [15] 40 0.47721
This work (CM-HSSA) 100 0.47770179

It can be seen from Table 7 that the highest accuracy of IDP [52] is 0.47695, which is
slightly better than the result solved by Rajesh et al. [14] using ACO. The result obtained by
MSFO [16] is 0.477544–0.47760, which is inferior to the accuracy achieved by IKEA [53] and
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IKBCA [17]. ISOA [15] achieved 0.47721, and its accuracy is better than that of EBSO [13] in
the same segmentation. When the segment is 100, CM-HSSA obtains a result of 0.47770179
for solving the catalyst mixing reaction in a tubular reactor compared with other references;
only the proposed algorithm can stably reach the level of 0.4777, while the accuracy of
different methods hovers in the range of 0.475–0.476. Therefore, CM-HSSA has a better
solution effect than other methods, which further proves the effectiveness of the algorithm
proposed in this paper.

4.3. Problem 3: Parallel Reactions in Tubular Reactor

The parallel reaction problem in the tubular reactor is a dynamic optimization problem
with saturation characteristics of control variables [56], and it has been cited by many
researchers. In the tubular reactor, there is a side reaction process ( A → C ) parallel to the
main reaction ( A → B ), so the optimization goal of this problem is to maximize the target
product B of the main reaction at the end by determining an optimal control trajectory.
Similarly, all reactions of this problem occur in an isothermal tubular reactor by default.
The mathematical model of parallel reactions in the tubular reactor is as follows:

maxJ(t f ) = xB(t f )

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dxA
dt = −[u(t) + 0.5u2(t)]xA(t)

dxB
dt = u(t)xA(t)

t f = 1
0 ≤ u(t) ≤ 5, xA(0) = 1, xB(0) = 0

(19)

where xA is the concentration of reactant A, xB is the concentration of target product B, t f
is the reaction termination time, and u(t) is the saturation of the control variable. Figure 24
shows the iterative trajectories of six algorithms to solve problem 3 when NE = 100. Table 8
records the mean value (mol/L), standard deviation, and mean calculation time (t/s) in
20 experiments.

Figure 24. Iterative trajectories of six algorithms for Problem 3.

Table 8. Comparison of optimization results for Problem 3.

Method Mean Std. TIC/TOC

WOA 0.56836465 1.4475 × 10−3 364.3671
MPA 0.57349880 1.0338 × 10−3 381.3942
HHO 0.57152795 2.9227 × 10−3 1062.2493
SSA 0.57269740 8.7921 × 10−3 349.0882
SGO 0.55138595 3.5277 × 10−4 685.3328

CM-HSSA 0.57355371 4.2218 × 10−6 376.5377
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By comparing the results in Table 8, CM-HSSA also obtains the highest accuracy
and the smallest standard deviation among the six algorithms, and the ranking of other
algorithms is as follows: MPA > SSA > HHO > WOA > SGO. In terms of calculation time,
except for SGO and HHO, the difference between the other four algorithms is within 33 s.
In terms of convergence rate, CM-HSSA takes only 98 iterations to achieve a satisfactory
solution of 0.57326693, while MPA takes 671 iterations, so the iterations are reduced by
85.39% with CM-HSSA. Other algorithms failed to reach this value. Through comprehen-
sive comparison, CM-HSSA has more advantages and wider applicability in optimization
performance and calculation efficiency. Figure 25 shows the optimal control trajectory
and optimal state variable trajectory of CM-HSSA solving problem 3. To further confirm
the superiority of the results obtained, the data in different references are recorded and
compared with CM-HSSA, as shown in Table 9.

Figure 25. CM-HSSA for Problem 3.

Table 9. Comparison of optimization results for Problem 3.

Methods NE J/(mol/L)

IDP [52]
20 0.57330
40 0.57348
80 0.57353

CVP [57] - 0.56910
CVI [57] - 0.57322

ACO [14] - 0.57284
CP-PSO [3] - 0.573543

CP-APSO [3] - 0.573544
ISOA [15] 40 0.573073

This work (CM-HSSA) 100 0.57355371

According to Table 9, the IDP [52] divided into 80 segments has the best result of
0.57353. Biegler [57] proposed combining successive quadratic programming and orthogo-
nal collocation, and obtained 0.56910 and 0.57322 based on CVP and control vector iteration
(CVI), respectively. ACO [14] solved the problem and obtained 0.57284, which is lower
than other methods. Zhou et al. [3] proposed a dynamic optimization control parameter
solution and obtained 0.573544 using APSO, which is improved compared with PSO. Xu
et al. [15] divided it into 40 segments and obtained the best result of 0.573073. Compared
with these references, the solution of CM-HSSA has reached the highest accuracy level of
the current optimization for this problem, and is slightly better than the result of 0.573544
obtained in reference [3], which further verifies the ability of CM-HSSA to solve dynamic
optimization problems.

5. Conclusions

This manuscript introduced a novel SSA algorithm named CM-HSSA that further
enhanced both the exploration and exploitation abilities of the original method. Through
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the benchmark function experiments, compared with WOA, MPA, HHO, SSA, and SGO,
the statistical results verify that CM-HSSA has more advantages in stability, accuracy, and
convergence rate. Under a universal swarm-intelligence dynamic optimization framework,
the above six algorithms are used to solve three typical chemical dynamic optimization
problems, and the simulation results further validate the applicability of CM-HSSA to solve
the dynamic optimization problems. Compared with different methods in the literature,
CM-HSSA also achieved the best results.

For dynamic optimization problems, in addition to the performance of the optimiza-
tion algorithm affecting the final results, the segmentation of the time domain and the
selection of the approximation method for control variables will also have different effects
on the solution. In future work, we will conduct more research on these two aspects, and
use high-performance optimization algorithms to solve complex dynamic optimization
problems with strong nonlinearity.
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Abstract: Distributed supercomputing is becoming common in different companies and academia.
Most of the parallel computing researchers focused on harnessing the power of commodity processors
and even internet computers to aggregate their computation powers to solve computationally complex
problems. Using flexible commodity cluster computers for supercomputing workloads over a
dedicated supercomputer and expensive high-performance computing (HPC) infrastructure is cost-
effective. Its scalable nature can make it better employed to the available organizational resources,
which can benefit researchers who aim to conduct numerous repetitive calculations on small to large
volumes of data to obtain valid results in a reasonable time. In this paper, we design and implement an
HPC-based supercomputing facility from commodity computers at an organizational level to provide
two separate implementations for cluster-based supercomputing using Hadoop and Spark-based
HPC clusters, primarily for data-intensive jobs and Torque-based clusters for Multiple Instruction
Multiple Data (MIMD) workloads. The performance of these clusters is measured through extensive
experimentation. With the implementation of the message passing interface, the performance of
the Spark and Torque clusters is increased by 16.6% for repetitive applications and by 73.68% for
computation-intensive applications with a speedup of 1.79 and 2.47 respectively on the HPDA cluster.
We conclude that the specific application or job could be chosen to run based on the computation
parameters on the implemented clusters.

Keywords: HPC; shared memory; optimization; commodity hardware; big data

1. Introduction

High-performance computing (HPC) is defined in terms of distributed, parallel com-
puting infrastructure with high-speed interconnecting networks and high-speed network
interfaces, including switches and routers specially designed to provide an aggregate per-
formance of many-core and multicore systems, computing clusters, in a cloud or the form
of a grid. Whereas the grid spans a large area and uses WAN protocols, clusters are suitable
for performing scientific computations in a small area. Cluster-based supercomputing
can be classified into different types based on the hardware, inter-networking standards,
devices (e.g., switches), number of sockets, number of cores in a rack, and so on. Recently,
applications of HPC in scientific research have greatly increased as an alternative to ded-
icated supercomputers [1–3], because they are costly, difficult to program, and require
sophisticated expertise. Supercomputers are generally stand-alone, and scalability is a
problem in supercomputer-based data centers [4]. The HPC cluster-based supercomputing
platforms have been successfully implemented in various universities [1,5]. A list of open-
source cluster management software [6] and some of the commercially available schedulers
are available in various domains.

The university environment, where the prime goal is the transition from isolated,
stand-alone computers to an HPC-based cluster computing environment, is substantially
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different from individual and production-constrained computational processes in many
aspects. The study team expects that the transition from stand-alone laboratory experi-
ments to computationally intensive industrial-grade experiments must be performed so
that researchers can understand the establishment of the cluster environment from scratch,
the node configuration, and the data network, rather than any specific hardware require-
ments. These seamlessly provide access to the working cluster using commodity computers
connected by a high-speed network [1].

The expectations and utility of the cluster environment vary across cluster users.
For example, a cluster user sometimes does not even need to know that the job is completed
with the help of a backbone a supercomputing facility. Some users may need to know
only the details of the available memory and the number of necessary cores. In contrast,
expert users may need to know almost everything, including protocols, scheduling poli-
cies, privileges, priorities, and everything directly or indirectly relevant to optimizing
application performance.

The approach of using commodity computers to form a cheap cluster is found in
different universities that aim to upgrade their stand-alone lab sessions into powerful,
scalable, and large-scale experiments, such as computational climate models, computational
fluid dynamics, numerical weather prediction models, and many more.

In this study, we focus on obtaining expertise in commodity clusters prior to any
purchases through surveying a primitive set of applications intended for demonstration.
Once most of the users understand the platform, the underlying hardware can be upgraded
to the actual HPC standards, which benefits data rates and computation power.

Unlike in industry, university research clusters are flexible and less demanding in
terms of failure after effects. In the absence of a real-world cost of a crash or failure of
an application running on the commodity cluster, laboratory experiments can tolerate
the breakdown of experiments due to a node or power failure, exhaustive use of avail-
able memory, system shutdown without notice, and other issues. We identified different
challenges while introducing cluster computing in a university compared to a production-
grade industry setup. These challenges influence many design decisions, not only the
cluster implementation but also the culture of students and instructors. The users move
from a single-threaded programming paradigm to a large-scale, threaded, distributed,
and parallel form of programs, a fundamental element of success in the cluster-based
supercomputing facility. Training and workshops may need to be organized to introduce
the available resources to the staff and students at the university to provide basic libraries to
support their experiments. Hence, we develop a cost-effective distributed supercomputing
platform from cheap computers around us which can be used by various researchers for
different applications.

The contribution of this work is as follows:

• We analyze the existing HPC infrastructure design options, review existing clus-
ter solutions, and identify significant challenges related to the hardware, software,
and networks in the implementation of cluster computing.

• We review the existing cluster solutions implemented at different university level and
advanced research laboratories.

• We implement a cluster from 30 commodity computers to aggregate Gigaflops of com-
puting power and use an efficient scheduler to run jobs on the cluster infrastructure.

• perform scientific experiments on a newly implemented cluster with distributed
optimization and machine learning for a showcase.

• compare the practical performance of the proposed system under different configura-
tions, considering various algorithms and loads.

The rest of this paper is organized as follows. Section 2 describes the background
and motivation. Section 3 presents the design and implementation of the proposed idea
using a cluster of commodity computers. Section 4 shows the experimental evaluation and
its results. Section 5 discusses the related work and Section 6 concludes the paper with
recommendations for the use of the output on a similar scale.
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2. Background and Motivation

Since its inception in 1991, HPCC provided vital enabling technologies and dissem-
inated progress in the field to extend the lead in the field of HPC. Later, more agencies
joined in a coordinated effort to develop HPC. Most development and progress work in
HPC was made available on the HPCC website as annual reports. This initiative led to
significant improvements in HPC research.

The HPC cluster is used in implementations and experiments to compute the simu-
lated Gaussian density function to solve a density estimation problem based on shared
memory and the parallel execution of the kernel density estimation algorithm on a graphic
processing unit (GPU)-enabled system [4,7], the OpenMP library [8]. The study results re-
veal significant improvement in the time taken by the HPC cluster in estimating the density
function. Although GPU-based computing provides easy access to higher teraflops with
fewer machines, this setup is only suitable for parallel jobs, whereas fine-grain parallelism,
synchronization of threads, and programming GPU-enabled systems are complex tasks.
Therefore, several studies have been performed on the Intel Xeon processor-based HPC
cluster. These clusters have the advantages of being easy to program, supporting SIMD
and MIMD models, and providing low-cost alternatives to a few teraflops with the ease
of scalability.

The floating-point operations (FLOPs) [9–11] are used in scientific computing commu-
nity to measure the processing power of individual computers, different types of HPC, Grid,
and supercomputing facilities. China has made significant progress in developing HPC sys-
tems in recent years. Since the development of the supercomputer by their national defense
university, the nation’s first win of the Gordon Bell Prize at Supercomputing 2016 (SC16)
also represents an accomplishment in HPC applications. As a result, various academic
institutions, private companies, and research groups have collaborate and contributed to
the development of HPC on their premises [3,10,12–14]. Major applications of HPC are in
data storage and analysis, data mining, simulation and modeling, scientific calculations,
bioinformatics, big data challenges, and complex visualizations.

However, the purchase of a supercomputer for academic and collaborative research
may cost an investment of millions of dollars and therefore most universities avoid directly
purchasing the supercomputers. But to provide a platform for the students and researchers
to work on the most challenging scientific problems related to different fields such as com-
putational fluid dynamics, medical imaging, graphics, higher dimensional visualization,
big data, parallel machine learning, and data mining multidisciplinary optimization. Many
universities have implemented low-cost supercomputing using clusters of Intel processors.
Commodity computers fail to process complex jobs with very large data and computations
as memory requirements and millions of times complex function evaluations. To solve
bigger problems, scientists have invented cost-effective solutions to aggregate individual
gigaflops of individual computers by clustering and facilitating the high-speed I/O and
communication to provide a platform that performs the large-scale experiments. In this
study, most reviewed research ideas are taken from HPC applications in scientific comput-
ing because the objective is to provide an HPC-based supercomputing infrastructure for
various scientific computing applications.

3. Design and Implementation

This study started with specific design goals and objectives restricted to the instal-
lation of a pilot HPC cluster for future research projects. This work brings the ideas of
alternative options to develop a supercomputing environment from available commodity
computers for those researchers who need a supercomputing platform for their research
yet can not buy the HPC. We followed the standard methodology for information tech-
nology/information and communication technology projects during the implementation
of DeepStack and high-performance-data analytics (HPDA) clusters. This study used a
hybrid methodology involving qualitative, quantitative, and empirical research aspects
at various stages. The two stages of this study are identified as (i) the design and imple-
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mentation of the HPC clusters as a platform and (ii) the empirical performance measure
of various parameters of the newly implemented platform. The first objective relies on
qualitative research aspects aimed at the platform design, whereas the second stage fo-
cuses on quantitative and empirical performance measures under the careful design of
relevant experiments.

As the industry estimates that we are creating Quintilian bytes of data every year
which makes data processing, transmission, and storage difficult it has created entirely new
sets of challenges and has forced us to find new ways to handle Big data effectively [15].
From document analysis of the existing HPC infrastructure [16–19], we choose the HPC
environments that are expected to perform CPU-bound operations with a heavy asymmetric
load on compute nodes. Therefore, we choose the Deep Stack cluster and HDPA-based HPC
clusters as the computing power of the nodes as well as message passing infrastructure
between the processes plays an important role in the performance of application programs.

In our design-oriented approach to the installation of the HPC cluster platform, the ini-
tially necessary data collection from various sources and experts has been done, including
standards, benchmarks, heuristics, networks, topology, workload patterns, optimization
methods, node configuration profiles, and detailed description of protocol selection proce-
dures. The analyzed data were used for planning, topology design, network installation,
and the actual design and implementation phase for the HPC cluster platform. After the
platform was successfully set up, the empirical methodology was used, and the design of
experiments, performance analysis, and data analysis tasks was completed.

The following methodologies are followed during the design and implementation of
this research:

• Data Collection—different data sources were used to collect necessary information
regarding hardware, software details and design issues, and availability of cluster
management systems. Data was collected from various websites related to university-
level HPC cluster systems from Stanford University, FSU, MIT, and Yale. Expert
interviews were performed at different levels of professionals in the fields of HPC to
get specific requirements for the design and implementation of the proposed platforms.

• Data pre-processing—Once the data were collected and encoded in a standard format,
the pre-processing of data was performed including checks for consistency, validity,
missing values, errors, and updates.

• Planning and design of HPC platforms—Based on the input of various experts and
available HPC installations in the industry, these design parameters for the proposed
systems were set. This included selection of appropriate network topology, proto-
cols, hardware, and software components to enable the HPC server and compute
nodes each.

• Implementation—The actual implementation of two separate types of HPC clusters
was initiated within separate initiatives of data science and intelligent systems research
groups. The implementation procedure was divided into various phases as per the
life cycle of an ICT/IT project. On each HPC server and compute-node internetwork-
ing, protocol configuration, installation, and configuration of the servers and client
software were completed sequentially.

• Verification and Validation —the recent installation against the requirements and ob-
jectives of the proposed research are verified. The correctness of installation and avail-
ability of HPC cluster and system-level services of the new HPC system was checked.

• Design of experiments—as the platform was implemented on available hardware,
we have designed structured workloads for various experiments and tested the per-
formance of the underlying platform under different settings. Since it is experimental
research, we have designed two groups of experiments—the control group and the
experiment groups. In the control group experiment, we have used a standard algo-
rithms like the FIFO scheduling algorithm with default parameters for the installed
platform that will be used as a base for comparison, in the experiment group we
have an experimental setup with varying platform parameters like the number of
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cores, memory, virtual memory, default wall-times, network topology and allocated
bandwidth. These experiments were performed on introductory level workloads and
the optimum performance profile of the underlying platform was deducted.

• Data Analysis—after the execution of planned stages and experiments on real time
data, data analysis was performed to understand the performance of the system,
and interpretation and implications of various parameters changes in newly installed
HPC clusters.

3.1. DeepStack Cluster

To save the readers from confusion regarding general torque specifications and our
specific implementation we have given a unique name for our implementation of torque
cluster as the DeepStack HPC cluster. This cluster includes three 5-node of identical Intel
core i-7 clusters with approximately 15 TB storage and 120 GB of RAM in the experimental
phase with specifications given in Table 1. However, to get a better result, we have
projections of 30-core permanently connected compute nodes under DeepStack and 100
Ad-hoc compute nodes during runtime but not guaranteed. It is possible to extend the
capabilities of DeepStack as a source of the highest computing power and a full-fledged
implementation of the scientific libraries for various scientific jobs. Using Torque with this
setup enabled us in achieving our objectives of running Torque with MPICH2 and OpenMPI
for large-scale, distributed memory jobs over available processors from configured compute
nodes, and support various scientific libraries.

Table 1. DeepStack Cluster Specifications.

Parameters Used Values

Master Machine CPU 2.25 Ghz
RAM—8 GB
HDD 1 TB

OS—CentOS 7
Computing Nodes CPU 2.25 Ghz

RAM—8 GB
HDD 1 TB

OS—CentOS 7
Libraries netcdf/intel/3.6.3

netcdf/intel/4.1.1
Stata/11, R/intel/2.9.2,

matlab/2017/b
Software Packages Cent OS Enterprise Server 7,

Torque 6.1.1,OpenMPI
MPICH

Language Support C++, Java, Fortran

In this study, each Torque subcluster is implemented from scratch and involves in-
stallation and configuring various server-side dependencies and libraries. The DeepStack
cluster architecture is given in Figure 1.

Figure 1. DeepStack cluster Architecture.
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3.1.1. Resource Manager Components

Each torque resource manager designated as a server computer contains three compo-
nents:

1. Torque Server module (PBS_server)—In this architecture, each Torque server is given
the same hostname and server name per the recommendation of Adaptive Computing
Pvt. Ltd., Naples, FL USA, which developed Torque as open-source cluster manage-
ment software. Each Torque server is an instance of PBS Server. Each Torque server
comes with a default queue called the batch. Certain configuration steps should be
done in sequence to ensure the server installs with its dependencies.

2. Scheduler module (PBS_sched)—Torque provides a very basic built-in scheduler ca-
pable of scheduling jobs in first-in-first-out order in job-exclusive and shared mode on
compute nodes. If this cluster is used for scientific simulations, it must be configured
with advanced schedulers, such as MOAB and MUAI, which are not free like the
default scheduler. The default scheduler is enough for the start cluster computing.
Each server instance is configured with the default scheduler.

3. Authentication server module (TRQAUTHD)—as described as trquat hd in Figure 1
—Torque provides an authentication server(TRQAUTHD) whose job is to allow only
pre-configured clients to submit jobs. An instance of TRQAUTHD is required for
the PBS_server along with the PBS_sched demon. By default, the server computer is
allowed to submit jobs on the server, but the purpose of TRQAUTHD is to register the
clients with a server so that jobs can be submitted by the external IP address registered
using TRQAUTHD.

3.1.2. Torque Compute Node Components

The Torque compute node contains the PBS Multi operation machine (MoM) modules
that participate in job execution in the processor exclusive and processor shared modes. If a
compute node is enabled to submit jobs for execution, the TRQAUTHD client-side module
must be configured with compute node.

1. The PBS MoM module communicates with the PBS server and participates in the
actual execution of jobs. It provides various resources for job execution, such as pro-
cessors, memory, and wall-time (the actual time that a clock on the wall or a stopwatch
in hand measures from the start of a process to the end of the process). Each MoM
receives its jobs in a queue and executes one job at a time in basic settings. Each job
acquires a lock over the MoM node and proceeds to completion before the processor
is freed for other jobs on the server in the waiting queues. During the implantation,
various communication patterns were noticed between the MoM node and PBS server,
which will be presented as case studies to help researchers troubleshoot various issues
in job executions, debugging, and performance enhancement.

2. Authentication Module (TRQAUTHD)—each MoM node is allowed to submit jobs
at a server and must have an authentication module (TRQAUTHD) installed and
configured. For MoM nodes, it is an optional package.

3.1.3. Torque Client Node

The Torque client modules were developed at the time of installation of the Torque
server and can be copied to clients with the necessary scripts for their registry in the
system services. Torque clients are designated nodes that can submit jobs to the PBS
server. Each client can be registered with the server by its hostname and IP address.
A change in the IP and hostname of a client crash the job submission system, and the whole
processes of registering and service invocation must be repeated to bring the system to the
operating mode.

Each set of sub-clusters contains one server, an instance of the scheduler, and one
authentication daemon at the server. For failover capability, identical servers are installed
in similar clusters. Currently, five Compute nodes are attached to every server and one
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client is also configured to submit the jobs. The complete architecture of the implemented
cluster is given in Figure 1.

3.2. High-Performance Data Analytics Cluster

The low-cost, distributed, and data-intensive cluster, known as the HPDA cluster,
has been set up in the designated laboratory. Distributed computing is just a distributed
system where multiple machines perform specific work simultaneously. While performing
the work, machines communicate with each other by passing messages between them.
Distributed computing is practical when fast processing (computation) is required on big
data. Apache Hadoop [20] and Apache Spark [21] are well-known examples of big data
processing systems. The HPDA cluster comprises Apache Hadoop and Apache Spark.
The cluster specifications and diagram are illustrated in Table 2 and Figure 2 respectively.

Table 2. HPDA Cluster Specifications.

Parameters Used Values

Number of Nodes: 10 (1 Master, 9 Slaves)
Cores in Use: 72

Availed Memory: 24.9 GB
Availed HDFS: 6.4 TB

Master Machine CPU 2.25 Ghz
RAM—4 GB
HDD 1 TB

OS—Ubuntu 16.04 LTS

Ethernet Switch 16 Port 10/100 Mbp

Software Tools Hadoop 2.7, Spark 2.1.0,
Scala 2.12.1, OpenJDK 1.8

Hive 2.0.0, HBase 1.1.4
Flume 1.6.0, Anaconda3 4.3.0

R 3.3.2, RStudio 1.0.136

Language Support Scala, Java, Python, R, &
MapReduce

Figure 2. HPDA cluster diagram.
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3.2.1. Apache Hadoop Setup

The Apache Hadoop software is an open-source framework built for reliable, scalable
distributed computing tasks with huge data sets over a cluster of multiple computers.
The features used for this implementation are (i) the large data set distribution across
clusters of computers using a simple programming model (ii) became the de facto standard
for storing, processing, and analyzing hundreds of terabytes and petabytes of data and
(iii) is cheaper to use in comparison to other traditional proprietary technologies and can
handle all type of data.

Generally, a Hadoop system comprises a computer acting as the master node and
multiple computers acting as slave nodes, as shown in Figure 2. Hadoop has two modules,
in total, including the HDFS and MapReduce Framework. The HDFS usually only has one
NameNode, which manages the directory tree and metadata of related files for the HDFS.
It could also own a secondary NameNode that can be employed to backup mirror files,
combine logs and mirror files periodically and send them back to NameNode. In general,
NameNode and Secondary NameNode are deployed on the master node. In addition,
the DataNode of HDFS is responsible for storing data and sending processed data back to
NameNode and is usually deployed on the slave node.

3.2.2. Apache Spark Setup

Apache Spark is installed on top of Hadoop. Spark [21] is a fault-tolerant and dis-
tributed data analytics tool capable of implementing large-scale data-intensive applications
on commodity hardware. Hadoop and other technologies have already popularized acyclic
data flow techniques for building data-intensive applications on commodity clusters. How-
ever, these are unsuitable for applications that reuse a working dataset for multiple parallel
operations. Some of these applications are iterative machine learning algorithms and
interactive data analysis tools. Spark addresses these problems, and is also scalable and
fault-tolerant. To accommodate these goals, Spark introduces data storage and processing
abstraction called RDDs.

Resilient Distributed Dataset is a collection that has been distributed all over the
Spark cluster [22]. RDDs’ main purpose is to support higher-level, parallel operations
on data in a straightforward manner. Spark can run tasks up to 100 times faster, when it
utilizes the in-memory computations and 10 times faster when it uses disk than traditional
map-reduce tasks. Spark performs well in these cases, where Hadoop users have reported
deficiency with MapReduce. The features like the optimized parameter for iterative jobs
using gradient descent and the interactive analytics interfaces used to run queries on large
data sets using Hadoop. The behavior of the First Come First Serve (FCFS) scheduling
algorithm on a single processor and the gain in speedup with an increasing number of
processors used for our experiment is designed as seen in Table 3.

Table 3. Experimental Setup.

Environment Setup

Jobs Arrival time and CPU burst time
Granularity level Process

Type Fully parallel
Expected Speedup Linear

Scheduling Algorithm FCFS
Computing Nodes Exclusive

Process level parameters Individual process, virtual memory
Overall performance parameters Speedup in latency

No. of queues One
Language Support Scala, Java, Python, R, &

MapReduce
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4. Experimental Evaluation and Results

In this section, we present the experimental design and results to determine a more
efficient option. While experimentation, careful selection of the cluster type, installation,
and collection of necessary data help to get a better result. Two clusters are selected for the
experiment that could represent different HPC applications. Hence, DeepStack and HPDA
clusters are selected in this study for compute-bound and memory-bound jobs.

4.1. DeepStack Cluster

The benchmark experiments on the HPC cluster have passed through the test and
debugging level programs to test the availability of the cluster server compute nodes
and then data with intermediate complexity including Markov chains, Monte-Carlo sim-
ulation, distributed PageRank algorithm, HITS algorithm, Distributed Gradient descent.
After successful tests of these stages benchmarking programs are used. Benchmark pro-
grams include the problems based on highly optimized libraries for core scientific research
with competitive baseline figures in the form of linear algebra, genetics, and simulation
studies using LPACK, LINPACK, BLAS, etc.

Based on the theoretical basis, the experiment is tested for speedups. Three types of
speedups were used in the experiment, and comparable latency and throughput can be
achieved using our cluster architecture:

1. linear speedup(fully parallel case experimented),
2. sublinear speedup(sequential parallel mixed case),
3. superliner speedup(cached case—future work)

Items (1) and (2) can be explained by Ahmdal’s diminishing returns, whereas (3)
is explained by the principle of locality of data (i.e., distributed caching architecture is
used). To perform the experiments and compare the results based on the theoretical basis,
the sample workload taken for experimentation is seen in Table 4. The latency (L) of
architecture is the time taken per unit of workload and is given by the following formula:

L =
W
T

(1)

where, T is the total time taken by the workload on this architecture, and W denotes the total
workload in the number of instructions/jobs. From the relative performance of two systems
processing the same problem as speedup, we measured the speedup/performance improve-
ments from speedup latency and speedup throughput perspectives. Hence, the throughput
is the execution rate of a task as follows: density ρ, the number of processors. In addition,
Q is inversely proportional to the latency of the architecture:

Q =
ρ · AW

T
=

ρ · A
L

(2)

where A—is the number of processors, ρ—execution density( the number of stages in an
instruction pipeline, W—denotes the total workload executed, and T represents the total
time taken.

Regarding the speedup in latency, by making the architecture parallel, we intend to
speed up the system latency. The following formula is used to compute the speed up in
latency between architectures 1 and 2:

Slatency =
L1

L2
=

T1W2

T2W1
(3)

where S denotes the speedup in latency from architecture 1 to 2. In addition, L1 is the
latency on architecture 1, and L2 is the latency on architecture 2.

228



Appl. Sci. 2022, 12, 5113

The following formula defines the speedup in throughput:

Sthroughput =
Q2

Q1
=

ρ2A2T1W2

ρ1A1T2W1
=

ρ2A2

ρ1A1
Slatency (4)

where Sthroughput represents the speedup in throughput of Architecture 2 with respect to
Architecture 1. Moreover, Q1 denotes the throughput of architecture 1, and Q2 is the
throughput of architecture 2.

Regarding Ahmdal’s law, if some part of the program cannot be parallelized because
of dependencies, then the actual speedup cannot be linearly scaled in proportion to the
number of newly added processors. In addition, the speedup is inversely proportional to
the amount of sequentially in the program with the following formula:

Slatency(S) =
1

(1− p) + (p/s)
(5)

where Slatency is the theoretical speedup of the execution of the whole task, s is the speedup
of part of the task that benefits from improved system resources, p is the proportion of
execution time that the part benefiting from improved resources originally occupied.

Table 4. Sample Workload.

SNo. Job Id Arrival Time CPU Burst Time

1 P1 4 200
2 P2 10 500
3 P3 6 400
4 P4 2 300
5 P5 5 200
6 P6 3 100
7 P7 12 250
8 P8 14 320
9 P9 20 250

10 P10 22 150

The performance of the DeepStack cluster increased as the compute nodes were added.
Theoretical improvement in performance should scale linearly for fully parallelizable tasks,
but in a real implementation, a 10% loss in speedup on two-node and a 15% loss in speedup
occurred for the three-node cluster. This loss was entirely due to the latency of the network
(Ethernet) cable and switch performance. Adding more nodes in a cluster increases the
speedup in latency and TAT, decreases the average waiting time of individual processes,
and increases communication cost.

In linear speedup, per Ahmdal’s law on a fixed parallelizability level in a program,
if we increase the number of processors, Torque exhibits an approximately linear increase
in speedup as we add new processors.

For the sublinear speed up, if the program has an s%(<100%) sequential part, it exhibits
sublinear speedup on Torque. The exact penalty can be computed by Ahmdal’s equation
and implementation of the program. During experimentation, single compute node, FCFS
scheduling performance is used as a benchmark which has execution order as given in
Table 5 below and the average baseline performance is seen in Table 6. Note: AT: Arrival
time, BT: Burst time, CT: completion time, TAT: Turn around time, and WT: waiting time.

Table 5. Torque job execution order on a single node.

P4 P6 P1 P5 P3 P2 P7 P8 P9 P10
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Table 6. Torque job execution order on a single node.

Process AT BT Start CT TAT WT

P4 2 300 2 302 300 0
P6 3 100 302 402 399 299
P1 4 200 402 602 598 398
P5 5 200 602 802 797 597
P3 6 400 802 1202 1196 796
P2 10 500 1202 1702 1692 1192
P7 12 250 1702 1952 1940 1690
P8 14 320 1952 2272 2258 1938
P9 20 250 2272 2522 2502 2252

P10 22 150 2522 2672 2650 2500
Avg. Baseline 1443 1433.2 1166.2

The cluster-level performance of DeepStack with a 2-node cluster and DeepStack with
a 3-node cluster and the expected speedup with the actual gain from the setup is also seen
in Table 7 and Table 8, respectively.

Table 7. Torque job execution order on 2-node cluster.

DeepStack Speedup Expected Speedup

Avg. CT 804.315 1443/804.315 = 1.79 2
Avg. TAT 791.818 1.8 2
Avg. WT 525.81 2.12 NA

Avg. Latency 8.28 NA NA

Table 8. Torque job execution order on 3-node cluster.

DeepStack Speedup

Avg. CT 583.75 1443/583.75 = 2.47
Avg. TAT 573.8 2.49
Avg. WT 301.5 3.87

Avg. Latency 8.25 NA

As per Amdahl’s law in this case the speedup in CT and TAT should be twice as of
the single processor benchmark but due to internal latencies, it is decreased by 10% for
the 2-node cluster and by 15% for the 3-node cluster as seen on Table 9. This is because
the performance of clusters declines as described by Amdahl’s law. This happens because,
there is a delay from locking of processes by a scheduling algorithm used, high internal
bandwidth consumption, and poor performance of Ethernet cable capacity. The use of
Gigabits per second Ethernet platform among Pbs_servers and compute nodes helps to get
better performance.

Table 9. Performance Comparison of DeepStack Cluster with Single Node cluster.

Metric 1 Node 2 Node Speedup 3 Node Speedup

Avg. CT 1443 804.315 1.79 583.75 2.47
Avg. TAT 1443.2 791.818 1.8 573.8 2.49
Avg. WT 1166.2 525.81 2.12 301.5 3.87

Avg. Latency 0 8.28 NA 8.25 NA
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4.2. HPDA Cluster

As part of this study, the evaluation was conducted on the HPDA cluster, running a
WordCount program that counts the number of words specified in a given large text file
and calculates pi. The following are benchmark applications on the HPDA cluster:

• iterative Jobs,
• interactive Analytics,
• distributed Machine Learning,
• streaming Analytics.
• distributed Graphs Processing.

Figure 3 depicts the processing time on a single node and multinode clusters.
The execution time depends on the network communication (I/O), the number of

search operations of words, size of the input file. The whole process of MapReduce
processes and builds a cost function that explicitly models the relationship between the
volume of input data, available system resources (map and reduce slots), and complexity
of the reduce function for the target MapReduce job.

Figure 3. HPDA performance Comparison.

The job execution order is compared with a single compute node for base-line compar-
ison. Single Compute Node, FCFS scheduling performance is used as a benchmark for this
experiment and the performance result is seen in Table 9.

As per Amdahl’s law, in this case, the speedup in compute time (CT) and total time
(TAT) should be twice as of the single processor benchmark. But due to Ethernet latencies
it is decreased by 15%. Similarly, we have increased the number of compute nodes in the
experiment and computed the performance parameters in each setup. Since workload
and other conditions are fixed we can use speedup as a measure of performance of our
HPC cluster.

From the Hadoop cluster setup of 10 nodes, we were able to aggregate a distributed
file system of 6.45 terabytes (TB) from 1 master and 9 live workers running. From this
cluster setup, we get 24.9 GB of memory which is enough to run medium size data-intensive
applications or jobs. On this cluster, the authors run a WordCount application of 1.23 GB
on HDFS and observed when the file is replicated to the worker nodes as this is based on
the size of the input file.
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Similarly, the researchers were also able to run the finding pi application on the HPDA
cluster and result that the submitted WordCount application used 72 cores and successfully
processed in 5 s only as seen in Table 10. We have run the above-mentioned applications
i.e., WordCount and pi on a single machine that has 4 cores and 4 GB RAM. Then, the Word-
Count application successfully processed in 36 s, and pi application processed in 19 s which
is been shown in Table 10.

Table 10. Performance Comparison of HPDA Cluster with Single Node Cluster.

Cluster Type/App WordCount App pi App

Single Node Cluster (4 GB RAM, 1 TB HDD) 36 s 19 s
Multi-Node Cluster (24.9 GB RAM, 6.4 TB HDD) 30 s 5 s

It has been observed from Table 10, that the execution time depends on the network
communication (I/O), the number of search operations of words, size of the input file.
The whole process of MapReduce processing and building up a cost function that ex-
plicitly models the relationship between the amount of input data, the available system
resources (Map and Reduce slots), and the complexity of the Reduce function for the target
MapReduce job.

4.3. Result Analysis

OpenMP, MPI, and MapReduce are the most widely recognized parallel or distributed
programming frameworks. The performance study of three parallel programming frame-
works was done [23,24]. The comparative studies have been conducted for two problem sets
the all-pairs-shortest-path problem and a joining problem for large data sets. OpenMP [21]
is the defacto standard model for shared memory systems, MPI [25] is the defacto stan-
dard for distributed memory systems, and MapReduce [24,26] is recognized as the defacto
standard framework intended for big data processing. For each problem, the parallel
programs have been developed in terms of the three models, and their performance has
been observed. The experiment results concluded that if a problem is small enough to
be accommodated and the computing resources such as cores and memory are sufficient,
OpenMP is a good choice. When the data size is moderate and the problem is computation-
intensive, MPI can be considered the framework. When the data size is large and the tasks
do not require iterative processing, MapReduce can be an excellent framework. OpenMP
is the easiest to use because there is no special attention needed to be paid. After all, it
just needs to place some directives in the sequential code. MapReduce is relatively easy to
use once we can abstract an application into Map and Reduce steps. The programmers do
not have to consider workload partitioning and synchronization. MapReduce programs,
however, take a considerable time for the problems requiring many iterations, like the all-
pairs shortest-path problem. MPI allows more flexible control structures than MapReduce;
hence, MPI is a good choice when a program is needed to be executed in a parallel and
distributed manner with complicated coordination among processes.

As per the research questions, we have analyzed the role of commodity hardware in
cluster establishment and showed that at minimum an HPC cluster can be configured with
an Ethernet switch and cabling inter-connectivity among available commodity computers.
We have shown the optimum configuration of the HPC cluster system for various types
of workloads and the choice of software and libraries is highly influenced by the type of
parallelisms available in application-level programs. For shared-memory programming,
we have identified that Torque was a good choice, for distributed memory scatter-gather
pattern it was Hadoop based HPC cluster which showed better performance and for
distributed in-memory computing it was a spark cluster. Also with the help of the MPI
library, Torque supports distributed memory programming paradigm. Lastly, we have
analyzed the performance of various clusters under variable load conditions, and we have
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designed rather simple experiments which are limited to computing the latency profile of
various clusters implemented.

5. Related Work

In addition to advances in hardware and communication infrastructure, the HPC
community has witnessed a growing set of cluster management solutions, includ-
ing Torque, Apache Hadoop, Open-Mosiac, Rocks, OSCAR, OpenPBS, Alchemy, and
HTcondor [3,10,21,23,27–30]. Several open-source libraries exist, such as OpenCV, CUDA,
OpenMP, OpenMPI, MPICH, and many implementations of the message passing (MPI)
programming paradigm are on almost all reviewed cluster platforms [21,31]. The libraries
for individual research domains, corresponding benchmarks, and quantitative performance
evaluations of benchmark problems are also available for most of the HPC implementa-
tions [16,32].

In this race of cost-effective HPC implementations, various universities have devel-
oped a dedicated HPC clusters. Data centers provide researchers access to HPC resources
for cutting-edge research [3,13,17–19] where others have tried to introduce the use of low
cost HPC cluster from inexpensive hardware. However, these may not be exhaustively
tested for different applications that will affect the performance of the cluster machines [33].
The authors’ team believes this represents the importance of infrastructure implementation
in academic sectors with relatively fewer costs while getting a nearly equal performing
HPC infrastructure for their research activities . The University of Columbia implemented
a 167-node cluster with 2672 cores on Dual Intel E5-2650v2 Processors(2.6 GHz) with a
Torque/Moab job scheduler in 2009, which was upgraded to support research projects
in various application areas [17]. Similarly, Yale University provides an HPC-based com-
puting environment with an excellent publication records. The Stanford HPC center
provides a million core compute nodes [18], and the FSU HPC cluster center has more than
10,000 cores and 201,449 Gflops, with a 3 million job capacity [3,10,19,34–36]. Looking to
this achievements one can raise a question that, if having HPC can help to solve many
research questions, how can I develop HPC by myself?. This question should be answered
by someone that knows how. Therefore, we wanted to contribute to answer this question
through designing HPC from a cheap computers around us so that others will do the same
to solve their own problems.

There is no HPC platform that can be used for varying research activities at the
campus level that can be used by the researchers for research that satisfies their needs.
This is a bottleneck for researchers in science, engineering, and biological and genetic
simulation research [6]. In addition to these domains, core computer science research also
requires a specialized HPC centers with commodity computers available in laboratories
to research new domains, such as big data, distributed machine learning, the internet of
things, and cloud computing [2,3,37].

The parallel or distributed programming frameworks OpenMP, MPI, and MapReduce
are the most widely recognized, and the performance of these three parallel programming
frameworks with comparative studies has been assessed for two problems sets: the all-
pairs-shortest-path problem and the join-problem for large data sets [23]. OpenMP is the
defacto standard model for shared memory systems, and MPI [25] is the defacto standard
for distributed memory systems. Finally, MapReduce [26] is recognized as the defacto
standard framework for big data processing.

For each problem, parallel programs have been developed regarding the three models,
and their performance has been observed. The experimental results indicated that if a
problem is small enough to accommodate sufficient computing resources, such as cores
and memory, OpenMP is a good choice. When the data size is moderate and the problem
is computationally intensive, MPI can be considered for the framework. When the data
size is large and the tasks do not require iterative processing, MapReduce can be an
excellent framework.
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OpenMP is the easiest to use because no special attention is needed, as it just requires
to place some directives in the sequential code. MapReduce is relatively easy to use
once we abstract an application into the map and reduce steps, and programmers do
not have to consider workload partitioning and synchronization. MapReduce programs,
however, take a considerable time for problems requiring numerous iterations, such as the
all-pairs shortest-path problems. Moreover, MPI allows more flexible control structures
than MapReduce; hence, MPI is a good choice when a program must be executed in a
parallel and distributed manner with complicated coordination among processes.

The language-independent MPI is a communications protocol for parallel comput-
ing where point-to-point and collective communication are supported [26]. However,
the standard does not currently support fault tolerance [25] because it primarily addresses
HPC problems. Another MPI drawback is that it is unsuitable for the small-grain level
of parallelism, for example, to exploit the parallelism of multicore platforms for shared
memory multiprocessing. In contrast, OpenMP is an Application Programming Interface
(API) that supports multi-platform shared memory multiprocessing programming on most
processor architectures and operating systems [21]. OpenMP is becoming the standard
for shared memory parallel programming due to its high performance; however, it is
unsuitable for distributed memory systems. The idea of extending this API to cope with
this issue is now a growing field of research [38]. OpenMP’s user-friendly interface allows
it to easily parallelize complex algorithms, unlike MPI, because the code must be heavily
re-engineered to obtain relevant performance improvements.

Spark is a state-of-the-art framework for HPC designed to efficiently deal with iterative
computational procedures that recursively perform operations on the same data [39,40],
such as supervised machine learning algorithms. Spark is based on the concept of main-
taining data in memory rather than on disk, as done by other well known approaches
such as Apache Mahout, which require data reloading and incur considerable latencies.
Experiments have shown that Spark outperforms conventional MapReduce jobs in terms of
speed by up to two orders of magnitude [20,40,41]. The core data units in Spark are called
resilient distributed datasets (RDDs). They are a distributed, immutable, and fault-tolerant
memory abstraction that collects an element set in which an operation set can be applied
to produce other RDDs (transformations) or return values (actions). The RDDs can reside
in memory, on the disk, or a combination of these. However, they are only computed on
actions following a lazy evaluation strategy to perform minimal computation and prevent
unnecessary memory usage. The RDDs are not cached in memory by default, therefore,
when data are reused, a persist method is needed to avoid re-computation.

Various cluster management options are available for running Spark. The options
range from the simple Spark integrated Stand-alone Scheduler to other widespread cluster
managers, such as Apache Mesos and Hadoop YARN [30,42,43]. To get benefited from
this reach features, this study deploys Spark in a Hadoop cluster. Apache Hadoop is
an open-source software platform for distributed big data processing over commodity
cluster architectures [30,44]. It has three main elements: (a) a MapReduce programming
model that separates data processing into mapping to perform data operations locally,
shuffling to redistribute network data and reduce data summarization; (b) a Hadoop
distributed file system (HDFS) with high-throughput data access; and (c) a cluster manager
(YARN) handling available computing resources and job scheduling. Nevertheless, Spark
on Hadoop may be preferred [30,43] because it also

• offers a distributed file system with failure and data replication management.
• allows the addition of new nodes at run time, and
• provides a set of tools for data analysis and management that is easy to use, deploy

and maintain.

The authors identified specific gaps in the HPC platform that can easily developed
from commodity computers around us for research activities. To our knowledge, there is
no HPC developed from cheap computers to serve a fully functional HPC infrastructure
the can be used for any research activities ranging from simple simulation to a very
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complicated computation that requires high computing power.There are attempts to design
HPC from low cost machines and Raspberry Pi [33,45] but the first approach didn’t test
the environment for range of job types where the second mainly compared the energy
consumption of their approach with the commodity servers. Authors from [46] also
applies similar concept yet they designed the cluster for odd-even sorting which cannot
represent all ranges of applications. Therefore, to address this technical gaps and come up
with comprehensive solution, we designed a cost-effective HPC cluster from commodity
computers around us. The novelty of this approach is, we put together the best existing
programming language independent tools that any one can easily access and state-of-the-
art frameworks to deal with it. Hence we implemented, tested, and compared our scheme
that helps interested researcher to develop and use HPC from commodity computers.

6. Conclusions

The study was conducted with the available commodity hardware and open-source
tools. The study team developed two types of clusters. Depending on the type and complex-
ity of the computation, individual clusters can be chosen to perform jobs. The DeepStack
cluster supports second-generation or low-level programming languages, such as C, C++,
and Fortran. The HPDA cluster supports the latest programming or high-level program-
ming languages such as Java, Scala, Python, and R.

Many pieces of research indicate that the DeepStack cluster is a good choice if a
problem is small enough to be accommodated, the computing resources, such as cores and
memory, are sufficient, and the data size is moderate. When the data size is large and the
task requires high-speed iterative processing, then the HPDA cluster is a good choice.

From the results, we have analyzed the role of commodity hardware in cluster estab-
lishment. We have identified that at minimum an HPC cluster can be configured with an
Ethernet switch and cabling interconnectivity among available desktop computers with the
help of suitable cluster management software. But, during the experiment, we found that
the rate of failure of commodity computers is more as compared to the specially designed
computers, also there is less than 50 Mbps bit rate due to various types of delays between
compute-node and server-nodes, which is quite less than the rate at which connected hard
disk can supply data to a processor using SCSI or PCI.

We also found the optimum configuration of the HPC cluster system for various types
of workloads. The choice of software and libraries is highly influenced by the type of
parallelisms available in application-level programs. For shared-memory programming,
we have identified that Torque was a good choice, for distributed memory scatter-gather
pattern it was a Hadoop-based HPC cluster which showed better performance and for
distributed in-memory computing, it was a spark cluster. Also with the help of the MPI
library Torque supports distributed memory programming paradigm.

Lastly, we have analyzed the performance of various clusters under variable load con-
ditions, but as per the scope of this research, we have designed rather simple experiments
which are limited to computing the latency profile of various clusters implemented. More
sophisticated experiments involving the performance gain at compiler level optimizations,
use of libraries, programming paradigms, and different types of workloads shall be studied
in the future.

Author Contributions: Conceptualization, D.R. and Y.S.; methodology, D.R. and H.Y.; investigation,
Y.S. and H.Y.; validation, H.Y.; visualization, D.R. and Y.S.; writing—original draft preparation, D.R.;
writing—review and editing, D.R., H.Y. and Y.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korean government (MSIT) (No.2021R1C1C1010861). This work was supported in part
by the Korea Institute for Advancement of Technology (KIAT) grant funded by Korea government
(MOTIE) (P0012724, The Competency Development Program for Industry Specialist) (Corresponding
Author: Yongseok Son).

235



Appl. Sci. 2022, 12, 5113

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: For more, we put the link to the installation manual and configuration
steps at the following https://github.com/Derejereg/HPC/blob/main/Installation_manual.pdf
(accessed on 27 April 2022) using GitHub.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Plaza, A.; Chang, C.I.; Plaza, J.; Valencia, D. Commodity cluster and hardware-based massively parallel implementations of
hyperspectral imaging algorithms. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and
Ultraspectral Imagery XII, Kissimmee, FL, USA, 17–20 April 2006; Volume 6233, p. 623316.

2. Yeo, C.S.; Buyya, R.; Pourreza, H.; Eskicioglu, R.; Graham, P.; Sommers, F. Cluster computing: High-performance, high-availability,
and high-throughput processing on a network of computers. In Handbook of Nature-Inspired and Innovative Computing; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 521–551.

3. Es-Sabery, F.; Hair, A. Big data solutions proposed for cluster computing systems challenges: A survey. In Proceedings of the 3rd
International Conference on Networking, Information Systems & Security, Marrakech, Morocco, 31 March–2 April 2020; pp. 1–7.

4. Hager, G.; Wellein, G. Introduction to High Performance Computing for Scientists and Engineers; CRC Press: Boca Raton, FL, USA,
2010.

5. García-Risueño, P.; Ibáñez, P.E. A review of High Performance Computing foundations for scientists. Int. J. Mod. Phys. C 2012,
23, 1230001. [CrossRef]

6. Makino, J.; Taiji, M. Scientific Simulations with Special-Purpose Computers—The GRAPE Systems; Wiley-VCH: Weinheim, Germany,
1998; ISBN 0-471-96946-X.

7. Brightwell, R.; Fisk, L.A.; Greenberg, D.S.; Hudson, T.; Levenhagen, M.; Maccabe, A.B.; Riesen, R. Massively parallel computing
using commodity components. Parallel Comput. 2000, 26, 243–266. [CrossRef]

8. Jin, H.; Jespersen, D.; Mehrotra, P.; Biswas, R.; Huang, L.; Chapman, B. High performance computing using MPI and OpenMP on
multi-core parallel systems. Parallel Comput. 2011, 37, 562–575. [CrossRef]

9. Lee, J.; Kang, H.; Yu, S.; Kim, C.; Yea, S.J. Whole cancer genome analysis using an I/O aware job scheduler on high performance
computing resource. In Proceedings of the 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
Belfast, UK, 2–5 November 2014; pp. 10–11.

10. Balaprakash, P.; Dongarra, J.; Gamblin, T.; Hall, M.; Hollingsworth, J.K.; Norris, B.; Vuduc, R. Autotuning in high-performance
computing applications. Proc. IEEE 2018, 106, 2068–2083. [CrossRef]

11. Hellwagner, H.; Karl, W.; Leberecht, M. Enabling a PC Cluster for High-Performance Computing. SPEEDUP J. 1997, 11. Available
online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.454.6607&rep=rep1&type=pdf (accessed on 27 April 2022).

12. Lee, J.; Abuzaghleh, O. Implementing an affordable high performance computing platform for teaching-oriented computer
science curriculum. In Proceedings of the 2011 ASEE Annual Conference & Exposition, Vancouver, BC, Canada, 26–29 June 2011;
pp. 22–816.

13. Sterling, T.L. Beowulf Cluster Computing with Linux; MIT Press: Cambridge, MA, USA, 2002.
14. LexisNexis. HPCC Systems. Available online: https://hpccsystems.com/ (accessed on 7 October 2021).
15. Cisco. Cisco Annual Internet Report; Cisco Public (2018–2023); Cisco Systems, Inc.: San Jose, CA USA, 2022.
16. Harney, J.; Lim, S.H.; Sukumar, S.; Stansberry, D.; Xenopoulos, P. On-demand data analytics in HPC environments at leadership

computing facilities: Challenges and experiences. In Proceedings of the 2016 IEEE International Conference on Big Data (Big
Data), Washington, DC, USA, 5–8 December 2016; pp. 2087–2096.

17. XSEDE. HPC at University of Columbia. Available online: https://www.xsede.org/ (accessed on 12 September 2021).
18. Stanford. HPC at Stanford University. Available online: https://hpcc.stanford.edu/ (accessed on 19 September 2021).
19. FSU. FSU HPC Cluster. Available online: https://rcc.fsu.edu/services/hpc (accessed on 26 August 2021).
20. Xin, R.S.; Rosen, J.; Zaharia, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Shark: SQL and rich analytics at scale. In Proceedings of the

2013 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, 22–27 June 2013; pp. 13–24.
21. OpenMP Architecture Review Board. Openmp Application Program Interface; Techical Report; OpenMP Architecture Review Board:

Beaverton, OR, USA, 2013.
22. Olston, C.; Reed, B.; Srivastava, U.; Kumar, R.; Tomkins, A. Pig latin: A not-so-foreign language for data processing. In

Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 10–12 June
2008; pp. 1099–1110.

23. Kang, S.J.; Lee, S.Y.; Lee, K.M. Performance comparison of OpenMP, MPI, and MapReduce in practical problems. Adv. Multimed.
2015, 2015, 7. [CrossRef]

24. Hashem, I.A.T.; Anuar, N.B.; Marjani, M.; Ahmed, E.; Chiroma, H.; Firdaus, A.; Abdullah, M.T.; Alotaibi, F.; Ali, W.K.M.;
Yaqoob, I.; et al. MapReduce scheduling algorithms: A review. J. Supercomput. 2020, 76, 4915–4945. [CrossRef]

236



Appl. Sci. 2022, 12, 5113

25. Snir, M.; Gropp, W.; Otto, S.; Huss-Lederman, S.; Dongarra, J.; Walker, D. MPI—The Complete Reference: The MPI Core; MIT Press:
Cambridge, MA, USA, 1998; Volume 1.

26. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [CrossRef]
27. Sloan, J.D. High Performance Linux Clusters with OSCAR, Rocks, OpenMosix, and MPI: A Comprehensive Getting-Started Guide;

O’Reilly Media, Inc.: Sebastopol, CA USA, 2004; ISBN 9780596005702.
28. Staples, G. TORQUE resource manager. In Proceedings of the 2006 ACM/IEEE conference on Supercomputing, Tampa, FL, USA,

11–17 November 2006; p. 8. [CrossRef]
29. Apache. Apache Hive. Available online: https://hive.apache.org/ (accessed on 13 August 2021).
30. Venkatraman, S.; Subramanyam, R. Data Aware Distributed Storage (DAS) for Performance Improvement across a Hadoop

Commodity Cluster. In Advances in Decision Sciences, Image Processing, Security and Computer Vision; Springer: Cham, Switzerland,
2019; Volume 3, p. 350.

31. Bell, G.; Gray, J. What’s next in high-performance computing? Commun. ACM 2002, 45, 91–95. [CrossRef]
32. Hoffman, A.R. Supercomputers: Directions in Technology and Applications; Number 04, e-Book; National Academy of Science and

National Research Board—National Academies Press: Washington DC, USA, 1989.
33. Kumar, D.; Memon, S.; Thebo, L.A. Design, implementation & performance analysis of low cost high performance computing

(HPC) clusters. In Proceedings of the 2018 12th International Conference on Signal Processing and Communication Systems
(ICSPCS), Cairns, Australia, 17–19 December 2018; pp. 1–6.

34. Hmes, V.; Kureshi, I. Developing high performance computing resources for teaching cluster and grid computing courses.
Procedia Comput. Sci. 2015, 51, 1714–1723.

35. Apon, A.; Buyya, R.; Jin, H.; Mache, J. Cluster computing in the classroom: Topics, guidelines, and experiences. In Proceedings of
the First IEEE/ACM International Symposium on Cluster Computing and the Grid, Brisbane, QLD, Australia, 15–18 May 2001;
pp. 476–483.

36. Staples, G. Torque Resource Manager. 2013. Available online: https://www.hpcadvisorycouncil.com/pdf/RADIOSS_Analysis_
and_Profiling_AMD.pdf (accessed on 3 July 2021).

37. Dongarra, J.; Sterling, T.; Simon, H.; Strohmaier, E. High-performance computing: Clusters, constellations, MPPs, and future
directions. Comput. Sci. Eng. 2005, 7, 51–59. [CrossRef]

38. Basumallik, A.; Min, S.J.; Eigenmann, R. Programming distributed memory sytems using OpenMP. In Proceedings of the 2007
IEEE International Parallel and Distributed Processing Symposium, Long Beach, CA, USA, 26–30 March 2007; pp. 1–8.

39. Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster computing with working sets. HotCloud 2010,
10, 95.

40. Yu, Z.; Bei, Z.; Qian, X. Datasize-aware high dimensional configurations auto-tuning of in-memory cluster computing. In
Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating
Systems, Williamsburg, VA, USA, 24–28 March 2018; pp. 564–577.

41. Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauly, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12), San Jose, CA, USA, 25–27 April 2012; pp. 15–28.

42. Karau, H.; Konwinski, A.; Wendell, P.; Zaharia, M. Learning Spark: Lightning-Fast Big Data Analysis; O’Reilly Media, Inc.:
Sebastopol, CA, USA, 2015; ISBN 978-1-44-935862-4.

43. Reyes-Ortiz, J.L.; Oneto, L.; Anguita, D. Big data analytics in the cloud: Spark on hadoop vs mpi/openmp on beowulf. Procedia
Comput. Sci. 2015, 53, 121–130. [CrossRef]

44. White, T. Hadoop: The Definitive Guide; O’Reilly Media, Inc.: Sebastopol, CA USA, 2015; ISBN 9781491901632.
45. Bourhnane, S.; Abid, M.R.; Zine-Dine, K.; Elkamoun, N.; Benhaddou, D. High-Performance Computing: A Cost Effective and

Energy Efficient Approach. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 1598–1608. [CrossRef]
46. Myint, K.N.; Aung, W.T.; Zaw, M.H. Research and Analysis of Parallel Performance with MPI Odd-Even Sorting Algorithm on

Super Cheap Computing Cluster. Ph.D. Thesis, University of Computer Studies, Yangon, Myanmar, 2019.

237



Citation: Xing, C.; Yao, L.; Wang, Y.;

Hu, Z. Suitability Evaluation of the

Lining Form Based on Combination

Weighting–Set Pair Analysis. Appl.

Sci. 2022, 12, 4896. https://doi.org/

10.3390/app12104896

Academic Editors: Nuno Lau,

Rui Araújo, António Pedro Aguiar,

Rodrigo Ventura and João Fabro

Received: 6 April 2022

Accepted: 10 May 2022

Published: 12 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Suitability Evaluation of the Lining Form Based on Combination
Weighting–Set Pair Analysis

Chen Xing 1, Leihua Yao 1,*, Yingdong Wang 2 and Zijuan Hu 1

1 School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China;
xingc@cugb.edu.cn (C.X.); m18370956200@163.com (Z.H.)

2 Beijing Engineering Corporation Limited, Beijing 100024, China; timothyboy@163.com
* Correspondence: leihuayao@163.com

Abstract: Aiming at the many uncertain factors in the suitability evaluation of reinforced concrete
lining of high-pressure pipelines, the set pair analysis (SPA) theory is used to establish the suitability
evaluation model. By summarizing the key influencing factors of typical lining design criteria,
five suitability evaluation indices are determined from three criteria, i.e., the minimum overburden
criterion, the minimum principal stress criterion, and the hydraulic fracturing criterion. In order
to fully consider the subjective and objective factors, the combination ordered weighted averaging
(C-OWA) operator and the criteria importance through intercriteria correlation (CRITIC)-entropy
weighting model (EWM) were used to construct a combination weighting method, and the weight
coefficients of each index were comprehensively determined. Based on the SPA theory and calculation
rules, combined with the lining suitability grading criteria, the five-element connection degree of
each index and the comprehensive connection degree of each working point were calculated. In this
study, the model is applied to the suitability evaluation of reinforced concrete lining at each drilling
point of the high-pressure pipeline of a pumped storage power station (PSPS) in Shanxi Province.
The results show that the proposed model consisting of subjective weight and objective weight
can effectively avoid the error caused by a single weight method, which improves the evaluation
sensitivity and rationality.

Keywords: high-pressure pipeline; suitability evaluation; reinforced concrete lining; C-OWA operator;
CRITIC-EWM; combination weighting–SPA

1. Introduction

The pumped storage power station (PSPS) is a special power supply with many func-
tions, such as peak shaving, valley filling, phase modulation, and emergency standby [1,2].
It not only has a flexible storage capacity which could support the deployment of wind and
solar energy, but also helps to ensure the secure and stable operation of power grid [3,4]. In
2016, the signing of the “Paris Agreement” resulted in a quick development of green and
low-carbon energy [5]. With rapid development of new energy, the construction of PSPS has
once again entered the vision of decision makers in some major countries. The International
Renewable Energy Agency (IRENA) proposed that by 2030, the global installed capacity of
energy storage will increase by 42% to 68% by 2017, and the increase in installed capacity
of pumped storage will be in a range from about 40% to 50%. With commitment from the
Chinese government, the peak of carbon dioxide emission and carbon neutrality will be
achieved before 2030 and 2060, respectively, and it is estimated that the installed capacity of
PSPS will reach about 120 million kW by 2030, continuing to maintain the world’s leading
level. The opportunity of rapid development for PSPS could be expected both globally and
domestically. Therefore, it is very urgent to speed up the construction of PSPS [6].

The key part of PSPS is the water conveyance system that connects the upper and lower
reservoirs, which is similar to the blood vessels of the human body. In the design scheme,
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the water level difference and internal water pressure of the pipeline are generally high.
Therefore, the lining must be able to have the ability to deal with problems caused by high
water level difference and internal water pressure [7]. At present, the common forms of high-
pressure pipelines are steel plate lining and reinforced concrete lining. The former has high
price and complicated construction; the latter is economical and simple in manufacturing
processes [8]. When designing and selecting the lining forms, it is necessary to consider
the influence of a variety of uncertain factors to prevent unpredictable losses. From an
economic and reasonable point of view, it is very important to choose an appropriate
high-pressure pipeline lining form.

In order to select the appropriate lining form and avoid hydraulic fracturing under
the effect of high water head, some design guidelines are commonly used for high-pressure
pipelines, such as the minimum overburden criterion, the minimum principal stresses
criterion, and the hydraulic fracturing criterion [9–11]. Zhang [10] discussed the interrela-
tionship between these three guidelines and the application conditions, and confirmed that
the engineering design for high-pressure pipelines should be focused on the reconnaissance
and utilization of the surrounding rock geotechnical conditions and crustal stress state
as well as the permeability of rock mass under high water pressure, etc. Schleiss [12]
discussed the influence of seepage pressure and stress distribution on lining cracking based
on design criteria for reinforced concrete-lined tunnels. Kang Bian et al. [11] used the
minimum overburden criterion and the minimum principal stress criterion to eliminate the
possibility of cracking caused by improper lining design in the investigation of the causes
of high-pressure pipe linings cracking in Huizhou PSPS. In addition, many scholars have
used various mathematical models to simulate the hydraulics interactions in high-pressure
pipelines in order to explore the key factors affecting the stability of reinforced concrete
linings. Chen et al. [13] used a three-dimensional finite element method (3D-FEM) to
effectively reflect the main influencing factors (such as the property of surrounding rocks,
the internal water pressure, and the interaction and initial gap between surrounding rocks
and lining) of the lining stress characteristics. Dadashi et al. [7] used the ABAQUS finite
element program based on a direct-coupled method to analyze the hydraulic interaction
of high-pressure pipelines and found that the reinforcement distribution and the lining
thickness are the key factors affecting the lining stability. Zhou et al. [8] and Su [9] found
that in situ stress, rock permeability, and the rock mass deformation modulus are all impor-
tant parameters for the design of reinforced concrete linings by analyzing the hydraulics
interactions in high-pressure hydraulic pipelines.

At present, the methods of selecting the lining form are mostly based on a quantitative
perspective. In actual projects, there are also some cases in which the experts directly
select the lining form qualitatively according to their engineering experiences. However,
whether from a qualitative or quantitative point of view, few scholars have considered
the interaction between deterministic and uncertain factors in the suitability evaluation of
lining forms. The subjective and objective combination weighting–SPA can be well dealt
with in this regard. In this study, a combination weighting–SPA evaluation model of a
five-element connection degree was established based on the reinforced concrete lining
form. In this model, C-OWA operator was used to calculate the subjective weights of
evaluation indices, and the objective weight was determined by the CRITIC method and
EWM. Based on the above model, the suitability evaluation indices of the lining form were
discussed and selected.

2. The Suitability Level of Lining Form

The established suitability evaluation model in this study can not only utilize the
results of current drilling exploration, reduce the workload, and improve the efficiency of
design scheme, but also considers the decision of expert evaluation. The five evaluation
indices are related to the minimum overburden thickness, the minimum in situ stress, the
hydraulic fracturing pressure, the hydraulic gradient, and the surrounding rock classi-
fication, which can be recorded as A, B, C, D, and E, respectively. The suitability of the
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reinforced concrete lining form is divided into five evaluation levels: extremely suitable (I),
more suitable (II), basically suitable (III), relatively unsuitable (IV), and extremely unsuit-
able (V). The relationship between indices and evaluation level of the lining is shown in
Table 1.

Table 1. Relationship between Indices and Evaluation Level of the Lining.

Evaluation
Level

Extremely
Suitable (I)

More
Suitable (II)

Basically
Suitable (III)

Relatively
Unsuitable (IV)

Extremely
Unsuitable (V)

A >1.5 1.3~1.5 1.2~1.3 1.0~1.2 <1.0
B >1.3 1.2~1.3 1.1~1.2 1.0~1.1 <1.0
C >1.3 1.2~1.3 1.1~1.2 1.0~1.1 <1.0
D <3 3~6 6~10 10~15 >15
E 100~50 50~30 30~10 10~3 <3

(a) Evaluation index A is selected with reference to the minimum overburden criterion.
It is calculated by Equation (1). This index determines the suitability level of the safety
degree of reinforced concrete linings by the ratio of the minimum overburden thickness of
rock mass at the design location of high-pressure pipelines to the hydrostatic pressure. In
the Norwegian criterion, the safety degree value is in the range of 1.05–1.1. However, the
rock weathering in China is relatively deep. Professor Gu Zhaoqi’s suggestion is mostly
adopted in the practical engineering applications and the evaluation level is more suitable
when the index value is in the range of 1.3–1.5 [14].

A ≥ rRcos αCRM
γwhs

(1)

where CRM is the minimum overburden thickness of rock mass (m); hs is the hydrostatic
pressure head at the selected position of the high-pressure pipeline (m); γw is the weight
of water, which is taken as 10 kN/m3; γR is the weight of rock mass (kN/m3); and α is the
slope angle of the mountain body at the selected position of the high-pressure pipeline.

(b) Evaluation index B is selected according to the hydraulic fracturing criterion, which
is used mainly to check the permeability of rock mass and fracture and determine whether
they meet the requirements of permeability stability. The index is calculated by comparing
the normal stress σn on the joint or fracture surface with the hydrostatic pressure of high-
pressure pipelines, which could help to determine the suitability level of the safety degree
of reinforced concrete linings. When Equation (2) is satisfied, tensile stress does not occur
on the joint or fracture surface of the surrounding rock under water pressure, and hydraulic
fracturing does not occur on the surrounding rock. Generally, the index should have a
certain safety margin. According to the engineering experience, it is more suitable for the
value range of 1.2–1.3 [15].

B ≥ σn

γwhs
(2)

(c) Evaluation index C is selected according to the minimum principal stress criterion.
This criterion is actually an engineering generalization of the hydraulic fracturing criterion.
In engineering applications, the normal stress σn is difficult to obtain on the joints or fracture
surfaces of high-pressure pipelines, and therefore it is replaced by the minimum principal
stress σmin. The index uses the ratio of minimum principal stress σmin to the hydrostatic
pressure in high-pressure pipelines to determine the suitability level of safety degree, taking
the same range of values as the evaluation indicator B. It is obtained by Equation (3).

C ≥ σmin
γwhs

(3)
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(d) Evaluation index D is based on the hydraulic gradient of high-pressure pipelines
to evaluate the suitability of reinforced concrete lining. The hydraulic gradient is closely
related to the hydraulic fracturing criterion and is an important parameter for determining
the permeability stability of the surrounding rock. According to the material and fracture
development in the borehole fault fracture zone of high-pressure pipelines, there is a time-
varying phenomenon along the fault fracture zone, and it is relatively strong. Combined
with similar engineering experience, the high-pressure hydraulic gradient is generally not
greater than 10~15 under I~III class hard surrounding rock conditions, and the hydraulic
gradient in fault fracture zone and influence zone is recommended to be 3.0~6.0. Therefore,
the hydraulic gradient value range is 6~10, which is basically suitable.

(e) Evaluation index E evaluates the suitability of reinforced concrete linings according
to rock mass classification of high-pressure pipelines. This index is also an important impact
parameter for the above criterions. In drilling exploration, the rock quality designation
(RQD) is usually selected to determine the rock mass classification. However, many
researchers pointed out that the RQD cannot directly reflect the rock structure type and
rock block composition [16–18]. As shown in Figure 1, when the distance (intercept)
between joints is 10 cm or less, the RQD is 0%, whereas when the distance is 11 cm or more,
the RQD is 100%. Compared with RQD, the rock mass block index (RBI) is able to reflect
the size of the rock mass [19]. For a rock mass with RQD equal to 90%, although its block
composition varies among 10–30, >50, >100 cm, etc., the RBI values corresponding to each
case are different. RBI is more accurate than RQD in reflecting the structural characteristics
of the rock mass [20]. Therefore, RBI is an improvement and supplement to RQD, and the
formula is shown in Equation (4).

RBI = 3Cr3 + 10Cr10 + 30Cr30 + 50Cr50 + 100Cr100 (4)

where, Cr3, Cr10, Cr30, Cr50, and Cr100 are the core acquisition rates with lengths of 3~10,
10~30, 30~50, 50~100, and >100 cm, respectively. Furthermore, 3, 10, 30, 50, and 100 are
all coefficients.

 
Figure 1. Examples of minimum and maximum values of RQD for various joint densities along drill
cores (Reprinted with permission from Ref. [17]. Copyright 2022, Elsevier).

3. The Proposed Methodology

Figure 2 presents the flowchart of the proposed methodology for the suitable level of
reinforced concrete lining. The main steps of the methodology are shown below.
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Figure 2. Flowchart of the proposed methodology.

3.1. C-OWA Operator

A commonly used aggregation operator is the ordered weighted averaging (OWA)
operator [21]. The C-OWA operator is an improved weight calculation method based
on OWA operator. It eliminates the subjectivity and extreme value of expert weight
assigned by the orderly weighted average operation, making weight more objective and
reasonable [22,23]. Steps are as follows:

(1) Firstly, n experts were invited to score the importance of indices at the same level
(using a 10-point system) to form the initial decision data A = (x1j, x2j, . . . , xmj). Then,
the initial decision data are arranged in descending order to acquire new decision
data B = (y0j, y2j, . . . , y(m−1)j).

(2) The weighted vector ui of the decision data B is calculated by Equation (5).

ui =
Ci

m−1
m−1
∑
k=0

Ck
m−1

=
Ci

m−1
2m−1 (5)

where Ci
m−1 represents the combination number of i data selected from m−1 data, i ∈ [0, m− 1].

(3) The absolute weight of the assessment index Pj is obtained by weighting the decision
data B with the weighted vector ui. The equation is as follows:

Pj =

m−1

∑
i=0

uiyij (6)

where j represents the jth index.
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(4) According to the absolute weight, the relative weight of the assessment index λj is
calculated by Equation (7).

λj =
Pj

n
∑
j=1

Pj

(7)

3.2. CRITIC-EWM Method
3.2.1. CRITIC Method

The CRITIC method was proposed by Diakoulaki et al. in 1995, and the basic idea is
to use two parameters (i.e., correlation coefficient and standard deviation) to determine the
objective weight of the index [24]. The standard deviation indicates the contrast intensity
of the index, and the larger the standard deviation is, the greater the value difference of
each scheme [25]. Meanwhile, the correlation coefficient is a quantitative index of conflict,
and the conflict decreases with the increase in the correlation coefficient [26]. It is mainly
divided into five steps:

(1) The initial indicator data matrix X is defined as follows:

X =
(
xij
)

m×n (8)

where xij are the raw data of the jth index corresponding to the ith object.

(2) Initial data normalization

In order to eliminate the impact of different dimensions on the evaluation results, it is
necessary to standardize each index.

If the index value used is larger, the forward treatment is generally adopted by
Equation (9).

yij =
xij −min(xij)

max(xij)−min(xij)
(9)

If the index value is smaller, the reverse treatment is generally used by Equation (10).

yij =
max(xij)− xij

max
(
xij
)−min(xij)

(10)

(3) The standard deviation of each index is calculated by Equation (11).

σj =

√√√√ 1
m− 1

m

∑
i=1

(yij − yj)
2 (11)

where σj is the standard deviation of the index xj; yj is the average value of the jth index.

(4) Correlation coefficient of the indices is calculated by Equation (12).

rij =

n
∑
i=1

(yi − yi)(yj − yj)√
n

∑
i=1

(yi − yi)
2 n

∑
j=1

(yj − yj)
2

(12)

where rij is the correlation coefficient between index xi and xj.

(5) The objective weight of the indices is calculated by Equations (13) and (14).

Bj = σj

n

∑
i=1

(
1− rij

)
(13)
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ϕj =
Bj

n
∑
j=1

Bj

(14)

where Bj is the composite information of the jth index.

3.2.2. Improved EWM

EWM is an objective weighting method for characterizing the dispersion of informa-
tion on the indices [27,28]. In order to extend the scope of application of EWM and make
it more convenient to use [29], the improved EWM to determine the objective weights of
evaluation indices was adopted. Steps are as follows:

(1) Based on the CRITIC method, n indices and m samples are set in the evaluation,
and the measured value of the jth index in the ith sample is recorded by Equation (15). The
entropy value Rj of the jth index is defined by Equation (16).

rij =
yij + 1

m
∑
i=1

(yij + 1)
(15)

Rj =

− m
∑
i=1

rij ln rij

ln m
(16)

(2) The improved entropy weight of the jth index is calculated by Equation (17).

ej =
1− Rj

n
∑
j=1

(
1− Rj

) (17)

3.2.3. Determining the Objective Weight

The CRITIC method can eliminate the influence of some indices with strong correlation
and reduce the information overlap between indices. However, this method ignores the
dispersion between data, and the improved EWM can effectively make up for this deficiency.
The integration of these two methods can fully take into account the dispersion, correlation,
and comparison intensity of the data, and more effectively reflect the differences and
correlation of the objective data of the evaluation indices [30]. The specific formula of
combined objective weight ωj is calculated by Equation (18).

ωj = (ϕj + ej)/2 (18)

3.3. Combination Weighting

The combination weighting method integrates expert experience and objective data. It
makes the weighting of the evaluation indices reach the unity of subjective and objective,
and improves the rationality of evaluation results. The multiplicative synthesis method [31]
is used to determine the comprehensive weight. The calculation equation is:

ω′j =
λjωj

n
∑
j=1

λjωj

(19)

where ω′j represents the combination weight of the jth index and λj and ωj are the subjective
and objective weights of the jth index, respectively.
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3.4. SPA

The SPA method is an improved uncertainty theory which is an integrated certainty–un-
certainty system [32–34]. It illustrates unsureness in three angles, namely “identity”,
“discrepancy”, and “contrary”, and the connection degree is one of its main features [35,36].
These two objects are a system of interconnection, restriction, and interaction with each
other, forming a pair of certainty and uncertainty sets H (A, B). The degree of connectedness
of the two objects is determined as follows:

μ =
S
K
+

F
K

i +
P
K

j = a + bi + cj (20)

where μ is the connection degree between sets A and B, K stands for the total number
of elements; S elements show identical properties, F elements demonstrate discrepant
properties, and P elements display contrary properties; a, b, and c represent the degree of
“identity”, “discrepancy”, and “contrary”, respectively, and a + b + c = 1; i is the uncertainty
coefficient in [−1, 1]; and j is the contrary coefficient, j = −1.

The evaluation of a high-pressure pipe lining form is a complex work affected by
a variety of uncertain factors. In order to accurately express the certain and uncertain
relationships between the indices, the discrepancy in the ternary connection degree of its
core elements was further subdivided to obtain a five-element connection degree expression
in this study. The equation is as follows:⎧⎪⎪⎨⎪⎪⎩

u = a + b1i1 + b2i2 + b3i3 + cj = a + bu + cv + dw + el
a + b + c + d + e = 1

a, b, c, d, e ∈ 0, 1
u, v, w ∈ −1, 1, l = −1

(21)

where, a, b, c, d, e are the connection degrees of the evaluation levels I, II, III, IV, and V,
respectively, and u, v, w, and l are connection component coefficients.

Combining the comprehensive weight of each index, the comprehensive five-element
connection degree of the lining suitability level is calculated, and the calculation formula is
obtained by Equation (22).

μ =

n

∑
j=1

ajω
′
j +

n

∑
j=1

bjω
′
ju +

n

∑
j=1

cjω
′
jv +

n

∑
j=1

djω
′
jw +

n

∑
j=1

ejω
′
j l (22)

4. Case Study

4.1. Project Overview

A PSPS in Shanxi Province has a proposed installed capacity of 1500 MW. The water
conveyance system is arranged in the mountain beam between the upper and lower
reservoirs, consisting of the diversion system and the tail water system, both of which
adopt the arrangement of one pipe and two machines. Two high-pressure main pipes
are arranged in parallel, with horizontal spacing of 28.04 m. The lengths of 1# and 2#
high-pressure main pipes are 1338.93 m and 1370.11 m, respectively. The high-pressure
main pipe is arranged by a buried three inclined shaft. The middle-up flat section and the
middle-down flat section are set up with elevations of 1830 m and 1580 m, respectively.

The lithology of the project area is mainly biotite plagiogneiss and diopside-bearing
biotite plagioclase amphibolite. The gneiss is a massive structure, and the primary gneis-
sosity is mainly streamlined. It is affected by the late tectonic movement, and faults are
more developed in the rock mass. The amphibolite is a massive structure and xenolith
form. There is no obvious lithologic boundary between the two lithologies, but mainly in
the form of a fracture and melting contact relationship.

Currently, it is in the peak period of new energy policy expansion and energy stor-
age/storage power station construction demand. Due to the requirements of the con-
struction period and design plan of the PSPS and the restriction of using hole-detecting
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explosives, there is no hole-detecting data for high-pressure pipelines. Therefore, the
drilling data of the high-pressure pipeline (Table 2) were used to establish a combination
weighting–SPA evaluation model and to analyze the suitability range of reinforced concrete
linings. The survey and drilling schematic of the hydropower station is shown in Figure 3.

Table 2. High-pressure pipeline section analysis data.

Drilling Number A B C D E

1 2.43 4.79 7.07 5.89 33.93
2 2.04 2.93 4.96 8.20 69.12
3 1.82 2.79 3.67 8.20 86.40
4 1.80 2.44 4.52 9.38 15.98
5 1.66 0.76 1.71 13.09 46.77
6 1.59 0.37 2.99 17.19 74.11
7 1.60 1.34 1.76 25.32 6.82

Figure 3. Survey and drilling schematic of hydropower station. (a): topography of the project area;
(b): drilling of the high-pressure pipeline; (c): hole-detecting of the powerhouse; (d): photograph of
rock cores.

γR = 26.5 kN/m3. The in situ stress of the borehole is measured by hydraulic fracturing
method. σmin is derived from the law of linear relationship between the evolution of the in
situ stress of the borehole with depth [37,38].

4.2. Calculation of Index Weight

The C-OWA operator is used for group decision-making weighting and subjective
weights are calculated for evaluation indices. Eight experts from the field of geological
engineering and hydraulic engineering, as listed in Table 3, were invited to score the impor-
tance of each evaluation index on a 10-point scale. The expert’s scores on the importance of
each index were presented in Table 4, in which the higher score means higher importance.
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Table 3. Expert Information.

No. Professional Field Position Educational Level

Expert 1 Geological Engineering Senior Engineer Master
Expert 2 Geological Engineering Senior Engineer Master
Expert 3 Geological Engineering Professor Doctor
Expert 4 Geological Engineering Professor Doctor
Expert 5 Hydraulic Engineering Senior Engineer Master
Expert 6 Hydraulic Engineering Senior Engineer Master
Expert 7 Hydraulic Engineering Professor Doctor
Expert 8 Hydraulic Engineering Professor Doctor

Table 4. Index importance scores.

Index Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 Expert 8

A 3 2.5 2 1 1.5 1 1.5 1.2
B 1 2 1.5 2 1.5 2 1 1.5
C 2 2.5 2.5 2.5 2.5 3 2.5 3
D 2.5 2.5 2 2.5 1.5 2 2.5 1.5
E 1.5 1 2 2 3 2.5 2.5 3

Firstly, the subjective weights of the indices λi are calculated by Equations (5)–(7):
λj = (0.1546, 0.1560, 0.2492, 0.2188, 0.2215);
Then, the combined objective weight of the indices ωj is calculated by Equations (8)–(18):
ωj = (0.3343, 0.1612, 0.0924, 0.2471, 0.1650);
Finally, the combination weight of the indices ω′j is calculated by Equation (19):
ω′j = (0.2714, 0.1320, 0.1209, 0.2838, 0.1918).

4.3. Level Determination

According to the equipartition principle, u = 0.5, v = 0, and w = −0.5 are taken to
be located in the three quarter positions of the interval [−1, 1], and the value of the
five-element connection degree of the comprehensive evaluation is calculated to determine
the suitability level of the reinforced concrete lining form. The corresponding relationship
between the five-element connection degree and the suitability level of the reinforced
concrete lining form is shown in Table 5.

Table 5. The Relationship between the Five-element Connection Degree and the Suitability Level.

Suitability
Level

Extremely
Suitable (I)

More
Suitable (II)

Basically
Suitable (III)

Relatively
Unsuitable (IV)

Extremely
Unsuitable (V)

μ [0.6, 1] [0.2, 0.6) [−0.2, 0.2) [−0.6, −0.2) [−1, −0.6)

4.4. Suitability Evaluation

According to Equation (22) and combined with Tables 2 and 5, the suitability eval-
uation of seven groups of drilling samples for the reinforced concrete lining is carried
out. The five-element connection degree of working points is shown in Table 6, and the
results of each evaluation method are shown in Table 7. According to the evaluation results,
all the high-pressure pipelines of the PSPS are basically suitable for reinforced concrete
linings. From No. 1 to No. 7, with the increasing underground depth, the anisotropy of
the high-pressure pipeline section gradually increases and the suitability of the reinforced
concrete lining form gradually decreases, which is mainly due to the influence of in situ
stress and surrounding rock classification.

247



Appl. Sci. 2022, 12, 4896

Table 6. Five-element Connection Degree of Comprehensive Evaluation of Each Working Point.

Working Point 1 2 3 4 5 6 7

a 0.5243 0.7162 0.7162 0.5243 0.5222 0.5842 0.5243
b 0.3051 0.0000 0.0000 0.0000 0.0620 0.0000 0.0000
c 0.1706 0.2710 0.2710 0.3315 0.0000 0.0000 0.0045
d 0.0000 0.0129 0.0129 0.1442 0.2168 0.0000 0.1873
e 0.0000 0.0000 0.0000 0.0000 0.1990 0.4158 0.2838
μ 0.6769 0.7097 0.7097 0.4522 0.2457 0.1683 0.1468

Table 7. Comparison of Evaluation Results.

Working Point 1 2 3 4 5 6 7

Expert subjective evaluation method I I I II II III IV
Combined objective weighting–SPA I I I II II III II

Combination weighting–SPA I I I II II III III

By comparison, the results of the three methods are basically the same, except that the
results of the three evaluation methods for No. 7 are slightly different (Table 7). The expert
evaluation method shows that the rating level of the site is relatively unsuitable. The reason
for this is that the experts believe that the surrounding rock classification has declined
and the hydraulic gradient value is too large, which makes the use of reinforced concrete
lining more unfavorable. However, the involved experts might have different knowledge
backgrounds and insights, and consequently the determination of the weight coefficient
varies from person to person. The evaluation level calculated by the objective combination
weighting–SPA method is more suitable. Objective weight combination weighting is
based on the measured data, using certain mathematical methods to objectively assign the
weight of the evaluation index. The method lacks subjective control and is often prone
to be inconsistent with the actual situation. In summary, for the evaluation process of
the suitability of reinforced concrete lining form, using only one of the methods is not
comprehensive enough, which might result in over- or under-estimation of the results.
Therefore, the combination weighting method integrates the advantages of the subjective
and objective weighting methods, combines expert knowledge while fully considering
the objectivity of the sample data, minimizes the loss of information, and improves the
evaluation reliability.

5. Discussion

(1) Based on the example of the lining form of high-pressure pipelines in PSPS and
combining the C-OWA operator, CRITIC method, improved EWM theory, and SPA theory,
a new suitability evaluation method is proposed. Compared with the traditional evaluation
methods, the advantages of this method are summarized as follows: (1) The combination
weighting method consisting of subjective weight and objective weight can effectively
avoid the error caused by a single weight method and make the prediction result closer to
the actual situation. (2) The case study shows that the multivariate connection degree model
is reliable and can be accepted for evaluating the reinforced concrete lining forms suitability
and conveniently for practical applications. In addition, the connection degree indicates
the interconnection and mutual influence of each index, and can represent the certainty and
uncertainty degree from a whole perspective view, and the identical–discrepancy–contrary
relationships between the sample and the classification grade. (3) In the selection of
evaluation indices, the RQD index, which conventionally characterizes the structural
features of rock mass, is improved and supplemented. The RBI index is used to replace
RQD, so that the results can more accurately reflect the size of the rock mass, which has
obvious engineering practical significance for the quantitative analysis of the variation
characteristics of physical and mechanical parameters of rock mass.
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(2) The five evaluation indices were selected by the combination weighting–SPA model
for the selection of lining forms of diversion tunnels, according to the three design criteria
commonly used in hydraulic tunnels. Therefore, this model has certain representativeness
and applicability. For the high-pressure pipelines to be evaluated, a similar suitability
rating model for lining forms can be established by selecting evaluation indices with similar
property characteristics. However, for different hydraulic tunnels, there may be different
geological characteristics and risk environments. Therefore, the evaluation indices can
be increased or decreased appropriately to meet the suitability evaluation of reinforced
concrete lining forms for different high-pressure pipelines.

(3) There are still shortcomings in this study. The hydraulic tunnel design criterion
in the proposed model is relatively conservative and basic. For complex cases, how to
integrate weights into the evaluation model for the selection of lining forms and how to
consider the effects of the index on lining stability remain to be clarified, and further efforts
need to be made on accurately selecting an appropriate lining form to prevent accidents in
the future. Therefore, a more scientific, rational, and universal classification standard needs
to be realized through further research.

6. Conclusions

The relevant factors affecting the lining form were summarized by analyzing the three
design criteria and constructs a relatively complete evaluation system for the suitability of
reinforced concrete linings. The subjective–objective combination weighting–SPA model
not only takes into account the influence of subjective judgment of experts, but also reflects
the difference and relevance of objective data of evaluation indices, which improves the
evaluation sensitivity and makes the evaluation results more in line with reality. The
consistency of the evaluation results with those of other methods verifies the feasibility
of the proposed method. This approach optimizes the evaluation process of the lining
form and makes the results more comprehensive, objective, and rational. It has exceptional
application value in the construction of hydraulic tunnels and can provide reference value
and reference significance for the selection of lining forms of other PSPS.
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The following abbreviations are used in this manuscript:

PSPS Pumped storage power station
OWA Ordered weighted averaging
C-OWA Combination ordered eeighted averaging
CRITIC Criteria importance through intercriteria correlation
EWM Entropy eeighting model
SPA Set pair analysis
IRENA International Renewable Energy Agency
3D-FEM Three-dimensional finite element method
RQD Rock quality designation
RBI Rock mass block index
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Abstract: Differential evolution (DE) is a simple, effective, and robust algorithm, which has demon-
strated excellent performance in dealing with global optimization problems. However, different
search strategies are designed for different fitness landscape conditions to find the optimal solution,
and there is not a single strategy that can be suitable for all fitness landscapes. As a result, developing
a strategy to adaptively steer population evolution based on fitness landscape is critical. Motivated
by this fact, in this paper, a novel adaptive DE based on fitness landscape (FL-ADE) is proposed,
which utilizes the local fitness landscape characteristics in each generation population to (1) adjust the
population size adaptively; (2) generate DE/current-to-pcbest mutation strategy. The adaptive mech-
anism is based on local fitness landscape characteristics of the population and enables to decrease or
increase the population size during the search. Due to the adaptive adjustment of population size for
different fitness landscapes and evolutionary processes, computational resources can be rationally
assigned at different evolutionary stages to satisfy diverse requirements of different fitness landscapes.
Besides, the DE/current-to-pcbest mutation strategy, which randomly chooses one of the top p%
individuals from the archive cbest of local optimal individuals to be the pcbest, is also an adaptive
strategy based on fitness landscape characteristic. Using the individuals that are approximated as
local optimums increases the algorithm’s ability to explore complex multimodal functions and avoids
stagnation due to the use of individuals with good fitness values. Experiments are conducted on
CEC2014 benchmark test suit to demonstrate the performance of the proposed FL-ADE algorithm,
and the results show that the proposed FL-ADE algorithm performs better than the other seven highly
performing state-of-art DE variants, even the winner of the CEC2014 and CEC2017. In addition, the
effectiveness of the adaptive population mechanism and DE/current-to-pcbest mutation strategy
based on landscape fitness proposed in this paper are respectively verified.

Keywords: fitness landscape; differential evolution; population size adaptation; mutation strategy

MSC: 68W50

1. Introduction

Optimization problems are universal in nature, because most problems in real life can be
expressed by optimization models, involving multiple standards and goals. Researchers are
concentrating their efforts on broad algorithms that may be used for a variety of issues. The
development of such general purpose algorithms, which can be categorized as meta-heuristics,
has accelerated over the last few decades. Differential evolution (DE) is a basic but powerful
algorithm that belongs to the evolutionary algorithms category (EA). DE is a population-based
algorithm of metaheuristics, conceptualized by Storn and Price [1]. DE has become a popular
choice among researchers for tackling optimization issues in a variety of disciplines over the
last two decades [2], such as vehicle routing problems [3], power engineering problems [4],
wireless sensors [5], the medical field [6], and chemical engineering [7].

Similar to other evolutionary algorithms (EAs), such as genetic algorithm (GA) [8],
memetic algorithm (MA) [9], and estimation of distribution algorithm (EDA) [10], DE also
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contains three evolutionary operators, namely, mutation, crossover, and selection. The most
significant phase in DE is mutation, which is also a crucial step in the production of new
individuals by adding a weighted difference vector between two individuals in a population
to the third. The essence of mutation is a search behavior, which can prevent premature
convergence by increasing population diversity. Over the past decades, many mutation
strategies, such as DE/rand-to-best/1, DE/lbest/1 [11], DE/current-to-pbest/1 [12], and
ranking-based mutation [13], have been developed for DE. Shen and He [14] presented
a mixed mutation strategy. The algorithm collects local fitness landscape characteristics
based on each individual’s fitness changes over the distance between each person and
the best individual and then uses the Gaussian Cauchy mutation to choose variants of
the probability distribution of an optimal mixing strategy. Generally, different strategies
display distinct characteristics and are suitable for different fitness landscape characteristics
of the evolutionary process.

DE is made up of three main parameters: (1) population size N, which specifies the
number of selection operations performed in each generation, (2) scaling factor F, which limits
the differential mutation operation, and (3) crossover rate CR, which specifies how many
parameters in the target vector altered during the crossover operation [15]. Three parameters
suggested respectively by DE inventors Storn and Price [16] are: (1) N ∈ [5D,10D], D is the
dimension of the problem, and N = 100 is recommended as the initial value; (2) F ∈ [0.4,1],
and F = 0.5 is sufficient for obtaining an optimal solution; (3) for unimodal separable functions,
CR ∈ [0, 1] and CR = 0.1 are appropriate initial values, while CR = 0.9 is a good initial
value for multimodal and nonseparable functions. Besides, other corresponding DE control
parameters are also suggested in references [17,18]. Compared to fixed control parameter
values, the adaptive control parameter mechanism performs better. Different adaptive or
self-adaptive mechanisms (such as FADE [19], ADE [20], jDE [21], JADE [12], SHADE [22],
SinDE [23]) are introduced to dynamically update control parameters F and CR without a
user’s prior knowledge of the relationship between parameter settings and the features of
an optimization problem. Apparently, good adaptive parameter design can improve the
convergence performance of the algorithm. Since 2013, Tanabe and Fukunaga’s SHADE [22]
has become a common denominator for the top DE variations [24]. To assist the selection of
future control parameter values, this method leveraged a historical recollection of previous
control parameter choices.

Although the number of parameters of the differential evolution is small, different
hyperparameters and differential evolution variants, such as different mutation operators
and F and CR parameters, may introduce structural biases. Structural bias is a form of bias
in which artifacts in an algorithm lead to a preference for specific regions in the search
space, independent of the objective function [25,26]. What’s more, previous work [26,27]
on structural bias has pointed out that the strategy for dealing with infeasible solutions
can have a huge impact on the presence and strength of structural bias. The choice of
the strategy for dealing with infeasible solutions is of high importance, in particular for
highly multidimensional problems, as it is more likely to generate infeasible solutions [28].
After analyzing the structural bias of a large number of DE algorithms, Diederick et al. [25]
concluded that it is safest to use the dismiss strategy because this strategy for dealing
with infeasible solutions shows almost no structural bias, which is consistent with the
intersection of the operator being independent of population size. The proposed FL-ADE
algorithm inherits the dismiss strategy for dealing with infeasible solutions of LSHADE [29].

However, most of the proposed adaptive DE variants modify the values of F and
CR, change the DE strategy, but use a fixed population size. Only a few papers deal with
the adaptation of the population size even though the population size is also a crucial
parameter of DE, which affects the search efficiency [30]. It can be said that the most popu-
lar method of population size control is applied in L-SHADE variant [29]. It is a simple
and effective deterministic population size that linearly decreases with the number of
evaluations proposed by Tanabe and Fukunaga. The efficiency of the L-SHADE algorithm
was confirmed by its first position in the competition of CEC2014 [31]. The same “L” ap-
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proach was also used in another DE variant typically derived from the L-SHADE algorithm.
However, there are few studies on the size of adaptive population. Poláková et al. [32]
proposed an adaptive mechanism of population size according to current population diver-
sity. Zhan et al. proposed adaptive distributed differential evolution ADDE [33], which
describes an adaptive population parameter setting based on best solution improvement
(BSI). This article proposes a new mechanism for population size adaptation based on the
fitness landscape.

In recent years, there have been some DE variants based on the fitness landscape.
Based on fitness landscape research, Huang et al. devised a self-feedback strategy dif-
ferential evolution (SFSDE) method [34]. By extracting the features of the local fitness
landscape, Li et al. [35] proposed a new self-feedback DE algorithm (SFDE) that selected the
optimal mutation strategy and calculated the probability distributions of single-modality
and multimodality. Tan et al. recently proposed a DE with an adaptive mutation operator
based on fitness landscape (FLDE) [36], which analyzed the fitness landscape features of
45 benchmark training functions before training the relationship between three mutation
strategies and fitness landscape features offline using random forest (RF). Finally, through-
out the evolutionary process, the trained RF is used to anticipate which mutation technique
should be employed to perform mutation operator for each problem. The suggested FLDE
algorithm is very competitive with the other five well-known DE algorithms, according
to the experimental results. Although there are some DE variants based on the fitness
landscape, they all focus on selecting mutation strategies.

The fitness landscape can be used to assess the complexity of an optimization issue in
general. However, even though fitness landscape can be used to define the optimization
problem and study the evolutionary process, it is rarely used to create algorithms [36]. An
adaptable DE based on fitness landscape features (FL-ADE) is proposed in this work. The
following are the paper’s major contributions:

1. A novel adaptive mechanism of the population size based on the fitness landscape
enables the reduction of the population size when exploration is needed and the
increase in the population size when exploitation is needed. Most importantly, all
these changes in population size are adaptive by extracting the local fitness landscape
characteristics and do not require the introduction of any additional parameters.

2. A new mutation strategy: DE/current-to-pcbest, which utilizes the individuals of the
approximate local optimum, increases the capability of exploration in multimodal fitness
landscape and avoids falling into local optimal due to the use of good function values.

As we can see, FL-ADE takes advantage of the approximate local optimal individuals for
the mutation strategy DE/current-to-pcbest to search for different potential regions according
to the fitness landscape of different functions. In addition, the fitness landscape characteristics
of each generation are calculated, so as to adjust the population size adaptively. The novelty of
FL-ADE is that there is no need to use different strategies and set the corresponding population
size in advance according to the characteristics of the function. Regardless of any kind of
problem, unimodal, multimodal, composite, and hybrid functions, FL-ADE can adaptively
focus on different search strategies. On unimodal functions, FL-ADE makes more use of good
fitness values, while maintaining a relatively small population size and quickly converging to
the global optimum. In contrast, in the face of multimodal functions and complex functions,
FL-ADE will use more potential approximate local optimal values, while maintaining a large
population size in the early stage to maintain the diversity of the population. In the later stage
or when it almost converges to the optimal region, it reduces the population size to increase
the iteration speed and quickly converge. The experimental results on CEC2014 benchmark
test suite compared with the seven powerful state-of-art DE, even the winner of the CEC2014
and CEC2017.

The rest of the paper is laid out as follows: The classic DE and LSHADE’s adaptive
parameter process, as well as fitness landscape characteristics, are briefly described in
Section 2. The planned FL-ADE is then shown in Section 3. Section 4 contains the exper-
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imental results as well as a discussion. The Section 5 gives the conclusions and makes a
prospect for the future research.

2. Material Method

In this section, the classic DE is introduced. In addition, the adaptive parameter
mechanism and linear population size reduction mechanism of LSHADE is described.
Finally, the fitness landscape characteristics are introduced.

2.1. Differential Evolution

The standard DE algorithm consists of four parts.

(1) Initialization: The initial population is randomly generated within a given boundary
domain as:

xG
i,j = xmin

j + rand(0, 1)×
(

xmax
j − xmin

j

)
(1)

where i = 1, 2, . . . , N and j = 1, 2, . . . , D. Herein, N represents the population size, D
is the problem dimension, rand(0,1) is a set of random numbers uniformly distributed
in the interval of (0, 1), and xmax

j and xmin
j denote the upper and lower boundaries of

the jth dimension, respectively.
(2) Mutation operator: At each generation, a mutation vector vi is generated based on the

difference between two individuals. Here, we list some classic mutation strategies as
follows: DE/rand/1:

vi = xr1 + F× (xr2 − xr3) (2)

DE/best/1:
vi = xbest + F× (xr1 − xr2) (3)

DE/current-to-best/1:

vi = xi + F× (xbest − xi) + F× (xr1 − xr2) (4)

DE/current-to-best/1:

vi = xi + F×
(

xp
best − xi

)
+ F× (xr1 − x̃r2) (5)

where vi = [vi,1, vi,2, . . . vi,D], r1, r2, r3 ∈ [1, 2, . . . , N], i �= r1 �= r2 �= r3 and F is the
scaling factor. xbest is the best individual, which has the best fitness value in the
current population. xp

best is randomly chosen from the top 100 × N × p% individuals
in the current population with p ⊂ (0,1). x̃r2 is randomly chosen from the union of
P and A, where P is the set of the current population and A is the set of archived
inferior solutions [12].

(3) Crossover Operator: Trial vector ui is formed by the individuals xi and vi, where
ui = [ui,1, ui,2, . . . , ui,D]. In general, there are two classic crossover operators, namely,
binomial crossover and exponential crossover. In this paper, the binomial cross is
adopted. In the binomial crossover, each dimension of ui is separately determined to
come from vi and xi by the parameter of crossover rate CR as:

ui,j =

{
vi,j, i f rand(0, 1) ≤ CRi or j = jrand

xi,j, otherwise
(6)

where rand(0,1) is a random number between 0 and 1, while the jrand is a random
index in [1, 2, ..., D] to ensure that at least one dimension of ui comes from vi.
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(4) Selection Operator: The selection operation procedure is to compare the objective
values of target vector xi and trial vector ui for the minimization problem by using
Equation (7), which means that the better one will be selected for the next generation.

xG+1
i =

{
uG

i , i f f
(
uG

i
)
< f

(
xG

i
)

xG
i , otherwise

(7)

The DE repeats the above mutation, crossover, and selection operators until it satisfies
the terminal conditions.

2.2. LSHADE

The SHADE [22] algorithm is a better variant of JADE because it employs a different
parameter adaptation mechanism based on success history-based adaptation, which is a
useful technique for parameter adaptation based on the historical memory of successful
parameter sets throughout iteration. Success history-based parameter adaptation employs
a historical memory MCR, MF, which retains a set of CR and F values that have worked
successfully in the past and produces new CR and F pairs by selecting them at random. By
introducing a linear population size reduction method as well as changes to parameters
such as H, |A|, and CR, where H is the number of entries into the successfully historical
memory pool and |A| is the size of external archive, the LSHADE [29] algorithm enhanced
the overall optimization performance of SHADE. All of these adjustments helped LSHADE
win the first place in the CEC2014 competition. Recently proposed strong DE variants,
such as iLSHADE [37], jSO [38], PaDE [39], and LSHADE_cnEpSin [40], are all variants
of LSHADE. LSHADE mainly includes the adaptive parameter mechanism based on
success history, as well as a linear population size reduction mechanism (LPSR). This paper
also uses LSHADE’s adaptive parameter mechanism based on success history, and the
proposed adaptive population size mechanism FL-APS is also combined with LPSR, so
this chapter will introduce LSHADE. For the linear population size reduction mechanism,
Equation (8) depicts the detailed change of N during evolution for the population size
reduction mechanism:

NLinear
G+1 = round

[(
Nmin − Ninit

FESmax

)
× FES

]
+ Ninit (8)

where the Ninit is the initial population size, Nmin is the minimum population size, FES_max
denotes the maximum number of function evaluations, FES denotes the current number of
function evaluations, and round[·] means “round to the nearest integer”.

This paper uses the parameter adaptation mechanism of LSHADE. In each generation,
in Equation (7), CR and F values that succeed in generating a trial vector uG

i which is better
than the parent individual xG

i are recorded as SCR, SF, and at the end of the generation,
the memory of MCR, MF is updated using Algorithm 1. The position in memory to update
is determined by the index k(1 ≤ k ≤ H). The k-th element in the memory is updated in
generation G. k is set to 1 at the start of the search and is incremented whenever a new
element is added to the history. If k > H, k is set to 1. SCR and SF denote the success sets
of control parameters F and CR, and “success” means that a certain individual employing
these control parameters produces an offspring with better fitness value. The memory is
not updated when all individuals in generation G fail to develop a trial vector that is better
than the parent, i.e., SCR = SF = ∅.

As MCR is updated, if MCR,k,G=⊥ (where ⊥ denotes a special, “terminal value”) or
max(SCR) = 0 (i.e., all elements of SCR are 0), MCR,k,G+1 is set to ⊥. The weighted Lehmer
mean meanWL (S) is computed using the formula below, and as with [41], the amount of
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fitness improvement Δ fk is used in order to influence the parameter adaptation (S refers to
either SCR or SF). ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

meanWL(S) =
∑
|S|
k=1 wk×S2

k

∑
|S|
k=1 wk×Sk

wk =
Δ fk

∑
|SCR |
l=1 Δ fl

Δ fk =
∣∣ f (uG

k
)− f

(
xG

k
)∣∣

(9)

Algorithm 1: Memory update algorithm in LSHADE

1 Input: the success set SCR and SF
2 Output: the historical memory MCR and MF
3 If SCR �= ∅ and SF �= ∅ then

4 If MCR,k,G = ⊥ or max(SCR) = 0 then

5 MCR,k,G+1 = ⊥;
6 Else

7 MCR,k,G+1 = meanWL(SCR);
8 End If

9 MF,k,G+1 = meanWL(SF);
10 k ++;
11 If k > H, then k = 1; End If

12 Else

13 MCR,k,G+1 = MCR,k,G;
14 MF,k,G+1 = MF,k,G;
15. End If

2.3. Fitness Landscape Characteristics
2.3.1. Definition of Fitness Landscape

Fitness landscape, as defined by Wright, is a static model of the problem that has
been shown to be effective for examining evolution methods [42]. Consider a continuous
function f (x), where x ∈ Rn, where n is the dimension of problem. A fitness landscape in a
continuous space is represented by the triple (Rn, f, d), where d(x,y) is the Euclidean distance
between two points x and y. It is simple to express the qualities of a fitness landscape in
three dimensions using terminology such as ridges, valleys, and basins.

The number of optima in a fitness landscape is used as a statistic (including both
local and global optima). Rugged describes a fitness landscape with several local optima,
which implies that the terrain is irregular. The difficulty of a fitness landscape is directly
proportional to the number of optima. The greater the number of optima, the more difficult
the fitness landscape. Counting the exact number of optima or calculating a statistical
estimate both take a lengthy time to compute. Instead, we are looking for a simpler method
with a reduced calculation cost.

Complexity of an optimization problem can be judged by fitness landscape. However,
complex fitness landscapes generally contain different local fitness landscapes, such as
ridges, valleys, and basins. For a population X = [x1, x2, . . . , xN ] a local fitness landscape
is a part of a fitness landscape.

2.3.2. Local Fitness Landscape

The fitness landscape that corresponds to the evolutionary algorithm’s optimization
issue is typically quite complicated, including discontinuity, nonlinearity, and nondifferen-
tiability, and it might be unimodal, multimodal, or high dimensional [43].

Shen et al. [14] introduced a simple approach to count the number of optima in the
landscape to make computations easier. To begin, sort other people in the population based
on their distances from the best person in the population, then examine how their fitness
changes over time. The local fitness landscape is similar to a unimodal landscape if fitness
increases with distance; otherwise, it is similar to a multimodal environment. The following
is a description of how it works:
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For a population P = x1, x2, . . . , xN , where each xi = (xi,1, xi,2, . . . , xi,D) is a solution
on RD.

1. Find the optimal solution of the population and denote it as x*. Then figure out the distance
between each xi, i = 1, 2, . . . , N and the optimal solution x* with the Equation (10):

d(i) =
D

∑
j=1

∣∣∣xi,j − x∗j
∣∣∣ (10)

2. Sort the individuals based on value d(i) calculated above from smallest to largest and
denote as k1, k2, . . . , kN−1 in order.

3. Set θ = 0 initially. Then, the value of θ will be increased by 1, if f
(

xkm+1

)
< f (xkm)

(m = 1, 2, . . . , N − 1). θ is the parameter value for calculating the local fitness land-
scape feature.

4. Normalize θ by dividing the population size:

θ

N − 1
(11)

where N is the population size. Intuitively, the ruggedness of a fitness landscape
is proportional to the number of optima. The normalized θ is used to measure the
overall ruggedness of the fitness landscape observation.

3. The Proposed FL-ADE Algorithm

The description of the novel FL-ADE algorithm is divided into three parts in this
section: the first part describes the method for extracting fitness landscape characteristics;
the second part describes the novel adaptive population size mechanism; and the last
part implements a novel mutation strategy “DE/current-to-pcbest” as well as the overall
procedure of FL-ADE.

3.1. Extraction of Fitness Landscape Characteristics

For a population P = x1, x2, . . . , xN , where each xi = (xi,1, xi,2, . . . , xi,D) is a solution
on RD.

(1) Find the optimal solution of the population and denote it as x*. Then figure out
the distance between each xi, i = 1, 2, . . . , N and the optimal solution x* with the
Equation (10) (the same as step 1 in Section 2.3.2).

(2) Sort the individuals based on value d(i) calculated above from smallest to largest and
denote as k1, k2, . . . , kN−1 in order (the same as step 2 in Section 2.3.2).

(3) Set c = 0 initially. Then, the value of c will be increased by 1, if f (xkm) < f
(

xkm−1

)
and

f (xkm) < f
(

xkm+1

)
(m = 2, 3, . . . , N − 1). Finally, c is taken as the number of optimal

values for calculating the local fitness landscape feature. It should be emphasized
that xkm is only the optimal value estimated from the sample to reflect the fitness
landscape attributes, which is not the true optimum. Moreover, the xkm is put into the
archive cbest.

