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industry. This cyclic flow of iron materials between the water treatment industry and other industrial
processes could form part of a circular economy. Filter wastes may also be regenerated and recycled
to new Fe0 material, and then used in other industry when they contain toxic contaminants such as
As or U. The recycling of filter wastes in other industries may require detailed environmental risk
assessments, including the evaluation of contaminant leaching and potential ecotoxicological effects.

5.3. Field Applications of Fe0-Based Systems

Fe0-based systems present unprecedented opportunities for wastewater treatment and
safe drinking water provision especially in low-income countries, including those in Africa
(Table 4) [144,157,191–201]. In fact, the use of Fe0-based systems (e.g., the Bishof Process) for clean
water provision has a long history dating back to the 19th century [13,14,202]. The history of Fe0-based
drinking water treatment systems is discussed in detail in earlier review papers [17,18,122]. Recently,
our research group has proposed the integration of Fe0-based systems in rainwater harvesting systems
as a low-cost technology for decentralized drinking water provision, in what is known as the Kilimanjaro
Concept [192–194].

Table 4. Potential field applications of Fe0-based systems in drinking water and wastewater treatment.
The given reference refers to the oldest known application.

Field of application Remarks References

A: Safe drinking water provision:

1.Centralized safe drinking water systems Both filter beds and fluidized beds are used [168]

2. Decentralized water treatment for small
communities Steel wool is used against radionuclides [37,154]

3. Household filters against arsenic Traditional filters are amended with iron
nails [45,46]

4. Household filters against pathogens Biosand filters are amended with Fe0

materials
[141]

5. Community-scale Fe0-based systems
against arsenic

Natural water equilibrates with iron nails
and flocs are filtered on gravel [191]

6. Decentralized rainwater harvesting
systems for drinking provision

Fe0 filters are efficient to remediate
expected contaminants

[192–194]

B: Wastewater treatment systems:

1. Decentralized domestic wastewater
treatment

A Fe0 unit in implemented mostly to
remove PO4

3- [42,195]

2. Wastewater for agriculture and
aquaculture

Iron filings are used in filter beds to remove
Se [196,197]

3. Industrial wastewaters/effluents Sponge iron is used to precipitate Cu and
Pb from industrial wastes [198]

4. Constructed Wetlands for Wastewater
Treatment Granular iron is added to reactive materials [79,199]

5. Urban stormwater treatment Fe0 is amended to other media to optimize
the treatment of runoffwater

[200,201]

Fe0-based systems also have potential applications in domestic and industrial wastewater treatment
systems (Table 4). For example, the Harza Process [27,203] has been used to remove Se from agricultural
drainage water. Rahman et al. [200] and Fronczyk et al. [201] proposed the amendment of treatment
media for runoff infiltration trenches/pits with granular Fe0. In addition, Fe0-based systems have
been used to treat both domestic [204] and industrial wastewaters [205,206], including acid mine
drainage [24,207]. Available studies suggest that Fe0 can be added as filter media in constructed
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wetlands designed to treat urban stormwater and industrial wastewaters [199]. However, a lot remains
to be done to further develop and disseminate Fe0-based technologies for wastewater treatment and
decentralized safe water provision in developing countries, which such low-cost technologies are most
needed. Considering that the bulk of studies are limited to laboratory scale applications, there is need
to optimize the Fe0-based systems and evaluate them under field conditions.

6. Summary and Conclusions

The corrosion of iron in remediation Fe0/H2O systems is an electrochemical process, coupling Fe0

oxidative dissolution to the reduction of water (protons) and to no other available oxidizing agent,
including dissolved O2. This is because the universal oxide scale on Fe0 acts as diffusion barrier to
dissolved species and a conduction barrier to electrons from the metal body. In other words, water is
the sole chemical which can remove electrons from the Fe0 surface. Fe0 oxidation and water reduction
must not necessarily occur at the same locality. The spatial separation of oxidative (anodic) and
reductive (cathodic) reactions is possible as the metal body allows the free flow of electrons from
anodic to cathodic sites. The tendency of Fe0 to give off electrons (Equation (1)) is the same for all
Fe0-based materials (E0 = –0.44 V). This makes material selection and characterization critical in
designing sustainable Fe0/H2O systems.

The need to characterize Fe0 materials in terms of intrinsic reactivity and efficiency is critical for
the design and operation Fe0/H2O systems, a subject that has been addressed by our research group.
Specifically, EDTA and Phen tests were used to characterize the intrinsic reactivity of Fe0 materials. In
this regard, the Phen test is considered an affordable and appropriate method that provides a reliable
guidance in selecting Fe0 from the large catalog of available Fe0 materials and to control the quality of
newly manufactured ones. The efficiency of the Fe0/H2O system is characterized using the methylene
blue (MB) discoloration method, while other probing agents investigated include orange II, methyl
orange and reactive red 120.

