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and Thomas Nauss
Quality Assessment of Photogrammetric Methods—A Workflow for Reproducible UAS
Orthomosaics
Reprinted from: Remote Sens. 2020, 12, 3831, doi:10.3390/rs12223831 . . . . . . . . . . . . . . . . . 41
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1. Introduction

The concept of Remote Sensing as a way of capturing information from an object
without making contact with it has, until recently, been exclusively focused on the use of
earth observation satellites.

The emergence of unmanned aerial vehicles (UAV) with Global Navigation Satellite
Systems (GNSS) controlled navigation and sensor-carrying capabilities has increased the
number of publications related to new remote sensing from much closer distances. Previous
knowledge about the behavior of the Earth’s surface under the incidence of energy of
different wavelengths has been successfully applied to a large amount of data recorded
from UAVs, thereby increasing the special and temporal resolution of the products obtained.

More specifically, the ability of UAVs to be positioned in the air at pre-programmed
coordinate points, to track flight paths, and in any case, to record the coordinates of the
sensor position at the time of the shot and pitch, yaw, and roll angles have opened an
interesting field of applications for low-altitude aerial photogrammetry, known as UAV
Photogrammetry. In addition, photogrammetric data processing has been improved thanks
to the combination of new algorithms, e.g., structure from motion (SfM), which solve the
collinearity equations without the need for any control point, producing a cloud of points
referenced to an arbitrary coordinate system and a full camera calibration, and multi-view
stereopsis (MVS) algorithm that applies an expanding procedure of a sparse set of matched
keypoints in order to obtain a dense point cloud. The set of technical advances described
above allows geometric modeling of terrain surfaces with high accuracy, minimizing the
need for topographic campaigns for the georeferencing of such products.

This special issue aims to compile some applications realized thanks to the synergies
established between the new remote sensing from close distances and UAV Photogramme-
try. The contributions are briefly described below in alphabetical order of the first author.

2. Overview of Contributions

In the paper [1], the authors carried out an interesting combination of UAV Photogram-
metry and Large-Scale Airborne Lidar Data to monitor snow masses in a forested region in
central Arizona, United States. They observed that in low dense forest conditions, both
sources of data deliver similar snow depth maps while in high dense forest, lidar maps
are more accurate. In the other hand, UAV Photogrammetry terrain model can be used to
basin-scale snowpack estimation with a multi-temporal information with a lower cost that
airborne lidar campaigns.

In [2], the authors stablish the optimal distribution and number of Ground Control
Points (GCPs) to use in corridor maps applied to linear projects obtained in southeast Spain.
They used UAV Photogrammetry based on SfM and SMV algorithms and concluded that
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9–11 GCP distributed alternatively on both sides of the road, with a pair of GCPs at each
end of the road yielded optimal results regarding fieldwork cost.

The paper [3] presents a valuable fusion of digital surface model (DSM) in an extremely
challenging urban environment with high level detail, and UAV orthomosaic. The authors
integrated three models: adaptive hierarchical image segmentation optimization, multilevel
feature selection, and multiscale supervised machine learning. They concluded that the
applied methodology showed an excellent potential for the mapping the selected urban
landscape in Malaysia.

The quality assessment of UAV Photogrammetric products was the main concern
of [4]. In this work, the geolocation procedure of UAV orthomosaics time series was
optimized, obtaining a reproducibility of 99% in a grassland located in Germany and 75%
in a forest area in the Spanish Pyreneess.

UAV Photogrammetry can model terrain surfaces with extreme or quasi-vertical
morphologies [5]. In this work, several combinations of number of GCP, distribution
and image orientation were tested in a dam belonging to Spain’s hydraulic heritage,
located in the Almería province, obtaining similar results than terrestrial laser scanner
TLS. The authors advised that the results ostensibly improve including oblique images and
break lines.

Vegetation used to be an obstacle for accurate DSM. The authors of [6] applied Deep
Learning and Terrain Correction models in Chinese Loess Plateau to solve the restriction of
UAV Photogrammetry in a vegetation-dense area with a complex terrain due to reduced
ground visibility and lack of robust filtering algorithms. They detected the vegetation with
overall accuracy of 95% and the mean square error of final DTM was 0.024 m.

In other cases, the target cover to be detected is precisely vegetation that frequently is
modelled through standard vegetation indexes. In [7], the authors studied useful correla-
tions between certain parameters of chemical analysis carried out in agriculture crops and
vegetation indexes obtained from UAV-Photogrammetry assessments.

In the design process of a UAV photogrammetric project, the resolution of the images
to be captured is established according to the minimum size of the smallest target to be
detected. The user wonders how much information is lost when the imagery resolution
decreases. In [8], the authors apply the deep convolutional neural network approach, based
on a single image super-resolution, on low-resolution UAV imagery for spatial resolution
enhancement. Using these high-resolution images in a SfM Photogrammetric process, they
observed that the number of points in dense point cloud is about 17 times more than those
extracted from a low-resolution image set.

In the paper [9], the authors carried out an interesting practical application for the
3D reconstruction of Power Lines based on UAV Photogrammetry. They stablished a 3D
corridor around power lines and detected some objects inside this volume as obstacles
that could threat safety of the infrastructure. They compared UAV Photogrammetry
models with total station survey and terrestrial laser scanning, concluding that the accuracy
is consistent.

UAV Photogrammetry can be used as a valuable source of data in architectural design
process [10]. They proposed a virtual integration of UAV Photrogrammetry products and
architectural design using building information modeling (BIM) technology, observing
error reductions, and significate time and cost saving.

The implementation of GNSS-based UAV navigation capability in real time kinematic
(RTK) mode has reduced or even eliminated the need for topographic campaigns to obtain
GCPs. However, this technology implies systematic errors in elevation. In [11], the authors
observed a linear relationship between these errors and the deviation in the focal length
adjustment and proposed the combination of two flights with different image axis angles
for their elimination.

One of the difficulties that large UAV projects present is the management of high
quantity of images. In [12], the authors proposed an intelligent method for image selections
in UAV-Photogrammetry projects that can be used to avoid the time-consuming manual
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image selection process, maintaining overlaps needed for point cloud extraction and
avoiding reductions of products accuracy.

3. Conclusions

The set of contributions to this special issue points out that the possible scientific
applications in the field of UAV Photogrammetry and Remote Sensing from close distances
is very wide.

UAVs not only take advantage of the previous knowledge in Remote Sensing acquired
over the years, but they also improve and expand its possibilities thanks to the control that
users have over the sensors.

UAV photogrammetry has been shown as a previous process in all those remote
sensing applications whose observed targets are spatially distributed along the terrain
surface, obtaining orthomosaics and digital surface models with high spatial and tempo-
ral resolution.
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2 NutriVet s.r.o., Vídeňská 1023, 69123 Pohořelice, Czech Republic; jambor.vaclav@nutrivet.cz (V.J.);
nutrivet@nutrivet.cz (H.S.)

* Correspondence: xjanou09@vutbr.cz

Abstract: The optimum corn harvest time differs between individual harvest scenarios, depending
on the intended use of the crop and on the technical equipment of the actual farm. It is therefore
economically significant to specify the period as precisely as possible. The harvest maturity of silage
corn is currently determined from the targeted sampling of plants cultivated over large areas. In
this context, the paper presents an alternative, more detail-oriented approach for estimating the
correct harvest time; the method focuses on the relationship between the ripeness data obtained
via photogrammetry and the parameters produced by the chemical analysis of corn. The relevant
imaging methodology utilizing a spectral camera-equipped unmanned aerial vehicle (UAV) allows
the user to acquire the spectral reflectance values and to compute the vegetation indices. Furthermore,
the authors discuss the statistical data analysis centered on both the nutritional values found in
the laboratory corn samples and on the information obtained from the multispectral images. This
discussion is associated with a detailed insight into the computation of correlation coefficients.
Statistically significant linear relationships between the vegetation indices, the normalized difference
red edge index (NDRE) and the normalized difference vegetation index (NDVI) in particular, and
nutritional values such as dry matter, starch, and crude protein are evaluated to indicate different
aspects of and paths toward predicting the optimum harvest time. The results are discussed in terms
of the actual limitations of the method, the benefits for agricultural practice, and planned research.

Keywords: multispectral imaging; vegetation indices; nutritional analysis; correlation; photogram-
metry; optimal harvest time; UAV

1. Introduction

Precision agriculture (or site-specific crop management) is an internationally recog-
nized concept and term referring to land cultivation by means of nontraditional technolo-
gies that were first designed and developed at the end of the 1980s [1–3]. The aim of the
concept rests in adjusting cultivating procedures to suit local conditions, the main principle
being to perform the crop-growing tasks at the right place, intensity, and time [4,5].

The standard process to estimate the condition of crops during the growth phase,
especially when the correct harvest time has to be defined, involves a land survey in which
sample plants are manually collected and then chemically analyzed in a laboratory. Such
an approach, however, is labor- and time-intensive because it relies mainly on direct human
inspection inside the crop fields, which are usually inhomogeneous and thus difficult to
characterize accurately through a single analysis. An effective alternative then appears to
lie in remote sensing, a technique applicable in determining crop maturity degrees over
large areas. The procedure yields rapid information on spatial and temporal changes in
the monitored quantities [6], allowing farmers to recognize and differentiate between the
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specific conditions that characterize individual portions of the land; this task can also be
performed via other survey methods, but only with considerable difficulty. The noninvasive
evaluation of crop quality by means of multispectral imaging facilitates reform steps in
agricultural management [7–10]. In the discussed field, remote sensing generally offers two
functional options, namely, satellite imagery [11–15] and unmanned aerial vehicle (UAV)
photogrammetry [16–20].

Advancements in unmanned aerial vehicles (UAVs) and the related developments
concerning their use in remote sensing have made the technology a promising tool in recent
decades [21]. Most importantly, UAVs (drones) as a remote sensing platform have shown
major potential in crop-growth monitoring [22,23], where they ensure a proper balance
between the image quality, sensing efficiency, and operating cost. The spectral information
and vegetation indices derived from UAV-delivered multispectral or hyperspectral data
have now been widely tested for this purpose [24–26].

This article describes the monitoring of a selected corn hybrid within pre-defined
growth intervals, to find a relationship between the variation in the nutritional values of
crops and changes in UAV-based photogrammetry images. In this context, one of the main
problems investigated is the connection between the data obtained from chemical analyses
of sample plants and the vegetation indices calculated from spectral reflectivities, which
are monitored by using a multispectral camera. The aim of the research is to establish
experimentally whether the optimum corn harvest time and quantity can be predicted,
with an emphasis on searching for a mathematical relationship between a variation in
the content of dry matter in the sampled corn and changes in the vegetation indices. The
dry matter content constitutes a significant nutritional parameter for both biogas stations
and livestock production [27,28]. The optimum corn harvest time differs according to the
intended use of the crop and the technical equipment and installations in the relevant
works; for this reason, it is then important to specify the ideal harvest time as precisely as
possible, considering the circumstances [29–31].

At present, the maturity of silage corn is normally estimated based on the targeted
sampling of plants over large corn-growing farm areas (usually having an acreage of
dozens of hectares). The counts of samples differ markedly, depending on the desired
accuracy. The proportion of dry matter, nutritional substances, and other parameters are
defined by means of a 7- to 10-day laboratory analysis. Due to the cost, the heterogeneity
of the samples, and labor intensity, the actual survey can be carried out with only a
limited set of samples and does not effectively cover the areal changes in the vegetation.
Within the Czech Republic, by extension, the diversity of pedoclimatic conditions and the
sizes of land units point to a substantial imbalance in the properties of land managed by
enterprises, and embody preconditions for the successful implementation of the principles
of precision agriculture.

Currently, systems are available that can assess comprehensively the quantity and
quality of crops; to provide relevant examples, we can refer to John Deere’s HarvestLab
3000 and the Evo NIR sensor by Dinamica Generale S.p.A. Such systems utilize NIR (near-
infrared) cameras mounted on the harvesters, and are operated only during the harvest
period [32–34]. When seeking the optimum nutritional values, agricultural technologists
and researchers employ various types of prediction; the authors of source [35], for instance,
exploited superspectral airborne imagery to predict corn grain yield and ear weight, and
to discriminate between growth stages and irrigation treatments. The use of multispectral
imaging to determine the phenophase, however, is somewhat contrasted by the fact that
the authors focused solely on utilizing the normalized difference vegetation index (NDVI).
Predicting the optimum harvest time is associated with diverse factors, including the
volume of dry matter in the plants. The problem of dry matter in forage corn grown for
silage is discussed in paper [36], with an emphasis on measuring the NDVI of the plants.

By contrast, our concept has been formulated to deliver area-specific harvest estimates
that involve more input elements than merely the NDVI or chemical analyses performed
with a limited number of plants from over the entire field. This article thus outlines original
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options for predicting the optimum harvest time, and these are based on searching for
correlations between the chemical analysis of sampled corn and the images acquired with
a spectral camera in the course of a UAV photogrammetry cycle. By another definition,
the novelty of this article rests in that the statistical analysis is applied to reveal hitherto
unexplored relationships between nutritional parameters, acquired through chemical
analyses and vegetation indices yielded via processing data collected by a multispectral
camera. These relationships will be utilized in estimating the optimum harvest time for the
entire area of the selected cornfield.

To summarize the various views and perspectives, we can point out that this subsector
still offers ample room for new approaches and interpretations.

As regards the actual structure of this article, the text is organized into three sections:
Section 2 presents the chemical analysis of the samples, the remote sensing, and the
data correlation methodology, Section 3 introduces the results, and Section 4 contains the
discussion and conclusion.

2. Materials and Methods

The data collection and mathematical processing are characterized in the block dia-
gram in Figure 1. The information relating to the investigated agricultural land is captured
via UAV photogrammetry and manual selection.

Figure 1. A block diagram defining the data collection and processing.

The multispectral images delivered by the UAV-mounted camera enable us to compile
relevant reflectivity maps, which then facilitate computing the vegetation indices. To obtain
the nutritional indicators in the sampled corn, we performed laboratory-based chemical
analysis. The vegetation indices and the results of the analysis were then correlated at
various stages of the growth phenophases; this step allowed identifying the time when the
crop yield is ideal for ensuring the production of silage or methane.

2.1. Study Site

The experimental monitoring and sampling were carried out over agricultural land
managed by the enterprise Bonagro Blažovice, a.s., the type of crop involved being the
corn hybrid LG Apotheos FAO 500, delivered by Limagrain Central Europe S.E. The
land is located in the vicinity of the village of Prace (Figure 2), in the South Moravian
Region, Moravia, the Czech Republic; the coordinates of the test fields are 49.1472789N,
16.7701758E. In terms of the climate, the land, being situated within a temperate zone and
at an altitude of 260 m, generally experiences warm to hot summers. During the monitored
phenophase, the average air temperature and precipitation reached 14.7 ◦C and 12.7 mm a
week, respectively. The average amounts of precipitation differed between the individual
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sampling cases. The concrete values equaled 17.5 mm per week in the first 3 weeks, zero
(no rain) in the following 3 weeks, and 45.5 mm in the last week.

Figure 2. The location of the fields observed in the experiment.

The experiment started with the initial corn sampling on 12 August 2020, when the
crop was going through the second half of the phenological stage of growth and was still
earless. Procedurally, in the area of interest, we performed imaging and collected samples
for chemical analysis, invariably at weekly intervals. In total, the samples were collected
at eight time intervals, and the last sampling took place on 5 October 2020; by that date,
compared to corn not involved in the experiment, the condition of the plants had already
corresponded to a later post-harvest stage. The sampling and imaging were regularly
executed between 12 p.m and 2 p.m.

2.2. Imaging Methodology

The initial step consisted of acquiring a sufficient quantity of various data by using a
multispectral camera mounted on a UAV (Figure 3a,b). For this purpose, we employed a
MicaSense RedEdge camera on a DJI Matrice 600 Pro aerial vehicle. The camera operates in
5 narrow spectral bands, and each of the sensors has a resolution of 1280 × 940 pixels. The
device ensures the narrowband recording of wavelengths in regions sensitive to the human
eye, namely, the range of 400 to 700 nm in blue—B, green—G, and red—R, and also within
the rim of the red sector of visible light (red edge—RE); the near-infrared (NIR) range,
invisible to the human eye, is recorded also. The concrete parameters of the bands are
summarized in Table 1. To carry out the scanning, we preset the automatic sequential image
shooting mode, based on the exact position of the aerial vehicle. The images were stored on
a memory card, together with the metadata comprising the concrete GPS locations where
the images were taken. Importantly, the camera contains a light sensor module to correct
the exposure at varying light intensities; the sensor thus automatically adjusts the camera
exposure according to the angle of the incident beams and the brightness. To compensate
for the reflectivity, we calibrated the sensors before each flight by taking images of the gray
calibration panel indicating the known parameters (Figure 3c). The panel ensures that the
images remain stable regardless of the light conditions.
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The flight path was created via the application Pix4D Capture [37]. The total area
of the monitored crops exhibited a rectangular shape and dimensions of 401 m × 331 m
(approximately 13.2 ha) (Figure 4). The length of the flight path equaled 4477 m, and the
actual survey flight took 31 min, with an image overlap of 70%. The UAV performed the
imaging at a speed and height above ground level of 8.6 km/h and 40 m, respectively. In
each monitored band, we acquired 450 images with a resolution of 2.78 cm/pixel.

Figure 3. (a) The UAV in operation; (b) the RedEdge multispectral camera; (c) the calibration panel showing the known
reflectivity value for each of the bands recorded.

Table 1. The parameters of the bands recorded by the RedEdge camera.

Band Band Name Wavelength [nm] Bandwidth [nm]

1 Blue (B) 475 20
2 Green (G) 560 20
3 Red (R) 668 10
4 Red edge (RE) 717 10
5 Near-infrared (NIR) 840 40

Figure 4. The area of interest visualized in Pix4D Capture.
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2.3. Nutrition Value Processing

The biomass from the harvested crops comprises exclusively whole corn plants. The
basic indicator relating to the phenophase of crops rests in determining the dry matter
content; the term dry matter then represents the solid, waterless portion of fodder. In corn,
the dry matter indicates vegetation maturity [29]. During the vegetation growing season,
the chemistry of corn plants changes; in the course of the earless phases, the energy is
stored particularly in the fibers. Fodder for dairy cows, however, requires ear starch. Thus,
to ensure that the silage contains both the fibers and the starch, the crops are harvested at
wax maturity, when the plants’ dry matter content reaches 280 to 330 g/kg. In such cases,
the milk line stage attains the level of 2/3 in the corn grain. Another vegetation maturity
indicator lies in the corn’s capability of being silaged, namely, producing the fermentation
acids that conserve the silage.

The quality of the fermentation processes is fundamentally influenced by the harvest
time and the total biomass quantity.

Every year, the properties of the crops and the silaging are highly variable, depending
on the weather, the selected hybrid and its Food and Agriculture Organization (FAO)
designation (the number of vegetation days), and the quality of sowing and care. During
the growth, the dry matter content increases, and the fibers lignify. Furthermore, the
development of the ears causes the volume of starch to rise, while the amount of sugars
decreases due to their transformation into grain starch. In this manner, an easily silageable
plant becomes one that can be silaged with medium difficulty, and the chopped crop then
has to be shortened to allow effective packing-down and air removal. All of these changes
play a major role in the specification of the harvest time [6,30].

The sampling was invariably performed at identical time intervals, together with the
multispectral imaging. To monitor the quality of the corn hybrid, we opted for sampling
according to the methodology recommended by the Central Institute for Supervising and
Testing in Agriculture, Brno, Moravia, the Czech Republic [38]. Before commencing the
inspection, we selected 3 spots in various sectors inside the area to obtain representative
data of the growth homogeneity. Each of the spots provided 10 successively neighboring
plants, and these were immediately transported to the Pohořelice-based laboratories op-
erated by the company NutriVet, s.r.o. After being separated, the samples were ground
and dried at 60 ◦C for approximately 24 h to yield a stable content of dry matter. At the
sampling and measurement stage, the plants were still earless and could thus be shredded
without prior disjoining. The dried mass was homogenized by grinding in a laboratory
mill with 1-mm screen openings. Subsequently, each sample was analyzed twice to supply,
at different stages of the procedure, information relating to the following structural, nu-
tritional, and chemical quantities: FM—fresh matter; EW—ear weight; DM—dry matter;
CP—crude protein (established from the dry matter); CF—crude fiber; starch—starch
content; ash—ash content; NDF—neutral detergent fiber; DNDF—digestibility (NDF);
and DOM—organic matter digestibility. The data obtained then facilitated computing the
hectare yield indicators, namely, the yields of fresh matter (YFM) and dry matter (YDM).

All of the analyses involving the chemical quantities indicated above were executed
by applying common techniques. The contents were determined via the methods specified
by the Association of Official Analytical Chemists (AOAC), which are represented through
numerical codes; here, each code stands for a method used with a particular substance.
Thus, we can provide the following list: DM (# 934.01), ash (# 942.05), crude protein
(# 976.05), starch (# 920.40), NDF (# 2002.04), and DNFD (# 973.18) [39–42]. The outcomes
then enabled us to compute, for each sampling phase, the average values in the monitored
substances. After the fifth sampling, when the corn had already developed the ears, the
analysis already involved separating the ears from the parent plants and weighing them
without the leaves. The procedures were completed by establishing the dry matter and
starch contents.

Usually, corn sampling to assess the condition and phenophase takes place at diverse
spots. At the milk line stage, the samples began to be transported to laboratories to
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determine the dry matter contents in both the grain and the entire plant. Based on the level
of plant development and the dry matter volume, the harvest time is preliminarily specified
and differentiated according to the intended use, namely, milk or methane production (the
latter in biogas stations).

2.4. Vegetation Reflectivity Preprocessing

The scanned multispectral wavelength bands for the blue, green, red, red edge, and
near-infrared sectors interact with the vegetation differently, depending on the solar radi-
ation, the absorption and reflection of which result from and show dissimilarities in the
overall chemical composition and the contents of water, pigments, and nutrients. The high
contrast of variations in the near-infrared band ensures broad usability when setting up
vegetation indices. Furthermore, the narrow red edge band also exhibits strong reflectivity
changes, from the absorption of red to the considerable reflection of near-infrared radia-
tion. Out of the monitored bands, the near-infrared spectrum has the strongest reflectivity,
and, together with the red band, is the most frequently applied option when assembling
vegetation indices [20].

The data sensing was carried out at eight time intervals corresponding to specific
7-day phenophases of plants. For each of the monitored spectral bands, we formed a TIF
image that embodied a reflectivity map covering the entire area. In these maps, we defined
the homogeneous growth subareas that matched the sampling spots. The multispectral
images of the individual scanned phases were processed using the Pix4D Mapper software.
We then set up a color matrix of the vegetation pixels, assigning this matrix to each image
data band. The images of the gray calibrating body indicating the known reflectivity values
allowed us to acquire the mean reflectivity value in the preset section of the monitored
growth area.

The patterns of the scanned spectral band values will produce a spectral reflectance
curve, which represents the quantity of radiation reflected over the entire range of the
wavelength bands observed. The spectral reflectance, ρ (λ), defines the energy proportion
between the reflected ER (λ) and the incident Ei (λ) solar radiation at a certain wavelength;
utilizing the formulas employed in sources [43–46], we then have:

ρ (λ) =
ER (λ)

Ei (λ)
· 100 [%]. (1)

2.5. Multispectral Indices

The indices usually originate from computing at least two spectral images, selected in
such a manner that the vegetation reflectivity changes become prominent. In the majority
of cases, the indices are functionally equivalent, and more than 150 have been presented
in the literature to date; however, only a small subset of these rest on a solid biophysical
basis or were systematically tested [47–52]. Our experiment verifies possible correlations in
three proportional indices, computed via a normalized proportion of surface reflectivities.

Each vegetation index focuses on certain vegetation properties and has a specific
applicability. To facilitate the analysis, we used the proportional indices NDVI, NDRE, and
GNDVI; all of these instruments are computed identically, the only difference being that
they contain diverse spectral bands. Together, the indices then embody a comprehensive
cross-section through the observed wavelengths (Figure 4).

The formula for calculating the normalized vegetation indices and the spectral band
reflectivities reads:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

, (2)

NDRE =
ρNIR − ρRedEdge

ρNIR + ρRedEdge
, (3)

GNDVI =
ρNIR − ρGreen
ρNIR + ρGreen

. (4)
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The normalized difference vegetation index, NDVI, constitutes a numerical indicator
of plant health and a source of details on vegetation changes. The index also performs the
following functions of informing on the amounts of water stress and the chlorophyll in a
plant, assessing the monitored vegetation surface through the proportion between the red
and infrared sectors of the spectrum, and recognizing tiny vegetation differences, due to
the reflectivity of the near-infrared spectrum [41].

The NDVI takes values between −1 and 1; the higher values usually represent
“greener” plants having a photosynthetic capacity greater than that of the other com-
ponents within the area of interest. In permanent crops, grasses, and cereals, but also
in some row crops at the later stages of full growth, the chlorophyll content reaches a
point where the index “saturates” close to the maximum value (NDVI 1.0). In such cases,
detecting differences between plants by using the NDVI becomes problematic. At the later
growth stages, the vegetation aging causes the NDVI values to decline [53–55].

The NDVI utilizes the red band, which is intensively absorbed by the upper portions of
the overall plant surface. The lower levels of the plant thus do not contribute significantly to
the actual measurement, worsening the correlation between the NDVI and the volumetric
properties of the plant. This effect becomes more important in tall plants that carry multiple
layers of leaves, especially at the later stages [53].

The normalized difference red edge index (NDRE) utilizes, similarly to the NDVI, the
near-infrared band and the frequency band that is situated in the transition region between
the visible and the infrared spectra, namely, the red edge band (ρRedEdge) [56].

In the NDRE, the computation allows us to better penetrate permanent or late crops,
as the absorption by only or primarily the upper level of the plant is not as intensive as in
the NDVI. Moreover, the NDRE is somewhat less sensitive to saturation in thick vegetation
and therefore offers superior effectivity in the measurement of changes, when the NDVI
takes near values +1.0 [53,56].

The green normalized difference vegetation index (GNDVI) exploits for the compu-
tation the wavelength of the green spectrum instead of that of the red one, with ρNIR
representing the reflectivity values in the near-infrared band and ρGreen denoting the values
in the green band [57].

The benefit of this index lies in its high correlation with the biophysical parameters
of the investigated plants and its low sensitivity to other areas monitored. At the green
wavelengths, the reflectivity better responds to variation in the biomass quantity. Further-
more, the green band delivers a higher probability of capturing differences in the lack of
nutrients, which then manifest themselves in the resulting production of crops. Assuming
these advantages, the index has the potential to eliminate the insufficient sensitivity of the
NDVI (due to the green component of the spectrum) [58].

Figure 5 below shows the maps of the vegetation indices characterizing the examined
land at the fifth stage of scanning.

Figure 5. The maps of the investigated land at the fifth stage of scanning: (from left to right) the NDVI, NDRE, and
GNDVI maps.
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2.6. Correlation Analysis

To determine the relationships between the chemical analyses and the reflectivities of
the spectral images, we sought the correlation coefficients. In this context, correlation does
not imply causality: we only searched for a mutual linear relationship. The correlation rate
was specified through the calculated correlation coefficient, which may take a value from
−1 to +1. The resulting values of the correlation coefficient +1 establish a completely direct
relationship, and the first variable tends to grow; by contrast, the values of the coefficient
−1 establish a wholly indirect relationship, and the first variable tends to decline. If the
coefficient equals zero, then no linear relationship exists between the monitored parameter
and the reflectivity or the vegetation index.

To decide whether the correlation coefficients were large enough to enable us to
plausibly assume a mutual relationship, we needed to calculate their statistical significance.
The statistically significant value was calculated according to Student’s t-distribution, with
degrees of freedom n − 2. We used:

tscore =
r
√

n− 2√
1− r2

, (5)

where r is the Pearson correlation coefficient.
When searching for the statistically significant value, we selected a significance level

of 2%, and the Student’s critical value equaled 3.143. If the coefficient is higher than the
critical value, the correlation can be considered statistically significant.

3. Results

This section outlines the results obtained from the nutritional analysis and presents the
spectral curves of the reflectivities at the scanned wavelengths, acquired via processing the
multispectral images and computing the vegetation indices. These aspects were completed
with a description of the process of calculating the correlation coefficients associated
with the relationships between the laboratory results‘ variation and the data from the
multispectral images.

3.1. Nutrition Analysis

In each of the corn samples, on the individual sampling days, we invariably weighed
the total mass of 10 plants. Subsequently, the FM (fresh matter) and EW (ear weight)
rates were established in each sample; the latter rate, however, began to be determined
only with the 5th sampling. The relevant chemical analysis then allowed us to establish
the contents of structural, nutritional, and other substances. Out of all the sampled and
analyzed values, we computed—invariably for one sampling stage—the average value
of the given parameter. The values resulting from the individual sampling instances are
summarized in Table 2.

3.2. Multispectral Image Processing

The spectral reflectivities acquired from the spectral maps capturing the monitored
vegetation are minimal—in all the scanning phases—in the visible part of the spectrum as
compared to the reflectivity changes in the near-infrared band (see Table 3).

Figure 6 displays the spectral curves of the reflectivities to define the condition of the
plants with respect to that of the overall vegetation. The green spectrum, with a wavelength
of 560 nm, forms the local reflectivity maximum in the visible sector of the spectrum; the
higher reflectivity, compared to those of the blue (475 nm) and red (668 nm) bands, stems
from a strong correlation with the chlorophyll contained in the plants. The intensive
absorption exhibited by the chlorophyll in the photosynthesis within the blue and the red
spectra causes low reflectivity; in these spectra, the chlorophyll absorbs approximately 90%
of the incident radiation.

13



Remote Sens. 2021, 13, 1878

Table 2. The laboratory results obtained from plants collected at the different sampling stages.

Characteristics
Sample Number

1 2 3 4 5 6 7 8

Nutrition characteristics
1 DM [g/kg] 197.2 193.2 224.4 319.7 308.8 355.7 359.4 449.5
2 CP [g/kg DM] 114.6 102.6 98.1 91.1 88.0 78.4 79.0 76.6
3 CF [g/kg DM] 364.0 335.0 306.8 238.0 250.1 198.8 223.3 225.7
4 Starch [g/kg DM] 6.0 21.8 153.9 273.2 319.8 344.5 349.6 398.8
5 Ash [g/kg DM] 68.4 56.5 55.8 48.4 45.7 39.0 44.0 41.4
6 NDF [g/kg] 684.1 639.6 598.6 403.0 452.4 410.0 432.3 448.1
7 DNDF [%] 43.6 51.6 55.6 50.3 52.7 58.9 50.2 56.4
8 DOM [%] 52.3 60.5 58.7 73.3 76.2 76.9 77.1 78.8

Yield characteristics
9 FM [kg/10 plants] 8.7 9.2 10.6 10.6 9.9 9.8 9.8 7.3
10 EW [kg/10 plants] 0 0 0 0 3.4 3.4 3.6 2.9
11 YFM [kg/ha] 69,360 73,947 84,560 84,667 78,960 78,693 78,347 58,320
12 YDM [kg/ha] 13,737 14,317 18,979 27,080 24,456 28,013 28,173 26,186

1 DM—dry matter; 2 CP—crude protein (determined from the DM); 3 CF—crude fiber; 4 starch—starch content; 5 Ash—ash content;
6 NDF—neutral detergent fiber; 7 DNDF—digestibility (NDF); 8 DOM—digestibility (organic matter); 9 FM—fresh matter; 10 EW—ear
weight; 11 YFM—yield of fresh matter; and 12 YDM—yield of dry matter.

Table 3. Evaluation of the vegetation reflectivities at the individual sampling stages.

Sample Number
Spectral Band Reflectance [%]

Blue Green Red Red Edge NIR

1 3 7 1 16 57
2 3 6 3 14 59
3 4 7 3 15 60
4 3 8 4 17 62
5 4 11 8 29 83
6 6 14 10 39 88
7 6 14 9 30 68
8 6 13 9 26 43

Figure 6. The reflectivity relationships at the individual wavelengths and sampling stages.
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In the near-infrared band, the vegetation shows 840 nm, with 717 nm being the
value for the red-edge portion; the reflectivity is thus markedly higher than in the visible
spectrum. The discussed band allows us to clearly discern the growth variation between the
individual scanning stages. With the progressing phenophase, the reflectivity in the near-
infrared band exhibits a tendency to rise; however, a decrease begins after the maximum
period has been reached and the plants have started to age.

To select suitable indicators for defining the vegetation changes in a time sequence, we
first need to distinguish the differences in the reflectivities at the separate wavelengths and
in the computed indices. The calculated average values of the indices from the investigated
portions of land as related to the eight time intervals within the crop growth period are
outlined in Table 4.

Table 4. The calculated values of the vegetation indices.

Sampling Number
Indices

NDVI NDRE GNDVI

1 0.97 0.59 0.82
2 0.91 0.65 0.84
3 0.90 0.60 0.79
4 0.89 0.57 0.77
5 0.83 0.50 0.81
6 0.83 0.46 0.76
7 0.77 0.39 0.74
8 0.72 0.36 0.64

3.3. Correlation Analysis

All the measured spectral band reflectivity averages (blue, green, red, red edge, and
near-infrared) and the calculated values of the vegetation indices (the NDVI, NDRE, and
GNDVI) were correlated with the average nutritional values established at the individual
sampling stages via laboratory analyses performed on the sampled plants (see Table 5).
The linear correlation rates from Table 5 are presented in Table 6.

Table 5. The correlation coefficients relevant for the data acquired through multispectral imaging and by means of the
chemical analyses.

Characteristics
Spectral Reflectivity Vegetation Indices

Blue Green Red Red Edge NIR NDVI NDRE GNDVI

Nutrition characteristics
1 DM [g/kg] 0.804 0.861 0.866 0.691 0.012 −0.920 −0.924 −0.901
2 CP [g/kg DM] −0.858 −0.892 −0.953 −0.788 −0.261 0.922 0.854 0.746
3 CF [g/kg DM] −0.755 −0.858 −0.904 −0.804 −0.394 0.798 0.777 0.654
4 Starch [g/kg DM] 0.783 0.875 0.905 0.767 0.267 −0.884 −0.867 −0.751
5 Ash [g/kg DM] −0.772 −0.838 −0.936 −0.795 −0.373 0.853 0.756 0.639
6 NDF [g/kg] −0.602 −0.764 −0.814 −0.711 −0.391 0.719 0.697 0.579
7 DNDF [%] 0.607 0.480 0.640 0.524 0.260 −0.563 −0.381 −0.456
8 DOM [%] 0.703 0.844 0.912 0.765 0.325 −0.863 −0.803 −0.651
Yield characteristics
9 FM [kg/ 10 plants] −0.289 −0.217 −0.165 −0.056 0.574 0.375 0.420 0.530
10 EW [kg/ 10 plants] 0.840 0.947 0.945 0.925 0.473 −0.822 −0.867 −0.513
11 YFM [kg/ha] −0.289 −0.217 −0.165 −0.056 0.574 0.375 0.420 0.530
12 YDM [kg/ha] 0.699 0.824 0.842 0.741 0.359 −0.761 −0.769 −0.645

1 DM—dry matter; 2 CP—crude protein (determined from the DM); 3 CF—crude fiber; 4 starch—starch content; 5 Ash—ash content;
6 NDF—neutral detergent fiber; 7 DNDF—digestibility (NDF); 8 DOM—digestibility (organic matter); 9 FM—fresh matter; 10 EW—ear
weight; 11 YFM—yield of fresh matter; 12 YDM—yield of dry matter.
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Table 6. The linear correlation rates.

|Value| 0 to 0.2 0.2 to 0.4 0.4 to 0.6 0.6 to 0.8 0.8 to 1
Correlation Very weak Weak Medium Strong Very strong

In the individual correlation coefficients, we calculated the statistical significance val-
ues, and these were subsequently compared with the critical value of 3.143. The statistically
significant values are highlighted in Table 7.

Table 7. The statistical significance of the correlation data acquired through multispectral imaging and by means of the
chemical analyses.

Characteristics
Spectral Reflectivity Vegetation Indices

Blue Green Red Red Edge NIR NDVI NDRE GNDVI
Nutrition characteristics
1 DM [g/kg] 3.32 4.15 4.25 2.34 0.03 5.74 5.90 5.08
2 CP [g/kg DM] 4.09 4.83 7.73 3.14 0.66 5.83 4.02 2.74
3 CF [g/kg DM] 2.82 4.08 5.19 3.31 1.05 3.24 3.03 2.12
4 Starch [g/kg DM] 3.08 4.43 5.21 2.93 0.68 4.62 4.26 2.79
5 Ash [g/kg DM] 2.97 3.76 6.53 3.21 0.98 4.00 2.82 2.03
6 NDF [g/kg] 1.85 2.90 3.43 2.48 1.04 2.54 2.38 1.74
7 DNDF [%] 1.87 1.34 2.04 1.51 0.66 1.67 1.01 1.26
8 DOM [%] 2.42 3.85 5.44 2.91 0.84 4.19 3.30 2.10
Yield characteristics
9 FM [kg/10 plants] 0.74 0.55 0.41 0.14 1.72 0.99 1.13 1.53
10 EW [kg/10 plants] 3.80 7.26 7.06 5.98 1.31 3.53 4.26 1.46
11 YFM [kg/ha] 0.74 0.55 0.41 0.14 1.72 0.99 1.13 1.53
12 YDM [kg/ha] 2.40 3.57 3.83 2.71 0.94 2.87 2.95 2.07

1 DM—dry matter; 2 CP—crude protein (determined from the DM); 3 CF—crude fiber; 4 starch—starch content; 5 Ash—ash content;
6 NDF—neutral detergent fiber; 7 DNDF—digestibility (NDF); 8 DOM—digestibility (organic matter); 9 FM—fresh matter; 10 EW—ear
weight; 11 YFM—yield of fresh matter; and 12 YDM—yield of dry matter.

3.4. Classifying the Vegetation Relationships

The charts below visualize the linear relationships between the selected nutritional
values and the monitored reflectivities or calculated vegetation indices (see Figure 7).

Of the established nutritional values, we selected the dry matter, nitrogen substances,
and starch, due to their high statistical significance with respect to all of the imaging values,
and also because they embody the most vital organic nutrients that determine the eventual
quality of the corn at harvest. Using these organic nutrient values, which exhibit the most
significant correlation indices, we compared the vegetation indices and major spectral
bands, namely, red, green, and blue.
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Figure 7. The laboratory-established linear relationships (left) between the vegetation indices (NDVI, NDRE, and GNDVI)
(right), and the reflectivity in the red, green, and blue spectral bands, relating: (a) the vegetation indices to the dry matter;
(b) the reflectance to the dry matter; (c) the vegetation indices to the crude protein; (d) the reflectance to crude protein; (e)
the vegetation indices to the starch; (f) the reflectance to the starch.
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4. Discussion

Analyzing multispectral images based on an exact knowledge of vegetation health is
one of the procedures that support the transition from traditional agricultural methods to
precision agriculture. An increase in the quality of harvested corn and a reduced fodder
consumption following on from the ability to closely determine the optimum harvest time
will generate novel approaches to the contactless analysis of plants at various growth
stages, together with a major potential for automated and rapidly expandable applicability
in most types of vegetation. In the case of corn, the optimum harvest time is established
according to the content of dry matter, depending on whether the chopped crop is intended
to be silaged or to produce methane in a biogas station. For an identification of the correct
period, it is therefore necessary to know exactly the nutritional values of the crop on the
entire land concerned.

Within the research, we achieved the preset goals, namely, defining the relationships
between the nutritional parameters acquired through chemical analyses and the vegetation
indices yielded via multispectral imaging of the entire area of the cornfield.

The subsections below characterize the results of the nutritional analysis and the out-
comes of the multispectral image processing, including the computation of the vegetation
indices. The core subsection presents the mutual correlation analysis of the relationships
between the patterns of changes in the laboratory results and the data obtained from the
UAV-based multispectral images. In this context, possible correlation uncertainties are
also considered.

4.1. Nutritional Analysis

The evaluated nutritional indicators (Table 2) show that, in corn, the progressing
phenophase is associated with an increasing content of dry matter (DM). Furthermore,
the rising proportion of the grain is accompanied by a growing share of starch in the
entire plant; the starch then embodies the central source of energy for the plant to be
harvested. In the other parts of the organism, a decrease occurs in the nitrogen substances,
and the digestibility of the fiber is markedly reduced due to lignification. Interestingly
in this context, no correlation has been found to date between the fiber content and
digestibility. The ideal harvest time was identified with the interval separating the 4th
and 5th sampling stages. This optimum period was determined through the dry matter
values, which, in the discussed phases, amount to 280–330 g/kg. More concretely, in all of
the laboratory samples, the values at the 4th stage ranged from 277.9 g/kg to 349.8 g/kg,
while at the 5th stage they already ranged between 291.8 g/kg and 347.4 g/kg. Another
factor of importance rests in the average volumes of starch; at the 4th stage, the relevant
value reached 273 g/kg/DM, and in the 5th phase it already equaled 319.8 g/kg/DM,
with the ideal level of 300 g/kg/DM corresponding to 2/3 of the milk line stage. The
intensive increase in the dry matter between the third and the fourth phases was induced
by considerable precipitation; however, the fall of the precipitation rate down to zero then
caused a sharp change in the nutritional values.

4.2. Multispectral Image Processing

The reflectivity relationships in the various portions of the spectrum confirm the
expected scenario and represent the changing condition of the monitored crops over time
(Figure 6). From the perspective of the reflectivity level, the spectral curves can be divided
between two regions, namely, the visible part of the spectrum and the near-infrared sector.
We can then observe a very low reflectivity in the visible portion of the spectrum (up to
670 nm), the relevant value being not more than 14% (the green band); thus, the radiation is
mostly absorbed. The reason for this rests in the large quantity of biomass in the observed
area, suggesting that the radiation is consumed through photosynthesis. The other set of
monitored wavelengths gradually passes into the near-infrared region. This progressive
transition is accompanied by more prominent differences (the red edge band) between
the sampling stages, with the increasing reflectivity being the highest—at 39%—in the red
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edge band in the 6th observed phase. After the maximum, the reflectivity values decline
slightly. The most conspicuous differences characterize the NIR band (840 nm), where the
greatest reflectivity divergence in the monitored growth stage reaches up to 45%. Similarly
to the red edge region, the NIR band attains the maximum value in the 6th phase, which,
too, is followed by a decline in the values. All of the monitored spectra are important for
the subsequent computation of the vegetation indices.

Considering the calculated vegetation indices in Table 4, the tendency towards a steady
minor decrease allows us to assume, without prior knowledge of the nutritional values, a
later phenological phase in the plants. Through the monitored period, the vegetation index
NDVI ranged between 0.72 and 0.97, the average value being 0.85. This index exhibited
higher values than its counterparts. In the NDRE, the range was 0.36–0.65, with an average
of 0.52, and the GNDVI showed a scope of 0.64–0.84 and an average of 0.77. The GNDVI
thus possesses the smallest resolving ability. By contrast, the best sensitivity is obtained
from the NDRE, where differences in a broad band of reflectivities are discernible.

The values of the NDRE enable us to observe a reflectivity shift towards lower levels,
compared to the other two indices; such a scenario arises from calculating the proportion
between the reflectivities with the red edge spectral component, which exhibits higher
reflectivity variations.

4.3. Correlation Analysis

Within the research, we established that, as regards determining the changes through
the eight investigated growth phases in the selected corn hybrid, the best correlation
is found between the dry matter values and the NDRE index, Table 5. To evaluate the
statistical significance of the correlation coefficients, we employed Student’s t-test, applying
the significance level of 2%; this is matched by the Student’s T critical value of 3.143, Table 7.

This subsection discusses the statistically significant values of the correlation coeffi-
cients. A strong correlation can be established in the GNDVI (−0.901) and NDVI (−0.920).
Furthermore, statistically significant values lie also in the correlations between the CP and
the NDVI (0.922), the NDRE (0.854), and the GNDVI (0.746). The previously mentioned
starch content, which also exerts a major impact on the resulting quality of the harvested
corn, markedly correlates with the indices NDVI (−0.884) and NDRE (−0.867). The values
of the indices NDVI, NDRE, and GNDVI also correlate very well with the calculated OM
values. We can then infer from these facts that the strong correlations in the indices NDVI
and NDRE are usable not only for determining the convenient harvest time but also for
predicting the quantity of the organic matter (OM) obtainable from the yielded crop (corre-
lation with the NDVI at −0.924); these steps are then prominent in establishing the organic
matter yield.

The evaluated correlations in the individual narrow spectral bands lead to the as-
sumption of a strong correlation in the red band, which correlates markedly with all the
determined nutritional values, the strongest correlation being that with the CP (−0.953).
By contrast, the weakest values of the correlation coefficient R are found in the NIR
spectral band.

4.4. Classification of the Vegetation Relationships

The diagrams capturing the vegetation relationships (see Figure 7) allow us to derive
formulas that facilitate predicting the most optimum harvest values by utilizing the dry
matter-, crude protein-, and starch-related data. In this context, the details outlined in
the previous subsection indicate that the greatest importance for the prediction rests
particularly with the indices NDRE, as related to the DM, and the NDVI, as related to
starch. The obtained NDRE linear relationship (y = −0.007 x + 1.0836) proposes that the
ideal index values for the DM range within the NDVI value interval of 0.888–0.853. As
regards the NDVI relationship (y =−0.0045 x + 0.9594), the ideal value amounts to 300 g/kg
DM and 0.824 (NDVI starch).
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4.5. Comparing the Results with Previous Research Data

As this article contains unique, novel results, we can only refer to research papers that
associate with our experiment in a merely marginal manner. However, let us note that a
similar investigation was described in source [40], whose authors demonstrated that the
relative data of the NDVI, PH, and a combination of both are usable when predicting the
DM yield of fodder corn grown for silage. By comparison, we can point out that our study
includes more types of chemical analyses; moreover, we established that the NDRE index
best correlates with dry matter variations and is, besides the NDVI, therefore suitable for
determining the ideal harvest time in the selected corn hybrid.

Another project that marginally resembles ours is characterized in source [24], with
a focus on exploiting superspectral airborne imagery to predict corn grain yield and ear
weight, and to discriminate between growth stages and irrigation treatments. Although
the authors of [24] utilize multispectral imaging to determine the phenophase in plants,
they concentrate solely on the NDVI index and do not state any correlations with chemical
analyses, as is the case with our study.

4.6. Limitations and Future Work

The use of the methods characterized herein is accompanied by uncertainties including,
for example, adverse weather conditions that may impair or destroy the entire concept
of the fieldwork. For the purposes of future research, some of these uncertainties can be
minimized via diversifying the land to support the experiments.

The vegetation indices are unstable due to short-term changes in the weather and
in the solar radiation intensity. To minimize the error in the results of the multispectral
imaging, we needed to carry out relevant calibration (Figure 3c). This task was executed
for the individual crops, at various vegetation periods and in diverse weather conditions,
but at identical times of the day. In plant imaging, this calibration will eliminate the
inaccuracies that arise from the single-use sampling.

Another drawback to our method probably consists in that we employ data for a given
hybrid, site, and year. However, as we do not follow absolute values but instead changes
in the chemical composition and vegetation indices, it is possible to assume that the results
will be applicable more widely to diverse corn hybrids.

The repeatability and stability of the results are certainly limited by the initial choice
of a sown hybrid. The established linear relationships between the nutritional values and
vegetation indices, and possibly also the reflectivities of the individual spectral bands,
relate to hybrids that exhibit common plant phenophases. Different values may be revealed
in stay-green hybrids, characterized by prolonged vitality and lower dry matter volumes;
these hybrids, however, must be distinguished separately, via the criteria of nutritional
values and reflectivity in the different wavelength spectra.

An alternative to UAV-based remote sensing rests in satellite imaging; this procedure
may embody a more easily available and less costly option where the reflectivities have to
be computed over a very large or highly particularized land area.

The planned expansion of corn growth monitoring research involves, among other
steps, assigning images to already completed measurement cycles and improving the
precision of the correlation curves. Importantly, we intend to compare the individual crops
at the various vegetation stages, realizing that nutrition differences constitute merely one
of the sources of variations in spectral behavior; other relevant factors include, for example,
marked discrepancies between hybrids of the same crop.

5. Conclusions

To characterize the main outcomes of the research in general terms, we can claim
that the preset aims and objectives were met. We revealed new mathematical relationships
between the nutritional parameters acquired through chemical analyses and the vegetation
indices (such as the NDRE and NDVI) established via multispectral imaging. The defined
relationships then allowed us to compute the relevant nutritional values from the multi-
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spectral images of the entire monitored cornfield, without the need to perform a chemical
analysis (see Figure 7). The nutritional value data corresponded to the average value of the
field and may significantly help the farmers in estimating the optimum harvest time.

Considering the applied methodology and procedural options, the optimum harvest
time can be predicted solely via remote sensing with a multispectral camera and by utilizing
the formulas set out in Figure 7, which enable us to compute the optimum values of the
multispectral index (the y variable in the formula) by applying the known concrete values
of the monitored substances (the x variable in the formula). Remarkably, the NDRE and
NDVI indices facilitate, based on their high statistical significance (Table 7), predicting the
contents of not only the dry matter, namely, the most significant value in this context, but
also the starch and crude protein.

Such innovative evaluation of the discussed factors will effectively reduce the cost of
additional chemical analyses, and both farmers and researchers will be able to estimate the
required quantity over the entire area of the field(s). Thus, compared to a chemical analysis
of a limited number of samples, it is possible to estimate more precisely in heterogeneous
vegetation the optimum harvest time with respect to the nutritional values. The authors
of this paper consider determining the optimum harvest time important as regards the
quantity of dry matter to generate methane and the actual production chain between the
fodder and the milk.

The multispectral imaging method nevertheless features certain limitations, as de-
scribed in Section 4.6. The relationships indicated in Figure 7 then can (and will) be made
more precise via further experimentation.
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Abstract: Georeferencing using ground control points (GCPs) is the most common strategy in
photogrammetry modeling using unmanned aerial vehicle (UAV)-acquired imagery. With the
increased availability of UAVs with onboard global navigation satellite system–real-time kinematic
(GNSS RTK), georeferencing without GCPs is becoming a promising alternative. However, systematic
elevation error remains a problem with this technique. We aimed to analyze the reasons for this
systematic error and propose strategies for its elimination. Multiple flights differing in the flight
altitude and image acquisition axis were performed at two real-world sites. A flight height of 100 m
with a vertical (nadiral) image acquisition axis was considered primary, supplemented with flight
altitudes of 75 m and 125 m with a vertical image acquisition axis and two flights at 100 m with
oblique image acquisition axes (30◦ and 15◦). Each of these flights was performed twice to produce a
full double grid. Models were reconstructed from individual flights and their combinations. The
elevation error from individual flights or even combinations yielded systematic elevation errors of up
to several decimeters. This error was linearly dependent on the deviation of the focal length from the
reference value. A combination of two flights at the same altitude (with nadiral and oblique image
acquisition) was capable of reducing the systematic elevation error to less than 0.03 m. This study is
the first to demonstrate the linear dependence between the systematic elevation error of the models
based only on the onboard GNSS RTK data and the deviation in the determined internal orientation
parameters (focal length). In addition, we have shown that a combination of two flights with different
image acquisition axes can eliminate this systematic error even in real-world conditions and that
georeferencing without GCPs is, therefore, a feasible alternative to the use of GCPs.

Keywords: drone; GNSS RTK; UAV; photogrammetry; precision; accuracy; elevation

1. Introduction

UAV photogrammetry combined with the structure from motion (SfM) technique is a
well-established method for the mapping and creation of digital terrain models (DTMs),
digital elevation models (DEMs), and/or other spatial models. This technique is often used
in mining [1–3], for monitoring of various natural phenomena and geohazards [4,5], for
the detection of agricultural crops/trees [6–8], dam and riverbed erosion [9], modeling
topographic features [10], updating cadastral data [11], solar irradiation estimates [12],
etc. SfM has become so popular that it is currently also used besides ground and UAV
photogrammetry in mobile measurement systems [13]; even attempts at creating DTMs
using a mobile phone have been reported [14–16]. UAV photogrammetry simplifies the
work, makes it faster, and improves the quality, although the resulting model accuracy
depends on many circumstances, such as the configuration and number of ground control
points (GCPs) [17,18], camera pitch [19,20], image overlap [21], flight trajectory [22], camera
calibration method [23,24], software used for reconstruction [25], or the quality of global
navigation satellite system (GNSS) signal processing [26–28]. As well as the point cloud,
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other outputs, such as orthomosaics, are also widely used [29]. Photogrammetry outcomes
are usually evaluated using independent laser scanning or control points (CPs), the position
of which is measured by ground surveys, which facilitate the assessment of model defor-
mations [30–32]. Correct determination of the elements of internal and external orientation,
traditionally performed using GCPs, is crucial for creating an accurate photogrammetric
model. At present, the use of UAVs equipped with an onboard global navigation satellite
system–real-time kinematic (GNSS RTK) receiver is on the rise. This equipment used to
be prohibitively expensive but, lately, it has become more affordable. DJI Phantom 4 RTK
multicopter is an example of such a low-end UAV. The knowledge of the camera position
during image acquisition (with centimeter accuracy) has been suggested to be able to fully
substitute the presence of GCPs for georeferencing of the photogrammetric model [33].
Elimination of the need for GCPs would be a great advantage, potentially making the
measurement simpler and/or cheaper; in inaccessible areas, it could be crucial for even
making the measurement possible. The resulting model accuracy should correspond to that
of the GNSS RTK; the standard deviation should, therefore, not exceed several centimeters.
Many studies (e.g., [33]) used such an approach, with satisfactory results. Other studies,
however, reported that this approach, combined with the calculation of internal orienta-
tion elements when solving bundle adjustment, i.e., without a known camera calibration,
yields results systematically shifted in the elevation axis that may be, in some instances,
significantly higher than the expected accuracy [34–36]. The expected accuracy of the
resulting point cloud is 1–2x the ground sampling distance (GSD) [37]; nevertheless, in our
previous research, the systematic error was as high as tens of centimeters despite a ground
sampling distance (GSD) of 0.03 m [34]. Similar results were presented, for example, by
Forlani et al. [38]. The association of such high inaccuracy with the incorrect determination
of the focal length (f) was suggested in those studies. Additionally, the systematic error
was shown to be more or less random as it differed even between repeated flights on the
same site with the same conditions (the same UAV and processed in the same way) [34]. A
small number of GCPs [39], or even a single one [34], was, however, shown to significantly
reduce this problem. Several studies also suggested methods that should suppress or even
remove this phenomenon. Besides the aforementioned use of a minimum number of GCPs,
the use of oblique images is another promising alternative [20,36,40]. The presented study
aims to propose and test strategies enabling the acquisition of a quality photogrammet-
ric model without the high systematic elevation error while avoiding the use of GCPs.
Proof that the source of the error indeed lies in the incorrect focal length determination
would show the path to resolving this problem—choosing a flight configuration ensuring
a sufficiently accurate calculation of internal orientation elements. We performed image
acquisition at two study sites with various flight parameters to independently evaluate the
results associated with different external conditions. By processing this acquired imagery
in various combinations, we aimed to find a working strategy (configuration) for safe and
accurate use of the GNSS RTK-based approach without the systematic elevation error.

2. Materials and Methods
2.1. Data Acquisition

To facilitate the generalization of the results of this study, the experiment was per-
formed in two study sites. The first site—Brownfield—had only a minimum of dense
undergrowth, with low buildings, and concrete and natural surfaces without monochro-
matic areas (Figure 1). The other site—Rural—was characterized by continuous rapeseed
fields alternating with more or less dense forest and shrubs (Figure 2). These two sites
differ with respect to the present surfaces and their properties. Figures 1 and 2 show the
point clouds in colors indicating the reliability of the individual points acquired through
SfM in Agisoft Metashape (confidence), with lower numbers indicating lower reliability
(confidence; possible range 1–255). The Brownfield site can be, therefore, considered highly
suitable for SfM modeling, while the Rural site can be considered problematic, which is
particularly true for the part of the site that is covered by dense tree vegetation.
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Figure 1. Brownfield site ((a) orthomosaic, (b) point cloud color-coded according to confidence).

Figure 2. Rural site ((a) orthomosaic, (b) point cloud color-coded according to confidence).

The DJI Phantom 4 RTK UAV mounted with a camera equipped with an FC6310R lens
(f = 8.8 mm), resolution of 4864 × 3648 pixels, and with a pixel size of 2.61 × 2.61 µm (total
price approx. EUR 6000), was used for image acquisition. The GNSS RTK receiver was
connected to the CZEPOS permanent reference station network.

The primary flight altitude was set to 100 m above ground with a vertical image
acquisition axis and ground sampling distance (GSD) of 0.03 m; at the same altitude, flights
with the image acquisition axis angled by 15◦ and 30◦ from the vertical direction were
performed. In addition, flights at altitudes of 75 m and 125 m above ground with a nadiral
imagery acquisition axis were performed (Figure 3).

Each flight was performed with a gridded flight plan; two perpendicular flights were
performed for each flight setup (forming a double grid, see Figure 4).

Altogether, 10 flights with 75% front and side overlaps were performed. Table 1 shows
the parameters of individual flights with the hereinafter used designations and numbers of
usable images.
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Figure 3. Flight altitudes and image acquisition directions.

Figure 4. Flight trajectory: (a) Brownfield; (b) Rural. Flight 1 in red, Flight 2 in blue.

Points that subsequently served, depending on the calculation method, as either
control points or ground control points were stabilized at each of the sites. Where possible,
these were marked out as a cross painted with a contrast matte spray (Figure 5 left). Where
this was not possible, especially in the undergrowth, wooden boards with black and white
targets were used (Figure 5, right) and stabilized using a 10 cm long nail. The dimensions
of the crosses/targets were approx. 0.40 m × 0.40 m.

(Ground) control points were distributed as evenly as possible throughout both
areas. In all, 25 points were stabilized at the Brownfield site and 30 at the Rural site
(Figure 6). The (ground) control points were surveyed using a GNSS RTK Trimble Geo
XR receiver with a Zephyr 2 antenna connected into the CZEPOS permanent reference
station network (czepos.cuzk.cz). Measurement of each control point was taken three times
(before, between, and after UAV flights) for detecting potential errors or variations caused,
e.g., by the change of the configuration or satellite availability. The expected nominal
accuracy of each coordinate was 0.03 m.
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Table 1. Image acquisition flights and their properties.

Site Designation Flight Altitude above
the Terrain (m)

Imagery
Acquisition—Deviation from

the Nadiral Direction (◦)

Number of
Images—Flight 1

Number of
Images—Flight 2

Brownfield

75 m 75 0 78 76
100 m 100 0 50 53
125 m 125 0 39 41

60◦ (100 m) 100 30 67 80
75◦ (100 m) 100 15 58 66

Rural

75 m 75 0 176 183
100 m 100 0 112 122
125 m 125 0 84 84

60◦ (100 m) 100 30 147 160
75◦ (100 m) 100 15 128 140

Figure 5. (Ground) control points; (a) marking using a spray; (b) using black and white target.

Figure 6. Distribution of the (ground) control points throughout the study sites—Brownfield (a),
Rural (b).

2.2. Data Processing

Both GNSS RTK measurements (UAV onboard and ground receiver) were processed
using the same methods. First, the terrestrial GNSS RTK measurements were exported
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from the receiver in the WGS 84 coordinate system (latitude, longitude, ellipsoidal height).
Similarly, the spatial position (in the same coordinate system) was extracted from the
GNSS RTK data-containing images using Exiftool. The offset between the GNSS receiver
antenna reference point (ARP) and the camera center (CC) was automatically considered
by the software. Subsequently, all data were converted into the Czech national coordinate
positioning system (S-JTSK, System of Unified Trigonometric Cadastral Network) and
the Bpv vertical datum (Balt after adjustment) using the EasyTransform software (http:
//adjustsolutions.cz/easytransform/, accessed on 1 March 2021) to ensure that the same
algorithm was used on all data and thereby to eliminate potential systematic errors that
could occur as a result of different transformation algorithms. The three measurements
taken for each point by the terrestrial GNSS RTK receiver were used for the calculation of
the standard deviation. Then, images were processed in Agisoft Metashape 1.6.1 using the
structure from motion calculation method (SfM) with the custom settings listed in Table 2.

Table 2. Agisoft Metashape settings used for calculations.

Setting Value

Align Photos
-Accuracy High

-Key point limit 40,000
-Tie point limit 4000

Optimize Camera Alignment Fit all constants (f, cx, cy, k1–k4, p1–p4)
Build Dense Cloud

-Quality High
-Depth filtering Moderate

Digital Elevation Model
-Coordinate System S-JTSK, Bpv

-Parameters
-Source data Dense Cloud

-Interpolation Enabled
-Advanced
-Resolution 2.8 cm/pix (implicit)

(Settings not detailed above were kept at default).