(4) Normalizing c by dividing the population size:

ϕ =
c
N
× α (12)

where ϕ is the local fitness landscape’s simplified observation feature value, which is
considered as a normalization of the number of optimal values observed in the fitness
landscape, ϕ ∈ [0, 1],α ∈ [0, 1]. When ϕ is close to 0, it is closer to the unimodal local
fitness landscape; in contrast, it is a multimodal local fitness landscape when ϕ is
close to 1 [44]. The pseudocode to calculate the local fitness landscape characteristic ϕ
and obtain the archive of cbest is given in Algorithm 2.
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Algorithm 2: calculate ϕ and get the archive of cbest

Input: population P = [x1, x2, . . . , xN ]
Output: the local fitness landscape characteristic c and the archive cbest
1. Find the optimal solution of the population xbest;
2. For i = 1 to N
3. d(i) = ∑D

j=1

∣∣∣xi,j − xbest,j

∣∣∣
4. End For

5. Sort the individuals based on value d(i) calculated above from the smallest to the largest and
denote as k1, k2, . . . , ku in order;
6. For m = 2 to N − 1 do

7. If f
(

xkm

)
< f

(
xkm−1

)
and f

(
xkm

)
< f

(
xkm+1

)
then

8. c ++;
9. cbest(c) = xkm ;
10. cbest(c + 1) = xbest;
11. End If

12. End For

13. ϕ = c
N × α

3.2. DE/Current-to-Pcbest

DE/rand/1 is the first mutation strategy developed for DE [1]. It has proven to be the
most successful and widely used strategy. However, DE/rand/1 has poor convergence
because it does not use the best individuals to guide the evolution of the population. Zhang
proposed DE/current-to-pbest/1 strategy by using one of the top 100p% individuals as
xp

best to guide the current individuals. However, the DE/current-to-pbest/1 strategy only
focuses on the individuals with good fitness, making it easy to fall into the local optimal.

In order to explore more potential areas while maintaining good convergence, DE/current-
to-pcbest/1 strategy is proposed, which utilizes the individuals of the approximate local
optimum, increases the capability of exploration in multimodal fitness landscape and the
diversity of the population, and enhances the ability to jump out of local optimal. It also can
accelerate the convergence in unimodal landscape fitness. That is, for an individual xi, the
DE/current-to-pcbest/1 strategy is as:

vi = xi + Fi ×
(

xp
cbest − xi

)
+ Fi × (xr1 − x̃r2) (13)

where xp
cbest is randomly chosen as one of the top 100p% individuals in archive cbest with

p ∈ (0, 1]. The pseudocode to calculate the local fitness landscape characteristic ϕ
and obtain the archive of cbest is given in Algorithm 2. Note that the individuals in the
population are sorted based on their fitness value before the mutation operation.

For each dimension j, if the mutant vector element vi,j is outside the search range
boundaries [xmin

j , xmax
j ], this is an infeasible solution. As mentioned in the introduction,

the dismiss strategy for dealing with infeasible solutions shows almost no structural bias,
so this FL-ADE is applied the same correction dismiss strategy for dealing with infeasible
solutions performed in LSHADE [29]:

vG
i,j =

{
(xmin

j + xG
i,j)/2 i f vG

i,j < xmin
j

(xmax
j + xG

i,j)/2 i f vG
i,j > xmax

j
(14)

3.3. Adaptive Population Size Mechanism Based on Fitness Landscape (FL-APS)

In this part, a novel adaptive population size scheme based on fitness landscape is
proposed to adjust the appropriate population size dynamically. As we all know, the
LSHADE proposed linear population size reduction (LPSR) scheme has proven to be
an outstanding scheme for population size adaptation. However, when the number of
evaluations increases, the LPSR mechanism simply declines linearly and does not adjust
to the different landscape of objective functions. That is why we proposed the adaptive
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population size scheme based on fitness landscape (FL-APS). The detail of proposed
mechanism is given in Equation (15):

NFL
G+1 = round

[(
Ninit − Nmin

)
× ϕ + Nmin

]
(15)

where Nmin and Ninit denote the minimum and initial value of population size, and
Nmin = 4 because DE/current-to-pcbest mutation operator requires at least four individ-
uals. ϕ is the value of local fitness characteristics; when ϕ is close to 0, it is close to the
unimodal local fitness landscape, N is close to Nmin, and convergence is accelerated by a
smaller value of N; when ϕ is close to 1, it is close to the multi-modal local fitness landscape,
N is close to Ninit, and N is large to maintain the population diversity. Therefore, the
population size N can be adjusted adaptively by extracting fitness landscape characteristics
each generation in the iterative process.

After introducing a FESt into the FL-APS, a balance between population size and
generation number could be achieved, and the FL-APS can be altered to Equation (16):

NG+1 =

{
round

[
(NFL

G+1 + NLinear
G+1

)
/2], i f FES < FESt

min(NFL
G+1, NLinear

G+1 ), otherwise
(16)

where NLinear
G+1 is the LPSR mechanism calculated by Equation (8). At the early stage of

iteration, the relationship between population size and the number of fitness evaluation is
balanced by calculating the average value of NFL

G+1 and NLinear
G+1 . It can not only maintain a

relatively large population size for exploration but also avoid wasting too much computing
resources in the early stage. At the later stage of iteration, the minimum values of NFL

G+1
and NLinear

G+1 are selected to accelerate exploitation and lead to rapid convergence. To better
illustrate the advantages of FL-APS, Figure 1 shows the reduction curve of FLADE popu-
lation size on f 6 benchmark function in CEC2014; the dimension number is set to D = 30,
initial population size is set to Ninit = 25 log(D)

√
D, the minimum population size is set to

Nmin = 4, and the maximum number of function evaluations is set to FES_max = 10,000 D.
The FL-APS with the FESt = 1/2 ∗ FES_max is the default setting for the adaptation of pop-
ulation size. A more in-depth of the parameters of FL-APS will be discussed in Section 4.4.
We can see from Figure 1 that the population size of FL-APS decreased more slowly than
LPSR with the reduction of FES at the beginning of the evolution, which enables the pop-
ulation to maintain enough diversity to explore more areas in the early stage. In the last
stage of the iteration, the population size decreased rapidly to accelerate the convergence
as the fitness landscape characteristics ϕ decreased.

Figure 2 shows the number of generations of FL-APS and LSHADE on different types
of CEC2014 functions. As can be seen from Figure 2, FL-APS can have more generations in
the unimodal function to accelerate convergence, maintain a large population size in the
multimodal function and hybrid function to maintain diversity, and adjust population size
adaptively in the composition function according to the complexity of landscape fitness.

3.4. Complete Procedure of the Proposed FL-ADE

The parameters CR and F of FL-ADE are consistent with the parameter mechanism of
LSHADE, the mutation strategy uses the proposed DE/current-to-pcbest/1, and the popu-
lation size mechanism is FL-APS. The pseudocode of the proposed FL-ADE is presented in
Algorithm 3. To better introduce the proposed FL-ADE, the specific operation is as follows:

Step 1—Initialization: The initialization of FL-ADE is the same as in classic DE. Ran-
domly initialize a population of N individuals PG = (x1,G, . . . , xN,G) with

xi,G =
(

x1
i,G, x2

i,G, . . . , xD
i,G

)
, and each individual is uniformly distributed in the range

[Xmin, Xmax] with i = (1, 2, . . . , N) according to Equation (1). Set up the maximum gen-
eration number FE = 10,000 × D, the generation index G = 1, the initial population size
Ninit = 25 log(D)

√
D, the minimum population size Nmin = 4, and the percentage of top in-
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dividuals in archive cbest pc = 0.03. Set the other parameters to be the same as in LSHADE:
H = 6, set all values in MCR, MF to 0.5, and archive A = ∅, as Line 1–Line 4 in Algorithm 3.

Step 2—For each generation G, all individuals are re-indexed in ascending order of
their distance with the best individual xbest,G. Then calculate the local fitness landscape
feature value ϕ and the approximate local optimal individual archive cbest (Algorithm 2).
Generating parameters F and CR with successful parameter memory MCR and MF is same as
in LSHADE, where randni

(
μ, σ2), randci

(
μ, σ2) are values selected randomly from normal

and Cauchy distribution with mean μ and variance σ2 as in Lines 6–14 in Algorithm 3.
Step 3—Mutation: Randomly choose one of the top p% individuals from the archive

cbest as xp
cbest. Generate mutant vector vi,G via the DE/current-to-pcbest/1 according to

Equation (13); then deal with infeasible solutions according to Equation (14), as stated in
Lines 15–17 in Algorithm 3.

Step 4—Crossover: Use the binomial crossover of the classical DE to generate the trial
vector ui,G according to Equation (6).

Step 5—Selection: As in classic DE, after comparing each target individual with the
xi,G and ui,G, the individual with better fitness value will enter the next generation, and the
parameters CR and F are stored in the successful parameter archive SCR and SF, as in Lines
18–28 in Algorithm 3.

Step 6: Update memories MCR and MF according to Algorithm 1. Adaptively adjust
population size according to Equation (16). Repeat step 3 to step 6 until the number of
evaluations is greater than or equal to FESmax, as in Lines 29–31 in Algorithm 3.

Figure 1. Illustration of the population size of FL-APS on f 6.

Figure 2. Illustration of the number of generations between the FL-ADE and LSHADE on different
types of benchmark functions.
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Algorithm 3: FL-ADE algorithm

Input: Bound constraints [Xmin, Xmax], the fixed maximum number of function evaluations
FESmax, benchmark functions f (X);
Output: Best fitness value f (xbest), best individual Xbest
// Initialization phase
1. G = 1, NG = Ninit, Archive A = ∅;
2. Initialize population PG = (x1,G, . . . , xN,G) randomly;
3. Evaluate PG, FES = NG;;
4. Set all values in MCR, MF to 0.5;
// Main loop
5. While FES < FESmax do
6. SCR = ∅, SF = ∅;
7. For i = 1 to N do
8. ri = Select from [1, H] randomly;
9. If MCR,rI = ⊥, CRi,G = 0. Otherwise
10. CRi,G = randni(MCR, ri, 0.1);
11. Fi,G = randci(MF, ri, 0.1);
12. End If
13. End For
// Adaptively mixed mutation strategy
14. Calculate ϕ and get the archive of cbest (Algorithm 2);
15. Dealing with infeasible solutions according to Equation (14);
16. Randomly choose one of the top p% individuals from the archive cbest as xp

cbest;
17. Generate trial vector ui,G according to DE/current-to-pcbest/1/bin in Equation (13);
18. For i = 1 to N do
19. If f

(
ui,G

) ≤ f
(

xi,G
)

then
20. xi,G+1 = ui,G;
21. Else
22. xi,G+1 = xi,G;
23. End If
24. If f

(
ui,G

)
< f

(
xi,G
)

then
25. xi,G → A ;
26. CRi,G → SCR , Fi,G → SF ;
27. End If
28. End For
29. If necessary, delete randomly selected individuals from the archive such that the archive size
is |A|.
30. Update memories MCR and MF (Algorithm 1);
// FL-APS
31. Adaptively adjust population size according to Equation (16);
32. G ++;
33. End While

4. Experiment Analysis of FL-ADE Algorithm

In this section, we demonstrate the performance of FL-ADE through experimental
results and discuss the influence of its components.

4.1. Experiment Environment

FL-ADE was tested on 30 benchmark test functions developed for IEEE CEC2014
listed in Table 1. For these benchmarks, they can be categorized into four groups:

(1) Unimodal functions f1 − f3.
(2) Simple multimodal functions f4 − f16.
(3) Hybrid functions f17 − f22.
(4) Composition functions f23 − f30.
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Table 1. The benchmark functions of IEEE CEC2014.

Type Func. Functions Search Range f
(
x*
)

Unimodal
functions

f1
f2
f3

Rotated high conditioned elliptic function [−100, 100] D

[−100, 100] D

[−100, 100] D

100
Rotated Bent Cigar function 200
Rotated Discus function 300

Simple
multimodal

functions

f4 Shifted and rotated Rosenbrock’s function [−100, 100] D 400
f5 Shifted and rotated Ackley’s function [−100, 100] D 500
f6 Shifted and rotated Weierstrass function [−100, 100] D 600
f7 Shifted and rotated Griewank’s function [−100, 100] D 700
f8 Shifted Rastrigin’s function [−100, 100] D 800
f9 Shifted and rotated Rastrigin’s function [−100, 100] D 900
f10 Shifted Schwefel’s function [−100, 100] D 1000
f11 Shifted and rotated Schwefel’s function [−100, 100] D 1100
f12 Shifted and rotated Katsuura function [−100, 100] D 1200
f13 Shifted and rotated HappyCat function [−100, 100] D 1300
f14 Shifted and rotated HGBat function [−100, 100] D 1400

f15
Shifted and rotated expanded Griewank’s plus
Rosenbrock’s function [−100, 100] D 1500

f16 Shifted and rotated expanded Scaffer’s function [−100, 100] D 1600

Hybrid
functions

f17 Hybrid function 1 (N = 3) [−100, 100] D 1700
f18 Hybrid function 2 (N = 3) [−100, 100] D 1800
f19 Hybrid function 3 (N = 4) [−100, 100] D 1900
f20 Hybrid function 4 (N = 4) [−100, 100] D 2000
f21 Hybrid function 5 (N = 5) [−100, 100] D 2100
f22 Hybrid function 6 (N = 5) [−100, 100] D 2200

Composition
functions

f23 Composition function 1 (N = 5) [−100, 100] D 2300
f24 Composition function 2 (N = 3) [−100, 100] D 2400
f25 Composition function 3 (N = 3) [−100, 100] D 2500
f26 Composition function 4 (N = 5) [−100, 100] D 2600
f27 Composition function 5 (N = 5) [−100, 100] D 2700
f28 Composition function 6 (N = 5) [−100, 100] D 2800
f29 Composition function 7 (N = 3) [−100, 100] D 2900
f30 Composition function 8 (N = 3) [−100, 100] D 3000

The performance of an algorithm is estimated by the fitness error Δ f = f − f ∗ ( f was
the best result obtained by the corresponding algorithm on a particular function, and f ∗ is the
global optimal of the function). If Δ f is smaller than eps = 10× 10−8 it is considered as 0.

To demonstrate the efficiency of the proposed FL-ADE, seven high-performing state-
of-art DE variants that appeared from 2011 to 2019 are selected in this research. The first
competitor is EPSDE [45], which employed an ensemble of mutation strategies and control
parameters. MPEDE [46] is the second algorithm to compare, which simultaneously consists
of three mutation strategies. The third competitor is CoBiDE [47], in which the covariance
matrix learning and the bimodal distribution parameters setting are incorporated into
the DE framework. The fourth peer algorithm SHADE [22] uses a different parameter
adaptation mechanism based on the success history to improve JADE [12]. The fifth
contender is LSHADE [29], which enhances SHADE’s overall optimization performance
by implementing a linear population size reduction technique, which helped LSHADE
win the CEC2014 championship. The sixth competitor is the second place of the CEC2017
competition LSHADE_cnEpSin [40], which is an improved version of the first place of the
CEC2016 competition LSHADE_EpSin [48]. The last comparison algorithm is PaDE [39],
which proposes a novel control parameter adaptation schemes and a novel parabolic
population size reduction scheme.
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4.2. Parameter Settings of the Contrasted Algorithms

As previously stated, this paper compares seven DE variants: EPSDE, MPEDE,
SHADE, LSHADE, LSHADE cnEpSin, PaDE, and the newly proposed FL-ADE algorithm.
All these algorithms adopted the recommended parameter settings of the cited references
in our experiments as summarized in Table 2.

Table 2. Recommended parameter settings of all these contrasted algorithms.

No. Algorithms Parameters Initial Settings

1 EPSDE [45] F = [0.4, 0.9], CR = [0.1, 0.9], N = 50;

2 MPEDE [46] F ∼ C(μF, 0.1), μF = 0.5, Cr ∼ N(μCr, 0.1), μCr = 0.5, N = 250, c =
0.1, p = 0.05, λ1 = λ2 = λ3 = 0.2, ng = 20;

3 CoBiDE [47] N = 60, pb = 0.4, ps = 0.5;

4 SHADE [22] F ∼ C(μF, 0.1), μF = 0.5, Cr ∼ N(μCr, 0.1), μCr = 0.5, N = 100, p =
0.2, H = 100;

5 LSHADE [29] F&Cr same as SHADE, N = 18D ∼ 4, rarc = 2.6, p = 0.11, H = 6;

6 LSHADE_cnEpSin [40] μF = 0.5, μCr = 0.5, μFreq = 0.5, ps = 0.5, pc = 0.4, H = 5; N = 18D ∼
4, rarc = 1.4, p = 0.11;

7 PaDE [39]
μF = 0.8, μCr = 0.6, F&Cr same as LSHADE, k = 4, p = 0.11, N =

25log(D)
√

D ∼ 4, rarc = 1.6, T0 = 70, rd = 0.04, H = 4;

8 FL-ADE F&Cr&H&rarc same as LSHADE, N = 25log(D)
√

D ∼ 4, pc = 0.3,
FESt = (1/2) ∗ FESmax.

In EPSDE, the population size N = 50 is maintained constant, the pool of crossover
rate CR values is taken in the range 0.1–0.9 in steps of 0.1, and the pool of scale factor F
values is taken in the range 0.4–0.9 in steps of 0.1.

In MPEDE, the population size is set to N = 250, and the two newly introduced ones,
namely the ratio λ1 (as λ1 = λ2 = λ3) between indicator population and whole population,
are set to λ1 = λ2 = λ3 = 0.2, and generation gap ng for determining the recent best
performing mutation strategy periodically is set to ng = 20. The scale factor F obeys
semifixed Cauchy distribution, F ∼ C(μF, 0.1), and μF is the location parameter with its
initial value is equal to 0.5. The crossover rate CR obeys semifixed Normal distribution,
Cr ∼ N(μCr, 0.1), μCr denotes the mean value, μCr denotes the mean value, and the
initial value of μCr is set to μCr = 0.5. The ratio of top superior individuals p = 0.05, and
balance parameter c = 0.1.

In CoBiDE the population size N = 60, pb = 0.4 denotes the probability to execute DE
according to the covariance matrix learning, and ps = 0.5 denotes the proportion of the
individuals chosen from the current population to calculate the covariance matrix.

In SHADE, the control parameter settings of F and CR are the same as MPEDE, the
population size N = 100, and the ratio of top superior individuals p = 0.2. Moreover,
historical success values of F and Cr are recorded in a H-entry pool in SHADE, where
H = 100.

LSHADE employs the same initial values and distributions of control parameters
F and Cr as SHADE, and a linear population size reduction scheme is also employed
in LSHADE with the initial population size equaling to N = 18× D, and the minimum
population size is equal to 4. Furthermore, the parameter rarc = 2.6, defining the factor of
external archive size; the parameter H = 6, defining entry number in the memory pool; and
the parameter p = 0.11, denoting the ratio of top superior individuals, are also different
from the ones in SHADE.

In LSHADE_cnEpSin, the crossover operator is performed based on the covariance
matrix learning with Euclidean neighborhood with a probability pc = 0.4, and ps = 0.5
is the proportion of individuals that are used to generate the covariance matrix; u f req
represents the mean frequency of the sinusoidal function is set to 0.5. The initial values
of all μF, μCR are both set to 0.5, the initial population size equaling to N = 18× D, the
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minimum population size is equal to 4, the factor of external archive size rarc = 1.4, the
entry number in the memory pool H = 5, and the ratio of top superior individuals p = 0.11.

In PaDE, control parameters F and Cr obey Cauchy distribution C(μF , 0.1) and
Normal distribution N(μCr, 0.1), respectively, and the initial values of μF and μCr are set
to μF = 0.8 and μCr = 0.6. The initial population size is set to N = 25 log(D)

√
D. All

individuals in the PaDE algorithm are categorized into k groups, and k is set to a constant
value, k = 4. Moreover, a time stamp scheme is employed in the external archive, and the
timestamp threshold is set to T0 = 70. Parameters rarc and p are set tuned values under
the time stamp scheme, rarc = 1.6 and p = 0.11, and the default setting of decay rate rd is a
fixed constant value rd = 0.04.

In the proposed FL-ADE algorithm, the parameter F&Cr&H&rarc is consistent with
LSHADE, the initial population size N = 25 log(D)D√ and the minimum population size
equaling to 4. The ratio of top superior individuals in archive cbest is set to pc = 0.3; the
threshold FESt = (1/2) ∗ FESmax.

4.3. Comparison with State-of-the-Art DE Algorithms

In this section, the proposed FL-ADE was compared with the seven of DE variants:
EPSDE [45], MPEDE [46], CoBiDE [47], SHADE [22], LSHADE [29], LSHADE_cnEpSin [40],
and PaDE [39]. The experiments are conducted on f1 − f30 benchmarks of CEC2014 on
10-D, 30D, and 50D optimization, respectively. The allowed maximum number of function
evaluations (FESmax) of each run was set to 10,000 × D (D is the dimension of the problem)
based on the guideline provided in the special session of CEC2014 [31], and 51 runs were
conducted on each benchmark.

Figures 3–5 summarize the comparison results between FL-ADE and other DE algo-
rithms, while the detailed comparison results are shown in Tables 3–5. Tables 3–5 present
the mean(std) (mean value and standard deviation) of fitness error for 51 runs of 10D,
30D, and 50D optimization, respectively. To have statistically sound conclusions, Wilcoxon
rank-sum test is employed to show the differences between two algorithms on a single
problem. The mean error and standard deviation (in bracket) of the function error values
are provided in the tables. Three symbols “+, −, =” indicate that FL-ADE is significantly
better than, significantly worse than, and almost the same as the corresponding competitor
algorithm, respectively. The best result for each problem is shown in boldface. All of these
are measured under Wilcoxon’s signed rand test with a significance level α = 0.05.

Figure 3. Summarized results between FL-ADE and state-of-art DE on 10D problems.
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Figure 4. Summarized results between FL-ADE and state-of-art DE on 30D problems.

Figure 5. Summarized results between FL-ADE and state-of-art DE on 50D problems.
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Figure 3 summarizes the comparison results between FL-ADE and other DE algorithms
on 10D, while the detailed comparison results are shown in Table 3. Table 3 shows that
all contrasting methods perform equally well on benchmarks f1, f2, f3, f8, and f23 and
that all eight algorithms can discover the global optima during 51 runs on these four
benchmarks. Furthermore, when compared to the EPSDE algorithm, the proposed FL-
ADE algorithm achieves 26 better or similar results out of 30 benchmarks; it also achieves
21 better or similar results when compared to the MPEDE algorithm, 24 better or similar
results when compared to the CoBiDE algorithm, 27 better or similar results when compared
to the SHADE algorithm, 25 better or similar results when compared to the LSHADE
algorithm, 28 better or similar results when compared to the LSHADE_cnEpSin algorithm,
and 24 better or similar results when compared to the PaDE algorithm. Furthermore, when
compared to the seven contrasting methods, the suggested FL-ADE algorithm performs
the best on benchmarks f9, f13, f16, f25, f27. It is worth noticing that the suggested FL-
ADE outperforms the competition on nine of the sixteen multimodal functions f4– f16.
This is due to the adaptive mixed approach’s current-to-pcbest method, which gives the
proposed FL-ADE archive good multimodal performance. In a nutshell, the new proposed
FL-ADE achieves a superior overall performance on 10D optimization when compared to
the CEC2014 benchmark functions.

Figure 4 summarizes the comparison results between FL-ADE and other DE algorithms
on 30D, while the detailed comparison results are shown in Table 4. Table 4 on 30D
optimization reveals that on benchmarks f2, f3, and f8, all contrasting algorithms can locate
the global optima. Furthermore, when compared to the EPSDE algorithm, the proposed FL-
ADE algorithm achieves 26 better or similar results out of 30 benchmarks, 28 better or similar
results when compared to the MPEDE algorithm, 26 better or similar results when compared
to the CoBiDE algorithm, 29 better or similar results when compared to the SHADE
algorithm, 27 better or similar results when compared to LSHADE algorithm, 21 better or
similar results when compared to the LSHADE_cnEpSin algorithm, and 25 better or similar
results when compared to the PaDE algorithm. Importantly, FL-ADE works almost as well
at 30D optimization, as it does at 10D optimization for multimodal functions, achieving 10
of the best out of 16. Furthermore, when compared to the other seven contrasting methods,
the suggested FL-ADE algorithm performs the best on benchmarks f9, f13, f15, f22, and
f26. As a results, the new proposed FL-ADE is still competitive on 30D optimization under
CEC14 benchmark functions with the other seven high-performance DE variant algorithms.

Figure 5 summarizes the comparison results between FL-ADE and other DE algorithms
on 50D, while the detailed comparison results are shown in Table 5. There is no test
function that that allows each algorithm to find the global optimal, as shown in Table 5
on 50D optimization. In comparison to the EPSDE algorithm, the novel proposed FL-
ADE algorithm achieves 26 better or similar results out of 30 benchmarks, 29 better or
similar results in comparison to the MPEDE algorithm, 24 better or similar results in
comparison to the CoBiDE algorithm, 26 better or similar results in comparison to SHADE,
25 better or similar results in comparison to the LSHADE algorithms, 19 better or similar
results in comparison to the LSHADE-cnEpSin algorithm, and 22 better or similar results
when compared to the PaDE algorithm. To summarize, the new suggested FL-ADE on
50D optimization under the CEC2014 test suite is still competitive with the contrasting
state-of-the-art DE variations.

For a comprehensive comparison, twelve 30D functions are chosen from IEEE CEC2014
benchmark test suit, including one unimodal function f1, six multimodal functions f9, f11,
f12, f13, f15, f16, three hybrid functions f20, f21, f22 and two composition function f24, f26 to
show the convergence performance of FL-ADE.

(1) From Figure 6a, we can see that although FL-ADE can find the global optimal on the
unimodal function f1, the convergence speed is not as fast as PaDE and LSHADE-
cnEpSin. This is because FL-ADE pays more attention to exploration in the early stage.
It can be seen that after FES_t, FL-ADE quickly converges to the global optimum.
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(2) From Figure 6b–f, we can see that FL-ADE can always find better solutions than
other algorithms on the multimodal function f9, f11, f13, f15, f16. This is because the
mutation strategy DE/current-to-pcbest gives FL-ADE a considerable advantage in
multimodal functions.

(3) Figure 6g,h, show that FL-ADE has good convergence on complex functions and can
also find better solutions than other algorithms.

(4) From Figure 6i–l, we can see that FL-ADE has excellent convergence speed and
accuracy on composition function f24, f25. Furthermore, this is because the fitness
landscape of composition function is very complex, and FL-ADE can quickly locate
the optimal area based on the feedback of fitness landscape characteristics.

4.4. The Effectiveness of FL-APS

In this part we mainly discuss the new proposed FL-APS and the former proposed
linear population. As we know, the CEC competitions employed the fixed maximum
number of function evaluations, FESmax = 10,000 × D. Therefore, a larger population size
means that fewer generations are available during the whole evolution. A larger population
size in each generation during the evolution will improve the perception ability of the
algorithm to the fitness landscape characteristic, while a smaller population size will fall
into some local optima. However, larger population size will lead to the number of fitness
evaluations reduction and poor convergence. Therefore, we need to balance the population
size during each generation and the total generations available during the evolution; thus,
the FESt in Equation (16) was introduced.

Linear population size reduction (LPSR) scheme proposed in LSHADE was proven to
be an excellent reduction scheme for many optimization problems. However, LPSR simply
decreases the population size with the increase in the number of fitness evaluations, and
the quick reduction of population size at the beginning of the evolution usually leads to a
bad perception of the landscape of some objective functions; therefore, we proposed the
adaptive population size based on fitness landscape characteristic (FL-APS). The FL-APS
can adaptively increase or decrease population size based on fitness landscape character-
istic so as to reasonably allocate fixed number of function evaluation. The optimization
performance comparisons under CEC2014 benchmark test suits on 10D, 30D, and 50D
optimization of the FL-ADE with linear population size reduction scheme (FL-ADE_linear)
and the default FL-ADE with FL-APS in Table 6.

We can see from Table 6 that the FL-ADE with FL-APS obtains 26 better or similar
performances in comparison with FL-ADE_linear on 10D, 26 better or similar performances
in comparison with FL-ADE_linear on 30D, and 23 better or similar performances in
comparison with FL-ADE_linear on 50D. Figure 7 summarizes the results between default
FL-ADE and FL-ADE_linear on CEC2014 benchmark on 10D, 30D, and 50D. To summarize,
the novel adaptive population size based on fitness landscape characteristic is meaningful
and effective.

4.5. The Effectiveness of DE/Current-to-Pcbest

To demonstrate the effectiveness of DE/current-to-pcbest mutation strategy, DE/best/1,
DE/best/2, DE/rant-to-best/1, DE/current-to-best/1 and DE/current-to-pbest/1 are em-
ployed in this experiment. The same parameter setting of crossover rate CR = 0.9, scaling factor
F = 0.5, and the population N = 100 are used for all mutation strategies. The experimental
results are presented in Table 7 according to the Wilcoxon rank-sum test and the Friedman
test; DE/current-to-pcbest/1 gets the first ranking among the six mutation strategies. The
result of Wilcoxon rank-sum is summarized in Figure 8; obviously, the DE with strategy
DE/current-to-pcbest/1 is better than the DE with other strategies.
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Figure 6. Convergence curves of FL-ADE and other state-of-the-art DE variants on f1, f9, f11, f12, f13,
f15, f16, f20 f21, f22, f24, f26, when D = 30.
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Figure 7. Summarized results between default FL-ADE and FL-ADE_linear on CEC2014 benchmark
on 10D, 30D and 50D.

4.6. The Sensitivities of Parameters

4.6.1. The Value of Parameter Ninit and FESt

To investigate the impact of Ninit and FESt in the proposed population scheme FL-APS,
FL-ADE with five different Ninit, i.e., 25 log(D)

√
D, 10D, 12D, 18D, 20D, and three FESt,

i.e., (1/3) ∗ FESmax, (1/2) ∗ FESmax, (2/3) ∗ FESmax, were conducted on the 30D benchmark
functions. The results obtained by Friedman test are listed in Table 8. From the result of
Friedman test, it can be observed that N = 25 log(D)

√
D and FESt = (1/2) ∗ FESmax achieve

a better average ranking, so the values of these two parameters are adopted in this paper.

Figure 8. Summarized results between of DE with different strategies on 30D.

Table 8. Result of Friedman test for parameter Ninit and FESt.

30D 25log D
√

D 10D 12D 18D 20D Average

1/3 8.0 9.35 8.42 7.43 9.12 8.46
1/2 6.93 8.68 7.78 6.43 7.98 7.56
2/3 6.83 9.68 7.82 7.97 7.57 7.97

average 7.25 9.24 8.01 7.28 8.22

4.6.2. The Value of Parameter pc

The value of pc directly determines the performance of the strategy; thus, the impact
of pc needs to be investigated. For this purpose, FL-ADE configured with three different
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pc was conducted on the 10D, 30Ds and 50D benchmark functions. The results obtained
by Friedman test are listed in Table 9, and pc = 0.3 saw the best average ranking, so the
default FL-ADE parameters use these parameter settings.

Table 9. Result of Friedman test for parameter pc.

pc = 0.1 pc = 0.2 pc = 0.3 pc = 0.4 pc = 0.5

10D Ranking 3.68 2.88 2.42 2.85 3.17
30D Ranking 3.43 3.00 2.83 2.87 2.87
50D Ranking 3.28 3.28 2.48 2.97 2.98

Average
Ranking 3.46 3.05 2.58 2.90 3.01

4.7. Algorithm Complexity

All the experiments in this paper were performed using MATLAB R2018b, running on
a Hewlett-Packard PC from Guangzhou China with Intel Core i7−9700 (3.00 GHz) CPU
and 8 GB of RAM on a Windows 10 system. Table 10 shows the complexity of the FL-ADE
algorithm for testing the problem of 10, 30, and 50 dimensions. The variable T0 is the
computing time to run the code in Algorithm 4 [49]. T1 is the computing time to execute
f18 for 200,000 evaluations of a certain dimension. T2 is obtained by operating 200,000
evaluations with the tested algorithm for f18 of the same dimension, whose average value
for five times is represented by T̂2, and the runtime complexity for the tested algorithm can
be reflected by

(
T̂2 − T1

)
/T0.

The results in Table 10 show that the proposed FL-ADE inherits the linear complexity
of classical DE; this is a real plus when comparing it to powerful recent metaheuristics
algorithm. This is because the FL-ADE does not increase the number of evaluations, and the
increased calculation is simple, mainly calculating the local fitness landscape characteristics
ϕ and the population size of each generation.

Algorithm 4: The code for calculationg the time T0

Input: Tmax = 1, 000, 000.
1. tic
2. for i = 1 : Tmax
3. x = 0.55 + (double) i; x = x + x; x = x/2; x = x + x;
4. x = sqrt(x); x = log(x); x = exp(x); x = x/(x + 2);
5. end
6. toc
Output: the time T0

Table 10. Algorithm complexity of FL-ADE.

T0 T1
^
T2

(
^
T2−T1

)
/T0

D = 10
D = 30
D = 50

0.063198
0.063057
0.186583
0.433899

1.9117746
1.9586996
2.3953128

29.25278648
28.04070698
31.03601063

5. Conclusions

Different search strategies are designed for different fitness landscape conditions to
find the optimal solution, and there is no single strategy that can be suitable for all fitness
landscapes. In this paper, a novel adaptive DE based on fitness landscape (FL-ADE) was
proposed, which utilizes the local fitness landscape characteristics in each generation popula-
tion to perform the FL-APS mechanism and the DE/current-to-pcbest mutation strategy. The
FL-APS mechanism makes the population size change adaptively based on the local fitness
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landscape characteristics at each generation. The DE/current-to-pcbest mutation strategy,
which randomly chooses one of the locally optimal individuals to be the pcbest, is designed to
enhance the exploration capability for multimodal fitness landscape. Based on the FL-APS,
computational resources can be rationally assigned at different evolutionary stages and satisfy
diverse requirements of different fitness landscapes. The experimental results, using the
Wilcoxon rank-sum test, confirm that the FL-ADE algorithm is highly competitive when
compared to seven high-performance state-of-art DE variants, i.e., EPSDE, MPEDE, CoBiDE,
SHADE, LSHADE, LSHADE-cnEpSin, and PaDE, based on 30 benchmark functions from
CEC2014. The results also show that the fitness landscape information can effectively guide
the adaptive evolution of the population. In future research, we plan to use fitness landscape
information to adjust other parameters of DE adaptively.
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Abstract: Determining where to stack the containers at the storage yard of a container terminal is an
important problem because that decision critically affects the efficiency of container handling in the
yard and, eventually, the efficiency of the vessel operations, which is considered the most important
for the productivity of the whole terminal. One limitation of the stacking policies previously proposed
is that they are static in nature. Although good locations for stacking may change as the workload of
vessel operation changes, the previous policies are insensitive to such changes. Failure to recommend
good locations leads to elongated operations of yard cranes and thus makes it hard for them to
keep up with the workload of vessel operation. In this paper, we propose a method for deriving
a dynamic policy that can adapt to the workload of vessel operation that changes over time. Our
method derives two boundary policies: one for very high workload and the other for very low.
Then, a policy appropriate for any intermediate workload can be synthesized from the two boundary
policies through interpolation. Simulation experiments showed that the proposed policy significantly
reduced overall container handling time compared to the previous static policy. When measured in
terms of the time the transportation vehicles wait for container handling services, the improvement
was approximately 19%.

Keywords: container terminal; storage yard; container stacking; situation-adaptive policy;
optimization; genetic algorithm

1. Introduction

One of the most important operational goals of a container terminal is to minimize
the vessel turnaround time by maximizing the efficiency of vessel operations with regard to
loading or unloading containers onto or from the vessels. The outbound containers brought
in by the trucks from inland are stored in the yard until they are loaded onto the vessels.
On the other hand, the inbound containers unloaded from the vessels dwell in the storage
yard until they are claimed by the external trucks for inland transportation. As buffer
storage for both inbound and outbound containers, the operational efficiency in the storage
yard critically affects the overall productivity of the terminal. A very important factor that
affects the operational efficiency in the storage yard is the determination of the stacking
locations of the containers that arrive at the yard. If, for example, a container just unloaded
from a vessel is stacked on top of another to be loaded soon, the upper one has to be
relocated to a different stack when retrieving the lower one. Such rehandling of containers
should be minimized in order to maximize the operational efficiency in the yard. When the
containers are loaded onto a vessel, they follow a predetermined sequence. The loading
sequence is determined at the planning stage, taking into account the vessel stability, ports
of destination, and the efficiency of operation at the storage yard. Still, rehandling is the
major cause of loading delay because the retrieval schedules are usually unknown at the
time the containers arrive at the yard, and thus, they can be stacked at the wrong locations.
In this paper, we deal with the problem of determining good locations for stacking not
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only the containers that newly arrive at the yard but also those that are relocated within
the yard.

Perhaps the simplest approach to determining the stacking locations in the yard is
using a heuristic rule based on a simple criterion such as preferring the nearest location
or preferring the stack-top of containers of the same category [1–3]. More recent and
advanced methods use multiple criteria to evaluate candidate stacking locations from
various perspectives [4–6]. These methods use scoring functions to calculate the score of a
candidate location by a weighted sum of the results of evaluations based on various criteria.
Since the scores and the resulting best stacking location depend on the weight combination,
or weight vector, used in the scoring function, the weight vector can be regarded as a stacking
policy. To find a good weight vector, i.e., a good stacking policy, References [4,6] use
genetic algorithms (GA) in which each candidate policy is evaluated through simulations
of applying the policy to various scenarios of operations in the yard and measuring the
resulting performance. However, the policy found in this way is the one whose average
performance in various scenarios is the best. In certain situations, there may be other
policies that work better than the average policy.

What we propose in this paper is a method for deriving a stacking policy, which can
be adapted to changing situations by having its weight vectors adjusted. As an indicator
of the situation, we use the workload of vessel operation because good stacking locations
are very much dependent on it. Our method is based on the idea that a new policy may be
synthesized if we are given two boundary policies: one for a very low workload and the
other for a very high workload. We assume that a good policy for any intermediate situation
can be derived by taking an interpolation of the weight vectors of the two boundary policies.
We use a GA to search for not only the two boundary policies but also the two numeric
values that quantify the two fuzzy terms ‘very low’ and ‘very high’. Our GA can be seen as
a reinforcement learning algorithm conducting a search in the policy space [7] instead of
learning a value function based on rewards from the environment. Experimental results
show that our method performs better by dynamically adapting the stacking policy to
varying situations than the previous methods that use a static best on-average policy.

The rest of the paper is organized as follows. Section 2 gives a detailed description of
the operations in the storage yard of an automated container terminal. Section 3 reviews the
related works, and Section 4 describes the stacking policy based on the scoring functions.
Section 5 explains how we derive a situation-adaptive stacking policy by using a GA.
Section 6 reports the results of experiments, and Section 7 discusses how we can extend
our method to the cases with multiple situation indicators. Finally, Section 8 gives some
concluding remarks.

2. Operations in the Storage Yard of an Automated Container Terminal

The descriptions in this section are mostly based on the material given in [4,6,8]. As
can be seen in Figure 1, the automated container terminal can be largely divided into four
regions: quay, apron, storage yard, and hinterland. The quay is where the vessels berth
and a number of quay cranes (QC) load/unload containers onto/from the vessels. The
apron is the area for the automated guided vehicles (AGV) to deliver containers between
the quay and the storage yard. The hinterland is where the external trucks (ET) bring
in containers to the storage yard or bring out the containers picked up from the storage
yard. The storage yard consists of dozens of rectangular blocks that are laid out in the
perpendicular direction to the quay. Each block consists of hundreds of container stacks
several tiers high, where the stacks are arranged in dozens of bays in the perpendicular
direction and in several rows in the horizontal direction. Since a bay is of the length of a
20 ft container, a stack of 40 ft container spans two consecutive bays. For safety reasons, the
containers cannot be stacked together if their sizes are not the same. Each block is equipped
with two automated stacking cranes (ASC) to handle the containers. Since the two ASCs
are of the same size, one cannot move across the other and thus may interfere with each
other at close ranges. The container transfer to and from an AGV is made by the seaside
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ASC at a seaside handover point (HP) located at the seaside end of the block, while the
transfer to and from an ET is made by the landside ASC at a landside HP located at the
opposite end.

Figure 1. Layout of an automated container terminal.

The containers in the storage blocks are categorized into three groups by their di-
rections of the flow of logistics: inbound, outbound, and transshipment containers. The
inbound and outbound containers are already mentioned in the previous section. The trans-
shipment containers are those that are unloaded from certain vessels and stored in the yard,
but unlike the inbound containers, they are to be loaded onto other vessels for further sea
transportation. A container stored in a block is often relocated to some other place within
the block. If container X is placed on top of container Y in a stack but Y has to be taken
out earlier than X, then X has to be moved to another location before Y can be retrieved.
This relocation, or rehandling, is hard to avoid because the retrieval schedule of containers
is usually unknown at the time the containers arrive at the yard and are piled up. Thus,
we need a good policy that can select good stacking locations for the incoming containers
so that both the container handling time and the possibility of rehandling are minimized.
Note that a stacking policy should also be able to recommend good stacking locations for
the rehandled containers to minimize further rehandling. Rehandling is considered the
biggest cause of delay of container handling in the storage yard.

There arises another difficulty with container handling when the two ASCs of a block
cannot move across each other. To avoid collision, an ASC sometimes has to stop and wait
until the other one finishes its job and backs up. This interference deteriorates the throughput
of the ASCs. Interferences are more likely to occur as the travel distance of an ASC becomes
longer because it gets close to the other ASC with a higher probability. Unfortunately,
the ASCs often cannot avoid long-distance travel in such a block layout as that shown
in Figure 1. The outbound containers brought in by the ETs enter the block through the
landside HPs and are usually stored at locations near the landside end. However, they
eventually go out of the block through the seaside HPs when they are loaded onto their
target vessels. On the other hand, the inbound containers unloaded from the vessels
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enter the block through the seaside HPs and then later exit through the landside HPs.
These long-distance movements of containers in opposite directions easily lead to ASC
interferences. One way of minimizing such interference is to have the containers tactically
relayed through cooperation between the two ASCs. As an example, an inbound container
stacked near the seaside end of the block can be moved first to a certain intermediate
location by the seaside ASC and then to its final destination HP at the landside by the
landside ASC. The first movement of this relay operation is called repositioning. Note that
the stacking locations for the containers to be repositioned should also be determined by
the stacking policy.

Given a stacking policy, container handling in a storage block is typically performed
in the following way. Whenever an ASC finishes its current job, it selects the most urgent
job from the job queue that contains all the jobs requested for the next horizon of length,
say thirty minutes. The jobs in the queue include those to be undertaken according to the
loading/unloading schedules and those requested from the ETs that have already arrived
at the landside HPs but have not been serviced yet. The ETs expected to arrive at the block
during the next horizon are not counted because their arrival time is highly unpredictable.
If the current ASC is the landside ASC, the most urgent job would be the ET job with the
longest waiting time. If the current ASC is the seaside ASC, the most urgent job would be
either a loading or an unloading job with the earliest deadline according to their schedules.
When the job selected is a stacking job, the stacking policy examines all the available slots
in the block and recommends the best one as the stacking location. An available slot can be
found at the top of every stack unless it has already reached the allowed maximum tier.
However, the stack should not belong to the bay where the other ASC is currently working.
When the job selected is a retrieval job, no reference to the stacking policy is necessary
unless there are other containers above the target container. If there are some containers
above, they all must be relocated one after another to the locations recommended by the
stacking policy. When the retrieval job selected requires a travel distance longer than a
given threshold, the target container should be repositioned to the location recommended
by the stacking policy before it can be sent to its destination HP by the other ASC.

The efficiency of ASC operation in a block can be assessed by measuring the AGV delay
and the ET waiting time, where the former is counted far more important than the latter.
A good stacking policy makes the ASC operation efficient by reducing the interference,
rehandling, and the overall container handling time, which makes it possible for the ASCs
to provide the AGVs and ETs with faster services. However, it takes quite a long period of
observation to see how good a stacking policy is. Whether or not the stacking locations
recommended are good can be seen better when the containers are retrieved out of the
block than when they come into the block. Since the average dwell time of containers in
container terminals is often longer than a week, the AGV delay and ET waiting time should
be measured for a long period during which time enough containers are retrieved, under
the condition that the containers keep coming in and going out fairly constantly during
that period of time.

3. Related Works

There are some previous works on container stacking that deal with the problem
of allocating the storage spaces for incoming containers. Reference [9] showed how to
organize the storage area to minimize the number of container handling moves given a
fixed amount of space, based on simple models that capture the relationship between the
handling moves and the amount of available space. Reference [10] developed a space
allocation method for inbound containers so as to minimize the expected number of
rehandles. References [11,12] used a mixed-integer programming model together with
some heuristics to allocate storage space for outbound and transshipment containers,
respectively. Reference [13] applied a constraint satisfaction technique to allocate spaces to
outbound containers. Reference [14] developed a space allocation method that can cope
with the uncertainties in loading/unloading times of vessels. Reference [15] used a genetic
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algorithm to optimize the space allocation problem to avoid bottlenecks in storage yard
operations and to minimize vessel service time. All these methods allocate a bulk of storage
locations for reservation prior to the arrival of containers. If the arrival plan changes, the
storage space must be reallocated. In contrast, the methods discussed below designate
specific storage locations for each individual container at the time of its arrival.

The majority of the previous works on stacking locations have used rules or heuristics.
Reference [16] considered the configuration of the container stack and the weight distri-
bution of containers in the yard-bay to derive a decision tree model that determines the
storage location of each outbound container. The decision tree can be deemed as another
representation of a set of rules. Reference [1] proposed stacking rules that recommend the
containers belonging to the same category be stacked together. Containers of the same
category are of the same weight class and size, have the same destination port, and are
loaded onto the same vessel. Reference [2] proposed rules that consider not only the cate-
gory but also the height of the stacking position. Reference [3] suggested a heuristic rule
for determining the locations of relocated containers to minimize the number of relocations
during the retrieval process. Reference [17] conducted simulation studies to investigate
the effect of using information about container departure times and the tradeoff between
stacking farther away versus stacking close to the HPs. It used simple stacking rules that
are designed to work in perpendicularly laid out storage blocks in an automated container
terminal. Reference [18] presented what they call a hybrid sequence stacking method that
determines the stacking locations of outbound containers considering the container weights.
Proposing an ideal configuration of a yard bay to avoid rehandling, this method tries to
stack the incoming containers so that their positions are as close to the ideal configuration
as possible.

Some previous works tried to adopt more AI (artificial intelligence) techniques based
upon rules or heuristics. Reference [19,20] derived stacking policies for outbound containers
considering the uncertainties in their weights with the purpose of minimizing rehandling.
Their policy consists of three precedence rules, each for a container weight group, where
the rules are optimized by a simulated annealing algorithm. Reference [21] proposed a
heuristic method to stack outbound containers. This method evaluates each candidate
stacking location for an incoming container through a simulation and selects the best one.
In the simulation, after stacking the container at the candidate location, the remaining
containers arriving in a random sequence are stacked following a heuristic priority rule and
the resulting performance is measured. Reference [22] used simple rules that determine the
stacking positions based on the stack height and the estimated time of retrieval. The rules
adopt fuzzy logic to represent their conditions to deal with a high degree of uncertainty
in the arrival of containers at the yard. Reference [23] proposed a multi-agent system for
container stacking, in which the stack agent recommends a stacking position by consulting
the knowledge base composed of if-then rules that check various conditions such as the
container types, the configuration of the storage space, and the occurrence of exceptional
events. Each stacking decision is evaluated by the evaluation agent that rejects the decision
when unacceptable. If a decision turns out to be unacceptable, a learning mechanism is
activated to add a new rule to the knowledge base so that the rules responsible for the
wrong decision can be disabled. This learning mechanism makes the proposed system
adaptive to changes, while the adaptation is mainly focused on the disturbances and
unexpected events. Reference [24] investigated the impact of container stacking methods
regarding how they deal with uncertainties in container terminals and reduce container
handling costs. The stacking methods studied, however, determine only the best yard-bays
but not the specific stacking slots.

Compared to the works discussed above, References [4,6] are much more closely
related to our work. The stacking policy in these researches employs scoring functions that
evaluate a candidate stacking location from various perspectives using different criteria,
where the score of a location is calculated as the weighted sum of the scores for those
criteria. The policy uses different scoring functions for different container types because
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each container type requires its own evaluation criteria for stacking. However, all those
scoring functions with different weight vectors are together treated as a single policy. This
policy is optimized by a search using a GA, where a candidate policy is evaluated by
simulating the operations at a block under the policy for a certain period of time and
measuring the resulting performance. For this simulation, Reference [4] provided a pool
of operation scenarios of various kinds for a more accurate policy evaluation. To evaluate
a policy, it is applied to a randomly selected subset of those scenarios, and the resulting
performances were averaged. Therefore, the policy thus optimized can be said to be the
best on average. Given a certain situation, there may be some other policy that works
better than the on-average best policy. Another limitation with such policy is that the
policy cannot change as the operational environment changes. As an effort to overcome
this problem, Reference [5] proposed an online search algorithm that dynamically adjusts
and optimizes a stacking policy by continuously generating variants of stacking policies
and evaluating them while they are actually being applied for determining the stacking
positions. However, this online search cannot keep up with the rapid changes in a situation.
When the situation changes, the performance of the current policy begins to deteriorate, at
which time that of a variant of the current policy may show a better performance. If this
happens, the current policy would be switched to that variant, but only after experiencing
some deterioration. In general, we cannot expect such a good variant to appear quickly at
the right moment. Therefore, we can say the online search is not really reactive to changes,
but it just gradually adapts to changes. Another drawback is that the online search cannot
find really good policies because of its limited explorative capacity. Since all the variants
must be simulated and tested online, it is hard to generate and test a number of variants
under a real-time constraint, which deteriorates the search performance.

The stacking policy derived by the method proposed in this paper is a significant
improvement on the policy proposed in [4,6]. While [4,6] look for a policy whose average
performance in various situations is the best, our method derives a policy that can quickly
adapt to changing situations. When the situation changes, our policy immediately reacts
to the change and provides a newly customized action. This improvement was possible
because the policy that we deal with was based on scoring functions and the weight vectors
used in those functions were easily adjustable. Most previous works reviewed above in
the second and the third paragraphs of this section use policies based on if-then rules.
Those rules are carefully crafted by the designers rather than being optimized by any
algorithms. They are hard to be automatically modified upon situation changes. While
the method proposed in [5] looks closest to ours in that the policy can adapt to changing
situations, its adaptation is slow or gradual rather than immediate or reactive. The different
characteristics of the related works discussed so far are compared and summarized in
Table 1. The works reviewed in the first paragraph of this section are not included in the
table because they have little relevance to our work.

Table 1. Comparison of the proposed method with the related works that determine the stacking
locations for individual containers.

Characteristics
Related References and Their Characteristics

[1–3,16–18,21–24] [19,20] [4,6] [5] Proposed Method

Rule-based Yes Yes No No No
Score-based No No Yes Yes Yes
Optimized No Yes Yes Yes Yes

Situation adaptive No No No Yes Yes
Reactive to changes No No No No Yes

4. Stacking Policy Based on Scoring Functions

This section describes the stacking policies proposed by [4,6]. The stacking location
of an incoming container is determined in two stages. First, the container is assigned to a
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block in the storage yard taking into account various operational conditions in all of the
blocks. Second, a specific location within the assigned block is selected from among the
candidate locations based on several criteria such as the distance to the destination, the
stack height, the likelihood of rehandling, and so on. The stacking policies described in
this paper are used in the second stage to determine a specific stacking location within the
designated block.

To determine a stacking location within a block, all the available slots in the block are
evaluated by using a scoring function and then the one with the best score is chosen. Note
that the slot determination is required not only for the containers newly coming into the
block but also for those that are rehandled or repositioned within the block. Furthermore,
a good target slot can be different depending on whether the container is an inbound,
an outbound, or a transshipment container. Table 2 shows that the stacking policy uses
different scoring functions for different container types. The score si(x) of a slot x for the
ith container type is calculated by the weighted sum given below:

si(x) = ∑
i

wi,jCi,j(x) (1)

where Ci,j(x) is the evaluation value of slot x according to the jth criterion for the ith
container type and wi,j is the weight for Ci,j. The stacking policy of Table 2 consists of seven
scoring functions, each of which employs a different subset of eight criteria. Notice that the
decision by the policy may change as the values of the weights of the criteria change.

Table 2. Scoring function for each of the seven container types.

Container Type Scoring Function

Incoming
Inbound s1 = w1Dto + w2Df rom + w3H + w4E + w5S

Outbound s2 = w6Dto + w7Df rom + w8H + w9E + w10S + w11G + w12P
Transship s3 = w13Dto + w14H + w15E + w16S + w17G

Rehandle Inbound s4 = w18Dto + w19Df rom + w20H + w21E + w22S
Outbound and Transship s5 = w23Dto + w24Df rom + w25H + w26E + w27S + w28G

Reposition Inbound s6 = w29Dto + w30Df rom + w31H + w32E + w33S + w34T
Outbound and Transship s7 = w35Dto + w36Df rom + w37H + w38E + w39S + w40G + w41T

The criterion Dto is the distance to the candidate stacking location from the current
location of the target container, and Df rom is the distance from the candidate location to
the outgoing HP of the container. These two criteria are calculated differently for different
types of containers, as illustrated in Figure 2. Dto and Df rom give the same value if the
target container is a transshipment container. H is the height of the stack underneath the
candidate location. The higher the stack, the greater the likelihood of rehandling. E is an
indicator of whether or not the candidate location is an empty ground. The empty grounds
have to be saved as much as possible in preparation for the possible shortage of stacking
locations. S is the amount of reduction in empty ground slots available for container
stacking. For safety reasons, containers of different sizes cannot be stacked together. A 40 ft
container occupies two adjacent stacks, as shown in Figure 1. Therefore, placing a 20 ft
container on one of the two consecutive empty ground slots not only uses one ground slot
for a 20 ft container but also reduces the availability of ground slots for 40 ft containers.
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Figure 2. Dto and Df rom depending on the type of container.

T indicates whether or not the container right underneath the candidate location has
been temporarily repositioned to that slot. T is used only in the scoring functions for the
containers to be repositioned. Since a repositioned container will soon be moved to an
outgoing HP, rehandling is quite likely to occur if there is some other container on top of it.
However, if the container on top of it is also a repositioned container, rehandling can be
avoided by simply moving the upper one to its own outgoing HP before moving the lower
one. Criterion T encourages the repositioned containers to be kept together in the same
stacks. This is desirable to save stacking slots available for the containers newly coming in
or for those rehandled. G is the estimated likelihood of the occurrence of rehandling when
a container to be loaded to a vessel is stacked on top of others. If the container was just
stacked and all the containers underneath belong to the same category, no rehandling occurs
during loading. Otherwise, the underneath containers belonging to different categories can
cause rehandlings. As mentioned before, the containers belonging to the same category are
to be loaded onto the same vessel, have the same port of destination, are of the same size,
and are of the same weight class.

P appears only in the scoring function s2, which is specialized for the outbound
containers brought in by the ETs. It is the preference value of a candidate location depending
on which region of the block the location belongs to. It is preferable that the outbound
containers to be loaded sooner are stacked closer to the seaside. Figure 3 illustrates the
distributions of the preferences over different regions in a block for the outbound containers
of different loading times. The block is divided into five regions, and there are three different
urgency levels for loading. The preferences are distributed differently for each urgency
level, resulting in fifteen preference values each for a region and an urgency level. In the
previous work [6], these preference values as well as all the weight values in Table 2 were
determined by running a GA-based search algorithm.
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Figure 3. An example of preference distributions over the stacking regions within a block for the
outbound containers with different loading times.

Table 3 summarizes the eight criteria explained above. To calculate the weighted
sum of the respective subsets of these criteria, the policy of Table 2 uses 41 weights. The
evaluation values of all the criteria are normalized to [0, 1] and the weight values are
constrained to [–1, 1]. Note that a weight can be negative if the value of the corresponding
criterion affects the policy adversely. As the decision made by the policy depends on the
weight combination or the weight vector, the weight vector is considered as the policy.
When the policy is optimized by using a GA, each candidate policy is evaluated by applying
it to a variety of scenarios of operations in a block and averaging the resulting performances.
In this way, the optimization algorithm derives a policy that works the best on average.
Given a certain situation, however, a different policy might perform better than this best
on-average policy. In the next section, we explain how we derive a policy that can be
dynamically adapted to changing situations.

Table 3. Evaluation criteria used in the scoring functions.

Criterion Description

Dto Distance to the stacking location from the container pick-up position
Df rom Distance from the stacking location to a departure HP

H Height of the stack at the candidate location
E Indicator for an empty ground
S Reduction in empty space availability
P Regional preference within a block for the incoming outbound containers
G Likelihood of rehandling
T Indicator of having a repositioned container underneath

5. Proposed Method

In this research, we consider the current workload of vessel operation as the only
important indicator of the current operational situation in a storage block. The workload
of vessel operation from the standpoint of a block is the workload of its seaside ASC that
handles the containers to be loaded to or unloaded from the vessels. Since any delay by the
seaside ASC leads to a delay of the vessel operation at the quay, its efficient operation is
critical. It may not be desirable, for example, that the seaside ASC spends too much time
in container stacking when the seaside workload is high. The containers arriving at the
seaside HPs are better stacked at locations not far from those HPs in order not to have
other vessel operations delayed. However, a desired amount of such adjustment of travel
distance for stacking cannot be made in any obvious way. It is difficult to invent a formula
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relating the amount of adjustment with the seaside workload that is continuously changing
over time. One intuitive approach to dealing with continuously changing situations would
be to divide the situations into a finite number of representative situations and then to
derive a specialized policy for each representative situation. Note that a coarse division
would not be effective enough because each constituent policy would suffer from the same
problem of showing only the best on-average performance although to a lower degree. On
the other hand, a very fine division requires too many policies that all must be derived
through computationally expensive optimization search.

Another approach one may think of would be to turn the criteria used in the scoring
functions of the policy into functions of the seaside workload. While most criteria are clearly
independent of the seaside workload, the regional preference P seems to be dependent on it.
When the seaside workload is heavy, preferring the seaside regions is not desirable because
the chances of interference with the seaside ASC get high. In fact, the preference as a
function of the seaside workload seems necessary more for the inbound than the outbound
containers because the seaside ASC may not want to travel a long distance for container
stacking when its load is heavy. Furthermore, there are some weights whose desirable
values seem to depend on the seaside workload, although the corresponding criteria are
not. Some of the examples are the weights for Dto and Df rom. The value of criterion Dto for
an inbound container should be considered more importantly (i.e., should be given a larger
weight) to save the travel time as the seaside workload gets higher. However, we do not
know how exactly the values of the criteria or weights should change as a function of the
seaside workload. In our proposed method, therefore, we exclude P from the policy, and
instead, we synthesize a new policy from two boundary policies whenever needed: one for
a very low workload and the other for a very high workload. For the synthesis, we take
an interpolation of the two boundary policies. When we use a GA to search for the two
boundary policies, we simultaneously search for the two threshold values to quantify the
two fuzzy terms ‘very low’ and ‘very high’.

Let s represent the current workload that is measured by adding up the estimated
processing times of all the vessel jobs scheduled to be done by the seaside ASC within the
next horizon of length h seconds from the current point of time. A vessel job is either a
loading or an unloading job. For a loading job, the seaside ASC makes an empty trip from
its current location to the location of the target container, picks up the container, makes a
loaded trip to a seaside HP, and puts the container down on top of an AGV waiting there.
Among these actions, container pickup can take longer if it involves rehandlings. For an
unloading job, the seaside ASC undertakes an empty trip from its current location to the
seaside HP where the AGV bringing the target container is parked, picks up the container
from the AGV, undertakes a loaded trip to the designated stacking location, and puts the
container down at that location. Since the loading and unloading schedules for each vessel
are predetermined at the planning stage well before the real operation starts, the workload
of vessel operations within a horizon can be easily estimated.

We use θl and θh to denote the threshold values for the extreme or boundary workloads;
the workload is said to be very low if s ≤ θl and very high if s ≥ θh. The seaside ASC
is said to be overloaded if s > h, as the time taken to finish the works planned for the
horizon exceeds the length of the horizon. Let πl and πh be the policies specialized for the
situations of very low workload and very high workload, respectively. Then, the policy
πs for workload s with θl < s < θh can be synthesized from πl and πh by deriving new
weight values to be used in the scoring functions of πs through interpolations between
the corresponding weights in πl and πh. The ith weight ws,i to be used in policy πs is
calculated as

ws,i =
(θh − s)wl,i + (s− θl)wh,i

θh − θl
(2)

where wl,i and wh,i are the ith weights in πl and πh, respectively. As s gets closer to θh, ws,i
is influenced more by wh,i than wl,i, or the other way around. Note that the score πs(x) for
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a candidate slot x by the synthesized policy πs can be directly calculated from the scores
πl(x) and πh(x) as

πs(x) =
(θh − s)πl(x) + (s− θl)πh(x)

θh − θl
(3)

without actually deriving the individual weights constituting πs because the values θh, θl ,
and s in Equation (2) are independent of i.

We use a GA for our optimization, which is basically the same as that used in [4]. We
optimize not only πl and πh but also the two threshold values θl and θh. Figure 4 shows
the representation of the candidate solution adopted by our GA. Since each policy consists
of 40 weights after dropping out the criterion P, there are 82 real values to be optimized in
total, where vl and vh are constrained to be in [0, 2] and the weight values in [–1, 1]. During
the evaluation, vl and vh are decoded to θl and θh, respectively, by having them multiplied
to the length of horizon h. The reason for setting the upper bound of vl and vh to 2 is that
the workload of vessel operation measured in time can exceed the length of the horizon
when overloaded.

Figure 4. Representation of candidate solution.

To evaluate a candidate policy during the search, the policy is applied through sim-
ulation to a set of scenarios randomly chosen from the provided pool and the resulting
performances are averaged. The pool contains various scenarios of different difficulty
levels; a scenario is difficult if the workloads of the ASCs are high. The length of a scenario
is three weeks, which is long enough to measure the efficiency of the ASC operation because
enough of the containers that arrived during this period are retrieved. During the first
two weeks, the stacking yard, or block, is initialized starting from an empty yard without
simulating the ASC’s movements. Then, from the beginning of the third week, the efficiency
of the ASC operation is measured with their movements simulated realistically, reflecting
acceleration, deceleration, and interferences. More details on this crane simulation can be
found in [25]. For an evaluation of the performance in the third week of a scenario, a candi-
date policy 〈θl , θh, πl , πh〉 is applied to the scenario. When a container has to be stacked,
the workload s of vessel operation for the next horizon of length h seconds is estimated.
If s ≤ θl or s ≥ θh, then πl or πh becomes the policy to be used, respectively. Otherwise,
a new policy πs specialized for the workload s is synthesized through interpolation and
then applied for stacking. Note that we need to synthesize only one of the seven scoring
functions shown in Table 2 depending on the type of container to be stacked. This synthesis
and application of a new policy are repeated every time a container is stacked. When the
simulation of a scenario is over, the performance of the candidate policy is measured by
the following objective function:

f (π) = W1 · DAGV(π) + W2 · DET(π) (4)

where π is the stacking policy under evaluation, DAGV(π) is the average (per container)
AGV delay observed under π, DET(π) is the average waiting time of ETs under π, and
W1 and W2 are the respective weights for DAGV and DET . W1 is usually much larger than
W2 because the seaside operations are considered much more important than the landside
operations. The final evaluation is obtained by averaging the objective values measured
from all the scenarios.

6. Experimental Results

We used the algorithm named NTGA for policy optimization, which is the same
one as that used in [4] to derive the static stacking policy described in Section 4. Our
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parameter setting of NTGA is shown in Table 4. Since NTGA requires a random subset of
operation scenarios selected from a pool to evaluate each candidate policy, we generated
1000 scenarios to constitute a pool. Each scenario consists of container handling jobs to be
completed for three weeks in a block that is 46 bays long, 8 rows wide, and 5 tiers high.
The job requests are made by the AGVs and ETs that arrive at the seaside and landside
HPs, respectively. They either bring in a container to be stored in the block or ask for a
container to be picked up from the block. The average number of AGVs arriving per day
is approximately from 220 to 300, and that of ETs is from 70 to 110. More requests are
from the AGVs than ETs because there are transshipment containers whose proportion
among the containers unloaded from the vessels is about 50% in our scenarios. The average
daily workload of the ASCs increases with the number of requests, but the workload
continuously changes within a day as the requests are not evenly distributed over time.

Table 4. Parameter setting of NTGA in our experiments.

Parameter Setting Value

Population size 100
Mating pool size 2
Buffer pool size 50
Sampling size 2 (initially 4)

Crossover operator Simulated binary crossover
Crossover probability 0.9

Mutation operator Polynomial mutation
Mutation probability 0.01

Number of evaluations 100,000

Using this pool of scenarios, we derived both the static stacking policy of [4] and the
dynamic stacking policy proposed in this paper. Then, the two policies were applied to 100
scenarios that were separately generated following the same distribution as that used for
generating the scenarios of the above pool. The two weight values W1 and W2 of Equation
(4) were empirically set to 50 and 1, respectively, not only when the policies were derived
but also when they were tested. The results obtained by measuring the AGV delay and
ET waiting time are shown in Table 5. We can see that the proposed policy outperforms
the static policy in terms of both AGV delay and ET waiting time. The improvement is
22.3% for AGV delay and 16.3% for ET waiting time. We also confirmed that the proposed
policy performs significantly better than the static policy by using a paired t-test with a
confidence level of higher than 99.99%. The data for our experiments and the execution of
our program can be found in [26].

Table 5. Performance comparison of the two policies.

Static Policy Dynamic Policy

AGV delay 80.0 62.2
ET waiting time 285.3 238.8

To obtain some hints about how the dynamic policy works, we investigated the
behaviors of the two boundary policies, i.e., πl for a very low workload and πh for a very
high workload. The two threshold values θl and θh (see Figure 4) found by our search
algorithm for distinguishing the very low and very high workloads were 274 s and 1892 s,
respectively. Recall that the length of our horizon is 1800 s; the workload of 274 s really
looks very low, and that of 1892 s is over the capacity. If we want to quantify the overall
stack preference of a boundary policy πb for the ith container type (see Table 2 for the
seven container types), we apply πb to a scenario as if it is a static policy and pay special
attention to the moments of stacking the ith type containers. Whenever we come across
such a moment during the simulation, we not only apply πb to stack the container at the
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best location as usual, but also calculate the scores for all of 46 × 8 slots as if they are
all candidate locations and just save the scores separately. For the latter calculation, the
constraint of a maximum possible tier of five is relaxed. Furthermore, we assume that we
can stack 20 ft containers even on top of 40 ft ones. When the simulation is over, we obtain
the stack preference by averaging the separately saved scores for every slot in the block.

Figure 5a compares the stack preferences of πl and πh for the incoming inbound
containers, where the slots of better scores are indicated by a darker shade. When the
seaside workload is very low, the best locations by πl are distributed toward the landside
end. This is quite reasonable because the inbound containers will eventually leave the
block through the landside HPs. Since the seaside workload is low, the seaside ASC does
not hesitate to travel a long distance to stack the containers at the landside end so that later
retrieval by the ETs is expedited. However, we can see that the locations toward the seaside
end of the block are considered not the worst but somewhat preferable by πl . Note that
πl is used not only in the situations of very low workloads but also in the situations of
intermediate workloads through interpolation with πh. If we separately derived a static
policy specialized for a very low workload, it might not prefer any seaside locations at
all. On the other hand, when the seaside workload is very high, πl prefers the locations
closer to the seaside end than those farther away. When the seaside ASC is very busy, it
should avoid long-distance travel as not to delay the services to the AGVs waiting at the
seaside HPs. Figure 5b shows the overall stack preferences of πl and πh for the incoming
outbound containers. We can see that the stack preferences are almost the opposite of what
we have seen for the inbound containers. Figure 5c shows the stack preferences of the
static policy for the inbound (shown in the upper part) and outbound (shown in the lower
part) containers. It seems that the static policy generally prefers the locations closer to the
departure HPs regardless of the seaside workload.

Figure 5. Comparison of the stack preferences.
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7. Cases with Multiple Situation Indicators

Thus far, we have been assuming that the seaside workload is the only indicator we
consider to represent the situation. Although rare practically in container terminals, we
can imagine the cases in which the situation is represented by multiple indicators. Our
method described in Section 5 can be extended to cover such cases by generalizing the
interpolation to a weighted average of multiple relevant terms. Consider, for simplicity
of explanation, the case with two indicators s1 and s2. We need two threshold values for
each indicator to distinguish between very low and very high values, i.e., θ1,l and θ1,h for s1,
and θ2,l and θ2,h for s2. This leads to four extreme or boundary situations Bl,l , Bl,h, Bh,l , and
Bh,h, where Bl,l is the set of situations with s1 ≤ θ1,l and s2 ≤ θ2,l , Bl,h with s1 ≤ θ1,l and
s2 ≥ θ2,h, Bh,l with s1 ≥ θ1,h and s2 ≤ θ2,l , and Bh,h with s1 ≥ θ1,h and s2 ≥ θ2,h. We use πl,l ,
πl,h, πh,l , and πh,h to denote the policies specialized for the boundary situations Bl,l , Bl,h,
Bh,l , and Bh,h, respectively. Given an intermediate situation s other than those boundary
situations, the policy πs for s can be synthesized from πl,l , πl,h, πh,l , and πh,h by taking a
weighted average after normalizing the indicator values. The normalization is necessary to
compensate the different scales of different indicators.

Figure 6a represents the space of all situations on a two-dimensional plane formed
by two coordinates, one for indicator s1 and the other for indicator s2. We can see how the
areas of the four boundary situations Bl,l , Bl,h, Bh,l , and Bh,h are located in relation to the
threshold values of the two indicators. A and B in the figure are two situations other than
the boundary situations. A is an intermediate situation whose indicator values do not go
over any threshold. B is not quite an intermediate situation because one of its indicator s2
takes a value below the lower threshold θ2,l . Figure 6b shows the situations in Figure 6a
after a normalization, where each indicator value si is transformed to (si − θi,l)/(θi,h − θi,l).
In Figure 6b, the areas of boundary situations are marked by the corresponding policies,
and the distances to those areas from A and B are indicated by di,j’s. Let πA denote the
policy for situation A in the figure. Then, the score πA(x) for a candidate slot x in situation
A can be calculated by a weighted average of the scores given by πl,l , πl,h, πh,l , and πh,h:

πA(x) =
1

dl,l(A)
πl,l(x) + 1

dl,h(A)
πl,h(x) + 1

dh,l(A)
πh,l(x) + 1

dh,h(A)
πh,h(x)

1
dl,l(A)

+ 1
dl,h(A)

+ 1
dh,l(A)

+ 1
dh,h(A)

(5)

where di,j(A) is the distance from A to the area of πi,j, and 1/di,j can be interpreted as
the respective closeness. If πB denotes the policy for situation B, the score πB(x) for a
candidate slot x in situation B can be similarly calculated as

πB(x) =
1

d−,l(B)πl,l(x) + 1
d−,h(B)πh,l(x)

1
d−,l(B) +

1
d−,h(B)

(6)

where terms related to πl,h and πh,h are not included because s2 is extremely low in B and
thus they are irrelevant. Note that Equation (6) is equivalent to the linear interpolation we
calculated in Equation (3).

The formulation given above can be easily extended to the cases with more than two
situation indicators in principle. However, extensions to such cases would be practically
infeasible because the number of boundary policies increases exponentially to 2n, where n
is the number of situation indicators. As we have seen in Figure 4, our chromosome for
the search of the policy already consisted of 82 real-numbered genes when there was a
single indicator. If there were two situation indicators, the number of genes should have
increased to 164. This number doubles each time another indicator is added, resulting in a
huge search space.
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Figure 6. Situation space displayed on a two-dimensional plane formed by the two coordinates of
the situation indicators s1 and s2.

8. Concluding Remarks

We derived a dynamic or situation-adaptive stacking policy and compared its per-
formance with that of a static policy that is insensitive to the situation change. The result
of simulation experiments tells us that the dynamic policy clearly outperforms the static
policy. In the experiments, the policy was optimized using randomly generated operation
scenarios and then tested using a different set of scenarios separately generated from the
same distribution. This separation was an effort to guarantee the generality of the observed
performance of the policy in similar situations. However, the policy needs to be newly
optimized and tested for being applicable to a new container terminal whose distribution
of the operations is different from that of our target container terminal.

The way we proposed to obtain a dynamic policy is to synthesize a new policy from
two boundary policies: one for a very low and the other for a very high workload. For
the synthesis, we recommended a linear interpolation of the two boundary policies. We
used a GA-based search algorithm to optimize not only the two boundary policies but also
the two threshold values for distinguishing the very low and very high workloads. The
idea of using linear interpolation is based on the assumption that the values of the weight
vectors in the policy are linearly related to the seaside workload, which is the only indicator
we consider to represent the situation. Although this linearity assumption might not be
really correct, our empirical study has shown that the method based on linear interpolation
results in a significant improvement over the previous works. As emphasized toward
the end of the literature review in Section 3, no previous work has ever tried to solve the
kind of problem that we deal with in this paper. The linearity assumption, however, is not
scalable to large problems because it needs boundary policies whose number increases
exponentially with the number of situation indicators. Our future work, therefore, will be
to drop the linearity assumption and use a multi-layer perceptron to represent a policy
instead of the linear scoring functions so that we do not need to use boundary policies.
Another viable approach would be to apply a reinforcement learning algorithm that learns
value functions based on the rewards from the environment.
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Abstract: In this work we present the intelligent orchestrator of random generators (IORand), a hybrid
procedural content generation (PCG) algorithm, driven by game experience, based on reinforcement
learning and semi-random content generation methods. Our study includes a presentation of current
PCG techniques and why a hybridization of approaches has become a new trend with promising
results in the area. Moreover, the design of a new method for evaluating video game levels is
presented, aimed at evaluating game experiences, based on graphs, which allows identifying the
type of interaction that the player will have with the level. Then, the design of our hybrid PCG
algorithm, IORand, whose reward function is based on the proposed level evaluation method, is
presented. Finally, a study was conducted on the performance of our algorithm to generate levels of
three different game experiences, from which we demonstrate the ability of IORand to satisfactorily
and consistently solve the generation of levels that provide specific game experiences.

Keywords: procedural content generation; artificial intelligence; reinforcement learning; semi-random
generation; hybrid algorithms

1. Introduction

Procedural content generation (PCG) is a discipline that focuses on generating content
algorithmically, mainly practiced in video games. PCG is commonly used for creating
game content as levels, maps, quests, characters, or even rules during the run time or
as a design tool. It is motivated by the need to personalize the video game content for
each player, increase the replayability, or reduce the production costs in the industry [1].
Nowadays, small independent companies (indies) can produce and distribute creative
applications; however, they usually lack adequate numbers of employees to develop a
substantial amount of content manually. These indie companies look at PCG as a viable
alternative for producing content at an affordable price.

The high impact of this area has generated a lot of interest in the academic community
and has led to a considerable number of books and surveys in the last two decades [2–8],
each one proposing different kinds of taxonomies for categorizing all of the work in the
area. There are three main taxonomies used for classifying the works: the taxonomy of
content, the taxonomy of methods, and the taxonomy of roles. The taxonomy of content
classifies works by the type of content generated as map-level, narrative, texture, music,
faces among others [2,6]; the taxonomy of roles segments them by the algorithm role and
applications in the design; and the taxonomy of methods divide the works by technology
type as machine learning, deep learning, evolutionary algorithms, among others [5,6].

PCG utilizes numerous techniques, each one with strengths and weaknesses. Togelius
in [7] proposes a classification of the PCG approaches according to the content generation
process in three categories; a search-based algorithm, constructive, and a simple generate
and test.
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The search-based approach to PCG is generally performed using some search opti-
mization algorithm to look for content with the desired qualities. The main components of
the search approach are the optimization algorithm, the content representation, and the
evaluation function. The optimization algorithm is the core of the search-based method,
mainly a simple evolutionary algorithm [9–14], and in some cases, other stochastic al-
gorithms. Recently, reinforcement learning has been explored as an alternative for PCG
search-base, describing the generation task as a Markov decision process where a model is
trained to select the best action to improve the content quality [15–20].

The constructive approach consists of a series of steps to generate content and does
not evaluate the output to regenerate it. In this approach, the algorithm uses a set of rules
to generate content to warrant a level with the desired qualities. The experience of the
designers is used to dictate the rules and are commonly captured using grammar [21–24]
for structural generation, such as a dungeon, or linguistical generation, such as a quest.
Moreover, simple rules that react to local spatial information, such as cellular automata [25],
have been used to generate structures, such as dungeons or caves. However, the difficulty of
dictating a set of rules has led to the implementation of machine learning algorithms [26–30]
for content generation. These algorithms are capable of inferring the rules from data of
similar games or previously designed levels.

The generate and test approach generates content using an algorithm that usually
does not guarantee a good result and then tests the performance of the generated content
according to some criteria. If the content does not accomplish the performance, it is
regenerated; this process can iterate as much as is needed. This paradigm is a middle
point between the constructive and the search-based approaches, it considers that the
constructive method does not warranty playable content. Commonly, this approach uses
random [31,32] or semi-random algorithms, such as fractals [33].

To provide a comparison between approaches, it is necessary to understand the
criteria by which a procedural generation algorithm is analyzed. In [8], Togelius proposes
a taxonomy to measure the algorithms in three dimensions. The first dimension is the
degree of determinism or randomness that the algorithm possesses and is measured by
the amount of variations of outcomes in different runs of the same algorithm with the
same parameters. The second is the degree of controllability the designer has over the
algorithm to influence the generated outcome. The third and final dimension is the level
of iterability or number of iterations the algorithm needs to perform to produce content.
While these criteria provide insight into the main characteristics of the algorithm, they
do not describe the performance of the content generated. In [34], the creativity of the
algorithms are analyzed, and the authors propose two metrics, novelty, and playability,
to measure how creative the generated content is. Novelty is defined as the variability
from the reference levels and the output ones, measured by the different levels the
algorithm produces. Playability is defined as the percentage of the generated content
that is useful.

We gathered the algorithm comparisons and taxonomy classifications from different
sources [2–8,34]; we present a side-by-side comparison of the numerous techniques used
for PCG in Table 1. In this comparison, we use a scale that considers levels (high, moderate,
fair, and low) to describe the performance of each algorithm metric.
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Table 1. Comparison of techniques for PCG.

Technique
Generation
Process

Determinism Controllability Interactivity Novelty Playability

Evol. Algorithms [9–14,35] Search-based Moderate Moderate High Fair High

Reinforcement learning [15–20] Search-based Moderate Moderate High Fair High

Cellular Automata [25] Gen. and test Fair Low Fair Moderate Fair

Grammars [21–24] Constructive High High Low Low High

Machine Learning
Supervised Learning [26–30]
Adversarial Learning [36–38]

Constructive High High Low Low High

Random Generators [31,32] Gen. and test Low Low Moderate High Low

Rule-based [39] Constructive High High Low Low High

In this table, we can observe that different algorithms that share the same generation
process behave similarly in each metric, and many approaches have strengths that oppose
weaknesses of the others. This would suggest that hybrid approaches could effectively
improve performance and minimize weaknesses. The idea of hybridizing PCG algorithms
through composition was original proposed in [40] where they experiment with combin-
ing an evolutive algorithm with a constructive method; the evolutive algorithm uses the
constructive approach as part of its inner working and tests the idea in a simple dungeon
generator. In [41], a hybrid approach that combines grammar and cellular automata to gen-
erate dungeon layouts is presented. This algorithm generates levels with high playability
and slightly improves the novelty of the output levels due to the cellular automata.

The hybridization of algorithms has shown a lot of potential. However, there are still
many research questions to be addressed in regard to creating a PCG algorithm that is fully
controllable, fast, and capable of generating novel and playable content. For this reason, we
propose a novel hybrid algorithm that uses a reinforced learning approach to orchestrate
a group of semi-random generators. The reinforced learning algorithm has the objective
of providing controllability to search for a specific player experience and provide results
with high playability. This core algorithm is complemented with a group of semi-random
generators to improve the novelty of the generated content.

Our proposal includes the following contributions:

• We introduce new metrics for any game level: risk, obstruction, precision, reward,
motivation, and distance. The motivation metric considers the potential reward
available in an interaction and the precision required.

• Through the designed reward function, our hybrid algorithm of PCG generates a
diversity of levels that meet any given gaming experience.

2. Problem Statement

As a case study, we developed a game called “Pingu run”, a game of the platform
genre. Pingu run was designed and implemented in Pygame for this purpose and is
available in [42]. This game consists of moving a penguin called Pingu from an initial point
to an endpoint by travelling through a series of platforms and avoiding enemies; a video
of the gameplay is shown in [43]. You can collect different rewards, such as extra lives or
bonuses, in the final score. This video game is made up of four different types of elements:
platforms, bonuses, enemies, and markers. The platforms are those elements in which the
player can stand or support to jump. We consider three types of platforms: static, mobile,
and bouncing. The bonuses are classified in score, lives, and sub-missions. Four types of
enemies are used: a ranged enemy (troll), a flying enemy (eagle), a melee enemy (bear),
and a static enemy (lava). Finally, the markers are elements that signal essential points in
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the game. We have three kinds of markers: start point, mid-level, and endpoint. These
elements and their uses in a level are shown in Figure 1.

(a) (b)

Figure 1. Pingu Run video game. (a) Pingu run level example. (b) Game elements.

When building a level, the designer plans a series of challenges that he/she wants the
player to face. With this, the designer seeks to convey emotions and narratives that define
a specific game experience. An analytical link between the game features and the player
experience has been proposed in [44] using the concept of affordance. Affordance refers
to the opportunities or choices given by the environment to the player. The game design
defines its possible uses and makes clear the actions the player may perform. For this
reason, we consider it feasible to measure the experience indirectly from the characteristics
of the game content.

To probe this hypothesis, we analyzed three different experiences denominated: sim-
ple, obstacles, and jumps. The simple experience is characterized by flat levels that allow
the player to take risks to acquire the greatest amount of rewards without fear of being
penalized for some error; they are generally easy to complete and are usually relaxing or
restful stages for the player. The obstacle experience conveys to the player the need to
dodge multiple enemies to navigate the level generally transmits emotion and requires con-
centration to complete it successfully, but the player is aware that an error is not definitive
and can be corrected. Finally, the jumping experience provides greater emotion and tension
in the player since it requires precision to go through the level with the risk that a mistake
will penalize him/her with an absolute loss in the game. In Figure 2, a visual example of
each experience is shown.

(a) (b)

(c)

Figure 2. Pingu Run experience examples. (a) Simple experience. (b) Obstacle experience. (c) Jump experience.
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In the next section, we present our proposed level evaluation process that may serve
as the basis of the quantitative measure of the game experience.

3. Proposed Level Evaluation

Content evaluation metrics are necessary to guide the search algorithms and to verify
the generated content quality. However, it is difficult to define metrics that capture subjec-
tive factors, such as the player’s experience or aesthetics. In [45], the authors propose to
measure the reactions of the players through cameras during gameplay. Despite the accept-
able results, this approach is impractical for content generation. In this work, we propose
to measure the content characteristics and then search for affordance and its relation to
the player experience. A graph-based description has proven useful to describe the game
construction at a conceptual level, capturing the interactions between elements [22,46,47].
The proposed methodology splits the game elements into functional objects considering
each platform, bonus, enemy, and marker as objects, and analyzes the interactions between
them. In the first step, we selected the platform objects as the node-set (V), and each node
was analyzed considering the risk (rk) and reward (rw). The risk represents the level of
threat that may harm a player when standing in a node [48]. The reward is a measure
of the level of bonification a player may have while standing in a node [49]. The second
step consists of determining all possible transitions (E) between nodes using a reachability
metric [50,51]. Each transition is described within six measures: risk (rk), reward (rw),
obstruction (o), precision (p), motivation (m), and distance (d). While risk and reward are
the same measures, with one difference they are computed for the threats and rewards a
player may have or suffer during the transition. The obstruction measures the degree a
platform may interfere during a transition [52], and the precision measures how exact a
jump between platforms needs to be performed [50,51].

The reward metric is divided into two types, the level reward (lrw) which measures
the points obtained for reaching the marker rings and completing the level, and the bonus
reward (brw) that measures points earned for defeating enemies and for reaching bonus
items (bonuses). This division is made in order to have a better description of the type of
reward that the player can obtain on a platform or during a transition. Motivation is the
measure of reward attenuated by accuracy, it represents the degree of interest the players
will have in transitioning, given the points they can earn and the degree of skill such a
transition would entail. Being a measure derived from the reward, it is also divided into
level motivation (lm) and bonus motivation (bm). Distance is a measure of the length of a line
or path between two points. For the purposes of this project, the Euclidean distance was
used, which measures the length of the shortest line connecting the two points. Each level
is represented by a set of nodes V, Equation (1), and a set of transitions, Equation (2). We
describe each node vi using its object identification number IDei, the risk and reward of the
node (Equation (3)), and each transition ej using the nodes it connects in order vp, vk, its
risk, reward, obstruction, precision, motivation, and distance (Equation (4)).

V = {v1, v2, v3, ..., vi} (1)

E = {e1, e2, e3, ..., ej} (2)

vi = [IDvi, rkvi, lrwvi, brwvi] (3)

ej = [evp ,vk , rkej, lrwej, brwej, oej, pej, lmej, bmej, dej] (4)

The evaluation process of a game is exemplified in Figure 3. In it, the nodes or
platforms are shown in green, the markers in blue, and with black lines, the transitions
that allow the player to go through the level from the starting point to the final point are
illustrated. The red circles mark the enemies that are used for risk calculation and the
yellow circles mark the bonus used in the reward metrics.
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Figure 3. Node annotation of an example level.

The main objective of the metrics was to characterize the experience of the player
while traveling in the game, which motivated us to analyze the route that the player would
travel. However, a set of different routes that allow the player to travel from the start point
to the endpoint can be found in the graph that describes a level. Each route is defined
by a set of nodes and transitions and can represent a different experience for the player.
Some routes may be more interesting for the players than others, and some routes may be
more useful for the analysis. To decide which routes and metrics are more important for
describing the player experience, we analyze all critical routes and weigh their importance.
We define a critical route as an optimal route that shows the maximum or minimum values
for one of the eight proposed measures (risk, level reward, bonus reward, obstruction,
precision, level motivation, bonus motivation, and distance). To find the critical routes, we
used the Dijkstra algorithm [53].

The implemented node selection method (relaxation function) in Dijkstra’s algorithm
is strictly “<” to find the paths of minimum sum, and “>” to find the paths of the maximum
sum; therefore, to discern between two nodes that can form a critical path, the algorithm
always keeps the first one it found.

When executing Dijkstra’s algorithm, all possible critical paths in the level graph can
be calculated; that is, those that have a maximum sum and a minimum sum in the measured
characteristic, for example, one of these paths would be the “maximum risk” path, the
one whose sum of risk, from the initial node to the end of the level, is the highest possible.
However, it is necessary to select the route or routes that allow the game experiences to
be identified. For our case study, the player must always travel interacting with all level
markers (doors (rings) and goal); therefore, the route of interest is the one in which these
markers are always present. Therefore, the “maximum level reward” route was selected,
as it is the route in which the maximum sum—due to the points received for reaching the
markers—is accumulated, i.e., they are always present in it.

4. Feature Selection

Once the critical path is established, it is necessary to define which measurements
will be taken from each characteristic and which will be useful to identify the gaming
experiences. For this purpose, a set of three example levels was created for each of the
predefined game experiences, resulting in nine example levels. These levels were evaluated
against the eight metrics and the path of interest (maximum level reward) was calculated.
For each metric, three types of data were stored: the maximum value, the minimum
value, and the rhythm (the latter is a measure of the number of peaks and valleys of the
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curve drawn by the measured values of said characteristics along the evaluated route),
giving a total of 24 measures on the critical path, from each level. Then, a file containing
the measurements (pace, maximum, and minimum value) taken from each level was
formed, adding a class label, corresponding to the type of game experience to which each
level belonged. Based on this dataset, the extra-trees classifier algorithm was used as a
dimension reduction method, which in this case serves to determine the most convenient
measurements of the 24 taken, to be used to identify game experiences. The extra-trees
classifier is a classification algorithm that generates a set of decision trees, where each tree is
built from the analysis of a random sample of the original dataset. Each tree calculates the
Gini index of each characteristic to determine how much of a relationship they have with the
class label; the lower the value of this index, the greater its relationship with the class label.
The algorithm averages and normalizes the Gini indices of each generated tree, giving,
as a result, the Gini importances, for which, the higher its value, the more relationship a
characteristic has with the class label; the sum of all the importances is equal to 1. This
measure is used in the extra-trees classifier algorithm as the decision-making mechanism.

To identify the measures of interest, this algorithm was run to learn how to classify the
levels of the aforementioned file, the one that contains the measures of the critical path. For
our case, the classification task was not relevant, but the importance of each characteristic,
which were stored in a new file.

Finally, the top five values of importance were chosen to identify the gaming expe-
riences, which are: rhythm of level reward, rhythm of level motivation, rhythm of risk,
maximum value of bonus motivation, and rhythm of level reward. Additionally, it was de-
cided to add the measure of “maximum distance value” since it is considered to be related
to the visual harmony of the elements of the level, although its calculated importance was
not high.

5. The IORand Algorithm

The PCG algorithm proposed in this work is based on the combination of two different
approaches, first, the search-based approach, with the use of the deep Q-network (DQN)
reinforcement learning (RL) algorithm, and second, by the random generators approach,
with the semi-random content generation algorithm. The flow of the IORand algorithm is
shown in Figure 4.

Our algorithm starts at block 1 by initializing the step counter (n) and generating an
initial state (s), i.e., a slot to create a “Pingu run” level. This level is sent to the agent in
block 2, as the current state of the environment in its first step. The agent decides which
semi-random generator will be executed and with what type of platform (one of those
defined in Figure 1b). This pair, type of platform, and generator, make up the action (a) of
the agent. Depending on the semi-random generator that was chosen, one of the blocks
from 3 to 7 is executed, with the type of platform specified. Each one of these blocks
(3–7) is a semi-random content generation algorithm, which changes the environment
according to an action that a human designer would do (create, insert, move, change, or
remove platforms). After the selected generator calculates its effect on the environment,
it is implemented in the level slice at block 8. At this point, one step of the algorithm is
complete, so the counter is incremented. If “n” steps have been executed, where “n” is
defined by the user, then the algorithm terminates and the resulting level slice (s) from
performing the agent action is stored on a file (in JSON format) in block 10, otherwise this
state is sent to block 9, where a calculation of the reward is made, to indicate to the agent
how good his/her action was to achieve the desired gaming experience. Block 9 sends the
reward (r) and the current state of the environment (s), which is also the resulting state (s’)
of its previous action. Both the reward (r) and the resulting state (s’) are used only during
the training phase; once the agent is trained, it is only necessary to send the current state of
the environment (s).
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Figure 4. IORand flow chart diagram.

The idea of this hybrid algorithm is that the part based on reinforcement learning
guides the content generation, such as an orchestrator, which seeks to maximize the value of
an objective function, which in this case should reflect that the generated content provides a
certain gaming experience to the player. Meanwhile, the part based on random generation
provides a mechanism to increase the diversity of the results generated thanks to the
RL algorithm.

Every RL algorithm is mainly made up of three parts—the agent, the environment, and
the reward. The agent is the “intelligent” part of the algorithm; it is capable of interacting
with the environment, modifying it depending on the actions it decides to execute. The goal
of the agent is to learn a certain behavior in its environment. To do this, the environment
feeds it back with information on task completion and the state of the environment itself.
This information must be processed by the agent to adjust its decision-making process
(policy), so that this adjustment serves to the decisions one makes, to help one accomplish
the objective task. The environment is linked to the specific problem or task that the agent is
expected to learn to solve; in our case, the environment is a space where “Pingu run” level
slices can be built. The reward is a number that represents how well the agent performs
in solving the specific task; this reward is calculated by analyzing the fulfillment of the
objective task derived from the change in the environment due to the agent’s actions in
it. In our case, the reward should serve to indicate that a certain gaming experience is
provided in the level slice of the environment.

Next, each part of the proposed algorithm is explained in greater depth. First, the
design of the environment is presented. Next, the reward function used during training to
identify gaming experiences is explained. Finally, the agent is introduced, explaining each
of the DQN components in our implementation.
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5.1. Environment

The environment is that in which the agent interacts and that contains the problem
or task to be solved in its structure. The agent modifies the environment through actions,
causing a change in the state of the environment. To make its decisions, the agent receives
an observation of the current state of the environment, which can be a complete or partial
representation of the said state, depending on the type of training or learning that is sought
in the agent.

Defining the environment for our case study means defining its states and observations.
Since the problem to be solved is the generation of a space in two dimensions (level slice),
the state and the observations are a matrix representation of the said space, in which each
square of the matrix corresponds to an element of the game used to build the level. For the
purposes of this project, these matrices have 16 rows and 29 columns, which are equivalent
to the number of elements that can be seen on the screen.

These arrays can contain only the alphanumeric representations of the game elements
to build the “Pingu run” levels.

For practical purposes, the initial state is one of these arrays built under the following
conditions: the initial and final points are predefined and cannot be modified by the agent.
A predefined number of floor platforms are placed in the space between the start and
end platforms.

5.2. Reward

Definition of the reward. The reward function is the indicator of how close the agent
is to meeting the goal, which is defined from an evaluation of the state to which the agent
brings the environment due to its actions. Usually, the higher the reward, the better the
agent’s performance.

For our case study, the reward must evaluate the performance of the agent to generate
a level that makes the player feel a specific gaming experience.

To achieve this, we propose the identification of game experiences based on the type
of interaction that the player will have with the level along the critical path. For this, it is
proposed to evaluate the characteristics of the level, measured from the use of the designed
metrics, evaluating these measurements along the critical path of interest. The idea of this
evaluation is to ensure that the rhythm and the range of values (maximum and minimum
value) of the characteristics are close to those of a prototype level of a gaming experience.
In other words, our evaluation of compliance with the gaming experience is based on the
comparison of the measured/evaluated level with an ideal/prototype level, where the
comparison is made through the rhythm and the range of values of the characteristics
of interest.

Therefore, our reward function is divided into two parts, the “pacing accuracy” and
the “value range accuracy”; they are defined as “accuracy” because the closer the measured
values are to the target values. The greater the certainty, the evaluated level will provide
the desired gaming experience. For practical purposes, we set the reward values in the
range of [0, 1] , where ’0’ is the worst performance and ’1’ is the ideal performance.

Rhythm accuracy. For this part of the reward, a bell-shaped function was used, whose
value was calculated based on Equation (5). For this function, ‘xi’ is the rhythm of the i-th
feature, ‘σ’ is the desired variance of the rhythm, which serves to widen or reduce the width
of the bell, making the evaluation of the rhythm more relaxed (wider) or tighter (smaller),
‘μ’ is the target beat, indicating that the bell will have its center and, therefore, maximum
value, at this point.

f (xi) =
1

μ
√

2π
e

1
2 ·( x−μ

σ )2
(5)

This function is normalized to fit its values to the range [0, 1] . Therefore, the first
accuracy function for the reward is shown in Equation (6).

310



Appl. Sci. 2022, 12, 3792

ar =
f (xi)

f (μ)
(6)

Value range accuracy. For this portion of the reward, the goal is to assess how close
the range of measured values is to the range of target values. For this purpose, two different
comparisons between the ranges are proposed. To define how equal two ranges are, it
is proposed to compare the amplitude of the range and its center, the closer two ranges
are in terms of their centers and their amplitudes, the more similar they are. Let γ be
the maximum measured value, δ be the minimum measured value, λ be the maximum
target value, τ be the minimum target value; then the first of these comparisons is shown
in Equation (7), the amplitude similarity (Sa), which is given by 1 minus the normalized
distance between the amplitudes.

Sa = 1− |(γ− δ)− (λ− τ)|
max(γ, λ)

(7)

The second comparison is shown in Equation (8), the similarity of centers (Sc), which
is given by 1 minus the normalized distance between centers.

Sc = 1− [( 1
2 (γ− δ) + δ)− ( 1

2 (λ− τ) + τ)]

max(γ, λ)
(8)

These equations are valid if and only if max(γ, λ) �= 0, otherwise the Equations (9)
and (10) should be used

Sa = 1− |(γ− δ)− (λ− τ)| (9)

Sc = 1− [(
1
2
(γ− δ) + δ)− (

1
2
(λ− τ) + τ)] (10)

Finally, the range of value accuracies is shown in Equation (11)

av =
1
2

Sa +
1
2

Sc (11)

In addition to these two accuracies, a penalty factor p was added to the reward
function, which acquires a value of 0.5 when the generated level is not playable (that is, the
end point cannot be reached from the starting point), and a value of 1 when it is. Then, the
reward function R for a feature is a weighted sum of both accuracies ar and av, attenuated
by the penalty factor p, as shown in Equation (12), where α + β = 1. The weight values α
and β allow one to define which accuracy is more important—that of the rhythm or that of
the range of values.

R = p(α · ar + β · av) (12)

Given a game experience, a reward must be calculated according to Equation (12) for
each characteristic of interest and finally make a weighted sum of each of them. The reward
of a gaming experience is defined in Equation (13), where wi is the weight of the i-th feature
and Ri is the reward function of that same feature, where sumiwi = 1.

RGX = ∑
i

wi · Ri (13)

Prototype levels. To calculate the reward value of each of the defined game experi-
ences (simple, jumps, obstacles), it is necessary to set their target values (μ, σ, λ, τ, α, β
and w). The goal is that, when adjusting the reward, Equation (13), using the target values
of a specific gaming experience, and this equation is used to evaluate a level of that same
gaming experience, a value close to 1 is obtained, indicating that the said level meets the
desired gaming experience, and also that when evaluating a level that provides another
gaming experience, the calculated value is close to 0, indicating that the level does not meet
the desired gaming experience. Therefore, it is necessary to find an adequate combination
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of target values for each game experience, in order to maximize the reward at the levels of
that same experience and minimize the reward at the levels of the rest of the experiences.

To determine the target values for each game experience, we used our three example
levels for each game experience defined (simple, obstacle, jump). We then applied our
evaluation process on each of them, obtaining the graphs for each example level (see
example in Figure 3). From those graphs, we analyzed the rhythm and value range through
the route of interest (maximum level reward), of the selected important features (level
reward, level motivation, risk, bonus motivation, bonus reward, and distance). After
proposing various sets of target values, those shown in Table 2 were found. In general, the
values of rhythm (μ), variation of rhythm (σ), maximum value (λ), and minimum value
(τ) were defined based on the most frequent value or in the average of the measurements
observed in the example levels. On the other hand, the weightings of the rhythm accuracy
(α), value range (β), and weight (w) were proposed when considering the Gini importance
of each measure. If one measure has a greater Gini importance than another, then its weight
(w) should be greater in the reward function. To do so, we summed the Gini importances
of each selected feature and calculated its proportion in that sum to obtain its weight (w). If
the rhythm of a feature has a greater Gini importance than its maximum or minimum value,
then the rhythm accuracy (α) must be greater than the value range accuracy weight (β), and
vice versa. For this purpose, we experimented with various (α) and (β) values, considering
the Gini importances and looking for a better reward evaluation for the example levels.

It should be clarified that, during the search for these reward functions, it was identi-
fied that the bonus motivation, in the case of the simple game experience, caused a misiden-
tification of the game experiences, reducing the reward of the level corresponding to the
desired experience; therefore, for that experience, the “bonus motivation” feature was
removed from the reward function.

Based on these target values for the reward functions, the crafted levels obtained
the evaluations shown in Table 3, which shows that each level receives a reward close to
1 when evaluated with the reward function corresponding to the game experience and
an evaluation close to 0 for the functions corresponding to the other experiences, thus
fulfilling the objective set for the reward function and the respective objective values for
each game experience.

Table 2. Objective values for each metric in each game experience.

Game Experience Metric μ σ λ τ α β w

Simple

level reward 2 3 916 0 0.95 0.05 0.29

level motivation 0 3 1406 0 0.75 0.25 0.26

risk 2 0.001 491 0 0.65 0.35 0.22

bonus reward 2 2 265 0 0.85 0.15 0.15

distance 4 4 5 1 0 1 0.08

Obstacle

level reward 4 3 800 0 0.95 0.01 0.25

level motivation 2 3 1384 −70 0.75 0.25 0.22

risk 6 4 243 0 0.65 0.35 0.19

bonus motivation 2 0.001 160 −184 0.35 0.65 0.13

bonus reward 4 4 90 0 0.85 0.15 0.11

distance 4 4 11 1 0 1 0.1
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Table 2. Cont.

Game Experience Metric μ σ λ τ α β w

Jump

level reward 1 0.001 1000 0 0.95 0.05 0.25

level motivation 1 0.001 1805 −56 0.75 0.25 0.22

risk 5 2 155 0 0.65 0.35 0.19

bonus motivation 1 2 530 −68 0.35 0.65 0.13

bonus reward 5 3 350 0 0.85 0.15 0.11

distance 4 4 8 1 0 1 0.1

Table 3. Calculated rewards for example levels using objective values from Table 2.

Level
Reward Function

Obstacle Simple Jump

obstacle 1 0.748515 0.216647 0.169015

obstacle 2 0.741509 0.33168 0.192525

obstacle 3 0.695833 0.253077 0.285230

Simple 1 0.083789 0.843283 0.08732

Simple 2 0.197562 0.765775 0.178005

Simple 3 0.204252 0.829947 0.183384

Jump 1 0.189115 0.255675 0.975981

Jump 2 0.158059 0.268668 0.702896

Jump 3 0.181520 0.261360 0.970456

5.3. Agent

The agent is the part of the RL algorithm that is responsible for solving the problem.
To implement this module, there are a variety of algorithms that can be used; in this project,
the deep Q-network (DQN) algorithm was chosen. In short, this algorithm uses an artificial
neural network to regress the expected reward; that is, this ANN estimates how convenient
it is to execute each possible action in a given state.

The DQN algorithm works as follows:

• The agent receives an observation of the environment. In our implementation, this
translates to a 16 × 29 matrix with symbols representing game items or empty spaces
in the level.

• If necessary, the observation is preprocessed to be propagated by the ANN; in our
implementation, the symbols of the matrix are already in numerical format, so no
preprocessing was necessary.

• This numerical matrix is propagated through the ANN and a vector whose compo-
nents have values between 0 and 1, each associated with a possible action, is obtained
as a network output. The closer this value is to 1, the greater the reward that the ANN
has estimated for said action.

• The ε-greedy policy is applied, in which the agent chooses an action at random
with probability ε and with the complementary probability, 1-ε, chooses the most
convenient action according to the ANN estimation.

• The chosen action (a) is executed on the observed state of the environment (s), causing
a transition to the resulting state (s’) and the calculation of a reward (r).

• The agent receives, from the environment, the observation of the resulting state and
the reward of its previous action.
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• The agent stores the data of the previous transition, the observed state (s), the chosen
action (a), the resulting state (s’), and the reward obtained (r).

• To adjust the weights and bias of the neural network, it is necessary to:

– Store transitions (agent experience) in a replay memory.
– Once there is a certain amount of data in memory, the transitions stored in it are

randomly queried to train the agent’s neural network. The adjustments of the
weights and bias are made only in the neurons associated with the chosen action
in each transition.

• With each training step, the value of ε is reduced by a percentage of its current value
(our implementation multiplies it by 0.996).

To better understand the behavior of the agent, it is necessary to delve into the design
of the neural network and the repetition memory used for its training, in addition to clearly
defining the action space.

Replay memory. The replay memory acts as a training set for the agent’s neural
network based on the DQN algorithm. In our implementation, this memory was set to
store 150,000 transitions. These transitions are stored in the form of a row, in which, if an
additional element arrives that overflows the row, then the first stored element is eliminated
and the new one is stored; preserving the most recent experience. This memory is randomly
queried to see if the inputs to the neural network are uncorrelated.

Implemented artificial neural network architecture. For our implementation, a con-
volutional neural network (CNN) was used in conjunction with a vanilla network. The
CNN fulfills the function of processing the level matrix, detecting spatial relationships in it
and extracting features from the input data. The vanilla network fulfills the function of the
regressor, processing the features extracted through the CNN and calculating from them,
the expected reward for executing each of the actions on the observed state (network input).
The architecture of the presented network is shown in Figure 5.

Figure 5. Deep neural network architecture.

A CNN was used because it was considered the best deep architecture option given
the nature of the states of our environment, which contained a representation of the content
displayed on the screen and, therefore, considered a type of a reduced image of the level.
Therefore, a CNN was chosen, given its proven image processing capabilities. The output
layer has 39 neurons, one for each possible action that the agent can perform. Next, it will
be explained why the action space has that dimension.

Action space. The action space is everything that the agent can choose to do. The
actions alter the environment causing a transition of states in it.

In our case, the agent can choose to run a semi-random content generator using a
specific block type. In this way, the agent only chooses what modification will be made and
on what type of content; however, it is not the agent who directly makes the modification.
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The semi-random algorithms used seek to simulate actions that a human designer
can perform on a level, for which the generators are proposed to: create and insert a block,
insert a block, move a block, remove a block, change the type of a block, and change the
address of a block.

In Table 4, the relationship between the type of point block and the generator algorithm
that can be executed on it, is shown. This relationship between elements and generators
to execute on them arise from an analysis of the actions that each generator implies. For
example, the generator that “changes direction” modifies the label of the game element to
indicate that its movement will be another; this action only makes sense for elements that
can move in the game. By counting the number of ’X’s in the table, the 39 possible actions
are obtained, the product indicating—to each of the six semi-random generators—which of
the 11 types of element it will use at a given moment.

Table 4. Available action vs. game element relationship.

Game Element

Semi-Random Content Generator

Create
and Insert

Insert Move Quit
Change

Type
Change

Direction

Platform: static X X X

Enemy: lava X X X

Bonuses: score
(except golden fish) X X X X

Platform: mobile X X X X X

Enemies: Bear
and Troll X X X X X

Enemy: Eagle X X X X

Bonus: sub-mission X X X

Marker: Mid-level
(ring) X X X

Platform: bouncing X X X

Bonus: Score -
golden fish X X X

Bonus: lives X X X

5.4. Semi-Random Content Generators

Each of the generators performs a specific action in the environment. Below is an
explanation of the effect each generator produces.

Move. The agent detects platforms from the map array, then creates a list of platforms
of the selected type. From this list, the generator randomly chooses an element and moves
all of its blocks to an adjacent position. This action is only executed if there are enough
empty spaces to place the selected element in the adjacent position.

Remove. The agent detects platforms from the map array, then creates a list of
platforms of the selected type. From this list, the generator chooses an element at random
and changes all of the blocks that compose it to empty spaces.

Change (type or address). The agent detects platforms from the map matrix, then
creates a list of platforms of the selected type. Of these platforms, the generating algorithm
chooses one at random. Depending on the type of platform, there is a list of possible values
that it can take. The algorithm selects a new type at random, making sure it is different
from the old one.
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Insert. The algorithm determines the space required to place the selected platform on
the level slice, so to place the platform, it picks random coordinates in the space between
the starting and ending platforms, until it finds one that is surrounded by as much empty
space as required; space was determined, inserting the label(s) that make up the platform.

Create and insert. In order to create platforms, the generator must be told the dimen-
sions of the platform to be created, as well as the number of blocks that must be used to
build it. This information is provided by the user before executing the PCG algorithm. To
create the platforms, the algorithm creates an array with empty spaces of the specified
dimensions and selects a random coordinate within that array. In this coordinate, the
generating algorithm inserts the label corresponding to the type of platform selected. Then,
in positions adjacent to the platform being created, adds the label again. This process is
repeated until adding as many labels as the number of blocks defined or until the matrix is
filled. Once the platform is created, the previously defined “insert” method is executed.

All generators are subject to a maximum number of platform restrictions. This limit is
set by the user before running the algorithm.