The most characteristic issue of remediation Fe0 is the small size (<5 mm) of used materials.
Assuming uniform corrosion, the corrosion rates for progressive Fe0 oxidation should be normalized
to the individual particles. In other words, expression like mmol year −1 should be expressed
as mmol year−1 particle−1 or mmol year−1 grain−1. The next important issue will be to consider
the non-linear kinetics of the corrosion rate such that the service life of a designed system can be deduced
knowing the size of used particles and the long-term corrosion rate. Once this is known, considering
the expansive nature of iron corrosion would help to design sustainable systems. The choice of
the admixing aggregates (e.g., gravel, MnO2, pumice, sand) and the mixing ratios are to be investigated
on a case-by-case basis.

A better understanding of the long-term corrosion of relevant Fe0 materials under site-specific
conditions is envisioned to ultimately aid in the design of affordable, applicable and efficient remediation
Fe0/H2O systems. Applications of Fe0-based systems include; (i) a large variety of water treatment
systems, (ii) household and small-scale water treatment plants, including rainwater harvesting systems
for drinking water supply, (iii) decentralized domestic wastewater treatment, (iv) urban stormwater,
agricultural and industrial wastewater treatment, and (v) as filter media in constructed wetlands.
Addressing the key knowledge gaps highlighted here, and extending Fe0-based systems to other
application domains such as wastewater treatment for agriculture are focal research areas in our group,
which brings together collaborators from various countries.
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Abstract: Technological applications of nuclear science and technology in different sectors have
proved their reliabilities and sustainability over decades. These applications have supported various
human civilization needs, ranging from power generation to industrial, medical, and environmental
applications. Environmental applications of radiation sources are used to support decision making
processes in many fields; including the detection and analysis of pollutant transport, water resources
management, and treatment of municipal and industrial wastewaters. This work reviewed recent
advances in the research and applications of ionizing radiation in treating different wastewater
effluents. The main objective of the work is to highlight the role of ionizing radiation technology
in the treatment of complex wastewater effluents generated from various human activities and to
address its sustainability. Results of both laboratory and industrial scale applications of this treatment
technology have been reviewed, and information on operational safety of industrial irradiators, which
affect the sustainability of this technology, has been summarized.

Keywords: ionizing radiation; agricultural effluents; dye treatment; pharmaceutical effluents; disinfection

1. Introduction

Providing clean water and sanitation is one of the sustainable development goals that were
proposed by the United Nation (UN). One of the problems that affect this goal is the reduction of
freshwater quality. This reduction is attributed to the continuous increase in untreated wastewaters
volumes and poor management practices, which led to the introduction of hazardous materials into
freshwater sources [1]. Wastewater is defined, as indicated in UNEP/UN-Habitat, as a combination of
one or more of the following effluents: domestic, commercial, industrial, horticultural, aquaculture,
and storm water [2]. Recent advances in wastewater management helped in addressing some of the
problems in water supply, pollution control, water recycling, and environmental protection. Now
wastewaters are proposed as a resource, where many wastewater treatment plants are operated by the
biogas generated from the anaerobic digestion of sludge, and the effluents from these plants could be
used after appropriate treatment to meet the industrial, agricultural, and potable water requirements.
Currently, wastewater management in developing countries is characterized by the discharge of large
quantity of wastewater into surface water bodies without proper treatment. It is also challenged by the
difficulties to sustain financing, operating and maintaining infrastructure for wastewater treatment.

Conventional wastewater treatment plants (WWTP) aims at reducing the contamination levels to
acceptable limits required by the national regulatory agencies and at complying with international
guidelines, which allow its safe discharge or reuse. Multi-stages of treatment processes are used,
where pre-treatment stage is applied to remove coarse and large solids from the waste stream, using
physical treatment technologies such as screens and grit chambers [3]. Primary treatment methods
are then applied to remove suspended solids that could be settled using gravity sedimentation with
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or without coagulation and flocculation [3,4]. The effluent from the primary treatment is directed to
the secondary treatment stage to remove residual suspended solids and organic materials by using
biological treatment processes [3]. The effluents from secondary stage contain some heavy metals,
synthetic bio-refractory organic pollutants, and soluble microbial products derived during biological
treatment [5,6]. The synthetic bio-refractory organic pollutants may include emerging micro-pollutants
and disinfection by-products. In the tertiary stage of treatment, the effluents from the secondary
stage are polished by removing persistence organic containments and heavy metals using advanced
wastewater treatment technologies [3,4,7]. These technologies include filtration, sorption, gas stripping,
ion-exchange, advanced oxidation processes (AOP), and distillation [7]. Finally, disinfection could be
applied depending on the potential use of the treated effluents and the effluents characteristics [3].

