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Preface to ”Neuroendocrine Control of Energy
Metabolism”

The control of energy metabolism is a central event for cell, organ, and organism survival. There

are many control levels in energy metabolism, although in this Special Issue (edited by G.C. Panzica,

S. Gotti, and P. Collado), we concentrated on the neuroendocrine control which is operated through

specialized neural circuits controlling both food intake and energy expenditure.

A series of reviews covered different topics, in particular, the involvement of circumventricular

organs in the neuroendocrine control of metabolism (Jeong et al.), the involvement of the amygdala

(Pined et al.), the glial cell, and especially astrocites (De Bernardis Murat and Garcia-Caceres) through

the lactate cycle (Veloz Castillo et al.), and the relationships among the brown fat tissue and the

neuroendocrine circuits (Lizcano and Arroyave).

In addition, several research papers have been added to this Special Issue, involving the impact

of the diet on the IGF system (Guerra-Cantera et al.), as well as on the gut microbiota ( Merkley et

al.). Three papers are dedicated to the action of endocrine disruptors in adult life (Marraudino et al.

a), and on the effects of perinatal administered genistein (Fernandez-Garcia et al., Marraudino et al.

b). Finally, the last paper discusses the effects of growth restrictions on metabolism (Taylor et al.).

The topics discussed in this Special Issue are of particular interest for those involved in the study

of relationships among metabolic diseases and neuroendocrine circuits.

Giancarlo Panzica, Stefano Gotti, and Paloma Collado Guirao

Editors
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Abstract: The central nervous system is critical in metabolic regulation, and accumulating evidence
points to a distributed network of brain regions involved in energy homeostasis. This is accomplished,
in part, by integrating peripheral and central metabolic information and subsequently modulating
neuroendocrine outputs through the paraventricular and supraoptic nucleus of the hypothalamus.
However, these hypothalamic nuclei are generally protected by a blood-brain-barrier limiting their
ability to directly sense circulating metabolic signals—pointing to possible involvement of upstream
brain nuclei. In this regard, sensory circumventricular organs (CVOs), brain sites traditionally recog-
nized in thirst/fluid and cardiovascular regulation, are emerging as potential sites through which
circulating metabolic substances influence neuroendocrine control. The sensory CVOs, including the
subfornical organ, organum vasculosum of the lamina terminalis, and area postrema, are located
outside the blood-brain-barrier, possess cellular machinery to sense the metabolic interior milieu,
and establish complex neural networks to hypothalamic neuroendocrine nuclei. Here, evidence
for a potential role of sensory CVO-hypothalamic neuroendocrine networks in energy homeostasis
is presented.

Keywords: subfornical organ; organum vasculosum of the lamina terminalis; area postrema; hy-
pothalamus; metabolism

1. Introduction

Precise and reciprocal interactions between the central nervous system (CNS) and
peripheral organs plays an integral role in whole body metabolic homeostasis, and impair-
ments in this CNS-peripheral communication are clearly implicated in the development
of metabolic disorders. This encompasses a wide range of conditions including obesity,
type II diabetes, hypertriglyceridemia, non-alcoholic fatty liver disease, and insulin re-
sistance, to name a few [1–6]. Within the CNS, a network of brain regions are involved
in metabolic regulation, however, it is generally accepted that metabolic information
from both peripheral and central inputs will eventually be integrated into the hypotha-
lamus [4,5,7]. Hypothalamic nuclei, in particular the paraventricular nucleus (PVN) and
supraoptic nucleus (SON), possess a wide array of neuroendocrine neurons, and therefore
are considered as regions central to neuroendocrine regulation. However, the majority
of circulating factors (hormones, adipokines, metabolites, etc.) cannot directly access
these hypothalamic nuclei as they are protected by the blood-brain barrier (BBB) and/or
substances are transported in limited quantity across the BBB; specialized endothelial
cells located between the bloodstream and brain as a protective barrier against circulating
toxins and pathogens [8,9]. This suggests involvement of other brain region(s) upstream of
the PVN/SON in neuroendocrine-dependent metabolic homeostasis. In this regard, the
sensory circumventricular organs (CVOs) are a key candidate, considering that: (1) They
are located outside the BBB; (2) They possess the cellular machinery to detect circulating
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information, and; (3) They establish direct and/or indirect synaptic networks to hypothala-
mic neuroendocrine nuclei (Figure 1). Here, we will discuss existing anatomical, functional,
and circuit level evidence pointing to the involvement of sensory CVOs in neuroendocrine
regulated control of metabolism.
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Each of the sensory CVOs possesses the cellular machinery to sense multiple metabolic factors, a few of which are shown in
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hypothalamic metabolic nuclei including the PVN and SON. Multiple investigations have demonstrated the involvement of
the sensory CVOs in metabolism regulation, and further suggest that hypothalamic AVP and oxytocin (OXT) may play a
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2. Arcuate Nucleus Involvement in Metabolic Regulation

Before discussing a neuroendocrine-metabolic role of the sensory CVOs, it is important
to consider what has been the predominant focus of the field. Since the identification of
dense leptin receptors in hypothalamic nuclei [10], numerous investigations have focused
on hypothalamic neural circuits in whole body metabolic regulation, in particular an
arcuate nucleus-dependent axis [3,11]. The arcuate nucleus is a small region located in the
mediobasal hypothalamus adjacent to the third ventricle (3V) and median eminence. While
some studies have proposed the arcuate nucleus as a part of the CVOs [12], this region
in fact possesses an intact BBB, and is therefore, fully protected from the circulation [13].
Nevertheless, the arcuate nucleus plays a key role in metabolic regulation, due to an ability
of circulating factors to access the region through the median eminence and/or median
eminence-3V complex [14,15].

The arcuate possesses two functionally opposing neuronal populations: neurons ex-
pressing proopiomelanocortin (POMC) and those producing agouti-related peptide (AgRP)
and neuropeptide Y (NPY) [3,16,17]. Although these neuronal populations synaptically in-
nervate multiple brain regions, hypothalamic neuroendocrine nuclei, particularly the PVN,
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are main targets. Conversely, POMC and AgRP/NPY receive dense inputs from regions
throughout the CNS (detailed in ref [18]). When activated by satiety signals, such as leptin,
estrogen, and insulin, POMC neurons produce and release alpha-melanocyte stimulating
hormone (α-MSH) into other brain regions (e.g., PVN) as a neurotransmitter to decrease
appetite while also increasing energy expenditure [3,19]. On the other hand, AgRP/NPY
neurons release hunger factor-induced inhibitory neurotransmitters to negatively regulate
POMC neuronal activity (Jeong 2014). In brief, a balance between POMC and AgRP/NPY
neurons is thought to be key to the modulation of energy homeostasis [16,17].

In addition to neuronal populations within the arcuate nucleus, astrocytes and tany-
cytes, specialized glial cells located on the bottom of the 3V wall, also express a broad
array of metabolic receptors. Multiple investigations have suggested a role for these
glial cells as a means to communicate and introduce circulating metabolic cues to arcu-
ate neurons [6,15,20]. The arcuate nucleus also receives metabolic information from the
gastrointestinal tract indirectly via brainstem nuclei [19]. Collectively, while the critical
role of the arcuate in metabolic regulation is well established, it is important to consider
distributed CNS networks that operate in concert or independently from the arcuate in
metabolic regulation. In this context, emerging evidence points to a unique role of the
sensory CVOs, as detailed below.

3. Anatomy and Potential Metabolic Role of the Sensory CVOs

Most capillaries in the brain establish a BBB—a complex cellular physical barrier to
protect the brain from the circulation [21]. While endothelial cells that are connected to
each other through tight junctions are the basic component of the BBB, other neuronal
and non-neuronal cells also form the BBB, which results in minimal fenestration and/or
requires transport of select molecules [8,9]. However, the BBB in certain brain regions
is “more loose” and permeable with discontinuous tight junctions, and therefore, blood-
derived molecules can easily access the brain. These brain structures that lack a normal
BBB are called the CVOs. The CVOs are comprised of secretory and sensory nuclei, of
which the latter includes the subfornical organ (SFO), organum vasculosum of the lamina
terminalis (OVLT), and area postrema (AP) [22,23]. Each of the sensory CVOs establishes
neural networks, directly or indirectly, to the hypothalamus, and accumulating evidence
suggests that signaling in the sensory CVOs may modulate broad metabolic parameters
through hypothalamic control [23–25]. The unique characteristics and existing evidence
that points to a neuroendocrine-dependent metabolic regulatory role of the SFO, OVLT,
and AP is summarized below.

3.1. The SFO

The SFO is a sensory CVO located at the midline of the brain within the lateral
ventricle and is comprised of two anatomically distinct subregions including the outer
shell and ventromedial core [8,26–28]. Evidence suggests differential arrangement of tight-
junction molecules within these SFO subregions, which impact size-dependent permeability
of blood-borne molecules [8]. For example, peripheral administration of permeability
indicators revealed that small molecules (<3000 kDa) accumulated primarily within the
collagen IV-enriched ventromedial core, while the laminin-dominant outer shell was
more selective for larger molecules (>10,000 kDa). Another example is that the hormone
angiotensin-II (Ang-II) activates primarily the ventromedial core of the SFO, as represented
by c-Fos expression following peripheral Ang-II administration, despite Ang-II type 1a
receptors (AT1aR) being broadly distributed throughout the SFO [28]. However, it is
still unclear whether anatomically distinct SFO subregions are responsible for differential
physiological outputs. Instead, multiple cell phenotypes within the entire SFO have been
demonstrated to play a pivotal role in metabolism regulation [29–31].

The SFO is well recognized for its role in cardiovascular and fluid balance regula-
tion [32–34]. However, emerging evidence from transgenic reporter mouse models and
transcriptomics also suggests a role in metabolic control due to a wide distribution of
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cellular receptors within the SFO, including receptors for insulin, leptin, estrogen, ghrelin,
and adiponectin [1,35–39]. Furthermore, dynamic regulation of SFO metabolic receptors in
response to fasting and overnutrition has been demonstrated with transcriptome analy-
sis [38,39]. In addition, multiple electrophysiological investigations have also demonstrated
the responsiveness of the SFO to multiple metabolic and inflammatory factors, such as lep-
tin, amylin, ghrelin, and tumor necrosis factor-α [40–45]. Dynamic responsiveness of SFO
cells to multiple metabolic factors is also evident [35,36,41–44,46–48]. For example, while
some SFO neurons were activated in response to glucose, insulin, or adiponectin, other
SFO neurons were either deactivated or non-responsive to the same stimulus [35,36,43,47].
SFO neuronal responsiveness to adiponectin has also been shown to be modulated by food
deprivation [35]. These results indicate metabolic status-dependent, selective, and dynamic
SFO cellular plasticity in response to metabolic substances.

While the aforementioned evidence collectively points to a role for the SFO in metabolic
regulation, to date, in vivo evidence is rather limited. However, acute electrical stimulation
of the SFO induces feeding in satiated animals [40], and peripheral administration of
a synthetic melanocortin receptor agonist has been suggested to reduce overnight food
intake in rats via the SFO [49]. These limited findings suggest possible involvement of
the SFO in the regulation of feeding behavior, although future studies are clearly war-
ranted. Moreover, hormonal signaling within the SFO may modulate whole body energy
homeostasis independent of food intake. For example, selective removal of SFO insulin re-
ceptors in mice results in a metabolic syndrome-like phenotype accompanied by moderate
elevations in body weight, adiposity, and the development of hepatic steatosis [1]. In addi-
tion, central administration of the adipokine leptin induces weight loss and upregulates
sympathetically-mediated brown adipose tissue thermogenesis; responses that are depen-
dent on SFO Ang-II signaling [29]. In line with this, multiple investigations have suggested
possible involvement of the SFO in the development of metabolic disorders including
obesity [30,50] and associated conditions such as non-alcoholic fatty liver disease [51]. For
instance, neuroinflammation is strongly implicated in obesity development in rodents and
humans [52], and investigations in rodents suggested involvement of SFO Ang-II signaling,
at least in part, in high fat diet-induced neuroinflammation and obesity development [30].
Collectively, this emerging evidence points to a key role for the SFO in metabolic regulation,
including potentially complex interactions between different hormones, although further
work is necessitated.

3.2. The OVLT

Located at the rostral end of the third ventricle, the OVLT is a hypothalamic sensory
CVO [53] that is divided by two anatomically and functionally independent subregions
including the inner capillary plexus and outer lateral zone [8]. Small molecules in the
circulation access the capillary plexus and then sequentially diffuse to the lateral zone
within the OVLT; this phenomenon has been associated with heterogeneous expression
of capillary tight junction molecules between the two OVLT subregions [8]. However,
several anatomical studies have suggested that functional regulation by the OVLT may
occur primarily in the lateral zone [8,28,54,55]. For example, both mRNA and protein levels
of AT1aR were detected throughout the entire OVLT [56,57], but peripheral administration
of Ang-II results in c-Fos expression predominantly within the lateral zone [28,54]. Ad-
ditionally, astrocytes, which are critical for the sensing of circulating factors in this brain
region [58–60] are primarily distributed in the lateral zone [8]. Even within the lateral zone,
estrogen receptor-alpha (ERα) expression, a potential area where interactions between sex
hormones and metabolic/cardiovascular/fluid information occurs, is exclusively clustered
at the dorsal cap area [55]. Therefore, it is plausible that the inner capillary plexus is an
entrance for circulating substances, and the outer lateral zone integrates this informa-
tion to drive OVLT-mediated outputs to downstream regions including hypothalamic
neuroendocrine nuclei.
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Multiple anatomical and biochemical investigations have demonstrated receptors for
insulin, leptin, Ang-II, endothelin, estrogen, oxytocin, arginine vasopressin (AVP), and
relaxin 1/3 in the OVLT [1,55,56,61–67]. Responsiveness of the OVLT to these circulating
factors is also evident. For example, application of AVP into primary OVLT cell culture
medium evoked increases in intracellular calcium [63,64]. Additionally, c-Fos expression
in the OVLT was elevated by intracerebroventricular administration of leptin in rats on a
normal chow diet [68]. These findings, along with others [55,61,62], collectively suggest
that the OVLT possesses the ability to monitor and respond to overall metabolic status.
Interestingly, the cellular expression profile of these metabolic receptors is rather com-
plex. For example, oxytocin and AVP V1 receptors are present in both neurons and glial
cells [63]. Additionally, both OVLT neurons and glia are able to sense extracellular osmotic
changes [59,69,70]. However, AVP V2 receptors and ERα have been suggested to be ex-
pressed solely on neurons [63,65], while the expression of endothelin receptor-1 and toll
like receptor-4 (TLR-4) are predominantly on glial cells [58,62]. It is further possible that
multiple metabolic factors may interact within the same OVLT cell. For example, the major-
ity of OVLT ERα-expressing neurons (i.e., responsive to estrogen) are also osmosensitive,
and dehydration-evoked hypertonicity induces c-Fos expression within ERα-expressing
cells [55]. Therefore, OVLT-mediated metabolic regulation could be determined by complex
intra-OVLT cellular interactions whereby circulating substances act upon similar and/or
discrete cell types.

In spite of the expression of numerous metabolic receptors in the OVLT, detailed
in vivo investigations into OVLT-dependent metabolic regulation are currently lacking.
This may be partially because the OVLT is a tiny structure located deep in the brain, and
therefore, it is technically challenging to modify cell- and/or receptor-specific signaling
pathways in this nucleus. However, several studies point to a potential role for the OVLT
in energy homeostasis. For example, administration of the ovarian hormone relaxin
peripherally or the neurohormone relaxin-3 directly into the brain induced OVLT neuronal
activation and resulted in an increase in food intake in rats [67,71–73]. On the other hand,
chemical blockade of the OVLT with acute administration of colchicine reduced food intake
and blunted body weight gain [74]. In line with this, several investigations have also
suggested OVLT involvement in food anticipatory behavior [75,76]. For example, in rabbit
pups, increases in OVLT neuronal activity (i.e., c-Fos) was observed prior to scheduled
nursing time [76]. It is also worthy to consider that the OVLT is well-recognized for its
role in fluid balance. Metabolic and fluid regulation are closely related, and body fluid
conditions can directly influence metabolic parameters, such as energy expenditure and
food intake, both in humans and rodents [77–81]. Therefore, the OVLT may play a central
role in whole body energy homeostasis by combining circulating fluid and metabolic
information, although in-depth and targeted studies are clearly needed.

3.3. The AP

Similar to the SFO and OVLT, the AP possesses a specialized anatomy that allows it to
monitor and regulate circulating factors, including those involved in metabolic function.
Situated in the wall of the fourth ventricle, the AP is the most caudal sensory CVO and
consists of three anatomically distinct areas: the perivascular, central, and lateral zones [8].
It has been suggested that the AP possesses a vascular portal system very similar to the neu-
rohypophysis, connecting the vessels to the capillary plexus of the neuropil [82]. Sinusoidal
vessels in the central zone of the AP, which is where most neurons and axon terminals
reside, are much more fenestrated than the peripheral capillaries [83]. Thus, circulating
molecules can directly access the central zone and then diffuse into the perivascular and
lateral zones [8]. In line with this, glial cell bodies and fibers are dense in the lateral and
perivascular zones, while the central zone shows very sparse glial immunoreactivity [8].

The majority of AP receptor expression is for hormones with anorexigenic effects,
including amylin, CCK, GLP-1, peptide YY (PYY), adiponectin, and leptin. However,
the AP is also equipped to detect orexigenic ghrelin [46,84]. Additionally, receptors for
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Ang-II, AVP, estrogen, and potentially insulin have also been identified in the AP [84–88].
Further characterization of receptor expression in specific cell types has revealed that
amylin, leptin, Ang-II, GLP-1, adiponectin 1/2, CCK, and ghrelin receptors are expressed
in AP neurons [89–96]. Leptin, TLR-4, glial-cell derived neurotrophic factor receptor α-like
(GFRAL) and complement type 3 (a receptor linked to hypoxia-induced emesis) receptors
are also localized on glial cells in this brain region [97–100]. mRNA expression of AVP V1a
and PYY Y1 receptors have been detected in the AP; however, the specific AP cell types
expressing these receptors is currently unclear [101,102].

A role for the AP in metabolic regulation is further supported by histological and
electrophysiological findings demonstrating responsiveness to the administration of var-
ious anorexigenic hormones. Peripheral administration of amylin, CCK, GLP-1, PYY,
and adiponectin all lead to increased c-Fos expression in AP neurons [103–105]. Further-
more, amylin, CCK, PYY, insulin, and adiponectin have all been found to influence the
excitability of AP neurons. For example, the use of the α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor antagonist cyanquixaline to block amylin-induced excita-
tory responses revealed that administration of amylin excites AP neurons by facilitating
glutamate release from glutamatergic inputs to AP neurons. Similar effects have been
identified for CCK [94,106]. Interestingly, heterogenous responsiveness of AP neurons to
metabolic factors has also been demonstrated. For example, in culture, low concentrations
of PYY1-36 depolarize whereas high concentrations of PYY3-36 hyperpolarize AP neu-
rons [84]. In addition, adiponectin and leptin primarily result in depolarization of most AP
neurons. However, a subpopulation hyperpolarizes in response to these adipokines [46,90].
Smith et al. also demonstrated that the same subpopulation of AP neurons was responsive
to both amylin and leptin, which was further supported by the demonstration that 94%
of tested AP neurons were excited by both glucose and amylin [46,107]. In addition to
anorexigenic hormones, the AP also appears to respond in a potentially complex manner
to orexigenic peptides. Specifically, ghrelin induces hyperpolarization in 50% of AP neu-
rons via modulation of voltage-gated K+ currents whereas the remaining ghrelin-sensitive
neurons depolarize through a nonspecific cation current [108]. Collectively, these findings
indicate that the AP is well-situated to integrate multiple circulating factors and responds
to anorexigenic/orexigenic hormones, glucose, and adipokines, although the intricacies of
the AP’s responsiveness to metabolic factors warrant further interrogation.

In line with the aforementioned receptor expression, and the well-recognized role
of the AP as a “chemoreceptor trigger zone” due to its role in emesis [109], numerous
studies have demonstrated AP activation following peripheral injection of various hor-
mones. Peripheral administration of anorexigenic hormones amylin, CCK, GLP-1, PYY,
and adiponectin all lead to increased c-Fos expression in AP neurons [103–105]. Further-
more, these hormones suppress feeding behavior in rodents, and this effect requires an
intact AP and receptor activation [110–112]. For example, AP-specific blockade with the
amylin receptor antagonist AC187 inhibited amylin-induced-feeding suppression, as well
as feeding-induced c-fos expression in fasted rats. [103,110]. A role the AP in response to
“newer” anorexigenic factors is also emerging. Specifically, growth differentiation factor 15
(GDF15), a stress response cytokine that signals via GFRAL, inhibits feeding [113]. Acti-
vation of GFRAL receptors induce AP neuron activation, suggesting that GDF15-induced
suppressed food intake may be mediated by the AP [114,115]. Hormones at the AP also
influence other metabolic outcomes including thermogenesis and glucose homeostasis. For
example, retrograde tracing from interscapular brown adipose tissue has implicated the AP
in brown adipose tissue thermogenesis [116]. Additionally, mice with knockout of certain
amylin receptor subunits become glucose intolerant [117]. Glucose intolerance also occurs
in GFRAL knockout mice challenged by high-fat diet, which may be mediated directly by
the AP or indirectly through the adjacent nucleus tractus solitarius (NTS) [118]. Together,
these in vivo findings support the AP’s role in integrating circulating metabolic factors
to regulate various physiological outcomes, potentially through direct AP-hypothalamic
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pathways or indirectly through AP-brainstem-hypothalamic neural pathways [114,118] as
discussed below.

4. Sensory CVOs and Hypothalamic Circuits in Metabolic Regulation

As described above, the sensory CVOs are equipped with an array of receptors and
responsive to numerous stimuli, making them a key entry point for circulating metabolic
factors to influence the brain. Once detected and integrated in the sensory CVOs, this infor-
mation will then be transmitted via neuronal efferents to hypothalamic metabolic centers,
including the PVN and SON. Evidence for sensory CVOs-hypothalamic neuroendocrine
neural networks is discussed below.

SFO neurons establish direct as well as indirect synaptic connectivity with hypothalamic
metabolic nuclei. For example, the SFO provides direct excitatory synaptic inputs to the PVN
and SON [119–121]. In particular, cells within the dorsolateral peripheral subregion of the SFO
project to the magnocellular portion of the PVN where numerous AVP and oxytocin cells are
distributed [121]. The SFO also establishes excitatory and inhibitory synaptic communication
with other hypothalamic nuclei, including the bed nucleus of the stria terminalis, arcuate
nucleus, OVLT, and median preoptic nucleus (MnPO) [119,120,122–124]—neuronal networks
that also allow the SFO to communicate indirectly with the PVN and SON. Interestingly, the
cellular and synaptic architecture from the SFO to hypothalamus is very complex. For example,
separate populations of SFO neurons project to the PVN and MnPO, although a weak number
of SFO neurons provide collateral projections to both regions [125]. Importantly, the SFO and
MnPO establish reciprocal connections, and SFO cells that receive inputs from the MnPO project
to the PVN [126], suggesting a possible feedback loop between the SFO and MnPO to regulate
an SFO-PVN axis. However, anatomical and synaptic projection information for specific SFO
cell types, particularly in the context of “metabolic receptor” expressing neurons, is largely
unavailable, and therefore needs to be addressed in the future.

Similar to SFO, OVLT-dependent metabolic regulation is most likely mediated by
complex OVLT neural networks to multiple hypothalamic nuclei. However, in depth
investigations are lacking, particularly as related to traditional metabolic mediators (e.g.,
adipokines, hepatokines, insulin, etc.). Nevertheless, insights from other areas of inves-
tigation provide insight into potential OVLT networks. In the context of thirst control
and drinking behavior, the OVLT provides both excitatory and inhibitory inputs to the
MnPO [124], and this information is further transmitted to the PVN [127]. Similarly, OVLT
neurons expressing ERα, relaxin, AT1aR, and cholinergic receptors are also connected to
the PVN and SON, presumably through the MnPO [28,65,71,128,129]. On the other hand,
OVLT neurons that respond to extracellular sodium concentrations establish monosy-
naptic projections to the PVN [59,130]. Although indirect, given that fluid balance and
metabolic regulation are closely related in humans as well as non-human species [77–81],
these findings point to possible OVLT-hypothalamic networks that may be involved in
metabolism regulation.

Anatomical studies using retrograde tracers indicate that the AP sends efferent pro-
jections to the PVN and SON [131,132]. In line with this, hypertonic saline induces c-Fos
expression in the PVN via the AP [133], indicating the existence of direct synaptic com-
munications between the AP and hypothalamic neuroendocrine centers. However, more
evidence is required to delineate the direct networks between the AP and PVN/SON.
Nevertheless, the AP establishes strong bidirectional synaptic interactions with adjacent
nuclei, including the NTS and dorsal motor nucleus (DMN). Numerous studies have sug-
gested this AP-NTS-DMN cluster as a critical brainstem metabolic center [113,132,134–139].
Importantly, this brainstem metabolic complex is highly connected to hypothalamic neu-
roendocrine centers [140–143]. Thus, similar to the SFO and OVLT, the AP is anatomically
situated to directly and/or indirectly influence metabolic regulation through hypothalamic
neuroendocrine nuclei.

Within the hypothalamus, numerous neuroendocrine neuron subpopulations are
distributed in the PVN and SON. To date, direct anatomical evidence into the precise
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neuroendocrine neuron type that the sensory CVOs project to remains uninvestigated.
However, indirect evidence points to hypothalamic AVP and/or oxytocin neurons as
a common downstream target of the sensory CVOs. For example, several hormones
that are involved in metabolic regulation, including estrogen, relaxin, and Ang-II, have
been shown to modulate gene expression and release of AVP and oxytocin through the
sensory CVOs [65,71,144–148]. Additionally, SFO-specific electrical stimulation resulted in
elevations in circulating AVP and oxytocin [149,150]. In line with this, pharmacological
cholinergic stimulation of the SFO induced elevations in c-Fos expression within AVP cells
in the PVN and SON [151]. Similarly, the OVLT, particularly OVLT neurons that directly
project to the PVN, have been suggested to play a role in hyperosmolality-dependent
AVP and oxytocin release [130,152,153]. In addition, relaxin administration in rodents
also induces c-Fos expression in the PVN and SON that is paralleled by release of AVP
and oxytocin; a response that is, at least in part, through OVLT mechanisms [71,146].
Peripheral administration of anorexigenic CCK induced SON oxytocin neuronal activity,
and further, release of oxytocin into the bloodstream, which was blunted following AP
lesioning [154]. Furthermore, central administration of GLP-1 increases plasma AVP levels,
which is accompanied parallel increases in c-Fos in the AP, PVN, and SON [155].

The findings pointing to a sensory CVO influence on hypothalamic AVP and oxy-
tocin neurons is intriguing given oxytocin and AVP’s ability to modulate a variety of
metabolic outcomes including feeding behavior, body composition, and glucose/lipid
metabolism. Oxytocin has been shown to exhibit anorectic effects, as both central and
peripheral oxytocin administration leads to decreased food intake in animal models and
humans [124,156–161]. Not only does oxytocin influence feeding behavior, but it further
affects body composition and energy expenditure. In multiple animal models, loss of
central oxytocin signaling via oxytocin neuron ablation or oxytocin receptor deletion in-
creases fat mass and decreases energy expenditure [162–165]. Furthermore, recent work
suggests that exogenous oxytocin treatment is associated with increased brown adipose
tissue thermogenesis and “browning” of white adipose tissue, which is consistent with
the increased energy expenditure induced by oxytocin treatment [166–168]. Changes in
body composition may be further attributed to oxytocin modulation of glucose and lipid
metabolism. Oxytocin enhances glucose uptake in muscle and adipose tissue and augments
lipolysis and β-oxidation in adipose tissue [169–172].

Similar to oxytocin, AVP also affects a broad spectrum of metabolic parameters [173].
For example, acute endogenous activation of PVN AVP neurons decreases food intake, and
peripheral administration of AVP further decreases brown adipose tissue thermogenesis
in healthy rodent models [174–176]. On the other hand, hypothalamic AVP expression
in rats is also increased with the onset of diabetes mellitus [177], suggesting a normal
and pathophysiological effect of AVP in metabolism regulation. Interestingly, while AVP
V1a receptor-deficient mice display enhanced hepatic glucose production accompanied
by high plasma glucose levels [178,179], AVP V1b receptor-deficient animals develop
hypoglycemia [180], indicating AVP involvement in glucose homeostasis in a receptor-
dependent manner. AVP also appears to prevent lipolysis and β-oxidation via V1a, as
V1a-deficient mice display enhanced lipolysis in brown adipocytes and β-oxidation in
muscle and liver [181]. In humans, the metabolic effects of AVP are unclear, however,
several investigations have also suggested a link between AVP and metabolic disorders,
such as obesity and diabetes [182–184].

5. Conclusions

It is well-accepted that hypothalamic neuroendocrine nuclei including the PVN and
SON play a central role in regulating energy homeostasis. While the predominant and well-
accepted focus has been on the role of arcuate nucleus influence to these regions, emerging
results further suggest the involvement of non-hypothalamic brain regions including the
sensory CVOs. Each of the sensory CVOs establishes direct as well as indirect synaptic
communication with the PVN and SON. In addition, the sensory CVOs are located outside
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of the BBB and express a broad array of metabolic receptors. Therefore, the sensory CVOs
are anatomically and biochemically situated to detect metabolic factors in the circulation
and influence whole body energy homeostasis through downstream hypothalamic nuclei.
While precise neuroendocrine modulation by the sensory CVOs continues to emerge,
accumulating evidence points to AVP and oxytocin as potential neuroendocrine targets
of the sensory CVOs in metabolic regulation. However, in-depth neuroanatomical and
functional in vivo investigations are warranted to build upon existing work. Nevertheless,
the sensory CVOs are likely brain sites that are involved in neural responses to circulating
metabolic signals and play a key role in the central regulation of energy homeostasis
through neuroendocrine mechanisms.
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Abstract: Body energy and metabolic homeostasis are exquisitely controlled by multiple, often
overlapping regulatory mechanisms, which permit the tight adjustment between fuel reserves,
internal needs, and environmental (e.g., nutritional) conditions. As such, this function is sensitive
to and closely connected with other relevant bodily systems, including reproduction and gonadal
function. The aim of this mini-review article is to summarize the most salient experimental data
supporting a role of the amygdala as a key brain region for emotional learning and behavior, including
reward processing, in the physiological control of feeding and energy balance. In particular, a major
focus will be placed on the putative interplay between reproductive signals and amygdala pathways,
as it pertains to the control of metabolism, as complementary, extrahypothalamic circuit for the
integral control of energy balance and gonadal function.

Keywords: metabolism; amygdala; estrogens; neuropeptides; kisspeptins; food intake; energy balance;
body weight

1. Introduction: The Amygdala

The amygdala, also known as amygdaloid complex (AC), is a brain region that in
mammals comprises several nuclei or groups of nuclei, distinguished and labelled on the
basis of their cytoarchitecture, histochemistry, and inter-connections. In rodents, these
different nuclei are divided into three main groups: (i) the deep or basolateral group, which
includes the lateral, basal, and accessory basal nuclei; (ii) the superficial or cortical group,
which includes the cortical nuclei and nucleus of the lateral olfactory tract; and (iii) the
centromedial group, which includes the medial and central nuclei. In addition, other
accessory nuclei, including the intercalated cell masses and the amygdalo-hippocampal
area, have been also described [1–3].

The amygdala has been the focus of active research in different domains of neuro-
sciences and neuroendocrinology since its discovery in the early 19th century. While
exhaustive recapitulation of the physiological roles of AC as a key center for emotional
learning and behavior, is beyond the scope of this review and can be found elsewhere [1–3];
for the interest of this work, it is important to stress that compelling evidence highlights
that the amygdala is involved in the control several behaviors related to feeding, such
as food intake, appetitive conditioning, gustatory neophobia, taste aversion, and food
conditional-place preference. Thus, the AC seemingly contributes in a dual manner to
the control of homeostatic and hedonic/reward eating [4–6]; while the former is driven
mainly by energy needs, the latter is not directed primarily to satisfy energy demands, but
rather responds to hedonic cues, and hence can favor overweightness [7,8]. This has drawn
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considerable attention and research interest, given the escalating prevalence of obesity and
its severe disease burden in human health.

In fact, initial studies mapping the physiological roles of different amygdala areas,
based on chemical or physical lesions of specific regions of the AC, have already highlighted
the connection of amygdala with feeding control. This is epitomized by the seminal work of
King and co-workers, showing that amygdaloid lesions, e.g., in the posterodorsal amygdala,
lead to hyperphagia and weight gain in male and female rats [9–11]. These studies not
only documented a role of AC in feeding control, but also in the regulation of other key
metabolic parameters, such as glycemia, and supported the role of amygdala not only
in the homeostatic control of body weight, but also in food preferences and selection of
macronutrients [11]. Admittedly, however, while this work paved the way for elucidation
of the role of amygdala in the control of feeding and energy homeostasis, it suffered
from important technical limitations, mainly related to the lack of precise resolution and
the inability to discriminate the effects derived from the lesion of nuclei located in the
regions damaged or of projections passing through them. Hence, more sophisticated
approaches, involving neuronal tracing, functional genomics, and viral/pharmacogenetics,
have been implemented to tease apart the roles of specific amygdala pathways in the control
of metabolic homeostasis. As relevant recent example, elegant neurophysiological and
functional studies in mice have documented that a GABAergic neural pathway, expressing
type 2a serotonin receptors, located in the central nucleus of the amygdala (CeA) plays a
key role in the control of food consumption, in close connection with other brain regions
involved in feeding control [12].

2. A Tight Connection: The Link between Energy Homeostasis and
Reproductive Function

Reproduction is an essential function for perpetuation of the species and, hence, its
control is subjected, as is also the case of feeding, to sophisticated regulatory mechanisms
to ensure, whenever feasible, maximal reproductive efficiency. However, fertility is dis-
pensable at the individual level, and, considering its high metabolic and energy demands,
it makes biological sense that it can be only achieved or maintained when sufficient body
energy reserves are attained to afford its metabolic drainage, especially in the female (i.e.,
during pregnancy and lactation). Hence, situations of body energy deficit and/or metabolic
distress, ranging from anorexia to severe obesity, are often associated with pubertal pertur-
bations and sub/infertility [13]. Nevertheless, the suppressive effect of adverse metabolic
conditions on the reproductive axis, as a means to minimize energy disposal and maximize
reproductive efficiency, must be controlled accurately, to ensure resuming of fertility as
soon as a more favorable metabolic status is achieved. Importantly, not only metabolic
cues modulate reproductive function, but, conversely, gonadal signals are also important
metabolic modulators, with capacity to control key aspects of energy homeostasis [14].

While detailed recapitulation of the mechanisms whereby metabolism and repro-
duction are tightly connected exceeds the scope of this review and can be found else-
where [13,15], for the objectives of this review it is important to stress that this complex
physiological phenomenon relies on an array of regulatory networks, involving different
hypothalamic and extra-hypothalamic circuits, as well as numerous peripheral factors,
that adjust reproductive maturation and function to the endogenous metabolic conditions
and environmental cues. These include, prominently, brain pathways controlling both
reproduction and metabolism, as well as metabolic and gonadal hormones, which impinge
upon the so-called hypothalamic–pituitary–gonadal (HPG) axis. In this axis, hypothalamic
neurons that synthesize the decapeptide, gonadotropin-releasing hormone (GnRH), are
a major hierarchical component, as they act as final integrators of different central and
peripheral signals, and major output pathway for the brain control of the downstream
elements of the HPG axis [16,17]. Of note, GnRH neurons appear to be devoid of key
metabolic sensors, suggesting that afferents to GnRH neurons are responsible for sensing
and transmitting the modulatory effects of different metabolic signals [13,17].
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Importantly, while the metabolic gating of female reproduction is intuitively explained
by the considerable metabolic demands of pregnancy and lactation, it must be stressed that
key aspects of reproductive behaviors, affecting prominently males, such as aggression,
mating, territoriality, and dominance, also depend on sufficient energy reserves [15]. Thus,
metabolic control of reproduction, in an ample sense, does not only depend on mechanisms
controlling the hormonal reproductive axis, but also on pathways controlling key behaviors.
In this context, the amygdala has emerged as relevant brain area for the regulation of key
metabolic and reproductive neuroendocrine functions and behaviors.

In this mini-review, we will focus our attention on three elements that may participate
in such integral regulatory mechanisms, also engaging the amygdala, which include: (i)
metabolic neuro-peptide pathways; (ii) the kisspeptin system; and (iii) gonadal hormones.
These will be reviewed in the following sections. As a search method, we have imple-
mented a comprehensive MEDLINE search, using PubMed as main interface, of research
articles and reviews, published mainly between 2005 and 2021, using previously published
guidelines [18]. In detail, search was implemented using multiple keywords, including
amygdala, metabolism, estrogens, androgens, reproduction, neuropeptides, kisspeptin,
food intake, energy balance, and body weight, with the Boolean operators AND/OR, fo-
cusing mainly on preclinical data connecting amygdala, energy balance, and reproductive
function. In addition, studies addressing the role of the amygdala in the physiological
control of feeding and energy balance were also considered, and, when relevant, the
web application Connected Papers (https://www.connectedpapers.com/, accessed on 15
November 2021) was used to comprehensively cover all key references in specific topics of
the review.

3. Metabolic Neuropeptide Pathways and the Amygdala: Roles of NPY/AgRP
and POMC

A major circuit for the homeostatic control of body weight and energy balance is
placed in the hypothalamic arcuate nucleus (ARC), and involves the reciprocal interplay
of two populations of neurons, with opposite roles in the control of feeding, namely neu-
rons expressing proopiomelanocortin (aka, POMC neurons, which conduct anorexigenic
actions) and neurons expressing neuropeptide Y/agouti-related peptide (aka, NPY/AgRP
neurons, with dominant orexigenic actions) [19–21]. In a broader perspective, POMC and
NPY/AgRP neurons have been also shown to participate in the modulation of the reproduc-
tive axis, and may contribute to the integral control of reproduction and metabolism [13].
In this section, we will briefly summarize available evidence supporting a role of these
neuropeptide pathways in the control of amygdala and related functions.

Anorexigenic POMC neurons in the ARC have been defined as critical in the control
of body weight and energy homeostasis [22]. Of note, a second population of POMC
neurons has been found in the nucleus of solitary tract (NTS), but its role controlling energy
homeostasis seems less relevant than that of the ARC population [23]. ARC POMC neurons
express a panoply of neuropeptides, such as melanocortins, β-endorphin, and cocaine and
amphetamine-regulated transcript (CART), as well as γ-aminobutyric acid (GABA) and
glutamate neurotransmitters [22,24]. In addition to adreno-corticotropic hormone (ACTH)
produced in the anterior pituitary, melanocortin peptides include α-, β-, and γ-melanocyte-
stimulating hormones (MSH), derived from post-translational processing of POMC [22],
which are all involved in the control of energy homeostasis [25]. Nevertheless, the major
ARC POMC neuronal product is α-MSH, which operates via two of the five melanocortin
receptor (MCR) subtypes, namely MC3R and MC4R. These MCR are expressed in the
hypothalamus, as well as in other brain regions [26].

Admittedly, the connection of POMC signaling pathways and the amygdala remains
unfolded, but fragmentary evidence suggests a potential bidirectional interplay between
POMC neurons and amygdala circuits. Thus, MC4R has been shown to be highly expressed
in the amygdala [27], particularly in the MeA [28]. Moreover, central infusion of the
MC3R/MC4R agonist, melanotan II, into the CeA caused a marked and long-lasting
decrease of food intake in rats, in a dose dependent-manner; responses that were higher
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in animals fed a high-fat diet (HFD). Conversely, injection of the MCR antagonist, SHU-
9119, caused hyperphagia [29]. These pharmacological data argue in favor of a role of
direct α-MSH effects in the amygdala to modulate feeding. This contention has been
recently documented by elegant studies from Kwon and Jo, showing by a combination of
molecular tracing and optogenetic experiments, that a circuit originating from ARC POMC
neurons projects to neurons in the medial amygdala (MeA), which express not only MC4R,
but also estrogen receptors, whose activation reduces food intake, in a MC4R-dependent
manner [30]. In the same vein, we present herein our previously unpublished evidence
in the rat for the presence of α-MSH immunoreactive fibers surrounding/in close contact
with another neuronal population in the amygdala, namely Kiss1 neurons (Figure 1). While
this Kiss1 neuronal population will be described in detail in Section 4 of this review, it is
interesting to note that other subpopulations of Kiss1 neurons, in the rostral hypothalamus,
have been shown to express MC4R [31]; whether the same applies to amygdala Kiss1 cells
awaits future investigation.

Figure 1. Rat amygdala Kiss1 neurons receive melanocortin inputs. Confocal images and 3D
reconstructions of amygdala Kiss1 neurons (magenta) receiving α-MSH (green) appositions. Coronal
section of an adult male rat at bregma level—3.60 mm. Materials (antibodies) and methods are
described in detail elsewhere [32]. LV = Lateral ventricle; opt = Optic track; MePD = Postero-dorsal
area of the medial amygdala (MeA).

In addition to the projections of ARC POMC neurons to the amygdala, it has been
demonstrated that POMC neurons in the NTS receive projections from the amygdala [33];
this population of NTS POMC neurons participates in the short-term inhibitory control of
feeding [34], in contrast to the long-term anorexigenic actions of ARC POMC neurons. In
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fact, our unpublished data show that acute fasting in rats suppresses POMC expression
more potently in the NTS than in the ARC (Pineda and Torres, unpublished), supporting
a major role of POMC neurons in the brain stem in the acute control of feeding. The fact
that this population receives projections from the amygdala strongly suggests that this
pathway might contribute to the role of amygdala in the modulation of feeding responses
in conditions of acute metabolic stress [35].

As counterbalance to the anorectic actions of melanocortins, NPY is a highly conserved,
widely distributed neuropeptide, one of the most abundantly expressed in the mammalian
brain, which conducts strong orexigenic actions, acting mainly via two subtypes of the Y
receptors, namely Y1 and Y5 [36,37]. Neurons expressing NPY are found in several brain
areas, including prominently the ARC, and also the amygdala [38]. Of note, ARC NPY cells
co-express AgRP, which acts as functional antagonist of MC3R and MC4R [39], thereby also
driving a potent orexigenic effect. Accordingly, NPY/AgRP expression markedly increases
in the hypothalamus under conditions of food deprivation [40]. In the rat, NPY neurons
are also found in the AC, especially in the medial and lateral amygdaloid nuclei [41];
expression of NPY receptors has been also reported in the centromedial amygdala [38].
Of note, amygdala NPY neurons are found in roughly the same coordinates/region as
amygdaloid Kiss1 neurons [42]; for further details see Section 4. However, co-expression
of these two neuropeptides in the same amygdala cells and/or their interactions have
not been documented yet. Similarly, whether amygdala NPY expression is modulated
under conditions of nutritional stress (e.g., fasting) is yet to be clarified. Interestingly,
intra-amygdala injection of NPY (in the CeA) has been shown to alter food preference
and macronutrient selection in fed and overnight fasted rats, decreasing preference for a
high-fat content diet, but without changing total calorie intake [43]. These data suggest
that amygdaloid NPY signaling may play specific roles in feeding control, beyond the
orexigenic, energy homeostatic actions of ARC NPY. In this context, very recent studies
have highlighted that the amygdala population of NPY neurons originating in the CeA
may play a relevant role in promoting feeding, specifically under conditions of chronic
stress. Thus, selective over-expression of NPY in the CeA led to increased feeding and
decreased energy expenditure, thereby promoting an obesity phenotype, when chronic
stress and high fat diet were combined [44]. Again, these findings would argue for specific
roles of NPY signaling originating from the amygdala in the control of feeding and energy
balance.

Less is known about the putative roles of AgRP signaling in the control of AC, al-
though ARC AgRP neurons have been shown to project to several extrahypothalamic areas,
including the CeA. Of note, however, the physiological roles of these amygdala projections
are yet to be elucidated, as specific activation of this pathway was insufficient, per se, to
evoke feeding [45].

Notably, while there is ample consensus that peripheral metabolic hormones operate
primarily on hypothalamic circuits to convey their regulatory actions on feeding and
energy homeostasis, fragmentary evidence suggests that amygdala circuits might be also
modulated (directly or indirectly) by key metabolic hormones to conduct at least part
of their regulatory actions. This is the case of insulin, a key metabolic hormone with
potent anorectic effects acting at central levels. Very recent evidence has documented
that suppression of insulin signaling on CeA NPY neurons is a major mechanism for
the development of hyperphagia and obesity in a mouse model of HFD and chronic
stress [44]. In addition, loss of insulin signaling in the CeA has been shown to decrease core
body temperature through direct regulation of brown adipose tissue activity [46], thereby
modulating cold-induced thermogenesis and energy balance.

As final note in this section, it must be stressed that both POMC and NPY/ AgRP
neurons in the hypothalamus have been reported to participate in the control of the
reproductive axis [13,32,47]. However, whether the amygdala circuits involving these
neuropeptides actually contribute to such regulatory function is yet to be fully clarified
and warrants future investigation. For additional comments on this issue, see Section 4.
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4. The Kisspeptin System and the Amygdala

While different neuropeptide pathways other than NPY/AgRP and POMC have been
found in the amygdala, with potential connections with the control of metabolism and/or
reproduction, the recent discovery of the expression and putative functions of the Kiss1
system in the amygdala has drawn considerable interest, as this might illuminate the un-
derlying circuits connecting different essential behaviors closely related with reproduction
and, eventually, metabolic homeostasis.

Kisspeptins are a family of structurally related peptides with a distinctive RF-amide
motif at the C-terminus, encoded by the Kiss1 gene, that operate via the G protein-coupled
receptor Kiss1R (also known as Gpr54). Discovery of the reproductive dimension of
kisspeptins in late 2003 is now considered a major breakthrough in reproductive en-
docrinology, as kisspeptins play central roles in virtually all major aspects of reproductive
maturation and function, from puberty onset to adult fertility. While the physiology of
kisspeptins has been extensively reviewed elsewhere [18,48,49], for the purpose of this
review, it is important to stress that the Kiss1 system has been shown to play crucial roles
in the metabolic control of the reproductive axis [50], and may participate in the direct
modulation of different aspects of metabolism, from body weight to glucose homeostasis
and thermogenesis [51,52], whose physiological relevance is yet to be fully defined.

In rodents, two major populations of Kiss1 neurons are found in the ARC and the
anteroventral periventricular nuclei (AVPV) of the hypothalamus. These are sensitive
to sex steroid hormones, and play fundamental roles in the control of the pulsatile and
surge modes of secretion of GnRH and gonadotropins by mediating the negative and
positive (this is in females only) feedback actions of gonadal steroids [53]. Notably, a third
population of Kiss1-expressing neurons has been identified in the amygdala, particularly in
the MeA [31,42,54–59]. As it is the case for hypothalamic Kiss1 neurons, this amygdala Kiss1
neuronal population is also sexually dimorphic, but contrary to the AVPV, amygdala Kiss1
expression is higher in males [57], with null or negligible expression in early post-natal
periods in rats and mice [58,60]. These data suggest that, in contrast to the hypothalamus,
the Kiss1 neuronal population in the amygdala arises during puberty, possibly driven by
the escalating levels of circulating sex steroids coming from maturing gonads.

The neuroanatomy of the Kiss1 neuronal population in the amygdala has begun to be
elucidated in recent years. Thus, in situ hybridization and immunohistochemical studies
have documented that Kiss1 neurons at this site are located at the postero-dorsal domain of
MeA [42,57]. By a combination of tracing techniques, it has been shown that this population
of Kiss1 neurons receive appositions from vasopressin and dopaminergic neurons, and
display reciprocal connectivity with the accessory olfactory bulb [42]. Moreover, Kiss1
neurons in the MeA also project to GnRH neurons, a pathway that may contribute to the
modulation of the gonadotropic axis by environmental cues, such as odor stimuli [42]. In
addition, we have found close contacts of MeA Kiss1 neurons and α-MSH fibers in rats
(see Figure 1), whose physiological role is yet to be defined.

Accumulating evidence from functional studies has pointed out that the amygdala
population of Kiss1 neurons does play a role in the control of the reproductive axis. Thus,
while peripheral administration of kisspeptin decreased neuronal activity in the amygdala,
intra-amygdala injection of kisspeptin, at the MeA, induced LH secretion [61], whereas
intra-MeA infusion of a kisspeptin antagonist reduced LH secretion and pulse frequency
in rodents [61]. In good agreement, optogenetic activation of Kiss1 neurons in the MeA
resulted in increased LH pulsatility in female mice [62]. Similarly, chemogenetic activation
of Kiss1 neurons in the postero-dorsal medial amygdala has been also shown to induce LH
secretion [63]. In any event, the roles of amygdala kisspeptin signaling are not restricted to
the control of gonadotropin secretion in adulthood, and may involve the modulation of
pubertal timing [64], and, more importantly, relevant sex behaviors [65], including partner
preference and pheromonal responses [66,67]. While fragmentary evidence has suggested
that kisspeptins (or Kiss1 neurons) may modulate feeding in rodents [51], whether this
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particular amygdala Kiss1 pathway participates in the control of feeding behavior has not
been addressed to date.

Interestingly, amygdala Kiss1 neurons are sensitive to the sex steroid milieu, and
both estradiol and testosterone (possibly via aromatization to estrogen) upregulates Kiss1
mRNA expression in the MeA [57], an effect that is conducted via estrogen receptor-α
(ERα), but not ERβ [68]. In fact, a recent report has documented that a large proportion
of Kiss1 neurons in the MeA co-express ERα [69], therefore providing the basis for the
estrogenic regulation of this neuronal circuit. Of note, as will be described in detail in the
following section, targeted ablation of ERα in the amygdala using the SIM1-Cre mouse
revealed a role of estrogen signaling at this site in the modulation of body weight, so that
mice with selective ablation of ERα in SIM1 neurons displayed an obesity phenotype [70].
Considering that SIM1- and Kiss1 neurons in the amygdala share a similar neuroanatomical
location, and both populations abundantly express ERα, it remains plausible that the above
genetic approach might have also caused ablation of ERα in amygdala Kiss1 neurons,
which may, thereby, contribute to mediate at least part of the effects of estrogen, acting
at this site, on body weight homeostasis. However, this intriguing possibility is yet to
be experimentally tested. Overall, while the evidence suggesting a role of amygdala
Kiss1 neurons in the control of reproductive hormones and behaviors is solid, whether
this pathway participates also in the bidirectional connection between metabolism and
reproduction remains largely unexplored, and requires further investigation.

5. Sex Steroids and the Amygdala: Roles of Estrogens and Androgens

Sex steroids, as major products of the gonads, are not only essential players in the
control of the neuroendocrine axis governing reproduction, but are also relevant modu-
lators of key aspects of metabolic homeostasis, from food intake to thermogenesis [14].
While a substantial fraction of these metabolic actions are conducted at the level of the
hypothalamus [14], we will review the evidence supporting a role of sex steroids in the
amygdala, as putative mechanism for the control of body weight and energy balance.

Estrogens exist in three major forms: estrone (E1), 17β-estradiol (E2), and estriol (E3).
These exert their effects through three main receptors: the classical ERα, ERβ, and the
G protein-coupled receptor, GPER/GPR30 [71]. Besides their well-known effects in the
control of reproductive function, estrogens are relevant elements in metabolic regulation,
with prominent roles in the control of feeding (with anorexigenic effects) and energy
expenditure (increasing thermogenesis and energy consumption) [14,72]. The effects of
estrogens on energy homeostasis are mainly conveyed via ERα, as genetic deletion of
this receptor subtype blunts the effects of estradiol on feeding and body weight [73]. In
good agreement, women with polymorphisms in the ERα gene [74], or men with genetic
inactivation of ERα [75,76], suffer increased adiposity. A substantial component of such
metabolic effects of ERα signaling are conducted in the brain, as demonstrated by studies
involving selective deletion of this receptor in populations of hypothalamic neurons [77].

The first evidence suggesting the contribution of estrogen signaling in the amygdala to
energy homeostasis came from classical experiments showing that placement of implants
of estradiol benzoate into the amygdala suppressed food intake in female rats [78]. In the
same vein, it has been shown that estradiol modulates the neuronal activation induced by
feeding, as measured by c-Fos, in different brain areas, including the CeA [79]. Functional
genomic approaches have further refined these observations. As mentioned in the previous
section, seminal studies by Xu and co-workers demonstrated that selective congenital
removal of ERα from SIM1 neurons, which are mainly found in the MeA and co-express
ERα (>40% of them), increased body weight gain [70]. Moreover, when ERα was selectively
deleted in the MeA of adult male mice, using an adeno-associated virus approach, the
same phenotype was produced [70]. However, the obesity-inducing impact of ablation of
ERα signaling from the amygdala was not apparently related with changes in feeding, but
rather with a decrease in physical activity, which enhanced the susceptibility to develop
obesity in both sexes, and further increased body weight gain after exposure to HFD [70].
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In good agreement, over-expression of ERα in the MeA reduced the obesity phenotype,
while pharmacogenetic activation of MeA SIM1 neurons increased physical activity [70].
Future work involving chemo- or optogenetic activation/inactivation of SIM1 vs. ERα-
expressing neurons in the amygdala will help to further delineate the physiological role of
this pathway in the control of body weight and energy balance.

In addition to estrogens, androgens are also known to modulate energy balance.
Yet, in contrast to estrogens, androgens have been shown to stimulate feeding in several
species [80–84]. Of note, brain effects of testosterone, as the main male sex steroid, are
largely conducted via conversion to estradiol, in a region and cell-specific manner, by
the action of the enzyme, aromatase, encoded by the CYP19 gene [85]. While the major
actions of androgens in the central control of metabolism are thought to be conducted at
the hypothalamus, high levels of androgen receptor (AR) expression have been reported
in the MeA, with higher levels in males than in females [86,87]. In addition, expression
of aromatase is also found in the MeA [88,89], therefore providing the basis for local
conversion of androgens into estrogens, which, in turn, might further influence body
energy balance. However, whether androgen signaling in the amygdala may contribute to
regulation of energy homeostasis remains unexplored.

6. Summary and Conclusions

Compelling evidence has demonstrated that the amygdala, as a key brain area in-
volved in emotional learning and behavioral control, including reward processing, plays a
salient role in the regulation of various aspects of feeding behavior [19], a phenomenon also
observed in humans, especially as it pertains to food choices and hedonic decisions [90].
As direct consequence, the amygdala contributes also to maintaining body energy balance,
and possibly physical activity, and participates in responses to different forms of metabolic
stress, ranging from starvation to obesity. This function is seemingly conducted, at least
partially, by the interplay with metabolic neuropeptide systems, with key roles in energy
homeostasis, such as POMC and NPY/AgRP, and is modulated by sex steroids, promi-
nently estrogens. Given the proven roles of these signals in the control of reproductive
function, and the known interplay between gonadal function and metabolism, it is tenable
to propose that these amygdala circuits, as well as other related pathways, such as possibly
amygdala Kiss1 neurons, might also contribute to the integral control of reproduction and
metabolism. Admittedly, however, most of the data suggesting such a role are indirect
or circumstantial, and hence, further research is needed to fully characterize the actual
roles of amygdala circuits in defining these behaviors (i.e., feeding, reproductive) which
are essential for survival, and the interplay between them.
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Abstract: Normal brain function highly relies on the appropriate functioning of astrocytes. These
glial cells are strategically situated between blood vessels and neurons, provide significant substrate
support to neuronal demand, and are sensitive to neuronal activity and energy-related molecules.
Astrocytes respond to many metabolic conditions and regulate a wide array of physiological pro-
cesses, including cerebral vascular remodeling, glucose sensing, feeding, and circadian rhythms for
the control of systemic metabolism and behavior-related responses. This regulation ultimately elicits
counterregulatory mechanisms in order to couple whole-body energy availability with brain function.
Therefore, understanding the role of astrocyte crosstalk with neighboring cells via the release of
molecules, e.g., gliotransmitters, into the parenchyma in response to metabolic and neuronal cues is of
fundamental relevance to elucidate the distinct roles of these glial cells in the neuroendocrine control
of metabolism. Here, we review the mechanisms underlying astrocyte-released gliotransmitters that
have been reported to be crucial for maintaining homeostatic regulation of systemic metabolism.

Keywords: astrocytes; calcium signaling; energy balance; gliotransmission; systemic metabolism

1. Introduction

The field of neuroscience has experienced significant advancement in knowledge on
how the brain processes information as a result of the growing evidence supporting that
glial cells, as with astrocytes, are fully integrated into neuronal networks, thus forming
one functional regulatory circuit required for brain function [1]. In addition to serving as a
support system, active functions have been assigned to astrocytes, including the control
of cerebral vascular remodeling and blood flow [2], and the regulation of all aspects of
neuronal function, such as neurogenesis [3], neuronal transmission [4], and synapse forma-
tion/elimination and homeostasis [5], among others. By providing energy substrates and
neurotransmitter precursor molecules via the astrocyte-neuron lactate shuttle [6] and the
glutamate/γ-aminobutyric acid (GABA)-glutamine cycle [7], astrocytes ensure adequate
neuronal metabolism, connectivity, and brain functioning. The characteristic star-like shape
of astrocytes possesses specific non-overlapping territorial domains and hence fills the local
environment, interacting with a large number of synapses that can dynamically change
depending on the surrounding microenvironment in response to neuronal activity and/or
metabolic status for the regulation of physiological responses [1,8]. Remarkably, astro-
cytes play a key role in neurotransmitter clearance [1] and spatial K+ buffering [9], which
support neurotransmission homeostasis. Astrocytes, as with neurons, sense and respond
to metabolic [8] and synaptic cues [10] through specific metabolic and neurotransmitter
receptors/transporters expressed along their membranes, thus influencing the active state
of synapses to which they are often intimately associated [11]. Seminal findings demon-
strated that astrocytes display changes in their intracellular Ca2+ concentration [12], a signal
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that appears to be the relevant signal for astrocytic responses [4,13]. As secretory cells,
astrocytes possess the molecular machinery to send molecules and ions back and forth,
which are essential in regulating all physiological processes (e.g., synaptic connectivity)
required for a normal brain function [1,14].

Astrocyte Gliotransmission: The Hallmark of Astrocyte Communication

Despite the absence of membrane electrical excitability, astrocytes exhibit a marked
ionic handling in response to diverse stimuli, which is crucial for proper regulation of
physiological processes controlled by the brain [1]. For instance, internal K+, Na+, Ca2+,
and H+ fluctuations in astrocytes are associated with increased synaptic activity whereas Cl-

permeability is involved in astrocyte volume changes. Since compelling evidence suggests
the existence of Ca2+-dependent astrocyte-neuron communication [4,13], intracellular Ca2+

signaling has been extensively studied in astrocytes. Several works have reported that an
enhancement in synaptic activity may result in astrocyte Ca2+ rises following the activation
of specific metabotropic G-protein coupled receptors (GPCRs) by synaptic neurotransmit-
ter spillover, such as glutamate [15,16], GABA [17], ATP [18], acetylcholine [19,20], and
dopamine [21]. Intracellular Ca2+ events at the soma, primary branches, and branchlets of
astrocytes are greatly mediated by the inositol 1,4,5-trisphosphate receptor type 2 (IP3R2)
signaling pathway that mobilizes Ca2+ from the endoplasmic reticulum to the cytosol.
However, astrocyte Ca2+ responses may occur in an IP3R2-independent manner, especially
at their fine processes, i.e., astrocyte leaflets, in which Ca2+-permeating channels [22] and
Na+/Ca2+ exchangers [23] underlie the mechanism of Ca2+ entry into the cytosol. Ca2+

transients in astrocyte processes may also occur via Ca2+ efflux from mitochondrial mem-
brane permeability transition pores (mPTPs) [24]. Therefore, there are multiple sources of
Ca2+ that contribute to the increased cytosolic Ca2+ content in response to synaptic activity
(Figure 1), highlighting the complex Ca2+ dynamics within astrocyte cellular compartments,
ranging from slow, global Ca2+ events to rapid, local Ca2+ transients [25–28]. In turn, as-
trocyte Ca2+ elevation promotes the release of signaling molecules, such as glutamate,
ATP, D-serine, and GABA, which can influence the activity of neighboring neurons and
other cells to ultimately modulate local metabolism and the information processing within
neuronal networks, a process known as gliotransmission [4]. Such signaling molecules are
released from astrocytes through several intracellular pathways including vesicle-mediated
exocytosis and diffusion through channels (Box 1). The complex intracellular Ca2+ dy-
namics in astrocytes and the great variety of mechanisms releasing their gliotransmitters
suggest distinct, specific roles of astrocyte gliotransmission depending on the spatial loca-
tion, quality, and intensity of the stimulus as well as the gliotransmitter releasing site and
astrocyte interactions with the surrounding microenvironment (Figure 1).
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Figure 1. Mechanisms underlying intracellular Ca2+ rises and gliotransmitter release from astrocytes. (A) At the soma,
branches and branchlets of astrocytes, the activation of G-protein-coupled receptors (GPCRs) following increased synaptic
activity triggers cytosolic Ca2+ rises by several mechanisms, such as via the 1,4,5-trisphosphate receptor type 2 receptor
(IP3R2)-dependent mobilization Ca2+ from the endoplasmic reticulum (ER) or the efflux of Ca2+ through mitochondrial
membrane permeability transition pores (mPTPs). At fine processes of astrocytes, i.e., leaflets, increased synaptic activity
may promote the co-transport of neurotransmitters and Na+ into the cytosol, the latter increasing the activity of Na+/Ca2+

exchangers (NCX) that results in cytosolic Ca2+ elevations. Additionally, Ca2+-permeating channels contribute to the
influx of Ca2+ in astrocytic leaflets. The Ca2+ influx into leaflets may trigger local Ca2+ transients and propagate the Ca2+

signaling to distant domains via its signal amplification mediated by a Ca2+-dependent Ca2+ release from ERs via the
IP3R2 pathway; (B) Several mechanisms account for the release of gliotransmitters from astrocytes. Mostly, these processes
occur in a Ca2+-dependent manner via the exocytosis of vesicles. Lysosome exocytosis, bestrophin1 (BEST1) channels and
hemichannels have also been described to participate in Ca2+-dependent gliotransmitter release mechanisms. Moreover, the
involvement of a Ca2+-independent release of gliotransmitters via two-pore domain K+ (TREK) channels is reported.
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Box 1. Astrocytes release gliotransmitters via several pathways.

