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Óscar G. Hernández, Vicente Morell, José L. Ramon and Carlos A. Jara
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Preface to ”Robotic Platforms for Assistance to People

with Disabilities”

People with congenital and/or acquired disabilities form a significant number of dependents

in the current society. These patients lack enough autonomy to live an independent life. Robotic

platforms to help people with disabilities are being developed with the aim of providing both

rehabilitation treatment and assistance to improve their quality of life and are mainly applied to

people who have mobility problems or some type of functional disability. The impact and capacity

of assistance of collaborative robotics in this area has continuously improved the healthcare world in

terms of chronic disease prevention, saving time for professionals, and lower public health spending.

In this sense, something that is important to emphasize in these robotic assistance environments is

human–robot interaction. This topic demands sensitive and intelligent robotics platforms that are

equipped with complex sensory systems, high handling functionalities, safe control strategies, and

intelligent computer vision algorithms.

This Special Issue of Applied Sciences, “Robotic Platforms for Assistance to People with

Disabilities”, aims to cover recent advances in the field of robotic platforms to assist disabled people in

daily or clinical environments. Papers address innovative solutions in this field, including affordable

assistive robotics devices, new techniques in the control/computer vision for intelligent and safe

human–robot interaction, exoskeletons or exosuits to assist people with mobility problems, and

advances in mobile manipulators for assistive tasks.

Carlos A. Jara, Juan A. Corrales

Editors
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1. Introduction

People with congenital and/or acquired disabilities constitute a great number of
dependents in today’s society. These patients lack enough autonomy to live an independent
life. Robotic platforms for helping people with disabilities are being developed with the
aim of providing both rehabilitation treatment and assistance in improving their quality of
life, mainly for those who have mobility problems or some type of functional disability.

A high demand for services of assisted and rehabilitation robotic platforms is expected
as a result of the health status of the world due to the COVID-19 pandemic. Currently,
according to the WHO (World Health Organization), existing rehabilitation services have
been disrupted in 60–70% of countries due to this pandemic, because of the need to avoid
human contact. Therefore, countries must face major challenges to ensure the health
and autonomy of their disabled population. Robotic platforms are necessary to ensure
assistance and rehabilitation for disabled people in the current global situation.

The capacity of robotic platforms in this area must be continuously improved in order
to benefit the healthcare sector in aspects such as chronic disease prevention, assistance, and
autonomy. For this reason, research about human–robot interaction in these robotic assistance
environments must grow and advance because this topic demands sensitive and intelligent
robotic platforms, equipped with complex sensory systems, high handling functionalities,
safe control strategies, and intelligent computer vision algorithms. All these technological and
scientific developments in different aspects of human–robot interaction can also be extended
to other application areas (industry, agriculture, education, etc.) where the assistance of
robots is crucial due to physically and/or psychologically demanding tasks.

This Special Issue of Applied Sciences called “Robotic Platforms for Assistance to
People with Disabilities” has published seven papers which cover recent advances in the
field of robotic platforms to assist disabled people in daily or clinical environments. The
papers address innovative solutions in this field, including affordable assistive robotics
devices, new techniques in control/computer vision for intelligent and safe human–robot
interaction, and advances in mobile manipulators for assistive tasks. These papers represent
significant contributions to the research field, which will be summarized in the next section.

2. Contributions

Mobile robotic platforms are usually employed to support elderly people in living
independently and to assist disabled people in carrying out the activities of daily living
independently. In [1], Catalan et al. present a modular mobile robotic platform to assist
impaired people based on an upper-limb robotic exoskeleton mounted on a robotized
wheelchair. This approach, in comparison with the existing robot assistants, can highlight
its modularity and capability to help disabled people with many components: voice-control
system, eye-tracking glasses, RGB-D cameras, robotic arm and hand exoskeletons, and a
BNCI (brain/neural–computer interaction) system.

In most cases, disabled people must be guided through indoor/outdoor places to their
destination, avoiding any obstacles. Specifically, visually impaired people must overcome

Appl. Sci. 2022, 12, 2235. https://doi.org/10.3390/app12042235 https://www.mdpi.com/journal/applsci
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many difficulties to walk safely to their destination. For that reason, robotic platforms
for visually impaired people must integrate a suitable communication method to assist
them. In these cases, dialogue in natural language is the most important communication
method to guide them. In [2], a dialogue system for human–robot communication is
proposed based on the knowledge graph in order to provide an accurate destination for
the navigation system.

Human pose estimation is a current topic of research, especially for the safety of
human–robot collaboration and the evaluation of human biomarkers. In this field, eval-
uation of low-cost markerless human pose estimators has received much attention for
their diversity of applications, especially in rehabilitation robotic environments. In [3],
Hernández et al. present an evaluation of the angles in the elbow and shoulder joints,
estimated by OpenPose and Detectron 2, during four typical upper-limb rehabilitation
exercises: elbow side flexion, elbow flexion, shoulder extension, and shoulder abduction. A
low-cost setup of two Kinect 2 RGB-D cameras was used to obtain the ground truth of the
joint and skeleton estimations during the different exercises.

Direct physical assistance from robotic systems can be useful for the rehabilitation
of damaged limbs in accidents, or for the prevention of musculoskeletal problems and
fatigue in repetitive tasks. Two main approaches have been developed in the literature:
exoskeletons that are tightened to the user’s body in order to move their limbs directly, and
collaborative robots that handle the tools that have to be used by the user in physically
demanding tasks. Two main techniques are used for controlling these systems: by interpret-
ing brain signals so that the user’s intentions are estimated, or by including force/torque
feedback so that the force applied by the user in a tool is processed and amplified. In [4],
Ferrero et al. use an EEG (electroencephalogram) cap for controlling a lower-limb exoskele-
ton based on two phases (training and tests) applied in walking and standing conditions.
In [5], Maithani et al. use an impedance control strategy that calculates the force applied
by a user in a tool (e.g., a knife), attached to a collaborative robotic arm for meat-cutting
applications. They include an intent prediction module in order to reduce the forces applied
by the user by 20%, regarding classical force amplification strategies.

In addition to the previous direct physical assistance solutions, rehabilitation appli-
cations can also benefit from sensor-based monitoring systems that have lower costs and
thus can be used widely, not only in hospitals but also at home. Gomez-Donoso et al.
in [6] propose a new software platform that is able to analyze data coming from a low-cost
hand-tracking device and a low-cost surface electromyography (sEMG) sensor, in order
to verify that a set of rehabilitation exercises is carried out competently. This software is
implemented in a social robot in order to improve the engagement of the patients and to
improve feedback about the therapy.

The use of monitoring devices can also be applied to neurological disorders in order
to improve the living conditions of people suffering from them. In [7], Vicente-Samper
et al. propose mixing data from a personal device (that measures motor activity with an
inertial sensor, heart rate, and body temperature) with that from an environmental device
(based on a camera for tracking people around the user in order to detect social interactions)
into a standard database where machine learning algorithms can extract user models (i.e.,
concentration level—distracted vs. focused—of the user while performing a task, such as
reading a book).

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Robotics to support elderly people in living independently and to assist disabled people in
carrying out the activities of daily living independently have demonstrated good results. Basically,
there are two approaches: one of them is based on mobile robot assistants, such as Care-O-bot,
PR2, and Tiago, among others; the other one is the use of an external robotic arm or a robotic
exoskeleton fixed or mounted on a wheelchair. In this paper, a modular mobile robotic platform
to assist moderately and severely impaired people based on an upper limb robotic exoskeleton
mounted on a robotized wheel chair is presented. This mobile robotic platform can be customized
for each user’s needs by exploiting its modularity. Finally, experimental results in a simulated home
environment with a living room and a kitchen area, in order to simulate the interaction of the user
with different elements of a home, are presented. In this experiment, a subject suffering from multiple
sclerosis performed different activities of daily living (ADLs) using the platform in front of a group
of clinicians composed of nurses, doctors, and occupational therapists. After that, the subject and the
clinicians replied to a usability questionnaire. The results were quite good, but two key factors arose
that need to be improved: the complexity and the cumbersome aspect of the platform.

Keywords: assistive robotics; multimodal interfaces; robotic exoskeleton

1. Introduction

There is evidence that early and intensive rehabilitation therapies are associated with
better functional gains in patients with acquired brain damage [1]. Rehabilitation robots
have shown good results in delivering high-intensity therapies and to maximize patients’
recovery [2–4]. However, there are some motor functions that cannot be recovered. In
this case, assistive robotics have shown good results in assisting patients with acquired
brain damage in performing activities of daily living and/or in supporting elderly people
in staying active, socially connected, and living independently. Principally, there are two
kinds of assistive robotic devices: one of them is based on mobile robot assistants, such as
Care-O-bot, PR2, and Tiago, among others; the other one is based on the use of an external
robotic arm or a robotic exoskeleton fixed or mounted on a wheelchair.

On the other hand, there is another approach based on the use of: (i) an external robotic
arm fixed or mounted on a wheelchair; or (ii) an exoskeleton robotic device. JACO and
iARM are two of the most popular external robotic arms fixed or mounted on wheelchairs.
Both robotic arms were designed to be mounted on a user’s motorized wheelchair; they
have six degrees of freedom and can reach objects at a distance of 90 cm [5]. A study
on the practical demands of the potential users of external robotic arms and upper limb
exoskeletons for assistance with ADLs can be found in [6]. The study concluded that eating
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and hairdressing, as well as cleaning, handling food, dressing, and moving nearby items
were the ADLs that have received relatively high scores regarding the necessity of external
robotic arms. The FRIEND robotic platform is an example of a well-known external robotic
arm that assists disabled people in performing ADLs. The FRIEND platform, which be-
longs to the group of intelligent wheelchair-mounted manipulators, is intended to support
disabled people with impairments of the upper limbs in ADLs [7]. On the other hand, dress-
ing, toilet use, transfer, wheelchair control, moving nearby items, and handling food have
shown high demand for the necessity of upper limb exoskeletons. Kigachi et al. presented a
mechanism and control method of a mobile exoskeleton robot for three-degree-of-freedom
upper-limb motion assistance (shoulder vertical and horizontal flexion/extension and
elbow flexion/extension motion assistance) [8]. In addition, Meng et al. presented a mobile
robotic exoskeleton with six degrees of freedom (DOFs) based on a wheelchair [9].

In this paper, a mobile robotic platform for assisting moderately and severely im-
paired people in performing daily activities and fully participating in society is presented.
The mobile robotic platform was based on an upper limb robotic exoskeleton mounted
on a robotized wheel chair. The platform is modular and composed of different hard-
ware components: an unobtrusive and wireless hybrid brain/neural–computer interaction
(BNCI) system (electroencephalography (EEG) and electrooculography (EOG)) [10], a phys-
iological signal monitoring system, an electromyography (EMG) system, a rugged, small
form-factor, and high-performance computer, a robotized wheelchair, RGB-D cameras,
a voice control system, eye-tracking glasses, a small monitor, a robotic arm exoskeleton
attached to the wheelchair, and a robotic hand exoskeleton including a mechatronic device
to control the pronation/supination of the arm. Moreover, the robotic exoskeleton can be
replaced with an external robotic device if needed. The platform has open-source software
components as well, such as algorithms to estimate the user’s intention based on the hybrid
BNCI system, to process the user’s physiological reactions, to estimate the indoor location
and to navigate, to estimate gaze and to recognize objects, to compute 3D objects and
mouth pose, to recognize user activity, and a high-level controller to control the robotic
exoskeleton or external robotic device and to control the environment and wheelchair
control system. The modularity of the presented mobile robotic platform can be exploited
by adapting the multimodal interface to the residual capabilities of the disabled person. In
particular, the platform can be mainly adapted to three groups of end users with different
residual capabilities:

• Group 1: users with residual motor capabilities to control the arm and/or hand, but
who need assistance to carry out activities of daily living in an efficient way. In this
group of users, residual EMG signals could be used to control a wearable robot to
assist in performing ADLs. In addition, the multimodal interface could be composed
of a voice semantic recognition system (for users with non-speech disorders) or a
wearable EOG system (for users with speech disorders) to tune some parameters of
the high-level controller of the wearable robot and to interact with the user control
software, a commercial wearable device for physiological signal monitoring, and RGB
depth cameras to sense and understand the environment and context to automatically
recognize the abilities necessary for different ADLs;

• Group 2: users without functional control of the arm and/or hand and who are unable
to speak (due to a speech disorder or aphasia). In this group, the multimodal interface
could be composed of a hybrid BMI system to send commands to the high-level
control of the wearable robot, a wearable EOG system to interact with the user control
software, a commercial wearable device for physiological signal monitoring, and RGB
depth cameras to sense and understand the environment and context to automatically
recognize the abilities necessary for different ADLs;

• Group 3: users without functional motor control of the arm and/or hand, with speech
disorders, and with limited ability to control the movement of their eyes. In this case,
the multimodal interface could be composed of a BMI system to send commands
to the high-level control of the wearable robot and to interact with the user control

6
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software, a commercial wearable device for physiological signal monitoring, and RGB
depth cameras to sense and understand the environment and context to automatically
recognize the abilities necessary for different ADLs.

For users belonging to Groups 1 and 2, a set of application scenarios was identified
as possible targets for the AIDE system: drinking tasks, eating tasks, pressing a sensitive
dual switch, performing personal hygiene, touching another person, and so on. For users,
belonging to Group 3, the identified scenarios were related to communication, the control
of home devices, and entertainment.

2. Modular Assistive Robotic Platform

The system is a fully autonomous prototype consisting mainly of a robotized wheelchair
with autonomous navigation capabilities, a multimodal interface, and a novel arm exoskele-
ton attached to the wheelchair (Figure 1).

Figure 1. The parts of the platform are shown. The computer, battery, connections with the other components, and the
safety relay are located on the back side of the prototype protected by a carbon fiber cover. Safety is a key issue in wearable
robotics, so there are three emergency stop switches: (1) on the left side of the robotized wheelchair; (2) on the back side of
the robotized wheelchair; and (3) connected through a wire to the left side of the wheelchair.

2.1. Biosignal Acquisition System

The proposed platform is capable of measuring and storing data from several physio-
logical signals. Some of these signals are used for decision making when controlling the
system, such as the EOG or EEG, but others are only used to measure the condition of
the patient (respiratory rate, galvanic skin response, heart rate, etc.). The system allows
adapting the use of the physiological signals based on the patient’s need. In addition,
new biosignals and processing techniques can be integrated. The performance, signal
processing, and adaptation of the different physiological signals of the system have been
tested in several studies [11–15].

7
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2.1.1. ExG Cap

An ExG cap, developed by Brain Vision , can be used to perform three different
biosignal measurements: (1) EEG acquisition, through eight electrodes, to perform BNCI
tasks and allow the user to control the assistive robotic device and interact with the control
interface; (2) EOG acquisition, using two electrodes placed on the outer canthus of the eyes,
to detect left and right eye movements, to provide the user the opportunity to navigate
through the menus of the control interface; (3) EKG acquisition to be combined with the
respiration and galvanic skin response (GSR) data in order to estimate the affective state of
the user [16].

2.1.2. Electrocardiogram and Respiration Sensor

The system incorporates the Zephyr BioHarnessTM (Medtronic Zephyr, Boulder, CO,
USA) physiological monitoring telemetry device to measure the electrocardiogram (ECG)
and the respiration rate. This device has a built-in signal-processing unit. Therefore, we
only applied a 0.004 Hz high-pass filter to remove the DC component of the signals. The
HR was extracted from the ECG signal, but the time domain indices of the heart rate
variability (HRV) were also extracted. In particular, the SDANN was used as a feature of
the HRV, which is defined as the standard deviation of the average instantaneous heart
rate intervals (NN) calculated over short periods. In this case, the SDANN was computed
over a moving window of 300 s.

2.1.3. Galvanic Skin Response

A GSR sensor, developed by Shimmer, measures the skin conductivity between two
reusable electrodes mounted to two fingers of one hand. These data are used, together with
the EKG and the respiratory rate, to estimate the affective state of the user [12]. GSR is a
common measure in psychophysiological paradigms and therefore often used in affective
state detection. The GSR signal was processed using a band-pass filter of 0.05–1.5 Hz (the
frequency range of the skin conductance response (SCR)) in order to remove the artifacts.

2.2. Environment Perception and Control System

The system integrates a computer vision system to recognize the environment with
which the system will interact [17]. In addition, it has a user interface so that the user can
interact with the environment.

2.2.1. Computer Vision System

The activities of daily living (ADLs) require the capability to perform reaching tasks
within a complex and unstructured environment. This problem should be solved in real
time to be able to deal with the possible disturbances that the element may suffer during
the interaction. Moreover, the objects are commonly textureless.

Currently, several methods have been proposed. However, despite the great advances
in the field (especially using deep learning techniques), it has not been solved effectively
yet, especially with nontextured objects. Some authors have used commercial tracking
systems such as Optitrack or ART Track [18–20]. The main limitation of these devices is
the necessity to modify the objects to track through the inclusion of optical markers, to
reconstruct their position and orientation. The main lines of investigation in the field of 3D
textureless object pose estimation are methods based on geometric 3D descriptors, template
matching, deep learning techniques, and random forests.

8



Appl. Sci. 2021, 11, 7130

Our system incorporates a computer vision system based on the use of three devices
(Figure 1). The first one is Tobii Pro Glasses 2. This eye-tracking system allows the user to
select the desired object. The second one is the Orbbec Astra S RGB-D camera used for the
3D pose estimation of textureless objects with which the system can interact. This camera
is attached directly to the back of the wheelchair by means of a structure that places it on
top of the user’s head, focusing on the scene. Finally, a full HD 1080p camera able to work
at 30 fps is placed in front of the user, under the screen. This camera is used to estimate the
3D pose of the mouth of the user. This information helps the system know which position
the exoskeleton must be in for tasks such as eating or drinking.

This computer vision system was tested in real conditions with patients and was also
thoroughly evaluated both qualitatively and quantitatively. The results and a more detailed
explanation of the algorithms developed can be seen in [17].

2.2.2. User Interface

The system also has a screen attached to the wheelchair and located in front of the
user (Figure 1). On this screen, the interface menus are displayed. It brings many different
options to the user (e.g., go to another room, drink, grab an object, entertainment, etc.) and
gives some information about the selected task and the exoskeleton status.

2.3. Mobile Platform

The mobile platform was based on Summit XL Steel, from Robotnik. It has omnidi-
rectional wheels that allow the movement of the user in the room. Furthermore, it has
its own computer that executes a navigation system, which makes it possible to move
between different rooms. Laser-based simultaneous localization and mapping (SLAM)
is used to perform the mapping of each room, and the navigation and localization along
the different rooms is performed using the adaptive Monte Carlo localization (AMCL)
probabilistic localization system, as can be observed in Figure 2). In addition, this plat-
form is equipped with two laser sensors used to provide the wheelchair with an obstacle
avoidance algorithm, increasing the safety during navigation.

Figure 2. Pictures of the monitoring of the navigation algorithm with obstacle avoidance in a real test.
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2.4. Electric Power System

The system has three batteries to power the whole system. First, the mobile platform
incorporates a 15/30Ah@48V LiFePO4 battery, which gives an autonomy of up to 10 h. On
the other hand, the main computer of the system also has its own 91 kWh battery. The third
and the last battery of the system are dedicated to supply the arm and hand exoskeleton.
This battery was built with Panasonic 18650b cells and has a capacity of 1.18 kWh, which
gives an autonomy of up to 3 h in continuous operation.

2.5. Safety Buttons

Safety is a key issue in wearable robotics, so there are three emergency stop switches
(Figure 3): (1) on the left side of the robotized wheelchair; (2) on the back side of the
robotized wheelchair; and (3) connected through a wire to the left side of the wheelchair.

By default, there is only one emergency button that kills the exoskeleton power supply
from the battery, located on a panel on the wheelchair. However, there is a second plug
that offers the possibility of wiring a second button, which allows halting the device from
a distance.

To restart the exoskeleton operation after a safety stop, the emergency button must be
released and the lit green button of the left panel must be pressed.

The mobile robotic platform has its own emergency button located on the back side of
the robotized wheelchair.

To restart the movement of the robotized wheelchair after a safety stop, the platform
must be restarted by following the following steps: (1) pressing the green CPU button
for 2 s; (2) when the green LED of the CPU button is off, putting the ON-OFF switch in
the OFF position; (3) putting the ON-OFF switch in the ON position; this will turn on the
platform electronics again; (4) pressing the green CPU button for 2 s; and (5) releasing the
safety button.

Figure 3. Safety buttons: (left) two safety buttons on the left side of the robotized wheelchair for the main CPU; (right) one
safety button on the back of the wheelchair for the mobile platform.

2.6. Assistive Robotic Devices

The system is able to integrate two different types of robotic devices to assist people
with disabilities: (i) an external robotic arm; or (ii) a robotic exoskeleton. Both of them
mounted are on the robotized wheelchair.
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The control architecture of the robot is independent of the type of robot used as an
assistive device. This architecture was implemented in a low layer and a high layer. The
low layer implements the low-level control of the robotic device. It implements a joint
trajectory controller, which executes the trajectories received by the high-level controller.
The other layer corresponds to the high-level controller, which is responsible for managing
the communication of the robot with the system, but it also implements a motion planning
system. This motion planning system resorts to the learning by demonstration (LbD)
method based on the dynamic movement primitives (DMPs) proposed and evaluated
in [21].

2.6.1. Exoskeleton Robotic Device

An upper limb exoskeleton was designed with five active degrees of freedom cor-
responding to the following arm movements: shoulder abduction/adduction, shoulder
flexion/extension, shoulder internal/external rotation, elbow flexion/extension, and wrist
pronation/supination [11,12,21,22]. This device allows the user’s right arm to be moved to
reach objects, thus facilitating the performance of ADLs (Figure 1).

In addition to the arm exoskeleton, an active hand exoskeleton was designed to assist
the opening and closing of the right/left hand [23,24]. It consists of four independent
modules anchored to a hand orthosis that actuate the movements of the thumb, index
finger, and middle finger, and jointly move the ring and little finger. The configuration of
the hand can be adapted according to the size of the hand.

2.6.2. Robotic Manipulator

The system can also integrate an external robotic manipulator. Experimental tests of
the complete system were carried out with JACO robot produced by Kinova (Boisbriand,
Canada) [25]. This robotic manipulator is a very light manipulator (4.4 kg for the arm and
727 g for the hand), which can be installed on a motorized wheelchair (right or left) to help
people with upper extremity mobility limitations. It has seven degrees of freedom, with
a two- or three-finger gripper with a maximum opening of 17.5 cm. The JACO robot is
capable of loading objects from 3.5 kg to 4.4 kg, being able to reach objects within a radius
of 75 cm.

2.7. Processing and Control System

The system has two computers, the main computer of the system and the computer
integrated within the mobile robotic platform (Figures 1 and 4).

The computer of the mobile robotic platform executes the navigation algorithms of
the mobile platform using all the information from the sensors. It communicates with the
main computer to execute the actions received from the system, as well as to inform the
system about the current state during the navigation.

The main computer performs the communication between all the components of the
system, processes all the information gathered from the sensors and cameras, and controls
the arm and hand exoskeletons. This computer has its own 91 kWh battery.

Both computers communicate through a WiFi router. In this way, we can monitor the
operation of the entire system by connecting an external computer to the router.
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Figure 4. Diagram with the connections between all the components of the platform.

2.8. Finite State Machine

The integration of environmental data acquired by 3D sensors and user intentions has
been evaluated in several studies [11–15]. The AIDE system also incorporates an activity
recognition algorithm to improve the performance of the control interfaces. This algorithm
has been evaluated with patients [16]. The experience gained in these studies resulted in
two different state machines (Figures 5 and 6). Both finite state machines (FSMs) describe
the general operation of the system, so they have to be adapted according to the user’s
residual capabilities, in other words depending on the control user interfaces employed.
The system can be controlled by means of EEG, EMG, EoG, gaze, voice commands, etc.,
and/or a combination of these. In this way, the system is adapted to the user’s needs or
preferences. These FSMs were evaluated in the different studies cited. In addition, in these
studies, the different functions of the finite state machines were explained.

2.8.1. Hygiene Task

Due to the complexity of this type of task, the hygiene task is primarily intended to
allow the user to be able to clean his/her face or brush his/her teeth. Figure 5 shows the
state machine developed to carry out this type of task.

12
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Figure 5. Finite state machine (FSM) for the eating, drinking, and hygiene tasks. They are are sequential implemented
allowing the user to continue or abort the task in anytime. Black arrows refer to automatic processes. Green arrow refer to
an action confirmed by the user, and the red arrows refer to the decision to abort the current activity by the user.
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2.8.2. Preparing and Eating a Meal

In this scenario, the complex task of preparing and eating a meal is broken up into
two subtasks. First, the user has to prepare a meal (Figure 6). In this FSM, the user takes
the food from the fridge and heats it in the microwave. To do this, the use moves the
wheelchair, opens/closes the fridge, opens/closes the microwave, and moves the robotic
arm and hand exoskeleton to grasp and release the food tray. In order to perform this,
several elements of the AIDE system are involved such us environmental control to move
the wheelchair, the robotic arm, and the hand exoskeleton, the object detection and 3D pose
estimation, etc.