6. Metrics to Evaluate PCG Algorithm Performance

To evaluate the performance of the proposed algorithm, the following metrics are used
for three of the criteria mentioned in Table 1, playability, novelty, and iterativity, which
will allow us to compare our proposal with the state-of-the-art, and add a measure of
game experience and one of effort. Although the rest of the criteria (generation process,
determinism, controllability) must also be evaluated, they acquire a value according to the
design of the algorithm itself. The criteria of this evaluation and the way to measure them
are as follows:

Playability. This measure indicates if the generated level is playable or not; that is, if
the player will be able to finish the game. In this case, it means that a level is playable if
the player can obtain the penguin from the start point to the end point of the level. It is a
binary metric; this characteristic is fulfilled or not, so the possible values are {0, 1}.

Game experience. It refers to the fulfillment of the objective task; that is, the levels
provide the desired gaming experiences. To measure this feature, we use the reward
evaluation obtained at each generated level. Our reward returns values in the range [0, 1].

Novelty. This measurement requires the calculation of the degree of difference be-
tween two slices A and B, which is obtained by calculating the number of operations
necessary to transform slice A into slice B. This degree of difference is normalized with re-
spect to the maximum number of operations to transform one string into another; therefore,
their values are in the range [0, 1]. The novelty of a slice is the average degree of difference
between it and the rest of the slices produced by the algorithm in one run.

Effort. For this measure, the degree of difference is also used. The effort of a slice is
given by the degree of difference between it and the initial slice from which it was produced,
indicating the degree of changes necessary to reach the final level from the initial point of
content generation.

Iterativity. It relates to the number of iterations needed by the algorithm to pro-
duce content.

To measure iterativeness, we establish four ranges given a different number of actions
that an agent can perform to produce a level. For the experiments, the iterativity ranges were
established, associated with the number of actions according to the following relationship:

• High—500 actions (steps);
• Moderate—300 shares;
• Fair—150 shares;
• Low—75 actions.

To adjust the rest of the measurements to these four ranges, the values associated with
each of them are shown in Table 5. With the exception of gaming experience, the rest of
the measures are equally distributed (in two, 0 and 1, or four ranges of the same density,
between 0 and 1). An exception is made for that particular metric because the reward value

316



Appl. Sci. 2022, 12, 3792

equal to 0.72 was defined as the target gaming experience fulfillment threshold, taking into
consideration the minimum reward values earned by the crafted levels in the set example
data in Table 3.

Table 5. Value ranges for each PCG metric.

PCG Metric
Ranges

High Moderate Fair Low

Playability 1 - - 0

Game experience [1, 0.72] (0.72, 0.45] (0.45, 0.225] [0.225, 0]

Novelty [1, 0.75] (0.75, 0.5] (0.5, 0.25] (0.25, 0]

Effort [1, 0.75] (0.75, 0.5] (0.5, 0.25] (0.25, 0]

7. Experiments and Results

Each agent was trained for 2000 epochs, with 300 steps per epoch. After every five
steps, the agent executes a learning step, adjusting its ANN, taking 64 random transition
examples from its replay memory. As input, each agent received their target values, as
shown in Table 2, for the reward calculation. On every training epoch, each agent started
with its own initial state of the environment, and it was the same through the 2000 epochs.
Once the three agents (one for each game experience) were trained, experiments were
carried out with each agent for each of the iterative ranges presented. In each experiment,
the agents generated 50 level slices and each was evaluated with the metrics of gaming
experience, playability, novelty, and effort.

For this article, the best experimental results are presented, which were obtained
with high iteration, i.e., with 500 actions. Compared to those presented, the rest of the
experiments did not show any relevant improvement or data of interest.

In Table 6, the performance of each agent in the experiment of 500 actions is presented.
This table shows the percentage of level slices whose evaluations fall into each of the ranges
presented by metric. From this table, it stands out that the three agents produce a higher
percentage of playable levels than non-playable ones. Moreover, regarding the achievement
of the target gaming experience, most of the slices produced are in the moderate and low
ranges, between 60% and 70% of the levels are in those ranges. For the novelty value, the
agents maintained the highest percentages of the levels in a moderate range. In addition, it
should be noted that the ’obstacle’ agent had an outstanding performance since 100% of
the slices it generated were in the range. moderate novelty. Finally, we can see that effort
seems to be related to novelty, as their results are quite similar to the naked eye, suggesting
that a slice with high novelty also requires high effort to produce.

In addition to the table, we present some graphs that allow us to evaluate in greater
depth the performance of the agents. First, the graphs of the degree of performance by
the PCG metric for each of the agents are presented. These plots are presented in Figure 6,
which allows us to visually assess the distribution of novelty, effort, and gaming experience
ratings. These graphs show that the agent who manages to obtain higher reward values
is the ’jump’ agent (in Figure 6a), and, in general, this is the agent that presents better
behavior for this experiment, since, even when it does not reach the novelty values of
the ’obstacle’ agent, in Figure 6b, the reward values obtained by this agent exceed those
obtained by the other two, in addition to maintaining the minimum values in this same
metric above the ’simple’ and ’obstacle’ agents. Of these three agents, the least outstanding
is the ’simple’, from Figure 6b, since both the agent ’jump’ and ’obstacle’ obtain better
results in both novelty and reward.

317



Appl. Sci. 2022, 12, 3792

Table 6. Experimental results: 50 levels produced with High iterativity.

Agent PCG Metric
Ranges

High Moderate Fair Low

Simple

Playability 64% - - 36%

Game experience 4% 38% 20% 38%

Novelty 0% 56% 44% 0%

Effort 0% 66% 34% 0%

Jump

Playability 70% - - 30%

Game experience 14% 20% 24% 42%

Novelty 0% 60% 40% 0%

Effort 0% 74% 26% 0%

Obstacles

Playability 76% - - 24%

Game experience 4% 40% 28% 28%

Novelty 0% 100% 0% 0%

Effort 4% 90% 6% 0%

In the plotted scatter graphics, each point represents a level slice produced by an agent
in a reward vs. novelty space, allowing us to analyze the relationship between these two
characteristics in the results of the proposed PCG algorithm. Four types of level slices are
presented in these graphs. The first are the ’suitable levels’ (adequate levels), which are
slices with high evaluations in gaming experience, moderate novelty, and are playable;
these levels are the ideal solutions of the PCG algorithm by successfully solving the target
tasks (high reward and playable) and also doing it creatively (moderate novelty). The
second ones are the interesting levels , which are playable slices with moderate novelty,
although their rewards are not this in any particular range, these slices are interesting
because they offer a real and applicable solution to the problem of procedural generation
of video game levels, by producing creative slices that are indeed playable, even though
they do not make it feel like the desired gaming experience. The third are the plain levels,
slices that are playable, but do not meet any other attribute of interest; these slices represent
good solutions for the objective problem; however, their low novelty and non-compliance
with the gaming experience make them much less relevant. Finally, the non-playable levels,
are those slices in which the player cannot reach the finish point; these are completely
undesirable slices and cannot be used in real applications. In addition, the reward threshold
is shown in these graphs with a dotted line (0.72) to facilitate the identification of the levels
that obtain high rewards.

These plots are presented in Figures 7–9. These graphic reports allow interpreting the
results from another perspective. The first interesting aspect is the absence of flat levels in
the ‘obstacle’ agent in Figure 8, which, although it does produce ‘non-playable levels’, these
are less compared to the two other agents. Taking a look at the ‘jump’ agent in Figure 7, we
see a higher number of slices approaching or crossing the reward threshold, suggesting
that this is the best agent to produce levels that deliver the desired game experience. Of the
agents ‘simple’, in Figure 9, and ‘jump’ it can be stated that a moderate degree of novelty is
not related to a high degree of reward, since ‘interesting’ levels are shown both at the upper
and lower limits of the reward range. In contrast, a high reward always implies gameplay
and, at least half the time, a moderate degree of novelty. The data and code necessary to
reply these results are available at [54].
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(a)

(b)
Figure 6. Cont.
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(c)

Figure 6. Trained agents’ performance rate. (a) Jump agent. (b) Obstacle agent. (c) Simple experience.

Figure 7. Jump levels produced.
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Figure 8. Obstacle levels produced.

Figure 9. Simple levels produced.

8. Discussion

To compare our algorithm with the rest of the proposals of the state-of-the-art, Table 7
is presented. In it, the generation process of our algorithm is first reported, which is a
hybrid based on the combination of the search-based and generate and test approaches.
The degree of determinism of the algorithm is also mentioned, a characteristic that is
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inversely proportional to the degree of novelty, which, given the experimental results,
acquires a value of “moderate”; therefore, the degree of determinism, being its opposite,
acquires a value of “fair”. On the other hand, the iterativity is obtained from the range in
which the reported experiments are found; that is, our algorithm obtains a “high” value in
iterativity, since it is the range in which its behavior is adequate. Regarding gameplay, our
algorithm is in the “high” range since a higher percentage of levels produced are playable.
That means that in contrast to the search based proposals, IORand generates content with
a higher novelty measure (moderate instead of fair) but keeps the controllability in a
moderate range as the rest of those same proposals. In comparison with the generate
and test proposals, IORand manages to generate content with a high playability measure.
Moreover, in contrast with the constructive proposals, IORand keeps a good relationship
between the controllability, novelty, and playability, as there are no other algorithms that
maintain moderate controllability, moderate novelty, and high playability. As a whole,
this makes IORand a solution for the experience-driven PCG problem whose behavior is
definitely different from the state-of-the-art proposals.

Table 7. IORand performance.

Technique Generation Process Determinism Controllability Iterativity Novelty Playability

IORand
Hybrid
(Search-based + Generate and test) Fair Moderate High Moderate High

The experimental results give us enough evidence to conclude that our PCG algorithm,
together with the metrics and the designed reward function, are able to solve the generation
of level slices that provide a desired gaming experience. This is affirmed since, once the
agents have been trained, they are capable of generating novel, playable levels that provide
specific gaming experiences. The usefulness of the proposed metrics, the reward function,
and the hybrid algorithm to solve the game experience-oriented level generation problem
have been shown, representing a contribution in the PCG area. Finally, IORand is a PCG
algorithm that can be used in many kinds of problems and games. As it works by using
building blocks guided by a reward function that indicates how good or bad its results are,
it needs a new reward and new building blocks given any new problem. IORand is the
result of studying experience-driven PCG solutions, but it can be seen as a generative design
tool, more than just a PCG one. This algorithm creates content based on an optimization
problem; it maximizes the similarity to our description of game experience. However,
it could solve different problems given a specification on the available blocks to build a
solution and a quantitative measure of its performance or objective as reward.

9. Conclusions

In this work, we presented a new hybrid PCG algorithm capable of solving the problem
of a procedural generation of video game levels, focused on providing desired gaming
experiences. In turn, an evaluation method based on a critical path analysis is presented
in a graph (annotated with the designed metrics), to identify game experiences based on
expected interactions with the game elements present in said paths.

By combining the hybrid algorithm of PCG with the evaluation method, we obtained
agents capable of consistently solving the task of generating level slices that provide a
certain gaming experience, while the slices are playable, and, additionally, it was possible
to improve the degree of novelty for PCG algorithms based on RL reported in the state-of-
the-art, obtaining results in a moderate range, while the state-of-the-art is reported with an
acceptable range.

These results demonstrate that the hybridization of PCG algorithms is a feasible
solution to find more and better answers to the unanswered questions in this area.

In future works of this proposal, there are other challenges that we will deal with.
Here we list some of them; generalization capability of our agent; how much to change for
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other games or game experiences? Is there any test or fact to prove it? Finally, concerning
the proposed similarity measure for game experiences, how do we use it for other games?
Could it be parametrized correctly with other game metrics?
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Abstract: High-dimensional optimization problems are more and more common in the era of big data
and the Internet of things (IoT), which seriously challenge the optimization performance of existing
optimizers. To solve these kinds of problems effectively, this paper devises a dimension group-based
comprehensive elite learning swarm optimizer (DGCELSO) by integrating valuable evolutionary
information in different elite particles in the swarm to guide the updating of inferior ones. Specifically,
the swarm is first separated into two exclusive sets, namely the elite set (ES) containing the top best
individuals, and the non-elite set (NES), consisting of the remaining individuals. Then, the dimensions
of each particle in NES are randomly divided into several groups with equal sizes. Subsequently,
each dimension group of each non-elite particle is guided by two different elites randomly selected
from ES. In this way, each non-elite particle in NES is comprehensively guided by multiple elite
particles in ES. Therefore, not only could high diversity be maintained, but fast convergence is also
likely guaranteed. To alleviate the sensitivity of DGCELSO to the associated parameters, we further
devise dynamic adjustment strategies to change the parameter settings during the evolution. With
the above mechanisms, DGCELSO is expected to explore and exploit the solution space properly to
find the optimum solutions for optimization problems. Extensive experiments conducted on two
commonly used large-scale benchmark problem sets demonstrate that DGCELSO achieves highly
competitive or even much better performance than several state-of-the-art large-scale optimizers.

Keywords: large-scale optimization; particle swarm optimization; dimension group-based compre-
hensive elite learning; high-dimensional problems; elite learning

MSC: 37N40; 46N10; 47N10

1. Introduction

Large-scale optimization problems, also called high-dimensional problems, are ubiqui-
tous in daily life and industrial engineering in the era of big data and the Internet of Things
(IoT), such as water distribution optimization problems [1], cyber-physical systems design
problems [2], control of pollutant spreading on social networks [3], and offshore wind farm
collector system planning problems [4]. As the dimensionality of optimization problems
increases, most existing optimization methods encounter the degradation of optimization
effectiveness, due to the “curse of dimensionality” [5,6].

Specifically, the increase of dimensionality results in the following challenges for exist-
ing optimization algorithms: (1) With the growth of dimensionality, the properties of opti-
mization problems become much more complicated. In particular, in the high-dimensional
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environment, optimization problems usually are non-convex, non-differentiable, or even
non-continuous [7–9]. This makes traditional gradient-based optimization algorithms
become infeasible. (2) The solution space grows exponentially as the dimensionality
increases [10–13]. This greatly challenges the optimization efficiency of most existing
algorithms. (3) The landscape of optimization problems becomes more complex in a high-
dimensional space. On the one hand, some unimodal problems may become multimodal
with the increase of dimensionality; on the other hand, in some multimodal problems, not
only does the number of local optimal regions increase rapidly, but also the local regions
become much wider and flatter [11,12,14]. This likely leads to premature convergence and
stagnation of existing optimization techniques.

As a kind of metaheuristic algorithm, particle swarm optimization (PSO) maintains
a population of particles, each of which represents a feasible solution to optimization
problems, to search the solution space for the global optimum solutions [15–17]. By means
of its great merits, such as strong global search ability, independence in the mathematic
properties of optimization problems, and inherent parallelism [17], PSO has witnessed
rapid development and excellent success in solving complex optimization problems [18–22]
since it was proposed in 1995 [15]. As a result, PSO has been widely employed to solve
real-world optimization problems in daily life and industrial engineering [1,23].

However, most existing PSOs are initially designed for low-dimensional optimization
problems. Confronted with large-scale optimization problems, their effectiveness usually
deteriorates due to the previously mentioned challenges [24–26]. To improve the optimiza-
tion effectiveness of PSO in tackling high-dimensional problems, researchers have been
devoted to designing novel and effective evolution mechanisms for PSO. Broadly speaking,
existing large-scale PSOs can be divided into two categories [27], namely cooperative
coevolutionary large-scale PSOs [6,28,29] and holistic large-scale PSOs [24,26,30–32].

Cooperative coevolutionary PSOs (CCPSOs) [6,28,29,33] adopt the divide-and-conquer
technique to decompose one large-scale optimization problem into several exclusive smaller
sub-problems and then optimize these sub-problems individually by traditional PSOs
designed for low-dimensional problems to find the optimal solution to the large-scale opti-
mization problem. Since the decomposed subproblems are separately optimized, the key
component of CCPSOs is the decomposition strategy [6,28]. Ideally, a good decomposition
strategy should place interacted variables into the same sub-problem, so that they can
be optimized together. However, without prior knowledge, it is considerably difficult to
decompose a large-scale problem accurately. As a result, current research on CCPSOs lies in
developing novel decomposition strategies to divide the large-scale optimization problem
as accurately as possible. Hence, many effective decomposition strategies [6,34–38] have
been put forward.

However, CCPSOs heavily rely on the quality of the decomposition strategies. Ac-
cording to the no free lunch theorem, there is no decomposition strategy suitable for all
large-scale problems. Therefore, some researchers attempt to design large-scale PSOs from
another perspective, namely the holistic large-scale PSOs [5,26,30,39].

In contrast to CCPSOs, holistic large-scale PSOs [5,26,30,39,40] still optimize all vari-
ables simultaneously such as traditional PSOs. Since the learning strategy in updating the
velocity of particles plays the most important role in PSO [15,16,18], the key to improving
the effectiveness of PSO in coping with large-scale optimization is to devise effective learn-
ing strategies for particles, which should not only help particles explore the solution space
efficiently to locate promising areas fast, but also aid particles to exploit the promising areas
effectively to obtain high-quality solutions. Along this line, researchers have developed
many remarkable learning strategies for PSO to solve high-dimensional problems, such
as the competitive learning scheme [26], the social learning strategy [30], the two-phase
learning method [1], and the level-based learning approach [25]. Recently, some researchers
even have attempted to develop novel coding schemes for PSO to improve its optimization
performance in solving large-scale optimization problems [41].
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Although the above-mentioned large-scale PSOs have presented excellent optimiza-
tion performance in solving some large-scale optimization problems, they still encounter
limitations, such as premature convergence and stagnation into local areas, in solving
complicated high-dimensional problems, especially those with overlapping correlated
variables or fully non-separable variables. Therefore, the optimization performance of
PSOs in tackling large-scale optimization still deserves improvement, which still remains
an open and hot topic to study in the evolutionary computation community.

In nature, individuals with better fitness usually preserve more valuable evolutionary
information than those with worse fitness, to guide the evolution of one species [42]. More-
over, in general, different individuals usually preserve different useful genes. Inspired by
these observations, in this paper, we propose a dimension group-based comprehensive elite
learning swarm optimizer (DGCELSO) by integrating useful genes embedded in different
elite individuals to guide the update of particles to search the large-scale solution space
effectively and efficiently. Specifically, the main components of the proposed DGCELSO
are summarized as follows:

(1) A dimension group-based comprehensive elite learning scheme is proposed to guide
the update of inferior particles by learning from multiple superior ones. Instead of
learning from only at most two exemplars in existing holistic large-scale PSOs [24–26,30],
the devised learning strategy first randomly divides the dimensions of each inferior
particle into several equally sized groups and then employs different superior par-
ticles to guide the update of different dimension groups. Moreover, unlike existing
elite strategies that only use one elite to direct the evolution of an individual [43,44],
it employs a random dimension group-based recombination techniques to try to
integrate valuable evolutionary information in multiple elites to guide the update of
each non-elite particle. In this way, the learning diversity of particles could be largely
promoted, which is beneficial for particles to avoid falling into local traps. Moreover,
it is also possible that useful evolutionary information embedded in different superior
particles could be integrated to direct the learning of inferior particles, which may be
profitable for particles to approach promising areas quickly.

(2) Dynamic adjustment strategies for the control parameters involved in the proposed
learning strategy are further designed to cooperate with the learning strategy to help
PSO search the large-scale solution space properly. With these dynamic strategies,
the developed DGCELSO could appropriately compromise the intensification and
diversification of the search process at the swarm level and the particle level.

To verify the effectiveness of the proposed DGCELSO, extensive experiments are
conducted to compare DGCELSO with several state-of-the-art large-scale optimizers on the
widely used CEC’2010 [7] and CEC’2013 [8] large-scale benchmark optimization problem
sets. Meanwhile, deep investigations on DGCELSO are also conducted to discover what
contributes to its good performance.

The rest of this paper is organized as follows. Section 2 introduces the classical PSO
and large-scale PSO variants. Then, the proposed DGCELSO is elucidated in detail in
Section 3. Section 4 conducts extensive experiments to verify the effectiveness of the
proposed DGCELSO. Finally, Section 5 concludes this paper.

2. Related Work

In this paper, a D-dimensional single-objective minimization optimization problem is
considered, which is defined as follows:

min f (x), x ∈ RD (1)

where x consisting of D variables is a feasible solution to the optimization problem, and D
is the dimension size. In this paper, we directly use the function value as the fitness value
of one particle.
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2.1. Canonical PSO

In the canonical PSO [15,16], each particle is represented by two vectors, namely the po-
sition vector x and the velocity vector v. During the evolution, in the canonical PSO [15,16],
each particle is guided by its historically personal best position and the historically best
position of the whole swarm. Specifically, each particle is updated as follows:

vd
i ← wvd

i + c1r1(pbestd
i − xd

i ) + c2r2(gbestd − xd
i ) (2)

xd
i ← xd

i + vd
i (3)

where vd
i is the dth dimension of the velocity of the ith particle, xd

i is the dth dimension
of the position of the ith particle, pbestd

i is the dth dimension of the historically personal
best position found by the ith particle, and gbestd is the dth dimension of the historically
global best position found by the whole swarm. As for the parameters, c1 and c2 are two
acceleration coefficients, while r1 and r2 are two real random numbers uniformly generated
within [0, 1]. w represents the inertia weight.

As shown in Equation (2), in the canonical PSO, each particle is cognitively directed
by its pbest (the second part in the right hand of Equation (2) and socially guided by gbest
of the whole swarm (the third part in the right hand of Equation (2). Due to the greedy
attraction of gbest, the swarm in the canonical PSOs usually becomes trapped in local areas
when tackling multimodal problems [18,45]. Therefore, to improve the effectiveness of PSO
in searching multimodal space with many local areas, researchers developed many novel
learning strategies to guide the learning of particles, such as the comprehensive learning
strategy [46], the genetic learning strategy [47], the scatter learning strategy [18], and the
orthogonal learning strategy [48], etc.

Though a lot of novel learning strategies have helped PSO achieve very promising
performance in solving multimodal problems, most of them are particularly designed
for low-dimensional optimization problems. Encountered with large-scale optimization
problems, most existing PSOs lose their effectiveness due to the “curse of dimensionality”
and the aforementioned challenges in high-dimensional problems.

2.2. Large-Scale PSO

To solve the previously mentioned challenges of large-scale optimization, researchers
devoted extensive attention to designing novel PSOs. As a result, numerous large-scale
PSO variants have sprung up [1,26]. In a broad sense, existing large-scale PSOs can be
classified into the following two categories.

2.2.1. Cooperative Coevolutionary Large-Scale PSO (CCPSO)

Cooperative coevolutionary PSOs (CCPSOs) [6,29,49] mainly use the divide-and-
conquer technique to separate all variables of one high-dimensional problem into several
exclusive groups, and then optimize each group of variables independently to obtain the
optimal solution to the high-dimensional problem. Bergh and Engelbrecht put forward
the earliest CCPSO [49]. In this algorithm, all variables in a large-scale optimization
problem are randomly divided into K groups with each containing D/K variables (where
D is the dimension size). Then the canonical PSO described in Section 2.1 is employed
to optimize each group of variables. Nevertheless, the performance of this algorithm
heavily relies on the setting of the number of groups (namely K). To alleviate this issue,
in [29], an improved CCPSO, named CCPSO2, was proposed by first predefining a set of
group numbers and then randomly selecting a group number in each iteration to separate
variables into groups. In the above two algorithms, the correlations between variables
are not taken into account explicitly. Hence, their optimization effectiveness degrades
dramatically in solving problems with many interacted variables [11,12].

To alleviate the above issue, researchers have attempted to design effective variable
grouping strategies to separate variables into groups by detecting the correlations between
variables [6,35–37]. In the literature, the most representative grouping strategy is the
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differential grouping (DG) method [6], which uses the differential function values to
detect the correlation between any two variables by exerting the same disturbance on the
two variables. Based on the detected correlations between variables, DG could separate
variables into groups satisfactorily. However, this method has two drawbacks. (1) It
cannot detect the indirect interaction between variables [36], and (2) it consumes a lot of
fitness evaluations (O(D2), D is the number of variables) in the variable decomposition
stage [35,37].

To fill the first gap, Sun et al. devised an extended DG (XDG) [36], and Mei et al.
brought up a global DG (GDG) [50] to detect both the direct and indirect interactions
between variables. To alleviate the second predicament, a fast DG, named DG2 [35],
and a recursive DG (RDG) [37] were put forward to reduce the consumption of fitness
evaluations in the variable grouping stage. To further improve the detection efficiency
of RDG, an efficient recursive differential grouping (ERDG) [51] was devised to reduce
the used fitness evaluations in the decomposition stage, and to alleviate the sensitivity of
RDG to parameters, an improved version, named RDG2, was developed [52] by adaptively
adjusting the setting of parameters. In [53], Ma et al. proposed a merged differential
grouping method based on subset-subset interaction and binary search by first identifying
separable variables and non-separable variables, and putting all separable variables into the
same subset, while dividing the non-separable variables into multiple subsets via a binary-
tree-based iterative merging method. To further promote the variable grouping accuracy,
Liu et al. proposed a deep grouping method by considering both the variable interaction
and the essentialness of the variable to decompose one high-dimensional problem [54].
Instead of decomposing a large-scale optimization problem into fixed variable groups,
Zhang et al. developed a dynamic grouping strategy to dynamically separate variables into
groups during the evolution [55]. Specifically, the proposed algorithm first evaluates the
contribution of variables based on the historical information and then constructs dynamic
variable groups for the next generation based on the evaluated contribution and the detected
interaction information.

By means of their promising performance in solving large-scale optimization problems,
cooperative coevolutionary algorithms have been widely applied to solve various industrial
engineering problems. For instance, Neshat et al. [56] proposed a novel multi-swarm coop-
erative co-evolution algorithm with the multi verse optimizer algorithm, the equilibrium
optimization method, and the moth flame optimization approach, to optimize the layout
of offshore wave energy converters. To tackle distributed flowshop group scheduling
problems, Pan et al. [57] proposed a cooperative co-evolutionary algorithm with a collabo-
ration model and a re-initialization scheme to tackle them. In [58], a hybrid cooperative
co-evolution algorithm with a symmetric local search plus Nelder–Mead was devised to
optimize the positions and the power-take-off settings of wave energy converters. In [59],
Liang et al. developed a cooperative coevolutionary multi-objective evolutionary algorithm
to tackle the transit network design and frequency setting problem.

Although the above-mentioned cooperative coevolutionary algorithms including
CCPSOs achieved good performance in dealing with certain kinds of high-dimensional
problems and have been applied to solve real-world problems, they are still confronted
with limitations in tackling complicated high-dimensional problems. On the one hand,
according to the theorem of No Free Lunch, there is no universal grouping method that
could accurately separate variables into groups for all types of large-scale optimization
problems; on the other hand, faced with high-dimensional problems with overlapping
variable correlations, most existing variable grouping strategies would separate all these
variables into the same group, leading to a very large variable group. Under this situation,
traditional PSOs designed for low-dimensional problems used in CCPSO still cannot
effectively optimize such a large group of variables. As a result, some researchers have
attempted to design large-scale PSOs from another perspective to be elucidated next.
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2.2.2. Holistic Large-Scale PSO

Unlike CCPSOs, holistic large-scale PSOs [18,26] still consider all variables as a whole
and optimize them simultaneously like in traditional low-dimensional PSOs [16]. To
solve the previously mentioned challenges of large-scale optimization, the key to holistic
large-scale PSOs is to devise effective and efficient learning strategies for particles to
largely promote the swarm diversity so that particles could explore the exponentially
increased solution space efficiently and exploit the promising areas extensively to obtain
high-quality solutions.

In [60], a dynamic multi-swarm PSO along with the Quasi-Newton local search method
(DMS-L-PSO) was proposed to optimize large-scale optimization problems by dynamically
separating particles into smaller sub-swarms in each generation. Taking inspiration from
the competitive learning scheme in human society, Cheng and Jin proposed a competi-
tive swarm optimizer (CSO) [26]. Specifically, this optimizer first separates particles into
exclusive pairs and then lets each pair of particles compete with each other. After the
competition, the winner is not updated and thus directly enters the next generation, while
the loser is updated by learning from the winner. Likewise, inspired by the social learning
strategy in animals, a social learning PSO (SLPSO) [61] was devised to let each particle
probabilistically learn from those which are better than itself. By extending the pairwise
competition mechanism in CSO to a tri-competitive strategy, Mohapatra et al. [62] devel-
oped a modified CSO (MCSO) to accelerate the convergence speed of the swarm to tackle
high-dimensional problems. Taking inspiration from the comprehensive learning strategy
designed for low-dimensional problems [46] and the competitive learning approach in
CSO [26], Yang et al. designed a segment-based predominant learning swarm optimizer
(SPLSO) [30] to cope with large-scale optimization. Specifically, this optimizer first uses
the pairwise competition mechanism in CSO to divide particles into two groups, namely
the relatively good particles and the relatively poor particles. Then, it further randomly
separates the dimensions of each relatively poor particle into a certain number of exclusive
segments, and subsequently randomly selects a relatively good particle to direct the update
of each segment of the inferior particle.

Unlike the above large-scale PSOs [26,30,62], which let the updated particle learn from
only one superior, Yang et al. devised a level-based learning swarm optimizer (LLSO) [25]
by taking inspiration from the teaching theory in pedagogy. Specifically, this optimizer first
separates particles into different levels and then lets each particle in lower levels learn from
two random superior exemplars selected from higher levels. Inspired by the cooperative
learning behavior in human society, Lan et al. put forward a two-phase learning swarm
optimizer (TPLSO) [24]. This optimizer separates the learning of each particle into the
mass learning phase and the elite learning phase. In the former learning phase, the tri-
competitive mechanism is employed to update particles, while in the elite learning phase,
the elite particles are picked out to learn from each other to further exploit promising areas
to refine the found solutions. Similarly, Wang et al. proposed a multiple strategy learning
particle swarm optimization (MSL-PSO) [40], in which different learning strategies are used
to update particles in different evolution stages. In the first stage, each particle learns from
those with better fitness and the mean position of the swarm to probe promising positions.
Then, all the best probed positions are sorted based on their fitness and the top best ones
are used to update particles in the second stage. In [41], Jian et al. developed a novel region
encoding scheme to extend the solution representation from a single point to a region, and
a novel adaptive region search strategy to keep the search diversity. These two schemes are
then embedded into SLPSO to tackle large-scale optimization problems.

To find a good compromise between exploration and exploitation, Li et al. devised a
learning structure to decouple exploration and exploitation for PSO in [63] to solve large-
scale optimization. In particular, an exploration learning strategy was devised to direct
particles to sparse areas based on a local sparseness degree measurement, and then an
adaptive exploitation learning strategy was developed to let particles exploit the found
promising areas. Deng et al. [39] devised a ranking-based biased learning swarm optimizer
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(RBLSO) based on the principle that the fitness difference between learners and exemplars
should be maximized. In particular, in this algorithm, a ranking paired learning (RPL)
scheme was designed to let the worse particles learn peer-to-peer from the better ones, and
at the same time, a biased center learning (BCL) strategy was devised to let each particle
learn from the weighted mean position of the whole swarm. Lan et al. [64] proposed a
hierarchical sorting swarm optimizer (HSSO) to tackle large-scale optimization. Specifically,
this optimizer first divides particles into a good swarm and a bad swarm with equal
sizes based on their fitness. Then, particles in the bad group are updated by learning
from those in the good one. Subsequently, the good swarm is taken as a new swarm to
execute the above swarm division and particle updating operations until there is only one
particle in the good swarm. Kong et al. [65] devised an adaptive multi-swarm particle
swarm optimizer to cope with high-dimensional problems. Specifically, it first adaptively
divides particles into several sub-swarms and then employs the competition mechanism to
select exemplars for particle updating. Huang et al. [66] put forward a convergence speed
controller to cooperate with PSO to deal with large-scale optimization. Specifically, this
controller is triggered periodically to produce an early warning to PSO before it falls into
premature convergence.

Though most existing large-scale PSOs have presented their success in solving certain
kinds of high-dimensional problems, their effectiveness still degrades in solving compli-
cated high-dimensional problems [11,12,27,67], especially on those with many wide and
flat local areas. Therefore, promoting the effectiveness and efficiency of PSO in solving
large-scale optimization still deserves extensive attention and thus this research direction is
still an active and hot topic in the evolutionary computation community.

3. Dimension Group-Based Comprehensive Elite Learning Swarm Optimizer

In nature, during the evolution of one species, those elite individuals with better
adaptability to the environment usually preserve more valuable evolutionary information,
such as genes, to direct the evolution of the species [42]. Moreover, different individuals
may preserve different useful genes. Likewise, during the evolution of the swarm in PSO,
different particles may contain useful variable values that may be close to the true global
optimal solutions. Therefore, a natural idea is to integrate those useful values embedded in
different particles to guide the evolution of the swarm. To this end, this paper proposes
a dimension group-based comprehensive elite learning swarm optimizer (DGCELSO) to
tackle large-scale optimization. The detailed components of this optimizer are elucidated
as follows.

3.1. Dimension Group-Based Comprehensive Elite Learning

Given that NP particles are maintained in the swarm, the proposed DGCEL strategy
first partitions the swarm into two exclusive sets, namely the elite set, denoted by ES,
and the non-elite set, denoted by NES. Specifically, ES contains the best es particles in the
swarm, while NES consists of the rest nes = (NP − es) particles. Since the size of ES, namely
es, is related to NP, we set es = [tp ∗ NP] (where tp is the ratio of the elite particles in ES out
of the whole swarm), for the convenience of parameter fine-tuning.

Since elite particles usually preserve more valuable evolutionary information than the
non-elite ones, in this paper, we first develop an elite learning strategy (EL). Specifically,
we let the elite particles in ES directly enter the next generation, while only updating the
non-elite particles in NES. Moreover, the elite particles in ES are employed to guide the
learning of non-elite particles in NES.

With respect to the elite particles, during the evolution, though they may be far from
the global optimal area, they usually contain valuable genes that are very close to the true
global optimal solution. To integrate the useful evolutionary information embedded in
different elites, we propose a dimension group-based comprehensive learning strategy
(DGCL). Specifically, during the update of each non-elite particle, the whole dimensions
of this particle are first randomly shuffled and then are partitioned into NDG dimension
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groups (where NDG denotes the number of dimension groups), with each group containing
D/NDG dimensions. In this way, the dimensions of each non-elite particle are randomly
divided into NDG groups, namely DG = [DG1, DG2, . . . , DGNDG].

Here, it should be mentioned that for each non-elite particle, the dimensions are
randomly shuffled, and thus it is likely that the division of dimension groups is different
for different non-elite particles. In addition, if D%NDG is not zero, then the remaining di-
mensions are equally allocated to the first (D%NDG) groups, i.e., each of the first (D%NDG)
groups contains (D/NDG + 1) dimensions.

Subsequently, unlike most existing large-scale PSOs [25,26,30] which use the same
exemplars to update all dimensions of one inferior particle, the proposed DGCL uses one
exemplar to update each dimension group of each non-elite particle, and thus one non-elite
particle could learn from different exemplars.

Incorporating the proposed EL into the DGCL, the DGCEL is developed by using the
elite particles in ES to direct the update of each dimension group of a non-elite particle.
Specifically, each non-elite particle is updated as follows:

VDGi
NESj

← r1VDGi
NESj

+ r2(XDGi
ESr1

− XDGi
NESj

) + φr3(XDGi
ESr2

− XDGi
NESj

) (4)

XDGi
NESj

← VDGi
NESj

+ XDGi
NESj

(5)

where NESj represents the jth non-elite particle in NES; DGi denotes the ith dimension

group of the jth non-elite particle; XNGi
NESj

and VDGi
NESj

are the ith dimension group of the
position and velocity of the jth particle in NES, respectively; ESr1 and ESr2 are two different
elite particles randomly selected from ES; r1, r2, and r3 are three random real parameters
uniformly sampled within [0, 1]; φ ∈ [0, 1] is a control parameter in charge of the influence
of the second elite particle.

As for the update of each non-elite particle in NES, as shown in Equation (4), the
following details should be paid careful attention:

(1) As previously mentioned, for each non-elite particle, the dimensions are randomly
shuffled. As a result, the partition of dimension groups is different for different
non-elite particles.

(2) For each dimension group DGi, two different elite particles XESr1
and XESr2

are first
randomly selected from ES. Then, the better one between these two elites (suppose it
is XESr1

) acts as the first exemplar in Equation (4), while the worse one (suppose it is
XESr2

) acts as the second exemplar to guide the update of the dimension group of the
non-elite particle.

(3) The two elite particles guiding the update of each dimension group are both randomly
selected. Therefore, they are likely to be different for different dimension groups.

As a whole, a complete flowchart of the proposed DGCEL is shown in Figure 1. Taking
deep analysis on Equation (4) and Figure 1, we find that the proposed DGCEL strategy
brings the following advantages to PSO:

(1) Instead of using historical evolutionary information, such as the historically global
best position (gbest), the personal best positions (pbest), and the neighborhood best
position (nbest), in traditional PSOs [18,47], the devised DGCEL employs the elite par-
ticles in the current swarm to direct the learning of the non-elite particles. In contrast
to the historical information, which may remain unchanged for many generations,
particles in the swarm are usually updated generation by generation. Therefore, in
the proposed DGCEL, the selected two guiding exemplars are not only likely different
for different particles but also probably different for the same particle in different
generations. This is very beneficial for the promotion of swarm diversity.

(2) Instead of updating each particle with the same exemplars for all dimensions in
most existing large-scale PSOs [5,24–26,30], the proposed DGCEL updates non-elite
particles at the dimension group level. Therefore, for different dimension groups, the
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two guiding exemplars are likely different. In this way, not only could one non-elite
particle learn from multiple different elite ones, but also the useful genes hidden in
different elites could be incorporated to direct the evolution of the swarm. As a result,
not only the learning diversity of particles could be improved, but also the learning
efficiency of particles could be promoted.

(3) In DGCEL, each dimension group of a non-elite particle is guided by two randomly
selected elite particles in ES. With the guidance of multiple elites, each non-elite
particle is expected to approach promising areas quickly. In addition, since the elite
particles in ES are not updated and directly enter the next generation, the useful
evolutionary information in the current swarm is protected from being destroyed by
uncertain updates. Therefore, the elites in ES become better and better as the evolution
iterates, and at last, it is expected that these elites converge to the optimal areas.

Figure 1. Flowchart of the proposed DGCEL strategy.

Remark

To the best of our knowledge, there are four existing PSOs that are very similar to
the proposed DGCELSO. They are CLPSO [46], OLPSO [48], GLPSO [47], and SPLSO [30].
The first three were originally designed for low-dimensional problems, while the last one
was initially devised for large-scale optimization. Compared with these existing PSOs, the
developed DGCELSO distinguishes from them in the following ways:

(1) In contrast to the three low-dimensional PSOs [46–48], the proposed DGCELSO
uses the elite particles in the swarm to comprehensively guide the learning of the
non-elite particles at the dimension group level. First, the three low-dimensional
PSOs all use the personal best positions (pbests) of particles to construct only one
guiding exemplar for each updated particle, whereas DGCELSO leverages the elite
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particles in the current swarm to construct two different guiding exemplars for each
non-elite particle. Second, the three low-dimensional PSOs construct the guiding
exemplar dimension by dimension. Nevertheless, DGCELSO constructs the two
guiding exemplars group by group. With these two differences, DGCELSO is expected
to construct more promising guiding exemplars for the updated particles, and thus
the learning effectiveness and efficiency of particles could be largely promoted to
explore the large-scale solution space.

(2) In contrast to the large-scale PSO, namely SPLSO [30], DGCELSO uses two different
elite particles to direct the update of each dimension group of each non-elite particle.
First, the partition of the swarm in DGCELSO is very different from the one in SPLSO.
In DGCELSO, the swarm is divided into two exclusive sets according to the fitness of
particles, with the best es particles entering ES and the rest entering NES. However,
in SPLSO, particles in the swarm are paired together and each paired two particles
compete with each other, with the winner entering the relatively good set and the
loser entering the relatively poor set. Second, for each non-elite particle, DGCELSO
adopts two random elites in ES to guide the update of each dimension group, whereas
in SPLSO, each dimension group of a loser is updated by only one random relatively
good particle with the other exemplar being the mean position of the relatively good
set, which is shared by all updated particles. Therefore, it is expected that the learning
effectiveness and efficiency of particles in DGCELSO are higher than in SPLSO. Hence,
DGCELSO is expected to explore and exploit the large-scale solution space more
appropriately than SPLSO.

3.2. Adaptive Strategies for Control Parameters

Taking deep investigation on the proposed DGCELSO, we find that except for the
swarm size NP, it has three control parameters, namely the ratio of elite particles out of the
whole swarm tp, the number of dimension groups NDG, and the control parameter φ in
Equation (4). The swarm size NP is a common parameter for all evolutionary algorithms,
which is usually problem-dependent and thus remains fine-tuned. As for φ, it subtly
controls the influence of the second guiding exemplar in the velocity update. We also
leave it to be fine-tuned in the experiment as NP. For the other two control parameters, we
devise the following dynamic adjustment schemes to alleviate the sensitivity of DGCELSO
to them.

3.2.1. Dynamic Adjustment for tp

With respect to the ratio of elite particles out of the whole swarm tp, it determines the
size of the elite set ES. When tp is large, on the one hand, a large number of particles are
preserved and enter the next generation directly; on the other hand, the learning of non-elite
particles is diversified due to a large number of candidate exemplars, namely the elite
particles. In this situation, the swarm biases to explore the solution space. In contrast, when
tp is small, only a small number of elites are preserved. In this case, the learning of non-elite
particles is concentrated to exploit the promising areas where the elites locate. Therefore,
the swarm biases to exploit the solution space. However, it should be mentioned that such
a bias is not at the serious sacrifice of swarm diversity because the guiding exemplars are
both randomly selected for each dimension group of each non-elite particle.

Based on the above consideration, it seems rational not to keep tp fixed during the
evolution. To this end, we devise a dynamic adjustment strategy for tp as follows:

tp = 0.4− 0.2× f es
Fesmax

(6)

where fes represents the number of fitness evaluations used so far, and Fesmax is the
maximum number of fitness evaluations.

From Equation (6), it is found that tp is linearly decreased from 0.4 to 0.2. Therefore, at
the early stage, tp is high, while at the late stage, tp is small. As a result, as the evolution
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proceeds, the swarm gradually tends to exploit the solution space. This just matches the
expectation that the swarm should explore the solution fully in the early stages to find
promising areas while exploiting the found promising areas in the late stage to obtain high-
quality solutions. The effectiveness of this dynamic adjustment scheme will be verified in
the experiments in Section 4.3.

3.2.2. Dynamic Adjustment for NDG

In terms of the number of dimension groups NDG, it directly affects the learning
of non-elite particles. A large NDG leads to a large number of elite particles that might
participate in the learning of non-elite particles. This might be useful when the useful genes
are scattered in very diversified dimensions. In this situation, with a large NDG, the chance
of integrating the useful genes together to direct the learning of non-elite particles could
be promoted. By contrast, when the useful genes are scattered in centered dimensions,
a small NDG is preferred. However, without prior knowledge of the positions of useful
genes embedded in the elite particles, it is difficult to give a proper setting of NDG.

To alleviate the above concern, we devise the following dynamic adjustment of NDG
for each non-elite particle based on the Cauchy distribution:

NDGNESj ∼ Cauchy(60, 10) (7)

NDGNESj = f loor(NDGNESj /10) ∗ 10 +

{
0 i f mod(NDGNESj , 10) < 5
10 otherwise

(8)

where NDGNESj denotes the setting of NDG for the jth particle in NES, Cauchy (60, 10) is a
Cauchy distribution with the position parameter 60 and scaling parameter 10. floor(x) is a
function that returns the largest integer smaller than x. mod(x,y) is a function that returns
the remainder when x/y.

In Equations (7) and (8), two details deserve careful attention. First, the Cauchy
distribution is used here because it can generate values around the position parameter
with a long fat tail. With this distribution, the generated NDGs for different non-elite
particles are likely diversified. Second, with Equation (8), we keep the setting of NDG for
each non-elite particle at multiple times of 10. This setting is adopted here for promoting
the difference between two different values of NDG to improve the learning diversity of
non-elite particles and for the convenience of computation.

From Equations (7) and (8), it is found that different non-elite particles likely preserve
different NDGs. On the one hand, the learning diversity of non-elite particles could be
further improved. On the other hand, the chance of integrating useful genes embedded
in different elite particles is likely promoted with different settings of NDG. The effective-
ness of this dynamic adjustment scheme for NDG will be verified in the experiments in
Section 4.3.

3.3. Overall Procedure of DGCELSO

By integrating the above components, DGCELSO is developed with the overall proce-
dure outlined in Algorithm 1 and the complete flowchart shown in Figure 2. Specifically,
after the swarm is initialized and evaluated (Line 1), the algorithm goes to the main iteration
loop (Lines 2~17). First, the swarm is partitioned into the elite set (ES) and the non-elite set
(NES) as shown in Lines 3 and 4. Then, each particle in NES is updated as shown in Lines
5~16. During the update of one non-elite particle, the dimensions of this particle are first
separated into several dimension groups (Lines 6 and 7). Then, for each dimension group
of the non-elite particle, two different elite particles are randomly selected from ES (Line 9),
and then the dimension group is updated by learning from these two elites (Line 13). The
above process iterates until the termination condition is met. At the end of the algorithm,
the best solution in the swarm is output (Line 18).
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Figure 2. Flowchart of the proposed DGCELSO.

With respect to the computational complexity in time, from Algorithm 1, it is found
that in each generation, it takes O(NPlog2NP) to sort the swarm and O(NP) to partition
the swarm into two sets in Line 4; then, it takes O(NP∗D) to shuffle the dimensions and
O(NP∗D) to partition the shuffled dimensions into groups for all non-elite particles (Line 7);
at last, it takes O(NP∗D) to update all non-elite particles (Lines 8~14). To sum up, the time
complexity of DGCELSO is O(NP∗D) based on the consideration that the swarm size is
usually much smaller than the dimension size in large-scale optimization.

Algorithm 1: The Pseudocode of DGCELSO.

Input: Population size NP, Maximum number of fitness evaluations FESmax, Control parameter φ;
1: Initialize NP particles randomly and calculate their fitness; fes = NP;
2: While (fes ≤ FESmax) do

3: Calculate tp according to Equation (6) and obtain the elite set size es = [tp ∗ NP];
4: Sort particles based on their fitness and divide them into two sets, namely ES and NES;
5: For each non-elite particle NESj in NES do

6: Generate NDGNESj based on Equation (7);
7: Random shuffle the dimensions and then split the dimensions into NDGNESj groups;
8: For each dimension group DGi do

9: Randomly select two different elite particles from ES: XESr1 and XESr2;
10: If (f (XESr2) < f (XESr1)) then

11: Swap ESr1 and ESr2;
12: End If

13: Update the dimension group of NESj according to Equations (3) and (4);
14: End For

15: Calculate the fitness of the updated NESj, and fes ++;
16: End For

17: End While

18: Obtain the best solution in the swarm gbest and its fitness f (gbest)

Output: f (gbest) and gbest
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Regarding the computational complexity in space occupation, in Algorithm 1, we can
see that except for O(NP∗D) to store the positions of all particles and O(NP∗D) to store
the velocities of all particles, it only takes extra O(NP) to store the index of particles in the
two sets, and O(D) to store the dimension groups. Comprehensively, DGCELSO only takes
O(NP∗D) space.

Based on the above time and space complexity analysis, it is found that the proposed
DGCELSO remains as efficient as the classical PSO, which also takes O(NP∗D) time in each
generation and O(NP∗D) space.

4. Experimental Section

To verify the effectiveness of the proposed DGCELSO, extensive experiments are
conducted on two sets of large-scale optimization problems, namely the CEC’2010 [7] and
the CEC’2013 [8] large-scale benchmark sets in this section. The CEC’2010 set contains
20 high-dimensional problems with 1000 dimensions, while the CEC’2013 set consists of
15 problems with 1000 dimensions as well. In particular, the CEC’2013 set is an extension
of the CEC’2010 set by introducing more complicated features, such as overlapping interac-
tions among variables and imbalance contribution of variables. Therefore, compared with
the CEC’2010 problems, the CEC’2013 problems are more complicated and more difficult
to optimize. For more detailed information on the two benchmark large-scale problem sets,
readers are referred to [7,8].

In this section, we first investigate the settings of two key parameters (namely the
swarm size NP and the control parameter φ) for DGCELSO in Section 4.1. Then, extensive
experiments are conducted on the two benchmark sets to compare DGCELSO with several
state-of-the-art large-scale optimizers in Section 4.2. At last, a deep investigation into the
proposed DGCELSO is performed to observe what contributes to the good performance
of DGCELSO.

In the experiments, unless otherwise stated, the maximum number of fitness eval-
uations is set as 3000 × D, where D is the dimension size. In this paper, the dimension
size of all optimization problems is 1000, and thus the total number of fitness evaluations
is 3 × 106. To make fair and comprehensive comparisons, the median, the mean, and
the standard deviation (Std) values over 30 independent runs are used to evaluate the
performance of all algorithms. Moreover, to tell the statistical significance, the Wilcoxon
rank-sum test at the significance level of “α = 0.05” was conducted to compare two different
algorithms. Furthermore, to obtain the overall ranks of different algorithms on one whole
benchmark set, the Friedman test at the significance level of “α = 0.05” was conducted on
each benchmark set.

Lastly, it is worth noting that we use the C programming language and Code Blocks
software to implement the proposed DGCELO. Moreover, all experiments were run on a
PC with 8 Intel Core i7-10700 2.90-GHz CPUs, 8-GB memory, and the 64-bit Ubuntu 12.04
LTS system.

4.1. Parameter Setting

Due to the proposed two dynamic adjustment strategies of the associated parameters
in DGCELSO, there are only two parameters, namely the swarm size NP and the control
parameter φ that need fine-tuning. Therefore, to investigate the optimal setting of the
two parameters for DGCELSO in solving 1000-D large-scale optimization problems, we
conduct experiments by varying NP from 100 to 600 and φ ranging from 0.1 to 0.9 for
DGCELSO on the CEC’2010 benchmark set. Table 1 shows the mean fitness values obtained
by DGCELSO with different settings of NP and φ on the CEC’2010 set. In this table, the best
results are highlighted in bold, and the average rank of each configuration is also presented,
which was obtained using the Friedman test at the significance level of “α = 0.05”.
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From this table, we obtain the following findings. (1) From the perspective of the
Friedman test, when NP is fixed, the setting of parameter φ is neither too small nor too
large, and the optimal setting is usually within [0.3, 0.6]. Specifically, when NP is 100 and
200, the optimal φ is 0.6 and 0.5 respectively. When NP is within [300, 500], the optimal φ is
consistently 0.4. When NP is 600, the optimal φ is 0.3. (2) More specifically, we find that
when NP is small, such as 100, the optimal φ is usually large. This is because a small NP
could not afford enough diversity for DGCELPSO to explore the solution space. Therefore,
to improve the diversity, φ should be large to enhance the influence of the second guiding
exemplar in Equation (4), which is in charge of preventing the updated particle from being
greedily attracted by the first guiding exemplar. On the contrary, when NP is large, such
as 600, a small φ is preferred. This is because a large NP offers too high diversity for
DGCELPSO to slow down its convergence. Consequently, to let particles fully exploit the
found promising areas, φ should be small to decrease the influence of the second guiding
exemplar in Equation (4). (3) Taking comprehensive comparisons among all settings of NP
along with the associated optimal settings of φ, we find that DGCELSO with NP = 300 and
φ = 0.4 achieves the best overall performance.

Based on the above observation, NP = 300 and φ = 0.4 are adopted for DGCELSO in
the experiments related to 1000-D optimization problems.

4.2. Comparisons with State-of-the-Art Methods

To comprehensively verify the effectiveness of the devised DGCELSO, this section con-
ducts extensive comparison experiments to compare DGCELSO with several state-of-the-art
large-scale algorithms. Specifically, nine popular and latest large-scale methods are selected,
namely TPLSO [24], SPLSO (The source code can be downloaded from https://gitee.com/
mmmyq/SPLSO, accessed on 1 January 2022) [30], LLSO (The source code can be down-
loaded from https://gitee.com/mmmyq/LLSO, accessed on 1 January 2022) [25], CSO (The
source code can be downloaded from http://www.soft-computing.de/CSO_Matlab_New.zip,
accessed on 1 January 2022) [26], SLPSO (The source code can be downloaded from http://
www.soft-computing.de/SL_PSO_Matlab.zip, accessed on 1 January 2022) [61], DECC-GDG
(The source code can be downloaded from https://ww2.mathworks.cn/matlabcentral/mlc-
downloads/downloads/submissions/45783/versions/1/download/zip/CC-GDG-CMAES.
zip, accessed on 1 January 2022) [50], DECC-DG2 (The source code can be downloaded
from https://bitbucket.org/mno/differential-grouping2/src/master/, accessed on 1 January
2022) [35], DECC-RDG (The source code can be downloaded from https://www.researchgate.
net/profile/Yuan-Sun-18/publications, accessed on 1 January 2022) [37], and DECC-RDG2
(The source code can be downloaded from https://www.researchgate.net/profile/Yuan-Sun-
18/publications, accessed on 1 January 2022) [52]. The former five large-scale optimizers are
state-of-the-art holistic large-scale PSO variants, while the latter four algorithms are state-
of-the-art cooperative coevolutionary evolutionary algorithms. Compared with these nine
different state-of-the-art large-scale optimizers, the effectiveness of DGCELSO is expected to
be demonstrated.

Tables 2 and 4 display the comparison results between DGCELSO and the nine com-
pared algorithms on the 1000-D CEC’2010 and the 1000-D CEC’2013 large-scale benchmark
sets, respectively. In these two tables, the symbols, “+”, “−”, and “=” above the p-values
obtained from the Wilcoxon rank test denote that the proposed DGCELSO is significantly
superior to, significantly inferior to, and equivalent to the associated compared algorithms
on the related functions, respectively. “w/t/l” in the second to last rows of the two tables
count the numbers of functions where DGCELSO performs significantly better, equiva-
lently, and significantly worse than the associated compared methods. Actually, they are
the numbers of “+”, “=” and “−”, respectively. In the last rows of the two tables, the
averaged ranks of all algorithms obtained from the Friedman test are presented as well.
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In Table 2, the comparison results on the CEC’2010 set are summarized as follows. (1)
From the perspective of the Friedman test, as shown in the last row, it is found that the
proposed DGCELSO has the lowest rank value, which is much smaller than those of the
compared algorithms. This means that DGCELSO achieves the best overall performance
and shows great superiority to the compared algorithms. (2) With respect to the Wilcoxon
rank-sum test, as shown in the second last row, it is observed that DGCELSO performs
significantly better than the compared algorithms on at least 14 problems. In particular,
competed with the four cooperative coevolutionary evolutionary algorithms, DGCELSO
presents significant superiority to them on at least 16 problems and only shows inferiority
in at most four problems. In comparison with the five holistic large-scale PSO variants,
DGCELSO is significantly superior to SLPSO on 18 problems, achieves much better per-
formance than TPLSO on 16 problems, outperforms both LLSO and CSO on 15 problems,
and beats SPLSO down on 14 problems. The superiority of DGCELSO to the five holistic
large-scale PSOs demonstrates the effectiveness of the proposed DGCEL strategy.

In Table 4, we summarize the comparison results on the CEC’2013 set as follows.
(1) From the perspective of the Friedman test, as shown in the last row, it is found that
the rank value of the proposed DGCELSO is still the lowest among the ten algorithms,
and such a rank is still much smaller than those of the nine compared algorithms. This
demonstrates that DGCELSO still achieves the best overall performance on the complicated
CEC’2013 benchmark set and shows great dominance to the compared algorithms. (2) With
respect to the Wilcoxon rank-sum test, as shown in the second to last row, it is observed
that except for SPLSO, DGCELSO shows significantly better performance than the other
eight compared algorithms on at least 10 problems and shows inferiority on at most three
problems. Competed with SPLSO, DGCELSO beats it on eight problems and is defeated
on only three problems. The superiority of DGCELSO to the compared algorithms on
the CEC’2013 benchmark set demonstrates that it is promising for complicated large-scale
optimization problems.

The above experiments demonstrated the effectiveness of the proposed DGCELSO.
To further demonstrate its efficiency in solving large-scale optimization problems, we
conduct experiments on the two large-scale benchmark sets to investigate the convergence
speed of the proposed DGCELSO in comparison with the nine compared methods. In this
experiment, the maximum number of fitness evaluations is set as 5 × 106. Figures 3 and 4
show the convergence comparison results on the CEC’2010 and the CEC’2013 benchmark
sets, respectively.

In Figure 3, on the CEC’2010 benchmark set, the following findings can be obtained. (1)
At first glance, it is found that the proposed DGCELSO obviously obtains faster convergence
along with better solutions than all the nine compared algorithms on nine problems (F1, F4,
F7, F9, F11, F12, F14, F16, and F17). On F3, F13, F18, and F20, DGCELSO achieves very similar
performance with some compared algorithms in terms of the solution quality but obtains
much faster convergence than the associated compared algorithms. (2) More specifically,
we find that DGCELSO obviously shows much better performance in both convergence
speed and solution quality than the five holistic large-scale PSO variants, namely TPLSO,
SPLSO, LLSO, CSO, and SLPSO on 17, 16, 15, 16, and 17, respectively. In the competition
with the four cooperative coevolutionary evolutionary algorithms, namely DECC-DG,
DECC-GD2, DECC-RDG, and DECC-RDG2, DGCELSO shows clear superiority in both
convergence speed and solution quality on 17, 17, 17, and 15 problems, respectively.

From Figure 4, similar observations on the CEC’2013 benchmark set can be attained.
(1) At first glance, it is found that the proposed DGCELSO obtains faster convergence along
with better solutions than all the nine compared algorithms on six problems (F1, F4, F7, F11,
F13, and F14). On F8, F9, and F12, DGCELSO shows superiority in both convergence speed
and solution quality to eight compared algorithms and is inferior to only one compared
algorithm. (2) More specifically, we find that DGCELSO performs better with faster conver-
gence speed and higher solution quality than TPLSO, SPLSO, LLSO, CSO, and SLPSO on
11, 11, 9, 12, and 10 problems, respectively. In competition with DECC-DG, DECC-GD2,
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DECC-RDG, and DECC-RDG2, DGCELSO presents great dominance to them on 11, 9, 11,
and 12 problems, respectively.

Figure 3. Convergence behavior comparison between DGCELSO and the compared algorithms on
each 1000-D CEC’2010 benchmark problem.
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Figure 4. Convergence behavior comparison between DGCELSO and the compared algorithms on
each 1000-D CEC’2013 benchmark problem.

To sum up, compared with these state-of-the-art large-scale algorithms, DGCELSO
performs much better in both convergence speed and solution quality. The superiority of
DGCELSO mainly benefits from the proposed DGCEL strategy, which could implicitly
assemble useful information embedded in elite particles to guide the evolution of the
swarm. In particular, the superiority of DGCELSO to the five holistic large-scale PSOs,
which also adopt elite particles in the current swarm to direct the evolution of the swarm,
demonstrates that the assembly of evolutionary information in elites is effective. Such
assembly not only improves the learning diversity of particles due to the random selection
of guiding exemplars from the elites but also promotes the learning effectiveness of particles
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because each updated particle could learn from multiple different elites with the help of
the dimension group-based learning. As a result, DGCELSO could compromise search
intensification and diversification well to explore and exploit the large-scale solution
appropriately to locate satisfactory solutions.

4.3. Deep Investigation on DGCELSO

In this section, we conduct extensive experiments on the 1000-D CEC’2010 benchmark
set to verify the effectiveness of the main components in the proposed DGCELSO.

4.3.1. Effectiveness of the Proposed DGCEL

First, we conduct experiments to investigate the effectiveness of the proposed DGCEL
strategy. To this end, we first incorporate the segment-based predominance learning
strategy (SPL) in SPLSO, which is the most similar work to the proposed DGCELSO, to
replace the DGCEL strategy, leading to a new variant of DGCELSO, which we denote as
“DGCELSO-SPL”. In addition, we also develop two extreme cases of DGCELSO, where the
number of dimension groups (NDG) is set as 1 and 1000, respectively. The former, which
we denote as “DGCELSO-1”, con all dimensions as a group, and thus can be considered a
DGCELSO without the dimension group-based comprehensive learning, while the latter,
which we denote as “DGCELSO-1000”, considers each dimension as a group. This can be
considered a DGCELSO by introducing the comprehensive learning strategy in CLPSO [46]
to replace the dimension group-based comprehensive learning in DGCELSO. Then, we
conduct experiments on the CEC’2010 benchmark set to compare the above four versions
of DGCELSO. Table 5 shows the comparison results among the four versions of DGCELSO.
In this table, the best results are highlighted in bold.

From Table 5, the following observations can be attained. (1) From the perspective of
the Friedman test, it is found that the rank value of DGCELSO is the smallest among the
four versions of DGCELSO. This demonstrates that DGCELSO achieves the best overall
performance. (2) Comparing DGCELSO with DGCELSO-SPL, DGCELSO shows great
superiority. This demonstrates that the proposed DGCEL strategy is much better than SPL.
It should be mentioned that, like DGCEL, SPL also lets each particle learn from multiple
elites in the swarm, based on the dimension group. The differences between DGCEL and
SPL lie in two aspects. On the one hand, SPL lets particles learn from relatively better
elites which are determined by the competition between randomly paired two particles,
while DGCEL lets particles learn from absolutely better elites which are the top tp∗NP
best particles in the swarm. On the other hand, the second exemplar in the velocity
update in SPL is the mean position of the whole swarm, which is shared by all updated
particles, while the second exemplar in DGCEL is also randomly selected from the elite
particles. With the observed superiority of DGCEL to SPL, it is demonstrated that the
exemplar selection in DGCEL is better than that in SPL. (3) Competed with DGCELSO-1
and DGCELSO-1000, DGCELSO presents great superiority. This superiority demonstrates
the effectiveness of the proposed dimension group-based comprehensive learning strategy.
Instead of learning from only two exemplars in DGCELSO-1, which consider all dimensions
as a group, and learning from multiple exemplars dimension by dimension in DGCELSO-
1000, which considers each dimension as a group, DGCELSO lets each updated particle
learn from multiple exemplars based on dimension group. In this way, the potentially
useful information embedded in different exemplars is more likely to be assembled in
DGCELSO than in DGCELSO-1 and DGCELSO-1000.

Based on the above observations, it is found that the proposed DGCEL strategy is
effective and plays a crucial role in helping DGCELSO achieve promising performance.

4.3.2. Effectiveness of the Proposed Dynamic Adjustment Schemes for Parameters

In this subsection, we conduct experiments to verify the effectiveness of the proposed
dynamic adjustment schemes for the two control parameters, namely the elite ratio tp and
the number of dimension groups NDG.
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Table 5. Comparison results among different versions of DGCELSO on the 1000-D CEC’2010 problems.

F DGCELSO DGCELSO-1 DGCELSO-1000 DGCELSO-SPL

F1 0.00 × 100 3.85 × 10−26 0.00 × 100 1.81 × 103

F2 8.88 × 102 1.98 × 103 8.70 × 102 1.54 × 103

F3 3.18 × 10−14 1.08 × 100 3.16 × 10−14 1.97 × 10−2

F4 1.60 × 1011 2.15 × 1011 1.56 × 1011 9.44 × 1011

F5 2.80 × 108 6.93 × 107 2.79 × 108 1.07 × 107

F6 4.00 × 10−9 1.96 × 101 4.00 × 10−9 3.74 × 10−1

F7 2.15 × 10−5 4.01 × 103 2.17 × 10−5 6.15 × 106

F8 4.36 × 103 6.84 × 105 4.26 × 103 3.27 × 107

F9 1.77 × 107 3.28 × 107 1.77 × 107 1.05 × 108

F10 9.23 × 102 2.02 × 103 9.34 × 102 3.63 × 103

F11 1.10 × 10−13 2.08 × 101 1.10 × 10−13 6.66 × 10−1

F12 2.55 × 103 4.60 × 103 2.63 × 103 1.99 × 105

F13 5.15 × 102 7.69 × 102 4.87 × 102 1.42 × 103

F14 5.17 × 107 9.78 × 107 5.13 × 107 3.42 × 108

F15 1.04 × 104 2.04 × 103 1.05 × 104 1.00 × 104

F16 1.55 × 10−13 2.92 × 101 2.93 × 10−2 5.72 × 10−1

F17 6.57 × 104 4.30 × 104 7.12 × 104 7.10 × 105

F18 1.31 × 103 2.30 × 103 1.33 × 103 2.38 × 104

F19 1.02 × 107 1.33 × 106 1.06 × 107 6.52 × 106

F20 1.08 × 103 1.98 × 103 1.08 × 103 2.11 × 104

Rank 1.80 2.90 1.90 3.40

First, we conduct experiments to investigate the effectiveness of the proposed dynamic
scheme for tp. To this end, we first set tp as different fixed values from 0.1 to 0.9. Then, we
compare the DGCELSO with the dynamic scheme with these DGCELSOs with different
fixed tp values. Table 6 shows the comparison results between the DGCELSO with the
dynamic scheme and the ones with different values of tp on the CEC’2010 benchmark set.
In this table, the best results are highlighted in bold.

From Table 6, the following findings can be obtained. (1) From the perspective of
the Friedman test, it is found that DGCELSO with the dynamic tp ranks first among all
versions of DGCELSO with different settings of tp. This demonstrates that DGCELSO with
the dynamic tp achieves the best overall performance. (2) More specifically, we find that
DGCELSO with the dynamic strategy obtains the best results on 4 problems and its results
on the other problems are very close to the best ones obtained by the DGCELSO with the
associated optimal settings of tp. These two observations demonstrate that the dynamic
strategy for tp is helpful in achieving good performance for DGCELSO.

Then, we conduct experiments to verify the dynamic scheme for the number of
dimension groups (NDG). To this end, we first set NDG as different fixed values from 20 to
100. Subsequently, we conduct experiments on the CEC’2010 set to compare the DGCELSO
with the dynamic scheme for NDG and the ones with different fixed values of NDG. Table 7
shows the comparison results among the above versions of DGCELSO. In this table, the
best results are highlighted in bold.
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From Table 7, we can obtain the following findings. (1) From the perspective of the
Friedman test, it is found that the rank value of the DGCELSO with the dynamic scheme
for NDG is the smallest among all versions of DGCELSO with different settings of NDG.
This demonstrates that DGCELSO with the dynamic strategy achieves the best overall
performance. (2) More specifically, we find that DGCELSO with the dynamic strategy
obtains the best results on nine problems, while DGCELSO with fixed NDG obtains the best
results on at most four problems. In particular, on the other 11 problems where DGCELSO
with the dynamic strategy does not achieve the best results, its optimization results are
very close to the best ones obtained by DGCELSO with the associated optimal NDG. These
two observations verify the effectiveness of the dynamic strategy for NDG.

To sum up, the above comparative experiments demonstrated the effectiveness and
efficiency of DGCELSO in solving large-scale optimization problems. In particular, the
deep investigation experiments have validated that it is the proposed DGCEL strategy
along with the two dynamic strategies that play a crucial role in helping DGCELSO achieve
promising performance.

5. Conclusions

This paper proposed a dimension group-based comprehensive elite learning swarm
optimizer (DGCELSO) to effectively solve large-scale optimization problems. Specifically,
this optimizer first partitions the swarm into two exclusive sets, namely the elite set and the
non-elite set. Then, the non-elite particles are updated by learning from the elite ones with
the elite particles directly entering the next generation. During the update of each non-elite
particle, the dimensions are separated into several dimension groups. Subsequently, for
each dimension group, two elites are randomly selected from the elite set and then act
as the guiding exemplars to direct the update of the dimension group. In this way, each
non-elite particle could comprehensively learn from multiple elites. Moreover, not only are
the guiding exemplars for different non-elite particles different, but the guiding exemplars
for different dimension groups of the same non-elite particle are also likely to be different.
As a result, not only could the learning diversity of particles be improved, but the learning
efficiency of particles could also be promoted. To further aid the optimizer to explore and
exploit the solution space properly, we designed two dynamic adjustment strategies for the
associated control parameters in the proposed DGCELSO.

Experiments conducted on the 1000-D CEC’2010 and CEC’2013 large-scale benchmark
sets verified the effectiveness of the proposed DGCELSO by comparing it with nine state-
of-the-art large-scale methods. Experimental results demonstrate that DGCELSO achieves
highly competitive or even much better performance than the compared methods in terms
of both the solution quality and the convergence speed.
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Abstract: Particle swarm optimization (PSO) has exhibited well-known feasibility in problem opti-
mization. However, its optimization performance still encounters challenges when confronted with
complicated optimization problems with many local areas. In PSO, the interaction among particles
and utilization of the communication information play crucial roles in improving the learning ef-
fectiveness and learning diversity of particles. To promote the communication effectiveness among
particles, this paper proposes a stochastic triad topology to allow each particle to communicate with
two random ones in the swarm via their personal best positions. Then, unlike existing studies that
employ the personal best positions of the updated particle and the neighboring best position of
the topology to direct its update, this paper adopts the best one and the mean position of the three
personal best positions in the associated triad topology as the two guiding exemplars to direct the
update of each particle. To further promote the interaction diversity among particles, an archive is
maintained to store the obsolete personal best positions of particles and is then used to interact with
particles in the triad topology. To enhance the chance of escaping from local regions, a random restart
strategy is probabilistically triggered to introduce initialized solutions to the archive. To alleviate
sensitivity to parameters, dynamic adjustment strategies are designed to dynamically adjust the
associated parameter settings during the evolution. Integrating the above mechanism, a stochas-
tic triad topology-based PSO (STTPSO) is developed to effectively search complex solution space.
With the above techniques, the learning diversity and learning effectiveness of particles are largely
promoted and thus the developed STTPSO is expected to explore and exploit the solution space
appropriately to find high-quality solutions. Extensive experiments conducted on the commonly
used CEC 2017 benchmark problem set with different dimension sizes substantiate that the proposed
STTPSO achieves highly competitive or even much better performance than state-of-the-art and
representative PSO variants.

Keywords: particle swarm optimization; stochastic triad topology; guiding exemplar; multimodal
problems; global optimization
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1. Introduction

Particle swarm optimization (PSO) has witnessed tremendous success in solving opti-
mization problems, especially non-differentiable ones [1–5], since its advent in 1995 [6,7].
Specifically, it maintains a swarm of particles, each of which represents a feasible solu-
tion, to iteratively search the solution space to find the global optima. Due to its good
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interpretability and great convenience of implementation [8–10], PSO has been widely
applied to solve various real-world problems in daily life and industrial engineering, such
as supply chain network design [11], control of pollutant spreading on social networks [12],
and industrial power load forecasting [13].

In the classical PSO [6,7], a fully connected topology with all particles is utilized to
select guiding exemplars for particles to update, leading to the global best position (usually
denoted as gbest) discovered by the whole swarm being shared by all particles. As a
result, the learning diversity of particles is limited and thus the swarm falls into local
areas when dealing with multimodal problems. To alleviate this limitation, researchers
have paid extensive attention to designing novel learning strategies [14–19] to improve the
optimization effectiveness of PSO.

In essence, the key to the learning strategies in PSO lies in the selection of guiding
exemplars to direct the update of particles [17,20]. Broadly speaking, existing exemplar se-
lection mechanisms can be classified into two categories, namely topology-based exemplar
selection methods [15,16,21–23], and exemplar construction approaches [17–19,24,25].

Topology-based exemplar selection methods have been widely utilized in the research
of PSO. In most cases, these methods aim to determine a less greedy exemplar to replace the
social exemplar, namely gbest, in the classical PSO [6,7]. Based on different topologies, an
abundance of remarkable PSO variants have been developed [26–28], such as ring topology
structure [26], pyramid topology structure [27], Von Neumann topology structure [29],
random topology [22], etc. Different topologies usually preserve different characteristics
and merits. Therefore, a natural idea is to hybridize them to ensemble the merits of different
topologies to improve the optimization performance of PSO. Along this line, many PSO
variants [28,30–33] have been developed based on different methods of hybridization. In
addition, to alleviate the shortcoming of static topologies where each particle can only
interact with fixed peers, some researchers further proposed dynamic topologies [34–36] to
dynamically change the topologies (the topology type or the topology size) based on the
evolution state of the swarm.

Although topology-based PSO variants have shown to be highly promising in solving
optimization performance, the guiding exemplars selected by different topologies to direct
the update of particles are all the historical promising positions found by particles. There-
fore, the learning effectiveness of particles is limited by the historical positions [14,18,37].
Once all the historical positions converge to local areas, it is difficult for the swarm to jump
out of the local basin. To alleviate this issue, researchers have attempted to develop novel
PSOs from another perspective, namely constructing new guiding exemplars for particles
to learn from [14,38].

Different from topology-based exemplar selection methods, exemplar construction
methods generally build new guiding exemplars for particles by combining dimensions
of historical positions. In general, it is highly possible that the built exemplars are not
visited by particles. The most representative PSO variant in this direction is the comprehen-
sive learning PSO (CLPSO) [17], which constructs a new guiding exemplar dimension by
dimension from the personal best positions of all particles. Inspired from this method of con-
structing new exemplars, researchers have developed many other construction approaches,
such as orthogonal learning PSO (OLPSO) [37], and genetic learning PSO (GLPSO) [18].

Although most existing PSO variants have shown very promising performances in sim-
ple optimization problems, such as unimodal problems and simple multimodal problems,
their performance is confronted with great challenges or even deteriorates dramatically
when dealing with complicated optimization problems, such as multimodal problems with
many wide and flat local areas [39,40], and composition problems with many interacting
variables. However, in the era of big data and Internet of Things (IoT) [41], optimization
problems become increasingly complicated, which are ubiquitous in every field in daily life
and industrial engineering [11,13]. As a consequence, the optimization ability of PSO to
solve complicated optimization problems warrants urgent and careful research, rendering
ongoing research into PSO an important frontier in evolutionary community [42,43].
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To improve the optimization effectiveness of PSO in solving complicated problems,
this paper proposes a stochastic triad topology-based PSO (STTPSO). Specifically, during
the evolution, for each particle, two personal best positions are first randomly selected from
those of the rest particles. Then, the personal best position of the particle to be updated and
the two random best positions form a triad topology. Based on this topology, the best one in
the topology and the mean position of the topology are employed as the guiding exemplars
to direct the update of the particle. In this way, each particle likely preserves different
guiding exemplars and thus the learning diversity of particles can be largely improved,
which is beneficial for the swarm to escape from local areas.

Overall, the main components of the proposed STTPSO are summarized as follows:

(1) A stochastic triad topology is employed to connect the personal best position of
each particle and two different personal best positions randomly selected from those
of the rest particles to select guiding exemplars for particles to update. Different
from existing studies [22,37], which only utilize the topologies to determine the best
position to replace the social exemplar, namely gbest, in the classical PSO (with
another guiding exemplar as the personal best position of the particle), the proposed
STTPSO utilizes the stochastic triad topology to select the best one and computes
the mean position of the triad best positions as the two guiding exemplars to direct
the update of each particle. Since the topology is stochastic, it is likely that different
particles preserve different guiding exemplars. As a result, the learning diversity of
particles can be largely promoted, and thus the probability of the swarm escaping
from local areas can be promoted.

(2) An archive is maintained to store the obsolete personal best positions and then is
combined with the personal best positions of all particles in the current generation
to form the triad topologies for particles. In this way, valuable historical information
can be utilized to direct the update of particles, which is helpful for improving swarm
diversity.

(3) A random restart strategy is designed by randomly initializing a solution with a small
probability. However, instead of employing this restart strategy on the swarm, we
utilize it on the archive. That is to say, a randomly initialized solution is inserted into
the archive with a small probability. In this way, the swarm diversity can be promoted
without significant sacrifice of convergence speed.

(4) A dynamic strategy for the acceleration coefficients is devised to alleviate the sensitiv-
ity of STTPSO. Instead of utilizing fixed values for the two acceleration coefficients,
this paper randomly samples the two acceleration coefficients based on the Gaussian
distribution with the mean value set as the classical setting of the two coefficients and
a small deviation. With this dynamic strategy, different particles can have different
settings, and thus the learning diversity can be further promoted.

The above four components collaborate cohesively to help STTPSO explore and exploit
the solution appropriately to locate the optima of optimization problems. In order to verify
the effectiveness of the proposed STTPSO, extensive experiments are conducted on the
widely used CEC 2017 benchmark problem set [44] with three different dimension sizes by
comparing STTPSO with several state-of-the-art and popular PSO variants. In addition,
deep investigations on the devised STTPSO are also conducted to observe the influence of
each component in STTPSO.

The rest of this paper is organized as follows. Closely related studies are reviewed
briefly in Section 2. In Section 3, the proposed STTPSO is elucidated in detail. Then,
extensive comparison experiments and analysis of the associated results are conducted and
discussed in Section 4. Finally, the conclusion of this paper is provided in Section 5.

2. Related Works

2.1. Basic PSO

PSO is a heuristic search algorithm and was first proposed in 1995 by Kennedy and
Eberhart [6,7]. Specifically, PSO maintains a population of particles to search the solution
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space, and each particle is represented by a position vector xi and a velocity vector vi, where
the position vector represents a feasible solution to the problem, while the velocity vector
represents the moving direction of the particle. Moreover, each particle memorizes its own
historical best position pbesti, and the global best position gbest of the whole population
is also memorized during the evolution. Then, each particle is updated by cognitively
learning from its own experience, namely its personal best position pbesti, and socially
learning from the experience of the whole swarm, namely the global best position gbest.
Specifically, each particle is updated as follows:

vi = wvi + c1r1(pbesti − xi) + c2r2(gbest− xi) (1)

xi = xi + vi (2)

where w is the inertia weight, c1 and c2 are called acceleration coefficients, and r1 and r2 are
two real random numbers uniformly sampled within [0, 1].

In Equation (1), the first part in the right hand is the “inertia part”, which controls
the memory of the velocity of each particle in the last generation. The second part is the
“self-cognition” part, where each particle learns from its own experience. The third part is
the social part, where each particle learns from the experience of the whole swarm.

As for the inertia weight w, in the literature [17,18,37,45], a linear decay method is
widely utilized in PSO variants, which is presented below:

w = 0.9− 0.5× f es
FEmax

(3)

In the literature [10,17,18,37,45–47], it is widely recognized that the learning strategy in
Equation (1) plays the most important role in helping PSO achieve satisfactory performance.
As a result, researchers have been devoted to designing novel effective learning strategies
for PSO to improve its optimization ability.

2.2. Advanced Learning Strategies for PSO

To improve the optimization performance of PSO, many researchers have designed
an ocean of effective learning strategies to improve the learning diversity and the learning
effectiveness of particles [18,48–51]. As far as we are concerned, existing learning strate-
gies for PSO could be classified into two main categories as shown in Table 1, namely
topology-based learning strategies [22,26,52], and exemplar construction-based learning
strategies [14,17,37,38,53].

Topology-based learning strategies [21,22,26,54,55], mainly utilize a specific topology
to interact with particles to select guiding exemplars to update particles. In fact, the classical
PSO [6,7] introduced above is a topology-based learning PSO, where the topology is the
full topology connecting all particles. Such a full topology usually leads to an excessively
greedy guiding exemplar (namely the global best position gbest), which likely attracts
particles into local areas. To alleviate this issue, many researchers have developed many
kinds of local topologies to select less greedy guiding exemplars to direct the update of
particles. For instance, in [26], the ring topology was utilized to organize particles into a
ring, and then each particle interacts with its two neighbors to select one guiding exemplar
to replace gbest in Equation (1). In [27], the pyramid topology with a three-dimensional
wire-frame triangle was used to select the guiding exemplars for particles. In [29,55], the
star topology was employed for particles to interact with others. In this topology, the central
node shares information with other particles, and other particles also share information
with the central node. Therefore, the communication is a two-way information exchange.
In [29], the Von Neumann topology which is a two-dimensional lattice, was adopted to
select guiding exemplars. Specifically, this topology connects the top, bottom, left and right
neighbors of each point to form a neighborhood topology of size five. Such a topology can
be regarded as a “two-dimensional” ring topology derived from a one-dimensional line
into a two-dimensional plane.
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Table 1. The rough classification of existing PSO variants.

Category Methods Characteristics

Topology-based
Methods

Static Topology

Full Topology PSO [6,7]

Each particle can only communicate with
fixed peers.

The learning diversity of particles is
limited.

Ring Topology MRTPSO [26],
GGL-PSOD [56]

Pyramid Topology PMKPSO [27]

Star Topology PSO-Star [29,55]

Von Neumann
Topology

PSO-Von-
Neumann [29]

Hybrid Topology XPSO [23]

Dynamic
Topology

Dynamic Topology
DNSPSO [28],
DMSPSO [15],

SPSO [22]
Each particle communicates with

dynamic peers.
The learning diversity of particles is high.Dynamic Size

Topology RPSO [16]

Exemplar
construction-

based
Methods

Random Construction

CLPSO_LS [14],
CLPSO [17],

HCLPSO [25],
TCSPSO [19]

Randomly recombine dimensions of
personal best positions.

The exemplar construction efficiency is
low, but it consumes no fitness

evaluations in exemplar construction.

Operator-based Construction MPSOEG [24],
GLPSO [18]

Recombine dimensions of personal best
positions based evolutionary operators in

other EAs.
The exemplar construction efficiency is

high, but it consumes many fitness
evaluations in exemplar construction

Orthogonal Recombination OLPSO [37]

Recombine dimensions of personal best
positions based on orthogonal

experimental design.
The exemplar construction efficiency is

high, but it consumes a lot of fitness
evaluation in exemplar construction

All topologies mentioned above are static topologies. In these topologies, each particle
interacts with fixed peers during the evolution, and thus they bear limitations in improving
the learning effectiveness of particles. To compensate for this shortcoming, researchers have
attempted to develop dynamic topologies to select guiding exemplars for particles. Along
this line, Liang and Suganthan [15] designed a random topology, which connects each
particle with several randomly selected particles. Their experimental results demonstrated
that the randomly constructed topological structure exhibits the best performance when
its size is equal to three. In [22], each particle interacts with k particles randomly selected
from the swarm. As for the setting of k, it is set between one and the population size. In
particular, it can be the same for all particles and can also be different for different particles.
In [16], the authors proposed adaptive adjustment of the size of the topology based on the
evolution state. Specifically, in the early stage, a small size is maintained to preserve high
search diversity, so that particles focus on exploring the solution space. Whereas, at the late
stage, a large topology size is maintained to guarantee the convergence, so that particles
focus on exploiting the solution space. In [23], the authors combined the global topology
and the local topology to select guiding exemplars for particles, so that a good balance
between exploration and exploitation could be maintained.

The aforementioned topology-based learning strategies mainly select guiding exem-
plars for particles based on existing personal best positions found by all particles. To
further promote the learning effectiveness of particles, some researchers have attempted to
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construct novel exemplars, which might not be visited by particles, for particles, leading to
exemplar construction-based learning strategies [14,17,19,24,37,38].

Different from topology-based learning strategies, exemplar construction-based learn-
ing strategies construct new exemplars that are not visited by particles based on the
personal best positions of all particles. In this direction, the most representative algorithm
is the comprehensive learning PSO (CLPSO) [17]. Specifically, this algorithm uses the
binary tournament selection mechanism to select a learning object for each dimension
of the current particle. From a macro perspective, CLPSO constructs a new position for
each particle dimension by dimension that does not exist in the current population. Since
CLPSO randomly recombines dimensions of different personal best positions, it ignores
the correlation between variables and thus cannot effectively integrate useful evolutionary
information together. To further improve the optimization performance of CLPSO, a hetero-
geneous CLPSO (HCLPSO) was proposed in [25]. This algorithm divides the population
into two sub-populations, with one sub-population used for exploration, which is updated
by the original CL strategy, and another sub-population used for exploitation, which is
guided by the global best position.

Although the above introduced CLPSO variants have achieved good performance
in solving multimodal problems, the construction of promising exemplars for particle
is inefficient since the recombination of dimensions is totally random. To improve the
exemplar construction effectiveness and efficiency, in [37], Zhan et al. proposed an orthog-
onal learning PSO (OLPSO) by using the orthogonal experimental design to seek useful
dimension combinations of the historical positions found by particles. Specifically, OLPSO
adopts an orthogonal matrix to evaluate the effectiveness of the dimension combinations
and then combines the most useful dimension combinations to construct promising exem-
plars. Though the exemplar construction efficiency is improved, it consumes many fitness
evaluations in the exemplar construction stage. To reduce fitness evaluation consumption
in the exemplar construction, in [18], Gong et al. employed the genetic operators such as
crossover, mutation, and selection, to construct guiding exemplars for particles, leading
to a genetic learning PSO (GLPSO). With these operators, GLPSO is expected to generate
diversified and high-quality exemplars for particles. To further improve its optimization ef-
fectiveness, in [56], a global GLPSO with a ring topology (GGL-PSOD) was devised, where
the ring topology is adopted to generate diversified exemplars based on neighbor particles.
Though the constructed exemplars are promising, GLPSO and its variants still consume
many fitness evaluations in the exemplar construction. To further construct diversified but
promising guiding exemplars for particles, in [19], terminal crossover and steering-based
PSO with distribution (TCSPSO) was proposed by devising a new crossover mechanism
to construct exemplars. Meanwhile, a global disturbance was designed to improve the
population diversity to escape from local areas. In [24], a modified particle swarm opti-
mization with effective guides (MPSOEG) was devised by generating two types of guiding
exemplars with an optimal guide creation (OGC) module. In particular, a global exemplar
is constructed by the OCG module to guide the swarm towards promising regions, whereas
a local exemplar is constructed for each particle to escape from local areas.

Except for the abovementioned learning strategies, some researchers have even at-
tempted utilizing multiple learning strategies to direct the evolution of the swarm in PSO.
For instance, in [20], the concept of evolutionary game theory was introduced, and four
classical learning strategies were taken as game strategies in the game theory. Then, the
swarm adaptively selects the most suitable learning strategy based on the current evolution
state. In [28], a dynamic-neighborhood-based switching PSO (DNSPSO) algorithm was
proposed by adjusting the personal best position and the global best position based on a
distance-based dynamic neighborhood and hybridizing the differential evolution algorithm
to alleviate premature convergence.

Although many of the original limitations and shortcomings of PSO have been greatly
improved since its introduction, its optimization performance in solving complex opti-
mization problems with many interacting variables and a wide saddle-point region still
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encounters great challenges. Therefore, methods to improve the optimization performance
of PSO in solving widely emerging complicated problems remains an open issue and
deserves careful attention, which results in the research of PSO remaining a highly popular
and frontier topic in the evolutionary computation community. To improve the learning
effectiveness of particles in complicated environments, this paper proposes a stochastic
triad topology-based PSO (STTPSO), which will be elucidated in the following section.

3. Stochastic Triad Topology-Based Particle Swarm Optimization

The most crucial aspect of PSO is the interaction among particles to select guiding
exemplars to direct the update of particles [22,26,27,29]. Most existing topology-based
PSO variants [21,22,55] only adopt the topologies to select one exemplar to replace the
social exemplar (namely gbest) in the classical PSO (shown in Equation (1)). Such utiliza-
tion of topologies is limited since it only changes one exemplar in Equation (1), which
results in limited improvement in the learning effectiveness and learning diversity of
particles. To alleviate this predicament, this paper proposes a stochastic triad topology-
based PSO (STTPSO), which utilizes a stochastic triad topology for each particle to select
two novel guiding exemplars to replace the two ones in the classical PSO to promote the
learning effectiveness and learning diversity of particles.

3.1. Stochastic Triad Topology

During the evolution, given that PS particles are maintained in the swarm, then for
each particle xi (0≤ i≤ PS), a stochastic triad topology is employed to connect the personal
best position (pbesti) of this particle and two different personal best positions, which are
randomly selected from those of other particles. Given that the two randomly selected
personal best positions are pbestr1 and pbestr2, respectively, this paper utilizes the best one
among the triad pbests, (pbesti, pbestr1, and pbestr2) and the mean position of these triad
pbests as the two guiding exemplars to replace the two ones in Equation (1) to update each
particle. Specifically, the velocity of each particle is updated as follows:

vi = wvi + c1r1(tpbesti − xi) + c2r2(tmeani − xi) (4)

where tpbesti is the best one among the triad pbests, which is determined as follows:

tpbesti = argmin{ f (pbestr1), f (pbestr2), f (pbesti)} (5)

tmeani represents the mean position of the triad pbests, which is calculated as follows:

tmeani =
1
3
(pbestr1 + pbestr2 + pbesti) (6)

Upon deep observation of Equation (4), we discover the following findings: (1) The
first guiding exemplar (tpbesti) is likely different for different particles. This is because the
triad topology of each particle is constructed by randomly selecting two different personal
best positions (pbestr1 and pbestr2) from those of other particles along with the personal best
position (pbesti) of this particle. Due to such randomness, the diversity of the first exemplar
could be largely promoted. (2) The second guiding exemplar (tmeani) is also likely different
due to the random construction of the triad topology. Therefore, the diversity of the second
exemplar is also promoted to a large extent. Along with high diversity of the first exemplar,
we can see that the learning diversity of particles is high, which is of great benefit for particles
to search the solution space dispersedly and thus is helpful for the swarm to escape from
local areas. (3) The first exemplar is expectedly better than the personal best position of the
particle to be updated. As a result, the learning effectiveness and efficiency of particles is
expected to be promoted, which is beneficial for the swarm to rapidly converge to promising
areas. (4) As for the second exemplar, it can be considered as a kind of distribution estimation
of the triad pbests. Utilizing it as one guiding exemplar is also expected to direct the updated
particle to promising areas fast. (5) However, compared with the first exemplar, the quality
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of the second exemplar is uncertain. In particular, we can consider that the first exemplar
is responsible for convergence, while the second is in charge of swarm diversity. Therefore,
in Equation (4), a promising balance between fast convergence and high diversity is implicitly
maintained in the update of particles.

As for the triad topology structure, to guarantee the learning effectiveness of particles,
instead of frequently changing the topology structure, we first keep the structure fixed for
each particle. That is to say, the indexes (pbestr1 and pbestr2) of the randomly selected two
personal best positions for each particle are not changed. Then, we observe the change of
the personal best position of each particle. For particle xi (0 ≤ i ≤ PS), if its personal best
position pbesti keeps unchanged for continuous stopmax times, this indicates that the learning
effectiveness of this particle under the triad structure degrades. In this situation, to improve
the learning effectiveness of this particle, we randomly reselect two different personal best
positions from those of other particles to rebuild the triad topology structure. In this way, the
learning effectiveness and learning diversity of particles can be largely promoted.

In Section 4.3, investigative experiments are conducted to verify the effectiveness of
the adaption strategy for the triad topology structure of each particle. Experimental results
show that stopmax = 30 helps STTPSO achieve the best overall performance, and thus in this
paper, we set stopmax = 30 for STTPSO.

Remark

In essence, the proposed stochastic triad topology belongs to a kind of random topol-
ogy. In the literature, many studies [21,22,52,57] have adopted random topologies to select
guiding exemplars for particles to learn from. Compared with these existing studies, this
paper distinguishes itself from them in the following ways:

(1) Unlike existing studies that use the random topologies to determine only one guiding
exemplar to replace the social exemplar (gbest) in the classical PSO [6,7], the proposed
STTPSO utilizes the stochastic triad topology for each particle to select the best one
among the triad personal best positions and computes the mean position of these
pbests as the two guiding exemplars to direct the update of this particle. In this way,
due to the randomness of the triad topology, not only the diversity of the first exemplar
is promoted largely, but also the diversity of the second exemplar is promoted to
a large extent. Therefore, the learning diversity of particles is improved, which is
beneficial for enhancing the chance of escaping from local areas for the swarm.

(2) Unlike existing studies that change the random topology structure every generation,
this paper adaptively changes the triad topology structure based on the evolution
state of each particle. In particular, we record stagnation times of each particle (xi),
which is actually the number of continuous generations where the personal best
position (pbesti) of the particle remains unchanged. When such a number exceeds
a predefined threshold stopmax, the triad topology structure is reconstructed by ran-
domly reselecting two different personal best positions from those of other particles.
In this way, the triad topology structure of each particle is changed asynchronously,
which guarantees the learning effectiveness of particles.

3.2. Dynamic Acceleration Coefficients

As for the parameters in Equation (4), with respect to the inertia weight w, we directly
adopt the widely used dynamic strategy as shown in Equation (3) to dynamically adjust w
during the evolution.

As for the acceleration coefficients c1 and c2, in the classical PSO, a large body of
research has recommended to set them as c1 = c2 = 1.49618 [18]. Such a setting makes all
particles share the same setting, which, as far as we are concerned, is not beneficial for
improving the learning diversity of particles. Therefore, to alleviate this issue and to further
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enhance the learning diversity of particles, we first randomly samples two values v1 and v2
from the Gaussian distribution Gaussian (1.49618, 0.1) as follows:{

v1 = Gaussian(1.49618, 0.1)
v2 = Gaussian(1.49618, 0.1)

(7)

Then, we set c1 and c2 based on the sampled two values as follows:{
c1 = max(v1, v2)
c2 = min(v1, v2)

(8)

First, the Gaussian distribution Gaussian (1.49618, 0.1) with the mean value set as the
classical setting of c1 and c2 and the standard deviation set as a small value allows the
sampled two values to be close to the classical setting but with a small difference. In this
way, the diversity of the settings of c1 and c2 is slightly increased, resulting in a slight
improvement in the learning diversity of particles.

Second, between the two sampled values, the larger one is set to c1, while the smaller
one is set to c2. This is because, as aforementioned in Equation (4), the first guiding exemplar
(the best one among the triad pbests) is expectedly better than the second guiding exemplar
(the mean position of the triad pbests), and thus we can consider that the first exemplar is
responsible for the convergence, while the second exemplar takes charge of the diversity.
Since the second exemplar is the mean position of the triad pbests, which is expectedly
different from the first exemplar, we set c1 with the larger sampled value and c2 with the
smaller value to guarantee that the updated particle learns more from the first exemplar,
so that it can approach promising areas fast without serious loss of diversity by learning
slightly less from the second exemplar.

Lastly, experiments conducted in Section 4.3 will demonstrate the effectiveness of the
proposed dynamic acceleration coefficient strategy.

3.3. Historical Information Utilization

In PSO, the obsolete historical information may also contain useful evolutionary
information. As a consequence, many studies [2,58] have maintained an additional archive
to store historical information to evolve the swarm. Inspired from this, this paper also
maintains an archive of size PS/2 to store the obsolete personal best positions of particles.

Specifically, during the evolution, once a particle discovers a better position, its old
personal best position is first inserted into the archive and then is replaced by the new
better position. Once the archive is full, namely when its size exceeds PS/2, an obsolete
personal best position is inserted into the archive by randomly replacing a solution in the
archive.

During the update of particles, the archive along with the personal best positions of
all particles are used to construct the triad topology structure of each particle. In particular,
when the stagnation times of the personal best position of one particle exceeds stopmax,
two different personal best positions are randomly selected from the archive and those of
the other particles to rebuild the triad topology structure of this particle. In this way, the
historical evolutionary information is employed to evolve the swarm.

Due to the utilization of historical information, the number of candidates used to
build the triad topology of each particle is increased and thus the learning diversity of
particles can be improved largely, which is beneficial for the swarm to escape from local
areas. Experiments conducted in Section 4.3 will demonstrate the effectiveness of this
additional archive.

3.4. Random Restart Strategy

To further enhance the chance of escaping from local areas for the swarm, this paper
further proposes a random restart strategy to introduce initial solutions. Specifically, given
a small restart probability pm, during the evolution, in each generation, when a uniformly
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sampled value within [0, 1] is smaller than pm, a feasible solution is randomly initialized
within the range of variables. Then, instead of inserting this solution into the current
swarm as noted in existing studies [59–63], this paper inserts this initialized solution into
the archive. If the archive is full, it randomly replaces a solution in the archive.

In particular, such a restart strategy with the initialized solution inserted in the archive
could not seriously break the convergence of the swarm but could improve the learning
diversity of particles effectively. Most existing studies [60–63] only replace one particle
in the current swarm with the initialized solution. Such a strategy usually leads to a
very small improvement in the learning diversity and learning effectiveness of particles.
This is because the personal best positions of all particles remain unchanged, leading to
the learning effectiveness of most particles not improving. However, in our strategy, the
randomly initialized solution is inserted into the archive, which is then used to build the
triad topology structure of each particle. Therefore, we can see that once the initialized
solution is selected to build the triad structure of one particle, at least the second exemplar
(namely the mean position of the triad positions in the topology) is changed. Consequently,
the learning diversity of particles can be effectively improved, which is beneficial for the
swarm to escape from local areas. Experiments conducted in Section 4.3 will demonstrate
the effectiveness of this restart strategy.

3.5. Overall Procedure

Integrating the above components together, the overall procedure of the developed
STTPSO is shown in Algorithm 1. Specifically, as shown in Lines 1 to 4, the triad topology
is constructed for each of PS particles after they are randomly initialized and evaluated.
Moreover, the stagnation time of each particle is initialized as 0. Then, the algorithm goes
into the main iteration (Lines 5~27). First, for each particle xi, the inertia weight w is
computed (Line 7) and then the acceleration coefficients c1 and c2 are set based on Gaussian
distribution (Lines 8–11). Subsequently, the particle is updated, and then the personal
best position (pbesti) of this particle is updated with its stagnation time stopi updated as
well (Lines 12–19). Once the stagnation time of particle xi reaches the allowed maximum
stagnation time stopmax, two different personal best positions are randomly selected from
those of all particles and the archive to rebuild the triad topology structure (Lines 20~22).
After all particles are updated, the random restart strategy is conditionally triggered to
randomly insert an initialized solution into the archive (Lines 24~26). The above main
iteration proceeds until the maximum number of fitness evaluations is exhausted and at
the end of the program, the global best position is obtained as the final output.

From Algorithm 1, it can be observed that during each iteration, O(PS) is needed to
compute the parameters such as w, c1 and c2. Following this, O(PS) is needed to obtain the
best one among the triad pbests and O(PS × D) to calculate the mean position of the triad
pbests for all particles. Then, O(PS × D) is used to update particles. During the update
of the archive, O(PS × D) is needed in each generation. Overall, the time complexity of
STTPSO is O(PS × D), which is the same as the classical PSO. Therefore, we can see that
STTPSO remains as efficient as the classical PSO.
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Algorithm 1: The pseudocode of STTPSO

Input: swarm size PS, maximum fitness evaluations FEmax, maximum stagnation times stopmax,
restart probability pm;

1: Initialize PS particles randomly and calculate their fitness;
2: Set fes = PS, and set the archive empty;
3: Randomly select two different personal best positions (pbestr1 and pbestr2) from the

personal best positions of
other particles and the archive for each particle to form the associated triad topology;
4: Set the stagnation time stopi = 0 (1 ≤ i ≤ PS) for each particle;
5: While (fes ≤ FEmax) do

6: For i = 1:PS do

7: Compute w according to Equation (3);
8: Randomly sample c1 and c2 from Gaussian(1.49618,0.1);
9: If c1 < c2 then

10: Swap c1 and c2;
11: End If

12: Update xi and vi according to Equations (2) and (4);
13: Calculate the fitness of the updated xi: f (xi) and fes + = 1;
14: If f (xi) < f (pbesti) then

15: Put pbesti in the archive and set stopi = 0;
16: pbesti = xi;
17: Else

18: stopi += 1;
19: End If

20: If stopi >= stopmax then

Reselect two different personal best positions (pbestr1 and pbestr2) from those of
other particles and

21: the archive for xi to form the associated triad topology;
22: End If

23: End For

24: If rand(0, 1) < pm then

25: Randomly initialize a solution and store it into the archive;
26: End If

27: End While

28: Obtain the global best solution gbest and its fitness f (gbest);

Output: f (gbest) and gbest

4. Experiments

This section mainly verifies the effectiveness of the proposed STTPSO by extensive
experiments conducted on the widely used CEC 2017 benchmark function set [44]. Specifi-
cally, this benchmark set contains 29 optimization problems with four categories, namely
unimodal functions, simple multimodal functions, hybrid functions, and composition
functions. Compared with the former two categories of optimization problems, the latter
two kinds of optimization problems are more difficult to optimize.

4.1. Experimental Setup

Firstly, in order to verify the effectiveness of STTPSO effectively, we select seven
most advanced PSO variants as the compared methods, namely DNSPSO [28], XPSO [23],
DPLPSO [45], TCSPSO [19], GLPSO [18], HCLPSO [25] and CLPSO [17]. DNSPSO, XPSO
and DPLPSO are state-of-the-art topology-based PSO variants, while TCSPSO, GLPSO,
HCLPSO and CLPSO are state-of-the-art exemplar construction based PSO variants.

Secondly, in order to verify the optimization performance of STTPSO in a comprehen-
sive way, we conduct comparative experiments on the CEC 2017 benchmark set with three
dimension sizes, namely 30-D, 50-D and 100-D respectively. For the sake of fairness, the
maximum number of function evaluation times is set as 10,000 × D for all algorithms.
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Thirdly, for fair comparisons, except for the population size, we adopt the parameter
settings for all key parameters in the compared PSO variants as recommended in the
associated papers. As for the population size, due to its sensitivity to optimization problems,
we fine-tune its settings for all compared PSO variants. After preliminary parameter fine-
tuning experiments, Table 2 lists the specific parameter settings of all algorithms.

Table 2. Parameter settings of the proposed STTPSO and the compared algorithms.

Algorithm D Parameter Settings

STTPSO
30 PS = 300 AS = PS/2; w = 0.9~0.4;

c~N(1.49618,0.1); pm = 0.01;
stopmax = 30

50 PS = 300

100 PS = 300

DNSPSO
30 PS = 50

w = 0.4~0.9; k = 5; F = 0.5; CR = 0.9;50 PS = 50

100 PS = 60

XPSO
30 PS = 100

η = 0.2; Stagmax = 5; p = 0.5; σ = 0.150 PS = 150

100 PS = 150

TCSPSO
30 PS = 50

w = 0.9~0.4; c1 = c2 = 250 PS = 50

100 PS = 50

GLPSO
30 PS = 40

w = 0.7298; c = 1.49618; pm = 0.1;
sg = 7

50 PS = 40

100 PS = 50

HCLPSO
30 PS = 160

w = 0.99~0.2; c1 = 2.5~0.5;
c2 = 0.5~2.5; c = 3~1.5

50 PS = 180

100 PS = 180

DPLPSO
30 PS = 40

c1 = c2 = 2; L = 5050 PS = 40

100 PS = 40

CLPSO
30 PS = 40

Pc = 0.05~0.550 PS = 40

100 PS = 40

Finally, in order to comprehensively evaluate the optimization performance of all algo-
rithms, we independently execute each algorithm 30 times and use the median, the mean
and the standard deviation to measure the optimization performance of each algorithm. To
distinguish the statistical significance with respect to the performance difference between
two algorithms, the Wilcoxon rank sum test at the significance level of 0.05 is conducted.
Furthermore, to obtain the overall performance of each algorithm on the whole benchmark
set, the Friedman test is conducted to obtain the overall ranks of all algorithms on the
whole benchmark set.

4.2. Comparison with State-of-the-Art PSO Variants

In this section, we conduct extensive comparative experiments on the CEC 2017
benchmark set with the three dimension sizes to compare STTPSO with the seven state-
of-art PSO variants. Tables 3–5, respectively, show the comparison results between the
proposed STTPSO and the seven PSO variants on the 30-D, the 50-D and the 100-D CEC 2017
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benchmark functions. In these tables, the symbols ‘+’, ‘−’ and ‘=‘ indicate that the proposed
STTPSO is significantly superior to, significantly inferior to and roughly equivalent to the
associated compared algorithm on the associated functions. As shown in the second to
last row of each table, ‘w/t/l’ count the number of functions where the proposed STTPSO
achieves significantly better performance, obtains roughly equivalent performance, and
exhibits significantly worse performance than the compared algorithms, respectively. In
fact, they are the numbers of ‘+’, ‘=‘ and ‘−’. In the last row of each table, the average rank
of each algorithm obtained by the Friedman test is displayed. Moreover, the statistical
comparison results between the proposed STTPSO and the seven state-of-the-art PSO
variants on the CEC 2017 benchmark set with different dimension sizes in terms of “w/t/l”
are summarized in Table 6.

As shown in Table 3, the comparison results on the 30-D CEC 2017 benchmark func-
tions are summarized below:

(1) According to the Friedman test results as shown in the last row, STTPSO achieves
the lowest rank among all eight algorithms and its rank value (1.86) is much smaller
than those (at least 2.55) of the seven compared algorithms. This demonstrates that
STTPSO achieves the best overall performance on the 30-D CEC 2017 benchmark
functions, and presents significant superiority over the seven compared algorithms.

(2) The second last row of Table 2 shows that STTPSO is significantly superior to the
compared algorithms on at least 21 problems except for XPSO, and only presents
inferior performance on, at most, five problems. Compared with XPSO, STTPSO
obtains significantly better performance on 18 problems, while only performing worse
than XPSO on three problems.

(3) In terms of the comparison results on different types of optimization problems,
STTPSO achieves highly competitive performance with all the compared algorithms
on the two unimodal problems. In particular, it shows significant dominance to
DNSPSO and DPLPSO both on the two problems. In terms of the six simple multi-
modal problems, except for DNSPSO, STTPSO shows significantly better performance
than the other six compared algorithms on all these problems. Compared with
DNSPSO, STTPSO presents significant superiority on five problems and shows in-
feriority on only one problem. Regarding the 10 hybrid problems, STTPSO shows
much better performance than DPLPSO on all 10 problems. Compared with DNSPSO,
TCSPSO, and HCLPSO, STTPSO obtains significantly better performance on seven,
six, and seven problems, respectively, and only shows inferiority to them on, at most,
two problems. In comparison with XPSO, GLPSO, and CLPSO, STTPSO achieves no
worse performance on at least seven problems and displays inferiority to them on, at
most, three problems. Concerning the 11 composition problems, STTPSO outperforms
the seven compared algorithms on at least nine problems, and only shows inferiority
on, at most, two problems. In particular, STTPSO significantly outperforms both
TCSPSO and GLPSO on all these problems and obtains much better performance
than both HCLPSO and DPLPSO on 10 problems with no inferiority to them on all
the 11 problems. Overall, it is demonstrated that STTPSO shows promise in solving
various kinds of problems and particularly obtains good performance on complicated
problems, such as multimodal problems, hybrid problems, and composition problems.
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As shown in Table 4, the comparison results on the 50-D CEC 2017 benchmark prob-
lems are summarized below:

(1) According to the Friedman test results shown in the last row, STTPSO achieves the
lowest rank. This indicates that STTPSO still achieves the best overall performance
on the whole 50-D CEC 2017 benchmark set. In particular, except for XPSO, its
rank value (2.17) is much smaller than those (at least 4.14) of the other six compared
algorithms. This demonstrates that STTPSO displays significantly better overall
performance than the six compared algorithms.

(2) From the perspective of the Wilcoxon rank sum test, as shown in the second to last
row, STTPSO achieves significantly better performance than the seven compared algo-
rithms on at least 19 problems and shows inferiority to them on, at most, five problems.
In particular, compared with DNSPSO, TCSPSO, GLPSO, and CLPSO, STTPSO signif-
icantly dominates them all on 23 problems. In comparison with DPLPSO, STTPSO
presents significant superiority on all the 29 problems.

(3) In terms of different types of optimization problems, STTPSO achieves highly compet-
itive performance with the seven compared state-of-the-art PSO variants regarding
the two unimodal problems. Particularly, STTPSO defeats DPLPSO concerning these
two problems. On the six simple multimodal problems, STTPSO performs much
better than the seven compared algorithms on at least five problems. In particular,
STTPSO presents significant dominance to XPSO, TCSPSO, GLPSO, DPLPSO, and
CLPSO on all the six problems. Regarding the 10 hybrid problems, except for XPSO,
STTPSO is significantly superior to the seven compared algorithms on at least seven
problems, and shows inferiority on, at most, three problems. In particular, STTPSO
significantly outperforms DPLPSO on all the 10 problems and obtains significantly
better performance than DNSPSO on nine problems. Concerning the 11 composition
problems, STTPSO displays significantly better performance than the seven state-of-
the-art PSO variants on at least eight problems, and performs worse than them on, at
most, two problems. Particularly, STTPSO shows significant dominance to DPLPSO
on all the 11 problems and obtains much better performance than both TCSPSO and
GLPSO on 10 problems. Overall, it is still demonstrated that STTPSO is a promising
approach for problem optimization and displays its sound optimization ability in
solving complicated optimization problems, such as multimodal problems, hybrid
problems, and composition problems.