Vesicle-mediated exocytosis
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated

vesicular exocytosis is likely the major mechanism for the Ca2+-sensitive release of gliotransmitters
from astrocytes. Using ex vivo brain slices from mice and human, it was observed that Ca2+-
dependent astrocyte-released glutamate induces the activation of N-methyl-D-aspartate receptors
(NMDARs) in neurons triggering slow inward currents [29–32], an effect greatly attenuated by
disrupting the SNARE complex [33–35]. These currents have also been shown to be associated
with changes in neuronal excitability and neurotransmission. Accordingly, vesicular glutamate
transporters and SNARE proteins are localized in astrocyte processes adjacent to neurons [35].
The blockade of vesicular exocytosis also impairs the release of ATP from astrocytes, which may
influence synaptic transmission and behavioral responses [36–39]. Likewise, the exocytosis of
lysosomes is also thought to participate in ATP release from astrocytes [40,41].

Diffusion through channels
In addition to exocytotic mechanisms, the release of astrocyte gliotransmitters may occur through

ion channels. For instance, glutamate can be released via Ca2+-activated bestrophin 1 (BEST1)
channels localized at astrocyte microdomains [42] to modulate synaptic plasticity [43,44]. BEST1
channels are also permeable to GABA, which may tonically inhibit neighboring neurons [45–47]
and drive pathological mechanisms following its impaired release [48,49]. Moreover, astrocytes are
able to release gliotransmitters via hemichannels [50–54] and Ca2+-independent pathways, such as
two-pore domain K+ channels [42,55].

2. Physiological Processes by Which Astrocytes Regulate Systemic Metabolism

Although diverse studies have reported the mechanisms underlying Ca2+ responses
and gliotransmitter release from astrocytes in the regulation of local metabolism and
synapse physiology [1,2,4], their influence on the control of systemic metabolism has
recently begun to be explored. Understanding the communication between astrocytes
and neighboring cells involved in whole-body counterregulatory responses to metabolic
challenges may add relevant insights on how physiological processes are controlled by the
brain. In this section, we aim to describe the contribution of astrocyte gliotransmission to
the modulation of the surrounding microenvironment and synaptic transmission that are
related to the homeostatic regulation of systemic metabolism and behavior.

2.1. Cerebral Vascular Integrity and Remodeling

The brain stores a low amount of energy [56] and largely depends on oxidative
metabolism for supporting its energy requirements [57]. Therefore, a constant, adequate
supply of glucose and oxygen from the brain vasculature is needed in order to match the
high metabolic demand of neurotransmission and brain function [58–60]. In this regard,
astrocytes are situated in a strategic position to control continuous fuel supply to the brain
by enveloping virtually all brain blood vessels with their endfeet [61] and making close
contact with synapses by their processes [11], thus regulating the cerebral vascular tone to
accomplish neuronal function in both resting and active states. In the last decade, multiple
studies have highlighted the active role of vascular endothelial growth factors (VEGFs)
in angiogenesis and vascular architecture in the brain [62] by modulating tight-junction
proteins in blood vessels for controlling blood-brain barrier (BBB) permeability [63–66].
Astrocytes have been shown to be the predominant source of VEGF within the brain [67,68],
as the blockade of astrocytic VEGF-dependent releasing mechanisms attenuates BBB leak-
age in animal models [68–70]. Other studies have pointed out that angiogenesis correlates
with higher astrocyte density and elevated VEGF expression levels in the brain of mice and
humans [71]. Notably, additional studies have reported that a hypercaloric diet rapidly
increases the number of astrocytes in the hypothalamus [72] and promotes angiogenesis
and endothelial dysfunction in both rodents and humans [73,74]. Recently, it has been
revealed that VEGF-derived hypothalamic astrocytes are directly involved in obesity-
induced hypothalamic microvasculature remodeling and elevated systemic blood pressure
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via sympathetic outflow, an effect dependent on leptin signaling and concomitant with the
onset of obesity [75] (Figure 2A). Further, the selective disruption of the hypoxia-inducible
factor 1α-VEGF signaling cascade in astrocytes protected mice against obesity-induced
hypothalamic angiopathy, increased sympathetic drive, and arterial hypertension [75].
These findings reveal the astrocyte-released gliotransmitter VEGF as a relevant molecule
involved in the tuning of sympathetic outflow controlling cardiovascular function and
challenge the traditional view that microvascular complications in the brain are derived
from arterial hypertension [76].
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Figure 2. The action of astrocyte-released gliotransmitters in the control of systemic metabolism. (A) Diet-induced obesity
promotes hyperleptinemia, which hyperactivates leptin receptors (LepRs) in astrocytes from the mediobasal hypothalamus
(MBH) and leads to the release of vascular endothelial growth factors (VEGFs), promoting hypothalamic angiopathy and
systemic hypertension; (B) Astrocytes from the brainstem nucleus tractus solitarius (NTS) sense extracellular glucose
concentration drops via glucose transporter type 2 (GLUT2) and respond with ATP/adenosine (Ado) release, leading to
the activation of adenosine A1 receptors (A1Rs) in neighboring neurons to restore normoglycemia; (C) The disruption of
the brain and muscle ARNT-like protein-1 (BMAL1) signaling in astrocytes impairs energy metabolism. (I) During the
night cycle, astrocytes from the suprachiasmatic nucleus (SCN) show increased Ca2+ transients, which induce the release
of glutamate that binds to N-methyl-D-aspartate receptors (NMDARs) subtype 2C in presynaptic neurons resulting in
increased γ-aminobutyric acid (GABA)-mediated neurotransmission; (II) In the day cycle, astrocytes are silent and the
glutamate near the synaptic cleft is taken up by astrocytic excitatory amino acid transporters (EAATs), therefore reducing
the GABAergic tone onto SNC neurons; (D) Ca2+ rises in astrocytes from the MBH promote the release of ATP/Ado that
acts in presynaptic neurons and/or postsynaptic agouti-related protein/neuropeptide Y (AgRP/NPY) neurons to reduce
food consumption; (E) Astrocytes from the MBH release the endozepine octadecaneuropeptide (ODN), which acts on
its receptor in proopiomelanocortin (POMC) neurons, leading to the activation of the upstream melanocortin-4 receptor
(MC4R) signaling to reduce food intake and body weight; (F) Fasting/ghrelin may activate astrocytes from the arcuate
nucleus of the hypothalamus (ARC), promoting the release of prostaglandin E2 (PGE2) to increase the activity of AgRP/NPY
neurons, ultimately inducing food intake.

2.2. Brain Glucose Sensing

Astrocytes are highly glycolytic cells [6] and exhibit higher glucose transport and
utilization in comparison to neurons [77]. Using a fast-responsive machinery, astrocytes do
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not only sense extracellular glucose drops but also monitor interstitial glucose presumably
to elicit autonomic responses to restore normoglycemia. Among several glucose trans-
porters (GLUTs) expressed in astrocytes [78], GLUT1 is the predominant active isoform at
the cell membrane and plays a marked role in basal glucose uptake [79]. Astrocytes also
express GLUT2, which has a low affinity for glucose [80–82], providing a wide range of
sensitivity to changes in glucose availability. Notably, GLUT2 expression in astrocytes,
but not in neurons, has been reported to be necessary and sufficient to increase plasma
glucagon levels in response to hypoglycemic conditions in mice [83]. The hypothalamus
and the hindbrain are well-known glucose-sensing central areas [84], particularly due to
their close location to brain ventricles. Here, we report evidence from the literature that
describes how hypothalamic and hindbrain astrocytes may modulate local circuits and
systemic metabolism in response to glucose concentration fluctuations.

2.2.1. Hypothalamus

Hypothalamic neurons are capable of directly responding to changes in systemic
glucose levels [85,86]. Application of glucose induces Ca2+ rises in tanycytes—specialized
glial cells lining the floor of the third ventricle located exclusively in the mediobasal
hypothalamus—which promote the release of ATP via connexin 43 (Cx43) hemichannels
acting on neighboring tanycytes through purinergic P2Y1 receptor to result in cellular
activation by an IP3R-mediated Ca2+ signaling [87,88]. Although astrocytic Ca2+ rises in
response to glucose fluctuations have not been demonstrated in the hypothalamus yet,
hypothalamic astrocytes are markedly involved in the regulation of glucose homeostasis [8].
Particularly, insulin signaling in hypothalamic astrocytes is essential for adequate glucose
transport into the brain and systemic glucose handling [89]. Other findings have also
pointed out that elevated glucose levels lead to reductions in astrocyte coverage on proopi-
omelanocortin (POMC) neurons—an effect associated with increased excitatory synaptic
input onto these neurons [90]. Moreover, hypothalamic astrocytes induce insulin secretion
in response to acute intracarotid injection of glucose [91], presumably via Cx43-containing
gap-junction functioning [92].

2.2.2. Hindbrain

Similar to the hypothalamus, the hindbrain is strongly involved in counterregula-
tory responses to hypoglycemia [84]. The nucleus tractus solitarius (NTS) is the primary
central site receiving afferent glycolytic inputs from peripheral domains [93]. The NTS
also contains astrocytes sensitive to extracellular glucose fluctuations [94], as is the case
in neurons [95,96]. Intriguingly, glucose deprivation triggers Ca2+ rises in astrocytes via
the phospholipase C-IP3 signaling pathway [97], an effect preceding the Ca2+ responses
in neighboring neurons [94]. Recent studies have also reported that astrocyte puriner-
gic signaling underlies counterregulatory responses to limited glucose availability via
an NTS-arcuate nucleus of the hypothalamus (ARC) circuit. In particular, infusion of
2-deoxyglucose (2-DG), a non-metabolizable glucose analog that mimics hypoglycemic
conditions, into the fourth ventricle induces blood glucose elevation in rats, an effect de-
pendent on astrocyte integrity and adenosine A1 receptor (A1R) signaling [98] (Figure 2B).
Moreover, functional astrocytes are required for purinergic P2 receptor-dependent ac-
tivation of tyrosine hydroxylase (TH)-expressing NTS neurons in response to glucose
deprivation [99]. Importantly, NTSTH neurons can bidirectionally modulate the electrical
activity of orexigenic agouti-related protein/neuropeptide Y (AgRP/NPY) and anorexi-
genic POMC-expressing neurons in the ARC to promote food intake in response to gluco-
privic conditions [100]. Notwithstanding, the ability of ATP-mediated astrocyte signaling
in tuning an NTS-ARC neuronal circuitry to ultimately modulate feeding behavior remains
to be shown.
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2.3. Feeding Circuits

Feeding is driven by an intricate neuronal network that encompasses homeostatic en-
ergy balance and hedonic responses [101]. External sensory information, vagal inputs, and
circulating nutritional signals converge and are processed in the brain to then adjust feeding
behavior according to whole-body energy demands [102]. Remarkably, the melanocortin
system has been greatly studied as being the main integrator and control center of hunger
circuits [103], and its dysfunction is directly linked with the development of metabolic dis-
eases [104]. Two melanocortin neuron populations in the ARC with opposite functions play
essential roles in the control of energy intake and expenditure: activation of AgRP/NPY-
expressing neurons induces rapid and marked food seeking and consumption [105–108]
whereas activation of POMC-expressing neurons promotes satiety and energy expendi-
ture [105,109,110]. Notably, the postnatal genetic ablation of AgRP/NPY [111,112] or
POMC neurons [112–114] results in starvation-induced death or obesity, respectively. A
great deal of evidence supports that astrocytes are active players as regulators of these
feeding responses by interacting with melanocortin neurons [89,115–117]. Specifically,
several studies have reported that astrocytes within the mediobasal hypothalamus (MBH)
are capable of responding to energy-related signals, such as hormones and nutrients, in
order to modulate neuronal and behavioral responses required for maintaining whole-
body energy homeostasis [8]. Indeed, the postnatal ablation of leptin receptors (LepRs) in
astrocytes reduces hypothalamic astrogenesis [118] and leads to a retraction in primary
processes coverage on melanocortin neurons in the ARC—the latter of which is associated
with changes in neuronal excitability and alterations in feeding behavior [116]. Accordingly,
astrocyte-specific LepR knockout induces astrogliosis in the hypothalamus of mice, blunts
hypothalamic pSTAT3 signaling, and contributes to diet-induced obesity [119]. As with lep-
tin, the disruption of insulin signaling in hypothalamic astrocytes also promotes metabolic
alterations mainly due to a defect in brain glucose sensing, resulting in an aberrant systemic
glucose handling [89]. Furthermore, the same line of studies has observed that the ingestion
of high caloric meals triggers rapid astrocyte-neuron rearrangements, including astrocyte
reactivity and alterations in the synaptology of melanocortin neurons [115]; most of these
cellular events were observed prior to body weight gain [72], suggesting their potential
role in promoting obesity.

2.3.1. Identified Gliotransmitters by Which Astrocytes Regulate Feeding Behavior
ATP/Adenosine

Astrocytes have been reported to mediate feeding control via purinergic gliotransmis-
sion. Specifically, it was reported that mice reduce food consumption in response to chemo-
genetic Ca2+-dependent activation of MBH astrocytes, an effect associated with decreased
firing activity of AgRP neurons following adenosine A1R activation [120] (Figure 2D). Ac-
cordingly, optogenetic stimulation of MBH astrocytes leads to an increase in extracellular
adenosine content, preventing long-term fasting-induced food intake, which is abolished by
A1R antagonist injection [121]. These results indicate that MBH astrocytes can release ATP—
being converted to adenosine in the extracellular compartment—or adenosine itself [122]
to promote anorexigenic effects by decreasing the activity of AgRP/NPY neurons. Never-
theless, it is not clear whether adenosine directly reduces the excitability of AgRP/NPY
neurons, presumably by the opening of G-protein-coupled inwardly rectifying K+ channels
associated with A1Rs [123–125], or inhibits presynaptic glutamatergic neurons via A1R
activation, as observed in other brain regions [21,126,127]. On the contrary, other studies
have shown opposing results using a similar approach with chemogenetic activation of
astrocytes, but only those exclusively located in the ARC. In this case, the authors have
observed that astrocyte activation promotes food consumption by increasing the orexigenic
drive of AgRP/NPY neurons [128], although no potential gliotransmitter involved in this
mechanism was reported. The divergent findings when exploring the role of astrocytes
in the control of feeding behavior might reside in the intricate nature of neuronal circuits
confined to the MBH requiring hypothalamic nuclei with opposing roles in the control of
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metabolism. Therefore, millimetric stereotaxic variations in the affected area may target
distinct astrocytic-neuronal circuits involved in the diverse effects of feeding responses.

Other hypothalamic centered lines of investigation have shown that astrocytes lo-
cated in the dorsomedial nucleus of the hypothalamus (DMH) are involved in the sati-
ety effect of cholecystokinin (CCK), a well-known anorexigenic gut-derived peptide hor-
mone, via purinergic gliotransmission [129]. Astrocytes respond to CCK through their
CCK receptors (CCKRs) expressed along the membrane [130,131] via a Ca2+-dependent
mechanism [129,131]. Specifically, CCKR type 2-dependent astrocyte activation triggers
the release of ATP that in turn activates P2X receptors in inhibitory neurons, culminating in
increased GABA release at the synapse level. Additionally, astrocyte mGluR5 was shown to
be necessary for the CCK-mediated effects on GABAergic neurotransmission [129]. Indeed,
astrocyte mGluR5 acts as a sensor of synaptic transmission and is markedly involved
in astrocyte-neuron gliotransmission [15,16,31]. Overall, these findings suggest that the
detection of glutamatergic activity by astrocytes at nearby synaptic clefts may modulate
the release of ATP from astrocytes to fine-tune the information processing triggered by
CCK signaling in the DMH.

Additional studies have shown the involvement of extra-hypothalamic astrocytes in
feeding regulation. In this regard, the selective activation of astrocytes within the brainstem
dorsal vagal complex (DVC) induces morphological changes in NTS astrocytes and reduces
food-seeking behavior and food consumption, even following overnight fasting [132]. The
latter effect was associated with increased c-Fos immunoreactivity, as subrogate marker for
neuronal activation, in neurons from the DVC and lateral parabranchial nucleus but not
in the paraventricular nucleus of the hypothalamus [132], suggesting that the astrocyte-
mediated anorexigenic drive from the brainstem DVC may activate alternative circuitries
to the melanocortin system.

Endozepines

The acyl-CoA-binding protein (ACBP) is a ubiquitously expressed cytosolic molecule
that acts: (i) in intracellular pathways controlling lipid metabolism [133] or (ii) to gen-
erate and release regulatory peptides namely endozepines, such as ACBP itself, octade-
caneuropeptide (ODN), and C-terminal octapeptide (OP) [134]. Remarkably, ACBP and
ODN expression levels are enriched in the hypothalamus [135,136], particularly in glial
cells [137–140]. Indeed, multiple evidence support that astroglial-released endozepines
play a key role in the regulation of energy homeostasis. Particularly, it was shown that cen-
tral administration of ODN or OP decreases food consumption in rodents and fish [140–143]
by reducing NPY and enhancing POMC mRNA expression levels in the ARC [144]. More-
over, the hyperphagic response to central infusion of 2-DG is attenuated by co-infusion
of OP [137]. In vitro studies from rodents also support that astrocytes are able to release
endozepines upon stimulation [145,146]. Amongst several brain areas of action, astrocytes
from the MBH were demonstrated to be required for triggering an anorexigenic effect
via endozepine release [138]. A selective genetic manipulation of ACBP in astrocytes
from the ARC is sufficient to modulate feeding behavior and body weight control. In-
terestingly, ACBP-expressing astrocytes are in close opposition with POMC neurons in
the ARC [138], and ODN or OP application activates hypothalamic POMC neurons, as
observed in ex vivo brain slices [138,140]. Given that ODN-induced food intake reduction
is abolished in melanocortin-4 receptor (MC4R) knockout mice [138], astrocyte-released
endozepines appear to drive an anorexigenic effect via the melanocortin system by modu-
lating POMC neuron excitability and MC4R-dependent signaling transmission (Figure 2E).
Likewise, it is thought that ODN binds to melanocortin neurons via an uncharacterized
GPCR [142,147]. Central infusion of ODN-GPCR agonists attenuates food intake in mice
and fish [138,140,142,143], which is associated with increased excitation of POMC neurons
in the ARC of mice [138]. Accordingly, the central administration of an ODN-GPCR antag-
onist suppresses ODN-induced anorexigenic effects [138,142,143]. Emerging findings also
suggest that leptin signaling in tanycytes is required for ODN-induced anti-obesogenic
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effects in mice [140], indicating the importance of the crosstalk between astrocytes and
other glial cells for satiety control. Nevertheless, astrocyte-derived endozepine actions
in feeding behavior appear not to be restricted to hypothalamic areas. Astrocytes from
the brainstem area postrema and NTS within the DVC have been found to be enriched
with ACBP and ODN protein levels [140,148]. Consistent with the hypothalamic centered
studies, central administration of ODN or OP induces marked c-Fos immunoreactivity of
NTS neurons accompanied by food intake inhibition [140], while blunting the swallowing
reflex in mice [148]. Given that ACBP has also been shown to have CNS-independent
effects on the promotion of appetite, energy storage, and obesity in mice [149], further
investigations should be performed to disentangle the peripheral and central contributions
of endozepines in whole-body energy balance.

Prostaglandin E2

A recent study has shown that fasting, ghrelin administration, or GABA-mediated
AgRP neuron signaling increases astrocyte coverage and lowers the number of inhibitory
inputs onto AgRP neurons in the ARC, an effect accompanied by depolarization of the
membrane potential of neighboring astrocytes [150]. Additionally, the authors observed
that the application of astrocyte-derived gliotransmitter prostaglandin E2 (PGE2) increases
the firing activity of AgRP/NPY neurons from ex vivo brain slices whereas the block-
ade of PGE2 receptor EP2 abolishes ghrelin-induced food consumption [150] (Figure 2F).
These findings indicate that rearrangements between surrounding astrocytes and AgRP-
dependent circuits in a pre-feeding condition could facilitate the actions of the PGE2 in the
activity of those neurons to promote feeding.

2.4. Circadian Rhythms

The circadian rhythm is present in virtually all cells of almost all living organisms. The
cellular clock relies on oscillatory patterns of transcription factors based on a transcription-
translation negative feedback loop (TTFL) mechanism. This process ensures the synchro-
nization of biological mechanisms in an adequate time scale according to the active and
resting phases [151]. The active phase is markedly characterized by high energy expendi-
ture and nutrient consumption whereas the resting phase is associated with tissue repair,
waste clearance, and memory consolidation [151,152]. Notably, the suprachiasmatic nu-
cleus of the hypothalamus (SCN) is one of the major centers in coordinating the whole-body
circadian rhythm [151], which influences feeding/fasting patterns and thus metabolic con-
trol [153]. In fact, lesions in the SCN elicit alterations in the daily pattern of circulating
glucose, fatty acids, and insulin [154]. Besides the marked role of SCN neurons in the
control of circadian behavior [151], astrocytes have recently emerged as important players
in the regulation of neuronal circuits involved in the circadian rhythms, and in consequence,
in whole-body energy metabolism. Specifically, the lack of the clock gene brain and muscle
ARNT-like protein-1 (BMAL1) in astrocytes leads to increased food intake, body weight
gain, impaired glucose handling, and shorter lifespan in mice [155]. Such changes are
associated with alterations in the expression pattern of clock genes in SCN neurons and
also affect circadian locomotor activity in mice [156–158]. These effects seem to be driven by
the inability of astrocytes to control extracellular GABA content [155,157,159]. Considering
that the vast majority of neurons in the SCN are GABAergic [160] and the synchroniza-
tion of clock neurons in the SCN highly depends on GABAergic transmission [161,162],
astrocytes may exert relevant modulation on the inhibitory circuitry dictating circadian
oscillations via GABA homeostasis regulation. Indeed, the cooperative orchestration of the
activity fluctuations of neurons and astrocytes in the SCN governing the circadian rhythm
has gained new insights since the observation that neurons are active during the active
phase of the circadian rhythm whereas astrocytes are active during the resting phase, as
evidenced by Ca2+ measurements [158]. In this study, the authors also showed that Ca2+

variations in astrocytes match the release of glutamate, which binds to NMDAR subtype 2C
in pre-synaptic GABAergic neurons and enhances the inhibitory drive onto SCN neurons
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to control behavioral rhythms (Figure 2C). On the other hand, GABAergic tone is reduced
during the resting cycle by decreased release of glutamate and elevated glutamate clearance
via excitatory amino acid transporters by astrocytes, thereby facilitating SCN neuron activ-
ity [158]. Strikingly, astrocytes can sustain their circadian molecular oscillations for many
days even in culture [163]. Such oscillations in astrocytes endow autonomous cell-specific
molecular patterns in vivo, which are sufficient to control circadian behavior via glutamate-
mediated astrocyte gliotransmission within the SCN, regardless of the TTFL functioning in
surrounding neurons [164]. Therefore, the circadian rhythm function highly relies on the
tuning of GABA-mediated signaling by glutamatergic astrocyte-neuron communication in
the SCN.

3. Concluding Remarks

Unlike neurons, showing long and static projections for delivering long-distance
messages, astrocytes occupy small domains defined by their finger-like thin processes to
influence local circuitries. Therefore, it is not surprising that astrocytes are very plastic
cells with multiple functional roles and a high capacity to adapt their cytoarchitecture,
gene profile, and activity in response to local neuronal demands. Despite occupying small
territories, an astrocyte can physically interact with multiple synapses (estimated number >
100 synapses)—a fact that highlights the vast amount of neuronal information that a single
astrocyte can process in a short amount of time. In recent years, notable progress has been
made to elucidate many aspects of astrocyte physiology and gliotransmission by using
the most advanced neurophysiological techniques. However, the individual distinctions
of each astrocyte together with its intricate interactions with neuronal circuitries and the
complex Ca2+ dynamics at different levels of its compartments have challenged researchers
in the field to further understand how communication occurs between astrocytes and
neighboring cells. Therefore, studies focused on how astrocytes decode external signals into
spatial and temporal gliotransmitter release depending on the microdomain environment
and its interactions would also be fundamental to shed more light on these paradigms.
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Abstract: More and more evidence shows how brain energy metabolism is the linkage between
physiological and morphological synaptic plasticity and memory consolidation. Different types of
memory are associated with differential inputs, each with specific inputs that are upstream diverse
molecular cascades depending on the receptor activity. No matter how heterogeneous the response is,
energy availability represents the lowest common denominator since all these mechanisms are energy
consuming and the brain networks adapt their performance accordingly. Astrocytes exert a primary
role in this sense by acting as an energy buffer; glycogen granules, a mechanism to store glucose, are
redistributed at glance and conveyed to neurons via the Astrocyte–Neuron Lactate Shuttle (ANLS).
Here, we review how different types of memory relate to the mechanisms of energy delivery in
the brain.

Keywords: lactate; glycogen; metabolism; behavior; learning

1. Brain Energy Metabolism

The brain represents only 2% of the total body mass, yet to ensure its proper function,
it uses between 20 and 25% of the energy produced by the body. This energy consumption
is reflected by the use of glucose and oxygen delivered by the blood flow, which represents
over 10% of the cardiac output [1]. Glucose is the major energy substrate for mammalian
cells; in the brain, it is almost entirely oxidized to CO2 and H2O through its sequential
processing by glycolysis, the tricarboxylic acid (TCA) cycle and the associated oxidative
phosphorylation. First, glucose metabolism in astrocytes mainly proceeds through aerobic
glycolysis, resulting in lactate production. Lactate taken up by neurons and transformed
to pyruvate is then processed through the tricarboxylic acid cycle and the associated
respiratory chain [2]. Glucose is also an important constituent of macromolecules and it
can be incorporated in glycolipids and glycoproteins present in neural cells. Finally, it
may enter the metabolic pathways that result in the synthesis of glutamate, GABA and
acetylcholine, key neurotransmitters of the brain [3]. Glucose is also stored in astrocytes in
the form of glycogen, a multibranched polymer consisting of thousands of glucose units
assembled around a core protein called glycogenin, resulting in various sized granules.

Glycogen is commonly found in the liver, accounting for 6–8%, and skeletal muscle,
representing 1–2% of its respective weight. It is also found in the brain, although it only
represents about 0.1% of the total brain weight. So the commonly accepted ratio of glycogen
in liver, skeletal muscle and brain is 100:10:1 and a variable size of 10 to 80 nanometers in
diameter [4–6]. Despite its low abundance in the brain, glycogen is the largest cerebral en-
ergy reserve and is specifically localized in astrocytes under physiological conditions [7,8].
The glycogen granules act as an energy source under hypoglycemia or ischemia. In the
first case, they are able to support energy metabolism by providing a glucose supply for up
to 100 min. During ischemia, since no oxidative metabolism occurs, the glycogen stores
deplete within two minutes [9,10]. Moreover, it plays a critical role in physiological brain
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functions such as synaptic activity and memory formation, two conditions requiring a high
energy demand [3,11].

Glucose metabolism in the brain was first linked to glutamate-mediated neuronal
activity through molecular mechanisms based on the role of astrocytes in coupling synaptic
activity with vascular glucose intake. This is known as the Neuron-Glia Vasculature
(NGV) unit [2,12–15]. These observations led to the first formalization of the Astrocyte–
Neuron Lactate Shuttle (ANLS) model (Figure 1), which states that astrocytes respond to
glutamate-mediated neuronal activity by enhancing their level of aerobic glycolysis [16].
Because glycogen is the largest energy reserve in the brain, one of its primary functions is
to provide a metabolic buffer during neurotransmission. Under ketogenic conditions, such
as breastfeeding, diabetes or starvation, ketone bodies may provide an energy source for
the brain [3].

Figure 1. Representation of the astrocyte–neuron lactate shuttle which establishes that in response
to glutamate-mediated neuronal activity, astrocytes take up glucose and process it through aerobic
glycolysis resulting in lactate formation. Lactate can also be formed through the breakdown of
glycogen by increased extracellular K+ levels associated with increased neuronal activity or by the
activation of noradrenaline and b2 adrenergic receptors [1,17]. Lactate is consequently shuttled from
astrocytes via MCT1,4 and taken up by neurons via MCT2 to fuel their tricarboxylic acid cycle.

Astrocytes possess the necessary enzymatic machinery for glycogen breakdown and
conversion to pyruvate/lactate, which is consequently shuttled to neurons to fuel their
tricarboxylic acid (TCA) cycle [3,11]. The metabolism of glucose via glycogen, also known
as glycogen shunt activity, has been demonstrated to operate in exercising muscle, as well
as in the brain [18,19]. This model establishes that glial glucose flux is divided between
glycolysis and glycogenolysis and that the fraction following the glycogenolytic pathway
will increase with neuronal activity. This increase in the glycogenolytic pathway allows a
rapid neurotransmitter clearance, which will result in a lower oxygen to glucose index, and
higher lactate concentrations [19,20]. Lactate is released via monocarboxylate transporters
(MCTs) 1 and 4 and taken up by active neurons through MCT 2 to satisfy their energy
demands [17]. Recent studies report the crucial role of glycogen metabolism in long-
term memory formation, maintenance of long-term potentiation and learning-dependent
synaptic stabilization [8,21].
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Initially, astrocytes were only considered as non-excitable support cells of the brain,
necessary for neuronal distribution and interactions. As the field evolved, it became more
evident that astrocytes are necessary to ensure optimal neuronal functioning and communi-
cation [22,23]. It is known now, that astrocytes contribute to the morphological remodeling
associated with synaptic plasticity, hence acting as spatial and temporal integrators of
neuronal activity and plasticity. In fact, synaptic plasticity and memory processes rely on
astrocytic regulation of nutrients, i.e., glucose entry to the brain and its metabolism, as
well as glycogen accumulation to fulfill high-energy demands [24]. Astrocytes synthetize
TCA intermediates needed for the synthesis of glutamate formed by the rapid degradation
of glycogen and stimulated by the activation of β2-noradrenergic receptors. This, makes
the learning process dependent on glycogenolysis and stimulated by noradrenaline [25].
Now, in the context of synaptic plasticity, astrocytes release certain molecules important
for this process. Such is the case of TNF-a, which participates in synaptic scaling, a form
of homeostatic plasticity that modulates the strength of an entire synaptic network de-
pending on its activity history. Another example is D-serine, which acts as an endogenous
NMDA receptor and plays a role in the induction of long-term potentiation in hippocampal
synapses [26].

2. Memory Systems

Learning and memory are tightly related concepts. In simple terms, learning is the
process of acquiring new information; some authors define it as the change in performance
as a function of practice. Memory is also the persistence of learning so that it can be recalled
later. It is a lasting representation that is reflected in thought, experience or behavior. Both
processes demand a wide range of brain areas and involve a series of stages [27,28]. First is
encoding, which is a process occurring during the presentation of the learning material.
The second stage is storage (also known as retention), which results from encoding and
where the information is stored within the memory system. Finally, the third stage is
retrieval, which involves recovering or extracting the information previously stored in a
particular memory system [29,30].

Memory can be classified, depending on the temporal availability of the information,
as short-term or long-term (Figure 2). Short-term memory is the memory for information
currently held in mind; it has a limited capacity and a duration of several seconds. Long-
term memory refers to stored information that does not need to be presently accessed
or even consciously accessible. It is considered to have an unlimited capacity essentially,
and it can last throughout the lifespan [29,31–33]. Nevertheless, this classification gives
little reference to the underlying molecular mechanisms or the brain areas involved in
this process. For instance, memories can be divided into different categories according to
how information is learned, encoded and stored. First, memories are classified either as
explicit/declarative or implicit/non-declarative. Declarative memory involves episodic
and semantic memory, which refers to the capacity to recollect facts, concepts or ideas, as
well as recall particular life experiences or events. This type of memory is representational,
providing a way to model the external world. Non-declarative memory is the capacity
to recall unconsciously or retain information about automatic learned responses. This
type of memory is expressed through performance rather than recollection and includes
priming and perceptual learning, procedural memories, simple classical conditioning and
non-associative learning (simple reflexes) [34–36]. Each of these memories is associated
with a particular brain structure, as described below.
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Figure 2. Types of memory and memory systems.

Episodic memory refers to the memory of past events in the life of an individual; this
involves episodes in particular places at a specific time. These are also known as what,
where, when and who or “wwww memories” [34,37,38]. This type of memory allows an
individual to re-experience a past event in the context in which it initially occurred, which
involves an association of different spatial or non-spatial clues to describe such an event.
Therefore, episodic memory requires different brain regions such as the hippocampus and
the frontal lobes [35,39]. Several studies show impairments in episodic memory followed
by damage to the perirhinal cortex, which has connections to the hippocampus [40].

On the other hand, semantic memory represents information such as facts, concepts,
ideas and vocabulary, which is explicitly known and available for recall. This type of
memory is usually viewed as an associative network of concepts in which concepts similar
to one another are functionally stored together. Some authors even describe it as a concrete
and literal “picture memory.” According to classical literature, for semantic memory,
the main brain area involved is the perirhinal cortex [34,35,37,41]. More recent studies
have shown, particularly analyzing PET scans and fMRI images, reveal that semantic
memory is represented by spatially overlapping cortical patterns rather than anatomically
segregated regions [42]. Binder and co-workers performed a meta-analysis of 120 studies
and concluded that semantic processing occupies a large portion of the cortex and that
it could be divided in three broad categories: Posterior heteromodal association cortex
(posterior inferior parietal lobe, middle temporal gyrus and fusiform gyrus), subregions
of the heteromodal prefrontal cortex (dorsal, inferior, ventromedial prefrontal cortex) and
medial paralimbic regions (parahippocampus and posterior cingulate gyrus) [43].

Procedural memory is the kind of memory that stores processes, allowing the ease of
performing specific activities or cognitive operations; this may include stimulus-response
associations. In this case, the information is learned unconsciously as a skill, it can also be
difficult to explain verbally and the memory persists for a long time [41,44]. Procedural
memory can be further subdivided into motor, perceptual or cognitive. Examples of these
are speech production, riding a bike, typing on a keyboard, swimming, walking, playing
golf and driving a car. Procedural memory mainly depends on the basal ganglia to encode
and consolidate an event; it involves complex and collective synaptic firings in the frontal–
basal ganglia–thalamocortical circuits [29,33]. A study carried out in 2008 showed irregular
striatum activity in an obsessive-compulsive disorder model, where procedural memory
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tasks are often confused, emphasizing the importance of the basal ganglia in this type of
memory [45].

Priming and perceptual learning can be described as a technique by which a priming
stimulus is used to sensitize the neuronal representation of the stimulus to train for a later
presentation of that or a similar stimulus [29,33]. Several studies show that this type of
memory is preserved in patients with amnesia [34,35] and that priming facilitates percep-
tual processing [46]. Priming effects can be perceptually, conceptually or semantically
driven [29,47]. While this type of memory is only expressed in performance and cannot be
reflected in a verbal report, its effects can be associated with declarative and procedural
memory and it may depend on the neocortex. Notably, pavlovian conditioning relies on
this type of memory [34,35].

The concept of classical conditioning was first mentioned in the early 1900s as a means
of studying associative learning. Classical conditioning is an associative memory between
a conditional stimulus and unconditioned responses, such as rewards and punishments.
In this way, two stimuli (one that naturally produces a response and a neutral one) are
presented together to produce a new learned response; after repeated pairings, the neu-
tral stimulus alone will elicit the response. Therefore, classical conditioning studies the
relationship between the stimuli and the environment [29,33,48]. When the conditioned
stimulus triggers an emotional response, the amygdala is the brain area involved in this
process [35]. Studies carried out in monkeys and rats show that amygdala lesions produce
a lack of emotional response, excessive examination of objects and an incorrect pairing
of food rewards, demonstrating an impairment in the processing of reward-related stim-
uli [40]. If the conditioned stimulus results in a skeletal response, the cerebellum is the
brain area involved [35]. These findings were supported by multiple classical eyeblink
conditioning studies, a valuable experiment for analyzing the behavioral and neuronal
aspects of acquisition and retention of learned responses [49,50].

In recent years transgenic knockout mice have been used to carry out classical condi-
tioning studies; this has made it possible to study changes in hippocampal synapses [51].
Additionally, neural recordings of the cerebellum during eyeblink conditioning in a rabbit
show increased and decreased extracellular activity in the dentate/interpositus deep nuclei
and cortex. These results are correlated with the conditioned stimulus and response, as well
as unconditioned stimulus and response. It was also found that the excitability of Purkinje
cells is highly correlated with the acquisition of a conditioned response [48]. Several models
propose cerebellar plasticity at the synapses between the parallel fibers and the Purkinje
cells, resulting from the activation of mossy and climbing fibers [50].

Molecular Mechanisms behind Memory

Memory retention is the process in which acquired information is transformed into
a stored mental representation that is maintained over time without needing an active
rehearsal [29]. In addition, memory consolidation is a progressive stabilization of long-term
memory traces so that they become relatively resistant to decay or disruption. Memory
consolidation is divided between rapid (synaptic) consolidation and system consolida-
tion. The first one is accomplished within the first minutes to hours after learning and
involves gene transcription and protein formation, leading to lasting cellular channels to
support long-term memory. System consolidation can take from days to years to complete
and involves the interaction between the medial temporal lobe and the neocortex [28].
These processes require neurotransmitter receptors for the acquisition and storage of new
memories [36]. Examples of these are N-methyl-D-aspartate (NMDA) [52], Adenosine
A2A [53], dopamine Drd1a [54], AMPA, GABA and metabotropic glutamate receptors [36],
as well as acetylcholine, serotonin and norepinephrine [55,56]. It has been established
that during the consolidation process, the medial temporal areas play a critical role; this
system undergoes several functions related to memory, such as encoding, consolidation
and retrieval. Eventually, memories will become independent of the medial temporal area
and will depend on specific neocortical regions [33,57].
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Changes in synaptic strength underlie memory storage and other adaptive responses,
including pain control, mood stability and reward behavior. Synaptic consolidation indicates
the development and stabilization of protein synthesis-dependent modifications in synaptic
strength to support long-term memory formation and maintenance. This process is observed
during long-term potentiation (LTP) and long-term depression (LTD). Additionally, synaptic
consolidation requires brain-derived neurotrophic factor (BDNF) signaling and the immediate
early gene activity-regulated cytoskeleton-associated protein Arc [28,58].

LTP is considered a neural mechanism essential for synaptic plasticity and it is the
most common mechanism underlying associative learning. LTP can be evoked by high-
frequency stimulation (HFS), which results in the long-lasting enhancement of synaptic
efficacy. Moreover, activation of NMDA receptors is sufficient for inducing LTP, since it has
been demonstrated to be the molecular substrate of the process [51,52].

BDNF triggers synaptic consolidation in mature excitatory synapses through its tyro-
sine kinase receptor (TrkB); this process is carried out in two stages. First, the translation
stage is where high-frequency stimulation leads to the post-synaptic release of BDNF and
the activation of TrkB receptors, present in pre- and post-synaptical elements of glutamater-
gic synapses. Particularly, post-synaptic TrkB receptors rest in the post-synaptic density
(PSD) while TrkB co-immunoprecipitates are found in the NMDA receptor protein complex.
Second is the Arc dependent consolidation stage; Arc encodes the only mRNA known to
undergo transport to distal dendritic processes of granule cells [58].

Hippocampal studies show that Arc mRNA is enriched at stimulated synapses and
Arc protein is elevated in dendrites following LTP induction. This sustained translation
of Arc is crucial for cofilin phosphorylation, local F-actin expansion and the formation of
stable LTP [58]. During behavioral training, Arc is expressed in principal neurons, which is
necessary for long-term spatial memory [59,60]. Interestingly, a recent study in the primary
visual cortex demonstrates that Arc protein in spines increases in LTD and decreases in LTP.
The authors of this study conclude that Arc helps organize the distribution of potentiated
and depressed spines, which underlies the plasticity of neuronal responses [61].

The synthesis of new proteins, i.e., mRNA translation, is critical for memory formation
and long-lasting synaptic plasticity and for reconsolidation. This process can be triggered
by gene expression changes, learning-induced activation of neuronal receptors, intracel-
lular signaling pathways or epigenetic mechanisms [62]. Some transcription factors that
participate in these tasks are cAMP Response Element–Binding Protein (CREB), C/EBP,
AP1, c-Fos, Zif268, NFkB, activating transcription factor [ATF-4] [63,64]. They can bind to
DNA response elements such as CRE to regulate RNA polymerase activity and determine
the time and level of gene expression. Moreover, the CREB1 acts as a transcriptional
activator after its phosphorylation by kinases such as PKA, MAPK, CamKIIa [65,66]. In
addition to the previously mentioned transcription factors, nuclear factor kappaB (NF-kB),
serum response factor, junB and neuronal Per-Arnt-Sim homology factor 4 (NPAS4) also
play important roles in the memory consolidation process [64,67,68]. Protein synthesis
in neurons occurs in the dendrites; this allows a rapid and precise localization of protein
expression in response to synaptic activity and also provides a critical mechanism for
synaptic formation, maintenance and plasticity [62].

A clear example of this is mTOR, a protein that integrates inputs from several signals
such as activation of neurotransmitters, growth factor receptors and cellular metabolism
changes. This protein acts together with TORC complex 1 or 2 (mTORC1, mTORC2)
to regulate protein synthesis and cell growth or to control cell cycle progression and
energy metabolism [62]. Several studies have shown the important role of mTORC1 in
synaptic plasticity and memory reconsolidation. Findings in rat hippocampal slices, for
example, show that the disruption of mTOR signaling reduces late-phase LTP expression
induced by HFS without affecting early phase LTP and also blocks the synaptic potentiation
induced by BDNF [69]. The idea that mTOR signaling is required to form and reconsolidate
long-term memory is further supported by behavioral studies that tested spatial memory
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formation [70], object recognition memory [71] or involving fear-motivated tasks [72].
These studies will be discussed in detail in the following sections of this review.

Leptin receptors (LepR) in hippocampal astrocytes have also been demonstrated to
play an essential role in synaptic transmission, plasticity and brain metabolism [73–75].
In one study, Naranjo et al. used a genetic mouse model that lacked the expression of
LepR in GFAP-positive cells. They evaluated synaptic transmission and hippocampal
plasticity using electrophysiological recordings and assessed the expression of enzymes
and transporters involved in glutamate metabolism. Their findings confirmed that LepR in
astrocytes are involved in maintaining glutamate homeostasis and neurotransmission since
LepR depletion reduced basal synaptic transmission in CA1 cells and impaired NMDA-
LTD. In addition, genetically modified mice exhibited lower glutamate uptake efficacy
and upregulation of GLUT-1, GLT-1, GFAP and glutamine synthase, which could impact
learning and memory processes [76].

3. Lactate: A Key Molecule for Memory

Brain energy is crucial to support the action potentials required for neuronal commu-
nication, maintenance of ionic gradients across the plasma membrane, protein synthesis,
phospholipid metabolism or neurotransmitter recycling [3]. The astrocyte–neuron lactate
shuttle establishes that presynaptic glutamate released from excitatory boutons is taken
up by astrocytes; this glutamate is then recycled as glutamine (glutamate-glutamine cycle)
and further released from astrocytes to neurons to form new glutamate for vesicle stor-
age. Glutamate is taken up with Na+ through specific astrocyte transporters, resulting
in a dissipation of the Na+ gradient which are reestablished through the activity of the
Na/K-ATPase [77]. Both Na/K-ATPase activity and glutamine formation from glutamate
are highly energy consumptive processes; astrocytes increase the glucose uptake from the
bloodstream. Surprisingly, instead of using glucose through oxidative phosphorylation
in mitochondria to produce ATP, they use the glycolysis pathway to produce a few ATP
molecules; this process (also known as “aerobic glycolysis” or “Warburg effect”) is accom-
panied by the synthesis of lactate, which is released via MCT1 and MCT4 and taken up by
active neurons through MCT2. In neurons, lactate is transformed into pyruvate and is subse-
quently metabolized through oxidative phosphorylation, yielding between 14 and 17 ATPs
per lactate molecule [12,78]. Lactate shuttle from astrocytes and further uptake by neurons
play an essential role in learning, memory consolidation and LTP [8,21,79,80].

One such study to confirm the importance of ANLS in LTP and hippocampal memory
formation was performed by Suzuki and collaborators using electrophysiological and
behavioral experiments. The electrophysiological studies showed that LTP could be trig-
gered in CA1 neurons following Schaffer collateral stimulation with the increased fEPSP
slope, a classic indication and monitor of increased synaptic efficacy. Behavioral trials were
conducted on rats performing the inhibitory avoidance test. Rodents received a bilateral
hippocampal injection of 1,4-dideoxy-1,4-imino-D-arabinitol (DAB), which is a glycogen
phosphorylase inhibitor. Researchers found that DAB prevented LTP maintenance and
hypothesized that the intrahippocampal application of additional lactate could bypass it.
These findings indicate that neurons require lactate uptake to meet the energy demands
of LTP induction, even when displaying average concentrations of glucose. Therefore,
lactate should be available for neurons during the conditioning phase of the behavioral
test. Results show that the application of lactate after conditioning does not restore LTP.
This indicates that ANLS plays a critical role in long-term synaptic plasticity, long-term
memory, as well as molecular and synaptic changes [21].

A similar study by Duran et al. examined the learning capacities and electrophysiolog-
ical properties of the hippocampal CA3-CA1 synapse using glycogen synthase knockout
mice. The electrophysiological results show that paired-pulse facilitation (a form of short-
term plasticity related with short-term memory) is enhanced in the mice lacking glycogen
synthase. Moreover, paired-pulse stimulation (an indirect measurement of the probability
of neurotransmitter release) reflects a disturbance in the release of neurotransmitters at
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the presynaptic terminal in the knockout mice. This confirms the role of glycogen as a
precursor of glutamate and its importance in short-term memory processes. Finally, the
knockout mice did not show significant LTP after the stimulation session, suggesting that
glycogen is a crucial energy source to evoke this change in synaptic strength. The authors
also conducted a behavioral test using the Skinner box. The results from his test reveal a
significant impairment in the learning process of mice lacking glycogen synthase, which
supports the previous results [81].

To support the idea that lactate regulates synaptic potentiation at central synapses and
contributes to the process of memory formation, Herrera-López and co-workers carried
out a series of electrophysiological experiments on hippocampal slices. They demonstrated
that extracellular lactate induces glutamatergic potentiation on the recurrent collateral
synapses of hippocampal CA3 pyramidal cells (CA3 PC). This potentiation occurs through
a post-synaptic lactate receptor mechanism, calcium accumulation and NMDA receptor
activation. The researchers found that lactate does not induce potentiation at the mossy
fiber synapses of CA3 PC, concluding that lactate triggers an input-specific form of synaptic
plasticity on the hippocampus and that it increases the output discharge of CA3 neurons
when recurrent collaterals are repeatedly activated during lactate perfusion [82].

The degree to which long-term modifications in synaptic strength are complemented by
modifications in lactate dynamics is still a matter of research. To understand it, Bingul et al.
induced LTP of synapses in the dentate gyrus in freely behaving rats; this process was
done through HFS of the medial perforant pathway. Before, during and up to 72 h after
LTP induction, the extracellular lactate concentrations were measured using fixed potential
amperometry, allowing the evaluation of how changes in synaptic strength modify local
glycolytic activity. They found that synaptic potentiation was associated with persistent
alterations in acute lactate dynamics following neuronal activation and observed chronic
lactate availability within the dentate gyrus. These changes in lactate dynamics were
only visible 24 h after HFS, whereas synaptic potentiation and altered lactate dynamics
lasted up to 72 h. The authors conclude that these observations reflect a metaplastic effect
that could regulate the memory consolidation process. Furthermore, these changes in
extracellular lactate concentrations could support the increased energetic demands or play a
neuroprotective role [83]. In order to monitor lactate dynamics Mächler and co-workers used
a genetically encoded FRET sensor in combination with in vivo two-photon laser scanning
microscopy. Following opening of MCTs in astrocytes and neurons using a transactivation
process, they observed at first a decrease in lactate signal in astrocytes followed by an
increase of it in neurons, demonstrating a lactate gradient between these two cell types that
favor the flow of lactate from astrocytes to neurons, consistent with the ANLS [84].

The ANLS model establishes that lactate is released from astrocytes through MCT1
and MCT4 and taken up by neurons through MCT2, which makes these transporters critical
in learning and memory formation [17]. To better understand their role, Netzahualcoyotzi
and Pellerin used transgenic mice and a viral vector to decrease the expression of each
transporter within the dorsal hippocampus. They demonstrate that both neuronal MCT2
and astroglial MCT4 are essential in spatial information acquisition and retention in dif-
ferent hippocampal-dependent tasks. After an intracerebral injection of lactate, mice with
reduced levels of MCT4 exhibited improved spatial memory, but this manipulation did
not affect mice with an MCT2 knockdown, supporting the idea that ANLS contributes to
hippocampal-dependent learning. In contrast, MCT2 is shown to be required for long-
term memory formation seven days after training, and plays an important role in mature
neurons in the process of adult neurogenesis in the dentate gyrus [85].

Long-term memory formation is also affected by the release of noradrenaline and
β-adrenergic signaling, which occurs in states of arousal because the coeruleo-cortical nora-
drenergic projection, results in noradrenaline release in the cortex. Noradrenaline has been
shown to trigger glycogenolysis in astrocytes [86] resulting in aerobic glycolysis, conse-
quently stimulating lactate production from glycogen [87]. Fink and collaborators studied
single noradrenaline-stimulated astrocytes by measuring cytosolic lactate concentration us-
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ing a FRET nanosensor; this process was done under different pharmacological conditions.
First, they used 2-deoxy-D-glucose, a non-metabolizable form of D-glucose, to interfere
with lactate metabolism; second, DAB, a potent inhibitor of glycogen phosphorylase and
glycogen degradation; and finally, 3-nitropropionic acid (3-NPA), an irreversible inhibitor
of succinate dehydrogenase, a Krebs cycle enzyme. Their findings reveal that D-glucose
uptake is critical for the noradrenaline-induced increase in lactate concentration resulting
from glycogen degradation, suggesting that most glucose molecules in the noradrenaline-
stimulated cells transit through a glycogen shunt. In addition, it was observed that under
these pharmacological conditions and a defined transmembrane glucose gradient, the
glycolytic flux intermediates are used to produce lactate and support oxidative phosphory-
lation via pyruvate. This was demonstrated by an increase in lactate concentration during
inhibition of the Krebs cycle [88].

To confirm the role of noradrenaline in lactate production, Zuend et al. investigated
lactate dynamics in neurons and astrocytes in awake mice. They exposed the mice to
isoflurane, which caused a strong arousal response, pupil dilatation and Ca2+ elevations in
both neurons and astrocytes. These alterations in cortical activity triggered an extracellular
lactate release which correlates with a fast and prominent lactate dip in astrocytes, followed
by a delayed rise in neuronal and astrocytic lactate [87]. The work by Gao and collaborators
also illustrates the role of adrenergic signaling in modulating long-term memory consol-
idation by activating glycogenolysis and subsequent lactate release [89]. These changes
altogether suggest activity-dependent glycogen mobilization and further lactate release
from astrocytes, which are critical in the long-term memory formation and consolidation
processes [84,87,89].

Lactate also plays an important role in supporting the expression of genes such as
Arc, c-Fos, Bdnf and Zif268, which involved in plasticity and neuronal activity [90]. Yang
and co-workers investigated this matter in vitro in primary cultures of neurons and in vivo
in the mouse sensory-motor cortex. They found that lactate stimulates the expression of
genes such as Arc, c-Fos and Zif268, which are related to synaptic plasticity, and that these
effects were not replicable with glucose nor pyruvate. This upregulation is carried out
through a mechanism involving NMDA receptor activity and its downstream signaling
cascade Erk1/2. The researchers found that lactate potentiates NMDA receptor-mediated
currents, which produces elevated intracellular calcium via an increased calcium influx.
Furthermore, lactate increases the intracellular levels of NADH associated with changes in
the redox state of neurons. NADH mimics the effects of lactate on NMDA signaling, leading
to the idea that an increase in NADH directly affects the effects of lactate [91]. In another
study Margineanu and collaborators used RNA-sequencing to identify synaptic plasticity
promoting genes. In addition to those found by Yang et al., they identified that Erg2, Erg3,
Erg4, Npas4, Nr4a3 and Rgs4 are modulated by L-lactate in cortical neurons. Moreover,
they identified ten genes associated with the MAPK signaling pathway; those are: c-Fos
Bdnf, Atf4, Nr4a1, Gadd45g, Map3k11, Dusp4, Dusp6 and Dusp10 [92]. These studies lead
to the conclusion that lactate can be considered a signaling molecule in neuronal plasticity,
in addition to its role in energy metabolism.

The Role of L-Lactate in Disease

Lactate production in astrocytes and its sequential shuttle to neurons is an essential
process in learning, memory consolidation and LTP. Accordingly, anomalies in the brain
energy metabolism can result in severe pathologies or aggravate pre-existing conditions.
In particular, Alzheimer’s Disease (AD), amyotrophic lateral sclerosis (ALS), depression,
stress and schizophrenia show disruptive lactate signaling between astrocytes and neu-
rons [93]. For instance, Positron Emission Tomography (PET) scans have documented
reduced glucose utilization in brain regions affected by patients with Alzheimer, Parkinson
and Huntington’s disease, as well as with ALS [94].

AD is one of the most common forms of dementia. In its preclinical stage, brain
glucose hypometabolism is recognized as a prominent anomaly and some studies suggest
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that glycogenolysis plays a critical role in the development of the disease [95]. Impairments
in glycogen synthesis could reduce glycogen levels, impeding the physiological flux of
glucose units through glycogen, consequently affecting learning and memory processes [96].
Research shows reduced levels of GLUT1 and GLUT3, which correlates with less glucose
uptake, which translates into a subsequent cognitive decline. Furthermore, the enzymatic
activity of phosphofructokinase, phosphoglycerate mutase, aldolase, glucose-6-phosphate
isomerase and lactate dehydrogenase display a loss of activity in patients with AD in
comparison with age-matched controls [94]. Ryu and collaborators compared neural
progenitor cells and astrocytes differentiated from late-onset AD patients. The authors
found a significant downregulation of lactate dehydrogenase A in both cell types and that
astrocytes from late-onset AD have a reduced metabolism of lactate [97].

In the case of Parkinson’s Disease (PD), glucose hypometabolism has been docu-
mented. Key enzymes glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehy-
drogenase are expressed in lower levels in putamen and cerebellum of PD patients [94].
Other studies show an increase in lactate levels in the striatum of patients and animal
models of advanced PD [98,99].

On the other hand, ALS is characterized in patients by loss of motor neurons in the
brain and spinal cord, as well as glucose intolerance, insulin resistance and hyperlipidemia.
At the cellular level is common to find altered endothelial transporter proteins and as-
trocyte end feet degradation [94]. Nonetheless, research has shown that lactate could be
used directly as cerebral uptake or indirectly as gluconeogenic precursor to improve ALS
symptoms [100,101].

Schizophrenia and bipolar disorders are common and severe psychiatric disorders.
They characterize by overlapping genetic background, brain abnormalities and clinical
presentations. Some research suggests that alterations in brain metabolism and mitochon-
drial function are evident in these disorders. A set if studies ex-vivo using mouse models
of schizophrenia, bipolar disorder and autism spectrum disorders showed lower pH and
higher lactate levels in all the models [102]. In vivo studies in animal models and in patients
confirm this evidence. Lactate concentrations are elevated and negative correlated with
general cognitive function and functional capacity [103–105]. In contrast, patients suffering
from depression can benefit from lactate as a treatment option. It has been proved that
lactate administration produces antidepressant-like effects, promotes resilience to stress
and rescues social avoidance and anxiety behaviors [106,107].

4. Behavioral Perspective

Most of the studies presented previously provide evidence that supports the impor-
tance of brain energy metabolism in learning and memory processes. This section aims to
describe how behavioral studies enlighten our knowledge on brain energy metabolism in
particular types of memories.

4.1. Spatial Memory

Spatial working memory is mediated by astrocytic glycogenolysis and by the ex-
pression of synaptic plasticity promoting genes [79,108,109]. To better understand this,
Newman, Korol and Gold used a spontaneous alternation task using the plus-shaped maze
in behaving rats. For this experiment glucose or lactate-sensitive biosensor was used to
measure glucose and lactate levels in extracellular fluid in the rat hippocampus before,
during and after memory tests. The recordings from the biosensors revealed a significant
increase in lactate concentrations at the beginning of the behavioral test. Then, glucose
levels dropped 5 min after initiating the task and 5 to 10 min while performing the test, the
glucose levels raised again; these changes could correspond to an increase in blood glucose
levels. After completing the task, a significant increase of lactate was again recorded; it is
believed that this is a consequence of handling after removing the mice from the maze. Ad-
ditionally, a pharmacological inhibition of astrocytic glycogenolysis and a pharmacological
block of MCT2 by a hippocampal injection of α-cyano-4-hydroxycinnamate, resulted in
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memory impairment. In the first case, lactate or glucose administration was sufficient to
reverse this effect; nevertheless, either glucose or lactate were able to restore the memory
impairment caused by the block of MCT2 [79].

To highlight the importance of MCTs in the ANLS, Ding and co-workers established
a model of long-term ketamine administration aiming to examine changes in MCTs ex-
pression that will lead to learning and memory deficits. In this case, mice were exposed
to intraperitoneal administration of ketamine for six months; long-term ketamine admin-
istration is associated with abnormalities in MCTs that cause hippocampal dysfunctions.
During the ketamine-administration period, mice were trained and tested for the Morris
water maze (MWM) to assess their spatial memory performance and for the Radial arm
maze (RAM) to evaluate their spatial working memory performance. The authors report
that mice exhibited learning and memory deficits. When quantifying hippocampal proteins,
the membrane fraction showed a significant decline of MCT1 and MCT4 proteins, whereas
the cytoplasmic fraction showed increased levels of MCT1 and MCT4. Moreover, the global
expression of MCT2 was enhanced. Finally, mRNA analysis showed that the expression on
MCT2 mRNA was significantly increased, whereas MCT1 and MCT4 transcripts displayed
no changes. Supposedly, cognitive deficits observed in the behavioral tests were related to
the reduced levels of hippocampal membrane MCT1 and MCT4 [110].

As previously mentioned, mTOR plays an important role in regulating protein-
synthesis-dependent synaptic plasticity and memory formation [62]. Dash, Orsi and Moore
investigated the role of mTOR in long-term spatial memory formation using the MWM. The
researchers administered either rapamycin (mTOR inhibitor), glucose, 5-amonoimidazole-
4-carboxamide-1-B-4-ribonucleoside (AICAR; AMP kinase activator) or a mix of glucose
and rapamycin into the dorsal hippocampus of Long-Evans rats after training in the MWM.
The results suggest that AICAR and rapamycin impair long-term spatial memory, whereas
glucose improves it. Moreover, the authors aimed to examine a potential mechanism to
restore memory impairment by the co-administration of glucose and rapamycin; however,
in this case, memory impairment was not reversed [70].

Learning and memory retrieval are both energetically demanding processes. In order
to explore the role of lactate production in these processes Harris and colleagues injected
dichloroacetate (DCA) into the frontal cortex and hippocampus of mice. DCA is a chem-
ical inhibitor of lactate production; it inhibits pyruvate dehydrogenase (PDH) kinase by
enhancing the activity of PDH, which further attenuates the conversion of pyruvate to
lactate. The authors examined the effect of DCA on spatial learning and memory, which
requires communication between the frontal cortex and the hippocampus. For this, they
used the MWM as a behavioral task. The results were obtained by in vivo 13C-pyruvate
magnetic resonance spectroscopy, revealing a decrease in pyruvate conversion to lactate
after the DCA administration, which was accompanied by a reduction in the phosphory-
lation of PDH. The behavioral studies showed impaired learning in those mice injected
with DCA 30 min before training, which resulted in memory impairment during the probe
trial. In contrast, mice that received the DCA injection before the probe trial and not before
training exhibited a standard memory. When testing memory retrieval using the MWM,
the researchers found that DCA administration does not significantly affect the recall of
established memories, even four days after training. These findings suggest that aerobic
glycolysis, and hence lactate production, are required for memory acquisition but not for
retrieval [111].

4.2. Object Recognition Memory

To understand the role of BDNF in the rat hippocampus Radiske and collaborators
used the novel object recognition (NOR) test. For this, rats were trained in NOR with
two different stimuli objects; 24 h later, they were undergoing a refresh session for five
minutes using a familiar and a novel object. After memory reactivation, rats received
a bilateral injection in the CA1 area of the hippocampus; they received either a vehicle
or an anti-BDNF antibody. Then, the animals were exposed to a familiar and a novel
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object for five minutes to evaluate long-term memory retention. The authors found that
reactivation in the presence of a novel object destabilizes object memory recognition to
initiate reconsolidation in the hippocampus. These results indicate that BDNF is sufficient
for controlling the integration of new information into the memory system and that object
recognition memory retrieval increases BDNF levels in dorsal CA1. Finally, the amnesia
caused by mRNA and protein synthesis inhibitors can be reversed by BDNF signaling
reactivation following memory refresh [112].