After this, the system will continue to the eating and drinking task. In this task, the
wheelchair is always in the same position in such a way that the user has only to interact
with the exoskeleton to manipulate the glass and the cutlery.

3. Experimental Session

The study presented in this paper aimed to determine the degree of usability of
the complete system in its main application environment, assistance in activities of daily
living. In other experiments carried out throughout the project [11,12,16,17,21], the different
elements that compose the robotic system described here were validated, as well as the
different user interfaces used (EEG, EOG, EMG) [13–15].

This experiment was performed in a home environment developed for this purpose.
It consisted of a room divided into two areas, one that simulated the living room and the
other the kitchen. These two areas were used by a user in order to simulate the interaction
with different elements of a home.

For this purpose, we enlisted the collaboration of a subject suffering from multiple
sclerosis. In addition, a group of clinicians composed of nurses, doctors, and occupational
therapists provided us an objective view of the system in its main field of application after
the observation of this experiment (see Figure 7).

Figure 7. Pictures of the experimental session in the simulated home environment with the subject and the group of clinicians.
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The results of this study were obtained by performing the System Usability Scale
(SUS), which determines the degree of system usability as perceived by the user and
the clinicians.

3.1. Interface

The control of all the system proposed for this experiment was performed through
an environmental control interface (ECI). This interface was developed under the AIDE
project. It consists of three different abstraction levels where the user has to navigate in
order to perform a specific activity (Figure 8). The first level shows the available rooms of
the proposed scenario; the second level has a grid with all the possible activities the user
can perform; and the last level is related to the action the user can achieve regarding the
activity. The control of this interface was performed with a hybrid EEG/EOG system [26].
In addition, the control of the ECI was provided with an intelligent system, proposed
in [16], in order to help the navigation through the interface and streamline the completion
of the desired task.

Figure 8. Images of the experimental session where the user navigates through the menus of the control interface to perform
the different tasks of the protocol.

3.2. Navigation

In this experiment, two different rooms were mapped, the kitchen and the living room,
as can be seen in Figure 9. After a previous mapping of the different rooms, the user could
freely navigate through the them using the proposed interface. The navigation to each
room was performed in two steps using the interface. First, three different location points
were established to perform a direct displacement to them. Then, a fine approach could be
performed by small displacements to reach the place where the task had to be executed.

Figure 9. Simulated home scenario.
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3.3. Activities of Daily Living

Throughout the experiment, the user interacted with several elements of the home
through the use of the environmental control interface (Figure 9). These elements were
located in two different rooms, the kitchen and the living room. The user navigated through
the environmental control menu using the EOG and EEG interfaces described above.

Environmental control allowed the user to choose the destination he wanted to reach
(kitchen or living room), and the mobile platform would take him there automatically.
First, as shown in Figure 10, he moved to the kitchen area and adjusted the height of the
worktop. Next, he moved to the living room, where he lit a lamp and then turned on the
television. The times indicated are those that the user took to complete the activity, from
the time he initiated the order to select the task to be performed until the activity was
completely finished.

ACTIVITY 1

Naviga on to 
the kitchen

(Step 1)

Worktop 
adjustment

(Step 2)

2 minutes

Naviga on to the 
living room

(Step 3)

Turn on TV
(Step 5)

Light lamp
(Step 4)

ACTIVITY 2

1.5 minutes

Ea ng Task
(Step 6)

ACTIVITY 3

1.5 minutes

Figure 10. Study protocol.

Once the user had interacted with the different elements of the room, he was ready
to perform the eating task. As previously, the user selected the object, in this case the
spoon, using the eye-tracking system, and he confirmed the selected object using an EOG
command. Therefore, the exoskeleton started to move. When the robot reached the object,
the user had to think “close” in order to close the hand (EEG command). When the robot
reached his mouth, the user used EOG commands to indicate that he wanted to finish the
task or wanted to continue eating. To leave the spoon, the user had to think “open” in
order to open the hand (EEG command). At that point, the exoskeleton returned to the idle
position, and the finite state machine was left waiting for a new command.

The user was able to complete all the tasks in reasonably short times, since the longest
activities were navigation to the kitchen (1 min and 15 s) and the eating task (depending on
the repetitions the user wanted to perform). In addition, the user had the ability to abort
the activity carried out at any time if he deemed it necessary, providing greater security to
the system.

3.4. Subjective Assessment of Usability

The System Usability Scale (SUS) provides a quick tool for measuring the usability
aspects of technology. The SUS consists of 10 questions with five response options from
strongly agree to strongly disagree. The questions are the following:

Q1 I think that I would like to use this system frequently.
Q2 I found the system unnecessarily complex.
Q3 I thought the system was easy to use.
Q4 I think that I would need the support of a technical person to be able to use this system.
Q5 I found the various functions in this system were well integrated.
Q6 I thought there was too much inconsistency in this system.
Q7 I would imagine that most people would learn to use this system very quickly.
Q8 I found the system very cumbersome to use.
Q9 I felt very confident using the system.
Q10 I needed to learn a lot of things before I could get going with this system.
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3.5. Results

As mentioned above, the system developed was validated in different experiments
that allowed improving not only the robotic device, but also the control and the different
user interfaces. In the study presented in this paper, the main objective was to know the
vision of the user himself and the opinion of a group of experts in relation to the usability
of the final system in the assistance with ADLs.

To answer the questionnaire, factors such as the time taken by the user to carry out
the activity with the robotic system must be taken into account (it cannot be too high), as
well as assessing whether the user has completed each of the tasks without problems. To
this end, the experts were present as members of the public throughout the experiment, in
order to be able to evaluate the aforementioned issues first hand.

All the clinicians filled in the SUS questionnaire, and the results are shown in Figure 11.
The median of all the questions was equal to or above 2.5. However, the two questions with
the lowest median value were related to the complexity and the cumbersome aspect of the
system. This may be due to the fact that this system is a prototype that is still at an early
development stage, and it is also a fact that, for the first time of use, it takes a relatively
long time to calibrate the control interfaces to the user. We are working on improving the
future prototypes of the system by taking into account these aspects.

Figure 11. System Usability Scale (SUS) results.

4. Conclusions

In this paper, a modular robotic platform to provide assistance to moderately and
severely impaired people in performing daily activities and participating in society was
presented. The main innovation of our robotic platform was its modularity, which allows
customizing the platform (hardware and software components) for the needs of each
potential user. We presented the results of an experiment with a subject suffering from
multiple sclerosis. In the experiment, the subject had to carry out different tasks in a
simulated scenario while being observed by a a group of clinicians composed of nurses,
doctors, and occupational therapists. After that, the subject and the clinicians replied to
a usability questionnaire. These results showed a high degree of usability of the system,
although there were also several areas for improvement. These aspects were taken into
account to improve the new version of the device, thus trying to reduce the users’ perception
of the complexity of the system.
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EOG Electrooculography
FSM Finite state machine
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LbD Learning by demonstration
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Featured Application: Natural language dialogue macro-navigation for the visually impaired.

The proposed technology can be applied to other professional fields, such as medical consulta-

tion or legal services.

Abstract: Dialogue in natural language is the most important communication method for the visually
impaired. Therefore, the dialogue system is the main subsystem in the visually impaired navigation
system. The purpose of the dialogue system is to understand the user’s intention, gradually establish
context through multiple conversations, and finally provide an accurate destination for the navigation
system. We use the knowledge graph as the basis of reasoning in the dialogue system, and then
update the knowledge graph so that the system gradually conforms to the user’s background. Based
on the experience of using the knowledge graph in the navigation system of the visually impaired,
we expect that the same framework can be applied to more fields in order to improve the practicality
of natural language dialogue in human–computer interaction.

Keywords: visually impaired assistance; navigation system; knowledge graph; dialogue system;
NLP; reasoning

1. Introduction

When visually impaired people want to walk safely to their destination, they always
have to overcome many difficulties on the street. Nowadays, the common walking aids
are still guide dogs and a long cane [1]. Additionally, based on advancements in AI
technology, smaller embedded sensors enable wearable devices to effectively detect more
road conditions in the surrounding environment [2]. However, in addition to detecting
the surrounding environment while walking, visually impaired people also need a macro-
navigation that can handle a wide range of information to help plan their travel, such as
ticket booking or path planning [3]. Due to the development of Global Positioning Systems
(GPS) and Geographic Information Systems (GIS), these technologies are of great help to
the development of Electronic Travel Assistance systems (ETA) such as the MOBIC Travel
Aid [4], Arkenstone system [5], and Personal Guidance System [6]. However, the use of
human–computer interaction to accurately understand the requirements of the user is still
in need of substantial improvement [7].

For the visually impaired, the voice is the best way to communicate with a system [8],
that is, through Voice User Interfaces (VUI). The latest research on VUI is the Conversational
User Interface or Dialogue System, which distinguishes it from other VUI by simulating
natural language dialogue instead of command interaction or response interaction [9,10].
Dialogue systems have become the main way of interacting with virtual personal assis-
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tants, smart devices, wearable devices, or social robots [11]. Additionally, deep learning
technology has also made great contributions to dialogue systems.

Dialogue systems are usually divided into two types, task-oriented and non-task-
oriented systems [12]. What we are concerned about here is a task-oriented and multi-turn
dialogue system which is suitable for road navigation. Using multi-turn dialogue to
understand meaning is the main challenge in this kind of dialogue system. This work
focuses on conversation as a means to model context [13] and fully understand the user’s
intentions.

Understanding the background and making the right response is the main goal of
the dialogue system. After parsing the input sentence [14], we recommend using the
knowledge graph (KG) as the knowledge base for reasoning dialogue. KG is a way of
organizing knowledge. In addition to storing information, it can use deductive methods or
inductive methods for reasoning [15,16]. The reasoning process is the way the dialogue
system understands the context, and the result of such reasoning becomes the system’s
response. After each conversation, the system is constantly updated to learn more about
the user and provide more accurate results for future applications.

Finally, based on the learnable knowledge graph in the multi-turn dialogue system,
and the integration of the widely used GPS and GIS [17], we developed macroscopic
walking navigation that can be used by the visually impaired. It can be integrated with
micro-navigation to help the visually impaired arrive at targeted goals safely.

2. Methods

Our task-oriented dialogue system is built with a modular architecture. Each module
is responsible for a specific task and passes the results to the next module. The modules are
Automatic Speech Recognition (ASR), Natural Language Understanding (NLU), Dialogue
State Tracking (DST), Dialogue Policy Learning (DPL), Natural Language Generation
(NLG), and Text to Speech (TTS). DST and DPL are also called dialogue management. The
modular architecture is shown in Figure 1.

Figure 1. Modular architecture of task-oriented dialogue system.

For ASR and TTS, we use the services provided by the Google Cloud Platform [18].
The functions of the other four main modules are briefly described as follows:

(1) NLU: Maps natural language sentences input by users into machine-readable struc-
tured semantic representations.

(2) DST: Tracks users’ needs and determines the current conversation status. It integrates
the user’s current input and all previous conversations in order to understand the
meaning by reasoning with context. For dialogue systems, this module is the most
significant.

(3) DPL: Determines the action of the system based on the current dialogue state. Also
known as Strategy Optimization. The action of the system must conform to the user’s
intention.

(4) NLG: It transforms the decision of DLP into a natural language to respond to the user,
and the voice is sent out by the TTS.
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2.1. Knowledge Graph Integration

We propose to use knowledge memory, concept conversion, and logical reasoning of
the knowledge graph to do the inference work for DST, and to send the reasoning results
to DPL. Our KG uses the RDF triple maps to store information. The triple map is the
subject–predicate–object ternary structure [19] and is currently the most mainstream way
of storing knowledge graphs. In the understanding of NLU semantics, X-Bar Theory’s
syntactic analysis theory [20] is used, and the analysis results are converted into triple
maps, which are used as the input of the knowledge graph. Figure 2 shows the architecture
of the dialogue system after integrating the knowledge graph.

Figure 2. Dialogue system module architecture integrating knowledge graph.

The implementation process of the dialogue system which integrates the knowledge
graph is shown in Figure 3. When the user speaks their requirements, the voice is recog-
nized as text through ASR and then passed to the sentence parser of NLU. The sentence
parser uses an X-Bar based parsing tool to convert sentences into RDF triple maps, which
is the acceptable format for our knowledge graph. RDF triples will be checked for confir-
mation semantics before being sent to DST for reasoning. If it is a confirmation semantics
and the response is affirmative, it means that the user accepts the previous suggestion and
agrees to go to the location. Otherwise, the suggestion is canceled. Some details may be
ignored (e.g., if no last suggestion was found).

 

Figure 3. Implementation flowchart of dialogue system integrating knowledge graph.

Unconfirmed semantic triples will enter the knowledge graph of DST for reasoning.
The result of the reasoning will take the intention of expression and then decide whether
this intention can confirm a specific type of places such as a restaurant or a station. If so,
DPL will confirm with the user: “Do you want to go to the restaurant?”. Otherwise, DPL
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asks the user how to deal with the intention. For example, when the user says that he is
going to have dinner, but dinner is not a type of place, therefore the system will ask the
user whether they want to go to a restaurant for dinner.

2.2. Syntax Analysis

We use the Analyzing Syntax of Google Cloud Natural Language API (Google, Moun-
tain View, CA, USA) [21] to analyze the syntax, and convert them into RDF triples maps
after obtaining dependency trees based on the X-Bar Theory.

Figure 4 illustrates how to transform dependency trees into RDF triples maps. Taking
“I want to go to Zhishan MRT station” as an example, we will take the last X-Bars in this
phrase, which is (go to) and (Zhishan MRT station), used as the predicate and object,
respectively. The “I” is as the subject to create a (Person, Traffic, Zhishan MRT station)
triplet, and then this triplet will be passed into the knowledge graph for further reasoning
processes.

 

Figure 4. Dependency trees to RDF triple maps.

The process of transforming dependency trees into RDF triple maps includes more
details. For example, to adapt to the knowledge graph, the subject “I” will be transformed
into the upper abstract subject “Person”; the verb “go to” is also transformed to synonymous
predicate “Traffic”; and, because the navigation system tends to locate a specific location,
but the recipient Zhishan MRT station cannot find lower-level objects in the knowledge
graph, it will be directly delivered to DPL to search for it. This concept of conversion via
knowledge graph is shown in Figure 5.

Figure 5. Concept conversion via knowledge graph.

2.3. Reasoning with Knowledge Graph

The reasoning of the knowledge graph mainly revolves around the reasoning of
the relationship. Based on the facts or relationships in the graph, it infers unknown
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facts or relationships [22], and generally pays attention to checking the three aspects of
the entity, the relationship, and the structure of the graph. Knowledge graph reasoning
techniques are mainly divided into two categories, those based on the deduction (such as
description logic [23], Datalog, production rules, etc.) and those based on induction (such
as path reasoning [24], representation learning [25], rule learning [26] and reinforcement
learning [27], etc.).

This article uses induction-based path reasoning, mainly through the analysis and
extraction of existing information in the knowledge graph, since most of the information in
the graph represents a certain relationship between two entities. After syntactic analysis,
the user’s speech is also converted into triples as input so that the two can use triple maps
as a communication interface.

We use the PRA (Path Ranking Algorithm) to find the most suitable destination for
the user [28], learn the relationship characteristics of the knowledge graph through random
walks, quantitatively calculate whether there is a relationship between two nodes, and
determine the probability of the relation. The following examples illustrate the application
of the PRA algorithm in macro-navigation.

In this case, a visually impaired person wants to go to a restaurant for dinner, but he
doesn’t know which one to go to, so he says to the navigator, “I want to have dinner.” The
content of dinner in the knowledge graph is shown in Figure 6.

Figure 6. The part of knowledge graph in the case.

Step 1: Eq = {Restaurant, Supermarket, Online Service}, R1 = locate, for any e ∈ Eq/R1,
assuming the scoring function h = 1/3, then the following path is shown in Figure 7.

Figure 7. The part of knowledge graph in step 1.
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Step 2: Eq = {Restaurant, Fast food}, R2 = locate, calculate h(Restaurant, locate, Fast
food) and h(Restaurant, hold, Performance), obviously h(Restaurant, hold, Performance) =
0. For P1: Dinner-Restaurant-Fast food, P2: Dinner-Restaurant-Performance, h(P1) > h(P2).

Step 3: And so on, the result is shown in Figure 8.

Figure 8. The part of knowledge graph in step 2 and step 3.

Suppose there is a path P: Dinner-Restaurant-Fast food- . . . -Burger King A1 Store,
the path length is n, the hi between two nodes is calculated, and then all h is added to get
the entire path P. The score value is h(P).

But it should be noted that the weight of each path is not necessarily the same. For
example, the user may prefer to eat McDonald instead of Burger King, so the final score
h(P) is given the weight parameter θ, which is also a learnable parameter.

Step 4: Calculate weighted summation.

Score(Dinner- . . . - Burger King A1 Store) = θ1P(1) + θ2P(2) + . . . + θnP(n) (1)

More generally, given a set of paths P1, P2, . . . , Pn, one could treat these paths as
features for a linear model and rank answers e to the query Eq by

θ1 hEq, P1 (e) + θ2 hEq, P2 (e) + . . . θn hEq, Pn (e) (2)

The final scoring function:

s(e; θ) = ∑
P∈P(q,l)

hEq ,P(e)θP (3)

We can construct the training set with the set of relation R and the starting point s
and ending point t, and obtain the weight parameter θ through logistic regression. After
each conversation, according to the user’s decision, the weight parameter will be updated,
making the knowledge graph more and more suitable for the user’s habits.

3. Results

The main contribution of this paper is to introduce the knowledge graph to the
navigation dialogue system and apply the PRA path search algorithm to find the best
method for use. We also propose a practical macro-navigation architecture, as shown in
Figure 9. The architecture clearly defines the interdependence of the main modules in the
dialogue system. In addition to the use of Google Cloud Platform for ASR and TTS, as
described above, syntactic analysis is also integrated Google Cloud Natural Language API,
and DPL uses Google Maps API to complete the function of geographic path search [29].
In the implementation of the knowledge graph, we use the Apache Jena triplet database
(Apache Software Foundation, Forest Hill, MD, USA) [30].
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Figure 9. Macro-navigation system architecture based on knowledge graph.

After the user’s voice is converted into text by ASR, it is given to Phrase Parser for
syntactic analysis. In the process, the support of the knowledge graph will be used to
convert phrases into triples in order to provide subsequent path reasoning. Decisions
obtained by DST using the results of PRA path reasoning will be executed by DPL, such as
using Google Maps API to search for real locations or notify micro-navigation to initiate
navigation. The response message processed by DPL will be converted into an appropriate
sentence according to the user’s language and, finally, sent to TTS to utter a voice to
complete a round of dialogue processing.

3.1. Dialogue Experiment

Our experiment is mainly to verify whether the system can discuss an appropriate des-
tination with the user. We designed three scenarios from simple to complex as experimental
methods. We use manual methods to create data for the knowledge graph.

The first scenario is that the user directly speaks to a specific destination. The example
here is the Seven-Eleven Convenience Store, Xue Cheng branch. This scenario will confirm
that the system has the basic ability to command dialogue. The dialogue process is shown
in Table 1. Because of the leaf node of the location relationship in the knowledge map of
the Seven-Eleven convenience store, Xue Cheng branch, we can see that the system will
directly lead the user there.

The system needs a hotword: “Hi, partner.” to start the dialogue, which makes the
dialogue system not too sensitive.

Table 1. Display of the dialogue process of the navigation system in the first scenario.

Speaker Words Action

User Hi, partner. System activated
Navigator Hi, is there anything I can help?
User I would like to go to Seven-Eleven Xue Cheng Store. Reasoning
Navigator Let’s go now. Start micro-navigation

The second scenario is that the user speaks out an indirect destination so that the
system can get to the real destination by reasoning. The example here is that the user says
that he wants to go to work, and the system deduces that the place where he usually goes
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to work is his company’s location. This scenario will show the ability for simple reasoning,
and the dialogue process is shown in Table 2. Since Eq = {Office, Engineering Building 5},
R1 = locate which has the highest score, the system will advise the user to go to Engineering
Building 5.

Table 2. Display of the dialogue process of the navigation system in the second scenario.

Speaker Words Action

User Hi, partner. System activated
Navigator Hi, is there anything I can help?
User I am going to work.

Navigator Your most frequent working place is Engineering Building 5.
Are you going there? Reasoning

User Okay, please take me there.
Navigator Let’s go now. Start micro-navigation

The third scenario is to verify more remote reasoning so that the system can start from
a vaguer intention, and obtain the most suitable destination through multiple rounds of
dialogue. The scenario here is the same as the description in the previous section. The
dialogue process is shown in Table 3.

Table 3. Display of the dialogue process of the navigation system in the third scenario.

Speaker Words Action

User Hi, partner. System activated
Navigator Hi, is there anything I can help?
User I’m hungry, can you take me to dinner?
Navigator Would you like to find a restaurant for dinner? Reasoning
User Yes.
Navigator Okay, I will look for nearby restaurants for you now. Search maps

Navigator There is a Burger King A1 store nearby that you visited last
week. Do you want to go? Found target

User No, can I go to a Chinese restaurant?
Navigator Okay, I will look for a nearby Chinese restaurant for you now. Search maps

Navigator There is a 4-star Manfulou restaurant nearby. Are you going
to go? Found target

User Okay, please take me there.
Navigator Let’s go now. Start micro-navigation

3.2. Outdoor Test

We chose a starting point about 300 m away from the Taoyuan A17 MRT station and
asked an average blindfolded person and a visually impaired person to conduct the test.
The tester walked with the navigation device, communicated with the device, and followed
the instructions moving forward. The travel route and dialogue content of the entire use
process are shown in Table 4.

First, the tester stated he wanted to take a trip, and after communicating with the
navigation system, he decided to go to A17 MRT. Still, shortly after departure, the tester
said he wanted to go to the store to buy a drink. Thus, the navigation system took him to
the nearest convenience store. Soon, the tester would have liked to leave the convenience
store and go to the MRT again. He informed the navigator to take out the previous location
and take him there.
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Table 4. The walking route and conversation of the entire navigation.

Speaker Words Location

User Hi, partner.
Navigator Is there anything I can help?
User Please take me to the MRT station.
Navigator Okay, let me check, please wait.

Navigator There is Dayuan Pilot Station 200 m nearby.
May I take you there?

User Yes, that’s right.

Navigator (DPL drives the micro-navigation)
Please walk straight along the sidewalk.  

User Hi, partner.
Navigator Hello, how can I help you?
User I want to go to the convenience store first.
Navigator Okay, let me check, please wait.

Navigator

There is a FamilyMart convenience store
50 m ahead. You are on your way to the MRT
station. Do you want to go to that
convenience store first?

User Okay, please take me there.  

Navigator
You have arrived at FamilyMart convenience
store, please let me know if you want to
continue to the MRT station.
(Later)

User Hi, partner.
Navigator Hello, how can I help you?
User I am going to the MRT station.

Navigator Okay, now I will continue to take you to
Dayuan Pilot Station.  

The experiences of the two testers are described as follows.
The test of ordinary people with blindfolded eyes is very successful, even if their eyes

are completely covered. Ordinary people do well in communicating with machines and
have full confidence in walking. He can reach his destination with little help. It may be
that they are already familiar with the system using vision.

Visually impaired people will be extra careful when using equipment in walking.
Their step distance will be smaller than that of ordinary people. In conversation with the
machine, they will often encounter situations where they cannot talk. The main reason is
that they cannot understand the speaking of navigation and must do more training to use
the system smoothly. The whole process requires more assistance to reach the destination.

4. Discussion

Our dialogue system can work well in outdoor navigation for visually impaired people.
The knowledge graph provides the main contribution. The required navigation information
can be correctly understood based on the context and assisted in language generation. This
dialogue system provides useful help for visually impaired people walking outdoors.

In the real-world test, we also encountered traditional problems. In a noisy outdoor
environment, ASR is very susceptible to environmental noise and cannot accurately obtain
the speaking content by the tester, resulting in syntax analysis errors. Besides using noise
reduction technology to improve the performance of ASR, we should also enhance the
exceptions handling or develop a text correction system based on the knowledge graph.

Our macro-navigation uses many Google cloud services, including ASR, TTS, NLU,
and DPL (Google Maps API), etc. This causes our system to rely heavily on the internet.
Once the service is suspended or there is no access to the internet, the system will not work.
In the follow-up jobs, we must integrate offline solutions so that the use of navigation can
be freer from environmental constraints.
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The knowledge graph should provide more professional content for navigation ap-
plications including more relationship attributes, such as opening hours, allowable ages,
or occasional restrictions. When the knowledge graph contains more information, the
navigation location suggestions will be more helpful.