As shown in Table 5, the comparison results on the 100-D CEC 2017 benchmark set are
summarized below:

(1) According to the Friedman test results, STTPSO achieves the lowest rank among all
algorithms. This verifies that STTPSO still obtains the best overall performance on the
100-D CEC 2017 benchmark set. In particular, its rank value (1.52) is much smaller than
those (at least 2.72) of the seven compared algorithms. This further demonstrates that
STTPSO displays significant dominance to the seven compared algorithms. Together
with the observations on the 30-D and 50-D CEC 2017 benchmark set, we can see
that STTPSO consistently performs the best on the CEC 2017 benchmark set with
different dimension sizes among all eight algorithms, and consistently presents its
significant superiority to the seven compared algorithms on the benchmark set with
the three dimension sizes. Therefore, it is demonstrated that STTPSO preserves a
good scalability to solve optimization problems.

(2) Regarding the Wilcoxon rank sum test, from the second to last row, it is observed
that STTPSO achieves significantly better performance than the seven compared
algorithms on at least 20 problems and shows inferiority to them on, at most, four
problems. In particular, STTPSO outperforms DPLPSO significantly on all the 29
problems, and obtains much better performance than TCSPSO, GLPSO, HCLPSO,
and CLPSO on 24, 24, 26, and 27 problems, respectively.

(3) With respect to the optimization performance on different types of optimization prob-
lems, STTPSO obtains highly competitive or even much better performance than the
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seven compared algorithms on the two unimodal problems. Particularly, STTPSO
shows significant dominance to DPLPSO and CLPSO on the two problems. As for the
six simple multimodal problems, except for DNSPSO, STTPSO exhibits significant
superiority to the other six compared algorithms on all these six problems. Competed
with DNSPSO, STTPSO also shows much better performance on five problems. In
terms of the 10 hybrid problems, except for XPSO, STTPSO is significantly superior to
the other six compared algorithms on at least seven problems. Compared with XPSO,
STTPSO illustrates significantly better performance on five problems and does not
show inferiority on any of the problems. In particular, it is discovered that STTPSO is
significantly better than HCLPSO and DPLPSO on all the 10 problems. Regarding the
11 composition problems, except for DNSPSO, STTPSO achieves much better perfor-
mance than the other six compared algorithms on at least nine problems. Compared
with DNSPSO, it still performs much better on seven problems. Particularly, STTPSO
shows significant superiority to DPLPSO on all the 11 problems, and obtains much
better performance than TCSPSO, GLPSO, and CLPSO on 10 problems and shows
no inferiority to the three compared methods on these kinds of problems. Overall,
it is demonstrated that STTPSO is still effective at solving optimization problems,
especially complicated problems, such as multimodal problems, hybrid problems,
and composition problems.

To summarize, as shown in Table 6, on the CEC 2017 benchmark set with different
dimension sizes, we find that the proposed STTPSO not only shows highly competitive
performance against the compared state-of-the-art PSO variants on simple optimization
problems, such as unimodal problems, but also achieves much better performance on
complicated optimization problems, such as multimodal problems, hybrid problems and
composition problems. In particular, we find that the superiority of STTPSO to the com-
pared state-of-the-art methods is far more conspicuous regarding complicated problems,
such as hybrid problems and composition problems. On the other hand, it can be con-
cluded that STTPSO preserves a good scalability to solve optimization problems, since
it consistently achieves the best overall performance on the CEC 2017 set with the three
dimension sizes. Moreover, it is found that as the dimensionality increases, the superiority
of STTPSO to certain compared algorithms become much more evident.

The above extensive experiments have demonstrated the effectiveness of STTPSO
in solving optimization problems. To further demonstrate its efficiency in tackling opti-
mization problems, we conduct experiments on the 50D CEC 2017 benchmark set to form
convergence comparisons between STTPSO and the seven compared algorithms. Figure 1
presents the comparison results on the 16 50D CEC 2017 problems of different categories.

From Figure 1, the following observations can be obtained. (1) At a first glance,
STTPSO obtains much better performance in terms of both convergence speed and solution
quality on 12 problems (f 5, f 7, f 9, f 11, f 12, f 16, f 17, f 20, f 21, f 23, f 24, and f 29). (2) On f 19 and
f 26, STTPSO shows clear dominance to six compared methods regarding both convergence
speed and solution quality, and only presents inferiority to only one of the compared meth-
ods. (3) On f 1 and f 14, STTPSO displays conspicuously faster convergence speed and higher
solution quality than five compared methods, and only presents slight inferiority to two
compared methods. (4) Overall, it is demonstrated that STTPSO could solve optimization
problems with both high effectiveness and efficiency.

The superiority of STTPSO mainly benefits from the proposed stochastic triad strategy
along with the devised archive, the restart mechanism and the dynamic parameter adjust-
ment strategy. These strategies cooperate cohesively to improve the learning diversity and
learning effectiveness of particles, which help the swarm explore and exploit the solution
space properly to find the optima of optimization problems. To investigate the influence
of the four components, we will conduct a thorough investigation on STTPSO in the
following subsection.
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(a)f1 Unimodal Function (b)f5 Simple Multimodal Function (c)f7 Simple Multimodal Function d)f9 Simple Multimodal Function

(e)f11 Hybrid Function (f)f12 Hybrid Function (g)f14 Hybrid Function (h)f16 Hybrid Function

(i)f17 Hybrid Function (j)f19 Hybrid Function (k)f20 Composition Function (l)f21 Composition Function

(m)f23 Composition Function (n)f24 Composition Function (o)f26 Composition Function (p)f29 Composition Function  

Figure 1. Convergence behavior comparisons between STTPSO and the seven compared algorithms
on the 16 50D CEC 2017 benchmark problems.

4.3. Deep Investigation on STTPSO

In this section, we aim to verify the effectiveness of each component in STTPSO by
conducting experiments on the 50-D CEC 2017 benchmark set.

4.3.1. Effectiveness of the Reformulation of the Stochastic Triad Topology

First, we conduct experiments to verify the effectiveness of the reformulation of the
stochastic triad topology. In Section 3.1, we mentioned that in order to retain the learning
effectiveness of particles, we let the triad topology structure remain fixed for each particle
and then adjust it based on the evolution state of this particle. In particular, when the
personal best position (pbest) of one particle keeps unchanged for stopmax times, we then
reformulate the triad topology by randomly selecting two personal positions from those of
the current swarm and the archive. In this way, both the learning effectiveness and learning
diversity of particles can be guaranteed.
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To verify the effectiveness of this strategy, we fix stopmax as different values as shown
in Table 7. It should be mentioned that the larger the value of stopmax, the less frequently
the triad topology structure changes. In particular, when stopmax = 0, the triad structure is
consequently changed in every generation. The comparison results among STTPSO with
different settings of stopmax is shown in Table 7.

From Table 7, it is found that (1) from the perspective of the Friedman test,
stopmax = 30 helps STTPSO achieve the best overall performance on the 50-D CEC 2017
benchmark set. In particular, we find that the rank value (2.14) of STTPSO with stopmax = 30
is much smaller than those (at least 4.31) of STTPSO with other settings. This indicates that
the superiority of stopmax = 30 is much more significant than the other settings. Moreover,
we also find that STTPSO with small stopmax, such as stopmax = 0 and stopmax = 5 achieve
a much worse performance. This demonstrates an absence of beneficial effects regarding
STTPSO frequently changing the triad structure. (2) Through meticulous observation,
we find that STTPSO with stopmax = 30 achieves the best performance on 22 problems.
Concerning the other seven problems, its performance is extremely close to the STTPSO
with the associated optimal settings of stopmax.

Based on the above observations, it is verified that the reformulation of the triad topology
is very helpful for STTPSO to achieve promising performance. In particular, such reformulation
should bear neither an excessively high frequency, nor an excessively low frequency.

4.3.2. Effectiveness of the Additional Archive and the Proposed Random Restart Strategy

Subsequently, we conduct experiments to verify the effectiveness of the additional archive
and the random restart strategy. To this end, we first remove the additional archive from
STTPSO, deriving a new version of STTPSO, which we name as STTPSO_WA. Then, we remove
the restart strategy from STTPSO, deriving another version of STTPSO, which we denote as
STTPSO_WR. Subsequently, we conduct experiments on the 50-D CEC 2017 benchmark set to
compare the three versions of STTPSO. Table 8 displays the comparison results.

From Table 8, it is discovered that STTPSO with both the archive and the restart
strategy achieves the best overall performance than the other two versions of STTPSO.
In particular, we find that STTPSO_WR obtains the worst performance. This indicates
that compared with the archive, the restart strategy is far more helpful. This is because
compared with the archive, which stores the obsolete historical information, the restart
strategy is more effective at improving the swarm diversity since it can introduce new
solutions into the archive to promote the learning diversity of particles.

4.3.3. Effectiveness of the Dynamic Acceleration Coefficients

At last, we conduct experiments to verify the effectiveness of the devised dynamic ac-
celeration coefficient strategy. In Section 3.2, instead of using fixed acceleration coefficients,
the proposed STTPSO first randomly samples two different values based on the Gaussian
distribution, and then the larger one between the two sampled values is utilized as c1, while
the smaller one is utilized as c2. In this way, a promising balance between exploration and
exploitation can be preserved. To validate this, we first denote the original strategy in this
paper as “Dynamic”. Then, we replace the settings of c1 and c2 with two other settings. The
first is to directly utilize the sampled values as c1 and c2 without comparison, which we
denote as “Dynamic2”. The other is to utilize the smaller one between the two sampled
values as c1, and the larger one as c2, which is a converse setting of the one used in this
paper, which we denote as “Dynamic3”. Lastly, as the baseline comparison, we adopt fixed
settings for c1 and c2 by varying them from 1.0 to 2.0. Table 9 shows the comparison results
between STTPSO with different settings of c1 and c2 on the 50-D CEC 2017 benchmark set.
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Table 8. Comparison results between STTPSO with and without the archive and the restart strategy
on the 50-D CEC 2017 functions. The best results are highlighted in bold.

f STTPSO STTPSO_WR STTPSO_WA

f 1 4.33 × 103 8.59 × 103 5.75 × 103

f 3 5.85 × 104 6.82 × 104 6.08 × 104

f 4 1.69 × 102 1.96 × 102 1.96 × 102

f 5 9.09 × 100 1.64 × 101 1.46 × 101

f 6 4.48 × 10−6 2.38 × 10−6 3.85 × 10−6

f 7 6.33 × 101 9.71 × 101 5.95 × 101

f 8 9.35 × 100 1.56 × 101 1.45 × 101

f 9 8.56 × 10−1 1.59 × 100 1.57 × 100

f 10 3.49 × 103 1.21 × 104 1.18 × 104

f 11 6.12 × 101 5.07 × 101 5.07 × 101

f 12 8.89 × 105 2.46 × 106 1.85 × 106

f 13 1.63 × 104 2.52 × 104 2.46 × 104

f 14 7.09 × 104 2.17 × 105 1.88 × 105

f 15 1.32 × 104 3.13 × 104 2.70 × 104

f 16 4.23 × 102 6.87 × 102 6.41 × 102

f 17 3.11 × 102 5.46 × 102 3.78 × 102

f 18 4.28 × 105 1.99 × 106 1.63 × 106

f 19 4.33 × 103 2.16 × 103 2.03 × 103

f 20 1.76 × 102 1.12 × 103 8.45 × 102

f 21 2.22 × 102 2.29 × 102 2.27 × 102

f 22 3.10 × 103 1.15 × 104 1.01 × 104

f 23 5.09 × 102 5.12 × 102 5.16 × 102

f 24 5.83 × 102 5.94 × 102 5.98 × 102

f 25 5.06 × 102 4.81 × 102 4.82 × 102

f 26 2.27 × 103 2.40 × 103 2.47 × 103

f 27 6.94 × 102 7.56 × 102 7.47 × 102

f 28 9.06 × 102 4.96 × 103 4.34 × 103

f 29 5.90 × 102 1.01 × 103 8.27 × 102

f 30 8.55 × 105 1.30 × 106 1.12 × 106

rank 1.31 2.62 2.07

From Table 9, it is observed that from the average rank obtained from the Friedman
test, the proposed dynamic strategy for c1 and c2 helps STTPSO achieve the best overall
performance among all setting versions of c1 and c2. This demonstrates that the proposed
dynamic strategy is extremely effective for STTPSO to achieve good performance. In
particular, compared with the fixed settings, the proposed dynamic strategy helps STTPSO
achieve much better performance than all the fixed settings. This demonstrates the dynamic
sampling of c1 and c2 is far more effective than fixed ones. In comparison with the other
two dynamic strategies, STTPSO with the proposed dynamic strategy obtains significantly
better performance than those with the other two dynamic strategies. This demonstrates
utilization of the larger one between the sampled values as c1 and the smaller one as c2
is far more effective. Together, we can observe that the proposed dynamic acceleration
coefficient strategy is helpful in order for STTPSO to achieve good performance.
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5. Conclusions

This paper has devised a stochastic triad topology-based particle swarm optimization
(STTPSO) algorithm to solve optimization problems. Specifically, in this optimizer, for
each particle, a triad topology is utilized to connect the personal best position of this
particle and two other personal best positions randomly selected from those of particles
in the current swarm and an additional archive used to store obsolete historical best
positions. Then, the best one in the topology and the mean position of the connected
triad personal best positions are employed to update each particle. In addition, during
the evolution, the triad topology structure of each particle is dynamically updated based
on its evolution state. In this way, the learning diversity and learning effectiveness of
particles could be largely promoted, so that the swarm could explore and exploit the
solution space appropriately. To further improve the swarm diversity, a random restart
strategy is proposed by randomly initializing a feasible solution and then inserting into the
archive. To alleviate the sensitivity of STTPSO to the acceleration coefficients, a dynamic
acceleration coefficient strategy is devised based on the Gaussian distribution. With the
above mechanisms, the proposed STTPSO is expected to search the solution space with
proper intensification and diversification to achieve promising performance.

Extensive comparative experiments conducted on the CEC 2017 benchmark set with
three different dimension sizes have demonstrated the effectiveness of STTPSO. Compared
with seven state-of-the-art PSO variants, the proposed STTPSO consistently achieves the
best overall performance on the CEC 2017 set with the three dimension sizes. In particu-
lar, we find that STTPSO exhibits much better performance than the compared methods
regarding complicated optimization problems, such as hybrid problems and composition
problems. In addition, the experimental results verified that STTPSO preserves a good
scalability to solve optimization problems. In depth investigation on the proposed STTPSO
was also conducted to validate the effectiveness of each component in STTPSO. Experimen-
tal results demonstrated each component as being of great benefit for STTPSO to achieve
good performance.

However, from Tables 3–5, we can see that the results obtained by STTPSO on certain
problems remain far from the true optima. Therefore, its optimization performance still
requires improvement. In this paper, we adjusted the parameters in STTPSO dynamically
without considering the evolution state of particles and the difference between particles.
As a result, in future, we will mainly focus on devising adaptive parameter adjustment
strategies by considering both the difference between particles and the evolution state of
particles to further promote the optimization ability of STTPSO.
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Abstract: In this paper, we investigate the characterization of MRCPSP/max under uncertainty
conditions and emphasize managerial ability to recognize and handle positively disruptive events.
This proposition is then demonstrated using the entropy approach to find disruptive events and
response time intervals. The problem is solved using a resilient characteristic of the three-stage
procedure gauged by schedule robustness and adaptivity; the resulting schedule absorbs the impact
of an unexpected event without rescheduling during execution. The use of the differential evolution
algorithm, known as DDE, in a discrete manner is proposed and evaluated against the best known
optima (BKO). Our findings indicate the DDE is effective overall; moreover, compared against the
BKO for every stage, the most significant difference is that the stability of the solutions provided
by DDE under the three-stage framework proves to be sufficiently robust when practitioners add
response times at certain range levels, in this case from 8% to 15%.

Keywords: resilience; uncertainty; MRCPSP/max; entropy; discrete differential evolution (DDE)

1. Introduction

The prevalence of uncertainty has exposed significant weakness and fragility in every
business sector. The ubiquity and potential of uncertainty to impact the allocation and
utilization of resources have motivated research into operation issues from various per-
spective, such as by stipulating scheduling policies [1], modeling uncertainty and causality
in a project [2], improving decision-making [3], scheduling activities with stochastic dura-
tions [4–6] and during resource breakdowns [7], and evaluating resources shared under
coalition conditions [8]. The aspects of resilience [9,10] and sustainability [11] have elevated
the conventional concept of robustness, which often implies scheduling, with disrupted
resource availability and dynamic resource demands [12]. However, common approaches
generate initial project schedules that are static and deterministic and often involve the use
of the critical path method (CPM) to build a baseline schedule. To ensure safety during the
activity, a project manager implements a safety allowance, a project buffer augmented by
a percentage of the initially estimated duration, which varies almost exclusively with the
manager’s experience and proficiency [13].

Recognizing the uncertainty inherent in project planning has induced many research
efforts in project scheduling under conditions of uncertainty; see [14–17] for review articles.
At the same time, countless efforts have been made to provide solution stability and quality
to maintain a safety allowance, revealing a potential trade-off [13]. For example, in [7,18],
the authors intentionally controlled the resource-interdependence and durations of the
activities to mitigate the effect of time uncertainties. In [19–21], the authors maintained
robustness by dealing with the activity starting times and duration tolerance levels. In
addition, other effective objectives that represent robustness, such as weighted slack func-
tions, path-based measures, slack variability measures, and combined cost (time) functions,
were introduced and applied [22–25].

Appl. Sci. 2022, 12, 3049. https://doi.org/10.3390/app12063049 https://www.mdpi.com/journal/applsci397



Appl. Sci. 2022, 12, 3049

Nevertheless, as pointed out in [16], there has been relatively less research on robust
optimization for the RCPSP in deterministic settings [17]. In our past work [26,27], we
found very little research applying the entropy approach to the RCPSP. Only five studies
regarding the project scheduling domain could be found; thus, we applied the entropy
concept to handle uncertainties in the standard MRCPSP and successfully generated robust
schedules with fewer elements required to be considered in the estimation. Furthermore,
none of those five studies applied to MRCPSP/max. This realization motivated us to inves-
tigate the characterization of MRCPSP/max under uncertainty conditions and emphasized
the managerial ability to recognize and handle positively disruptive events. Therefore,
we attempted to construct resilient entropy schedules through our three-stage DDE ap-
proach. We hope to offer a means for the adaptive capacity of an organization to improve
preparedness for dynamic environments and help managers to positively adjust projects to
turbulence through the availability of resilient schedules.

The remainder of this paper is arranged as follows. Section 2 reviews uncertainty and
resilience in relation to MRCPSP/max and introduces the models and solution concepts
used in this paper. Section 3 presents the decision rules for mode assignment and activity
lists and the discrete version of differential evolution (DDE) with enhancements in its
implementation. Section 4 provides the experimental setup, computation, and analysis of
robust makespans on benchmark sets. Lastly, conclusions are drawn in Section 5.

2. Coping with Uncertainty in Project Management

The dynamic behavior of real-world environments results in unanticipated conditions
that may limit the implementation of ideal and non-restrictive schedules. Some view this
inability to accurately predict (or control) project outcomes as being due to an aggregation
of several risk factors, such as project magnitude and scope, the number of employees
and suppliers, the amount of hardware and software, the set of work standards and skills,
variations in design and engineering estimates, additional time required for rework and
unreliable deliveries, and difficulties in assigning tasks or communicating. To enhance
the managerial ability to cope with project uncertainties, we begin with a more specific
discussion of RCPSP/max, followed by a resilient framework with entropy measures
designed to handle uncertainty.

2.1. Problem Models

The classical RCPSP remains a generic model with simple constraints that guide
the allocation of limited resources within a project, in which an activity executed in one
specific way cannot start before its predecessor is completed. Later, the concept of modes
representing various resource sets to be potentially utilized was introduced in [28], and this
multimode characteristic extended the model to real industrial cases, which encompass the
amount of man/machine resources available to complete a job in smart manufacturing, the
skill levels, and the different labor contracts in the workforce required to provide services.
Among many other extended models [17], the deterministic single-mode RCPSP/max [29]
was modified, allowing minimal and maximal time lags between any two precedence-
related activities. The objective of this problem is to assign each activity a start time, while
satisfying all temporal and resource constraints within a minimum project makespan.

The multi-mode RCPSP/max (MRCPSP/max) problem consists of n + 2 activities
with the set V = {0, 1, . . . n, n + 1}, where activity i is to be executed in only one mode
μi ∈ M. Depending on the mode μi, each activity has a fixed duration or processing time
di,μi , which is a non-negative real or integer number. In addition, dummy activities 0
and n + 1 with d0,μ0 = dn+1,μn+1 = 0 represent the beginning and the completion of the
project, respectively. A start schedule S is an assignment of start times to all activities, i.e., a
schedule vector S = (Si), where Si represents the start time of activity i and S0 is assumed
to be 0. The end-time of activity i is denoted as Ci. As durations are deterministic and
preemption is not allowed, we thus have Ci defined as in Equation (1):
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Si + di,μi = Ci μi ∈ M, i ∈ V (1)

In MRCPSP/max, schedules are subject to two constraints: temporal and resource
constraints. Here, temporal constraints restrict the time lag between activities in an activity-
on-node (AON) network N = 〈V, E, δ〉, consisting of the node set V, the arc set E, and
the arc weight function δ. Without considering the arc weight, the time lag depends on
the mode μi of activity i and the mode μj of activity j (j �= i), and is either a minimum

(maximum) time lag lmin
i,μi ,j,μj

(
lmax
i,μi ,j,μj

)
between the start times of two different activities i

and j such that

Si + lmin
i,μi ,j,μj

≤ Sj ≤ Si + lmax
i,μi ,j,μj

〈i, j〉 ∈ E, μi ∈ M, i ∈ V (2)

When both lmin
i,μi ,j,μj

= 0 and lmax
i,μi ,j,μj

= 0, activity j cannot be started before activity i
begins. In this definition, time lags connect the start times of two related activities, known
as start-to-start time lags. A scheduleS is time- feasible if all the time lag constraints are
satisfied at the start times Si (i = 0, 1, . . . , n + 1). However, in this study, the arc weight
denotes a user preference matrix, assigning the minimum and maximum time lags of
δmin

i,μi ,j,μj
= lmin

i,μi ,j,μj
and δmax

i,μi ,j,μj
= lmax

i,μi ,j,μj
to each arc <i, j>. The inclusion of such time lags will

lead to cycles in N; in a more realistic case, a project manager will consult with the customer
about his/her specific requirements and hold a group discussion with team members for
implementation. However, these interdependent activities may follow immediately or a
few days later.

In terms of resource constraints, let A(M, S, t) be the set of activities being pro-
cessed at time instant t for schedule S, and M = (μi) be a mode vector used by activity
i. The amount of non-renewable resources k used by activity i denotes rν

i,μi ,k
(i ∈ V,

μi ∈ M, k ∈ Rν) and renewable resources are denoted as rρ
i,μi ,k

(i ∈ V, μi ∈ M, k ∈ Rρ).

Both are subject to non-renewable and renewable capacities, expressed as Rν
k , and Rρ

k ,
respectively. Since all non-dummy activities are executed in only one mode for a spe-
cific duration, depending on the resources consumed, a schedule S is resource-feasible if
Equations (3) and (4) hold.

∑i∈A(M,S,t) rρ
i,μi ,k

≤ Rρ
k μi ∈ M, k ∈ Rρ, t ≥ 0 (3)

∑i∈A(M,S,t) rν
i,μi ,k ≤ Rν

k μi ∈ M, k ∈ Rν, t ≥ 0 (4)

Furthermore, a schedule is called feasible if both time and resources are feasible. Thus,
the objective of the deterministic MRCPSP/max scheduling problem is to find a feasible
schedule so that the project makespan is defined as the start time of the final dummy
activity Sn+1, and is minimized as in Equation (5).

Min Sn+1 = max
i=1,...,n

Ci (5)

2.2. Understanding Uncertainty

Project characterization can directly influence a manager’s potential response. As
such, understanding project vulnerabilities is essential in the detection of uncertainty.
Several researchers have proposed the information theory and entropy approach for this
area [2,26,27,30–37]. For example, some authors in [26,27,34–36] applied the entropy model
as a measure of duration uncertainty or a priority rule for scheduling all activities; oth-
ers [37] focused on calibrating entropy measures to better estimate uncertainty in activity
durations. In this study, we consider the implications of entropy presented in [30], where
an appropriate measure of project uncertainty, Schedule Entropy U, borrowed from the
theory of information in [38], is mathematically defined as in Equation (6):
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U = −∑
i

pi ln pi (6)

where pi indicates a discrete set of unfavorable activity probabilities, and the sum is
extended over all the unfavorable sets of such a schedule. Since all activities durations have
an estimated range between dil < d < diu, in which “l” denotes the “lower bound” and “u”
denotes the “upper bound”, and these are uniformly distributed in the interval (dil , diu),
the determination of probabilities pi can be expressed as in Equation (7):

pi =
Δt

diu − dil
(7)

Furthermore, the amount of time in which potentially disruptive events are within the
estimated duration range, and hence still within the control of the project manager—and
thus, the set of unfavorable events Ei for every activity—can be obtained from Equation (8),

Ei = EFTdi
+ (diu − di)− LFTdi

= (diu − di)− li (8)

where diu and di denote the longest and the most probable duration, respectively, and li
refers to the float or slack of activity i, implying that it can be delayed without delaying
subsequent activities and project completion dates. Additionally, the terms EFTdiu

and
LFTdi

refer to the earliest finish time with the longest duration and the latest finish time
with the most probable duration, respectively.

The entropy U of the project schedule can be thought of as all the individual entropies
Ui of activity i. Activity i can be potentially unfavorable or disruptive, if and only if it is
critical to the CPM and its actual finish time is beyond the latest finish time. An entropy
value for a single activity, i.e., Ui, can be determined as in Equation (9):

Ui = − Ei

(diu − dil) ln
(

Δt
diu−dil

) (9)

As such, Equation (10) shows the value for the total entropy in the project.

U = −∑
i

Ui (10)

Based on these equations, it is understandable that an individual entropy value is
subject to the estimation of the range for its duration, i.e., the more significant the difference
in the interval (dil , diu), the greater the manager’s perception of the activity’s uncertainty
and therefore the higher its entropy value. In addition, as shown below, the schedule
entropy is directly affected by the order in which activities are scheduled.

Figure 1 depicts the concept of unfavorable events Ei and the relevant time interval
Δt. The solid gray bar symbolizes a scheduled activity with the most probable duration
di, whereas the solid yellow bar shows its most prolonged duration diu. The slack li is the
time interval between EFTdi

and LFTdi
. The time difference between LFTdi

and EFTdiu
is

denoted by Ei. The parameter Δt is determined by the decision-maker and is dependent
on the nature of the project. Riskier projects require lower values for Δt, which acts as
a checkpoint for the project manager to update the project’s status and take control of
its progress.

In this study, entropy is used in scheduling to handle disruptive activities, as intro-
duced in [30]. The main purpose of this method is to determine disruptive events and
response time intervals; this can be done through the use of available information such
as activity durations and dependencies. In practice, the relevant time interval Δt refers to
the period of detection and activation, recognized as event awareness from the managerial
perspective. It is essential for managers to adjust positively to the impact of possible
adverse events. A project manager sets up checkpoints to detect potential threats and keep
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the project scope and expected outcome as intact as possible. The higher the project stakes,
or the more unstable the development environment, the greater the need for more frequent
checkpoints. Since uncertain durations, resource requests, and capacities may likewise not
be constant during a project’s lifespan, Δt reflects how a manager perceives a disruptive
event and takes the initiative if an incident affects the progress of the schedule. Once a
decision is reached at each checkpoint, the options available for reaching the subsequent
checkpoint decrease, thus reducing uncertainty.

Figure 1. Graphical representation of Ei and Δt.

2.3. A Resilient Approach to Uncertainty

As discussed in the previous sections, project managers or decision-makers must assess
different controls and operating conditions. A final project schedule embodying trade-offs
among various aspects reflects a stable state, characterized by its makespan, cost, risk, and
net present value. However, in the presence of disruptive events, the control of activity
progress may be broken, resulting in cost overruns, makespan tardiness, performance
degradation, or even project failure. Therefore, this section focuses on establishing a
desirable algorithm characteristic called resilience. The authors in [39] defined resilience as
a process of aligning a set of adaptive capacities to provide a positive course of functioning
and adaptation after a disturbance. Given changing project constraints, variables, and
structures, decision-makers must adapt their preferences or objectives to arrive at another
stable state. In this sense, more than one stable condition exists for project scheduling
problems. In [40,41], the term robustness is defined as “the ability (of a schedule) to cope
with small-time increments in some activities resulting from uncontrollable factors.” Thus,
resilience is the magnitude of the disruptive event absorbed before a schedule degrades to
the threshold, i.e., the minimum acceptable level of individual activity performance [9].

Researchers have worked on developing an algorithm that measures how the schedule
robustness of scheduled activities deviates from the actual occurrences through a resilient
scheduling algorithm. Lambrechts et al. [7] determined the expected increase in activity
duration due to resource breakdown, proposing a buffer time to prevent schedule dis-
ruptions. In [42], the scenario-based proactive robustness optimization (SBPRO) method
was developed using the critical-chain project management (CCPM) method. Moradi and
Shadrokh [8] applied the CCPM and considered only renewable resources at the cost of
recruiting additional resources. Balouka and Cohen [43] sought to minimize the worst-case
project duration by deciding on activity modes, resource allocations, and a schedule base-
line. In [44], the authors included multiple alternative execution modes and allowed the
switching of possibilities between different modes for the same activity during scheduled
construction projects. These studies focused on procedures designed to build a robust
schedule through the use of time or resource buffers. Their procedures reflect the con-
trollable flexibility needed to produce an incremental solution based on the subsequent
revelation of contingent events.

Other researchers have developed optimization models for robustness measures (RMs).
For instance, Chtourou and Haouari [45] proposed different slack-based models to predict
a schedule’s robustness in relation to the single-mode RCPSP. The authors in [9] addressed
resilience in mean-variance models having two types of ratios, i.e., the average interval to
activity duration and the free slack-to-activity duration. Finally, Milat et al. [10] improved
resilience by maximizing free floats as the degree of perturbations absorbed rises. Their
study depicted resilience through the alternative measure expressed in the objective func-
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tion, which maximizes the highest proportion of resource-technology free floats for the
activities early in the schedule.

In this study, after handling the issue of schedule uncertainty via entropy, we have
aimed to achieve project resilience by extending the robustness model in [45] from the
single-mode RCPSP to the multimode RCPSP/max, subjecting it to the constraints pre-
sented in [46]. This objective function indicates the relationships between each activity’s
precedence, resource usage, and slack in each available mode to maximize the robustness
measures. The mathematical model designed to maximize the schedule’s robustness is
shown in Equation (11):

Max Z = ∑
μi

∑
i

(
min

(
li,μi ,

(
f rac ∗ diμi

)) ∗ Nsucci ∗∑
k

rρ
i,μi ,k

)
(11)

where frac represents a threshold (%) of activity duration (0 < frac < 1), diμi refers to
the duration of activity i executed in mode μi, Nsucci denotes the number of immediate
successors of activity i, and li,μi expresses the slack of activity i if executed in mode μi. As
previously mentioned, the free slack is determined by LFTdi

− EFTdi
, or LSTdi

− ESTdi
.

3. Methods

In this study, we aimed to minimize the project makespan while maximizing its
robustness for an optimal sequence of activities. The schedule-generating procedure begins
by evaluating the benchmark instances’ feasibility. An infeasibility is observed when a
schedule with a mode combination consumes more non-renewable resources than the
total amount available or its total completion time exceeds the required target. Otherwise,
an instance is considered feasible, and, once selected, the process moves forward to the
following three stages for baseline schedules.

First, Stage I produces a minimized makespan schedule using an optimization algo-
rithm. Stage II uses Stage I’s schedule as an input to generate an entropy-based upper-
bound makespan schedule. Finally, Stage III generates maximized-robustness schedules
with a makespan between Stage I and Stage II. The pseudo-code (Algorithm 1) for the
execution of the method is as follows:

The idea is to enhance resilience in the schedule generation scheme. In this case,
although the initial schedule (baseline) in Stage I seeks solely to minimize the makespan,
this will leave no room for unexpected events that will almost certainly happen. On the
other hand, in Stage II, the entropy-based schedule may render the project infeasible even
before it begins. Thus, the resulting makespans from Stages I and II serve as lower- and
upper-bound values. With this range of values, this schedule generation scheme absorbs
the impact of unexpected events without rescheduling during execution. The progress of
the makespan and robustness at each stage is conceptualized in Figure 2.

Figure 2. Graphical representation of the three-stage procedure in terms of makespan and robustness.
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Algorithm 1: Repeat until all feasible instances are solved

Stage 1: Minimize Makespan (Target Makespan/makespan_I)
Initialization Phase
While i < population size (Np)
Evaluate Mode Selection Rules (MSR)
Evaluate Activity Priority Rules (APR)
End

Discrete Differential Evolution Algorithm
End
Stage 2: Determine Schedule’s Entropy (Upper Bound Makespan/makespan_II)

Initialization Phase
While i < population size (Np)

Evaluate activity risk and set checkpoint frequency
Determine Unfavorable events
Determine Event Entropies
End

Compute Schedule Entropy
End
Stage 3: Maximize Robustness (Robustness Measure/makespan_III)

Initialization Phase
If makespan > makespan_II, then
Reject initial solution
End if
While i < population size (Np)
Evaluate Mode Selection Rules (MSR)
Evaluate Activity Priority Rules (APR)
End

Discrete Differential Evolution Algorithm
End
End

Part of the complexity involved when solving the MRCPSP/max relies upon selecting
the execution modes and determining the order in which to execute activities. In this study,
we consider the mode selection rules and activity priority rules used by Chen et al. [47] to
determine the best execution mode for every activity and the order in which the activities
are executed. The schedules are produced by means of a serial generation scheme (SGS)
and improved by means of a discrete differential evolution algorithm.

3.1. Discrete Differential Evolution Algorithm

Differential evolution is an evolutionary-type, population-based algorithm to optimize
functions over continuous solution spaces [48]. Characterized by simplicity, straightfor-
wardness, and robustness, numerous applications have been developed to solve com-
binatorial optimization problems [49,50], such as the machine scheduling problem in
production (MSPP) [51–60], the traveling salesman problem (TSP) [61–63], the linear order-
ing problem (LOP) [61,64], the multidimensional two-way number partitioning problem
(MDTWNPP) [65], and the multidimensional knapsack problem (MKP) [66]. In [64,65], the
authors addressed permutation-based optimization problems and proposed an algebraic
structure and a binary operator that allowed the solutions to be directly expressed as
permutations. The duality of geometric search operators was introduced in [61] for both
continuous and combinatorial problems. Furthermore, in [67], angle modulation, a trigono-
metric base (i.e., a sin/cos function) technique, was developed to generate a bit string
from continuous to binary problem spaces. A set-based encoding scheme that redefined all
algorithmic operators for the discrete space was applied to TSP in [63]. In [66], the authors
emphasized a selection operator based on the multiple probability estimation models and
verified its usage in continuous and combinatorial problems.
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Moreover, due to the interdependency between variables, the model’s performance
may be compromised in binary- or permutation-based problems. Nonetheless, the prece-
dence relationship is fundamental to project scheduling, making the concept of decoding
(i.e., converting continuous encoding vectors into permutations of activity lists) more com-
plex than other approaches currently in use. Furthermore, when dealing with possible
execution modes for activities in RCPSP, one needs to consider the task sequence and its
appropriate mode almost in parallel. Only a few studies have examined either single- or
multimode RCPSP [14,68–74], and even fewer have addressed the MRCPSP/max format,
in which the encoding scheme is only visible from one viewpoint. Thus, in this paper,
we propose the application of DDE to solve the MRCPSP/max. In our DDE method, the
encoding of the DDE algorithm consists of two vectors, one representing the task sequence
and another with the execution mode for each activity. Several potential resource conflicts
and precedence constraints are taken into account in our design.

Conventional DE works in two phases: initialization and evolution. In the initialization
phase, the population Sg =

{
Xg

i : i = 0, 1, . . . Np − 1
}

at each generation g for the size of
Np contains candidate solutions (i.e., schedules). As shown in Equation (12), each solution

consists of D-dimensional parameter vectors Xg
i =

{
xg

i,j : j = 0, 1, . . . D− 1
}

, generated as
follows by a uniformly distributed random number rand [0, 1].

Xg
i = Xg−1

min + rand [0, 1]·
(

Xg−1
max − Xg−1

min

)
(12)

The search space Sg is constrained by the maximum and minimum bounds(
Xg−1

max , Xg−1
min

)
. Xg

i is instantiated independently and further adjusted throughout the
execution of the algorithm. The key is to generate a suitable number of trial parameter
vectors to avoid stagnation and provide sufficient solution space for the next phase.

Mutation and crossover operators and population maintenance mechanisms begin
their computing schemes in the evolution phase. The classical mutation and crossover op-
erators generate new vectors, whereas the population maintenance mechanism determines
which vector will survive the next generation. In this respect, a target vector Xg

i refers to a
parent vector from the current generation g, whereas a mutant vector Mg

i obtained through
the differential mutation operation, is called the donor vector. The offspring formed by
recombining donor and target vectors are called trial vectors, denoted as Tg

i .
To show the discretization of the DE, i.e., the proposed DDE algorithm, consider a

multimode project composed of six activities, with their precedence relationships shown
in Table 1. The encoding of the DDE algorithm consists of two vectors, one representing
the task sequence and another with the execution mode for each activity. For example,
the first activity to be executed is activity 1, in mode 2, followed by activity 3 in mode 1,
and so on. The mutation and crossover operations will not change the selected mode for
each activity for this particular example, thus obviating the need to deal with infeasible
solutions later on.

Table 1. The precedence relationships of the example with six activities.

Activity Predecessor

0 -
1 0
2 0
3 1
4 2
5 3
6 4, 5
7 5, 6
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3.2. Mutation

Unlike the genetic algorithm (GA), DDE’s main search component to optimize so-
lutions is a mutation, not a crossover. To mutate a solution, the DDE constructs the first
population with Np members and randomly selects three different feasible solutions, named

Xg−1
0 , Xg−1

1 , Xg−1
2 , where g denotes the generation number. Next, the mutant vector Mg

i is
determined based on the scaled difference of any two of the three solution vectors, shown
in Equation (13).

Mg
i = Xg−1

0 + F·randg
i

(
Xg−1

1 − Xg−1
2

)
(13)

where F refers to a scaling factor, a positive number that controls the directional hop length
of two vectors. In this example, a value of 1.5 was selected arbitrarily, and the value of
randg

i falls between 0 and 1. Table 2 shows how mutation works in the proposed DDE.
First, three feasible solutions, X1

0, X1
1, X1

2, are randomly selected, and a vector with random
numbers is provided, i.e., rand2

1. As a numerical example, consider the second value (3.30),
obtained by 3 + 1.5× 0.2(2− 1) = 3.30.

Table 2. An illustrative example of a mutant vector creation.

Sequence of Tasks 1 2 3 4 5 6

Solution X1
0 1 3 5 2 4 6

Solution X1
1 1 2 3 5 4 6

Solution X1
2 2 1 4 3 5 6

rand2
1 0.30 0.20 1.00 0.30 0.21 0.10

Mutated Vector M2
1 0.55 3.30 3.50 2.90 3.69 6.00

3.3. Crossover

After mutation, the crossover operation is executed to enhance the population diversity.
The mutant vector Mg

i exchanges its parameter with the target vector Xg−1
3 selected from

the current population. As a result, a trial vector, Tg
i , is determined using the following

scheme in Equation (14):

Tg
i =

{
Mg

i i f
(

randg
i ≤ Cr

)
Xg−1

3 Otherwise
(14)

The probability of crossover Cr acts as a control parameter of DDE, and its value
ranges between 0 and 1. If randg

i ≤ Cr, the trial vector gets its value from the corresponding
dimension of the newly generated mutant vector Mg

i . Otherwise, it is copied from the

current vector Xg−1
3 . Table 3 shows the target vector used for the crossover and the random

numbers rand2
1 generated to compare Cr; in our example, Cr = 0.2. The trial vector is then

created, as shown in Table 3. For the value of rand2
1 fewer than Cr = 0.2, elements of task 2

(i.e., activity 1) and task 6 (i.e., activity 6) from the mutant vector M2
1 are copied, whereas

tasks 1, 3, 4, and 5 from the target vector are used.

Table 3. An illustrative example of the target vector, the trial vector, and the decoded vector.

Sequence of Tasks 1 2 3 4 5 6

Target Vector X1
3 2 1 3 5 4 6

Mutated Vector M2
1 0.55 3.30 3.50 2.90 3.69 6.00

rand2
1 0.40 0.14 0.90 0.85 1.00 0.02

Trial Vector T2
1 2 3.30 3 5 4 6.00

Decoded Vector DT2
1 1 3 2 5 4 6
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Finally, to determine the task execution sequence, i.e., the permutation of activities, the
values obtained in the trial vector are sorted, always satisfying the precedence constraints.
For this example, the first task to be scheduled is selected between tasks 1 and 2. Since
task 1 has a lower value than task 2 (2 < 3.3), task 1 is scheduled first. Next, the tasks with
scheduling priority are tasks 2 and 3. Task 3 attains the second position because 3 < 3.3.
Then, task 2 competes with task 5, which has a value of 4, for the third position. Task 2
wins the place, since 3.30 < 4, and so on until all the tasks are scheduled. For this particular
decoded solution, the execution sequence of activities is 1-3-2-5-4-6, as illustrated in the last
row of Table 3.

3.4. Selection

In this operation, the new solution DTg
i is compared with the target vector Xg

i ac-
cording to their fitness values. The vector with better fitness will survive into the next
generation as in Equation (15).

Xg
i =

{
DTg

i i f f
(

DTg
i

)
≤ f

(
Xg−1

i

)
Xg−1

i Otherwise
(15)

Since the objective in this study is to minimize the makespan (at stage I) or maximize
robustness (at stage III), if the new solution yields an equal or better objective value, it
replaces the corresponding target vector in the next generation. Otherwise, the target vector
is retained in the population. Once the population is updated, the evolution procedure is
repeated until a predefined termination criterion is reached.

4. Results and Discussion

This section presents the results of the methodology introduced above in relation to
the more complex MRCPSP/max. Experiments were conducted to evaluate the practicality
and efficiency of solving the test instances generated in [75]. There are three benchmark
sets with different activities (30, 50, and 100 activities); each set contains 270 instances, and
every instance uses three renewable, three non-renewable, and three doubly constrained
resources. Furthermore, except for the dummy activities (initial and final) with only one
execution mode and with no duration and no resource consumption, every activity can
include three, four, or five different execution modes. In the current study, the best-known
optima (BKO) are not compared against the makespan, but against the artificial bee colony
(ABC) results obtained in a previous study [47].

4.1. Parameter Settings

The parameters used in this study were set based on [47,68]. Sensitivity analyses were
performed to select the best values for the relevant time interval, Δt = 1, and frac = 0.25. For
the algorithmic settings in Table 4, the population size (Np) was 40, F (scaling factor) was
1.5, and Cr was 0.2 in the DDE. For the ABC in Table 5, the population size was 30, with an
abandonment limit of 5, and MNC was 20.

Table 4. Parameter settings for the DDE algorithms.

Parameter Setting

Population Size (Np) 40
Scaling Factor (F) 1.5

Probability of Crossover (Cr ) 0.2
Δt 1

frac 0.25
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Table 5. Parameter settings for the ABC algorithms.

Parameter Setting

Population Size (Np) 30
Abandonment Limit 5

Maximum Number of Cycles (MNC) 20
Δt 1

frac 0.25

4.2. Computational Results

All experiments were carried out using an Intel i7 personal computer with 8 GB of
RAM, and the problem was coded using MATLAB. The DDE iterates through the total
problem instances available for each set and randomly selects a predetermined number of
feasible instances. Table 6 shows the optimal solutions found and the average runtime for
each benchmark when running each algorithm. For all algorithms, increasing the number
of activities elevates the problem’s complexity. Hence, the average run times increase,
whereas the total numbers of optima decrease. Furthermore, the results indicate that the
average runtime of DDE was slightly higher than that of ABC running all MRCPSP/max
benchmarks. On average, the DDE algorithm takes 20.556 s to find a schedule with
optimized robustness, whereas the takes 20.329 s. However, DDE obtains slightly higher
numbers of optima than ABC. Thus, we can conclude that DDE is more effective than ABC
in this regard.

Table 6. The average runtime per MRCPSP/Max benchmark set for each algorithm.

Benchmark Set
Optima Found (No.) Average Run Time (s)

ABC DDE ABC DDE

MM30 260 263 11.888 12.189
MM50 123 124 17.063 17.223
MM100 84 87 32.037 32.257

Furthermore, Table 7 presents the results obtained from evaluating all 270 instances of
every benchmark set. The target, entropy-based, and resilient schedules in Stage I, II, and
III are referred to as S1, S2, and S3, respectively. They were assessed based on two measures:
the makespan (Avg. Dev.) and the robustness (Avg. RM.). Avg. Dev. refers to the average
of all the deviations computed by (Ms − BKO)/BKO. Ms denotes the schedule makespan
at the current stage, whereas the best-known makespan (BKO) represents the reference
makespan, i.e., the optimal solution when comparing the target schedule of Stage I and
the upper-bound schedule of Stage III. Furthermore, Avg. RM. is a measure of average
robustness. Finally, the algorithmic performance was evaluated for three benchmark sets
(i.e., MM30, MM50, and MM100) against the ABC.

The three-stage procedure proved to be robust enough to produce results comparable
to different optimization algorithms. These results are encouraging, given that practitioners
can add anywhere between 8% to 15% of their original estimates as response time intervals
(i.e., buffer times). Furthermore, both ABC and DDE algorithms performed better when
considering that response time intervals used by practitioners rely primarily on intuition
and experience. On the other hand, this three-stage procedure relies solely on information
available to every project, including activity durations and precedence.

Meanwhile, Figures 3–5 show the results of the average deviation of every bench-
mark instance when compared against the BKO for every stage, divided according to the
optimization algorithm applied. In addition, Figures 6–8 show the robustness measures
obtained at each stage using the DDE and ABC algorithms on different sizes of benchmark
instances, i.e., MM30, MM50, and MM100.

407



Appl. Sci. 2022, 12, 3049

Table 7. Summary results for the MRCPSP/Max benchmark evaluations for each algorithm.

Stage Measure
MM30 MM50 MM100

ABC DDE ABC DDE ABC DDE

S1
Avg. Dev. 0.00176 0.00580 0.04571 0.03104 0.04424 0.04031
Std. Dev. 0.00664 0.01952 0.03946 0.06002 0.03257 0.04090
Avg. RM. 102.75556 116.62593 116.62593 117.31481 117.39630 115.85185

S2
Avg. Dev. 0.09690 0.09524 0.10132 0.09640 0.08497 0.07570
Std. Dev. 0.05793 0.08394 0.05917 0.08180 0.04307 0.05348
Avg. RM. 132.72593 131.86296 133.81481 136.22593 137.12963 134.46670

S3
Avg. Dev. 0.05041 0.02491 0.05387 0.03711 0.04373 0.04259
Std. Dev. 0.04794 0.04856 0.05220 0.05615 0.04067 0.04371
Avg. RM. 100.62593 123.80370 124.45926 125.99259 127.43704 124.52593

 
MM30_ABC_S1   MM30_DDE_S1   MM50_ABC_S1   MM50_DDE_S1   MM100_ABC_S1   MM100_DDE_S1   

Figure 3. Avg dev vs. BKO CI for each algorithm in Stage 1 (MRCPSP/max).

 
MM30_ABC_S2   MM30_DDE_S2   MM50_ABC_S2   MM50_DDE_S2   MM100_ABC_S2   MM100_DDE_S2   

Figure 4. Avg dev vs. BKO CI for each algorithm in Stage 2 (MRCPSP/max).
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MM30_ABC_S3   MM30_DDE_S3   MM50_ABC_S3   MM50_DDE_S3   MM100_ABC_S3   MM100_DDE_S3   

Figure 5. Avg dev vs. BKO CI for each algorithm in Stage 3 (MRCPSP/max).

 
MM30_ABC_S1   MM30_DDE_S1   MM30_ABC_S2   MM30_DDE_S2   MM30_ABC_S3   MM30_DDE_S3      

Figure 6. Robustness measure CI for each algorithm and stage for MM30 instances.

 
MM50_ABC_S1   MM50_DDE_S1   MM50_ABC_S2   MM50_DDE_S2   MM50_ABC_S3   MM50_DDE_S3        

Figure 7. Robustness measure CI for each algorithm and stage for MM50 instances.
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MM100_ABC_S1   MM100_DDE_S1   MM100_ABC_S2   MM100_DDE_S2   MM100_ABC_S3   MM100_DDE_S3       

Figure 8. Robustness measure CI for each algorithm and stage for MM100 instances.

Compared to the previously obtained results (columns marked with ABC), the most
significant difference observed for the obtained solutions is their stability. Though the
standard deviation of both algorithms increases with complexity, this increase is lower
and slower when using DDE. Furthermore, the methodology remains stable and yields
schedules with robust makespans near the best-known optima. In summary, better im-
plementations of optimization algorithms can further improve the performance of the
proposed methodology.

5. Conclusions

Uncertainty greatly impacts the dynamic behavior of real-world environments. Adap-
tive capacity helps to improve preparedness in dynamic environments, and managers
must respond effectively to changes in environmental conditions. Researchers and prac-
titioners have sought to optimize schedules and quality in many studies, and improving
schedules remains a pressing concern. In this paper, we tried to resolve the multi-mode
resource-constrained project scheduling problem (MRCPSP/max), which is not a common
domain for the DDE algorithm, and we specifically considered entropy, which helped to
deal with uncertainty.

We focus on three main contributions in this paper. Initially, we explored the char-
acterization of MRCPSP/max under uncertainty conditions and confirmed the need for
managers to recognize and positively respond to disruptive events. Using entropy to
determine disruptive events and response intervals in scheduling, we demonstrated this
proposition. Then, we formulated the robustness attribute as a scheduling adaptability max-
imization problem and a three-stage schedule generation framework to enhance resilience
by absorbing the impact of unexpected events, while rescheduling during execution. Our
final contribution was a discrete framework for the differential evolution algorithm. In our
application of DDE, the encoding of the DDE algorithm consisted of two vectors represent-
ing the task sequence and the execution modes for each activity. Several potential resource
conflicts and priority constraints were considered in our design. The proposed DDE was
evaluated by solving test instances of benchmark sets by comparing its performance to the
best known optima (BKO) and the previous application based on the artificial bee colony
(ABC) approach.

The findings indicated that, for all algorithms, the problem’s complexity influences
the number of optima found and the average run time. Overall, a more effective algorithm
is the DDE algorithm, as it offers more optimal solutions and a higher number of them.
Additionally, we were able to determine when practitioners need to add response time
intervals at certain range levels, such as 8% to 15% in this case, to benefit from schedule
robustness. Finally, compared to the BKO for every stage, the stability of the solutions
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provided by the DDE demonstrated its algorithmic advantage in terms of resilience. Un-
fortunately, the more realistic the academic model is, the more difficult it is to solve the
problem; the MRCPSP/max is simply one of the very difficult problems.

Nonetheless, the encouraging computational results may lead to future implications
along other lines. First of all, it is interesting to study which features make instances of
MRCPSP/max difficult or easy to solve. In this sense, future studies may further enhance
scheduling efficiency by examining various criteria for activity prioritization and mode
selection. Another interesting line of research is investigating other potential encoding
scheme frameworks in order to capture problem-specific aspects. Furthermore, efforts
to examine other approaches to dealing with uncertainty in project scheduling and the
verification of their performance using real-world data are also necessary.
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Abstract: The rapid growth of electric vehicles in India necessitates more power to energize such
vehicles. Furthermore, the transport industry emits greenhouse gases, particularly SO2, CO2. The
national grid has to supply an enormous amount of power on a daily basis due to the surplus power
required to charge these electric vehicles. This paper presents the various hybrid energy system
configurations to meet the power requirements of the electric vehicle charging station (EVCS) situated
in the northwest region of Delhi, India. The three configurations are: (a) solar photovoltaic/diesel
generator/battery-based EVCS, (b) solar photovoltaic/battery-based EVCS, and (c) grid-and-solar
photovoltaic-based EVCS. The meta-heuristic techniques are implemented to analyze the technologi-
cal, financial, and environmental feasibility of the three possible configurations. The optimization
algorithm intends to reduce the total net present cost and levelized cost of energy while keeping the
value of lack of power supply probability within limits. To confirm the solution quality obtained
using modified salp swarm algorithm (MSSA), the popularly used HOMER software, salp swarm
algorithm (SSA), and the gray wolf optimization are applied to the same problem, and their outcomes
are equated to those attained by the MSSA. MSSA exhibits superior accuracy and robustness based
on simulation outcomes. The MSSA performs much better in terms of computation time followed
by the SSA and gray wolf optimization. MSSA results in reduced levelized cost of energy values
in all three configurations, i.e., USD 0.482/kWh, USD 0.684/kWh, and USD 0.119/kWh in configu-
rations 1, 2, and 3, respectively. Our findings will be useful for researchers in determining the best
method for the sizing of energy system components.

Keywords: artificial intelligence; salp swarm algorithm; hybrid optimization of multiple energy
resources; renewable energy; electric vehicle charging station

1. Introduction

Energy is a critical component of long-term development and poverty eradication. In
India, electricity is accessible to 97.2 percent of the population. Natural gas and coal are
the most common fuels used in the electricity sector. India has a total power generation
capacity of 388.134 GW (including off-grid renewable energy), with renewable energy (RE)
accounting for 21.26 percent [1]. The scarcity of natural gas and coal reserves could pose a
serious threat to electricity production. To meet the country’s rising electricity consumption,
the Indian government has announced plans to install 275 GW of sustainable power by 2027.
The government has a strategy to satisfy demand with 356.681 GW (Ministry of power,
Delhi, India) of electricity generation from coal and nuclear power plants, yet these methods
are not eco-friendly and are eroding our environment. RE-based power generation, which
emits fewer greenhouse gases (GHGs) than other traditional power generation systems,
is required in this framework. India, as a developing country, must provide quality and
reliable energy for all of its citizens to achieve its long-term development goals. As per
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the information revealed by World Resources Institute, India is responsible for emitting
7.1 percent of worldwide emissions and has total emissions of 2.47 tCO2e compared to a
global average of 6.45 tCO2e. According to World Bank data, per capita consumption of
electricity in India has grown from 920 kWh in 2012–2013 to 1210 kWh in 2019–2020.

The transportation sector of India contributes significantly to GHGs emissions. CO2
accounts for the majority of these GHGs emissions. Furthermore, the energy and agriculture
industries are hastening CO2 emissions. The rapid growth in the number of vehicles needed
to serve the country’s massive population is a worrisome symptom of pollution and fuel
consumption. Aside from these circumstances, the use of electric vehicles (EVs) such as
e-rickshaws is increasing regularly. These EVs emit fewer pollutants and no exhausts. The
Ministry of Road Transport and Highways does not have any data on these EVs. Some
of these EVs are certified, and data reveal that there are 517,322 registered EVs out of a
total of 295,800,000 automobiles. However, the rapid expansion of these EVs necessitates a
massive quantity of electricity every day from India’s national grid. EVs are now charged
in residential neighborhoods, with residential customers paying the electric bills. In such
circumstances, charging those EVs does not generate any revenue for the electricity sector.
Meanwhile, these EVs are creating a lot of stress on the grid network of India. A profitable
strategy to generate electrical energy is needed to relieve the strain on the national system.
However, to the best of the authors’ knowledge, there are no endeavors in India to establish
a hybrid-energy-based electric vehicle charging station (EVCS), which prompted us to
conduct this study described here.

India has various sources of RE, which include solar photovoltaic (SPV), wind turbines
(WT), biogas generators, and biomass. As a result, power might be generated using existing
resources. The use of renewables can reduce harmful emissions while also lowering
operating costs and maintaining cleanliness. In these systems, paying a bill every month is
not an option. EV charging with RE resources enhances commercial profitability, reduces
air pollution, and decreases noise in metropolitan regions.

Due to the enormous solar energy availability, it is the finest alternative for generating
electrical energy to serve EVs. The solar-powered EVCS at Karna Lake Resort in Karnal is one
of Bharat Heavy Electricals Limited’s (BHEL) 20 such stations along the Delhi-Chandigarh
expressway. It has chargers for all models of electric cars already on the road in the country,
including AC001 (33.3 kW), DC001 (15 kW), and 72 kW (50 kW DC + 22 kW AC).

Solar irradiation is missing during rainy days and in foggy surroundings, and with
fluctuations in wind energy, no energy is generated at that time. As a result, relying solely
on solar and wind energy may compromise system stability and cause a project to fail.
Hence, diesel generators (DGs), which can be a decent substitute for generating power
even though solar and wind power are unavailable, are required.

1.1. Present Scenario of EVs and EVCS

In the early phases, companies put forward hybrid EV technology as the most reliable
and eco-friendly technology. Even though this technology has made major developments, it
still mixes traditional fuel practice with an electric engine, which is used when applications
require minimal power capacity. Later, technological innovations and more effective battery
storage led to the establishment of improved EV systems that completely rely on electrical
energy for supply. These devices started to run using electrical energy provided by RE
sources, such as SPV and WT. Some research was carried out for enhancing energy efficiency.
For example, in Ref. [2], a complete investigation for the forecasting of effective charging
profile for EVs by using multiple run-out of charging conditions is provided. Artificial
neural networks to build algorithms that perform the optimized energy management of
EVs are used [3]. The authors demonstrated how to use a smart nano grid system and
plug-in electric automobiles to manage the optimized integration of hybrid SPV systems [4].

According to annual surveys, the number of EVs and charging stations has increased
exponentially over the last decade. Battery-based EVs were first started in India in 2001.
Now, these are running in nearly every part of the region. There are three varieties of
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EVs comprising electric rickshaws, which carry between four and five passengers, auto-
rickshaw for three passengers, and electric vans for delivering products. A fully charged
electric rickshaw can go about 80–110 km and costs roughly one lakh seventy-five thousand
rupees in the market, whereas auto-rickshaws and electric vans have a range of 50–80 km
and cost around one lakh rupees. These were formerly imported from China, but today they
are made in the country itself. An EV that is completely recharged can travel 80–110 km a
day while consuming 8–12 kWh. The cost of power per unit is Rs. 6.90 on the commercial
tariff, hence the cost incurred per km run is around Rs. 75.9. One of the e-rickshaw charging
stations installed in Delhi is shown in Figure 1.

Figure 1. Electric vehicle charging station in Delhi.

The features of e-rickshaw in India are shown in Table 1. This mode of transportation
is beneficial to the environment, emitting nearly no fumes and creating significantly fewer
CO2 emissions. It has brought a cultural shift to the transportation industry, becoming well
known for its lower fares when related to other means of road transit, thus enhancing the
satisfaction of low-income individuals, including vehicle drivers [5]. Some private ventures
have launched electric-based Easy Bikes and Auto-rickshaw, which have gained traction in
village areas and near metropolitan zones. Such EVs consume a significant amount of grid
energy; however, there are a lot of measures underway to relieve the strain on the system.
However, because power rickshaws are said to utilize a significant quantity of electricity
from grid networks, the changes have yet to be widely implemented.

Table 1. Specification of EVs (e-rickshaw) in Delhi. Data from Ref. [6].

Particulars E-Rickshaw

Dimension 2790 × 975 × 1730 mm
Carrying capacity Four passengers + driver

Weight 210 kg (without battery)
Battery 4 Nos./48 V

Battery capacity 80 Ampere/hour
Approx. mileage 70 km per full charge

Charging time 7–8 h per day
Maximum speed 25 km/h

Power consumption 8–11 kWh
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The authors performed a survey in Delhi’s northwestern city for this study. Every
day, more than 200 different varieties of electric rickshaws run here. There were just
20 manually operated rickshaws recorded. The majority of electric rickshaws are powered
using electricity installed at home, which is not permitted by the Indian government.
Additionally, power outages occur very often in the neighborhood. Therefore, charging
EVs during that time is challenging.

It would be easier for those individuals to drive their battery-powered EVs under
these conditions if services were created to charge EV batteries using other trustworthy
energy sources in the surrounding part. EVs have had a seismic impact on road transport,
particularly in rural and sub-urban regions, despite significant charging issues.

1.2. Literature Review

EVs adoption rate is rapidly increasing all over the world, promoting this energy
usage industry as a potential area of research. This subsection focuses on the existing EV
charging infrastructure, hybrid renewable power production technologies for EV charging,
costs of electricity generation, and the reduction in GHG emissions by the charging system.
The power and transport industries account for the majority of carbon footprints on the
planet. RE can help to reduce harmful emissions in the electrical sector, while grid-powered
EVs can greatly decrease pollution in the transportation sector. When RE sources and EVs
are combined, they have a lot of potential to solve ecological and financial issues. EVs and
RE sources have been discussed in terms of the operation of the system in several kinds
of literature.

Optimal systems of various hybrid combinations, such as SPV/wind/diesel/battery
systems, have been documented in several articles. On the other hand, SPV systems are less
expensive and more applicable than WT [7]. Since the growth and deployment of hybrid
RE systems have increased dramatically in the past few years [8], the proper design of these
systems is critical for achieving a high degree of reliability at low prices. Under-sizing the
system can result in operational limits and energy shortages, while over-sizing the system
can lead to high expenses. Hence, sophisticated optimization methods are essential to
tackle the optimal sizing problem. The components of the hybrid power system must be
designed and integrated as part of the sizing technique to anticipate their efficiency based
on meteorological conditions; this comprises predicting the energy output of renewable
sources and the battery charge state.

A range of sizing strategies has been reported in the literature, which includes recur-
sive approaches [9] and software applications, such as HOMER [10]. The use of traditional
procedures based on recursive, quantitative, or statistical methods has fallen dramati-
cally [11], whilst approaches utilizing optimization algorithms have attracted a lot of
attention. Heuristic algorithms are quite efficient and have a lot of potential when it
comes to handling optimization challenges. Several types of research have been performed
to apply such algorithms to the challenge of sizing RE plants [12]. The practical limits
of the EV market in China are investigated, and the influence of incentives on an auto
manufacturer’s optimal production and pricing decisions is analyzed [13]. A feasibility
assessment for a solar-energy-based EVCS in Shenzhen, China, is evaluated using the
HOMER software tool. This anticipated strategy addresses the grid power-related issues
by incorporating SPV, as well as achieving the expected demand for EVs [14]. There is no
other option for generating electricity on wet or foggy days. Another feasibility analysis
based on solar-powered EVCS was undertaken in Bulgaria [15]. Many studies envision
the incorporation of RE sources, such as a PV system, into charging stations, as the best
solution for maximizing the financial and environmental advantages of EVs while also
promoting the idea of a smart grid [16]. In Ref. [17], authors have described multiple aspects
of the problem formulation, including the choice of design variables and the definition of
a probability distribution function to improve efficacy and effectiveness. In Ref. [18], the
authors investigated an operational strategy for EVs that employs sustainable RE sources,
such as SPV, and gives an optimization method for charging park energy management.
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The radial distribution network is affected by the uncertainty of the charging load of the
EVCS and SPV unit. A study used a hybrid of genetic algorithm (GA)- and particle swarm
optimization (PSO)-based optimum scheduling of EV load to minimize system losses,
variations in voltage, cost of charging, and battery costs of EV [19]. The elastic demand
was developed using either feedback from crowded travel and congested stations on
route selections or the presumption that charging demand between origin and destination
pairs follows a nonlinear inverse cost function without taking into account pre-generating
pathways and charging configurations [20]. Authors envisioned a PSO for the optimal
sizing of SPV and battery energy storage system (BESS) in a grid-connected EVCS, with a
financial model as the goal [21]. In Ref. [22], authors suggested a hybrid solar and wind
charging station that was deployed in Tangshan, China, and proposed an LPSP technique
to evaluate the component capabilities. In Ref. [23], a cost-effective EV charging station is
developed by comparing a standalone EV charging station to a grid-connected charging
station while taking emissions into account. However, there was no cost evaluation for
the hybrid system. The authors utilized linear programing to determine the optimum
integration of CS, restricting the search area under the assumption that CSs can only be
positioned in parking areas and service stations. The optimization technique considers the
accessibility of CS within a reasonable driving range [24]. In Ref. [25], a charging station
based on solar- and grid-connected stations for a worksite in the Netherlands is presented.
Various charging possibilities for EVs were proposed. However, the work did not contain
an economic analysis. The demand response systems and EV charging is investigated by
integrating them into radial distribution network buses [26]. Particle swarm optimization
is being used to resolve the issue of charging station placement [27]. A comprehensive
design of an EVCS is proposed, in which EVCS are integrated with renewable sources
of energy and a BESS to ease the burden on the utility grid. To optimize the design, a
new technique is proposed, which is a hybrid of the crow search algorithm and PSO [28].
Another study was conducted at the University of Palermo in Italy to build a long-term
recharging facility for EVs. It results in a low levelized cost of energy, implying that energy
storage systems will require a significant amount of initial capital [29]. The GA is used to
optimize the adoption of CS. The authors of this study specify some settlements in the ur-
ban environment. Settlements are intended to be the locations where EVs are parked for the
majority of the time. GA defines CS positions by minimizing distances to settlements [30].
Based on local resource allocation, the author combined SPV and biogas-based resources
with EV load in Bangladesh [5]. SPV energy is widely available because PV units can be
easily installed on the rooftop. In Ref. [31], the author provides an optimization strategy
for grid-connected SPV/BESS/EVCS to scale SPV, BESS, and establish the charging and
discharging characteristics of BESS. This problem is implemented using the multi-agent
PSO technique, which integrates the multi-agent system (MAS) and the PSO mechanism.
The authors of Ref. [32] consider charging station implementation, taking into account the
repercussions on travelers, cab drivers, electricity retail outlets, transport and distribution
networks, and electricity consumers. A multi-objective optimization was suggested to
handle the developed framework. A hybrid SPV and wind-based EVCS are designed and
simulated in HOMER software [33]. An eco-friendly alternative for EV charging based on
two RE sources, namely SPV and biogas, is presented. The HOMER package is used to
assess the effectiveness and features of SPV and biogas-based EVCS. An SPV system, two
biogas generators, and a bi-directional converter with BESS are all part of the proposed
system. HOMER software analyzes the alteration of various costs, such as net present value,
fixed cost, and energy cost for various SPV configurations [6]. The authors of Ref. [34]
presented an enhanced version of chicken swarm optimization (CSO) to optimally locate
the EVCS in an IEEE 33 node test distribution network. They first evaluated the network
impact of projected EV charging load at the EVCSs in terms of voltage levels, average
voltage deviation index, voltage stability index, and power loss, and then, using a feed-
forward neural network, they investigated the solar power required to energize the EVCSs.
In Ref. [35], the author presented a grid-integrated solar- and wind-based energy system to
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meet the power requirements of a shopping mall, as well as EVCS load. The components
are sized to attain the lowest electricity cost while lessening the deficiency of power supply
probability, using artificial colony bee and PSO. The optimum strategy and operation of
a renewable-powered EVCS will be presented in this study, to lower cost and emissions.
The proposed hybrid system comprises SPV, WT, biogas, batteries, and DG units [36]. In
Ref. [37], the authors evaluate the technical viability of implementing a standalone fast
charging station in the State of Qatar, which includes WT, SPV system, and a bio-generator
as RE source, as well as multiple storage devices. The envisaged design is constructed,
modeled, and simulated using the HOMER software to determine the best techno-economic
configuration for fast charging 50 EVs on a daily basis. Space constraints, the deterministic
nature of EV demand, and metrological conditions of the considered site are all taken into
account. The goal of the research undertaken is to use HOMER pro software to deliver
SPV power to EVs and feed excess power to the grid network. The author used GA to
develop a modeling framework for an SPV/wind/battery for a deserted landmass [38]. A
multi-objective PSO to size and analyze a PV/wind/hydroelectric power station with a
pumped-storage connected energy system is suggested [39]. The authors investigated a
probabilistic modeling approach of an EVCS with SPV, battery, and transformer, with an
emphasis on charging demand and SPV power generation complexities. To begin, a de-
tailed EV charging requirement model is developed by projecting the coupling between the
EV dynamic charging pattern, charger specifications, and EV charging assignment model.
The planning model is then developed to minimize the total cost of the charging station,
with the uncertainties associated with EV charging being acknowledged through various
limits [40]. A multi-objective moth flame optimization (MFO) that was used to optimize
a hybrid microgrid system with SPV/wind/BESS/DG is designed [41]. In Ref. [42], the
author focuses on a hybrid energy system that includes an SPV, WT, a biogas generator,
and BESS for providing reliable electricity to a deserted island in Bangladesh called Saint
Martin. The energy system’s component is sized in accordance with energy cost and life
cycle emissions under a certain level of reliability. The objectives are optimized by con-
sidering two well-known multi-objective optimization methods: non-dominated sorting
GA-II and infeasibility-driven evolutionary algorithm. In Ref. [43], the authors presented
the technical economic viability of solar- and wind-based EVCS at five different areas in
the southern region of Tamil Nadu. The locations are selected such that wind and solar
possibilities are of contrary nature in the required places. In Ref. [44], a comprehensive
quantitative model is designed to identify the suitable SPV/WT/BESS sizes for distant
locations. The suggested method is tested at Ras-Shaitan, a rural area in Egypt-Sinai. The
goal of the optimization method is to accommodate power requirements by lowering the
cost of energy under various power supply failure scenarios. To get the optimum objective
value, the gray wolf optimizer is used to determine the SPV, WT, and BESS units.

Several heuristic methodologies for tackling the sizing issue of various system compo-
nents have been suggested in the research publications. Because of their excellent ability to
tackle difficult optimization issues, researchers are increasingly looking into these strate-
gies. However, the efficiency of each optimization technique, when used for evaluating
the optimal size, may vary in terms of precision and convergence rate. Although there is a
range of sizing methodologies available, academics working on this problem are constantly
looking for a robust and highly precise approach with a small implementation time. This is
in order to develop and formulate energy systems that are both reliable and cost effective.

The control and power management of EVs in grid-connected systems are the primary
focus of researchers. However, one of the important aspects that must be addressed is
an economic analysis that takes into account the power exchange with the grid. The
fast adoption of EVs poses both constraints and opportunities for the current electricity
system. A small grid-connected SPV and DG-based hybrid system with EVs are presented
in this article for a charging station in the northwest region of Delhi, India. The main
objective is to formulate a statistical model of a solar and diesel generator-based hybrid
system with EVs and a backup grid. Furthermore, the purpose of this research is to reduce
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power interchange with the grid. The salp swarm algorithm (SSA) and the modified salp
swarm algorithm (MSSA) have never been introduced before for satisfying the EV load
requirement using hybrid SPV and DG with utility grid as a backup. To our knowledge, no
previous study has compared the performance of so many different sizing methodologies
on a single energy system. Hence, the assessment described in this article will be a useful
guide for researchers looking to select a technique for their sizing concern.

1.3. Contribution

A solar PV module, diesel generator, battery storage, and backup grid are all part of
the hybrid energy system being investigated. The system is designed as a simple micro grid
to test the algorithms’ performance against a conventional framework. The system’s total
net present cost (TNPC) is minimized, while the lack of power supply probability (LPSP) is
taken into account as a reliability restriction. In addition, the levelized cost of energy cost
(LCOE) is used to evaluate the hybrid energy system. The optimization technique is based
on real-time solar irradiation and ambient temperature data collected over one year.

In light of the preceding discussions, the following are the key objectives of this paper:

• Identify the optimal EVCS design using realistic inputs on physical, operating, and
economic features of RE sources, such as SPV and DG, with the utility grid.

• To create a novel idea that combines a photovoltaic module with DG to provide
electricity for charging plug-in electric vehicles.

• To assess the technological, financial, and ecological viability of the proposed model.
• Two novel methods, SSA and MSSA, are discussed and employed in the sizing problem

of the system component for the first time. The efficacy of such methods is assessed
and equated in terms of consistency, convergence cycle, and processing time.

The rest of this article is laid out as follows. The modeling of the various components
of a hybrid energy system is performed in Section 2. The problem formulation is elaborated
in Section 3. The proposed optimization methodology is discussed in Section 4. The results
are thoroughly discussed in Section 5. Future challenges and opportunities are presented
in Section 6. Finally, conclusions are stated in Section 7.

2. Hybrid System Components and Their Mathematical Modeling

The mathematical modeling of the hybrid energy system to meet the charging demand
of EVs is described in this section. An SPV panel, DG, battery, inverter, and backup grid are
all part of the hybrid energy system under consideration. To enhance load supply reliability,
the battery is utilized to control the variation of RE generation. A graphical representation
of the proposed SPV/DG/battery storage system is shown in Figure 2. The methodology
for conducting this research work is shown in Figure 3.

 

Figure 2. Schematic representation of the proposed hybrid energy system.
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Figure 3. A schematic representation of the system analysis and design procedure.

2.1. SPV Panel Output

Solar radiation is the most prevalent component on the planet, as well as being the
most robust RE source. It is comparatively simple to execute and can be made affordable in
all remote areas of the country. Concerning the maximum output pattern of SPV, modules
are widely used to estimate the quality of an SPV generation system to its peak power.
SPV panels are used to generate electricity by collecting solar energy. Only a small portion
of the solar radiation that penetrates the SPV panels is transformed to electricity, with
the remainder being converted to heat. Several factors can influence the quality of the
SPV power output. The power output obtained from SPV is dependent on the area of
the panel, solar irradiance incident on the surface of the panel, temperature of the SPV
cells, and geographical parameters, i.e., latitude and longitude of the panel location, using
Equation (1):

PSPV-out(t) = ηSPVASPVGh(t){1− 0.005(Tcell − 25)} (1)

where ηSPV is the efficiency of solar panels, ASPV represents the surface area of the solar
panel, Gh(t) denotes the hourly solar irradiance falling on the surface of the solar panel,
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and Tcell is the temperature of the cell. The parameters taken for the selected PV panel are
tabulated in Table 2.

The temperature of the cell and the fluctuation of power as a function of temperature
are given by

Tcell = Ta +
NOCT− 20

0.8
Gh(t) (2)

where Ta is the ambient temperature.
The rated maximum power output of solar panel can be expressed as

Pmax = VmaxImax (3)

where Vmax denotes the maximum value of voltage, and Imax represents the maximum
current, respectively.

The overall power generated using SPV modules can be estimated by

Ptotal
SPV-out(t) = NSPVPSPV-out(t) (4)

where NSPV is the number of the installed solar PV panels.

2.2. Diesel Generator (DG)

The quantity of energy storage necessary for isolated villages and rural enterprises
can be lowered by using DGs, resulting in a profitable and reliable solution. In the event of
battery degradation during peak loads, diesel can be used as a backup source of energy.

The DG’s efficiency and hourly fuel usage should be accounted for when planning a
hybrid system and may be represented using the equation below [34]:

u(t) = a× PDG(t) + b× Prated-DG (5)

where u(t) is the fuel consumption in liters per hour, PDG(t) is produced power in kW,
Prated-DG is the rated power, a (0.246) and b (0.08415) are constant parameters in liter per
kW, which characterize the coefficients of fuel consumption.

The efficiency of DG can be computed by

ηoverall = ηbrake thermal × ηDG (6)

where ηoverall is the overall efficiency of DG, whereas ηbrake thermal represents the brake
thermal efficiency of DG.

2.3. Modeling of Battery Energy Storage System (BESS)

Due to the erratic nature of SPV output, optimum battery sizing is essential to meet
the load demand. The existing state of charge (SOC) is the most important decision variable
for monitoring the charging/discharging states of the battery. Overcharging of the battery
takes place when the hybrid model generates too much power or when the load demand is
too low. When the battery’s SOC reaches its maximum value, i.e., SOC (max), the control
system gets involved and stops the charging mechanism, whereas when it acquires its
minimum value, i.e., SOC (min), the control system disables the load to avoid the battery
from being drained [45].

There are instances when the state of the battery varies depending on the power
output and load demand. The battery performs an important role in the system’s energy
management by adjusting power demands and power supply. The battery is said to be
charging when the generated power is higher than the required energy, and the charging
state of the battery at time t is given by [45]

SOCbat(t + 1) = SOCbat(t)(1− σ)+

[(
PSPV-out(t) +

PDG(t)
ηbdinv

)
− PEVCS-dem(t)

]
×ηbat (7)
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On the other hand, when RE sources are unable to create enough power to meet
demand, the battery is employed as a backup to feed the load system and operate in
discharging state. The discharging state of the battery at time t is given by

SOCbat(t + 1) = SOCbat(t)(1− σ)−
[
PEVCS-dem(t)−

(
PSPV-out(t) +

PDG(t)
ηbdinv

)]
ηbat

(8)

where SOCbat(t + 1) and SOCbat(t) are the SOC of battery at an instant (t + 1) and (t),
respectively, σ is the self-discharge rate of the battery, ηbdinv is the efficiency of bi-directional
inverter used, PSPV-out(t) and PDG(t) are the power output of SPV and DG, respectively,
and ηbat is the round trip efficiency of the battery. The round-trip efficiency of the battery
can be expressed using Equation (9):

ηbat = η
charge
bat × η

discharge
bat (9)

where η
charge
bat represents the charging efficiency of the battery, whereas ηdischarge

bat denotes
the discharging efficiency of the battery. The round-trip efficiency of the battery bank is
reported to be 92.2 percent. Furthermore, charging/discharging efficiencies are assumed to
be 85/100 percent, respectively. SOCmax round-trip efficiency of the battery is the maximum
value of SOC and is equivalent to the total energy of the battery bank Ctotal(Ampere hour),
as follows:

Ctotal(Ampere hour) =
Nbat

Nseries
bat

Csbat(Ampere hour) (10)

where Csbat is the energy of a single battery, Nbat represents the total number of batteries,
and Nseries

bat represents the number of batteries connected in series. The battery bank is only
allowed to discharge to a certain minimal level, known as SOCmin. This restriction can be
used as a system constraint depending on how the battery bank is utilized. Batteries are
arranged in series to get the desired bus voltage. The number of batteries in a series can be
computed using the formula

Nseries
bat =

Vbus
Vbat

(11)

where Vbat is the voltage level of a single battery.
The maximum charge/discharge power at any given time is another important con-

sideration in battery modeling. It is determined by the maximum charging current and
may be computed using the equation below:

Pmax
bat =

Nbat ×Vbat × Imax

1000
(12)

where Imax is the maximum charging current drawn by the battery in amperes, and Pmax
bat is

the maximum input/output power of the battery.

2.4. Bi-Directional Inverter Modeling

The bi-directional inverter performs the function of conversion of DC to AC power
and vice versa. Solar panels provide DC electricity to EVs at the charging station. Hence,
the bi-directional inverter is required to transform the DC power of SPV. The output of the
bi-directional inverter can be computed as follows:

PAC = ηbdinv × PDC (13)

The proposed system takes into account a bi-directional inverter efficiency of 97 percent.
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2.5. Utility Grid

In the first phase, when the demand exceeds the generated power from the different
energy sources and BESS capacity, the energy shortage can be fulfilled by borrowing the
energy from the grid network and may be represented using Equation (14):

Pgrid
P (t) = PEV

D (t)
−
[
Ptotal

SPV-out(t) + PDG(t)

+
[(

Ptotal
SPV-out(t) +

(
SOCbat(t)− SOCmin

bat (t)
))
× ηbdinv

]] (14)

where Pgrid
P (t) represents the energy to be borrowed from the grid in kWh, and SOCmin

bat (t)
denotes the minimum SOC of battery.

In the second phase, when the demand is less than the generated power from the
different energy sources, and the battery is wholly charged, the extra energy is sold to the
utility grid and may be represented using Equation (15):

Pgrid
S (t) =

[
Ptotal

SPV-out(t) + PDG(t)

+
[(

Ptotal
SPV-out(t)− (SOCmax

bat (t)− SOCbat(t))
)
× ηbdinv

]]
−PEV

D (t)

(15)

where Pgrid
S (t) represents the extra energy to be sold to the grid in kWh, and SOCmax

bat (t)
denotes the maximum SOC of the battery.

2.6. Modeling of EVCS Load

The main components of EVCS are dual converter, charging ports, and EVs. The
charging station is coupled to a regulator, which facilitates controlling the direction of the
power flow at a specific time. The charging of EV takes place based on its current SOC. SOC
is defined as the ratio of available charging state to the maximum charging state, i.e., when
the battery is fully charged. Hence, it describes how much battery needs to be charged.

The amount of power consumed by an EV is determined by the distance traveled,
battery capacity, and driving mode. An EV uses power, which may be estimated using
the equation

PEV
D =

Dkm × Ereq/km

T
(16)

where Dkm is the number of kilometers traveled, the power needed per kilometer is Ereq/km,
and T is the time to recharge the battery. T is the difference between the time of arrival and
departure. T is determined by the SOC of the vehicle’s battery. The power requirement of
an EV can be illustrated using the capacity of battery, SOC, and time of charging:

PEV
D =

QEV
bat ×

(
SOCEV

max − SOCEV
min

)
T

(17)

where QEV
bat represents the capacity of the EV battery, SOCEV

max and SOCEV
min are the maximum

and minimum limit of SOC, and T denotes the duration of charging.
Therefore, the total power required for charging the N number of EVs is given

as follows:

PEV
total =

NEV

∑
i=1

Pi
D (18)

The technical features of different components of a hybrid energy system are summa-
rized in Table 2.
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Table 2. Technical and economic parameters of different hybrid system components.

Components Characteristics Values

Solar PV panel (Canadian Solar Max
Power CS6X-325P) [6]

Rated power 325 W
Normal operating cell temperature 45 ± 2 ◦C

Open circuit voltage (VOC) 45.5 Volts
Short circuit current (ISC ) 9.34 Amps

Module efficiency: 16.94%
Dimensions 76.90 × 38.70 × 1.57 inches

Power tolerance 0/+5 W
Initial cost USD 950/kW

Replacement cost USD 900/kW
Operation and maintenance cost USD 10/kW

Life span 25 years
Derating factor 80%

Diesel generator (Generic 10 kW fixed
capacity genset) [46]

Minimum load ratio 50%
Heat recovery ratio 10%

Operating time 15,000 h
Fuel price USD 1.21/L
Density 820 Kg/m3

Initial capital cost USD 500/kW
Replacement cost USD 500/kW

Operation and maintenance cost USD 10

Battery (Generic 1 kWh lead acid) [47]

Battery material Lead acid
Nominal voltage 12 V
Nominal capacity 81–100 Ampere hour

Lifetime 5–8 years
Initial capital cost USD 235/kW
Replacement cost USD 190/kW

Operation and maintenance cost USD 2/kW/year

Bi-directional converter [47]

Rated power 100 kW
Initial capital cost USD 171/kW
Replacement cost USD 171/kW

Operation and maintenance cost USD 4/kW/year

Utility grid [36] Grid purchase price USD 0.12/kWh
Grid sell back price USD 0.08/kWh

Others [47]

Nominal interest rate 3.75%
Inflation rate 1.75%

Lifetime of project 25 years
SOCmax 0.95
SOCmin 0.35

Inverter efficiency (%) 0.95
Rectifier efficiency (%) 0.95

3. Problem Formulation

In this paper, the problem formulation deals with the optimization of different con-
figurations of energy system for satisfying the load demand of EVCS installed in the
northwest region of Delhi, India, with real annual data of solar irradiance, temperature,
and EV load. These configurations are stated as follows: (a) SPV/DG/battery-based EVCS,
(b) SPV/battery-based EVCS, and (c) grid-and-SPV-based EVCS. The hybrid energy system
is constructed with a maximum load of 25.45 kW, and the yearly average energy require-
ment is 257 kWh/day. The goal of optimization is to minimize the total net present cost
(TNPC), keeping the reliability constraint in terms of loss of power supply probability
within specified limits. Moreover, another parameter for analyzing the performance of the
hybrid energy system is the levelized cost of energy (LCOE). The MSSA is implemented to
improve its searching potential based on Levy flight distribution (LFD), enabling individ-
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uals to move to new locations and individual spiraling around the optimum solution to
improve the exploitation phase. In this work, the energy management of the hybrid system
is based on load following strategy (LFS). The numbers of SPV panels and batteries are
chosen as the optimization variables, which are determined optimally using the MSSA. The
primary goal of this research work is to perform a cost-effective analysis for all selected
configurations with lowest TNPC, LCOE, and best reliability. The MSSA performance in
the optimization of hybrid energy system is compared to conventional SSA and GWO.
The objective functions, i.e., TNPC and LCOE and constraints, are coded in MATLAB
environment considering the energy management strategy reported in Figures 4 and 5 for
SPV/DG/battery-based EVCS and grid-and-SPV-based EVCS, respectively.

 

Figure 4. Flow chart of the energy management strategy of the SPV/DG/battery system.

3.1. Assumptions

• Charging stations operate for the whole day.
• Different number of EVs arrive at charging station on a daily basis.
• Only one charging station is considered.
• Limited output power of battery is taken into account.
• Load following strategy (LFS) is considered.
• Diesel generator is allowed to operate only when no power output from SPV is available.
• Cost of EV charger is around USD 50.

3.2. Objective Functions

The optimal number of solar panels, i.e., NSPV and batteries, i.e., Nbat, must be deter-
mined to ensure that the system formulated in different configurations meets the charging
demand of EVs. The objective function is formulated using the total net present cost
(TNPC), levelized cost of energy (LCOE), and reliability in terms of loss of power supply
probability (LPSP).

3.2.1. Total Net Present Cost (TNPC)

The total cost of a hybrid energy system is represented by the total net present cost
(TNPC). It includes all costs and revenues incurred during the life cycle of the system,
including system component capital costs, replacement costs incurred during the system’s
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operation, and maintenance expenses. The numbers of SPV panels and batteries are chosen
as the two primary decision variables for the optimum configuration. Hence, mathematical
equations for the NPC of various system components are derived as follows:

 

Figure 5. Flow chart of the energy management strategy in grid-and-solar PV-based EVCS.

Solar PV

The project lifetime is set to be equivalent to the lifetime of PV panels in this study.
Furthermore, solar irradiance is used as a free fuel to generate power. Therefore, there will
be no fuel costs. There, NPC of solar PV (NPCSPV) consists of capital cost

(
CCAP

SPV

)
, replace-

ment cost
(

CREP
SPV

)
, operation and maintenance cost

(
COM

SPV

)
, and salvage cost

(
CSAL

SPV

)
and

can be given as follows

NPCSPV = CCAP
SPV + CREP

SPV + COM
SPV −CSAL

SPV (19)

The capital cost of solar PV panels can be computed as

CCAP
SPV = NSPV ×ψSPV × PSPV (20)

where ψSPV and PSPV denote the initial cost and power rating of each SPV panel, respectively.
Replacement cost, i.e.,

(
CREP

SPV

)
of SPV panel, can be determined using the following equation:

CREP
SPV = ζ

rep
SPV ×NSPV × PSPV × R(1 + R)Ω(

(1 + R)Ω − 1
)
(1 + R)ΩSPV

(21)

where ζ
rep
SPV denotes the cost of replacing the SPV panel, R denotes the rate of interest, Ω in-

dicates the life span of the project in years, and y represents the lifetime of the SPV panel.
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Further, operation and maintenance cost
(

COM
SPV

)
can be computed as follows:

COM
SPV = NSPV ×ωSPV × PSPV ×∑Ω

i=1

(
1 + μSPV

1 + R

)i
(22)

where ωSPV is the OM cost of each panel, and μSPV is the escalation rate.
Salvage value is the cost of the component’s remaining life after the project is com-

pleted. The salvage cost of the SPV panel can be defined as

CSAL
SPV = NSPV × εSPV ×

(
1 + ∂

1 + R

)Ω
× PSPV (23)

where εSPV denotes the resale price of the solar panel after completing its life, and ∂ is the
inflation rate.

Battery

The NPC of battery storage system, i.e., NPCbat, involves capital cost
(

CCAP
bat

)
, replace-

ment cost
(

CREP
bat

)
, operation and maintenance cost

(
COM

bat

)
, and salvage cost

(
CSAL

bat

)
and

can be given as follows

NPCbat = CCAP
bat + CREP

bat + COM
bat −CSAL

bat (24)

CCAP
bat = Nbat ×ψbat (25)

COM
bat = Nbat ×ωbat ×∑Ω

i=1

(
1 + μbat

1 + R

)i
(26)

CSAL
bat = Nbat × εbat ×

(
1 + ∂

1 + R

)Ω
(27)

where ψbat is the cost of one battery in USD. ωbat and μbat indicate annual OM cost in
USD/year and escalation rate (0.075) of batteries, respectively. εbat denotes the resale value
of one battery in USD.

The battery life (Ωbat) has been considered to be 5 years in this study, which is shorter
than the project lifetime of 25 years. Hence, the battery must be replaced every 5 years. The
number of battery replacements (NBR) is determined as

NBR =
Ω

Ωbat
− 1 (28)

The replacement cost of the battery can be determined as

CREP
bat = Nbat × ζ

rep
bat × ∑

i=5, 10, 15, 20

(
1 + μbat

1 + R

)i
(29)

Bi-Directional Inverter

The NPC of the bi-directional inverter can be calculated as

NPCbdinv = CCAP
bdinv + CREP

bdinv + COM
bdinv −CSAL

bdinv (30)

where CCAP
bdinv, CREP

bdinv, COM
bdinv, and CSAL

bdinv represent the initial capital cost, replacement cost,
operation and maintenance cost, and salvage cost of the bi-directional inverter, respectively.

CCAP
bdinv = Nbdinv ×ψbdinv (31)
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COM
bdinv = Nbdinv ×ωbdinv ×∑Ω

i=1

(
1 + μbdinv

1 + R

)i
(32)

CSAL
bdinv = Nbdinv × εbdinv ×

(
1 + ∂

1 + R

)Ω
(33)

The inverter’s assumed lifetime is 10 years, which is shorter than the project’s lifespan
(25 years). As a result, the net present value of the replacement cost of the inverter is
expressed as follows:

CREP
bdinv = Nbdinv × ζ

rep
bdinv × ∑

i=10,20

(
1 + μbdinv

1 + R

)i
(34)

Sale and Purchase Capacity with Utility Grid

In an on-grid system, the NPC of selling electricity to the grid or purchasing electricity
from the grid can be evaluated as follows:

Cgrid
S = ξ

grid
S × Egrid

S ×
(1 + ∂grid

1 + R

)Ω

(35)

Cgrid
P = ξ

grid
P × Egrid

P ×
(1 + ∂grid

1 + R

)Ω

(36)

where ξ
grid
S and ξ

grid
P indicate the cost for unit sale and of purchase of electricity to and

from the utility grid, respectively. It is defined in USD per kWh.
Hence, one of the objectives of this research work is to minimize the TNPC of the

system, which is described as follows:

TNPC(USD) = NPCSPV + NPCDG + NPCbat + NPCbdinv + Cgrid
P −Cgrid

S (37)

3.2.2. Levelized Cost of Energy (LCOE)

Levelized cost of energy may be defined as the average cost incurred per kW of energy
production by the system. LCOE is computed by dividing the annualized cost of energy
generation by the total energy production per year. It can be computed with the help of
capital recovery factor (CRF), using the following Equation (38) [10]:

LCOE =
TNPC×CRF

∑T
t=1 Pgen(t)

USD/kW (38)

CRF can be evaluated using Equation (39), as follows:

CRF =
R(1 + R)Ω(
(1 + R)Ω − 1

) (39)

LCOE depends on numerous features, such as capital cost, solar radiation, lifetime,
operation and maintenance cost, CRF and degradation of the SPV panels used, etc.

3.2.3. Renewable Fraction

The renewable fraction (RF) is an important criterion to consider when designing an
energy system. The total energy produced via RE sources is divided by the total power
drawn by the load to calculate the RF. RF can be calculated using Equation (40):

RF =

(
1− ∑ PDG

PSPV

)
× 100 % (40)

429



Mathematics 2022, 10, 924

3.3. Decision Variables and Constraints

To optimize the hybrid system, a compromise must be made between the cost-based
objectives and various technical constraints. However, the proposed optimization approach
should be used to obtain the optimal decision variables. The decision variable of the
suggested optimization procedure is subject to specific limits: the minimum limit put on
the number of SPVs and battery, and the Nmax

SPV = 1000, Nmax
bat = 600.

• The following are the limits associated with the maximum and minimum sizes of
decision variables:

Nmin
SPV ≤ NSPV ≤ Nmax

SPV (41)

Nmin
bat ≤ Nbat ≤ Nmax

bat (42)

Emin
bat ≤ Nbat ≤ Emax

bat (43)

• The charging state of the battery should be preserved using Equation (44). At any
given time, the amount of energy stored in the battery SOCbat(t) is limited by the
maximum and minimum quantities SOCmin

bat and SOCmax
bat as follows:

SOCmin
bat ≤ SOCbat ≤ SOCmax

bat (44)

SOCmax
bat takes the value of the theoretical capacity of the battery Cbus × Vbus. The

maximum depth of discharge, i.e., DOD and theoretical capacity Cbus × Vbus is used to
calculate SOCmin

bat , as expressed in Equation (45):

SOCmin
bat = (1−DOD)×Cbus ×Vbus (45)

DOD is assumed to be 50%.

• The maximum permissible lack of power supply should be considered for a reliable system:

LPSP ≤ LPSPmax (46)

where LPSPmax represents the maximum allowable lack of power supply probability.

3.4. Operational Strategy
3.4.1. Solar PV and Diesel Generator-Based EVCS

To attain the reliability of the system in any hybrid energy system, optimal energy
management is required. In this system, the DG is kept at the bottom of that list, which
means it only needs to operate when the solar and battery systems are unable to supply the
load requirement. The steps for the simplest implementation strategy for SPV/DG/battery
system are as follows:

• If the total power generated by SPV panels is sufficient, demand can be met solely by
solar power. After the load has been satisfied, excess electricity can be supplied to the
BESS and is provided as follows:

Pbat(t) = PSPV-out(t)− PEVCS-dem(t) (47)

• In the preceding case, if Pbat(t) is greater than the maximum permissible capacity of
the BESS, i.e., Pmax

bat , then additional energy can be dumped or directed to deferrable
loads. Excess or dump energy (Pdp(t)) can be given as

Pdp(t) = Pbat(t)− Pmax
bat (t) (48)
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• If the SPV panels do not generate sufficient power, the battery can provide the remain-
ing power, which can be calculated as

Pbat(t) = PEVCS-dem(t)− PSPV-out(t) (49)

• If solar power is insufficient and batteries are unable to generate the required power
to meet the power requirements, DG is used to energize the load. There are two ways
to use DG.

(a) First, it employs a load-following strategy, which means that whenever it performs,
it produces only the power necessary to satisfy the primary load requirements. The
diesel generator’s power output is calculated as

PDG(t) =
PEVCS-dem(t)− PSPV-out(t)

ηbdinv
(50)

(b) In the second strategy, it runs at maximum capacity or minimum load ratio. When the
DG is fully operational, the surplus energy is used to charge batteries and is expressed
as follows:

Pbat(t) = (PDG(t)∗ηbdinv − PEVCS-dem(t)) + PSPV-out(t) (51)

The operational strategy of the SPV/DG/battery system can be understood with the
help of the flow chart depicted in Figure 4.

3.4.2. Grid-and-Solar PV-Based EVCS

In this scenario, it is assumed that SPV is the only source to satisfy the load demand of
EVs. The difference between power obtained by SPV and power demand by EVs can be
determined as

ΔP(t) = PSPV(t)− PEVCS-dem(t) (52)

If solar panels are unable to fulfill the power requirements of EV load, the extra power
is purchased from the grid network (Pgrid

P (t)) to meet the requirements.
Furthermore, if more power is available from the SPV after meeting the requirements,

it is sold to the grid (Pgrid
S (t)). Nevertheless, there are some limitations on selling and

purchasing power to and from the grid, which are defined as maximum purchase capacity
of grid (Pgrid

P, max) and maximum selling capacity of grid (Pgrid
S, max). Beyond these limits, power

cannot be purchased from or sold to the grid. The following cases are formed depending
on the ΔP(t).

• When SPVs alone fulfill the power requirement of EV load, i.e., ΔP(t) > 0, the extra
power is sold to the grid network, which can be determined as

Pgrid
S (t) =(PSPV(t)− PEVCS-dem(t))/ηbdinv (53)

• When SPV power output is high enough, which fulfills the power requirement of EV

load, as well as exceeds the maximum selling capacity of grid (Pgrid
S, max), i.e., ΔP(t) > 0

and ΔP(t) > Pgrid
S, max, the extra power is fed to the dump load, which can be determined as

Pdp(t) =(PSPV(t)− PEVCS-dem(t)− Pgrid
S (t)/ηbdinv) (54)

� When SPV power is unable to satisfy the charging demand of EVs, i.e., ΔP(t) < 0,
power is purchased from the grid which can be computed as

Pgrid
P (t) =(PEVCS-dem(t)− PSPV(t)/ηbdinv (55)

• If ΔP(t) = 0, there is no exchange of power from grid, and SPV power fulfills the
load requirement.
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• When both SPV and grid are unable to satisfy the load demand, deficiency of power
takes place, which can be given as

Pdef(t) = Pgrid
P (t)− Pgrid

P, max (56)

Pdef(t) must be zero to make sure the total power requirement of EV load demand is
served in a reliable manner when minimizing the LPSP.

The LPSP can be kept within a specific tolerance band to solve the optimization
problem. In this paper, the maximum limit of LPSP, i.e., LPSPmax is assumed to be 1%. The
energy management strategy for grid-and-solar PV-based EVCS can be demonstrated with
the help of the flow chart shown in Figure 5.

4. Proposed Modified Salp Swarm Algorithm for Sizing of Hybrid Energy System

A brief discussion of the SSA and MSSA algorithms is presented in this section because
they have yet to be examined for the application of optimal sizing of different energy sources
for the designing of EVCS load in the northwest region of Delhi, India.

It is worth noting that the SSA is a robust heuristic algorithm that has been used to
solve a variety of problems. However, it is susceptible to local optima in some instances and
suffers from stagnation. To render and combat the shortcomings of the conventional SSA,
an MSSA is presented. The suggested MSSA employs two different searching procedures
to improve its searching potential. The first technique is to use Levy flight distribution
(LFD) to improve the searching process, enabling individuals to move to new locations.
The second technique relies on the individual spiraling around the optimum solution
to improve the exploitation phase. Algorithm 1 [48] and Algorithm 2 [49] contain the
pseudocode for the traditional SSA and the modified MSSA, respectively, whereas Figure 6
depicts the graphical representation of MSSA for SPV/DG/battery system optimization.

 

Figure 6. Graphical representation of MSSA for SPV/DG/battery system optimization.

4.1. Salp Swarm Algorithm (SSA)

In 2017, S. Mirjalili presented an individual-based algorithm known as salp swarm
algorithm [48]. SSA models the mechanism of swarm salps, which will be scavenged in
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oceans. The salp at the front of the chain will be the leader, while the other salps will be
considered followers in the ocean.

Like that of other meta-heuristic algorithms, the position of salp can be defined in n
dimensions, where n is the number of variables for a specific problem. Hence, the positions
of all salps are maintained in a two-dimensional matrix known as s. For example, it is
assumed that the food source (R) is available in search space and considered as the target
of all salps in a swarm. So, the describing equations of SSA are given as follows:

si
m =

{
Rm + r1(UBm − LBm)r2 + LBmr3 ≥ 0
Rm + r1(UBm − LBm)r2 + LBmr3 ≤ 0

(57)

where si
m indicates the position of leader, while Rm represents the position of the food source.

UBm and LBm denote the upper and lower bound in m-th dimension of search space.
The coefficient r1 plays a vital role in SSA because it maintains a proper balance

between exploration and exploitation capability and can be expressed as follows:

r1 = 2× exp

(
−
(

4p
P

)2
)

(58)

where p denotes the current iteration, while P represents the maximum iterations.
The parameters r2 and r3 are uniformly produced random values, which lie in the

range of 0 and 1. They specify whether the next point in the m-th dimension should be
toward positive or negative infinity, as well as the step size.

The positions of the follower salps are updated in accordance with the newton second
law of motion, which is stated as follows:

si
m =

1
2

at2 + uot (59)

where i ≥ 2 and si
m depict the position of i-th follower salp in m-th dimension, uo denotes

the initial velocity, and a = ufinal
uo

, where u = x−xo
t .

The simulation time is determined by the number of iterations, and if the conflict
between iterations is equal to 1, and assuming uo = 0, this equation will be as follows:

si
m =

1
2

(
si

m + si−1
m

)
(60)

The salp chains can be modeled with the help of Equations (57)–(60).

Algorithm 1: Pseudocode of conventional SSA method

Start SSA

Step 1: Fix the basic parameters of SSA algorithm, such as maximum iterations (P),
population number, the upper and lower limits of the decision variables
Step 2: Randomly initialize the population of salps individuals
Step 3: Calculate the fitness function for each salp
Step 4: Set iteration p = 1
Step 5: Update r1 according to Equation (58)
Step 6: For every member of salps, if i == 1, update the position of leading salp by
Equation (57)
Otherwise, update the position of follower salp by Equation (60)
Fitness calculation of every salp : Update (S∗ ) if there is a superior solution
Increment t to 1
Repeat steps 5 to 7 until p = Pmax is satisfied
Step 7: Return the best solution (S∗ ) and its fitness value F (S∗ )

End SSA
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4.2. Modified Salp Swarm Algorithm (MSSA)

The MSSA is intended to address the shortcomings of the traditional SSA, such as
its proclivity to local optima and stagnation in some circumstances [49]. To improve the
capability of the traditional SSA, two search techniques are described. The first adjustment
is used to speed up the exploration process by changing the positions of salps using the
Levy flight distribution (LFD) to help the population find new places and break the cycle
of stagnation. The second change entails changing and updating the locations of salps in
the spiral path around the optimum solution to improve its exploitation. The first change,
which is based on the LFD, is written as follows:

Si
m−new = si

m + ε⊕ Levy (λ) (61)

where ε denotes a step size parameter that is set as follows:

ε⊕ Levy (λ) ∼ 0.01
e

|f|1/λ
(

Si
m − SLD

)
(62)

where e and f can be obtained as follows:

e ∼ N
(

0, ∅2
e

)
, f ∼ N

(
0, ∅2

f

)
(63)

∅e =

[
Γ(1 + λ)× sin(π× λ/2)

Γ[(1 + λ)/2]× λ

]1/λ
, ∅f = 1 (64)

where Γ indicates the standard gamma function. The second modification is based on

modifying the locations of salps in the spiral path around the best solution, which can be
expressed as follows:

εε⊕ Levy (λ) ∼ 0.01
e

|f|1/λ
(

Si
m − SLD

)
(65)

The second adjustment is to change the salp locations in the spiral path around the
optimum solution, which may be represented as follows:

Si
m−new =

∣∣∣SLD − si
m

∣∣∣ exp(bt) cos(2πt) + si
m (66)

where b is a number used to characterize the shape of a logarithmic spiral. The adaptive op-
erator d is used to perform the job of balancing the exploration and exploitation processes:

d(t) = dmin +

(
dmax − dmin

Pmax

)
× p (67)

where dmax and dmin are the maximum and minimum values of adaptive operator d. Lastly,
the MSSA’s exploring potential is enhanced by improving the exploration ability with the
LFD by applying Equation (59) at the first iteration when the value of d is small, and the
exploitation capability can be enhanced with the variable bandwidth transition by applying
Equation (63) at the last iteration when the value of d is large.
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Algorithm 2: Pseudocode of modified SSA method

Start MSSA

Step 1: Fix the basic parameters of SSA algorithm, such as maximum iterations (P),
population number, the upper and lower limits of the decision variables
Step 2: Randomly initialize the population of salps individuals
Step 3: Calculate the fitness function for each salp
Step 4: Set iteration p = 1
Step 5: Update r1 according to Equation (58)
Step 6: For every member of salps, if i == 1, update the position of leading salp by
Equation (57)
Otherwise, update the position of follower salp by Equation (60)
Fitness calculation of every salp: Update (S∗), if there is a superior solution
Increment t to 1
Repeat steps 5 to 7 until p = Pmax is satisfied
Step 7: Arranging the salp according to their fitness values
Step 8: Update the d value according to Equation (67)
Step 9: Compare the value of d with a random value r4
If the value of d is less than r4
Update the salp positions based on the spiral orientation according to Equation (66)
Else
Update the salp positions based on Levy distribution according to Equation (61)
End

Step 10: Calculate the fitness function of the updated salps. Then, include the new
solutions if these solutions are better than the solutions of the previous steps
Increment t to 1
Repeat steps 5 to 7 until (p = Pmax) is satisfied
Step 11: Return the best solution (S∗) and its fitness value F (S∗)

End MSSA

5. Results and Discussion

5.1. Components and Methods

This section contains the important components, such as the place of the study area,
resources available, and the load demand of the developed framework.

5.1.1. Area under Study

The proposed study is conducted in the northwest region of Delhi, India. The geo-
graphical coordinates of the studied area are 28.7408◦ N (latitude), 77.1126◦ E (longitude).
Figure 7 depicts the study area from a geographical standpoint. The population of Rohini
sector-17 is 21,460 individuals. Because the majority of citizens in this area are cultured and
working, EVs are employed as a mode of transportation to get to their destinations on a
day-to-day basis. This area has nearly 120–150 EVs, and there are 15 facilities in which these
vehicles are kept and provided with electricity. As per the owner of different facilities, the
amount required to charge the EVs is significantly high because these vehicles are charged
using the grid.

5.1.2. Assessment of the Available Energy Sources

Solar radiation in Delhi is at its highest from March to October. It is available during the
wintertime, but not at its high point. Additionally, it is regarded as an outstanding source
of energy due to its practical features. Figure 8 shows the annual variation of irradiance
at the chosen area. Figure 8 also depicts the clearness index, which is the percentage of
solar radiation that is reflected by the atmosphere. It can also be defined as the ratio of
surface irradiance and extraterrestrial irradiance. Figure 9 portrays the annual fluctuation
of temperature for the study site. The DG is also incorporated as one of the energy providers
in the proposed research work. Energy generation from DG is comparatively easy and cost
effective as well. Thus, DG is used for charging EVs, especially during peak hours.
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Figure 7. The geographical view of the study area.

 

Figure 8. Annual variation of solar insolation and clearness index of the selected area.
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Figure 9. Annual variation of the mean temperature of the selected area.

5.1.3. Assessment of the EVCS Load in the Selected Area

The research study considers three-wheeler EVs, i.e., e-rickshaw, to be the system’s
load. Four 12-Volt lead-acid batteries with capacities of 160 to 180 Ampere hour are
used in a three-wheeler. The theoretical battery energy is 2.2 kWh when the 12 V and
180 Ampere hour battery is considered. Generally, a 12 V battery is recharged to 90% of
its design capacity. As a result, the battery’s energy would be 1.94 kWh. The total energy
consumption for four 12 V battery vehicles, such as e-rickshaws, would be 7.8 kWh. Taking
the system’s 15% system losses into account, the energy consumed is determined to be
9 kWh. Thus, the energy consumed by every e-rickshaw per day is 9 kWh. According to
the research findings, the yearly average energy is 257 kWh/day, the average power is
10.71 kW, and the maximum load is 25.45 kW. A graphical representation of the EVCS load
on an hourly and daily basis is shown in Figures 10 and 11, respectively.

 
Figure 10. EVCS load profile on a daily basis.
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Figure 11. EVCS load profile on an hourly basis.

5.2. Implementation of Proposed MSSA Technique on Benchmark Functions

This section explores the application of the proposed MSSA technique on standard
benchmark functions. Table 3 contains comprehensive descriptions of these functions. The
proposed optimization strategy outperforms SSA and GWO in terms of maximum iterations
and optimal solution of seven mathematical benchmark functions for 30 independent runs.
MSSA adheres to a globally optimal solution without becoming stuck in a local optimal
solution, resulting in faster convergence. Table 4 displays the numerical outcomes in terms
of optimum solution and number of iterations.

