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Politècnica de Valencia, UPV (Spain). She conducted her PhD in Agricultural Engineering at

UPV (Spain) and completed her pre- and post-doc period at the Livestock Research Group at

Wageningen University (The Netherlands). She has 17 years of research experience in the field of

animal production and precision nutrition in non-ruminants. She has published 50 scientific papers

(h-index=16), 1 book, and 3 book chapters. She has participated in 14 R&D projects funded in public

calls and she has led 3 of them as the principal investigator. She has been awarded seven positive

recognitions of her research activity (including the ASABE Superior Paper Award, American Society

of Agricultural and Biological Engineers twice (2010 and 2012) and the PhD Extraordinary Prize at

UPV). She is member of the European Association of Precision Livestock Farming (EA-PLF). Her

professional career is characterized by an active participation in scientific forums, committees and

reviews in journals. She currently coordinates the ANTS Research and Transfer service (Animal

Nutrition and Technology Service, https://antsanimalnutrition.com), where she conducts research,

development and innovation projects in animal production and nutrition.

Daniella Jorge De Moura

Dr. Daniella Jorge De Moura is an Associate Professor at the School of Agricultural Engineering

at the State University of Campinas. Dr. Moura received her B.S. degree in Agronomy from

University of São Paulo and M.S. and PhD degrees from State University of Campinas, both in

Brazil. She attended a sandwich program at University of Florida during her PhD. Her research

focuses on smart poultry and swine farming, including behavior monitoring, welfare assessment

and environment management. In recent years, she coordinated several research projects, including

researchers’ and students’ international mobility. As a result, she has published over 120 scientific

articles and book chapters.

vii



Weichao Zheng

Dr. Weichao Zheng is a Full Professor at the Department of Agricultural Structure and

Bioenvironmental Engineering, China Agricultural University, China. Dr. Zheng received his B.S.

and PhD degrees from China Agricultural University. Before joining China Agricultural University,

he was a postdoctoral associate of Agricultural and Biological Engineering at the University of Illinois

at Urbana-Champaign for two years. Dr. Zheng serves as the secretary-general of Animal Husbandry

Engineering Commission of the Chinese Society of Agricultural Engineering. His research focuses on

new housing systems for welfare, precision environment control, and airborne disease prevention for

poultry. He has been the PI of six national and provincial-level research projects. Recognitions of his

research contributions include 6 provincial-level science and technology awards, over 70 published

journal articles, and 15 Chinese national patents.

viii



Preface to ”Precision Poultry Farming”

The increase in the global population comes along with growing demands on protein resources.

To meet such demands, the global production of poultry meat and eggs has skyrocketed in the past

few decades and is projected to continue growing in decades to come. While poultry production

makes crucial contributions to food and nutrition security, it uses substantial natural and human

resources and has significant impacts on society, the economy, public health, and the environment.

Although the extent of these impacts may vary among continents and countries due to differences in

production practices and social structures and preferences, the global poultry industry, as a whole,

should strive to keep improving sustainability and efficiency in its resource usage. Precision Poultry

Farming (PPF) features applications of continuous, objective, and automated sensing technologies

and computer tools for sustainable and efficient poultry production; it offers the poultry industry

solutions to address challenges in terms of poultry management, the environment, nutrition,

automation and robotics, health, welfare assessment, behavior monitoring, waste management, etc.

This Special Issue on “Precision Poultry Farming” was initiated in early 2020 by the Guest Editors

with assistance from the Managing Editor of /Animals/. A total 12 high quality manuscripts were

eventually published, covering a wide spectrum of the most recent research on PPF. The contributing

authors come from Asia, Europe, North America, and South America. We appreciate all authors, as

well as reviewers, for their contributions to this successful collection.

Yang Zhao, Marı́a Cambra-López, Daniella Jorge De Moura, and Weichao Zheng

Editors
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Accuracy of Broiler Activity Index as Affected by
Sampling Time Interval

Xiao Yang 1, Yang Zhao 1,* and George T. Tabler 2
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Simple Summary: Broiler activity index is a measure of bird movement through determining
bird-representative pixel changes between consecutive images. Since the concept of activity index
was coined, different sampling time intervals of consecutive images have been used to determine
broiler activity. In this study, we found that accuracy of broiler activity decreased at longer sampling
time intervals, with the 0.04-s interval yielding the most accurate activity index among all intervals
investigated. In addition, broiler activity in the commercial house generally decreased as birds aged
and varied at different monitoring locations. The research provides insights into image-sampling
strategies for accurately determining broiler activity index, which may help to address growing
public concerns on poultry welfare and health.

Abstract: Different time intervals between consecutive images have been used to determine broiler
activity index (AI). However, the accuracy of broiler AI as affected by sampling time interval remains
to be explored. The objective of this study was to investigate the effect of the sampling time interval
(0.04, 0.2, 1, 10, 60, and 300 s) on the accuracy of broiler AI at different bird ages (1–7 weeks), locations
(feeder, drinker, and open areas) and times of day (06:00–07:00 h, 12:00–13:00 h, and 18:00–19:00 h).
A ceiling-mounted camera was used to capture top-view videos for broiler AI calculations. The results
show that the sampling time interval of 0.04 s yielded the highest broiler AI because more bird motion
details were captured at this short time interval. The broiler AIs at longer time intervals were 1–99%
of that determined at the 0.04-s interval. The broiler AI at 0.2-s interval showed an acceptable accuracy
with 80% less computational resources. Broiler AI decreased as birds aged but increased after week
4 at the drinker area. Broiler AI was the highest at the open area for weeks 1–4 and at the feeder
and drinker areas for weeks 5–7. It is concluded that the accuracy of broiler AI was significantly
affected by sampling time intervals. Broiler AI in commercial housing showed both temporal and
spatial variations.

Keywords: broiler; activity index; time interval; age; image processing

1. Introduction

Broiler activity is considered a major indicator of animal physical and physiological conditions [1,2].
It was reported by Thorp and Duff [3] that exercising broilers a few times every day could benefit
broilers’ leg skeletal conditions [4], thus reducing the incidence of lameness and improving bird
walking ability [5]. More movement and activity by broilers may also help to reduce the prevalence of
hock burns [6], footpad dermatitis [7], and breast burns [8] by reducing the contact with wet litter.

In order to quantify the animal activity, activity index (AI), a measure of movement intensity
through image processing, was proposed by Bloemen et al. [9]. Activity index was defined as the

Animals 2020, 10, 1102; doi:10.3390/ani10061102 www.mdpi.com/journal/animals
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percentage of pixels of moving animals to the total number of pixels within the image (including
animals and background). In more recent research, the total number of pixels was replaced with
total bird-representative pixels to compensate for variations in animal size at different ages [10–12].
Since the concept was coined, AI has been widely used to quantify the activities of broilers [13,14].

Broiler AI is calculated by determining changes in bird-representative pixels between consecutive
images. Different from the optical flow statistics that Dawkin et al. [15] used to derive measures of
broiler behaviors and gaits in commercial farm, the method of AI in this study only considers the
amount of movement between consecutive images while the movement direction is not included.
Using a short time interval between consecutive images may capture more movement details and
yield better AI accuracy; however, a time interval that is unnecessarily short (e.g., yielding too many
consecutive images for only trivial bird movements) cannot further improve AI accuracy and may
increase image processing time. Longer time intervals, on the other hand, may miss identifying
birds’ movements and compromise AI accuracy. Therefore, a proper time interval is important for
ensuring the accuracy of AI while improving processing efficiency and saving computational resources.
Different time intervals have been used to determine broiler AI in previous research. For instance,
Neves et al. [14] analyzed the images at 60 s intervals to determine bird activity as affected by feeder
types. Bloemen et al. [9] sampled images with a time interval of 5 s to investigate the effect of the
thermal environment on broiler activity. Aydin et al. [10] used a time interval of 0.2 s to measure the
activity of broilers with different gait scores. However, proper time intervals remain to be explored.

Selection of a proper time interval should be based on the birds’ movement intensity, which
could be affected by many factors, such as bird age, location, and time of day. Bird movement
intensity may vary with bird age due to changes in their physical conditions, like body weight and
walking ability [11,16]. Broilers do not always spread out evenly on the floor areas in commercial
houses, resulting in different degrees of crowdedness that may affect bird movements. For example,
Arnould et al. [17] found that areas near feeders and drinkers were more crowded because broilers
tended to stay and rest near the sources of feed and water. Furthermore, bird movement intensity
varies within a day. Previous research showed that birds are more active during the first hour after
light ON and before light OFF [18]. However, the effects of the above-mentioned temporal and spatial
variations in broiler movement intensity on broiler AI have not been investigated.

The objective of this study was to investigate the effect of sampling time interval (0.04, 0.2, 1, 10,
60, and 300 s) on the accuracy of broiler AI. The effects of bird age (1–7 weeks), location (feeder, drinker,
and open area) and time of day (06:00–07:00 h, 12:00–13:00 h and 18:00–19:00 h) on broiler AI were
also examined.

2. Materials and Methods

2.1. Housing, Animals and Management

The study was conducted in a commercial broiler house located at Mississippi State University
during 12/2019–1/2020. The house measured 120 × 13 × 3 m (L ×W × H) with a capacity of 16,120
Ross 708 straight run broilers and a production cycle of 8 weeks. All chicks were purchased from a
commercial poultry hatchery in Mississippi. Both tray and tube feeders were used in weeks 1 and 2 of
bird age, then tray feeders were removed from week 3. Flock management and diets followed the
typical procedures in the industry. The lighting schedule was set to 24L:0D from 1 d to 7 d, 20L:4D
from 8 d to 56 d. The light intensity was set to 54 lux from 1d to 13 d, then gradually dimmed to 3 lux
by 20 d and kept at 3 lux till 56 d. Lights were turned on at 05:00 h and turned off at 01:00 h of the
next day.

2.2. Camera System

A fisheye IP camera (Dahua, IPC-EW4431-ASW, Dahua Technology USA Inc., Irvine, CA, USA)
was installed on the ceiling (height = 3 m), located in the middle of the house. The frame rate of the
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camera was 25 frames per second. Three one-hour video clips (06:00 to 07:00 h, 12:00 to 13:00 h and
18:00 to 19:00 h) were recorded on Wednesday every week. The video clips were converted into images
with all frames extracted (time interval of 0.04 s between consecutive images) or partial frames at
time intervals of 0.2, 1, 10, 60 and 300 s. Images were firstly corrected for distortions using Python
(Python 3.7.1, Python Software Foundation, Beaverton, OR, USA). Afterwards, three specific areas
(200 × 200 pixels) located at the feeder, drinker and open area (Figure 1) were cropped out of the
images and fed to MATLAB (2018b, The MathWorks, Inc. Natick, MA, USA) for image processing.
The dimension of cropped area was equivalent to the actual area of 0.71 × 0.71 m. The images were
used to calculate AI at the drinker and open areas in weeks 1–7, and at feeding area in weeks 3–7 when
only tube feeders were provided.

(a)

(b) (c) (d)

Figure 1. Example images of (a) original image (b) feeder (c) drinker and (d) open area.

2.3. Activity Index

The value I(x, y) represents the intensity of the pixel at coordinates (x, y) in that image.
The difference in intensity between the current image I(x, y, t) and the previous image I(x, y, t − 1), was
calculated by subtraction of the two consecutive images. A resulting image of Ia(x, y, t), in binary form,
was then generated according to results of the subtraction (Equation (1)).

Ia(x, y, t) =
{

1, i f I(x, y, t) − I(x, y, t− 1) > τ
0, otherwise

(1)

The threshold (τ) was set to 15% of the maximal intensity of each video clip by observing the
“empty” background of first 20 frames for each clip to avoid erroneous results due to noise, e.g., electrical
noise in the coaxial cabling and image acquisition circuits, and lighting variations.

Total number of non-zero pixels was calculated as the variation between the two consecutive
images due to the activity of broilers. To compensate for the size and number of the birds, the activity
index AI(t) was calculated as the fraction of the number of non-zero pixels in the resulting binary

3



Animals 2020, 10, 1102

image Ia(x, y, t) with respect to the number of broiler-representative pixels S(t − 1) in the previous
image I(x, y, t − 1) (Equation (2)).

AI(t) =
∑

Ia(x, y, t)
S(t− 1)

(2)

2.4. Data Preparation and Statistic Analysis

The effects of sampling time interval, bird age, sampling location, and time of the day, as well as
the major two-way interactions, on broiler AI was analyzed using the PROC GLM (generalized linear
model) procedure in SAS 10.9 (SAS Institute., Cary, NC, USA). A significant difference in multiple
comparisons of group means was defined as p < 0.05. The levels for time intervals were 0.04, 0.2, 1, 10,
60 and 300 s. The levels of age were 1–7 weeks in drinker and open areas and 3–7 weeks in the feeder
area. The levels of sampling location factor consisted of feeder, drinker and open areas. The levels of
sampling time within a day were 06:00–07:00 h, 12:00–13:00 h and 18:00–19:00 h. In order to compare
the difference of AI among different time intervals, the cumulative AI of every 300 s was calculated by
simply adding the AIs within a 300-s duration. Some of the video clips were not strictly an hour long
(56 to 59 min); therefore, 11 total samples were obtained from each video clip. For the effects of bird age,
location and time of day, only data with time intervals of 0.04 s (full frames) were used for analysis.

3. Results

3.1. Time Interval

Table 1 shows the average broiler AI with different time intervals at different locations. A time
interval of 0.04 s yielded the highest AI. With an increase in time interval, the broiler AI deceased
from 100% (0.2 s) to 2% (300 s) of the AI determined with a time interval of 0.04 s (p < 0.0001 for all).
No differences in AI were observed between the ratio of 0.04 s and 0.2 s at the feeder and drinker areas.
However, a lower ratio of AI at the 0.2-s interval was found at the feeder area compared with the 0.04-s
interval ((p < 0.0001). Lower broiler AIs were observed at the 1-s time interval than at the 0.2-s interval
at the feeder (p < 0.0001) and drinker (p = 0.0267) areas. At the open area, the broiler AI with a time
interval of 1 s was lower than 0.04 s (p = 0.0007); however, no significant difference was observed
between 0.2 s and 1 s.

Table 1. Average broiler activity index (AI) with different time intervals at different locations.

Time Interval (s)

Location

Feeder Drinker Open Area

AI Ratio (%) AI Ratio (%) AI Ratio (%)

0.04 38.8 a 100 42.5 a 100 81.2 a 100
0.2 38.5 a 100 41.7 a 100 58.0 ab 84
1 27.3 b 74 31.1 b 92 34.3 bc 56
10 8.0 c 21 11.7 c 32 20.1 cd 27
60 2.3 cd 6 4.9 cd 12 10.2 cd 13

300 0.6 d 1 0.9 d 2 1.7 d 2
SEM 3.1 2 5.4 4 13.4 3

Ratio: AI calculated at a time interval relative to that at the 0.04-s time interval. SEM: pooled standard error mean
for the main effects of location. a,b,c,d Means in the same column with different superscripts are different (p < 0.05).
Five weeks (week 3–7) of data in the feeder area and seven weeks (week 1–7) of data in the drinker and open areas
are summarized.

3.2. Age and Location

Table 2 shows the weekly average broiler AI at different locations. At the feeder area, the broiler
AI in week 3 was higher than that in weeks 4 and 7 (p < 0.0001). No significant differences were
observed in weeks 4, 6 and 7. At the age of week 5, the AI was higher than in weeks 4 (p = 0.0024) and
6 (p = 0.0218), however, not different from week 7. Broiler AI at the open area gradually decreased

4
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from week 1 to week 5, and no differences were found in weeks 4, 5, 6 and 7. No difference in broiler
AI at the open area was observed between weeks 2 and 3. The AIs in weeks 4–7 were lower than those
in weeks 1–3 (p < 0.05). For the effects of sampling locations, the broiler AIs at the open area were
higher than at the drinker area in weeks 1 and 2 (p = 0.0098 and p = 0.0011, respectively). In weeks
3 and 4, the highest broiler AI was observed at the open area and the lowest AIs at the drinker area
(p < 0.0001). In weeks 6 and 7, the broiler AIs at the feeder (p = 0.0011 and p = 0.0134, respectively) and
drinker (p = 0.0004 and p < 0.0001, respectively) areas were higher than at the open area. Generally,
broiler AI decreased as broilers aged up in all locations in this study.

Table 2. Weekly average broiler activity index (AI) at different locations.

Bird Age (Week)
Location

Feeder Drinker Open SEM 1

1 – 83.2 Ba 232.5 Aa 39.7
2 – 74.1 Ba 137.2 Ab 13.0
3 64.5 Ba 28.9 Cbc 95.8 Ab 7.2
4 28.6 Ac 16.5 Bc 32.6 Ac 1.9
5 37.8 Ab 20.7 Bc 21.6 Bc 1.7
6 30.9 Ac 31.5 Abc 23.1 Bc 1.6
7 31.9 Bbc 42.4 Ab 25.5 Cc 1.8

SEM 2 2.1 6.1 14.8 –

Data with a time interval of 0.04 s were included. 1 SEM: Pooled standard error mean for age effect. 2 SEM: Pooled
standard error mean for location effect. A,B,C Means in the same row with different superscripts are different
(p < 0.05). a,b,c Means in the same column with different superscripts are different (p < 0.05).

3.3. Time of Day

Table 3 shows the weekly average broiler AI within three time periods at three locations. At the
feeder area, differences among time periods were observed at 5 and 6 weeks of bird age. At the
drinker area, higher broiler AIs were observed at either 12:00 h or 18:00 h during 1–7 weeks of bird
age. The lowest broiler AIs were observed at 06:00 h, except in week 3 at the drinker area. At the open
area, differences were found in weeks 4 and 6, with the highest AIs being identified at 12:00 h and the
lowest at 06:00 h (p = 0.0007 and p = 0.0026, respectively).

Table 3. Weekly average broiler activity index (AI) within three time periods (06:00–07:00 h, 12:00–13:00 h,
and 18:00–19:00 h) at three locations (feeder, drinker, and open area).

Bird Age
(Week)

Location

Feeder Drinker Open

06:00 12:00 18:00 SEM 06:00 12:00 18:00 SEM 06:00 12:00 18:00 SEM

1 – – – – 43.7 B 136.3 A 69.5 B 21.0 179.0 384.9 133.7 91.0
2 – – – – 46.0 B 97.6 A 78.7 AB 11.4 91.7 159.0 160.7 28.3
3 60.2 64.0 69.2 6.4 31.6 A 35.9 A 19.1 B 3.1 98.8 85.9 102.6 20.8
4 24.3 30.5 31.1 2.6 6.1 C 19.6 B 23.8 A 1.3 22.5 B 42.3 A 32.9 AB 3.7
5 43.4 A 31.7 B 38.3 AB 2.3 18.7 19.1 24.2 3.1 18.5 26.3 20.0 3.2
6 28.8 B 28.2 B 35.7 A 2.2 25.1 B 31.8 AB 37.8 A 2.9 17.3 B 29.1 A 22.8 AB 2.5
7 28.9 32.2 34.6 2.8 41.3 44.2 41.7 3.2 28.7 23.6 24.1 3.5

SEM: Pooled standard error mean for main effects of time periods at each location. A,B,C Means in the same row
with different superscripts under the same location category are different (p < 0.05). Data with a time interval of 0.04
s were used.

3.4. Selection for Proper Time Interval

Figure 2 shows the weekly average broiler AI at the feeder, drinker and open areas with different
time intervals. At the feeder area, no difference in broiler AI was observed between the time intervals
of 0.04 s and 0.2 s in week 3 or weeks 5–7. In week 4, the AI with the time interval of 0.2 s was higher
than with 0.04 s (p = 0.0320). At the drinker area, the difference in broiler AI in weeks 1–4 and week 6
was not significant between 0.04-s and 0.2-s intervals. In week 5, the AI with the time interval of 1 s

5
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was higher than that with 0.04 s (p = 0.0436). At week 7, a time interval of 0.2 s yielded a lower AI than
0.04 s (p = 0.0068). At the open area, no differences in broiler AI between time intervals of 0.04 and
0.2 s were found in weeks 1–2 or weeks 4–6. In weeks 3 and 7, the AI with a time interval of 0.2 s was
higher than for 0.04 s (p = 0.0056 and p = 0.0159).

Figure 2. Cont.
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Figure 2. Weekly average broiler activity index (least square means ± SEM) at feeder, drinker and open
areas with different time intervals. a,b,c,d,e Means with different superscripts within the same category
are different (p < 0.05).

4. Discussion

Different sampling time intervals, from seconds to minutes, have been adopted to calculate the AI
of livestock and poultry [10,12,19,20]. However, how the time intervals affect the accuracy of animal AI
remains to be understood. In this study, we found that AI decreased at longer sampling time intervals
(Table 1). This is because some transient behaviors, such as turning, bobbling, preening and shaking,
can be miss-identified as the sampling time interval increases. Any time interval that lasts longer than
the time of the transient behavior may fail to capture the information. Our results also show that
a 0.2-s interval can be considered as an alternative to 0.04 s in broiler AI determination, because it
delivered comparably high AI while reducing the image processing workload by 80%. Selection of
proper sampling time intervals for accurate AI measurement of certain animal species should consider
the velocities of both continuous movements (e.g., walking and running) and discrete movements
(e.g., pecking, touching, smelling, dashing, etc.). A sampling time interval of 0.03 s has been used for
cows [19,21], 0.04 s for pigs [20,22], and 0.2 s and 0.3 s for poultry [10,12,23].

Broiler AIs generally decreased as the birds got older (Table 2). This result is consistent with those
previously reported by Alvino et al. [24] and Bizeray et al. [25], who also found older broilers were less
active while gaining body weight [26]. Increases in AIs at the drinker and feeder areas were noticed
after week 4 of bird age (Table 2). This is possibly because of birds’ increasing demand for feed and
water [27] as birds get older and heavier, promoting more traffic around drinkers and feeders.

Our results show obvious spatial variations in broiler AI, which can be explained by the different
movement intensities of predominant behaviors in the locations of concern (i.e., feeder, drinker, and
open areas). Feeding and drinking behaviors at feeder and drinker areas [28,29] do not involve more
intensive body movements compared to walking, chasing, and playing behaviors (sparring, frolicking
and food-running) [30] at open litter areas. Therefore, the broiler AIs in feeder and drinker areas were
lower than that in open areas in weeks 1–4 (Table 2). As broilers got older and heavier, they became
less active and tended to use the open area as a place for resting, which involves less body movement
than feeding and drinking. As such, we found a lower broiler AI in open areas, as compared to feeder
and drinker areas, in weeks 5–7.

Understanding the broiler AI at the feeder area may also help to clarify the birds’ health status.
For instance, Weeks et al. [31] compared the feeding patterns of broilers with different gait scores and
found those birds with substantially impaired walking ability halved the number of feeding bouts but
doubled the feeding time per visit to reach the same amount of feed intake as healthy birds. It should
be noted that the AI in our study quantifies the bird activity within a 0.71 × 0.71 m area (including
both the feeder/drinker and surrounding areas); thus, it involves not only the feeding and drinking
behaviors but also the traffic around feeders and drinker lines. This is different from other measures of
feed and water resource usage by broilers, such as feed intake [32] time budget of broiler feeding and
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drinking behaviors [33,34], and feeding and drinking frequency (times of feeder or drinker visiting
within an hour) [35,36].

There were also temporal variations in broiler activity within a day (Table 3). The possible
explanation for higher broiler AI at the feeder area in the early morning or afternoon could be the
broiler diurnal rhythms. Li et al. [37] explored the effect of light intensity and spectrum on broiler
(35–40 d) feeding behaviors with a schedule of 16L:8D and found the peak feeding occurred at 2–3 h
after light ON and before light OFF. The high level of feeding behavior in the early morning could
be a feed compensation after the dark period without any feed intake [38]. More feeding behavior at
the end of a day was probably because the birds can anticipate the darkness [39] and spontaneously
increase the feed intake before the light is turned OFF [28]. It should be pointed out that the broiler AI
at the feeder area during 06:00–07:00 h did cover the early light ON period but was not consistently
higher than that of the midday period. The discrepancy is possibly because of the difference in bird age
or lighting schedule [40]. In addition, the movement of birds around the feeder, which was equivalent
to the movement of birds at the open area, could be another reason for higher AI during 12:00–13:00 h
at the feeder area. There was no clear temporal pattern in AI at the drinker area based on our results.
Schwean-Lardner et al. [41] studied the effect of daytime length on broiler (27 d and 42 d) behavioral
patterns and found a similar rhythm of drinking behavior as of feeding. In another study that explored
the effect of feeding and lighting programs on broiler feeding and drinking patterns indicated that the
drinking patterns of broilers were largely influenced by lighting programs but independent of feeding
behaviors [40]. One explanation for the discrepancy could be the lighting schedule. Another reason
could be the movement of birds near the drinker line within the concerned area. As for open area,
higher broiler AI was typically found at middle of the day in our study, which is consistent with the
results reported by Sherlock et al. [42].

It worth noting that the AI is a measure of bird movements in two dimensions on a horizontal
plane. Bird movements in the vertical direction for behaviors such as standing up, lying down,
and pecking the feeder and drinker are not included in the AI calculation, but may have important
implications for poultry welfare, health, and production efficiency. To account for the birds’ vertical
motion, cameras with a depth sensor or body-mounted sensors that produce 3D motion measurements
may be considered [12].

5. Conclusions

In this study, the effects of sampling time interval between consecutive images on the accuracy of
broiler AI at different bird ages, sampling locations and times of day were investigated using image
processing. We conclude that a sampling time interval of 0.04 s yielded the best broiler AI results.
The AI results for a 0.2-s time interval were acceptable but required significantly less computational
resource usage. At different ages, broiler AIs at the feeder and open area generally decreased from
week 1 to week 7. However, an increase at the drinker area was observed after week 4. For the effects
of location, higher AIs during weeks 1–4 occurred at the open areas, and this switched to feeder
and drinker areas during weeks 5–7. Clear diurnal behavioral rhythms were also found at feeder
and open areas. In summary, broiler AIs in commercial housing showed both temporal and spatial
variations. These findings provide important insights into accurate broiler activity measurement for
broiler welfare, health, and production evaluation.
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Performance, Welfare, Chicken Meat Composition and Serum Cholesterol. Acta Veter. Brno 2009, 78, 67–74.
[CrossRef]

3. Thorp, B.; Duff, S. Effect of exercise on the vascular pattern in the bone extremities of broiler fowl. Res. Veter. Sci.
1988, 45, 72–77. [CrossRef]

4. Hester, P.Y. The Role of Environment and Management on Leg Abnormalities in Meat-Type Fowl. Poult. Sci.
1994, 73, 904–915. [CrossRef] [PubMed]

5. Wilson, J.L.; Weaver, W.D.; Beane, W.L.; Cherry, J.A. Effects of Light and Feeding Space on Leg Abnormalities
in Broilers. Poult. Sci. 1984, 63, 565–567. [CrossRef] [PubMed]

6. Kaukonen, E.; Norring, M.; Valros, A. Effect of litter quality on foot pad dermatitis, hock burns and breast
blisters in broiler breeders during the production period. Avian Pathol. 2016, 45, 667–673. [CrossRef]
[PubMed]

7. Shepherd, E.; Fairchild, B. Footpad Dermatitis in Poultry. Poult. Sci. 2010, 89, 2043–2051. [CrossRef]
8. Haslam, S.; Knowles, T.; Brown, S.; Wilkins, L.; Kestin, S.; Warriss, P.; Nicol, C. Factors affecting the prevalence

of foot pad dermatitis, hock burn and breast burn in broiler chicken. Br. Poult. Sci. 2007, 48, 264–275.
[CrossRef]

9. Bloemen, H.; Aerts, J.M.; Berckmans, D.; Goedseels, V. Image analysis to measure activity index of animals.
Equine Veter. J. 2010, 29, 16–19. [CrossRef]

10. Aydin, A.; Cangar, Ö.; Ozcan, S.E.; Bähr, C.; Berckmans, D. Application of a fully automatic analysis tool to
assess the activity of broiler chickens with different gait scores. Comput. Electron. Agric. 2010, 73, 194–199.
[CrossRef]

11. Silvera, A.M.; Knowles, T.G.; Butterworth, A.; Berckmans, D.; Vranken, E.; Blokhuis, H. Lameness assessment
with automatic monitoring of activity in commercial broiler flocks. Poult. Sci. 2017, 96, 2013–2017. [CrossRef]
[PubMed]

12. Yang, X.; Huo, X.; Li, G.; Purswell, J.L.; Tabler, T.; Chesser, D.; Zhao, Y. Application of Elevated Perching
Platform and Robotic Vehicle in Broiler Production. In Proceedings of the ASABE Annual International
Meeting, Boston, MA, USA, 7–10 July 2019. [CrossRef]

13. Kristensen, H.; Aerts, J.; Leroy, T.; Wathes, C.; Berckmans, D. Modelling the dynamic activity of broiler
chickens in response to step-wise changes in light intensity. Appl. Anim. Behav. Sci. 2006, 101, 125–143.
[CrossRef]

14. Neves, D.P.; Mehdizadeh, S.A.; Tscharke, M.; de Alencar Nääs, I.M.; Banhazi, T.M. Detection of flock
movement and behaviour of broiler chickens at different feeders using image analysis. Inf. Process. Agric.
2015, 2, 177–182. [CrossRef]

15. Dawkins, M.S.; Lee, H.-J.; Waitt, C.D.; Roberts, S.J. Optical flow patterns in broiler chicken flocks as automated
measures of behaviour and gait. Appl. Anim. Behav. Sci. 2009, 119, 203–209. [CrossRef]

16. Bessei, W. Welfare of broilers: A review. World’s Poult. Sci. J. 2006, 62, 455–466. [CrossRef]
17. Arnould, C.; Faure, J.M. Use of pen space and activity of broiler chickens reared at two different densities.

Appl. Anim. Behav. Sci. 2003, 84, 281–296. [CrossRef]
18. Kristensen, H.H.; Cornou, C. Automatic detection of deviations in activity levels in groups of broiler

chickens—A pilot study. Biosyst. Eng. 2011, 109, 369–376. [CrossRef]
19. Poursaberi, A.; Bähr, C.; Pluk, A.; Van Nuffel, A.; Berckmans, D. Real-time automatic lameness detection

based on back posture extraction in dairy cattle: Shape analysis of cow with image processing techniques.
Comput. Electron. Agric. 2010, 74, 110–119. [CrossRef]

20. Kashiha, M.A.; Bahr, C.; Ott, S.; Moons, C.P.; Niewold, T.; Tuyttens, F.A.; Berckmans, D. Automatic monitoring
of pig locomotion using image analysis. Livest. Sci. 2014, 159, 141–148. [CrossRef]

9



Animals 2020, 10, 1102

21. Chapinal, N.; De Passillé, A.; Weary, D.; Von Keyserlingk, M.; Rushen, J. Using gait score, walking speed,
and lying behavior to detect hoof lesions in dairy cows. J. Dairy Sci. 2009, 92, 4365–4374. [CrossRef]

22. Von Wachenfelt, H.; Pinzke, S.; Nilsson, C. Gait and force analysis of provoked pig gait on clean and fouled
concrete surfaces. Biosyst. Eng. 2009, 104, 534–544. [CrossRef]

23. Tickle, P.G.; Hutchinson, J.R.; Codd, J. Energy allocation and behaviour in the growing broiler chicken.
Sci. Rep. 2018, 8, 4562. [CrossRef]

24. Alvino, G.; Archer, G.; Mench, J. Behavioural time budgets of broiler chickens reared in varying light
intensities. Appl. Anim. Behav. Sci. 2009, 118, 54–61. [CrossRef]

25. Bizeray, D.; Leterrier, C.; Constantin, P.; Picard, M.; Faure, J. Early locomotor behaviour in genetic stocks of
chickens with different growth rates. Appl. Anim. Behav. Sci. 2000, 68, 231–242. [CrossRef]

26. EFSA. Scientific Opinion on the influence of genetic parameters on the welfare and the resistance to stress of
commercial broilers. EFSA J. 2010, 8, 1666. [CrossRef]

27. Bruno, L.; Maiorka, A.; Macari, M.; Furlan, R.; Givisiez, P. Water intake behavior of broiler chickens exposed
to heat stress and drinking from bell or and nipple drinkers. Rev. Bras. Ciênc. Avíc. 2011, 13, 147–152.
[CrossRef]

28. Kristensen, H.H.; Prescott, N.B.; Perry, G.C.; Ladewig, J.; Ersbøll, A.K.; Overvad, K.C.; Wathes, C.M.
The behaviour of broiler chickens in different light sources and illuminances. Appl. Anim. Behav. Sci. 2007,
103, 75–89. [CrossRef]

29. Svihus, B.; Lund, V.; Borjgen, B.; Bedford, M.; Bakken, M. Effect of intermittent feeding, structural components
and phytase on performance and behaviour of broiler chickens. Br. Poult. Sci. 2013, 54, 222–230. [CrossRef]

30. Baxter, M.; Bailie, C.L.; O’Connell, N. Play behaviour, fear responses and activity levels in commercial broiler
chickens provided with preferred environmental enrichments. Animal 2018, 13, 171–179. [CrossRef]

31. Weeks, C.; Danbury, T.; Davies, H.; Hunt, P.; Kestin, S. The behaviour of broiler chickens and its modification
by lameness. Appl. Anim. Behav. Sci. 2000, 67, 111–125. [CrossRef]

32. Bai, S.P.; Wu, A.M.; Ding, X.M.; Lei, Y.; Bai, J.; Zhang, K.Y.; Chio, J.S. Effects of probiotic-supplemented
diets on growth performance and intestinal immune characteristics of broiler chickens. Poult. Sci. 2013, 92,
663–670. [CrossRef] [PubMed]

33. Sultana, S.; Hassan, R.; Choe, H.S.; Ryu, K.S. The Effect of Monochromatic and Mixed LED Light Colour on
the Behaviour and Fear Responses of Broiler Chicken. Avian Boil. Res. 2013, 6, 207–214. [CrossRef]

34. Ventura, B.A.; Siewerdt, F.; Estevez, I. Access to Barrier Perches Improves Behavior Repertoire in Broilers.
PLoS ONE 2012, 7, e29826. [CrossRef]

35. Hocking, P.M.; Rutherford, K.M.D.; Picard, M. Comparison of time-based frequencies, fractal analysis and
T-patterns for assessing behavioural changes in broiler breeders fed on two diets at two levels of feed
restriction: A case study. Appl. Anim. Behav. Sci. 2007, 104, 37–48. [CrossRef]

36. Bizeray, D.; Estevez, I.; Leterrier, C.; Faure, J. Effects of increasing environmental complexity on the physical
activity of broiler chickens. Appl. Anim. Behav. Sci. 2002, 79, 27–41. [CrossRef]

37. Li, G.; Zhao, Y.; Purswell, J.L.; Liang, Y.; Lowe, J.W. Feeding Behaviors of Broilers at Chicken-perceived
vs. Human-perceived Light Intensities under Two Light Spectrums. In Proceedings of the ASABE Annual
International Meeting, Detroit, MI, USA, 29 July–1 August 2018. [CrossRef]

38. Rodrigues, I.; Choct, M. Feed intake pattern of broiler chickens under intermittent lighting: Do birds eat in
the dark? Anim. Nutr. 2018, 5, 174–178. [CrossRef]

39. Stahlbaum, C.C.; Rovee-Collier, C.; Fagen, J.W.; Collier, G. Twilight activity and antipredator behavior of
young fowl housed in artificial or natural light. Physiol. Behav. 1986, 36, 751–758. [CrossRef]

40. Xin, H.; Berry, I.; Barton, T.L.; Tabler, G.T. Feeding and Drinking Patterns of Broilers Subjected to Different
Feeding and Lighting Programs. J. Appl. Poult. Res. 1993, 2, 365–372. [CrossRef]

41. Schwean-Lardner, K.; Fancher, B.; Laarveld, B.; Classen, H. Effect of day length on flock behavioural patterns
and melatonin rhythms in broilers. Br. Poult. Sci. 2014, 55, 21–30. [CrossRef]

42. Sherlock, L.; Demmers, T.; Goodship, A.; McCarthy, I.; Wathes, C. The relationship between physical activity
and leg health in the broiler chicken. Br. Poult. Sci. 2010, 51, 22–30. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

10



animals

Article

Developing and Evaluating Poultry Preening
Behavior Detectors via Mask Region-Based
Convolutional Neural Network

Guoming Li 1, Xue Hui 2, Fei Lin 3 and Yang Zhao 4,*

1 Department of Agricultural and Biological Engineering, Mississippi State University,
Starkville, MS 39762, USA; gl565@msstate.edu

2 College of Energy and Intelligent Engineering, Henan University of Animal Husbandry and Economy,
Zhengzhou 450011, China; xh138@msstate.edu

3 Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS 39762, USA;
mojiamenke123@gmail.com

4 Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA
* Correspondence: yzhao@utk.edu; Tel.: +1-865-974-6466

Received: 5 August 2020; Accepted: 24 September 2020; Published: 28 September 2020

Simple Summary: Preening is poultry grooming and comfort behavior to keep plumages in good
conditions. Automated tools to continuously monitor poultry preening behaviors remain to be
developed. We developed and evaluated hen preening behavior detectors using a mask region-based
convolutional neural network (mask R-CNN). Thirty Hy-line brown hens kept in an experimental
pen were used for the detector development. Different backbone architectures and hyperparameters
(e.g., pre-trained weights, image resizers, etc.) were evaluated to determine the optimal ones for
detecting hen preening behaviors. A total of 1700 images containing 12,014 preening hens were
used for model training, validation and testing. Our results show that the final performance of
detecting hen preening was over 80% for precision, recall, specificity, accuracy, F1 score and average
precision, indicating decent detection performance. The mean intersection over union (MIOU) was
83.6–88.7%, which shows great potential for segmenting objects of concern. The detectors with
different architectures and hyperparameters performed differently for detecting preening birds
and thus we need to carefully adjust these parameters to obtain a robust deep learning detector.
In summary, deep learning techniques may have a great ability to automatically monitor poultry
behaviors and assist welfare-oriented poultry management.

Abstract: There is a lack of precision tools for automated poultry preening monitoring. The objective
of this study was to develop poultry preening behavior detectors using mask R-CNN. Thirty 38-week
brown hens were kept in an experimental pen. A surveillance system was installed above the pen
to record images for developing the behavior detectors. The results show that the mask R-CNN
had 87.2 ± 1.0% MIOU, 85.1 ± 2.8% precision, 88.1 ± 3.1% recall, 95.8 ± 1.0% specificity, 94.2 ± 0.6%
accuracy, 86.5 ± 1.3% F1 score, 84.3 ± 2.8% average precision and 380.1 ± 13.6 ms·image−1 processing
speed. The six ResNets (ResNet18-ResNet1000) had disadvantages and advantages in different
aspects of detection performance. Training parts of the complex network and transferring some
pre-trained weights from the detectors pre-trained in other datasets can save training time but did
not compromise detection performance and various datasets can result in different transfer learning
efficiencies. Resizing and padding input images to different sizes did not affect detection performance
of the detectors. The detectors performed similarly within 100–500 region proposals. Temporal and
spatial preening behaviors of individual hens were characterized using the trained detector. In sum,
the mask R-CNN preening behavior detector could be a useful tool to automatically identify preening
behaviors of individual hens in group settings.

Keywords: poultry; cage-free; preening behavior; mask R-CNN; residual network

Animals 2020, 10, 1762; doi:10.3390/ani10101762 www.mdpi.com/journal/animals
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1. Introduction

The public and industry have expressed increasing concerns about poultry welfare [1,2].
The performance of natural behaviors is commonly used as a criterion in determination of poultry
welfare [3]. Preening is one of natural behaviors of poultry and important for keeping plumages
well-groomed in both natural and artificial conditions [4]. During preening, birds use their beaks to
distribute lipid-rich oil from the uropygial glands to their feathers, while simultaneously removing and
consuming parasites [5,6]. Preening, as a preventive body-surface maintenance behavior, could take
a large time budget (~13%) out of the total behavior repertoire of Red Jungle fowl [7], thus being
unignorable for welfare evaluation. Proper preening behavior responses help to interpret bird status
responding to surroundings. Overall time spent preening and number of preening bouts could reflect
environment appropriateness for birds. For example, preening is performed whenever there is nothing
more important to do and birds in cages showed more time spent preening than those in nature
(26% vs. 15%) [5]. Rearing birds in cages may increase bird boredom and not be suitable for bird welfare.
The duration and frequency of preening of individual birds could imply their pleasure/frustration status.
Birds having no access to resources (e.g., feeder) may feel frustrated and typically perform short-term
and frequent preening [8]. The number of simultaneously preening birds could be an indicator of space
sufficiency. If allocated space is not enough for all birds to preen simultaneously, high-ranking birds in
social groups have priority to preen first and subordinate ones may need to wait [9]. Spatial distribution
of preening birds could help to judge sufficiency of resource allowance as well. For instance, if birds
could not access feeders due to insufficient feeder allowance, they would preen near the feeders to
displace the mild frustration [4]. These are valuable responses for welfare-oriented poultry production
and manually collecting these responses could be time- and labor-consuming. However, there is no
available automated tool to extract these preening behavior responses. Precision poultry farming
techniques may provide availability to automatically obtain these responses, as various sensors and
computer tools have been utilized to detect poultry behaviors [10,11]. Convolutional neural network
(CNN) is another potential technology for poultry behavior detection.

Convolutional neural networks have been widely utilized for object detection in agricultural
applications [12,13]. With sufficient training, the CNN detectors could precisely detect objects of
concern in various environments [14]. Meanwhile, the CNN detectors can be integrated into various
vision systems to detect objects non-invasively, which is suitable to detect natural behaviors of poultry
without extra interferences. The detection performance of the CNNs is various with architectures.
Among them, the mask region-based CNN (mask R-CNN) is an extensive network of faster R-CNN [15].
It was used for detecting pig mounting behaviors [16], apple flowers [13], strawberries [17] and so forth
and obtained robust performance on those applications. Besides mask R-CNN, our team also applied
single shot detector (SSD), faster R-CNN and region-based fully convolutional network (R-FCN) for
detecting floor eggs in cage-free hen housing systems [14]. But from the previous paper [15] and our
preliminary test, the mask R-CNN outperformed these network architectures with regard to accuracy
because it retained as much object information as possible. Hence, it was selected to detect hen preening
behaviors in this case.

