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Preface to ”New Developments in Functional

and Fractional Differential Equations and in Lie

Symmetry”

Ordinary differential equations (ODEs) appear frequently in mathematical models that attempt 
to describe real-life situations in which the rate of change of the system depends only on its present 
stage. However, in many cases, the past state of the system has to be taken into consideration. 
Delay differential equations or differential equations with retarded argument or hystero-differential 
equations provide more realistic mathematical models for systems in which the rate of change 
depends not only on their present stage but also on their past history, such as population models, 
models for epidemics, economic models, nuclear reactors, collision problems in electrodynamics, and 
many others. In recent years, there has also been a great deal of interest in the study of the discrete 
analogue difference equations.

Many physical phenomena in areas such as electrochemistry, physics, biology, mechanics, signal 
processing, and viscoelastic materials can be modelled using fractional derivatives. Fractional 
calculus is a generalization of differentiation and integration to arbitrary non-integer order.

The method of group analysis of differential equations was introduced by Sophus Lie more than 
one hundred years ago. A symmetry transformation maps an equation into itself. The set of such 
transformations forms a Lie group and gives rise to Lie algebra, which enables easier manipulation of 
differential equations. The Lie symmetry method is a powerful tool to solve or reduce ODEs and 
a way to find exact solutions of partial differential equations (PDEs) by reducing the number of 
independent variables in the equations and solve engineering and applied science problems, which 
are modelled in terms of nonlinear and complicated ODEs and PDEs.

In this Special Issue, recent developments on the above-mentioned areas are presented by experts 
on the subjects. The guest editors believe that the papers published in this Special Issue will be useful 
to a wide range of researchers and will motivate further research in the topics presented as well as in 
the related fields.

Ioannis P. Stavroulakis, Hossein Jafari

Editors

ix
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Abstract: The main purpose of this paper is to present a new approach to achieving analytical
solutions of parameter containing fractional-order differential equations. Using the nonlinear
self-adjoint notion, approximate solutions, conservation laws and symmetries of these equations are
also obtained via a new formulation of an improved form of the Noether’s theorem. It is indicated
that invariant solutions, reduced equations, perturbed or unperturbed symmetries and conservation
laws can be obtained by applying a nonlinear self-adjoint notion. The method is applied to the
time fractional-order Fokker–Planck equation. We obtained new results in a highly efficient and
elegant manner.

Keywords: lie point symmetry analysis; approximate conservation laws; approximate nonlinear
self-adjointness; perturbed fractional differential equations

MSC: 22E10; 35L65; 47A05; 26A33

1. Introduction

Fractional partial differential equations are a generalization of classical ordinary calculus with
utilizations of integrals and derivatives with an arbitrary order. In the last decade, these equations were
employed in various scientific and engineering phenomena including fluid mechanics, gas dynamics,
nonlinear acoustics, biology, control theory, earthquake modeling, traffic flow models. There are
several different types of fractional-order derivative and integral operators including the Riesz,
Riemann–Liouville, Grünwald–Letnikov and Caputo fractional derivatives [1].

We are concerned with approximations using a small parameter of the Caputo and
Riemann–Liouville type fractional derivative operators. Using this approximation, a fractional-order
differential equation may be converted into an integer-order equation [2–7].

By the Lie symmetry techniques [8–10], we can obtain analytical solutions of many perturbed
differential equations. Noether’s theorem which was introduced by Emmy Noether in 1918 describing
general concepts related to symmetry groups and conservation laws is a useful tool in the solutions
of perturbed differential equations, see, e.g., [11–13]. Finding approximate symmetries of perturbed

Symmetry 2020, 12, 1282; doi:10.3390/sym12081282 www.mdpi.com/journal/symmetry1
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partial dofferential equations was first introduced by Fushchich, Shtelen and Baikov [14,15]. Because of
the importance of perturbed systems to describe the natural phenomena, they generalized the
Noether’s theorem to approximated version. This generalization helps to find approximate
conservation laws of a given system including the related topics [16,17]. For a system, approximate
conservation laws is determined by approximate formal Lagrange and nonlinear self-adjointness
for approximate equations [18]. We present conservation laws of fractional partial differential
equations [19,20] with an effective method based on nonlinear self-adjointness.

The Fokker–Planck equations play an important role in fluid mechanics, control theory,
astrophysics and quantum [21,22]. We are concerned with the perturbed fractional-order Fokker–Planck
equation

Dα
t u − 1

2
a2uxx − bu − bxux + εut = 0. (1)

In which a, b are constants and Dα
t is fractional derivative of order α.

2. Approximation of Fractional-Order Operators

Definition 1. The left and right-sided Riemann–Liouville fractional partial derivatives are defined as

(
aDα+k

x1 u
)
(x) =

1
Γ(1 − α)

(
∂

∂x1

)k+1 ∫ x1

a

u(ξ, x2, . . . , xn)

(x1 − ξ)α
dξ, (2)

(
x1 Dα+k

b u
)
(x) =

(−1)k+1

Γ(1 − α)

(
∂

∂x1

)k+1 ∫ b

x1

u(ξ, x2, . . . , xn)

(x1 − ξ)α
dξ. (3)

Respectively in which Γ(·) denotes the Gamma function and α ∈ (0, 1), k = 0, 1, . . . , m, m ∈ N.

Definition 2. The left and right-sided Caputo type fractional partial derivative are defined as

(
C
a Dα+k

x1 u
)
(x) =

1
Γ(1 − α)

∫ x1

a

1
(x1 − ξ)α

∂k+1u(ξ, x2, . . . , xn)

∂ξk+1 dξ, (4)

(
C
x1 Dα+k

b u
)
(x) =

(−1)k+1

Γ(1 − α)

∫ b

x1

1
(ξ − x1)α

∂k+1u(ξ, x2, . . . , xn)

∂ξk+1 dξ. (5)

Respectively in which Γ(·) denotes the Gamma function and α ∈ (0, 1), k = 0, 1, . . . , m, m ∈ N.

For the natural numbers, k, c, d, let u(x) := u be the function of x = (x1, x2, . . . , xn) ∈ Rn,
we consider an fractional differential equation in the form of

P
(

x, u, u(1), . . . , u(k),a Dα0
x1 ,a Dα1

x1 , . . . ,a Dαd
x1 ,x1 Dβ0

b ,x1 Dβ1
b , . . . ,x1 Dβc

b

)
= 0, (6)

0 < α0 < α1 < . . . < αd, 0 < β0 < β1 < . . . < βc.

The partial derivative of u is denoted as

u(s) ≡ {ui1...is} = { ∂su(x)
∂xi1 . . . ∂xis

}, (i1, . . . , is = 1, . . . n, s = 1, . . . , k).

If the orders of fractional differential Equation (6) are all nearly integers, then it is possible to
approximate Equation (6):

P
(

x, u, u(1), . . . , u(r),a Dα
x1 ,a Dα+1

x1 , . . . ,a Dα+d
x1 ,x1 Dα

b ,x1 Dα+1
b , . . . ,x1 Dα+d

b

)
= 0. (7)

2
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In which α ∈ (0, 1). Assuming α = ε or α = 1 − ε in Equation (7), we can turn the right and
left-sided Riemann–Liouville fractional partial derivatives into a Taylor expansion having arbitrarily
small parameter, 1 > ε > 0.

Supposing the existence of each derivative aDk+ε
x1 u, x1 Dk+ε

b u (k = 0, 1, . . .) or aDk−ε
x1 u,x1 Dk−ε

b u
(k = 1, 2, . . .) at arbitrary point x1 ∈ (a, b), we have

aDk±ε
x1 u =

∞

∑
s=0

(
k ± ε

s

)
(x1 − a)s−k∓ε

Γ(1 − k + s ∓ ε)

∂su(ξ, x2, . . . , xn)

∂ξs

=
∂ku

∂(x1)k ± ε

(
[ψ(k + 1)− ln(x1 − a)]

∂ku
∂(x1)k

−
∞

∑
s=0,s �=k

(−1)s−k

(s − k)
k!
s!
(x1 − a)s−k ∂su

∂(x1)s

)
+ o(ε), (8)

x1 Dk±ε
b u =

∂ku
∂(x1)k ± ε

(
[ψ(k + 1)− ln(b − x1)]

∂ku
∂(x1)k

−
∞

∑
s=0,s �=k

(−1)s−k

(s − k)
k!
s!
(b − x1)s−k ∂su

∂(x1)s

)
+ o(ε). (9)

Here, ψ(z) = Γ′(z)
Γ(z) is the digamma function and (k±ε

s ) = Γ(1+k±ε)
Γ(1+k−s±ε)s! is a binomial coefficient.

For the Caputo fractional derivative

C
a Dk±ε

x1 u =a Dk±ε
x1 u ∓ ε

k−1

∑
s=0

(−1)s−k(k − s − 1)!(x1 − a)s−k ∂su
∂(x1)s |x1=a + p(x, a), (10)

C
x1 Dk±ε

b u =x1 Dk±ε
b u ∓ ε

k−1

∑
s=0

(−1)s−k(k − s − 1)!(b − x1)s−k ∂su
∂(x1)s |x1=b + q(x, b). (11)

In which

p(x, a) =

{
−[1 + ε(ψ(1)− ln(x1 − a))] ∂ku

∂(x1)k |x1=a; f or C
a Dk+ε

x1 u,

0; f or C
a Dk−ε

x1 u,

q(x, b) =

{
−[1 + ε(ψ(1)− ln(b − x1))] ∂ku

∂(x1)k |x1=b; f or C
x1 Dk+ε

b u,

0; f or C
x1 Dk−ε

b u.

Proposition 1. Let F be a continuously differentiable function with respect to aDα+k
x1 u and x1 Dα+k

b u
(k = 0, 1, . . . , d). Then, for α = ε or α = 1 − ε, we can approximate Equation (7) as follows:

P(0)(x, u, u(1), . . .) + εP(1)(x, u, u(1), . . . , Dc+1
x1 u, Dc+2

x1 u, . . .) ≈ 0, (12)

in which c = max{d, r} for α = 1 − ε and c = max{d − 1, r} for α = ε.

3. Lie Group Analysis

We consider a differential operator of first order defined as

3
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X ≈ X(0) + εX(1)

≡
(

ζ i
(0)(x, u) + εζ i

(1)(x, u)
) ∂

∂xi +
(

θ(0)(x, u) + εθ(1)(x, u)
) ∂

∂u
, (13)

in which

ζ i
(0)(x, u) =

∂gi
(0)(x, u, a)

∂a
|a=0, ζ i

(1)(x, u) =
∂gi

(1)(x, u, a)

∂a
|a=0,

θ(0)(x, u) =
∂h(0)(x, u, a)

∂a
|a=0, θ(1)(x, u) =

∂h(1)(x, u, a)
∂a

|a=0.

Calculating the solutions of

X
(

P(0) + εP(1)
)
|(12) ≈ 0, (14)

exact symmetries of the perturbed Equation (7) can be achieved.

x̄i ≈ gi(x, u, a, ε) ≡ gi
(0)(x, u, a) + εgi

(1)(a, u, a),
ū ≈ h(x, u, a, ε) ≡ h(0)(x, u, a) + εh(1)(a, u, a), (15)

with

x̄i|a = 0 ≈ xi, ū|a=0 = u,

are group of Lie point transformations under the group conditions

gi
(

g1(x, u, a, ε), . . . , gn(x, u, a, ε), h(x, u, a, ε), b, ε
)
≈ gi(x, a + b, ε);

h
(

g1(x, u, a, ε), . . . , gn(x, u, a, ε), h(x, u, a, ε), b, ε
)
≈ h(x, a + b, ε),

by o(ε).

4. Classification of Group-Invariant Solution

We present the optimal system of approximate Fokker–Planck equation symmetries [23] by
employing the fact that every s-dimensional subalgebra is equivalent to a unique member of the
optimal system with an adjoint representation. If we know the infinitesimal adjoint action adg of a Lie
algebra g on itself, we can reconstruct the adjoint representation AdG of the underlying Lie group.

dX
dε

= adY|X , X(0) = X0,

with solution

X(ε) = Ad (exp(εY)) X0,

where

Ad (exp(εY)) X0 =
∞

∑
n=0

εn

n!
(adY)n(X0) = X0 − ε[Y, X0] +

ε2

2
[Y, [Y, X0]]− . . . .

It is clear that [Xi, Xj] is the usual commutator and ε is a parameter.

4
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Optimal System and Exact Solutions

Consider the perturbed fractional-order Fokker–Planck equation

0Dα
t u =

1
2

a2uxx + bu + bxux − εut, u = u(x, t), α ∈ (0, 1). (16)

In order to calculate the approximate symmetries of the perturbed fractional equation, we apply
the extension of Equation (8) to Equation (16). Setting α = 1 − ε, we can write Equation (16) as

P(0) + εP(1) = ut −
1
2

a2uxx − bu − bxux

+ ε

[
(ln t + ν)ut + u +

∞

∑
k=1

(−t)k

k(k + 1)!
u(k+1)

t

]
+ εut = 0. (17)

We get symmetries of perturbed equation Equation (17) using the Maple software.

X1 = ∂t, X2 = u∂u, X3 = e−bt∂x, X4 = ebt∂x −
2bxu

a2 ebt∂u,

X5 = e−2bt∂t − bxe−2bt∂x + bue−2bt∂u, X6 = bxe2bt∂t + bxe2bt∂x −
2b2x2u

a2 e2bt∂u,

X7 = ebt+ c1t
2 − b

a2 x2
KummerM(

4b + c1

4b
,

3
2

,
b
a2 x2)∂u,

X8 = ebt+ c1t
2 − b

a2 x2
KummerU(

4b + c1

4b
,

3
2

,
b
a2 x2)∂u.

Y1 =
ε

a2 ∂t, Y2 = εu∂u, Y3 =
−ε

a2 e−bt∂x, Y4 =
−ε

a2 ebt (∂x + 2bxu∂u) ,

Y5 =
ε

a2 e−2bt
(

∂t + bx∂x + ba2u∂u

)
, Y6 =

ε

a2 e2bt
(

∂t − bx∂x − 2b2x2u∂u

)
,

Y7 = xεetc1− bx2

a2 KummerM(
b + c1

2b
,

3
2

,
b
a2 x2)∂u,

Y8 = xεetc1− bx2

a2 KummerU(
b + c1

2b
,

3
2

,
b
a2 x2)∂u. (18)

where the Kummer functions, KummerM(μ, ν, z) and KummerU(μ, ν, z) solve the differential equation
zy′′ + (ν − z)y′ − μy = 0.

By the possession of infinitesimal generators (18), a number of adjoint representations are given as

Ad[X1, Xj] = Xj, j = 1, . . . , 5, Ad[Xi, Xi] = Xi, i = 1, . . . , 5,

Ad[X2, X1] = X1 − εbX3, Ad[X2, X4] =
2εb
a2 X2 + X4,

Ad[X3, X1] = X1 − εbX4, Ad[X3, X4] =
2εb
a2 X2 + X4,

Ad[X4, X1] = X1 + εbX4, Ad[X4, X3] = −2εb
a2 X2 + X3,

Ad[X4, X5] = −2ε2b2

a2 X2 + 2εbX3 + X5, Ad[X5, X1] = X1 − 2εbX5,

Ad[Y1, Yj] = Yj, j = 1, . . . , 4, Ad[Yi, Yi] = Yi, i = 1, . . . , 4,

Ad[Y2, Y1] = Y1 −
εb
a2 Y3, Ad[Y2, Y4] = −2εb

a4 Y2 + Y4,

Ad[Y3, Y1] = Y1 −
εb
a2 Y3, Ad[Y3, Y4] = −2εb

a4 Y3 + Y4,

Ad[Y4, Y1] = Y1 +
εb
a2 Y4, Ad[Y4, Y3] =

2εb
a4 Y2 + Y3, . . .

5



Symmetry 2020, 12, 1282

Suppose that V = ∑8
i=1 Xi and Ṽ = ∑8

i=1 Yi are the most general element. Eventually, we will
obtain one-dimensional optimal system of Equation (18). The following symmetries are just a few
members of optimal system of the perturbed Fokker–Planck equation

V1 = X1, V2 = X2, V3 = X3, V4 = X4 V5 = X2 + X3,
V6 = X5, V7 = X6, V8 = X7, V9 = X8 V10 = X0,
V11 = X3 + X5, V12 = X2 + X5, V13 = X2 + X4, V14 = X1 + X4,
V15 = X2 + X3 + X4, V16 = X2 + X3 + X5, V17 = X1 + X2 + X4,
V18 = X1 + X3 + X4, V19 = X1 + X4 + X5, V20 = X2 + X3 + X4 + X5, . . .
Ṽ1 = Y1, Ṽ2 = Y2, Ṽ3 = Y3, Ṽ4 = Y4 Ṽ5 = Y2 + Y4,
Ṽ6 = Y1 + Y3 + Y4, Ṽ7 = Y1 + Y2 + Y3, . . .

Case 1: For the symmetry of V1 = X1, corresponding characteristic equation is given as:

dt
1

=
dx
0

=
du
0

, (19)

integration of Equation (19) yields the following similarity variable and function

u = g(x), (20)

thus we have

ut = 0, ux = g′(x), uxx = g′′(x). (21)

Substituting Equations (20) and (21) into Equation (17), we can get the reduced equation:

−1
2

a2g′′ − bg − bxg′ + ε[
g
t
] = 0,

where solution of unperturbed part of reduced equation will be in the form

u = e(−
bx2

a2 )er f

(
−
√

bc1x
a

+ c2

)
.

Case 2: For V3 = X3, using the corresponding characteristic equation and change of variables, we write

dt
0

=
dx

e−bt =
du
0

, u = g(t),

ut = g′(t), ux = uxx = 0.

We reduce the perturbed equation Equation (17) to a first order equation:

g′(t)− bg(t) + ε

[
(ln t + ν)g′(t) + g(t) +

∞

∑
k=1

(−t)k

k(k + 1)!
∂k+1g
∂tk+1

]
= 0.

u = c1ebt is a solution of unperturbed equation g′(t)− bg(t) = 0.

Case 3: For V5 = X2 + X3, the reduced equation is:

g′ − 1
2

a2e2btg − bg − ε

[
(ln t + ν)g′ + g(1 + bxebt) +

∞

∑
k=1

(−t)k

k(k + 1)!
∂k+1(gexebt

)

∂tk+1

]
= 0.

where u = exp( a2e2bt+4b2t
4b ) is a solution of unperturbed equation.

6
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Case 4: For component of one-dimensional optimal system V4, V6 and V7, solutions of unperturbed
part of Equation (17) are given in Table 1.

Table 1. Solutions for unperturbed part of equation Equation (17).

Vi u

V4 = X4 u = c1e
−b
a2 x2

V6 = X5 u = ebt(c1 + c2xebt)

V7 = X6 u = e
−b
a2 x2

(c1 + c2xe−bt)

5. Approximate Conservation Laws

We consider approximate nonlinear self-adjointness for a system of perturbed PDEs,
see, e.g., [24,25] for details. In the rest of this section, we present a formal Lagrange of perturbed
Equation (12) and obtain conservation laws.

5.1. Basic Definitions for Constructing Conservation Laws

Let L be the formal Lagrange of Equation (12):

L ≈ L(0) + εL(1) ≡ vP(0) + εvP(1), (22)

hence, the adjoint equations of Equation (12) are defined as

δL
δu

= P∗
(0)(x, u, v, u(1), v(1), . . .)

+εP∗
(1)(x, u, v, . . . , Dc+1

x1 u, Dc+1
x1 v, Dc+2

x1 u, Dc+3
x1 v, . . .) ≈ 0, (23)

where vi represents all ith-order derivatives of variable v with respect to x, δ
δu is the variational

derivative written in terms of the total derivative operator Di:

δ

δu
=

∂

∂u
+

∞

∑
s=1

(−1)sDi1 . . . Dis
∂

∂ui1...is
.

Di indicates the operator of total differentiation with respect to xi:

Di =
∂

∂xi + ui
∂

∂u
+ vi

∂

∂v
+

∞

∑
s=1

[
uii1...is

∂

∂ui1...is
+ vii1...is

∂

∂vi1...is

]
.

If we consider

v ≈ ϕ(0)(x, u) + εϕ(1)(x, u) �= 0, (24)

we have
L ≈ ϕ(0)P(0) + ε

(
ϕ(1)P(0) + ϕ(0)P(1)

)
,

and if it satisfies the nonlinear self adjoint condition:

P∗
0 |v≈ϕ(0)+εϕ(1) + εP∗

(1)|v≈ϕ(0) ≈ γ(0)P(0) + ε
(

γ(1)P(0) + γ(0)P(1)
)

. (25)

In which γ(0) and γ(1) are to be determined coefficients.
Any approximate symmetry Equation (13) of Equation (12) leads to a conservation law

Di(Ci) = 0, Ci ≈ Ci
(0) + εCi

(1),

7
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where the components Ci are obtained by

Ci
(0) = W(0)

(
∂L(0)

∂ui
+

c−1

∑
s=1

(−1)sDi1 . . . Dis
∂L(0)

∂uii1...is

)

+
c−1

∑
r=1

Dk1 . . . Dkr

(
W(0)

) [ ∂L(0)

∂uik1...kr

+
c−r−1

∑
s=1

(−1)sDi1 . . . Dis
∂L(0)

∂uik1...kri1...is

]
, (26)

Ci
(1) = W(1)

(
∂L(0)

∂ui
+

c−1

∑
s=1

(−1)sDi1 . . . Dis
∂L(0)

∂uii1...is

)

+
c−1

∑
r=1

Dk1 . . . Dkr

(
W(1)

) [ ∂L(0)

∂uik1...kr

+
c−r−1

∑
s=1

(−1)sDi1 . . . Dis
∂L(0)

∂uik1...kri1...is

]

+ W(0)

(
∂L(1)

∂ui
+

∞

∑
s=1

(−1)sDi1 . . . Dis
∂L(1)

∂uii1...is

)

+
∞

∑
r=1

Dk1 . . . Dkr

(
W(0)

) [ ∂L(1)

∂uik1...kr

+
∞

∑
s=1

(−1)sDi1 . . . Dis
∂L(1)

∂uik1...kri1...is

]
. (27)

In which W(0) = θ(0) − ζ i
(0)ui , W(1) = θ(1) − ζ i

(1)ui.

5.2. Approximate Conservation Laws for pfPE

By choosing approximate formal Lagrange

L v(x, t, u)
(

P(0) + εP(1)
)
=≈ v(x, t, u)

[
ut −

1
2

a2uxx − bu − bxux

+ε

(
(ln t + ν)ut +

u
t
+

∞

∑
k=1

(−t)k

k(k + 1)!
u(k+1)

t

)]
, (28)

where

v = ϕ0(x, t, u) + εϕ1(x, t, u), (29)

we obtain adjoint equation using Equation (23) as:

P∗ ≈ −vt + bxvx −
1
2

a2vxx − ε

[
vt(ln t + ν) +

∞

∑
k=1

(−t)k

k(k + 1)!
D(k+1)

t (vtk)

]
. (30)

It is easy to achieve an approximate formal Lagrange by placing Equation (29) into Equation (30),
and solving characteristic equation of the Equation (25) with the Maple software, we have

v = (c1xebt + c2) + εc3xec1t
(

c4KummerM(
b − c1

2b
,

3
2

,
bx2

a2 )

+ c5KummerU(
b − c1

2b
,

3
2

,
bx2

a2 )
)

, (31)

and

L ≈ L(0) + εL(1), (32)

8
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where

L(0) = (c1xebt + c2)(ut −
1
2

a2uxx − bu − bxux),

L(1) = ε

[
c3xec1t

(
c4KummerM(

b − c1

2b
,

3
2

,
bx2

a2 )

+ c5KummerU(
b − c1

2b
,

3
2

,
bx2

a2 )
)
(ut −

1
2

a2uxx − bu − bxux)

+ (c1xebt + c2)

(
(ln t + ν)ut +

u
t
+

∞

∑
k=1

(−t)k

k(k + 1)!
u(k+1)

t

)]
. (33)

Here, c1, c2, c3, c4, c5, a and b are arbitrary constants. Applying the formula Equations (26) and (27),
we perform all computations to approximate conservation laws. Finally, we obtain

Cx
(0) = W(0)

(
−bxϕ(0) +

1
2

a2Dx

(
ϕ(0)

))
− 1

2
a2 ϕ(0)Dx(W(0)),

Ct
(0) = W(0)ϕ(0),

Cx
(1) = W(1)

(
−bxϕ(0) +

1
2

a2Dx

(
ϕ(0)

))
− 1

2
a2 ϕ(0)Dx(W(1))

+ W(0)

(
−bxϕ(1) +

1
2

a2Dx

(
ϕ(1)

))
− 1

2
a2 ϕ(1)Dx(W(0)),

Ct
(1) = W(1)ϕ(0) + W(0)

[
c3xec1t ϕ(1) + ϕ(0)

(
ln t + ν +

∞

∑
k=1

(−t)k

k(k + 1)!

)]

+ ϕ(0)

∞

∑
s=1

(−1)(s+1)Dst(W(0))

[
∞

∑
k=s

D(k−s)t
tk

k(k + 1)!

]
.

where

Cx = Cx
(0) + εCx

(1), Ct = Ct
(0) + εCt

(1).

1. For X1 = ∂t, we have W(0) = −ut, W(1) = 0, the components of approximate conservation
laws are:

Cx = ut

(
bxϕ(0) −

1
2

a2c1ebt
)
+

1
2

a2uxt ϕ(0)

+ ε

[
ut

(
bxϕ(1) −

1
2

a2Dx ϕ(1)

)
+

1
2

a2 ϕ(1)uxt

]
,

Ct = − ut ϕ(0) + ε

[
− ut ϕ(1) + (ln t + ν)ϕ(0)

∞

∑
k=1

Dkt
(−t)k

k(k + 1)!

− ϕ(0)

∞

∑
s=1

Dst(ut)

(
∞

∑
k=s

D(k−s)t
tk

k(k + 1)!

)]
.

2. For X2 = u∂u , W(0) = u and W(1) = 0, we have:

Cx = + u
(
−bxϕ(0) +

1
2

c1a2ebt
)
− 1

2
a2ux ϕ(0)

+ ε

[
u
(
−bxϕ(1) +

1
2

a2Dx ϕ(1)

)
− 1

2
a2ux ϕ(1)

]
,

9
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Ct = + uϕ(0) + ε

[
u

(
ϕ(1) + ϕ(0)(ln t + ν +

∞

∑
k=1

Dkt
(−t)k

k(k + 1)!
)

)

+ ϕ(0)

∞

∑
s=1

(−1)s+1Dst(u)

(
∞

∑
k=s

D(k−s)t
tk

k(k + 1)!

)]
.

3. For X3 = e−bt∂x, W(0) = −e−btux and W(1) = 0, we have:

Cx = + e−btux(bxϕ(0) −
1
2

c1a2ebt) +
1
2

a2e−btuxx ϕ(0)

+ e−btux(bxϕ(1) −
1
2

a2Dx ϕ(1)) +
1
2

a2e−btuxx ϕ(1),

Ct = − uxe−bt ϕ(0) − ε

[
uxe−bt

(
ϕ(1) + ϕ(0)(ln t + ν +

∞

∑
k=1

(−t)k

k(k + 1)!
)

)

+ ϕ(0)

∞

∑
s=1

(−1)s+1Dst(uxe−bt)

(
∞

∑
k=s

D(k−s)t
tk

k(k + 1)!

)]
.

4. For X4 = ebt∂x − 2b
a2 xuebt∂u , W(0) = − 2b

a2 xuebt − ebtux and W(1) = 0, therefore:

Cx = ebt

[
(

2b
a2 xu + ux)(bxϕ(0) −

1
2

c1a2ebt) + (
2b
a2 u + uxx)(

1
2

a2 ϕ(0))

+ ε(
2b
a2 xu + ux)(bxϕ(1) −

1
2

a2Dx ϕ(1)) + (
2b
a2 u + uxx)(

1
2

a2 ϕ(1))

]
,

Ct = − ebt

[
(

2b
a2 xu + ux)ϕ(0)

+ ε

(
(

2b
a2 xu + ux)

(
ϕ(1) + ϕ(0)(ln t + ν +

∞

∑
k=1

Dkt
(−t)k

k(k + 1)!
)

)

+ ϕ(0)

∞

∑
s=1

(−1)s+1Dst(
2b
a2 xuebt − ebtux)

(
∞

∑
k=s

D(k−s)t
tk

k(k + 1)!

))]
.

5. For X5 = e−2bt(∂t − bx∂x + bu∂u) , W(0) = e−2bt(bu − bxux − ut) and W(1) = 0, so we have:

Cx = −e−2bt

[
(bu − bxux − ut)(bxϕ(0) +

1
2

c1a2ebt)− 1
2

a2 ϕ(0)(bxuxx + uxt)

+ ε

(
(bu − bxux − ut)(bxϕ(1) −

1
2

a2Dx ϕ(1))−
1
2

a2 ϕ(1)(bxuxx+uxt)

)]
,

Ct = e−2bt ϕ(0)(bu − bxux − ut)

+ ε

[
e−2bt(bu − bxux − ut)

(
ϕ(1) + ϕ(0)(ln t + ν)(

∞

∑
k=1

Dkt
(−t)k

k(k + 1)!
)
)

+ ϕ(0)

∞

∑
s=1

(−1)s+1Dst(e−2bt(bu − bxux − ut))

(
∞

∑
k=s

D(k−s)t
tk

k(k + 1)!

)]
.

10
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6. For X6 = e2bt(∂t + bx∂x − 2b2

a2 x2u∂u) , W(0) = −e2bt( 2b2

a2 x2u + ut + bxux) and W(1) = 0, we have:

Cx = e2bt

[
(

2b2

a2 x2u + ut + bxux)(
1
2

c1a2ebt − bxϕ(0))

+
1
2

a2 ϕ(0)

(4b2

a2 xu +
2b2x2

a2 ux + bux + bxuxx + uxt

)
+ ε

(
(

2b2

a2 x2u + ut + bxux)(bxϕ(1) −
1
2

a2Dx ϕ(1))

+
1
2

a2 ϕ(1)

(4b2

a2 xu +
2b2x2

a2 ux + bux + bxuxx + uxt

))]
,

Ct = −e2bt(
2b2

a2 x2u + ut + bxux)ϕ(0)

− ε

[
e2bt(

2b2

a2 x2u + ut + bxux)
(

ϕ(1) + ϕ(0)(ln t + ν)(
∞

∑
k=1

Dkt
(−t)k

k(k + 1)!
)
)

+ ϕ(0)

∞

∑
s=1

(−1)s+1Dst(e2bt(
2b2

a2 x2u + ut + bxux))

(
∞

∑
k=s

D(k−s)t
tk

k(k + 1)!

)]
.

7. For Y1 = 1
a2 ε∂t , W(0) = 0 and W(1) =

−1
a2 εut, we have:

Cx = ε

[
1
a2 ut(bxϕ(0) −

1
2

c1a2ebt) +
1
2

uxt ϕ(0)

]
,

Ct = − 1
a2 εut ϕ(0).

8. For Y2 = εu∂u , W(0) = 0 and W(1) = εu, we have:

C(x) = ε

[
u(

1
2

c1a2ebt − bxϕ(0))−
1
2

a2ux ϕ(0)

]
,

C(t) = εuϕ(0).

9. For Y3 = −1
a2 εe−bt∂x , W(0) = 0 and W(1) =

1
a2 εe−btux, we have:

Cx = −ε
[ 1

a2 e−btux

(
bxϕ(0) −

1
2

c1a2ebt
)
+

1
2

e−btuxx ϕ(0)

]
,

Ct =
1
a2 εe−btux ϕ(0).

10. For Y4 = −1
a2 εebt(∂x + 2bxu∂u) , W(0) = 0 and W(1) =

1
a2 εebt(ux − 2bxu), we have:

Cx =
1
a2 εebt

[
(ux − 2bxu)

(
1
2

c1a2ebt − bxϕ(0)

)

+
a2

2
ϕ(0)(2bu + 2bxux − uxx)

]
,

Ct =
1
a2 εebt(ux − 2bxu)ϕ(0).

11
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11. For Y5 = 1
a2 εe−2bt(∂t + bx∂x + bu∂u) , W(0) = 0 and

W(1) =
1
a2 εe−2bt(bu − ut − bxux), we have:

Cx =
1
a2 εe−2bt

[
(bu − ut − bxux)

(
1
2

c1a2ebt − bxϕ(0)

)
+

1
2

a2 ϕ(0)(uxt + bxuxx)
]
,

Ct =
1
a2 εe−2bt(bu − ut − bxux)ϕ(0).

12. For Y6 = 1
a2 εe2bt(∂t − bx∂x − 2b2x2u∂u) , W(0) = 0 and

W(1) =
1
a2 εe2bt(bxux − ut − 2b2x2u), we have:

Cx =
1
a2 εe2bt(bxux − ut − 2b2x2u)

(
1
2

c1a2ebt − bxϕ(0)

)
+

1
a2 ϕ(0)(4b2xu + 2b2x2ux + uxt − bux − bxuxx),

Ct =
1
a2 εe2bt(bxux − ut − 2b2x2u)ϕ(0).

6. Conclusions and Outlook

We presented a new approach for calculating new exact analytical solutions of parameter
containing fractional-order equations. Using the nonlinear self-adjoint notion, approximate solutions,
conservation laws and symmetries for these equations are obtained. Computational results indicate
the strength of new method. We will apply the method to fractional-stochastic differential equations in
a future work.
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Abstract: New soliton solutions of fractional Jaulent-Miodek (JM) system are presented via symmetry
analysis and fractional logistic function methods. Fractional Lie symmetry analysis is unified with
symmetry analysis method. Conservation laws of the system are used to obtain new conserved
vectors. Numerical simulations of the JM equations and efficiency of the methods are presented.
These solutions might be imperative and significant for the explanation of some practical physical
phenomena. The results show that present methods are powerful, competitive, reliable, and easy to
implement for the nonlinear fractional differential equations.

Keywords: fractional Jaulent-Miodek (JM) system; fractional logistic function method; symmetry analysis

1. Introduction

Integral and derivative operators of any arbitrary order are the basis of fractional calculus, which
has been of great interest for researchers due to its dynamic behavior and exact description of nonlinear
complex phenomena in numerous fields in science and engineering [1–6]. Analytical methods have
played an essential role for Fractional partial differential equations (FPDEs) [1–4]. Lie symmetry
analysis also gives a powerful and effectual implement for generating invariant solutions. The theory
of symmetry analysis is based on the invariance of variables [7–14]. Hence, the study of symmetry
analysis has been made a huge interest for researchers during past decades.

Time-fractional coupled Jaulent-Miodek (JM) type equations [15–17] is considered as:

Dαt u + uxxx +
3
2

vvxxx +
9
2

vxvxx − 6uux − 6uvvx − 3
2

uxv2 = 0 (1)

and
Dαt v + vxxx − 6uxv− 6uvx − 15

2
vxv2 = 0 (2)

where 0 < α ≤ 1 denotes the fractional-order derivative.

Symmetry 2020, 12, 1001; doi:10.3390/sym12061001 www.mdpi.com/journal/symmetry15
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The coupled JM equations were first introduced by Jaulent and Miodek [18] by using inverse
scattering transform with the help of energy dependent Schrödinger potentials. The Equations (1)
and (2) also have a relation with Euler-Darboux equation, which has been presented by Matsuno [19].
The Darboux transformation of the JM spectral problem has been studied by Xu [20]. By using hereditary
symmetries, Ruan and Lou [21] have presented the symmetries of Jaulent-Miodek hierarchy. The sech
and tanh–coth methods have been used by Wazwaz [22] and some more methods like homotopy
analysis [23], exp-function [24], extended tanh [25], hyperbolic tangent [26] were presented in the
literature for approximate and exact solutions of classical coupled Jaulent-Miodek equation.

A large interest has been focused for the improvement of past methods dealing with solutions
of FPDEs. The fractional coupled JM equations play an important role in several areas of science
such as fluid mechanics, plasma physics, condense matter physics, optics and associates with energy
dependent Schrödinger potential [27–32]. As the practical application of fractional Jaulent–Miodek
(JM) system, the Wang and Xia has studied its super-Hamiltonian structure using fractional supertrace
identity [33].

Some of these methods for solving fractional coupled JM equation are: method of homotopy
perturbation natural transform [34], Sumudu transform [15], residual power series method (RSPM) and
q-homotopy analysis method (q-HAM) [17], Hermite wavelet [35], (G’/G)-expansion and hyperbolic
tangent [16].

This article deals with fractional coupled JM system by utilizing an original fractional logistic
function method [36], which has been presented in Section 3. Moreover, in the corresponding section, the
numerical simulation has been done for analyzing the physical properties of the solutions. In Section 4,
the symmetry analysis with conservation laws [37,38] for time-fractional coupled JM, equations have
been presented. In Section 4, the fractional Lie group analysis method for symmetry properties [39,40]
of fractional JM system are applied more precisely. Furthermore, conservation laws [37,41] also have
been presented in order to get a new conserved vector by utilizing theorems of conservation law.

2. Theory of Fractional Operators

2.1. Riemann–Liouville (RL) Fractional Derivative

The fractional order Riemann–Liouville (RL) derivative of order α(>0) is defined as [1,3]

Dαt f (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

Γ(m−α)
dm

dtm

t∫
0
(t− τ)(m−α−1) f (τ)dτ i f m − 1 < α < m, m ∈ N,

dm f (t)
dtm i f α = m, m ∈ N,

(3)

Riemann–Liouville (RL) derivative of order α (>0) has subsequent property [1–3] is given as:

Dαtβ =
Γ(β+ 1) tβ−α

Γ(β− α+ 1)
, β > α− 1. (4)

2.2. Local Fractional-Order Derivative

Assume h(
↼
x ) ∈ Cα(m, n), where Cα(m, n) denotes α times differentiable with each derivative

continuous in (m, n). Then, the derivative with fractional order α at
↼
x =

↼
x 0 is defined as [42,43]

h(α)(
↼
x 0) =

dαh(
↼
x )

d
↼
x
α

∣∣∣∣∣∣∣↼
x=
↼
x 0

= lim
↼
x→↼x 0

Δα(h(
↼
x ) − h(

↼
x 0))

(
↼
x −↼x 0)

α (5)

where Δα(h(
↼
x ) − h(

↼
x 0)) � Γ(1 + α)(h(

↼
x ) − h(

↼
x 0)) and 0 < α ≤ 1.