Table 3. Standard benchmark functions.

S. No
Function

Name
Mathematical Formulation Dimension (D) Search Range

1. Sphere f(x) =
D
∑

p=1
x2

p 30 [−100, 100]

2. Rosenbrock f(x) =
D
∑

p=1

[
100×

(
x2

p − xp+1

)2
+
(
1− xp

)2
]

30 [−2.048, 2.048]

3. Rastragin f(x) =
D
∑

p=1

[
x2

p − 10 cos
(
2πxp

)
+ 10

]
30 [−5.12, 5.12]

4. Greiwank f(x) = 1
4000

D
∑

p=1
x2

p −
D
∏

p=1
cos
(

xp√
p

)
+ 1 30 [−600, 600]

5. Schewefel f(x) =
D
∑

p=1

(
p
∑

q=1
xq

)2

30 [−100, 100]

6. Ackley f(x) = −20e(−0.2
√

1
D ∑D

p=1 x2
p) − e(

1
D ∑D

p=1 cos (2πxp)) + 20 + e1 30 [−32.76, 32.76]

7. Alpine f(x) =
D−1
∑

p=1

∣∣xpsinxp + 0.1xp
∣∣ 30 [−10, 10]
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Table 4. Numerical results obtained using MSSA and their comparison with SSA and GWO.

Function Name

MSSA SSA GWO

Maximum
Iterations

Optimal
Solution

Maximum
Iterations

Optimal
Solution

Maximum
Iterations

Optimal
Solution

Sphere 1000 1.55 × 10−23 897 5.89 × 10−19 1000 6.25 × 10−19

Rosenbrock 415 2.72 × 10−3 537 5.81 × 101 548 4.57 × 102

Rastragin 338 7.57 × 10−14 458 5.53 × 10−3 495 2.53 × 10−2

Greiwank 973 4.25 × 10−1 1000 3.45 × 10−3 1000 4.87 × 10−1

Schewefel 1000 8592.6 984 7956.4 1000 6085.8
Ackley 1000 7.74 × 10−7 785 9.14 × 10−6 1000 8.54 × 10−3

Alpine 1000 −192.73 1000 −192.45 1000 −192.50

5.3. Simulation Outcomes and Main Findings

This section evaluates the technical and economic parameters for three different sce-
narios using HOMER software and the proposed MSSA technique. These scenarios are
SPV- and DG-based EVCS, only SPV-based EVCS, and grid-and-SPV-based EVCS. The
objective is to achieve the best EVCS design by reducing the total net present cost, levelized
cost of energy while keeping the lack of power supply probability within limits, accounting
for environmental emissions, and different energy supply options. The outcomes are esti-
mated in terms of TNPC, LCOE, SPV energy, the contribution of DG, battery and converter
capacity, additional electricity generation, and the proportion of renewables utilized. The
study then compares a hybrid energy system with a grid connection to a standalone system.
The analysis of the obtained results for different scenarios is summarized in the latter
part of this section. Furthermore, to demonstrate the efficacy of meta-heuristic techniques,
different algorithms are used to analyze the results and are compared and contrasted with
HOMER results. The three different scenarios considered are as follows:

• Scenario 1: Solar PV and diesel generator–based EVCS

This scenario addresses “range anxiety,” a prevalent consideration among EV users
about the vehicle’s range. EV users can schedule long trips with greater certainty if an
EVCS is as easily accessible as a petrol pump. Hence, the layout of an EVCS on roadways
with SPV, DG, and a BESS with the different electricity providers is investigated and
considered as Scenario 1. The goal is to reduce the capital, operation and maintenance,
replacement, and fuel cost of every component associated with the system. The size and
number of the SPV, DG, battery, and converter are considered to be the decision variable of
the optimization problem.

• Scenario 2: Only Solar PV–based EVCS

In some countries, such as Saudi Arabia, the DG acts as a primary source of energy.
In such cases, the diesel option is a good example. On the other hand, DG units are
prohibitively expensive due to the high costs of maintenance, fuel supply, and fuel transport.
Furthermore, DGs emit a lot of pollution. Hence, SPV- and battery-based EVCS are also
being investigated and considered as Scenario 2. In this scenario, the size and number of
solar PVs and batteries are the only decision variables.

• Scenario 3: Grid-and-solar PV–based EVCS

In this scenario, the EVCS is supposed to be grid-connected, and solar PV, battery,
and grid are the various energy supply sources. Because EVCS is grid connected, it can
purchase/sell power from/to the grid network, and the design is improved to account
for the EVCS’s net costs. The price of electricity provided in the Feed-in Tariff program of
New Delhi, India, is taken into account for drawing/selling power from/to the utility grid.
Feed-in Tariffs are the rates charged to RE providers for the energy provided by their power
plants. The evaluating model is distinguished by project length and technology method
and offers a profitable return on investment. The Feed-in-Tariff is a standard rate for the

439



Mathematics 2022, 10, 924

buying and selling of power from and to the grid network throughout the agreement,
whereas the Time-of-Use Tariff is only pertinent to buyers, in contrast to Feed-in Tariffs,
and varies throughout the day over time. In this work, Feed-in Tariffs are considered.

5.3.1. Techno–Economic Analysis of Different Scenarios Using HOMER Software

HOMER is used to model the hybrid energy system to meet the load demand. HOMER
defines weather information, different parametric values of components used, and EVCS
load profile. Many different assumptions are made to attain the optimal plan that decreases
the TNPC, LCOE, while maintaining restrictions, such as supply continuity. It is worth
noting that the information related to cost is indicated in USD.

Table 5 shows the results obtained for Scenario 1, i.e., SPV/DG/battery system. SPV
makes a significant contribution of 122,864 kWh per year and operates for 4369 h per year,
while the DG constitutes 2767 kWh per year and functions for 364 h per year. To operate
optimally, this system makes use of 590 batteries and a 12.1 kW bi-directional converter.
The obtained system has a TNPC of USD 638,917.29, an initial capital cost of USD 375,855,
and an operating cost of USD 16,144.69. The LCOE for this configuration is calculated to be
USD 0.6328/kWh. Furthermore, the NPC of SPV and diesel generator is 42.8 percent and
11.1 percent of TNPC, respectively, whereas the NPC of the bi-directional converter is only
0.58 percent of TNPC.

Table 5. Results attained using HOMER software for Scenario 1.

SPV
(kWh/Year)

DG
(kWh/Year)

Batteries
Used

Converter
(kW)

Initial Capital
Cost (USD)

Operating
Cost (USD)

TNPC
(USD)

LCOE
(USD/kWh)

% of Renewables
Utilized

122,864 2767 590 12.1 375,855 16,144.69 638,917.29 0.6328 96.5

Similarly, Tables 6 and 7 display the outcomes of Scenarios 2 and 3, respectively. When
the only energy-producing source is an SPV and a battery, the LCOE is USD 0.7318/kWh,
the TNPC is USD 875,481.24. In Scenario 3, when the grid is used to meet load demand,
the LCOE is USD 0.587/kWh, and the TNPC is USD 275,349. In this scenario, the energy
produced by SPV is 126,811 kWh per year, accounting for 71.3 percent of total energy
production, while energy purchased from the grid is 51,155 kWh per year, accounting for
28.7 percent of total energy generation.

Table 6. Results attained using HOMER software for Scenario 2.

SPV
(kWh/Year)

Batteries
Used

Converter
(kW)

Initial Capital
Cost (USD)

Operating
Cost (USD)

TNPC
(USD)

LCOE
(USD/kWh)

% of Renewables
Utilized

298,911 590 - 647,261 14,079.41 875,481.24 0.7318 100

Table 7. Results attained using HOMER software for Scenario 3.

SPV
(kWh/Year)

Grid Purchase
(kWh/Year)

Batteries
Used

Converter
(kW)

Initial Capital
Cost (USD)

Operating
Cost (USD)

TNPC
(USD)

LCOE
(USD/kWh)

% of Renewables
Utilized

126,811 51,155 590 49.4 228,402 2705 275,349 0.587 70.1

5.3.2. Techno-Economic Analysis of Different Scenarios Using Meta-Heuristic Algorithms

This section contains a summary of the optimization results obtained using various
meta-heuristic techniques, as well as a comparison of those results for the various scenarios.
The MSSA, SSA, and GWO are used in 30 separate runs with a population size of 50 and
a maximum iteration of 100, with the best results cropped. The basic parameters used in
the optimization problem are tabulated in Table 8. The three considered algorithms are
executed for each scenario.
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Table 8. Parameters used in MSSA.

Parameters Value

Population size 50
Maximum iterations 100

dmin 0.34
dmax 0.79

• Techno–economic analysis for Scenario 1 (solar PV and diesel generator-based EVCS)

Table 9 shows a comparison of results for Scenario 1 using MSSA, SSA, and GWO
in terms of LCOE, TNPC, and computational time. According to Table 9, MSSA has the
lowest TNPC, LCOE, and computational time with USD 584,566.44, USD 0.4822/kWh,
and 27,615.716 s, respectively, due to its lower capital, replacement, and operation and
maintenance costs. MSSA takes less time than other compared techniques and gives
minimum TNPC and LCOE as well. SSA comes in the second place, with high TNPC,
LCOE, and taking more time to compute the results as compared to MSSA, whereas GWO
gives a high value of TNPC, LCOE, and is slowest in comparison to the previous two
meta-heuristic techniques. This system necessitates 232 SPV panels with 325 W energy,
3284 kWh of energy production per year from a diesel generator rated at 10 kW, 650 battery
units, and 9 bi-directional converters rated at 100 kW. The maximum energy flow from the
DC bus to the AC bus or vice versa determines the energy of a bi-directional converter.

Table 9. Comparative study of achieved outcomes using meta-heuristic techniques for Scenario 1.

Methods
Used

Solar PV
(325 W)

DG Power Production
(kWh/Year)

Batteries
Converter
(100 kW)

TNPC (USD)
LCOE

(USD/kWh)
Computational

Time (Sec)

MSSA 232 3284 650 9 5,84,566.44 0.4822 27,615.716
SSA 220 3056 580 9 6,04,482.82 0.5381 29,834.165

GWO 190 2859 610 9 6,77,615.38 0.6328 37,656.673

Figure 12 depicts hourly information about power generation for a three-day sample
(1–3 October). It is observed that maximum EVs are charged during night hours, and there
is no solar output available during that time. Hence, the energy requirement is fulfilled by
DG and BESS using energy flow through the converter, as indicated in Figure 12. When PV
power generates more than the load demand during the day, surplus electricity is used to
charge the battery (Figure 12). Despite having a higher SPV energy, the converter energy is
much lower in this context of system sizing. The amount of excess electricity produced in
this scenario is 25,053 kWh per year, which is 19.2 % of total generated energy. It is worth
noting that, despite the fact that the maximum energy shortage was set to zero, there was
only a 23.7 kWh unmet load throughout the simulation model, accounting for 0.02 percent
of the total load.

Figure 13 depicts a cost description of various system components for the SPV/DG/battery
system. The SPV module and battery entail the most capital investment. Despite the fact
that the BESS has a high cost of replacement over the project’s lifespan, the resource cost
is significantly more than the investment. As a result, this hybrid energy system needs
constant economic infusion to keep the system running properly.

As shown in Figure 14, the DG contributes significantly when the load demand is high.
The monthly average power production from the SPV module is lesser in summer weather
in comparison to winter because of continuous rain and clouds in the summertime. Further,
the effectiveness of the proposed algorithm, i.e., MSSA, can be proved using Figure 15. It
has better convergence than other algorithms and results in a lower LCOE value.
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Figure 12. Power analysis on an hourly basis of SPV/DG/battery system.

Figure 13. Cost description of the various system components for the SPV/DG/battery system.

Figure 14. Monthly average power share for satisfying EVCS load demand in SPV/DG/battery system.
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Figure 15. Convergence curves of different optimizers.

• Techno–economic analysis for Scenario 2 (only solar PV/battery-based EVCS)

In Scenario 2, diesel generator is not available, and solar PV is the only energy source
available to meet the EVCS load requirement. This PV/battery system has the greatest
LCOE and TNPC because it uses a larger PV module and battery storage to meet power de-
mands, which increases the cost and produces more surplus power (194,140 kWh per year).
Table 10 provides the different technical and economic parameters optimized by various
algorithms for SPV/battery system.

Table 10. Comparative study of achieved outcomes using meta-heuristic techniques for Scenario 2.

Methods Used
Solar PV
(325 W)

Batteries
Converter
(100 kW)

TNPC (USD)
LCOE

(USD/kWh)
Computational

Time (Sec)

MSSA 545 548 12 843,461.28 0.6844 25,284.342
SSA 490 518 12 902,761.37 0.7045 29,451.984

GWO 415 476 12 981,736.38 0.7167 35,324.673

As in Scenario 1, computation time taken by MSSA is less as compared to other
techniques. This system requires 545 solar PV panels with 325 W energy, 548 battery
units, and 12 bi-directional converters rated at 100 kW. MSSA gives better results when
equated with other techniques and, hence, proved its efficacy to solve various optimization
problems. The hourly information about power generation for a three-day sample for
SPV/battery system is depicted in Figure 16. The cost description of the various system
components for the SPV/battery system is shown in Figure 17.

Figure 16. Power analysis on an hourly basis of SPV/battery system.
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Figure 17. Cost description of the various system components for the SPV/battery system.

• Techno–economic analysis for Scenario 3 (grid-and-solar PV-based EVCS)

This scenario looks at the technological, economic, and environmental concerns of
hybrid energy systems connected to the grid. In this strategy, electricity is purchased
from the grid to meet power requirements when solar PV is unable to fulfill them. Excess
power is sold back to the grid, requiring a small storage capacity while leveraging the
monumental amount of additional energy dumped in hybrid energy options. In this
respect, a fixed grid power price is chosen to be USD 0.12/kWh and a fixed grid sell
back price is selected to be USD 0.08/kWh. According to the results in Table 11, the grid-
connected solar PV-based EVCS has a significantly lower LCOE (0.119/kWh) than the solar
PV and diesel generator-based EVCS (USD 0.482/kWh) and solar PV/battery-based EVCS
(USD 0.684/kWh). The hybrid energy system in Scenarios 1 and 2 requires more resources
and battery storage than the grid-connected system. whereas in the grid-connected system,
net grid purchase is zero, i.e., the amount of energy purchased from the grid is equal
to the amount of energy sold to the grid, and no battery storage is required. Despite
having a 232 PV module of 325 W energy and a 49.4 kW bi-directional converter, the grid-
connected hybrid system needs no battery storage and has insubstantial energy costs due to
a significantly lower LCOE (USD 0.119/kWh) compared to a solar PV and diesel generator-
based EVCS (USD 0.482/kWh) and solar PV/battery-based EVCS (USD 0.684/kWh). It is
also worth noting that MSSA has a lower TNPC (USD 263377) and LCOE (USD 0.119/kWh)
than SSA and GWO. More prominently, the extra electricity in the grid-connected system
(408 kWh/year) is considerably lower than in the solar PV and diesel generator-based
EVCS (25,053 kWh/year) and solar PV/battery-based EVCS (194,140 kWh/year). This is
because a large portion of excess energy is sold back to the grid, and only a few storage
devices are needed to meet the requirement when solar power is not available.

Table 11. Comparative study of achieved outcomes using meta-heuristic techniques for Scenario 3.

Methods
Used

Solar PV
(325 W)

Grid Purchase
(kWh/Year)

Grid Sales
(kWh/Year)

Converter
(49.4 kW)

TNPC (USD)
LCOE

(USD/kWh)
Computational

Time (Sec)

MSSA 232 51,155 77,135 2 263,377 0.119 29,812.873
SSA 218 52,671 76,432 2 276,543 0.143 30,341.457

GWO 196 54,367 76,197 2 298,654 0.217 32,349.952
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When solar power is not accessible, grid power meets the load requirements. Accord-
ing to Figure 18, the spring season necessitates a high amount of energy to be purchased
from the grid due to higher power requirements. India, as a tropical country, has nearly
equal solar exposure all year. Even though the summer season is supposed to generate
more electricity from solar PV, rainy days lead to decreasing SPV production than the rest
of the regular time of year.

Figure 18. Power analysis on an hourly basis for grid-and-solar PV-based EVCS.

Solar energy accounts for approximately 71.3 percent of total energy demand, with
grid power accounting for the remaining 28.7 percent. Figure 19 depicts the time series
data for various components used to satisfy the load demand. The cost description of the
various system components for the grid-and-solar PV-based EVCS is shown in Figure 20.
The monthly average energy purchased/sold from/to the grid is portrayed in Figure 21.

Figure 19. Time series data for various components used to satisfy the load demand.
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Figure 20. The cost-wise breakup of different components in grid-and-solar PV-based EVCS.

Figure 21. Monthly average energy purchased from the grid and sold to the grid.

• Impact of grid purchase and grid sales on LCOE

The implications of energy buying from grid infrastructure and the quantity of energy
being sold to the grid on the LCOE are outlined and discussed in this section. A net grid
procurement of 0% indicates that the quantity of energy buying from and sold back to the
grid is the same. The value of LCOE increases more with increasing purchases from the
grid than with increasing grid sell-back, as shown in Figure 22. According to Figure 22, an
increase in grid energy to fulfill load demand leads to an increase in LCOE. For example, a
50% increase in grid energy purchase versus selling back to the grid results in a 36% increase
in LCOE.
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Figure 22. Impact of net grid purchase on LCOE.

5.3.3. Analysis of the Environmental Emissions in Different Scenarios

As previously stated, one of the primary goals of this work is to lower emissions by
utilizing renewable technologies. The results displayed in Table 12 show that SPV/battery-
based EVCS (Scenario 2) reduces the overall emissions by a significant amount when
equated to all other cases. However, while the SPV/DG/battery-based EVCS (Scenario 1)
produces higher emissions than SPV/battery-based EVCS, it will be far more ecologically
friendly than the grid-and-SPV-based EVCS.

Table 12. Scenario-wise comparison of environmental emissions.

Pollutants Scenario 1 Scenario 2 Scenario 3

Carbon dioxide (CO2) (Kg/year) 2910 2417 32330
Carbon monoxide (CO) (Kg/year) 22 0 0

Unburned hydrocarbons (UHC) (Kg/year) 0.802 0 0
Particulate matter (PM) (Kg/year) 1.33 0 0
Sulphur dioxide (SO2) (Kg/year) 7.14 4.94 140

Nitrogen dioxide (NOx) (Kg/year) 25 0 68.5

6. Future Challenges and Opportunities

Along with industrial and organizational advancement to promote RE set up in India,
identifying the potential obstacles to project implementation is important. The hybrid
energy system’s infrastructure and maintenance costs have hampered significant advances
in RE technologies by increasing the COE. As a developing nation, most of the public
are not able to avail high LCOE in comparison to traditional grid purchases. Financial
constraints, such as ineffective economic pathways, intense competition with fossil fuels,
a scarcity of shareholders, and very few public subsidies, all had a substantial influence
on the growth of hybrid energy systems [50]. Furthermore, less economic investment and
funding constraints as a result of the low lending charges and longer repayment time
make RE investment dangerous. Although economic inflation and growing population
necessarily dictate electricity requirements, substituting the current infrastructure with
100 percent renewable use is neither technically nor economically feasible due to ambiguity
in energy price in the future [51]. There are still technical intricacies, such as specifications,
indicators, processes, instructions, and power management systems for hybrid energy
systems. In the meantime, research efforts to overcome such technological challenges are
critical and must be taken into consideration when planning a hybrid energy system [52].

Despite their multiple issues, the hybrid energy systems provide lots of opportunities
in the area of natural, cultural, financial, and energy security concerns. The hybrid energy
system will reduce greenhouse gas emissions and protect the natural environment from
deterioration. The steep decline in PV and wind prices will hasten the implementation
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of a hybrid energy system with a massive decrease in original investment. The Interna-
tional Renewable Energy Agency (IRENA) forecasted a 74% and a 24% decline in SPV
and WT prices by 2020, respectively. Furthermore, continuing research and rapid techno-
logical advancements encourage RE systems to start competing with traditional energy
sources. Effective hybrid technology selection, taking into account geographical region and
environmental consequences, will broaden the existing energy resources and minimize
reliance on non-renewable resources. Furthermore, these schemes will have an impact on
employment options, the standard of living, business growth, health problems, economic
status, women’s rights, and economic development. RE is among the most basic needs for
human progress, and it can help to generate earnings, improve healthcare and education
performance, and poverty eradication. India is geologically favored for the spread of solar
energy. Despite the numerous advantages of RE sources, the bulk of people are unwilling
to accept the advanced technologies. The lack of knowledge shared among stakeholders
is needed for the implementation of the RE-based hybridized micro-grid. In this respect,
the government of India can introduce such projects through a public–private partnership
framework, in which a group of developers, with support from the government, will
participate in putting such projects in place.

7. Conclusions

Hybrid energy systems can deliver energy to the grid and off-grid sites cost effectively
and reliably. The efficiency of the system improves when RE components are implemented
with the grid. In this article, the complete mathematical modeling is presented for the
diverse configurations of the hybrid energy system to meet the load requirements of
EVCS situated in the northwest region of Delhi, India. The financial, technological, and
ecologic implications of different configurations are also carefully investigated. The use of
meta-heuristic methods, which include MSSA, SSA, and GWO, is carried out to optimize
the objective functions. The obtained results using MSSA are compared with HOMER
software and other techniques. According to comparisons, MSSA gives a more efficient
solution than HOMER. Furthermore, the MSSA offers a robust framework, which aids
model development. In all three configurations, the MSSA results in reduced LCOE values
of USD 0.482/kWh, USD 0.684/kWh, and USD 0.119/kWh, respectively. According to the
analysis, the grid-connected solar PV-based EVCS offers significant cost savings over the
other two configurations. In addition, a hybrid energy system with equal grid purchase
and sell-back can be a profitable choice. More significantly, the LCOE associated with the
grid selling back schemes is lower than the grid purchase price. The results show that a
60% increase in grid sell-back price leads to a 46% decrease in LCOE.

Permitting tax-free imports can reduce the cost of hardware devices, lowering the
COE. The government of India must enable full cooperation in research and technology by
generating opportunities for cooperation and entrepreneurship communication between
societies. Even though the hybrid micro-grid alternative is a lucrative, consistent, and long-
term remedy, people in rural areas cannot accommodate it due to the increased investment.
As a result, more alternative financial assistance from government and non-governmental
organizations can address the underlying intricacy of the issue.

The feasibility analysis discussed in this work can be used to guide the development
and operation of hybrid energy system applications in distant regions where grid utility is
not accessible, as well as hybrid grid-connected systems in India. Future research is needed
to investigate the impacts of charging/discharging cycles of a battery on its lifespan and
cost of energy.
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Nomenclature
EV Electric Vehicle
EVCS Electric Vehicle Charging Station
SPV Solar Photovoltaic
DG Diesel Generator
HOMER Hybrid Optimization of Multiple Energy Resources
GWO Gray Wolf Optimization
SSA Salp Swarm Algorithm
MSSA Modified Salp Swarm Algorithm
RE Renewable Energy
GHG Green House Gases
WT Wind Turbine
NBR Number of Battery Replacements
RF Renewable Fraction
GA Genetic Algorithm
PSO Particle Swarm Optimization
BESS Battery Energy Storage System
NPC Net Present Cost
TNPC Total Net Present Cost
LCOE Levelized Cost of Energy
LPSP Lack of Power Supply Probability
MAS Multi Agent System
MFO Moth Flame Optimization
SOC State of Charge
NOCT Nominal Operating Cell Temperature
CRF Capital Recovery Factor
DOD Depth of Discharge
List of symbols

PSPV-out(t) Solar photovoltaic power output
ηSPV Efficiency of solar panel
ASPV Surface area of the solar panel
Gh(t) Hourly solar irradiance falling on the surface of solar panel
Tcell Temperature of cell
Ta Ambient temperature
Pmax Maximum power output of solar panel
Vmax Maximum value of voltage
Imax Maximum value of current
NSPV Number of installed solar PV panel
u(t) Fuel consumption in litres per hour
PDG(t) Power output of diesel generator in kW
Prated-DG Rated power of diesel generator
a Constant value (0.246)
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b Constant value (0.08415)
ηoverall Overall efficiency of DG
ηbrake thermal Brake thermal efficiency of DG
SOCbat(t + 1) State of charge of battery at time instant (t + 1)
SOCbat(t) State of charge of battery at time instant (t)
σ Self-discharge rate of battery
ηbdinv Efficiency of bi-directional inverter
ηbat Round trip efficiency of the battery
η

charge
bat Charging efficiency of battery

η
discharge
bat Discharging efficiency of battery

Ctotal Total capacity of battery bank
Nbat Total number of batteries
Nseries

bat Number of batteries connected in series
Csbat Capacity of a single battery
NPCbat Net present cost of battery
CCAP

bat Capital cost of battery
CREP

bat Replacement cost of battery
COM

bat Operation and maintenance cost of battery
CSAL

bat Salvage cost of battery
ψbat Cost of one battery in USD
ωbat OM cost of battery
μbat Escalation rate of battery
εbat Resale value of one battery in USD
ζ

rep
bat Replacement cost of battery

NPCbdinv Net present cost of battery
CCAP

bdinv Capital cost of bi-directional inverter
Pgrid

S (t) Extra energy to be sold to the grid in kWh
SOCmin

bat (t) Minimum SOC of battery
SOCmax

bat (t) Maximum SOC of battery
DKm Number of kilometers traveled
Ereq/km Energy needed per kilometer
T Duration of charging
QEV

bat Capacity of EV battery
NSPV Number of solar panels
Vbus Voltage level of bus
Vbat Voltage level of single battery
Pmax

bat Maximum input/output power of battery.
Pgrid

P (t) Energy to be borrowed from the grid in kWh
PEV

D (t) Energy demand of EV
PEVCS-dem(t) Power demand of EVCS
NPCSPV Net present cost of solar panel
CCAP

SPV Capital cost of solar panel
CREP

SPV Replacement cost of solar panel
COM

SPV Operation and maintenance cost of solar panel
CSAL

SPV Salvage cost of solar panel
ψSPV Initial cost and of each SPV panel
PSPV Power rating of each SPV panel
ζ

rep
SPV Cost of replacing the SPV panel

R Rate of interest
Ω Life span of project in years
ωSPV OM cost of each panel
μSPV Escalation rate
εSPV Resale price solar panel after completing their life
∂ Inflation rate
εbdinv Resale value of bi-directional inverter in USD
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ζ
rep
bdinv Replacement cost of bi-directional inverter

ξ
grid
S Cost for unit sale of electricity to the utility grid

ξ
grid
P Cost for unit purchase of electricity from the utility grid

Cgrid
P Cost of purchasing electricity from the grid

Cgrid
S Cost of selling electricity to the grid

Pgen(t) Total power generated by energy components
Emin

bat Minimum energy of battery bank
Emax

bat Maximum energy of battery bank
Pdef Deferrable load
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Abstract: Detecting insulators on a power transmission line is of great importance for the safe
operation of power systems. Aiming at the problem of the missed detection and misjudgment of the
original feature extraction network VGG16 of a faster region-convolutional neural network (R-CNN)
in the face of insulators of different sizes, in order to improve the accuracy of insulators’ detection on
power transmission lines, an improved faster R-CNN algorithm is proposed. The improved algorithm
replaces the original backbone feature extraction network VGG16 in faster R-CNN with the Resnet50
network with deeper layers and a more complex structure, adding an efficient channel attention
module based on the channel attention mechanism. Experimental results show that the feature
extraction performance has been effectively improved through the improvement of the backbone
feature extraction network. The network model is trained on a training set consisting of 6174 insulator
pictures, and is tested on a testing set consisting of 686 pictures. Compared with the traditional faster
R-CNN, the mean average precision of the improved faster R-CNN increases to 89.37%, with an
improvement of 1.63%.

Keywords: deep learning; insulator detection; target detection; faster R-CNN

1. Introduction

Insulators are widely used in power systems to provide electrical insulation and
mechanical support for high-voltage transmission lines [1]. However, under the effects
of long-term switching and lightening overvoltage, thermal strain, and natural aging,
insulators will fail due to cracks or surface pollution which will hinder their safe operation
and cause huge economic losses and casualties in the power transmission system. Therefore,
it is crucial to detect insulators from complicated background to ensure the safe running
of a power system. With the rapid development of Unmanned Aerial Vehicles (UAV),
and since traditional manual inspection methods for detection are time-consuming and
highly dangerous, the application of UAV inspection is becoming popular. As the massive
aerial images are becoming increasingly easier to access, an accurate and real-time broken
insulators location method is urgently needed.

At present, the methods for detecting insulators can be divided into two categories,
according to the development stage. One is the traditional methods for detecting insulators,
which combines human-designed features and classifiers [2–5]. Another is the the methods
of detecting insulators that are based on deep learning networks [6–9]. For example, in [10],
firstly, Xiaotong Yao et al. combined the Canny operator with the SURF algorithm to extract
the edge feature points of the image insulator, then used the Haar wavelet to obtain the
description information of the feature points and the Euclidean distance ratio to match the
feature points of the target insulator, finally using the RANSAC algorithm to obtain the
correct matching feature points for realizing the identification and detection of insulators.
Although traditional methods provide a new idea for insulator detection, the drawbacks of
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traditional methods are gradually emerging. The detection results depend on the quality
of image segmentation, which seriously affects the speed of subsequent feature extraction
and classification and is not very good for insulator image segmentation with complex
backgrounds in the traditional detecting methods of insulators.

In recent years, since deep learning networks have strong learning and expression
ability, and feature extraction is generalized, experts and scholars at home and abroad
have gradually applied deep learning networks to insulator detection. There are two main
directions in the detecting methods of insulators based on deep learning networks: a single-
stage target detection algorithm based on regression problems [5] and a two-stage target
detection algorithm based on candidate regions. The main representatives of the single-
stage target detection algorithm are the YOLO series algorithm and the SSD algorithm.
For example, in [11], an insulator identification method combines traditional methods, such
as edge detection and line detection, with the YOLO-V2 algorithm (You Only Look Once
V2). However, the design of the loss function and anchor frame of the YOLO-V2 algorithm
is far from that of the YOLO-V3 (You Only Look Once V3), and the detection performance
is not as good as that of the YOLO-V3. Therefore, in [12], on the basis of the YOLO-V3
algorithm, the focal loss function and balanced cross-entropy function were introduced
into YOLO-V3 for the imbalance of positive and negative samples in the training data set.
However, since YOLO-V2 and YOLO-V3 are single-stage target detection algorithms, the
detection accuracy of single-stage target detection algorithms is lower than of two-stage
target detection algorithms. Liu et al. applied the YOLO-v3 target detection network to
the localization and recognition of power insulator equipment, providing a new concept
for power equipment inspection, but the recognition accuracy is still far from practical
applications [13].

Compared with the single-stage target detection algorithm based on regression prob-
lems, the two-stage target detection algorithm based on candidate regions is superior in
detection accuracy and positioning accuracy. Aiming at the low accuracy of YOLO-V3
in detecting insulator images, Yan Hongwen et al. used the focal loss function and the
balanced cross-inheritance function to improve the loss function of the model for improving
the insulator identification accuracy [14]. Ji Chao et al. proposed a saliency calculation
method, which combines salient regions into the fast region candidate network Fast R-CNN,
which avoids time-consuming candidate region traversal. In addition, a residual block
is introduced based on the Fast R-CNN feature extraction network, which ensures the
integrity of the feature information transfer and improves the detection efficiency [15].
Two convolutional neural networks on a limited insulator data set were discussed in [16].
Experimental results showed that the faster regional convolutional neural network (faster R-
CNN) achieves a higher AP value (average precision) than the fully convolutional network
(R-FCN). In [17], the faster R-CNN algorithm was used to extract features of insulators
and the adaptive image preprocessing, area-based, non-maximum suppression and seg-
mentation detection were introduced to effectively detect insulators, but the insulator
positioning accuracy and model training efficiency were not high. In [18], an insulation
detection method combining an attention mechanism and faster R-CNN was proposed.
This method introduced a compressed excitation network structure in the convolutional
feature extraction network.

In order to further improve the performance of faster R-CNN, we propose a faster
R-CNN based on Resnet50 and efficient channel attention (ECA)-net. The contributions are
summarized as follows.

(1) Resnet50 network is used as the backbone feature extraction network. The improved
algorithm uses the Resnet50 network as the backbone feature extraction network
to replace the original VGG16 network, which will result in more comprehensive
features extracted;

(2) An efficient channel attention (ECA)-net based on the channel attention mechanism
is added. The addition of ECA-net helps to extract useful information and suppress
useless information, which helps to improve the overall performance of faster R-CNN.
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The structure of the paper is arranged as follows. The development process from
R-CNN to faster R-CNN and how to improve the faster R-CNN algorithm will be intro-
duced in Section 2. In Section 3, experimental results and analysis are discussed. Finally,
conclusions are described in Section 4.

2. Target Detection Method

This section, first, briefly describes the development process from R-CNN to faster
R-CNN in Section 2.1, and then the network structure of faster R-CNN is described in
Section 2.2. Finally, the focus of this part will be described in detail in Section 2.3, which
outlines how to improve the faster R-CNN algorithm.

2.1. The Development History of Faster R-CNN

R-CNN is a milestone in the application of the CNN method to the target detection
problem. It was proposed by RBG in 2014. Based on the good feature extraction and
classification performance of CNN, the target detection problem is transformed through
the method of Region Proposal. The steps of using R-CNN for target detection are listed
as follows:

1. Input the image;
2. Use the selective search algorithm to extract about 2000 Region Proposals, from top to

bottom, in the image;
3. Warp each Region Proposal to a size of 227 × 227 and input it to the CNN. The output

of the fc7 layer is used as a feature;
4. Input the CNN features extracted by each Region Proposal into SVM for classification;
5. Perform border regression for the Region Proposal classified by SVM, and use the

bounding box regression value to correct the original suggestion window. Generate
prediction window coordinates.

On the Pascal VOC 2012 data set, R-CNN increased the verification index map for
target detection to 53.3%, which is a full 30% improvement over the previous best results.
However, R-CNN also has some obvious problems: fine-tuning the network + training SVM
+ training frame regressor, the steps are very cumbersome, and training is time-consuming,
occupying a large space, using GPU to accelerate the VGG16 [19] model to process an
image requires 47 s, and the CNN features are not learned and updated during the support
vector machine (SVM) and regression process.

In response to these problems of R-CNN, in 2015, fast R-CNN [20] was improved on
the basis of R-CNN. Compared with R-CNN, the main difference of fast R-CNN is that
a RoI pooling layer is added after the last convolutional layer to make each suggestion
window generate a fixed-size feature map. The loss function uses a multi-task loss function
(multi-task loss). The bounding box regression is directly added to the CNN network for
training, and the target classification and bounding box regression are corrected at the same
time after the fully connected layer. Its target detection steps are listed as follows:

1. Input the image;
2. Use the selective search algorithm to extract 2000 or so proposal windows (Region

Proposals), from top to bottom, in the image;
3. Input the entire picture into CNN for feature extraction;
4. Map the suggestion window to the last layer of the convolutional feature map of CNN;
5. Use the RoI pooling layer to generate a fixed-size feature map for each suggestion window;
6. Use Softmax Loss (probability of detection classification) and Smooth L1 Loss (bound-

ing box regression) as a joint training for classification probability and bounding
box regression.

Fast R-CNN normalizes the entire image, sends it directly to the CNN, and adds
suggestion box information to the feature map output by the final convolutional layer,
so that the previous CNN operations can be shared and the test speed is accelerated.
During training, only one image needs to be sent to the network. Each image extracts

456



Algorithms 2022, 15, 83

CNN features and suggested regions at one time. The training data is directly entered into
the loss layer in the GPU memory, so that the first few layers of features in the candidate
region do not need to be recalculated, thus improving the speed of training; fast R-CNN
implements both category judgment and location regression using deep networks, so no
additional storage is needed; thus, memory space is saved. Because of the proposal of RoI
pooling, there is no need to input for corp and wrap operations, thereby avoiding pixel loss
and cleverly solving the problem of scale scaling.

Although fast R-CNN has made a big leap in speed, it still takes more than 2 s to detect
a picture, which cannot meet the requirements from time to time. This is mainly because it
consumes a lot of time during the region proposal stage and does not run well on the GPU.
For this reason, faster R-CNN [6] was proposed in 2017, and it has two main differences
from fast R-CNN. One is to use a RPN (Region Proposal Network) instead of the original
selective search method to generate the suggestion window; the other is to share the CNN
that generates the suggestion window and the CNN for target detection. Faster R-CNN
creatively uses the convolutional network to generate the suggestion frame by itself, and
shares the convolutional network with the target detection network, so that the number
of suggestion frames is reduced from about 2000 to 300, and the quality of the suggestion
frame is also substantially improved. Moreover, faster R-CNN further introduces the RPN
network on the basis of fast R-CNN, and proposes an anchor box to integrate the region
proposal generation process into the network training process, which effectively reduces
the time of RoIs, and the accuracy is also significantly improved.

2.2. Faster R-CNN Network Structure and Detection Steps

The network structure diagram of faster R-CNN is shown in Figure 1. The detection
process is described as follows:

1. Input the image to be tested;
2. Use the VGG16 network to extract feature maps from the entire input image. The fea-

ture maps are shared for the subsequent RPN layer and fully connected layer;
3. The RPN network is used to generate region proposals. This layer uses softmax to

determine whether the anchors are positive or negative, and then uses bounding box
regression to correct the anchors to obtain accurate proposals.

4. The RoI pooling layer collects the input feature maps and proposals, combines the
information to extract the proposal feature maps, and sends them to the subsequent
fully connected layer to determine the target category;

5. Proposal feature maps are used to calculate the category of the proposal, and at the same
time again, bounding box regression are used to obtain the final precise position of the
detection frame.

Figure 1. Faster R-CNN network structure diagram.
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2.3. Improved Faster R-CNN

In order to improve the performance of the faster R-CNN network model for insulator
recognition, this paper proposes an improved faster R-CNN based on the faster R-CNN
network model, by replacing the VGG16 backbone feature extraction network with a deeper
network and a more complex model structure, namely, the Resnet50 network. In addition,
an ECA-net module based on the channel attention mechanism has been added, which
makes the Resnet50 network much better at the extraction of insulator features.

2.3.1. Resnet50 Network Replacing VGG16 Network

The VGG16 network is used as the feature extraction backbone network by the original
faster R-CNN model, and the features output by the final convolution output layer of
VGG16 are used as the shared features of the RPN network and the RoI pooling layer.
This algorithm is used mainly to detect everyday objects, and it is suitable for the coco
data set. When this algorithm is used in the insulator data set, there are mainly the
following shortcomings:

1. VGG16 uses a single-layer feature layer output to be suitable for the detection of
single-sized targets. Because of the different sizes of insulators in the image, it is easy
to cause missed detections and misjudgments;

2. Due to the different scales of aerial insulator images, many insulators have become
small targets related to the entire picture. In order to identify the insulators more
accurately, the feature extraction backbone network needs to be improved.

The Resnet50 network [21] consists of 49 convolutional layers and 1 fully connected
layer. The innovative introduction of residual blocks makes the network depth increase,
and deeper features can be extracted while effectively avoiding gradient disappearance
and gradient explosion. The authors in [21] claimed that the residual network with a depth
of up to 152 layers on the ImageNet data set has still lower complexity than the VGG16
network. Therefore, comparing with VGG16, Resnet50 increases the depth of the network
but does not increase the complexity of the network.

2.3.2. ECA-Net Module Joining the Resnet50 Network

Recently, the channel attention mechanism has been shown to have great potential for
improving the performance of convolutional neural networks (CNNs). In order to make
CNNs have better performance, more complex attention modules have been developed,
such as SANet [22], SKNet [23], and ResNeSt [24]. Although the performance of the network
is improved, it also indirectly increases the complexity of the model. An ECA module
to improve the channel attention mechanism has been proposed in [25]. It introduced a
local cross-channel interaction strategy without dimensionality reduction and a method of
adaptively selecting the size of the one-dimensional convolution kernel, thereby achieving
performance improvement and balancing the contradiction between performance and
complexity well. This module generates channel attention through fast one-dimensional
convolution, and the size of the convolution kernel can be adaptively determined by the
nonlinear mapping of the channel dimension. The complexity of the model added by this
module is small, and the improvement effect is significant.

3. Experimental Results and Analysis

This section will elaborate on the three aspects of experimental configuration and data
set, evaluation index, and result analysis.

3.1. Experiments

The hardware and software configuration is described as follows: AMD Ryzen 9 3950X
16-Core Processor 3.50 GHz, 64 GB RAM, GeForce RTX 3090, Windows 10. The environment
configuration is set as follows: CUDA Version 11.1, Python3.7.10, PyTorch1.8.0. The selected
insulator data set is a public one with 6860 images https://github.com/heitorcfelix/public-
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insulator-datasets (accessed on 12 April 2021). The data set occupies a storage space of
3.3 GB. The data set consists of real images and synthetic images, and has been enhanced.
This experiment uses 6174 pictures as the training set and 686 pictures as the testing set.
An example of the image is shown in Figure 2. Since the format of the network data set is
a coco format, the first step is to write a script to convert it to a VOC2012 format. In the
experiments, although the insulator data set used is public, no literature related to this data
set is available. Therefore, we have to compare the performance of the three networks, the
proposed faster R-CNN with Resnet50+ECA-net, the original faster R-CNN, and faster
R-CNN with Resnet50, on the public data set mentioned in this paper.

Figure 2. Aerial images of insulators on different backgrounds.

3.2. Evaluation Index

Insulator detection belongs to single-label classification learning. This experiment
uses mean average precision (MAP) as the performance evaluation index of the model.
Before introducing MAP, we need to review the concepts of intersection over union (IOU),
precision, recall, and average precision (AP) [21,26–30].

IOU is the intersection ratio, which measures the degree of overlap of two regions,
and is the ratio of the overlapping area of the two regions to the total area of the two. As
shown in Figure 3, the green box is the ground-truth box of the insulator; the red is the
prediction box, and the IOU of the two rectangular boxes is the ratio of the cross area to the
combined area.

Figure 3. Insulator true label frame and prediction frame.

Precision and recall is described as follows. In the field of target detection, we first
assume that there is a set of pictures to be detected. Precision represents the proportion
of real target objects in the targets detected by the model; recall is considered to be the
proportion of real targets detected by the model to all target objects in the image to be
detected, that is, how many out of all real targets are successfully detected by the model.
The calculation formula of precision and recall is described as follows:

precision =
TP

TP + FP
, (1)

precision =
TP

TP + FN
, (2)
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where TP, TN, FP, and FN represent a true positive, true negative, false positive, and false
negative, respectively, and their meanings are described in Table 1.

Table 1. Meanings of TP, FP, TN and FN in target detection.

The Detected Rectangular Box Is Greater
than the Confidence Threshold (Positive)

The Detected Rectangular Box Is Less
than the Confidence Threshold (Negative)

The IOU value of a target box in the
data set is greater than 0.5 (True)

TP TN

The IOU value of all target boxes in
the data set is less than 0.5, repeated
detection (False)

FP FN

The precision–recall (PR) curve is shown in Figure 4. The higher the precision and
recall, the better the model detection performance becomes, so we expect high values for
both precision and recall, but in some cases they are contradictory. For example, in some
extreme cases, only one result is detected and accurate; then, precision is 100%, and recall
is very small. If all results are returned, then recall must be very large, but precision is very
small. Therefore, it is necessary for different occasions to judge whether one wants higher
precision or higher recall. Usually, the precision–recall curve is drawn to help understand
them. As the name implies, AP is the average accuracy. Simply put, it is the average of the
precision value on the PR curve, that is, the area under the PR curve. As shown in Figure 4,
the area of the shaded area is the value of AP. AP is for a single category, and the average
AP value of all categories is MAP.

Figure 4. Precision–recall curve.

3.3. Analysis of Experimental Results

This article replaces faster R-CNN’s backbone feature network VGG16 with a Resnet50
network that adds the ECA-net module based on the channel attention mechanism. After
the three networks (original faster R-CNN with VGG16, faster R-CNN with Resnet50, and
faster R-CNN with Resnet50+ECA-net) are independently trained on the same insulator
data set, the performance of the three networks for insulator detection is compared under
the same testing set. Experimental results show that the improved faster R-CNN is better
than the faster R-CNN with respect to the MAP.
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3.3.1. Comparisons of Insulator Target Detection Training Results

The model parameters are set as follows: the number of iterations, the initial size of
the learning rate, and the batch size are set to 150, 0.00005, and 8, respectively. Figure 5
shows the train loss curve, validation loss curve, smooth train loss curve, and validation
loss curve, respectively, of faster R-CNN with VGG16 network as the backbone feature
extraction network. These loss curves refer to the training loss curves of migration learning
under the pre-training model of imagenet. After 126 epochs, the training loss converges to
around 0.535, and the validation loss converges to around 0.716.

In order to verify the effectiveness of Resnet50 and Resnet50+ECA-net, we compare the
loss curve of faster R-CNN with Resnet50, and compare faster R-CNN with Resnet50+ECA-
net with the loss curve of the original faster R-CNN with VGG16, respectively. Figures 6 and
7 show the train loss curve, validation loss curve, smooth train loss curve, and validation
loss curve of the faster R-CNN with the Resnet50 backbone and the faster R-CNN with
the Resnet50 backbone and ECA-net, respectively. In the faster R-CNN with the VGG16
backbone, when the number of epochs is 140, the train and val losses are 0.536 and 0.718,
respectively. Compared with the faster R-CNN with the VGG16 backbone, the train loss
of the faster R-CNN with the Resnet50 backbone and the faster R-CNN with the Resnet50
backbone and ECA-net decreases by 16.6% and 20.1%, respectively. The val loss of the faster
R-CNN with the Resnet50 backbone and the faster R-CNN with the Resnet50 backbone
and ECA-net decrease by 9.6% and 10.7%, compared to the faster R-CNN with the VGG16
backbone, respectively. Experimental results indicate that the addition of the Resnet50
backbone and ECA-net helps to reduce the loss value.

3.3.2. Comparisons of Insulator Target Detection Testing Results

The testing experiments are performed to compare the the improved faster R-CNN
and the faster R-CNN. In order to show the performance before and after improvement
more directly, experimental results are shown in Figures 8–10 and Table 2, where the final
APs of the PR curve of the faster R-CNN, the first improved faster R-CNN, and the second
improved faster R-CNN on the testing set are 87.74%, 87.91%, and 89.37%, respectively,
with an improvement of 0.19% and 1.63%. In Table 2, comparing with the original faster
R-CNN, the first improved faster R-CNN and the second improved faster R-CNN have
fewer parameters, lower training and testing loss values, and higher accuracy. In summary,
The addition of the Resnet50 backbone and ECA-net decreases losses and raises the AP,
which leads to the improved performance of the faster R-CNN.

Figure 5. Training loss under the VGG16 backbone network.
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Figure 6. Training loss under the Resnet50 backbone network.

Figure 7. Training loss under the ECA-net+Resnet50 backbone network.

Figure 8. Precision–recall curve graph under the VGG16 backbone network.
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Figure 9. Precision–recall curve graph under the Resnet50 backbone network.

Figure 10. Precision–recall curve graph under the ECA-net+Resnet50 backbone network.

Table 2. Comparison of the original faster R-CNN and the improved faster R-CNN.

Model Backbone Parameters Train Loss Val Loss AP

Original faster R-CNN VGG16 136,689,024 0.535 0.716 87.74%
The first improved

faster R-CNN RESNET50 28,275,328 0.438 0.642 87.91%

The second improved
faster R-CNN ECA-net+RESNET50 28,275,376 0.412 0.612 89.37%

3.3.3. Display of Actual Test Results

The faster R-CNN target detection model, using the Resnet50 network with the ECA-
net module as the backbone feature extraction network, is tested on the testing set, and
the insulator detection results of aerial transmission lines are shown in Figure 11. It can
be seen that good results can be achieved for the multi-target detection of insulators of
different sizes.
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Figure 11. Insulator test results of the improved faster R-CNN.

4. Conclusions

This paper proposes an insulator detection method based on an improved faster
R-CNN. Aiming at the problem of missed detections and misjudgments of the original
feature extraction network VGG16 in the face of insulators with different sizes, the ECA-
net+Resnet50 network is used to replace the original VGG16 backbone network. The
deeper network has a larger field of view, so as to facilitate the detection of targets with
different scales. Experimental results indicate the effectiveness of the introduced method
for detecting insulators. Comparing with the original faster R-CNN, the improved faster
R-CNN has fewer parameters, lower training and testing loss values, and higher accuracy.

Our future work will focus on the further improvement of insulator detection, e.g., the
direction-aware defect detection network in [31] can be considered; optimization spiking
neural P systems [32–34] can be introduced to optimize the structure and parameters of
the ECA-net+Resnet50 network used in this paper; learning spiking neural P systems or
fuzzy reasoning spiking neural P systems [35,36] can also be used to enhance the insulator
detection [37,38].
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Abstract: Optimization problems become increasingly complicated in the era of big data and Internet
of Things, which significantly challenges the effectiveness and efficiency of existing optimization
methods. To effectively solve this kind of problems, this paper puts forward a stochastic cognitive
dominance leading particle swarm optimization algorithm (SCDLPSO). Specifically, for each particle,
two personal cognitive best positions are first randomly selected from those of all particles. Then,
only when the cognitive best position of the particle is dominated by at least one of the two selected
ones, this particle is updated by cognitively learning from the better personal positions; otherwise,
this particle is not updated and directly enters the next generation. With this stochastic cognitive
dominance leading mechanism, it is expected that the learning diversity and the learning efficiency of
particles in the proposed optimizer could be promoted, and thus the optimizer is expected to explore
and exploit the solution space properly. At last, extensive experiments are conducted on a widely
acknowledged benchmark problem set with different dimension sizes to evaluate the effectiveness
of the proposed SCDLPSO. Experimental results demonstrate that the devised optimizer achieves
highly competitive or even much better performance than several state-of-the-art PSO variants.

Keywords: stochastic cognitive dominance leading; multimodal problems; particle swarm optimiza-
tion; global optimization; evolutionary algorithm

1. Introduction

Optimization problems widely exist in daily life and real-world engineering, such
as resource allocation optimization [1], path planning optimization [2,3], and robot task
allocation [4]. However, with the advent of Internet of Things and big data, optimization
problems are becoming increasingly complicated [5,6], with many undesirable properties,
such as non-differentiable, discontinuous, non-convex, non-linear and multimodal with
many local areas [7]. In particular, these complex optimization problems tremendously
challenge the effectiveness of traditional gradient descent based methods, or even make
them infeasible [6,8,9]. Therefore, it is urgent to develop effective optimization algorithms
to solve these complex problems, so as to boost the development of related areas.

Recently, heuristic algorithms, such as particle swarm optimization (PSO) [10,11] and
differential evolution (DE) [12,13], have shown very promising performance in solving
optimization problems. Unlike mathematical algorithms [14–17], which only maintain
one solution to iteratively find the global optimum of the optimization problem, heuristic
algorithms mainly maintain a population of feasible solutions to iteratively search the
solution space to find the global optimum of the optimization problem. In particular,
compared with traditional mathematical algorithms [14–17], heuristic algorithms preserve
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many unique advantages. (1) Heuristic algorithms usually have no requirements on
the mathematic properties of the optimization problem, or even can optimize problems
without mathematic models [18]. However, most mathematical algorithms, especially
gradient decedent based optimization methods, usually require that the optimization
problems be continuous, differentiable, and convex. Nevertheless, in the era of big data and
Internet of Things (IoT), optimization problems usually have characteristics such as non-
differentiable, discontinuous, non-convex, non-linear and multimodal [6,19]. Confronted
with these optimization problems, heuristic algorithms such as PSO usually preserve many
advantages over mathematical algorithms. In particular, heuristic algorithms, like PSO,
preserve unique merits in solving NP-hard problems [20,21]. (2) Heuristic algorithms
usually preserve strong global search ability due to the maintenance of a population to
search the solution space. Mathematical algorithms usually maintain only one solution to
iteratively find the global optimum of an optimization problem. In this case, they are at
great risk of falling into local areas, especially when tackling multimodal problems with
many wide and flat local regions, whereas heuristic algorithms could search the solution
space in different directions by maintaining a population of individual solutions. (3)
Heuristic algorithms usually preserve inherent parallelism to accelerate the iteration [18,22].
Specifically, at least, during the optimization, the fitness evaluation of each individual
solution, which is usually the most time-consuming part in heuristic algorithms, could
be separately executed, let alone that some parallel techniques could be designed and
embedded into heuristic algorithms to accelerate the search process. However, most
mathematical algorithms can only be executed sequentially because the current iteration
usually relies on the results of the preceding iteration.

In recent years, PSO has received extensive attention from researchers since it was pro-
posed by Eberhart and Kennedy in 1995 [10,11]. Therefore, many remarkable PSO variants
have emerged [23–27], and PSO has been widely applied to solve various optimization prob-
lems [6,28], such as multimodal optimization [29–32] and multi-objective optimization [27,33].

In the literature of PSO, it is well recognized that the learning strategy of particles plays
a key role in helping PSO achieve promising performance [8,34–37]. As a result, researchers
have focused significant efforts in designing effective learning strategies for PSO to improve
its performance, and thus many remarkable novel learning schemes have emerged, such
as cooperative learning mechanisms [38,39], comprehensive learning strategies [8,40], and
social learning methods [41,42]. In fact, the key to devising effective learning strategies is
to select appropriate guiding exemplars for particles to update. In a broad sense, existing
selection of guiding exemplars can be divided into the following two types.

The most popular way to select guiding exemplars for particles is to employ different
topologies to communicate with other particles to find proper guiding exemplars [43,44].
In the earliest PSO [10,11], Eberhart and Kennedy utilized the global topology with full
connections with all particles to choose the global best position in the whole swarm as one
guiding exemplar to direct the update of particles. However, such a global topology leads
to too greedy attraction, and thus the swarm usually falls into local areas when dealing
with multimodal problems. To alleviate this predicament, researchers have attempted
many other topologies, such as the ring topology [45], the star topology [46], the random
topology [47,48], the wheel topology [46] and the dynamic topology [49]. In the early stage,
researchers mainly employed the topologies on the personal best positions of particles to
select proper exemplars. Since the obsolete historical evolutionary information may also
contain useful information to guide the learning of particles, some researchers have at-
tempted to deploy topologies on the personal best positions and the recorded historical best
positions to find proper exemplars [35,50]. Nevertheless, these topology-based exemplar
selection methods mainly find promising exemplars based on historical positions visited
by particles.

To further improve the learning effectiveness of particles, researchers have sought
new solutions in another direction, namely constructing guiding exemplars for parti-
cles. Unlike the former types of exemplar selection methods, this type of exemplar selec-
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tion method mainly constructs new exemplars, which may not be visited by particles, to
guide the evolution of the swarm. Consequently, many remarkable constructive learning
strategies [8,51–53] have been devised for PSO to tackle complicated optimization prob-
lems. In this direction, the most representative method is the comprehensive learning
PSO (CLPSO) [8], which constructs a guiding exemplar dimension by dimension for each
particle based on the personal best positions of all particles. Inspired by this strategy,
many other constructive approaches have been proposed, such as the orthogonal learning
PSO (OLPSO) [51], which utilizes an orthogonal matrix to find suitable combinations of
dimensions to construct the guiding exemplar for each particle, and the genetic learning
PSO (GLPSO) [53], which adopts the operators in the genetic algorithm to construct the
guiding exemplar for each particle.

Though most existing PSOs have shown promising performance on simple optimiza-
tion problems, such as unimodal problems and simple multimodal problems [22,54], they
are confronted with limitations when tackling complex optimization problems, such as
multimodal problems with many interacted variables and an ocean of wide local regions,
which are increasingly common in the era of big data and IoT. As a result, there is an
increasing demand for effective PSO to solve emerging complicated optimization problems.

Inspired by the competition mechanisms in human society that groups of randomly
assembled individuals spontaneously engage in costly group competition [55], this paper
proposes a stochastic cognitive dominance leading particle swarm optimization algorithm
(SCDLPSO) to improve the learning effectiveness and efficiency of particles when tackling
complicated optimization problems. Instead of the competition between individuals, this
paper employs the competition between the personal best positions of particles to select
guiding exemplars for each updated particle. Specifically, for each particle to be updated,
two different personal best positions are first randomly selected from the ones of the other
particles. Then, the two selected personal best positions compete with the personal best
position of the updated particle. Only when at least one randomly selected personal best
position is better than the one of the particle to be updated, this particle is updated by
cognitively learning from the two better personal best positions (either the two better
randomly selected personal best positions or the better randomly selected one and its own
one); otherwise, it is not updated, and thus directly enters the next generation. In this
way, on the one hand, the swarm diversity could be largely promoted due to the random
selection of the two competing personal best positions and the retention of some particles,
preserving relatively good historical evolutionary information. On the other hand, the
learning effectiveness of particles could also be largely improved because each updated
particle learns from two better personal best positions. As a result, the proposed SCDLPSO
is expected to balance search diversification and intensification well to explore and exploit
the solution space appropriately.

To verify the effectiveness of the proposed SCDLPSO, comparative experiments are
extensively conducted on the widely used CEC 2017 benchmark problem set [56] with
different dimension sizes (namely 30, 50, and 100) by comparing SCDLPSO with seven
state-of-the-art PSO methods.

The rest of this paper is organized as follows. Section 2 reviews the canonical PSO and
the representative and latest PSO variants. Then, in Section 3, the devised SCDLPSO is
elaborated in detail. This is followed in Section 4 by the verification of the effectiveness of
SCDLPSO using extensive experiments. Finally, conclusions are given in Section 5.

2. Related Work

2.1. Canonical PSO

In the classical PSO [10,11], each particle is represented as two vectors, namely the
position vector and the velocity vector. During the evolution, each particle memorizes its
own personal best position found so far, while the whole swarm memorizes the global best
position found so far by all particles. Then, each particle is updated by cognitively learning
from its own search experience, namely the personal best position, and socially learning
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from the search experience of all particles, namely the global best position. Specifically, the
velocity and the position of each particle are updated as follows:

vi
t+1 = wvt

i + c1r1(pbestt
i − xt

i) + c2r2(gbestt − xt
i) (1)

xi
t+1 = xt

i + vt+1
i (2)

where xi and vi are the position vector and the velocity vector of the ith particle; pbesti is
the personal best position of the ith particle; gbest is the global best position of the whole
swarm found by all particles; t denotes the generation index; w ∈ [0, 1] is the inertia weight;
r1 and r2 are two real random numbers uniformly sampled within [0, 1]; c1 and c2 are
two acceleration factors in charge of the influence of the two guiding exemplars on the
updated particle.

In the literature [8,11,57], a linearly decreased w defined as follows is usually adopted
to alleviate the sensitivity of PSO to the inertia weight:

w = 0.9− 0.5× t
Tmax

(3)

where t is the number of generations used so far, while Tmax stands for the maximum
number of generations.

From Equation (1), it is found that in the classical PSO, all particles learn from one
same guiding exemplar, namely the global best position gbest of the whole swarm. As a
result, particles in the swarm converge very quickly to promising areas. However, once
gbest falls into local areas, it is hard for particles to escape from the local basin, and
thus the algorithm encounters premature convergence. Therefore, the classical PSO is
very suitable for unimodal optimization problems, but unaccommodating for multimodal
optimization problems [22,30,43].

2.2. Advancement of Learning Strategies for PSO

As shown in Equation (1), in the literature [8,22,26,45,51,52,58], the learning strategy
used to update the velocity of particles plays the most crucial role in assisting PSO to achieve
promising performance. Therefore, to further improve the optimization performance of
PSO in solving various optimization problems, especially the complicated ones, such as
multimodal problems, researchers have focused extensive attention on devising novel
and effective learning strategies for PSO. As a consequence, an ocean of remarkable PSO
variants have emerged [22,25,27,34,41]. Broadly speaking, existing learning strategies
for PSO can be divided into two main categories, namely the topology-based learning
strategies [43,48,59–61], and constructive learning strategies [8,35,51–53].

The topology-based learning strategies [23,43,45,49,62] mainly utilize different topolo-
gies to interact with particles to find proper guiding exemplars to direct the update of the
associated particle. In fact, the learning strategy in the classical PSO [10,11] described above
is also topology-based, where the topology is the full topology connecting all particles.
However, such a topology leads to too greedy attraction of the second guiding exemplar
in Equation (1), which results in premature convergence of PSO in solving multimodal
problems. To alleviate this predicament, researchers have developed many novel topologies
to find less greedy exemplars to improve the learning diversity of particles. To name a few
representatives, in [45], a ring topology was utilized to organize particles into a ring, and
each particle interacts with its left and right neighbors to select the locally best position
(lbest) as the guiding exemplar to replace gbest in Equation (1). In addition, the star topol-
ogy [46] and the wheel topology [46] were also utilized to organize particles and select
the best position in the associated topology to replace gbest. In [63], the cellular automata
(CA) with the lattice and the “smart-cell” structures were integrated in PSO to select the
second guiding exemplars for particles to update. In [60], the ring topology along with an
elitist learning strategy was incorporated into PSO to maintain exploration and exploitation
balance to properly search the solution space.
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In the above studies, the adopted topologies are usually fixed during the whole
optimization. This results in insufficient information exchange among particles. To further
improve the learning effectiveness of particles, some researchers have attempted to adopt
dynamic topologies to find promising guiding exemplars for particles. For instance, in [61],
a dynamic-neighborhood-based switching PSO (DNSPSO) was proposed according to
a distance-based dynamic topology along with a novel switching learning strategy to
adaptively select the acceleration coefficients based on the searching state of the swarm.
In this way, the evolutionary information of the swarm could be fully used to update
particles. In [59], Gong and Zhang proposed a small-world network based topology to let
each particle interact with its cohesive neighbors and by chance to communicate with some
distant particles via small-world randomization with probability.

Except for the above researches that use only one topology on the whole swarm, some
researchers have also been devoted to hybridizing different topologies based on subpopula-
tion techniques to further improve the learning diversity of particles. For example, in [64],
a fitness peak clustering (FPC) based dynamic multi-warm PSO with an enhanced learning
strategy (FPCMSPSO) was designed. Specifically, this algorithm uses FPC to divide the
swarm into several sub-swarms, and then evolves each sub-swarm independently based on
the local topology. In [65], a PSO with double learning patterns (PSO-DLP) was developed.
Specifically, this PSO variant adopts two swarms, namely the master swarm and the slave
swarm, and employs two different learning patterns to update particles in the two swarms,
so that a trade-off between the convergence speed and the swarm diversity can be achieved.
In particular, in the slave swarm, a local topology is used to update its particles to ex-
plore the search space, while in the master swarm, a global topology is utilized to exploit
the found promising areas. In [47], a memetic multi-topology particle swarm optimizer
(MMTPSO) was devised by utilizing two different topologies and during the evolution,
this algorithm biases to use the best performing topology to evolve the swarm.

Different from the topology-based learning strategies that select guiding exemplars
from the historical best positions already found by particles, the constructive learning
strategies mainly build new exemplars that may not appear during the evolution based
on the historical best positions [8,35,51,53,66]. Specifically, these methods mainly aim to
recombine dimensions of the historical best positions to try to generate promising guiding
exemplars via some recombination techniques. In this direction, the most representative
method is the comprehensive learning strategy [8], which constructs a new exemplar di-
mension by dimension for each particle based on the personal best positions of all particles.
Since the advent of CLPSO, researchers have proposed many additional techniques to
further improve its optimization ability. For instance, in [40], a local search method was
incorporated into CLPSO, and an adaptive local search starting strategy was further put
forward to adaptively trigger the local search by utilizing the quasi-entropy index. Instead
of adopting fixed comprehensive learning (CL) probabilities in CLPSO, in [35], an adaptive
CLPSO with cooperative archive (ACLPSO-CA) was developed by adaptively adjusting the
CL probability along with a cooperative archive (CA). Specifically, this algorithm divides
the CL probability into three levels and adjusts the CL probability level of each particle
dynamically according to its performance during the evolution. In [66], a multi-leader
CLPSO with adaptive mutation (ML-CLPSO-AM) was developed by incorporating a multi-
leader (ML) strategy and an adaptive mutation (AM) strategy into CLPSO. In the ML
strategy, a set of top-ranked particles form a pool of candidate leaders. During the update
of each particle, a leader is randomly selected from the pool to guide the learning of this
particle. In the AM strategy, the stagnated particles are adaptively mutated to restart their
evolution. In [52], a heterogeneous CLPSO (HCLPSO) was devised by using the personal
best positions of particles to generate guiding exemplars for the subpopulation responsible
for exploration, while adopting the global best positions of the entire swarm to generate
guiding exemplars for the subpopulation responsible for exploitation. In [50], a triple
archives PSO (TAPSO) was designed by maintaining three archives. The first archive is
used to store particles with better fitness, and the second archive is used to record the other
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particles. Then, similarly to CLPSO, this algorithm generates a new exemplar for each
particle dimension by dimension by randomly choosing one particle from the first archive
and one from the second archive based on the ordinary genetic operators. If the constructed
exemplar has excellent performance, it will be saved in the third archive and then reused
by inferior particles.

Although the above CLPSO variants have shown promising performance, the con-
struction of new effective exemplars is inefficient because the recombination of dimension
is thoroughly random. To improve the effectiveness of the recombination, in [51], an orthog-
onal learning PSO (OLPSO) was devised by orthogonal experimental design to discover
useful information that lies in the historical positions found by particles. Specifically, this
algorithm utilizes an orthogonal matrix to find the effective combinations of dimensions to
construct a promising and efficient exemplar for each particle. However, this method is
too resource-consuming because it needs many fitness evaluations in the orthogonal exper-
imental design. To alleviate this issue, in [53], the genetic operators including crossover,
mutation, and selection, were adopted to construct guiding exemplars based on the his-
torical search information of particles. In this way, the generated exemplars are expected
to be not only well diversified, but also of high quality. In [45], a global GLPSO with a
ring topology (GGL-PSOD) was devised. In this PSO variant, the ring topology is used to
breed diversified exemplars based on two directly connected neighbor particles, so that the
exploration ability can be promoted.

Except for the learning strategies, the settings of key parameters in Equation (1) also
play a crucial role in aiding PSO to achieve good performance when tackling optimiza-
tion problems [19,57,67–69]. However, these parameter settings are usually different for
different optimization problems. To alleviate this dilemma, researchers have designed
many adaptive parameter adjustment strategies for PSO [70]. For instance, in [71], an
adaptive PSO was proposed by adaptively adjusting the inertia weight and the acceleration
coefficients. Specifically, a real-time evolutionary state estimation method was designed
to classify the evolutionary states of the swarm into four types, namely exploration, ex-
ploitation, convergence, and jumping out in each generation. Then, the inertia weight
and the acceleration coefficients are dynamically adjusted based on the estimated state.
Taking inspiration from the activation function of neural networks, Liu et al. [57] pro-
posed a sigmoid-function-based weighting strategy for PSO to update the acceleration
coefficients by considering both the distances from the updated particle to gbest and from
the particle to its pbest. In [72], a self-adaptive parameter updating strategy based on
success history information was proposed to automatically adjust the learning parameters
to appropriate values.

Although PSO has been advanced to a large extent as briefly described above since
its advent, its optimization ability is still challenged when confronted with complicated
optimization problems with many interacting variables and wide and flat local areas.
Therefore, how to improve the optimization performance of PSO is still an open issue and
remains a hot and attractive topic in the evolutionary computation community. To this end,
this paper proposes a stochastic cognitive dominance leading particle swarm optimization
(SCDLPSO) to improve the optimization ability of PSO in solving complex optimization
problems, which is elucidated in the next section.

3. Stochastic Cognitive Dominance Leading Particle Swarm Optimization

In human society, groups of randomly assembled individuals usually engage in
costly group competition spontaneously [55]. Likewise, in the swarm of PSO, we can also
randomly assemble particles and let them compete with each other based on their historical
cognitive experience. Inspired by this, we propose a stochastic cognitive dominance
leading particle swarm optimization algorithm (SCDLPSO) in this paper to improve the
optimization ability of PSO in tackling optimization problems.
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3.1. Stochastic Cognitive Dominance Leading Strategy

During the evolution, different particles usually preserve different historical experi-
ences. These cognitive experiences preserve valuable information to guide the evolution
of the swarm. In the classical PSO [10,11], each particle exchanges its own experience
with all the other particles to find the best one to direct its learning. Such an exchange
is too greedy and with low diversity, as all particles learn from the same best position,
namely gbest. To improve the learning diversity and effectiveness of particles, we propose a
stochastic cognitive dominance leading strategy (SCDL) for PSO by imitating the stochastic
competition mechanism in human society [55].

Specifically, given that NP particles are maintained in the swarm, during the evolution,
for each particle to be updated (denoted as xi, i ∈ [1, NP]), we first randomly select two
different personal best positions (denoted by pbestpr1 and pbestpr2) from those of the rest
(NP-1) of the particles. Between the two selected personal best positions, we suppose
f (pbestpr1) ≤ f (pbestpr2). Then, the two selected best positions compete with the personal
best position of the particle to be updated. Only when at least one of the two selected
personal best positions shows dominance to the one of the particle, this particle is updated;
otherwise, this particle is not updated and directly enters the next generation.

In particular, with the assumption that f (pbestpr1) ≤ f (pbestpr2), in the competition
between the two selected best positions (pbestpr1 and pbestpr2) and the personal best
position (pbesti) of the particle to be updated, three cases may occur: namely, pbesti is
dominated by both of the two selected positions, pbesti is dominated by only one of the
two positions, or pbesti dominates both of the two positions. In the three cases, the velocity
of the associated particle is updated accordingly, as follows:

Case 1: f (pbestpr1) ≤ f (pbestpr2) ≤ f (pbesti):

vt+1
i = wvt

i + β(r1(pbestpr1 − xt
i ) + r2(pbestpr2 − xt

i)) (4)

Case 2: f (pbestpr1) ≤ f (pbesti) < f (pbestpr2):

vt+1
i = wvt

i + β(r1(pbestpr1 − xt
i) + r2(pbesti − xt

i)) (5)

Case 3: f (pbesti) < f (pbestpr1) ≤ f (pbestpr2) :

vt+1
i = vt

i (6)

where vi is the velocity vector of the ith particle; pbesti is its personal best position; pbestpr1

and pbestpr2 are the two randomly selected personal best positions; w ∈ [0, 1] is the inertia
weight; r1 and r2 are two real random numbers uniformly sampled within [0, 1]; β is
the acceleration parameter controlling the influence of the two guiding exemplars on the
updated particle.

In Case 1, the randomly selected two personal best positions pbestpr1 and pbestpr2 are
both superior to the one (pbesti) of the updated particle. In this situation, it is likely that
the historical experience of the associated two particles is more valuable than the one of
the particle to be updated. Therefore, to accelerate the learning efficiency of this particle,
we let it cognitively learn from these two random best positions (pbestpr1 and pbestpr2)
instead of learning from its own historical experience. In this way, it is expected that the
updated particle could approach the promising areas quickly. It should be noticed that
such a fast approach to promising areas is not at the expense of search diversity, because
the two personal best positions are randomly selected from those of all particles.

In Case 2, only one (with the assumption that f (pbestpr1) ≤ f (pbestpr2), it is actually
pbestpr1) of the two selected personal best positions shows dominance to the personal best
position (pbesti) of the particle to be updated. To enhance the probability of finding more
promising areas, we let this particle cognitively learn from the better one (pbestpr1) of the
two selected historical best positions and its own personal best position (pbesti). By this
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means, the updated particle also learns from good historical experience and thus likely
approaches promising areas quickly.

In Case 3, both of the two randomly selected personal best positions are inferior
to the one of the particle to be updated. In this situation, except for its own valuable
experience, no extra useful experience is available for this particle to learn during this
information exchange between the particle and the two particles associated with the two
randomly selected personal best positions. Therefore, this particle is not updated and
directly enters the next generation as shown in Equation (6), where the velocity of the
particle remains unchanged.

On the whole, from the above three cases, we can see that the proposed SCDL strategy
can assist PSO to maintain high search diversity from two perspectives. (1) The random
selection of the two personal best positions allows different particles to learn from different
exemplars. Therefore, the learning diversity of particles can be largely improved, which
is beneficial for the promotion of the swarm diversity. (2) In Case 3, some particles with
promising experience survive. Such an implicit retention mechanism affords great chances
of improving the swarm diversity. Additionally, SCDL can also help PSO achieve fast
convergence, because each updated particle in Case 1 and Case 2 learns from valuable
cognitive experience. Such learning from elite experience offers high possibility for the
updated particles to approach promising areas quickly. Consequently, based on the above
investigation, it is expected that the proposed SCDLPSO can balance the search intensifica-
tion and diversification well to explore and exploit the solution space appropriately to find
high-quality solutions to optimization problems.

3.2. Difference between SCDL and Existing PSO Variants

In fact, the proposed SCDL strategy is a topology-based learning strategy. Specifically,
the topology is a random triad topology connecting each particle to be updated with
two random ones selected from the rest of the particles. Compared with existing studies
adopting random topologies [47,48,59,73], the proposed SCDL distinguishes them from the
following two perspectives:

(1) SCDL lets each particle learn from the best two personal best positions in the asso-
ciated random triad topology. That is to say, the topology affects the selection of
the two guiding exemplars in the velocity update. However, most existing random
topology-based learning strategies [47,48,59,73] let each particle learn from its own
personal best position and the best among the random topologies. In other words, the
random topologies only influence the selection of the second guiding exemplar in the
velocity update.

(2) In Case 3 in the proposed SCDL, some particles with promising historical experience
are not updated and directly enter the next generation. With this retention mechanism,
some promising historical experience is preserved from being attracted to local areas,
which is beneficial for the swarm to escape from local areas. However, in most existing
studies [47,48], all particles are updated, and thus there is no retention mechanism
like Case 3 in SCDL.

Based on these two unique advantages, the proposed SCDL is expected to help PSO
balance the swarm diversity and the convergence speed better to explore and exploit the
solution space.

3.3. Overall Procedure

The overall procedure of the developed SCDLPSO is shown in Algorithm 1. Specif-
ically, after NP particles are randomly initialized and evaluated as shown in Line 1, the
algorithm goes to the main iteration of the evolution. During the update of the swarm
(Lines 3–15), for each particle, two random personal best positions are first selected (Line 4),
and then they compete with the personal best positions of the particle to be updated. With
different competition cases, the particle is updated accordingly, as shown in Lines 9–13.
After the particle is updated, it is reevaluated, and its personal best position is updated
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accordingly (Line 14). The above main iteration proceeds continuously until the maximum
number of fitness evaluations is exhausted. At the end of the algorithm, the global best
position found by the swarm is obtained as the final output (Line 17).

Algorithm 1 The pseudocode of SCDLPSO

Input: swarm size NP, maximum number of fitness evaluations FEmax

1: Initialize NP particles randomly and calculate their fitness, and set fes = NP;
2: While (fes ≤ FEmax) do

3: For i = 1:NP do

4:
Select two different exemplars randomly from the personal best positions of

all particles: pbestpr1, pbestpr2;
5: If (f (pbestpr2) < f (pbestpr1)) then

6: Swap pr2 and pr1;
7: End If

8: Compute the inertia weight w according to Equation (3);
9: If (f (pbestpr1) ≤ f (pbestpr2) ≤ f (pbesti)) then

10: Update the particle according to Equation (4) and Equation (2);
11: Else If (f (pbestpr1) ≤ f (pbesti) < f (pbestpr2)) then

12: Update the particle according to Equation (5) and Equation (2);
13: End If

14: Calculate the fitness of the updated particle: f (xi), update its pbesti and fes += 1;
15: End For

16: End While

17: Obtain the global best solution gbest and its fitness f (gbest);
Output: f (gbest) and gbest

From Algorithm 1, it is found that at each generation, except for the fitness evaluation
time, it takes O (NP) to select random personal best positions for all particles, and O (NP)
to compete the selected personal best positions with the ones of the associated particles.
Then, it takes O (NP ∗ D) to update all particles. On the whole, it is found that the overall
time complexity of SCDLPSO is O(NP ∗ D). As for the space complexity, the same with the
classical PSO, SCDLPSO needs O (NP ∗ D), O (NP ∗ D) and O (NP ∗ D) to store the velocity,
the positions and the personal best positions of all particles, respectively.

In conclusion, we can see that the proposed SCDLPSO remains as efficient as the
classical PSO in terms of both the time complexity and the space occupation.

4. Experiments

In this section, extensive experiments are carried out to verify the effectiveness of
the proposed SCDLPSO on the widely used CEC 2017 benchmark problem set [56]. In
particular, this benchmark set contains 29 optimization problems with four types, namely
unimodal problems (F1 and F3), simple multimodal problems (F4–F10), hybrid problems
(F11–F20) and composition problems (F21–F30). The latter two types of problems are much
more difficult to optimize than the former two. For more detailed information about this
benchmark set, please refer to [56].

4.1. Experimental Setup

First, to comprehensively verify the performance of SCDLPSO, we compare it with sev-
eral state-of-the-art PSO algorithms. Specially, the selected representative and state-of-the-
art PSO variants are XPSO [74], TCSPSO [75], DNSPSO [61], AWPSO [57], CLPSO_LS [40],
GLPSO [53], and CLPSO [8]. Among these compared algorithms, XPSO and DNSPSO are
topology-based learning PSO variants, while CLPSO_LS, GLPSO and CLPSO are construc-
tive learning-based PSO methods.

Second, to make comprehensive comparisons between the proposed SCDLPSO and
the compared PSO variants, we evaluate their performance on the CEC 2017 benchmark
problems with three different dimension sizes, namely 30-D, 50-D, and 100-D. For fair

474



Mathematics 2022, 10, 761

comparisons, the maximum number of fitness evaluations (FEmax) is set as 10,000 ∗ D for
all algorithms.

Third, to make fair comparisons, we fine-tune the population size for all algorithms on
the CEC 2017 benchmark set with different dimension sizes. After preliminary experiments
for the fine-tuning of the population size, the parameter settings of all algorithms were as
listed in Table 1.

Table 1. Parameter settings of all comparative algorithms.

Algorithms D Parameter Settings

SCDLPSO

30 NP = 100

w = 0.9–0.4 β = 0.550 NP = 100

100 NP = 150

XPSO

30 NP = 100

η = 0.2 p = 0.5 Stagemax = 550 NP = 150

100 NP = 150

TCSPSO

30 NP = 50

w = 0.9–0.4 c1 = c2 = 250 NP = 50

100 NP = 50

DNSPSO

30 NP = 50

w = 0.9–0.4 k = 5 F = 0.5 CR = 0.950 NP = 50

100 NP = 50

AWPSO

30 NP = 40

w = 0.9–0.450 NP = 60

100 NP = 100

CLPSO_LS

30 NP = 40

c = 1.4945 w = 0.9–0.4 β = 1/3 θ = 0.94 Pc = 0.05–0.550 NP = 50

100 NP = 50

GLPSO

30 NP = 40

w = 0.7298 c1 = c2= 1.49618 pm = 0.01 sg = 750 NP = 40

100 NP = 50

CLSPO

30 NP = 40

w = 0.9–0.2 c1 = c2 = 1.49445 Pc = 0.05–0.550 NP = 60

100 NP = 60

Fourth, to comprehensively and fairly evaluate each algorithm, we run each algorithm
independently for 30 times and utilize the median, the mean and the standard deviation
over the 30 independent runs to evaluate its optimization performance. In addition, to iden-
tify the statistical significance, we conduct the Wilcoxon rank sum test at the significance
level of α = 0.05. Moreover, to investigate the overall performance of each algorithm on
the whole CEC 2017 benchmark set, the Friedman test is also performed at the significance
level of α = 0.05 to obtain the average rank of each algorithm.

4.2. Parameter Sensitivity Analysis

In the proposed SCDLPSO, there are two parameters, namely the swarm size NP and
the control parameter β, that need to be fine-tuned. Therefore, to investigate the sensitivity
of SCDLPSO to the two parameters, we conduct experiments by varying NP from 50 to
200 and ranging β from 0.1 to 1.0 for SCDLPSO on the 50-D CEC 2017 benchmark set as a
representative. Table 2 shows the comparison results for SCDLPSO with different settings
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of NP and β on the 50-D CEC 2017 benchmark problems. In this table, the best results are
highlighted in bold, and the average rank of each setting of β under the same setting of NP,
as presented in the last row of the table, is obtained by the Friedman test at the significance
level of “α = 0.05”.

From Table 2, we can derive the following findings. (1) From the perspective of the
Friedman test, when NP is fixed, the setting of β is neither too large nor too small, and the
optimal setting is within [0.3, 0.5]. Specifically, when NP is 100 and 200, the optimal β is 0.5.
When NP is set to 50, the optimal setting of β is 0.4. When NP is 150, the optimal setting of β
is 0.3 and 0.4. (2) On closer observation, we can find that no matter what the swarm size is,
the performance of SCDLPSO first improves with the increase in β at the beginning. After
it reaches 0.5, the larger the setting of β is, the worse performance SCDLPSO achieves. (3)
Taking comprehensive comparisons among all settings into consideration, we find that β is
not so closely related to swarm size NP. Comprehensively, we recommend setting β = 0.5
for SCDLPSO to solve optimization problems.

To summarize, β is not so closely related to swarm size NP, and the optimal setting is
generally within [0.3, 0.5]. In this paper, we recommend setting β = 0.5 for SCDLPSO to
solve optimization problems.

4.3. Comparison with State-of-the-Art PSO Variants

In this section, we conduct extensive comparison experiments on the CEC 2017 bench-
mark set with different dimension sizes to compare the proposed SCDLPSO with the seven
state-of-the-art and representative PSO variants. Tables 3–5 show the detailed comparison
results for the 30-D, 50-D and 100-D CEC 2017 benchmark problems, respectively. In
these tables, the symbols “+”, “−” and “=” above the p-values mean that SCDLPSO is
significantly superior, inferior, or equivalent to the compared algorithms on the associated
problems. In the second to last rows of these tables, “w/t/l” count the number of problems
where the devised SCDLPSO achieves significantly better, equivalent, or worse perfor-
mance than the associated compared algorithms, respectively. They are actually the number
of “+”, “=” and “−”, respectively. In the last rows of these tables, the average rank of each
algorithm obtained by the Friedman test is presented. In addition, Table 6 summarizes
the statistical comparison results between SCDLPSO and the seven state-of-the-art PSO
variants on the CEC 2017 benchmark set with different dimensions in terms of “w/t/l”.
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Table 6. Statistical comparison results between SCDLPSO and the seven state-of-the-art PSO variants
on the CEC 2017 benchmark set with different dimensions in terms of “w/t/l”.

Category D XPSO TCSPSO DNSPSO AWPSO CLPSO_LS GLPSO CLPSO

Unimodal
Functions

30 0/1/1 1/1/0 2/0/0 2/0/0 1/1/0 0/1/1 2/0/0

50 0/1/1 1/1/0 2/0/0 2/0/0 1/1/0 1/0/1 2/0/0

100 1/0/1 1/1/0 1/1/0 2/0/0 1/1/0 2/0/0 1/0/1

Simple
Multimodal
Functions

30 6/0/1 6/0/1 5/0/2 6/0/1 6/1/0 6/0/1 5/0/2

50 6/0/1 6/0/1 6/0/1 6/0/1 7/0/0 6/0/1 5/0/2

100 6/0/1 6/0/1 6/1/0 6/1/0 7/0/0 7/0/0 6/0/1

Hybrid
Functions

30 5/4/1 9/1/0 8/1/1 7/3/0 9/1/0 8/2/0 8/0/2

50 5/3/2 4/6/0 9/0/1 10/0/0 6/3/1 5/5/0 6/2/2

100 6/4/0 9/1/0 10/0/0 9/1/0 9/1/0 7/3/0 7/0/3

Composition
Functions

30 6/3/1 10/0/0 8/0/2 10/0/0 8/2/0 9/1/0 5/3/2

50 6/3/1 9/1/0 8/0/2 10/0/0 9/1/0 7/2/1 7/0/3

100 7/2/1 9/1/0 6/0/4 10/0/0 9/1/0 10/0/0 6/0/4

Whole Set

30 17/8/4 26/2/1 23/1/5 25/3/1 24/5/0 23/4/2 20/3/6

50 17/7/5 20/8/1 25/0/4 28/0/1 23/5/1 19/7/3 20/2/7

100 20/6/3 25/3/1 23/2/4 26/3/0 26/3/0 26/3/0 20/0/9

As shown in Table 3, the comparison results on the 30-D CEC 2017 benchmark prob-
lems can be summarized as follows:

(1) As shown in the last row of Table 3, the proposed SCDLPSO achieves the lowest rank
in terms of the Friedman test, and its rank is much smaller than those of the other
algorithms. This demonstrates that SCDLPSO achieves the best overall performance
on the 30-D CEC 2017 benchmark set and its overall performance is much superior to
the compared algorithms.

(2) The second to last row of Table 3 shows that SCDLPSO performs much better than
the seven compared algorithms from the perspective of the Wilcoxon rank sum test.
Specifically, compared with TCSPSO, DNSPSO, AWPSO, CLPSO_LS, GLPSO, and
CLPSO, SCDLPSO achieves significantly superior performance to the other algorithms
on at least 20 problems, and displays inferiority to them on at most six problems.
Compared with XPSO, the proposed SCDLPSO shows significant superiority on
17 problems and is worse than XPSO on only four problems.

(3) In terms of the comparison results on different types of optimization problems, on
the two unimodal problems, SCDLPSO outperforms DNSPSO, AWPSO, and CLPSO,
while it achieves competitive performance with XPSO, TCSPSO, CLPSO_LS, and
GLPSO. On the seven simple multimodal problems, SCDLPSO presents significant
superiority to the seven compared algorithms on at least five problems. As for
the 10 hybrid problems, except for XPSO, SCDLPSO performs significantly better
than the other compared PSO variants on at least seven problems. In comparison
with XPSO, SCDLPSO shows great superiority on five problems and is defeated by
XPSO on only one problem. In terms of the 10 composition problems, SCDLPSO is
significantly better than AWPSO and TCSPSO on all of these problems. It achieves
better performance than DNSPSO, CLPSO_LS, and GLPSO on eight, eight, and nine
problems, respectively. In comparison with XPSO and CLPSO, SCDLPSO outperforms
them on six and five problems respectively, and shows worse performance on only
one and two problems, respectively.
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Subsequently, from Table 4, we can draw the following conclusions in regard to the
comparison results between SCDLPSO and the compared state-of-the-art PSO variants on
the 50-D CEC 2017 benchmark problems:

(1) According to the last row of Table 4, SCDLPSO still achieves the lowest rank among
all algorithms. This demonstrates that SCDLPSO still obtains the best overall perfor-
mance on the 50-D CEC 2017 problems.

(2) From the perspective of the Wilcoxon rank sum test, as shown in the second to
last row of Table 4, SCDLPSO achieves better performance than TCSPSO, DNSPSO,
AWPSO, CLPSO_LS, and CLPSO on 20, 25, 28, 23 and 20 problems, respectively.
In comparison with XPSO and GLPSO, SCDLPSO outperforms them on 17 and
19 problems, respectively.

(3) As for the comparison results on different types of optimization problems, on the two
unimodal problems, SCDLPSO is significantly superior to DNSPSO, AWPSO, and
CLPSO on both problems, while it obtains very competitive performance with the
other compared algorithms. As for the seven simple multimodal problems, SCDLPSO
significantly outperforms the seven compared PSO variants on at least five problems.
On the 10 hybrid problems, SCDLPSO achieves significantly better performance than
DNSPSO and AWPSO on 9 and 10 problems, respectively. In competition with the
other five compared PSO variants, SCDLPSO shows no inferiority to them on at least
eight problems. Confronted with the 10 composition problems, SCDLPSO presents
great superiority to the seven compared PSO variants on at least six problems, and
displays inferiority to them on at most three problems.

At last, from Table 5, the following conclusions can be drawn from the comparison
results between SCDLPSO and the compared state-of-the-art PSO variants on the 100-D
CEC 2017 benchmark problems:

(1) According to the averaged rank obtained from the Friedman test, SCDLPSO still ranks
first among all algorithms. This verifies that SCDLPSO consistently achieves the best
overall performance on the 100-D CEC 2017 benchmark set.

(2) From the results of the Wilcoxon rank sum test, SCDLPSO presents significant domi-
nance to the seven compared algorithms on at least 20 problems. In particular, com-
peted with AWPSO, CLPSO_LS, and GLPSO, SCDLPSO significantly outperforms
them on 26 problems, and shows no inferiority on any of the 29 problems.

(3) Regarding the comparison results for different types of optimization problems, on the
two unimodal problems, SCDLPSO is significantly superior to AWPSO and GLPSO
on both problems and achieves competitive performance with the other algorithms.
On the seven simple multimodal problems, SCDLPSO outperforms all seven com-
pared algorithms on at least six problems. When it comes to the 10 hybrid problems,
SCDLPSO achieves significantly better performance than all compared PSO variants
on at least six problems. Particularly, SCDLPSO significantly beats TCSPSO, DNSPSO,
AWPSO, and CLPSO_LS on at least nine problems, and shows no worse performance
than them on all 10 problems. As for the 10 composition problems, SCDLSPO out-
performs AWPSO and GLPSO on all of these problems, and wins the competition
with TCSPSO and CLPSO_LS on nine. When compared with XPSO, DNSPSO, and
CLPSO, SCDLPSO is superior on at least six problems and shows inferiority on at
most four problems.

Overall, as shown in Table 6, it is found that the proposed SCDLPSO consistently
shows great superiority to the compared state-of-the-art and representative PSO variants on
the CEC 2017 benchmark problem set with different dimension sizes. On the one hand, from
a comprehensive perspective, the above comparative experiments validate that SCDLPSO
preserves good scalability to solve optimization problems. On the other hand, after deep
investigation of the comparison results for different types of optimization problems, we
find that SCDLPSO performs particularly much better than the compared algorithms on
complicated problems, such as the multimodal problems, the hybrid problems and the
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composition problems. This demonstrates that SCDLPSO preserves the capability to solve
complex optimization problems. All of these examples of SCDLPSO superiority mainly
benefit from the proposed SCDL strategy, which affords high learning diversity and effec-
tiveness for particles. With this strategy, SCDLPSO can balance search intensification and
diversification well to explore and exploit the solution space to find high-quality solutions.

5. Conclusions

This paper has proposed a stochastic cognitive dominance leading particle swarm op-
timization (SCDLPSO) algorithm to tackle complicated optimization problems. Specifically,
in this optimizer, a random triad topology is employed for each particle to communicate
with two other particles randomly selected from the swarm. Then, the historical cognitive
experiences of the three particles are allowed to compete with each other. Only when at
least one of the personal best positions of the two randomly selected particles shows domi-
nance to the personal best position of the particle to be updated, this particle is updated by
learning from the two best cognitive experiences; otherwise this particle is not updated and
directly enters the next generation. In this way, high learning diversity can be maintained
due to the random interaction, and at the same time, high learning effectiveness can be
preserved because each updated particle learns from the two best experiences. Therefore,
the proposed SCDLPSO is expected to explore and exploit the solution space appropriately
during the evolution.

Extensive comparative experiments were conducted on the CEC 2017 benchmark
problem set with three different dimension sizes by comparing SCDLPSO with seven
state-of-the-art and representative PSO variants. The experimental results demonstrate
that SCDLPSO consistently achieves great superiority to the compared algorithms on most
problems with the three dimension sizes. In particular, it was verified that SCDLPSO
performs much better than the compared algorithms on complicated problems, such as
multimodal problems, hybrid problems and composition problems. Therefore, SCDLPSO
can be considered as a promising optimizer for optimization problems, especially the
complicated ones.
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Abstract: Many works have been proposed on image saliency detection to handle challenging
issues including low illumination, cluttered background, low contrast, and so on. Although good
performance has been achieved by these algorithms, detection results are still poor based on RGB
modality. Inspired by the recent progress of multi-modality fusion, we propose a novel RGB-
thermal saliency detection algorithm through learning static-adaptive graphs. Specifically, we first
extract superpixels from the two modalities and calculate their affinity matrix. Then, we learn the
affinity matrix dynamically and construct a static-adaptive graph. Finally, the saliency maps can be
obtained by a two-stage ranking algorithm. Our method is evaluated on RGBT-Saliency Dataset with
eleven kinds of challenging subsets. Experimental results show that the proposed method has better
generalization performance. The complementary benefits of RGB and thermal images and the more
robust feature expression of learning static-adaptive graphs create an effective way to improve the
detection effectiveness of image saliency in complex scenes.

Keywords: RGB-thermal; static-adaptive graph; manifold ranking; saliency detection

1. Introduction

Image saliency detection aims to quickly capture the most important and useful
information from a scene by using the human visual attention mechanism, which can reduce
the complexity of subsequent image processing, and has been applied to numerous vision
problems including image classification [1], image retrieval [2], image encryption [3,4],
video summary [5], and so on. In the past few decades, researchers have proposed many
saliency detection algorithms, which can be divided into bottom-up data-driven models and
top-down task-driven methods. Bottom-up models [6–9] take the underlying image features
and some priors into consideration, such as color, texture, orientation, and brightness.
Itti et al. [10] proposed a visual attention mechanism, which opened research on saliency
detection in the field of computer vision. Cheng et al. [11] introduced a regional contrast-
based salient object detection algorithm, which simultaneously evaluates global contrast
differences and spatial weighted coherence scores. Wang et al. [12] improved the detection
effect of image saliency by optimizing seeds. Top-down models [13,14] are task driven. They
use a large amount of training data with category labels and supervised learning to conduct
a task-oriented analysis. Recently, most of these methods are based on deep learning, they
have better performance, but their training processes are time-consuming. We focus on the
bottom-up models. Many scholars have made many attempts to improve image saliency
detection and have obtained good performance in simple scenes. However, the effectiveness
of traditional RGB saliency detection methods decreases sharply in complex scenes, such
as poor lighting or saliency objects that have the same color and texture as the background.
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In recent years, multi-source sensor technology has become popular in image processing.
Li et al. [15–17] simultaneously extracted RGB and thermal features for tracking, which
effectively improved the effect of video target tracking at night or in rainy, hazy, and foggy
weather. Zhang et al. [18] extracted the depth features of RGB images and thermal images,
and then fused the two extracted features for saliency detection, which greatly improved
the detection effectiveness in the case of poor illumination or similar color and texture to
the background. The fusion of RGB and thermal images is proven to be effective in image
saliency detection. RGB images can provide texture details with high definition in a manner
consistent with the human visual system in simple scenes. By contrast, thermal images
can work well in low illumination, and also have good discrimination when the target and
the background have similar colors or shapes RGB-T saliency detection algorithms can
obtain better results by handling challenging issues including low illumination, cluttered
background, low contrast, and so on. Graph-based models [19–21] use pixels or superpixels
as nodes and the similarity weight between nodes as the edge to generate the graph,
which can achieve a great structure character from initial input images for RGB-T saliency
detection results. However, the existing graph-based fusion models only use the static
graph. The limitation of this kind of method is that it cannot explore the relationship
between nodes at the target level and gain better fusion of multi-modality information.
Inspired by these methods, we consider the spatial connectivity feature of graph nodes
to learn a static-adaptive graph, and propose a novel RGB-thermal saliency detection
algorithm to obtain more effective results, as in Figure 1.

Figure 1. Comparative results of static-adaptive graph-based method with traditional static graph
model. (a) RGB image; (b) thermal image; (c) the saliency map generated by the static graph-based
model; (d) the saliency map generated by our model; (e) ground truth.

Specifically, we first extract superpixels from the two modalities and calculate their
affinity matrix. Then, we learn the affinity matrix dynamically and construct a static-
adaptive graph. Finally, the saliency maps can be obtained by a two-stage ranking algo-
rithm. The contributions of this paper are summarized as follows.

• We construct an adaptive graph by sparse representation and carry out the optimiza-
tion solution;

• We learn a novel static-adaptive graph model to increase the fusion capacity by con-
sidering the spatial connectivity features of graph nodes in RGB-T saliency detection;

• We compare our method with the state-of-the-art methods on an RGB-T dataset with
11 kinds of challenging subsets. The experimental results verify the effectiveness of
our method.
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2. Related Work

In this section, we give a brief review of methods closely related to our work. The rele-
vant work in this paper mainly includes the graph-based method, multi-modality fusion
method, and subspace-based method.

Graph-based method. In the past few decades, graph-based models have been suc-
cessfully used for saliency detection problems. Harel et al. [19] proposed a graph model.
The algorithm takes the pixel points as the graph nodes, constructs edges between the pixel
points according to the spatial distance and feature distance, and uses Markov random
field for feature fusion. Yang et al. [20] proposed a manifold ranking algorithm based on
a static graph, which is a typical two-stage model to gain more accurate saliency maps.
Jiang et al. [21] calculated a preliminary saliency map by Markov absorption probability on
a weighted graph via partial image borders as prior background. Zhang et al. [22] used
multi-scale to improve the manifold ranking algorithm. Xiao et al. [23] proposed a prior
regularized multi-layer graph ranking model in which they used the prior calculating by
boundary connectivity. Aytekin et al. [24] proposed a graph model that uses a convolution
kernel function network to learn the connection weight coefficients.

Multi-modality fusion method. In recent years, with the development of multi-sensors,
multi-modality fusion has become a new effective means to improve computer vision
tasks. Li et al. [25] combined gray and thermal information to deal with target tracking in
complex scenes. Li et al. [15] used multispectral (RGB and thermal) data to improve visual
tracking effectiveness. Li et al. [26] established a unified RGB-T dataset and proposed a
new algorithm to fuse RGB and thermal images for saliency detection, which incorporates
the cross-modality consistent constraints to integrate different modalities collaboratively.
RGB-D is an effective multi-modal fusion method in many aspects, such as manufactur-
ing [27], semantic segmentation [28–30], and saliency detection [31,32]. Liu et al. [33] used
three transformer encoders with shared weights to enhance multi-level features, and the
algorithm they proposed effectively improves the effectiveness of saliency detection.

Subspace-based method. Subspace-based methods represent high-dimensional data in
low-dimensional subspace. The purpose of subspace representation is to obtain a similarity
matrix in the basic subspace of the original data. In a dataset, each data point can be
reconstructed by an effective combination of other points, which are often helpful for data
processing, because data can better reflect the characters of data in its low-dimensional
subspace. Guo et al. [34] proposed a subspace segmentation method to jointly learn data
representation and affinity matrix relationships simultaneously in a model. Li et al. [35]
represented each patch with a linear combination of the remaining ones and learned the
weights of the global and local features of the detection object, achieving good effectiveness
in the application field of video tracking.

We learn static-adaptive graphs for saliency detection. The static graph is the tradi-
tional graph. Its structure is fixed, and it only considers the relationship between adjacent
nodes. The adaptive graph is obtained by the subspace method to mine the internal rela-
tionship between superpixels. Therefore, our algorithm considers both local and global
features, and has better effectiveness than the saliency detection algorithm which is only
based on the static graph. In multi-modality selection, we fuse RGB image and thermal
image, because RGB and thermal images have natural complementarity. Compared with
the RGB-D saliency detection algorithm, the RGB-T saliency detection algorithm has much
lower hardware requirements for computers, and can run well on computer with an i3 3.3G
CPU and 4GB RAM.

3. Brief Review of Manifold Ranking

A manifold ranking (MR) model [20] is a typical graph-based method for saliency
detection. For an image, simple linear iterative clustering (SLIC) [36] is always used to
obtain n superpixels as graph nodes in most of these models. Take a graph G = (V, E),
where V is a node set. Some of nodes are labeled as queries and the rest need to be ranked
according to their relevance to the queries. Let X = [x1, x2, . . . , xn] ∈ R

d×n be the character
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matrix, d the dimensionality of the feature vector, and n the number of the superpixels. E is
the set of undirected edges and Wij is the edge weight between node i and node j that can
be calculated by feature vectors of two nodes. Let q = [q1, q2, . . . , qn]T denote an indication
vector, where qi = 1 if node i is a labeled query, otherwise, qi = 0. The aim of MR is to gain
a ranking value fi for each graph node, which can be computed by solving Equation (1),

min
f

1
2
(

n

∑
i,j=1

Wij‖ fi√
Dii

− f j√
Djj
‖2 + μ

n

∑
i=1
‖ fi − qi‖2) (1)

where Dii = ∑n
j=1 Wij.

To obtain more effective results, Yang et al. [20] obtained the ranking value by using
the un-normalized Laplacian matrix in Equation (2),

f = (D− λW)−1q, (2)

where D is a degree matrix, D = diag{D11, . . . , Dnn}, λ = 1/(1 + μ).

4. Static-Adaptive Graph Learning

4.1. Static-Adaptive Graph Construction

The graph of traditional models is static; most of them only consider adjacent nodes
and boundary nodes. The limitation of this kind of method is that it cannot explore
the relationship between nodes at the target level. Therefore, we consider the spatial
connectivity features of graph nodes to construct a static-adaptive graph, in which su-
perpixels with similar features in the region are also connected. Take multiple graphs
Gm = (Vm, Em), m = 1, 2, . . . , M, where Vm is a node set, and Em is the set of undirected
edges. Let Xm = [xm

1 , xm
2 , . . . , xm

N ] ∈ R
d×N , m = 1, 2, . . . , M be the character matrix of the

m-th modality. N is the number of graph nodes. d is the dimensionality of the feature
vector. As in traditional static graphs [20], when two nodes meet one of the following three
conditions, they are considered to have edges.

(1) Two nodes are directly adjacent;
(2) There is a common edge between two nodes;
(3) Superpixels are on the four boundaries.

If there is an edge between two nodes, the weight of the edge is calculated by
Equation (3).

Wm
i,j = e−γ0‖xm

i −xm
j ‖, m = 1, 2, . . . , M, (3)

where xm
i denotes the mean of the i-th superpixel in the m-th modality, and γ0 is a parameter.

We add the adaptive graph weight matrix to gain the weight matrix of the static-
adaptive graph as in Figure 2, which can be calculated by Equation (4).

W = Wa +
M

∑
m=1

tmWm, (4)

where Wa is the weight matrix of adaptive graph, which can be obtained by adaptive
graph learning.

Wm = [Wm
ij ]N×N , m = 1, 2, . . . , M is the initial weight matrix of the m-th modality. tm

can indicate the importance of different modalities of static and adaptive graphs.

503



Information 2022, 13, 84

Figure 2. The general view of the static-adaptive graph on the multi-modality fusion image. The blue
edges are obtained by the traditional static graph. The green edges are obtained by our adaptive
graph learning model.

4.2. Adaptive Graph Learning Model Formulation

For M graphs Gm = (Vm, Em), m = 1, 2, . . . , M, we assume that all nodes in each
graph belong to the same sparse subspace, in which each node can be sparsely represented
by the remaining nodes. We can obtain Xm = XmZm, m = 1, 2, . . . , M, where Zm ∈ R

N×N is
the sparse coefficient matrix. Sparse constraints can automatically select most informative
neighbor nodes for each node, and make the graph more powerful. Since the nodes
are often disturbed by noises, we introduce a noise matrix Em ∈ R

d×N to improve the
robustness. The joint sparse representation with the convex relaxation for all modalities
can be written as,

min
Z,Em

α‖Z‖1 + β
M

∑
m=1

‖Em‖2,1, s.t. Xm = XmZm + Em. (5)

where α and β are balanced parameters. Z = [Z1; · · · ; ZM] ∈ R
N×(M∗N) is the joint sparse

representation coefficient matrix.
We consider the spatial connectivity feature of graph nodes and use C ∈ R

N×N to
indicate the spatial connections of neighboring nodes.

If node i and j are 8-neighboring, Cij = 1; otherwise Cij = 0.

Cij =

{
1, i f i and j are 8-neighboring,
0, else.

(6)

The closer the distance, the greater the relevance. Inspired by [35], to capture the
global and local structure information, we employ Equation (7) to learn the adaptive graph
affinity matrix.

min
Wa

γ

2

N

∑
i,j=1

‖Zi − Zj‖2
FWa

ij +
δ

2

N

∑
i,j=1

Cij‖Zi − Zj‖2
F + λ1‖Wa‖2

F,

s.t. WaT1 = 1, Wa ≥ 0.

(7)

where γ and δ are the balancing parameters. The first item reflects the probability Wa
ij

from the same cluster based on the distance between their representations Zi and Zj. The
second item indicates that two close nodes will have similar representations. λ1‖Wa‖2

F is
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to avoid over-fitting of Wa. 1 denotes a unit vector. WaT1 = 1, Wa ≥ 0 are constraints to
guarantee the probability property of Wa

ij. We combine the Equations (5) and (7) and obtain
the following optimal function,

min
Z,Em ,Wa

α‖Z‖1 +
γ

2

N

∑
i,j=1

‖Zi − Zj‖2
FWa

ij +
δ

2

N

∑
i,j=1

Cij‖Zi − Zj‖2
F,

+ λ1‖Wa‖2
F + β

M

∑
m=1

‖Em‖2,1,

s.t. Xm = XmZm + Em, WaT1 = 1, Wa ≥ 0.

(8)

In order to solve the problem easily, let Da
ii = ∑N

j=1 Wa
ij, Dc

ii = ∑N
j=1 Cij. Equation (8) is

a slightly algebraic transformation to,

min
Z,Em ,Wa

α‖Z‖1 + γ tr(ZLaZT) + δ tr(ZLcZT)

+ λ1‖Wa‖2
F + β

M

∑
m=1

‖Em‖2,1,

s.t. Xm = XmZm + Em, WaT1 = 1, Wa ≥ 0.

(9)

where La = Da −Wa and Lc = Dc − C are Laplacian matrices of Wa and C, respectively.

4.3. Optimization
The variables in Equation (9) are not jointly convex; they are convex with respect to

the subproblem of each variable when others are fixed and have a close form solution. We
introduce two auxiliary variables, Pm and Qm, to make Equation (9) separable and then
use the alternating direction multiplier (ADMM) algorithm [37] for optimization iteration.
Then, we can obtain Equation (10).

min
Z,Em ,Wa

α‖Z‖1 + γ tr(ZLaZT) + δ tr(ZLcZT)

+ λ1‖Wa‖2
F + β

M

∑
m=1

‖Em‖2,1,

s.t. Pm = Zm, Qm = Zm, Xm = XmZm + Em, WaT1 = 1, Wa ≥ 0.

(10)

Thus, we obtain the Lagrange function [38] as Equation (11),

min
Z,Em ,Wa ,P,Q

α‖Q‖1 + γ tr(PLaPT) + δ tr(PLcPT) + λ1‖Wa‖2
F

+
M

∑
m=1

(β‖Em‖2,1 +
μ

2
‖Xm − XmZm − Em +

Ym
1

μ
‖2

F +
μ

2
‖Pm − Zm +

Ym
2

μ
‖2

F

+
μ

2
‖Qm − Zm +

Ym
3

μ
‖2

F −
1

2μ
(‖Ym

1 ‖2
F + ‖Ym

2 ‖2
F + ‖Ym

3 ‖2
F)).