5. Conclusions

Understanding the user and responding in accordance with the given context is the
main goal of the dialogue system. We have designed a method for using the knowledge
graph as a knowledge base for reasoning dialogue to obtain the user’s destination. The
same method can be extended to confirm destination changes, indoor navigation, or route
planning. Our system can become a good VUI to communicate with micro-navigation,
wearable devices, or any smart device.

A traditional VUI uses commands to accomplish user’s requirements. It converts
speech into instructions. Users must make all decisions by themselves by speaking. We
hope that the services of the system can be more user-friendly, so that it can guide users to
gradually discover their needs. We believe this approach is closer to human thinking.

We have designed a dialogue system that integrates knowledge graphs and uses
reasoning algorithm to guide users’ destinations. We proposed a concrete and feasible
macro-navigation architecture, and verified it in the real-world. After the experiment, we
learned the importance of handling misunderstandings and the defects of over-reliance
on cloud service. In addition, we also found that by improving the professionalism of the
knowledge graph content, it will be very helpful for reasoning and achieve more accurate
destination.

The main contribution of this paper is the design of a dialogue system architecture
based on the knowledge graph which can complete the function of the dialogue system
in DST. Additionally, another contribution is the use of the PRA algorithm to implement
reasoning for navigation destinations.

Human natural language is widely used and all-encompassing. The general dialogue
system is still difficult to meet the needs of casual chat, but the dialogue in a specific
domain may be better. The semantic scope of the navigation system is very limited and
concentrated, which is very suitable to becoming the best practice for dialogue in a specific
domain.

In the future, we want to use the dialogue system with domain-related knowledge
graphs in other fields such as medicine, law, or insurance. An intelligence dialogue is good
for both the visually impaired people and any ordinary person.
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Abstract: Assistance and rehabilitation robotic platforms must have precise sensory systems for
human–robot interaction. Therefore, human pose estimation is a current topic of research,
especially for the safety of human–robot collaboration and the evaluation of human biomarkers.
Within this field of research, the evaluation of the low-cost marker-less human pose estimators of
OpenPose and Detectron 2 has received much attention for their diversity of applications, such as
surveillance, sports, videogames, and assessment in human motor rehabilitation. This work aimed
to evaluate and compare the angles in the elbow and shoulder joints estimated by OpenPose and
Detectron 2 during four typical upper-limb rehabilitation exercises: elbow side flexion, elbow flex-
ion, shoulder extension, and shoulder abduction. A setup of two Kinect 2 RGBD cameras was
used to obtain the ground truth of the joint and skeleton estimations during the different exercises.
Finally, we provided a numerical comparison (RMSE and MAE) among the angle measurements
obtained with OpenPose, Detectron 2, and the ground truth. The results showed how OpenPose
outperforms Detectron 2 in these types of applications.

Keywords: human–robot interaction; human pose estimation; robotic rehabilitation

1. Introduction

A high demand of services for assisted and rehabilitation environments is expected
from the health status of the world due to the COVID-19 pandemic. Currently, according to
the WHO (World Health Organization), existing rehabilitation services have been dis-
rupted in 60–70% of countries due to this pandemic in order to avoid human contact.
Therefore, countries must face major challenges to ensure the health of their population.
Robotic platforms are a great solution to ensure assistance and rehabilitation for disabled
people using human–robot interaction (HRI) capabilities. HRI is currently a topic of re-
search that contributes by means of several research approaches for the physical and/or
social interaction of humans and robotic systems [1] in order to achieve a goal together.

The number of people with congenital and/or acquired disabilities are quickly in-
creasing, and therefore, there are many dependents who lack the necessary autonomy for
a fully independent life. Among them, stroke is one of the main causes of these acquired
disabilities throughout the world. Acquired brain injury (ABI) is a clinical-functional situa-
tion triggered by an injury of any origin that acutely affects the brain, causing neurological
deterioration, functional loss, and poor quality of life as a result. It can be due to various
causes, with stroke and head trauma the most frequent in our environment. Patients with
ABI suffer cognitive and motor sequelae. In stroke patients, motor sequelae are usually
more severe in the upper limb. In published studies, it has been reported that 30–60%
of hemiplegic patients due to a stroke remain with severely affected upper limbs after
6 months of the event, and only 5–20% manage a complete functional recovery.
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Physical medicine and rehabilitation are the most important treatment methods in ABI
because they help patients reutilize their limbs at maximum capacity. Intensive therapies
and repetitive task-based exercises are very effective treatments for motor skills recov-
ery [2]. One of the most important processes of physical therapy requires manual exercises,
in which the physiotherapist and the patient must have one-to-one interaction. The goal
of the physiotherapist in this process is to help the patients achieve a normal standard
of range of motion in their limbs and to strengthen their muscles. Rehabilitation robotic
platforms pursue the recovery of impaired motor function. The majority of rehabilitation
robotics research to date has focused on passive post-stroke exercises (e.g., [3,4]). The use
of assistive robotics in rehabilitation allows the assistance of the physiotherapist in certain
exercises that require repeated movements with high precision. The robot can fulfil the
requirements of the cyclic movements in rehabilitation. Additionally, robots can success-
fully control the forces applied and can monitor the therapy results objectively by using
their sensors.

Robots intended for upper limb rehabilitation can accomplish active and passive bilateral
and unilateral motor skills training for the wrist, forearm, and shoulder. MIT-Manus is
one of the most well-known upper limb rehabilitation robots [5]. It was developed for
unilateral shoulder or elbow rehabilitation. MIME is another well-known upper limb
rehabilitation robot, developed for elbow rehabilitation using the master–slave concept [6].
The movement of the master side of the robot is reproduced on the slave side. The 2-DOF
robot can perform flexion–extension and pronation–supination movements. The Assistive
Rehabilitation and Measurement (ARM) Guide is a bilateral rehabilitation system for
upper limb rehabilitation using an industrial robot [7]. It assists the patient in following
a trajectory. It also serves as a basis for the evaluation of several key motor impairments,
including abnormal tone, incoordination, and weakness. The GENTLE/s system uses a
haptic interface and virtual reality techniques for rehabilitation. The patients can move their
limbs in a three-dimensional space with the aid of the robot [8]. The authors of [9] presented
a rehabilitation robot with minimum degrees of freedom to train the arm in reaching and
manipulation, called reachMAN2. All these previous robotic devices provide the potential
for patients to carry out more exercise with limited assistance, and dedicated robotic
devices can progressively adapt to the patients’ abilities and quantify the improvement of
the subject.

Robotic platforms for assistance and rehabilitation must have precise sensory systems
for HRI. Therefore, they must recognize human pose or human gestures to improve
the performance and safety of human–robot collaboration in these environments [10,11].
Our study sought to obtain a marker-less good pose estimation using a low-cost RGB
camera for upper limb robotic rehabilitation environments. We set-up a multiple-RGBD-
calibrated-cameras system to measure the goodness of the available methods.

2. Human Pose Detection and Body Feature Extraction: A State of the Art

The human body is a very complex system composed of many limbs and joints, and the
exact detection of the position of the joints in 2D or 3D is a challenging task [12], as it
requires a specific assumption within biomechanics research in robotic rehabilitation envi-
ronments [13]. In addition, HRI environments are complex and nondeterministic, and it
is not easy to ensure the user’s safety during interaction with the robot. Currently, this as-
sumption is a research topic in other areas, such as Industry 4.0 [14,15]. The resolution
of this issue involves constant position tracking, intention estimation, and action predic-
tion of the user. This problem can be faced by a proper sensory system. On the one
hand, some contributions employ inertial measurement units (IMUs) for motion capture,
especially in medical applications and motor rehabilitation analysis [16,17]. However, this type
of sensor requires the correct placement of passive/active markers on the body before each
capture session, and they are insufficient for HRI environments.

On the other hand, this issue can also be faced as a computer vision problem,
basically using two approaches: marker-based and marker-less. Marker-based approaches,
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such as motion capture systems (MoCap), have significant environmental constraints
(markers in the human body) and are relatively complex, expensive, and difficult to main-
tain. Marker-less approaches have fewer environmental constraints, and they can give a
new understanding about human movements [18]. This issue requires the processing of
complex information to develop an algorithm that recognizes human poses or skeletons
from images. Therefore, an easy-to-use marker-less motion capture method is desirable for
these robotic rehabilitation environments. In this paper, we analyzed the performance of
the estimation of shoulder and elbow angles for the development of rehabilitation exercises
using CNN (convolutional neural network)-based human pose estimation methods.

There is extensive research about marker-less approaches for human tracking motion.
In these approaches, depth cameras such as Kinect (RGB-D) provide additional information
about the 3D shape of the scene. Kinect has become an important 3D sensor, and it has
received a lot of attention thanks to its rapid human pose recognition system. Its low-cost,
reliability, and rapid measurement characteristics have made the Kinect the primary 3D
measuring device for indoor robotics, 3D scene reconstruction, and object recognition [19].
Several approaches for real-time human pose recognition have been performed only using
a single sensor [20–22], but it can have substantial errors with partial occlusions.

In recent years, the use of deep learning techniques for 3D human pose estimation has
become a common approach in HRI systems. These computer vision techniques usually
train a neural network from labeled images in order to estimate human pose. As a reference,
some research works obtain the 3D pose estimation using a single-view RGB camera image
or multi-view camera images [23,24]. These accurate methods encounter fewer problems
regarding the cameras’ position and calibration issues in comparison to RGB-D approaches.
However, 3D human pose detection for assisted and rehabilitation robotic environments
needs further improvements to achieve real-time tracking for human motion analysis with
enough accuracy [25].

In our comparison, we decided to use the Kinect v2 sensor, which has a high accuracy in
joint estimation while providing skeletal tracking, as described in [26]. Additionally, some re-
search about this fact has been presented in [27], where the validity of Kinect v2 for clinical
motion was compared with a MoCap system, and the error was reported to be less than
5%. We employed the skeleton obtained by two Kinect sensors as our ground truth to
measure the performance of the estimation of shoulder and elbow angles using two CNN
(convolutional neural network)-based human pose estimation methods in rehabilitation
exercises. The selected CNN-based methods were OpenPose [28] and Detectron2 [29].
OpenPose is a multi-person pose detection system, and it can detect a total of 135 body
points from a digital image [28,30]. OpenPose has been trained to produce three distinct
pose models. They differ from one another in the number of estimated key points: (a)
MPII is the most basic model and can estimate a total of 15 important key points: ankles,
knees, hips, shoulders, elbows, wrists, necks, torsos, and head tops. (b) The COCO model
is a collection of 18 points including some facial key points. (c) BODY pose provides
25 points consisting of COCO + feet keypoints [30,31]. Detectron2 was built by Facebook
AI Research (FAIR) to support the rapid implementation and evaluation of novel computer
vision research. Detectron2 is a ground-up rewrite of the previous Detectron version
and it originates from the Mask R-CNN benchmark. Detectron2 includes high-quality
implementations of state-of-the-art object detection algorithms, including DensePose [29].

3. Materials and Methods

The architecture of the vision system is composed of two RGBD cameras (Microsoft
Kinect Xbox One, also known as Kinect v2, Microsoft, Albuquerque, NM, USA) and a
webcam connected to a computer network. Each Kinect is connected to a client computer,
which estimates the user skeleton joint tracking through the Microsoft Kinect Software De-
velopment Kit (SDK). Microsoft released the Kinect sensor V2 in 2013, which incorporates
a RGB camera with a resolution of 1920 × 1080 pixels and a depth sensor with a resolution
of 512 × 424 pixels and a working range of 5–450 cm, a 70◦ × 60◦ field of view, and a frame
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rate of 15–30 fps. Data from the sensor can be accessed using the Kinect for Windows
SDK 2.0, which allows tracking up to 6 users simultaneously, each with 25 joints. For each
joint, the three-dimensional position is provided, as well as the orientation as quaternions.
The center of the IR camera lens represents the origin of the 3D coordinate system [32,33].

The Microsoft SDK was designed for Windows platforms; therefore, rosserial is used
to communicate between Windows platforms and Linux [34]. Three PCs are used for the
system architecture. One of them works both as a client and server. The detailed hardware
description is shown in Table 1. The RGB webcam is connected to a client PC equipped
with a graphics card (GPU). Both the webcam and GPU are used by the OpenPose and
Detectron2 methods for human pose estimation. The overall system topology is shown in
Figure 1.

Table 1. Hardware setup of our system.

Server-Client Client 2 Client 3

OS Ubuntu 18.04.03 Desktop (64 bit), (Canonical,
London, UK)

Windows 10 Pro (64 bit), (Microsoft,
Albuquerque, NM, USA) Windows 10 Pro (64 bit)

Processor Intel® Core™ i7-9750, (Intel, Santa Clara,
CA, USA) Intel® Core™ i5-8250U Intel® Core™ i7-4700MQ

Memory 16 GB 16 GB 16 GB

GPU NVIDIA GeForce GTX 1650 GDDR5 @4 GB
(128 bits), (NVIDIA, Santa Clara, CA, USA)

Figure 1. An overview of the proposed system.

Cameras Calibration

In order to compare the different pose estimation methods, all 3 cameras need to be
calibrated in a common coordinate system. Calibration of the cameras was performed
using the OpenCV multiple cameras calibration package [35]. A checkerboard pattern
with known dimensions is shown so that at least two cameras can identify it at the same
time. To obtain the ground truth, information of the extrinsic parameters of the cameras
(translation and rotation matrix) is required, then a 3D-to-2D projection must be made in
the image plane to be able to compare with the information provided from OpenPose or
Detectron 2 (see Equations (1) and (2)). The acquisition and processing scheme of the data
is shown in Figure 2. ⎡
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where (XK1, YK1, ZK1) are the coordinates of a 3D point in the coordinate system of the
Kinect 1 (IR camera), (XcK1, YcK1, ZcK1) are the coordinates of a 3D point calculated from
the Kinect 1, T is the transfer vector, R is the rotation matrix, (u, v) are the coordinates of
the projection point in pixels, (cx, cy) is the image center (IR camera), and (fx, fy) are the
focal lengths expressed in pixel units (IR camera).

Figure 2. Data acquisition and processing scheme.

4. Experimental Setup

4.1. Cameras Position

The two Kinect sensors were located orthogonally to each other, as described in Figure 3a.
This distribution allows the elimination of the problem of data loss caused by self-occlusion [36,37].
The distribution of the laboratory hardware setup is shown in Figure 3b. With this configu-
ration, more precise data can be obtained on rehabilitation exercises that focus on the limbs.
Finally, the webcam was located just above the Kinect 2 to reduce the errors in extrinsic
parameters and to obtain a similar view with the Kinect 2.

Figure 3. Our system: (a) Cameras distribution, (b) Working zone.
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4.2. Joint Angle Measurement

The joint angle was measured as the relative angle between the longitudinal axis of
two adjacent segments. These segments were composed of three points in the 2D space: a
starting point, a middle point, and an end point. For the elbow joint angle, the adjacent
segments were the upper arm and the forearm, respectively. Figure 4 shows the elbow
and shoulder joint angles measured in this study. Let u and v be vectors representing two
adjacent segments, where the angle between u and v is equal to:

θ = cos−1
(

u ·v
|u||v|

)
(3)

Figure 4. Rehabilitation exercises: (a) elbow side flexion, (b) elbow flexion, (c) shoulder extension,
and (d) shoulder abduction.

4.3. Rehabilitation Exercises

Four upper limb rehabilitation exercises were proposed: elbow side flexion, elbow flexion,
shoulder extension, and shoulder abduction (Figure 4). During the execution of the exer-
cises, the cameras capture the information of the desired joints of the patient pose, and this
information is used to calculate the angles θ and β obtained by the different systems.

4.4. Ground Truth

The ground truth of the pose estimation was calculated using the skeletons provided
by the two Kinect cameras. As previously mentioned, these cameras were located at
approximately 90◦ from each other to obtain accurate data on rehabilitation exercises that
focus on the upper limb where one camera does not give fully reliable estimations. Figure 5
shows four examples of 3D human pose estimations obtained by the Kinect 2 (blue color),
and the skeleton fusions (red color) during an elbow side flexion exercise. The skeleton
fusion was calculated with a simple average of the Kinect 2 skeleton and the projected
skeleton from the Kinect 1, which was calculated using the information obtained in the
calibration phase and using Equation (3). When performing this projection, a difference is
expected between the coordinates of the Kinect 2 (main camera, front view) and the Kinect
1 (auxiliary camera, side view). This difference is due to the viewing angle of each Kinect
and the volume of the joints of the human.
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Figure 5. 3D skeleton poses obtained by Kinect 2 and skeleton fusion.

Figure 6 shows the X, Y, and Z positions of the left and right wrist of the two Kinects
(Kinect 1 and Kinect 2) during a shoulder extension exercise and the projected points
(Projected 1). As stated before, an error was expected in the calculation of the fused
skeleton, and the results show how even with the fully calibrated system, we obtained
some errors. For the left wrist, we measured MAEs (mean absolute errors) of 7.35, 2.16,
and 3.71 cm for the coordinates X, Y, and Z, respectively. For the right wrist, we measured
MAEs of 7.70, 2.90, and 3.25 cm for the coordinates X, Y, Z, respectively.

Figure 6. X, Y, and Z positions of left and right wrist by Kinect 1, Kinect 2, and projected position.

5. Experiments

The following experiments show the precision of the angles calculated using the
OpenPose and Detectron 2 approaches. Only the necessary angles are shown in each
experiment. The movements of exercises 1 and 2 involved only one angle, while exercises
3 and 4 involved the two aforementioned elbow and shoulder angles. A video of the
experiments is available online [38]. A summary of the results of all experiments is shown
in Section 6 (Results section).

5.1. Exercise 1: Elbow Side Flexion

The first experiment was the elbow side flexion exercise. Figure 7a shows the left
elbow angle calculated with both approaches for all positions in the exercise. The left
elbow angle varied between 50◦ and 180◦ with OpenPose and between 40◦ and 180◦ with
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Detectron 2. For OpenPose, the root-mean-square error (RMSE) was 9.23◦ and the mean
absolute error (MAE) was 7.53◦, while for Detectron 2, the RMSE was 13.64◦ and the MAE
was 9.32◦.

Figure 7. Exercise 1: elbow side flexion angles for two iterations (a); exercise 2: elbow flexion for
three iterations (b).

5.2. Exercise 2: Elbow Flexion

The second experiment was the left elbow flexion exercise where the angle of view of
the main points was not the most favorable. Figure 7b shows the results of the calculation
of angles. The left elbow angle varied between 11 and 180◦ (i.e., straight arm) with
OpenPose and between 30◦ and 180◦ with Detectron 2. For OpenPose, RMSE = 15.84◦ and
MAE = 9.74◦, while for Detectron 2, RMSE = 27.27◦ and MAE = 20.03◦.

5.3. Exercise 3: Shoulder Extension

The third and fourth experiments aimed to measure the precision of both approaches
when performing rehabilitation exercises with both arms in shoulder extension and abduc-
tion. Figure 8 shows the angles for the left and right shoulder in the shoulders’ extension
exercise. The left shoulder angle varied between 5◦ and 91◦ with OpenPose and between
4◦ and 98◦ with Detectron 2. The right shoulder angle varied between 7◦ and 102◦ with
OpenPose and between 3◦ and 95◦ with Detectron 2. For the left shoulder, RMSE = 3.57◦
and MAE = 2.96◦ for OpenPose, while RMSE = 7.99◦ and MAE = 7.15◦ for Detectron 2.
For the right shoulder, RMSE = 8.67◦ and MAE = 8.16◦ for OpenPose, while RMSE = 11.70◦
and MAE = 9.24◦ for Detectron 2.
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Figure 8. Exercise 3: angles of both shoulders in extension rehabilitation exercise for two iterations.

5.4. Exercise 4: Shoulder Abduction

Figure 9 shows the angles for the left shoulder and right shoulder in the shoulders’
abduction exercise. The left shoulder angle varied between 80◦ and 128◦ with OpenPose
and between 79◦ and 127◦ with Detectron 2. The right shoulder angle varied between
85◦ and 132◦ with OpenPose and between 80◦ and 138◦ with Detectron 2. For the left
shoulder angle, RMSE = 4.68◦ and MAE = 4.17◦ for OpenPose, while RMSE = 11.79◦ and
MAE = 7.89◦ for Detectron 2. For the right shoulder angle, RMSE = 4.16◦ and MAE = 3.74◦
for OpenPose, while RMSE = 12.74◦ and MAE = 9.03◦ for Detectron 2.
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Figure 9. Exercise 4: Angles of both shoulders in shoulder abduction rehabilitation exercise for two iterations.

6. Results

Figure 10 shows a comparison of the RMSEs (root-mean-square errors) of OpenPose
and Detectron 2 for each rehabilitation angle calculated in the exercises. OpenPose obtained
a lower RMSE than Detectron 2 did for all four proposed rehabilitation exercises. For the
exercises where the viewing angle of the webcam was not favorable, a large RMSE was
obtained for both approaches. An example of these errors can be seen in the flexion left
elbow exercise, which had RMSEs of 15.84◦ with OpenPose and 27.27◦ with Detectron 2.
The best results were obtained by OpenPose in exercises 3 and 4 where it was easier to
estimate the movement of the arms than to obtain an estimated RMSE below 5◦.

To visualize the error during each exercise step, we calculated the absolute error of
each method. Figure 11 shows the absolute error for each rehabilitation exercise according
to both libraries. We can see again that during the exercise of flexion of the left elbow
(row b), both libraries achieved high absolute errors. The results show how OpenPose had
fewer error peaks, and it seemed more stable for most of the angles checked.
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Figure 10. RMSE of the four rehabilitation exercises compared to ground truth.

Figure 11. Absolute error for the four rehabilitation exercises compared to ground truth: (a) flexion
side left elbow, (b) flexion left elbow, (c) abduction left shoulder, (d) abduction right shoulder,
(e) extension left shoulder, and (f) extension right shoulder.

7. Discussion

In this article, we compared the performance of estimating shoulder and elbow angles
for rehabilitation exercises using CNN-based human pose estimation methods: Open-
Pose and Detectron2. Qualitatively, for the four proposed rehabilitation exercises, better
results were obtained with OpenPose. OpenPose had an average RMSE of 7.9◦ and Detec-
tron2 had an RMSE of 14.18◦. However, for the elbow flexion exercise, which had a worse
angle of view, both methods obtained high errors. According to [39], evaluation therapists
tend to underestimate the range of motion by 9.41◦ on average for any joint movement of
the upper limb. Therefore, with the results obtained in this approach, it can be concluded
that OpenPose is an adequate library for evaluating patient performance in rehabilitation
programs that involve the following exercises: left elbow side flexion, shoulder abduction,
and shoulder extension.

Regarding the response time of the analyzed pose estimators, the performance of these
methods is related directly to the available GPU. In our study, we measured a performance
between 6.7 and 13 FPS with OpenPose and between 1.8 and 3 FPS with Detectron 2.
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The kind of exercises related to upper limb rehabilitation is smooth and relatively slow,
so the performance of OpenPose is high enough to monitor the exercises and provide
useful information for rehabilitation therapy.

The major limitations of the present study were mainly related to the ground truth
used; many approaches use three-dimensional motion analysis devices such as the VICON
motion system or Optotrak. However, the equipment is expensive, and it requires a
conditioned environment and technical skills for attaching sensors. We decided to use
Kinect 2 as our ground truth because of the cost and because this sensor has a high accuracy
in joint estimation while providing skeletal tracking. Another limitation of the study was
that the system was only tested on a single healthy subject who participated in a single
experimental session. A study with a larger group of subjects and different positions
should be examined to compare the quality of the estimate of the human pose by both
methods. In future works, we intend to collect data from more participants and extend this
work to lower-limb movement estimations.
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Abstract: Lower-limb robotic exoskeletons are wearable devices that can be beneficial for people
with lower-extremity motor impairment because they can be valuable in rehabilitation or assistance.
These devices can be controlled mentally by means of brain–machine interfaces (BMI). The aim of
the present study was the design of a BMI based on motor imagery (MI) to control the gait of a
lower-limb exoskeleton. The evaluation is carried out with able-bodied subjects as a preliminary
study since potential users are people with motor limitations. The proposed control works as a
state machine, i.e., the decoding algorithm is different to start (standing still) and to stop (walking).
The BMI combines two different paradigms for reducing the false triggering rate (when the BMI
identifies irrelevant brain tasks as MI), one based on motor imagery and another one based on the
attention to the gait of the user. Research was divided into two parts. First, during the training phase,
results showed an average accuracy of 68.44 ± 8.46% for the MI paradigm and 65.45 ± 5.53% for the
attention paradigm. Then, during the test phase, the exoskeleton was controlled by the BMI and
the average performance was 64.50 ± 10.66%, with very few false positives. Participants completed
various sessions and there was a significant improvement over time. These results indicate that, after
several sessions, the developed system may be employed for controlling a lower-limb exoskeleton,
which could benefit people with motor impairment as an assistance device and/or as a therapeutic
approach with very limited false activations.