Regulations on discharge/reuse indicators varied from country to another. In Denmark, Belgium,
Spain, Germany, France, and Netherlands, the regulation covers heavy metals concentrations, total
suspended solids (TSS), chemical oxygen demand (COD), 5 days biochemical oxygen demand (BOD5),
total nitrogen (TN), total phosphorus (TP), and quantity of effluent discharge [8]. On the other hand,
toxicity is only considered as reuse/discharge indicator in Germany, France, and United Kingdom [8].
Table 1 lists some international guidelines on the maximum limits for the reuse of effluents containing
heavy metals, and U.S. regulation for their reuse and discharge [9–12]. Table 2 presents effluent
discharge and reuse quality requirements in USA, Canada, and EU [11,13–15]. It should be noted that
three classes of effluents are listed in the Canadian regulation based on the degree of treatment processes
used in the treatment plants, namely, A, B and C, that refers to effluent from tertiary and disinfection
treatment, tertiary treatment, and secondary treatment, respectively. For reuse regulations in EU, the
limit of each class is determined based on the processes used in the treatment plants, irrigation methods,
and the type of corps. Class A represents effluents from tertiary and disinfection treatment used any
irrigation method and to produce all food corps. Classes B and C are effluent from secondary treatment
and disinfection, which are used to produce food and processed food and non-food corps using
all irrigation methods, and drip irrigation, respectively. Finally class D in EU regulation represents
effluents from secondary treatment and disinfection, where all irrigation methods are allowed to
produce industrial, energy, and seed corps [13]. Discharges from un-complied conventional WWTP
can lead to the introduction of persistent chemicals and eco-toxic micro-pollutants into the aquatic
systems [16]. The incomplete removal of these containments (even in 10−9–10−6 g/L concentration
range) was reported to induce potential long-term detrimental impact on the environment and the
human health [17]. Recent research studies reported in the literature supports the application of
advanced oxidation processes (AOP) for wastewater treatment to remove these contaminants [16,17].

Table 1. Guidelines of maximum limits for discharge and reuse of some inorganic pollutants in
treated wastewater.

WHO,
Reuse, ppb

[11]

FAO,
Reuse, ppb

[12]

US, ppb [9] WHO,
Reuse, ppb

[11]

FAO,
Reuse, ppb

[12]

US, ppb [9]

Discharge Reuse Discharge Reuse

As 50 100 3000 50 Hg 1 NA 2000 2

Cd 5 100 15,000 5 Ni 0 200 12,000 100

Cr NA 100 10,000 50 Ag NA NA 5000 50

Cu 1 200 15,000 NA Zn 5000 200 25,000 5000

CN NA NA 10,000 5.2 pH 6.5–8.5 6.5–8.4 6–9
Pb 50 5000 40,000 50

NA: Not Available.
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Table 2. Effluent reuse and discharge limits in different regulations [11,13–15].

Indicator

Reuse Discharge

EU [14,15] EU
[14,15]

US
[11]

Canada [13]

A B C D A B C

BOD5, ppm 10 25 45 10 10 45

TSS, ppm 10 35 45 10 10 45

COD, ppm NA NA NA NA 125 NA NA NA NA

E. coli, (CFU/100 mL) 10 102 103 104 NA 2.2 2.2 400 NA

Turbidity (NTU) 5 NA NA NA NA 2 2 NA NA

TN, ppm NA NA NA NA 15 10 20 NA NA

NA: Not Available.

AOP use in-situ generated hydroxyl or sulfate radicals for organic pollutants degradation and heavy
metals toxicity reduction [5,18,19]. AOP convert synthetic organic pollutants and soluble microbial
products into simple biodegradable and harmless products, which lead to the reduction of COD and
BOD in the treated effluents. AOP technologies employ various activation methods, where induced
oxidation is achieved via exposure to photochemical or ionizing radiations, or chemicals [18,20,21].
Several studies were conducted to assess the feasibility of using ionizing radiation, in the form of
gamma (γ) rays or electrons (e−), to remove persistence contaminants and to disinfect treated water
and sludge. The results of these studies indicated that the ionizing radiation treatment is technically
and economically promising. The efficiency of this technology was also proved in the reduction of
persistence heavy metals under different treatment conditions. Fifteen pilot plants and several full
scale irradiation treatment facilities that employ electron accelerator or γ irradiators were established
with varying capacities. International Atomic Energy Agency (IAEA) reported that there is a need to
continue research in this area to increase the general awareness of these processes in the environmental
engineering community [22]. This awareness could be achieved by presenting integrated reviews
on the advances in ionizing radiation applications in industrial effluents treatment from technical,
operational safety, and economical aspects. Some review papers were published that reviewed the
role of ionizing radiation in the degradation of azo dyes [23], summarized the results of the IAEA
coordination research project [24], and have reported the optimized doses and procedures [25]. There is
a lack in review papers that summarize recent advances in this field and that provide integrated insights
into the role of this technology in eliminating hazardous biodegradation and disinfection products. In
this work, the effort is directed to summarize the current understanding of the decomposition and
removal mechanisms for organic and inorganic pollutants, respectively. Principles and advances in
investigating the scientific basis of the applicability of this technique in the treatment and disinfection
of agriculture, dyes, pharmaceutical, and petrochemical effluents will be presented. Operational safety
and economical factors that affect the sustainability of this technology will be summarized. Finally,
knowledge gaps will be identified and research areas that need to be addressed will be highlighted.

2. Decomposition and Removal Mechanisms

Generally any emitted radiation is characterized by its ability to deposit some of its energy in
the surrounding media. This energy excites the media atoms by striping their electrons or break the
chemical bonds between its molecules [26]. This particular characteristic leads to the application
of ionizing radiation in treating wastewater, where the radiation imparts some of its energy in the
radiolysis of water molecules. The effectiveness of the irradiation process is evaluated by calculating
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the radiation chemical yield (G-value, μmol·J−) that quantifies the number of formed species due to
the absorption of 100 eV and is given by:

G =
6.023× 1023C

D× 6.24× 1016
(1)

where C is the formed species concentration (mol/L) and D is the absorbed dose (Gy). Figure 1
illustrates the two stages radiolysis process for water molecules and its corresponding time scale,
radiolysis products (primary intermediates), and their G-values. Primary intermediate (PI) then reacts
with the pollutants (A) leading to the formation of secondary intermediates (SI) that are less persistence
in a bi-molecular reaction to produce the degradation products (C + D), as follows [25,27,28]:

A + PI→
=

SI→ C + D (2)

Figure 1. Two stages radiolysis process.