And has following property [42,43]:
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If z(
↼
x ) = (h ◦ u)(

↼
x ), where u(

↼
x ) = f (

↼
x ), then

dαz(
↼
x )

d
↼
x
α = h(1)

(
f (
↼
x )
)

f (α)(
↼
x ) (6)

when h(1)
(

f (
↼
x )
)

and f (α)(
↼
x ) exist.

3. The Brief Descriptions of the Fractional Logistic Function Method and Implementations

3.1. Brief Description of the Proposed Method

The section emphasizes describing a comparatively new analytic method for getting solutions for
the FPDEs. The procedure for the proposed method has been described in the following manner:

Step 1:

The FPDE is given as:

Q(u, Dαt u, . . . , ux, uxx, uxxx, . . .) = 0, 0 < α ≤ 1, (7)

where u(x, t) is a function.

Step 2:

Solution of Equation (7) is presented as

u(x, t) = U(ξ), ξ = kx− γ tα

Γ(α+ 1)
, (8)

where γ and k are parameters.
Then, (6) [44,45] can reduce the fractional derivative into the following form

Dαt u = σtUξDαt ξ

Then, the Equation (7) can be reduced by using Equation (7), by the following form:

Q(U,γU′, . . . , kU′, k2U′′ , k3U′′′ , . . .) = 0 (9)

Step 3:

Here, the exact solution of Equation (7) is mentioned in terms of the polynomial in ϕ(ξ) as follows:

U(ξ) = a0 +
n∑

i=1

aiϕ
i(ξ), (10)

where ϕ(ξ) is considered as the sigmoid function or logistic function [46,47], is defined as follows:
ϕ(ξ) = eξ

1+eξ and satisfies the following Riccati equation:

φξ = φ−φ2, (11)

and the value of n can be evaluated by using the homogenous balancing principle [48,49]. Moreover,
the derivatives of different order for the function U(ξ) can be determined by using Equation (11).
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Step 4:

Now, the coefficients ai are determined by putting Equation (11) into Equation (9) and solving the
acquired algebraic equations obtained by equating coefficients of ϕi to 0.

Step 5:

Unknowns obtained in step 4 are written into Equation (10) to get the solutions for Equation (7).

3.2. Soliton Solutions for JM System

The logistic function method is employed for solving Equation (1). By using Equation (8) in
Equation (1), we have:

−γU′(ξ) + k3U′′′ (ξ)+ 3k3

2 V(ξ)V′′′ (ξ) + 9k3

2 V′(ξ)V′′ (ξ)
−6kU(ξ)U′(ξ) − 6kU(ξ)V(ξ)V′(ξ) − 3

2 kU′(ξ)V2(ξ) = 0,
(12)

and
− γV′(ξ) + k3V′′′ (ξ) − 6kU′(ξ)V(ξ) − 6kU(ξ)V′(ξ) − 15k

2
V(ξ)V2(ξ) = 0, (13)

Similar to Equation (10), let us consider the solutions of the governing system are presented by
following mathematical equations as

U(ξ) = a0 +
n∑

i=1

aiϕ
i and V(ξ) = b0 +

m∑
i=1

biϕ
i (14)

By means of homogenous balance principle [48,49], we get n = 2 and m = 1. Thus, the
solutions are:

U(ξ) = a0 + a1ϕ+ a2ϕ
2 and V(ξ) = b0 + b1ϕ, (15)

where ϕ follows satisfies Equation (11).
Putting Equation (15) with Equation (11) into Equations (12) and (13), equating the obtained

coefficient of ϕi to 0, we get:

Set 1:

γ =
k3

4
, a0 = − k2

32
, a1 = −3k2

8
, a2 =

3k2

8
, b0 =

ik

2
√

2
, b1 = − ik√

2
.

For set 1, the following hyperbolic solutions can be obtained as

U11 = − k2(cosh(ξ)+7)
32(1+cosh(ξ))

V12 = − iktanh
(
ξ
2

)
2
√

2

(16)

where ξ = kx− k3tα
4Γ(α+1) .

Set 2:

γ =
k3

4
, a0 = − k2

32
, a1 = −3k2

8
, a2 =

3k2

8
, b0 = − ik√

2
, b1 =

ik√
2

For set 2, the following hyperbolic solutions can be obtained as

U21 = − k2(cosh(ξ)+7)
32(1+cosh(ξ))

V22 = − ik(1+3 cosh(ξ)+3sinh(ξ))
2
√

2(1+cosh(ξ)+sinh(ξ))

(17)

where ξ = kx− k3tα
4Γ(α+1) .
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Set 3:

γ =
11k3

5
, a0 =

k2

20
, a1 = −2k2, a2 = 2k2, b0 = i

√
5k, b1 = −2i

√
5k

For set 3, the following hyperbolic solutions can be obtained as

U31 =
k2(cosh(ξ)−19)
20(1+cosh(ξ))

V32 = −i
√

5ktanh
(
ξ
2

) (18)

where ξ = kx− 11k3tα
5Γ(α+1) .

Set 4:

γ =
11k3

5
, a0 =

k2

20
, a1 = −2k2, a2 = 2k2, b0 = −i

√
5k, b1 = 2i

√
5k

For set 4, the following hyperbolic solutions can be obtained as

U41 =
k2(cosh(ξ)−19)
20(1+cosh(ξ))

V42 = i
√

5ktanh
(
ξ
2

) (19)

where ξ = kx− 11k3tα
5Γ(α+1) .

3.3. Numerical Simulations

This part emphasizes on numerical simulation for the Equations (1) and (2) by the fractional
logistic equation method. Furthermore, the Equations (16) and (18) have been used here for generating
solutions graphs.

The Figures 1–4 illustrates obtained solutions of governing equations.

Case 1: For α = 0.1 (Fractional order)

 
 

(a) (b) 

Figure 1. (a) A three dimensional (3-D) solitary wave figure of u(x, t) in Equation (16) with U11,
when k = 0.3 and α = 0.1, (b) 2-D figure of u(x, t), for t = 0.1.
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(a) (b) 

Figure 2. (a) A 3-D solitary wave of
∣∣∣v(x, t)

∣∣∣ in Equation (16) with V12, when k = 0.3 and α = 0.1, (b) 2-D
figure of

∣∣∣v(x, t)
∣∣∣ for t = 0.1.

Case 2: For α = 0.1 (Fractional order)

 
 

(a) (b) 

Figure 3. (a) A 3-D solitary wave figure of u(x, t) in Equation (18) as U31, for k = 0.3 and α = 0.1,
(b) 2-D figure of u(x, t) for t = 0.1.

 
 

(a) (b) 

Figure 4. (a) A 3-D solitary wave figure of
∣∣∣v(x, t)

∣∣∣ in Equation (16) with V32, for k = 0.3 and α = 0.1,
(b) 2-D figure of

∣∣∣v(x, t)
∣∣∣ for t = 0.1.

4. Lie Symmetry Analysis Method

4.1. Theory of Symmetry Analysis Method

In this part, the general method for generating the symmetries of FPDEs is discussed by means of
fractional Lie symmetry analysis.
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Consider
Dαt u = F(t, x, u, ux, uxx, uxxx, v, vx, vxx, vxxx, . . .) (20)

Dαt v = G(t, x, u, ux, uxx, uxxx, v, vx, vxx, vxxx, . . .) (21)

Let us now consider that the Equations (20) and (21) are invariant in one-parameter Lie group
transformation: ↔

x → x + εξ(t, x, u, v) + O(ε2),
↔
t → t + ετ(t, x, u, v) + O(ε2),
↔
u → u + εη(t, x, u, v) + O(ε2),
↔
v → v + εϑ(t, x, u, v) + O(ε2),
Dαt
↔
u → Dαt u + εη0

α(t, x, u, v) + O(ε2),
Dαt
↔
v → Dαt v + εϑ0

α(t, x, u, v) + O(ε2),
∂
↔
u
∂
↔
x
→ ∂u
∂x + εηx(t, x, u, v) + O(ε2),

∂
↔
v
∂
↔
x
→ ∂v
∂x + εϑx(t, x, u, v) + O(ε2),

∂2↔u
∂
↔
x

2 → ∂3u
∂x3 + εηxx(t, x, u, v) + O(ε2),

∂2↔v
∂
↔
x

2 → ∂2v
∂x2 + εϑ

xx(t, x, u, v) + O(ε2),

∂3↔u
∂
↔
x

3 → ∂3u
∂x3 + εηxxx(t, x, u, v) + O(ε2),

∂3↔v
∂
↔
x

3 → ∂3v
∂x3 + εϑ

xxx(t, x, u, v) + O(ε2), .

. . .

(22)

where ε << 1 is considered as a group parameter, τ, η, ϑ, ξ are infinitesimals. Total expression for ηx,
ηxx, ηxxx, ϑx, ϑxx and ϑxxx are:

ηx = Dx(η) − uxDx(ξ) − utDx(τ),
ηxx = Dx(ηx) − uxxDx(ξ) − uxtDx(τ),
ηxxx = Dx(ηxx) − uxxxDx(ξ) − uxxtDx(τ),
ϑx = Dx(ϑ) − vx Dx(ξ) − vt Dx(τ),
ϑxx = Dx(ϑx) − vxxDx(ξ) − vxtDx(τ),
ϑxxx = Dx(ϑxx) − vxxxDx(ξ) − vxxtDx(τ)

(23)

where Dxj = ∂
∂xj + uj

∂
∂u + vj

∂
∂v + ujk

∂
∂uk

+ vjk
∂
∂uk

+ . . ., j, k = 1, 2, 3, . . . and uj =
∂u
∂xj ,vj =

∂v
∂xj ,

ujk =
∂2u
∂xj∂xk , vjk =

∂2v
∂xj∂xk and so on.

V = ξ(t, x, u, v)
∂
∂x

+ τ(t, x, u, v)
∂
∂t

+ η(t, x, u, v)
∂
∂u

+ ϑ(t, x, u, v)
∂
∂v

(24)

V satisfies:

Pr(n)V(Δ1)
∣∣∣
Δ1=0 = 0 and Pr (n)V(Δ2)

∣∣∣
Δ2=0 = 0, n = 1, 2, . . . , (25)

here, Pr denotes the prolongation for the given vector and

Δ1 := Dαt u− F(t, x, u, ux, uxx, uxxx, v, vx, vxx, vxxx, . . .)

and
Δ2 := Dαt v−G(t, x, u, ux, uxx, uxxx, v, vx, vxx, vxxx, . . .)
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Now, by considering the usual structure of RL fractional operator, the transformations of system
(22) has been formed. We have

τ(x, t, u, v)
∣∣∣
t=0 = 0 (26)

By RL derivative, the α-th infinitesimal [50–52] with Equation (26) can be presented as follows:

η0
α = Dαt (η) + ξD

α
t (ux) −Dαt (ξux) + Dαt (Dt(τ)u) −Dα+1

t (τu) + τDα+1
t (u)

and
ϑ0
α = Dαt (ϑ) + ξD

α
t (vx) −Dαt (ξvx) + Dαt (Dt(τ)v) −Dα+1

t (τv) + τDα+1
t (v) (27)

where the Dαt denotes the total fractional differential operator.
We have:

Dαt ( f (t)g(t)) =
∞∑

m=0

(
α
m

)
Dα−m

t f (t)Dm
t g(t), α > 0 (28)

where (
α
m

)
=

(−1)m−1αΓ(m− α)
Γ(1− α)Γ(m + 1)

We also have

η0
α = Dαt (η) − αDαt (τ)

∂αu
∂tα
−
∞∑

n=1

(
α
n

)
Dn

t (ξ)D
α−n
t ux −

∞∑
n=1

(
α

n + 1

)
Dn+1

t (τ)Dα−n
t (u)

and

ϑ0
α = Dαt (ϑ) − αDαt (τ)

∂αv
∂tα
−
∞∑

n=1

(
α
n

)
Dn

t (ξ)D
α−n
t vx −

∞∑
n=1

(
α

n + 1

)
Dn+1

t (τ)Dα−n
t (v) (29)

We have:
dmg(h(t))

dtm =
m∑

k=0

k∑
r=0

(
k
r

)
1
k!
[−h(t)]r

dm

dtm [h(t)k−r]
dkg(h)

dhk
(30)

Now by using Equations (28) and (30) with f (t) = 1, we have

Dαt (η) =
∂αη

∂tα
+ ηu

∂αu
∂tα
− u
∂αηu

∂tα
+
∞∑

n=1

(
α
n

)
∂nηu

∂tn Dα−n
t (u) + μ

and

Dαt (ϑ) =
∂αϑ
∂tα

+ ϑv
∂αv
∂tα
− v
∂αηv

∂tα
+
∞∑

n=1

(
α
n

)
∂nϑv

∂tn Dα−n
t (v) + λ (31)

where

μ =
∞∑

n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
α
n

)(
n
m

)(
k
r

)
1
k!

tn−α
Γ(n + 1− α) (−u)r ∂

m

∂tm (uk−r)
∂n−m+kη

∂tn−m∂uk

and

λ =
∞∑

n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
α
n

)(
n
m

)(
k
r

)
1
k!

tn−α
Γ(n + 1− α) (−v)r ∂

m

∂tm (vk−r)
∂n−m+kϑ

∂tn−m∂vk

Thus, Equation (29) yields

η0
α =

∂αη
∂tα + (ηu − αDt(τ)) ∂

αu
∂tα − u∂

αηu
∂tα + μ

+
∞∑

n=1

[(
α
n

)
∂αηu
∂tα −

(
α

n + 1

)
Dn+1

t (τ)

]
Dα−n

t (u) − ∞∑
n=1

(
α
n

)
Dn

t (ξ)D
α−n
t ux,
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and
ϑ0
α =

∂αϑ
∂tα + (ϑv − αDt(τ)) ∂

αv
∂tα − u∂

αϑv
∂tα + λ

+
∞∑

n=1

[(
α
n

)
∂αϑv
∂tα −

(
α

n + 1

)
Dn+1

t (τ)

]
Dα−n

t (v) − ∞∑
n=1

(
α
n

)
Dn

t (ξ)D
α−n
t vx

(32)

4.2. Lie Symmetry

By third prolongation in Equations (1) and (2), we can obtain infinitesimals:

ξ = αxc2 + c1,
τ = 3tc2,
η = −2uαc2,
ϑ = −vαc2.

(33)

Lie algebra corresponding to infinitesimal symmetry of governing system is spanned by

V1 =
∂
∂x

(34)

V2 = xα
∂
∂x

+ 3t
∂
∂t
− 2uα

∂
∂u
− vα

∂
∂v

(35)

Now, corresponding to Equations (1) and (2), we have following infinitesimal generators given
as [7,8]

V = c1V1 + c2V2

4.3. Similarity Reduction

Case 2: The following characteristic equation can be obtained by using the infinitesimal generator in
Equation (35), given as

dx
xα

=
dt
3t

= − du
2uα

= − dv
vα

(36)

After solving Equation (36), the following similarity variable can be obtained, given as

X = xt
−α
3 (37)

u = F(X)t
−2α

3 (38)

v = G(X)t
−α
3 (39)

Theorem 1. The transformation (38) and (39) reduces Equations (1) and (2) to the following form of Ordinary
differential equations (ODEs) given as:

(
P

1− 5α
3 , α

3
α

F
)
(X) + FXXX +

3
2

GGXXX +
9
2

GXGXX − 6 FFX − 6FGGX − 3
2

FXG2 = 0 (40)

(
P

1− 4α
3 , α

3
α

G
)
(X) + GXXX − 6 GFX − 6FGX − 15

2
GXG2 = 0 (41)

with the Erdélyi-Kober operator Pτ,αβ :

(
Pτ,αβ F

)
:=

n−1∏
j=0

(
τ+ j− 1

β
X

d
dX

)(
Kτ+α,n−α
β F

)
(X) (42)
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and (
Pτ,αβ G

)
:=

n−1∏
j=0

(
τ+ j− 1

β
X

d
dX

)(
Kτ+α,n−α
β G

)
(X) (43)

where, the Erdélyi-Kober fractional integral operator can be expressed as:

(
Kτ+α,n−α
β F

)
(X) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

Γ(α)

∞∫
1
(u− 1)α−1u−(τ+α)F

(
Xu

1
β

)
du, α > 0,

F(X), α = 0.
(44)

and (
Kτ+α,n−α
β G

)
(X) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

Γ(α)

∞∫
1
(u− 1)α−1u−(τ+α)G

(
Xu

1
β

)
du, α > 0,

G(X), α = 0.
(45)

and

n =

{
[α] + 1, α ∈ N ,
α, α � N .

(46)

4.4. Conservation Laws of Time-Fractional Coupled JM Equations

Let us consider the following conservation vectors viz. C1 and C2 for the Equations (1) and (2),
which satisfies the conservation equations expressed as:

[Dt(C1) + Dx(C2)](1.1), (1.2) = 0 (47)

A Lagrangian of Equations (1) and (2) is:

L = ω(x, t)(Dαt u + uxxx +
3
2 vvxxx +

9
2 vxvxx − 6uux − 6uvvx − 3

2 uxv2)

+γ(x, t)(Dαt v + vxxx − 6uxv− 6uvx − 15
2 vxv2)

(48)

where, γ and ω are dependent variables.
By considering Equation (48), the action integral can be defined as:

t∫
0

∫
Ω

L(x, t, u, v, ω, γ, Dαt u, ux, uxxx, Dαt v, vx, vxxx)dx dt (49)

The Euler-Lagrangian operator is given by

δ
δu

=
∂
∂u

+ (Dαt )
∗ ∂
∂Dαt u

−Dx
∂
∂ux
−D3

x
∂
∂uxxx

(50)

and
δ
δv

=
∂
∂v

+ (Dαt )
∗ ∂
∂Dαt v

−Dx
∂
∂vx
−D2

x
∂
∂vxx

−D3
x
∂
∂vxxx

(51)

where (Dαt )
∗ = (−1)n

tI
n−α
T Dn

t is the adjoint operator of Dαt .
Euler Lagrange equations:

δL
δu

= 0, and
δL
δv

= 0 (52)

Considering the case of the independent variables t, x and the dependent variables v(x, t), u(x, t),
we have

X + Dt(τ)I + Dx(ξ)I = W1
δ
δu

+ W2
δ
δv

+ DtC1 + DxC2 (53)
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where δδu , δδv are the Euler-Lagrange operators and I is the identity operator, C1 and C2 are the conserved
vectors, and

So X is given as
X = ξ ∂∂x + τ ∂∂t + η

∂
∂u + ϑ ∂∂v + η0

α
∂
∂Dαt u + ϑ0

α
∂
∂Dαt v

+ηx ∂
∂ux

+ ηxxx ∂
∂uxxx

+ ϑx ∂
∂vx

+ ϑxx ∂
∂vxx

+ ϑxxx ∂
∂vxxx

(54)

Lie characteristic function W1 and W2 are:

W1 = η− τut − ξux

W2 = γ− τvt − ξvx

Here, for V1, we have following conserved vectors

W1 = −ux

W2 = −vx
(55)

Here, for V2, we have following conserved vectors

W1 = −2uα− xαux − 3tut

W2 = −vα− xαvx − 3tvt
(56)

In case of RL fractional differentiation in Equations (1) and (2), the components of the conserved
vector can be written as follows:

For W1 = −2uα− xαux − 3tut and W2 = −vα− xαvx − 3tvt, we have

C1 = τL + 0Dα−1
t (W1)

∂L
∂0Dαt u + J

(
W1, Dt

∂L
∂0Dαt u

)
+ 0Dα−1

t (W2)
∂L
∂0Dαt v + J

(
W2, Dt

∂L
∂0Dαt v

)
,

= ω 0Dα−1
t (−2uα− xαux − 3tut) + J((−2uα− xαux − 3tut),ωt)

+γ0Dα−1
t (−vα− xαvx − 3tvt) + J((−vα− xαvx − 3tvt),γt).

(57)

C2 = ξL + W1
[
∂L
∂ux

+ DxDx
(
∂L
∂uxxx

)]
+ W2

[
∂L
∂vx
−Dx

(
∂L
∂vxx

)
+ DxDx

(
∂L
∂vxxx

)]
+Dx(W1)

[
−Dx
(
∂L
∂uxxx

)]
+ Dx(W2)

[
∂L
∂vxx
−Dx

(
∂L
∂vxxx

)]
+ DxDx(W1)

(
∂L
∂uxxx

)
+ DxDx(W2)

(
∂L
∂vxxx

)
= 1

2 ((4αvxγx + 6αuxωx + 9tvtvxωx + 3xαv2
xωx + 6tωxuxt + 6tγxvxt + 9tvωxvxt

+2xα(ωxuxx + γxvxx) + 3xαvωxvxx − 2αvγxx − 6tvtγxx − 2xαvxγxx − 4αuωxx

−3αv2ωxx − 6tutωxx − 9tvxωxx − 2xαuxωxx + vvx(9αωx − 3xαωxx))

+γ(36αuv + 15αv3 + 12v(3tut + xαux) + 12u(3tvt + xαvx) + 15v2(3tvt + xαvx)

−6αvxx − 6tvxxt − 2xαvxxx) +ω(24αu2 + 18αuv2 + 12u(3tut + xαux)

+3v2(3tut + xαux) − 12αv2
x + 12uv(3tvt + xαvx) − 18tvxvxt − 8αuxx − 12αvvxx

−9tvtvxx − 9xαvxvxx − 6tuxxt − 9tvvxxt − 2xαuxxx − 3xαvvxxx))

(58)

5. Conclusions

Fractional logistic function technique is proposed for soliton solutions of fractional JM system.
Numerical simulation for solutions has been shown for analyzing the physical nature of obtained
solutions. Moreover, Lie group analysis technique is proposed for investigation of symmetry properties
and conservation laws for fractional Jaulent-Miodek system. Conservation laws for the system are
acquired by new theorem and formal Lagrangian. These analyses are relatively new and reliable for
finding exact solutions and constructing conservation laws with generating similarity solutions for the
FPDEs. Furthermore, this method enriches the solution of the equations, which is of great significance
for study of the FPDEs.
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Abstract: In this paper, we establish the existence results for a nonlinear fractional difference equation
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1. Introduction

Discrete fractional calculus studies have been an interesting field of present day, because some
real-world phenomena are described by using fractional difference operators (see papers [1–3] and the
references therein). Basic knowledge of fractional difference calculus can be found in [4]. The extension
of this field can be found in [5–37] and references cited therein.

For the development of the fractional difference equations theory, which is the discrete case
of fractional differential equations, there are still few publications. However, there are some recent
papers studying fractional difference equations with delay. In 2017, Kaewwisetkul et al. [38] studied
boundary value problems for Caputo fractional functional difference equations with delay. In 2018,
Wu et al. [39] proposed the finite-time stability of discrete fractional delay systems, Alzabut et al. [40]
studied nonlinear delay fractional difference equations with applications on the discrete fractional
Lotka–Volterra competition model, Alzabut et al. [41] investigated the application on the uniqueness of
solutions for nonlinear delay fractional difference system, and Luo et al. [42] considered the uniqueness
and finite-time stability of solutions for a class of nonlinear fractional delay difference systems.

In particular, the fractional difference equations with delay and impulses have not been studied
extensively. In 2018, Wu et al. [43] studied a linear fractional delay difference equations with impulse.
These results are incentives for research. In this paper, we propose a nonlinear fractional difference
equation with delay and impulses of the form:

Δα
Cu(t) = F

[
t + α − 1, ut+α−1, Δβu(t + α − β)

]
, t ∈ N0,T , t + α − 1 �= tk

u(tk) = Ik
(
utk−1

)
, k = 1, 2, ..., p, tk+1 − tk ≥ 2,

u(t + α − 1) = ψ(t + α − 1), t ∈ N−r,0, r ∈ N0,T+1, (1)

Symmetry 2020, 12, 980; doi:10.3390/sym12060980 www.mdpi.com/journal/symmetry29
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where N0,T := {0, 1, . . . , T}, α, β ∈ (0, 1), Δu(tk) = u(tk + 1)− u(tk), t0 = α − 1 < t1 < t2 < ... <
tp < T + α, F ∈ C

(
Nα−1,T+α × Cr ×R,R

)
, Ik : Cr → R and ψ is an element of the space:

C+
r (α − 1) :=

{
ψ ∈ Cr : ψ(α − 1) = 0, Δβ

Cψ(s − β + 1) = 0, s ∈ Nα−r−1,α−1

}
.

For r ∈ N0,T+1, let Cr be the Banach space of all continuous functions ψ : Nα−r−1,α−1 → R with
the norm:

‖ψ‖Cr = max
s∈Nα−r−1,α−1

|ψ(s)|.

If u : Nα−r−1,α−1 → R, then for any t ∈ Nα−1,T+α, we define the element ut of Cr as,

ut(θ) = u(t + θ) for θ ∈ N−r,0.

We aim to prove the existence results to the problem of Equation (1) by using the Banach and
Schauder’s fixed point theorems. Finally, we present an example in the last section.

2. Preliminaries

In this section, we recall some notations, definitions, and lemmas used in the main results.

Definition 1. The generalized falling function is defined by:

tα :=
Γ(t + 1)

Γ(t + 1 − α)
.

If t + 1 − α is a pole of the Gamma function and t + 1 is not a pole, then tα = 0.

Definition 2. For α > 0 and f defined on Na := {a, a + 1, . . .}, the α-order fractional sum of f is defined by:

Δ−α f (t) :=
1

Γ(α)

t−α

∑
s=a

(t − σ(s))α−1 f (s),

where t ∈ Na+α and σ(s) = s + 1.

Definition 3. For α > 0, N ∈ N is satisfied with 0 ≤ N − 1 < α < N and f defined on Na, the α-order
Riemann–Liouville fractional difference of f is defined by:

Δα f (t) := ΔNΔ−(N−α) f (t) =
1

Γ(−α)

t+α

∑
s=a

(t − σ(s))−α−1 f (s),

where t ∈ Na+N−α. The α-order Caputo fractional difference of f is defined by:

Δα
C f (t) := Δ−(N−α)ΔN f (t) =

1
Γ(N − α)

t−(N−α)

∑
s=a

(t − σ(s))N−α−1ΔN f (s),

where t ∈ Na+N−α. If α = N, then Δα f (t) = Δα
C f (t) = ΔN f (t).

Lemma 1. [5] Assume that α > 0 and f defined on Na. Then,

Δ−αΔα
Cy(t) = y(t) + C0 + C1(t − a)1 + C2(t − a)2 + ... + CN−1(t − a)N−1,

for some Ci ∈ R, 0 ≤ i ≤ N − 1 and 0 ≤ N − 1 < α ≤ N.

30



Symmetry 2020, 12, 980

Next, we aim to find a solution of the linear variant of the mixed problem in Equation (1)
as follows.

Lemma 2. Let α ∈ (0, 1), h ∈ C
(
Nα−1,T+α,R

)
, Ik : Cr → R and ψ ∈ C+

r (α − 1) be given. Then
the problem

Δα
Cu(t) = h(t + α − 1), t ∈ N0,T := {0, 1, . . . , T}, t + α − 1 �= tk

u(tk) = Ik
(
utk−1

)
, k = 1, 2, ..., p, tk+1 − tk ≥ 2,

u(t + α − 1) = ψ(t + α − 1), t ∈ N−r,0, r ∈ N0,T+1, (2)

has the unique solution which is in a form:

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Γ(α)

t−1

∑
s=t0

(t − s + α − 2)α−1 h(s), t ∈ Nt0,t1

k

∑
i=1

Ii
(
uti−1

)
+

1
Γ(α)

k

∑
i=1

ti−1

∑
s=ti−1

(ti − s + α − 2)α−1 h(s)

+
1

Γ(α)

t−1

∑
s=tk

(t − s + α − 2)α−1 h(s), t ∈ Ntk+1,tk+1

ϕ(t), t ∈ Nα−r−1,α−1

(3)

where Δu(tk) = u(tk + 1)− u(tk), t0 = α − 1 < t1 < t2 < ... < tp < T + α.

Proof. For t ∈ Nt0,t1 , taking the fractional sum of order α for Equation (2) and from Lemma 1, we have:

u(t) = ϕ(α − 1) +
1

Γ(α)

t−α

∑
s=0

(t − σ(s))α−1 h(s + α − 1). (4)

From ϕ(α − 1) = 0, we can write Equation (4) as:

u(t) =
1

Γ(α)

t−1

∑
s=t0

(t − s + α − 2)α−1 h(s). (5)

By substituting t = t1 into Equation (5), we have:

u(t1) =
1

Γ(α)

t1−1

∑
s=t0

(t1 − s + α − 2)α−1 h(s). (6)

If t ∈ Nt1+1,t2 , then we get"

u(t) = u(t1 + 1) +
1

Γ(α)

t−1

∑
s=t1

(t − s + α − 2)α−1 h(s)

= Δu(t1) + u(t1) +
1

Γ(α)

t−1

∑
s=t1

(t − s + α − 2)α−1 h(s).
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Substiting u(t1) from Equation (6) to above equation, we obtain:

u(t) = I1
(
ut1−1

)
+

1
Γ(α)

t1−1

∑
s=t0

(t1 − s + α − 2)α−1 h(s)

+
1

Γ(α)

t−1

∑
s=t1

(t − s + α − 2)α−1 h(s). (7)

If t ∈ Nt2+1,t3 , then we have:

u(t) = u(t2 + 1) +
1

Γ(α)

t−1

∑
s=t2

(t − s + α − 2)α−1 h(s)

= Δu(t2) + u(t2) +
1

Γ(α)

t−1

∑
s=t2

(t − s + α − 2)α−1 h(s).

Substiting u(t2) from Equation (7) to above equation, we obtain:

u(t) = I2
(
ut2−1

)
+

[
I1
(
ut1−1

)
+

1
Γ(α)

t1−1

∑
s=t0

(t1 − s + α − 2)α−1 h(s)

+
1

Γ(α)

t2−1

∑
s=t1

(t2 − s + α − 2)α−1 h(s)

]
+

1
Γ(α)

t−1

∑
s=t2

(t − s + α − 2)α−1 h(s). (8)

By using the recursive process, we obtain the solution u(t) for t ∈ Ntk+1,tk+1 (k = 1, 2, ..., p) as
given by:

u(t) =
k

∑
i=1

Ii
(
uti−1

)
+

1
Γ(α)

k

∑
i=1

ti−1

∑
s=ti−1

(ti − s + α − 2)α−1 h(s)

+
1

Γ(α)

t−1

∑
s=tk

(t − s + α − 2)α−1 h(s). (9)

Obviously, for each t ∈ Nα−r−1,α−1, we have u(t) = ϕ(t).

3. Existence and Uniqueness Result

In this section, we employ the Banach fixed point theorem to consider the existence and uniqueness
result for the problem in Equation (1). Define the Banach space:

X :=
{

u : u ∈ C(Nα−r−1,T+α,R), Δβu ∈ C(Nα−β−r,T+α−β+1,R), 0 < β < 1
}

with the norm defined by:

‖u‖X = ‖u‖+ ‖Δβu‖, (10)

where ‖u‖ = max
t∈Nα−r−1,T+α

|u(t)| and ‖Δβu‖ = max
t∈Nα−r−1,T+α

|Δνu(t − β + 1)|.

In view of the definitions of ut and ψ, we have:

uα−1 = uα−1(θ) = u(θ + α − 1) = ψ(θ + α − 1) for θ ∈ N−r,0. (11)
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Thus, we obtainL

u(t) = ψ(t) for t ∈ Nα−r−1,α−1. (12)

Next, define an operator T : X → X as:

(T u) (t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Γ(α)

t−1

∑
s=t0

(t − s + α − 2)α−1 F
[
s, us, Δβu(s − β + 1)

]
, t ∈ Nt0,t1

k

∑
i=1

Ii
(
uti−1

)
+

1
Γ(α)

k

∑
i=1

ti−1

∑
s=ti−1

(ti − s + α − 2)α−1 F
[
s, us, Δβu(s − β + 1)

]
+

1
Γ(α)

t−1

∑
s=tk

(t − s + α − 2)α−1 F
[
s, us, Δβu(s − β + 1)

]
, t ∈ Ntk+1,tk+1

ϕ(t), t ∈ Nα−r−1,α−1

(13)

where k = 1, 2, ..., p, tk+1 − tk ≥ 2, t0 = α − 1 < t1 < t2 < ... < tp < T + α.

Firstly, we provide some basic knowledge that is used in this section as follows.

Definition 4. A mapping S from a subset M of a Banach space X into X is called a contraction mapping (or
simply a contraction) if there exists a positive number α < 1 such that:

‖S(x)− S(y)‖X ≤ α‖x − y‖X for all x, y ∈ M.

Lemma 3. [44] (Banach fixed point theorem) Let M be a closed subset of a Banach space X and let S be a
contraction mapping from M into M. Then there exists a uniquez ∈ M such that S(z) = z.

If one can prove that T has fixed point, we can conclude that the problem of Equation (1) has a
solution.

Theorem 1. Assume the following properties:

(H1) There exists a constant � > 0 such that:∣∣∣ F[t, u1, u2]− F[t, v1, v2]
∣∣∣ ≤ � (|u1 − v1|+ |u2 − v2|) ,

for each u1, v1 ∈ Cr and u2, v2 ∈ R.
(H2) There exists a constant λ > 0 such that∣∣Ik

(
utk−1

)
− Ik
(
vtk−1

) ∣∣ ≤ λ|ut − vt|,

for each ut, vt ∈ Cr and k = 1, 2, ..., p.

(H3)
[

p(p+1)
2 λ + �

(
p(p+1)

2 + 1
)

(T+α)α

Γ(α+1)

] [
1 + (T+α−β−1)−β

Γ(1−β)

]
< 1.

Then, the problem of Equation (1) has an unique solution.

Proof. We will show that T is a contraction. Letting,

|H(u − v)|(t) =
∣∣∣F [t, ut, Δβu(t − β + 1)

]
− F
[
t, vt, Δβv(t − β + 1)

] ∣∣∣,
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for each t ∈ Nα−1,T+α, we obtain:

∣∣∣(T u)(t)− (T v)(t)
∣∣∣ ≤ p

∑
i=1

∣∣Ii(uti−1)− Ii(vti−1)
∣∣+ 1

Γ(α)

k

∑
i=1

ti−1

∑
s=ti−1

(ti − s + α − 2)α−1 |H(u − v)|(s)

+
1

Γ(α)

t−1

∑
s=tk

(t − s + α − 2)α−1 |H(u − v)|(s)

≤ p(p + 1)
2

λ|ut − vt|+
�
(
|ut − vt|+

∣∣Δβu(t − β + 1)− Δβv(t − β + 1)
∣∣)

Γ(α + 1)
×{(

p(p + 1)
2

+ 1
)
(T + α)α

}
≤
[

p(p + 1)
2

λ + �

(
p(p + 1)

2
+ 1
)

(T + α)α

Γ(α + 1)

]
‖u − v‖X . (14)

Taking the fractional difference of order β for Equation (13) and substituting t = t − β + 1, we get:(
ΔβT u

)
(t − β + 1)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Γ(α)Γ(−β)

t+1

∑
ξ=t0+1

ξ−1

∑
s=t0

(t − β − ξ)−β−1(ξ − s + α − 2)α−1×

F
[
s, us, Δβu(s − β + 1)

]
, t ∈ Nt0,t1

1
Γ(−β)

t+1

∑
s=t0

k

∑
i=1

(t − β − s)−β−1 Ii
(
uti−1

)
+

1
Γ(α)Γ(−β)

t+1

∑
ξ=t0

k

∑
i=1

ti−1

∑
s=ti−1

(t − β − ξ)−β−1 (ti − s + α − 2)α−1 ×

F
[
s, us, Δβu(s − β + 1)

]
+

1
Γ(α)Γ(−β)

t+1

∑
ξ=t0+1

ξ−1

∑
s=tk

(t − β − ξ)−β−1 (ξ − s + α − 2)α−1 ×

F
[
s, us, Δβu(s − β + 1)

]
, t ∈ Ntk+1,tk+1

1
Γ(−β)

t+1

∑
s=t0−r

(t − β − s)−β−1 ϕ(s), t ∈ Nα−r−1,α−1

(15)

For each t ∈ Nα−1,T+α, we obtain:∣∣(ΔβT u
)
(t−β + 1)−

(
ΔβT v

)
(t − β + 1)

∣∣
≤ 1

Γ(−β)

T+α+1

∑
s=t0

(T + α − β − s)−β−1
p

∑
i=1

∣∣Ii
(
uti−1

)
− Ii
(
vti−1

) ∣∣+ 1
Γ(α)Γ(−β)

×

T+α+1

∑
ξ=t0

k

∑
i=1

ti−1

∑
s=ti−1

(T + α − β − ξ)−β−1 (ti − s + α − 2)α−1 |H(u − v)|(s)

+
1

Γ(α)Γ(−β)

T+α+1

∑
ξ=t0+1

ξ−1

∑
s=tk

(T + α − β − ξ)−β−1 (ξ − s + α − 2)α−1 |H(u − v)|(s)

≤ p(p + 1)
2

λ|ut − vt|+
�
(
|ut − vt|+

∣∣Δβu(t − β + 1)− Δβv(t − β + 1)
∣∣)

Γ(α + 1)
×{(

p(p + 1)
2

+ 1
)
(T + α)α

}
≤ (T + α − β − 1)−β

Γ(1 − β)

[
p(p + 1)

2
λ + �

(
p(p + 1)

2
+ 1
)

(T + α)α

Γ(α + 1)

]
‖u − v‖X . (16)
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Obviously, for each t ∈ Nα−r−1,α−1, we get
∣∣∣(T u)(t)− (T v)(t)

∣∣∣ = 0.
Therefore, we have:∥∥∥(T u)− (T v)

∥∥∥
X

(17)

≤
[

p(p + 1)
2

λ + �

(
p(p + 1)

2
+ 1
)

(T + α)α

Γ(α + 1)

] [
1 +

(T + α − β − 1)−β

Γ(1 − β)

]
‖x − y‖X .

By (H3), it implies that T is a contraction. Therefore, by Banach fixed point theorem, T has a fixed
point which is a unique solution of the problem in Equation (1).

4. Existence of at Least One Solution

In this section, we also present the existence of at least one solution of Equation (1) by using the
Schauder’s fixed point theorem. Firstly, we provide some basic knowledge that is used in this section
as follows.

Lemma 4. [44] (Arzelá–Ascoli theorem) A set of function in C[a, b] with the sup norm, is relatively compact if
and only it is uniformly bounded and equicontinuous on [a, b].

Lemma 5. [44] A bounded set in Rn is relatively compact, a closed bounded set in Rn is compact.