The UAV was not equipped with a professional metric camera. Although pre-
calibration is generally recommended, the stability of the parameters in non-metric UAV-
mounted cameras cannot be fully ascertained and other studies have shown that laboratory
calibration does not provide better results than the method used in this study [41,42]. The
interior orientation parameters were, therefore, calculated in the usual way.

In all, five duplicate flights were performed at each site. The geometries of the imagery
from individual flights differed (the bundles intersected at different points due to different
flight altitudes and/or camera angles). Each flight (i.e., 10 flights at each site) was processed
separately. In addition, joint processing of the two duplicate flights was also performed (i.e.,
5 for each site), which allowed investigation of whether a simple increase in the number of
images can improve the accuracy.

The primary flight was at an altitude of 100 m with nadiral image acquisition; the re-
maining flights were performed to acquire data for testing possible accuracy improvement
strategies. Hence, all possible combinations of the 100 m altitude flight with nadiral image
acquisition (the primary flight) and flights with other configurations were calculated, i.e.,:
100m_1 + 75m_1; 100m_1 + 125m_1; 100m_1 + 60◦_1; 100m_1 + 75◦_1; 100m_1 + 75m_2;
100m_1 + 125m_2; 100m_1 + 60◦_2; 100m_1 + 75◦_2; the same was done for the second
primary flight (100m_2). Therefore, 16 such combinations were calculated for each site.

Each of the variants described above was calculated with onboard GNSS RTK data
only (All_RTK) and with a combination of the onboard GNSS RTK receiver data with GCP
coordinates (All_Combined).
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The processing sequence was the same in all flights—alignment, sparse cloud com-
putation, system optimization, dense cloud calculation. Dense cloud was subsequently
manually cropped along the convex envelope of GCPs and filtered in CloudCompare 2.11.0
using the CSF filter to remove trees and shrubs that could potentially cause uncertainty in
comparisons of the dense clouds.

Subsequently, parameters of the regression and coefficient of determination describing
the relationship between the difference in the focal length f (acquired from the respective
flight and from all available data from the respective site, i.e., the All_Combined calculation
variant) and the (mean) systematic error in the entire model elevation were calculated for
each site. Similarly, the correlation between the systematic error in model elevation and
the principal point offset difference (Cx, Cy) was also calculated. The aim was to show the
association between the elevation error and the calculation of internal orientation elements.

3. Results
3.1. The Accuracy of the GNSS RTK Ground Geodetic Survey

The accuracy of the GCP/checkpoints survey was evaluated through a calculation
of standard deviations in individual coordinates SX, SY, SH from the replicates detailed in
Table 3. The results confirm the expected accuracy of 0.03 m in each coordinate.

Table 3. Agisoft Metashape settings used for calculations.

Site SX (m) SY (m) SH (m) S in 3D Position (m)

Rural 0.0063 0.0046 0.0069 0.010
Brownfield 0.0061 0.0051 0.0067 0.010

3.2. Elevation Errors and Related Parameters

As shown, e.g., in our previous study [34], the elevation component of the resulting
model is the most problematic one when using direct georeferencing based only on onboard
GNSS RTK measurements. Therefore, the mean difference in elevation of the control
points between the onboard GNSS RTK and the geodetic survey was calculated to obtain
the systematic error (Tables 4 and 5). The residual error was then characterized by the
standard deviation, the total error is described by the root mean square error (RMS).
Similarly, residual systematic error between the recorded and adjusted camera elevations
was calculated for the camera coordinates; the mean difference for individual flights was
always equal to zero, and the standard deviation did not exceed 0.03 m (approx. 1x GSD),
which confirms that the coordinates recorded during flights were correct. Tables 4 and 5
also detail other parameters, including the focal length f and the coordinates of the principal
point offset Cx and Cy. The first two rows of each table represent the reference values
calculated from all images using all available images together with the measured GCP
coordinates (All_Combined) and using GNSS RTK coordinates only (All_RTK).

These results indicate that systematic (average) elevation error in individual flights is
highly variable, with values as high as 0.85 m in some flights (Brownfield 75◦ (100 m)−1).
It is also apparent that even results derived from two flights at the same height and with
the same image acquisition angle differ (both between sites and within the same site). The
standard deviation of elevation is approximately 0.03 m, which is in accordance with the
expected GNSS RTK measurement accuracy.

The All_Combined variants demonstrate a very good agreement of all measured
images and coordinates, i.e., that no outliers or erroneous measurements are present. The
agreement of internal orientation elements is also very good (a bit worse between sites).

It should be also noted that a higher systematic elevation error was observed in flights
where a higher difference between the focal length f calculated for the particular flight and
the most likely value determined from the All_Combined calculation occurred. Similar
conclusions can be made with respect to the coordinates of the principal point offset.
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Table 4. Results of calculation variants—individual flights—Brownfield.

Calculation Variant Mean Difference (m) StDev (m) RMS (m) f (Pixels) Cx (Pixels) Cy (Pixels)

All_Combined 0.0201 0.0063 0.0211 3685.4568 9.9062 28.3165
All_RTK 0.0254 0.0063 0.0261 3685.3472 9.9037 28.3546
75m_1 0.0412 0.0080 0.0419 3683.5605 9.5506 27.7429
75m_2 0.0769 0.0107 0.0776 3682.2500 9.5145 27.7860
100m_1 0.2715 0.0115 0.2717 3676.2500 9.8893 27.4269
100m_2 0.1252 0.0104 0.1256 3680.7900 9.3435 27.6945
125m_1 −0.1701 0.0225 0.1716 3691.0449 9.8862 27.5684
125m_2 0.2200 0.0153 0.2205 3679.5466 9.5863 27.7279

60◦ (100m)_1 −0.1398 0.0093 0.1401 3687.8589 9.6792 22.6777
60◦ (100m)_2 −0.0541 0.0100 0.0550 3687.0000 9.5963 25.4033
75◦ (100m)_1 −0.8557 0.0115 0.8558 3716.3172 12.1673 13.5000
75◦ (100m)_2 −0.1610 0.0113 0.1613 3693.5500 11.0213 26.6421

Table 5. Results of calculation variants—individual flights—Rural.

Calculation Variant Mean (m) StDev (m) RMS (m) f (Pixels) Cx (Pixels) Cy (Pixels)

All_Combined −0.0126 0.0237 0.0265 3685.1506 9.0573 29.2059
All_RTK −0.0145 0.0241 0.0278 3685.1948 9.0573 29.1926
75m_1 −0.1813 0.0211 0.1825 3692.6899 9.4703 27.8337
75m_2 0.1829 0.0376 0.1866 3675.7142 8.9789 30.0060

100m_1 0.0369 0.0243 0.0440 3684.3132 9.5869 30.4881
100m_2 0.3154 0.0318 0.3170 3675.1982 9.4326 30.2998
125m_1 −0.0755 0.0231 0.0789 3685.7920 8.2727 27.9129
125m_2 0.4000 0.0238 0.4007 3672.1744 8.1549 28.0104

60◦ (100m)_1 −0.0971 0.0297 0.1014 3687.4122 9.9673 24.2402
60◦ (100m)_2 0.0761 0.0274 0.0807 3684.7123 8.3047 31.9379
75◦ (100m)_1 −0.2793 0.0403 0.2821 3693.5554 9.6960 23.1674
75◦ (100m)_2 −0.0715 0.0315 0.0780 3686.4340 9.0964 29.4237

Tables 6 and 7 show the results of calculations performed using both corresponding
flights. Obviously, the increase in the number of images from the two mutually perpendic-
ular flights led to a reduction of the systematic (mean) elevation error, which is particularly
true for the Brownfield site. However, it still exceeds the expected measurement accuracy.

Table 6. Results of calculation variants: joint calculation of duplicate flights—Brownfield.

Calculation Variant Mean (m) StDev (m) RMS (m) F (Pixels) Cx (Pixels) Cy (Pixels)

All_Combined 0.0201 0.0063 0.0211 3685.4568 9.9062 28.3165
75m_1 + 75m_2 −0.0869 0.0080 0.0873 3690.0200 9.6071 28.0833

100m_1 + 100m_2 0.0089 0.0070 0.0112 3685.3100 9.6407 27.9082
125m_1 + 125m_2 0.0217 0.0142 0.0257 3685.2400 9.7382 27.7874

60◦_1 + 60◦_2 (100m) −0.0517 0.0073 0.0522 3686.6200 9.4244 25.6123
75◦_1 + 75◦_2 (100m) −0.1596 0.0104 0.1600 3693.7200 11.1567 26.3864

Table 7. Results of calculation variants: joint calculation of duplicate flights—Rural.

Calculation Variant Mean (m) StDev (m) RMS (m) F (Pixels) Cx (Pixels) Cy (Pixels)

All_Combined −0.0126 0.0237 0.0265 3685.1506 9.0573 29.2059
75m_1 + 75m_2 −0.1879 0.0266 0.1897 3692.8619 9.2088 29.2684

100m_1 + 100m_2 −0.1088 0.0253 0.1116 3689.8473 9.4996 30.5776
125m_1 + 125m_2 −0.0865 0.0215 0.0890 3686.0700 8.3529 28.1841

60◦_1 + 60◦_2 (100m) 0.0962 0.0235 0.0989 3684.0718 8.5973 31.4189
75◦_1 + 75◦_2 (100m) −0.0343 0.0299 0.0452 3685.7482 9.0306 28.9058
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Tables 8 and 9 detail the values of combined calculations. It is obvious that in the
Brownfield site, basically any non-homogeneous combination of flight parameters im-
proved the results to such a degree that the maximum mean elevation error did not exceed
0.05 m and the total error (RMS) of 0.053 m, which is still less than two GSDs. On the
other hand, no such improvement was observed when data from flights performed at
two different heights were combined at the Rural site; the systematic error still remained
up to 0.4 m. However, the combination of the flight at 100 m and flights with oblique image
acquisition improved the systematic errors; the improvement increased when increasing
the image acquisition angle from the nadiral direction. The standard deviations are similar
in all these cases, approximately 0.03 m.

Table 8. Results of calculation variants: non-homogenous combinations of the flight at 100 m with nadiral axis of image
acquisition and other flights—Brownfield.

Calculation Variant Mean (m) StDev (m) RMS (m) F (Pixels) Cx (Pixels) Cy (Pixels)

All_Combined 0.0201 0.0063 0.0211 3685.4568 9.9062 28.3165
100m_1 + 75m_1 −0.0197 0.0073 0.0210 3686.6469 9.6673 27.8125
100m_1 + 75m_2 −0.0246 0.0084 0.0259 3687.0021 9.8057 27.7864
100m_2 + 75m_1 −0.0010 0.0074 0.0073 3685.7385 9.4378 27.8479
100m_2 + 75m_2 −0.0046 0.0086 0.0096 3686.0403 9.4761 27.9108

100m_1 + 125m_1 0.0012 0.0155 0.0152 3685.9121 9.7736 27.6163
100m_1 + 125m_2 0.0061 0.0105 0.0119 3685.9438 9.8531 27.7257
100m_2 + 125m_1 −0.0272 0.0146 0.0308 3686.5826 9.5823 27.8234
100m_2 + 125m_2 −0.0141 0.0106 0.0175 3686.1716 9.4705 27.8232
100m_1 + 60◦_1 0.0181 0.0079 0.0196 3685.2030 9.8340 27.4012
100m_1 + 60◦_2 0.0218 0.0093 0.0237 3685.4790 9.8563 27.5374
100m_2 + 60◦_1 0.0137 0.0084 0.0159 3684.9970 9.4563 27.8556
100m_2 + 60◦_2 0.0188 0.0078 0.0203 3685.2289 9.4574 27.7306
100m_1 + 75◦_1 −0.0311 0.0099 0.0326 3689.4667 10.4964 27.9219
100m_1 + 75◦_2 −0.0409 0.0122 0.0426 3689.7403 10.4778 28.1390
100m_2 + 75◦_1 −0.0439 0.0079 0.0446 3689.0670 10.2551 28.0417
100m_2 + 75◦_2 −0.0504 0.0159 0.0527 3689.8025 10.2318 28.2601

Table 9. Results of calculation variants: non-homogenous combinations of the flight at 100 m with nadiral axis of image
acquisition and other flights—Rural.

Calculation Variant Mean (m) StDev (m) RMS (m) F (Pixels) Cx (Pixels) Cy (Pixels)

All_Combined −0.0126 0.0237 0.0265 3685.1506 9.0573 29.2059
100m_1 + 75m_1 −0.1148 0.0219 0.1168 3689.6683 9.6098 29.3811
100m_1 + 75m_2 −0.1343 0.0319 0.1379 3690.3496 9.4486 30.4642
100m_2 + 75m_1 −0.2110 0.0246 0.2124 3693.8792 9.5771 29.1683
100m_2 + 75m_2 −0.2231 0.0358 0.2258 3694.4234 9.5165 30.2986

100m_1 + 125m_1 0.2818 0.0246 0.2828 3675.5925 8.8262 29.1363
100m_1 + 125m_2 0.2790 0.0238 0.2800 3675.6822 8.9231 29.2559
100m_2 + 125m_1 0.4269 0.0269 0.4277 3671.3294 8.8258 28.9144
100m_2 + 125m_2 0.4379 0.0249 0.4386 3670.9576 8.8740 29.2264
100m_1 + 60◦_1 0.0127 0.0251 0.0277 3684.4032 9.5076 29.8877
100m_1 + 60◦_2 −0.0036 0.0248 0.0246 3685.6338 9.2217 30.2379
100m_2 + 60◦_1 0.0334 0.0261 0.0422 3684.4453 9.5665 29.8517
100m_2 + 60◦_2 0.0085 0.0264 0.0273 3685.4680 9.3255 30.0001
100m_1 + 75◦_1 0.0400 0.0253 0.0471 3683.1644 9.3780 29.8556
100m_1 + 75◦_2 0.0010 0.0265 0.0261 3684.9419 9.4006 30.6061
100m_2 + 75◦_1 0.0628 0.0266 0.0680 3683.2049 9.3918 29.8083
100m_2 + 75◦_2 0.0126 0.0299 0.0320 3684.9628 9.4726 30.3318
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3.3. Analysis of the Association between the Systematic Error in Elevation and the Deviation of the
Focal Length f

The data detailed in Tables 4–9 were used for the calculation of the differences between
the determined focal lengths and the reference value determined from the All-Combined
calculation variant. The relationship is shown in Figures 7 and 8, along with the regression
coefficients and determination coefficient (calculated in MS Excel).

Figure 7. The systematic error of elevation as a function of the deviation of the focal length f from the
reference value—Brownfields).

Figure 8. The systematic error of elevation as a function of the deviation of the focal length f from the
reference value—Rural.

Both the graphical record and the determination coefficient R2, which is in both cases
close to 1 (0.97), prove a practically linear association of the systematic error and the focal
length error, which confirms the hypothesis stated, for example, in our previous paper [34].

The linear regression parameters can be further interpreted. The constant element
represents the independent constant error (mutual difference) between coordinates de-
termined by the onboard UAV GNSS RTK receiver and the terrestrial GNSS RTK survey.
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The detected size of the difference (max 0.017 m) corresponds to the declared accuracy of
0.03 m. The line direction can also be interpreted; using triangle similarity, the following
simple equation can be derived:

dH = dF· h
f

, (1)

describing the geometric configuration of the regression line direction as h/f, where h is the
flight altitude above the terrain and f is the focal length. The primary flight altitude in the
performed experiments was always h = 100 m and the focal length f = 3685 pix, the ratio
h/f was therefore 0.027 m/pix, which is very close to the experimentally determined h/f
values (0.0271 for the Brownfield site and −0.0285 for the Rural site).

The practically linear relationship between the constant chamber deviation and the
systematic error in elevation proves that the inaccuracy of the internal orientation element
calculation is indeed the source of that error. The focal length f determined during model
calculation can, therefore, be used as an indicator of this error.

A similar approach to the calculation of the correlation coefficient was also applied to
the coordinates of the principal point offset Cx and Cy. However, in this case, no reasonable
correlation was found; there is, therefore, no direct relationship between the erroneous
computation of the principal point offset and the systematic elevation error.

3.4. Comparison of Dense Clouds

Thus far, all comparisons and evaluations in this paper were performed using control
points (CPs) in CloudCompare software. It is, therefore, necessary to show that this ac-
quired information also has general validity, i.e., that it is also valid for the generated dense
cloud point. For this purpose, the data were cropped, filtered to remove trees and shrubs,
and the resulting cloud points were compared. The data from All_Combined calculations
(utilizing all available data) were, again, used as the reference. Below, results of the compar-
isons of the All_Combined calculations to calculations from the primary flight providing
the worse result from each location are shown. The comparison of the point clouds from the
100 m−1 flight and All_Combined dataset for Brownfield returned a systematic elevation
error of 0.268 m with a standard deviation of elevation of 0.038 m, as illustrated by Figure 9.
This systematic shift corresponds very well to the value calculated from control points (see
Table 4). The comparison of the All_Combined data and 100m_2 flight for the Rural site
illustrated in Figure 10 revealed a systematic error of 0.305 m with a standard deviation
of 0.029 m. Again, this systematic shift corresponds very well to the value obtained from
the control points (0.315 m; see Table 5). The last presented comparison focused on the
difference between All_Combined and All_RTK point clouds, which demonstrates the
practical agreement of the resulting point clouds; it is obvious that no deformation has
occurred and the elevation difference is practically constant (the systematic shift is 0.002 m
and the standard deviation is 0.006 m).

The comparisons of the point cloud elevations to the All_Combined variant detailed in
Figures 9–11 clearly show that the average difference value corresponds to that calculated
using control points, and the same can be said about the standard deviation. The results
of analyses of the remaining point clouds were in agreement with this statement, which
proves that the difference is indeed caused by a systematic shift of the point cloud in the
nadiral direction without deformation in the horizontal plane.

It is also obvious that the All_RTK and All_Combined calculation variants produced
practically identical results, which implies that if the internal orientation elements are
determined correctly, the result is correct even if only onboard RTK data are used.
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Figure 9. Height differences between 100m_1 RTK and All_Combined point clouds—Brownfield
(area cropped along outer control points).

Figure 10. Comparison of All_Combined to the worst result of individual flights, i.e., the flight
100m_2—Rural (area cropped along outer control points).

Figure 11. Comparison of All_RTK to All_Combined —Rural.
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4. Discussion

Many studies have tested the use of UAV photogrammetry with onboard GNSS RTK
for preparing a point cloud representing a DTM and subsequent calculations. Although, in
principle, it is possible to perform the whole calculation without the use of GCPs, practical
testing revealed that simultaneous calculation of the internal and external orientation
elements may, in some cases, lead to a systematic elevation error, although all measurements
are correct. This elevation error is random in a way, as it differed even in duplicate flights
with the same configuration and the same UAV. This is in accordance with the findings by
other authors (e.g., [34,36,38,39]), regardless of whether a fixed-wing or rotary-wing UAV
was used.

James and Robson described in 2014 a so-called doming effect when creating a pho-
togrammetric model solely from photographs without the use of reference points. This was
not observed in our paper, which can be explained by the fact that the current algorithms
used in Agisoft Metashape already consider the camera coordinates during construction of
the model [43].

A detailed analysis of the results revealed that incorrect calculation of the internal
orientation elements, particularly of the focal length f, is the most likely reason for this
problem (e.g., [34,38,40]). Various strategies to deal with this problem have been proposed,
such as the use of oblique images (e.g., [19,36,40]), including a small number of GCPs
(e.g., [36,39,40,44]) or camera pre-calibration (e.g., [34,42]). Disregarding the use of GCPs
(a reliable solution which, however, negates the principal goal of this study, i.e., the
simplification of the measurement by avoiding the use of GCPs), it is necessary to try to
propose a measurement strategy (flight configuration, processing method, other techniques)
to prevent the systematic error. In this study, we aimed to prove the association between the
systematic elevation error and erroneous determination of the internal orientation elements
and to test various strategies for eliminating the systematic elevation error. We have shown
experimentally in two sites (33 models calculated at each site) that the systematic error
in elevation and deviation of the focal length are practically linearly dependent, with a
coefficient of determination of more than 0.96. The regression coefficients also correspond
very well to the relationship between the flight altitude and focal length (Equation (1)).
This implies that it is necessary to adopt a strategy ensuring the best possible determination
of the internal orientation elements. Here, we must also note that the correct camera
calibration is indeed a principal problem of photogrammetry. There are methods that can
be used for this purpose, but they usually rely on the use of GCPs and a very specific image
acquisition configuration. Additionally, it is also well known that pre/post-calibration, i.e.,
calibration independent of the particular flight, brings (when using UAVs with non-metric
cameras) poorer results than the calibration performed within the scope of the particular
flight [45]. It is, therefore, necessary to choose approaches that are actually feasible from
the perspective of the camera mounted on the UAV and that can be simply implemented in
the image acquisition flight. Here, we combined the primary flight (100 m altitude, nadiral
image acquisition) with imagery acquired from other flights. The results of the evaluation
of such combined calculations revealed that:

1. Performing duplicate flights, even if the second flight is perpendicular to the first one
(double-grid), brings only a minor improvement; however, the accuracy still remains
above the expected limit of 1–2 GSD. In some cases, it may still fail with a systematic
shift of up to 0.18 m.

2. Geometrically different combinations (i.e., the primary flight combined with flights
at other altitudes or with different camera angles) led to a significant improvement.
This was especially apparent at the Brownfield site where any of these combinations
led to the expected accuracy (elevation difference below 0.05 m). Still, the error at the
Rural site remained in some instances as high as 0.4 m. It is, therefore, obvious that
the quality and selection of the key points for image matching affect the quality of
the calibration.
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3. The best results were obtained from the combinations of the primary flight and flights
with oblique image acquisition. This was the only strategy that worked well at both
sites in all tested combinations. The variant with the higher angle (30◦ from the
vertical direction) provided the best results, with even the worst systematic error not
exceeding 0.03 m (1 GSD).

In our experiment, only relatively small camera angles (15◦ and 30◦ from the vertical
direction) were used to prevent disruption of image alignment, which could pose problems
in rugged terrain (i.e., terrain with sloped surfaces). Obviously, the higher the difference in
the camera angle, the greater are the differences between the appearance of the same area
in the images and, therefore, the more difficult the image matching. Some studies [36,40]
used a greater angle (45◦) but these were performed on an “ideal” flat terrain. The possible
angles and their effect on the resulting accuracy should be subject to further research.

5. Conclusions

UAVs equipped with onboard GNSS RTK receivers are becoming financially more
accessible. Their usage for SfM modeling without the need for GCPs seems to be a natural
path to take; however, the usual flight configuration with nadiral image acquisition and self-
calibration often produces results with significant systematic elevation error. In this study,
we have proved that the principal cause for this is the incorrect determination of the internal
orientation parameters as the resulting elevation error is practically directly proportional
to the error in the determination of the focal length (coefficient of determination of 0.96).
This was also confirmed by the numerical agreement with the geometrical relationship.

To be able to use an onboard GNSS RTK receiver for direct georeferencing, it is,
therefore, necessary to ensure correct calibration of the internal orientation elements; where
the use of GCPs and/or accurate camera calibration is not possible or feasible, the results
can be improved by adjusting the flight geometry and calculation method. We have
tested strategies of joint calculations of two flights that were (i) geometrically identical
and (ii) geometrically different. A major difference was revealed between sites; at the site
with surfaces suitable for SfM, all tested non-homogeneous flight combinations yielded
satisfactory results and the systematic error was reduced to approx. 1 GSD; on the contrary,
at the Rural site, covered predominantly with rapeseed, shrubs, trees, and other vegetation,
combining different flight altitudes did not result in sufficient improvement. However,
combinations of two flights at the same altitude with different camera acquisition axes
(nadiral and oblique) performed very well. The combination with the higher difference in
acquisition angle (i.e., of nadiral and 30 deg from nadiral image acquisition axes) performed
best, capable of reducing the systematic elevation error to approx. 1 GSD even in the Rural
area with a surface highly unsuitable for photogrammetry.
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34. Štroner, M.; Urban, R.; Reindl, T.; Seidl, J.; Brouček, J. Evaluation of the Georeferencing Accuracy of a Photogrammetric Model
Using a Quadrocopter with Onboard GNSS RTK. Sensors 2020, 20, 2318. [CrossRef] [PubMed]

35. Peppa, M.V.; Hall, J.; Goodyear, J.; Mills, J.P. Photogrammetric Assessment and Comparison of DJI Phantom 4 Pro and Phantom 4
RTK Small Unmanned Aircraft Systems. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2019, XLII-2/W13, 503–509. [CrossRef]

36. Taddia, Y.; Stecchi, F.; Pellegrinelli, A. Coastal Mapping using DJI Phantom 4 RTK in Post-Processing Kinematic Mode. Drones
2020, 4, 9. [CrossRef]

37. Santise, M.; Fornari, M.; Forlani, G.; Roncella, R. Evaluation of DEM generation accuracy from UAS imagery. Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci. 2014, XL-5, 529–536. [CrossRef]

38. Forlani, G.; Dall’Asta, E.; Diotri, F.; Cella, U.M.; Roncella, R.; Santise, M. Quality Assessment of DSMs Produced from UAV Flights
Georeferenced with On-Board RTK Positioning. Remote Sens. 2018, 10, 311. [CrossRef]

39. Le Van Canh, X.; Cao Xuan Cuong, X.; Nguyen Quoc Long, X.; Le Thi Thu Ha, X.; Tran Trung Anh, X.; Xuan-Nam Bui, X.
Experimental Investigation on the Performance of DJI Phantom 4 RTK in the PPK Mode for 3D Mapping Open-Pit Mines. Inz.
Miner. J. Pol. Miner. Eng. Soc. 2020, 46, 65–74, ISSN 1640-4920. [CrossRef]

40. Teppati Losè, L.; Chiabrando, F.; Giulio Tonolo, F. Boosting the Timeliness of UAV Large Scale Mapping. Direct Georeferencing
Approaches: Operational Strategies and Best Practices. ISPRS Int. J. Geo-Inf. 2020, 9, 578. [CrossRef]

41. Cramer, M.; Przybilla, H.-J.; Zurhorst, A. UAV cameras: Overview and geometric calibration benchmark. Int. Arch. Photogramm.
Remote Sens. Spatial Inf. Sci. 2017, XLII-2/W6, 85–92. [CrossRef]

42. Harwin, S.; Lucieer, A.; Osborn, J. The Impact of the Calibration Method on the Accuracy of Point Clouds Derived Using
Unmanned Aerial Vehicle Multi-View Stereopsis. Remote Sens. 2015, 7, 11933–11953. [CrossRef]

43. James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks.
Earth Surf. Proc. Landf. 2014, 39, 1413–1420. [CrossRef]

44. Zhang, H.; Aldana-Jague, E.; Clapuyt, F.; Wilken, F.; Vanacker, V.; Van Oost, K. Evaluating the potential of post-processing
kinematic (PPK) georeferencing for UAV-based structure- from-motion (SfM) photogrammetry and surface change detection.
Earth Surf. Dynam. 2019, 7, 807–827. [CrossRef]

45. Przybilla, H.-J.; Bäumker, M.; Luhmann, T.; Hastedt, H.; Eilers, M. Interaction between direct georeferencing, control point
configuration and camera self-calibration for rtk-based uav photogrammetry. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
2020, 43, 485–492. [CrossRef]

40



remote sensing  

Article

Quality Assessment of Photogrammetric Methods—A
Workflow for Reproducible UAS Orthomosaics

Marvin Ludwig 1,*, Christian M. Runge 2, Nicolas Friess 1, Tiziana L. Koch 3, Sebastian Richter 1,
Simon Seyfried 1, Luise Wraase 1, Agustin Lobo 4, M.-Teresa Sebastià 2,5, Christoph Reudenbach 1

and Thomas Nauss 1

1 Department of Geography, Philipps-University Marburg, Deutschhausstr. 10, 35037 Marburg, Germany;
nicolas.friess@geo.uni-marburg.de (N.F.); richte3d@staff.uni-marburg.de (S.R.);
seyfries@students.uni-marburg.de (S.S.); luise.wraase@geo.uni-marburg.de (L.W.);
reudenbach@uni-marburg.de (C.R.); nauss@staff.uni-marburg.de (T.N.)

2 GAMES Group, Department of Horticulture, Fruit, Growing Botany and Gardening, University of Lleida,
25198 Lleida, Spain; cristian.mestre@hbj.udl.cat (C.M.R.); teresa.sebastia@ctfc.cat (M.-T.S.)

3 Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstr. 111,
8903 Birmensdorf, Switzerland; tiziana.koch@wsl.ch

4 Geoscience Barcelona (GEO3BCN—CSIC), 08028 Barcelona, Spain; Agustin.Lobo@geo3bcn.csic.es
5 Laboratory ECOFUN, Forest Science and Technology Centre of Catalonia (CTFC),

25280 Solsona, Catalonia, Spain
* Correspondence: marvin.ludwig@geo.uni-marburg.de

Received: 21 October 2020; Accepted: 19 November 2020; Published: 22 November 2020

Abstract: Unmanned aerial systems (UAS) are cost-effective, flexible and offer a wide range of
applications. If equipped with optical sensors, orthophotos with very high spatial resolution can be
retrieved using photogrammetric processing. The use of these images in multi-temporal analysis and
the combination with spatial data imposes high demands on their spatial accuracy. This georeferencing
accuracy of UAS orthomosaics is generally expressed as the checkpoint error. However, the checkpoint
error alone gives no information about the reproducibility of the photogrammetrical compilation of
orthomosaics. This study optimizes the geolocation of UAS orthomosaics time series and evaluates
their reproducibility. A correlation analysis of repeatedly computed orthomosaics with identical
parameters revealed a reproducibility of 99% in a grassland and 75% in a forest area. Between time
steps, the corresponding positional errors of digitized objects lie between 0.07 m in the grassland and
0.3 m in the forest canopy. The novel methods were integrated into a processing workflow to enhance
the traceability and increase the quality of UAS remote sensing.

Keywords: unmanned aerial systems; unmanned aerial vehicle; time series; accuracy; reproducibility;
orthomosaic; validation; photogrammetry

1. Introduction

Unmanned aerial systems (UAS) are widely used in environmental research. Applications
encompass the retrieval of crop yield [1] or drought stress [2] in agricultural areas or the mapping
of plant species [3–5], biomass [6,7] or forest structure [8–10] in nature conservation tasks. Today,
UAS allow an extensive spatial coverage with high resolution that provides detailed observations on
the individual plant level, e.g., for the detection of pest infections in trees [11] or rotten stumps [12].
The flexibility of UAS is also beneficial for multi-temporal observations since flights can be scheduled
on short notice based on specific events like bud burst or local weather conditions. Therefore, UAS are
regarded as a key component for bridging the scales between space-borne remote sensing systems and
in-situ measurements in environmental monitoring systems [13].
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Applications of UAS can be structured into two main components: the acquisition of individual
images—including the flight planning—with an unmanned aerial vehicle (UAV) for a particular region
of interest and the processing of these images with photogrammetric methods to obtain georeferenced
orthophoto mosaics [8,14–16] or digital surface models [8,17,18]. Studies on the development of
workflows for UAS are sparse, often exclude the flight planning and are mostly tied to a very specific
application [4,19]. A generalized, flexible and commonly accepted workflow is still missing [13].

Standardized protocols and quality assessments are needed for a better understanding and
appropriate use of UAS imagery. Since the final product quality depends on the initial image capturing,
flight planning is one important aspect in a common workflow scheme. For example, the flight
height in conjunction with the used sensor (RGB, multispectral or hyperspectral) affect the ground
sampling distance (GSD, i.e., pixel size or spatial resolution) of the images and in conjunction with the
flight path affect the overlap of the individual images which is a key factor for the successful image
processing [20]. A fully reproducible study therefore must include the flight path and parameters as
well as the camera configuration metadata. For ready-to-fly consumer UAV, flight planning is usually
done in software which is tied to the specific hardware (e.g., the DJIFlightPlanner for DJI drones).
These commercial solutions often do not provide the full control of autonomous flights and access
to metadata which makes it difficult to integrate flight planning in a generalized workflow. In this
respect, open hardware/software solutions like Pixhawk based systems and the MAVlink protocol
(mavlink.io) are advantageous. To complete the metadata, environmental conditions during the flight
like sun angle and cloudiness that also have impacts on the image quality [21] should be recorded.

Equally or even more important for valid results and their use in subsequent data analysis or
synthesis is a quality assessment of the resulting image products in terms of their spatial accuracy
and reproducibility. The basic image processing workflow starts with the alignment of the individual
images, which results in a projected 3D point cloud. Usually, this point cloud is georeferenced through
the individual image coordinates or via the use of measured ground control points (GCPs) [22,23].
The point cloud is the basis for the generation of a surface model and the orthorectification and mosaicing
of the individual images based on this surface. Commercial software such as Metashape (Agisoft LLC,
St. Petersburg, Russia; formerly known as Photoscan) makes these complex photogrammetric methods
accessible to a broad range of users and has been utilized in numerous studies [3,13,24].

The quality of photogrammetrically compiled orthomosaics is commonly expressed as their
georeference accuracy [25–28] or statistical error metrics derived from the image alignment
(e.g., the amount of points in the point cloud or the reprojection error [8,29]). However, these measures
alone provide no comprehensive information about the quality of the orthomosaic since the subsequent
steps of orthorectification and mosaicing are not taken into account. Image artifacts and distortions can
occur during these processing steps that are not reflected in the georeference accuracy [30]. Especially
in forest ecosystems, the complex and diverse structures and similar image patterns in the canopy can
lead to erroneous imagery [20]. In addition, wind exposure leads to changes in the structure of the tree
canopy and consequently causes problems in the alignment of individual images [31]. The quality
assessment becomes even more important when time series are analyzed since actual changes of the
observed environmental variables have to be separated from deviations which stem from the image
processing itself. In addition, here low georeferencing errors are even more important since the errors
of the individual time steps can accumulate. Studies utilizing time series relied on georeferencing
errors below 10 cm of the individual time steps [26,32].

To evaluate the reproducibility and validity of orthomosaic time series, it is therefore necessary
to: (1) optimize the positional accuracy of the individual orthophoto mosaics, (2) to evaluate the
reproducibility of the photogrammetric processing of these orthophoto mosaics and (3) to evaluate the
positional accuracy between features in the individual time steps of the series.

This study proposes (i) an optimization for the orthorectification of UAS images and (ii) an additional
quality criterion for UAS orthomosaics that focuses on the reproducibility of the photogrammetric
processing. The orthorectification is improved by an automated optimization of the checkpoint error based
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on an iteration of point cloud filters. The reproducibility of orthomosaics is quantified by the repeated
processing of the same scene and a pixel-wise correlation analysis between the resulting orthophoto
mosaics. We illustrate the importance of both methods using different orthorectification surfaces and two
time series in a grassland and a forest area, respectively. To foster an error and reproducibility optimized
orthomosaic processing, we incorporate the new methods into an impoved UAS workflow.

2. Materials and Methods

2.1. Multi-Temporal Flights

Two multi-temporal UAV-based image dataset were acquired as a test sample for this study
(Table 1). The first dataset is a series of six consecutive flights over a small temperate forest patch
(Wolfskaute, Hesse, Germany). The surveyed area covers 7 ha of a forested hill with an adjacent
meadow and ranges from 283 m to 320 m a.s.l. (above sea level). with a canopy height of up to 37 m
(Figure 1a). The six flights were performed on 2020-07-07 between 11:00 and 14:00 CEST using a 3DR
Solo Quadrocopter (3D Robotics, Inc., Berkeley CA, USA) and a GoPro Hero 7 camera (GoPro Inc.,
San Mateo, CA, USA; Appendix B, Table A1). The flight plan was made with Qgroundcontrol and
refined with a LiDAR derived digital surface model (DSM, provided by the Hessian Agency for Nature
Conservation, Environment and Geology (HLNUG)) with the R-package uavRmp to achieve a uniform
altitude of 50 m above the forest canopy (see Appendix A). For georeferencing and checkpoint error
calculation, 13 ground control points (GCPs) were surveyed with the Real Time Kinematic (RTK) GNSS
(Global Navigation Satellite System) device Geomax Zenith 35 (GeoMax AG, Widnau, Switzerland).
The RTK GNSS measurements had an error of between 0.9 and 1.6 cm in the horizontal direction and
between 1.9 and 3.7 cm in the vertical direction. Eight GCPs were used as controlpoints and five served
as independent checkpoints to evaluate the georeferencing error (Figure 1a).

The second dataset is an inter-annual time series of a grassland area (La Bertolina, Eastern Pyrenees,
Spain). Terrain altitudes range from 1237 m to 1328 m a.s.l. The flights were performed in spring
or early summer of 2013, 2015 and 2017 using an octocopter with a Pixhawk controller. Cameras
and flight plans in a fixed altitude differ between the dates (Table 1), detailed camera settings in
Appendix B, Table A1). The flights took place in the morning with sub-optimal illumination angles
below 35 degrees [21] and partly scattered light conditions due to the presence of clouds. Five to eight
GCPs were measured in each year with a conventional GPS device without RTK, from which three
were used as checkpoints (Figure 1b).

Both datasets were used to empirically determine the georeferencing accuracy and reproducibility
of the photogrammetrically retrieved orthomsoaics. For a better understanding of the newly introduced
approaches, the following chapters first outline the general UAS image processing workflow.
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Figure 1. Overview of the two study areas and the location of ground control points. (a) Forested area
in Wolfskaute, Hesse, Germany. (b) Grassland area in La Bertolina, Eastern Pyrenees, Spain. Both maps
are projected in UTM but with geographic coordinates for a better overview.
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Table 1. Overview of the flight missions used to acquire the two test datasets in forest and grassland
environments. The cameras were triggered by time interval. In the forest flights, altitude refers to a
uniform height above the canopy. In the grassland flights, altitude referes to a fixed relative height
above the take-off point. Overlap referes to both forward (F) and side (S) overlap.

Mission Date Sun
Angle (◦) Conditions Camera Area

(ha)
GSD

(cm/px)
Alt.
(m)

Overlap,
F/S (%) Images

Forest 01 2020/07/07
11:20 a.m. 38.1 cloud free GoPro

Hero 7 7 2.58 50 > 90/75 630

Forest 02 2020/07/07
11:42 a.m. 44.33 cloud free GoPro

Hero 7 7 2.58 50 > 90/75 630

Forest 03 2020/07/07
12:11 a.m. 50.33 partially

cloudy
GoPro
Hero 7 7 2.58 50 > 90/75 630

Forest 04 2020/07/07
12:40 a.m. 56.13 partially

cloudy
GoPro
Hero 7 7 2.58 50 > 90/75 630

Forest 05 2020/07/07
13:10 a.m. 61.76 cloudy GoPro

Hero 7 7 2.58 50 > 90/75 630

Forest 06 2020/07/07
13:43 a.m. 67.28 cloudy GoPro

Hero 7 7 2.58 50 > 90/75 630

Grassland
2013

2013/06/01
11:17 a.m. 41.34 partially

cloudy
Sony

NEX-SN 7.68 3.32 111 70/75 27

Grassland
2015

2015/05/22
09:26 a.m. 19.99 cloud free Sony

NEX-7 14.2 3.68 169 75/75 57

Grassland
2017

2017/05/18
08:53 a.m. 13.58 partially

cloudy
Sony

ILCE-7RM2 32.4 3.97 132 75/75 57

2.2. Image Georeferencing

Very high resolution orthomosaics such as those resulting from UAV flights require precise
positioning to avoid the introduction of complex errors in the image processing [33]. The standard
GNSS receivers that are built in cameras do not provide sufficient accuracy. There are two alternative
strategies for georeferencing the UAS products: direct georeferencing of the images with a RTK on the
UAV or the use of GCPs. Direct georeferencing requires the accurate time synchronization between the
RTK device and the camera, which has been reported as a major source of error [33–35].

The use of GCP implies that the study area is accessible in order to install visible ground markers
before the flight and precisely measure their position. Ideally, the GCP should be equally distributed
over the study area to avoid distortions during processing [33]. During the orthomosaic processing,
the ground markers need to be interactively identified in the images. Despite these drawbacks,
georeferencing through GCP with general-purpose GNSS receiving systems—that are nowadays
standard equipment for surveying—is still far more widespread and potentially more cost-effective
than the direct georeferencing with RTK [34].

In any case, GCPs are also required for the independent validation of the referencing accuracy
during the processing [24] and therefore essential for a proper accuracy assessment. The geolocation
accuracy is usually given as the checkpoint root mean squared error (checkpoint error, Equation (1))
that quantifies the distance between the position of the measured GCP (XYZgcp) and the estimated
positions of these coordinates in the photogrammetric processing (XYZest). It can be calculated for
each direction individually.

Checkpointerror =

√
mean

((
XYZgcp −XYZest

)2
)

(1)

2.3. Photogrammetric Processing

The Metashape software (Agisoft LLC, St. Petersburg, Russia; formerly known as Photoscan) is
widely used for UAS image processing. The standard photogrammetric workflow includes the image
alignment, the generation of a digital surface model (called Digital Elevation Model in Metashape) and the
orthorectification and mosaicing (Figure 2). The image alignment starts with the automatic identification
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of distinct features in the individual images. This process is enhanced and requires less computation time
if the individual images already contain GNSS information. Those features which appear in more than
one image, the so called tie points, are matched and projected in a 3D space, forming the sparse cloud
that is georeferenced using the surveyed GCPs. The georeferenced sparse cloud is subsequently used to
compute a digital surface model, either through a dense pointcloud or a mesh interpolation of the sparse
cloud (Figure 2a,b). The surface model is finally used for rectifying the georeferenced images.

For each processing step, a multitude of parameters and options are available that affect the results
in terms of georeferencing accuracy and orthomosaic quality. While Metashape offers default values
for these parameters, the methods described below aim to optimize and alter the standard workflow to
obtain high quality and reproducible orthomosaics.
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Figure 2. Overview of the workflow and reproducibility analysis. The georeferenced sparse point
cloud is iteratively filtered until the checkpoint error reaches its minimum. A surface model and
orthomosaic can either be retrieved through (a) the dense point cloud or (b) the creation of a mesh.
For the reproducibility analysis (c) the whole photogrammetric process is repeated x times, leading to x
orthomosaics from the same image source. Pixel-wise correlation analysis between pairs of orthomosaics
leads to n correlation layers and n binary layers based on a correlation coefficient threshold of >0.95.
The final reproducibility layer is the sum of all binary layers.

2.4. Optimizing the Georeferencing

Each point in the sparse cloud has four accuracy attributes: the reconstruction accuracy (RA),
the reprojection error (RE), the projection accuracy (PA) and the image count [35]. In particular, the RE
is suggested as the quality measure of tie points [20,36]. It is the deviation of the positions of identified
features in the original image from positions of the same features in the calculated 3D space. The removal
of points with a high error and the subsequent optimization of the camera positions can improve the
georeferencing. However, by removing too many points in the individual sparse clouds, images no longer
align and the checkpoint error increases. An iterative approach is used to find the optimal RE threshold
for the dataset by filtering the sparse cloud using different RE threshold values in order to minimize the
checkpoint error (Figure 2). This method was applied to each flight of the two multi-temporal datasets.

The initial pointclouds are the direct results from the feature identification and matching algorithms
from Metashape. In order to account for the inherited randomness of these processes and the slight
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differences of the checkpoint error due to the manual alignment of the GCP, the optimization was
repeated five times and the standard deviation of the checkpoint error was calculated.

2.5. Orthomosaic Reproducibility

Since the orthomosaics are the result of complex photogrammetric methods, its reproducibility has
to be assessed. In this context, reproducibility is a measure of how identical individual orthomosaics
are, if they are computed from the same image source and with identical photogrammetric processing
parameters. This way, the reproducibility of the photogrammetric process itself is evaluated without
the influence of changes in the surveyed environment. For this purpose, a set amount of orthomosaics
is computed with identical settings (Figure 2). To quantify the reproducibility, the pixel-wise correlation
coefficient of the RGB values is calculated between each pair of the computations (raster R package,
corLocal function). Pixels with a correlation coefficient of 0.95 or higher are considered identical between
two orthomosaics. This leads to a binary layer for all pair-wise correlations marking reproducible and
non-reproducible pixels. By summing up the binary layers, regions of high and low reproducibility
can be identified (Figure 2c). High values then denote a high level of reproducibility of a pixel.

The more orthomosaics are computed, the more correlation layers can be calculated (Equation (2))
and the more likely a layer is to receive a non-correlating pair of pixels. Therefore, a preliminary
test with an arbitrarily high number of 25 orthomosaics (x = 25) was done, which leads to n = 300
correlation layers.

ncorrelations =
x!

2! ∗ (x− 2)!
(2)

In practice, computing 25 orthomosaics is, in most cases, unreasonable regarding the computation
time and processing resources. Therefore, the reproducibility analysis was also done with only
5 identical orthomosaic computations (i.e., 10 pairwise correlations). The comparison of both
reproducibility layers revealed that summing up 10 correlation layers (x = 5) is sufficient to identify most
pixels which are also denoted as non-reproducible when using 300 binary layers. The analysis of the
time series and the full forest set were therefore done with only 5 identical orthomosaic computations.

In addition, the edges of the orthomosaic are heavily distorted and have a lower positional
accuracy due to less image overlap [37]. Therefore, the orthomosaic should be cropped to the central
area with a sufficient overlap. In the R package uavRmp provided with this study, this crop mask
is automatically generated from spatial polygons defined by the seamlines (i.e., the outline of the
individual image parts) of the mosaic. The outermost polygons are identified using a concave hull of
the seamlines and are discarded from the orthomosaic.

All computations were done in R (Version 4.0.2; [38]). All presented methods are provided
as the R-package uavRmp (https://gisma.github.io/uavRmp/) and the Metashape Python Scripts
(https://github.com/envima/MetashapeTools).

2.6. Assessing the Orthorectification Surface

The standard workflow in Metashape suggests a DSM created from a dense pointcloud as the
orthorectification surface (Figure 2a) [16]. In vegetation free areas, this DSM is mostly equivalent to
a digital elevation model (DEM) [39] or digital terrain model (DTM) and therefore suitable for the
creation of orthomosaics. In areas with vegetation, the DEM requires the classification of ground points
in the dense pointcloud which is currently not viable in Metashape for structurally rich environments
like forests or grasslands in the phases of maturation and flowering. Alternatively, a 2.5D mesh can
be created from the sparse cloud on which the images are projected [40]. By smoothing the mesh to
eliminate sharp edges, the surface can be regarded as an approximation of a DEM. This approach
requires far less computational ressources since the creation of a densecloud is skipped. It is therefore
more suitable for low-budget UAS setups. To demonstrate and validate its usage, the mesh surface
was compared to the DSM for one of the forest scenes with respect to the reproducibility of the derived
orthomosaics using the pixel-wise correlation method described above.

46



Remote Sens. 2020, 12, 3831

2.7. Time Series Accuracy

To assess the overall reproducibility of time series, reproducibility masks have been computed for
each time step and overlaid to identify pixels that are reproducible over the multi-temporal data and
suitable for time series analyses. To differentiate between positional errors from the photogrammetric
processing and actual environmental changes between the time steps, identifiable objects and trees were
digitized in each individual orthomosaic (7 geometries in the forest, 4 in the grassland). The positional
shift of the bounding boxes for each digitized object was calculated between each time step. This provides
a more critical assessment of time series than the individual checkpoint errors alone, since relative position
differences and environmental changes between the time steps are taken into account.

3. Results

3.1. Optimized Georeferencing Accuracy

To evaluate the optimized georeferencing approach, the sparse clouds were iteratively filtered
with decreasing RE thresholds. The sparse clouds of the six forest flights originally included between
560,000 and 680,000 tie points (Figure 3b) after the image alignment with a maximum initial checkpoint
error of 3 m. The checkpoint errors were minimized to values between 0.021 and 0.046 m if a RE
threshold of 0.4 m was used (Figure 3a). The corresponding pointclouds consisted of about 150,000 tie
points. Further reducing the RE threshold to 0.1 m increased the checkpoint error (Figure 3b) due to an
insufficient number of tie points for image alignments.
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Figure 3. (a) Checkpoint error in horizontal direction of the six forest flights with different reprojection
error thresholds of the pointcloud filters. A reprojection error threshold of 0.4 m (red) led to the optimal
checkpoint error of 0.067 m in the horizontal direction. The initial checkpoint error values of the sparse
clouds without a camera optimization were 3 m on average. For better visibility, the y-Axis uses a log10 scale.
(b) Number of points in the sparse clouds of the six forest flights with different reprojection error thresholds.

In order to test the robustness of the method, the determined optimal RE threshold of 0.4 m was
used to filter the sparse clouds of five identical computations of the six forest flights. The average
controlpoint error in the horizontal direction was consistently below 0.02 m in all six flights and deviated
less than 0.001 m in each of the five computations. The horizontal checkpoint error was between 0.02 m
and 0.06 m over all six flights and deviated less than 0.01 m within the five computations. The error in
the vertical direction (Z in Table 2) was up to five times higher; however, the reproducibility in each
flight is still stable with a maximum deviation of 0.03 m over the five computations.
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In the grassland area, the iterative point cloud filtering only marginally improved the checkpoint
error since almost all tie points had already very low RE of less than 0.4 m. The final checkpoint errors
for the years 2013, 2015 and 2017 were 0.29 m, 0.18 m and 0.07 m, respectively. These errors are up to
10 times higher than in the forest time series, which is mostly due to the use of a conventional GNSS
measurements for the GCP in the grassland compared to the RTK GNSS measurement in the forest.
Nevertheless, the five computations of the grassland time series led to very consistent checkpoint
errors with standard deviations close to 0 (Table 2).

Table 2. Controlpoint and checkpoint error of the five computations of the six forest flights. The images
of from each flight were computed five times with identical settings.

Controlpoint Error (m) Checkpoint Error (m)

Flight XYmean XYsd Zmean Zsd XYmean XYsd Zmean Zsd

Forest 01 0.0149 0.0003 0.0207 0.0003 0.0220 0.0002 0.0591 0.0010
Forest 02 0.0082 0.0008 0.0217 0.0006 0.0377 0.0008 0.1989 0.0019
Forest 03 0.0140 0.0001 0.0264 0.0012 0.0565 0.0003 0.1765 0.0030
Forest 04 0.0112 0.0004 0.0122 0.0006 0.0529 0.0034 0.0861 0.0090
Forest 05 0.0176 0.0005 0.0215 0.0005 0.0362 0.001 0.1344 0.0022
Forest 06 0.0120 0.0002 0.0173 0.0003 0.0595 0.0053 0.1845 0.0223

Grassland 2013 0.0001 <0.0001 0.0001 <0.0001 0.2917 0.0012 2.0691 0.0041
Grassland 2015 0.0009 <0.0001 0.0001 <0.0001 0.1837 0.0006 1.3638 0.0095
Grassland 2017 0.0040 <0.0001 0.0001 <0.0001 0.0700 <0.0001 0.0007 <0.0001

3.2. Orthomosaic Reproducibility

To evaluate the reproducibility of orthomosaics, the images of the 4th forest flight were computed
25 times with identical photogrammetric parameters. The 300 pixel-wise correlation analysis between the
25 orthomosaics were performed within a testing area of 600 by 650 pixels showing the forest canopy
(Figure 4a). Pixels with correlation coefficients higher than 0.95 were considered reproducible between the
orthomosaics. Highly reproducible pixels are characterized by consistently high correlation coefficients
and therefore high values in the summed up layer shown in Figure 4b. Non-reproducible regions appear
mainly in forest clearings or at dead trees. The actual canopy appears stable across multiple computations.

Using only five identical orthomosaics (i.e., 10 pairwise correlation analyses, Figure 4c) revealed
the same patterns as the 300 correlation layers. Hence, only five repetitions are considered enough for
subsequent reproducibility analyses.
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coefficient of 0.95 or greater was used. High values (yellow) denote high reproducibility of the RGB 
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3.3. Comparison of Mesh and DSM Surface-Based Orthomosaics 

To evaluate to which degree the reproducibility of orthomosaics depends on the use of the 
underlying mesh and DSM surface in the forest environment, both surfaces have been used in 
otherwise identical computation workflows. Using 5 identical orthomosaic computations, 82% and 
85% of the pixels were considered reproducible using the DSM and mesh, respectively. All non-
reproducible pixels were found in the forest clearing areas of the images. The surrounding meadow 

Figure 4. Pixel-wise correlations of the RGB values of a 600 by 650 pixels area of the canopy (a) of identical
orthomosaic processings. (b) The sum of a binary classification over 25 identical computations,
hence 300 pairwise correlations. For the binary classification, a pixel-wise correlation coefficient of 0.95
or greater was used. High values (yellow) denote high reproducibility of the RGB values in this pixel
over the 25 images. Low values (blue) indicate non-reproducible orthomosaics since the correlation
coefficient between the 25 computations is consistently below 0.95. (c) The results of only 5 identical
computations, hence the sum of 10 correlation layers.

48



Remote Sens. 2020, 12, 3831

3.3. Comparison of Mesh and DSM Surface-Based Orthomosaics

To evaluate to which degree the reproducibility of orthomosaics depends on the use of the
underlying mesh and DSM surface in the forest environment, both surfaces have been used in
otherwise identical computation workflows. Using 5 identical orthomosaic computations, 82% and 85%
of the pixels were considered reproducible using the DSM and mesh, respectively. All non-reproducible
pixels were found in the forest clearing areas of the images. The surrounding meadow did not differ
between the orthomosaics (Figure 5). When only the forested area is considered, the number of
reproducible pixels decreased to 69% in the DSM and 74% in the mesh-based processing.

While being nearly identical in their amounts of reproducible pixels, there is still a large contrast
between the orthomosaic reproducibility of the two surfaces. If a pixel in the DSM-based orthomosaics
is non-reproducible between two images, there is a high probability that this pixel is non-reproducible
in all images (Figure 5). The mesh-based orthomosaics show significantly more pixels that are
non-reproducible between only one or two different orthomosaics, but were stable between the
other computations.
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the sum of the 10 correlation layers of the 5 identical computations using the DSM (b) or the mesh (c).
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3.4. Forest Time Series Reproducibility

The same canopy part of the orthomosaics as in Figure 4 was used for the assessment of the
reproducibility along a time series. Figure 6 reveals that non-reproducible areas are mostly consistent
between the flights. They concentrate around clearings and around the branches of dead crowns
visible in Figure 4a. The actual forest canopy is reproducible. Flight conditions also seem to have an
impact on the overall reproducibility. Forest 03 to 06 which were performed in cloudy conditions show
less deviations between computations than Forest 01 and 02 where cloud-free conditions and low solar
elevations are present.

Summing up all the correlation layers of the six flights (Figure 7) leads to a quality mask for the
whole time series. This confirms that the canopy region is reproducible and stable even across the
time series.

3.5. Grassland Time Series Reproducibility

In the grassland time series, the reproducibility of each orthomosaic was also tested with
five identical computations. Only 1% of the pixels in the grassland area deviated between the
computations of each year. In 2013 and 2015, the non-reproducible areas occur mainly in the area of a
micrometeorological station in the middle of the meadow (Figure 8). In 2017 some singular pixels also
deviated in the meadow areas.
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3.6. Time Series Positional Accuracy

To further assess the validity of UAS time series, the positional shift between 7 digitized tree crowns
in the forest and four visible objects in the grassland were calculated. Tree crowns moved by 0.3 m
on average with a maximum shift of 0.75 m of one tree between forest flight 02 and 03. During the
image acquisition of these two flights, the lighting conditions changed due to the presence of clouds and
changing wind speeds. In Figure 9, the positional shift of 0.3 m to the left of the marked tree is visible as
well as slight differences in the geometry of the crown due to different lighting conditions and wind.

The solar panel visible in Figure 6 is one of four objects which were digitized to measure the positional
accuracy of the grassland time series. Between the individual time steps, on average, the polygons
differed by 0.03 m in their position. The largest deviation occurred between the orthomosaics of 2013
and 2017 with a maximum shift of 0.07 m between one object. Hence, environmental changes in the
grassland have less impact on the time series.
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4. Discussion

The increasing use of UAS imagery in science and science-related services demands a operational
processing and reliable validation techniques in the commonly used photogrammetric workflows.
This study introduces two optimizations to the conventional photogrammetric workflow: (1) a new
optimization for the georeferencing workflow and (2) a novel technique aiming to evaluate the
repeatability of photogrammetrically retrieved orthomosaics. The application of these methods
demonstrated the possibility to acquire accurately referenced UAS orthomosaic time series with
low-cost UAVs and RGB cameras for both forest and grassland environments. The reproducibility of
orthomosaics was highly dependent on the vegetation structure of the survey area.

4.1. Optimized Georeferencing Accuracy

The determination of optimal tie point filters leads to positional precisions of less than 6 cm in
forested areas. Regarding the GSD of 2.58 cm/px the resulting orthomosaics have a positional error of
up to three pixels. This error is stable over multiple computations and different sets of images from
the six flights over the forest. This suggests that the iterative filtering approach leads to robust RE
thresholds and only needs to be computed one time.

The difference of 0.04 m in the checkpoint error between the six flights could come from different
GNSS satellite constellations or cloud conditions [41] over the three hours the flights took place, but,
most likely, these small differences come from slight inaccuracies during the manual alignment of
the GCP. This suggests that the operational workflow consistently leads to viable orthomosaics with
resolutions of less than 10 cm, which is more than sufficient for detailed spatio-temporal structural
analysis of forests [9,10]. In Belmonte et al. [8], a checkpoint error of 1.4 m and a GSD of 15 cm led to
validated object-based analysis even in moderately dense canopies. The accuracy in the experimental
forest areas even keep up with the checkpoint error in the grassland time series (between 0.04 m and
0.08 m). This also compares very well with other studies in structurally sparse landscapes where
checkpoint errors tend to be very low [33,42].

The grassland time series further demonstrates that the proposed methods of optimization and
validation work outside of the experimental setup. Differences in flight planning, low quality GNSS
measurements at the GCP and the usage of different cameras still led to consistent and accurate
orthomosaics. Hence, the provided workflow can be used as a fully operational method in grassland
and agricultural contexts.
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4.2. Pixel-Wise Reproducibility of Orthomosaics

The pixel-wise correlation of identically computed RGB orthomosaics leads to a quantitative
measurement of reproducibility. This is a necessary addition to assess the photogrammetic processing
of images, especially considering the “black box” nature of non-open-source software like Metashape.
With the pixel-wise approach, deviations between computations are assigned to certain spatial regions
of the orthomosaic. The mesh and DSM as orthorectification surfaces in the forest time series showed
similar amounts of reproducible pixels (DSM: 69%, mesh: 74%). However, the mesh is considered
superior since it leads to a better reproducibility in canopy areas. The calculation of the mesh is also
less time consuming than the computation of the DSM. Both digital surfaces failed to reproduce fine
structures like single tree branches or forest gaps. This can be problematic, since these structures are
most likely the ones researchers aim to observe with UAS imagery [11,16,43].

The results also suggest that non-reproducibility can be tracked down to uncertainties in the initial
step of the photogrammetric process, the feature identification and feature matching of the individual
images [31]. These uncertainties increase with the presence of fine structures in the images since they
are prone to move even under light wind conditions. It is therefore more likely that their position
changes in consecutive images. In particular, Döpper et al. (2020) [44] recently demonstrated that
acquiring UAV data for forest, grasslands and crop environments in low-light conditions such as low
Solar Elevation Angle or high cloud cover causes problems in matching characteristics in the image
alignment process.

Although this study declares these areas as not reproducible, the structures are still apparent in
the orthomosaics. Image analysis methods (e.g., an object-based classification) of these areas might still
lead to viable results and consistent geometries. This should be investigated in subsequent studies.

4.3. Time Series

The combination of multiple reproducibility layers enables the validation of UAS derived
orthomosaic timeseries. The high reproducibility of multi-temporal grassland orthomosaics confirms
the valid analysis of vegetation dynamics in grassland and agricultural studies. Forested area time
series are also possible, however non-reproducible regions have to be considered.