Mask R-CNN contains a great number of hyperparameters for training and appropriately
tuning/modifying the model is important to develop a robust detector in a customized dataset.
The residual network (ResNet) is proposed by He et al. [15] and used as a backbone for the mask
R-CNN. Various designs and depths of the ResNets can influence speed and quality for extracting
features of input images. Some commonly-used CNN models contain considerable weights that
were trained with some benchmark datasets, such as common objects in context ‘COCO’ [18] and
ImageNet [19]. The weights pre-trained with COCO and ImageNet dataset were hereafter named as
pre-trained COCO weights and pre-trained ImageNet weights. To apply the models into customized
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datasets, one efficient solution is to transfer the pre-trained weights learned previously into parts
of the model and only trained the rest parts. Such transfer learning could save training time and
simultaneously not compromise network performance [20]. Before developing deep learning models,
image resizers are typically used to uniform sizes of input images in benchmark datasets, in which sizes
of images are various due to different photographing conditions. Inappropriate resizing strategies may
downgrade detection performance. For example, resizing large images into small ones may increase
processing speed but risk missing small objects in the resized images [21]; and enlarging small images
into large ones with changed length-to-width ratios could distorted shapes and features of objects of
concern [22]. Insufficient region proposals may lead to missing target objects while excessive proposals
may downgrade processing speed [23]. However, it is uncertain which backbone architecture is better
for detecting preening birds and which hyperparameters are more efficient to develop the detectors.

The objective of this research was to develop mask R-CNN preening behavior detectors using brown
hens as examples. The brown hens lay brown-shell eggs accounting for a large share (>90% in Europe
and >70% in China) of the global egg market [24]. The backbone architecture and hyperparameters,
including pre-trained weight, image resizer and regions of interest (ROI), were modified to construct an
optimal detector for the detection purpose. The backbone architectures of residual networks (ResNet)
were ResNet18, ResNet34, ResNet50, ResNet101, ResNet152 and ResNet1000. The trainings included
without pre-trained weights, with the pre-trained COCO weights and with the pre-trained ImageNet
weights. The modes of image resizers were ‘None,’ ‘Square’ and ‘Pad64′. Numbers of ROIs were 30,
100, 200, 300, 400 and 500. With the trained detector, hen preening behaviors were quantified as well.

2. Materials and Methods

2.1. Housing, Animals and Management

The experiment was conducted at the U.S. Department of Agriculture (USDA) Poultry Research
Unit at Mississippi State, USA and all procedures in this experiment were approved by the USDA-ARS
Institutional Animal Care and Use Committee at Mississippi State, USA. Thirty Hy-line Brown hens at
38 weeks of age were placed in a pen, measuring 2.5 m long × 2.2 m wide. Nest boxes, feeders and
drinkers were equipped in the pen. Fresh litter was spread on the floor before bird arrival. Commercial
feed was provided ad libitum. Temperature, light program and light intensity were, respectively, set to
24 °C, 16L:8D (light ON at 6:00 am and OFF at 10:00 pm) and 20 lux at bird head level.

2.2. Data Acquisition

A night-vision network camera (PRO-1080MSB, Swann Communications U.S.A Inc., Santa Fe Springs,
LA, USA) was mounted in the middle of the pen and at ~2 m above the ground to capture top-view
videos. Hen activity was continuously monitored and videos were stored in a digital video recorder
(DVR-4580, Swann Communications U.S.A Inc., Santa Fe Springs, LA, USA). The video files were
recorded with a resolution of 1280 × 720 pixels at a sample rate of 25 frames per second (fps) and
converted to image files (.jpg) using Free Video to JPG Converter (ver. 5.0).

2.3. Preening Behavior Definition and Labelling

The definition of preening was that a bird grooms its feathers on different body parts, including
breast, throat, belly, shoulder, wing, back, tail and vent [6,25–27]. Based on the definition, we manually
labeled each preening hen that had the features in Figure 1. It should be noted that this study examined
preening behavior with beak only and the preening behavior with foot [26] was not considered. A total
of 48 h of videos, 16 h in one day, was used. Images with at least 1-min intervals were selected [12]
and the images containing preening hens were used for the labelling, resulting in totally 1700 images
from three-day videos. The labelling was conducted in an open-source labeling software (VGG Image
Annotator, VIA 2.0.4). A protocol of labeling preening birds that had the features in the preening
definition was set. The dataset was split into two parts and two experienced labelers labeled respective
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parts of images following the protocol. Then they mutually checked the labeled results to ensure that
the labels were correct.

Figure 1. Sample pictures of preening hens. The preening birds were manually cropped from
original images.

2.4. Network Description

The mask R-CNN consists of a backbone to extract features from an input image, a region proposal
network (RPN) to propose ROI and a detection head for object detection and instance segmentation
(Figure 2).

Each input image is first resized into a proper size using an image resizer. A ResNet and a
feature pyramid network (FPN) are used to construct the backbone to extract features from the resized
image. The ResNet is a bottom-up convolution network and divided into five stages of convolutions
(C1–C5) [15]. With higher stages of convolution, the sizes of resultant maps become smaller and
higher-level semantics are retained. The FPN is a top-down convolution network and generates five
scales of feature maps (P2–P6), which are resulted from the C2–C5 maps, respectively. The C2–C5 and
P2–P6 maps are laterally connected with a convolution of 1 × 1 × 256 and up-sampling with the size of
(2, 2). The P6 map is processed from the P5 map with a max pooling of [(1, 1), 2]. The ResNet-FPN
structure facilitates the extraction of both lower- and higher-level semantics, which are critical for
instance segmentation with regards to objects having various scales in an image. The P2–P5 maps are
concatenated to form feature maps for detection head, while the P2–P6 maps are combined and go
through a convolution of 3 × 3 × 256 to process a map for RPN.

In the RPN, an anchor generator generates the anchors with 5 scales of 32, 64, 128, 256 and 512 and
3 ratios of 0.5, 1 and 2. These anchors are tiled onto the map generated from the P2–P6 maps and then a
series of candidate boxes synthesized with objectness and bounding box deltas are proposed. With the
non-maximum suppression (NMS) rule, unnecessary boxes are filtered out and ROIs are retained.
The ROIs are finally projected onto the feature maps to position objects of interest using ROI Align
operation. The ROI Align uses the bilinear function to maintain float coordinates and makes pixel-wise
prediction more accurate than the ROI Pooling in the faster R-CNN, in which float coordinates are
typically quantized and valuable pixel information may lose.
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Figure 2. Network structure of mask region-based convolutional neural network (mask R-CNN).
ResNet is a residual network; FPN is a feature pyramid network; RPN is a region proposal network;
ROI is region of interest; NMS is non-maximum suppression; FC layer is fully-connected layer; Bbox is
bounding box; FCN is fully-connected network; C1–C5 are convolutional stages 1 to 5 in the ResNet;
P2–P6 are feature maps in the FPN; Box1–Box5 are proposed boxes with various scales and ratios after
the RPN; Conv. 1 × 1,256 is the convolution with the kernel size of (1, 1) and depth of 256; MP [(1, 1), 2]
is max pooling with the size of (1, 1) and stride of 2; ×2 Ups. is upsampling with the size of (2, 2);
Conv. 3 × 3 × 256 is the convolution with the kernel size of (3, 3) and depth of 256; 7 × 7 × 256 is the
size (length of 7, width of 7 and depth of 256) of convolution layers; 1024 is the number of neurons in
the FC layer; 14 × 14 × 256 is the size (length of 14, width of 14 and depth of 256) of convolution layers;
×4 is the repeated operations of the previous layer for 4 times; 28 × 28 × 256 is the size (length of 28,
width of 28 and depth of 256) of convolution layers; 28 × 28 × 80 are 80 target masks with the size of 28
in length and 28 in width.

The detection head comprises three branches that are object classification branch, bounding box
regression branch and object instance segmentation branch. The first two branches belong to the faster
R-CNN classification branch and the third branch is the fully-connected network (FCN) mask branch.
Various sizes of feature patches are proposed after the above-mentioned procedures and resized to
consistent sizes using another ROI Align operation, which can again retain more pixels than the ROI
Pooling. For the faster R-CNN branch, the resized feature patches go through a convolution layer of
7 × 7 × 256 and two 1024-neuron fully-connected (FC) layers to predict object scores and refine object
locations. As for the FCN branch, the patches undergo several convolution layers of 14 × 14 × 256 and
a de-convolution layer of 28 × 28 × 256. Eighty 28 × 28 candidate masks are processed and rescaled
according to the image size. Each pixel with the score being greater than 0.5 is assigned to the object of
concern to generate the final binary mask, which is visualized together with the bounding box and
class name.

2.5. General Workflow of Detector Training, Validation and Testing

Figure 3 shows the overall process of training, validation and testing. Training data was input
into the mask R-CNN detectors for training and the training loss was continuously calculated during
the training process. The training detectors were stored in specific training iteration periodically
and validated with the validation set. The training and validation losses were compared. If training
and validation losses kept decreasing, it meant that the detectors were underfitted and needed more
training. If the training loss decreased while the validation loss increased, it meant that the detectors
were overfitted and the training process needed to be stopped [28]. With the final saved detectors,
the hold-out testing data was used to evaluate the detector performance on preening detection.
The computing system used for detector training, validation and testing computing was equipped
with 32 GB RAM, Intel(R) Core (TM) i7-8700K processor and NVIDIA GeForce GTX 1080 GPU card
(Dell Inc., Round Rock, TX, USA).
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Figure 3. Illustration of the training, validation, and testing process. Mask R-CNN is mask region-based
convolutional neural network. “Y” means that judgement is true and “N” means that judgement
is false.

Table 1 shows the data distribution for training, validation and testing. Labeled images were
described in Section 2.3 with 1175 images for training, 102 for validation and 423 for testing, resulting
in 8464 labeled hens for training, 762 for validation and 2788 for testing. The training, validation and
testing data came from three different days, respectively and those images had at least 1-min intervals.
Therefore, they were thought to have sufficient variations for detector development.

Table 1. Data distribution for training, validation and testing.

Items Training Validation Testing

Hen age (day) 266 267 268
Images 1175 102 423

Number of preening hens 8464 762 2788
Number of non-preening hens 26,786 2298 9902

The losses for training and validation included total loss, detection head class loss, detection head
bounding box loss, detection mask loss, RPN bounding box loss and RPN class loss. The six types of
losses were reported by He et al. [15] and reflected how much deviation there was between prediction
and ground truth (Figure 4). Except for total loss, the other five types of losses corresponded to the
three outputs in the detection head and two outputs in the RPN and the total loss was the sum of
the five losses. A smaller loss indicated a better prediction. For instance, as loss samples shown in
Figure 4, the training losses kept decreasing, while most of the validation losses decreased before
9 × 103 iterations and had a rebound increase after 9 × 103 iterations. Therefore, the training process
was stopped at the 9 × 103th iteration to avoid overfitting and the detectors were saved accordingly.

2.6. Modifications for Detector Development

The modifications for the detector development involved ResNet architecture, pre-trained weight,
image resizer and number of ROI. The detectors with the following modifications was trained as
described in Section 2.5 and the modification with optimal testing performance was used to develop
the preening behavior detectors. The following modifications were trained with the default settings
of mask R-CNN that were ResNet101, pre-trained COCO weights, ‘Square’ image resizer mode and
200 ROIs, unless specified in the sections. As for other hyperparameters for training, we followed the
default settings recommended by Abdulla [22].

2.6.1. Residual Network Architecture

The ResNet was proposed by He, et al. [29]. Sufficiently extracting semantics in the C2–C5
stages was critical for detection performance. Six ResNet architectures that were ResNet18, ResNet34,
ResNet50, ResNet101, ResNet152 and ResNet1000 were embedded into the mask R-CNN backbone
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for training (Table 2). The number beside ‘ResNet’ indicates the number of layers in the architecture.
The ResNets with less than 50 layers were constructed with normal blocks (Figure 5a), while those with
more than 50 layers were stacked with bottleneck blocks (Figure 5b), which can reduce computational
complexity with increasing layers in the ResNet. The original mask R-CNN was built with ResNet50
or ResNet101.

 

Figure 4. Samples of training and validation losses during training process. (a) Total loss; (b) detection
head bounding box loss; (c) detection head class loss; (d) detection head mask loss; (e) region proposal
network bounding box loss; and (f) region proposal network class loss.

 
Figure 5. Examples of building block with shortcut connections for the residual network (ResNet).
(a) Normal block at the C2 stage of the ResNet18 and ResNet34; and (b) bottleneck block at the C2 stage
of the ResNet50-ResNet1000. ReLu is rectified linear units; 64-d is depth of 64; and 256-d is depth of
256. The figure was redrawn from He, et al. [29].
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Table 2. Detailed architectures for residual network (ResNet).

Stage of
Convolution

ResNet18 ResNet34 ResNet50 ResNet101 ResNet152 ResNet1000

C1 7 × 7, 64, stride 2
3 × 3 max pooling, stride 2

C2
[

3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 3

⎡⎢⎢⎢⎢⎢⎢⎣
1× 1, 64
3× 3, 64
1× 1, 256

⎤⎥⎥⎥⎥⎥⎥⎦× 3

⎡⎢⎢⎢⎢⎢⎢⎣
1× 1, 64
3× 3, 64
1× 1, 256

⎤⎥⎥⎥⎥⎥⎥⎦× 3

⎡⎢⎢⎢⎢⎢⎢⎣
1× 1, 64
3× 3, 64
1× 1, 256

⎤⎥⎥⎥⎥⎥⎥⎦× 3

⎡⎢⎢⎢⎢⎢⎢⎣
1× 1, 64
3× 3, 64
1× 1, 256

⎤⎥⎥⎥⎥⎥⎥⎦× 248

C3
[

3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 128
3× 3, 128

]
× 4

⎡⎢⎢⎢⎢⎢⎢⎣
1× 1, 128
3× 3, 128
1× 1, 512

⎤⎥⎥⎥⎥⎥⎥⎦× 4

⎡⎢⎢⎢⎢⎢⎢⎣
1× 1, 128
3× 3, 128
1× 1, 512

⎤⎥⎥⎥⎥⎥⎥⎦× 4

⎡⎢⎢⎢⎢⎢⎢⎣
1× 1, 128
3× 3, 128
1× 1, 512

⎤⎥⎥⎥⎥⎥⎥⎦× 22

⎡⎢⎢⎢⎢⎢⎢⎣
1× 1, 128
3× 3, 128
1× 1, 512

⎤⎥⎥⎥⎥⎥⎥⎦× 248

C4
[

3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 256
3× 3, 256

]
× 6

⎡⎢⎢⎢⎢⎢⎢⎣
1× 1, 256
3× 3, 256
1× 1, 1024

⎤⎥⎥⎥⎥⎥⎥⎦× 6

⎡⎢⎢⎢⎢⎢⎢⎣
1× 1, 256
3× 3, 256
1× 1, 1024

⎤⎥⎥⎥⎥⎥⎥⎦× 23

⎡⎢⎢⎢⎢⎢⎢⎣
1× 1, 256
3× 3, 256
1× 1, 1024

⎤⎥⎥⎥⎥⎥⎥⎦× 22

⎡⎢⎢⎢⎢⎢⎢⎣
1× 1, 256
3× 3, 256
1× 1, 1024

⎤⎥⎥⎥⎥⎥⎥⎦× 247

C5
[

3× 3, 512
3× 3, 512

]
× 2

[
3× 3, 512
3× 3, 512

]
× 3

⎡⎢⎢⎢⎢⎢⎢⎣
1× 1, 512
3× 3, 512
1× 1, 2048

⎤⎥⎥⎥⎥⎥⎥⎦× 3

⎡⎢⎢⎢⎢⎢⎢⎣
1× 1, 512
3× 3, 512
1× 1, 2048

⎤⎥⎥⎥⎥⎥⎥⎦× 247

Average pooling, 1000-d FC, softmax

Note: ResNet18-ResNet1000 are residual network with 18–1000 layers of convolution; C1–C5 are convolutional
stages 1 to 5 in the ResNet; and FC is fully-connected.

2.6.2. Pre-Trained Weight

The mask R-CNN was pre-trained with the benchmark datasets of COCO [18] and ImageNet [19]
and obtained pre-trained weights. The trainings included without pre-trained weights, with pre-trained
COCO weights and with pre-trained ImageNet weights. The training with the pre-trained weights
only involved the heads of FPN, RPN and detection branches, which contained 28 items, while the full
layer training without pre-trained weights was related to every layer in the detectors, which contained
236 items in total.

2.6.3. Image Resizer

To obtain uniform size of images for detector development, we need to resize the input images
to the same size. Appropriate image resizers could improve processing speed and retain as much
pixel-wise information as possible [22]. Three modes of resizers were compared, which were ‘None,’
‘Square’ and ‘Pad64′. In the ‘None’ mode, input images (1280 × 720 pixels) were neither resized nor
padded. In the ‘Square’ mode, input images were resized from 1280 × 720 pixels to 1024 × 1024 pixels
and zeros were used to pad blank areas of resized images. In the ‘Pad64′ mode, input images were
resized from 1280 × 720 pixels to 1280 × 768 pixels and the differences were padded with zeros. Resized
sample images with the three modes of resizing are shown in Figure 6.

 

‘None’ mode:  
1280 × 720 pixels 

‘Square’ mode:  
1024 × 1024 pixels 

‘Pad64  mode:  
1280 × 768 pixels 

Figure 6. Resized sample images with three modes of image resizers.

2.6.4. Proposed Regions of Interest

Target preening birds may be ruled out in a feature map with insufficient ROIs, resulting in
miss-identification of preening birds, while processing speed may decrease using a map with excessive
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ROIs [23]. The detectors were trained with 30, 100, 200, 300, 400 and 500 ROIs and the performance
was compared.

2.7. Evaluation Metrics

After the detectors were trained and validated, the hold-out testing set was used for evaluating
the trained detectors as described in Section 2.5. To determine whether a preening hen had been
correctly segmented, the intersection over union (IOU) for each predicted hen was computed using
overlap and union pixels of the ground truth and prediction (Equation (1)). An IOU greater than 0.5 in
this case means the detectors segmented and detected a preening hen correctly.

IOU[%] =
(pixels ∈ ground truth) ∩ (pixels ∈ prediction)
(pixels ∈ ground truth) ∪ (pixels ∈ prediction)

× 100% (1)

The mean IOU (MIOU) was used to evaluate overall segmentation performance of the detectors
and calculated in Equation (2).

MIOU =

∑n
i=1 IOUi

n
(2)

where IOUi is the IOU for the ith preening hen and n is the total number of preening hens.
Precision, recall, specificity, accuracy and F1 score for detecting each preening hen in the images

were calculated using Equations (3)–(7). Precision is the percentage of true preening cases in all detected
preening cases. Recall is the percentage of the true preening cases in all manually-labeled preening
cases. Specificity is the percentage of true non-preening cases in all manually-labeled non-preening
cases. Accuracy is the percentage of true preening and non-preening cases in all cases. F1 score
is the harmonic mean of precision and recall and a balance metric on comprehensively evaluating
false preening and non-preening cases. For all five metrics, a closer to 100% value reflects a better
performance of the detectors.

Precision[%] =
TP

TP + FP
× 100% (3)

Recall[%] =
TP

TP + FN
× 100% (4)

Speci f icity[%] =
TN

TN + FP
× 100% (5)

Accuracy[%] =
TN + TP

TN + TP + FN + FP
× 100% (6)

F1 score [%] = 2× Precision×Recall
Precision + Recall

× 100% (7)

where TP is true positive, that is, number of cases that a detector successfully detects existent preening
hens in an image with IOU greater than 0.5; FP is false positive, that is, number of cases that a
detector reports non-existent preening hens in an image or IOU is less than 0.5; FN is false negative,
that is, number of cases that a detector fails to detect existent preening hens in an image; and TN is
true negative, that is, number of cases that non-preening hens are reported by both a detector and
manual label.

Average precision (AP) summarizes the shape of the precision-recall curve and is defined as
the mean precision at a set of 11 equally-spaced recall levels [0, 0.1, . . . , 1] [30]. The precision-recall
curve is produced according to the predicted confidence level. Increasing the confidence may reduce
false positives but increase false negative, resulting in increasing precision and decreasing recall.
A closer to 100% AP indicates a more generalized detector to detect objects with various confidence.
The calculation of the AP is shown in Equation (8).

AP[%] =
1
11

∑
r∈{0,0.1,...,1}

Pinterp(r) (8)
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where r is level of recall at {0, 0.1, . . . , 1}; and Pinterp(r) is the interpolated precision in the precision-recall
curve when recall is r.

The interpolated precision is the maximum value within one piece of a wiggle-shape curve
(Equation (9)).

Pinterp(r) = max
r̃:̃r≥r

P(̃r) (9)

where r̃ is the recall within a wiggle piece; and P(̃r) is the measured precision at recall r̃.
The processing time reported by Python 3.6 was used to evaluate the processing speed of the

detectors for processing 423 images. The processing speed (ms·image−1) was obtained by dividing the
total processing time with 423 images.

2.8. Sample Detection

We finally deployed the detector trained with ResNet101, pre-trained COCO weights, ‘Square’
mode and 200 ROIs, after the performance comparison. We continuously detected hen preening
behaviors for half hour in week 38 of bird age. A segmented image based on traditional Otsu’s
thresholding [31] was used to compare the result of preening instance segmentation using the mask
R-CNN detector. The hen preening behaviors at 6:00 am–6:30 am were characterized as time spent
preening (min·hen−1), number of preening bouts (bouts·hen−1), average preening duration (min·bout−1),
frequency of preening duration, number of birds simultaneously preening and spatial distribution of
preening birds. Spatial location of preening birds was plotted in a heat map. To construct a heat map,
a mesh grid was firstly constructed onto the pen map based on the dimension of the pen, in which the
gird size was set to 10 pixels. Then a Standard Gaussian Kernel Density Estimation Function was run
onto the center of each grid in the map and the preening frequency in each grid was calculated by
Equation (10). Finally, the density map was visualized using Matplotlib, an open-source visualization
library. The cooler-color (i.e., dark blue) areas in the map represented the areas where birds performed
preening more often, while the warmer-color (i.e., dark red) areas were the areas where birds were less
likely to preen.

P =
n∑

i=1

1√
2π

e−d2
i /2 (10)

where P is the probability in Standard Gaussian Distribution curve; n is the total number of grids in
the entire image; and di is the pixel-representing distance between the grid center and ith detected
preening bird center.

3. Results

3.1. Sample Detection

A sample detection is shown in Figure 7. Individual preening birds could be detected and
segmented separately using the mask R-CNN detector, while some segmented hens by traditional
thresholding method were cohesive and mixed with the background due to similar features with the
background. Therefore, we applied the CNN detector to detect preening hens in this case. Meanwhile,
as the deep learning outperformed the traditional image processing with regards to object segmentation,
it may be a better choice for some research/application purposes (e.g., bird activity analysis).
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(a) (b) (c) 

Figure 7. Sample detection. (a) Original image; (b) preening instance segmentation using the
mask region-based convolution neural network detector; and (c) image segmentation using Otsu’s
thresholding. Some preening birds in the Figure 7b are masked with different colors.

3.2. Performance of Various Residual Networks

Table 3 shows the performance of various ResNets on preening detection. The six ResNets
had similar segmentation performance of preening birds as indicated by similar MIOU (87.3–87.8%).
The ResNet18 had middle performance but the second fastest processing speed (364.8 ms·image−1).
The ResNet34 had the highest precision (88.5%) but the second lowest recall (86.2%) and AP (83.1%).
The ResNet50 had the lowest recall (85.3%), accuracy (93.5%), F1 score (84.9%), AP (81.4%) and
processing speed (342.9 ms·image−1). The ResNet101 had the highest accuracy (95.0%) and F1 score
(88.1%). The ResNet152 had the lowest precision (83.1%) but the highest AP (85.7%). The ResNet1000
had the third lowest precision (84.5%) and slowest processing speed (393.2 ms·image−1). Overall,
the six ResNets had strengths and weaknesses in different detection performance. Since the ResNet101
is a popular network in other agriculture applications, it was selected to develop the detector.

Table 3. Performance of various residual networks on preening detection.

ResNet
MIOU

(%)
Precision

(%)
Recall

(%)
Specificity

(%)
Accuracy

(%)
F1 Score

(%)
AP
(%)

Processing Speed
(ms·image−1)

ResNet18 87.4 87.2 87.1 96.7 94.7 87.1 83.6 364.8
ResNet34 87.4 88.5 86.2 97.0 94.8 87.3 83.1 378.4
ResNet50 87.8 84.4 85.3 95.7 93.5 84.9 81.4 342.9
ResNet101 87.4 87.7 88.4 96.7 95.0 88.1 83.5 386.0
ResNet152 87.4 83.1 90.1 95.1 94.1 86.5 85.7 387.7

ResNet1000 87.4 84.5 90.8 95.6 94.6 87.6 85.6 393.2

Note: ResNet is residual network; ResNet18-ResNet1000 is the ResNet with 18–1000 layers; MIOU is mean
intersection over union; and AP is average precision.

3.3. Performance of the Detectors Trained with Various Pre-Trained Weights

Table 4 shows the detection performance of the mask R-CNN detectors trained with various
pre-trained weights. The detector trained with pre-trained ImageNet weights had the low performance
of preening detection and segmentation among the three trainings, except for the specificity and
precision. The detectors trained without pre-trained weights and with pre-trained COCO weights
had similar detection performance, while the former training took ~50% more time and ~70% more
computer memory. Therefore, the detector was trained with the pre-trained COCO weights in this case.
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Table 4. Performance of the detectors trained with various pre-trained weights.

Training
MIOU

(%)
Precision

(%)
Recall

(%)
Specificity

(%)
Accuracy

(%)
F1 Score

(%)
AP
(%)

Processing Speed
(ms·image−1)

w/o pre-trained
weights 88.7 80.3 92.3 93.9 93.6 85.9 87.5 379.0

w/pre-trained
COCO weights 87.2 83.4 91.3 94.5 93.8 87.2 86.7 382.9

w/pre-trained
ImageNet weights 83.6 81.2 83.1 94.9 92.5 82.2 80.0 413.7

Note: COCO is common object in context; MIOU is mean intersection over union; and AP is average precision. ‘w/o’
and ‘w/’ indicate ‘without’ and ‘with’, respectively.

3.4. Performance of Various Image Resizers

Table 5 shows the performance of various image resizers. Similar MIOU and accuracy were
observed for the three modes of resizers. The ‘Square’ mode had the lowest recall (86.3%) and F1 score
(86.6%) but the highest specificity (96.6%). The ‘Pad64′ had the lowest precision (84.2%) and specificity
(95.6%) but the highest recall (90.1%) and processing speed (383.3 ms·image−1). It should be noted that
except for processing speed and recall, performance differences among the resizers were mostly less
than 3%. As there was no obvious strength of detection performance among the resizers, the default
resizers (‘Square’ mode) was deployed to develop the final detector.

Table 5. Performance of various image resizers.

Mode of
Image Resizer

MIOU
(%)

Precision
(%)

Recall
(%)

Specificity
(%)

Accuracy
(%)

F1 Score
(%)

AP
(%)

Processing Speed
(ms·image−1)

None 87.2 85.3 88.4 96.0 94.4 86.8 84.6 377.7
Square 87.6 86.9 86.3 96.6 94.5 86.6 86.7 377.8
Pad64 87.0 84.2 90.1 95.6 94.5 87.0 86.3 383.3

Note: MIOU is mean intersection over union; and AP is average precision.

3.5. Performance of the Detectors Trained with Various Numbers of Regions of Interest

The MIOU, accuracy and F1 score were similar among different numbers of ROIs (Table 6).
The detector trained with 30 ROIs had the lowest recall (79.3%) and AP (75.8%) but the highest precision
(92.5%) and specificity (98.2%). With more than 30 ROIs, the precision, recall, specificity and AP,
respectively, ranged from 82.8–85.8%, 87.2–90.7%, 95.0–96.3% and 84.9–86.5%. The processing speed
(378.2–390.7 ms·image−1) did not absolutely increase as more ROIs were used. Because there was no
absolute improvement of detection performance with increasing ROIs (>30), the default ROIs of 200
was used in the final training.

Table 6. Performance of the detectors trained with various numbers of regions of interest (ROI).

Number
of ROI

MIOU
(%)

Precision
(%)

Recall
(%)

Specificity
(%)

Accuracy
(%)

F1 Score
(%)

AP
(%)

Processing Speed
(ms·image−1)

30 87.5 92.5 79.3 98.2 94.2 85.4 75.8 378.2
100 87.1 84.2 89.1 95.5 94.2 86.6 84.9 379.4
200 86.9 85.8 89.5 96.0 94.6 87.6 85.4 378.1
300 87.2 85.7 87.2 96.3 94.4 86.4 83.8 390.7
400 87.6 82.7 90.3 95.0 94.0 86.3 86.5 382.0
500 87.0 82.8 90.7 95.0 94.1 86.6 86.2 378.8

Note: MIOU is mean intersection over union; and AP is average precision.

3.6. Preening Behavior Measurement via the Trained Detector

Figure 8 shows the preening behavior measurement in half hour via the trained detector. The hen
spent on average 18.1 min, 106 bouts and 0.23 min·bout−1 on preening. For over 90% of the time,
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the hens preened for less than 30 sec. A hen preened for up to 20.5 min within a preening event.
Ten birds choosing to simultaneously preen took up the most proportion (16.9%) and the overall
frequency was distributed in a shape of normal distribution. The hens spent more time preening at the
top left corner of the pen. The hotspot was caused by multiple preening birds. Some birds may finish
the preening and leave for eating/drinking while others may enter that area for preening.

Figure 8. Preening behavior measurement during 6:00–6:30 am for 38-week-old hens. (a) Frequency of
preening duration. (b) Frequency of simultaneously preening numbers. (c) Heat map for the location
of preening birds. The drinker, feeder and nest box are marked as the white rectangles on the top,
middle and bottom, respectively. The non-unit frequency represents the probability for birds preening
at specific locations and is calculated by Standard Gaussian Kernel Density Estimation Function.

4. Discussion

4.1. Ambiguous Preening Behavior

Hens can preen various parts of their body. In the images from the single camera and camera
angle, some birds were hard to manually tell whether they were preening (Figure 9), which were ~3%
of all hens in images. Those questionable hens were not labeled in this case and only the hens with
clear preening features as mentioned in Figure 1 were labeled. Although this could make the detectors
accurately detect preening hens with obvious features, the detectors still inevitably became ambiguous
on detecting those questionable hens, especially the birds preening their chest or pecking ground.
That could compromise detection performance. To reduce the confusion and improve detection
performance, multiple cameras with multiple angles may be considered to capture different views of
preening birds. To exemplify the applications of mask R-CNN on poultry preening behavior detection,
we trained the detectors with images only containing brown hens. However, the detector may also
be trained with other images containing other types of chickens, which can extend application range.
Based on our previous experiment, deep learning networks could be generalized to different light
intensities, backgrounds, object colors, object numbers and object sizes, as long as they were fed and
trained with enough sample images [14].
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Figure 9. Sample pictures of questionable birds. The birds were manually cropped from original
images. They were not labeled as preening birds and used for model development.

As shown in Figure 8a, birds typically preened for less than 30 s and some birds even did it shorter
(<1 s). With that regard, if the accuracy is acceptable, higher processing speed is still preferred since it
may cover more prompt preening behaviors.

4.2. Segmentation Method Comparison

The compared segmentation method, despite not being the most state-of-the-art, is still commonly
used for bird activity evaluation [11,32]. Pairs of adjacent images were compared to get the difference
images and then the resulting images were binarized using the image processing methods. Activity
index may reflect status of birds responding to surroundings and is important for poultry production.
This parameter was extracted with traditional image segmentation methods. However, based on our
current test, the traditional methods may result in cohesive maps. Although delicate adjustment may
help to solve the issue, it requires intensive labor and has poor generalization. The mask R-CNN
could solved the problem and may facilitate the bird activity evaluation, thus being recommended in
this case.

4.3. Architecture Selection

The mask R-CNN is not the most state-of-the-art architecture. However, as agricultural engineers,
our major goal is not to pursue the most advanced technique regardless but to seek reliable solutions
to facilitate agricultural productions. With that regard, mask R-CNN was widely used in different
areas and commercialized to accurately detect objects of concern, which may be acceptable for
farmers, thus being our solution to detect poultry preening. Meanwhile, based on our preliminary
test, the mask R-CNN outperformed its counterparts (e.g., SSD, faster R-CNN and R-FCN) in terms
of accuracy, because the mask R-CNN retained as many pixels as possible using FPN and ROI align.
Taking these into consideration, we decided to test the mask R-CNN systematically and seek the
optimal modifications of the mask R-CNN.

4.4. Performance of Various Residual Network

Various ResNet architectures had different performance on preening detection. The efficiency of
instance segmentation mainly relied on the mask detection architecture (FCN in this case) in the mask
R-CNN detector [15,33] and the same mask detection architecture among various ResNets caused
similar MIOU. Although the ResNet101 had slightly better or similar precision, recall, specificity,
accuracy, F1 score and AP, the differences of the performance were small (2–4%). The ResNet-FPN
backbone was proposed to extract ROI features from different levels according to their scales within an
images and ResNet with more layers may theoretically improve the extraction and further detection
performance [29,34]. The scales in some common images were partitioned at three levels that were
<1024 pixels, 1024–9216 pixels and >9216 pixels corresponding to small, medium and large objects,
respectively [35]. Compared with those, the scales of preening birds ranged from 7765 to 17,353 pixels,
in which object areas in an image were relatively consistent. That may be the reason for why we cannot
get significant improvement with ResNets having more layers.

24



Animals 2020, 10, 1762

Appropriate design of the CNN architecture could improve processing speed as more layers
are stacked onto the architecture. The processing speed increased as the ResNet layers increased
from 18 to 34 and 50 to 1000. However, it decreased as the ResNet increased from 34 layers to
50 layers. As shown in Figure 4, the ResNet18–ResNet34 were built with normal blocks, while the
ResNet50–ResNet1000 were constructed with bottleneck blocks. The latter design can reduce the
computational complexity and further increase the processing speed in deeper ResNets (≥50 layers) [29].
In sum, proper CNN architectures are critical for developing a robust and efficient detector as it can
affect detection performance.

4.5. Performance of the Detectors Trained with Various Pre-Trained Weights

Modern CNNs are massive architectures containing considerable parameters to be trained, thus,
efficiently training the inner structure is critical. Transfer learning could be a solution. Compared with
the performance between the trainings without pre-trained weights and with pre-trained COCO
weights, transfer learning could save training time without compromising detection performance.
The latter training only involved the heads of FPN, RPN and detection branches, containing high-level
semantics [36]. Such semantics may be more important for instance segmentation and object detection
than low-level generic features extracted by the bottom architecture of the detectors [15]. That is
why the detectors with the two trainings showed similar performance. As for transfer learning,
various pre-trained weights among benchmark datasets can result in various performance. Perhaps,
the pre-trained COCO weights had more similarity for preening hens than the pre-trained ImageNet
weights, resulting in better efficiency of transfer learning and better performance for the former
pre-trained weights [18–20].

4.6. Performance of Various Image Resizers

The resizers in this case had similar detection performance. The original image size was
1280 × 720 pixels and the size after resizing was 1024 × 1024 pixels for the ‘Square’ mode and
1280 × 768 pixels for the ‘Pad64′ mode. Most of the sizes were the multipliers of 64, which can ensure
smooth scaling of feature maps up and down at the six levels of the FPN and reduce information
loss [22]. That could result in the similar performance. Furthermore, the shapes of preening birds were
not distorted before and after resizing, which made the detectors learn consistent features of preening
birds and generate similar results. Reducing input image sizes indeed can help to cut processing
time [23].

4.7. Performance of the Detectors Trained with Various Numbers of Regions of Interest

Detection performance varied with the proposed numbers of ROI. When less ROIs (<30) were
proposed, some candidate preening hens may be ruled out, resulting in low recall and AP [23].
Meanwhile, fewer non-preening birds may be wrongly recognized as preening birds with less ROIs,
causing higher precision and specificity. However, these trends disappeared when the ROIs were more
than 100. Perhaps, more than 100 ROIs were sufficient to cover possible preening hens for the detection
in this case. Processing speed did not absolutely increase with advanced ROIs, probably because
processing lower than 500 ROIs did not exceed the capacity of the mask R-CNN detectors [15,23].

4.8. Preening Behavior Measurement with the Trained Detector

Individual preening hens could be continuously monitored with the trained detector. The extracted
behavior information showed that the hens showed temporal and spatial preference on the preening
during the testing period. These behaviors may provide valuable insights into farm management and
facility design. For example, hens may show displacement preening around feeders when they cannot
access feed [25] and understanding the frequency of preening hens present around feeders may help to
evaluate the sufficiency of feeder allowance. At the current stage, we just explored the probability of
using deep learning to detect the preening behavioral responses and further research is recommended
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to determine the thresholds of the responses with regards to welfare evaluation. Overall, the mask
R-CNN preening behavior detector is a useful tool to evaluate hen preening behaviors.

5. Conclusions

This study developed mask R-CNN preening behavior detectors by modifying the ResNets,
pre-trained weights, image resizers and number of ROIs. The detectors accurately segmented
individual preening hens (MIOU: 83.6–88.7%) and had decent performance on detecting preening and
non-preening hens, in which the precision, recall, specificity, accuracy, F1 score and AP were mostly
over 80%. The overall processing speed for preening detection ranged from 342.9 to 413.7 ms·image−1.
The ResNet101 performed better on the preening detection among the six ResNets. The pre-trained
COCO weights had better transfer learning efficiency than the pre-trained ImageNet weights. The image
resizers in the ‘None,’ ‘Square’ and ‘Pad64′ modes performed similarly on hen preening detection.
The 30 ROIs had the highest precision and specificity but the lower recall and AP among various
numbers of ROIs, while more than 100 ROIs had similar performance on hen preening detection.
With the trained detector, temporospatial preening behaviors of individual hens could be extracted.
Overall, the mask R-CNN preening behavior detector is a useful tool to detect hen preening behaviors.
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Nomenclature

AP Average precision MIOU Mean intersection over union
ARS Agriculture Research Service MP Max pooling
Bbox Bounding box NMS Non-maximum suppression

Box1–Box5
Proposed boxes with various sales and
ratios after the region proposal network

Pinterp(r)
Interpolated precision in the
precision-recall curve when recall is r

C1–C5
Convolutional stages 1 to 5 in the
residual network

P(̃r) Measured precision at recall r̃

COCO Common object in context P2-P6
Feature maps in the feature pyramid
network

Conv. Convolution ReLu Rectified linear units
CNN Convolutional neural network ResNet Residual network

Faster RCNN
Faster region-based
convolutional neural network

ResNet18-
ResNet1000

Residual network with 18-1000 layers of
convolution

FC Fully-connected ROI Regions of interest
FCN Fully-connected network RPN Region proposal network
FN False negative TN True negative
FP False positive TP True positive
FPN Feature pyramid network Ups. Upsampling
IOU Intersection over union USA United State of American

Mask R-CNN
Mask region-based convolutional
neural network

USDA United State department of agriculture
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Simple Summary: The equipment in the poultry house can occlude top view images of broiler
chickens and limit the efficiency of vision-based target detection. In this study, we sought to improve
the efficiency of a previously developed method to detect and restore broiler chicken areas blocked
by feeders and drinkers. To do this, we developed and tested linear and elliptical fitting restoration
methods under different occlusion scenarios to restore occluded broiler chicken areas. The restoration
method correctly restored the occluded broiler chicken area >80% of the time. This study provides a
practical approach to enhancing the image quality in applying a machine vision-based method for
monitoring poultry health and welfare.

Abstract: The presence equipment (e.g., water pipes, feed buckets, and other presence equipment,
etc.) in the poultry house can occlude the areas of broiler chickens taken via top view. This can affect
the analysis of chicken behaviors through a vision-based machine learning imaging method. In our
previous study, we developed a machine vision-based method for monitoring the broiler chicken
floor distribution, and here we processed and restored the areas of broiler chickens which were
occluded by presence equipment. To verify the performance of the developed restoration method, a
top-view video of broiler chickens was recorded in two research broiler houses (240 birds equally
raised in 12 pens per house). First, a target detection algorithm was used to initially detect the
target areas in each image, and then Hough transform and color features were used to remove the
occlusion equipment in the detection result further. In poultry images, the broiler chicken occluded
by equipment has either two areas (TA) or one area (OA). To reconstruct the occluded area of broiler
chickens, the linear restoration method and the elliptical fitting restoration method were developed
and tested. Three evaluation indices of the overlap rate (OR), false-positive rate (FPR), and false-
negative rate (FNR) were used to evaluate the restoration method. From images collected on d2,
d9, d16, and d23, about 100-sample images were selected for testing the proposed method. And
then, around 80 high-quality broiler areas detected were further evaluated for occlusion restoration.
According to the results, the average value of OR, FPR, and FNR for TA was 0.8150, 0.0032, and
0.1850, respectively. For OA, the average values of OR, FPR, and FNR were 0.8788, 0.2227, and 0.1212,
respectively. The study provides a new method for restoring occluded chicken areas that can hamper
the success of vision-based machine predictions.

Keywords: broiler chicken; machine vision; image restoring; precision poultry farming

1. Introduction

The computer or machine vision-based technology (MVT) has been suggested and
tested to monitor livestock and poultry behaviors [1–4], health [5,6], and flock activity [7–9].
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At present, the techniques used to obtain information about poultry include 3D vision
technology [10,11], infrared thermal imaging technology [12,13], and image processing
technology [14–16]. 3D vision technology can effectively obtain the target area through
the three-dimensional information in the scene. Aydin [17] used 3D vision technology
to detect broilers and assessed the lameness of broiler chickens. 3D vision is more time-
consuming than 2D vision because of the larger amount of data in 3D. Infrared thermal
imaging technology uses temperature information to remove interferences and obtain
poultry target areas. Zaninelli et al. [18] built an animal monitoring system based on
infrared imaging technology and pattern recognition to detect a hen in a closed room of a
housing system. Thermal imaging of poultry surface temperature is not consistent so that
the low-temperature area tends to be lost. Image processing technology distinguishes target
and non-target areas through image information characteristics. We used image processing
technology to detect the area of the broiler chicken in the video scene and further analyzed
the distribution of the broiler chicken [19]. Although the target area could be detected
through image processing technology, it was dependent on the information in the scene.
When the scene changes, the detection method may not be effective. In poultry houses, the
complex production systems, such as feeding and drinking equipment (e.g., water pipe,
feeder, and hanging chains), is a critical challenge for collecting top view animal images
because animals or poultry are occluded in the images, which leads to the high uncertainty
in analyzing animal information (e.g., behaviors and body features).