Lemma 6. [45] (Schauder’s fixed point theorem) Let (D, d) be a complete metric space, U be a closed convex
subset of D, and T : D → D be the map such that the set Tu : u ∈ U is relatively compact in D. Then the
operator T has at least one fixed point u∗ ∈ U: Tu∗ = u∗.

The following notations are defined for using in the sequel.

Θ = max
t∈Nα−r−1,α−1

{(
1
2

p(p + 1) + 1
)

(T + α)α

Γ(α + 1)
φ(t)

}
(18)

Θ̃ = max
t∈Nα−r−1,α−1

{(
1
2

p(p + 1) + 1
)

(T + α)α(T + α − β + 1)−β

Γ(α + 1)Γ(1 − β)
φ(t)

}
(19)

Υ =

(
1
2

p(p + 1) + 1
)

(T + α)α

Γ(α + 1)

[
1 +

(T + α − β + 1)−β

Γ(1 − β)

]
. (20)

Theorem 2. Assume the following properties:

(H4) There exists a nonnegative function φ ∈ C (Nα−1,T+α) such that:∣∣∣ F[t, x, y]
∣∣∣ ≤ φ(t) + λ1|x|χ1 + λ2|y|χ2 ,

for each x ∈ Cr, y ∈ R where λ1, λ2 are negative constants and 0 < χ1, χ2 < 1; or

(H5) there exists a nonnegative function φ ∈ C (Nα−3,T+α) such that:∣∣∣ F[t, x, y]
∣∣∣ ≤ φ(t) + λ1|x|χ1 + λ2|y|χ2 ,

for each x ∈ Cr, y ∈ R where λ1, λ2 are negative constants and χ1, χ2 > 1.

Then boundary value problem of Equation (1) has at least one solution.

Proof. The proof is organized into three steps as follows.
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Step I. We verify that T map bounded sets into bounded sets. Let max |Ik(utk−1)| = N for k = 1, 2, ..., p.
Suppose that (H4) holds, we choose a constant:

R ≥ max

{
3

[
1
2

p(p + 1)N
(T + α − β + 1)1−β

Γ(1 − β)
+ 1

]
+ Θ + Θ̃,

(
3λ1Υ

) 1
1−χ1 ,

(
3λ2Υ

) 1
1−χ2

}
, (21)

and define the P =
{

u ∈ X : ‖u‖ ≤ R, R > 0
}

.
For any u ∈ P , we have:

∣∣(T u
)
(t)
∣∣ ≤ p

∑
i=1

∣∣Ii(uti−1)
∣∣+ 1

Γ(α)

p

∑
i=1

ti−1

∑
s=ti−1

(ti − s + α − 2)α−1×

[
φ(s) + λ1|us|χ1 + λ2

∣∣∣Δβu(s − β + 1)
∣∣∣χ2
]
+

1
Γ(α)

t−1

∑
s=tk

(t − s + α − 2)α−1×[
φ(s) + λ1|us|χ1 + λ2

∣∣∣Δβu(s − β + 1)
∣∣∣χ2
]

≤ 1
2

p(p + 1)N + Θ +

(
1
2

p(p + 1) + 1
)

(T + α)α

Γ(α)

[
λ1|us|χ1 + λ2

∣∣∣Δβu(s − β + 1)
∣∣∣χ2
]

and

∣∣(ΔβT u
)
(t − β + 1)

∣∣ ≤ 1
Γ(−β)

t+1

∑
s=α−1

(t − β − s)−β−1

[
p

∑
i=1

∣∣Ii
(
uti−1

)∣∣]

+
1

Γ(α)Γ(−β)

t+1

∑
ξ=t0

p

∑
i=1

ti−1

∑
s=ti−1

(t − β − ξ)−β−1 (ti − s + α − 2)α−1 ×
[
φ(s) + λ1|us|χ1 + λ2

∣∣∣Δβu(s − β + 1)
∣∣∣χ2
]

+
1

Γ(α)Γ(−β)

t+1

∑
ξ=t0+1

ξ−1

∑
s=tk

(t − β − ξ)−β−1 (ξ − s + α − 2)α−1 ×
[
φ(s) + λ1|us|χ1 + λ2

∣∣∣Δβu(s − β + 1)
∣∣∣χ2
]

≤ 1
2

p(p + 1)N
(T + α − β + 1)−β

Γ(1 − β)
+ Θ̃ +

(
1
2

p(p + 1) + 1
)
×

(T + α)α(T + α − β + 1)−β

Γ(α)Γ(1 − β)

[
λ1|us|χ1 + λ2

∣∣∣Δβu(s − β + 1)
∣∣∣χ2
]
.

Hence, we have:

‖T u‖X ≤ 1
2

p(p + 1)N

[
(T + α − β + 1)−β

Γ(1 − β)
+ 1

]
+ Θ + Θ̃

+ Υ
[
λ1|us|χ1 + λ2

∣∣∣Δβu(s − β + 1)
∣∣∣χ2
]

≤ R
3
+ Υ
[
λ1|us|χ1 + λ2

∣∣∣Δβu(s − β + 1)
∣∣∣χ2
]

≤ R
3
+

R
3
+

R
3

= R. (22)

This implies that T : P → P .
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For the second case, if (H5) holds, we choose a constant:

R ≥ max

{
3

[
1
2

p(p + 1)N
(T + α − β + 1)1−β

Γ(1 − β)
+ 1

]
+ Θ + Θ̃,

( 1
3λ1Υ

) 1
1−χ1 ,

( 1
3λ2Υ

) 1
1−χ2

}
. (23)

Similary, we find that:

‖T u(t)‖X ≤ R, (24)

which implies that T : P → P .

Step II. It is obvious that the operator T is continuous on P since the continuity of F.

Step III. We prove that T is equicontinuous on P . For any ε > 0, there exist positive constants
δ1 = max{δ11, δ12}, δ2 and δ3 = max{δ31, δ32, δ33}, such that:

(i) for τ1, τ2 ∈ Nα−1,T+α and τ1 < τ2

| τα
2 − τα

1 | <
ε Γ(α + 1)

2M
, whenever |τ2 − τ1| < δ11,

| (τ2 − β + 1)−β − (τ1 − β + 1)−β | <
ε Γ(α + 1)Γ(1 − β)

2M
, whenever |t2 − t1| < δ12;

(ii) for τ1, τ2 ∈ Nα−r−1,α−1 and τ1 < τ2

|ψ(τ2)− ψ(τ2) | < ε, whenever |τ2 − τ1| < δ2;

(iii) for τ1 ∈ Nα−r−1,α−1 and τ2 ∈ Nα,T+α

| τα
2 | <

ε Γ(α + 1)
3M

, whenever |τ2 − τ1| < δ31,

|ψ(τ1) | <
ε

3M
, whenever |τ2 − τ1| < δ32,

| (τ2 − β + 1)−β | <
ε Γ(α + 1)Γ(1 − β)

3M
, whenever |τ2 − τ1| < δ33.

Let M = max
t∈Nα−1,T+α

∣∣∣F [t, ut, Δβu(t − β + 1)
] ∣∣∣. Then, for u ∈ P and τ1, τ2 ∈ Nα−r−1,T+α.

Case 1. If τ1, τ2 ∈ Nt0,t1 ∪Ntk+1,tk+1 , tk+1 − tk ≥ 2, k = 1, 2, ..., p, and τ1 < τ2, we obtain:

∣∣(T u
)
(τ2)−

(
T u
)
(τ1)
∣∣ ≤ M

Γ(α)

∣∣∣∣∣ τ2−1

∑
s=tk

(τ2 − s + α − 2)α−1 −
τ1−1

∑
s=tk

(τ1 − s + α − 1)α−1

∣∣∣∣∣
≤ M

Γ(α + 1)
| τα

2 − τα
1 |

≤ ε

2
, (25)
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and ∣∣(ΔβT u
)
(τ2 − β + 1)−

(
ΔβT u

)
(τ1 − β + 1)

∣∣
≤ M

Γ(α)Γ(−β)

∣∣∣∣∣ τ2+1

∑
ξ=t0

ξ−1

∑
s=tk

(τ2 − β − ξ)−β−1 (ξ − s + α − 2)α−1

−
τ1+1

∑
ξ=t0

ξ−1

∑
s=tk

(τ1 − β − ξ)−β−1 (ξ − s + α − 2)α−1

∣∣∣∣∣
≤ M

Γ(α + 1)Γ(1 − β)

∣∣ (τ2 − β + 1)−β − (τ1 − β + 1)−β ∣∣
≤ ε

2
. (26)

By Equations (25) and (26), it implies that:∥∥(T u
)
(τ2)−

(
T u
)
(τ1)
∥∥
X ≤ ε

2
+

ε

2
= ε. (27)

Case 2. If τ1, τ2 ∈ Nα−r−1,α−1 and τ1 < τ2, we obtain:∣∣(T u
)
(τ2)−

(
T u
)
(τ1)
∣∣ = ∣∣ψ(τ2)− ψ(τ1)

∣∣ < ε, (28)

and
∣∣(ΔβT u

)
(τ2)−

(
ΔβT u

)
(τ1)
∣∣ = ∣∣(ΔβT ψ

)
(τ2)−

(
ΔβT ψ

)
(τ1)
∣∣ = 0. (29)

By Equations (28) and (29), it implies that:∥∥(T u
)
(τ2)−

(
T u
)
(τ1)
∥∥
X < ε + 0 = ε. (30)

Case 3. If τ1 ∈ Nα−r−1,α−1 and τ2 ∈ Nt0+1,t1 ∪Ntk+1,tk+1 , tk+1 − tk ≥ 2, k = 1, 2, ..., p, we obtain:∣∣(T u
)
(τ2)−

(
T u
)
(τ1)
∣∣ ≤ ∣∣(T u

)
(τ2)−

(
T u
)
(α − 1)

∣∣+ ∣∣(T u
)
(α − 1)−

(
T u
)
(τ1)
∣∣

≤
(
T u
)
(τ2) + |ψ(τ1)|

≤ M
Γ(α + 1)

| τα
2 |+ ‖ϕ(τ1)‖Cr

<
ε

3
+

ε

3
=

2ε

3
, (31)

and
∣∣(ΔβT u

)
(τ2)−

(
ΔβT u

)
(τ1)
∣∣ ≤ ∣∣∣(ΔβT u

)
(τ2)− 0

∣∣∣
≤ M

Γ(α)Γ(−β)

τ2+1

∑
ξ=t0

ξ−1

∑
s=tk

(τ2 − β − ξ)−β−1 (ξ − s + α − 2)α−1

≤ M
Γ(α + 1)Γ(1 − β)

∣∣ (τ2 − β + 1)−β ∣∣
≤ ε

3
. (32)

By Equations (31) and (32), it implies that:

∥∥(T u
)
(τ2)−

(
T u
)
(τ1)
∥∥
X <

2ε

3
+

ε

3
= ε. (33)

From Steps I to III and the Arzelá–Ascoli theorem, we can conclude that T : X → X is completely
continuous. Therefore, the problem in Equation (1) has at least one solution by Schauder’s fixed point
theorem.
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5. An Example

Consider the following fractional difference boundary value problem:

Δ
1
2
Cu(t) = F

[
t − 1

2
, ut− 1

2
, Δ

3
2 u
(

t − 1
4

) ]
, t ∈ N0,10, t − 1

2
�= tk, k = 1, 2, 3

Δu(tk) =
1

k + 100
sin |u(tk − 1)|, tk =

1
2
+ 2k,

u
(
−1

2

)
= 0. (34)

Here α =
1
2

, β =
2
3

, T = 5, p = 3.

(i) Let F
[
t, ut, Δβut−β+1

]
=

∣∣ut

∣∣+∣∣∣Δ 2
3 u(t+ 1

3 )
∣∣∣

(t+100)3
[

1+
∣∣ut

∣∣+∣∣∣Δ 2
3 u(t+ 1

3 )
∣∣∣] .

For t ∈ N− 1
2 , 21

2
, we have:

∣∣∣F[t, ut, Δβu
]
− F
[
t, vt, Δβv

]∣∣∣ ≤ 8
7880599

[∣∣ut − vt
∣∣+ ∣∣∣Δ 2

3 u
(

t +
1
3

)
− Δ

2
3 v
(

t +
1
3

)∣∣∣].

So, (H1) holds with � = 8
7880599 .

For all u, v ∈ X and k = 1, 2, 3, we have:

|Ik(u)− Ik(v)| ≤
1

101
|u − v|.

So, (H2) holds with λ = 1
101 .

We can show that (H3) holds with:[
p(p + 1)

2
λ + �

(
p(p + 1)

2
+ 1
)

(T + α)α

Γ(α + 1)

] [
1 +

(T + α − β − 1)−β

Γ(1 − β)

]
≈ 0.06401 < 1.

Therefore, by Theorem 1, the boundary value problem of Equation (34) has an unique solution.

(ii) Let F
[
t, ut, Δβut−β+1

]
= t2 + e−t

2(t+1)3

∣∣ut
∣∣χ1 +

e−2(t+1)

3

∣∣Δ 2
3 ut+ 1

3

∣∣χ2 .

For t ∈ N− 1
2 , 21

2
, we have:

∣∣∣F[t, ut, Δβut−β+1

]∣∣∣ ≤ (21
2

)2
+

4√
e

∣∣ut
∣∣χ1 +

1
3e

∣∣∣∣∣Δ 2
3 u
(

t +
1
3

) ∣∣∣∣∣
χ2

.

Thus |φ(t)| ≤ 441
4 , λ1 = 4√

e , λ2 = 1
3e . We can show that (H4) is satisfied for 0 < χ1, χ2 < 1, and (H5)

is satisfied for χ1, χ2 > 1. Therefore, by Theorem 2, the boundary value problem in Equation (34) has
at least one solution.

6. Conclusions

We established the conditions for the existence and uniqueness of a solution for a nonlinear
fractional difference equation with delay and impulses in Equation (1) by using the Banach fixed point
theorem, and the conditions of at least one solution by using the Schauder’s fixed point theorem. Our
problem contained both delay and impulses, which is a new idea.
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Abstract: A spectral collocation approach is constructed to solve a class of time-fractional stochastic
heat equations (TFSHEs) driven by Brownian motion. Stochastic differential equations with additive
noise have an important role in explaining some symmetry phenomena such as symmetry breaking
in molecular vibrations. Finding the exact solution of such equations is difficult in many cases.
Thus, a collocation method based on sixth-kind Chebyshev polynomials (SKCPs) is introduced to
assess their numerical solutions. This collocation approach reduces the considered problem to a
system of linear algebraic equations. The convergence and error analysis of the suggested scheme
are investigated. In the end, numerical results and the order of convergence are evaluated for some
numerical test problems to illustrate the efficiency and robustness of the presented method.

Keywords: fractional calculus; stochastic heat equation; additive noise; chebyshev polynomials of
sixth kind; error estimate

1. Introduction

Many models in physics, chemistry, and engineering reveal stochastic effects and are introduced
as stochastic partial differential equations (SPDEs) [1,2]. Some phenomena in various fields such as
population dynamics [3], motions of ions in crystals [4], optimal pricing in economics [5] and thermal
noise [6] show stochastic behaviors. Fractional stochastic partial differential equation (FSPDE) is an
example of these equations that have attracted more attention recently.

In recent decades, investigations have shown that fractional calculus provides some new ways
for a better understanding of behaviors of real-world phenomena. Fractional-order operators give
helpful tools for modeling inherited memory characteristics of real applications. Scientists proposed
models for numerous phenomena in engineering, fluid mechanics, physics [7–11], finance [12,13],
geomagnetic [14] and hydrology [15] based on fractional differential and integral equations.
Non-Markovian anomalous diffusion in materials with memory, such as, viscoelastic substances
is an example of these applications [16], in which the mean square displacement of particles grows
faster or slower than in the case of normal diffusion.

In many applications, it is more realistic to represent the mathematical model of the problem in a
non-deterministic state. In other words, some kinds of randomness and uncertainty are considered
in the mathematical formulation of the problem. Hence, stochastic functional equations have arisen
in many situations and numerous problems in different fields of science are modeled as fractional

Symmetry 2020, 12, 904; doi:10.3390/sym12060904 www.mdpi.com/journal/symmetry43
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stochastic differential or integral equations [17–19]. Many theoretical investigations on the fractional
stochastic differential equations have been made by researchers in the literature. Liu et al. studied some
properties of fractional stochastic heat equations [20]. Ralchenko and Shevchenko [21] surveyed the
existence and uniqueness of mild solution for a special type of stochastic heat equations of fractional
order. Roozbahani et al. [22] proved the unique solvability of a class of SPDEs. Moghaddam et al. [23]
proved the existence and uniqueness of solution for some delay stochastic differential equations of
fractional order. Moreover, Mishura et al. [24] investigated mild and weak solutions for a SPDE
with second order elliptic operator in divergence form. Since the exact solutions of these equations
are scarcely known, researchers have examined several numerical algorithms to solve them. Finite
difference schemes [25,26], finite element approaches [27–29], wavelets Galerkin method [30], B-spline
collocation method [31,32], hat function operational matrix method [33], mean-square dissipative
method [34] and operational matrix of Chebyshev wavelets [35] are a number of these schemes.

In the present work, we consider the following TFSHE

Dα
0,tu(x, t) =

(
μ + ϑḂ(t)

)
uxx(x, t) + λux(x, t) + f (x, t), (1)

where (x, t) ∈ L× I , with the boundary and initial conditions

u(x, t) = ϕ(x, t), x ∈ ∂L, t ∈ I , (2)

u(x, 0) = η(x), x ∈ L, (3)

where α ∈ (0, 1), μ, ϑ and λ are real constants, I := [0, T], L := [0, l] and ∂L is the boundary of L.
Also, Ḃ(t) := dB(t)

dt denotes a time white noise where B(t), t ∈ I is the Brownian motion adapted to a
filtration FB = {Ft}t∈I in a probability space (ΩB, FB,PB) [36]. Moreover, the source term f (x, t), ϕ(x, t)
and η(x) are some stochastic processes defined on (ΩB, FB,PB) and u(x, t) is an unknown stochastic
function to be found. Moreover, the operator Dα

0,t[·] denotes Caputo fractional derivative defined as:

Dα
0,tu(x, t) =

1
Γ(1 − α)

∫ t

0

1
(t − ξ)α

∂u
∂ξ

(x, ξ) dξ, α ∈ (0, 1), (4)

and Γ(·) represents the Gamma function.
Equation (1) is a FSPDE driven by additive noise that takes into account both memory and

environmental noise effects. Many physical and engineering models are built based on these
types of stochastic equations. Fractional stochastic heat equations [20,37–39], stochastic Burgers
equation [40] and stochastic coupled fractional Ginzburg-Landau equation [41] are some examples of
these applications. The problem (1)–(3) has been considered in [30], in the case α = 1. The authors have
proposed a wavelet Galerkin method to find the solution to this equation. When ϑ = 0, Equation (1)
reduces to an advection-dispersion equation of fractional order describing the transport of passive
tracers in a porous medium in groundwater hydrology [42].

Many numerical schemes with Chebyshev polynomials basis functions are established in literature
to solve various types of problems. Masjed-Jamei in [43] introduced a class of symmetric orthogonal
polynomials. The six various types of Chebyshev polynomials are special cases of this basic class.
To our experience, the approaches based on the SKCPs expansions result very accurate numerical
estimations. Hence, we motivated to employ this kind of Chebyshev polynomials for solving TFSHEs.
Recently, a few authors applied the SKCPs to solve some types of differential equations [44–46].

The structure of this work is organized as follows. In Section 2, the basic concepts of the
SKCPs theory are described. In Section 3, the collocation scheme based on the SKCPs is applied.
The convergence of the numerical procedure is considered in Section 4. The accuracy of the proposed
approach is analyzed in Section 5 by three numerical test problems. In the end, the main concluding
remarks are presented in Section 6.
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2. The Shifted SKCPs and Their Properties

In this section, some necessary preliminaries and relevant properties of the shifted SKCPs utilized
in the next sections, are reviewed.

Definition 1. The shifted SKCPs on [0, l] are defined by

Jm(x) = Ĵm((2/l)x − 1), m = 0, 1, 2, ...,

where ([43])

Ĵm(x) =
� m

2 �−1

∏
i=0

2i + (−1)m+1 + 4
−5 − (2i + 2[m

2 ] + (−1)m+1)
Em(x), (5)

and

Em(x) =
� m

2 �
∑
τ=0

� m
2 �−(τ+1)

∏
κ=0

(
(−1)m − 2(κ + �m

2 �)− 5
(−1)m+1 + 2(κ + 2)

)
(�m

2 �)!
τ!(τ − �m

2 �)!
xm−2τ . (6)

The explicit form of shifted SKCPs as follows: [45]

Jm(x) =
m

∑
r=0

θ̄r,m(x/l)r, (7)

where

θ̄r,m =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
22r−m

(2r+1)! ∑
m
2

i=� r+1
2 �

(−1)
m
2 +i+r(2i + r + 1)!
(2i − r)!

, m even,

22r−m+1

(m+1)(2r+1)! ∑
m−1

2
i=� r

2 �
(−1)

m+1
2 +i+r(i + 1)(2i + r + 2)!

(2i − r + 1)!
, m odd.

Theorem 1. ([46]) Suppose L2
W(Λ̃) is the square integrable function space according to the weight W(x, t) =

(2x − 1)2(2t − 1)2
√

x − x2
√

t − t2. Let g(x, t) ∈ L2
W(Λ̃) is considered with

∥∥∥ ∂6g(x,t)
∂x3∂t3

∥∥∥
2
≤ ς for some constant

ς > 0, satisfies the expansion g(x, t) =
∞
∑

i=0

∞
∑

j=0
ci,jJi(x)Jj(t). If

GN,M(x, t) =
N

∑
i=0

M

∑
j=0

ci,jJi(x)Jj(t), (8)

is an approximation of g(x, t), then

|g(x, t)− GN,M(x, t)| < ς

2N+M ,

∣∣∣∂g
∂x

(x, t)− ∂GN,M

∂x
(x, t)

∣∣∣ < ξ
N

2N+M−2 ,

∣∣∣∂2g
∂x2 (x, t)− ∂2GN,M

∂x2 (x, t)
∣∣∣ < �

N3

2N+M−8 ,

where ξ and � are two positive constants.

3. The SKCPs-Collocation Approach

In the following, we describe a numerical technique to solve problem (1)–(3). For this reason, we
consider the numerical solution of (1) as follows

u(x, t) � UN,M(x, t) =
N

∑
i=0

M

∑
j=0

δi,jJi(x)J̄j(t) = J(x)TCJ̄(t), (9)
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where

J(x) = [J0(x), . . . ,Ji(x), . . . ,JN(x)]T , (10)

J̄(t) = [J̄0(t), . . . , J̄j(t), . . . , J̄M(t)]T , (11)

in which Ji(x) = Ĵi((2/l)x − 1) on the interval L and J̄j(t) = Ĵi((2/T)t − 1) on the interval I .
Moreover

C =

⎛⎜⎝ δ0,0 · · · δ0,M
...

. . .
...

δN,0 · · · δN,M

⎞⎟⎠
(N+1)×(M+1)

,

is an unknown coefficients matrix.

Theorem 2. Let J̄(t) is the shifted SKCPs vector as (11), then

Dα
0,t J̄(t) = Φα(t), (12)

where Φα(t) is Caputo’s fractional derivative of the vector J̄(t) and is defined as

Φα(t) =

[
0,

1

∑
r=1

ψα
r,1(t), . . . ,

j

∑
r=1

ψα
r,j(t), . . . ,

M

∑
r=1

ψα
r,M(t)

]T

, (13)

where

ψα
r,j(t) =

Γ(r + 1)
TrΓ(r + 1 − α)

θ̄r,j tr−α.

Proof. Due to the analytic form (7), we have

Dα
0,tJ̄0(t) = θ̄0,0Dα

0,t(1) = 0, (14)

Also, we know that [7]

Dα
0,tt

r =
Γ(r + 1)

Γ(r + 1 − α)
tr−α. (15)

for r ≥ 1. So, for j = 1, . . . , M, we get

Dα
0,tJ̄j(t) =

j

∑
r=0

θ̄r,jDα
0,t(t/T)r =

j

∑
r=1

ψα
r,j(t)

in which ψα
r,j(t) =

Γ(r+1)
TrΓ(r+1−α)

θ̄r,jtr−α.

According to Equations (1) and (9) and by applying Theorem 2, we have

J(x)TCΦα(t) =
(
μ + ϑḂ(t)

)
Jxx(x)TCJ̄(t) + λJx(x)TCJ̄(t) + f (x, t), (16)

where
Jx(x) = [J ′

0(x), · · · ,J ′
i (x), · · · ,J ′

N(x)]
T ,

Jxx(x) = [J ′′
0 (x), · · · ,J ′′

i (x), · · · ,J ′′
N(x)]

T ,

and from the conditions (2) and (3) and Equation (9), we have
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J(0)TCJ̄(t) = ϕ(0, t), (17)

J(l)TCJ̄(t) = ϕ(l, t), (18)

J(x)TCJ̄(0) = η(x). (19)

Let x0 = 0, xN = l, and x1, . . . , xN−1, are the roots of JN−1(x). Also, suppose tj, j = 1, . . . , M,
are roots of J̄M(t). By considering these collocation nodes, we define

Λ = [J(x1), . . . , J(xi), . . . , J(xN−1)]
T , (20)

Λx = [Jx(x1), . . . , Jx(xi), . . . , Jx(xN−1)]
T , (21)

Λxx = [Jxx(x1), . . . , Jxx(xi), . . . , Jxx(xN−1)]
T , (22)

where the matrices Λ, Λx and Λxx are of the order (N − 1)× (N + 1) and

Ψ =
[
J̄(t1), . . . , J̄(tj), . . . , J̄(tM)

]
(M+1)×M , (23)

Ψα =
[
Φα(t1), . . . , Φα(tj), . . . , Φα(tM)

]
(M+1)×M . (24)

By evaluating (16) at (N − 1)× M collocation points (xi, tj) for i = 1, . . . , N − 1 and j = 1, . . . , M,
we have

ΛCΨα = ΛxxCΨB + λΛxCΨ +F , (25)

where
B = diag

(
μ + ϑb1, · · · , μ + ϑbj, · · · , μ + ϑbM

)
,

in which bj = B(tj)− B(tj−1), t0 = 0 and

F =
[

fi,j

]
(N−1)×M

, fi,j = f (xi, tj), i = 1, . . . , N − 1, j = 1, . . . , M.

Also, by evaluating (17) and (18) at collocation points tj and (19) at collocation points xi, we get

J(0)TCΨ = Υ0, (26)

J(l)TCΨ = Υl , (27)

Λ̄CJ̄(0) = Ῡ, (28)

where

Υ0 = [ϕ(0, t1), . . . , ϕ(0, tj), . . . , ϕ(0, tM)]T , Υl = [ϕ(l, t1), . . . , ϕ(l, tj), . . . , ϕ(l, tM)]T ,

Λ̄ = [J(x0), . . . , J(xi), . . . , J(xN)]
T , Ῡ = [η(x0), . . . , η(xi), . . . , η(xN)]

T .

Using the Kronecker product, Equation (25) transforms to

AX = Tvec, (29)

where
A = ΨαT ⊗ Λ − (ΨB)T ⊗ Λxx − λΨT ⊗ Λx,

and X = vec(C), Tvec = vec(F ). Also, Equations (26)–(28) are equivalent to

ĒX = Ῡ, E0X = Υ0, ElX = Υl , (30)

47



Symmetry 2020, 12, 904

where
Ē = J̄(0)T ⊗ Λ̄, E0 = ΨT ⊗ J(0)T , El = ΨT ⊗ J(l)T .

Thus, from Equations (29) and (30), we obtain a system of linear equations AX = B in which

A =
[
AT , ĒT , ET

0 , ET
l

]T
, B =

[
T T

vec, ῩT , ΥT
0 , ΥT

l

]T
.

Solving this system leads to an estimation UN,M(x, t) for the solution of (1)–(3), in the form (9).

4. Convergence Analysis

In the following, we examine the convergence of the approximate solution expressed in the
form (9) for the problem (1)–(3).

Theorem 3. Let UN,M(x, t) is the approximate solution obtained by the procedure presented in Section 3 and
u(x, t) is the exact solution of (1)–(3). Consider the residual error RN,M(x, t) of this numerical solution. Then,
E‖RN,M(x, t)‖∞ tends to zero, when N → ∞ and M → ∞.

Proof. Suppose UN,M(x, t), for (x, t) ∈ L× I , satisfies the equation

Dα
0,tUN,M(x, t) =

(
μ + ϑḂ(t)

) ∂2UN,M

∂x2 (x, t)

+λ
∂UN,M

∂x
(x, t) + f (x, t) +RN,M(x, t), (31)

where RN,M(x, t) is the residual function. Now, from Equations (1) and (31), we get

E‖RN,M(x, t)‖∞ ≤ E

∥∥∥Dα
0,t

(
u(x, t)− UN,M(x, t)

)∥∥∥
∞

+E

(
‖μ + ϑḂ(t)‖∞

∥∥∥uxx(x, t)− ∂2UN,M

∂x2 (x, t)
∥∥∥

∞

)
+|λ| E

∥∥∥ux(x, t)− ∂UN,M

∂x
(x, t)

∥∥∥
∞

. (32)

By using Theorem 1, we have∥∥∥ut(x, t)− ∂UN,M

∂t
(x, t)

∥∥∥
∞
= sup

(x,t)∈L×I

∣∣∣ut(x, t)− ∂UN,M

∂t
(x, t)

∣∣∣
<

θ1M
2N+M−2 ,

where θ1 is a positive constant, thus

E

∥∥∥Dα
0,t

(
u(x, t)− UN,M(x, t)

)∥∥∥
∞
≤ E

(∫ t

0

‖(t − τ)−α‖∞

Γ(1 − α)

∥∥∥uτ(x, τ)− ∂UN,M

∂τ
(x, τ)

∥∥∥
∞

dτ

)
<

θ1M
Γ(1 − α)2N+M−2E

(∫ t

0
‖(t − τ)−α‖∞dτ

)
.

Since 0 < τ < t ≤ T, hence, we get

E

∥∥∥Dα
0,t

(
u(x, t)− UN,M(x, t)

)∥∥∥
∞
<

θ1T1−α M
Γ(1 − α)2N+M−2 . (33)
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Also, from Theorem 1, we have∥∥∥uxx(x, t)− ∂2UN,M

∂x2 (x, t)
∥∥∥

∞
= sup

(x,t)∈L×I

∣∣∣uxx(x, t)− ∂2UN,M

∂x2 (x, t)
∣∣∣

<
θ2N3

2N+M−8 , (34)∥∥∥ux(x, t)− ∂UN,M

∂x
(x, t)

∥∥∥
∞
= sup

(x,t)∈L×I

∣∣∣ux(x, t)− ∂UN,M

∂x
(x, t)

∣∣∣
<

θ3N
2N+M−2 , (35)

where θ2 and θ3 are positive constants. Let γ̄ = ‖Ḃ(t)‖∞, then, from the relations (32)–(35), it can be
concluded that

E‖RN,M(x, t)‖∞ <
θ1T1−α M

Γ(1 − α)2N+M−2 + (|μ|+ γ̄|ϑ|) θ2N3

2N+M−8 + |λ| θ3N
2N+M−2

<
θ1T1−α M

Γ(1 − α)2N+M−8 + (|μ|+ γ̄|ϑ|) θ2N3

2N+M−8 + |λ| θ3N3

2N+M−8

< θ̂
M + 2N3

2N+M−8 , (36)

where

θ̂ = max{ θ1T1−α

Γ(1 − α)
, (|μ|+ γ̄|ϑ|) θ2, |λ|θ3}.

Moreover, for x ∈ ∂L and t ∈ I , UN,M(x, t) satisfies the following equation

E‖RN,M(x, t)‖∞ = E‖ϕ(x, t)− UN,M(x, t)‖∞

= E‖u(x, t)− UN,M(x, t)‖∞

= sup
(x,t)∈∂L×I

∣∣∣u(x, t)− UN,M(x, t)
∣∣∣ < θ4

2N+M , (37)

and for x ∈ L, we have

E‖RN,M(x, 0)‖∞ = E‖η(x)− UN,M(x, 0)‖∞

= E‖u(x, 0)− UN,M(x, 0)‖∞

= sup
x∈L

∣∣∣u(x, 0)− UN,M(x, 0)
∣∣∣ < θ5

2N+M . (38)

Therefore, from Equations (36)–(38), we can see that E‖RN,M(x, t)‖∞ tends to zero, when N,
M → ∞.

5. Applications and Results

We assess the applicability of our proposed approach to solve some stochastic heat equations of
fractional order.

To simulate the Brownian motion B(t), we employ the approach described in [36]. Consider a
discretization of B(t). We set t0 = 0 and let tj, j = 1, . . . , M, are the considered collocation points,
where ti < tj for i < j. Also, let Bj = B(tj) and

Δj = tj − tj−1, j = 1, . . . , M. (39)
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From the definition of Brownian motion B(t) on (ΩB,ℱB,PB), we know that ℬ(0) = 0 with
the probability 1. ℬ(τ)−ℬ(r) ∼ √

τ − rN (0, 1), for 0 ≤ r < τ ≤ T, where N (0, 1) is a normally
distributed random variable with zero mean and unit variance. Also, ℬ(τ2)−ℬ(τ1) and ℬ(ν2)−
ℬ(ν1) are independent for 0 ≤ τ1 < τ2 < ν1 < ν2 ≤ T. Thus, we let B0 = t0 with the probability
1, and

Bj = Bj−1 + dBj, j = 1, . . . , M, (40)

where each dBj is an independent random variable of the form
√

ΔjN (0, 1). Throughout the section,

unless stated otherwise, we assume that T = 1, l = 1 and N = M. Also, we evaluate the numerical
solution u(x, t) along P̄ discretized paths and finally, the average of the results over these paths
is considered.

The L∞-norm error is evaluated using the following definition:

‖EN‖∞ = max
1≤i,j≤N

∣∣u(ξi, τj)− UN(ξi, τj)
∣∣, (41)

where UN(ξi, τj) and u(x, t), are computed by the exact and numerical solutions defined in (9) at
the collocation points x = ξi and t = τj, respectively. The convergence order is defined by the
following formula:

CO = log N1
N2

‖EN1‖∞

‖EN2‖∞
, (42)

where ‖ENi‖∞ denotes the L∞-norm error for Ni (i = 1, 2) collocation points. The numerical
computations are performed on a personal computer using a 1.70 GHz processor and the codes
are written in Matlab software.

Example 1. Consider the time-fractional stochastic equation

Dα
0,tu(x, t) = Ḃ(t)uxx(x, t) + ux(x, t) + f (x, t),

subject to the conditions:

u(x, 0) = 0,

u(0, t) = 0, u(1, t) = α exp(1)t2,

where α ∈ (0, 1), B(t) is a Brownian motion and

f (x, t) =
αΓ(3)

Γ(3 − α)
t2−αx5 exp

(
x2
)
− αt2x4 exp

(
x2
)
(5 + 2x2)

−2αḂ(t)t2x3 exp
(

x2
)
(10 + 11x2 + 2x4).

u(x, t) = αt2x5 exp
(
x2) is the exact solution to the above problem.

Now, we evaluate u(x, t) along P̄ = 80 discretized Brownian paths. To approximate Ḃ(t), we use
the discretized scheme described at the beginning of this section. Figure 1 displays the exact and
approximate solution with α = 0.9 and Figure 2 shows the exact solution and its estimations for
different values of α, when N = 12. These figures confirm that the resulted numerical solutions have
good compatibility with the exact solution. Table 1 displays the l∞-norm errors and convergence
orders for α = 0.25, 0.75 and several values of N. Also, Figure 3 show the behaviour of the absolute
error of u(x, t) for different values of N, when α = 0.5. Table 1 and Figure 3 confirm the accuracy of
the obtained numerical approximations.
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Figure 1. The exact and numerical solution of Example 1 with α = 0.9.
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Figure 2. The exact and approximate solution for different values of α in Example 1.

Table 1. Example 1: The l∞-norm errors and convergence orders.

N
α = 0.25 α = 0.75

‖EN‖∞ CO ‖EN‖∞ CO

6 1.6754 × 10−2 − 1.1450 × 10−2 −
9 1.7591 × 10−4 11.2375 1.8956 × 10−3 4.4354

12 2.5055 × 10−7 22.7823 9.5343 × 10−6 18.3967
15 1.0902 × 10−9 24.3666 8.4121 × 10−8 21.1988
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Figure 3. The absolute errors for Example 1 when N = 12 (left) and N = 15 (right).
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Example 2. Suppose the time-fractional stochastic equation

Dα
0,tu(x, t) =

(
π + Ḃ(t)

)
uxx(x, t)− 2ux(x, t) + f (x, t),

where α ∈ (0, 1), B(t) is a Brownian motion, and

f (x, t) =
3

Γ(2 − α)
t1−α

(
x2 − 2tx

α − 2
+

2t2

(α − 2)(α − 3)

)
sin(πx)

−(π + Ḃ(t))(x + t)
[
6 sin(πx) + 6π(x + t) cos(πx)

−π2(x + t)2 sin(πx)
]
+ 2(x + t)2

(
π(x + t) cos(πx) + 3 sin(πx)

)
.

With these assumptions, the exact solution is u(x, t) = (x + t)3 sin (πx).

The numerical solution is evaluated along P̄ = 100 discretized Brownian paths. Table 2 displays
the l∞-norm errors and order of convergence for several values of α and N. This table shows the high
accuracy of the introduced scheme. Also, Figure 4 displays the exact and numerical solution of u(x, t)
when α = 0.5, N = 10 and Figure 5 indicates the absolute error together with the contour plot for
N = 16. It can be seen that the numerical solution is in well agreement with the exact solution.

Table 2. Example 2: The l∞-norm errors and convergence order.

N
α = 0.25 α = 0.75

‖EN‖∞ CO ‖EN‖∞ CO

6 7.6688 × 10−3 − 6.2094 × 10−3 −
9 2.8269 × 10−4 8.1401 1.3207 × 10−4 9.4964
12 1.7723 × 10−7 25.6347 1.6552 × 10−8 23.2270
15 9.9296 × 10−11 33.5528 7.3368 × 10−11 34.6026
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Figure 4. The exact and numerical solution at different levels of t for Example 2.
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Figure 5. The absolute error (left) and contour plot (right) for Example 2 with N = 16.