Keywords: brain–machine interfaces; EEG; exoskeleton; motor imagery

1. Introduction

Robotic exoskeletons are wearable devices that can enhance physical performance and
provide movement assistance. In the case of lower-limb robotic exoskeletons, they can be
beneficial for people with motor impairment in the lower extremities as they can assist the
gait and facilitate rehabilitation [1]. The combination of lower-limb robotic exoskeletons
with brain–machine interfaces (BMI), which are systems that decode neural activity to
drive output devices, offers a new method to provide motor support. Thus, patients could
walk while being assisted by an exoskeleton that is controlled by their brain activity.

In the literature, there are different BMI control paradigms for lower-limb exoskeletons
based on brain changes. The most common ones are steady-state visually evoked poten-
tials [2], which are based on visual stimuli; motion-related cortical potentials [3–6], which
are produced between 1500 and 500 ms before the execution of the movement, and and
event-related desynchronization/synchronization (ERD/ERS), which is considered to in-
dicate the activation and posterior recovery of the motor cortex during preparation and
completion of a movement [7–9]. BMI based on ERD/ERS are usually employed to detect
motion intention [3,6,10]. Similar ERD/ERS patterns are produced during motor imagery
(MI), which consists of the imagination of a movement [11–13]. When performing MI,
in contrast to external stimuli, brain changes are induced voluntarily and internally by the
subject. BMI based on MI have the objective of identifying different MI tasks or differentiat-

Appl. Sci. 2021, 11, 4106. https://doi.org/10.3390/app11094106 https://www.mdpi.com/journal/applsci

47



Appl. Sci. 2021, 11, 4106

ing between MI and an idle state [5,14–16]. The work of [16] combined MI with eye blinks
as a control criterion.

The main limitation of MI is that patients have to maintain it for long periods in order
to force the external device to perform any action. However, contrary to instantaneous
brain changes, such as MRCP or motion intention, continuous cognitive involvement of a
patient during the assisted motion can induce mechanisms of neuroplasticity. Neuroplas-
ticty is the ability of the brain to reorganize its structure and promote rehabilitation [17].
The performance of maintained brain tasks can be challenging as it requires high focus from
the user during the whole experiment and any external influence could easily disturb it.
Previous studies have tried to evaluate the level of attention of a subject during the control
of the external device [18] and some of them have considered it as a control paradigm for a
lower-limb BMI [15]. BMI systems need a training phase in which the model is calibrated
for each subject and then it is tested with with new data. In [5,14–16], during the training
phase, participants alternated periods of MI with idle state and the output device was only
moving during MI. Nevertheless, since BMI focus on sensorimotor rhythms, it is difficult
to ensure that it is not considering the actual motion instead of motor imagery.

In our previous work [19], we designed a lower-limb MI BMI to control a treadmill
and it was tested with able-bodied subjects. The BMI combined the paradigm of MI with
another one that measured the level of attention that users had during MI tasks. In the
test phase, i.e., when the output device was commanded by the BMI, the treadmill was
only activated when the attention measured was higher than a certain threshold, reducing
the number of false triggers. In order to ensure that motion artifacts did not affect the
BMI classifier model, the training phase consisted of two types of trials: full standing and
full motion trials. The mental tasks to perform were the same for both types, alternating
periods of MI with idle state. Both types of trials allowed the creation of two different
classifier models to be applied depending on the status of the subject: gait and stand.

In this study, the BMI designed in [19] was adapted for the control of the gait of a
lower-limb exoskeleton and it was evaluated with able-bodied subjects. The combination
of this BMI with a lower-limb exoskeleton is a promising and intuitive assistive approach
for people with motor impairment. In addition, it could potentially benefit people with
cortical damage (e.g., after a stroke) as a therapeutic approach for the recovery of lost
motor function. Participants were trained over 2–5 days to assess the effect of practice
on the performance. Each day’s session was divided into two parts: the training and test
phases. During training, subjects performed trials in which the exoskeleton was walking
the entire time and trials in which it was standing. In the test phase, the exoskeleton
provided real-time feedback in a closed-loop control scenario. This is a previous step in the
development of a BMI that will reinforce rehabilitation and/or assist the gait for patients
with neurological damage.

2. Materials and Methods

2.1. Participants

Two subjects participated in the study (mean age 23.5 ± 3.5). They did not report
any known disease and had no movement impairment. They did not have any previous
experience with BMI. They were informed about the experiments and signed an informed
consent form in accordance with the Declaration of Helsinki. All procedures were approved
by the Responsible Research Office of Miguel Hernández University of Elche.

2.2. Equipment

Brain activity was recorded with electroencephalography (EEG). A 32-electrode system
actiCap (Brain Products GmbH, Germany) was employed to record EEG signals. The
27 channels selected for acquisition were: F3, FZ, FC1, FCZ, C1, CZ, CP1, CPZ, FC5, FC3,
C5, C3, CP5, CP3, P3, PZ, F4, FC2, FC4, FC6, C2, C4, CP2, CP4, C6, CP6, P4. They were
placed following the 10-10 international system on an actiCAP (Brain Products GmbH,
Germany). Four electrodes were located next to the eyes to record electrooculography
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(EOG) and ground and reference electrodes were located on the right and left ear lobes,
respectively. Each channel signal was amplified with BrainVision BrainAmp amplifier
(Brain Products GmbH, Germany). Finally, signals were transmitted wirelessly to the
BrainVision recorder software (Brain Products GmbH, Germany).

H3 exoskeleton (Technaid, Madrid, Spain) was employed to assist the movement and
participants used crutches as support. Control start/stop gait commands were sent via
Bluetooth. The experimental setup can be seen in Figure 1.

Figure 1. Experimental setup.

2.3. Experimental Design

Each participant completed several sessions and each session was divided into two
parts. The first part consisted of the training phase, in which the exoskeleton was in opened-
loop control. Thus, it was remotely controlled by the laptop with predefined commands
based on the mental tasks to be registered and not by the output of the BMI classifier.
Afterwards, the second part of the session allowed assessment of the BMI performance
during closed-loop control of the exoskeleton. Commands issued by the BMI were sent to
the exoskeleton in real time based on the decoding of the brain activity obtained as output
of the BMI classifier, receiving the subjects’ real-time feedback on their performance.

2.3.1. Training Phase

In the first part of each session, subjects performed 20 trials. Each trial consisted of a
sequence of three mental tasks: MI of the gait, idle state and regressive count. For idle state,
participants were asked to be as relaxed as possible. The regressive count was randomly
changed every trial and consisted of a number between 300 and 1000 and a subtrahend
between 1 and 9. For example, if they were given the count 500-4, they had to compute
the series of subtractions of 496, 492, 488... until they had to perform the following task.
This task aims to focus the subject on a demanding mental task very different to MI in
order to assess a low level of attention to gait. The protocol can be seen in Figure 2a.
There was a voice message that indicated the beginning of each task: ‘Relax’, ‘Imagine’,
‘500-5’. The message for the regressive count indicated a different mathematical operation
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each time. In order to avoid evoked potentials, the 4 s period after auditory cues was not
considered for further analysis.

During the session, subjects used crutches to maintain stability. In addition, a member
of the research staff softly held the exoskeleton to prevent any possible loss of balance or
fall. Ten of the training trials were performed in a full no-motion status and the other ten
in a full motion status assisted by the exoskeleton. These trials were employed to train two
different BMI classifiers: StandClassifiers (with non-motion trials) and GaitClassifiers (with
full motion trials).

Figure 2. (a) The protocol of opened-loop trials and (b) the protocol of close-loop trials.

2.3.2. Test Phase

In the second part of each session, the BMI was tested in closed-loop control with the
two groups of classifiers obtained with the data of the training phase (StandClassifiers,
GaitClassifiers). Subjects performed five trials, whose protocol can be seen in Figure 2b.
The transition between tasks was indicated with voice messages for ‘Relax’ and ‘Imagine’
tasks. Notice that no ‘Regression count’ task was considered, as attention level to gait was
computed based on the information from training, but there was no need to implement a
low-level gait attention task in the testing trials.

2.4. Brain Machine Interface

The presented BMI had the following steps: data acquisition, pre-processing, feature
extraction, classification, exoskeleton control and evaluation.

As indicated before, this BMI was based on two paradigms: MI and attention. The first
one was based on the distinction between MI of the gait and an idle state, so only data
associated with these brain tasks were considered to train the classifiers (relax and motor
imagery). With regard to the attention paradigm, it measured the level of attention to
gait. Therefore, it had the objective of differentiating between the attention of the subject
during MI and the attention during irrelevant tasks. For this paradigm, all brain tasks from
training trials were contemplated (relax, motor imagery and regressive count). While the
attention to the gait was assumed to be high during MI tasks, it was assumed to be low
during regressive count and idle state. The schema of the BMI can be seen in Figure 3.
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Figure 3. Brain–machine interface (BMI) scheme. During training, the exoskeleton was in opened-
loop control, and for testing, it was in closed-loop control. The BMI used two different paradigms:
one based on motor imagery of gait and another one based on the user’s level of attention to gait.
Both paradigms shared some steps of pre-processing but there were additional different steps for
each one. Then, two different feature extraction methods were employed. Trials from the training
phase were used to train the BMI classifiers for testing.

2.4.1. Data Acquisition

EEG signals were recorded at a sampling frequency of 200 Hz. Then, epochs of 1 s
with 0.5 s of shifting were extracted and processed.

2.4.2. Pre-Processing

The pre-processing stage started with two frequency filters: a notch filter at 50 Hz
to remove the contribution of the power line and a high-pass filter at 0.1 Hz. In order
to reduce motion artifacts, electrode wires were fixed with clamps and a medical mesh.
The movement of jaw muscles can generate signal artifacts, so subjects were asked to not
swallow or chew while they were performing MI, regressive count or were in a idle state.

The H∞ denoising algorithm was applied to mitigate the presence of eye artifacts
and signal drifts [5]. This algorithm estimates the contribution of the EOG and a constant
parameter to the EEG signal and removes it. Afterwards, there were two different pre-
processing lines, one for each paradigm.

For the MI paradigm, a filter bank comprising multiple band-pass filters was applied
to the data after the H∞ denoising algorithm. Four band-pass filters were employed to
obtain data associated with alpha and beta rhythms.

Regarding the attention paradigm, EEG signals from each channel were first stan-
dardized following the process presented in [20]. For each channel, the maximum visual
threshold was computed as the mean of the 6 highest values of the signal. This value was
iteratively updated for each epoch and it was used to standardize the data as

SV(t)ch =
V(t)ch

1
Ch ∑Ch

j=1 MVThresholdj
. (1)

The signal of each chanel, V(t)ch, was normalized taking into consideration the maxi-
mum visual threshold (MVThreshold) of all the EEG channels. Subsequently, the surface
Laplacian filter was used to reduce spatial noise and enhance the local activity of each
electrode [21].
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2.4.3. Feature Extraction

The following step of the BMI has the objective of computing the characteristics of the
EEG during each brain task that could be discriminating.

For the MI paradigm, common spatial patterns (CSP) [22] are computed for each
frequency band. CSP estimate a spatial transformation that maximizes the discriminability
between two brain patterns. If X is the EEG that has N ∗ T dimensions, which are the
number of channels and number of samples, respectively, the CSP algorithm estimates a
matrix of spatial filters W that discriminates between two classes: (X1) and (X2). Firstly,
the normalized covariance matrices are computed for each class as in

C1 =
X1XT

1
trace(X1XT

1 )
, C2 =

X2XT
2

trace(X2XT
2 )

. (2)

These matrices are computed for each trial and C1 and C2 are calculated by averaging
over all trials of the same class. The averaged covariance matrices are combined to result
in the composite spatial covariance matrix that can be factorized as

C = C1 + C2 = U0ΣUT
0 . (3)

U0 is a matrix of eigenvectors and Σ is the diagonal matrix of eigenvalues. The aver-
aged covariance matrices are transformed as

P = Σ1/2UT
0 , (4)

S1 = PC1PT , S2 = PC2PT . (5)

S1 and S2 have common eigenvectors, and the sum of both matrices of eigenvalues is
the identity matrix.

S1 = UΣ1UT , S1 = UΣ2UTand Σ1 + Σ2 = I (6)

The projection matrix is obtained as

W = UT P. (7)

Z is the projection of the original EEG signal S into another space. Columns of W−1

are the spatial patterns.
Z = WX (8)

Although Z has N ∗ T dimensions, the first and last rows are the components that can
be better discriminated in terms of their variance. Therefore, for feature extraction, only the
m first and last components of Z are considered. Zp is the subset of Z and the variances of
each component are computed and normalized with the logarithm as

fp = log
var(Zp)

∑2m
i=1 Zp

. (9)

fp is the vector of features and has ( f bands ∗ 2 ∗ m) ∗ T dimension. m was set to 4, and
in the pre-processing phase, 4 band-pass filters were employed so the dimension is 32 ∗ T.

For the attention paradigm, power spectral estimation by Maximum Entropy Method
(MEM) was used to obtain features associated with each task. The signal of each electrode
was estimated as an autoregressive model in which the known autocorrelation coefficients
were calculated and the unknown coefficients were estimated by maximizing the spectral
entropy [23]. Afterwards, the autocorrelation cofficients were used to compute the power
spectrum that was compatible with the fragment of the signal analyzed, but it was also
evasive regarding unseen data. Afterwards, only the power of the frequencies in the
gamma band was considered [15].
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2.4.4. Classification

Training trials of each session were evaluated using leave-one-out cross-validation.
Each trial was once used as a test and the remaining trials conformed to the training group.
This process was performed independently for trials in which subjects were standing
(10 trials) and trials in which they were in motion (10 trials). Linear Discriminant Analysis
(LDA) [24] classifiers were created depending on the subject status—full standing trials
(StandClassifiers) and full motion trials(GaitClassifiers)—each one with two different
models based on the decoding paradigm: MI and attention paradigms. As stated above,
whereas LDA classifiers of the MI paradigm were only trained with data from MI and idle
state, LDA classifiers of the attention paradigm were trained with data from all brain tasks
(idle, regressive count, MI).

Concerning the test phase, the developed BMI was designed as a state machine system
in which a group of classifiers was chosen based on the status of the exoskeleton. This
way, if the subject is in a standing position, the MI and attention classifiers of the full
standing trials (StandClassifiers) are used to decide if the exoskeleton keeps standing or
starts moving, but if the subject is moving, the MI and attention classifiers obtained by the
full motion trials (GaitClassifiers) are used to continue walking or to stop. Predictions from
both paradigms were combined to decode control commands. Its design can be seen in
Figure 4. In summary, in each test trial, subjects started standing with the exoskeleton and
StandClassifiers were employed. The system could decode stop or walk commands based
on the prediction of their MI and attention classifiers. When a walk command was sent to
the exoskeleton, it started the gait and the system was changed to Gait state. Consequently,
GaitClassifiers were employed afterwards. Again, the system could decode stop or walk
commands, but when a stop command was issued, the exoskeleton stopped the gait and
the system changed to Stand state again.

Figure 4. State machine design of the brain–machine interface (BMI). There are two states, gait and
stand, that depend on the exoskeleton status. Each state is associated with two different classifiers,
one for each paradigm, that will be used to give decode control commands.

2.4.5. Exoskeleton Control

In the test phase, the exoskeleton was controlled by BMI decoded commands. MI
classifiers could predict two classes, 0 for idle state and 1 for MI, and attention classifiers
could predict a 0 for low attention to gait and a 1 for high attention. These predictions were
averaged every 10 s, which resulted in MI and attention indices that ranged from 0 to 1.
Control commands were selected based on the following rules:

• During 5 s, new commands cannot be issued.
• If subject was standing:
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– If the MI index was higher than or equal than 0.7 or the MI index was higher than
or equal than 0.6 and the attention index was higher than or equal to 0.4, a move
command was issued and the exoskeleton started the gait.

– Otherwise, the exoskeleton kept standing.

• If the subject was walking:

– If the MI index was lower than or equal to 0.4, a stop command was issued and
the exoskeleton stopped the gait.

– Otherwise, it kept walking.

2.5. Evaluation

The accuracy of training trials was defined as the percentage of correctly classified
epochs during each brain task. This metric was computed separately for trials in which par-
ticipants were moving and trials in which they were static. Furthermore, the performance
of closed-loop trials was assessed with the following indices:

• %MI and %Att: percentage of epochs of data correctly classified for each paradigm.
• %Commands: percentage of epochs of data with correct control commands.
• Accuracy commands: percentage of correct commands issued.
• True positive ratio (TPR): percentage of MI periods in which a walking event is

executed. There is only an event of MI per trial, so this value can only be 0 or 100%
per trial.

• False positives (FP) and false positives per minute (FP/min): moving commands
issued during rest periods.

Transition events were not considered for the computation of evaluation metrics.

3. Results

During training, participants wore the exoskeleton in an opened-loop control. Each
subject completed several sessions, and on each of them, they completed 20 trials: 10 tri-
als standing still and 10 trials walking. Results from subjects S1 and S2 are shown in
Tables 1 and 2, respectively. It must be noted that they did not have the same amount
of practice since they participated in a different number of sessions. Two different BMI
paradigms were carried out. For the MI paradigm, S1 reached an average accuracy of
72.77 ± 6.61% with a difference of around 6% between the two conditions, standing and
walking. In the last session, S2 achieved an average accuracy of 64.11 ± 9.98 with a differ-
ence of 20% between the two approaches. With respect to the attention paradigm, S1 ob-
tained an accuracy of 65.06 ± 6.44 with a difference of 8%, and S2 achieved 65.83 ± 4.43 and
a 10% difference. The average accuracy of the MI and attention paradigm was 68.44 ± 8.46%
and 65.45 ± 5.53%, respectively.

Figures 5 and 6 show the spatial patterns of S1 and S2 in their last session. Moreover,
in order to provide a comparison under the same conditions, Figure 7 shows the spatial
patterns of S3 in the second session. The spatial patterns estimated during trials without
movement show that for S1 and S2, electrode FCz seems to have a relevant role in the
discrimination of idle state. During MI events, the most significant electrodes for both
subjects are peripheral as FC5. However, results from S2 show that in the 5–10 Hz band,
C2 and CPz are relevant to the MI of gait. Regarding trials in which participants are walking,
the distribution of relevant areas seems scattered for idle state and for MI; peripheral
electrodes are also highlighted.

When comparing the spatial patterns of S2 in two different sessions, the main similar-
ities can be found in the stand trials. CPz and Cz are highlighted for the relax class and
electrode FC5 seems to be significant for the MI class.
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3.1. Training Phase

Table 1. Results from training, subject S1. Trials with opened-loop control of the exoskeleton.

Session 1 Session 2

Stand %MI 59.29 ± 10.51 69.64 ± 7.62
%Att 57.38 ± 9.27 60.83 ± 7.58

Gait %MI 58.93 ± 11.60 75.89 ± 5.41
%Att 65.83 ± 8.57 69.29 ± 5.04

Table 2. Results from training, subject S2. Trials with opened-loop control of the exoskeleton.

Session 1 Session 2 Session 3 Session 4 Session 5

Stand %MI 53.32 ± 8.59 69.64 ± 8.70 65.54 ± 5.12 64.2 ± 11.45 74.11 ± 6.14
%Att 63.95 ± 4.44 62.57 ± 8.77 58.21 ± 8.76 59.52 ± 8.44 60.83 ± 5.48

Gait %MI 50.26 ± 7.54 54.17 ± 8.75 62.50 ± 8.91 59.82 ± 10.11 54.11 ± 12.71
%Att 61.05 ± 5.13 63.36 ± 2.84 61.55 ± 7.21 65.71 ± 6.82 70.83 ± 3.04

Figure 5. Spatial patterns for the session of S1 that best discriminate between motor imagery (MI)
and idle state. (a) The spatial patterns from trials in which participant was standing still and (b) the
spatial patterns from trials in which they were walking with the exoskeleton.
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Figure 6. Spatial patterns for the session of S2 that best discriminate between motor imagery (MI)
and idle state. (a) The spatial patterns from trials in which participant was standing still and (b) the
spatial patterns from trials in which they were walking with the exoskeleton.

Figure 7. Spatial patterns for the fifth session of S2 that best discriminate between motor imagery
(MI) and idle state. (a) The spatial patterns from trials in which participant was standing still and (b)
the spatial patterns from trials in which they were walking with the exoskeleton.
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3.2. Test Phase

The exoskeleton was controlled by the BMI decoded commands and the BMI classifiers
were trained with training trials. Tables 3–5 summarize the results from closed-loop trials.
TPR is 100% in the majority of trials, which means that the exoskeleton was activated at
least once during the MI event. The number of false positive activations during idle state
ranged from 0 to 2. Regarding %Commands, it improved by 13% from the first to the
last session of S2, although their performance in each session was not always superior
to the previous one. In the last session, the average %Commands for both subjects was
64.50 ± 10.66%.

Table 3. Test results, subject S1. Trials in close-loop control.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg.

Session 1

%MI 64.13 50.00 48.91 61.96 56.52 56.30
%Att 51.09 58.70 53.26 47.83 55.43 53.26
%Commands 63.00 78.00 62.00 60.00 83.00 69.20
Acc. commands 50.00 50.00 50.00 0.00 50.00 40.00
TPR 100.00 100.00 100.00 0.00 100.00 80.00
FP 1.00 0.00 1.00 0.00 0.00 0.40
FP/min 2.31 0.00 2.31 0.00 0.00 0.92

Session 2

%MI 61.96 52.17 50.00 60.87 57.61 56.52
%Att 64.13 46.74 61.96 60.87 57.61 58.26
%Commands 60.00 57.00 63.00 57.00 69.00 61.20
Acc. commands 75.00 75.00 75.00 50.00 66.67 68.33
TPR 100.00 100.00 100.00 100.00 100.00 100.00
FP 1.00 1.00 1.00 1.00 1.00 1.00
FP/min 2.31 2.31 2.31 2.31 2.31 2.31

Table 4. Test results, first two sessions of subject S2. Trials in close-loop control.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg.

Session 1

%MI 50 44.57 43.48 42.39 43.48 44.78
%Att 47.83 56.52 53.26 53.26 50 52.17
%Commands 59.00 54.00 53.00 53.00 53.00 54.40
Acc. commands 0.00 0.00 0.00 0.00 0.00 0.00
TPR 100.00 100.00 100.00 100.00 100.00 100.00
FP 1.00 1.00 1.00 1.00 1.00 1.00
FP/min 2.31 2.31 2.31 2.31 2.31 2.31

Session 2

%MI 46.74 60.87 48.91 54.35 52.17 52.61
%Att 56.52 59.78 43.48 66.3 64.13 58.04
%Commands 59.00 53.00 37.00 76.00 68.00 58.60
Acc. commands 0.00 100.00 0.00 66.67 100 53.33
TPR 100.00 100.00 0.00 100.00 100.00 80.00
FP 1.00 0.00 1.00 1.00 0.00 0.60
FP/min 2.31 0.00 2.31 2.31 0.00 1.38
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Table 5. Test results, last three sessions of subject S2. Trials in close-loop control.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg.

Session 3

%MI 63.04 46.74 52.17 48.91 46.74 51.52
%Att 45.65 44.57 55.43 52.17 50 49.56
%Commands 67.00 81.00 75.00 63.00 63.00 69.80
Acc. commands 60.00 60.00 75.00 40.00 50.00 57.00
TPR 100.00 100.00 100.00 100.00 100.00 100.00
FP 2.00 1.00 1.00 2.00 2.00 1.60
FP/min 4.62 2.31 2.31 4.62 4.62 3.69

Session 4

%MI 53.26 64.13 45.65 58.7 58.7 56.09
%Att 58.7 56.52 75 55.43 71.74 63.48
%Commands 57.00 64.00 57.00 78.00 65.00 64.20
Acc. commands 0.00 100.00 0.00 75.00 50.00 45.00
TPR 100.00 100.00 100.00 100.00 100.00 100.00
FP 1.00 0.00 1.00 1.00 1.00 0.80
FP/min 2.31 0.00 2.31 2.31 2.31 1.85

Session 5

%MI 59.78 56.52 59.78 59.78 61.96 59.56
%Att 70.65 70.65 59.78 67.39 56.52 65.00
%Commands 56.00 73.00 52.00 88.00 70.00 67.80
Acc. commands 40.00 66.67 100.00 100.00 33.33 68.00
TPR 100.00 100.00 100.00 100.00 100.00 100.00
FP 2.00 1.00 0.00 0.00 2.00 1.00
FP/min 4.62 2.31 0.00 0.00 4.62 2.31

4. Discussion

Contrary to the findings of our previous work on a BMI-controlled treadmill [19], we
found significant differences between opened-loop trials in which subjects were standing
and when they were walking. It is important to note that walking assisted by an exoskele-
ton is a more complex task than walking on a treadmill, so subjects must be concentrated.
Consequently, it is more difficult for them to perform other brain tasks such as MI or regres-
sive count. In addition, when comparing the results from closed-loop trials, the average
percentage of epochs with correct commands was 64.5% with the exoskeleton and 75.6%
with the treadmill. A possible explanation for this contrast could be also related to the
complexity of the movement with the exoskeleton.