The poultry body is similar to an ellipse, so many researchers used ellipse fitting to
obtain poultry information. Lao et al. [20] used contour ellipse fitting to obtain ten behav-
ioral parameters. Further, the Naive Bayes Classification method has been used to classify
and distinguish six behaviors of preening, shaking, resting, wing flapping, exploration,
and wing lifting. Amraei et al. [21] performed ellipse fitting on the body of the chicken
to obtain relevant parameters and conducted weight estimation through artificial neural
networks. Poursaberi et al. [22] extracted the boundary of the bird and the parameters of
the best-fitted ellipse to categorize turning, wing flapping, lying, and standing behaviors.
In addition, the research on detecting elliptical targets has also achieved some results.
Liu et al. [23] proposed a fast and effective ellipse detection method, which performed
better detection results. Dong et al. [24] combined the advantages of arc extraction and arc
grouping to propose an ellipse detection method. Therefore, the ellipse fitting method is
one of the suitable methods for broiler chicken target detection.

The aforementioned methods can be modified to remove image interferences with
ellipse fitting and obtain relevant chicken movement information. The objectives of this
study were (1) develop an imaging processing strategy for removing equipment and restore
occluded chicken areas; (2) test the effect of the optimized method to remove equipment
areas; (3) evaluate the efficiency of different image restoration methods used in this study
for two primary occlusion scenarios.

2. Materials and Methods

2.1. Experimental Setup and Data Collection

This study was conducted in two identical experimental broiler facilities on the Poultry
Research Farm at the University of Georgia, Athens, USA. Unless otherwise stated, the
experimental setup and data have been previously published in [19]. Briefly, six identical
pens (measuring 1.84 L × 1.16 W m, 20 Cobb 500 broiler chickens/pen, the density was
about 0.11 m2 floor per bird) were monitored separately with a high definition (HD)
camera (PRO-1080MSFB, Swann Communications, Santa Fe Springs, CA, USA) mounted
on the ceiling (2.5 m above floor) to capture video (15 frame/s with the resolution of
1440 × 1080 pixels). Video/image acquisition time was from 13 February 2020, to 18 March
2020. Collected videos were further analyzed and processed by MATLAB-R2019b (The
MathWorks, Inc., Natick, MA USA).
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2.2. Method for Target Detection

From our observation, the equipment interference in images of chickens became less
with an increase in the birds’ size and age. Therefore, the first four weeks of chicken images
were selected as research samples in this study. The method for target detection has been
developed and published; see our other paper [19].

Figure 1 shows the images collected on d2, d9, d16, and d23. The hanging feeder was
installed when birds were two weeks old and were tall enough to use it. Thus, images of
d2 and d9 have a floor feeder, and d16 and d23 have a hanging feeder.

 

Figure 1. Examples of experimental data collection.

Figure 2 is an image collected on d23 as an example to show the target detection
method. It can be seen from Figure 2c that the nipple drinker caused interference in birds’
detection. Therefore, it is necessary to remove this interference to improve the quality of
the chicken’s images.

 

Figure 2. Examples of target detection results: (a) generation of binary image; (b) binary classification; and (c) the binary
image obtained based on (a).

2.3. The Equipment Area Removal

According to pre-processing of images, we identified that image occlusion was caused
by the presence of three pieces of equipment: (1) the water pipe; (2) the water pressure
regulator (red circle area at the end of water pipe); and (3) the feeder. Therefore, the current
study focused on the restoration of images occluded by the presence of three pieces of
equipment.

(1) Water pipe interference removal.
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The Hough transform can effectively detect the straight line in an image [25], so the
method was used and modified to detect the pipe area in broiler houses. The Hough
transform was performed on the image in Figure 2c to retain only the maximum peak
(Figure 3a). Figure 3b,b’ show lines (green) that have passed the peak point with the
‘yellow ×’ indicating the starting point of the lines and the ‘red ×’ indicating the ending
point of the lines. The first starting point in the ‘yellow ×’ was selected as the starting
point of the pipe, and the last ending point in the ‘red ×’ was the ending point of the pipe.
The connection line was approximately the centerline of the pipeline. Therefore, it was
considered that the area obtained by the left and right extensions of 5 pixels based on the
line was the pipe area, as shown in the red area in Figure 3c. Figure 3d shows the images
with the pipe blocking area removed.

 

Figure 3. The process for pipe area detection and removal. The white box in (a) is the maximum peak point; In (b), it shows
all the lines (green) that have passed the peak point with the yellow × indicating the starting point of the lines and the
red × indicating the ending point of the lines. The drinking zone was zoomed-in (b’); In (c), the red area is the pipe area;
and (d) is the result of pipe area removal.

(2) Water pressure regulator interference removing.
The color of the water pressure regulator (i.e., circular area at the end of the water

pipe in Figure 1) was red, which was quite different from the color of the broiler chick-
ens. Therefore, the circular area of the water pressure regulator was removed by color
information to obtain chicken profiles in Figure 4. It can be seen from Figure 4 that part
of the broiler chicken’s missing area was caused by the occlusion of the water pipe, water
pressure regulator, and feeder. For instance, the broiler chicken was divided into two areas
in the yellow box in Figure 4.
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Figure 4. The result of equipment area removal. The area loss of the broiler chicken in the blue,
yellow, and red boxes were caused by the feeder, water pipe, and water pressure regular, respectively.

2.4. Equipment Occlusion Detection and Restoration

Figure 5 shows the three equipment that occluded broiler chicken images, i.e., feeder
(Figure 5a), water pipe (Figure 5b,c), and water pressure regulator (Figure 5d). There
are two occlusion scenarios: (i) the body of chicken was divided into two areas (TA) (see
Figure 5b) and (ii) the body of chicken was partly occluded, so the body has only one area
(OA) (see Figure 5a,c,d). In this study, our method was modified to restore occlusion areas
for both TA and OA scenarios.

 

Figure 5. Examples of common equipment occlusions: (a) feeder occlusion; (b) water pipe occlusion–
two areas (TA); (c) water pipe occlusion–one area (OA); (d) water pressure regulator occlusion.

(1) Image restoration for TA occlusion.
To restore images of broiler chickens in the drinking zone, we removed the image

background by keeping the water pipe and its surrounding area (i.e., red rectangular
box area in Figure 6a). We performed a Linear Morphological Closure Operation (Linear
Restoration Method) on the red box along the direction of the vertical water pipe, as shown
in Figure 6b.

 

Figure 6. Occlusion area restoration for TA: (a) removed pipe and its surrounding area; (b) restored pipe area and chickens’
images.
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(2) Image restoration for OA occlusion.
Since the body shape of a broiler chicken is elliptical, the ellipse fitting method [26,27]

was used to restore the occluded part of the broiler chicken. The ellipse fitting can be
expressed using Equation (1).

a × x2 + b × y2 + c × x + d × y + e × x × y + f = 0 (1)

a �= 0, so Equation (2) can be changed to:

x2 +
b
a
× y2 +

c
a
× x+

d
a
× y +

e
a
× x × y +

f
a
= 0 (2)

where x, y are variables, x is the abscissa of images, y is the ordinate of images. a, b, c, d, e, f
are constants.

Five coordinates are needed to determine the ellipse. In this paper, the ellipse was
calculated and obtained from five points selected from the boundary of the unobstructed
body of the broiler chickens. Figure 7 shows the example how occlusion area under OA
situation was restored.

 

Figure 7. Example of the occlusion area restoration for OA: (a) is the original occlusion image; (b) is
the corresponding detected binary image; (c) is the corresponding fitted ellipse (the red ellipse); and
(d) is the restored result.

2.5. Evaluation Criteria and Statistical Analysis

Three evaluation indices were used to evaluate the image restoration methods: the
overlap rate (OR), false-positive rate (FPR), and false-negative rate (FNR) [28].

The OR is the percentage of the actual target region affected by the overlapping of the
actual target region and the restored target region. The higher the OR, the larger the overlap
region and the better the restoration effect. The OR was calculated with Equation (3):

OR = (N1 ∩ N2)/N1 × 100% (3)
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where N1 is the real region indicated by artificial marking and N2 is the region indicated
by the restoration method.

The FPR is the percentage of the background region misjudged as the target region.
The lower value, the better the restoration effect. The FPR was calculated with Equation (4):

FPR = [N2 − (N1 ∩ N2)]/N1 × 100% (4)

The FNR is the percentage of the target region misjudged as background. A lower
value indicates a better effect of the restoration. The FNR was calculated with Equation (5):

FNR = [N1 − (N1 ∩ N2)]/N1 × 100% (5)

A one-way ANOVA (MATLAB-R2019b) was used to test if there were significant
differences in OR, FPR, or FNR under different scenarios (e.g., one area and two areas) of
occlusions. The effect was significant when the p-value was less than 0.05.

3. Results and Discussion

3.1. Restoration Efficiency for Occluded Area

About 100 images collected on d2, d9, d16, and d23 were selected for the new method
evaluation. The restoration effect on occluded area of the chicken is shown in Figure 8,
where red boxes are the broiler chickens occluded by the equipment. Basically, all images
show occlusions, more or less.

 
(a) (b) (c) 

Figure 8. Restoration result of the occluded area. (a) original image; (b) the binary image of the broiler occluded area before
restoration; (c) the binary image of the broiler occluded area after restoration. Red boxes are the broiler chickens occluded
by the equipment. The yellow boxes are special cases, such as crowding.
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It can be seen from Figure 8 that the broiler chicken area occluded by the equipment
can be fixed. However, when the occlusion is extensive, such as the yellow box highlighted
area (collected on d2) in Figure 8, the ellipse was overfitted. Therefore, we ascertained that
it was not suitable to use ellipse fitting when chickens are crowded together (2 or more
chickens in a group) and occluded by equipment (e.g., the yellow box of d9 in Figure 8 has
two broiler chickens blocked by the feeder). In this study, we used ellipse fitting only when
a single broiler chicken area was occluded.

To analyze the difference between the occluded area of chickens before and after
image/occlusion restoration, the ratio of chicken area images before and after the restora-
tion was quantified. Since the chicken posture was not uniform, the area of an individual
chicken was determined by taking an average of the area of complete images of broiler
chickens. From the d2, d9, d16, and d23 experimental images, about 150 broiler chicken
area samples were obtained for TA and OA, respectively.

It can be seen from Table 1 that the linear restoration method can restore the occluded
area well for the TA scenario, and there was a slight but not significant difference in the area
compensation effect on different days/bird ages (p = 0.056). In this case, the occluded area
of the pipe was relatively regular, so the restoration effect was superior. In the case of OA,
there was no significant difference in the area compensation effect (p = 0.333) on different
days/bird ages. We observed that the elliptical fitting restoration method can restore the
occlusion area when the occlusion was not extensive better (e.g., when less than <50% of
the broiler chicken area was occluded/blocked) (Figure 8; Table 1). When occlusion was
extensive, ellipse underfitting or overfitting occurred (i.e., the restoration area was either
too small or too large and likely contributed to the lack of significance in OA).

Table 1. The ratio of a broiler chicken area occluded by the equipment before and after restoration compared to an intact
broiler chicken area (150 samples each).

Occlusion
Type

d2 d9 d16 d23

BFarea/INaera AFarea/INaera BFarea/INaera AFarea/INaera BFarea/INaera AFarea/INaera BFarea/INaera AFarea/INaera

TA 0.4357 0.9706 0.4971 0.9687 0.6299 0.9637 0.6747 0.9512
OA 0.4773 1.2008 0.4518 0.9445 0.5077 1.009 0.6962 1.1017

Note: BFarea is the average area of broiler chickens before restoration; AFarea is the average area of broiler chickens after restoration; INaera
is the area of the intact broiler chicken area (not occluded by an equipment). TA—two areas; OA—one area.

3.2. Performance of the Restoration Method

When the occluded area of the broiler chicken could not be determined, predicting the
actual area of the broiler chicken was not possible either. In the case of TA, the shape of the
occluded area was regular (i.e., elliptical shape), so we could approximate the overall area
of the broiler chicken as the actual area to evaluate the linear restoration method. Figure 9a
shows the image with a bird blocked by water pipe (TA occlusion) and then reconstructed
with the method developed in this study (i.e., ellipse fitting restoration).

In the case of OA, the occluded area of the broiler chicken was irregular, which made
it difficult to obtain the actual area of the broiler chicken. Therefore, to determine the
complete broiler chicken area, we artificially removed some parts of the area to simulate
occlusion and performed ellipse fitting restoration on the removed area to evaluate the
restoration efficiency (Figure 9b). We selected 80 suitable target images from d2, d9, d16,
and d23 broiler chicken images to determine the average values of OR, FPR, and FNR
(Table 2).
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Figure 9. Comparison between restored chicken image area and an intact chicken image area (without
occlusion): (a) process of image restoration for the TA situation; and (b) an intact chicken image
without occlusion but artificially edited as the OA situation by removing a part for method evaluation.

Table 2. Comparison of average values on different days.

Evaluation
Indices

Occlusion Type d2 d9 d16 d23 Average

OR
TA 0.7265 a 0.8240 b 0.8593 c 0.8502 c 0.8150
OA 0.9106 a 0.8480 a 0.8673 a 0.8834 a 0.8788

FPR
TA 0.0022 a 0.0076 b 0.0031 c 0.0002 d 0.0032
OA 0.2963 a 0.2216 ab 0.2064 ab 0.1665 b 0.2227

FNR
TA 0.2735 a 0.1760 b 0.1407 c 0.1498 c 0.1850
OA 0.0894 a 0.1520 a 0.1327 a 0.1166 a 0.1212

Note: In the same row, different letters of a, b, c and d represent significant differences among the means (p ≤ 0.05);
Evaluation indices include the overlap rate (OR), false-positive rate (FPR), and false-negative rate (FNR).

It can be seen from Table 2 that for TA, the average values of OR, FPR, and FNR were
0.8150, 0.0032, and 0.1850, respectively. The smaller OR value and the larger FNR value
of d2 and d9 were significantly different from other days (p < 0.05) because the broiler
chickens were small, and the occluded area was relatively large, resulting in a large area
of the broiler being lost. For the OR value and the FNR values of d16 and d23, there were
no differences (p = 0.297). From Table 2, it can be concluded that as the broiler grows, the
difference in linear restoration results decreases.

For OA, the average values of OR, FPR, and FNR at different ages were 0.8788, 0.2227,
and 0.1212, respectively. Since the broiler chicken area was not elliptical, the ellipse fitting
restores would classify part of the background area as the target area resulting in a larger
FPR value (0.2227). The larger OR value (0.9106) and the smaller FNR value (0.0894) for
d2 images was because the broiler chickens were small. Picking different points on the
body boundary resulted in different ellipses, which affected the restoration result, thereby
leading to a lack of significance in OR in images on four different days (p = 0.111), in FPR in
images of d2, d9, and d16 (p = 0.082), and FNR in images of four different days (p = 0.111).

In the current study, the selection of 5-points needs further improvement to optimize
the ellipse fitting. In addition, monitoring individual poultry behaviors (e.g., feeding,
drinking, lying, standing, walking, etc.) needs to be studied separately in occlusion
restoration because behavior postures are different from each other. We developed a
method based on the shape feature of the broiler chicken (ellipse) to restore the occluded
area of the broiler chickens. In addition, some other machine learning or deep learning
algorithms, such as support vector machines, have been reported with a similar function in
image processing. Comparing ellipse fitting to other machine learning or deep learning
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algorithms/models is required to develop or optimize the method for occlusion restoration
and other automatic methods for poultry behaviors or health monitoring.

4. Summary and Conclusions

In this study, a machine vision-based method was optimized to restore broiler chick-
ens’ images occluded by an equipment. According to the pre-processing of images, the
general occlusion was identified as two area occlusion (TA) and one area (OA) occlu-
sion. Three evaluation indices include the overlap rate (OR), false-positive rate (FPR), and
false-negative rate (FNR), were used to evaluate the restoration method.

For TA occlusion, the average values of OR, FPR, and FNR were 0.8150, 0.0032, and
0.1850, respectively. The linear restoration effect was better than elliptical fitting, which
was less affected by the growth of the broiler chicken because the occluded area was
regular/normal in the case of TA. For OA occlusion, the average values of OR, FPR, and
FNR were 0.8788, 0.2227, and 0.1212, respectively. The method we optimized/developed
was not applicable for some special situations, such as crowding.

In the future study, the occluded area of crowded broiler chickens will be segmented
first and then restored. In addition, monitoring individual poultry behaviors (e.g., feeding,
drinking, lying, standing, walking, etc.) needs to be studied separately in occlusion removal
because behavior postures are different from each other.
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Simple Summary: We present a novel method for assessing broiler pecking force data during feeding.
The prototype consisted of a power supply unit with a data acquisition module, management software
connected to a computer for data storage, and a video camera to verify the pecking force during signal
processing. The acquisition, processing, and classification of the pecking force signal information
were valuable during broilers’ feeding. The smart feeding unit (SFU) prototype was useful in the
continuous generation of information that could be applied to evaluate the amount of pecking force
and performance during the broilers’ growth.

Abstract: Feeding is one of the most critical processes in the broiler production cycle. A feeder
can collect data of force signals and continuously transform it into information about birds’ feed
intake and quickly permit more agile and more precise decision-making concerning the broiler farm’s
production process. A smart feeding unit (SFU) prototype was developed to evaluate the broiler
pecking force and average feed intake per pecking (g/min). The prototype consisted of a power
supply unit with a data acquisition module, management software connected to a computer for data
storage, and a video camera to verify the pecking force during signal processing. In the present
study, seven male Cobb-500 broilers were raised in an experimental chamber to test and commission
the prototype. The prototype consisted of a feeding unit (feeder) with a data acquisition module
(amplifier), with real-time integration for testing and intuitive operation with Catman Easy software
connected to a computer to obtain and store data from signals. The sampling of average feed intake
per pecking per broiler (g) was conducted during the first minute of feeding, subtracting the amount
of feed provided per the amount of feed consumed, including the count of pecking in the first minute
of feeding. An equation was used for estimating the average feed intake per pecking per broiler
(g). The results showed that the average broiler pecking force was 1.39 N, with a minimum value of
0.04 N and a maximum value of 7.29 N. The average feed intake per pecking (FIP) was 0.13 g, with an
average of 173 peckings per minute. The acquisition, processing, and classification of signals in the
pecking force information were valuable during broilers’ feeding. The smart feeding unit prototype
for broilers was efficient in the continuous assessment of feed intake and can generate information
for estimating broiler performance.

Keywords: broiler; feeding system; pecking force; precision livestock farming

1. Introduction

Broiler production contributes significantly to Brazilian agribusiness. In 2019, Brazilian
broiler meat production volume was 13,245 metric tons, corresponding to 13.4% of the world
market (98,594 metric tons). The poultry industry is evolving to meet the global demand for
animal protein with low environmental impact [1–3], with integrated, vertical production,
and applying technologies in the production process. Such actions aim to increase the
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productive efficiency index [4,5], improve the welfare and health of animals [6,7] with lower
production costs without compromising parameters of welfare, performance, and quality [8].
These initiatives also lead to improving the consumer perception of broiler meat [9]. The
use of technology is essential to manage modern broiler farms, and providing relevant
information to farmers enhances their decision-making during the production cycle.

Intelligent equipment with a rapid response in real-time has been extensively studied
and used in the poultry production process. Besides contributing to precision livestock
farm development, these studies apply connectivity and analysis tools in real-time and
use algorithms to monitor the production cycle during animal growth, behavior, welfare,
health aspects, and performance [10–18]. Current literature presents developed equipment
for poultry farming using sounds, images, and modeling of signals of force and pecking
sounds to monitor animals’ growth and other factors related to the welfare, behavior, and
feeding of birds [11,16,19–23]. Although the use of an automatic recording of sounds for
animal husbandry and health management (quantitative analysis) in other species, such
as swine, show similar results in automatic and manual assessments of the frequency of
coughing, the disadvantage of manual assessments is the time spent compared to that of
automatic assessments [24].

Animal feeding is one of the essential processes during broiler production and one of
the most studied subjects with methods of analyzing sound signals and video images. Pre-
vious studies aimed to assess broilers’ food consumption using scales, including pecking
sounds and developed a pecking classification algorithm for continuous and non-invasive
broiler production monitoring [21,22]. Integrating the previously studied variables, a
pecking detection system including video footage, a microphone to record sound signals, a
scale to record bird weight automatically, and the use of a group pecking classification al-
gorithm were used to evaluate the short-term broiler feeding behavior [11]. An automated
system (group-housed individual turkey feeder and bodyweight measurement station) was
developed to monitor the turkeys’ feeding and body weight in real-time. The monitoring
system consisted of hardware and software subsystems (hardware subsystem: mechanical
framework of feed stations, radio frequency identification components, electronic scales,
communication modules, and a central computer; software subsystem: a hardware moni-
toring and data acquisition program, and a data processing and management program).
The system was tested with a group of turkeys to assess data on the frequency of feeding
behavior and performance [25]. Another study using signal analysis methods developed
a chicken pecking force equation on an automatic feeder. The equation involves mathe-
matical and statistical approaches to analyze the chicken pecking force at different stages
of production. The pecking force was related to parameters of feed flow rate and more
accurate decision-making regarding the hopper aperture in the feeder at the production
process [23]. The results indicated that the birds’ satiety level determined the pecking force
described by a polynomial function [23].

The coupled cranial kinesis (the ability to move the upper beak relative to the brain-
case [26]) in domestic fowl does not play a dominant role in the feeding process. The jaw
drops just after lifting the upper jaw, suggesting that the coupled cranial kinesis does not
necessarily happen while the food is grasped [16]. Similar traits may occur in the following
cycles for the food going into the oral cavity during the feeding process. However, the cou-
pled kinesis is applied when the bird closes the beak since it cannot depress the upper jaw
without raising the lower jaw [27]. However, the bird can adapt specific beak movement
depending on the type of food, and such behaviors are subordinate to the constraints of the
beak morphological structure [16]. Foraging is a natural bird behavior, and during foraging,
it also pecks the ground, and often broilers pecking does not result in the retention of a
feed particle [28]. Therefore, we need to continuously check the head and beak movements
to assess feed behavior and consequent performance.

In the current literature, we did not find a study that has directly measured the signs
of broiler head movement to identify and classify the pecking force during feeding that
was specially instrumented for monitoring broiler feeding behavior. We believe that in the
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future, such equipment associated with the signal interpretation may provide us with a
unique ability to manage production data regarding feed performance and detection of
numbers of birds per feeder in a non-intrusive way. An intelligent feeding unit can collect
data from force signals and transform it into information such as the pecking force during
the feed intake. Such continuous information such as feed intake per pecking, activity,
number of birds around the feeder, and weight gain by feed intake allows faster and more
accurate decision-making regarding the farm level’s production process. Therefore, the
present study aimed to develop a prototype of an intelligent feeding unit (smart feeding
unit, SFU) to evaluate and register the broilers’ pecking force during feeding by correlating
the force applied with the actual catch of feed particles.

2. Materials and Methods

The development of the SFU consisted of constructing a prototype and commissioning
the prototype for the acquisition of broilers’ pecking force data.

2.1. The Prototype of the Smart Feeding Unit

Figure 1 presents the structure of the feeding unit. The parts that bring up the SFU are
a 200 mm diameter feeder plate with a 20 mm height, a load cell (manufacturer Hottinger
Baldwin Messtechnik—HBM), a base plate, and a fastener screw. The prototype was built
using modular steel components. The feeding unit’s height was adjusted according to the
bird’s height (as it grows). The equipment was installed on concrete support to maintain
proper stability.

Figure 1. Schematic of the smart feeding unit prototype structure.

The prototype was subjected to tests during the adaptation phase of the birds to the
new feeder. The prototype test started in the last week of the production cycle (35–41 days
old), and validation was performed on the last day of the production cycle, lasting 24 h to
collect signals from the birds’ pecking force.

2.2. Experiment

Seven male Cobb-500 broilers were reared from 1 to 42 days old, considering the first
five weeks (1 to 35 days old) as an adaptation phase to the environment, and in the last
week, the test of the feed unit prototype (35 to 42 days old). From 35 days of age on, an
instrumented feeder was made available to measure the pecking force during feeding
(through a week before slaughter). Seven broilers were housed in an experimental floor
chamber (experimental environmental controlled chamber) equipped with a tubular feeder
(for the adaptation phase of the broiler feed), a pendant drinker, temperature sensors, air
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humidity control, electrical heater (for the initial rearing phase), air exhaust fan, mechanical
cooling, and dimmable LED lighting (artificial light). These devices make the flow of heat
supply and removal, vapor supply and removal, illumination, environmental sensing and
control, and video monitoring.

The floor was covered with 5 cm thick wood shavings litter, which was reloaded
whenever necessary. The daily lighting was 16 h during the growth period. Feeding and
water were provided ad libitum during the experiment.

The experiment was carried out at the Animal Environmental Laboratory at the
School of Agricultural Engineering at the University of Campinas (Unicamp, Brazil), and
the study was approved by the University’s Animal Ethics Committee (protocol number
5278-1/2019—CEUA—Unicamp).

2.3. Data Acquisition and Signal Processing

The data acquisition and signal processing consisted of the data acquisition module
(QuantumX—MX840A amplifier, manufacturer Hottinger Baldwin Messtechnik—HBM),
with real-time integration for testing and Catman Easy software (CatmanEasy version
4.2, manufacturer Hottinger Baldwin Messtechnik—HBM), connected to a computer for
obtaining and storing data from signals (Figure 2). Data acquisition is the process of ob-
taining via sampling a signal from a sensor and converting it to an electrical value (usually
a voltage level) and later conversion to a digital value for further computer processing.
Moreover, sensors are the devices that convert one type of electrical or mechanical signal
(input-signal) into another (output-signal), usually an electrical signal. Signal conditioning
is a step of data acquisition that combines the signal emitted by the sensor installed in
the feeder (input-signal), amplifying, filtering the noise, and converting an analog signal
into a digital signal (output-signal), with the input in a computer. The signal amplification
is the increasing signal for processing (or digitization) that can increase the signal input
resolution or increase the signal-to-noise ratio. In signal conditioning, the frequency spec-
trum is filtered only to include the valid data and block any noise [29]. A video camera
(Sharp Corporation, 470 lines with 3.6 mm converging lens) was utilized for acquiring the
images for checking of pecking during signal processing for data analysis (synchronizing
images and signals), maintained in continuous monitoring mode (Figure 2). The video
images were synchronized with the acquisition of signals to validate when birds pecked to
determine the average feed consumption per pecking.

Figure 2. General scheme of signal conditioning and processing for data acquisition.

The software used to acquire, visualize, analyze, and report signal measurement data
was Catman Easy (CatmanEasy version 4.2, manufacturer Hottinger Baldwin Messtechnik—
HBM) to ensure the synchronism between the feed pecking image and the force signal
acquisition of the pecked feeder. The signal analysis aims to extract information from the
data acquired to generate some desirable information [30]. The feed pecking signals data
reports during all the broilers feeding were registered and sent automatically to a computer.
It was also possible to visualize the signal using graphical output.
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2.4. Classification of Pecking and Validation

The automated real-time smart feeding unit prototype was tested in the last week of
the broiler rearing cycle for system validation. The data collected by the data acquisition
system contained raw data (with noises generated during the birds’ movement and feeding)
that were processed, organized, and filtered to remove the noise and later classify the signals
of feed pecking and other eventual beak movements in the feeder. Video analysis was used
as a tool in the validation of feed pecking (pecking vs. other beak movements). Image and
signal force were synchronized for the pecking validation, ensuring that the feed was eaten.
All force sampling occurred synchronically with the head-movement image acquisition,
confirming that the registered pecking force originated from an observed feeding. The
sampling selected was 1 min during bird feeding (sample size n = 284). Feed intake was
estimated during a sampling synchronized image and signal force. The feed intake was
calculated by subtracting the amount of feed provided (excluding the feeder’s weight) per
the amount of feed consumed, including the count of pecking in the one-minute concerning
feeding intake.

Feed ration consumption was automatically assessed by the sensor system installed
in the feeder and processed using the data acquisition system installed in the computer
(Figure 2). The average feed intake per pecking per broiler (g) was estimated using
Equation (1), adapted from Aydin et al. [21].

FIP (g) =
TFI(g)
TNP

, (1)

where FIP is feed intake per pecking, TFI is total feed intake (g), and TNP is total number
of peckings per minute (TNP).

2.5. Statistical Analysis

The automated real-time smart feeding unit prototype was tested in the last week of
the broiler rearing cycle for validation. The data collected by the data acquisition system
contained raw data (including noises generated during the birds’ movement and feeding)
that were processed, organized, and filtered to remove this noise and later classify the
signals (pecking vs. non-pecking). The comparison of the accurate feed pecking patterns
and other noises were classified to define feeding behavior.

A table was generated from the data acquisition software containing the filtered
and standardized data for the descriptive analysis and the t-test for a sample (one-way
t-test) [31,32]. A one-way test is a hypothesis test that counts the chance of results only in
one direction [31,33].

The descriptive analysis and t-test were applied to a sample size of 284 pecking force,
measured in Newton (N). The average pecking force (6.5 N) of young chickens (<8 weeks
old) tested in a poultry feeder (smaller hopper aperture) was utilized for the alternative
hypothesis in the t-test [23]. The hypothesis test was presented, H0: all means are equal, vs.
H1: at least one mean is different [32]. The data were analyzed using PAST software [34]
(Paleontological Statistics version 4.03).

Sample tests are used to determine whether a single sample comes from a population
with a given hypothetical average (alternative hypothesis μ0). The alternative hypothesis
is the data from the birds’ pecking force (single sample) are equal to the mean of pecking
force found in a previous study [23]. For the t-test of a sample (parametric), the confidence
interval was 95% for the difference in means based on the standard error for estimating the
mean and t distribution. The t-test statistic was calculated as expressed in Equation (2) [31]:

t =
x − μ0

S√
n

(2)
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where μ0 is the hypothesized population mean, x is the sample mean, n is the sample
size (number of observations), and S = is the sample standard deviation. Under the null
hypothesis, the test statistic has Student’s t distribution with n − 1 degree of freedom.

3. Results

The test of the smart feeding unit (SFU) prototype allowed the acquisition of the
pecking force data instantly during the broiler feeding. Figure 3 shows the pecking force
data acquisition in one minute during the broilers’ feeding, and Figure 4 shows the pecking
force in ten seconds. The intensity and speed of data collection are due to the equipment’s
sensitivity in detecting the force when the broiler feeds.

Figure 3. Pecking force at one-minute time length.

Figure 4. Pecking force at ten-second time length.

We observed a pecking force pattern during broiler feeding in the three images
(Figures 3–5). Figure 6 represents the pecking force in 120 ms (milliseconds) described
as one peck, showing the force variation applied to the feeder’s sensor. The average
feed intake per pecking (FIP) was 0.13 g, with an average of 173 peckings per minute
(pecking frequency).
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Figure 5. Pecking force at 120 ms.

Figure 6. Frequency histogram of pecking force values.

The frequency distribution (histogram) with a normal fit adjusted in the histogram
(Figure 6) shows a tilt of the tail to the right due to the birds’ peak pecking force.

The results of descriptive statistics (Table 1) show that the average broiler pecking
force was 1.39 N, with a minimum value of 0.04 N and a maximum value of 7.29 N from
the analysis of 284 samples. The results of the t-test indicate that the mean (1.39 ± 0.15 N)
of the broilers’ pecking force differs (p < 0.001) from the average birds’ pecking force in
general (Table 1).
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Table 1. Summary of results of descriptive analysis and t-test of broilers’ pecking force.

Statistical Summary
Lower Confidence

Limit
Upper Confidence Limit

n 284 284 284
Minimum 0.04 - -
Maximum 7.29 - -

Mean 1.39 1.24 1.54

Standard error 0.08 0.07 0.09
Standard deviation 1.31 1.15 1.49

One-sample t-test—Pecking force

t Statistic
p-value

(2-tailed) df 1 Mean difference
95% Confidence interval of the difference

Lower Upper

−65.66 <0.0001 283 5.11 1.24 1.54
1 df: the degrees of freedom for the test, df = n − 1.

The classification of force signals in pecking was performed efficiently with the aid of
synchronized video images to identify an effective pecking in a group or individual.

4. Discussion

The results showed that the broilers’ average pecking force was validated by the
smart feeding unit (SFU) prototype designed for fast response, with efficient readings
for measuring force signals. We also observed a cyclic pattern of pecking force during
broilers feeding that can be explained by the phases of the food intake process, specifically
related to the biomechanical movement of the broiler’s head [16,35]. A previous study
evaluated broilers’ biomechanical movement during feeding through computational analy-
sis of images classifying the sequences of frames and kinematic variables to analyze the
biomechanical behavior [35]. The authors considered six mandibulations (two sequences
of three mandibulations) that involve a cycle of beak opening and a beak closing cycle. The
studied kinematic variables included the head’s displacement, the speed, and acceleration
of beak opening and closing. Their results indicated that the birds’ feeding behavior is
divided into two phases, an appetite phase (exploration in search of feed) and a phase of
actual feed consumption. Another relevant result was that birds are selective about the
food’s particle size in the initial phase of the production process. The authors concluded
that birds’ biomechanical patterns are related to different types of feed [16].

Another study carried out with hens of different ages (<8 weeks, 8–5 weeks, and
>52 weeks old—weeks old birds), using an automatic feeder with different openings
(hopper aperture: smaller, intermediate, and larger), developed a pecking force equation
that was related to the feeding and hopper aperture of the feeder. The results showed
that the birds’ satiety level determined the pecking force. The maximum pecking force of
chickens younger than eight weeks of age was 10 N after 40 min of feeding for the largest
hopper opening. The pecking force was lower in the smaller feeder. The amount of feed
consumed also decreased with the feeding time, indicating the birds’ satiety leads to a lower
pecking force [23]. The maximum broiler pecking force found was 7.29 N. Considering
there are differences in feeder type, and the subject was broiler and not chicken, the average
force for chickens, regardless of age, differed from those of the present study.

Other studies have also analyzed methods for assessing the broiler feed process [11,21,22].
However, the authors used sound signals as the primary method of detecting the broiler
pecking. Pecking sounds from 10 broilers of 39-day-old were assessed while feeding,
associated with video image records. The feeding system also registered the birds’ weight
simultaneously, and from there, they developed an algorithm to detect the birds pecking
in groups. The feed intake was estimated automatically after the classification of the
individual pecking sound that was detected by the algorithm. However, the proposed
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system did not exceed 90% accuracy in detecting broilers’ pecking sounds when they were
in group feeding because of the overlapping pecking sounds. The correlation was high
considering the feed intake from broilers’ pecking sound analysis. The authors concluded
that a non-invasive and automated continuous system for monitoring chickens’ feeding
behavior could be essential for monitoring the growth process [22]. A previous study by
the same group developed an algorithm for detecting broiler pecking to classify individual
pecking and monitor feed intake. The pecking was accurately classified (93%), and feed
consumption was correctly monitored (90%) from the sound analysis [21]. When analyzing
the broilers’ feeding behavior in the short term at a group level, including a system of
evaluation by sound, image, and weighing monitored in real-time, the authors found a
positive correlation between the used methods. The estimated precision was 90% when
analyzing the meal size, 95% when evaluating the meal duration, 94% when studying the
number of meals per day, and 89% for the feeding rate of broilers at 39 days of age from
the analysis of the pecking sound and the bird weighing in an instrumented feeder [11].

In turkey production, an automated feed consumption and body weight monitoring
system was also evaluated to assess feeding behavior. The automated system was based on
ethernet and multithreading programming for real-time data acquisition. The authors [25]
concluded that the system was effective in the acquisition and management of raw data
and in the extraction of information on feeding behavior, which included the distribution of
feeds over time, feed conversion rate at different stages of growth, pecking force, deglutition
intervals, and meal breaks during feeding during turkey rearing.

Aydin et al. [21], using sound analysis, found that the 28-day-old broiler average feed
intake per pecking was 0.025 g, and the average number of peckings was 85/min per
broiler. However, the present study was conducted at 42 days of age and different strains.
The average feed intake per pecking was 0.13 g, and the average number of peckings
was 173/min per broiler. These results indicate that the equipment was fit to monitor
broiler feeding. Broilers’ age might explain the higher feed intake and the larger amount
of pecking since intake increases according to the growth stage [36]. Further studies are
needed to assess the relationship between feed intake and pecking force during feeding
and at all stages of rearing.

The integration of smart sensors and technologies in the broiler rearing processor
helps producers to optimize and minimize production losses and improves monitoring
of birds in real-time [37–39]. The present study provided valuable information about an
automatic broiler feeding system that collaborates with the application and implementation
of intelligent systems as a data management tool during the broiler production process,
potentially contributing to precision livestock farming to monitor the welfare of birds.

5. Conclusions

The smart feeding unit (SFU) as a broiler feeder has been tested and validated for
its application to measure the bird’s pecking force. The acquisition, processing, and
classification of signals in information on the pecking force were valuable during broilers’
feeding. The results confirmed that the average broiler pecking force was 1.39 ± 0.15 N and
the average feed intake per pecking was 0.13 g, with an average of 173 peckings per minute.

This equipment can generate information that can serve as a basis for further studies
on the performance, behavior, welfare of broilers, and automation of rearing processes
regarding broiler feed management and can be easily adapted and included in other
systems already on the farm.
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Simple Summary: Informatization can effectively improve the production and management effi-
ciency in the poultry farming process. In this study, a management system was designed to realize the
acquisition, transmission, storage, and management of information, and upload the data to the cloud
database to increase the flexibility and scalability of the system. On the basis of realizing production
management functions, the system also incorporates an office management module, thus forming
a complete data chain in production activities, so as to conduct farming data mining and accurate
traceability in the next stage of the work. In particular, the system also adds poultry disease detection
module supports to achieve the purpose of healthy farming. The research provides an information
management plan for the intensive poultry farming model, and the designed management system
may be the starting point of a future intelligent poultry farming management system based on cloud
services and big data technology.

Abstract: Aiming at breaking down the bottleneck problems of different scale of poultry farms, the
low profitability of poultry farming, and backward information management in China, a safe and
efficient information management system for poultry farming was designed. This system consists of
(1) a management system application layer, (2) a data service layer, and (3) an information sensing
layer. The information sensing layer obtains and uploads production and farming information
through the wireless sensor network built in the poultry house. The use of a cloud database as an
information storage carrier in the data service layer eliminates the complex status of deploying local
server clusters, and it improves the flexibility and scalability of the system. The management system
application layer contains many sub-function modules including poultry disease detection functions
to realize the visual management of farming information and health farming; each module operates
independently and cooperates with each other to form a set of information management system
for poultry farming with wide functional coverage, high service efficiency, safety, and convenience.
The system prototype has been tested for the performance of wireless sensor network and cloud
database, and the results show that the prototype is capable of acquiring and managing poultry
farming information.

Keywords: poultry farming; information management; cloud database; disease detection

1. Introduction

Modern poultry farming companies need a complete management system to assist
companies in managing their daily production activities. The system should cover such
things as personnel office management, purchase–sales–inventory management, environ-
mental monitoring and control in poultry houses, and monitoring of individual poultry
information. At the same time, it also needs to include traceability management of products,
diagnosis, and early warning of poultry diseases to meet the need for future development.

Animals 2021, 11, 900. https://doi.org/10.3390/ani11030900 https://www.mdpi.com/journal/animals53



Animals 2021, 11, 900

With the development of large-scale and intensive poultry farming, more intelligent
and automated technologies and methods have been applied in poultry farming [1,2],
such as radio frequency identification technology [3], Internet of Things technology (IoT),
and cloud technology [4]. At the same time, there are methods such as poultry disease
detection, poultry diet monitoring [5], environmental monitoring in poultry houses [6,7],
product tracking and traceability, and abnormal detection in poultry houses to achieve
precision farming. Yu Ligen et al. developed a network-based data acquisition system
using LabVIEW software for environmental monitoring in poultry management [8], which
describes the construction of data acquisition system hardware and the process of data
acquisition. The method also provides a reference for us to build an environmental moni-
toring module. British Irvine explored the British broiler meat value chain [9] and provided
a method for constructing the traceability module in the poultry farming management
system through its in-depth analysis of the value chain. Research on applying wireless
sensing systems along with mobile networking and cloud platform to some agricultural
systems in crops [10] has provided us with new ideas to develop a similar information
system for poultry farming.

In recent years, more and more researchers have devoted themselves to the study
of precision poultry farming [11,12]. Some researchers help farmers control and monitor
the health status of poultry through IOT, imagery analytics, and other technologies [13].
Other researchers build online platforms and using smart sensors to record and manage
production information in real time [14–16]. Although wireless sensing and cloud platform
techniques are well advanced, there is no complete system that covers all of the functions
to meet needs for poultry farming management. The technical difficulties include the
unified construction of the system, the reasonable division of functional modules, the good
mutual cooperation between modules, the interaction of software and hardware, and the
intelligentization of the system.

This paper reports the conceptual design of a poultry farming information man-
agement system with a cloud database as the core hub, through the connection of the
underlying hardware facilities in the poultry house and the upper management system
and the cloud database to manage the daily office work and production management tasks
of poultry farming enterprises. In addition, this cloud-based management system also
pays more attention to the storage and management of data information by separating
the database system from the software system. The ultimate goal of the poultry farming
information management system is to expand the development of the poultry industry
management system with big data analysis capability.

2. Overall System Architecture

Figure 1 shows the overall structure of the system. The system is divided into three
layers, which are the upper management system, the intermediate data service layer (also
known as the middle layer), and the underlying layer (also known as the bottom layer,
including hardware facilities in the poultry house).

The upper layer is a software management system that provides a good visual inter-
face. The management system is divided into an office automation module, a production
management module, an expert system, and a traceability module. As for the middle layer,
the cloud database is used to store the data and information generated by the upper layer
and the bottom layer, and at the same time construct a reasonable network environment
to solve mutual communication problems by configuring the underlying server. At the
bottom layer, in poultry house(s), environmental sensors, Wi-Fi receiving and transmitting
devices, and single-chip microcomputers can be configured to timely acquire and transmit
environmental information and poultry individual information (including poultry weight
information, feed intake data information, drinking water data information, poultry egg
quality information, etc.). Ventilation fans, evaporative cooling pads, heaters, and other
equipment placed in the poultry house to regulate environmental parameters such as
temperature and humidity in the house.
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Figure 1. Overall structure of the system.

2.1. System Network Construction and Transmission Method

An environmental parameter information sensor (including temperature and hu-
midity sensor, ammonia sensor, carbon dioxide sensor, hydrogen sulfide sensor, light
intensity sensor, etc.), feed intake data monitoring module, drinking water data monitoring
module, video monitoring system, fans, evaporative cooling pads, heaters, feeding, and
manure cleaning facilities in the poultry house together form the local area network system
in the house. This section mainly reports the information transmission methods, local
transmission strategies, and configuration of network nodes in poultry houses.