Example 3. Let

Dα
0,tu(x, t) =

(
1

π2 + ϑḂ(t)
)

uxx(x, t),

subject to:

u(0, t) = u(1, t) = 0,

u(x, 0) = sin(πx),

where α ∈ (0, 1) and B(t) is a Brownian motion.

The numerical solutions are evaluated along P̄ = 50 discretized Brownian paths. Figure 6 shows
the numerical solution at t = 1 for different values of α, when ϑ = 0.5 and N = 10. Figure 7 displays
the estimation of u(x, t) when ϑ = 0.15, 0.2, N = 8 and α = 1. The results are compared with wavelets
Galerkin (WG) method [30]. This figure confirms that the present method gives more smooth solution
than the numerical scheme in [30]. Also, Figures 8 and 9 indicate the approximate solutions and the
contour plots for several values of ϑ when α = 0.45. The results confirm that the employed approach
is very efficient.
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Figure 6. The numerical solution at t = 1 for different values of α in Example 3.
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Figure 7. The numerical solution obtained by the proposed method (left) and wavelets Galerkin
method [30] (right) for Example 3 with different values of ϑ when N = 8.
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Figure 8. The numerical approximation (left) and contour plot (right) for Example 3 with ϑ = 0.5.
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Figure 9. The numerical approximation (left) and contour plot (right) for Example 3 with ϑ = 1.2.
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6. Conclusions

According to numerous applications of FSPDEs, a new numerical scheme was introduced to
solve a class of stochastic heat equations of fractional order with additive noise subject to suitable
conditions. This numerical method was based on a collocation approach with the SKCPs basis functions.
The convergence of the proposed method was proved. Three illustrative examples were investigated
to authenticate the efficiency of the discussed approach. The obtained numerical results approved the
accuracy of this method.
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the applicability and strength of our results.
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1. Introduction

Consider the first order delay differential equation

x′(t) + p(t)x(τ(t)) = 0, t ≥ t0, (1)

where p, τ ∈ C([t0, ∞), [0, ∞)) and τ(t) < t for t ≥ t0, such that lim
t→∞

τ(t) = ∞.

A solution of Equation (1) is a function x(t) on [t̄, ∞), where t̄ = mint≥t0 τ(t), which is continuously
differentiable on [t0, ∞) and satisfies Equation (1) for all t ≥ t0. As customary, a solution of Equation (1) is
called oscillatory if it has arbitrarily large zeros. Equation (1) is said to be oscillatory if all its solutions are
oscillatory.

The oscillation of Equation (1) has been extensively studied for many decades; see [1–17]. As far as
these authors know, the earliest systematic study of the oscillation of Equation (1) was due to Myshkis [14],
who proved that Equation (1) is oscillatory when

lim sup
t→∞

(t − τ(t)) < ∞ and lim inf
t→∞

(t − τ(t)) lim inf
t→∞

p(t) >
1
e

.

In 1972, Ladas et al. [13] proved that Equation (1) is oscillatory if

L := lim sup
t→∞

∫ t

τ(t)
p(s)ds > 1, (2)

where the delay τ(t) is assumed to be a nondecreasing function.
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In 1979, Ladas [12] (for Equation (1) with constant delay) and in 1982, Koplatadze and Chanturija [10]
established the celebrated oscillation criterion

k := lim inf
t→∞

∫ t

τ(t)
p(s)ds >

1
e

. (3)

The oscillation of Equation (1) has been studied when 0 < k ≤ 1
e , L ≤ 1 and τ(t) is nondecreasing,

see [8,9,15,16] and the references cited therein. In most of these works, the oscillation criteria have
been formulated as relations between L and k. For example, Jaros̆ and Stavroulakis [8], Kon et al. [9],
Philos and Sficas [15], and Sficas and Stavroulakis [16] obtained the following criteria, respectively:

L >
ln(λ(k)) + 1

λ(k)
− 1 − k −

√
1 − 2k − k2

2
,

L > 2k +
2

λ (k)
− 1,

L > 1 − k2

2(1 − k)
− k2

2
λ(k),

and

L >
ln λ(k)− 1 +

√
5 − 2λ(k) + 2kλ(k)

λ(k)
, (4)

where λ(k) is the smaller real root of the equation λ = eλk.
The same problem has been considered for Equation (1) with non-monotone delays, see [2,4,11,17–19].

The latter case is much more complicated than the monotone delays case. In fact, according to Braverman
and Karpuz ([2], Theorem 1), condition (2) does not need to be sufficient for the oscillation of Equation (1)
if τ(t) is non-monotone. To overcome this difficulty, many authors used a nondecreasing function δ(t)
defined by:

δ(t) = max
s≤t

τ(s), t ≥ t0; (5)

hence, many results were obtained by using techniques similar to those of the monotonic delays case.
Most of these results were given by recursive formulas. Next, we give an overview of such results:

In 1994, Koplatadze and Kvinikadze [11] proved the following interesting result which requires the
definition of the sequence of functions {ψi}∞

i=1 as follows:

ψ1(t) = 0, ψi(t) = e
∫ t

τ(t) p(s)ψi−1(s)ds, i = 2, 3, . . . (6)

Theorem 1 ([11]). Let j ∈ {1, 2, ...} exist such that

lim sup
t→∞

∫ t

δ(t)
p(s) e

∫ δ(t)
δ(s) p(u)ψj(u)duds > 1 − c(k), (7)

where k, δ, and ψj, are defined respectively by (3), (5), and (6) and

c(k) =

{
0, i f k > 1

e ,
1−k−

√
1−2k−k2

2 , i f 0 ≤ k ≤ 1
e .

Then, Equation (1) is oscillatory.
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In 2011, Braverman and Karpuz [2] obtained the following sufficient condition for the oscillation of
Equation (1),

lim sup
t→∞

∫ t

δ(t)
p(s) e

∫ δ(t)
τ(s) p(u) duds > 1. (8)

In 2014, Stavroulakis [17] improved condition (8) to

lim sup
t→∞

∫ t

δ(t)
p(s) e

∫ δ(t)
τ(s) p(u) duds > 1 − 1 − k −

√
1 − 2k − k2

2
. (9)

In 2015, Infante et al. [19] proved that Equation (1) is oscillatory if one of the following conditions
is satisfied:

lim sup
t→∞

∫ t

g(t)
p(s) e

∫ g(t)
τ(s) p(u) e

∫ u
τ(u) p(v)dv

duds > 1, (10)

or

lim sup
ε→0+

(
lim sup

t→∞

∫ t

g(t)
p(s)e(λ(k)−ε)

∫ g(t)
τ(s) p(u)duds

)
> 1, (11)

where g(t) is a nondecreasing function satisfying that τ(t) ≤ g(t) ≤ t for all t ≥ t1 and some t1 ≥ t0.
In 2016, El-Morshedy and Attia [4] proved that Equation (1) is oscillatory if there exists a positive

integer n such that

lim sup
t→∞

(∫ t

g(t)
qn(s)ds + c(k∗)e

∫ t
g(t) ∑n−1

i=0 qi(s)ds
)
> 1, (12)

where k∗ := lim inf
t→∞

∫ t
g(t) p(s) ds, c, g are defined as before, and {qn(t)} is given by

q0(t) = p(t), q1(t) = q0(t)
∫ t

τ(t)
q0(s)e

∫ t
τ(s) q0(u)duds,

qn(t) = qn−1(t)
∫ t

g(t)
qn−1(s)e

∫ t
g(s) qn−1(u)duds, n = 2, 3, . . . .

Very recently, Bereketoglu et al. [18] proved that Equation (1) oscillates if for some � ∈ N the following
criterion holds

lim sup
t→∞

∫ t

g(t)
p(s)e

∫ g(t)
τ(s) P�(u)duds > 1 − c(k∗), (13)

where

P�(t) = p(t)
[

1 +
∫ t

g(t)
p(s)e

∫ t
τ(s) P�−1(u)duds

]
, P0(t) = p(t).

In this work, we obtain new sufficient criteria of recursive type for the oscillation of Equation (1),
when the delay is non-monotone and k∗ ≤ 1

e < L̃ < 1, where L̃ := lim sup
t→∞

∫ t
g(t) p(s)ds. In addition,

new practical lower limit-upper limit type criteria similar to those in [8,9,15,16] are obtained. These new
conditions improve some results in [2,5,8,9,11,13,16–19]. An illustrative example is given to show the
strength and applicability of our results.

2. Main Results

Throughout this work, we assume that c, g, k∗, λ, t1 are defined as above and gi(t) stands for the ith
composition of g.
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For fixed n ∈ N, we define {Rm,n(t)}, {Qm,n(t)}, eventually, as follows:

Rm,n(t) = 1 +
∫ t

τ(t) p(s)e
∫ t

τ(s) p(u)Qm−1,n(u)duds, m = 1, 2, . . . ,

Qi,j(t) = e
∫ t

τ(t) p(s)Qi,j−1(s)ds, i = 1, 2, . . . , m − 1, j = 1, 2, . . . , n

where
Q0,0(t) = (λ(k∗)− ε)

(
1 + (λ(k∗)− ε)

∫ g(t)
τ(t) p(s)ds

)
,

Q0,r(t) = e
∫ t

τ(t) p(s)Q0,r−1(s)ds, r = 1, 2, . . . , n
Qi,0(t) = Ri,n, i = 1, 2, . . . , m − 1

and ε ∈ (0, λ(k∗)).

Lemma 1. Assume that x(t) is an eventually positive solution of Equation (1). Then,

x(τ(t))
x(t)

≥ Rm,n(t),

for all sufficiently large t.

Proof. Since x(t) is an eventually positive solution of Equation (1), there exists a sufficiently large T > t1

such that x(t) satisfies eventually

x′(t) + p(t)x(g(t)) ≤ 0, t > T.

Using ([5], Lemma 2.1.2), for sufficiently small ε > 0 and sufficiently large t, we have

x(τ(t))
x(t)

≥ x(g(t))
x(t)

> λ(k∗)− ε. (14)

On the other hand, dividing both sides of Equation (1) by x(t) and integrating the resulting equation from
s to t, s ≤ t, we obtain

x(s) = x(t)e
∫ t

s p(u) x(τ(u))
x(u) du. (15)

Therefore,

x(τ(t)) = x(t)e
∫ t

τ(t) p(u) x(τ(u))
x(g(u))

x(g(u))
x(u) du

≥ x(t)e(λ(k
∗)−ε)

∫ t
τ(t) p(u) x(τ(u))

x(g(u)) du. (16)

Integrating Equation (1) from τ(ξ) to g(ξ),

x(g(ξ))− x(τ(ξ)) +
∫ g(ξ)

τ(ξ)
p(r)x(τ(r))dr = 0.

Using (14) as well as the nonincreasing nature of x(t), it follows that

x(g(ξ))− x(τ(ξ)) + (λ(k∗)− ε) x(g(ξ))
∫ g(ξ)

τ(ξ)
p(r)dr ≤ 0.
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Thus,
x(τ(ξ))
x(g(ξ))

≥ 1 + (λ(k∗)− ε)
∫ g(ξ)

τ(ξ)
p(r)dr.

This together with (16) gives

x(τ(t))
x(t)

≥ e(λ(k
∗)−ε)

∫ t
τ(t) p(u)

(
1+(λ(k∗)−ε)

∫ g(u)
τ(u) p(r)dr

)
du

= e
∫ t

τ(t) p(u)Q0,0(u)du
= Q0,1(t). (17)

Since (15) implies that x(τ(t))
x(t) = e

∫ t
τ(t) p(s) x(τ(s))

x(s) ds, (17) yields

x(τ(t))
x(t)

≥ e
∫ t

τ(t) p(s)Q0,1(s)ds
= Q0,2(t).

Repeating this process, we arrive at the following inequality

x(τ(t))
x(t)

≥ Q0,n(t). (18)

On the other hand, by integrating Equation (1) from τ(t) to t, we have

x(t)− x(τ(t)) +
∫ t

τ(t)
p(s)x(τ(s))ds = 0. (19)

Using (15), we obtain x(τ(s)) = x(t)e
∫ t

τ(s) p(u) x(τ(u))
x(u) du. Therefore, (19) implies that

x(τ(t))
x(t)

= 1 +
∫ t

τ(t)
p(s)e

∫ t
τ(s) p(u) x(τ(u))

x(u) duds = 0. (20)

Now, substituting (18) into (20), we have

x(τ(t))
x(t)

≥ 1 +
∫ t

τ(t)
p(s)e

∫ t
τ(s) p(u)Q0,n(u)duds = R1,n(t).

From the last inequality and (15), we obtain

x(τ(t))
x(t)

≥ e
∫ t

τ(t) p(s)R1,n(s)ds
= e

∫ t
τ(t) p(s)Q1,0(s)ds

= Q1,1(t).

It follows from this and (15) that

x(τ(t))
x(t)

≥ e
∫ t

τ(t) p(s)Q1,1(s)ds
= Q1,2(t).

A simple induction implies that

x(τ(t))
x(t)

≥ e
∫ t

τ(t) p(s)Q1,n−1(s)ds
= Q1,n(t).
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Substituting the previous inequality into (20), we get

x(τ(t))
x(t)

≥ 1 +
∫ t

τ(t)
p(s)e

∫ t
τ(s) p(u)Q1,n(u)duds = R2,n(t).

Therefore, by using the same arguments, as before, we obtain

x(τ(t))
x(t)

≥ 1 +
∫ t

τ(t)
p(s)e

∫ t
τ(s) p(u)Qm−1,n(u)duds = Rm,n(t).

Theorem 2. Assume that k∗ ≤ 1
e and m, n ∈ N such that

lim sup
t→∞

∫ t

g(t)
p(s)e

∫ g(t)
τ(s) p(u)e

∫ u
τ(u) p(v)Rm,n(v)dv

duds > 1 − c(k∗). (21)

Then, every solution of Equation (1) is oscillatory.

Proof. Assume the contrary, i.e., there exists a non-oscillatory solution x(t). Due to the linearity of
Equation (1), one can assume that x(t) is eventually positive. Now, integrating Equation (1) from g(t) to t,
we obtain

x(t)− x(g(t)) +
∫ t

g(t)
p(s)x(τ(s))ds = 0. (22)

By using (15), it follows that

x(τ(s)) = x(g(t))e
∫ g(t)

τ(s) p(u) x(τ(u))
x(u) du

= x(g(t))e
∫ g(t)

τ(s) p(u)e
∫ u

τ(u) p(v) x(τ(v))
x(v) dv

du.

Therefore, Lemma 1 yields

x(τ(s)) ≥ x(g(t))e
∫ g(t)

τ(s) p(u)e
∫ u

τ(u) p(v)Rm,n(v)dv
du.

Substituting into (22), we get

x(t)− x(g(t)) + x(g(t))
∫ t

g(t)
p(s)e

∫ g(t)
τ(s) p(u)e

∫ u
τ(u) p(v)Rm,n(v)dv

duds ≤ 0,

that is, ∫ t

g(t)
p(s)e

∫ g(t)
τ(s) p(u)e

∫ u
τ(u) p(v)Rm,n(v)dv

duds ≤ 1 − x(t)
x(g(t))

,

for sufficiently large t. Therefore,

lim sup
t→∞

∫ t

g(t)
p(s)e

∫ g(t)
τ(s) p(u)e

∫ u
τ(u) p(v)Rm,n(v)dv

duds ≤ 1 − lim inf
t→∞

x(t)
x(g(t))

.
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However, lim inf
t→∞

x(t)
x(g(t)) ≥ c(k∗) (see [5], Lemma 2.1.3). Consequently,

lim sup
t→∞

∫ t

g(t)
p(s)e

∫ g(t)
τ(s) p(u)e

∫ u
τ(u) p(v)Rm,n(v)dv

duds ≤ 1 − c(k∗),

which contradicts to (21).

The proofs of the following two results are basically similar to that of Lemma 1 and Theorem 2.

Theorem 3. Assume that k∗ ≤ 1
e and

lim sup
t→∞

∫ t

g(t)
p(s)e(λ(k

∗)−ε)
∫ g(t)

τ(s) p(u)du+(λ(k∗)−ε)2 ∫ g(t)
τ(s) p(u)

∫ g(u)
τ(u) p(v)dvduds > 1 − c(k∗), (23)

where ε ∈ (0, λ(k∗)). Then, all solutions of Equation (1) oscillate.

Theorem 4. Assume that k∗ ≤ 1
e and m, n ∈ N such that

lim sup
t→∞

∫ t

g(t)
p(s)e

∫ g(t)
τ(s) p(u)Rm,n(u)duds > 1 − c(k∗). (24)

Then, all solutions of Equation (1) oscillate.

Lemma 2. Let x(t) be an eventually positive solution of Equation (1). Then,

lim sup
t→∞

(∫ t

g(t)
p(s)ds + w(g(t))

∫ t

g(t)
p(s)

∫ g(t)

τ(s)
p(u)e

∫ g2(t)
τ(u) p(v)w(v)dvdu ds

)
= 1 − M,

where

M := lim inf
t→∞

x(t)
x(g(t))

, and w(t) :=
x(g(t))

x(t)
.

Proof. The positivity of x(t) implies that x(t) is an eventually non-increasing function. Integrating
Equation (1) from g(t) to t, we obtain

x(t)− x(g(t)) +
∫ t

g(t)
p(s)x(τ(s))ds = 0. (25)

Since τ(s) ≤ g(t) for s ≤ t, integrating Equation (1) from τ(s) to g(t), we have

x(τ(s)) = x(g(t)) +
∫ g(t)

τ(s)
p(u)x(τ(u))du.

Substituting into (25), we get

x(t)− x(g(t)) + x(g(t))
∫ t

g(t)
p(s)ds +

∫ t

g(t)
p(s)

∫ g(t)

τ(s)
p(u)x(τ(u))du ds = 0. (26)
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It is clear that τ(u) ≤ g2(t), for u ≤ g(t). Therefore, (15) implies that

x(τ(u)) = x(g2(t))e
∫ g2(t)

τ(u) p(v)w(v)dv.

From this and (26), it follows that

x(t)− x(g(t)) + x(g(t))
∫ t

g(t)
p(s)ds + x(g2(t))

∫ t

g(t)
p(s)

∫ g(t)

τ(s)
p(u)e

∫ g2(t)
τ(u) p(v)w(v)dvdu ds = 0.

Consequently,

∫ t

g(t)
p(s)ds + w(g(t))

∫ t

g(t)
p(s)

∫ g(t)

τ(s)
p(u)e

∫ g2(t)
τ(u) p(v)w(v)dvdu ds = 1 − x(t)

x(g(t))
.

Therefore,

lim sup
t→∞

(∫ t

g(t)
p(s)ds + w(g(t))

∫ t

g(t)
p(s)

∫ g(t)

τ(s)
p(u)e

∫ g2(t)
τ(u) p(v)w(v)dvdu ds

)
= 1 − lim inf

t→∞

x(t)
x(g(t))

.

The proof of the following theorem is a consequence of Lemmas 1, 2, and ([5], Lemmas 2.1.2 and 2.1.3).

Theorem 5. Assume that k∗ ≤ 1
e and m, n ∈ N such that

lim sup
t→∞

(∫ t

g(t)
p(s)ds + (λ(k∗)− ε)

∫ t

g(t)
p(s)

∫ g(t)

τ(s)
p(u)e

∫ g2(t)
τ(u) p(v)Rm,n(v)dvdu ds

)
> 1 − c(k∗),

where ε ∈ (0, λ(k∗)). Then, every solution of Equation (1) is oscillatory.

Theorem 6. Let L̃ := lim sup
t→∞

∫ t
g(t) p(s)ds < 1, 0 < k∗ ≤ 1

e ,

∫ g(t)

g(s)
p(u)du ≥

∫ t

s
p(u)du, for all s ∈ [g(t), t], (27)

and

A := lim inf
t→∞

∫ g(t)

τ(t)
p(s)ds. (28)

If one of the following conditions is satisfied:

(i) L̃ >
−1−Aλ(k∗)+

√
2+(1+Aλ(k∗))2+2k∗λ(k∗)

λ(k∗) ,

(ii) L̃ > 1 + k∗ + 1
λ(k∗) + A −

√(
1 + k∗ + 1

λ(k∗) + A
)2

− 2
(

k∗ + 1
λ(k∗)

)
,

then every solution of Equation (1) is oscillatory.
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Proof. Assume that Equation (1) has a nonoscillatory solution x(t); as usual, we assume that x(t) is an
eventually positive solution. Let

I(t) =
∫ t

g(t)
p(s)ds + w(g(t))

∫ t

g(t)
p(s)

∫ g(t)

τ(s)
p(u)e

∫ g2(t)
τ(u) p(v)w(v)dvdu ds, (29)

where w(t) = x(g(t))
x(t) . Therefore,

I(t) ≥
∫ t

g(t)
p(s)ds + w(g(t))

(∫ t

g(t)
p(s)

∫ g(s)

τ(s)
p(u) du ds +

∫ t

g(t)
p(s)

∫ g(t)

g(s)
p(u) du ds

)
.

In view of [5], Lemma 2.1.2) and (28), for sufficiently small ε, we obtain

I(t) ≥
∫ t

g(t)
p(s)ds + (λ(k∗)− ε)

(
(A − ε)

∫ t

g(t)
p(s)ds +

∫ t

g(t)
p(s)

∫ g(t)

g(s)
p(u) du ds

)
.

By using (27), it follows that

I(t) ≥ (1 + (λ(k∗)− ε) (A − ε))
∫ t

g(t)
p(s)ds + (λ(k∗)− ε)

∫ t

g(t)
p(s)

∫ t

s
p(u) du ds. (30)

However, ∫ t

g(t)
p(s)

∫ t

s
p(u) du ds =

1
2

(∫ t

g(t)
p(s)ds

)2
.

Therefore, (30) implies that

I(t) ≥ (1 + (λ(k∗)− ε) (A − ε))
∫ t

g(t)
p(s)ds +

λ(k∗)− ε

2

(∫ t

g(t)
p(s)ds

)2
. (31)

On the other hand, from [9], we have

lim inf
t→∞

x(t)
x(g(t))

≥ 1 − k∗ − 1
λ(k∗)

. (32)

Therefore, Lemma 2 and (32) imply that I(t) < k∗ + 1
λ(k∗) + ε for sufficiently large t. Thus, (31) yields

(1 + (λ(k∗)− ε) (A − ε))
∫ t

g(t)
p(s)ds +

λ(k∗)− ε

2

(∫ t

g(t)
p(s)ds

)2
≤ I(t) < k∗ +

1
λ(k∗)

+ ε,

or equivalently,

(λ(k∗)− ε)Λ2 + 2 (1 + (λ(k∗)− ε) (A − ε))Λ − 2k∗ − 2
λ(k∗)

− 2ε < 0,

where

Λ :=
∫ t

g(t)
p(s)ds.
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Then,

Λ <
− (1 + (λ(k∗)− ε) (A − ε)) +

√
(1 + (λ(k∗)− ε) (A − ε))2 + 2 (λ(k∗)− ε)

(
k∗ + 1

λ(k∗) + ε
)

λ(k∗)− ε
.

Thus,

L̃ ≤
− (1 + (λ(k∗)− ε) (A − ε)) +

√
(1 + (λ(k∗)− ε) (A − ε))2 + 2 (λ(k∗)− ε)

(
k∗ + 1

λ(k∗) + ε
)

λ(k∗)− ε
.

Now, letting ε → 0, we obtain

L̃ ≤
−1 − Aλ(k∗) +

√
2 + (1 + Aλ(k∗))2 + 2k∗λ(k∗)

λ(k∗)
.

This completes the proof of case (i).
To prove case (ii), integrating Equation (1) from g2(t) to g(t), we obtain

x(g(t))− x(g2(t)) +
∫ g(t)

g2(t)
p(s)x(τ(s))ds = 0,

which, by using the nonincreasing nature of x(t) and the assumption that τ(t) ≤ g(t), implies that

x(g(t))− x(g2(t)) + x(g2(t))
∫ g(t)

g2(t)
p(s)ds ≤ 0. (33)

In view of (27), we have ∫ g(t)

g2(t)
p(s)ds ≥

∫ t

g(t)
p(s)ds.

Substituting into (33), it follows that

x(g2(t))
x(g(t))

≥ 1

1 −
∫ t

g(t) p(s)ds
.

From this and (29), we obtain

I(t) ≥
∫ t

g(t)
p(s)ds +

1

1 −
∫ t

g(t) p(s)ds

∫ t

g(t)
p(s)

∫ g(t)

τ(s)
p(u)du ds.

Again Lemma 2 and (32) imply for sufficiently small ε that

∫ t

g(t)
p(s)ds +

1

1 −
∫ t

g(t) p(s)ds

∫ t

g(t)
p(s)

∫ g(t)

τ(s)
p(u)du ds ≤ I(t) < k∗ +

1
λ(k∗)

+ ε. (34)
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However, as in the proof of case (i), we have

∫ t

g(t)
p(s)

∫ g(t)

τ(s)
p(u)du ds =

(∫ t

g(t)
p(s)

∫ g(s)

τ(s)
p(u) du ds +

∫ t

g(t)
p(s)

∫ g(t)

g(s)
p(u) du ds

)
≥
(
(A − ε)

∫ t

g(t)
p(s)ds +

∫ t

g(t)
p(s)

∫ t

s
p(u) du ds

)
= (A − ε)

∫ t

g(t)
p(s)ds +

1
2

(∫ t

g(t)
p(s)ds

)2
. (35)

Combining the inequalities (34) and (35), we obtain

2Λ1(1 − Λ1) + 2 (A − ε)Λ1 + Λ2
1 − 2α (ε) (1 − Λ1) < 0,

where

Λ1 =
∫ t

g(t)
p(s)ds, α (ε) = k∗ +

1
λ(k∗)

+ ε.

Thus,
Λ2

1 − 2 (1 + α (ε) + A − ε)Λ1 + 2α (ε) > 0,

which implies that Λ1 < 1 + α (ε) + A − ε −
√
(1 + α (ε) + A − ε)2 − 2α (ε), and hence

L̃ = lim sup
t→∞

∫ t

g(t)
p(s)ds ≤ 1 + α (ε) + A − ε −

√
(1 + α (ε) + A − ε)2 − 2α (ε).

Letting ε → 0, we obtain

L̃ ≤ 1 + k∗ +
1

λ(k∗)
+ A −

√(
1 + k∗ +

1
λ(k∗)

+ A
)2

− 2
(

k∗ +
1

λ(k∗)

)
.

Remark 1.

(i) Condition (27) is satisfied if (see [9,16])

p(g(t))g′(t) ≥ p(t), eventually for all t.

(ii) It is easy to show that the conclusion of Theorem 6 is valid, if p(t) > 0 and condition (27) is replaced by

lim inf
t→∞

p(g(t))g′(t)
p(t)

= 1.

Corollary 1. Assume that 0 < k ≤ 1
e , L < 1 and τ(t) is a nondecreasing continuous function such that

∫ τ(t)

τ(s)
p(u)du ≥

∫ t

s
p(u)du, for all s ∈ [τ(t), t].
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If

L > min

⎧⎨⎩−1 +
√

3 + 2kλ(k)
λ(k)

, 1 + k +
1

λ(k)
−
√

1 +
(

k +
1

λ(k)

)2
⎫⎬⎭ , (36)

then Equation (1) is oscillatory.

Remark 2.

1- Condition (21), with n = 1 and n = 2, improves conditions (2), (8), (9) and (10), respectively.
2- Condition (23) improves condition (11).
3- Condition (24), with n = 1, improves conditions (13) with � = 1.
4- It is easy to see that

−1 +
√

3 + 2kλ(k)
λ(k)

≤ ln λ(k)− 1 +
√

5 − 2λ(k) + 2kλ(k)
λ(k)

,

for all λ(k) ∈ [1, e]. Therefore, condition (36) improves condition (4).

The following example illustrates the applicability and strength of our result.

Example 1. Consider the first order delay differential equation

x′(t) + p(t)x(τ(t)) = 0, t ≥ 2, (37)

where (See Figure 1)
τ(t) = t − 1 − α sin2 (νπ (t + α)) + α,

and

p(t) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
(1−α)e , t ∈ [2n, 2n + 1 − α],

1
α(1−α)

(
β − 1

e

)
(t − 2n − 1) + β

(1−α)
, t ∈ [2n + 1 − α, 2n + 1],

β
(1−α)

, t ∈ [2n + 1, 2n + 2 − α],
−1

α(1−α)

(
β − 1

e

)
(t − 2n − 2) + 1

(1−α)e , t ∈ [2n + 2 − α, 2n + 2],

where n ∈ N, α = 0.0001, β = 0.505 and ν = 20, 000. Throughout our calculations, we take g = δ. It is
clear, from the definition of δ and τ, that

t − 1 ≤ τ(t) ≤ δ(t) ≤ t − 1 + α.

Notice that

k∗ = k = lim inf
t→∞

∫ t

τ(t)
p(s)ds = lim

n→∞

∫ 2n+1−α

τ(2n+1−α)
p(s)ds = lim

n→∞

∫ 2n+1−α

2n
p(s)ds =

1
e

. (38)

Then, λ(k) = e, and 1−k−
√

1−2k−k2

2 ≈ 0.1365429862.
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Figure 1. The graph of τ.

Since

p(t)R1,1(t) = p(t)

⎡⎣1 +
∫ t

τ(t)
p(s)e

∫ t
τ(s) p(u)e

(λ(k)−ε)
∫ u

τ(u) p(η)
(

1+(λ(k)−ε)
∫ δ(η)

τ(η)
p(r)dr

)
dη

duds

⎤⎦ ,

for ε = 0.0001, we have

p(t)R1,1(t) ≥
1

(1 − α) e

[
1 +
∫ t

t−1+α

1
(1 − α) e

e
∫ t

s−1+α
1

(1−α)e e
(λ(k)−ε)

∫ u
u−1+α

1
(1−α)e dη

duds

]
≈ 1.00006322.

Now, assume that

J(t) =
∫ t

δ(t)
p(s) exp

(∫ δ(t)

τ(s)
p(u)R1,1(u)du

)
ds.
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Then,

J(2n + 2 − α) =
∫ 2n+2−α

δ(2n+2−α)
p(s) exp

(∫ δ(2n+2−α)

τ(s)
p(u)R1,1(u)du

)
ds

≥
∫ 2n+2−α

2n+1
p(s) exp

(∫ 2n+1−α

s−1+α
p(u)R1,1(u)du

)
ds

≥
∫ 2n+2−α

2n+1

β

(1 − α)
exp
(

1.00006322
∫ 2n+1−α

s−1+α
du
)

ds

> 0.867626.

Therefore,

lim sup
t→∞

J(t) ≥ lim
n→∞

J(2n + 2 − α) ≥ 0.867626 > 1 − 1 − k −
√

1 − 2k − k2

2
≈ 0.8634570138.

Consequently, Theorem (4) with n = m = 1 implies that Equation (37) is oscillatory. However, by using (38),
condition (3) does not hold.

Let

J1(t) =
∫ t

δ(t)
p(s) exp

(∫ δ(t)

τ(s)
p(u) exp

(∫ u

τ(u)
p(v)dv

)
du
)

ds.

Then,

J1(t) ≤
∫ t

t−1

β

(1 − α)
exp
(∫ t−1+α

s−1

β

(1 − α)
exp
(∫ u

u−1

β

(1 − α)
dv
)

du
)

ds ≈ 0.7901391991.

Consequently, lim sup
t→∞

J1(t) < 0.79014, which means that conditions (7) with j = 3 and (10) fail to apply.

In addition, since

∫ t

δ(t)
p(s) exp

(∫ δ(t)

τ(s)
p(u)du

)
<
∫ t

t−1

β

(1 − α)
exp
(∫ t−1+α

s−1

β

(1 − α)
du
)

,

it follows that

lim sup
t→∞

∫ t

δ(t)
p(s) exp

(∫ δ(t)

τ(s)
p(u)du

)
< 0.6571023948 < 1 − 1 − k −

√
1 − 2k − k2

2
≈ 0.8634570138.

Therefore, none of the conditions (7) with j = 2, (8) and (9) are satisfied.
Define

J2(t) =
∫ t

δ(t)
p(s)

∫ s

τ(s)
p(u) exp

(∫ s

τ(u)
p(v)dv

)
du ds + c(k) exp

(∫ t

δ(t)
p(s)ds

)
.

It follows that

J2(t) ≤
∫ t

t−1

β

(1 − α)

∫ s

s−1

β

(1 − α)
exp
(∫ s

u−1

β

(1 − α)
dv
)

du ds + c(k) exp
(∫ t

t−1

β

(1 − α)
ds
)

< 0.776165,

so lim sup
t→∞

J2(t) ≤ 0.776165. Thus, condition (12) with n = 1 fails to apply.

72



Symmetry 2020, 12, 718

Now, let us define the following functions:

J3(t, ε) =
∫ t

δ(t)
p(s) exp

(
(λ(k)− ε)

∫ δ(t)

τ(s)
p(u)du

)
,

and

J4(t) =
∫ t

δ(t)
p(s) exp

(∫ δ(t)

τ(s)
p(u)F1(u)du

)
ds,

where

F1(t) = 1 +
∫ t

δ(t)
p(v) exp

(∫ t

τ(v)
p(u)du

)
dv.

Since

F1(t) ≤ 1 +
∫ t

t−1

β

1 − α
exp
(∫ t

v−1

β

1 − α
du
)

dv ≈ 2.088615495,

and λ(k)− ε < e, it follows that J3(t, ε) < Ge(t) and J4(t) < G2.088615495(t), where Gω(t) is defined by

Gω(t) =
∫ t

δ(t)
p(s) exp

(
ω
∫ δ(t)

τ(s)
p(u)du

)
ds, for ω > 0.

Next, we estimate the upper limit of Gω(t) for ω = e and ω = 2.088615495.
For 0 ≤ ζ ≤ 1 − α, we have

Gω(2n + ζ) =
∫ 2n+ζ

δ(2n+ζ)
p(s) exp

(
ω
∫ δ(2n+ζ)

τ(s)
p(u)du

)
ds

≤
∫ 2n+ζ

2n+ζ−1
p(s) exp

(
ω
∫ 2n+ζ−1+α

s−1
p(u)du

)
ds

=
∫ 2n−α

2n+ζ−1
p(s) exp

(
ω
∫ 2n+ζ−1+α

s−1
p(u)du

)
ds

+
∫ 2n

2n−α
p(s) exp

(
ω
∫ 2n+ζ−1+α

s−1
p(u)du

)
ds

+
∫ 2n+ζ

2n
p(s) exp

(
ω
∫ 2n+ζ−1+α

s−1
p(u)du

)
ds,

which implies that

Gω(2n + ζ) ≤
∫ 2n−α

2n+ζ−1

β

(1 − α)
exp
(

ω
∫ 2n−1−α

s−1

1
(1 − α) e

du + ω
∫ 2n+ζ−1+α

2n−1−α

β

(1 − α)
du
)

ds

+
∫ 2n

2n−α

β

(1 − α)
exp
(

ω
∫ 2n+ζ−1+α

s−1

β

(1 − α)
du
)

ds

+
∫ 2n+ζ

2n

1
(1 − α) e

exp
(

ω
∫ 2n+ζ−1+α

s−1

β

(1 − α)
du
)

ds

≈ 1
ω

(
1.372732323 eω (0.3679804513+0.1371342722 ζ) − 0.3727323230 e0.0001010101010 ω (5000 ζ+1)

−e0.00005050505050 ω (10000 ζ+1) + 1.980198020 e0.5050505050 ω ζ−1+0.00005050505050 ω

−1.980198020 e0.00005050505050 ω−1
)

.

Therefore, G2.088615495(2n + ζ) < 0.7725 and Ge(2n + ζ) < 0.9162 for all ζ ∈ [0, 1 − α].
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In addition, if 1 − α ≤ ζ ≤ 1, then

Gω(2n + ζ) ≤
∫ 2n

2n+ζ−1
p(s) exp

(
ω
∫ 2n+ζ−1+α

s−1
p(u)du

)
ds

+
∫ 2n+ζ

2n
p(s) exp

(
ω
∫ 2n+ζ−1+α

s−1
p(u)du

)
ds.

Therefore,

Gω(2n + ζ) ≤
∫ 2n

2n+ζ−1

β

(1 − α)
exp
(

ω
∫ 2n+ζ−1+α

s−1

β

(1 − α)
du
)

ds

+
∫ 2n+1−α

2n

1
(1 − α) e

exp
(

ω
∫ 2n+ζ−1+α

s−1

β

(1 − α)
du
)

ds

+
∫ 2n+ζ

2n+1−α

β

(1 − α)
exp
(

ω
∫ 2n+ζ−1+α

s−1

β

(1 − α)
du
)

ds

≈ 1
ω

(
e0.5051010101ω − e0.00005050505050ω(10000ζ+1) + 1.980198020e−1+0.5050505050ωζ+0.00005050505050ω

−1.980198020e−1+0.5050505050ωζ−0.5049494949ω + e0.0001010101010ω(5000.0ζ−4999) − e0.00005050505050ω

)
.

Thus, G2.088615495(2n + ζ) < 0.6529 and Ge(2n + ζ) < 0.7899 for all ζ ∈ [1 − α, 1].
Using similar arguments, we obtain:

G2.088615495(2n + ζ + 1) < 0.7603, Ge(2n + ζ) < 0.8737 for all ζ ∈ [0, 1 − α]

and
G2.088615495(2n + ζ + 1) < 0.7603, Ge(2n + ζ) < 0.8681 for all ζ ∈ [1 − α, 1].

Then,
G2.088615495(t) < 0.7725, for all t ∈ [2n, 2n + 2], n ∈ N,

and
Ge(t) < 0.9162, for all t ∈ [2n, 2n + 2], n ∈ N.

Consequently,

lim sup
ε→0+

(
lim sup

t→∞
J3(t, ε)

)
≤ lim sup

t→∞
Ge(t) ≤ 0.9162 < 1,

and

lim sup
t→∞

J4(t) ≤ lim sup
t→∞

G2.088615495(t) ≤ 0.7726 < 1 − 1 − k −
√

1 − 2k − k2

2
≈ 0.8634570138.

Then, conditions (11) and (13) with l = 1 respectively fail to apply.
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1. Introduction

In 2017 [1], the authors studied both Lie and Noether symmetries of a Lane-Emden-Klein-Fock
system with central symmetry with power functions namely,

utt − urr −
n
r

ur +
γvq

rn = 0,

vtt − vrr −
n
r

vr +
αup

rn = 0, (1)

where p, n, γ, α, q are non-zero constants. In fact, when n = 2, γ = α = 1, system (1) becomes

utt − urr −
2
r

ur +
vq

r2 = 0,

vtt − vrr −
2
r

vr +
up

r2 = 0. (2)

System (2) has been studied in [2] for both Lie and Noether symmetries together with the
associated conservation laws.