On the other hand, the attention paradigm showed worse performance than the
MI paradigm in opened-loop trials, which is consistent with the findings of our previous
work [19]. However, in line with our previous work with an exoskeleton [15], this difference
is not as evident in closed-loop trials. Therefore, future BMI designs could rely more on the
attention paradigm for the activation of the exoskeleton.

While results from the MI paradigm showed an increasing trend throughout sessions,
this pattern is not as evident for the attention paradigm. Our results for the MI paradigm
are in consonance with the conclusions from [25]. Performing MI is not an intuitive activity
for novel participants and practice could promote the modulation and enhance brain
activity patterns. Nevertheless, with regard to the attention of the user, the performance
does not seem to improve with practice. The attention is something that people train on
daily basis, so this could explain why a few sessions cannot further improve it.

There are not many investigations in the literature that developed BMI based on
lower-limb MI without other external stimuli [2] and they are usually based on motion
intention [3,6,10]. In addition, the works of [4,26] employed upper-limb MI to control a
lower-limb exoskeleton. Reference [26] showed a percentage of correct commands issued
every 4.5 s of 66% and [4] of 80.16% but the BMI was only employed to start the gait
and not to stop it. These values can be compared with the %Commands of the present
paper. Although superior results are achieved with upper-limb MI, this paradigm cannot
be applied to promote neuroplasticity.
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In [16], a BMI was presented that employed a combination of MI with eye blinking as
a control paradigm, and an accuracy of 86.7% was reported. However, although control
mechanisms that employ eye movements have proven to be precise, they lack application
from the rehabilitation point of view. In addition, the work of [14] presented a BMI that
only controlled the start and maintenance of the gait of a lower-limb exoskeleton and they
obtained an average accuracy of 74.4%. In our previous research [15] that also combined
the MI and attention paradigms to control an exoskeleton, the percentage of epochs with
correct commands issued was 56.77%. Slightly superior results were achieved with the
current BMI algorithm.

5. Conclusions

The current research presents a BMI system based on MI and attention paradigms that
has been tested to control a lower-limb exoskeleton. Participants performed 2–5 sessions
to assess the effect of practice on the performance. Each session was divided into two
parts: the training and test phases. First, participants completed trials in which they had
to perform certain brain tasks and the exoskeleton was controlled remotely by the laptop
with predefined commands. During half of the trials, the exoskeleton was walking, and
during the other half, it was completely static. Therefore, contrary to previous works,
brain tasks to discriminate happened under the same conditions. Moreover, this setup can
reduce the effect of artifacts on the predictions. The average performance in the last session
was 68.44 ± 8.46% for the MI paradigm and 65.45 ± 5.53% for the attention paradigm.
The second part of the each session consisted of closed-loop controlled trials in which the
exoskeleton was commanded by the predictions of the BMI. The BMI worked as a state
machine that used different classifiers depending on whether the exoskeleton was static or
moving. Training trials were used to train the classifiers corresponding to each state of the
state machine. The BMI took a decision every 0.5 s and the average percentage of correct
commands chosen was 64.50 ± 10.66% for the last session of both subjects.

Participants did not have any motor impairment, but since the main of objective of
the system is to promote neurorehabilitation and neuroplasticity, future research will focus
on people with motor disabilities.
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Abstract: Musculoskeletal disorders of the wrist are common in the meat industry. A proof of concept
of a physical human-robot interaction (pHRI)-based assistive strategy for an industrial meat cutting
system is demonstrated which can be transferred to an exoskeleton later. We discuss how a robot can
assist a human in pHRI, specifically in the context of an industrial project i.e for the meat cutting
industry. We developed an impedance control-based system that enables a KUKA LWR robot to
provide assistive forces to a professional butcher while simultaneously allowing motion of the knife
(tool) in all degrees of freedom. We developed two assistive strategies—a force amplification strategy
and an intent prediction strategy—and integrated them into an impedance controller.

Keywords: physical human-robot interaction; assistive robotics; collaborative robots

1. Introduction and Motivation

The agri-food industry, and particularly the meat industry, is one of the most dan-
gerous industries when it comes to employee safety. Among the various occupations,
slaughtering, cutting and meat processing operations require specific dexterity to handle
sharp tools or dangerous machines. However, they also require physical strength to carry
heavy loads such as pallets or carcasses, quarters or muscles of meat, or to perform debon-
ing work tasks and cutting quarters into pieces of meat. Similarly, they require performing
repetitive movements or working in a cold refrigerated room and humid environment.
In fact, accidents at work are common and can occur at any time. Thus, the rate of these
accidents and their frequency are among the highest, among all professions combined.
In addition to work-related accidents, musculoskeletal disorders (MSDs) accounted for
almost 91% of occupational illness cases in 2019 [1], with 842,490 days of temporary inter-
ruption of work for all sectors. A study carried out in the Brittany region of France showed
that the agri-food industries are the most risky sectors in terms of MSDs [1]. For instance,
at the French level, 30% of the declared MSDs are recorded in the meat sector.

Not only is this a major problem for employees, it is also a big problem for companies
and society at large. In 2019, compensation for MSDs generated two billion euros in fees
(social security estimate) in France, with an average of more than 21,000 euros for each
MSD stoppage, not counting the daily allowances [2]. In some companies with 10 to
20% absenteeism, MSDs disrupt production and generate additional costs. In the meat
sector, MSDs involve personnel at all stages. Thus, operators involved in meat cutting,
represented by boners, parers and slicers, as well as those located at manufacturing and
packaging stations are affected [3]. MSDs affecting the wrist, hand and fingers represent
approximately 50% of all MSDs in the meat industry.

The arduousness of tasks related to physical effort, the repeatability of movements
and the agri-food environment (cold, humidity and hygiene) encountered in the meat

Appl. Sci. 2021, 11, 3907. https://doi.org/10.3390/app11093907 https://www.mdpi.com/journal/applsci

61



Appl. Sci. 2021, 11, 3907

sector deters the recruitment of young people, and ultimately few people, trained initially
for this sector, remain there. This difficulty in recruiting or retaining young people leads
to a significant shortage of manpower in these sectors. Technological evolution of certain
workstations which would allow on the one hand a reduction of the arduousness, opening
to the women certain activities which were until now reserved for the men, and on the
other hand a revaluation of the trades, could change the outlook of the individuals in this
sector of activity, give a positive image and promote its attractiveness.

Faced with these findings, the meat sector could soon integrate assistive and cobotic
equipments to encourage companies to improve the quality of life at work of their em-
ployees. Cobotics, also known as collaborative robotics, is a technology that uses robotics,
mechanics, electronics, and cognitive science to assist humans in their tasks. For the meat
sector, the advantages of having cobotics are numerous:

1. Reduction of occupational risks by reducing the arduousness of the operators’ tasks
and improving their working conditions.

2. Overcome a major shortage of skilled labour by reducing the lack of image and
attractiveness, particularly among young people (hardship in low-value jobs, etc.),
which will help maintain or even develop jobs in the sector.

3. Improve the competitiveness of companies by reducing the direct and indirect costs
of work stoppages and by increasing productivity.

4. Improve the safety of products by reducing the direct handling of products by op-
erators or by integrating cleaning systems (e.g., sterilization of tools online between
each operation).

In this paper, we propose the development of a proof-of-concept assistive strategy
implemented through a collaborative robot in meat cutting tasks in order to reduce the
musculoskeletal disorders on the wrist of human operators working in the meat industry.
The developed impedance control strategy enables a KUKA LWR robot to provide assistive
forces to a professional butcher while simultaneously allowing motion of the knife (tool)
in all degrees of freedom. Previous robotic systems for autonomous meat handling [4]
required one or several robots for performing very specific meat cutting operations. For in-
stance, the ARMS system [5–7] was based on the separation of beef shoulder muscles,
the GRIBBOT system [8] was applied to chicken breast fillet harvesting while the DEXDEB
system [9,10] was useful for ham deboning. Therefore these robotic systems could not be
reused for other meat handling tasks since the quality of their cut was not enough for other
types of meat pieces. The new proposed robotic system (called Exoscarne) works on the
principle of pHRI (physical Human-Robot Interaction) to solve this lack of generalization.
From one side, the expertise of the skilled butcher is kept since the cutting trajectory is
defined by the human operator, who is holding the tool at the same time as the robot.
From the other side, the robot carries the load of the tool and increases the cutting force
when touching the meat so that the effort applied by the human is smaller. This system re-
sults in a greater flexibility for different meat cutting tasks and can adapt itself to on-the-fly
decisions made by the user.

Therefore, our new Exoscarne system, which will be described in the next sections
(see Section 3 for its software components and Section 4 for its hardware components), is
able to:

1. Compensate the weight of the cutting tool.
2. Permit the user to move the tool in all 6 degrees of freedom.
3. Permit impedance shaping according to the operation being performed by the user.
4. Provide assistive forces during the meat cutting operations as per the user’s conve-

nience.
5. Allow the user to perform the operations autonomously.
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2. Background on Robot Assistance

One of the primary motivations of using robots for pHRI is their ability to share
physical loads with their human partners. When the physical load of an object is shared or
when the object is manipulated for a task, a natural division of effort between the human
and the robot occurs. For example, load sharing can be for human-robot cooperative
manipulation [11] or during rehabilitation [12]. Mortl et al. [13] proposed effort sharing
policies for load sharing of an object by a human and multiple robots.

Some researchers focused on the larger question of selection of an ‘assistance strategy’
for a pHRI task. Dumora et al. [14] considered large object manipulation tasks in pHRI and
proposed a library of robot assistances. Medina et al. [15] proposed a dynamic strategy
selection between model-based and model-free strategies. The strategy selection is based
on the concept of disagreement between the human and the robot, which in turn depends
on the interaction force.

In the literature, the only example of load sharing of tool for a cooperative pHRI
task, similar to meat cutting, was in [16] in which the author used a robot for assistive
welding by supporting the weight of the welding equipment. In fact, most existing IADs,
“Intelligent Assist devices” (i.e., active cobotics systems for human assistance) [17], are used
in the automotive industry for the quasi-static collaborative transportation of heavy loads
(e.g., motors, doors ...). However, these solutions are not suitable for the meat industry [18]
since they can only assist through specific directions in the work-space [19] (while meat
cutting requires complex 6D trajectories), they do not integrate safety solutions for handling
dangerous tools (such as the knife for meat cutting) and they do not take into account the
important dynamic non-linear effects of the meat cutting operations [20]. To the best of our
knowledge, there is no prior pHRI related work which uses a robot for assisting a human
for cutting meat by taking into account not only a classical force amplification strategy
(such as in [20]) but also an intent prediction module in order to reduce the final forces to
be applied by the human operator.

3. Methodology

3.1. pHRI Assistive Strategies

The main interaction controllers for pHRI are impedance and admittance control (see
Section 3.2 for their mathematical definition). Controller stability issues are common with
admittance control [21,22]. When a human holds the tool at the end-effector, it results in
a coupled system that can lose stability if the human operator stiffens his arm muscles,
leading to robot vibrations. Hence for this task we chose impedance control. Investigating
the stability issues of admittance control is a field in itself and there are several heuristic
methods in the literature [20]. Impedance control was possible as the robot had a torque
sensor in each joint, enabling torque control. Admittance control is preferred with robots
that have only position control, by using an external FT sensor. As the task involved motion
in the cartesian space hence we used the cartesian impedance controller that is explained
later. We devised two assistive strategies:

1. Force amplification strategy

In this strategy we amplify the forces applied by the user on the knife’s handle (see
Section 4 for the experimental setup), detected by the FT sensor and input to our control
scheme. The control diagram is shown in Figure 1. The appropriate parameter η has to be
determined, as explained in Section 5.3.

2. Intent prediction strategy

In this strategy we predict the forces to be applied by the user using RNN-LSTM
networks explained in Section 3.3. The control diagram is shown in Figure 2.
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Figure 1. Impedance controller diagram with amplification module for the force amplification strategy.

Figure 2. Impedance controller diagram with intent prediction module for intent prediction strategy.

Both Figures 1 and 2 are identical except for the module of their respective assistive
strategies. In the force amplification strategy, the amplification module amplifies the human
user’s force input Fh at each time step through robot assistance ηFh. In the intent prediction
strategy, a trained RNN-LSTM network takes the human user’s force input Fh at each time
step to anticipate the user’s input for the next time step Fpred and provides this force via
robot assistance. In both cases the user can haptically sense this assistance being provided
by the robot.

3.2. Impedance Control

The forward kinematics of a robotic manipulator is written as [23]:

x(t) = f (q) (1)

where x(t) ∈ �n and q ∈ �n are the pose (i.e., position/orientation) of the end-effector
in the Cartesian space and the joint angle coordinates in the joint space, respectively.
Differential kinematics is obtained by deriving (1) with respect to time:

ẋ(t) = J(q)q̇ (2)

where J(q) ∈ �n×n is the Jacobian matrix. Differentiating (2) again results in the accelera-
tion of the end-effector:

ẍ(t) = J̇(q)q + J(q)q̈ (3)

The robot arm dynamics in the joint space is given by:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ − JT(q)F (4)
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where M(q) ∈ �n×n is the symmetric positive-definite inertia matrix; C(q, q̇)q̇ ∈ �n is the
Coriolis and Centrifugal forces; G(q) ∈ �n is the gravitational force; τ ∈ �n is the vector
of control input; F ∈ �n denotes the net force exerted by the robot on the environment at
the end-effector (F = Fr − Fext). Otherwise, Fr ∈ �n is the force exerted by the robot on
the environment at the end-effector while Fext ∈ �n is the external force exerted by the
environment on the robot at the end-effector. In our pHRI task, the environment is the
human, specifically the human hand that is in contact with the robot. The robot dynamics
can be written in the Cartesian space as:

Mx(q)ẍ + Cx(q, q̇)ẋ + Gx(q) = u − F (5)

where

Mx(q) = J−T(q)M(q)J−1(q),
Cx(q, q̇) = J−T(q)(C(q, q̇)− M(q)J−1(q) J̇(q))J−1(q),

Gx(q) = J−T(q)G(q), u = J−T(q)τ, F = Fr − Fext

As explained in Section 3.1, the most common interaction controllers for pHRI are
admittance and impedance control. Both controllers are based on a target impedance model
for the robot and they only differ in terms of input and output (see Figures 3 and 4). There-
fore, the target robot impedance model can be represented as a mass-damper-spring system:

Md(ẍd − ẍ) + Bd(ẋd − ẋ) + Kd(xd − x) = Fd = Fr (6)

where Md, Bd, Kd are the virtual inertia, damping and stiffness of the robot, respectively.
Fd is the desired force and xd can be interpreted as the rest position of this virtual mass-
damper-spring system. For pHRI tasks in which the human touches the robot, the human
limb (arm+hand) can also be modeled as a mass-damper-spring system:

Mhẍh + Bhẋh + Kh(xh − xhd) = Fh (7)

where Mh, Bh, Kh are the limb inertia, damping and stiffness respectively and Fh is the force
applied by the human to the robot. The limb impedance values are not fixed and depend
from person to person, as well as on the task being carried out. xh is the position of the
human wrist in the robot frame and xhd can be interpreted as the desired target position.
Discussion on the limb impedance parameters or their calculation are not in the purview
of this paper. In fact, the investigation of the limb impedance parameters would have been
necessitated if an admittance controller was used, to tackle the potential controller stability
issues. Since we have used a torque-based impedance controller for our experiments, it
does not face such issues. While real time measurements of limb impedance values could
be used for interpreting the intent of the human operator during the operation, this would
have required attaching EMG sensors on the arms of the human operator, such as in [24],
thereby reducing the practicality of this research for an industrial meat cutting scenario.
In our experiments the human intent is interpreted via the force measurements read by the
FT sensor, while staying comfortable and intuitive for the human operator.

When no assistance strategy is required and we want the robot to freely follow the
motion of the human, we can set Kd = 0 or x = xd. This “direct teaching mode” is
essentially based on the elimination of the spring component of the robot impedance model
(“minimum impedance” strategy in Section 5.4) and avoids any restoring forces. If the
human holds the tool rigidly then we can assume that the forces are transmitted completely
to the robot. If the hand is close enough to the end-effector, we can assume that their
positions, velocities and forces are equivalent: xd = xhd, ẋh = ẋ and ẍh = ẍ.

In admittance control (popularly called position-based impedance control) the input
is the force applied by the environment and the output is displacement/velocity as shown
in Figure 3. In pHRI tasks, the force is applied by the human on the tool at the end-effector
(Fext = Fh) and it is measured by the FT sensor. The difference between the desired force
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for the robot (Fd = Fr) and this external force is applied as input to the impedance model
in (6) in order to obtain the desired position for the end-effector xd as output:

Md(ẍd − ẍ) + Bd(ẋd − ẋ) + Kd(xd − x) = Fd − Fh (8)

On the contrary, the impedance control (torque-based impedance control) has as
input the end-effector displacement/velocity and the desired force as output, as shown
in Figure 4. In this case, the desired robot impedance model is the same as in (6) but the
difference between the desired robot force and the external/human force is transformed
into joint torques for the robot control.

Figure 3. Admittance control (position-based impedance control).

Figure 4. Torque-based impedance control.

3.3. Long Short-Term Memory Model

For the intent prediction module, we use RNN-LSTM units [25]. RNNs (Recurrent
Neural Networks) are based on processing sequential data, especially temporal data as
they have an internal memory. In fact, they are useful for making predictions using time-
series data [23]. RNNs can be improved by using what are called LSTM units in order
to solve the vanishing gradient problem (i.e., gradients tend to disappear in RNNs when
backpropagating errors in too long sequences). In fact, each LSTM unit has a special
structure composed by 3 gates to control what information to keep and what to forget so
that more stable errors are backpropagated (see Figure 5):

1. An input gate (i).
2. An output gate (o).
3. A forget gate (f).

As a result, RNNs with LSTM units are able to learn long-term dependencies within
data sequences that were not possible only with RNNs. Given an input sequence x̄1, x̄2, ..., x̄t
the LSTM unit maps the input sequence to a sequence of hidden states h1, h2, ..., ht (which
are also the outputs) by passing information through a combination of gates (see Figure 6):

The Input gate (for updating the cell) is:

it = σg(Wix̄t + Riht−1 + bi) (9)

The Forget gate (for reseting the cell/forgetting) is:

ft = σg(Wf x̄t + R f ht−1 + b f ) (10)
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The Cell candidate (for adding information to the cell) is:

gt = σc(Wgx̄t + Rght−1 + bg) (11)

where σc is the state activation function (here it is the hyperbolic tangent function: σc = tanh(x̄)).
The Output gate is:

ot = σg(Wox̄t + Roht−1 + bo) (12)

where σg is the gate activation (here it is the sigmoid function: σ(x) = (1 + e−x̄)−1)
The Memory Cell state at timestep t is:

ct = ft � ct−1 + it � gt (13)

Here � is the Hadamard product (element-wise multiplication of vectors). The mem-
ory cell selectively retains information from previous timesteps by controlling what to
remember via the forget gate ft.

Figure 5. A single LSTM unit.

Figure 6. An unrolled Recurrent Neural Network with LSTM units.

The Hidden state (also called Output state) at time step t is :

ht = ot � σc(ct) (14)

The hidden state is passed as input to the next timestep and thus, it is possible to
stack numerous LSTM units (see Figure 6). Wi, Wf , Wg are the learnable input weights;
Ri, R f , Rg are the learnable recurrent weights and bi, b f , bg are the learnable bias. By using
memory cells and hidden states, LSTM units are able to retain information. The sigmoid
function is a good activation function for the 3 gates (In, Out and Forget) since it outputs a
value between 0 and 1. However for the memory cell, the values should be able to increase
or decrease (which is not possible with the sigmoid activation function whose output is
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always non-negative). Therefore, the hyperbolic tangent function (tanh) is used as the
activation function for the memory cell.

4. Experimental Setup

4.1. KUKA LWR Robot

The KUKA LWR is a Torque-controlled Flexible Robot with 7 degrees of freedom.
The design and control concepts of the robot have been discussed in [26,27]. There are two
control modes available. The joint position control is implemented at a frequency of 3 kHz
(decentralized control) [28]. Inverse kinematics and the cartesian impedance control mode
run at a frequency of 1 kHz. The KUKA LWR has a torque sensor at each joint that enables
torque control and impedance control. It also has motor side position sensors, as well as
link side position sensors. Due to friction it is difficult for robots to implement torque
control only with motor current commands [28].

The default coordinate system of the KUKA LWR is Right Handed System for which
det(R) = 1. The dimensions of the robot can be retrieved from the official manufacturer
documentation. Using these dimensions we can obtain the DH parameters (refer Table 1).
To simulate the robot, an alternate form of representation called URDF is shown in Table 2 and
its corresponding 3D model is shown in Figure 7. The Unified Robotic Description Format
(URDF) is an XML file format used in ROS to describe all elements of a robot. The robot
interacts with the external PC through the Fast Research Interface [29] through three
modes—(a) Joint position control (b) Joint impedance control mode and (c) Cartesian
impedance control mode.

Figure 7. Exoscarne 3D simulated model with the KUKA LWR arm in Home configuration.

Table 1. DH parameters of KUKA LWR 4+ robot.

Joints di(m) qi(rad) ai αi(rad) qmin qmax τmax(Nm)

J1 A1 0.3105 q1 0 π/2 −170 170 176

J2 A2 0 q2 0 −π/2 −120 120 176

J3 E1 0.4 q3 0 −π/2 −170 170 100

J4 A3 0 q4 0 π/2 −120 120 100

J5 A4 0.39 q5 0 π/2 −170 170 100

J6 A5 0 q6 0 −π/2 −120 120 38

J7 A6 0.078 q7 0 0 −170 170 38
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Table 2. URDF description of KUKA LWR 4+ robot.

Joints x(m) y(m) z(m) r p y Axis

A1 0 0 0.11 0 0 0 [0 0 1] +z axis

A2 0 0 0.2005 0 0 0 [0 −1 0] −y axis

E1 0 0 0.2 0 0 0 [0 0 1] +z axis

A3 0 0 0.2 0 0 0 [0 1 0] +y axis

A4 0 0 0.2 0 0 0 [0 0 1] +z axis

A5 0 0 0.19 0 0 0 [0 −1 0] −y axis

A6 0 0 0.078 0 0 0 [0 0 1] +z axis

To fulfill our objectives we used the cartesian impedance control mode available with
the KUKA LWR robot. The KUKA manual [30] states that the control law for the cartesian
impedance controller is

τcmd = JT(Kc(xdesired − xcurrent) + Fcmd) + D(dc) + fdynamics(q, q̇, q̈) (15)

where q ∈ �n is the joint position vector, Kd is the stiffness matrix in the end-effector frame,
Dd is the normalized damping parameter in the end-effector frame, x and xd are the current
and the desired pose of the end-effector respectively in the global frame. The translational
stiffness Kx, Ky, Kz ∈ [0.01, 5000] N/m and rotational stiffness KAz , KBy , KCx ∈ [0.01, 300]
N/m-rad.

The KUKA LWR has an inbuilt external tool calibration functionality. Using this
feature the robot can account for external tool dynamics as well, thereby enabling gravity
compensation for the tool.

In this work we used the KUKA Fast Research Interface (FRI [29]), ROS [31], Kine-
matics and Dynamics library (KDL [32]) , the MATLAB toolbox by Peter Corke (RCV [33]),
and the MATLAB Robotics Toolbox (RTB [34]). For the intent prediction strategy, the high
level program was written in MATLAB and connected to the network via ROS (Robot
Operating System), by using the MATLAB Robotics Toolbox.

4.2. ATI FT Sensors

In order for the robot to provide assistive forces as per user comfort we had to measure
how much forces are being applied by the user. For this, we used two 6-axis ATI Gamma
force-torque sensors (see Figure 8): one mounted below the joystick (sensor B) and another
mounted on the end-effector of the arm (sensor A, see Figure 9). Both FT (Force-Torque)
sensors provide a 6-dimensional wrench in the sensor frame at 1000 Hz.

(a) FT ATI acquisition system (b) FT sensor (c) Internal view (d) Internal view 2
Figure 8. Photos of the force-torque (FT) sensor.
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Figure 9. Attaching the FT sensor A to the KUKA LWR 4+ robot end-effector.

The relation between the different frames associated to these sensors (A and B), to the
tool (i.e., tool center point—TCP—or tip of the knife) and the robot world frame O are
shown in Table 3 and visualized in Figure 10. To use the impedance controller all the forces
must be in the same frame. This requires transformation of the sensed forces in the sensor
frame to the end-effector frame of the robot. The equation for transformation of forces from
one frame to another is: [ AFA

A MA

]
=

[ B
AR 0

[Atx]BAR B
AR

][ BFB
B MB

]
(16)

where [tx] =

⎡
⎣ 0 −tz ty

tz 0 −tx
−ty tx 0

⎤
⎦ or

AFA = B
ATf

BFB (17)

Figure 10. Visualization of all frames relating the tool -knife- with the FT sensors A/B.
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Table 3. Joystick frames when the robot is in Home configuration. Sensor A is always aligned with
the robot end-effector frame.