L-Lactate plays a role as a metabolic and signaling molecule, accordingly, Vaccari-
Cardoso and co-workers developed a viral vector to express a modified version of lactate
oxidase (LOx) originating from the bacteria Aerococcus viridans. Their results in vitro
show that LOx expression in astrocytes reduced their intracellular lactate levels and its
release to the extracellular space. The researchers used the hole board test to measure ex-
ploratory behavior and they observed that mice expressing LOx in hippocampal astrocytes
manifested an increased activity compared to control mice. Mice expressing LOx exhibited
improved performance in the Y-maze task, which tests spatial recognition memory, but
not in the Y-maze spontaneous alternation task or the NOR test. They concluded that a
selective decrease in intracellular lactate pool in hippocampal astrocytes contributes to
increased responsiveness to novel stimuli [113].

To elucidate the role of the basolateral complex of the amygdala (BLA) in recognition
memory, Jobim et al. used the NOR task in Wistar rats. The researchers compared the
effects of mTOR inhibition by rapamycin infusion into the BLA or dorsal hippocampus;
this was done before or after training or reactivation. Results show that rapamycin infusion,
either before or after training, impairs NOR retention tested 24 h after training. In particular,
memory retention is impaired when the infusion is given before reactivation on BLA or
dorsal hippocampus and measured 24 h after the reactivation, but this does not occur
if measured six hours after reactivation. These findings indicate that mTOR signaling
is crucial for the consolidation and stabilization of object recognition memory, either in
the hippocampus or BLA. mTOR acts as a regulator of glucose uptake, glycolysis, lipid
synthesis and mitochondrial metabolism; consequently, its inhibition might influence
neuronal metabolism, which will affect memory-modulatory function [71].

Continuing with the exploration of different brain areas involved in object recognition
memory, Korol and colleagues evaluated the involvement of lactate in the hippocampus
and striatum. This test was performed with Long-Evans rats and recognition memory was
assessed using the double object location (DOL) task and the double object replacement
(DOR) task. Rats received an injection of lidocaine (Na+ channel blocker) and 4-CIN (MCT2
inhibitor) into either hippocampus or striatum after three training sessions and before
the test trial. Findings demonstrate that both lidocaine and 4-CIN impair recognition
memory for objects and their relative location; this only occurs when the substance is
administered to the particular brain area necessary for that type of recognition. Infusion
into the hippocampus impairs the recognition in the DOL task, whereas the ones in the
striatum impaired the recognition in the DOR task. In conclusion, neuronal lactate uptake
in both hippocampus and striatum is necessary for object recognition memory [80].

4.3. Fear Conditioned Memory

Noradrenaline acts through adrenergic receptors, of which β-adrenergic receptors
(β -AR) in the amygdala or hippocampus play crucial roles in encoding and consolidating
memories, particularly fear related memories. Noradrenaline activates glycogenolysis and
consequently lactate release, which is critical in memory processing [88,89,114,115]. With
this in mind, Gao et al. used the hippocampus-dependent IA task to determine if astrocytic
or neuronal β-ARs in the hippocampus mediate memory consolidation. Their results
show that astrocytic ARs (β2-AR) play a critical role in the consolidation of a fear-based
contextual memory. Moreover, β2-AR mediates learning-dependent lactate release from
astrocytes, which is necessary to support the molecular changes needed for long-term
memory formation [89].
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Noradrenergic innervation to the cortex originates from neurons in the locus coeruleus
and this system plays a key role in the sleep wake cycle, arousal, respiration, learning
and memory [115]. To investigate how noradrenergic activity modulates Ca2+ and cAMP
dynamic during fear conditioning, Oe and co-workers imaged astrocytes in the auditory
cortex of behaving mice. First, they tested if a startle response increases Ca2+ and cAMP
levels; to do so, mice received unpredictable air puffs on the right side of the face. As
a result, Ca2+ was elevated, but no significant cAMP increase was recorded. Then, the
researchers examined astrocytic activity during fear memory acquisition. In this case, the
mice had their head fixed to allow imaging of the cortex throughout the experiment and
they received a foot shock after a sound cue. During recall on the next day, only the sound
cue was presented and the establishment of the fear memory was manifested by increased
immobility times. The results of this second experiment showed that foot shock induces
and elevates both astrocytic Ca2+ and cAMP, although it is attenuated with repeated shocks.
Finally, the authors conclude that these changes might be involved in the modulation of
synaptic transmission and memory consolidation [116].

To test if the supply of glycolytic metabolites such as pyruvate or β-hydroxybutyrate
can functionally replace lactate in a memory impairment model Descalzi and collaborators
performed a series of experiments. First, they used the IA task in adult rats and injected
DAB into the dorsal hippocampus to generate memory impairment. After the DAB injec-
tion, they observed that it reduced the latency of rat entry into the shock compartment
postconditioning; nevertheless, this latency was increased by a co-injection of DAB and
either pyruvate or β-hydroxybutyrate. Then, they performed an expression knockdown of
MCT1, MCT2 and MCT4 that resulted in a reduced latency post-conditioning. The sup-
ply of pyruvate and β-hydroxybutyrate counteracted this effect and rescued the memory
loss caused by the knockdown of MCT1 and MCT4, but it did not affect the decrease in
latency in the MCT2 knockdown. In conclusion lactate is critical in providing energy for
neuronal responses required in long-term memory. The authors suggested that learning
and training increase mRNA translation expressed in excitatory and inhibitory neurons,
which can be blocked by inhibiting glycogenolysis and rescued with a co-injection of DAB
and lactate [117].

To assess the role of mTOR signaling in long-term memory, Beckinschtein and co-
workers performed a one-trial IA test in rats. First, the authors demonstrate that IA training
is associated with rapid increases in the phosphorylation state of mTOR and its downstream
substrate p70S6K in the hippocampus. Then, the animals received a bilateral infusion of
rapamycin (mTOR inhibitor) in the CA1 region of the hippocampus. Their results show
that rats who received the infusion 15 min before training showed impairment in long-
term memory without affecting short-term memory and that these rats were capable of
learning the IA task in a second training session. In contrast, rats that received the infusion
immediately after training showed no effect on their long-term memory retention scores.
The authors also found an increase in the activation of p70S6K 15 min after training and
conclude that the mTOR-p70S6K cascade is required for protein synthesis required for
memory processing [72].

4.4. Drug-Associated Memories

Drug-associated memories persist for a long time after abstinence and this represents a
core symptom of addiction. Re-exposure to drug-associated cues reactivates drug memories
and triggers neuroplastic changes that promote drug-seeking behaviors. Since memory
and addiction share a common neural circuitry and molecular mechanisms, clinical and
laboratory studies conclude that addiction represents the pathologic hijacking of neural
processes that would typically account for reward-related learning [118,119]. With this in
mind, we can say that drug addiction depends on the remodeling of synapses that shape
long-term memory.

In the last few years, several research studies have been published showing the
role of ANLS or lactate itself in the reconsolidation of drug memories. For instance,
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Zang and collaborators conducted a series of experiments to determine the role of lactate
transport in the reconsolidation of drug memories. They trained a group of rats for
cocaine-induced conditioned place preference (CPP) or self-administration and injected
DAB into the BLA immediately after retrieval. Results show that DAB injection into the
BLA prevented cocaine-induced CPP expression for up to 14 days and reduced drug-
seeking behavior in rats trained to self-administer cocaine. The scientists measure the
lactate concentration immediately after retrieval and found a lower concentration of lactate
in the BLA. The reason to choose BLA as an injection site is because the amygdala controls
emotional responses, and therefore it plays a key role in encoding conditioned drug-related
information. Additionally, the authors used antisense oligonucleotides to disrupt the
expression of MCTs and observed that the disruption of MCT1 and MCT2 in the BLA
caused deficits in the expression of cocaine-induced CPP. While lactate co-administration
can rescue the effects in MCT1 it does not occur in MCT2. Finally, it is demonstrated that
glycogenolysis inhibition and its consequent reduction in lactate release decreases the gene
expression of pCREB, pERK and pcoffilin, which are associated with synaptic plasticity
and memory reconsolidation [120].

A similar work involving DAB administration into the BLA was reported by Boury-
Jamot and co-workers. They were aiming to explore the role of the ANLS for the acquisition
and maintenance of cocaine-induced memories. Their findings demonstrate that inhibition
of glycogenolysis prevents the acquisition of cocaine-induced CPP in a lactate-reversible
manner. This manipulation also disrupts the expression of BDNF and Zif-268, which are
involved in the modulation of synaptic morphology and plasticity underlying the learning
processes that strengthen conditioned responses to cocaine. Moreover, the co-administration
of lactate rescues drug-associated memory through a mechanism that requires Zif-268 and
the ERK signaling pathway, but not BDNF. Finally, the authors conclude that the storage and
retrieval of drug-associated memories require astrocyte-derived lactate [121].

Another study that reflects the role of BLA in the reconsolidation of cocaine-associated
memories was carried out by Wu et al. They aim to explore the role of glycogen synthase
kinase 3β (GSK-3β) in this process. Their results show increased GSK-3β activity in the
BLA in rats that acquired cocaine-induced CPP after a memory reactivation process. Some
rats received a systemic injection of lithium chloride or SB216763 (GSK-3β inhibitors);
this resulted in an impaired reconsolidation of cocaine cue memories and the consequent
GSK-3β activity in the BLA. These findings indicate the importance of GSK-3β in the BLA
in the consolidation of drug-associated memories [122].

Other molecules that play a key role in synaptic plasticity and memory consolidation
are eukaryotic initiation factors. In a series of experiments, Jian and collaborators eluci-
dated the role of eIF2a dephosphorylation in the BLA to reconsolidate drug-associated
memories; this was done using the CPP task and self-administration procedures in rats.
Their results display decreased levels of eIF2a phosphorylation and the activation tran-
scription factor 4 (ATF4) in the BLA after memory retrieval procedure in a morphine- and
cocaine-paired context. A group of animals received an intra-BLA infusion of Sal003 (eIF2a
dephosphorylation inhibitor) immediately after retrieval; they showed a disruption in the
reconsolidation of drug-induced CPP, leading to the suppression of stimulus-induced crav-
ing. This disruption in reconsolidation was blocked by the knockdown of ATF4 expression
in the BLA [123].

5. Morphological Changes Associated with Memory Consolidation: Role of Lactate

The most common brain-imaging techniques to study brain energy metabolism in vivo
are positron emission tomography (PET) and functional magnetic resonance imaging
(fMRI). PET monitors changes in the blood flow, oxygen consumption and glucose uti-
lization, whereas fMRI tracks the degree of blood oxygenation and flow. Furthermore,
nuclear magnetic resonance (NMR) studies provide an insight into the relationship between
glucose consumption and glutamate-glutamine cycling [3,78,124]. In the past few years,
neuroscientists have been using high-resolution imaging techniques such as scanning
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electron microscopy (SEM) and transmission electron microscopy (TEM). These techniques
can be adapted to novel set-ups that allow the acquisition of high-resolution image stacks.
The segmentation of these image stacks results in accurate 3D models of brain structures
which are further analyzed using 3D visualization tools or virtual reality set-ups. These
approaches facilitate brain morphology analysis at the nanoscale and the study of relation-
ships between energy consumption and glycogen storage [6,7,14,15,125,126].

To exhibit the extent of high-resolution imaging techniques and 3D morphological
reconstructions, Vezzoli et al. recently published a work where they demonstrate the role
of lactate to rescue memory in mice treated with DAB. Their findings show that mice
injected with DAB have fewer synaptic spines per unit volume than control mice and that a
co-injection can reverse the memory loss effect with lactate. They also observed that spine
density increased after learning and that DAB prevented this increase. Finally, the authors
concluded that a co-administration of lactate is sufficient to rescue the memory but not to
increase the number of spines or post-synaptic density [8].

6. Concluding Remarks

This article has reviewed the interconnection between energy metabolism, synaptic
plasticity and memory consolidation. The main message is that energy substrates are not
only necessary to fluke the energy-consuming process associated with synaptic plasticity,
but that lactate in particular has an additional function as a signaling molecule regulat-
ing the levels of expression of plasticity-associated genes and processes. These findings
suggest that pharmacological interventions aimed at promoting lactate production by
astrocytes may be useful in clinical conditions characterized by cognitive impairments such
as Alzheimer’s disease.
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Abstract: Adipose tissue is the largest endocrine organ in humans and has an important influence
on many physiological processes throughout life. An increasing number of studies have described
the different phenotypic characteristics of fat cells in adults. Perhaps one of the most important
properties of fat cells is their ability to adapt to different environmental and nutritional conditions.
Hypothalamic neural circuits receive peripheral signals from temperature, physical activity or
nutrients and stimulate the metabolism of white fat cells. During this process, changes in lipid
inclusion occur, and the number of mitochondria increases, giving these cells functional properties
similar to those of brown fat cells. Recently, beige fat cells have been studied for their potential
role in the regulation of obesity and insulin resistance. In this context, it is important to understand
the embryonic origin of beige adipocytes, the response of adipocyte to environmental changes or
modifications within the body and their ability to transdifferentiate to elucidate the roles of these
cells for their potential use in therapeutic strategies for obesity and metabolic diseases. In this review,
we discuss the origins of the different fat cells and the possible therapeutic properties of beige fat cells.

Keywords: beige adipocyte; white adipocyte; brown adipocyte; obesity; diabetes mellitus; differentiation

1. Introduction

Obesity is a disease that induces a series of cardiovascular, metabolic and osteoarticular
complications that reduce life expectancy. It is prevalent on a global scale, with multiple factors
contributing to its development. The treatment possibilities for metabolic diseases have increased
dramatically. However, in the circumstance of obesity, many medications have been withdrawn from
the market due to undesirable side effects [1,2]. Other drugs have not presented the desired efficacy and
the projections of therapeutic efficiency are low with high costs. Furthermore, one of the difficulties in
many countries is that obesity has not been declared a disease. Obesity is a highly stigmatized condition
that has long been generally regarded by the public as a reversible consequence of personal choices.
For this reason, obesity is seen even in some countries, as a circumstance of the person, without policies
for its prevention, adequate therapy and of course the risk of the appearance of complications is not
supported [3,4]. Recent observations have proven that a variety of types of adipose tissue dysfunction
clearly play a role in the genesis of many obesity-related diseases. These include impairments in
adipocyte storage and release of fatty acids, overproduction or underproduction of “adipokines”
and cytokines, hormonal conversion, and the adverse mechanical effects of greater tissue mass [5,6].
Additionally, adipose tissue has been shown to be dynamically more active than initially considered [7].
Adipose tissue is constituted by white adipose tissue (WAT), which has the property of storing energy in
the form of triglycerides and is useful in preventing deficiencies of energy during periods of prolonged
starvation. In comparison, there is the brown adipose tissue (BAT), which is more metabolically
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active and has the property of producing heat through the activation of uncoupling proteins (UCP1).
BAT controls energy homeostasis during periods of low temperature and hibernation [8]. In adult
humans, WAT is believed to predominate, while BAT has a predominant role in the first few months of
life when heat production by adipose tissue is necessary to maintain body temperature [9]. However,
another type of adipose tissue has been described in adults, whose functional characteristics may
be similar to those observed in BAT. This type of adipose tissue is observed in circumstances of
low temperatures or after sympathetic activation [10]. Although this adipose tissue is functionally
very similar to BAT, it has specific characteristics and for this reason it has been referred to as beige
adipose tissue [11,12]. Although adipose tissue has a mesenchymal origin, in the differentiation process
manifest differences are established and BAT has more similarities with muscle cells of mesenchymal
origin than with WAT [13,14]. Additionally, in the process of differentiation, some external factors can
modify the cells that give rise to WAT and change the phenotype of these cells towards cells that are
more metabolically active, such as beige adipocyte [15,16]. In the human body, energy homeostasis is
regulated in the central nervous system by the hypothalamus, which has several widely interconnected
hypothalamic neural circuits. The hypothalamus is involved in the physiological control of many
functions, including metabolic homeostasis. The chemical signals that can modulate the function
of the hypothalamus are the signals that come from the immune system, those that come from the
activation of the sympathetic nervous system and other signals that can induce epigenetic modifications,
which influence the expression of specific genes that influence the transcription of specific genes [17,18].
This review discusses the metabolic control of organisms, the effect of the environment on the regulation
of thermogenesis and the different adipocytes identified to date, emphasizing the therapeutic potential
of beige adipocytes.

2. Hypothalamic Control of Energy Homeostasis

The control of energy in the body is based on the balance between the intake of energy
through food and the expenditure of calories. Energy homeostasis is regulated in the central
nervous system by the hypothalamus, which has several widely interconnected hypothalamic neural
circuits. The hypothalamus is involved in the physiological control of many functions, including the
regulation of hormonal axes, autonomic nervous system activity, and metabolic homeostasis [19].
Hypothalamic nuclei play a major role in the transmission of information from peripheral signals
on energy availability, including hormone and nutrient signals, integrating them and generating
an appropriate response in terms of food intake and energy expenditure [20,21]. Due to its involvement
in numerous metabolic processes, the hypothalamus is considered to be the master regulator of energy
homeostasis [22].

Energy expenditure is the sum of the thermic effect of food, locomotor activity and
thermogenesis [23,24]. Interestingly, basal thermogenesis, which is the heat produced by metabolism,
is sufficient to preserve body temperature at adequate levels without involving thermoregulatory
mechanisms. This range of temperatures in which the body is maintained in a harmonic state
with the environmental temperature is called thermoneutrality [25,26], with temperatures below
thermoneutrality inducing an immediate response through peripheral vasoconstriction [24]. However,
this primary response only provides limited effects in maintaining body temperature. Therefore,
the body uses additional thermogenic mechanisms, referred to as adaptive thermogenesis [27], that can
be induced by shivering or involve non-shivering thermogenesis. Whereas shivering produces
additional heat from movement, mammals have developed a non-shivering adaptive thermogenic
mechanism that is carried out by BAT [28]. Core temperature control is essential to preserve energy
homeostasis. The preoptic area (POA) is located in the anterior region of the hypothalamus and
controls body temperature. The POA has the ability to receive thermosensitive peripheral signals
from the skin and intestinal organs and trigger the activation of efferent signals that can promote BAT
thermogenesis [29,30].
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Moreover, changes in behavior, including the waking state, the response of the immune system and
stress are characterized by elevated body temperature. Although the neural circuits and transmitters
involved in the response to behavioral changes are not well understood, the activity of orexins may
have an important role in these behavioral events [31]. Additionally, the high metabolic rate of
beige adipose tissue and BAT during thermogenesis cannot be maintained without a reliable supply
of metabolic fuels, particularly oxygen, lipolytic products, and glucose [32,33]. A great deal of
information has been obtained from the study of neuronal regulators, specifically, those that function
at the hypothalamic level that are responsible for these events. The arcuate nucleus (ARC) of the
hypothalamus is the region that is most implicated in the control of eating habits. The ARC is made up
of two primary neural populations: (a) orexigenic (feeding-promoting) neurons and co-expressing
neuropeptide Y (NPY) and related protein agouti (AgRP) and (b) anorexigenic (feeding-inhibiting)
neurons that co-express a transcription factor related to cocaine and amphetamines (CART) and
pro-opiomelanocortin (POMC), the precursor of alpha-melanocyte-stimulating hormone (α-MSH)
and adrenocorticotrophic hormone (ACTH) [22,34]. After integration by the ARC, peripheral signals
are transmitted by neural projections to hypothalamic areas of the dorsomedial nucleus (DMH),
paraventricular nucleus (HPV), lateral hypothalamic area (LHA), and ventromedial nucleus of the
hypothalamus (VMH) [35]. VMH neurons can communicate with other hypothalamic areas, such as
the DMH, LHA, and ARC, in addition to other brain regions, such as the vagus motor dorsal nucleus
(DMV), the nucleus of the solitary tract (NTS), the pale raphe (RPa) and the lower olive (IO) [36].

In addition to the established biochemical neurotransmission mechanisms, functional studies
have identified specific areas of the brain that generate WAT browning. For example, the role of
neuropeptide-Y (NPY) in DMH nuclei, in addition to oxidative stress and the administration of
CART to the paraventricular nucleus (PVN), has been shown to induce an increase in uncoupling
protein1 (UCP1) levels in WAT [37]. The regulation of WAT metabolic activity by thyroid hormones,
bone morphogenic protein 8B (BMP8b) and the incretin glucagon-like peptide-1 (GLP-1) can be reduced
by blocking AMP activated protein kinase (AMPK) in the VMH nucleus [28]. Increased expression of
the endoplasmic reticulum (ER) chaperone protein GRP78, which improves ER stress, induces signal
activation mediated by β-3-adrenergic receptors, increasing browning and reducing weight [38].

In recent years, several studies have shown the important role that the stimulation of LHA nucleus
neurons has in BAT activation. The nerve terminals that reach beige adipocytes promote the browning
process. Under cold exposure, the central neural circuits in the hypothalamic (HPV and LHA) and brain
stem of RPa and locus coeruleus are rearranged with higher proportions of neurons projecting into
BAT and beige adipocytes [39]. These data provide strong evidence indicating a likely reorganization
of nervous system connectivity after WAT browning [40] (Figure 1).

The results of pharmacological experiments and animal studies have shown that orexins induce
increased energy expenditure. Mice with reduced orexin expression show a reduced ability to maintain
temperature after exposure to cold [41,42]. The administration of orexin A and B to the VMH and
LHA nuclei of rats induces the thermogenic activity of BAT [43–45]. There is evidence to indicate that
orexins can induce the thermogenic activity of BAT by regulating the energy sensor AMPK and ER
stress [46]. Some groups have observed that BMP8b can affect both BAT and the browning process
of WAT [42,47]. Despite multiple lines of evidence showing the role of orexins in rodents, it has
not been possible to elucidate their roles in stimulating BAT activity in humans. Treatment with
Orexin A alone or in combination with an adrenergic stimulation does not affect thermogenesis [48,49].
These observations are closely related to findings in patients with narcolepsy, a disease that involves the
selective deterioration of neurons that produce orexin. Patients with narcolepsy present an abnormal
distribution of body fat but retain BAT deposits at the supraclavicular level [50]. Additionally, BAT has
been shown to be functional in these patients after cold exposure. These observations show that the role
of orexins in humans is controversial and that the control of thermogenesis and fat cell activity at the
hypothalamic level in humans requires additional studies [51]. In humans, the control of thermogenesis
may be influenced by multiple hormones that are secreted in different tissues, such as insulin and
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glucagon by the pancreas; leptin by adipose tissue; incretins, gastric inhibitory peptide (GIP), GLP-1,
and ghrelin produced in gastric fundus of the gastrointestinal system; thyroid hormones and estrogens.
All of these hormones may affect the regulation of adaptive thermogenesis in humans [52–55].Metabolites 2020, 10, x FOR PEER REVIEW 4 of 28 
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Figure 1. Energy homeostasis controlled by hypothalamus. Cold and physical peripheral signals
reach the central nervous system where they interact with their specific receptors in the preoptic area.
Adenine monophosphate activated protein kinase (AMPK) can regulate food intake, liver glucose
production, lipid metabolism, brown adipose tissue thermogenesis (BAT), white adipose tissue (WAT)
browning, and lipid and glycogen synthesis in skeletal muscle. AMPK activity in peripheral tissues is
mediated by the activity of the sympathetic nervous system (SNS). Abbreviations: 3V, third ventricle;
AgRP, agouti-related peptide; ARC, arcuate nucleus of the hypothalamus; BMP8b, bone morphogenetic
protein 8B; CART, cocaine and amphetamine-regulated transcript; DMH, dorsomedial nucleus
of the hypothalamus; GLP-1, glucagon-like peptide-1; LHA, lateral hypothalamic area; NPY,
neuropeptide Y; POMC: pro-opiomelanocortin; PVN, paraventricular nucleus of the hypothalamus;
T3, 3,3′,5-triiodothyronine; VMH, ventromedial nucleus of the hypothalamus. (+) increase intake; (-)
reduce intake.

Energy consumption and food composition can influence the thermogenic activity of BAT.
In addition to the heat released during the digestive process and nutrient transport, food has
a postprandial thermal effect. Glucose and insulin can contribute to the activation of the sympathetic
system and b-adrenergic receptors [56]. However, the activation of thermogenesis by glucose may be
influenced by other hormones such as cholecystokinin (CCK), which acts as a sensor of the caloric
value of other nutrients [57]. Hypoglycemia induces hypothermia at least in part by reducing the
thermogenic activity of BAT. The reduction in glucose in the VLM nuclei completely inhibits BAT
activity [58]. The contribution of lipids in the activity of postprandial thermogenesis is characterized
by the activation of sympathetic nerve activity. In rodents, diets with a high lipid content stimulate the
thermogenic activity of BAT and the activation of b-adrenergic receptors [59]. However, this effect
diminishes after a few weeks [60]. Other nutrients that can stimulate thermogenesis are proteins.
Although the effect of proteins on BAT is not yet fully elucidated, ketogenic diets with a high content of
lipids and proteins and no carbohydrates induce activation of the sympathetic system [61]. High levels
of ketone bodies increase BAT and energy expenditure. β-Hydroxybutyrate increases BAT activity and
norepinephrine secretion, and the most likely mechanism for the effect of (beta) β-Hydroxybutyrate is
through the VMH and HPV [62].
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3. Environment and Obesity

Endocrine-disrupting chemicals (EDCs) are substances that are located in the environment and
interfere with normal hormone action, thereby increasing the risk of developing diabetes, cancer,
reproductive impairment, behavior disorders and obesity. These chemical substances have been
shown to potentially cause alterations in metabolic activity in organisms and increase lipogenic
activity [63]. Adipocytes are functionally classified as endocrine-active and are sensitive to changes
induced by endocrine disruptors, which have been termed “obesogens” [64]. These substances
may trigger an increase in adiposity by altering the cellular development program in adipocytes,
increasing triglyceride storage and interfering with the neuroendocrine control of hunger and satiety
centers [65,66]. Some of the chemicals we typically encountered tend to cause changes in fat cell
metabolism. Bisphenol A (BPA), phytoestrogens, and tributyltin (TBT), among others, have been
shown in experimental studies to induce weight increases in animal models. Although there are
multiple mechanisms by which endocrine disruptors can induce obesity, the modifications described
so far suggest that epigenetic modifications of gene expression through DNA methylation and covalent
modifications of chromatin are common and affect subsequent generations [67,68].

Numerous potentially obesogenic compounds have been identified using in vitro assays that
evaluate the ability of candidate chemicals to promote the differentiation of established cell lines,
such as mesenchymal stem cells from humans and mice, and 3T3-L1 preadipocytes [69,70]. Many of the
chemicals shown to promote the differentiation of white adipocytes in these analyses activate PPARγ
and/or RXR [71]. Based on the central role of the PPARγ:RXR heterodimer as the master regulator of
adipogenesis, it is not surprising that these nuclear transcription factors are one of the most important
targets of obesogens [72–75] (Figure 2).

Human exposure to organotin can occur through dietary intake, such as by seafood contaminated
with TBT, or after the consumption of products that have been in contact with pesticides such as
triphenyltin [76,77].Metabolites 2020, 10, x FOR PEER REVIEW 6 of 28 

 

 

Figure 2. Chemical substances with the ability to modify thermogenesis primarily act through 

PPAR:RXR receptors, the masters of adipocyte differentiation. Other changes that obesogenic 

substances can induce are epigenetic modifications (DNA methylation, covalent modifications of 

histones, and noncoding RNA). Obesogens can induce mesenchymal cells to direct differentiation 

towards the adipocyte line and reduce osteoblastic activity. Then, the obesogens induce hyperplasia 

of adipocytes and later produce hypertrophy with an accumulation of inflammatory cells that 

produce the secondary effects of obesity. 

Human exposure to organotin can occur through dietary intake, such as by seafood 

contaminated with TBT, or after the consumption of products that have been in contact with 

pesticides such as triphenyltin [76,77]. 

TBT has the ability to bind and activate PPARg, promoting adipogenesis and lipid accumulation. 

The results of studies using 3T3-L1 cells and human mesenchymal cells have shown that TBT at 

nanomolar concentrations can induce their differentiation into adipocytes [78]. Studies in humans 

have revealed that elevated levels of TBT in urine are associated with metabolic diseases such as 

diabetes and obesity. In a recent study, individuals with high levels of perfluorinated chemicals 

exhibited a low metabolic rate and tended to gain weight easily [79]. 

Similar observations have been made with other EDCs, such as phthalates, plastic components, 

and epoxy resins. The phthalate MEHP (mono-2-ethylhexyl phthalate) can induce adipogenesis in 

3T3-L1 cells by activating PPAR. Prenatal exposure to bisphenol A (BPA) has been linked to several 

adverse effects, including weight gain, reproductive disorders, and behavioral changes in mice and 

rats. BPA can interfere with the activity of estrogen receptors (ERs) and with PPAR [80]. 

Although several studies have observed that obesogens primarily influence PPAR receptor 

activity, recent studies have shown that other functional variations can be attributed to obesogens, 

such as modifications to the retinoid acid receptor and other nuclear receptors, such as glucocorticoid 

or thyroid hormone receptors [81,82]. Other functional variations have been observed after epigenetic 

modifications in WAT, including structural changes in chromatin or modifications in the gut 

microbiota [83,84]. 

Epigenetic modifications mediated by TBT include a reduction in the trimethylation of histone 

3 lysine 27 (H3K27me3), which increases the expression of genes involved in the development of 

adipogenesis [85]. Other modifications have also been observed, such as a reduction in DNA 

methylation [86], and it has even been argued that DNA methylation modifications may have a 

transgenerational impact [87,88]. However, both the evidence and the mechanisms for this epigenetic 

modification have not been fully elucidated. In the induction of adipogenesis by TBT, these 

adipocytes have been shown to exhibit an altered functionality due to changes in oxidative 

respiration, difficulty in expressing thermogenic proteins after cold stimulation or activation of b-

Obesogens 

Epigenetic Regulation 

Hyperplasia

v
Immature

Mature
Metabolic disruption 

Inflammation

Hypertrophy

v

Mesenchymal Stem Cells 

Adipocytes

Osteoblasts

Obesogens 

Epigenetic Regulation 

Hyperplasia

v
Immature

Mature
Metabolic disruption 

Inflammation

Hypertrophy

v

Mesenchymal Stem Cells 

Adipocytes

Osteoblasts

Figure 2. Chemical substances with the ability to modify thermogenesis primarily act through
PPARγ:RXR receptors, the masters of adipocyte differentiation. Other changes that obesogenic
substances can induce are epigenetic modifications (DNA methylation, covalent modifications of
histones, and noncoding RNA). Obesogens can induce mesenchymal cells to direct differentiation
towards the adipocyte line and reduce osteoblastic activity. Then, the obesogens induce hyperplasia of
adipocytes and later produce hypertrophy with an accumulation of inflammatory cells that produce
the secondary effects of obesity.
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TBT has the ability to bind and activate PPARg, promoting adipogenesis and lipid accumulation.
The results of studies using 3T3-L1 cells and human mesenchymal cells have shown that TBT at
nanomolar concentrations can induce their differentiation into adipocytes [78]. Studies in humans have
revealed that elevated levels of TBT in urine are associated with metabolic diseases such as diabetes
and obesity. In a recent study, individuals with high levels of perfluorinated chemicals exhibited a low
metabolic rate and tended to gain weight easily [79].

Similar observations have been made with other EDCs, such as phthalates, plastic components,
and epoxy resins. The phthalate MEHP (mono-2-ethylhexyl phthalate) can induce adipogenesis in
3T3-L1 cells by activating PPARγ. Prenatal exposure to bisphenol A (BPA) has been linked to several
adverse effects, including weight gain, reproductive disorders, and behavioral changes in mice and
rats. BPA can interfere with the activity of estrogen receptors (ERs) and with PPARγ [80].

Although several studies have observed that obesogens primarily influence PPARγ receptor
activity, recent studies have shown that other functional variations can be attributed to obesogens,
such as modifications to the retinoid acid receptor and other nuclear receptors, such as glucocorticoid
or thyroid hormone receptors [81,82]. Other functional variations have been observed after epigenetic
modifications in WAT, including structural changes in chromatin or modifications in the gut
microbiota [83,84].

Epigenetic modifications mediated by TBT include a reduction in the trimethylation of histone
3 lysine 27 (H3K27me3), which increases the expression of genes involved in the development
of adipogenesis [85]. Other modifications have also been observed, such as a reduction in DNA
methylation [86], and it has even been argued that DNA methylation modifications may have
a transgenerational impact [87,88]. However, both the evidence and the mechanisms for this
epigenetic modification have not been fully elucidated. In the induction of adipogenesis by TBT,
these adipocytes have been shown to exhibit an altered functionality due to changes in oxidative
respiration, difficulty in expressing thermogenic proteins after cold stimulation or activation of
b-adrenergic receptors. These adipocytes also tend to be insulin resistant and express profibrotic
proteins [89,90].

Recently, other chemicals with potential obesogenic effects have been described. The TBT metabolite
dibutyltin (DBT), the prevalence of which is higher than TBT in the environment, can also induce 3T3-L1
preadipocyte differentiation. In mouse studies, DBT has been observed to cause insulin resistance [91].
Analogs of bisphenol A, bisphenol S (BPS) and bisphenol F (BPF) are able to activate PPARγ and induce
adipogenesis. A longitudinal study of a cohort of children demonstrated that exposure to BPS and
BPF was significantly related to obesity in children [92,93]. Acrylamide is widely used as a colorant
in the manufacture of paper and other industrial products and can be generated after cooking foods
with a high carbohydrate content at high temperatures. Interestingly, acrylamide increases the activity
of the adenosine 5′-monophosphate-activated protein kinase-acetyl-CoA carboxylase (AMPK-ACC)
pathway [94]. The results of two European studies, one in France and one in Norway, showed that
children exposed to high levels of polyacrylamide during the prenatal period were more likely to be
short for their gestational age and tended to be obese after 3 years of age [95,96]. Surfactants such as
dioctyl sodium sulfosuccinate (DOOS) and Span 80 can activate the PPARγ and RXR receptors, and the
combination of these products can induce an increase in adipogenesis. Other chemical compounds used
as preservatives, such as 3-tertbutyl-4-hydroxyanisole (3-BHA), induce the differentiation of 3T3-L1
preadipocytes [97], while the flavoring monosodium glutamate (MSG) can promote adipogenesis by
modifying the secretion of GLP-1. In addition, some herbicides that remain in use in some countries,
such as glyphosate, can induce obesity in the F2 and F3 offspring of females exposed to during
gestation [98].

4. Functional Variation of Adipocytes

Adipose tissue has allowed mammals to adapt to changes due to energy demand,
environmental conditions, and nutrient availability. In recent years, knowledge of adipose tissue has
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been ostensibly expanded, which is partly due to increases in metabolic diseases and cardiovascular
risk [99–101]. Although fat cells are the primary component of adipose tissue, almost 40%
comprises vascular components, macrophages, fibroblasts, endothelial cells and adipocyte precursor
cells [89,102,103]. The size of the adipocytes can vary considerably from 20 to 200 µm in diameter,
showing that they have great plasticity and a high capacity to modify their volume [104,105].
Adipose tissue pathologies can result as a consequence of lipid accumulation and adipocyte cell
hypertrophy. WAT secretes endocrine and inflammatory signals under hypertrophic conditions,
inducing a prothrombotic state and generating a chronic inflammation disorder [106,107]. This condition
causes many of the cardiovascular complications presented by patients with metabolic diseases [108,109].
Most of the adipose tissue in adults is WAT, which has the functional characteristic of saving energy
for periods of famine. Phenotypically, white adipocytes have a single cytoplasmic lipid droplet that
is responsible for storing triglycerides as a consequence of lipogenic processes. Recent observations
have shown that WAT exhibits great phenotypic plasticity [7,110]. These adipocytes, under the
regulation of the sympathetic nervous system, can release fatty acids and secrete substances with
endocrine effects [111]. Since the discovery of leptin in the 1990s [112,113], adipose tissue has
not only been seen as an exclusive energy storage organ but also as a dynamic organ with an
endocrine function, and several WAT-secreted adipokines with various biological activities have
been described in recent years. Leptin regulates the energy homeostasis of the body and interferes
with various neuroendocrine and immune functions, regulating food intake and increasing energy
utilization through hypothalamic signals [114]. Leptin administration reduces the weight of mice
or humans with congenital leptin deficiency [115]. However, the function of leptin in humans with
diet-induced obesity is subject to the control of receptors and transporters that make pharmacological
therapy difficult [116,117]. Adiponectin is another adipokine that is predominantly secreted by
WAT, although it can also be secreted by skeletal muscle and cardiomyocytes. Adiponectin plays a
crucial role in glucose and lipid metabolism, inflammation and oxidative stress. Adiponectin levels
increase with exposure to insulin-sensitizing drugs, with adiponectin plasma levels observed that
are inversely proportional to insulin resistance. Adiponectin also has anti-inflammatory properties
with anti-atherogenic effects and promotes angiogenesis [118,119]. Resistin is secreted by WAT and
macrophages and has an important role in inflammatory processes that trigger insulin resistance,
with some studies having determined that elevated plasma levels of resistin are a predictor of
the future development of type 2 diabetes mellitus [120,121]. The mechanisms by which resistin
can induce insulin resistance are not fully elucidated in humans. However, the results of in vitro
studies have shown that the activities of pro-inflammatory cytokines such as tumor necrosis factor-α
(TNF-α) and interleukin 6 (IL-6) in addition to the functional modification of 5′AMP-activated protein
kinase (AMPK) may be involved in resistin-mediated insulin resistance [122]. Visfatin, also known
as nicotinamide phosphoribosyl-transferase (Nampt), is an adipocytokine secreted by adipocytes,
macrophages, and inflamed endothelial tissue. High levels of visfatin are observed in patients with
obesity, type 2 diabetes mellitus, chronic inflammatory conditions and cancer, and an association
between serum visfatin levels and cardiovascular disease has recently been observed in patients with
type 2 diabetes [123–125]. Moreover, BAT exhibits multiple cytoplasmic lipid inclusions and numerous
mitochondria. Compared to WAT, BAT is highly vascularized and rapidly metabolizes fatty acids,
favoring optimal oxygen consumption and heat production [23]. Many environmental or molecular
stimuli can increase the appearance of BAT [126]. Brown adipocytes are primarily observed in small
mammals and in the newborn, with the embryological formation of BAT preceding that of WAT due to
its thermogenic function in newborns. BAT originates from a subpopulation of the dermomyotome
that expresses molecular markers such as paired box 7 (Pax7), engreiled-1 (En1), and myogenic factor
5 (Myf5) [7,127–129]. BAT can secrete cytokines that have an effect on different tissues and prevent
diet-induced obesity. Follistatin is a soluble glycoprotein secreted by BAT that can blockade the
activities of some members of the transforming growth factor (TGF) family, induce insulin sensitivity
and prevent diet-induced obesity [130,131]. The c-terminal fragment of slit guidance ligand 2 (SLIT-C)
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belongs to the Slit family of secreted proteins that play an important role in various physiological
and pathological activities, including inflammatory cell chemotaxis. SLIT-C is secreted by BAT and
induces thermogenic WAT browning and metabolic processes associated with substrate supply to fuel
thermogenesis [128,132]. Growth differentiation factor 8 (GDF8, also known as myostatin) and growth
differentiation factor 15 (GDF15) are members of the transforming growth factor family, which are
involved in the control of hunger-related neural circuits. GDF15 overexpression has been shown
to prevent obesity and insulin resistance by increasing the expression of thermogenic genes [133].
Fibroblast growth factor 21 (FGF21) is a regulator of energy homeostasis that is primarily secreted by
the liver. BAT-secreted FGF21 prevents hyperglycemia and hyperlipidemia in mice [134], and FGF21
analogues tested in overweight/obese patients with type 2 diabetes mellitus have been shown to reduce
dyslipidemia and hepatic steatosis, although they do not lead to improvements in glucose control
and body weight [135]. Although FGF21 was reported to have anti-inflammatory effects on white
adipocytes, it remains to be determined if FGF21 has a similar action in BAT [136,137].

Beige adipose tissue is the newest of these adipose tissues and has some morphological
characteristics in common with WAT and BAT. The nature of these cells is controversial, although it
is believed that their origin is secondary to the differentiation of WAT, and their differentiation from
cell precursors has been observed [30,138]. Beige adipocytes have simple lipid inclusions similar to
WAT, but when faced with stimuli such as cold exposure, their behavior is similar to that of BAT
cells. The thermogenic capacity and potential role of beige adipose tissue in the regulation of obesity
and insulin resistance are currently being studied [139,140]. Beige adipocyte biogenesis, also called
beige adipogenesis or (browning/beigeing), is induced by chronic exposure to external cues such as
cold, adrenergic stimulation, and long-term treatment with peroxisome proliferator-activated receptor
gamma (PPARγ) agonists, among others [141] (Table 1).

Table 1. Characteristics of different adipocyte tissues.

White Adipocytes (WAT) Brown Adipocytes (BAT) Beige Adipocytes * (Cold, TZD, FGF21, IL-4, IL-6)

Fatty Ac Oxidation (+) Fatty Ac Oxidation (+++) Fatty Ac Oxidation
(+)
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Browning is a temporary adaptive response that lasts even after the dissipation of external
environmental signals [140,142]. Beige adipocytes have an origin that is not yet fully clarified. Some are
believed to arise from WAT from cell precursors that express CD34, in addition to platelet-derived
growth factor receptor alpha (PDGFRα), and spinocerebellar ataxia type 1 (SCA1) proteins [143–145].
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Beige adipocytes may also be derived from the Myf5-negative precursors of inguinal WAT [30], and the
results of a number of studies suggest that beige adipocyte precursors, such as WAT precursors,
reside in adipose tissue vasculature [141,146,147]. Recently, some beige adipocytes have been shown
to express myosin heavy chain 11 (Myh11), which is a selective marker of smooth muscle cells [141].
These observations may indicate that during embryonic development beige adipocytes have a different
cellular origin from that seen with classic brown adipocytes [148–150].

Another of the functional characteristics of beige adipocytes in relation to other adipocytes is their
functional flexibility. Although the differentiation process of beige adipocytes from precursor cells is
highly inducible, there is clear evidence that mature white adipocytes could be transdifferentiated into
beige adipocytes by specific exogenous factors [105].

Whether this change is manifestation of a real transdifferentiation from white adipocytes, a direct
transformation of white adipocytes to beige adipocytes, or resembles beige adipocytes that previously
remained hidden among white adipocytes is a matter of debate [151]. One of the considerations that
are still under evaluation is the amount of BAT in adult humans, because it is considered that most
of the thermogenic adipose tissue in adults corresponds to beige adipocytes [148,152–154]. However,
BAT can be observed in adults in specific areas, such as the posterior neck and perirenal area [155–158].
The adipose progenitor cells (APC) maintain a continuous supply of adipocytes in the different tissues
in the body. In this way, the number of adipocytes in the body remains constant in adults despite
the fact that the individual is obese or thin. This indicates that the amount of adipocytes in the
body is established during childhood and adolescence in a correspondent way with the size of the
different organs of the body [150]. According to recent studies, adult APC cells are considered to
reside in the stromal vascular fraction (SVF). Specifically, studies in mice have identified cells that
have APC characteristics in SVF and express PPARγ [149,159]. Using genetic-tracing methodologies,
PPARγ-expressing APCs were shown to be crucial for adipocyte formation in vitro and in vivo [160].
In vivo tracking of PPARγ cells has indicated that these cells reside within blood vessel walls. In line
with a vascular residency, these APCs resemble mural cells (pericytes and vascular smooth muscle
cells) due to their expression of several mural cell markers, such as platelet-derived growth factor
receptor-beta (PDGFRβ) and alpha-smooth muscle actin (α-SMA). The results of smooth muscle
genetic fate-mapping studies have suggested that cells expressing Myh11, PDGFRβ, and SMA can
generate beige adipocytes in response to cold exposure [12,161]. SMA perivascular cells have been
shown to generate 50–70% of new beige adipocytes after 1 week of cold exposure. Remarkably,
blocking adipogenesis within SMA cells or ablating SMA positive cells led to the failure to generate
cold-induced beige adipocytes, and mice were unable to either preserve their temperature or lower
plasma glucose levels [162,163].

5. Thermogenesis by Brown and Beige Adipose Tissue

Free energy for life-sustaining biochemical processes in mammals is provided by reduced substrates.
The energy in the cells is subject to the oxidation of substrates in the inner membrane of the mitochondria
through oxidative phosphorylation. In this electrochemical pathway, proton conductance is established
by the mitochondrial respiratory chain producing energy [164]. Thus, cell metabolism is carried out in
the membranes of the mitochondria through oxidative phosphorylation. The protonmotive force (Dp)
generated by mitochondrial respiration drives protons back into the mitochondrial matrix through
ATP synthase, providing energy for the reaction ADP+Pi/ATP [165]. The hydrolysis of ATP into
ADP and inorganic phosphate releases 30.5 kJ / mol, with a change in free energy of 3.4 kJ/mol [166].
The energy released by the division of a unit of phosphate (Pi) or pyrophosphate (PPi) of ATP in
the standard 1 M state is: ATP + H2O→ ADP + Pi ∆G = −30.5 kJ/mol (−7.3 kcal/mol). Interestingly,
most of the thermal energy that is produced from the oxidation of substrates is conserved in a small
fraction, and most of this energy is released in the form of heat. Thereby, in cells that maintain
oxidative metabolism from the mitochondrial respiratory chain, the production of heat is subject to
the rate of mitochondrial respiration. Thermogenesis in brown and beige adipocytes is effectively
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controlled by modulating the steps that modify the mitochondrial respiratory chain [167,168]. UCP1,
previously referred to as thermogenin, is responsible for the conductance of protons in brown and beige
adipocytes. Taking into account the laws of thermodynamics, most of the energy generated by the
electrochemical potential in the oxidation of brown and beige adipocytes is dissipated as heat and is not
used for the phosphorylation of ADP. Thus, the activation of UCP1 acts as a small radiator in the brown
and beige adipocytes [169,170]. Experiments performed with mitochondria from brown adipocyte
have shown that free fatty acids can increase UCP1-mediated proton conductance. In these experiments
it was observed that purine nucleotides can inhibit proton translocation by binding to the cytosolic
face of UCP1. Under basal conditions, proton leakage is maintained by a predominant role of purine
nucleotides on UCP1 [25]. Studies in rats observed that while the basal proton conductance represents
20 to 30% of the metabolic rate in hepatocytes, it increases to up to 50% in skeletal muscle. Taking into
account the large proportion of skeletal muscle and the high metabolic activity of the liver, the metabolic
rate in a mammal at rest is governed by proton conductance under thermoneutrality conditions and in
the postabsorptive state [171]. However, experiments both in vivo and in cell cultures have shown
that the thermogenic capacity of beige and brown adipocytes can be subject to external stimuli.
In these experiments, it was observed that exposition of brown and beige adipocytes to cold induced a
strong increase in mitochondrial respiration [8]. In humans, cold stimulation activates cold-sensitive
thermoreceptors in the skin or viscera and transmits afferent signals to the hypothalamus and brain
stem. Centrally, the release of noradrenaline from sympathetic nerves is stimulated, leading to
the stimulation of postganglionic sympathetic nerves supplying brown adipocytes [105,172,173].
Noradrenaline acts on β-adrenergic receptors on the adipocyte surface, which generate a chain of
stimulation that causes liberation of free fatty acids from stored triglycerides. Upon adrenergic stimulus
that results in the activation of the brown (and white) adipocyte lipolytic cascade, respiration increases
in a UCP1-dependent manner [174]. However, thermogenesis has been shown to be independent
of lipolysis, and it has been demonstrated that stimulating lipolysis of cytosolic lipid droplets in
brown adipocytes is not required for cold-induced non-shivering thermogenesis [175]. Recently, it has
been observed in adipocytes that genetic or pharmacological elevation of levels in reactive oxygen
species (ROS) is sufficient to drive thermogenesis [21]. Furthermore, studies in mice showed that
application of heat stress (4 ◦C) or a β-adrenergic stimulus induces the activation of thermogenesis
in BAT and results in an elevation of mitochondrial superoxide, mitochondrial hydrogen peroxide
and lipid hydroperoxides. Oxidation of cysteine thiols by ROS can initiate the thermogenic activity
of mitochondria in brown and beige adipocytes in a UCP1-dependent manner [176,177]. Similarly,
it was identified that the accumulation of succinate, an intermediate metabolite of the tricarboxylic acid
cycle in the mitochondria, rises independently of adrenergic stimulation in brown fat cells, and was
sufficient to increase thermogenesis [178]. In this study, it was observed that the oxidation of succinate
by the enzyme succinate dehydrogenase induces the production of ROS and manages thermogenic
respiration [179,180]. The various pathways that thermogenesis may have in adipocytes were studied
in UCP1 knockout mice (UCP1-KO). It was observed that UCP1-KO can be sensitive to cold, after being
crossed with transgenic mice that express the PR domain containing 16 (PRDM16) that have the
fatty acid binding protein 4 (Fabp4/aP2) promoter, which is expressed primarily in adipocytes [181].
Remarkably, UCP1-KO mice were resistant to diet-induced obesity at low temperatures, presumably by
alternate activation pathways of energy loss, which are not yet well described. However, the possibility
of thermogenesis being UCP1-independent remains controversial, and it is likely that thermogenesis in
mice with UCP-1KO is induced by muscular activity that promotes shivering thermogenesis [182].
Creatine has been shown to be involved in metabolism and mitochondrial heat production, with recent
observations suggesting the existence of a mitochondrial substrate cycle that is regulated by creatine
to drive thermogenic respiration [176,183,184]. The thermogenic activity of creatine appears to only
occur when ADP is limiting, which is expected during this physiological cellular state. However,
the mechanism by which creatine influences the mitochondrial metabolism has yet to be established.
Experiments using different animal models with genetic modifications have shown that reducing
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creatine may predispose animals to obesity. Interestingly, in a recent analysis of 18F-FDG PET/CT
scans in human subjects, it was shown that renal creatinine clearance is a good predictor of activated
human BAT [185]. Based on these observations and the fact that creatinine is a metabolite of the muscle
energy store phosphocreatine, we can infer that creatine can be an activator of thermogenesis of BAT in
humans and creatinine could be used as a biomarker of BAT activity [186].

6. Transcriptional Control of Browning

The phenotypic change in WAT into more energetically active cells indicates the involvement of
gene expression regulation, in which internal or external regulators of WAT physiology must modify the
chromatin structure or the DNA promoter methylation pattern of the target genes [74,187,188]. Recently,
modifications of noncoding RNAs have been shown to act as an additional level of gene expression
control [189,190]. Notably, a number of regulators function by modifying four transcriptional or
coregulator factors: PPARγ, CCAAT enhancer binding protein beta (C/EBPβ), PPARγ co-activator-1α
(PGC1α) and PRDM16. PPARγ and C/EBPβ act as transcription factors and directly bind DNA [191,192].
PRDM16 and PGC1α function as transcriptional coregulators, with PRDM16 forming a transcriptional
complex with the canonical DNA binding transcription factors PPARγ and C/EBPβ through its zinc
finger domains to activate the selective gene program for browning [193,194]. Similarly, it was observed
in an analysis of chromatin immunoprecipitation sequencing (ChIP-seq) that PRDM16 co-localized
with PPARγ and C/EBP in a large number of genes binding sites, further supporting their co-regulatory
functions [195]. Although still not completely defined, beige adipocytes can be detected after the
generation of a pre-adipocyte population of cells that are positive for platelet derived growth factor
receptor-alfa (PDGFRα) and stem cell antigen 1 (SCA1) or precursors of MYH11. Its appearance
occurs as a response to a variety of internal or external stimuli, including chronic exposure to cold,
PPARγ agonists, cancer cachexia, exercise and various endocrine hormones [153,154]. Some factors
that control the differentiation of BAT adipocytes also regulate the differentiation of beige adipocytes.
Early beta-Cell transcription factor 2 (EBF2) is a key factor for the differentiation of BAT and has an
important role in inducing the development of beige adipocytes [147,196]. EBF2 is highly expressed in
PDGFRα positive cells, and the overexpression of EBF2 in primary white adipocytes or WAT induces the
expression of thermogenic genes, increases oxygen consumption and suppresses high-fat diet-induced
weight gain [197]. There are several proteins that can control beige differentiation through the functional
control of PRDM16. The differentiation of beige adipocytes can be promoted by the activating or
repressive activity of PRDM16. The formation of a repressor complex of PRDM16 with CtBP1 and
CtBP2 reduces WAT adipogenesis [127]. On the other hand, the family of retinoblastoma proteins (pRb)
antagonize the activity of PPARγ and PRDM16 [198]. pRb is a determinant of the choice of mesenchymal
cells towards the osteoblastic lineage, thus in vivo experiments have shown that a pRb deficiency
increases the development of mesenchymal precursor cells towards the brown adipocyte lineage. [199].
We previously observed that pRb inhibition by EP300 interacting inhibitor of differentiation-1 (EID-1)
can induce the differentiation of beige adipocytes in humans [112]. Additionally, EID-1 can control
adipogenesis through the transcriptional regulation of glycerol-3-phosphate dehydrogenases (GPDH),
a key enzyme in the synthesis of triglycerides [200].

Several studies revealed peroxisome proliferator activated receptor γ coactivator 1 alpha (PGC1α)
can regulate thermogenesis by directly inducing the expression of UCP1. PGC1α was first discovered
as an interacting partner of PPARγ in brown adipocytes [201]. Pgc1α gene expression is greatly induced
by cold exposure and is further activated following phosphorylation by the cAMP-PKA-p38/MAPK
signaling pathway. PGC1α increases the transcription of specific genes through coactivation of by
binding to transcription factors belonging to the nuclear receptor superfamily and recruitment of histone
acetyltransferases such as CBP/p300 and GCN5 [202]. PGC1α binds to nuclear respiratory factors 1
and 2 (NRF-1 and NRF-2) to promote the activation of many mitochondrial genes. PGC1α mainly
co-activates the nuclear hormone receptors, including PPARγ, PPARα, and estrogen related receptor
(ERRα/β/γ), all of which participate in the transcription of brown fat genes [203]. PGC1α overexpression
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in adipocytes, myotubes, or cardiomyocytes promotes mitochondrial biogenesis and increases oxygen
consumption [204,205]. Although PGC1α is a regulator of UCP1 expression, BAT Pgc1α-deficient
mice display mildly increased lipid droplet accumulation but express normal levels of Ucp1 and
other brown fat-selective genes [206]. Pgc1α-deficient BAT in culture fails to efficiently activate the
thermogenic machinery in response to adrenergic stimulation [207]. These results demonstrate that
PGC1α is required for the acute transcriptional activation of thermogenesis. Interestingly, the deletion
of Pgc1α in adipocytes severely impairs the development of beige adipocytes in WAT [208].

7. Therapy with Inductors of Beige Cells

Every day the search for factors that can generate a metabolic change in the body is steadily
expanding. Some of these experimental drugs have been used as possible obesity therapies by
regulating BAT activity or adipogenesis of beige adipocytes [209,210]. Some regulatory peptides
may have an effect on BAT and browning by stimulating hypothalamic nuclei. Dopamine agonists
can induce BAT activity by stimulation of dopamine receptors 2 (D2R) in the VMH nuclei of the
hypothalamus. It has been observed that patients treated with cabergoline, a D2R agonist, for 12 months
showed a reduction in body mass index (BMI)and body fat together with an increase in resting energy
expenditure (REE) and an improvement in glucose and lipid metabolism [211].

Polyphenols are substances characterized by the presence of several phenolic rings. They originate
mainly in plants, which synthesize them in large quantities, as a product of their secondary metabolism.
Some polyphenols are essential for plant physiological functions, others participate in defense functions
in circumstances of stress. Among the polyphenols, flavonoids, catechins, capsaicin, and resveratrol
stand out [212]. Capsaicin and capsinoids can trigger the activation of BAT and the browning of WAT.
Studies with animal models of obesity have shown that capsinoids exert their mechanism of action by
selectively activating the channels of the transient receptor potential vanilloid 1 (TRPV1) [213,214].
The effect of amplification of TRPV1 channels by capsinoid treatment ultimately results in activation of
the vagal afferent nerves that project into the VMH hypothalamus [215]. Therefore, the mechanisms by
which capsinoids induce BAT activity involve activation of β-adrenergic receptors. Human studies
have shown that capsinoids can exponentially increase BAT activity after exposure to cold [216].
Resveratrol in elevated doses can reduce weight by increasing the activity of sirtuina 1 (SIRT1), a histone
deacetylase dependent on NAD+. SIRT1 increases the function of AMPK-PGC1α and can trigger
browning [217,218]. Recent studies have observed that the function of resveratrol can be mediated
by the modification of the intestinal microbiome. The action of resveratrol on the gut microbiome
is mediated by three potential ways: it can alter the composition of obesity-related gut microbiota,
improve gut function and barrier integrity, or undergo gut microflora mediated-biotransformation to
active metabolites in the intestinal tract [219,220]. Other polyphenols have been shown to regulate the
activity of BAT; however, these observations are preliminary and have not been shown to have clinical
relevance [212]. Gut microbiota can be considered as a contributing factor to the pathophysiology of
obesity and may have potential therapeutic implications. Obesity is associated with elevated levels of
Firmicutes such as Ruminococcaceae and depleted levels of Bacteroidetes such as Bacteroidaceae and
Bacteroides. After exposure to cold in obese patients, an increase in the Firmicutes Ruminococcaceae
family has been observed [221]. In fact, it was associated with high levels of acetate in plasma and
was positively related to the expression of PRDM16 [222]. In support of these findings, several studies
have shown that acetate increases the activity of brown fat and induces the formation of beige
adipocytes [223,224]. Given the evidence from some studies, it seems that the use of prebiotics could
improve adaptive thermogenic capacity. However, assumed that it is a new field, more studies are
needed that can evidence preclinical observations. Furthermore, the underlying mechanisms that
explain the relationship between prebiotic supplementation and the induction of thermogenesis and
browning of white adipocytes are still indeterminate. An important point of connection between
thermogenic capacity and prebiotics is the production of secondary metabolites by resident bacteria
after the fermentation of prebiotics. Thus, the profile of short chain fatty acids (SCFA) and secondary
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bile acids could be important metabolites derived from the metabolism of bacteria capable of connecting
prebiotic supplementation with the regulation of thermogenic capacity in BAT and WAT [225]. In recent
years, the development of incretin effect mediations, especially glucagon-like peptide receptor agonists
(GLP-1R), has had a beneficial effect, not only for the control of glucose levels in the blood but also
for the reduction in body weight. The most prominent effects of GLP-1R are the anorectic effect and
the modification of gastric emptying [226]. However, the GLP-1R effect on BAT energy expenditure,
and possibly on WAT browning or hepatic lipid oxidation, will lead to a reduction in the weight and
depletion in endogenous lipid stores [55]. The most likely effect of GLP-1R is mediated by modulation
of AMPK activity located in the VMH nucleus of the hypothalamus. However, the possibility that
extrahypothalamic areas are also involved in the effects of GLP-1R agonists on BAT thermogenesis and
energy expenditure cannot be ruled out [227].

Considerable attention has been recognized to the secretory capacity of BAT and beige fat
cells, and the substances secreted by these cells have been called “batokines”, which can have
a paracrine or endocrine effect. These batokines play an important role in contributing to metabolic
health by improving glucose and lipid homeostasis. The results of various BAT transplant studies
have shown improvements in conditions associated with obesity, such as body weight and insulin
sensitivity [228,229] (Figure 3).Metabolites 2020, 10, x FOR PEER REVIEW 14 of 28 
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Figure 3. Adipokines secreted by beige adipocytes, which are also known as “batokines”.
Beige adipocytes secrete molecules that have endocrine effects on some of the most important
tissues involved in the regulation of body weight and lipid and carbohydrate metabolism. BMP8-β,
bone morphogenetic protein 8b; IGF-1, insulin-like growth factor 1; IGFBP-2, insulin-like growth
factor binding protein 2; IL-6, interleukin 6; NRG-4, neuregulin 4; SLIT-2, slit homolog protein 2.
Adapted from Arroyave et al. [230].