The checkpoint error of each orthomosaic in the time series alone gives no insight into the
positional relation between the individual time steps. Image acquisition with the UAV, analysis tools
(processing software), field experiment designs and environmental conditions have a strong impact
on the geometric accuracy of photogrammetric products [6,45,46]. Hence, it is essential to quantify
the geometric accuracy on aerial imagery when combining UAS data from different flights, dates and
sources [47]. We suggest the addition of geometry-based deviations from digitized objects. In case of
the grassland time series, a maximum positional shift of 0.07 m between the time steps is tolerable
for most use cases such as the modelling of the temporal dynamics of biophysics and biochemical
variables of the meadow canopy or even analyze the variability in size and distribution of vegetation
patterns (Lobo et al. in prep). This error also lies in the range of the individual checkpoint errors (0.04
to 0.08 m). In the forest time series, similar accuracies were achieved in the surrounding meadow areas.
However, the canopy showed positional deviations of up to 0.5 m in digitized trees. A proportion of
this error comes from the actual movement of the canopy due to wind and changes in the lighting
conditions [44]. The non-reproducibility of some parts of the canopy, especially at forest clearings may
also contribute to this error. We suggest object-based analysis instead of pixel-based approaches when
high-resolution forest time series are regarded.

4.4. Improved UAS Workflow

The suggested methods of checkpoint error optimization and reproducibility validation
complement the general UAS workflow. In order to make these methods more accessible to
users, we provide a Python module—MetashapeTools (https://github.com/envima/MetashapeTools)—
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which utilizes the Metashape API for an improved photogrammetric workflow. The orthomosaic
processing in form of a script-based workflow ensures the documented parameterization of all the
modules in Agisoft Metashape. The workflow is therefore shareable and can be easily integrated
into a version control system, making UAS research more transparent. Apart from the manual
alignment of the GCP, the photogrammetric process is fully automated. The default parameters in the
MetashapeTools are the results of the experimental forest flights and a starting point for a multitude of
flight areas. The script-based framework provides flexibility to alter different parts of the workflow
and, e.g., integrate alternative processing steps for time series like in Cook et al. [48].

In the future, the general workflow should utilize only open-source software. Currently, Agisoft
Metashape is the de facto standard and the most promising software in affordable UAS image
processing [3,13]. The development of open-source photogrammetry projects like OpenDroneMap
are promising and will be integrated once they are fully operational. The transition from proprietary
software towards open and transparent workflows is an ongoing trend worth supporting in spatial
analyses [49]. For now, publications utilizing Metashape or other “black box” software should at
least include the checkpoint error and the full parameterization of the processing modules. Ideally,
the parameterization can be provided as a script, e.g., as a supplementary material or published in a
repository. Although the computation of the reproducibility layer can be intensive, its inclusion in
studies provide the necessary transparency about the quality and interpretation of the orthomosaics.
The documented and evaluated orthomosaics are a big contribution to environmental mapping and
monitoring system [50].

5. Conclusions

The rising popularity of UAS imagery in all fields of spatial research led to a variety of processing
approaches. The supposedly ease of use and low cost of ready-to-fly UAS opened up some pitfalls in
the image acquisition and processing which this study addressed. The evaluation of the orthomosaic
accuracy aimed at the reproducibility of the final product. The presented optimization of the
georeferencing accuracy based on the checkpoint error and the quantification of the orthomosaic
reproducibility enhance the UAS workflow with the necessary quality assessment. This complements
the standardized acquisition of high quality UAS time series.

In forest environments, there are still some shortcomings of UAS orthomosaic reproducibility
that quantitative analyses need to consider. In grassland environments, these issues are marginal,
which supports the validity of UAS in agricultural applications. The novel approaches of this study
and their incorporation into a workflow are promising for validated and transparent UAS reserach.

Supplementary Materials: https://github.com/envima/UASreproducibility.
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Appendix A

Flight mission planning is the basis for all UAS derived orthomosaics and therefore crucial
for high quality and reproducible image processing. The planning requires the consideration of
hardware limitations like UAS speed or the image sampling rate of the camera as well as the aspired
ground sampling distance. Further, individual images need to overlap sufficiently in order to process
the orthomosaics.

The provided R-package uavRmp strives for the automated and reproducible creation of flight
tracks. The package helps users by suggesting image sampling rates and UAS speed with the given
camera parameters and the required overlap and GSD. Rectangular study areas can directly be planned
in R. Furthermore, uavRmp provides a high resolution surface following mode if a digital elevation
model is provided. This makes it possible to follow detailed structures like forest canopies and areas
with steep terrain. The camera is also oriented in a fixed direction for the whole mission. The flight is
automatically split into multiple MAVlink protocols according to a provided battery lifetime including
a safety buffer for proper operations.

Appendix B

Table A1. Details about the cameras and settings.

Camera Model Sony NEX-SN Sony NEX-7 Sony ILCE-7RM2 GoPro Hero 7

Image Width 4912 pix 6000 pix 7952 pix 4000 pix
Image Height 3264 pix 4000 pix 5304 pix 3000 pix
Sensor Width 23.5 mm 23.5 mm 35.9 mm 6.17 mm
Sensor Height 15.6 mm 15.6 mm 24 mm 4.63 mm
Focal l Length 16 mm 18 mm 15 mm 17 mm

Resolution 16.7 megapixels 24.3 megapixels 43.6 megapixels 12 megapixels
ISO 100–125 400 1000–1600 400

Shutter 1/640 1/1000 1/1000 Auto
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pawelcwi@agh.edu.pl (P.Ć.); wniewiem@agh.edu.pl (W.N.); pwiacek@agh.edu.pl (P.W.)

2 The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Campusvej 55, 5230 Odense,
Denmark

3 FlyTech UAV sp. z o.o., ul. Balicka 18A, 30-149 Cracow, Poland
* Correspondence: epuniach@agh.edu.pl

Received: 1 October 2020; Accepted: 10 November 2020; Published: 11 November 2020

Abstract: Regular power line inspections are essential to ensure the reliability of electricity supply.
The inspections of overground power submission lines include corridor clearance monitoring and
fault identification. The power lines corridor is a three-dimensional space around power cables
defined by a set distance. Any obstacles breaching this space should be detected, as they potentially
threaten the safety of the infrastructure. Corridor clearance monitoring is usually performed either
by a labor-intensive total station survey (TS), terrestrial laser scanning (TLS), or expensive airborne
laser scanning (ALS) from a plane or a helicopter. This paper proposes a method that uses unmanned
aerial vehicle (UAV) images to monitor corridor clearance. To maintain the adequate accuracy of
the relative position of wires in regard to surrounding obstacles, the same data were used both
to reconstruct a point cloud representation of a digital surface model (DSM) and a 3D power line.
The proposed algorithm detects power lines in a series of images using decorrelation stretch for
initial image processing, the modified Prewitt filter for edge enhancement, random sample consensus
(RANSAC) with additional parameters for line fitting, and epipolar geometry for 3D reconstruction.
DSM points intruding into the corridor are then detected by calculating the spatial distance between
a reconstructed power line and the DSM point cloud representation. Problematic objects are localized
by segmenting points into voxels and then subsequent clusterization. The processing results were
compared to the results of two verification methods—TS and TLS. The comparison results show that
the proposed method can be used to survey power lines with an accuracy consistent with that of
classical measurements.

Keywords: unmanned aerial vehicles; power lines; image-based reconstruction; 3D reconstruction

1. Introduction

Power lines are a typical part of urban and rural landscapes. Due to the need for power,
national and regional networks cover most of the world and continue to expand. They require
regular monitoring and maintenance work. Monitoring power lines features two aspects: power line
components and occlusions of the line corridor. Both are important and interconnected and are thus
often addressed simultaneously.

The power line corridor is a 3D buffer around the wires and is defined by the set distance from the
wires. It is thus necessary to find the precise position of the wires [1]. Regular inspections of vegetation
inside and near the power line corridor are needed to identify trees or branches that need to be cut
due to safety concerns, as the direct proximity of trees in a line corridor might trigger, for example,
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a bushfire. There are monitoring methods that are used to identify branches or canopies that endanger
the inviolability of the power line corridor [2] or detect and classify trees to help evaluate the impact
on the line [3]. Other techniques focus on volumetric analysis in order to evaluate the impact of the
vegetation and its progression by calculating a differential map of a digital surface model (DSM) for
two epochs [4].

A range of techniques have been implemented to solve the above problem. They vary from
mundane and time-consuming methods of classical surveying to technologically advanced and highly
expensive ones. Among the most popular inventory methods for inspecting power lines are airborne
laser scanning [5–8] and mobile terrestrial scanning [9,10]. The dense point clouds generated by laser
scanning can be used to form models of 3D power lines, in the context of surrounding vegetation,
and a survey network. The typical workflow features classifying point clouds, creating the digital
terrain model (DTM), and 3D line modeling [11]. Algorithms based on point position, the intensity of
response, multiple echoes, and 2D projections enable automated data processing [6,12,13]. Although
Light Detection and Ranging (LiDAR) is an effective and robust method, it has some drawbacks.
Some, such as problems with suitable weather conditions, are partially shared with passive methods.
Additional drawbacks include problems with identifying towers and simply the cost of the equipment,
survey, and processing [14]. Some research has also dealt with a combination of unmanned aerial
vehicle (UAV) technology and LiDAR for surveying power lines [5,15,16]. The availability of lighter
LiDAR scanners and developments in the UAV platforms have contributed to improving efficiency.
Although this technology has potential for further development, the cost of a device in combination
with the high risk of failure decreases its economic efficiency.

Many applications use optical images and computer vision systems [17]. Satellite, airborne,
and UAV images have been employed [18,19]. Satellite images, owing to their low resolution,
are limited to providing generalized information on terrains and vegetation [20]. Aerial images rely
significantly on manual stereo measurements [19]. UAV-based optical images can provide accurate
and high-resolution data [21], and their use with a range of stereomatching algorithms is a promising
solution. Attempts have been made to consider photogrammetry as a source of the point cloud and
to analyze and filter data similarly to the procedure in LiDAR [22]. Automatic software for dense
matching, where the geometry of power lines is reconstructed, could be a fast and convenient solution.
In addition to its clear drawbacks relating to optical images, such as the sensitivity to changes in lighting
conditions, and the atmospheric influence, the radiometric differences between lines and a background
make it even less effective. The lines usually occupy a small part of a photo; otherwise, the time
needed for the surveying, the size of the survey data, and the processing time increase. Furthermore,
the complexity and the variability of the background is an obstacle for the 3D line reconstruction [23].
The aforementioned reasons and the use of the outliers’ approach might preclude the operation of
dense matching algorithms. For these reasons, this solution is not feasible.

Other solutions have been proposed for clearance monitoring using aerial images, but methods
that use UAVs as the main source of data are becoming increasingly popular. The biggest advantages to
using UAVs are their low altitude of flight and the flexibility and economy of the method in comparison
with airborne photogrammetry [24,25]. Both multi-rotors and fixed wings are used for this task.
The former constructions are especially useful for precise surveys at a low altitude, but the latter
approaches are more efficient and have a greater fly range [18].

Considerable research has been dedicated to power line monitoring using UAVs. Most of it has
focused solely on wire detection in images [26–34], but a few studies have taken a more holistic
approach by considering not only the position of the power line, but also the line corridor and obstacles.
The means of data processing and 3D power line reconstruction are different and depend on the aim of
the calculation. Such an approach was proposed in two papers [26,35]. One focused on dense matching
algorithms and the automation of obstacle detection, whereas power line reconstruction was performed
manually, and aided by epipolar images [23]. The other study implemented the results of past work
together with fully automated line detection algorithms based on images [35]. This method is based on
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changes in the gradient combined with the high gray response of the power line and assumes multiple
thresholds. This solution provides good results, although it has yet to be proven to work with more
versatile data. Similarly, research on epipolar imagery was presented in another piece of research [36],
where a real-time system was developed for obstacle avoidance by UAVs as they monitored power lines.
To calculate the relative 3D position of the power lines, several steps were implemented, including
TopHat transform and the cross-based arbitrary shape support region method, to create a depth map.
The study assumed that the background was not complex, and featured either the sky or some treetops.
Another holistic approach used semantic segmentation based on fully convolutional neural networks
to enhance depth maps and accurately reconstruct linear objects [37]. The research also used enhanced
dense matching to detect obstacles in the power line corridor. The neural networks were also used
successfully for line segmentation in another study [38]. The effectiveness of these algorithms is at least
80%. However, their major drawback is the demand for a vast learning dataset [3]. Additionally, there
are hardly any cases of a comprehensive methodology for detecting and reconstructing power lines in
the literature using neural networks [39]. Additional research on the 3D reconstruction of power lines
was presented in two papers by the same authors [40,41]. In both, the lines are initially detected from
epipolar images using a simple extraction template. Three-dimensional reconstruction is performed
differently in each, however. One introduces a 3D grid based on the expected ground sampling distance
(GSD) and the positions of the utility poles [40]. The grid is then reprojected on images to validate the
detected power lines and establish their relative correspondence. In the second paper, all combinations
of wires detected in both images in a stereopair are considered and then reprojected on a third image
to validate the choice [41].

This paper aims to develop a comprehensive and robust method for occlusion monitoring in the
power line corridor (Figure 1). The main goals are to minimize the time needed to perform the survey
and the user input in subsequent processing. The same dataset was thus used to reconstruct power
lines and acquire a point cloud representation of a DSM for a possible occlusion check. However,
images suitable for the creation of a dense point cloud representation of the terrain usually record
power lines as barely distinguishable objects that are only a few pixels wide. Therefore, additional
processing is required to successfully extract and model power lines.
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Figure 1. A visualization of the goal of the research, i.e., the results of the 3D reconstruction of power
lines (source: FlyTech unmanned aerial vehicle (UAV) test flights)—power line over the UAV-derived
point cloud representation of the digital surface model (DSM).

The remainder of this paper is structured as follows: Section 2 describes the proposed method,
including the data acquisition process, initial data processing, 2D image processing, 3D reconstruction
of power lines, and obstacle detection. The datasets acquired to create and test the proposed method
are also presented in Section 2. Section 3 describes the results of UAV image processing along with the
assessment of their accuracy. A discussion of errors and their possible sources is in Section 4. Section 5
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offers the conclusions of this paper. In Appendix A, the additional results of a threshold sensitivity
analysis are included.

2. Materials and Methods

The proposed method features the following steps (Figure 2):

• Data acquisition—the terrain was imaged according to certain principles of photogrammetry to
ensure high accuracy and automated processing.

• Bundle adjustment and data ordering—the image data were processed using photogrammetric
software to estimate the exterior orientation elements (EOE) and the interior orientation elements
(IOE) for DSM reconstruction. The data were then ordered into consecutive stereopairs.

• Power line detection in images and reconstruction of 3D geometry—the process uses several
techniques, both on separate images (2D) as well as stereopairs (3D). The approximate position
of each power line was calculated, either from manual input or 3D points projected on the
image. The images were then processed using the modified Prewitt operator, automatic
thresholding, and binarization. The random sample consensus (RANSAC) algorithm with
additional parameters was then used to calculate the adjusted position of the detected power
line. Three-dimensional reconstruction was then performed using the detected power lines and
principles of epipolar geometry.

• Detection of obstacles within the power line corridor—a simple procedure where the distance
between reconstructed power lines and the point cloud representation of DSM is computed;
occluding points are then bound into voxels [37] and clustered into objects [42].
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All the steps are described in detail below.

2.1. Data Acquisition

Appropriate data acquisition can enable the detection of power lines and is as important as the
methods for the subsequent processing of the data. Some requirements need to be satisfied to ensure
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the reliable operation of the algorithm. While maintaining the highest efficiency, the measurement
requirements of the data should be universal enough to allow for the use of different cameras and UAVs.

First, it is important to define image quality requirements. In this case, the most significant
parameter is resolution as defined by the GSD. The maximal GSD to ensure that the wires are detected
must be smaller than their diameters. However, to increase the efficiency of detection, the GSD should
be half the diameter. Another important aspect is the camera’s exposure settings, which must ensure
that the wires can be distinguished from the background (Table 1). Owing to the small size of the wires,
the ISO setting should be as small as possible. To avoid blurred images, the shutter speed should be
adjusted to UAV flight speed, and should not be higher than the ratio of the GSD to the speed of the
UAV. If the camera settings allow for the disabling of the low-pass filter, this should be done. Moreover,
for the high accuracy of the end product, the use of a global shutter camera would be advised.

Table 1. Recommended camera settings.

ISO 100–400

Minimal shutter speed GSD
f light speed

Aperture with highest geometrical resolution
(for most cameras F/5.6)

Focus manual

Low-pass filter (if changeable) disabled

Secondly, data acquisition must ensure an appropriate data structure for the algorithm. Because
a major function of the algorithm is to transfer detection between stereopairs, the flight plan has to
ensure the visibility of the wires for all subsequent images between poles. To meet this requirement,
the flight path must be linear, parallel to the power line, and consist of at least two rows, placed on
opposite sides of the surveyed corridor (Figure 3). Another advantage of a linear flight plan is the
possibility of measuring power lines over distances ranging from a few (multi-rotor) to dozens of
kilometers (fixed wing) in one flight.
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Third, image overlap and the field of view should be carefully planned. The side overlap should
allow for the wires to be visible in both neighboring strips. The front overlap should not be lower
than 50% (at the height of the wires, overlap on the ground is higher) to ensure the correct transfer of
detection between stereopairs, but this should also not exceed the minimum duration of the acquisition
of the camera. The front overlap should thus be adjusted according to flight speed and altitude.

The last thing to take into consideration while planning a survey is the global accuracy of the
resultant product. Photogrammetric blocks, in the case of corridor mapping, have highly unstable
geometry. To maintain high accuracy and prevent errors that could occur in self-calibration due to
potentially high correlation between interior and exterior camera orientation, additional measures have
to be introduced. A network of ground control points (GCPs) can be introduced to stabilize the block [43].
However, it might not be feasible in remote terrains and it also increases the time and cost of the survey.
Equipping the UAV with a global navigation satellite system (GNSS) post-processing kinematic (PPK)
receiver to achieve centimeter accuracy of EOE can also help to mitigate the problem [44]. However,
the PPK receiver increases the overall cost of the platform. To ensure correct results, one of those
measures must be introduced.

2.2. Bundle Adjustment and Data Ordering

The Agisoft Metashape Professional (version 1.6.0 build 9128) software was used to estimate
both the IOE and EOE for the obtained UAV images. All images collected during the mission were
processed together. The processing, which included automatic bundle adjustment with self-calibration,
was mostly automated. A typical set of parameters were estimated during self-calibration [45], utilizing
the Brown distortion model [46]:

• principal point position: x0, y0,
• focal length: f,
• parameters of radial distortion: r1, r2, r3,
• parameters of tangential distortion: p1, p2.

The global accuracy was ensured either by the use of GCPs or precise EOE (GNSS PPK processing).
Ultimately, the resulting data contained undistorted images (achieved using the calculated parameters
of calibration), along with their corresponding EOE and calibrated focal length.

The data ordering process, as shown in Figure 4, involved firstly automatically assigning the
images to flight lines (strip) and then subsequently assigning stereopairs, consisting of the two closest
images from their opposite strips (Figure 3), which were subjected to further processing. A set of
ordered stereopairs is crucial for the seamless operation of the algorithm. It was necessary to process
the images in a defined order (in the direction of processing). Therefore, stereopairs were selected and
sorted in ascending order in the direction of processing. This direction was defined by the ordered
coordinates of the poles acquired through Agisoft Metashape (or obtained from the operator of the
power line).

For the seamless operation of the algorithm, a power line fragment targeted in a UAV flight survey
mission was divided into survey sections that were subjected to further processing. The section was
defined by a starting utility pole, transfer utility poles, and an ending utility pole. One survey section
might have consisted of several power line spans (Figure 5). The order of the poles in the survey
section determined the direction of subsequent image processing, and thus had a crucial effect on the
entire process of power line detection.
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Defining the survey sections for image processing was an important stage in data ordering.
Depending on the type of power line, they were defined differently. For high-voltage lines, one span
was defined as one survey section. For medium-voltage lines, the survey section included rectilinear
sections of the power line. To divide the survey section, each image containing a pole was analyzed.
Three-dimensional lines connecting a pole, captured within the image, and its neighbors were
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reprojected on the image. When the in-line direction change was greater than 1◦, the pole, captured
within the image, was assumed to mark the end of the given survey section and the start of a new one.
Data thus prepared and ordered were then subjected to further processing.

2.3. Power Line Detection in Images

Detection and reconstruction were performed separately, using dedicated algorithms. The process
consists of multiple subsequent steps and was written in the Python programming language.

For effective automation, it was necessary to detect the power lines continuously through a
sequence of images. The simplest and most accurate way to transfer detection between neighboring
photographs is through 3D space, where the relevant geometry was reconstructed and then projected
onto the next image. Such reconstruction was possible by using two across-track neighboring images.
Thus, the processing unit in the detection algorithm was a single stereopair. Detection was then
performed separately on both images while keeping track of the respective wires. Both images were
then used to reconstruct the 3D position of the given power line.

The process can be divided into several steps (Figure 6) that vary depending on the processed
image: detection (Case 1—images capturing the survey sections from the starting utility pole) or
continued detection (Case 2—all remaining images).
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Figure 6. Outline of power line detection process.

Due to the wire’s relative position in the image and its sag, the wire was almost never recorded as
a straight line in an image. The discrepancies between the fitted line and the empirically captured
position of each wire varied from two to dozens of pixels. Moreover, due to varying backgrounds,
neither the color of the wire nor the contrast in the image remained constant. To accommodate change
in both position and contrast, a local, constantly adapting approach was chosen. For each wire, the
image was divided into small, ordered sections within which the power line could be approximated by
a straight line. To define the position and order of the processing windows, past information about
the approximate positions and directions of the power lines was needed. This was acquired either
by a manual initialization procedure in the image at the beginning of the survey section or by using
projected points from the preceding stereopair.
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2.3.1. Approximation of Position and Direction of Power Line

To approximate the position and direction of each power line, two approaches were adopted
according to the given case.

Case 1—starting detection required a manual input in the form of two points per power line
in the image. This was sufficient to calculate the general direction and position of the given wire,
and important information was obtained regarding the correspondence of the wires between image
stereopairs. Owing to the different modes of construction of the utility poles, the wires could be
captured in different orders between images.

To transfer detection between images (Case 2), the 3D coordinates of the power lines were used
and were then projected onto images in the subsequent stereopair. The line was fitted to points that
were within the boundaries of the image. The line parameters defined sought after the position and
direction of the power line.

2.3.2. Initial Image Processing and Edge Detection

To detect power lines in images, a method to enhance their visibility was needed. For this purpose,
a decorrelation stretch of histograms of the images was used [47]. The enhancement algorithm was
based on principal component analysis (PCA). The covariance matrix was calculated from the three
RGB bands, and its eigenvalues were found to form coefficients of the transformation of the principal
component. After the normalization of the transform bands, new image bands were created. The result
was compared with the weighted arithmetic mean of all bands (Figure 7) [48]. The third band of the
processed image was chosen as it delivered the highest visibility of the power line.
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Figure 7. The same part of an example image showing power lines: (a) the band corresponding to the
original blue band, obtained by the decorrelation stretching of the raw image; (b) weighted arithmetic
mean of all bands (0.2989 × R + 0.5870 × G + 0.1140 × B).

The edge detection operator needed to be set to enhance long, linear edges, and presumably only
ones that aligned with the approximated direction of the power line. The modified Prewitt operator
was used for this. The operator was expanded from its base 3 × 3 form to 31 × 31. Then, the rotation to
the direction of the power line was computed using the previously acquired approximate parameters
of the power line. The final operator scheme is shown in Figure 8.
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Figure 8. An excerpt from the modified Prewitt operator.

The convolution of the grayscale image was calculated using the modified Prewitt operator.
The resulting image was not normalized and had both negative and positive values.

All the highest values occurred along the edges on the right side, and all the lowest values
occurred along the edges on the left side. Two images were created: one to identify edges on the right
side and the other to identify those on the left side. Both images were then normalized to eight-bit
unsigned integer space and subsequently binarized (Figure 9).
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2.3.3. Power Line Detection

Separately, for each wire in the image, the process of detection was conducted over small image
segments. The position and order of the segments were calculated according to the approximated
position and direction of the wire, and they were evenly spaced, with at least a 10% overlap, along the
line between the captured utility pole (if present) and the boundary of the image (Figure 10). The order
of the segments was set along the direction of the power line.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 31 
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For each segment, the detection was performed as follows. In images of both the left and the right
edges, a line was fitted within the data using the RANSAC algorithm [49]. Then, detected symmetric
lines were used to determine the final position of the power line. A list of parameters of detection was
provided, together with the results, to assess the correctness of the process:

• cr—right edge coherence, a quotient of inliers in RANSAC to all positive pixels in the
image segment;

• cl—left edge coherence, a quotient of inliers in RANSAC to all positive pixels in the image segment;
• e_distmax—the maximum distance between lines of the right and left edges within the

image segment;
• p—parallelism coefficient, the quotient of the minimal and maximum distances between lines of

the right and left edges within the image segment.

Depending on the values of the above parameters, the detection was judged to be successful or
incorrect/implausible. If the detection was accepted, the parameters of the line were calculated for the
line between the right and left images, and involved the following:

• image coordinates of both ends of the detected line segment,
• a, b parameters of line equation y = ax + b.

The rejected detection was replaced by an extension of parameters detected in the previous image
segment. The process was repeated until the end of the image was reached. All parameters of the line
for all segments were then saved for further processing.

2.3.4. Three-Dimensional Geometry Reconstruction

The last stage of the power line detection process was 3D geometry reconstruction. The global
coordinates of the points along the power line were determined using the spatial intersection of
homologous rays. The problem was to identify homologous points on wires between the left and the
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right images in a given stereopair. Previous knowledge of corresponding wires and epipolar geometry
was invoked to perform this task. Instead of identifying corresponding points on wires using feature
descriptors, a purely geometric approach was chosen.

Each wire captured within the left and right images in a stereopair was represented by line
segments established in the detection step. Two hundred evenly spaced points were chosen along the
wire on the left image. Their coordinates were derived directly from the parameters of segments of
the line. Then, for the nodal points, the respective epipolar lines on the right image were computed
(Figure 11a) using a fundamental matrix (Equation (1)):

x′·F = k′′ , (1)

where:

x′ = [x y 1]—focal coordinates of a point on the left image,
F—fundamental matrix, calculated from the positions and rotations of the left and right images,
k” = [A B C]—parameters of line equation in a general form.
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Figure 11. Three-dimensional reconstruction procedure: (a) calculated epipolar line in red; (b) the
obtained key points and their resection. Symbol descriptions: O′, O”—left and right image projection
centers; b—baseline, k′, k”—epipolar lines, respectively, on the left and the right image; π—epipolar
plane; Q, P—points in 3D space; P′, P”, Q′, Q”—P, Q points projections on the left and the right image;
r′, r”—homologous rays; x′, y′, x”, y”—image coordinates axis on the left and the right image.

The intersections of the epipolar lines and line segments representing the wire on the right image
were then calculated to determine key points in it. Finally, the corresponding key points in both images
were used to compute the spatial intersections and determine the terrain 3D coordinates (Figure 11b).
Together, they provided a discrete representation of the wire.

2.3.5. Catenary Curve Fitting

The wire in discrete representation was not sufficient for assessing power line diagnostics. The sag
of the wire, which is acquired from a fitted catenary curve, was also needed. The expression for it
describes the geometry of a wire hanging under its weight when supported only at its ends:

y = k·cosh
(x

k

)
, (2)

where:

k = Fx
q —the catenary constant, where
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Fx—horizontal force on the cable [kG/mm2],
q—the weight of the cable per unit arclength [kG/(m·mm2)].

The catenary curve was fitted to previously obtained points representing the wires using the
classical approach. It assumes that the points are represented in the local coordinate system, where the
x-axis runs along the wire, while the coordinates of the y-axis correspond to the height of points on the
wire. This coordinate system was defined independently for each wire, and the catenary equation was
determined in the following form:

y−w = k·cosh
(x− u

k

)
, (3)

where:

w, u—a parallel offset of the terrain coordinate system from that of the catenary curve.

The solution to Equation (3) was obtained by using the least squares method. Three randomly
selected points from a set of representative points on the wire were used to calculate the approximate
values of the unknowns (i.e., w0, u0, and k0). Together with the x coordinate of each point, they were
used to calculate the deviations in the y coordinates and, subsequently, the adjusted parameters of the
catenary curve that best fitted a series of data points. Using this, the maximum value of the sag of the
wire was calculated as follows:

fs = yA +
b
a
·(xS − xA) − k·cosh

xS
k

, (4)

where:

xS = k·arcsinh b
a ,

a = xB − xA, b = yB − yA, and
xA, yA, xB, yB—coordinates of the beginning and end of a catenary curve in the local coordinate system.

Owing to the large number of points representing each wire and the random nature of their
selection to calculate approximate values of parameters of the catenary curve, unsatisfactory results
of curve fitting were possible (Figure 12a). To avoid such errors and obtain the best possible result,
two additional assumptions were introduced: only solutions where the value of the sag of the wire
(Equation (4)) was positive were considered, and the choice of the best solution was based on the
RANSAC algorithm (Figure 12b).
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The final curve parameters and discrete representation of the wire were saved. The latter consisted
of 1000 equally spaced points along each curve per wire.

2.4. Detection of Obstacles within the Power Line Corridor

One objective of the 3D reconstruction of power lines and the creation of the DSM is to monitor
the separation of the wires from elements of land cover. We had to check whether the UAV-derived
data allowed for the correct identification of obstacles too close to the power lines.

The purpose of the analysis here was to detect DSM fragments (points in the point cloud) that
were within the power line corridor. Cloud Compare software and its cloud-to-cloud distance function
were used for this task. For each point in the point cloud constituting the DSM, the spatial distance to
the nearest point representing the wire was determined.

Next, all the points recorded within the corridor distance were segmented into set size voxels
(3D pixels) and subsequently clustered into objects using neighborhood connections. Objects consisting
of only one voxel were removed from the dataset. For each object, its volume, center, and bounding
box were recorded for further analysis by the power line operator (Figure 13).Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 31 
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Figure 13. Detected occlusion—positioned at 49◦55′09.3”N, 20◦43′09.2”E with a volume of 39.25 m3.
A close look at a point cloud with voxels containing occlusion (a), bounding box containing the object
with a point cloud representation of DSM (b), and source image with an arrow pointing to the detected
occlusion (c).

2.5. Verification and Quality Assessment

To assess the algorithm, three approaches were adopted. First, the quality of the power line
detection and subsequent reconstruction was evaluated. All data used in this assessment were firstly
processed and subsequently manually checked for correct and incorrect detection. All errors were
marked, and a presumed source of error was noted.

Secondly, the global accuracy of the reconstruction of the power lines was compared to established
methods—total station (TS) and terrestrial laser scanning (TLS). The comparison was conducted
in three ways. For each wire, both horizontal and vertical position discrepancies were calculated.
Additionally, sag values were compared between proposed and reference methods. Though TS and
TLS accuracy capabilities reach millimeter levels, this is not the case for a highly dynamic object, where
small environmental influences change its geometry. Wire sag changes substantially with a change
in temperature, while wind gusts cause oscillating vibrations. Considering the time needed to carry
out both TS and TLS surveys, one has to expect significant changes within the surveyed power line.
This notably diminishes the accuracy of both methods. Thus, the data were not treated as ground
truths, but as reference, comparison data. Thirdly, corridor occlusions detected using the proposed
method and TLS data were compared.
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2.6. Experimental Data

To conduct the assessment, data were collected for several fragments of medium- and high-voltage
power lines. The power lines were located in Małopolskie Voivodeship (Poland), in areas with
varied relief.

The data were divided into four datasets denoted as Dataset I, Dataset II, Dataset III, and Dataset
IV. Dataset I was used to develop and optimize the algorithm. The effectiveness and the feasibility of
the algorithm were analyzed on an independent dataset (Dataset II). The accuracy of the measurements
of the power lines and corridor obstacle detection were assessed on Datasets III and IV. The datasets
were independent, and therefore assessments of the reliability and accuracy of the proposed method
were reliable.

2.6.1. Datasets I and II

Dataset I was used for threshold sensitivity analysis and algorithmic optimization. The survey
area contained 13 middle-voltage power line spans (14 utility poles (Figure 14a)), over 1.2 km in a rather
flat area. The photogrammetric data were collected in March 2017 using a GRYF octocopter (FlyTech
UAV, Krakow, Poland), fitted with a precision positioning system based on a single-frequency GNSS
receiver Emlid Reach M+ (Table 2). Dataset I contained 225 images captured with an a6000 camera
(Sony, Tokyo, Japan) (Table 3) and Nakton 40 mm (Voigtlander, Braunschweig, Germany). The flight
was fully autonomous and was conducted linearly along the power line in two strips. The flight
altitude was 60 m above ground level and 50 m above the top of the poles, which yielded 6 and 5 mm
of GSD, respectively (Table 4).
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Table 2. UAV on-board global navigation satellite system (GNSS) receiver parameters.

Model Emlid Reach M+

Frequency bands Single-band

Receiver type 72-channel u-blox M8 engine
GPS L1C/A, GLONASS L1OF, BeiDou B1I

Max navigation rate 5 Hz

PPK Horizontal position accuracy 7 mm + 1 ppm

PPK Vertical position accuracy 14 mm + 1 ppm
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Table 3. Camera parameters.

Model Sony a6000 Sony RX1RM2

Image Sensor APS-C (15.6 × 23.5 mm) FF (35.9 × 24 mm)

Resolution 24 MP (4000 × 6000) 42 MP (7952 × 5304)

Pixel size 15.28 µm2 (3.9 × 3.9 µm) 20.43 µm2 (4.5 × 4.5 µm)

Shutter Mechanical curtain
(with rolling shutter effect)

Mechanical central
(without rolling shutter effect)

Interchangeable lens YES NO

Focusing system mechanical electronic

Aperture setting F/5.6 F/4.0

Shutter setting 1/1000 s 1/1600 s

ISO setting Auto 100–400 Auto 100–400

Table 4. Basic parameters of UAV missions.

Dataset Number of Images Flight Altitude GSD Side/Front Overlap

Dataset I 225 60 m 6 mm 70%/50%
Dataset II 238 70 m 9 mm 75%/75%
Dataset III 282 60 m 8 mm 75%/75%
Dataset IV 203 124 m 15 mm 75%/70%

Dataset II was used to validate the feasibility, reliability, and efficiency of the proposed method.
It consisted of 238 images captured with an a6000 camera (Sony) (Table 3) and 30 mm Sigma lens
(Sigma Corporation, Kawasaki, Japan) in November 2017. The flight was performed using a GRYF
octocopter (FlyTech UAV). It was fully autonomous and was conducted in three strips parallel to the
power line. The flight altitude was 70 m above ground and 40 m above the top of the poles (Table 4).
Both the side and front overlap between the images were 75%. The flight area covered four spans of
high-voltage power lines (five utility poles (Figure 14b)) with a total length of 1.4 km. Only two outer
strips were used in the processing.

2.6.2. Datasets III and IV

Datasets III and IV were used to verify the accuracy of the proposed method. They included UAV
imagery as well as the results of the survey of power lines through TLS and classic TS measurements.
The 3D geometry of the wires is constantly changing as a consequence of changing weather conditions
(especially changes in temperature). It was thus assumed that the data for the power lines needed to
be collected using different methods simultaneously. Unfortunately, the time needed to perform each
of the surveys varied greatly from a couple of hours (UAV) to a couple of days (TLS).

The data marked as Datasets III and IV concern power lines located in hilly and difficult to access
areas. Dataset III contained data on a segment of a medium-voltage power line consisting of 10 spans,
with a total length of 1.3 km. The segment was located in an area with a maximum height difference
of 60 m. The power line was fitted with three transmission wires set at the same height. A 400 kV
high-voltage power line was another object of research, and data related to it were collected in Dataset
IV. The tested section of the power line with a total length of 1.55 km consisted of four spans. The height
difference between the beginning and end of the analyzed power line section was 100 m, with a height
difference of 60 m for one of the spans. It was fitted with 12 transmission wires and two ground wires,
all positioned at varying heights.

The photogrammetric data in Datasets III and IV included high-resolution digital images of the
power lines taken with a DSC-RX1RM2 (35 mm) non-metric camera (Sony) (Table 3) from the GRYF
octocopter (FlyTech UAV) on 6 December 2018 (Table 4). The images were captured in two strips
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parallel to the power line that was the subject of the measurement. A network of GCPs and checkpoints
(CPs) was established for each dataset. The coordinates of markers were determined by the GNSS
real time network (RTN) method with a Leica GS16 receiver (Leica Geosystems AG, Sankt Gallen,
Switzerland) that had a horizontal accuracy of 3 cm and a vertical accuracy of 5 cm.

The segments of power lines represented by Datasets III and IV were measured using other
methods such as TLS and TS measurements for reference. Fieldwork was performed on 1–3 and 6
December 2018. The weather conditions during the measurements were variable. The temperature
was between −5 ◦C and +5 ◦C, consequently changing the power line sag. In addition, on 2 and 3
December, the wind blew at a speed of up to 15 m/s (gusts), which caused the oscillating movement of
the wires.

For TS measurements, a Nova MS50 (Leica Geosystems AG) was used. Each span (all its wires)
was measured from a single instrument station approximately located in the middle of the span.
A single wire point at its beginning and end, and several points along its entire length, were measured.
The coordinates of the stations and reference points were determined by the GNSS RTN method. Using
these data, the spatial coordinates of points representing the individual wires were determined.

In addition to the TS measurements, the power lines were measured using TLS. The Leica
ScanStation C10 laser scanner (Leica Geosystems AG), together with a set of HDS (High Definition
Survey) 6” targets (Leica Geosystems AG), were used for this purpose. The TLS measurements were
carried out using the three-tripod method with a traverse workflow. The resolutions of the TLS were
10 and 7.5 mm at a distance of 10 m. This was connected with the maximum reduction in measurement
time while maintaining satisfactory scanning results and was preceded by tests to determine the
optimum scanning resolution depending on the type of power line and the distance between stations.
The data were collected at 39 stations for Dataset III and 29 stations for Dataset IV. Finally, the point
clouds from all scanner stations were registered and georeferenced (Figure 15) using Leica Cyclone
v.9.4.2 (Leica Geosystems AG) software. The point cloud registration was performed using HDS 6”
targets and their coordinates, as determined by the GNSS RTN method. The final root mean-squared
errors (RMSEs) of the registration of the point clouds was 1.2 cm for Dataset III and 1.0 cm for Dataset IV.
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Figure 15. High-resolution terrestrial laser scanning (TLS) point cloud of a high-voltage power line
(Dataset IV). The color of the points is determined by the intensity (the strength of the reflected
laser beam).

The reference data did not fully reflect the state of the power lines when measured using the UAV
because different durations were needed to record the data using different means. UAV missions to
survey sections for Datasets III and IV were performed over one day and lasted four hours (including
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preparatory work). The TLS and TS surveys were time consuming and fieldwork using these methods
lasted four days.

3. Results

This section presents the results of the validation of the proposed method for using UAV images
to detect power lines, provide a 3D reconstruction, and localize obstacles in the power lines corridor.

3.1. Bundle Adjustment

The photogrammetric data were processed using Agisoft Metashape Professional. Aerotriangulation
was performed at a high level of accuracy, whereby the software worked with images at their original
sizes. Optimization was performed in the next stage and included a realignment of the image block
and the determination of the parameters for camera calibration. In the case of Dataset I and Dataset II,
the GCPs were not used in bundle adjustment; instead, only the precise coordinates of the projection
centers of the images, measured using GNSS PPK, were used. The GNSS PPK calculations were done
using RTKLIB software, utilizing measurements from a GNSS base station set up for the duration of
the survey. However, in the bundle adjustment of images from Datasets III and IV, the GCPs were used.
The a priori accuracy of the GCPs was taken into account in this process. Table 5 presents data on
the accuracy of the aerotriangulation of Dataset III and Dataset IV. The last stage involved generating
dense point clouds at a high level of detail, which means that the software determined the spatial
coordinates for each group, consisting of four pixels in the image (2 × 2 pixels).

Table 5. Root mean-squared errors (RMSEs) of coordinates of the GCPs and checkpoints.

Data Set
Ground Control Points Check Points

mx
(mm)

my
(mm)

mz
(mm)

Pix
Error

Number
of GCP

mx
(mm)

my
(mm)

mz
(mm)

Pix
Error

Number
of GCP

Dataset III 4.8 4.2 7.9 0.787 12 13.2 20.4 42.1 0.673 9

Dataset IV 8.5 5.1 20.0 0.454 19 17.4 30.9 38.4 0.494 11

Information on the location of each pole within sections of the power lines was manually obtained
through Agisoft Metashape Professional. Finally, the data necessary for further processing were
exported to reconstruct the 3D geometry of the power lines based on the UAV images (i.e., final EOE,
IOE, undistorted images, and coordinates of the poles and the dense point cloud).

3.2. Results of Processing Datasets I and II

The proposed method for 3D reconstruction of power lines in UAV images used multiple thresholds.
To establish appropriate values, a threshold sensitivity analysis was conducted. The process is described
in Appendix A. The established set of thresholds was then used in the processing of all experimental
data (filter size—30, cr—0.4, cl—0.4, e_distmax—10, p—10).

Owing to a lack of reference data for Datasets I and II, as well as the use of a camera with a
rolling shutter, a check was performed manually to verify only the efficiency of the proposed detection
algorithm. Errors were recorded whenever a detected line segment did not overlay an empirically
determined line within an image segment. As a summary of the validation, the success rate was
calculated. Each wire in an image was considered a case. A complete and correct case detection was
regarded as a success, and any other outcome was considered a failure. The success rate here was the
ratio of the number of cases of success to the total number of cases in the dataset.

Dataset I contained 225 images, covering 13 power line spans (14 utility poles (Figure 14a)). Three
wires were spaced equally at the same height above ground. The survey was conducted in a rural area,
where the background consisted mostly of farm fields, meadows, backyards, and occasional roads.
Using Dataset I, the proposed algorithm derived three survey sections (straight sections) between
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the utility poles 1–6, 6–7, and 7–14. The processing was smooth and detection was uninterrupted
(Figure 16). The detection was rejected in 13 images (detection parameters were below set thresholds).
Upon closer inspection, six images with less than perfect detection were obtained. A total of seven
errors were recorded in cases where the power line was incorrectly detected. Six of these occurred
due to an unfavorable background, and the other was in the vicinity of a utility pole. The calculated
success rate was 98.96% (Table 6).Remote Sens. 2020, 12, x FOR PEER REVIEW 19 of 31 
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Table 6. The results of processing Datasets I and II.

Dataset I II

Utility poles 14 5

Survey sections 3 4

No. of images 225 238

Stopped detection none none
No. of images - -
No. of errors 0 0

Power lines overlay none yes
No. of images - 6
No. of errors 0 6

Detection transfer yes yes
No. of images 13 10
No. of errors 7 18

Success rate 98.96% 92.16%
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Dataset II contained 238 images covering four spans of high-voltage power lines (Figure 14b),
featuring six transmission wires and two ground wires. As the wires were at different heights, they were
recorded in different configurations in the right and left side images, with some wires lying only a few
pixels from one another (Figure 17). The background varied greatly, from forest to industrial. Owing
to the high sag of the wires, all spans were processed separately.
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Figure 17. Example problematic images: (a) closely recorded wires; (b,c), two wires recorded as
one line.

In this dataset, far more errors were observed. They mostly occurred due to unfavorably placed
wires in images (placed close to or overlying wires). Moreover, in a few cases, mistakes were caused by
a challenging background. A success rate of 92.16% was calculated (Table 6). A lower success rate
was expected because Dataset II consisted of far more challenging images than Dataset I. The wires
were barely visible, while the background was very unfavorable, containing mostly industrial waste or
dried vegetation.

3.3. Results of Processing Datasets III and IV

The data collected and pre-processed from Datasets III and IV enabled the assessment of the
accuracy of the 3D reconstruction of the power lines using UAV imagery. Attention was paid here to the
comparison of the resultant catenary curves obtained from the proposed method and reference methods.

The UAV images were processed using the method proposed in Section 2, using thresholds
established in Appendix A, and the 3D geometry of the wires was saved for comparison. A detailed
manual check of the detection was not performed. Processing for Dataset III was uninterrupted, while
processing for Dataset IV was manually restarted once to detect the ground wires. The RMSEs of
fitting the catenary curve to the photogrammetric data varied from ±1.0 cm to ±23.8 cm for Dataset
III, and from ±2.1 cm to ±19.1 cm for Dataset IV, which shows sufficient accuracy for the purpose of
corridor clearance monitoring [7,8]. The largest errors were noted in the detection of the ground wires
in Dataset IV and were related to their diameters and the difference in sag from the transmission wires.
Most of them were fixed by a second iteration of the detection for problematic images.

The catenary was also fitted into the data collected using TLS and TS. A single wire was usually
represented by several thousand TLS-derived points and a few dozen points obtained from TS
measurement. The RMSEs of the curve fitting into TLS-derived points varied between ±0.4 cm and
±3.9 cm for Dataset III. For Dataset IV, it varied from ±0.7 cm to ±9.3 cm. In the case of TS data,
the RMSEs of the catenary fitting were between ±0.2 cm and ±9.2 cm for medium-voltage power lines
(Dataset III), and between ±2 cm and ±15.1 cm for high-voltage power lines (Dataset IV). Multiple
discrepancies were observed in the data, most likely due to small momentary vibrations in the wires.
During two days of the survey, there was a strong wind, which led to high-amplitude vibrations in the
wires. This had a direct impact on the quality of the results obtained.
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The accuracy of the proposed method was verified in three ways: comparisons in both the vertical
and the horizontal plane, and a comparison of the parameters of the catenary curve.

A comparison of the calculated heights of the corresponding points was carried out between the
proposed and the reference methods. The catenary curves were represented by 1000 points for the
UAV-based method, with 1000 points calculated with respect to the XY positions for the TS, and source
data for the TLS. The corresponding comparative points were found by locating the nearest points in
between points from TLS and UAV datasets.

As a measure of accuracy, the RMSEs of the differences in height for individual wires were
calculated. The results of the comparison are presented in Table 7.

Table 7. The accuracy of wire reconstruction using the proposed method.

Dataset Error Type RMSE [cm]
TS–TLS TS–UAV TLS–UAV

Dataset III
Height ±2.3 ±6.9 ±6.7

Horizontal ±0.9 ±1.0 ±1.0

Maximum sag ±9.7 ±14.5 ±16.5

Dataset IV
Height ±6.1 ±11.2 ±10.8

Horizontal ±9.6 ±3.8 ±12.3

Maximum sag ±16.4 ±26.3 ±29.6

TS—total station measurements, TLS—terrestrial laser scanning, UAV—proposed method based on UAV imagery;
TS–TLS—difference between TLS and TS; TS–UAV—difference between UAV and TS; TLS–UAV—difference between
UAV and TLS.

The results of the recorded wire geometry using TS and TLS measurements were highly consistent.
The mean difference in height for Dataset III was−2.0 cm, and for Dataset IV it was−3.0 cm, with RMSEs
of ±2.3 cm and ±6.1 cm, respectively. After removing outliers, the mean differences in height between
the reference data and the UAV-derived data varied from −13.0 to −11.0 cm for Dataset III, and from
−17.2 to −14.3 cm for Dataset IV. This means that, within the vertical profile, wires reconstructed
using UAV imagery were placed higher than those determined by means of the reference methods.
The discrepancies can be attributed to differences in the densities of points at wires and the continuity
of TLS point clouds representing the wires. This was especially prominent in the longest span—a 500 m
long span in Dataset IV. The span length is one of the most important factors in changes to the
sag of the wire due to temperature differences. Since the TLS survey took a significant amount of
time, discrepancies were to be expected. In light of this, as well as the expected accuracy of the
3D reconstruction for the provided data, we can conclude that the proposed method achieved the
expected accuracies.

To assess the proposed method along the horizontal plane, discrete descriptions of the UAV-derived
catenary curves were used. For the TS and TLS, line representations of the catenary curves in the
XY plane were utilized. The distances between UAV-derived points and horizontal lines fitted to
TS and TLS data were calculated for each point regardless of its position toward the reference lines
(absolute value).

For Dataset III, the results of the analysis were promising. The mean horizontal distance between
the UAV-derived data and the reference data was, on average, 2.8 cm, with a maximum value not
exceeding 7.8 cm. A comparison of the TLS and TS data gave similar results. In the case of Dataset
IV, the horizontal accuracy of the geometry of the wires determined using UAV imagery was worse.
The mean value of the parameter analyzed was 12.0 cm for TS–UAV differences and 26.1 cm for
TLS–UAV differences. RMSE values were ±3.8 cm for TS–UAV differences and ±12.3 cm for TLS–UAV
differences (Table 7). The maximum value obtained for the ground wires reached up to 1.2 m and was
significantly higher compared to transmission wires. The discrepancies can be attributed to many
factors: the complexity of the power line captured within Dataset IV, significantly longer spans (which
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translated into larger geometrical changes), and the height of wires above the ground. The root of
the problem probably lay within the bundle adjustment procedure, where most of the tie points were
located on the ground. The longer the distance to the ground, the larger the errors are to be expected in
the 3D reconstruction.

Another parameter used for comparison was the value of the maximum sag fs of the wire calculated
for each method, according to Equation (4). This parameter is required for power line inspections
in many countries. The differences in the maximum sag of the wires ∆fs were calculated among
the measurement methods. The RMSEs of ∆fs are listed in Table 7. The occurrence of outliers was
connected with incomplete TS and TLS data, collected during wire measurements. The results are
presented here for medium- (Dataset III) and high-voltage (Dataset IV) power lines.

For Dataset III, the results obtained using UAV data differed on average by −3.6 cm and −6.1 cm
from the results of TLS and TS data processing, respectively. The RMSEs of these differences were
±16.5 cm and ±14.5 cm, respectively.

There was no significant decrease in the accuracy of the reconstruction of the vertical geometry
of the wire for spans of the medium-voltage power line (Dataset III) located in forested areas, which
occurred when the maximum values of the sag of the wires were determined. In the case of Dataset
IV, a cross-comparison of all measurement methods used gave similar results, both in terms of the
values of mean difference and RMSEs. Therefore, the accuracy of determining the maximum sag of the
wire using UAV images did not significantly differ from the accuracy of calculating this parameter by
means of TS and TLS measurements.

3.4. Validation of Detection of Obstacles within the Power Line Corridor

Reference data were used to validate obstacle detection in data processed by the created solution.
The TLS data were chosen as a reference owing to the great detail of geometry reconstruction, both for
the wires and in the vicinity of the power line.

Two analyses were conducted, visual and quantitative. The visual analysis included comparing
data resulting from distance analysis in Cloud Compare software. A check was performed to see
if similar places were included in the resultant occlusion sets. The exemplary results are shown in
Figure 18, where points in the point cloud are colored according to the distance to the power lines.

The results obtained using the two methods (TLS, UAV) were consistent, especially in places
where abnormalities related to the maintenance of an appropriate separation between the wires and
elements of land cover were significant.

Then, for quantitative analysis, occlusion points were submitted to a voxelization procedure and,
lastly, clustered into separate objects (Figure 19). For each object summary, the approximated volume
was calculated as a sum of the volume of all voxels that formed it. Then, all the data were summed up
and compared to UAV and TLS data results (Table 8).

Table 8. Summary of detected occlusions within the power lines corridor. The corridor for Dataset III
was 5 m distance from the power lines, while for dataset IV it was 15 m.

Dataset III Dataset IV

TLS UAV TLS UAV

No. of objects 264 98 214 709
No. of voxels (0.5 m3) 62,794 4217 228,573 93,451

Volume (m3) 7849.25 527.125 28,571.625 11,681.375

Big differences can be observed between TLS and UAV data. This was to be expected. TLS and
UAV products due to their acquisition procedures being widely different. Photogrammetric products
do not penetrate greenery, while TLS does. Thus, TLS data have the advantage of a more continuous
representation of lattice objects. This can cause an effect of one object in TLS data being represented
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by multiple objects in UAV data (Figure 19e,f). As a consequence, the recorded volume of obstacles
determined using TLS data will be far higher than using UAV data.

Similarly, very small vegetation elements could have been picked up by TLS but would not
come up within dense point cloud reconstruction (Figure 19a,b). The importance of such objects is
negligible. Nonetheless, that also causes differences in the total volume of occlusions. The date of
the data acquisition was also not without consequence. Bare trees are quite difficult to reconstruct in
photogrammetric data, so—for better results—data should be acquired during the growing season.
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4. Discussion

This paper presents a comprehensive method of processing UAV images to detect and reconstruct
3D power lines, then subsequently compare them with a point cloud representation of DSM to localize
any objects threatening the safety of the power lines.

Power line inspections are a topical issue these days. Modeling wires in 3D space is essential for
the assessment of power line safety. Thus, their reconstruction has received much attention. However,
unlike other studies on the subject, this paper presents the entire workflow for corridor clearance
monitoring. Each step of the proposed method, starting with data acquisition requirements and
ending with obstacle detection, is described comprehensively. The wire detection in UAV images was
performed using a decorrelation stretch for initial image processing, the modified Prewitt filter for edge
enhancement, and RANSAC with additional parameters for line fitting. This classic approach causes
the line extraction in the UAV images to take place in a controlled way and, if necessary, the user can
modify the processing parameters (thresholds) and even manually restart the process when detection
errors occur. The combination of these elements creates a solution that is robust to low-quality input
data (images). Despite a variety of backgrounds and the dubious visibility of wires, the created solution
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managed to consistently detect power lines in a series of images. Its highest achieved success rate
exceeded 98% and remained above 90% for more challenging data. Good performance in the highly
changeable environment can be attributed to complete disregard for the wire color, as well as the
implementation of a local, ordered approach, which made the method adaptable to both contrast
change as well as angle change in the wire positions.

The algorithm does not require an extensive learning set, which makes it different from many
deep learning methods [37,38], which are currently gaining popularity. Similar to some other
solutions [23,35,40,41], wire reconstruction in 3D space is performed using epipolar geometry. However,
the proposed RANSAC-based approach to fit the catenary curve to previously obtained points
representing the wires minimizes the noise.

Despite the fact that the algorithm is not completely autonomous, it is relatively flexible and
robust. The minor user intervention allows the system to be applied in a variety of cases, either to a
low or high voltage. However, there is room for improvement in the proposed method. Such errors
as pixel discrepancies due to detection transfer are removed while fitting the chain curve to the 3D
data. Others, such as a complete loss of detection, or overlay with neighboring wires, can be solved by
implementing a two-step approach: after initial processing, the algorithm automatically directs the
user to problematic sections where the process can be restarted or corrected manually.

There are multiple thresholds set in the method, though it must be said that, after an initial threshold
sensitivity analysis, none were changed for any of the tested sets, nor in further commercial exploitation.

Another drawback might be the mandatory initial user input. However, it must be stated that
this is limited to two points per wire for the whole survey section, which takes no more than a couple
of minutes. Many methods can be applied instead of initial user input. The approximate direction
based on the positions of the utility poles and the Hough transform [50] was used to detect the wires in
a test phase in this research. The initial results were encouraging for medium-voltage power lines.
However, with the diversification of the background and the introduction of wires at multiple heights in
high-voltage lines, this method failed. The problem of the relative positioning of wires between images
in stereopairs is complex. It is the process of recognizing the same wire in images within a stereopair.
As wires are made of the same material, and due to the large distance between the background and
them, there is no information linking two images that capture the same wire. An alternative here would
be to include a third verification strip of images or to create multiple 3D reconstructions containing all
combinations of wires and then deciding on the pairing. The first process would extend the duration of
the survey and necessitate different mission planning methodologies. The second would also require
either manual input or prior knowledge of the number of wires and types of utility poles.

In many studies on power line inspections, datasets have been small or numerical quality analyses
have been omitted [23,40,41]. The method presented in this paper has been profusely tested beyond its
scope since it has already been commercially implemented. This study demonstrates that the accuracy
of the proposed method for the 3D reconstruction of power lines is consistent with that achieved using
classical measurements. Similar accuracies are reported by Oh and Lee [40], but their accuracy analyses
were limited to only two wires whose geometry was determined using the reference method.

It should be noted that none of the verification methods used for accuracy assessment in this
study were free from errors or significantly more accurate than any other. As the true value of the
measured sag of the wires or their 3D geometry was unknown, it was only possible to assess the
mutual compatibility of the methods used, and not their absolute accuracy.

The results of the accuracy assessment described in this paper were also influenced by the fact
that surveys of power lines using three methods (UAV, TLS, TS) were not carried out simultaneously,
or under the same weather conditions. This was due to the technical feasibility of surveys. For most
spans, the TS and TLS measurements were performed in parallel (except for one span of a high-voltage
power line) and lasted four days. On the contrary, UAV flights over power lines in Datasets III and
IV were completed in one day. For this reason, different conditions of the power lines were recorded
between the methods.
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The mapping of vegetation around power lines is also an issue of great importance. In this paper,
we assessed whether UAV-derived point cloud representations of DSM, generated using a classic
approach, are sufficient to monitor power line corridors. In the case of the UAV-based photogrammetric
products, the most common error was missing data in representing the DSM. The solution to this
was to take UAV images in more than two strips. However, this did not significantly increase the
correctness of tree reconstruction for the DSM, which, in turn, was the main reason for incorrect DSM
extraction. One way to solve this problem is to capture UAV-based photogrammetric data during the
vegetation period. However, as a rule, in the immediate vicinity of the power line (up to ~10 m from
the line axis), the quality of the UAV-derived DSM was adequate to analyze the separation between the
wires from and elements of the land cover.

5. Conclusions

The aim of this research was to create a novel method based on UAV imagery for occlusion
monitoring in the corridor of power lines. The proposed method mainly consists of three parts:
the reconstruction of the geometry of the wires in 3D space, the reconstruction of point cloud
representation of the DSM, and subsequently detecting obstacles in the power lines corridor. Power line
reconstruction, which was carried out using images captured for the DSM calculation, is its essential
part. Well-known computer vision algorithms and epipolar geometry were adopted for this task.
This makes the proposed method user-friendly and allows for image processing to be performed in a
fully controlled way. There are other merits: no training data are required, the method is robust to
low-quality input data, and the RANSAC-based approach to model the wires reduces the influence of
the noise.

An integral part of the proposed method is a workflow for the detection of obstacles in the power
line corridor. Obstacles are selected by calculating the distance between power lines and each point in
the point cloud representation of the DSM and simplified into voxels and then objects. The analyzed
data are georeferenced. Thus, the parts of the power line corridor where the maintenance work has to
be performed are documented using both the precise information of their locations and images.

The feasibility of the proposed UAV-based method for the 3D reconstruction of power lines and
corridor clearance monitoring was confirmed by reference surveys. They achieved results similar to
those obtained using other available solutions. The method’s relatively high accuracy, comparable
with that obtained by means of the reference measurements, was also verified. The accuracy of its
3D reconstruction for medium-voltage power lines was 15 cm. In the case of high-voltage power
lines, it did not exceed 30 cm. The proposed method allows for measurement data to be collected in a
relatively short time, and is cheaper than other commonly used methods in the area.

In the case of corridor clearance monitoring, the results are also satisfying. Visual analysis proved
that obstacles were detected in the same places for both UAV and TLS data. However, there were
big differences in the volume of calculated obstacles in between methods. This was expected due to
the properties of both data acquisition methods. However, this does not disprove the usability of the
method. Crucial obstacles were identified, and the presence of obstacles is of the utmost importance.
In future works, more focus should be placed on DSM.

The results of this study were implemented for commercial use by FlyTech UAV. The algorithm
has already been used to measure several hundreds of kilometers of power lines.
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Appendix A

To establish appropriate threshold values, a set of seven images was chosen from Dataset I.
The choice was made to maintain the maximum diversity of backgrounds within the images:

• ID 8—low vegetation (crops),
• ID 25—road and low vegetation,
• ID 32—low vegetation, buildings,
• ID 36—low vegetation, bare soil, car (Figure A1b),
• ID 192—bare soil, low vegetation
• ID 193—low vegetation (crops), bare soil, and
• ID 217—sparse crops, bare soil (Figure A1a).

Threshold sensitivity analysis was performed on the given images. As all thresholds were
connected in a sense, it was not possible to perform separate tests, and not all values were tested
numerically to simplify the process.

Multiple thresholds were used. They can be divided into two categories. The first, and less
important, consisted of thresholds that were dependent on the size of the image or had been arbitrarily
chosen. This group included segment window size, segment overlap and binarization threshold. It was
decided to use five segments per image, though—depending on whether the sag of the wires was big
or small—the number could be increased or decreased. The overlap value was set between 0% and
10% to avoid excessive calculations. The binarization threshold depended on the width of the wires in
the images and, as a consequence, on the approximated values of pixels in segments that captured the
wire. Within the data used in this study, each wire was around two pixels in width; thus, at a segment
size of 1000, the binarization threshold was set to 0.003.Remote Sens. 2020, 12, x FOR PEER REVIEW 27 of 31 
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The second group of thresholds consisted of thresholds that needed to be set based on the threshold
sensitivity analysis. They included:
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• filter size,
• cr—right edge coherence, a quotient of RANSAC inliers of the right edge image for all pixels in

the image segment,
• cl—left edge coherence, a quotient of RANSAC inliers of the left edge image for all pixels in the

image segment,
• e_distmax—a maximum distance between the right and the left edge lines within the image segment,
• p—parallelism coefficient, a quotient of the minimal and maximum distances between the right

and left edge lines within the image segment.