Robot World Frame Sensor A (FT13855) Sensor B (FT13953) Relation

Xo XA −ZB Xo|| XA|| −ZB

Yo YA XB Yo|| XA|| XB

Zo ZA YB Zo|| ZA|| YB

4.3. Allen-Bradley Joystick

The joystick (i.e., the knife handle) is an Allen-Bradley 440J-N enabling switch. It has
8 electrical connections and when the joystick switch is pushed or released, combinations
of these 8 connections are activated as shown in Figure 11.

(a) Joystick pressed

(b) Electrical configuration of the 2 joystick buttons. Above:
lateral dead man’s switch (1–6 contacts). Below: upper push-
button (7–8 contacts).

Figure 11. Allen-Bradley joystick used as the handle of the knife.

The 8 electrical wires from the joystick are connected to an Arduino Uno circuit board
which was then connected to a laptop (see Figure 12 for the complete connection diagram).
The rosserial ROS package and the ros_lib library is used to integrate the Arduino Uno
with the robot network via ROS.

Figure 12. Arduino circuit diagram for connecting the joystick to a laptop.
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By using this joystick, the user will be able to communicate his intention clearly with
regards to the meat cutting operation. See Section 5.2 for a more detailed description of how
the user will use this joystick for a safe and unobtrusive physical human-robot interaction.

4.4. Meat Cutting Equipment

To fully understand the practical issues in implementing the technical aspects of
the project we first performed some meat cutting trials using the robot in the gravity
compensation mode. A special holding tool was developed to accommodate a joystick
which would be held by the user and the cutting tool. The project involved meat operations
on chicken, pork and beef for which special cutting tools were made. The joystick was
an industrial joystick which we customized for the project and it allowed a very natural
and intuitive user interface. The blades are professional butcher blades customized for the
project by machining in the laboratory. A customized pneumatic hanger was developed
for holding the pork vertically. Specific cutting tools and holding apparatus for each meat
product or carcass to cut were devised as shown in Figure 13 below.

(a) Horizontal cutting (b) Vertical cutting

(c) Knife (d) Peeler (e) Chicken holder (f) Pork
Figure 13. Exoscarne equipment.

5. Experiments

The complete network diagram is shown in Figure 14. All the PCs of this network
communicate via ROS. The two assistive strategies are implemented in the right laptop,
which recovers FT sensor information from the two middle PCs and sends robot commands
to the left PC.
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Figure 14. Network diagram of the Exoscarne system. From left to right: control box of the KUKA
LWR 4+ robot connected to one PC with FRI/KDL libraries; data acquisition boxes for FT sensors A
and B connected to two PCs and an Arduino board for joystick acquisition connected to a laptop.

We performed experiments to address the following questions:

1. Which FT sensor should be used as a source of input for the control scheme?
2. What should the impedance shaping strategy performed through the joystick but-

tons be?
3. What should the amplification factor be for the force amplification strategy?
4. Comparison of the force amplification strategy and the intent prediction strategy.

5.1. Comparison of FT Sensors

As shown in Figure 10, there were two FT sensors on the cutting tool. We wanted to
confirm if 2 FT sensors provide an advantage over a single FT sensor, as well as determine
which FT sensor is better as a source of input for the control scheme.

A piece of thick foam was used as the material to be cut. This foam reproduces the
same type of shearing forces as meat cutting. Two experiments were performed. In the first
one the robot was commanded to apply forces gradually from 0 to 50 N in the Y-direction
of the world frame, which was parallel to the cutting direction of the knife. In the second
experiment, a human cut the foam multiple times in the Y-direction, as shown in Figure 15.

Based on the sensor readings from both the sensors, it was observed that for free
motion in space (without any cutting), both the sensors record the same readings. However,
for cutting motion, sensor A (refer to Figure 10) is blind to the cutting forces. Sensor B
recorded forces when the robot cut the foam autonomously, but the recorded forces were
feeble and almost negligible to the forces commanded to the robot. When a human cut the
foam using impedance controller the sensor B registered adequate forces.
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Figure 15. Comparison of sensor A and sensor B.

Hence it was determined that it is reasonable to consider that the forces sensed by
sensor B (below the joystick) capture the human applied forces on the knife and thus,
the user’s intention. During actual meat cutting experiments, both the sensors were
alternated as sensor inputs for the controller in numerous trials and the user responded
that he preferred the system behaviour when sensor B was the sensor input.

5.2. Impedance Shaping for Cutting

While cutting meat, the user performs an active meat cutting operation followed by
an inactive repositioning of the knife for the next stroke. Furthermore, the user may want
to use both of his hands for some other task and as such need the robot to stay still in the
last position. The joystick has two buttons (see Figure 10): the first lateral grey button
with three possible positions (i.e., a dead-man’s switch) and the second upper black button
having two states (i.e., a pushbutton). This gives us a total of 6 possible combinations
shown in Table 4. The corresponding electrical connections of both buttons are shown in
Figure 11.

Table 4. States of joystick buttons.

Button 2

State 0 State 1

Button 1
Position 0 Robot is stiff + no amplification Robot is stiff + amplification

Position 1 Robot is free, but no amplification
(used for positioning of knife)

Robot is free + amplification
(used for cutting)

Position 2 Robot is free, but no amplification
(used for positioning of knife)

Robot is free + amplification
(used for cutting)

The button configurations from Table 4 are interpreted in the impedance shaping
algorithm as shown in c. We can see that the last two rows are identical. Originally we tried
to use position 2 with an impedance relation (i.e., K, D ← Fh); however, the user preferred
to keep the interface simple and make the position 1 and position 2 identical for operation.
This shows that developing user-friendly interface is essential for the adoption of pHRI
over human-only or robot-only equipment. The constant values of Table 5 are:
Kmin =

[
0.1 0.1 0.1 0.1 0.1 0.1

]
,

Kmax =
[
5000 5000 5000 300 300 300

]
,

Dmin =
[
0.01 0.01 0.01 0.01 0.01 0.01

]
,

Dmax =
[
1.0 1.0 1.0 1.0 1.0 1.0

]
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Table 5. Impedance shaping using joystick.

Button 2

State 0 State 1

Button 1
Position 0 Kmax, Dmax, η = 0 Kmax, Dmax, η

Position 1 Kmin, Dmin, η = 0
(used for positioning of knife)

Kmin, Dmin, η
(used for cutting)

Position 2 Kmin, Dmin, η = 0
(used for positioning of knife)

Kmin, Dmin, η
(used for cutting)

5.3. Tuning the Amplification Factor

In the force amplification strategy we amplify the forces applied by the user on the
joystick, detected by the FT sensor and input to our control scheme (see Figure 1). For the
robot to provide assistive forces we had to determine the amplification factor η for each
degree of freedom as shown in Equation (18):

Fcmd =

⎡
⎢⎢⎢⎢⎢⎢⎣

eFx
eFy
eFz

eFAz
eFBy
eFCx

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

ηx
ηy
ηz

ηAz

ηBy

ηCx

⎤
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⎡
⎢⎢⎢⎢⎢⎢⎣

e
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e
BFy
e
BFz
e
Bτz
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Bτy
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⎤
⎥⎥⎥⎥⎥⎥⎦

(18)

While a high amplification factor would easen the load on the user, it could also give
the user the perception that he is no longer in control of the operation and reduce his
comfort with the system (as was realized during the experiments). This is the reason we
cannot have the robot simply apply the highest forces possible.

The tuning of the comfortable amplification factors was a continuous process where
several iterations of meat cutting were performed by a professional butcher. It was decided
collectively that there would be only two amplification factors: one common η f for forces
and one ητ for torques (i.e., η f = ηx = ηy = ηz and ητ = ηAz = ηBy = ηCx ). This
iterative tuning process finished when the butcher found that the assistance behavior was
comfortable, as explained in Figure 16.

The meat cutting operation involves both the application of forces and torques, as such
the force amplification factor η f cannot be determined independently of the torque ampli-
fication factor ητ . In earlier experiments the user felt that ητ = 3 was ideal for him and
hence to determine η f a series of consecutive experiments were done as shown in Table 6
enabling the user to make a subjective comparison.

At the end of the experiment it was concluded that the user preferred η f ∈ [10, 20]
and ητ = 3. With η f = 20 and ητ = 4, the user found the system to be too reactive and he
felt he was no longer in control. These 6 experiments and the temporal evolution of the
cutting forces applied by the user after applying these optimal force amplification factors
are shown in the next section.

5.4. Meat Cutting with Force Amplification Strategy

As a knife mounted on the end-effector of a robot is inherently dangerous, the knife
for the meat cutting experiments was always covered with a sheath when not in use to
avoid accidental injury. When experiments were being performed, even if the user could
stop the robot at any time by releasing the button, a second person always had his/her
hand on the emergency robot switch to disable the robot if something goes wrong. The user
also wore a protective gear around his arms. In addition, as a precaution, the robot was
wrapped with a plastic sheet to prevent minute meat pieces from entering the internal
structure of the robot.
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Figure 16. Iterative procedure for tuning the two amplification factors for forces and torques.

Table 6. Determining the force amplification factor ηF.

S.No. Meat Part Side Operation FT Sensor Input Force Amplification η f Torque Amplification ητ

1 Pork Square Right Cutting B 20 3

2 Pork Square Right Cutting B 20 3

3 Pork Square Right Cutting B 15 3

4 Pork Square Right Cutting B 15 3

5 Pork Square Right Cutting B 10 3

6 Pork Square Right Cutting B 20 3
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Experiment 1—Cobot assisted pork cutting

Figures 17 and 18 show the sequence of cuts of Experiment 1 and the corresponding
temporal evolution of the XYZ-total forces applied by the user and measured by the B
sensor, respectively. The terminology A cut, B cut, etc. in these figures are author defined
to refer to the iteration of the cutting and not the cutting methods. Therefore, the images
shown in Figure 17 do not represent one single cut in progress, but instead one image of
each cut: they can be interpreted as cut 1, cut 2, etc.

(a) A cut (b) B cut (c) C cut (d) D cut
Figure 17. Experiment 1—cobot assisted pork cutting.

Figure 18. Forces applied by the user in Experiment 1.

Experiment 2—Cobot assisted pork cutting

In Experiment 1, it took the butcher (the user) 4 cuts to make 1 slice. Nevertheless, in
Experiment 2 (see Figure 19), with the same section but from a different meat, it took him 9
cuts to make 1 slice (see Figure 20 for the corresponding temporal force evolution). This is
due to the natural variation in the body composition from one animal meat to another and
also how much forces the user wanted to apply for a single cut.
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(a) A cut (b) B cut (c) C cut (d) D cut (e) E cut

(f) F cut (g) G cut (h) H cut (i) I cut
Figure 19. Experiment 2—cobot assisted pork cutting.

Figure 20. Forces applied by the user in Experiment 2.
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Experiment 3—Cobot assisted pork cutting

Figure 21 shows the 5 cuts of Experiment 3 while Figure 22 represents the temporal
evolution of the forces exerted by the human during those cuts while assisted by the force
amplification strategy.

(a) A cut (b) B cut (c) C cut (d) D cut (e) E cut
Figure 21. Experiment 3—cobot assisted pork cutting.

Figure 22. Forces applied by the user in Experiment 3.
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Experiment 4—Manual pork cutting

Figure 23 shows the 9 cuts of Experiment 4 and Figure 24 represents the corresponding
temporal evolution of the forces applied by the human.

(a) A cut (b) B cut (c) C cut (d) D cut (e) E cut

(f) F cut (g) G cut (h) H cut (i) I cut
Figure 23. Experiment 4—manual pork cutting.

Figure 24. Forces applied by the user in Experiment 4.
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Experiment 5—Manual pork cutting

Figure 25 shows the 5 cuts of Experiment 5 and Figure 26 represents the corresponding
temporal evolution of the forces applied by the human.

(a) A cut (b) B cut (c) C cut (d) D cut (e) E cut
Figure 25. Experiment 5—manual pork cutting.

Figure 26. Forces applied by the user in Experiment 5.
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Experiment 6—Manual pork cutting

Finally, Figure 27 shows the 7 cuts of Experiment 6 and Figure 28 represents the
corresponding temporal evolution of the forces applied by the human.

(a) A cut (b) B cut (c) C cut (d) D cut (e) E cut

(f) F cut (g) G cut
Figure 27. Experiment 6—manual pork cutting.

Figure 28. Forces applied by the user in Experiment 6.
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Experiment 7—Foam cutting with intent prediction module

For the previous meat cutting experiments with force amplification strategy we had
a professional butcher as the user. However, for verifying the intent prediction strategy,
we used a foam block and multiple users in order to perform the training of the LSTM
network (see Figure 29 for the corresponding experimental setup). This foam reproduces
the same type of shearing forces as meat cutting.

Figure 29. Foam cutting along the global y-direction.

As explained earlier, our intent prediction module uses RNN-LSTM units. For each
user, we performed sample trials with foam cutting to collect the training dataset. The LSTM
network was trained on this dataset to predict force values, similar to the prediction of
force values of the Natural Motion dataset (NM-F) in [23].

For each user we took 90 percent of the sample dataset as the training dataset. The en-
tire architecture consisted of 4 layers- an input layer, an LSTM layer, a fully connected
layer and a regression layer. We tested the prediction accuracy with combinations of
different hyperparameters such as the number of epochs, sequence length and learning
rate. However the results were almost the same i.e., a prediction accuracy of 0.3 (root mean
square error).

The number of features was 1 as we had only a single variable—force applied. Simi-
larly as only 1 output was expected, the number of responses was 1. The number of hidden
units was taken as 200 and the maximum number of epochs was set to 250. The sequence
length for the input layer was 25 time steps (0.2 s). For the output layer, we used Stochastic
Gradient Descent algorithm with a learning rate of 0.01. The sigmoid function was used as
the activation function for the 3 gates—In, Out and Forget in the LSTM units as it outputs a
value between 0 and 1. However for the memory cell, the values should be able to increase
or decrease which is not possible with the sigmoid function as the output is always non-
negative, hence we used the hyperbolic tangent function (tanh) as the activation function
for the memory cell.

Figure 30 shows the plot of cutting forces applied by a user with and without the intent
prediction module (for 30 cm cutting of the foam). When the intent prediction module
was turned off, we had Kmin and Dmin only (i.e. minimum impedance). With the intent
prediction module the user applied only 20 percent of the forces as compared to when the
module was turned off.

We also compared the force amplification strategy with the intent prediction strategy
with 5 users as shown in Figure 31. For each user sample trials were conducted with force
amplification strategy for them to decide which amplification factor they are comfortable
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with. All the users stated that the intent prediction module made the cutting more intuitive
than the force amplification strategy.

Figure 30. Cutting forces applied by the user using the intent prediction module for 30 cm cutting
of the foam. The blue line is the force applied with Kmin and Dmin only (i.e. minimum impedance),
while the red line is the force applied with Kmin and Dmin and the intent prediction module.

Figure 31. Comparison of different strategies with 5 users.

6. Conclusions and Future Work

In this paper, we demonstrated a proof of concept of two pHRI-based assistive strate-
gies for an industrial meat cutting system. It was determined that sensor B below the
joystick gives better reactivity and hence this sensor should be used as the sensor input.
From the previous experiments, it is evident that the forces applied by the user are approxi-
mately 30% small with the cobot and the force amplification strategy than with the manual
meat cutting operation. Blades with lengths 20 cm and 10 cm were tested, and the one
with length 10 cm was adjudged to give better cutting performance, because it was stiffer,
with less bending and mechanical compliance.

The cartesian impedance controller runs at a frequency of 1000 Hz, as well as the FT
sensor. At this frequency the user found it intuitive and useful to operate the tool for the
meat cutting task without any issue. However, it is known that the human central nervous
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system operates at a lower frequency than a robot controller, and if he is coupled to the
system via a tool it is possible for the user to ’perceive’ a loss of control if the system is
too reactive, an observation that capped the upper limit of the amplification in the force
amplification strategy.

In the foam cutting experiment, it was shown that the intent prediction strategy was
better than the force amplification strategy, especially with regards to intuitiveness. In a
pHRI system such as this one, not only should the robot provide assistance as a machine,
but also the interface should be intuitive, natural and easy to use.

Our contributions are:

1. We followed a systematic methodology to develop a user friendly pHRI controller
system for meat cutting.

2. We developed two assistive strategies: a force amplification strategy and an intent
prediction strategy.

3. The developed system allowed the user to move the knife in all 6 degrees of freedom.
4. Using impedance shaping, the impedance values were altered between the cutting and

non-cutting re-positioning movement of the knife, which was found as comfortable
by the user.

For future work, we would like to compare the force amplification strategy and the
intent prediction strategy on meat cutting tasks. Furthermore, in the current experiments
we had only one professional butcher and it would be interesting to see what are the
experimental results with more professional users. The next step of project Exoscarne
would involve the design and development of a specific exoskeleton for meat cutting and
transferring the controller that was developed in this work.
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Y.M., M.A.; software, H.M., L.L.; validation and analysis: H.M., M.A.; writing—original draft
preparation: H.M.; writing—review and editing: J.A.C.R., L.L., Y.M., M.A.; supervision: J.A.C.R.,
Y.M.; funding acquisition: J.A.C.R., Y.M., M.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received funding from the French government research program Investisse-
ments d‘Avenir through the UMTs ACTIA Mécarnéo-AgRobErgo and the project Exoscarne (Call
P3A-ICF2A-2I2A, FranceAgriMer) and from the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement nº 869855 (SoftManBot project).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

pHRI Physical human-robot interaction
MSD Musculoskeletal disorders
ARMS A multi arms Robotic system for Muscle Separation
RNN Recurrent neural networks
LSTM Long Short Term Memory
ROS Robot Operating System
FT Force-Torque
URDF Unified Robot Description Format
FRI Fast Research Interface
DH Denavit–Hartenberg
LWR Light Weight Robot
KDL Kinematics and Dynamics Library
IAD Intelligent Assist Devices
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Featured Application: The system described in this work is intended to be applied to hand motor

skill rehabilitation and recovery.

Abstract: In this work, we introduce HaReS, a hand rehabilitation system. Our proposal integrates a
series of exercises, jointly developed with a foundation for those with motor and cognitive injuries,
that are aimed at improving the skills of patients and the adherence to the rehabilitation plan. Our
system takes advantage of a low-cost hand-tracking device to provide a quantitative analysis of the
performance of the patient. It also integrates a low-cost surface electromyography (sEMG) sensor in
order to provide insight about which muscles are being activated while completing the exercises. It is
also modular and can be deployed on a social robot. We tested our proposal in two different facilities
for rehabilitation with high success. The therapists and patients felt more motivation while using
HaReS, which improved the adherence to the rehabilitation plan. In addition, the therapists were
able to provide services to more patients than when they used their traditional methodology.

Keywords: hand motor rehabilitation; sEMG; hand pose; social robot

1. Introduction

Rehabilitation of the brain- and motor-injured is an important task. These kinds of
challenged individuals have reduced motion in their muscles as a result of an accident,
acquired diseases, or birth conditions. However, they can improve their motor skills by
following a rehabilitation plan. Nonetheless, foundations such as ADACEA, which is a
Spanish-based organization for the brain- and motor-injured, are usually under founded
and short staffed, and sometimes they cannot provide the required rehabilitation services.
In addition, there is a lack of an established protocol to quantitively evaluate a patient’s
performance on rehabilitation exercises.

So far, the therapists of ADACEA carry out exercises with patients one by one, and
do not have any quantitative method to evaluate the patients’ performance. The patients
have the rehabilitation sessions scheduled, but since these kinds of foundations are usually
short staffed, as mentioned before, the patients do not execute the amount of rehabilitation
sessions they should. In addition, the evaluation is purely qualitative. In this sense, the
therapists take notes about the performance and significant events such as pain or unusually
poor execution of the exercises based on the therapists’ experience. These eventualities
negatively impact the way they follow the rehabilitation process and what they take away
from it.

Having this need in mind, we developed HaReS, a hand rehabilitation system, which
is a system for motor rehabilitation. By using HaReS, patients can perform rehabilitation
exercises on their own, without requiring the presence of a therapist. Furthermore, HaReS
automatically grades the performance of users, so therapists have a quantitative measure-
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ment of patients’ performance. This way, the therapists can provide an optimized and
enhanced service to more patients.

HaReS is composed of a surface electromyography (sEMG) sensor and a hand-tracking
device that allows to record and provide quantitative measurements and feedback of the
rehabilitation sessions that a patient is performing. The exercises are set up by a therapist
for each user. In addition, HaReS can take advantage of a social robot to show the exercises
and to interact with patients. Thus, enhancing their adherence and engaging them. The
system is modular, so it is able to work without the sensors or the robot. Apart from the
robot, the rest of the system is fairly low cost. It is important to note that it is executed on
a desktop or laptop computer, so all components are connected to it. The hand-tracking
device, the sEMG sensor, and the social robot are all connected to the computer, which is
in charge of running HaReS. In this sense, the robot is not executing HaReS, nor are the
sensors connected to it. The role of the robot within the HaReS framework is to display
the system in its built-in screen and interact with the patient using gestures, lights, and its
speech capabilities.

The main contributions of this paper are the following:

• A hand rehabilitation system that integrates a series of exercises for the motor- and
brain-injured;

• Use of low-cost sensors for hand tracking and muscle signal monitoring;
• An automatic and quantitative evaluation of the exercises to be analyzed by the

therapists;
• Optional use of a social robot to improve patient adherence to rehabilitation

The rest of the paper is structured as follows. First, some related work to this matter
are presented in Section 2. Then, Section 3 describes the proposal in detail. Next, the
evaluation we performed to validate the system is given in Section 4. Finally, Section 5
states the conclusion of this work and future research directions.

2. Related Works

As stated in [1], conventional exercise programs follow the Bobath [2,3] or Brunnstrom [4]
concepts, as well as the proprioceptive neuromuscular facilitation (PNF) principles [5]. On
the one hand, Bobath’s method emphasizes the reduction of enhanced muscle tone before
facilitating active movements by means of cutaneous and proprioceptive stimuli applied to
the region of the target muscles. On the other hand, Brunnstrom’s approach and PNF use
maximal innervation of intact or less-paretic muscle groups to produce irradiation effects
in more severely paretic synergistic muscle groups. Several studies have been carried
out with some of these techniques [6–10]. However, none of these studies presented a
suitable control group, so the benefit was difficult to extrapolate from spontaneous recovery.
Additionally, they presented a lack of exercise strategies for the hand muscles.

In [1], the authors investigated the effect of a specific training program focused on the
performance of the basic movement parameters of the hand. They paid special attention to
the identical repetition of movements, whose long-term benefits have been demonstrated in
other studies with animals [11,12]. The patient scores for the rehabilitation exercises were
calculated according to the Rivermead Motor Assessment [13], a widely used technique to
measure motor ability in stroke patients, and 24 out of 27 patients showed an important
improvement according to this metric. In this study, they introduced control groups to
ensure the impact of the specific repetitive motor training in motion improvement.

In order to evaluate muscles’ progress during the rehabilitation process, some rehabil-
itation exercises take advantage of surface electromyography (sEMG) electrodes [14–17].
These wearable electrodes enable the professional in charge to analyze the muscular activi-
ties and muscular strength of a patient during each exercise [18,19]. In some rehabilitation
methods, with aim of having an interactive system and motivating patients with visual and
audio feedback, during the process, sEMG analysis is incorporated into a 3D game [20,21],
virtual reality (VR) [22], and augmented reality (AR) [23]. In addition, there are algorithms
that take sEMG signals as the input in order to compute [24] different low-level move-
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ments of the muscles. Specifically, this paper introduces a method to perform movement
identification of the upper limb: Abduction, adduction, flexion, extension, and abduction
followed by arm to the front.

In recent years, researchers have focused on robot-assisted neurorehabilitation in
order to improve the performance of rehabilitation exercises. According to [25,26], two
main approaches have been used to design hand rehabilitation devices: End-effector and
exoskeleton robots.

End-effector-based robots are usually employed to simulate activities of daily living
(ADLs), to train the hand and, eventually, the wrist function by only interacting with the
distal segments of the fingers, that is, the fingertips or sometimes the middle phalanxes.
The rest of the arm is not controlled by the robot, which may result in patients using
undesired compensatory strategies, so it is common to provide a weight support in order
to reduce the muscle fatigue produced by the distal limb [27–33]. These types of robots are
prepared for hands of different sizes, so they can be easily adjusted for different patients.

On the contrary, an exoskeleton consists of a mechanical structure that is mounted in
parallel with the limb of the user in order to provide assistance, so each degree of freedom
is locally aligned with the corresponding human joint [16,17,34–40]. The majority of hand
exoskeletons aim to restore grasping function by helping patients open the hand or provide
force augmentation to hold objects. They do not limit the natural joint movements of
patients, but their design is far more complex and the adaptation process for new users is
more difficult.

Several clinical studies have studied the efficacy of these types of assisted rehabilitation
strategies and have concluded that they are effective in reducing the motor impairments of
stroke victims, and that they improve the ability to perform activities of daily living [25,41].