Systems of this type occur in several physical phenomena, see, for example, Refs. [1–4] and
references therein. These type of system can also be viewed as a natural extension of the famous
two-component generalization of the nonlinear wave equation, viz,

utt − urr −
m
r

ur − up = 0, (3)
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with the real-valued function u = u(t, r), and p representing the interaction power while the independent
variables (t, r) symbolize time and radial coordinates respectively in m �= 0 dimensions [4].

In 2019 [5], the authors studied the generalization of system (1) where the power functions vq and
up are replaced with arbitrary elements namely, h(v) and g(u) respectively. Thus system (1) becomes

utt − urr −
n
r

ur +
h(v)
rn = 0,

vtt − vrr −
n
r

vr +
g(u)

rn = 0. (4)

It is worth mentioning that, if the parameter n = 0 in system (1), then system (1) reduces to the
Lane-Emden system

uxx + uyy + vp = 0,

vxx + vyy + uq = 0, (5)

under the complex transformation (x, y, u, v) → (t, ir, u, v), where p and q are non-zero constants.
This system has been extensively studied for its Noether and Lie symmetries [6]. Furthermore, if the
parameter n = 0, in system (4), then system (4) transforms to a generalized Lane-Emden system

uxx + uyy + h(v) = 0,

vxx + vyy + g(u) = 0, (6)

under the aforementioned complex transformation. In [7], authors applied the classical symmetry
method to investigate the symmetries of system (6).

In [5], the authors applied the method of modern group analysis to study a generalized coupled
Lane-Emden-Klein-Gordon-Fock system with central symmetry (4). Motivated by the recent results
in [5], we study the aforemention system (4). To the authors’ knowledge, the method of Noether
symmetry analysis has not been used in the study of a generalized Lane-Emden-Klein-Fock system
with central symmetry (4). Thus in this paper, we aim to compensate for this absence by carrying out a
complete Noether symmetry classification of system (4) and derive the connected conservation laws of
system (4). Since system (4), has a Lagrangian structure, thus the knowledge of Noether theorem [8]
gives us an elegant way to construct conservation of system (4).

The structure of this paper is as follows. Firstly, we seek to establish the admitted
Noether symmetries of a generalized coupled Lane-Emden-Klein-Gordon-Fock system with central
symmetry (4) associated with the standard Lagrangian. Next, in Section 2, conservation laws connected
with the admitted Noether symmetries are derived. Concluding remarks are summarised in Section 3.

2. Complete Noether Symmetries Analysis

Several authors have done much work on Noether classification for a system of PDEs. See for
example [6,7,9]. Here we perform a complete Noether symmetry analysis of system (4) with respect to
the standard Lagrangian. System (4) has a Lagrangian structure. This prompts the following Lemma.

Lemma 1. The generalized coupled Lane-Emden-Klein-Gordon-Fock system with central symmetry (4)
establishes the Euler-Lagrange equations with the functional

J(u, v) =
∫ ∞

0

∫ ∞

0
L(t, r, u, v, ut, vt, ur, vr)dtdr,

where

L =
1
n

(
rnutvt − rnurvr −

∫
h(v)dv −

∫
g(u)du

)
. (7)
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is the connected function of Lagrange.

Proof. The insertion of L in the Euler-Lagrange equations [6,9] gives

δL
δu

=
∂L
∂u

− Dt

(
∂L
∂ut

)
− Dr

(
∂L
∂ur

)
,

= − g(u)
n

− 1
n

Dt(rnvt)−
1
n

Dr(−rnvr),

= − g(u)
n

− rn

n
vtt −

1
n
(−nrn−1vr − rnvrr),

= vtt − vrr −
n
r

vr +
g(u)

rn = 0,

δL
δv

=
∂L
∂v

− Dt

(
∂L
∂vt

)
− Dr

(
∂L
∂vr

)
,

= − h(v)
n

− 1
n

Dt(rnut)−
1
n

Dr(−rnur),

= − h(v)
n

− rn

n
utt −

1
n
(−nrn−1ur − rnurr),

= utt − urr −
n
r

ur +
h(v)
rn = 0,

Hence this complete the proof.

Let x = (x1, · · · , xn) be n independent variables and u = (u1, · · · , um) m dependent variables.
An operator (the sum over repeated indices is presupposed)

X = ξ i(x, u)
∂

∂xi + ηα(x, u)
∂

∂uα
(8)

is called Noether point symmetry generator of the coupled system (4) connected to the Lagrangian L in
(7) if the Killing-type equation,

X(1)L+ Di(ξ
i)L = Di Ai, (9)

holds for some point-dependent potential terms A = (Ai) where Ai = Ai(t, r, u, v), i = 1, 2. We now
revisit the celebrated Noether Theorem [6,8], that is, corresponding to each Noether symmetry,
there exist a vector T = (Ti) with components

Ti = ξ iL+
∂L
δuj

i

(ηj − uj
sξs)− Ai, (10)

which is a conserved vector of system (4). The solution of (9) leads to overdetermining systems of
PDEs. Solving the resulting systems of PDEs prompts the following results.

τ = a(t, r),

ξ = b(t, r),

η1 = −dv(t, r, v)u − n
r

bu + k(t, r),

η2 = d(t, r, v),

A1 =
rn

n
dtu +

rn

n
ktv + s(t, r),

A2 = − rn

n
dru − rn

n
krv + w(t, r),
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(dvu − k)g(u) +
n
r

bug(u)− d f (v)− (br + at)

[ ∫
h(v)dv +

∫
g(u)du

]
= rn(dtt − drr)u + rn(ktt − krr)v − nrn−1(dru + krv) + n(st + wr). (11)

A complete analysis of Equation (11) yields the following results.

Theorem 1. Suppose n �= 0, h(v) and g(u) are arbitrary functions, then the Noether generator of a generalized
coupled Lane-Emden-Klein-Gordon-Fock system with central symmetry (4) and the associated conservation laws
are given by (12) ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X1 =
∂

∂t
,

Ai = 0,

T1
1 = − rn

n utvt − rn

n urvr − 1
n

∫
h(v)dv − 1

n

∫
g(u)du,

T2
1 = rn

n utvr +
rn

n urvt.

(12)

Theorem 2. Let the elements h(v) = αv + β, g(u) = γu + λ, with α, γ, β, λ are constants, α, γ �= 0 and n
arbitrary. Then the Noether symmetries of system (4) and the connected conserved vectors are (12) and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

X2 = k(t, r)
∂

∂u
+ f (t, r)

∂

∂v
, A1 =

rn

n
u ft +

rn

n
ukt, A2 = − rn

n
u fr −

rn

n
ukr,

with ktt − krr − n
r kr +

α
rn f = 0, ftt − frr − n

r fr +
γ
rn k = 0,

T1
2 = rn

n f ut +
rn

n kvt − rn

n u ft − rn

n vkt,
T2

2 = rn

n u fr +
rn

n vkr − rn

n f ur − rn

n kvr.

(13)

Theorem 3. Suppose that h(v) = γvq, g(u) = αup, α, γ �= 0. Then the Noether operators of system (4) and
the associated conservation laws are as follows;

(i) if n =
2(q + p + 2)
(p + 1)(q + 1)

p, q �= 0,±1, then we have (12) and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X2 = t
∂

∂t
+ r

∂

∂r
− 2

p + 1
u

∂

∂u
− 2

q + 1
v

∂

∂v
,

Ai = 0,

T1
2 = − trn

n
(utvt + urvr)−

1
n(p + 1)

(αtup+1 + 2rnuvt)−
1

n(q + 1)
(γtvq+1 + 2rnutv)−

rn+1

n
(vtur + utvr),

T2
2 = − rn+1

n
(utvt + urvr)−

1
n(p + 1)

(αrup+1 − 2rnuvr)−
1

n(q + 1)
(γrvq+1 − 2rnurv)+

trn

n
(vtur + utvr).

(ii) if p = q = −1, γ = α, n arbitrary. Here we get the generic case (12) and⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X3 = u
∂

∂u
− v

∂

∂v
,

Ai = 0,

T1
3 =

rn

n
(uvt − utv),

T2
3 =

rn

n
(urv − uvr).

It should be noted that in any other case one recovers (12). It should also be observed that when p = q = 1, this
falls into Theorem 2.

Theorem 4. Let the elements h(v) = αvp, g(u) = γe−mu, α, γ, m �= 0, p �= −1. Then the Noether
generators of system (4) and the corresponding conservation laws are;
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(i) if n =
2

p + 1
, γ = α, n, m arbitrary. Here the generic case (12) extends by one Noether generator with

the associated conservation laws;⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
X2 = tm(p + 1)

∂

∂t
+ rm(p + 1)

∂

∂r
+ 2(p + 1)

∂

∂u
− 2mv

∂

∂v
,

Ai = 0,
T1

2 = − rn

n mturvr − rn

n mtutvt − mα
n(p+1) tvp+1 + γt

n e−mu + 2rn

n vt − mrn+1

n urvt − mrnvut − mrn+1

n vrut,

T2
2 = rn+1

n mutvt +
rn+1

n murvr − mα
n(p+1) rvp+1 + γ

n re−mu − 2rn

n vr +
rn

n mtutvr + rnmvur +
rn

n mtvtur.
It should be noted that in any other case one recovers (12). This analysis will also be encountered in Theorem 5.

Theorem 5. Suppose that h(v) = αeλv, g(u) = γuq, q, γ, α �= 0. Then the Noether operators of system (4)
and the associated conserved vectors are;

(i) if n =
2

q + 1
, γ = α, n, λ arbitrary. In this case, the generic case (12) enlarges by one operator with the

following conserved vectors;⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
X2 = tλ(q + 1)

∂

∂t
+ rλ(q + 1)

∂

∂r
+ 2(q + 1)

∂

∂u
− 2λv

∂

∂v
,

Ai = 0,
T1

2 = − rn

n λturvr − rn

n λtutvt − γλ
n(q+1) tup+1 + αt

n e−λv + 2rn

n ut − λrn+1

n urvt − λrnuvt − λrn+1

n vrut,

T2
2 = rn+1

n λutvt +
rn+1

n λurvr − λγ
n(q+1) ruq+1 + α

n re−λv − 2rn

n ur +
rn

n λtvtur + rnλuvr +
rn

n λtutvr.
It should be observed that in any other case one recovers (12).

The aforementioned theorems can be proved by inserting the values of Xi, n, h(v) and g(u)
into Equation (11) and these will satisfy Equation (11). Moreover, substituting these values into
Equation (10) one obtains the associated Ti. These Ti then satisfy the divergence condition.

Remark 1. It is worth mentioning that for any case that do not fall in Theorems 2–5, the Noether algebra is
one-dimentional and is generated by X1. It should be noted that Theorem 2 cannot be directly obtained as a
consequence of the results of [1], since the functions h(v) and g(u) are not linear, but affine functions, hence
these give some new results. In addition, Theorems 4 and 5 exploit new forms of h(v) and g(u) which also lead
to some new results. The cases when h(v) and g(u) are constants are discarded.

3. Concluding Remarks

A complete Noether symmetry classification of the generalized coupled Lane-Emden-
Klein-Gordon-Fock system with central symmetry (4) was carried out. Several functional forms
of the elements h(v) and g(u) which resulted in Noether point symmetries were derived. Thereafter,
conservation laws connected to the Noether point symmetries were obtained. Conservation laws are of
undisputed significance. From the mathematical point of view, when analyzed, they can be employed
to detect integrability. Although conservation laws are useful in the analysis of solutions of differential
equations, we will exclude this analysis for our future work. The results of the problem under study
were motivated by the recent work in [1]. However, the results derived therein were not complete
since the function h(v) and g(u) were only considered to be power functions. However, in the present
work, the function h(v) and g(u) were consider to be arbitrary, and this resulted in some new and
more general results. The authors thank the anonymous referees whose comments helped to improve
the paper.
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Abstract: Space non-integer order convection–diffusion descriptions are generalized form of integer
order convection–diffusion problems expressing super diffusive and convective transport processes.
In this article, we propose finite difference approximation for space fractional convection–diffusion
model having space variable coefficients on the given bounded domain over time and space. It is
shown that the Crank–Nicolson difference scheme based on the right shifted Grünwald–Letnikov
difference formula is unconditionally stable and it is also of second order consistency both in temporal
and spatial terms with extrapolation to the limit approach. Numerical experiments are tested to
verify the efficiency of our theoretical analysis and confirm order of convergence.

Keywords: Crank–Nicolson scheme; Shifted Grünwald–Letnikov approximation; space fractional
convection-diffusion model; variable coefficients; stability analysis
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1. Introduction

Fractional differential equations (FDE) have attracted the attention of many researchers and
scientists due to their importance in different fields of study such as viscoelasticity, fluid mechanics,
physics, biology, engineering, and flows in porous media (see [1–6] and the references cited therein).
As different experiments and implementations have shown, non-integer space derivatives have been
used to develop anomalous diffusion to which a particle spreads at a rate inconsistent with the
integer Brownian motion problem in the direction of both time and space. When non-integer order
is replaced by the second order derivative in a diffusion equation, it acts to enhance the process
which we call super-diffusion [7–12]. Laboratory experiments and field-scale tracer dispersion
breakthrough curves (BTCs) are suitable for exhibiting early time arrivals that are not captured
by the integer order derivatives and these non-Fickian phenomena can be controlled by non-classical
order convection–diffusion and dispersion equations (FCDE) as it was explained in [13]. To increase the
number of applications, there should be significant interest in constructing numerical schemes to solve
a well known space fractional convection–diffusion model that has space variable coefficients. In most
cases, non-integer order differential problems have no exact solution, so various iterative and numerical
approximations [3,9,14] must be pointed out in advance. In general, these kinds of approaches have
become important in finding the approximate solutions of fractional differential equations, so extensive
numerical methods have been developed for space fractional convection–diffusion equations such
as the spectral method [15], finite volume method [16,17], finite difference method [2,9,14,18–26],
finite element method [27–30] and collocation method [31,32].

Symmetry 2020, 12, 485; doi:10.3390/sym12030485 www.mdpi.com/journal/symmetry83
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When the discretization of domain over the region (which belongs to the geometry) is not complex,
finite difference approximations are easier and faster than other methods (see [16,33] for further details)
to get numerical solutions. In [34], the author used an unconditional stable difference method for
time–space fractional convection–diffusion problems with space variable coefficients with first order
convergence both in time and space. The Crank–Nicolson finite difference method for one-sided space
fractional diffusion equations using an extrapolation method to get second order convergence was
studied in [23]. In [9], the explicit and implicit finite difference methods are discussed for a one-sided
space fractional convection–diffusion equation with first order convergence in both time and space.
A first-order implicit finite difference discretization method for a two-sided space fractional diffusion
equation (SFDE) is also applied in [10]. Recently, an unconditionally stable second order accurate
difference method for a two-sided time–space fractional convection–diffusion equation was constructed
in [35] using the weighted and Shifted Grünwald–Letnikov difference approximation. It is not suitable
to apply the weighted combined with shifted Grünwald–Letnikov difference approximation for
one-sided Riemann–Liouville fractional derivative to have second order accurate in space. To deal
with such issues, it is important to develop a numerical scheme that leads to evaluate a one-sided
space fractional convection–diffusion problem. Thus, the main focus of our study is to have temporal
and spatial second order convergence estimates for one-sided space fractional convection–diffusion
equations based on a stable finite difference method and using spatial extrapolation to the limit
approach. The scheme has been treated using the Crank–Nicholson method with the novel Shifted
Grünwald–Letnikov difference approximation and the algorithm has been examined both theoretically
and experimentally.

Let us consider space-fractional convection–diffusion equation with variable coefficients:

∂u(x, t)
∂t

+ c(x)
∂u(x, t)

∂x
= d(x)

∂αu(x, t)
∂xα

+ p(x, t), x ∈ (L, R), t ∈ (0, T], α ∈ (1, 2]; (1)

with the given initial condition:
u(x, 0) = g(x), L ≤ x ≤ R,

and homogeneous Dirichlet boundary conditions:

u(L, t) = 0, u(R, t) = 0, 0 ≤ t ≤ T,

where c(x), d(x) and g(x) are continuous functions on [L, R] and p(x, t) is continuous function on
[L, R]× [0, T]. Here u(x, t) is the concentration, d(x) > 0 is the variable diffusion coefficient, c(x) > 0
is the fluid variable velocity which means the system is evolving in space due to a velocity field
and p(x, t) is sink term so that the fluid transport is from left to right. For the case of integer order
(α = 2), Equation (1) gives to the classical convection–diffusion equation(CDE). In this study, we have
only considered the fractional derivative case which describes a physical meaning in [36] and it
involves only a left-sided fractional order derivative. We have assumed that this one-dimensional
space fractional convection–diffusion problem has sufficiently smooth and unique enough solutions.

The structure of this paper is arranged as follows. In Section 2, we introduce some preliminary
remarks, lemmas and definitions and we show the formulation of the new Crank–Nicolson with right
Shifted Grünwald–Letnikov difference scheme in Section 3. In Section 4, we describe the unconditional
stability using Gerschgorin Theorem and convergence order analysis of the scheme. In Section 5,
numerical tests are implemented to show the relevance of our theoretical study and the conclusions
are put in Section 6.
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2. Preliminary Remarks

Definition 1. The Riemann fractional derivative operator Dα
∗ with order α is written as:

(Dα
∗u) (x) =

1
Γ(r − α)

dr

dxr

∫ x

L

u(t)
(x − t)α−r+1 dt, α > 0 (2)

where r − 1 < α < r, r ∈ N, t > 0.

Definition 2. The left hand side and the right hand side fractional order derivatives, respectively, in Equation (1)
are the Riemann–Liouville fractional derivatives with order α which are given by:

(Dα
+u)(x) =

1
Γ(r − α)

dr

dxr

∫ x

L
(x − s)r−α−1u(s)ds

(Dα
−u)(x) =

(−1)r

Γ(r − α)

dr

dxr

∫ R

x
(s − x)r−α−1u(s)ds (3)

for r − 1 < α < r, x ∈ �.

Definition 3 ([3]). Let u be given on �. The standard Grünwald–Letnikov estimate for 1 < α ≤ 2 with
positive order α is defined by the formula,

Dαu(x, t) ≈ 1
hα

Nx

∑
k=0

ω
(α)
k u(x − kh, t), (4)

we also define the Grünwald–Letnikov difference operator as:

h−α(Δα
hu)(x, t) ≈

Nx

∑
k=0

ω
(α)
k u(x − kh, t), h > 0, x ∈ �, (5)

where

ω
(α)
k =

α(α − 1)...(α − k + 1)
k!

, (6)

is called Grünwald–Letnikov coefficient which is the Taylor series expansion ω(z) = (1 − z)α which is the
generating function. We can expressed the coefficients by the following recursive relations.

ω
(α)
0 = 1, ω

(α)
k = (1 − α + 1

k
)ω

(α)
k−1, k = 1, 2, .... (7)

Lemma 1 ([37]). Assume that 1 < α ≤ 2, then Grünwald–Letnikov coefficients ω
(α)
k satisfy:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ω
(α)
0 = 1, ω

(α)
1 = −α < 0, ω

(α)
2 =

α(α − 1)
2

> 0

1 ≥ ω
(α)
2 ≥ ω

(α)
3 ≥ ... ≥ 0,

∑∞
k=0 ω

(α)
k = 0, ∑Nx

k=0 ω
(α)
k < 0, Nx ≥ 1.

(8)

The Shifted Grünwald–Letnikov difference operator expression is suitable for our purpose
because, it allows us to estimate (Dα

∗u) (x), which is defined in Equation (2), numerically in an
accurate way. According to [14], right shifted Grünwald–Letnikov difference operator with p shifts for
αth order Left R-L fractional derivative of u(x, t), x ∈ [L, R] at x = xm can be expressed as:

(Dα
∗u) (x, t) ≈ 1

hα

xm−L
h +p

∑
k=0

ω
(α)
k u(x − (k − p)h, t) (9)
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where

xm = L + mh, h =
R − L

Nx
, m = 0, 1, 2, ...Nx.

Lemma 2 ([38,39]). Let u ∈ C2n(�) that has a finite degree of smoothness with (Dα
+u)(x) which is

approximated by h−α
(
Δα

hu
)
(x) possesses an asymptotic expansion in integer powers of the step-length h,

then an expansion in even powers of h for the Shifted operator can be written in the form:

(
Δα

h,pu
)
(x) =

∞

∑
j=0

(−1)j
(

α
j

)
u
(

x +
αh
2

− jh
)

, h > 0. (10)

Lemma 3 ([39]). Let u ∈ Cn+3(�) all derivative of u up to the order n + 4 belong to L1(�). Then the Fourier
transform of the Grünwald–Letnikov difference operator defined in Equation (5), is

φ̂(x) =
∫
�

φ(t)eixtdt. (11)

Theorem 1. Let u ∈ C2n+3(�) with all derivatives of u up to order 2n + 3 belong to L1(�). For p ≥ 0 define
the shifted Grünwald–Letnikov operator:

(Δα
h,p)u(x) =

∞

∑
k=0

ω
(α)
k u (x − (k − p) h) ,

with ω
(α)
k =(−1)2k ( α

a2k
)=( α

a2k
). Then,if L = −∞ in Equation (2), for any computable coefficient a2k , which is

independent of h, u and x, we have

h−α
(

Δα
h,pu
)
(x) = (Dα

+u) (x) +
n−1

∑
k=1

b2k

(
Dα+2k
+ u

)
(x)h2k + O(h2n)

uniformly in x ∈ �.

Proof of Theorem 1. We closely follow the result described in [9,10] for the unshifted
Grünwald–Letnikov formula and also in [23] for the shifted Grünwald–Letnikov formula. We can see
that with the Riemann-Lebesgue lemma, the assumptions on u indicates for real positive constant C1

and from the condition which is imposed on u, we have

|ũ(t)| ≤ C1 (1+| t |)−2n−3 . (12)

From Lemma 3 for all t ∈ � the Fourier transform for u(x) of the Grünwald–Letnikov
approximation is

ũ(t) =
∫
�

u(x)eixtdx.

From the definition of Fourier transform, we have observed that for a constant a ∈ �, we have:

F ([u(x − a)])(t) = eiatũ(t).

The function (
1 − e−z

z

)α

ezp = ωα,p(z),

have the Taylor expansion

ωα,p(z) =
∞

∑
k=0

a2kz2k, (13)
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where a2k=(−1)2k ( α
a2k
)=( α

a2k
), converges absolutely for |z| ≤ 1 since the function ωα,p(z) is bounded on

�. The shifted Grünwald difference approximation (Δh,p)u(x) ∈ L1(�).
Thus, we have

F (h−αΔα
h,pu)(t) = h−αe−itph

∞

∑
k=0

(α
2k) eikthũ(t)

= h−αe−itph
(

1 − eitph
)α

ũ(t)

= (−it)α

(
1 − eith

−ith

)α

e−itphũ(t) = (−it)αωα,p(−ith)ũ(t) (14)

since ωα,p(−ith) is analytic around the origin, we express it as an even power expansions

ωα,p(z) =
∞

∑
k=0

a2kz2k

which absolutely convergent for all |z| ≤ R. For this a bounded function ωα,p(z) on �, there exist a
real positive constant C2 which satisfy:∣∣∣∣∣

(
1 − eix

−ix

)α

−
n−1

∑
k=0

a2k (−ix)2k

∣∣∣∣∣ ≤ C2 |x|2n (15)

is bounded uniformly in x ∈ �. For any value |x| ≤ R , we have∣∣∣∣∣(ωα,p(−ix)−
n−1

∑
k=0

a2k(−ix)2k

∣∣∣∣∣ =
∣∣∣∣∣ ∞

∑
k=n

a2k(−ix)2k

∣∣∣∣∣ ≤ |x|2n
∞

∑
k=n

(
α
a2k

)
|x|2(k−n) ≤ C3 |x|2n

(16)

which is bounded on �. For the other case |x| > R also, we have

∣∣ωα,p (−ix)
∣∣ = ∣∣∣∣∣

(
1 − eix

−ix

)α

eipx

∣∣∣∣∣ ≤ 2α

Rα
< C4 |x|2n (17)

where C4 = 2α

Rα+2n < ∞ and also∣∣∣∣∣n−1

∑
k=0

a2k(−ix)2k

∣∣∣∣∣ ≤ |x|2n
n−1

∑
k=0

|(α
a2k

)| |x|2(k−n) ≤ C5 |x|2n (18)

with C5 = ∑n−1
k=0

∣∣∣(α
a2k

)∣∣∣ R2k−2n < ∞. Now, we set that

C2 = max

{
∞

∑
k=0

∣∣∣∣∣a2k

∣∣∣∣∣R2k−2n,
2α

Rα+2n +
n−1

∑
k=0

∣∣∣∣∣ a2k

∣∣∣∣∣ R2k−2n

}

since
∞

∑
k=0

|a2k| R2k−2n =
n−1

∑
k=0

|a2k| R2k−2n +
∞

∑
k=n

|a2k| R2k−2n

C2 =
2α

Rα+2n +
n−1

∑
k=0

|a2k| R2k−2n
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Then, this implies that Equation (15) holds for all x ∈ �. From Equation (17), we can write

F (h−αΔα
h,pu)(t) =

n−1

∑
k=0

a2k (−it)α+2k h2kũ(t) + ϕ̃(t, h)

where

ϕ̃(k, h) = (−it)α

(
ωα,p (−ith)−

n−1

∑
k=0

a2k (−ith)2k

)
ũ(t)

since
(−it)α+2k ũ(t) =

(
Dα+2k
+

)
ũ(t).

Therefore, we have
(−it)α+2kũ(t) ∈ L1(�).

Moreover, we see that
ϕ̃(t, h) ∈ L1(�),

and with the conditions imposed on u, we can say that (1 + |x|2n+3 ũ(t) is bounded on �.
Thus, |t|2α−3 |ũ(t)| ∈ L1(R). This implies that,

|ϕ̃(t, h)| ≤ Ch2n (1 + |t|)2α−3

for k ∈ � with C = C1C2. Therefore using the Fourier inversion transform, we have

h−α
(

Δα
h,pu
)
(x) = (Dα

+u) (x) +
n−1

∑
k=1

a2k

(
Dα+2k
+ u

)
(x)h2k + ϕ(x, h),

where

ϕ(x, h) =
∣∣∣∣C ∫R

e−itx ϕ̃(t, h)dt
∣∣∣∣ ≤ C

∫
R
|ϕ̃(t, h)dt| ≤ Ch2n.

At last, we have

h−α
(

Δα
h,pu
)
(x) = (Dα

+u) (x) +
n−1

∑
k=1

a2k(Dα+2k
+ u)(x)h2k + O(h2n). (19)

Remark 1. From Equation (10), it can be seen that for p = α/2, the error takes its minimum value and a
second order convergence is achieved. We need the grid points xm − (k − p)h to find an optimal positive integer
p that makes p − α/2 is minimum. It is numerically proved in [3] that for the value 0 < α ≤ 1, p = 0 is
acceptable; while for 1 < α ≤ 2, p = 1 is optimal.

Remark 2. Theorem 1 is the base of Extrapolation to the limit. Therefore one can apply it the Shifted
Grünwald–Letnikov difference operator to obtain the convergence rate with arbitrary high order hk, k =

1, 2, 3, ..., n such that

h−α
(q−αΔα

qh,pu)(x)− q(Δα
h,pu)(x)

1 − q
, 0 < q < 1

(q is fixed) converges to (Dα
+u)(x) + O(h2).
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3. Problem Formulation of the Scheme

Consider the following one-dimensional space fractional convection–diffusion problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u(x, t)

∂t
= −c(x)

∂u(x, t)
∂x

+ d(x)
∂αu(x, t)

∂xα
+ p(x, t), (x, t) ∈ (L, R)× (0, T]

u(x, 0) = g(x), x ∈ [L, R]

u(L, t) = 0, u(R, t) = 0, t ∈ [0, T]

(20)

which is based on shifted Grünwald–Letnikov difference method with 1 < α ≤ 2 on a finite domain
L < x < R.

Crank–Nicolson Scheme for Time and Shifted Grünwald Difference Scheme for Space Discretization

We partition the finite interval [L, R] with a uniform mesh in the space size step h = (R − L)/Nx

and the time step τ = T/Nt, in which Nx, Nt are non-negative integers and the set of grid size points
is symbolized by xm = mh and tn = nτ for 0 ≤ m ≤ Nx, 0 ≤ n ≤ Nt. Set tn+1/2 = (tn+1 + tn)/2 with
0 ≤ n ≤ Nt − 1.

We use the following notations:

un
m = u(xm, tn), pn+1/2

m = p(xm, tn+1/2), δtun
m =

un+1
m − un

m
τ

, cm = c(xm), dm = d(xm).
Applying the C-N technique for the time discretization of Equation (20) gives to

δtun
m = − cm

4h

(
un+1

m+1 − un+1
m−1 + un

m+1 − un
m−1

)
+

dm

2hα

1

∑
z=0

Nx−1

∑
k=0

ω
(α)
k

(
un+z

m−k+1

)
= pn+1/2

m + O(τ2). (21)

In space discretization we have used the central finite difference method for the convection term
and the Shifted Grünwald–Letnikov operator for the space fractional derivative with the approach of
spatial Extrapolation to the limit, respectively.

See the full discretization of the scheme:

un+1
m − un

m
τ

=
−cm

(
un

m+1 − un
m−1 + un+1

m+1 − un+1
m−1

)
4h

+
dm

2hα

(
1

∑
z=0

m+1

∑
k=0

ω
(α)
k un+z

m−k+1

)
+

pn
m + pn+1

m
2

. (22)

Multiplying Equation (22) by τ the discretization equation, we have

un+1
m − un

m =
−cmτ

4h
(un

m+1 − un
m−1 + un+1

m+1 − un+1
m−1) +

dmτ

2hα

1

∑
z=0

m+1

∑
k=0

ω
(α)
k un+z

m−k+1 + τpn+1/2
m (23)

The above equation is used to predict the values of u(x, t) at time n + 1, so all the values of u at
time n are assumed to be known. For simplification
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μm = cmτ
h , ηm = dmτ

hα , then we have

(
1 − ηm

2
ωα

1

)
un+1

m +

(−μm

2
− ηm

2
ωα

2

)
un+1

m−1

+
(
−μm

2
− ηm

2
ωα

0

)
un+1

m+1 −
ηm

2

(
m+1

∑
k=3

ωα
k un+1

m−k+1

)
=
(

1 +
ηm

2
ωα

1

)
un

m +
(μm

2
+

ηm

2
ωα

2

)
un

m−1

+
(ηm

2
ωα

0 +
μm

2

)
un

m+1 +
ηm

2

(
m+1

∑
k=3

ω
(α)
k un

m−k+1

)
+ τ

(
pn+ 1

2
m

)
. (24)

Both the convection and diffusion variable coefficients are (Nx − 1)× (Nx − 1) diagonal matrices
which are defined by

μm =
τ

2h
diag (C1, C2, C3, ...CNx−1) ,

ηm =
τ

hα
diag (d1, d2, d3, ...dNx−1) .

These discretization together with Dirichlet boundary conditions which results in a linear system
of equations for which the coefficient matrix is the sum of lower triangular and upper-diagonal
matrices. The above discretization can be re-arranged to yield:(

1 − ηm

2
ωα

1

)
un+1

m + (−μm

2
− ηm

2
ωα

2 )u
n+1
m−1 +(

−μm

2
− ηm

2
ωα

0 )u
n+1
m+1 −

ηm

2
(

m+1

∑
k=3

ωα
k un+1

m−k+1

)
= (1 +

ηm

2
ωα

1 )u
n
m +
(μm

2
+

ηm

2
ωα

2

)
un

m−1

+(
ηm

2
ωα

0 +
μm

2
)un

m+1 +
ηm

2
(

m+1

∑
k=3

ωα
k un

m−k+1) + τ(Pn+ 1
2

m ). (25)

Denoting Un
m as the numerical approximation of un

m, we can construct the C-N scheme for
Equation (20) (

1 − ηm

2
ωα

1

)
Un+1

m +
(
−μm

2
− ηm

2
ωα

2

)
Un+1

m−1 +(
−μm

2
− ηm

2
ωα

0

)
Un+1

m+1 −
ηm

2

(
m+1

∑
k=3

ωα
k Un+1

m−k+1

)
=
(

1 +
ηm

2
ωα

1

)
Un

m +
(μm

2
+

ηm

2
ωα

2

)
Un

m−1

+
(ηm

2
ωα

0 +
μm

2

)
Un

m+1 +
ηm

2

(
m+1

∑
k=3

ωα
k Un

m−k+1

)
+ τ(Pn+ 1

2
m ). (26)

I is the (Nx − 1) × (Nt − 1) identity matrix with Am,n as the matrix coefficients.
These coefficients,for m = 1, 2, 3, ..., Nx − 1, n = 1, 2, ..., Nt − 1 are given by:

Am,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, n ≥ m + 2

− μm
2 − ηm

2 ω
(α)
0 , n = m + 1

(1 − ηm
2 ω

(α)
1 ), n = m

(− ηm
2 ω

(α)
2 − μm

2 ), n = m − 1

− ηm
2 ω

(α)
m−n+1 n ≤ m − 1.

(27)

90



Symmetry 2020, 12, 485

The finite difference scheme (24) and (26) defines a linear system of equations as

(I + A)Un+1 = (I − A)Un + τ(pn+ 1
2

m ) (28)

Un+1 = [un+1
1 , un+1

2 , ..., un+1
Nx−1]

�

Un + τPn+ 1
2

m = [0, τpn+ 1
2

1 , τpn+ 1
2

2 , ..., τpn+ 1
2

Nx−1 + (
ηNx−1

2
+

μNx−1

2
), 0]�.

Theorem 2. Suppose that 1 < α ≤ 2, the coefficient matrix defined in Equations (24)–(27), then the diagonal
matrix and the coefficient matrix satisfy:

Am,m >
Nx−1

∑
n=0,m �=1

|Am,n|, m = 1, 2, 3, ..., Nx − 1. (29)

Proof of Theorem 2. As we have seen from the coefficient matrix defined in Equation (27),

Am,m+1 =
μm

2
− ηm

2
ω
(α)
0 =

μm

2
− ηm

2
< 0

Am,m−1 = −ηm

2
ω
(α)
2 − μm

2
= −ηm

2
(

α2 − α

2
), but from Lemma 1,

α2 − α

2
> 0 for 1 < α ≤ 2 mean that

−ηm

2
(

α2 − α

2
) < 0.

When n < m− 1, we have, − ηm
2 ω

(α)
m−n+1 < 0 and when n = m, Am,m = 1− ηm

2
ω
(α)
1 = 1+

ηm

2
α > 0.

This implies that ∑Nx−1
n=0,m �=1 |Am,n| < Am,m.

Therefore, the diagonal matrix is strictly dominant.

4. Theoretical Analysis of Finite Difference Scheme

In general for analyzing convergence and stability, we consider the following description.
Let χh =

{
ν : ν = {νm} : {xm = mh}Nx

m=0 , ν0 = νNx = 0
}

be the grid function.
For any ν = νm ∈ χh, we define our point-wise maximum norm as

||ν||∞ = max1≤m≤Nx |νm|, (30)

and the discrete L2-norm

‖ν‖ =

√√√√h
Nx−1

∑
m=1

ν2
m. (31)

4.1. Boundedness of the Fractional Scheme

The Classical Crank–Nicolson scheme combines the stability of an implicit finite difference method
with its accuracy which produce second order convergence in both space and time.

Theorem 3. Crank–Nicolson scheme for solving space fractional convection–diffusion equations given by the
following problem:

∂u(x, t)
∂t

+ c(x)
∂u(x, t)

∂x
= d(x)

∂αu(x, t)
∂xα

+ p(x, t). (32)

which is based on shifted Grünwald–Letnikov difference approximation scheme is bounded for 1 < α ≤ 2.

Proof of Theorem 3. Consider C-N scheme for the space-fractional convection–diffusion problem for
1 < α ≤ 2
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un+1
m − un

m
τ

=
−cm

(
un

m − un
m−1 + un+1

m − un+1
m−1

)
2h

+
dm

2hα

(
1

∑
j=0

m+1

∑
k=0

ω
(α)
k un+j

m−k+1

)
+

pn
m + pn+1

m
2

. (33)

Here, we have shown the convergence and boundedness of the scheme by taking the smaller
time-step in terms of Lax–Richtmyer stability analysis that uses a weaker bound (see [40]). Our matrix
A has an eigenvalues of λ that have positive real parts, and, we also have found a strictly dominant
matrix. These eigenvalues which are centered in the disks at each diagonal entries as:

Am,m = (1 − ηm

2
ωα

1 ) =
(

1 + α
ηm

2

)
.

with μm = cmτ
h , ηm = τdm

hα . From the Gerschgorin Theorem in [41], the radius of the matrix can be
expressed as ∥∥∥∥∥ Nx

∑
n=0,m �=1

Am,n

∥∥∥∥∥
2

2

=

∥∥∥∥∥(−ηm

2
− μm

2

) m+1

∑
n=0

ω
(α)
m−n+1

∥∥∥∥∥
2

≤
∥∥∥(−ηm

2
− μm

2

)∥∥∥2
∥∥∥∥∥m+1

∑
n=0

ω
(α)
m−n+1

∥∥∥∥∥
2

.

Since from the Grünwald coefficients we have ω
(α)
m−n+1 ≤ ω

(α)
1 and ω

(α)
1 = −α, we have that:

∥∥∥∥∥ Nx

∑
n=0,m �=1

(Am,n)

∥∥∥∥∥
2

2

≤
∣∣∣∣∣ Nx

∑
n=0,m �=1

(Am,m)

∣∣∣∣∣
2

2

≤ ‖Am,m‖2
2

≤
∥∥∥(−ηm

2
− μm

2
)
∥∥∥2

2

∥∥∥ω
(α)
1

∥∥∥2

2
≤
∥∥∥1 +

ηm

2
α
∥∥∥2

2
.

For a bounded ratio of time-step τ and space-step h with nτ ≤ T, we have

∥∥(Am,m)
n∥∥

2 ≤
(

1 +
ηm

2
α
)n/2

.