The activation of β3-adrenergic receptors is perhaps the most widely used pharmacological
method for the development of browning. Recently, a study of the β3-adrenergic receptor agonist
mirabegron, an food and drug administration (FDA) drug approved for overactive bladder treatment,
was used in patients with prediabetes. Treatment with mirabegron for 3 months decreased insulin
resistance without causing a reduction in weight or any cardiovascular effects [231]. However,
the development of adrenergic ligands for obesity and metabolic disease applications has the drawback
of producing unwanted cardiovascular, autonomic, and bone effects over time [232–234]. Similarly,
bone morphogenetic proteins 4, 7, and 8b (BMP4, BMP7, and BMP8-β), atrial and brain-type natriuretic
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peptides (ANP and BNP), FGF21, vascular endothelial growth factor-α (VEGF-α), and prostaglandins
have all been shown to promote browning in vivo [89,235–237]. However, the use of these peptides as
medications for obesity or metabolic diseases has induced undesirable effects that have restricted their
clinical use. FGF21 is an activator of thermogenesis that has gained particular interest from various
pharmaceutical companies. However, studies conducted in humans using FGF21 analogs have not
shown a significant effect of these compounds on body weight or glycemic control [238,239], although a
beneficial effect on hepatic steatosis has been observed [240]. Another experimental molecule as
possible therapeutic target is SLIT2, a factor secreted by beige adipocytes. The expression of the SLIT2
gene is regulated by PRDM16. SLIT2 induces a PKA-dependent thermogenic pathway in adipocytes
and improves general metabolic parameters in response to a high-fat diet. [128]. The c-terminal
fibrinogen-like domain of angiopoietin-like 4 (FLD of Angptl4) induces cAMP-PKA-dependent lipolysis
in white adipocytes and reduces diet-induced obesity [241]. Angptl4 increases the thermogenic program
and promotes subsequent protection against weight gain and improved glucose tolerance in high-fat
diet-fed mice [242]. Recently, kynurenic acid was observed to increase energy expenditure by activating
G-protein-coupled receptor 35 (Gpr35), which in turn stimulates a thermogenic program in adipose
tissue and increases regulator of G protein signaling 14 (Rgs14) levels in adipocytes, leading to enhanced
β-adrenergic receptor signaling [243]. The results of many clinical studies in adult humans have
suggested the beneficial effect of activating browning from the WAT. In an interesting study it was
observed that a reduction in temperature (17 ◦C) for two hours a day for 6 weeks induced BAT activity
and a progressive increase in energy expenditure [216]. Prolonged cold exposure for 5 to 8 h increased
resting REE by 15%, increased glucose clearance in brown/ beige adipocytes, and significantly increased
whole body glucose clearance [244]. In subjects with type 2 diabetes mellitus, 10 days of cold acclimation
increased peripheral insulin sensitivity by 43% [245,246]. In another study, cold exposure produced
a translocation in transporter type 4 (GLUT4) and increased glucose uptake in skeletal muscle [247].
Adipose-derived stem cells can be induced to differentiate to beige adipocytes in many ways, and the
results of a large amount of research in this area suggest that a substantial number of potential drugs
will become available in the next few years [248–254]. Although many effects remains to be clarified,
it is evident that the increase in the activity of beige adipocytes is a consistent mechanism to increase
glucose metabolism, supporting its role in treating obesity and related metabolic disorders in humans,
especially for type 2 diabetes mellitus [255], which has two key pathophysiological components:
peripheral resistance to the action of insulin especially in muscular cells and adipocytes and reduction
in insulin secretion in β-pancreatic cells. A change in the sensitivity to insulin mediated by an increase
in the number of beige adipocytes can be a highly valuable therapeutic strategy [256,257]. Additionally,
a reduction in body weight may lead to a reduced load on pancreatic activity. Experiments carried
out in humans have shown that a reduction in glucose levels combined with an increase in insulin
sensitivity can be obtained by inducing beige/brown fat [244]. Despite the encouraging observations,
from a therapeutic point of view some biochemical aspects should be evaluated. First, it should be
determined whether the metabolic effects of beige adipocytes are subject to increased UCP1 levels
or if there are alternative metabolic pathways that could improve the condition of adipocytes [183].
The effects of beige and brown adipocytes, and the UCP1-independent pathways, on the metabolic
benefits in glucose and lipids, should be determined [89]. Another important aspect that should be taken
into account is the detection of the volume of beige adipocytes in organisms. Although F-FDG-PET
has considerably improved, it is desirable to develop new tools or instruments that can quantify the
amount of beige adipocyte tissue in the body. Due to the current lack of understanding of beige
adipocyte biology, it is necessary to gain a comprehension of the relevant physiological conditions,
the number of days that the cells can survive, and the elements necessary to maintain the functionality
of these cells.

Finally, it is important to recognize the specific factors that could induce plasticity in adipocytes,
which may allow white adipocytes to be converted into beige adipocytes. The browning process from
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both adipocyte precursor cells and white adipocytes may be desirable for weight reduction and for the
treatment of metabolic diseases.
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Abstract: The insulin-like growth factor (IGF) system is responsible for growth, but also affects
metabolism and brain function throughout life. New IGF family members (i.e., pappalysins and
stanniocalcins) control the availability/activity of IGFs and are implicated in growth. However,
how diet and obesity modify this system has been poorly studied. We explored how intake of a
high-fat diet (HFD) or commercial control diet (CCD) affects the IGF system in the circulation, visceral
adipose tissue (VAT) and hypothalamus. Male and female C57/BL6J mice received HFD (60% fat,
5.1 kcal/g), CCD (10% fat, 3.7 kcal/g) or chow (3.1 % fat, 3.4 kcal/g) for 8 weeks. After 7 weeks of
HFD intake, males had decreased glucose tolerance (p < 0.01) and at sacrifice increased plasma
insulin (p < 0.05) and leptin (p < 0.01). Circulating free IGF1 (p < 0.001), total IGF1 (p < 0.001), IGF2
(p < 0.05) and IGFBP3 (p < 0.01) were higher after HFD in both sexes, with CCD increasing IGFBP2
in males (p < 0.001). In VAT, HFD reduced mRNA levels of IGF2 (p < 0.05), PAPP-A (p < 0.001)
and stanniocalcin (STC)-1 (p < 0.001) in males. HFD increased hypothalamic IGF1 (p < 0.01), IGF2
(p < 0.05) and IGFBP5 (p < 0.01) mRNA levels, with these changes more apparent in females. Our
results show that diet-induced changes in the IGF system are tissue-, sex- and diet-dependent.

Keywords: IGF1; IGF2; IGFBP2; high-fat diet; obesity; sex differences; neuropeptides

1. Introduction

The insulin-like growth factor (IGF) system has been widely studied in both pre- and postnatal
growth and development, but this system is involved in a myriad of functions throughout life with
much less known regarding many of these diverse roles. Members of this family include the ligands
IGF1 and IGF2, which are crucial for longitudinal bone growth [1] and both also have additional
important functions throughout life. Studies of IGF2 have focused mainly on its fundamental role
during fetal life, as its expression decreases in multiple organs during aging in mice [2] as well as in
the circulation in humans [3], but less is known about its postnatal actions. IGF1 and IGF2 bind to six
different IGF binding proteins (IGFBPs) to increase their half-life and for transport to target tissues
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and importantly, to reduce their potential hypoglycemic effect. IGFBP3 is the most abundant binding
protein in circulation, carrying from 70% to 90% of circulating IGF1 and 2 [4]. When IGF1 or IGF2
are bound to IGFBP3 or IGFBP5, it also binds to an acid-labile subunit (ALS) forming a trimolecular
150 KDa complex [5]. It is estimated that around 80% of the IGFs are bound in these trimolecular
complexes, approximately 20% are bound to other IGFBPs and less than 1% are in the free form [6].
IGFBP2 is the second most abundant binding protein in serum, at least in some conditions [7,8], with a
slight preference for IGF2 over IGF1 [9]. However, expression levels of the IGFBPs are tissue-specific,
with, for example, IGFBP2 being the most abundant IGFBP in the postnatal central nervous system
(CNS) [10], as well as in white preadipocytes during adipogenesis [11]; while IGFBP4 is the most
abundant in cultured adult human adipose tissue [12].

When released from their binding proteins, the IGFs can activate the IGF1 receptor (IGF1R),
which is structurally similar to the insulin receptor and when phosphorylated activates the PI3K/AKT
pathway. Activation of this pathway underlies the anabolic effects of the IGFs [13]. In contrast, IGF2R
is classified as a scavenger receptor for removing excess IGF2 from the circulation linked to lysosomal
enzymes [14], with IGF2 having a 100-fold higher binding affinity for the IGF2R than IGF1 does [14].

New members of this system identified in recent years include pregnancy-associated plasma
protein-A (PAPP-A) and PAPP-A2. These pappalysins modulate the biological activity of IGFs by
cleaving the ligand from the binding protein and thus allowing them to bind to their receptors [15]. In
addition, stanniocalcin (STC)-1 and 2 (STC-2) inhibit the proteolytic activity of pappalysins, reducing
the release of IGF1 and 2 from the IGFBPs, hence their binding receptors [16,17].

The IGF system is important in anabolism, causing muscle hypertrophy [18], and is crucial in
adipocyte maturation and differentiation [19]. Moreover, it can be altered by nutritional status [20].
In the brain it is important during development, but also throughout life. Indeed, in addition to
peripheral IGF1 and IGF2 crossing the blood–brain barrier to reach the brain [21,22], IGFs are locally
produced by brain cells, especially microglia and astrocytes [23,24]. These centrally produced IGFs can
act as neuroprotective factors during events that result in gliosis and neuroinflammation. In the CNS,
IGF1 is involved in postnatal synaptogenesis and neurogenesis [25], amyloid clearance [26], protection
against neuroinflammation [24] and in neuroprotection [27], as well as with regulation of brain glucose
metabolism [28]. The functions of IGF2 in the postnatal brain have been studied less, despite the fact
that, for example, it is highly expressed in the hippocampus and has been associated with memory
consolidation [29].

Gliosis, involving both astrocytes and microglia, is initially a protective response [30,31] but when
prolonged can become damaging [32]. In response to high-fat diet (HFD) consumption, astrocytes are
thought to participate in both the early protective response [33] and the detrimental effects of prolonged
HFD intake and obesity [34]. The neuroprotective actions of astrocytes against oxidative stress [27],
apoptosis and inflammation [35] are executed at least partially through the release of IGF1 [36,37] and
consequently the downstream activation of the pro-survival pathway PI3K [38]. Thus, it is possible
that the IGF system is involved in neuroprotection against the noxious effects of poor nutrition.

We have previously reported that short-term dietary changes modify the IGF system, with both
a HFD and commercial control diet (CCD) inducing sex-specific changes peripherally and centrally
compared to a normal rodent chow diet [39]. Here, our objective was to evaluate the long-term effects
of HFD and CCD consumption on the central and peripheral IGF systems in male and female mice.

2. Results

2.1. Body Composition

Body weight changed with time throughout the study (F(8,53) = 325.6, p < 0.001; Figure 1A),and
was also influenced by sex (F(1,53) = 235.6, p < 0.001) and diet (F(2,53) = 19.4, p < 0.001). At study onset,
there were differences between the sexes (F(1,53) = 27.4, p < 0.001) in body weight (Figure 1A), with
males weighing more than females and these sex differences were maintained throughout the study.
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HFD increased body weight in males from the first week (F(2,26) = 5.2, p < 0.05) until the last week of
the study (F(2,26) = 62.2, p < 0.001). However, in females HFD intake induced a significant increase in
weight only at the last week of the study (F(2,26) = 4.0, p < 0.05).

Figure 1. Body weight progression (A) and accumulated weight gain in percentage (B) in male and
female mice exposed to a high-fat diet (HFD), commercial control diet (CCD) or a chow diet for 8 weeks.
*** p < 0.001; #: different from chow in the same sex, @: different between sexes on the same diet. n = 6.

Weight gain (Figure 1B) was influenced by both sex (F(1,53) = 27.4, p < 0.001), with males gaining
more weight than females, and diet (F(2,53) = 77.2, p < 0.001), with an interaction between these factors
(F(2,53) = 6.4, p < 0.01). HFD induced weight gain in both males (F(2,26) = 116.2, p < 0.001) and females
(F(2,26) = 13.5, p < 0.001).

Body weight at sacrifice (Table 1) was determined by sex (F(1,53) = 134.5, p < 0.001), with males
weighing more than females, and by diet (F(2,53) = 55.4, p < 0.001), with an interaction between these
two factors (F(2,53) = 8.5, p < 0.01). Body weight was higher after HFD consumption in both males
(F(2,26) = 72.2, p < 0.001) and females (F(2,26) = 8.2, p < 0.01), with no effect of CCD intake on final
body weight.

The amount of visceral adipose tissue (VAT; Table 1) was affected by both sex (F(1,53) = 24.8,
p < 0.001), with males having higher levels than females, and diet (F(2,53) = 60.7, p < 0.001), with an
interaction between these factors (F(2,53) = 9.1, p < 0.001). HFD intake increased the percentage of VAT
in both males (F(2,26) = 94.9, p < 0.001) and females (F(2,26) = 8.6, p < 0.01). Subcutaneous adipose tissue
content (Table 1) was influenced by diet (F(2,53) = 6.3, p < 0.001), with an interaction between sex and
diet (F(2,53) = 4.9, p < 0.05). The percentage of subcutaneous adipose tissue was increased by HFD
intake in both males (F(2,26) = 58.4, p < 0.001) and females (F(2,26) = 10.5, p < 0.01).

The number of kcal ingested per day was influenced by sex (F(1,17) = 62.5, p < 0.001; Table 1) and
diet (F(2,17) = 267.9, p < 0.001). There was also an interaction between sex and diet (F(2,17) = 135.9,
p < 0.001), with HFD only increasing energy intake per mouse in females (F(2,8) = 331.0, p < 0.001).
When adjusted for body weight, females consumed more energy than males (F(1,17) = 232.4, p < 0.001),
with this also being affected by diet (F(2,17) = 255.5, p < 0.001). There was an interaction between sex
and diet (F(2,17) = 232.4, p < 0.001) as energy intake/g body weight was only increased by HFD in
females (F(2,8) = 331.0, p < 0.001).

Energy efficiency, determined as the amount of weight gained per kilocalories consumed, was
higher in males compared to females (F(1,17) = 156.4, p < 0.001; Table 1). Energy efficiency was also
influenced by diet (F(2,17) = 37.3, p < 0.001), with an interaction between sex and diet (F(2,17) = 51.9,
p < 0.001). This parameter was higher in males fed a HFD (F(2,8) = 63.2, p < 0.001) compared to those
on chow.
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Circulating leptin levels were affected by diet (F(2,35) = 19.8, p < 0.01; Table 1) with an interaction
between sex and diet (F(2,35) = 4.3, p < 0.05). HFD increased plasma leptin levels in both males (F(2,18) =

16.3, p < 0.001) and females (F(2,16) = 5.5, p < 0.05).

Table 1. Body weight, fat mass, glycemia, energy intake and circulating leptin levels in male and female
mice exposed for 8 weeks to a high-fat diet (HFD), commercial control diet (CCD) or a chow diet. a:
effect of sex, b: effect of diet, c: interaction between sex and diet, #: different from chow on the same
sex, @: differences between sexes on the same diet, n = 6, except energy intake was n = 3 (number of
cages/group).

Chow
Males

CCD
Males

HFD
Males

Chow
Females

CCD
Females

HFD
Females Significance

Final body weight
(g)

24.6
± 0.5

26.4
± 0.3

35.2
± 1.0 #

19.6
± 0.3 @

20.3
± 0.3 @

24.2
± 1.5 #,@

a, p < 0.001
b, p < 0.001
c, p < 0.01

Visceral adipose
tissue (%)

1.16
± 0.07

1.22
± 0.14

4.31
± 0.28 #

0.62
± 0.07 @

0.99
± 0.12

2.19
± 0.46 #,@

a, p < 0.001
b, p < 0.001
c, p < 0.001

Subcutaneous
adipose tissue (%)

0.52
± 0.04

0.57
± 0.05

1.86
± 0.16 #

0.67
± 0.04 @

0.96
± 0.09 @

1.52
± 0.21 #,@

b, p < 0.001
c, p < 0.001

Glycemia (mg/dl) 67.8
± 2.0

71.8
± 3.7

80.6
± 3.2

63.6
± 3.9

68.7
± 4.3

79.6
± 4.9 b, p < 0.01

Kcal/mouse/
day

11.7
± 0.1

10.9
± 0.8

13.8
± 0.5

10.0
± 0.2 @

9.9
± 0.2

24.9
± 0.4 #,@

a, p < 0.001
b, p < 0.001
c, p < 0.001

Kcal/mouse/
day/100 g

46.2
± 0.7

42.3
± 2.0

45.8
± 0.7

48.7
± 1.2

47.6
± 0.9

114.5
± 3.3 #,@

a, p < 0.001
b, p < 0.001
c, p < 0.001

Energy efficiency
(%)

0.68
± 0.02

0.96
± 0.11

1.84
± 0.06 #

0.56
± 0.02 @

0.50
± 0.05 @

0.45
± 0.07 @

a, p < 0.001
b, p < 0.001
c, p < 0.001

Leptin (ng/mL) 0.77
± 0.28

0.65
± 0.21

10.05
± 2.10 #

1.06
± 0.34

1.22
± 0.49

4.52
± 1.43 #

b, p < 0.01
c, p < 0.05

2.2. Glucose Tolerance Test and Insulin Levels

Glycemia at sacrifice was affected by diet (F(2,53) = 7.6, p < 0.01), with an increase after HFD in
both sexes (Table 1).

In the glucose tolerance test (Figure 2A), diet had an overall effect (F(2,34) = 7.9, p < 0.01) as did sex
(F(1, 34) = 7.8, p < 0.01), with an interaction between these factors (F(2,34) = 3.3, p < 0.05) and a change
over time (F(4,34) = 79.3, p < 0.001). Basal glycemia levels showed differences according to sex (F(1,34) =

18.9, p < 0.001) and diet (F(2,34) = 5.3, p < 0.05), with an interaction between these factors (F(2,34) = 3.2,
p = 0.05). At baseline, there were sex differences when CCD was consumed (F(1,11) = 6.6, p < 0.05) as
well as with HFD (F(1,11) = 30.1, p < 0.001), with males presenting a higher glycemia than females in
both cases.

In males, HFD increased glycemia (F(2,17) = 7.0, p < 0.01). At 30 min (F(2,34) = 4.9, p < 0.05), 60 min
(F(2,34) = 4.5, p < 0.05) and 90 min (F(2,34) = 6.6, p < 0.01) there was an effect of diet on the response
to a glucose bolus with an increase in glycemia after HFD consumption. There was an effect of sex
at 60 (F(1,34) = 4.5, p < 0.05) and 90 min (F(1,34) = 12.8, p < 0.01), with overall higher levels in males
than females.

At 120 min, there was an effect of sex (F(1,34) = 9.5, p < 0.01) and diet (F(2,34) = 5.0, p < 0.05), and an
interaction between these two factors (F(2,34) = 5.0, p < 0.05). There were differences between males and
females on chow (F(1,10) = 5.3, p < 0.05) and HFD (F(1,11) = 12.1, p < 0.01), with males having increased
glycemia in both cases. Males on a HFD had a higher glycemia compared to when consuming chow
(F(2,17) = 6.3, p < 0.05).
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Figure 2. Glucose tolerance test and insulin levels. Glucose levels over time (A), area under curve (B),
plasma insulin levels (C) and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR; D)
in male and female mice on a high-fat diet (HFD), commercial control diet (CCD) or a chow diet for
8 weeks. a: overall effect of sex, b: overall effect of diet, #: different from chow on the same sex, @:
differences between sexes on the same diet, n = 6.

The area under the curve (AUC; Figure 2B) was affected by sex (F(1,34) = 6.2, p < 0.05) and diet
(F(2,34) = 7.6, p < 0.01), with the increase after HFD consumption being more apparent in males.

Plasma insulin levels (F(2,33) = 3.7, p < 0.05: Figure 2C) and the Homeostatic Model Assessment
for Insulin Resistance (HOMA-IR) (F(2,31) = 7.6, p < 0.01; Figure 2D) were affected by diet, with both
HFD and CCD inducing an overall increase in these parameters, with the CCD effect on insulin being
more apparent in females.

2.3. Circulating Levels of the IGF System

Free IGF1 levels were modified by diet (F(2,29) = 18.6, p < 0.001; Figure 3A), with an increase after
HFD consumption in both sexes. Total IGF1 was affected by sex (F(1,34) = 19.0, p < 0.001; Figure 3B),
with males having higher levels than females, and by diet (F(2,34) = 8.2, p < 0.01) with an increase after
HFD intake in both sexes.

Circulating IGF2 levels were affected by sex (F(1,35) = 7.6, p < 0.05; Figure 3C), with females having
overall higher levels than males, and diet (F(2,35) = 8.2, p < 0.01), with HFD inducing an overall increase
in IGF2 levels. There was an effect of sex on plasma IGFBP2 levels (F(1,35) = 15.9, p < 0.001; Figure 3D),
with males having higher levels of IGFBP2 than females. There was an interaction between sex and
diet (F(2,35) = 5.1, p < 0.05) with sex differences in IGFBP2 levels after CCD consumption (F(1,11) = 19.6,
p < 0.01). In males, there was an increase in IGFBP2 after CCD consumption (F(2,17) = 5.5, p = 0.05).

97



Metabolites 2020, 10, 462

Figure 3. Circulating levels of free IGF-1 (A), total IGF-1 (B), IGF2 (C), IGFBP2 (D) and IGFBP3 (E) in
mice on a high-fat diet (HFD), commercial control diet (CCD) or chow diet for 8 weeks. *** p < 0.001, a:
effect of sex, b: effect of diet, n = 6.

There was also an effect of sex (F(1,35) = 7.3, p < 0.05), with males having higher levels than females,
and diet (F(2,35) = 9.5, p < 0.01) on plasma IGFBP3 levels (Figure 3E), with HFD increasing the levels of
this binding protein in both sexes.

2.4. The IGF System in Visceral Adipose Tissue (VAT)

Relative IGF1 mRNA levels were modified by diet (F(2,33) = 4.5, p < 0.05; Figure 4A), with a
decrease after HFD in males. There was an interaction between sex and diet regarding IGF2 mRNA
levels (F(2,34) = 3.2, p = 0.05; Figure 4B). In males, relative IGF2 mRNA levels were decreased after HFD
intake (F(2,16) = 4.9, p < 0.05), resulting in males having lower levels than females when on a HFD
(F(1,10) = 11.9, p < 0.01). There was no effect of sex or diet on relative mRNA levels of IGF1R (Figure 4C),
IGF2R (Figure 4D) or IGFBP2 (Figure 4E).

Relative PAPP-A mRNA levels were affected by both diet (F(2,34) = 5.3, p < 0.05; Figure 4F) and
sex (F(1,34) = 12.1, p < 0.01), with an interaction between these factors (F(2,34) = 8.8, p < 0.01). In males,
PAPP-A mRNA levels were reduced after HFD intake (F(2,16) = 7.7, p < 0.01), with no HFD effect in
females resulting in males having lower levels when on a HFD (F(1,10) = 47.3, p < 0.001). Relative
PAPP-A2 mRNA levels were only affected by sex (F(1,33) = 28.2, p < 0.001; Figure 4G), being higher in
males than females.

Relative STC-1 mRNA levels were modified by diet (F(2,32) = 18.2, p < 0.001; Figure 4H) and sex
(F(1,32) = 58.3, p < 0.001), with an interaction between these factors (F(2,32) = 33.8, p < 0.001). STC-1
mRNA levels were higher in males than females when on chow (F(1,10) = 52.8, p < 0.001) or a CCD
(F(1,10) = 16.8, p < 0.01). HFD consumption led to decreased levels in males (F(2,15) = 25.8, p < 0.001) but
increased in females (F(2,16) = 26.2, p < 0.001). In males, STC-1 mRNA levels were also decreased after
CCD intake (F(2,15) = 25.8, p < 0.001). No significant differences in STC-2 mRNA levels were found
(Figure 4I).
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Figure 4. Relative gene expression of the insulin-like growth factor (IGF) system in visceral adipose
tissue: IGF1 (A), IGF2 (B), IGF1R (C), IGF2R (D), IGFBP2 (E), PAPP-A (F), PAPP-A2 (G), stanniocalcin
(STC)-1 (H) and STC-2 (I) in mice on a high-fat diet (HFD), commercial control diet (CCD) or a chow
diet for 8 weeks. * p < 0.05, *** p < 0.001, a: effect of sex, b: effect of diet, ns = non-significant, n = 6.

2.5. Hypothalamic Response to Dietary Change

2.5.1. The IGF System in the Hypothalamus

The hypothalamic levels of IGF1 mRNA were affected by diet (F(2,43) = 6.8, p < 0.01; Figure 5A),
being increased after HFD consumption in both sexes. There was also an effect of diet on the
hypothalamic mRNA levels of IGF2 (F(2,42) = 4.7, p < 0.05; Figure 5B), with an overall increase in
response to HFD, with this being more apparent in females. Relative IGF1R mRNA levels were altered
by diet (F(2,35) = 3.3, p = 0.05; Figure 5C) with an overall increase in response to the CCD. However,
there were no effects of either sex or diet on relative IGF2R mRNA levels (Figure 5D).
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Figure 5. Relative hypothalamic mRNA levels of the IGF system: IGF1 (A), IGF2 (B), IGF1R (C), IGF2R
(D), IGFBP2 (E), IGFBP3 (G), IGFBP4 (H), IGFBP5 (I), PAPP-A (J), PAPP-A2 (K), STC-1 (L) and STC-2
(M). Correlation of relative hypothalamic mRNA levels of IGF2 and IGFBP2 (F). ** p < 0.01, b: effect of
diet, ns = non-significant, HFD = high-fat diet, CCD = commercial control diet, n = 6.
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Regarding IGFBP2 mRNA expression, despite the apparent increase after HFD consumption in
females, there was no overall effect of sex or diet (Figure 5E). As previously reported [39], the relative
mRNA levels of IGF2 and IGFBP2 showed a similar profile, with a significant positive correlation
between these two factors (r = 0.843, p < 0.001; Figure 5F).

We observed no differences in the relative mRNA levels of IGFBP3 (Figure 5G) or IGFBP4
(Figure 5H). However, IGFBP5 mRNA levels were affected by diet (F(2,35) = 6.8, p < 0.01; Figure 5I)
with an interaction between sex and diet (F(2,35) = 4.5, p < 0.05). When on a chow diet, females were
found to have higher levels than males (F(1,11) = 13.1, p < 0.01). When separated by sex, CCD and HFD
consumption were found to increase the mRNA levels of IGFBP5 in the hypothalamus in males (F(2,17)

= 10.0, p < 0.01), with no significant effect of diet in females.
Relative hypothalamic mRNA levels of PAPP-A (Figure 5J), PAPP-A2 (Figure 5K), STC-1 (Figure 5L)

and STC-2 (Figure 5M) were not affected by sex or diet.
IGFBP2 is proposed to be an antidiabetic factor, protecting against obesity onset [40,41]. In

addition, taking into consideration that IGFBP2 has preference for IGF2 over IGF1 [9], we determined
the statistical correlations between these factors in the circulation, VAT, and the hypothalamus with
body weight and glycemia (Table 2). Plasma IGF2 was positively and IGFBP2 negatively correlated
with body weight, but exclusively in males. No significant correlations were found with glycemia in
either sex. In VAT, the only correlation observed was that relative IGF2 mRNA levels were negatively
correlated with body weight in males. In the hypothalamus there was a positive correlation between
IGF2 mRNA levels and both body weight and glycemia, but only in females. Hypothalamic IGFBP2
mRNA relative levels also correlated positively with both body weight and glycemia and again only
in females.

Table 2. Linear correlation between circulating levels of IGF2 and IGFBP2, relative mRNA levels of
IGF2 and IGFBP2 in visceral adipose tissue (VAT) and in the hypothalamus with body weight and
glycemia in both sexes. * p < 0.05, ** p < 0.01, n = 6.

Plasma
IGF2

Plasma
IGFBP2

VAT
IGF2

mRNA

VAT
IGFBP2
mRNA

HPT
IGF2

mRNA

HPT
IGFBP2
mRNA

Body weight
(males) 0.661 ** −0.470 * −0.523 * −0.306 0.088 0.090

Body weight
(females) 0.286 −0.225 −0.107 −0.132 0.579 ** 0.598 **

Glycemia
(males) 0.159 −0.102 −0.218 0.075 −0.092 0.138

Glycemia
(females) 0.268 −0.016 −0.157 −0.293 0.570 ** 0.623 **

2.5.2. Hypothalamic Neuropeptides

The relative mRNA levels of neuropeptide Y (NPY) (F(2,35) = 5.8, p < 0.01; Figure 6A) and
Agouti-related protein (AgRP) (F(2,34) = 11.9, p < 0.001; Figure 6B) in the hypothalamus were affected
by diet, with the mRNA levels of both orexigenic neuropeptides decreasing after HFD intake.

Proopiomelanocortin (POMC) mRNA levels (Figure 6C) were not altered by sex or diet, whereas
relative cocaine and amphetamine regulated transcript (CART) expression was affected by diet (F(2,35)

= 3.6, p < 0.05; Figure 6D), with HFD inducing an overall increase.
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Figure 6. Relative mRNA levels of orexigenic and anorexigenic neuropeptides in the hypothalamus:
Neuropeptide Y (NPY; A), Agouti-related protein (AgRP; B), proopiomelanocortin (POMC; C) and
cocaine and amphetamine regulated transcript (CART; D). b: effect of diet, ns = non-significant. HFD =

high-fat diet; CCD = commercial control diet, n = 6.

2.5.3. Gliosis and Hypothalamic Stress

We analyzed markers of gliosis and endoplasmic reticulum (ER) stress in the hypothalamus
(Table 3). Gliosis (GFAP and Iba1) and ER stress markers (pJNK) were not altered in response to dietary
intake (Table 3).

Table 3. Effects of 8 weeks on a high-fat diet (HFD), commercial control diet (CCD) or chow diet on
glial structural protein (GFAPs: Glial fibrillary acidic protein, Iba1: Ionized calcium binding adaptor
molecule 1) and endoplasmic reticulum (ER)-stress markers (pJNK: phosphorylated c-Jun N-terminal
kinases). ns = non-significant, n = 6.

Chow
Males

CCD
Males

HFD
Males

Chow
Females

CCD
Females

HFD
Females Significance

GFAP 100.0
± 2.1

115.6
± 6.8

107.4
± 9.5

103.9
± 7.6

97.9
± 3.0

103.3
± 4.5 ns

Iba1 100.0
± 3.2

117.1
± 3.6

110.4
± 12.5

114.8
± 7.4

101.5
± 4.5

97.7
± 6.9 ns

pJNK 100.0
± 10.8

84.0
± 11.5

71.6
± 5.2

107.5
± 18.3

86.7
± 13.9

95.3
± 14.1 ns

3. Discussion

As previously reported, long-term HFD consumption increased body weight, fat mass and
circulating leptin levels in both sexes [42–45]. However, female mice needed more time before
a significant weight gain was observed which is in concordance with previous observations in
rodents [44,46], at least in young animals. Energy intake was also increased, particularly in females,
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with females on the HFD consuming more energy than males. Although both sexes gained significant
weight, glucose tolerance was only affected in males, as previously shown after 16 weeks of HFD
intake in C57/BL mice [45]. However, basal insulin levels and the HOMA index were increased in both
sexes after HFD in agreement with previous studies [43].

Sex differences in the metabolic response to long-term dietary challenges have been previously
reported [46–48]. Likewise, we and others have shown that the circulating IGF system also differs
between male and female rodents, both at baseline [49,50] and in response to a short-term dietary
change [39]. Male mice were found to have higher circulating levels of total IGF1, IGFBP2 and IGFBP3,
whereas females have higher IGF2 levels, with no sex differences in free IGF1 levels, as previously
reported in rats [50]. We previously reported higher levels of free and total IGF1, IGF2 and IGFBP3, but
reduced IGFBP2 levels at baseline, in male compared to female rats [39]. The circulating IGF system
has also been shown to differ between the sexes in humans [51,52]. Together, the sex differences in the
growth hormone (GH)/IGF system in conjunction with sex steroids [53] underlie the differences in
longitudinal growth between males and females.

In both male and female mice, the circulating IGF system was modified by HFD-induced obesity,
similar to that observed in patients with obesity. In both sexes, circulating levels of free IGF1 [54],
total IGF1, IGF2 [55–57] and IGFBP3 [58] are reported to be increased in humans and rodents with
obesity, although some studies found no changes in total IGF1 in patients with obesity [54]. This
general increase in the IGF system that is associated with obesity occurs despite GH hyposecretion,
which contributes to adiposity [59,60]. Increased hepatic GH sensitivity most likely contributes to the
maintenance of circulating IGF1 levels despite low GH secretion [61].

Rapid changes can be seen in the IGF system in response to a HFD even before weight gain is
observed [39], suggesting that they may be caused by the diet per se. In contrast, the changes found
here after long-term HFD consumption could be due to the modifications in overall nutritional status
in addition to possible direct effects of the diet, whereas, in response to a short-term dietary change,
the modifications observed in the IGF system were more abundant in response to CCD [39]—here,
long-term effects were associated with HFD intake. This supports the hypothesis that changes
associated with HFD intake are largely due to body weight gain.

Circulating IGFBP2, one of the most abundant IGFBPs in serum [62], is suggested to play a role in
protection against HFD-induced obesity and diabetes onset [40,41]. A negative correlation between
circulating IGFBP2 and body mass index (BMI) has been reported in obese patients [63] and, in children
with obesity, IGFBP2 levels are reduced, whereas in anorexic adolescents they are increased [64]. We
observed a negative correlation between IGFBP2 and body weight in male mice independently of the
diet consumed, although the increase in IGFBP2 in male mice on a CCD was not associated with weight
change. It is possible that changes in this binding protein are time-dependent and occur differently
between males and females. Indeed, after one week of CCD IGFBP2 was decreased in female rats [39],
while after a more long-term dietary change, this binding protein was not different from those on
a chow diet. The augmented IGFBP2 in males after more long-term CCD could be an attempt to
protect against the higher sucrose intake. The susceptibility to diet-induced obesity and its metabolic
complications differs between the sexes [46,65] and this could be related to the differential changes in
IGFBP2. However, more studies are clearly needed for a better comprehension of the role of IGFBP2
in metabolism.

IGF1 is important for adipocyte metabolism, maturation and differentiation [19,66,67]. In male
C57 mice, IGF1 mRNA levels were reported to be decreased in adipocytes purified from perigonadal
adipose tissue of obese compared to lean mice, despite the lack of change in IGF1 expression in lysates
of this same tissue [68]. This could suggest that although IGF1 mRNA levels may be reduced in
adipocytes, other cell types in adipose tissue, such as macrophages, could increase their expression of
Igf1 such that global IGF1 mRNA levels in VAT do not change. Here, IGF1 mRNA levels were reduced
in VAT after HFD in males, with the possibility that adipocytes in VAT decrease their IGF1 mRNA
levels after HFD intake with the VAT macrophages or circulating IGF1 providing the source of IGF1
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required to maintain adipocyte hypertrophy and hyperplasia [68]. This system is not altered in females,
which are metabolically less affected by HFD consumption despite the increase in the VAT percentage
observed in response to a HFD intake. If a longer exposition to this diet is required to alter it in females,
or if this system is sex-dependent, deserves further study. As seen here, IGF2 mRNA levels in VAT
were previously reported to be reduced in C57 mice in response to HFD-induced obesity; however in
PWK mice, which are resistant to HFD-induced obesity, they are not [69]. These authors suggest that
IGF2 has an anti-inflammatory effect on TNF-α-induced MCP-1 expression in adipocytes [69]. They
also reported increased expression of IGF2R in VAT in HFD-exposed C57 mice [69], which was not
found here possibly due to the shorter exposure to the HFD in our study.

During adipogenesis, IGFBP2 is the principal IGFBP produced by visceral white adipocytes,
inhibiting both adipogenesis and lipogenesis [70], with levels reported to be reduced in obese ob/ob,
db/db and high-fat-fed mice [71]. This reduction was accompanied by decreased IGFBP2 in circulation,
suggesting that the decreased levels in VAT after HFD intake may lead to a decrease in circulating
IGFBP2 levels [71]. Here we found no effect of HFD on IGFBP2 mRNA levels in VAT or circulating
IGFBP2; again, it is possible that a longer exposition to a HFD may be needed.

In PAPP-A knockout mice, adipocyte size and lipid uptake are reduced in mesenteric fat, and
visceral fat did not expand in PAPP-A KO mice exposed to a HFD, suggesting that the local cleavage of
IGFBP4 is mandatory for adipocyte expansion [72]. Local free IGF1 levels are suggested to increase in
adipose tissue in response to PAPP-A secretion in pregnant women [73], supporting the idea that IGF1
may contribute to the adipocyte hypertrophy associated with HFD intake through PAPP-A activity, and
the reduction in these factors could be a negative feedback effect in attempt to block excess expansion.
However, we found no effect of diet on PAPP-A2 expression, although males had significantly higher
levels than females. Whether this protease is involved in sex differences in VAT function remains to
be determined.

Both the CCD and HFD reduced STC-1 mRNA levels in male mice. In cultured adipocytes from
male rats, STC-1 was shown to increase glucose uptake and the storage of triacylglycerol during the
postprandial period [74]. Thus, this reduction in STC-1 mRNA levels may be a response conducted to
control the lipid accumulation by VAT and this could possibly be induced by the higher amount of fat
content in both the CCD and HFD compared to the chow diet. STC-2 mRNA levels were not altered in
VAT, but the possible role of STCs regulating the IGFs availability in VAT, and potentially modifying
the adipocyte size, deserves further research.

Hypothalamic IGF1 mRNA levels were increased after HFD consumption in both sexes, in
agreement with our previous results in male mice after 7 weeks of HFD [75]. This increase could be a
homeostatic mechanism to counteract the central effects of a HFD as increased central expression of
IGF1 has been shown to improve glucose tolerance and insulin sensitivity [76]. Hypothalamic IGF2
mRNA levels were also increased after HFD, especially in females. Maternal HFD was shown to
increase hypothalamic IGF2 mRNA levels in female Sprague Dawley rat offspring at postnatal day 10,
with no changes in males [77], but little is known regarding central IGF2 in metabolism. In the adult
brain, IGF2 promotes memory consolidation, neurogenesis and cognitive function [78] and it could be
involved in structural changes induced by HFD and/or obesity, although this remains to be determined.

Hypothalamic levels of IGF2 and IGFBP2 were positively correlated, as previously reported in
rats [39]. In females, both IGF2 and IGFBP2 were positively correlated with glycemia. A role of
both IGFBP2 and IGF2 in glucose metabolism has been reported [41,79], but whether these factors
participate in central glucose regulation remains unknown. The fact that females were metabolically
less affected by long-term HFD consumption compared to males could suggest a possible metabolic
effect of these factors at the level of the hypothalamus.

The role of IGFBP5 in metabolism has been poorly studied, particularly at the central level. Male
IGFBP5-deficient mice are reported to have a greater body weight, impaired glucose tolerance at
baseline and a larger increase in adipose tissue on a HFD compared to wild type [80]. This suggests
that IGFBP5 is protective against obesity and glucose metabolism impairment, but the specific role
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of hypothalamic IGFPB5 in metabolic control is unknown. As this binding protein is increased after
both HFD and CCD consumption in males one might speculate that it could be a protective response
against these diets at the central level, and that this could be induced by the higher fat content in both
of these diets compared to chow. No other members of the IGF system analyzed in the hypothalamus
were affected by either diet or sex.

No evidence of gliosis or ER stress was found in the hypothalamus. Although various authors have
reported both phenomena as well as central inflammation after 8 weeks of HFD consumption [81–83]
or even earlier [81], other authors report no alterations in hypothalamic inflammation in male
mice [84]. Thus, the causal relationship between hypothalamic inflammation and gliosis in weight
gain is unclear [85]. In addition, the absence of gliosis observed in our study in response to HFD is
accompanied by an increase in the gene expression of IGF1 and 2, which may play a neuroprotective
role by reducing cell stress [27].

Diet composition is reported to be more important than caloric intake per se in determining
NPY/AgRP neuron activity [86] and NPY and AgRP were reduced in the hypothalamus after HFD
consumption in both sexes, as previously reported in male rats [75,87,88]. This is most likely related to
the satiating properties of the HFD inducing a response that attempts to reduce the amount of energy
consumed. However, in females this response is attenuated, at least regarding NPY, and this could
underlie their higher energy intake compared to both HFD males and control females. Insulin decreases
both NPY and AgRP expression in the hypothalamic neuronal line mHypoE-46 [89]. Considering the
insulin-like actions of IGF1 and 2, it is possible that the rise in these factors with HFD intake contributes
to the inhibition of orexigeneic neuropeptide expression. Administration of IGF icv has been shown to
increase POMC mRNA levels in chicks [90], which was not observed here. This difference could be
due to the difference in species. An overall effect of HFD to increase the anorexic neuropeptide CART
was found, but no changes were observed in POMC expression. On the contrary, we previously found
POMC mRNA levels to increase after HFD in male mice with no effect on CART relative expression [75],
whereas other authors reported no significant changes in the hypothalamic POMC and CART mRNA
expression in female mice on a long-term HFD [91], employing a different source of HFD (45% kcal
from fat, 4.73 kcal/g). In our previous study [75], the exposition to HFD was for only 50 days instead of
the 8 weeks here, which may explain some of these differences.

The CCD used here is what has been traditionally referred to as a control low-fat diet (LFD) as it
was developed to be used as the control to the commercial HFD. However, it is now clear that these
commercially developed control diets can also have metabolic effects as their nutrient composition
differs from a normal chow diet. Here, the CCD did not modify body weight, but basal insulin levels
and HOMA index were increased in both sexes. Although the caloric content is similar between the
rodent chow and CCD, the amount of sucrose, 33% in CCD and 0.9% in chow, differs considerably. Dry
sucrose or polycose consumption does not affect final body weight in rats [92,93], nor does consumption
of a 33% sucrose solution, despite the metabolic alterations which are found [94,95]. However, these
studies found fat mass and specific metabolic parameters to be modified. Thus, it is possible that the
high sucrose composition in the CCD induces these observed metabolic alterations, again indicating
that not only caloric intake, but dietary composition, is important.

The response of the IGF system to CCD intake is time- and sex-dependent, whereas, in female
rats exposed to 1 week of CCD, IGFBP2 levels were reduced [39] and no changes were found in this
sex after 8 weeks. In contrast, males showed no differences at one week of CCD intake [39] but had
increased serum IGFBP2 levels after 8 weeks. This sex-specific response may be related to the protective
role of IGFBP2 in glucose metabolism [40,41] as glucose metabolism is differently affected in males
and females. Short- and a long-term HFD intake also differently affected IGF2 levels in males. Some
authors suggest that an initial reduction in serum IGF2 levels may indicate a bad prognosis for weight
gain [96], whereas longer HFD exposition leads to an increase in the circulating IGF2 as in obesity [56].
What is clear is that each diet has differential metabolic implications that are time- and sex-dependent.
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In conclusion, long-term HFD intake modulates the IGF system in a tissue-dependent manner,
which may respond to different tissue requirements, and suggests an active role of this system in the
metabolic response to this dietary challenge. Moreover, most of the observed changes are sex-specific
and this could be involved in the differential metabolic responses between males and females.

4. Materials and Methods

4.1. Ethical Statement

This study was designed following the European Communities Council Directive (2010/63/UE)
and the Spanish Royal Decree 53/2013 concerning the protection of experimental animals. In addition,
the study was approved by the Ethical Committee of Animal Experimentation of the Hospital Puerta
de Hierro de Madrid and the Animal Welfare Organ of the Comunidad Autónoma de Madrid
(07/346225.9/15, 9 April 2015). All care was taken to use the minimum number of animals.

4.2. Animals and Diets

In this study, 54 seven-week-old C57BL/6J mice (27 males and 27 females) were purchased from
Charles River Laboratories. Upon arrival, animals were weighed and randomly distributed into cages
according to sex (3 mice per cage) and allowed to acclimate for a week with free access to a normal
chow diet and tap water. The mice were weighed again and randomly distributed into the different
experimental groups. They were fed ad libitum with a high-fat diet (HFD; 62% kcal from fat, 18% kcal
from proteins, 20% kcal from carbohydrates, 5.1 kcal/g, LabDiet), a commercial control diet (CCD; 10%
kcal from fat, 18% kcal from proteins, 72% kcal from carbohydrates, 3.76 kcal/g, LabDiet) or standard
rodent chow (6% kcal from fat, 17% kcal from proteins, 77% from carbohydrates, 3.41 kcal/g, Panlab)
for 8 weeks, with free access to tap water throughout the study. This resulted in a total of 6 groups
with nine animals per diet and sex (n = 9). Body weight and food intake were monitored each week.
Animals were maintained at 22 ± 2 ◦C throughout the study.

4.3. Glucose Tolerance Test (GTT)

A week before sacrifice, six mice per group (n = 6) were fasted for 6 h prior to testing. They were
weighed and then intraperitoneally injected with 2 mg of D-glucose per gram of body weight. Glycemia
was determined in a drop of blood from the tail by using a Freestyle Optimum Neo glucometer (Abbott,
Witney, UK). Glycemia was measured just prior to the injection (basal, 0 min) and at 30, 60, 90 and
120 min after the D-glucose injection.

4.4. Tissue Collection

Mice were weighed and fasted 12 h before sacrifice by decapitation, which took place between
9:00 and 11:00 am. A few days before sacrifice, sawdust from male cages was mixed in the females’
cage to equalize estrous cycle in females, which was determined by vaginal cytology at sacrifices. In
total, 18.5% of the females were on proestrus phase, 77.8% were in estrus, 0% in metaestrus and 3.7% in
diestrus. Trunk blood was collected in tubes containing a 0.5 M ethylenediaminetetraacetic acid (EDTA)
solution. Samples were then centrifuged at 3000 rpm for 15 min at 4 ◦C and plasma was collected and
aliquoted (to avoid freeze–thaw cycles) and stored at −80 ◦C until used. Perigonadal visceral adipose
tissue (VAT) was dissected, weighted and frozen at −80 ◦C. The hypothalamus (rostrally limited by
the optic chiasm and caudally by the mammillary bodies) was also dissected and kept at −80 ◦C
until processed.

4.5. ELISA Assays

Plasma levels of free IGF1 (AnshLabs, Webster, TX, USA), total IGF1 (Mediagnost, Reutlingen,
Germany), IGF2 (R&D Systems, Minneapolis, MN, USA), IGFBP2 (Millipore, Burlington, MA,
USA), IGFBP3 (Mediagnost), insulin (Millipore) and leptin (Millipore) were measured following
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the manufacturers’ instructions. Absorbance was read by spectrophotometry (Tecan Infinite M200,
Grödig, Austria).

Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) was calculated by using the
following equation: HOMA-IR = glycemia (mmol/L) × insulin (mU/L)/22.5

4.6. RNA and Protein Extraction

An RNeasy Lipid Tissue Mini Kit (Qiagen, Hilden, Germany) was used for visceral adipose tissue
RNA extraction according to manufacturer’s instructions, whereas an RNeasy Plus Mini Kit (Qiagen)
was used following the manufacturer’s instructions for hypothalamic RNA isolation. Protein was
extracted from the eluate after tissue lysis. The eluate was mixed with 4 volumes of cold acetone and
stored overnight at −20 ◦C. The samples were centrifuged 10 min at 3000 rpm and the pellets containing
the protein were resuspended in a CHAPS hydrate (Sigma-Aldrich, Saint Louis, MO, USA) solution,
containing 7 M urea, 2 M thiourea, 4% CHAPS, 0.5% 1M Tris pH 8.8 in distilled water and stored
at −80◦C. For protein quantification, Protein Assay Dye Reagent Concentrate (Bio-Rad Laboratories,
Hercules, CA, USA) was used to perform the Bradford assay.

4.7. Western Blotting

Depending on the expected signal and molecular weight of each target, 10 to 40 µg of protein
were resolved on 8, 10 or 12% sodium dodecyl sulphate-denaturing polyacrylamide gels. After
electrophoresis, proteins were transferred to a previously activated polyvinylidine difluoride (PVDF)
membrane and then blocked with a Tris-buffered saline buffer containing 0.1% Tween 20 and 5%
non-fat dried milk or bovine serum albumin (BSA) when phosphorylated proteins were assayed.
Primary antibodies (Table 4) were diluted in the same buffer and incubated O/N with agitation at
4 ◦C. The next day, the corresponding horseradish peroxidase-conjugated secondary antibody was
diluted in the same buffer and the membranes incubated for 1.5 h. Clarity Western ECL Substrate
(Bio-Rad Laboratories, Hercules, CA, USA) was employed to visualize the peroxidase activity and the
chemiluminescent signal was detected by using ImageQuant Las 4000 Software (GE Healthcare Life
Sciences, Barcelona, Spain). To normalize for protein loading, GAPDH was used, as indicated.

Table 4. Antibodies used for Western blotting.

Antibody Class Dilution Host Commercial
Source Reference

pJNK Polyclonal 1:3000 Rabbit Promega V7932
GAPDH Polyclonal 1:10,000 Rabbit Sigma-Aldrich G9545

GFAP Polyclonal 1:5000 Guinea pig Synaptic
Systems 173004

Iba1 Polyclonal 1:1000 Rabbit Synaptic
Systems 234003

α-guinea pig HRP-conjugated Polyclonal 1:2000 Goat AbD Serotec AHP861P
α-rabbit HRP-conjugated Polyclonal 1:20,000 Goat Invitrogen 31460

4.8. Real-Time qPCR

For RT-qPCR, RNA (0.5–1 µg) was retro-transcribed to copy DNA (cDNA) by using an NZY
First-Strand cDNA Synthesis Kit (NZYTech, Lisbon, Portugal). TaqMan probes of target genes (Table 5)
were used for qPCR in a QuantStudio 3 Real-Time PCR System (Applied Biosystems, Carlsbad, CA,
USA). Mouse glyceraldehyde 3-phosphate dehydrogenase (GAPDH) endogenous control (Applied
Biosystems) was employed as the housekeeping gene, except on visceral adipose tissue, for which Ppia
was chosen (Table 5). For the mathematical analysis, the ∆∆CT method was performed. Relative levels
of expression are expressed as percentage of the chow male group.
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Table 5. List of TaqMan probes used for qPCR.

Name Gene Reference Commercial Source

Agouti-related protein Agrp Mm00475829_g1 Applied Biosystems
Cyclophilin A (Peptidylprolyl isomerase A) Ppia Mm02342430_g1 Applied Biosystems

Cocaine and amphetamine regulated
transcript prepropeptide Cartpt Mm04210469_m1 Applied Biosystems

Insulin-like growth factor 1 Igf1 Mm00439560_m1 Applied Biosystems
Insulin-like growth factor 1 receptor Igf1r Mm00802831_m1 Applied Biosystems

Insulin-like growth factor 2 Igf2 Mm00439564_m1 Applied Biosystems
Insulin-like growth factor 2 receptor Igf2r Mm00439576_m1 Applied Biosystems

Insulin-like growth factor-binding protein 2 Igfbp2 Mm00492632_m1 Applied Biosystems
Insulin-like growth factor-binding protein 3 Igfbp3 Mm01187817_m1 Applied Biosystems
Insulin-like growth factor-binding protein 4 Igfbp4 Mm00494922_m1 Applied Biosystems
Insulin-like growth factor-binding protein 5 Igfbp5 Mm00516037_m1 Applied Biosystems

Neuropeptide Y Npy Mm03048253_m1 Applied Biosystems
Pregnancy-associated plasma protein A Pappa Mm01259244_m1 Applied Biosystems

Pregnancy-associated plasma protein A-2 Pappa2 Mm01284029_m1 Applied Biosystems
Pro-opiomelanocortin Pomc Mm00435874_m1 Applied Biosystems

Stanniocalcin-1 Stc1 Mm01322191_m1 Applied Biosystems
Stanniocalcin-2 Stc2 Mm00441560_m1 Applied Biosystems

4.9. Statistical Analysis

Statistics analyses were performed using SPSS 15.0 (SPSS Inc., Chicago, IL, USA) software.
A two-way ANOVA was employed using the diet and sex factors. Weight gain and food intake over
time were calculated by a repeated measures ANOVA, as well as the weekly data for these variables.
For the glucose tolerance test, the area under the curve (AUC) was calculated by using GraphPad
Prism 5 software (San Diego, CA, USA). Data are presented as the mean ± standard error of the mean
(SEM). Graphs were made by GraphPad Prism 5 software. For the linear correlation between variables,
a Pearson correlation coefficient was calculated. p < 0.05 was considered significant.
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Abstract: A decrease in ovarian estrogens in postmenopausal women increases the risk of weight
gain, cardiovascular disease, type 2 diabetes, and chronic inflammation. While it is known that gut
microbiota regulates energy homeostasis, it is unclear if gut microbiota is associated with estradiol
regulation of metabolism. In this study, we tested if estradiol-mediated protection from high-fat
diet (HFD)-induced obesity and metabolic changes are associated with longitudinal alterations in
gut microbiota in female mice. Ovariectomized adult mice with vehicle or estradiol (E2) implants
were fed chow for two weeks and HFD for four weeks. As reported previously, E2 increased energy
expenditure, physical activity, insulin sensitivity, and whole-body glucose turnover. Interestingly,
E2 decreased the tight junction protein occludin, suggesting E2 affects gut epithelial integrity. More-
over, E2 increased Akkermansia and decreased Erysipleotrichaceae and Streptococcaceae. Furthermore,
Coprobacillus and Lactococcus were positively correlated, while Akkermansia was negatively correlated,
with body weight and fat mass. These results suggest that changes in gut epithelial barrier and spe-
cific gut microbiota contribute to E2-mediated protection against diet-induced obesity and metabolic
dysregulation. These findings provide support for the gut microbiota as a therapeutic target for
treating estrogen-dependent metabolic disorders in women.

Keywords: diabetes; estrogens; gut permeability/integrity; insulin sensitivity; Akkermansia; gut microbiome

1. Introduction

More than 40% of the US population is obese (CDC, 2018), which is a leading cause
of morbidity and mortality worldwide [1]. The latest example of the increasing impact of
obesity on human health is the strong association of obesity with the number of hospitalized
COVID-19 positive patients [2]. Obesity is more prevalent in women [3], in particular
during menopause, and is positively associated with a steep decline in ovarian hormones.
Increased fat weight gain in postmenopausal women elevates their risk of hyperglycemia,
insulin resistance, hyperlipidemia, low-grade inflammation, osteoporosis, cognitive decline,
breast cancer and colorectal cancer [4–9]. Estrogen replacement therapy decreases the
postmenopausal adiposity and protects women from diabetes, coronary heart disease, and
increases overall lifespan [8,10]. Ovariectomized rodents provide excellent models for
studying estrogen-dependent effects on energy homeostasis. Ovariectomy causes diet-
induced obesity, hyperglycemia and insulin resistance in rodents, which can be rescued
by estradiol (E2) treatment [11–15]. In further support of a protective role for estrogens,
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mice lacking estrogen receptors or the estrogen synthesizing enzyme, aromatase, develop
obesity [16–18].

Another key regulator of energy homeostasis is the gut microbiota, a community of
bacteria, fungi, viruses, and archaea that reside on the gastrointestinal epithelium [19].
The gut microbiota influences host physiology through nutrient harvest, synthesis of
vitamins, hormones, and neurotransmitters, and imprinting and strengthening of the
immune system [20,21]. Gut microbes produce energy from fermentation of non-digestible
carbohydrates, in particular, short-chain fatty acids, that are linked to improved insulin
sensitivity and health in humans [22]. Notably, germ-free mice and rats have a profound
reduction in energy harvest capacity, a compromised immune system, and abnormal
intestinal features compared to conventionally raised animals, indicating an important
function of gut microbiota on host health. [23,24].

Diet strongly modulates gut microbial composition and activity in humans and ro-
dents. For example, high-fat diet (HFD) profoundly decreases microbial diversity [21,25–29].
HFD promotes the endotoxin-producing gram-negative communities, inducing abnor-
mal immune responses and inflammation, characteristic pathologies of obesity and di-
abetes [30,31]. HFD also increases intestinal permeability, allowing microbiota-induced
toxins into the circulation and alters expression of multiple genes in the intestinal epithe-
lium of male and female mice [31–33]. Given that HFD increases the risk of developing
obesity and metabolic syndromes in postmenopausal women [34], it is important to gain
a better understanding of the functions of gut microbiota in metabolic health in females.

Recent evidence suggests there is cross-talk between estrogens and gut microbiota.
Urinary estrogens in postmenopausal women positively correlate with gut microbiota taxa
diversity [35]. In further support of estrogens’ influence on gut microbiota in women, phy-
toestrogens increase Lactobacillus, Enterococcus and Bifidobacterium [36,37]. In mice, ovariec-
tomy alters gut microbial diversity, in particular, by shifting abundances of the two major
bacterial phyla, Bacteroidetes and Firmicutes and by increasing Bifidobacterium [38–40].
In mice fed a high-sucrose, high-fat containing western diet, chronic E2 administration
via drinking water decreased lipopolysaccharide-producing microbes, such as Escherichia
and Shigella, and increased Bifidobacterium and Akkermansia [41]. In addition, we recently
found that estrogens alter gut microbiota in leptin-deficient (ob/ob) obese female mice.
E2 decreased gut microbial evenness in both lean and obese (ob/ob) mice and increased
S24-7 abundance [42]. Taken together, these studies suggest that estrogens can influence
gut microbiota in females.

While diet and gut microbes profoundly affect energy metabolism, it is not known if
the estrogen-mediated protective effects in females are linked to changes in gut microbiota.
In the present study, we tested the hypothesis that the E2-mediated protection against
HFD-induced obesity and metabolic disorders is associated with changes in gut microbiota
and intestinal morphology in female mice. This study investigated the effects of E2 and
diet in female mice on their metabolic profiles, associated longitudinal changes in gut
microbiota, and gut epithelial integrity. These findings enhance our understanding of how
estrogens function in women’s metabolic health and help identify potential gut microbial
modulators in estrogen-dependent protection from metabolic syndromes.

2. Results
2.1. Estradiol Attenuates Body Weight and Fat Mass Gain in Female Mice on HFD

Ten-week-old female C57BL/6J mice were bilaterally ovariectomized (OVX) and
received implants containing 17β-estradiol (E2) or vehicle (Veh, n = 6/group) [11,42].
Metabolic and gut microbiota data were collected at different points through the study
(Figure 1A). Analysis of longitudinal data, including both STND and HFD feeding, showed
a main effect of E2 on body weight. During the two weeks on STND, Veh and E2 mice
did not differ in body weight. After switching to HFD, Veh mice gained weight, whereas
E2 mice were protected from the weight gain. Veh mice weighed more than E2 mice from
D21 till the end of the study (Figure 1B), due to increased fat mass (Figure 1C). The effect
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of E2 on fat mass was profound during HFD, although no effect was seen during STND.
Lean mass was not affected by E2 during either diet (Figure 1D).
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Figure 1. Estradiol attenuates weight gain in female mice on a high-fat diet (HFD). Experimental timeline (A). Ten-week old
mice were ovariectomized and implanted with capsules containing E2 (50 µg) or Veh implants (n = 6/group). Animals
were placed in metabolic cages for 3 days, once each during STND and HFD. Body weight (B) Fat mass (C) Lean mass (D).
Mice were switched from standard diet (STND) to HFD on day 14. Surgery for the hyperinsulinemic- euglycemic clamp on
days 37–39 (4 mice/day) resulted in weight change in both groups. Error bars are shown as ± SEM. * denotes p < 0.001,
using repeated measures ANOVA followed by t-test. OVX: ovariectomy; 5HFS: 5-h fasting blood glucose; MRI: body
composition measurement using proton magnetic resonance spectroscopy (1H-MRS); Clamp: hyperinsulinemic-euglycemic
clamp; # indicates fecal sample collection days.

2.2. Estradiol Reduces Food Intake and Energy Expenditure in Female Mice on STND

Analysis of food intake (calories), including both STND and HFD feeding, showed
a main effect of E2 treatment during night. During STND, E2 reduced food intake during
24 h and day (Figure 2A). An interaction between E2 and diet was also observed on food
intake during 24 h, day and night. E2 altered water intake during STND such that E2-mice
consumed less water during day, but more during night, while no effect was detected in
cumulative 24 h data (Figure S1A).

Locomotor activity was measured using metabolic cages (TSE Systems, Germany) for
a 72-h period on D11–D13 and D29–31 during STND and HFD, respectively. A main effect
of E2 treatment was present on locomotor activity during 24 h and night. E2 mice on STND
were less active during the light phase compared to Veh mice (Figure 2B).

VO2 consumption and VCO2 production were also measured using metabolic cages.
E2 altered VO2 consumption during day and night, and VCO2 production during day in
longitudinal data. During STND, E2 decreased VO2 consumption during 24 h and day
(Figure 2C) and VCO2 production at 24 h, day, and night (Figure 2D). Respiratory exchange
rate (RER, VO2/VCO2), a predictor of relative contribution of carbohydrate (value > 0.85)
vs lipid (value < 0.8) on energy production, was decreased in E2 group during day, but not
during 24 h or night (Figure S2A). E2 affected resting energy expenditure (EE) during day
and night, with no effect on 24 h data. During STND, EE was attenuated in E2-treated mice
during 24 h and day (Figure 2E).
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mice in metabolic cages on days 11–13. The average 24-h data were obtained from 72-h data and used for statistical analysis.
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2.3. Estradiol Increases Food Intake and Energy Expenditure in Female Mice during HFD

E2 increased HFD consumption during 24 h and night (Figure 3A). Similarly, water
intake was increased in E2 mice during 24 h and night (Figure S1B). E2 profoundly increased
locomotor activity during 24 h and night (Figure 3B). Increased metabolic capacity in
E2 mice during HFD was further confirmed by increases in VO2 consumption during 24 h
and night and VCO2 production, during 24 h and night (Figure 3C,D). Similarly, EE was
increased in E2 mice during 24 h and night (Figure 3E). RER was not affected by E2 during
HFD feeding (Figure S2B).

2.4. HFD Increases Body Weight and Fat Mass Gain in Female Mice

To determine the effects of E2 on energy metabolism and gut microbiota under dif-
ferent diet conditions, mice were fed a chow diet (STND) for the first 14 days after OVX
and then fed HFD for days 14–45 (Figure 1A). HFD had a profound effect on body weight
and fat mass. An interaction between diet and E2 treatment was also present on body
weight and fat mass (Figure 1B,C). For the lean mass, while an effect of diet was present on
longitudinal data, there was no effect on separate data during STND or HFD (Figure 1D).

2.5. HFD Alters Food Intake and Energy Expenditure in Female Mice

A comparison of food intake, in calories, between STND and HFD feeding revealed
a main effect of diet during 24 h and day, but not at night. However, there was an interaction
of diet and hormone treatment during 24 h, day, and night. Interestingly, Veh mice on HFD
ate less calories during 24 h compared to Veh mice on STND. In contrast, E2 mice on HFD
ate more calories during 24 h, than during STND (Figures 2 and 3). Both Veh and E2-mice
had a greater water intake during STND than HFD, during 24 h and night (Figure S1A,B).
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(A) Physical activity (B) VO2 consumption (C) VCO2 production (D) Resting energy expenditure (E) were measured in
mice in metabolic cages on days 15–17 of HFD feeding. The average 24-h data were obtained from 72-h data and used for
statistical analysis. * indicates differences between E2 and Veh mice (n = 6/group) (p < 0.05; t-test).