In actual wastewater, there is a competition between the pollutants and the anions in the solution,
i.e., Cl−, CO3

2−, HCO3
−, SO4

2−, for the reaction with the primary intermediates. This competition can
affect the efficiency of the overall treatment process [27]. Gehringer studied the competition kinetics of
two pollutants (A, B) in wastewater. The reaction rate was attributed to the bi-molecular rate constant
(kA) between the solute concentration ([A] or [B]) and the primary intermediates concentration [OH]
as follow:

− dA
dt

= kA[A][OH] (3)

Table 3 lists the bi-molecular reaction rate constants for some pollutants [22,25,27,29]. The amount
of the specific radicals available for interaction with certain solute could be calculated using the reaction
probability (PA) according to the following equation:

PA =
kA[A]

kA[A] + kB[B]
(4)

Figure 2 illustrates the reactions between the primary intermediates and the available anions
in the wastewater effluents. Wojnarovits and Takacs [30] indicated that intermediate reaction with
chloride ions is dominant at pH < 5, whereas the reaction with carbonate and bicarbonate ions are
dominant at neutral or slightly alkaline pH. The produced free radicals will subsequently react with
dissolved organic matters in the wastewater via direct electron transfer (outer sphere electron), addition
to double bonds (inner sphere electron) or abstraction of H-atoms from C-H bonds. The last reaction
takes place between oxidizing radicals and saturated molecules. It should be noted that in some cases,
it is very hard to determine if the reaction is electron transfer or radical addition/elimination.
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Table 3. Bimolecular reaction rate constants for some pollutants [22,25,27,29].

Compound
Rate Constant, M−1 s−1, × 109

Compound
Rate Constant, M−1 s−1, × 109

OH e− H OH e− H

Perchloroethylene 1.7 13 Bicarbonate 0.0085 4 × 10−3

Trichloroethylene 2.6 19 Nitrogen 9.7

Dichloroethylene 7 7.5 Oxygen 19

Vinylchloride 12 0.25 Methyl t-butyl
ether 2 0.018

1,1,1-Trichloroethane 0.04 Ethyl t-butyl
Ether 1.8 0.01 7 × 10−3

Chloroform 0.005 30 Diisopropyl
Ether 2.5 7 × 10−3 0.067

T-Amyl Methyl Ether 2.4 3 × 10−3 3 × 10−3 Acetylenes 0.1–1

Alcohols 0.1–1 Aldehydes 1

Alkanes 0.001–1 Aromatics 0.1–100

Carboxyl Acids 0.01–1 Ketones 1

Organo-Nitrogen 0.1–100 Olefins 1–10

Phenols 1–10 Organo-Sulfure 1–10

Trichloronitromethane
(TCNM),

Chloropicrin
0.0497 ± 0.28 21.3 ± 0.03 Carbofuran 6.6

Benzene 7.8 Carbendazim 2.2

 

( ) −
+

+

−

−

+

−

− ⇔⇔⇔⇔
+

+

−−− +→+

+→+ −−

−

−

−

− −−−− +→+

+⇔+ −−−

Figure 2. Schematic diagram of intermediate reaction with free radicals.

Ionizing radiation can reduce various forms of mercury via reaction with e−aq (Equation (5))
and H (Equation (6)) to form unstable compound that dimerized (Equation (7)) to produce insoluble
form [31,32].

HgCl2 + e−aq → HgCl + Cl− (5)

HgCl2 + H → HgCl + Cl− + H+ (6)

2HgCl2 → Hg2Cl2 (7)

The presence of hydroxyl radicals inhibited the production of insoluble mercury (Hg2Cl2) through
re-oxidation of HgCl [31]. To enhance the removal performance of this technology the use of organic
radical to act as hydroxyl scavenger was proposed. For example, ethanol may be used (Equations (8)
and (9)) with the following reactions [9]:
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CH3CH2OH + OH→ CH3CHOH + H2O (8)

HgCl2 + CH3CHOH→ HgCl + Cl− + CH3CHO + H+ (9)

Successive reduction of Cr species from (VI) state to (III) state is achieved via reaction with
H [32]. On the other hand, cadmium (II) and lead (II) are reduced via reaction with H or/and e−aq

(Equation (10)) to produce Cd(I) that undergoes disprotonation (Equation (11)) or oxidization through
a reaction with OH− or H2O2 (Equation (12)), or react with hydrogen to produce unstable MH+ species
that decay (Equation (13)) [18].

M2+ + e−aq →M+ (10)

2M+ →M + M2+ (11)

M+ + OH→M2+ + OH− (12)

2H + 2M+ → 2MH+ → H2 + M2+ + M (13)

To reduce the oxidation effect and subsequently to enhance cadmium and lead precipitation, an
organic OH− scavenger could be used or the process could be operated in the absence of oxygen [31–33].