The filter size was tested first. Filtration was performed on all test images, and each one was then
normalized. Their results were compared to find the maximal difference between the wires and the
background. The following values were tested: 5, 10, 20, 30, 40, 50, and 60 (Figure A2). In the listed
thresholds, the wires became more distinguishable with a filter size of up to 30.
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Figure A2. Results of filtration for filter sizes: (a) 5 pix., (b) 10 pix., (c) 20 pix., (d) 30 pix., (e) 40 pix.,
(f) 50 pix., (g) 60 pix.

To test the remaining thresholds, a different approach was used. The approximated positions
of the wires were defined on the test images, and detection was performed to identify the relevant
parameters that were saved in a file. A manual classification was then performed to sort the results
into correct and incorrect detection groups. The values of the descriptive statistics were then calculated
for each group (Figure A3).

A clear difference can be seen in results for both cr and cl. The distributions of those parameter
values with resultant incorrect detection are quite narrow and focused below 0.25, with a couple of
outliers. The spread for parameter values with resultant correct detection is wider, but only a few values
fall below 0.5. The opposite can be observed for e_distmax and p parameters. The parameter values
with resultant correct detection have a narrow range, while the opposite ones are quite widespread.
For e_distmax only, outliers have a higher value than 10, while, for p only, outliers reach above seven.
Parameter values for incorrect detection are far more widespread in the case of e_distmax and p
parameters. There is an overlap between values for the p parameter with resultant correct and incorrect
detection. Thus, based on the p parameter value, only gross errors can be filtered out.

Following an analysis of the results, the same threshold was chosen for cr and cl. A more rigid
approach was then chosen, and the threshold was set to 0.4. Parameters e_distmax and p were more
challenging because these thresholds relied on the size of the wire in the image. It was nearly impossible
to keep the GSD on the power lines constant. In the case of Dataset I, the width of the power line varied
from two to eight pixels. The threshold for e_distmax and p was set to 10 pixels to provide enough space
to pass all possible correct detections while filtering out gross errors.
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22. Jóźków, G.; Vander Jagt, B.; Toth, C. Experiments with UAS imagery for automatic modeling of power line
3D geometry. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-1/W4, 403–409. [CrossRef]

23. Zhang, Y.; Yuan, X.; Fang, Y.; Chen, S. UAV Low Altitude Photogrammetry for Power Line Inspection.
ISPRS Int. J. Geo-Inf. 2017, 6, 14. [CrossRef]

24. Li, Z.; Liu, Y.; Walker, R.; Hayward, R.; Zhang, J. Towards automatic power line detection for a UAV
surveillance system using pulse coupled neural filter and an improved Hough transform. Mach. Vis. Appl.
2010, 21, 677–686. [CrossRef]

25. Toth, J.; Gilpin-Jackson, A. Smart view for a smart grid—Unmanned Aerial Vehicles for transmission lines.
In Proceedings of the 1st International Conference on Applied Robotics for the Power Industry, Montreal,
QC, Canada, 5–7 October 2010; pp. 1–6. [CrossRef]

26. Bhujade, R.; Vellaiappan, A.; Sharma, H.; Purushothaman, B. Detection of power-lines in complex natural
surroundings. Comput. Sci. Inf. Technol. 2013, 3, 101–108. [CrossRef]

27. Cerón, A.; Mondragón, B.I.F.; Prieto, F. Power line detection using a circle based search with UAV images.
In Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA,
27–30 May 2014; pp. 632–639. [CrossRef]

28. Liu, X.; Hou, L.; Ju, X. A method for detecting power lines in UAV aerial images. In Proceedings of the 3rd
IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 13–16 December
2017; pp. 2132–2136. [CrossRef]

29. Manlangit, C.; Green, R. Automatic Power Line Detection for a UAV System; University of Canterbury:
Christchurch, New Zealand, 2012.

30. Nasseri, M.H.; Moradi, H.; Nasiri, S.M.; Hosseini, R. Power line detection and tracking using hough transform
and particle filter. In Proceedings of the 6th RSI International Conference on Robotics and Mechatronics
(IcRoM), Tehran, Iran, 23–25 October 2018; pp. 130–134. [CrossRef]

31. Sharma, H.; Bhujade, R.; Adithya, V.; Balamuralidhar, P. Vision-based detection of power distribution lines
in complex remote surroundings. In Proceedings of the Twentieth National Conference on Communications
(NCC), Kanpur, India, 28 February–2 March 2014; pp. 1–6. [CrossRef]

32. Yang, T.W.; Yin, H.; Ruan, Q.Q.; Han, J.D.; Qi, J.T.; Yong, Q.; Wang, Z.T.; Sun, Z.Q. Overhead power line
detection from UAV video images. In Proceedings of the 19th International Conference on Mechatronics and
Machine Vision in Practice (M2VIP), Auckland, New Zealand, 28–30 November 2012; pp. 74–79.
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Abstract: Accurate topographic mapping is a critical task for various environmental applications
because elevation affects hydrodynamics and vegetation distributions. UAV photogrammetry is
popular in terrain modelling because of its lower cost compared to laser scanning. However,
this method is restricted in vegetation area with a complex terrain, due to reduced ground visibility
and lack of robust and automatic filtering algorithms. To solve this problem, this work proposed an
ensemble method of deep learning and terrain correction. First, image matching point cloud was
generated by UAV photogrammetry. Second, vegetation points were identified based on U-net deep
learning network. After that, ground elevation was corrected by estimating vegetation height to
generate the digital terrain model (DTM). Two scenarios, namely, discrete and continuous vegetation
areas were considered. The vegetation points in the discrete area were directly removed and then
interpolated, and terrain correction was applied for the points in the continuous areas. Case studies
were conducted in three different landforms in the loess plateau of China, and accuracy assessment
indicated that the overall accuracy of vegetation detection was 95.0%, and the MSE (Mean Square
Error) of final DTM (Digital Terrain Model) was 0.024 m.

Keywords: UAV photogrammetry; terrain modeling; vegetation removal; deep learning

1. Introduction

Accurate topographic mapping is essential for various environmental applications because
elevation affects hydrodynamics and vegetation distributions [1–3]. Small elevation changes can alter
sediment stability, nutrient, organic matters, tides, salinity, and vegetation growth, and therefore might
cause substantial vegetation transition in relatively flat wetlands [4–7]. Topography influences flow
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erosion and thus is a prerequisite for soil erosion studies, especially in the loess plateau of China [8,9].
The temporal dynamics of topography helps understand the erosion process and contributes to
conservation planning.

Various remote sensing techniques, such as RADAR [10–13], light detection and ranging
(LiDAR) [14–16], and stereo photogrammetry [17–20], were developed and applied to model terrains
of various scales. However, accurate topographic mapping in gully areas in the loess plateau of
China remains challenging due to complications of hydrodynamics, ever-changing terrains, and dense
vegetation covers. The widely used LiDAR is the best method because it provides the highest accuracy
of mean terrain error within 0.10 m to 0.20 m [21–23]. Meanwhile, terrestrial laser scanning is restricted
for terrains with a strong relief [24]. The field measurement always fails in some certain areas because
the complex terrain might influence the visibility from the sensor perspective. Airborne laser scanning
is also limited under poor weather condition. Errors further increase in dense and tall vegetation
conditions and might reach a challenging ‘dead zone’ when the marsh vegetation height is close
to or beyond 2 m [4]. Moreover, laser scanning is expensive and hard to implement in developing
countries [25]. Frequent deployment of LiDAR surveys is in such scenarios is cost-prohibited. Therefore,
affordable methods for rapid and accurate measurements without relying on out-dated historical data
are needed.

State-of-art unmanned aerial vehicle (UAV) provides a promising solution to general mapping
applications. Remarkable progress was achieved in light-weight sensor and UAV system
developments [26,27], improvement of data pre-processing [28], registration [29,30], and image
matching [31–33]. The UAV-based terrain modeling has advantages of low costs, high spatial
resolution, high portability, flexible mapping schedule, rapid response to disturbances, and convenient
multi-temporal monitoring [34]. UAV has become a favourable surveying method in many areas with
challenging mobility and accessibility. In particular, cameras are miniaturised and have low power
consumption, making them ideal sensors for area-wise coverage from UAVs [35].

Despite various successful applications, challenges for UAV usage still remain, especially in areas
with a dense vegetation condition. UAV terrain modeling is best suited to areas with sparse or no
vegetation, such as sand dunes and beaches [36], coastal flat landscapes [37], and arid environments [38].
Establishing a satisfactory terrain model is hindered by difficulties in point-based ground-filtering.
Some successful works for automatic ground-filtering were conducted in digital terrain model
construction [39,40], the application of which remains ‘pointless’ due to difficulty in penetration and
lack of points from ground [41]. Current developments in UAV communities provide no solution to
these issues of terrain mapping in densely vegetated environments [42].

This study aimed to address the challenges in terrain mapping under vegetation cover by
developing a UAV photogrammetry mapping solution that does not depend on historical data.
The main objective was to propose an algorithmic framework correct terrain based on vegetation
detection, by using deep learning (DL). First, image matching point cloud was generated by UAV
photogrammetry. Second, vegetation points were identified based on U-net deep learning network.
After that, ground elevation was corrected by estimating vegetation height to generate the digital
terrain model (DTM). Two scenarios, namely, discrete and continuous vegetation areas were considered.
The vegetation points in discrete area were directly removed and then interpolated, and terrain
correction was applied for the points in continuous areas. Given that most photogrammetric UAV
systems carry colour cameras, the possible application of the proposed method in photogrammetric
UAV system for terrain mapping in vegetated environments was also explored.

2. Materials and Methods

The proposed approach involved the following four steps—(1) UAV photogrammetry; (2) DL-based
vegetation detection, (3) terrain correction, and (4) DTM generation. Accuracy assessment was
conducted through the comparison between check points generated by global navigation satellite
system (GNSS) unit and produced DTM elevation.
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2.1. Study Site

Three study areas, namely, Xining (SA1), Wangjiamao (SA2), and Wucheng (SA3) located in
Qinghai, Shaanxi, and Shanxi, respectively, were selected in the Loess Plateau of China (Figure 1) and
represent loess hill and gully, loess hill and loess valley area, respectively. Among them, Wangjiamao
and Wucheng cover the complete catchments, and Xining covers a hillslope area. All three study areas
were covered with vegetation since the implementation of the ‘Grain for Green’ project (changing the
agriculture to conservation area) from late 1990s [43,44]. Vegetation status of three different study areas
varied in their types and spatial distributions. The vegetation in Xining was manmade for ecological
protection from the formal cultivation, with an average interval distance of 2 m in the terraced slopes.
While in the Wuchenggou and Wangjiawao areas, vegetation are more natural but some cash crops like
apples and jujubes (Chinese dates), were still planted, with more dense horizontal distance around 1 m
in the slopes. The basic geographic information is listed in Table 1.
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Table 1. Geography of study areas.

Xining (SA1) Wangjiamao (SA2) Wucheng (SA3)

Location 36◦39′N101◦43′E 37◦34′20”N~37◦35′10”N
110◦21′50”E~110◦22′40”E

39◦15′51”N~39◦16′57”N
111◦33′21”E~111◦34′48”E

Area 0.07 km2 2.21 km2 3.17 km2

Elevation 2266–2348 m 1011–1195 m 1238–1448 m
Landform Loess hill and gully Loess hill Loess valley
Climate Semi-arid (BSh) Semi-arid (BSh) Semi-arid (BSh)

Annual Temperature 6.5°C 9.7°C 8°C
Precipitation 327 mm/y 486 mm/y ~450 mm/y
Vegetation Weed Shrub Arbor

Main vegetation type Rhamnus erythroxylon,
Artemisia

Haloxylon ammodendron,
Ziziphus jujuba

Hippophae, Malus
domestica

Vegetation height 0.5–2 m 0.5–6 m 0.5–6 m

2.2. Unmanned Aerial Vehicle (UAV) and Global Navigation Satellite System (GNSS) Field Data Collection

Image matching point clouds from UAV photogrammetry were used as the inputs for terrain
modeling. Optical aerial photographs were captured using a DJI Inspire 1 microdrone [45] mounted
with a digital camera system Zenmuse X5 [46] (15 mm focal length, RGB color, and 4096 × 2160
resolution), with a battery time of approximately 18 min, and could resist wind speeds of up to 10 m/s.
Detailed flight information is shown in Table 2. Pix4D Capture flight planner software was used to plan
a round-trip flight line along the study areas, and automatically collect images within certain designed
flight distance. All flights were completed from 10 am to 2 pm, to ensure that the image quality would
not be influenced by the shades. Ground control points (GCPs) in WGS-84 were obtained by the
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Topcon HiperSR RTK GNSS unit [47] (10 mm horizontal positioning accuracy and 15 mm vertical
positioning accuracy), with a tripod, to ensure horizontal and vertical accuracy. Bundle adjustment was
implemented in Pix4D Mapper software [48]. The point clouds were finally generated and interpolated
into the grid digital surface model (DSM).

Table 2. Unmanned aerial vehicle (UAV) flight information of three study areas.

Xining Wangjiamao Wucheng

Flight date 2017.10.24 2019.08.20 2018.04.26
Flight height 50 m 150 m 200 m

Photo gained in total 80 420 680
Flight overlapping 80% 80% 80%
Side overlapping 70% 70% 70%

Ground sampling distance 2.31 cm 4.36 cm 8.06 cm
Ground Control Points in total 7 18 19

Mean RMS of GCPs 0.011 m 0.014 m 0.018 m
Point amount from dense matching 832341 7917617 9956200

Eight targets along the vegetation in Xining (SA1) were designated as check points (CPs) for the
uncertainty assessment of the final terrain modeling results. These targets were 1-m-wide boards
painted in black and white in a diagonal chessboard pattern.

2.3. Deep Learning (DL)-Based Vegetation Detection

Most DL networks connect simple layers for data distillation. Input information passes through a
layer of filter that increases the purity in distillation to achieve the desired result [49]. Convolutional
neural network (CNN) is one of the representative algorithm structures of the deep neural network
structure and is a feed-forward neural network usually used in object recognition, target detection,
semantic segmentation, and other issues [50,51]. A typical structure for a CNN network, U-Net [52],
was implemented for vegetation detection, because of its effectiveness and simplicity. U-net adopts
the principle of gradient descent, propagates data information forward, and reverses propagation
to correct the parameter weights and deviations [53]. Certain layers were changed and adjusted to
specific terrain modeling tasks, on the basis of the existing U-Net structure.

2.3.1. Training Data Generation

DL is usually used in datasets with a large amount of data, and convolutional neural networks are
suitable for processing relevant image data. Therefore, the U-Net model can generate a large number
of images as input data. Here, input data were randomly cropped to ensure proper representation and
eliminate the influence of manual selection. Random coordinate points were expanded, based on the
desired image size. The crop range was calibrated, and the crop operation fully utilized the cell size
and projected coordinate information.

Data enhancement is the process of generating new data for training, based on image nature,
without actually collecting new samples. Convolution operations have translational invariance,
and similar transformations such as rotation and scaling of vegetation data do not change the
information characteristics of the vegetation data. Here, similar data outside the sample area chart were
provided to the model to ensure data diversity. Random similar transformation, scale transformation,
Gaussian blur, and image enhancement were performed for the crop data, in which the rotation
allocation transformation matrix and 2D Gaussian function were treated as follows—Equations (1)
and (2).

M =

(
cosθ− sinθ
sinθ cosθ

)
(1)

G(x, y) =
1

2πσ2 e−(x2+y2)/2σ2
(2)
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where θ is the angle of rotation, and σ is the variance.
For the classification task, the training data was labeled as one-hot encoding logic category,

namely, 1 for vegetation and 0 for non-vegetation. Manual work was first done for the labeling task at,
based on the original point clouds. The RGB and additional elevation information of vegetation of the
manmade labels of three study areas were then generated from the original image matching point
cloud. All labels were divided into two groups for model training and validation. Forty percent of the
dataset was randomly sampled as the training data. Since the DL requires a large amount of training
samples, a tool was developed based on the ArcGIS Pro [54] software, using the python script for a
multi-scale replicability of the training samples. Finally, 10,000 samples of 4 dimensions (R, G, B, Z)
with 128 × 128 cells were automatically generated.

2.3.2. Feature Selection

The data for neural network represent a multidimensional feature array, also known as a tensor,
a container for numerical data of images. All transformations learned by the neural network could
be summed up as tensor operations for numerical data and formed matrix extension dimensions.
Spectral information (R, G, and B values) and elevation provide theoretical feasibility for the division of
vegetation. The training data generated by the original point clouds had an RGB value and underwent
elevation, and the input data were normalized to reasonably eliminate the scale effect.

2.3.3. Design of the U-Net Network

An improved U-Net framework with a slightly altered structure was used for vegetation detection.
The improved U-Net produced split maps of the same size as the input data and preserved the
continuity of the resolution.

The predictive model describes the relationship between input x (features) and desired output
(answer) y. The system ‘learns’ the relationship between data and output repeatedly through differential
equations and random deviations and obtains the values of a series of unknown parameters, thus,
forming a set of rules on its own. These rules are applied to a set of untrained data to allow the
model to predict the corresponding set of answers. This process is the core architecture of the
image segmentation task. With the use of the FCN (Fully Convolutional Networks, [55]) architecture,
the simple representation of the relationship between the predictive output and the input is as
follows—Equation (3).

y = f




m∑

j=1


w j




n∑

i=1

wixi − θn


− θm





 (3)

where x is the input; ŷ is the forecast output; m is the number of hidden layers that determines the depth
of the network to a certain extent and represents the complexity of the network; n is the number of
neurons in each layer of network, and each neuron in the convolutional neural networks is represented
as a filter (nine neurons in this study); w is expressed as a weight assigned to a neuron to connect input
information for signaling; and f is an activation function for nonlinear mapping.

Three specific network structures architecture with different hyper-parameters were designed
(Figure 2) for the vegetation detection tasks. In the down-sampling procedure, convolution was
performed to extract features and activation values at different levels. Each convolution was based
on the result of the previous layer of convolution, thus, bringing the model to a certain depth.
Some convoluted feature values were de-dimensionalized from the input, through pooling, to reduce a
large amount of computational consumption. The vegetation characteristics were summarized, and a
wide range of features were extracted. The data were easily learned, and the model learning ability
was enhanced. In the upper-sampling, the image size was expanded layer-by-layer to interpolate the
feature maps at all levels. Details on the three model hyper-parameters are shown in Table 3.
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Figure 2. Three designed U-net model structures.

Table 3. Comparison of model hyper-parameters.

Network A B C

Layers 5 6 10
Down-sampling 3× 3 × 64 (×128, ×256, ×512, ×512) 3 × 3 × 64 (×128, ×256, × 512, ×1024, ×1024) Double B

Up-sampling 3 × 3 × 256 (×128,×64) 3×3×512(×256, ×128, ×64) Double B
Pooling (2 × 2) × 3 (2 × 2)× 4 (2 × 2) × 4

Jump connection 3 times 4 times 4 times

2.3.4. Vegetation Detection Accuracy Assessment

The detection accuracy was assessed through a comparison with the reference. The reference
data were manually interpolated from the original point cloud. The confusion matrix was applied to
calculate the accuracy in the rasterized results.

2.4. Terrain Correction

After vegetation detection, the terrain information could be modified using the vegetation results.
In terrain modeling, the ability to reasonably eliminate the vegetation points, determined the accuracy
of the DTM result. In urban areas, a cross-section is usually used to completely eliminate the vegetation
point and then interpolate the complement point to obtain the DTM [56]. The ground is fitted in a 2D
terrain plane, and the points higher than the plane are removed. However, this trend approach always
fails, because the planes are difficult to estimate, due to the dramatic reliefs of the mountainous terrains
(e.g., the Loess Plateau). The alternative practice for mountainous areas is usually to universally
lower the vegetation points, based on the estimation of vegetation average height [37]. This method
is effective for continuous vegetation in mountainous areas and maintaining the original terrain
fluctuation, but is restricted for discrete vegetation in mountain areas, due to elevation fragmentation
or convex terrain [57,58]. To solve this problem, this study divided the terrain correction into two
scenarios, namely, discrete and continuous vegetation areas (Figure 3). The vegetation points in the
discrete area were directly removed and then interpolated, and terrain correction was applied for the
points in continuous areas.

Step 1: Identification of discrete and continuous vegetation areas.
The vegetation detection result was firstly rasterized then converted into polygon by the Raster to

Polygon tool in ArcGIS Pro software [54]. A threshold of 30 m2 by expertise was then used to identify
discrete and continuous vegetation areas. Vegetation areas of less than 30 m2 were classified as discrete,
and those greater than 30 m2 were labeled as continuous.
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Figure 3. Workflow of terrain correction.

Step 2: Point removal and spatial interpolation in discrete vegetation area.
The original point cloud obtained for the UAV photogrammetry represents a surface model

including the vegetation information. To achieve a terrain model, all these vegetation points should
be excluded. The points in the discrete vegetation area could be directly eliminated. Since the ‘holes’
after the removal were relatively small, it would not affect the overall trend of the terrain. Therefore,
the terrain could then be interpolated.

Step 3: Terrain correction in continuous vegetation areas when considering vegetation height.
The commonly used local polynomial interpolation ignores its own terrain fluctuations. Thus,

the elevation information would be lost when the points in the continuous vegetation area are simply
removed. A possible solution was to estimate the terrain elevation and then modify the elevation
of the vegetation points in the point cloud. With regard to the varying heights for each individual
continuous vegetation area, an adaptive process with less human interaction was proposed. Vegetation
height was estimated by the elevation in the 0.5 m buffer zone of each polygon. This could be achieved
by the Zonal Statistics tool by ArcGIS Pro [54], using the original point clouds. The difference between
the vegetation elevation point and the ground elevation in the polygonal area from DSMs was treated
as the unified elevation value of the area, and the final fine DTM was obtained by subtracting the
estimated mean height of each polygon.
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2.5. Terrain Modeling Result Validation

Evaluating the elevated generated DTM is the key to measuring accurate terrain modeling results.
To achieve the validation, a comparison between the final generated DTM with CPs from field survey
by GNSS unit was conducted. The Xining area was selected for the validation.

3. Results

3.1. Vegetation Detection Results

Xining was selected for model training. After performance comparison for the designed U-Net
network structures, the U-Net model C was finally chosen for vegetation detection. Details of three
structures’ performance are discussed in following Section 4.1. After model training, the model was
applied in two other study areas. Figure 4 shows the results for the three study areas.
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Figure 4. Vegetation detection result. (a) Xining; (b) Wangjiamao; and (c) Wucheng.

Table 4 shows that the confusion matrix of vegetation detection results in three areas with the
reference. The detection accuracies were acceptable at 90.9% for Xining, 96.4% for Wangjiamao,
and 87.2% for Wucheng. The vegetation detection of Wucheng was not as highly accurate as for the
other two areas because the tie points in the southwest corner of Wucheng were relatively insufficient
during the automatic image matching. Hence, the accuracy of the original image matching point cloud
was reduced.

3.2. Vegetation Identification Results

Identification was conducted in the three study areas, based on the adaptive treatment of discrete
and continuous vegetation (Figure 5). The manmade vegetation spatial distribution patterns in Xining
and the natural patterns in Wuchenggou and Wangjiawao were successfully identified. Vegetation
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height estimations ranged from 0.01 to 2.26 m (1.81 m in mean) in Xinning, 0.01 to 7.12 m in Wangjiamao
(4.23 m in mean), and 0.66 to 6.38 m in Wucheng (4.21 m in mean), respectively.

Table 4. Confusion matrix of vegetation detection results in three areas for architecture C.

Detection (In Cells)
Xining Wangjiamao Wuchenggou

Ground Vegetation Ground Vegetation Ground Vegetation

Reference
Ground 4,457,886

(62.3%)
225,949
(3.1%)

127,645,071
(90.0%)

2,049,627
(1.4%)

2,095,418
(69.4%)

135,462
(4.5%)

Vegetation 425,710
(6.0%)

2,039,464
(28.6%)

3,181,941
(2.2%)

9,075,223
(6.4%)

252,464
(8.3%)

535,952
(17.8%)
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digital surface model (DSM), and the estimated vegetation height is colored.

3.3. Terrain Correction Results

After the vegetation identification, terrain correction was done and DTMs with 1 m resolution
were then interpolated (Figure 6). The proposed method removed the vegetation points without losing
the terrain details and restored the fine DTM. Compared with orthophotos, the terrain reliefs were well
presented in the modeling results. The smooth color rendering of DTMs indicated that the vegetation
recognition removal was good, and DTM was visually refined.
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3.4. Terrain Modeling Result Validation with Field Measurement Data

Ground control points in Xining by field survey were elevated to verify the DTM results (Figure 7).
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Figure 7. Elevation uncertainty assessment in Xining.

Table 5 shows the elevation comparison of the CPs. The MSE was 0.024 m, which met the standard
of the accurate terrain modeling. Points D and H had the highest prediction accuracy, which were
originally ground points. Correctly predicting the vegetation points ensured that the ground elevation
values were preserved correctly. Point G failed the accurate elevation, because it was located at a hole
even when the vegetation detection was not correct. The terrain correction of the remaining vegetation
points was guaranteed.

Table 5. Elevation comparison of CPs.

Sample Reference/m Result/m Error/m

A 2343.246 2343.518 0.272
B 2343.283 2343.424 0.141
C 2339.275 2338.772 −0.497
D 2335.718 2335.739 0.021
E 2328.019 2327.967 −0.948
F 2317.586 2317.699 0.113
G 2331.099 2332.197 1.098
H 2340.806 2340.800 −0.006

4. Discussion

In this section, some extra analyses were conducted to discuss the key to the success of vegetation
detection. Hyper-parameter (network structure and epoch) influence analysis was done at first
to achieve an optimized parameter setting. The comparison with other two published methods
(perceptron and adaptive filtering) was then done for a deeper analyses of the performance of our
proposed vegetation detection method.
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4.1. U-Net Hyper-Parameter Influence on Vegetation Detection Performance

The performance of the three designed different U-net networks was assessed in terms of
training loss, validation accuracy, and training accuracy, to understand the influence of parameter and
architecture on vegetation detection.

Figure 8a shows the training loss of the three models with different epoch settings. Model A
is simple with a small network layer and capacity. Its training loss reached the local minimum at
48 epochs. The training loss of model B bounced at the 16th and 38th epochs, and was overall faster than
that for Model A. The training loss of model C declined smoothly and reached the local minimum at
the 45th epoch. Figure 8b shows the training accuracy of the three models with different epoch settings.
All three models generally showed an increasing trend. Model A in the 8th epoch to 40th epoch did not
meet the saturation. Model B in the 17th and 38th epochs showed a decline in training accuracy. Model
C in the 45th epoch achieved the local maximum accuracy. Figure 8c shows the validation accuracy of
the three models with different epoch settings. Model A had the lowest verification accuracy. Model B
was moderately complex with convolution occurring during pooling, and its verification accuracy was
high. However, a substantial decline in the 15th epoch to 0.92, indicated a slightly weakened stability
of its performance. Model C was the most stable and accurate with a high accuracy of 0.94 at the 45th
epoch (Figure 8c).
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Figure 8. DTM results after terrain corrections. (a) training loss, (b) training accuracy, and (c) validation
accuracy of the three different network structures, with different epoch settings.

Model C with an epoch of 45 was selected for vegetation detection, due to its lowest loss function
and highest accuracy during training and validation. When the network structure was large, the epoch
should be increased appropriately to ensure that the parameters were updated. Merging combined the
features of convolution and enhanced the upper sampling of data.

4.2. Comparison of Vegetation Detection Performance with Other Methods

Two other methods, namely, perceptron [59] and adaptive filtering [60] were selected for
comparison to additional assessment of vegetation detection. Precision, recall, and F-score values
were used for validation. Precision indicated the extent to which the extraction result represented
the real target and the error of the model. Prediction was positive when the following values were
obtained—true positive (TP) and false positive (FP)—which indicated the extraction of the correct
vegetation grid. FP indicated that the ground sample was predicted as a vegetation sample, and FP
was a ‘false positive’ situation. True negative (TN) was achieved when the results predicted for the
ground was also a ground sample. Recall represents the extent to which real targets can be extracted
and indicates the model’s leakage. Predicting vegetation as true (TP) and vegetation samples as ground
samples were a false negative (FN), i.e., no vegetation samples were extracted. Precision was the
number of samples that were positive relative to the predicted positive, and recall was relative to the
number of positive samples in the original sample. The F-value was the reconciliation average of
precision and recall. The formulas for precision, recall, and F-values were as follows (Equations (4)–(6).

Precision = TP/(TP + FP) (4)

Recall = TP/(TP + FN) (5)

F = 2 × Precision × Recall/(Precision + Recall) (6)

Figure 9 shows the precision, recall, and F-value of the three methods. Our improved U-Net
architecture had the highest values for all three study areas. Particularly, the best identification result
was observed in Xining with a precision of 0.91. The performances of last two methods were seriously
weaker than that of our improved U-Net architecture. Perceptron lacked the hidden layer and did not
introduce random deviation. The final classification result was based on the hyperplane, which could
not adapt to the complex terrain, resulting in a low accuracy for vegetation detection. Adaptive
filtering was excessive in vegetation recognition, and its results depended on the sketched vegetation
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range. This phenomenon required the manual sketching of the training area, as a supervised area for
vegetation recognition in each study area.
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5. Conclusions

This study proposed a UAV photogrammetric framework for terrain modeling in dense vegetation
areas. With the loess plateau of China as the study area, a DL and terrain correction ensemble
method was proposed and applied. An improved U-net network for vegetation segmentation was
presented. The feature combination of RGB+DSM was used for vegetation detection. According
to four-fold cross-verification, the accuracy was 94.97%, and the model had a good generalization
ability. The influence of U-Net architecture and parameter epoch setting on vegetation detection
performance was also assessed. Comparison with other methods confirmed the better performance of
the proposed technique. Fine DTM generation method for terrain modeling was also put forward.
The vegetation area was divided into discrete and continuous, and adaptive terrain correction was
proposed and realised. DTM accuracy was evaluated with the field measurements. This framework
could be applied in dense vegetation, with an advantage of low-cost UAV photogrammetry when laser
scanning was limited.
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Abstract: Unmanned aerial vehicle (UAV) photogrammetry has recently emerged as a popular
solution to obtain certain products necessary in linear projects, such as orthoimages or digital surface
models. This is mainly due to its ability to provide these topographic products in a fast and economical
way. In order to guarantee a certain degree of accuracy, it is important to know how many ground
control points (GCPs) are necessary and how to distribute them across the study site. The purpose of
this work consists of determining the number of GCPs and how to distribute them in a way that yields
higher accuracy for a corridor-shaped study area. To do so, several photogrammetric projects have
been carried out in which the number of GCPs used in the bundle adjustment and their distribution
vary. The different projects were assessed taking into account two different parameters: the root
mean square error (RMSE) and the Multiscale Model to Model Cloud Comparison (M3C2). From the
different configurations tested, the projects using 9 and 11 GCPs (4.3 and 5.2 GCPs km−1, respectively)
distributed alternatively on both sides of the road in an offset or zigzagging pattern, with a pair of
GCPs at each end of the road, yielded optimal results regarding fieldwork cost, compared to projects
using similar or more GCPs placed according to other distributions.

Keywords: unmanned aerial vehicle (UAV); structure-from-motion (SfM); ground control points (GCP);
accuracy assessment; point clouds; corridor mapping

1. Introduction

The availability of high-resolution topographic products, such as orthoimages and digital surface
models (DSM), is of increasing importance for many different fields of engineering that require a
thorough understanding of topographies. These include, among many others, terrain morphology
to perform reliable simulation of soil erosion, flooding phenomena, and assessment of the sediment
budget [1–5], landslide mapping and multi-temporal study [6–8], road design [9], road condition
surveys for road management [10], precision agriculture [11], or detection of archaeological rests [12].
Unmanned aerial vehicles (UAV) have emerged as a feasible alternative given their lower cost,
high temporal and spatial resolution, and flexibility in image acquisition compared to conventional
airborne and satellite sensors [13–15]. Most available software applications currently used to process
UAV-acquired imagery are based on the structure from motion (SfM) approach. This approach,
unlike traditional digital photogrammetry, resolves the collinearity equations without the need for
any control point, providing a sparse point cloud in an arbitrary coordinate system and a full camera
calibration [16,17]. This is possible due to image matching algorithms that automatically search
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for similar image objects, called keypoints, through the analysis of the correspondence, similarity,
and consistency of the image features [18]. SfM is paired with multi-view stereopsis (MVS) techniques
that apply an expanding procedure of the sparse set of matched keypoints in order to obtain a dense
point cloud [19].

To georeference the 3D point cloud generated in the photogrammetric process, ground control
points (GCPs) are usually employed. These control points can be either permanent ground features or
reference targets scattered on the ground before the flight, which must be surveyed to obtain their
precise coordinates and ensure that they are clearly identifiable on the raw images. A minimum of
three GCPs is necessary to carry out the georeferencing process, although increasing the number of
GCPs is highly recommended in order to improve the accuracy of the photogrammetric products.
In [20], the influence of the number of GCPs on the DSM and orthoimage accuracies obtained with
UAV photogrammetry were studied. A similar conclusion for both horizontal and vertical components
was derived: optimal results were reached with 15 GCPs. Furthermore, in [21], different numbers and
distributions of GCPs were studied to try to optimize the products obtained by UAV photogrammetry
on a surface of 22 ha: it was concluded that more accurate results were reached combining GCPs
located around the study area and a stratified distribution inside that area. In [22], the effect of the
number and distribution of GCPs on the accuracy of the DSM and orthophoto of a surface of 150 ha
was studied. These last two studies reached similar conclusions, proposing 0.5 to 1 GCP ha−1 as the
optimum concentration of GCPs. In [23], the influence of different variations of GCPs arranged on
an area of 2.73 ha on the accuracy of the products of UAV photogrammetry projects was studied.
The optimum concentration was 1.8 GCPs ha−1 uniformly distributed across the whole surface.

The 3D coordinates of GCPs must be accurate; thus, a suitable survey method, such as GPS or
total stations, must be used. Surveying these points is a time-consuming task that can be difficult
to carry out depending on the terrain morphology. Alternative to the use of GCPs, differential GPS
(DGPS) correction techniques, such as real-time kinematics (RTKs) and post-processing kinematics
(PPKs), have been evaluated as methods to provide high-accuracy georeferencing [24–26]. In [25],
it was concluded that a UAV RTK/PPK solution can provide highly accurate spatial data (planimetric
RMSE = 0.044 m, altimetric RMSE = 0.082 m), compared to data acquired through the use of GCPs.
In [27], the repeatability of DSM generation from several blocks acquired with a RTK-enabled drone
was studied. Differential corrections were generated by a local master station or a network continuously
operating a reference station network. Using identical test fields and flight plans, DSM generation
was performed with three block control configurations: GCP only, camera stations only, and with
camera stations and one GCP. The results showed that the average DSM accuracy was approximately
2.1 ground sample distance (GSD) with the first and third configurations and 3.7 GSD with the
second one.

From the georeferenced dense point cloud, photogrammetric products such as orthoimages and
DSM can be obtained. There are several factors that affect the accuracy of these UAV photogrammetry
products: the number and distribution of GCPs, flight altitude, studied surface morphology,
methodology for camera calibration, image overlap, and the incorporation of oblique images.
Agüera et al. [28] carried out a study to determine how flight height, terrain morphology, and number
of GCPs influence accuracy. They studied four terrain morphologies (from flat to very rugged) that
were approximately square-shaped and had areas between 2 and 4.7 ha, four flight altitudes (50, 80, 100,
and 120 m), and three different numbers of GCPs (3, 5, and 10). The results from this work indicated that
horizontal accuracy is not influenced by terrain morphology or flight altitude. Furthermore, differences
between terrain morphologies were observed only when 5 or 10 GCPs were used. Nevertheless,
the number of GCPs influenced the horizontal accuracy: as the number of GCPs increased, the accuracy
improved. While both flight altitude and the number of GCPs had a significant influence on vertical
accuracy, terrain morphology did not. The lower RMSEs values were reached at a 50 m flight altitude
using 10 GCPs (0.053 and 0.049 m for horizontal and vertical components, respectively).
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A massive study with 3465 different combinations was conducted by Sanz-Ablanedo et al. [29] to
determine the influence of the number and location of GCPs on a 1225 ha coal mining area that was
approximately square-shaped. The results demonstrate that the extent to which the accuracy improves
as the number of GCPs increases; the accuracy also depends on the location of the GCPs (the RMSE
converges slowly to a value approximately double the GSD).

The impact of incorporating oblique images was analyzed by Nesbit et al. [30] to enhance 3D
model accuracy in high-relief landscapes, and they concluded that combination datasets including
oblique images are preferred over single camera angle datasets. In that research, the study site area
was less than 5 ha and was approximately square-shaped. All these recently mentioned studies agree
that the accuracy of the DSM and orthoimages obtained through UAV photogrammetry is highly
dependent on the number of GCPs used and their distribution across the study area. Furthermore,
the accuracy improves as more GCPs are used as long as they are well distributed, although there is
a limit, beyond which the accuracy cannot be further improved by increasing the number of GCPs.
However, since the fieldwork and associated cost increase with the use of more GCPs, it is necessary to
balance the appropriate accuracy with a minimum fieldwork cost.

It is important to keep in mind that all the studies referenced so far were developed on
square-shaped terrain or where one dimension is not much larger than another. Thus, it cannot
be guaranteed that the conclusions drawn from them can be applied to site studies in which one
dimension is much larger than another, as is the case with the so-called linear works in civil engineering
(road, linear power distribution, pipelines, or channels).

There is not much research regarding the influence of the number and distribution of GCPs on
the accuracy of UAV photogrammetric projects of this type of infrastructure. James and Robson [31]
applied SfM and MVS technics to study the erosion of a coastal cliff measuring 50 × 3 m. They used
eight GCPs with scale and georeference purposes but did not study the influence of the number or
distribution of GCPs on DSM accuracy. Moreover, they did not use check points (CPs) to estimate
the accuracy and determine it from the GCPs, which it is not a good methodology for estimating the
accuracy or determining if it was affected by the number of GCPs. The title of the work of Zulkipli
and Tahar [9] describes the use of UAV-based photogrammetric mapping for road design, but the
study site has not one dimension longer than another. They derived a conclusion that could not be
generalized to linear work projects. Jaud et al. [32] aimed to assess the extent of the bowl effects on the
DSM generated above a linear beach (250 × 25 m) with a restricted distribution of GCPs. The bowl
effect or doming deformation is a phenomenon that appears in corridor mapping and is caused by the
accumulation of camera calibration errors [33]. To mitigate this effect, two strategies are suggested [33]:
densifying GCP distribution or improving the estimation of the exterior orientation of each image.
Therefore, using images with geolocation and angular deviations from the terrain reference system
included in their EXIF (Exchangeable Image File Format) would limit the geometric distortions [32].
These data are usually included in the images’ EXIF of UAV photogrammetry projects because UAVs
have GPSs and the camera is mounted on a gimbal that has an inertial measurement unit (IMU) that
records the angles to the terrain reference system. Tournadre et al. [34] studied the influence of camera
calibration, the inclusion of oblique images, and the number of GCPs on the magnitude of the bowl
effect on the UAV photogrammetry project of a corridor of 600 × 15 m. They concluded that those
three factors have an effect on DSM accuracy. Regarding GCPs, the results prove that one GCP for each
100 m is optimal for reducing most of the CP reprojection errors to less than one centimeter, but they
do not say anything about GCPs distribution. Skarlatos et al. [35] worked on a UAV photogrammetric
project on a corridor of 2.2 km × 160 m. They used different numbers of GCPs for bundle adjustment.
All combinations had two GCPs at each end of the corridor and from there, they added up to seven
GCPs, and in one project, all GCPs measured. Therefore, the minimum distance between GCPs for all
combinations was 200 m when all measured points were used as GCPs, which implies that, in this case,
the accuracy was not calculated from CPs. Their main conclusion was that, as the number of GCPs
increases, accuracy improves.
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In view of these studies focused on linear works, it can be concluded that it is necessary to deepen
the knowledge of the influence of the number and distribution of GCPs on DSM accuracy in UAV
photogrammetry projects on corridors with lengths of several kilometers.

The aim of this study is to determine the number and distribution of GCPs that yields the best
balance between accuracy and fieldwork in a linear photogrammetric project, in this case, a road.
To achieve this objective, a UAV photogrammetry project was carried out on a road measuring
2.1 km × 190 m. The coordinates of 47 points were measured with a centimeter accuracy GPS. Of these,
18 were used as CPs, and the rest as GCPs. A total of 13 projects were developed, each with a different
number and distribution of GCPs. DSM accuracy, derived from these projects, was estimated in two
ways: first, by calculating the horizontal and vertical RMSE derived from the 34 CPs, and second,
by comparing the 3D point cloud generated by each project with that generated by the project that
considered the 47 measured points.

2. Materials and Methods

The methodology used to assess the accuracy of the different photogrammetric projects carried
out is summarized in Figure 1.
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Figure 1. Workflow of image acquisition and processing to assess the influence of number and distribution
of ground control points (GCPs) on the accuracy of linear photogrammetric projects.

2.1. Study Site

All coordinates of this study are given in meters and refer to UTM Zone 30N (European Terrestrial
Reference System 1989, ETRS89) and the EGM08 geoid model. The study area is located in Roquetas
de Mar (Almería), southeast Spain (Figure 2). The southwest and northeast coordinates are 533682,
4065630 and 532371, 4067232, respectively. The study site covers the A-1051-R3 branch road from the
A-1051 highway, which measures 2.1 km × 190 m, with 95 m on each side of the road axis, and covers
an area of approximately 40 ha. The main feature of the study site is that, in planimetry, one dimension
is much larger than the other. The elevation in the studied area varies from 7 to 38 m above mean sea
level. Figure 3 shows 3D cloud points corresponding to the northern end of the study site, showing a
roundabout and several greenhouses, used for growing horticultural crops.

112



Remote Sens. 2020, 12, 2447Remote Sens. 2020, 12, x 5 of 20 

 

 

 

Figure 2. Location of the study site. Coordinates refer to UTM Zone 30N (ETRS89, EGM08 geoid 
model). The map of the Iberian Peninsula was extracted from Google Earth. The background map on 
the right side was extracted from OpenStreetMap, and the square inset is an orthophoto of the study 
site. 

 
Figure 3. 3D cloud point corresponding to the northern end of the study site, showing a roundabout 
and several greenhouses. 

2.2. Data Acquisition 

The images used in this study were taken from a rotary wing UAV with four motors. The model 
employed was the DJI Phantom 4 Pro, which integrates a camera equipped with a one inch and 20 
megapixel CMOS sensor, and a f2.8–/f11 wide-angle lens with an equivalent focal length of 24 mm 
[36]. 

The whole study area was covered by four different flights, each covering approximately 525 m 
of the road. Each flight was autonomous, meaning that the UAV followed a previously programmed 
and loaded path consisting of two passes parallel to the road axis. The flight speed was set at 3 m s−1 
with images being taken every three seconds in order to achieve an 80% forward overlap. The side 
overlap was fixed at 60%. The flight altitude was constant at 65 m above ground level, implying that 
every photo covered a surface of 85.12 × 63.84 m2. This resulted in an equivalent ground sample 
distance (GSD) of 1.75 cm pixel−1. A total of 746 images were selected from the four flights to use in 
the photogrammetric projects. 

Prior to the UAV flight, 47 targets were evenly arranged across the study area (Figure 4) to be 
used as GCPs or CPs. While GCPs help to georeference the project by establishing the coordinates of 
the model, CPs are used to assess its accuracy. Since the shape of the models adapts to the GCPs, 

Figure 2. Location of the study site. Coordinates refer to UTM Zone 30N (ETRS89, EGM08 geoid
model). The map of the Iberian Peninsula was extracted from Google Earth. The background map
on the right side was extracted from OpenStreetMap, and the square inset is an orthophoto of the
study site.

Remote Sens. 2020, 12, x 5 of 20 

 

 

 

Figure 2. Location of the study site. Coordinates refer to UTM Zone 30N (ETRS89, EGM08 geoid 
model). The map of the Iberian Peninsula was extracted from Google Earth. The background map on 
the right side was extracted from OpenStreetMap, and the square inset is an orthophoto of the study 
site. 

 
Figure 3. 3D cloud point corresponding to the northern end of the study site, showing a roundabout 
and several greenhouses. 

2.2. Data Acquisition 

The images used in this study were taken from a rotary wing UAV with four motors. The model 
employed was the DJI Phantom 4 Pro, which integrates a camera equipped with a one inch and 20 
megapixel CMOS sensor, and a f2.8–/f11 wide-angle lens with an equivalent focal length of 24 mm 
[36]. 

The whole study area was covered by four different flights, each covering approximately 525 m 
of the road. Each flight was autonomous, meaning that the UAV followed a previously programmed 
and loaded path consisting of two passes parallel to the road axis. The flight speed was set at 3 m s−1 
with images being taken every three seconds in order to achieve an 80% forward overlap. The side 
overlap was fixed at 60%. The flight altitude was constant at 65 m above ground level, implying that 
every photo covered a surface of 85.12 × 63.84 m2. This resulted in an equivalent ground sample 
distance (GSD) of 1.75 cm pixel−1. A total of 746 images were selected from the four flights to use in 
the photogrammetric projects. 

Prior to the UAV flight, 47 targets were evenly arranged across the study area (Figure 4) to be 
used as GCPs or CPs. While GCPs help to georeference the project by establishing the coordinates of 
the model, CPs are used to assess its accuracy. Since the shape of the models adapts to the GCPs, 

Figure 3. 3D cloud point corresponding to the northern end of the study site, showing a roundabout
and several greenhouses.

2.2. Data Acquisition

The images used in this study were taken from a rotary wing UAV with four motors. The model
employed was the DJI Phantom 4 Pro, which integrates a camera equipped with a one inch and
20 megapixel CMOS sensor, and a f2.8–/f11 wide-angle lens with an equivalent focal length of
24 mm [36].

The whole study area was covered by four different flights, each covering approximately 525 m of
the road. Each flight was autonomous, meaning that the UAV followed a previously programmed
and loaded path consisting of two passes parallel to the road axis. The flight speed was set at 3 m s−1

with images being taken every three seconds in order to achieve an 80% forward overlap. The side
overlap was fixed at 60%. The flight altitude was constant at 65 m above ground level, implying that
every photo covered a surface of 85.12 × 63.84 m2. This resulted in an equivalent ground sample
distance (GSD) of 1.75 cm pixel−1. A total of 746 images were selected from the four flights to use in
the photogrammetric projects.

Prior to the UAV flight, 47 targets were evenly arranged across the study area (Figure 4) to be
used as GCPs or CPs. While GCPs help to georeference the project by establishing the coordinates
of the model, CPs are used to assess its accuracy. Since the shape of the models adapts to the GCPs,
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independent CPs are used to assess accuracy by avoiding possible overestimations [25]. These points
were surveyed using rover and base GPS receivers, model Trimble R6, working in post-processed
kinematic (PPK) mode, and locating the base station within the range of 1 km away to all the
measured points. The base station coordinates were previously determined from the geodesic pillar
Las Lomas through a fast static process. The base station’s 3D coordinates are 533315.482, 4066520.639,
and 24.370 m, respectively. For the PPK measurements, according to the manufacturer’s specifications,
an error of 8 mm + 1 ppm RMS horizontal and 15 mm + 1 ppm RMS vertical can be expected [37].
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2.3. Image Processing

The photogrammetric process was carried out using an algorithm based on SfM-MVS techniques.
The workflow consists of a three-step process. In the first step, the algorithm searches for common
points, usually known as key points, among the uploaded images in order to align them through a
matching process. When two different key points from two different images are identical, they become
matching points. These matching points, as well as the approximate values of the image position
automatically extracted from the EXIF metadata, allow the algorithm to carry out a bundle adjustment
and calculate the 3D coordinates of each point. To improve the geolocalization accuracy, the process
was supported by both the loading of the GCP coordinates, measured as indicated in the previous
section, and the marking of these GCPs in the images. The results obtained from this first step are the
exact camera position and orientation for every image, the internal camera calibration parameters,
and the 3D coordinates of the sparse point cloud referred to the local coordinated system selected.
In the second step, the sparse point cloud is densified through the MVS technique. This technique
uses the calculated camera parameters to obtain a higher point cloud density and therefore a more
detailed 3D model. The 3D textured mesh is also generated during this second step. In the third step,
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the DSM can be generated from the densified point cloud, and, in turn, the georeferenced orthomosaic
is generated using the DSM. This entire process was carried out by the commercial UAV processing
software Pix4Dmapper, version 4.5.6 [38].

2.4. Ground Control Points

Of the 47 targets placed on the ground of the study site, 18 were used as GCPs, while the remaining
29 were used as CPs.

To assess the influence of the number of GCPs and their distribution on the accuracy of the
photogrammetric linear projects, 13 different configurations were designed. For this purpose, four GCP
distributions, with projects using different numbers of GCPs within each type of distribution, were taken
into account for the bundle adjustment. The number of CPs employed for all projects remained constant,
independently of the number of GCPs used. The different distributions studied were:

Distribution 1: GCPs were located on both sides of the road and faced each other, as indicated by the
red dots in Figure 5. Within this distribution, four projects using 4, 6, 10, and 18 GCPs were performed
(Figure 5a–d). The pairs of GCPs were chosen so that they were similarly spaced from one another.
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Figure 5. Location of the targets used as GCPs (red dots) for each project within Distribution 1. Four projects
using (a) 4, (b) 6, (c) 10, and (d) 18 GCPs were carried out.

Distribution 2: GCPs were located on both sides of the road in an offset or zigzagging pattern,
as indicated by the red dots in Figure 6. For this configuration, three different projects were carried out
using three, five, and nine GCPs (Figure 6a–c).

Distribution 3: GCPs were located on only one side of the road, as indicated by the red dots in
Figure 7. Under this distribution, three different projects employing three, five, and nine GCPs were
developed (Figure 7a–c).

Distribution 4: as in Distribution 2, GCPs were located on both sides of the road in a zigzagging
pattern, but there was an additional pair of GCPs located at each end of the corridor. Under this
distribution, three projects were carried out using 7, 9, and 11 GCPs (Figure 8a–c). This configuration
can be considered as a combination of Distributions 1 and 2.
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where: 
n is the number of CPs; 
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Figure 8. Location of the targets used as GCPs for each project within Distribution 4. Three projects
using (a) 7, (b) 9, and (c) 11 GCPs (red dots) were carried out.
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2.5. Accuracy Assessment

Two different methods are used to assess the accuracy of photogrammetric products. The first
method is the mean square root of square differences between the reconstructed model and the surveyed
coordinates of the 29 CPs, known as root mean square error (RMSE), since it can compensate errors
with positive and negative values [39]. Differences between the reconstructed model and the surveyed
coordinates are called errors, and the effect of each error on the RMSE of each error is proportional to
the size of the squared error. Thus, RMSE is sensitive to estimated outlier values because large errors
have a big effect on RMSE. Therefore, it is advisable to study the value of the error for each CP to check
whether it is an outlier and, if so, to try to find the cause.

The RMSE values for the X component, Y component, XY component, and Z component are
estimated as shown in Equations (1)–(4).

RMSEX =

√∑n
i=1 (XOi−XGPSi)

2

n
(1)

RMSEY =

√∑n
i=1 (YOi−YGPSi)

2

n
(2)

RMSEXY =

√∑n
i=1 [ (XOi−XGPSi)

2 + (YOi−YGPSi)]
2

n
(3)

RMSEZ =

√∑n
i=1 (ZOi−ZGPSi)

2

n
. (4)

where:
n is the number of CPs;
XOi, YOi, and ZOi are the X, Y, and Z coordinates estimated by the model for the ith CP, respectively;
XGPSi, YGPSi, and ZGPSi are the X, Y, and Z coordinates measured by GPS for the ith CP, respectively.

The second method used in this study to assess the accuracy of the point clouds obtained through
a UAV paired with SfM-MVS techniques consists of the freely available Multiscale Model to Model
Cloud Comparison (M3C2) plugin offered by the CloudCompare software [40]. For the comparison
of the different point clouds, a reference cloud was computed using the 47 surveyed points as GCPs,
assuming that it is the most accurate and precise that can be achieved with the available data.

The M3C2 algorithm calculates the local differences between the reference cloud and the compared
point cloud relative to local surface normal orientation. The algorithm does this through two different
steps [41]:

1. A user-defined diameter of the spherical neighborhood in the reference point cloud is used to
compute the local normal orientations. This user-defined diameter is known as the normal scale;

2. The normal orientation calculated is then used to project a cylinder, with a user-defined diameter
called the projection scale, inside which equivalent points in the compared point cloud are
searched for. From the points intercepted within the cylinder in each cloud, the average position
along the normal direction is calculated for both clouds. The local distance between the two
clouds is then given based on the distance between these averaged positions.

To ensure that the normal orientation is unaffected by point cloud roughness, the normal
scale was set as 25 times the average local roughness calculated for the reference point cloud by
CloudCompare [41]. To compare point clouds, the M3C2 distances between the reference point cloud
and the point clouds generated for the 13 projects were calculated. Mean and standard deviation
values calculated from the M3C2 distance were then used to assess the accuracy and the precision,
respectively, of each point cloud. The mapping of the errors and their distribution curve allowed us to
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determine the influence of the GCP distribution on the M3C2 difference spatial distribution and to
identify possible patterns for the spatial distribution of the errors.

3. Results

3.1. Accuracy Based on RMSE

For all four types of distribution considered in this study, the planimetric accuracy (RMSEXY)
decreases as the number of GCPs increases (Figure 9). For Distribution 1, in which GCPs were placed
on both sides of the road facing each other, RMSEXY values ranged from 0.061 using 4 GCPs to 0.027 m
using 18 GCPs. For Distribution 2, in which GCPs were located on both sides of the road and offset
from one another, RMSEXY values ranged from 0.076 using three GCPs to 0.026 m using nine GCPs.
For Distribution 3, in which GCPs were located on only one side of the road, RMSEXY ranged from
0.084 using three GCPs to 0.029 m using nine GCPs. Finally, for Distribution 4, in which GCPs were
placed according to a combination of Distributions 1 and 2, the planimetric error ranged from 0.031
using 7 GCPs to 0.028 m using 11 GCPs. Our results show that an increase in the number of GCPs
used in the bundle adjustment leads to an increase in planimetric accuracy, independent of the spatial
distribution. Only five GCPs (approximately 2.4 GCPs km−1) were necessary to achieve an RMSEXY

less than two times the GSD of the project, and no fewer than nine GCPs (4.3 GCPs km−1) were required
to achieve RMSEXY values less than 0.03 m. The improvement in planimetric accuracy when 18 GCPs
(8.6 GCPs km−1) were used was less than 0.01 m compared to the accuracy obtained with five GCPs.
The increase in accuracy became insignificant when more than nine GCPs were used.
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Our results also show that GCP distribution influences planimetric accuracy. Distributions 2 and 3
yielded very similar results. Furthermore, with an identical number of GCPs, Distributions 2 and 3
achieved better accuracy values than Distribution 1. Distribution 4 also improves upon the results
obtained by Distribution 1, yielding better or similar accuracy values with fewer GCPs. The lowest
RMSExy value was obtained with nine GCPs in a Distribution 2 configuration.

For all the photogrammetric projects performed, the values obtained for vertical accuracy (RMSEz)
are higher than those obtained for RMSExy. As with planimetric accuracy, the RMSEz also decreases
as the number of GCPs used for the bundle adjustment increases for the four types of distribution
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(Figure 10). RMSEz values ranged from 0.394 to 0.055 m for Distribution 1, from 0.679 to 0.071 m for
Distribution 2, from 0.931 to 0.105 m for Distribution 3, and from 0.081 to 0.055 m for Distribution 4.
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Independent of the distribution, at least seven GCPs (3.3 GCPs km−1) are necessary to achieve
RMSEz values significantly less than 0.1 m, and nine or more are required to obtain values less than
0.06 m. Three projects were close to the recommended RMSEz value of three times the GSD of the project
(0.053 m) [35]. For all distributions, the accuracy improves along with the number of GCPs included.
For Distribution 1, the difference between the use of 10 and 18 GCPs is less significant considering the
large increase in the number of GCPs. The accuracies obtained for projects in Distribution 1 using 10
and 18 GCPs and in Distribution 4 using 9 and 11 GCPs are very similar, ranging from 0.055 to 0.06 m.

Regarding vertical accuracy, the influence of GCP distribution is more evident than for planimetric
accuracy. While Distributions 2 and 3 yielded similar results in terms of horizontal accuracy, when it
comes to height accuracy, Distribution 2 achieves lower RMSEz values, with a difference of up to 0.03 m
when nine GCPs are used.

Distribution 1 significantly improves the vertical accuracy obtained for Distributions 2 and 3.
Using just 11 GCPs, Distribution 4 achieves an RMSEz value similar to the accuracy yielded with
18 GCPs in Distribution 1 (0.055 m). Furthermore, with the use of nine GCPs in Distribution 4, a very
close value (0.057 m) to Distribution 1 with 18 GCPs (0.055m) was obtained.

Taking into account both horizontal and vertical accuracy, the configurations with the lowest
total RMSEs are Distribution 1 with 18 GCPs (8.6 GCPs km−1, RMSEXY = 0.027 m, RMSEZ = 0.055 m),
and Distribution 4 with 11 GCPs (5.2 GCPs km−1, RMSExy = 0.028 m, RMSEz = 0.055 m). The configuration
with nine GCPs (4.3 GCPs km−1) in Distribution 4 yielded a total RMSE value of 0.064 m. For the
remaining configurations, the total RMSE is 0.07 m in the case of 10 GCPs (4.8 GCP km−1) in Distribution 1,
while the other distributions resulted in better values.

3.2. Accuracy Based on M3C2-Distances

For every distribution, point clouds become more accurate and more precise as the number of
GCPs increases. In most cases, with nine GCPs or more, mean difference values are around 0.02 m or
less and standard deviation values are less than 0.07 m. Distribution 3 yielded the worst results with
nine GCPs: 0.053 m (Figure 11).
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Figure 11. Multiscale Model to Model Cloud Comparison (M3C2) distance measurements between
the reference cloud and the clouds obtained from the different photogrammetric projects carried out.
(a) Mean difference (accuracy); (b) standard deviation (precision).

Further, for the majority of the projects carried out, neither accurate nor precise point clouds were
achieved with fewer than seven GCPs, regardless of the type of distribution employed. Distribution 3
presents higher standard deviations and mean values, which means lower precision and accuracy than
the other distributions. For projects with nine GCPs, the one placed according to Distribution 2, yielded
better accuracy but lower precision than those with 9 and 11 GCPs in Distribution 4. Distribution
1 with 18 GCPs resulted in the lowest standard deviation and smallest mean difference than any
other configuration, although similar values can be achieved with 9 or 11 GCPs placed according to
Distribution 4.
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In order to better understand how the distribution of GCPs impacts the accuracy of the projects,
the spatial distributions of the M3C2-calculated distance between the reference cloud and the clouds
from the photogrammetric projects were analyzed. For this purpose, only projects that used nine or
more GCPs were considered (Figures 12 and 13).
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Figure 12. Distribution of errors for the M3C2-calculated distance between the reference cloud and the
clouds obtained from the photogrammetric projects that used nine GCPs. The black squares represent
the locations of the GCPs. (a) Distribution 2, (b) Distribution 3, and (c) Distribution 4.
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Figure 13. Distribution of errors for the M3C2-calculated distance between the reference cloud and the
clouds obtained from the photogrammetric projects that used more than nine GCPs. The black squares
represent the locations of the GCPs. (a) Project with 10 GCPs in Distribution 1, (b) project with 18 GCPs
in Distribution 1, and (c) project with 11 GCPs in Distribution 4.