Diet affected locomotor activity during 24 h, day, and night. Within E2 group, mice
were more active at 24 h and night following the switch to HFD compared to STND,
suggesting that one mechanism by which estrogens prevent HFD-induced obesity is by
increasing activity. In contrast, Veh mice were less active during HFD feeding, than on
STND, during day. Diet also affected VCO2 production (during 24 h, day, and night).
Veh mice had reduced VCO2 production during HFD than on STND (on 24 h, day, and
night data). E2 mice also had reduced VCO2 production during HFD compared to STND,
but only during night. Moreover, an interaction of E2 and diet was present on VCO2
production (on 24 h, day and night data). Similar to VCO2 production, Veh mice on
HFD had decreased VO2 consumption (during 24 h, day, and night), compared to STND.
In contrast, VO2 consumption was increased in E2-mice during HFD (during 24 h, day,
and night) (Figures 2 and 3). An interaction of E2 and diet was also present on VO2
consumption (during 24 h, day, and night).

A main effect of diet was also observed on RER, with a lower RER during HFD (during
24 h, day and night) compared to STND. As expected, RER was decreased in both E2 mice
(during 24 h data, day, and night) and Veh mice (also during 24 h, day, and night), during
HFD feeding due to lipid oxidation. In contrast, EE did not show a main effect of diet, but
an interaction of treatment and diet was detected (during 24 h, day, and night). E2-treated
mice had an increased EE during HFD (on 24 h, day, and night data) whereas Veh mice
during HFD had a decreased EE (during 24 h, day, and night) (Figures 2 and 3).

2.6. Estradiol Attenuates Fasting Glucose Levels and Plasma Adipokines in Female Mice

Five-hour fasting blood glucose was measured at different times during STND and
HFD, which was lower in E2-treated mice than Veh mice on D8 and D14 (during STND),
and D23 (during HFD) (Figure 4A). As a response to changes in plasma glucose and lipids,
adipokines are produced, many of which are regulated by E2 [13,43,44]. We investigated
if the adipokines, leptin and resistin, are altered by E2 during STND or HFD feeding.
Leptin was increased in Veh mice on STND as early as D8 (p = 0.029) and on D23 during
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HFD (p < 0.001) (Figure 4B). Compared to E2-treated mice, plasma resistin levels increased
in Veh mice during both STND and HFD (Figure 4C). E2 did not alter plasma levels of
the pro-inflammatory cytokines, IL-6 and TNF-α (Figure S3A,B). Diet had no effect on
plasma glucose and adipokines on the days examined (Figure 4 and Figure S3A,B). Plasma
estradiol was measured on D23 of the implant to confirm its release into the circulation,
which was significantly higher in E2 group compared to controls (Figure 4D). The intestinal
hormones ghrelin and GLP-1 in plasma were undetectable.
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Figure 4. Estradiol decreases plasma glucose and adipokines in female mice independent of diet.
5 h-fasting blood glucose (A) on days 8 and 14, both during STND and on day 23, during HFD.
Resistin (B) and leptin (C) were measured on D8 during STND and on D23 during HFD. Plasma
estradiol levels were measured on D23 to confirm physiological levels in the treatment group (D).
* indicates differences between E2 and Veh mice (n = 6/group) (p < 0.05, repeated measures ANOVA
followed by t-test for A, B, and C, and t-test for D).

2.7. Estradiol Improves Insulin Sensitivity in Female Mice on HFD

We performed hyperinsulinemic-euglycemic clamp to measure insulin sensitivity
and glucose metabolism in awake mice. E2 mice had an increased glucose infusion rate
and increased whole-body glucose turnover compared to Veh controls during clamp
(Figure 5A,B). Whole-body glycogen synthesis was increased in E2-treated mice compared
to Veh mice (Figure 5C). Insulin-stimulated glucose uptake in skeletal muscle (gastroc-
nemius) did not differ between E2 and Veh mice, although a trend towards a decrease
(p = 0.08) was observed in E2 mice, suggesting that skeletal muscle is not primarily respon-
sible for the insulin-stimulated energy utilization in females as an effect of E2 (Figure 5D).
E2 did not alter basal or clamp plasma glucose levels, although a trend towards a decrease
in basal glucose (p = 0.08) was observed in E2 mice (Figure S4A). Consistently, a trend
towards an increase in basal hepatic glucose production (HGP; p = 0.076) was observed
in E2 groups, whereas clamp HGP was not affected (Figure S4B). Whole-body glycolysis,
hepatic insulin action, or liver triglyceride levels were not affected by E2 (Figure S4C–E).
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Figure 5. Estradiol increases insulin sensitivity and glucose utilization in female mice on HFD.
Mice underwent hyperinsulinemic-euglycemic clamp on days 43–45, a week following jugular vein
surgery. Glucose infusion rate (A) Glucose turnover (B) Glycogen synthesis (C) Skeletal muscle
glucose uptake (D). * indicates differences between E2 (n = 6) and Veh (n = 5) mice * (p < 0.05, t-test).

2.8. Estradiol Decreases Occludin Expression in Colon in Female Mice Fed HFD

Tight junction proteins provide an indirect measure of intestinal epithelial integrity.
Thus, to investigate the role of E2 on healthy epithelial barrier, the tight junction proteins
occludin and ZO-1 were measured in female mice after 2 weeks on HFD. Interestingly, E2
treatment reduced the area and intensity of occludin immunoreactivity in the mid-colon
compared to Veh mice (Figure 6B,C). There was no effect of E2 on occludin in the proximal
and distal colon, or on ZO-1 expression throughout the colon (Figure S5A,B).
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2.9. Estradiol Alters Gut Microbial Diversity in Female Mice

To identify the effects of E2 on gut microbial diversity during STND or HFD feeding,
fresh fecal samples from D1 and D8 (during STND), and from D23 and D42 (during
HFD), were analyzed. α-diversity, a measure of within-sample diversity as measured by
richness and evenness of species within a population, was not significantly associated with
E2 during STND or HFD (Figure S6A,B). β-diversity, a measure of dissimilarity between
microbial communities, revealed a distinct clustering of the microbiota communities (Bray-
Curtis distance) due to E2 during HFD on D23 (p = 0.003) and D42 (p = 0.007) (Figure 7B,C,
respectively). There were no significant effects of E2 during STND on the aggregate data
from D0 and D8 (Figure 7D). These data suggest a profound effect of E2 on gut microbiota
diversity in mice fed HFD.
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Figure 7. Estradiol and HFD alter gut microbiota β-diversity in female mice. Bray-Curtis distance
between aggregate microbiota communities shows a distinct clustering between STND and HFD
(A) and between E2 and Veh-treated animals during HFD, on Day 23 (B) and Day 42 (C), but not
during STND (D). For A, (n = 12/group) and for B-D, (n = 6/group). p < 0.05 (PERMANOVA)
considered significant.

2.10. Estradiol Alters Relative Abundances of Gut Microbiota in Female Mice

The generalized mixed effects models with FDR control was used to identify differ-
entially abundant taxa (q-value < 0.05). A total of 14 taxa differed between E2 and Veh
groups (Figure 8A,B). Of these 14 taxa, Verrucomicrobia (phylum) and all its lower taxa lev-
els, including Verrucomicrobiae (order), Verrucomicrobiales (class), Verrucomicrobiaceae
(family), and the genus Akkermansia, were increased in E2 mice, with the most pronounced
differences during HFD feeding (Figure 8B). Dorea spp. were also increased in E2 mice
compared to Veh mice (Figure 8A,B).
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Other taxa, including Erysipelotrichi (order) and its genus Coprobacillus, and Strep-
tococceae (family) and its genus Lactococcus were decreased in E2 mice compared to Veh
controls during HFD feeding. In addition, the family Clostridiaceae and its genus Clostrid-
ium, were decreased in E2 mice both during STND and HFD feeding (Figure 8B).

2.11. HFD Alters Gut Microbiota Diversity and Relative Abundances in Female Mice

Similar to previous reports mostly in males [31,32,45–48], HFD profoundly affected
gut microbiota composition in female mice. HFD decreased microbiota richness (Chao1;
p = 0.002; Figure S5A) and increased evenness, the measure of homogeneity of species
distribution in a population (Pielou’s; p < 0.001; Figure S5B).

Diet also profoundly altered microbiota community structures. The microbial commu-
nities distinctly clustered between STND and HFD feeding (p < 0.001, PERMANOVA), as
depicted by the PC1 (64.3%; Figure 7A). The effect of E2 was strong during HFD (Figure 7B),
while no effects of E2 were detected during STND (Figure 7C). Moreover, a total of 49 taxa
were differentially associated with STND vs HFD, of which 39 were positively associ-
ated with HFD, while only 10 were positively associated with STND, further supporting
a profound effect of HFD on gut microbiota (Figure 8C,D).

HFD increased 39 taxa including Firmicutes and its lower taxa Clostridia (order),
Clostridiales (class), the families Mogibacteriaceae and Peptostreptococcaceae, and the
genera Dorea, Ruminococcus, Anaerotruncus, and Oscillospira. HFD increased additional taxa
within the Firmicutes, including Erysipelotrichi (order) and its lower taxa Erysipelotrichales
(class), Erysipelotrichaceae (family) and Allobaculum and Coprobacillus. Two other families,
Bacteroidaceae and Streptococcaceae, and their genera Bacteroides and Lactococcus, respec-
tively, were also positively associated with HFD. Furthermore, HFD increased Proteobac-
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teria and its lower taxa, including Deltaproteobacteria (order), Desulfovibrionales (class),
Desulfovibrionaceae (family), and Desulfovibrio. In addition, the phylum Verrucomicrobia
and all of its lower taxa levels, including Verrucomicrobiae (order), Verrucomicrobiales
(class), Verrucomicrobiaceae (family), and the genus Akkermansia, were increased during
HFD feeding compared to STND. Actinobacteria (phylum) and its lower taxa at all levels,
including Coriobacteriia (order), Coriobacteriales (class), Coriobacteriaceae (family) and its
genus Adlercreutzia, were also increased as a result of HFD feeding.

Ten taxa were increased during STND compared to HFD, including Turibacteriales
(class), its family Turibacteriaceae and the genus Turibacter, as reported previously [49]. The
relative abundances of the family Clostridiaceae and its genus Clostridium and Coprococcus
were also increased during STND compared to HFD. Similarly, Tenericutes (phylum), its
lower taxa Mollicutes (order), and the genus RF39 were increased during STND.

2.12. Gut Microbiota Associates with Metabolic Status in Female Mice

To investigate if metabolic changes are associated with changes in the gut microbiota
community, correlation analysis was performed between the measures. PERMANOVA test
based on Bray-Curtis distance followed by FDR correction (q-value < 0.1) revealed signifi-
cant correlations of body weight (q = 0.015), plasma glucose (q = 0.025) and physical activity
(q = 0.09) with microbial community distances. To identify specific taxa that are linked
to E2-dependent metabolic effects, correlation analysis was done between the microbial
taxa that were altered by E2 treatment and the major metabolic profiles (Figure 9). Verru-
comicrobia, along with its lower taxa levels, including Akkermansia, negatively correlated
with body weight, fat mass, and leptin, suggesting Akkermansia as a microbial mediator
of E2-dependent protection against obesity. Verrucomicrobiae and Dorea, both increased
in E2 mice, were negatively associated with blood glucose levels. In addition, Dorea was
positively associated with physical activity. In contrast, some taxa that were increased in
Veh mice, including Streptococcaceae and its genus Lactococcus, were positively associated
with body weight, fat mass, and leptin, suggesting these taxa are predictors of obesity. Simi-
larly, Erysipelotrichi, its family Erysipelotrichaceae and genus Coprobacillus, were positively
associated with body weight. Interestingly, Coprobacillus was positively correlated with
fat mass, but negatively correlated with physical activity and basal energy expenditure,
suggesting a negative impact of this microbe on metabolic health in female mice.
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3. Discussion

In the current study, we investigated the comprehensive mechanisms by which estro-
gens protect females against diet-induced obesity and insulin resistance. E2 treatment pre-
vented HFD-induced weight gain and adiposity in ovariectomized adult mice, consistent
with earlier work from our group and others [11,13,14,42,44]. The E2-dependent protection
against HFD-induced obesity was most strongly associated with increased physical activity
and basal energy expenditure. E2 prevented hyperglycemia during both STND and HFD
intake. Consistent with previous studies, E2 decreased the plasma adipokines leptin and
resistin [13,44]. Furthermore, hyperinsulinemic-euglycemic clamp results showed that E2
improved systemic insulin sensitivity and glucose turnover in HFD-fed mice. However,
skeletal muscle glucose uptake, hepatic glucose production, and hepatic triglycerides were
not altered by E2 in HFD-fed mice. These data demonstrate tissue-specific effects of E2 in
providing the protective mechanisms against HFD-induced obesity and insulin resistance.

Estrogen receptors (ER) exist in two forms, ERα and ERβ, which are transcribed from
different genes [50,51]. These subtypes differ in their abilities to bind different ligands, are
expressed differently in specific tissues and mediate different functions in behavior and
physiology [51,52]. Intestinal epithelium predominantly expresses ERβ [53]. To identify
any effects of estrogens in this key metabolic passageway, we analyzed changes in the
intestinal epithelium in mice with or without E2. The tight junction protein, occludin,
was decreased in the colon of E2-treated mice fed HFD, suggesting that HFD-induced
increase in gut permeability, due to the depletion of tight junction proteins and mucus
layer thickness [54,55], is modulated by E2. In future work, it will be important to study
additional tight junction proteins combined with in vivo gut permeability assays to further
explore the effects of E2 and diet on gut integrity and barrier function.

Host metabolic status can be predicted by its gut microbiota community and composi-
tion. Metabolic syndrome, characterized by adiposity, hyperlipidemia and hyperglycemia,
is linked to dysbiosis of the gut microbial ecosystem [56–58]. However, we currently lack
a full understanding of the parallel assessment of gut microbiota and metabolic changes
within the same animals as an effect of E2, which limits the knowledge of any direct inter-
actions between the host metabolic status and microbial factors. Thus, in the present study,
we assessed if changes in gut microbiota are linked to the protective effects of estrogens
against obesity, hyperglycemia, and insulin resistance. E2 altered microbial communities
and taxa, with a profound effect during HFD feeding. Notably, the relative abundances
of the phylum Verrucomicrobia, including its major constituent genus Akkermansia, and
Dorea (phylum Firmicutes), were significantly increased by E2 during HFD. An increase in
Akkermansia abundance is also associated with E2-mediated protection against western diet-
induced obesity and metabolic syndrome in ovariectomized mice [41]. In the current study,
we further identified an association between Akkermansia and multiple metabolic measures.
Akkermansia negatively correlated with body weight and fat mass, suggesting it functions in
the protective effects of E2 on metabolic health. Similarly, Dorea was positively associated
with physical activity. In support of these findings, ovariectomy increases weight gain
in both STND- and HFD-fed rats and is associated with changes in gut microbiota [59].
Similarly, in a PCOS mouse model, FMT from androgen-treated mice disrupts metabolic
and endocrine health in germ-free recipients, whereas gut microbiota from control donors
protects against metabolic dysregulation [60–62]. In a different study, diet-independent,
ovariectomy-induced weight gain was not rescued by cohousing with intact mice, with
the goal of transferring of gut microbiota [49]. It is possible that a more complete transfer
of microbiota is needed to rescue this ovariectomy-induced weight gain, such as fecal
microbiota transfer (FMT) by gavage or co-housing combined with FMT. Nevertheless, the
present findings, taken together with previous ones, suggest that gut microbiota functions
in metabolic dysregulation caused by diet or sex hormones.

The relative abundance of Akkermansia, the only intestinal resident genus of the
phylum Verrucomicrobia, was significantly increased in E2-treated mice. Akkermansia,
a mucin-degrader and a producer of short chain fatty acids [63–66], is decreased in obese
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humans, including obese pregnant women [65,67–69]. In postmenopausal women, Akker-
mansia is negatively correlated with insulin resistance and dyslipidemia [70]. Similarly,
in ovariectomized mice fed a western diet, Akkermansia was increased following E2 treat-
ment [41]. Administration of heat-killed Akkermansia muciniphila decreased body weight,
fat mass, and hip circumference in obese women, highlighting its beneficial role in women’s
metabolic health [71]. In further support, A. muciniphila supplementation in male mice
attenuated HFD-induced obesity and inflammation and improved insulin signaling [72–75].
In the present study, the relative abundance of Dorea was also increased by E2 treatment
in HFD-fed females. Similar to Akkermansia, Dorea is a mucin degrader, suggesting these
two microbes are co-altered in response to changes in diet or hormones, likely due to the
similar nutrient environment and/or quorum sensing [76]. Taken together, these findings
suggest that Akkermansia and Dorea contribute to the E2-mediated compensatory protection
against HFD-induced metabolic changes.

Coprobacillus, Lactococcus, and Clostridium, including their families Erysipelotrichaceae,
Streptococceae and Clostridiaceae, respectively, were increased in Veh mice. Among these
microbes, Coprobacillus and Lactococcus were positively correlated with body weight and
fat mass, suggesting they contribute to obesity in E2-deficient female mice. An inverse
correlation of Lactococcus and Coprobacillus with E2 has been previously demonstrated in fe-
male mice on standard diet [77] and female ob/ob mice on HFD [42]. Lactococcus are efficient
energy harvesters through the conversion of glucose to pyruvate [78]. Coprobacillus produce
β-galactosidases, enzymes necessary for the breakdown of galactosides, such as lactose in
food [79]. These and other gut microbes can also affect intestinal endocrine cells through
metabolite production [80,81], which can impact the development of type 2 diabetes and
obesity [82]. In future studies, it will be important to determine if selective depletion of
these microbes mitigates the metabolic insult caused by the loss of estrogens in females.

Intake of a high-calorie diet during menopause, a period characterized by a slowed
metabolic rate, further increases the risk of obesity and metabolic disorders in women [4,7,9]. In
the current study, the protective effect of E2 treatment on metabolic status was profound during
HFD intake in female mice, which is consistent with previous reports [11,13,14,32,42,57,83–85].
The increases in body weight and fat mass, and a decrease in basal energy expenditure, due
to HFD feeding were attenuated by E2. E2 corrected HFD-induced positive energy balance
primarily by increasing basal energy expenditure and locomotor activity, extending previ-
ous findings [14]. Moreover, E2 increased energy utilization in HFD-mice by increasing
systemic insulin sensitivity and whole-body glucose turnover. Since these effects were
not associated with increased muscle glucose metabolism, other estrogen-sensitive organs
might be responsible for increased glucose utilization in E2-treated mice. E2-mediated
improvements in some measures of insulin sensitivity have also been demonstrated previ-
ously [14,44]. Given that mice lacking ERα are insulin resistant [86], these effects of E2 on
metabolic pathways discussed above are most likely mediated by ERα.

The present and previous studies have found that levels of the adipokines, leptin
and resistin, were decreased by E2 in female mice [13,44]. The present study reveals that
this decrease in leptin levels was associated with gut microbiota. In particular, leptin
was negatively associated with Akkermansia, a positive microbial predictor of metabolic
health, whereas was positively associated with Lactococcus [42]. Leptin decreases food
intake and increases energy expenditure [87,88]. However, increased circulating leptin is
positively linked to metabolic syndrome in women [89,90]. In addition, resistin deficiency
is associated with increased insulin sensitivity, particularly through a reduction in hepatic
glucose production [91,92]. Therefore, the early changes in adipokines observed in the
present and previous studies [13,44] may serve as early markers of diet-induced obesity
and insulin resistance, as well as measures of the E2 response against various metabolic
insults. Moreover, the E2-dependent downregulation of leptin and its interaction with
gut microbiota may provide an essential braking mechanism against the development of
diet-induced obesity.
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4. Materials and Methods

The following animal experiments were performed at the University of Massachusetts
Medical School (PROTO202000104, 11/01/20). All procedures were approved by the
Institutional Animal Care and Use Committees of UMass Medical School and Wellesley
College and performed in accordance with National Institutes of Health Animal Care and
Use Guidelines.

4.1. Diet and Ovariectomy

Female C57BL/6J mice were purchased from The Jackson Laboratory and housed in
the animal facility at UMass Medical School. Ten-week-old female C57BL/6J mice were
bilaterally ovariectomized (OVX) and silastic capsules filled with 17β-estradiol (E2, 50 µg
in 25 µL of 5% ETOH/sesame oil, n = 6) or vehicle (Veh, n = 6) were implanted subcu-
taneously [11,42]. Mice were singly housed and fed a chow diet (STND; 13.5% calories
from fat, #5001, Purina, LabDiet, Fort Worth, TX, USA) for the first 14 days after OVX. To
test the effects of E2 on metabolism and gut microbiota under HFD, mice were put on
a HFD containing 60% kcal fat (#D12492, Research Diets, New Brunswick, NJ, USA) for the
remainder of the study (days 14–45; Figure 1A).

4.2. In Vivo Assessment of Energy Balance Using Metabolic Cages

We performed a 3-day measurement of energy balance (i.e., food intake, VO2 consump-
tion and VCO2 production, energy expenditure, respiratory exchange ratios, and physical
activity) using metabolic Cages (TSE Systems, Germany) in mice (n = 6 per treatment
group) on D11-13 during STND and D29-31 during HFD as described previously [93,94].
The O2 consumption and CO2 production were used to calculate the respiratory exchange
ratio (RER). The horizontal and vertical movement (XYZ-axis) were measured in the cages
as an index of locomotor activity. Body composition (fat/lean mass) was assessed by
proton magnetic resonance spectroscopy (1-H MRS; EchoMRI, Houston, TX, USA) once
each week (Figure 1A).

4.3. Measurement of Glucose Metabolism Using Hyperinsulinemic-Euglycemic Clamp

On days 37–39, anesthetized mice underwent a survival surgery to establish an in-
dwelling catheter in the jugular vein. One week after the surgery, following overnight
fasting, a 2-h hyperinsulinemic-euglycemic clamp was conducted in awake mice with
a primed (150 mU/kg body weight) and continuous infusion of human insulin at a rate of
2.5 mU/kg/min to raise plasma insulin within a physiological range [95]. D-[3-3H] glucose
was intravenously infused using microdialysis pumps during the experiments to assess the
whole-body glucose turnover [96]. Blood samples were collected at 10–20 min intervals for
the immediate measurement of plasma glucose, and 20% glucose was infused at variable
rates to maintain euglycemia. To estimate insulin-stimulated glucose uptake in individual
organs, 2-[1-14C] deoxy-D-glucose (2-[14C] DG) was administered as a bolus (10 µCi) at
75 min after the start of clamp. Blood samples were taken for the measurement of plasma
[3H] glucose, 3H2O, and 2-[14C] DG concentrations. At the end of the clamp, mice were
anesthetized and tissue samples were taken for biochemical and molecular analyses.

4.4. Calculation of In Vivo Glucose Metabolism

Basal whole-body glucose turnover was determined as the ratio of the [3H] glucose
infusion rate to the specific activity of plasma glucose at the end of basal period, as
previously described [96]. Insulin-stimulated whole-body glucose uptake was determined
as the ratio of the [3H] glucose infusion rate to the specific activity of plasma glucose
during the final 30 min of clamps. Hepatic glucose production during insulin-stimulated
state (clamp) was determined by subtracting the glucose infusion rate from the whole-
body glucose uptake. Whole-body glycolysis was calculated from the rate of increase in
plasma 3H2O concentration from 90–120 min of clamp. Whole-body glycogen plus lipid
synthesis was estimated by subtracting whole-body glycolysis from whole-body glucose
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uptake. Since 2-DG is a non-metabolizable glucose analog, insulin-stimulated glucose
uptake in skeletal muscle were estimated by determining muscle-specific content of 2-[14C]
DG-6-P. Skeletal muscle glucose were calculated from plasma 2-[14C] DG decay profile and
intracellular 2-[14C] DG-6-P content.

4.5. Biochemical Assays

Blood samples were collected after 5-h fasting on day (D) D8 (during STND) and on
D23 (9 days on the start of HFD) by tail vein puncture (Analytic Core, MMPC). Plasma E2 on
D23 was measured using Mouse/Rat Estradiol ELISA kit (#ES180S, Calbiotech [12,97].
The cytokines Il-6 and TNF-α, the adipokines leptin and resistin, and intestinal hormones,
ghrelin and GLP-1 were measured using an ELISA with a Luminex 200 Multiplex system
(Millipore, Darmstadt, Germany).

Glucose concentrations during clamps were analyzed using clinical glucose analyzer,
and insulin levels were measured using an ELISA kit. Plasma [3H] glucose, 2-[14C]
DG, and 3H2O concentrations were determined following deproteinization of samples
using liquid scintillation counter on dual channels for separation of 3H and 14C. The
radioactivity of 3H in tissue glycogen was determined by precipitating glycogen with
ethanol. Organ-specific 2-[14C] DG-6-phosphate concentrations were determined using
ion-exchange column as previously described [98]. Hepatic intracellular triglyceride level
was measured using spectrophotometry using triglyceride assay kit after digesting tissue
samples in chloroform-methanol.

The following animal experiments were performed at Wellesley College, and all
procedures were approved by the Institutional Animal Care and Use Committees of
Wellesley College (#2101, 02/05/21) and performed in accordance with National Institutes
of Health Animal Care and Use Guidelines.

4.6. Fecal DNA Extraction and Sequencing

DNA was extracted from fresh frozen fecal samples on D0 and D8, during STND and
D23 and D42, during HFD, using MO BIO PowerSoil DNA Isolation Kit (Valencia, CA) with
minor adjustments to the manufacturer’s protocol, as described previously [42]. The DNA
quality and quantity were assessed using Nanodrop spectrophotometer (Thermo Scientific,
Waltham, MA, USA). 16S rDNA was amplified at the V3-V4 region using the universal
16S rDNA primers: for- ward 341F (5′-CCTACGGGAGGCAGCAG-3′) and reverse 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) with sequence adapters on both primers and sample-
specific Golay barcodes on the reverse primer [99]. The amplicons were quantified by
PicoGreen (Invitrogen, Carlsbad, CA, USA) and pooled in equal concentrations. The pooled
amplicons were cleaned using UltraClean PCR Clean-Up Kit (MO BIO, Carlsbad, CA, USA)
followed by quantification using the Qubit (Invitrogen, Carlsbad, CA, USA).

Samples were multiplexed and paired-end sequenced using 16S rDNA primers on
an Illumina MiSeq (Illumina, San Diego, CA, USA) at the Microbiome Core (Mayo Clinic,
Rochester, Minnesota). Paired R1 and R2 sequence reads were processed via the hybrid-
denovo bioinformatics pipeline, which clustered a mixture of good-quality paired-end
and single-end reads into operational taxonomic units (OTUs) at 97% similarity level [100].
OTUs were assigned taxonomy using the RDP classifier trained on the GreenGenes
database (v13.5) [101,102]. A phylogenetic tree based on FastTree algorithm was con-
structed based on the OTU representative sequences [103]. The total number of reads
ranged from 44,869 to 697,323 with a median of 122,445 reads per sample.

4.7. Intestinal Tissue Processing for Histology

Mice used for the intestinal histology analysis were housed in the animal facility at
Wellesley College. Mice were ovariectomized and implanted with E2 (n = 6) or Veh (n = 6),
as described above. Animals were fed STND for 7 days and switched to HFD containing
60% kcal fat (#D12492, Research Diets) on day 8 (D8). On D22 of OVX (after 2 wks on HFD),
mice were euthanized and colons were collected.
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Mice treated with E2 or Veh (n = 6/group) were euthanized after 2 wks on HFD to
investigate the effects of E2 on intestinal epithelium. Colon was prepared as previously
described, with some modifications [104]. In brief, colon tissue was longitudinally cut open
and vigorously washed 3 times in 1X PBS (pH 7.2). The colon tissue was then dipped in
modified Bouin fixative (50% EtOH in 5% Acetic acid in 1X PBS) for 5 min. The tissue was
rolled on a toothpick, transferred to a tissue cassette, and fixed overnight in 10% formalin
at room temperature. Prior to paraffin embedding, tissue was processed using a tissue
processor (CITADEL 2000, Thermo Fisher) at DERC Morphology Core, UMass Medical
School. Briefly, the tissue was incubated in 70% EtOH for 1x, 95% EtOH for 1x, and 100%
EtOH and 3x, for 1 h each on an orbital shaker. The tissue was then incubated in xylene
(#X5SK, Thermo Fisher) 3x for 1 h each and kept in a tissue mold and incubated in paraffin
(Histoplast IM, Cat# 8331, Thermo Fisher, Waltham, MA, USA) at 58 ◦C 2x for 2 h. The
tissue roll was sectioned at 5 µm thickness on a cryostat.

4.8. Triple-Label Immunohistochemistry for Tight Junction Proteins

Triple-label immunohistochemistry was done on colon sections to quantify tight junc-
tion proteins, occludin and zona occludens 1 (ZO-1), and a nucleic acid stain (DAPI) in
colonic epithelium including crypts as described previously [105]. In brief, the colon
sections were deparaffinized in xylene and dehydrated in 100% ethanol, followed by rehy-
drating in graded ethanol concentrations of 95%, 70% and 50%. Antigen retrieval was done
to increase the antigen accessibility by incubating the slides for 30 min in Tris-EDTA (pH
9.0) in boiling water. Slides were allowed to cool and washed in 0.5% sodium borohydride
(w/v) in TBS for 20 min to remove excess fixative. Following additional washes in TBS,
the sections were incubated in blocking buffer (10% normal donkey serum, 0.3% Triton,
1% BSA) for 30 min. The sections were then incubated at 4 ◦C overnight in rabbit poly-
clonal antibody directed against human occludin (1:100, #ab168986, Abcam) [106] and goat
polyclonal antibody directed against C-terminal of human ZO-1 (1:100; #ab190085, Abcam,
Cambridge, MA, USA) [107]. The specificities of occludin and ZO-1 on mouse intestinal
tissue have been verified previously [74,108]. The following day, sections were washed
then incubated for 1 h in dark at room temperature with a nucleic acid stain, DAPI, at
a concentration of 30 uM and fluorescently labeled donkey-anti-rabbit (1:100; Alexa Fluor
647, Invitrogen) [109] and donkey-anti-goat (1:100; Alexa Fluor 488, Invitrogen, Waltham,
MA, USA) [110] secondary antibodies for the detection of occludin and ZO-1, respectively.
Slides were washed, coverslipped with Fluorogel (Electron Microscopy Sciences, Hatfield,
PA, USA), stored overnight in dark, and imaged within two days.

4.9. Imaging by Confocal Microscopy and Analysis

The proximal, middle and distal regions of the colon were imaged using a Leica
laser scanning confocal microscope (TCS SP5 II), equipped with 405 Diode, Argon, HeNe
594, and HeNe 633 lasers and with Leica software (LAS version 2.7.3.9) [111]. All images
were taken under 200x magnification with the PL APO dry-objective (numerical aperture,
0.7). The gain and offset values for each laser were optimized for each channel and kept
constant for all animals. Sections of 1 µm thickness were optically imaged and analyzed
using the NIH ImageJ software (version 1.52) [112]. A representative section per animal
per subregion was analyzed using uniform regions of interest (ROI), which were kept
constant for each subregion across all animals. For the quantification of immunolabeling,
threshold for each laser channel was set separately based on a scale of 0–255, to minimize
the background. Using three random images per treatment, the threshold that displayed the
immunolabeling signal closest to the unprocessed original image was chosen and applied
across all animals. Any value below the threshold was considered to be background. The
% area with labeling above threshold and the mean pixel intensity were collected within
the selected ROI for each subregion.
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4.10. Statistical Analysis
4.10.1. Metabolic Data

The effects of diet and E2 treatment were analyzed on longitudinal data using mixed
model repeated measures (“lme” in R “nlme” package) [113] using mouse as a random sub-
ject. Once the main effects were observed, the separate effects during STND and HFD were
measured using repeated measures ANOVA (spss v.24) [114]. Data from metabolic cages,
including food and water intake, locomotor activity, and respiration (O2 consumption and
CO2 production) and its derivative measures, respiratory exchange ratio and resting energy
expenditure, were recorded over 72 h and averaged to produce 24-h data, and analyzed
using the t-test. Fasting blood glucose, plasma hormones and cytokines, and end point
measures (including clamp data) were analyzed using the t-test. p < 0.05 was considered
statistically significant.

4.10.2. 16S rRNA Sequence Data

The data were rarefied to the minimum depth of 44,869 prior to the α-diversity and
β-diversity analyses [115]. For α-diversity analysis (Chao1 richness and Pielou’s evenness
indices), linear mixed effects models were fitted to the alpha diversity measures with
a random intercept for each mouse (“lme” in R “nlme” package). Wald test was used for
assessing the significance. For β-diversity analysis (Bray-Curtis distance), PERMANOVA
test (R adonis, 1000 permutations) was used to test whether overall microbiota composition
is associated with E2 or diet. For testing the E2 effects, the mouse (not individual sample)
was the permutation unit; for testing the diet effects, the mouse was the permutation
stratum (i.e., permutation only occurred within the same mice) [116]. The R2 was given as
the effect size.

Differential abundance analysis of treatment (E2 vs Veh) and diet (HFD vs STND)
effect was performed on the phylum, class, order, family and genus level. Only taxa
with prevalence >10% and maximum proportion >0.2% were tested. Generalized linear
mixed effects model (R “glmmPQL” function, over-dispersed Poisson regression, random
intercept) was fitted to the aggregated counts accounting for within-mouse correlation [117].
The library size was estimated using GMPR method [118]. The log library size was
included as an offset in the regression model. Treatment and diet variables were included
as covariates. Potential treatment and diet interaction (GxD) was also investigated by
including the interaction term in the regression model. Wald test was used to test the
significance of the association. Data were winsorized at 95% quantile (i.e., we replace outlier
counts with 95% quantile) to reduce the influence of potential outliers. False discovery rate
(FDR) control (BH procedure, R p.adjust function) was used for multiple testing correction
and performed on each taxonomic level from phylum down to genus. The taxa with
an FDR-adjusted p value (or q value) < 0.05 were considered as statistically significant.

4.10.3. Correlation Analysis of Microbiome and Metabolic Data

To identify if any changes in E2-dependent metabolic effects significantly associate with
changes in gut microbiota, correlation analyses were performed between the two outcomes.
PERMANOVA was used to perform an overall association test based on the Bray-Curtis
distance. For metabolic measures where multiple samples within the same mouse were
obtained, within-mouse permutations were done. Next, correlation tests were done to
identify microbial taxa associated with metabolic measures. To control for the potential
confounding effects due to diet and E2 treatment, residuals were taken by fitting regression
models (linear mixed effects model) to the microbial taxa abundance (square-root trans-
formed) and metabolic measures adjusting for diet and E2 effects. Spearman correlation
tests were then performed on the residuals. To reduce multiple testing burden, correlation
analyses were focused on the taxa associated with E2 treatment. The associations with an
FDR-adjusted p value (or q value) < 0.1 were considered as statistically significant.
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5. Conclusions

The present study provides compelling evidence that estrogens profoundly impact
energy and metabolic homeostasis in female mice. Consistent with previous studies, the
key metabolic changes, including food intake, energy expenditure, and glucose turnover,
were improved by E2 in females fed HFD. Moreover, the present findings reveal that gut
microbiota and gut barrier integrity are additional targets of E2-mediated protection against
diet-induced metabolic disorders. Furthermore, the role of gut microbiota in metabolic
health is supported by the present findings of strong correlations of multiple microbial
taxa with specific metabolic measures and physical activity. In future studies, it will be
important to perform shotgun metagenomics for the functional study of the gut microbiome
and explore the potential beneficial effects of Akkermansia and other microbes identified in
this study and their causative links with metabolic protection in females provided by E2.
In addition, identification and characterization of microbial metabolites that contribute to
the beneficial effects of E2 on metabolism will provide important insights for targeting gut
microbiota to improve women’s metabolic health.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11080499/s1. Figure S1. E2 alters water intake in female mice during STND (A) and
HFD (B). Mice were kept in metabolic cages from days 11–13 after ovariectomy and E2 implant and
the average 24-h data were obtained from 72-h data and used for statistical analysis. * indicates
differences between E2 and Veh mice (n = 6/group) (p < 0.05, t-test), Figure S2. Estradiol decreases
the respiratory exchange ratio (RER) in female mice during the day. Respiratory exchange ratios
of mice on STND (A) or HFD (B) were measured in metabolic cages for 72 h. The average 24-h
data were obtained from 72-h data and used for statistical analysis. * indicates differences between
E2 and Veh mice (n = 6/group) (p < 0.05, t-test), Figure S3: Estradiol or high fat diet did not alter
levels of the plasma cytokines, IL-6 and TNF-α in female mice. 5 h-fasting blood samples were
used to measure IL-6 (A) and TNF-α (B) during STND (on D8) and HFD (on D23); n = 6/group,
Figure S4. Estradiol does not alter hepatic insulin sensitivity and lipid production in female mice on
HFD. Mice E2 (n = 6) and Veh (n = 5) underwent hyperinsulinemic-euglycemic clamp on days 43–45,
a week following jugular vein surgery. Blood glucose (A) Whole-body glycolysis (B) Hepatic glucose
production (C) Hepatic insulin action (D) Liver triglycerides (E), Figure S5. Estradiol does not alter
zona occludens (ZO-1) immunoreactivity in the colonic epithelium in female mice fed a HFD. Percent
area (A) and mean intensity (B) in the three subdivisions of the colon (n = 6/group), Figure S6. HFD
alters gut microbiota α-diversity in female mice. HFD lowers richness (A) and increases evenness (B),
(n = 12/group). * indicates a difference between STND vs. HFD (p < 0.05; “lme” in regression).
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Abstract: Agouti-related peptide (AgRP) neurons, which relay information from peripheral metabolic
signals, may constitute a key central regulator of reproduction. Given that AgRP inhibits luteinizing
hormone (LH) secretion and that nutritional suppression of LH elicits an increase in AgRP while
suppressing kisspeptin expression in the arcuate nucleus (ARC) of the hypothalamus, we sought
to examine the degree to which AgRP could directly regulate ARC kisspeptin neurons. Hypothala-
mic tissue was collected from four castrated male sheep (10 months of age) and processed for the
detection of protein (AgRP input to kisspeptin neurons) using immunohistochemistry and mRNA
for melanocortin 3 and 4 receptors (MC3R; MC4R) in kisspeptin neurons using RNAscope. Im-
munohistochemical analysis revealed that the majority of ARC kisspeptin neurons are contacted
by presumptive AgRP terminals. RNAscope analysis revealed that nearly two thirds of the ARC
kisspeptin neurons express mRNA for MC3R, while a small percentage (<10%) colocalize MC4R.
Taken together, this data provides neuroanatomical evidence for a direct link between orexigenic
AgRP neurons and reproductively critical kisspeptin neurons in the sheep, and builds upon our
current understanding of the central link between energy balance and reproduction.

Keywords: kisspeptin; AgRP; sheep; reproduction; LH

1. Introduction

Proper nutritional balance is paramount to the capacity for reproduction in mammals.
Favorable metabolic conditions allow for pubertal development and fertility, while an unfa-
vorable metabolic state such as undernutrition, can suppress reproductive function. This, at
least in part, occurs via central integration of metabolic signals given that negative energy
balance inhibits gonadotropin-releasing hormone (GnRH), and subsequently luteinizing
hormone (LH), release [1–3]. Although GnRH neurons serve as the final common conduit
from the central nervous system controlling reproduction, they appear to lack the appro-
priate receptors to directly respond to a metabolic hormone such as leptin [4–6]. Thus,
changes in peripheral metabolic signals reflective of undernutrition (i.e., lower circulating
leptin concentrations) must recruit inhibitory afferents and/or block stimulatory inputs to
GnRH neurons in order to ultimately suppress GnRH/LH release during a negative energy
state. One such stimulatory afferent is the neuropeptide kisspeptin, which has perikarya
located primarily in two areas of the ventral forebrain, the anterior ventral periventricular
area (AVPV; rodents)/preoptic area (POA; non-rodents) and the arcuate nucleus (ARC) of
the hypothalamus [7–9]. Indeed, the stimulatory action of kisspeptin on LH secretion has
been confirmed in several species [10], and the vast majority of GnRH neurons colocalize
Kiss1R [11–14], supporting the idea of a direct stimulatory action of kisspeptin on GnRH
neurons. Arcuate kisspeptin neurons in particular are identified as playing a dominant
role in pulsatile GnRH/LH release [15,16], and anatomical evidence has shown that up
to 60% of GnRH cell bodies receive kisspeptin input arising from the ARC kisspeptin
population [17]. Indeed, food restriction has been shown to reduce expression of ARC
kisspeptin [18–22]. Furthermore, there is evidence to show that kisspeptin neurons express
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leptin receptors [23–25], but others have failed to demonstrate activation of leptin signaling
in these neurons in vivo [26]. Thus, central regulation of GnRH/LH secretion during
undernutrition likely incorporates other afferent inputs to ARC kisspeptin neurons.

Known for an orexigenic role in energy homeostasis, neurons that express agouti-
related peptide (AgRP) may also play an important role to relay metabolic signals to
reproductive axis. Located in the ARC, AgRP neurons express leptin receptors [27], and
delayed puberty onset in leptin receptor-deficient mice can be rescued with select expres-
sion of leptin receptor within AgRP neurons [28]. With data demonstrating that central
administration of AgRP inhibits LH secretion [29] and that undernutrition increases AgRP
expression [30–32], AgRP signaling may represent a means whereby undernutrition inhibits
GnRH/LH secretion. Interestingly, nearly all ARC AgRP neurons co-express neuropeptide
Y (NPY) [32], and reciprocal connections between NPY neurons and kisspeptin cells have
been reported [24]. However, given that other populations of NPY perikarya exist outside
of the ARC [33], the degree to which AgRP neurons innervate ARC kisspeptin neurons
is unclear, and remains to be examined. Furthermore, although classically known as the
endogenous antagonist to α-melanocyte stimulating hormone (αMSH), a neuropeptide
produced by anorexigenic pro-opiomelanocortin (POMC) neurons, AgRP alone has been
shown to inhibit cells that express melanocortin 3 receptors (MC3R) and melanocortin
4 receptors (MC4R) via Gi/o signaling [34,35]. Work in mice has revealed very few ARC
kisspeptin neurons express MC4R [25], but our recent work in sheep [36] led us to inves-
tigate the potential for AgRP regulation of ARC kisspeptin neurons in the ovine model.
In this study, we examine the degree to which ARC kisspeptin perikarya are innervated
by presumptive AgRP terminals using dual-label immunofluorescence, and utilizing a
relatively new fluorescent in situ hybridization technique, RNAscope, we characterize the
degree to which arcuate kisspeptin neurons colocalize MC3R and MC4R.

2. Results
2.1. AgRP Inputs to Kisspeptin Cells

In ARC tissue from 10 month old castrated male sheep (wethers), AgRP-immunoreac-
tive (ir) terminals were observed in frequent apposition to kisspeptin cell bodies and
fibers (Figure 1). A total of 171 kisspeptin cells were analyzed for AgRP inputs in four
animals, and the majority (72.31 ± 7.6%) of kisspeptin neurons showed at least one close
contact by AgRP-ir terminals. A subset of kisspeptin neurons that showed at least one
AgRP-ir input was examined further, and the total number of putative close contacts onto
the cell body or proximal dendrite were analyzed from z-stack images (1.0 µm optical
sections) taken throughout the extent of the cell. The results indicated that each kisspeptin
perikaryon received multiple AgRP-ir close contacts (4.92 ± 1.0 contacts/cell). As reported
previously in sheep [37], no colocalization of kisspeptin and AgRP in cell bodies or fibers
was observed. There were, however, some instances of kisspeptin-ir fibers in apposition to
AgRP perikarya (data not quantified).

2.2. Colocalization of Kisspeptin, MC3R, and MC4R

The extent of colocalization of kisspeptin and the melanocortin receptors, MC3R and
MC4R, was characterized in the ARC of wethers, and various instances of single, dual and
triple mRNA-expressing cells were observed (Figure 2A). Of the MC3R mRNA-expressing
cells (436 ± 30.4 examined per wether) in the middle ARC nearly two thirds (63.79 ± 11.7%;
Figure 2B) colocalized mRNA for kisspeptin, while 14.42 ± 1.1% (Figure 2B) colocalized
mRNA for MC4R. Of the total kisspeptin mRNA-expressing cells examined (431.75 ± 36.0
per wether), nearly two thirds co-expressed mRNA for MC3R (62.33 ± 6.3%), while only
6.33 ± 1.2% (Figure 2B) colocalize MC4R. Moreover, of the total MC4R mRNA-expressing
cells identified (101.25 ± 5.3 per wether), 26.05 ± 2.1% contained kisspeptin (Figure 2B),
while 62.59 ± 7.4% (Figure 2B) expressed mRNA for MC3R. Finally, we examined the degree
to cells co-expressed in all three transcripts to find that 15.85 ± 2.4% of MC3R/MC4R cells
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express mRNA for kisspeptin, 60.53 ± 6.1% of Kiss1/MC4R cells express mRNA for MC3R,
and 3.64 ± 0.4% of Kiss/MC3R cells express mRNA for MC4R (Figure 2B).
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Figure 1. Confocal images (1.0 µm optical section; 40 × magnification) showing dual-label immunofluorescence for AgRP 
(green) and kisspeptin (red) in the arcuate nucleus of a castrated male sheep (wether). White arrows (A,B) indicate exam-
ples of AgRP-immunoreactive (ir) terminals in apposition to arcuate kisspeptin neurons, with AgRP-ir cell bodies and 
fibers seen in the vicinity. Orthogonal views (C) confirm close contact of an AgRP-labeled bouton to a kisspeptin cell body. 
Red, green, and blue lines in (C) indicate X, Y, and Z planes, respectively. Scale bars = 25 µm (A), 10 µm (B,C).  
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ing cells (436 ± 30.4 examined per wether) in the middle ARC nearly two thirds (63.79 ± 
11.7%; Figure 2B) colocalized mRNA for kisspeptin, while 14.42 ± 1.1% (Figure 2B) colo-
calized mRNA for MC4R. Of the total kisspeptin mRNA-expressing cells examined 
(431.75 ± 36.0 per wether), nearly two thirds co-expressed mRNA for MC3R (62.33 ± 6.3%), 
while only 6.33 ± 1.2% (Figure 2B) colocalize MC4R. Moreover, of the total MC4R mRNA-
expressing cells identified (101.25 ± 5.3 per wether), 26.05 ± 2.1% contained kisspeptin 
(Figure 2B), while 62.59 ± 7.4% (Figure 2B) expressed mRNA for MC3R. Finally, we exam-
ined the degree to cells co-expressed in all three transcripts to find that 15.85 ± 2.4% of 
MC3R/MC4R cells express mRNA for kisspeptin, 60.53 ± 6.1% of Kiss1/MC4R cells express 
mRNA for MC3R, and 3.64 ± 0.4% of Kiss/MC3R cells express mRNA for MC4R (Figure 
2B). 

Figure 1. Confocal images (1.0 µm optical section; 40 × magnification) showing dual-label immunofluorescence for AgRP
(green) and kisspeptin (red) in the arcuate nucleus of a castrated male sheep (wether). White arrows (A,B) indicate examples
of AgRP-immunoreactive (ir) terminals in apposition to arcuate kisspeptin neurons, with AgRP-ir cell bodies and fibers
seen in the vicinity. Orthogonal views (C) confirm close contact of an AgRP-labeled bouton to a kisspeptin cell body. Red,
green, and blue lines in (C) indicate X, Y, and Z planes, respectively. Scale bars = 25 µm (A), 10 µm (B,C).
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Figure 2. (A) Confocal image (1.0 µm optical section; 20 × magnification) of kisspeptin, MC3R, and MC4R mRNA-expressing
cells in the arcuate nucleus (ARC) of a castrated male sheep. Yellow arrows indicate a Kiss1 cell expressing both MC3R
and MC4R. Red and green arrows show MC3R and MC4R-expressing cells, respectively. Scale bar, 50 µm. (B) Mean
(± SEM) percentage of kisspeptin (left), MC3R (middle), and MC4R (right) cells containing Kiss1, MC3R, and/or MC4R in
the middle ARC.
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3. Discussion

In the present study, we provide neuroanatomical evidence to support the idea that
AgRP signaling may constitute an important central regulatory mechanism in the control of
reproduction. Through the use of immunohistochemical analysis, we have described that in
the absence of gonadal sex steroids in male sheep, the majority of ARC kisspeptin neurons
are innervated by AgRP terminals. In addition, using the fluorescent in situ hybridization
technique, RNAscope, we have demonstrated that the majority of ARC kisspeptin neurons
express MC3R, while a small percentage of ARC kisspeptin neurons express MC4R.

There is growing evidence that AgRP signaling plays a role in the regulation of
reproduction, and the focus of this work was to investigate a central mechanism whereby
AgRP could influence GnRH/LH secretion. Indeed, AgRP neurons have been shown to
send axonal projections to brain regions where GnRH and kisspeptin neurons reside [38,39],
but direct innervation of GnRH or kisspeptin neurons by AgRP has not been previously
reported. The present finding showing the innervation of kisspeptin perikarya by AgRP
terminals is in agreement with a previous report using optogenetics that demonstrated
a functional connection between AgRP neurons and kisspeptin neurons in mice [40].
Given that nearly all ARC AgRP neurons co-express NPY [39] and that 15–30% of ARC
kisspeptin neurons receive input from NPY cells in sheep [24], it is tempting to speculate
that NPY inputs identified in contact with ARC kisspeptin neurons arise from AgRP
neurons. However, several NPY-expressing neuronal populations exist in diencephalic
regions outside of the ARC [33], and therefore we are unable to use NPY as an index of
AgRP input. Since NPY and AgRP act through different receptors [41,42], NPY innervation
of kisspeptin neurons should be viewed as an independent mechanism of regulation
from that of AgRP. Moreover, herein we demonstrate that the majority of ARC kisspeptin
neurons receive input from AgRP cells, and others have shown in sheep that 30–45%
of ARC kisspeptin neurons receive input from POMC neurons [24]. Thus, we believe
this strengthens the importance of melanocortin signaling for reproduction and warrants
further investigation of the role each of these neuronal networks plays in the control
of reproduction.

Central administration of AgRP has resulted in two in vivo effects on LH secretion, a
reduction of LH secretion in ovariectomized, non-human primates [29], and a stimulation
of LH secretion in gonadal-intact male rats [43]. While these divergent results could be due
to differences in species, sex, and/or in sex steroid milieu, examination of the reproductive
neurons that express melanocortin receptors and could directly mediate AgRP action
becomes an important focus. In mice, over half of the GnRH neurons have been shown to
express mRNA for MC4R [44], but AgRP alone has various effects on GnRH neurons in
hypothalamic slice preparations (no effect [44], or stimulatory and inhibitory effects [45]).
In addition, earlier work in mice reported that few kisspeptin neurons express MC4R [25].
However, based on our observations that ARC kisspeptin neurons express both MC3R
and MC4R [36], we extended those findings to quantify the percentage of ARC kisspeptin
neurons that express these receptors herein. In agreement with a relatively low percentage
of kisspeptin neurons that express MC4R [25], we also observe a low co-expression of
mRNA for kisspeptin and MC4R. However, when examining mRNA for MC3R, we found
that a majority of ARC kisspeptin neurons express this receptor at a percentage that mirrors
the percentage of ARC kisspeptin neurons which receive AgRP input. In agreement with
our findings, more recent data in mice has revealed that ARC kisspeptin neurons express
MC3R (personal communication with M. N. Bedenbaugh in the Simerly Lab). Given that
AgRP is a potent endogenous antagonist of melanocortin receptors [46,47] and that central
activation of melanocortin receptors stimulates LH secretion [48,49], we believe this new
evidence provides strong support for the idea that AgRP can act directly at ARC kisspeptin
neurons to influence reproduction.

The present findings in gonadectomized, male sheep lay important groundwork for
future studies investigating central melanocortin signaling in the control of GnRH/LH
release. While others report that there is no difference in POMC input to ARC kisspeptin
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neurons between gonad-intact and ovariectomized sheep [24], more work is needed to
examine the impact of gonadal sex steroids on AgRP input to and/or melanocortin receptor
expression in ARC kisspeptin cells of both sexes. Furthermore, now that we have a better
understanding of the path AgRP has to influence key reproductive neurons, what remains
to be determined is whether AgRP signaling acts to suppress kisspeptin neurons during
undernutrition, a time in which AgRP [30–32] and MC4R [50] expression in the ARC is
increased and αMSH expression is reduced [51]. Altogether, melanocortin signaling in
ARC kisspeptin neurons may be a key mechanism whereby the status of low energy balance
is relayed to the reproductive axis to ultimately reduce GnRH/LH secretion and impair
reproduction at the level of the brain.

4. Materials and Methods
4.1. Animals

Four Suffolk wethers (male sheep castrated between four and six weeks of age) were
approximately 10 months of age at the time of tissue collection in November. Prior to tissue
collection, wethers were moved indoors for 14 days, housed individually, provided water
ad libitum, and fed once daily (crude protein 12%, crude fat 2.5%, crude fiber 5.0%; Mule
City Specialty Feeds, Bensen, NC, USA). Indoor lighting simulated natural day length. All
procedures were approved by the North Carolina State University Animal Care and Use
Committee (#17-020-B) and followed the National Institutes of Health guidelines for use of
animals in research.

4.2. Tissue Collection

Tissue was collected as previously described [52]. Briefly, all wethers were heparinized
(20,000 U, intravenous) and euthanized with an intravenous overdose of sodium pento-
barbital (Euthasol; Patterson Veterinary, Greeley, CO, USA). Heads were removed and
perfused via the carotid arteries with four liters of 4% paraformaldehyde (PFA) in 0.1 M
phosphate buffer (PB; pH = 7.4) containing 0.1% sodium nitrite. Blocks of tissue containing
the hypothalamus were removed and stored in 4% PFA for 24 h at 4 ◦C, then transferred to
a 20% sucrose solution until sectioning. Frozen coronal sections (50 µm thickness) were cut
using a freezing microtome into five parallel series and stored in cryopreservative solution
until processing for immunofluorescence and RNAscope.

4.3. Dual-Label Immunofluorescent Detection of Kisspeptin and AgRP

To examine putative AgRP terminals in close contact with ARC kisspeptin cells, dual-
label immunofluorescence was conducted for kisspeptin (Gift from Dr. I. Franceschini, Tours,
France) [8,13,22,37,51] and AgRP (Antibodies Australia, Melbourne, Australia) [37,39]. Three
sections in the middle ARC, defined as the level of the tubero-infundibular sulcus until the
beginning of the formation of the mammillary recess of the third ventricle [53], were selected
from a series of every fifth hypothalamic section (250 µm apart). Each coronal section selected
for processing was cut at midline, with the left and right sides used for immunofluorescence
and RNAscope (see below), respectively. All immunofluorescent procedures were performed
on free-floating hemisections. On day one, sections were washed overnight in 0.1 M PB at
4 ◦C on a rocking shaker to remove excess cryoprotectant. All subsequent steps were conducted
at room temperature (RT). On day two, sections were washed four times (5 min each) in
0.1 M phosphate buffered saline (PBS; pH = 7.4), then placed into 10% H2O2 (diluted in 0.1 M
PBS; 10 min), followed by four washes (5 min each) in PBS. Tissue was then incubated in a
PBS solution containing 0.4% Triton-X (Sigma Aldrich, St Louis, MO, USA) and 20% normal
goat serum (NGS; Jackson ImmunoResearch Laboratories, Inc., West Grove, PA, USA) for
1 h, and directly transferred to primary antibody guinea pig anti-AgRP (1:40,000; Antibodies
Australia, Cat# GPAAGRP.1), diluted in PBS containing 0.4% Triton X-100 and 4% NGS for
17 h. On day three, sections were sequentially incubated in biotinylated goat anti-guinea pig
immunoglobulin (IgG; dilution 1:500 in PBS containing 0.4% Triton X-100 and 4% NGS; Vector
Laboratories, Burlingame, CA, USA, cat# BA-7000) and Vectastain ABC-elite (dilution 1:500 in
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PBS; Vector) for 1 hr each with four washes (5 min each) in PBS between incubations. Next,
sections were incubated in biotinylated tyramide (BT; dilution 1:250 in PBS containing 3% H2O2
per mL; Perkin Elmer LAS, Inc., Boston, MA, USA) for 10 min. To visualize AgRP, sections
were then incubated in Alexa 488- Streptavidin (dilution 1:100 in PBS; Invitrogen, Carlsbad,
CA, USA, cat# S-32354) for 30 min. Following this step, sections were incubated in primary
antibody rabbit anti-kisspeptin (1:10,000; Gift from I. Franceschini, cat# 566) diluted in PBS
containing 0.4% Triton X-100 and 4% NGS for 17 h. On day four, sections were incubated in
biotinylated goat anti-rabbit IgG Alexa 555 (1:100; Invitrogen, cat# A-21428) diluted in PBS, and
then washed four times (5 min each) in PBS. Finally, sections were mounted onto Superfrost
Plus microscope slides (Fisher Scientific, Waltham, MA, USA), coverslipped using ProLong
Gold Antifade Mountant (Fisher Scientific), and stored at 4◦C until imaging.

4.4. RNAscope In Situ Hybridization for Kisspeptin and Melanocortin Receptors (MC3R, MC4R)

To examine the extent of melanocortin receptor colocalization within ARC kisspeptin
neurons of wethers, multi-plex RNAscope was performed for kisspeptin, MC3R, and
MC4R. As described above, three sections in the middle ARC were selected, with the right
hemisection of the brain used for RNAscope. In situ hybridization was performed based
on instructions from Advanced Cell Diagnostics and technical recommendations with
minor modifications using the RNAscope Multiplex Fluorescent Reagent Kit v2 (Advanced
Cell Diagnostics, Newark, CA, USA; cat# 323100). All incubations between 40 and 60◦C
were conducted using an ACD HybEZ II Hybridization System with an EZ-Batch Slide
System (Advanced Cell Diagnostics; cat# 321710). On day one, hemisections were washed
overnight in 0.1 M PBS at 4 ◦C on a rocking shaker to remove excess cryoprotectant. On
day two, sections were submerged in chilled 4% PFA (1 hr at 4 ◦C), and rinsed four times in
0.1 M PBS (5 min/rinse), followed by an incubation in Hydrogen Peroxide solution (10 min
at RT; Advanced Cell Diagnostics, cat# 322335). Hemisections were then incubated with
RNAscope Target Retrieval Solution (98 ◦C for 10 min; Advanced Cell Diagnostics, cat#
322001) and rinsed four times in 0.1M PBS (5min/rinse). Next, sections were mounted onto
Superfrost Plus microscope slides (Fisher Scientific), a hydrophobic barrier was created
around the tissue using an ImmEdge Pen (Advanced Cell Diagnostics; cat# 310018), and
slides were stored overnight at 4 ◦C. On day three, slides were incubated in increasing
concentrations of ethanol (50, 70, 100, and 100%; 5 min each) and allowed to air dry.
Sections were then treated with RNAscope® Protease III (30 min at 40 ◦C; Advanced Cell
Diagnostics, cat# 322337), and subsequently incubated with RNAscope target (kisspeptin,
Oa-KISS1-C3, cat# 497471-C3; MC3R, Oa-MC3R-C2, cat# 537911-C2; MC4R, Oa-MC4R-C1,
cat# 537921-C1) and control probes (positive controls, Oa-UBC-C3, cat#516181-C3; Oa-
PPIB-C2, cat# 457031-C2, and Oa-POLR2A, cat# 516171; negative control, 3-plex Negative
Control Probe, cat# 320871) for 2 h at 40 ◦C. Next, slides were washed twice with 1X Wash
Buffer (Advanced Cell Diagnostics, cat# 310091; 2 min/rinse at RT) followed by sequential
tissue application of 50 µl of the following, each for 30 min at 40 ◦C with 2 min washes using
1X Wash Buffer between applications: RNAscope Multiplex FL v2 Amp 1 (Advanced Cell
Diagnostics, cat# 323101), RNAscope Multiplex FL v2 Amp 2 (Advanced Cell Diagnostics,
cat# 323102), and RNAscope Multiplex FL v2 Amp 3 (Advanced Cell Diagnostics, cat#
323103). Following final incubation with Amp 3, slides were rinsed with 1X Wash Buffer
twice (2 min/rinse at RT) followed by application of RNAscope Multiplex FL v2 HRP C1
(15 min at 40 ◦C; Advanced Cell Diagnostics, cat#323104). Slides were then washed with
1X Wash Buffer twice (2 min/rinse at RT), and incubated with 150 µL per slide of Opal
520 (Fisher Scientific; cat#NC1601877) diluted in RNAscope TSA buffer (Advanced Cell
Diagnostics, cat# 322809) at a final concentration of 1:1500 for 30 min at 40 ◦C. Following a
rinse with 1X Wash Buffer twice (2 min/rinse at RT), 50 µL of RNAscope® Multiplex FL v2
HRP Blocker (Advanced Cell Diagnostics, cat# 323107) was applied to tissue (15 min at
40 ◦C). Slides were then rinsed with 1X Wash Buffer twice (2 min/rinse at RT) followed
by application of RNAscope Multiplex FL v2 HRP-C2 (15 min at 40 ◦C; Advanced Cell
Diagnostics, cat# 323105). Next, following two rinses with 1X Wash Buffer (2 min/rinse
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at RT), slides were incubated with 150 µL per slide of Opal 570 (Fisher Scientific; cat#
NC601878) diluted in RNAscope TSA buffer (Advanced Cell Diagnostics, cat# 322809) at a
final concentration of 1:1500 for 30 min at 40 ◦C. Subsequently, after two rinses in 1X Wash
Buffer (2 min/rinse at RT), 50 µL of RNAscope® Multiplex FL v2 HRP Blocker (Advanced
Cell Diagnostics, cat# 323107) was applied to tissue for 15 min at 40 ◦C, followed by rinsing
with 1X Wash Buffer twice (2 min/rinse at RT). Next, RNAscope Multiplex FL v2 HRP-C3
(15 min at 40 ◦C; Advanced Cell Diagnostics, cat# 323106) was applied to tissue. Slides
were then rinsed with 1X Wash Buffer twice (2 min/rinse at RT), and incubated with
150 µL per slide of Opal 690 (Fisher Scientific; cat# NC1605064) in RNAscope TSA buffer
(Advanced Cell Diagnostics, cat# 322809) at a final concentration of 1:1500 for 30 min at
40 ◦C. Next, slides were rinsed with 1X Wash Buffer twice (2 min/rinse at RT), followed
by a final application of 50 µL of RNAscope® Multiplex FL v2 HRP Blocker (Advanced
Cell Diagnostics, cat# 323107) for 15 min at 40 ◦C, and two rinses with 1X Wash Buffer
(2 min/rinse at RT). Finally, slides were incubated with 50 µL DAPI, coverslipped with
ProLong Gold Antifade Mountant (Fisher Scientific, cat# P36930), and stored at 4 ◦C until
image acquisition.