Data transmission between the poultry house and the house environmental control
system is primarily provided by a suitable wired communication system, such as a fieldbus.
There are some disadvantages (e.g., configure too many network endpoints, device address
assignment rules, and other issues) of using a full wireless system. Therefore, the local
area network in the house uses a wireless/wireline hybrid construction [17]. As shown
in Table 1, among the three commonly used wireless transmission modes (i.e., Bluetooth,
Wi-Fi, and ZigBee), the Wi-Fi technology has the longest transmission distance and the
fastest transmission speed [18]; therefore, Wi-Fi technology was selected as the wireless
transmission method in the poultry house selects.

Table 1. Comparison of three commonly wireless transmission methods (Bluetooth, Wi-Fi,
ZigBee) within four parameters (frequency band, transmission distance, power dissipation,
transmission rate).

Transmission
Modes

Frequency Band
Transmission

Distance
Power

Dissipation
Transmission

Rate

Bluetooth 2.4 GHz 2–30 m 20 mA 1 Mbps
Wi-Fi 2.4 GHz 100–300 m 10–50 mA 600 Mbps

ZigBee 2.4 GHz 50–300 m 5 mA 100 Kbps

2.2. Cloud Database

The Alibaba Cloud Database RDS service was used in the system, as it has a good
visual operation interface and numerous auxiliary analysis tools. It can generate database-
related files such as E-R diagrams (Entity Relationship Diagram) and data dictionary with
one click, and it can also generate test data to ensure the test works during database devel-
opment. The database uses a relational database, and the database version is MySQL5.7.
As the core hub of a poultry farming information management system, the cloud database

55



Animals 2021, 11, 900

should carry out requirements analysis, concept design, logical structure design, construc-
tion of the E-R model, design table structure, and primary-foreign key relationships in the
process of design and construction.

The intranet address of the system can be accessed by the Alibaba Cloud Server, which
has the advantages of fast reading speed and convenient setup. The external network
address can be accessed by Internet users with access rights, and the database can be read
and written. In the design stage, the selected database memory is 1024 MB, 1 core CPU, the
storage capacity is 20 GB, and the maximum number of connections is 2000. It is confirmed
in the actual development test that this configuration can meet the development needs.

2.3. Upper Management System

The management system uses the C++ language as the main development tool, the
latest Qt5 framework as an open source support library, and the Qt Creator as an IDE
(Integrated Development Environment) for compilation and development.

Figure 2 shows the functional framework of the poultry farming management system.
The whole system is divided into four functional modules. The production management
module mainly realizes the monitoring of environmental parameters in the poultry house,
the monitoring of the growth information of individual poultry, and the management of the
production operations in the poultry house. The office management module mainly fulfills
the business tasks such as personnel management, financial management, and invoicing.
The expert system module combines artificial intelligent technology such as data mining
and machine learning to (1) realize egg shape index analysis; (2) provide feeding standards,
breeding recommendations, mortality analysis, and other functions, and (3) realize poultry
disease diagnosis and an early warning system based on audio and image analysis of
poultry. Modules are functionally independent, with data-sharing capability.

 

Figure 2. Functional framework of poultry farming information management system.

3. Wireless Sensor Network Design

The bottom layer of the system is mainly composed of wireless sensor networks,
which are used to manage terminal nodes and the uploaded data information.

The composition of the wireless sensor network in the poultry house is shown in
Figure 3. Each terminal node uses AT commands to automatically search for the wireless
network by name and join it. After joining the network, it can independently obtain the
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device IP address and server IP address. Open the transparent transmission mode through
the AT command, and use the UDP transmission protocol to transmit the data information.
At the same time, in order to summarize and forward the data information uploaded by
each terminal node, a data server should also be configured in the wireless sensor network
in the poultry house.

Figure 3. The composition of the wireless sensor network in the poultry house.

The wireless sensor network and various types of intelligent equipment can solve
the problem of obtaining and transmitting various kinds of rearing information (e.g.,
environmental information, poultry weight information, poultry dietary information).
This section mainly takes environmental information as an example to introduce the
implementation process of information acquisition and upload. In the example, four
environmental information sensing units are deployed in the wireless sensor network.

3.1. Poultry House Server

A data server should be configured in the wireless sensor network in the poultry house
to process and forward the data information obtained by the terminal nodes in the network.
Therefore, the server in the poultry house should choose a controller that has a processor,
operating system, wireless network card, and can store programs. Considering the harsh
working environment in the poultry house, this research selected the Industrial Personal
Computer (IPC) with stronger waterproof, dustproof, and anti-interference capabilities
than the data server.

In addition to the attributes and characteristics of ordinary computers, it also has
stronger anti-interference ability and long-term uninterrupted working ability, which are
suitable for use in the context of poultry farming environment. This research work selects
an industrial control computer as the server in the poultry house to process and upload the
data generated by the terminal node of the wireless sensor network, and the performance
parameters are shown in Table 2.

Table 2. Industrial control computer performance parameters.

Device Parameter Manufacturer

CPU Intel Core i5-7440HQ @ 2.80 GHz Intel
RAM 8 GB (DDR4 2666 MHz) SAMSUNG

Operating system Windows 10 Professional 64-bit Microsoft
Hard disk NT-128 (128 GB/SSD) Kingspec

Network card 43224AG 802.11 n Wi-Fi Adapter Broadcom Corporation

In order to realize the processing and uploading of the data information generated by
the terminal node, and at the same time realize the management and control of the wireless
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sensor network in the poultry house, a set of server programs is designed and loaded on
the server in the poultry house to achieve the above-mentioned purpose.

3.2. Environmental Information Sensing Unit (EISU)

As the terminal node of the wireless sensor network, the environmental information
sensing unit (EISU) in the poultry house should contain various digital environmental
sensors, such as temperature and humidity sensors, carbon dioxide concentration sensors,
hydrogen sulfide concentration sensors, light intensity sensors, wind speed sensors, etc.,
and it should also be equipped with a micro processor and wireless transmission module.
The structure diagram is shown in Figure 4, and the performance parameters of the
environmental sensors used are shown in Table 3, which are provided by the manufacturer.

 
Figure 4. The structure diagram of the environmental information sensing unit structure.

Table 3. The environmental sensors performance parameters.

Type Range Resolution Accuracy Model

Temperature/◦C −40~125 0.01 ±0.3 ◦C
SHT20Relative humidity/% 0~100 0.01 ±3%

Light intensity/lx 0~65,535 0.01 ±20% BH1750FVI
H2S concentration/ppm 1~200 0.1 ±3% MQ-136

Various environmental sensors are used to sense and measure the parameter val-
ues of the surrounding environment and using the I2C protocol to transmit them to the
microcontroller through the data bus. The microcontroller is responsible for packaging
the environmental data information according to the data packet format in Table 4 and
uploading it to the poultry house server through the wireless transmission module; the
diagram of the data flow is shown in Figure 5. Finally, the poultry house server uploads
the data to the cloud database.

58



Animals 2021, 11, 900

Table 4. Environmental information packet format.

Number Identifier Data (Hex) Size (Byte) Description

1 EI 45 49 2 Packet header
2 PL - 4 Packet length
3 UN 55 4E 2 EISU number
4 TS 54 53 2 Temperature data start flag
5 TD - 4 Temperature data
6 TE 54 45 2 Temperature data end flag
7 HS 48 53 2 Humidity data start flag
8 HD - 4 Humidity data
9 HE 48 45 2 Humidity data end flag
10 BS 42 53 2 Light intensity data start flag
11 BD - 4 Light intensity data
12 BE 42 45 2 Light intensity data end flag
13 SS 53 53 2 H2S concentration data start flag
14 SD - 4 H2S concentration data
15 SE 53 45 2 H2S concentration data end flag
16 CRC - 4 Check code
17 EOP FF 45 2 End of packet flag

 

Figure 5. Flow chart of multi-threaded processing environment information data program.

3.3. Data Collection and Transmission

During the data transmission process of the wireless sensor network in the poultry
house, there is no need to establish a one-to-one connection, only a one-to-many connection
is needed to realize the communication between the terminal node and the server. Due
to the large amount of data information transferred between the terminal node and the
server and the number of transmissions, combined with the actual functional require-
ments, the network communication between the terminal node and the server of the
wireless sensor network in the poultry house mainly uses UDP transmission protocol and
socket technology.

The terminal node packages the data in a certain format and uses socket technology
to send messages to the specific IP address and port number of the poultry house server.
When the data information is successfully sent to the server in the poultry house, the
server program downloads the data packet from the monitored port; then, it uses the
specified transmission format to split the information, and it executes the corresponding
SQL statement according to the type of data to upload the data to the cloud database; the
data processing flow chart is shown in Figure 6.
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Figure 6. Data flow diagram of environmental information sensing unit.

Since there are many data transmission devices placed in the poultry house, it is
necessary to set a routing node in the poultry house to forward the network data package
to the cloud database. Taking into account the problem of network fluctuations, the server
in the house may be disconnected from the cloud database, and the data information
generated in the poultry house has real-time and continuous characteristics, so a data
protection program must be designed to prevent data loss information. Figure 7 shows the
local transmission strategy of the routing node, taking into account the network factors
such that the system data security is improved.

Figure 7. Local transmission strategy of the routing node flow chart.

4. Management System Implementation

The process of constructing the poultry farming information management system
could be modularized, constructed, and tested one by one. First, a comprehensive platform
for the management system can be built, and then the functional modules can be assembled.
Figure 8 illustrates the home page of the management system.

60



Animals 2021, 11, 900

 

Figure 8. Management system home, includes ten function modules: weighing record, environmental
monitoring, poultry individual information, egg information management, exception handing,
disinfection, vaccine medication, house setting, poultry amount, and network.

This section mainly introduces the design and implementation effects of the environ-
mental information management module and the poultry disease monitoring module.

4.1. Environmental Information Management Module

This module mainly realizes real-time monitoring of environmental information in the
poultry house, and it can display the fluctuations of different environmental parameters. It
can provide early warning in time when the environment in the house is abnormal and at
the same time carry out good storage and management of historical environmental data.

The business process diagram of this module is shown in Figure 9. The EISUs upload
the collected environmental information to the cloud database through the poultry house
server. The cloud database is responsible for storing and managing the information. The
environmental information management module makes active requests, queries the cloud
database, and then display the feedback data through this module, so as to realize the
management function of environmental information in the poultry house. The software
interface effect of this module is shown in Figure 10.

 

Figure 9. The business process chart of environmental information management module. EISU
means environmental information sensing unit.
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(a) (b) 

Figure 10. The software interface effect of an environmental information management module, (a) fluctuating presentation
of environmental data, (b) historical environmental data, including temperature, humidity, light, H2S concentration,
ammonia concentration, carbon dioxide concentration, etc.

4.2. Poultry Disease Monitoring Module

The disease monitoring and early warning function of this module is based on a large
number of research results of our laboratory team, mainly through the analysis of poultry
video and audio information to obtain information about the health status of poultry or
related information about poultry disease [19–24].

The existing research foundation can be used to realize the detection function of
poultry disease. On this basis, combined with the related work of this management system
(poultry house environmental monitoring, poultry growth information monitoring, and
diet and water consumption monitoring), it can further realize the function of monitoring
the health status of poultry. The principle diagram of the method of monitoring the health
status of poultry and early warning of disease is shown in Figure 11.

 

Figure 11. The principle diagram of the method of monitoring the health status of poultry and early
warning of disease.

The software interface implemented by the disease detection function is shown in
Figure 12. The poultry pictures and video content are used to monitor the health of the
poultry. The detection principle and method are mainly to extract the features of the area
to be detected under the food trough in the image, and they use the deep learning method
to analyze and calculate the behavior of the chickens in the feature area and then judge the
health of the chickens.
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Figure 12. The software interface implemented by the disease detection function; by detecting the
visual part of the poultry (the standing area below the feed trough), the current behavioral state of
the poultry (standing, lying on the stomach) can be judged, and the health state of the chicken can
be inferred.

5. System Performance Test

5.1. Wireless Sensor Network Testing

The system prototype constructed by this research is deployed in the breeder farm
of South China Agricultural University. The test of the wireless sensor network system is
mainly carried out on the farm. The on-site environment of the poultry house is shown in
Figure 13. There are three rows of chicken cages, and each row is divided into three layers.

  

Figure 13. The poultry house of the signal strength and transmission rate test.

In order to analyze the performance of the constructed wireless sensor network in the
poultry house, we tested the signal strength, transmission rate, and transmission stability
of the environmental information sensing unit.

Figure 14 shows the test results of the signal strength and the transmission rate of the
environmental information sensing unit. We tested the signal strength and transmission
rate of the environmental information sensing unit under four conditions: (1) No external
antennas, cages, or other obstacles; (2) No external antennas, but cages and other obstacles;
(3) Equipped with an external antenna, which is not blocked by obstacles such as cages; and
(4) Equipped with an external antenna, and is blocked by obstacles such as cages. Every
condition was tested three times, and we took the average value as the signal strength and
transmission rate after the signal stabilizes for about 30 s.
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(a) (b) 

Figure 14. The test results of the environmental information sensing unit: (a) signal strength; (b) transmission rate.

The test results show that the signal strength of the environmental information sensing
unit will decrease as the distance increases, and obstacles such as cages in the poultry
house will also weakly affect the signal strength of the environmental information sensing
unit; when using a 2 dBi gain antenna, it can effectively improve the signal strength of the
environmental information sensing unit, but the transmission speed of the environmental
information sensing unit is basically not affected by the distance, and its transmission
speed has been stable at 150–180 Mbits. This shows that the environmental information
sensing unit is equipped with a 2 dBi gain antenna, which can work normally in a poultry
house with a radius of 40 m.

5.2. Cloud Database Testing

In this study, the cloud database system used Alibaba Cloud Service (RDS version of
cloud database), the database version was MySQL 5.7, the storage engine used was InnoDB,
the database memory was 1024 MB, the storage space was 20 GB, and the maximum
number of supported connections was 2000. During the test, the performance of the cloud
database was monitored for a period of time (one hour). During this period, there were
four environmental information sensing units in the poultry house, two poultry house
servers for continuous data uploading, and eight users who use the host computer software
to read and write the database.

According to the test results of the cloud database performance parameters, the data
query task demand is greater than the data upload task. However, the overall performance
of the database is stable, the CPU and memory utilization rates are kept at a low level, and
the cloud database system runs without pressure.

Figure 15 provides a more intuitive understanding of the operating status of the cloud
database. During this period of time, the number of input/output operations per second
(IOPS) of the cloud database was basically maintained at about 1.5, and the number of
queries per second (QPS) remained above 13, but the utilization of the central processing
unit (CPU) and memory has been maintained at a relatively low level (CPU utilization rate
is 4.6–4.9%, memory utilization rate is 5.9–6.3%). It can be seen that the operation of the
cloud database is stress-free under the experimental conditions, and the normal use of the
system can be guaranteed.
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Figure 15. Cloud database performance parameters within one hour. IOPS means input and output
operations per second, QPS means queries per second, and CPU means central processing unit.

6. Discussion

Designing a comprehensive and practical poultry farming information management
system requires research on three aspects: (1) hardware design and networking of the
underlying device, (2) database design and communication related issues, and (3) upper
client software design.

LANs and servers should be deployed in poultry houses, and the use of wireless
sensor networks (WSN) leads to low-cost and low-power deployments, making them the
dominant choice [25]. The sensor is communicated as a child node in the local area network,
and the data are connected to the external network through the server to upload the data
to the cloud database for storage and query. The data format, transmission protocol, packet
loss rate during transmission, and transmission strategy when network failure occurs
should be further studied.

Environmental monitoring in poultry houses is the top priority to address animal
welfare [26,27]. However, we have only studied a small part of the monitoring work of
environmental parameters; there are still many important environmental parameters such
as ammonia concentration, dust, and microorganisms monitoring work that need to be
further studied. In addition, due to the uncertainty of hydrogen sulfide concentrations in
the poultry house, we can consider using more sensitive hydrogen sulfide sensors [28].

How to effectively manage the massive information generated in the system is the
primary goal of the future development [11,29]. Through good monitoring and proper
storage of data, data mining technology can be used to diagnose poultry disease and
provide early warning opportunities [30]. Moreover, using the cloud database as the
core hub in this study could also help with the optimization of farming environment and
breeding methods.

In order to meet the efficient management and the welfare of animal farming of a
different scale poultry farm, this paper establishes a poultry farming information manage-
ment system based on the cloud database, whose real-time monitoring of environmental
information, poultry behavior information, and dietary information in poultry houses are
integrated into the system. If successful, the system may meet the business needs of the
poultry industry in regard to the environmental monitoring of poultry houses, monitoring
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of individual growth information, disease monitoring and early warning, traceability, and
daily enterprise office management; at the same time, the data information generated
during the production process will be well managed, and the poultry farming process
informationized and intelligent [31].

7. Conclusions

The work reported in this paper builds a poultry farming information management
system that covers the information management functions of production aquaculture,
corporate office, product traceability, and poultry disease detection, and the unified con-
struction of the system is realized. The system is divided into four modules according to
the daily production management needs of farmers. By using intelligent sensors, building
a wireless sensor network, and using a cloud database for data storage, a good interaction
between modules, software, and hardware is realized, which can bring the animals closer
to the farmer. At the same time, the system stores the collected data information in the
cloud, and the cloud-based information management system will lead the development
direction of the poultry farming management system.
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Simple Summary: Acoustic signal in commercial broiler houses is a mixture of sounds from different
sources. However, the characteristics of sounds from different sources have not been well understood.
In this study, the sound frequency ranges of six common sounds, including bird vocalization, fan,
feed system, heater, wing flapping and dustbathing, were determined; and their relations with bird
age were investigated. The outcome of this research provides valuable information for using sound
signal to monitor animal behavior and equipment operation.

Abstract: Audio data collected in commercial broiler houses are mixed sounds of different sources
that contain useful information regarding bird health condition, bird behavior, and equipment
operation. However, characterizations of the sounds of different sources in commercial broiler
houses have not been well established. The objective of this study was, therefore, to determine
the frequency ranges of six common sounds, including bird vocalization, fan, feed system, heater,
wing flapping, and dustbathing, at bird ages of week 1 to 8 in a commercial Ross 708 broiler house.
In addition, the frequencies of flapping (in wing flapping events, flaps/s) and scratching (during
dustbathing, scratches/s) behaviors were examined through sound analysis. A microphone was
installed in the middle of broiler house at the height of 40 cm above the back of birds to record
audio data at a sampling frequency of 44,100 Hz. A top-view camera was installed to continuously
monitor bird activities. Total of 85 min audio data were manually labeled and fed to MATLAB for
analysis. The audio data were decomposed using Maximum Overlap Discrete Wavelet Transform
(MODWT). Decompositions of the six concerned sound sources were then transformed with the Fast
Fourier Transform (FFT) method to generate the single-sided amplitude spectrums. By fitting the
amplitude spectrum of each sound source into a Gaussian regression model, its frequency range
was determined as the span of the three standard deviations (99% CI) away from the mean. The
behavioral frequencies were determined by examining the spectrograms of wing flapping and
dustbathing sounds. They were calculated by dividing the number of movements by the time
duration of complete behavioral events. The frequency ranges of bird vocalization changed from
2481 ± 191–4409 ± 136 Hz to 1058 ± 123–2501 ± 88 Hz as birds grew. For the sound of fan, the
frequency range increased from 129 ± 36–1141 ± 50 Hz to 454 ± 86–1449 ± 75 Hz over the flock. The
sound frequencies of feed system, heater, wing flapping and dustbathing varied from 0 Hz to over
18,000 Hz. The behavioral frequencies of wing flapping were continuously decreased from week 3
(17 ± 4 flaps/s) to week 8 (10 ± 1 flaps/s). For dustbathing, the behavioral frequencies decreased
from 16 ± 2 scratches/s in week 3 to 11 ± 1 scratches/s in week 6. In conclusion, characterizing
sounds of different sound sources in commercial broiler houses provides useful information for
further advanced acoustic analysis that may assist farm management in continuous monitoring of
animal health and behavior. It should be noted that this study was conducted with one flock in a
commercial house. The generalization of the results remains to be explored.
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1. Introduction

Sound is defined as vibrations that travel through the air or another medium in
the form of waves. The sound in commercial broiler houses is a mixture originated from
multiple sources and can be generally categorized into two groups: (1) animal-based sounds
and (2) equipment-based sounds. Animal-based sounds can be further categorized into
animal vocalization (produced by the vibration of bird vocal cord) and behavioral sounds
(produced during bird behaviors such as wing flapping and scratching). Equipment-based
sounds refer to those produced during feed system, fans-on and heaters-on period.

Understanding the characteristics of sounds from different sources in broiler houses
allows further sound analysis that may assist farmers in farm management and welfare
monitoring. Frequency is one of the most important characteristics of sound. Audio
signal in time domain only reflects the loudness, therefore, most of audio signal processing
techniques and algorithms involve frequency analysis using techniques such as Fourier
Transform [1], filtering [2], spectrogram [3], etc., for source identification.

In recent years, sound analysis as a non-invasive method has become an increasingly
important tool in animal disease detection, behavior monitoring and welfare determi-
nation [4–6]. Cuan et al. [7] proposed a sound recognition method based on convolu-
tional neural network to detect the infection of avian influenza, yielding 90% accuracy.
Chung et al. [8] found that audio data can accurately detect (94% accuracy) and recognize
(91% accuracy) pig wasting diseases. A sound-based product (SoundTalks NV., Leuven,
Belgium) was commercialized to continuously and automatically detect pig respiratory
disease at an early stage [9]. For animal behaviors, several studies were conducted to
identify the feeding behavior of broiler chickens by analyzing audio data [10,11]. It has also
been shown that peak frequency of bird vocalization can serve as the indicator of broiler
age [12] and body weight [13].

In previous studies, the equipment-based sounds that are produced by mechanical
systems were mostly considered as noise. The negative effects of farm noise on animal
welfare have been reported [14–16]. However, as unavoidable acoustic sources in con-
ventional broiler houses, equipment-based sounds also contain important information
that can be used for farm management. For instance, the sound of the feed system can
be an indicator for proper operation of the feed system, and the sound of fans for proper
ventilation. On the other hand, understanding the characteristics of the equipment-based
sounds may better help to remove these background sounds when only animal-based
sounds are the concerns.

The objective of this study was to determine the frequency ranges of six common
sounds, including bird vocalization, fan, feed system, heater, wing flapping and dust-
bathing in a commercial broiler house over an eight-week production cycle. In addition,
the frequencies of flapping (in wing flapping events, flaps/sec) and scratching (during
dustbathing, scratches/sec) behaviors were examined through sound analysis.

2. Materials and Methods

2.1. Housing, Animals and Management

The study was conducted in a commercial broiler house (east–west) located at Mis-
sissippi State University during May–June 2020. The house measured 120 × 13 × 3 m
(L × W × H) with a capacity of 13,700 Ross 708 straight run broilers and a production
cycle of eight weeks. The average slaughter body weight was 4.25 kg. All chicks were
provided by a contract integrator in Mississippi. Flock management and diets followed
the typical procedures in the industry. The lighting schedule was set to 24 L:0 D from 1 d
to 7 d, 20 L:4 D from 8 d to 56 d. The light intensity was set to 54 lux from 1 d to 13 d,
then gradually dimmed to 3 lux by 20 d and kept at 3 lux till 56 d. Lights were turned
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on at 05:00 h and turned off at 01:00 h of the next day. A total of 10 consistent speed fans
(Acme BDR48J-A, 48”, Acme Engineering & Manufacturing Corp., Muskogee, OK, USA)
were installed in the broiler house, with six fans across the east end wall, two fans on the
north side wall, and two fans on the south side wall. The air flow rate was 34,660 m3/h at
the static pressure of 0.05. The number and running time of fans were controlled by the
house controller based on indoor air house temperature. As the experiment was conducted
in summer, all fans were used by the end of the flock. A total of 13 heaters (Hog Slat
GRO40, direct spark ignition, natural gas, 11.7 kW, Hog Slat Inc., Newton Grove, NC, USA)
were distributed across the house and were installed 1.8 m above the floor. Heater on/off
was controlled by the house controller as well. Automatic feeding system (Chore-Time,
Revolution, A Division of CTB, Inc., Milford, IN, USA) was installed in the house. Feed was
delivered along the feed line by an open coil auger inside the feed line tube and dropped
into feeder pans halfway.

2.2. Audio Data Collection and Camera System

An H2n handy recorder (Zoom North American Inc., Hauppauge, NY, USA) (Figure 1a)
was installed in the middle of broiler house at the height of 40 cm above the back of birds,
as shown in Figure 1b. The recorder was 67.6 × 113.85 × 42.7 mm (W × H × D) in size and
130 g in weight. It was powered by two AA batteries or by an AD-17 USB to AC adapter
(used in this study). Up to 120 dB sound can be captured. The sampling frequency was set
to 44,100 Hz in this study. Audio signal was continuously recorded and saved to a 2 GB
micro SD card and exported weekly.

Figure 1. Image of the recorder (a) and location of the recorder M (b).

A fisheye IP camera (Dahua, IPC-EW4431-ASW, Dahua Technology USA Inc., Irvine,
CA, USA) was installed on the ceiling (height = 3 m) right above the microphone to monitor
the wing flapping and dustbathing behaviors of broilers. The frame rate of the camera was
25 frames per second.

2.3. Sound Discription

Six specific types of sound signals, including bird vocalization, fan, feed system, heater,
wing flapping and dustbathing, were examined in this study. The sound of the fans was
produced when mixing fans and/or ventilation fans were working. As the microphone was
installed around 50 m away from the fan, the sound of the fan was identified as the sound
of wind from the recorded audios. The sound of the feed system was produced during
the period when feeder augers were running for feed delivery. The sound of the heaters
was produced during the first week when heaters were operating. Wing flapping was

71



Animals 2021, 11, 916

identified as a bout of continuous, rapid flapping behaviors [17]. Dustbathing was defined
as birds performing classic vertical wing shakes, and performing side-rubs or prone leg
scratches [18]. In this study, dustbathing specifically refers to the behavior of scratching
the litter.

2.4. Audio Signal Labeling and Pre-Processing

The software Audacity (v.2.4.2, Audacity Team, GNU General Public License (GPL))
was used to visualize and identify the signal by comparing with the recorded videos. A
summary of labeled data is shown in Table 1. Bird vocalization, fan, feed system and heater
were trimmed into multiple 10-s clips. As the wing flapping and dustbathing usually
lasted for a short time, behavioral data were trimmed into multiple 1-s clips. Audio clips
were then fed into MATLAB (2018b, The MathWorks, Inc., Natick, MA, USA) for further
analysis. Spectrograms were used for an initial visual check on frequency ranges, as shown
in Figure 2. The frequencies of bird vocalization (Figure 2a) and fan (Figure 2b) ranged
0–5000 Hz. Sounds frequencies of the feed system (Figure 2c), heater (Figure 2d), wing
flapping (Figure 2e) and dustbathing (Figure 2f) ranged 0–19,000 Hz.

Table 1. Number of events and equivalent time labeled for each type of sound over eight weeks.

Sound Type Total Time Labeled (min) Total Number of Clips

Bird vocalization 40.0 240
Fan 40.0 240

Feed system 40.0 240
Heater 5.0 30

Wing flapping 6.7 402
Dustbathing 4.1 246

  
(a) (b) 

  
(c) (d) 

Fan on 

Fan on 

Feed system on Heater on 

Bird 

Feed system off 

Heater off  

Fan off 

Figure 2. Cont.
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(e) (f) 

Flaps  Scratches  

Figure 2. Example signals of bird vocalization (a), fan (b), feed system (c), heater (d), wing flapping (e) and dustbathing (f)
in frequency domain.

2.5. Maximum Overlap Discrete Wavelet Transform (MODWT)

The MODWT is a linear filtering operation that transforms a signal into multilevel
wavelet and scaling coefficients [19]. As the flowchart for three-level MODWT shown in
Figure 3, the MODWT applies low/high-pass filters to split the frequency components of
the input signal into different scales. The filters are determined depending on the mother
wavelet, which is selected in advance. The mother wavelets include Daubechies wavelet,
Coiflects wavelet, Haar wavelet, and Symlet wavelet, and so on. Details on different
wavelets can be found in publications by Percival and Walden [20]. The default mother
wavelet (Symlet, N = 4) in MATLAB was used in our study. The decomposition level was
determined based on the Equation (1) [21].

L = int[log(n)] (1)

where int[] is the function that returns the nearest integer of a number and n is the data
length. For the study, n = 441,000, L = 6. The decompositions of bird vocalization signals
are shown in Figure 4.

Figure 3. Flowchart for three-level Maximum Overlap Discrete Wavelet Transform.
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Figure 4. Single-sided amplitude spectrum of original signal (a) and decompositions 1–6 (b–g). Decomposition 2 (c) refers
to bird vocalization, decomposition 4 (e) refers to fan.

2.6. Signal Processing

Two sounds with narrow frequency ranges (bird vocalization and fan) were decom-
posed using MODWT. Decompositions of both sounds were then transformed with the
Fast Fourier Transform (FFT) method to generate the single-sided amplitude spectrums.
By fitting the amplitude spectrum of each sound source into a Gaussian regression model,
its frequency range was determined as the span of the three standard deviations (99% CI)
away from the mean (Figure 5a). For those sounds with wide frequency ranges (feed
system, heater, wing flapping and dustbathing), the upper ranges were determined by
reading the largest frequency value from the FFT plot. The behavioral frequencies were
determined by examining the occurrence of peak amplitudes in spectrograms during wing
flapping and dustbathing (Figure 5b). They were calculated by dividing the number of
wing flaps and scratches by the time duration of complete behavioral events.

Figure 5. Example of Gaussian regression (a) and calculation of behavioral frequency (b). The sound sources of two sounds
are bird vocalization (a) and wing flapping (b), respectively.
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2.7. Statistic Analysis

The effects of bird age on each different sound frequency range were analyzed using
the PROC GLM (generalized linear model) procedure in SAS 10.9 (SAS Institute., Cary, NC,
USA). The differences in behavioral frequency between wing flapping and dustbathing
were also tested. A significant difference in multiple comparisons of group means was
defined as p < 0.05.

3. Results

3.1. Bird Vocalization

Table 2 shows the lower and upper frequency limits of bird vocalization at different
ages. Over the flock, the highest bird vocalization frequency was 4409 Hz, and the lowest
was 1058 Hz. In general, both lower and upper limits continuously decreased as the bird
grew, but the decrease was not linear. Frequencies dropped faster in the first few weeks.
From week 1 to 4, the lower and upper limits decreased 1020 Hz and 1665 Hz, respectively.
From week 4 to 8, the lower and upper limits decreased 403 Hz and 292 Hz, respectively.
The frequency ranges during the first three weeks were larger than week 4 to 8.

Table 2. Frequency range of bird vocalization at different bird ages (mean ± SD).

Bird Age (Week) Lower Limit (Hz) Upper Limit (Hz)

1 2481 ± 191 a 4409 ± 136 a

2 2038 ± 201 b 4289 ± 89 b

3 1889 ± 307 c 3997 ± 128 c

4 1461 ± 187 d 2744 ± 155 d

5 1418 ± 164 d 2668 ± 114 e

6 1190 ± 154 e 2628 ± 113 e

7 1100 ± 148 ef 2615 ± 118 e

8 1058 ± 123 f 2501 ± 88 f

average 1579 3231
a,b,c,d,e,f Means in the same column with different superscripts are different (p < 0.05).

3.2. Fan

Table 3 shows the upper and lower frequency limits of the fan at different bird ages.
Generally, the lower and upper frequency limits of the fan increased as the bird grew.
From week 1 to 8, the highest sound frequency of the fan was 1203 Hz, and the lowest
was 305 Hz. In weeks 5–8, the lower frequency limits were significantly higher than other
weeks. No significant difference was found in upper limits in weeks 2–4. The upper limits
of weeks 6–8 were significantly higher than other weeks. The frequency range varied
between 716 Hz (week 1) and 791 Hz (week 3).

Table 3. Frequency range of fan at different bird ages (mean ± SD).

Bird Age (Week) Lower Limit (Hz) Upper Limit (Hz)

1 353 ± 62 c 1069 ± 40 d

2 331 ± 38 cd 1080 ± 46 cd

3 312 ± 40 d 1103 ± 52 c

4 335 ± 32 cd 1101 ± 21 c

5 407 ± 81 b 1161 ± 78 b

6 446 ± 28 a 1191 ± 27 a

7 417 ± 34 b 1203 ± 36 a

8 428 ± 44 a 1200 ± 36 a

average 379 1139
a,b,c,d Means in the same column with different superscripts are different (p < 0.05).
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3.3. Upper Limits of Feed System, Heater, Wing Flapping and Dustbathing

Table 4 shows the upper frequency limits of feed system, heater, wing flapping and
dustbathing at different bird ages. In general, the frequency ranges of all the above sounds
spanned widely from 0 to 19,000 Hz. For the feed system, the upper limits in the first two
weeks were significantly lower than other weeks. In addition, the upper limit in week 8
was significantly higher than other weeks. The upper limit of the heater was the highest
among the four types of sound. For wing flapping, the highest upper limit was observed
in week 8, and the lowest was found in week 5. For dustbathing, the upper limit in week 3
was significantly lower than weeks 4–6. No significant difference was observed among
weeks 4–6. When comparing two behavioral sounds, the average upper limit of wing
flapping was higher than that of dustbathing.

Table 4. Upper frequency limits of feed system, heater, wing flapping and dustbathing at different bird ages (mean ± SD).

Bird Age (Week) Feed System (Hz) Heater (Hz) Wing Flapping (Hz) Dustbathing (Hz)

1 18,694 ± 149 c 18903 ± 24 - -
2 18,655 ± 244 c - - -
3 18,781 ± 61 b - 18,830 ± 27 ab 18,771 ± 26 b

4 18,819 ± 45 ab - 18,833 ± 50 a 18,793 ± 27 a

5 18,804 ± 54 ab - 18,819± 27 b 18,791 ± 30 a

6 18,813 ± 113 ab - 18,832± 34 ab 18,797 ± 32 a

7 18,833 ± 40 ab - 18,829 ± 27 ab -
8 18,857 ± 25 a - 18,837 ± 28 a -

average 18,782 18,903 18,830 18,788
a,b,c Means in the same column with different superscripts are different (p < 0.05). Heater was only operated in week 1. The sound of wing
flapping and dustbathing can be detected by microphone after week 2. No dustbathing behavior was identified in weeks 7 and 8.

3.4. Behavioral Frequency

Table 5 shows the behavioral frequencies of wing flapping and dustbathing at different
bird ages. The behavioral frequencies of wing flapping and dustbathing were continuously
decreased as the bird grew. In week 3, the behavioral frequencies of both wing flapping
and dustbathing were significantly higher than other weeks. No significant difference was
observed among weeks 4–6 for wing flapping and dustbathing. The behavioral frequency
of wing flapping was significantly higher than that of dustbathing in weeks 4–6 (p = 0.049,
p = 0.0003 and p = 0.0001, respectively).

Table 5. Behavioral frequency of wing flapping and dustbathing at different bird ages (mean ± SD).

Bird Age (Week) Wing Flapping (Hz) Dustbathing (Hz)

1 - -
2 - -
3 17 ± 4 Aa 16 ± 2 Aa

4 14 ± 3 Ab 12 ± 1 Bb

5 14 ± 3 Ab 12 ± 2 Bb

6 13 ± 2 Ab 11 ± 1 Bb

7 11 ± 2 c -
8 10 ± 1 c -

a,b,c Means in the same column with different superscripts are different (p < 0.05). A,B Means in the same row with
different superscripts are different (p < 0.05). The sound of wing flapping and dustbathing can be detected by
microphone after week 3. No dustbathing was found on week 8.

4. Discussion

The frequency range of bird vocalization continuously decreased as the birds got older
(Table 2). The result is consistent with that previously reported by Fontana et al. [22], who
found a negative relationship between broiler vocalization frequency and bird age. The
key assumption underlying the result is that larger animals often produce vocalizations
with lower frequency than smaller animals. Vocalizations can be simply described as the

76



Animals 2021, 11, 916

result of tissue vibrations generated by the passage of air through a constriction in an
animal’s vocal tract [23]. Due to the physical and energetic constrains, animals cannot
efficiently produce sound waves larger than the size of their body or their sound-producing
apparatus [24]. According to the theory, bird vocalization has been used to automatically
and continuously monitor broiler body weight [13].

Different frequency-based filters have been adopted to remove the ventilation noise
at pre-processing stage [12,25,26]. However, the frequency of sound produced by fan
operation in commercial broiler houses remains to be understood. In this study, we
found that the upper frequency range of the fan in commercial broiler houses varied
between 1069–1203 Hz, which is slightly higher than those reported (1000 Hz) in previous
studies [13,25]. Furthermore, our results show that both lower and upper limits of fan
sound frequency generally increased as the birds grew, probably due to the increased
ventilation rate and air speed. As birds got older and the weather got hotter, more fans
were required for higher ventilation rates and air speed to exhaust excess heat production
by birds. If the size of air inlets does not change accordingly to maintain a proper static
pressure (e.g., 25 Pa), the airflow going through each fan will alter, which may affect the air
interaction with fan blades and the fan sound frequency.

The frequency of feed system and heater ranged from 0 to 19,000 Hz. The result
indicates that the sound produced during feed system and heater operation cannot be
simply removed by adding a bandpass filter. Other noise reduction methods will be needed.
There was statistical difference in the upper limits of the automatic feeder sounds among
weeks, which was possibly due to the differences in feed particle sizes that affected the
frictions between augers and feed tubes during feed delivery. However, the changes of the
upper limits were small.

Acoustic signal can be a useful tool for learning animal behaviors. Microphones
have been widely used to detect the animal behaviors, e.g., foraging of beef cattle [27,28],
chewing of dairy cows [29], and feeding behavior of broilers [10]. However, using audio
signal to determine broiler wing flapping and dustbathing behaviors has not been reported
before. Our results showed the upper frequency range limits of these two behavioral
sounds varied between 18,770–18840 Hz. Therefore, in order to avoid information loss of
the signal, adding a filter < 19,000 Hz is not recommended before analyzing wing flapping
and dustbathing behaviors at pre-processing. From the spectrograms, both wing flapping
and dustbathing showed unique patterns in time series, which may provide valuable
information for behavior classification and recognition in future.

During the first two weeks, wing flapping and dustbathing behaviors can be observed
in recorded videos; however, they were not efficiently captured by the microphone. This
indicates the limitation of using a microphone to learn the behaviors of young chicks. No
dustbathing was observed in weeks 7–8. Similar results were reported by Meluzzi et al. [30],
that dustbathing activity was decreased as broilers get older. Litter quality could be one of
the factors. Broilers prefer to bathe at the area with loose and dry materials [31], while the
litter is stiffer and moister at the end of flock. The behavioral frequency of wing flapping
and dustbathing continuously decreased as birds grew. The possible reason is that older
birds were more physically challenged to perform these behaviors due to the body weight.
This hypothesis also indicates that the behavioral frequency could be another indicator of
bird age. As no study has been conducted on broiler behavioral frequency so far, further
investigation will be needed for the hypothesis.

As two types of non-invasive methods in animal research, cameras and microphones
were often used separately. Both of them have proved to be efficiently deployed in precision
livestock farming. It would be exciting if the two methods can be combined. Most off-the-
shelf cameras come with both channels of video and audio, which can provide the system’s
eyes and ears. Endless possibilities could be achieved by adding a computer as the brain,
which will eventually achieve smart broiler farming.
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5. Conclusions

In this study, the sound frequency ranges of bird vocalization, fan, feed system, heater,
wing flapping and dustbathing in a commercial Ross 708 broiler house at different bird
ages were determined using signal processing. The behavioral frequencies of wing flap-
ping and dustbathing were examined as well. We concluded that the frequency range of
bird vocalization continuously decreased as birds grew. The sound frequency of the fan
generally increased from week 1 to week 8. The upper frequency range of the feed system,
heater, wing flapping and dustbathing exceeded 18,000 Hz. Significant negative correlation
of age on behavioral frequencies of wing flapping and dustbathing were observed. In
summary, both broiler vocalization and equipment-based sounds showed temporal varia-
tions. These findings provide important insights into broiler welfare, health, and behavior
determination using signal processing. Generalizing the results to other housing systems
and broiler breeds will require more data.
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Simple Summary: The effects of lighting wavelength on the behavior of laying hens are not yet
completely known. This study observed three groups of birds housed under different lighting colors
(blue, green, and red) for 90 days. Important differences were found regarding the unrest and cluster
behaviors of the birds. It was found that, at shorter wavelengths (blue light), birds became more
agitated, while, at longer wavelengths (red light), birds became more clustered. When subjected
to cold or heat stress, birds expressed unrest and cluster behaviors in different ways, indicating
that further studies should be conducted to better clarify the effects of lighting on the behavior and
well-being of laying hens.

Abstract: Laying hens are affected by the intensity, wavelength, and duration of light, and the
behavioral patterns of these animals are important indicators of stress. The objective of the present
study was to evaluate cluster and unrest behaviors of lying hens submitted to three environments
with different treatments of monochromatic lighting (blue, green, and red). For 29 weeks, 60 laying
hens from the Lohmann variety were divided into three groups and monitored by surveillance
cameras installed on each shed ceiling and directed to the floor. Each group was housed in a small-
scale shed and maintained under a monochromatic lighting treatment. The recordings were made
at two times of the day, 15 min in the morning and 15 min in the afternoon, and the videos were
processed, segmented, and analyzed computationally. From the analysis of the images, the cluster
and unrest indexes were calculated. The results showed the influence of lighting on these behaviors,
displaying that the birds were more agitated in the treatments with shorter wavelengths. Cluster
behavior was higher in birds housed under red light. There was an interaction between the lighting
treatments and the thermal environment, indicating that more studies should be carried out in this
area to better understand these behavioral changes.

Keywords: image analysis; precision poultry farming; animal welfare; movement analysis; LED;
comfort index

1. Introduction

The use of artificial lighting in the breeding of laying hens is essential to achieve the
necessary illuminance, spectrum of light, and suitable photoperiod for the physiological
stimulation of the animals [1]. Thus, lighting has a great influence on the productivity
of these animals and is a factor of high importance for the welfare of birds confined in
conventional egg production systems.
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Well-being is defined as the animal’s ability to interact and live well in its environ-
ment [2]. Light is an essential factor in the microclimate of the poultry house, which means
variations in its distribution, intensity, wavelength, and duration affect the welfare and
performance of birds [3–7].

The lighting period can contribute to normal and healthy behavior patterns [4,8].
Broilers are more active when in contact with high illuminance (180–200 lux) [9]. For
broiler chickens, longer wavelengths (orange and red) make these birds more agitated and
aggressive [4].

Behavior is an indicator of stress, and it is affected by the wavelength of light [10–17].
Broilers move more under long-wavelength lighting and tend to stay seated and stationary
for longer in environments with blue and green light [5]. Aggressive behavior can be
controlled by decreasing the light intensity or using different wavelengths [18]. However,
knowledge about the effects of different wavelengths on laying hens is still limited [7].