From the relation of Parseval’s Theorem, [40]

‖Am,m‖2 ≤
(

1 +
ηm

2
α
)n/2

≤ eαT/2.

which shows that the scheme is bounded.

4.2. Stability Analysis

Theorem 4. Let Un
m be the numerical approximation of the exact solution un

m, then the C-N finite difference
scheme (28) is unconditionally stable.

Proof of Theorem 4. Consider the matrix coefficient of the difference approximation for the
problem (20) can be written as described above

(I + A)Un+1 = (I − A)Un + τpn+1/2
m . (34)
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Let en =
{

en
1 , en

2 , en
3 , ..., en

Nx−1

}
, and take the relation between the error en+1 in Un+1 and the error en in

Un which is given by the linear system

en+1 = (I + A)−1(I − A)en. (35)

First of all, we must show that the (non-real valued) eigenvalues of the coefficient matrices
A have positive real parts. For ω

(α)
1 = −α with fractional order 1 < α < 2 and k �= 1; we have

ω
(α)
k > 0. In addition to this, −ωα

1 = α ≥ ∑N
k=0,k �=1 ωα

k for the value N > 1. As stated in Gerschgorin
Theorem ([41], pp. 136–139), the eigenvalues of the given matrix A are inside the disks centered at each
diagonal entry.

Am,m = (1 − ηm

2
ω
(α)
1 ) = 1 +

ηm

2
α > 0,

with radius

rm =
Nx

∑
n=0,m �=1

|Am,n| =
ηm

2

m+1

∑
n=0

ω
(α)
m−n+1 < (1 +

ηm

2
).

These Gerschgorin disks are belong to the right half of the complex plane. Thus, the eigenvalue of
the coefficient matrix A has positive real part which implies that A has an eigenvalue λ if and only
if (I − A) has an eigenvalue (1 − λ) if and only if (I + A)−1(I − A) has an eigenvalue

(
1−λ
1+λ

)
. From

the first part of this sentence, we have seen that all the eigenvalues of the matrix given by (I + A)

have a radius larger than unity which implies the matrix is invertible. Now we can see from the above
description the real part of λ is non-negative which we can conclude that

∣∣∣ (1−λ)
(1+λ)

∣∣∣ < 1.

Thus, the spectral radius of the system matrix (I + A)−1(I − A) is strictly less than unity which implies
that the difference scheme is unconditionally stable.

4.3. Convergence Analysis

First of all we have given the Truncation error of the C-N scheme. It is obvious to conclude that:

u(xm, tn+1)− u(xm, tn)

τ
=

(
∂u(x, t)

∂t

)n+1/2

+ O(τ2).(
c(x)

∂u(x, t)
∂x

+ d(x)
∂αu(x, t)

∂xα

)n+1/2

m
=

1
2

(
cm

∂u(xm, tn+1)

∂x
+ dm

∂αu(xm, tn+1

∂xα

)
+

1
2

(
cm

∂u(xm, tn)

∂x
+ dm

∂αu(xm, tn

∂xα

)
+ O(τ2). (36)

c(xm)
∂u(x, t)

∂x
≈ u(xm+1, tn+1)− u(xm−1, tn+1)

2h
+ O(h2). (37)

From the above Extrapolation to the limit Theorem for n = 1, we got

∂αu(x, t)
∂xα

≈
m+1

∑
k=0

g(α)k um−k+1 + O(h2). (38)

Therefore the local truncation error of (20) is given by Tn+1
m = O(τ2 + τh)

Theorem 5. Let un
m be the exact solution of problem (20), and Un

m be the solution of the finite difference scheme
(26), then for all 1 ≤ n ≤ Nt, we have the estimate

‖un
m − Un

m‖∞ ≤ c(τ2 + h)

where ‖un
m − Un

m‖∞=max1≤m≤Nx |un
m − Un

m|, c is a non-negative constant independent of h and τ with ||.||
stands for the discrete L2-norm.
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Proof of Theorem 5. Denote en = un
m − Un

m where en = (en
1 , en

2 , ..., en
Nx−1). We have e0 = 0, we have

from Equations (26) and (27) if n = 0,

R1
m =

(−μm

2
− ηm

2
ω
(α)
0

)
e1

m−1 +
(

1 +
ηm

2
α
)

em
1

+

(−μm

2
− ηm

2
ω
(α)
2

)
e1

m+1 −
ηm

2

Nx

∑
k=3

ω
(α)
k e1

m−n+1.

if n > 0,

Rn+1
m =

(−μm

2
− ηm

2
ω
(α)
0

)
en+1

m−1 +
(

1 +
ηm

2
α
)

em
n+1

+

(−μm

2
− ηm

2
ω
(α)
2

)
en+1

m+1 −
ηm

2

Nx

∑
k=3

ω
(α)
k en+1

m−n+1.

where Rn+1
m ≤ c(τ2 + h), m = 1, 2, ..., Nx − 1, n = 1, 2, 3, ..., Nt − 1, c is non-negative constant

independent of h and τ.
We can use the mathematical induction to prove the Theorem. Let n = 1 and assume |ej| =

max1≤m≤Nx−1|e1
m|, we have the following expression.

||e1||∞ =
∣∣∣e1

j

∣∣∣ ≤ (−μj

2
−

ηj

2
ω
(α)
0

) ∣∣∣e1
j−1

∣∣∣+(1 +
ηj

2
α

) ∣∣∣ej
1

∣∣∣
+

(−μj

2
−

ηj

2
ω
(α)
2

) ∣∣∣e1
j+1

∣∣∣− ηj

2

Nx

∑
k=3

ω
(α)
k

∣∣∣e1
j−n+1

∣∣∣
≤
∣∣∣∣∣
(−μj

2
−

ηj

2
ω
(α)
0

)
e1

j−1 +

(
1 +

ηj

2
α

)
ej

1 +

(−μj

2
−

ηj

2
ω
(α)
2

)
e1

j+1 −
ηj

2

Nx

∑
k=3

ω
(α)
k e1

j−n+1

∣∣∣∣∣
=
∣∣∣R1

j

∣∣∣ ≤ c(τ2 + h).

Suppose that if n ≤ r, ||er||∞ ≤ c(τ2 + h2) hold and assume n = r + 1, let
∣∣∣er+1

j

∣∣∣ =

max1≤m≤Nx−1
∣∣er+1

m
∣∣, notice that from Lemma 1, we have ∑Nx

k=0 ω
(α)
k < 0, m = 1, 2, ..., Nx. Therefore,

∥∥∥er+1
∥∥∥

∞
=
∣∣∣er+1

j

∣∣∣ ≤ (−μj

2
−

ηj

2
ω
(α)
0

) ∣∣∣er+1
j−1

∣∣∣+(1 +
ηj

2
α

) ∣∣∣ej
r+1

∣∣∣
+

(−μj

2
−

ηj

2
ω
(α)
2

) ∣∣∣er+1
j+1

∣∣∣− ηj

2

Nx

∑
k=3

ω
(α)
k

∣∣∣er+1
j−n+1

∣∣∣
≤
∣∣∣∣∣
(−μj

2
−

ηj

2
ω
(α)
0

)
er+1

j−1 +

(
1 +

ηj

2
α

)
ej

r+1 +

(−μj

2
−

ηj

2
ω
(α)
2

)
er+1

j+1 −
ηj

2

Nx

∑
k=3

ω
(α)
k er+1

j−n+1

∣∣∣∣∣
=
∣∣∣Rr+1

j

∣∣∣ ≤ c(τ2 + h)

which completes the proof.

Remark 3. The Crank–Nicolson scheme, for classical convection–diffusion equation, provides stable C-N finite
difference method that is second order convergence in time and space. Also a study based on C-N finite difference
method with the spatial extrapolation to the limit method, see Theorem 1, is used to get temporal and spatial
second order for one-sided SFCDEs with space variable coefficients.
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5. Numerical Tests

Problem test 1
1. Consider the space-fractional diffusion type of problem:

∂u(x, t)
∂t

= d(x)
∂αu(x, t)

∂xα
+ p(x, t)

with initial condition
u(x, 0) = (x2 − x3); 0 ≤ x ≤ 1

homogeneous Dirichlet boundary condition

u(0, t) = 0 = u(1, t)

with variable diffusion coefficient,
d(x) = Γ(1.2)xα,

and source term
p(x, t) = (6x3 − 3x2)e−t

The exact solution is
u(x, t) = (x2 − x3)e−t

All numerical experiments are implemented using Theorem 1 and C-N scheme with the space domain,
0 < x < 1 and time domain, 0 < t < T. Figure 1 shows the maximum error produced by C-N scheme
for large enough time domain and numerical solution is close enough to the exact solution using
C-N scheme with α = 1.5 in Figure 2. The maximum error and second order convergence for the
fractional diffusion and fractional convection–diffusion equation with variable coefficients are given in
Tables 1–3.

Figure 1. The Maximum error by C-N scheme at (T = 10, Max − Error = 6.5276e−07),
(T = 20, Max − Error = 1.7244e−08), α = 1.5 left to right, respectively, for example 1.

Figure 2. The exact (left) and numerical (right) solution by C-N scheme at T = 1, α = 1.5, τ = 0.01 = h
for example 1.
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Table 1. The maximum error and convergence order of the C-N scheme for FDE in example 1.

α = 1.25 α = 1.5 α = 1.8

Δt Δx Max-Error Order Max-Error Order Max-Error Order

1/50 1/50 4.9807e−04 – 4.0046e−04 – 1.4048e−04 –
1/100 1/100 1.0660e−04 2.2241 8.8946e−05 2.1707 3.6848e−05 1.9307
1/200 1/200 2.4413e−05 2.1265 2.0643e−05 2.1073 9.4393e−06 1.9648
1/400 1/400 5.8239e−06 2.0676 4.9592e−06 2.0575 2.3887e−06 1.9825
1/800 1/800 1.4211e−06 2.0350 1.2146e−06 2.0296 6.0078e−07 1.9913

Table 2. The maximum error and convergence order for FCDE in example 2.

T = 1 T = 5

Δt Δx Max-Error Order Max-Error Order

1/50 1/50 1.4048e−04 – 2.5297e−05 –
1/100 1/100 3.6848e−05 1.9307 7.4748e−06 1.7589
1/200 1/200 9.4393e−06 1.9648 2.0122e−06 1.8933
1/400 1/400 2.3887e−06 1.9825 4.9017e−07 2.0374
1/800 1/800 6.0078e−07 1.9913 1.0620e−07 2.2065

Table 3. The maximum error and convergence order by C-N for SFCDE in example 2 at T = 1, α = 1.55.

Δt Δx Max-Error Order

1/50 1/50 2.6e−03 –
1/100 1/100 7.695e−04 1.7563
1/150 1/150 2.144e−04 1.8436
1/200 1/200 5.688e−05 1.9143

Problem test 2
2. Consider the space-fractional convection–diffusion type of equation with variable coefficients:

∂u(x, t)
∂t

+ c(x)
∂u(x, t)

∂x
= d(x)

∂αu(x, t)
∂xα

+ p(x, t)

with initial condition
u(x, 0) = (xα − x); 0 ≤ x ≤ 1

homogeneous Dirichlet boundary condition

u(0, t) = 0 = u(1, t)

with variable convection–diffusion coefficients respectively,

c(x) = x
1
5 , d(x) = x

1
100 ,

and source term

p(x, t) = e−2t(2(x − xα)− Γ(α) +
Γ(α + 1)

Γ(α)
xα−1 − 1)

The exact solution is
u(x, t) = e−2t(xα − x)

Figures 3 and 4 show the numerical and exact solutions for fractional diffusion and fractional
convection–diffusion problems with large enough time domain in example 1 and 2, respectively.The
exact and numerical solution of fractional convection–diffusion equation by C-N scheme is also given
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in Figure 5. In Table 4, the maximum error and first order convergence in space is obtained using C-N
scheme without extrapolation to the limit approach by fixing the time step.

Figure 3. Numerical and exact solution by C-N scheme at α = 1.5, τ = h = 0.01, with(T = 10, T =

30, T = 40) left to right-down respectively, for example 1.

Figure 4. The exact (left) and numerical (right) solution by C-N scheme for the FCDE at (h = τ =

0.005, α = 1.5, (t = 5, max−error = 4.0657e−05) for example 2.

Table 4. The Maximum error and convergence order produced by C-N scheme for example 3 at
T = 1, Nt = 100.

α = 1.35 α = 1.5 α = 1.75

Δx Max-Error Order Max-Error Order Max-Error Order

1/50 4.5e−03 – 2.8e−03 – 1.7e−03 –
1/100 2.7e−03 0.7370 1.6e−03 0.8074 8.9641–04 0.97224
1/200 1.6e−03 0.7549 8.6405e−04 0.8889 4.6491e−04 0.8981
1/400 9.5896e−04 0.7385 4.7955e−04 0.8494 2.4086e−04 0.9488
1/800 5.7034e−04 0.7496 2.6609e−04 0.8498 1.2473e−04 0.9494
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Figure 5. The exact (left) and numerical (right) solution by C-N scheme for the FCDE at (h = τ =

0.01, (t = 2, max−Error = 4.2158e−04), α = 1.75) for example 2.

Problem Test 3
3. Consider the space-fractional convection–diffusion type of equation with variable coefficients:

∂u(x, t)
∂t

+ c(x)
∂u(x, t)

∂x
= d(x)

∂αu(x, t)
∂xα

+ p(x, t)

with initial condition
u(x, 0) = x2(1 − x)

homogeneous Dirichlet boundary condition

u(0, t) = 0 = u(1, t)

with variable convection–diffusion coefficients respectively,

c(x) = x0.6, d(x) = Γ(2.8)x3/4

and the forcing function
p(x, t) = 2x2(1 − x)t1.3/Γ(2.3) + 0.3x1.8e−t

The exact solution is
u(x, t) = x2(1 − x)e−t

Problem test 4
4. Consider the space-fractional convection–diffusion equation with variable coefficients:

∂u(x, t)
∂t

+ c(x)
∂u(x, t)

∂x
= d(x)

∂αu(x, t)
∂xα

+ p(x, t)

with initial condition
u(x, 0) = xα(1 − x)

homogeneous Dirichlet boundary condition

u(0, t) = 0 = u(1, t)

with variable convection–diffusion coefficients respectively,

c(x) = x3/5, d(x) = x3/4

and the forcing function
p(x, t) = 2xα(1 − x)t1.3/Γ(2.3) + 0.3x1.8e−t
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The exact solution is
u(x, t) = xα(1 − x)e−t

Problem test 4 is experimented with the grid size reduction extrapolation approach stated in [23]. We
have smooth enough numerical and exact solutions by using C-N scheme in Figure 6, and Table 5
shows the maximum error with the error rate is given for space fractional convection–diffusion
problem with a grid size reduction extrapolation method.

Figure 6. The exact (left) and numerical (right) solution by C-N scheme at (h = τ = 0.0025, (t =

0.1, max−Error = 1.4e−03, α = 1.1) for example 4.

Table 5. The Maximum error and error-rate produced by C-N scheme for example 4 at t = 0.1.

α = 1.25 α = 1.55

Δt Δx Max-Error Error-Rate Max-Error Error-Rate

1/50 1/50 1.91e−02 – 1.52e−02 –
1/100 1/100 9.9e−03 1.93 7.9e−03 1.9
1/200 1/200 5.2e−03 1.90 4.3e−03 1.84
1/400 1/400 2.8e−03 1.86 2.4e−03 1.79
1/800 1/800 1.6e−03 1.75 1.4e−03 1.7

6. Conclusions

The one dimension space fractional diffusion and fractional convection–diffusion problem with
space variable coefficients is solved by the fractional C-N scheme based on the Extrapolation to the
limit approach of right shifted Grünwald–Letnikov approximation. The fractional C-N method, for
the fractional diffusion problem and fractional convection–diffusion equation with space variable
coefficients, is consistent and unconditionally stable with second order convergence. Numerical
examples confirmed that the C-N method is suitable for the space fractional convection–diffusion
problem even for a large value of time domain.
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Abstract: We consider linear differential equations with variable delay of the form

x′(t) + p(t)x(t − τ(t))= 0, t ≥ t0,

where p : [t0, ∞) → [0, ∞) and τ : [t0, ∞) → (0, ∞) are continuous functions, such that t − τ(t) → ∞ (as
t → ∞). It is well-known that, for the oscillation of all solutions, it is necessary that

B := lim sup
t→∞

A(t) ≥ 1
e

holds, where A(t) :=
∫ t

t−τ(t)
p(s) ds.

Our main result shows that, if the function A is slowly varying at infinity (in additive form), then under
mild additional assumptions on p and τ, condition B > 1/e implies that all solutions of the above delay
differential equation are oscillatory.

Keywords: oscillation; delay differential equation; variable delay; deviating argument; non-monotone
argument; slowly varying function

MSC: 34K11; 34K06; 26A12

1. Introduction and Preliminary Results

Consider the following linear differential equation with variable delay:

x′(t) + p(t)x(t − τ(t))= 0, t ≥ t0, (1)

where p : [t0, ∞) → [0, ∞) and τ : [t0, ∞) → (0, ∞) are continuous functions, such that t − τ(t) → ∞ (as
t → ∞). Note that t − τ(t) is not assumed to be nondecreasing. Let t−1 = inf{s − τ(s) : s ∈ [t0, ∞)}
and note that t−1 ∈ (−∞, t0) holds. Then, a continuous function x : [t−1, ∞)→ R is called a solution of
Equation (1), if it is continuously differentiable on [t0, ∞) and satisfies Equation (1) there.

Such equations, and, in general, delay differential equations with either constant or variable delay
arise naturally in a multitude of models from biology, physics, engineering, chemistry and economy. For
an extensive introduction to the theory of delay differential equations, we refer to the books [1,2], whereas
for more on their applications we recommend the reader to study [3,4].

This paper is concerned with the oscillatory behaviour of Equation (1). By convention, a solution
is called oscillatory if it has arbitrary large zeros and is nonoscillatory otherwise. Results on oscillation of
retarded first order equations already appeared in the works of Johann Bernoulli [5]. The first systematic
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study of oscillatory and nonoscillatory behaviour of Equation (1) goes back to Myshkis [6]. He showed
that, in case the functions τ and p are bounded, then

inf
t∈[t0,∞)

τ(t) inf
t∈[t0,∞)

p(t) >
1
e

(2)

implies that all solutions of Equation (1) are oscillatory, whereas condition

sup
t∈[t_0,∞)

τ(t) sup
t∈[t_0,∞)

p(t) ≤ 1
e

(3)

guarantees the existence of a nonoscillatory solution.
Since then, the question of oscillation has received much attention and many results have been

published providing sufficient conditions guaranteeing that all solutions are oscillatory and others that
establish the existence of a nonoscillatory solution. For more details, we refer the interested reader to
monographs [7–9] and to the survey papers [10,11]. Here, we only point out some results that are most
relevant from our perspective.

Ladas, Lakshmikantham and Papadakis [12] proved that all solutions of Equation (1) are
oscillatory, provided

lim sup
t→∞

∫ t

t−τ(t)
p(s) ds > 1, t − τ(t) is nondecreasing, and p(t) > 0 for all t ≥ t0. (4)

The following important contribution is due to Koplatadze and Chanturija [13]. For the proof, see
also e.g., Theorem 2.1.1 of [9].

Theorem 1 ([13]).

(i) If

lim inf
t→∞

∫ t

t−τ(t)
p(s) ds >

1
e

, (5)

then all solutions of Equation (1) are oscillatory.
(ii) If

lim sup
t→∞

∫ t

t−τ(t)
p(s) ds <

1
e

, (6)

or, more generally, if ∫ t

t−τ(t)
p(s) ds ≤ 1

e
for all large t, (7)

then Equation (1) has a nonoscillatory solution.

After these central results, many works have focused on filling the gap between Conditions (2) and (3),
as well as between the necessary and the sufficient conditions given by Theorem 1 and Condition (4). For
more on such results, see, e.g., the recent survey by Moremedi and Stavroulakis [10].

It is worth mentioning that, in case the functions τ and p are constant, then both Conditions (5) and (2)
reduce to condition τp > 1/e, which is in this case not only sufficient, but—in view of Inequality (3)—also
necessary for the oscillation of all solutions. Another immediate corollary of Theorem 1 is that, if τ(t) is
constant τ > 0, and p is τ-periodic, then

∫ t
t−τ(t) p(s) ds is constant and Condition (7) is sharp.

Motivated by these facts, Pituk [14] recently proved that, for constant delay τ, there is a class of
functions p, for which the ‘almost necessary’ condition τ lim supt→∞ p(t) > 1/e is sufficient for the
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oscillation of all solutions of Equation (1). More precisely, he showed in Theorem 1 of [14] that, if p is
slowly varying at infinity with lim inft→∞ p(t) > 0, then

τ lim sup
t→∞

p(t) >
1
e

(8)

implies that all solutions of Equation (1) are oscillatory, where a function f : [t0, ∞) → R is called slowly
varying at infinity if, for every s ≥ 0,

f (t + s)− f (t) → 0 as t → ∞. (9)

In a subsequent paper, Pituk, Stavroulakis, and the present author [15] generalized the above result
and gave a class of functions p—broader than τ-periodic—for which Condition (6) is ‘almost sharp’. More
precisely, the following theorem was proved.

Theorem 2 ([15]). Let the function τ in Equation (1) be constant, and function p be nonnegative, bounded and
uniformly continuous. Assume further that the function t �→

∫ t
t−τ p(s) ds is slowly varying at infinity. Then,

lim inf
t→∞

∫ t

t−τ
p(s) ds > 0 and lim sup

t→∞

∫ t

t−τ
p(s) ds >

1
e

(10)

imply that all solutions of Equation (1) are oscillatory.

The purpose of this paper is to show that Theorem 2 remains valid in case of variable delay, provided
τ is uniformly continuous and bounded. The proof is similar to that of Theorem 2; nevertheless, some
technical difficulties also arise due to the variable delay.

In the next section, we present our main theorems and give some hints to support applicability of the
results. Then, in Section 3, we provide an illustrative example. Section 4 is devoted to conclusions.

2. Results

The following theorem is our main result.

Theorem 3. For some positive numbers M and κ, let p : [t0, ∞) → [0, M] and τ : [t0, ∞) → (0, κ] be uniformly
continuous functions, and suppose that the function

A : [t0 + κ, ∞) → [0, ∞), A(t) :=
∫ t

t−τ(t)
p(s) ds (11)

is slowly varying at infinity. Then,

lim inf
t→∞

A(t) > 0 and lim sup
t→∞

A(t) >
1
e

(12)

imply that all solutions of Equation (1) are oscillatory.

Before we prove the theorem, we make some comments, mainly to support applicability of the result.
From Theorem 1, it is apparent that condition lim supt→∞ A(t) ≥ 1/e is necessary for the oscillation

of all solutions, so Theorem 3 is sharp in this sense. Example 9 of [15] showed that the slowly varying
assumption is important: even in the constant delay case, the theorem does not hold if we omit that
assumption.
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We remark that uniform continuity of p and τ are guaranteed, if they are globally Lipschitz continuous,
which is the case if they are differentiable with their derivatives bounded on (t0, ∞).

Let us also devote some comments to functions that are slowly varying at infinity—we shall call them
slowly varying for brevity.

The class of slowly varying functions was studied already by Karamata [16] in a multiplicative form.
For more information about slowly varying functions and their characterization, we refer the reader to the
monograph by Seneta [17]. In particular, for the relation between the two terminologies, see the remark
below Theorem 1.2 in Chapter 1 of [17].

Here, let us mention only one characterization of slowly varying functions given by Pituk [14] (in
the additive form, see Formula (9)): a continuous function f : [t0, ∞) → R is slowly varying if and only if
there exists t1 ≥ t0, such that f can be written in the form

f (t) = c(t) + d(t), for all t ≥ t1, (13)

where c : [t1, ∞) → R is a continuous function which tends to some finite limit as t → ∞, and d : [t1, ∞) →
R is a continuously differentiable function for which limt→∞ d′(t) = 0 holds.

The next lemma will be essential in our proof.

Lemma 1 ([13]). Suppose that p : [t0, ∞) → [0, ∞) is a continuous function satisfying

lim inf
t→∞

∫ t

t−τ(t)
p(s) ds > 0.

If x is an eventually positive solution of Equation (1), then, for all sufficiently large T,

sup
t≥T

x(t − τ(t))
x(t)

< ∞.

Proof of Theorem 3. Assume to the contrary that x is an eventually positive solution and all assumptions
of the theorem hold (if the solution x is eventually negative, then take the solution −x).

By virtue of Lemma 1, there exists T ≥ t0 + κ such that x(t) > 0 holds for all t ∈ T − κ and

K := sup
t≥T

x(t − τ(t))
x(t)

< ∞. (14)

Then, there exists a sequence {tn}n∈N ⊂ [T, ∞), such that limn→∞ tn = ∞ and

lim
n→∞

A(tn) = lim sup
t→∞

A(t) =: B.

Let us introduce the following sequence of functions:

yn(t) :=
x(tn + t)

x(tn)
, pn(t) := p(tn + t) and τn(t) := τ(tn + t) for all t ≥ −κ and n ∈ N. (15)
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Then, applying (1) leads to the equation

y′n(t) =
x′(tn + t)

x(tn)
=

−p(tn + t)x(tn + t − τ(tn + t))
x(tn)

= −p(tn + t)yn(t − τ(tn + t)) (16)

= −pn(t)yn(t − τn(t)). (17)

Now, we would like to pass to the limit by applying the Arzelà–Ascoli theorem for the above sequences
of functions {yn}n∈N, {pn}n∈N and {τn}n∈N, hence we need to establish their uniform boundedness and
equicontinuity. Uniform boundedness, respectively equicontinuity of {pn}n∈N and {τn}n∈N follow from
the boundedness, respectively uniform-continuity of functions p and τ.

It remains to check these properties for {yn}n∈N. For this, note that by virtue of Equation (1) and
Equation (14) we obtain that the inequality

x′(tn + t) = −p(tn + t)
x(tn + t − τ(tn + t))

x(tn + t)
x(tn + t) ≥ −KMx(tn + t)

holds for all t ≥ 0 and n ∈ N. This immediately implies

y′n(t) =
x′(tn + t)

x(tn)
≥ −KMx(tn + t)

x(tn)
= −KMyn(t).

As yn is positive on [−κ, ∞), we obtain inequalities

− KM ≤ y′n(t)
yn(t)

≤ 0 for all t ≥ 0 and n ∈ N. (18)

Integration leads to

− KMt ≤ ln
yn(t)
yn(0)

≤ 0 for all t ≥ 0 and n ∈ N. (19)

Taking into account that yn(0) = 1 for all n ∈ N, we obtain that

e−KMt ≤ yn(t) ≤ 1 (20)

holds for all t ≥ 0 and n ∈ N. Now, Inequalities (20) and (18) imply that {yn}n∈N and {y′n}n∈N are
uniformly bounded on [0, ∞). Furthermore, the uniform boundedness of {y′n} yields that functions
yn are globally Lipschitz continuous with a common Lipschitz constant, and consequently {yn}n∈N is
uniformly equicontinuous.

In view of the above, by the Arzelà–Ascoli theorem, we may assume (by passing to a subsequence
without changing notation) that the limits

y(t) := lim
n→∞

yn(t), q(t) := lim
n→∞

pn(t) and σ(t) := lim
n→∞

τn(t) (21)

exist and are continuous on [0, ∞), and the convergence is uniform on every bounded subinterval of [0, ∞).
Note that

e−KMt ≤ y(t) ≤ 1 (22)

also holds for all t ≥ 0 and n ∈ N.
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Furthermore, from Equation (16), together with the uniform continuity of functions p and τ and the
uniform equicontinuity of {yn}n∈N, we obtain that {y′n}n∈N is also equicontinuous on [κ, ∞). Recall that
the sequence {y′n}n∈N is uniformly bounded on [0, ∞). Hence, according to the Arzelà–Ascoli theorem,
we may assume (after passing to a subsequence if necessary) that the limit limn→∞ y′n(t) exists for all
t ∈ [κ, ∞), and the convergence is uniform on all bounded subintervals of [κ, ∞). This combined with the
fact that limn→∞ yn(κ) = y(κ) yields (see, e.g., Theorem 7.17 of [18]) that

y′(t) = lim
n→∞

y′n(t)

holds for all t ≥ κ. By virtue of Equation (17),

y′(t) = − lim
n→∞

pn(t)yn(t − τn(t)) (23)

is satisfied for all t ≥ κ. From Equation (21) and the (uniform) equicontinuity of {yn}n∈N, one can easily
derive that

lim
n→∞

yn(t − τn(t)) = y(t − σ(t))

holds for all t ≥ κ. Thus, Inequality (22) impies that y is a positive solution of equation

y′(t) = −q(t)y(t − σ(t)). (24)

As a final step, we will apply Theorem 1 (i) to show that every solution of Equation (24) is oscillatory,
which is a contradiction. Thus, we need to verify that Equation (24) fulfils the hypotheses imposed on
Equation (1) and that Inequality (5) holds.

First, observe that q(t) ∈ [0, M] and σ(t) ∈ [0, κ] for all t ≥ κ follow immediately from their definitions
and from the assumptions on p and τ, respectively. Note that we have not yet shown that σ(t) is positive
for all t.

Next, we prove that Inequality (5) is satisfied. For this, let us fix t ≥ κ and note that, since pn converges
uniformly to q on the interval [t − σ(t), t], we obtain

∫ t

t−σ(t)
q(s) ds = lim

n→∞

∫ t

t−σ(t)
pn(s) ds = lim

n→∞

(∫ t

t−τn(t)
pn(s) ds +

∫ t−τn(t)

t−σ(t)
pn(s) ds

)
.

The functions pn are uniformly bounded, and τn(t) → σ(t), as n → ∞, so the limit of the last integral
vanishes. This in turn leads to∫ t

t−σ(t)
q(s) ds = lim

n→∞

∫ t

t−τ(tn+t)
p(tn + s) ds

= lim
n→∞

∫ tn+t

tn+t−τ(tn+t)
p(u) du

= lim
n→∞

A(tn + t) = lim
n→∞

A(tn) = B >
1
e

.

Here, the last inequality and the last equality hold by assumption, whereas the last but
one equality follows from the slowly varying property of A. Hence,

∫ t
t−σ(t) q(s) ds is constant B,

and thus Inequality (5) holds.
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The only condition that still needs to be verified is that σ is positive for all t ≥ κ. Notice that this
follows immediately from the above formulas: since

0 < B =
∫ t

t−σ(t)
q(s) ds ≤ Mσ(t)

holds for all t ≥ κ, thus σ(t) ≥ B/M for all t ≥ κ.
Therefore, Theorem 1 (i) can be applied for Equation (24) with τ := σ, t0 := κ and p := q to obtain

that every solution of Equation (24) is oscillatory, which contradicts Inequality (22).

The following lemma may be helpful to verify the slowly varying property of A without having to
evaluate it.

Lemma 2. For some t0 ∈ R and positive number κ, let p : [t0, ∞) → R be bounded and locally integrable,
and τ : [t0, ∞) → [−κ, κ] be any function. If both p and τ are slowly varying at infinity, then so is the function

A : [t0 + κ, ∞) → R, A(t) :=
∫ t

t−τ(t)
p(s) ds.

To prove this lemma, we first need to state the following result (see Lemma 1.1 of [17]).

Lemma 3. If p : [t0, ∞) → R is Lebesgue measurable and slowly varying at infinity, then, for all finite interval I,
sups∈I |p(t + s)− p(t)| → 0, as t → ∞.

Proof of Lemma 2. For t ≥ t0 + κ, we have

A(t) =
∫ t

t−τ(t)
p(s) ds =

∫ 0

−τ(t)
p(t + u) du =

∫ 0

−τ(t)
p(t + u)− p(t) du + τ(t)p(t). (25)

From this and the triangle inequality, we obtain that, for any fixed r ∈ R, the inequalities

|A(t + r)− A(t)| ≤
∣∣∣∣∫ 0

−τ(t+r)
p(t + r + u)− p(t + r) du

∣∣∣∣+ ∣∣∣∣∫ 0

−τ(t)
p(t + u)− p(t) du

∣∣∣∣
+
∣∣τ(t + r)p(t + r)− τ(t)p(t)

∣∣
≤
∫ κ

−κ
|p(t + r + u)− p(t + r)| du +

∫ κ

−κ
|p(t + u)− p(t)| du

+
∣∣τ(t + r)p(t + r)− τ(t)p(t)

∣∣
≤ 2κ

(
sup

u∈[−κ,κ]
|p(t + r + u)− p(t + r)|+ sup

u∈[−κ,κ]
|p(t + u)− p(t)|

)
+ |p(t + r)||τ(t + r)− τ(t)|+ |τ(t)||p(t + r)− p(t)|

hold. Now, if we let t → ∞, then the last two suprema vanish due to Lemma 3 and because p is slowly
varying. On the other hand, the last two terms also tend to 0, thanks to boundedness and to the slowly
varying property of functions τ and p.

Therefore, limt→∞ A(t + r)− A(t) = 0 holds for all r ≥ 0.

Note that, for A to be slowly varying, it is not sufficient to assume merely that at least one of p and τ

is slowly varying. This is the case even under the additional assumptions of Theorem 3 on p and τ. This
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can be readily seen by considering examples p ≡ 1 and τ(t) = 2 + sin t, and τ ≡ π and p(t) := 2 + sin t,
respectively. In both cases, function A will be 2π-periodic, but nonconstant, so it cannot be slowly varying.

Our last theorem is a corollary of Lemma 2 and Theorem 3, and it gives another generalization
of Theorem 1 of [14] in case p is bounded.

Theorem 4. For some positive numbers M and κ let p : [t0, ∞) → [0, M] and τ : [t0, ∞) → (0, κ] be continuous
and slowly varying at infinity. Then Condition (12) implies that all solutions of Equation (1) are oscillatory.

Proof. First, Lemma 2 infers that function A from Equation (11) is slowly varying. As already noted after
Theorem 4 of [15], the slowly varying property together with continuity implies uniform continuity. Hence,
p and τ are uniformly continuous, so Theorem 3 applies, which finishes the proof.

Let us briefly consider the case when p is unbounded, and slowly varying. If we further assume that
p(t) > 0 holds for large t, and τ is such that there exists some τ0 ∈ (0, κ], for which lim inft→∞ τ(t) ≥ τ0

holds and t − τ(t) is nondecreasing (note that Theorem 1 of [14] meets these assumptions), then, using
the slowly varying property of p, it can be easily shown that lim supt→∞

∫ t
t−τ(t) p(s) ds = ∞. In particular,

Condition (4) is fulfilled, which yields that all solutions are oscillatory regardless of Condition (12).

3. Example

Before concluding the paper, let us consider the following example, which may look a bit artificial.
This is because our intention was to design it in such a way that—hopefully—no other known results
could guarantee the oscillation of all solutions. Obviously, it is not possible to be aware of all the related
results, and to check whether they are applicable; nevertheless, we shall exclude applicability of many
classical, as well as many recent theorems.

Consider the equation

x′(t) +
(

1
2πe

+ δ sin
√

t
)

x
(
t −
(
2π + ε cos

√
t
))

= 0, t ≥ 0, (26)

where δ ∈ (0, 1
2πe ) and ε ∈ (0, 2π) are small positive constants that will be determined later. Functions p

and τ are clearly positive and bounded, so Equation (26) is a special case of Equation (1) with

p(t) =
1

2πe
+ δ sin

√
t, τ(t) = 2π + ε cos

√
t and t0 = 0.

Note that the functions sin
√

t and cos
√

t are slowly varying at infinity, since their derivatives vanish
there (see Equation (13)). This in turn yields that both p and τ are slowly varying, and, thus, in view of
Lemma 2, A is slowly varying as well.

On the other hand, a direct calculation shows that

A(t) =
2π + ε cos

√
t

2πe
+ δ
∫ t

t−τ(t)
sin

√
s ds.

This immediately implies

2π − ε

2πe
− δ(2π + ε) ≤ lim inf

t→∞
A(t) ≤ lim sup

t→∞
A(t) ≤ 2π + ε

2πe
+ δ(2π + ε). (27)
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Now, by setting tn = (2nπ)2 and t′n = ((2n + 1)π)2 for all n ∈ N, we obtain that

A(tn) =
2π + ε

2πe
+ δ
∫ tn

tn−τ(tn)
sin

√
s ds ≥ 2π + ε

2πe
− δ(2π + ε)

and

A(t′n) =
2π − ε

2πe
+ δ
∫ t′n

t′n−τ(t′n)
sin

√
s ds ≤ 2π − ε

2πe
+ δ(2π + ε)

hold for all n ∈ N. These together with Inequalities (27) yield the estimates

2π + ε

2πe
− δ(2π + ε) ≤ lim sup

t→∞
A(t) ≤ 2π + ε

2πe
+ δ(2π + ε)

and
2π − ε

2πe
− δ(2π + ε) ≤ lim inf

t→∞
A(t) ≤ 2π − ε

2πe
+ δ(2π + ε).

Finally, for γ > 0, let ε := ε(γ) := 4πeγ and δ := δ(γ) := γ
2π+ε . Then, the above estimates

take the form

1
e
+ γ ≤ lim sup

t→∞
A(t) ≤ 1

e
+ 3γ and

1
e
− 3γ ≤ lim inf

t→∞
A(t) ≤ 1

e
− γ.

It is now easy to see that, for all γ ∈
(
0, 1

3e
)
, all assumptions of Theorem 3 (and also of Theorem 4)

are fulfilled, and therefore all solutions are oscillatory. Note also that, since lim supt→∞ A(t) → 1
e as

γ → 0+, and lim inft→∞ A(t) < 1
e for all γ ∈

(
0, 1

3e
)
, by choosing γ > 0 small enough we can rule out the

application of Conditions (4), (5) and various other sufficient conditions for the oscillation of all solutions
of Equation (26) (see e.g., conditions (C3)–(C12) from [10]). Since function τ is nonconstant, therefore
neither Condition (8) nor Theorem 2 can be applied to guarantee oscillation.

4. Conclusions

It has been known for almost forty years that, for the oscillation of all solutions of equation

x′(t) + p(t)x(t − τ(t))= 0, t ≥ t0,

it is necessary that lim supt→∞ A(t) ≥ 1/e holds, where A(t) :=
∫ t

t−τ(t) p(s) ds (see [13]). In our main result
(see Theorem 3), we showed that, if the function A is slowly varying at infinity (see Formula (9)), then,
under mild additional assumptions on p and τ, the ’almost necessary’ condition lim supt→∞ A(t) > 1/e is
sufficient for the oscillation of all solutions.