Although the mean difference was lower for Distribution 2, the precision improved considerably
when a pair of GCPs was placed at each end of the corridor (Distribution 4, Figure 12). Distribution 2
(mean = −0.008 m, standard deviation = 0.071 m) and Distribution 4 (mean = −0.011 m, standard
deviation = 0.063 m) achieved much better results for both accuracy and precision than Distribution 3,
which yielded a higher mean (0.053 m) and standard deviation (0.135 m).
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Figure 13 shows the spatial distributions of the M3C2-calculated distance between the reference
cloud and the clouds generated from the photogrammetric projects in which more than nine GCPs were
used to carry out the bundle adjustment. Although the project with 18 GCPs yielded the lowest values
for both accuracy (0.004 m) and precision (0.057 m), close values can be obtained with just 9 (accuracy
= −0.0121 m, precision = 0.0643 m, Figure 12) or 11 GCPs (accuracy = 0.011 m, precision = 0.063 m)
placed according to Distribution 4. This distribution has better values of accuracy and precision with
both 9 (accuracy = −0.011 m, precision = 0.063 m) and 11 (accuracy = 0.011 m, precision = 0.063 m)
GCPs than those of Distribution 1 with 10 GCPs (accuracy = 0.021 m, precision = 0.064 m). This could
be caused by the better distribution of GCPs in Distribution 4 than in Distribution 1, where the pairs of
GCPs are very close.

4. Discussion

In the literature, there is little research that focuses on studying the effect of the number and
distribution of GCPs on the accuracy of UAV photogrammetric projects on corridors. Most of the studies
are focused on surfaces where one dimension is not much larger than the other. Skarlatos et al. [35],
on a corridor measuring 2.2 km × 160 m, used a GCP distribution similar to our Distribution 4, with two
points at each end of the corridor and others (one, two, and three points) along the corridor. Therefore,
their project with seven GCPs is equivalent to our Distribution 4 with seven GCPs, which represents
3.3 GCPs km−1. In this situation, Skarlatos et al. reported an RMSExy = 0.130 m and an RMSEz = 0.170
m, while our results were RMSExy = 0.031 m and RMSEZ = 0.081 m. The main difference between
Skarlatos et al.’s study and our own is the GSD: 0.040 m for their images and 0.0175 m for our images.
If we consider the GSD, Skarlatos et al. achieved horizontal and vertical accuracies of approximately
three and four times the GSD. In our work, the planimetric accuracy was better (less than two times the
GSD of the project), but the vertical was similar (in the range of four times the GSD). These accuracies
can be improved by adding more GCPs, independently of their distribution. When Skarlatos et al.
used all 16 measured points as GCPs, they report an RMSExy = 0.070 m and an RMSEz = 0.130 m,
which are higher than those found in our work for Distribution 4 with 11 GCPs (RMSExy = 0.028 m
and a RMSEz = 0.055 m). If we again consider using the GSD to compare the results, the values are
similar: 1.75 and 1.6 GSD for horizontal accuracy and 3.25 and 3.14 GSD for vertical accuracy. In any
case, it should be noted that the accuracy values of Skarlatos et al. when 16 GCPs were considered
were calculated from the GCPs themselves.

Tahar [22] evaluated different numbers of GCPs in a UAV photogrammetric block. Although Tahar
did not indicate the linear dimension of the study area, the text refers a road to this. Several combinations
of numbers (from four to nine) and distributions of GCPs were tested to study their influence on the
achieved accuracy. The best RMSEs calculated in that study were reached using nine GCPs: 0.48 m for
the horizontal component, and 0.78 m for the vertical component, which are larger than any value
found in any of our projects. In that work, the GSD is not reported, so it is not possible to make a
comparison using this value.

Zulkipli and Tahar [9] focused on using UAV as a tool to capture data of the ground for road
design. Considering that the study site was not a corridor and the results are not comparable to ours,
they obtained RMSE values of 0.155, 0.228, and 0.479 m for X, Y, and Z, respectively, with six GCPs
and a fly height of 148 m (the GSD value is not reported). These values mean that, although the
height accuracy is close to the one presented in the present study for six GCPs and Distribution 1,
the planimetric accuracy is much higher for the same number of GCPs since an increase in the number
of GCPs is necessary to improve the accuracy of photogrammetric projects, as the authors concluded.
Nevertheless, since the fly height of the present study is 65 m, while in Zulkipli and Tahar it was 148 m,
their GSD was likely larger than ours, and it is important to note that, as the flight height (and, in turn,
the GSD) increases, the accuracy deteriorates [27]. One of our main findings is that the project using
more GCPs was not the most accurate. It is very important to consider not only the number of GCPs
but also their distribution across the study area.
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Tournadre et al. [34] aimed to present a method to assure precise accuracy in UAV photogrammetric
projects of linear works and to minimize the number of GCPs required. Their study was developed
on a corridor of 600 × 15 m. The influence of camera calibration, the inclusion of oblique images,
and the number of GCPs on the magnitude of the bowl effect in the UAV photogrammetric project
was studied. They concluded that one GCP for each 100 m (six GCPs in the studied corridor) is the
optimal distribution to reduce most of the CPs reprojection errors to less than one centimeter, they do
not mention GCP distribution. Our accuracies with six GCPs are better than the accuracy given by
Tournadre et al., but they do not report the project GSD.

Several studies have already proven that the distribution of the GCPs affects the accuracy of the
projects, and a good geometrical distribution of GCPs will lead to better accuracies [21,29]. In terms of
the distribution of GCPs, since the results of the projects using GCPs on only one side of the road were
the worst in both the RMSE and M3C2 distance values, we found that, to improve the accuracy in
corridor-shaped projects, it is necessary to place GCPs on both sides of the road. The distribution in
which the GCPs are placed alternately on each side of the road and separated by an offset distance
presented results similar to those of the distribution in which GCPs are set out in pairs along the road.
However, the best results were yielded by a combination of both, in which the GCPs were set out
in an offset pattern but with the addition of a pair of GCPs at each end of the road, yielding better
results with just 11 GCPs (5.2 GCPs km−1) than another distribution using 18 GCPs (8.6 GCPs km−1).
This configuration yielded values less than two and three times the GSD of the project for both
horizontal and vertical accuracy.

In view of Figures 12 and 13, it can be deduced that there are no significant errors in the clouds of
the projects represented and that these are not concentrated in certain areas. An exception is Distribution
3 with nine GCPs (Figure 12), where values of approximately 0.3 m are reached in the southeast area.
This is related to the RMSE values found for the CPs located in the same area (points 12, 13, and 17,
Figure 4). In the other representations of the error distribution in Figures 12 and 13, the values of the
errors observed in an area are in agreement with the RMSE values calculated for the CPs located in
that same area.

The results derived from both methodologies used to assess the accuracy are coherent. Similar results
were obtained through these two different approaches, thus strengthening the conclusions of the work
carried out. Furthermore, when the distribution of errors for the M3C2-calculated distance between
the reference cloud and the clouds was obtained from the different photogrammetric projects, no bowl
effect was observed, even when the number of GCPs was small.

5. Conclusions

This study was performed to assess how the number of GCPs and their distribution impact the
accuracy of UAV photogrammetry projects in a corridor-shaped study site. For that purpose, several
projects with different configurations were carried out on a 2.1 km road, where 47 points were surveyed
to be used either as GCPs or CPs. To assess accuracy, RMSE values from the georeferencing process
and the M3C2 distance from the point clouds comparison were used.

For all the distributions studied, both horizontal and vertical accuracy improved as the number
of GCPs used in the bundle adjustment increased, and planimetric accuracy was always better than
vertical accuracy. Independent of the chosen distribution, no fewer than seven GCPs (3.3 GCPs km−1)
must be used to reach values of RMSExy ≤ 0.031 m and RMSEz ≤ 0.081 m. The best results were
achieved for those distributions where the GCPs were placed on both sides of the road. Placing GCPs
alternatively on each side of the road and separating them by an offset distance, with a pair of GCPs
placed at each end of the corridor, proved to yield the best results.

Considering the results, configurations with 9 or 11 GCPs (4.3 and 5.2 GCPs km−1, respectively)
placed on both sides of the road in an offset pattern, with a pair of GCPs at each end, yielded the best
results in terms of balancing the accuracy and fieldwork, with RMSE mean values of 0.029 and 0.028 m
for horizontal and 0.057 and 0.055 m for vertical accuracy, respectively. Similar results in terms of
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RMSE values (0.027 for horizontal and 0.055 m for vertical) and slightly better results in terms of M3C2
distance (mean difference and standard deviation) were achieved with 18 GCPs (8.6 GCPs km−1) set
out in pairs along the corridor. Since every GCP must be surveyed using high-accuracy technology,
the use of 9 or 11 GCPs, with the offset distribution mentioned previously, is recommended in study
areas similar to that assessed in this study, since it can significantly reduce both the fieldwork and
survey duration without a loss in accuracy, compared to the use of a higher number of GCPs placed
according to other distributions.

To determine if the conclusions derived from this study are generally applicable, it would be
necessary to carry out related studies in corridors with different terrain morphologies.
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Abstract: The current computer technology facilitates the processing of large volumes of information
in architectural design teams, in parallel with recent advances in-flight automation in unmanned aerial
vehicles (UAVs) along with lower costs, facilitates their use to capture aerial photographs and obtain
orthophotographs and 3D models of relief and terrain textures. With these technologies, 3D models
can be produced that allow different geometric configurations of the distribution of construction
elements on the ground to be analyzed. This article presents the process of implementation in a
terrain integrated into the early stages of architectural design. A methodology is proposed that covers
the detailed capture of terrain, the relationship with the architectural design environment, and its
implementation on the plot. As a novelty, an inverse perspective to the remaining disciplines is
presented, from the inside of the object to the outside. The proposed methodology for the use of UAVs
integrates terrain capture, generation of the 3D mesh, superimposition of environmental realities
and architectural design using building information modeling (BIM) technologies. In addition,
it represents the beginning of a line of research on the implementation of the plot and the layout of
foundations using UAVs. The results obtained in the study carried out in three different projects
comparing traditional technologies with the integration of UAVs + BIM show a clear improvement in
the second option. The use of new technologies applied to the execution and control of work not only
improves accuracy but also reduces errors and saves time, which undoubtedly indicates significant
savings in costs and deviations in the project.

Keywords: photogrammetry; orthophotography; construction planning; sustainable construction;
urbanism; BIM; building maintenance; UAV; unmanned aerial vehicle

1. Introduction

The use of unmanned aerial vehicles (UAVs) for photogrammetry has been driven by three
aspects: the improvement of their performance both in-flight stability and in increasing the quality of
photographic capture, and the developments in the field of graphic computing with structure from motion
algorithms (SfM) Eisenbeiss and Sauerbier [1], García-Pulido et al. [2] Irschara et al. [3]. Today’s UAVs,
costing less than $1000, can fly over planned routes and carry out photo capture plans at predefined
heights with photo resolution above 20 megapixels Colomina et al. [4] Rodriguez-Navarro et al. [5]
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García-Pulido et al. [2]. With the improvement of image resolution, it is still important to improve the
accuracy of point correspondence calculations between different photographs Agüera-Vega et al. [6],
Dai and Lu [7] in addition to improving computational processes Fraser and Edmundson [8].
The current status of UAVs and their photogrammetry allows 2D and 3D models to be obtained
from photographs taken with certain restrictions Everaerts [9] and are based on classic stereo viewing
techniques Hiep et al. [10]. The field of photogrammetry UAV application has evolved in all disciplines.
This article presents a design methodology based on two starting points: obtaining 2D and 3D terrain
models with acceptable quality and precision in construction and the availability of integrated systems
in the design and execution phases of buildings to be integrated into BIM (building information
modeling) tools. There are three different situations: the possibility of using it as an instrument of
measurement and representation (data collection), a tool for the architectural design phase (decision
making) and finally, as a tool for reconsideration (implementation).

1.1. From Outside-to-Inside

The work with UAVs in buildings is mainly from an outside view to the inside (of the buildings),
that is, as an element of remote observation, from a mapping point of view to obtain a catalog of what
exists. This technology is increasingly being used to support inspection tasks in industrial and civil
applications. Usually, the end user completes the procedure once the flight mission is over, and the
video transmission and joint data collected by the UAV are examined. At this point, it can be integrated
with the BIM methodology.

Applied in disciplines closer to architecture such as archeology, digital cataloging improves
conservation, archeological research and local tourism, as demonstrated by the Delphi4Delphi
International Project on Cyberarchaeology in Greece. Archeology has an advantage over architecture
in the application of UAVs in the initial cataloging phase, and the first moral and technical debates
arise from the fact that it involves a very high cost of labor and concerns arise as to whether a midrange
scanner can capture enough details about rock art Opitz et al. [11]. The use of UAVs is rapidly advancing
in almost all disciplines where there are objects to be observed, cataloged or recorded. The creative use
of this instrument shows that there is a wide field of application in all of these disciplines, which leads
us to investigate their inclusion in the field of architecture and propose new uses.

The origin of unmanned aerial vehicles (UAVs), commonly known as “drones”, can be
placed chronologically at the beginning of the 20th century with mainly military purposes
Dalamagkidis et al. [12], and many civilian uses have emerged in this decade. The use of UAVs has been
extended to search and rescue missions Kim et al. [13], surveillance, transport systems Sánchez-Bou
and López-Pujol [14], high-resolution map production, fire detection Wing et al. [15], crop monitoring
or fumigation Faiçal et al. [16], forest inventory studies, and the propagation of trees by studying conifer
tree cover Ivosevic et al. [17]. UAVs have also been applied in geothermal energy Harvey et al. [18],
biodiversity and biology Bohmann et al. [19]. One of the most frequent uses of UAVs is their application
to the calculation of volumes. These techniques are complemented by others such as the evaluation of
the accuracy of ice measurement with terrestrial laser scanner Gasinec et al. [20].

Applied to earthworks in civil works, it can reach accuracies of up to 2.5 cm per pixel, which
allows us to record the furrows of tractor wheels Vergouw et al. [21]. Another field of application
for UAVs is the study of wildlife conservation by remote control; their use allows information to be
collected from places that are difficult to access, minimizing disturbance and allowing biodiversity to
be predicted Ivošević et al. [22]. In the field of application of automatic object detection, its use allows
a step to be taken between manual operation and the complete automation of traditional inspection
procedures Vaquero-Melchor et al. [23].

1.2. From Fieldwork to Virtual Design: BIM as a Tool towards Sustainability

In disciplines such as architecture and within the set of activities that we refer to as
outside-to-inside, the most frequent area of application is an intervention in heritage. Europe is
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at the forefront of digital cultural heritage. In addition to topography, soil measurements, inspections,
photography, construction site monitoring or surveillance, 3D optical documentation of both buildings
and urban elements (old or modern) is also available Arias et al. [24]. Applications include the
control of historic buildings Püschel et al. [25] and the detection of defects in structures or building
facades Aydin [26] Remondino et al. [27]. For its application in construction, activities with UAVs
such as weaving Mirjan et al. [28], painting surfaces Vempati [29], collecting and laying bricks
Augugliaro [30] or spraying mortar Chaltiel et al. [31] have been underway for years.

The search for efficiency within the construction industry has led to savings in all areas to
minimize production costs. The new tools for generating virtual scenarios, provided by the UAVs
among other systems (Figure 1), facilitate the study of the constructive possibilities of a terrain; that is,
the possible studies of landscape integration, orientation and composition of future buildings. Based
on the mesh generated on the plot, together with the necessary tools, the final building results can be
approached with a computer model Garrigós and Kouider [32].

Figure 1. Sample of the topographic survey generated by a UAV in the illustrated forest of the
University of Alicante.

Poor management of information in previous phases of the construction process (design,
orientation, distribution, etc.) turns buildings into energy loss systems Gaujena et al. [33]. There
are researchers devoted exclusively to interpreting the relationship between the shape of a building
and its energy consumption demand for both temperate and cold climates Domínguez et al. [34].
The projection forms generated by the new software allow for more accurate representations that help
generate more efficient buildings in all fields and stages Cho et al. [35]. The common objective of this
process is to achieve the highest efficiency buildings Pellegrino et al. [36] Larsen et al. [37]. Researchers
worldwide are developing strategies to address and integrate these techniques into construction
processes Wang et al. [38]. There are even BIM tools that allow us to detect whether the modeling of a
building is accurate according to the construction conditions Lou et al. [39].

The demand for sustainable buildings with a low environmental impact is increasing. Building
information modeling (BIM) gives the building construction process greater control over the
energy performance of buildings from the earliest stages. Studies have measured the performance
of different programs, such as Virtual EnvironmentTM, EcotectTM or Green Building StudioTM

Azhar and Brown [40]. Construction management programs also extend to the modeling of the
complete life cycle of buildings (LCAs) Bruce-Hyrkäs et al. [41]. IT developments help to ensure
that efficient construction measures are provided even in the early stages of projects Jalaei and
Jrade [42]. Buildings are becoming more sustainable due to these processes and generate a lower
environmental impact Turner et al. [43]. Building designs managed from BIM software can help
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sustainability directly or indirectly, saving in construction processes, optimizing orientations, spaces,
piping or even providing information on energy costs according to different project strategies Krygiel
and Nies [44]. The construction design should start by analyzing the evaluation of the thermal load
loss of the building according to its location Peruzzi et al. [45] Pérez-Lombard et al. [46]. In Italy, this
process is defined by the UNE EN ISO 13790 standard.

Research in these fields is also applied to buildings Vollaro et al. [47]. There are branches
of research that apply techniques for recognizing the properties of buildings that have already
been built Ham and Golparvar-Fard [48]. Evaluation tools increasingly condition interventions
in existing buildings Motawa and Carter [49]. Simulations of the energy demand of a building
allow the interpretation of thermal needs according to the location conditions Kim et al. [50], and
even according to the materials used and their life cycle from their construction to their use stage
Martínez-Rocamora et al. [51]. There are studies that combine these work processes with case studies
and compare the different typologies and constructions Scheuer et al. [52] Raji et al. [53]. These
processes also help to find the optimal conditions for passive buildings with almost no energy
consumption Mahdavi and Doppelbauer [54] or tall buildings Raji et al. [53].

The carbon footprint is the maximum element of control of whether a generated process is
sustainable. Buildings can be measured to confirm the carbon footprint they generate during their lifetime
Qin et al. [55], even during their end-of-life stage for subsequent recycling Thormark [56]. Regulations
are becoming increasingly stringent in the field of construction, even if the measurement systems for
these processes are not yet optimally developed Bribián et al. [57] Tronchin and Fabbri [58]. Therefore,
technology is being applied to develop more efficient buildings and to monitor those already
implemented Serrano and Álvarez [59] Evangelisti et al. [60]. In addition, work is underway to introduce
these advances into the regulatory and control processes for building energy systems Evangelisti [61].
These jobs can lead to savings that could be of social interest Macias et al. [62].

2. Objectives

2.1. Bringing the Outside-to-Inside Methodology Closer to the User

All the examples of UAV applications we have discussed are from an outside-to-inside view.
Our proposal for application to the architectural discipline is proposed in two phases: the topography
phase and the stakeout phase:

1. Topography: Its application not only consists of the collection and cataloging of data but also
if the novelty of the inside to outside perspective is added in this chronological stage of the
design implementation process, it can serve as a real scenario of the architecture and be used as a
projection tool.

2. Stakeout: Through the application of UAVs, the novelty of serving as a tool for staking out
foundations and arming is proposed.

2.2. UAV Environment Acquisition. Photogrammetric 3D Reconstruction

The management of information prior to the development of a building has different stages, from
the fieldwork where the environmental information is accumulated (the work with UAVs creates great
advantages) to the creation of the final images of the future project. Figure 2 shows the four stages
of work for the creation of virtual images in architecture: photogrammetry, 3D design, rendering
and postproduction.
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Figure 2. Image showing the different stages of work for the creation of virtual building images.

The technology of capturing environments with UAVs applied to this design phase makes it
possible to realize the way in which an architectural space is inhabited and the relationship with
the place from within the architecture; something that is difficult to achieve with other tools such as
models. A model allows the previous study from outside-to-inside to be a very powerful instrument
of architectural analysis Carrión et al. [63].

The use of the UAV in buildings is used to obtain all the fundamental aspects of a place, location or
urban environment by using the UAVs for the 3D reconstruction associated with its cadastral reference
as a tool to project any object.

The technology used by UAVs to reconstruct 3D surfaces from photographs is a mathematical
problem that has been explained by Koch Koch [64]; it uses the correspondence of different images
taken from different positions, which combined with interpolation and triangulation allows the height
map needed to create a 3D mesh of the terrain to be reconstructed.

In the case presented in this study, a UAV was used to systematically scan the terrain following a
predetermined path, in which one of the starting conditions of this route is the high overlap between
the programmed images. Thus, the system uses multiple photographs of the terrain, which are
paired to form a stereo pair. In other words, by capturing the same area from different positions, it is
possible to make out the correspondence of points between them which, together with the necessary
trigonometric information, produces a model with the 3D surface reconstructed in a way faithful
to reality.

The programmed flight carried out by the UAV has a trajectory and height of flight fixed in each
instant that allows us to interpret the data of coating or overlap between the different images where
each one of the photographs was taken with respect to the contiguous photograph. The stages of this
process are as follows:

• Programming the route with the premises
• Obtaining images
• Image adjustment and correlation.
• Correspondence of the same point in several images.
• Dimensioning by means of epipolar geometry.

3. Method

3.1. Photogrammetry with UAV

The interpretation of the data obtained by the UAV is a process based on a trigonometric problem.
In a photograph, there is a main point where the perpendicular axis of the photograph intersects the
plane of the ground. The main distance is a feature of the camera that corresponds to the distance
between the lens and the negative plane of the photograph.

In addition to the data that must be recognized in the photograph, the scale at which the work is
performed is also important, since it is directly proportional to the height at which the photograph
was taken. Obtaining the 3D reconstruction of the terrain is considered in two situations represented
in Figure 3 Otero et al. [65].
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Figure 3. Image showing the difference between the type of photograph studied. (Left) flat terrain.
(Right) variable terrain.

When the topography is practically horizontal, it is considered to be flat terrain, as it is easy to
obtain the working scale with the following equation directly proportional to the focal length of the
camera and inversely proportional to the height of flight:

ab
AB

=
f
H

=
1
E
= Scale o f the photograph,

where E is the scale module.
Unlike flat topography, when the working height at the different points is uneven, it is considered

a variable terrain. Therefore, to calculate the working scale, the height must be recalculated at each of
the points since the terrain approaches and moves away from the camera lens according to the main
working point. With an image taken at a height h, you have the following relationship:

1
E
=

f
H − hm

hm =
h1 + h2

2

In the departure orders that are established before the flight, some indispensable parameters are
set: the flight height and the route and the image overlap (Figure 4). The flight altitude is obtained
by GPS from the takeoff point, which is considered to be the starting point, at altitude 0. The flight
path marks the different areas through which the UAV will pass and the moment when it will take
an image, making an overlap or coating between one and the other. The distance between the main
points of consecutive pictures allows us to fix a longitudinal coating between consecutive pictures and
a lateral overlap between adjacent pictures, usually taken in opposite directions.

Figure 4. Image showing the outline of a route where the course and position in which the photographs
will be taken are shown.
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If we consider that the starting parameters are the following: frame side (s), frame scale (E)
and longitudinal overlap (p), the air base, which is the distance in the air between two consecutive
photographs (Figure 5), is calculated according to the following relation:

s ∗ (1− p%) Ev.

Figure 5. Diagram showing the relationship between two points where the photographs are taken.

Thus, the distance of the photographs taken on the route can also be defined with the
following expression:

s ∗ (1− q%) Ev,

where q is the transverse coating.

3.2. Stereoscopic Correspondence

The main problem encountered in terrain reconnaissance using UAVs is identifying specific points
in different images. This has to do with the overlap of the images; the more overlap, the easier it is to
find points of correspondence in different images. The way to solve this situation is the same way that
it is used by human beings. We measure distances from the images captured by both eyes that come
together in the brain. Applying this concept to the field of photogrammetry means solving a problem
of homologous ray geometry. This process consists of four stages Vergouw et al. [21], Sánchez and
Sobrino [66]:

• Internal orientation. Determination of the perspective beam from the data known as the focal
length and other parameters mentioned.

• Relative guidance. Determination of the position of one beam in relation to the other.
• Absolute orientation. Location and scaling according to a system of terrain coordinates
• Restitution. Identification and correspondence of homologous rays and therefore of the height of

the points on the ground.

In a predetermined flight, the height is calculated by the GPS data, considering the takeoff height,
which is considered a height of 0 m. The identification of the homologous points is made by means
of epipolar geometry that is based on a stereo pair of images; that is, once the correspondence of the
points has been identified, the intersection of the projected lines is made to calculate the 3D coordinate
(Figure 6).

The distance z′ from point P to the UAV camera is determined by the following trigonometric
equations, where b is the air base and f is the focal length of the camera:

z′ =
b f

(xi
′ − xd

′)
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Figure 6. Representation of how to take data on a predetermined flight. The height is calculated with
the GPS data, considering the takeoff height, which is considered to be 0 m.

3.3. Description of the Photogrammetric Techniques Used

The UAV used in this article is the DJI Phantom 3 Advanced quadcopter, which has a GPS-based
navigation system and a barometric system for altitude control. The UAV imaging system consists of a
12-megapixel camera with an f/2.8 lens and a 94-degree FOV mounted on a three-axis gimbal.

The photogrammetric techniques used are aimed at obtaining the 2D model (orthophotography
of the terrain) and the 3D model (terrain relief). Two software systems were used for the tests:
Dronedeploy and Pix4d. Both are goal-oriented, although each brings positive aspects (Figure 7).

We start by defining the area to be captured, first establishing the height above ground level at
the UAV launch point; in the example used as a guide to the method, this was performed with a flight
height of 90 m. At higher altitudes, fewer photographs will be needed, in exchange for losing resolution.
Next, the outer perimeter of the capture is defined, and the overlap values of the photographs are
set (lateral overlap is set at 65% and frontal overlap is set at 85%). In addition to the flight height,
these two values influence both the quality and the number of photographs that will finally be taken
(Figure 8).

Figure 9 shows the overlaps between photographs in a contour where the measurement is to
be made of 2.69 hectares of surface. The image shows the points from which the 77 photographs
required for this example are taken with the preset parameters. The UAV camera is oriented vertically
to the ground.

From the 77 photographs, the orthophotography of the terrain is obtained, which is superimposed
on the Google Maps satellite image in Figure 10. The orthophoto allows different operations to be
carried out that serve to study the area and determine the different options for creating and locating
buildings: measuring with precision, determining the elements present in the terrain, carrying out
different simulations of plot occupation, sunshine, shadows cast, etc.
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Figure 7. Unmanned aerial vehicle (UAV) flight path and image generation.

Figure 8. Image capture path preparation process. (Left) contour of the plot. (Right) route and
shooting points.

Figure 9. Overlaps between the different photographs on the selected plot.

The triangulation of each point allows the terrain elevation map to be obtained, as shown in
Figure 11, in which a gradient between blue (level 0) and red can be seen. The points of zero height are
represented in dark blue and the height of 12 meters, maximum present in the region, of the adjacent
buildings in red.

This technology allows the option of representing the terrain in 3D, that is, with the high-resolution
orthophoto obtained and the difference in height of each point, a solid representation is generated.
This solid representation is represented by a relief and texture, as shown in Figure 12, and serves
as a starting point for working on the geometry of the building, its location within the plot and its
relationship with the environment.
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Figure 10. Image of the final orthophoto superimposed on the Google Maps satellite image.

Figure 11. Image of the program Pix4D that represents the difference in heights in each point of the
region in a blue-red gradient.

Figure 12. Image of the solid generated by the UAV with the information obtained from photographs
and heights.

138



Remote Sensing 2020, 12, 2329

3.4. The BIM Software Interconnection. Connection of BIM Modules

The construction process from the beginning of the idea to the execution of the project is linked
to the method of the architect in charge of the work. Computer software advances have made it
possible to move from making all calculations and drawings by hand to being able to make them with
a computer. The first software tools to help in this process were simple 2D line drawing tools and
calculation systems for both structures and costs (time and economy). These programs have been
developed over time to the second-generation tools, the BIM software.

BIM software programs, or building information modeling, are computer tools designed to
digitally model and manage the integral information of a building for all phases of its life cycle in the
form of a database Gu and London [67]. For this, 2D lines are not drawn as in CAD or computer-aided
design programs, as the management of 3D files is direct; that is, working from one of the views or
construction phases implies an update in the derivatives.

In BIM programs, all building information is managed Succar et al. [68], not only its design
plans but also the definition of facilities and structure, which imply other indirect variations such
as costs. In a large majority of the interventions analyzed, the same common denominator is found;
there is no complete level of interoperability between data collection programs and BIM software
Achille et al. [69]. However, the research developed allows such interoperability, which is a great
advantage. From the point of view of the relationship with the environment, the method in which
work is performed on an urban scale and on the scale of the architectural object is also fundamental.
Some experts argue that the goal is to integrate GIS and BIM Scianna et al. [70]. The use of XML-based
formats would allow the standardization of information and consult metadata of both scales on the
same platform.

3.5. Integration of the Projected Building with Building Information Modeling (BIM)

The tools for generating topographies described by means of UAVs have made it possible to
obtain detailed information about a certain area where the building is planned to be constructed.
These data are treated with both 2D and 3D software tools, that is, they work on both the X–Y and
Z planes. This is also reflected in the type of program used by BIM for the interconnection of all parts
of the construction. In the introduction, we mentioned the advantage that archaeology has over UAV
architecture for the data collection phase, which also applies to BIM integration.

Today, the accuracy of 3D photo surveying allows information to be quickly recorded and loaded
into BIM systems. That the technological advances in data collection and its incorporation into BIM
mark a before and after in the conception and design of a building is currently an objective reality.
However, it is necessary to go deeper into the relationship with the environment in which the building
is located with the application of these technologies to the execution on site.

4. Evaluation of the Results Obtained in the Experience. Classic Method against UAV + BIM

At present, the process to follow after the purchase of a plot is to carry out a topographical and
geotechnical study as initial tasks to carry out an execution project of a building. The main difference
between the two is that the second is mandatory by law when the building to be executed must comply
with the Spanish Technical Building Code (CTE) 699 [71]. However, as we mentioned, the first can
be crucial for the development of the proposal and even more for the control of the execution in its
initial phase of rethinking, as we will see in the following case study. Good architecture is traversed,
crossed, both inside and outside Corbusier et al. [72], and we have to learn to appreciate the effective
confluences of the exterior and interior Neutral et al. [73]. In this sense, it is essential to strengthen
the precision of the 3D models for a better understanding of the architecture and its environment.
For this reason, the paths and 360º images are parts of the projects and must integrate the architecture’s
environment not as a static image but as an augmented reality.
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The 2D topographic study of a plot of land is between 350 and 475 m2, as in the case study.
The practical case we present of this work system, adapted to the region studied by the UAV, allows us
to analyze from outside-to-inside the different options of volumetry and fit in the studied plot and the
relation from the inside with the environment. Figure 13 shows volumetric work done in a 3D software
program and the adaptation of this program to the solid representation generated by the UAV.

Figure 14 shows the process carried out for the integration of the building within the plot.
This work is very useful within the first stages of study of certain buildings since it allows for different
tests to see in real time a faithful approximation of the final construction.

To clarify the progress in time and cost reduction, three projects were analyzed according to the
protocol followed in each of them. The three methods of approaching the implementation in the plot
were the traditional method of data collection with 2D computational work, the traditional method
with BIM and UAV + BIM.

Figure 13. (Left) volumetry generated in 3D software. (Right) integration of the volumetry generated
in the solid generated with the UAV flight.

Figure 14. Image showing the integration process of a volumetry generated in 3D software over the
solid representation generated by the UAV flight. The process described shows the proposed technique
used. The photogrammetric data of the plot are obtained, the new work is adjusted and the two
processes are integrated (UAV + building information modeling (BIM)).
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Table 1 shows the synthesis of the results obtained in two situations compared to the architectural
design, the design with 2D tools or with 3D software (BIM methodology). There are two methods of
taking data from the plot; the traditional method with a total station and by means of DRON. In the
early phase studied in the three assumptions, it was possible to quantify the time savings in the data
collection phase for restatement. The accuracy factor is directly proportional to the number of points
and, therefore, to the execution time of the data collection, so that in the face of the need for more time
for greater precision of a technician in topography, the use of UAVs requires a maximum of 1 h for
an area of 500 m2. The incorporation of UAVs in the early phase of implementation is proposed as
a qualitative leap compared to traditional techniques. The implementation of this technique in the
topography phase, the flight and its subsequent incorporation into BIM programs allows the complete
database to be available for all subsequent operations (Figure 15).

Table 1. Comparison between the three assumptions in the early project phase.

Early Project Phase Assumption 1
Traditional/2D

Assumption 2
Traditional/3D BIM

Assumption 3
UAV/3D BIM

Accuracy 50% 75% 100%
Time
(plot 500 m2)

4 h +1 h 4 h +1 h 1 h +1 h

Interconnection 70% 85% 100%
Changes NOT NOT YES
360º NOT YES YES
Tour NOT NOT YES

Currently, the common methodology for staking out a plot is performed by means of plaster on
the ground and at a later stage, tile on concrete for cleaning. The accuracy of these tools common
in the construction world is far from the levels of accuracy of design tools. For this reason, UAV
technology has been applied both to the creation of the topographical plan of the plot and to the laying
out of the foundations, giving higher levels of precision than traditional methods. In Table 2, the
precision and time data for the three scenarios studied were collected. The result is an improvement in
accuracy during stakeout and assembly of 100%. In addition, although the process in scenario 3 took
longer than scenarios 1 and 2 using the traditional method of restatement, it required only one person.
The implementation with traditional methods required two people to correctly establish the main axes
and foundation limits with respect to the boundaries of the plot, something that the use of UAVs and
georeferences did not require.

Table 2. Comparison between the three assumptions in the stakeout/armament phase.

Armed Stakeout Assumption 1
Traditional/2D

Assumption 2
Traditional/3D BIM

Assumption 3
UAV/3D BIM

Accuracy mm/cm mm/cm mm/mm
Time 100 m2 slab 1 h 1 h 0.7 h
Accuracy 70% 85% 100%
Staff 2 2 1 (UAV pilot)
Control under medium high
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Figure 15. Image showing the process of building stakeout before excavation with gypsum, slab
perimeter stakeout on polyethylene film with spray coupled to DRON; marking pillars with a traditional
shape strip and reinforcement of the foundation slab with dotting of slab rebar by UAV and spray.
The different processes show the difficulties in marking the lines executed with a computer in the field.

5. Conclusions

The benefits of the use of UAVs in the early stages of architectural design and the connection
with BIM programs have been demonstrated, making them a tremendously effective working tool.
The suitability of the 3D photogrammetric survey has been proven against traditional techniques. The
3D technique allows the information to be quickly recorded and loaded into BIM systems.

The triangulation of each point of the survey allows us to obtain the complete terrain elevation
map and a flight with 360º visibility that allows greater control and detail of the relationship of the
architectural project with the environment in all directions.

The results obtained in the study carried out in three different projects comparing traditional
technologies with UAV + BIM integration show a clear improvement in the second option. In the
early phases of work, both the accuracy and the time spent show an improvement in UAV + BIM
technology, as well as allowing changes in the project phase. In the phase of setting out the assembly or
structure, greater precision, and less time and need for personnel, as well as more control over changes
are achieved.

Finally, the use of new technologies applied to the execution and control of work not only
improves accuracy but also reduces errors and saves time, which undoubtedly means a significant
saving in costs and deviations in the project.
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Abstract: Snowmelt from mountain forests is critically important for water resources and hydropower
generation. More than 75% of surface water supply originates as snowmelt in mountainous regions,
such as the western U.S. Remote sensing has the potential to measure snowpack in these areas
accurately. In this research, we combine light detection and ranging (lidar) from crewed aircraft
(currently, the most reliable way of measuring snow depth in mountain forests) and structure from
motion (SfM) remotely piloted aircraft systems (RPAS) for cost-effective multi-temporal monitoring of
snowpack in mountain forests. In sparsely forested areas, both technologies give similar snow depth
maps, with a comparable agreement with ground-based snow depth observations (RMSE ~10 cm).
In densely forested areas, airborne lidar is better able to represent snow depth than RPAS-SfM (RMSE
~10 cm vs ~10–20 cm). In addition, we find the relationship between RPAS-SfM and previous lidar
snow depth data can be used to estimate snow depth conditions outside of relatively small RPAS-SfM
monitoring plots, with RMSE’s between these observed and estimated snow depths on the order of
10–15 cm for the larger lidar coverages. This suggests that when a single airborne lidar snow survey
exists, RPAS-SfM may provide useful multi-temporal snow monitoring that can estimate basin-scale
snowpack, at a much lower cost than multiple airborne lidar surveys. Doing so requires a pre-existing
mid-winter or peak-snowpack airborne lidar snow survey, and subsequent well-designed paired SfM
and field snow surveys that accurately capture substantial snow depth variability.

Keywords: snow; remotely piloted aircraft systems; structure from motion; lidar; forests

1. Introduction

Snowpack in mountain forests is a major source of water for reservoirs that provide water and
hydropower for many urban and agricultural communities [1–3]. Mountain snowpacks are affected by
many climatic, topographic and ecological variables, and are sensitive to forest disturbance such as
thinning, prescribed fires, wildfire, and tree die-off [4–13]. It is important to monitor how snowpacks
in these areas respond to changing environmental conditions in order to understand and forecast
available water resources for both natural and human consumption.

Characterization of snowpack in these mountain forests is challenging because of the large amount
of small-scale spatial variability of the snowpack, due to topographic heterogeneity and variable forest
structure [14–18]. This extreme heterogeneity makes it difficult to monitor snowpack with point snow
measurements [19]. Remote sensing of snowpack is better able to characterize this heterogeneity,
though it suffers in forested environments because trees can interfere with the remote sensing of
snowpack below the canopy [20]. Furthermore, remote sensing of snowpack is hindered by clouds
and can be affected by sub-grid landscape heterogeneity [21,22]. Therefore, monitoring and assessing
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the snowpack response to environmental changes requires multi-scale and multi-sensor monitoring
that takes advantage of field data in combination with multiple observing platforms (e.g., remotely
piloted aircraft systems (RPAS), airplanes and satellites) and payloads (e.g., visible, multispectral and
lidar sensors) [21,23,24]. These snow monitoring platforms and payloads all have advantages and
disadvantages that relate to spatial and spectral resolutions, geolocation, extent, cloud cover, wind,
reliability, timeliness, terrain accessibility, resources and training, and government regulations [25,26].

Of the remote sensing techniques for measuring snowpacks in forested environments, lidar
from crewed aircraft (hereafter, referred to as ‘airborne lidar’, or simply ‘lidar’) is one of the most
successful because it covers relatively large areas, has very high sampling rates, and has the ability
to penetrate the canopy through canopy gaps [27–30]. However, there are many costs associated
with these lidar acquisitions, and they can be time-consuming to process [31,32], making it hard to
use them for multi-temporal snow monitoring. While some groups, such as NASA’s Airborne Snow
Observatory [29] have deployed multitemporal airborne lidar surveys, such acquisitions are costly and
are not available for most sites.

Three-dimensional modelling created from multi-angle imagery from RPAS, such as quadcopter
platforms with gimballed digital cameras, offers an exciting addition to airborne lidar for snow
monitoring in heterogeneous forests [33,34]. This imagery, which is collected at multiple points along
the RPAS’s flight trajectory, is stitched together to create a 3-D representation of the landscape using
a process called structure from motion (SfM; which uses points on multiple overlapping images to
triangulate and bundle-adjust the locations of image pixels [35]). This process is able to achieve good
accuracy for snow depth and forest structure assessments [34,36–39]. In certain respects, SfM from
RPAS imagery (hereafter, referred to as ‘RPAS-SfM’ or simply ‘SfM’) offers advantages over airborne
lidar. For example, RPAS have become relatively inexpensive and easy to operate, allowing them to be
economically deployed with minimal labor [40]. However, there are still challenges associated with
RPAS monitoring of snow depth [37,41]. These include variable field site conditions (which might
include a dense canopy that obscures the snowpack), survey design, SFM processing software (which
is computationally expensive), and validation data. In addition, RPAS-SfM is generally limited to
smaller areas, due to physical limitations to RPAS flight extent (such as battery life, which limits flight
times), and there are sometimes logistical challenges with RPAS flights such as obtaining permission
before flights.

Due to their strengths for monitoring snowpack, both airborne lidar and RPAS-SfM technologies
have been extensively used for snowpack monitoring (e.g., References [20,27,29,30,34,36,37,40,42–50]).
However, these studies do not include a strategy for combining smaller-area RPAS-SfM measurements
with larger-area airborne lidar measurements for multitemporal snowpack monitoring, especially at
basin-scales. This combination is natural because the strengths of each technology are complementary
to the other. For example, airborne lidar provides consistent accuracy and larger spatial extents, which
are more appropriate for hydrological applications, such as water supply monitoring and Land Surface
Model evaluation. However, the cost (in terms of both money and processing time) can be quite high.
Meanwhile, RPAS-SfM allows for increased temporal frequency and on-demand data acquisitions with
rapid processing times at a much lower monetary cost over limited spatial domains.

In this research, we show how RPAS-SfM and airborne lidar can be used in a complementary
fashion to attain regular snowpack monitoring data that can lead to seasonal large area snow depth
and snow water equivalent (SWE) fields in complex forested environments. We investigate (1) how
well SfM is able to characterize snowpack for a variety of forest cover and topographic conditions using
a rich dataset of field-based and airborne lidar measurements; (2) how can multi-temporal SfM data be
combined with existing airborne lidar snow data to achieve multi-temporal estimates of snow amount
and distribution outside of spatially-limited SfM plots; and (3), what is the accuracy of these estimates
at different times of the year and under different forest and terrain conditions. We use extensive field
data collected from 11 surveys from 2017–2020 for four study plots along Arizona’s Mogollon Rim,
representing the diverse forest and snowpack conditions in the region. All surveys have multi-angle
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aerial photography acquisitions from a RPAS paired with precisely geolocated ground-based snow
surveys, while seven of these surveys are coincident with acquisitions of high point density airborne
lidar. The combination of the RPAS surveys with the airborne lidar and ground surveys provides an
unprecedented opportunity not only to evaluate the performance of the SfM remote sensing under a
variety of forest and snowpack conditions, but also to explore opportunities to combine all of these
measurements for cost-effective, high quality multi-temporal snowpack monitoring in mountain forests.

2. Materials and Methods

2.1. Field Data

Data in this study come from four intensively studied snow-research plots near the Mogollon
Rim, a mid- to high-elevation (~2000–3000 m) forested region in central Arizona (AZ; Figure 1). Two
“montane” plots, located ~50 km east of Show Low, AZ, are in close proximity to each other at a
high-elevation (~2800 m) field site. These plots have low to moderate relief slopes and contain a
mixture of burned (from a 2011 wildfire [51]) and live mixed conifer forests and montane grasslands.
One plot (the “montane meadow” plot) contains large snow variability, due to heterogeneous forest
conditions (i.e., tree stands separated by meadows). In contrast, the other (the “montane valley” plot)
contains large snow variability due mostly to heterogeneous topography (i.e., north- vs. south-facing
slopes). A “dense forest” plot, located ~20 km north of Payson, AZ, has gentle slopes and is densely
forested, primarily with Ponderosa Pine (pinus ponderosa) trees. Finally, ~10 km to the north of the
dense forest plot, is another plot (called the “thinning comparison” plot) that is located along with the
transition between recently thinned and unthinned ponderosa pine forest patches near Clints Well, AZ.
The dense forest and thinning comparison plots have shallower snowpack than the montane plots.
These four plots span a range of forest densities, tree heights, and topographic conditions (Table 1),
allowing us to evaluate the performance of snow measurement with SfM and airborne lidar under a
variety of forest conditions.

Table 1. Topographic, canopy cover/height and sampling information for each SfM survey.

Survey Area 1

(ha)
Slope 2

(%)
Canopy

Cover (%)

Canopy Height (m) # Sample
Locations 3 Lidar

Mean Median Max

Montane Meadow (1 February 2017) 5.9 7.4 12.9 3.4 0.1 33.4 94 Y
Montane Meadow (5 March 2018) 12.2 8.1 11.3 3.1 0.1 34.0 58 N
Montane Meadow (4 March 2019) 9.5 7.9 8.9 2.5 0.1 34.0 108 Y
Montane Meadow (4 March 2020) 11.6 8.1 10.3 2.9 0.1 34.0 38 N

Montane Valley (5 March 2018) 6.8 8.4 16.2 4.3 0.1 34.5 37 N
Montane Valley (4 March 2019) 6.9 8.2 12.8 3.8 0.1 34.7 37 Y
Montane Valley (4 March 2020) 7.4 7.9 13.1 3.9 0.1 34.7 22 N
Dense Forest (1 February 2017) 4.0 3.9 47.0 11.2 12.2 37.3 70 Y

Dense Forest (7 March 2017) 5.1 3.6 49.1 11.5 12.9 29.7 70 Y
Dense Forest (4 March 2019) 9.5 4.4 44.8 10.8 11.6 30.4 79 Y

Thinning Comparison (4 March 2019) 17.0 3.1 32.7 9.0 8.4 41.5 105 Y
1 Area refers to the size of the SfM-generated snow maps. 2 Slope, canopy cover, and canopy height are computed
from 2019 airborne lidar data [52]; 3 Sample locations refers to the number of individual locations where snow depth
is sampled.
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Figure 1. Locations of the four study plots (a – overview, b – montane meadow and montane valley 
plots, c – dense forest plot, d – thinning comparison plot). Canopy cover data are derived from 2019 
airborne lidar data [52].At these field sites, we collected rich snowpack datasets, including a variety 
of airborne and ground-measured snowpack data that are ideal for creating and evaluating high-
quality SfM models. Snow surveys for these plots consisted of multi-angle RPAS imagery, airborne 
lidar, and ground measurements of snow depth and SWE. In total, there were 11 snow surveys (Table 
1), with the most surveys occurring at the montane plots (as this area is important for snowpack 
monitoring for local water supply managers), with fewer surveys occurring at the dense forest and 
thinning comparison plots. All surveys included RPAS flights to acquire aerial imagery (using a DJI 
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Figure 1. Locations of the four study plots (a—overview, b—montane meadow and montane valley
plots, c—dense forest plot, d—thinning comparison plot). Canopy cover data are derived from 2019
airborne lidar data [52]. At these field sites, we collected rich snowpack datasets, including a variety of
airborne and ground-measured snowpack data that are ideal for creating and evaluating high-quality
SfM models. Snow surveys for these plots consisted of multi-angle RPAS imagery, airborne lidar, and
ground measurements of snow depth and SWE. In total, there were 11 snow surveys (Table 1), with the
most surveys occurring at the montane plots (as this area is important for snowpack monitoring for local
water supply managers), with fewer surveys occurring at the dense forest and thinning comparison
plots. All surveys included RPAS flights to acquire aerial imagery (using a DJI Phantom 3 Pro drone
with a 12 megapixel camera—for 2017 surveys—and a DJI Phantom 4 Pro drone with a 20 megapixel
camera—for 2018–2020 surveys) to generate snow-on 3-D models of the study plots using SfM (see
Section 3). All RPAS flights occurred on clear, sunny days between 10:00 AM and 2:00 PM to minimize
the length of shadows. For the flights in 2017, the RPAS was controlled manually with a combination of
nadir and oblique (~30% nadir) imagery along back and forth flight lines spanning each domain. For
the flights in 2018-2020, flight planning software called Altizure® was used to collect the imagery in a
regular flight pattern (using back and forth flight lines) with a set of nadir imagery, as well as two sets
of oblique images (with 75% overlap for all imagery). All flights occurred at ~75 m above ground level
with horizontal velocities of ~5–7 m/s resulting in ~4 cm and ~2.1 cm spatial resolution on the ground
for the Phantom 3 and Phantom 4 systems, respectively. The cameras used automatic exposure settings.
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These surveys also included ground measurements of snow depth and snow density. A majority
of these measurements were collected by more than 25 employees and volunteers from five public and
private partner entities (see Acknowledgements) along carefully pre-marked snow survey transects
with precisely geolocated (using a differential GPS) endpoints to enable the precise geolocation of
snow measurements in order to relate them to the airborne data. Following the sampling methodology
described in Reference [53], five snow depth samples were taken every 5 m along the transects in
a star pattern to ensure spatial representativeness of the snow depth samples, and snow density
was sampled every 10–20 m along the transects. There were also some additional measurements
along transects (also positioned with a differential GPS) where snow depth is monitored using remote
cameras for temporal snowpack monitoring (however, this study only uses the snow depth data,
as well as manual measurements of snow density along these transects for the survey dates in Table 1).
Not all dates had identical ground surveys for each study plot, depending on logistical considerations
(e.g., available workers). Overall, individual surveys included ground measurements from 22–108
individual locations (Table 1). Note that this translates to >3000 measurements as there were five
snow depth measurements at each manual sample location. Further details about the snow survey
methodology can be found in Reference [54].

2.2. Generation of Lidar Snow Depth, Density, and SWE Maps

For seven of the surveys, we generated state-of-the-art airborne lidar-based maps of snow depth,
snow density, and SWE, as they included airborne lidar data. These maps were created for the two
~100 km2 lidar footprint areas (which each have three separate lidar acquisitions), that encompass the
study plots. The two montane plots are within a “high-elevation” lidar footprint, and the dense forest
and thinning comparison plots are within a “mid-elevation” lidar footprint. These maps were created
using high point density (~10–15 points/m2) snow-on airborne lidar data (which are differenced from
similar snow-off lidar data) and are bias-corrected with the field-measured snow depths. All lidar data
was flown by Quantum Spatial Inc. [52,55–58].

The snow depth maps were then combined with snow density maps generated using artificial
neural network (ANN) machine learning of the field-measured snow density measurements, using
various lidar-derived physiographic attributes as predictors. The methodology for creating these
maps (and their validation) is detailed in Reference [54], but is briefly summarized here. We use an
ensemble of ANNs with relatively simple network structure (1 hidden layer with ten neurons) with
Levenberg-Marquardt (L-M) backpropagation (Marquardt, 1963) to model the field snow density
measurements using lidar-derived metrics as predictor variables. The predictor variables include
physiographic variables (elevation, slope, northness—or sin(slope) × sin(aspect), canopy height, and
canopy closure), other GIS-derived quantities using the lidar data (skyview factor, below canopy
solar forcing index—or the ratio of incident solar radiation reaching the ground surface over a given
period to that hitting a flat surface with no obstructions), and lidar snow depth (from 1 February 2017).
These snow density maps are multiplied by the lidar snow depth maps to generate maps of SWE.

2.3. Generation of SfM Snow Depth Maps

Snow-on point clouds were generated from the RPAS imagery using Agisoft Metashape software.
After the point clouds were created, the ground points were isolated by using a combination of
Metashape’s built-in ground filtering algorithm (for a first cut separation of the point cloud) and a
Cloth Simulation Filter algorithm [59] implemented in R (to remove remaining debris from the ground
point cloud).

Next, we used an automated post-processing workflow to accurately georeference the point
clouds using available snow-off point cloud data. In this study, we use snow-off lidar point cloud
data (from summer 2014) for this purpose (though we also tried, with similar results, applying the
workflow using snow-off SfM data that we collected—see Section 3.1 below). This workflow consists
of two general steps. First, the snow-on SfM point clouds were co-registered with the snow-off point
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cloud canopy layer by removing any vertical offsets between the snow-on and snow-off point clouds
and then using an Iterative Closest Point algorithm implemented in CloudCompare software to match
the canopy layers. This successfully adjusted the snow-on point clouds to match the canopy elements
in the snow-off point clouds, even when there was sometimes substantial vegetation change between
the snow-on and snow-off data (Figure 2). Next, warping and tilting of the point clouds were removed
using low-order polynomial filters (a 1st order polynomial correction to correct tilt followed by a 2nd
order polynomial correction to correct warping) by comparing them to the lidar ground surface plus a
first guess of snow depth, based on the ground survey data. This first guess was generated using the
same ANN methodology as the creation of snow density maps from field snow density measurements
in Reference [54] and described in Section 2.2, except that field measured snow depths, rather than
field measured snow densities, are used as the predicted variable.

Remote Sens. 2020, 12, 2311 6 of 24 

 

workflow using snow-off SfM data that we collected—see Section 3.1 below). This workflow consists 
of two general steps. First, the snow-on SfM point clouds were co-registered with the snow-off point 
cloud canopy layer by removing any vertical offsets between the snow-on and snow-off point clouds 
and then using an Iterative Closest Point algorithm implemented in CloudCompare software to 
match the canopy layers. This successfully adjusted the snow-on point clouds to match the canopy 
elements in the snow-off point clouds, even when there was sometimes substantial vegetation change 
between the snow-on and snow-off data (Figure 2). Next, warping and tilting of the point clouds were 
removed using low-order polynomial filters (a 1st order polynomial correction to correct tilt followed 
by a 2nd order polynomial correction to correct warping) by comparing them to the lidar ground 
surface plus a first guess of snow depth, based on the ground survey data. This first guess was 
generated using the same ANN methodology as the creation of snow density maps from field snow 
density measurements in Reference [54] and described in Section 2.2, except that field measured snow 
depths, rather than field measured snow densities, are used as the predicted variable. 

 
Figure 2. Example showing the snow-on SfM point cloud in the center of the montane meadow plot 
(mostly white, green, and brown colored dots represent snow, evergreen canopy, and woody 
material) in relation to the lidar point cloud (red dots) for an area in the montane meadow plot. Note 
that in some areas, there is a difference between the lidar (from summer 2014) and SfM (from winter 
2017) point clouds, due to post-wildfire effects (lost branches, fallen snags and trees), but for the snags 
and trees that did not change during this period, the SFM and lidar point clouds are very close to one 
another. 

This processing workflow was automated using CloudCompare’s command line mode (for the 
ICP algorithm), as well as the US Forest Service’s FUSION/LDV [60] software and a python script to 
model and correct warping and tilting in the snow-on SfM point cloud. The ANN machine learning 
methodology is implemented in Matlab® software, as described in Reference [54]. 

2.4. Using SfM Snowpack Data to Supplement Lidar Snowpack Data 

We used these SfM snow depth maps to advance our understanding of snow distributions for 
our research sites in a number of ways. First, following the methodology in Reference [54], we 
combined them with maps of snow density generated using ANN modeling of snow density 
measurements to generate maps of SWE for our study plots. This enabled us to characterize 
differences in terms of snow depth, snow density, and SWE for different seasons. This is important 
because while the directly measured variable using lidar and SfM is snow depth, SWE is the 
snowpack variable that is of most interest in hydrological applications [61]. Although the distribution 

Figure 2. Example showing the snow-on SfM point cloud in the center of the montane meadow plot
(mostly white, green, and brown colored dots represent snow, evergreen canopy, and woody material)
in relation to the lidar point cloud (red dots) for an area in the montane meadow plot. Note that in some
areas, there is a difference between the lidar (from summer 2014) and SfM (from winter 2017) point
clouds, due to post-wildfire effects (lost branches, fallen snags and trees), but for the snags and trees
that did not change during this period, the SFM and lidar point clouds are very close to one another.

This processing workflow was automated using CloudCompare’s command line mode (for the
ICP algorithm), as well as the US Forest Service’s FUSION/LDV [60] software and a python script to
model and correct warping and tilting in the snow-on SfM point cloud. The ANN machine learning
methodology is implemented in Matlab® software, as described in Reference [54].

2.4. Using SfM Snowpack Data to Supplement Lidar Snowpack Data

We used these SfM snow depth maps to advance our understanding of snow distributions for our
research sites in a number of ways. First, following the methodology in Reference [54], we combined
them with maps of snow density generated using ANN modeling of snow density measurements
to generate maps of SWE for our study plots. This enabled us to characterize differences in terms
of snow depth, snow density, and SWE for different seasons. This is important because while the
directly measured variable using lidar and SfM is snow depth, SWE is the snowpack variable that is of
most interest in hydrological applications [61]. Although the distribution of SWE is broadly similar to
that of snow depth, it is important to consider the effects of variable snow densities, which can vary
substantially in both space and time [54,62].
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Next, we investigated the relationships between snow depths for the larger mid- and high-elevation
lidar footprints on different dates to see how well they could be used to extrapolate snow depths
measured for the SfM study plots to the larger lidar footprints. In particular, we compared
the relationships between snow depths from the mid-winter (on 1 February 2017) and late winter
(on 7 March 2017 and 4 March 2019) lidar snow surveys with those from the mid-winter lidar snow
survey and the late-winter SfM data. To ensure that only the best quality SfM data was used to
construct these relationships, we only considered SfM data for open areas without an overhead canopy
for these comparisons. Of particular interest was (1) the strength of the relationships between the
lidar data on multiple dates (which indicated how well they could be used to predict snow depths
for different times), and (2) how well the SfM-data over the small study plots could capture those
relationships. Even though the late winter surveys occurred at the same time of year, the 7 March 2017
survey reflected more evolved snowpack conditions: For the mid-elevation lidar coverage, it reflected
mid-ablation to nearly snow-free conditions (depending on elevation), and for the high-elevation lidar
coverage, it reflected peak-SWE to mid-ablation conditions, depending on elevation. On the other
hand, the 4 March 2019 survey reflected conditions just prior to Peak SWE for the high-elevation lidar
coverage, and mid-ablation conditions for the mid-elevation lidar coverage. The 1 February survey
reflected mid-winter snowpack conditions in both areas.

Finally, we tested how well snow depths could be estimated from the SfM data for areas outside
the SfM plots (but within the lidar coverages) on these different dates using the relationships between
the late-winter SfM data and the mid-winter (1 February 2017) lidar data. These relationships were
modeled using a third order polynomial fit (which was chosen based on the data analysis described
above), and the regression parameters were applied to the 1 February 2017 lidar data to generate the
predictions. These simulated maps were then compared to the actual lidar observations on 7 March
2017 and 4 March 2019.

3. Results

3.1. Comparison Between SfM, Field-Based, and Lidar Snow Depths

Overall, there is good agreement between the lidar and the SfM snow depth maps in the montane
plots, which generally have sparse canopies. Figure 3a–i shows that most major snow depth features
are consistently represented in both maps, such as the areas with deep snow (which usually correspond
to north-facing aspects), and the extremely shallow snow on south-facing sides of large tree stands.
Overall, there are high squared correlation coefficient (R2) values (0.78 to 0.89), relatively low Root
Mean Squared Error (RMSE) values (8.5 to 9.4 cm) and small average differences (SfM average depths
are 1.0 to 3.5 cm shallower) between the SfM and lidar data (Table 2). The coefficient of variation (CV)
differences between the maps are also relatively low (0.01–0.04). At the same time, the agreement
between the SfM and field measured snow depths is comparable to that between the lidar and field
measured snow depths for the montane plots (Table 3, Figure S1). Although R2 values between the SfM
data and ground measurements (0.60–0.90) are a little lower than those for the lidar data (0.68–0.94),
SfM RMSEs (8.6–13.4 cm) are similar to lidar RMSEs (8.5–12.4 cm). Both the SfM and lidar data are
relatively unbiased with respect to ground observations for the montane plots.

There is generally a lower correspondence between the lidar and SfM snow depth maps for the
dense forest plots. Major features can clearly be seen in both sets of maps (e.g., the road on the northern
end of the plot as well as the snowbanks on either side of the road), though other details in the forest are
less consistent (Figure 3j–r). For example, the SfM maps show more pockets of shallow snow (especially
on 1 February 2017). Compared to the montane plots, the dense forest plot has lower R2 values (0.23 to
0.57), higher RMSEs (12.4 to 24.0 cm), and higher CV differences (0.09 to 0.26; with the SfM data having
higher CVs than the lidar data; Table 2). At the same time, though, average depth differences are
only a little larger than those observed in the montane plots (3.8 to 6.3 cm). Compared to the ground
observations, the lidar generally performs better than the SfM data, though the performance of the SfM
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data is also highly variable (Table 3, Figure S1) for the dense forest plots. RMSEs between SfM and field
measured snow depths range from 8.8 and 17.2 cm (vs. 8.3 to 10.3 cm for the lidar data), and R2 values
are 0.26 to 0.29 (vs 0.33 to 0.62 for the lidar data). However, the SfM data has lower biases, compared to
the ground observations, than the lidar data at the dense forest plot (−0.4 to 2.1 cm vs 0.8 to 5.8 cm).

Table 2. Agreement statistics between lidar and SfM snow depth data for the paired airborne lidar–SfM
surveys. Statistics are for the outlined areas for each plot in Figure 3.