Birds have four types of single cones, double cones, and rods [19]. Olsson and col-
leagues [20] report that single-cone photoreceptors are responsible for color vision, each
sensitive to a range of specific wavelengths. The maximum sensitivity of these cones is
for long wavelengths (L, red) 571 nm, medium wavelengths (M, green) 508 nm, short
wavelengths (S, blue) 455 nm, and very short wavelengths (VS, ultraviolet) 415 nm [21].
When a thermal environment changes from thermoneutrality to heat or cold stress, the
behavior of birds, whether individual or collective, occurs more quickly in order to mitigate
its effects [22–24].

When birds are subjected to heat stress situations, several changes in energy metabolism
start to occur, altering thermoregulatory and behavioral responses, and part of the energy that
would be used for egg production is redirected to maintain the bird’s homeostasis [12,25]. In
this situation, one can observe increased water intake, reduced feed consumption, increased
respiratory rate, and behaviors such as aggressive pecking and wing exposure as a way to
dissipate endogenous heat and maintain homeostasis [26–29].

The behavioral observation of animals can be performed by a human being present at
the place where the animals are housed. However, this is a time-consuming, expensive,
subjective, and error-prone method. Automated monitoring, through digital cameras, has
the ability to generate data that provide an objective measure of behavior, without disturb-
ing animals [30]. In addition to being a low-cost technology, it enables the monitoring of
animal behavior on an automated [31–33], non-invasive [34], and ongoing basis.

Digital cameras have been used to monitor the behavior of birds, in which the images
analyzed use computer vision techniques [32,35–37]. Computer vision is responsible for
extracting relevant information based on images captured by digital cameras, whether
through photographic or video images, sensors, and other devices [38]. These technologies
have shown great evolution over the past few years [39].

The cluster behavior of laying hens can be classified automatically through image
analysis [34]. Pereira and co-workers [34] found that, in conditions of lower temperatures,
the laying hens agglomerate more, suggesting that this group behavior can be used to
estimate bird thermal comfort. The evaluation of laying hens’ agitation behavior was
proposed by [40], through an unrest index calculated from image analysis. This index was
used to estimate bird thermal comfort, and the authors found that, in high temperature
conditions, birds moved less in the poultry house. The combined use of these methods can
contribute to a more accurate assessment of the conditions and well-being of commercial
birds at their breeding place.

The objective of this work was to evaluate the cluster and unrest behaviors of laying
hens in different thermal conditions (cold, comfort, and heat), submitted to three different
monochromatic lighting sources (blue, green, and red) in order to verify whether the
wavelength of the light source influences these behaviors.
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2. Materials and Methods

The study was carried out at the facilities of the Bioterium of the School of Sciences
and Engineering, from the São Paulo State University (UNESP), in the city of Tupã, Brazil.
The experiments were carried out for 90 days, from 10 June to 8 September 2020, in which
the first seven days were dedicated to the adaptation of the birds to the new environment
and accommodation conditions.

2.1. Description of Birds and Facilities

For this study, 60 laying hens of the Lohmann variety were monitored at, initially,
29 weeks of age. At the beginning of the experiments, the birds, which were obtained from
a commercial farm, were randomly divided into three groups of 20 birds each. Food was
administered daily, in the amount of 110 g/bird, once a day, in the morning. Access to
water was ad libitum, through nipple drinkers. The light management was similar to that
adopted by the original farm, with a photoperiod of 17 h of light.

Three models of sheds were used on a reduced scale, arranged in an east–west ori-
entation, where the birds were housed in a 15 cm high shavings bed. Each poultry house
had two 40 × 40 × 40 cm3 box-type nests installed, a pendular feeder (Φ 30 cm), and
four nipple drinkers, as shown in Figure 1a.

 

 

(a) (b) 

Figure 1. Experimental houses used in the study: (a) layout of the nests, feeders and drinking fountains inside the sheds;
(b) external view of an sheds.

The sheds were completely sealed with the use of plastic sheeting, to prevent external
lighting from influencing the internal lighting system of each environment. For ventilation
control and air renewal inside the sheds, exhaust fans (Φ 30 cm, 120 W, and outflow
30 m3/min) were installed on one of the longitudinal walls (Figure 1b).

In each of the sheds, the group of birds was exposed to the treatment of monochromatic
blue, green, and red LED lighting. (Initially, the experimental design provided for a control
treatment, where 20 birds were housed under white light. However, in this treatment there
was an outbreak of Lipeurus caponis lice that affected the behavior of the birds, and the
data could not be used in this work). Each light source had a different light spectrum,
as shown in Figure 2. The number of lamps in each treatment was calculated from the
characteristics of the lamps provided by the manufacturer, to provide the same 100 lux
illuminance, similar to the methodology used by Zupan [41].
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Figure 2. Luminous spectra of the lamps used in the experiment: (a) Model TKL Colors—Blue;
(b) Model TKL Colors—Green; (c) Model TKL Colors—Red. (Data provided by the manufacturer).

2.2. Monitoring of the Thermal Environment

In order to monitor the internal thermal environment of the sheds, a datalogger of the
HOBO® brand, model U12-012, was installed. The datalogger was positioned in the center
of the sheds, at the same height as that of the birds, to record data on temperature and
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relative humidity. This equipment was programmed to record the temperature and relative
humidity of the air at 5 min intervals for 24 h throughout the entire observational study.

From the temperature and relative humidity data, the Temperature and Humidity In-
dex (THI) was calculated for each shed internal environment, using Equation (1), described
by [42] and used for birds by [43].

THI = 0.8 × T +
RH × (T − 14.3)

100
+ 46.3 (1)

where: T = temperature dry bulb in ◦C; RH = relative humidity of the air (%).

2.3. Bird Monitoring System

The birds were monitored by digital surveillance cameras, which were installed in the
center of the shed ceiling and directed to the floor, at a 1.5 m height. The cameras recorded
for 15 min in the morning and 15 min in the afternoon, according to the methodology used
by [44,45]. The captured images were recorded and stored in video format using Digital
Video Recorder (DVR) equipment.

The transmission of the images from the cameras to the DVR was made by coaxial
cables. The video cameras installed were from the POWER® brand, model AP2688W,
with a Charge-Coupled Device (CCD) analog image sensor. The resolution was that of
352 × 240 pixels, a lens with a focal length of 2.8 mm, a viewing angle of 60◦, and video
standard NTSC (National Television System(s) Committee). The DVR equipment was
the model VD 4E120 of the Intelbras® brand, with the Linux operating system installed,
supported video format NTSC, had a video recording speed of 30 frames per second (fps)
and with capacity for 4 video channels and support for 1 1TB SATA HD.

From the framing obtained by the cameras inside each shed, an area free of objects and
equipment was defined, so that the activity of the birds could be monitored. This area was
delimited in the first frame and replicated for all consecutive frames of all the video files
that composed the samples. The images were processed and analyzed using MATLAB®

software. In the image processing, low-pass filters and threshold-based segmentation
techniques were applied so that only the birds were highlighted (Figure 3).

  
(a) (b) 

Figure 3. Example of segmentation of an image: (a) Original cropped image; (b) segmented image.

From the segmented (binarized) images, it was possible to extract measures used to
calculate the cluster and unrest indexes, used in this work to describe the group behavior
of the birds in each treatment.

2.4. Measures of Cluster and Unrest Indexes

Two indicators were used to describe the group behavior of birds: the cluster index,
described by [37] and the unrest index, described by [40]. The cluster behavior is charac-
terized by the reduction in distances between individuals and the pillaging of these birds.
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On the other hand, the unrest behavior is associated with the movement of the flock in the
experimental house.

With the segmented image, the positions of the centers of mass of the birds (or groups
of birds) were recorded in each video frame, in addition to the area and the perimeter of
the shapes that the birds assume. These measures were used to calculate the cluster index
described by Equation (2).

Cluster Indexi =
2 × A ×√

h2 + w2

P × D × nA
− 1 (2)

where: Cluster Index(i) is the cluster index of the birds observed in the ith frame of the
video; A and P are, respectively, the average area and perimeter (in pixels) of the shapes
observed in the frame; D is the average distance between the centers of mass of the shapes
in the scene; nA is the number of clusters, and h and w correspond to height and width (in
pixels) of the cropped image.

For the calculation of the unrest index (measured in centimeters), initially, the distances
from the birds’ centers of mass in one frame, at time i−1, were calculated to the birds’
centers of mass in the next frame, at time i. From the distance measurements between the
centers of mass of the birds between the frames, the Hausdorff distance was extracted,
which is the mathematical measure that represents the distance between two sets. The
Hausdorff distance makes up the unrest index, as described by Equation (3).

Unrest Index(i,i−1) = k.max
{

dH
(

F(i), F(i−1)

)
, dH

(
F(i−1), F(i)

)}
(3)

where: Unrest Index(i, i−1) is the unrest index (cm) of the birds between two frames recorded
with 1 (one) second difference; i is the position of the frame in the video; F(i) is the current
frame; F(i−1) is the previous frame; dH is the Hausdorff distance between group of birds
from one frame to the other, and k is the proportionality factor calculated by Equation (4).

k =
2H tan(α/2)

w
(4)

where: k is the proportionality factor; H is the height (cm) of the installed camera in relation
to the floor; α is the opening angle of the camera lens, and w is the length (pixels) of the
CCD sensor, which corresponds to the length of the largest measurement of the frame
captured by the camera.

2.5. Analysis

This is considered an observational cohort study, as it followed three groups of similar
individuals (cohorts) under different environmental treatments. Treatments were under
blue, green, or red lighting conditions in each experimental house.

In this study, agitation and agglomeration behaviors were compared using the unrest
index and cluster index, respectively. Initially, exploratory analyses were performed
through graphical interpretations, and later confirmatory analyses through the analysis of
variance and the multiple means comparisons test.

3. Results and Discussion

3.1. Thermal Environment

For laying hens, it is considered that temperature and THI values above 28 ◦C and 78,
respectively, are considered situations in which the birds are outside the thermal comfort
zone and, therefore, already characterize heat stress [43]. On the other hand, temperatures
below 15 ◦C and a THI below 59 are considered to induce cold stress [46].

Figure 4 shows the variation of the THI for each hour during the entire period of the
experiment. When the THI values of the environment are below or above the thermoneu-
trality limits defined in the literature, the values are highlighted in red.
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Figure 4. THI averages calculated for each hour, during the period of the observational study.

Figure 4 shows that the birds were exposed to conditions of a thermoneutral envi-
ronment most of the time. However, they were also exposed to conditions of cold and
heat stress at some moments. Considering the recording times of the videos for behav-
ior analysis, 49 thermoneutrality recordings, 20 heat recordings, and 15 cold recordings
were obtained.

3.2. Behavior Analysis

Approximately 36 h of images were recorded in a video file in the three lighting
treatments, which provided an analysis of about 520,000 frames, allowing the assessment
of birds’ unrest and cluster behaviors through their respective indexes.

It was observed that the birds’ unrest decreases with increasing wavelength (Figure 5a).
The group of birds housed under blue lighting treatment were those that showed greater
unrest behavior, compared to the other treatments. The confidence intervals for cluster
behaviors between the lighting treatments, where the influence of the red wavelength is
verified in the increase in the intensity of this collective behavior, are shown in Figure 5b.

For broilers, Sultana and co-workers [5] and Hesham and colleagues [47] found that the
birds clustered less under blue lighting (short wavelength) and showed greater unrest when
exposed to red lighting (long wavelength). In this study, laying hens exposed to red light
were more crowded and less agitated when compared to green and blue lights. The results
suggest that the effects of lighting wavelength promote different effects in broilers and
laying hens, as also noted by Wichman and colleagues [48], or that age or sexual maturity
are determinants for the choice of which light spectrum is the most suitable for each stage
of production, as verified by Wei and co-workers [7] in breeding commercial poultry. Red
monochromatic LED lighting reduced aggression [49] and reduced bird mortality [50],
indicating that this wavelength may be associated with reduced stress. In broilers, studies
have shown that, under red light, the birds are more agitated and aggressive [4], while
laying hens have an increase in egg production [51] and reduction in stress [52].
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(a) 

 
(b) 

Figure 5. Confidence intervals of the mean for the (a) unrest index and (b) cluster index verified for
the blue, green, and red light treatments.

Marino [53] describes that personality is defined by three traits (boldness, activ-
ity/exploration, and vigilance) and that bird emotions are a combination of cognitive
ability and sociability. Birds are highly dependent on vision to express behaviors, especially
social behaviors [54,55]. Thus, in environments with monochromatic lighting, it is expected
that visual acuity is affected and that social behaviors are altered, influencing the explo-
ration behavior and the welfare of the birds. During the experiment, it was noticeable that
the birds under blue lighting were more agitated, as shown by the unrest index (Figure 6a),
followed by the green and red treatments. Despite some interaction between the days,
there is a tendency to reduce the unrest with the increase in the wavelength.
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(a) 

 
(b) 

Figure 6. Average daily values for (a) unrest index and (b) cluster index, referring to samples of
15 min videos recorded and analyzed by period of the day.

In the birds’ cluster behavior, a greater interaction of the cluster index was observed
between the data from the blue and green light groups. However, the cluster in the
group housed under red light was much greater, showing very pronounced peaks in the
morning period (Figure 6b). Early in the day, there was a greater supply of food in the
feeders and, revisiting the videos, it was found that this cluster occurred around the feeder,
demonstrating that birds at this wavelength are more willing to eat.

Lighting is known to affect the behavior of birds [13,15–17]. The birds eat more when
exposed to green light when compared to blue light [16]. The birds spend more time around
the drinker when under blue and white light, and less time under red and green light [11].
In this work, the dwelling times in the feeder and drinker were not monitored, but the
results suggest that there was a greater cluster of birds observed in the red wavelength
around the feeder. Birds prefer environments with short-wave lighting (blue and green)
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to environments with red lighting [14]. Chickens perceive light at a different intensity
than humans [56]. Photoreceptors have colored oil droplets that act as a filter for different
wavelengths of light [20]. For this reason, each photoreceptor is sensitive to different
wavelengths range, with violet light photoreceptors being the most sensitive, followed by
blue, green, and red, in that order [19]. In this experiment, this characteristic of the birds’
vision may have affected the laying hens’ behaviors in response to the light intensity, so
that, under the blue light treatment, the birds may have been hyper-stimulated, which
would explain the more agitated behavior.

The interaction between the unrest and cluster behaviors of the birds was verified for
the thermal conditions observed in the study (Figure 7).

 
(a) 

 
(b) 

Figure 7. Interaction for (a) unrest and (b) cluster behaviors in relation to comfort, according to
treatment type.

While it is observed that birds reared under red light show a reduction in the unrest
index as the temperature increases, birds reared under green and blue light showed a higher
unrest index when the temperature was of thermal comfort. Although the results indicate
this interaction, it can be seen in Figure 7a that that there is an influence of blue light
in the greatest unrest in birds, for all environmental conditions, followed by green and
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red light, in that order. This figure also shows that, in the blue and green treatments, the
unrest is greater in thermoneutrality. Under red light, there was a decrease in unrest with
the increase in the wavelength, showing that light wavelength can affect the behavioral
response of birds to thermal stress.

Figure 7b reinforces the evidence that the red light influences a greater willingness of
birds to feed in all the thermal conditions observed in this study. There is also a tendency
to reduce cluster under heat stress conditions in all treatments.

In Tables 1 and 2, the means comparison test was applied for the crossover results of
lighting treatment for periods of the day and thermal environments in which the unrest
and cluster behaviors were evaluated. The results confirm the evidence presented in the
previous figures.

Table 1. Unrest index for each treatment between the levels of the variables: period of the day,
production cycle, and thermal comfort.

Treatment

Blue Green Red

Period of day Morning 40.0 Aa 34.7 Ab 32.0 Bc

Afternoon 38.3 Ba 31.8 Bc 33.4 Ab

Comfort
Cold Stress 38.1 Ba 31.2 Bc 35.2 Ab

Comfort 40.7 Aa 35.3 Ab 31.5 Bc

Heat Stress 38.6 Ba 33.2 Ab 31.4 Bc

Lowercase letters (a,b) indicate differences between the lighting treatments (columns) and uppercase letters (A,B)

indicate differences between the lines of the same variable, by the Tukey test at 5% significance.

Table 2. Cluster index for each treatment between the levels of the variables: period of the day,
production cycle, and thermal comfort.

Treatment

Blue Green Red

Period of day Morning 3.16 Ab 3.15 Ab 6.18 Aa

Afternoon 2.82 Bb 2.54 Bb 2.96 Ba

Comfort
Cold Stress 3.07 b 2.64 Bc 4.66 Aa

Comfort 2.98 b 2.92 Ac 4.79 Aa

Heat Stress 2.91 b 2.98 Ab 4.26 Ba

Lowercase letters (a,b) indicate differences between the lighting treatments (columns) and uppercase letters (A,B)

indicate differences between the lines of the same variable, by the Tukey test at 5% significance.

Under high temperature conditions, birds clustered less [37] and moved less [12],
corroborating the results of this study. Birds prefer to feed in the morning [57,58]. In the
afternoon, they remain seated, stationary, for longer periods of time. The results of Table 2
and 3 corroborate these observations, because in the morning, there was a greater cluster
of birds around the feeder, for all treatments, while in the afternoon, there was less unrest,
except under the red light, where the movement of the birds was higher in the afternoon.
The presence of food attracts birds to the feeder and, therefore, increases the cluster of birds
around it [57,59,60]. This increase in cluster behavior at the arrival of fresh food is also
associated with the common bird behavior of feeding in groups [61].

4. Conclusions

The different monochromatic lighting regimes affected bird behaviors of unrest and
cluster. It was found that the unrest was greater under blue light, followed by green
and red, which indicates that the increase in the wavelength of the light source may be
associated with a lower level of expression of the unrest behavior, or even that longer
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wavelengths have a calming effect on laying hens. However, studies with more birds are
needed to prove this hypothesis.

The interaction was verified between the lighting treatments and the thermal environ-
ment, suggesting that further studies should be carried out in this area to better under-stand
these behavioral changes.
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Simple Summary: Hourly manure coverage proportion and area on the manure belt are key param-
eters for estimating ammonia emissions in poultry houses in order to provide environmental control
suggestions and achieve the goals of precision poultry farming. In this study, experimental measure-
ments were performed, and binary images were applied to provide new insights into the projected
hourly manure coverage area on the manure belt at different layer hen ages. It was demonstrated that
manure coverage proportion and area measured at different laying hen ages showed similar trends
and values with four distinct stages within 48 h. In addition, statistical analyses found no significant
correlation between the hourly increment of manure weight and the hourly increment of manure
coverage proportion. The results from the present study are expected to serve as a fundamental
input parameter for ammonia emission modeling to more accurately simulate the hourly indoor
environment and provide effective mitigation strategies.

Abstract: The main advantage of having livestock, for example, the laying hens, in a controlled
environment is that the optimum growth conditions can be achieved with accuracy. The indoor air
temperature, humidity, gases concentration, etc., would significantly affect the animal performance,
thus should be maintained within an acceptable range. In order to achieve the goals of precision
poultry farming, various models have been developed by researchers all over the world to estimate
the hourly indoor environmental parameters so as to provide decision suggestions. However, a
key parameter of hourly manure area in the poultry house was missing in the literature to predict
the ammonia emission using the recently developed mechanistic model. Therefore, in order to fill
the gap of the understanding of hourly manure coverage proportion and area on the manure belt,
experimental measurements were performed in the present study using laying hens from 10 weeks
age to 30 weeks age. For each test, six polypropylene (pp) plates were applied to collect the manure
dropped by the birds every hour, and photographs of the plates were taken at the same time using a
pre-fixed camera. Binary images were then produced based on the color pictures to determine the
object coverage proportion. It was demonstrated that for laying hens of stocking density around
14 birds/m2, the manure coverage proportion at the 24th hour after the most recent manure removal
was about 60%, while the value was approximately 82% at the 48th hour. Meanwhile, for laying
hens at different ages, the hourly increment of manure coverage proportion showed a similar pattern
with four distinct stages within 48 h. The statistical analyses demonstrated no significant correlation
between the hourly increment of manure weight and the hourly increment of manure coverage
proportion. Finally, prediction models for estimating the hourly manure coverage proportion on the
manure belt in typical laying hen houses were provided.

Animals 2021, 11, 2433. https://doi.org/10.3390/ani11082433 https://www.mdpi.com/journal/animals95
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1. Introduction

In recent decades, the intensification of poultry production in China has contributed to
ensuring increasing demand for domestic livestock. Small farms with traditional systems
have been replaced by controlled environment housings. Poultry production in an enclosed
environment with high stocking density becomes an important source of ammonia (NH3)
emission, which has a number of negative effects not only on the indoor air quality but also
on the ecosystem [1–3]. For typical poultry production, the ammonia originates from the
decomposition of nitrogen content in manure and the production and emission of the NH3
are a result of complex biological, physical, and chemical processes [4,5]. Moreover, various
factors, including ventilation rate, temperature, humidity, stocking density, management,
etc., would affect the indoor ammonia concentration and emissions [6–8].

The ammonia concentration in controlled environment housings should be kept within
an acceptable range [9,10] since a high concentration of NH3 had been demonstrated to
be associated with health risks for both birds and exposed workers [11,12]. Therefore, it
is crucial to understand and model the ammonia emissions in poultry houses so as to
provide information to develop appropriate mitigation and management strategies. Much
work had been done to predict ammonia release from manure [13–17], and several types
of models were developed in the literature, including statistical models [18,19], balance
models [20,21], and process-based models [22,23]. More recently, Tong et al. [24] developed
a mechanistic model, which was based on the fundamental understanding of physical and
biochemical processes of ammonia emissions from manure, to estimate the NH3 emissions
rate (ER, mg m−2h−1) from laying hen manure. Information including manure pH, manure
moisture content (MC), air velocity, air temperature, etc., were required for the model, and
readers could refer to the original paper for more detailed information. The total ammonia
emissions (MNH3, mg h−1) could then be calculated by MNH3 = ER × As, where As was
the manure surface area, m2.

Knowing the parameter of As, the above mechanistic model could be effectively
incorporated into many recently developed thermodynamic models [25–27], which were
used to predict the indoor hourly environmental parameters, including ammonia emissions,
and provide decision suggestions in order to achieve the goal of precision poultry farming.
Nevertheless, a review of published literature demonstrates that very limited information is
available relating to As for laying hen production. Considering the difficulty for accurately
measuring the hourly As, researchers in the literature applied the manure projected area,
Ap, on the manure belt to approximate the As. According to a recent study performed
by Tong et al. [28], the manure coverage proportion (MCP) on the manure belt per day,
or more specifically, the coverage proportion of projected manure area on the manure
belt per day, was estimated by the equation MCP = min

{
1
3 + d−1

3 , 1
}

, where d was the
number of days after manure removal, min{a, b} equaled the smaller value between a
and b. Based on the above equation, the daily manure coverage proportion was estimated
to be MCPday1 = 33.3%, MCPday2 = 66.7%, MCPday3 = 100%. Unfortunately, to the best
of the authors’ knowledge, there is no hourly data of manure coverage proportion or As
available, which could be directly applied for the thermodynamic models for predicting
hourly ammonia emissions.
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Therefore, this study aimed to fill the research gap by providing new insights into
the hourly manure coverage proportion and manure area on the manure belt in a typical
layer house. The weekly manure pH and MC was also measured, which were important
information for estimating NH3 emissions. Although it is noted that the hourly manure
coverage proportion on the manure belt might, to some extent, be affected by diet, species,
stocking density, etc., the results from the present study are expected to serve as a funda-
mental input parameter for thermodynamic models to more accurately simulate the hourly
indoor environment and provide effective management strategies.

2. Materials and Methods

2.1. The Layer House and the Birds

The experimental measurements were conducted in an experimental-oriented manure
belt layer house in Chengdu, Sichuan province. The dimensions of the house were length,
40 m, width, 9.2 m, height, 2.5 m. Tunnel ventilation is applied with evaporative cooling
systems in the house, and more details about the building could be found in previous
studies [29,30]. In the house, there were 4 rows of animal-occupied zone. Each row had
3 tiers of cages raising approximately 3500 birds of the parent stock of the local species
characterized by partridge-like plumage and dark-shanks. A total of 8 birds were kept in
each cage with a size of width 660 mm and length 860 mm, resulting in a stocking density
of approximately 14 birds/m2.

2.2. Manure Collection

Pure white polypropylene (pp) plates, which had the same width of the manure
belt, 680 mm (slightly larger than the width of the cage) and a length of 860 mm (equal to
the length of the cage), were hung above the manure belt in order to collect the manure
dropped from the birds as schematically drawn in Figure 1. The polypropylene plates were
weighted every hour so as to calculate the updated weight of the manure, and plan-view
photographs of the plates with manure were also taken at the same time to determine
the updated manure coverage proportion, which would be detailed in Section 2.3. In
this study, the measurement campaign was conducted once a week, starting from the
laying hen 10 weeks age to 30 weeks age. Meanwhile, for each measurement campaign, 6
polypropylene plates were applied and placed randomly in the poultry house providing
enough data (manure produced by 48 laying hens) to calculate the hourly average values.
In each week, the test began at 5 am in the morning (lights on) and lasted for 48 h (2 days).
Detailed information on the measurement campaign is summarized in Table 1 below.

 

Figure 1. Schematic drawing of the size and placement of the polypropylene plate. The plate length is 860 mm, and the
plate width is 680 mm.
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Table 1. Detailed information on the experimental measurements.

Information Notes

Experiment period 10 weeks age~30 weeks age Measurements performed once
a week

Measurement interval 1 h Starts at 5 am and lasts for 48 h
(2 days)

Number of pp plates 6 To calculate the hourly
average values

Parameters concerned Manure weight, coverage
proportion, area

The resolution of the scale is 0.1 g,
and the resolution of the

photographs is 4032 × 3024 pixels

Staff involved 6 people Rotating schedule

2.3. Determination of the Manure Coverage Proportion (MCP) and Area

To investigate the hourly manure coverage proportion (MCP) and area on the manure
belt, the six polypropylene plates were moved to a pre-marked area one by one every hour
to have the photographs taken by a pre-fixed camera (Figure 2). Special attention was paid
when transferring the plates so as to reduce the movement of manure on the plates, which
was inevitable given the fact that the manure was not ‘fixed’ on the plates. The camera
lens was set perpendicular to the surface of the plate, ensuring that all the pictures were
taken at the same position, height, orientation, and resolution in order to minimize the
experimental error. In the present study, the resolution of the photographs was determined
to be 4032 × 3024 pixels, which was demonstrated to be enough for the following study as
pictures with more pixels did not show any significant difference in terms of the results of
image processing.

 

Figure 2. Schematic drawing of the pre-fixed camera.

To be more specific, the manure area investigated in this study was the projected area
of the manure on the manure belt. The starting point of how to calculate the projected
area from a picture is to estimate the manure coverage proportion in a binary image. As
long as the coverage proportion could be determined, the manure area and hourly area
increment could be easily calculated since the area of the background polypropylene plate
is known. Therefore, the color photographs were firstly turned into gray-scale images
in Matlab, and a threshold value, T = 200, was used to check the gray value of each
pixel in order to produce binary images, namely, a gray value smaller than 200 would
be set to 0 (black) while gray value larger than 200 would be set to 255 (white). Finally,
the objects coverage proportion (γ) in the binary image could be easily determined by
γ =

number of pixels with gray value=0
number of total pixels × 100% and the area could be calculated at the same

time. A flowchart is provided in Figure 3 to show the detailed image processes.
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Figure 3. The flowchart for image processing.

Examples of comparisons between original color photographs and binary images
are illustrated in Figure 4. As it can be clearly seen from the four pictures in Figure 4,
the binary images are capable of replicating almost all details of the manure in color
photographs taken at different stages of the experiment, showing the correct position and
size. The corresponding manure coverage proportion for Figure 4a–d is calculated to be
11.76%, 25.82%, 36.01%, and 68.63%, respectively, and the corresponding manure area is
0.069 m2, 0.151 m2, 0.211 m2, and 0.401 m2, respectively. Furthermore, the limited white
urate on the manure would, to some extent, affect the accuracy of coverage proportion
calculated by binary images, and the maximum discrepancy was investigated to be up to
approximately ±3.3% of the estimated coverage proportion value γ.

  
(a) (b) 

  
(c) (d) 

Figure 4. Examples of original photographs (left) and binary images (right). The photographs were taken at the (a) 3rd
hour, (b) 8th hour, (c) 11th hour, and (d) 30th hour after the start of the experiment. The corresponding objects coverage
proportion for (a–c) and (d) is 11.76%, 25.82%, 36.01%, and 68.63%, respectively.

2.4. Manure pH, Moisture Content (MC), and Lighting

For each week during the experiment period, the manure was sampled randomly
from multiple locations in the house within 3 h after manure had been dropped by the birds.
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The samples were then properly stored in sealed bags and transported in a timely manner
to a quality-certified laboratory for determining the pH and MC. Moreover, from the laying
hen 10 weeks age to 30 weeks age, the lighting program was modified regularly to achieve
optimal reproductive performance through appropriate illumination and photostimulation
at the appropriate age and body weight. A detailed lighting schedule for the local species
is provided in Table 2.

Table 2. Lighting schedule during experiment period and targeted weight of the hens.

Week
Daylength

(Hours)
Targeted

Weight (g)
Week

Daylength
(Hours)

Targeted
Weight (g)

10 13 1140 21 16 2130

11 13 1230 22 16 2220

12 13 1320 23 16 2300

13 14 1410 24 16 2380

14 14 1500 25 17 2460

15 14 1590 26 17 2540

16 14 1680 27 17 2630

17 15 1770 28 17 2700

18 15 1860 29 17 2770

19 15 1950 30 17 2840

20 15 2040

3. Results and Discussion

3.1. Manure Weight

The hourly increment of manure weight was measured and calculated during each
test from the laying hen 10 weeks age to 30 weeks age. The results from four typical ages
are presented here in the format of the mean value (M) and standard deviation (ST). As it
can be clearly seen in Figure 5, the manure produced by the birds every hour in the daytime
(lights on) is apparently more than that in the nighttime (lights off). For 12 weeks age, the
average hourly increment of manure weight recorded in the daytime is approximately
7.6 g per hour per hen, while the value is about 3.9 g per hour per hen in the nighttime (see
Figure 5a). Furthermore, due to the increase in the amount of feed in the following weeks,
the birds produce more manure every hour than that in 12 weeks age. The corresponding
average hourly increment of manure weight in the daytime for 18, 24, and 30 weeks age is
about 9.2, 11.1, and 11.8 g per hour per hen, respectively. Meanwhile, the corresponding
average hourly increment of manure weight recorded in the nighttime for 18, 24, and
30 weeks age is about 5.4, 5.8, and 6.2 g per hour per hen, respectively (see Figure 5).

Although the day length increases gradually from the laying hen 10 weeks age to
30 weeks age (see Table 2) as the laying hens enter the laying period from the rearing period,
the recorded feed to manure ratio is kept at around 2.04 in each week as it can be seen in
Table 3. Detailed information of average hourly increment of manure weight measured
in the daytime and nighttime in each week is also provided in Table 3. In addition, the
recorded weekly moisture content (MC) ranges from 72.7% ± 4.0% to 82.3% ± 2.1%, and
there is no apparent trend or pattern detected. However, the measured manure PH value
demonstrated a downward trend from the beginning of the experiment to the end. The
maximum value of PH = 7.9 ± 0.3 is recorded in the 11 weeks age, while the minimum
value of PH = 6.8± 0.1 is measured in the 28 weeks age. It is hypothesized that the changes
in the content of feed and the climate might be responsible for the PH decrease, and further
study is required to provide solid conclusions.
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(a) (b) 

  
(c) (d) 

Figure 5. Manure weight measured (per hour per hen) at four typical laying hen ages of (a) 12 weeks, (b) 18 weeks,
(c) 24 weeks, and (d) 30 weeks. Average value is provided with the standard deviation (error bar). Each test starts at 5 am
(lights on) and lasts for 48 h with a measurement interval of one hour. Data between red-dash lines are measured in the
daytime (lights on), and data between green-dash lines are recorded in the nighttime (lights off).

Table 3. Manure data measured and recorded each week.

Age (Week)
Feed
(g)

Average Hourly Increment
of Manure Weight

Measured In The Daytime
(Gram per Hour per Hen)

Average Hourly Increment
of Manure Weight Measured
in the Nighttime (Gram per

Hour per Hen)

Feed to
Manure

Ratio

PH
(M±ST)

MC, %
(M±ST)

10 60 7.0 3.7 2.19 7.5 ± 0.2 73.3 ± 3.9
11 63 7.2 3.9 2.16 7.9 ± 0.3 71.5 ± 2.8
12 67 7.6 3.9 2.12 7.6 ± 0.3 78.7 ± 1.6
13 70 8.0 4.5 2.24 7.3 ± 0.2 79.3 ± 1.1
14 74 8.2 4.6 2.17 7.1 ± 0.1 76.1 ± 1.9
15 78 8.4 4.8 2.11 7.5 ± 0.1 74.5 ± 3.5
16 83 8.5 5.1 2.05 7.6 ± 0.3 81.6 ± 2.9
17 88 8.9 5.0 2.03 7.3 ± 0.1 75.4 ± 1.8
18 93 9.2 5.4 2.01 7.7 ± 0.3 74.5 ± 3.4
19 98 9.6 5.3 1.95 6.9 ± 0.3 78.9 ± 2.3
20 103 10.1 5.6 1.96 7.3 ± 0.2 81.2 ± 1.7
21 108 10.6 5.8 1.97 7.1 ± 0.2 77.4 ± 3.9
22 110 10.9 5.5 2.01 7.0 ± 0.2 72.7 ± 4.0
23 112 11.0 5.9 1.93 7.3 ± 0.1 77.3 ± 3.3
24 114 11.1 5.8 1.94 7.1 ± 0.3 79.1 ± 1.1
25 116 11.4 6.0 1.95 7.4 ± 0.3 72.9 ± 1.5
26 118 11.6 6.1 2.01 7.2 ± 0.2 82.3 ± 2.1
27 120 11.8 6.0 2.02 7.1 ± 0.2 74.9 ± 2.9
28 120 11.7 6.2 2.01 6.8 ± 0.1 75.8 ± 1.5
29 120 11.9 6.1 2.04 6.9 ± 0.1 76.8 ± 2.4
30 120 11.8 6.2 2.03 7.0 ± 0.2 79.2 ± 2.6

Note: manure PH and MC are provided in the format of mean value (M) ± standard deviation (ST).
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3.2. Manure Coverage Proportion (MCP) and Area

Figure 6 illustrates the binary images of the manure on one of the pp plates taken
at different times during the experiment for 24 weeks age. The pictures indicate the cor-
responding manure coverage proportion at the 1st, 4th, 8th, 12th, 30th, and 44th hour is
approximately 1.65%, 11.42%, 23.77%, 38.93%, 67.12%, and 81.26%, respectively. Mean-
while, the corresponding projected manure area is calculated to be 0.01 m2, 0.067 m2,
0.139 m2, 0.227 m2, 0.393 m2, and 0.475 m2, respectively. Finally, the total manure area in
the poultry house (AT) could then be estimated using the following equation:

AT = CPi × Aplate × Ncage (1)

where CPi is the manure coverage proportion at the ith hour after the most recent manure
removal, Aplate is the pp plate area, which is roughly equal to the cage area, and Ncage is
the total number of cages in the house.

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 6. Binary images of the manure on one of the pp plates for the 24 weeks age. Photographs taken at the (a) 1st hour,
(b) 4th hour, (c) 8th hour, (d) 12th hour, (e) 30th hour, and (f) 44th hour.
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By observing the photographs of the manure, a clear message can be read that with the
increase in coverage proportion, the phenomenon of manure overlap becomes apparent. It
is extremely difficult to exactly measure the surface area of the manure due to its irregular
shape, but the projected manure area still represents a suitable method to approximate
the surface area since the release of ammonia from manure is significantly affected by the
airflow characteristics (including temperature, velocity, turbulence, etc.) above the release
surface according to previous studies [14]. Therefore, manure covered underneath has
a limited contribution to the total NH3 emissions and the projected area would not be
considerably different from the true surface area since the height of the overlap is not large
according to the field observation.

Figure 7 further shows the hourly increment of manure coverage proportion (MCP)
on the plates measured at four typical laying hen ages. The result is presented in the format
of the mean value calculated from six plates with standard deviation (error bar). As it can
be seen in Figure 7a, the hourly increment of MCP for the first daytime (from the 1st hour
to the 13th hour) is approximately 3.34% per hour. Lights were turned off from the 14th
hour for 12 weeks age, and an apparent decrease in hourly increment is recorded in the
first nighttime (from the 14th hour to the 24th hour) with a mean value of about 1.35% per
hour, which agrees with the decrease in hourly increment of manure weight measured
in the nighttime as it can be seen in Figure 5a and Table 3. The total MCP after the first
day (the 24th hour) is calculated to be 58.33%, as indicated by the solid black line (right
Y-axis) in Figure 7a. For the second daytime, the hourly increment of MCP increases at the
beginning from the 25th hour to about the 32nd hour due to the feeding activity. However,
because of the aggravation of manure overlap, the hourly increment of MCP demonstrates
a decreasing trend from the 33rd hour to the 37th hour. The overall mean value of hourly
increment of MCP for the second daytime (from the 25th hour to the 37th hour) is measured
to be only about 1.43% per hour, which is significantly lower than that in the first daytime
although the manure weight dropped by the birds during the second daytime is roughly
equal to that during the first daytime as demonstrated in Figure 5a. Because of limited
manure dropped by the birds during nighttime and severe manure overlap resulting from
the existing large coverage proportion, the hourly increment of MCP measured for the
second nighttime (from the 38th hour to the 48th hour) is very limited with an average
value of merely 0.32% per hour. Finally, the total manure coverage proportion climbs to
about 80.35% at the end of the experiment (the 48th hour).

  
(a) (b) 

Figure 7. Cont.
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(c) (d) 

Figure 7. Hourly increment of manure coverage proportion (left Y-axis) and total coverage proportion (right Y-axis) on
the pp plates measured in (a) 12 weeks age, (b) 18 weeks age, (c) 24 weeks age, and (d) 30 weeks age. Each test starts at
5 am (lights on) and lasts for 48 h with a measurement interval of one hour. Data between red-dash lines are measured at
daytime (lights on), and data between green-dash lines are measured at nighttime (lights off).

As illustrated in Figure 7b, the data measured for laying hen of 18 weeks age shows a
similar trend with that in 12 weeks age. The hourly increment of MCP is relatively large at
the beginning of the experiment, with a mean value of 3.04% per hour for the first daytime
(from the 1st hour to the 15th hour). The average hourly increment decreases to about
1.18% per hour for the first nighttime (from the 16th hour to the 24th hour) in accordance
with the decrease in the hourly increment of manure weight (see Figure 5b). For the second
daytime from the 25th hour to the 39th hour, the hourly increment of MCP rebounds to
approximately 1.61% per hour, which is only about half of that for the first daytime due to
the manure overlap. The total manure coverage proportion ends up at about 82.94%, with
very limited hourly increments observed from the 40th hour to the 48th hour (the second
nighttime).

By examining the results measured in other weeks, for example, the MCP data
for 24 and 30 weeks age as shown in Figure 7c,d, it is found that all the recorded
coverage proportion curves (the solid black line) demonstrate a similar trend with
four distinct stages: firstly, an almost linear relationship is detected between the MCP
and the time (hours) with a gradient ranges from about 3.0% to 3.5%; secondly, for
the first nighttime the curve slope reduces to about 0.9% ∼ 1.4%; thirdly, due to the
manure overlap, the total coverage proportion curve during the second daytime only
shows a moderate gradient ranges from 1.35% to 1.8%, which is considerably lower
than the gradient at the beginning of the test. Finally, when the experiment enters into
the second nighttime, the curve gradient reduces to only about 0.3%. The MCP data
measured from all the 21 weeks are then averaged, and mean values are plotted in
Figure 8. Results from the present study indicate the manure produced by the birds in
one day would cover approximately 60% of the area of the manure belt, and more than
80% of the belt area would be covered within 48 h.
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Figure 8. The measured manure coverage proportion curve with time and the polynomial fit curve
within 48 h. Mean values (M) and standard deviations (ST) are calculated based on all 21 weeks’ data.

Furthermore, no significant correlation (r = 0.11, p > 0.05) can be found between the
hourly increment of manure weight and the hourly increment of manure coverage propor-
tion by examining the data recorded from 10 to 30 weeks age using Pearson’s correlation
coefficient in SPSS. The insignificant correlation indicates that the hourly increment of MCP
or manure area on the manure belt would not necessarily be affected by the variation of
the amount of manure dropped by the birds.

A polynomial fitted curve is created to represent the total manure coverage proportion
within 48 h after the most recent manure removal, as can be seen in Figure 8. The fitted
curve shows suitable agreement (R2 = 0.997) with the experimental measurements and
falls within the standard error range at each hour. The equation of the fitted curve for
predicting MCP reads

MCP48 = P1 × h4 + P2 × h3 + P3 × h2 + P4 × h + P5 (2)

where h is the time (hours) after the most recent manure removal and the values of
coefficients of P1∼P5 are provided in Table 4.

Table 4. Coefficients for polynomial fitted curves.

Coefficient Value Coefficient Value

P1 −3.359 × 10−5 P6 3.234 × 10−4

P2 3.621 × 10−3 P7 −1.861 × 10−2

P3 −0.1648 P8 0.2786
P4 5.081 P9 1.992
P5 −4.105 P10 1.147

In addition, for some poultry farms where the manure belt is cleared every 24 h, the
equation for predicting MCP within 24 h is also provided and reads

MCP24 = P6 × h4 + P7 × h3 + P8 × h2 + P9 × h + P10 (3)

where the values of coefficients of P6 ∼ P10 is provided in Table 4, and the polynomial
fitted curve is shown in Figure 9, which demonstrates suitable agreement (R2 = 0.999) with
the data measured from the field tests.
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Figure 9. The measured manure coverage proportion with time and polynomial fit curve within 24 h.
Mean values (M) and standard deviations (ST) are calculated based on all 21 weeks’ data.

4. Conclusions

In order to fill the gap of the understanding of the relationship between manure
coverage proportion on the manure belt and time during poultry farming, experimental
measurements were performed in a manure belt tunnel-ventilated layer house with a
stocking density of about 14 birds/m2 using laying hens from 10 to 30 weeks age. In each
week, the test began at 5 am in the morning and lasted for 48 h with a measurement interval
of one hour. Six polypropylene (pp) plates were placed randomly above the manure belt to
collect the manure dropped by the hens in order to provide average results. The manure
weight was investigated every hour, and photographs of the pp plates were taken at the
same time using a pre-fixed camera. Binary images were then produced based on the color
pictures, and the objects coverage proportion was estimated, and the manure area was
calculated at the same time. In addition, important manure parameters, including pH and
moisture content (MC), were also measured every week to provide basic data for future
studies.