(11)

where P = [P1; P2; . . . ; PM] and Q = [Q1; Q2; . . . ; QM]. μ is a penalty parameter; Ym
1 , Ym

2 ,
and Ym

3 are Lagrange multipliers.
There are five variables, Z, Em, Wa, P, and Q, needed to solve in Equation (11), The

solver iteratively updates one variable at a time by fixing the others.
Z-subproblem: In order to calculate Z, we fix other variables in Equation (11); the Z-

subproblem can be written as Equation (12). Then, we divide Z and set it to 0 to obtain
Equation (13),

min
Z

M

∑
m=1

(
μ

2
‖Xm − XmZm − Em +

Ym
1

μ
‖2

F

+
μ

2
‖Pm − Zm +

Ym
2

μ
‖2

F +
μ

2
‖Qm − Zm +

Ym
3

μ
‖2

F),

(12)
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Zm,k+1 = (μ(Xm)TXm + 2μkI)−1(μk(X
m)TXm

− μk(X
m)TEm,k + (Xm)TYm,k

1 + μkPm,k + μkQm,k − Ym,k
2 − Ym,k

3 ).
(13)

P-subproblem: In order to calculate P, we fix other variables in Equation (11); the P-
subproblem can be written as Equations (14) and (15), then dividing P and setting it to 0 to
obtain Equation (16),

min
P

γ tr(PLaPT) + δ tr(PLcPT) +
M

∑
m=1

μ

2
‖Pm − Zm +

Ym
2

μ
‖2

F, (14)

min
P

γ tr(PLaPT) + δ tr(PLcPT) +
μ

2
‖P− Z +

Y2
μ
‖2

F, (15)

Pk+1 = (μZk+1 − Yk
2)(γ(L

a)k + γ((La)k)T + δ(La)k + δ((Lc)k)T + μI)−1. (16)

Q-subproblem: In order to calculate Q, we fix other variables in Equation (11), then
the Q-subproblem can be written as Equations (17) and (18). Then, divide Q and set it to 0,
which is computed by the soft-thresholding (or shrinkage) method [39] as Equation (19),

min
Q

α‖Q‖1 +
M

∑
m=1

μ

2
‖Qm − Zm +

Ym
3

μ
‖2

F, (17)

min
Q

α‖Q‖1 +
μ

2
‖Q− Z +

Y3
μ
‖2

F, (18)

Qk+1 = so f t_thr(Zk+1 − Yk
3

μ
,

α

μk
). (19)

Em-subproblem: In order to calculate Em, we fix other variables in Equation (11); then
the Q-subproblem can be written as Equation (20). Then, by dividing E and setting it
to 0, which is computed by the soft-thresholding (or shrinkage) method [39], we obtain
Equation (21),

min
Em

M

∑
m=1

β‖Em‖2,1 +
μ

2
‖Xm − XmZm − Em +

Ym
1

μ
‖2

F (20)

Em,k+1 = S β
μ

(XmZm,k+1 − Xm − Ym,k
1
μk

) (21)

Wa-subproblem: In order to calculate Wa, we fix other variables in Equation (11),
then the Wa-subproblem can be written as Equation (22). Then dividing Wa and set it to 0
obtains Equation (23),

min
Wa

γtr(PLaPT) + λ1‖Wa‖2
F + γ‖Pi − Pj‖2

FWa
ij (22)

(Wa)k+1
i = (

1 + ∑s
j=1 Ûj

s
1−Uij)+ (23)

where Uj ∈ R
N×1 is a vector whose i-th element is Uij =

γ‖Pi−Pj‖2
F

λ1
.

The Lagrange multiplier can be updated by Equation (24),
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Ym,k+1
1 = Ym,k

1 + μk(Xm − XmZm,k+1 − Em,k+1)

Ym,k+1
2 = Ym,k

2 + μk(Zm,k+1 − Pm,k+1)

Ym,k+1
3 = Ym,k

3 + μk(Zm,k+1 −Qm,k+1)

(24)

5. RGB-T Salient Detection

Given a pair of RGB-T images, considering that the thermal image has stronger anti-
interference ability in complex scenes, we first fuse the RGB and the thermal images at a
ratio of 1:4. To generate N non-overlapping superpixels, we use a simple linear iterative
clustering (SLIC) algorithm in the fused image. A two-stage ranking model is adapted to
calculate the final saliency map. In the first stage, we take the boundary as a prior and select
the nodes around the image as background seed queries. We use the top, bottom, left, and
right sides of the image as four kinds of queries, qt, qb, ql , qr, which are selected separately
to obtain four different detection results, ft, fb, fl , fr, by Equation (2). Considering that the
symmetry of the image and saliency objects are often cross-left boundary and cross-bottom
boundary, we select the large class nodes as queries by using the k-means method to
obtain two clusters on the left and bottom boundaries separately. Then, we normalize fk

(k = t, p, l, r) to the range between 0 and 1. The saliency value vector of N nodes sk can be
obtained by sk = 1− f̂k (k = t, p, l, r). The saliency ranking value vector of all nodes s1 in
the first stage can be calculated by Equation (25).

s1 = st × sb × sl × sr (25)

By using the object characteristics, secondary ranking is performed to improve the
first-stage saliency value. Given s1, we set an adaptive threshold to generate foreground as
queries q2. Then, the Equation (2) is used to obtain the second ranking results s2, which
are normalized to the range of 0 and 1 as ŝ2. In order to further reduce the background
noise, we let s = s1 × s2 be the final saliency value and obtain the final salient map S. The
main steps of the two-stage RGB-T salient object detection algorithm are summarized in
Algorithm 1.

Algorithm 1 The Static-Adaptive Graph based RGB-T Salient Detection Produce.

Require: The static-adaptive graph weight matrix W, the indicator vectors of the four
boundaries queries qt, qb, ql , qr.

1: Use Equation (2) to obtain ft, fb, fl , fr separately;
2: ft, fb, fl and fr are normalized to 0 and 1;
3: Set st=1− f̂t, sb=1− f̂b, sl=1− f̂l , sr=1− f̂r;
4: Obtain the first saliency value vector s1 = st × sb × sl × sr;
5: s1 is normalized to 0 and 1, and obtain ŝ1;
6: Use an adaptive threshold to binary ŝ1 and obtain foreground query q2;
7: Use Equation (2) to obtain the second saliency value vector s2;
8: s2 is normalized to 0 and 1 ŝ2;
9: Set s = ŝ1 × ŝ2 to suppress the background noise of image;

10: Set all superpixels value si to each pixel and obtain the final saliency map S.
Ensure: S is the saliency map of the static-adaptive graph model for RGB-T saliency detection.
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6. Experiment

6.1. Datasets and Experimental Settings

The RGBT-Saliency dataset [26] includes 821 pairs images with ground truth, in which the
images with high diversity are recorded under different scenes and environmental conditions.

The datasets can be download from the address http://chenglongli.cn/people/lcl/
journals.html (accessed on 20 December 2021).

The initial segmentation number of the superpixel N is set to 250. The edge weight
coefficient θ is set to 29. Other parameters in this paper are set to α = 0.11, β = 0.15,
γ = 0.04, δ = 0.3, and λ1 = 0.6.

6.2. Measuring Standard

To verify the effectiveness of our algorithm, we compared with other methods with
precision, recall, and F-measure (PRF) values, mean absolute error (MAE) values, and
PR curve.

PR (Precision, Recall) curve. The PR curve is a curve with the “precision rate” as the
ordinate and the “recall rate” as the abscissa. We binarize the original image S to obtain
M, and then calculate the precision value and recall value by comparing M and G (ground
truth) pixel by pixel in the following formula,

Precision =
|M ∩ G|
|M| (26)

Recall =
|M ∩ G|
|G| (27)

PRF (precision, recall, F-measure). Sometimes, the P and R indicators are contradictory,
so they need to be considered comprehensively. The most common method is F-measure
(also known as f-score). F-measure is the weighted average of precision and recall:

Fβ2 =
(1 + β2)× P× R

β2 × P + R
, (28)

where β2 = 0.3.
MAE (mean absolute error). MAE is the direct calculation of the average absolute error

between the salience map and the ground truth of the model output. It first binarizes them
and then calculates them with the following formula:

MAE =
1

W × H

W

∑
x=1

H

∑
y=1
|S(x, y)− G(x, y)| (29)

where W is the width of the salient map S and the ground truth map G; H is the height of
the salient map S and the ground truth map G.

6.3. Comparison Results

We compared our model with eight methods including BR [40], CA [41], MCI [42], NFI [43],
SS-KDE [44], GMR [20], GR [45], and MTMR [26] on the RGBT-Saliency dataset.

We generated PR curves for 11 challenging subsets and the entire dataset, and listed
their F values. The eleven subsets are eleven different challenges, which are: big salient
object (BSO), bad weather (BW), center bias (CB), cross image boundary (CIB), image
clutter (IC), low illumination (LI), multiple salient objects (MSO), out of focus (OF), similar
appearance (SA), small salient object (SSO), and thermal crossover (TC). In Table 1, we
describe in detail the division method of the eleven subsets [26].
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Table 1. List of the 11 challenging subsets of RGBT-Saliency-Dataset.

Challenge Description

BSO The radio of ground truth salient objects over the image is more than 0.26.
BW The image pairs are recorded in bad weather, such as snowy, rainy, hazy, or

cloudy weather.
CB The centers of salient objects are far away from the image center.
CIB The salient objects cross the image boundaries.
IC The image is cluttered.
LI The environmental illumination is low.
MSO The number of the salient objects in the image is more than one.
OF The image is out of focus.
SA The salient objects have similar color or shape to the background.
SSO The radio of ground truth salient objects over the image is less the 0.05.
TC The salient objects have similar temperature to the background.

As can be seen from Figure 3, only in the “BSO” and “CIB” subsets was our F-Measures
slightly lower than the best detection result, and they were the best in the other nine subsets.
Especially in the CB subset, the detection result has obvious advantages. Our detection
curve has no crossover with other curves.
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Figure 3. PR curves of the proposed approach with other baseline methods with RGB-T input on
eleven subsets and the entire dataset. The F0.3 values are shown in the legend.

The comparison results of the precision, recall, and F-measure values with other
methods in different modalities as shown in Table 2. We only provide the detection results
of MTMR [26] after multi-modality fusion because this model proposes to integrate multi-
modal information and use multi-modal adaptive weights to detect image saliency objects.
From the Table 2, we can see that the proposed algorithm is better than other methods in
terms of P value and the comprehensive measure F-measure.
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Table 2. Average precision (P), recall (R), F-measure (F) and mean absolute error (MAE) of our method
against different kinds of methods on the RGBT-Saliency dataset. In the evaluation parameters,
the larger the value of P, R, and F, the better the detection effect, while the smaller the value of MAE,
the better the effect. The red font indicates the best performance. The green is second best.

Algorithm RGB (P↑, R↑, F↑, MAE↓) Thermal (P↑, R↑, F↑, MAE↓) RGB-T (P↑, R↑, F↑, MAE↓)

BR [40] 0.724, 0.260, 0.411, 0.269 0.648, 0.413, 0.488, 0.323 0.804, 0.366, 0.520, 0.297
CA [41] 0.592, 0.667, 0.568, 0.163 0.623, 0.607, 0.573, 0.225 0.648, 0.697, 0.618, 0.195

MCI [42] 0.526, 0.604, 0.485, 0.211 0.445, 0.585, 0.435, 0.176 0.547, 0.652, 0.515, 0.195
NFI [43] 0.557, 0.639, 0.532, 0.126 0.581, 0.599, 0.541, 0.124 0.564, 0.665, 0.544, 0.125

SS-KDE [44] 0.581, 0.554, 0.532, 0.122 0.510, 0.635, 0.497, 0.132 0.528, 0.656, 0.515, 0.127
GMR [20] 0.644, 0.603, 0.587, 0.172 0.700, 0.574, 0.603, 0.232 0.694, 0.624, 0.615, 0.202
GR [45] 0.621, 0.582, 0.534, 0.197 0.639, 0.544, 0.545, 0.199 0.705, 0.593, 0.600, 0.199

MTMR [26] -, -, -, - -, -, -, - 0.716, 0.713, 0.680, 0.107
ours 0.697, 0.536, 0.603, 0.107 0.715, 0.569, 0.629, 0.112 0.804, 0.627, 0.716, 0.095

Sample Results. From the dataset, we extracted four photos with various challenges as
the data source and compared the detection results of our algorithm with other algorithms
for salient detection. It can be seen from the Figure 4 that our algorithm has a very robust
detection effectiveness in challenging scenes such as fuzzy images, large targets, small
targets, complex background, and center bias.

Figure 4. Sample results of the proposed approach and other baseline methods with the fusion of
RGB and thermal inputs. (a) The first two columns are the origin RGB images and thermal images.
(b–i) The results of the baseline methods with RGB and thermal inputs; (j) the result of our approach.
(k) ground truth.

Runtime Results. All results were obtained on a Windows 10 64-bit operating system
running Matlab 2014b with an i3 3.3G CPU and 4GB RAM. We compared the average
running time with other algorithms in Table 3. Compared with the algorithm in [20], we
spent more time mainly on the learning of the adaptive graph.

Table 3. Average runtime comparison on the RGBT-Saliency dataset.

Method BR [40] CA [41] MCI [42] NFI [43] SS-KDE [44] GMR [20] GR [45] MTMR [26] Ours

Runtime(s) 21.95 3.13 58.37 33.16 2.51 2.96 6.48 3.71 5.18

6.4. Analysis of Our Approach

In our method, we compared the following four combinations of image salient de-
tection results: (1) learning static-adaptive graphs for RGB image salient detection, called
our1; (2) learning static-adaptive graph for thermal image salient detection, called our2;
(3) not learning static-adaptive graphs and only fusing RGB and thermal image to detect the
salient, called our3; (4) learning static-adaptive graphs for RGB-T image salient detection,
called our4. It can be seen from Figure 5 that the fusion of multi-modality and the use of
learning static-adaptive graphs are both effective methods to improve the salient detection.
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Figure 5. PR curves of our approach with its variants on the entire dataset.

Advantages. We fused thermal and RGB images for image salient detection, which can
overcome the limitations of light, ambient temperature, background clutter, and color simi-
larity in single mode. By learning the static-adaptive method, we not only retained the local
features of superpixels, but also learned to mine their internal relations to obtain a better
affinity matrix of superpixels and greatly improve the detection accuracy of image saliency.

Limitations. Through the experiment, we found that under complex scenes, multi-
modality fusion can effectively improve the image in general. However, in some cases,
the single-modality has better detection accuracy. Our future work will set the modality
weight according to the image characteristics and further improve the detection effect of
image saliency in complex scenes.

7. Conclusions

In this paper, we combine RGB-thermal modality information for image salient de-
tection, which effectively improves the detection performance of single-modality RGB
images under poor illumination and when the background and foreground colors are
similar. At the same time, our method improves the detection accuracy of thermal images
under normal lighting conditions, especially in the case of small temperature differences
between the environment and the target. The image is dynamically learned, taking both
global and local cues into account, and thus our method is capable of capturing the intrinsic
relationship of superpixels. In the future, we will assign different weights to different
modality images according to the characteristics of different modality images.
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Abstract: In this paper, the fusion of four graphics into one integrated graphic is selectively observed
in the visible and infrared spectrum. Each graphic represents its own information derived from
the following sources: vector graphics, drawing, photograph and textual information. One graphic
will be visible to the naked eye after the print. The other graphics will be observed with an NIR
surveillance camera. These other graphics are nested into the selected visible graphics. All the
graphics together make up a security print product with the characteristics of an individual solution
with multilayered elements. Reprinting is possible only for the person in possession of the solution
created according to the algorithm based on the INFRAREDESIGN® method. When these graphics
are printed on paper, it is impossible to produce an identical graphic prepress (C, M, Y, K) to produce
forgery with the same dual properties in the visible and NIR spectrum.

Keywords: NIR spectrum; dual graphics; spectroscopy of twin dyes; nested picture; CMYKIR
VZ separation

1. Introduction

In this paper, we extend the domain of computer graphics to include two light
spectra—the visible and the near-infrared spectrum. The final solution and dyes are
visually observed with a double ZRGB camera (Figure 1) in the “Z”-near-infrared and
“V”-visible (RGB) spectrum [1]. In this paper, we develop and present the procedure of
merging computer graphics with the INFRAREDESIGN® idea that will manifest itself
separately in two light spectra: the visible (V) and near-infrared (NIR-Z).

State-of-the-art INFRAREDESIGN® is a field of security graphics with the idea of
fusing two pictures that will manifest themselves separately in the near-infrared (NIR) and
visible spectrum after integration. A one-way hierarchy of pictures was published, where
the first picture hides the second picture. Previous solutions have shown the merging of
only two graphics for two light spectra [2]: a dress with a hidden portrait or code and
clothes with hidden textual information, printed with inkjet inks on a plotter for textiles.
The clothing was designed with computer graphics, with the theme “camouflage clothing”.
ZRGB cameras are used to observe and photograph double solutions [1]. The Z camera,
which photographs the NIR wavelength range, has a filter for 1000 nm. The visible and NIR
condition were recorded in daylight without an additional IR source. Spectral analyses of
light absorbance for process dyes in two light spectra—the visible (400 to 750 nm) and the
beginning of the near-infrared (750 to 1000 nm)—have been performed for several printing
techniques [3]. Since our eye does not register the NIR range, it can be said that the graphics
in this range are “hidden from the naked eye” [4]. Several models have been published
that combine the colors and dyes in the visible spectrum and the coverage of the dyes for
those parts of the image that present two spectral ranges. The implementation of the dual
image is suitable for the fast creation of highly protected individualized documents [5].
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Figure 1. Print studied with a ZRGB camera (Z blockage at 1000 nm and in the visible spectrum;
blockade at 400 nm).

The idea is to introduce INFRAREDESIGN® in different fields of security graphics.
Motivation for this paper is the merging of three and four images whose parts are sorted
for detection in the visible and near-infrared spectra. Printing is performed on a toner
printer (OKI) for which spectrograms were performed and first published in this paper.
These twin dyes are shown in two spectra with an emphasis on equality in the range of 400
to 700 nm. The separation of the dye twins when the measurements are shifted towards
the NIR spectrum is also shown. The original digital record is attached as a JPG and PDF
four-color graphic preparation for printing on a digital printer. Individual channels for
process colors are available with an emphasis on the carbon black channel, which will be
viewed separately with an NIR camera. Analysis of the transformation from V to Z spectra
is attached as a continuous animated change into MP4 and SWF format.

2. Methodology: Twin Dyes

The merging of different images is based on the idea of twin dyes for dual graphics.
Experimental work is performed on an OKI printer with the corresponding set of toners:
cyan, magenta, yellow, and black. The first three toners (C, M, Y) absorb light only in the
visible spectrum. Toner carbon black (K) absorbs it in two spectra, visible and near-infrared
spectrum. By mixing toners, twins of colors and dyes are achieved, with which separate
information is created for the visible and NIR spectrum.

A twin dye group consists of several twin dyes (pigments) made up of different
components that visually manifest themselves as the same color [6,7]. These twin dyes will
absorb light differently only in the NIR wavelength region, which is why they differ from
each other.

In the printing practice, prepress for printing is performed in some phases with the
use of GCR (Gray Component Replacement), while maintaining the same values of L*a*b*,
HSB and RGB [8]. CMYKIR is a special GCR method designed with expansion to NIR
spectrum. Near-infrared graphics are designed to be nested in a carbon black channel with
the reduction of C, M, Y dyes. Therefore, our CMYKIR (VZ) method is also based on that
same GCR theory. From there, routines are generated for our “VZGCR” software written in
PostScript code. The focus of the software is data processing, presented in Table 1.

There are many different cameras around us: security cameras in the streets and
in protected areas, IR money detectors in banks, IR reflectography in galleries. A, B, C
and D spectra of dyes (Table 1) are derived with the forensic camera Projectina, model
PAG [9] and with “XRITE–iONE”. The light absorbance value at 1000 nm is called “Z”. Our
experimental work is based on process colorants C, M, Y and K is thus marked as “VZ”.
For example, the IR technology has been applied in the process of designing banknotes, but
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only with spot dyes whose material formulation is not published. On today’s banknotes,
the visible and NIR graphics are printed separately, one next to the other. There is no
“hiding” of one image within the other, which is the innovation and purpose of this paper.

Table 1. CMYK formulations of twin dyes.

Measured Data C, M, Y (K0, K20, K40)

C, M, Y (K = 0%) C, M, Y (K = 20%) C, M, Y (K = 40%) L*a*b*

A 99, 99, 59 88, 85, 41 74, 68, 19 1, 44, −45
B 53, 98, 73 38, 86, 56 20, 70, 36 25, 56, 9
C 70, 46, 99 58, 29, 84 44, 9, 67 45, −25, 43
D 40, 50, 40 28, 40, 24 14, 28, 5 57, 14, 6

40, 40, 40 28, 30, 25 15, 18, 6 62, 5, 7
37, 82, 36 26, 71, 23 7, 63, 0 42, 49, −1
88, 35, 70 70, 24, 65 68, 1, 36 44, −41, 6
30, 30, 35 19, 21, 20 5, 10, 2 71, 4, 11

2.1. Twin Dyes Components

The recipes (%) for eight groups of twin dyes have been given in Table 1. The A dyes
are the same color but with three completely different formulations. The same happens
with all other groups of dyes.

2.2. Spectroscopy of Twin Dyes

Figures 2 and 3 show spectrograms of A, B, C, and D dyes (Table 1) in the area from
400 to 900 nm. The measured reflected light is presented inversely as the absorbance of light
in the process printing dyes: cyan, magenta, yellow and black [9]. The graphs of light ab-
sorbance show the pigment in its corresponding nanometer range. The maximum, “saddle”
and “back” are displayed, which, in addition to the spectrograms of the components, shows
the direction of the color twin repair [10].

Figure 2. Twins A, B, K40.
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Figure 3. Twins C, D.

Conventionally, the visible range is defined as the range from 260 to 760 nm and it
follows the near-infrared spectrum. In this paper, the range “V” is marked as a part of the
visible spectrum from 400 to 700 nm. The dyes made up from twin dyes have the same
values of light absorbance in the V area. The range between 700 and 800 nm is called Z1,
and the values of light absorbance in it differ exceedingly. Z2 refers to the range from 800 to
900 nm. This range of the near-infrared spectrum is crucial for the clarity of the appearance
of the hidden image detected by the NIR camera.

In this paper, the discussion of twin dyes is presented with the spectroscopy of the
first four dyes from Table 1. The correct definition of the range between 800 and 1000 nm
is the main subject of dual design and dual recognition of different graphics in the same
place.

3. Results

This chapter demonstrates the fusion of different images as a “picture within the
picture” technology. The result of printing is interpreted as a unique preparation for
four-color printing. Some images were created by photographing, and some of them are
computer graphics from the field of security graphics.

3.1. Experiment Plan for Creating Security Graphics

We present four graphics in color in order to demonstrate new ideas in the field of
security graphics. The first graphic is a portrait en face (Figure 4). The second graphic is a
vignette (Figure 5). These elements are usually found in securities. The lines are generated
as vector Bézier lines. In our examples, the vignette is prepared in high resolution, but
it is equalized with pixel graphics, such as images in Figures 4, 6 and 7. However, the
completely different images are mutually connected through content: en face, profile and
the text in the vignette.

Figure 6 is composed of alphanumeric characters. Each letter and number is a separate
font that has 30 different values of thickness. An alphanumeric character is a simulation of
a raster (screen) form, and it simulates the portrait en face from Figure 4. The text creates a
surface with micro-text that can often be found in the design of securities. Here the text
is connected to the information about the person: name and surname, date, place and
country of birth (Figure 6). The fourth picture (Figure 7) is a profile of that same person.
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The pictures are diverse; they derive from vector graphics, pixel graphics or a combination.
All the colors are set in the RGB system of colors (only the region visible to our eyes).

Two solutions were conducted for the same group of images. It is shown that the
solution is independent of which images are assigned to the visible spectrum, and which to
the NIR spectrum.

Design plan no. 1: Figures 5 and 7 will be joined in the visible spectrum. Figure 4
(en face) will be joined in the near-infrared spectrum. After merging and printing, the secu-
rity graphic becomes visible to the naked eye, and the hidden graphic will be recognized
with an NIR (near- infrared) security camera.

Design plan no. 2: the portrait en face (Figure 4) will be joined in the visible spectrum.
Three images will be joined to the near-infrared spectrum: the profile (Figure 7), vignette
(Figure 5) and micro-text (Figure 6). A separate region is planned for each of these three
images. Since there are four different images that will manifest themselves in two ways
and in two schedules, the graphic size in pixels of each image was additionally adjusted.

 

Figure 4. En face.

Figure 5. Vignette, security graphic.
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Figure 6. Portrait with a letter raster.

 
Figure 7. Profile.

For each image a (geometry) range is specified to be included in the common, nested
Z picture. The plan is to print the merged picture with process CMYK dyes.

3.2. A Security Graphic with Three Nested Images

In the first example for the visible spectrum, two graphics were highlighted: the
profile of the person and protective vignette. Those two graphics hide the portrait, which
is captured by the NIR (Z) camera. The VZ merging and separation for the duality of
the visible and near-infrared spectra have been limited according to the conventional
printing separation practice–GCR. In Figure 8, gray scale is added. This image will be the
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final solution for the visible spectrum. Individuality of the graphic solution is introduced
through different algorithms of gray tone replacement.

 

Figure 8. Visible presentation CMYK.

Figure 8 was prepared and printed. After the printing of Figure 8, the visible graphic
is checked with an NIR–Z camera and the portrait en face in gray tone appears on the screen
of the Z camera (Figure 9).

 

Figure 9. NIR graphic (1000 nm).

If, for some reason, Figure 8 does not get published in the article as a CMYK model,
we are providing the link of the original (CMYK) Figure 8 on the author’s website:
http://www.jana.ziljak.hr/portret82.jpg (accessed on 10 January 2022).
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The digital record was created as a four-color (CMYK) print. All images for
INFRAREDESIGN® have a special (their own) procedure, from preparing the images,
connecting the computer with the printer, to printing an image with NIR content. If such a
record is sent to a digital printer, it is necessary to set the printing parameters. Printing (on
the printer from, for example, Photoshop) is performed with the following options:

P1: No color management (to disable the internal process of image separation);
P2: In Page setup/Color, select: CMYK link profile—True Black.

The discernment of pictures in four channels, prepared in this way, with CMYKIR–VZ
separation, is impossible even with a 24-filter forensic system [9]. This means that only the
one who has the original image (C, M, Y, K) can reproduce this CMYKIR image.

3.3. A Security Graphic with Four Nested Images

A security graphic is composed with four merged color graphics. The portrait en face
(Figure 4) will be visible to the naked eye, while the remaining three graphics are hidden
and can be recognized with an NIR camera. The vignette (Figure 5) is intended for the
horizontally lower part of the graphic.

The visible portrait en face (Figure 4—RGB) remains in color, with the goal that the
initial portrait is visually the same as the portrait that has three nested images after VZ
separation (CMYK). The photograph shows the eye color, hair color and skin tone. The
advantage of the picture is the recognizability of the person. Eye color and skin tone are
important elements of the portrait en face. Image Z is shown as a black-and-white micro-text,
protective vignette and a part of the portrait in profile. After printing, our eyes see only
Figure 4 although the print also contains the remaining three graphics.

In this example, it was decided that, after merging, the color of the portrait en face
would be visible to the naked eye (in the visible spectrum, 400 nm blockage). After the
merging of all four gray channels (Figures 10–13) in, for example, Photoshop, a pure color
picture equal to the picture in Figure 4 can be seen. The check is performed by inserting the
corresponding gray graphic into each of the C, M, Y, K channels (Figures 10–13).

In Photoshop (for example), each CMYK channel is written as a shade of gray. Together,
they give a color solution for the visible graphic (identical to the picture in Figure 4) that
hides the planned Z picture.

 

Figure 10. Cyan channel (C).
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Figure 11. Magenta channel (M).

 

Figure 12. Yellow channel (Y).

The final, hierarchical graphic and print is a simulation of the color portrait (Figure 4),
while the other images (Figures 5–7) are hidden within that portrait. The portrait, after the
four images have been merged, is given in a C, M, Y, K, record.
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Figure 13. Black channel (K).

The IRD security graphic represents the merging of four gray images to be printed
with C, M, Y, K (1) colors, Figures 10–13. With this kind of graphic prepress, color printing
is performed in an unlimited number of prints. The print on the paper is a color graphic
that contains two different images: one for observation with the naked eye and one for
observation with an NIR camera. It is not possible to use the color imprint on the paper
and go back to creating four C, M, Y, K (2) channels that are equal to the channels (1) at
the beginning of the paragraph using any existing scanning techniques. The intention of
such a process in the opposite direction would be to make counterfeits. New colors (2) will
not give the same visual and NIR image. The portrait in Figure 14 and the original merged
image are recorded at the following address: http://www.jana.ziljak.hr/portret81.jpg
(accessed on 10 January 2022).

 

Figure 14. Picture for print (C, M, Y, K), all four channels merged, for the visible and NIR spectrum.
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3.4. Blockage in the Visible and Near-Infrared Spectrum

The discernment of the merged picture is performed with light blockages (filters in
cameras). Blockages at 400, 600, 700 and 850 nanometers are shown (Figures 15–18).

Animations of portrait changes were taken with a PAG camera that shoots in 24 light
blocks. The display is located at the addresses: http://www.jana.ziljak.hr/portret81.mp4
(accessed on 10 January 2022). http://www.jana.ziljak.hr/portret82.mp4 (accessed on
10 January 2022).

 

Figure 15. Blockage at 400 nm.

 

Figure 16. Blockage at 600 nm.
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Figure 17. Blockage at 700 nm.

 

Figure 18. Blockage at 850 nm.

4. Conclusions

Control systems, such as NIR cameras, are all around us: cameras in road traffic,
security night cameras, IR money detectors in banks, etc.

Outside the visible color range (400 to 750 nm), the graphic is shown instrumentally.
Already after the first light blockage (shown in multilayer light presentation video at
600 nm) in the visible spectrum, images appear partially as “hidden”.

Multiple pictures that are shown in the end make one picture and significantly raise the
security of personal portraits and biometric portraits, as well as other pictures that require
a high level of protection against forgery. Portrait images prepared in this manner cannot
be subject to photo manipulation that is nowadays omnipresent. The image prepared in
this way is designed to be implemented in extremely protected documents and identity
cards.
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The massiveness of NIR cameras in our environment initiated the idea for the launch
of IRD design in new areas with materials: textiles, polypropylene, cardboard, postage
stamps, new paper money design. A new information area of duality is opening up, such
as the expansion of data on clothing, packaging, scenography, and costume design in the
film and theater industry. Each color for artistic painting has its Z value. A new look at the
information provided to us by fine artists is opening up. InfraRedArt is becoming a new
“multilayeredness” in the creative field of multi-media art.
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Abstract: The demand for automated game development assistance tools can be fulfilled by com-
putational creativity algorithms. The procedural generation is one of the topics for creative content
development. The main procedural generation challenge for game level layout is how to create a
diverse set of levels that could match a human-crafted game scene. Our game scene layouts are
created randomly and then sculpted using a genetic algorithm. To address the issue of fitness cal-
culation with conflicting criteria, we use weighted aggregated sum product assessment (WASPAS)
in a single-valued neutrosophic set environment (SVNS) that models the indeterminacy with truth,
intermediacy, and falsehood memberships. Results are presented as an encoded game object grid
where each game object type has a specific function. The algorithm creates a diverse set of game scene
layouts by combining game rules validation and aesthetic principles. It successfully creates functional
aesthetic patterns without specifically defining the shapes of the combination of games’ objects.

Keywords: genetic algorithm; procedural generation; game scene; multicriteria decision making;
WASPAS-SVNS

1. Introduction

Today, researchers are discovering more and more new results in the artificial intelli-
gence domain [1]. Increasing computing power, storage, and volumes of data creates new
approaches to use Artificial Intelligence. Computational Creativity is one of the approaches
that is gaining traction. It is used to solve creativity problems and is realized through
computation-based systems that attempt to simulate creative work. Creativity definitions
vary, and widely agreed upon definitions of creativity in engineering are not defined, but
it is necessary to understand the essence of the concept to model a system according to
creativity principles. The definition of creativity can be split into a few parts depending on
how creative work is rated or created. Usually, there are four types of creativity modeling
targets: person, process, product, and press. The most common machine learning targets for
creative tasks are product and process [2]. The product target evaluates a completed work
and attempts to replicate it by combining and expanding elements of the previous work.
The process target tries to simulate logical loops, which are used to create work. The person
target is rarely used, as it requires simulation of the creative agents or person. Press target is
quite common when trying to filter creative and impactful work (i.e., Internet content scans).
The product target is widely used in machine learning tasks, as most training data sets are
made up of the available creative work—these systems usually create an independent logic
loop of creativity directly unrelated to the original work process [3]. We are focusing on the
process-related target, as it usually generates more example-independent results, which is
one of computational creativity tasks. This means that the generated work differs more
from the training data set.

To understand the structure of creativity, we can break it down into different classifi-
cations, which are important to understand when building a model. Creative value can
be defined by these key terms: usefulness, aesthetics, originality, relevance to the task,
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and surprise [4]. These points are often referred to when trying to identify what makes
the creative result valuable. Creativity involves a combination of expertise, chance, and
intuition; adding these traits to a system generally makes the system more likely for its
result to have more creative value [2]. Example approaches to cognitive creativity include
concept combination, concept expansion, imagery, metaphor, and divergent thinking [5].
The cognitive approach is often compared to a heuristic search. Evaluation of results is
an important task, as it defines creativity. Common evaluation methods are Classification,
Regression, Predictive models, Generative models. These methods usually try to replicate
creative content rather than exploring new spaces. Transformational creativity systems try
to decide what is creative by themselves, autonomously using more abstract evaluation
methods. The most effective evaluation is usually outside the system, feedback from other
creative systems [6]. Transformational systems are not effectively realized or used today.
Common challenges for creativity evaluation can be grouped into two categories: how
to generate transformational creative content, which can add new value to existing parts
of the results; another common challenge is that generated results may be quite similar
between a few iterations of the result running on the same model. There are not that many
creativity-oriented models. Creative models can generate artwork but lack contextual
creative value [7].

There are a lot of possible criteria in the generative content ranging from functional to
aesthetic; however, it is difficult to choose the criteria list for each task, and there is not a lot
of research work done on creative fitness modeling. Ratios of selected criteria have a huge
impact on the final results, and improper ratios may easily break the final result. Another
important choice is the selection of the criteria itself. They can range from low to high
levels. The low-level criteria define basic building block rules, and the high-level criteria
define more abstract and specific tasks. Lower-level criteria usually increase the variety
of generated results, while higher-level criteria can generate a specific result with fewer
calculations. It is important to select criteria or create a criteria manipulation system to
form a fitness function. There are various ways to realize a model using various algorithmic
approaches. We are approaching our problem with a combination of procedural generation
and machine learning methods.

One of the methods of content generation problem is procedural game content genera-
tion using machine learning models on existing content (PCGML) [8]. The use of procedural
content generation is increasing in the game industry, and researchers are trying to find
new ways to generate high-quality content. Generation assist levels can be categorized
as partial, complete, autonomous, interactive, or guided. Game content is classified as
functional and cosmetic. The main problems with the procedural generation machine
learning approach include training on small datasets, lack of suitable data, parameter
adjustment, and others [9]. Procedural content generation methods (PCG) usually lack
evaluation, and objectives are created by designers. Use cases for PCGML are autonomous
generation, artificial intelligence-assisted design, repair, analysis, and data compression.
The proposed research is focused on autonomous generation, which creates game content
without human interaction by combining the algorithm and the fitness function. Video
games are a widely used form of multimedia that requires a broad scope of machine learn-
ing approaches. Game design generally requires the level of the game to be both playable
and aesthetic [10]. At the same time, there is no common way to standardize datasets
and evaluate performance for game design problems [8,11,12]. The objectives of PCG in
game level generation are to make games more replayable, less demanding for creator time,
reduce storage space, or enable particular aesthetics [10].

The fitness function for game design and computational creativity usually contains
a subjective combination of criteria and is still in the early research state of its quantifica-
tion [13]. There are no widely agreed upon definitions of how results should be compared.
Game design can be broken into several parts, categorizing games by their objectives.
Conversion to fitness criteria varies depending on the type of game. Patterns are elements
that are present in levels across multiple games, rather than being a feature that is recurrent
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on the same game title. Patterns are usually categorized into several types. Guidance
guides players in an intended direction. The safe zone is the area where players are not
exposed to negative interactions. The foreshadowing hints at something that will happen
later. Layering is the pattern of combining multiple objects to create a new experience.
Branching provides players with multiple paths to reach their objectives. Pace breaking
refers to the purpose of changing elements of the game to achieve a creative objective [14].

Most automated game design approaches follow reverse engineering principles, usu-
ally by using datasets generated by analyzing other games. Using this approach, fitness
criteria for generations do not have to be defined [15]. The main problem with this approach
is the lack of new concepts in the generated content [6]. The goal is to derive objective
formulas from game design principles to generate game levels. Game flow strategy is
one of the propositions to measure game design in the literature. This concept combines
concentration, challenge, player skills, control, clear goals, feedback, immersion, and social
interaction criteria [16]. Some authors try to measure game engagement by analyzing
difficulty and applying constraints to make levels playable [17]. Current research is trying
to quantify abstract creativity criteria so that they can be used in real-world digital applica-
tions. There are some examples in the field that use fuzzy logic to express criteria lists [18].
There is also a new emerging usage of neutrosophic sets combined with multicriteria de-
cision making (MCDM), but this approach is not widely explored in the field of machine
learning, but it can benefit the creativity of such models [19–22]. There are also not many
MCDM algorithms used together with iterative optimization algorithms [23,24]. Some
SVNS applications in the literature emphasize a greater focus on uncertainty [25]. In the
following paragraphs, we add a more detailed explanation of related work, methodology,
created framework, results, and conclusions.

2. Related Work

There is a rising interest in automated game level generation. Machine learning
algorithms are masters of specific computational tasks, but there is no perfect solution to
mimic human creativity. The primary goal of this type of research is to identify creativity
measurements and apply them to automated content generation. The current stage of
results in this field is mostly exploratory and does not substitute for creative work in
most cases, but it gradually increases assistance levels for the creator by overtaking simple
creative tasks. PCGML is one of the assistance tools for work generation. There are
4 modeling steps: problem identification, solution, results, and application of generated
results.

There are research examples that tackle the problem of computed creativity in the game
design field. One of the examples in the industry is the generation of physical puzzle game
levels with the objective of fitness of the feasibility and stability of objects [26]. Final fitness
is calculated using an agent that plays the game. This method reduces the computational
cost for this problem and adds new solutions to calculate the rewards of the genetic
algorithm, not focusing too much on the penalty. Another example is a level generator for
a Lode Runner-type game. It assesses playability and connectivity using the ‘A*’ algorithm.
Generator uses an autoencoder with a multi-channel approach, analyzes 150 pre-made
levels, and uses evolutionary algorithms. Levels are encoded into multichannel strings.
This solution adds some unpredictability. Performance evaluation compares similarity to
the original game levels [27]. There is also a framework for general 2D games (mostly top-
down adventures) [28]. It evaluates levels for symmetry, balance, density, and reachability
with a focus on aesthetics and difficulty. For final fitness, it derives 3 different fitness
values and calculates the average value (Score Difference Fitness, Unique Rule Fitness, and
Metric Based Fitness). It tries to apply the procedural video game generation problem to a
variety of games with differing rules. Another example is focused on creative patterns [29].
The match 3 type game is used as a base for the generator. For evaluation, it uses visual
pattern recognition and line symmetry. The results are judged by expert study analysis.
It learns from existing content and uses pattern-aware PCGML, random Markov fields
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with symmetric positional information, and visual analysis. This research tries to generate
larger structural patterns. The Pac-Man arcade-type game [30] evaluates playability, the
spread of objects, ratios, and evolving levels using a genetic algorithm. It tries to generate
unique levels with each iteration of the algorithm. Another more generalized example is
the generation of verticality for mostly flat surfaces on grid-based surfaces [31].

Most of the examples in the literature uses 2D space for experimentation and games
from the 1980s or simple game levels made specifically for the selected tasks. Usual objects
for game levels are empty space, wall, player, goal, collectibles, and hazards. General
evaluation criteria are guidance, progression, aesthetics, safe zones, and pace breaking. The
current state of the computational creativity field in video games is quite young and has
not yet been applied to a game structure for large and complex games. It is also difficult to
model systems that can fully replicate manual creative work. As the result becomes more
complex, it is easier to distinguish synthetic creativity.

3. Scene Layout Modeling and Optimization Algorithm

We propose a PCGML framework for automated game scene layout generation. Our
mathematical model consists of the fitness function, which is used by a genetic algorithm
to evaluate the population. The MCDM utility function is used as a genetic algorithm
fitness function. We chose fixed criteria parameters for difficulty, playability, and size
adjustments. One algorithm iteration populates a game level grid, which is also used for
further evaluation. Evaluation calculates fitness for each game level grid and selects the
best performing grids. This model generates varied and unexpected results because the
generation seed is randomly selected and fine-tuned by the algorithm.

We combine the level design criteria measurements into a multi-criteria decision-
making table to formulate the problem. The final fitness for the value of the game scene can
be measured by combining the scores for each criterion. It can evaluate different generated
scenes by using generated alternatives for one table axis and fitness scores for another table
axis. Based on the table results, we can then choose which alternatives should be used as a
base for further scene generations. By calculating the fitness score for each criterion and
combining them into a table, we can assess and evolve a combined fitness score to generate
game levels. Proposed research is focused on the process evaluation type, which studies
what types of actions are made that make results creative. We combine the criteria values
by converting them to fuzzy sets. Our approach is to use the weighted aggregated sum
product assessment with a single-valued neutrosophic sets (WASPAS-SVNS) method to
find solutions when multiple conflicting criteria are present [19–24]. Calculations are made
with fuzzy logic using neutrosophic sets [32].

From a computational creativity standpoint, we are using a creative process approach
combining usefulness, aesthetics, and chance to create our model. These aspects form the
constraints and criteria set for the mathematical model. This framework designs and gener-
ates video game level layouts. It generates random levels, modifies them with a genetic
algorithm, and evaluates them with weighted aggregated sum product assessment to find
the best alternatives. The framework can also be expanded with additional requirements
and fitness criteria, and most of the parameters can be altered to suit needs. We explain our
realization in detail next, broken into four chapters: game scene modeling methodology,
game scene procedural generation criteria list, proposed extension of genetic algorithm
by WASPAS-SVNS, and application of WASPAS-SVNS utility function to calculate fitness
function.

3.1. Game Scene Encoding Modeling

A common set of game objects is applied, which is selected based on game level
design principles. There are several possible object types encoded in the matrix. Each
number represents a different object type. Game scene layout is discretized into a grid, and
one object can occupy one cell. The single-scene layout forms a single genetic algorithm
chromosome. These are:
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• Player (number 0)—represents the starting position of the subject, which is intended
to play the game;

• Exit (number 1)—marks the location that the player should reach to finish the game;
• Empty space (number 2)—traversable and empty space, which can be used to navigate

by the player;
• Wall (number 3)—object that blocks player navigation;
• Hazzard or enemy (number 4)—a traversable object, which is dangerous for the player;
• Collectible (number 5)—a desirable object that can be collected by the player;
• Ground—this object is not encoded in the chromosome matrix but is used during the

3D projection visualization step as a floor layer.

The data of a single chromosome is stored in a two-dimensional number grid (Figure 1).
We use a 10 unit wide and 10 unit long matrix for our experiments. Each object type is
encoded as a different number. The final results are projected into the 3D space by adding
a ground layer beneath the grid and converting numbers into 3D objects on the main grid.

Figure 1. Single-chromosome data example.

3.2. Game Scene Procedural Generation Criteria List

After discretization, we choose a set of criteria that define our game layout require-
ments. We proposed to use 4 fitness criteria functions and 3 constraint functions, which
use function results to calculate the total fitness value with the WASPAS-SVNS algorithm
for each iteration of the genetic algorithm. Aesthetics are defined by the symmetry and
empty-space balance criteria. Usefulness is defined by the safe zone and player exit distance
criteria. Criteria were selected based on recurrence in the literature [26–30], game design
principles, and creativity definitions [2,4,5]. If one of the constraint functions does not pass,
the total fitness is multiplied by zero.

The results of the criteria are normalized to fit in the 0 to 1 range to have a reference
point for different criteria metrics [17]. Zero represents the worst possible value, and
1 represents the best possible value. The final values for each criterion are also multiplied
by 0.9 so they will not get too close to 1, as it may skew the results in the evaluation steps
using neutrosophic sets. Scalar values are converted to single-valued neutrosophic sets
during evaluation. The fitness functions are as follows:

• Symmetry calculation for aesthetic purposes. The chromosome grid is crossed with a
horizontal and vertical slice to form 4 smaller 5 × 5 grids. Each object is checked to
determine if it has an identical vertically and horizontally symmetrically matching
object (Figures 2 and 3) in the 5× 5 grid. The final results are calculated by dividing the
symmetrical matches by the maximal possible matches (each object has two matching
objects with touching 5 × 5 grids) (1). x and y represent the size of the grid, s is a
binary value, the value of which is 0 if the object does not have a matching pair. Each
object is measured twice for each axis.
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m =
∑

2xy
i=0 s

2xy
(1)

Figure 2. Symmetry calculation.

Figure 3. Symmetry calculation for single grid axis.
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• Balance criteria for aesthetic purposes. Calculate how close to 50% is the ratio between
empty game object count and total object count (Figure 4).

Figure 4. Empty-space balance.

Mathematically, it can be expressed in these steps (2), where e is the total empty space
ratio normalized from 0 to 1, t is the sum of the empty objects (they are reversed if they
exceed 50% of the grid), x and y represent the grid size, and s is a binary value, which value
is 1 if the object is empty. t can be calculated by counting all empty space objects (3) and
then reversing the value if it exceeds 50%.

e =
t
t

1
2 xy

(2)

⎧⎨⎩ t =
n
∑

i=0
s

t = 1
2 xy− t1 − 1

2 xy
(3)

• Distance between player and exit game objects. x and y represent the coordinates of
the player and exit (4). This rule makes sure that the player can see as much of the
generated scene as possible while traveling to the exit point;

d =
√
(x2− x1) ∗ (x2− x1) + (y2− y1) ∗ (y2− y1) (4)
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• The safe zone criteria calculate the amount of Hazzard-type objects in a defined square
around the Player and divide the result by the total area of this square (5).

z =
x1y1

x2y2
(5)

Criteria are calculated for each member of the population (Figure 5) and can be
modified on demand. The criteria calculations are the building blocks of the fitness function.

Figure 5. Criteria list.

Constraint functions are:

• Scan the chromosome grid and check if Player object exists;
• Scan chromosome grid and check if an exit object exists;
• Pathfinding algorithm to check if there is a passable way between Player and Exit.

3.3. Application of WASPAS-SVNS in Genetic Algorithm

In the evaluation step, we combine all the fitness results of the criteria functions using
the modified WASPAS-SVNS algorithm (Figure 6) [19]. Most previous use cases for this
algorithm were tested with single iterations [19–22]. This research focuses on an iterative
process with WASPAS-SVNS, so there were tweaks made for it to work together with the
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genetic algorithm. These are the main steps of the final evaluation and explanations about
how it was joined with our procedural generator:

1. Combining criteria evaluation data into matrix X where one dimension represents the
index of a chromosome, and another dimension represents the index of the criteria (6);

X =

⎡⎢⎢⎢⎣
x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎤⎥⎥⎥⎦ (6)

2. The original algorithm normalizes the data here, inside the WASPAS-SVNS algorithm,
but for the iterative process it does not work because the local min–max and global
min–max values are not the same, so we need to define boundaries before this step [33].
Normalization is made in the criteria functions to fit in the range of 0 to 1 (7). v
represents current criteria value and vmax is the highest possible value for that criterion
for the selected matrix size. x̃ij is a normalized index ij criteria value of matrix X;

x̃ij =
v

vmax
(7)

3. Neutrosophication step. In this step, we convert results from our normalized criteria
function results into neutrosophic sets. The neutrosophic set consists of three numbers:
truth (t), intermediary (i), and falsehood (f ). For this, we map criteria results with
neutrosophic numbers, but we do a linear conversion as even the slightest non-
proportional shifts can make a huge error in the long evolutionary run. N represents
a neutrosophic number and S represents a scalar number (8);

N(t, i, f ) =

⎧⎨⎩
S

1− S
1− S

(8)

4. Sum of the total relative importance of the alternative (single evolutionary iteration
chromosome);

5. Total relative importance of the product of the alternative;
6. A joint generalized criterion for the ranking alternatives (step 4 and step 5) (9);

Q̃i = 0.5Q̃(1)
i + 0.5Q̃(2)

i (9)

7. Neutrosophic numbers (truth, intermediacy, and falsehood) are converted to scalar
numbers using this formula and then used for chromosome evaluation in the genetic
algorithm (10);

S
(

Q̃i

)
=

3 + ti − 2ii − fi
4

(10)
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Figure 6. Fitness algorithm by the MCDM approach.

3.4. Proposed Extension of Genetic Algorithm

Genetic algorithms are used to solve optimization problems using natural selection [34].
It is convenient for us, as it can iterate in many different local maximums because of its
random nature. It iteratively modifies the population of individual game level grids. At
each generation, random grids are selected and modified. With time, the population evolves
toward aesthetic and functional solutions. Genetic algorithms allow for finding good
solutions without designing them. Transformative genetic algorithm operators are applied
to a small set of grid cells. The main advantages from other optimization algorithms are:
non-linear convergence, more than one solution can evolve in parallel and best solutions are
kept, uses a lot of random numbers so it is not deterministic, and each run of the algorithm
proposes different solutions. The fitness function is based on the WASPAS-SVNS algorithm
and is used to find the best individuals using several criteria. One grid represents a single
solution to a problem. Population defines the total concurrent grid pool. Best fitness shows
the best grid designs in the current population. Two concurrent snapshots are used during
calculations: parent and child generation.

The level layout is trained with the genetic algorithm (Algorithm 1), and the evaluation
criteria for each iteration are combined with the WASPAS-SVNS algorithm to calculate
the single fitness value. The population size is set to 50, and the algorithm runs for
2000 iterations. We are using selection and mutation operators to filter and repopulate the
population. For initial data, we create empty chromosomes and fill them with random data
where each object is coded with integer numbers from 2 to 6 (all possible objects except
player (number 0) and exit (number 1)), and then add 1 Player and 1 Exit object. For each
iteration, we calculate the median fitness value for all populations and split chromosomes
into two temporal arrays, which store chromosomes below and above the median value.
Chromosomes below the median value are replaced with chromosomes from the above
median array, and then 5% of this new array data is mutated with new random values
(Figure 7).
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Algorithm 1. Genetic algorithm.

InitializeRandomPopulation:
DoFullEvolution:

for amountOfEvolutionCycles
CalculateAllCriteria

for populationSize
Validation

PlayerExists
ExitExists
PathBetweenPlayer-ExitExists

Symetry
EmptySpaceBalance
Player-ExitDistance
SafeZone

FindUnderperformersAndPerformers
for populationSize calculateFitness

WASPAS-SVNS
EvolveUnderperformersWithGeneticAlgorithm

DrawGrid(best fitness):

Figure 7. Data evolution.

4. Results

For this research, we developed a framework from scratch using the Unity game
engine and visual game object assets from the Unity Asset Store. The results are generated
with a custom C# script. Tests were performed with a 2.4 GHz 8-Core Intel Core i9 CPU.
Procedural generator with neutrosophic evaluation generates quickly rising scores for the
first 100–200 generations under current conditions compared to summation of individual
criteria fitness scores, but generator usually requires more time to make symmetrical and
visually balanced scene layouts while making sure that game rules apply. The final fitness
score usually sets at around 0.75–0.85. It is important to have lots of local maxima for the
game scene generation, as results must be unique and differ from each other. There are
many possible solutions based on the random initial seed and mutations. Fitness examples
with different seeds of random initial data and 500 generations (Figure 8). Note that close
to 1 fitness is not possible, as the criteria conflict with each other. Fitness usually starts to
converge after about 500–2000 generations. It takes about 21 s, on average, to calculate one
10 × 10 grid level with 2000 generations. As the initial population (50) is relatively low
compared to the total possible scene layouts (7 to power of 100) and mutations are set to
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5%, initial seeds usually define how wide the final fitness range is. We choose the lower
population to have a wider number of possible solutions. The goal is not to optimize the
algorithm for one solution, but to generate a diverse set of level layouts that satisfy the
creativity and game design criteria.

 

Figure 8. Fitness evolution examples.

We can also observe visual results, which generate aesthetically appealing game scenes.
It has many elements of symmetry and space balance. Some examples are: room-like shape
without a specific code that defines what a room is (Figure 9), as symmetry is conflicting
with other criteria and is not strictly defined, we can also observe semi-symmetric shapes
(Figure 10), a smaller room inside the scene with lots of coins/rewards (Figure 11), game
scene without lots of walls (Figure 12). We can see that the generator can create many
different aesthetic shapes.

 

Figure 9. Room-like generated scene.
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Figure 10. Semi-symmetric results.

 

Figure 11. Small room inside the scene.

 

Figure 12. Game scene with almost no walls.
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An example of intermediate evolution results can be observed (Figure 13). The grid is
printed every 100 generations. We can observe a chaotic layout and quick progression early
on and fine-tuning in the later generations.

 

Figure 13. Intermediate evolution results (left to right).

On closer inspection, the realization of the aesthetic criterion can be seen in the visual
examples (Figure 14) (symmetry and balance of the empty space balance). At the same
time, game design requirements, such as pathfinding, are realized.

 

Figure 14. Symmetry and empty space balance. The numbers ‘1’ and ‘2’ represent the corresponding
symmetrical objects. ‘50%’ represents the balance between the number of objects and the empty space.

Each result is a different local maximum from many possible final results. It is a
very small chance to generate an identical game level given the nature of the algorithm
randomness and the number of possible solutions. It would also be possible to draw a
crude initial room and then let the algorithm fine-tune it to satisfy aesthetic and playability
criteria. The optimal solution for this task is total satisfaction with the proposed criterion
under a given random initial seed. Compared to other similar research in the field, the
proposed framework generates more visually noticeable aesthetic traits on small object
resolutions while maintaining an above-average object pool. This approach to procedural
generation has the potential to make creative work faster and easier.

5. Conclusions

The main problem that the proposed method solves is how to increase unique and
not repetitive amounts of levels with several runs of the same algorithm. Observing the
presented results, it can be concluded that our levels generate interesting game scene
layouts, which differ with each run. It can also generate both aesthetic- and functional-level
layouts at the same time. Visual representations of game assets can also be interchanged by a
developer. The WASPAS-SVNS algorithm enables the evaluation of conflicting criteria. The
proposed approach is realized by breaking down design principles into primary elements
and defining them with the proposed criteria list. The algorithm generates a random shape
and then sculpts a functional and aesthetic game level around that shape. The random
nature of the genetic algorithm ensures surprise elements for the levels. It is also important
to find a balance between different criteria weights and number of criteria that defines a
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certain objective to generate a coherent final level. Overabundance or lack of features may
numb some of the game design elements. Creativity assistance algorithms can save time
for game designers and developers, but at the moment, most commercial games use only
light game design assistance tools, seeded procedurally generated or handcrafted levels.
This work can be expanded by combining it with an algorithm, which can break down
design elements from hand-crafted game levels and then use it as a base of criteria list.
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Abstract: As people increasingly make hotel booking decisions relying on online reviews, how
to effectively improve customer ratings has become a major point for hotel managers. Online
reviews serve as a promising data source to enhance service attributes in order to improve online
bookings. This paper employs online customer ratings and textual reviews to explore the bidirectional
performance (good performance in positive reviews and poor performance in negative reviews)
of hotel attributes in terms of four hotel star ratings. Sentiment analysis and a combination of
the Kano model and importance-performance analysis (IPA) are applied. Feature extraction and
sentiment analysis techniques are used to analyze the bidirectional performance of hotel attributes
in terms of four hotel star ratings from 1,090,341 online reviews of hotels in London collected from
TripAdvisor.com (accessed on 4 January 2022). In particular, a new sentiment lexicon for hospitality
domain is built from numerous online reviews using the PolarityRank algorithm to convert textual
reviews into sentiment scores. The Kano-IPA model is applied to explain customers’ rating behaviors
and prioritize attributes for improvement. The results provide determinants of high/low customer
ratings to different star hotels and suggest that hotel attributes contributing to high/low customer
ratings vary across hotel star ratings. In addition, this paper analyzed the Kano categories and priority
rankings of six hotel attributes for each star rating of hotels to formulate improvement strategies.
Theoretical and practical implications of these results are discussed in the end.

Keywords: online reviews; hotel attribute; attribute bidirectional performance; sentiment analysis;
Kano model; importance-performance analysis

1. Introduction

Unlike using recommendations of relatives and friends in the past, people increasingly
make hotel booking decisions relying on online reviews on various online travel platforms
in the modern era. Hotel online reviews are posted by numerous customers according to
their experiences in hotels, which are perceived as more objective, trustworthy and helpful
than information provided by hotels [1,2]. Online reviews generally consist of online ratings
and textual reviews. Online ratings signal customer satisfaction or dissatisfaction with
hotels. Textual reviews contain customers’ actual expectations, feelings and perceptions
about hotel services. According to bounded rationality model, customers are unable to
elaborate and extract useful information from numerous and heterogeneous data, thus
driving them to prefer and rely more on ratings than on textual reviews [3]. As more and
more potential customers regard the online ratings as one of the direct references of hotel
quality when selecting hotels, it is crucial for hotels to obtain high customer ratings to
achieve the goal of improving online bookings [4,5]. Therefore, exploring what contributes
to the difference in online ratings between satisfied and dissatisfied customers is particularly
important for hotels. In other words, for the purpose of being competitive sustainably in
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the hospitality industry, it is critical for hotels to understand the determinants of customer
satisfaction and dissatisfaction which are proxied by online ratings [6,7].

Existing studies have proved that the performance of multiple hotel attributes is
strongly correlated with customer satisfaction [8–10]. Most studies have investigated
the hotel attributes that lead to customer satisfaction and dissatisfaction through sur-
veys [11–13]. Recently, with the development of data mining techniques, online reviews
serve as the promising data source for customer satisfaction analysis. Several scholars
have analyzed the attribute performance through online reviews using sentiment analysis
methods, and hence found the determinants of customer satisfaction in the hotel indus-
try [14,15]. However, these studies processed hotel reviews as a whole dataset, neglecting
discriminating positive and negative reviews. Processing hotel reviews as a whole can
compare the overall performance of multiple attributes from the perspective of all cus-
tomers but could not distinguish between contributors of customer satisfaction and factors
resulting in customer dissatisfaction. Previous studies have found that dual-valence (that is,
featuring both positive and negative sentiment) reviews existing in hotels of one–five-star
ratings [16,17]. The presence of negative sentiment toward attributes in positive reviews
and positive sentiment toward attributes in negative reviews was observed [18–20]. In
other words, even if the performance of several hotel attributes does not meet customer
expectations, customers are still satisfied with the hotel and give high ratings to the hotel
because of the good performance of other hotel attributes. Meanwhile, customers can be
very dissatisfied with the hotel and give low ratings to hotels when the performance of
some certain hotel attributes is poor, even though they think other hotel attributes perform
well. Therefore, it’s necessary to investigate the following question:

Research Question 1 (RQ1). Which hotel attribute with good performance contributes to high
customer ratings and which hotel attribute with poor performance causes low customer ratings?

In fact, it should be pointed out that customers’ expectations and perceptions vary
across different market segments, such as different hotel star ratings [14,21]. Exploring
the determinants of customer satisfaction and dissatisfaction of each market segment
is beneficial for making more appropriate and precise strategies [10]. Moreover, it is
helpful for hotel managers to understand customer demands for different star hotels in
the decision-making of marching into new markets through comparing the difference
of attribute performance in different star hotels. However, whether the hotel attribute
contributing to high/low customer ratings varies across different star hotels has not been
verified. Therefore, this study intends to investigate the following question:

Research Question 2 (RQ2). Does the hotel attribute contributing to high/low customer ratings
vary across different star hotels?

To answer the above two questions, it is necessary to analyze the effect of attribute
performance on customer satisfaction. Customers’ preferences, expectations and percep-
tions on each hotel attribute are influenced by comprehensive factors, thus driving positive
and negative customer evaluations toward the bidirectional (good and poor) performance
of hotel attributes [22]. Traditionally, one unit increase in good performance and one
unit decrease in poor performance concerning a certain hotel attribute should cause the
same change of customer satisfaction, thus the relationship between attribute performance
and customer satisfaction is assumed to be linear or symmetric [23]. However, some
studies have demonstrated that some attributes provide more satisfaction than dissatis-
faction [24–26]. In other words, hotel attributes can have asymmetric effects on customer
satisfaction [24]. The Kano model was proposed by Kano et al. (1984) to identify these
non-linear or asymmetric relationships between attribute performance and customer satis-
faction. The Kano model is often applied to classify hotel attributes into different categories
in terms of customer demands, which is helpful for hotel managers to better understand
customer expectations and perceptions [27,28]. Meanwhile, considering the limited hotel
resources, it is critical to determine attribute priority to maximize customer satisfaction
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through service improvement. Many studies have shown that applying a combination
of the Kano model and importance-performance analysis (IPA) in customer satisfaction
analysis can not only analyze customer requirements toward service attributes, but also
determine attribute priority [10,29–33]. The IPA is a common and effective technique to
formulate improvement strategies according to the importance and performance of the
attribute [34]. However, existing studies concerning the Kano-IPA model are mainly based
on surveys, and few studies use online reviews as a data source for the Kano-IPA model.
There are two main reasons limiting the application of the Kano-IPA model in online
reviews. On the one hand, online textual reviews are unstructured and therefore need to
be processed before they can be converted into usable structured data. On the other hand,
there is a question of how to apply the processed data to the customer satisfaction model to
obtain different Kano categories. Considering online reviews serving as promising data
source for analyzing and improving hotel services, this study intends to apply feature
extraction and natural language processing (NLP) techniques to conduct Kano-IPA model
through online reviews.

In summary, this study aims to identify the well-performed attributes contributing to
high customer ratings and poorly performed attributes causing low customer ratings for
different star hotels. For this, firstly, we distinguish between positive and negative reviews
for different star hotels according to online ratings. Next, we apply feature extraction
and sentiment analysis techniques to explore bidirectional performance of hotel attributes.
In particular, a new sentiment lexicon for hospitality domain was built from numerous
online reviews using the PolarityRank algorithm. To further understand customers’ rating
behaviors and demands for hotel service, this study intends to conduct the Kano-IPA
model through online reviews for attribute classification and prioritizing. We propose
an approach to classify attributes into the Kano model, which provides convenience for
the application of the Kano model in textual reviews. Lastly, the comparative analysis of
attribute performance and priority rankings is carried out to enhance the understanding of
customers’ demands for different star hotels.

The remainder of this paper is organized as follows. Section 2 briefly reviews the
relevant literature to provide the motivation for this study. Section 3 presents the framework
and methodology employed in this study. Section 4 presents the results and provides
some discussion of this study. Section 5 concludes and offers theoretical and practical
implications, limitations, and directions for future research.

2. Literature Review

2.1. Studies on Hotel Online Reviews

Hotel online reviews, in the form of online ratings and textual reviews, represent
customers’ emotions and experience toward service quality based on their expectations
against their actual experience. In general, most websites collect customer ratings and
opinions on hotels by offering several critical attributes for evaluation. Many researchers
have used these hotel attributes to explore customer behaviors. For example, Wang et al. [35]
investigated the importance of six attributes including value, location, service, room,
cleanliness and sleep quality offered by TripAdvisor.com during the process of hotel
selection decision-making. Liu at al. [9] verified the differences of these six hotel attributes’
preferences between domestic and international tourists. Bi et al. [10] also used online
reviews from TripAdvisor.com to analyze the asymmetric effect of the performance of these
six attributes on overall customer ratings. Nicolau et al. [36] analyzed the influence of
the variations in the ratings of hotel attributes (comfort, staff, services, value for money
and cleanliness) on the variation in the ratings of location to test the halo effect, where
these attributes are offered by Booking.com (accessed on 4 January 2022) for evaluation.
Evidently, online reviews contain various information of service quality concerning hotel
attributes. Thus, it’s significant to extract useful information from massive online reviews
to help hotel management to improve service quality.
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Many previous studies focused on the analysis of numerical ratings, including the
overall and multi-attribute ratings. Though overall ratings can indicate customers’ overall
satisfaction in a straightforward way [37], multi-attribute ratings can obtain a better under-
standing of factors driving customer satisfaction for different segments within hotels [38].
Sharma et al. [39] classified the multi-attribute ratings into positive, neutral and negative
sentiments and then applied interval-valued neutrosophic TOPSIS for ranking hotels. Bi
et al. [10] used both overall and multi-attribute ratings to explore the asymmetric effects
of attribute performance on customer satisfaction. However, multi-attribute ratings are
usually incomplete, limiting utilizing multi-attribute ratings to obtain more information
about customers’ feelings on service quality of each attribute.

Online textual reviews, a kind of unstructured data source, contain a wealth of infor-
mation, including customers’ preferences, expectations, feelings and perceptions toward
hotels [6,38], have gained growing interest among scholars. Especially, with the advance in
NLP techniques, more and more studies based on text analysis have been conducted. In
the current hospitality research, topic analysis that aims to extract the review’s important
aspects has been popular and a number of topic mining algorithms have been applied. Guo
et al. [40] used Latent Dirichlet Allocation (LDA) topic modeling tool to analyze customers’
preferences of hotel attributes. Hu et al. [41] adopted a structural topic model text analysis
method to analyze the causes of customers’ complaints for hotel service improvement.
Wang et al. [35] extracted key factors of different attributes for ranking hotels using the
term frequency-inverse document frequency (TF-IDF) and Word2Vec methods. While
topic mining is useful to identify key service factors, it cannot reflect whether customers
are satisfied with hotel service quality. Sentiment analysis of textual data, which focuses
on extracting a review’s sentiment polarity, such as positive, negative and neutral, can
indicate customers’ real emotions and satisfaction toward hotel services [42,43]. Therefore,
some hospitality scholars have gradually applied both topic mining and sentiment analysis
techniques to capture customers’ concerns, emotions, satisfaction and complaints toward
hotel services. Bi et al. [44] applied LDA and IOVO-SVM algorithms to identify hotel
attributes and their sentiment strengths to conduct IPA plotting for attribute improvement
strategies. Al-Smadi et al. [45] used the bidirectional Long Short-Term Memory (LSTM) to
extract opinionated aspects and their polarity from Arabic hotels’ reviews. Nie et al. [46]
applied a semantic partitioned sentiment dictionary to obtain sentiment values of different
attributes to rank hotels.

Existing studies suggested that online textual reviews indicate details on customers’
demands and perceptions of hotel attributes [6,9]. Although numerical textual reviews have
been studied widely to extract critical hotel attributes and their sentiment [14,15,46], few
studies have distinguished between positive reviews and negative reviews to identify well-
performed attributes contributing to satisfied customers and poorly performed attributes
resulting in dissatisfied customers. Therefore, this study attempts to explore the difference
between the good performance and poor performance of the same attribute with respect to
positive reviews and negative reviews concerning different star hotels through sentiment
analysis.

2.2. Studies on Sentiment Analysis

Sentiment analysis has emerged as an important aspect of NLP. Sentiment analysis
leverages a variety of NLP techniques to extract the sentiment expressed in texts and deter-
mine whether they are positive, negative or neutral [47,48]. Analysis of text sentiments has
spread across many fields such as consumer information, marketing, books, application,
social media, tourism destination and hotels [49–55]. The approaches to sentiment anal-
ysis can be mainly divided into two types, namely, machine learning and lexicon-based
methods.

Machine learning methods represent documents as vectors in a feature space and
classify them into predefined sentiment categories [56]. There are several machine learning
methods for sentiment classification, such as naive Bayes (NB), maximum entropy and sup-
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port vector machine (SVM). These classifiers usually use the bag-of-words (BoW) method
comprising unigrams or n-grams to determine how the documents are represented [57],
resulting in high dimensionality of the feature space. With the help of feature selection tech-
niques, such as part-of-speech (POS) tagging which aims to disambiguate text sense based
on a lexical category, machine learning algorithms can reduce high-dimensional feature
space by eliminating the noisy and irrelevant features. Existing studies concluded that some
machine learning classifier algorithms have better performance than lexicon-based [58,59],
but these methods have some certain defects: (1) classifiers trained for a domain-specific
problem do not perform well in other domains [58]; (2) feature construction is critical
but can hardly implement [60] and (3) these methods usually rely on a great volume of
manually labeled training data [61]. Given these drawbacks, unsupervised methods like
lexicon-based methods are applied.

Lexicon-based methods are based on the assumption that the contextual sentiment
orientation is the sum of the sentiment orientation of each word or phrase by matching
a word or phrase with words from sentiment lexicon and their associated sentiment
scores [62]. In general, adjectives are used as indicators of the semantic orientation of
a text [58]. More recently, verbs and nouns are also used to compile into a sentiment
dictionary [63]. Such a lexicon or dictionary can be created manually, or automatically,
using seed words to expand the list of words [64]. Abdulla et al. [65] built a lexicon for the
Arabic language and the proposed approach gained better accuracy than other methods.
Taboada et al. [58] constructed a dictionary incorporating intensification and negation to
compute text sentiment scores, which is called the semantic orientation calculator (SO-CAL)
approach. Dey et al. [66] developed an n-gram sentiment dictionary called Senti-N-Gram
for automatic score calculation. Compared to machine learning methods, sentiment lexicons
learned from a certain domain preserve the domain-based orientation of words, which
provides greater accuracy for sentiment analysis tasks [67]. Furthermore, lexicon-based
methods take the lexical and syntactical information in linguistic content into account
in order to revise the sentiment valence [56]. That is, in the sentiment scoring process,
negation, intensification, and the rhetorical roles of text segments are taken into account as
well. The language-dependent features can also be considered in lexicon-based model [68].

In summary, machine learning sentiment analysis trained on a particular dataset by
using features, which may reach quite high accuracy in detecting the polarity of a text.
However, this is highly dependent on labeled data, limiting its application. Unsuper-
vised lexicon-based methods, such as knowledge-graph propagation and seed word-based
methods, not only overcome the absence of labeled data, but are able to extract domain-
specific sentiment words [69,70]. Thus, lexicon-based methods are considered preferable
for sentiment analysis in a certain domain, and in this study an unsupervised lexicon-based
sentiment method is used for sentiment analysis to explore the bidirectional performance
of hotel attributes.

2.3. The Kano Model

Traditionally, customer satisfaction has been regarded as one-dimensional or sym-
metric: the higher the perceived product/service quality is, the higher the customer’s
satisfaction is and vice versa [23]. However, continuous improvements in product/service
attributes without considering what customers actually want may not engender a higher
level of customer satisfaction. Some researchers argued that the relationship between
attribute performance and customer satisfaction is nonlinear or asymmetric [23,24,71].
Consequently, Kano et al. (1984) introduced a two-dimensional model, called the Kano
model, that clarifies the asymmetric and nonlinear relationship between product/service
attribute performance and customer satisfaction, and classifies the attributes into five cat-
egories, namely, must-be factors, one-dimensional factors, attractive factors, indifferent
factors and reverse factors [72]. Later, the simplified Kano model classifies attributes into
the following three factors, basic, performance and excitement factors corresponding to
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must-be, one-dimensional, attractive factors [73], which has been widely used in different
research domains, as shown in Figure 1.

 

Figure 1. The Kano model.

1. Basic: These attributes are the basic requirements of product/service. Customers are
extremely dissatisfied when these attributes don’t meet their expectations. However,
when customer expectations are exceeded, customers are just neutral since they take
it for granted.

2. Performance: The performance of these attributes is positively and linearly related
to customer satisfaction. In other words, the customer satisfaction increases with the
increase in attribute performance, and vice versa.

3. Excitement: When the performance of these attributes exceeds customer expectations,
customers are satisfied, but they are not dissatisfied when these attributes are absent.
Therefore, good performance of this category has a stronger impact on customer
satisfaction than its poor performance.

Identifying different categories of attributes is beneficial for hotels to understand the
determinants of customer satisfaction and dissatisfaction, and hence improving service
attributes effectively [29,74]. Many scholars have applied the Kano model to understand
customer expectations and perceptions toward different service attributes in hospitality
research, as shown in Table 1.

Table 1. Related studies of Kano model in hospitality research.

Literature Objective Classifying Method Sample Source

Yang et al.,
(2009) [75]

Offer enhanced value to the hotel customer through low
prices while meeting appropriate features using refined
Kano model and a strategic price model.

Kano’s method Questionnaire

Chang and Chen
(2011) [27]

Use the Kano model and quality function deployment
(QFD) to explore hotel brand contact elements perceived
by customers.

Kano’s method Questionnaire

Tontini et al.,
(2017) [76]

Explore nonlinear effects of service quality on customers’
evaluation of three-star hotels in Rio de Janeiro, Brazil. CIT and PRCA TripAdvisor.com

Lai and Hitchcock
(2016) [30]

Integrate IPA with the Kano three-factor theory to examine
the difference of service attribute importance in different
market segments using the case of luxury hotels in Macau.

Importance grid Questionnaire

Beheshtinia and
Farzaneh Azad

(2017) [12]

Identify customer needs for the hotels and prioritize them
using a combination of the SERVQUAL and
Kano approaches.

Kano’s method Questionnaire
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Table 1. Cont.

Literature Objective Classifying Method Sample Source

Cheng and Chen
(2018) [11]

Analyze competitive qualities required for improvement to
enhance service quality of motels in Taiwan.

Moderated
regression Questionnaire

Bi et al., (2020) [10]
Explore the asymmetric effects of attribute performance on
customer satisfaction with respect to different
market segments.

PRCA TripAdvisor.com

Most of these studies are based on a questionnaire survey, scarcely extracting key
attributes from big data such as online reviews. One of problems limiting its application to
big data is that it is hard to classify service attributes into Kano categories using existing
methods. In current Kano model analysis, several methods are introduced to classify quality
attributes. Kano et al. (1984) provided an approach using a structured questionnaire with
functional and dysfunctional questions for each attribute [73]. The penalty-reward contrast
analysis (PRCA) has been used widely to classify quality attributes by regression analysis
with two sets of dummy variables for each attribute [25,73]. The moderated regression
approach based on a five-point Likert scale, proposed by Lin et al. [77], uses regression coef-
ficients to classify attributes. Another quantitative method called the “importance grid” has
also been applied to a variety of studies, which compares explicit and implicit importance
of each attribute to category in three factors [30,78]. Qualitative data methods including
critical incident technique (CIT) and the “analysis of complaints and compliments” (ACC)
have been applied to category attributes by comparing the difference in attribute frequency
mentioned by customers in a positive context or a negative context [76,79,80]. In conclusion,
these methods distinguish between different types of attributes by comparing the impacts
of good performance and poor performance of the attribute on customer satisfaction.

Most studies relied on questionnaire survey when using the above Kano classifying
methods to category attributes, which indicates existing classifying methods may not be
suitable for the application of the Kano model in numerous textual reviews because of
unstructured feature. Following the Kano model classifying principle, this study aims to
propose a novel approach to classify hotel attributes into the Kano model in text analysis.
This new approach will provide support for the application of the Kano model in numerous
unstructured data to explore customer satisfaction.

2.4. Importance-Performance Analysis

Importance-performance analysis (IPA), proposed by Martilla and James (1977), is
a graphical tool to classify attributes for improvement and rank their priority based on
the importance and performance of each product/service attribute [34,81]. This approach
constructs a plot with two dimensions, importance and performance of product/service
attribute perceived by consumers, and classifies attributes into four quadrants equipped
with different management strategies. An example of IPA is given in Figure 2. Quadrant I
is labeled ‘Keep up the good work’, where attributes are considered highly important, and
their performance is high. Attributes located in quadrant I can be considered as the major
strengths of the product/service and should be maintained. Quadrant II is labeled ‘Possible
overkill’, where attributes have low importance but high performance. The resources
dedicated to these attributes may be excessive, so reallocating limited resources to address
other more important attributes is proper. Quadrant III is labeled ‘low priority’, where
attributes have both low importance and performance. Attributes in this quadrant are
regarded as the minor weakness and have a low priority for improvement. Quadrant IV is
labeled ‘Concentrate here’, where attributes are considered highly important but are poorly
performed. Attributes in this quadrant are regarded as the major weaknesses and should
be given a high priority for improvement.
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Figure 2. An example of IPA plot.

IPA is applied in a wide variety of research domains, partly due to the clear managerial
strategies it provides on how to allocate resources and efforts [82], and also due to its
ability to identify the strengths and weaknesses of product/service to guide management
in taking effective measures to keep competitive [83]. In hospitality research, IPA is
commonly integrated with other techniques, such as SERVQUAL [84,85], data envelopment
analysis [86,87], partial least squares path modeling [88], the Kano model [10,30–33]. Many
scholars have applied a combination of the Kano model and IPA on customer satisfaction
analysis. For example, Bi et al. [10] applied the Kano model and asymmetric IPA to
explore the asymmetric effects of hotel attribute performance on customer satisfaction
through online ratings. Jou and Day [31] integrated the Kano model and IPA into a three-
dimensional IPA approach to identify the critical service attributes for hotel online booking
through survey. Tseng [32] constructed an IPA-Kano model for classifying and diagnosing
service attributes at the TPE airport. Pai et al. [33] combined the Kano model and IPA to
investigate the critical service quality attributes to enhance customer satisfaction in the
chain restaurant industry.

However, few hotel studies conducted Kano-IPA analysis using online textual review.
Furthermore, few studies have applied Kano-IPA model to obtain the hotel attribute priority
ranking for resource allocation to get improved across different hotel star ratings. These
literature gaps need to be dealt with. Thus, considering the effectiveness of the Kano model
and IPA for providing constructive guidelines to hotels to enhance customer satisfaction,
it is of great significance to explore the application of Kano-IPA model in hotel textual
reviews across different hotel star ratings.

3. Materials and Methods

The main objective of this study is to explore what contributes to the difference
in hotel customer ratings for different star hotels. Specifically, this study identifies well-
performed attributes contributing to high customer ratings and poorly performed attributes
causing low customer ratings in terms of hotel star ratings by exploring the bidirectional
performance of hotel attributes. This study also aims to apply the Kano-IPA model in online
textual reviews for a better understanding of customers’ rating behaviors and demands,
and hence provides effective attribute improvement strategies for different star hotels.

In this section, we propose a methodology to realize the above objectives and the
structure of this methodology framework is shown in Figure 3. First, we collected data
from TripAdvisor.com and processed the data according to hotel star ratings and cus-
tomer ratings. Second, sub-attributes of six hotel attributes (value, location, service, room,
cleanliness and sleep quality) that customers mentioned in online reviews were extracted.
Specifically, similar terms and the similarity under each attribute are identified through
the Word2Vec algorithm. Third, a sentiment lexicon for the hospitality domain to obtain
sentiment values of each attribute and sub-attribute was obtained through the PolarityRank
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algorithm. Fourth, well-performed attributes that contribute to customer satisfaction and
poorly performed attributes that cause customer dissatisfaction were identified for hotels of
different star ratings through sentiment analysis. Finally, the above results by text mining
were applied to conduct the Kano-IPA analysis for different star hotels. In particular, a novel
approach for Kano model classification is proposed. Thus, the improvement strategies and
priority of attributes are provided for different star hotels.

Figure 3. Framework of the proposed methodology.

3.1. Data Collecting and Processing

We collected hotel online reviews in London from TripAdvisor.com, which is the
world’s largest travel-sharing website. TripAdvisor.com contains millions of unbiased user-
generated reviews from customers worldwide; thus, it’s feasible to collect a large volume
of online reviews. The data collection and processing steps in this paper are as follows.

First, hotels in London were selected as data source for this research. London is one of
the largest financial centers in Europe, as well as one of the world’s most famous tourist
attractions. It attracts millions of customers across the world. Statistically, London recorded
28.47 million bed nights of domestic tourists and 118.9 million nights of international
visitors in 2019 [89,90].

Second, we crawled all available information at both hotel-level and review-level
in London using a Python program. The hotels with fewer than 400 reviews in English
were removed to ensure the credibility of this research sample. A total of 640 hotels with
1,090,341 reviews in English satisfied our requirements. Hotel-level information contains
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hotel name, star, rating, number of reviews and address. Each review-level data contains
reviewer, travel type, posting time, stay time, textual review, overall rating and ratings on
six hotel attributes (value, location, service, room, cleanliness and sleep quality).

Finally, we classified the hotel reviews into different datasets according to the hotel
star ratings and review overall ratings. Following the studies in [9,91], we categorized
the online reviews into four datasets, namely, two-star and below hotels (1-, 1.5-, 2- and
2.5-stars hotels), three-star hotels (3- and 3.5-stars hotels), four-star hotels (4- and 4.5-stars
hotels) and five-star hotels according to the hotel star ratings. Review classification based
on the review overall rating is controversial [18]. The main argument is whether the 3-score
rating reviews should be classified as neutral or negative. Studies have shown that a 3-score
evaluation is close to the service failure for most of potential customers [18,92]. Therefore,
in this study, according to review overall ratings, online reviews of each hotel star were
divided into two sub-datasets respectively, 1–3-score rating reviews as negative reviews
and 4–5-score rating reviews as positive reviews. Let Dneg

t and Dpos
t respectively indicate

the negative and positive dataset of t-star hotels, t = 2, 3, 4, 5. The final distribution of
sub-datasets is shown in Table 2.

Table 2. Distribution of sub-datasets according to the hotel star and overall customer ratings.

Hotel Star Ratings

Two-Star and Below Three-Star Four-Star Five-Star

Total number of hotels 72 231 237 100
negative reviews 21,771 86,720 106,585 21,997
positive reviews 41,486 231,938 408,553 171,291

Total 63,257 318,658 515,138 193,288

3.2. Text Preprocessing and Sub-Attributes Selection
3.2.1. Text Preprocessing

Several standard steps were adopted to complete the text preprocessing task by using
modules of the Natural Language Toolkit in Python programming environment, including:

• Correcting spelling errors and transforming words with variant spellings (e.g., isn’t
and is not);

• Sentence segmentation and word tokenization;
• Transforming capital letters to lowercases;
• Removing non-English characters, punctuations and stopwords (an existing stopwords

list from https://www.ranks.nl/stopwords) (accessed on 30 October 2021);
• POS tagging;
• Lemmatization (reduce the inflectional forms to their root forms, e.g., rooms and room).

3.2.2. Sub-Attributes Selection

In this study, six key attributes including value, location, service, room, cleanliness
and sleep quality [9,10,35,36,46] are selected to explore the role of their bidirectional perfor-
mance on customer overall ratings. These six attributes are provided by TripAdvisor.com as
significant factors for customers to review [35]. Hotel customers use a variety of elements to
evaluate the performance of the same attribute [46,93,94]. For example, customers may use
“locate”, “place” and “distance” to describe the attribute “location”. Therefore, extracting
words that are semantically similar to each hotel attribute is essential to comprehensively
understand customers’ opinions.

In this study, we use Word2Vec algorithm to extract words semantically similar to
each hotel attribute from textual reviews. Word2Vec is a generative similarity analysis
method used to compare the degrees of semantic similarity between two words or two texts.
Given a text corpus, Word2Vec learns a vector for each word in the vocabulary using the
Continuous Bag-of-Words or the Skip-Gram neural network architectures [95]. Continuous
Bag-of-Words is suitable for a small corpus, while Skip-Gram performs better in a large
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corpus. After training the word vector model, the similarity of the words can be obtained.
For this study, gensim is used as library which provides ready-made implementation of
Word2Vec algorithm. We trained word vectors from each dataset of different hotel star using
the Skip-Gram model. With the pre-trained Word2Vec model for each dataset, the similarity
value between attribute Ai and each word in dataset is calculated, where i = 1, 2, 3, 4, 5, 6.
The words with similarity value under attribute Ai greater than 0.5 are selected as the
sub-attribute Bij of attribute Ai, where j = 1, 2, . . . , P is the number of sub-attributes. Let
SSij denoted the similarity value between sub-attribute Bij and attribute Ai.

3.3. Sentiment Lexicon Creation

We used the PolarityRank algorithm to create a sentiment lexicon from hotel reviews,
which has achieved reasonable accuracy without training for domain-specific sentiment
analysis [63,96]. The PolarityRank algorithm is a non-supervised sentiment analysis method
based on PageRank, with the ability to consider the relevance between nodes, and spread
both positive PolarityRank (PR+) and negative PolarityRank (PR−) of one node to other
nodes through the relevance by edges of weights in a graph [63,96,97]. The main idea
behind PolarityRank is to calculate two measures of relevance, the positive and the negative
for each node in the graph [63].

Given a text, a graph can be built based on lexical and syntactical dependency, which
is named a dependency-based parse tree in NLP. The lexical graph is defined as G = (N, E),
where N = {gx} is a set of nodes and E is a set of bidirectional edges between pairs of nodes
according to the syntactic dependencies and between all nodes contained in descendant
branches. The edge E between node gx and gy contains an associated weight denoted by
wxy. An example of lexical graph is given, shown in Figure 4. After generating the graph,
propagation process with PR+ and PR− of each node begins. The detailed descriptions of
implementation steps are given in Sections 3.3.1–3.3.3

Figure 4. An example of a lexical graph.

3.3.1. Selecting Candidate Sentiment Words

After text preprocessing, the words were lemmatized as nouns, verbs, adjectives, ad-
verbs, pronouns, etc. Previous studies selected the lemmatized nouns, adjectives and verbs
as candidate sentiment words, discarding adverbs for they merely alter the degree of the
polarity of the words they modify, but do not carry an inherent sentiment polarity [96,98].
Actually, many adverbs carry sentiment polarity, such as the adverb “luckily” in sentence
“Luckily, there was one room available” expresses positive emotion.

To accurately analyze customers’ feelings, we used all the lemmatized nouns (n),
verbs (v), adjectives (a) and adverbs (ad) as candidate sentiment words. The nodes of
the graph corresponding to candidate sentiment words from hotel reviews are connected
by the bidirectional edges. Following the study of Fernández-Gavilanes et al. [96], the
co-occurrence frequency of node gx and gy in the whole dataset is assigned to the weight
wxy of edge E joining node gx and gy.

3.3.2. Assigning Initial Values to Candidate Sentiment Words

In this section, the candidate sentiment words are assigned initial positive value
e+ and negative value e− by SentiWordNet 3.0 through encoding a Python program.
SentiWordNet 3.0 is a general sentiment lexicon publicly available for researchers, with
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three sentiment scores for each word, namely positive, negative and objective scores [99].
For each candidate sentiment word, we assigned the positive value from SentiWordNet
3.0 to e+ and the negative value from SentiWordNet 3.0 to e−. For the words excluded in
SentiWordNet 3.0, the e+ and e− are equal to zero.

3.3.3. Calculation of PR+ and PR−

With weights for edges and pairs of initial sentiment values for nodes, calculation of
PR+ and PR− could commence. Let E(gx) be a set of indices y of the nodes for which there
exists an edge to node gx. Then, suppose e+x and e−x be the initial positive and negative
values of node gx respectively. The parameter α is set to 0.85 based on the original definition
of PageRank, which is a damping factor to ensure convergence [63,97]. The PR+ and PR−
are estimated as follows:

PR+(gx) = (1− α)e+x + α ∑
y∈E(gx)

wxy

∑z∈E(gy) wxz
PR+

(
gy
)

(1)

PR−(gx) = (1− α)e−x + α ∑
y∈E(gx)

wxy

∑z∈E(gy) wxz
PR−

(
gy
)

(2)

The propagation process is stopped until the calculation converges or iteration times
reach a fixed approximation threshold. In this study, after testing this process, a maximum
of 300 iterations is set as the stopping criterion.

3.3.4. Calculation of Semantic Orientation

With the final values PR+ and PR−, referred to Cruz et al. [63], semantic orientation
SO of each candidate sentiment word is normalized as:

SO(gx) = 5·PR+(gx)− PR−(gx)

PR+(gx) + PR−(gx)
(3)

Finally, we dropped the candidate sentiment words with a zero SO. Thus, the sen-
timent lexicon from hotel reviews consists of the words with nonzero SO. Let two-tuple
(gk, SOk) denote sentiment word gk and the corresponding sentiment value SOk, where
SOk ∈ [−5, 5] and k = 1, 2, . . . , m, with m representing the number of words in the lexicon.

3.4. Sentiment Analysis of Attributes
3.4.1. Calculation of Sub-Attribute Sentiment Values

According to the principle of Lexicon-based methods to sentiment analysis, the polarity
of a sentence can be obtained from the polarities of words in that sentence [62]. To obtain
the sentiment value of each sub-attribute from different sub-datasets, we calculate the
sentiment value of each sentence in different sub-datasets and record whether sub-attribute
Bij exists in that sentence. For a single dataset, let βl

q =
(

Gl
q, SOl

q

)
be a two-tuple consisting

of the qth sentiment word Gl
q and corresponding sentiment value SOl

q of the lth sentence,
where l = 1, 2, . . . , L, with L denoting the number of sentences in the dataset, q = 1, 2, . . . , Q,
with Q denoting the number of sentiment words, and Gl

q belongs to the sentiment lexicon

we created. Then, let βl =
{

βl
1, βl

2, . . . , βl
q, . . . , βl

Q

}
be a set of pairs of sentiment words and

the corresponding sentiment values in the lth sentence. For sub-attribute Bij existing in the
lth sentence, the sentiment value of Bij in the lth sentence is calculated by the following
Equation (4):

Sl
ij =

⎧⎪⎨⎪⎩ |
Q
∑

q=1
SOl

q, βl �= ∅

|0, βl = ∅

(4)

where l = 1, 2, . . . , L, with L denoting the number of sentences in the dataset.
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To improve the accuracy of sub-attributes sentiment polarities, it is important to
take the intensifiers and negators into account since these words can affect the sentiment
values [46,56]. The sentiment propagation for intensification and negation is described
as follows.

Propagation 1: Intensification.
Intensifiers are linguistic terms that primarily combine with adjectives, as well as

modify nouns, adverbs and verbs. These words serve to influence the strength of the
sentiment word, enhancing or diminishing the sentiment strength. The most common
way of identifying these valence shifters is using a list of words, such as adverbs and
adjectives, associated with fixed values for intensifiers [100,101]. In this study, we used a
list of intensifiers, adapted from Brooke, where each element is a modifier that emphasizes
or attenuates words [102]. Let γr represent the shift value of intensifier r, where r =
1, 2, . . . , R. Following the above description of sentiment calculation, for a dataset, if
there’re intensifiers existing in lth sentence, the sum of these shift values γsum

l is calculated.
If not, the γsum

l is assigned zero. The propagation of Sl
ij is represented as:

Sl
ij = Sl

ij + Sl
ij γsum

l (5)

where l = 1, 2, . . . , L, with L denoting the number of sentences in the dataset.
Propagation 2: Negation.
In sentiment analysis, negators are the words like “not” that cause negation. Negators

could alter the meaning of a word, sentence or provide a negation context, like converting an
affirmative statement into a negative statement. The most common way to process negators
is attaching these terms to the nearest words [96]; i.e., in “This story is not interesting”,
the word “interesting” is converted into “NOT-interesting”. In this processing method,
negators are considered as polarity shifters of polar expressions that produce the opposite
polarity. In other words, the polarity value was simply inverted if a polar expression fell
within the negation scope [101]. Thus, as the term “perfect” assigned a positive sentiment
value of +4, “NOT-perfect” has the sentiment value of −4. However, some researchers
hold the opinion that it is more reasonable to decrease the strength of sentiment words
rather than directly invert them [96,102]. We use a list of negators, adapted from Brooke,
where the negators are used as sentiment shifter with a default shift value of 4 [102]. If
there’s at least one negator existing in the lth sentence, the negation propagation begins
and is represented by Equation (6):

Ŝl
ij =

⎧⎪⎪⎨⎪⎪⎩
|Sl

ij + 4, Sl
ij < 0

|0, Sl
ij = 0

|Sl
ij − 4, Sl

ij > 0

(6)

where l = 1, 2, . . . , L, with L denoting the number of sentences in the dataset.

3.4.2. Calculation of Attribute Sentiment Values

For the purpose of ensuring that we get the pure positive sentiment value of attribute
Ai in each positive dataset, only the positive sentiment value of each sub-attribute under
attribute Ai is retained. In other words, the negative sub-attribute sentiment values in the
positive dataset are re-assigned to zero, i.e., in the 6th sentence of five-star positive dataset
Dpos

5 , the sentiment value of sub-attribute B12 is equal to −3 denoting Ŝ6
12 = −3, and then

it should be re-assigned to zero. Similarly, the positive sub-attribute sentiment values in
each negative dataset are re-assigned to zero. Let S̃posl

ij indicate the re-assigned sentiment

value of sub-attribute Bij in the lth sentence of the positive dataset, and S̃negl
ij indicate the

555



Appl. Sci. 2022, 12, 692

re-assigned sentiment value of sub-attribute Bij in the lth sentence of the negative dataset.
These two concepts can be computed as follows:

S̃posl
ij =

{ |0, Ŝl
ij < 0

|Ŝl
jl , Ŝl

ij ≥ 0
(7)

S̃negl
ij =

{ |Ŝl
jl , Ŝl

ij < 0
|0, Ŝl

ij ≥ 0
(8)

where l = 1, 2, . . . , L, with L denoting the number of sentences in the dataset.
Given that the sub-attribute Bij is the homonymsemantic similar word of attribute

Ai but not exactly equal to Ai, it’s necessary to consider the semantic similarity between
sub-attribute Bij and attribute Ai. Let SCpos

ij indicate the positive sentiment value of sub-

attribute Bij under attribute Ai in the positive dataset, and SCneg
ij indicate the negative

sentiment value of sub-attribute Bij under attribute Ai in the negative dataset. Considering
the semantic similarity between sub-attribute Bij and attribute Ai, SCpos

ij and SCneg
ij are

estimated as follows:

SCpos
ij = SSij

L

∑
l=1

S̃posl
ij (9)

SCneg
ij = SSij

L

∑
l=1

S̃negl
ij (10)

Finally, with sub-attribute overall sentiment values, the sentiment values of each
attribute in different datasets can be calculated. The sentiment values of attribute Ai in the
positive dataset and negative dataset are calculated respectively, as shown in Equations (11)
and (12):

SCpos
i =

P

∑
j=1

SCpos
ij (11)

SCneg
i =

P

∑
j=1

SCneg
ij (12)

In addition, we also calculate the sentiment values of each attribute without re-
assigned propagation for the following studies. The positive and negative datasets of
the same hotel star are merged, and let SCi represent the overall sentiment value of at-
tribute Ai without discriminating positive and negative reviews, which is estimated as:

SCi =
P

∑
j=1

SSij

L′

∑
l=1

Ŝl
ij (13)

where l = 1, 2, . . . , L′, with L′ indicating the total number of sentences in the review datasets
of different hotel star ratings.

3.5. Kano-IPA Analysis

In this study, the Kano-IPA analysis contains three relevant parts. First, the six hotel
attributes of each hotel star rating are classified into different categories in order to under-
stand the effect of attribute performance on customer satisfaction. Second, we construct the
IPA plot for hotels of different star ratings through analyzing the attributes’ importance
and performance. Finally, the attribute priority rankings for improvement and resource
allocation are given, so the different improvement strategies are provided for hotels of
different star ratings. A detailed description of the Kano-IPA analysis is given as below.
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3.5.1. Classifying Attributes into Kano Categories

In this study, a new approach to classify hotel attributes into Kano categories is
proposed. As the above descriptions in our study, the positive sentiment value SCpos

i of
attribute Ai is obtained from customers whose expectations toward hotel attribute Ai has
been met or even exceeded. So SCpos

i of attribute Ai indicates the customer satisfaction that
attribute Ai can bring when it performs well. Likewise, the negative sentiment value SCneg

i
of attribute Ai is obtained from customers who think the attribute realistic performance
hasn’t met their expectations, which represents customer dissatisfaction that attribute Ai
causes when its performance is poor. The overall sentiment value SCi of attribute Ai is
obtained from all customers stayed in the hotels of the same star. Thus, the SCi is regarded
as the expectant customer satisfaction that attribute Ai should generate. In accordance
with the obtained SCpos

i , SCneg
i and SCi, following the previous index value classifying

methods [10,24], here we define an index SI to compare the effects of the attributes’ good
performance and poor performance on customer satisfaction in hotels of the same star
rating, and the SI index of attribute Ai can be calculated as:

SIi =
SCpos

i − SCi

SCi − SCneg
i

(14)

Obviously, SIi ∈ [0,+∞]. The SI index indicates the ratio of the customer satisfaction
of good performance to the customer dissatisfaction of poor performance comparing with
the expectant customer satisfaction of the overall performance concerning attribute Ai. To
determine the Kano category of each hotel attributes, a cut-off point θ is defined subjectively.
According to the testing results based on different assignment methods in these review
datasets, we define θ =

(
SIMAX − SIMIN)/6, where SIMAX and SIMIN represent the

largest and smallest values of the SI index among the six hotel attributes. Moreover, the
mean of the SI index among the six hotel attributes is calculated, denoting SI. Hence, hotel
attributes can be classified into Kano categories as follows:

If 0 ≤ SIi < SI − θ, attribute Ai is regarded as basic factor, indicating attributes in this
category bring more customer dissatisfaction compared to other attributes.

If SI − θ ≤ SIi ≤ SI + θ, attribute Ai is regarded as performance factor, indicating
attributes in this category bring equal or approximate customer satisfaction and dissatisfac-
tion compared to other attributes.

If SIi > SI + θ, attribute Ai is regarded as excitement factor, indicating attributes in
this category bring more customer satisfaction compared to other attributes.

3.5.2. Constructing the IPA Plot

In this section, we try to construct an IPA plot of the six attributes. From Section 4.4,
SCi indicating the overall performance of each attribute Ai, so our next task is to estimate
the importance of each attribute. In this study, the term frequency-inverse document
frequency (TF-IDF) algorithm is utilized to estimate the importance of each sub-attribute.
TF-IDF is a statistical method, which is widely used to evaluate the relative importance
of a word to a particular document in a set of documents or a corpus [35,103]. The term’s
importance increases as it appears more frequently in the document, but at the same time,
its importance decreases as the frequency it appears increases in the whole corpus. Based on
TF-IDF algorithm, we defined uij indicating the weight of sub-attribute Bij. As mentioned
above, the sub-attribute Bij is semanticly similar to the attribute Ai and the similarity SSij
indicating the degree of semantic proximity. Therefore, we adopted the processing method
of attribute importance from the study of Wang et al. [35], and the attribute importance is
calculated as follows:

ui =
∑P

j uij ∗ SSij

∑6
i ∑P

j uij ∗ SSij
(15)
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With the performance and importance of each attribute, the IPA plot can be constructed.
The IPA plot is drawn with importance on the vertical axis and performance on the hori-
zontal axis, with the crosshair located inside based on the data-centered method [104], as
shown in Figure 2. According to IPA, hotel managers should improve the attributes in
Q IV and Q III in that order, maintain the attributes in Q I, and finally consider reducing
investment for attributes in Q II [10,29].

3.5.3. Analyzing the Attribute Priority Rankings

Due to the limitation of hotel resource and efforts, the detailed priority rankings for
resource allocation in the same quadrant still need to be determined. The Kano model
indicates that the effect of attribute performance on customer satisfaction varies from
different Kano categories. According to product lifecycle, the attributes of a product or
service are regarded as excitement, performance and basic factors [32], which provides a
guideline for resource allocation. Specifically, the basic factors should be given the first
priority to fulfill, the performance factors should be put in the second order to fulfill, and
the excitement factors are given the lower priority to fulfill [10,29]. Therefore, based on the
integrated Kano-IPA model, the attribute priority rankings for resource allocation are as
shown in Table 3.

Table 3. The attribute priority rankings for resource allocation.

Kano Category

IPA Strategy

Concentrate
Here

Low Priority
Keep Up the
Good Work

Possible
Overkill

Basic 1 4 7 10
Performance 2 5 8 11
Excitement 3 6 9 12

4. Results and Discussion

4.1. Results of Sub-Attributes Selection

According to the process described in Section 3.2, sub-attributes and the correspond-
ing similarity under each attribute are obtained from online reviews through Word2Vec
algorithm. The sub-attributes of each attribute are sorted by the similarity values. Due
to space limitations, we only show the top 10 similar sub-attributes with respect to the
six attributes extracted from the five-star hotel reviews in Table 4. In Table 4, “Similarity”
indicates the similarity between sub-attributes and the corresponding attribute. Consid-
ering the six attribute terms also appear in textual reviews, the six attribute terms are
also considered as sub-attributes of themselves. For example, room is a sub-attribute of
attribute room, and the similarity is 1. As results shown in Table 4, we find that some terms
may be the sub-attributes of two or more attributes. For example, the similarity between
the term “bed” and attribute room is 0.5867, meanwhile the similarity between the term
“bed” and attribute sleep quality is 0.6537. That is, term “bed” is a sub-attribute of both
attributes room and sleep quality. This observation is similar to the sub-attributes (or key
factors) selection findings of Wang et al. [35] and Nie et al. [46], indicating that the scopes
of different attributes may overlap.

4.2. Results of Sentiment Lexicon from Hotel Reviews

According to the process given in Section 3.3, the PolarityRank algorithm is em-
ployed to create a sentiment lexicon from the corpus composed of all textual reviews after
preprocessing.

Based on the selecting criteria, the nouns, adjectives, verbs and adverbs with POS
are selected as candidate sentiment words. To ensure the efficiency of the PolarityRank
algorithm, the final list of candidate sentiment words is composed of words that exist in
at least 30 reviews. A total of 13,933 candidate sentiment words and the co-occurrence
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frequency of any two nodes in the whole dataset are obtained. Subsequently, the initial
positive and negative sentiment values of each candidate word are assigned based on
SentiWordNet. The results of candidate sentiment words with POS, frequency and initial
sentiment value are shown in Table 5. In Table 5, “Tag” indicates the POS of each candidate
sentiment words, and “Number of Words” indicates the number of times that candidate
sentiment words appear in the whole corpus.

Table 4. Top 10 similar sub-attributes with respect to the six attributes from five-star hotels.

Value Location Service

Sub-Attributes Similarity Sub-Attributes Similarity Sub-Attributes Similarity

represent 0.6609 position 0.7390 middling 0.6122
competitively 0.6373 localisation 0.6764 exemplar 0.6041
comparative 0.6291 harrow 0.6467 fatless 0.5972

money 0.6283 fatherland 0.6444 outstanding 0.5942
ratio 0.6070 breckenridge 0.6380 approachability 0.5908

introductory 0.6064 geest 0.6367 topnotch 0.5858
comparably 0.6055 truistic 0.6341 cleanness 0.5787
reasonable 0.5948 locality 0.6308 tentativeness 0.5771

affordability 0.5733 heartland 0.6254 exceptional 0.5751
inline 0.5720 kenton 0.6245 staff 0.5668

Room Cleanliness Sleep Quality

Sub-Attributes Similarity Sub-Attributes Similarity Sub-Attributes Similarity

plushly 0.6636 spotless 0.7262 soundly 0.8287
suite 0.6609 immaculate 0.6335 undisturbed 0.7309

uprate 0.6463 tidy 0.6275 hypnos 0.6987
handspring 0.6425 spacey 0.6169 insomniac 0.6950
furbished 0.6340 furbished 0.6079 restless 0.6841

cubit 0.6321 conformable 0.6057 soundproofed 0.6737
spacious 0.6289 appoint 0.6056 silent 0.6722
pristinely 0.6284 spacious 0.6055 pillow 0.6691

spacey 0.6214 equipped 0.5960 uninterrupted 0.6646
luminous 0.6207 scrupulously 0.5927 blackout 0.6643

Table 5. Candidate sentiment words with tag, frequency and initial sentiment value.

Terms Tag Number of Words e+ e−

adequate a 27,210 0.0795 0.0682
close a 2257 0.1810 0.0697

abusive a 120 0 0.8750
affable a 115 0.6250 0

inspirational a 75 0.6250 0
trusty a 52 0.5000 0

accomplished a 51 0.4432 0
mannerly a 44 0.7500 0
stubborn a 40 0 0.6667
immune a 38 0.0900 0.0950
scramble n 213 0 0.0833

defect n 95 0 0.0950
blind n 68 0 0.0300

despair n 44 0.0833 0.3750
easiness n 38 0.0568 0.2045

unwillingness n 33 0 0.5000
enhancement n 32 0.3750 0

prejudice n 30 0 0.8750
horribly r 508 0 0.7500
painfully r 506 0 0.0833

marvellously r 70 0.5000 0.1250
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Table 5. Cont.

Terms Tag Number of Words e+ e−

pathetically r 51 0.3333 0.1667
guiltily r 38 0.1250 0

responsibly r 31 0.5000 0
stop v 2146 0 0.0183
hate v 283 0 0.7500
free v 269 0.2523 0.0103

adore v 97 0.5000 0.1250
desire v 44 0.1705 0.0341
respect v 34 0.4583 0

. . . . . . . . . . . . . . .

Based on the PolarityRank algorithm, PR+ and PR− of each candidate sentiment
word can be estimated by Equations (1) and (2). The PolarityRank algorithm propagation
process stopped until convergence. Additionally, SO of each candidate sentiment word
can be calculated by Equation (3). According to the results, we can see the SO of some
candidate sentiment words is equal to zero. The word with a zero SO is dropped because
it is neutral without sentiment polarity. Finally, the sentiment lexicon composed of 5837
sentiment words with nonzero SO is created for attribute sentiment analysis. Due to space
limitations, only the results of top 10 positive and negative sentiment words are shown in
Table 6.

Table 6. TOP 10 positive and negative sentiment words.

Sentiment Words Tag Number of Words PR+ PR− SO

deferentially r 33 0.8250 0.0051 4.9382
upbeat n 45 1.2375 0.0077 4.9380

mannerly a 44 1.8582 0.0134 4.9282
glowing a 32 1.8582 0.0135 4.9279
topnotch a 33 1.5494 0.0121 4.9224
uxorious a 35 1.2398 0.0099 4.9205
fortune n 41 1.5504 0.0132 4.9157
maestro n 43 1.5505 0.0132 4.9156

amusingly r 32 1.8606 0.0159 4.9153
rosy a 48 1.5389 0.0139 4.9103

mustiness n 31 0.0128 2.0339 −4.9372
untrustworthy a 33 0.0119 1.7442 −4.9321
unemployed a 34 0.0104 1.4540 −4.9290

untypical a 31 0.0129 1.7452 −4.9265
malodorous a 42 0.0163 2.0373 −4.9206

bogus a 32 0.0140 1.7464 −4.9203
prejudice n 30 0.0170 2.0380 −4.9174
damage v 30 0.0149 1.7472 −4.9155

ungraded a 52 0.0124 1.4560 −4.9154
egregious a 33 0.0177 2.0387 −4.9141

From the results of sentiment lexicon, we find that some words that may not be used
in daily life, but express emotions are identified. These less-common words are identified
from numerous user-generated data of hotel domain through PolarityRank algorithm. This
sentiment lexicon preserves some terms particular to the hotel domain, and hence it is a
preferable choice to be used for sentiment analysis of hotel attributes to ensure greater
accuracy [67].
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4.3. Results and Discussions of Attribute Bidirectional Performance
4.3.1. Results of Attribute Bidirectional Performance

With the obtained sentiment lexicon, the sentiment values of sub-attributes under each
attribute in t-star negative dataset Dneg

t and positive Dpos
t are respectively obtained by Equa-

tions (4)–(10). Each sub-attribute has bidirectional performance, represented by positive
sentiment value and negative sentiment value. The top 20 well-performed sub-attributes
with the strongest positive sentiment polarity and top 20 poorly performed sub-attributes
with the strongest negative sentiment polarity with respect to six attributes in five-star
hotel reviews are shown in Tables 7 and 8. The results indicate that the bidirectional perfor-
mance of the same sub-attributes may affect customer satisfaction differently. For example,
considering the sub-attribute “decorate” under attribute room, its positive sentiment value
from positive reviews is 18,064.37, ranked 3, but on the other hand, the negative sentiment
value from negative reviews is −61.57, ranked 17. That is, for “decorate”, customers tend
to give much more praises when it performs well, whereas customers are probably not
sensitive to its poor performance. The observation provides support for the existence of
asymmetric relationship between attribute performance and customer satisfaction [24,72].

Table 7. Top 20 well-performed sub-attributes with the strongest positive sentiment polarity with
respect to six attributes in five-star hotels.