3. Advances in Treating Agricultural Wastewaters

Despite chemical pesticides, herbicides, and fungicides are applied according to national
agricultural guidelines to enhance the agricultural production efficiency. Residues of these persistence
pollutants and their toxic byproducts exist in agricultural wastewater, and could migrate to surface-and
ground-waters. Ionizing radiation treatment technology proved its effectiveness in decomposing a
varied number of these pollutants using tertiary treatment method. Most of the researches conducted
in this area focused on optimizing the irradiation conditions, investigating the effect of other waste
components on the degradation process, and the possibility of using combined treatment technologies
to enhance the overall efficiency of the treatment process. Table 4 summarizes the performance of
ionizing radiation in removing some pollutants in agricultural wastewaters.

Table 4. Performance of agricultural wastewater pollutants degradation using irradiation.

Pollutant Origin
Degradation
Performance

Initial Contaminant
Concentration, ppm

Dose, KGy References

Polychlorinated
Biphenyls (PCB) Pesticide 96% NA <0.1 [34]

Alkali Halides
Herbicides,
fungicides,
insecticide

98% 100 1 [25]

Trihalomethanes
Disinfection by

products

87.4% NA 2 [25]

95% 145–780 6 [35]

87.8% 264 8 [35]

Nitrophenols Degradation
products 0.139 5 [25]

Carbofuran,
Dimethoate,

Imidacloprid,
Procloraz

Pesticide 99% 50, (pH 5.5) 5
[36]

Methiocarb Pesticide 67% [36]

2,4-Dichlorophenol Pesticide Complete
degradation 50 10 [22]

NA: Not Available.
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The optimal irradiation conditions for six commercial pesticides, i.e., diazinon, dimethoate,
procloraz, metiocarb, imidacloprid, and carbofuran, using electron-beam facility, were determined for
different wastewater compositions and at different operational conditions [36]. The initial pesticide
concentrations (Ci) varied in the range 40 < Ci < 400 ppm, the initial pH in the range (4.5 < pH < 8)
and the irradiation doses were varied from 2–10 KGy. The application of 5 KGy was found to be
the most efficient for the treatment of procloraz, dimethoate, imidacloprid, and carbofuran (99%
degradation), but not efficient for the treatment of metiocarb. Low irradiation doses (<1 KGy) led
to the formation of hydroxylated intermediates that build-up in the solution with the progress of
the irradiation process. By increasing the irradiation period, a complete removal of the pollutants is
achieved as a result of hydroxylation of the accumulated intermediates. The effect of the combined
process of aeration and irradiation treatment was evaluated. It was found that the use of aeration can
improve the metiocarb removal by 18%. In general, the hydroxylation of the aromatic ring to produce
hydroxyl-cyclohexadienyl radicals is reversible [37]. Using aeration to inhibit the formation of these
reversible radicals by peroxidation will lead to more efficient degradation [37]. The optimum irradiation
conditions for the degradation of three herbicide and one fungicide, i.e., 2,4-dichlorophenoxyacetic
acid (2,4-D), 3,6-dichloro-2-methoxy-benzoic acid (dicamba), 4-chloro-2-methylphenoxyacetic acid
(MCPA), and carbendazim were determined. It was found that complete radiolytic degradation of
dicamba (Ci = 110 ppm) is achieved using an irradiation dose of 5 KGy and the process is insensitive to
the presence of other waste constituents, i.e., NO3

−. 2,4-D-degradation was found to be affected by the
presence of other waste constituents [35]. Another study addressed the use of ionizing radiation in the
treatment of 2,4-D, and MCPA at lower concentration levels (<50 ppm), in the presence Cl−, Br− and
NO3

−. The results confirmed the role of oxidative radicals (OH−) in the degradation of these pollutants
and the sensitivity of the irradiation process to the presence of the anions, where the secondary
intermediate formed at low doses (<1 KGy) are more toxic than the original pollutants [38,39].

The feasibility of using ionizing radiation in the treatment of agricultural effluents containing
chlorinated organic pesticide, i.e., (4-chloro phenoxyacetic acid (4-CPA), 2.4-dichlorophenoxyacetic acid
(2,4-D), 2.4-dichlorophenoxyacetic propionic acid (2,4-DP), and 2.4-dichlorophenoxyacetic butanoic
acid (2,4-DB) was studied. The results indicated good efficiency of the irradiation process at 1 KGy
in decomposing these pollutants. It was observed that chlorine was released as a result of their
degradation. To reduce the disinfection byproducts in the treated wastewater prior to its use in chicken
and fish livestock, an irradiation of the wastewater stream at 16.2 KGy dose was proposed, and 27 KGy
was proposed for sludge treatment [40].

Swine wastewaters, which are alkaline agricultural wastewaters, that contain different pollutants,
i.e., carbohydrates, proteins, lipids nitrates, nitrite, phosphate, and ammonia, were treated using
a combined process of irradiation and ion-exchange biological treatment method. The use of
electron-beam at 75 KGy achieved 85.1% removal efficiency of chemical oxygen demand (COD)
at organic loading rate of 1.41 kg/m3.day and achieved 75% removal efficiency of total nitrogen. The
nitrogen removal was found to be sensitive to variation in current density [41].