4.5. Confocal Analyses
4.5.1. Immunofluorescence

Confocal imaging of immunostained hemisections was conducted using an LSM710
laser-scanning confocal microscope (Zeiss, Thornwood, NY, USA), with a Plan Achromat
40x/1.1 objective. For each section (three sections per wether), z-stacks (1.0-µm optical
sections) were captured in the ARC using consistent acquisition settings used for all
images. Confocal images were imported into Zen 3.0SR software (Black edition; Carl Zeiss
Microscopy GmBH, Jena, Germany), where AgRP close contacts onto kisspeptin neurons
were analyzed by a single observer. Based on the approximate size of each kisspeptin
neuron, eight to eleven images (1.0- µm optical section) were analyzed per neuron through
the z-plane. In each animal, 40–50 kisspeptin cells in which complete cell bodies (with
visible nuclei) were imaged in the z-stack were selected for analysis. A close contact
was defined as an immunolabeled bouton in direct apposition (no intervening pixels)
to a kisspeptin cell body or proximal dendrite [17]. First, the percentage of kisspeptin
neurons receiving one or more AgRP-positive close contact was calculated. Next, a subset
of kisspeptin neurons (10 cells per animal) that showed at least one putative AgRP close
contact was randomly selected in each wether to quantify all putative AgRP-positive
inputs onto the cell body or proximal dendrite. Markers placed on putative contacts during
analysis ensured that appositions flanking optical sections were not counted twice. In
addition, putative terminals were viewed in orthogonal planes (X, Y, and Z), and only those
contacting the kisspeptin neuron in all dimensions were quantified.

4.5.2. RNAscope

Hemisections processed for detection of mRNA for kisspeptin, MC3R, and MC4R
were analyzed using an LSM 880 laser scanning confocal microscope (Zeiss). For each
section (three sections per wether), z-stacks (1.0-µm optical sections) were captured in
the ARC using a Plan Achromat 20x/0.8 objective, with consistent acquisition settings
used for all images. Confocal images were imported into Zen 3.0 software (Carl Zeiss
Microscopy), where the total number of cells expressing kisspeptin, MC3R, or MC4R
mRNA were identified by a single observer. Markers placed on cells ensured that the
same cell was not counted twice, and cells in which complete cell bodies were visible were
included in the analysis, with DAPI used to visualize nuclear area. Images containing
marked cells were imported in to FIJI/ImageJ software, where the numbers of cells were
quantified. The degree of double or triple labeling was calculated as a percentage of the total
number of kisspeptin cells expressing MC3R and/or MC4R, the total number of MC3R cells
expressing kisspeptin and/or MC4R mRNA, and the total number of MC4R-expressing
cells containing kisspeptin and/or MC3R mRNA.
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Abstract: In the arcuate nucleus, neuropeptide Y (NPY) neurons, increase food intake and decrease
energy expenditure, and control the activity of pro-opiomelanocortin (POMC) neurons, that decrease
food intake and increase energy expenditure. Both systems project to other hypothalamic nuclei such
as the paraventricular and dorsomedial hypothalamic nuclei. Endocrine disrupting chemicals (EDCs)
are environmental contaminants that alter the endocrine system causing adverse health effects in an
intact organism or its progeny. We investigated the effects of long-term exposure to some EDCs on the
hypothalamic NPY and POMC systems of adult male mice that had been previously demonstrated
to be a target of some of these EDCs after short-term exposure. Animals were chronically fed for
four months with a phytoestrogen-free diet containing two different concentrations of bisphenol
A, diethylstilbestrol, tributyltin, or E2. At the end, brains were processed for NPY and POMC
immunohistochemistry and quantitatively analyzed. In the arcuate and dorsomedial nuclei, both
NPY and POMC immunoreactivity showed a statistically significant decrease. In the paraventricular
nucleus, only the NPY system was affected, while the POMC system was not affected. Finally, in
the VMH the NPY system was affected whereas no POMC immunoreactive material was observed.
These results indicate that adult exposure to different EDCs may alter the hypothalamic circuits that
control food intake and energy metabolism.

Keywords: endocrine disrupting chemicals; bisphenol A; diethylstilbestrol; tributyltin; neuropeptide
Y; pro-opiomelanocortin

1. Introduction

Two neurochemically distinct sets of hypothalamic neurons controlling food intake
are located in the arcuate nucleus (ARC). One group expresses neuropeptide Y (NPY)
and agouti-related protein (AgRP). The NPY release by these neurons results in increased
food intake and decreased energy expenditure. The other group expresses cocaine- and
amphetamine-regulated transcript (CART) and pro-opiomelanocortin POMC, which is
processed to melanocortin peptides, such as α-melanocyte-stimulating hormone (α-MSH).
The activation of these neurons decreases food intake and increases energy expenditure [1]
with an opposite effect of the NPY/AgRP system. Interactions between these two popula-
tions allow the NPY neurons to control the activity of the POMC cells. NPY/AgRP and
POMC/CART neuronal projections reach hypothalamic nuclei such as the paraventricular
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nucleus (PVN), dorsomedial hypothalamic nucleus (DMH), and perifornical area [2]. These
secondary centers process information regarding energy homeostasis.

Many factors can influence the activity of this system (for example the secretion of
leptin by adipocytes), but estrogenic signaling may intersect at several levels with the
hypothalamic circuits controlling food intake [3]. In fact, estradiol is involved in the regula-
tion of metabolism through the modulation of food intake, body weight, glucose/insulin
balance, body fat distribution, lipogenesis, lipolysis, and energy consumption [4]. The
estradiol regulates neuroendocrine circuits controlling the metabolism [5] by acting on
the POMC neurons through the estrogen receptor α (ERα) and on the NPY cells through
an estrogen-activated membrane receptor, Gq-mER [6]. Indeed, estradiol has an inhibitor
function on food intake, repressing the synthesis of NPY and AgRP [7]. Moreover, it
seems that the leptin (secreted by adipocytes in proportion to fat mass and the activator of
anorexigenic signals) has a common pathway with estradiol to regulate energy metabolism,
namely the STAT3 pathway in POMC neurons [7]. Peripherally E2 increases both leptin
mRNA expression in 3T3 adipocytes and leptin secretion in omental adipose tissue [8].
Alternatively, lack of E2 after ovariectomy may affect body weight regulation at a central
level and mice deficient in ERα show a marked increase of adipose tissue [9]. There is also
some evidence that ovariectomy increases hypothalamic NPY expression and decreases
CRH immunoreactivity, promoting hyperphagia [10]. Moreover, E2 deficiency causes
central leptin insensitivity [9].

Endocrine-disrupting chemicals (EDCs) are industrial pollutants or natural molecules,
which can be found as contaminants in the environment. They can interact with natural
hormones by mimicking, antagonizing, or altering their actions [11] and may interfere
with several brain circuits [12]. Recent evidence from many laboratories has shown that a
variety of environmental EDCs (now called metabolic disrupting chemicals, MDCs) can
influence adipogenesis and obesity and these effects may be partly mediated by sex steroid
dysregulation due to the exposure to these substances and by alterations of nervous circuits
involved in the control of food intake and energy metabolism [13,14].

In the present study, we analyzed three widely diffused MDCs—bisphenol A (BPA),
diethylstilbestrol (DES), and tributyltin (TBT).

The BPA, one of the most diffused chemicals in the world, is a xenoestrogen present
in a very large number of products and may affect multiple endocrine pathways, due to
its ability to bind classical estrogen receptors (particularly ER-α) and non-classical ones
(membrane receptors) [15], as well as the G-protein-coupled receptor 30 (GPR30) [16]. BPA
can also act through non-genomic pathways [17] and bind to a variety of other hormone
receptors (e.g., androgen receptor, thyroid hormone receptor, glucocorticoid receptor, and
PPARγ) [18]. In vitro experiments have demonstrated that BPA may dysregulate NPY,
AgRP, and POMC expression in hypothalamic immortalized cell lines [19–21].

The DES is a powerful nonsteroidal synthetic estrogen (pharmaceutical) used until the
early 70s to prevent miscarriage in pregnant women. Later this compound was recognized
as a cause of reproductive cancers, genital malformations, and infertility in sons or daugh-
ters that had been exposed to this drug in utero [22], but it is still in use for veterinary
purposes in some countries and is bioaccumulated in the environment [23]. DES exerts an
agonistic effect against ER-α and an antagonistic effect against estrogen-related receptor-γ
(ERR-γ) [24]. In ovariectomized female rats exposed to an isoflavone-rich diet, DES had no
effect on hypothalamic NPY mRNA and increased POMC mRNA [25].

TBT belongs to the EDC family of organotins, it has been employed primarily as an
antifouling agent in paint for boats. Other uses are as a fungicide on food crops, and an
antifungal agent in wood treatments and industrial and textile water systems [26]. Due to
its use in paint for boats, TBT has exerted toxicological effects on marine organisms. For
example, TBT can induce masculinization in fish species [27]. Humans are exposed to TBT
largely through contaminated dietary sources (seafood and shellfish [28]). In mammals TBT
can increase body weight [29], alter hypothalamic NPY and POMC systems in short-term
(4 weeks) exposed adult mice [30,31], and may also alter behavior—exposure to a low
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dose of TBT induced lower activity, high level of anxiety, and fear in mice [32]. TBT binds
with high affinity to steroid receptors; in particular, it binds androgen receptor [33] and
interferes with the expression of brain aromatase and estrogen receptors [34]. TBT can act
as an agonist of retinoid X receptor (RXR) and peroxisome proliferator-activated receptor-γ
(PPARγ) [35]. This inappropriate receptor activation could lead to disruption of the normal
developmental and homeostatic controls over adipogenesis and energy balance, especially
under the influence of the typical high-fat Western diet [36]. In addition, changes in the
microbiome are associated with TBT exposure [37].

As previously reported, studies on the action of EDC on hypothalamic neurons
related to eating behavior and energy control used a variety of experimental conditions
(exposure to isoflavones, in vitro experiments, and short-term exposure). For this reason,
in the present study, we exposed, for a longer time period (4 months), adult male mice to
phytoestrogen-free food containing different putative MDCs to understand if the central
neuroendocrine, orexinergic, and anorexinergic circuits are differentially affected by these
compounds. Due to the alleged xenoestrogenic activity of some of them we also included,
as a positive control, a group of animals treated with E2.

2. Results
2.1. Body Weight

At the end of the experiment the animals were weighted. Data collected showed a
global effect of treatment on the body weight of exposed animals (p < 0.05, F(8) = 2.185). In
particular, the post-hoc analysis with Fisher’s LSD test showed a reduction in body weight
for mice treated with the higher dose of DES (p < 0.05) and for those treated with both
doses of E2 (p < 0.05). No statistically significant effects were observed in the other groups
(see Table 1).

Table 1. Summary of statistical analysis of body weight data. The values (in grams) are indicated as
mean± standard error of the mean (SEM). Bold numbers and asterisks indicate significant differences
among the differently treated groups: * p < 0.05, different from control (p < 0.05, Fisher’s test).

Groups Body Weight (g)
Mean +/− SEM p Value

CRL 31.2 ± 2.92

TBT 0.5 31 ± 0.89 0.912

TBT 500 31.2 ± 0.80 1.000

DES 0.05 29.4 ± 1.21 0.323

DES 50 26.6 ± 0.93 0.015 *

BPA 5 28.6 ± 0.75 0.156

BPA 500 29.6 ± 0.93 0.379

E2 5 26.75 ± 0.48 0.025 *

E2 50 27.17 ± 0.65 0.025 *

2.2. Immunohistochemistry
2.2.1. NPY System

A preliminary qualitative analysis showed a distribution similar to those already
reported in previous contributions [30,38–41]. In particular, we did not observe positive
cell bodies (confirming previous reports that NPY cell bodies in ARC are visible only after
colchicine treatment [42]), whereas a large number of positive fibers was observed along the
entire hypothalamus. These were particularly dense within the PVN (Figure 1) and the ARC
(Figure 2) nuclei, but they were also abundant within the suprachiasmatic, supraoptic, and
DMH (Figure 2) nuclei. Other regions displayed less dense innervations, as for example,
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the VMH (Figure 2). In the experimental groups, we observed a qualitative decrease of the
NPY immunoreactivity (ir) in all the considered nuclei for all the different treatments.

Figure 1. NPY and POMC immunohistochemistry in the PVN. Microphotographs and histograms
illustrating the immunohistochemical immunoreactivity for NPY and POMC in the paraventricular
nucleus (PVN). (A) Low magnification of a control mouse (CRL) illustrating the NPY immunoreactiv-
ity in PVN. The white box represent the ROI selected for the quantitative analysis. (B) Low magnifica-
tion of a control mouse (CRL) illustrating the POMC immunoreactivity in PVN. Scale bar = 100 µm.
* = Third ventricle. (C,D) Histograms illustrating the quantitative analysis of the fractional area
covered by NPY (C) and POMC (D) immunoreactivity in the PVN. Bars represent the mean and
the standard error of the mean (SEM). Asterisks indicate significant differences (Fisher’s test) of the
experimental groups in comparison to controls (CRL): ** p < 0.01, *** p < 0.001.

This qualitative impression was confirmed by the statistical analysis. For all nuclei
we found a statistically significant effect of treatment (PVN: p < 0.001, F(8) = 10.672; ARC:
p < 0.01, F(8) = 3.566; DMH: p < 0.01, F(8) = 3.767; VMH: p < 0.001, F(8) = 5.780).

The post-hoc analysis with Fisher’s LSD test showed a significant decrease of NPYir
in all nuclei and for almost all the treatments. In PVN, all groups showed a significantly
lower NPYir than controls (p < 0.01, Figure 1). In ARC, we did not observe statistically
significant differences for the lowest dose of TBT and the highest dose of BPA, while all the
other treatments induced a significant decrease of NPY expression (p < 0.05, Figure 2). In
DMH we observed a significant reduction of NPYir in all treated groups (p < 0.05; Figure 2),
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except for the lowest dose of DES. Finally, in VMH we observed a strong reduction of
NPYir due to the treatments (p < 0.01) except for the highest dose of TBT (for details see
Table S2, Supplementary Materials).

Figure 2. NPY immunohistochemistry. Microphotograph and histograms illustrating the immunohistochemical immunore-
activity for NPY in the dorsomedial (DMH), ventromedial (VMH), and arcuate (ARC) nuclei. (A) Low magnification of the
hypothalamic region of a control mouse (CRL) illustrating the NPY immunoreactivity in DMH, VMH, and ARC nuclei. The
white boxes represent the ROI selected for each nucleus in the quantitative analysis. Scale bar = 100 µm. (B–D) Histograms
illustrating the quantitative analysis of the fractional area covered by NPY immunoreactivity in the DMH (B), VMH (C),
and ARC (D) nuclei in the different experimental groups. Bars represent the mean and the standard error of the mean
(SEM). Asterisks indicate significant differences (Fisher’s test) of the experimental groups in comparison to controls (CRL):
* p < 0.05, ** p < 0.01, *** p < 0.001.

2.2.2. POMC System

The distribution of POMCir in control mice was in agreement with the few previous
studies that described this system in rats [43–45] and mice [31,46]. Contrary to NPY,
hypothalamic POMC cell bodies are clearly visible, and they were fully included within the
rostrocaudal extent of the ARC (Figure 3) and periarcuate area, which also showed a local
dense innervation of ir fibers. Two major targets of this system are the PVN and the DMH.
In the PVN, POMCir fibers outlined the entire nucleus, starting from its rostral portion
up to the more caudal levels. The distribution of these fibers was not homogeneous, in
particular they were denser in the medial PVN (corresponding to the parvocellular regions
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of this nucleus) compared to the lateral PVN (corresponding to the magnocellular region)
(Figure 1). The DMH nucleus (Figure 3) showed a denser innervation in the caudal part of
the nucleus compared with the rostral part. Other hypothalamic nuclei, such as the VMH,
did not show a significant number of positive fibers.

Figure 3. POMC immunohistochemistry. Microphotograph and histograms illustrating the immunohistochemical im-
munoreactivity for POMC in the dorsomedial (DMH), and arcuate (ARC) nuclei. (A) Low magnification of the hypotha-
lamic region of a control mouse (CRL) illustrating the POMC immunoreactivity in DMH, and ARC nuclei. Due to the
extreme paucity of immunoreactive structures, it was not possible to measure POMC immunoreactivity in the VMH.
Scale bar = 100 µm. (B,C) Histograms illustrating the quantitative analysis of the fractional area covered by POMC im-
munoreactivity in the DMH (B), and ARC (C) nuclei in the different experimental groups. Bars represent the mean and the
standard error of the mean (SEM). Asterisks indicate significant differences (Fisher’s test) of the experimental groups in
comparison to controls (CRL): ** p < 0.01, *** p < 0.001.

In the PVN we did not observe variations due to treatment. In fact, the statistical
analysis showed no effect of treatment (F =1.097, p = 0.396, Figure 1). On the contrary, data
collected in the ARC showed a decrease of the POMCir (including positive cell bodies
and fibers), following the different treatments (F(8) = 8.289, p < 0.001). The Fisher LSD test
showed a statistically significant decrease in the groups treated with the highest dose of
DES (p < 0.001), the lowest of E2 (p < 0.001) and in both groups treated with BPA (p < 0.001,
Figure 3).

The quantitative analysis also showed a decrease of the POMCir in the DMH following
different treatments (F(8) = 19.563, p < 0.001). The Fisher LSD test showed a decrease of
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POMC ir in all groups compared to controls, except for the lowest dose of TBT (Figure 3;
for details see Table S2, Supplementary Materials).

3. Discussion

The control of energy metabolism and food intake is in part dependent on central
neuroendocrine circuits that have been detailed in the introduction. Among the various
systems, the NPY and the POMC systems (both located in the hypothalamic arcuate
nucleus and sending their axons to other hypothalamic nuclei) exert orexigenic (NPY) and
anorexigenic (POMC) effects. Several studies (recently reviewed by [14]) demonstrated
that these neural circuits are altered when the animals are exposed to some environmental
compounds that are now classified as metabolism-disrupting chemicals (MDCs) [13,47].

In the present study, we showed that some of the putative MDCs, when chronically
administered through a phytoestrogen-free diet (reported in the literature as inducing body
weight gain [48]), affected the expression of both NPY and POMC in the hypothalamic
circuits of adult male mice. For comparison, we included two additional groups, one
without any treatment (control group) and the second one exposed to E2 (added to the
diet), which has a well-known anti-adipogenic effect [49,50].

As expected, in the present experiment, both doses of E2 induced a significant reduc-
tion of the body weight in comparison to the control group. On the contrary, male mice fed
with the same diet but with different concentrations of three different EDCs, except the
group treated with the highest dose of DES, did not show any significant reduction of the
body weight. These results suggest that BPA, DES, and TBT are not able, in adult male mice,
to counteract the consequence of an exposure to a phytoestrogen-free diet on the body
weight, whereas E2 is able to do this. Therefore, whereas E2 has an anti-obesogenic effect,
the EDCs considered in this study do not show this property. It is possible that the lack of
effect on body weight is due to the fact that the reduction of the activity of the orexinergic
circuits originated by the reduction of NPY is compensated by the reduction of the activity
of the anorexinergic circuits caused by the reduction of the expression of POMC.

Our data show that the NPY expression in male mice hypothalamic nuclei involved in
food intake regulation is reduced by E2 as well as by all tested EDCs at almost all doses.
Therefore DES, BPA, and TBT have the same effect of E2 on the NPY system. In particular,
DES and BPA have a well-known strong xenoestrogenic activity because they specifically
bind to ERs [51]. On the contrary, TBT does not bind ERs, but it also has xenoandrogenic or
antiandrogenic activity [52]. The reduction of NPY expression in the hypothalamus after
TBT treatment confirms our previous results [30] and may be due to the activation of other
pathways, not directly regulated by E2.

The effects of treatments on the POMC system of male mice are less homogeneous.
In fact, we observed significant effects on ARC and DMH, while in the PVN we have
not detected significant effects. DES, BPA, and also E2 significantly decreased the POMC
expression in ARC, while TBT showed no significant effect. It is important to note that
30% of POMC cells in ARC colocalize with ERα while they do not express ERβ [53], thus
suggesting a possible direct role of ERs in regulating part of this system that represents,
consequently, a putative target for xenoestrogens, like BPA and DES. The lack of TBT effect
is also in line with our recent results that showed no effects of TBT on the POMC system in
adult male mice [31].

The POMC neurons of the ARC send axons to two main targets, the DMH and the
PVN. All treatments (including TBT at the highest dose) induced a significant decrease in
the immunoreactivity in the DMH, whereas no effect was detected in the PVN, even when
the quantitative analysis was performed on the different parts of the PVN, according to the
method detailed in [54] (results summarized in Figure S3 of Supplementary Material). It is
still possible that the paucity of POMC fibers in the PVN (compared to the NPY ones) has
prevented the detection of small differences in the present experimental material.

In a limited number of experimental groups, the tested EDCs showed a significant
effect in reducing immunoreactivity at the low dose and not at the high dose, for example
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see the effect of TBT on VMH NPY immunoreactivity, the effect of BPA on ARC NPY
immunoreactivity, or the effect of E2 on ARC POMC immunoreactivity. These results
confirm the nonmonotonic dose response described in many experimental situations for
several EDCs [55]. The differences of the results of EDC treatments on NPY and POMC
immunoreactivity with those obtained with E2, are probably due to the activation of
pathways not directly or indirectly regulated by E2. For example, it has been found that
intracerebroventricular injections of oxytocin (OT) in adult fasted male rats decreases food
intake [56]. Moreover, a retrograde tracer study revealed OT projection from PVN and
SON to ARC, demonstrating that oxytocinergic signaling may regulate feeding [57]. OT
cells, expressing ER-β, of the PVN [58], are a possible target for xenoestrogen that binds
ER-β, like the phytoestrogen genistein [59]. This suggests that some EDCs may alter POMC
expression via the OT system. However, the physiological significance of the OT neuronal
projections from PVN and SON to ARC POMC neurons, still remains unclear, and further
studies are required to clarify it.

One of the most important regulators of the NPY [60] and POMC [61] systems is
represented by the cannabinoid receptor CB1. Some EDCs may modulate the expression
of this receptor: prolonged exposure to DES produced a reduction in the mRNA for CB1
receptor in the rat pituitary [62], while BPA caused a downregulation of CB1 receptor in the
mice hypothalamus [63]. No data are yet available for an action of TBT on the expression
of CB1 receptor. Therefore, it is possible that present results on the alterations of NPY and
POMC systems are partly due to an effect of the EDCs on the expression of CB1 receptor
and a consequent functional alteration of these two systems. Future work should clarify
this aspect.

The levels of circulating glucose are also important in controlling the NPY and POMC
circuits, through glucose sensitive neurons located in the VMH and LH (for a recent review
see [64]). All the three EDCs analyzed in this study disrupt glucose homeostasis by acting
on pancreatic islets [37,65,66]. Even if in the present study we have not detected glucose
blood levels, it is therefore possible that part of the dysregulation of the NPY and POMC
systems is due to alterations of glucose homeostasis.

Another crucial point is that we do not know, at the moment, if we are observing an
activational or an organizational effect of these EDCs. In the first case we may expect that
the differences in the expression of immunoreactivity are due to an increase or a decrease
in the production of neuropeptides in stable circuits (see the effects of BPA on NPY mRNA
in neuronal cell cultures [20]). In the second case the hypothesis is that the exposure to
the EDCs may induce permanent (or long-term) changes in the observed circuits. In fact,
it has been demonstrated that gonadal hormones produced during puberty are inducing
neurogenesis in some hypothalamic [67] or extrahypothalamic [68] nuclei and that this
process is necessary to stabilize the sexual differences evidenced in these nuclei. A recent
review [69] analyzed the available data for the development of hypothalamic circuits that
control food intake and energy balance. In summary, in these circuits neurogenesis is
only present during the prenatal period [70], but the full maturation of the connections
ARC–PVN is reached during the postnatal days 28–35 [71]. However, more recent stud-
ies demonstrated that adult neurogenesis of NPY and POMC neurons in mice ARC is
stimulated by changes among high fat–low fat diets [72]. Being our animal was three
weeks old, it is therefore possible that exposure to EDCs had altered the connection of
ARC towards VMH, DMH, and PVN, or even determined a change in the number of NPY
and POMC neurons (BPA may induce apoptosis in hippocampal cells [73]). According
to this hypothesis the observed changes in the immunoreactivity could be linked to an
alteration (plasticity) of fibers’ system reaching these nuclei. At the moment it is impossible
to know if NPY and POMC circuits, after such a long exposure to EDCs, when provided
with EDCs-free food, may recover to a status comparable to the non-treated animals (this
is compatible with an activational effect). Future studies should elucidate this point, in
particular not only if there is a recovery, but also how long it will take to recover.
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In conclusion, these data, together with those already present in the literature, suggest
that EDCs may alter energy metabolism not only at the level of peripheral tissues [13], but
also in neuroendocrine circuits involved in the control of food intake, in particular, the
NPY and POMC systems. The control of physiological processes by these systems is highly
complex, making the understanding of neuroendocrine disruption a particular challenge.

4. Materials and Methods
4.1. Animals and Treatment

The procedures involving animals and their care were performed in Brescia accord-
ing to the Union Council Directive of 22 September 2010 (2010/63/UE). The study was
approved by the Ethical Committee of Animal Experimentation of the Hospital and the
Italian Minister of Health (407/2018-PR). All care was taken to use the minimum number
of animals.

C57BJ/6 male mice (Harlan, Udine) were housed in same-sex groups of 4 per cage
on a 12:12-h light/dark cycle; animal rooms were maintained at a temperature of 23 ◦C.
Estrogen-free diet was purchased from Dottori Piccioni S.r.L. Via Guglielmo Marconi, 29/31
Gessate (MI, Italy) (https://totofood.it/, assessed on 7 June 2021). The diet was prepared
in pellets (the composition is reported in Table S1, Supplementary Materials).

The treatment started when mice were three weeks old and lasted for four months.
Animals were divided randomly in nine experimental groups: control mice were fed
with the base diet (estrogen-free diet) while experimental groups were fed with the base
diet enriched with two different concentrations of E2, BPA, DES, or TBT (according to
previous studies [74]). All the chemicals were obtained from Sigma-Aldrich, Milano, Italy,
dissolved in DMSO and further diluted before their addition to the diet, for homogeneous
preparations. These are the doses used: E2 (stock solution 97%, cat. number E8515; 5 or
50 µg/kg diet); BPA (stock solution 99%, cat. number 239658; 5 or 500 µg/kg diet); DES
(stock solution 99%, cat. number D-4628; 0.05 or 50 µg/kg diet); and TBT (stock solution
96%, cat. number T50202; 0.5 or 500 µg/kg diet).

The normal food consumption in adult mice corresponds to 15g/100g body
weight/day [75]; since mice used in this experiment had a mean body weight of 30g,
it was considered an approximate consumption of 4.5 g food/day was appropriate. Ac-
cordingly, in this case mice were exposed daily to approximately 0.15–1.5 µg/g body
weight of E2, 0.15–15 µg/g body weight of BPA, 0.0015–1.5 µg/g body weight of DES, and
0.015–15 µg/g body weight of TBT.

Body weights were recorded at the end of the experiment, before sacrifice (see Table 1).
Food consumption was monitored every two days as the difference between the

weight of the pellets supplied and that consumed. Spilled food, if any, was collected in
apposite trays underneath the food containers, measured, and taken into account.

4.2. Tissue Sampling and Histological Examination

Four months after the beginning of treatment adult mice were deeply anesthetized
with an intraperitoneal injection of a mixture of ketamine (100 mg/kg of body weight,
Ketavet, Gelling, Italy) and xylazine (10 mg/kg of body weight, Rompun, Bayer, Germany)
solution, monitored until the pedal reflex was abolished and killed by cervical dislocation.
Animals were decapitated, brains were quickly dissected and placed into acrolein (5% in
0.01 M saline phosphate buffer, PBS) for 150 min at room temperature. Brains were rinsed
several times in PBS, placed overnight in a 30% sucrose solution in PBS at 4 ◦C, frozen in
liquid isopentane at −40 ◦C and stored in a deep freezer at −80 ◦C until sectioning.

Brains (N = 4 for each group) were serially cut in the coronal plane with a cryostat
(Leica CM 1900) at 25 µm of thickness. Sections were collected in four series for free-
floating procedure in multiwell dishes, filled with a cryoprotectant solution [76] and stored
at −20 ◦C until used for immunohistochemistry. One series of sections was stained for
NPY immunohistochemistry and another for POMC immunohistochemistry. Brain sections

155



Metabolites 2021, 11, 368

were always stained in groups containing each treatment, so that between-assay variance
could not cause systematic group differences.

After overnight washing in PBS, sections were incubated in 0.01% sodium borohy-
dride for 20 min to remove the acrolein and rinsed in PBS several times. Then, sections
were exposed to Triton X-100 (0.2% in PBS) for 30 min and treated for blocking endoge-
nous peroxidase activity with PBS solution containing methanol/hydrogen peroxide for
20 min. Sections were afterwards incubated with normal goat serum (Vector Laboratories,
Burlingame, CA, USA) for 30 min. One series was incubated overnight at 4 ◦C with the
rabbit polyclonal antibody against synthetic porcine NPY (gift by Professor Vaudry, France)
diluted 1:5000 in 0.2% PBS-Triton X-100, pH 7.3–7.4 and another with the rabbit polyclonal
antibody against POMC (Phoenix Pharmaceuticals, Inc.,Burlingame, CA USA) [31,77,78]
diluted 1:5000 in 0.2% PBS-Triton X-100 and 1% of BSA, pH 7.3–7.4. The next day, sec-
tions were incubated for 60 min in biotinylated goat anti-rabbit IgG (Vector Laboratories,
Burlingame, CA, USA) 1:200. The antigen–antibody reaction was revealed by 60 min
incubation with the biotin–avidin system (Vectastain ABC Kit Elite, Vector Laboratories,
Burlingame, CA, USA). The peroxidase activity was visualized with a solution contain-
ing 0.400 mg/mL of 3,3′-diamino-benzidine (DAB, Sigma–Aldrich, Milano, Italy) and
0.004% hydrogen peroxide in 0.05 M Tris–HCl buffer, pH 7.6. Sections were mounted on
chromallum-coated slides, air-dried, cleared in xylene, and cover slipped with Entellan
(Merck, Milano, Italy).

The production and characterization of NPY polyclonal antibody has been previously
reported [79,80] and it has been employed to detect the NPY system in a wide range of
species [40].

The POMC antibody from Phoenix Pharmaceuticals recognizes a sequence corre-
sponding to N terminal amino acids 27–52 of Pig POMC precursor and has often been used
in mouse and rat studies [31,42,81].

We performed the following additional controls in our material: (a) the primary
antibody was omitted or replaced with an equivalent concentration of normal serum
(negative controls) and (b) the secondary antibody was omitted. In these conditions, cells
and fibers were completely unstained.

4.3. Quantitative Analysis

All sections were acquired with a NIKON Digital Sight DS-Fi1 video camera connected
to a NIKON Eclipse 80i microscope (Nikon Italia S.p.S., Firenze, Italy). The staining density
of NPY- and POMC-immunoreactive (ir)-containing structures was measured in selected
nuclei with the freeware ImageJ (version 1.49b, Wayne Rasband, NIH, Bethesda, MD, USA)
by calculating in binary transformations of the images (threshold function) the fractional
area (percentages of pixels) covered by immunoreactive structures in predetermined fields
(area of interest, ROI). Due to differences in the immunostaining, according to our previous
reports [50,63], the range of the threshold was individually adjusted for each section.

For quantification of NPY and POMC systems we selected four hypothalamic nuclei
involved in controlling food intake—ARC, DMH, PVN, and ventromedial hypothalamic nu-
cleus (VMH). For each nucleus, we measured the density of immunoreactive structures on
three consecutive sections identified by the Mouse Brain Atlas (ARC, VMH, DMH: bregma
−1.46mm, −1.58mm, −1.70mm; PVN: bregma −0.70mm, −0.82mm, −0.94mm [82,83].

The ROI selected for each nucleus was a box of fixed size and shape, selected
to cover immunoreactive material only within the boundaries of each nucleus (about
140,000 µm2 for VMH and DMH, 110,000 µm2 for ARC, and 200,000 µm2 for PVN). Due to
the extreme paucity of immunoreactive structures, it was not possible to measure POMC-
immunoreactivity in the VMH.

4.4. Statistical Analysis

Collected data were analyzed with the program SPSS 24.0 (SPSS Inc., Chicago, IL,
USA); the p values and the significance threshold were set at p ≤ 0.05. Data collected for
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the body weight were analyzed by one-way ANOVA followed by post-hoc analysis with a
Fisher LSD test. Data collected for the immunohistochemistry were analyzed by repeated-
measure one-way ANOVA. When the analysis did not show significant differences between
different levels of the same nucleus, we calculated a mean value for each nucleus that was
used to assess variations due to the treatment. When statistically significant, the ANOVA
analysis was followed by a Fisher LSD test.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11060368/s1, Figure S1: NPY immunoreactivity. Immunohistochemical comparison of
NPY immunoreactivity among control animals (CRL) and the different treated groups (in all case it
was shown to be the lowest dose used) in the dorsomedial (DMH), ventromedial (VMH), arcuate
(ARC), and paraventricular (PVN) nuclei. Estradiol, E2; tributyltin, TBT; diethylstilbestrol, DES;
bisphenol A, BPA. Scale bar = 100 µm, Figure S2: POMC immunoreactivity. Immunohistochemical
comparison of POMC immunoreactivity among control animals (CRL) and the different treated
groups (in all case it was shown to be the lowest dose used) in the dorsomedial (DMH), arcuate
(ARC), and paraventricular (PVN) nuclei. Estradiol, E2; tributyltin, TBT; diethylstilbestrol, DES;
bisphenol A, BPA. Scale bar = 100 µm, Figure S3: Regional analysis of POMC immunoreactivity in
the PVN. To further confirm the absence of variations in the POMC expression within the PVN, we
measured the immunoreactivity, according to our previous studies [54], by dividing the PVN into
four quadrants: dorsomedial (DM), dorsolateral (DL), ventromedial (VM), and ventrolateral (VL).
The results of this analysis reported no significant differences for all the analyzed subregions and
are summarized in the histograms (B−E). Scale bar = 100 µm, Table S1. Composition of the soy-free
diet (SFSD), Table S2. Summary of quantitative analysis of the fractional area. Fractional area data
in the different nuclei and in the different groups analyzed in this study. The values reported are
the mean and standard error of the mean (SEM). Bold numbers and asterisks indicate significant
differences (Fisher’s test) among the differently treated groups: * p < 0.05, ** p < 0.01, *** p < 0.001
different from control.
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Abstract: Phytoestrogens are considered beneficial for health, but some studies have shown that they
may cause adverse effects. This study investigated the effects of genistein administration during the
second week of life on energy metabolism and on the circuits regulating food intake. Two different
genistein doses, 10 or 50 µg/g, were administered to male and female rats from postnatal day (P)
6 to P13. Physiological parameters, such as body weight and caloric intake, were then analyzed at
P90. Moreover, proopiomelanocortin (POMC) expression in the arcuate nucleus (Arc) and orexin
expression in the dorsomedial hypothalamus (DMH), perifornical area (PF) and lateral hypothalamus
(LH) were studied. Our results showed a delay in the emergence of sex differences in the body
weight in the groups with higher genistein doses. Furthermore, a significant decrease in the number
of POMC-immunoreactive (POMC-ir) cells in the Arc in the two groups of females treated with
genistein was observed. In contrast, no alteration in orexin expression was detected in any of the
structures analyzed in either males or females. In conclusion, genistein can modulate estradiol’s
programming actions on the hypothalamic feeding circuits differentially in male and female rats
during development.

Keywords: genistein; proopiomelanocortin; arcuate nucleus; sex differences; rats

1. Introduction

Genistein is a phytoestrogen that belongs to the group of isoflavones. It is present
in a wide variety of legumes, mainly soybeans and their derivatives, which makes it one
of the most consumed phytoestrogens by humans [1]. Soy is a typical ingredient in the
traditional Asian diet, and it is also a widely consumed food in Western countries, being
one of the most common milk substitutes, mostly in children [2–4].

Phytoestrogens exert their actions principally through the estradiol receptor (ER) α
and ERβ, with higher reported affinity to the latter [5–7], but also through the G protein-
coupled estrogen receptor (GPER) [8,9]. Specifically, genistein has structural similarities
with estradiol, which allows it to bind estrogen receptors, acting as a potential agonist or
antagonist of the estrogens, depending on the estradiol levels or the tissue [10–14].

Phytoestrogens are considered endocrine disruptors (EDCs), and although most of
the EDCs have been demonstrated to have harmful effects on the organism (e.g., pesti-
cides, bisphenol A) [15], phytoestrogens, in general, seem to have beneficial effects on
health. Some practical advantages include the prevention of cardiovascular diseases [16],
decreased inflammatory response in microglia [17], prevention of denervation-induced
muscle atrophy [18], prevention of different types of cancer [19,20] and improvement in
menopausal symptoms [21,22]. However, not all results evidence beneficial actions on the
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organism due to reports of damaging effects arising from phytoestrogens′ exposure. In
addition, a proportion of clinical studies do not demonstrate a clear health improvement
(for review, see [23–25]).

The basal sexual genetic differences have an impact on structural, metabolic and behav-
ioral differences between male and female rats that are more evident in adulthood [26–28].
Some authors have recently shown that genistein produces some alterations in various
neural systems, such as vasopressinergic or dopaminergic systems, mainly when admin-
istered during development, and that those effects are sexually dimorphic in males and
females [29,30]. Moreover, previous results of our group have demonstrated that estradiol
administered from postnatal day (P) 6 to P13 has a modulatory role in rats in the early
stages of life due to under- or overnutrition [31–33], specifically in the programming of
the body weight in males and the mRNA POMC hypothalamic levels in females [34].
Estradiol conveyed mainly through ERα [35–39] is involved in the regulation of energy
metabolism inhibiting food intake [40]. Considering these results and the possible estro-
genic/antiestrogenic effects of genistein, it seems reasonable to assume that exposure to
genistein during the early postnatal period may produce some alteration to the devel-
opment of energy metabolism and on hypothalamic circuits that regulate food intake.
Numerous orexigenic and anorexigenic peptides are involved in the regulation of body
weight and feeding. Among them are the orexin and POMC peptides. The former are syn-
thesized and released from LH neurons and increase food intake in response to the release
of neuropeptide Y (NPY) from Arc neurons [41,42]. The latter, anorexigenic in their activity,
are expressed by Arc neurons that send satiety signals to the LH and paraventricular
hypothalamic nuclei (PVH) [43].

Given the increase in soy consumption in the general population and in children in
particular, it is necessary to determine the effects of its main component, genistein. In the
present work, we analyzed genistein treatment’s effect during the second week of life on
physiological parameters such as body weight and food consumption and neurohormonal
parameters, such as POMC and orexin hypothalamic expression, in male and female rats.

2. Results
2.1. Differences in Body Weight and Caloric Intake

In the evolution of body weight, a main effect of sex (F1,50 = 253.559; p < 0.001) was
found. Neither the treatment (F2,50 = 0.170; p = 0.844) nor the interaction (F2,50 = 0.520;
p = 0.598) showed a significant effect.

As shown in Figure 1A, sex differences in body weight appeared on P41 in control
and G10 groups (p < 0.05 in all cases), with males heavier than females. A delay in the
appearance of sex differences can be observed in G50 groups from P48 onwards (p < 0.05
in all cases). No significant differences were observed when males and females were
analyzed separately.

Food intake was measured in grams. A main effect of sex (F1,50 = 297.788; p < 0.001)
was found. Treatment (F2,50 = 0.183; p = 0.833) and an interaction between these two
factors (F2,50 = 0.696; p = 0.504) were not significant. As can be seen in Figure 1B, sex
differences appeared on P41 and continued until P83. In all groups, males ate more than
the corresponding females.
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groups studied. All values are expressed as means ± S.D. CM: control males: CF: control females; 
G10M: genistein treated males, dose 10 µg/g; G10F: genistein treated females, dose 10 µg/g; G50M: 
genistein treated males, dose 50 µg/g; G50F: genistein treated females, dose 50 µg/g. 
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Figure 1. (A) Body weight evolution in all groups. (B) Weekly food intake in all groups (repeated measured ANOVA).
Statistically significant differences (p < 0.05) are labelled as follows: a = sex differences in C and G10 groups; b = sex
differences in G50 groups. # = sex differences in all groups studied. All values are expressed as means ± S.D. CM: control
males: CF: control females; G10M: genistein treated males, dose 10 µg/g; G10F: genistein treated females, dose 10 µg/g;
G50M: genistein treated males, dose 50 µg/g; G50F: genistein treated females, dose 50 µg/g.

2.2. Orexin-ir and POMC-ir Cell Analysis

No orexin-ir cells were detected in the ventromedial (VMH) or paraventricular hy-
pothalamic nuclei (PVH). Orexin-ir cells were observed in the medial-ventral area of the
lateral hypothalamus (LHmv). Likewise, a small population of orexin-ir cells was detected
in the lateral edge of the dorsomedial hypothalamic nucleus (DMH) adjacent to the orexin-ir
cells in the perifornical nucleus (PF). Together, these two areas were considered as the
DMH-PF continuum for counting and analysis. In all nuclei studied, the cells that expressed
orexin were easily detectable because the cell body was heavily labelled (Figure 2D,E).

No differences between the hemispheres were found in the PF-DMH continuum
(F1,54 = 0.926; p = 0.402) or the LH (F1,54 = 1.196; p = 0.310). Moreover, no main effect of
sex (F1,30 = 0.598; p = 0.445), treatment (F2,30 = 1.614; p = 0.216) or interaction between
the factors (F2,30 = 0.079; p = 0.924) was found in this same continuum, and similar results
were also observed in the LH with no main effect of sex (F1,30 = 0.002; p = 0.964), treatment
(F2,30 = 0.218; p = 0.805) or interaction between the factors (F2,30 = 0.234; p = 0.793).

POMC-ir cells were easily distinguishable because the cell body was heavily labelled
(Figure 2B,C). Cells expressing POMC were detected in the medial (ArcM), lateral (ArcL)
and posteromedial (ArcPM) subdivisions of the arcuate nucleus (Arc) but not in the Arc-
Dorsal subdivision.

No differences between the hemispheres were found in the anterior arcuate
(F1,56 = 0.001; p = 0.979) or the posterior arcuate (F1,56 = 0.021; p = 0.884).

In the ArcM, a main effect of sex was found (F1,36 = 5.347; p < 0.001) but no effect of
treatment (F2,36 = 0.196; p = 0.823) or interaction (F2,36 = 1.051; p = 0.164). Moreover, in
the ArcL and the ArcPM, no effect of sex (F1,36 = 0.001; p = 0.973; F1,36 = 0.795; p = 0.379,
respectively), treatment (F2,36 = 1.514; p = 0.234; F2,36 = 0.724; p = 0.492, respectively) or
interaction (F2,36 = 1.905; p = 0.164; F1,36 = 0.467; p = 0.631, respectively) were found.
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POMC-ir positive cells in Arc nucleus. (D,E) Orexin-ir positive cells in the PF and LH. Arrows 
show orexin-ir and POMC-ir positive cells counted. ArcM: arcuate medial subdivision, ArcL: arcu-
ate lateral subdivision; LH: lateral nucleus of the hypothalamus; DMH-PF: dorsomedial-periforni-
cal nucleus B Bar = 200 µm; C Bar = 50 µm ; D Bar = 300 µm; E Bar = 75 µm [44]. 
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Figure 2. (A) Schematic representation of the procedure used from treatment to immunostaining.
From P6 to P13, daily injections of synthetic genistein (10 or 50 µg/g) or vehicle according to
experimental group were administered. From weaning on P21 to P34, an acclimatization period was
implemented. Food intake and body weight were measured weekly from P34 until P89. Animals
were sacrificed on P90. (B,C) Photomicrographs showing the distribution of immunostaining of
POMC-ir positive cells in Arc nucleus. (D,E) Orexin-ir positive cells in the PF and LH. Arrows show
orexin-ir and POMC-ir positive cells counted. ArcM: arcuate medial subdivision, ArcL: arcuate lateral
subdivision; LH: lateral nucleus of the hypothalamus; DMH-PF: dorsomedial-perifornical nucleus B
Bar = 200 µm; C Bar = 50 µm ; D Bar = 300 µm; E Bar = 75 µm [44].
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Analysis of each sex separately showed a difference in the ArcM in females. The
CF exhibited a greater number of POMC-ir cells than the females treated with low or
high genistein doses (p < 0.05, in both cases). In contrast, males did not show significant
differences among the three groups studied (Figure 3).
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(two-way ANOVA) * indicates differences between groups (p < 0.05 in all cases). The error bars
indicate standard error of the mean. CM: control males; CF: control females; G10M: genistein treated
males, dose 10 µg/g; G10F: genistein treated females, dose 10 µg/g; G50M: genistein treated males,
dose 50 µg/g; G50F: genistein treated females, dose 50 µg/g. n = 6 in all groups. All treatments,
either injection of genistein or vehicle, were administered from P6 to P13. (B–D) photomicrographs
showing the distribution of POMC-ir positive cells in Arc nucleus. B = control female, C = G10
female, D = G50 female. Bar = 200 µm [44].

3. Discussion

The present study results showed that the exposure to genistein in the early stages of
development modifies hypothalamic POMC neurons’ long-term expression in the arcuate
nucleus of female but not male Wistar rats. Moreover, high doses of genistein produced
a delay in the emergence of sex differences in body weight. In contrast, caloric intake or
orexin expression were not altered in either sex.

Treatment with genistein from P6 to P13 did not affect the caloric intake because
there were no differences between the groups or both sexes’ developmental pattern. The
differences appeared from P48 onwards in all groups. Concerning the body weight, we
detected differences in the evolution of normal sexual dimorphism, an observation resulting
from the one week delay in the emergence of sex differences in the genistein groups with
high dose. Sex differences in control and G10 groups were observed from P41 onwards but
at P48 in G50 groups. Similar results in the emergence of sex differences in control groups
were reported in a previous study by our group [32].

Although the effects of genistein during development do not significantly alter physio-
logical parameters such as caloric intake or body weight, a relevant effect has been detected
in the brain. Specifically, the number of cells expressing POMC decreased in the medial
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subdivision of the arcuate nucleus of female rats when low or high doses of genistein were
administered from P6 to P13. However, no effect of genistein was detected on POMC
expression in this same nucleus in males.

The fact that genistein treatment altered the expression of POMC in the ArcM in female
but not male rats is not surprising if previous results from our group are considered. In the
same postnatal period, the administration of estradiol modulated the levels of hypothalamic
POMC mRNA in females on a low-protein or high-fat diet, but no effect was detected in
the male rats or in any other feeding-related peptide studied [31,32]. Furthermore, when
the activity of ERα, ERβ and GPER receptors was blocked from P5 to P13, there was a
decrease in hypothalamic POMC mRNA levels in female rats, but again, this effect was not
detected in males, and no other alterations were shown in other peptides studied [34]. In
line with these data, the results of the present study show first that genistein through an
agonist or antagonist estrogenic activity alters the long-term expression of POMC during
development in female but not male rats, and therefore this phytoestrogen could interfere
with the programming activity of estradiol early in life. Secondly, in all cases, a misbalance
in estrogenic activity affects POMC but no other peptides related to food intake in the
hypothalamus [31,32] or specifically orexin in the DMH, PF or LH nuclei.

Gao et al. [45] demonstrated the existence of a direct relation between estradiol and
POMC since this hormone can increase excitatory inputs on POMC neurons and POMC
tone in the Arc in rats and mice [45]. This fact can explain the consistent response of POMC
to the changes in the estradiol activity during development and how important the activity
of this hormone is to the long-term expression of POMC in the hypothalamus. Our results
show that the influence of genistein on estrogenic activity during development also results
in an alteration of the melanocortin system in females in the long term.

At this point, it is important to note that the administration of estradiol in control
animals in the same postnatal period did not alter hypothalamic POMC mRNA levels
either in males or females in adulthood [32], suggesting a specific antagonist effect of
genistein on the activity of estradiol in the programming of feeding circuits during de-
velopment. On the one hand, it is worth bearing in mind that the effects of estradiol on
food intake are mainly via the ERα [35–39] and that genistein has a higher affinity for
ERβ, which could lead to differential effects of the phytoestrogen compared to estradiol.
To our knowledge, no direct effect of genistein on POMC has been reported, but some
results suggest a possible indirect effect of genistein on the downregulation of POMC
expression in the Arc. It has been demonstrated that dietary soy produces an increase
in hypothalamic neuropeptide Y (NPY) or agouti-related protein (AgRP) levels [46–48]
and the inhibitory action of NPY/AgRP neurons on POMC neurons, possibly through
GABA, has been soundly demonstrated [49–53]. Further research is therefore needed to
determine the specific action of genistein during the programming period on ERs and
whether genistein acts directly on POMC neurons or whether its effects on this system are
due to an indirect action via NPY.

Numerous studies have reported that soy proteins may exert beneficial health effects
by improving metabolic parameters and preventing obesity and diabetes, mainly in adult
pre-and postmenopausal women [54–56]. However, many studies have shown that expo-
sure to phytoestrogens early in development has adverse effects on reproductive function
(see [57], for review) and alters various neurotransmitter systems [29,30,58]. These data,
along with the results of the present work, demonstrate that exposure to genistein during
the most sensitive stages of development alters neurotransmitter and neuropeptidergic
systems involved in reproductive or feeding neurohormonal systems.

Very few studies have paid attention to the effects of phytoestrogens during develop-
ment on the functions of the hypothalamic circuits regulating energy metabolism and/or
feeding disorders. Data from other authors reported that phytoestrogens alter the repro-
ductive system [57], and now our results reveal that phytoestrogens can also differentially
modulate some actions of the estradiol during development in male and female rats. Tak-
ing into account that soy is the main substitute food for milk in children and that the
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lactation period is a sensitive period for the optimal development of brain circuits, further
research will be needed to unravel the mechanisms through which genistein during devel-
opment may alter the intake system in order to detect adverse effects on energy metabolism
and feeding.

4. Materials and Methods
4.1. Animals

All experiments were designed according to the guidelines published in the “NIH
Guide for the care and use of laboratory animals”, the principles presented in the “Guide-
lines for the Use of Animals in Neuroscience Research” by the Society for Neuroscience,
the European Union legislation (Council Directives 86/609/EEC and 2010/63/UE) and
the Spanish Government Directive (R.D. 1201/2005). Experimental procedures were ap-
proved by our Institutional Bioethical Committee (UNED, Madrid). Special care was taken
to minimize animal suffering and reduce the number of animals used to the minimum
necessary. Wistar rats were reared under stable temperature, humidity and light conditions
(22 ± 2 ◦C; 55 ± 10% humidity; 12 h light/12 h dark cycle, lights on from 08:00 to 20:00)
with food and water ad libitum. For mating, a male was placed in a cage with two females
for one week. Pregnant females were housed individually in plastic maternity cages with
wood shavings as the nesting material. On postnatal day 1 (P1), pups born on the same
day were weighed, sexed, and randomly distributed (five females and five males/dam).
From P6 to P13, pups were treated with a daily s.c. injection of vehicle (corn oil), or syn-
thetic genistein (Genistein Synthetic, ≥98%, Sigma-Aldrich St. Luois, MO, USA) in two
doses: a low dose of genistein (10 µg/g) or a high dose of genistein 50 µg/g. The 10 µg
dose was previously used by other authors who obtained differential effects in males and
females on several physiological and brain parameters [59–61] This experimental design
resulted in the following groups: control male (n = 10, CM), control female (n = 9, CF), G10
male (n = 10, G10M), G10 female (n = 9, G10F), G50 male (n = 10, G50M) and G50 female
(n = 8, G50F). n = 6 and n = 7 in each group were used to study orexin and POMC expression,
respectively. From weaning on P21 to P34, an acclimatization period was implemented.
From P33 to P89, body weight and food intake were measured every 7 days, except for the
week prior to perfusion when body weight was recorded at 6 days (Figure 2A).

4.2. Tissue Preparation

On P90, animals were deeply anaesthetized with an overdose of tribromoethanol in
saline (1 mL/kg). Then, the animals were transcardially perfused with saline followed
by 4% paraformaldehyde (PAF). The brains were removed, stored in a freshly prepared
PAF solution for two hours at 4 ◦C and then washed several times in phosphate-buffered
saline (PBS). Next, the brains were stored in a 30% sucrose solution in PBS at 4 ◦C until
they were examined. The brains were then frozen on dry ice and serially sectioned along
the coronal plane at a thickness of 40 µm. Serial sections were collected in four series, two
of which were used in this study processed as free-floating sections for orexin and POMC
immunostaining.

4.3. Orexin and POMC Immunostaining

The sections were incubated in PBS overnight. Endogenous peroxidase activity
was blocked by incubation with H2O2 in 0.5% Triton X-100 in PBS for 30 min. After
a brief wash in PBS, the sections were incubated in normal goat serum (diluted 1:5 in
PBS; Vector, Burlingame, CA, USA) for 30 min at room temperature. Then, the sections
were incubated for 48 h at 4 ◦C in a rabbit anti-orexin A primary antibody (Calbiochem,
San Diego, CA, USA) or in a rabbit anti-POMC primary antibody (Phoenix Pharmaceuticals
Inc., Burlingame, CA, USA); 1:2000 in both cases. After several brief washes in PBS, the
sections were incubated with biotinylated anti-rabbit IgG serum (Vector, 1:200) for 90 min
and then in avidin-peroxidase complex (Immunopure ABC Vector Burlingame, CA, USA)
for 60 min at room temperature. Finally, the presence of peroxidase activity was visualized
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with a solution containing 0.02 g/mL diaminobenzidine (DAB; Aldrich, Madrid, Spain)
and 0.025% hydrogen peroxidase in Tris–HCl, pH 7.6. The sections were mounted on
gelatin-coated slides, dehydrated in ethanol, washed in xylene and coverslipped with DPX
(Surgipath Europe Ltd., Peterborough, UK).

The number of orexin-ir cells in the dorsomedial hypothalamus (DMH), perifornical
area (PF) and lateral hypothalamus (LH) and the number of POMC-ir cells in the subdivi-
sions of the arcuate nucleus (the dorsal [ArcD], medial [ArcM], lateral [ArcL] and medial
posterior [ArcPM]) [44] were estimated. Briefly, a microphotograph of each section was
acquired using a scanner (Nikon Collscope Eclipse Net-VSL, Tokyo, Japan) with a monitor
(Digital Sight DS-L1, Tokyo, Japan). The number of orexin-ir or POMC-ir cells in each sec-
tion was estimated using ImageJ (ImageJ bundled with 64-bit Java 1.8.0; National Institutes
of Health, Bethesda, MD, USA) following the Königsmark cell counting procedure [62]. The
scattered orexin-ir cells on the lateral edge of the DMH were considered to be continuous
with the PF nucleus. The orexin-ir or POMC-ir cells included within the boundaries of the
different nuclei were counted.

4.4. Statistical Analysis

The evolution of body weight and caloric intake during the experimental procedure
was analyzed using repeated-measures ANOVA with treatment as the within-subject factor
and body weight and caloric intake as the between-subject factors. To determine the
differences among the groups, one-way ANOVA was performed when appropriate. Post
hoc comparisons were performed with Student–Newman–Keuls tests. The significance
level was set at p < 0.05.

The number of orexin-ir and POMC-ir cells in both hemispheres was estimated. The
data were subjected to one-way ANOVA with the hemisphere as a factor to determine
the potential differences between the right and left hemispheres. Once the effect of the
hemisphere was discarded, the mean value of the two hemispheres was used for statistical
analysis performed by one-way ANOVA followed by Student–Newman–Keuls tests when
appropriate, and the significance level was p < 0.05.
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Abstract: The phytoestrogen genistein (GEN) may interfere with permanent morphological changes
in the brain circuits sensitive to estrogen. Due to the frequent use of soy milk in the neonatal
diet, we aimed to study the effects of early GEN exposure on some physiological and reproductive
parameters. Mice of both sexes from PND1 to PND8 were treated with GEN (50 mg/kg body weight,
comparable to the exposure level in babies fed with soy-based formulas). When adult, we observed,
in GEN-treated females, an advanced pubertal onset and an altered estrous cycle, and, in males,
a decrease of testicle weight and fecal testosterone concentration. Furthermore, we observed an
increase in body weight and altered plasma concentrations of metabolic hormones (leptin, ghrelin,
triiodothyronine) limited to adult females. Exposure to GEN significantly altered kisspeptin and
POMC immunoreactivity only in females and orexin immunoreactivity in both sexes. In conclusion,
early postnatal exposure of mice to GEN determines long-term sex-specific organizational effects. It
impairs the reproductive system and has an obesogenic effect only in females, which is probably due
to the alterations of neuroendocrine circuits controlling metabolism; thus GEN, should be classified
as a metabolism disrupting chemical.

Keywords: phytoestrogens; endocrine disruptor; dimorphism; obesity; kisspeptin; POMC; orexin

1. Introduction

Genistein (GEN; 4′,5,7-trihydroxyisoflavone) is an isoflavonoid compound. Its chemi-
cal structure shares features with 17β-estradiol, enabling it to bind to estrogen receptors.
GEN is produced by many plants, is highly present in Leguminosae species, and, due to its
estrogenic activity, is considered a phytoestrogen [1]. The main sources of GEN, in our diet,
are soybeans and soy-based foods. Most foods contain a small quantity of isoflavones, but
when consumed regularly and from various sources, they can reach a cumulative dose that
can contribute to long-term effects [2]. In adults, phytoestrogens, including GEN, have been
generally associated with beneficial effects, i.e., obesity and diabetes [3], menopause [4],
cancer [5], and hypertension associated to metabolic syndrome [6]; however, many studies
suggest that phytoestrogens are harmful to human health [7,8]. Above all, babies may be
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subjected to higher levels of phytoestrogens (6–9 mg/kg/day) than typical adult exposures
(approximately 1 mg/kg/day) [9]. In fact, in addition to soy-based infant formulas also
many soy-based foods are specifically prepared for babies [9,10]. In rodents, sex-specific
alterations were reported in several neuronal populations, including hypothalamic and
amygdaloid circuits containing many gonadal hormone-sensitive neurons [11–16].

The neuroendocrine control of food intake and energy expenditure is based on many
circuits including both orexinergic and anorexinergic elements that are targets for a series
of chemical signals coming from the periphery (for a review see [17]). The main centers
of this control are the arcuate nucleus (ARC), the dorsomedial hypothalamic nucleus
(DMH), the paraventricular hypothalamic nucleus (PVN), and the lateral hypothalamus
(LH). The ARC contains orexinergic elements (NPY/AgRP neurons) and anorexinergic
ones (the pro-opiomelanocortin/cocaine- and amphetamine-regulated transcript neurons
(POMC/CART)) while the LH encompasses orexin-A/hypocretin-1 (OX) neurons. Unlike
NPY/AgRP neurons (stimulating food intake), OX stimulates both feeding and energy ex-
penditure, in response to physiological variation in glucose blood levels between meals [18].
Among the peripheral signals, leptin, a satiety hormone produced by adipocytes, stim-
ulates POMC neurons in the ARC [19] and depresses the OX system. In the ARC, OX
fibers contact POMC cells decreasing their synthesis and promoting hyperphagia and
weight gain [20]. Interestingly, POMC and OX fibers directly project to the PVN, the most
important center of metabolic control. The PVN expresses the receptor for OX [21] and the
two peptides released from POMC neurons: melanocortin and α-melanocyte-stimulating
hormone (α-MSH) [22]. Moreover, the PVN modulates metabolism through its action on
the hypothalamus-pituitary-adrenal and on the hypothalamus-pituitary-thyroids axis [23].
The medial part of the PVN, where corticotropin-releasing hormone (CRH) and thyrotropin-
releasing hormone (TRH) neurons are located, is strongly innervated by kisspeptin (kiss)
fibers [24]. The kiss system is formed by a neuronal population more numerous in females
than in males [25], and, in rodents, kiss cells are clustered in the ARC and the rostral
periventricular area of the third ventricle (RP3V). This peptide was, at first, identified as
one of the key controllers of GnRH neurons (for a review see [26]), but today, kiss neurons
seem to have a major nodal role in integrating the different signals transmitting metabolic
information, from both the periphery and central nervous system, onto reproductive cen-
ters [27]. The connection between energy balance, puberty, and reproduction is evident,
particularly in females, in conditions of anorexia (energy insufficiency) or obesity (excess
of energy) [27]. Kiss neurons at the time of puberty are directly modulated by leptin [28].
Hypothalamic colocalization of kiss and leptin receptors is controversial and limited only
to the ARC group; in particular, the estimated degree of colocalization varies between
40% [29], 15% [30], and 6–8% [31] of the kiss neurons in the mouse ARC. In addition, the
signaling system becomes fully mature after the completion of puberty [29,30]. Moreover,
leptin deficiency reduces kiss mRNA expression in the ARC [29,32] and the number of
positive neurons in the RP3V [32]. Finally, kiss has strong effects on both POMC and NPY
systems in the ARC: kiss has an excitatory effect on POMC neurons via the kiss recep-
tor [33], which is expressed in about 63% of POMC-immunoreactive neurons in female
rats [34] and inhibits NPY cells via the GABA system [33]. However, in vitro, kiss induces
an increase of NPY and a decrease of BDNF expression [35]. In addition to peripheral
stimuli such as leptin and other hormones produced by the gastrointestinal system (i.e.,
Ghrelin and others), estrogen also plays an important role in controlling food intake and
metabolism [36].