Most of these rehabilitation exercises require the presence of professional therapists
that help and supervise the results of this process. However, the lack of medical resources,
the difficulties in visiting these professionals daily, and the challenges to transfer this
clinic technology to a home environment make the rehabilitation process much harder for
patients when they are at home.

Recent works have focused on at-home rehabilitation exercises in order to provide
these tools outside of a clinic environment. In [42], the authors developed a multisensor
system for rehabilitation and interaction with people with motor and cognitive disabilities.
In the case of [43], PHAROS was proposed, an interactive robot system that recommends
and monitors physical exercises at home, designed for the rehabilitation of chronic dis-
eases. More recently, [44] proposed an augmented reality platform to engage and supervise
rehabilitation sessions at home using low-cost sensors. This platform also stores a user’s
statistics and allows therapists to tailor the exercise programs according to their perfor-
mance. The results presented in these research works suggest that these platforms improve
the results and adhesion to rehabilitation exercises.

However, there is a lack of this type of research specialized in hand motor reha-
bilitation at home that take into account the particularities and needs of its exercises
and evaluations.

Hand pose estimation methods are a really interesting topic, and thus, there are
several different state-of-the-art approaches. For instance, there are pure vision-based
methods [45,46] that take as input images of hands and compute the hand pose. Nonetheless,
these systems lack enough accuracy and are very computationally demanding, requiring a
powerful graphics processing unit. There are also algorithms that process electromyography
(EMG) signals [47] to predict static hand poses. These kind of methods are also unsuitable
because they do not provide fine hand tracking, but rather, a range of fixed poses. Hand
tracking can also be achieved by inertial measure unit sensors [48], but it is also limited to
a range of specific hand movements. The methods reviewed so far rely on computational
models to perform predictions. Nonetheless, there are also hardware-based methods to
perform hand tracking. For instance, motion capture systems [49,50] could be used, but they
are expensive and intrusive, as they must be worn by the users. After carefully considering
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the different approaches to perform hand tracking, we decided to include the Leap Motion
controller [51] in HaReS. This device is low cost and is not intrusive, as it is placed in the
desk and the user does not need to wear it or any specific marker. In addition, its error
ranges from 0.2 to 1.2 mm [52], reportedly being accurate and robust enough for a range of
different applications, including robot manipulation [53] and dataset creation [54].

3. Architecture of HaReS, the Hand Rehabilitation System

As introduced before, HaReS is a system for hand motor rehabilitation. It is composed
of pieces of hardware and software. Regarding the hardware, HaReS uses an sEMG sensor
in order to track the activation of the muscles during the rehabilitation session. Then, a hand-
tracking device is also used to provide the user’s hand poses. The rehabilitation exercises are
set up on a software app, which record sthe data of the sessions, including sEMG profiles
and hand poses. The records are available for the therapists to review remotely and/or
in the future. In addition, some quantitative measurements are given by the system as a
potential indicator of the user’s performance.

These functionalities enable a better evaluation of the improvement the user experi-
ences by completing the rehabilitation exercises. In addition, the system is modular, so
any of the pieces can be removed at any time. Regardless, it is worth mentioning that the
devices we used to create HaReS are fairly low cost. Finally, HaReS can be deployed on a
social robot for further improving patients’ experience and motivation. A diagram of the
complete architecture of HaReS is shown in Figure 1.

Figure 1. Architecture of HaReS, a hand rehabilitation system, featuring surface electromyography (sEMG) and hand
tracking low-cost sensors.

At this point, it is worth noting that the use of a robot is completely optional, as
we intended HaReS to be low cost and fully modular. The system can be deployed on a
desktop or laptop computer, with no robot involved. We would also like to state that the
chosen sensors, such as Leap Motion, are accurate, whist keeping cost at bay. For instance,
hand tracking based on cameras is possible [45,46], but lacks enough accuracy and requires
much more computation power.

The components of the system are detailed in the following subsections.

3.1. sEMG Sensor

Electromyography (EMG) is a technique used in clinical processes to study the electri-
cal activity produced by skeletal muscles. The signals are captured by a series of electrodes
that are placed in the muscle’s belly. Surface EMG (sEMG) is a non-invasive type of EMG,
and the electrodes should be positioned on the skin surface over the muscles to record the
signals. Although this superficial type of EMG is less accurate than intramuscular EMG
(invasive type), it is a better fit for our purpose. sEMG electrodes are user-friendly and
they are accurate enough to capture muscle activity during exercise.
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The sensor of choice for HaReS esd based on the BITalino project. This device aims to
provide a framework for science education, research, and prototyping. It includes several
sensors and actuators such as electrocardiogram (ECG), electrodermal activity (EDA),
electroencephalogram (EEG) and, of course, electromyogram (EMG). The sEMG sensor
of the BITalino is bipolar, which means that it has two electrodes for sensing the electrical
activity of the muscle and one as a reference. The measuring range is ±1.64 mV and the
sampling rate is up to 4000 Hz.

As suggested in [55], the optimal sample rate for EMG pattern recognition is between
400 and 500 Hz, so we used 500 Hz as the sampling rate for the data acquisition process
that involved the BITalino sensor. To study the finger and wrist movements, the electrodes
were placed on the flexor carpi radialis. In addition to the electrodes’ placement, we were
able to receive data from contraction of the flexor digitorum, and for the reference, we
placed an electrode on the elbow bone.

This sensor is used by HaReS to record the sEMG activity of a desired muscle. Given
these data, along with the synchronized motion data captured by a hand-tracking sensor,
an experienced therapist could detect if the patient is triggering the correct muscles during
the performance of a certain task, thus having more insight about whether the rehabilitation
program is improving the patient’s skills. Figure 2 shows some sample hand poses with
the corresponding sEMG data.

Figure 2. Two samples of hand poses and the corresponding sEMG profile, as provided by the BITalino controller. The
X-axis shows the time, measured in seconds, and the Y-axis shows the muscle activity, measured in mV ×10−3.

3.2. Hand-Tracking Sensor

Another important feature of HaReS is the ability to review the user’s hand poses
while performing the rehabilitation exercises. There are different approaches to tackle this
problem, but we aimed for two important features. First, it had to be low cost so that the
system could be implemented by anyone. Next, it also had to be non-invasive so that it
would not interfere with the already limited motor skills of the patients.

Thus, the sensor of choice for hand tracking was the Leap Motion controller. This
device yields an infrared-based stereo setup, which allows to compute the position and
orientation of the bones in a hand, namely, the user’s hand pose. Leap Motion sends data
at 115 Hz and is precise enough to be considered ground truth [54]. Some sampless ass
provided by this sensor can be seen in Figure 3.

This functionality is used by HaReS to record the user’s hand poses during the exer-
cises. It provides therapists with more data to improve the evaluation of the rehabilitation
program and to know whether patients are performing the exercises correctly.

3.3. Social Robot

The social robot within the HaReS framework is used for displaying information and
interacting with the patient. The inclusion of this robot is merely intended to improve the
motivation of patients and to enhance their experience while using HaReS.

In this regard, the social robot of choice was the Pepper robot. Pepper is an humanoid-
like robot that focuses on interaction. It yields LEDs on its face and has arms that enable it
to show emotions and engage with user interaction. It also has a touchscreen built-in tablet
that allows to display HaReS.
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We used the Pepper robot within the HaReS framework to run the software on its
tablet, to cheer up and encourage patients, and to provide feedback using its arms, face,
and speech capabilities.

Figure 3. Some samples of hand poses, as provided by the Leap Motion controller.

3.4. Rehabilitation Exercises

As stated before, HaReS has a range of rehabilitation exercises. These exercises were
jointly designed with therapists of ADACEA (Alicante, Spain), which is a foundation for
the rehabilitation of acquired brain injury-affected individuals.

So far, for the motor rehabilitation of the hands, they divide the exercises in two
categories. The first category focuses on strengthening the muscles on the hand and on
low-level and fine motion. This part of the rehabilitation ensures that patients are able to
perform the correct movements. The second part focuses on functional skills that ensure
patients learn how to correctly interact with everyday objects. The tasks designed by the
therapists of ADACEA and implemented in HaReS cover the first part entirely and provide
entry-level exercises to cover the functional part. It is important to note that therapists
must set up the exercise schedule and the settings for each exercise for each user.

The rehabilitation exercises integrated in HaReS are detailed in the following subsections.

3.4.1. Copy Pose

In this exercise, the patient must copy a static hand pose for a configurable amount of
time. The goal hand poses are recorded using the Leap Motion device by the therapists.
The same device is used for processing the patient’s hand pose whilst performing this
exercise. A tolerance threshold is applied in order to consider that a pose is correct.

As explained before, the Leap Motion controller provides the tridimensional position
of each joint in a hand, taking advantage of this to measure the users’ performance. In
this case, we computed the mean euclidean distance to each fingertip from the user’s pose
to the goal pose. In order to make the system tolerant to different users, the hands were
normalized so that they all had the same size. This is also adequate for measurements, as it
enables a global framework of comparison that is not user-dependent.

An image depicting a subject executing this exercise can be seen on the leftmost image
of Figure 4.

3.4.2. Copy Pose Dynamic

This exercise is similar to the one described in Section 3.4.1. However, in this case,
the poses are dynamic, namely, the user must copy a specific movement instead of a fixed
pose. The dynamic hand poses the patient must replicate are prerecorded by the very same
hand-tracking device that is used in the HaReS system, namely, the Leap Motion controller.
The therapists can thus add new dynamic poses to the task with ease so that the patients
can replicate them.

To quantitatively rank the similarity between the goal movement and the user move-
ment, we computed dynamic time warping (DTW) [56]. Applied to this scope, DTW
measures the similarity between the trajectories of two 3D points that are shifted on the
time dimension, namely, it isolates the time factor measuring only the similarity of two
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trajectories. As the original implementation is very computationally demanding, we used
an approximation of the algorithm, which is much faster, as described in [57].

We applied DTW to the trajectories of the fingertips between the goal movement and
the user movement and averaged them. An exercise is considered correct if this value is
under a configurable tolerance threshold.

The rightmost image of Figure 4 depicts a subject carrying out one of these exercises.

Figure 4. HaReS screenshots that correspond to a copy pose exercise (leftmost) and a copy pose dynamic exercise.

3.4.3. Follow the Path

This exercise consists of following a specific path with the index fingertip of the hand,
namely, the user must place the finger on an array of subgoals arranged on the screen
sequentially. As providing visual feedback within the display of a tridimensional position
is ambiguous, the paths are simplified to be 2D. Thus, the paths are defined in a plane that
is perpendicular to the ground.

In this case, the time the user takes to reach all of the subgoals is measured. As
explained before, the euclidean distance is computed between the subgoal and the 2D
fingertip position, and if the distance is lower than a threshold, the user is considered to
have reached that subgoal.

The leftmost image of Figure 5 depicts a subject carrying out one of these exercises.

Figure 5. HaReS screenshots that correspond to a follow the path exercise (leftmost) and a grab object exercise.

3.4.4. Grab Object

Unlike the exercises described in the sections above, which are focused on strengthen-
ing the muscles on the hand and on low-level and fine motion, this exercise also introduces
a functional factor as well. In this exercise, an object is displayed to the patient, who
performs the movement required to grab the object. As there is a range of different ways to
grab a certain object, no quantitative measure is provided for these exercises.
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As the sessions are recorded, they provide the therapists with evidence about the
patient’s skills, and whether their grabbing methods harm other muscles due to unnatural
movements induced by the condition of the patient.

A subject carrying out one of these exercises can be seen in the rightmost image of
Figure 5.

3.4.5. Free Style

This task does not have a fixed aim, but instead records the patients’ hand movements
for the therapists so that they can review them later. This option enables the therapist to
ask for certain exercises that are not considered by HaReS and still provide valuable insight
about the user rehabilitation program.

4. Evaluation

In order to evaluate the value of HaReS, we conducted complete pilot tests in two dif-
ferent facilities for motor and cognitive rehabilitation. One was carried out in the ADACEA
foundation, as mentioned before (five patients with a range of different levels of hand motor
limitation and of different ages, and two therapists), and the second one was performed in
a local nursing home (five patients with a range of different levels of hand motor limitation,
aged 72–79, and two therapists). The complete pilot test included two sessions of two hours
with the robot in each facility at the beginning and at the end of the pilot test. During the
remaining time, they used HaReS without the social robot, namely, deployed on a desktop
computer. In total, the pilot test was carried out within a timeframe of four months.

We divided the evaluation section into the two following subsections. First, we
conducted a survey for both patients and therapists, the results of which are shown in
Section 4.1, in order to gain insight into the overall benefits of HaReS and the facets that
are hard to measure, such as the motivation factor. The next part of the evaluation showed
more qualitative aspects of the pilot experiment, such as the evolution of the scores per
activity included in HaReS. This matter is shown in Section 4.2.

4.1. Qualitative Evaluation

As mentioned before, surveys were handed to the hosts of the experiments in order to
qualitatively evaluate HaReS as a whole system. The survey covered a range of different
aspects, from the usability to the impact in the rehabilitation. The results are shown in
Table 1. The score was averaged among the answers of both organizations and were in the
range of 1–5, 1 being totally disagree and 5 being fully agree.

Table 1. Questions and corresponding scores of the survey conducted in two different facilities for motor and cognitive
rehabilitation.

ID Question Score

1 The exercises implemented in HaReS overall helped to improve the motor skills of the patients 4

2 The exercises implemented in HaReS helped to improve the adherence at home to the rehabilitation plan 5

3 The exercises implemented in HaReS effectively cover a common rehabilitation plan 3

4 The hand poses provided by the Leap Motion controller are accurate enough 4.5

5 The HaReS interface is comprehensive and easy to use 4

6 HaReS is a motivating factor for the therapists 5

7 HaReS is a motivating factor for the patients 5

8 The use of a social robot is critical in terms of motivation for the therapists 2

9 The use of a social robot is critical in terms of motivation for the patients 4

10 HaReS helped the therapists to provide a better service 4

11 HaReS helped the therapists to provide service to more patients 3
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Regarding the results of the survey, the therapists and patients agreed that HaReS
helped to improve the motivation of the two groups. Therapists remarked that HaReS
indeed helped to improve the motor skills of the patients at the same level of the traditional
rehabilitation methodology, and also stated that the proposal helped to provide services to
more patients at the same time. For the patients, the use of a social robot was a motivation
factor that improved the user experience and engagement. Nonetheless, the therapists
stated that the robot had no effect in their motivation, nor on the results of the rehabilitation
plan. Regarding the accuracy of the hand poses, the therapists stated that it was acceptable,
and that it seldom lost track of the hands or depicted incorrect poses.

In addition to the survey, the therapists also offered valuable feedback. The comments
included that HaReS could benefit from more exercises. They also suggested to somehow
involve gamification to further improve the adherence to the rehabilitation plan and to
enhance the appeal of HaReS. Finally, they proposed the use of a virtual reality setup that
provides a better immersion of the patients in order to further improve their experience
and the efficiency of the functional exercises.

As a conclusion, we can mention that HaReS indeed helped in the motivation of both
therapists and patients, and that HaReS helped to optimize the time that the therapists
used to provide services to more patients at the same time.

4.2. Quantitative Evaluation

Here, we show the quantitative results obtained by the patients during the four-
month timeframe in which the pilot experiment was conducted. Specifically, we show
the quantitative measures of each activity included in HaReS. First, as explained before,
the copy pose activity measures the mean euclidean distance from the user’s fingertip to
the goal. Then, the copy pose dynamic activity measures the mean DTW from the user’s
fingertip to the goal. Finally, the follow the path activity measures the time the user takes
to reach all of the goals. The results are shown in Figures 6–8.
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Figure 6. Evolution of the copy pose activity at ADACEA (left) and at the nursing home (right).
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Figure 7. Evolution of the copy pose dynamic activity at ADACEA (left) and at the nursing
home (right).
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Figure 8. Evolution of the follow the path activity at ADACEA (left) and at the nursing home (right).

As per the experiments shown, the patients of the ADACEA foundation experienced
a significant improvement over the timeframe in which they used HaReS in all tasks. The
patients of ADACEA are people that have suffered an accident or a sudden condition.
Thus, their hand motor limitation was acquired and, in most cases, reversible. This means
that they were expected to improve over the three months in which the experiment was
conducted. Nonetheless, the results for the patients of the nursing home were different.
They barely experienced any improvement. This is likely due to all of them being elderly
people, with motor limitations due to their age. Note that the expected goal of HaReS in
this case is to stop further degradation of their muscles.

5. Conclusions and Future Work

In this paper, we introduced HaReS, a hand skill rehabilitation software for the
motor- and brain-injured. HaReS takes advantage of low-cost sensors, such as a hand-
tracking device and sEMG sensors, to help quantitatively and automatically evaluate the
performance of a rehabilitation plan, and helps to follow the evolution of a patient. As
there is no need for a therapist to be present during the rehabilitation sessions, it helps to
provide services to more patients.

The evaluation we carried out in two different rehabilitation facilities indicated that
HaReS effectively helped both therapists and patients with the rehabilitation plan in terms
of both adhesion and improvement of the motor skills. In addition, they both found HaReS
a motivating factor that engaged users in the rehabilitation exercises.

As for future work, we plan to involve a full machine learning method for estimating
users’ hand poses that enables to provide accurate prediction whilst keeping the computa-
tion cost at bay. In addition, as the therapists stated, it is important that the rehabilitation
exercises have a goal, such as grasping an object or completing a puzzle, rather than aim-
lessly repeating a movement. In this regard, we plan to implement the idea developed here
using a virtual reality environment so that patients can engage cognitively even further. In
addition, we plan to use the data gathered by HaReS to train machine learning methods that
can automatically predict whether the user is improving or not by reviewing their history,
or to state whether a user is prone to suffer any hand motor or cognitive disease such as
Parkinson’s. We plan to also involve computational models [58–60] to produce EMG signals
that would enable to provide an automatic analysis to assist therapists to understand the
sEMG signals provided by HaReS.

Finally, we want to also remark that due to the COVID-19 constraints, we were unable
to access more patients or more rehabilitation facilities. We plan to carry out a proper set of
experiments once we are able to freely access these people again.
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Abstract: The percentage of people around the world who are living with some kind of disability
or disorder has increased in recent years and continues to rise due to the aging of the population
and the increase in chronic health disorders. People with disabilities find problems in performing
some of the activities of daily life, such as working, attending school, or participating in social and
recreational events. Neurological disorders such as epilepsy, learning disabilities, autism spectrum
disorder, or Alzheimer’s, are among the main diseases that affect a large number of this population.
However, thanks to the assistive technologies (AT), these people can improve their performance in
some of the obstacles presented by their disorders. This paper presents a new system that aims to help
people with neurological disorders providing useful information about their pathologies. This novelty
system consists of a platform where the physiological and environmental data acquisition, the feature
engineering, and the machine learning algorithms are combined to generate customs predictive
models that help the user. Finally, to demonstrate the use of the system and the working methodology
employed in the platform, a simple example case is presented. This example case carries out an
experimentation that presents a user without neurological problems that shows the versatility of
the platform and validates that it is possible to get useful information that can feed an intelligent
algorithm.

Keywords: sensors; electronic platform; machine learning; wearables

1. Introduction

About one billion people live with some kind of disability. This corresponds to around
15% of the world’s population [1]. The rate of disability is increasing, among other things
due to the growth in the average age of the population and the increase in chronic health
disorders. Lower income countries have a higher prevalence than higher income countries.
Poor people have less resources to access treatment.

Half of people with disabilities cannot afford necessary medical care, compared to one
third of non-disabled people who cannot afford it. People with disabilities have more than
twice the probability of finding inadequate health care providers techniques, up to four
times as likely to report improper treatment, and nearly three times as likely to be denied
medical care [1].

Children with disabilities or disorders have a lower probability of attending school
and receiving an adequate education. The probability of finding a job for a disabled person
is also lower. Global employment data show that the employment rate for people with dis-
abilities is 53% for men and 20% for women, while for people without disabilities it is 65%
and 30% [1]. Therefore, people with disabilities are more vulnerable to poverty. They have
worse living conditions due to the additional costs of their special needs (specialized

Appl. Sci. 2021, 11, 2789. https://doi.org/10.3390/app11062789 https://www.mdpi.com/journal/applsci

103



Appl. Sci. 2021, 11, 2789

medical care, assistive devices, or people for supporting them). As a result, people with
disabilities are generally poorer than people without disabilities who have similar incomes.

Neurological disorders are diseases that affect the central and peripheral nervous
system, i.e., the brain, the nerves that are found in the human body, and the spinal cord.
Millions of people worldwide suffer from neurological disorders. For example, more than
6 million people die each year from strokes, more than 50 million people around the world
have epilepsy, and 7.7 million cases per year are diagnosed with Alzheimer’s disease,
which is the most common cause of dementia [2]. The specific causes of neurological
problems vary, but they may include genetic disorders, congenital anomalies or disorders,
infections, lifestyle or environmental health problems, brain injuries, spinal cord injuries,
or nerve injuries [3].

On the other hand, neurological disabilities include a wide range of disorders, such as
epilepsy, learning disabilities, neuromuscular disorders, autism spectrum disorder, atten-
tion deficit disorder, brain tumors and cerebral palsy, among many others. Some neurologi-
cal pathologies are cognitive, and they appear before birth. Other neurological disorders
may be caused by tumors, degeneration, trauma, infection, or structural defects. Regardless
of the cause, all neurological disabilities are the result of damage to the nervous system [3].
The need for technological solutions that help people who are affected by these pathologies
becomes evident.

Assistive technologies (AT) are devices or systems that can be used to help a person
with a disability or disorder to perform daily life activities. The AT can help to improve
the functional independence and thus, facilitate the daily living tasks through the use of
aids that help a person to travel, to communicate with others, to learn, to work, and to
participate in social and recreational activities [4]. AT devices can range from a simple
and with low technology designs such as a crutch, to complex systems that speak for the
user, automatic opening doors systems or to brain-wave recognition units for interface
management [5].

Some of these assistive devices try to manage the associated problems of neurological
disorders and facilitate the daily life of both the people who suffer from them and the
family or support members who help them throughout their lives. An example is the
Embrace device from Empatica [6]. It is a wrist-worn wearable device that monitors the
user to detect possible convulsive seizures and alert caregivers. Another example of a
monitoring device is the PdMonitor® from PD Neurotechnology [7]. It is a set of wearable
monitoring devices, in this case for people with Parkinson’s disorder. The device tracks,
records, and processes a variety of symptoms, often present in this disease. A third example
is the Monarch eTNS® System from NeuroSigma [8]. It is the first device approved by
the U.S. Food and Drug Administration (FDA) for the treatment of the Attention Deficit
disorder in children (ADHD). The device sends a low-level electrical pulse through a wire
to a small patch adhered to the patient’s forehead. The therapeutic pulses stimulate the
branches of the trigeminal nerve, which activates the neural pathway to other parts of the
brain thought to be involved in ADHD. Many research works for the development of new
assistive devices can also be found. For example, the work of Cesareo et al. (2020) presents
a system for monitoring the breathing rate in people with muscular dystrophy [9]. The
system consists of a set of inertial measurement units integrated in wearable devices to
control the long-term breathing pattern. Another work in progress is Floodlight Open,
developed by the Hoffmann-La Roche company [10]. This is a study that aims to monitor
the multiple sclerosis (MS) symptoms using a smartphone, through simple tasks specifically
designed to assess the effects of MS.

There are other assistive devices that could be defined as intelligent platforms.
These modular systems, in addition to monitoring the user and providing information
about the user’s condition, incorporate some type of intelligence in the form of decision
algorithms or new machine learning methods that improve more traditional systems.
For example, an intelligent tool for assisting people with Alzheimer’s disease is presented
in [11]. The system helps to monitor the user’s health, control medication or locate the user
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when they become disoriented, among other things. The system is composed by multiple
devices that monitor the user, records their position, and control medication and objects
that may be important. Through a mobile application, the user and caregivers have access
to information and receive alerts. Another idea is presented in [12]. It proposed using
wearable monitoring devices together with computational intelligence to diagnose and
monitor people with Parkinson’s disease. The assessment of Parkinson’s Disease motor dis-
abilities is based on neurological examination during patient’s visits to the clinic and home
diaries that the patient or the caregiver keeps. However, the short-time examination may
not reveal important information. To overcome these limitations and difficulties, the am-
bulatory monitoring systems can improve this evaluation. Applying machine learning
algorithms to these platforms allows to obtain intelligent systems for assistance. For exam-
ple, Casalino et al. (2018) [13] present a system for real-time monitoring of cardiovascular
problems using video images and fuzzy inference rules. The proposed system is composed
of a transparent mirror with a camera that detects the user’s face. The frames are processed
using photoplethysmography in order to estimate different physiological parameters of
the user. The estimated parameters are used to predict a risk of cardiovascular disease
through fuzzy inference rules. Another system that employs the use of monitoring devices
and machine learning algorithms is [14]. The authors present a gait-assistive system using
a neural network. The system is composed of devices that monitor the user’s movement
during gait and stimulate the muscle nerves using electrical stimulation through electrodes.
After a data collection phase, a model based on recurrent neural networks is trained. The
model will be in charge of predicting the user’s movement during gait and controlling the
stimulation signal.