In Theorem 4, we formulated a corollary of Theorem 3. The advantage of this theorem is that its
assumptions can be verified more easily.

The applicability and novelty of our results were demonstrated in Section 3.
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Abstract: A linear autonomous differential equation with small delay is considered in this paper. It is
shown that under a smallness condition the delay differential equation is asymptotically equivalent
to a linear ordinary differential equation with constant coefficients. The coefficient matrix of the
ordinary differential equation is a solution of an associated matrix equation and it can be written
as a limit of a sequence of matrices obtained by successive approximations. The eigenvalues of the
approximating matrices converge exponentially to the dominant characteristic roots of the delay
differential equation and an explicit estimate for the approximation error is given.
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1. Introduction

Let C and Cn×n denote the set of complex numbers and the n-dimensional space of complex
column vectors, respectively. Given a norm ‖ · ‖ on Cn, the associated induced norm on Cn×n will be
denoted by the same symbol.

We will study the linear autonomous delay differential equation

ẋ(t) = Ax(t) + Bx(t − τ), (1)

where τ > 0, A ∈ Cn×n and B ∈ Cn×n is a nonzero matrix. It is well-known that if φ : [−τ, 0] → Cn is
a continuous initial function, then Equation (1) has a unique solution x : [−τ, ∞) → Cn with initial
values x(t) = φ(t) for −τ ≤ t ≤ 0 (see [1]). The characteristic equation of Equation (1) has the form

det Δ(λ) = 0, where Δ(λ) = λI − A − Be−λτ . (2)

Throughout the paper, we will assume that

‖B‖τe1+‖A‖τ < 1, (3)

which may be viewed as a smallness condition on the delay τ. We will show that if (3) holds, then
Equation (1) is asymptotically equivalent to the ordinary differential equation

ẋ = Mx, (4)

where M ∈ Cn×n is the unique solution of the matrix equation

M = A + Be−Mτ (5)

Symmetry 2019, 11, 1299; doi:10.3390/sym11101299 www.mdpi.com/journal/symmetry113
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such that
‖M‖ < μ0, where μ0 = −τ−1 ln(‖B‖τ) > 0. (6)

Furthermore, the coefficient matrix M in Equation (4) can be written as a limit of successive
approximations

M = lim
k→∞

Mk, (7)

where
M0 = 0 and Mk+1 = A + Be−Mkτ for k = 0, 1, 2, . . . . (8)

The convergence in (7) is exponential and we give an estimate for the approximation error ‖M −
Mk‖. It will be shown that those characteristic roots of Equation (1) which lie in the half-plane
Re λ > −μ0 with μ0 as in (6) coincide with the eigenvalues of matrix M. As a consequence, the above
dominant characteristic roots of Equation (1) can be approximated by the eigenvalues of Mk. We give
an explicit estimate for the approximation error which shows that the convergence of the eigenvalues
of Mk to the dominant characteristic roots of Equation (1) is exponentially fast.

The investigation of differential equations with small delays has received much attention.
Some results which are related to our study are discussed in the last section of the paper.

2. Main Results

In this section, we formulate and prove our main results which were indicated in the Introduction.

2.1. Solution of the Matrix Equation and Its Approximation

First we prove the existence and uniqueness of the solution of the matrix Equation (5) satisfying (6).

Theorem 1. Suppose (3) holds. Then Equation (5) has a unique solution M ∈ Cn×n such that (6) holds.

Before we present the proof of Theorem 1, we establish some lemmas.

Lemma 1. Let P, Q ∈ Cn×n and γ = max{‖P‖, ‖Q‖}. Then

‖Pk − Qk‖ ≤ kγk−1‖P − Q‖ for k = 1, 2, . . . . (9)

Proof. We will prove by induction on k that

Pk − Qk =
k−1

∑
j=0

Pj(P − Q)Qk−1−j (10)

for k = 1, 2, . . . . Evidently, (10) holds for k = 1. Suppose for induction that (10) holds for some positive
integer k. Then

Pk+1 − Qk+1 = Pk(P − Q) + (Pk − Qk)Q

= Pk(P − Q) +

( k−1

∑
j=0

Pj(P − Q)Qk−1−j
)

Q =
k

∑
j=0

Pj(P − Q)Qk−j.

Thus, (10) holds for all k. From (10), we find that

‖Pk − Qk‖ ≤
k−1

∑
j=0

‖P‖j‖P − Q‖‖Q‖k−1−j ≤ ‖P − Q‖
k−1

∑
j=0

γjγk−1−j = kγk−1‖P − Q‖

for k = 1, 2, . . . .
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Using Lemma 1, we can prove the following result about the distance of two matrix exponentials.

Lemma 2. Let P, Q ∈ Cn×n and γ = max{‖P‖, ‖Q‖}. Then

‖eP − eQ‖ ≤ eγ‖P − Q‖. (11)

Proof. By the definition of the matrix exponential, we have

eP − eQ =
∞

∑
k=0

Pk

k!
−

∞

∑
k=0

Qk

k!
=

∞

∑
k=1

Pk − Qk

k!
.

From this, by the application of Lemma 1, we find that

‖eP − eQ‖ ≤
∞

∑
k=1

‖Pk − Qk‖
k!

≤ ‖P − Q‖
∞

∑
k=1

kγk−1

k!
= ‖P − Q‖

∞

∑
k=1

γk−1

(k − 1)!
= eγ‖P − Q‖

which proves (11).

We will also need some properties of the scalar equation

λ = a + beλτ . (12)

Lemma 3. Let a ∈ [0, ∞), b,τ ∈ (0, ∞) and suppose that

bτe1+aτ < 1. (13)

If we let λ0 = −τ−1 ln(bτ), then λ0 > 0 and Equation (12) has a unique root λ1 ∈ (0, λ0). Moreover,

a + beλτ < λ for λ ∈ (λ1, λ0] (14)

and
bτeλτ < 1 for λ < λ0. (15)

Proof. By virtue of (13), we have bτ < e−1−aτ < 1 which implies that ln(bτ) < 0 and hence λ0 > 0.
Define

f (λ) = λ − a − beλτ for λ ∈ R.

We have
f ′(λ) = 1 − bτeλτ and f ′′(λ) = −bτ2eλτ for λ ∈ R.

It is easily seen that f ′(λ) = 0 if and only if λ = −τ−1 ln(bτ) = λ0. Furthermore, (13) is equivalent
to f (λ0) = −τ−1 ln(bτ) − a − τ−1 > 0. Since f ′′(λ) < 0 for λ ∈ R, f ′ strictly decreases on R. In
particular, f ′(λ) > f ′(λ0) = 0 for λ < λ0. Therefore, (15) holds and f strictly increases on (−∞, λ0].
This, together with f (0) < 0 and f (λ0) > 0, implies that f and hence Equation (12) have a unique
root λ1 ∈ (0, λ0). Since f strictly increases on [λ1, λ0], we have that f (λ) > f (λ1) = 0 for λ ∈ (λ1, λ0].
Thus, (14) holds.

Now we can give a proof of Theorem 1.

Proof of Theorem 1. By Lemma 3, if (3) holds, then the equation

μ = ‖A‖+ ‖B‖eμτ (16)
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has a unique solution μ1 ∈ (0, μ0), where μ0 is given by (6). Moreover,

‖A‖+ ‖B‖eμτ < μ for μ ∈ (μ1, μ0] (17)

and
‖B‖τeμτ < 1 for μ < μ0. (18)

Let μ ∈ [μ1, μ0) be fixed. Define

F(M) = A + Be−Mτ for M ∈ C
n×n (19)

and
S = { M ∈ C

n×n | ‖M‖ ≤ μ }. (20)

Clearly, S is a nonempty and closed subset of Cn×n. By virtue of (17), we have for M ∈ S,

‖F(M)‖ ≤ ‖A‖+ ‖B‖e‖M‖τ ≤ ‖A‖+ ‖B‖eμτ ≤ μ. (21)

Thus, F maps S into itself. Let M1, M2 ∈ S. By the application of Lemma 2, we obtain

‖F(M1)− F(M2)‖ = ‖B(e−M1τ − e−M2τ)‖ ≤ ‖B‖‖e−M1τ − eM2τ‖ ≤ ‖B‖τeμτ‖M1 − M2‖.

In view of (18), F : S → S is a contraction and hence there exists a unique M ∈ S such that
M = F(M). Since μ ∈ [μ1, μ0) was arbitrary, this completes the proof.

In the next theorem, we show that the unique solution of Equation (5) satisfying (6) can be
written as a limit of successive approximations Mk defined by (8) and we give an estimate for the
approximation error.

Theorem 2. Suppose (3) holds and let M ∈ Cn×n be the solution of Equation (5) satisfying (6). If {Mk}∞
k=0 is

the sequence of matrices defined by (8), then

‖Mk‖ ≤ μ1 for k = 0, 1, 2, . . . , (22)

and
‖M − Mk‖ ≤ μ1qk for k = 0, 1, 2, . . . , (23)

where μ1 is the unique root of Equation (16) in the interval (0, μ0) and q = ‖B‖τeμ1τ < 1 (see (18)).

Proof. Note that Mk+1 = F(Mk) for k = 0, 1, 2, . . . , where F is defined by Equation (19). Taking μ = μ1

in the proof of Theorem 1, we find that ‖M‖ ≤ μ1. Moreover, from (20) and (21), we obtain that
‖Mk‖ ≤ μ1 for k = 0, 1, 2, . . . . From this and Equations (5) and (8), by the application of Lemma 2, we
obtain for k ≥ 0,

‖M − Mk+1‖ = ‖B(e−Mτ − e−Mkτ)‖ ≤ ‖B‖‖e−Mτ − eMkτ‖ ≤ ‖B‖τeμ1τ‖M − Mk‖ = q‖M − Mk‖.

From the last inequality, it follows by easy induction on k that

‖M − Mk‖ ≤ qk‖M − M0‖ = qk‖M‖ ≤ qkμ1

for k = 0, 1, 2, . . . .

2.2. Dominant Eigenvalues and Eigensolutions

Let us summarize some facts from the theory of linear autonomous delay differential equations
(see [1,2]). By an eigenvalue of Equation (1), we mean an eigenvalue of the generator of the solution
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semigroup (see [1,2] for details). It is known that λ ∈ C is an eigenvalue of Equation (1) if and only if
λ is a root of the characteristic equation (2). Moreover, for every β ∈ R, Equation (1) has only finite
number of eigenvalues with Re λ > β. By an entire solution of Equation (1), we mean a differentiable
function x : (−∞, ∞) → Cn satisfying Equation (1) for all t ∈ (−∞, ∞). To each eigenvalue λ

of Equation (1), there correspond nontrivial entire solutions of the form p(t)eλt, t ∈ (−∞, ∞), where
p(t) is a Cn-valued polynomial in t. Such solutions are sometimes called eigensolutions corresponding
to λ.

The following theorem shows that under the smallness condition (3) the eigenvalues of
Equation (1) with Re λ > −μ0 coincide with eigenvalues of matrix M from Theorem 1 and the
corresponding eigensolutions satisfy the ordinary differential Equation (4).

Theorem 3. Suppose (3) holds so that μ0 = −τ−1 ln(‖B‖τ) > 0, and define

Λ = { λ ∈ C | det Δ(λ) = 0, Re λ > −μ0 }.

Let M ∈ Cn×n be the unique solution of Equation (5) satisfying (6). Then Λ = σ(M), where σ(M) denotes
the set of eigenvalues of M. Moreover, for every λ ∈ Λ, Equations (1) and (4) have the same eigensolutions
corresponding to λ.

In the sequel, the eigenvalues of Equation (1) with Re λ > −μ0 will be called dominant.
As a preparation for the proof of Theorem 3, we establish three lemmas. First we show that if M

is a solution of the matrix Equation (5), then every solution of the ordinary differential Equation (4) is
an entire solution of the delay differential Equation (1).

Lemma 4. Let M ∈ Cn×n be a solution of Equation (5). Then every v ∈ Cn, x(t) = eMtv, t ∈ (−∞, ∞), is
an entire solution of Equation (1).

Proof. Since ePeQ = eP+Q whenever P and Q ∈ Cn×n commute, from Equation (5), we find that

ẋ(t) = MeMtv = (A+ Be−Mτ)eMtv = AeMtv+ Be−MτeMtv = Ax(t)+ BeM(t−τ)v = Ax(t)+ Bx(t− τ)

for t ∈ (−∞, ∞).

In the following lemma, we prove the uniqueness of entire solutions of the delay differential
Equation (1) with an appropriate exponential growth as t → −∞.

Lemma 5. Suppose (3) holds. If x1 and x2 are entire solutions of Equation (1) with x1(0) = x2(0) and such
that

sup
t≤0

‖xj(t)‖eμ0t < ∞, j = 1, 2, (24)

with μ0 as in (6), then x1 = x2 identically on (−∞, ∞).

Proof. Define
C = sup

t≤0
‖x1(t)− x2(t)‖eμ0t.

By virtue of (24), we have that 0 ≤ C < ∞. From Equation (1), we find for t ≤ 0,

xj(t) = xj(0)− A
∫ 0

t
xj(s) ds − B

∫ 0

t
xj(s − τ) ds, j = 1, 2.
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From this, taking into account that x1(0) = x2(0), we obtain for t ≤ 0,

‖x1(t)− x2(t)‖ ≤ ‖A‖
∫ 0

t
‖x1(s)− x2(s)‖ ds + ‖B‖

∫ 0

t
‖x1(s − τ)− x2(s − τ)‖ ds

≤ ‖A‖C
∫ 0

t
e−μ0s ds + ‖B‖C

∫ 0

t
e−μ0(s−τ) ds

= C(‖A‖+ ‖B‖eμ0τ)
∫ 0

t
e−μ0s ds ≤ C

‖A‖+ ‖B‖eμ0τ

μ0
e−μ0t.

The last inequality implies for t ≤ 0,

‖x1(t)− x2(t)‖eμ0t ≤ C
‖A‖+ ‖B‖eμ0τ

μ0
.

Hence C ≤ κC, where

κ =
‖A‖+ ‖B‖eμ0τ

μ0
.

By virtue of (17), we have that κ < 1. Hence C = 0 and x1(t) = x2(t) for t ≤ 0. The uniqueness
theorem ([1] Chapter 2, Theorem 2.3) implies that x1(t) = x2(t) for all t ∈ (−∞, ∞).

Now we show that those entire solutions of Equation (1) which satisfy the growth condition

sup
t≤0

‖x(t)‖eμ0t < ∞ with μ0 as in (6) (25)

coincide with the solutions of the ordinary differential Equation (4).

Lemma 6. Suppose (3) holds. Then, for every v ∈ Cn, Equation (1) has exactly one entire solution x with
x(0) = v and satisfying (25) given by

x(t) = eMtv for t ∈ (−∞, ∞), (26)

where M ∈ Cn×n is the solution of Equation (5) with property (6).

Proof. By Lemma 4, x defined by Equation (26) is an entire solution of Equation (1).
Moreover, from Equations (6) and (26), we find for t ≤ 0,

‖x(t)‖ ≤ e‖M‖|t|‖v‖ ≤ eμ0|t|‖v‖ = e−μ0t‖v‖.

Hence supt≤0 ‖x(t)‖eμ0t ≤ ‖v‖ < ∞. Thus, x given by Equation (26) is an entire solution
of Equation (1) with x(0) = v and satisfying (25). The uniqueness follows from Lemma 5.

Now we can give a proof of Theorem 3.

Proof of Theorem 3. Suppose that λ ∈ Λ. Since det Δ(λ) = 0, there exists a nonzero vector v ∈ Cn

such that Δ(λ)v = 0 and hence x(t) = eλtv, t ∈ (−∞, ∞), is an entire solution of Equation (1).
Since Re λ > −μ0, we have for t ≤ 0,

‖x(t)‖ = |eλt|‖v‖ = et Re λ‖v‖ ≤ e−μ0t‖v‖,

which implies (25). Thus, x(t) = eλtv is an entire solution of (1) with x(0) = v and satisfying (25). By
Lemma 6, we have that eλtv = eMtv for t ∈ (−∞, ∞). Hence

eλt − 1
t

v =
eMt − I

t
v for t ∈ R \ {0}.
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Letting t → 0, we obtain λv = Mv. This proves that Λ ⊂ σ(M).
Now suppose that λ ∈ σ(M). Then there exists a nonzero vector v ∈ Cn such that Mv = λv.

According to Lemma 4, x(t) = eMtv = eλtv is an entire solution of Equation (1). Hence Δ(λ)v = 0
which implies that det Δ(λ) = 0. In order to prove that λ ∈ Λ, it remains to show that Re λ > −μ0. It is
well-known that ρ(M) ≤ ‖M‖, where ρ(M) = supλ∈σ(M) |λ| is the spectral radius of M. This, together
with (6), yields

|Re λ| ≤ |λ| ≤ ρ(M) ≤ ‖M‖ < μ0.

Therefore Re λ > −μ0 which proves that σ(M) ⊂ Λ.
Let λ ∈ Λ = σ(M). By Lemma 4, every eigensolution of the ordinary differential equation (4)

corresponding to λ is an eigensolution of the delay differential equation (1). Now suppose that x is an
eigensolution of the delay differential equation (1) corresponding to λ. Then x(t) = p(t)eλt, where p(t)
is a Cn-valued polynomial in t. If m is the order of the polynomial p, then there exists K > 0 such that

‖p(t)‖ ≤ K(1 + |t|m) for t ∈ (−∞, ∞).

Since Re λ > −μ0, we have that ε = Re λ + μ0 > 0. From this, we find for t ≤ 0,

‖x(t)‖ = ‖p(t)‖|eλt| = ‖p(t)‖et Re λ ≤ K(1 + |t|m)et Re λ = K(1 + |t|m)eεte−μ0t.

Hence
‖x(t)‖eμ0t ≤ K(1 + |t|m)eεt −→ 0 as t → −∞.

Thus, x is an entire solution of Equation (1) satisfying the growth condition (25). By Lemma 6, x
is a solution of the ordinary differential equation (4).

2.3. Asymptotic Equivalence

The following result from the monograph by Diekmann et al. [2] gives an asymptotic description
of the solutions of Equation (1) in terms of the eigensolutions.

Proposition 1. ([2] Chapter I, Theorem 5.4) Let x : [−τ, ∞) → Cn×n be a solution of Equation (1)
corresponding to some continuous initial function φ : [−τ, 0] → Cn. For any γ ∈ R such that det Δ(λ) = 0
has no roots on the vertical line Re λ = γ, we have the asymptotic expansion

x(t) =
l

∑
j=1

pj(t)e
λj t + o(eγt) as t → ∞, (27)

where λ1, λ2, . . . , λl are the finitely many roots of the characteristic equation (2) with real part greater than γ

and pj(t) are Cn-valued polynomials in t of order less than the multiplicity of λj as a zero of det Δ(λ).

Now we can formulate our main result about the asymptotic equivalence of Equations (1) and (4).

Theorem 4. Suppose that (3) holds so that μ0 = −τ−1 ln(‖B‖τ) > 0. Let M ∈ Cn×n be the solution of
Equation (5) satisfying (6). Then the following statements are valid.

(i) Every solution of the ordinary differential equation (4) is an entire solution of the delay differential
equation (1).

(ii) For every solution x : [−τ, ∞) → Cn×n of the delay differential equation (1) corresponding to some
continuous initial function φ : [−τ, 0] → Cn, there exists a solution x̃ of the ordinary differential equation (4)
such that

x(t) = x̃(t) + o(e−μ0t) as t → ∞. (28)

Proof. Conclusion (i) follows from Lemma 1. We shall prove conclusion (ii) by applying Proposition 1
with γ = −μ0. We need to verify that Equation (2) has no root on the vertical line Re λ = −μ0.
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Suppose for contradiction that there exists λ ∈ C such that det Δ(λ) = 0 and Re λ = −μ0. Then there
exists a nonzero vector v ∈ Cn such that Δ(λ)v = 0 and hence λv = Av + Be−λτv. From this, we find
that

|λ|‖v‖ ≤ ‖A‖‖v‖+ ‖B‖‖e−λτv‖ = ‖A‖‖v‖+ ‖B‖|e−λτ |‖v‖
= (‖A‖+ ‖B‖e−τ Re λ)‖v‖ = (‖A‖+ ‖B‖eμ0τ)‖v‖.

Hence |λ| ≤ ‖A‖+ ‖B‖eμ0τ , which together with (17), yields

μ0 = |Re λ| ≤ |λ| ≤ ‖A‖+ ‖B‖eμ0τ < μ0,

a contradiction. Thus, we can apply Proposition 1 with γ = −μ0, which implies that the asymptotic
relation (28) holds with

x̃(t) =
l

∑
j=1

pj(t)e
λj t, (29)

where λ1, λ2, . . . , λl are those eigenvalues of Equation (1) which have real part greater than −μ0 and
pj(t) are Cn-valued polynomials in t. According to Theorem 3, the eigensolutions of Equation (1)
corresponding to eigenvalues with real part greater than −μ0 are solutions of the ordinary differential
equation (4). Hence x̃ given by Equation (29) is a solution of Equation (4).

2.4. Approximation of the Dominant Eigenvalues

We will need the following result about the distance of the eigenvalues of two matrices in terms
of the norm of their difference due to Bhatia, Elsner and Krause [3].

Proposition 2. [3, Theorem 3] Let P, Q ∈ Cn×n and γ = max{‖P‖, ‖Q‖}. Then the eigenvalues of P
and Q can be enumerated as λ1, , . . . , λn and μ1, . . . , μn in such a way that

max
1≤j≤n

|λj − μj| ≤ 4 · 2−1/nn1/n(2γ)1−1/n‖P − Q‖1/n. (30)

Recall that the dominant eigenvalues of Equation (1) are those roots of Equation (2) which have
real part greater than −μ0. According to Theorem 3, if (3) holds, then the dominant eigenvalues
of Equation (1) coincide with the eigenvalues of M, the unique solution of Equation (5) satisfying (6).
By Theorem 2, M can be approximated by the sequence of matrices {Mk}∞

k=0 defined by (8). As a
consequence, the dominant eigenvalues of the delay differential equation (1) can be approximated by
the eigenvalues of Mk. The explicit estimate (23) for ‖M − Mk‖, combined with Proposition 2, yields
the following result.

Theorem 5. Suppose (3) holds so that the dominant eigenvalues of Equation (1) coincide with the eigenvalues
λ1, . . . , λn of matrix M from Theorem 1 (see Theorem 3). If {Mk}∞

k=0 is the sequence of matrices defined by (8),

then the eigenvalues λ
[k]
1 , . . . , λ

[k]
n of Mk can be renumbered such that

max
1≤j≤n

|λj − λ
[k]
j | ≤ 8 · 4−1/nn1/nμ1qk/n, (31)

where μ1 and q have the meaning from Theorem 2.

Since q < 1, the explicit error estimate (31) in Theorem 5 shows that under the smallness
condition (3) the eigenvalues of Mk converge to the dominant eigenvalues of the delay differential
equation (1) at an exponential rate as k → ∞.
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3. Discussion

Let us briefly mention some results which are relevant to our study. For a class of linear differential
equations with small delay, Ryabov [4] introduced a family of special solutions and showed that every
solution is asymptotic to some special solution as t → ∞. Ryabov’s result was improved by Driver [5],
Jarník and Kurzweil [6]. A more precise asymptotic description was given in [7]. For further related
results on asymptotic integration and stability of linear differential equations with small delays, see [8]
and [9]. Some improvements and a generalization to functional differential equations in Banach spaces
were given by Faria and Huang [10]. Inertial and slow manifolds for differential equations with small
delays were studied by Chicone [11]. Results on minimal sets of a skew-product semiflow generated
by scalar differential equations with small delay can be found in the work of Alonso, Obaya and
Sanz [12]. Smith and Thieme [13] showed that nonlinear autonomous differential equations with small
delay generate a monotone semiflow with respect to the exponential ordering and the monotonicity
has important dynamical consequences. For the effects of small delays on the stability and control,
see the paper by Hale and Verduyn Lunel [14].

The results in the above listed papers show that if the delay is small, then there are
similarities between the delay differential equation and an associated ordinary differential equation.
The description of the associated ordinary differential equation in general requires the knowledge of
certain special solutions. Since in most cases the special solutions are not known, the above results are
mainly of theoretical interest. In the present paper, in the simple case of linear autonomous differential
equations with small delay, we have described the coefficient matrix of the associated ordinary
differential equation. Moreover, we have shown that the coefficient matrix can be approximated by a
sequence of matrices defined recursively which yields an effective method for the approximation of
the dominant eigenvalues.
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Abstract: In this paper the model of infection diseases by Marchuk is considered. Mathematical
questions which are important in its study are discussed. Among them there are stability of stationary
points, construction of the Cauchy matrices of linearized models, estimates of solutions. The novelty
we propose is in a distributed feedback control which affects the antibody concentration. We use
this control in the form of an integral term and come to the analysis of nonlinear integro-differential
systems. New methods for the study of stability of linearized integro–differential systems describing
the model of infection diseases are proposed. Explicit conditions of the exponential stability of the
stationary points characterizing the state of the healthy body are obtained. The method of the paper
is based on the symmetry properties of the Cauchy matrices which allow us their construction.

Keywords: integro–differential systems; Cauchy matrix; exponential stability; distributed control

1. Introduction

In this paper we consider the Marchuk model of infection diseases⎧⎪⎪⎪⎨⎪⎪⎪⎩
dV
dt = βV (t)− γF (t)V (t)

dC
dt = ζ (m(t)) αF (t)V (t)− μc (C (t)− C∗)

dF
dt = ρC (t)− ηγF (t)V (t)− μ f F (t)

dm
dt = σV (t)− μmm (t)

, (1)

proposed in the book [1].
Here t is time, V (t) is antigen concentration rate, C (t) is the plasma cell concentration rate, F (t)

is the antibody concentration rate, m (t) is relative features of the body, m = 0 for the healthy body,
ζ (m) takes into account the destruction of the normal functioning of the immune system, ζ (0) = 1.
α, β, γ, ρ, η, μ f , μm, μc, C∗ are corresponding coefficients obtained as results of laboratory experiments.
Let us note their biological sense of the coefficients: β—coefficient describing the antigen activity, γ

—the antigen neutralizing factor, α—stimulation factor of the immune system, ρ—rate of production of
antibodies by one plasma cell, μ f —coefficient inversely proportional to the decay time of the antibodies,
μm—coefficient inversely proportional to the organ recovery time, i.e., the coefficient μm characterizes
the rate of regeneration of the target organ, μc—coefficient of reduction of plasma cells due to ageing
(inversely proportional to the lifetime), σ—constant related with a particular disease, C∗—the plasma
cell concentration of the healthy body. Let us describe now the structure of the model (1). The first
equation presents the block of the virus dynamics. It describes the changes in the antigen concentration
rate and includes the amount of the antigen in the blood. The antigen concentration decreases as a
result of the interaction with the antibodies. The immune process is characterized by the antibodies,
whose concentration changes with time (destruction rate) and is described by the third equation.
The amount of the antibody cells decreases as a result of interaction with antigen and also as a result of
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the natural destruction. However, the plasma restores the antibodies and therefore the plasma state
plays an important role in the immune process. Thus, the change in the concentration rate of the
plasma cell is included in several differential equations describing this model. Taking into account
the healthy body level of plasma cells and their natural ageing, the term μc (C(t)− C∗) is included
in the second equation of system (1). The second and third equations present the immune response
dynamics. Concerning the last equation of system (1), the following can be noted: (1) the value of m
increases with the antigen’s concentration rate V(t); (2) the maximum value of m is one, in the case of
100% organ damage or zero for a fully healthy organ.

This model was studied in many works, note, for example, the recent papers [2–6] and the
bibliography therein. The adding control to stabilize the system in the neighborhood of a stationary
point was proposed, for example, in [5–8]. In the works [4,9,10], the basic mathematical model that
takes into account the concentrated control of the immune response is proposed.

Let us discuss a motivation and novelty of our approach. In constructing every model,
the influences of various additional factors that have seemed to be nonessential were neglected.
The influence effect of choosing nonlinear terms by their linearization in neighborhood of stationary
solution is also neglected. Even in the frame of linearized model, only approximate values of
coefficients instead of exact ones are used. Changes of these coefficients with respect to time are
not usually taken into account. It looks important to estimate an influence of all these factors.

In order to make this we have to obtain estimates of the elements of the Cauchy matrix of
corresponding linearized (in a neighborhood of a stationary point) system. Consider the system

x′(t) = P(t)x(t) + G(t),

where P(t) is a (n × n)-matrix, G(t) is an n-vector. Its general solution x(t) = col{x1(t), ...xn(t)} can
be represented in the form (see, for example, [11])

x(t) =
∫ t

0
C(t, s)G(s)ds + C(t, 0)x(0),

where n × n-matrix C(t, s) is called the Cauchy matrix. Its j-th column (j = 1, ..., n) for every fixed s as
a function of t, is a solution of the corresponding homogeneous system

x′(t) = P(t)x(t),

satisfying the initial conditions xi(s) = δij, where

δij =

{
1, i = j,
0, i �= j,

i = 1, ..., n,

(see, for example, [12]). This Cauchy matrix C(t, s) satisfies the following symmetric properties
C(t, s) = X(s)X−1(s), where X(t) is a fundamental matrix, C(t, 0) = C(t, s)C(s, 0), and in the case of
constant matrix P(t) = P, X(t − s) = C(t, s) is a fundamental matrix for every s ≥ 0. These definition
and properties allow us to construct and estimate C(t, s).

It can be noted that the use of information about behaviour of a disease and the immune system
for a long time (defined by distributed control, for example, in the form of an integral term) looks
very natural in choosing a strategy of a possible treatment. We add a distributed control in the third
equation, describing the antibody concentration rate to achieve stabilization of the process in the
neighborhood of stationary solution in the form

u (t) =
t∫

0

(F (s)− F∗) e−k(t−s)ds. (2)
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Here F∗ is the antibody concentration that we wish to achieve after the treatment. It can be noted
that the influence of a correspondin average value instead of F (t)− F∗ at the point t looks reasonable.
The kernel in (2) increases the influence of the previous moments which are closer to the current
moment t. Note that this control is a reasonable one from the medical point of view. We consider a
corresponding integro–differential system and construct its Cauchy matrix. This allows us to estimate
the influence of all notes above factors on behavior of solutions.

Note the use of distributed control in stabilization in the papers [13,14]. The goal of this paper is to
demonstrate new possibilities of distributed control in the model of infection diseases through analysis
of integro-differential systems. From the medical point of view, our results could be interpreted as
follows: supporting the immune system we transform infection disease to a stable state of “almost
healthy” body. After getting this stable state we do not stop the use of corresponding medicine
allowing to hold antibody concentration rate on the higher level than in the normal conditions of a
healthy body. In all these stages it is important to estimate influence of many additional factors in
order to hold the process in a corresponding zone. Going solution out of this zone can be dangerous
for a patient. To give an instrument for these estimations is the main goal of this paper. We propose
here a simple method of analysis and estimation based on a reduction of integro–differential systems
to ones of ordinary differential equations.

Our paper consists of the following parts. In Section 2 we introduce the distributed control in
the Marchuk model of infection diseases and explain how the analysis of this model of the fourth
order can be reduced to the analysis of a system of ordinary differential equations of the fifth order. In
Section 3 the Cauchy matrix of integro–differential system is constructed and the exponential stability
of a stationary point is obtained. The case of uncertain coefficient in the control is studied in Section 4
where results on the exponential stability are proposed. The influence of changes in the right-hand
side on behaviour of solutions is discussed in Section 5.

2. Modified Model of Infection Deceases

Adding the control (2) in the right-hand side of the third equation of system (1) we come to the
system of four equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dV
dt = βV (t)− γF (t)V (t)

dC
dt = ζ (m(t)) αF (t)V (t)− μc (C (t)− C∗)

dF
dt = ρC − ηγF (t)V (t)− μ f F (t)− b

t∫
0
(F (s)− F∗) e−k(t−s)ds

dm
dt = σV (t)− μmm (t)

, (3)

Let us consider the following system of five equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dV
dt = βV (t)− γF (t)V (t)

dC
dt = ζ (m(t)) αF (t)V (t)− μc (C (t)− C∗)
dF
dt = ρC − ηγF (t)V (t)− μ f F (t)− bu (t)

dm
dt = σV (t)− μmm (t)

du
dt = F (t)− F∗ − ku (t)

. (4)

Lemma 1. The solution-vector col (v (t) , s (t) , f (t) , m (t)) of system (3) and four first components of
the solution-vector col (v (t) , s (t) , f (t) , m (t) , u (t)) of system (4) considered with the condition u (0) =

0 coincide.

The proof of Lemma 1. follows from the formula of presentation of the general solution of the
scalar linear equation du

dt + ku (t) = F (t)− F∗.
Note that a similar trick was used, for example, in papers [15,16].
Following [9] we can pass to the dimensionless case.
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Substituting V (t) = v (t)Vm, C (t) = s (t)C∗, F (t) = f (t) F∗, u (t) = u (t) F∗ into (3) we obtain.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dv
dt = βv (t)− γF∗ f (t) v (t)

ds
dt = αVm

F∗
C∗ ζ (m(t)) f (t) v (t)− μc (s (t)− 1)

d f
dt = ρC∗

F∗ s (t)− ηγVm f (t) v (t)− μ f f (t)− bu (t)
dm
dt = σVmv (t)− μmm (t)

du
dt = f (t)− 1 − ku (t)

. (5)

Substituting a1 = β, a2 = γF∗, a3 = αVm
F∗
C∗ , a4 = μ f = ρC∗

F∗ , a5 = μc, a6 = σVm, a7 = μm,
a8 = ηγVm into (6) we come to the system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dv
dt = a1v (t)− a2 f (t) v (t)

ds
dt = a3ζ (m(t)) f (t) v (t)− a5 (s (t)− 1)

d f
dt = a4 (s (t)− f (t))− a8 f (t) v (t)− bu (t)

dm
dt = a6v (t)− a7m (t)
du
dt = f (t)− 1 − ku (t)

. (6)

Remark 1. It was obtained by M. Chirkov and S. Rusakov (see their method of identification of parameters,
for example in [5,9]) on the basis of the laboratory data of pneumonia, that a1 = 0.25; a2 = 8.5000332;
a3 = 1.792175675 × 109; a4 = 1.95992344 × 10−7; a5 = 0.5; a6 = 10; a7 = 0.4; a8 = 1.7 × 10−3.

It is clear that v = m = u = 0, s = f = 1 is a stationary point of system (6).
Linearizing system in a neighborhood of this stationary point, we obtain the corresponding

linear system ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dv
dt = (a1 − a2) v

ds
dt = a3ζ(0)v − a5 (s − 1)

d f
dt = −a8v − a4 ( f − 1) + a4 (s − 1)− bu (t)

dm
dt = a6v − a7m
du
dt = f − 1 − ku

,

where ζ(0) = 1, as it was noted above. Denoting x1 = v, x2 = s − 1, x3 = f − 1, x4 = m, x5 = u,
we obtain ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x′1 = (a1 − a2) x1

x′2 = a3x1 − a5x2

x′3 = −a8 x1 + a4x2 − a4x3 − bx5

x′4 = a6x1 − a7x4

x′5 = x3 − kx5

. (7)

3. Constructing the Cauchy Matrix of the System (7)

In order to estimate the values of x1, ..., x5 and the speed of their tending to the stationary solutions
we propose below a corresponding technique. Its basis is the Cauchy matrix.

The matrix of the coefficients of system (7) is following

A =

⎛⎜⎜⎜⎜⎜⎝
a1 − a2 0 0 0 0

a3 −a5 0 0 0
−a8 a4 −a4 0 −b
a6 0 0 −a7 0
0 0 1 0 −k

⎞⎟⎟⎟⎟⎟⎠ (8)
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Its eigenvalues are

λ1 = −a4−k+
√

(a4−k)2−4b
2 , λ2 = −a4−k−

√
(a4−k)2−4b
2 ,

λ3 = −a7, λ4 = −a5, λ5 = a1 − a2.
(9)

Their negativity (negativity of the real parts in the case of complex λ1 and λ2) leads us to the
assertion on stability of the stationary point v = m = u = 0, s = f = 1 of system (6).

Theorem 1. If k > 0, b > 0 and ai, 1 ≤ i ≤ 8, are real positive and different and a1 < a2, then system (7) is
exponentially stable.

Remark 2. All steps can be done for the integro–differential system (3) and system of ordinary differential
equations (4) also directly without needing to pass to the dimensionless case (6). The linearization will lead
us to a corresponding analog of the linear system of ordinary differential Equation (7) with the matrix of the
coefficients B. Let us discuss the medicine sense of our result. Let F0 be the value of antibody concentration rate
of the healthy body. The case of F0 > β

γ is considered by G.I. Marchuk in his book. In this case the stationary
point V = 0, C = C∗, F = F0, m = 0, is stable even without control. We can try to consider the “bad” case,
where F0 < β

γ . It is clear that system (1.1) could not be stable in this case in the neighborhood of this stationary
point since V(t) increases. It means that the immune system with the antibody concentration on the level
of the healthy body cannot prevent increasing antigen concentration. Our control (2) in the third equation
of system (1.1) cannot help us and makes this stationary point stable. We consider another stationary point
V = 0, C = C∗, F = F∗, m = 0. Repeating the analysis of the eigenvalues of the matrix of the coefficients
B, we come to the same conclusions. Let all coefficients in system (1) be positive (this is absolutely natural
assumption) and b > 0, k > 0, then adding the control in the form (2), where F∗ > F0 +

β−γF0
γ , we can achieve

the exponential stability of this new stationary point of systems (3) and (4). Actually, positivity of k, b and
all coefficients ai(i = 1, ..., 8) is preserved, to achieve the inequality a1 − a2 < 0 we have to require the noted
inequality connecting F∗ and F0. One can make a conclusion that supporting for a long time the immune system,
describing by antibody concentration F(t) and holding it on the level F∗ can be a possible way of a treatment.

There are three possible cases:

(1) If (a4 − k)2 > 4b, then we have two different real eigenvalues λ1 and λ2.
(2) If (a4 − k)2 = 4b, then we have two real and multiple eigenvalues λ1 and λ2.
(3) If (a4 − k)2 < 4b, we have two complex eigenvalues λ1 and λ2.