Lidar Depth
(cm)

SfM Depth
(cm)

Lidar
CV

SfM
CV R2 RMSE

(cm)

Montane Meadow (1 February 2017) 65.1 62.1 0.26 0.30 0.78 9.2
Montane Meadow (4 March 2019) 75.3 71.8 0.25 0.26 0.80 9.4

Montane Valley (4 March 2019) 63.9 62.9 0.40 0.39 0.89 8.5
Dense Forest (1 February 2017) 54.3 48.0 0.29 0.55 0.23 24.0

Dense Forest (7 March 2017) 30.7 26.9 0.61 0.70 0.34 17.6
Dense Forest (4 March 2019) 34.9 29.6 0.45 0.55 0.57 12.4

Thinning Comparison (4 March 2019) 9.5 10.7 0.90 0.80 0.41 7.4
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Figure 3. Maps showing lidar snow depths, SfM snow depths, and their differences (SfM-lidar) for the
paired airborne lidar–RPAS SfM surveys for the montane meadow plot on 1 February 2017 (a–c) and
4 March 2019 (d–f); the montane valley plot on 4 March 2019 (g–i); the dense forest on 1 February 2017
(j–l), 7 March 2017 (m–o), and 4 March 2019 (p–r); and thinning comparison plot on 4 March 2019 (s–u).
A canopy hillshade effect is added to show the locations of trees.

Table 3. Agreement statistics between lidar/SfM and field measured snow depth data for the paired
airborne lidar–surveys.

SfM R2 SfM RMSE
(cm)

SfM Bias
(cm)

Lidar
R2

Lidar
RMSE (cm)

Lidar Bias
(cm)

Montane Meadow (1 February 2017) 0.82 8.6 0.7 0.79 9.2 1.6
Montane Meadow (4 March 2019) 0.60 13.4 −0.7 0.68 12.4 2.4

Montane Valley (4 March 2019) 0.90 9.7 2.7 0.94 8.5 4.1
Dense Forest (1 February 2017) 0.29 17.2 2.1 0.33 10.3 5.2

Dense Forest (7 March 2017) 0.26 16.3 1.8 0.40 9.3 0.8
Dense Forest (4 March 2019) 0.27 8.8 −0.4 0.62 8.3 5.8

Thinning Comparison (4 March 2019) 0.37 7.9 2.0 0.46 7.1 1.9

For the thinning comparison plot (Figure 3s–u), there is a higher correspondence between the
lidar and SfM maps than for the dense forest plot. The thinning comparison plot also has very little
snow (~10 cm on average) during the March 2019 survey (the only snow survey performed at this
site), yet both technologies show similar snow patterns. Overall, RMSE (7.4 cm) between the lidar
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and SfM data is lower than for the other surveys, R2 (0.41) is higher than some of the dense forest
plots surveys but lower than those in the montane plots (with the opposite true for CV differences),
and the average snow depth difference (1.2 cm) is small compared to the other surveys. Compared to
the ground survey data, the performance of the lidar and SfM data is similar (with R2 values of 0.37
and 0.46 and RMSEs of 7.1–7.9 cm), again with a relatively small bias (1.9 cm). Overall, the thinning
comparison plot has lower vegetation density than the dense forest plot, but higher vegetation density
than the montane plots (Table 1).

The accuracy of these SfM data depends, in part, on the quality of the first guess snow depth
maps (which are shown in Figure S2 Supplemental Materials). In general, these first guess maps are
comparable, in magnitude to the SfM and lidar maps, shown in Figure 3, but they typically do not
reflect as much variability as the SfM and lidar maps do. The overall agreement between theses maps
is usually lower than that between the SfM and lidar maps (with the exception of the 1 February 2017
dense forest plot, R2 values range from 0.09–0.33 lower, and RMSE values range from 0.4–3.6 cm higher).
Note that for the forest thinning comparison plot, the snow depths were so shallow that a spatially
variable first guess map was not needed. The first guess snow depth map showed virtually no spatial
variability, due to the small snow depth signal compared to the uncertainty of these maps (Figure S2g).
Nevertheless, it was included here to maintain methodological consistency with all other surveys.

Finally, note that the same methodology used here can be used to generate SfM snow depth
maps that based on snow-off SfM point clouds instead of snow-off lidar point clouds (Figure S3).
The agreement between the SfM and lidar snow depth maps is a little lower for these maps (compare
Table 2 and Table S1). This discrepancy may be related to inconsistent ground filtering algorithms used
for the lidar data (which was performed by QSI) and SfM data (see Section 2.3).

3.2. SWE Monitoring Using SfM

Due to the hydrological importance of quantifying water content of the snowpack, the snow density
and SWE maps for each plot prepared using the methodology of Broxton et al. [54] (see Section 2.3)
were useful for multi-temporal monitoring of snowpack. In this study, they were especially useful for
the montane plots because this area is very important for predicting local water supplies. For this area,
there were snow surveys for four subsequent water years near the time of peak SWE (in early March).
Figure 4 shows spatial differences between snow depth, snow density, and SWE for this area from
2017–2020 (note that in March 2017, there was airborne lidar, but no SfM data in the area).

While the 2019 maps depict snowpack conditions just prior to peak SWE, the 2017 and 2020 maps
reflect snowpack conditions that are further along in the melt season (note the relatively large areas
with no snow on south-facing slopes), and the 2018 maps depict historically low snow conditions
(as 2018 was a very dry and warm year). Despite the differences between snowpack conditions between
2018 and the other years, the 2018 data shows relatively deeper snowpack in the same areas as in the
other sets of maps (e.g., on north-facing slopes in the montane valley plot and on the shaded sides of
the montane meadow plot). There is a relatively high correlation between the 2017, 2019, and 2020
surveys (R2 between the 2017 and 2019 survey data are 0.71 and 0.69 for depth and SWE, respectively,
and the R2 between the 2017 and 2020 surveys are 0.67 and 0.60 for depth and SWE, respectively).
The R2 between the 2017 and 2018 survey is lower, (R2 = 0.36 for snow depth and 0.39 for SWE).
Overall, the 2019 survey had the most snow, but snow variability (as measured by the CV of snow
depth and SWE) was higher during 2017 (when there was more advanced snowmelt) and 2018 (when
the snowpack was shallow; Table 4) surveys. Snow density was also lowest in 2018 (due to shallow
snowpack) and highest in 2020 (as the survey occurred after a long period of warm, dry weather).
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are added to help interpret the topography of the area.

Table 4. Averages and coefficient of variation (CV) for the snow depth, snow density, and SWE maps
in Figure 5 (for areas that have data for all years). For 7 March 2017, statistics are derived from the
airborne lidar survey (as no SfM was flown for this area on this date), and for the other dates, they are
derived from the SfM surveys.

Date Average
Depth (cm)

Depth CV
(-)

Average
Density (g/cm3)

Density
CV

Average
SWE (cm) SWE CV

7 March 2017 52.0 0.63 0.32 0.05 17.0 0.65
5 March 2018 14.2 0.85 0.30 0.07 4.2 0.83
4 March 2019 69.3 0.34 0.33 0.05 22.7 0.35
4 March 2020 56.7 0.40 0.36 0.04 20.2 0.38

3.3. Using Airborne Lidar to Extend the SfM Data

Figure 4 shows that while there are differences between the snowpack distributions for different
years (e.g., between the peak-SWE conditions on 4 March 2019 vs the post-peak SWE conditions on
6 March 2017), there are also similarities (e.g., areas with deeper snow in one scene tend to have deeper
snow in other scenes). To further understand the consistency between the snowpack at different times
across much larger (~100 km2) lidar coverages, we plotted the relationship between snow depth for
three sets of lidar coverages (at different times in the snow season) for the mid- and high- elevation
lidar domains (Figure 5). The mid-winter (1 February 2017) lidar data is used as the abscissa, and
the late-winter (7 March 2017 and 4 March 2019) lidar data are used as the ordinates in these plots.
Figure 5 (red dots) shows that the relationships between the snow depth data change between different
dates. For example, while the relationship between 1 February 2017 and 4 March 2019 lidar data for the
high-elevation lidar coverage is linear, the relationship between the 1 February 2017 and 7 March 2017
lidar data for the high-elevation lidar box is nonlinear. The former represents a comparison between
mid-winter and conditions just prior to peak SWE while the latter represents a comparison between

157



Remote Sens. 2020, 12, 2311

mid-winter and primarily post-peak SWE conditions. Despite this changing shape, the strength
of these relationships is consistent in both cases (with R2 values of ~0.9). For the mid-elevation
lidar coverage, these relationships (which both represent a comparison of mid-winter conditions and
mostly mid-ablation conditions) are nonlinear for both pairs of data, and are somewhat weaker, but
still consistent (R2 = ~0.77 in both cases). This suggests there a high degree of intra-seasonal and
inter-annual relatability between snow depth patterns for our study sites at different times. Note that
these relationships are similar if all lidar pixels are considered (thick red dashed lines in Figure 5) vs. if
only open pixels (where SfM performs well) are considered (thin red dashed lines in Figure 5).
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Figure 5. Relationships between 1 February 2017 lidar snow depth and 7 March and 4 March 2019 lidar
(red dots, for the entire lidar coverages) and SfM (blue dots, for the SfM survey plots, based on open
pixels) snow depth data for the mid-elevation (a,c) and high-elevation (b,d) lidar coverages. The dashed
lines show the third order polynomial regressions for each data series (for the lidar regression, additional
lines have been added to show the similarity of the comparisons when using only open pixels (thin red
dashed lines) and all pixels (thick red dashed lines). The open area SfM regressions (blue lines) are
used to simulate the 4 March 2019 snow depths for the airborne lidar coverages in Figures 6 and 7.

Next, we tested how well the SfM data within the small study plots can capture these relationships.
Also plotted in Figure 5 are the relationships between the 1 February 2017 lidar snow depth and the
7 March 2017 and 4 March 2019 SfM data for the dense vegetation plot (for the mid-elevation panels)
and for the montane plots (for the high-elevation panels), considering only open pixels (where the SfM
data perform well). Note that there was no SfM survey for the montane plots on 7 March 2017. The data
follow similar trends to those found for the larger lidar coverages (just a little flatter; Figure 5), though
with lower R2 values. This may be due to the lower quality of the SfM data in some environments (e.g.,
the dense forest plot), as well as the smaller dynamic range represented in these small plots compared
with the overall lidar coverages (note that the dense forest plot, in particular, is flat with fairly uniform
forest cover across most of the plot).
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Figure 6. Observed lidar-based snow depths for 4 March 2019, simulated data (using the regression
between the 4 March 2019 SfM data and 1 February 2017 lidar data and shown in Figure 5c), and the
difference (simulated-observed) for the mid-elevation lidar coverage (a–c) and the area around the
dense forest (d–f) and thinning-comparison (g–i) plots. Note that the simulated depths are for the area
covered by the 1 February 2017 lidar, while the March 2019 lidar has a different footprint. The small
dark boxes in (a–c) show the area covered by the inset maps (d–i) corresponding to the plots in Figure 1.

The strength of the relationships between the lidar snow depth data on different dates, as well as
the ability of the SfM data to capture these trends suggests that the SfM data can be used to predict
snow depth distributions over the larger airborne lidar coverages, given that a lidar snow depth map
already exists. To evaluate how well this extrapolation works, we used the relationships between
the 1 February 2017 lidar, 7 March 2017 and 4 March 2019 SfM data, shown in Figure 5, applied to
the 1 February 2017 lidar map, as described in Section 2.4. Figures 6 and 7, which show observed
and simulated snow depth data for the mid- and high-elevation lidar coverages on 4 March 2019,
illustrate that these extrapolations are fairly successful at estimating the observed lidar snow depth
data. This can be seen for both the entire ~100 km2 lidar coverages, as well as for the < 1 km2 study
plots. Note, however, that there can be significant differences between the observed and simulated
snow depth patterns in areas that have undergone substantial vegetation changes (such as the thinning
comparison plot in Figure 6g–i, which underwent mechanical thinning between the 2017 and 2019
snow surveys).
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Figure 7. Observed lidar-based snow depths for 4 March 2019, simulated data (using the regression
between 4 March 2019 SfM data and 1 February 2017 lidar data shown in Figure 5d), and the difference
(simulated-observed) for the high-elevation lidar coverage (a–c) and the area around the montane plots
(d–f). Note that the simulated depths are for the area covered by the 1 February 2017 lidar, while the
March 2019 lidar has a different footprint. The small dark boxes in (a–c) show the area covered by the
inset maps (d–f) corresponding to the plots in Figure 1.

In general, spatial statistics from these simulated snow depth maps are also fairly similar to those
from the observed lidar data. Table 5 shows statistics related to the distribution of snow depths (mean,
cv, skewness) as well as measures of autocorrelation (measured by the fractal dimension of snow depths
for distances that are smaller or larger than a well-known scale break that occurs at ~25–30 m). Note
that there was no SfM survey for the high-elevation coverage on 7 March 2017, so statistics for this date
are given assuming a simulated map that would be obtained if the relationships between the lidar data
(red lines in Figure 5) were captured. For the high-elevation coverage, the distribution parameters for
the simulated maps are very close to those for the observed maps: The mean snow depth is within 5%,
the CVs are ~10% lower, and the skewness is similar. Likewise, both the short- and long-range fractal
dimensions are similar, with the latter above 2.9, suggesting spatially random variability for longer
correlation distances, and the former ~2.7–2.8, indicating more spatial complexity at shorter correlation
distances. The agreement between these statistics for the simulated and observed lidar maps is a
little worse for the mid-elevation coverage, as the simulated maps had slightly lower (by ~10%) mean
snow depths, lower (by ~25%) CV, but similar skewness. Compared with the high-elevation coverage,
there were also slightly larger differences between the short-range fractal dimensions for the observed
and simulated maps, suggesting that the simulated maps for the mid-elevation coverage were not as
good at capturing small scale snow depth variability as for the high-elevation coverage.

Because the fine scale (1 m) spatial variability depicted in these simulated maps can be somewhat
different than in the observed maps, we compared the observed and simulated maps at a variety of
spatial scales, by averaging the 1 m pixels to larger pixel sizes (Figure 8). As expected, the simulated
and observed maps have a closer fit for larger pixel sizes, with the largest increases occurring between
1 and 100 m, and smaller differences occurring after that. For the mid-elevation lidar coverage, the R2
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values increase from ~0.7–0.8 for 1 m pixels to > 0.9 for 100 m pixels, while RMSEs decrease from
10–15 cm for 1 m pixels to ~7–8 cm for 100 m pixels. For the high-elevation lidar coverage, the R2

values increase from ~0.9 for 1 m pixels to > 0.95 for 100 m pixels, while RMSEs again decrease from
10–12 cm for 1 m pixels to ~6–7 cm for 100 m pixels. Figure 8 also shows the performance of simulated
maps that would be obtained if the relationships between the lidar data (red lines in Figure 5) were
captured perfectly. For these scenarios, there is some reduction in RMSE (by ~20–30%), suggesting
that some of the error between the simulated (using SfM data) and observed snow depth data is the
result of this relationship not being fully captured by the SfM data. Similar results can be obtained for
predictions of SWE values (compare Figures S5—S8 with Figures 5–8).

Table 5. Mean, coefficient of variation (CV), and skewness, and short- and long-range fractal dimensions
(D) for observed and simulated snow depth maps for the mid- and high-elevation lidar coverages for
7 March 2017 and 4 March 2019.

Mean (cm) CV Skewness Short-Range D 1 Long-Range D 1

Obs Sim Obs Sim Obs Sim Obs Sim Obs Sim

Mid-Elevation
7 March 2017 19.3 17.3 1.32 1.00 2.8 2.4 2.60 2.77 2.93 2.93
4 March 2019 21.5 19.0 0.92 0.64 1.4 1.8 2.78 2.73 2.96 2.96

High-Elevation 7 March 2017 41.4 42.4 0.88 0.78 0.6 0.9 2.68 2.71 2.90 2.92
4 March 2019 67.5 64.6 0.45 0.40 −0.3 −0.2 2.78 2.81 2.91 2.90

1 The fractal dimensions (D) are estimated from the slope of log-log unidirectional semi-variogram plots as in
Reference [63], where D = 3-b/2, and b is the slope of the log-log semi-variogram over a particular interval. The scale
break that separates the short- and long-range segments (30 m for the mid-elevation coverage and 25 m for the
high-elevation coverage) corresponds to a well-known scale break (e.g., References [64,65]) that separates rich
spatial-complexity of snow depths at smaller scales, and more spatially random variability at larger-scales.
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and 10–15 cm, respectively, as compared with observed lidar snow depth distributions). These 
estimates improve further when aggregating to larger pixel sizes (Figure 8). Note that even at the 1 
m pixel scale, these values are comparable with those of the SfM snow depth maps themselves and a 
little better (higher R2, lower RMSE) than those for the first guess snow depth maps (compare Figure 
8 with Tables 1 and S1). This implies that SfM should be useful for multitemporal snow monitoring 
that is applicable at basin-scales. This is important given the high costs of repeated airborne lidar 
acquisitions. With the exception of a very few high-budget operations (e.g., NASA’s Airborne Snow 
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Figure 8. Performance of the simulated snow depth maps for the mid- and high-elevation lidar
coverages on 7 March 2017 (a–b) and 4 March 2019 (c–d) for different pixel scales. The original 1 m
maps are aggregated (by averaging) to the larger pixel scales. The solid lines depict the performance of
the simulated maps, created using the relationships between the 1 February 2017 and subsequent SFM
data (to assess the actual ability of the SfM data to predict snow depth distributions over the larger
lidar domains). The dashed lines with open circle markers depict the performance of the simulated
maps, created using the relationships between the 1 February 2017 and subsequent SFM data (to assess
the potential ability of the SfM data to predict snow depth distributions over the larger lidar domains).
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4. Discussion

In this study, we show that RPAS-SfM monitoring of snowpack can be a useful tool to provide
temporal snowpack monitoring. This monitoring provides accurate snow depth maps over small study
plots that do not have too much forest cover, and also offers the ability to capture relationships between
current and past snow depths that can be used to estimate snow depths for larger areas. In particular,
we show that for our study sites, limited spatial extent RPAS-SfM snow depth observations (when
combined with past lidar snow depth observations) can be used to generate fairly accurate estimates
of snow depth across the lidar domains (having R2 and RMSE values of ~0.75–0.9 and 10–15 cm,
respectively, as compared with observed lidar snow depth distributions). These estimates improve
further when aggregating to larger pixel sizes (Figure 8). Note that even at the 1 m pixel scale, these
values are comparable with those of the SfM snow depth maps themselves and a little better (higher
R2, lower RMSE) than those for the first guess snow depth maps (compare Figure 8 with Table 1 and
Table S1). This implies that SfM should be useful for multitemporal snow monitoring that is applicable
at basin-scales. This is important given the high costs of repeated airborne lidar acquisitions. With the
exception of a very few high-budget operations (e.g., NASA’s Airborne Snow Observatory [29]) this
high cost makes it infeasible to collect many repeated snow-on lidar data for most sites. In addition,
RPAS-SfM may be especially suitable for operational snowpack monitoring because the SfM data can
be processed relatively quickly [39].

The success of the extrapolations shown here depends on two critical factors. First, they rely on the
fact that there is a strong relationship between snow depth distributions at different times. We tested
this by comparing the snow depth data across the mid- and high- elevation lidar coverages at three
different times, representing a range of snowpack conditions, from mid-accumulation to mid-ablation
(Figure 5). Even though the shape of these relationships changed considerably at different times (i.e.,
it was more linear when comparing snow depths within the accumulation season and nonlinear when
comparing accumulation season to ablation season snow depths), their strengths were consistent
at different times (R2 ~0.77 and ~0.90 for the mid- and high-elevation lidar coverage, respectively).
This suggests that they should be useful for predicting snow depth distributions for other times as well.

The second critical factor affecting the success of these extrapolations is the ability of the distributed
SfM data to capture these relationships. Our SfM data were generally able to capture these relationships,
however, they did a better job for the montane plots than for the dense forest plot. This can be seen
by the higher agreement statistics (Figure 8) and smaller differences between statistics describing
the spatial distribution and spatial autocorrelation (Table 5) of the observed and simulated maps
for the high-elevation lidar coverage. This ability to reproduce these spatial statistics is particularly
important for applications that are based on statistics from lidar snow data (such as snow-cover
depletion models [66]). The lower agreement between the observed and simulated maps for the
mid-elevation lidar coverage could be because the dense forest plot (from which the SfM data is
extrapolated) has a flat topography and mostly uniform forest cover, and so contains a relatively small
range of snow conditions. However, it could also be because SfM data quality is much poorer for
densely forested conditions [20,67]. We tried to mitigate this by only considering pixels without an
overhead canopy. While this improved the ability of the SfM data to capture these relationships, it also
ignores under-canopy areas such as tree wells in their derivation. Nevertheless, this does not seem to
have too much of an effect on the relationships themselves as they are only sensitive to snow depth
changes between the survey dates, which occur similarly for both canopy-covered and open areas
(note the similarity between the thick and thin red lines in Figure 8).

Although this method works well at our research sites, more research is needed to understand
how well it works at other sites. It is well known that there is substantial similarity between snow
distributions at similar points in the snow season (e.g., peak SWE) [68–73]. However, there are
also substantial spatial differences between snow distributions during the accumulation and melt
seasons [46,74–76]. This does not necessarily mean, though, that there are not strong relationships
relating melt-season snow depth to accumulation-season snow depth (for our study sites; there were
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strong relationships; Figure 5), especially since spatial patterns of snow disappearance are related to
the distribution of snowpack at the start of the melt season [77].

One thing that is likely to lead to greater difficulties when using the pre-existing lidar observations
of snow distributions is land cover change (such as forest thinning, wildfire, or normal forest growth)
because these changes are known to alter the snow depth patterns [4,6,9,78]. We showed in Figure 6
that the observed and predicted snow depth distributions were different following forest thinning
treatments at the forest thinning comparison site. Climate variability and climate change may also
cause issues, since snow distributions for a particular year are influenced by differences in the sequence,
timing and magnitudes of snowfall/accumulation events, redistribution (due to wind), interactions with
canopy, and melt [50,79,80]. Nevertheless, the high correlations for the snow depth relationships, shown
in Figure 5, and for the simulated snow depth maps resulting from these relationships (in Figures 6
and 7) suggest that these differences do not necessarily make it harder to simulate snow depth patterns
for different years. That is, even though the shape of these relationships can change under changing
climate conditions, it is unclear how their strength would change.

In this study, the SfM snow depth data, themselves are reasonably accurate, and under ideal
conditions, they have comparable quality to airborne lidar. For example, at our montane plots, which
have relatively gentle topography and sparse tree cover (average slope ~10% and average canopy
cover~15%), the SfM-generated snow depth maps generally have high correspondence with the
airborne lidar-generated snow depth maps (with R2 ~0.75 to 0.85 between the two) and comparable
agreement with ground observations (RMSE ~10 cm for both technologies). For comparison, most
studies that evaluate the performance of SfM for snow depth mapping generally find RMSEs of
~5–15 cm in open settings [36,37,40,48,67,81]. SfM can even produce reasonable snowpack maps under
very low snow conditions [37]. For example, at the thinning comparison plot in March 2019 (average
snow depth ~10 cm), there is good correspondence between the RPAS-SfM, airborne lidar, and ground
snowpack measurements (Figure 3 and Tables 2 and 3). The performance of SfM (and, to a lesser extent,
lidar) is markedly lower under dense forest conditions [20,67]). At our dense forest plot (average
canopy cover ~45%), the correspondence between the SfM data and the ground measurements is lower
than between the lidar data and the ground measurements (RMSE ~10 to 20 cm for the SfM maps vs
~10 cm for the lidar maps). This performance difference is likely because SfM requires line of sight to
collect visual data in order to reconstruct the ground surface, while lidar pulses can split and provide
multiple returns, and thus, have a greater ability to penetrate dense tree canopies [27].

The quality of these SfM surveys depends on a variety of factors, including the conditions and
parameters used during drone image acquisition, the type of environment being surveyed, as well
as the success of each of the processing steps in Section 2.3. In terms of image acquisition, we found
that our acquisition parameters (RPAS flight ~75 m above ground at ~5–7 m per second with ~75–80%
overlap for the images, and using the RPAS’s automatic camera exposure adjustments) were sufficient
to capture imagery sufficient to produce good quality point clouds for our study plots. The most
significant issues that we experienced were due to deep tree shadows. Although these were not
a problem under sparse canopy conditions (in the montane plots), they caused problems for point
reconstruction under dense canopy conditions (in the dense vegetation plot). In heavily shaded areas,
the dark and poorly resolved ground surface caused spurious noise in the point clouds, which in
turn led to problems with the ground filtering (already a substantial source of uncertainty [82–84]).
Ultimately, this led to spurious snow depth variability for the dense forest plot (such as the artifacts
seen in Figure 3).

The automated post-processing steps described in Section 2.3 were also quite important for
producing high-quality snow depth maps. Since many of our point clouds were directly georeferenced
with onboard GPS data, we relied upon these steps to ensure accurate georegistration of the SfM point
clouds, relative to the existing snow-off data. While this approach is capable of producing accurately
georeferenced point clouds [85], it increases the reliance on these post-processing steps to produce
accurate snow depth maps. In particular, it relies on sufficiently accurate first guess snow depth maps
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to add to the snow-off data so that they could be used to remove tilting and warping issues that
sometimes affect SfM point clouds [86]. For our study sites, these maps (Figure S2) were reasonably
accurate (typically having RMSEs of 10–15 cm, a little higher than the final SfM maps; compare Table 2
and Table S1), leading to the ability to use them reliably in our SfM post-processing steps.

Although the high-resolution snow depth mapping afforded by lidar and SfM are already some of
the best ways to monitor distributed snowpack properties in mountain forests, taking the extra step of
estimating SWE is enormously valuable because SWE is the snowpack variable that is of most interest
in hydrological applications [28,61]. Broxton et al. [54] showed that it is important to consider snow
density differences across space at our sites, because even though snow depth variability accounts for
a majority of SWE variability, snow density can still show substantial spatial variability on a given
date (varying by more than 75% across these research sites). This is in line with other studies finding
substantial spatial variability of snow density [62,87–90]. Following [54], we use machine learning
of how field snow density measurements relate to various lidar-derived physiographic variables to
produce maps of snow density, which are then combined with the snow depth maps to produce maps
of SWE (see Section 2.3). These maps validate fairly well with snow density / SWE observations at
our research sites. The RMSEs of these snow density maps range from 0.024 to 0.033 g/cm3, and the
RMSEs of the resulting SWE estimates range from ~2 to 4 cm [54]. For comparison, the RMSEs of the
extrapolated SWE maps range from ~4-5 cm at the 1 m scale to ~2-3 cm at the 1000 m scale (Figure 8).

Overall, for multitemporal monitoring of snowpack where SfM is used as a tool to compliment
airborne lidar, we would recommend:

(1) Conducting an airborne lidar survey representing mid-winter to peak snowpack conditions, to
provide a baseline coverage before too much melt so that there are no major snow-free areas over
the study area (which would require an alternate technique to extrapolate snowpack conditions
in these areas)

(2) Planning SfM surveys in areas where SfM has a high chance of success (e.g., sparse canopy, gentle
topography, not a whole lot of brush / low vegetation) and where a large range of snow depth
variability can be observed (which can include multiple SfM plots), giving a greater ability for
successful extrapolation to the larger airborne lidar domain

(3) Designing complimentary ground snow surveys that capture snow conditions across a range
of physiographic conditions to be able to generate a reliable first-guess snow depth map to
aid in the creation of the SfM data (as well as allowing for good characterization of snow
densities). These surveys should capture snow variability related to the important physiographic
characteristics and snow processes for a given field site. For our area, snow depth variability
was primarily influenced by the tradeoff between shading (from both terrain and vegetation
and terrain influences) and interception [6]. Therefore, it was ideal to have transects spanning
gradients of vegetation cover and tree shading (e.g., across forest gaps and into forest edges) and
on opposing aspects.

The existence of snow-on lidar data makes these planning tasks easier as objective criteria (based
on these data) can be used for site selection. The RPAS flight acquisition parameters (see Section 2.1)
and processing steps (see Section 2.2) used in this study seemed to be adequate to produce good quality
SfM snow maps, but it is also likely that additional improvements could be made. For example, using
more exact positioning (e.g., using RTK GPS), which can provide cm level precision [91–93]), could
help with model positioning and reducing the warping and tilting of the SfM models, thus reducing
the importance of post-processing to correct the point cloud data. Also, the use of drone-based lidar
would perform better than SfM in areas with thick canopy [20] (with the obvious drawback that it is
much more expensive). Finally, using a fixed-wing aircraft that can cover larger areas may improve
the ability to capture the snow spatial variability needed for basin-scale snow estimation, though
this option may be limited in some denser forests, due to line-of-sight requirements in places such as
the US.
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5. Conclusions

Although airborne lidar has revolutionized our ability to make distributed measurements of
snowpack in mountain forests, it is expensive and time-consuming to process, making it hard to use for
real-time or multi-temporal snow monitoring. This study demonstrates that SfM based on multi-angle
imagery from a multi-rotor RPAS and airborne lidar can provide complementary information for
high-quality snowpack monitoring, as the use of RPAS allows for relatively low cost, on-demand
snow monitoring over small plots, and airborne lidar provides monitoring over a much larger area
and at a higher cost. The existence of snow-on lidar data may allow subsequent SfM data to be
extrapolated to much larger areas by comparing the spatially distributed snow thicknesses from the
SfM data with those of already-measured lidar snow depths. This would make SfM data much more
useful for basin-scale hydrological applications such as Land Surface Model evaluation and water
supply monitoring. At our study sites, using the relationships developed between the small plot
SfM data and previously flown airborne lidar resulted in fairly accurate snowpack estimates for the
larger domains (R2 values between the extrapolated maps and observed lidar data that is used for
verification are ~0.7–0.9, and RMSE’s between the two are ~10–15 cm for a 1 m pixel scale, with even
higher performance when aggregating the data to larger pixels). However, the methodology proposed
here may not always be appropriate (e.g., after extensive land cover changes), and more research is
needed to understand its effectiveness at other research sites. Ultimately, successful incorporation of
SfM and airborne lidar will be important for cost-effective multitemporal monitoring of snowpack.
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Abstract: In this study, an analysis of the capabilities of unmanned aerial vehicle (UAV)
photogrammetry to obtain point clouds from areas with a near-vertical inclination was carried
out. For this purpose, 18 different combinations were proposed, varying the number of ground
control points (GCPs), the adequacy (or not) of the distribution of GCPs, and the orientation of the
photographs (nadir and oblique). The results have shown that under certain conditions, the accuracy
achieved was similar to those obtained by a terrestrial laser scanner (TLS). For this reason, it is
necessary to increase the number of GCPs as much as possible in order to cover a whole study area.
In the event that this is not possible, the inclusion of oblique photography ostensibly improves results;
therefore, it is always advisable since they also improve the geometric descriptions of break lines or
sudden changes in slope. In this sense, UAVs seem to be a more economic substitute compared to
TLS for vertical wall surveying.

Keywords: UAV; photogrammetry; 3D-model; surveying; vertical wall

1. Introduction

Topographical surveys of surfaces with high angles of inclination such as nearly vertical slopes
on roads or motorways, as well as the survey on architectural facades, are a technical challenge, the
main concern of which is ensuring the safety of the operators responsible for carrying out the survey.
Technical equipment has traditionally been used to guarantee this safety by preventing the operator
from having to access the survey area. Thus, for road slopes, for example, total stations without
prisms have been used, or architectural facades have been counted, in addition, with the resource of
the rectification of photographs. However, since terrestrial laser scanners (TLS) came on the market,
their use has contributed to improving the effectiveness in these kinds of studies, as well as those in
other fields (e.g., cartography, geographic information systems, spatial planning, industry, forestry).
TLS measures the time of flight of an emitted laser pulse that is reflected off of an intervening feature
and returned to the sensor, thus resulting in a range measurement [1]. Because lasers arrive directly
at the surface of the object and are reflected from it, this technology can precisely acquire spatial
coordinates with an error that depends on the range, which usually varies between 1 and 10 mm.
However, the TLS is expensive, and there are times when its use is limited due to certain circumstances
that can distort and introduce error in measurements, including penetration and diffused reflection
of the beam [2], or shadows that produce gaps in the point cloud. At present, there is a trend to
complement this technology with unmanned aerial vehicles (UAVs) carrying digital cameras.

In recent years there has been a growing interest in UAVs from the scientific community, as well as
geomatics professionals and software developers, which has led to their use in increasing applications
related to architecture and engineering [3,4]. In fact, UAVs were first used for military applications [5]
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and then for civilian purposes [6] such as precision agriculture [7,8], forestry studies [9,10], fire
monitoring [11,12], cultural heritage and archaeology [13–15], traffic monitoring [16,17], environmental
surveying [18,19], and 3D reconstruction [20–22]. UAV photogrammetry is gaining ground in the gap
between traditional surveying methods and photogrammetric flights performed with conventional
aircraft. Depending on the extent of the area, UAVs are more competitive because they offer greater
flexibility while requiring less time to acquire data, and, additionally, they represent a significant cost
reduction compared to the use of traditional aircraft [23].

The combination of computer vision and photogrammetry [24] has allowed great advances in
the automation process by highlighting the use of images with different tilt angles and at different
heights [25]. There are several software packages that allow photographs taken with conventional
cameras to obtain 3D reconstruction by means of point clouds. The majority of these software packages
are based on special algorithms, such as Structure-from-Motion (SfM) [26–28]. SfM is an algorithm
that automatically reconstructs the geometry of the scene, the positions and the orientation from
which the photographs were taken, without the need to establish a point network with known 3D
coordinates [29,30]. SfM incorporates multi-view stereopsis (MVS) techniques [31], which derive a 3D
structure from overlapping photography, acquired from multiple locations and angles [32], and applies
them to a scale-invariant feature transform (SIFT) operator for key-point detection. This generates
3D point clouds from photographs. Contrary to classical aerial photogrammetry, which requires
sophisticated flight planning and pre-calibration of cameras [33], SfM simplifies the process, thus
eliminating the need for exhaustive planning or camera calibration, and allowing for the use of images
from different cameras. The result of processing this algorithm is a point cloud without scale or
orientation, whose georeferencing can be obtained by direct methods through the use of photographs
with EXIF data or by indirect methods using ground control points (GCPs) [34]. There are numerous
studies that analyze the effect of different parameters on the accuracy of products obtained by UAV
photogrammetry [35–40]. Of all of them, the number of GCPs is of special importance [41], as is their
distribution and the use of photographs with different inclination angles [42]. In summary, UAV
photogrammetry has shown a great deal of development in recent years and is increasingly used in
situations where other techniques are less efficient or simply not feasible. Therefore, it is necessary to
continue developing specific methodologies to obtain accurate results using UAV photogrammetry in
extreme topographic situations, such as dealing with quasi-vertical walls.

The goal of this study is to validate the specific use of point clouds obtained by UAV
photogrammetry for the topographic survey of walls or facades that have an inclination close
to vertical. For this purpose, 18 scenarios have been proposed that use different combinations of GCPs
and photograph orientations and adopt adequate (or inadequate) GCP distributions. All of these
scenarios have been compared with the one obtained through a TLS, resulting in certain parameters
for UAV photogrammetry, with accuracy that is comparable to that obtained through TLS.

2. Materials and Methods

The flow followed in this work is shown in Figure 1. In summary, work begins with a global
navigation satellite system (GNSS) survey of the dam edges and georeferencing targets. The points
obtained on the dam edges are then used to interpolate seven profiles along the dam cross section that
are then used to validate the point cloud obtained by the TLS. The targets are used indistinctly for the
georeferencing of the 18 UAV photogrammetry projects and for quality control. Once the point clouds
are obtained by UAV photogrammetry, they are compared with that obtained by TLS.
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the 19th century, as well a key world reference for stone arch-gravity dams [43]. 
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its total height at its central point 31 m above the riverbed, as is shown in Figure 3. 
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2.1. Study Site

The study area was centered on the Isabel II Dam (1841–1857), located in the province of Almería
(Spain) about 7 km from the village of Níjar (Figure 2). Construction on the dam began with the
foundation works in 1841, although it was not inaugurated until 8 May 1850 without the completion of
the canals or offices, which would last until 1857. The reservoir was never completely filled, and the
project failed due to several faults in the calculations made in the hydrological and pluviometric studies
of the area.
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However, this dam is one of the most spectacular, and simultaneously least known, elements of
Spain’s hydraulic heritage. It is one of the few examples of the great hydraulic work undertaken in the
19th century, as well a key world reference for stone arch-gravity dams [43].

It was selected because of its downstream profile with walls that are very close to the vertical; its
total height at its central point 31 m above the riverbed, as is shown in Figure 3.
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emitting corrections at a point near the dam, as shown in Figure 4c. Both rover and base GNSS 
receivers were Trimble R6 systems. The 3D coordinates of the base, corrected via the Trimble 
Centerpoint RTX Post-Processing Service, were 574909.418, 4093250.721, and 372.012 m (European 
Terrestrial Reference System 1989, ETRS89 and EGM08 geoid model). 
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2.2. GNSS Surveying of Dam Edges and Ground Control Points

Before performing the photogrammetric flights and TLS scanning, a traditional GNSS survey was
carried out, materializing a total of 113 points distributed along the dam’s downstream face, mostly on
the edges of the steps, which allowed for their subsequent complete interpolation by means of cabinet
work, as shown in Figure 4a. Of all these points, 17 were materialized by means of targets that allowed
for their later viewing in photographs taken by the UAV. The targets used consisted of a red paper
of size A3 (420 × 297 mm) with four quadrants, two of them black. Figure 4b shows an example of
one of these targets. The three-dimensional (3D) coordinates of these targets were measured with a
GNSS receiver operating in post-processing kinematic mode (PPK), with the base emitting corrections
at a point near the dam, as shown in Figure 4c. Both rover and base GNSS receivers were Trimble R6
systems. The 3D coordinates of the base, corrected via the Trimble Centerpoint RTX Post-Processing
Service, were 574909.418, 4093250.721, and 372.012 m (European Terrestrial Reference System 1989,
ETRS89 and EGM08 geoid model).

From the data obtained by GNSS, seven theoretical profiles were made along the entire downstream
face of the dam, numbered P1 to P7. These theoretical profiles obtained by GNSS are shown in Figure 5.
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2.3. Topographic Surveying Using TLS

In order to meet the objective of this research, it was necessary to obtain a complete point
cloud of the study area that would allow its later comparison with the products obtained by UAV
photogrammetry. To this end, a complete scan of the dam’s downstream face was carried out using TLS.

The TLS provides a three-dimensional quasi-constant point cloud of the observed objects.
The accuracy of this point cloud depends mainly on the distance between the scanner and the
observed object. In recent years, the application of this equipment is increasing exponentially [44–47].
TLS measurements are based on the time elapsed by a laser ray emitted by the scanner and reflected
by the object. From the time measurement, the distance is obtained and transformed into real-time
coordinates. The working guidelines are described in depth in [48].

2.3.1. Data Acquisition

In this paper, a Trimble TX8 Scanner (Figure 6) was utilized for the topographical survey of the
dam. This scanner measures almost 1 million points per second and its maximum scanning range is
120 m, but can extend up to 340 m under favorable conditions. The wavelength of the laser is 1.5 µm,
and the scanning frequency is 1 MHz. Advertised measurement accuracy is ±2 mm, and the angular
resolution is 0.07 mrad. It also includes an integrated HDR camera with 10 MP resolution. This scanner
was used by [49] to measure the deflections of a technological suspension bridge above the Odra River
(Southern Poland).Remote Sens. 2020, 12, 2221 7 of 23 
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Due to the geometry of the study area, it was not possible to capture the entire wall from a single
location. Therefore, the measurements for the TLS point cloud acquisition were taken from four
different station points, as shown in Figure 7.
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georeferencing; (b) view from Station 1; (c) view from Station 2; (d) view from Station 3; (e) view from
Station 4.

The point cloud for Station 1 had a total of 57,348,448 points. Station 2 had 119,268,180 points,
Station 3 had 96,323,508 points, and Station 4 had 274,417,074 points.

2.3.2. Data Processing

Processing of the point clouds obtained by TLS was carried out using Trimble RealWorks software.
The first step carried out once the clouds were loaded was the relative registration between them.
To obtain a fine registration of all TLS datasets, cloud-to-cloud registration was used. This required
searching for common tie points between each pair of clouds. Then, the four point clouds were merged
into a single point cloud. This processing methodology was used by [50] who reported errors between
11–19 mm, [51] with an error of 13 mm, or [52] where a maximum error of 42 mm was found between
scans from two different stations. The results of the registration of this work are shown in Table 1.

177



Remote Sens. 2020, 12, 2221

Table 1. Result of the registration of the 4 scanning stations.

Station Cloud to Cloud Error (cm) Common Points (%) Confidence (%)

SS-1
SS-2 0.237 35% 97%
SS-3 0.278 18% 80%
SS-4 0.469 48% 99%
SS-2
SS-1 0.237 35% 97%
SS-4 0.381 57% 100%
SS-3
SS-1 0.278 18% 80%
SS-4
SS-1 0.469 48% 99%
SS-2 0.381 57% 100%

Once registration of the four scanning stations was complete, the indirect georeferencing of the
merged point cloud was carried out in absolute coordinates using the ETRS89 UTM zone 30 N reference
system. For this purpose, five control points were used, measured by GNSS, the position of which is
shown in Figure 7a. The results of the indirect georeferencing adjustment are shown in Table 2.

Table 2. Result of the indirect georeferencing of the project.

Point X-Error (cm) Y-Error (cm) Z-Error (cm) Total Error (cm)

Point-1
SS-1 −1.062 0.491 0.404 1.238

Point-2
SS-2 −1.841 −2.341 −1.459 3.316

Point-3
SS-2 0.741 2.998 1.619 3.487

Point-4
SS-4 1.741 0.973 0.354 2.026

Point-5
SS-2 0.420 −2.120 −0.917 2.348

The final TLS point cloud resulting from combining the four individual point clouds can also be
seen in Figure 7a. To reduce the size of the resulting point cloud, limits were established according to
the area of interest, resulting in a point cloud of 74,447,399 points.

2.4. Topographic Surveying Using UAV Photogrammetry

2.4.1. Image Capture

The images used in this study were captured by a rotary wing with four rotors, DJI Phantom 4 Pro
UAV. This equipment has a navigation system that uses GPS and GLONASS. In addition, it is equipped
with front, rear, and lower vision systems that allow it to detect surfaces with defined patterns and
adequate lighting and avoid obstacles with a range between 0.2 and 7 m. The Phantom 4 RGB camera
is equipped with a one-inch, 20-megapixel (5472 × 3648) sensor and has a manually adjustable aperture
(from F2.8 to F11). The lens has a fixed focal length of 8.8 mm and a horizontal field of view (FOV) of 84◦.
The acquisition of photographs from a UAV takes place via airborne photogrammetry from the aircraft,
whereby a block of photographs is taken from parallel flight lines that are flown in a snake pattern at a
stable altitude with constant overlap and a vertical camera angle (90◦) [53]. However, the integration of
oblique photographs can reduce the systematic deformation resulting from inaccurate calculations to
determine the internal geometry of the camera in modern SfM–MVS photogrammetry [54,55]. There is
evidence that oblique photographs contribute to the integrity of the point cloud reconstruction [51,56].
For example, [51] studied the influence of the angle of the oblique images, ranging from 0–35◦, and
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compared it with the TLS. They concluded that oblique images are indispensable to the improvement
of accuracy and the decreasing of systematic errors in the endpoint cloud. The results also suggested
that oblique camera angles of between 20 and 35◦ increased accuracy by almost 50%, in relation to
blocks with only nadir images.

The images were obtained from two independent flights. The first was carried out in automatic
pilot mode through the DJI GS Pro application, and a total of 207 nadir photographs were obtained
in 13 passes. The flight height was set at 36 m above the dam crest, which is equivalent to a ground
sample distance (GSD) of 1.3 cm. To obtain side and forward overlaps of 65% and 80%, respectively,
the camera took a shot every two seconds. The second flight was made in manual mode to obtain
oblique photographs, in order to provide photographic capture of all the details of the dam´s geometry.
This flight was carried out at an approximate distance of 30 m from the downstream face of the dam
and was executed in seven different passes, parallel to the dam and at varying altitudes. A total of 372
photographs (including those of the control building and the guard, which are not relevant to this
study) were taken. In addition, due to the camera’s wide FOV, it was possible to cover the entire dam
without going too far away from it. To avoid the appearance of the horizon in the photographs, an
inclination angle of about 45◦ was adopted. No frontal photographs were taken, as much of the study
area had horizontal surfaces. A total of 579 photographs with different points of view and scales were
used to process the photogrammetric projects. Figure 8 shows the image overlap and camera locations
for both flights.
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2.4.2. Image Processing

The photogrammetric projects were executed using Agisoft Metashape Professional software,
version 1.6.1.10009. This software is based on the SfM algorithm and runs in three independent steps.
In the first step, all images are aligned by identifying and tying common points. During this process,
the software estimates the camera’s internal and external orientation parameters, including non-linear
radial distortion. The software only needs the focal length value, which it obtains directly from the
EXIF data of the photographs. This was carried out with the PhotoScan accuracy set to “medium” in
order to reduce the processing time. The result of this step is the camera position and orientation, as
well as the internal calibration parameters and the 3D relative coordinates of a sparse point cloud in the
area of interest. In the second step, the sparse point cloud is referred to an absolute coordinate system,
in our case ETRS89 UTM 30N, and the point cloud is densified, once the optimization and adjustment
of the camera model have been completed. This was also carried out with the PhotoScan accuracy set
to “medium”. This point cloud needs to be cleaned up to eliminate all of the wild points not belonging
in the model, which is done manually. The result is a highly detailed point cloud. From this point
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cloud, a mesh can be obtained; in this study, this was done using the height field method. In the third
step, texture is applied to the mesh, and finally the orthophoto, digital surface model (DSM) and point
cloud can be exported, in *.las formats. The bundle adjustment can be carried out using at least three
ground control points (GCPs), but more accurate results can be obtained if more GCPs are used; thus,
it is recommended that more GCPs be used to obtain optimal accuracy [57,58]. In this study, 17 targets
placed on the dam were used as GCPs to georeference the project. The remaining targets not used in the
bundle adjustment were used as control points (CPs) to evaluate the photogrammetric project accuracy,
according to the root mean square error (RMSE) formula, described in [35]. There are numerous studies
in which it has been corroborated that increasing the number of GCPs improves the accuracy of results
of UAV photogrammetric projects. For example, [59] needed approximately six to seven GCPs to
obtain accuracy of about 15.6 cm, and specified that it was necessary to increase the number of GCPs
to reduce error. In [60], a study was conducted to analyze the optimal number of GCPs for volumetric
measurements in open pit mines; for accuracies of about 5.0 cm, they concluded that about 15 GCP/km2

were needed. In [61], an extensive study was carried out with over 3000 combinations, concluding
that an increase in GCPs improves accuracy, with a limited project ground sample distance (GSD).
In addition, [62] studied the influence of GCP distribution on the accuracy obtained in photogrammetric
projects and concluded that the vertical error is proportional to distance, to the nearest GCP. In their
case, they obtained vertical RMSEs that ranged from 15.6 cm for three GCPs to 5.9 cm for 101 GCPs.

In total, 18 photogrammetric projects were carried out, differentiating the types of orientation
used in the photographs (nadiral, oblique, or both), the number of GCPs used for georeferencing (3, 5,
and 7), and an adequate or inadequate distribution of GCPs, according to [41], who established that
an adequate distribution of GCPs is one in which GCPs are arranged at the edge of the study area,
while the interior area is covered homogeneously with GCPs; distributions of GCPs that do not meet
these criteria are considered inadequate. Table 3 shows a summary of the executed photogrammetric
projects, and Figure 9 shows the different combinations of numbers of GCPs and type of distribution of
the GCPs.

Table 3. Summary of photogrammetric projects carried out.

Id Photogrammetric
Project

Photographic
Orientation Number of GCPs Used Adequate Distribution

1 Nadiral 3 Yes
2 Oblique 3 Yes
3 Nadiral & Oblique 3 Yes
4 Nadiral 3 Not
5 Oblique 3 Not
6 Nadiral & Oblique 3 Not
7 Nadiral 5 Yes
8 Oblique 5 Yes
9 Nadiral & Oblique 5 Yes
10 Nadiral 5 Not
11 Oblique 5 Not
12 Nadiral & Oblique 5 Not
13 Nadiral 7 Yes
14 Oblique 7 Yes
15 Nadiral & Oblique 7 Yes
16 Nadiral 7 Not
17 Oblique 7 Not
18 Nadiral & Oblique 7 Not
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2.4.3. Accuracy Assessment

The evaluation of the accuracy was carried out by measuring the values of RMSEX, RMSEY, and
RMSEZ, as well as RMSET (total error) measured on each CP.

2.5. Point Cloud Management

Prior to the above, and in order to compare the profiles obtained from GNSS with the point cloud
obtained from TLS, the cloud-to-mesh (C2M) tool, offered by CloudCompare v2.8 [63], was used.
The mesh was first obtained from the point cloud of the TLS, using the Dalaunay 2.5 tool, and once
obtained, the C2M algorithm was applied to corroborate the adequate georeferencing of the TLS cloud
and its validity for use as a reference for comparison against photogrammetric projects.

A multiscale model-to-model cloud comparison (M3C2) tool was used to compare the point
clouds generated by the photogrammetric projects with the point cloud generated by the TLS. This
tool calculates in a robust way, the distance, positive or negative, between two point clouds [64].
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The principles of operation of this tool are described in [41]. M3C2 output consists of, amongst other
data, a text file with the x-, y-, and z-coordinates for each point of the reference cloud and the 3D
distance associated with the comparison. All data can be displayed using a color scale to highlight the
resulting scalar field.

3. Results

3.1. Validation of Data Derived From TLS in Comparison With Theoretical Profiles Obtained by GNSS

Table 4 shows a summary of the comparison between the profiles obtained by GNSS and the
model derived from the point cloud obtained by TLS. For the seven profiles studied, the average of
the mean differences is below 0.03 cm with a standard deviation of less than 3 cm, which ensures the
correct georeferencing of the TLS point cloud.

Table 4. Summary of comparison between profiles obtained by GNSS and data derived from a terrestrial
laser scanner (TLS).

Errors TLS vs GNSS

Profiles Mean (cm) Standard Deviation (cm)

P-1 −0.180 2.888
P-2 −0.122 2.602
P-3 −0.244 2.820
P-4 0.003 3.487
P-5 0.166 2.617
P-6 −0.139 1.877
P-7 0.302 4.463

Mean of profiles −0.030 2.965

Figure 10a graphically represents the differences across the seven profiles obtained by GNSS with
respect to the model derived from the point cloud obtained by TLS. Figure 10b shows an example of
the error distribution for Profile 2, in which it can be seen that most of the differences are close to 0 and
that, in some cases, larger errors appeared in most cases due to the presence of shrubs growing on the
dam face, as shown in Figure 10c.
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3.2. RMSE UAV-PhotogrAmmetric Projects

Figure 11 shows the precision results obtained in the 18 photogrammetric projects through the
evaluation of the RMSE.
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From the analysis of the data obtained, it is clear that an adequate distribution of GCPs is
important for the minimization of errors. The results obtained were in line with those obtained
by [41]. Therefore, the average error in the projects with inadequate distribution was around 8.5 cm,
while in the projects with adequate distribution, it was in an average of 4.0 cm, which represents an
improvement of more than 50%. As indicated in [57], increasing the number of GCPs improves the
accuracy of photogrammetric projects, regardless of whether the distribution of GCPs is adequate or
not. In this study, a slight worsening was found for 7 GCPs against 5 GCPs. Thus, for 3 GCPs the
average error was 7.1, for 5 GCPs it was 5.5, and for 7 GCPs it was 6.2 cm. This alteration was only
found for the projects with inadequate distribution, while for the projects with adequate distribution,
the error decreased as the number of GCPs increased. Thus, for 3 GCPs the average error was 4.8, for
5 GCPs it was 4.0, and for 7 GCPs it was 3.3 cm. Regarding the orientation of the photographs, an
average error of 7.9 was obtained for projects with nadiral photographs, 5.0 for projects with oblique
photographs, and 6.0 cm for projects that combined both orientations of photographs. For the projects
with inadequate distribution, the best results were obtained for oblique photographs with an average of
6.2 cm. However, for an adequate distribution, the best results were obtained for nadiral photographs
with an average of 3.7 as opposed to 3.8 obtained for oblique photographs, or 4.6 cm for projects that
combined both orientations.

3.3. Vertical Distances between the Point Clouds Obtained by TLS and UAV Photogrammetry

For all studied scenarios, the point clouds were evaluated based on reference data acquired by the
TLS. There are several studies in scientific literature concerning the evaluation of vertical distances
between clouds obtained by UAV photogrammetry and reference clouds. For example, [65] evaluated
the capacity of UAV photogrammetry to obtain point clouds in quarries where there were walls with
near-vertical inclination. In this study, they corroborated the improvement in the description of the
break lines and in the accuracy of cross profiles with vertical walls, using oblique photographs and
comparing the UAV photogrammetry clouds with the profiles obtained by a total station. One of their
main conclusions was that the scenario with nadir photographs resulted in smoother geometry and a
more gradual transition between vertical and horizontal surfaces than the scenario involving nadir
and oblique photographs.

Figure 12 shows the vertical distances between the cloud obtained by TLS and the six UAV
photogrammetry projects executed with 3 GCPs. For the projects with nadiral photographs and
adequate distribution of GCPs, the M3C2-calculated vertical distances resulted in absolute values
distributed as a Gaussian function with mean = −0.075 and standard deviation (SD) = 8.335 cm. For the
project with nadiral photographs and inadequate distribution of GCPs, a mean distance of −7.806 and
an SD of 13.586 cm were obtained. For the project with oblique photographs and adequate distribution
of GCPs, an average distance of 0.068 and an SD of 6.406 cm were obtained. For the project with
oblique photographs and inadequate distribution of GCPs, an average distance of −21.597 and an
SD of 22.466 cm were obtained. For the project with nadiral and oblique photographs and adequate
distribution of GCPs, a mean distance of 0.195 and an SD of 7.066 cm were obtained. For the project
with nadiral and oblique photographs and inadequate distribution of GCPs, an average distance of
−24.692 and an SD of 26.988 cm were obtained. For this scenario, with inadequate distribution, the use
of oblique photographs increased the average absolute distance between the clouds by 47%. However,
for an adequate distribution, there was a reduction of the average cloud distance by 30%.
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SD of 6.661 cm were obtained. For this scenario, with inadequate distribution, the use of oblique 
photographs reduced the absolute average distance between the clouds by 25%, and by 9% for 
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Figure 12. UAV-photogrammetric projects with 3 GCPS (units in meters). (a) Nadiral-3GCPs-Yes;
(b) Nadiral-3GCPs-Not; (c) Oblique-3GCPs-Yes; (d) Oblique-3GCPs-Not; (e) Nadiral&Oblique-3GCPs-Yes;
(f) Nadiral&Oblique-3GCPs-Not.

Figure 13 shows the vertical distances between the cloud obtained by TLS and the six UAV
photogrammetry projects executed with 5 GCPs. For the project with nadiral photographs and
adequate distribution of GCPs, an average distance of 0.492 and an SD of 7.236 cm were obtained.
For the project with nadir photographs and inadequate distribution of GCPs, a mean distance of
−3.015 and an SD of 7.501 cm were obtained. For the project with oblique photographs and inadequate
distribution of GCPs, a mean distance of 1.109 and an SD of 6.092 cm were obtained. For the project
with oblique photographs and inadequate distribution of GCPs, a mean distance of −1.418 and an
SD of 6.303 cm were obtained. For the project with nadiral and oblique photographs and adequate
distribution of GCPs, a mean distance of 1.361 and SD of 6.593 m were obtained. For the project
with nadiral and oblique photographs and inadequate distribution of GCPs, a mean distance of
−1.666 and SD of 6.661 cm were obtained. For this scenario, with inadequate distribution, the use of
oblique photographs reduced the absolute average distance between the clouds by 25%, and by 9% for
adequate distribution.
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Figure 13. UAV-photogrammetric projects with 5 GCPS (units in meters). (a) Nadiral-5GCPs-Yes;
(b) Nadiral-5GCPs-Not; (c) Oblique-5GCPs-Yes; (d) Oblique-5GCPs-Not; (e) Nadiral&Oblique-5GCPs-Yes;
(f) Nadiral&Oblique-5GCPs-Not.

Figure 14 shows the vertical distances between the cloud obtained by TLS and the six UAV
photogrammetry projects executed with 7 GCPs. For the project with nadiral photographs and
adequate distribution of GCPs, an average distance of 0.325 and SD of 7.226 cm were obtained. For the
project with nadiral photographs and inadequate distribution of GCPs, a mean distance of −0.637 and
SD of 8.689 cm were obtained. For the project with oblique photographs and adequate distribution
of GCPs, a mean distance of 0.704 and SD of 6.187 cm were obtained. For the project with oblique
photographs and inadequate distribution of GCPs, a mean distance of 1.134 and SD of 6.616 cm were
obtained. For the project with nadiral and oblique photographs and adequate distribution of GCPs, a
mean distance of 1.130 and a SD of 6.579 cm were obtained. For the project with nadiral and oblique
photographs and inadequate distribution of GCPs, a mean distance of 1.314 and SD of 7.143 cm were
obtained. For this scenario, with inadequate distribution, the use of oblique photographs reduced the
absolute average distance between the clouds by 18%, and by 11% for adequate distribution.
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Therefore, in view of the results obtained for the adjustment and georeferencing of the point cloud 
by TLS, it can be adopted as a reference cloud for subsequent comparison with projects obtained by 
UAV photogrammetry. 

Regarding the number of GCPs used for the georeferencing of photogrammetric projects, in this 
study, a clear trend of improved results was obtained by increasing the number of GCPs, with the 
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approximately 50% less obvious with oblique photographs than with nadiral photographs, which 
demonstrates the need to incorporate oblique photographs when it is not possible to have an 
adequate distribution of GCPs. 
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(b) Nadiral-7GCPs-Not; (c) Oblique-7GCPs-Yes; (d) Oblique-7GCPs-Not; (e) Nadiral&Oblique-7GCPs-Yes;
(f) Nadiral&Oblique-7GCPs-Not.

4. Discussion

Considering that the accuracy error of measurements made with GNSS was about 8 for the
horizontal plane and 15 mm vertically, the adjustment obtained for the TLS point cloud is considered
adequate, since the average adjustment error obtained at the control points was 25 mm. In turn, the
maximum cloud-to-cloud error found in the four-station registry was below 5 mm, similar to that
obtained by [50,51], and much less than that reported by [52]. Analyzing the differences with respect to
the seven theoretical profiles obtained by GNSS, a mean error of −0.030 and a standard deviation (SD)
of 2.965 cm were found. Similar errors were obtained by [66], who reported three different experiments
to obtain indirect georeferencing of TLS point clouds by using control lines. The results they found
ranged from a mean error of 0.002–0.064 and a SD between 0.928 cm and 1.729 cm. Therefore, in view of
the results obtained for the adjustment and georeferencing of the point cloud by TLS, it can be adopted
as a reference cloud for subsequent comparison with projects obtained by UAV photogrammetry.

Regarding the number of GCPs used for the georeferencing of photogrammetric projects, in this
study, a clear trend of improved results was obtained by increasing the number of GCPs, with the only
noteworthy change being for an inadequate distribution of the seven GCPs. This is approximately 50%
less obvious with oblique photographs than with nadiral photographs, which demonstrates the need
to incorporate oblique photographs when it is not possible to have an adequate distribution of GCPs.

According to [62], the results of our study show similar values, where, for three GCPs and an
inadequate distribution, an RMSE of 9.49 cm was obtained, while with an increase of GCPs and
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improved distribution the RMSE decreased to 3.32 cm. This same trend is observed regardless of the
orientation of the photographs.

In recent years, studies on the benefit of introducing oblique images or an adequate distribution of
GCPs in UAV photogrammetry projects are common. However, there have been only few such studies
applied to quasi-vertical or vertical walls. In [55], it is noted that for the network of self-calibrated
images to be accurate, the spatial distribution of GCPs needs to cover the whole area of interest. In turn,
the density of GCPs depends on the accuracy needed in the project, the geometry of the network,
and the quality of the photographs. For example, to obtain accuracies of 5.0 cm, at a height of 100 m
(GSD 23 mm), about 15 GCPs were needed, with an average minimum spacing of 50 m. They pointed
out that improving the network geometry with oblique images or with a precisely pre-calibrated
camera could reduce the number of GCPs. These results coincide with those obtained in this study,
especially when the distribution of GCPs was inadequate. However, when the number of GCPs was
increased to five or seven, and the distribution was adequate, no improvement was found with the
use of oblique photographs. For projects with inadequate distribution, the use of nadir photographs
dramatically worsens the results. In this case, nadir photographs do not have such a strong effect
when combined with oblique photographs. In the case of adequate distribution, the opposite happens;
the best results are obtained with nadir photographs, while in this case, oblique photographs slightly
worsen the results.