4. Advance in Dyes Treatments

The presence of organic dyes in industrial effluents can lead to serious health and environmental
problems. Ionizing radiation treatment was proposed to remove these contaminants. Research
efforts were directed to study model compounds, single polluted solution, simulated wastewater,
and real effluents. Table 5 summarizes the kinetic reactions of model compounds with their primary
intermediates, their corresponding rate coefficients and their secondary intermediates [23]. Most of
these compounds, except Azobenzene, decompose as a result of hydroxylation reaction, where the rate
coefficients are slightly varied depending on the molecular structure of the contaminant. On the other
hand, reactions with e− and H have small contribution to the decomposition process [23]. G value
for phenol degradation was found to be inversely proportional to the irradiation dose. Degradation
reaction is first order and favors neutral pH. Phenol degradation is enhanced with the addition of
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oxidants, i.e., O3, or S2O8
2−. S2O8

2− was more efficient due to the selectivity of SO4
2− radical to the

formed by-products (carboxylic acids) [42].

Table 5. Degradationkinetics of model compounds [23].

Model Compound
Primary

Intermediate
Rate Coefficient,
× 1010 mol−1·L·s−1 Secondary Intermediate

Aniline
OH− 0.86–1 -

H+ 0.2
Anilino radical (directly

and after water
elimination.)

Phenol OH− 0.66–1.4 Cyclohexadienyl-type
radical

H+ 0.17

Atrazine OH− 0.24

Azobenzene
e− 1–3.3 Hydrazyl radicals

OH− 2

4-amino-5-hydroxynaphthalene-
2,7-disulphonic acid OH− - Anilino-type

65% de-coloration of aqueous solution containing Alizarin Yellow GG (AY-GG, Ci = 100 ppm)
was achieved using 9 KGy dose. Irradiation pre-biodegradation was proposed to improve the
efficiency of treatment by 30% due to the formation of heterocyclic aromatic amines and cyanides.
Increasing the irradiation dose can enhance the biodegradation due to the elimination of toxic secondary
intermediates [43]. The aqueous solutions of Reactive Blue 15 (RB15) and Reactive Black 5 (RB5) dyes
were irradiated with doses 0.1–15 KGy and at 2.87 and 0.14 KGy/h dose rates. Complete de-coloration
was observed at 1 and 15 KGy doses for RB5 and RB15, respectively [25]. The de-coloration mechanisms
for Apollofix Red (AR) and RB5 in aqueous solutions were investigated using γ-rays irradiation [44].
It was found that the de-coloration that was due to reactions with e− and H, and increased linearly
with increasing the irradiation dose, whereas de-coloration that was due to reaction with OH− radical
increase logarithmically. De-coloration was attributed to the destruction of the color bearing part of
the dye as a consequence of OH− addition to the aromatic ring [25]. Aqueous solutions containing AR
and Apollofix Yellow (AY) were irradiated with doses of 1.0–8.0 KGy and at 0.14 KGy/h dose rate. The
complete de-coloration was observed using 3.0 and 1.0 KGy doses for AR and AY, respectively [25].

The use of ionizing radiation to decompose wastewater effluents of varying pH (1.6 < pH < 11.5)
and COD concentration (650 < Ci < 2210 ppm) from dye manufacturing factory was evaluated [45].
The use of 15 KGy decreased the optical density by 95% and removed COD by 72%. Use of aeration
and H2O2 enhanced the degradation. The treatment of simulated wastewater contains four dyes,
i.e., direct and reactive azo and anthraquinone dyes, using electron beam and γ radiation at different
dyes concentration and irradiation doses in the presence and absence of H2O2 was studied [46].
The highest de-coloration performance (≈100%) was obtained via electron beam irradiation using
7 KGy for direct and reactive azo dye (Ci = 1000 ppm). A combined process of electron-beam and
biological treatment was used in a pilot plant study in treating two waste streams. The first stream
was generated during the operation of dying process and the second stream was from polyester fiber
production enriched with ethylene glycol and terephthalic acid in 1998. An industrial facility was later
commissioned and operated based on the same technology in 2005 [24,25]. The use of electron-beam
technology to de-color and detoxify three effluents that represent chemical, final, and standard textile
effluents was conducted. The effluents were de-colored (96, 55, and 90%) using 40, 2.5, and 2.5 KGy,
respectively. The use of irradiation pre-biological treatment was found to reduce the toxic effect to the
subsequent biological treatment process [47]. The potential use of combined treatment for alkaline and
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nearly neutral textile effluent of COD (632 < COD < 127 ppm), BOD (311 < BOD < 490 ppm), and
turbidity (75–77%) at irradiation doses (<3 KGy) was investigated. It was found that the application of
coagulation prior to irradiation enhanced the de-coloration performance [48]. Electron beam irradiation
of simulated effluents that contains reactive dye (reactive yellow 15), size (starch), synthetic size (PVA),
alkali, color, and pigment (pigment red 139) was studied [49]. Application of 1 KGy irradiation for
post-biodegradation treatment enhanced the quality of the treated effluents.