The purpose of this work is to present a full platform for the development of custom
predictive models that help people with neurological disorders. Figure 1 sketches the
concept of this work. The main challenges that this work faces are the signal acquisitions
from the user and the environment, the signal processing, the dataset generation with
feature engineering, and to train and optimize a predictive model. The aim is to use the
generated model to help the user to manage their pathologies; therefore, the model will
become an AT in his daily life. Unlike other works where the system is focused on a specific
pathology or the algorithms used are optimized for a specific application, the proposed
system is intended to be used for multiple pathologies and applications. The platform is
presented in a generic way, where each of the stages can be adapted in order to obtain a
different predictive model. This model will be personalized for the user and the desired
application. Thus, to illustrate the versatility of the platform and to show the working
methodology, a system validation experimentation is performed.
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Figure 1. General concept of the proposed platform.

This paper is organized as follows. In the materials and methods section, the descrip-
tion of the different parts that make up the platform is presented. First, the acquisition
system composed by four modular electronic devices. Then, Sections 2.2 and 2.3 describe
the characteristics of the database and the feature engineering before training the model,
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respectively. Section 2.4 shows the steps to follow towards generating predictive models
using machine learning (ML) algorithms. In Section 2.5, a use case of the platform is
presented; it is intended to generate a prediction model for people concentration in the
workstation. Section 3 shows the results of the use case with data extracted from the
generated model and its training. Finally, in Sections 4 and 5 the obtained results are
discussed and the conclusions of the paper are outlined.

2. Materials and Methods

This section presents a platform for the generation of predictive models for people
with neurological disorders (Figure 1). These models, customized for each user, intend to
provide information about the pathology of the user and to help them manage it in a
more controlled way. The generated information can also be used as input or as feedback
for other assistive technologies. First, the different parts that make up the platform are
described. Each of the stages can be adapted to the special conditions of the user and the
final objective of the application to be developed. To conclude the section, an example of
the use of the platform is described to show the workflow of the system.

2.1. Data Acquisition System

The first stage of the platform is the data acquisition system. This system is responsible
for obtaining information from the user and from the surrounding environment. It has
been developed with a modular architecture that allows adjusting the use of the devices
according to the special characteristics of each user and the application that is carried out.
For example, it allows the sensors to be restructured in the event that one of the devices is
no longer required. An example of this would be to integrate the sound sensor into the
smartphone in situations where the video device is not used, or vice versa. The system
consists of four electronic devices: a smartphone, a wrist wearable device, an environmental
monitoring device, and a video sensor device.

2.1.1. Personal and Environmental Devices

The environmental and personal monitoring devices are responsible for measuring
the environmental conditions and the user’s physiological variables, respectively. The de-
velopment of these devices, which are integrated within the presented platform in this
work, along with a study of the different parameters measured by this data acquisition
system is described in [15].

The environmental monitoring device provides information about the luminosity,
the environmental temperature, the relative humidity, and the atmospheric pressure of the
environment where the user is. It is a small electronic device, which could be a key ring.

The personal monitoring device is the one described in [15], which integrates the
measurement of the heart rate and the body temperature of the user. To complement
the device, a new sensor has been integrated. It is an Inertial Measurement Unit (IMU),
which provides information about the motor activity performed by the user. The details of
this sensor and its integration into the system are described in Section 2.1.2. This personal
monitoring equipment consists of a small wearable wrist device. Its design has been
slightly updated to integrate the new sensor, and its dimensions have been reduced with
respect to the previous version, despite integrating a larger capacity battery that provides
an autonomy of more than 20 h of use. In addition, it has been manufactured with soft
and comfortable materials that provide ergonomics and facilitate its placement for users
with special difficulties. Figure 2 shows a picture of the new design, where the device,
completely covered with EVA foam, can be seen. This also allows the device to weigh only
5.90 g, including the foam cover.
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Figure 2. New design of the personal monitoring device.

On the other hand, the management of these monitoring devices is done with a
smartphone via an Android application. The application, also described in [15], also allows
displaying information to the user or to the caregiver. The interface and the displayed
information can be modified depending on the user and the corresponding application.
Furthermore, as described in [15], the smartphone also acts as a sound sensor, capturing
the entire human audible spectrum (between 20 Hz and 22 kHz).

2.1.2. Motor Activity Sensor

The motor activity (MA) of the user is a relevant parameter that provides useful
information to the platform. For example, it allows to evaluate the health and wellness
in users with neurodegenerative disorders that influence in the motor functionality [16].
This parameter allows to quantify the arm movements and provides data about the user’s
displacement. In addition, together with other parameters, it is possible to estimate the
state of mind or measure stress levels of the user [17].

The sensor used for the measurement consists of an IMU placed in the personal
monitoring device, which integrates 3-axis gyroscope, 3-axis accelerometer, and 3-axis
magnetometer. As an example, Figure 3 shows a fragment of the obtained signals by the
MA sensor in the X-axis during a test session.

Figure 3. Example fragment of X-axis Gyroscope and Accelerometer signals recorded from the MA
sensor during a test session.

The obtained data every sample by the sensor are organized in an array and stored in
the corresponding collection within the database. The structure of a sample document for
storing samples is shown below. The date and dateString parameters are the timestamp of
the measurement in milliseconds and in character string, respectively. These parameters
are included in every document in all data collections. The generated array with the
measurement data is stored in the motor parameter. The ObjectId identifier is automatically
set by the database when the document is uploaded.

{
" _id " : Object Id
" date " : NumberLong
" d a t e S t r i n g " : "EEE MMM d HH:mm: ss z yyyy "
" motor " : [ gyrX , gyrY , gyrZ , accX , accY , accZ , magX, magY, magZ]

}
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2.1.3. Video Device

The last device that makes up the data acquisition stage is the video device. The pur-
pose of using this system is to obtain visual relevant information to the applications from
the user’s environment.

Some neurological disorders can cause difficulties in social interaction and therefore
affect the mental wellbeing of the user [18]. Thus, one of the parameters measured by the
video device is the number of people in the user’s environment at any given time. In this
way, the platform has information which together with other parameters allows to relate,
for example, how social interaction can affect the user or whether an excessive presence of
people around the user influences in the user’s behavior [19].

On the other hand, regardless of the number of people around the user, some people
with neurological disorders may feel overwhelmed if there is excessive activity around
them, such as constant moving around or movements close to the user. In addition, these
actions added to other stimuli, e.g., ambient noise, may be intensified [20]. Therefore,
another parameter provided by the video device to the platform is the Optical Flow.
The Optical Flow is the apparent motion pattern of objects in the image between two
consecutive frames, caused by the displacement of the object or the camera. It is a 2-
dimensional vector field where each vector represents a displacement vector indicating
the movement of a point from its position in the first frame to its position in the second
frame [21]. Consequently, if we keep the camera in a fixed position, the displacement that
occurs in the image between frames will then be due only to the movement of the objects.
In other words, we will have an estimate of how much movement occurs in the user’s
environment. The video device consists of an Nvidia Jetson Nanocompute card [22] and an
Insta360 Air 360 degree camera [23]. The Jetson Nano has 128 CUDA® (Compute Unified
Device Architecture) cores that encourage the execution of applications where computer
vision and machine learning algorithms are used. The 360 degree camera provides the
most complete possible picture of the user’s environment. The system is mounted in
a 118 × 96 × 60 mm aluminum casing for portability between rooms. In addition, an
improved cooling kit has been added to keep the temperature stable during use. An image
of the video device is shown in Figure 4a.

(a)

(b)

(c)

Figure 4. (a) Picture of the video device. (b) Screenshot of a people detection frame during a test
session. (c) Example fragment of the optical flow signal recorded during a test session.
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The first parameter introduced is the quantification of people in the user’s environ-
ment. To do this, it is necessary to detect the people who are in the room at any given
moment. This detection task is performed using a convolutional neural network (CNN)
model. The algorithm used is YOLOv5 [24,25]. A pretrained model optimized for object
detection is used. It has a high speed of execution doing inference and its size is contained.
Figure 4b shows a screenshot of a frame where the detection of people during a test session
is observed. It can be seen how the 360 degree camera captures the entire environment and
the algorithm detects where the people are. The structure of a sample document for storing
People Detection data is shown below. The people parameter stores the measured number
of people.

{
" _id " : Object Id
" date " : NumberLong
" d a t e S t r i n g " : "EEE MMM d HH:mm: ss z yyyy "
" people " : NumberShort

}

On the other hand, there are different ways to measure the Optical Flow. In this case, a
dense measurement of Optical Flow has been chosen, in which the displacement of all the
points of the frame is calculated. To measure the Optical Flow of all the points in the image
and to be able to quantify the movement that occurs in the user’s environment, the method
of Gunnar Farnebäck is used [26]. This algorithm is based on polynomial expansion and
performs an estimation of the motion of two frames. Finally, the displacement modulus
of both axes (X and Y) of the frame is stored. Figure 4c shows a fragment of the Optical
Flow signal recorded during a test session. It can be observed how after a period of time
the signal level is lower. This fact is due to a change of position by the people in the session
to a place farther away from the camera, which results in a smaller change between frames
and therefore a lower signal magnitude. The structure of a sample document for storing
Optical Flow data is shown below. The optical parameter stores the estimated optical flow.

{
" _id " : Object Id
" date " : NumberLong
" d a t e S t r i n g " : "EEE MMM d HH:mm: ss z yyyy "
" o p t i c a l " : NumberLong

}

2.2. Database

The next stage of the platform is in charge of storing the information obtained by the
data acquisition system. The information must be organized in an efficient and secure way.
Therefore, the database must have some characteristics that allow the platform to work
properly and with minimum execution times. The main properties that must be met are
listed below.

• It must allow the integration of multiple types of data, as well as change the architec-
ture in which the information is stored if necessary.

• It must have continuous availability and scalability.
• It must support time-series. This requires less storage space and allows for faster

query speed.
• It must perform continuous data updates that allow real-time analysis of the information.
• It must have strong access controls, data audits, and protect the data with encrypted

controls. The information stored in the database is very valuable to the user and to the
platform itself. Thus, the security standards must be met to ensure data anonymity
and data access restriction.
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The database used in the platform is a non-relational MongoDB database [27]. The in-
formation obtained by the data acquisition system is stored in documents within data
collections, with a collection for each measured parameter. This allows new parameters
to be integrated into the platform without the need to modify the storage architecture.
An example of the collection storage structure is shown in Figure 5.

    {
        _id : ObjecId(“602a9bad45031ab586542db0”)
        date : 1612782491014
        dateString : “mon. feb. 14 12:08:11 CET 2021”
        bodytemperature : 35.27
    }

    {
        _id : ObjecId(“602a9bad45031ab586542db0”)
        date : 1612782491014
        dateString : “mon. feb. 14 12:08:11 CET 2021”
        bodytemperature : 35.27
    }

    {
        _id : ObjecId(“602a9bad45031ab586542db0”)
        date : 1612782491014
        dateString : “mon. feb. 8 12:08:11 CET 2021”
        bodytemperature : 35.27
    }

Collection
Figure 5. Example of database collection in the platform.

2.3. Feature Engineering

Feature engineering is the process of extracting attributes that improve the machine
learning model from the raw information using data mining techniques [28]. The features
must have an appropriate configuration. Therefore, these features are created from the
previously acquired data, and their inputs are transformed and prepared for the machine
learning (ML) model. Synthetic features that do not originally exist in the dataset are also
created from the available information and they will allow the model to perform better.

The features have to comply with a series of properties in order to be suitable for
use in the model. The attribute must be related to the objective of the application, i.e.,
it must be relevant in the output that our model is looking for. In addition, it must be
certain that it will be possible to know the value of that feature at the time of the prediction;
otherwise, the model will not work correctly. The value of the features must be numerical
and must represent a magnitude. This is because, for example, a neural network is no
more than a machine that performs arithmetic, trigonometric, and algebraic operations on
the input variables [29]. Therefore, those features that are not numerical but are required
to be used will have to be converted or encoded before introducing them into the model.
Finally, it is also necessary to have enough examples of the features values to train the
model correctly. The above rules are used to extract the appropriate features for the
application and to generate a dataset that will be used to train and to validate the desired
model. The transformations to be performed on the available signals in order to extract the
attributes will depend on the final objective of the application. Therefore, once the problem
to be faced has been defined, the signals must be analyzed and those that will be useful for
the model must be selected. Subsequently, the necessary modifications will made.

The final aim of this stage is to generate a suitable dataset to train the model. As men-
tioned above, this stage depends entirely on the information obtained from the model.
Therefore, it is directly related to the result of the model training and could be placed in a
parallel position to the next stage. In most of the times, it will be necessary to modify the
dataset with new information or to change the existing features.

2.4. Training and Generation of a Custom Model

Using the generated feature dataset from the information collected by the data ac-
quisition system, a customized model is trained for the user and the desired application.
For this purpose, appropriate machine learning algorithms are used according to the spe-
cific application, i.e., it is particularized according to the information that will be predicted
in the future. The training and evaluation process of the model is performed cyclically
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until the optimal and sufficiently accurate behavior of the model is found. The dataset
will be modified using the information obtained during training to improve the model
accuracy. Finally, a validation of the model is performed with a part of the dataset reserved
for testing. This allows checking the predictive behavior of the trained model, analyzing
possible lines of improvement in the process, and verifying the accuracy for new inputs to
the platform.

Once the training, validation, and testing processes of the model are completed, the
trained model can be used to predict information from new inputs to the platform taken
with the acquisition system. The model can be hosted on a client that runs continuously
and can provide real-time feedback to the user.

The first step to be performed before starting the training is the split of the dataset
into three parts. A diagram of this split is shown in Figure 6. The first fragment will be
the training data (training set). The training set is the dataset used by the model to learn
how to process the information. From these data, the model adjusts the parameters of the
classifier or from the algorithm used in the model. Using the training set, different machine
learning algorithms can be evaluated to generate the model, and the results obtained can be
compared to obtain the most appropriate one for the application. The training set contains
most of the data from the main dataset. The validation set is used to estimate how well the
model has been trained. This can be done between periodic training cycles and when the
training process has been completed. It is also used to estimate model properties, such as
the error in a classifier or the precision and recall in binary models. Cross-validation is the
most commonly used method for this task [30]. Finally, there is the test set. It is used only
to evaluate the performance of the model after the training process has been completed.
It can be considered as a mock production use of the model.
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Figure 6. Workflow of dataset split and cross validation process.

2.5. Creation of a People Concentration Model in the Workstation

The system presented in this paper can be used for multiple pathologies and appli-
cations. The acquisition system and the database allow to easily adapt or integrate new
sensors. The signal processing, the feature analysis, and the machine learning algorithms
used to generate the model will also be defined according to the objective. To show the
workflow of the platform, an experimentation to validate the system is performed. The test
consist of generating a personalized model of the concentration of a person in two dif-
ferent workstations within the same research laboratory. One of the places is located at
the entrance of the laboratory, next to the door. Any person who must access or leave the
laboratory has to pass by this position, which we will call Position A. The second position
(Position B) is located in an isolated room within the same laboratory.

The final goal of the model is to predict at which times the person is focused on the
tasks being performed and at which times the concentration is reduced, for example, due to
an interruption or stimuli around the workstation. This will provide information on which
of the positions is the most suitable to work at. Although this application is not directly
related to assisting people with neurological disorders, it is an example of the versatility
that the system can offer as well as to show the working methodology of the platform.
In addition, a similar model could also be proposed for a person with a neurological
disorder so that it would be possible to analyze how the user adapts to a specific work
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environment. The two possible situations are labeled as “Focused” and “Distracted”, and
the output of the predictive model will be one of these two options.

First, it is necessary to define what will be considered as “Focused” and “Distracted”.
For this example, a first supervised part has been proposed where data are collected from
the person and the environment in both workstations performing a task that allows to
quantify the person’s concentration on the task. This task consists of reading an entertain-
ment book. The reading of technical or scientific documents, which a priori could be more
related to a task to be developed in the person’s work, has been discarded, because the
reading pace may not be constant due to the complexity of certain parts throughout the
document. During this supervised period, the number of lines per minute read by the user
is counted. In this way, a range is established in which the person is considered focused
on the task. Below that range, the person is considered distracted. The supervised task
is necessary to establish the user’s concentration level in a quantitative way. The model
needs this information to learn in which situations the user is focused on the task.

Once the supervised stage is completed, the necessary information is available to
generate the new model, always based on the previously established definition of concen-
tration. The second part of the experimentation corresponds to the unsupervised collection
of new data in both workstations. The user performs the usual tasks of his job. The new
information collected will be used to estimate the concentration levels of the person in both
workstations using the generated model with the supervised data.

For the supervised stage, a data acquisition period of 180 min has been established
for each of the established positions (A and B), i.e., a total of 6 h. To make the supervised
experimentation more user-friendly, the time has been divided into three one-hour periods,
taken on consecutive days. Subsequently, for the unsupervised stage, a total of 8 h of data
have been collected. For each of the positions, 4 h have been taken. In turn, these 4 h have
been captured in 2-h periods on consecutive days.

The next step is to analyze the available signals and decide which data can provide
relevant information to the model. As the experimentation is performed in a controlled
environment, the weather conditions are kept constant over time at both workstations.
Therefore, ambient temperature, relative humidity, and atmospheric pressure do not pro-
vide information to the model that helps to predict the concentration level and are discarded.
Similarly, the use of the ambient luminosity can be discarded as the values also remain
constant over time and of the same magnitude, both at position A and B. Finally, the use of
the magnetometer signal from the MA sensor is also discarded because it is not necessary
to know the user’s position. Thus, the heart rate and the body temperature signals of the
user, the gyroscope and the accelerometer signals of the MA sensor, the ambient sound,
and the signals of the video device (optical flow and people detection) would remain.

When the available signals to be used have been decided, a preprocessing is performed
before generating the dataset. The different transformations applied to each of them are
described below.

• Sound: The audio spectrum is available divided into frequency bands. For the desired
model, the information isolated by frequencies is not needed. Thus, a feature that
contains the accumulated energy value in all frequency bands is generated. We use
Equation (1) for this purpose:

Soundtotal = 10log

(
n

∑
i=1

10
Soundi

10

)
(1)

• Heart Rate: The heart rate value is available in 6-s windows. As the photoplethysmog-
raphy signal used to obtain the heart rate value is very sensitive to motion artifacts,
the 75th percentile of the last 30 s is used as feature for the dataset.

• Body Temperature: The body temperature value does not require any special trans-
formation. The obtained signal itself is used as a feature.
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• Gyroscope and Accelerometer: The gyroscope and the accelerometer signals are
available separately in the three axes (X, Y, and Z). For the desired model the divided
information is not needed, so a feature is generated with the module of the three axes
for the gyroscope signal and another one for the accelerometer signal.

• Optical Flow and People Detection: Both the Optical Flow signal and the quantifica-
tion of people do not require any special transformation for the dataset. The signals
obtained are used as features.

Finally, the signals of all the generated features are normalized, excluding the quantifi-
cation of people. A fragment of these signals can be seen in the Appendix A in Figure 1.
Once the features have been established and the different transformations have been car-
ried out, the dataset is generated. For this purpose, a time vector is created where the time
values of all the features are chronologically ordered together inside with an identifier that
indicates the feature to which they belong. In addition, an index is assigned to each of the
features indicating the last entry added to the dataset. Then, the time vector is browsed,
adding to the dataset the values of the different features of the position indicated by each
of its indexes. This merging generates an input in the dataset. Once the entire time vector
has been browsed, the dataset is complete with all the information generated. To describe
this process graphically, a schematic is shown in Figure 7.
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Figure 7. Diagram of the dataset generation process.

Using the described method, both datasets are generated for our model with the
data collected in the experiment (supervised set and unsupervised set). Table 1 shows the
distribution of both. Therefore, joining the records in both positions (A and B), we have a
dataset for training and validation of the model with 17,135 entries, with 34.08% of entries
labeled as “Distracted”.

Table 1. Datasets distribution.

Supervised Data

Position A Position B

Class Records Percentage Records Percentage

Focused 5354 62.18% 5942 69.71%
Distracted 3257 37.82% 2582 30.29%

Unsupervised Data

Position A Position B

Records 11350 11234
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For training and validation of the model, the dataset has been split (80–20%). Between
different checked algorithms, a sequential neural network model has been selected due
to its performance with the available dataset. The neural network architecture has also
been adjusted from the simplest to obtain an adequate performance without increasing
the inference time excessively. The selected neural network consists of the input layer,
two hidden layers with 120 and 80 nodes with “relu” type activation function and the
output layer with 2 nodes and “softmax” as activation function. A schematic of the model
structure is shown in Figure 8. The parameters used for training the model are as follows.

{
Optimizer = Adam,

Loss f unction = Sparse Categorical Crossentropy,

Batch size = 10,

Numer o f epochs = 500

}

Figure 8. Architecture of the model.

3. Results

It should not be forgotten that the final aim of the experimentation is to generate
a model of the concentration of a person in two different workstations within the same
laboratory. This section attempts to present the results obtained from both the training of
the model and the experimentation itself.

The obtained results of the model training are summarized in the Table 2. The Receiver
Operating Characteristic (ROC) curve and its respective Area Under Curve (AUC) are
included in Figure 9. The performance of the model is very fine. The model is able to
recognize which dataset inputs have been defined as “Focused” and “Distracted” with
high accuracy.

Table 2. Report of the model performance.

Class Precision Recall F1-Score

Focused 0.97 0.95 0.96
Distracted 0.93 0.96 0.94
Average/Total 0.95 0.95 0.95

Accuracy 95.26%
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Figure 9. Receiver Operating Characteristic (ROC) curve of the model training result.

Once the model has been generated and evaluated its performance, the unsupervised
dataset is used in order to identify each dataset input as a “Focused” or “Distracted” situation
using the model. The results obtained are shown in Figure 10. A comparative graph
between both positions (A and B) can be seen.

Figure 10. Obtained distribution of the predictions of the unsupervised data.

4. Discussion

A model with successful results has been trained only using seven generated features
from all the integrated signals in the platform. As can be seen in Table 2, the error in the
model evaluation is very low. The AUC is very close to 1 (Figure 9), which means that the
obtained results in the evaluation are almost perfect.

Analyzing the generated predictions by the model from the unsupervised set (Figure 10),
the total time of concentration in Position B is higher. There is a notable difference in
the time that the user remains focused on his tasks in Position A (51.34%), with respect
to Position B, where more than the 90% of the time has been identified as “Focused”.
In addition, the concentration time has undergone a 50% more changes in the level of
concentration in Position A (39) than in Position B (25). This implies that concentration
periods are shorter between distractions. Therefore, it seems that as common sense would
indicate, Position B is a better workstation.

Regarding the performance of the initial stages of the platform, the acquisition data
system has allowed obtaining signals with good quality in all devices and the storage
protocol has worked correctly. The analysis of the signals and the processing carried out
to extract the features have been customized for the application that has been presented
as an example of use. However, the platform presented in this work has demonstrated
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high versatility when it comes to generating new information that can help people with
neurological disorders.

5. Conclusions

This work aims to present an intelligent platform that could provide useful information
about people with neurological pathologies as an assistive technology. The novelty of this
work is the acquisition of physiological and environmental signals for the generation of
predictive models using machine learning algorithms. Throughout the paper, the different
stages that make up the system have been described. Finally, an example of the use of the
platform is presented, which allows a more detailed description of each of the steps taken
until the desired model is obtained. The proposed application in the experimentation does
not have a direct relationship with the assistance to people with neurological disorders.
However, it has made it possible to describe the work at each stage of the platform.
In addition, the presented example could be transformed into a real case with a user with a
neurological disorder. For example, the platform could be used to measure the user’s level
of adaptation to a particular job.

This paper attempts to show the versatility offered by the presented system. The mod-
ular design allows to integrate or adapt different sensors. The analysis and processing of
the signals will be defined according to the objective for which the platform is to be used.
Likewise, the machine learning algorithms used will depend on the model to be obtained.
However, to generate a real predictive model that helps to manage problems arising from a
neurological disorder, it is necessary to collect a much larger amount of information than
the used for the example case. In addition, the feature engineering that must be developed
to obtain the appropriate features for the model is also very complex. Therefore, the system
has been presented in a generic way together with a simple example to show the workflow.

Currently, the system is in use for the development of a personalized models of people
with ASD, one for each user. Every model should predict behavioral changes in the user
due to environmental stimuli, caused by a sensory processing problem derived from their
pathology. Data collection is being developed in a clinical setting. Another possible use
could be to obtain information about the stress level of a person with reduced mobility.
The information provided by the platform could be used to modify the user’s posture,
alert the caregiver, etc. Different applications could also be to have an intelligent feedback
system during a session of rehabilitation activities, or to be used in Sleep Disorders Units.
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Appendix A

Figure 1. Fragment of the selected signals as features during the experimentation.
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