Based on the experimental results from the present study, some conclusions can be
drawn as follows:

1. The feed to manure ratio is kept at ∼ 2.04 from the laying hen 10 weeks age to
30 weeks age;

2. The hourly increment of manure coverage proportion measured in different laying
hen ages demonstrates similar trends and values with four distinct stages within 48 h;

3. For stocking density around 14 birds/m2, the manure coverage proportion on the
manure belt at the 24th hour after the most recent manure removal is about 60%,
while the value is approximately 82% at the 48th hour;

4. The statistical analyses demonstrate no significant correlation between the hourly
increment of manure weight and the hourly increment of manure coverage proportion
on the manure belt.

Finally, this study provides new knowledge and prediction models for estimating the
hourly manure coverage proportion and area in the poultry house, which could be directly
applied in thermodynamic models developed in the literature to predict the indoor hourly
ammonia emissions achieving the goal of precision poultry farming.
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Simple Summary: Poultry-welfare regulations have caused a shift from cage housing towards more
welfare-friendly systems with more possibilities for the birds to meet their natural behavioural needs.
The welfare-friendly systems with litter allow and encourage the hens to perform natural behavior
including activities that lead to increases in the amount of airborne dust particles emission from such
poultry houses. For successful management of these systems, the behavior of the hens needs to be
considered, which is more challenging and time-consuming for the farmer. The main objective of this
study was to show a proof of principle to identify, classify and analyze the behaviors of laying hens
in three levels of activity by using an inertia sensor and machine learning techniques. The model
was able to predict the laying hen behaviors with an accuracy of 90%. The results of such monitoring
could be used by farmers in the management of poultry houses.

Abstract: Welfare-oriented regulations cause farmers worldwide to shift towards more welfare-
friendly, e.g., loose housing systems such as aviaries with litter. In contrast to the traditional cage
housing systems, good technical results can only be obtained if the behavior of hens is considered.
With increasing flock sizes, the automation of behavioural assessment can be beneficial. This research
aims to show a proof of principle of tools for analyzing laying-hen behaviors by using wearable
inertia sensor technology and a machine learning model (ML). For this aim, the behaviors of hens
were classified into three classes: static, semi-dynamic, and highly dynamic behavior. The activities
of hens were continuously recorded on video and synchronized with the sensor signals. Two hens
were equipped with sensors, one marked green and one blue, for five days to collect the data. The
training data set indicated that the ML model can accurately classify the highly dynamic behaviors
with a one-second time window; a four-second time window is accurate for static and semi-dynamic
behaviors. The Bagged Trees model, with an overall accuracy of 89% was the best ML model with
the F1-scores of 89%, 91%, and 87% for static, semi-dynamic, and highly dynamic behaviors. The
Bagged Trees model also performed well in classifying the behaviors of the hen in the validation data
set with an overall F1-score of 0.92 (uniform either % or decimals). This research illustrates that the
combination of wearable inertia sensors and machine learning is a viable technique for analyzing the
laying-hen behaviors and supporting farmers in the management of hens in loose housing systems.

Keywords: laying hen; daily behavior; machine learning; inertia sensor

1. Introduction

Welfare-oriented legislation, such as the European Directive [1], imposing specific
regulations for the keeping of laying hens, has caused a shift from cage housing towards
more welfare-friendly systems with more possibilities for the birds to meet their behavioural
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needs. These so-called loose housing systems typically house larger groups of hens and
provide them with a litter area and more space per bird [2]. For successful management
of these systems, the behavior of the hens needs to be taken into account, which makes it
more challenging for the farmer and also more time-consuming [3].

The shift from cage housing to loose housing systems for laying hens substantially
increased the fine-dust emissions from the poultry sector in the Netherlands, with the
litter being the major additional source. Fine dust (PM10) from livestock houses consists
primarily of faeces, feed and animal matter, such as hairs and feathers [4,5]. Fine dust is
regarded as a pollutant that causes harmful effects for both the environment and the health
and welfare of humans and animals [6,7]. The emitted PM10 (Particular Matter (PM10)
with an aerodynamic equivalent diameter equal to and less than 10 μm [7]) from the poultry
sector exceeds the air quality thresholds set by the European Union [8]. The type of activity
of laying hens, and in particular the activities in the litter area and their intensity, have a
direct and pronounced effect on PM10 emissions. Calvet et al. [9] indicated that there is a
strong relationship between the concentration of fine dust in the air and the animal activity
index (Ai), demonstrated in a study with three- and four-weeks old broilers. In this case,
the activity index was defined as the proportion of broilers that were not laying down. The
low Ai during the night and the middle of the day were caused by two dark periods during
the day, in which the activity of the broilers was significantly lower.

Various techniques are being developed to reduce dust emission and they affect dust
concentration in the animal house and/or in the exhaust air [10]. However, a combination
of such techniques with managing bird behavior might enhance the performance of those
techniques. Smart managing of light intensities and feeding times can direct birds from or
towards the litter [9] and thus regulate and restrict peak dust emission. This would not
only benefit the total dust emission but could also benefit the health of the human workers
in the house [11].

The daily behavior of production animals needs to be monitored to apply optimal
management in poultry houses. Automated monitoring of the behavior of laying hens can
have advantages for managing the flock and safeguarding animal welfare [12]. The activity
level and type of activity of the birds can provide useful information about individual
and flock health (e.g., detect sick birds or piling) [13] and welfare status (e.g., typical
positive or negative behaviors). Daily behaviors are not equally distributed over the day,
therefore a good impression of behavior can only be obtained if assessed throughout
the entire day. As it is too time-consuming for farmers to manually check the chicken
behaviors, an automatic device can be very useful. Not all behaviors are equally important
for management decisions. Therefore, chicken behaviors can be classified into different
classes according to their activity levels. Kozak et al. [14] identified three main classes
of laying-hen behavior based on the intensity of their individual activities. They were
classified as low-, moderate- and high-intensity physical activities.

In general, animal-monitoring techniques can be divided into the following two
categories: body-worn sensor technologies and remote measurement technologies. To
monitor chicken behavior, both technologies have advantages and disadvantages. One
of the advantages of body-worn sensor technologies is the possibility of the individual
identification of chickens, as they all have their own sensor. By using remote measurement
technologies, such as computer vision, the distinction between various individual animals
can be more difficult. However, in the case of body-worn sensors, one sensor is needed for
each chicken, which might cause problems when upscaling the system to a commercial-flock
size [15].

Machine learning is a technique that is used in animal behavior analysis studies to
efficiently analyze large datasets. This technique consists of a system with multiple algo-
rithms that enable the subtraction of hidden features and relationships from datasets. The
complexity of the different algorithms varies and involves several stages of sophisticated
decision making, which invites the use of machine learning algorithms into optimizing
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automating processes [16]. These types of monitoring are even able to operate in real-time,
which potentially alleviates the task of monitoring [16].

Machine learning distinguishes two main types of learning, i.e., supervised and
unsupervised learning. Supervised learning consists of algorithms that attempt to classify
data based on labelled input data, while unsupervised learning models a set of inputs
where labelled input is not available. One supervised technique that is often applied in
research is the Support Vector Machine (SVM), which is preferred because of its ability
in generalization [17]. Hepworth et al. [16] showed that applying SVM techniques to
recognize birds/poultry data were able to correctly predict whether a chicken was sick or
not (accuracy rate of 99.5%). They also compared additional algorithms such as Bayesian
classifier, Random Forest, and an artificial neural network and all these methods had
accuracies above 95%.

A review of the literature reveals that there is great potential for improving the
performance of these algorithms. Examples of these improvements include classifying
more behavioural categories and improving the outcomes of machine learning models by
validating the parameters. While accelerometers are widely used, there is no consistent
approach to process the data that is being generated by these devices [16]. This restricts the
ability to compare results across various research. Additionally, behavioural studies are, for
practical reasons, often performed in smaller-sized systems, and results obtained by those
studies do not necessarily reflect behavior in commercially sized systems [16]. The main
objective of this study was to show a proof of principle of tools for analyzing laying-hen
behaviors using wearable inertia sensor technology and machine learning techniques. The
outcome of this research will give more insight into the feasibility of using such techniques
as part of automation and management systems in the commercial poultry sector. This can
aid in managing indoor air quality and dust emission.

2. Materials and Methods

2.1. Experimental Setup

An experiment was designed to collect data of the daily behavior of two individual
chickens. The experiment was carried out in a section of a commercial aviary laying-hen
house, which was fenced off from the rest of the house by wire mesh. The experimental
area was about 5 × 4 × 4 (length-width-height) meters in size. The same facilities were
available as in the rest of the house, such as a feed trough, nipple drinkers for unlimited
water supply, nest boxes, perches, a pecking block, and a large litter area. The light program
was similar to the rest of the house. Lights were turned on around 4:30 a.m. and turned off
with a dimming phase between 7:30 p.m. and 7:45 p.m. During the experiment, 15 white
laying hens were present in the experimental area. The chickens were 34 weeks of age.
Two chickens were equipped with a lightweight inertial measurement unit (IMU, also
called inertia sensor) of 16 g. The measurement units were mounted onto the chickens
via small backpacks, consisting of a small elastic strap that was looped around the wings,
together with a small bag of fabric in which the sensor was placed. Ethical approval for
the experiment was granted by the Animal Welfare Body of Wageningen Research for
mounting backpacks on two chickens for a maximum period of 5 days.

2.2. Data Acquisition and Analysis

The actual behavior of the chickens was collected simultaneously via video recordings
and a wireless inertial sensor. The chicken activities were recorded during the experiment
using a GoPro Hero 7 (Black) video camera. The MTw2 Awinda wireless motion tracker
(IMU) of Xsens was used as the inertial measurement unit in this study. This sensor
consisted of an accelerometer, a gyroscope, and a magnetometer which can measure the
acceleration, angular velocity, and magnetic field, respectively. The technical properties for
the IMU are provided in Table 1.
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Table 1. Technical properties of the MTw2 Awinda Wireless 3DOF Motion Tracker (www.xsens.com,
accessed on 8 April 2020).

Parameter Angular Velocity Acceleration Magnetic Field

Dimensions 3 axes 3 axes 3 axes
Full scale 2000 deg/s 160 m/s2 1.9 Gauss

Non-linearity 0.1% of FS 0.5% of FS 0.1% of FS
Bias stability 10 deg/hr 0.1 mg -

Noise 0.01 deg/s/
√

Hz 0.01 μg/
√

Hz 0.2 mGauss/
√

Hz
Alignment error 0.1 deg 0.1 deg 0.1 deg

Bandwidth 180 Hz 180 Hz 10–60 Hz (var.)

Two chickens were equipped with a backpack, in which the sensor could be fit. To be
able to distinguish one from the other, the color of their backpacks differed, whereby one
backpack had a green color mark and the other backpack a blue color mark. The first two
days of the experiment were used to get the chickens being used to wearing backpacks.
After that, no effects of the backpacks on behavior were expected [18]. During the following
three days of data collection, the ‘green chicken’ wore the sensor in the first two days and
the ‘blue chicken’ wore the sensor during the third day. When a chicken was not wearing a
sensor, a foam dummy sensor was placed in the backpack to avoid that the chicken would
behave differently in case the sensor was placed in the backpack.

As the sensor was not able to measure the time of the day, a timer was started at the
same moment as the sensor was turned on. By displaying this timer in the video recordings,
the time of the video and the sensor could be synchronized. The synchronization of the
sensor and the video was required because the video was used for the annotation of the
behaviors.

Table 2 shows the classification of the behavioural activities of laying hens based
on their intensity [16]: low-, moderate- and high-intensity physical activities. Class 1
represents static laying-hen behaviors, class 2 represents semi-dynamic behaviors and class
3 represents highly dynamic laying-hen behaviors.

Table 2. Classification of physical activity of laying hens based on their intensity (adopted and
modified from Table 2 in ref [14]).

Class 1 Class 2 Class 3

Low-intensity Moderate-intensity High-intensity

• Sleep like resting
• Neck shortening resting

• Sleeping
• Quiet sitting/standing

• Small postural head/shoulder/neck movements
• Perching
• Egg laying

• Side-laying phase of dust bathing

• Preening
• Foraging & pecking
• Drinking & eating

• Small wing adjustments
• Scratching & stretching

• Head shaking
• Feather fluffing

• Searching behavior
• Scratching behavior of dust bathing

• Walking
• Running
• Jumping

• Wing flapping
• Controlled aerial

ascent/descent
• Full-body shaking

• Shaking phase of dust bathing

The classes are highly imbalanced in terms of the amount of collected data per class, as
class 3 has substantially fewer data points than classes 1 and 2. By assigning higher penalties
to minority classes, the ML models can equalize the weights of the classes in case of the
existence of an imbalance between available data points. The penalty of misclassifying a
sample of class i is calculated by:

penaltyi = nTotal/nClassi , (1)

where nTotal is the total number of samples in the dataset and nClassi is the number of
samples in the dataset that is annotated as class i [17].
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The original dataset [19] consisted of the standardized dataset for the green chicken.
Dataset A is a precise version of the original dataset that was redone by a trained person
for class 3. Dataset B was used to analyse the classification performance of models obtained
from the behavior of the blue chicken. An overview of the different datasets and their class
distributions is provided in Table 3.

Table 3. Dataset overview with the available number of data points per class and additional in-
formation. Two chickens were observed, one wearing a green backpack and one wearing a blue
backpack.

Original Dataset Dataset A Dataset B

Number of datapoints class 1 3023 3017 747
Number of datapoints class 2 3606 3588 2638
Number of datapoints class 3 37 61 47
Total number of data points 6666 6666 3432

Chicken (color) Green Green Blue
Day of recording Wednesday Wednesday Friday

Total length of the recording 2 h 20 min 2 h 20 min 29 min

As seen in Figure 1, classes were highly imbalanced based on the amount of annotated
data per class. Hence, penalty matrices were applied to the datasets to compensate for the
effect of the imbalanced distribution of the data between these three datasets (Figure 1).

(A) (B) 

Figure 1. Penalty matrices were used for datasets (A) (left) and (B) (right) based on Equation (1). The
rows represent the true classes, while the columns represent the predicted classes.

Various steps had to be completed before using the experimental data for the iden-
tification of the chicken behaviors. An overview of the main steps is shown in Figure 2.
Important pre-processing steps were video annotation and linking the video data to the
IMU sensor data. Raw data from the sensors were pre-processed, for which the Xsens file
type changes so that it can be read by data software such as MATLAB. Time windowing
was required to generalize data points and extract more information from the acceleration
data. Video material was visually annotated once by trained personnel every 0.5 s. Based
on the majority of types of behavior in a certain class (see Table 2), an intensity label 1, 2, or
3 scores per 0.5 s time interval. After pre-processing the IMU and annotated video data,
time windows containing data of several seconds were created to combine information of
multiple datapoints within that specific time window [16,17]. Two different time windows
were used, namely a one-second time window and a 4 s time window. The sampling
frequency of the IMU was set at 100 Hz, resulting in 100 and 400 IMU data points for the
1 and 4 s time window, respectively. Time windows were shifted 0.5 s which led to a 50%
and 87.5% overlap between consecutive time windows of 1 and 4 s, respectively.
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Feature 
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Figure 2. Overview of consecutive steps of the behavior classification process (adopted and modified
from Figure 2 in ref [20]).

From the specific data in the windows, it was possible to calculate important charac-
teristics, also called features [21–24]. These features could then be used for the classification
of the behavior. A total of 31 features were obtained from the raw accelerometer data. The
following features were extracted in X-, Y-, and Z-direction: skewness, kurtosis, mean,
standard deviation, variance, minimum, maximum, entropy, energy, and covariance. In
addition to these directional features, the average signal magnitude also served as a fea-
ture. Feature extraction was performed to reduce dimensionality so that the data could be
classified. However, before using the feature data, the data were standardized.

Model creation and a statistical analysis were performed using MATLAB R2020b,
version 1.0.0.1. (MathWorks, Inc., Natick, MA, USA) and Microsoft Office Excel 2016.
The Random Forest classification model was created in MATLAB R2020b software. The
Classification Learner application supported by MATLAB R2020b was used to create a
basic Random Forest classification model. The Machine Learning ToolboxTM was used
to analyze and model the data using different Machine Learning methods. It provided
principal component analysis (PCA), regularization, dimensionality reduction, and feature
selection methods that allowed identifying of features with the best predictive power. A
two-tailed paired samples t-test was used to statistically show a significant difference
between results. This was implemented to show whether, for example, a certain difference
in an accuracy value would be significantly different or not.

Having a large number of features in a dataset is computationally expensive. In
order to reduce the computational load, dimension-reduction techniques with a principal
component analysis were applied. Principal component analysis (PCA) is a statistical
method that reduces the dimensionality of the dataset by trying to find a low-dimensional
representation that captures as much information as possible [25]. This technique assumes
that a high variation in data is important for the model. It reduces the number of features,
which is called the principal component. This research used PCA to explain at least 95%
of the variance of the available data and only included features that contributed to this
95%. The first principal component is the component that explains the largest amount of
variance in the data, followed by the principal component that explains the second-largest
amount of variance and so on, until the desired 95% of the variance in the dataset was
explained.

These data were then exposed to feature extraction, which means reducing the dimen-
sionality, normalizing, and standardizing the dataset. The dataset was then split into a
training data set and a test data set, where the training data was a subset used to train a
model and the test set was used to test the trained model. Finally, the test data were used
to compute the generalization performance of the model, in other words, the ability of the
model to generalize the outcome.

2.3. Model Performance Validation

In order to assess the performance of the model, cross-validation and a principal com-
ponent analysis were introduced. When training the model, overfitting and underfitting
were identified and prevented. Cross-validation is a technique that splits the data in a
certain way to find the best algorithm for the model. It is used to evaluate the performance
of a machine learning model by predicting new datasets that the model has not previously
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been trained with [26]. This was performed by partitioning the available dataset, using a
subset of the whole dataset to train the algorithm and the remaining data of the dataset
to test the model so as to evaluate its performance. Each round involved randomly parti-
tioning the original dataset into a training and a test set. This process was then repeated
several times, as can be seen in Figure 3.

Fold 1 Testing set Training set

Fold 2 Training set Testing set

Fold 3 Testing set Training set

Fold 4 Training set Testing set

Training set

Training set

0% 25% 50% 75% 100%

Figure 3. Four-fold Cross-Validation. The original dataset is partitioned into 4 equally sized subsets,
which are repeatedly used as either test or training sets.

A confusion matrix was used as a validation tool. The accuracy and F1-scores were
calculated to assess model performance [27,28]. The precision and recall were calculated
according to:

Precision = TP/(TP + FP), (2)

Recall = TP/(TP + FN), (3)

where TP is the number of true positives, so where the model correctly predicts the positive
class. FP is the number of false positives, where the model incorrectly predicts a positive
class. FN is a false negative, where the model incorrectly predicts the negative class.

Within this research, a multiclass setting instead of a binary classification setting was
used. The resulting accuracy and the F1-scores per class were therefore calculated according
to:

Accuracy = TP/(TP + TN + FP + FN), (4)

F1-score per class = (2 × Precision × Recall)/(Precision + Recall), (5)

where TP, FP, and FN are the predictions as described above. TN is the outcome where the
model correctly predicts the negative class. The overall F1-score was then calculated by
taking the mean of the individual F1-scores of each class. Figure 4 illustrates a multiclass
confusion matrix for a dataset.

 

Figure 4. Confusion matrix of true (T), positive (P), false (F), and negative (N) labels for a dataset
within a multiclass problem.

3. Results

3.1. Correlation

The variables that are highly correlated with at least one other variable are the standard
deviation, the variance, the minimum and maximum, and the energy for each direction (X-,
Y-, and Z-direction, Pearson Correlation Coefficient > 0.7 or <−0.7).
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For the 4 s time window, there was no statistical difference found between the accuracy
values when all variables were included and when some highly correlating variables were
removed (p = 0.987). However, for the 1 s time window, removing some highly correlating
variables decreased the mean accuracy of all the models by 0.5% (p = 0.0008).

3.2. Principal Component Analysis

The Principal Component Analysis (PCA) was involved in the next analysis to check
its effects on the performance of the different machine learning techniques. With each
comparison, the classification models were trained and tested on the same datasets with
the same time window, being either 1 s (short) or 4 s (long).

The effect of the randomization on cross-validation (due to randomly assigned subsets)
was investigated before the PCA results were analyzed. This was performed by running the
models multiple times with the same settings applied. When looking at the 1 s time window
with dataset A, there was no significant difference in the accuracy values for both PCA and
no PCA (p = 0.318 and p = 0.277, respectively). The 4 s time window also showed that the
randomization due to applying cross-validation did not introduce significant differences
with p-values of 0.551 and 0.341 for PCA and no PCA, respectively.

3.3. Time Windows

The F1-score of class 3 was not significantly different. The results are displayed in
Table 4. When looking at the 4 s time window and comparing PCA vs. no PCA, not
applying PCA on the original dataset resulted in a 1.5% higher accuracy value (p = 0.035).
The overall F1-score was 2% higher (p = 0.0008) when no PCA was applied and the F1-scores
of classes 2 and 3 were 1% and 4% higher in the case of no PCA (p = 0.0108 and p = 0.0085,
respectively). The F1-score of class 1 showed no significant difference between PCA and no
PCA (p = 0.175). Likewise, dataset A showed a 1.3% higher accuracy value when PCA was
not applied (p = 0.0004). The F1-scores of classes 1 and 2 were both 1% higher resulting in a
3% higher overall F1-score of 0.58 (p = 0.0185). The F1-score of classes 1 and 2 were both
0.89 (p = 0.0113 and p = 0.0006).

Table 4. Overview of the results for the 4 s time window for the original dataset and dataset A. Here,
a comparison was made between applying Principal Component Analysis (PCA) or not applying
PCA (No PCA). The p-value is provided to show whether the two values are significantly different
(p-value < α, p-value < 0.05) or not. Significance was tested with a paired samples t-test with a
two-tailed distribution.

Parameter
Original Dataset Dataset A

PCA No PCA p-Value PCA No PCA p-Value

Accuracy 87.9 89.4 0.0358 87.5 88.8 4.32 × 10−4

F1-score class 1 0.88 0.89 0.175 0.88 0.89 0.0113
F1-score class 2 0.88 0.89 0.0108 0.88 0.89 5.54 × 10−4

F1-score class 3 0.42 0.46 8.52 × 10−3 0.55 0.58 0.214
Overall F1-score 0.73 0.75 7.66 × 10−4 0.77 0.79 0.0185

The 1 s time window showed significant differences in all measured parameter values
for both the original dataset and dataset A except for the F1-score of class 3 and the training
time (Table 5). The original dataset had 2.7% higher accuracy values when no PCA was
applied compared to the original dataset with PCA applied (p = 8.5 × 10−8). Moreover, the
F1-score for class 1 was 2% higher with no PCA applied (p = 1.43 × 10−9). The F1-score for
class 2 was also 3% higher in the case of no PCA (p = 2.32 × 10−6). This resulted in a 3%
higher overall F1-score of 0.81 when no PCA was applied (p = 0.0017). Dataset A showed
that not applying PCA resulted in a 2.7% higher accuracy of 83.6% versus an accuracy of
80.9% with PCA enabled (p = 1.49 × 10−8). There were also significant differences in the
F1-scores of classes 1 and 2 and the overall F1-score. The F1-scores for classes 1 and 2 were
2% and 3% higher with no PCA, resulting in a 3% higher overall F1-score (p = 9.86 × 10−9,
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p = 2.20 × 10−6, and p = 0.0003, respectively). The F1-score was not significantly different
as the p-value was equal to 0.130.

Table 5. Overview of the results for the 1 s time window for the original dataset and dataset A. Here,
a comparison was made between applying Principal Component Analysis (PCA) or not applying
Principal Component Analysis (No PCA). The p-value is provided to indicate whether the two values
are significantly different (p-value < α, p-value < 0.05) or not. Significance was tested with a paired
samples t-test with a two-tailed distribution.

Parameter
Original Dataset Dataset A

PCA No PCA p-Value PCA No PCA p-Value

Accuracy 82.8 85.5 8.52 × 10−8 80.9 83.6 1.49 × 10−8

F1-score class 1 0.83 0.85 1.40 × 10−9 0.83 0.85 9.90 × 10−7

F1-score class 2 0.83 0.86 2.30 × 10−6 0.81 0.84 2.20 × 10−6

F1-score class 3 0.67 0.72 0.0780 0.34 0.37 0.130
Overall F1-score 0.78 0.81 1.67 × 10−3 0.66 0.69 3.10 × 10−4

For the original dataset with no PCA applied, the overall accuracy is larger for the 4 s
time window with an accuracy of 89.4%, compared to an accuracy of 85.5% for the 1 s time
window (p = 0.0028). The F1-score of class 1 was 4% higher for the 4 s time window and
the F1-score of class 2 was 3% higher (p = 5.58 × 10−5 and p = 1.3 × 10−4). The 4 s time
window had a lower F1-score for class 3 with the F1-score being 0.46 versus 0.72 for the 1 s
time window (p = 1.04 × 10−7). Subsequently, the overall F1-score was significantly higher
for the 1 s time window with an overall F1-score of 0.80 versus an overall F1-score of 0.75
for the 4 s time window (p = 8.63 × 10−5).

For dataset A with no PCA applied, there were differences in all of the measured
outcomes, except for the training time (Table 6). The models had an average accuracy of
88.8% for the 4 s time window and 83.6% for the 1 s time window (p = 5.48 × 10−5). The
F1-scores for the 4 s time window were 0.89, 0.89, and 0.58, respectively, for classes 1, 2, and
3, resulting in an overall F1-score of 0.79. The 1 s time window resulted in F1-scores of 0.85,
0.82, and 0.37 for, respectively, for classes 1, 2, and 3. This resulted in an overall F1-score of
0.68. These values were statistically different with the p-values being 0.013, 2.67 × 10−6,
4.07 × 10−7, and 9.25 × 10−8, respectively, for the F1-score of class 1, 2, and 3, and the
overall F1-score. Since the type of highly dynamic behavior is very short and a sharp
peak in the acceleration data is often observed, the time window used is important. When
time windows are longer, they contain more data of that specific event. This increases the
amount of information of that event, which should increase the classification performance
of the model. The results are displayed in Table 6.

Table 6. Overview of the results for the long time window (4 s, called Long) and the short time
window (1 s, called Short) for datasets original and A. No PCA was applied. The p-value is provided
to indicate whether the two values are significantly different (p-value < α, p-value < 0.05) or not.
Significance was tested with a paired samples t-test with a two-tailed distribution.

Parameter
Original Dataset Dataset A

Long Short p-Value Long Short p-Value

Accuracy 89.4 85.5 2.82 × 10−4 88.8 83.6 5.48 × 10−5

F1-score class 1 0.89 0.85 5.58 × 10−5 0.89 0.85 1.31 × 10−2

F1-score class 2 0.89 0.86 1.31 × 10−4 0.89 0.84 2.67 × 10−6

F1-score class 3 0.46 0.72 1.04 × 10−7 0.58 0.37 4.07 × 10−7

Overall F1-score 0.75 0.81 8.63 × 10−5 0.79 0.69 9.25 × 10−8

The more precisely annotated labels for class 3 resulted in different performances for
the different time windows with dataset A. The machine learning methods showed an
increase in the F1-score of class 3 for the 4 s time window when extra data for this class was
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provided. However, on the 1 s time window, the F1-score showed a different result, with a
lower F1-score for class 3 when extra data for this class was provided. The 4 s time window
with no PCA applied showed an increase in the F1-score of class 3 from 0.46 in the original
dataset to 0.58 in dataset A (p = 3.00 × 10−7). This led to an increase in the overall F1-score
from 0.75 to 0.79 for, respectively, the original dataset and dataset A (p = 2.00 × 10−6). The
other measured parameters such as accuracy and the F1-scores for classes 1 and 2 did not
show significant differences. The 1 s time window showed a decrease of the F1-score of
class 3 with 0.72 for the original dataset and 0.37 for dataset A (p = 1.68 × 10−9). This
reduced the overall F1-score from 0.81 to 0.69 (p = 1.89 × 10−9).

3.4. Machine Learning Models

A comparison was made between an existing Random Forest model and the other
available models to find the best model for this study. This means that the original dataset
with a 1 s time window was selected without applying PCA. When comparing these
results, the level of significance is important in order to indicate whether the results are
significantly different. Therefore, two situations were investigated: one situation with the
default significance level of 5% (p < 0.05) and one situation with a significance level of 10%
(p < 0.1).

When looking at the default significance level, we found that there were no models
significantly better than the Random Forest model. When altering the significance level
to a level that allows less than 1 in 10 chance of being wrong (p-value of 0.1), two models
showed significantly higher values. These models were the Bagged Trees and subspace
KNN within the ensemble Machine Learning technique. Their p-values were, respectively,
0.054 and 0.097 and provided a significantly better fit on the data than the initial Random
Forest model. In Random Forest, only a subset of features is selected at random, while with
Bagged Trees all features are considered when splitting a node. In this research, Bagged
Trees performed best. Therefore, only the results of the Bagged Trees model will be further
considered.

The Bagged Trees model had an accuracy value of 90.0% and its F1-scores were 0.89,
0.91, and 0.87 for, respectively, classes 1, 2, and 3. This resulted in an overall F1-score of
0.89. Compared to the Random Forest model the accuracy was increased by 1% and the
increase in F1-scores showed a better fit on the different classes. The F1-scores increased by
2%, 1%, and 6% for classes 1, 2, and 3, resulting in an overall F1-score increase of 3%. The
confusion matrices of the Random Forest model and the Bagged Trees model are provided
in Figure 5.

Figure 5. Confusion matrices of the Random Forest model (A) and the Bagged Trees model (B). (Class
1 = static behavior, class 2 = semi-dynamic behavior, class 3 = high-dynamic behavior).

3.5. Model Validation Based on the Second Chicken (Dataset B)

To verify the classification performance of the Bagged Trees model, this model was
exposed to accelerometer data and labelled data of a different chicken (blue chicken, dataset
B). The confusion matrices of both models with dataset B as input data are given in Figure 6.
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Figure 6. Confusion matrix of the Random Forest model (A) and the Bagged Trees model (B) with
dataset B as input data and no PCA applied. (Class 1 = static behavior, class 2 = semi-dynamic
behavior, class 3 = high-dynamic behavior).

The same data-handling method was used to check the classification performance
(short time window and no PCA applied). The Bagged Trees model was able to predict
the data with an accuracy of 97.1%. This resulted in F1-scores of 0.95, 0.98, and 0.82 of
classes 1, 2, and 3. The overall F1-score was equal to 0.92. Comparing these results with the
results of the Random Forest model showed that the F1-score of class 1 decreased by 1%
when using the Bagged Trees model instead of the Random Forest model. The F1-score
of class 2 remained equal. Nonetheless, the Bagged Trees model was able to increase the
F1-score of class 3 by 13%, increasing from 0.69 for the Random Forest model to 0.82 by
using the Bagged Trees model. Subsequently, the overall F1-score increased by 4% (0.88 for
the Random Forest model and 0.92 for the Bagged Trees model).

4. Discussion

4.1. Data Collection

Data were collected from two laying hens, from the same genotype and housed in the
same environment over a limited amount of time. This could have influenced the results as
other genotypes may have slightly different behavioural patterns and some environments
allow more behavioural expressions than others. For this study, however, the limitations
on the results are not thought to have a considerable effect. The housing system of the hens
allowed them to express a normal variety of behaviors. Different genotypes, more hens
and longer data recording could influence the distribution of the individual behaviors, but
the classification of behaviors as used in this study will fade out small differences between
breeds or caused by differences in, e.g., climate [29]. As long as these differences do not
cause a completely different number of data points per behavioural class, no substantial
effect is expected on the performance of the models. Therefore, the results are expected
to be applicable for other housing systems and other genotypes. For application in large
flocks, additional research is required to identify the minimum or the optimum number of
hens that need to be equipped with sensors for reliable behavioural assessment in various
parts of the henhouse.

Monitoring more than two chickens for more days might lead to more data to predict
the underlying behavior of laying hens. However, because of animal-welfare concerns,
it was not possible to run experiments for more than 5 days. Additionally, more data
are acquired across more days, but these data will not necessarily provide information
regarding the chicken behavior, therefore, the accuracy of the model will not significantly
improve. In other words, it is necessary to acquire more data if one aims to identify specific
behaviours of chickens while the behaviour of chickens was classified into three classes
in this research and the number of chickens and the measurement days were sufficient
enough for this aim. Considering the fact that the inertia sensors are relatively expensive
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equipment, using only two chickens to identify the chicken behaviors is one of the strengths
of this research study.

4.2. Principal Component Analysis (PCA)

Removing highly correlating variables from the training procedure did not result
in a significant improvement to model performance. This was tested to see whether the
behavior of one variable could be predicted by the behavior of the other correlating variable.
Initially, the non-correlated variables seemed to be independent and could help to recognize
the activity level within the datasets. The only reason to remove highly correlated features
would be for storage and computational load, but as these were not a problem, all variables
were kept within the models. Moreover, removing the highly correlated variables resulted
in decreased model accuracies. The use of Principal Component Analysis was investigated
since it automatically selects a set of orthogonal Principal Components (non-correlating
variables) to train the models. Application of Principal Component Analysis (PCA) did not
introduce significant improvements to the model outputs. In most cases, PCA reduced the
capacity of the models to correctly classify laying-hen behavior [30].

4.3. Cross-Validation

Besides the PCA, cross-validation can also be used as a way to prevent overfitting [31].
Since all the datasets were first exposed to cross-validation, the datasets were already
evaluated based on their capacity to generalize. As the models were cross-validated using
4-fold cross-validation, the accuracy values of some scenarios were different when the
models ran multiple times. As this did not show a significant difference, only a single
run of all the models was considered to be part of the results. To decrease the effect of
randomization during cross-validation even more, future research could run the models
multiple times instead of only a single run and combine the results and take, e.g., the mean
value for the accuracy. This should decrease the effect of the randomization part during
cross-validation and will, therefore, increase the validity of the results of the models.

This research has shown that machine learning is able to detect laying hen behavior
under different circumstances. The accuracy of the models was in all different scenarios
above 70%.

As mentioned before, MATLAB used cross-validation to prevent overfitting. The
selected method for this procedure was k-fold cross-validation and this includes random-
ization, as k-fold cross-validation partitions the data into k randomly assigned subsets of
equal size [32]. This randomization caused the models to have slightly different results in
some instances. In order to check the effect of the randomization on the final output of the
models, the models have been run several times with the same settings applied. The results
of this effect did not have a significant impact on the accuracy values of the models, so the
accuracy values of one-run were considered in each scenario.

Additionally, this research focused more on the activity level of laying hens rather
than the specific behaviors of laying hens. This way of classifying laying hen behavior
is too general to obtain an accurate prediction of the precise laying hen behavior. Such a
general prediction of laying hen behavior may be less useful for behavioural studies [18],
but it may provide a useful application in commercial poultry, as commercial farmers
are often more interested in flock behavior and general activity levels, rather than single
specific behaviors. As a consequence, the models in this research can be beneficial in the
development of precision livestock farming in the poultry sector [33].

4.4. Highly Dynamic Behavior

The obtained results for the high-dynamic class, class 3, show that the machine learning
models were able to accurately capture this type of behavior. Due to the fact that the type of
highly dynamic behavior is very short and often presents a sharp peak in the acceleration
data, the time window used is important [34]. When time windows are longer, they contain
more information, which increases the classification performance of the model. This was
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also the case when the results of the 4-s time window were compared with the 1-s time
window. The 4-s time window had significantly higher accuracy values than the 1-s time
window. Additionally, the F1-scores of classes 1 and 2 are in most instances significantly
higher for the 4-s time window. This is due to a larger number of data points for these two
classes. However, the F1-score of class 3 was significantly better when using the shorter
time window. Model prediction was harder as there were fewer data points of class 3
compared to classes 1 and 2. As fewer data provide the model with fewer data to make
correct predictions. Due to the low amount of data points of class 3, a 4 s time window
will generally have fewer assigned data points of this class compared to a 1 s time window.
This explains the difficulty of correctly predicting class 3 with a 4 s time window [14,34].

When highly dynamic behavior is of greater interest than static behavior, a shorter
time window will lead to higher F1-scores and is, therefore, more favourable than a longer
time window. However, using a shorter time window is at the expense of having lower
classification performance on static- and semi-dynamic behavior.

As shown by Calvet et al. [9], there is a relationship between the behavior of chickens
and dust concentration inside the indoor air, as also observed by Winkel [4]. The obtained
results of this research indicated that the highly dynamic behaviors such as scratching/dust
bathing can be determined with acceptable accuracy even with a few data sets. Distin-
guishing the chicken behavior can help to identify the distribution of different dynamic
behavior in time or its spread out over the day. Consequently, this information can be
used in air-quality control and reduction of indoor dust concentration and fine dust emis-
sion into the environment (e.g., temporarily lower/higher ventilation rates, or applying
fine-dust-reduction techniques more intensively) [11].

4.5. Performance of the ML Models

The largest improvement of using the Bagged Trees model over a Random Forest
model was found in the classification performance of highly dynamic behaviors. Both
the Bagged Trees model and the Random Forest model draw random bootstrap samples
from the training set. However, besides the bootstrap samples, the Random Forest model
draws random subsets of features for training the individual trees, while in bagging the
full set of features is provided to each tree. This random feature selection in the Random
Forest causes the trees to become more independent of each other compared to regular
bagging. This research has shown that this random feature selection causes a worse
classification performance for highly dynamic behaviors, while not significantly impacting
the performance of the model on static- and semi-dynamic behaviors. Therefore, the regular
bagged tree model is preferred over the Random Forest model [35].

4.6. Sensor Technology

There are multiple inertial sensors available. The main distinction is made between
high-end inertial sensors and low-cost inertia sensors or custom-made inertial sensors. Two
types of high-end inertial sensors are the Xsens IMU, which was used in this study, and the
Physilog 5. These sensors distinguish themselves from the low-cost sensors due to their
ability to measure the 3D acceleration, the 3D rate of turn, and the 3D magnetic field all in
one device. Additionally, data are easily transferrable with USB, and they are water and
dust resistant with IP67/IP64 certification.

Some examples of low-cost inertial sensors are the Sparkfun, the WitMotion, and
Zstar3. The limitations of low-cost sensors are often that they suffer from poor signal to
noise ratios and limited dynamic ranges. Nandy et al. [36] provided a way to produce a
custom-made inertial sensor.

5. Conclusions

The novelty of this study was that it proved the feasibility of using machine learning
models and inertia sensors to identify and classify laying-hen activity at various levels. We
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showed a proof of principle of tools for analyzing laying-hen behaviors by using wearable
inertia sensor technology and machine learning models (ML).

The machine learning models of this study can predict the three activity levels of laying
hens with overall accuracy values of over 90%. Removing highly correlating variables
did not introduce significant model improvement with the original dataset. Additionally,
applying PCA did not result in better model classification performance. Static behaviour
and semi-dynamic behaviour can best be analysed with a long time window, whereas
highly dynamic behaviour favours a short time window. Annotating the data of class 3
more precisely only increased model performance for the long time window. The best
performing machine learning model was the bagged tree model with an accuracy of 90%
for the original dataset.

The methodology developed in this paper can be used in the development of precision
livestock farming systems for the commercial poultry sector. The outcomes of this research
show that machine learning is able to accurately analyse different activity levels of laying-
hen behaviour. This provides a reason for further research to analyse laying-hen behaviour
in more detail in the future.
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Simple Summary: We used two commercial breeds, differing in growth rate: Fast-growing breed and
slow-growing breed. We stocked these birds in two different densities. The slow-growing birds was
stocked at a high density and the fast-growing birds at a high density and low density. These birds
were reared under two different environmental conditions: A control room with a low concentration
of ammonia and a second room with a higher concentration. We analyzed management practices
such as the effect of ventilation, animal density and growth rate as management possibilities to reduce
the negative effect of ammonia on production parameters.

Abstract: Ammonia is an important pollutant emitted by broiler litter that can accumulate inside
farms, impairing animal health and welfare productivity. An experiment was designed to evaluate of
precision husbandry practices such as the effect of ventilation, animal density and growth rate as
management options to reduce the adverse effects of ammonia exposure on productive parameters in
broiler houses. Two identical experimental rooms were used in this study. They were programmed
to differ in ammonia concentration from day 32 of the growing period (10 and 20 ppm in Room 1
and Room 2, respectively). Three treatments were tested in each room: slow growth in high stocking
density (SHD), fast growth in low density (FLD) and fast growth in high density (FHD). Animal
weight, feed intake and feed conversion ratio were determined weekly. In addition, the immune
status of animals was assessed by weighing the organs related to immune response as stress indicators.
Increasing ventilation was effective to control ammonia concentrations. Exposure to ammonia caused
no significant effect on productive parameters. However, lowering stocking density improved
response to higher ammonia concentrations by lowering the feed conversion ratio. No other relevant
effects of differential exposure to ammonia were found in fast-growing animals, either at high or
low stocking density. The use of slow-growing breeds had no effect on production parameters.
Despite having a slower growth rate, their feed conversion ratio was not different from that of
fast-growing breeds. The productive performance of slow-growing animals was not affected by the
differential exposure to ammonia, but the reduced spleen size would suggest an impairment of the
immune system.

Keywords: animal welfare; animal health; immune system; productive parameters; management

1. Introduction

Maintaining a proper rearing environment is essential in broiler production. Ammonia
concentration in the air is one of the main factors impairing broiler health, welfare and
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productivity. Exposure of animals to high ammonia levels causes irritation of mucous
membranes and the respiratory tract, conjunctivitis and dermatitis [1–4]. Animals exposed
to ammonia reduce feed consumption and consequently productivity is impaired through
lower growth rate, higher mortality and worse feed conversion ratios [5–8]. It has also
been demonstrated that high ammonia concentrations indirectly influence gene expression,
affecting the immune response [9] and productivity in terms of slaughter performance and
breast yield [10]. For those reasons, welfare regulations establish a concentration threshold
for ammonia of 20 ppm according to European Directive 2007/43/CE.

However, the implications of levels below 20 ppm throughout the broiler production
cycle are not well known. Most studies do not report relevant effects at concentrations
lower than 20 ppm. However, there is evidence that animals’ response starts under lower
concentrations. It has been described that concentrations of 15 ppm did not affect growth
performance, but induced an anti-inflammatory response in the ileum and altered the
tracheal microbiota, causing respiratory tract injury [11,12]. Therefore, understanding the
effects of concentrations lower than 20 ppm is necessary.