Value Location Service

Sub-Attributes Sentiment Values Sub-Attributes Sentiment Values Sub-Attributes Sentiment Values

quality 9287.06 hotel 127,281.60 service 83,160.98
price 7723.98 location 51,065.79 staff 77,198.91
value 7457.58 great 47,273.65 excellent 19,643.26

overall 4718.63 London 43,130.88 food 18,286.84
cheap 3431.94 place 15,842.34 experience 17,114.62
money 3167.76 perfect 11,355.46 quality 9531.05

rate 3115.13 close 6832.03 attentive 8627.21
deal 2744.77 station 6794.12 superb 7623.67

compare 1427.76 locate 6678.65 outstanding 5455.66
reasonable 1384.81 central 5362.67 attention 4843.12

opinion 874.96 tube 5162.28 exceptional 3612.60
discount 441.41 overall 5036.61 deliver 2642.43
represent 344.97 near 3440.62 impeccable 1426.53

inexpensive 282.49 distance 3431.87 exemplary 1093.08
bargain 226.16 heart 2727.13 cleanliness 1029.09

affordable 176.04 attraction 2529.99 presentation 415.14
favourably 169.36 convenient 2336.89 unmatched 230.21
competitive 164.94 boutique 2066.52 noteworthy 157.20

ratio 73.53 ideal 1999.84 commendable 155.89
phenomenally 52.47 spot 1966.29 incomparable 70.66

Room Cleanliness Sleep Quality

Sub-Attributes Sentiment Values Sub-Attributes Sentiment Values Sub-Attributes Sentiment Values

room 215,490.83 room 112,559.79 bed 21,150.78
bed 20,678.19 very 87,177.71 comfortable 18,250.67

decorate 18,064.37 well 29,182.25 sleep 8989.04
bathroom 16,396.52 clean 26,561.49 comfy 2552.32

clean 13,874.17 comfortable 21,693.18 pillow 2535.55
suite 13,413.97 bed 20,495.64 linen 2019.79

spacious 9802.36 nice 20,308.36 peaceful 1063.44
large 9007.25 excellent 18,263.84 bedding 1058.61

although 5901.86 decorate 17,812.75 wake 913.49
size 5253.50 bathroom 17,204.46 restful 606.27

bedroom 4876.74 amenity 15,456.15 mattress 499.52
appoint 4173.68 modern 10,517.20 duvet 301.12
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Table 7. Cont.

deluxe 3075.58 spacious 10,358.82 heavenly 255.83
apartment 2444.80 extremely 9127.39 sleeper 250.90
tastefully 2220.49 luxurious 6218.94 silent 177.54
spotless 1873.90 appoint 5207.32 soundly 176.52
superior 1617.76 super 4743.52 blackout 162.35
furnish 1525.96 elegant 4253.82 dreamy 107.29

spotlessly 1203.26 nicely 3671.61 supremely 104.01
junior 1133.58 polite 3554.43 soundproof 103.71

Table 8. Top 20 poorly performed sub-attributes with the strongest negative sentiment polarity with
respect to six attributes in five-star hotels.

Value Location Service

Sub-Attributes Sentiment Values Sub-Attributes Sentiment Values Sub-Attributes Sentiment Values

price −3459.05 hotel −24,483.27 service −14,546.04
money −2399.80 location −5800.25 staff −8881.41
value −1547.67 London −3815.88 experience −3077.38

overall −1298.75 great −3269.14 food −2274.30
quality −1208.69 place −2614.52 quality −1240.45

rate −1145.92 overall −1386.27 excellent −708.58
cheap −861.07 close −1289.30 deliver −629.82
deal −662.34 near −720.90 attention −493.67

opinion −291.08 locate −560.99 attentive −261.83
discount −265.94 station −509.16 exceptional −141.31
compare −265.43 central −462.92 superb −138.37

reasonable −218.69 tube −332.92 cleanliness −134.34
represent −69.34 convenient −303.54 outstanding −113.61
bargain −42.48 base −302.06 presentation −50.10

competitive −27.97 perfect −287.74 impeccable −40.52
advertised −19.33 ideal −255.15 cleanness −15.81

disproportionate −16.96 position −198.63 exemplary −10.32
ratio −16.09 spot −166.93 servicing −8.97

commensurate −13.71 distance −162.97 middling −8.62
inexpensive −12.85 boutique −145.95 tentativeness −7.46

Room Cleanliness Sleep Quality

Sub-Attributes Sentiment Values Sub-Attributes Sentiment Values Sub-Attributes Sentiment Values

room −53,448.27 room −27,918.25 bed −3801.36
bed −3716.42 very −11,076.76 sleep −3001.91

bathroom −3220.28 clean −3866.42 comfortable −886.78
clean −2019.59 bed −3683.61 wake −581.08

although −1719.86 nice −3652.38 pillow −428.58
suite −1527.98 bathroom −3378.96 mattress −300.63
large −1048.14 well −3181.78 comfy −188.85
size −800.25 comfortable −1054.04 bedding −145.26

bedroom −783.50 extremely −1009.08 duvet −136.03
spacious −417.60 excellent −658.82 linen −131.69
deluxe −364.08 spacious −441.31 soundproofing −70.98

superior −270.01 modern −437.53 sleepless −65.18
apartment −211.28 polite −300.16 proofing −51.64

junior −176.58 luxurious −235.98 peaceful −44.81
appoint −160.08 super −234.58 insulation −44.18
furnish −65.87 amenity −229.05 soundproof −40.43

decorate −61.57 appoint −199.73 restless −39.13
spotless −28.02 comfy −198.85 comforter −37.62

furnished −26.66 maintain −141.21 disturbed −34.95
airy −17.59 functional −140.51 sleeper −28.19
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By Equations (11)–(13), the sentiment values of each attribute in hotel reviews of
different star ratings are calculated. The positive, negative and overall sentiment values
of each attribute are given in Table 9 according to the hotel star ratings. According to
the negative sentiment values of six attributes in negative reviews, the ranking of poorly
performed attributes is derived for hotels of each star rating. Hotels of three-stars, two
stars and below have the same poorly performed attribute ranking, while hotels of four
stars and five stars also have the same poorly performed attribute ranking. That is, Room <
Cleanliness < Location < Value < Service < Sleep quality in negative reviews of three-
star, two-star and below hotels, and Room < Cleanliness < Location < Service < Value <
Sleep quality in negative reviews of four-star and five-star hotels. Similarly, according
to the positive sentiment values of six attributes in positive reviews, the ranking of well-
performed attributes is derived for hotels of each star rating. That is, Cleanliness >
Location > Room > Value > Service > Sleep quality in positive reviews of three-star, two-
star and below hotels, Cleanliness > Room > Location > Service > Value > Sleep quality
in positive reviews of four-star hotels, and Cleanliness > Room > Location > Service >
Sleep quality > Value in positive reviews of five-star hotels.

Table 9. The negative, positive and overall sentiment values of each attribute according to the hotel
star ratings.

Hotel Star
Ratings

Sentiment
Values

Attribute

Value Location Service Room Cleanliness Sleep Quality Mean

Two-star and
below

Negative −44,402.05 −77,480.13 −34,111.69 −113,060.25 −88,818.79 −7304.89 −60,862.97
Positive 75,603.2 141,847.69 60,384.86 136,324.38 147,678.6 5874.08 94,618.8
Overall 15,868.76 35,830.05 17,723.35 9693.39 31,797.07 490.12 18,567.12

Three-star
Negative −157,906.9 −277,368.47 −119,342.87 −371,405.85 −318,294 −43,190.77 −214,584.81
Positive 369,114.39 707,692.72 294,129.77 606,484.11 777,154.88 65,084.39 469,943.38
Overall 84,434.11 205,247.57 90,848.91 96,265.24 238,493.17 12,018.31 121,217.88

Four-star
Negative −102,202.45 −242,558.76 −192,196.55 −409,184.1 −364,975.08 −46,462.47 −226,263.23
Positive 296,090.96 931,501.55 630,134.85 1,058,169.12 1,384,338.72 81,519.98 730,292.53
Overall 92,485.82 352,708.09 244,041.18 362,762.47 622,552.97 18,611.68 282,193.7

Five-star
Negative −13,991.48 −48,218.33 −32,808.41 −70,719.73 −63,615.54 −10,346.97 −39,950.08
Positive 47,803.81 369,732.22 263,145.74 358,219.8 482,105.65 62,616.95 263,937.36
Overall 14,494.87 164,098.46 128,769.04 169,039.22 274,199.1 28,743.64 129,890.72

4.3.2. Comparative Analysis of Attributes’ Bidirectional Performance

To better analyze the antecedents of both high and low customer ratings, the percent-
ages of negative sentiment values and positive sentiment values concerning six attributes
in terms of hotel star ratings are respectively calculated, shown in Figures 5 and 6. Results
show that room, cleanliness and location account for about 75% of the sum of attribute neg-
ative sentiment values, meanwhile these three attributes also account for about 75% of the
sum of attribute positive sentiment values for hotels of each star rating. Room, cleanliness
and location are core attributes of hotels, in line with some prior research [35,94,105,106].
This finding also implies the main contributors to high customer ratings and causes of
low customer ratings are the same for hotels of each star rating, similar to the studies of
Berezina et al. [94] and Kitsios et al. [107]. Value, service and sleep quality have less impact
on both high and low customer ratings, contrary to some previous research. For instance,
the study of Ban et al. [105] implied that intangible service has the greatest impact on
customer satisfaction.

The results also imply that the percentage of positive/negative sentiment values
concerning location, value and service fluctuate with hotel star rating. Thus, the effect of
good/poor performance concerning location, value, service on high/low customer ratings
varies across hotel star ratings. For location, its good/poor performance contributes less to
customer satisfaction/dissatisfaction in four-star hotels than in other star hotels. For value,
the percentages of both positive and negative sentiment values gradually drop with the
increase in hotel star ratings above three-star hotels. That is, for value, poor performance in
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high-star (four-star and five-star) hotels does not cause as many complaints as in low-star
(three-star and below) hotels, and good performance brings less satisfaction for customers
of high-star hotels. This finding is consistent with common sense that customers who
choose low-star hotels lay greater emphasis on value for money [108], and customers in
high-star hotels may take it for granted when value performs well because they spend
more [10]. On the contrary, for service, good/poor performance contributes markedly
more to high/low customer ratings in high-star hotels than in low-star hotels. The results
show the same finding as earlier studies which showed that the effect of service’s poor
performance on customer dissatisfaction increases with the improvement of hotel level
and luxury (i.e., four–five-star ratings) hotel customers emphasize good service [10,21].
Moreover, it is observed that the good performance of sleep quality has the potential to be
the incentive for high customer ratings in five-star hotels.

 

Figure 5. The percentage of negative sentiment values concerning six attributes.

 
Figure 6. The percentage of positive sentiment values concerning six attributes.

By comparing the lines in Figures 5 and 6 for one certain attribute, it can be found that
the impact of the bidirectional performance concerning one attribute on high/low customer
ratings is different. For room and sleep quality, the effect of their poor performance
on low customer ratings is stronger than the effect of their good performance on high
customer ratings. On the contrary, for cleanliness, location and service, the effect of
their good performance on high customer ratings is stronger than the effect of their poor
performance on high customer ratings. For value, the effect of its good performance on
high customer ratings is stronger than the effect of its poor performance on low customer
ratings in low-star hotels, while quite the opposite is true for high-star hotels. Therefore, the
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results indicate that the effect of attribute performance on customer ratings is asymmetric,
consistent with many previous studies [8,10,23,24,71,76]. Furthermore, the asymmetric
effect of values’ performance on customer ratings is different between high-star and low-
star hotels.

4.4. Results and Discussions of Kano-IPA Analysis
4.4.1. Attribute Classification Based on the Kano Model

According to the obtained sentiment values and Equation (14), the SI values of six
attributes concerning four hotel star ratings can be calculated and further the six attributes
are classified into three Kano categories, as shown in Table 10. The final classification
of attribute categories is basically consistent with the relative effect of each attribute on
customer satisfaction for hotels of the same star rating. On the whole, the categories of all
attributes except value vary across different hotel star ratings.

Table 10. The three Kano categories of six attributes concerning four hotel star ratings.

Attribute

Two Stars and Below
Hotels

Three-Star Hotels Four-Star Hotels Five-Star Hotels

SI Category SI Category SI Category SI Category

Value 0.9911 Excitement 1.1747 Excitement 1.0458 Excitement 1.1693 Excitement
Location 0.9356 Performance 1.0411 Performance 0.9723 Excitement 0.9685 Excitement
Service 0.8230 Basic 0.9671 Basic 0.8851 Performance 0.8317 Performance
Room 1.0316 Excitement 1.0910 Excitement 0.9008 Performance 0.7890 Performance

Cleanliness 0.9607 Performance 0.9674 Basic 0.7714 Basic 0.6154 Basic
Sleep quality 0.6907 Basic 0.9612 Basic 0.9667 Performance 0.8665 Performance

Mean 0.9055 1.0338 0.9237 0.8734
θ 0.0568 0.0356 0.0457 0.0923

Upper
threshold 0.9623 1.0693 0.9694 0.9657

Lower
threshold 0.8487 0.9982 0.8780 0.7811

Specifically, value is always classified as an excitement factor, indicating that value
can bring more satisfaction when it performs well regardless of hotel star ratings. Unlike
the study of Bi et al. [10], this study shows that value is an excitement factor, providing
support for the finding (value and price is the attractive factor for four–five-star hotels)
of Chiang et al. [13]. Location is classified as a performance factor in hotels of three stars
and below and is classified as an excitement factor in hotels of four stars and five stars.
Compared with hotels of three stars and below, the good performance of location can bring
more customer satisfaction for four-star and five-star hotels. Luxury hotel customers are
willing to pay more for a convenient location [21]. Thus, customers in high-star hotels
will be very satisfied when the performance of location, which is the core requirement,
exceeds their expectations. Service and sleep quality, showing the same change with the
increase in hotel star, are classified as basic factors in hotels of three stars and below, and
are classified as performance factors in hotels of four and five stars. Thus, customers in
hotels of three stars and below may not be sensitive to the good performance of service and
sleep quality, but they are dissatisfied when the performance of service and sleep quality is
poor. Meanwhile, customers in hotels of four and five stars are sensitive to the bidirectional
performance of service and sleep quality. Room is classified as an excitement factor in
hotels of three stars and below and is classified as a performance factor in hotels of four
and five stars. The good performance of room can bring customer satisfaction in hotels of
each star rating, while poor performance of room can bring more customer satisfaction in
hotels of four and five stars than in hotels of three stars and below. Cleanliness is classified
as a performance factor in hotels of two stars and below and is classified as a basic factor
in hotels of three, four and five stars. This result indicates that customers in two-star and
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below hotels may feel satisfied when the room is clean, but customers in other star hotels
take the good performance of cleanliness for granted. These findings are different to the
study of Bi et al. [10] who classified service, sleep quality, room and cleanliness as basic
factors in hotels of each type.

4.4.2. The IPA Plot

Based on the TF-IDF algorithm, we obtained the weight of each sub-attribute with
respect to the six attributes concerning four hotel star ratings. Then the importance of the
six attributes concerning four hotel star ratings was calculated respectively by Equation
(15), as shown in Table 11. On the whole, the importance of value, service and sleep quality
varies across the hotel star ratings, while other attributes’ importance fluctuates slightly
and are considered as very important for all hotels. This finding is consistent with previous
research that revealed that customers of high-star hotels are more likely to value some
intangible attributes (i.e., service and sleep quality) [40]. Specifically, with the increase
in hotel stars, the importance of value decreases, while the importance of service and
sleep quality increases. In other words, customers who select high-star hotels pay more
attention to service and sleep quality, and consider value as less important. On the contrary,
customers who choose low-star hotels highly emphasize value, but consider service and
sleep quality as less important. The importance of value shows a significant downward
trend with the improvement in hotel stars, coinciding with Zhao’s [108] research.

Table 11. The importance of the six attributes concerning four hotel star ratings.

Hotel Star Rating
Attribute

Value Location Service Room Cleanliness Sleep Quality

Two-star and below 0.1354 0.2412 0.0990 0.2566 0.2574 0.0104
Three-star 0.1328 0.2446 0.0962 0.2337 0.2690 0.0238
Four-star 0.0692 0.2267 0.1353 0.2508 0.2978 0.0202
Five-star 0.0315 0.2626 0.1545 0.2315 0.2812 0.0387

With the obtained importance and performance of each attribute concerning four hotel
star ratings, the IPA plots can be constructed, as shown in Figure 7. Location and cleanliness
are located in Q I in hotels of all stars, which indicates that location and cleanliness should
be well remained for their high importance and performance. Value, service and sleep
quality are located in Q III in hotels of all stars, with low importance and performance, so
they are of low priority for improvement. In contrast, room is located in Q IV in hotels of
three stars, two stars and below, urgent to be improved, while it is located in Q I in four
and five star hotels, indicating it is the hotels’ strength.
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Figure 7. The IPA plots concerning four hotel star ratings.

4.4.3. Suggestions for Attribute Improvement and Priority

With the obtained performance and importance of the six attributes, the attribute
priority rankings for resource allocation concerning four hotel star ratings are obtained by
integrating the Kano categories of six attributes with the IPA plot, as shown in Table 12.
The attribute priority rankings are divided into two groups, namely, Room > Service >
Sleep quality > Value > Cleanliness > Location for low-star (three stars, two stars and
below) hotels, and Service > Sleep quality > Value > Cleanliness > Room > Location for
high-star (five-star and four-star) hotels.

Table 12. The attribute priority rankings of the six attributes for resource allocation concerning four
hotel star ratings.

Attribute
Hotel Star Rating

2-Star and Below 3-Star 4-Star 5-Star

Value 4 4 3 3
Location 6 6 6 6
Service 2 2 1 1
Room 1 1 5 5

Cleanliness 5 5 4 4
Sleep quality 3 3 2 2

For low-star hotels, room (an excitement factor) is of the first priorities to get improved
since it is very important, but it performs poorly from the perspective of customers. Ac-
cording to sub-attributes results, some effective measures can be taken to improve the room
performance, such as paying attention to improving the facilities, tidiness, room size and
soundproofing. The importance and performance of service, sleep quality and value are
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low. Service and sleep quality are basic factors which can cause numerous complaints
when they perform poorly, while value is an excitement factor which can generate more
customer satisfaction when it performs well. Service’s importance is higher than sleep
quality, so service and sleep quality are respectively given the second and third priority
for resource allocation for improvement. Regarding service, improving staff’s skill and
attitude is important, and more professional, friendly and polite staff are needed. More-
over, hotel managers should pay attention to beds, pillows and soundproofing facilities to
improve customers’ sleep quality. Value is given the fourth priority for improvement. The
importance of value is significantly higher in low-star hotels than in high-star hotels, which
indicates that customers who choose low-star hotels are more likely to emphasize value for
money. Offering a variety of discounts, reasonable price and member reward is helpful to
enhance customer satisfaction. Lastly, cleanliness and location are the strengths of hotels,
which should be well maintained. Considering cleanliness is considered more important
than location, cleanliness is given the fifth priority for resource allocation to get improved.

For high-star hotels, there are no attributes that should be improved urgently. How-
ever, it is still necessary to invest resources and effort in service, sleep quality and value.
Service is given the highest priority for resource allocation for improvement. From Figure 7,
it can be concluded that service performs much better in five-star hotels than other hotels
and its importance gradually increases, but it has not been the strength of five-star hotels
yet. Unlike common service aspects which should be strengthened for low-star hotels,
some advanced service aspects need to be improved. For example, improving staffing
levels, providing more proactive, pet-friendly and infant-related service, multilingual re-
ceptionists, etc., are preferable ways to obtain more customer satisfaction. Sleep quality
(a performance factor) and value (an excitement factor) are given the second and third
priorities, respectively, and their importance is very low. If possible, investing resources
in improving sleep quality and value (i.e., improving bedding and soundproofing facil-
ities, offering discounts and reasonable prices) can also improve hotel customer ratings.
Cleanliness, room and location are the strengths of high-star hotels, and these attributes
should be well maintained. Especially, room is a unique strength for high-star hotels, while
it is the weakness of low-star hotels. This result is consistent with the hotel star rating
system offered by the Automobile Association that good performance of room is a must-be
requirement for hotels to be rated as high-star [109]. According to attribute categories,
cleanliness, room and location are prioritized in order for resource allocation because they
are basic, performance and excitement factors, respectively.

5. Conclusions

5.1. Theoretical Implications

This study explored the attribute bidirectional performance by dividing online reviews
into positive reviews and negative reviews. The Kano-IPA model was used for further
understanding of customer’s rating behaviors and demands for hotel service. The proposed
methodology in five phases of sentiment analysis and Kano-IPA model enriches the research
on online hotel reviews. The main theoretical contributions introduced are as follows:

First, this study explores the well-performed attributes contributing to high customer
ratings and the poorly performed attributes causing low customer ratings. By dividing
1,090,341 online reviews into positive and negative reviews, the six attributes’ good per-
formance (positive sentiment values) in positive reviews and poor performance (negative
sentiment values) in negative reviews are calculated through sentiment analysis. Our
findings suggest that room, cleanliness and location are the most crucial determinants
of both high and low customer ratings for hotels of these four levels. By contrast, other
attributes, including value, service and sleep quality, have less impact on customers’ rating
behaviors. Therefore, the most crucial hotel attributes influencing customer satisfaction
and dissatisfaction are exactly the same. Focusing on improving service quality of these
general attributes including room, cleanliness and location is the key to win high customer
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ratings for all hotels. Thus, the effect of good/poor performance concerning location, value,
service on high/low customer ratings varies across hotel star ratings.

Second, comparative analysis of attribute bidirectional performance concerning four
hotel star ratings was conducted to verify the difference of hotel attributes contributing to
high/low customer ratings among different hotel star ratings. This study indicates that
the impact of several attributes on high/low customer ratings varies across different star
hotels. On one hand, the impact of value and service’s poor performance on low customer
ratings varies across hotel star ratings. With the improvement in the hotel level, the impact
of value’s poor performance on low customer ratings shows a downward trend, while the
impact of service’s poor performance on low customer ratings shows an upward trend. For
three-star and below hotels, value’s poor performance contributes more to low customer
ratings than service’s poor performance. In contrast, for four and five star hotels, service’s
poor performance has greater impact on low customer ratings. On the other hand, the
good performance in room, location, value, service and sleep quality contributes to high
customer ratings differently among different star hotels, where the impact of value and
service’s good performance on high customer ratings shows a larger range of changes.
Interestingly, for value and service, with the improvement in the hotel level, the impact of
their good performance on high customer ratings shows the same trend as the impact of
their poor performance on low customer ratings. These findings indicate that customers’
expectations and perceptions on the good/poor performance of each attribute may vary
across hotel star ratings. Thus, it is necessary to take hotel star ratings into consideration
on customer satisfaction research.

Third, this study suggests that the effect of good performance on high customer ratings
may not be equal to the effect of poor performance on low customer ratings for the same
hotel attribute. In other words, the effect of attribute performance on customer satisfaction
is asymmetric. For this reason, the Kano-IPA model was applied to better understand
customer’s rating behaviors and demands for hotel service. The Kano categories of five
attributes (location, service, room, cleanliness and sleep quality) vary across different hotel
star ratings. Furthermore, suggestions on priority for attribute improvement are formulated
for hotels of the four star ratings according to the results of Kano-IPA model.

Fourth, this study proposes a methodology for hotel attribute sentiment analysis based
on the automated textual analysis techniques including the Word2Vec and PolarityRank
algorithms. A new sentiment lexicon was created from user generated reviews based
on the PolarityRank algorithm, contributing to sentiment analysis in the hotel domain.
The advance in the sentiment lexicon creation contains the following two points. On the
one hand, we adopted more words (i.e., adverbs) than existing studies for PolarityRank
propagation [63,96], which avoids missing some important sentiment words. On the other
hand, initial both positive and negative sentiment values of each candidate sentiment word
are assigned by a function from SentiWordNet instead of assigning positive seed words
and negative seed words sentiment values manually, which is considered more objective
and trustworthy. In addition, to our best knowledge, our sentiment lexicon built from
the 1,090,341 textual reviews is the instructive application of the PolarityRank algorithm
in million-level datasets. Thus, the comprehensive and complete sentiment propagation
provides a guarantee of more precise sentiment calculation.

Lastly, this study proposed a novel index approach for Kano model classification and
further makes it possible to apply the Kano-IPA model to numerous textual reviews. The SI
index is defined to represent the satisfaction-stimulating ability of any one hotel attribute.
Then the six attributes are classified into three Kano categories by comparing each SI index
with the average index value for hotels of each star rating. The proposed approach enriches
the existing research on the classification of the Kano model. Additionally, based on the
TF-IDF algorithm, the importance of each attribute is obtained to construct the IPA plot.
This study is a preferable attempt to apply online reviews to explore the effects of attribute
performance on customer satisfaction to understand customers’ rating behaviors.
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5.2. Practical Implications

As consumers’ reliance on the Internet grows, online reviews are increasingly impor-
tant since customers usually browse a lot of hotel reviews when making hotel choices. It is
important to analyze how hotel attributes contribute to high and low customer ratings. This
study enables hotel managers and hotel online platforms to understand customers’ rating
behaviors, expectations and perceptions on hotel attributes. Furthermore, our findings
and discussions provide a reference for hotel managers to allocate resources for attribute
improvement and prioritization to achieve higher customer ratings.

First, due to the findings that the final attribute priority rankings for improvement are
divided into two groups, two strategies for attribute improvement are given to low-star
(three stars and below) and high-star (four- and five-star) hotels, respectively. For low-
star hotels, room, which is an excitement factor, should be given the highest priority for
resource allocation for improvement. Effective measures such as refurnishing, renovating,
providing tidy and spacious rooms and proper decoration could be taken to improve room’s
performance in order to enhance customer satisfaction. Service, sleep quality and value
are of lower priority for improvement, and they are basic, basic, and excitement factors,
respectively. Some effective measures should be taken to enhance the performance of
service and sleep quality in order to reduce customer dissatisfaction, which might include,
for instance, staff training for work skill and attitude improvement, quality improvement
in beds, pillows and soundproofing. With sufficient resource, low-star hotel managers
should also provide attractive discounts or reasonable prices to customers since value for
money is highly important for them. For high-star hotels, though nothing calls for urgent
improvement, there still a need for better performance in service, sleep quality and value.
Service and sleep quality are performance factors, and their importance is significantly
higher for customers in high-star hotels. Service improvement (i.e., higher staffing levels,
proactive, pet-friendly and infant-related services and multilingual receptionists) and
providing better sleeping conditions (i.e., better bedding and soundproofing) are preferable
methods to enhance customer satisfaction. Moreover, providing proper discounts and price
for customers is also needed.

Second, some strengths should be well maintained for different star hotels. For low-
star hotel managers, cleanliness and location are the strengths to win customer satisfaction.
Since cleanliness and location are performance or basic factors and of high importance
for customers in low-star hotels, it is necessary to invest sufficient resource to ensure
their high quality. For high-star hotel managers, cleanliness, room and location are the
strengths that need to be well maintained. In contrast to customers in low-star hotels,
cleanliness and location are, respectively, basic and excitement factors for customers in
high-star hotels. Investing more in hotel location is a preferable way for high-star hotels to
enhance customer satisfaction. While it is hard to transform the existing locations, some
convenient transportation services can be offered to improve access to attractions or traffic
stations, such as free shuttles, attraction brochures. Additionally, room is a unique strength
for high-star hotels, while it is a weakness of low-star hotels. These findings are in line
with the hotel star rating system offered by the Automobile Association that room is a basic
and quantitative indicator for hotel star rating [109]. Therefore, hotel managers should pay
great attention to room improvement for higher star ratings.

Third, this study indicates that attribute improvement priorities are the same for hotels
of three stars, two stars and below. However, compared with two-star and below hotels,
service and sleep quality’s importance is higher but performance is worse in three-star
hotels. Service and sleep quality are basic factors, so their poor performance is more likely
to cause great customer dissatisfaction. Customers pay more for a better hotel, so their
expectations increase [110]. Thus, three-star hotel managers should pay more attention to
improve performance in service and sleep quality to reduce customer dissatisfaction, and
further enhance the competitive strengths against two-star and below hotels. Similarly,
five-star hotel managers should keep alert for the pursuit of higher service quality since the
SI index values of location, service, room, cleanliness and sleep quality show a downward
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trend compared to four-star hotels. This can be explained as follows: customers place
much higher expectations on five-star hotels than four-star hotels, so very minor service
failures can also cause great complaints. Compared to four-star hotels, investing resources
to provide customers more attentive service and better sleep quality is necessary for five-
star hotels.

Last but not least, for hotel online platforms, two aspects of practical significance
are as follows. On the one hand, this study serves as references for online websites to
recommend hotels to customers when they filter hotel star ratings. Our findings imply
that customers have different expectations, preferences and demands for the six attributes
when they choose hotels of different star ratings. Thus, different weights assigned to each
hotel attribute according to hotel star ratings can be considered when designing the hotel
recommendation system. On the other hand, we suggest that the six evaluation dimensions
on the website should be upgraded. For example, considering the sub-attribute lists of
room and cleanliness are similar, they can be merged into one dimension or given some
notes for each attribute to help customers to distinguish between them.

5.3. Limitations

This study also has several limitations, which might serve as avenues for future
research. First, the data were collected from one online travel website, which may not
provide the complete information about customers’ opinions. In addition, not all customers
write textual reviews and give ratings to the hotels after leaving. Therefore, hotel reviews
can be collected from multiple online websites and customers who book hotels offline.
Second, although this study explores the differences in the categories and performance of
six attributes across four hotel star ratings, attribute differences between different traveling
purposes or different regions may exist. Customers with different traveling purposes
and from different districts have different preferences on hotel attributes, which may
influence attribute performance and further influence attribute classification in the Kano
model. In the future, classifying online reviews based on other methods involves complex
research. Third, for each hotel, its star rating may move up or down when the hotel makes
some changes such as redecoration, management mode upgrades or becoming run-down.
Although the cost of improving hotel star ratings is very high, some hotels may attempt to
make efforts for higher star ratings. As a result, for some hotels, earlier online reviews may
not reveal their quality appropriately in the current star ratings. This will affect the attribute
bidirectional performance analysis results among different hotel star ratings. Thus, it is
preferable to select online reviews during the current star rating period or exclude the hotels
with changes in star ratings in the future research. Additionally, exploring the difference in
determinants of customer satisfaction and dissatisfaction between the previous and current
hotel star ratings is a future research direction. Finally, the attributes used in this study
are the six evaluation dimensions on TripAdvisor.com, which may not include all topics
expressed in textual reviews. To comprehensively understand customer demands, different
categories of attributes can be extracted from textual reviews in future research.
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Abstract: Connectivity parameters have an important role in the study of communication networks.
Wiener index is such a parameter with several applications in networking, facility location, cryptology,
chemistry, and molecular biology, etc. In this paper, we show two notes related to the Wiener index
of a fuzzy graph. First, we argue that Theorem 3.10 in the paper “Wiener index of a fuzzy graph and
application to illegal immigration networks, Fuzzy Sets and Syst. 384 (2020) 132–147” is not correct.
We give a correct statement of Theorem 3.10. Second, by using a new operator on matrix, we propose
a simple and polynomial-time algorithm to compute the Wiener index of a fuzzy graph.

Keywords: fuzzy graph; Wiener index; algorithm

1. Introduction

In many real world problems we get only partial information about the problem, and
the vagueness in the description and uncertainty has led to the growth of fuzzy graph
theory. A mathematical framework to describe uncertainty in real life situation was first
suggested by A.L. Zadeh [1]. Rosenfeld [2] introduced the notion of fuzzy graph and several
fuzzy analogs of graph theoretic concepts such as paths, cycles and connectedness. Wiener
index of graphs has been studied in the field of mathematics, chemistry, and molecular
biology [3–5].

There are many situations which are modeled by a connected fuzzy graph. Wiener
index is such an accepted index used in various fields like communication networks, facility
location, crytopology, medicine, etcs. Let us start with a basic definition and concepts of
fuzzy graphs; most of them can be found in [6].

Let S be a set. A fuzzy graph G = (σ, μ) is a pair of membership functions on fuzzy
sets σ : S → [0, 1] and μ : S× S → [0, 1] such that μ(u, v) ≤ σ(u) ∧ σ(v). Here ∧ represents
the minimum. Throughout the paper, we assume that S is finite and nonempty, μ is
reflexive and symmetric. We denote the underlying crisp graph by G∗ = (σ∗, μ∗) where
σ∗ = {u ∈ V : σ(u) > 0} and μ∗ = {(u, v) ∈ V ×V : μ(u, v) > 0}. We denote an element
(x, y) of μ∗ by xy and call it an edge of G. Elements of σ∗ are called vertices of the fuzzy graph
G. A fuzzy graph H = (τ, ν) is called a partial fuzzy subgraph of G = (σ, μ) if τ(v) = σ(v)
for all vs. ∈ τ∗ and ν(uv) = μ(uv) for all uv ∈ ν∗. Note that G − uv denotes the fuzzy
subgraph of G in which μ(uv) = 0 and G− u is used for the fuzzy subgraph of G in which
σ(u) = 0.

In a fuzzy graph G = (σ, μ), a path P of length n is a sequence of distinct vertices
u0, u1, . . . , un such that μ(ui−1, ui) > 0, i = 1, 2, . . . , n and the degree of membership of a
weakest edge is defined to be the strength of the path P. A path P is called a cycle if u0 = un.

For any two vertices x and y, let d(x, y) denotes the length of the shortest path between
x and y. The diameter of G, denoted by diam(G), is the maximum distance d(x, y) for any
two vertices x, y in G. The strength of connectedness between two vertices x and y is defined
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as the maximum of the strengths of all paths between x and y and is denoted by ConnG(x, y).
If the strength of a path P is equal to ConnG(x, y), then a path P is called a strongest x− y
path. A fuzzy graph G = (σ, μ) is connected if for every u, v ∈ σ∗, ConnG(u, v) > 0. An
edge xy of a fuzzy graph G = (σ, μ) is called α-strong if μ(xy) > ConnG−xy(x, y). An edge
xy of a fuzzy graph G = (σ, μ) is called β-strong if μ(xy) = ConnG−xy(x, y). An edge xy of
a fuzzy graph G = (σ, μ) is called δ-strong if μ(xy) < ConnG−xy(x, y). An edge is called
strong if it is either α-strong or β-strong. A path P is called a strong path if all of its edges
are strong. Let G = (σ, μ) be a fuzzy graph and x, y ∈ σ∗. A strong path P from x to y
is called geodesic if there is no shorter strong path from x to y. The weight of a geodesic
is the sum of membership values of all edges in the geodesic. Let G = (σ, μ) be a fuzzy
graph. The Wiener index (WI) of G is defined by WI(G) = ∑u,v∈σ∗ σ(u)σ(v)dS(u, v), where
dS(u, v) is the minimum sum of weights of geodesic from u to v. In this paper, it is assumed
that σ(u) = 1 for u ∈ σ∗ in all examples of fuzzy graphs G = (σ, μ), for convenience. The
outline of this paper is organized as follows. In Section 2, it is shown that Theorem 3.10 in
the paper “Wiener index of a fuzzy graph and application to illegal immigration networks,
Fuzzy Sets and Syst. 384 (2020) 132–147” is not correct. A corrected statement of Theorem
3.10 is given. In Section 3, we present a simple algorithm to compute the wiener index of a
fuzzy graph by using a new operator on matrix.

2. Counterexamples and Revision

At first, we recall the Theorem 3.10 of [7] and give two counterexamples to it.

Theorem 1 (Theorem 3.10 of [7]). Let G = (σ, μ) be a fuzzy graph. For s, t ∈ σ∗, let Ps,t denote
the path which has the minimum sum of membership values among all shortest strong paths between
s and t. Let uv ∈ μ∗. If uv is an α or β-strong edge and uv is not a part of any Ps,t for s, t ∈ σ∗
with {s, t} �= {u, v}, then WI(G− uv) �= WI(G).

Theorem 3.10 of [7] is not correct as shown in the following two counterexamples. In
the following two graphs, uv is an α-strong edge and β-strong edge, respectively.

Example 1. Let G = (σ, μ) be the fuzzy graph shown in Figure 1 with vertex set {a, b, u, v} and
σ(x) = 1 for any x ∈ σ∗, μ(ua) = 0.1, μ(ab) = 0.4, μ(bv) = 0.1, μ(uv) = 0.6. Then each
edge of the graph G is strong. So dS(u, a) = 0.1, dS(a, b) = 0.4, dS(b, v) = 0.1, dS(u, v) = 0.6,
dS(u, b) = 0.5 and dS(a, v) = 0.5. Therefore, WI(G) = ∑x,y∈σ∗ σ(x)σ(y)dS(x, y) = 2.2. It is
obvious that uv is an α-strong edge and uv is not a part of any Ps,t for s, t ∈ σ∗ with {s, t} �= {u, v}.
For any two vertices x, y ∈ σ∗, the number dG−uv

S (x, y) in G− uv is equal to the number dS(x, y)
in G. Then WI(G− uv) = ∑x,y∈σ∗ σ(x)σ(y)dG−uv

S (x, y) = 2.2 and WI(G− uv) = WI(G).

0.1

0.4

0.1

0.6
u v

a b

Figure 1. uv is an α-strong edge and WI(G) = WI(G− uv).

Example 2. Let G = (σ, μ) be the fuzzy graph shown in Figure 2 with vertex set {a, b, c, u, v}
and σ(x) = 1 for any x ∈ σ∗, μ(au) = μ(av) = 0.2, μ(uv) = μ(uc) = μ(bv) = μ(bc) = 0.4,
μ(ub) = 0.5, μ(cv) = 0.6. Then each edge of the graph G is strong. So dS(a, u) = dS(a, v) = 0.2,
dS(u, v) = dS(u, c) = dS(b, v) = dS(b, c) = 0.4, dS(u, b) = 0.5, dS(c, v) = 0.6, dS(a, b) = 0.6
and dS(a, c) = 0.6. Therefore, WI(G) = ∑x,y∈σ∗ σ(x)σ(y)dS(x, y) = 4.3. It is obvious that uv
is an β-strong edge and uv is not a part of any Ps,t for s, t ∈ σ∗ with {s, t} �= {u, v}. For any two
vertices x, y ∈ σ∗, the number dG−uv

S (x, y) in G− uv is equal to the number dS(x, y) in G. So
WI(G− uv) = ∑x,y∈σ∗ σ(x)σ(y)dG−uv

S (x, y) = 4.3 and WI(G− uv) = WI(G).
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Figure 2. uv is an β-strong edge and WI(G) = WI(G− uv).

Therefore, Theorem 3. 10 of [7] can be changed as follows

Theorem 2. Let G = (σ, μ) be a fuzzy graph with each edge being strong. For s, t ∈ σ∗, let Ps,t
denote the path which has the minimum sum of membership values among all shortest strong paths
between s and t. Suppose that uv is not a part of any Ps,t for s, t ∈ σ∗ with {s, t} �= {u, v}. Then

(1) If dG−uv
S (u, v) > μ(uv), then WI(G− uv) > WI(G).

(2) If dG−uv
S (u, v) = μ(uv), then WI(G− uv) = WI(G).

(3) If dG−uv
S (u, v) < μ(uv), then WI(G− uv) < WI(G).

Proof. Since each edge of G is strong, it follows that each edge in G− uv is also strong edge.
Owing to uv being a strong edge in G, dG

S (u, v) = μ(uv). Let {a, b} �= {u, v}. Since uv is not
part of any Pa,b, dG−uv

S (a, b) = dG
S (a, b). Thus, WI(G−uv) = ∑x,y∈σ∗ σ(x)σ(y)dG−uv

S (x, y) =

∑x,y∈σ∗ σ(x)σ(y)dG
S (x, y) + (dG−uv

S (u, v) − dG
S (u, v)) = WI(G) + (dG−uv

S (u, v) − μ(uv)).
So, if dG−uv

S (u, v) > μ(uv), then WI(G − uv) > WI(G). If dG−uv
S (u, v) = μ(uv), then

WI(G− uv) = WI(G). If dG−uv
S (u, v) < μ(uv), then WI(G− uv) < WI(G).

Note: The condition “each edge is strong” is necessary in Theorem 2. For example, let
G = (σ, μ) be the fuzzy graph shown in Figure 3 with vertex set {a, b, c, u, v} and σ(x) = 1
for any x ∈ σ∗, μ(uv) = 0.95, μ(au) = μ(ab) = 0.3, μ(cu) = μ(cb) = 0.1, μ(vb) = 0.5,
μ(ub) = 0.4 . Then each edge of the graph G except edge ub is strong. Edge ub is a
weak edge in G. So dS(u, v) = 0.95, dS(a, u) = dS(a, b) = 0.3, dS(c, u) = dS(c, b) = 0.1,
dS(v, b) = 0.5, dS(a, c) = 0.4, dS(a, v) = 0.8, dS(u, b) = 0.2 and dS(c, v) = 0.6. Therefore,
WI(G) = ∑x,y∈σ∗ σ(x)σ(y)dS(x, y) = 4.25. It is obvious that uv is a strong edge and uv
is not a part of any Ps,t for s, t ∈ σ∗ with {s, t} �= {u, v}. It is obvious that ub is a strong
edge in G− uv. Hence, dG−uv

S (u, v) = 0.9, dG−uv
S (a, u) = dG−uv

S (a, b) = 0.3, dG−uv
S (c, u) =

dG−uv
S (c, b) = 0.1, dG−uv

S (v, b) = 0.5, dG−uv
S (u, b) = 0.4, dG−uv

S (a, c) = 0.4, dG−uv
S (a, v) = 0.8

and dG−uv
S (c, v) = 0.6. So WI(G − uv) = ∑x,y∈σ∗ σ(x)σ(y)dG−uv

S (x, y) = 4.4. Though
dG−uv

S (u, v) < μ(uv), WI(G− uv) > WI(G).

u

a

b

c v

0.95

0.5

0.4

0.3

0.3

0.1

0.1

u

a

b

c v

0.5

0.4

0.3

0.3

0.1

0.1

G G − u v

Figure 3. Fuzzy graphs G and G− uv.
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3. A New Algorithm to Compute Wiener Index of a Fuzzy Graph

Let G = (σ, μ) be a fuzzy graph with |σ∗| = n. The underlying graph of G = (σ, μ) is de-
noted by G∗ = (σ∗, μ∗), where σ∗ = {v|σ(v) > 0} and μ∗ = {uv|μ(uv) > 0}. M. Binu et al.
in [7] give an Algorithm 1 to compute Wiener index of a fuzzy graph as follows.

Algorithm 1: Computing Wiener index of a fuzzy graph [7].
Step 1. Identify strong edges of G using the algorithm in [8].
Step 2. Let G′ = (σ′, μ′) be the fuzzy subgraph of G obtained by deleting the

δ-edges of G.
Step 3. Use Dijkstra’s algorithm to identify geodesics between u and v in G

′∗, for
each u, v ∈ σ∗. Let P1, P2, · · · , Pk be the geodesics connecting u and v in G

′∗.
Step 4. Calculate Spi for i = 1, 2, · · · , k, where Spi is the sum of membership values
of edges of Pi.

Step 5. Let dS(u, v) = ∧{SPi |i = 1, 2, · · · , k}.
Step 6. Construct an n× n matrix D corresponding to G = (σ, μ) with the

following properties. Each row and column corresponds to vertices in σ∗. If row i
corresponds to vertex u and column j corresponds to vertex v, then dS(u, v) is the
entry corresponds to row i and column j.

Step 7. Calculate WI(G) = ∑u,v∈σ∗ σ(u)σ(v)dS(u, v).

The main drawback of the Algorithm 1 in [7] is as follows.
Dijkstra’s algorithm is only used to identify the length of the shortest path between u

and v in G
′∗. However, it can not be used to identify the number k of the shortest path. For

any big graph, the total number of the shortest path between u and v can be very high. In
such case, it is difficult to perform Step 3 and Step 4.

In order to give a simple algorithm to compute Wiener index of a fuzzy graph
G = (σ, μ), we define an operator � on matrix as follows. Let G′ = (σ′, μ′) be the fuzzy
subgraph of G obtained by deleting the δ-edges of G. Let A1 = (a1

ij)n×n be the adjacent

matrix of the fuzzy graph G′, where a1
ii = 0 and a1

ij = μ′(vivj) for i, j ∈ {1, 2, · · · , n}. Let

Ak = (ak
ij)n×n for i = 2, 3, · · · , diam(G

′∗), where diam(G
′∗) denote the diameter of G

′∗.
Define Ak+1 = Ak � A1 as follows:

ak+1
ij =

⎧⎪⎨⎪⎩
0, if i = j
ak

ij, if i �= j and ak
ij �= 0

min1≤t≤n{ak
it + a1

tj|ak
it �= 0, a1

tj �= 0}, if i �= j and ak
ij = 0

Theorem 3. Let G′ = (σ′, μ′) be a fuzzy graph such that every edge is strong edge. If ak
ij = 0 and

ak+1
ij �= 0, then d(vi, vj) = k + 1 and dS(vi, vj) = ak+1

ij , where d(vi, vj) is the distance between vi

and vj in G
′∗.

Proof. We will prove it by induction on the number k. Suppose k = 1. If a1
ij �= 0, then

vivj ∈ μ
′

and a1
ij = μ′(vivj). Since every edge in G′ is strong edge, then d(vi, vj) = 1

and dS(vi, vj) = a1
ij. Suppose that a1

ij = 0 and a2
ij �= 0. Then vivj /∈ μ

′
. Since a2

ij =

min1≤t≤n{a1
it + a1

tj|a1
it �= 0, a1

tj �= 0}, it follows that d(vi, vj) = 2 and dS(vi, vj) = a2
ij.

Assume that the theorem holds for k < l. Suppose that al
ij = 0 and al+1

ij �= 0. By

definition, al+1
ij = min1≤t≤n{al

it + a1
tj|al

it �= 0, a1
tj �= 0}. For any al

it �= 0 and a1
tj �= 0, if

there exists l′ < l such that al′
it �= 0, then al′+1

ij �= 0. Since l′ + 1 ≤ l, it follows that

al
ij �= 0, which is a contradiction. Hence for any l′ < l, al′

it = 0. That is al−1
it = 0 and

al
it �= 0. By inductive hypotheses on k, it follows that d(vi, vt) = l and dS(vi, vt) = al

it. Since
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al+1
ij = min1≤t≤n{al

it + a1
tj|al

it �= 0, a1
tj �= 0}, there exists t such that al+1

ij = al
it + a1

tj, where

al
it �= 0 and a1

tj �= 0. Since d(vi, vt) = l and dS(vi, vt) = al
it, it follows that d(vi, vj) = l + 1

and dS(vi, vj) = al+1
ij .

Corollary 1. Let G′ = (σ′, μ′) be a fuzzy graph such that every edge is strong edge. Let diam(G
′∗)

be the diameter of G
′∗. Then for any two vertices vi, vj ∈ σ′, dS(vi, vj) = adiam(G

′∗)
ij , where

i, j ∈ {1, 2, · · · , n}.

Algorithm 2: A new algorithm to compute Wiener index of a fuzzy graph.
Step 1. Identify strong edges of G using the algorithm in [8].
Step 2. Let G

′
= (σ′, μ′) be the fuzzy subgraph of G obtained by deleting the

δ-edges of G.

Step 3. Calculate A1, A2, · · · , Adiam(G
′∗), where dS(vi, vj) = adiam(G

′∗)
ij for

1 ≤ i < j ≤ n.
Step 4. Calculate WI(G) = ∑u,v∈σ∗ σ(u)σ(v)dS(u, v).

Obviously, it is a polynomial-time algorithm. The correctness of the Algorithm 2
follows from Theorem 3 and Corollary 1. So we have the following:

Theorem 4. Let G = (σ, μ) be a fuzzy graph. Let A1, A2, · · · , Adiam(G
′∗) be defined as in the

Algorithm 2. Then WI(G) = ∑1≤i<j≤n σ(vi)σ(vj)adiam(G
′∗)

ij .

Proof. By Theorem 3, let G′ = (σ′, μ′) be a fuzzy graph such that every edge is strong edge.
If ak

ij = 0 and ak+1
ij �= 0, then d(vi, vj) = k + 1 and dS(vi, vj) = ak+1

ij . By the definition on

the new operator on matrix, for any two vertices vi, vj ∈ σ′, dS(vi, vj) = adiam(G
′∗)

ij , where

i, j ∈ {1, 2, · · · , n}. So, WI(G) = ∑1≤i<j≤n σ(vi)σ(vj)adiam(G
′∗)

ij .

Example 3. Let G = (σ, μ) be the fuzzy graph shown in Figure 4 with vertex set {a, b, c, d, e}
and σ(v) = 1 for any v ∈ σ∗, μ(ab) = 0.2, μ(ac) = 0.2, μ(bc) = 0.3, μ(cd) = 0.4, μ(de) = 0.5.
Then each edge of the graph G is strong.

a

b

c d e

0.2

0.2

0.3

0.4 0.5

Figure 4. Fuzzy graph G with diam(G
′∗) = 3.

By using Algorithm 2 and diam(G
′∗) = 3, we can compute A1, A2, and A3 as follows:

A1 a b c d e
a 0 0.2 0.2 0 0
b 0.2 0 0.3 0 0
c 0.2 0.3 0 0.4 0
d 0 0 0.4 0 0.5
e 0 0 0 0.5 0

A2 a b c d e
a 0 0.2 0.2 0.6 0
b 0.2 0 0.3 0.7 0
c 0.2 0.3 0 0.4 0.9
d 0.6 0.7 0.4 0 0.5
e 0 0 0.9 0.5 0
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A3 a b c d e
a 0 0.2 0.2 0.6 1.1
b 0.2 0 0.3 0.7 1.2
c 0.2 0.3 0 0.4 0.9
d 0.6 0.7 0.4 0 0.5
e 1.1 1.2 0.9 0.5 0

As membership values of all vertices are one, the sum of all upper triangular entries
of A3 will be the WI of G. Hence WI(G) = 6.1.

4. Conclusions

In this work, we discussed two problems related to the Wiener index of a fuzzy graph.
First, we argued that Theorem 3.10 in the paper “Wiener index of a fuzzy graph and
application to illegal immigration networks, Fuzzy Sets and Syst. 384 (2020) 132–147” is
not correct. We gave a correct statement of Theorem 3.10, where a different result is given
for the same conditions. Second, by using a new operator on matrix, we proposed a simple
algorithm to compute the wiener index of a fuzzy graph. The main contribution of the
proposed algorithm is as follows: First, for a general fuzzy graph, computation of the
Wiener index by hand is possible. At the same time, the algorithm is easily realized in
the computer. Furthermore, the new algorithm is simpler and more efficient, which is a
polynomial-time algorithm. The property on Wiener index can help us to understand the
critical property on the communication network. That is, when some edge is deleted, the
Wiener index in communication network may be changed.
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Abstract: Nowadays, the enhancement of the existing building stock energy performance is a priority.
To promote building energy renovation, the European Committee asks Member States to define
retrofit strategies, finding cost-effective solutions. This research aims to investigate the relationship
between the initial characteristics of an existing residential buildings and different types of retrofit
solutions in terms of final/primary energy consumption and CO2 emissions. A multi-objective
optimization has been carried out using experimental data in DesignBuilder dynamic simulation tool.

Keywords: energy efficiency; renewable energy; dynamic simulation; thermal image; thermal
conductivity

1. Introduction

Today’s global concern is major climate change, which affects the entire planet, and
therefore a strong emphasis on reducing greenhouse gases has been established. The rising
of global temperatures rise has disastrous effects on nature, leading to irreversible changes
in many ecosystems, thus affecting the biodiversity. All this will have enormous costs for
the EU economy and will dramatically affect countries’ ability to produce food.

Recently constructed buildings in the EU under energy efficiency criteria represent
only a small amount of the total stock of buildings, which is mainly comprised of buildings
that are several decades old, long before the first EU energy efficiency directives. Therefore,
energy rehabilitation work on existing buildings is of great interest nowadays, as it is
an important way to reduce energy consumption, which is currently mainly supplied
from conventional sources (fossil fuels). It is already observed at the European level that
renovation and energy rehabilitation works represent twice the value obtained by the
construction of new buildings.

The construction sector is the largest consumer of energy in Europe: 40% of final
energy use. According to European data [1], 75% of the buildings are not energy efficient
and out of the total of these buildings, only 0.4–1.2% of stock is renovated each year.
Data are collected in 2016 in support of the proposal to revise Directive 2010/31/EU,
on the occasion of the publication of “Clean Energy for All Europeans”, a package of
measures to accelerate the transition to clean energy, in line with the commitment in terms
of reducing CO2 emissions by at least 40% by 2030, modernizing the economy and creating
the conditions for sustainable jobs and growth [1].

The need for the Union to achieve its energy efficiency targets at the Union level—
expressed in primary and/or final energy consumption—should be clearly set out in the
form of a target of at least 32.5% for 2030 [2].

Nowadays, many studies were focused on the retrofitting of the existing building
stock due to the climate change issue, but this process is also affected by the cost–benefit
analysis of energy efficiency methods [3], or indoor comfort of retrofitted buildings [4]. The
effects of energy efficient measures on climate change due to CO2 emissions from the point
of view of buildings’ service performance is of interest [5,6], as it is an important parameter.
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Existing HVAC (heating, ventilation, and air conditioning) systems using conventional
fuels can be partially or completely replaced with ‘green energy’ HVAC systems.

As a function of climate change over time, it is a great challenge for both architects and
engineers to obtain an optimal solution which can achieve minimal energy consumption
while also ensuring indoor comfort for new buildings. This goal is even more difficult to
achieve for existing buildings, where the degree of freedom is considerably lower. There-
fore, a way to approach the accomplishment of degree of energy consumption decrease
through different methods is with the help of dynamic simulation tools.

A good building refurbishment requires a proper combination between thermal in-
sulation for different buildings’ envelope zones (walls, ceiling, floor, . . . ), better thermal
resistance windows, but also renewable energy systems to make the building sustainable
within its environment, a graphical representation of passive house’s principles is shown
in Figure 1.

 

Figure 1. Basic structural principles for the construction of passive houses (with permission from [7]).

In order to be considered a passive house [7,8], a new or retrofitted house should
fulfill certain criteria, such as:

- All opaque building components of the exterior envelope of the house must be very
well-insulated, this means a heat transfer coefficient (U-value) of 0.15 W/(m2K) at
the most;

- Window frames must be well insulated and fitted with low-e glazing filled with argon
or krypton to prevent heat transfer, this means a U-value of 0.80 W/(m2K) or less,
with g-values around 50% (g-value = total solar transmittance, proportion of the solar
energy available for the room);

- At least 75% of the heat from the exhaust air should be transferred to the fresh air
by means of a heat exchanger, allowing a good indoor air quality same time with
saving energy;

- All edges, corners, connections, and penetrations must be planned and executed with
great care, so that thermal bridges can be avoided. Thermal bridge care should be
considered, as they cannot be completely excluded, but they must be reduced as far
as possible;

- The space heating energy demand should not exceed 15 kWh/m2 year (considering
square meter of net living space);
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- The total energy to be used for all domestic applications (heating, hot water, and
domestic electricity) must not exceed 60 kWh/m2 year (considering square meter of
net living space);

- A maximum of 0.6 air changes per hour at 50 Pascal pressure should be achieved, and
verified with on-site pressure testing (in both pressurized and depressurized states);

- Thermal comfort must be met for all living areas during winter as well as in summer,
with not more than 10% of the hours in a given year over 25 ◦C.

Zero, net zero, nearly zero, passive, plus [9,10] which is the optimal balance between
energy efficient and economical solution, but also possible for an existing house by means
of dynamical simulation, is our purpose for this study. Residential and tertiary ground
source heat pumps are widely used and many studies are found in the literature, with
sensitivity analysis [10,11]. Another very important issue in sizing a heat pump system is
also to calculate the investment, so a technical–economic analysis is crucial [12].

Romanian regulations followed the European trend in the last decade, concerning
energy savings and greenhouse gases (GHG) emissions for the building sector [13–16].
Additionally, as a Member State of the European Union since early 2007, our country
developed its own methodology for buildings energy performance calculation [17], which
is, at present, in a recast stage. According to new regulation [14], starting from January 2021,
all new buildings or existing ones which are to undergo major repairs (works performed
on the building envelope and/or building’s installations whose costs exceed 25% of the tax
value of the building, exclusively the value of the land on which the building is located)
have to be near zero energy buildings, but also to be provided with at least 30% of their
consumption from renewable energy. The near zero energy concept in Romania, as well
as Romania’s climate zones for the winter, were recently re-defined [13]. Romania has
five climate zones for winter time, the mildest one, “the climate zone I” defined by a
conventional exterior temperature of −12 ◦C and the coldest one, “the climate zone IV”
defined by a conventional exterior temperature of −24 ◦C. The temperature difference
between two consecutive climate zones is of −3 ◦C. The climate of Romania is temperate
continental, with four seasons. Summers are generally very warm to hot, depending
on the climate zone. Winters are frosty or very frosty, with snow precipitation for most
climatic zones.

2. Case Study

The objectives of the present study are to study by means of dynamical simulation
with DesignBuilder tool, an existing residential building, situated in the countryside zone
of Romania, district of Prahova, having a −15 ◦C conventional temperature for winter
time. Our aim is to determine the optimal balance between energy efficient and economical
solutions possible for an existing house by means of dynamic simulation. The energy
efficiency of existing house envelope is experimentally fully determined.

The net living space of the house is of 214 m2, between the ground floor and first
floor. The studied house was built in the year 2008, in concordance with the Romanian
regulations from that period, making it a real case study house. For indoor heating, the
building is equipped with wood fuel type boiler. The hot water supply is represented by
an electrical boiler and no cooling system is provided, as the building is located near the
mountains, having a mild summer period. The studied house is inhabited by a family of
four, a couple of retirees and a couple of young people. Due to the fact that the retired
couple stay home all day long, the heating system works 24 h and seven days a week. It
should also be mentioned that there are unheated/unoccupied spaces, namely: the garage,
the technical room, the attic of the house, and the basement. The domestic hot water
demand was calculated according to the Romania legislation [17], considering a 50 L per
person and day hot water demand.

Our goal is to apply as many of the passive house requirements, as the existing
building allows in order to reduce the building’s energy consumption. As already described,
the study was conducted on dynamical simulation level using DesignBuilder tool [18],
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which allows the design of a perfect match, between the architecture of the existing building
and the simulated model, as can be seen in Figure 2.

  
(a) (b) 

Figure 2. (a) Real building photo; (b) DesignBuilder model.

3. Simulations and Scenarios

The studied house’s envelope has the following component description: the walls
are made of bricks and thermally insulated with 10 cm polystyrene (partially insulated),
the ground floor upon the basement is made of concrete, the ceiling of the first floor
is made of concrete also, and no thermal insulation. The windows have a U-value of
0.5 W/(m2K), according to Romanian Energy Standards from the period when they were
bought. Measurements were conducted for the thermal performance of walls using TESTO
435 equipment for thermal resistance or U-values, as well as infrared TESTO 885-2 for
thermal bridges discovery. Figure 3 shows measured U-value for different walls of the
house, which were used to determine the mean U-value used in the dynamical simulations.

Figure 3. Measured U-value for different walls of the house with TESTO 435.

Being an existing house, the thermal bridges were also our concern, so thermal imager
TESTO 885-2 equipment was used to determine their presence. Both thermal images
presented in Figures 4 and 5 show that thermal bridges are presented and should be taken
into consideration in further rehabilitation.
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Figure 4. Thermal image from the living room, from the inside of the house.

Figure 5. Thermal image from outside, ground floor area.

Both thermal images and measurements of the U-value for building’s exterior walls
concluded, that house retrofit is needed from the energy consumption point of view, as
well as monthly paid bills for energy.

Concerning the building’s installations, the heating source is represented by a standard
wood fuel boiler (a 70% boiler efficiency), made of cast iron, with natural circulation of
evacuated gases. The hot water is obtained with an electric boiler, for the four people who
presently occupy the house.

4. Simulations and Scenarios

Designbuilder is a powerful tool for building simulation, using EnergyPlus software
for energetic simulations, natural lighting, comfort, and CO2 emissions. The architecture
is built in 3D with a high matching level with the real building with its envelope (walls,
windows, basement), as well as its interior zones. Introducing the building thermal zones,
it is a very important step because we can introduce different temperatures for every
created zone.

After the construction of the architecture, presented in Figure 2, the next step is to
choose the HVAC scheme’s components from Designbuilder library [18] and to correlate
then in order to create the real existing scheme, from the initial studied case. Figure 6
shows the heating and hot water supply systems scheme used in Designbuilder for the
initial case.
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(a) (b) 

Figure 6. (a) Heating of the initial case with wood boiler and radiators in Designbuilder; (b) Domestic hot water initial
scheme in Designbuilder.

For the retrofit case of the house, the following scenarios were simulated using the
Designbuilder tool:

Scenario 1: The retrofit of the building’s envelope opaque components. The ‘before’
and ‘after’ of the envelope’s retrofit thermal performances are listed in Table 1. The exterior
walls are partially insulated, so a mean thermal resistance is listed in the table; but in the
simulation measured, the mean for each element was considered.

Table 1. Thermal resistance for exterior walls.

Envelope’s Component
Thermal Resistance [m2K/W]

Initial Case Retrofit Case

Insulated wall 2.81 5.63

Not insulated wall 0.91 5.63

Last floor ceiling 0.92 5.11

Scenario 2: As in Scenario 1, adding the exchange of well-insulated windows presented
in Figure 7. For the heating system, there were not changes made. The wood fueled boiler
was used to cover the hot water demand.
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Figure 7. Heating and hot water supply systems schema used in Designbuilder for the third and fourth scenarios.

Scenario 3: Same as above—adding two flat solar panels, of 2 m2 surface each, were
used for hot water supply.

Scenario 4: Adding thermal solar panels and photovoltaic panels (monocrystalline
of 1.5 kWp installed power, on grid type), to cover total on-site electric sources, for the
retrofit envelope’s case. Additionally, the envelope of the house is thermally insulated, the
purpose being to obtain low energy consumption for the studied house.

These scenarios were taken into consideration, to be able to apply for the funding of the
National Environmental Program (AFM), to improve energy efficiency of buildings. These
funds are obtained only by reducing energy consumption and CO2 emissions, according
to fixed levels imposed. Therefore, exploratory simulations using dynamic software are
needed; later on, economic analysis for the investment is easier to obtain.

5. Results

The simulations using DesignBuilder software show all energy consumption—heating,
cooling, lighting, domestic hot water, as well as renewable energy production—for the four
presented rehabilitation solutions.

For the presented scenarios results are being presented in the table below:
Table 2 presents the results for the energy consumption decrease for every presented

scenario analyzed. If only the envelope is thermally insulated, 11.63% of final energy is
decreased; then, by adding to Scenario 1, the window replacement a 24.35% specific final
energy decrease is obtained. Scenario 3 adds the thermal solar panel implementation to
Scenario 2 and determines a 40.78% decrease of the specific final energy consumption.
Scenario 4, the most complete one, brings a 44.84% decrease of specific final energy if added
PV collectors are added. Concerning primary energy, 55.33% can be achieved for the best
studied scenario. Carbon dioxide emissions are decreasing accordingly with maximum
56% for the last case study.
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Table 2. Final energy, primary energy, and CO2 emissions.

Initial Case
Scenario

1
Scenario

2
Scenario

3
Scenario

4

NZEB [13]
Romanian

Climatic Zone II

Thermal energy consumption (kWh/m2 an) 163.6 140.8 116.0 108.0 108.0

Thermal energy decrease compared to initial case (%) - 14% 29% 33.95% 33.95%

Electrical energy consumption (kWh/m2 year) 32.36 32.29 32.24 7.99 0.04

Electrical energy decrease compared to initial case (%) - 0.21% 0.37% 75.32% 99.88%

Final energy specific economy (%) - 11.63% 24.35% 40.78% 44.84%

Conversion to primary energy
Fossil fuel (1) (kWh/m2 year) 176.7 152.1 125.3 114.1 116.7

Conversion to primary energy
Electric energy (2) (kWh/m2 year) 84.8 84.6 84.5 46.3 0.1

Yearly primary energy consumption
Total (1) + (2) (kWh/m2 year) 261.4 236.7 209.7 160.4 116.8 111.0

Primary energy economy compared to initial case (%) - 9.46% 19.78% 38.66% 55.33%

CO2 emission (kg CO2/year) 1892 1714 1521 990 837

Specific CO2 emission (kg CO2/m2 year) 8.80 7.98 7.08 4.61 3.89 30

CO2 emission decrease (%) - 9% 20% 48% 56%

The PV yearly coverage of the electrical energy consumption is 99.5%, a good coverage
degree being obtained.

The total energy class of the initial building is B, and the chosen retrofit scenario has
an A energy class, according to Romanian methodology existing in the legislation [17].
According to Romanian Legislation [13] the NZEB (Near Zero Energy Building) situated
in the same climate as our building (−15 ◦C conventional temperature for wintertime,
climate zone II) should have a yearly primary energy consumption less than 111.0 kWh/m2

year and specific CO2 emission of 30 kg CO2/m2 year. For our best scenario, the yearly
primary energy target could not be reached by almost 5%, but the specific yearly CO2
emissions were 7.7 times decreased because of the fact that renewable energies were used
(biomass and solar). As a perspective maybe a heat pump should be investigated and taken
into consideration; additionally, PV solar collectors can be added for heating and DHW
(domestic hot water) purposes, with this renewable energy source.

An investment of 28 k euro was taken into account which includes building envelope
complete rehabilitation and renewable energy systems implementation for Scenario 4.
Concerning the building envelope rehabilitation, we took into account the external walls
and windows, roof. The floors could not be isolated as it is an existing building and the
free internal level high does not allow it. The economic viability depends on the local costs
of energy for internal use and, in some countries, the often higher value per kW to sell
back to the power grid. Without the benefits of the different ‘efficient energy’ programs
in progress in Romania, the amortization is around 13 years, less than their life time,
but this period can be significantly reduced by applying for one of the National Agency
of Environmental Protection programs. The payback time was calculated according to
Romanian legislation [17].

6. Conclusions

The initial case of the simulated building had a poorly thermal insulation envelope
with high monthly energy consumption. The total energy class of this building according
to Romanian legislation of buildings’ energy efficiency [17] was labeled “B”. The purpose
of this research is to find measures to improve energy efficiency considering also renewable
energy sources. The initial aim was to obtain a Near Zero Energy House (NZEB) but only
some few percentage points are delimiting from this purpose, so we can conclude that a
low energy house is simulated for the fourth scenario analyzed, the building being classed
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in energy label ‘A’. The Romanian Government’s target for the existing houses in the year
2020 was to improve energy efficiency by 40%, 50%, or 60% primary energy decrease
founding by specific programs that are even now available [19]. Starting from the first of
January 2021, the Romanian Government’s target changed and only NZEB buildings are
allowed to be built.

A primary energy reduction of 55% is an acceptable savings, attained only by using
PV and solar thermal collectors, as well as a thicker thermal insulation for the envelope.
The final energy reduction between the initial case and the fourth scenario was 44.85%
and the CO2 emissions decreased by 56%. The PV panels ensure 99.9% of the house’s
electric energy consumption and the solar thermal collectors determine a 32% decrease
in specific final energy consumption. Generally speaking, both the building’s envelope
and use of renewable energy sources should be taken into account in order to achieve a
near NZEB house, according to the dynamical simulations. These results should be further
considered by the policy makers for future eligible funding of the government’s energy
efficiency programs.

This study combined experimental work with numerical simulations, proving the
importance of both sides in developing an energy strategy. The experimental data obtained
by means of thermal images and building’s envelope components’ conductivity measure-
ments describe the stage of the initial case and represent the incomes for the numerical
simulations. Without the help of a dynamical simulation, the real energy consumption
cannot be revealed, as the use of stationary heat transfer equations give a maximum instant
energy consumption, which is reached few days over the year.

Further studies will take place to achieve a passive house with a lower energy con-
sumption, with this case being a close perspective. In order to achieve that goal, ground
source heat pumps, with active and/or passive cooling and a heat recovery unit for venti-
lation, should further studied.
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Abstract: Optimization problems are ubiquitous in every field, and they are becoming more and
more complex, which greatly challenges the effectiveness of existing optimization methods. To solve
the increasingly complicated optimization problems with high effectiveness, this paper proposes an
adaptive covariance scaling estimation of distribution algorithm (ACSEDA) based on the Gaussian
distribution model. Unlike traditional EDAs, which estimate the covariance and the mean vector,
based on the same selected promising individuals, ACSEDA calculates the covariance according
to an enlarged number of promising individuals (compared with those for the mean vector). To
alleviate the sensitivity of the parameters in promising individual selections, this paper further
devises an adaptive promising individual selection strategy for the estimation of the mean vector
and an adaptive covariance scaling strategy for the covariance estimation. These two adaptive
strategies dynamically adjust the associated numbers of promising individuals as the evolution
continues. In addition, we further devise a cross-generation individual selection strategy for the
parent population, used to estimate the probability distribution by combing the sampled offspring
in the last generation and the one in the current generation. With the above mechanisms, ACSEDA
is expected to compromise intensification and diversification of the search process to explore and
exploit the solution space and thus could achieve promising performance. To verify the effectiveness
of ACSEDA, extensive experiments are conducted on 30 widely used benchmark optimization
problems with different dimension sizes. Experimental results demonstrate that the proposed
ACSEDA presents significant superiority to several state-of-the-art EDA variants, and it preserves
good scalability in solving optimization problems.

Keywords: estimation of distribution algorithm; covariance scaling; gaussian distribution; meta-heuristic
algorithm; problem optimization

1. Introduction

Optimization problems are ubiquitous in daily life and industrial engineering [1,2],
such as protein structure prediction [3], community detection [4], control of pollutant
spreading [5] and multi-compartment electric vehicle routing [6]. These optimization
problems often preserve characteristics such as non-convex, discontinuous, and non-
differentiable [7–10], which greatly challenge the effectiveness of traditional gradient-based
optimization algorithms or even make them infeasible [11]. In particular, in the era of
big data and the Internet of Things, optimization problems are becoming more and more
complex due to the increase in dimensionality [12–14]. For instance, some unimodal prob-
lems become multimodal with many local optima [15], while some multimodal problems
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become more complicated with an increasing number of wide and flat local areas [16–18].
Such complicated optimization problems are becoming more and more common nowadays,
and thus, it is urgent to develop effective optimization algorithms to solve them, so as to
promote the development of related fields.

As a kind of gradient-free meta-heuristic algorithm, estimation of distribution algo-
rithm (EDA) mainly maintains a population of individuals to iteratively search the solution
space, with each individual representing a feasible solution [19]. During each generation,
it selects a number of promising individuals to estimate the probability distribution of
the population, and it then randomly samples a new population of solutions based on
the estimated probability distribution [20,21]. Due to the randomness in sampling the
offspring, EDA preserves high diversity and strong global search ability [22]. Therefore, a
lot of researchers have paid extensive attention to developing effective EDAs, and, conse-
quently, not only have EDAs been applied to solve various optimization problems, such as
multimodal optimization problems [23] and multi-objective optimization problems [24],
but also they have been employed to solve many real-world problems, such as multi-
policy insurance investment planning [25] and multi-source heterogeneous user-generated
content-driven interactive [22].

In the literature, most EDAs utilize the Gaussian distribution model to evaluate the
probability distribution of the population, which is then adopted to sample new solu-
tions [26,27]. During the estimation of the distribution, based on whether the correlation
between variables is considered, the current Gaussian estimations of distribution algo-
rithms (GEDAs) are mainly divided into two categories [20,27,28], namely univariate
GEDAs (UGEDAs) [29–31] and multivariate GEDAs (MGEDAs) [32–36].

UGEDAs [30] consider that each variable is independent on each other. Therefore, the
probability distribution of each variable is estimated individually. The most advantageous
property of UGEDAs is that the computational cost of the distribution estimation and the
offspring sampling is low [31]. However, their effectiveness deteriorates drastically when
confronted with optimization problems with interacted variables [29].

Different from UGEDAs, MGEDAs take the correlation among variables into con-
sideration [34], which is realized by estimating the covariance among all variables. With
the covariance matrix, MGEDAs could capture the structure of the optimization problem
and thus implicitly offer useful information to direct the search of the population [35].
Due to this advantage, MGEDAs achieve much better performance than UGEDAs, espe-
cially on problems with many interactive variables [20]. As a result, MGEDAs have been
extensively researched in the literature [37–39]. However, such superiority of MGEDAs
is at the sacrifice of efficiency, as calculating the covariance among all variables is very
time-consuming [32].

In MGEDAs, the parameters (i.e., the mean vector and the covariance matrix) of the
probability distribution are usually estimated based on a certain number of promising
individuals [28]. Specifically, in the probability distribution, the mean vector plays a
key role in controlling the center of the offspring to be sampled, while the covariance
takes charge of the range of the offspring around the center. In other words, the mean
vector makes a crucial influence on the convergence of the population to the optimal areas,
while the covariance affects the population diversity [40]. Therefore, to maintain high
search diversity for EDAs, many researchers have designed variance or covariance scaling
methods [37,41–43] to enlarge the sampling range of the estimated probability distribution.
However, on the one side, the basic covariance (variance) is still estimated on the same
promising individuals selected for the estimation of the mean vector in most existing
GEDAs. Therefore, after the covariance (variance) scaling, implemented by multiplying a
scaling factor on the estimated covariance (variance) in most covariance scaling methods,
the learned structure of the optimization problem, by them, remains unchanged; on the
other side, most existing covariance (variance) scaling methods enlarge the estimated
covariance (variance) the same degree in different directions.
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To remedy the above shortcomings, this paper devises an adaptive covariance scaling
method for MGEDAs, leading to an adaptive covariance scaling estimation of distribution
algorithm (ACSEDA). Specifically, for the estimation of the mean vector in the probability
distribution, it is the same as existing MGEDAs, namely estimating it based on a certain
number of promising individuals. However, for the estimation of the covariance in the
probability distribution, different from existing MGEDAs, ACSEDA first adaptively en-
larges the number of promising individuals, and then, it calculates the covariance on the
basis of the scaled promising individuals. In this way, the sampling range of the estimated
probability distribution could be enlarged, which is helpful for sampling diversified off-
spring. As a result, the search diversity of EDA could be amplified, and thus, the chance of
falling into local areas could be declined.

As a whole, the main contributions of this paper are summarized as follows:

(1) An adaptive covariance scaling method is proposed to adaptively enlarge the sam-
pling range of the estimated probability distribution. Different from most existing
covariance scaling methods, we scale the covariance by calculating the covariance
based on an amplified number of promising individuals. As a result, not only could
the learned structure of the optimization problem captured by the algorithm be im-
proved but the covariance in different directions is also scaled differently. In this way,
it is expected that the sampled offspring are not only of high quality, but they are also
diversified in different areas.

(2) An adaptive selection of promising individuals for the estimation of the mean vector
is further designed by adaptively decreasing the selection ratio, which is the number
of the selected promising individuals out of the whole population. In this way, the
estimated mean vector, namely the center of the offspring to be sampled, is gradually
close to the promising areas that the current population covers. Therefore, the search
process is gradually biased toward exploiting the solution space to refine the solution
accuracy. However, it should be mentioned that such a bias is not greedy and not
at the serious sacrifice of the population diversity because of the aforementioned
covariance scaling technique.

(3) A cross-generation individual selection scheme, for the parent population to estimate
the probability distribution, is devised by combining the sampled offspring in the
last generation and the one in the current generation to select parent individuals for
the next generation. Instead of directly utilizing the sampled offspring as the parent
population for the next generation in most existing MGEDAs, the proposed ACSEDA
combines the sampled offspring in the last generation and the one in the current
generation to select the top half best individuals to form the parent population for the
next generation. In this way, the parent population formed is neither too crowded
nor too scattered, and thus, the estimated probability distribution is of high quality to
sample slightly diversified offspring to approach the optimal areas.

(4) With the above mechanisms, the proposed ACSEDA is expected to compromise
intensification and diversification of the search process well to explore and exploit
the solution space and could thus achieve promising performance.

To verify the effectiveness of the proposed ACSEDA, this paper conducts extensive
experiments on the widely used CEC2014 [44] benchmark optimization problems, with
different dimension sizes, by comparing ACSEDA to 7 state-of-the-art GEDAs. In addi-
tion, deep investigations on the components of ACSEDA are also taken to observe what
contributes to its promising performance in solving optimization problems.

The remainder of this study is organized as follows: Section 2 reviews related works
on GEDAs; then, the proposed ACSEDA is elucidated in detail in Section 3; in Section 4,
extensive experiments are conducted to verify the effectiveness of the developed ACSEDA;
last, in Section 5, conclusions are presented.
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2. Related Work

2.1. Basic GEDA

The overall framework of a general GEDA is outlined in Algorithm 1. As a whole,
the basic principle of GEDA is to iteratively build a Gaussian probability distribution
model, based on a certain number of promising individuals selected from the current
population, and then sample new individuals based on the built probability model for the
next generation [21].

Algorithm 1: The Procedure of GEDA.

Input: population size PS, selection ratio sr;
1: Set g = 0, and randomly initialize the population Pg;
2: Obtain the global best solution Gbest;
3: Repeat

4: Select "sr ∗ PS# promising solutions Sg from Pg;
5: Build a Gaussian probability distribution model Gg based on Sg;
6: Randomly generate a new population Pg+1 by sampling from Gg;
7: Update the global best solution Gbest;
8: g = g + 1;
9: Until the stopping criterion is met.
Output: the global best solution Gbest;

Specifically, as shown in Algorithm 1, given that the population size is PS and the
selection ratio is sr (which is the number of selected promising individuals out of the
whole population), the number of selected promising individuals in each generation is
s = "sr ∗ PS#. After PS individuals are initialized randomly and evaluated accordingly, as
shown in Line 1, the global best solution found so far is obtained (as shown in Line 2).
Subsequently, it comes to the main iteration of the algorithm. First, a set (S) of s promising
individuals are selected from the current population (Line 4). Then, a Gaussian probability
distribution model is estimated based on the selected individuals (Line 5). After that,
PS new individuals are randomly sampled based on the estimated Gaussian distribution
to form a new population (Line 6). Subsequently, the newly generated individuals are
evaluated, and the global best solution is updated. The above process proceeds repeatedly
until the termination condition is met. At last, the found global best solution is output.

In GEDAs, the key component is the way to estimate the probability distribution.
Different manners of probability distribution estimation result in different kinds of GEDAs.
In the literature, based on whether the linkage between variables is considered, existing
GEDAs are mainly classified into two categories [20,27,28], namely univariate GEDAs
(UGEDAs) [29–31,45,46] and multivariate GEDAs [27,32–36].

(1) UGEDAs: In UGEDAs [29,45,46], each variable is considered to be separable and
independent on each other. As a result, the probability distribution of D variables
can be estimated separately, and the joint probability distribution of D variables is
computed as follows:

P(x1, x2, . . . , xD) =
D

∏
i=1

P(xi). (1)

where P(xi) is the probability distribution of the ith variable, which is estimated as:

P(xi) =
1

σi
√

2π
e−

(xi−μi)
2

2σi (2)

where ui and σi are the mean value and the variance of the ith variable respectively,
which are calculated as follows:

μi =
1
s

s

∑
j=1

Sj
i (3)
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σi =

√√√√(
1

s− 1

s

∑
j=1

(Sj
i − μi)

2
) (4)

where S is the set of the selected promising individuals, Sj
i is the ith dimension of the

jth promising individual in S, and D denotes the dimension size of the optimization
problem. Based on the estimated probability distribution of each variable, a new
solution can be constructed by randomly sampling a new value of each variable
separately, based on the associated probability distribution.

(2) MGEDAs: In MGEDAs [33–36], the correlations between variables are taken into
consideration to estimate the probability distribution. Consequently, different from
UGEDAs, the probability distribution of D variables in MGEDAs is estimated together,
and the joint probability distribution of D variables is computed as follows:

P(x1, x2, . . . , xD) =
1√

(2π)D
∣∣∣C∣∣∣ e

(− 1
2 (X−μ)TC−1(X−μ)) (5)

where u is the mean vector of the multivariate Gaussian distribution, which is calcu-
lated by Equation (3). C is the covariance matrix, which is calculated as follows:

C =
1

s− 1
(S− μ)(S− μ)T (6)

Based on the estimated joint probability distribution, a new solution is constructed by
jointly sampling values for all variables, randomly, from the multivariate Gaussian
distribution model. In general, to make the sampling of new solutions simple, a
modified version presented below is usually utilized to generate the offspring in most
MGEDAs [32,35]:

X = μ + AΛZ
Z ∼ N(0, 1)

(7)

C = AΛ2AT (8)

where A is the eigenvector matrix of C, and Λ is the diagonal matrix whose entries
are the square root of the eigenvalues of C. Z is a real number vector, each value of
which is randomly sampled from a standard normal distribution separately.

With respect to the computational cost, UGEDAs are less time-consuming, while
MGEDAs take more computational cost due to the calculation of the covariance matrix
[33–35]. However, in terms of the optimization performance, MGEDAs show much better
performance, especially on problems with many interacted variables, while UGEDAs only
present promising performance on separable optimization problems [29,30,47]. This is
because MGEDAs could capture the interaction between variables and thus evolve the
population more effectively than UGEDAs [27,37,48].

2.2. Recent Advance of GEDAs

During the optimization, one crucial challenge that most existing GEDAs encounter
is the rapid shrinkage of the variance (or the covariance) [20,42,43], which leads to the
quickly narrowed sampling range of the probability distribution. This may lead to a quick
loss of the search diversity and thus may result in premature convergence and falling into
local areas. To remedy this shortcoming, researchers have devoted plenty of attention
to designing novel mechanisms to improve the quality of the probability distribution in
GEDAs [38,49–51].

In [51], the authors demonstrated empirically that high diversity maintenance is very
crucial for EDAs to achieve satisfactory performance. Then, based on the findings, they
further developed a novel three-step method by combining clustering methods with EDAs
to search for the optimal areas with high diversity. To prevent premature convergence
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in EDAs, Pošík [52] directly multiplied a constant factor on the estimated variance of the
Gaussian distribution in each generation to enlarge the sampling range. In [43], Grahl
et al. proposed a correlation-triggered adaptive variance scaling strategy to reduce the
risk of premature convergence and then embedded it into the iterated density–estimation
evolutionary algorithm (IDEA). Specifically, similar to [52], the proposed method multiplies
a factor to the estimated variance. The difference lies in such a factor not being constant
but dynamically adjusted during the evolution, based on whether the global best solution
is improved or not. In addition, such adjustment is triggered based on the correlation
between the ranks of the normal density and the fitness of the selected solutions. To
further trigger the dynamic adjustment of the scaling factor properly, in [42], Bosman
et al. proposed a novel indicator, named Standard–Deviation Ratio (SDR), to trigger the
adjustment adaptively. Specifically, based on this indicator, the variance scaling is triggered
only when the improvements are found to be far away from the mean vector. In [53], a
cross-entropy based adaptive variance scaling method was proposed. In this method, the
difference between the sampled population and the prediction of the probabilistic model is
first measured, and the scaling factor on the variance is then computed by minimizing the
cross-entropy between the two distributions.

Different from the above variance scaling methods that directly multiply a scaling
factor on the estimated variance, in [49], the authors proposed a novel probability density
estimator based on the new mean vector obtained by the anticipated mean shift strategy.
Then, once the new mean vector gets better, the variance estimator adaptively enlarges
the variance without using an explicit factor, but rather, by using the new better mean
vector to calculate the variance. Furthermore, they also developed a reflecting sampling
strategy to further improve the search efficiency of GEDA. Accompanied with these two
schemes, a new GEDA variant named EDAVERS [49] was developed. Subsequently, a novel
anisotropic adaptive variance scaling (AAVS) method was proposed in [41], and a new
GEDA named AAVS-EDA was designed. Specifically, in this algorithm, a topology-based
detection method was devised to detect the landscape characteristics of the optimization
problems, and then, based on the captured characteristics, the variances along different
eigen-directions are anisotropically scaled. In this way, the variances and the main search
direction of GEDA could be simultaneously adjusted. Recently, Liang et al. proposed
a new GEDA variant, named EDA2 [37], to improve the optimization performance of
EDA. Specifically, instead of only utilizing promising individuals in the current generation
to estimate the Gaussian model, this algorithm stores historical high-quality individuals
generated in the previous generations into an archive and adopts these individuals to
collaboratively estimate the covariance of the Gaussian model. In this manner, valuable
historical evolution information could be integrated into the estimated model.

The above mentioned MGEDAs usually adopt the full rank covariance matrix to
estimate the covariance. Since the calculation of the full-rank covariance matrix is very
time-consuming, the computational complexity of most MGEDAs is usually high. To
alleviate this shortcoming, researchers turn to seeking efficient covariance matrix adaption
(CMA) techniques for EDA [54]. As for the covariance matrix, a direct and simple method
to speed up its computation is to reduce the degrees of freedom. To this end, Ros and
Hansen [55] proposed to only update the elements in the diagonal of the covariance matrix,
leading to a de-randomized evolution strategy, named sep-CMA-ES. This method reduces
the updating time and space complexity of the covariance matrix from quadratic to linear.
In [56], the authors devised an adaptive diagonal decoding scheme to accelerate covariance
matrix adaptation. Further, ref. [57] developed a matrix-free CMA strategy by employing
combinations of difference vectors between archived individuals and random vectors,
generated by the univariate Gaussian distribution along directions of the past shifts of
the mean vector. In [58], Beyer and Sendhoff proposed a matrix adaptation evolution
strategy (MA-ES) by removing one evolution path in the calculation of the covariance
matrix, leading to that the covariance update is no longer needed. In [59], Li and Zhang
first designed a rank one evolution strategy by using a single principal search direction,
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which is of linear complexity. Then, they developed a rank-m evolution strategy by
employing multiple search directions. In particular, these two evolution strategies mainly
adopt principal search directions to seek for the optimal low rank approximation to the
covariance matrix. In [60], He et al. put forward a search direction adaptation evolution
strategy (SDA-ES) with linear time and space complexity. Specifically, this algorithm first
models the covariance matrix with an identity matrix along with multiple search directions.
Then, it uses a heuristic to update the search directions such as the principal component
analysis.

Besides the advance of GEDAs in covariance (or variance) scaling and adaption, some
researchers have also attempted to design new ways to shift the mean vector of the Gaussian
distribution model. For instance, in [61], Bosman et al. proposed an anticipated mean shift
to update the mean vector and then used the updated mean vector to calculate the variance.
In addition, some researchers have also attempted to adopt other distribution models,
instead of the Gaussian distribution model, to estimate the probability distribution. For
example, in [62], a probabilistic graphical model was designed to consider the dependencies
between multivariate variables. Specifically, in this algorithm, a parallel of a certain number
of subgraphs, with a smaller number of variables, is estimated separately to capture the
dependencies among variables in each subgraph. Then, each estimated graph model
associated with the subgraph samples new values for the associated variables separately.
In [39], the authors utilized the Boltzmann distribution to build the probability distribution
model in EDA, leading to BUMDA. In particular, the distribution parameters are derived
from the analytical minimization of the Kullback–Leibler divergence. In [50], the authors
devised a novel multiple sub-models maintenance technique for EDA, leading to a new
EDA variant, named maintaining and processing sub-models (MAPS). Specifically, this
algorithm maintains multiple sub-models to detect promising areas.

Since EDAs utilize the estimated probability distribution model to sample new solu-
tions, they generally lack subtle refinement to improve the solution accuracy [63]. To fill
this gap, local search methods are commonly accompanied with EDAs to refine the found
promising solutions [38,49,50]. For instance, in [64], simulated annealing (SA) based local
search operator was incorporated into EDA to balance the exploration and exploitation to
search the solution space properly. Specifically, the SA-based local search is probabilisti-
cally executed on some good solutions to improve their accuracy. To improve the solution
accuracy, Zhou et al. [38] developed cheap and expensive local search methods for EDA,
leading to a new EDA variant named EDA/LS. In particular, this EDA variant adopts a
modified univariate histogram probabilistic model to sample a part of individuals, and it
then utilizes a cheap local search method to sample the rest of the individuals. Besides, it
also employs an expensive local search method to refine the found promising solutions.
Along this direction, an extension of EDA/LS, named EDA/LS-MS, was developed in [65]
by introducing a mean shift strategy to replace the cheap local search method in EDA/LS
to refine some good parent solutions.

Though a lot of remarkable GEDA variants have emerged and shown promising
performance in solving optimization problems, they still encounter limitations, such as
falling into local areas and premature convergence. In particular, it is found that most
existing GEDAs estimate the variance (or covariance) based on the same selected promising
individuals used for the estimation of the mean vector. Although various variance (or co-
variance) scaling methods [37,43,49,53,66] and covariance matrix adaption methods [56–60]
have been proposed to improve the sampling range of the estimated probability distri-
bution model, on the one hand, the structure of the optimization problem captured by
most existing GEDA variants remains unchanged after the scaling; on the other hand, most
existing variance (covariance) scaling methods scale the estimated variance (covariance)
equally in different directions. This is actually not beneficial to effectively sample new
promising individuals.

To alleviate the above concern, this paper devises an adaptive covariance scaling EDA
by adaptively enlarging the number of promising individuals (as compared with those
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for the mean vector estimation) to estimate the covariance. In this way, not only does the
structure of the optimization problem captured by the algorithm become better, but also
the covariance is scaled differently in different directions.

3. Proposed ACSEDA

To improve the effectiveness of EDA in solving optimization problems, this paper
proposes an adaptive covariance scaling EDA (ACSEDA) by introducing more promising
individuals to calculate the covariance. Furthermore, to alleviate the sensitivity of the
proposed ACSEDA to parameters, this paper further devises two adaptive strategies for the
two key parameters in ACSEDA. The components of ACSEDA are elucidated as follows.

3.1. Adaptive Covariance Scaling

In traditional GEDAs [27], both the mean vector and the covariance of the multivariate
Gaussian distribution model are estimated based on the selected promising individuals.
Then, on the basis of the estimated probability distribution model, the offspring are sampled
randomly. In particular, we can see that the mean vector has a great influence on the
convergence speed of GEDAs to promising areas, while the covariance mainly takes charge
of the sampling range of the distribution model, which plays a significant role in high
diversity maintenance.

During the evolution, the population gradually approaches the promising areas
and the selected promising individuals used for probability distribution estimation are
gradually aggregated together as well. In this situation, the estimated covariance would
become smaller and smaller. Once the estimated mean vector falls into local areas, the
sampled offspring could hardly escape from local areas. As a consequence, the population
falls into local areas, and premature convergence occurs. Such a predicament is encountered
by many existing GEDAs [20].

To alleviate this issue, this paper proposes a covariance scaling strategy to enlarge
the covariance by introducing more promising individuals on the basis of the selected
individuals for the estimation of the mean vector. Specifically, given the population size is
PS, s = "sr ∗ PS# promising individuals are first selected from the population to estimate
the mean vector of the probability distribution, where sr is the selection ratio, defined
as the number of selected individuals out of the population. Then, different from most
existing GEDAs [67], which estimate the covariance based on the sc = "cs ∗ PS# individuals
as well, this paper selects sc promising individuals to estimate the covariance, where cs is
the covariance scaling parameter, which is the number of the promising individuals out
of the population and is usually larger than sr. In this way, more promising individuals
are selected to participate in the estimation of the covariance and thus, the covariance is
enlarged.

As shown in Figure 1, after the population is sorted from the best to the worst with
respect to the fitness, s best individuals are selected to form the promising individual set S,
and then, the mean vector u is estimated based on S according to Equation (3). Subsequently,
different from most existing GEDAs, the proposed covariance scaling method selects sc
best individuals to form the promising individual set SC to estimate the covariance. It
should be mentioned that cs is usually larger than sr, which also indicates that SC is larger
than S. In this way, S is a subset of SC. Subsequently, instead of using S to calculate the
covariance according to Equation (6), the proposed method utilizes SC, namely an enlarged
individual set, to estimate the covariance as follows:

C =
1

sc− 1
(SC − μ)(SC − μ)T (9)
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Figure 1. The visual structure of the covariance scaling strategy.

As shown in Figure 1, since more promising individuals participate in the estimation
of the covariance, the sampling range of the estimated probability distribution model is
enlarged. On the one hand, the sampled offspring based on this model are more diversified,
which is very beneficial for the population to avoid falling into local areas. On the other
hand, it might also be likely to generate more promising individuals close to the promising
areas, and thus, the convergence could also be strengthened to some extent.

Remark 1. It deserves attention that different from existing covariance scaling methods, which
scales the covariance directly with a fixed scalar, the proposed covariance scaling method estimates
the covariance based on an enlarged number of promising individuals as compared to those for the
estimation of the mean vector. This brings the following two benefits for the estimated probability
distribution model:

(1) By introducing more promising individuals, the proposed scaling method enlarges the co-
variance differently in different directions between variables and thus it implicitly takes the
difference between variables into consideration. However, existing scaling methods [37] en-
large the covariance with a same scalar and hence they do not consider the difference between
variables.

(2) The proposed scaling method is likely to better capture the structure of the optimization problem
with respect to the correlations between variables by introducing more promising individuals.
Nevertheless, the structure captured by existing scaling methods remains unchanged after the
scaling.

Taking a deep investigation on the parameter cs, in the proposed covariance scaling
method, we find that neither a too large cs, nor a too small cs are proper to aid EDA to
achieve promising performance. On the one side, a too-large cs may lead to a too large
sampling range of the probability distribution. This may result in too diversified offspring
sampled from the distribution model. In particular, it is found that, in the early stage of the
evolution, a large cs may be beneficial to maintain a large sampling range and thus sample
diversified offspring. This is helpful for EDA to explore the solution space in very different
directions, whereas, in the late stage, such a setting of cs is not appropriate because it is
not beneficial for the population to extensively exploit the found promising areas to refine
the solution accuracy. On the other side, a too-small cs may bring in a too-small sampling
range of the distribution model, which may sample concentrated offspring. Though it is
desirable in the late stage of the evolution, it is not suitable during the whole evolution,
because it may increase the risk of EDA in falling into local areas. Consequently, based on
the above analysis, it is found that cs should not be fixed, but dynamically adjusted during
the evolution process.

To the above end, this paper further designs an adaptive strategy for cs as follows:

cs = 1− (1− srmin)(
FEs

FEsmax
)

2
(10)

600



Mathematics 2021, 9, 3207

where srmin denotes the lower bound of the selection ratio sr used for the estimation of
the mean vector of the multivariate Gaussian distribution model, FEsmax is the maximum
number of fitness evaluations, while FEs denotes the used number of fitness evaluations
up to the current generation.

From Equation (10), we can see that cs decreases from 1.0 to srmin as the evolution
continues. Specifically, it is found that, in the early stage, most individuals in the population
are used to estimate the covariance. This brings two benefits for EDA: (1) the sampling
range of the probability distribution model is large and thus the sampled offspring are
diversified and scatter dispersedly to explore the solution space. It is not only beneficial for
the population to find more promising areas, but it is also very profitable for the population
to avoid falling into local areas. (2) The captured structure of the optimization problem
tends to be global and accurate with a large number of promising individuals. In the
early stage, the individuals are usually scattered diversely in the solution space. In this
situation, the captured structure of the optimization problem is usually global. Therefore, to
accurately capture the correlations between variables globally, a large number of promising
individuals are usually needed. Consequently, in the early stage, it is helpful to capture an
accurate structure of the optimization problem when cs is large.

Conversely, in the late stage, from Equation (10), it is found that cs becomes smaller and
smaller. This leads to a narrow sampling range of the probability distribution. Therefore,
the sampled offspring are concentrated and surrounded around the mean vector. In this
situation, the population exploits the found promising areas, and thus, the accuracy of the
solution can be improved.

To summarize, with the above adaptive covariance scaling scheme, the proposed EDA
variant is expected to obtain a promising balance between diversification and intensification
of the population. Therefore, the algorithm could explore and exploit the complicated solu-
tion space properly to obtain promising performance in solving complicated optimization
problems.

3.2. Adaptive Promising Individuals Selection

In GEDAs, the number (s = "sr ∗ PS#) of selected promising individuals, for the
estimation of the mean vector, makes a significant influence on the convergence speed of
EDAs. As shown in Figure 1, the mean vector mainly takes control of the center of the
sampled offspring. A too-large sr may lead to that a large number of promising individuals
being used to estimate the mean vector. As a result, the estimated mean vector may be too
far away from the promising areas. In the early stage of the evolution, this is beneficial for
EDAs to maintain high search diversity. Nevertheless, in the late stage of the evolution, a
large sr may slow down the convergence of the population to find high-quality solutions.
On the contrary, a too-small sr may result in the estimated mean vector being too close
to the promising areas. This case is suitable, in the late stage of the evolution, to exploit
the found promising areas. However, it may lead to premature convergence if we keep sr
small during the whole evolution, especially when the selected promising individuals all
fall into local areas.

Based on the above analysis, it might as well dynamically adjust sr during the evolu-
tion. To this end, this paper devises a simple adaptive strategy for sr as follows:

sr = srmax − (srmax − srmin)

(
FEs

FEsmax

)0.1
(11)

where srmax and srmin represent the maximum selection ratio and the minimum selection
ratio, which accordingly determine the maximum number (smax = "srmax ∗ PS#) and the
minimum number (smin = "srmin ∗ PS#) of the selected promising individuals. In this paper,
we set them as 0.35 and 0.05, respectively.

From Equation (11), we can see that in the early stage, sr is large, and then, it decreases
gradually as the evolution goes. This indicates that during the evolution, the mean vector
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of the estimated probability distribution is becoming closer and closer to the promising
areas. In this way, the population gradually tends to exploit the found promising areas.

Remark 2. In particular, compared Equation (11) with Equation (10), as shown in Figure 2, the
following findings can be obtained:

(1) sr decreases dramatically in the early stage, and mildly in the late stage, while cs decreases
mildly in the early stage, and dramatically in the late stage. This actually matches the
expectation that the proposed ACSEDA should explore the solution space in the early stage
without serious loss of convergence, while it should exploit the search space in the late stage
without serious sacrifice of search diversity. For one thing, in the early stage, sr decreases
rapidly and thus the estimated mean vector is close to the promising areas that the current
population lies. However, it should be mentioned that in such a situation, the sampling
diversity of the estimated probability distribution is not declined, because the estimated
covariance is large due to the large cs. On the contrary, in this situation, the sampling quality
of the estimated probability distribution could be improved due to the high-quality mean vector
and thus the population could effectively explore the search space to find promising areas in the
early stage. In the late stage, sr decreases mildly, while cs descends quickly. In this situation,
the quality of the mean vector is gradually promoted by approaching the promising areas
closer and closer. At the same time, the sampling range of the estimated distribution gradually
shrinks due to the covariance estimated on the reduced number of promising individuals.
Therefore, in the late stage, ACSEDA gradually biases to exploiting the found promising areas
to improve the solution quality. However, it should be mentioned that such a bias is not at the
serious sacrifice of the search diversity because of the proposed covariance scaling technique.

(2) cs is always larger than sr during the evolution and the gap between cs and sr gradually shrinks
as the evolution goes. This indicates that during the evolution, compared with traditional
GEDAs, the covariance is always amplified, so that the estimated probability distribution
could sample diversified offspring around the estimated mean vector with high quality. In
addition, the gradually narrowed difference between sr and cs indicates that the scaling of
the covariance is gradually declined. This implies that the proposed ACSEDA gradually
concentrates on exploiting the solution space to refine the solution accuracy.

Figure 2. The change curves of cs and sr with the proposed two adaptive strategies.

3.3. Cross-Generation Individual Selection for Parent Population

In traditional EDAs [28], the offspring is directly utilized as the parent population
for the next generation to estimate the probability distribution model. Since the quality of
the sampled offspring is uncertain, the quality of the estimated probability distribution
model may not be improved or even degrade compared with the estimated probability
distribution in the last generation. This may slow down the convergence of the population
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to promising areas. Therefore, to remedy this shortcoming, some EDA variants [68]
combine the offspring and the parent population together and then select the best PS
individuals as the parent population for the next generation. However, such selection is
too greedy and thus may lead to premature convergence and falling into local areas.

To alleviate the above predicament, and to further make a promising compromise
between convergence and diversity, this paper further devises a cross-generation individual
selection strategy for the parent population.

As Figure 3 shows, this paper combines the sampled offspring in the last generation
and the sampled offspring in the current generation and then selects the best PS individuals
as the parent population for the next generation to estimate the probability distribution
model. In this way, the historical information in the last generation can be utilized to build
the probability distribution model.

The sampled offspring

Sampling

The parent population Combined individual set

(i-1)th generation ith generation

Select NP 
better 

individuals

(i+1)th generation

The sampled offspring The sampled offspring

Distribution 
estimation s

s
i i

j
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=

C CC S S T- -
sc

The probability distribution 

Figure 3. The process of the cross-generation individual selection strategy.

Remark 3. Different from existing individual selection methods [26,48,69], the proposed cross-
generation individual selection strategy takes advantage of the sampled offspring in the two con-
secutive generations to select individuals for the parent population in the next generation. Such a
selection strategy brings the following benefits to ACSEDA:

(1) Individuals in the parent population are diversified. The sampled offspring in the last gen-
eration usually have big difference with the offspring in the current generation. Combining
them together to select individuals is less likely to generate crowded individuals for the parent
population. As a result, the estimated probability distribution model is less likely to fall into
local areas and at the same time, has a wide sampling range to generate diversified offspring.
In this way, ACSEDA could preserve high search diversity during the evolution.

(2) With this strategy, the latest historical promising individuals in the last generation could be
integrated with those in the current offspring. As a consequence, individuals in the parent
population are not only diversified, but also of high quality. Hence, the estimated probability
distribution is of high quality to generate more promising offspring. By this means, the
convergence of ACSEDA could be guaranteed.

(3) With this selection strategy, ACSEDA is further expected to preserve a good compromise
between exploration and exploitation to search the solution space effectively. Experiments
conducted in Section 4 will demonstrate the effectiveness of the proposed cross-generation
individual selection strategy.

3.4. Overall Procedure of ACSEDA

Combining the above three schemes together, the proposed ACSEDA is outlined in
Algorithm 2. Specifically, after the initialization of the population (Line 2), the algorithm
goes to the main iteration loop for evolution (Lines 5–16). In the main loop, it first executes
the proposed adaptive promising individual selection strategy for the estimation of the
mean vector (Lines 6 and 7). Then, it comes to the proposed adaptive covariance scaling
strategy to estimate the covariance of the probability distribution model (Lines 8 and 9).
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Subsequently, the offspring are randomly sampled based on the estimated probability dis-
tribution model (Line 10). Hereafter, it arrives at the proposed cross-generation individual
selection strategy to select individuals for the parent population in the next generation
(Line 12). At last, a local search method is conducted on the global best solution to refine
its accuracy (Line 14).

Algorithm 2: The Procedure of ACSEDA.

Input: population size PS;
1: Set FEs = 0;
2: Initialize PS individuals randomly and evaluate their fitness;
3: FEs = FEs + PS;
4: Obtain the global best solution Gbest and store the current population;
5: While (FEs < FEsmax)
6: Calculate the selection ratio sr according to Equation (11);
7: Select "sr ∗ PS# promising solutions from the population and calculate the mean value μ

using Equation (3);
8: Calculate the covariance scaling parameter cs according to Equation (10);
9: Estimate the covariance matrix C according to Equation (9);
10: Randomly sample PS new individuals based on the estimated multivariate Gaussian
model, evaluate their fitness and store them;
11: FEs = FEs + PS;
12: Combine the offspring in the last generation and the offspring in the current generation to
select PS better individuals to form the parent population for the next generation;
13: Update the global best solution Gbest;
14: Execute local search 2 times on Gbest;
15: FEs = FEs +2;
16: End While

Output: the global best solution Gbest;

In Algorithm 2, it should be noticed that a local search strategy is additionally added
to improve the solution accuracy of the global best solution. This is because EDAs are
probability distribution model based optimization algorithms, and as a consequence, EDAs
usually lack strong local exploitation [26,38,70]. Therefore, in the literature [23,38,70],
local search methods are generally accompanied by EDAs to improve the solution quality.
Hence, the same as most existing EDA variants [23,26,38,70,71], ACSEDA also adopts a
local search method to refine the global best solution, as shown in Line 14.

For simplicity and keeping consistent with the probability distribution model in
ACSEDA, this paper applies the univariate Gaussian distribution with a small variance to
execute the local search on the global best solution. In this paper, the small variance is set
as 1.0 × 10−4. In addition, for saving computational resources, we execute the local search
method on the global best solution only two times, as shown in Line 14.

As a whole, with the proposed three main techniques and the local search method,
ACSEDA is expected to explore and exploit the solution space properly to locate the optima
of optimization problems.

4. Experimental Studies

This section mainly conducts extensive experiments to verify the effectiveness of the
proposed ACSEDA. Specifically, the commonly used CEC 2014 benchmark problem set [44]
is adopted in this paper. This benchmark set contains 30 various complicated optimiza-
tion problems, such as unimodal problems, multimodal problems, hybrid problems, and
composition problems. For detailed information on this benchmark set, please refer to [44].

4.1. Experimental Settings

First, to comprehensively demonstrate the effectiveness of the proposed ACSEDA, we
select several state-of-the-art EDA variants to make comparisons in solving the complicated
CEC 2014 benchmark problems. Specifically, the selected state-of-the-art EDA variants are
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EDA2 [37], EDAVERS [49], EDA/LS [38], EDA/LS-MS [65], MA-ES [58], and BUMDA [39].
In addition, as a baseline method, the traditional multivariate Gaussian model based
EDA [28] is also utilized as a compared method. To tell it apart from the others, we denote
it as TRA-EDA in the experiments.

Second, to make comprehensive comparisons between the proposed ACSEDA and
the above compared EDA variants, we compare their optimization performance in solving
the CEC 2014 problems with three different dimension sizes, namely 30-D, 50-D, and 100-D.
For fairness, the maximum number of fitness evaluations (FEsmax) is set as 10,000 ∗ D for
all algorithms.

Third, for fair comparisons, the key parameter settings of the compared algorithms
are set, as recommended, in the associated papers. For the population size, we tune the
settings of all algorithms on the CEC 2014 benchmark set with different dimension sizes.
Specifically, after preliminary experiments, the parameter settings of all algorithms are
shown in Table 1.

Table 1. Parameter settings of ACSEDA and the compared algorithms.

Algorithm ACSEDA EDA/LS EDA2 EDA/LS-MS EDAVERS BUMDA TRA-EDA MA-ES
Parameter PS PS M Pb Pc θ PS l PS M Pa Pb θ PS sr PS PS sr PS mu

D
30 1300 150

15 0.2 0.2 0.1
100

20
150

15 0.2 0.2 0.1
500

0.35
900 2500

0.2
4 +

$3 ∗ ln D% |PS/2|50 1800 150 200 1000 600 1100 4700
100 3200 150 300 2000 700 1500 6000

Fourth, to comprehensively evaluate the optimization performance of each algorithm,
we execute each algorithm independently for 30 runs and utilize the median, mean, and
standard deviation values over the 30 independent runs to evaluate its optimization
performance. Furthermore, to tell the statistical significance, we conduct the Wilcoxon
rank-sum test, at the significance level of α = 0.05, to compare the proposed ACSEDA with
each associated EDA variant. In addition, to compare the overall optimization performance
of all algorithms on the whole CEC 2014 benchmark set, we further conduct the Friedman
test at the significance level of α = 0.05 by taking advantage of the mean value of each
algorithm on each function in the benchmark set.

At last, it deserves attention that all algorithms are programmed under MATLAB
R2018a, and they are run on the same computer with Intel(R) Core(TM) i7-10700T CPU @
2.90 GHz 2.90 GHz and 8 G RAM.

4.2. Comparison with State-of-the-Art EDAs

Table 2, Table 3, and Table 4 display the comparison results between ACSEDA and
the compared EDA variants on the 30-D, 50-D, and 100-D CEC 2014 benchmark problems,
respectively. In these tables, the symbols “+”, ”−” and “=” represent that ACSEDA
is significantly better than, significantly worse than, and equivalent to the associated
compared algorithms on the associated problems, respectively. Besides, “w/t/l” denotes
the numbers of the problems where ACSEDA achieves significantly better performance,
equivalent performance, and significantly worse performance than the compare algorithms,
respectively. Actually, “w/t/l” is equal to the numbers of “+”, ”=” and “−”, respectively.
Additionally, in the last rows of this table, the averaged rank of each algorithm obtained
from the Friedman test is presented.
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From Table 2, the comparison results between ACSEDA and the compared state-of-
the-art EDAs on the 30-D CEC 2014 benchmark problems can be summarized as follows:

(1) As shown in the last row of Table 2, in view of the Friedman test, it is found that the
proposed ACSEDA obtains the smallest rank and this rank value is much smaller
than those of the other algorithms. This indicates that ACSEDA achieves the best
overall performance on the 30-D CEC 2014 benchmark set and obtains significant
superiority to the compared algorithms.