Hypothalamic circuits involved in the regulation of food intake and energy metabolism
are therefore potential targets for xenoestrogens, including phytoestrogens and GEN [37].
Much evidence suggests that they could have an obesogenic effect [36] or might counteract
aspects of the metabolic syndrome [38]. Treatment with GEN affects body weight in
rats, but the effect depends on sex, age, and hormonal status [38,39]. In the young, in
ovariectomized [40,41] and intact adult female mice [42] GEN shows an anti-obesogenic
effect, but this appears to depend on the dose: adipogenesis is inhibited at low doses of
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GEN [43]. However, in males, the low concentration has an obesogenic effect [44]. In
rats, the perinatal treatment of GEN has different effects: obesogenic in females [45] and
anti-obesogenic in males [46].

The ability of GEN to bind the estrogen receptors (ERs) [12] makes the hypothalamic
circuits highly sensitive to this molecule. A large body of literature is present on the effect
of GEN on the kiss system with in vitro [47] and in vivo studies (for a review see [48]). No
significant alterations of the kiss system were found in adult male rats postnatally exposed
to GEN [49], while in females this system was mostly affected with a reduction of fiber
density [11,50]. Yet, little is known about the GEN effects on the circuits that control food
intake and energetic metabolism. A single study [51] shows that high phytoestrogens
(daidzein and genistein) concentrations decrease, in male mice hypothalamus, AgRP and
increase MCH, orexin A, and TRH mRNA levels in postnatal life, but it does not influence
NPY, POMC, and CART expression. However, in rats, the postnatal administration of two
doses of GEN (10 or 50 µg/g body weight) from PND6 to PND13 decreased the number
of POMC-ir cells in the ARC only in females, while the OX system did not appear to be
affected by the treatment in either sex [52].

Our study aimed to enclose in a single experiment the potential for sexually dimorphic
effects of early postnatal administration of GEN in mice (at a dose comparable to that of
babies fed with soy-based formulas) on: (I) female reproductive peripheral parameters
(puberty onset, estrus cycle, mammary gland development); (II) male reproductive periph-
eral parameters (testosterone level, testicle size); (III) control of food intake and metabolic
regulation through hormonal (leptin, triiodothyronine, ghrelin) and physiological (body
weight, food consumption, and feed efficiency) parameters; (IV) hypothalamic circuits
involved in both reproductive and metabolic control (POMC, orexin, kisspeptin systems).

2. Results
2.1. Female Reproductive Parameters
2.1.1. Vaginal Opening and Estrous Cycle

Vaginal opening (VO) is one of the parameters employed to evaluate the potential
effects of endocrine disrupting chemicals on puberty onset in rodents [53]. GEN treatment
stimulated an anticipation of the VO (F-CON = 27.8 ± 0.29; F-GEN = 26.5 ± 0.30, p = 0.005)
(Figure 1a).

GEN treatment altered the estrous cycle: F-GEN spent more time in estrus and diestrus
phases compared to F-CON (Estrus = 30% and Diestrus = 43% vs. 35% and 51% respectively
in F-GEN) with a significant reduction of proestrus phase (t-Test, p = 0.03; F-CON = 16.67
vs. F-GEN = 6.67) (Figure 1c).

2.1.2. Uterus Weight

The uterus weight of F-GEN was higher than F-CON starting from PND22, however,
the difference was significant only at PND22 (Student’s t-test p = 0.035), but not after
puberty (PND30, p = 0.120 and PND60, p = 0.123) (Figure 1b). Two-way ANOVA for age
and treatment as independent variables confirmed this result (respectively F = 30.489,
p = 0.001; F = 6.797, p = 0.014), but no difference was present in their interaction (F = 0.951,
p = 0.398).

2.1.3. Progesterone Level

Progesterone serum levels in control females did not change significantly in young
(PND30 6.84 ± 1.19) and adult (PND60 6.73 ± 0.90; p = 0.565) animals. GEN treatment did
not affect progesterone levels in young animals (PND30 F-CON vs. F-GEN; p = 0.41), while
it significantly increased it in adults (PND60 F-CON vs. F-GEN; p = 0.007) (Figure 1d).
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each phase of estrus cycle (estrus, metestrus, diestrus, and proestrus) in control (F-CON) and treated 

(F-GEN) females. (d) Histograms representing circulating variations of plasma concentration of pro-

gesterone (expressed in ng/mL, mean ± SEM) in control (F-CON) and treated (F-GEN) females, dur-

ing development at PND30 and PND60. (e) Histogram representing the increase of testicle weight 

(expressed in gram; mean ± SEM) measured during development at postnatal day (PND) 22, PND30, 

and PND60 of control (M-CON) and treated (M-GEN) males. (f) Histogram representing variations 

of fecal testosterone levels (expressed in ng/mL) in control (M-CON) and treated (F-GEN) males, 

during development at PND30 and PND60. * p < 0.05; ** p ≤ 0.01. VO, uterus and testicles weight, 

and time spent in each phase of estrus cycle were compared using Student’s t-test, while the pro-

gesterone was analyzed using Tukey’s test. 

2.1.4. Mammary Gland Analysis 

Figure 1. Parameters related to reproduction. (a) Histograms representing the evaluation of the day
of vaginal opening (VO) in control (F-CON) and treated (F-GEN) female CD1 mice (mean ± SEM).
(b) Histograms representing the variations of the uterus weight (expressed in gram; mean ± SEM)
measured during development at postnatal day (PND) 22, PND30, and PND60 of control (F-CON)
and treated (F-GEN) females. (c) Pie charts illustrating the time spent (expressed as percentage) in
each phase of estrus cycle (estrus, metestrus, diestrus, and proestrus) in control (F-CON) and treated
(F-GEN) females. (d) Histograms representing circulating variations of plasma concentration of
progesterone (expressed in ng/mL, mean ± SEM) in control (F-CON) and treated (F-GEN) females,
during development at PND30 and PND60. (e) Histogram representing the increase of testicle weight
(expressed in gram; mean ± SEM) measured during development at postnatal day (PND) 22, PND30,
and PND60 of control (M-CON) and treated (M-GEN) males. (f) Histogram representing variations of
fecal testosterone levels (expressed in ng/mL) in control (M-CON) and treated (F-GEN) males, during
development at PND30 and PND60. * p < 0.05; ** p ≤ 0.01. VO, uterus and testicles weight, and time
spent in each phase of estrus cycle were compared using Student’s t-test, while the progesterone was
analyzed using Tukey’s test.

2.1.4. Mammary Gland Analysis

Mammary gland length gradually increased with development with no significant dif-
ferences between the experimental groups (Table S1, Supplementary Materials) (Figure 2).
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Figure 2. Mammary gland. (a) Histograms (left) and photomicrograph (right) showing the number
of terminal end buds (TEBs) of mammary glands in control (CON) and treated (GEN) female CD1
mice at PND30. (b) Histograms (left) and photomicrograph (right) representing the number of
tertiary branches of mammary glands in control (CON) and treated (GEN) female CD1 mice at
PND60 (expressed as mean ± SEM). Scale bar = 0.5 mm.

Terminal end buds (TEBs) in virgin mice are present only at pubertal age when they are
stimulated by endogenous estrogens and other factors [54]. Indeed, TEBs were present in
control animals at PND22 and PND30, while, as expected [55], control mammary glands (at
PND60) did not have TEBs. GEN treatment did not affect TEBs at any of the developmental
stages considered (Table S1, Supplementary Materials) (Figure 2a).

Moreover, the treatment did not affect the overall architecture of the adult mammary
gland. In fact, at PND60, the number of branches was similar in F-CON (6.67 ± 0.22) and
F-GEN (7.17 ± 0.51; p = 0.408). However, GEN-treated females tended to have mammary
glands with a higher score of tertiary branches (F-CON = 1.25 ± 0.48; F-GEN = 3.25 ± 1.11,
p = 0.17), which develop cyclically during diestrus (Figure 2b).

2.2. Male Reproductive Parameters
2.2.1. Testicle Weight

Testicle weight was similar at PND22 (t-test; p = 1) and PND30 (p = 0.207), but in adults,
it was significantly lower in M-GEN than M-CON (p = 0.05) (Figure 1e). The analyses
using two-way ANOVA for age and treatment as independent variables demonstrated a
significant difference only for age (F = 67.472; p = 0.001), but not for treatment (F = 0.015;
p = 0.904) and their interaction (F = 2.611, p = 0.090).

2.2.2. Testosterone Level

Control males had higher testosterone levels at PND60 (CON vs. PND30 CON;
p < 0.001) while GEN-treated mice did not show this increase, resulting in significantly
lower levels than in control PND60 (p = 0.003) (Figure 1f, Table S2).

2.3. Leptin

In control animals of both sexes, plasma concentration of leptin was low and with
no sex differences until PND22 (Figure 3). In females, leptin levels significantly increased
at PND60 (PND60 vs. PND30; p < 0.001) (Figure 3b). On the contrary, in control males,
leptin levels significantly increased at PND30 (PND30 vs. PND22; p = 0.001) then decreased
at PND60 (PND60 vs. PND30; p < 0.001) (Figure 3a). An interesting dimorphism was
present at PND30 when males showed a strong peak of plasma leptin (M-CON vs. F-CON;
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p = 0.014), while at PND60 the concentration was significantly higher in females compared
to males (M-CON vs. F-CON; p = 0.008).

Metabolites 2021, 11, x  6 of 27 
 

 

In control animals of both sexes, plasma concentration of leptin was low and with no 

sex differences until PND22 (Figure 3). In females, leptin levels significantly increased at 

PND60 (PND60 vs. PND30; p < 0.001) (Figure 3b). On the contrary, in control males, leptin 

levels significantly increased at PND30 (PND30 vs. PND22; p = 0.001) then decreased at 

PND60 (PND60 vs. PND30; p < 0.001) (Figure 3a). An interesting dimorphism was present 

at PND30 when males showed a strong peak of plasma leptin (M-CON vs. F-CON; p = 

0.014), while at PND60 the concentration was significantly higher in females compared to 

males (M-CON vs. F-CON; p = 0.008). 

 

Figure 3. Leptin levels. Histograms representing variations of circulating leptin levels (expressed in 

pg/mL; mean ± SEM) in males (a) and females (b), control (CON) and treated (GEN), during the 

development at postnatal day (PND) 12, PND22, PND30, and PND60. * p < 0.05; *** p ≤ 0.001 (Tukey 

test). 

This dimorphism was abolished by GEN treatment. In fact, in males, GEN treatment 

induces an early significant increase in leptin level at PND12 in comparison to control 

animals (M-GEN vs. M-CON; p < 0.001). Plasma concentration of leptin reached a peak at 

PND30 in both GEN experimental groups, although it was significantly lower in GEN 

treated males than in CON (M-GEN vs. M-CON; p = 0.032). No significant difference was 

observed at PND60 (M-GEN vs. M-CON; p = 0.456; Figure 3a). A similar trend was ob-

served in the GEN-treated females, where changes in circulating leptin were similar to M-

Figure 3. Leptin levels. Histograms representing variations of circulating leptin levels (expressed
in pg/mL; mean ± SEM) in males (a) and females (b), control (CON) and treated (GEN), during
the development at postnatal day (PND) 12, PND22, PND30, and PND60. * p < 0.05; *** p ≤ 0.001
(Tukey test).

This dimorphism was abolished by GEN treatment. In fact, in males, GEN treatment
induces an early significant increase in leptin level at PND12 in comparison to control
animals (M-GEN vs. M-CON; p < 0.001). Plasma concentration of leptin reached a peak
at PND30 in both GEN experimental groups, although it was significantly lower in GEN
treated males than in CON (M-GEN vs. M-CON; p = 0.032). No significant difference
was observed at PND60 (M-GEN vs. M-CON; p = 0.456; Figure 3a). A similar trend was
observed in the GEN-treated females, where changes in circulating leptin were similar to
M-GEN and M-CON, with a peak at PND30 and a decrease at PND60, both significant in
comparison to F-CON (p < 0.001; Figure 3b). Plasma concentrations of leptin in treated
males were significantly higher than F-GEN only at PND12 (M-GEN vs. F-GEN; p < 0.001).

180



Metabolites 2021, 11, 449

2.4. Kisspeptin System

The pattern of distribution, development, and dimorphism of kiss-ir structures ob-
served within the hypothalamic region of control animals was consistent with previous
observations in rodents [24,25]. The quantitative analysis of CON and GEN groups sug-
gested that postnatal exposure to GEN significantly altered the development of kisspeptin
expression in the hypothalamic nuclei under study in a dimorphic manner (all data are
reported in Supplementary Materials, Table S3).

In the ARC, the high density of kiss-ir precluded our ability to distinguish cell bodies
(Figure 4a); therefore, we quantified the fractional area (FA). Early postnatal exposure to
GEN deeply influenced the expression of the kiss in the ARC. In males, GEN influenced
kiss expression only at PND12, when M-GEN showed a significantly higher expression of
kiss, which was also higher than in females (M-GEN vs. F-GEN; p < 0.001), reversing the
sex dimorphism of the system (Figure 4b). No difference was detected in the comparison
M-CON versus M-GEN at PND22, PND30, and PND60. In females, the situation was
different: at PND12 (p < 0.001) and at PND22 the FA in F-GEN remained significantly
lower in comparison to F-CON (p = 0.004), but after puberty, at PND30, the kiss-ir signal
increased in treated females (p < 0.001). Then, at PND60 FA decreased in F-GEN animals
(Figure 4a). GEN treatment seems to cause anticipation of the development of the system
in females at PND30 (Figure 4b).
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Figure 4. Kisspeptin immunohistochemistry. (a) Photomicrographs showing kisspeptin immunos-
taining in the ARC in adult (PND60) CD1 control (F-CON) and treated (F-GEN) female mice at
PND60. 3V, third ventricle. Scale bar = 100 µm. (b) Histograms representing the variations of the
percentage of area (FA; mean ± SEM) covered by kisspeptin immunopositive elements in the ARC
of both sexes (M-CON, M-GEN, F-CON, and F-GEN) at different ages (PND2, PND22, PND30, and
PND60). ** p ≤ 0.01; *** p ≤ 0.001; ### p ≤ 0.001 (Bonferroni test).

Within RP3V we analyzed the number of kiss-ir cells. In control animals, the system
was dimorphic at every age, with a higher number of cells in females. In addition, while
the number of cells was stable for all the considered ages in males, there was a significant
increase in females, from PND12 to PND60. Early GEN postnatal treatment had no
significant effect on males at any of the considered ages (Figure 5b), while females were
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significantly affected. The number of cells was significantly higher in F-GEN at PND12
(p = 0.002), PND22 (p = 0.002), and PND30 (p = 0.003) in comparison to F-CON. At PND60
the number of cells in the F-GEN group was close to PND30. Thus, at PND60 the F-CON
showed a higher number of positive cells than F-GEN (p < 0.001) (Figure 5a,b). Therefore,
it appears that kiss-ir cells reached a plateau at PND30 in F-GEN, whereas this peak is
reached only at PND60 in F-CON.
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Figure 5. Kisspeptin immunoreactivity. (a) Photomicrographs showing kisspeptin immunostaining
in the RP3V of adult (PND60) control (F-CON) and treated (F-GEN) CD1 female mice. 3V, third
ventricle. Scale bar = 100 µm. (b) Number of kisspeptin-positive cells (mean ± SEM) in the RP3V of
both sexes (M-CON, M-GEN, F-CON, and F-GEN) at different ages (PND12, PND22, PND30, and
PND60). ** p ≤ 0.01; *** p ≤ 0.001; # p ≤ 0.05; ### p ≤ 0.001 (Bonferroni test).

In the PVN (Figure 6a), the effect of GEN treatment followed more that observed in
RP3V than in the ARC. We observed no effects in males at all the considered ages, whereas
in females we observed a precocious increase of kiss-ir in F-GEN animals at PND22 and
PND30, with a sharp decrease at PND60. As for the ARC and RP3V in F-CON, the kiss-ir
increased in the PVN, reaching the highest value at PND60 (Figure 6b).
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Figure 6. Kisspeptin innervation of the PVN. (a) Comparison of the PVN innervation at PND30, when
the F-GEN group has its peak. (b) Variations of the fractional area (FA; mean ± SEM) covered by
kisspeptin immunoreactive fibers in the PVN of both sexes (M-CON, M-GEN, F-CON, and F-GEN) at
different ages (PND12, PND22, PND30, and PND60). Scale bar = 100 µm. *** p ≤ 0.001; ### p ≤ 0.001
(Bonferroni test).

The distribution of kiss-ir fibers within the PVN, as also reported in previous stud-
ies [24,56], was not homogeneous but was denser in the medial versus lateral PVN
(Figure 7a). In M-CON, kiss-ir was similar in the different parts of the PVN, although
it tended to be higher in the ventro-medial part. No significant differences were observed at
any age or after GEN treatment. On the other hand, in females (Figure 7b), the GEN effect
was evident within dorso- and ventral-medial parts, where the kiss-ir fibers were denser.
F-GEN reached the highest value of FA in the DM and VM part of the PVN at PND30, with
a decrease at PND60, whereas the F-CON reached the highest value at PND60.
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Figure 7. (a) Photomicrograph of kisspeptin immunostaining in the PVN of adult control females,
showing the subdivision of the PVN in fourteen quadrants to identify the four parts of the nucleus
(DM, dorso-medial; DL, dorsolateral; VM, ventro-medial; VL, ventro-lateral). (b) Variations of the FA
covered by kisspeptin immunoreactive fibers in the different parts of the PVN (DM, DL, VM, VL) in
control (F-CON) and treated (F-GEN) female CD1 mice at different ages of sacrifice (PND12, PND22,
PND30, and PND60). Scale bar = 50 µm. ** p ≤ 0.01; *** p ≤ 0.001 (Bonferroni test).

2.5. Metabolic Parameters
2.5.1. Body Weight, Food Consumption, and Feed Efficiency (FE)

The analysis using three-way ANOVA of body weight measured, with age, sex, and
treatment considered as independent variables, showed a significant effect both of the
interaction sex and treatment (F = 8.90; p = 0.003) and sex and age (F = 34.735; p = 0.001),
but not for the interaction treatment and age (F = 1.806; p = 0.079) or among all independent
variables (sex * age * treatment; F = 0.698; p = 0.693). We did not observe any effect of
GEN on the metabolic parameters considered during and after the treatment until day 30.
Starting from PND30, the body weight presented strong differences among experimental
groups (Table S4, Supplementary Materials). The analysis via Tukey’s test for M-CON
vs. F-CON reported a significantly higher weight in males (PND30, PND40, PND50, and
PND60, p < 0.001).

Differences were observed also in the percentage of body weight gained since PND30
(Figure 6a). Two-way ANOVA for sex and treatment confirmed this result (respectively
F = 15.39; p = 0.001 and F = 5.901; p = 0.025). No differences were present between controls
and treated males, while a significant increase was observed starting from PND40 in F-GEN
compared to control females (Tukey test; F-CON vs. F-GEN at PND40 p = 0.007; at PND50
p = 0.001; at PND60 p = 0.005) (Figure 8a).

Daily food consumption per animal during the weeks after weaning was calculated as
reported in Materials and Methods. Generally, we observed lower food consumption in
F-CON in comparison to M-CON. This trend was observed in GEN-treated animals with
males treated with GEN eating significantly more food than F-GEN only during the second
(p = 0.038) and fourth (p = 0.011) week (Table S5, Supplementary Materials) (Figure 8b).
However, no differences were found between control and treated animals either in males or
in females. The two-way ANOVA for repeated measures (independent variables: sex and
treatment, repeated measure: weekly food consumption) showed, in fact, only an effect of
sex (F = 21.015 and p = 0.001), with no effect of treatment (F = 0.165 and p = 0.689) and no
significant interaction between sex and treatment (F = 0.056 and p = 0.815).
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Figure 8. Metabolic parameters. (a) Lines representing the increase of body weight in percentage,
with the weight at PND1 = 100 (mean ± SEM) during the development of male control (M-CON)
vs. male-treated (M-GEN), on the left, and female control (F-CON) vs. female-treated (F-GEN), on
the right. (b) Variations of the amount of food intake expressed in grams (mean ± SEM) during five
weeks after weaning in both sexes (M-CON, M-GEN, F-CON, F-GEN). On the left a comparison
among control males and females; the other two diagrams illustrate the comparison within each
sex among control and genistein-treated mice. (c) Variations of the daily feed efficiency (body
weight/kcal introduced; mean ± SEM) calculated during five weeks after weaning in both sexes
(M-CON, M-GEN, F-CON, F-GEN). On the left a comparison among control males and females; the
other two diagrams illustrate the comparison within each sex among control and genistein-treated
mice. * p < 0.05; ** p ≤ 0.01; *** p ≤ 0.001; (Bonferroni test).

Feed efficiency (body weight gain/Kcal) was analyzed using two-way ANOVA for
repeated measures (independent variables: sex and treatment, repeated measure: feed
efficiency) showing a global effect of sex (F = 6.722 and p = 0.0017), but no effect of treatment
(F = 0.704 and p = 0.411). The multiple comparisons between groups displayed a sexual
dimorphism in controls, with a significant increase in M-CON vs. F-CON in the last week of
the experiment (from PND53 to PND60; Tukey test, p = 0.038). This difference was present
also between M-GEN and F-GEN at week 3 (p = 0.05) and week 4 (p = 0.03; Figure 8c). GEN
treatment did not alter feed efficiency either in males or females (Table S6).
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2.5.2. Triiodothyronine (T3) and Ghrelin Levels

Plasma concentration of T3 at PND30 showed no significant differences. In the adult
animals, T3 levels were significantly higher in females than in males (F-CON vs. M-CON;
p = 0.001). GEN treatment did not affect T3 levels in males (M-CON vs. M-GEN; p = 1),
but it reduced the plasma concentration of T3 levels in adult females at PND60 close to
significant (F-CON vs. F-GEN; p = 0.05), abolishing sex dimorphism (F-GEN vs. M-GEN;
p = 1; Table 1).

Table 1. Plasma concentration of T3 and ghrelin. The concentration of T3 (expressed as ng/mL, mean
± SEM) and concentration of ghrelin in the plasma (expressed as ng/mL, mean ± SEM) at PND30
and PND60 for different groups of mice.

Plasma Concentration of T3 (ng/mL)

M-CON M-GEN F-CON F-GEN

(mean ± SEM) (mean ± SEM) (mean ± SEM) (mean ± SEM)
PND30 5.3 ± 0.32 5.8 ± 0.28 5.6 ± 0.19 6.2 ± 0.34
PND60 6.4 ± 0.06 5.7 ± 0.11 7.5 ± 0.19 6.3 ± 0.09

Plasma Concentration of ghrelin (ng/mL)

M-CON M-GEN F-CON F-GEN

(mean ± SEM) (mean ± SEM) (mean ± SEM) (mean ± SEM)
PND30 0.30 ± 0.04 0.40 ± 0.06 0.34 ± 0.07 0.7 ± 0.11
PND60 0.87 ± 0.18 4.23 ± 0.69 4.33 ± 0.73 2.76 ± 0.26

The analysis of plasma concentration of ghrelin at PND30 did not present significant
differences among the experimental groups. In adults, at PND60, F-CON animals showed
a higher plasma concentration of hormone in comparison to males (F-CON vs. M-CON;
p = 0.001). The postnatal treatment with genistein completely reversed this situation, the
sex difference disappeared (F-GEN vs. M-GEN; p = 0.146): the plasma concentration of
ghrelin significantly increased in GEN males (M-CON vs. M-GEN; p = 0.001) and decreased
in GEN females, although not significantly (F-CON vs. F-GEN; p = 0.06), compared to
control animals (Table 1).

2.6. Hypothalamic Systems Controlling Food-Intake
2.6.1. POMC System

According to our previous study [57], in the present experiment, the POMC-ir in the
ARC was very similar in adult mice of both sexes (Table S7). In fact, the Bonferroni test did
not show any significant difference in POMC-ir cell number (p = 0.896) or in FA covered
by ir structures (p = 0.918) in control animals. GEN treatment significantly affects the
adult profile of POMC expression in the ARC in a sex-specific manner. Two-way ANOVA
reported a significant effect on the sex and treatment interaction (cells number, F = 13.710;
p = 0.002; FA, F = 7.371; p = 0.015). Indeed, the alterations of the POMC-ir elements were
limited to females (Figure 9a). The Bonferroni post hoc test showed statistically significant
higher values in F-GEN than F-CON for the number of POMC cells (p = 0.047), but not for
FA (p = 0.081) in the ARC, while no difference was present in males (p = 0.657 and p = 0.134,
respectively for FA and cellular number) (Figure 9b; full quantitative data are in Table S7
for adults and in Table S8 for the development).
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(right) in the ARC of both sexes (M-CON, M-GEN, F-CON, F-GEN) for adult mice. (c,d) Histograms 

representing the FA (mean ± SEM) covered by POMC immunoreactivity within (c) the dorsomedial 

hypothalamic nucleus (DMH) and (d) paraventricular nucleus (PVN). * p < 0.05; ** p < 0.01; ## p ≤ 
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strongly decreased in treated females (DM, p < 0.001; VM, p < 0.001). 

Figure 9. Pro-opiomelanocortin (POMC) immunoreactivity. (a) Photomicrographs of the arcuate
nucleus (ARC) immunostained for POMC at PND60 in control (F-CON) and treated (F-GEN) female
mice. 3V, third ventricle. Scale bar = 100 µm. (b) Variations of both the percentage of area (FA:
mean ± SEM) covered by POMC immunopositive structures (left) and the number of positive cell
bodies (right) in the ARC of both sexes (M-CON, M-GEN, F-CON, F-GEN) for adult mice. (c,d)
Histograms representing the FA (mean ± SEM) covered by POMC immunoreactivity within (c)
the dorsomedial hypothalamic nucleus (DMH) and (d) paraventricular nucleus (PVN). * p < 0.05;
## p ≤ 0.01 (Bonferroni test).

The immunoreactivity of POMC fibers within DMH did not result in significant
differences both in controls and in GEN-treated animals (Figure 9c).

POMC-ir was dimorphic in the PVN of control animals: Bonferroni test showed that
the FA covered by ir structures (in this case only fibers) was higher in females (p = 0.002).
The two-way ANOVA demonstrated a significant effect of sex (F = 5.455; p = 0.036), of
treatment (F = 21.667; p < 0.001), and of the interaction sex/treatment (F = 84.642; p < 0.001).
The early postnatal GEN exposure decreased the immunoreactivity in the female PVN
(p < 0.001) and increased it in males (p = 0.048), with a completely dimorphic effect. In fact,
in GEN animals the dimorphism was inverted, higher in males than in females (p < 0.001;
Figure 9d). This effect was predominant in the medial part of the PVN, where the FA
strongly decreased in treated females (DM, p < 0.001; VM, p < 0.001).
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2.6.2. Orexin System

As reported in previous studies (for a review see [58]), in both sexes of adult CD1 mice,
the lateral hypothalamus (LH), in its full rostro-caudal extension (Figure 10a), contains a
large number of orexin-ir cells. Considering the total number of positive cells, the two-
way ANOVA for sex and treatment showed a significant effect of treatment (F = 17.502;
p = 0.001). In controls, the system is sexually dimorphic with males having a significantly
higher number of cells (313.7 ± 18.21) than females (189.9 ± 19.29, Bonferroni test M-CON
vs. F-CON; p < 0.001). Post hoc Bonferroni showed a statistically significant decrease of cell
number in GEN-treated male mice (253.4 ± 14.70) in comparison to M-CON (p = 0.041),
while in females (260.7 ± 10.90) a significant increase of cell number was present in F-GEN
vs. F-CON (p < 0.05). Because of the different effects in males and females, the dimorphism
completely disappeared in GEN-treated mice (Bonferroni test, M-GEN vs. F-GEN; p = 1)
(adult data are in Table S9A and changes during the development are reported in Table S8).
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Figure 10. Distribution of orexin cells within the lateral hypothalamic nucleus. (a) Photomicrographs
showing the distribution of orexin-positive cells in four different rostro-caudal levels of the lateral
hypothalamus (LH), corresponding to Bregma −1.06, −1.34, −1.58, and −2.06 of the Mouse Brain
Atlas [59] in male control CD1 mice at postnatal day (PND) 60. Scale bar = 100 µm. (b) Variations in
the number of orexin-positive cells (mean ± SEM) in different levels of the LH of adult CD1 mice of
both sexes (M-CON, M-GEN, F-CON, F-GEN). * p < 0.05; ** p ≤ 0.01; ### p ≤ 0.001 (Bonferroni test).

Considering the distribution of orexin-positive cells along the rostro-caudal axis
(Figure 10a), the two-way ANOVA revealed a significant difference for level and a signifi-
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cant interaction for level and sex (respectively F = 43.843 p < 0.001; F = 17.727 p < 0.001).
The two-by-two comparison (Bonferroni test) showed a significant decrease in the anterior
region of M-GEN (M-GEN vs. M-CON; level1 p = 0.013), while in females the cell number
increased in the more caudal region of the LH (F-GEN vs. F-CON level2 p = 0.04 and level3
p = 0.025) (Figure 10b, full data are in Table S9A).

In the PVN of control animals, the OX system was not dimorphic via comparison
with the Bonferroni test (p = 0.8). Two-way ANOVA showed a significant effect of the
interaction sex/treatment in adult animals within the PVN (F = 16.09; p = 0.002). The early
postnatal GEN treatment significantly decreased the OX-ir fibers in males (p = 0.045), while
they slightly increased in females (not significantly; p = 0.088). Interestingly, this sexual
dimorphism was more pronounced in treated animals, in which the FA was higher in GEN
females than in GEN males (p = 0.009), especially in the ventromedial part of the nucleus
(p = 0.002) (Table S9B).

3. Discussion

Genistein, an isoflavone contained in soy, has an estrogen-like structure and exerts its
effects by binding to the estrogen receptors: in vitro studies demonstrated that ERα, ERβ,
and the estrogen membrane receptor (GPR30) are important for the neuritogenic effect of
GEN [12]. The impact of GEN as an endocrine disrupting chemical (EDC) on health is still
debated [37]. GEN alters estrous cyclicity, fecundity, ovulation, and female reproductive
behavior [60,61], and when the exposure occurs at neonatal age, even at environmentally
relevant doses, it affects female development and persists into adulthood [62]. In the
present experiment, we observed precocious vaginal opening (an index of precocious
female puberty [53]), an increase of uterus weight at pre-puberal age, irregular estrous
cycles, with a reduction of the proestrus phase, probably correlated to an increase of plasma
concentration of progesterone, and elongation of the diestrus phase.

In addition, we also analyzed the mammary gland, another important female repro-
ductive target of EDCs. The analysis reported that the mammary glands were not directly
affected by postnatal GEN treatment. This was not surprising since early development and
sexual differentiation of the mammary gland occur before birth, thus perturbations of mam-
mary gland development by EDCs have been observed only when the exposure was during
the gestational period (i.e., GEN [63] or BPA [64]). The allometric postnatal growth of the
mammary gland is independent of sexual steroids [55], while it responds to endocrine
stimulation from puberty [55]. We observed that the number of animals displaying TEB at
PND22 was higher in the GEN-treated group than in the controls, even if the difference
was not significant. Since branching morphogenesis initiates at puberty [55], these data
confirm that puberty is premature in GEN-treated animals. In addition, post-weaning GEN
treatment induced advanced puberty, and this treatment had a more apparent effect on the
mammary gland anatomy [65].

All these peripheral effects could reflect the alterations of the kiss system described
in the same animals. Many studies demonstrated that the kiss is an important target for
EDCs action (i.e., bisphenol A [66]) but very limited data are available on the impact of
phytoestrogens on kisspeptin circuits in mice. In female rats, neonatal exposure to GEN (10
mg/kg) induced a persistent masculinization of kiss-ir fibers in RP3V (lower density), but
not in the ARC [11], while developmental estrogen exposure significantly decreased kiss
immunostaining in the ARC [11]. Moreover, postnatal GEN exposure does not significantly
affect kiss-ir levels in adult males [49]. Consistently, we observed that early postnatal
exposure to GEN induced sexually dimorphic effects on the kiss system. In males, GEN
induced only a transient increase in the kiss-ir FA in the ARC at PND12. Interestingly, this
increase was concomitant to a significant peak of plasma concentration of leptin, which
is considered a positive modulator of the kiss system [29,67]; in fact, the energy balance
is undoubtedly strictly correlated to the reproductive function. In our animals, the same
correlation was also present in females, but at a post-pubertal age. The observed early
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increase of kiss immunoreactivity in the ARC, RP3V, and PVN correlated with a peak of
plasma concentration of leptin measured in PND30 females treated with GEN.

Not many studies have focused on the possibility that a soy-based diet could alter
circulating leptin levels. However, from the literature, the leptin concentrations in serum
were affected by GEN, but the effect depends on sex, age, and the hormonal status in which
the treatment was carried out (as reviewed in [68]). Unsurprisingly, we also observed here
a strong variability in serum leptin levels during the development of treated mice based
on both sex and age. Nevertheless, a decrease in plasma levels of leptin levels occurred in
both sexes in adulthood, but especially in GEN females. The hipoleptinemic action of GEN
was documented in male adult rats, showing a reduction in leptin levels after only three
days of treatment with a dose of 5 mg/kg body weight [69]. In female rats, GEN has no
effects on the plasma levels of normal females, but it induces a reduction of serum leptin in
pregnant females [70], as well as in obesity models [71,72].

Negative effects of EDCs on reproduction are well described, but, in recent years,
some EDCs have been considered among the multiple environmental factors that have been
linked to the increase in obesity and metabolic syndrome, and they were named metabolic
disrupting chemicals (MDCs) [73]. These MDCs can act indirectly to promote adipogenesis
and cause weight gain by shifting energy balance to promote calories accumulation, altering
basal metabolism [74], and altering hormonal control of appetite and satiety [8]. More
recently, GEN has also been included in the list of MDCs [37], and these effects emerged
strongly in our work. Note that susceptibility to obesity begins during development (in
utero and early life), critical periods in which MDCs can influence developmental planning
and thus disrupt the set point for weight gain later in life [75]. Contradictory data exist,
underlining the importance of exposure times, dose/concentration, and sex to establish
safety recommendations for the intake of GEN in the diet, especially if in early life. The
same treatment may have a different outcome depending on the age and the sex of the
animal. Compared to dams on a soy-free diet, rats on a soy-enriched diet gain less weight
during pregnancy, and although they consume more food, they do not become heavier
during lactation. Their offspring, however, are significantly heavier (both sexes, but more
pronounced in males), show higher food intake, and females have an earlier pubertal
onset [39]. GEN postnatal oral administration (PND1 to PND22) of 50mg/kg GEN (the
same dose as our study) in rat pups resulted in a similar effect in females and increases
adipocyte size and number, fat mass, and fat/lean mass ratio and decreased the size of
muscle fiber [45]. Consistently, in a previous study [14] we demonstrated an obesogenic
effect of postnatal GEN (administrated from PND1 to PND8) in adult female CD1 mice
only. Here, we confirmed this effect, from puberty until adulthood. The increase in body
weight was not correlated to alterations of food intake and daily feed efficiency, indicating
a probable metabolic disruption. Concurrently, only in GEN-treated females, plasma
concentration of two important metabolic hormones, leptin and T3, were significantly
decreased, while the serum ghrelin showed a strong increase in GEN males only.

Indeed, GEN induces similar metabolic changes as well as alterations in the T3,
ghrelin, and leptin in other models [68]. In fact, this increased plasma concentration of
T3 only in female mice has also been shown in NIH/S female mice postnatally exposed
to GEN (8 mg/kg body weight/day) [76] and in the golden Syrian hamster exposed to
a soy protein diet for 28 days [77]. GEN also affected in a sexually dimorphic way the
ghrelin concentration, with a decrease in females, as was observed in previous studies
in mice [76]. In addition, in other experimental models (i.e., Mustela family) in adult
females, there was a reduction in levels of plasma concentration of ghrelin, although not
fully significant [78], while a strong increase was observed in males [79]. The reported
alterations in plasma concentrations of the analyzed metabolites, associated with increase
of weight gain only in female mice treated with GEN, without any alteration in the amount
of ingested food, suggest the control of energy expenditure is susceptible to postnatal
treatment with genistein in a sexually dimorphic way.
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In addition to the previously discussed direct (or indirect) effects on the kiss system,
leptin decrease in the adult may, in turn, impair the activation of the hypothalamic POMC
system. POMC neurons in the ARC have an anorexigenic action on food-intake control.
These neurons co-express different neuropeptides and a wide variety of receptors, including
leptin receptors [80]. Moreover, the POMC system is sensitive to gonadal steroids [81],
and we recently demonstrated that this system could be a good target for MDCs action by
using a chronic exposure to tributyltin [57], as well as long-term exposure to BPA, DES, and
TBT [82]. Here, we confirm that also early postnatal exposure to GEN induces long-term
sex-specific organizational effects on the POMC system in the ARC and PVN.

Another hypothalamic system controlling metabolism and food intake is the OX
system. This peptide modulates energy balance based on food intake by discriminating
the physiological variation of glucose levels between meals [18]. Moreover, OX enhances
spontaneous physical activity and regulates energy expenditure thus promoting obesity
resistance [83]. In adult mice, the number of OX neurons in the LH is higher in males
than in females [84]. This dimorphism could be associated with sexual male maturation,
since in adult male rodents, OX neurons are markedly activated during copulation [85].
Interestingly, we observed that this dimorphism, observed in our control groups, was
totally reverted in GEN mice: GEN increased the cell number in females while decreased it
in males. OX neurons co-express a few estrogen (ER-alpha) receptors and no androgen (AR)
receptors [85]; therefore, its sex dimorphism may be due to indirect control by gonadal
steroids, and early exposure to GEN may, thus, permanently interfere with OX system
differentiation. Moreover, we demonstrated that different rostrocaudal levels of the LH
harbor OX subpopulations with specific features. In fact, males had more OX-ir cells
than females in the most rostral levels, while females presented a higher number of OX
cells in the most caudal levels. Furthermore, those subpopulations displayed a sexually
dimorphic response to GEN postnatal treatment, with a decrease in the number of OX cells
in adult males in rostral levels of the LH and an increase in more caudal levels of females.
Future studies should investigate if these different OX subpopulations, located in specific
rostrocaudal domains of the LH, have different targets and roles.

Our hypothesis that postnatal treatment with GEN may act on the control of energy
expenditure is supported by the observed alterations of all the analyzed systems projecting
to the PVN. In fact, the PVN is the most important hypothalamic center of metabolic
control, modulating feeding behavior through the action of CRH and TRH, both indirectly
via effects on energy expenditure (hypothalamus-pituitary-thyroid axis, HPT) and directly
through the HPA axis [23,86].

As demonstrated in previous studies [24,56], the PVN is rich in kiss fibers, especially
in the medial part of the nucleus, where CRH and TRH neurons are located, suggesting a
strong correlation between reproductive and metabolic control [24]. In fact, PVN kiss fibers
are part of a sexual network essential for the control of the HPG axis through the control of
the GnRH system. The PVN is also rich in NPY and POMC fibers [82], as well as in orexin
fibers (present study).

Cell numbers in the ARC and their projections may respond differently to treatment
with EDCs, which is particularly evident for the POMC system [57,82]. Present results
show a reduction of POMC innervation of the PVN in females and an increase in males,
while cell numbers in the ARC have an opposite trend. This could be due to the presence of
subpopulations of POMC cells in the ARC expressing different receptors [34,80,81,87] and
that potentially send their projections to different targets. In addition, a potential direct
effect of kisspeptin on POMC neurons also cannot be ruled out. In fact, kisspeptin in the
ARC directly excites POMC neurons [33] that express kiss1 receptors [34]. Both systems are
affected by GEN treatments in our animals, and this could also have a differential impact
on their projections.

As previously discussed, OX regulates food intake and energy homeostasis, but also
reproduction. Orexin has in fact a direct impact on GnRH [88] and kiss [89] neurons.
Moreover, OX receptors have also been found in rat testes, and testosterone secretion
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is directly stimulated by OX [90]. In a previous experiment, we have shown, in males
postnatally exposed to GEN, a decrease in the ratio prostate/BW and to a lesser extent
in the ratio testis/BW [14]. However, in this experiment, we have observed a decrease of
fecal testosterone and of the weight of testicles, and we also observed a decrease in the
number of OX neurons in LH, suggesting that OX may act at the testicular level also in
mice. Furthermore, a previous study has shown that exposure to GEN (8 mg/kg body
weight/day) early in life leads to changes in the reproductive organs of males, with relative
weights of the prostate and seminal vesicles being greater than in control males. [76].

4. Materials and Methods
4.1. Animals

We purchased from Charles River, France, 26 female and 13 male adult virgin CD-1
mice. All experiments were performed according to the EU directive on animal exper-
imentation 2010/63 and approved by the local ethical committee (Comité d’Ethique en
Expérimentation Animale Centre-Val de Loire) under approval 426-201504031706655.

Animals were housed in monosexual groups of 3 mice in conventional polycarbonate
cages (45 × 25 × 15 cm) with water and food (standard diet 150 low phytoestrogen
certificate, SAFE, France) ad libitum and exposed to a 12-h light/dark cycle. After 2 weeks
of the adaptation period, females were housed with males in groups of 2 females and 1
male for one night, beginning at 18:00 h (at the end of the light phase); after the mating,
verified by the presence of a vaginal plug (generally 3–5 days), the females were placed in
single cages.

4.2. Genistein Treatment

The day after the birth, postnatal day one (PND1), litters were reduced to 8 pups,
4 males and 4 females, sexed via anogenital distance [91]. Pups were then allocated
randomly to two groups and subjected from PDN1 to PND8 to oral administration of
vehicle (10 µL/g sesame oil) or genistein (GEN 50 mg/kg body weight; cat. Number
G6649, Sigma-Aldrich, St. Quentin Fallavier Cedex, France) diluted in sesame oil. This
protocol mimics the exposure of babies fed with soy-based formulas [92]. Moreover, as
previously shown in a pharmacokinetic study, the dose we used produces serum levels of
GEN in neonatal mice, within the human range [93]. Mice spontaneously drank the solution
through a micropipette directly into the mouth [14,15]. Three weeks after birth (PND21),
the pups were weaned and housed in single-sex groups of 3–5 animals, differentiated by
treatment, in polypropylene mouse cages.

Animals were divided into 4 groups: control males (M-CON), control females (F-CON),
genistein-treated males (M-GEN), and genistein-treated females (F-GEN), and sacrificed at
PND12, PND22, PND30, and PND60. Six mice per group were perfused for immunohis-
tochemical studies of the neuronal circuits, while the others were killed by decapitation
(N = 6 per group) to study the peripheral parameters.

4.3. Reproductive and Metabolic Parameters
4.3.1. Vaginal Opening and Estrous Cycle

After weaning, GEN-treated and control females (N = 24 per group of treatment)
were checked daily, from PND19 to PND29, for vaginal opening (VO) to detect the time of
puberty [53].

From PND40 to PND55 daily microscopic inspection of vaginal smears flushed with
physiological saline solution was performed in F-CON (N = 6) and F-GEN (N = 6) to
determine the phase of the estrous cycle. The percentage of the days in each phase was
calculated.

4.3.2. Uterus and Testicle Weight

The weight of reproductive organs, uterus, and testicles, obtained from female (N = 6)
and male (N = 6) mice, were manually dissected and measured in each group at PND22,
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PN30, and PND60 after decapitation. Testicle weight was calculated by summing the
weights of the two testicles for each male.

4.3.3. Mammary Gland Analysis

Mammary glands were collected at PND22, PND30, and PND60 from females in the
diestrus phase of the cycle (determined by vaginal smear). Briefly, the fourth mammary
gland (inguinal) was dissected from the skin, stretched on a glass slide, and fixed in
Carnoy’s fixative at 4 ◦C for 2 h and then stored in the same solution until processing. Whole
mounts were gradually re-hydrated, stained with Carmine Alum (Stem Cell Technologies)
overnight, disdained for 2 h in 70% EtOH with 2% HCl, progressively dehydrated, clarified
in methylsalicilate overnight, and photographed.

Whole mounts were photographed at 1× and 4× on a Leica S8AP0 stereomicroscope
equipped with a Leica EC3 digital camera. Mammary gland length was measured with
Image J software (version 1.47v; Wayne Rasband, NIH, Bethesda, MD, USA), as the distance
between the beginnings of the duct arising from the nipple and the end of the more distal
ducts of the glands. The total number of branches was counted at PND30 and PND60
as the number of branches 3.5 mm before and 3.5 mm after the lymph node after it. The
number of tertiary branches was scored on a scale ranging from no branches (0) to high
density (5).

4.3.4. Body Weight, Food Consumption, and Feed Efficiency (FE)

Body weight was recorded daily during the treatment and every two days from
PND8 to sacrifice with an electronic precision balance (Mod. Kern-440-47N). To eliminate
differences due to the variability between animals, we normalized the absolute body
weight into a percentage of the body weight of the first day of the treatment (PND1),
conventionally considered equal to 100.

Animals were fed with a standard diet 150 low phytoestrogen certificate (SAFE, Augy,
France) containing 3264 Kcal/g of metabolizable energy with 21% as protein, 12.6% as lipid,
and 66.4% as carbohydrate. Mean food consumption (mean grams per mouse per day)
was determined every two days at 10.00 a.m. All animals from each group were housed in
standard cages (each containing 3 animals). The daily food consumption per animal was
estimated by dividing the total food consumption (total amount of food supplied per cage
minus the weight of the residual food in each cage) by the number of mice in the cage and
the number of days after the last measurement. After the measurement, fresh food was
given to the mice. Daily energy intake was calculated by multiplying daily food intake by
the caloric value of the chow (3264 Kcal/gr), and daily feed efficiency was expressed as
body weight (gr)/Kcal eaten [94].

4.3.5. Hormonal Levels

Blood samples were collected at PND12, PND22, PND30, and PND60 from animals
killed by decapitation, which always took place in the morning between 9 AM and 12 AM.
PND30 and PND60 females were killed in diestrus (assessed by vaginal smears).

Blood samples were collected in the morning, in EDTA-treated tubes, centrifuged
at 3500 g for 20 min, and then the plasma was stored frozen at −80 ◦C. Samples were
processed using standard procedures provided by manufacturers with the following kits:
progesterone EIA-1561 (intra-assay variation (CV) is 5,4%, while the analytical sensitivity
of this assay is 0.045 ng/mL), leptin ELI-4564 (intra-assay is 1,64% and inter-assay 3,96%,
while the limit of sensitivity of this assay is 0.05 ng/mL (~3.13 pM) using a 10 µL sample
size), total triiodothyronine (T3) EIA-4569 (intra-assay variation (CV) is 6.54% and inter-
assay 5.23%, the analytical sensitivity of this assay is 0.1 ng/mL), ghrelin EZRGRA-90K
(intra-assay variation is 1,60% and inter-assay 3.41%, while the limit of sensitivity of this
assay is 8 pg/mL when using a 20 µL sample size)(DRG Instruments GmbH).

To minimize the stress for the animals, we measured testosterone levels in feces in
young (PND30) and adult (PND60) male mice. Animals were isolated in a clean cage in the
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late morning. After 2 h 1.7 ± 0.3 mL of fecal pellet were collected, and animals returned to
their home cage. Pellets were stored at −80 ◦C. Extraction of fecal testosterone was carried
out on pulverized dried feces by using diethyl ether as previously reported [95]. Fecal
testosterone level was determined using an enzyme immunoassay kit (K032; Arbor Assays,
Ann Arbor, MI, USA) validated for multi-species dried fecal extracts.

4.4. Immunohistochemistry
4.4.1. Fixation and Sampling

Mice were perfused at PND12, PND22, PND30, and PND60. Females at PND30 and
PND60 were in diestrus (assessed by vaginal smear). Animals were deeply anesthetized
with pentobarbital, monitored until the pedal reflex was abolished, and killed via intracar-
diac perfusion with saline solution (NaCl 0.9%) followed by fixative (4% paraformaldehyde,
PAF, in 0.1 M phosphate buffer, pH 7.3). Dissected brains were stored in a freshly pre-
pared PAF solution for 2 h at 4 ◦C, followed by washing in a 30% sucrose solution at 4 ◦C
overnight. Finally, brains were frozen in liquid isopentane pre-cooled in dry ice at −35 ◦C
and stored in a deep freezer at −80 ◦C until sectioning.

Three series of adjacent 40-µm-thick coronal sections were obtained with a cryostat
(Leica CM 1900), collected in a cryoprotectant solution [96], and kept at −20 ◦C. We stained
these three series respectively for kiss, POMC, and OX immunohistochemistry. To avoid
between-assays variance due to systematic group differences, sections were processed
into groups containing samples from each treatment and sex. Sections were washed
overnight in PBS at pH 7.3 before immunohistochemical processing. The following day,
after washing in PBS containing 0.2%Triton X-100 for 30 min the endogenous peroxidase
activity was blocked with methanol/hydrogen peroxide solution (1:1) in PBS for 20 min
at room temperature. Sections were then pre-incubated with normal goat serum (Vector
Laboratories, Burlingame, CA, USA) for 30 min before the use of the specific antibodies.
After the immunohistochemical reaction, the sections were collected on chrome alum
pretreated slides, air-dried, washed in xylene, and cover slipped with Entellan mounting
medium (Merck, Milano, Italy).

4.4.2. Kisspeptin Immunohistochemistry

Kisspeptin immunostaining was performed according to our previous studies [24,56],
by using an overnight incubation at 4 ◦C of floating sections with a rabbit polyclonal
antibody (AC#566, Drs A. Caraty and I. Franceschini, Tours, France) at a dilution of
1:10,000 in PBS-Triton X-100 0.2%. Sections were then incubated, at room temperature, in
biotinylated goat anti-rabbit IgG (Vector Laboratories) for 60 min at a dilution of 1:200.
The antigen–antibody reaction was revealed with a biotin–avidin system (Vectastain ABC
Kit Elite, Vector Laboratories, Burlingame, CA, USA) with an incubation of 60 min at
room temperature. The peroxidase activity was visualized with 0.400 mg/mL of 3.30-
diamino-benzidine (SIGMA-Aldrich, Milan, Italy) and 0.004% hydrogen peroxide in 0.05M
Tris–HCl buffer pH 7.6. The specificity of the AC566 antibody for immunohistochemistry
was previously reported [97].

4.4.3. POMC Immunohistochemistry

POMC immunostaining was performed according to our previous studies [57,82], with
an overnight incubation of floating sections at 4 ◦C with a rabbit polyclonal antibody against
POMC (POMC precursor 27–52, H029-30, Phoenix Pharmaceuticals, Inc., Burlingame, CA,
USA) diluted 1:5000 in PBS-Triton X-100 0.2%, pH 7.3–7.4. Sections were then incubated
in biotinylated goat anti-rabbit IgG (Vector Laboratories, 1:250) for 60 min. The antigen-
antibody reaction was revealed as described for kisspeptin immunohistochemistry. The
POMC antibody specificity for immunohistochemistry was tested by the factory and in
previous studies [57,82].
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4.4.4. Orexin Immunohistochemistry

Floating sections were incubated overnight in a rabbit anti-orexin A antibody (PC345,
Calbiochem, Merck KGaA, Darmstadt, Germany) diluted 1:2000 in PBS at 4 ◦C. The sections
were then incubated with biotinylated anti-rabbit IgG serum (Pierce, Vector, CA, USA,
1:200, 90 min). The antigen-antibody reaction was revealed as described for kisspeptin
immunohistochemistry. The specificity of the orexin antibody for immunohistochemistry
was tested by the factory and in previous studies [98].

In addition to the reported specificity, for each antibody we performed additional
controls, omitting the primary antibody (negative control) or the secondary antibody. In
these control sections, cells and fibers were completely unstained.

4.5. Quantitative Analysis
4.5.1. Cell Counting and Fractional Area Evaluation

Based on the different nuclei and immunochemical markers, we evaluated the number
of positive cells that were present in a nucleus or the extent of immunoreactivity (fractional
area, FA), including cell bodies, dendrites, and fibers, within a nucleus. Digital images
were acquired using a NIKON Eclipse 80i microscope (Nikon Italia SpA, Firenze, Italy)
connected to a NIKON Digital Sight DS-Fi1 video camera. Images were then processed and
analyzed with ImageJ (version 1.47v; Wayne Rasband, NIH, Bethesda, MD, USA). To have
a better resolution, for each microscopic field, we took several pictures at different levels of
focus collecting them in a stack of 4–7 pictures. These stacks were processed using the Z
Project-Maximum intensity function of Image J, which created an output image, each of
whose pixels contained the maximum value overall of the images in the stack, determining
an optimal focus for all the structures contained in the stack.

Cell counting was performed only in those regions where cell bodies were clearly
labeled with the specific antibody, in predetermined fields (region of interest, ROI). If
cell bodies could be easily extracted from the background using the threshold function,
the digitized images were processed and analyzed using the Analyze Particles automatic
function of ImageJ (OX cells in LH nucleus); in the other cases we used the manual Image J
Cell counter plugin (POMC cells in ARC nucleus).

The fractional area (FA) was evaluated, according to the general principles described
by Mize et al. [99], by calculating the percentage of pixels covered by the immunopositive
structures highlighted using the threshold function of Image J in a predetermined ROI.
Due to differences in the immunostaining, the range of the threshold was individually
adjusted for each section. By using the Analyze-Measure function of Image J the percentage
of area covered by threshold within the ROI was automatically measured. The results were
grouped to provide mean (±S.E.M.) values.

4.5.2. Kisspeptin

For the immunostaining of the kiss system, three standardized sections were se-
lected for each of the 3 analyzed nuclei, matching the Mouse Brain Atlas [59]: ARC
(Bregma −1.58 mm, −1.70 mm, and −1.82 mm), PVN (Bregma −0.58 mm, −0.82 mm, and
−0.94 mm), and RP3V (Bregma 0.26 mm, 0.02 mm, and −0.22 mm). Digital micropho-
tographs were acquired with x40 objective (PVN) or x20 objective (ARC and RP3V) and
were processed and analyzed with ImageJ (see above). Measurements were performed
within predetermined ROIs. The PVN, in each selected section, was divided, as in our
previous study [24], into fourteen squares (each of 31,100 µm2 at PND12; 37,050 µm2 at
PND22; 40,150 µm2 at PND30 and PND60) to cover its full extension (see Figure 7a) and
grouped in four regions: dorso-medial, dorso-lateral, ventro-medial, and ventro-lateral.
The measure of total PVN was a mean of the FA measured in each of the four regions.
The ROI for the ARC changed during development (at PND12 550,000 µm2, at PND22
600,000 µm2, and in adults at 890,000 µm2) to include the immunopositive region, and it
was placed using the third ventricle as a reference to always have the same orientation.
We easily identified and counted positive kiss neurons (characterized by the presence of a
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clearly labeled cell body) only within RP3V, while in the ARC and PVN, we quantified the
FA covered by immunoreactive material.

4.5.3. POMC

The number of POMC positive cells and the FA covered by immunoreactivity were
analyzed in three selected standardized sections of comparable levels of ARC adjacent
to the ones stained for the kiss, as well as the measurement of FA within PVN [59]. For
ARC and PVN we used the same ROIs and analysis as for the kiss immunostained sections.
For the dorsomedial hypothalamic nucleus (DMH), three standardized serial sections of
comparable level were selected to analyze POMC-ir fibers (Bregma −1.46 mm; −1.82 mm;
−1.94 mm); we acquired images using a 20× objective and used an ROI (1250 µm2) located
within borders of the nucleus as evidenced by the immunoreactivity.

4.5.4. Orexin

We measured the number of OX cells within four coronal sections through the region
of the lateral hypothalamic area (LH; Bregma−1.06 mm; −1.34 mm; −1.58 mm; −2.06 mm)
according to the Mouse Brain Atlas [59], which is where most OX-ir cells were found in the
caudal hypothalamus [58]. The sections were acquired using a 10× objective. The OX-ir
cells were counted within a ROI (1,580,000 µm2) that covered the entire extension of the
nucleus. The results were grouped to provide mean (±S.E.M.) values. Furthermore, the
FA was analyzed in three selected standardized sections of comparable levels of the PVN
adjacent to the ones stained for POMC [59], and to measure OX-ir fibers, we used the same
ROIs and analysis used for the kiss immunostained sections.

4.6. Statistical Analysis

Quantitative data were examined with SPSS statistic software (SPSS Inc, Chicago, IL,
USA) via three-way ANOVA, where age, sex, and treatment were considered independent
variables, or/and two-way ANOVA (considering sex and treatment or age and treatment
as independent variables), and one-way ANOVA. When appropriated, we performed the
Bonferroni or Tukey multivariate test to compare groups or Student’s t-test. The data are
presented as mean ± SEM and the differences between groups are considered significant
for values of p ≤ 0.05.

5. Conclusions

In conclusion, early postnatal exposure to GEN determines long-term sex-specific
organizational effects on neural circuits controlling food intake, energy metabolism, and
reproduction in CD1 mice, which are more pronounced in females. At the same time,
other parameters related to reproduction are also altered (i.e., puberty and estrous cycle),
as well as those related to metabolism (i.e., body weight, food consumption, and feed
efficiency). Our hypothesis is therefore that these effects are strictly linked to alterations of
neuroendocrine circuits controlling both reproduction and energy expenditure.

According to this view, GEN may be classified not only as an EDC with strong effects
on reproduction but also as a metabolism-disrupting chemical (MDC). The danger to
human health of synthetic contaminants in food, such as pesticides, is widely known and a
subject of debate even among non-specialists. Much less known are the dangers associated
with some molecules of natural origin, such as phytoestrogens, including GEN, that are
present in many foods. Genistein, by binding estrogen receptors, can alter the functional
processes that depend on them (for example, reproduction and energy metabolism) and
the development of the neuroendocrine circuits that regulate these activities. The alteration
of these nervous circuits could be at the root of some problems (constantly growing in
our society) that are found in the human field, such as the predisposition to obesity in
children fed with soy milk. Furthermore, the effects of GEN on development may be due
to epigenetic modifications in the offspring. It is therefore important, for food safety and
human health, to better investigate the effects of phytoestrogens on the central nervous
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system and the repercussions they can have in the organization of many nervous circuits
regulated by hormones.
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Abstract: Differential placental blood flow and nutrient transport can lead to both intrauterine growth
restriction (IUGR) and macrosomia. Both conditions can lead to adult obesity and other conditions
clustered as metabolic syndrome. We previously showed that pregnant hemi-ovariectomized mice
have a crowded uterine horn, resulting in siblings whose birth weights differ by over 100% due to
differential blood flow based on uterine position. We used this crowded uterus model to compare
IUGR and macrosomic male mice and also identified IUGR males with rapid (IUGR-R) and low
(IUGR-L) postweaning weight gain. At week 12 IUGR-R males were heavier than IUGR-L males and
did not differ from macrosomic males. Rapid growth in IUGR-R males led to glucose intolerance
compared to IUGR-L males and down-regulation of adipocyte signaling pathways for fat digestion
and absorption and type II diabetes. Macrosomia led to increased fat mass and altered adipocyte size
distribution compared to IUGR males, and down-regulation of signaling pathways for carbohydrate
and fat digestion and absorption relative to IUGR-R. Clustering analysis of gonadal fat transcriptomes
indicated more similarities than differences between IUGR-R and macrosomic males compared to
IUGR-L males. Our findings suggest two pathways to adult metabolic disease: macrosomia and
IUGR with rapid postweaning growth rate.

Keywords: intrauterine growth restriction; macrosomia; glucose tolerance; abdominal adipocyte
gene expression; thrifty phenotype hypothesis

1. Introduction

In the United States and many developed countries, the incidence of obesity and
related diseases, collectively referred to as metabolic syndrome, are increasing at a rapid
rate [1]. Evidence from epidemiological studies links the rate of fetal growth, body weight
at birth, rate of growth during early postnatal life, and adult metabolic diseases [2]. Namely,
when there is reduced fetal growth and body weight at birth, but the subsequent postnatal
growth rate is markedly higher than the median, this results in body weight centile crossing,
and significant metabolic abnormalities occur. This sequence of events is a central feature
of the developmental basis of health and disease (DOHaD) hypothesis for metabolic
diseases [3].

Many studies have investigated the effects of maternal nutrition during pregnancy.
Decreased maternal nutrition during pregnancy leads to intrauterine growth-restriction
(IUGR), and the small for gestational age babies in the bottom 10th percentile for birth
weight are at increased risk of being overweight in adulthood [4,5]. Similarly, babies that
are in the top fifth percentile for body weight at birth (macrosomic), a condition often
associated with maternal obesity and/or diabetes, are also at risk for adult obesity [6].
Regardless of the basis for their obesity, the outcome is that most obese individuals are
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at increased risk for developing other disorders associated with metabolic syndrome.
Among these co-morbidities are increased blood pressure, cardiovascular disease, insulin
insensitivity, glucose intolerance, diabetes, fatty liver disease, and elevated triglycerides
and cholesterol [1,2,7].