Precision husbandry practices are useful tools to reduce the negative impacts of am-
monia exposure. More resilient animals, reducing animal density or increasing ventilation
rates are effective practices on farms. Growth rate and animal density are related to animal
resilience. Slow-growing broilers are healthier and express more behavioral indicators of
positive welfare [13]. Additionally, it has been reported that slow growing animals have a
greater magnitude of innate immune response to infections [14]. Therefore, broilers with a
lower growth rate may be expected to be more robust against ammonia exposure and less
affected in terms of welfare, health and productivity. However, to the authors’ knowledge,
there is no information on how ammonia exposure affects slow-growing broilers differently
from conventional broiler breeds. The effect of stocking density on broiler performance has
been described in the literature [15], but the interacting effect of stocking density with the
exposure to ammonia is not clear.

Engineering solutions are also available to control ammonia concentrations in broiler
farms. The concentration of ammonia in the indoor air is therefore influenced by the
diluting effect of ventilation. Ammonia comes from the breakdown of the uric acid excreted
by the broilers [16]. The emission rate depends on litter moisture, and litter N content
tends to increase as excreta is accumulated in bedding material [17]. Once emitted, the
ammonia accumulates inside broiler houses until it is emitted to the atmosphere through
the ventilation system. Adjusting ventilation is a strategic mechanism for maintaining
an appropriate indoor air quality. It is possible to adjust ventilation to achieve proper
indoor air quality, but this normally involves higher energy consumption [18]. Therefore,
farmers need to have clear evidence of the welfare and productivity benefits of maintaining
ammonia concentrations below certain thresholds.

The hypothesis motivating this study is that there may be additional benefits in
reducing stressing factors (ammonia exposure, animal density or growth rate) below
the common practice on farm. However, there is scarce information quantifying these
effects. Therefore, the objective of this study was to evaluate the influence of two ammonia
concentrations (10 and 20 ppm), two broiler breeds (fast vs. medium growth rate) and
stocking density (13 vs. 6.5 broiler/m2) on the productive performance and physiological
parameters during one rearing cycle.

2. Materials and Methods

2.1. House Description

The experiment was conducted in accordance with the animal research regulations of
the EU, with protocol number 2018/VSC/PEA/0067. The test was carried out at the Animal
Technology and Research Center (CITA-IVIA), located in Segorbe, (Castellón, Spain). Two
identical rooms (Room 1 and Room 2) were used in this trial. Each room had a dimension
of 13.2 m × 5.95 m and had independent mechanical ventilation through ceiling fans
(Figure 1).
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Figure 1. Top view of broiler house. Location of fans (Vent), temperature and relative humidity
loggers (HOBO), and ammonia sensors is indicated.

An automated climate control system (DNP Climate Controller, Exafan, Spain) regu-
lated ventilation rates according to commercial breed recommendations of temperature.
The environmental temperature was gradually decreased from 32 ◦C (day 1) to 19 ◦C (day
42). Temperature was controlled using the climate controller sensor and was recorded
together with relative humidity every 10 min using a data logger (HOBO U12, Onsetcomp,
Bourne, MA, USA). Additionally, each room was equipped with one electrochemical am-
monia sensor (DOL 53, Dräger, Germany). The location of these sensors is presented in
Figure 1.

Ammonia was established as a criterion to operate ventilation. In Room 1, ventilation
was programmed to maintain a maximum of 10 ppm ammonia, while in Room 2, it
was programmed to reach a maximum of 20 ppm. These concentration conditions were
programmed to be maintained from the fourth week, that is, in the second half of the
production cycle, which is when the ammonia levels are usually higher inside the farms.
From the start of the growing period until week 4 of age, both rooms were ventilated
following an identical program based on temperature control and animal age. A propane
heater was used to maintain adequate room temperatures. Wood shavings (5 cm) were
used as the litter material.

The experiment was conducted in winter, when gas concentrations were expected to
be higher due to lower ventilation rates. In order to promote NH3 emissions and achieve
the desired concentrations of ammonia, a urea solution was applied to the litter. Urea was
applied manually using a backpack sprayer on days 32, 39, 51 and 56 of the growing period
at a dose of 0.21 L m−2 of urea solution in distilled water.

2.2. Animals and Experimental Design

Two commercial breeds were used, differing in growth rate. The fast-growing breed
was Ross®, with a slaughter age of 42 days. The slow-growing breed was Hubbard®, with
a slaughter age of 63 days. Three treatments were tested. The first treatment (SHD) was
slow-growing birds stocked at a high density (32 kg/m2 at slaughter age). The second
treatment (FHD) was fast-growing birds at a high density (32 kg/m2 at slaughter age). The
third treatment (FLD) was fast-growing birds at a final stocking density of 16 kg/m2.

127



Animals 2022, 12, 1096

The diet was provided ad libitum. Both commercial breeds received a commercial diet.
The feed for the fast-growing breed stocked in high and low density consisted of the Nanta
A80, and for the slow growing breed, Nanta A32.

In each room, 18 collective pens were installed to allocate 6 repetitions of each treat-
ment. Each pen was provided with 3 nipple drinkers and a manual feeder and housed
17 birds. The dimensions of high-density pens, corresponding to SHD and FHD treatments,
were 1 × 1.3 m2, whereas low-density pens (corresponding to FLD) had the same number of
animals in double the surface area (2 × 1.3 m2). Therefore, in each room, 204 fast-growing
and 102 slow-growing birds were housed inside the pens. As the pens only occupied a
part of each room, 319 broilers were allocated in the space outside the pens in each room.
This was completed to simulate the real ambient conditions inside a broiler house, where
ammonia comes from litter. Therefore, a total of 625 birds were used in each room. All birds
were fed with commercial starter feed from day 1 to day 18 of testing, and from day 18
until the end of the test, each strain was fed with different feeds according to their demands
(Figure 2).

 
Figure 2. Experimentation room with details of the layout of the experimental compartments.

2.3. Animal Performance and Health

All the animals housed in the pens were weighed weekly. Feed consumption was also
measured in each pen on a weekly basis. The average daily weight gain (DWG) per bird
was subsequently calculated for each week of rearing and that accumulated during the test
(42 days FLD and FHD and 63 for SHD). The feed conversion rate (FCR) was also calculated
for each week and at a cumulative level by dividing the amount of feed consumed by each
pen by the growth of all the birds in it.

Thirty animals per treatment were slaughtered on days 21 and 42 to measure the
weight of organs related with the immune system. Slow-growing animals were also
sampled on day 63. Animals were slaughtered with electric stunning. The immune organs
taken from each animal were the spleen, thymus gland, liver and bursa of Fabricius.
Organs were weighed using a precision scale (Ohaus Pioneer, PX, Nanikon, Switzerland).
Afterwards, weight ratios of each organ were made according to the weight of the birds
from which it came to check physiological and anatomical disorders in the immune system
organs. On day 63, Fabricio’s bag could not be obtained due to its small size or nonexistence,
as this organ tends to disappear as animals grow.
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2.4. Data Analysis

Recorded values of ambient temperature, ventilation rate and ammonia concentration
were integrated into daily average values presented for descriptive purposes.

The study data showed a normal distribution for the mean test estimates. The statistical
analysis of each measured variable was conducted per week of age and accumulated
throughout the growing period. A one-way ANOVA analysis was conducted using the
software Satgraphics Centurion XVIII, according to the following model:

Yijk = μ + Ti + εi

where: Yijk = studied variable (week or accumulated value).
μ = general mean.
Ti = treatment (SHD Room 1, SHD Room 2, FHD Room 1, FHD Room 2, FLD Room 1,

FLD Room 2).
εi = residual error.

3. Results and Discussion

3.1. Control of Environmental Parameters

Environment conditions (temperature, relative humidity, ammonia concentration and
ventilation rate) during the experiment are presented in in the Table 1. Since both rooms
had an identical number of animals and management, this difference in concentration was
promoted through increasing ventilation in Room 1 as compared to Room 2.

Table 1. Weekly average values of temperature (◦C), relative humidity (%) ventilation rate
(m3 h−1 animal−1) and ammonia concentration (ppm) in the broiler houses (Room 1 and Room 2).

Temperature (◦C) Relative Humidity (%)
Ventilation Rate

(m3 h−1 animal−1)
NH3 Concentration

(ppm)

Room 1 Room 2 Room 1 Room 1 Room 1 Room 2 Room 1 Room 2

Week 1 33.1 33.0 22.1 22.9 0.8 0.3 0.0 0.0
Week 2 29.8 29.5 29.4 31.7 4.2 3.7 0.0 0.0
Week 3 27.0 26.3 29.1 31.5 5.5 5.8 0.0 0.0
Week 4 24.7 23.8 29.5 30.5 6.5 7.7 0.0 0.0
Week 5 21.9 22.8 46.4 50.7 3.9 3.5 0.3 6.5
Week 6 20.3 22.0 54.1 59.2 3.5 2.5 4.5 19.0
Week 7 19.7 22.2 55.9 61.1 5.0 2.6 9.0 20.4
Week 8 20.4 21.7 48.4 50.8 6.5 3.7 12.5 14.4
Week 9 19.9 21.5 51.1 54.7 6.8 4.4 10.1 16.1

Air temperature (Table 1) followed the recommendations for the broiler strains used
in this study. Both rooms had a similar temperature during the first four weeks. However,
from week 5, the higher ventilation rates in Room 1 caused its average temperature to be
reduced by 1.7 ◦C on average. However, the difference of 1.7 ◦C was obtained in the general
average of all the weeks studied. In the first two weeks, which are the most critical, this
difference did not reach 0.3 ◦C, thus being practically identical in temperature conditions is
not enough to cause differences in the performance of the birds. Relative humidity was
very similar between rooms. During the four initial weeks, ventilation was kept high, and
near-zero ammonia concentration was detected (Table 1). From week 5 until the end of
the experiment, the climate control system was operated to create the desired difference in
ammonia concentration, averaging 8.27 ppm in Room 1 and 17.1 ppm in Room 2.

3.2. Animal Performance

The evolution of animal weight is presented in Table 2. As expected, slow-growing
animals had lower weight than the fast-growing ones of the same age from the early
stages of the growing period. During the first week, some differences were found among
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treatments, which could be related to the random choice of animals at the beginning of the
experiment. Differences were also found in weeks 3 and 4 between slow-growing animals
in both rooms. In those weeks, animals housed in Room 1 had a lower weight than those
in Room 2. No more differences were found between slow-growing animals from day 35
until the end of the experiment. For fast-growing broilers, no differences in weight were
detected between treatments from day 14 for animals kept at either high or low density.

Table 2. Evolution of animal weight (g per bird) during the rearing period (n = 30 animals
per treatment).

Age Treatment SHD Treatment FHD Treatment FLD
S.E. p-Value

(days) Room 1 Room 2 Room 1 Room 2 Room 1 Room 2

7 134.4 a 144.8 ab 164.4 d 151.1 bc 160.4 cd 160.5 cd 3.9 ≤0.05
14 338.8 a 307.4 a 390.3 b 436.1 b 419.5 b 437.7 b 16.6 ≤0.05
21 525.8 a 563.3 b 775.4 c 801.1 c 780.6 c 797.7 c 11.9 ≤0.05
28 853.8 a 960.8 b 1242.7 c 1226.5 c 1239.2 c 1227.9 c 29.8 ≤0.05
35 1294.1 a 1302.2 a 1840.8 b 1779.3 b 1825.9 b 1750.7 b 35.2 ≤0.05
42 1769.0 a 1801.1 a 2527.3 b 2415.0 b 2475.6 b 2446.6 b 53.8 ≤0.05
49 2192.0 a 2276.3 a - - - - 69.1 0.40
56 2676.8 a 2776.0 a - - - - 94.8 0.48
63 3127.7 a 3275.2 a - - - - 103.0 0.35

Different letters within a row indicate statistically significant differences among treatments. SHD = slow growing
and high density; FHD = fast growing and high density; FLD = fast growing and low density. S.E. = standard
error. Room 1 was programmed to reach maximum 10 ppm NH3 and Room 2 to maximum 20 ppm NH3.

Table 3 shows feed consumption per treatment and week. Among slow-growing
animals, differences between rooms were only found from day 35 to day 42, when animals
in Room 2 consumed more feed than in Room 1. No differences were found between rooms
for fast-growing animals kept at a high density. However, feed consumption was higher
in week 5 for low-density animals in Room 2 compared to Room 1. The accumulated
feed consumption at the end of the growing period was higher for slow-growing animals
(6.42 and 6.79 in Room 1 and Room 2, respectively) than for fast-growing animals, both at
a high density (5.35 and 5.33 in Room 1 and Room 2, respectively) and at a low density
(5.03 and 4.71 in Room 1 and Room 2, respectively). In summary, slow-growing animals
consumed less feed per week but had higher feed consumption at the end of their growing
period since their lifetime was three weeks longer (63 days for slow-growing animals and
42 days for fast-growing animals). Comparing fast-growing animals, those animals kept at
a lower density and higher ammonia concentration (Room 2) had lower feed consumption
at the end of the growing period.

Table 4 shows the evolution of feed conversion ratio depending on animal age. For
the same treatment, no differences were found between Room 1 and Room 2. It was
observed that both fast- and slow-growing animals kept at a high density had a similar
feed conversion ratio at the end of their growing period. This means a proportional
reduction in animal growth rate and feed consumption of slow-growing animals compared
to fast-growing animals. However, fast-growing animals kept at a low density had a lower
conversion ratio, particularly in those animals subjected to higher ammonia concentrations
(Room 2). For the feed conversion ratio accumulated at 28 days of age, values of 1.90 were
obtained for SHD, 2.00 for FHD, and 1.96 for FLD stocked in Room 1, and 1.66 for SHD,
2.01 for FHD and 1.82 for FLD stocked in Room 2. At 42 days of age, the following values
were obtained: 1.76 for SHD, 2.16 for FHD and 2.09 for FLD stocked in Room 1, and 1.80
for SHD, 2.25 for FHD and 1.96 for FLD stocked in Room 2.
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Table 3. Evolution of feed consumption (g per animal and week) during the rearing period (n = 30
animals per treatment).

Age Treatment SHD Treatment FHD Treatment FLD
S.E. p-Value

(days) Room 1 Room 2 Room 1 Room 2 Room 1 Room 2

7 0.116 a 0.113 a 0.136 b 0.132 b 0.132 b 0.128 b 0.004 ≤0.05
14 0.256 a 0.255 a 0.368 b 0.373 b 0.350 b 0.370 b 0.008 ≤0.05
21 0.518 a 0.490 a 0.732 b 0.693 b 0.703 b 0.627 b 0.037 ≤0.05
28 0.672 a 0.664 a 1.155 b 1.184 b 1.135 b 1.038 b 0.068 ≤0.05
35 0.677 a 0.682 a 1.452 c 1.445 c 1.430 c 1.114 b 0.048 ≤0.05
42 0.814 a 0.978 b 1.506 d 1.506 d 1.287 c 1.438 cd 0.056 ≤0.05
49 0.976 a 1.032 a - - - - 0.030 0.22
56 1.155 a 1.242 a - - - - 0.050 0.20
63 1.236 a 1.333 a - - - - 0.050 0.19

Different letters within a row indicate statistically significant differences among treatments. SHD = slow growing
and high density; FHD = fast growing and high density; FLD = fast growing and low density. S.E. = standard
error. Room 1 was programmed to reach maximum 10 ppm NH3 and Room 2 to maximum 20 ppm NH3.

Table 4. Evolution of feed conversion ratio per week during the rearing period (n = 30 animals
per treatment).

Age Treatment SHD Treatment FHD Treatment FLD
S.E. p-Value

(days) Room 1 Room 2 Room 1 Room 2 Room 1 Room 2

7 1.21 ab 1.07 a 1.12 ab 1.27 b 1.13 ab 1.10 a 0.05 0.10
14 1.56 b 1.59 b 1.38 a 1.32 a 1.36 a 1.39 a 0.05 ≤0.05
21 2.22 b 1.94 ab 2.11 ab 1.92 ab 2.01 ab 1.77 a 0.12 0.17
28 2.01 ab 1.74 a 2.53 c 2.79 c 2.53 bc 2.39 bc 0.18 ≤0.05
35 1.60 a 2.06 ab 2.44b c 2.63 c 2.45 bc 2.09 ab 0.18 ≤0.05
42 1.72 a 2.06 ab 2.20 b 2.30 b 2.02 ab 2.16 b 0.12 ≤0.05
49 2.46 a 2.28 a - - 0.26 0.63
56 2.39 a 2.51 a - 0.07 0.25
63 2.76 a 2.69 a - 0.11 0.66

Different letters within a row indicate statistically significant differences among treatments. SHD = slow growing
and high density; FHD = fast growing and high density; FLD = fast growing and low density. Room 1 was
programmed to reach maximum 10 ppm NH3 and Room 2 to maximum 20 ppm NH3.

A different exposure of ammonia between Room 1 and Room 2 was achieved using
different ventilation management strategies. Although the experiment was planned in
winter conditions, where lower ventilation rates are needed, ammonia concentration was
negligible until day 32 of the growing period. Litter material remained too dry to generate
significant NH3 emissions, so on day 32, urea had to be applied in both rooms to increase
ammonia production. As the same rate of urea was used in both rooms, it was not expected
to disturb the results of the experiment and was effective in producing a controlled amount
of ammonia in the rooms. Once ammonia was generated, the differential effect of ventilation
originated different ammonia concentrations until the end of the growing period. Therefore,
exposure to differential ammonia occurred during the last 10 days for the fast-growing
animals and the second half of the growing period for the slow-growing animals. These
conditions may be representative of broiler production if new bedding material is used,
since concentrations are low during the first weeks of the rearing period [19].

Ventilation operated by the ammonia sensor was effective to control ammonia concen-
trations. Until day 32, both rooms operated with similar ventilation (less than 2% difference
on average). However, from that day, Room 1 had on average 59% higher ventilation than
Room 2. This is concurrent with the lower ammonia concentration registered, which was
51% lower in Room 1.

Ventilation has been reported as an effective way to reduce indoor ammonia concen-
tration; this strategy involves more energy consumption. Was r eported that a commercial
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farm could keep gas concentrations below regulation thresholds (20 ppm) by increasing
ventilation, but this would involve increasing electric and heat consumption by 10% and
14%, respectively. Using ventilation to keep lower concentration values would entail higher
energy costs as well as instrument maintenance, and these costs would be likely increase
exponentially as the target value reduces. Therefore, efforts to keep concentrations lower
than those reported in the regulation must be clearly supported in terms of productivity,
health and welfare [18].

In this study, we found no significant effect of exposure to ammonia concentration on
broilers kept under conventional conditions (fast-growing animals kept at high stocking
density). Animals under improved environmental conditions tended to grow faster with
similar feed consumption, which resulted in a slightly better conversion rate. These
numerical differences are in accordance with the hypothesis of this study. Depending on
the stress factor, the organs related to immunity would decrease or increase in size. In
the case of stress due to ammonia exposure, the liver, spleen and bursa would be less
developed [20]. However, no differences were found in this study.

Exposure to differential ammonia concentrations for only 10 days could be originating
that differences are minor and could not be detected in this experiment. The effects of
ammonia on animals depend on exposure time [4], and therefore it is necessary to explore
the effect of longer exposure times, which could also affect broilers at early stages of
their life.

An ammonia concentration below 20 ppm does not appear to have a clear effect on
productive parameters, and similar results have been found in other experiments [11,21].
It seems that exposure to low ammonia concentrations may influence some conditions
related to health and welfare [12], but this disturbance is not enough to produce visible
changes in performance. According to our results, it seems that the absence of an effect of
low ammonia concentrations on productive parameters would also apply for slow-growing
strains and animals kept at a lower stocking density.

This study also did not find a significant effect of stocking density on animal growth
in fast-growing animals. However, we found that animals reduced feed consumption and
improved the feed conversion ratio, particularly for animals kept under higher ammonia
concentrations. Improvements of lowering stocking density have been reported in the
literature [22,23], but the interacting effect of ammonia concentration has not been reported.
It seems that reducing stocking density may facilitate animals responding better to adverse
environmental conditions, although the high-density treatment in this study was not
sufficiently high to elicit more relevant differences at the animal level, as those obtained in
previous studies [15,24].

The difference in productive parameters between slow-growing and fast-growing
strains was evident. However, feed conversion rate did not decrease when using the
slow-growing strain used in this experiment, which is relevant in terms of efficiency in the
use of resources. Slow-growing animals were exposed for more time (31 days) to different
ammonia concentrations than fast-growing animals (only 10 days), and therefore more
differences would be expected. However, very similar productive parameters were found
for slow-growing animals kept either at 10 or 20 ppm. The only difference detected was
the relative weight of spleen at the end of the growing period. The lower spleen weight
in animals kept at higher ammonia concentrations would support the hypothesis that
stressor factors reduce immune organs [20], but this would not be translated into different
productive results.

The results of this study indicate that husbandry practices can improve the conditions
of animal growth with respect to the minimum legal requirements. These improved
conditions, however, have a relatively low impact on animal performance and therefore
their cost effectiveness needs to be further assessed. Results suggest that exposure to low
ammonia concentrations (10 vs. 20 ppm) during part of the growing period originates
some physiological changes that are not clearly reflected in productive terms, and we did
not find evidence that these improved conditions could allow animals to respond better
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to stressing conditions. This potential effect on animal resiliency needs to be explored by
future research.

3.3. Weight of the Immune Organs

The effect of stress on the welfare of the animal, its health and therefore its immune
system is varied. The spleen, liver, and bursa of Fabricius are used as anatomical indicators
of stress [25,26]. The average weight of the lymphoid organs (spleen and bursa of Fabricius)
is related to changes in response to stress. The same has been reported for the thymus [27].
In Table 5, we find the evolution of the ratio of the organs that are involved in the immune
system and are indicators of stress. Depending on the stress factor, the organ decreases or
increases its size. In the case of stress due to a high concentration of NH3, the organs are
expected to be underdeveloped compared to a normal growth [20]. Contrarily, the expected
effect of density is that the immune organs are more developed than normal [15].

Table 5. Evolution of the relative weight of spleen, thymus, liver and bursa Fabricius (g per 1000 g
animal weight) during the rearing period.

Organ
Age Treatment SHD Treatment FHD Treatment FLD

p-Value
(days) Room 1 Room 2 Room 1 Room 2 Room 1 Room 2

Spleen
21 1.11 ± 1.17 1.27 ± 1.24 3.82 ± 1.19 0.94 ± 1.17 0.91 ± 1.19 0.94 ± 1.17 0.47
42 1.62 b ± 0.06 1.46 b ± 0.06 1.25 a ± 0.06 1.18 a ± 0.06 1.46 b ± 0.06 1.21 a ± 0.06 ≤0.05
63 1.26 b ± 0.05 1.10 a ± 0.05 - - - - ≤0.05

Thymus
21 2.88 c ± 0.15 2.98 c ± 0.16 1.85 ab ± 0.16 2.04 b ± 0.15 1.75 ab ± 0.16 1.57 a ± 0.15 ≤0.05
42 2.90 b ± 0.16 2.71 b ± 0.16 1.59 a ± 0.16 1.80 a ± 0.16 1.81 a ± 0.16 1.79 a ± 0.16 ≤0.05
63 2.44 ± 0.16 2.22 ± 0.16 - - - - 0.32

Liver
21 29.89 c ± 0.79 29.38 bc ± 0.83 26.69 a ± 0.80 27.71 abc ± 0.79 27.50 ab ± 0.80 28.35 abc ± 0.79 ≤0.05
42 20.55 a ± 0.48 21.69 a ± 0.48 20.83 a ± 0.48 21.56 a ± 0.48 21.76 a ± 0.48 21.25 a ± 0.48 0.38
63 17.68 ± 0.52 18.69 ± 0.52 - - - - 0.18

Bursa of
Fabricius

21 2.85 b ± 0.13 2.33 a ± 0.14 1.98 a ± 0.13 2.09 a ± 0.13 2.12 a ± 0.13 2.33 a ± 0.13 ≤0.05
42 0.54 bc ± 0.05 0.44 abc ± 0.05 0.42 ab ± 0.05 0.45 abc ± 0.05 0.40 a ± 0.05 0.56 c ± 0.05 0.08
63 - - - - - - -

Different letters within a row indicate statistically significant differences among treatments. SHD = slow growing
and high density; FHD = fast growing and high density; FLD = fast growing and low density. Room 1 was
programmed to reach maximum 10 ppm NH3 and Room 2 to maximum 20 ppm NH3.

Table 5 shows the weight of the organs related to the immune system, expressed in
relative terms with respect to total animal weight. For fast-growing animals, information is
available until the slaughter day (42). For slow-growing animals, the bursa of Fabricius
was too small, and it could not be measured at day 63, so no information is provided.

Spleen weight was very variable on day 21 of the growing period and no relevant
differences were found on day 42 in absolute weight. However, as shown in Table 5, the
spleen had a higher weight when expressed in relative terms to animal weight due to
the lower weight of slow-growing animals at the same age. Additionally, animals at a
higher ammonia concentration tended to have a lower spleen weight than those at lower
concentrations. At slaughter age, slow-growing animals’ spleens were heavier in animals
kept at lower ammonia concentration (Room 1) compared to those at higher ammonia
concentrations (Room 2). The relative weight of the thymus gland was also affected by
animal strain and slow-growing animals had a higher relative weight than fast-growing
animals. No differences for stocking density were detected due to ammonia concentration.
A similar situation was found for the liver and bursa of Fabricius, where no clear effect was
found because of changing exposure to ammonia concentration or stocking density.

Studies show that in situations of stress due to exposure to ammonia, the liver, spleen
and bursa would be less developed [20,28,29]. This study found some changes in the size of
immune organs, so it is suggested that more in-depth studies are necessary in this direction
to confirm if in fact the larger size of the organs are correlated with situations of greater
stress such as higher ammonia concentration and higher stocking density.
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4. Conclusions

This study evaluated the effect of husbandry practices on broiler response to low
ammonia concentrations. Ventilation was used to generate exposure to different ammonia
concentration in the final part of a growing period (approximately 10 and 20 ppm).

Reducing ammonia concentrations had a low influence on productive parameters
regardless of the animal strain (slow- or fast-growing animals) or stocking density (32 vs.
16 kg m−2 at slaughter age) was tested. However, animals kept at a lower stocking
density had a better conversion rate than those under high density, particularly at higher
ammonia exposure.

Slow-growing animals were exposed to an ammonia concentration for a longer time
than fast-growing animals. No effects on growth parameters were found, but the increased
weight of immune organs (spleen) suggests a deleterious effect on the immune response.
However, despite being an indication, it is not possible to say that there is an immunological
dysfunction based only on the weight of the lymphoid organs. Therefore, we recommend
that further research be carried out in this direction.

Husbandry practices improving animal conditions beyond the minimum legal require-
ments seem to have a low effect on productivity.
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Simple Summary: Almost half of the protein ingested by broilers is not retained and is excreted,
impairing the nitrogen utilization, health and productivity of the animals, and intensifying the
environmental impact of poultry meat production. This work proposes two potential tools, combining
traditional nutrition with biotechnological, metabolomics, computational and protein engineering
knowledge, which can contribute to improving precise amino acid nutrition in broilers in the future:
(i) the use of serum uric nitrogen content as a rapid biomarker of amino acid imbalances, and (ii) the
design and modeling of de novo proteins that are fully digestible and fit exactly to the animal’s
requirements. Both tools can open up new opportunities to form an integrated framework for precise
amino acid nutrition in broilers, helping us to achieve more efficient, resilient, and sustainable
production. This information can help to determine the exact ratio of amino acids that will improve
the efficiency of the use of nitrogen by poultry.

Abstract: Precision nutrition in broilers requires tools capable of identifying amino acid imbalances
individually or in groups, as well as knowledge on how more digestible proteins can be designed for
innovative feeding programs adjusted to animals’ dynamic requirements. This work proposes two
potential tools, combining traditional nutrition with biotechnological, metabolomic, computational
and protein engineering knowledge, which can contribute to improving the precise amino acid
nutrition of broilers in the future: (i) the use of serum uric nitrogen content as a rapid biomarker of
amino acid imbalances, and (ii) the design and modeling of de novo proteins that are fully digestible
and fit exactly to the animal’s requirements. Each application is illustrated with a case study. Case
study 1 demonstrates that serum uric nitrogen can be a useful rapid indicator of individual or group
amino acid deficiencies or imbalances when reducing dietary protein and adjusting the valine and
arginine to lysine ratios in broilers. Case study 2 describes a stepwise approach to design an ideal
protein, resulting in a potential amino acid sequence and structure prototype that is ideally adjusted
to the requirements of the targeted animal, and is theoretically completely digestible. Both tools
can open up new opportunities to form an integrated framework for precise amino acid nutrition in
broilers, helping us to achieve more efficient, resilient, and sustainable production. This information
can help to determine the exact ratio of amino acids that will improve the efficiency of the use of
nitrogen by poultry.

Keywords: precision livestock farming; PLF; precise feeding; poultry; ideal protein

1. Introduction

Precision nutrition is not a new concept. It was used for the first time in poultry
nutrition in 1979 in a precision feeding bioassay to measure true available amino acids
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in roosters [1]. Precision nutrition combines traditional nutrition with other disciplines
(mathematics, computer sciences, chemistry, biochemistry, biology, immunology, molecular
biology, genetics, engineering and technological sciences, amongst others) in a multi-
disciplinary approach [2].

It can be defined as the practice of meeting the nutrient requirements of animals as
accurately as possible in the interests of safe, high-quality and efficient production, while
ensuring the lowest possible load on the environment [3]. Therefore, it aims at precisely
matching animals’ nutritional requirements with adjusted feed diets, and requires a well-
characterized and accurate nutrient database for each ingredient, together with properly
defined animal nutrient requirements [4].

By definition, this concept is inherently linked to animal farming practices, and is key
to optimizing feed efficiency for maximal economic return and minimum losses. However,
despite its history of use, paradoxically, the practical implementation of precise nutrition
in broiler production is not yet entirely achieved. In fast-growing broilers, nutritional
requirements change quickly over time, and daily variations cannot be met with multiphase-
feeding only [5,6], or by blending diets [4,7].

Nutritional requirements are commonly set for a population of similar animals (ac-
cording to their age, physiological status and/or genetics, and occasionally sex). Using the
population-feeding approach, individual variations within animals cannot be addressed [8],
and singular needs according to nutritional status, genetics or animal health, and environ-
mental stress-related conditions may be consequently overlooked. Managing animals indi-
vidually is key in precision livestock farming [9], and can prevent over-feeding, particularly
in growing pigs [8]. Nevertheless, it is questionable whether the precision management of
individual birds is feasible in the poultry sector [2].

Protein over-feeding results in an increasing nitrogen (N) environmental load and
ammonia emissions, and causes economic losses [10]. Birds need adjusted amino acid
levels that are ideally combined (using the ideal protein concept, expressed relative to
lysine [11]) to meet the requirements of each amino acid without deficit or excess. Even
though broilers are one of the most efficient animals in transforming proteins into meat,
compared with swine or cattle [12], their N retention is low and ranges from 57 to 60% [13].
Therefore, almost half of the protein ingested by broilers is not retained and is excreted.

Moreover, undigested protein and the metabolites from protein fermentation (ammo-
nia, amines, p-cresol and indole [14]) can negatively affect intestinal health [15]. Undigested
protein in the distal gastrointestinal tract can disrupt gut function and integrity [16], and
can also be used by undesirable pathogenic bacteria [17]. Furthermore, if amino acids are
available in excess or improperly balanced, they need to be catabolized in the liver. As
a consequence, ammonia, which is highly toxic, is produced and must be released. The
deamination of unused amino acids in the liver and the excretion of ammonia as uric acid
in poultry is costly for the animal, requiring a supply of energy in the form of adenosine
triphosphate (ATP)—three ATP molecules are consumed for every N molecule excreted [18].
All this seriously worsens the health and productivity of the animals and intensifies the
environmental impact of poultry meat production.

Even though nowadays nutritionists use optimized feed supply and animal amino
acid requirement evaluation methods (based on true ileal digestible amino acids, rather
than traditional crude protein estimation or fecal total amino acids; together with modeling
approaches that can assist in the process [19,20]), further research on balanced feeds,
with maximal amino acid digestibility tailored for each animal’s requirements over time,
is needed.

To achieve the ideal fitting of amino acid supply to animals’ dynamic requirements,
precision nutrition in broilers requires tools capable of identifying deficiencies or imbalances
individually or in groups, as well as knowledge on how more digestible and usable proteins
can be obtained or even designed for innovative feeding programs. This new framework
would help reduce the detrimental effects of protein over-feeding and inaccurate amino
acid balancing in broiler diets.
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This work proposes two potential tools, combining traditional nutrition with biotech-
nological, metabolomic, computational and protein engineering knowledge, which can
contribute to improving precise amino acid nutrition in broilers in the future: (i) the use of
serum uric N (SUN) content as a rapid biomarker of amino acid imbalances, and (ii) the
design and modeling of de novo proteins that are fully digestible and fit exactly to the
animal’s requirements. Each application is illustrated with a case study. The required
future improvements in protein nutrition using precision nutrition tools in broilers are
further discussed.

2. Case Study 1: Use of SUN Content as a Rapid Biomarker of Amino Acid Imbalances

2.1. Background

Serum uric nitrogen corresponds to the amount of N in the form of uric acid circulating
in the bird’s bloodstream. Therefore, it can be used as a metabolic indicator of amino acid
imbalances and deficiencies. This biomarker has become more common in the last few
decades as a valid criterion to determine amino acid requirements under conditions of
constant protein intake [21]. It has been successfully validated in swine [21–23], rabbits [24]
and broilers [25].

In sows fed a diet that is adequate in the first-limiting amino acids, the concentration
of plasma urea nitrogen is low because there is a decrease in protein catabolism, more
efficient total N utilization, and thus a decrease in urea synthesis [21]. In rabbits, a diet with
an imbalance in any essential amino acid would lead animals to catabolize the remaining
amino acids, increasing the urea production in the liver, which would be released into
the bloodstream, increasing plasma urea nitrogen [24]. The higher the excess of digested
protein and the more limiting the affected amino acid is, the higher the plasma or SUN
levels will be.

Methionine followed by lysine are the first limiting amino acids in most practical
poultry diets [26–28], and their requirements are generally accurately estimated [29–32].
The requirements of other amino acids, however, still need further adjustment. For example,
the recommendations on the valine and arginine to lysine ratios are near 0.80 [33] and
1.05 [34], respectively. Their high nutritional requirements and their relative low presence
in commercial diets indicate they are relevant amino acids, which may become limiting in
specific situations. Therefore, there is a need to determine their levels accurately in broiler
diets to optimize both growth and N use.

This case study illustrates how SUN content can be used as a valid biomarker to detect
imbalances and deficiencies in secondary limiting amino acids in broilers. The use of this
biomarker is a promising tool used to verify feed formulations, monitor the ideal balancing
of amino acids in broilers, and aid in adjusting amino acids to precisely match animal’s
requirements over time.

A trial was conducted to determine the effects of reducing dietary protein and adjust-
ing valine and arginine to lysine ratios in broilers. The level of SUN metabolite was used to
identify potential amino acid imbalances. The relationship between SUN and performance
traits was also evaluated.

2.2. Animals and Experimental Procedure

Three hundred and thirty-six male broilers (Ross 308) were assigned to four dietary
treatments from days 14 to 35 of age. Before that, all birds were fed a commercial diet.
Animals were reared in floor pens in an environmentally controlled room.

All experimental procedures used in this study were approved by Universitat Politècnica
de València’s Animal Experimentation Ethics Committee, and authorized by the Valencian
Conselleria de Agricultura, Medio Ambiente, Cambio Climático y Desarrollo of Spain, with
the code 2017/VSC/PEA/000166.

There were seven pens per treatment (1.3 m × 1.3 m) and 12 animals/pen. Diets were
formulated to meet the birds’ crude protein requirements (20%; in T1) or to be below the
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crude protein requirements (18%; in T2, T3 and T4) [35], combined with changes in valine
(0.70 to 0.80) and arginine (0.90 to 1.05) to lysine ratios.

Diets were formulated to be isoenergetic (3000 kcal metabolizable energy/kg) and
pelleted (target pellet temperature = 70 ◦C). The valine to lysine ratio was formulated
according to current recommendations (average analyzed value of 0.81; Table 1) in T1,
T2 and T4, and it was below these recommendations in T3 (0.71; Table 1). The arginine
to lysine ratio was formulated according to current recommendations (average analyzed
value of 1.07; Table 1) in T1, T2 and T3, and was below them in T4 (0.93; Table 1). Amino
acid changes in dietary treatments were established by adding synthetic amino acids to a
common basal diet based on corn, wheat and soybean meal.

Table 1. Analyzed levels of crude protein, valine and arginine, valine to lysine ratio and arginine to
lysine ratio in the different dietary treatments (T1 to T4).

Crude
Protein (%)

Valine
(%)

Arginine
(%)

Valine
to Lysine

Arginine
to Lysine

T1 20.00 0.896 1.228 0.815 1.116
T2 18.13 0.873 1.136 0.806 1.049
T3 18.07 0.770 1.136 0.711 1.049
T4 17.88 0.874 1.004 0.807 0.927

Different levels of valine and arginine were achieved by adding synthetic L-valine and L-arginine. T1: 20%
crude protein content, valine/lysine ratio (0.80) and arginine/lysine ratio (1.05) formulated according to current
recommendations; T2: 18% crude protein content and valine/lysine ratio (0.80) and arginine/lysine ratio (1.05)
formulated according to current recommendations; T3: 18% crude protein content, below-required valine/lysine
ratio (0.70) and arginine/lysine ratio (1.05) formulated according to current recommendations; T4: 18% crude
protein content, below-required arginine/lysine ratio (0.92) and valine/lysine ratio (0.80) formulated according to
current recommendations.

Individual body weight and pen feed intake were controlled on days 14, 21, 28 and 35
of age. On day 36 of age, animals were fasted for 2 h, and blood samples were obtained
90 min after giving them access to feed. Blood samples were obtained from the wing veins
in 84 animals (2115 ± 11 g body weight; 3 animals per pen; 21 animals per treatment) in
3 mL serum tubes (vacutainers). Blood samples were centrifuged (10 min, 3000× g) and
stored frozen (−20 ◦C) until analyses.

The determination of SUN was performed using a commercial kit (Urea/BUN-Color,
BioSystems S.A., Barcelona, Spain). Samples were firstly defrosted and tempered, and then
1 μL was pipetted into test tubes (a standard and a blank were included in each batch).
Later, 1 mL of reagent A (sodium salicylate 62 mmol/L, sodium nitroprusside 3.4 mmol/L,
phosphate buffer 20 mmol/L and urease 500 U/mL) was added to each sample, mixed
thoroughly and incubated for 5 min at 37 ◦C. Subsequently, 1 mL of reactant B (sodium
hypochlorite 7 mmol/L and sodium hydroxide 150 mmol/L) was added, mixed thoroughly
and incubated for a further 5 min at 37 ◦C. Finally, the absorbance of each sample was read
at 600 nm against the blank.

Individual bird SUN, final bird body weight and average daily gain (ADG) data
were statistically analyzed with the GLM procedure of the SAS System Software®. The
experimental diet (T1 to T4) was considered as the fixed effect in the model. Least square
means were obtained with standard errors. Significant differences were declared at p ≤ 0.05.

2.3. Results

Table 2 shows the SUN values and productive traits (mean ± standard error of the
mean) obtained for each experimental diet. The average SUN varied from 1.89 ± 0.1 to
2.26 ± 0.1 mg/dL in animals fed the tested diets. Animals fed diet T4 showed the highest
SUN values (on average +18%, p < 0.05) compared with groups T1 to T3. These results agree
with the performance data (weight and ADG), where T4 showed lower values compared
with T1 and T2 (p < 0.05). On the other hand, the SUN concentrations were similar among
treatments T1 to T3. The final weight and ADG were the highest in animals fed diet T1,
medium in diet T2, and the lowest in animals fed diets T3 and T4.
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Table 2. Average serum uric nitrogen (SUN) and productive traits (± standard error of the mean)
obtained in each experimental diet (T1 to T4) during the grower phase (from 14 to 35 days of age).

T1 T2 T3 T4 p-Value

SUN (mg/dL) 1 1.96 ± 0.1 a 1.89 ± 0.1 a 1.90 ± 0.1 a 2.26 ± 0.1 b 0.001
Final weight (g) 2188 ± 18.4 c 2143 ± 18.4 b 2073 ± 18.4 a 2055 ± 18.4 a 0.028

Average daily gain (g/d) 109.3 ± 1.62 c 105.7 ± 1.62 b 100.8 ± 1.62 a 101.7 ± 1.62 a 0.043
a, b, c: means in the same row with no common superscripts differ significantly (p < 0.05). 1: Obtained from
36-day-old broilers. T1: 20% crude protein content, valine/lysine ratio (0.80) and arginine/lysine ratio (1.05)
formulated according to current recommendations; T2: 18% crude protein content and valine/lysine ratio (0.80)
and arginine/lysine ratio (1.05) formulated according to current recommendations; T3: 18% crude protein
content, below-required valine/lysine ratio (0.70) and arginine/lysine ratio (1.05) formulated according to current
recommendations; T4: 18% crude protein content, below-required arginine/lysine ratio (0.92) and valine/lysine
ratio (0.80) formulated according to current recommendations.

2.4. Discussion

The serum uric N and productive traits were within the normal parameters obtained
for broilers in the grower phase, and they agree with previous work [36]. Our data suggest
that none of the diets offered with a low crude protein level (18% in T2 to T4) achieved the
productive traits obtained with diet T1 (20% crude protein). Some authors indicate that
establishing a minimum dietary crude protein content may not be necessary when proper
amino acid ratios are implemented in diet formulation [37]. Moreover, research has shown
that reductions in crude protein levels (below 19.5%) in broilers of similar ages can limit
growth [38,39].

Animals fed diet T4 showed a significantly higher SUN compared with the rest of
the animals in groups T1 to T3. Higher SUN could indicate major amino acid catabolism.
Therefore, according to changes in SUN concentration, T4 would be the most unbalanced
diet in terms of amino acids. These results agree with low performance data (weight and
ADG) in T4.

Figure 1 shows there is high individual variability in the ADG and in the SUN content
amongst animals, even for those within the same dietary treatment. This figure shows that
the animals fed the highest protein content (diet T1) are mostly in the upper half (high
growth rate), and that in the low-growth and high-SUN quadrant, there are mainly animals
fed the diet with a low arginine to lysine ratio (T4).