As noted in [67], the accuracy does not only depend upon the number of GCPs, but also on
their distribution pattern. Therefore, the choice of a suitable pattern and the number of GCPs for a
particular mission can help obtain sufficiently accurate results with economic feasibility. In their study,
the accuracy ranged from 18.2 with three GCPs to 11.3 cm with nine GCPs. They also highlighted the
importance of positioning a GCP in the central region of the area. There was a substantial improvement
in accuracy due to the addition of another GCP in the central area. Our study has improved those
results, where, for three GCPs and an adequate distribution, the average error was 4.8 cm. In [42],
the authors studied the acquisition and use of oblique images for the 3D reconstruction of a historical
building, obtained by UAV for the realization of a high-level-of-detail architectural survey. For this
purpose, they used several software applications, obtaining similar results, in which the differences
with respect to a reference cloud ranged from 0.3–2.5 to 1.6–3.9 cm. As demonstrated in [68], the use
of oblique images obtained from a low-cost UAV system and processed by SfM software was an
effective method for surveying cultural heritage sites. In particular, they studied a facade, in which
they obtained an average distance between the clouds (UAV vs TLS) of 4.0 cm, with an SD of 9.0 cm.
Similar results were found in our study, where, for an adequate distribution of GCPs, the mean value
ranged from −0.1 to 1.4 cm with an SD ranging from 6.1 to 8.3 cm.

With respect to the break lines referred to by [65], this fact can be visually corroborated with
reference to Figures 11–13, wherein the major differences can be seen in the edges, at which abrupt
changes of slope occur. According to [51], in our study, evaluating the vertical distances between the
UAV photogrammetry cloud and the TLS cloud, the use of oblique photographs improved results by
between 9% and 30% for all scenarios except three GCPs and inadequate distribution.

5. Conclusions

The SfM analysis of the UAV images is a valuable and verified tool for surveyors interested in
the high-resolution reconstruction of nearly vertical walls. UAV studies are also a useful tool for
risk management in accessing hazardous and inaccessible areas, such as in cases of slope cuttings
on highways or roads with near vertical inclination or the analysis of architectural facades in cities.
This study has addressed the influence of three factors: The number of GCPs, the distribution of
GCPs, and the orientation of photographs obtained by the UAV. From the results obtained, a series of
guidelines can be established to simplify the process of capturing data in the field and to improve the
accuracy of photogrammetric products. In order to obtain optimal results with respect to accuracy, it is
important to distribute of as many GCPs as possible throughout the study area and to make use of an
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adequate distribution GCPs coverage, as far as possible, over the entire area of interest. In case these
two conditions are difficult to meet, the inclusion of oblique photographs in the photogrammetric
project results in a substantial improvement in the results obtained. In this way, it is possible to
achieve an RMSE of around 3.0 cm, which is a sufficient scale for most engineering or architectural
projects. In addition, oblique photographs ostensibly improve the geometric description of break lines
or sudden changes in slope. Therefore, it is always advisable to use them for projects with vertical
topography. Under these circumstances, UAV photogrammetry constitutes a technique whose results
are equivalent to those obtained by a TLS, but with the incentive of lower cost and greater facility for
the treatment of the point cloud.
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Abstract: The deep convolutional neural network (DCNN) has recently been applied to the highly
challenging and ill-posed problem of single image super-resolution (SISR), which aims to predict
high-resolution (HR) images from their corresponding low-resolution (LR) images. In many remote
sensing (RS) applications, spatial resolution of the aerial or satellite imagery has a great impact on
the accuracy and reliability of information extracted from the images. In this study, the potential
of a DCNN-based SISR model, called enhanced super-resolution generative adversarial network
(ESRGAN), to predict the spatial information degraded or lost in a hyper-spatial resolution unmanned
aircraft system (UAS) RGB image set is investigated. ESRGAN model is trained over a limited number
of original HR (50 out of 450 total images) and virtually-generated LR UAS images by downsampling
the original HR images using a bicubic kernel with a factor ×4. Quantitative and qualitative
assessments of super-resolved images using standard image quality measures (IQMs) confirm that the
DCNN-based SISR approach can be successfully applied on LR UAS imagery for spatial resolution
enhancement. The performance of DCNN-based SISR approach for the UAS image set closely
approximates performances reported on standard SISR image sets with mean peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) index values of around 28 dB and 0.85 dB, respectively.
Furthermore, by exploiting the rigorous Structure-from-Motion (SfM) photogrammetry procedure,
an accurate task-based IQM for evaluating the quality of the super-resolved images is carried out.
Results verify that the interior and exterior imaging geometry, which are extremely important for
extracting highly accurate spatial information from UAS imagery in photogrammetric applications,
can be accurately retrieved from a super-resolved image set. The number of corresponding keypoints
and dense points generated from the SfM photogrammetry process are about 6 and 17 times more
than those extracted from the corresponding LR image set, respectively.

Keywords: unmanned aircraft system (UAS); deep learning; super-resolution (SR); convolutional
neural network (CNN); generative adversarial network (GAN); structure-from-motion;
photogrammetry; remote sensing

1. Introduction

In most remote sensing (RS) applications, high-resolution (HR) images are usually more
demanding in a wide range of image analysis tasks leading to more precise and accurate RS-derived
products [1–3]. HR imagery is usually more desirable in all applications, including RS imagery,
because improved pictorial information makes visual interpretation easier for a human and helps to
purify representation for automatic machine perception [4]. In RS applications, the resolution of a
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digital imaging system can be classified in four different ways: spatial resolution, spectral resolution,
radiometric resolution, and temporal resolution. In the context of accurate feature mapping and
positioning in RS, spatial resolution is of the greatest challenge.

Spatial resolution of a digital imaging system is primarily defined by the pixel density in the
image space, which is measured in pixels per unit area. Spatial resolution in the object space represents
the level of spatial detail that can be discerned in an image; the higher the resolution, the more image
details. Limited spatial resolution in a certain image is primarily a function of the imaging sensor or
acquisition device [4]. The spatial resolution of imagery, usually referred to as ground sample distance
(GSD) in RS applications, is determined by the sensor size or the dimension of the electro-optical
sensor when based on the charge-coupled device (CCD) or complementary metal-oxide-semiconductor
(CMOS) technologies, the number of sensor elements, the focal length of the imaging device, and its
distance from the imaging target. Regardless of the other factors contributing to the spatial resolution
of imagery, such as focal length and the distance from sensor to the target, GSD of an image and the
quality of its high-frequency contents deteriorate mainly due to some manufacturing limitations and
imperfections of an imaging sensor.

One straightforward way to improve the spatial resolution or GSD of imagery is to build a more
compact sensor in which the sensor’s pixel density is increased by reducing the sensor element size.
However, this reduction in sensor element size may dramatically reduce the amount of light incident on
each sensor element, causing the so called shot noise [5]. Furthermore, capture of high frequency image
detail is also limited or degraded by the sensor optics, such as lens blur, lens aberration, and aperture
diffraction, or any external sources of image degradation including image motion due to moving
objects [4]. Constructing high-quality imaging sensors with perfect optical components, capturing
very high spatial resolution images with high-quality image content, is restrictively expensive and
not practical in most real scenarios. This is especially true when referring to the rapid rise in the use
of small unmanned aircraft systems (UASs) for RS and photogrammetry applications [4]. Such small
UASs are typically equipped with low-cost, consumer-grade digital RGB cameras. Besides the cost,
the resolution of these typical UAS cameras is also limited by the camera speed and hardware storage.
Physical constraints of the sensing platform or environment, such as with satellite imagery, can put
additional constraints on the use of very high-resolution sensors. Furthermore, in some imaging
systems, HR image content may not be always achievable due to inherent restrictions within the
system itself including built-in downsampling procedures to handle bandwidth limitations, different
types of noise related to the sensor electronics and atmosphere, compression techniques, etc. [6].

An alternative approach to hardware-based solutions for spatial resolution enhancement is to
accept the image degradation and apply signal processing techniques to attempt to recover fine image
details degraded or almost lost during image capture. These approaches are often referred to as
Super-Resolution (SR) image reconstruction techniques. SR techniques attempt to recover HR images
from LR images, and this task remains an important yet challenging topic in image processing that has
a wide range of applications in computer vision and image understanding tasks [7–10]. SR techniques
not only improve image perceptual quality, but also help to improve the final accuracy of many
computer vision tasks [11–13]. Application of SR techniques on highly detailed and complex RS data
introduces more challenges to the SR problem [14,15]. Most traditional image SR techniques use
highly sophisticated signal processing algorithms with a very high computational complexity [15,16].
Considering the size and the volume of required super-resolved images for some RS applications,
such as generating a precise digital surface model (DSM) using aerial or satellite photogrammetry,
traditional SR techniques are highly inefficient for such applications. Furthermore, some techniques
require multiple LR images from the same scene with high temporal resolution to resolve the SR
problem [17,18]. However, due to costs or limitations for acquiring the necessary imagery, complexity
of natural and built terrain, scarcity of multi-view sensors, and need for accurate image registration
algorithms, acquiring and processing such images for SR is a difficult task [15]. In addition, complicated
and versatile interaction of most RS sensors with atmosphere and objects, image displacements due
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to topographic anomalies, land cover characteristics, and participation of shaded areas due to the
Sun-sensor-object geometry in RS images make the SR problem a highly challenging task for almost all
developed techniques in this field [15].

Deep learning (DL), specifically deep convolutional neural network (DCNN), has recently been
applied to a wide range of image analysis tasks [19–22] including the highly challenging and ill-posed
problem of predicting HR images from LR images in an end-to-end manner. These methods have
already shown their superiority over almost all traditional techniques by achieving state-of-the-art
performance on various SR benchmarks [23–25]. Currently, DCNN-based single image super-resolution
(SISR) techniques have been employed to increase the geometrical and interpretation quality of
RS imagery [26–28]. However, few studies have focused on applying DCNN-based SISR on
UAS-based imagery, typically acquired at low altitudes with high resolution, where the accuracy
of the spatial information captured by the images is critical for the reliability of results drawn from
subsequent analyses [29,30]. Recently, super-resolution generative adversarial network (SRGAN) [23],
is considered as one of the most efficient DCNN-based SISR models for recovering very fine details in
predicted HR images from corresponding LR images [23]. Offering finer image content is always one of
the most important characteristics of HR images in different RS applications, which can lead to higher
accuracy and reliability in almost all spatial and non-spatial RS products. SRGAN has already proved
its superiority over many other DCNN-based SISR models for recovering very fine details in predicted
HR images, which are highly valuable for improving human image perception. However, the quality
of the recovered image details and their potential for enhancement of hyper-spatial resolution UAS
imagery for photogrammetric applications, such as dense 3D reconstruction of a scene, has not yet
been fully explored. With this motivation, this paper focuses on the application of DCNN to SISR for
UAS image enhancement. The contributions of the paper are as follows:

1. An overview of the SR problem and DCNN approaches for SISR is provided with emphasis
on generative adversarial network (GAN) architecture. GAN-based models are fully reviewed
including their specific loss functions. Additionally, different learning strategies and image
quality measures (IQMs) typically employed for SISR tasks are reviewed.

2. A high performance DCNN-based SISR model based on GAN architecture [31], known as
enhanced SRGAN (ESRGAN) [32], is adopted and trained on a set of LR UAS images virtually
generated by downsampling the original HR image set by factor ×4. Additive white Gaussian
noise is applied to the LR imagery to make the SISR task more challenging. Such noise can always
appear in any digital imaging and image transmission systems due to the electronics, imaging
sensor quality, and the interaction of the digital imaging system with the natural environment,
such as the level of illumination, temperature, etc [33]. Model performance in recovering the
degraded or lost image details and noise reduction in the predicted super-resolved images is then
carried out using standard IQMs. In this experiment, IQMs include peak signal-to-noise ratio
(PSNR), structure similarity (SSIM) index, and a qualitative analysis through visually inspecting
resulting SR images.

3. A task-based IQM using Structure-from-Motion (SfM) photogrammetry is carried out on the
predicted SR image set.

4. A comprehensive comparative analysis of SfM derived photogrammetric data products, resulting
from processing of the LR, HR, and SR UAS image sets, is carried out. Those products include:
the camera calibration and camera pose information, densified 3D point clouds, and digital
surface models (DSMs).

In regard to the UAS-SfM task-based evaluation for SR described above, the primary objectives of
the experiment are summarized as follows:

1. The performance of the adopted DCNN-based SISR model on retrieving both the interior and
exterior geometry of the UAS imagery is investigated. In SfM photogrammetry, the accuracy and
reliability of all derived parameters, within the robust bundle adjustment (BA) computations,
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are closely related to the accuracy and reliability of extracted keypoint features from raw images.
Any image distortions and artefacts introduced by adding noise or upsampling images can
dramatically affect the reliability of derived parameters within BA computations.

2. The potential of the employed DCNN-based SISR model to downgrade the level of inherent and
additional noise introduced to the original HR images is investigated. In most image-based 3D
reconstruction algorithms, including SfM photogrammetry, lower level of noise in the underlying
image set results in estimating the imaging and scene geometry with higher accuracy. That is due
to the fact that the feature detection operators, using sophisticated image processing algorithms,
extract keypoints features with higher accuracy and lower uncertainty across multiple images in
an UAS image set. To do this, the naive pre-trained ESRGAN model, with upscaling factor ×1,
is taken as an image restoration network. The idea is to explore the effectiveness of the ESRGAN
model, trained on a large number of images within several standard image sets, to downgrade
the inherent noise and restore the original UAS HR images.

The remainder of this paper is organized as follows. Section 2 briefly describes image SR as
an image upscaling technique to recover the degraded or lost image details in LR images. Section 3
introduces some of the pioneering DCNN-based SISR architectures. GAN-based architecture and its
specific cost function for SISR task is later described in Section 3. Learning strategies in Section 4
introduce different cost functions that are usually used in DCNN-based SISR models. Different metrics
developed for evaluating the quality of resulting SR images are explained in Section 5. Section 6
explains the experiment including the employed DCNN-based SISR model. Section 7 reports the
qualitative and quantitative results showing the performance of ESRGAN model on virtually-generated
LR UAS images based on standard IQMs and a task-based IQM using SfM photogrammetry. Section 8
discusses the results in detail. Lastly, Section 9 provides a conclusion and future perspective.

2. Image Super-Resolution

Image SR refers to techniques which aim to restore a HR image from its LR counterpart(s).
Their main goal is to recover the high frequency details lost in LR images and remove the degradation
caused by the imaging device and/or environment [34,35]. SR is a topic of great interest in digital
image processing and many computer vision related applications including HDTV [36], medical
imaging [37,38], satellite imaging [39], face recognition [40], security and surveillance [41]. The basic
idea in most SR techniques is to extract the non-redundant image content in multiple LR images and
combine them to generate a HR image [5]. Single image interpolation is an easy approach within many
available SR techniques, which can be used to increase the image size [4]. However, several works
showed that it does not provide any additional information and would dramatically decimate details
of the image [4,24,42].

Generally, the SR problem assumes the LR image represents a downsampled, noisy, and blurred
(by an unknown low-pass filter) version of HR data. Due to the non-invertibility of the degradation
process, SR problem is inherently ill-posed [43]. In other words, it is an under-determined inverse
problem, of which the solution is not unique. In the typical SR framework, as depicted in Figure 1,
the LR image Ix is modeled as follows [44]:

Ix = D(Iy; δ) (1)

where Iy is the corresponding HR image, D represents a degradation function, and δ is a set
of parameters, e.g., the parameters of the unknown convolutional kernel, the scaling factor,
and some noise related factors, contributing to the degradation process. Under general conditions,
the degradation process fromD is unknown and only LR image, Ix, is provided. Thus, the SR operation,
the reverse path in Figure 1, is an extremely challenging task, which effectively results in a one-to-many
mapping from LR to HR image space [25].
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Figure 1. The overall framework for SISR.

Researchers are required to recover the corresponding HR image Îy from the LR image Ix, so that
Îy is identical to the ground truth HR image Iy, as follows [44]:

Îy = F (Ix; θ) (2)

where F is the super-resolution model and θ represents the parameters of F . Generally, degradation
models combine several operations as follows [44]:

D(Iy; δ) = (Iy ⊗ k) ↓s +nζ ,
{

k, s, ζ
}
⊂ δ (3)

where (Iy ⊗ k) represents the convolution between a blur kernel k and the HR image Iy, ↓s represents
a downsampling process with factor s, and nζ is some additive white Gaussian noise with standard
deviation ζ.

SR techniques typically assume that high-frequency image contents are redundant and can
be reconstructed from low-frequency contents making the SR technique an inference problem [43].
Some SR techniques assume that for reconstructing a HR image of a certain scene, multiple LR
instances of the same scene with different perspectives are available. These techniques are categorized
as multi-image SR (MISR) approaches [16]. Such methods attempt to invert the downsampling
process by exploiting the explicit redundancy and constraining the ill-posed problem with additional
information. However, MISR methods are usually computationally expensive because they require
complex image registration and fusion in LR image space, where the accuracy of those processes
directly affects the quality of the resulting super-resolved images [43]. An alternative approach is
single image super-resolution (SISR) [45]. These techniques attempt to exploit the implicit redundancy
available in the LR images, in the form of local spatial correlation in an image or additional temporal
correlations in a video, and recover lost or deteriorated high-frequency content from a single LR
instance. In SISR techniques, prior information is usually required to constrain the solution space [46].

3. Deep Learning for SISR

Learning-based methods, also known as example-based methods [4,47–49], aim at estimating an
effective mapping from LR to HR image pairs due to their fast computation and superior performance
relative to many other traditional techniques [25]. These methods usually exploit machine learning
(ML) algorithms to learn the statistical relationships between the HR and corresponding LR images
from a substantial number of training samples [25]. Traditional methods for SISR suffer from a few
drawbacks [25,43]: (1) unclear and potentially very complex definition of the mapping between the LR
and HR image spaces; (2) established sub-optimal high-dimensional mapping; (3) most traditional
methods rely upon handcrafted features with expert domain knowledge. Recently, deep learning-based
SISR methods have achieved remarkable improvements over all traditional and ML approaches [23–25].
These methods take advantage of the huge capacity of DL models to be able to provide an extremely
nonlinear mapping in a very high-dimensional space from the input space to the solution space,
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and efficiently explore that space to find the best solution. These methods usually take a DCNN
architecture for low to high-level feature encoding and nonlinear feature mapping.

3.1. DCNN Architectures for SISR

A variety of super-resolution models based on DCNN architectures have been proposed so
far. Most of those models focus on supervised super-resolution, requiring both LR images and
corresponding HR images, usually as ground truth (GT). These approaches are mostly composed of a
set of major components and processing strategies including the model’s main framework, upsampling
method, network architecture, and learning strategy.

Super-resolution convolutional neural network (SRCNN) by Dong et al. [24,50] in Figure 2 is a
pioneering work in DCNN-based SISR approach. Despite its striking success, SRCNN model suffers
from the following issues [25]. (1) Inputs to SRCNN are LR images upsampled to coarse HR images at a
desired size using traditional methods (e.g., bicubic interpolation). Introducing interpolated images as
inputs to the network have three main drawbacks: (a) severe over-smoothing and noise amplification
effects introduced to interpolated inputs can result in further inaccurate estimations of the image
content; (b) employing interpolated versions of images, instead of the original LR image, as input
is very time-consuming and increases computational complexity almost quadratically [51]; and (c)
assuming an unknown kernel in the downsampling process makes adopting a specific interpolated
input, as an estimation of the output, unjustified. (2) As mentioned previously, most SR techniques
undertake the assumption that the high-frequency content is redundant and can be accurately predicted
from the low-frequency data [52]. Thus, exploring more contextual information within large regions
of LR images to capture sufficient information for retrieving high-frequency details in predicted HR
images seems inevitable. Theoretical work in DL show more contextual information can be achieved by
designing very deep architectures with larger receptive fields, which can result in expanding the final
solution space [19,53–56]. In some situations, effectively attaining more hierarchical representations
can be achieved by increasing the DL network depth [53]. In recent years, many different CNN-based
architectures have been developed, which exploit a very deep and sophisticated architecture, including
residual and/or dense feature mapping [19,56], to solve complex problems more efficiently [25,44].

Figure 2. Sketch of the SRCNN architecture.

3.2. GAN for SISR

Introduction of recent innovative and deeper CNN-based architectures for SISR has already
led to breakthroughs in accuracy and speed. Photo-realistic SISR GAN (SRGAN) [23], illustrated in
Figure 3, was introduced for recovering the finer texture details when resolving at large upscaling
factors. Those recovered fine details in SR images not only make predicted HR images more appealing
to a human, but also have a great impact on the accuracy and reliability of imaging geometry and
scene details when they are retrieved by the SfM phtotogrammetry process.

198



Remote Sens. 2020, 12, 1757

Figure 3. Architecture of Generator and Discriminator Network for SISR task with corresponding
kernel size (k), number of feature maps (n), and stride (s) indicated for each convolutional layer.

The basic SRGAN model is built upon the residual blocks [19] and trained under the perceptual
loss in a GAN framework, which makes it capable of predicting photo-realistic images for×4 upscaling
factor [23]. The SRGAN model has shown significant improvement on overall visual quality of SR
images over all previously introduced PSNR-oriented methods [23,32].

GAN [31] introduced by Goodfellow et al. tries to solve the adversarial min-max problem [23]:

min
θG

max
θD

EIHR∼ptrain(IHR)

[
log DθD (IHR)

]
+

EILR∼pG(ILR)

[
log(1− DθD

(
GθG (ILR)

)] (4)

where it allows the network to train a generative model G with the purpose of fooling a discriminator
D that is simultaneously trained to discriminate the SR images from the original HR images.

The formulated perceptual loss consists of a weighted sum of a content loss (LSR
X ) and an

adversarial loss component (LSR
Gen) as follows [23]:

LSR = LSR
X︸︷︷︸

content loss

+ 10−3LSR
Gen︸ ︷︷ ︸

adversarial loss︸ ︷︷ ︸
perceptual loss

(5)

Content loss motivated by perceptual similarity chooses the solution based on the perceptual
similarity from the high dimensional solution space [23]. Instead of relying on pixel-wise losses,
Ledig et al. define VGG loss based on ReLU activation layers and 19 layers VGG network [53],
where VGG loss is computed as the Euclidean distance between the feature representations of a
reconstructed image GθG (ILR) and the ground truth image IHR as follows [23]:

LSR
VGG/i,j =

1
Wi,j Hi,j

Wi,j

∑
x=1

Hi,j

∑
y=1

(
φi,j(IHR)x,y − φi,j(GθG (ILR))x,y

)2 (6)

where φi,j represents the feature map obtained by the j-th convolution (after activation) before the i-th
maxpooling layer within the VGG-19 network. Wi,j and Hi,j describe the dimensions of the respective
feature maps within the VGG network.
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Adversarial loss, which is the generative component of SRGAN to the perceptual loss, encourages
the network to favor solutions residing on the natural image manifold [23]. The generative loss (LSR

Gen)
is evaluated, in a probabilistic framework, based on the performance of the discriminator DθD (.) over
a training sample set as [23]:

LSR
Gen =

N

∑
n=1
− log DθD (GθG (ILR)) (7)

where, DθD (GθG (ILR)) represents the probability that the generated image GθG (ILR) is a natural HR
image. As a consequence of exploiting adversarial loss, the discriminator network is trained to push
SISR solutions to the natural image manifold.

4. Learning Strategies

Learning the end-to-end mapping function F to map a LR image ILR to the corresponding
reconstructed SR image ISR = ÎHR, which is an approximation of the real HR image IHR, requires
the estimation of network parameters θ. This is attained via minimizing the loss between the
super-resolved images ISR = F

(
ILR; θ

)
and the corresponding HR images IHR. In this section,

different loss functions that are widely used in SISR techniques are introduced. For the sake of brevity,
the subscript y is dropped from the ground truth (target) HR image Iy and the reconstructed HR image
Îy in the rest of this section.

4.1. Pixel Loss

Pixel loss evaluates the pixel-wise difference between two images, mainly in the form of L1

distance, i.e., mean absolute error (MAE), or L2 distance, i.e., mean square error (MSE). In so doing,
it attempts to capture and solve the inherent uncertainty in retrieving lost high-frequency components
by minimizing related loss functions as follows [44]:

Lpixel−L1

(
IHR, ISR) = 1

hwc ∑
i,j,k

∣∣IHR
i,j,k − ISR

i,j,k
∣∣ (8)

Lpixel−L2

(
IHR, ISR) = 1

hwc ∑
i,j,k

(
IHR
i,j,k − ISR

i,j,k
)2 (9)

where h, w and c are the height, width and number of channels of the reconstructed images, respectively.
Charbonnier loss [57,58], is a variant of L1 loss, given by [44]:

Lpixel−Cha
(

IHR, ISR) = 1
hwc ∑

i,j,k

√(
IHR
i,j,k − ISR

i,j,k
)2

+ ε2 (10)

where ε is a small constant (e.g., 1e− 3) for numerical stability.
The pixel loss constraint results in a super-resolved image ISR, which is close to the ground

truth HR image IHR in the pixel values. In comparison with L2 loss, the L1 loss shows higher
performance and better convergence [44,59]. Using pixel loss as the loss function favors a high peak
signal-to-noise ratio (PSNR). According to its definition, PSNR is heavily correlated with pixel-wise
deviation, where minimizing pixel loss directly maximizes PSNR [23]. Moreover, it is partially related
to the image perceptual quality. Thus, pixel loss has become the most widely used loss function in
SR field.

Minimizing the pixel loss encourages finding plausible solutions, based on pixel-wise average,
in the high dimensional solution space. In return, such solutions can be overly-smooth with poor
perceptual quality [23,60,61]. Thus, in order to capture the reconstruction error and image quality
more efficiently, a variety of other loss functions, such as content loss [61] and adversarial loss [23],
were introduced to the SR field.
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4.2. Perceptual/Content Loss

To evaluate image quality based on perceptual similarity, perceptual-driven approaches have also
been proposed [62,63]. More convincing results from the image perceptual point of view, for both
SR and artistic style-transfer tasks, are offered in this category [23,63,64]. By minimizing the error in
the feature space instead of the pixel space, perceptual loss or content loss, attempts to improve the
image visual quality. Denoting feature maps computed within the l-th layer of the network as φ(l)(.),
the content loss is evaluated using the Euclidean distance between corresponding feature maps from
the original and super-resolved images as follows [44]:

Lcontent
(

IHR, ISR; φ, l
)
=

1
hlwlcl

∑
i,j,k

√(
φ
(l)
i,j,k
(

IHR
)
− φ

(l)
i,j,k
(

ISR
))2

(11)

where hl , wl and cl represent the height, width and number of channels of the extracted feature maps
in layer l, respectively.

Content loss encourages transferring the learned knowledge of hierarchical image features from a
pre-trained classification network, usually VGG or ResNet, to the SR task [12,23,32,65].

4.3. Adversarial Loss

Adversarial learning [31] is adopted for SR task in a straightforward way, in which SR model
is considered as a generator, and a discriminator network is added to the model to discriminate the
generated image ISR from the real image IHR. Adversarial loss for SRGAN [23] is as follows [44]:

Lgan_G
(

ILR; DθG

)
= − log DθD

(
GθG (ILR)

)
, (12)

Lgan_D
(

IHR, ISR; DθD

)
= − log DθD

(
IHR)− log DθD

(
ISR) (13)

where Lgan_G and Lgan_D denote the adversarial loss of the generator GθG , which is the SR model,
and the discriminator DθD , which is a deep CNN model for binary classification, respectively. θG and
θD are the parameters of the generator and discriminator, and ISR = GθG (ILR) is the generated image
approximating the corresponding ground truth HR image.

In practice, some researchers employ a combination of multiple loss functions in their
DCNN-based SISR architectures for more efficient learning and to better constrain different aspects of
SR image reconstruction [12,23,57,66,67]. However, how to efficiently combine multiple loss functions
with effective weights emphasizing their contribution in the learning process, remains an active area
of SR research.

5. Image Quality Metrics

Image quality metrics, usually referred to as image quality measures (IQMs), are measures
focusing on significant visual attributes of images where they attempt to quantify the perceptual
assessments of an image when it is evaluated in a certain image quality assessment (IQA) approach [60].
IQA approaches are categorized into subjective methods, which focus on quantifying human
perception, and objective methods, which are based on some computational models [60]. The subjective
methods can be more accurate but they are usually inconvenient, time-consuming, and expensive
to implement [60]. As a result, objective methods are currently considered the mainstream among
IQMs. Since the objective methods cannot efficiently capture the human visual perception, the metrics
evaluated under these methods may show some inconsistency with those from subjective methods [60].

Objective IQA methods are divided into three types [60] including: (1) full-reference methods
requiring corresponding images with perfect or high quality image content; (2) reduced-reference
methods, which apply IQMs on the extracted features from both images and their corresponding high
quality counterparts; (3) no-reference methods, which try to evaluate image quality in a blind way
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without any reference images. In supervised SISR, high quality HR images are usually available for
evaluating different IQMs. This section introduces some of the most commonly used IQMs, covering
both subjective IQA methods and objective IQA methods.

5.1. Peak Signal-to-Noise Ratio (PSNR)

PSNR measure refers to the ratio between a signal’s maximum power and the power of the signal’s
noise, which affects the quality of the signal’s representation. Due to the very wide dynamic range (i.e.,
ratio of highest and lowest values) of most signals, the PSNR is usually expressed in the logarithmic
decibel scale. PSNR is used to measure the reconstruction quality of lossy transformations including
image compression and inpainting. For image SR task, PSNR is defined using the maximum possible
pixel value in the underlying image, and the mean squared error (MSE) between two corresponding
images. Given the high quality image I and the corresponding reconstructed (super-resolved) image Î,
both of which include N pixels, the MSE and the PSNR measures are defined as follows [25]:

MSE =
1
N

N

∑
i=1

(
Ii − Îi

)2 (14)

PSNR = 10 log10
( L2

MSE
)

(15)

L denotes the maximum possible pixel value in the image. For 8-bit image representations,
for example, L equals to 255 and the typical values for the PSNR may vary from 20 to 40 dB, where the
higher the PSNR value, the better the quality of the reconstructed image as it tries to minimize MSE
between the images with respect to the maximum pixel value of the input image. When L is fixed,
PSNR is only related to the pixel-wise distances between two images represented by MSE. The ability of
MSE, and consequently PSNR, to capture perceptually relevant differences, such as high texture detail,
is very limited meaning that PSNR does not care about human visual perception and photo-realistic
characteristics of the image. This often leads to poor performance of PSNR when used to assess
the quality of super-resolved images in natural scenes. However, due to the lack of an efficient and
comprehensive IQM that considers image quality from all perspectives, PSNR remains the most widely
used metric for evaluating image quality in SR tasks.

5.2. Structural Similarity (SSIM) Index

Similar to the human visual system, which is highly adapted for extracting structural information
from the viewing scene, SSIM index provides a perceptual metric that quantifies image quality
degradation based on perceived image quality [68]. Made up of three relatively independent terms,
luminance, contrast, and structure, SSIM index estimates the visual impact of those factors when they
are modified in the reconstructed image. Those modifications may comprise shifts in image luminance,
alterations in image contrast, and any other remaining deviations collectively identified as structural
changes [60].

For an original high quality image I and its reconstructed counterpart Î, the SSIM index is defined
as follows [69]:

SSIM
(

I, Î
)
=
[
Cl(I, Î)

]α[Cc(I, Î)
]β[Cs(I, Î)

]γ (16)

where α > 0, β > 0, and γ > 0 control the relative significance of each of the three terms of the index.
In some implementations, α = β = γ = 1 [60]. The luminance, Cl , contrast, Cc, and structural, Cs,
components of the SSIM index are defined as follows [69]:

Cl
(

I, Î
)
=

2µIµ Î + C1

µ2
I + µ2

Î
+ C1

(17)
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Cc
(

I, Î
)
=

2σIσÎ + C2

σ2
I + σ2

Î
+ C2

(18)

Cs
(

I, Î
)
=

σI Î + C3

σIσÎ + C3
(19)

where µI , σI and µ Î , σÎ represent the means and standard deviations of the original high quality
image and the corresponding reconstructed image, respectively, and σI Î is the covariance of the
two images. The constants C1, C2, and C3 in Equations (17)–(19) help to avoid instability when
the denominators are close to zero. The formulation given in Equation (16) guarantees symmetry,
where SSIM(I, Î) = SSIM( Î, I). Moreover, the index ensures a bounded SSIM(I, Î) ≤ 1. Furthermore,
there is a unique maximum, where SSIM(I, Î) = 1 if and only if I = Î. For an 8-bit grayscale image
containing L = 28 = 256 gray-levels, C1 = (k1.L)2, C2 = (k2.L)2, and C3 = C2/2, where k1 � 1 and
k2 � 1 are very small constants for avoiding instability. According to the above formulas, SSIM can be
represented as follows [69]:

SSIM
(

I, Î
)
=

(
2µIµ Î + C1

)(
σI Î + C2

)
(
µ2

I + µ2
Î
+ C1

)(
σ2

I + σ2
Î
+ C1

) (20)

In addition, to deal with uneven distribution of image statistical features or distortions, it is
more reliable to perform image quality assessment locally rather than globally. Thus, mean structural
similarity (mSSIM) [60] is proposed for locally assessing SSIM. This technique splits the images into
multiple windows in which the SSIM of each window is evaluated, and finally averages it over all
windows across the image. Because it evaluates the image reconstruction quality from the perspective
of the human visual system, SSIM index better meets the requirements of perceptual assessment.
The efficiency of SSIM-based IQM outperforms those based on MSE and the related PSNR over natural
images including a wide variety of image distortions [69]. Those properties make SSIM index a widely
used IQM among others in most SR tasks [70,71]. However, in some cases, SSIM index may lead to
similar results in evaluation of image performance with PSNR metric [60].

5.3. Task-Based Evaluation

Evaluating image reconstruction performance via other image analysis tasks is also an effective
IQM [11–13,72]. Specifically, this technique feeds the original high quality image and the corresponding
reconstructed image into a trained model for a specific vision task, and evaluates the reconstruction
quality by comparing the relative impact of reconstructed images on the prediction performance with
respect to that from high quality original HR images. The vision tasks used for this evaluation technique
include face recognition [73,74], face alignment and parsing [65,75], and object recognition [12,76].
However, certain vision tasks may focus on some specific image attributes that are more favorable to the
task, and may not be aware or care about the visual perceptual quality of the image. For example, most
object recognition models mainly focus on the high-level semantics while ignoring the image contrast
and noise. But on the other hand, in some domain-specific applications, such as super-resolving
surveillance video for face recognition, task-based IQM may reflect the performance of the SR models.

6. Methods and Materials

6.1. Methodology

In this SISR experiment, enhanced SRGAN (ESRGAN) [32] model is employed which improves
the original SRGAN model in three aspects. First, ESRGAN improves the network by designing a
Residual-in-Residual Dense Block (RRDB), illustrated in Figure 4, which offers higher capacity and
easier training. Second, the Relativistic average GAN (RaGAN) [77], which learns to distinguish a
more realistic image from a corresponding less realistic image, replaces the original discriminator in
SRGAN, which simply judges whether an image is real or fake. According to [77], this improvement
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allows the ESRGAN generator to recover more realistic texture details. Third, ESRGAN adjusts the
perceptual loss in the original SRGAN model by using VGG features before activation, rather than
features after activation. This empirically leads to sharper edges and more visually pleasing results.
Some properties of ESRGAN model is discussed below in more details.

Network Architecture: ESRGAN employs the basic architecture of SRResNet [23] for feature
learning in the LR feature space. ESRGAN introduces two modifications to the generator architecture of
SRGAN to improve the quality of the super-resolved images, G: (1) it removes all batch normalization
(BN) layers; (2) it replaces the original basic residual block (RB) in SRGAN with a more compact
RRDB architecture. According to Figure 4, by optimally combining multi-level residual blocks,
the RRDB design improves the perceptual quality of super-resolved images [32]. When the statistics of
image batches for training and testing are significantly high, BN layers tend to introduce unpleasant
artefacts limiting the generalization ability [32]. Removing BN layers, especially under the GAN
framework which is more prone to artefact generation, leads to consistent higher performance,
lower computational complexity, and better generalization in the network [32,59]. In addition to
the architectural improvement, to facilitate training a very deep network, ESRGAN exploits residual
scaling technique [55,59] to prevent instability in training by scaling down the residuals using a scaling
factor between 0 and 1 before adding them to the main path. Moreover, ESRGAN employs a smarter
initialization technique, which has empirically been shown to provide easier training when the initial
parameter variance becomes smaller [32].

Figure 4. Basic architecture of SRResNet with different possible residual blocks.

Relativistic Discriminator: The original SRGAN model uses the standard discriminator expressed
as D(I) = σ(C(I)), where σ is the sigmoid function and C(I) is the discriminator output.
This definition estimates the probability that the input image I is the original HR (real) image or
the super-resolved (fake) image. In contrast, a relativistic discriminator predicts the probability
that the original HR image IHR is relatively more realistic than the super-resolved image ILR as
shown in Figure 5. The Relativistic average Discriminator (RaD) [77] is formulated as: DRa(xr, x f ) =

σ
(
C(xr)−Ex f [C(x f )]

)
, where DRa is RaD function and xr and x f are the real (original HR) and fake

(super-resolved) images, respectively. Ex f [.] represents average over all generated or fake images in
each individual mini-batch. The discriminator loss, LRa

D , is defined as follows [32]

LRa
D = −EIHR

[
log
(

DRa(IHR, ISR)
)]
−EISR

[
log
(
1− DRa(ISR, IHR)

)]
(21)
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The adversarial loss for generator, LRa
G , is in a symmetrical form as [32]:

LRa
G = −EIHR

[
log
(
1− DRa(IHR, ISR)

)]
−EISR

[
log
(

DRa(ISR, IHR)
)]

(22)

where ILR and ISR = G(ILR) stand for the input LR image and the predicted super-resolved image,
respectively. In contrast to the adversarial loss for the generator in the original SRGAN model, LRa

Gen
in Equation (7), in which only gradients from the generated images take part in adversarial training,
the adversarial loss for the generator in ESRGAN, LRa

G in Equation (22), contains both ISR and IHR.
This property causes the gradients from both real images and generated images to participate in
adversarial training [32].

Figure 5. The standard and relativistic discriminators employed in the standard and relativistic GAN
architectures, respectively [32].

Perceptual Loss: ESRGAN suggests a more effective perceptual loss Lpercep by computing distances
between corresponding feature maps before activation rather than after activation, as practiced in the
original SRGAN model. Employing features before the activation layers overcomes two drawbacks
in the original design including extreme sparsity in the activated feature maps, and inconsistent
brightness reconstruction compared with the original HR image. Specially within a very deep network,
sparsity within feature maps leads to weak supervision and inferior performance. The loss function
for the generator in ESRGAN model is as follows [32]:

LG = Lpercep + λLRa
G + ηL1 (23)

where L1 = EILR‖G(ILR) − IHR‖1 is the content loss that evaluates the L1 distance between
super-resolved image G(ILR) and the original HR image IHR, and λ and η are coefficients to balance
different loss terms.

6.2. IQMs for SR Images

In this experiment, a comprehensive quantitative and qualitative assessment is performed on
the resulting SR images by exploiting some standard IQMs that are frequently used for assessing
the performance of different SISR models. Furthermore, a task-based IQM based on the SfM
photogrammetry [78] procedure is carried out. Applying any type of image processing algorithm
on a raw aerial image set can dramatically affect the precision and accuracy of retrieving the interior
and exterior geometry of a camera at image acquisition time. That, consequently, may lead to a
significant decrease in the quality and final accuracy of the main SfM photogrammetry products,
such as point clouds, DSMs, and orthoimages. The authors believe that the chosen task-based IQM can
more accurately exhibit the effectiveness and performance of DCNN-based SISR to enhance the spatial
resolution of LR imagery in RS applications. More specifically, where highly accurate spatial products
from processing RS images are required.

6.2.1. Standard IQM methods

PSNR and SSIM index are evaluated as standard IQMs for quantitative assessment of predicted SR
images. Choosing those two IQMs enables performance comparison in DCNN-based SISR applications
when it is applied on two different categories of images (general images and aerial RS images).
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6.2.2. SfM Photogrammetry for Task-Based IQM

SfM photogrammetry procedure, as illustrated in Figure 6, is employed on all available image
sets including HR ground truth, LR, and predicted SR image sets. SfM photogrammetry is a low-cost
method, based on stereoscopic photogrammetry, for highly accurate topographic reconstruction using
a series of overlapping images acquired from multiple viewpoints [78]. In contrast to traditional
photogrammetry, in SfM photogrammetry, interior geometry of the camera, usually referred to as
interior orientation (IO) parameters, position and orientation of each camera station with respect
to the scene’s global coordinate system, commonly called exterior orientation (EO) parameters,
and the geometry of the scene, i.e., the 3D coordinate of each point of the 3D scene, are resolved
automatically. All required parameters are calculated simultaneously based on the highly redundant
and iterative bundle adjustment (BA) computations using a rich database of corresponding image
features automatically extracted from a set of multiple overlapping images [79]. SfM photogrammetry
addresses the key problem of determining the 3D locations of a large number of corresponding features
extracted from multiple overlapping images, taken from different positions and angles with respect to
the 3D scene.

Figure 6. Steps of SfM photogrammetry.

Most image-based 3D reconstruction software that work based on the SfM photogrammetry
principle, first solve for camera IO and EO parameters followed by a multi-view stereo (MVS)
algorithm to escalate the density of the sparse point cloud generated by the SfM algorithm [78].
In the first step, several overlapping images are imported into the software, and a keypoints detection
algorithm, usually the popular scale invariant feature transform (SIFT) algorithm [80], is applied
to detect keypoints and keypoint correspondences across and between all images using a keypoint
descriptor. In the SIFT algorithm, for example, the keypoint descriptor is determined by computing
local image gradients and transforming them into a representation substantially insensitive to some
image feature variations, including illumination, orientation, and scale [80]. These descriptors are
unique enough to allow features to be matched in large image datasets. The BA technique is performed
to minimize the errors in the phase of finding point correspondences [78].

In addition to solving for IO and EO parameters, which indicate camera calibration and
pose parameters, respectively, the SfM algorithm generates a sparse point cloud using the image
coordinates of all corresponding keypoints, IO, and EO parameters of the camera in all imaging
stations. The coordinate system related to the generated point cloud is arbitrary. In order to transform
the point cloud coordinate system to any local or global coordinate system, a georeferencing phase
should be adopted. In that phase, a few ground control points (GCPs) with known 3D coordinates in a
local or global coordinate reference frame using land surveying or initial camera positions, e.g., using
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global navigation satellite system (GNSS), is typically required. In this experiment, it is not necessary
to perform the georeferencing step since all images are processed in the same reference frame. The IO
and EO parameters for each camera are used as the input to the MVS algorithm. Leveraging the
known IO and EO parameters for each individual camera, MVS initiates an intense search algorithm
to find more correspondences along all existing epipolar lines in all overlapping images. The accuracy
of the MVS algorithm and the quality of the dense point cloud generated by the MVS algorithm
is highly dependent on the reliability of the IO and EO parameters calculated from the initial BA
computations [81].

Images captured at high spatial resolutions, in general, return the most keypoints and keypoints
correspondences in overlapping images. In addition to the major contribution of the natural texture
in the 3D scene, the quality of the generated point cloud highly depends on several other factors
including the density, sharpness, contrast, and resolution of the image content within the image set [78].
Moreover, decreasing the image acquisition distance, or flight height above ground, leads to an increase
in the image spatial resolution or a finer GSD. This will further enhance the spatial density and spatial
resolution of the resulting point cloud [78]. However, the uncertainty in keypoints extraction and
matching, which is a typical issue in all low quality LR images, may result in poor estimation of a
camera’s IO and EO parameters leading to a very inaccurate and erroneous 3D point cloud.

6.3. Study Site and Dataset

Port Aransas is a town located on Mustang Island along the southern Texas Gulf of Mexico
coastline, USA Figure 7. In 2017, Hurricane Harvey, a category 4 hurricane, made landfall to the north
of Port Aransas along San Jose Island on the night of 25 August 2017. The southern portion of the
eye wall passed within close proximity to Port Aransas causing extensive damage, primarily due to
extreme winds but also surge coming from the bay side of the island.

Figure 7. Port Aransas study site located along the southern Texas Gulf of Mexico coastline. The square
box (top figure) shows the UAS flight area, which has been illustrated with more details in the
UAS-derived ortho-image (bottom figure).

A few days after the landfall of Harvey, a small UAS photogrammetric survey was conducted
over a section of the town directly bordering the Gulf-facing shoreline Figure 7. The purpose was
to inspect and evaluate structural damages to residential and commercial properties caused by the
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catastrophic storm. The flight mission covers almost 0.275 km2 of Port Aransas. Phantom 4 Pro
multi-rotor UAS (SZ DJI Technology C.o., Ltd., Shenzhen, China) was employed to conduct the survey.
The platform was equipped with a 1 inch CMOS RGB sensor to capture 20 megapixel imagery at a
resolution of 5472× 3648 pixels. The flight altitude was designed to achieve a GSD of 2.5 cm, resulting
in a flying height above ground level of about 90 m with forward lap and side lap around 80% and
70%, respectively. A total of 450 HR images were acquired over the study site. These images are used
for the purposes of this study.

6.4. Data Preparation and Model Training

In order to fine-tune pre-trained ESRGAN parameters with the existing dataset,
50 non-overlapping images were chosen from the original HR dataset as ground truth for
fine-tuning ESRGAN during training phase. Scaling factor of ×4 was set between LR and HR images.
LR training images were obtained by down-sampling corresponding HR images. MATLAB bicubic
kernel function was employed for image down-sampling, where its scale factor was set to 0.25.
To make the SISR problem more complicated and realistic, additive white Gaussian noise with mean 0
and standard deviation of one-tenth of the standard deviation of each channel in RGB image was later
added to the LR image set. Due to the high resolution of the original imagery, feeding the full-size
images into the DCNN model rapidly exhausts the whole GPU’s memory. However, in training phase,
large image patches help very deep convolutional networks with wider receptive fields to capture
more semantic information from the training samples. Therefore, this experiment was performed by
extracting 1500 random image patches of resolution 1000× 1000 pixels from the original HR images.
Figure 8 illustrates a LR image and corresponding ground truth HR image for a training sample.
The model is trained in the RGB channels, and data augmentation with random horizontal flips and 90
degree rotations is employed on the training image set. Testing and evaluation of model performance
is then done on 1000 image patches randomly extracted from the remaining 400 images in the original
HR and corresponding LR image sets.

It should be emphasized here that due to the large overlap between the employed UAS images,
objects are sometimes captured by multiple images resulting in the appearance of the same object in the
training and testing image sets. However, it should also be noted that such objects are captured from
different viewing angles, causing different perspective and radiometric distortions for each specific
object, or portion of the object, appearing in multiple images. Furthermore, the presence of such similar
scenes within the training image set is necessary for performing transfer learning effectively, in which
the weight parameters from a pre-trained DCNN model trained over a large dataset is applied to
leverage complex mappings learned by very deep CNN models for performing a downstream task [82].
The weight parameters taken from the pre-trained model are, then, fine-tuned by training the model
using a new dataset specific to the prediction task. In fact, one of the main reasons behind the transfer
learning technique is to help the DCNN model to effectively capture a priori information related to the
new task by fine-tuning the parameters of the underlying model using a new dataset for a different
but related task. In the SISR technique, such a priori information can be provided to the SISR model
by introducing information related to objects that are present in the acquired scene. Furthermore,
the main goal of this study is to show the effectiveness of the SISR technique for recovering degraded
or lost image details in the LR UAS images by fine-tuning a DCNN-based SISR model on a very limited
set of HR UAS images.

The original ESRGAN model, before fine-tuning, is also employed to investigate the capability
of the pre-trained ESRGAN, to enhance the image content and downgrade the inherent noise in the
original HR images. The idea is that such a pre-trained model, trained on some standard datasets,
may be capable of capturing the behavior of some types of noise that might be common in many
imaging systems. To do this experiment, the original HR image set is fed to the original pre-trained
ESRGAN with scaling factor of ×1.
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Figure 8. LR and corresponding HR image patches.

The pytorch [83] implementation of ESRGAN model was chosen for training over the UAS dataset.
The training process starts by initializing the ESRGAN model with weights from the pre-trained
network trained on some of the well-known benchmarks in SISR such as the DIV2K dataset [84],
the Flickr2K dataset [85], and the OutdoorSceneTraining (OST) dataset [66], which include thousands of
high quality HR images with a broad diversity in texture and contextual information. The performance
of the trained model has already been tested on widely used SR benchmarks such as Set5 [47],
Set14 [49], BSD100 [86], Urban100 [87], and the PIRM self-validation dataset [88]. Table 1 summarizes
the information related to the ESRGAN model setup and optimization settings for training the model on
the UAS image set. According to the table, dense block architecture for generator was set to 64× 5× 5,
which includes 64 kernels of size 5× 5. The generator is comprised of 23 residual-in-residual dense
blocks (RRDBs). The learning rate α was set to 0.0001, and Adam optimizer was chosen for updating
weights during training. Two exponential decay rate parameters in Adam optimizer β1 and β2, were set
to 0.9, and 0.999, respectively. ε parameter in the optimization algorithm was set to 1× 10−7 to avoid
any division by zero. The experiment was carried out with 100 epochs on Google Colab, Google’s
free cloud service, with one Intel(R) Xeon(R) CPU 2.30GHz and one high-performance Tesla K80 GPU,
having 2496 CUDA cores and 12GB GDDR5 VRAM. Fine-tuning the network took around 48 hours
and inference time for predicting the super-resolved image was 10 sec/image.

Table 1. ESRGAN model and training parameters setup .

Dense Block RRDB Learning Rate Adam Optimization Parameters

64× 5× 5 23 α = 0.0001 β1 = 0.9, β2 = 0.999, ε = 1× 10−7

7. Results

This section provides comprehensive qualitative and quantitative experimental results on
predicted super-resolved, SRpre, images from LR images, virtually downsampled form original
(ground truth) HR, HRgt, UAS image set with additive white Gaussian noise. Also, the result of
applying ESRGAN model on HRgt with scale factor×1, as an image enhancement network, to generate
enhanced HR images, HRenh, is investigated. Furthermore, the results of the task-based IQM using
the SfM photogrammetry procedure implemented with the original and super-resolved imagery
is reported.

7.1. Qualitative Assessment

Figure 9 illustrates the qualitative assessment of the SISR performance using ESRGAN model on
two different test samples. According to the visual inspection, and as observed in Figure 9, the ESRGAN
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model is able to upscale the LR images by factor 4 and predict SR images with high similarity in
perceptual and visual quality when they are compared with the corresponding HR counterparts.
A closer look at the qualitative results in this experiment reveals some noise removal properties learned
within the SISR model trained on a sufficient number of LR and corresponding HR images.

Figure 9. Illustration of the qualitative comparison between the predicted SR image and
corresponding LR and ground truth HR images for two test images.

7.2. Quantitative Results

For quantitative evaluation of the SISR performance, in this experiment with ESRGAN model,
PSNR value and SSIM index were calculated for the test image set and enhanced HR (HRenh) image
set. Table 2 illustrate the lowest, highest, and average PSNR values and SSIM indices for both
image sets. The range of values for both PSNR and SSIM index in Table 2, resulting from evaluating
ESRGAN performance on SRpre image set, is comparable in values reported for those IQMs when
ESRGAN, or any other high-performance DCNN-based SISR model, is applied on standard SISR
image sets [23,25,32]. The values of the standard IQMs represented in Table 2 confirm that SISR can
be effectively applied for recovering lost or degraded details in LR UAS imagery, and hopefully on a
wide range of imagery in RS applications, including aerial and satellite imagery, with a comparable
performance.

Table 2. PSNR and SSIM index claculated on image sets.

Image Set Lowest PSNR/SSIM Highest PSNR/SSIM Mean PSNR/SSIM

SRpre 25/0.6675 32/0.9011 28/0.8550
HRenh 43/0.9145 49/0.9940 82/0.9601

7.3. Task-Based IQM and Related Results

Further investigation of ESRGAN model performance in a task-based image quality evaluation
using SfM photogrammetry reveals more about the impact of image super-resolving on the internal
and external camera imaging geometry and the geometry of the reconstructed 3D scene. All available
UAS image sets including the downsampled noisy LR image set (LR), the original ground truth HR
image set (HRgt), the predicted super-resolved image set (SRpre), and enhanced HR image set (HRenh)
were separately imported to Agisoft Metashape software [89] for SfM photogrammetric processing.
Each image set was processed using the exact same settings and workflow procedure to ensure a fair
comparative evaluation could be made on the impact of SR imagery to the BA computations and 3D
reconstruction (i.e., point cloud).

BA computations, using keypoints extracted from each individual image in each image set,
also result in an accurate estimation of camera calibration (IO) parameters in a self-calibration
procedure using a pre-defined camera calibration model. Camera parameters evaluated within
BA computations include the focal distance f , principal point coordinates (Cx, Cy), radial distortion
coefficients (K1, K2, K3, K4), decentering distortion coefficients (P1, P2, P3, P4), and affinity and skew
transformation coefficients (B1, B2), which represent a specific distortion in digital imaging sensors
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accounting for scale distortion and non-orthogonality of pixel elements in the x, and y directions of the
digital sensor [90]. Table 3 illustrates the camera calibration results for LR, HRgt, SRpre, and HRenh
UAS image sets. According to Table 3, the evaluated values of IO parameters for SRpre image set,
especially, the sensor element (or pixel) size, focal distance, f , principal point offset Cx, Cy, and the
first coefficient of radial lens distortion, K1, which are among the most critical camera calibration
parameters, closely approximate the real values derived from HRgt image set. Referring to Table 3,
the calibrated IO parameters for LR image set are different from IO parameters for HRgt, SRpre,
and HRenh, meaning that the parameters defining the internal imaging geometry in LR UAS image set
is different than those in the other HR UAS image sets. It should be emphasized here that the number
of selected keypoints and the level of certainty in finding their correspondences in multiple images
within an image set can have a significant impact on the stability of BA computations and the accuracy
of the estimated IO and EO parameters.

Table 3. Camera calibration results.

Parameters LR HRgt SRpre HRenh

Pixelsize(mm) 0.00964 0.00241 0.00241 0.00241
f (pix) 911.785 3689.370 3701.798 3681.261
Cx(pix) −0.9885 −49.8694 −57.7129 −40.4323
Cy(pix) 0.7271 −13.8803 −16.2507 −15.3213
K1 0.00726 0.00512 0.00656 0.00402
K2 −0.04381 −0.00924 −0.01842 −0.01004
K3 0.07859 0.01028 0.02948 0.01011
K4 −0.04655 −0.00124 −0.01439 −0.00140
P1 0.00187 −1.7070 × 10−5 −2.8148 × 10−5 −1.6030 × 10−5

P2 0.00068 −1.0218 × 10−5 −1.4783 × 10−5 −1.0199 × 10−5

P3 0.28067 −11.0844 −3.01011 −10.7841
P4 −0.06669 4.86345 −0.51856 4.00345
B1 0.19185 0.00048 0.12109 0.00078
B2 0.69768 0.62977 0.63074 0.60117

Figure 10 displays plots representing the average reprojection error vectors from BA computations
across the image space for LR, SRpre, HRenh, and HRgt UAS image sets. This error quantifies the
distance between a certain keypoint location on an image and the location of the corresponding 3D
point reprojected on that image. The magnitude of reprojection error in the image space depends on
the quality of estimated camera calibration parameters and pose parameters, as well as on the quality
of the extracted keypoints on each individual image [89]. Maximum and RMS of reprojection errors
across the image space, and the average camera location errors with respect to the 3D scene have
been depicted in Table 4 for LR, HRgt, SRpre, and HRenh image sets. According to the table, both the
maximum and RMS of the reprojection errors in SRpre image space are closely comparable with those
derived from HRgt image set. The errors related to the quality of the 3D space, reconstructed by
SRpre image set, confirm the same quality in scene reconstruction when HRgt image set is employed.
In addition, Figure 11 illustrates a graphical view of the camera locations and their errors represented
by the error ellipsoids for all UAS image sets.

The process of point cloud densification was carried out on each individual UAS image set after
BA computations and digital surface models (DSMs) were later generated from the 3D point cloud
data by the post-processing within the SfM photogrammetry software. Figure 12 displays the dense
point cloud over a small area of the study site for all UAS image sets. Moreover, Table 5 summarizes
the processing report from SfM photogrammetry for each individual image set. According to Figure 12
and Table 5, visual and quantitative inspections on the density of the resulting dense point cloud,
which is the average number of points per square meter, demonstrate that the dense point cloud
generated from HRgt, SRpre, and HRenh are about ×17 denser than the dense point cloud generated
from the LR image set.
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To investigate how closely the DSM generated based on the SRpre image set approximates the
corresponding DSM generated from HRgt image set, DSM from SRpre was subtracted from the DSM
generated from HRgt image set. Figure 13 displays the resulting differential surface. Referring to
Figure 13, the average height difference between the two DSMs is about −0.5 cm. However, there are
some areas showing large height differences. These areas are mostly related to the edges of tall
man-made and natural objects. Areas with lack of texture, such as water bodies, also contribute to
the large height differences observed in Figure 13. The histogram in Figure 14 displays a statistical
representation of the pixel-wise height differences based on the frequency of occurrence for pixel
values in differential DSMs after filtering blunders.

(a) LR reprojection error. (b) HRgt reprojection error.

(c) SRpre reprojection error. (d) HRenh reprojection error.

Figure 10. Average reprojection error vectors plotted on image space. Colors of the error vectors
represent increasing magnitudes of the reprojection error progressing from blue to red respectively.
The scale bar at bottom shows the magnitude of the error vector in pixel units.

Table 4. Bundle adjustment results for reprojection and camera location errors.

Image Set LR HRgt SRpre HRenh

Max reprojection error (pix) 15.90 56.96 57.21 55.05
Reprojection error (pix) 0.4984 0.7868 0.9932 0.6348
X error (m) 1.7702 2.4005 2.4174 2.3241
Y error (m) 2.3225 2.6635 2.6691 2.3993
Z error (m) 0.5504 4.3415 4.1831 3.9901
XY error (m) 2.9202 3.5856 3.6012 3.503
Total error (m) 2.9716 5.6307 5.5197 5.4201

212



Remote Sens. 2020, 12, 1757

(a) LR (b) SRpre

(c) HRenh (d) HRgt

Figure 11. Camera locations and related uncertainties for image data sets. Ellipse color represents Z
error. Errors in X and Y directions are represented by ellipse shape. Black dot within each individual
ellipse represents estimated camera locations.

Table 5. SFM photogrammetry report summary for different image sets.

Parameters LR HRgt SRpre HRenh LR to SRpre HRgt to HRenh

Num. of images 440 440 440 440 0.0% 0.0%
Flying altitude (m) 106 106 107 106 0.9% 0.0%
Tie points (points) 1,398,877 11,051,665 8,268,475 11,630,227 490.0% 5.2%
Dense cloud (points) 1,805,966 31,041604 31,052,606 31,940,817 1619.4% 2.8%
Point density (points/m2) 5.82 94.5 94.4 94.9 1521.9% 0.4%
DSM resolution (cm/pix) 41.40 10.30 10.30 10.30 75.1% 0.0%

(a) LR (b) SRpre

(c) HRenh (d) HRgt

Figure 12. Resulting dense RGB point cloud computed within the SfM photogrammetry process using
different image sets.
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Figure 13. Illustration of DSM difference between HRgt and SRpre image set.

Figure 14. Height-difference histogram between DSMs from HR and SR.

8. Discussion

Visual inspection of image samples in SRpre and corresponding HRgt image sets confirms that
the ESRGAN model performs much better over man-made objects and natural objects with definite
boundaries than other targets, as shown in Figure 9. One reason may be due to the fact that natural
objects usually comprise extremely intricate structures and severely random patterns with very fine
details. In addition, natural objects, such as vegetation, may be moving due to the wind during
image acquisition in an outdoor environment, inducing dynamic image motions in the recorded
images. More accurate visual inspection on SRpre images demonstrates that the model is able to predict
super-resolved images with lower level of noise and blur when they are visually compared with the
corresponding HRgt images. This noise reduction property of the model, however, may result in
removing unpleasing pseudo-noise patterns within some natural targets, such as vegetated areas.
This noise reduction capability of the ESRGAN model is more evident over man-made structures and
surfaces as illustrated in the right example of Figure 9.