3.1. Constructing the Cauchy Matrix in the Case 1

Using Maple, we obtain the eigenvectors of the matrix (8):

−→v 1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k+

√
(a4−k)2−4b
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ , −→v 2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k−

√
(a4−k)2−4b
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ , −→v 3 =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠ ,

−→v 4 =

⎛⎜⎜⎜⎜⎜⎜⎝
0

− a4a5−a4k−a2
5+a5k−b

a4

−a5 + k
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ , −→v 5 =

⎛⎜⎜⎜⎜⎜⎝
−c (a5 + a1 − a2)

−ca3

a1 − a2 + k
− (a5+a1−a2)a6c

a1−a2+a7

1

⎞⎟⎟⎟⎟⎟⎠ ,

(10)

where c = a2
1−2a1a2+a1a4+a1k+a2

2−a2a4−a2k+a4k+b
a1a8−a2a8−a3a4+a5a8

.
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Let us denote α31 = − 2b
a4−k+

√
(a4−k)2−4b

, α32 = − 2b
a4−k−

√
(a4−k)2−4b

, α24 =

− a4a5−a4k−a2
5+a5k−b

a4
, α34 = −a5 + k, α15 = −c (a5 + a1 − a2) , α25 = −ca3, α35 = a1 − a2 + k, α45 =

− (a5+a1−a2)a6c
a1−a2+a7

, and define the matrix

B = [−→v 1,−→v 2,−→v 3,−→v 4,−→v 5] =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 α15

0 0 0 α24 α25

α31 α32 0 α34 α35

0 0 1 0 α45

1 1 0 1 1

⎞⎟⎟⎟⎟⎟⎠
containing eigenvectors and its inverse matrix

B−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

α24(α32−α35)−α25(α32−α34)
α15α24(α31−α32)

α32−α34
α24(α31−α32)

1
α31−α32

0 − α32
α31−α32

− α24(α31−α35)−α25(α31−α34)
α15α24(α31−α32)

− α31−α34
α24(α31−α32)

− 1
α31−α32

0 α31
α31−α32

− α45
α15

0 0 1 0
− α25

α15α24
1

α24
0 0 0

1
α15

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us write now the Cauchy matrix C(t, s) of the the system (7). The Cauchy matrix can be written
as C(t, s) = eA(t−s). In our case A is diagonalized: A = BDB−1, we have eA(t−s) = BeD(t−s)B−1, where
the matrix D is diagonal, containing the eigenvalues of the matrix A. The columns

−→
C i (t, s)1≤i≤5 of

the Cauchy matrix C(t, s) of system (7) are the following ones:

−→
C 1 (t, s) =

α24 (α32 − α35)− α25 (α32 − α34)

α15α24 (α31 − α32)

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k+

√
(a4−k)2−4b
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ e

(
−a4−k+

√
(a4−k)2−4b
2

)
(t−s)

−

α24 (α31 − α35)− α25 (α31 − α34)

α15α24 (α31 − α32)

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k−

√
(a4−k)2−4b
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ e

(
−a4−k−

√
(a4−k)2−4b
2

)
(t−s)

−

α45

α15

⎛⎜⎜⎜⎜⎜⎝
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠ e−a7(t−s) − α25

α15α24

⎛⎜⎜⎜⎜⎜⎜⎝
0

− a4a5−a4k−a2
5+a5k−b

a4

−a5 + k
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ e−a5(t−s) +

1
α15

⎛⎜⎜⎜⎜⎜⎝
−c (a5 + a1 − a2)

−ca3

a1 − a2 + k
− (a5+a1−a2)a6c

a1−a2+a7

1

⎞⎟⎟⎟⎟⎟⎠ e(a1−a2)(t−s)
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−→
C 2 (t, s) =

α32 − α34

α24 (α31 − α32)

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k+

√
(a4−k)2−4b
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ e

(
−a4−k+

√
(a4−k)2−4b
2

)
(t−s)

−

α31 − α34

α24 (α31 − α32)

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k−

√
(a4−k)2−4b
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ e

(
−a4−k−

√
(a4−k)2−4b
2

)
(t−s)

+

1
α24

⎛⎜⎜⎜⎜⎜⎜⎝
0

− a4a5−a4k−a2
5+a5k−b

a4

−a5 + k
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ e−a5(t−s)

−→
C 3 (t, s) =

1
α31 − α32

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k+

√
(a4−k)2−4b
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ e

(
−a4−k+

√
(a4−k)2−4b
2

)
(t−s)

−

1
α31 − α32

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k−

√
(a4−k)2−4b
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ e

(
−a4−k−

√
(a4−k)2−4b
2

)
(t−s)

−→
C 4 (t, s) =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠ e−a7(t−s)

−→
C 5 (t, s) = − α32

α31 − α32

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k+

√
(a4−k)2−4b
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ e

(
−a4−k+

√
(a4−k)2−4b
2

)
(t−s)

+

α31

α31 − α32

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k−

√
(a4−k)2−4b
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ e

(
−a4−k−

√
(a4−k)2−4b
2

)
(t−s)
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3.2. Constructing the Cauchy Matrix in the Case 2

We have the eigenvalues

λ1 = λ2 = − a4 + k
2

, λ3 = −a7, λ4 = −a5, λ5 = a1 − a2, (11)

Consider the following set of vectors

−→v 1 =

⎛⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k
0
1

⎞⎟⎟⎟⎟⎟⎠ , −→v 2 =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
0
2

a4−k

⎞⎟⎟⎟⎟⎟⎠ , −→v 3 =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠ ,

−→v 4 =

⎛⎜⎜⎜⎜⎜⎜⎝
0

− a4a5−a4k−a2
5+a5k−b

a4

−a5 + k
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ , −→v 5 =

⎛⎜⎜⎜⎜⎜⎝
−c (a5 + a1 − a2)

−ca3

a1 − a2 + k
− (a5+a1−a2)a6c

a1−a2+a7

1

⎞⎟⎟⎟⎟⎟⎠ ,

(12)

here −→v 1,−→v 3,−→v 4,−→v 5 are the eigenvectors of matrix (8) and −→v 2 is a root vector for −→v 1.

Let us denote β31 = − 2b
a4−k , β52 = 2

a4−k , β24 = − a4a5−a4k−a2
5+a5k−b

a4
, β34 = −a5 + k, β15 =

−c (a5 + a1 − a2) , β25 = −ca3, β35 = a1 − a2 + k, β45 = − (a5+a1−a2)a6c
a1−a2+a7

, and define the matrix

B = [−→v 1,−→v 2,−→v 3,−→v 4,−→v 5] =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 β15

0 0 0 β24 β25

β31 0 0 β34 β35

0 0 1 0 β45

1 β52 0 1 1

⎞⎟⎟⎟⎟⎟⎠

and its inverse matrix

B−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

− β24β35−β25β34
β31β15β24

− β34
β24β31

1
β31

0 0

− β24(β31−β35)−β25(β31−β34)
β31β52β24β15

− β31−β34
β31β24β52

− 1
β31β52

0 1
β52

− β45
β15

0 0 1 0

− β25
β15β24

1
β24

0 0 0
1

β15
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us denote: −→u 1 (t) = −→v 1eλ1t, −→u 2 (t) = (−→v 2 + t−→v 1)eλ1t, −→u i (t) = −→v ieλi t, 3 ≤ i ≤ 5,
−→w j (t, s) = −→u j (t − s) , 1 ≤ j ≤ 5.

Let us build the Cauchy matrix C(t, s) =
{−→

C i (t, s)
}

1≤i≤5
, where

−→
C i (t, s) =

5
∑

j=1
bji

−→w j (t, s) ,

1 ≤ i ≤ 5.
We have to find bji, 1 ≤ i, j ≤ 5 in this representation. Taking into account that C (s, s) = I, where

I is the identity (5 × 5)-matrix, we can write:
−→
C i (s, s) =

5
∑

j=1
bji

−→v j, 1 ≤ i ≤ 5.

Setting i = 1, 2, 3, 4, 5, we obtain
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−→
C 1 (s, s) =

5

∑
j=1

bj1
−→v j = B

⎛⎜⎜⎜⎜⎜⎝
b11

b21

b31

b41

b51

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
0
0
0
0

⎞⎟⎟⎟⎟⎟⎠ ⇒

⎛⎜⎜⎜⎜⎜⎝
b11

b21

b31

b41

b51

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

− β24β35−β25β34
β31β15β24

− β24(β31−β35)−β25(β31−β34)
β31β52β24β15

− β45
β15

− β25
β15β24

1
β15

⎞⎟⎟⎟⎟⎟⎟⎟⎠

−→
C 2 (s, s) =

5

∑
j=1

bj2
−→v j = B

⎛⎜⎜⎜⎜⎜⎝
b12

b22

b32

b42

b52

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
1
0
0
0

⎞⎟⎟⎟⎟⎟⎠ ⇒

⎛⎜⎜⎜⎜⎜⎝
b12

b22

b32

b42

b52

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
− β34

β24β31

− β31−β34
β31β24β52

0
1

β24

0

⎞⎟⎟⎟⎟⎟⎟⎠

−→
C 3 (s, s) =

5

∑
j=1

bj3
−→v j = B

⎛⎜⎜⎜⎜⎜⎝
b13

b23

b33

b43

b53

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
0
1
0
0

⎞⎟⎟⎟⎟⎟⎠ ⇒

⎛⎜⎜⎜⎜⎜⎝
b13

b23

b33

b43

b53

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1

β31

− 1
β31β52

0
0
0

⎞⎟⎟⎟⎟⎟⎠

−→
C 4 (s, s) =

5

∑
j=1

bj4
−→v j = B

⎛⎜⎜⎜⎜⎜⎝
b14

b24

b34

b44

b54

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠ ⇒

⎛⎜⎜⎜⎜⎜⎝
b14

b24

b34

b44

b54

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
0
1
0
0

⎞⎟⎟⎟⎟⎟⎠

−→
C 5 (s, s) =

5

∑
j=1

bj5
−→v j = B

⎛⎜⎜⎜⎜⎜⎝
b15

b25

b35

b45

b55

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
0
1

⎞⎟⎟⎟⎟⎟⎠ ⇒

⎛⎜⎜⎜⎜⎜⎝
b15

b25

b35

b45

b55

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
1

β52

0
0
0

⎞⎟⎟⎟⎟⎟⎠
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Substituting the coefficients bji, 1 ≤ i, j ≤ 5 into the equality
−→
C i (t, s) =

5
∑

j=1
bji

−→w j (t, s) , 1 ≤ i ≤ 5

we obtain

−→
C 1 (t, s) = − β24β35 − β25β34

β31β15β24

⎛⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k
0
1

⎞⎟⎟⎟⎟⎟⎠ e
(
− a4+k

2

)
(t−s) −

β24 (β31 − β35)− β25 (β31 − β34)

β31β52β24β15

⎡⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝
0
0
0
0
2

a4−k

⎞⎟⎟⎟⎟⎟⎠+ (t − s)

⎛⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k
0
1

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦ e
(
− a4+k

2

)
(t−s) −

β45

β15

⎛⎜⎜⎜⎜⎜⎝
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠ e−a7(t−s) − β25

β15β24

⎛⎜⎜⎜⎜⎜⎜⎝
0

− a4a5−a4k−a2
5+a5k−b

a4

−a5 + k
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ e−a5(t−s) +

1
β15

⎛⎜⎜⎜⎜⎜⎝
−c (a5 + a1 − a2)

−ca3

a1 − a2 + k
− (a5+a1−a2)a6c

a1−a2+a7

1

⎞⎟⎟⎟⎟⎟⎠ e(a1−a2)(t−s)

−→
C 2 (t, s) =

⎡⎢⎢⎢⎢⎢⎣−
β34

β24β31

⎛⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k
0
1

⎞⎟⎟⎟⎟⎟⎠− β31 − β34

β31β24β52

⎡⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝
0
0
0
0
2

a4−k

⎞⎟⎟⎟⎟⎟⎠+ (t − s)

⎛⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k
0
1

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦ e
(
− a4+k

2

)
(t−s)

+

1
β24

⎛⎜⎜⎜⎜⎜⎜⎝
0

− a4a5−a4k−a2
5+a5k−b

a4

−a5 + k
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ e−a5(t−s)

−→
C 3 (t, s) =

⎡⎢⎢⎢⎢⎢⎣
1

β31

⎛⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k
0
1

⎞⎟⎟⎟⎟⎟⎠− 1
β31β52

⎡⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝
0
0
0
0
2

a4−k

⎞⎟⎟⎟⎟⎟⎠+ (t − s)

⎛⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k
0
1

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦ e
(
− a4+k

2

)
(t−s)

−→
C 4 (t, s) =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠ e−a7(t−s)
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−→
C 5 (t, s) =

1
β52

⎡⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝
0
0
0
0
2

a4−k

⎞⎟⎟⎟⎟⎟⎠+ (t − s)

⎛⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k
0
1

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦ e
(
− a4+k

2

)
(t−s)

3.3. Constructing the Cauchy Matrix in the Case 3

We have the eigenvalues

λ1 =
−a4 − k + i

√
4b − (a4 − k)2

2
, λ2 =

−a4 − k − i
√

4b − (a4 − k)2

2
,

λ3 = −a7, λ4 = −a5, λ5 = a1 − a2,

(13)

−→v 1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k+i

√
4b−(a4−k)2

0
1

⎞⎟⎟⎟⎟⎟⎟⎠ , −→v 2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k−i

√
4b−(a4−k)2

0
1

⎞⎟⎟⎟⎟⎟⎟⎠ , −→v 3 =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠ ,

−→v 4 =

⎛⎜⎜⎜⎜⎜⎜⎝
0

− a4a5−a4k−a2
5+a5k−b

a4

k − a5

0
1

⎞⎟⎟⎟⎟⎟⎟⎠ , −→v 5 =

⎛⎜⎜⎜⎜⎜⎝
−c (a5 + a1 − a2)

−ca3

a1 − a2 + k
− (a5+a1−a2)a6c

a1−a2+a7

1

⎞⎟⎟⎟⎟⎟⎠ ,

(14)

We can write first two vector-solutions as follows:

−→u1 (t) =

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k+i

√
4b−(a4−k)2

0
1

⎞⎟⎟⎟⎟⎟⎟⎠ · e

(
−a4−k+i

√
4b−(a4−k)2

2

)
t
=

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k+i

√
4b−(a4−k)2

0
1

⎞⎟⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 t ·

⎛⎝cos

⎛⎝
√

4b − (a4 − k)2

2
t

⎞⎠+ i sin

⎛⎝
√

4b − (a4 − k)2

2
t

⎞⎠⎞⎠

−→u2 (t) =

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k−i

√
4b−(a4−k)2

0
1

⎞⎟⎟⎟⎟⎟⎟⎠ · e

(
−a4−k−i

√
4b−(a4−k)2

2

)
t
=

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

− 2b
a4−k−i

√
4b−(a4−k)2

0
1

⎞⎟⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 t ·

⎛⎝cos

⎛⎝
√

4b − (a4 − k)2

2
t

⎞⎠− i sin

⎛⎝
√

4b − (a4 − k)2

2
t

⎞⎠⎞⎠

133



Symmetry 2019, 11, 1016

Passing to real solutions:

−→w1 (t) =
−→u1 (t) +

−→u2 (t)
2

=

⎛⎜⎜⎜⎜⎜⎝
0
0

k−a4
2
0
1

⎞⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 t · cos

⎛⎝
√

4b − (a4 − k)2

2
t

⎞⎠+

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

−
√

4b−(a4−k)2

2
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 t · sin

⎛⎝
√

4b − (a4 − k)2

2
t

⎞⎠

−→w2 (t) =
−→u1 (t)−−→u2 (t)

2i
=

⎛⎜⎜⎜⎜⎜⎜⎝
0
0√

4b−(a4−k)2

2
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 t · cos

⎛⎝
√

4b − (a4 − k)2

2
t

⎞⎠+

⎛⎜⎜⎜⎜⎜⎝
0
0

a4−k
2
0
1

⎞⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 t · sin

⎛⎝
√

4b − (a4 − k)2

2
t

⎞⎠

−→w3 (t) =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠ · e−a7t

−→w4 (t) =

⎛⎜⎜⎜⎜⎜⎜⎝
0

− a4a5−a4k−a2
5+a5k−b

a4

k − a5

0
1

⎞⎟⎟⎟⎟⎟⎟⎠ · e−a5t

−→w5 (t) =

⎛⎜⎜⎜⎜⎜⎝
−c (a5 + a1 − a2)

−ca3

a1 − a2 + k
− (a5+a1−a2)a6c

a1−a2+a7

1

⎞⎟⎟⎟⎟⎟⎠ · e(a1−a2)t

Let us construct now the Cauchy matrix C (t, s) =
{−→

Ci (t, s)
}

i=1,...,5
of the system. Let us define

−→wi (t, s) = −→wi (t − s) , then
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−→
Ci (t, s) = b1i

−→w1 (t, s) + b2i
−→w2 (t, s) + b3i

−→w3 (t, s) + b4i
−→w4 (t, s) + b5i

−→w5 (t, s) =

b1i ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝
0
0

k−a4
2
0
1

⎞⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 (t−s) · cos
(√

4b−(a4−k)2

2 (t − s)
)
+

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

−
√

4b−(a4−k)2

2
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 (t−s) · sin
(√

4b−(a4−k)2

2 (t − s)
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

b2i ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎝
0
0√

4b−(a4−k)2

2
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 (t−s) · cos
(√

4b−(a4−k)2

2 (t − s)
)
+

⎛⎜⎜⎜⎜⎜⎝
0
0

a4−k
2
0
1

⎞⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 (t−s) · sin
(√

4b−(a4−k)2

2 (t − s)
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

b3i ·

⎛⎜⎜⎜⎜⎜⎝
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠ · e−a7(t−s) + b4i ·

⎛⎜⎜⎜⎜⎜⎜⎝
0

− a4a5−a4k−a2
5+a5k−b

a4

k − a5

0
1

⎞⎟⎟⎟⎟⎟⎟⎠ · e−a5(t−s)+

b5i ·

⎛⎜⎜⎜⎜⎜⎝
−c (a5 + a1 − a2)

−ca3

a1 − a2 + k
− (a5+a1−a2)a6c

a1−a2+a7

1

⎞⎟⎟⎟⎟⎟⎠ · e(a1−a2)(t−s)

We have to find b1i, b2i, b3i, b4i, b5i in this representation. Taking into account that C (s, s) = I,
where I is the identity (5 × 5) matrix, we can write:

−→
Ci (s, s) = b1i ·

⎛⎜⎜⎜⎜⎜⎝
0
0

k−a4
2
0
1

⎞⎟⎟⎟⎟⎟⎠+ b2i ·

⎛⎜⎜⎜⎜⎜⎜⎝
0
0√

4b−(a4−k)2

2
0
0

⎞⎟⎟⎟⎟⎟⎟⎠+ b3i ·

⎛⎜⎜⎜⎜⎜⎝
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠+

b4i ·

⎛⎜⎜⎜⎜⎜⎜⎝
0

− a4a5−a4k−a2
5+a5k−b

a4

k − a5

0
1

⎞⎟⎟⎟⎟⎟⎟⎠+ b5i ·

⎛⎜⎜⎜⎜⎜⎝
−c (a5 + a1 − a2)

−ca3

a1 − a2 + k
− (a5+a1−a2)a6c

a1−a2+a7

1

⎞⎟⎟⎟⎟⎟⎠
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Let us denote γ32 =

√
4b−(a4−k)2

2 , γ24 = − a4a5−a4k−a2
5+a5k−b

a4
, γ15 = −c (a5 + a1 − a2) , γ25 =

−ca3, γ35 = a1 − a2 + k, γ45 = − (a5+a1−a2)a6c
a1−a2+a7

, and define the matrix

B =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 γ15

0 0 0 γ24 γ25
k−a4

2 γ32 0 k − a5 γ35

0 0 1 0 γ45

1 0 0 1 1

⎞⎟⎟⎟⎟⎟⎠

and its inverse matrix

B−1 =

⎛⎜⎜⎜⎜⎜⎜⎝

− γ24−γ25
γ15γ24

− 1
γ24

0 0 1

− 1
2

γ24(2γ35−a4+k)+γ25(a4−2a5+3k)
γ32γ15γ24

1
2

a4−3k+2a5
γ24γ32

1
γ32

0 1
2

a4−k
γ32

− γ45
γ15

0 0 1 0
− γ25

γ15γ24
1

γ24
0 0 0

1
γ15

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Let us build the Cauchy matrix C(t, s) =
{−→

C i (t, s)
}

1≤i≤5
, where

−→
C i (t, s) =

5
∑

j=1
bji

−→w j (t, s) ,

1 ≤ i ≤ 5.
We have to find bji, 1 ≤ i, j ≤ 5 in this representation. Taking into account that C (s, s) = I, where

I is the identity (5 × 5)-matrix, we can write:
−→
C i (s, s) =

5
∑

j=1
bji

−→v j, 1 ≤ i ≤ 5.

Setting i = 1, 2, 3, 4, 5, we obtain

−→
C 1 (s, s) =

5
∑

j=1
bj1

−→v j = B

⎛⎜⎜⎜⎜⎜⎝
b11

b21

b31

b41

b51

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
0
0
0
0

⎞⎟⎟⎟⎟⎟⎠ ⇒

⎛⎜⎜⎜⎜⎜⎝
b11

b21

b31

b41

b51

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

− γ24−γ25
γ15γ24

− 1
2

γ24(2γ35−a4+k)+γ25(a4−2a5+3k)
γ32γ15γ24

− γ45
γ15

− γ25
γ15γ24

1
γ15

⎞⎟⎟⎟⎟⎟⎟⎠

−→
C 2 (s, s) =

5

∑
j=1

bj2
−→v j = B

⎛⎜⎜⎜⎜⎜⎝
b12

b22

b32

b42

b52

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
1
0
0
0

⎞⎟⎟⎟⎟⎟⎠ ⇒

⎛⎜⎜⎜⎜⎜⎝
b12

b22

b32

b42

b52

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
− 1

γ24
1
2

a4−3k+2a5
γ24γ32

0
1

γ24

0

⎞⎟⎟⎟⎟⎟⎟⎠

−→
C 3 (s, s) =

5

∑
j=1

bj3
−→v j = B

⎛⎜⎜⎜⎜⎜⎝
b13

b23

b33

b43

b53

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
0
1
0
0

⎞⎟⎟⎟⎟⎟⎠ ⇒

⎛⎜⎜⎜⎜⎜⎝
b13

b23

b33

b43

b53

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
1

γ32

0
0
0

⎞⎟⎟⎟⎟⎟⎠

−→
C 4 (s, s) =

5

∑
j=1

bj4
−→v j = B

⎛⎜⎜⎜⎜⎜⎝
b14

b24

b34

b44

b54

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠ ⇒

⎛⎜⎜⎜⎜⎜⎝
b14

b24

b34

b44

b54

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
0
1
0
0

⎞⎟⎟⎟⎟⎟⎠
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−→
C 5 (s, s) =

5

∑
j=1

bj5
−→v j = B

⎛⎜⎜⎜⎜⎜⎝
b15

b25

b35

b45

b55

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
0
1

⎞⎟⎟⎟⎟⎟⎠ ⇒

⎛⎜⎜⎜⎜⎜⎝
b15

b25

b35

b45

b55

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1

1
2

a4−k
γ32

0
0
0

⎞⎟⎟⎟⎟⎟⎠
Substituting the coefficients bji, 1 ≤ i, j ≤ 5 into equality

−→
C i (t, s) =

5
∑

j=1
bji

−→w j (t, s) , 1 ≤ i ≤ 5

we obtain

−→
C 1 (t, s) = − γ24−γ25

γ15γ24
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝
0
0

k−a4
2
0
1

⎞⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 (t−s) · cos
(√

4b−(a4−k)2

2 (t − s)
)
+

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

−
√

4b−(a4−k)2

2
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 (t−s) · sin
(√

4b−(a4−k)2

2 (t − s)
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

1
2

γ24(2γ35−a4+k)+γ25(a4−2a5+3k)
γ32γ15γ24

·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎝
0
0√

4b−(a4−k)2

2
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 (t−s) · cos
(√

4b−(a4−k)2

2 (t − s)
)
+

⎛⎜⎜⎜⎜⎜⎝
0
0

a4−k
2
0
1

⎞⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 (t−s) · sin
(√

4b−(a4−k)2

2 (t − s)
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

γ45
γ15

·

⎛⎜⎜⎜⎜⎜⎝
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠ · e−a7(t−s) − γ25
γ15γ24

·

⎛⎜⎜⎜⎜⎜⎜⎝
0

− a4a5−a4k−a2
5+a5k−b

a4

a5 − k
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ · e−a5(t−s)+

1
γ15

·

⎛⎜⎜⎜⎜⎜⎝
−c (a5 + a1 − a2)

−ca3

a1 − a2 + k
− (a5+a1−a2)a6c

a1−a2+a7

1

⎞⎟⎟⎟⎟⎟⎠ · e(a1−a2)(t−s)
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−→
C 2 (t, s) = − 1

γ24
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝
0
0

k−a4
2
0
1

⎞⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 (t−s) · cos
(√

4b−(a4−k)2

2 (t − s)
)
+

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

−
√

4b−(a4−k)2

2
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 (t−s) · sin
(√

4b−(a4−k)2

2 (t − s)
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

1
2

a4−3k+2a5
γ24γ32

·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎝
0
0√

4b−(a4−k)2

2
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 (t−s) · cos
(√

4b−(a4−k)2

2 (t − s)
)
+

⎛⎜⎜⎜⎜⎜⎝
0
0

a4−k
2
0
1

⎞⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 (t−s) · sin
(√

4b−(a4−k)2

2 (t − s)
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

1
γ24

·

⎛⎜⎜⎜⎜⎜⎜⎝
0

− a4a5−a4k−a2
5+a5k−b

a4

a5 − k
0
1

⎞⎟⎟⎟⎟⎟⎟⎠ · e−a5(t−s)

−→
C 3 (t, s) =

1
γ32

·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎝
0
0√

4b−(a4−k)2

2
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 (t−s) · cos
(√

4b−(a4−k)2

2 (t − s)
)
+

⎛⎜⎜⎜⎜⎜⎝
0
0

a4−k
2
0
1

⎞⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 (t−s) · sin
(√

4b−(a4−k)2

2 (t − s)
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−→
C 4 (t, s) =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠ · e−a7(t−s)
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−→
C 5 (t, s) =

⎛⎜⎜⎜⎜⎜⎝
0
0

k−a4
2
0
1

⎞⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 (t−s) · cos
(√

4b−(a4−k)2

2 (t − s)
)
+

⎛⎜⎜⎜⎜⎜⎜⎝
0
0

−
√

4b−(a4−k)2

2
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 (t−s) · sin
(√

4b−(a4−k)2

2 (t − s)
)
+

1
2

a4−k
γ32

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎝
0
0√

4b−(a4−k)2

2
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 (t−s) · cos
(√

4b−(a4−k)2

2 (t − s)
)
+

⎛⎜⎜⎜⎜⎜⎝
0
0

a4−k
2
0
1

⎞⎟⎟⎟⎟⎟⎠ · e−
a4+k

2 (t−s) · sin
(√

4b−(a4−k)2

2 (t − s)
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
4. System with Uncertain Coefficient in the Distributed Control

Consider the following system of equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dV
dt = βV (t)− γF (t)V (t)

dC
dt = ζ (m(t)) αF (t)V (t)− μc (C (t)− C∗)

dF
dt = ρC − ηγF (t)V (t)− μ f F (t)− (b +�b(t)) u (t)

dm
dt = σV (t)− μmm (t)

du
dt = F (t)− F∗ − ku (t)

. (15)

Appearing �b(t) in the third equation can be explained by the individual reaction of the human
body on the drug. Of course sensitivity of different patients’ reactions can be different and it can be
variable in time. We assume below that �b(t) is essentially a bounded function.

This system can be rewritten in the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x′1 = (a1 − a2) x1 + g1 (x1(t), x3(t))
x′2 = a3x1 − a5x2 + g2 (x1(t), x3(t))

x′3 = −a8 x1 + a4x2 − a4x3 − (b +�b(t)) x5 + g3 (x1(t), x3(t))
x′4 = a6x1 − a7x4

x′5 = x3 − kx5

, (16)

where gi(x1(t), x3(t)) (t) , 1 ≤ i ≤ 3 results of “mistakes” we made in the process of the linearization.

It is clear that the model described by systems (15) and (16) were obtained under the assumption
that various factors �gi(t) acting on the antigen, plasma cell and antibody concentrations, were
neglected. In reality these factors act although they are “small”. Denote the so-called right-hand
sides Gi(t) = gi(x1(t), x3(t)) +�gi(t) for i = 1, 2, 3 and Gi(t) = �gi(t) for i = 4, 5. Denote F(t) =
col{G1(t), ..., G5(t)}, assume that F(t) ∈ L5

∞.
Consider the system

X′ = AX + ΔB (t) X + F (t) , (17)
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where

X(t) =

⎛⎜⎜⎜⎜⎜⎝
x1(t)
x2(t)
x3(t)
x4(t)
x5(t)

⎞⎟⎟⎟⎟⎟⎠ , ΔB (t) =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −� b(t)
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ .

The natural problem is to estimate an influence of the right-hand side F(t) on the solution X(t).
The general solution of the system

X′ − AX = Z (18)

can be represented in the following form (see, for example, [11,12])

X(t) =
t∫

0

C (t, s) Z (s) ds + C (t, 0) X (0) . (19)

Without loss of generality, X (0) = col{0, 0, 0, 0, 0}. Substituting (19) into (17) we obtain

Z(t)− ΔB (t)
t∫

0

C (t, s) Z (s) ds = F(t), (20)

which can be written in the operator form as

Z (t) = (ΩZ) (t) + F (t) , (21)

where the operator Ω : L5
∞ → L5

∞ (L5
∞ is the space of five vector-functions with essentially bounded

components) is defined by the equality

(ΩZ) (t) = ΔB (t)
t∫

0

C (t, s) Z (s) ds.

Denote ||Ω|| the norm of the operator Ω.
Estimating ‖Ω‖ for (a4 − k)2 − 4b > 0, we obtain

‖Ω‖ ≤ max
1≤j≤5

⎛⎝ess sup
t≥0

t∫
0

5

∑
i=1

∣∣∣(ΔB (t)C(t, s))ij

∣∣∣ ds

⎞⎠ .

Denoting Qj = ess supt≥0

t∫
0

5
∑

i=1

∣∣∣(ΔB (t)C(t, s))ij

∣∣∣ ds and �b∗ = ess supt≥0 |�b(t)|, we obtain
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Q1 = �b∗

⎡⎣ ∣∣∣ α24(α32−α35)−α25(α32−α34)
α15α24(α31−α32)

∣∣∣ 1
|λ1|+∣∣∣ α24(α31−α35)−α25(α31−α34)

α15α24(α31−α32)

∣∣∣ 1
|λ2| +

∣∣∣ α25
a5α15α24

∣∣∣
⎤⎦ ,

Q2 = �b∗
[∣∣∣ α32−α34

α24(α31−α32)

∣∣∣ 1
|λ1| +

∣∣∣ α31−α34
α24(α31−α32)

∣∣∣ 1
|λ2| +

1
|a5α24|

]
,

Q3 = �b∗
[

1
|α31−α32|

1
|λ1| +

1
|α31−α32|

1
|λ2|

]
,

Q4 = 0,

Q5 = �b∗
[∣∣∣ α32

α31−α32

∣∣∣ 1
|λ1| +

∣∣∣ α31
α31−α32

∣∣∣ 1
|λ2|

]
.

(22)

Theorem 2. Let the assumption of Theorem 1 be fulfilled, (a4 − k)2 > 4b and the inequality
max1≤j≤5

{∣∣Qj
∣∣} < 1 be true. Then system (16) is exponential stable.

Proof. The inequality in the condition of Theorem 2 implies that the norm ‖Ω‖ of the operator
Ω is less than one. In this case there exists the inverse operator (I − Ω)−1 : L5

∞ −→ L5
∞ and Z =

(I −Ω)−1F = (I +Ω+Ω2 + ...)F. It is clear that ||Z||L5
∞
≤ 1

1−||Ω|| ||F||L5
∞

. It means that all components
of the solution-vector Z of system (21) are bounded. The Cauchy matrix of system (16) satisfies the
exponential estimate i.e., there exist such positive N, M that∣∣Cij(t, s)

∣∣ ≤ Ne−M(t−s), 0 ≤ s ≤ t < ∞.

Then all components of the solution-vector X(t) of system (17) are bounded, according to
representation (19). The exponential stability of the homogeneous system

X′(t) = AX(t) +�B(t)X(t)

follows now from Bohl-Perron theorem (see, for example, [11] p. 500, [12] p. 93).

Example 1. Substituting the values from Remark 1 and setting k = 4, b = 1 we obtain

Q1 ≤ 327.0253788, Q2 ≤ 0.000001437277837, Q3 ≤ 1.154699764, Q4 = 0, Q5 ≤ 0.5773500802.

The inequality 327.0253788 · �b∗ < 1 implies the inequality max1≤j≤5
{∣∣Qj

∣∣} < 1.
Thus if, according to Theorem 2 �b∗ < 0.003057866651, then the system (16) is exponentially stable.

Let us estimate ‖Ω‖ for (a4 − k)2 = 4b. Denoting Pj = ess supt≥0

t∫
0

5
∑

i=1

∣∣∣(ΔB (t)C(t, s))ij

∣∣∣ ds,

we obtain
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P1 = �b∗

⎡⎢⎣
∣∣∣ β24β35−β25β34

β31β15β24

∣∣∣ 2
|a4+k| +

∣∣∣ β24(β31−β35)−β25(β31−β34)
β31β52β24β15

∣∣∣ [ 4
|a2

4−k2| +
2

|a4+k|

]
+
∣∣∣ β25

β15β24

∣∣∣ 1
|a5| +

1
|β15|

1
|a1−a2|

⎤⎥⎦ ,

P2 = �b∗
[∣∣∣ β34

β24β31

∣∣∣ 2
|a4+k| +

∣∣∣ β31−β34
β31β24β52

∣∣∣ [ 4
|a2

4−k2| +
2

|a4+k|

]
+ 1

|β24|
1

|a5|

]
,

P3 = �b∗
[

1
|β31|

2
|a4+k| +

1
|β31β52|

[
4

|a2
4−k2| +

2
|a4+k|

]]
,

P4 = 0,

P5 = �b∗ 1
|β52|

[
4

|a2
4−k2| +

2
|a4+k|

]
.

(23)

Theorem 3. Let the assumption of Theorem 1 be fulfilled, (a4 − k)2 = 4b and the inequality
max1≤j≤5

{∣∣Pj
∣∣} < 1 be true. Then system (16) is exponential stable.

The proof of Theorem 3 repeats the proof of Theorem 2.

Example 2. Substituting the values from Remark 1 and setting k = 1, b = 0.249999902, we obtain
the inequalities

P1 ≤ 4.735918812 · 1013, P2 ≤ 2.047987177 · 105, P3 ≤ 9.999999608, P4 = 0, P5 ≤ 2.999999216.

The inequality 4.735918812 · 1013 · �b∗ < 1 implies the inequality max1≤j≤5
{∣∣Pj
∣∣} < 1.

Thus if �b∗ < 2.111522684 · 10−14, then the system (16) is exponentially stable, according to
Theorem 3.

Let us estimate ‖Ω‖ for (a4 − k)2 − 4b < 0. Denoting Rj = ess supt≥0

t∫
0

5
∑

i=1

∣∣∣(ΔB (t)C(t, s))ij

∣∣∣ ds

we obtain

R1 = �b∗

⎡⎣ ∣∣∣ γ24−γ25
γ15γ24

∣∣∣ 2
|a4+k| +

∣∣∣ γ24(2γ35−a4+k)+γ25(a4−2a5+3k)
γ32γ15γ24

∣∣∣ 1
|a4+k|

+
∣∣∣ γ25

γ15γ24

∣∣∣ 1
|a5| +

∣∣∣ 1
γ15

∣∣∣ 1
|a1−a2|

⎤⎦ ,

R2 = �b∗
[

1
|γ24|

2
|a4+k| +

∣∣∣ a4−3k+2a5
γ24γ32

∣∣∣ 1
|a4+k| +

1
|γ24|

1
|a5|

]
,

R3 = �b∗ 1
|γ32|

2
|a4+k| ,

R4 = 0,

R5 = �b∗
[

2
|a4+k| +

∣∣∣ a4−k
γ32

∣∣∣ 1
|a4+k|

]
.

(24)

Theorem 4. Let the assumption of Theorem 1 be fulfilled, (a4 − k)2 < 4b and the inequality
max1≤j≤5

{∣∣Rj
∣∣} < 1 be true. Then system (16) is exponential stable.

The proof of Theorem 3 repeats the proof of Theorem 2.
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Example 3. Substituting the values from Remark 1 and setting k = 1, b = 2 we obtain

R1 ≤ 133.8894553, R2 ≤ 6.173038374 · 10−7, R3 ≤ 1.511857554, R4 = 0, R5 ≤ 0.7559286288.

The inequality 133.8894553 · �b∗ < 1 implies the inequality max1≤j≤5
{∣∣Rj
∣∣} < 1.

Thus if �b∗ < 0.7468848071, then the system (16) is exponentially stable, according to Theorem 4.

5. Influence of Changes in the Right-Hand Side on Behavior of Solutions

Constructing system we neglect the influence of different factors that seem us nonessential.
The Cauchy matrix C (t, s) allows us to estimate the influences of all these factors on the solution.

Consider the system
Y′ (t)− AY (t) = G (t) +�G (t) , (25)

where the matrix A is defined by (8) is the matrix of the coefficients of system (7) and �G (t) ∈ L5
∞

describes a change of the right-hand side. In the following assertion we estimate the difference
between the solution-vector Y (t) = col{y1(t), ..., y5(t)} of the system (25) and the solution X (t) =
col{x1(t), ..., x5(t)} of the system (7).

Theorem 5. Under the assumption of Theorem 1 the system (7) is exponentially stable and the
following inequality

‖Y (t)− X (t)‖ ≤ ‖C‖ ‖�G (t)‖ ,

is true, where

‖C‖ = max
1≤i≤5

(
sup
t≥0

∫ t

0

5

∑
j=0

∣∣cij (t, s)
∣∣) ds, ‖�G (t)‖ = max

1≤i≤5
ess sup

t≥0
|�Gi (t)| ,

||Y(t)− X(t)|| = max1≤i≤5supt≥0|yi(t)− xi(t)|.

The proof follows from the representation of solution of system (7).
The estimates of ‖C‖ can be obtained through the estimates of the elements of the Cauchy matrix

obtained in Section 3.
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