(2) As shown in the second-to-last row of Table 2, from the perspective of the Wilcoxon
rank-sum test, we can see that ACSEDA achieves significantly better performance
than the compared algorithms on at least 23 problems, except for EDA2 and MA-ES.
Compared with EDA2, ACSEDA shows significant superiority on 13 problems, and
only presents inferiority on 6 problems. Competing with MA-ES, ACSEDA presents
significant dominance on 19 problems, and it loses the competition on 10 problems.

(3) With respect to the optimization performance on different kinds of problems, on the
three unimodal problems, both ACSEDA and EDA2 achieve the true global optima of
these three problems and thus show significantly better performance than the other
6 EDA variants. On the 13 simple multimodal problems, ACSEDA is significantly
superior to EDAVESR, EDA/LS, EDA/LS-MS, and TRA-EDA on 10 problems, and it
also beats EDA2, BUMDA, and MA-ES down on 8, 9, and 9 problems, respectively.
In terms of the six hybrid problems, the optimization performance of ACSEDA is
significantly better than the compared EDA variants on all these functions, except
for EDA2. In comparison with EDA2, ACSEDA shows great superiority on three
problems and achieves equivalent performance with EDA2 on three problems. In
particular, on these six hybrid problems, ACSEDA shows no inferiority to all the
compared EDA variants. As for the eight composition problems, it is observed that
ACSEDA is significantly better than EDA/LS and EDA/LS-MS on all these problems.
In comparison with TRA-EDA and BUMDA, it outperforms them on six and five
problems, respectively. Particularly, on this kind of problem, ACSEDA is a litter
inferior to EDA2 and MA-ES.

(4) To sum up, it is observed that ACSEDA shows very competitive, or even significantly
better, performance in solving the 30-D CEC 2014 benchmark problems, as compared
with the selected state-of-the-art EDA variants. In particular, encountered with
complicated optimization problems, such as multimodal problems, hybrid problems,
and composition problems, the proposed ACSEDA shows great superiority to the
compared algorithms, which indicates that it is very promising for complicated
problems.

Subsequently, from Table 3, we can get the following findings, with respect to the
comparison results between ACSEDA and the compared state-of-the-art EDA variants, on
the 50-D CEC 2014 benchmark problems:

(1) In terms of the Friedman test, as shown in the last row of Table 3, it is found that
ACSEDA still achieves the lowest rank among all algorithms. This verifies that
ACSEDA still obtains the best overall performance on the 50-D CEC 2014 problems.

(2) With respect to the Wilcoxon rank sum test, as shown in the second last row of Table 3,
ACSEDA outperforms EDAVERS, EDA/LS, EDA/LS-MS, TRA-EDA, and BUMDA
significantly on 24, 28, 28, 28, and 21 problems, respectively. Compared with EDA2,
ACSEDA attains much better performance on 13 problems and equivalent perfor-
mance on 9 problems. Competing with MA-ES, ACSEDA significantly outperforms it
on 19 problems and only shows inferiority on 11 problems.

(3) Regarding the performance on different kinds of optimization problems, on the three
unimodal problems, except for EDA2 and MA-ES, ACSEDA still presents great superi-
ority to the other compared EDA variants on all the three problems. In particular, both
ACSEDA and EDA2 locate the true global optimum of F3, while ACSEDA displays
great dominance over EDA2 on the other two problems. Compared with MA-ES,
ACSEDA is much better on two problems, and it obtains worse performance on only
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one problem. On the 13 simple multimodal functions, ACSEDA significantly outper-
forms EDAVERS, EDA/LS, EDA/LS-MS, and TRA-EDA on 11 problems, performs
significantly better than MA-ES on 10 problems, and wins the competition on 7 prob-
lems, as competed with both EDA2 and BUMDA. On the 6 hybrid problems, ACSEDA
is significantly superior to the compared EDA variants on all the six problems, except
for EDA2. In competition with EDA2, ACSEDA loses the competition on five prob-
lems. On the 8 composition problems, ACSEDA is better than EDA/LS, EDA/LS-MS,
TRA-EDA on all eight problems. At the same time, it achieves equivalent or even
much better performance than EDA2, EDAVERS, and BUMDA on at least six problems.
However, ACSEDA shows inferior performance to MA-ES on seven problems.

(4) In summary, encountered with the 50-D CEC 2014 problems, ACSEDA still exhibits
significantly better performance than the compared EDA variants. This further
demonstrates that ACSEDA is promising for both simple optimization problems,
such as unimodal problems, and complicated optimization problems, such as hybrid
problems and composition problems.

At last, from Table 4, the following observations can be achieved from the comparison
results between ACSEDA and the compared state-of-the-art EDA variants on the 100-D
CEC 2014 benchmark problems:

(1) From the averaged rank obtained from the Friedman test, it is observed that ACSEDA
still obtains the smallest rank value among all algorithms. This means that ACSEDA
consistently achieves the best overall optimization performance on the 100-D CEC
2014 benchmark set.

(2) According to the results of the Wilcoxon rank sum test, ACSEDA presents great
dominance to EDAVERS, EDA/LS, EDA/LS-MS, and TRA-EDA on 23, 26, 24, and
28 problems, respectively. In comparison with EDA2 and BUMDA, ACSEDA ob-
tains competitive or even better performance on 20 and 22 problems, respectively.
Compared with MA-ES, ACSEDA achieves much better performance on 15 problems
and presents inferiority on 15 problems as well. This indicates that ACSEDA is very
competitive to MA-ES on the 100-D CEC2014 benchmark problems.

(3) Concerning the optimization performance on different kinds of optimization prob-
lems, on the three unimodal problems, ACSEDA outperforms EDAVERS, EDA/LS-MS,
TRA-EDA, and BUMDA on all these three problems, and it performs much better
than EDA/LS on two problems. However, it loses the competition on these three
problems to both EDA2 and MA-ES. When it comes to the 13 simple multimodal
functions, ACSEDA shows significantly better performance than EDAVERS, EDA/LS,
EDA/LS-MS, TRA-EDA, and MA-ES on at least 10 problems, and presents great supe-
riority to EDA2 on 8 problems. On these 13 problems, ACSEDA and BUMDA achieve
very similar performance. Encountered with the six hybrid problems, ACSEDA ex-
hibits much better performance than the compared EDA variants on at least five
problems, except for EDA2. Faced with the eight composition problems, ACSEDA is
better than EDA/LS, EDA/LS-MS, TRA-EDA, and BUMDA on at least five problems,
presents very competitive performance with EDA2 and EDAVERS, and is only inferior
to MA-ES.

(4) To conclude, encountered with the 100-D CEC 2014 problems, ACSEDA still shows
great superiority to the compared state-of-the-art EDA variants in solving such high-
dimensional problems. In particular, on the complicated problems with such high
dimensionality, such as the hybrid problems and the composition problems, ACSEDA
still presents significant dominance to most of the compared algorithms. This further
demonstrates that the proposed ACSEDA is promising for optimization problems.

Comprehensively speaking, from the above comparisons, we can see that ACSEDA
consistently exhibits great superiority to the compared state-of-the-art EDA variants on the
CEC 2014 benchmark problem set with different dimension sizes. This demonstrates that
ACSEDA is promising for both simple unimodal problems and complicated multimodal
problems. Besides, it also preserves good scalability in solving optimization problems.
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The above demonstrated superiority of the proposed ACSEDA mainly benefits from the
proposed three techniques. With the cohesive cooperation of them, ACSEDA could strike a
promising balance between exploration and exploitation to search the complicated solution
space properly.

4.3. Deep Investegation on ACSEDA

From the above comparison experiments, we can see that ACSEDA shows great
dominance over the compared state-of-the-art EDA variants. In this section, we take a deep
observation on ACSEDA to investigate the influence of each component, so it is clear to see
what contributes to the promising performance of ACSEDA.

4.3.1. Effectiveness of the Covariance Scaling Strategy

First, we conduct experiments to verify the effectiveness of the proposed covariance
scaling strategy, which is realized by setting a larger cs (to estimate the covariance) than the
selection ratio sr (to estimate the mean vector). To this end, first, we fix different sr. Then,
based on each fixed sr, we set different cs, each of which is larger than the associated sr.
Subsequently, based on the above settings of sr and cs, we conduct experiments on the 50-D
CEC 2014 benchmark problems. Table 5 shows the comparison results among ACSEDA
with different settings of the selection ratio (sr) and different settings of the covariance
scaling (cs) parameter on the 50-D CEC 2014 benchmark problems. In this table, the best
results are highlighted in bold in each part associated with each fixed sr. In addition, the
averaged ranks of each cs, in each part obtained from the Friedman test, are listed in the
last row of the table.

From Table 5, we can get the following findings:

(1) With respect to the comparison results of each part, it is found that a larger cs than
sr helps ACSEDA achieve much better performance than the one with cs = sr. In
particular, it is interesting to find that the superiority of the ACSEDA with a larger cs
(than sr) to the one without the covariance scaling (cs = sr) is particularly significant
in solving complicated problems such as F20-F30. This demonstrates the covariance
scaling technique is helpful for ACSEDA to obtain promising performance in solving
optimization problems, especially on complicated problems.

(2) It is also interesting to find that neither a too small cs, nor a too large cs (compared with
sr) are suitable for ACSEDA to achieve promising performance. For instance, when
sr = 0.1, we find that, though ACSEDA with a too-small cs (cs ≤ 0.4) achieves much
better performance than the one with cs = sr (namely without covariance scaling),
its performance is much worse than the ones with a larger cs (0.4 < cs < 0.8). On
the contrary, when ACSEDA has a too large cs (cs ≥ 0.8), its performance degrades
dramatically, as compared with the ones with a proper cs. A similar situation occurs
to ACSEDA with the other settings of sr when cs is either too large or too small. Such
experimental results verify the analysis presented in Section 3.1.

To sum up, it is found that the proposed covariance scaling strategy is effective to
help EDA achieve promising performance in solving optimization problems, especially
complicated problems.
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4.3.2. Effectiveness of the Proposed Adaptive Covariance Scaling Strategy

Then, we conduct experiments to verify the effectiveness of the proposed adaptive
covariance scaling method, which is realized by dynamically adjusting cs according to
Equation (10). Since the proposed adaptive covariance scaling method is related to sr, as
can be seen from Equation (10), we first fix sr as 0.1 and 0.2 to investigate the effectiveness
of the proposed adaptive method. These two settings of sr are utilized because, from the
experimental result in the last subsection as shown in Table 5, when sr is larger than 0.3,
ACSEDA achieves much worse performance and thus, it is meaningless to investigate the
effectiveness of the proposed adaptive cs when sr is larger than 0.3. Subsequently, for each
set of sr, we set different fixed cs for ACSEDA and then compare them with the ACSEDA
with the adaptive cs strategy.

Table 6 presents the comparison between ACSEDA with the adaptive covariance
scaling method and the ones with different fixed settings of cs on the 50-D CEC 2014
benchmark problems. From this table, we attain the following observations:

(1) As a whole, no matter if it is from the perspective of the averaged rank obtained
from the Friedman test or from the perspective of the number of problems where
the algorithm achieves the best results, the ACSEDA with the proposed adaptive cs
obtains much better performance than those with different fixed cs. This verifies that
the proposed adaptive cs strategy is effective to help ACSEDA achieve promising
performance.

(2) Under the same set of sr, we find that the optimal fixed cs for ACSEDA to achieve the
best performance is different on different problems. This indicates that the optimal
setting of cs is not consistent for all problems. With the proposed adaptive strategy, we
can see that not only is the sensitivity of ACSEDA to cs alleviated, but its optimization
performance is also largely promoted.

In summary, based on the above experiments, we can see that the proposed covariance
scaling strategy is very beneficial for ACSEDA to achieve promising performance. This is
mainly because the proposed adaptive strategy helps ACSEDA bias to explore the solution
space in the early stage and, gradually, bias to exploit the found promising areas without
serious loss of diversity as the evolution iterates. As a result, with this adaptive strategy,
ACSEDA could explore and exploit the solution space properly to find the optima of
optimization problems.

4.3.3. Effectiveness of the Proposed Adaptive Promising Selection Strategy

Subsequently, we conduct experiments to verify the effectiveness of the proposed
promising individual selection strategy, which is realized by dynamically adjusting the
parameter sr, based on Equation (11). Since the setting of sr influences the covariance
scaling parameter cs, we first fix cs as 0.6 and then accordingly set different fixed sr. It
should be noticed that cs = 0.6 is adopted here because, in the last subsection, as shown in
Table 6, ACSEDA obtains the best overall performance when cs = 0.6 under the two settings
of sr. Then, we compare the ACSEDA with the proposed adaptive sr and the ones with
different fixed sr under the same set of cs (namely cs = 0.6).
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Table 7 shows the comparison results between the ACSEDA with the proposed adap-
tive sr and the ones with different fixed settings of sr on the 50-D CEC 2014 benchmark
problems. From this table, the following findings can be attained:

(1) In view of the averaged rank obtained from the Friedman test, the ACSEDA with
the adaptive sr achieves the best overall performance than the ones with different
fixed sr. This verifies the effectiveness of the proposed adaptive promising individual
selection strategy for the estimation of the mean vector.

(2) For different problems, the optimal sr is different for ACSEDA to achieve the best
performance. In particular, we find that a small sr tends to help ACSEDA obtain better
performance than a large sr. The proposed adaptive strategy, based on Equation (11),
matches this observation that sr is dramatically decreased to a small value in the early
stage, and then, it mildly declines as the evolution goes as stated in Section 3.2.

Table 7. Comparison between ACSEDA, with and without the adaptive promising individual selection method, on the 50-D
CEC 2014 benchmark problems. The best results are highlighted in bold in this table.

cs = 0.6

F sr = 0.05 sr = 0.10 sr = 0.15 sr = 0.20 sr = 0.25 sr = 0.30 sr = 0.35 Adaptive − sr

F1 1.61 × 10−14 1.42 × 10−14 1.28 × 10−14 7.55 × 101 2.52 × 104 4.67 × 105 1.75 × 107 1.42 × 10−14

F2 2.91 × 10−12 1.08 × 10−12 9.56 × 10−13 2.02 × 100 1.65 × 107 2.91 × 109 1.20 × 1010 2.22 × 10−12

F3 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 2.28 × 100 1.93 × 103 8.44 × 103 0.00 × 100

F4 9.07 × 101 8.88 × 101 9.14 × 101 9.26 × 101 1.04 × 102 3.45 × 102 1.14 × 103 8.67 × 101

F5 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101

F6 1.23 × 10−4 7.35 × 10−5 5.20 × 10−2 6.25 × 10−5 1.74 × 10−2 1.64 × 10−2 2.24 × 10−1 9.75 × 10−5

F7 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 6.22 × 10−1 3.07 × 101 1.13 × 102 0.00 × 100

F8 7.36 × 100 6.80 × 100 8.66 × 100 1.43 × 101 1.95 × 101 2.63 × 101 3.48 × 101 9.78 × 100

F9 6.20 × 100 4.91 × 100 6.10 × 100 7.16 × 100 1.20 × 101 1.71 × 101 2.40 × 101 6.70 × 100

F10 2.52 × 102 3.05 × 102 4.49 × 102 5.11 × 102 7.11 × 102 8.08 × 102 7.93 × 102 3.22 × 102

F11 2.30 × 102 3.36 × 102 4.32 × 102 4.96 × 102 5.80 × 102 7.30 × 102 6.84 × 102 3.57 × 102

F12 3.27 × 100 3.27 × 100 3.21 × 100 3.20 × 100 3.20 × 100 3.30 × 100 3.31 × 100 3.25 × 100

F13 1.39 × 10−1 1.55 × 10−1 1.60 × 10−1 1.57 × 10−1 1.53 × 10−1 2.45 × 10−1 8.50 × 10−1 1.51 × 10−1

F14 2.85 × 10−1 2.95 × 10−1 3.17 × 10−1 3.11 × 10−1 3.16 × 10−1 2.77 × 10−1 1.25 × 101 3.09 × 10−1

F15 4.82 × 100 4.78 × 100 4.77 × 100 5.04 × 100 5.07 × 100 5.10 × 100 8.61 × 100 4.77 × 100

F16 1.86 × 101 1.85 × 101 1.84 × 101 1.87 × 101 1.90 × 101 1.91 × 101 1.93 × 101 1.87 × 101

F17 1.80 × 102 1.75 × 102 1.62 × 102 1.97 × 102 1.70 × 102 2.37 × 102 2.28 × 102 1.44 × 102

F18 1.35 × 101 1.85 × 101 2.08 × 101 2.98 × 101 3.97 × 101 5.17 × 101 5.58 × 101 1.61 × 101

F19 1.17 × 101 1.15 × 101 1.22 × 101 1.33 × 101 2.17 × 101 2.81 × 101 2.23 × 101 1.17 × 101

F20 2.58 × 100 2.71 × 100 3.76 × 100 6.29 × 100 9.09 × 100 1.50 × 101 2.34 × 101 3.14 × 100

F21 2.29 × 102 2.11 × 102 2.28 × 102 2.47 × 102 2.72 × 102 3.10 × 102 3.15 × 102 1.98 × 102

F22 4.16 × 101 3.13 × 101 4.45 × 101 3.27 × 101 4.57 × 101 5.78 × 101 5.63 × 101 3.18 × 101

F23 3.44 × 102 3.44 × 102 3.44 × 102 3.44 × 102 3.50 × 102 3.64 × 102 3.80 × 102 3.44 × 102

F24 2.69 × 102 2.71 × 102 2.72 × 102 2.72 × 102 2.72 × 102 2.72 × 102 2.71 × 102 2.70 × 102

F25 2.05 × 102 2.05 × 102 2.05 × 102 2.05 × 102 2.08 × 102 2.10 × 102 2.12 × 102 2.05 × 102

F26 1.00 × 102 1.00 × 102 1.00 × 102 1.02 × 102 1.04 × 102 1.06 × 102 1.09 × 102 1.00 × 102

F27 3.33 × 102 3.23 × 102 3.11 × 102 3.12 × 102 3.17 × 102 4.09 × 102 5.12 × 102 3.13 × 102

F28 1.15 × 103 1.13 × 103 1.15 × 103 1.20 × 103 1.46 × 103 1.40 × 103 1.40 × 103 1.11 × 103

F29 8.43 × 102 8.32 × 102 8.30 × 102 1.07 × 103 1.50 × 103 1.40 × 103 1.34 × 103 8.24 × 102

F30 8.92 × 103 9.05 × 103 9.18 × 103 1.14 × 104 1.54 × 104 2.05 × 104 3.29 × 104 9.20 × 103

Rank 2.98 2.70 3.25 4.53 5.80 6.67 7.43 2.63

Based on the above experiments, it is demonstrated that the proposed adaptive
promising individual selection strategy, for the estimation of the mean vector, is very useful
for ACSEDA to not only achieve promising performance but also alleviate the sensitivity
to the parameter sr.

4.3.4. Effectiveness of the Proposed Cross-Generation Individual Selection Strategy

At last, we conduct experiments to verify the usefulness of the proposed cross-
generation individual selection strategy for the parent population. To this end, we first
develop three other ACSEDA variants by using some existing typical selection strategies
for the parent population. The first is to directly utilize the generated offspring as the
parent population, such as in some traditional EDAs [20,21,28,30]. This variant of ACSEDA
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is denoted as “ACSEDA-O”. The second is to combine the parent population in the last
generation and the generated offspring and then, select the best half of the combined popu-
lation as the parent population for the next generation, as in some EDA variants [51,68].
This variant of ACSEDA is represented as “ACSEDA-OP”. The last one is to maintain
an archive l in some EDA variants [37] to store the historical useful individuals and then
they are combined with the generated offspring to select the best half of the combined
population as the parent population. This ACSEDA variant is denoted as “ACSEDA-OA”.

After the preparation of the compared methods, we conduct experiments on the
50-D CEC 2015 benchmark problems to compare the ACSEDA with the proposed cross-
generation individual selection strategy and the ones with the above mentioned three
compared strategies. Table 8 presents the comparison results among these different variants
of ACSEDA.

Table 8. Comparison among ACSEDA with different selection strategies for the parent population on the 50-D CEC 2014
benchmark problems. The best results are highlighted in bold in this table.

F ACSEDA ACSEDA-O ACSEDA-OP ACSEDA-OA

F1 1.14 × 10−14 9.80 × 101 5.68 × 10−15 5.21 × 10−15

F2 7.40 × 10−2 6.04 × 102 1.04 × 10−13 8.62 × 10−13

F3 0.00 × 100 4.29 × 10−11 0.00 × 100 0.00 × 100

F4 9.25 × 101 9.59 × 101 9.12 × 101 9.68 × 101

F5 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101

F6 1.74 × 10−2 4.15 × 10−3 1.74 × 10−2 3.47 × 10−2

F7 0.00 × 100 8.03 × 10−12 1.14 × 10−14 0.00 × 100

F8 2.98 × 100 4.84 × 100 3.13 × 102 5.14 × 101

F9 2.49 × 100 4.88 × 100 3.16 × 102 1.23 × 102

F10 1.07 × 102 4.99 × 101 1.22 × 104 6.17 × 103

F11 1.18 × 102 2.84 × 102 1.27 × 104 9.74 × 103

F12 3.35 × 100 3.19 × 100 3.23 × 100 3.20 × 100

F13 1.40 × 10−1 8.34 × 10−2 2.66 × 10−1 2.21 × 10−1

F14 2.40 × 10−1 2.91 × 10−1 2.28 × 10−1 2.35 × 10−1

F15 4.81 × 100 5.42 × 100 2.81 × 101 2.43 × 101

F16 1.80 × 101 1.88 × 101 2.15 × 101 1.96 × 101

F17 1.16 × 102 7.10 × 102 1.54 × 103 1.42 × 102

F18 8.47 × 100 7.40 × 101 9.10 × 101 1.15 × 101

F19 1.08 × 101 1.22 × 101 1.15 × 101 1.14 × 101

F20 1.95 × 100 1.54 × 101 6.69 × 101 4.34 × 100

F21 1.99 × 102 4.93 × 102 9.70 × 102 2.59 × 102

F22 3.54 × 101 8.56 × 101 9.26 × 102 5.28 × 101

F23 3.44 × 102 3.44 × 102 3.44 × 102 3.44 × 102

F24 2.68 × 102 2.72 × 102 2.68 × 102 2.67 × 102

F25 2.05 × 102 2.05 × 102 2.05 × 102 2.05 × 102

F26 1.00 × 102 1.01 × 102 1.00 × 102 1.00 × 102

F27 3.17 × 102 3.44 × 102 3.25 × 102 3.30 × 102

F28 1.16 × 103 1.36 × 103 1.14 × 103 1.19 × 103

F29 8.34 × 102 1.81 × 104 8.17 × 102 9.04 × 102

F30 8.57 × 103 1.07 × 104 8.60 × 103 8.74 × 103

Rank 1.77 2.92 2.82 2.50

From Table 8, we can see that, from the perspective of the averaged rank obtained
from the Friedman test and the number of problems where the algorithm achieves the
best results, the ACSEDA with the proposed cross-generation individual selection strategy
obtains the best overall performance. In particular, not only is the averaged rank is much
smaller than those of the compared methods but the number of problems where the
proposed ACSEDA achieves the best results is also much larger than those of the compared
methods.

The above observations demonstrate that the proposed cross-generation individual
selection strategy for the parent population is very helpful for ACSEDA to obtain promising
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performance. This is because, by combining the generated offspring in the last generation
and in the current generation, this strategy is less likely to generate crowded individuals
for the parent population in the next generation and could, thus, aid ACSEDA to preserve
high search diversity during the evolution, as analyzed in Section 3.3.

5. Conclusions

This paper has proposed an adaptive covariance scaling estimation of distribution
algorithm (ACSEDA) to solve optimization problems. First, instead of estimating the mean
vector and the covariance, based on the same selected promising individuals like traditional
EDAs, the proposed ACSEDA estimates the covariance based on an enlarged number of
promising individuals. In this way, the sampling range of the estimated probability distri-
bution model is enlarged and thus, the estimated model could generate more diversified
offspring, which is helpful to avoid falling into local areas. To alleviate the sensitivity
of the associated parameter, we further devise an adaptive covariance scaling method to
dynamically adjust the covariance scaling parameter during the evolution. Second, to
further help ACSEDA to explore and exploit the solution space properly, this paper further
devises an adaptive promising individual selection strategy for the estimation of the mean
vector. By dynamically adjusting the selection ratio parameter related to the estimation of
the mean vector, the proposed ACSEDA gradually biases to exploit the found promising
areas without serious loss of diversity as the evolution goes. At last, to further promote the
diversity of the proposed ACSEDA, we develop a cross-generation individual selection
strategy for the parent population. Different from existing selection methods, the proposed
selection method combines the randomly sampled offspring in the last generation and
the one in the current generation, together, and then selects the best half of the combined
population as the parent population to estimate the probability distribution model. With
the cohesive collaboration among the three devised techniques, the proposed ACSEDA
is expected to explore and exploit the solution space appropriately and thus, is likely to
achieve promising performance.

Extensive comparison experiments have been conducted on the widely used CEC 2014
benchmark problem set with different dimension sizes (30-D, 50-D, and 100-D). Experimen-
tal results have demonstrated that the proposed ACSEDA achieves very competitive, or
even much better, performance than several state-of-the-art EDA variants. The comparison
results also show that ACSEDA preserves good scalability to solve higher-dimensional
optimization problems. In addition, deep investigations on the effectiveness of the three
proposed techniques have also been performed. The investigation results have demon-
strated that the three proposed mechanisms make great contributions to helping ACSEDA
to achieve promising performance.
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Abstract: This paper is the result of the first-phase, inter-disciplinary work of a multi-disciplinary
research project (“Urban pop-up housing environments and their potential as local innovation
systems”) consisting of energy engineers and waste managers, landscape architects and spatial
planners, innovation researchers and technology assessors. The project is aiming at globally analyzing
and describing existing pop-up housings (PUH), developing modeling and assessment tools for
sustainable, energy-efficient and socially innovative temporary housing solutions (THS), especially
for sustainable and resilient urban structures. The present paper presents an effective application of
hierarchical agglomerative clustering (HAC) for analyses of large datasets typically derived from
field studies. As can be shown, the method, although well-known and successfully established in
(soft) computing science, can also be used very constructively as a potential urban planning tool. The
main aim of the underlying multi-disciplinary research project was to deeply analyze and structure
THS and PUE. Multiple aspects are to be considered when it comes to the characterization and
classification of such environments. A thorough (global) web survey of PUH and analysis of scientific
literature concerning descriptive work of PUH and THS has been performed. Moreover, out of several
tested different approaches and methods for classifying PUH, hierarchical clustering algorithms
functioned well when properly selected metrics and cut-off criteria were applied. To be specific,
the ‘Minkowski’-metric and the ‘Calinski-Harabasz’-criteria, as clustering indices, have shown
the best overall results in clustering the inhomogeneous data concerning PUH. Several additional
algorithms/functions derived from the field of hierarchical clustering have also been tested to exploit
their potential in interpreting and graphically analyzing particular structures and dependencies in
the resulting clusters. Hereby, (math.) the significance ‘S’ and (math.) proportion ‘P’ have been
concluded to yield the best interpretable and comprehensible results when it comes to analyzing the
given set (objects n = 85) of researched PUH-objects together with their properties (n > 190). The
resulting easily readable graphs clearly demonstrate the applicability and usability of hierarchical
clustering- and their derivative algorithms for scientifically profound building classification tasks in
Urban Planning by effectively managing huge inhomogeneous building datasets.

Keywords: temporary environments; pop-up housings; building classification; Hierarchical Agglom-
erative Clustering (HAC) algorithms; cluster proportion/significance

1. Introduction

1.1. Description of PUH-Environments–Web Search and Literature Survey

Pop-up housings (PUH) and temporary housing solutions (THS), respectively, can be
characterized based on multiple aspects in terms of technical, architectural, infrastructural,
economic, ecological, temporal and socio-cultural considerations as well as local conditions
and contextual circumstances.

The following introductory statements are based on the general analysis of over
85 PUH/THS structures (see list ‘Collection of PUH-examples’ in Supplementary Materials)
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that have been researched and recorded/documented for later classification of PUH, which
is the main aim of this paper. Moreover, the principal methodology of clustering, applicable
to numerous similarly structured problems, is presented.

On the one hand, a rising need for affordable and sustainable THS, mainly in urban
regions of developed countries, can be observed. This refers to a trend in the housing
demand of young people, such as singles, students, workers and professionals, artists
as well as young families. Rising requirements in the working environment concerning
flexibility and mobility/stand-by duty, potentially lower-income situations and changing
social developments/living conditions, among others, are triggering the subtle change
in housing needs, particularly of younger generations. Such THS might play a role in
the decarbonization of the building sector as well. Tumminia et al. [1] showed through
LCA- and energy consumption simulations that for a high energy efficiency prefabricated
building module for temporary housing, mainly consisting of fiber-reinforced plastic (FRP),
the pre-use phase causes the most (72%) total environmental impacts compared to the
use-phase (23%). Generally speaking, it is vital to use LCA methods to assess the overall
energy and environmental performances of such temporary housing units [1].

Apart from housing units of solely architectural experiments and design studies, or
artists’ visualization projects, there is also a market for (fairly extravagant) micro or tiny
homes, ashore and afloat. These units are often single and provide (temporary) housing
solutions for users who are seeking exclusive, often self-sustaining housing conditions,
frequently being rather highly priced.

On the other hand, there are THS for people and user groups with a more ‘urgent or
critical’ housing demand, such as socially underprivileged (local) people, lowest-income
households, asylum seekers, refugees and homeless people, to name a few. These THS aim
to provide more ‘basic’ housing/shelter options with high affordability and ease of build
possibilities in mind.

In general, the global need for temporary housing is rising through the increasing
severity of natural disasters, increase in number of climate refugees due to climate change
and rapid urban population growth in developing countries [2].

THS for post-disaster situations seem to be analyzed most in the scientific literature [3–6].
Concerning a post-disaster temporary housing settlement, several contextual factors have
to be considered, such as physical characteristics of the settlement, availability of vital
services such as education, health and work, infrastructure services, accessibility to the
temporary houses within the settlement, economic prospect of the temporary settlement
as well as socio-cultural, educational and financial standards of the occupants, as pointed
out by Abulnour [3]. Temporary accommodation in post-disaster situations is an issue that
goes beyond the simple provisioning of housings since the whole space for the temporary
settlement is important [4].

A considerable part of the provided THS is not produced in the affected region but in a
different country, often neglecting local resources, such as building materials and labor work-
force. Therefore, social problems and environmental degradation are often the consequence of
false planning strategies (i.e., not considering the option of prolonged usage) and commonly
require transition to permanent housing [4]. The lack of environmental, economic and social
sustainability of temporary housing environments in post-disaster situations stems from poor
governmental decision-making, lack of understanding of user’s needs and lack of realization
and adaptability to local conditions, as discussed by Perrucci et al. [2].

As a consequence of the need to capture the great diversity of and to classify the re-
searched and analyzed THS, a method being able to ‘cope’ with the heavy inter-disciplinary
characteristics of the THS (i.e., mixed categorical and numerical data) had to be found.
Therefore, a high amount of time has been spent for selecting, testing and refining a wide
variety of already known clustering algorithms to come up with the best suitable clustering
method in order to solve the aforementioned THS classification/structuring problem.
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1.2. Data/Buildings Classification and Applied Clustering Algorithms

Throughout the past decade, data classification and clustering algorithms have been
applied extensively in the fields of biology, engineering, information science, medical sci-
ences as well as behavioral and social sciences, to name a few. Furthermore, cluster analysis
has been widely used in many applications such as business intelligence, image pattern
recognition, web search, biology and security [7]. The need for, and advantageous uses of,
cluster analysis probably stem from the rising amount of readily available and processable
big data and the urge to generate interpretable structures and usable classifications and
correlations out of seemingly unstructured or highly heterogeneous datasets.

Concerning the classification and (technical) evaluation of buildings, various scientific
studies have already been performed, mainly for energy consumption profiling [8–14] and
assessing/improving energy efficiencies of different buildings [15,16] as well as bench-
marking buildings [17–23]. A comprehensive review of performed cluster analyses in the
building sector can be found in [15].

Throughout these performed studies (covering building topics), two methods for
classification and clustering of data have proven themselves to be highly suitable and
appropriate: hierarchical and k-means clustering algorithms. K-means is an iterative
algorithm that divides a given dataset into k clusters by minimizing the sum of all squared
Euclidian distances to the respective cluster centers (centroids to be chosen). Different
‘cluster quality indices’ are applied herein to obtain the optimal number of clusters, e.g.,
the ‘Davies and Bouldin’ and the ‘Silhouette’ indices. Grouping data into clusters so that
objects within each specific cluster are very similar to each other but also very dissimilar to
objects in other clusters requires distance measures (metrics based on indices of proximity)
so that similarities and dissimilarities can be assessed correctly. Hierarchical data clustering
results in a so-called ‘dendrogram’ (graphical clustering tree structure), which represents
groupings of objects at specific (dis-) similarity levels. Which clustering algorithm to choose
is a matter of specific properties, i.e., type and scale of the given dataset, for example. As
a matter of fact, HAC can yield impressive and rather easily readable results concerning
clustering and classification of general building information/datasets. In the following, the
effective application of HAC on inhomogeneous data of PUH-environments is presented,
leading to the obvious suggestion that HAC could be far more intensely used for building
classification tasks in urban planning. For a detailed description of a novel clustering
algorithm (k-CMM), especially suited to mixed numerical and categorical data, see e.g.,
Dinh et al. [24].

2. Methodology

2.1. Data Preparation–Data Type and Scale

Firstly, before initiating a cluster analysis through a specific clustering algorithm,
an examination of the given dataset has to be performed in order to specify general
clusterability (is cluster structure present?), data quality and data structure, as pointed out
in Jain and Dubes [25]. The result of this first data analysis helps in choosing an appropriate
distance metric, which is crucial for proper clustering results. In the present study, an
analysis of over 85 PUH/THS (from now on referring to ‘objects’) has been performed,
and a representative table with all (n) objects and over a hundred (d) attributes, describing
them as holistically as possible, has been generated. This dataset is viewed as the (d x
n) pattern matrix, where each row of this matrix represents a pattern, and each column
denotes a feature/property. Features are categorized as binary; thus, each individual object
does (Yes) or does not (No) contain a specific attribute. Binary features are best coded on
a qualitative, nominal scale, e.g., (0, 1). Therefore, a suitable distance metric, measuring
proximity between objects, must be chosen according to the data type and scale. The
implemented metric for the (d x n) pattern matrix of PUH/THS results in the so-called
proximity matrix [d(i, j)], containing the pairwise indices of proximity between the ith and
jth object.
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2.2. Cluster Analysis
2.2.1. Descriptions and Definitions of Application-Oriented Hierarchical Cluster Analysis
(HCA)

As mentioned before, the proximity matrix describes the proximity between objects to
be clustered using a problem-specific metric. It is the only, and therefore crucial, input to a
clustering algorithm. The following application-oriented hierarchical clustering represents an
exclusive (each object belongs to exactly one cluster with no overlapping), intrinsic (unsuper-
vised, no a priori partition) and hierarchical (interlaces sequence of partitions) form of object
classification. The following mathematical notations are explicitly taken from Jain et al. [26].

Hierarchical cluster analysis (HCA) is a procedure for transforming a defined proxim-
ity matrix into a sequence of interlaced partitions.

The n objects to be clustered are denoted by the set χ where xi is the ith object:

χ = {x1, x2, x3 . . . .xn } (1)

A partition, Γ of χ, divides χ into subsets {C1, C2 . . . . Cm}, which satisfy the following
expressions:

Ci ∩ Cj = ∅ (2)

for all i and j from 1 to m, i �= j, where ∅ is the empty set,

C1 ∪ C2 ∪ . . . ∪ Cm = χ (3)

the union of all clusters results in the total quantity of all n objects.
Thus, the hierarchical clustering algorithm yields a sequence of partitions in which

each partition is nested into the next partition in the sequence. The process is repeated to
form a sequence of nested clusters until a single cluster containing all n objects remains [26].
This approach is also called hierarchical agglomerative clustering (HAC). The visualization
of the clustering results is obtained through a special type of tree structure called a den-
drogram. A dendrogram consists of layers of nodes, each representing a cluster. Cutting a
dendrogram horizontally creates a clustering [26]. Therefore, a suitable ‘cut-off’ criterion,
described later in detail in the present chapter, must be defined in order to achieve an
optimum number of clusters for a given set of objects.

Two specific hierarchical clustering methods can be distinguished, the single-link and
the complete-link form. The sequences of clusterings created by these two methods depend
on the proximities only through their rank order. Single-link clusters are characterized
as maximally connected subgraphs, whereas complete-link clusters are maximally complete
subgraphs [26]. In single-link clustering, the similarity of two clusters stems from the
similarity of their most proximate similar objects. In complete-link clustering, the similarity
of two clusters stems from the similarity of their most dissimilar objects. This diverse
approach induces a different dendrogram; thus, a conscientious interpretation and analysis
of the resulting clusterings are necessary.

2.2.2. Applied Clustering Technique

Figure 1 illustrates the step-by-step procedure performed to obtain the most suitable
metric and cut-off criterion for the optimum number of clusters, thus calculating the final
proximity matrix and displaying the obtained clusters through dendrograms. Accordingly, a
final table with all objects (listed PUH) clustered by inconsistency coefficient and weighted
match of columns has been generated. The following distance measures were included in
this selection algorithm as depicted in Figure 1: basic, squared and standardized Euclidean
distances, the City Block-, Minkowski-, Chebychev-, Mahalanobis-, Cosine-, Correlation-, Spearman-,
Hamming- and Jaccard distances.
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Figure 1. Algorithm for selecting the best suitable metric and writing the final clustered results.

2.2.3. Measuring Dissimilarity: Proximity Index ‘Hamming Distance’ (Minkowski Metric)

Because of the underlying data nature and, as a result of the conducted selection
algorithm, the most suitable and comprehensibly applicable metric out of all investigated
proximity indices was chosen as the Minkowski proximity index d(i, k) between the ith and
kth patterns, measuring dissimilarity d(i, i) = 0 for all i:

d(i, k) =

⎛⎜⎝ d

∑
j=1

∣∣∣xij − xkj

∣∣∣r
⎞⎟⎠

1
r

(4)

where r ≥ 1.
Choosing r = 2 results in the Euclidean distance, the most common of the Minkowski

metrics. For r = 1 and exclusively for binary features, the values are either 0 or 1. In this
particular case, the Minkowski metric corresponds to the so-called ‘Hamming distance’. This
metric is particularly useful for measuring differences and similarities as:

d(i, k) =
d

∑
j=1

∣∣∣xij − xkj

∣∣∣ (5)

with r = 1, see Equation (4).

2.2.4. Determining the Number of Clusters: Clustering Index
‘Calinski-Harabasz’-Criterion

In order to find the structure contained in the data, it is necessary to specify a suitable
and ideal number of clusters for hierarchical clustering. To determine this number, the
following evaluation criteria were analyzed in more detail, the Calinsky-Harabasz, Davies-
Bouldin, Gap, Silhouette and Cut-off criteria for inconsistent data. A detailed description
of the application of the Silhouette coefficient can be found in Dinh et al. [27].

The chosen Calinski-Harabasz index (known as Variance-Ratio criterion) is defined
as the quotient of the degree of separation and compactness, using a normalization factor
to limit the monotonous increase of the index with an increasing number of clusters. The
Calinski-Harabasz index (CH-i) can therefore be written as:

CH(n) =
SSB
SSW

× n− k
k− 1

(6)
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where n is the total number of data points (observed objects), k is the number of clusters,
SSB is the overall between (inter)-cluster variance or separation degree and SSW is the
overall within (intra)-cluster variance or compactness degree. Accordingly, the optimum
number of clusters is achieved with the highest value of CH-i.

2.2.5. Deep Search

A depth-first search is used to identify any deeper structure in the data. The structure
of the data is exposed recursively. In the first step, the optimal clustering is calculated.
This step is called Layer 1. In the next step, the same procedure is applied again to each of
the calculated clusters. After each new application, the calculated clusters are checked for
meaningfulness with respect to the resulting clusters. If the result of the decomposition is
mostly a cluster with only one element, this clustering step is discarded, and the search
for this branch is stopped. If a cluster contains too few objects at the beginning of the new
step, the process is stopped for this branch. Each new cycle is assigned to a new layer. The
notation for this is Cluster-number_layer1-number_layer 2- . . .

For a more distinctive cluster analysis, and in order to obtain a deeper interpretation of
the clustering results (assignments of an object (PUH) to a specific cluster), Bayesian rules
are applied, and possible conclusions are drawn from there. Figure 2 shows the respective
flow chart of the applied depth-first-search algorithm (showing procedure exemplary for
the first two layers).

Figure 2. Algorithm for depth-first-search to identify any deeper clustering structure.

2.2.6. Limitations of Applied Method

As mentioned in the introductory section, there exist several proven distance (dis-
similarity) measures as well as various clustering indices (cut-off criteria) to provide the
optimum number of clusters for scattered, inhomogeneous data. The authors tried to
conscientiously identify the most suitable metric and the best applicable clustering index
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according to the given datasets’ characteristics. Overall, several Matlab simulation test
runs with different metrics and cut-off criteria were performed prior to settling on the
mentioned Minkowski metric together with the ‘Calinski-Harabasz’-criterion. This choice,
although evaluable and logically deducted, confines the possible clustering results, which
potentially differ from each other when applying a specific metric and cut-off criterion.
As a consequence, the provided clusterings in this paper must be considered as specific
results from the application of an individually chosen and user-specific clustering tech-
nique, which might, albeit not heavily, differ from the results of other applied clustering
algorithms.

2.3. Assessment

Two values were defined to evaluate whether a characteristic is meaningful with
regard to a cluster. The first number evaluates how large the proportion of objects with this
property is in the cluster. This value is referred to as P (proportion). The second number
indicates how meaningful a characteristic of a cluster is in relation to all other clusters in
the same level. This number is referred to as S (significance).

2.3.1. Proportion Pi

Pi describes the proportion of objects which possess the characteristic in relation to
the number of objects in the considered cluster i.

Pi :=
#(Objects in the cluster which have the characteristic)

#(Objects in cluster)
(7)

Equation (7) defines the proportion of the considered characteristic in the cluster with #,
being the number of elements that have the described property and i being the cluster
number.

2.3.2. Significance Si

Significance Si describes the likelihood that an object with an observed characteristic
is in a particular cluster on the level under consideration. The Bayes theorem is used to
define this value.

In the Bayesian approach, an observation is not allocated to a cluster with probability 1.
The Bayesian approach generates cluster probabilities for each object. This is especially
important for observations close to cluster boundaries [27].

Bayes’ theorem can be stated mathematically as follows, hereby defining the signifi-
cance Si:

Si = P(A|B) = P(B|A) P(A)

P(B)
, (8)

where A and B are events and P(B) �= 0.
P(A

∣∣B) and P(B
∣∣A) respectively denote the likelihood of event A (B) occurring, given

that B (A) is true, called the conditional probability. P(A) and P(B) are the probabilities
of observing events A and B independently of each other, called the marginal probability.
Based on the definition, Si describes a measure that, if an object has a characteristic, it is
located in cluster i.

3. Results

3.1. Input Data for Clustering Algorithm

The presented methodology can be applied to all systems following the below-listed
criteria. The input data for the verification of the model has been chosen from an evaluation
of case examples for temporary living. The types of housing examples are called ‘objects’
within this publication. The objects have been selected within a scientific study on a
global basis, whereas only objects in Vienna were physically visited. All other objects
were only selected if comprehensive information could be accessed online. The described
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criteria were developed and selected within an interdisciplinary, scientific team of energy
engineers, architects, waste management experts, sanitary engineers, landscape architects
and special planning experts. Each criterion had to fulfill the condition that only ‘yes’
or ‘no’, and ‘existing’ or ‘not existing’ could be selected, e.g., one floor (yes/no), private
kitchen (existing/not existing); where yes and no (as well as existing and not existing) were
coded as 1 and 0, respectively.

Pattern and Proximity Matrix

As mentioned in the Introduction, 54 out of more than 85 analyzed objects (type of
housing) were put together, i.e., listed as a complete dataset in a representative table with
all (n) objects and nearly two hundred (d) properties, viewed as the (d x n) pattern matrix.
Features were categorized as binary, and thus, each individual object did (marked with an X
and being represented as 1) or did not (empty field being represented as 0) contain a specific
property.

The data for the remaining objects were too incomplete, scattered or unclear to be
included in the final table. The complete matrix is shown in the Supplementary Materials.

The pattern matrix represents the starting basis for all further clustering considerations
and algorithmic calculations. Being rather large (see complete table with all objects and
properties in ‘attachments’ to this paper), only a fragment of the matrix is depicted at this
point, solely for illustrative purposes, showing all final objects, but only a fraction of all
listed properties, see Table 1.

A fragment of the proximity matrix [d(i, j)], containing the pairwise indices of proximity,
i.e., the dissimilarity between the ith and jth object/feature, is presented in Table 2 for
illustrative purposes only. As can be seen in Table 2, the diagonal entries of the proximity
matrix can be ignored since all patterns are assumed to have the same degree of dissimilarity
(namely zero) with themselves. One can also identify the symmetry of the proximity matrix
since all pairs of objects have the same proximity index, independent of the order in which
they are stated.

3.2. Visualization of Clustering Results
3.2.1. Overview of the Resulting Structuring

Table 3 gives a graphical overview of the resulting clustering of the PUH environment.
The distribution of clusters in the individual layers, as well as the assignment of the THS to
the individual clusters, are clearly visible. Moreover, it can be seen that Cluster 1 within
Layer 1 could not be broken down further. However, enlarged sample sizes could result
in a meaningful clustering of the THS samples in Layer 2. The former Cluster 1 could be
implemented into a new cluster structure. Finally, the number of layers is not limited to
three. In the corresponding case study, the mathematical modeling did not result in any
further, meaningful sub-clusters. Again, an enlarged sample size could lead to different
results, eventually leading to a higher number of layers. Summarizing, after a correct
selection of states for each criterion, the mathematical solution shows the clusters as well
as the number of layers.
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Table 2. Proximity matrix [d(i, j)] (extr.), based on previously mentioned dissimilarity index/Minkowski metric.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.0000 0.1907 0.1753 0.2371 0.2165 0.2062 0.2165 0.1959 0.1649 0.2062 0.3041 0.2577 0.2474 0.3093 0.2680
2 0.1907 0.0000 0.1289 0.2732 0.1289 0.1289 0.1495 0.1495 0.1392 0.2113 0.3093 0.2113 0.2526 0.3144 0.2526
3 0.1753 0.1289 0.0000 0.2577 0.1753 0.0825 0.1340 0.1237 0.1443 0.1959 0.3247 0.2371 0.2268 0.2990 0.2371
4 0.2371 0.2732 0.2577 0.0000 0.2371 0.2577 0.2990 0.2887 0.2474 0.2474 0.2216 0.2371 0.2990 0.3196 0.2887
5 0.2165 0.1289 0.1753 0.2371 0.0000 0.1959 0.1856 0.1959 0.1546 0.2371 0.3041 0.2371 0.2680 0.3093 0.2887
6 0.2062 0.1289 0.0825 0.2577 0.1959 0.0000 0.1443 0.1237 0.1649 0.2165 0.3247 0.2371 0.2577 0.2887 0.2062
7 0.2165 0.1495 0.1340 0.2990 0.1856 0.1443 0.0000 0.0722 0.1443 0.1753 0.3144 0.2165 0.2165 0.2784 0.2474
8 0.1959 0.1495 0.1237 0.2887 0.1959 0.1237 0.0722 0.0000 0.1237 0.1856 0.3041 0.1959 0.2268 0.2577 0.2268
9 0.1649 0.1392 0.1443 0.2474 0.1546 0.1649 0.1443 0.1237 0.0000 0.2062 0.2835 0.1753 0.2062 0.2577 0.2165

10 0.2062 0.2113 0.1959 0.2474 0.2371 0.2165 0.1753 0.1856 0.2062 0.0000 0.3351 0.1753 0.1546 0.2784 0.2268
11 0.3041 0.3093 0.3247 0.2216 0.3041 0.3247 0.3144 0.3041 0.2835 0.3351 0.0000 0.2732 0.3144 0.2938 0.3144
12 0.2577 0.2113 0.2371 0.2371 0.2371 0.2371 0.2165 0.1959 0.1753 0.1753 0.2732 0.0000 0.1237 0.1546 0.1649
13 0.2474 0.2526 0.2268 0.2990 0.2680 0.2577 0.2165 0.2268 0.2062 0.1546 0.3144 0.1237 0.0000 0.1753 0.1856
14 0.3093 0.3144 0.2990 0.3196 0.3093 0.2887 0.2784 0.2577 0.2577 0.2784 0.2938 0.1546 0.1753 0.0000 0.1856
15 0.2680 0.2526 0.2371 0.2887 0.2887 0.2062 0.2474 0.2268 0.2165 0.2268 0.3144 0.1649 0.1856 0.1856 0.0000
16 0.1907 0.2062 0.1804 0.3041 0.2629 0.2113 0.1804 0.2010 0.2113 0.1804 0.3299 0.2629 0.2216 0.3247 0.2113
17 0.2423 0.2165 0.1701 0.2835 0.2938 0.1804 0.2010 0.1804 0.2216 0.2113 0.2990 0.2216 0.2320 0.2938 0.1907
18 0.2732 0.2268 0.1907 0.3144 0.2835 0.2113 0.2216 0.2010 0.2010 0.2216 0.3299 0.1907 0.1907 0.2113 0.1186
19 0.2990 0.2629 0.2474 0.3093 0.3093 0.2474 0.2474 0.2268 0.2268 0.2268 0.3351 0.1959 0.2165 0.2062 0.1649
20 0.2577 0.2526 0.2474 0.3196 0.3093 0.2474 0.2371 0.2371 0.2474 0.2062 0.3557 0.2062 0.1443 0.2165 0.1546
21 0.1856 0.2320 0.2474 0.2474 0.2165 0.2577 0.2268 0.2062 0.1546 0.2474 0.2835 0.1856 0.2474 0.2577 0.2062
22 0.2784 0.2835 0.2680 0.3402 0.3093 0.2887 0.2474 0.2474 0.2371 0.1959 0.3763 0.1959 0.1340 0.2062 0.1856
23 0.2938 0.2990 0.2526 0.3454 0.3351 0.2629 0.2526 0.2423 0.2320 0.1907 0.3711 0.2113 0.1598 0.2113 0.1907
24 0.2629 0.2990 0.2526 0.3454 0.3351 0.2835 0.2526 0.2423 0.2320 0.1804 0.3814 0.2320 0.1598 0.2423 0.1907
25 0.2629 0.2680 0.2216 0.3247 0.3041 0.2629 0.2113 0.2216 0.2113 0.1598 0.3711 0.2113 0.1495 0.2732 0.2320
26 0.2216 0.2577 0.2526 0.3454 0.2835 0.2732 0.2320 0.2113 0.1907 0.2010 0.3505 0.1907 0.1495 0.2216 0.1907
27 0.2680 0.3041 0.2784 0.2990 0.3299 0.2887 0.2577 0.2371 0.2474 0.2474 0.3247 0.1856 0.1753 0.1856 0.2165
28 0.2990 0.2526 0.2268 0.3196 0.2887 0.2165 0.2268 0.2165 0.2165 0.2062 0.3557 0.1443 0.1546 0.1546 0.1134
29 0.2938 0.2577 0.2320 0.2835 0.3041 0.2526 0.2423 0.2216 0.2320 0.1907 0.3299 0.1598 0.1701 0.1701 0.1392
30 0.2680 0.2320 0.2371 0.3093 0.2887 0.2474 0.2165 0.1753 0.2062 0.2165 0.3454 0.1546 0.1753 0.2062 0.2165
31 0.2577 0.2526 0.2268 0.2784 0.2680 0.2577 0.2062 0.2062 0.2062 0.1856 0.3247 0.1340 0.0722 0.1753 0.1753
32 0.2629 0.2474 0.2629 0.3041 0.2732 0.2629 0.2010 0.2216 0.2216 0.2216 0.3196 0.1495 0.1495 0.1598 0.1907
33 0.2938 0.3299 0.2732 0.3454 0.3454 0.2938 0.2835 0.2526 0.2732 0.2629 0.3711 0.2113 0.2113 0.1804 0.1804
34 0.3041 0.2990 0.2629 0.3041 0.3247 0.2629 0.2835 0.2526 0.2423 0.2423 0.3402 0.1495 0.1907 0.1598 0.1495
35 0.2990 0.2835 0.2371 0.3299 0.2990 0.2474 0.2577 0.2268 0.2268 0.2371 0.3454 0.1649 0.1649 0.1340 0.1340
36 0.2577 0.2320 0.1856 0.2680 0.2990 0.1959 0.2371 0.2062 0.2371 0.2371 0.2938 0.2268 0.2474 0.2371 0.1753
37 0.2526 0.1753 0.1289 0.3351 0.2526 0.1392 0.1495 0.1289 0.2010 0.2320 0.3299 0.2526 0.2423 0.3041 0.2113
38 0.3351 0.3093 0.3041 0.3557 0.3557 0.2938 0.3144 0.2835 0.2835 0.3144 0.3299 0.2732 0.2835 0.2835 0.2113
39 0.3093 0.2423 0.1753 0.3402 0.2784 0.1753 0.2062 0.1649 0.2268 0.2680 0.3454 0.2371 0.2474 0.2474 0.1856
40 0.3093 0.2216 0.2371 0.3196 0.3093 0.2165 0.2268 0.2062 0.2371 0.2680 0.3247 0.2268 0.2577 0.2474 0.1959
41 0.3196 0.2216 0.2062 0.3299 0.2887 0.1753 0.2165 0.1856 0.2474 0.2887 0.3144 0.2577 0.2887 0.2887 0.1959
42 0.2887 0.2423 0.1856 0.3299 0.2784 0.1753 0.2165 0.1753 0.2165 0.2577 0.3454 0.2577 0.2474 0.2784 0.2165
43 0.2835 0.2474 0.2320 0.3660 0.2835 0.2423 0.2320 0.2113 0.2216 0.2629 0.3814 0.2216 0.2320 0.2320 0.1701
44 0.2887 0.2629 0.2371 0.3505 0.2680 0.2474 0.2371 0.2062 0.2062 0.2680 0.3454 0.2371 0.2371 0.2371 0.1340
45 0.3505 0.3041 0.2680 0.3402 0.3093 0.2577 0.2784 0.2577 0.2784 0.2990 0.3351 0.2577 0.2577 0.2784 0.1649
46 0.3247 0.2784 0.2629 0.3247 0.3351 0.2629 0.2629 0.2526 0.2835 0.2835 0.3196 0.2423 0.2423 0.2423 0.1598
47 0.3196 0.2835 0.2680 0.3402 0.2990 0.2577 0.2784 0.2474 0.2577 0.2990 0.3866 0.2474 0.2577 0.2371 0.1959
48 0.3196 0.2732 0.2577 0.3505 0.2990 0.2474 0.2680 0.2371 0.2268 0.2990 0.3557 0.2371 0.2474 0.2165 0.1856
49 0.3454 0.2887 0.2526 0.3660 0.3351 0.2320 0.2835 0.2526 0.2732 0.3247 0.3711 0.3041 0.3247 0.3247 0.2526
50 0.3505 0.2938 0.2887 0.3608 0.3608 0.2474 0.2887 0.2680 0.2990 0.3505 0.3454 0.3093 0.3299 0.3711 0.2887
51 0.2835 0.2577 0.2113 0.3454 0.3247 0.2113 0.2732 0.2526 0.2423 0.2526 0.3814 0.2732 0.2629 0.3247 0.2629
52 0.3041 0.2990 0.2526 0.3557 0.3351 0.2732 0.2835 0.2526 0.2526 0.2938 0.4124 0.2835 0.2423 0.2629 0.2320
53 0.3093 0.2629 0.2268 0.3402 0.3196 0.2371 0.2784 0.2371 0.2784 0.2784 0.3144 0.2577 0.2680 0.3093 0.2474
54 0.2938 0.2680 0.2320 0.3351 0.3454 0.2526 0.2629 0.2526 0.2526 0.2835 0.3402 0.2629 0.2732 0.3144 0.2216
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3.2.2. Proximity Dendrogram

As mentioned above, a dendrogram represents the graphical form of clusterings, either
in single-link or complete-link form. Moreover, a dendrogram yields the nested grouping of
patterns and similarity levels at which groupings change [26].

Figure 3 represents the complete-link dendrogram for the input data. Two major
clusters can be identified (differentiated by color); The length of the various bars describes
the dissimilarity or proximity between various objects using the specified metric. As can
be seen in Figure 3 (marked by dotted blue line), several sub-clusters can be formed and
visualized when using a specific clustering index as ‘stop criterion’ (e.g., 0.2).

Table 3. Overview of the resulting PUH-environment.
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Table 3. Cont.
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Figure 3. Complete-link dendrogram for final PUE-objects (n = 54).

4. Discussion

4.1. Bar Plots–Feature-To-Cluster Assignment

In the following, typical results of the mathematical modeling are presented. The
selected types of illustration are typical examples of how those results can be presented.
Figure 4 shows the proportion as calculated according to the above-derived equation for
each characteristic element. The frequency of occurrence is normalized to one, which means
that one represents 100% of examples in the cluster having the considered characteristic,
whereas 0 means 0% of the examples show this specific characteristic. Thus, the values,
and especially the shape, of the graphs indicate the importance of specific characteristics
for each cluster. It is straightforward to create illustrations, as shown in Figure 4 for each
cluster, to compare the significance of each group of characteristics with each other. These
illustrations help the experts who provide the initial data to neutrally evaluate the results.

In Figure 5, the significance of each characteristic in a cluster in relation to the so-called
parent cluster is shown. Based on the investigated cluster, a specific number ‘i’ of sub-
clusters results from the calculations. For simplicity, again, only two sub-clusters are used
in the explanatory illustrations. A significance of ‘1’ means that the specific characteristic
is only present in one sub-cluster of all sub-clusters extracted out of one parent cluster.
A significance of ‘0’ means that this characteristic is not existing in the sub-cluster ‘i’.
Again, this type of illustration helps to group the classifications and allows a graphical
evaluation of the results based on the mathematical modeling. This allows a dispassionate
evaluation of the results of the initial classification of the example cases. In comparison to
the classical evaluation of large groups of objects, these findings and the selected methods
of presentation are big advantages to avoid misjudgments by the experts.
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Figure 4. The illustration shows how present a feature is in the determining cluster.

Figure 5. The significance of each characteristic to the clusters.

Figure 6 gives a graphical overview of the whole assessment of data, including the
conciseness, given as proportion, and significances of each characteristic number for several
layers of classes (parent cluster down to each layer of sub-clusters). Again, the values are
normalized to ‘1’, representing all cases in the corresponding cluster, and ‘0’, meaning no
proportion/significance. The visual presentation of the results of mathematical modeling
can be used to distinguish relevance. If both criteria (proportion and significance) are high
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for a specific characteristic within a specific cluster, it can be stated that this characteristic
is relevant for the assignment of objects into the cluster. If only the proportion is high,
this means that the characteristic criteria are relevant for the cluster but should not be
exclusively assigned. In other words, many objects within the observed cluster possess
specific characteristics, but other objects in other clusters possess this characteristic as well.
Vice versa, it can be stated if only the significance is high, this means that the characteristic
is the reason for assigning the object to the cluster, but many other objects in the same
cluster do not possess this characteristic.

Figure 6. The relation of proportion and significance of characteristics to the clusters.

Summarizing, the combination of proportion and significance, and especially their gradient
between the different layers of clusters (parent cluster, sub-clusters, sub-sub-clusters, . . . ),
allows a description for each specific cluster. Based on the graphical presentation, which
is created automatically out of the results of the mathematical modeling, the experts can
easily determine the relations between the list of objects.

4.2. Interpretation

As an example, properties Nr. 1 (‘residential use’) and Nr. 2 (‘embedded in formal
setting’) generally represented descriptive characteristics. Both exhibited a proportion of
p = 1 in all clusters and layers. Whereas the significance S was clearly below 1 (S << 1),
meaning that the specific PUH-objects, namely dwelling forms, are very homogeneously
distributed in the particular clusters.

It is possible to identify properties that are representative of a particular cluster, i.e.,
properties that are relevant for the assignment of a PUH-object to a particular cluster
(classification). Properties Nr. 36 (‘space-saving transport’), Nr. 37 (‘frame construction
with lightweight walls’), Nr. 38 (‘supported by poles and ropes’) and Nr. 58 (‘embedded in
informal setting’) exhibited relevance for their specific clusters, i.e., their significance S was
S = 1, and their proportion P was rather high.

Properties that are strongly descriptive, i.e., relevant for classification/assignment to
particular clusters, can be explicitly found for Cluster 2 and its subclusters. Property Nr. 87
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(‘thermal insulation’), Nr. 88 (‘reversible/reusable foundation’), Nr. 99 (‘unit connected to
centralized water supply’), 100 (‘unit has sewage connection’) and Nr. 101 (‘house with
one unit per floor’) were the most significant characteristics.

5. Conclusions

5.1. Final Classification Remarks
5.1.1. General

At least 80% of all analyzed objects (n = 54) were free-standing, all-year-round habit-
able, newly built and transportable structures made of prefabricated elements in modular
design. Nearly all (95%) were officially built and positioned according to legal zoning for-
malities, although ‘illegally’ built pop-up housings are obviously less likely to be registered
and/or well-documented in scientific literature.

5.1.2. Building Flexibility

Very few (~7%) objects exhibited appropriation of public open space, while, simul-
taneously, these pop-up housings seemed to be readily expandable during their specific
life span. The majority (93%) of the analyzed objects were not designed with a potential
expansion in mind as one could suggest regarding the changing needs of their users.

5.1.3. Environment

A vast majority (~75%) of the investigated pop-up housings were inhabited all-year-
round, excluding emergency, short-term and basic shelters, as well as solely experimental
setups. Those objects that are being used throughout the year were most commonly based
in urban environments. It is essentially the micro-compact and 3D-printed housings,
as well as structures on wheels, such as mobile homes, that are not necessarily built or
placed in urban regions, although the target area for compact (3D build) housing concepts
is definitely the urban region as well. To date, micro-compact and 3D-printed housing
concepts remain as prototypes without real-life applications, although this could change
rather quickly depending on progress in technology and material advances.

5.1.4. Infrastructure/Technical Layout

Although some (~10%) of the investigated objects, like refugee and emergency shelters,
only have access to a public bathroom and toilet, most of the analyzed pop-up housing
structures do incorporate in-house sanitary facilities, even if about 40% of these objects
have only shared access to a toilet/bathroom. Those housings with private sanitary
rooms (toilet/bathroom) typically also incorporate a private kitchen or cooking facility. A
tendency towards shared cooking facilities can be observed in shared housing, e.g., student
dorms/halls and flat-sharing solutions for migrants and asylum seekers.

Apparently, it is very difficult to obtain detailed and reliable data on energy supply,
i.e., thermal energy for heating/DHW purposes, as well as supply of electrical energy and
sufficient data on (waste) water infrastructure. However, the results from the performed
cluster analysis reveal that pop-up housings claiming energy autarchy also (have to?)
operate water purification plants. This suggests that ‘overall autarchy’ is basically a need
in remote areas where public energy and water supply are not easily accessible.

The more basic pop-up structures are seldom connected to the power grid or central-
ized water supply and have a sewage connection or even municipal waste collection. These
infrastructural attributes, in most cases, only apply to more solidly built and profoundly
positioned housings, which are often owned by their inhabitants.

5.1.5. Construction

The need and justification for building an underground cellar is found only in a few
(~10%) permanently built objects. Above all, these structures are mostly used for temporary
housing under rental conditions (e.g., temporary hotels).
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Nearly 60% of the analyzed objects, particularly micro-compact and 3D-printed hous-
ings, are based on a reversible, i.e., reusable foundation on a private plot. Apparently,
because of this, these typically modular structures are also built according to the one-
unit-per-floor concept and often, due to the static structure and used materials, do not
incorporate a second floor or multi-unit-layouts.

The more urgent the need for accommodation, as is the case for migrants and refugees,
the more straightforward and faster it is to build or prepare the pop-up housings. Therefore
‘simple and quick’ solutions like basic shelters, modified containers or converted multi-use
buildings are preferred. Shelters and ‘camps’ are necessarily realized by incorporating
lightweight walls for frame construction, often supported by poles/ropes and by using
lightweight materials, i.e., textile and/or flexible, which can be transported easily and in a
space-saving way.

About 75% of all investigated objects used lightweight, rigid materials for construction,
whereas two-thirds of the analyzed structures consisted of a single housing unit with one
floor. Sixty percent of the documented pop-up housings incorporated units that can be
reused or recycled, which implies simple modular construction, removable foundations
and recyclable materials. About 37% of the documented objects use wood as the primary
building material and thermal insulation with conventional insulators.

5.2. Final Conclusions

This paper intends to showcase the structured and very effective application of hi-
erarchical clustering algorithms to a set of seemingly inhomogeneous objects of pop-Up
environments/temporary housing solutions from around the globe under interdisciplinary
consideration. It tries to identify the necessary steps, i.e., the inherent procedure to be fol-
lowed for performing effective and productive clustering of data. Furthermore, the authors
intended to illustrate several possible options for analyzing and interpreting scattered
information/data in detail by using hierarchical clustering algorithms and their derivative
considerations and calculations, respectively. Finally, conclusive classification remarks are
given, pointing out in detail the similarities and differences of the clustered set of PUE
objects.

This procedure can be applied to all kinds of data to allow a neutral presentation of
the connections between datasets. Thus, interpretation of connection clustering within
large datasets can be performed objectively.
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Abstract: To improve the path planning efficiency of a robotic arm in three-dimensional space and
improve the obstacle avoidance ability, this paper proposes an improved artificial potential field and
rapid expansion random tree (APF-RRT) hybrid algorithm for the mechanical arm path planning
method. The improved APF algorithm (I-APF) introduces a heuristic method based on the number of
adjacent obstacles to escape from local minima, which solves the local minimum problem of the APF
method and improves the search speed. The improved RRT algorithm (I-RRT) changes the selection
method of the nearest neighbor node by introducing a triangular nearest neighbor node selection
method, adopts an adaptive step and generates a virtual new node strategy to explore the path,
and removes redundant path nodes generated by the RRT algorithm, which effectively improves
the obstacle avoidance ability and efficiency of the algorithm. Bezier curves are used to fit the final
generated path. Finally, an experimental analysis based on Python shows that the search time of
the hybrid algorithm in a multi-obstacle environment is reduced to 2.8 s from 37.8 s (classic RRT
algorithm), 10.1 s (RRT* algorithm), and 7.4 s (P_RRT* algorithm), and the success rate and efficiency
of the search are both significantly improved. Furthermore, the hybrid algorithm is simulated in a
robot operating system (ROS) using the UR5 mechanical arm, and the results prove the effectiveness
and reliability of the hybrid algorithm.

Keywords: mechanical arm; path planning; artificial potential field method; rapid expansion random
tree algorithm; virtual new node

1. Introduction

In recent years, China’s logistics industry has developed rapidly to meet the increasing
demand for e-commerce in response to the internet economy and the rapid development of
warehousing automation technology [1]. The intelligent robotic arm industry is developing
rapidly. The robotic arm, as its name implies, is designed to imitate a human arm for
moving, grasping, lifting, and loading objects, among other operations [2]. Therefore,
robotic arms are widely used in the logistics and warehousing industry. To grasp a specified
object and place it in the specified position, it is necessary to bypass complex obstacles
and find an efficient and collision-free path, which is very simple for humans but presents
many technical problems that need to be considered for the robotic arm. Thus, for the
robotic arm, its path planning is one of the most important technical problems. Successful
path planning can greatly improve the storage and grabbing efficiency and has long been a
research hotspot in robotic applications.

2. Related Research

Among the existing path planning algorithms, the artificial potential field (APF)
method for path planning was first proposed by Khatib [3] in 1986. The idea is to use
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virtual force to make the robot navigate obstacles. The disadvantages of this algorithm are
as follows: The algorithm easily falls into local minima or oscillates, and it is difficult to
reach the target point when there are obstacles nearby. The rapid expansion random tree
(RRT) algorithm was first proposed by the American professor LaValle [4] in 1998. The RRT
method is a path planning algorithm based on sampling and an efficient multi-dimensional
space with complete probability but is not optimal. However, the randomness of the
RRT method causes it to be blind and exhibit a low efficiency; in addition, the resulting
path is tortuous and not smooth enough, and the search speed is slow in a narrow area.
A large number of scholars have made different improvements to these two algorithms.
Zheng et al. [5] proposed a new minimum criterion and designed an improved virtual ob-
stacle local path planning method to overcome the tendency of the APF algorithm to easily
fall into local minima and other shortcomings. Sun et al. [6] proposed the use of dynamic
windows to improve the APF method to solve the problem of being trapped in local min-
ima. Zhang et al. [7] proposed a curved path planning algorithm for overtaking cars based
on an improved APF method, and an optimal guaranteed performance control strategy
for tracking the curved paths for overtaking cars based on linear robust control theory
was proposed. Han et al. [8] proposed an improved APF method to solve the problems of
large swinging trajectories and easily falling into local minima that are encountered by the
classic APF method in unmanned aerial vehicle (UAV) trajectory planning. Zhang et al. [9]
proposed a path planning method for multiple underwater unmanned vehicles (UUVs) in
a three-dimensional environment based on the “domain”, which solves the disadvantages
of unreachable targets near obstacles, local minima, and oscillations encountered in the
classic APF method. Tian et al. [10] proposed an overall configuration planning method of
continuum hyper-redundant manipulators (CHRMs) based on an improved APF method
that avoids complicated inverse kinematics and vastly reduces the computational com-
plexity. Li et al. [11] proposed a path planning method for mobile mechanical arms based
on the sparse node RRT algorithm that solves the problem of excessively searching in the
local space and reduces the number of invalid nodes. Ge et al. [12] proposed a free-floating
space robot (FFSR) trajectory planning method based on the dynamic RRT* algorithm,
which can rapidly generate a feasible robot movement trajectory. Gan et al. [13] proposed
a 1–0 goal-bias RRT algorithm to reduce the computational time and complexity, even in
complex environments. Qureshi et al. [14] proposed the potential function-based RRT*
(P-RRT*) method by incorporating the APF algorithm into the RRT* method. The proposed
algorithm allows a considerable decrease in the number of iterations and thus leads to
more efficient memory utilization and an accelerated convergence rate. Jeong et al. [15]
proposed Quick-RRT* (Q-RRT*), a modified RRT* algorithm that generates a better initial
solution and converges to the optimal solution faster than RRT*. Q-RRT* enlarges the set
of possible parent vertices by considering not only a set of vertices contained in a hyper-
sphere, as in RRT*, but also their ancestry up to a user-defined parameter, thus resulting in
paths with less cost than those of RRT*. Wang et al. [16] proposed a novel learning-based
multi-RRT (LM-RRT) approach for robot path planning in narrow passages. The LM-RRT
approach models the tree selection process as a multi-armed bandit problem and uses
a reinforcement learning algorithm that learns action values and selects actions with an
improved epsilon-greedy (epsilon (t)-greedy) strategy. Lee et al. [17] proposed a motion
planning algorithm by exploiting RRT stars (RRT stars) and dynamic movement primitives
(DMPs). Hao et al. [18] proposed a Dubins-RRT* algorithm to involve the construction of a
recovery path for an agricultural mobile robot (AMR) under kinematic constraints. The
planned path avoids obstacles and incurs the minimum cost from a rendezvous point to the
recovery platform. However, in general, the problems in the above research are as follows.
(1) The improved APF algorithms cannot readily solve the problem of local minima in the
search process, and the local minima cannot be adjusted in a timely manner. In addition,
when there are obstacles at both the target point and the starting point, the obstacles cannot
be effectively avoided to reach the target point quickly, and the generated path is relatively
tortuous. (2) The improved RRT algorithms cannot quickly find a reliable path in a complex,
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multi-obstacle environment. Moreover, the algorithm cannot be adjusted well for different
environmental conditions, which is not conducive to improving the algorithm efficiency,
and the generated path is not sufficiently smooth, causing the mechanical arm to undergo
impacts and become damaged in actual operation and severely shortening the service life
of the mechanical arm.

In response to the above problems, the present paper proposes an improved hybrid
three-dimensional path planning algorithm for mechanical arms that combines the APF
method and the RRT algorithm. The proposed algorithm is used to solve the path planning
problem of the manipulator in an environment with complex obstacles. Compared with
the existing path planning algorithms, the main contributions of this article are as follows:

1. In the I-APF (I-APF) method, a heuristic method based on the number of adjacent
obstacles to break away from the local minimum is proposed so that the algorithm
can quickly eliminate local minima and break away from obstacles.

2. In the I-RRT (I-RRT) algorithm, a triangular nearest neighbor node selection method
is proposed, which improves the convergence of the algorithm.

3. Based on the I-APF algorithm and the I-RRT algorithm, a hybrid algorithm is proposed
that combines these two improved algorithms to search for the optimal path. First,
the distance between the nearest neighbor node and the obstacle is judged. According
to the different distances, the I-APF method and the I-RRT algorithm are used to
expand the path, which improves the search speed and obstacle avoidance ability of
the algorithm.

The rest of this article is organized as follows. Section 3 introduces the classic APF
method and the classic RRT algorithm. Then, Section 4 introduces the improved APF and
RRT hybrid algorithm. In Section 5, to smooth the path, the path is fitted with a Bezier
curve. In Section 6, the planned path is verified by an experimental simulation using
Python language development tools and robot operating system (ROS) tools.

3. Background

3.1. Principles of the Classic APF Method

The APF method makes the object move and reach the target point under the action
of a force field, which includes a gravitational field and a repulsive field [19–21].

The gravitational field function Uatt(q) is as follows:

Uatt(q) =
1
2

ερ2(q, qgoal) (1)

where ε is the scale factor, ρ(q,qgoal) represents the Euclidean distance between the target
object qgoal and the current position q, and the gravitation Fatt(q) of the corresponding target
object is the derivative of the gravitational field:

Fatt(q) = −∇(Uatt(q)) = ε(qgoal − q) (2)

The repulsive field Urep(q) function is as follows:

Urep(q) =

{
1
2 η
(

1
ρ(q, qobs)

− 1
ρ0

)2
, i f ρ(q, qobs) ≤ ρ0

0 , i f ρ(q, qobs) > ρ0

(3)

where η is the repulsion scale factor, ρ(q,qobs) represents the Euclidean distance between
obstacle qobs and current position q, and ρ0 represents the influence radius of each obstacle.

Then, the repulsion Frep(q) is the derivative of the repulsive field:

Frep(q) = −∇Urep(q) =

{
η( 1

ρ(q,qobs)
− 1

ρ0
) 1

ρ2(q,qobs)
∇ρ(q, qobs) , i f ρ(q, qobs) ≤ ρ0

0 , i f ρ(q, qobs) > ρ0
(4)
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where∇ρ(q,qobs) represents the derivative of ρ(q,qobs), the target object generates gravitation,
the object is guided to move towards the target object, and the obstacle generates repulsion
to avoid the obstacle, as shown in Figure 1. The resultant force field U(q) (resultant force
F(q)) that an object receives at any point in the field is equal to the vector sum of the target
object’s gravitational field (gravity) and the total repulsive field (repulsion) of obstacles
encountered. The formula is as follows:

U(q) = Uatt(q) + Urep(q) (5)

F(q) = −∇U(q) (6)

Figure 1. Diagram illustrating the principle of the APF method.

3.2. Principles of the Classic RRT Algorithm

The principle of the classic RRT algorithm is to use an initial point as the root node
qinit. In each subsequent expansion, a random node qrand is randomly generated in the
map. The nearest function selects a node qnearest to qrand based on the Euclidean distance
on the existing random tree and expands this node in the direction of qrand with a step
distance through the extend function to obtain a new node qnew. Evaluating whether qnew
collides with an obstacle proceeds as follows. If it collides, growth is abandoned, qnew is
removed, and a random node is regenerated; if there is no collision, qnew is added to the
random tree, and qnew’s parent node is assigned to qnearest, as shown in Figure 2. When the
distance between the node of the random tree and the target point is less than a specific
value m, the program is terminated, as a collision-free path from the starting point to the
target point has been obtained. The above steps are followed until reaching the target point,
as shown in Figure 3.

Figure 2. Classic RRT mind map.
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Figure 3. Path planning diagram of the classic RRT algorithm.

4. Improved Algorithms

This section first conducts a collision detection analysis of obstacles, and the results are
used to plan the path of the UR5 manipulator. An I-APF method is proposed to avoid local
minima of APF, and an I-RRT algorithm is proposed to improve upon the slow convergence
speed and poor search efficiency of the classic RRT algorithm. However, the I-APF method
leads to tortuous paths and unreachable targets when there are obstacles at the start and
end points, and the I-RRT algorithm still has a low search efficiency in an environment with
complex obstacles. Notably, the hybrid algorithm that combines the I-APF method and the
I-RRT algorithm overcomes the shortcomings of these respective algorithms. Finally, the
principles and implementation steps of the hybrid algorithm are given below.

4.1. Collision Detection

A collision detection analysis is carried out. This article uses the universal robot
UR5 mechanical arm for the research, uses the geometric envelope in space to simplify
the obstacles and mechanical arm model, establishes an environment perception model
through sensors, establishes an environmental model map, and divides the map into an
obstacle space and obstacle-free space [22]. Usually, obstacles are irregular. To facilitate
the calculation, the obstacles are usually idealized as an enclosed ball, and the joints of
the robotic arm are idealized as cylindrical. In this way, the computational load can be
reduced [23]. Suppose the coordinates of the center of the sphere are (x, y, z), the radii of
the spheres are R1 and R2, and the radius of the cylinder is r; then, the distances between
the coordinates of the centers of the two spheres and the central axis of the cylinder are
calculated, denoted d1 and d2. As shown in Figure 4, when d > r + R, the robotic arm does
not collide with the obstacle; otherwise, the arm collides with the obstacle. This method
can greatly improve the computational efficiency.

Figure 4. Collision detection model.
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4.2. I-APF Algorithm

According to the principles of the classic APF method, the algorithm has some short-
comings. When there is an obstacle at the starting point, the repulsive force causes the path
to be tortuous. When the target point is near an obstacle, the obstacle makes it difficult for
the object to reach the target point. When the gravitational force and the repulsive force on
the object are equal, objects fall into local minima.

In view of the local minima problem of the classic algorithm, some scholars have
proposed the idea of using virtual sub-targets [24] to make the robot escape from the local
minimum. However, the location of the virtual sub-target is random, which inevitably
leads to the blindness of the algorithm; that is, the robot deviates from the target or enters
an obstacle area. This paper proposes a heuristic method for deviating from local minima
based on the number of adjacent obstacles. The method includes three steps. Step 1: Make
a judgement on the local minimum. Step 2: If the object is stuck, take the local minimum
as the center, draw a circle with twice the step length in the RRT algorithm as the radius,
record the number of obstacles in the circle as O, and record the total number of obstacles
in the space as S. Step 3: Introduce a heuristic function to calculate the new potential field
force. The specific process is as follows.

When the object falls into a local minimum, the gravitational field and repulsive force
field received by the robotic arm are equal in size but in opposite directions. By judging
the size and direction of the gravitational field and repulsive force field of the robotic arm,
whether the robotic arm falls into a local minimum can be evaluated. When the robotic arm
falls into a local minimum, the number of nearby obstacles is obtained by using twice the
step length in the RRT algorithm as the radius, and then a heuristic function is established
to calculate the new force field. The heuristic function F is as follows:

F = α(O/S)M + β(1−O/S)N (7)

where α and β are the repulsion scale factor and the gravitational scale factor, respectively,
O is the number of obstacles, S is the total number of obstacles in space, M represents
the repulsive force of the obstacles in the circle on the robotic arm, and N represents
the gravitational force of the target point on the robotic arm. According to the heuristic
function, the more obstacles there are in the circle, the greater the repulsive force of the
robot arm will be, and the path will expand in the direction deviating from the obstacle to
the target point, which is beneficial for the robot arm to quickly avoid the obstacle. Figure 5
shows a path planning diagram of the I-APF method.

Figure 5. I-APF method path diagram.

4.3. I-RRT Algorithm

The principle of the classic RRT algorithm shows that the algorithm has randomness
and a strong obstacle avoidance ability, but this inevitably increases the search time and
reduces the efficiency, and the search path is long and tortuous, which takes up a relatively
large amount of memory. When there are many obstacles, the efficiency of the algorithm is
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greatly reduced. Therefore, this paper improves on the classic RRT algorithm and proposed
the I-RRT algorithm. The specific improvements are as follows.

4.3.1. Path Collision Detection

The classic RRT algorithm performs collision detection for nodes but does not conduct
collision detection along the path. If the path results in a collision with obstacles, the
generated path does not meet the actual requirements. In this paper, collision detection
is performed on the path in the Collision_check_line() function. The specific method is to
pass between two nodes in the random tree, calculate the Euclidean distance between the
two nodes in the three-dimensional space, and set the division rate (Discretepoint). The
number of divided points is equal to the distance between the two points divided by the
division rate. The path is divided into many points, and whether these points collide with
obstacles is evaluated.

4.3.2. Goal-Bias Strategy

According to the classic algorithm, the random tree is expanded by selecting random
points, resulting in a low path search efficiency. Therefore, this paper adopts the idea of
target bias [25]. Random point generation is used to select the target point with a certain
probability PgoalDampleRate and can effectively reduce the blindness of the algorithm. When
the random probability is greater than PgoalDampleRate, a random point is generated, and
when the random probability is less than PgoalDampleRate, the target point is taken as the
random point, which speeds up the convergence rate.

4.3.3. Triangular Nearest Neighbor Node Selection Strategy

The traditional nearest neighbor node selection strategy uses the node in the tree
with the closest Euclidean distance to the random sampling point as the nearest neighbor
node. This paper proposes a triangular nearest neighbor node selection method, and
the specific steps are as follows: If a random sampling point is not the target point, the
connections between the random sampling point, the node in the tree, and the target point
are established to form a triangular area; then, the sum of the distances of the three sides of
the triangle is calculated as the cost function of the nodes. Then, the cost function can be
expressed as:

Cost (q) = (||qgoal−qrand||2 +||qrand−q||2 +||qgoal−q||2
)

(8)

Then, the nearest neighbor node in the triangle is:

qnearest = {q ∈ Tnode | Cost(q i) = min{Cost (q)}} (9)

The triangular nearest neighbor node selection can combine the nearest Euclidean
distance to the random point and the nearest Euclidean distance to the target point to select
the nearest neighbor node, which improves the convergence efficiency of the algorithm
and further reduces the blindness of the algorithm.

4.3.4. Adaptive Step Size

The classic algorithm has a fixed step length for expansion; approaching obstacles
cannot be avoided well, causing collisions and occupying a large amount of memory, and
the generated step length grows towards a random point without directionality. Both of
these issues lead to a reduction in the efficiency of the algorithm, so an adaptive step size
strategy is adopted [26]. When the minimum distance between qnearest and the obstacle is
greater than the step size, the obstacle is marked as s, the idea of gravity in the APF method
is introduced into the adaptive step size of the RRT algorithm [27], and the random tree is
guided to grow towards the target. On the basis of the original RRT algorithm growing
towards random points, the step component G(n) towards the target is added so that the
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new node has a tendency to deviate towards the target point. The formula of step F(n) is
defined as follows:

F(n) = R(n) + G(n) (10)

where F(n) represents the traction step length of the nth node, R(n) represents the traction
step length of the nth node by a random point, and G(n) represents the traction step length
of the nth node by the target object. The gravitational potential energy U of the target point
to the nearest node is known by the APF method and is defined as follows:

U =
1
2

Kp ∗
∥∥∥xgoal − xnear‖

2
(11)

where kp represents the gravitational coefficient and ‖xgoal − xnear‖ represents the absolute
value of the Euclidean distance between the position vector xgoal of the target point and the
position vector xnear of the nearest node. Then, the gravitational force G is the derivative of
the gravitational potential energy U, namely,

G = Kp ∗
∥∥∥xgoal − xnear

∥∥∥ (12)

Then

G(n) = ρ ∗ kp
xgoal − xnear∥∥∥xgoal − xnear‖

(13)

where ρ represents the step length of random growth; then, R(n) can also be deduced as

R(n) = ρ ∗ xrand − xnear

‖xrand − xnear‖ (14)

where ‖xrand − xnear‖ represents the absolute value of the Euclidean distance between the
position vector xrand of the random point and the position vector xnear of the nearest node.
By inserting Equations (13) and (14) into Equation (10) to obtain the traction step length of
the nearest node as Equation (15), defined as F1(n), the following formula is obtained:

F1(n) = ρ ∗ xrand − xnear

‖xrand − xnear‖ + ρ ∗ kp
xgoal − xnear∥∥∥xgoal − xnear‖

(15)

When the minimum distance to the obstacle is less than the step length, two situations
are possible.

Case 1: First, a virtual new node is generated according to the above steps, and
whether the distance between the virtual new node and obstacle s is less than the distance
between the nearest node and the obstacle is evaluated. If the distance is less than the
distance between the nearest node and the obstacle, then the virtual new node has a
tendency to approach the obstacle is proven. Then, the virtual new node is removed, the
step length of the new node growth is changed, and the step length is reduced on the basis
of the step length F1(n), which is defined as the step length F2(n). The formula is as follows

F2(n) =
dist2

dist1
(ρ ∗ xrand − xnear

‖xrand − xnear‖ + ρ ∗ kp
xgoal − xnear∥∥∥xgoal − xnear‖

) (16)

where dist1 represents the distance between the nearest node and obstacles and dist2
represents the distance between the virtual new node and obstacles. Whether the node
collides with an obstacle is evaluated. If it collides, a random node is regenerated; if there
is no collision, a new node is added to the random tree.

Case 2: If the distance between the virtual new node and obstacles is greater than
the distance between the nearest node and obstacles, it proves that the new node has a
tendency to grow away from the obstacle. Then, the step length of the new node generation
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adopts the step length of the classic RRT algorithm, defined as the step length F3(n), and
the formula is as follows:

F3(n) = ρ ∗ xrand − xnear

‖xrand − xnear‖ (17)

Then, whether the node collides with an obstacle is evaluated; if it collides, a random
node is regenerated, and if there is no collision, a new node is added to the random tree.

4.3.5. Removing Redundant Nodes

Due to the randomness of the classic RRT algorithm, the path may oscillate. Redundant
nodes are removed to process the path from the starting point to the target point generated
by the random tree [28]. Starting from the first node qinit, the subsequent path nodes
are connected in turn, the second node is ignored, and the third node is connected. If
the object does not collide with the obstacle, the second node on the path is deleted. If
there is a collision, then the node is retained, the parent node of the collision point is used
as the new evaluation node, and the above steps are repeated until the target point is
reached. The final series of reserved nodes is saved into Path 2 and connected to obtain
the path after removing redundant nodes, as shown in Figure 6. The collision here refers
to the collision detection of the path mentioned in Section 4.3.1. Figure 7 shows the path
diagram generated by the I-RRT algorithm. Algorithm 1 shows the pseudocode of the
I-RRT algorithm.

Algorithm 1: I-RRT

1. initialization
2. S       qinit;
3. while true do
4.      q(rand)=random() or end();
5       if  q(rand) = random()
6.            q(nearest)        Triangle_nearest_list_index(node_list, q(rand)); 
7.      dist1       Nearest distance(q(nearest),obstacles); 
8.      if dist1 > expandDis
9.         q(new)        Extend(expandDis,q(nearest), Direction Angle)
10.    else
11.       q(new)=virtual(Extend(expandDis,q(nearest),DirectionAngle)     
12.       dist2        Nearest_distance(q(new), obstacles)
13.       if dist1 > dist2
14.            q(new)        Extend(expanddis,q(nearest),Direction Angle)
15.      else 
16.            q(new)        Extend(expandDis,q(nearest),Direction Angle)
17.    if collision_check(q(new))
18.       Tree.add(q(new))
19.    if dist(q(new),q(end))< expandDis
20.       return Goal
21.    else
22.       continue
23. return path
24. path2       remove_redundant_nodes(path)
25. return Graph                               
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Figure 6. Diagram of the I-RRT algorithm implementation to remove redundant nodes.

Figure 7. I-RRT algorithm generation path diagram.

4.4. Improved Hybrid Algorithm of the APF and RRT

The I-APF method deals with the local minimum problem in the classic algorithm,
but when there are obstacles at the starting point, the repulsion causes a tortuous path.
When there are obstacles at the target point, the target is unreachable, and vibration occurs.
The I-RRT algorithm significantly improves the search efficiency, but its efficiency is still
low in the case of multiple obstacles. This article adopts the strategy of combining the
two improved algorithms (I-APF, I-RRT) to give full play to the advantages of the two
algorithms to avoid defects.

4.4.1. Principle of the Improved Hybrid Algorithm

The principle of the hybrid algorithm is as follows. First, the tree node is initialized,
and the distance between the nearest node and the obstacle is continuously detected. If
it is detected that the minimum distance between the current node and the obstacle is
greater than twice the step length, it means that there is no obstacle near the current node,
and the I-APF method is used for rapid expansion. If the minimum distance between the
current node and the obstacle is less than twice the step length, the I-RRT algorithm is
adopted to make full use of the efficient obstacle avoidance ability of the RRT algorithm,
and the above steps are repeated until the target point is reached. The hybrid algorithm can
effectively improve the efficiency of path searching and resolve the following problem of
the APF method: When there are obstacles at the starting point, the repulsive force causes
a tortuous path, and the target is unreachable when there is an obstacle at the target point.
Furthermore, the hybrid algorithm also solves the problem of the classic RRT algorithm,
which has a significantly lower efficiency when there are more obstacles, and the generated
path is shorter and smoother.
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4.4.2. Improved Hybrid Algorithm Implementation

According to the principle of the improved APF and RRT hybrid algorithm, the specific
implementation steps are described as follows.

Step 1: Initialize the parameters, and define the obstacle environment, starting point,
target point, step length, and target sampling rate.

Step 2: Determine the distance between the current node and the obstacle. If the
distance between the current node and the nearest obstacle is greater than twice the step
length, execute Step 3. If the distance between the current node and the nearest obstacle is
less than twice the step length, execute Step 4.

Step 3: Use the I-APF method to search and move forward under the combined force
of the target and obstacle. (1) Calculate the gravitational and repulsive forces. (2) Determine
whether the gravitational and repulsive forces experienced by the current node are equal
and opposite. If they are equal, the object falls into a local minimum, the heuristic method
based on the number of adjacent obstacles is used to escape from the local minimum so
that the algorithm escapes from the local minimum, and the end effector of the robotic
arm is guided to continue to move. If they are not equal, proceed to Step (3). (3) If the
distance between the current node and the target point is less than the step length or if
the distance between the nearest node and the nearest obstacle is less than twice the step
length, then the I-APF method search process is ended, the path node obtained by the APF
method is added to the Pathpath, and the Pathpath and the latest node q(new) are returned.
Otherwise, jump to Step (1).

Step 4: If the distance between the current node and the nearest obstacle is less than
twice the step length, the I-RRT algorithm is used to search for the path. (1) Initialize the
tree, set the initial node and target point, and define the step size, target sampling rate, and
segmentation rate. (2) Start the iteration and sample the state space. When the random
probability is less than the target sampling rate, the sampling point selects the target point.
If it is greater than the target sampling rate, random sampling points in the space are
selected. (3) Select the nearest neighbor node according to the triangle nearest neighbor
node selection method and calculate the distance dist1 between this node and the nearest
obstacle. (4) Determine whether the distance dist1 is greater than the step length. If so, the
step length F1(n) is used for expansion. If not, generate a virtual new node according to
the step length F1(n) and calculate the distance dist2 between the virtual new node and the
nearest obstacle. (5) If dist2 < dist1, the new node has a tendency to move towards obstacles.
Remove the virtual new node and use step F2(n) to expand. If dist2 > dist1, the new node
has a tendency to move away from obstacles; remove the virtual new node and use the
step size F3(n) to expand. (6) Determine whether the new node collides with obstacles; if
there is a collision, skip to Step (2). Re-sample random points; if there is no collision, add
the new node to the tree and assign the parent node of the new node to the nearest node
(qnearest). (7) When the distance between the new node and the target point is less than the
step length or the distance between the nearest node and the nearest obstacle is greater
than twice the step length, end the iterative process; otherwise, skip to Step (2). (8) Use
the collision detection method of the path to perform the process of removing redundant
nodes on the generated path to obtain the processed path. (9) Add the processed path node
to the Pathpath and return the Pathpath and the latest node q(new).

Step 5: Determine whether the distance between the new node and the target point is
less than the step length. If so, reach the target point, connect the new node and the target
point, output the path graph, obtain a collision-free path from the start point to the end
point, and exit the program. Otherwise, skip to Step 2.

According to the specific implementation steps of the hybrid algorithm, Figure 8
shows the flowchart of the hybrid algorithm and Algorithm 2 shows the pseudocode of the
hybrid algorithm.
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Algorithm 2: APF-RRT

1.Initialization;
2.While True do
3.     if distance(q(new),obstacle_list)>2*expandDis
4.             q(new)          q(recent_node);        
5.             q(new)          Extend(Fatt , Frep)         
6.             Path.append(q(new))        
7.             if dist(q(new),q(end))< expandDis
8.                      return Goal        
9.             else
10.                    Continue  
11.    return Path  recent_node
12.    Pathpath.append(path)  
13.    else
14.           q(new)          q(recent_node);
15.           q(rand)= random() or end();

if  q(rand)= random()
16.                q(nearest)         Triangle_nearest_list_index(node_list,q(rand)); 
17.           dist1         Nearest distance(q(nearest) obstacles); 
18.           if dist1 > expandDis
19.               q(new)          Extend(expandDis,q(nearest), Direction Angle)
20.           else
21.               q(new)=virtual(Extend(expandDis,q(nearest),Direction Angle))
22.               dist2         Nearest_distance(q(new), obstacles)
23.               if dist1 > dist2
24.                   q(new)           Extend(expanddis, q(nearest), Direction Angle)
25.               else
26.                   q(new)           Extend(expandDis,q(nearest),Direction Angle)
27.           if collision_check(q(new))
28.               Tree.add(q(new))
29.           if dist(q(new),q(end))< expandDis
30.               return Goal path
31.           else
32.               continue
33.    path2          remove_redundant_nodes(path)
34.    return Path2  recent_node
35.    Pathpath.append(path2)
36.return Pathpath Graph

660



Algorithms 2021, 14, 321

Figure 8. APF-RRT algorithm flow chart.

5. Bezier Curve Path Smoothing

Aiming at the phenomenon that the path generated by the algorithm has turning
points and is not sufficiently smooth, reducing the performance of the robot arm due to its
acceleration in actual operation, this paper uses Bezier curves to smooth the path [17,29].
Smoothing is realized on the basis of the original path, and n + 1 nodes obtain the formula
of an n-order Bezier curve:

C(u) = ∑n
i=0 Bn,i(u)pi, u ∈ [0, 1] (18)

where Pi represents n + 1 points in space and the weight coefficient Bn,i(u) with the parame-
ter u is the Bernstein basis function. The calculation method is as follows:

Bn,i(u) =
n!

i!(n− i)!
ui(1− u)n−i (19)

The final generated curve has a relationship with each of the n + 1 points. These points
determine the final direction of the curve and are called control points. The Bessel order
in Equation (18) is n and is controlled by the n + 1 control points. The start point and end
point correspond to u = 0 and u = 1, respectively. The curve after Bezier fitting is shown in
Figure 9a. The slight gap between the fitted curve and the original path may risk collision
between the path and the obstacle. It can be seen from the figure that the fitting curve is
likely to result in a collision with the obstacle only when the obstacle environment is very
complex. For the simulation experiment, the success rate of the 200-path fitting experiment
in this paper is 100%.

661



Algorithms 2021, 14, 321

Figure 9. Comparison of the Bezier fitted curve and original path.

6. Simulation and Experiment (Python and ROS Simulation)

In this section, the improved APF and RRT hybrid algorithm is verified experimentally.
To verify that the algorithm can maintain excellent results in a multi-obstacle environment,
this hybrid algorithm is compared with the RRT, RRT*, and P_RRT* algorithms. The
RRT* algorithm is a landmark algorithm among the improved RRT algorithms. It has
a higher convergence rate and has been widely studied by scholars, while the P_RRT*
algorithm introduces the idea of the APF method on the basis of RRT*, making the P_RRT*
algorithm one of the path planning algorithms with the highest convergence efficiency.
Experiments were carried out on different obstacle environments to verify the effectiveness
of the algorithm. This experiment used Python language development tools on a laboratory
desktop HP computer with 4-GB memory and an Intel(R) Core (TM)i5-6500 CPU @3.20
GHz–3.19 GHz to find a smooth and collision-free path. Combining theory with reality,
this work chose a simulation robot, the UR5 of the Danish UAO Company, for simulation
experiments. The UR5 is a six-degree-of-freedom manipulator. Table 1 shows the motion
control parameters of the UR5 robotic arm.

Table 1. Manipulator motion control parameter table.

Parameter Value

Search step ρ 1.0 dm
Starting point (0,0,0)/dm
Ending point (8,10,10)/dm

Gravitational coefficient ε, Kp 0.05
Repulsion coefficient η 100.0

α 0.4
β 0.6

Obstacle influence radius ρ0 0.3 dm
Target sampling rate 0.1

6.1. Experiments and Analysis in Python

Experiment 1. A comparison among the algorithms for different numbers of obstacles
was carried out to verify that the improved APF and RRT hybrid algorithm maintained a
better search effect in the case of multiple obstacles. With a gradually increasing number
of obstacles, the advantages and disadvantages of the proposed path planning algorithm
were compared with those of the classic RRT algorithm, the RRT* method, and the P_RRT*
algorithm. Each group of experiments was performed 200 times, and the average of the

662



Algorithms 2021, 14, 321

results is shown in Table 2, where the search success rate was that the search was within
100 s of a successful search, and the search was unsuccessful outside of 100 s.

Table 2. Comparison of various algorithms for different obstacle numbers.

Obstacle Average Search Time Average Path Length
Average Number of

Sampling Nodes
Search Success Rate

RRT RRT* P_RRT* APF-RRT

10 20.0 22.5 70.4 100% 7.7 21.0 20.4 100% 6.9 20.6 20.5 100% 2.0 18.0 10.3 100%

12 21.0 22.8 74.1 100% 8.13 21.2 20.6 100% 7.3 20.7 20.8 100% 2.1 18.0 10.4 100%

14 37.8 23.5 95.7 95% 10.1 21.8 21.9 100% 7.4 20.7 21.0 100% 2.8 18.0 11.5 100%

16 40.9 23.6 111.2 90% 10.3 21.8 23.8 100% 7.8 21.1 21.3 100% 3.2 19.1 11.9 100%

According to Table 2, the search time, path length, number of sampling nodes, and
search success rate of the algorithms are compared. The search time of the classic RRT
algorithm was relatively short when there are few obstacles. When the number of obstacles
gradually increased, the search time greatly increased, and the search success rate decreased.
Compared with the classic RRT algorithm, the RRT* method was superior. The average
search time and the average number of sampling nodes were greatly improved, and the
algorithm maintained good results when the number of obstacles gradually increased.
Compared with the RRT* algorithm, the P_RRT* algorithm exhibited further improvements,
and the search efficiency was higher. With an increasing number of obstacles, stable search
results can be maintained, but compared with the improved APF and RRT hybrid algorithm
in this article, it still had the disadvantages of a low search efficiency, tortuous paths, and
high average number of sampling nodes, which consumed more computing memory.
The hybrid algorithm in this paper showed a better effect when the number of obstacles
gradually increased.

Experiment 2. To analyze the effectiveness of the improved APF and RRT hybrid
algorithm, this work compared various algorithms under the same conditions of obstacles
and step lengths. Each set of experiments was performed 200 times, and the average of the
results is shown in Table 3.

Table 3. Comparison of various algorithms under the same conditions.

Average Search Time
Average Number of

Sampling Nodes
Average Path Length Search Success Rate

RRT 37.8 95.7 23.5 95%
RRT* 10.1 21.9 21.8 100%

P_RRT* 7.4 21.0 20.7 100%
APF-RRT 2.8 11.5 18.0 100%

According to the data in Table 3, the classic RRT algorithm had a slow search speed, a
large number of sampling nodes, and tortuous paths when there were many obstacles, as
shown in Figure 10a. Compared with the classic RRT algorithm, the RRT* algorithm had a
great improvement in the average search time, the path planning efficiency was higher, and
the generated path was smoother, as shown in Figure 10b. The average search time of the
P_RRT* algorithm was shorter than that of the RRT* algorithm. However, compared with
the improved APF and RRT hybrid algorithm in this paper, there were still shortcomings,
such as a low search efficiency, tortuous paths, and a large demand on the computing
memory. The improved hybrid algorithm in this paper still showed excellent results in
the case of many obstacles, the search efficiency was higher, the path was shorter and
smoother, and it overcame the phenomenon of tortuous paths and unreachable targets in
the APF method when there were obstacles near the starting point and target point. To a
certain extent, the blindness of the RRT algorithm was reduced, and the efficient obstacle
avoidance ability of the RRT algorithm was fully utilized, as shown in Figure 10d.
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Figure 10. Comparison of paths generated by the different algorithms under the same conditions, such as the number of
obstacles and step lengths.

The comparison and analysis with the classic RRT algorithm, RRT* algorithm, and
P_RRT* algorithm verified the effectiveness of the improved hybrid algorithm in this paper.

Experiment 3. The reliability of the algorithm was evaluated by changing the step
length of the RRT algorithm in the hybrid algorithm. Each step was carried out 200 times.
The experimental results are shown in Table 4, and the trajectory of different step lengths is
shown in Figure 11.

Table 4. Comparison of hybrid algorithms with different step sizes.

Step Average Search Time
Average Number of

Sampling Nodes
Average Path Length Search Success Rate

0.6 6.2 13.8 19.4 100%
0.8 5.9 12.6 19.1 100%
1.0 3.2 11.9 19.1 100%
1.2 5.6 12.0 19.1 100%
1.4 6.7 12.7 19.2 100%
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Figure 11. Comparison of hybrid algorithms with different step sizes.

As shown in Table 4, the search time was the smallest when the step size was 1.0
(42.8~52.2% shorter than at the other step sizes). The search time at the left end with a step
size of 1.0 gradually decreased, while the search time at the right end had an increasing
trend due to the excessive step size. The search time of the path did not decrease with
increasing step size, and when the step size was 1.0, the search path was the shortest and
the time was the shortest. In summary, when the step size was 1.0, the algorithm achieved
the optimal effect. Therefore, the selection of the step size is still very important for the
hybrid algorithm, and the experiment verified the reliability of the algorithm.

Figure 11 shows the trajectory diagrams of different step lengths fitted with Bezier
curves. The effect is best when the step length is 1.0 in the figure: The trajectory is smooth,
and the path is the shortest.

6.2. ROS Simulation Experiment

This section took the UR5 mechanical arm as the research object, conducted a simula-
tion analysis in the ROS, and set up the scenes required for robotic arm motion planning
in MoveIt. The objects were added in MoveIt by creating a topic publisher, setting the
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basic shape and position of required obstacles and target objects, and publishing object
information. The experiment was demonstrated by the visualization tool Rviz in the ROS.
First, the UR5 robotic arm model was loaded, the simulation function was enabled, and
the start point and end point of the robotic arm were set. As shown in Figure 12, the gray
robotic arm was the pose of the starting point, and the yellow robotic arm was the pose of
the ending point. The obstacles in the picture are a table and eight regular-shaped cubes,
and the green cuboid is the grasping target. This scenario was a locally restricted test sce-
nario with obstacle constraints and platform constraints. Before motion planning, the error
transformation matrix was used to compensate for the parking error of the manipulator,
and the positions of the start point and end point of the manipulator were the postures
after compensation. The improved APF and RRT hybrid algorithm was added to the Open
Motion Planning Library (OMPL), and the corresponding YAML Ain’t Markup Language
(YMAL) was modified. The Kinematics and Dynamics Library (KDL) solver that comes
with MoveIt was used to solve the angle changes of each joint during the movement from
the starting point to the ending point. A smooth and collision-free path from the starting
point to the target point was obtained, as shown in Figure 13. The motion trajectory was
smooth and did not collide with obstacles.

Figure 12. The poses of the start and end points of the UR5.

Figure 13. The trajectory diagram of the UR5 robotic arm.

Figure 14 shows the changes in the six joints during the movement of the robotic arm.
The position change of each joint was relatively stable and met the real movement needs of
the robotic arm. The position of the joints at the start and end positions are shown in Table 5.
Table 6 shows the average search time and search success rate of different algorithms in the
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same obstacle environment. Each set of experiments was carried out 20 times. Simulation
experiments verified the feasibility of the algorithm.

Figure 14. The position change of each joint of the robotic arm.

Table 5. Initiation and termination of the robotic arm joint.

Joint 0 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5

The starting position 0.00112 0.00322 −0.00114 5.793 × 10−5 4.422 × 10−6 5.521 × 10−6

The ending position −1.42552 −0.67803 −0.27888 4.10375 −0.70497 −3.14746

Table 6. Search time and search success rate of different algorithms.

RRT RRT* P_RRT* APF-RRT

Search time 19.1 9.3 6.2 3.0
Search success rate 90% 100% 100% 100%

7. Conclusions and Discussions

This paper improves the classic RRT algorithm and the classic APF algorithm and
combines the two improved algorithms. The combined hybrid algorithm made full use
of the efficient obstacle avoidance ability of the RRT algorithm and the efficient guidance
ability of the APF method. Moreover, it avoided the disadvantages of each algorithm, and
the comparison and analysis with the other three algorithms verified the effectiveness of
the improved algorithm in this paper.

7.1. Discussions

To resolve the shortcomings of the classic APF method and the classic RRT algorithm,
this paper proposes an improved path planning method that combines the APF method
and the RRT algorithm for the path planning of the manipulator. First, the distance between
the obstacle and the nearest node was evaluated. Through the distance value, the I-APF
and I-RRT algorithms were used to explore the path. This simultaneously solved the
shortcoming that the APF method cannot reach the target point when there are obstacles
at the target point and made full use of the efficient obstacle avoidance ability of the RRT
algorithm. The two algorithms alternated exploring the path until the target point was
reached. The I-APF method introduced the heuristic method of breaking away from the
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local minimum based on the number of adjacent obstacles to solve the local minimum
problem in the algorithm. The I-RRT algorithm included the triangular nearest neighbor
node selection strategy, which effectively improved the obstacle avoidance ability and
efficiency of the algorithm. In the same obstacle environment, compared with the classic
RRT algorithm, the search time of the improved APF and RRT hybrid algorithm was
reduced by 92.5%, the number of sampling nodes was reduced by 87.9%, and the path
length was reduced by 23.4%. Compared with the RRT* algorithm, the search time of the
APF and RRT hybrid algorithm was reduced by 72.2%, the number of sampling nodes was
reduced by 47.4%, and the path length was reduced by 17.4%. Compared with the P_RRT*
algorithm, the search time of the APF and RRT hybrid algorithm was reduced by 62.1%,
the number of sampling nodes was reduced by 45.2%, and the path length was reduced
by 13.0%. With an increase in the number of obstacles, the improved hybrid algorithm
also showed the excellent effect of steady increases in the search time, number of sampling
nodes, and path length.

7.2. Conclusions

The improved hybrid algorithm gives full play to the advantages of the individual
algorithms while avoiding the disadvantages of the individual algorithms and is more
suitable for the path planning of robotic arms. However, in a complex environment with
more obstacles, the number of sampling nodes of the improved hybrid algorithm increases
significantly. This is because the number of nodes randomly sampled by the RRT algorithm
in the improved hybrid algorithm increases, increasing the consumption of computational
memory and reducing the search efficiency. Therefore, it is recommended that future work
focus on how to reduce the number of sampling nodes of the improved hybrid algorithm
to reduce memory consumption and improve the efficiency of the algorithm.

This article focuses on the research of robotic arm path planning in a three-dimensional
environment, which can be used in a variety of unstructured environments, such as
warehouse automation and handling on production lines. Future research will focus on
adaptive path planning in a dynamic environment.
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