Such image enhancement and noise removal characteristics can also be observed on both natural
and man-made objects that appear in HRenh image set, where the HRgt images were used as input and
the naive pre-trained SISR model, with scale factor×1, was used as an image restoration network. This
observation demonstrates that pre-trained ESRGAN, on several standard image sets for SISR, has been
able to capture, to some extent, the behavior of some types of noise that are common in almost all
digital imaging systems. Considering the fact that this model has already been trained to predict SR
images with scale factor ×2 and ×4, the observations with scale factor ×1 divulges that there might
be some types of noise that may commonly appear in different image scales where the pre-trained
network has been able to differentiate them from the real signal.
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The high IQM values reported for the HRenh image set in Table 2 is due to the high degree of
similarity in image content and quality between corresponding images in HRenh and HRgt image sets.
This observation demonstrates that pre-trained ESRGAN can be used as an image restoration network
when it is employed with scale factor ×1.

It is worth mentioning that employing pre-trained ESRGAN, without fine-tuning the parameters
using LR and corresponding HRgt UAS image sets for predicting the super-resolved images (SRpre),
decreases the model performance around 15% for both PSNR and SSIM index in this experiment.
The relatively high values for those standard image quality metrics on SRpre UAS image set,
whose contents are intrinsically different from those on which the vanilla ESRGAN model has been
trained, verifies that the transfer learning technique and fine-tuning of the pre-trained parameters
significantly helps the DCNN-SISR model to extract more related semantic information from the UAS
images. This information is optimally encoded as abstract information within multiple layers of a
DCNN-SISR model. Interestingly, according to Table 2, the vanilla ESRGAN model trained on standard
image sets, resulted in high values for PSNR and SSIM index when it was employed on the HRgt image
set as an image restoration network. This is regardless of the fact that the model did not previously see
the UAS images for which it has been employed to predict on in this experiment.

Results of the task-based IQM using SfM photogrammetry adds more to the previous findings.
Referring to Table 3, calibrated sensor element size, or image pixel size, for LR images is about 4
times bigger than that for images in other image sets, which is compatible with our experiment.
The calibrated focal lengths in SRpre and HRenh image sets closely approximate the real focal length
evaluated in HRgt ground truth image set. The difference in calibrated focal length for LR, SRpre,
and HRenh image sets from the calibrated focal length for HRgt image set are −0.010 mm, −0.030 mm
and 0.020 mm, respectively. Furthermore, calibrated Cx and Cy values shows an accurate estimation of
the principal point location in SRpre images with respect to the HRgt images. For LR images, however,
those calibrated parameters show a very different location for the principal point in LR image space.

Referring again to Table 3, the remaining calibration parameters, including radial and decentering
lens distortion coefficients, affinity, and skew transformation parameters in SRpre and HRenh image sets
show a high degree of compatibility with HRgt parameters confirming that lens distortion parameters
and other sensor related distortions can be accurately estimated in both super-resolved SRpre images
and restored HRenh images. However, interpreting the values of those coefficients, especially between
LR and HRgt images, is not very meaningful because some of them are usually highly correlated with
other parameters, especially the focal length, principal point location, and the first coefficient of radial
lens distortion [90,91].

Referring to Figure 10, the behavior of the average reprojection error in SRpre image space
accurately approximates that in the original HRgt image space. This finding can be supported further
by our above findings when referring to the calibrated camera parameters, where results showed
that the internal geometry of the sensor can be accurately recovered in the SRpre images. The plot
related to the average reprojection error in LR image space represents less similarity with the error
behavior in HRgt and SRpre image space, especially in the center of the image space. On the other hand,
the average reprojection error plot for HRenh image space (Figure 10d) is very similar to the reprojection
error plot for the HRgt image space (Figure 10b). This observation demonstrates that image restoration
processing carried out on the HRgt images within the pre-trained ESRGAN has not meaningfully
changed the IO parameters of the camera derived from the SfM analytical self-calibration procedure.

According to Table 4, investigation on maximum reprojection error and its RMS in the SRpre and
HRenh image spaces shows that they closely approximate those values in the HRgt image space with
sub-pixel magnitudes. However, RMS of reprojection error in HRenh image space is about 20% less
than it is in HRgt image space. Part of this decrease in reprojection error might be due to the noise
reduction process in HRenh image space with respect to the original HRgt image space. Referring to
the average camera location errors in Table 4, SRpred and HRenh image sets closely approximate those
in the original HRgt image set. This suggests that the SISR process employed with factor ×4 on the LR
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image set, and employed with the image restoration process on HRgt, preserves the external imaging
geometry with respect to the 3D scene. As depicted in Table 4, pre-trained ESRGAN model with scaling
factor×1, as image restoration network, resulted in 3% improvement on total error in camera positions
for HRenh image set. There is also 2% improvement in that error for SRpre dataset. Figure 11 shows
that camera locations and their positional errors in the HR UAS imagery can be accurately retrieved
in the predicted SR image set. Furthermore, it shows that image enhancement performed with the
employed pre-trained ESRGAN model does not dramatically change the external imaging geometry.

Carefully exploring the differential DSM in Figure 13 reveals that large differential offsets are
occurring in areas that include natural and man-made water bodies with lack of texture and along the
edges of tall natural and man-made structures. Filtering out those areas from the original differential
DSM and calculating some statistics over them shows that the minimum, maximum, and standard
deviation (SD) of height difference in those areas are −8.308 m, 8.075 m, and 30 cm respectively.
The height-difference histogram in Figure 14, for filtered differential DSM, confirms that the geometry
of the reconstructed 3D scene, as reflected by the DSM, can be accurately retrieved with a SD around
2.50 cm. The minimum, maximum, and mean of height-differences within the filtered differential DSM
are about −4.85 cm, 5.73 cm, and −0.02 cm, respectively.

It is worth mentioning that there are numerous environmental and sensor-related factors as
well as flight design parameters which contribute to the quality and the spatial resolution of images
captured by the UAS. Texture quality, related to each individual object in the scene, can highly affect
the training and inference phases of the DCNN-based SISR model, which subsequently affects the
results of the SfM process. Ambient environmental conditions, such as lighting or any instability of the
platform during image capturing, such as due to the wind, can impact the above results. Similarly,
flight design including altitude above ground and camera perspective (e.g., oblique versus nadir) will
impact the GSD and appearance of land cover features. As a result, the visual representation of the
same target may deviate from one exposure to another in a single UAS flight mission and across repeat
data acquisitions. Thus, the authors emphasize that the results shown here, are valid for the specific
data set acquired at a certain time over the specific study site. The results presented here, in terms of
reconstruction accuracy, cannot be necessarily generalized to other sites with very different targets and
textures, or the same area imaged at a different time and during different environmental conditions,
without further experimentation. However, we believe that the high capacity of deep CNN models to
efficiently extract informative contextual features from the raw UAS images in an end-to-end manner
have the potential to be extended further by training DCNN-based SISR models using a time-series of
UAS images acquired over the same area, or UAS images captured from the same area under different
weather conditions. Also, training and evaluating the performance of a certain DCNN-based SISR
model on multiple UAS image sets including images from different areas with a wider range of targets
and varying textures may be considered for further analyses.

9. Conclusions

SISR seeks to obtain HR images from corresponding LR images, which is a notoriously arduous
and ill-posed problem. Investigating different IQMs evaluated on SR images predicted from
corresponding LR images in a DCNN-based SISR network revealed two important findings with
respect to this study’s experiment on UAS imagery. First, the quantitative measures of image quality,
including PSNR and SSIM index, applied to the super-resolved UAS imagery, confirm that the
DCNN-based super-resolution technique employed here (ERSGAN architecture) can achieve the
same level of performance for spatial-resolution and pictorial information enhancement relative to
the original HR ground truth image set. Both quantitative and qualitative assessment of SR images
showed that the level of additive white noise to the LR image remarkably decreases in the SR image.
Furthermore, visual comparison of SR images with corresponding HR images in some areas showed
that the SR image may exhibit less amount of noise.
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The second important finding relates to the task-based IQM performed using SfM
photogrammetry. Results confirmed that the geometry of UAS image acquisition can be recovered in
SR images with high accuracy. Camera interior and exterior parameters, evaluated by processing SR
images in auto-calibration module within the SfM photogrammetry procedure, closely approximate
the original results derived from the same procedure on the ground truth HR images. Preserving the
geometry of imagery can significantly increase the reliability of using super-resolution techniques in
many different RS applications, specifically where extracting spatial information from RS images is
required. The densified point cloud generated by SfM photogrammetry on the SR UAS images is about
15 times richer than the point cloud generated from the artificially degraded LR UAS images, which
provides more details about the underlying terrain. Furthermore, the differential DSM and related
height-difference histogram show the STD around 2.5 cm, which confirms the closeness of the two
reconstructed surfaces generated from the SR and HR image sets.

Overall, results from this study’s experiment on UAS imagery show that DCNN-based SISR
enhancement techniques can exploit spatial and non-spatial information in LR and HR imagery
for effectively discriminating the signal from noise in image space resulting in high performance in
recovering image details and more visually appealing images for different RS applications. For example,
one practical application of the SR technique for UAS mapping is that it can potentially enable flights
at higher altitudes and lower GSDs to cover more area in a certain time duration, thereby leading to
more flight efficiency. Then, a DCNN-based SISR technique, such as presented in this study, could be
applied to super-resolve the imagery to a specific resolution and generate a dense point cloud from
SfM photogrammetry, and subsequently DSM or orthoimage, as though the data were acquired from a
UAS flight conducted at a lower altitude and with similar quality.

Future work will seek to investigate the real scenario of employing SISR to reduce UAS image
acquisition flight time for aerial surveying operations when mapping of a relatively large area at high
resolution is demanded. This will be investigated by employing two UAS image sets acquired at two
different altitudes over the same area. Performance of the DCNN-based SISR model to super-resolve
the LR (high altitude) images can then be assessed by comparing SfM processing results with the
super-resolved LR images and original HR (low altitude) images in terms of 3D reconstruction fidelity
and image quality. The effect of different lighting and environmental conditions, and the impact
of different study sites with different objects of varying textures, on model performance may also
be explored. Finally, examining the most optimized DCNN-based SISR techniques, with the lowest
time-complexity in training and inference phases, might be a topic of great interest where it can help
pave the path for integration of SISR into real-time remote sensing application scenarios.
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Abstract: Considering the high-level details in an ultrahigh-spatial-resolution (UHSR) unmanned
aerial vehicle (UAV) dataset, detailed mapping of heterogeneous urban landscapes is extremely
challenging because of the spectral similarity between classes. In this study, adaptive hierarchical
image segmentation optimization, multilevel feature selection, and multiscale (MS) supervised
machine learning (ML) models were integrated to accurately generate detailed maps for heterogeneous
urban areas from the fusion of the UHSR orthomosaic and digital surface model (DSM). The integrated
approach commenced through a preliminary MS image segmentation parameter selection, followed
by the application of three supervised ML models, namely, random forest (RF), support vector
machine (SVM), and decision tree (DT). These models were implemented at the optimal MS levels to
identify preliminary information, such as the optimal segmentation level(s) and relevant features, for
extracting 12 land use/land cover (LULC) urban classes from the fused datasets. Using the information
obtained from the first phase of the analysis, detailed MS classification was iteratively conducted to
improve the classification accuracy and derive the final urban LULC maps. Two UAV-based datasets
were used to develop and assess the effectiveness of the proposed framework. The hierarchical
classification of the pilot study area showed that the RF was superior with an overall accuracy (OA)
of 94.40% and a kappa coefficient (K) of 0.938, followed by SVM (OA = 92.50% and K = 0.917) and DT
(OA = 91.60% and K = 0.908). The classification results of the second dataset revealed that SVM was
superior with an OA of 94.45% and K of 0.938, followed by RF (OA = 92.46% and K = 0.916) and
DT (OA = 90.46% and K = 0.893). The proposed framework exhibited an excellent potential for the
detailed mapping of heterogeneous urban landscapes from the fusion of UHSR orthophoto and DSM
images using various ML models.

Keywords: unmanned aerial vehicle; urban LULC; GEOBIA; multiscale classification
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1. Introduction

Land use/land cover (LULC) maps play an indispensable part in gaining comprehensive insights
into coupled human–environment systems, socioecological concerns, resource inventories, ecosystem
management, planning activities, change monitoring, emergency response, and decision making. For
instance, high-quality thematic LULC information is an essential input for versatile local and regional
applications, such as natural disasters [1,2], agriculture [3], sustainable development [4], and land use
suitability and management [5]. Therefore, producing accurate, up-to-date, and cost-efficient detailed
LULC maps is crucial for resource managers, scientists, decision makers, and city planners.

Remote sensing technologies have been extensively used to retrieve LULC information using
comprehensive options of platforms and sensors with versatile spatial, spectral, and temporal
resolutions. Satellite and airborne remotely sensed data are usually expensive and constrained by
the inability to deliver adequate spatial and temporal resolutions compared to drone-based data.
Nowadays, unmanned aerial vehicles (UAVs) are used to collect remotely sensed data in a cost-effective
manner at low altitudes below the cloud cover with ultrahigh spatial (UHSR) spectral and temporal
resolutions. These advantages make the UAV system a powerful tool that can be used to fulfil the
rapid monitoring and assessment during a natural disaster and real-time monitoring applications [6,7].
A plethora of studies have successfully used UAV platforms to acquire remotely sensed data for LULC
applications [7–13].

Geographic object-based image analysis (GEOBIA), a paradigm that imitates the human visual
perception of real-world targets by addressing the spectral variability amongst classes, has been
a preferable classification approach because of its advantages over pixel-based classification [14,15].
The limitations of pixel-based approaches, such as misclassification and salt-and-pepper effects, are
addressed through the hierarchical/multiscale (MS) exemplification of image objects, representation of
image objects across single/multiple images at MS levels, and incorporation of spatial, spectral, textural,
geometrical, elevation, backscattering, and contextual information in LULC classification [16,17].
GEOBIA has been widely used along with advanced machine learning (ML) algorithms for analyzing
and classifying drone-based images in various applications. De Castro et al. [18] suggested an
automatic GEOBIA approach using a random forest (RF) classifier for site-specific weed management
with UAV-based images. Their results helped the farmers with timely decision making for crop
optimization and management. Komárek et al. [19] utilized a three-level GEOBIA system with
a support vector machine (SVM) algorithm to identify individual plant species from multispectral
and thermal drone-based images. Kamal et al. [20] introduced a GEOBIA approach for mangrove
canopy delineation using UAV-based data. The results showed that the UAV red, green, and blue
(RGB) images are valuable inputs for GEOBIA regardless of the limit of spectral information. Mishra
et al. [21] presented the potential for achieving species-level mapping from multispectral UAV data
through GEOBIA. White et al. [22] proposed a GEOBIA approach to identify sapling Jak pine forests
after wildfire. A MicaSense RedEdge 3 multispectral camera onboard a quadcopter UAV platform
was used for data acquisition. The highest classification accuracy was achieved by including the red
and near-infrared spectra. The following section reviews the various elements affecting the GEOBIA’s
overall quality, including image optimization of image segmentation parameters, several feature
selection (FS) approaches, and machine learning (ML) algorithms.

Related Studies

GEOBIA is constructed on the basis of the conception of creating a meaningful representation
of real-world targets (i.e., LULC types, such as buildings, roads, and vegetation) by generating
homogenous regions from image pixels, and this procedure is referred to as image segmentation.
This procedure groups the raw pixels into homogeneous segments that are jointly exhaustive and
mutually disjointed, which are then used as the primary element for interpretation, classification,
and modelling [23,24]. The overall performance of the GEOBIA’s succeeding phases (i.e., feature
computation, extraction, and classification) is immensely influenced by image segmentation quality [25].
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Several image segmentation algorithms have been adopted to segment remotely sensed data in the
GEOBIA domain. The four commonly used image segmentation algorithms are watershed [26,27],
region-based [28], mean-shift [29], and hybrid segmentation [30]. Amongst them, the region-based
and multiresolution segmentation algorithms have been widely adopted in various remote sensing
applications because of their competency to produce meaningful image objects [31]. The scale parameter
(SP), which explains the degree or the density level where a specific phenomenon can be presented,
is the main parameter in all segmentation algorithms that require fine-tuning depending on the
application [28]. The image segmentation on UHSR images with a single-scale (SS) value results in
creating image objects that are either small (oversegmented) or large (undersegmented). Different issues
should be considered when selecting image segmentation parameters [32]. Firstly, different urban
LULC classes can differ in terms of size and structure and may require several optimum segmentation
levels. Secondly, image objects that belong to the same class might correspond to different optimal
scales because of their different surrounding contrast. Finally, different components within an object
might require analysis at multiple scales. Therefore, finding the optimal SP(s) prior to the analysis is
a crucial step in the GEOBIA framework because different objects can only be analyzed accurately on
the basis of the scale(s) corresponding to their granularity [33].

Various supervised and unsupervised image segmentation quality evaluation techniques have
been proposed to determine the optimal single or MS segmentation. Image segmentation results are
usually assessed through the supervised image segmentation quality measures by evaluating the
disparity between the manually digitized objects and the generated image objects from an image
segmentation algorithm, whereas the unsupervised image segmentation quality measures evaluate
MS segmentation results using various statistical-based image segmentation quality measures [34].
Considerable attention has been given to unsupervised segmentation quality measures [35,36]. The vast
majority of the unsupervised optimization methods determine the optimum segmentation parameters to
evaluate the segmentation outputs by computing the between-object heterogeneity and the within-object
homogeneity metrics [37–44]. Moreover, other unsupervised techniques have been adopted in various
applications to determine the optimum single or MS segmentation parameters. Xiao et al. [33] proposed
a MS segmentation optimization using the unsupervised optimization technique to determine the
optimum scales suitable for the extraction of urban green cover from the high-spatial-resolution dataset.
Kamal et al. [45] mapped mangrove species using the MS GEOBIA approach from multiple images
with a varied spatial resolution (i.e., WorldView 2, LiDAR, ALOS AVNIR-2, and Landsat TM).

FS, which is regarded as a crucial task that influences the GEOBIA classification accuracy, specifies
the most relevant features to increase the effectiveness of the adopted classification approach and
expedites the processing time by minimizing irrelevant or redundant features [46]. Various FS
algorithms have been incorporated with the GEOBIA approach in various applications, and these
methods include RF [47,48], SVM [47], ant colony optimization (ACO) [49,50], artificial bee colony [51],
hybrid particle swarm optimization [52], correlation-based FS (CFS) [49,53], and chi-square [54]. Ridha
and Pradhan [49] applied three FS methods, namely, CFS, RF, and ACO, to discriminate several
types of landslides from LiDAR data. The results showed that CFS performs the best with 89.28%
accuracy, followed by RF with 85.59% accuracy and ACO with 86.74% accuracy. Al-Ruzouq et al. [50]
adopted ACO for feature reduction and identification of the most crucial features for date palm
mapping from very-high-resolution aerial imageries. The results showed that ACO and CFS are
superior to other algorithms, including principal component analysis, SVM, information gain, gain
ratio, and chi-square. The effects of various feature importance evaluation methods, including gain
ratio, chi-square, SVM-recursive feature elimination, CFS, Relief-F, SVM, and RF were investigated by
Ma et al. [47] within the GEOBIA environment to map agricultural areas from UAV data. The results
showed that CFS dominates other feature importance evaluation methods.

Recently, GEOBIA has been integrated with various ML methods to classify UAV-based images
for various LULC applications. Ma et al. [47] used two ML classification approaches, namely, SVM
and RF, to classify the UAV data into six categories, namely, building, crop, bare land, road, water,
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and woodland in Deyang, China. RF exhibits a higher classification accuracy compared to SVM. Cao
et al. [55] applied two classification algorithms, namely, SVM and k-nearest neighbors (KNN), in the
GEOBIA domain to map mangrove species from a UAV hyperspectral image. The result showed
that SVM performs better with 89.55% accuracy compared to KNN with 81.70% accuracy. Akar [56]
compared various ML algorithms to perform LULC classification using the UAV images collected from
urban and rural areas. The results showed that rotation forest (92.52%) outperforms RF (90.52) and
gentle AdaBoost (87.52%). Liu et al. [57] proposed a SVM-deep belief network (restricted Boltzmann
machine) method to extract eight land cover classes, namely, tree, building 1, road, grass, river, building
2, building 3, and bare-land, using the fusion of LiDAR data and UAV images. Their proposed
technique shows an overall accuracy (OA) of 92.16% and a kappa (K) value of 0.904%.

In this study, an adaptive MS segmentation and classification approach was adopted to classify
heterogeneous urban areas through the fusion of the UHSR orthophoto and digital surface model (DSM).
The main objectives of the current study are to (1) develop an adaptive MS-optimized image object
approach for detailed urban LULC mapping from UAV-based data, (2) investigate the effects of MS
segmentation on FS computation (CFS and SVM) and its impact on classification accuracy, (3) compare
the performance of three mature ML classification algorithms, namely, RF, SVM, and decision tree
(DT), at MS levels, and (4) assess the transferability of the adopted framework. The remainder of
this paper is organized as follows. Section 2 outlines the geographical location of the study area and
describes the ground truth (GT) data. Section 3 presents a generic overview of the methodological
framework and detailed information about image processing, image segmentation optimization, FS,
MS classification, and evaluation metrics. Section 4 describes the results, and Section 5 discusses the
experimental findings. Section 6 provides the conclusions.

2. Study Area and Materials

2.1. Study Area

The location of the study area is geographically positioned at the University of Science, Malaysia
(USM) campus, Penang, Malaysia. The study area represents an urban area of Penang island with
different LULCs, including vegetation, water bodies, buildings, roads, and bare soil. The RGB
images were acquired on February, 2018, (Figure 1) using a Canon PowerShot SX230 HS (4000 ×
3000 resolution) boarding on a UAV from an altitude of 353 m. The ground resolution of the orthomosaic
is approximately 10 cm, with an 8-bit radiometric resolution. The first dataset was a subset of 2.24 km2

from the produced orthomosaic photos, located between 100◦18′7.43′′E, 5◦21′51.574′′N and 100◦19′2′′E,
5◦21′8.143′′N. A DSM with 0.8 m resolution was generated from 3500 points using Agisoft PhotoScan
Professional (version 1.3.4, http://www.agisoft.com). The second subset (with the coordinates of
100◦17′29.341′′E, 5◦21′38.6′′N and 100◦18′9.622′′E, 5◦21′5.345′′N), covering an area of 1.27 km2, was
selected for investigating the transferability of the methodology.

2.2. GT Data

In the first study area, a total of 1177 GT samples for various urban LULC classes were prepared
through field surveys with the aid of Google Earth images. Twelve different classes were identified,
including water bodies, bare soil, grass, trees, clay tiles type 1, clay tiles type 2, metallic roofs type 1,
metallic roofs type 2, concrete, dark concrete roofs, asbestos cement roofs, and asphalt. The training
and testing GT samples were prepared as vector points and meticulously selected to ensure that all the
available urban LULC classes are well represented. Table 1 presents several types of LULC classes
available in the UAV-based images. Amongst the collected GT samples, 70% of each class was utilized
in the training of ML models, and 30% was dedicated for testing them. For the second study area,
sample statistics derived from the training samples of the first study area were used in the classification
models, and 305 GT testing samples were used to evaluate the classification results.
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Figure 1. General location of the study sites: (a) Malaysian states; (b) location map; (c) digital surface
model (DSM) of the study sites; (d) unmanned aerial vehicle (UAV) images of the study sites.

Table 1. Detailed description of different land use/land cover (LULC) classes available in the
UAV-based images.

LULC Type Images Description

Water bodies
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Table 1. Cont.

LULC Type Images Description

Dark concrete
roofs
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3. Methodology

3.1. Overview

In this study, MS image segmentation optimization, MS feature computation and evaluations, and
supervised hierarchical ML models were conducted for accurate detailed mapping of a heterogeneous
urban landscape from UAV-based images. As depicted in Figure 2, the adopted methodology
comprises five main phases. Firstly, drone-based images were acquired and preprocessed to generate
the orthophoto and the DSM. Secondly, the optimum MS segmentation parameters were identified
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using unsupervised segmentation quality metrics. Thirdly, the most significant features were selected
at MS levels on the basis of CFS and SVM wrapper approaches. Fourthly, adaptive MS segmentation
optimization and classification were conducted for detailed urban LULC mapping using the RF, SVM,
and DT algorithms. Finally, the transferability of the proposed methodology to a different study area
was investigated.
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3.2. Image Preprocessing

Various photogrammetric steps, such as interior, relative, and absolute orientations, have been
conducted to establish the mathematical relationship between the image and the ground and
subsequently generate the digital elevation model and the orthophoto (an image with the same
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characteristics of the map, where distortions caused by relief displacement are removed and the
image has a uniform scale). Throughout this process, image matching, automatic aerial triangulation,
geopositioning, orthorectification, and image mosaicking were performed to create the orthomosaic
image and the DSM from the UAV data using Agisoft PhotoScan and ArcGIS 10.4.1. The process
commenced by estimating the exterior and interior orientation parameters that estimate the positions of
the camera in each image and the camera calibration parameters. The RGB images were geometrically
corrected and geotagged to the WGS1984 (world geodetic reference system) using the files extracted
from the Global Positioning System units in the drone and the ground reference station. The images
were projected to a Universal Transverse Mercator coordinate system (zone 38 North) and converted
from JPEG to GeoTiff format. The following steps, such as aligning images, building field geometry,
and orthophoto generation, were implemented to create a DSM (a 3D polygon mesh representing
surface ground) and an orthomosaic. The DSM was generated with the nearest-neighbor interpolation
method and resampled to the same resolution of the orthomosaic. The spatial resolution of the final
orthomosaic for the two study areas was 10 cm, and the spatial resolution of the DSM was 80 cm.

3.3. MS Image Segmentation Optimization

The optimal segmentation level is defined in most of the unsupervised methods as the level
that maximizes the between-object heterogeneity (i.e., adjacent objects can be distinguished from
their surroundings) and the within-object homogeneity (i.e., pixels belonging to the same objects are
similar) [40,41]. The likeness between each image and its neighbors, known as the undersegmentation
metric, is determined through spatial autocorrelation (Moran’s I (MI)) [58], whereas the internal
homogeneity of an image object, known as the oversegmentation metric, is determined through the
area-weighted variance (WV) [41].

An adaptive segmentation optimization approach that integrates unsupervised quality measures,
namely, the F-measure, accompanied with a machine learning classification model was adopted in this
study to identify the optimal scale(s) for each urban LULC class. The F-measure quality measure [39]
was utilized to determine the hierarchical scale values from a set of given segmentation outputs. The
F-measure value for estimating the optimum MS of an application can be computed using Equation (1).

F-measure =
(
1 + ϕ2

) MInorm ×WVnorm

ϕ2. MInorm + WVnorm
, (1)

where WVnorm and MInorm represent the normalized area-WV (oversegmentation metric) and the
normalized Moran’s I (undersegmentation metric), respectively. The relative weights of WVnorm and
MInorm are controlled through a scene-independent factor (ϕ). The ϕ values are selected to ensure that
the generated segmentation levels vary considerably in terms of the within-object homogeneity and
between-object heterogeneities. For instance,ϕ = 3 signifies that triple weighting is assigned to WVnorm,
ϕ =0.5 indicates half weighting for WVnorm, and ϕ = 1 denotes that equal weighting is considered for
WVnorm and MInorm. Additional details about the unsupervised parameter optimization can be found
in [39,59]. The levels defined by the F-measure are used in the second phase to perform a single scale
(SS) classification of each defined segmentation scale. The class-specific accuracy (F-measure) is used
to evaluate the accuracy of each class at multiple levels, as shown in Section 4.3. Then, the optimal
scale(s) for extracting each class is determined and used for subsequent analysis.

3.4. Feature Computation and Selection

Considering the spectral similarity between the various urban LULC classes in the UHSR RGB
images, various features, including spectral values, color invariants, and geometrical textural features,
were computed and assessed at multiple scales, as shown in Table 2. Selecting the significant features
prior to classification is necessary to minimize the computational time by excluding the redundant
attributes and enhance the accuracy of an ML classifier [47]. In this study, CFS and SVM as wrapper FS
techniques were utilized to identify the most relevant MS features of image objects from UAV datasets.
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Table 2. Detailed description of the evaluated attributes (features).

Feature Type Tested Feature Name Description Reference

Spectral

Mean The mean intensity values computed for an image
segment of the RGB channels and the DSM [60]

Standard deviation The standard deviation values computed for an
image segment of the RGM channels and the DSM. [60]

Max_ difference The maximum difference between the RGB channels. [60]
Brightness The average of means of the RGB channels. [60]

NDRG Red−Green
Red+Green [61]

NDGB Green−Blue
Green+Blue [61]

NDBG Blue−Green
Blue+Green [61]

NDRB Red−Blue
Red+Blue [61]

NDBR Blue−Red
Blue+Red [61]

NDGR Green−Red
Green+Red [61]

RB Red
Blue [61]

Ratio-R Red
Green+Blue+Red [61]

Ratio-G Green
Green+Blue+Red [61]

Ratio-B Blue
Green+Blue+Red [61]

V 4
π . arctan ( Green−Blue

Green+Blue ) [62]

S 4
π . arctan ( 1−√Red2+Green2+Blue2

1+
√

Red2+Green2+Blue2
) [63]

Texture

Mean
The grey level co-occurrence matrix (GLCM) mean

sum of all directions determined for each band from
the RGB channels and the DSM.

[64]

Homogeneity
The GLCM homogeneity sum of all directions

determined for each band from the RGB channels,
and the DSM.

[64]

Contrast

The GLCM contrast sum of all directions determined
for each band from the RGB channels, and the DSM.

The grey level difference vector (GLDV) matrix
contrast sum of all directions determined for each

band from the RGB channels, and the DSM.

[64]

Entropy
The GLCM and GLDV entropy sum of all directions
determined for each band from the RGB channels,

and the DSM.
[64]

Correlation
The GLCM correlation sum of all directions

determined for each band from the RGB channels,
and the DSM.

[64]

Standard deviation
The GLCM standard deviation sum of all directions
determined for each band from the RGB channels,

and the DSM.
[64]

Dissimilarity
The GLCM dissimilarity sum of all directions

determined for each band from the RGB channels,
and the DSM.

[64]

Angular second moment
The GLCM angular second-moment sum of all

directions determined for each band from the RGB
channels, and the DSM.

[64]

Geometric

Length\Width The ratio between the length and width. [60]

Rectangular Fit A ratio that is based on how well an image object fits
into a rectangle. [60]

Shape_index

A ratio that defines border smoothness of image
objects and can be computed by dividing the border
length of an image object by four times the square

root of its area.

[60]

Density It can be computed by dividing the area covered by
an image object by its radius. [60]

Elliptic_fit A ratio based on how well an image object can fit
into an ellipse. [60]

Compactness It is expressed as the ratio of the area of an image
object to the area of a circle with a similar perimeter. [60]

231



Remote Sens. 2020, 12, 1081

The seventy features listed above were computed for three optimized MS image objects, and two
efficient FS methods, namely, CFS and SVM, were used to find the relevant feature subset for each
optimized image object level.

3.4.1. CFS

CFS performs fast processing to appropriately select the optimal feature subset [53,65,66]. It uses
a search algorithm that heuristically assesses each attribute’s predictive capability and the degree of
intercorrelation between the attributes [67]. In other words, this evaluating mechanism calculates
the correlations between the features and classes to classify highly correlated features to the target
class whilst considering the low correlations and low level of redundancy amongst the features [68].
The estimations of the correlation between the subset of attributes and target classes are performed
using Equation (2).

Rs =
srci√

s + s(s− 1)rii
(2)

where s denotes the number of features, rci represents the correlation average between the subset
features and the class variable, and rii denotes the intercorrelation average between the subset features.
Accordingly, the high correlation coefficients between the feature attributes and the target labels are
considered to be relevant to the respective class characterization with a high level of association, whilst
lower intercorrelation (rii) is desired [68].

3.4.2. SVM

SVM is a widely applied regression algorithm with a nonparametric supervised statistical learning
task and is highly suitable for GEOBIA FS and classification tasks [51,69]. This algorithm seeks
an optimal separating hyperplane using the training dataset of so-called support vectors that can
effectively separate the input features (datasets) into target classes with a minimum misclassification
and a maximum margin amongst the target classes [70–72]. When the task is linearly separable, the
hyperplane can be represented using Equation (3):

yi(w.xi +b) ≥ 1− δi, (3)

where w indicates the coefficient vector that determines the orientation of the hyperplane in the feature
space. The offsets of the hyperplane from the original and positive slack variables are represented by b
and δi, respectively [73]. Equation (4) determines the optimized hyperplane, where many hyperplanes
can be designed to distinguish between classes.

Minimise
n∑

i=1

ai − 1
2

n∑

i=1

n∑

j=1

aiajyiyj

(
xixj

)
, (4)

Subject to
n∑

i=1

aiyi= 0, 0 ≤ ai ≤ C, (5)

where ai denotes the Lagrange multipliers and C is the penalty.

3.5. Supervised MS Image Object Classification

Image classification is the final phase in GEOBIA, and the common classification methods used
in this phase are supervised ML models or rule-based methods. In this study, the MS image object
classification was implemented using three supervised classification algorithms, namely, RF, SVM, and
DT. The classification models were trained using the sample statistics derived from the GT dataset of the
first study area. The object-based classification outcomes at different scales were used to quantitatively
evaluate the MS segmentation results and select the optimum scale for each urban LULC class. Then,
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the classification scheme started with a single classification of each optimized image-level using the
selected feature subsets for each level. After acquiring the proper information about the optimal scale(s)
for each class, ML models were used to initially classify large objects at large SP. The classification
results were then copied to a new level, where the unclassified objects were only resegmented to
a fine segmentation level, and the ML models were then used to classify the resegmented objects
on the basis of the selected significant features at that level. The process iteratively continued until
all classes were accurately classified or no improvement was detected in the OA and class-specific
accuracy (F-measure). The two of the aforementioned ML algorithms are briefly described in the
following paragraphs.

A DT is a supervised and nonparametric ML technique that is operable without prior knowledge
on data distribution, with easy interpretation and capability to model and handle the data complexity
reduction and the relationships between variables [74–79]. It is a flexible, fast, and robust algorithm
that can be used to control the nonlinearity between the input features and discrete classes [75].
DT hierarchically utilizes IF-THEN rules to label the variables of each class, where the tree structures,
leaves, and end nodes represent the discrete class labels (decision), and the branches assist in assigning
the labels on the basis of the attributes and majority voting [76]. A heuristic DT recursively partitions
a dataset into homogenous subsets in conjunction with the attribute values at each branch or node in
the single tree [77].

The RF algorithm is an ensemble of DT classifiers that improves the classification of variables
with high accuracy, and its robustness against overfitting the training dataset along with insensitivity
to nonnormal and noisy data makes it suitable for LULC classification [51,78,79]. RF is an ensemble
method that exploits many DTs as a forest generated from bootstrap and utilizes each tree’s vote to
assign the most frequent class label to the input variables [78,80]. Each tree then randomly selects the
predictors and object features from the input vector of every tree node to increase the generalization
error [78,81]. The prediction of the samples is calculated on the basis of the majority votes amongst the
trees [80,81]. The discrimination assignment is calculated using Equation (6):

H(x)= argmaxY

k∑

i=1

I(hi (X, θk)= Y), (6)

where θk is a random vector for the kth tree, X is an input vector, I(·) is an indicator function, h(·)
is a single DT, Y is an output variable, and argmaxy denotes the Y value in the maximization of∑k

i=1 I(hi (X, θk) = Y).

3.6. Evaluation Metrics

The evaluation metrics of the classified images were generated through the frequently applied
confusion matrix and its derivatives, including the OA, K, precision, recall, and F-measure. The
error matrix (confusion matrix) evaluates the classification results versus the reference data in two
dimensions as actual classes in rows and predicted classes in columns.

3.6.1. OA

The OA, which is a percentage indicator of the classification performance, can be defined as the
sum of the correctly classified variables into discrete classes (true positives plus true negatives) to the
total tested variables. OA can be computed from the confusion matrix by dividing the total number of
correctly classified objects/pixels (

∑
Dij or the sum of the major diagonal) with the total number of

objects/pixels (N):

OA =

∑
Dij

N
. (7)
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3.6.2. K Statistics

The K statistic is another statistical measure that defines the observed level of agreement or
accuracy between a detailed map and reference data. The K value approaches +1 when the contribution
of the chance of agreement diminishes and becomes negative when the effects of chance agreements
increases. Conversely, a K value equaling 0 indicates no agreement, indicating that the classification is
entirely conducted by chance or random assignment. A negative K value signifies that the agreement
is worse than occurring by chance. The K statistic is computed using Equation (8):

K =
N

∑m
i, j=1 Di j −

∑m
i, j=1 Ri ×C j

N2 −∑m
i, j=1 Ri ×C j

, (8)

where m denotes the number of urban LULC classes in the confusion matrix, Dij denotes the number
of observations (objects/pixels) that are correctly classified in row i and column j, Ri denotes the total
number of objects/pixels in row i, Cj denotes the total number of observations in column j, and N
denotes the total number of objects/pixels.

3.6.3. Precision, Recall, and F-measure

The F-measure is the weighted average or harmonic mean of two ratios known as precision
(p). Recall (r) metric is another performance measure used to assess the class-specific accuracy from
retrieved information [82,83]. It can be computed using Equation (9) on the basis of the average of p
and r. The F-measure value ranges from 0 (lowest) to 1 (highest).

Fmeasure= 2× p × r
p + r

. (9)

The p or the confidence of a LULC class is determined by dividing the number of true positives
(number of objects\pixels correctly belonging to the actual class) by the total number of objects
categorized as the positive class (i.e., the sum of true positives and false positives, which are
objects/pixels incorrectly categorized as belonging to the class). The r or the sensitivity shows the
proportion of true positive objects/pixels that are correctly predicted and identified and can be defined
as the number of true positives divided by the total number of objects/pixels that are members of
the positive class (i.e., the sum of true positives and false negatives). p and r can be calculated using
Equations (10) and (11), respectively. A perfect predictor’s value for p and r would be described as 1.

p =
true positives

true positives + false positives
, (10)

r =
true positives

true positives + false negatives
. (11)

4. Results

This section summarizes the various outcomes of this study, including the MS image segmentation
optimization and parameter selection, FS, and classification results.

4.1. Results of MS Image Segmentation

In this study, the quantitative evaluation of image segmentation results at MS levels through
unsupervised segmentation quality measures aims to determine the optimal SP that allows excellent
delineation and extraction of urban LULC classes that may share a similar spectral response with
each other and vary in structure, size, and their surrounding contrast. The oversegmentation (WV)
and undersegmentation (MI) metrics were computed from the three RGB channels, and their mean
values were normalized and used to compute the F-measure (for selecting the three optimum SPs),
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as shown in Table 3. Three values, namely, 3, 1, and 0.33, of the scene-independent variables (ϕ) were
selected to pinpoint the three SPs from the computation of Equation (1). These values were empirically
selected and supported by the study of Johnson et al. [62] to ensure that the adopted segmentation
levels vary remarkably from each other in terms of the between-object homogeneity and within-object
heterogeneity. The highest values on the last three columns in Table 2 correspond to the optimal MS
levels, and these scales are 200, 100, and 50. Figure 3a,b depict the image segmentation results of a small
subset at the scale of 200, where large homogenous objects, such as water bodies, grass, bare soil, and
some clay tiles, are well delineated. Figure 3c,d show the image segmentation results of a small subset
at the scale of 100, where medium objects, such as some types of roofing materials, are well identified.
Figure 3e,f display the image segmentation results of a small subset at the scale of 50, where large and
medium objects are oversegmented but small roofing materials and trees are well distinguished.

Table 3. Results of the applied unsupervised segmentation quality measures at multiscale (MS) levels.

Scale
No of

Objects WV mean MI mean WV norm MI norm
F-Measure

ϕ = 3 ϕ = 1 ϕ = 0.33

25 340731 78.606 0.548 1.000 0.000 0 0 0
50 104840 132.924 0.452 0.858 0.242 0.684 0.377 0.260
75 53011 178.661 0.395 0.739 0.385 0.677 0.506 0.404

100 33217 217.177 0.344 0.639 0.514 0.624 0.570 0.524
125 22978 253.258 0.314 0.545 0.588 0.549 0.566 0.584
150 16878 288.418 0.286 0.453 0.658 0.468 0.537 0.630
175 12887 322.978 0.250 0.363 0.748 0.383 0.489 0.674
200 10181 354.309 0.229 0.281 0.801 0.301 0.416 0.678
225 8216 384.925 0.217 0.202 0.833 0.218 0.325 0.637
250 6841 412.203 0.195 0.130 0.888 0.143 0.227 0.566
275 5738 439.515 0.169 0.059 0.953 0.065 0.112 0.384
300 4961 462.250 0.150 0.000 1.000 0 0 0

Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 30 

 

 

Figure 3. Optimized image objects of a subset UAV image mosaic: (a,b) Scale 200; (c,d) scale 100;  

(e,f) scale 50. 

4.2. Results of FS 

Following the optimization of segmentation SPs, several spectral, geometrical, and textural 

features were computed at MS levels for FS, as shown in Table 1. Two wrapper approaches, namely, 

CFS and SVM, combined with the KNN algorithm, were used to assess all features as a part of 

classification. Table 4 compares the OA, K, and other relevant features selected by SVM and CFS at 

scales of 50, 100, and 200. The results of CFS and SVM exhibited significant differences in terms of 

the number and type of selected features in each scale. However, the two methods eliminated 60% 

from the total number of features, whereas less than 40% of the features contributed to achieving high 

accuracy. CFS attained a slight improvement in terms of the OA and number of selected features, as 

presented in Table 2, and was selected for subsequent processing. 
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4.2. Results of FS

Following the optimization of segmentation SPs, several spectral, geometrical, and textural
features were computed at MS levels for FS, as shown in Table 1. Two wrapper approaches, namely,
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CFS and SVM, combined with the KNN algorithm, were used to assess all features as a part of
classification. Table 4 compares the OA, K, and other relevant features selected by SVM and CFS at
scales of 50, 100, and 200. The results of CFS and SVM exhibited significant differences in terms of
the number and type of selected features in each scale. However, the two methods eliminated 60%
from the total number of features, whereas less than 40% of the features contributed to achieving high
accuracy. CFS attained a slight improvement in terms of the OA and number of selected features,
as presented in Table 2, and was selected for subsequent processing.

4.3. Classification Results

The detailed mapping of impervious surfaces in a heterogeneous urban area from UAV-based
images is particularly challenging when only three spectral channels, RGB, are used because of the
spectral similarity of various urban LULC classes. In such a case, a successful extraction of urban objects
should consider the information of the variation in size and the surroundings of the different types
of LULC that exist in the image. For instance, asbestos cement and dark concrete roofs or cemented
pavements may share similar spectral responses because of the presence of cement in their contents.
To minimize the confusion between different LULC classes, the information of the suitable scale(s) that
provides the best accuracy and ensures the strong differentiation between classes is necessary to obtain
a holistic view and to perform hierarchical classification.

The initial stage of classification in this study is to find the optimum level for extracting each
class, which can be achieved using ML models, followed by a class-specific accuracy measure. Three
standard classification algorithms, namely, RF, SVM, and DT, were used to classify the first study
area at the selected optimal scales (SP 200, SP 100, and SP 50). The accuracy of each classification
level was evaluated on the basis of OA, K, and F-measure. Figure 4a–c show the SS classification
results of RF, Figure 4d–f display the SS classification results of SVM, and Figure 4g–i show the SS
classification results of DT. Table 5 shows the SS classification results for the first study area. The highest
SS classification results were obtained by SS-RF at scale 50, with an OA of 92.2 and a K of 9.14, followed
by SS-SVM at scale 100 with an OA of 90.5 and a K of 0.896 and SS-DT at scale 50 with an OA of 88.1%
and a K of 0.87. Finding the optimum scale for extracting the LULC in heterogeneous urban areas
can vary on the basis of the adopted classification algorithm by comparing the class-specific accuracy
measures of SS-RF, SS-SVM, and SS-DT classification results. For instance, the SS-RF classification
results showed that the SP 50 exhibited the highest OA for the extraction of water bodies, trees, grass,
dark concrete, type 2 clay tiles, and type 2 metallic roofs, whereas the SP 200 showed enhanced
extraction of bare soil, asphalt, type 1 metallic roofs, concrete, type 1 clay tiles, and asbestos cement
roofs. The classification results of SS-SVM showed better extraction for clay tiles (types 1 and 2) at the
largest optimized SP, whereas the smallest optimized SP was optimal for extracting water bodies, bare
soil, trees, and metallic roofs (types 1 and 2). The previous step was adopted prior to the hierarchical
classification approach to provide a diagnostic result where SP is suitable for extracting 12 urban LULC
classes and for ensuring reasonable discrimination between the classes.
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Figure 4. Single-scale (SS) classification results: (a–c) Random forest (RF) classification at scales of
200, 100, and 50, respectively; (d–f) SVM classification at scales of 200, 100, and 50, respectively; and
(g–i) decision tree (DT) classification at scales of 200, 100, and 50, respectively.

Table 5. Performance of the extraction of LULC classes using RF, SVM, and DT at single scales.

SS-RF

Class
SP 200 SP 100 SP 50

Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

Water bodies 1.000 0.980 0.990 1.000 0.997 0.999 1.000 0.997 0.999
Bare soil 0.879 0.918 0.898 0.653 0.404 0.499 0.850 0.942 0.893

Grass 0.790 0.352 0.487 0.871 0.878 0.874 0.871 0.994 0.928
Asphalt 0.855 0.757 0.803 0.674 0.626 0.649 0.771 0.569 0.655

Metallic roofs 2 0.992 0.862 0.922 1.000 0.924 0.961 1.000 1.000 1.000
Trees 0.580 0.830 0.683 0.790 0.999 0.883 0.999 0.973 0.986

Dark concrete 0.741 0.961 0.836 1.000 0.899 0.947 0.994 0.969 0.981
Metallic roofs 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Concrete 1.000 0.925 0.961 1.000 0.906 0.951 0.983 0.914 0.947
Clay tiles type 2 1.000 0.964 0.981 0.980 0.874 0.924 0.985 0.983 0.984
Clay tiles type 1 1.000 0.996 0.998 0.474 0.902 0.621 0.977 1.000 0.989

Asbestos 0.913 0.951 0.932 0.743 0.838 0.788 0.624 0.849 0.719

OA 88.4% 84.25% 92.2%

Kappa 0.873 0.827 0.914
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Table 5. Cont.

SS-SVM

Class
SP 200 SP 100 SP 50

Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

Water bodies 0.964 1.000 0.982 1.000 0.998 0.999 1.000 1.000 1.000
Bare soil 0.861 0.823 0.842 0.940 0.974 0.956 0.936 1.000 0.967

Grass 0.790 0.742 0.765 0.787 0.866 0.825 0.835 0.874 0.854
Asphalt 0.861 0.836 0.849 0.906 0.854 0.879 0.878 0.745 0.806

Metallic roofs 2 0.854 1.000 0.921 0.891 1.000 0.942 0.998 1.000 0.999
Trees 0.943 0.939 0.941 0.941 0.953 0.947 0.974 0.963 0.969

Dark concrete 0.835 0.624 0.714 0.999 0.651 0.788 0.977 0.633 0.768
Metallic roofs 1 0.969 0.808 0.881 1.000 0.848 0.918 1.000 1.000 1.000

Concrete 1.000 0.907 0.951 1.000 0.993 0.996 1.000 0.942 0.970
Clay tiles type 2 1.000 1.000 1.000 1.000 1.000 1.000 0.928 0.982 0.954
Clay tiles type 1 0.485 0.992 0.651 0.485 0.911 0.633 0.474 0.873 0.614

Asbestos 0.983 0.933 0.958 0.889 0.967 0.926 0.750 0.952 0.839

OA 88% 90.5% 89.7%

Kappa 0.868 0.896 0.886

SS-DT

Water bodies 1.000 0.788 0.881 1.000 1.000 1.000 0.915 1.000 0.956
Bare soil 0.889 0.853 0.871 0.758 0.886 0.817 0.729 0.924 0.815

Grass 0.790 0.246 0.375 0.871 0.244 0.381 0.864 0.687 0.765
Asphalt 0.752 0.812 0.781 0.707 0.677 0.692 0.710 0.541 0.614

Metallic roofs 2 0.957 0.858 0.905 0.998 1.000 0.999 0.998 0.846 0.916
Trees 0.529 0.895 0.665 0.806 0.945 0.870 0.904 0.965 0.934

Dark concrete 0.732 0.966 0.833 0.946 0.843 0.891 0.943 0.925 0.934
Metallic roofs 1 1.000 0.964 0.982 1.000 1.000 1.000 1.000 1.000 1.000

Concrete 1.000 0.925 0.961 0.983 0.911 0.946 0.975 1.000 0.987
Clay tiles type 2 0.948 0.521 0.672 0.886 0.902 0.894 1.000 0.823 0.903
Clay tiles type 1 0.474 0.948 0.632 0.385 0.882 0.536 1.000 1.000 1.000

Asbestos 0.676 1.000 0.806 0.756 0.833 0.793 0.639 0.852 0.730

OA 79% 83.4% 88.1%

K 0.771 0.819 0.869

Utilizing the preliminary information acquired from the SS classification of the RF, SVM, and DT
algorithms, the hierarchical classification was conducted for the first study area. The results are shown
in Figure 5. Table 6 illustrates the OA, K, and class-specific accuracies of the first study area using
the hierarchical RF, SVM, and DT classification algorithms. Similar to SS classification, the MS-RF
classification was superior with an OA of 94.40% and a K of 0.938, followed by MS-SVM with an OA of
92.50% and a K of 0.917 and MS-DT with an OA of 91.60% and a K of 0.908.

Table 6. Class-specific accuracy measures for the MS RF, SVM, and DT of the first study area.

MS-RF MS-SVM MS-DT

Class Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

Water bodies 1.000 0.967 0.983 1.000 0.998 0.999 1.000 1.000 1.000
Bare soil 0.761 0.754 0.757 0.919 1.000 0.958 0.899 0.810 0.852

Grass 0.871 0.933 0.901 0.996 0.892 0.941 0.869 0.698 0.774
Asphalt 0.863 0.916 0.889 0.851 0.944 0.895 0.765 0.705 0.734

Metallic roofs 2 1.000 0.999 1.000 0.998 1.000 0.999 0.998 0.873 0.932
Trees 0.972 0.972 0.972 0.941 0.999 0.969 0.888 0.999 0.940

Dark concrete 0.832 0.963 0.893 0.996 0.646 0.783 0.768 0.950 0.849
Metallic roofs 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Concrete 1.000 0.925 0.961 1.000 0.993 0.996 0.975 1.000 0.987
Clay tiles type 2 1.000 0.964 0.981 1.000 1.000 1.000 0.931 0.878 0.904
Clay tiles type 1 1.000 0.923 0.960 0.485 0.904 0.631 1.000 1.000 1.000

Asbestos 0.962 0.969 0.966 0.983 0.927 0.955 0.935 0.975 0.954

OA 94.40% 92.50% 91.60%
K 0.938 0.917 0.908

Compared to SS classification, the hierarchical classification results noticeably improved the
extraction of urban LULC classes. For instance, an improvement of 2.24% in the OA was observed
in the MS-RF algorithm, along with a significant improvement in the differentiation and extraction
of asbestos cement, concrete, and asphalt roofs. Similarly, the MS-SVM classification exhibited an
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enhancement in the class-specific accuracies, OA, and K of trees, grass, and asphalt classes. The OA
accuracy of MS-DT showed an improvement with 3.57%, which achieved an overall improvement in
the extraction of trees, grass, and asbestos cement roofs.
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and (c) DT.

To validate the transferability of the hierarchical classification approach, the MS-RF, MS-SVM,
and MS-DT classifications were applied in the second study area using the sample statistic file derived
from the image of the first study area. Figure 6 and Table 7 show the classification results for the second
study area. The results of the second dataset showed that the MS-SVM classification was superior
with an OA of 94.45% and a K of 0.938, followed by MS-RF with an OA of 92.46% and a K of 0.916
and MS-DT with an OA of 90.46% and a K of 0.893. The proposed hierarchical classification approach
demonstrates excellent potential for the detailed mapping of heterogenous urban areas from RGB-UAV
images and DSM. The proposed methodology can be adopted for various areas with different LULCs.
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 Figure 6. Results of MS classification using the integrated approach of the second study area: (a) RF,
(b) SVM, and (c) DT.

Table 7. Class-specific accuracy measures for the MS RF, SVM, and DT of the second study area.

RF SVM DT

Class Precision Recall F-Measure Precision Recall F-Measure Precision Recall F-Measure

Water bodies 0.531 0.989 0.691 0.594 0.969 0.737 0.585 0.974 0.731
Bare soil 0.960 0.884 0.921 0.982 0.960 0.971 0.953 0.788 0.862

Grass 0.972 0.650 0.779 0.984 0.786 0.874 0.912 1.000 0.954
Asphalt 0.925 1.000 0.961 0.976 1.000 0.988 0.973 1.000 0.986

Metallic roofs 2 1.000 1.000 1.000 0.969 0.680 0.800 0.745 1.000 0.854
Trees 1.000 0.959 0.979 1.000 0.984 0.992 1.000 0.618 0.764

Dark concrete 0.971 0.975 0.973 0.992 1.000 0.996 0.901 0.990 0.944
Metallic roofs 1 0.992 1.000 0.996 0.980 1.000 0.990 0.986 1.000 0.993

Concrete 0.953 1.000 0.976 1.000 1.000 1.000 0.953 1.000 0.976
Clay tiles type 2 1.000 0.961 0.980 1.000 0.983 0.991 1.000 0.856 0.923
Clay tiles type 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

OA 92.46% 94.45% 90.46%
K 0.916 0.938 0.893
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5. Discussion

Considering that segmenting UHSR UAV-based images of a heterogeneous and complex urban
landscape is a challenging task in GEOBIA, the selection of the optimum SP(s) is an imperative step to
ensure that different landscapes are well delineated at different scales. This study conducted a detailed
mapping of a heterogeneous urban area, an area covered with various natural and impervious surfaces
that vary in size and structure, from the fusion of the UAV-based orthophoto and DSM by improving
the GEOBIA frameworks with different solutions to some of the issues stated in related studies section.
An adaptive MS segmentation that assimilates an unsupervised image segmentation evaluation metric
(i.e., F-measure) and ML algorithms were proposed to identify the optimal MS parameters for extracting
the detailed urban LULC classes.

Although GEOBIA can leverage the computation and use various features in the classification
process, adding many features can reduce the classification accuracy and increase the computational
time. CFS and SVM were used in this study to select the most significant features computed for each
level from the optimized three-scale levels. An object’s spectral, geometrical, and textural feature
values are different because the size of the generated image objects (i.e., roofing material and roads)
varies on the basis of the selected scale level. CFS obtained a maximum OA of 93.78% (K = 0.93) at the
scale level of 200 by selecting 27 significant features, whereas SVM obtained a minimum accuracy at the
scale level of 50, with the value of OA = 91.61 (K = 0.91) by selecting 21 features. CFS and SVM selected
a set of features that vary in terms of the number and type in each segmentation level. However,
various spectral features, such as R, B, DSM, Ratio-G, Ratio-B, Vegetation, the normalized difference
between the red and green channels (NDRG), the standard deviation of image objects derived from
the DSM (SD-DSM), and the normalized difference between the blue and red channels (NDBR), were
commonly selected at all levels. The selection and incorporation of DSM-derived features, along with
other selected features, remarkably contributed in the differentiation of spectrally similar classes, such
as asbestos cement roofs, dark concrete roofs, old pavements, and asphalt. In a complex landscape
without height information, an ML model might erroneously categorize bare soil as a roofing material
or the opposite in accordance with the parallel spectral and textural characteristics. Al-Najjar et al. [7]
utilized the fusion of DSM and optical images to generate generic automatic LULC classes for a complex
urban area.

As stated in Section 3, the SS RF, SVM, and DT classification models were initially examined in
the first study area at the optimal scales, identified through the F-measure along with the significant
features, and selected by CFS at each optimal scale level. The SS classification results varied from one
level to another when each SS model was applied, and the OA classification accuracies ranged from
79% to 92.2%. The comparison of SS classification maps showed that clear misclassifications were
obtained by the DT algorithm, especially on clay tiles, asphalt, grass, and trees.

Following the FS and SS classification, iterative adaptive MS classification models were developed
in the first study area and were tested in the second study area. The adopted hierarchical classification
scheme of the first study area using the RF algorithm showed outstanding performance (OA = 94.4%)
on the extraction of urban LULC classes compared to SVM (OA = 92.5%) and DT (OA = 91.6%).
However, slight confusion was observed between different classes, as shown in Figure 7. For instance,
MS-SVM showed a minor confusion between metal type1, asphalt, bare soil, and grass, as demonstrated
in Figure 7b,k. Similarly, MS-DT showed a great confusion amongst the asphalt, grass, and metal
type 1, as shown in Figure 7c. In addition, a remarkable confusion was found between some asbestos
cement roofs, dark concrete roofs, asphalt, clay tiles type 2, and bare soil classes in some areas when
MS-DT was used, as shown in Figure 7f,i,l. MS-RF showed an outstanding performance but exhibited
a minor confusion between some asphalt objects that mixed with shadows as water bodies, as depicted
in Figure 7d,j. The comparison of SS and MS approaches showed that the accuracy of some classes (i.e.,
trees, type 1 clay tiles, and asbestos classes) clearly improved with the use of the proposed approach.
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Figure 7. MS classification results for four different regions of the first study area using RF, SVM, and
DT: (a–c) first region, (d–f) second region, (g–i) third region, and (j–l) fourth region.

The applicability of the adopted scheme in the second study area indicated that MS-RF and
MS-SVM exhibited relatively similar classification results. However, the MS-SVM algorithm (OA =

94.45% and K = 0.938) was superior to RF (OA = 92.46% and K = 0.816), with a slight improvement in
the OA and K values. All MS algorithms showed some degrees of confusion between some objects
with grass and water bodies, as shown in Figure 8j– l, which may be attributed to the existence of new
water objects that vary in spectral characteristics as the second study area was classified on the basis of
the sample statistics derived from the first study area. As represented in Figure 8j, the water body was
poorly classified using MS-RF and showed confusion with the grass class. In this scenario, the present
water body in the second study area was a pond with extremely different reflectance from the training
samples obtained in the first study area and was more obvious in the MS-RF classified map compared
to other algorithms because of the RF algorithm sensitivity to training. RF is sensitive to the size of
training samples and the selection of an accurate representative of each class for classification [84].
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Moreover, utilizing MS-DT resulted in misclassification between the tree and dark concrete classes,
and between the grass and tree classes (Figure 8c). DT demonstrated a minor confusion between
the bare soil, type 2 clay tiles, dark concrete, and asphalt, as shown in Figure 8c,f,i,l. As shown in
Figure 8d,e, most of the roof types were categorized in an extremely similar manner by utilizing RF
and SVM. MS-SVM showed a minor confusion in some areas between the asphalt and dark concrete,
as shown in Figure 8h, whereas MS-RF showed a relatively better differentiation between asphalt and
dark concrete for the same area, as shown in Figure 8g.
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6. Conclusions

Accurate and up-to-date urban LULC information is crucial for urban planning, management
and environmental applications. UAVs allow the acquisition of remotely sensed data with UHSR,
as high as 1 cm, in a flexible and inexpensive manner, significantly contributing to the initiation of
a wide spectrum of applications. This study aimed to achieve an accurate and detailed urban LULC
classification in a heterogeneous landscape using GEOBIA and ML models from UHSR drone-based
images. Given the high-level details of UAV images and the limited amount of spectral information,
a MS GEOBIA approach that integrates MS image segmentation evaluation, MS FS, and hierarchical
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ML classification algorithms was used to generate detailed LULC urban maps from the fusion of
orthophotos and DSMs. Two UAV-based images were used to implement and evaluate the efficiency
of the proposed method. Three commonly used supervised ML models, namely, RF, SVM, and DT,
were compared within the MS/hierarchical segmentation and classification approach. The MS-RF
classification achieved the highest accuracy, with an OA of 94.40% and a K of 0.938, followed by
MS-SVM with an OA of 92.50% and a K of 0.917 and MS-DT with an OA of 91.60% and a K of 0.908.
The applicability of the proposed approach to the dataset of the second study area showed excellent
performance when MS-SVM and MS-RF were used. The proposed framework exhibited enormous
potential for the detailed mapping of heterogeneous urban areas from UHSR RGB and DSM images.
The results obtained from this approach can serve as vital information and input for scientists, decision
makers, and city planners.
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