5. Advances in Wastewater and Sludge Disinfection

Disinfection of treated wastewaters using ionizing radiation has been studied extensively. The
application of 4 KGy reduced the BOD5, COD, and total organic carbon (TOC) to acceptable limits [50].
In another study, anaerobic digested sludge irradiation at 1 KGy eliminated 98% of the total and fecal
coliform, whereas BOD5 was reduced to an acceptable limit at 4 KGy and COD was not affected by
irradiation up to 20 KGy [44]. The disinfection of acidic industrial effluents and sludge (2 < pH < 3)
of high concentration of BOD5 and COD (7093, and 32,664 ppm, respectively) using γ irradiation
was investigated [17]. Sludge and treated water disinfection could be achieved using 7 and 4 KGy,
respectively, whereas the reduction of the BOD5 and COD concentration to acceptable limits was
obtained at 18 KGy. A comparative study was conducted to evaluate the use of different advanced
oxidation methods in the disinfection of the municipal wastewater, re-growth control, and the associated
operating costs [51]. The results revealed that UV efficiency was affected by the seasonal variation in
the wastewater composition, whereas ionizing radiation efficiency was respectively unaffected by this
factor. Ionizing radiation provided high stable disinfection efficiency (95%) for the total colony count
and total coliform at radiation doses >0.25 KGy and inhibited the re-growth. From economical point of
view, the electric power consumption for UV and ozone is three orders of magnitude higher than that
required for ionizing radiation. Electron beam irradiation used to disinfect a municipal wastewater at
irradiation doses (<3 KGy) and removed 90% of coliforms [51].

6. Advances in Pharmaceutical and Petrochemical Wastewater Treatments

The possibility of treating pharmaceutical effluents was addressed by studying the effect of ionizing
radiation on the biodegradability and toxicity of individual drugs. Changes in biodegradability and
toxicity induced in aqueous solutions containing sulfamethoxazole (SMX, Ci = 0.1 mmol/L) using
ionizing radiation treatment revealed that SMX biodegradability was improved by applying 0.4 KGy
dose. At 2.5 KGy dose, SMX conversion to biologically treatable substances was noted [52]. The
degradation of carbamazepine (CBZ) by ionizing radiation was enhanced by the application of oxidant,
10 mM H2O2 [20]. The decomposition of mutagenic and carcinogenic secondary intermediates, i.e.,
acridine (ACIN), was enhanced in the presence of H2O2. The ionization of aqueous solutions containing
ciprofloxacin (CIR) and norfloxacin (NOR) (Ci = 10−4 M) was investigated. The degradation reaction
proceeds via OH− and e− reactions with comparable rate constant (≈109 mol−1·L·s−1). At low irradiation
doses, the antibacterial activities of the secondary intermediates vanished. Pollutants hydroxylation
during γ irradiations proceeds on the hydroxylated molecules and desethylene derivatives and during
pulse radiolysis is attributed to absorbance of hydroxyl-cyclohexadienyl radicals. In hydrated electron
reactions, electron adduct is formed then it underwent protonation yielding cyclohexadienyl type
radical [53]. The treatment of real pharmaceutical effluent using combined process of coagulation,
biological treatment, and γ irradiation was investigated [54]. Two tested neutral effluents, namely,
low organic strength (LSW; BOD < 6730 ppm, COD < 12,715 ppm) and high organic strength (HSW;
BOD < 27,242, COD < 51,223 ppm). The use of irradiation led to maximum reduction in COD of
45% in acidic media at 50 KGy (LSW) and 30% in acidic media at 100 KGy (HSW). The application of
coagulation pre-treatment was found to affect the efficiency, where 55% and 50% could be achieved
using 100 KGy, for LSW and HSW, respectively. The use of H2O2 led to enhanced COD and TOC
removal efficiency, when compared to S2O8

2−. The combined treatment led to overall 92.7% ± 2.3%
and 90.2% ± 2.9% removal of COD from LSW and HSW, respectively. In a separate study, combined
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process of coagulation, electron beam treatment, and biological treatment was performed. An overall
reduction in COD of 94% and 89% was achieved LSW and HSW, respectively [55]. The radiation doses
were varied from 25–100 KGy at different pH that represent acidic, neutral and alkaline media. The
slightly improved performance of the electron irradiation process was related to the reaction of e−aq

with H through parallel reaction with the organic contaminants to generate H+, which subsequently
inhabits the recombination of e−aq and OH−. The consideration of the total cost of electron beam
irradiation facility (20 MeV, 100 kW), its shielding and maintenance, and capital costs was estimated
and the cost of the treatment was estimated to be 0.6 USD/m−3.

The decomposition of naphthalene (Ci = 5–32 ppm) in aqueous solution was studied using γ

irradiation combined with both H2O2 and TiO2nano-particles. The application of 3 KGy dose led to
high naphthalene removal performance (>98%) and TOC reduction (28–31%) due to hydroxylation
reaction. This performance is enhanced by 35% due to the presence of 40 ppm of H2O2 and 48% due to
the presence of 0.8 g/L TiO2 [56].