A large number of animal studies investigating these conditions have manipulated
maternal nutrition to induce IUGR or macrosomia in the offspring [8–10]. These models
alter fetal growth trajectories via maternal protein restriction, caloric restriction, use of a
feed with a very high percentage of fat, or streptozocin-induced type 1 diabetes mellitus to
increase fetal glucose uptake. However, although maternal malnutrition is a cause of IUGR
in non-developed countries, war zones, and in cases of eating disorders [4,11], dietary
restriction paradigms do not adequately represent the human condition associated with
IUGR in developed countries, where the cause of IUGR is not typically severe caloric or
protein restriction.

Many factors can contribute to reduced fetal nutrition without a decrease in maternal
nutrition, such as insufficient blood flow to the placenta or deficits in placental transport
of specific nutrients [12]. Another approach to creating fetal undernutrition has been
to experimentally create insufficient transport of nutrients to fetuses from the maternal
circulation as a result of ligation of the uterine blood vessels [13]. However, a problem with
this approach is that there are physiological responses to trauma in addition to surgically
restricting blood flow to specific placentae [14].

While it was once not uncommon for parents to be advised to over-feed IUGR babies,
there is now extensive epidemiological evidence showing that IUGR babies who experience
a rapid “catch-up” growth spurt during infancy or early childhood are at high risk for adult
obesity, type 2 diabetes and other co-morbidities of metabolic syndrome, consistent with
the “thrifty phenotype” hypothesis [15]. The hypothesis is that the physiological “program”
of IUGR babies is one that makes them adapted for a lifetime of reduced nutrition, and
these babies are thus at high risk for becoming overweight when they are exposed to a
typical highly processed Western diet that is higher in calories than their physiological
program’s “set point” [16,17]. Thus, in humans, fetal growth rate interacts with the growth
rate during early postnatal life to determine whether IUGR leads to adult obesity and other
metabolic diseases.

We examined here the consequences for male mice of developing in a crowded uterine
horn that results in differential placental blood flow based on the random implantation of
fetuses in the middle vs. either end of the uterine horn. This is an IUGR and macrosomia
model that results in animals that match the clinical description of IUGR in the bottom
10th percentile for human fetuses and of macrosomia at the other end of the birth weight
spectrum [18].

In more detail, previous studies in mice suggested that crowding a uterus with more
fetuses than is normal resulted in the production of offspring that varied in the rate of fetal
growth as a result of differences in the amount of placental blood flow [19]. In a series
of studies, we demonstrated [20,21] that blood flows from two directions into the artery
supplying each independent uterine horn in rats and mice, which have a duplex uterus.
Specifically, blood flows into each uterine artery from both the cranial end, branching off of
the descending aorta, and the caudal end, which branches off of the ipsilateral iliac artery
(Figure 1). The unusual “loop” vascular structure results in a greater flow of blood to the
placentae located at the cranial and caudal ends of each uterine horn relative to placentae
located in the middle of each horn in both rats and mice. The magnitude of the effect on
blood flow to each placenta and on fetal growth as a result of being positioned at the ends
or middle of a uterine horn in mice is greatly exaggerated if one ovary is removed since
a change in follicular dynamics in the remaining ovary causes hyper-ovulation, referred
to as compensatory ovarian hypertrophy [19,22,23]. A mouse that becomes pregnant after
hemi-ovariectomy will thus have a crowded uterine horn since embryos cannot migrate
from one uterine horn to the other in mice. This crowded uterine horn results in dramatic
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differences between siblings in fetal nutrient availability based on implantation site, which
is a random event [24].

Figure 1. The pregnant mouse uterus. (A) The intact duplex uterus of the mouse or rat, with each
uterine horn having an independent cervix. The bi-direction blood flow in each uterine artery and
vein is indicated by arrows. Modified from Even et al. [21], with permission. The left kidney is caudal
to the right kidney, which leads to variability in the cranial vascular anatomy of the left uterine horn.
(B) The consequence of hemi-ovariectomy on ovulation in litter-bearing species that normally ovulate
from both ovaries, which is referred to as compensatory ovarian hypertrophy due to the remaining
ovary ovulating the normal number of oocytes that would have been produced by both ovaries.
Due to the variability in the vascular anatomy of the left uterine horn, all mice had the left ovary
removed, which resulted in compensatory ovulation by the remaining right ovary and crowding of
fetuses in the right uterine horn. Fetuses that end up randomly implanted in the middle portion of
the uterus [24] have reduced blood flow and nutrient transport across the placenta relative to siblings
at the ends of the horn, due to the bi-directional uterine arterial blood flow; however, if the fetus at
the cranial end of the crowded uterus has a placental artery that branches off of the ovarian artery
(as shown in Panel B), this fetus will be IUGR rather than macrosomic [19,22]. Modified from Coe
et al. [22], with permission.

In the present study, we used the crowded uterus phenomenon as a model system
to increase differences between siblings in the rate of fetal growth and thus body weight
at birth. This allowed us to examine the consequences for postnatal growth rate, and for
adipocyte number, size and gene expression in the largest abdominal fat pad, which in
mice is associated with the gonads. We also weighed the other major fat pads in mice: the
abdominal renal fat pads and the subcutaneous inguinal fat pads. In addition, we examined
glucose tolerance in male mice that were classified as IUGR (<10% of birth weight range),
median (~50%) or macrosomic (>93%) at birth due to differential placental blood flow
based purely on their random position within the uterus.

We report here results from the crowded uterus model, which provides the opportunity
to examine the etiology of differences caused by differential fetal and postnatal growth
without nutrient or surgical intervention. Our hypothesis was that IUGR males that
experienced a rapid period of postnatal growth (referred to as IUGR-R males) would in
adulthood appear similar to males identified as macrosomic at birth. However, we expected
both IUGR-R and macrosomic males to show significant differences from IUGR males that
exhibited a low rate of postnatal growth (referred to as IUGR-L males). We identified
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significant differences in adult phenotype between IUGR male mice based on their rate of
growth (low vs. rapid), providing support in this animal model for the “thrifty phenotype”
hypothesis. Interestingly, there were also differences in phenotype between IUGR-R males
and macrosomic males, suggesting that these two pathways to adult metabolic diseases
need to be considered when seeking approaches to mitigate the metabolic abnormalities of
these individuals.

2. Results
2.1. Placental Blood Flow and Fetal Growth

The placement of fetuses in the uterus impacts fetal growth [19,22]. Here we chose
to only examine offspring that developed in one crowded uterine horn. A schematic
of a normal pregnancy is shown in Figure 1A, and a crowded uterine horn is shown in
Figure 1B.

2.2. Birth Weight Criteria and Postnatal Growth Rate

CD-1 mouse litters were produced in two blocks. In Block 1, 52 litters were produced
by hemi-ovariectomized postpartum females resulting in a total of 605 offspring, of which
585 survived until weaning. The overall pre-weaning mortality rate was 3.3%, with 25 per-
cent of all pre-weaning deaths occurring in IUGR animals, and only 0.05% in macrosomic
animals. The total number of animals at birth consisted of 297 females and 308 males; the
distribution of all male offspring body weights from birth until 12 weeks old is presented
in Figure 2A; body weight at birth data were normally distributed. The mean weight for all
male mice on the day of birth was 1.64 ± 0.24 g (mean ± SEM).

Of the animals that survived until weaning, the weight range for males with birth
weights in the bottom 5th percentile (designated as IUGR; n = 14) was 0.95–1.23 g (mean
± SEM: 1.12 ± 0.03 g) (Figure 2A). Males categorized as being at the “median” (~1.64 g)
body weight range were in the 47.4–51.2 percentile of all birth weights (n = 16 saved for
follow-up experiments). The weight range for males with birth weights in the top 5th
percentile (designated as macrosomic) was 2.02–2.40 g (n = 15); the mean (±SEM) was
2.20 ± 0.04 g.

Body weight between birth and weaning (week 3) increased as a function of body
weight at birth (Figure 2A). However, the percent weight gain in the first week after
weaning (between weeks 3–4) showed a dramatic decrease as a function of body weight
category at birth (Figure 2B). Namely, the IUGR males (bottom 5th percentile) exhibited
a 95% increase in their body weight between week 3 (weaning) and week 4 of life, while
macrosomic males (top 95th percentile) showed only a 37% increase during the same time.
Thus, by week 4, the IUGR males had reached a body weight that was not significantly
different from males identified as macrosomic at birth. In contrast, the males in the 5–50%
body weight at birth categories were significantly lighter than IUGR males by postnatal
week 4 and into adulthood, with the last measurement being made when all males were
12 weeks old (Figure 2A).

2.3. Different Sub-Groups of IUGR Males

A sub-group of the IUGR males did not go through a rapid post-weaning growth
phase, although in Figure 2 they are included in the mean growth rate for all IUGR males.
Of the animals that were below the 10th percentile for birth weight, 45% (n = 13/29) did
not experience a post-weaning rapid weight gain. These males, who gained less than
65% of their weight during weeks 3–4, referred to here as IUGR-low postweaning growth
rate (IUGR-L) males, were compared with IUGR-rapid post-weaning growth rate males
(IUGR-R) that gained over 65% body weight during this period. IUGR-L males achieved
a lower adult body weight by week 12 relative to IUGR-R or macrosomic males, while
IUGR-L did not differ from median body weight at birth males (Figure 3A). The percent
weight gain between weeks 3–4 is shown in Figure 3B. The IUGR-R males had a lower birth
weight than IUGR-L males (1.166 ± 0.030 g vs.1.253 ± 0.021 g, p = 0.029) and were also in
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a lower birth weight percentile than IUGR-L males (3.925 ± 0.618% vs. 6.248 ± 0.748%,
p = 0.023).

Figure 2. Body weight and growth of Block 1 male mice. (A) Body weights of male mice produced
in 52 litters by Block 1 hemi-ovariectomized females based on birth weight categories, from the
≤5th percentile to ≥95th percentile. Beginning at postnatal week 3 (weaning), body weights were
measured for all surviving male offspring until postnatal week 12. (B) the percent increase in body
weight for these males during the first week of free-feeding after weaning (week 3–4). A subset of
these Block 1 males (from IUGR, median and macrosomic birth weight categories) were retained after
week 12 for additional studies. (See Table S1). * p < 0.05 compared to males from the bottom 5th
percentile (IUGR males). Values are mean ± SEM.
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Figure 3. Body weight and percent growth of IUGR-L (n = 13), IUGR-R (n = 16), median (n = 17) and
macrosomic (n = 21) males. (A) body weights at week 12, when IUGR-L and median males weighed
less than IUGR-R and macrosomic males. (B) the percent postweaning (week 3–4) weight gain,
showing that IUGR-R males exhibited the most rapid post-weaning weight gain, while macrosomic
males showed the lowest week 3–4 percent weight gain. Groups with different letters above the
error bar are significantly different from each other; groups that share a letter in common are not
statistically different. Values are mean ± SEM.

Within the macrosomic group of males, the range of body weight gain during the week
after weaning was smaller, and there was no significant difference in adult body weight
based on the rate of growth during the week after weaning (data not shown).

2.4. Experiments on Block 1 and Block 2 Animals When 6 Months Old

After week 12, selected IUGR, median and macrosomic males from Block 1, here
defined as below the 10th percentile at birth, at the median, and above the 93rd percentile
respectively, were saved for further studies. IUGR males were subdivided into IUGR-L and
IUGR-R animals based on differential growth rate during postnatal weeks 3–4, as described
above. Block 1 males included the first set of animals that were subjected to a 14-h fast
prior to a glucose tolerance test (GTT) and a second set that did not experience either a fast
or a GTT (Sets 1 and 2, respectively, see Table S1).

We generated a second cohort of animals (Block 2) from an additional 21 hemi-
ovariectomized females (see Table S1), IUGR, median and macrosomic at birth animals
were identified using the same criteria as for Block 1. IUGR males were again separated
into rapid- and slow-growing based on the differential postweaning growth rate, although
for Block 2 we selected a slightly higher cutoff, at less than or above 76% postweaning
weight gain.

We conducted experiments on males from the three different birth weight percentiles
(IUGR, median and macrosomic), as well as differing post-weaning growth percentiles for
IUGR animals (IUGR-L and IUGR-R) when they were six months old.

First, we conducted a glucose tolerance test (GTT) on selected males (Set 1 in Table S1)
from Block 1. IUGR-L, IUGR-R, median and macrosomic males were fasted for 14 h
overnight (during the dark phase of the light:dark cycle prior to the GTT and were sacrificed
immediately after the GTT; organ weights were measured, and the fat pads were collected
for analysis of gonadal adipocyte cell number and size, and analysis of expression of
selected genes by quantitative reverse transcription polymerase chain reaction (qPCR) in
gonadal fat.

Second, we also conducted a GTT on the Block 2 males. These animals were only
fasted during the first 4 h of the light phase, for comparison with the effects of the overnight
14-h fast, and were not sacrificed for at least 1–2 weeks post-test. Body weights and gonadal
fat pad weights were also measured, but no further analyses were conducted.

Finally, to rule out any effect of fasting associated with the GTT on fat, we also collected
fat from the second set of males from Block 1 (Set 2 in Table S1), without fasting the animals
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or conducting a GTT prior to collection of fat. We collected gonadal, renal and inguinal fat
pads from these males, and then conducted an analysis of gonadal adipocyte number and
size, as well as analysis of gonadal fat gene expression by both qPCR and microarray.

2.5. Glucose Tolerance Test (GTT)
2.5.1. GTT in 14-h Fasted Males

We observed a significant difference in response to the glucose challenge between
median and IUGR-R compared to macrosomic and IUGR-L males. Specifically, blood
glucose concentrations after the glucose challenge were similar in animals for the median
and IUGR-R birth weight males, which showed impaired glucose tolerance in comparison
to macrosomic and IUGR-L males based on the area under the blood glucose concentration-
time curve (AUC; Figure 4A). Importantly, males in the slower post-weaning growth
sub-group of IUGR males (IUGR-L) had better glucose tolerance than the heavier IUGR
sub-group (IUGR-R) males (Figure 4A). Specifically, blood glucose concentrations tended
to be lower in IUGR-L males compared to the IUGR-R males based on AUC (p = 0.06),
and at both 30 and 60 min after glucose challenge (p = 0.08 for each comparison). What
was surprising was that the median males had impaired glucose tolerance relative to the
macrosomic males (p < 0.05). Macrosomic males’ body weight and gonadal fat pad weight
were greater than all other groups (Figure 4B,C).

Figure 4. Glucose tolerance test in 14-h fasted Block 1 males. (A) glucose tolerance test data for
IUGR-L (I-L; n = 6), IUGR-R (I-R; n = 9; one animal died in adulthood), median (MED, n = 16) and
macrosomic (MAC, n = 16) males that underwent a 14 hr-fast prior to glucose challenge. Inset: Area
under the curve (AUC) for this test (a’ p < 0.08 vs. IUGR-L). (B) body weight at the time of tissue
collection following the GTT (a’ p < 0.08 compared to IUGR-L). (C) gonadal fat weight (b’ p = 0.06
compared to macrosomic). (D) the week 3–4 percent weight gain for these males. Groups with
different letters above the error bar are significantly different from each other; groups that share a
letter in common are not statistically different; letters with a dash indicate p values between 0.05 and
0.01 as indicated above. Values are mean ± SEM.
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2.5.2. GTT in 4-h Fasted (Block 2) Males

The results from the 4-h fasted males in Block 2 were different from those observed
for the 14-h fasted males. First, the blood glucose levels were markedly higher for the 4-h
fasted males relative to 14-h fasted males both at baseline and at 30 and 60 min after glucose
injection. Second, based on AUC for 4-h fasted males, macrosomic males had reduced
glucose tolerance relative to the median males (p = 0.055; Figure 5A), while both IUGR-L
and IUGR-R showed somewhat lower glucose tolerance but did not differ significantly
from median males.

Figure 5. Glucose tolerance test in 4-h fasted Block 2 males. (A) glucose tolerance test for male
IUGR-L (I-L; n = 7), IUGR-R (I-R; n = 19), median (MED; n = 25) and macrosomic (MAC; n = 25) mice
that underwent a 4-h fast prior to glucose challenge. Inset: Area under the curve (AUC) for this test.
The macrosomic males had reduced glucose tolerance relative to median males (b’ p = 0.055). (B) body
weight at the time of tissue collection following the GTT. Macrosomic males were significantly heavier
than IUGR-R and median males (p < 0.05). (C) gonadal fat weight. While gonadal fat pad weight
was slightly greater in macrosomic males, it did not differ significantly between the groups. (D) the
week 3–4 percent weight gain for these males. Groups with different letters above the error bar are
significantly different from each other; groups that share a letter in common are not statistically
different; letters with a dash indicate p values between 0.05 and 0.01 as indicated above. Values are
mean ± SEM.

2.6. Body Weight, Organ Weights, Fat Pad Weights, and Gonadal Fat Pad Adipocyte Number and
Size: Comparison of 14-h Fasted and Non-Fasted Block 1 Males
2.6.1. Data from 14-h Fasted Males

An important issue identified in this experiment was that the 14-h fasting procedure
prior to the glucose tolerance test reduced body weight in all groups of males (IUGR-L:
12.5%, IUGR-R 9.2%, median: 11%, macrosomic: 6.3%), although less so in macrosomic
males compared with IUGR-L males (Figure 6A). Weight loss in mice due to fasting is
consistent with prior findings [25]. This weight loss resulted in the non-fasted IUGR-L and
IUGR-R males being heavier at the time of fat pad collection than fasted IUGR animals. The
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14-h fast altered the adipocyte size distribution (Figure 7) and also affected gene expression
in gonadal fat collected after the GTT experiment relative to non-fasted males from the
same prenatal growth category groups (see Section 2.7).

Figure 6. Comparison of body weight, fat pad weights, and adipocyte number in non-fasted vs. 14-h
fasted animals. Data are from non-fasted males (IUGR-L n = 4, IUGR-R n = 5 and macrosomic n = 5)
that did not undergo a GTT, and males fasted for 14 h prior to GTT and fat pad collection (IUGR-L
n = 5, IUGR-R n = 8, median n = 14, macrosomic n = 13). (A) body weights, (B) gonadal fat pad
weights, and (C) the number of adipocytes per total mass of fat. Groups with different letters are
significantly different from each other; groups that share a letter in common are not statistically
different; a’ and b’ p < 0.1. Values are mean ± SEM.

Figure 7. Gonadal adipocyte size distribution. Distribution of size categories for gonadal adipocytes
collected from (A) non-fasted and (B) 14-h fasted males. For non-fasted males (A), the IUGR-L
and IUGR-R males had significantly more mid-size adipocytes relative to macrosomic males, while
macrosomic males had more of the largest adipocytes. a’ p < 0.1; b’ p < 0.08. For the 14-h fasted males,
there were no significant differences between males from the different birth weight categories in
any of the size categories (B). Different letters indicate statistically significant differences between
birth weight groups within a size category (p < 0.05); groups that share a letter in common are not
statistically different; letters with a dash indicate p values between 0.05 and 0.01 as indicated above.
Values are mean ± SEM.

In 14-h fasted males, there were significant effects of birth weight category on body
weight both prior to the GTT and also at the time of fat pad collection. Both prior to
testing and after the 14-h fast and GTT, macrosomic animals were significantly heavier than
IUGR-L and median animals (Figure 6A). IUGR-R animals were not statistically different
from IUGR-L and median animals prior to testing, but at the time of collection, following
the GTT, IUGR-L animals tended to be lighter than IUGR-R and median animals (p < 0.1,
Figure 6A).
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There were significant differences between IUGR-R and macrosomic males in heart,
kidney and spleen weights, with macrosomic males having significantly heavier organ
weights (Table S2). There were also significant differences between the different groups of
14-h fasted males in the weights of the gonadal fat pad weight collected immediately after
the GTT test that indicated an effect of birth weight category. The gonadal fat pads from
the macrosomic males were significantly heavier than for IUGR-L and IUGR-R males and
tended (p = 0.07) to be heavier than the median male fat pads (Figure 6B; Table S3). The
total amount of fat (summed renal, inguinal and gonadal fat pad weights) was significantly
greater in macrosomic males than either IUGR or median animals (Table S3).

The total number of adipocytes in the gonadal fat pads is shown in Figure 6C. Macro-
somic males had the highest mean adipocyte count and a significantly greater number
of gonadal adipocytes than either IUGR-L males or IUGR-R males. Males in the median
group tended to have fewer gonadal adipocytes than macrosomic males (p < 0.1). For these
14-h fasted males, there were no differences in the size distribution of gonadal adipocytes
from IUGR-L, IUGR-R, median or macrosomic animals (Figure 7B).

2.6.2. Data from Non-Fasted Males

In non-fasted males, there were significant effects of birth weight category on body
weight at the time of fat pad collection, with macrosomic animals being heavier than either
IUGR group (Figure 6A).

Gonadal fat pad weights did not differ significantly between IUGR-L, IUGR-R and
macrosomic animals (Figure 6B) although gonadal fat pads from macrosomic males tended
(p = 0.07) to be heavier than those of IUGR-R males. Total fat weight was significantly
higher in macrosomic animals compared to either IUGR group (Table S3).

Total adipocyte number did not differ significantly for non-fasted males (Figure 6C).
However, analysis of adipocyte size distribution in gonadal fat pads of non-fasted males
indicated that the size distribution was similar for IUGR-L and IUGR-R males and that
both were significantly different from the macrosomic males, that had fewer adipocytes in
the mid-size range (p < 0.05; Figure 7A). In contrast, macrosomic males had significantly
more large adipocytes compared to IUGR-L and IUGR-R males. Thus, in non-fasted males,
macrosomic males had a significantly different gonadal adipocyte size distribution relative
to either IUGR-L or IUGR-R males.

2.7. Gonadal Adipose Tissue Gene Expression by qPCR

Six target genes were selected for analysis by qPCR based on their known roles in
adipose tissue function. Gene expression was first measured in samples prepared from the
gonadal fat from non-fasted males not previously administered a GTT, and these results are
shown in Figure 8. Due to the limited number of IUGR and macrosomic males examined,
we did not attempt to separate the IUGR males into IUGR-L and IUGR-R categories.

In non-fasted animals, the expression of Pparg2, Cebpa, Glut4 and Lpl was significantly
higher in IUGR animals than in macrosomic animals (p < 0.05 for Pparg2, Cebpa and Lpl;
p < 0.01 for Glut4). There were no significant differences between IUGR and macrosomic
animals in the expression of Hsd11b1 and Cyp19, which appeared to be due to the high
variance in samples from IUGR males.

We also measured the expression of these genes in fat samples from selected 14-h
fasted male mice. In fat collected after the long fasting conditions and GTT, no differences
were seen between the IUGR and macrosomic animals in the expression of these same six
genes (Figure S3). Details of postnatal growth and body fat of the non-fasted and 14-h
fasted animals whose tissues were used in the qPCR analyses are presented in Table S4.
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Figure 8. qPCR quantification of gene expression in gonadal fat of non-fasted IUGR and macrosomic
male mice (n = 4–5 per group.) Values for IUGR animals are expressed relative to values for the
macrosomic animals. Values are mean ± SEM. * p < 0.05, ** p < 0.01 compared to IUGR.

2.8. Gonadal Adipose Tissue Gene Expression by Microarray Analysis

We conducted a microarray analysis of gene expression in gonadal fat from non-fasted
males that had not experienced a GTT. We examined 4 macrosomic males, 3 IUGR-L males
and 3 IUGR-R males. Postnatal growth, body fat and other characteristics of these animals
are presented in Table S5. A list of differentially expressed genes is given in Table S7.

Analysis of the microarray data was specifically aimed at identifying differences
between the IUGR-L and IUGR-R groups, and between the IUGR-R and macrosomic
animals (median body weight at birth males were not examined). Initial analysis of the
array data was performed using a two-tailed t-test with Benjamini-Hochberg correction
and a two-fold difference cutoff, and further analysis was conducted by t-test for the
comparisons of interest. Impacted signaling pathways and gene ontologies were also
identified. In addition, we used ANOVA to identify genes that were differentially expressed
among the pooled microarray data from all three treatment groups.

2.8.1. Direct Comparison of Gene Expression in IUGR-L, IUGR-R and Macrosomic Males

Examining the two IUGR groups, from the t-test with Benjamini-Hochberg correction,
only one gene was identified as being differentially expressed between the two IUGR
groups: Fnip1 (folliculin-interacting protein 1) was down-regulated 2.1-fold in the IUGR-R
animals compared to the IUGR-L animals (Figure 9). When the data were analyzed with-
out the multiple hypothesis correction, 1197 genes were identified as being differentially
expressed between the two groups. KEGG pathways impacted (Table 1) included Type II
Diabetes Mellitus (down-regulated in IUGR-R samples, z-score = 3.86) and Fat Digestion
and Absorption (down-regulated in IUGR-R samples, z-score = 2.12).
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Figure 9. Differentially expressed genes. Statistical comparisons were between either IUGR-L and
IUGR-R animals or between IUGR-R and Macrosomic animals. * p < 0.05 compared to IUGR-
R. p values are Benjamini-Hochberg-corrected; uncorrected p values are all < 0.001. Values are
mean ± SEM.

Table 1. KEGG Pathways differentially impacted by growth. Statistical comparisons were between
either IUGR-L and IUGR-R animals or between IUGR-R and Macrosomic animals.

Groups Compared KEGG Pathway Ratio Direction p-Value Gene
Identifier Gene ID

IUGR-L Type 2 Diabetes Mellitus 9.5 Up 0.002 NM_008840 Pik3cd
Vs. IUGR-R down-regulated in IUGR-R 4.31 Down 0.047 BE943756 Cacna1a

z score = 3.86 3.45 Up 0.019 NM_010438 Hk1
2.92 Down 0.045 BB184171 Mapk8
2.11 Down 0.004 BB205102 Pik3cg
2.11 Down 0.002 BB048682 Cacna1d
2.03 Down 0.038 BE947490 Mapk10

Fat digestion and absorption 3.04 Up 0.025 BG070618 -
down-regulated in IUGR-R 3.01 Down 0.047 NM_011128 Pnliprp2
z-score = 2.12 2.56 Down 0.023 NM_025469 Clps

2.05 Down 0.006 AI326372 Pnlip

Macrosomic vs. Carbohydrate digestion and absorption 5.67 Up 0.019 NM_008840 Pik3cd
IUGR-R 2.89 Down 0.011 BI696040 Atp1a1

up-regulated in IUGR-R 2.42 Up 0.028 NM_019741 Slc2a5
z score = 4.67 2.22 Up 0.037 BC027319 Atp1b1

2.2 Up 0.043 BC027319 Atp1b1

Fat digestion and absorption 6.49 Up 0.048 AI194999 Apoa1
up-regulated in IUGR-R 4.96 Up 0.015 NM_007980 Fabp2
z-score = 4.09 4.29 Up 0.006 AI527359 Apoa1

3.41 Up 0.019 NM_025469 Clps

For the IUGR-R vs. macrosomic comparison, analysis with Benjamini-Hochberg cor-
rection identified 5 differentially expressed genes, which included Ucma (unique cartilage
matrix-associated protein, down-regulated 12.2-fold in macrosomic animals), Gpr150 (G
protein-coupled receptor 150, down-regulated 7.6-fold) and Agtr2 (angiotensin II recep-
tor, type 2, down-regulated 5.6-fold). The relative expression of these and other genes is
shown in Figure 9. Analysis without the multiple hypothesis correction yielded a list of
659 genes. Impacted KEGG pathways identified (Table 1) included Carbohydrate Digestion
and Absorption (up-regulated in IUGR-R, z-score = 4.67) and Fat Digestion and Absorption
(up-regulated in IUGR-R, z-score = 4.09).
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2.8.2. Clustering Analysis of Differentially Expressed Genes

Due to the small sample size, ANOVA was conducted without multiple hypothesis
correction, yielding 855 genes that were differentially expressed among all groups at p < 0.01.
These genes were subjected to hierarchical clustering, yielding the heatmap in Figure 10.
The heatmap shows the separation of six clusters of differentially expressed genes identified
as A–F, which segregate by birth weight, post-weaning growth rate, or adult weight.

Figure 10. Unsupervised hierarchical clustering analysis of transcriptomes of gonadal fat. The heatmap
shows differential expression of gene clusters in male adipose tissue from IUGR-L (first three rows; yellow
bar) IUGR-R (center three rows; green bar) and macrosomic (“macro”, last four rows; red bar) groups.
Each column represents a gene and each row represents a different animal. Red indicates up-regulation
and blue indicates down-regulation; grey indicates unchanged expression. Six clusters were identified
(A–F at top). Genes were identified by ANOVA and were significant at p < 0.01.

An unsupervised hierarchical clustering analysis revealed that the macrosomic group
was linked closely to the IUGR-R group (red and green bars on the left) and separated
from the IUGR-L group (yellow bar). This was largely due to the gene Clusters C and D,
which together (651 genes) represent 76% of the entire set of differentially expressed genes.
Cluster D represents the largest gene node consisting of 454 genes (53%) that were more
strongly expressed in the macrosomic and IUGR-R groups compared to the IUGR-L group,
and Cluster C represents the second-largest node consisting of 197 genes (23%) that were
more strongly expressed in the IUGR-L group compared to the Macrosomic or IUGR-R
groups. These data show a close similarity of abdominal (gonadal) adipose tissue gene
expression in IUGR-R and macrosomic males compared to IUGR-L males.

The clusters were subjected to gene ontology (GO) analysis using DAVID, but enrich-
ment results were limited. No significant GO results were obtained for Clusters A, B, E or F.
Cluster C genes were enriched in phosphoprotein, acetylation, nucleus, mRNA splicing,
mRNA processing, Spliceosome, cell division, and ubl conjugation. Cluster D genes were
enriched in phosphorylation, acetylation, cytoskeleton, phosphoprotein, and cell division.
The biological significance of these enrichments was not clear. Combining Clusters C and D
drove enrichment toward cell division, especially spindle and microtubule formation, but
overall these GO results did not provide ready explanations of the observed phenotypic dif-
ferences between the three groups of animals. Similar results were obtained using DAVID
to identify impacted pathways. No significant functional pathways were obtained for
Clusters A, B, E or F when analyzed singly. Submitting Cluster C indicated effects within
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Spliceosome, transcriptional misregulation in cancer, and oocyte meiosis. More pathways
were indicated for Cluster D, and included B cell receptor signaling, MAPK signaling and
Ras signaling, and pathways in cancer. Combining Clusters B and F pointed toward MAPK
signaling and combining Clusters C and D pointed toward B cell receptor signaling, MAPK
signaling and Ras signaling, among others.

It is likely that the small sample size limited the sensitivity of the formal analyses.
In both the results from the t-test comparisons and those of the clustering analysis, we
identified changes in the expression of several genes of interest that were not assigned to
pathways by the software, several of which were directly relevant to adipocyte function.
Accordingly, as an additional/alternative approach, we drew from both sets of data and
identified groupings of genes that suggested potential impacts within specific signaling
pathways. Examples (Table S6) were effects on the renin-angiotensin system (eight genes),
PPAR signaling (five genes), adipocytokine signaling (5 genes) and glycolysis and gluco-
neogenesis (five genes), all of which generally distinguished between heavier compared to
lighter-weight adult animals.

We also found changes in the expression of a number of genes in the Krüppel-Like
Factor (Klf) family. t-test results identified a 2.23-fold up-regulation of Klf9 in IUGR-
R vs. IUGR-L animals; expression was similar in macrosomic and IUGR-R animals. Klf2,
Klf4 and Klf13 were present in Cluster D and Klf6 was present in Cluster A. Thus, for four
of these five genes (Klf2, Klf4, Klf9 and Klf13) expression was higher in the heavier-in-
adulthood macrosomic and IUGR-R males, while Klf6 expression was higher as a function
of birth weight category (Figure S4A).

In addition, we saw standalone effects on three genes of interest, all of which were
downregulated in IUGR-R compared to IUGR-L: Tbx15 (T-box transcription factor 15, an
early patterning gene recently identified as a master regulator of obesity genes [26]) and
Repin1 (replication initiator 1, strongly associated with adipogenesis) were down-regulated
13.16-fold and 2.36-fold respectively in IUGR-R, and in both cases expression was similar
in IUGR-R and macrosomic samples. Dlk1 (delta-like 1 homolog) was down-regulated
2.12-fold in IUGR-R compared to IUGR-L (Figure S4B).

3. Discussion

Using a novel crowded uterus model, we evaluated the consequences of IUGR and
macrosomia on outcomes associated with metabolic syndrome. An important part of this
work was the comparison of IUGR males that experienced a rapid post-weaning increase
in body weight (IUGR-R males) and those that did not (IUGR-L males). At this time, we do
not have an explanation for why IUGR males segregated after weaning into rapid and low
growth groups. IUGR-R males showed about a 2.5-fold greater weight gain than IUGR-L
males during the first week after weaning, and by 12 weeks of age, IUGR-R males had
reached the same body weight as macrosomic animals and were significantly heavier than
slow-growing IUGR males. At six months of age, IUGR-R males showed impaired response
to a glucose challenge compared to IUGR-L males and altered expression of many genes
in abdominal adipose tissue was revealed by microarray analysis. Clustering analysis
of gonadal fat transcriptomes (discussed further below) showed that rapidly-growing
IUGR males (IUGR-R) were aligned with macrosomic males in outcomes that are related to
metabolic abnormalities throughout life [6]. However, at that age IUGR-R males differed
from macrosomic males in terms of body weight, fat weight, adipocyte counts and size,
as well as heart, kidney and spleen weights. There were also differences in abdominal fat
gene expression between IUGR-R and macrosomic males revealed by microarray analysis.

Thus, these findings provide evidence for two distinct pathways to abdominal fat gene
regulation and glucose regulation, and reveal that IUGR that is followed by a rapid period
of weight gain during postnatal life results in changes in adipose tissue gene activity that in
many respects are similar to those seen due to macrosomia at birth. However, there are also
significant differences between the IUGR-R phenotype and the macrosomic phenotype,
and both IURG-L and IUGR-R males were in some respects more similar to each other
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than to macrosomic males. These results are complex, and it is not possible at this time to
predict disease or metabolic outcomes in these animals. Clearly, more research is needed
to unravel the complex interaction of fetal under- or over-growth with postnatal growth
trajectories in order to understand the factors that lead to adult overweight, which, itself, is
a predictor of dysregulation of abdominal adipocyte gene expression.

A consequence of IUGR (often associated with a period of rapid postnatal weight
increase), as well as macrosomia, is the development of glucose intolerance and other co-
morbidities of obesity [2,15]. Using the 14-h fasting procedure, the faster-growing IUGR-R
males showed reduced glucose tolerance compared to the slower-growing IUGR-L and
macrosomic males. We did not anticipate that macrosomic animals would have superior
glucose tolerance; however, since the median birth weight animal also showed reduced
glucose tolerance compared to these groups; this test did seem to distinguish between
animals with slow and more rapid post-weaning weight gain. Using the shorter 4-h fast,
both of the IUGR groups and the macrosomic males showed reduced glucose tolerance
relative to males in the median birth weight category, although the comparisons did not
reach statistical significance; it is likely that the fasting time was too short to allow for
sensitive testing. Thus, under the 14-h fasting regime, there was a tendency for faster-
growing animals to have reduced glucose tolerance, and under the 4-h regime, both the
IUGR and macrosomic animals tended toward impaired glucose tolerance. It was beyond
the scope of this study to include insulin measurements in these animals, but this would
provide very valuable information on glucose regulation in these animals and should be
included in future work.

The 14-h fasting procedure is a common approach for a mouse GTT, but we show
here that the consequences to the animal may preclude further useful analyses. Although
a decrease in body weight with fasting is consistent with other findings [25], the degree
of weight loss observed in these animals was suggestive of physiological stress and indi-
cated that alternative testing protocols should be considered in future work, as discussed
elsewhere [27]. In this study, macrosomic animals appeared to be more resilient in the face
of this fast; the degree of body weight loss was less, fat mass and adipocyte counts were
less impacted, and glucose tolerance was less impacted compared to IUGR-L males that
lost a greater percentage of their body weight during an overnight fast than IUGR-R or
macrosomic males. Taken together with other findings, these results suggest that IUGR
creates a phenotype that is sensitive to environmental stressors, such as starvation, relative
to non-IUGR animals. We also showed elsewhere that another source of environmental
stress, namely, exposure during fetal life to a very low dose of the manmade toxic chemical
bisphenol A (BPA), exacerbated the rate of postweaning growth in low birth and low
weaning weight male mice, and also significantly impaired glucose tolerance [28]. BPA is
one of many manmade chemicals referred to as metabolic disrupting chemicals [1,29].

We did not monitor weights between week 12 (three months) and six months of age,
but by six months body the weight differences seen at 12 weeks had shifted, and the
two IUGR groups were more similar and significantly lighter than macrosomic animals.
This may reflect slowed growth during this period in IUGR-R animals, but the reason for
this shift is not clear and further investigation is needed. Of note, in the Goto-Kakizaki
diabetic rat, growth slows, and adipose tissue accumulation stops after week 12 [30],
and it is interesting to speculate on possible mechanistic similarities although these are
very different models. Overall, for body weight, there is a birth weight effect but also a
post-weaning growth rate effect that is age-dependent.

Birth weight category appeared to strongly influence both fat weight and adipocyte
number and size. In both 14-h fasted and non-fasted animals, macrosomic animals had
higher amounts of total fat; gonadal fat pads tended to be heavier in macrosomic animals
compared to either IUGR group, which did not differ, although this did not reach signifi-
cance in non-fasted animals. Analysis of adipocyte size distribution in non-fasted animals
clearly showed a difference between the two IUGR groups and macrosomic animals. After
the 14-h fast this difference was eliminated, owing to a marked decrease in mid-sized
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adipocytes in IUGR-L and IUGR-R males, and a smaller decrease in these adipocytes in
macrosomic males. However, the Coulter counter would not have detected any particle
than ~8 µm diameter, so the apparent loss of adipocytes due to the 14-h fast might also
reflect such a significant decrease in adipocyte size that they were not counted.

Analysis of gene expression revealed further differences and similarities between
IUGR and macrosomic animals. The up-regulation of Pparg2, Cebpa, Glut4 and Lpl
expression in IUGR males (or down-regulation in macrosomic males) is consistent with
findings of clustering effects on PPAR signaling identified in the microarray analysis. This
indicates the effects of IUGR on genes associated with an increased predisposition to store
fat in adipocytes and the potential development of obesity-related abnormalities. This
finding may be reflected in the increased number of mid-sized adipocytes observed in IUGR
compared to macrosomic animals, although gonadal fat weights do not differ between
these two groups of non-fasted animals. To confirm these results, future experiments
should consider confirmation of effects on gene expression through Western blot and other
approaches.

The objective of the microarray analysis was to provide preliminary information
regarding the potential pathways in gonadal adipocytes that differed based on the rate
of fetal growth as well as the rate of postnatal growth. Importantly, clustering analysis
demonstrated that in terms of gene expression the association between the heavier-in-
adulthood (week 12) IUGR-R and macrosomic animals was closer than the association
between low birthweight IUGR-L and IUGR-R animals; the similarity of IUGR-R and
macrosomic adipocyte gene expression was in spite of the very different birth weights, and
also in spite of the more similar adipose tissue weights and adipocyte counts in the two
groups of IUGR animals. In the mouse, adipocyte number may be determined prenatally
but adipogenesis is initiated after birth [31]. Thus, although the amount of fat and adipocyte
size in the adult may be influenced by the relatively low prenatal and pre-weaning nutrient
availability, the accelerated growth during the immediate postweaning period occurred
during the ongoing development of adipose tissue and permanently impacted overall gene
expression in this tissue. Our results are limited by the small sample size, but we identified
differences in metabolic pathways related to fat digestion and absorption, carbohydrate
digestion, and type II diabetes mellitus signaling. We showed using clustering analysis that
the expression of many genes in adipose tissue was influenced by either fetal growth or
post-weaning growth or both.

Two of the differentially expressed genes identified using the more stringent t-test
were particularly interesting. Fnip1, down-regulated in IUGR-R adipose tissue compared
to IUGR-L tissue, codes for a protein that interacts with folliculin, which in turn interacts
with the AMPK and mTOR signaling pathways [32,33]. The known involvement of AMPK
and mTOR signaling in cellular energy and nutrient sensing [34] may be relevant here
although our results did not point specifically toward alterations to either pathway.

The reduced expression of Agtr2 in IUGR-R animals relative to macrosomic animals
is also interesting since it is thought that an overactive renin-angiotensin system (RAS) is
involved in metabolic syndrome [35]. Increased angiotensinogen (AGT) production by
white adipose tissue has been related to both obesity and hypertension, and loss of Agtr2
expression is sufficient to rescue obesity induced by adipose tissue AGT overexpression [36].
We found additional effects on the RAS pathway by manual searching rather than through
selection by the software, and these results generally distinguished between heavier (at
week 12) and lighter animals. Although the overall direction of the impact on this pathway
is not clear, the multiple hits do suggest a possible association between our fetal/postnatal
growth paradigm and altered signaling within the renin-angiotensin system.

Recent work in cardiomyocytes has shown cross-talk between mTOR and RAS signal-
ing, acting in part through changes to Pik3 expression [37,38]. It is possible that our results
reflect this: although the link to the mTOR pathway is only by association with the effects
of Fnip1, we did see up-regulation of Pik3 in IUGR-R compared to IUGR-L and a general
indication of effects on the RAS pathway in Clusters C and D (heavier vs. lighter animals).
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Although these are very different cell types, these findings may provide some mechanistic
information.

The Klf family of genes are widely involved in diverse biological processes that include
adipogenesis and adipocyte differentiation, many of which interact with Cebpa or Cebpb
and/or Pparg [39–41]. Of the five members of this family identified in our dataset, Klf4,
Klf6 and Klf9 promote adipogenesis, Klf2 suppresses adipogenesis, and Klf9 and Klf13
are pro-adipogenic transcription factors [40,42]. The general trend in our data was for the
expression of these genes to be higher in the heavier (IUGR-R and macrosomic) animals.
Klf6 promotes adipocyte differentiation via suppression of the pre-adipocyte differentiation
factor Dlk1 [43], and since our data show reduced expression of Dlk1 in IUGR-R compared
to IUGR-L, this is generally consistent and point to a role of this gene family in the observed
growth effects.

Alterations to adipocyte morphology can be directly related to alterations in adipocyte
function as well as to insulin resistance [44,45]. Repin1 expression is reported to be increased
during adipogenesis and reduced expression is associated with reduced adipocyte size as
well as altered glucose uptake in 3T3 cells [46]. The observed down-regulation of Repin1
in macrosomic animals compared to IUGR-L may be consistent with the reduced number
of smaller and mid-size adipocytes that we observed in macrosomic animals. However,
Repin1 expression was also down-regulated in IUGR-R animals, which had a very similar
adipocyte size distribution to that of IUGR-L animals, so it is not clear if whether Repin1
expression directly relates to adipocyte size in these animals or whether another factor
modulates the effect in IUGR-R animals.

The phenomenon of “centile crossing” is well documented for IUGR babies that
experience a rapid increase in body weight and fat in early childhood (here, IUGR-R males),
while other IUGR babies (here, IUGR-L males) do not show this (Figure 11). There are
significant adverse consequences that occur as a result of rapid weight gain in childhood
that creates an obese phenotype [6], referred to as a “thrifty phenotype”, and leads to
the spectrum of metabolic diseases related to obesity, including glucose intolerance, that
are extremely difficult to reverse [1,15,47]. As a result of a dramatic increase in body
weight immediately after weaning, IUGR-R males exhibit postweaning growth rate centile
crossing, and thus the prenatal and postnatal nutrient mismatch that is theorized in the
thrifty phenotype hypothesis. This could occur even if a child is subsequently provided with
a nutritionally balanced diet, although the impact on obesity would be greatly exacerbated
with a highly processed, high-calorie meal typical of the standard Western diet [48].

Figure 11. Centile crossing by IUGR-R male mice. IUGR-R mice show 120% increase in body weight
during the first week (week 3–4) after weaning that by week four results in IUGR-R males having a
body weight similar to that of males that were macrosomic at birth (see Figure 3).

Other developmental studies of IUGR have focused on exposures to environmental
stressors, such as metabolic disrupting chemicals, physiological/psychological stress, and the
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consequences of consumption of processed foods instead of the nutrient (breast milk) that
infants evolved to consume for far longer than is common in developed countries [1,49,50].
Not surprising is that our preliminary findings of different outcomes in males and females are,
in fact, a common outcome [51].

While our prior findings suggest that the IUGR male mice were first malnourished
due to decreased transplacental nutrient availability in utero, they were also possibly
malnourished prior to weaning, potentially due to competition for resources against larger
siblings (there were ~2 more pups per litter than nipples), although this remains to be
investigated. It is also necessary to examine the neural control systems that regulate food
hunger and satiety in IUGR-L and IUGR-R as well as macrosomic males to determine how
they differ from median body weight at birth males. It was only in the period immediately
after weaning when the IUGR mice had the ability to feed freely that differences between
IUGR-L and IUGR-R males became apparent. It is during this brief post-weaning period
that should be the focus of future studies, even though we were still able to identify
differences in GTT and gene activity in the adipose tissue when the mice were examined
much later in adulthood.

4. Materials and Methods
4.1. Animal Husbandry

CD-1 mice (Mus domesticus) were purchased from Charles River Breeding Laboratories
(Wilmington, MA, USA) and maintained as an outbred colony with periodic replacement.
The mice used in this study were housed in 18 × 29 × 13 cm polypropylene cages on
corncob bedding. Pregnant and lactating mice were fed Purina mouse breeder chow 5008
(soy-based, Purina-Mills, St. Louis, MO, USA). After weaning, offspring were fed Purina
standard laboratory chow 5001 (soy-based). Water was provided ad libitum in glass bottles
and was purified by ion exchange followed by a series of carbon filters. Rooms were
maintained at 25 ± 2 ◦C under a 12-h light:dark cycle, with the lights on at 1030 h. All
animal procedures were approved by the University of Missouri Animal Care and Use
Committee and conformed to the Guide for the Care and Use of Laboratory Animals of
the National Institutes of Health. The animal facility is accredited by the Association for
Assessment and Accreditation of Laboratory Animal Care, International (AAA-LAC).

4.2. Hemi-Ovariectomy Procedure

To examine the consequences of developing in a crowded uterine horn, offspring from
two blocks of hemi-ovariectomized pregnant female CD-1 mice were examined. In Block 1,
52 postpartum dams were hemi-ovariectomized under ketamine-based anesthesia. In Block
2 an additional 21 postpartum dams were hemi-ovariectomized. We used postpartum
dams so that we could examine offspring from the second litter, which has more pups
than the first litter [23]; our objective was to increase the crowding of fetuses within one
uterine horn. The left ovary was removed with a small incision, and the ovarian artery was
cauterized. The left ovary was removed rather than the right ovary because of differences
in the anatomy of the blood vessels associated with the left and right uterine horns.

Figure 1A depicts the normal female mouse reproductive tract with a duplex uterus.
We have reported that the cranial end of the right utero-ovarian artery consistently inserts
into the descending aorta, whereas the left utero-ovarian artery has a variable insertion
into the descending aorta or the renal artery, including in some cases immediately adjacent
to the left kidney. The variability in the left uterine horn vasculature at the cranial end
of the uterus impacts placental blood flow at the cranial end of the uterine horn in both
mice and rats [20,21]. Since placental blood flow impacts fetal growth [19,22], we chose to
only examine offspring that developed in the right uterine horn to avoid variability due to
the vascular anatomy of the left uterine horn. A schematic of the crowded uterine horn is
shown in Figure 1B. This model has been shown to lead to differences in placental blood
flow between fetuses located in the middle vs. the cranial or caudal ends of the uterus [22].
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4.3. Mating of Females and Determination of Offspring Body Weights

Beginning five days after surgery, the hemi-ovariectomized female mice were singly
housed with a stud male for up to 14 days. The day of natural birth was designated
as postnatal day (PND) 1. At approximately 1400 h on the day of birth (PND 1), all
pups were weighed and toe-clipped for identification, so that each individual could be
categorized by birth weight percentile and then followed for the postnatal rate of growth
and other outcomes. Toe-clipping was performed on the back paws of the animal using
a set numbering system. Mouse pups were then not handled again between the day of
birth and weaning at week 3 (postnatal day 21), since handling multiple times prior to
weaning reduces pre-pubertal growth rate (unpublished observation). After the pups were
weaned, the dams were euthanized with CO2 and then necropsied to confirm the location of
implantation sites as well as the vascular anatomy of the right uterine horn. After weaning
at week 3, all male and female offspring from all of the birth weight percentile groups were
housed 3–4 siblings of the same sex per cage and were weighed once per week until they
were 12 weeks old. Experimental animals were generated from two separate breedings,
referred to below as Block 1 (52 litters) and Block 2 (21 litters). As stated in the Introduction,
we defined animals below the bottom 5th percentile for birth weights as IUGR and animals
above the 95th percentile as macrosomic. We defined animals in the median range of birth
weights as median-at-birth.

4.4. Experimental Animals

Summarized information of the experimental animals, group designations and experi-
ments are in Table S1 for reference.

4.4.1. Block 1 Animals

All 605 animals (308 males and 297 females at birth) from 52 litters were used for the
analysis of body weight between birth and postnatal week 12. After week 12, only males in
the IUGR, median and macrosomic ranges were retained for further study.

The group of male mice selected from Block 1 for further study consisted of groups of
IUGR, macrosomic and median-at-birth animals that were selected, respectively, from the
bottom 9.9%, above the 93rd%, and close to the median (47.4–51.2%) of all birth weights
(n = 29, 21 and 16, respectively). Based on the percent increase in body weight between
postnatal week 3–4, we divided the IUGR males into low (IUGR-L, up to 65% weight
gain) and rapid (IUGR-R, over 65% weight gain) subgroups, since there is evidence that
IUGR interacts with the rate of postnatal growth in terms of risk for developing metabolic
diseases [15]. Some of these male mice (IUGR-L n = 6, IUGR-R n = 10, median n = 16, and
macrosomic n = 16) were used for glucose tolerance tests (GTT), fat pad (gonadal, renal and
inguinal) and organ (liver, kidney, heart, spleen, testes, epididymides) collections, as well as
analysis of gonadal adipocyte number and size; other males (IUGR-L n = 5, IUGR-R n = 5,
and macrosomic n = 5) were used for further fat pad collections and adipocyte analysis,
and also for analysis of gene expression by qPCR and microarray. While we followed the
body weights of female siblings through postnatal week 12, due to an absence of body
weight differences by week 12 in females (Figure S1), we focused here on males.

4.4.2. Block 2 Animals

A second block of 21 hemi-ovariectomized pregnant females produced pups solely
for a follow-up GTT test. These IUGR-L (n = 7), IUGR-R (n = 19), median (n = 24) and
macrosomic (n = 25) males were selected using the above criteria (IUGR < 10th percentile
of birth weight, and macrosomic > 93rd percentile for birth weight). The body weights
of these animals were recorded to establish the post-weaning weight gain and again at
24 weeks old.
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4.5. Glucose Tolerance Test (GTT)

For the first glucose tolerance test (GTT), we examined Block 1 IUGR-L, IUGR-R,
median and macrosomic males (n = 5, 9, 16 and 16, respectively). The GTT was conducted
prior to sacrifice when animals were approximately 6 months old. Animals were fasted
for 14 h prior to the test, but water was available ad libitum. Following the fast, animals
were weighed and injected i.p. with a single bolus of glucose at a dose of 2 g glucose per kg
body weight in an average volume of 176 µL of saline. Serum glucose measurements were
taken by tail nick just prior to glucose administration and again at 30, 60 and 120 min after
glucose administration. Gonadal, renal and inguinal fat pads were collected and weighed
from these males at sacrifice. The area under the concentration-time curve (AUC) for the
0–120 min prior to and after dosing was calculated using the linear trapezoidal rule.

We conducted a second GTT test on Block 2 males, using the same methods as de-
scribed for the first GTT, except that in this study the animals only experienced a 4-h fast
prior to the GTT. The 4 h commenced at the start of the light phase; mice do not eat much
food during the early light phase of the light:dark cycle [52] and this was thus a minimal
fasting period. Bodyweights were recorded prior to the GTT, and gonadal fat-pad weights
were recorded at sacrifice. Animals were sacrificed at least 7 days after the GTT rather than
immediately afterwards as for Block 1.

4.6. Collection of Gonadal Fat

Gonadal fat was collected from all 14-h fasted and non-fasted Block 1 males, for
analysis of adipocyte number and size distribution and gene expression analysis. For all
animals, the weight of both gonadal fat pads was recorded. A 50–60 mg portion of the fat
was placed in 5.2 mL of 2.9% OsO4 in 0.05 M acidic collidine and retained for cell counting,
and the remainder of the fat was snap-frozen in liquid nitrogen for later analysis of gene
expression by qPCR and microarray analysis.

4.7. Analysis of Fat Cell Number and Volume

Fat from all Block 1 males was used in this study. The reserved 50–60 mg portion
of the fat pad (above) was prepared for cell counting using a modification of the method
of Hirsch and Gallian [53] as described by Kump and Booth [54], and cell number and
size distribution were measured by the Coulter method [55]. Briefly, the fat was fixed and
adipocytes were separated from other tissue in the OsO4-collidine solution for 3–4 weeks;
this procedure results in free cells. The cells were washed with isotonic saline solution and
left in saline for 24 h, and then washed with 8 M urea in saline and left in that solution
for 3–4 days. The cells were finally rinsed with 0.1% Triton X-100 and filtered through a
250 µm filter onto a 10 µm filter. The collected cells were suspended in Isoton II (Beckman-
Coulter, Fullerton, CA, USA) containing 10% glycerol. Cells were counted and cell size
was determined on a Coulter Multi-Sizer II, with the particle counting window set to
8.03–271.1 µm. Cells were counted in three 15-s bursts, and the three counts were summed
to give a single measure per 45 s period. Cell counts reported here are the total number of
cells contained in the combined fat pads.

4.8. Analysis of Gonadal Fat Gene Expression

We used both qPCR and microarray analysis to examine gene expression in gonadal
fat. For qPCR we used samples from both the 14-h fasted and non-fasted males; we selected
4–5 animals per IUGR and macrosomic group, but because of the low numbers we did
not stratify the IUGR animals further into L and R categories. For microarray analysis we
used samples from selected non-fasted animals only, using 4 of the five macrosomic males,
3 IUGR-L males, and 3 IUGR-R males.

RNA was prepared from 50–80 mg of gonadal fat pad samples. Fat was homogenized
in TRI Reagent (Sigma, St. Louis, MO, USA), and RNA was isolated according to the
manufacturer’s protocol, with a final precipitation using lithium chloride. The integrity of
the RNA samples was verified by electrophoresis in 0.75% agarose gel. The RNA concen-
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trations were measured spectrophotometrically. For microarray analysis, the samples went
through a further cleanup on Qiagen RNeasy kit.

4.8.1. qPCR Assay

Expression of specific mRNAs was measured by one-step qPCR as described by
Bustin [56] with the TaqMan EZ RT-PCR kit (Applied Biosystems, Foster City, CA, USA) on
the ABI PRISM 7700 Sequence Detection System (Applied Biosystems, Waltham, MA, USA).
The concentrations of Mn2+, probe, and primers were optimized for each primer/probe
set. Six target genes were selected based on their known roles in adipose tissue. Of these
6 genes, Pparg2 is a well-known master regulator of adipogenesis [57] that is also important
for the regulation of glucose and lipid homeostasis and insulin sensitivity [58]. Cebpa
interacts with Pparg2 to promote adipocyte differentiation as well as the transcription of
glucose transporters, such as Glut4 (Slc2a4) [59]. These three genes are thus early-stage
adipogenic genes [60]. Lpl is a central enzyme of lipoprotein metabolism that is important
to the development of obesity, metabolizing lipoproteins and triglyceride particles, and
producing fatty acids that are taken up by the adipocyte [61]. Hsd11b1 and Cyp19 are both
candidate obesity genes [62].

Primer/probe sets for Hsd11b1 (11ß-hydroxysteroid dehydrogenase; GenBank acces-
sion no. NM-001044751.1) and Cyp19 (aromatase; GenBank accession no. NM-007810.3)
were designed using Primer Express software (Applied Biosystems) and are shown in
Table 2. Primers were designed to span exon boundaries in order to prevent the amplifica-
tion of genomic DNA. Primers were synthesized by Invitrogen (Carlsbad, CA, USA), and
probes were synthesized by Applied Biosystems. Other primer/probe sets, for Pparg2 (per-
oxisome proliferator receptor gamma 2), Ceba (CCAAT enhancer-binding protein α), Lpl
(lipoprotein lipase) and Glut4 (glucose transporter type 4), were TaqMan Gene Expression
Assays (pre-optimized and validated) obtained from Applied Biosystems; details are given
in Table 3. The relative concentrations of specific mRNAs in each sample were normalized
to total RNA per sample, as previously described [56,63,64].

Table 2. Sequences of primers and probes synthesized for real-time qPCR assays.

Gene Name Sequence (5′–3′)

Hsd11b1 Forward GCAGCATTGCCGTCATCTC
Reverse GAACCCATCCAGAGCAAACTTG
Probe TGGCTGGGAAAATGACCCAGCCTATG

Cyp19 Forward CCGAGCCTTTGGAGAACAATT
Reverse TCCACACAAACTTCCACCATTC
Probe TTTCTTTATGAAAGCTCTGACGGGCCCT

Table 3. Primer/probe gene expression assays purchased for real time qPCR from Applied Biosystems.

Gene Name Assay ID Context Sequence

Pparg Mm00440945_m1 TCAGTGGAGACCGCCCAGGCTTGCT
Cebpa Mm00514283_s1 ACCAGCCACCGCCGCCACCGCCACC
Lpl Mm00434764_m1 ATGGATGGACGGTAACGGGAATGTA
Glut4 (Slc2a4) Mm00436615_m1 CTGCTGCTGCTGGAACGGGTTCCAG

4.8.2. Microarray Analysis

Total RNA was isolated from gonadal fat as described above and purified with the
RNeasy Mini kit (Qiagen, Valencia, CA, USA) according to the manufacturers’ instruc-
tions, and RNA quality was determined on an Agilent Bioanalyzer (Agilent, Palo Alto,
CA, USA). The transcriptomal profiles were determined using Affymetrix mouse 430
2.0 microarrays, which assess over 39,000 gene transcripts. Scanned image data were
converted into numerical tables using Affymetrix GeneChip Operating Software and Gene
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Expression Console. Data analysis and mining, including gene ontology enrichment
analysis, were performed using GeneSifter (Giospiza Inc., Seattle, WA, USA) and Partek
Genomics Suite (Partek Inc., St. Louis, MO, USA) Further functional characterization
was performed using DAVID (The Database for Annotation, Visualization and Integrated
Discovery; http://david.abcc.ncifcrf.gov (accessed on 12 January 2020) [65,66]. Microarray
data were deposited in NCBI Gene Expression Omnibus (accession number GSE33761).

4.9. Statistics

Data (other than microarray data, described above) were analyzed by analysis of
variance or analysis of covariance (organ weights with body weight as the covariate) using
SAS (v9.2, SAS Institute, Cary, NC, USA). In a few cases, data were log-transformed.
Comparisons of overall statistically significant findings were made using Fisher’s LSD with
Bonferroni correction for multiple comparisons. qPCR data were compared using t-tests.
Statistical significance was set at p < 0.05).

5. Conclusions

We identified here the effects of both prenatal and postweaning growth on factors
related to adult metabolic disease. While the effects of pre- and post-natal growth are
complex, we have clearly identified two groups in this study that have characteristics of
metabolic syndrome in adulthood: the first being the result of overgrowth during fetal
life (macrosomic males), and the second resulting from an interaction of prenatal growth
restriction followed by a very rapid rate of postnatal growth over a short period of time after
weaning, which occurred in IUGR-R males. We describe an interesting set of similarities
between macrosomic and IUGR-R males, which experienced very different pathways to
elevated weight by the end of the first week of free-feeding after weaning, but also outcomes
that revealed similarities between IUGR-L and IUGR-R males in comparison to macrosomic
males. Our studies here provide an initial profile of these three groups of males, but future
research will be required to move beyond these preliminary findings.

In summary, with the increasing incidence of obesity and its related co-morbidities
throughout the developed world, further research is needed on any promising method to
identify those at risk for obesity and to develop customized, realistic therapies for those
individuals. Our crowded uterus model presents a novel method to study the progression
of three different phenotypes, IUGR with rapid postweaning growth, IUGR without rapid
postweaning growth and macrosomic animals. The objective of future experiments would
be to better understand the different characteristics of these three groups (in comparison
to median bodyweight at birth animals). A long-term objective would be the potential to
develop focused treatments to not only mitigate the abnormal metabolic consequences for
these different sub-groups, but to intervene in the processes that lead to abnormal adult
phenotypes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12020102/s1. Figure S1: Birth weight and growth of
female mice from Block 1, Figure S2: Glucose tolerance test in 4-h fasted females, Figure S3: qPCR
quantification of gene expression in gonadal fat in 14-h fasted IUGR and macrosomic male mice,
Figure S4: Expression of selected genes of interest from the microarray data set, Table S1: Outline of
Block 1 and Block 2 experiments conducted on male offspring. Table S2: Organ weights of 14-h fasted
Block 1, Set 1 males. Table S3: Body weights and fat pad weights in 14-h fasted and non-fasted males,
Table S4: Growth and fat weights of the sub-group of 14-h fasted males and of non-fasted males
used in qPCR analyses, Table S5: Growth and fat weights of animals used in Microarray analyses,
Table S6: Gene pathways manually identified as being potentially impacted by either prenatal or
postweaning development, Table S7A, Microarray data: T-test results, Table S7B, Microarray Data:
Genes identified by clustering analysis.
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