As regards low-protein diets, animals fed diet T2 (with valine/lysine and arginine/lysine
according to current recommendations) showed similar SUN levels to those fed diet T3 (with
valine/lysine ratio below current recommendations), but lower SUN levels (−16%; p < 0.05)
than those fed diet T4 (with arginine/lysine ratio below current recommendations). These
results indicate that current recommendations of valine and arginine seem to be correctly
determined, as a reduction in any of them has a clear negative effect on broiler growth
performance. However, only a reduction in arginine (and not valine) increased amino acids
catabolism. This could imply that when lysine and methionine are well-fitted, arginine would
limit the protein use of the animals more than valine (in diets with low crude protein levels).
It would be interesting to verify arginine levels, since it could be the third limiting amino acid
when low-protein diets based on corn, wheat and soybean meal are used in broilers. Some
authors have already stated the importance of arginine when the protein level is limited [40].
In addition, positive effects have been shown when elevated levels of arginine were supplied
under these conditions [41,42]. Attia et al. [43] suggested that the response to the level of
amino acid addition in low-protein diets can also vary according to bird strain and age.
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Figure 1. Relationship between animal’s serum uric nitrogen (SUN), when fed the different experi-
mental diets varying in crude protein, as well as valine and arginine to lysine ratios (T1 to T4), and
individual average daily weight gain during the last period of the grower phase (day 28 to 35) in
broilers (n = 21 animals per treatment). T1: 20% crude protein content, valine/lysine ratio (0.80)
and arginine/lysine ratio (1.05) formulated according to current recommendations; T2: 18% crude
protein content and valine/lysine ratio (0.80) and arginine/lysine ratio (1.05) formulated according
to current recommendations; T3: 18% crude protein content, below-required valine/lysine ratio (0.70)
and arginine/lysine ratio (1.05) formulated according to current recommendations; T4: 18% crude
protein content, below-required arginine/lysine ratio (0.92) and valine/lysine ratio (0.80) formulated
according to current recommendations.

Although more studies are necessary to establish the potential of SUN and other
biomarkers (as glutamine or glutamate in the blood) to determine amino acid imbalances
in broiler diets, this study highlights the interaction of nutrition with metabolic phenotype
to achieve this goal.

3. Case Study 2: De Novo Protein Design, an Example of an Ideal Protein for
21-Day-Old Broilers

3.1. Background

The ideal protein concept is built on the idea that birds need specific amounts and
ratios of amino acids to achieve their optimal performance and maximum growth [11].
Dietary amino acid concentrations should match needs for both maintenance and muscle
accretion to effectively allow for the increased synthesis of white meat [44]. However,
the utilization efficiency (including digestion and metabolism) of amino acids from feed
ingredients is relatively low, resulting in high N losses in excreta [13].

Moreover, with current feed formulations, the right proportion of amino acids for each
animal cannot be properly achieved for all amino acids at the same time without producing
an excess of some amino acids to ensure others. In addition, protein digestibility depends
not only on the molecular features of the protein, but also on the action of the enzymes (i.e.,
proteases) involved in the digestion process. In order to allow absorption by enterocytes
in the small intestinal mucosa, proteins must be broken down into dipeptides, tripeptides
or free amino acids. The specificity of enzymes (stomach pepsin, pancreatic trypsin and
chymotrypsin, as well as intestinal mucosal carboxypeptidases and aminopeptidases), their
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enzyme to substrate ratio, as well as their different ways of cleaving peptide bonds will
determine the final level of protein breakdown. The structural properties of proteins (sec-
ondary structure and β-conformations) may play a major role in resistance to denaturation
and gastrointestinal digestion, as well [45].

Computational and protein engineering methods could be valuable tools to help
design a protein sequence and structure that meets the needs of all amino acids (without
excesses or defects), and which is fully digested and metabolized in broilers. The obtained
protein could be synthesized and used in the future to contribute to this goal.

In recent decades, the use of certain synthetic amino acids has allowed us to better
adjust diets and reduce their protein contents. Although we are far from being able to
develop completely synthetic proteins that can cover these needs in a profitable way, the
exponential development of biotechnology could get us close to that reality in the coming
years. Therefore, knowledge of how to develop this technology is necessary.

This case study illustrates how de novo protein design can contribute to this aim. It
describes a novel stepwise modeling approach to designing an ideal protein that can be
completely digestible and usable in broilers from 0 to 21 days of age. It is an example of
how precision nutrition strategies combining traditional nutrition with biotechnological,
computational and protein engineering approaches can contribute to addressing precision
poultry nutrition challenges in the future. The boundary conditions set in this case scenario
include: (i) a primary protein sequence design containing the minimal amino acid quantities
that can be fully digested by enzymes from the avian digestive system, and (ii) modeling
the secondary and tertiary conformations of already-designed polypeptides.

3.2. Experimental Procedure

To this end, firstly, a literature review was conducted to define the requirements of
amino acids for 21-day-old broilers, as regards the amino acid composition and ideal protein
profile. Secondly, the protein digestion dynamics and functioning of the digestive system at
the enzymatic level of chickens of that age were also reviewed. From these data, potential
primary polypeptide sequences were designed. We chose the shortest protein sequence
that fulfilled the following criteria: (i) fully meeting broiler requirements of all amino acids,
while (ii) optimizing digestive enzyme functioning. Finally, we predicted its secondary and
tertiary structure and its physicochemical properties using computational methods.

The de novo design of a protein that fully meets the requirements of broilers should
be based on the net amino acid requirement (maintenance plus growth requirements) at
each stage of the animal’s life. Although there have been some attempts to obtain this
information [46], it is not yet available. For this reason, the present work was based on the
closest estimates of net requirements, which correspond to the true ileal digestible amino
acids (i.e., corrected for basal and specific endogenous amino acid secretions).

The amino acid requirements are outlined in Table 3, based on the ideal amino acid
profiles for broilers from 0 to 21 days with respect to lysine, as proposed by the North Amer-
ican Texas AM University [47]. These data were selected after comparing them with the
available literature and recognized international nutritional guidelines for broilers (Cana-
dian NRC [48], Spanish FEDNA [49], Dutch CVB [50] and Brazilian Tables for poultry and
swine [51]). Wu’s [47] dataset, containing a total of 108 amino acids (Table 3), was chosen
to construct the “minimal ideal protein”, because these recommendations are not far from
the current recommendations for most of the amino acids provided by FEDNA [49] and
NRC [48]. Moreover, it was the only one that provided recommendations for the 20 amino
acids, and it was derived from true ileal digestible amino acid contents, accounting for the
proportions of amino acids in the whole bodies of broilers.
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Table 3. Amino acid requirements (expressed relative to lysine, lysine = 100) for chickens from 0 to
21 days used for protein modeling.

Amino Acid Mw (g/mol) Amino Acid/Lysine 1 Molecules in the Sequence 2

Alanine 89.09 102 6
Arginine 174.2 105 7

Asparagine 132.1 56 4
Aspartate 133.1 66 4
Cystein 121.2 32 2

Glutamate 147.1 178 11
Glutamine 146.2 128 8

Glycine 75.1 176 11
Histidine 155.2 35 2
Isoleucine 131.2 67 4
Leucine 131.2 109 7
Lysine 146.2 100 6

Methionine 149.2 40 3
Phenylalanine 165.2 60 4

Proline 115.1 184 12
Serine 105.1 69 4

Threonine 119.1 67 4
Tryptophan 204.2 16 1

Tyrosine 181.2 45 3
Valine 117.2 77 5

Total number of amino acids 108
Mw (g/mol) 3 12095.1

Mw: molecular weight. 1: Calculated from true ileal digestibility data from Wu [47]. 2: As the amino acid that is
required in the lowest relative proportion with respect to lysine is tryptophan at 0.16, the number of molecules in
the sequence was calculated to have at least one representative of tryptophan in the protein sequence. The rest of
the amino acids were proportionally calculated according to this value, as (amino acid/lysine)/0.16. 3: Calculated
as the sum of the individual amino acid’s molecular weight × the number of molecules in the sequence, minus
the molecular weight of the 107 peptide bonds (condensation reactions; 18 g/mol per bond) needed to generate
the 108-amino acid sequence.

From the 108 amino acids described in Table 3, an initial protein sequence was gener-
ated using RandSeq (from the ExPASy online portal, SIB Bioinformatics Resource Portal).
This online tool is frequently used to build randomly scrambled peptide libraries from a
specific amino acid composition [52,53].

Using the random sequence obtained using RandSeq, several primary structures were
designed using the Peptide Cutter software’s information (ExPASy Bioinformatics Portal,
Swiss Institute of Bioinformatics). The Peptide Cutter software considers the performance
(activity and substrate specificity) of avian digestion enzymes in the sequence and max-
imizes the number of cleavages by enzymes in the linear polypeptide chain. The choice
of enzymes was based on the work of Recoules et al. [54], using in vivo data on the di-
gestion of plant proteins in broilers. Pepsin, trypsin, chymotrypsin, elastase, prolidase,
carboxypeptidase A and B and aminopeptidase were studied.

The final sequences obtained were subjected to a manual refinement step to increase
their potential digestibility. In other words, we increased the number of free amino acids in
the final sequence by adding extra specific amino acids that would break the remaining
dipeptides. Such extra amino acids were chosen following two criteria: being the target
amino acid of various avian digestive enzymes and having been rounded down in the
proposed minimum ideal protein initial sequence.

After this step, its secondary and tertiary structures were predicted using two online
servers: i-TASSER (iterative threading assembly refinement, a hierarchical protocol for the
structural and functional prediction of amino acid sequences [55]) and QUARK (based
on ab initio folding, the construction of protein structures by fragment assembly from
unrelated proteins [56]). Both software were used to predict the folding of sequences.
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3.3. Results

Figure 2 shows the optimal initial primary amino acid sequence derived from the
information in Table 3, and the protein digestion dynamics data from enzyme affinities
(Round 3, Figure 1). The round 3 sequence was the most digestible sequence based on the
action of the chicken digestive enzymes, because it led to a high number of free amino acids
after digestion—only four dipeptides and 100 free-amino acids (7.4 and 92.6% of the total
amino acids in the sequence, respectively).

Figure 2. Original 108-amino acid sequence (Round 3) and refined sequence with 112 amino acids
modeled for complete digestion (Round 3.1, Round 3.2, Round 3.3 and Round 3.4). One-letter
amino acid code: A—alanine, C—cysteine, D—aspartic acid, E—glutamic acid, F—phenylalanine,
G—glycine, H—histidine, I—isoleucine, K—lysine, L—leucine, M—methionine, N—asparagine,
P—proline, Q—glutamine, R—arginine, S—serine, T—threonine, V—valine, W—tryptophan,
Y—tyrosine.

Rounds 3.1 to 3.4 (Figure 2) were extra sequences generated from the original sequence
(Round 3) during manual refinement. These extra sequences (Rounds 3.1 to 3.4) were
designed to break the four remaining dipeptides following complete digestion. To this end,
four extra amino acids were included in the composition (a total of 112 amino acids), with
the following considerations: (i) prioritizing those amino acids that were a frequent target
for digestive enzymes in chickens (arginine, isoleucine, leucine, lysine, phenylalanine,
tryptophan and tyrosine); (ii) promoting isoleucine addition, given that it is rounded down
to avoid shortage; (iii) giving special attention to lysine, due to its roles as the first limiting
and the reference amino acid, making it worthwhile to ensure its minimal requirement is
met; (iv) adding arginine and tryptophan, due to their relevance as first limiting amino
acids; (v) avoiding cysteine (due to the risk of disulphide bridges), which reduces digestive
enzymes’ efficiency. The addition of the four extra amino acids resulted in increases in
the amounts of isoleucine by 25.0%, lysine by 16.7%, arginine by 14.3% and tryptophan
by 100.0%.

Finally, secondary and tertiary protein structures were determined and tested to
evaluate the quality and reliability criteria of the structural models obtained with the
different protein sequences, using I-TASSER and QUARK software. Figure 3 presents the
Round 3.3 sequence, which was the most reliable and highest-quality model, as indicated by
its C-score (accuracy ranging from −5 to 2, increasing with high confidence) and TM-score
(similarity to native structures, with a TM-score > 0.5, similar topology, and <0.3 random
similarity). The C-score and TM-score values in Round 3.3 were higher than those of the
other sequences determined using I-TASSER (on average, C-score −1.08 vs. −3.45, and
TM-score 0.58 vs. 0.34). Theoretically, this implies higher reliability when predicting the
actual 3D protein conformation. A complete descriptionvs. of all sequence quality and
reliability criteria has been given by Lledó [57].
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Figure 3. Predicted secondary and tertiary structure of sequence Round 3.3 by I-TASSER. (a) Three-
dimensional tertiary structure cartoon model. In pink α-helices, in yellow β-sheets and in white
coil regions. (b) Secondary predicted structure. H: α-helices; S: β-sheets; C: coil regions based
on in silico digestion of initial designed sequences for primary structure. One letter amino acid
code: A—alanine, C—cysteine, D—aspartic acid, E—glutamic acid, F—phenylalanine, G—glycine,
H—histidine, I—isoleucine, K—lysine, L—leucine, M—methionine, N—asparagine, P—proline,
Q—glutamine, R—arginine, S—serine, T—threonine, V—valine, W—tryptophan, Y—tyrosine.

Figure 3 shows the overall sequence covered by α-helices, β-sheets and random coil
regions, derived from the i-TASSER models of Round 3.3. The secondary structure of the
protein simulated in Round 3.3 showed the highest amount of β structures (13%) and the
least α-helices (16%) among all candidates, and therefore it may be the least digestible
protein. Following the same criteria, the secondary structure of the protein modelled in
Round 3.1 (Figure 4) contained the lowest percentage of β-sheets (2%), and simultaneously
the highest number of α-helices (41%), among all the models. Regarding the number of coil
regions, as their conformational prediction is more intricate, these regions could display
more unexpected folds. Therefore, defined structures and α-helices are preferable. The
structure of the protein simulated in Round 3.1 presented one of the lowest percentages of
coil regions (on average, 57% vs. 70%).

Therefore, based on the structural motifs, the protein with the highest number of
α-helices and the lowest number of β-sheet was that in Round 3.1. Moreover, it was ranked
second in terms of reliability on the basis of its C-score and TM-score, showing a more
acceptable quality level (−1.99 and 0.48, respectively) with respect to Round 3.3 (−1.08
and 0.58, respectively). Figure 4 shows the structural properties of the Round 3.1 protein
modeled using different software.

3.4. Discussion

The efficiency of the use of ingested dietary protein by broilers depends on the di-
gestibility and balance of the amino acid content relative to the animal’s requirements.
Increasing the crude protein content has been proven to entail negative effects in chicken
health, and in environmental and production costs [58]. On the other hand, low-crude
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protein level diets with the addition of crystalline amino acid do not constitute a complete
solution, because this can reduce chicken growth performance.

Figure 4. Protein 3D structure model of Round 3.1 using (a) the I-TASSER model and (b) the QUARK
model.

The “perfect” diet, in terms of protein supply, could involve feeds with low level
inclusions of highly purified and digestible proteins. This work has outlined a novel
approach, combining the structural digestibility, quality, and reliability criteria of the
predicted model, resulting in a valid protein design that will help to achieve this goal.

The resulting protein model had a minimal size, with 112 amino acids. This size seems
adequate to produce the ideal protein, as it is the closest to the ideal amino acid profile of
broilers. Low-molecular weight proteins are more easily produced and secreted, and are
less likely to interact with the host’s metabolism. This could be advantageous in terms of
future biological synthesis and industrial production.

In terms of protein digestibility and solubility, it is crucial to consider the occurrence of
two main structural patterns: α-helices and β-sheets. Carbonaro et al. [45] studied in vitro
the structure–digestibility relationship of different proteins of animal and plant origin,
and quantified the different structural motifs. Their results, consistent with other experi-
ments [59,60], showed a reduction in hydrolysis degree that was inversely proportional to
the number of β-sheets. The main explanation for this lies in the hydrophobic character of
these structures, which promotes aggregation and protein–protein interactions.

Obtaining an accurate model for secondary and tertiary structures is essential, since
these structures are closely related to proteins’ physical (solubility, aggregation and secre-
tory ability) and functional characteristics. Protein solubility is very relevant to production
processes, as it mainly affects cell excretion and downstream recovery processes, given that
it is directly related to the aggregation phenomena. Moreover, secondary structural motifs
can also affect peptide solubility. Solubility has been shown to increase with the ratio of
α-helices to β-sheets in in vitro experiments [61].

Besides this, secondary and tertiary structural modeling can give clues about protein
functional features and behaviors. The potential of the protein prototype is also strongly
determined by the existence of protein templates in protein data banks with significant
sequence similarity to the problem sequence. In other words, sequences without equivalents
in protein data banks will be more difficult to model, and the result will be based on less
evidence, leading to less reliable results overall. However, a unique protein, whose structure
greatly differs from any known homologous proteins, could be advantageous. Firstly, it
could decrease the mimic phenomenon, which could lead to problems in the host used
for future production (bacteria, yeast, or any other chosen organism). Secondly, it is more
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probable that, if it does not belong to any protein family, it will not have any relevant
function itself.

Through the procedure followed in this work, we obtained a prototype that meets
most of the conditions that a synthetic protein should have, such as being completely
digestible, not generating an excess supply of amino acids (since it is ideally adjusted
to the requirements of the targeted animal), and therefore coming as close as possible to
the concept of an ideal protein. In any case, more studies are necessary to improve the
definition of this protein prototype that will consider the characteristics of the potential
hosts, before carrying out pilot tests aimed at biosynthesis. Current protein yields using
plant or microbial fermentation synthesis are still insufficient to produce a fully viable
synthetic protein source for poultry. However, the efficiency of these processes is rapidly
improving, and new developments in bioprocesses are emerging [62], as are innovative
procedures, such as cell-free protein synthesis [63]. The use of these novel protein synthesis
methods could contribute to making this procedure a reality in the near future.

4. Future Precision Nutrition Needs to Improve Protein Nutrition in Broilers

Precision nutrition is an essential part of precision livestock farming, as both pursue
a common goal: enhancing farm profitability, efficiency, and sustainability [64]. In our
work, potential tools for the development of future precision nutrition strategies that will
improve amino acid utilization in broilers are presented and discussed. The tools presented
herein include biotechnological, metabolomic, computational and protein engineering
approaches, and they are summarized in Figure 5, focusing on metabolic phenotyping and
the identification of individual variability using biomarkers (Case study 1), and accurate
feed matrix formulation and ingredient design (partial or complete) through de novo protein
development (Case study 2).

Figure 5. Integrated framework scheme for precise amino acid nutrition in broiler farming, combining
nutritional strategies and feeding technologies.

The precision nutrition strategies presented in this work differ from precision feeding
technologies. The latter relies on monitoring the amount and composition of the feed
delivered to broilers, individually or in groups, as well as their feeding behavior and
intake [4]. Precision feeding technologies require the development of sensors and automatic
measuring devices, as well as sophisticated feeding units capable of providing the required
amount and composition of feeds according to specific production objectives, based on
growth models derived from computational methods, i.e., customized diets [65].

Therefore, the on-farm application of precision feeding technologies in broilers is
still limited, and there are few examples of the practical use of such technologies. For
instance, in poultry, individual monitoring is complex, and it has only been implemented in
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broiler breeders using feeding cubicles, based on using bird radio frequency identification
(RFID), weighing in the cubicle, and a target growth curve updated in real-time [66].
Although RFID systems can accurately detect and record the feeding behaviors of individual
broilers in group settings automatically [67], their field implementation is challenging,
costly and complex. Furthermore, the estimation of individual nutritional requirements
in real-time is not entirely feasible, and must be based on mathematical models and
theoretical estimations.

In contrast, the precision nutrition strategies addressed in this work are designed to
equal the dietary nutrient supply to the nutrient requirements of the animals, particularly
focusing on amino acids. There is still a need to adjust the exact combination of indis-
pensable amino acids so that they exactly match the animals’ requirements for protein
accretion and maintenance, with no deficiencies and no excesses using the ideal protein
profile [11]; but also to come up with valid tools that can give real feedback using animal-
based biomarkers. These strategies are necessary prerequisites that must be implemented
in future automated and tailored feeding technologies. In fact, as Moss et al. [4] stated, the
implementation of precision nutrition relies on the ability of the poultry industry to employ
precision feeding within its operations, and therefore, precise nutrition strategies must be
combined with precise feeding technologies.

The tools addressed in the present case studies are therefore key to formulating an
integrated framework for precise amino acid nutrition in broilers. Figure 5 illustrates how
biomarkers and de novo protein design can fit into this scheme, as indispensable to the
precise livestock farming matrix that combines feeding technologies (including sensors and
automatic feeding units), modeling at individual or group levels, and nutritional strategies
in an interdisciplinary approach.

5. Conclusions

Specific biomarkers, such as SUN, can be useful as rapid indicators of individual or
group amino acid deficiencies or imbalances. Their practical implementation on-farm,
as well as in nutritional research studies, could contribute to the achievement of both
precise diet formulation and the determination of nutrient requirements in broilers. These
types of biomarkers could be a suitable tool for closing the gap between models and
farm conditions, as they could be used as an indicator of how the modelled theoretical
or estimated requirements need to be adjusted in farm conditions. Broilers in different
farm settings can be exposed to stressors (environmental, social and nutritional, amongst
others). Individual metabolic phenotyping using biomarkers could contribute to optimizing
nutrient use, reducing safety margins, and preventing nutrient over-feeding.

Furthermore, the possibility of designing a specific protein that can minimize N losses,
and maximize its digestibility and metabolic use, was discussed in this work. We developed
a stepwise approach to designing an ideal protein that can be completely digestible and
usable in broilers from 0 to 21 days of age. The procedure presented in this work is
promising for the initial design of synthetic oligopeptides that could be used in a similar
way to current synthetic amino acids, and ultimately for the synthesis of proteins that
meet the needs of animals exactly. Its application could help us to precisely match nutrient
supply with the nutrient requirements of animals without excesses, thus minimizing losses.

In conclusion, both tools presented herein can open up new opportunities in the
context of future broiler nutrition and precision farming, helping us to achieve more
efficient, resilient, and sustainable production. This information can help us to determine
the exact ratio of amino acids that will improve the efficiency of the use of N by poultry.
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Simple Summary: We tested two computer-vision-based indexes to analyze the rearing-environment
enrichment on broiler movement as a function of comfort temperature and heat stress. The results
indicated that the simultaneous application of cluster and unrest indexes could monitor the movement
of the group of broilers under different environmental conditions. Future monitoring and alert
systems based on computer vision should consider the complexity of the environment for detecting
heat stress in broiler production.

Abstract: Computer-vision systems for herd detection and monitoring are increasingly present in
precision livestock. This technology provides insights into how environmental variations affect the
group’s movement pattern. We hypothesize that the cluster and unrest indexes based on computer
vision (CV) can simultaneously assess the movement variation of reared broilers under different
environmental conditions. The present study is a proof of principle and was carried out with twenty
broilers (commercial strain Cobb®), housed in a controlled-environment chamber. The birds were
divided into two groups, one housed in an enriched environment and the control. Both groups
were subjected to thermal comfort conditions and heat stress. Image analysis of individual or group
behavior is the basis for generating animal-monitoring indexes, capable of creating real-time alert
systems, predicting welfare, health, environment, and production status. The results obtained in
the experiment in a controlled environment allowed the validation of the simultaneous application
of cluster and unrest indexes by monitoring the movement of the group of broilers under different
environmental conditions. Observational results also suggest that research in more significant pro-
portions should be carried out to evaluate the potential positive impact of environmental enrichment
in poultry production. The complexity of the environment is a factor to be considered in creating
alert systems for detecting heat stress in broiler production. In large groups, birds’ movement and
grouping patterns may differ; therefore, the CV system and indices will need to be recalibrated.

Keywords: walking ability; animal welfare; animal behavior; image analysis; precision livestock

1. Introduction

Prospects of future scenarios indicate that the world population will grow to 9.3 billion
people in 2050, which requires a significant increase in food demand. Globally, chicken
meat is expected to represent 41% of all animal-protein sources by 2030 [1]. In order to meet
this strong demand for market growth, intensive production of broilers has prevailed. In
most of these systems, the rearing environment restricts opportunities for species-specific
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behaviors, which are essential for good welfare [2]. Broilers are housed at a high density
and with selected genetic characteristics for rapid growth [3]. However, the bone structure
of the chicken did not follow this process of high development of the upper body part
(breast), which triggers leg disorders and the consequent loss of mobility with increasing
body weight [4].

The automatic detection of the activity level of groups of broilers makes it possible to
identify deviations outside the expected patterns and generate real-time notification alerts
to the producer, which allows a faster readjustment with benefits for the welfare of the
animals [5]. Stimulating physical activity in birds prevents the occurrence of locomotor
problems that impair wellbeing [6,7]. Previous studies indicate that enriched environments
have the positive potential to stimulate and increase the activity level of broilers [4,8–12].
Physical activity strengthens the locomotor system, especially at the beginning of the
growth phase [13]. In summary, environmental enrichment introduces improvements
in existing production systems and considers which artifacts stimulate the behavioral
activities inherent to the species, promoting improvements in biological function [14,15].

Computer vision (CV) applies mathematics and computer science to provide image-
based automated process control [16]. CV allows continuous and real-time measurements
during the flock production cycle in a fully automated, noninvasive way [17]. The data im-
ages were collected past steps to preprocessing, segmentation (region of interest), features
extraction, and classification or regression [16]. Thus, the producer can monitor various bi-
ological processes and bioresponses related to animal welfare, health, feeding and drinking
behaviors, and flock productivity [18–20]. We hypothesize that computer vision associated
with movement indexes can monitor locomotor-health problems and prevalence in broiler
flocks [5,21–24]. Studies based on proof of concept are present in animal production and
evaluate the technical, practical, and financial feasibility of an idea or hypothesis [25,26].
Several studies have been developed to monitor locomotor-health [22,27–29] body-mass
estimation [30,31]. The effect of environmental enrichment on broiler activity levels, gait
assessment, locomotor problems, zootechnical performance, and behavior and wellbe-
ing have been previously studied using video-image-processing techniques [32–35]. The
computer-vision technology was also validated in a laboratory scale for automatic monitor-
ing and gait-score classification [36]. It was also used to identify abnormal deviations in the
activity level of commercial birds [5] and for evaluating the occupancy rate of laying hens
in compartments with different levels of ammonia concentration [37]. Under heat-stress
conditions, there is a significant decrease in growth rate, increased mortality, a compro-
mised immune system, loss of meat quality, behavioral changes, and a decreased level of
wellbeing [38,39]. The rapid diagnosis of animals in thermal discomfort is crucial to prevent
the stress from being prolonged, preserving broiler performance, health, and welfare.

The continuous analysis of image processing obtained by video cameras allows for
the generation of activity indexes that monitor the thermal state of broilers [40–42]. Most
studies in the current literature involving heat stress were conducted from 21 days of
age [43]. Animals change their behavioral pattern as a function of the rearing temperature,
being close to each other when subjected to cold or spread out in the environment in the
heat [42]. Livestock workers have routinely used these postural patterns to assess thermal
comfort and adjust to environmental management settings [44]. Thus, observation of
behavioral parameters is a noninvasive way of detecting heat stress [45]. Previously CV has
been used for the generation of cluster and unrest indices, developed respectively by [23]
and [24], and have been applied as indicators of thermal comfort in commercial poultry
production. The results obtained indicated that the unrest index could detect the agitation
of poultry under different thermal conditions, with a significant decrease in the movement
of birds under heat stress [24].

On the other hand, the cluster index revealed a significant difference in the clustering
behavior of birds under conditions of comfort and heat stress. In addition, it identified
behavioral differences between the heavy rearing breeds [23]. The unrest index was used
to measure the walking ability of broilers with different gait scores [46]. Both indices have

154



Animals 2022, 12, 846

the potential to develop a remote-monitoring system to accurately detect differences in the
behavior of birds raised in floor pens bedded with wood shavings. The application of these
indices has not yet been explored in the rearing of broilers in enriched environments.

This study is a proof of concept to assess the use of the cluster and unrest indexes
simultaneously to test the sensitivity and viability in order to evaluate the movement of
broilers under different conditions such as heat stress and pen enrichment.

2. Materials and Methods

2.1. Description of the Controlled-Environment Chamber

The controlled-temperature room has three compartments (C1, C2 and C3), measuring
1.6 × 1.4 × 3.0 m3. Only two compartments were used for the present study, and they
were randomly selected. In each compartment, a manual tube-type feeder (Zatti® Model
number 181,528, Zatti Industry and Commerce, Coronel Freitas, Santa Catarina, Brazil),
an automatic pendulum-type drinker (CASP®, Model pendular drinking automatic 2003,
CASP, Amparo, São Paulo, Brazil), and a temperature and humidity sensor were installed
close to the animals’ level, at a distance of 0.40 m from the floor. Each compartment
had an air conditioner, two dehumidifiers, two heaters, a dimmable LED lamp to control
light intensity (lx), and a video camera. Each compartment was accessed independently
through a door (0.7 m wide × 2 m high). The computers responsible for managing the
experimental units were installed in the support room (climate control and video recording).
Figure 1 [47] shows the schematic with the respective positioning of all the equipment used in the
controlled-temperature room and the technical-support room during the experimental period.

 

Figure 1. Plan view of the environmental chamber (adapted from [47]). Reprinted/adapted with
permission from Ref. [47]. 2022, Daniella Jorge de Moura.

The environmental-control center manages each compartment of the controlled-
environment room using software developed in the Delphi programming language
(version 6.0, Borland Software Co., Austin, TX, USA). The software allows measuring,
processing, controlling, and recording continuously collected data. This system allows
the user to check temperature, humidity, light intensity, and air renewal rates in real time.
According to the established temperature and humidity values, the equipment is auto-
matically activated (on and off). Relative humidity was programmed to remain at 60%
continuously. Only the air temperature varied during the experimental period, with operat-
ing values recommended by the [48] of 23 ◦C for thermal comfort and 31 ◦C for heat-stress
treatment. The particularities of the environmental-control system, equipment, operating
limits, stability, and validation with broilers are presented in [47]. The steps of inputs, data
collection and processing, experimental treatments, and outputs are represented in Figure 2
and explained in the sequence.
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Figure 2. Diagram of data input and output of the tests.

2.2. Image Acquisition

For the animal-behavior monitoring data and further analysis, surveillance cameras
(Intelbras® VMD 3120 IR, Intelbras Corporation, São José, Santa Catarina, Brazil) with a
resolution of 976 × 496 (H × V) and automatic activation of the infrared device in cases
of low light were installed on the ceiling of the geometric center of each compartment.
The two validation tests used recorded video images between noon and 18:00 h. Video
recordings were automatically stored on an NVR video recorder (Intelbras® Multi HD Serie
1000, 1080p, Intelbras Corporation, São José, Santa Catarina, Brazil). Figure 3 shows the
areas observed for the unenriched (a) and enriched (b) compartments.

  
(a) (b) 

Figure 3. Top view of the unenriched (a) and enriched (b) compartment through the cameras installed
on the ceiling of each compartment of the climate chamber.

2.3. Birds and Husbandry

A total of thirty-day-old mixed-sex chicks of the Cobb® strain were obtained from
a commercial farm. Twenty chicks with similar weights and the same distribution of
males and females were selected in two treatments, each containing ten birds (without
environmental enrichment and with environmental enrichment). The compartments and
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animals were randomly assigned to assign the treatments on the first day of housing in the
controlled-environment chamber.

Both compartments were kept without environmental enrichment during the first
three days of adaptation in the climatic chamber. The compartment selected as “enriched”
was provided with colored plastic rings suspended by a string, a plastic box containing fine
sand, and a wooden perch. According to previous literature, the enrichment was selected to
positively affect the birds’ natural behaviors (perching, pecking, and dust bathing) [13,49,50].

A bell drinker and feeder were placed in each compartment. Water and commercial
feed, based on corn and soybean meal, were provided ad libitum throughout the rearing
period. The supply of commercial feed and water to the birds was ad libitum throughout
the experimental period and followed the nutritional recommendations of the breeder’s
manual [48]. Once a day, the offered ration was weighed and manually inserted into the
tube feeder. The automatic water-supply system used a tubular drinking fountain with
height adjustment. The floor was covered with shavings bedding (0.05 m). We adopted the
breeding-company-recommended period of light (24 h of light until the seventh day and
increasing 1 h of darkness every two days). On the 14th day of growth, the birds remained
exposed to 20 h of light and 4 h of darkness from 21:00–01:00 until the end of the experiment
(42nd day of growth). We also adopted the breeding manual, so the broilers were kept in
thermoneutrality conditions during the first to the twentieth day of growth [48].

The acquisition of video images was performed automatically for seven consecutive
hours from noon to 18:00 h for the two consecutive days of analysis. According to a previous
study [5], broilers’ activity patterns were similar for three weeks throughout the day. Such
assumption allowed us to validate the analysis of broiler movement through the cluster
and unrest indexes in two days for experimental conditions in the controlled-environment
room, characterizing the present study as a proof of concept. The age of 21 days is when
the heat stress starts to impair productive performance (decrease in feed consumption and
weight gain) and negatively challenge animal metabolism and immunity [43,51,52]. Our
experimental tests were precisely at the age of 21 and 22 days under thermoneutrality and
heat-stress conditions, respectively, for both treatments. Heat stress was tested for one day,
with the chickens at 22 days of age, with the birds being kept in thermal comfort during the
previous housing days. Figure 4 illustrates the diagram of activities used in data collection
for proof-of-concept validation.

The relative humidity remained within what was recommended in the breeders’
manual [48] during the experiment. A previous commissioning study of the controlled-
environment-room operation [47] allowed one hour to reach the heat-stress temperature
condition (31 ◦C) and maintain the system. For this reason, the control setup started at noon.

2.4. Video Analysis

The efficiency of two comfort indexes based on group behavior was verified. The
calculation of these indexes is based on information extracted from images recorded through
image-analysis techniques. This proof of concept evaluated the extraction of information
and the calculation of indexes by a computer-vision system.

Videos were analyzed at the frequency of one frame per second (fps). Considering
that there was no effect of the compartments, we used a completely randomized design
in a split-plot scheme in time, in which we tested two factors: (1) temperature (comfort or
heat stress), as the main factor; and (2) environmental enrichment (present or absent), as
the secondary factor. The seven hours of recording analyzed were divided into 14 blocks of
time (30 min each block, which corresponds to the analysis of 25,200 frames per condition
(temperature vs. environment), totaling 100,800 frames in the experimental period.
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Figure 4. Diagram of the methodology used for proof-of-concept tests.

The images were processed frame by frame, initially using low-pass filters to smooth
out image noises such as feathers on the bedding and wood shavings on the birds. After
segmentation, mathematical morphology techniques were applied to fill holes and exclude
the remaining noise. The group behavior of chickens was measured using the cluster
index [23] and the unrest index [24], described in Equations (1) and (2).

Cluster Indexi =
2 × A ×√

h2 + w2

P × D × nA
− 1 (1)

where Cluster Index(i) is the cluster index of the birds observed in the ith frame of the
video; A and P are the average area and perimeter (in pixels) of the shapes observed in the
frame, respectively; D is the average distance between the centers of mass of the shapes in
the scene; nA are the number of clusters; and h and w correspond to the height and width
(in pixels) of the cropped image.

Unrest Index(i,i−1) = k.max
{

dH
(

F(i), F(i−1)

)
, dH

(
F(i−1), F(i)

)}
(2)

where Unrest Index(i, i−1) is the unrest index (cm) of the birds between two frames recorded
with 1 (one) second difference; i is the position of the frame in the video; F(i) is the current
frame; F(i−1) is the previous frame; dH is the Hausdorff distance [53] between birds from
one frame to another; and k is the proportionality factor calculated by Equation (3).

k =
2H tan(α/2)

w
(3)

where k is the proportionality factor; H is the height (cm) of the installed camera concerning
the floor; α is the opening angle of the camera lens; and w is the length (pixels) of the CCD
sensor, which corresponds to the length of the largest measurement of the frame captured
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by the camera. The video capture rate was 30 fps, but a frequency of 1 fps was adopted as
the most adequate for image analysis, considering the birds’ movement speed.

Cluster and unrest indexes were calculated frame by frame. In this way, the values
obtained for each plot correspond to an average referring to 1800 images. The data were
explored by graphs of the indexes calculated in the simultaneous application observation
time, verifying possible interactions and differences in the crowding and unrest behaviors
between the enrichment and temperature treatments evaluated. We applied the ANOVA
with repeated measures, followed by the Tukey mean test to confirm the differences in the
birds’ crowding and movement behavior between the evaluated environmental treatments.

3. Results and Discussion

Figure 5 corresponds to the results obtained for the cluster index (crowding) from
noon to 18:00 in the group of broilers housed in an enriched and nonenriched environment,
subjected to thermal conditions of neutrality and heat stress. Each point on the graph
represents a repetition of a subdivision plot in time (total 14). Each plot corresponds to the
analysis average of 1800 frames/video for generating the cluster index for the treatments.

Figure 5. Cluster index of the group of broilers housed in enriched and nonenriched environments
under the effect of comfort and heat stress.

It can be seen from Figure 5 that the cluster index detected in the enriched environ-
ment is similar between the conditions of thermoneutrality and heat stress. However, the
highest peaks occurred in thermoneutrality and the lowest in heat stress. This observation
of trend analysis means that the ambient temperature above the comfort limit was not
enough to change the crowding pattern of broilers aged 21 days reared in enriched envi-
ronments. Therefore, the isolated analysis of this index cannot be considered an indicator
of heat stress for broilers raised in enriched environments. We observed significantly
lower crowding rates in the comfort temperature and nonenriched environment than the
enriched-compartment results.

Figure 6 illustrates the unrest index for the treatments from noon to 18:00 h. Each
point of the graph represents a repetition of the subdivision plot in time (total 14). Each
plot corresponds to the average of 1800 frames/video analysis for the generation of the
unrest index of the treatments.
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Figure 6. Unrest index of the group of broilers housed in enriched and nonenriched environments
under the effect of comfort and heat stress.

During the evaluated period, a tendency for the unrest index to be higher under
thermoneutrality conditions is observed, regardless of the environmental enrichment.
Furthermore, heat stress reduces the movement of animals, with more significant losses
for the nonenriched treatment. Table 1 shows the differences observed in the behavior of
gathering and movement of the birds, where it is observed that the environmental enrichment
promoted more movement of the birds both under conditions of comfort (52.74 vs. 48.71)
and thermal stress (35.38 vs. 32.81), which confirm previous graphical analyses. However,
heat stress is a limiting factor for the movement of animals, reducing the positive potential
of the presence of environmental enrichment. Environmental enrichment provided higher
crowding rates both in comfort (8.42 vs. 4.66) and in heat stress (7.91 vs. 7.11), and in
an enriched environment, birds under heat stress crowded more than birds raised in
nonenriched environments (4.66 vs. 7.11).

Table 1. Results of the Tukey test (p < 0.05) for the cluster and unrest indexes in the combined
conditions of temperature and environmental enrichment found in the proof-of-concept experiment.

Indexes Temperature
Environment

Enriched Nonenriched

Cluster
Comfort 8.42 4.66

Heat stress 7.91 7.11

Unrest
Comfort 52.74 48.71

Heat stress 35.38 32.81

Environmental enrichment increased broilers’ unrest (movement) index from fast and
slow-growing strains under thermoneutrality conditions, confirming our findings [32].
Exposure to high temperatures above the thermal comfort zone is challenging for birds
housed in complex environments. Broilers raised in enriched environments from 1-day-old
exposed to stress conditions at 22 days of age (heat, noise, and containment in a crate)
showed heat stress as the worst adverse condition [54].

Environmental enrichment benefits, especially perches and litter boxes, have been
extensively studied [2,4,7,9–11,50]. In the present study, we noted behavioral changes in
the group compatible with these benefits, suggesting that the proposed computer vision
based on cluster and unrest indexes can be safely used for these assessments.

Figure 5 shows the crowding behavior of broilers housed in enriched and nonenriched
environments at the different temperatures tested. Results of the present study indicated

160



Animals 2022, 12, 846

that complex environments favored the crowding of the group of broilers under heat stress.
Visually reviewing the videos, we observed that birds under heat stress conditions clustered
around enrichment objects, indicating that environmental enrichment can minimize the
negative effect of heat stress on birds. Figure 7 illustrates the frames for comfort (a and c) and
heat stress (b and d) conditions in enriched (a and b) and nonenriched (c and d) environments.

  
(a) (b) 

  
(c) (d) 

Figure 7. Frames evaluated are (a) nonenriched environment in comfort, (b) nonenriched environ-
ment under heat stress, (c) environment enriched in comfort, and (d) enriched environment under
heat stress.

When analyzing the positioning of the animals in the video images, it was observed
that broilers have different distribution patterns depending on the complexity of the
environment (enriched versus nonenriched). Note that the birds are better distributed
throughout the compartment for the environment without environmental enrichment in
the comfort treatment (Figure 7a). However, in the heat-stress condition (Figure 7b), birds
crowded near the drinker to benefit from the microclimate close to the water, which resulted
in higher crowding rates [23,55]. The behaviors of remaining seated birds—increased water
consumption, spreading wings, increased respiratory rate, and panting—are favored to
dissipate excess heat [55–58].

In our study and previous work, bird distribution inside the pen appears to be highly
related to the location of food and water [59]. Environmental enrichment also alters the
distribution pattern of birds, with a higher prevalence of agglomeration close to enrichment
objects, both in small-group experiments [32,60,61] and at a commercial scale [2,8,62]. Cornetto
and Estevez [60] observed that the birds were forced to occupy the central region earlier in
groups of larger sizes than for smaller group sizes. Slow-growing broilers used environmental-
enrichment objects more frequently when compared to fast-growing broilers [32]. These
findings reinforce the differences among housed flocks and the importance of recalibrating
the CV system to each housing situation (group size, strains, age, and housing conditions).
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The CV could simultaneously apply the Cluster and Unrest indexes to monitor the
movement of the group of broilers under different environmental conditions, indicating
the possible differences in the environmental conditions. The authors suggest that more
research should be conducted to evaluate the potential positive impact of environmental
enrichment in poultry production. The complexity of the environment is a factor to be
considered in creating alert systems for detecting heat stress in broiler production.

4. Conclusions

The cluster and unrest indexes calculated from videos analyzed by computer-vision
techniques allowed us to simultaneously evaluate the movement of broilers raised in differ-
ent environments and detect variations that allowed us to estimate the level of wellbeing.
We recommend that the indexes be used to evaluate the movement and agglomeration of
broiler flocks in environments with different enrichment levels to evaluate the improve-
ment of wellbeing. In large groups, birds’ movement and grouping patterns may differ;
therefore, the CV system and indices will need to be recalibrated. The use of CV to assist
with monitoring can assist caregivers during the rearing of broiler chickens.
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