7. Sustainability of the Technology

In general, the sustainability of the nuclear industry is governed by its technical competitive
performance, economical feasibility, and safe operational practice. As presented in the previous
sections, the technical performance of the application of ionizing radiation technology in wastewater
treatment is effective in disinfection and reduces the bio-refractory nature of several persistence
organic pollutants. Several studies proved the economical feasibility of the e-beam and γ irradiation
technologies [21,32,41,48,51,54–63]. For e-beam technology, the capital costs include the accelerator
price, building shield, conveyer, cooling and ventilation systems, and monitoring system [57]. The
capital cost of the e-beam accelerator is dependent on the power (P, kW) consumed to produce optimum
dose (D, KGy) for specified plant flow rate (Q, m3/h) taking into account the utilization factor (ϕ) [48,60]:

p =
DQ
ϕ

(14)

The cost of the accelerator installation (Ki, k$) is determined using the applied electron energy
(E, MeV), power, accelerator type and manufacturer (b, d), and installation coefficient (a) as follows [48,57]:

Ki = a·b(1± d)E
√

p (15)

The values of the coefficients b and d varied with time due to the evolution and advances in
the manufacturing process [48]. On the other hand, the costs of γ irradiator are not accompanied by
power consumption [54], where γ source irradiate spontaneously. The average cost (ATC, k$/m3) of
this irradiation technique is determined based on the price of the used radioactive source (R, k$/Ci),
required activity (I, Ci), irradiation time (t, h) and half life (t0.5, h), and the irradiation chamber volume
(v, m3)

A (Ci) = R× I× t/(t0.5 × v) (16)

To facilitate the cost comparison between the use of e-beam technology and other treatment
technologies the relative treatment costs estimated at different time is presented in Figure 3 [48,64]. In
terms of cost, only disinfection process, which uses chlorine, is better than the use of e-beam technology.
Similar data are not available for γ irradiation. To compare the cost of this technique alone and cost of
this technology combined with coagulation, the data reported by Changotra et al. [54] were plotted for
two types of industrial effluents (Figure 4).
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Figure 3. Relative treatment costs for wastewater using e-beam and other disinfection and conventional
treatment methods [48,64].

Figure 4. Treatment costs for γ irradiation and combine coagulation-γ irradiation [54].

There are some technical and non-technical issues that need to be resolved to ensure the
sustainability of using this technology. These issues are listed below [22]

1. The usable output power of the electron accelerator limits its wide scale use as a safe substitute
for chlorination for medium scale wastewater treatment plants.

2. Capital costs of electron accelerators needs to be reduced to ensure economical feasibility, where
capital cost of installing an electron accelerator of 1MeV/400KW, could be attributed to half the
accelerator price, whereas the design, construction, transportation, and installation of the facility
contribute to 37.5% of capital cost.

From safety point of view, radiological accidents associated with different application of industrial
irradiator, either γ irradiators or accelerators are limited, and could be classified as level 4 on the
international nuclear and radiological event scale (INES). This level is used to describe accident with
local consequence; Figure 5 summarizes the radiological exposures in these historical accidents [65].
Except the 1967 accelerator accident, one worker was exposed to radiation in each accident with a
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probability 0.092 and 0.12 a−1 for accelerators and γ irradiators, respectively. It should be noted that
due to the more stringent regulatory safety requirements that were issued later, similar accidents were
not reported over three decades ago. These regulatory requirements are not only related to safety
aspects but also to the security aspects to ensure the application of 3S concept (Safety, Security, and
Safeguards) [66,67]. To reduce these accidents, and based on the national regulation, the following
measures should be considered [68–70]:

1. Appropriate safety measures, i.e., shielding requirements, operational procedures, provision of
safety assessment documents, should be applied to ensure radiological containments.

2. Appropriate security measures should be applied to ensure safety of workers and public.

Figure 5. Summary of the historical industrial irradiator accidents; (a) accelerators, (b) γ irradiator.
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Currently, the control strategy in these facilities is based on the combination of physical protection
means, i.e., shields, barriers, and interlocks, and operational procedures [65,71]. This strategy ensured
an accident probability for industrial irradiator in the order of 2 × 10−4 a−1.

8. Conclusions

The review of ionizing radiation technology in decomposing bio-refractory organic contaminants
and disinfecting different wastewater effluents were presented in this study. Factors that affect the
sustainability of this technology were summarized. From this review the following conclusions could
be drawn.

1. Most of the published work focused on the quantification of ionizing radiation effects on primary
pollutants and the secondary intermediates toxicity, and determination of optimum irradiation
conditions in different effluents. Research efforts are needed to study the feasibility of ionizing
radiation treatment for petrochemical wastewater effluents,

2. Despite real industrial wastewater effluents were studied, there is a need to study the kinetics
reactions in these complex systems to enable a better understanding and a better design for
combined treatment schemes.

3. Compared to other disinfection technologies, the ionizing radiation technology provides
economical, reliable, and safer operations that are not affected by the seasonal variation in
the effluent composition, and reduces the generation of secondary toxic intermediates.

4. Operational safety of industrial irradiators has been improved due to the increasing stringent
regulatory requirements and the updating the operational procedures, which lead to the reduction
of accidents probability from 10−2 to 10−4 a−1.
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